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Preface 

This is the second and slightly revised edition of this book. A few errors 
have been fixed, and some references to related work have been added. 
I thank the readers for their comments on the first edition. 

We analyze the search efficiency of a number of common refutational 
theorem proving strategies on propositional and near-propositional prob
lems. Search efficiency is concerned with the total number of proofs 
and partial proofs generated, rather than with the sizes of the proofs. 
We show that most common strategies produce search spaces of expo
nential size even on simple sets of clauses, or else are not sensitive to 
the goal. However, clause linking, which uses a reduction to proposi
tional calculus, has behavior that is more favorable in some respects, 
a property that it shares with methods that cache subgoals. A strat
egy which is of interest for term-rewriting based theorem proving is 
the A-ordering strategy, and we discuss it in some detail. We show 
some advantages of A-ordering over other strategies, which may help 
to explain its efficiency in practice. We also point out some of its com
binatorial inefficiencies, especially in relation to goal-sensitivity and 
irrelevant clauses. In addition, SLD-resolution, which is of importance 
for Prolog implementation, has combinatorial inefficiencies; this may 
suggest basing Prolog implementations on a different theorem proving 
strategy. 

We also develop techniques for studying the asymptotic complexity 
of first-order theorem provers. This permits an analytic comparison of 
the worst-case performances of various theorem proving methods. We 
show that the speeds of various well-known methods range in complex
ity from singe to quintuple exponential with respect to various natural 
measures of the hardness of the input. This study reveals some of the 
efficiencies and inefficiencies of known methods, and also helps to sug
gest new strategies and combinations of strategies with good complexity 
properties. 

Chapters 1 and 2 are completely independent of one another. The 
work in Chapter 1 was done while the first author was on sabbatical 
and leave of absence at the Max Planck Institute in Saarbriicken, Ger
many. This work was partially supported by UNC Chapel Hill and by 
the National Science Foundation under grant number CCR-9108904. 



Vlll Preface 

A short version of Chapter 1 appeared at the Twelfth Conference on 
Automated Deduction in Nancy, France, June - July, 1994. A longer 
version appeared in [Pla94cJ. Portions of Chapter 1 also appeared in 
[PA96J. The work in Chapter 2 was jointly done by both authors and 
was partially supported by UNC Chapel Hill and by the National Sci
ence Foundation under grant number CCR-9627316. This book was 
typeset by the first author using Jh\TEX and BIBJEX. Thanks are due 
to Sid Chatterjee for explaining xfig and embedded postscript. 



Chapter 1 

The Propositional 
Complexity of First-Order 
Theorem Proving Strategies 

Many shall run to and fro, and knowledge shall be 
increased. 

Dan. 12:4 

1.1 Introduction 

The efficiency of a theorem prover is more directly influenced by the 
total number of inferences performed before a proof is found than by 
the size of the final proof. In general, in the field of automated deduc
tion for full first-order logic, there has been a great deal of attention 
devoted to the completeness of strategies but little to their efficiency, 
in the sense of the total work expended in the search for a proof. The 
main efficiency considerations to date have to do with the times needed 
by particular implementations to find proofs of particular example the
orems, or with the efficiencies of decision procedures for specialized 
theories. Of course, there has also been work on the efficiencies of low
level operations employed by theorem provers (such as unification). It 
is informative (and fun) to evaluate a prover by running it on a series 
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of examples, but this could well be supplemented by analytical results. 
To this end, a theoretical study would be useful. It would be nice to 
know something about the behaviors of proposed new strategies with
out having to read and understand papers about them or having to run 
them on examples. Theoretical measures of search space size would 
permit this. Such measures would also make it easier to weed out bad 
strategies early and would stimulate the development of good ones. 
There is more at issue than just a quantitative measure of performance 
- analytical measures reveal something about how a strategy works, 
and how it does subgoaling. This gives some insight into the strategy. 
A theoretical approach could also help to pinpoint problem areas and 
weaknesses in a method and lead to improvements. In general, theory 
does not replace experiment but it does supplement it, and provides 
insights that might otherwise be missed. Theory tends to make gen
eral statements and to be machine-independent, whereas experiment 
tends to deal in specifics and to be machine-dependent. This paper is 
an attempt to initiate (or further) a theory of the search efficiency of 
automated theorem proving. 

In sum, we are interested in the sizes of the search spaces produced 
by clause form refutational theorem proving strategies for first-order 
logic. This interest is different from that of most logicians who are 
interested in provability or the length of proofs. For some examples of 
the latter, see [CR79, Hak85, Urq87, Ede92]. The paper [Let93] studies 
how accurately the length of a derivation reflects the actual complexity 
of a proof. By the search space size we mean the number of proofs 
and partial proofs. This latter measure is more relevant for the effi
ciency of theorem provers than the size of a minimal proof. There has 
been very little work on search space size. The paper [KBL93] shows 
that many refinements of resolution do not increase a certain measure 
of search space size by more than a factor of four, but does not com
pare refinements with one another. Their paper considers monotone 
refinements of resolution; these do not allow deletion operations such 
as deletion of subsumed clauses. However, the results are otherwise 
very general. We demonstrate some surprising and little appreciated 
inefficiencies of many common strategies, which may help to explain 
their poor performance on some kinds of problems. We also discuss 
the clause linking method [LP92] and methods that cache subgoals and 
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show that they overcome some of these limitations. We present some 
examples where resolution has better performance. These analyses are 
interesting because they do not depend on particular machine archi
tectures or data structures used to implement strategies, and are thus 
of a more universal nature. We only consider clause form refutational 
theorem proving methods for first-order logic; it would be interesting 
to extend this analysis to Hilbert-style, sequent-style, semantic tableau, 
and other methods. We emphasize Horn clauses, which are common 
in practice. We analyze the behavior of strategies on propositional 
Horn sets as well as giving some first-order clauses sets with a similar 
behavior. 

We believe that our theoretical results are reflected in practice, both 
for strategies and their refinements. For example, we show that negative 
resolution on Horn sets is inefficient theoretically; this is also frequently 
true in practice. As a result, one can expect some practical benefit from 
this work. It may lead to the development of strategies that are more 
efficient in practice, as well as helping to reveal the comparative value 
of refinements to strategies. For example, under some circumstances, 
ordering predicate symbols improves the efficiency of resolution, and 
in other cases, it significantly degrades performance. This analysis 
also highlights the efficiency to be gained in model elimination and the 
MESON strategy [Lov78] by unit lemmas and caching, which reduce 
exponential behavior to polynomial behavior for Horn clauses. Also, we 
feel that an analytical approach will help to point out some underly
ing problems in the field, which need to be addressed before mechanical 
theorem provers can be reliable assistants to human mathematicians. A 
failure to address these issues can only be detrimental, as users become 
frustrated with the performance of their provers and don't understand 
the reasons for the inefficiencies. The kinds of problems where resolu
tion and similar methods perform well are in many cases Horn clause 
problems, or problems of a similar nature; these are also the kinds of 
problems for which the theoretical analysis indicates good behavior (as 
long as goal-sensitivity is not important). It is on such Horn clause 
problems that many of the publicized successes of resolution in solv
ing open problems, have occurred. This may give an impression of the 
power of existing theorem provers that does not correspond to their 
performance on the types of problems more likely to be encountered by 
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a typical user. 
Some of these results are particularly interesting because of their im

plications for neighboring areas of research. We discuss theorem proving 
methods based on term-rewriting, which correspond to the A-ordering 
refinement of resolution for propositional logic. Term-rewriting is of in
terest because it is often very efficient on pure equational problems. We 
show that from a theoretical standpoint, A-ordering has some signifi
cant advantages over other strategies, although it also has some severe 
problems, especially if the ordering is not chosen properly. Moreover, 
a good ordering can be hard to find: we give some evidence in sec
tion 1.5.10 that it is not always possible to choose an ordering that is 
natural, goal-sensitive, and efficient, even for unsatisfiable clause sets. 
This suggests that it may be difficult in general to obtain efficient goal
sensitive term-rewriting based theorem provers for first-order logic, and 
that other methods may have to be used. Giving up goal-sensitivity 
seems like a high price to pay, although it is conceivable that one could 
prove theorems efficiently without considering the goal. Also, we give 
a set of clauses for which A-ordering, even with a good ordering, gen
erates an exponential number of clauses. Turning our attention now 
to logic programming, we show that SLD-resolution [Ll087] also has 
severe inefficiencies in some cases. Since SLD-resolution is the basis for 
logic programming implementations, this result may suggest the pos
sibility of basing Horn-clause logic programming implementations on 
other theorem proving strategies. 

Furthermore, this work highlights what we feel is a dilemma of theo
rem proving, namely, that most strategies are either inefficient on Horn 
clauses or are not sensitive to the theorem being proved. For hard 
problems, it seems essential to have a strategy that works backwards 
from the theorem to try to find a proof. Although some fairly hard 
theorems can be proved without backward reasoning, it seems unlikely 
that a strategy that simply combines general axioms will make much 
progress, in general. However, for Horn clauses, strategies that work 
backwards tend to be highly inefficient, and many problems consist 
largely of Horn clauses. The author has been aware of this problem 
for some time, and has developed some strategies to avoid this prob
lem. But our impression is that few in the field appreciate this issue 
properly. Even the strategies that overcome this problem have addi-
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tional problems of their own. The clause linking strategy of [LP92] is 
a back chaining strategy that is efficient on Horn clauses but some
times needs to retain instances of more general clauses. Clause linking 
with semantics [CP94] is efficient on Horn clauses and makes use of 
semantics, but sometimes needs to enumerate ground terms, which we 
would also like to avoid. Also, the base method used for clause linking 
with semantics does not involve unification. Despite this, its notable 
successes on certain hard problems tends to confirm our theoretical 
considerations. We would like to find a back chaining strategy that is 
efficient on Horn clauses, based on unification, and still always permits 
instances to be deleted. Some such strategies exist; they are the ME
SON strategy, model elimination [Lov78]' and the simple and modified 
problem reduction formats [Pla82, Pla88], all with caching. However, 
of these, either caching of unit lemmas and subgoals is not complete 
for first-order logic, as for the first two, or the strategies have proposi
tional inefficiencies for non-Horn problems, as for the second two. For 
the MESON strategy and model elimination, if caching of non-unit 
lemmas and subgoals is done, then the efficiency on Horn clauses is 
lost. 
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My prover can prove 
Fermat's last theorem 
automatically. 

But what is its 

asymptotic 
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1.2 First Order Logic and Refutational 
Theorem Proving 

We assume the standard definitions of propositional and first-order 
logic. For a discussion of first-order logic and theorem proving strate
gies see [CL73, Lov78, Bun83, WOLB84J. We restrict our attention to 
clause form first-order refutational theorem proving. A term is a well
formed expression composed of variables and function and constant 
symbols, such as, f(x,g(y, c)). An atom is a predicate symbol, possibly 
followed by a list of terms. For example, P and Q( a, f( x)) are atoms. A 
literal is an atom or an atom preceded by a negation sign. For example, 
-,P(b) is a literal. A literal is called positive if it lacks a negation sign 
and negative if it contains a (single) negation sign. A clause is a set of 
literals, signifying their disjunction. Thus {P, -,Q} is a clause signifying 
P V -,Q. Variables in a clause are assumed to be implicitly universally 
quantified. Thus the clause {P(x), -,Q(x)} means (\lx)(P(x) V -,Q(x)). 
A clause is positive if all of its literals are positive, and negative if all of 
its literals are negative; often we say all-negative for emphasis. A Horn 
clause is a clause having at most one positive literal. Thus { -,P, -'Q, R} 
is a Horn clause. Such clauses are commonly used in Prolog programs. 
A set of clauses signifies the conjunction of the clauses in the set. For 
example, the set {{ -,Q(x), P(x)}, {-,P(y), Q(y)}} signifies the formula 
(\Ix )(\ly)( (-,Q( x) V P( x)) 1\ (-'P(y) V Q(y))). Thus, a set of clauses 
represents a quantifier-free first-order formula in conjunctive normal 
form. It is known that any first-order formula can be converted to 
this form efficiently in a satisfiability-preserving manner. The theorem 
proving problem (in this refutational format) is to decide if such a set 
of clauses is unsatisfiable. The general problem is only partially decid
able. A number of strategies have been developed to partially decide 
this property. We are interested in comparing their efficiency. We say 
a strategy is complete if it correctly reports whenever a set of clauses is 
unsatisfiable but may fail to terminate if the set of clauses is satisfiable. 

A literal M is an instance of a literal L if M is obtained from L by 
replacing variables by terms in a systematic way, that is, all occurrences 
of the same variable are replaced by the same term. Thus P(J( a), f( a)) 
is an instance of P(x, x). We similarly define what it means for a clause 
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D to be an instance of a clause C. We define the operation of unit sim
plification as follows: Suppose we have a unit clause {L} and another 
clause {Ml' ... , Mn}, where Land Ml are complementary. Then, the 
clause {Ml' ... , Mn} can be deleted and replaced by {M2, ... , Mn}. This 
extends to first-order logic; in that case, we require that Ml be an 
instance of the negation of L. 

We also define pure literal clause deletion as follows: Suppose 5 
is a set of clauses and C is a clause in 5. Suppose L is a literal in 
C and there is no literal M in any clause of 5 such that L and the 
complement of M are unifiable. Then L is said to be pure. Also, in this 
case, 5 - {C} is unsatisfiable iff 5 is. So, pure literal clause deletion 
is the operation of deleting such clauses from 5. This may cause other 
literals to become pure. Sometimes all of 5 can be deleted by repeated 
pure literal clause deletion. In this case, 5 is satisfiable. 

We also define subsumption. In the propositional setting, a clause 
C subsumes D if C is a subset of D. We say C properly subsumes D 
if C is a proper subset of D. In the first-order setting, we say that C 
subsumes D if C has a (substitution) instance that is a subset of D. 
Note that if C subsumes D, then C logically implies D. If C is derived, 
then one can often simplify clause sets by removing subsumed clauses 
D without losing completeness. 

1.3 Search Space Formalism 

We formalize theorem proving strategies as directed graphs. Formally, 
a theorem proving strategy is a 5-tuple < 5, V, i, E, u > where 5 is a set 
of states, i maps the input clauses to a set of states, E is a set of edges 
(pairs of states), and u maps 5 to {True, False}. Each state s is labeled 
with a set label (s) of elements from some underlying set V of structures 
(such as clauses or chains). If an edge (s, t) is in E, this means that t 
is a possible successor state to s. Thus, (5, E) is a directed graph. We 
require that no two distinct edges (SI, t1), (S2' t2) have tl = t2. Thus the 
graph is a set of trees. Also, u is an unsatisfiability test; u( s) is True 
if the state s corresponds to a proof of unsatisfiability. We say such a 
strategy is complete if for all sets R of clauses, if R is unsatisfiable then 
there exists a path from some element of i( R) to a state s such that u( s) 
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is True. We say such a strategy is sound if R is unsatisfiable whenever 
there is a path from some element of i (R) to a state s such that u( 8) is 
True. A strategy is linear iffor all 8 in S, there is a unique t in S such 
that there is an edge from 8 to t in E. The intention of this definition is 
that i and u are computable and of low complexity. Let FM be the set 
of ordered pairs {(8, {t : (8, t) E E}) : 8 E S} for a strategy M. Thus, 
FM(8) is the set of successors of a state 8. We require that FM be a 
function, in the sense that if the labels of 81 and 82 are the same then 
the sets of labels of their successors should also be the same. (Recall 
that each state is labeled with a set of elements of V.) Also, we intend 
that FM should be computable and of low complexity. Often we omit 
V and write the strategy as a 4-tuple < S, i, E, u >. 

As an example, we formalize resolution in this way. For this, we 
have the 5-tuple < S, V, i, E, u > where each state in S is labeled with a 
finite set of clauses, V is the set of all clauses over some set of predicates 
and function symbols, i (R) = {R} for all R, and (8, t) is in E if t is 8 
together with all resolvents of clauses in 8. Thus resolution is a linear 
strategy, in this formalism. Finally, u( 8) = True iff the empty clause 
is in label(8). Now, resolution formalized in this way is complete, since 
if R is unsatisfiable, there is a resolution proof of the empty clause 
from R. Also, resolution is sound. In contrast, model elimination is 
not linear in this formalism. For model elimination, the labels of the 
states consist of single chains. Here i(R) is a set of states, one for each 
clause in R, each state labeled with a singleton set containing a single 
chain. Also, (8, t) is in E if the chain in the label of t is obtained by 
a permissible operation (extension, reduction, or contraction) from the 
chain in the label of 8. Thus, strategies that are conventionally thought 
of as linear, become non-linear in this framework, but strategies that 
are non-linear like resolution become linear in this framework. 

1.4 Measures of Search Duplication 

We now define some measures of search space duplication for such 
strategies. For this, we assume that R is a set of propositional clauses, 
for simplicity, although these ideas can be lifted to first-order logic. We 
can think of a search space G =< S, V, i, E, u > as a function mapping 
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a set R of clauses to a graph G(R) representing the search space for R. 
For this, we define an initial state to be an element of i (R) and a final 
state to be a state s such that u( s) = True. Thus the task of the the
orem prover is to find a path from an initial to a final state. We say a 
state s is reachable from R if there is a path from some element of i (R), 
to s. We are only interested in the nodes s that are reachable from R. 
Also, we are only interested in edges in E that occur on some such path. 
So, we define S(R) to be the set of nodes reachable from R. We define 
E( R) to be the set of edges in E that occur on some path of reachable 
states. Also, we define G(R) to be the graph < S(R), E(R) >. Let ITI 
be the number of elements in a set T. Then, we are interested to know 
how IS(R)I depends on the length c(R) of R, represented as a string of 
characters. For example, is IS(R)llinear in c(R), polynomial in c(R), 
or exponential in c(R)? Also, we are interested in the structure of the 
states. Recall that S is a set of states, each labeled with a set of struc
tures indicating lemmas or partial proofs. We are interested in how 
big these sets of structures can become, because this is a meaningful 
measure of search complexity. Thus, the most meaningful measure of 
search complexity is the sum, over all s in S(R), of Ilabel(s)l. Let us 
call this measure IIG(R)II, and refer to it as the total duplication for R. 

To further refine this measure, we consider three other measures: 1. 
The maximum length of a path in G(R). 2. The maximum size of a 
subset of S( R), no two elements of which are on the same path. 3. The 
maximum of Ilabel( s) I for all s in S( R). We call the first, the duplication 
by iteration, the second, the duplication by case analysis, and the third, 
the duplication by combination. The intuition for this is that the length 
of a path represents the number of times that search must be iterated. 
Also, each path represents a case that must be considered in the search, 
so the second measure indicates the number of cases there are. The 
third measure concerns the sizes of the labels of the states. If the sizes 
of the labels are large, then there must be many elements of V in the 
same state label. However, in common propositional strategies, the 
elements of V are constructed from the predicates appearing in the 
input clauses. This means that there must be many combinations of 
these predicates, hence the term duplication by combination. 

For each measure, we are interested in whether it is a constant, 
polynomial, or exponential in c( R). We are also interested in the size 
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ofthe total duplication IIG(R)II. It is not difficult to show that IIG(R)II 
is bounded by the product of these three measures. To see this, we note 
that G( R) is a tree. Each tree is a union of a set of paths from the 
root to a leaf. We can thus identify each state of G( R) with a pair 
(path, position) where the position tells the distance from the root. We 
thus have that the number of ordered pairs (s, v) such that v E label (s) 
is equal to the number of triples (path, position, v) where v E label( s) 
for s the state corresponding to (path, position). Thus the number of 
such ordered pairs (s, v) is bounded by the product of the number of 
paths, the length of the longest path, and the number of elements in the 
largest label. But the number of such ordered pairs is just IIG( R) II and 
the product is just the product of the three measures of duplication. 
This shows that the total duplication is bounded by the product of 
duplication by iteration, combination, and case analysis. 

We say the duplication by iteration for R is constant if the duplica
tion by iteration is bounded. We say the duplication by iteration for R 
is linear if the ratio of the duplication by iteration to c( R) is bounded. 
We say it is polynomial if the duplication by iteration is polynomial in 
c(R). We say it is exponential ifthe duplication by iteration is exponen
tial in c( R). Similarly, we can define what it means for duplication by 
combination and case analysis to be constant, linear, et cetera. We also 
define in this way what it means for the total duplication to be linear, 
et cetera. We say a strategy has polynomial behavior if all three kinds 
of duplication are polynomial, or equivalently, if the total duplication 
is polynomial. We say a strategy has exponential behavior if the total 
duplication is exponential, or equivalently, if one of the three kinds of 
duplication is exponential. 

If a strategy is linear, then a round is an edge in E(R). The rounds 
are ordered; the first round is the edge of the form (i(R), s), the second 
round is the edge of the form (s, t), and so on, so the edges are ordered 
by their distance from i(R). Sometimes we use a similar terminology 
for non-linear strategies. It is often useful to discuss the behavior of 
the rounds in order to analyze a strategy. 
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I've developed a 

new strategy! The 

completeness proof is 

contained in this 

400 page monograph! Have you run it on 
any examples? 

Have you analyzed its 
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1.5 Analysis of Duplication for Various 
Strategies 

We are interested in determining the degree of duplication for various 
strategies and their refinements. In this way we obtain the following 
chart. This chart shows, in addition to the search space measures for 
each strategy, whether the strategy is goal sensitive. A strategy is 
goal sensitive for Horn clauses if each inference depends on a negative 
Horn clause; this means that some kind of backward chaining from 
the goal clauses is being done. In logic programming applications, one 
considers the negative clauses as goals or queries, and we adopt the 
same convention here. This seems to be true of many mathematical 
theorems as well as logic programs. Of course, there is no intrinsic 
reason why negative literals should be treated differently than positive 
literals in a more general context. If a strategy G is goal sensitive, then 
G( R) will be empty for sets R of Horn clauses containing no all-negative 
clauses. We also indicate the search depth; this is the maximum length 
of a path in the search space from an initial to a final state. This 
indicates the depth at which a proof can be found. This differs from 
duplication by iteration; duplication by iteration considers essentially 
the maximum number of rounds of inference that can be done, whether 
or not a proof is found. This could conceivably be larger than the search 
depth (for example, if the set of input clauses is satisfiable or if we chose 
the wrong path to search). Presumably, the prover will not continue to 
search beyond nodes s for which u( s) = True. Thus, in some situations, 
search depth may give better information than duplication by iteration. 

The chart is based on propositional Horn clauses. Horn clauses are 
interesting because they correspond to a derivation of a fact (atom) 
from a collection of facts (atoms), and such derivations are common. 
Horn clauses as a result appear frequently in sets of clauses seen by 
theorem provers. In addition, Horn clauses are useful for studying how 
a theorem prover performs subgoaling. Such clause sets are decidable 
in linear time [DG84]. However, it is conceivable that one could do even 
better than that. One may not even have to look at all the input if a 
goal-directed method is used; only the clauses that are in some sense 
relevant to the goal need to be considered. This could be relevant if 
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there are thousands of input clauses and if many queries are given to 
the same database of clauses. In addition, our results are transferrable 
to certain first-order clause sets, as we will show. It is instructive at 
the beginning to give the simplest sets of clauses illustrating the var
ious behaviors. Another reason for the interest in propositional Horn 
clauses is because of the dramatic differences they reveal between differ
ent strategies, often strategies that differ in fairly small and seemingly 
insignificant ways. 

We would like to emphasize that the functions in this chart are 
upper bounds, valid for all propositional Horn sets. In addition, the 
bounds are tight, meaning that there are propositional Horn sets for 
which these bounds are achieved. Since we give several specific sets 
of clauses below, the reader may get the impression that we are only 
measuring the search behavior for these sets of clauses. This is an 
incorrect impression. These clause sets are only used to show that the 
bounds are tight. 

Also, we are not considering which search method is used, whether 
depth-first, breadth-first, best-first, or some other search method. We 
only consider the total size of the search space. It's possible that a 
very good search method could lead to better bounds. However, we 
are not aware of any search method that can improve on the bounds 
given below. In particular, breadth-first search and depth-first iterative 
deepening [Kor85, ST85] should explore a portion of the search space 
having the same size as that indicated here. That is, if any of the 
bounds are exponential, these search methods will explore an exponen
tial amount of the search space. Also, for theorem proving strategies 
having exponential search depth, any search method will (sometimes) 
explore an exponential amount of the search space. 

The following abbreviations are used in this table: hyper-res means 
hyper-resolution, ord means ordering the literals, Prded means P1-

deduction, 3-lit means 3-literal clauses, res means resolution, A-ord 
means A-ordering, neg means negative, g.o. means good ordering, b.o. 
means bad ordering, supp means support, ME means model elimina
tion, lemm means lemmas, cach means caching, sprf means the simpli
fied problem reduction format, mprf means the modified problem re
duction format, clin means clause linking, f. means forward, b. means 
backward, and conn means a connection calculus. 
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Search Case Goal 
Strategy Depth Combination Iteration Analysis Sensitive 

hyper-res linear linear linear 0(1) no 
hyper-res, ord linear linear linear 0(1) no 
Pt-ded linear expo linear 0(1) no 
Prded, 3 lit linear linear linear 0(1) no 
Pt-ded, ord neg linear linear linear 0(1) no 
res, A-ord linear expo linear 0(1) no 
all-neg res linear expo linear 0(1) yes 
all-neg res, g.o. linear expo ? 0(1) yes 
all-neg res, b.o. expo expo expo 0(1) yes 
res, neg supp linear expo linear 0(1) yes 
ME expo 0(1) expo expo yes 
ME, unit lemm linear expo linear 0(1) yes 
ME, unit lemm, cach linear linear linear 0(1) yes 
MESON expo 0(1) expo expo yes 
MESON, unit lemm, linear linear linear 0(1) yes 

cach 
sprf, no cach expo 0(1) expo expo yes 
sprf, cach linear linear linear 0(1) yes 
mprf, no cach expo 0(1) expo expo yes 
mprf, cach linear linear linear 0(1) yes 
din, f. supp linear linear linear 0(1) no 
din, b. supp, linear linear linear 0(1) yes 
f. conn. linear linear linear 0(1) no 
b. conn. expo 0(1) expo expo yes 

We can make some general observations about this table. The back
ward chaining strategies are goal-sensitive, but are mostly inefficient. 
Forward chaining strategies, though efficient for Horn clauses, are not 
goal-sensitive. All of the strategies that are goal sensitive have expo
nential duplication, except for the simplified problem reduction format 
with caching, the modified problem reduction format with caching, and 
clause linking with backward support. MESON and model elimination 
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with caching and unit lemmas have this property, but these are not com
plete for general first-order clauses. A recent implementation of model 
elimination and unit lemmas with caching is described in [AS92]. Note 
that some refinements can be very damaging to a strategy. For exam
ple, ordering negative literals can severely degrade the performance of 
negative resolution. 

These results are valid for sets of Horn clauses. We might consider 
a more general set of clauses, namely, those for which a renaming of 
predicate symbols produces a Horn set. For such clauses, none of the 
results given above are any better, and many of the results are much 
worse. For example, PI deduction and hyper-resolution can be made as 
bad as all-negative resolution, since we can choose to reverse the signs 
of the literals, making PI deduction and hyper-resolution simulate all
negative resolution. We believe that the behavior of the simplified 
and modified problem reduction formats degrades in a similar way. 
However, clause linking still has only linear duplication of search. This 
sets it apart from all other strategies considered, but the reason is that 
unit simplification is built in to this strategy. Without this, it might 
not have such good behavior either. And of course, other strategies 
with unit simplification added would have this good behavior also on 
unsatisfiable Horn sets. However, satisfiable Horn sets are more of a 
problem for the strategies other than clause linking since clause linking 
has a model-finding approach to detecting satisfiability that doesn't 
seem to fit into the other strategies given here. One can show that the 
model-finding part of Davis and Putnam's method will always succeed 
in polynomial time for satisfiable propositional Horn sets [GU89]. 

1.5.1 Hard sets of clauses for the strategies 

We now indicate how the above results were derived. For this we con
sider the sets of clauses S~, S~, and S~ defined as follows. Note that 
S~ is unsatisfiable but S~ and S~ are satisfiable. 

Let S~ be the set of n + 2 clauses {{,PI"P2 , ... "Pn ,P}, {Pd, 
{P2 }, ... , {Pn }, {,P}}. We sometimes write clauses in Prolog format; 
a clause {P, ,PI, ... , ,Pn } is written as P : - PI, ... , Pn . A clause 
{,PI, ... , ,Pn } is written as : - PI, ... , Pn • Let S~ be the following 
clauses, written in Prolog format for readability: 
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goal clause ;- Pi,n 

type 1 clauses Pi,J ; - Pi+1,j, Pi,j-b l~i<j~n 

Pi,J ; - Qi+i,J' Qi,j-i, l~i<j~n 

Qi,J ; - Pi+i,J' Qi,J-i, l~i<j~n 

Qi,J ; - Qi+i,J' Pi,j-i, l~i<j~n 

type 2 clauses p.. 
',' ; - Pi,i+n/2, i ~ n/2 

Qi,i ; - Qi,i+n/2, i ~ n/2 
p.. 
',' ; - Pi- n/2,i, i > n/2 

Qi,i ; - Q i-n/2,i, i > n/2 

The following picture should help to illustrate the structure of S~. 
The type 2 clauses are not shown. 

P2,n 

/QI"-I~ /Q2,. ~ 
Pi ,n-2 P2,n-i 

Qi,n-2 Q2,n-i 
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We can think of backward chaining theorem proving strategies on this 
set of clauses as ways of moving P-pebbles and Q-pebbles around on 
this graph. Initially, there is a P-pebble on the (1, n) vertex. At each 
step, we are permitted to remove a pebble. If we remove a P pebble 
from vertex (i,j), we must either add two P pebbles or two Q pebbles 
to the two vertices (i,j - 1) and (i + 1,j) below. If we remove a Q 
pebble, we must add a P pebble and a Q pebble to these vertices. Note 
that the parity of the number of Q pebbles never changes unless some 
Q literal is generated in two or more ways. Later we will formalize this 
pebbling idea in a more general context. 

Let S~ be the following clauses, in Prolog format: 

goal clause : - Po, Qo 

type 1 clauses Pi : - Pi+l, Pi+2 , 0 ~ i < 2n - 2 

Pi : - Qi+l' Qi+2' 0 ~ i < 2n - 2 

Qi :- Pi+1,Qi+2, 0::; i < 2n - 2 

Qi : - Qi+l' Pi+2, 0 ~ i < 2n - 2 

type 2 clauses P2n- 1 : - Pn - 1 

P2n :- Pn 

Q2n-l : - Qn-l 

Q2n : - Qn 

The following picture should help to illustrate the structure of S~. 
As before, the type 2 clauses are not shown. 
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Here we can think of backward chaining strategies as methods of peb
bling this graph. Whenever a pebble is removed from vertex i, pebbles 
must be added to vertices i + 1 and i + 2. As before, there are P pebbles 
and Q pebbles and the parity of the number of Q pebbles is preserved 
unless a Q pebble is generated in two ways. 

We also introduce the set T; of clauses which is S~ together with 
the unit clauses Pi,i and Qi,i for 1 ::; i ::; n. We introduce T~ which is 
S~ together with the unit clauses PZn- Z, PZn- 1, QZn-Z' and QZn-l. T; 
and T; are unsatisfiable, but easy if unit simplification is done. 

We now give a sample backward chaining proof attempt. Consider 
S~. We can resolve the initial goal clause ....,P1,n with P1,n : - PZ,n, P1,n-l 
to obtain the clause {"",PZ,n, ""'Pl,n-d. Then we can resolve this with 
PZ,n : - Q3,n, QZ,n-l to obtain the clause {....,Q3,n, ....,QZ,n-l, ....,P1,n-l}. 
Different choices for these two resolutions would have led to eight 
clauses in all (because we have a choice which literal to resolve on). 
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As the number of resolutions increases, the number of clauses gener
ated increases exponentially. For s~, the graph is narrower, but one 
can still get exponentially many such proofs by backward chaining. 

We use these clause sets to show exponential behavior of some of the 
strategies. The strategies that have exponential behavior are often back 
chaining strategies that are similar to Prolog (SLD resolution [11087] 
) in their execution; thus, a clause {P, -'Q, -,R} can be viewed as a 
Prolog clause P : - Q, R, which means that if P is a goal, then Q 
and R become subgoals that are solved in turn. An SLD-resolution 
between this clause and some all-negative clause C such that -,p E C 
produces the clause C - { -,P} U { -'Q, -'R}. This replaces the literal -,p 
by -,Q and -,R, corresponding in Prolog terms to replacing the subgoal 
P by the subgoals Q and R. Initially, an all-negative clause is chosen to 
start the search. The literals of the all-negative clauses are considered 
as (sub)goals. The search proceeds by subgoaling. 

We now indicate why these clauses sets are difficult for some strate
gies. In S;., there are a large number of negative literals in the non-unit 
clause, and if an order for resolving them is not specified, many clauses 
can be generated with some of the negative literals deleted, since there 
are exponentially many orders for resolving the literals. This causes 
a problem for forward chaining methods that do not order the nega
tive literals. In S;, for each subgoal Pi,j and Qi,j, there is a choice of 
two clauses to resolve with it, each generating two more literals (sub
goals). (This corresponds to the two ways of choosing P pebbles and Q 
pebbles.) These choices each generate more subgoals, each having two 
choices for a clause to solve it. Therefore, these choices can be made 
in many ways, generating many combinations of the Pi,] and Qi,j for 
backward chaining methods. Also, for some methods, the same subgoal 
will be solved repeatedly. This set of clauses was chosen to neutralize 
the obvious methods of reducing the search space. The type 2 clauses 
were added so there would be no pure literals, to neutralize pure-literal
clause deletion. In S~ and T;, there are fewer clauses altogether and 
fewer subgoals at each level. The subgoals Pi and Qi both depend on 
P,+l, Qi+l, Pi+2, and Qi+2' for all i < n - 1. 

Let's adopt the Prolog subgoal calling formalism to describe the 
search space for all-negative resolution. In T;, the top-level goal clause 
is {-'Po, -,Qo}. This corresponds to the two subgoals Po and Qo. If we 
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call subgoals in a depth-first manner, we will first attempt Po, which 
will eventually succeed, and then we will call Qo. During one attempt 
to solve Po (one resolution), the subgoals PI and P2 will be generated, 
and in another attempt to solve Po, the subgoals Q1 and Q2 will be 
generated. During one attempt to solve Qo, the subgoals PI and Q2 
will be generated, and during the other attempt, the subgoals Q1 and 
P2 will be generated. This leads to a total of two occurrences of each 
of the subgoals Ph P2, Qh and Q2. Each occurrence of PI and Q1 
will eventually be called, each call corresponds to two resolution oper
ations, and each resolution generates two more subgoals. All subgoals 
attempted will eventually succeed, and later subgoals in the same clause 
will be called. Thus four more occurrences of the subgoals P2 and Q2 
will be generated and eventually called. So the subgoals PI and Q1 
will both be solved twice, the subgoals P2 and Q2 will both be solved 
six times, et cetera, in an exponential sequence generated by a simple 
recurrence relation. Let t( L) be the time required to generate a proof 
of a literal L using some strategy. With depth-first search as indicated 
here, we have t(P,) = 1 + t(Pi+d + t(Pi+2) + t(Qi+d + t(Qi+2) and 
t(Qi) = 1 + t(Pi+d + t(Q,+2) + t(Qi+1) + t(Pi+2 ) for i < 2n - 2. The 
solution is exponential, and this leads to exponential behavior for most 
backward chaining methods, and often to exponential search depth. 

In S~ the behavior is a little better; all the attempts to solve a 
subgoal will fail and this will be detected within a linear number of 
rounds. Thus, for example, in the top-level clause { .. po, .. Qo}, if the 
subgoal Po is attempted first, it will eventually fail and Qo will never be 
called. This considerably reduces the size of the search space. However, 
the duplication by combination will still be exponential, since there are 
an exponential number of paths of subgoal calls that are possible from 
each top-level goal. We believe that T; and T~ will be quite a challenge 
for pure back-chaining methods without unit simplification, and S~ and 
S~ will be a challenge for pure back-chaining methods even with unit 
simplification. Of course, these clause sets can be solved fast by forward 
chaining methods. 

Now, the strategies that have exponential behavior can often be 
made more efficient in simple ways, such as adding unit simplification. 
For example, T;, and T;, can be shown unsatisfiable in polynomial time 
in this way. However, unit simplification and subsumption do not help 
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s~ and S~ because there are no positive unit clauses in the input. Also, 
these examples could be made slightly more complicated or lifted to first 
order logic and would still reveal the same poor behavior, even with unit 
simplification. Later we give such simple modifications to these sets of 
clauses. We think it is most illuminating initially to give the simplest 
examples demonstrating bad behavior. Furthermore, we believe that 
the kinds of bad behavior illustrated here often occur in practice in the 
execution of theorem provers, but they are masked by the thousands 
and thousands of clauses generated. A straightforward implementation 
of various strategies can produce combinatorial problems of which the 
programmer is not aware. An awareness of these problems can lead 
to modest changes to the search procedure which can have dramatic 
(positive) effects on its performance. 

We now discuss the strategies in turn, justifying the entries in the 
above chart. Often we identify a state with its label, and thus each 
state is considered as a set of elements of V, though this is not formally 
correct. First we consider hyper-resolution [Rob65a]. 

1.5.2 Hyper-resolution 

Hyper-resolution is equivalent to a sequence of resolutions that elim
inate all the negative literals in a clause, by resolving with clauses 
that are all-positive. The positive clauses are called electrons and the 
clause containing negative literals is called the nucleus. For example, 
by hyper-resolving the nucleus {-,P, -'Q, R} and the two electrons P 
and Q we obtain the hyper-resolvent R. Now R (really {R}) subsumes 
the original nucleus {-,P, -'Q, R}. For theorem proving purposes, sub
sumed clauses can be deleted, so that we delete the original nucleus 
and only retain the simpler clause R. We assume that such subsumed 
clauses are deleted. In general, for propositional Horn clauses, each 
hyper-resolvent is a positive unit clause that subsumes the parent (nu
cleus) clause, causing the parent to be deleted. Therefore, each round 
of hyper-resolution reduces the size of the clause set. Therefore, after 
a linear number of rounds, either a proof is found or the search stops 
(for Horn sets). This means that the search depth and the duplica
tion by iteration are linear. Also, there is constant duplication by case 
analysis (since this method is linear in our formulation) and linear du-
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plication by combination (since literals from different clauses are never 
combined, and the number of clauses in each state is no greater than 
that in the previous state). Also, the same analysis applies to hyper
resolution enhanced with any literal ordering method (ordering of the 
positive literals), since in the Horn case each clause has at most one 
positive literal. 

1.5.3 PI deduction 

Pl-deduction is the strategy that resolves two clauses only if one of 
them is positive [Rob65a]. For Horn clauses, as in hyper-resolution, 
this produces a clause that subsumes its parent. For example, if we re
solve P (which is positive) and {-,P, -'Q, R} we obtain {-,Q, R}, which 
subsumes {-,P, -'Q, R}. Thus the parent clause {-,P, -'Q, R} can be 
deleted. In this way, if subsumption (at least parent subsumption) is 
tested after each resolution, then each P1 resolution reduces the size 
of the set of clauses, so that the search depth and the duplication by 
iteration and combination are always linear. 

Assuming that subsumption is only tested after each round of res
olution, it is possible to obtain additional resolvents. We could have 
resolved Q with {-,P, -'Q, R} to obtain {-,P, R}, for example. In this 
way, we can obtain resolvents containing arbitrary subsets of the nega
tive literals of a clause. Because any subset of the n subgoals (negative 
literals) can be generated, there are 2n clauses that can be generated. 
Subsumption testing after each round will reduce this number to some 
extent, since sets need not be retained if proper subsets have been gen
erated. To analyze this, we consider the order in which the clauses are 
generated. P1 deduction on S~ will first generate all subsets of size 
n - 1, then all subsets of size n - 2, deleting those of size n - 1 by sub
sumption, then all subsets of size n - 3, deleting all those of size n - 2 
by subsumption, and so on. Also, given two distinct ground clauses of 
size k, neither can subsume the other. Therefore, the number of clauses 
generated is at least the maximum over k of the number of subsets of 
n elements of size k. This implies that there will be at least 2n /(n + 1) 
clauses generated such that no such clause subsumes any other. This 
bound is actually not as good as possible, but it is still exponential. We 
can derive this bound by noting that for some k, the number of subsets 
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of size k must be at least 2n / (n + 1), since there are at most n + 1 
sizes and 2n subsets altogether. However, the search depth and the 
duplication by iteration are linear, and there is a constant duplication 
by case analysis. 

If the input clauses are restricted to have 3 literals, then there are 
at most two subgoals per clause, and at most 4 subsets of these exist. 
Thus the duplication by combination is linear. Another refinement is 
to specify a total ordering on the negative literals of a clause. Only the 
negative literal that is smallest in this ordering can be resolved on. This 
is still complete. If an ordering on predicate symbols is specified, then 
the subgoals will be solved in order, reducing the number of subsets of 
the subgoals generated to a linear amount. This indicates the potential 
importance of limiting the number of literals per clause (which can be 
done by introducing new predicate symbols), and ordering the predicate 
symbols. 

1.5.4 A-ordering 

Resolution with A-ordering [Sla67] is the strategy in which an ordering 
is specified on predicate symbols, and literals with predicates that are 
maximal in the ordering, are resolved on first. For example, suppose 
we have clauses {-,P, -'Q, R} and {-,R, T}. Suppose R > P, R > 
Q, R > T where > is the ordering on predicates. Then R is the 
predicate that will be resolved on, and we can resolve these two clauses 
to produce the clause {-,P, -'Q, T}. We assume that the ordering used 
is a total ordering, although one could just as well define A-ordering 
with a partial ordering on the predicate symbols. We note that A
ordering proofs are regular, in the sense of [Tse68], so that the proof 
length is exponential for all clause sets for which regular resolution has 
exponential length proofs. But this does not settle its behavior on Horn 
sets. A-ordering does not behave exactly like PI-deduction or like all
negative resolution with ordering. One would think that by choosing 
a suitable ordering we could simulate these, but it does not appear in 
general to be possible. We would have to make the unit clauses maximal 
in the ordering to simulate PI deduction, but because these unit clauses 
may also appear elsewhere, some non-PI deductions may occur. For 
example, we could have a clause set containing, among other clauses, 
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{..,Q, P}, {P}, and {..,P, R}. If we make P maximal in the ordering 
to simulate PI deduction, there will also be an unwanted resolution 
on the occurrence of the literal P in the clause {..,Q, Pl. However, we 
note that the clause {P} subsumes { ..,Q, P}, so if subsumed clauses are 
deleted, the problem disappears. There is another problem, however, 
that prevents the simulation of PI-deduction in some cases; we will 
present this additional problem later in section 1.5.10. 

It is conceptually simpler to think of A-ordering with the search 
reordered a little: Suppose the predicate symbols are ordered PI > 
P2 > ... > Pn • Then in the first round, all A-ordering resolutions 
on the literal PI are done, and in the second round, all A-ordering 
resolutions on the literal P2 are done, and so on. Let us call this uni
form A-ordering, in contrast to the usual search method in which all 
possible A-ordering resolutions are done at each round; we call the 
latter breadth-first A-ordering search. The uniform version is still a 
complete theorem proving strategy for propositional clauses, even non
Horn clauses. This uniform search method explores essentially the same 
search space as breadth-first A-ordering, but it can result in a search 
space larger or smaller than breadth-first search due to the different 
subsumption deletions that can occur. We can express one relationship 
between the two methods of search as follows: 

Theorem 1.5.1 Suppose S is a set of clauses and uniform A-ordering 
without subsumption deletion generates a search space of size SI from S. 
Suppose breadth-first A-ordering with subsumption deletion generates a 
search space of size S2. Then S2 ::; SI. 

Proof. Breadth-first A-ordering does the same resolutions as uni
form A-ordering, but some of them occur in earlier rounds. Therefore 
breadth-first A-ordering without subsumption deletion generates the 
same search space as uniform A-ordering without subsumption dele
tion. It follows that breadth-first A-ordering with subsumption dele
tion generates a search space that is the same size or possibly smaller. 

o 

It is clear that uniform search will stop after a linear number of 
rounds (when all the predicate symbols have been eliminated). There-
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fore the search depth and the duplication by iteration for uniform A
ordering are always linear, regardless of the ordering. After all pred
icates have been resolved on, the search stops. This holds even for 
non-Horn clauses, by the way. This shows that uniform A-ordering 
has a definite global notion of progress (elimination of predicates from 
the set of clauses). Because of the similarity of uniform A-ordering to 
the usual breadth-first A-ordering, it turns out that breadth-first A
ordering also has linear search depth and duplication by iteration, and 
a definite notion of progress. However, we give a formal proof of this 
as follows: 

Theorem 1.5.2 The search depth and duplication by iteration for A
ordering is linear, in fact, bounded by the number of predicates in S. 

Proof. Suppose C is an A-ordering resolvent of C1 and C2 • Then the 
maximum predicate symbol in C is smaller than the maximum pred
icate symbols in C1 and C2 • Then if C resolves against some other 
clause D, the resolvent of C and D will have a maximum predicate 
symbol that is yet smaller. A simple induction shows that no new re
solvents can be produced beyond a depth of search equal to the number 
of predicate symbols. 

o 

For Horn sets, this is actually not better than the situation for 
all-negative resolution without ordering, where the search depth is also 
linear. But it is better than all-negative resolution with ordering, which 
can produce an exponential search depth for a bad ordering. However, 
duplication by combination for A-ordering can still be exponential, as 
shown by S;. If we choose the A-ordering in S; so that the predicates 
Pi,j are ordered by j - i, that is, Pi,j > Pk,/ if j - i > I - k, then 
exponentially many combinations of literals are generated. This is so 
because whenever we resolve on a literal Pi,j we have two clauses to 
choose from, each generating a different combination of literals. The 
same is true for Qi,j' Each such resolution produces literals whose Ij - i I 
value is one less. Thus it takes n stages until all such resolutions are 
exhausted, and a number of combinations exponential in n is generated. 
Also, A-ordering is not goal-sensitive. To verify this, it is only necessary 
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to choose a set of Horn clauses with one goal clause .,p that is a negative 
unit clause, and to order the predicate symbols so that P is smallest. 
Then the goal clause .,p will not participate in any resolutions until 
the very end. One might ask whether we can make the A-ordering 
strategy goal sensitive by a proper choice of ordering. This is not always 
possible; if the goal is .,P,.,Q then it can happen that P also appears 
in other clauses. If P is made maximal in the ordering, then resolutions 
involving P may occur that are not goal-sensitive (say, a resolution with 
the clause .,P, R). However, later on we give special cases for which 
an ordering can be found that is goal-sensitive. Another question is 
whether there is always a good ordering for every set S of clauses, that 
is, an ordering that will produce polynomial behavior for A-ordering. 
Later we show that this is not always possible, but give some special 
cases where such a good ordering always exists. 

1.5.5 Implications for term rewriting 

Note that the first-order strategies based on term-rewriting techniques 
[HR91, BG90] generally reduce to A-ordering methods on clauses with
out equality. This shows that these methods also sometimes suffer from 
exponential search inefficiency and often lack goal sensitivity. Nor do 
they have smaller search depth than all-negative resolution. However, 
there is some advantage for A-ordering strategies over all-negative res
olution in this framework, and that is that regardless of the ordering 
used, the search depth is still linear. (This holds even for non-Horn 
sets.) Also, term-rewriting methods are often very efficient on pure 
equality problems. An advantage of all-negative resolution is that it is 
goal-sensitive. Because of its importance for term-rewriting, we explore 
the behavior of A-ordering further, after introducing proof dags. This 
will reveal some additional advantages (and disadvantages) of resolution 
with A-ordering. It seems that methods based on conditional rewriting 
[ZK88] may order the search differently and may have different search 
behavior. 
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1.5.6 Proof dags 

To facilitate the analysis of the remaining strategies, and even to clarify 
the analysis of the preceding ones, we introduce the concept of a proof 
dag (directed acyclic graph). This illustrates the dependencies between 
the literals in a minimal unsatisfiable set of Horn clauses. Let S be 
a minimal unsatisfiable set of Horn clauses. The proof dag D(S) of 
S has as vertices the predicates appearing in S. Since S is minimal 
unsatisfiable, for every positive literal P in S there is a unique clause 
C in S containing P positively, and there will be one or more clauses 
containing -,P. Suppose C is PI /\ P2 /\ ... /\ Pn :J P. Then the proof dag 
D(S) has edges from Pi to P for all such i. Given a predicate P in S, 
define its subgraph D(P) to be the vertices v in D(S) from which there 
is a path to P, together with edges between such vertices. These are 
the predicates that contribute to a proof of P and their dependencies. 
Note that a clause is a set of literals, and this can often be associated 
with a set of vertices of the proof dag. This can in turn be regarded 
as a pebbling of the graph, that is, we can think of some of the ver
tices as having pebbles on them. The inference procedure on a clause 
will often correspond to natural ways of moving these pebbles around 
the graph. This helps to explain and to understand the performance 
of the various strategies. For all-negative resolution, we can think of 
a clause C as a pebbling in which the predicates appearing in Care 
pebbled. Thus if Cis {-,P, -'Q}, then the pebbling corresponding to C 
would include the vertices P and Q in the proof dag. An all-negative 
resolution corresponds to the removal of a pebble from a vertex and 
the addition of pebbles to its predecessors. For example, a resolution 
of an all-negative clause {-,P, -,Q} with the clause {-,PI , -,p2 , P} cor
responds to a removal of a pebble from P and the addition of pebbles 
to the predecessor vertices PI and P2 • For hyper-resolution, each re
solvent is a positive unit clause, and we place a pebble on each vertex 
P for which the corresponding positive unit clause P has been derived. 
Though formally adding nothing new, this terminology sometimes helps 
to clarify the underlying ideas. 

Define the proof complexity cp( P) to be the number of vertices in 
D(P). For example, suppose S is the set of clauses containing {P}, 
{-,P, Q}, and {-,Q}. Then the proof dag D(S) has two vertices P and 
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Q and an edge from P to Q. Also, cp(P) is 1 and cp(Q) is 2. Now, if 
Qb ... , Qn are the vertices of D(S) with no outgoing edges, then these 
are goal vertices and there must be a goal clause {-,Ql, ... , -,Qn} in S. In 
our example, Q is a goal vertex. Also, a vertex with no incoming edges 
is a fact (a positive unit clause), like P in our example. It is convenient 
to use proof dags because it is often convenient to specify orderings on 
predicate symbols in terms of their structure and thereby derive bounds 
on the performance of resolution strategies. For example, if we choose 
an A-ordering in which literals with small cp values are resolved on first, 
then we can cause A-ordering to simulate forward reasoning, that is, 
Pl deduction with ordering of negative literals. This yields polynomial 
behavior on minimal unsatisfiable sets of Horn clauses. 

1.5.7 Other properties of clause sets 

Proof dags are only defined for minimal unsatisfiable clause sets. How
ever, we would like to use the machinery of proof dags even on satisfiable 
sets of clauses. We can do this as follows. We say that a set S of Horn 
clauses is well-ordered if there is a partial ordering < on the predicate 
symbols such that if P : - Pl, ... , Pn is a clause in S then Pi < P 
for all i. Note that minimal unsatisfiable Horn sets are well-ordered. 
We call the minimal such ordering the well-ordering of the predicate 
symbols. We say that a set S of Horn clauses is deterministic if for 
every predicate symbol P there is at most one clause C in S such that 
P appears positively in C, that is, P E C. We note that minimal 
unsatisfiable Horn sets are both well-ordered and deterministic. Also, 
many of the results that are stated for minimal unsatisfiable clause 
sets apply equally well to well-ordered, deterministic clause sets. In 
order to apply well-orderings to A-ordering and all-negative resolution, 
it is convenient to extend these orderings to total orderings on S, and 
we typically assume that this is done in some manner, especially for 
A-ordering. 

1.5.8 All-negative resolution 

All-negative resolution is like Prdeduction with signs reversed: One of 
the parent clauses in a resolution must be all-negative. As explained 
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earlier, this strategy does poorly on S~ and S~, generating exponen
tially many combinations of subgoals. However, the search depth for 
all-negative resolution is still linear, and there is no (i.e., constant) 
duplication by case analysis. To see that the search depth is linear, 
suppose that S is minimal unsatisfiable and consider a proof dag D( S) 
for S. Each resolution involves a literal ..,p from an all-negative clause 
C and a literal P from another clause D. Now, the effect of the resolu
tion is to replace the literal..,P in C by the other literals in D. However, 
these other literals ..,Q in D will satisfy cp(Q) < cp(P). Therefore, if 
one always chooses the literal ..,p such that cp( P) is maximal, each 
resolution will reduce the maximum cp( P) value of predicates P in the 
clause, and a proof will be found after a linear number of resolutions. 
Or it may be necessary to perform a sequence of resolutions to effect 
this, if there are more than one negative literal with the same maxi
mum cp value. If S is unsatisfiable but not minimal unsatisfiable, this 
reasoning can still be applied to a minimal unsatisfiable subset of S. If 
S is satisfiable, then we can still show that the duplication by iteration 
is linear, but the argument is a little more complicated, as follows. 

Theorem 1.5.3 Suppose S is a propositional Horn set containing n 
different predicate symbols. Let C be some clause generated from S by 
all-negative resolution. Then there is some clause C' generated from S 
by not more than n all-negative resolutions such that C' is a subset of 
C. 

Proof. Suppose C1 , C2 , ••• , Cp is a minimal-length all-negative reso
lution proof of C. This means that Cp is C and every clause in the 
sequence is either in S or is an all-negative resolvent of two earlier 
clauses in the sequence. It is not hard to see that in this proof, at most 
one all-negative input clause is involved. Suppose without loss of gener
ality that this clause is C1 • Now, from this proof, we construct a proof 
D1D2 ... Dk of length at most n of a clause C' such that C' subsumes C. 
We choose Dl to be C1• For each literal L that does not appear in C, 
let last(L) be the maximum i such that L E Ci . We obtain Di+1 from 
Di by applying the following rule: Pick a literal ..,p of Di to resolve 
such that last( ..,P) is as small as possible. Let j be last( ..,P). This 



of Theorem Proving Strategies 31 

literal was removed from Cj by resolving with some clause D of S con
taining P to give Cj +1 • We resolve Di with D on the literals P and ...,p 
to obtain Di+1 • This has the effect of replacing the literal ...,p of Di 
with other literals of D. We note that these other literals of D appear 
in Cj +!. Therefore their last appearance in the proof of C is later than 
the last appearance of ...,P. Each step of this proof increases the min
imum value of last(L) for literals L in the clause C i . This means that 
the literal ...,p will never be reintroduced into a clause Dm for m > j. 
Therefore, after n such resolutions, all literals that can be resolved on 
will have been, so that there are no resolutions left to do. This implies 
that a clause Cj has been derived containing only literals of C, so Cj 

subsumes C, and we can choose C' to be Cj . 

o 

Corollary 1.5.4 After n rounds of all-negative resolution, all such C' 
will be generated, and so every clause C that can be generated by all
negative resolution will be subsumed by an already-generated clause. 
Then the search will stop, assuming that subsumed clauses are deleted. 
Thus the duplication by iteration is linear for all-negative resolution. 

1.5.9 All-negative resolution with ordering 

We can specify an ordering on the predicate symbols for all-negative 
resolution. This means that in an all-negative clause C, the predicate 
symbol P of C that is maximal in the ordering is the only one that is 
resolved on. Typically a total ordering is used, but one can just as well 
use a partial ordering. One would expect that this use of an ordering 
would improve the behavior of the strategy, since fewer resolutions are 
possible. However, if an ordering on predicate symbols is specified, it 
can actually make the behavior much worse. It is only necessary to 
order the predicates so that the predicates P with smaller values of 
cp( P) are resolved on first. This corresponds to moving the pebbles 
first that are farthest from the goal clause. For example, on T~, this 
can cause each subgoal to be completely solved before working on the 
others, if we order the predicate symbols so that the Pj and Qj with 
high j are resolved first. This can lead to exponential search depth 
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(and duplication by iteration), and still allows exponential duplication 
by combination on T~ and T;. We give an example of a sequence of 
moves in a pebbling for T;. We note that this only gives a portion 
of the search, since other clauses also can be used. First we remove a 
pebble from Po and place pebbles on Pl and P2 , say. This corresponds 
to deriving the clause {-,Pl , -,P2 }. (We could also have chosen Ql and 
Q2') Then we remove the pebble from P2, and place pebbles on P3 and 
P4 . Then we remove the pebble from P4 and place pebbles on P5 and 
P6 • Eventually we solve P6 , removing the pebble from P6 and all lower 
pebbles. We then remove the pebble from P5 and add pebbles on P6 

and P7 • Eventually P6 and P7 are solved. Then pebbles are left on Qo, 
Pl , and P3 • Next we remove the pebble from P3 and place pebbles on 
P4 and P5 , and so on. The fact that the lowest pebble is always moved 
means that subgoals are solved repeatedly. 

A good ordering can lead to a linear search depth. We obtain a 
good ordering by resolving first on the predicate symbols P with a high 
value of cp(P). For example, on S~ and T~, this means that we resolve 
the Pj and Qj with low j first. Then we obtain linear search depth and 
polynomial behavior. For S~ and T~ this corresponds to a pebbling as 
follows: The pebble on Po is removed and pebbles are placed on Pl and 
P2 (say). Then the pebble on Qo is removed and replaced by pebbles 
on Pl and Q2, say. But there is only one pebble kept on Pl even though 
it has been pebbled twice. Then the pebble is removed from Pl and 
pebbles are added to P2 and P3 • Then the pebble is removed from Pz 
and replaced by pebbles on P3 and P4 ; at this stage there are pebbles 
on Q2, P3 and P4. In a small number of steps we will reach the bottom 
and the search will end. 

In general, if S is deterministic and well-ordered, and we use the 
well-ordering < on S, then all-negative resolution with ordering may 
not have polynomial behavior. The reason for this is that the ordering 
< may not be total, so an all-negative clause may have many maximal 
literals that are not ordered with respect to each other. Therefore many 
resolutions may be possible, an exponential number of clauses may be 
generated, and the duplication by combination may be exponential. 
However, if we extend the well-ordering < to a total ordering <', then 
the behavior will be polynomial for deterministic, well-ordered clause 
sets. This is because every resolution will replace a maximal literal 
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-,p in an all-negative clause by other literals -,Q such that Q <' P, 
and therefore the maximal negative literal in an all-negative clause will 
decrease in the ordering with every resolution operation. Note that 
this result applies to minimal unsatisfiable Horn sets, too, since they 
are deterministic and well-ordered. 

However, a good (even total) ordering cannot always reduce the 
duplication by combination to a polynomial amount, if S is not de
terministic. On S~, there is exponential duplication by combination 
regardless of the ordering on predicate symbols chosen, but the proof 
is somewhat subtle. The reason for this is that we have to consider all 
possible orderings of predicate symbols and show that for all of them, 
the duplication by combination is exponential. 

Theorem 1.5.5 All-negative resolution with an ordering on the nega
tive literals produces an exponential search space on S~, regardless of 
the ordering used. 

Proof. We construct a set E of 2n - 1 interpretations I of the set 
{Pi,j, Q i,j : 1 ~ i ~ j ~ n}. We consider an interpretation as a 
function from predicate symbols to truth values, such that I assigns P 
a value of True iff I 1= P. For an arbitrary ordering> on the predicate 
symbols, we show that there exists a set of 2n - 1 critical clauses GI , one 
for each interpretation lEE, such that all the critical clauses will be 
generated by all-negative resolution with the ordering >. The set E of 
interpretations is defined as the set of interpretations that are models 
of the following set of formulae: 

-,(P. . == Q . . ) 1 < i < J' < n 1,,) 't,)' _ _ _ 

Pi,j == (Pi+I,j == Pi,j-d, 1 ~ i < j ~ n 

These define Pi,j and Qi,j in terms of literals with smaller values of 
j - i. The entire interpretation is therefore determined by the assign
ments to Pi,; and Q;,;. However, Qi,j is defined in terms of P;,j, hence 
the entire interpretation is defined by the 2n possible assignments to 
Pi,i for 1 ~ i ~ n. The formula PI,n also constrains these interpreta
tions. However, one can show by a simple induction that if I and J 
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are two interpretations agreeing on the literals of form Pi,i for i > 1 
but disagreeing in their assignment to PI, then I and J will assign dif
ferent truth values to P1,n. Thus half of the 2n interpretations of the 
Pi,; will result in P1,n being assigned true, so there are a total of 2n - 1 

interpretations in E. 
Define the weight of a literal Pi,j or Qi,j to be j - i, and the weight 

of ,L to be equal to the weight of L. Let w( L) be the weight of L. 
Define the weight w( C) of a clause C to be ~LEC3w(L). We note that 
the type 1 clauses are all of the form L : - M1 , M2 where w(Mt} = 
w( M2 ) < w( L). Thus, each all-negative resolution replaces a literal of 
weight w with two literals of weight w - 1. Now, 3w- 1 + 3w- 1 < 3 w . 

It follows that each all-negative resolution produces a clause smaller 
than its all-negative parent in the weight ordering. Eventually a clause 
will be produced with two literals of weight zero. Call such a clause a 
critical clause. We show that for each interpretation lEE, a critical 
clause CJ will be generated, all of whose literals are false in I. Also, we 
show that no two such critical clauses are identical, and none of them 
will be supersets of other clauses generated. This means that none of 
these clauses will be deleted by subsumption deletion. Therefore there 
will be at least 2n - 1 clauses generated, regardless of the choice of the 
ordering. 

We now show that if C is an all-negative clause and I is in E and 
C is false in I (that is, (I ~ C)), and L is a literal in C, and w(L) > 0, 
then there is an input clause Cf and a resolvent D of C and Cf such that 
D is false in I and w(D) < w(C). Note that this result is independent 
of which literal L is chosen, so it holds for an arbitrary ordering of 
literals. Suppose L is ,P;,j for some i and j. Let Dl be (C - {L}) U 
{,PH1,j, 'Pi,j-d and let D2 be (C-{L})U{'QHl,j, ,Qi,j-d. These 
are the only two all-negative resolvents on L, using the structure of S~. 
Since (I ~ L), we have that IF P;,j. Thus IF (Pi+1,j == Pi,j-t) since 
I was defined to satisfy the formulae Pi,j == (Pi+1,j == Pi,j-t), 1 ~ i < 
j ~ n. Therefore either I F Pj+1,j 1\ Pj,j-l or I F Qi+1,j 1\ Qi,j-l. In 
the former case, we can let D be Dl and in the latter case we can let 
D be D2 • The argument is similar if L is 'Qi,j. 

For now, let's assume that the type 2 clauses are omitted. In the 
beginning, ,P1,n is in S~, and this clause is false in all lEE. It fol
lows that all-negative resolution will generate clauses C of smaller and 
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smaller weight, for all lEE, such that (I ~ C). Eventually, for all 
lEE, there will be a critical clause C[ that is false in I. We need to 
show that none of these clauses will be identical. For this we consider 
S~ as a graph, in the following way: 

P1,n 

/Ql,n ~ 

P1,n-l P2 ,n 

/ Ql,n-l ~ / Q"n ~ 
P1,n-2 

Ql,n-2 

The nodes of this graph are ordered pairs of integers called positions, 
and the edges are the arrows. Each all-negative resolution replaces a 
literal by a literal in a position immediately below it. We call the i + 1, j 
and i, j - 1 positions the children of the i, j position. The weight of a 
position i, j is j - i. Define a complete path in this graph structure to 
be a path starting at the root (the 1, n position) and extending down 
to some i, i position following the arrows; there will be exponentially 
many such paths. Note that each all-negative resolvent will contain a 
literal on each such path, since each all-negative resolution replaces a 
literal at the i, j position with literals at the i + 1, j and i, j -1 positions 
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(its children), and any path that passes through the i, j position must 
also pass through either the i + 1, j position or the i, j - 1 position. 
Therefore, the critical clauses will also have literals on all such paths. 

Finally, we show that there is a function from critical clauses that 
maps CJ onto I. This implies that if I differs from J then CJ is differ
ent from CJ as desired. This is given by a kind of geometric argument. 
Namely, suppose that I is in E. Suppose that two of the three assign
ments of I for the literals Pi,i' Pi+1,h and Pi,i-l are given. We claim that 
the third is uniquely determined. We call this the triangle property. A 
simple way to see this is that an odd number of the statements I F Pi,i' 
I F Pi+l,i' and I F Pi,i-l must be true, by the way E is defined, since 
all interpretations in E satisfy the formulae Pi,i == (Pi+1,i == Pi,i-l), 1 ::; 
i < j ::; n. In general, we say that a position (a, b) is determined by 
a set (aI, bt) ... , (an, bn) of positions if for all pairs I, J of elements of 
E, ((I F Pa"b,) == (J F Pa"b,)) /\ ... /\ ((I F Pan,bn) == (J F Pan,bn)) 
implies ((I F Pa,b) == (J F Pa,b))' We say a clause C determines a 
position (a, b) if the positions of the literals in C determine ( a, b). 

Lemma 1.5.6 If C is an all-negative clause generated from S~ by all
negative resolution not using the type 2 clauses, then for every literal L 
in C there is a path from the root to L such that every position on this 
path is determined by C. 

Proof. To begin with, -.Pl,n is the only all-negative clause, and 
the lemma holds for this clause. Assume by induction that a negative 
clause C is generated by all-negative resolution and the lemma holds 
for it. Let D be a clause generated by one all-negative resolution from 
C. Then some literal L of C is replaced by literals Ll , L2 at the two 
children positions, to obtain D. Now, the positions of Li are in D, 
hence they are determined by D. Therefore, by the triangle property, 
the L position is also determined by D. Since the other literals of Care 
in D, D determines the positions of all the literals of C. By induction, 
C determines paths to all its literals. Hence D determines paths to all 
the literals of C. D has the two new literals Li . We obtain paths to 
these literals by adding their positions to the end of the paths to L. 

o 
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Lemma 1.5.7 A critical clause determines every position. 

Proof. Suppose C is a critical clause. Then C has two literals L1 , L2 
of weight zero. By the preceding lemma, C determines paths Ll and L2. 
We show that these paths determine all the other positions. Suppose 
to the contrary that some position is not determined by these paths. 
We say two positions P and q are neighbors if there is some position 
having both P and q as children. Let w be the largest weight of an 
undetermined position. Now, the paths to Ll and L2 are complete paths 
and so will contain some position of weight w. So there must be some 
undetermined position PI which has a neighbor P2 of weight w such that 
P2 is determined. Thus PI and P2 are children of some other position 
p. Now, P is determined since w(p) < w. By the triangle property, PI 
is also determined, since P2 is. This contradicts our inference that PI is 
undetermined. Therefore we conclude that all positions are determined 
by C. 

o 

Corollary 1.5.8 The critical clauses C1 and CJ for I different from J 
are different} hence there are 2n - 1 critical clauses and the search space 
is exponential. 

Proof. Suppose C1 and CJ are critical clauses for I different from 
J. Both C1 and CJ determine all positions. Hence they determine the 
positions of weight O. Hence they determine different truth values for 
some position of weight 0, since I and J are different. Hence C1 and CJ 

are different. Since E has 2n - 1 elements, there are 2n - 1 critical clauses 
generated at some time during the search, and all-negative resolution 
with ordering on S~ has exponential behavior, regardless of the ordering 
chosen. 

o 

The preceding discussion has not considered deletion of subsumed 
clauses. For this we note that if C subsumes D and C and D are differ
ent then w(C) < w(D). For each interpretation lEE, we consider the 
clause C of minimal weight such that I ~ C. Each round of all-negative 
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resolution will reduce the weight of such a clause, until a critical clause 
is produced. Subsumption will not affect this, since if I ~ C and D 
subsumes C then I ~ D. Therefore such minimal clauses will not be 
deleted by subsumption. 

We now consider the type 2 clauses, though it is not strictly nec
essary to do so to demonstrate the exponential behavior of ordered 
all-negative resolution. A simple way to consider the type 2 clauses is 
just to restrict attention to the top part of the graph, that is, the clauses 
all of whose vertices are of weight larger than n/2. These clauses are 
unaffected by the type 2 clauses or their resolvents. The structure of 
this top part of the graph is similar to that of the whole graph, and the 
same arguments can be applied to it. 

o 

We note that this exponential bound applies also to all-negative res
olution without an ordering on negative literals, and provides a rigorous 
proof for that case. Many of our other exponential lower bounds are 
based on this one, so we have also established them. We recall that s~ 
has polynomial behavior for all-negative resolution with a good order
ing. This shows a significant difference between S;, and S~, since even 
with a good ordering we obtain exponential behavior for all-negative 
resolution on S;,. 

We now state these results in a slightly different way, which is closer 
to the search space formalism of [KBL93]. 

Definition 1.5.9 A proof path from S is a sequence C1 C2C3 • •• of 
clauses such that each Cj is either in S or is a resolvent of previous 
clauses Cj and Ck, with j, k < i. We also require that if i oF j then 
C j oF Cj . A proof path is maximal if it cannot be extended, that is, 
there is no other proof path having it as a proper prefix. 

The question we would like to address is how long these proof paths 
are. For this we assume that the resolution strategy used is all-negative 
resolution with an ordering on the negative literals, and that subsumed 
clauses are deleted. This means that every clause Ck must have two 
parent clauses Cj and Cj such that neither one is properly subsumed 
by another clause among the first k - 1 clauses in the sequence. 
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Theorem 1.S.10 Let C1 C2C3 ••• be a maximal proof path from S;, in 
which the resolution strategy is all-negative resolution with an ordering 
on the negative literals. Then the length of this path is at least 2n / 2 , 

regardless of the ordering used. 

Proof. The proof is essentially the same as that given above. Namely, 
we construct the same set E of interpretations and show that for each 
one a distinct critical clause will eventually be produced. 

o 

This result was first presented in [Pla94d]. We think that this latter 
version of the result is more striking, because the simplicity of the 
formulation eliminates the need to describe the search space formally. 
Note that we are considering all possible orderings and also all possible 
choices of sequences of resolution operations, and that for all these 
possibilities the search is still exponential. The question then arises, 
can such behavior also be produced for unsatisfiable clause sets? What 
if breadth-first search is specified? We do not have the answers at 
present. 

Returning to our usual search space formalism, we do not know 
whether a good ordering can always lead to linear duplication by itera
tion for all-negative resolution with ordering. If S is deterministic and 
well-ordered, then totally ordering the literals according to proof com
plexity will cause all-negative resolution with ordering to have poly
nomial behavior (and therefore polynomial duplication by iteration). 
The problematic case is satisfiable clause sets that are not determin
istic or not well-ordered. The reason that the proof of theorem 1.5.3 
for the unordered case does not work is that it imposes an ordering 
that depends on the proof being considered. For ordered resolution, 
the order has to be global. It's interesting to see that for the set S~, 
using unrestricted ordering and just limiting the size of the resolvents 
to four or fewer literals will lead to good behavior, though this is not 
a complete restriction in general. Another interesting open problem is 
whether all-negative resolution with a good ordering has exponential 
behavior on unsatisfiable Horn sets. We only showed this for S;, which 
is satisfiable. We show later that A-ordering with a good ordering has 
exponential behavior on (some) satisfiable clause sets. These results 
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indicate that sometimes even a good ordering cannot help the ordering 
strategies to perform well on easy problems. 

1.5.10 A-ordering and proof dags 

We now return to develop additional properties of A-orderings in re
lation to proof dags and minimal unsatisfiable sets of clauses. This 
will reveal some additional advantages of A-orderings and perhaps help 
to explain the success of term-rewriting based methods. On the other 
hand, the weaknesses of this strategy will also be more clearly delin
eated. 

First, we note that if S is a minimal unsatisfiable Horn set, and 
if we use resolution with A-ordering where the ordering on literals 
L is according to their proof complexity cp(L), that is, literals with 
larger proof complexity are resolved away first, then A-ordering is goal
sensitive and has polynomial behavior. For this we assume that the 
proof complexity ordering is extended to a total ordering in some way. 
The goal-sensitivity follows because A-ordering mimics all-negative res
olution in this case and the polynomial behavior follows from the poly
nomial behavior of all-negative resolution on minimal unsatisfiable clause 
sets using the proof complexity ordering. This suggests that A-ordering 
is good when there are no irrelevant clauses. In fact, we can say even 
more: If S is a minimal unsatisfiable set of clauses, then A-ordering 
with an arbitrary literal ordering has polynomial behavior. This is eas
iest to see for uniform A-ordering resolution: The number of clauses 
that can participate in future resolutions never grows; clauses contain
ing eliminated predicate symbols cannot again produce new resolvents. 
(A predicate symbol is considered as eliminated when it is the largest 
literal of resolution in a round.) The reason that the number of clauses 
does not grow, is that minimal unsatisfiable clause sets are determin
istic, so that each negative literal can be eliminated from a clause in 
exactly one way. If we could resolve a negative literal op against two 
other clauses, then there would have to be two clauses containing P, 
and so S would not be deterministic; this property is preserved among 
the clauses that can participate in future resolutions. Also, the number 
of literals in each clause is bounded by the number of predicate symbols 
in S altogether. Finally, after all the predicate symbols have been elim-
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inated, the search will stop. This result holds even if no subsumption 
deletion is done; therefore it follows by theorem 1.5.1 that the search 
space for breadth-first A-ordering is also polynomial, regardless of the 
ordering. 

This is a positive result, indicating that if there are no irrelevant 
clauses then A-ordering performs well, regardless of the ordering. The 
behavior is even better (at least, goal-sensitive) if we choose the order
ing so that literals with high proof complexity resolve first. Unfortu
nately, it does not always suffice to use the proof complexity ordering 
in this way, even for unsatisfiable clause sets. Consider the set T;; if 
A-ordering resolution is applied to this set with the proof complexity 
ordering, then the behavior is exponential, as noted before. There does 
not seem to be any natural way to overcome this problem, because the 
symmetries in T; make it hard to justify a preference for one of Pij and 
Qij over the other one. This shows that if there are enough redundan
cies in the input, then it can be impossible to find a natural ordering 
that is efficient and goal-sensitive, for resolution with A-ordering. 

Note that minimal unsatisfiable clause sets are deterministic. The 
above result concerning minimal unsatisfiable clause sete can easily be 
extended to all deterministic clause sets. That is to say, A-ordering 
on deterministic clause sets has polynomial behavior regardless of the 
ordering. 

We can give another positive result for A-ordering, without goal
sensitivity. Recall that minimal unsatisfiable sets of clauses are well
ordered. We now consider well-ordered sets in general, and show that 
A-ordering with a suitable ordering has polynomial behavior. Suppose 
S is well-ordered, and suppose we perform resolution with A-ordering 
where the literal of resolution is chosen as the smallest literal in the 
well-ordering, that is, the literal farthest away from the goal (or goals). 
Note that if a positive literal in a clause C is minimal in the well
ordering, then there must not be any negative literals in C, so C must 
be a positive unit clause. This means that every A-ordering resolution 
will involve a positive unit clause and another clause, and so we will 
simulate PI-deduction, which has polynomial behavior. This result, in 
contrast to that for PI-deduction, does not require that parent clauses 
be subsumed after each resolution, since A-ordering will impose an 
ordering on the negative literals automatically. This result applies both 
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to satisfiable and unsatisfiable clause sets. 
From the above result, it follows that if there is a clause set S for 

which A-ordering (with a good ordering) has exponential behavior, then 
S must not be well-ordered. We now exhibit such a set of clauses. In 
particular, we show that the following set An of clauses will produce 
exponential behavior for A-ordering resolution, regardless of the order
ing: 

p. 
I,J : - Pi,j+1, P j +1,j+1, 0$ i,j < n 

p. 
I,J : - P j ,j +1 , Qi+1,j+1, 0$ i,j < n 

p. 
I,J : - Qi,j+l, Pi+1,j+1, 0$ i,j < n 

p .. 
I,J : - Qi,j+1, Qi+1,j+l, 0$ i,j < n 

Qi,j : - Pi,j+l, P i+1,j+1, 0$ i,j < n 

Qi,j : - Pi,j+1, Qi+l,j+1, 0$ i,j < n 

Qi,j : - Qi,j+l, Pi+1,j+1, 0:::; i,j < n 

Qi,j : - Qi,j+l, Qi+1,j+l, o :::; i,j < n 

Here we assume that Pi,n and Pi,o are identified, for all i, and that 
Pn,j and PO,j are identified, for all j, and similarly for Q. Thus we have 
a kind of a "torus" structure. This set of clauses is not deterministic or 
well-ordered, and is trivial for forward and backward chaining strate
gies, due to the lack of positive and negative clauses. However, for the 
A-ordering strategy, larger and larger clauses will be generated, and 
the larger the clauses become, the more combinations of P and Q are 
possible. Therefore, there is exponential behavior for A-ordering, re
gardless of the ordering. This clause set should be an interesting set to 
test A-ordering based theorem provers on. The structure is reminiscent 
of S~ in some ways. One could obtain unsatisfiable clause sets hard for 
the A-ordering strategy by considering An U Tin (with the predicate 
symbols in Tin renamed) or by adding some other unsatisfiable clause 
set with a sufficiently long proof to An' We now prove the exponential 
bound on search space size (duplication by combination). 
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Definition 1.5.11 A position of An is an ordered pair (i,j) of inte
gers from the set {O,l, ... ,n}, where the positions (i,O) and (i,n) are 
identified for all i, and the positions (0, j) and (n, j) are also identified, 
for all j. We consider these positions as nodes of a graph; there is an 
edge from (i,j) to (i,j + 1) and an edge from (i,j) to (i + 1,j + 1) for 
all i and j such that these ordered pairs are valid positions. We call the 
node (i,j + 1) the left child of(i,j) and we call (i + 1,j + 1) the right 
child of node (i, j). A path is a sequence of positions al, ... ,ak of An 
such that for all a, aa+1 is either a left or a right child of aa; that is, 
there is an edge from aa to aa+l. The length of this path is k. The 
distance from position a to position {3 is the length of the shortest path 
from a to {3. If a is (i,j) then Pcx denotes Pi,j and Qcx denotes Qi,j' 

Definition 1.5.12 If P is a set of positions (ill jt), ... , (i k, jk) of An 
then a cluster of clauses for P is the set of clauses of the form {Rt J' , 

1, 1 

... , Rf J' } where each Ra is either -,p or -'Q, except for one of the 
k' k 

positions (ib' jb), for which Ra is either P or Q. We call this position 
(ib' jb) the distinguished position of the cluster. Thus all the clauses in 
a cluster are Horn clauses, the positive literals all appear at the same 
position, and ifP has k elements, a cluster for P consists of2k clauses. 
The area of a cluster for P is the number of elements ofP. The cluster 
height of a cluster A for P is the maximum distance (of length n or 
less) from the distinguished position a of A to some other position {3 of 
A. Note that An is the union of n 2 clusters, all of area 3 and height 2. 

Definition 1.5.13 A cluster A for set P of positions has the path 
property if for every path of length n or less from the distinguished 
position a ofP there is a non-distinguished position {3 in P on the path. 
A cluster A has the clear path property if it has the path property and 
if for every non-distinguished position {3 in P, there is a path x from 
the distinguished position a to {3 such that none of the interior nodes 
of x are positions in P. Only the first and last nodes in the path are in 
P. Such a path is called a clear path for A. We can also define what 
it means for a (definite) Horn clause to have the (clear) path property, 
in a similar way. Note that An is the union of n 2 clusters, all of which 
possess the path property and the clear path property. 
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Definition 1.5.14 Suppose A is a cluster for P of height h with dis
tinguished position a. A position 13 of A is exterior if there is some path 
x of length h from a that passes through 13 such that no other positions 
on this path besides a and 13 are in P. Such a path is called an exterior 
path for 13. A position is interior if it is not exterior. The frontier of a 
cluster is the set of positions at maximal distance from the distinguished 
position. Note that the height of a cluster is the maximum distance from 
the distinguished position of the cluster, to a frontier position. Also, a 
frontier position is exterior. 

Lemma 1.5.15 Suppose A is a cluster that has the clear path property, 
and has height h. Then A has area at least h + 1, and has at least h 
exterior positions. 

Proof. Suppose a is the distinguished position of A and 13 is some 
frontier position. Then there is a clear path x from a to 13. Now, for 
each position / in x, we construct two paths /1 and /2, one by taking left 
children repeatedly and the other by taking right children repeatedly. 
Both /1 and /2 must contain positions of A, since their initial positions 
can be reached by a clear path. However, among all the paths /i that 
can be constructed in this way for various /, at least h of them must be 
mutually disjoint, as a simple geometric argument shows. (The ones to 
choose depend on how x goes from positions to left or right children.) 
Since each of these h mutually disjoint paths contains a position of 
A, there must be h distinct such positions altogether. In fact, each of 
these paths must contain an exterior position, since we can take the 
last position of A encountered on that path. Thus there are at least 
h exterior positions, as claimed. This does not count the distinguished 
position, giving a total of h + 1 positions and thus an area of h + 1 or 
more, as asserted in the theorem. 

o 

Lemma 1.5.16 Suppose A is a cluster that has the clear path prop
erty, and has height h. Suppose B is another cluster that has the path 
property and "subsumes" A, in the sense that its positions are a proper 
subset of those of A. Then B also has height h and contains all the 
exterior positions of A. 
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Proof. Since B subsumes A, it must have the same distinguished 
position a. Let (3 be a frontier position of A, and let x be a clear 
path from a to (3. Note that the length of x is h. Since B subsumes 
A, B cannot have any positions anywhere else on the path x besides 
at a and (3. Since B has the path property, it must have (3 as one of 
its positions. Since the distance from a to (3 is h, B has height h or 
more. However, the height of B cannot be greater than h, so it must be 
exactly h. Now, the same argument (except for height considerations) 
applies to any exterior position, of A too. There must be an exterior 
path passing through ,. Any cluster having the path property must 
contain some position on this exterior path, and so B must also. But 
since B subsumes A, it must contain the position ,. 

D 

The same argument applies to subsumptions between individual 
clauses, which shows that the clauses eliminated from consideration by 
a cluster resolution (defined below) cannot cause trouble. 

Definition 1.5.17 Suppose Al for PI and A2 for P2 are two clusters. 
Suppose that there is a non-distinguished position a of A2 which is also 
the distinguished position of AI. Suppose that Pa or Qa is the maximal 
predicate symbol in both clusters, in an ordering < on predicate symbols. 
We define a cluster resolution that resolves on this maximal predicate 
symbol (Pa or Qa) in all possible ways among the clauses in these two 
clusters according to A -ordering with the ordering <. Afterwards, the 
clauses in the clusters Al and A2 are deleted. It turns out that the 
clauses produced by a cluster resolution are themselves a cluster for the 
set of positions PI U P 2 - {a}. 

The reason for the definition of cluster resolution and the associated 
deletion of clusters is that since Pa or Qa has effectively been elimi
nated, due to the way that A-ordering resolution works, the clusters Al 
and A2 no longer effectively have all their clauses; such "partial clus
ters" complicate the analysis. We show an exponential lower bound 
even with them deleted, which implies an exponential lower bound if 
they are retained. Clauses that have been deleted will still have the path 
property, by reasoning similar to that in the following lemma; this is 
enough to show an analogue of lemma 1.5.16 for individual clauses. 
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Lemma 1.5.18 Suppose Al for PI and A2 for P 2 are two clusters, of 
heights hi and h2' respectively, where hi + h2 ::; n. Suppose that there 
is a frontier position a of A2 which is also the distinguished position 
of AI. Suppose that Po: or Q 0: is the maximal predicate symbol in both 
clusters, in an ordering < on predicate symbols. Then in one round of 
breadth-first A-ordering resolution using this ordering, we can resolve 
on Po: or Qo: and generate a cluster A of height hi + h2 - 1. Also, A 
satisfies the (clear) path property if Al and A2 do. The set of positions 
for A is PI U P2 - {a}. 

Proof. The height will be hi + h2 - 1 since a path of this length 
may be obtained by joining longest paths from Al and A2. One of 
these paths will end at a and the other will begin there. This will 
create a cluster, because one can obtain all combinations of literals 
at the various positions by resolving on appropriate clauses from the 
respective clusters. The path property is easy to verify, by piecing 
together paths in Al and A 2• The clear path property can be verified 
with a little geometric insight by considering the fact that a is a frontier 
posi tion of A2, so that the paths in Al and A2 are disjoint (except for 
position a). 

o 

For this result, even if a is not a frontier position of A2 , predicates 
that have been eliminated by A-ordering resolution cannot again be in
troduced, which prevents existing clear paths of A2 from being blocked 
by new positions from AI. This means that A will have the clear path 
property in this case, too. This is necessary to know, because cluster 
resolutions involving non-frontier positions may also be performed, and 
it is necessary to know that the clear path property is preserved. 

Lemma 1.5.19 Suppose uniform A-ordering resolution is done, start
ing from the set An of clauses. Suppose cluster resolution is done, so 
that clusters are deleted when some predicate in them is resolved on. 
Then, if the maximum area of any cluster is less than n/2, after every 
resolution, every predicate symbol will appear positively in one cluster 
and negatively in another cluster. Thus additional resolutions will al
ways be possible, as long as the areas of the clusters are small. 
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Proof. If the property is true before a round of uniform A-ordering 
resolution, it will be true after the round, since the effect of a round 
is to remove some clauses and generate new clusters. All predicate 
symbols that occurred positively and negatively in different clusters 
before the round, will still do so, because only one predicate symbol 
is eliminated per round, and that symbol will no longer appear in the 
remaining clauses. The limitation on height insures that the cluster 
will not border on itself, which could happen if it were so large that 
it could intersect all rows or columns of An. If a cluster bordered on 
itself, it would contain tautologous clauses (clauses that contain both 
a predicate symbol and its negation, for some predicate symbol). 

o 

Theorem 1.5.20 Uniform A-ordering resolution on An will produce 
an exponential number of clauses, regardless of the ordering. 

Proof. Each cluster resolution increases the maximum height of a 
cluster by a factor of less than two. Also, if the maximum height is less 
than n/2, then eventually a cluster resolution will be done that increases 
the height of a cluster, since eventually some frontier literal will be the 
largest literal and will be chosen for resolution. Thus eventually a 
cluster with height h will be produced, where n/2 ::; h < n. A cluster 
of height h has area at least h + 1 and therefore at least 2h+1 clauses; 
for h ;::: n/2 this is exponential in n. Now, if subsumptions occur, 
they only replace clusters by others of the same height, and having the 
same exterior positions. Any cluster of height h has at least h exterior 
positions, enough to give the exponential bound, so the argument is not 
affected. A subsumed clause is replaced by a clause having exactly the 
same exterior literals, which is all that we are concerned with anyway. 

o 

We note that this result is not affected by tautology deletion, since 
the heights remain less than n. 

Corollary 1.5.21 Breadth-first A-ordering resolution on An with an 
arbitrary ordering, will generate an exponential number of clauses. 
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Proof. We note that the search space for breadth-first and uniform 
A-ordering resolution are essentially the same, except for subsumption 
deletion. However, as long as the heights are less than n, we have shown 
that subsumption deletion will not affect the exponential bound. 

There is a subtlety that has to be dealt with in order to carry 
this through, and we indicate it here. That is, there are resolvents 
that do not correspond to cluster resolutions; these may involve clauses 
deleted in cluster resolution. Now, these "spurious" resolvents might 
conceivably increase in height much faster than the cluster resolvents, 
and then create clauses that would subsume the cluster resolvents and 
thereby reduce the search space. We sketch how this possibility can be 
excluded. First, it is not difficult to show that even the large spurious 
resolvents have to satisfy an extended path property that applies to 
paths of arbitrary length, not just n or less. Now, we are only concerned 
about the case when the maximum size of a cluster resolvent is less 
than n/2, since otherwise we know that the search space is exponential. 
The only problem is if there is a cluster A and some spurious clause 
C generated that properly subsumes some of the elements of A, in 
particular, lacks some of the exterior nodes of A. This can only happen 
if the "height" of C is larger than n, that is, it has wrapped around the 
torus. However, if this happens, then one can without much trouble 
construct an infinite path starting at the distinguished position of C 
that contains no other position of C, contradicting the extended path 
property. Such a path is obtained by going through the missing exterior 
position of A, then taking enough right children until one can take a 
cycle of left children and never again encounter A. This is always 
possible because A can be at most n/2 "wide," and an infinite path in 
wrapping around the torus can move to the right far enough to avoid 
A altogether. 

As a consequence of this, the A-ordering resolutions can be done 
in an arbitrary fashion, not necessarily breadth-first, and we still can 
guarantee an exponential search space. Thus we can obtain an analogue 
of theorem 1.5.10 for A-ordering resolution, too, even with a good or
dering. 

o 
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We now continue a line of investigation begun earlier in section 1.5.4 
about simulating PI-deduction by A-ordering for unsatisfiable sets of 
clauses. It can happen that S is unsatisfiable but not well-ordered. 
In this case, it may not be possible to simulate PI-deduction by A
ordering, since some of the A-ordering resolutions may involve positive 
literals from non-unit clauses. (This can happen if a clause contains 
only literals that are not derivable by positive unit resolution.) This 
is additional evidence that irrelevant clauses can cause combinatorial 
problems for the A-ordering strategy. 

1.5.11 SLD-resolution 

SLD-resolution is essentially the same as all-negative resolution with 
ordering of the negative literals, and has similar complexity properties. 
We do not explicitly mention it in the chart for this reason. However, 
because of its importance for Prolog, we make some comments con
cerning it. There are actually some differences between SLD resolution 
and all-negative resolution. One difference is that for each all-negative 
clause C, one of the literals L of C is chosen in an arbitrary way and 
all resolutions of C must resolve on the literal L. This is more flexible 
than all-negative resolution with ordering of the negative literals. Also, 
the search is typically performed depth-first rather than breadth-first 
as in our formalism. This can make Prolog programs faster than our 
analysis would indicate, because the ordering of clauses can cause the 
proof to be found early in the search. However, the proof depth is still 
a bound for the worst-case execution time, even with depth-first search. 

The actual execution of Prolog programs is more restrictive than 
SLD-resolution; there is less flexibility in which literals can be resolved. 
Literals must be chosen for resolution in a last-in first-out manner. 
Subject to this, a Prolog program specifies the ordering by the order 
of the (negative) literals in the body of the clauses. Another differ
ence between SLD-resolution and Prolog is that duplicate subgoals will 
be deleted from a clause but not from the Prolog execution. Thus if 
we have the clause {-,P, -,Q} and resolve with {Q, -,P, -,R} we obtain 
{-,P, -,P, R} and the two occurrences of -,p merge into one. However, 
in Prolog execution, the procedure P would be called twice. 

The last-in first-out restriction for SLD-resolution means that the 



50 The Propositional and First-Order Complexity 

literal of an all-negative clause C chosen to resolve on must be one of 
the literals most recently added to C. It turns out that the complexity 
properties of this "last-in first-out" SLD-resolution are different than 
those of SLD-resolution in general on some clause sets. For example, 
any Prolog program for T; will have exponential proof depth, even 
though there is a polynomial length all-negative resolution proof. The 
same subgoals will be created and solved repeatedly. Another kind of 
exponential behavior occurs for the satisfiable Horn set S~, even though 
none of the subgoals will be successfully solved. This suggests a possi
ble deficiency in the current methods of logic programming implemen
tation. One would expect Prolog programmers to choose good literal 
orderings, which should help the complexity in most cases. However, 
on unstructured problems, inefficiencies might occur. Some method of 
caching successes and failures is necessary to overcome these inefficien
cies. It might make Prolog more convenient in some cases if it were 
automatic. One strategy that appears to overcome the problems with 
SLD resolution is mentioned in [Lyn94]. Actually, that paper considers 
a more general framework than just SLD-resolution and gives a fairly 
general mechanism for reducing the search space. 

Since Prolog is efficient in practice, we look for special cases where 
SLD-resolution performs well. For deterministic, well-ordered clause 
sets, there is an ordering that causes breadth-first SLD-resolution to 
have polynomial search depth and duplication by iteration and also 
polynomial duplication by combination. For such clause sets, A-ordering 
and all-negative resolution with a good ordering of the predicate sym
bols also have polynomial search depth and duplication by iteration 
and polynomial duplication by combination. For all these strategies, 
the good behavior can be obtained by always resolving on the predicate 
symbols that are largest in the well-ordering (or some total extension of 
it). The polynomial duplication by combination occurs because there 
is always only one such resolution possible from a given all-negative 
clause, since the clause set is deterministic, and the linear duplication 
by iteration follows because the ordering prevents predicate symbols 
that have been resolved away, from being reintroduced. Recall that 
minimal unsatisfiable Horn sets are deterministic and well-ordered. 

For arbitrary unsatisfiable Horn sets, these results continue to hold 
if depth-first search is specified and the proper ordering of clauses and 
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literals is used. To see this, suppose S is an unsatisfiable Horn set, and 
let T be a minimal unsatisfiable subset of S. Note that T is determin
istic and well-ordered. Suppose we order the clauses so that the clauses 
in T are used before those in S. Also, suppose we choose the ordering 
for SLD-resolution so that the literals with the highest proof complexity 
are resolved on first. Then each SLD resolution will replace a negative 
literal by negative literals of smaller proof complexity. Assuming that 
duplicates of a given literal are deleted, this will result in a proof in 
a linear number of steps. In general, of course, depth-first search can 
lead to infinite loops and sacrifices completeness. We note that Prolog 
cannot always achieve this good behavior (proofs in a linear number of 
steps) because last-in first-out SLD resolution does not always permit 
the desired ordering of literals and because a given subgoal may be 
solved repeatedly. If each literal occurs at most once in the body of 
a clause (that is, negatively) then even Prolog can achieve polynomial 
behavior since subgoals will be solved at most once. 

1.5.12 Set of support 

The set-of-support restriction [WRC65] initially chooses some subset of 
the input clauses as the support set. This should have the property that 
the remaining clauses (not chosen) are satisfiable. A clause is supported 
if it is in the support set, or if it is the resolvent of two clauses, at least 
one of which is supported. The support strategy restricts resolutions 
to those in which one of the parent clauses is supported. The behavior 
of resolution with the set-of-support restriction and a negative set of 
support is the same as all-negative resolution, for Horn clauses. For 
Horn clauses, a resolvent of an all-negative clause and another clause 
is always all-negative. Therefore all-negative resolution produces the 
same search space as set of support. If the set of support is chosen as 
the set of positive clauses, then the behavior is like PI-deduction except 
that additional resolvents can be generated. If some other support set is 
chosen, it is conceivable that the behavior could be worse. We note that 
there is no way to get polynomial behavior and goal sensitivity with set 
of support, regardless of the choice of support set. In order to get goal 
sensitivity, the set of support has to consist only of the negative clauses. 
This means that the behavior is the same as all-negative resolution, 
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which has exponential duplication by combination. We view this as 
evidence that set-of-support is also combinatorially inefficient, though 
in practice it is one of the better traditional strategies. 

1.5.13 Model elimination 

For Horn sets, assuming that a negative clause is chosen to start the 
search, model elimination [Lov69] and the MESON strategy [Lov78] 
behave essentially the same as SLD-resolution or all-negative resolu
tion with an ordering on the negative literals. These strategies follow 
Prolog's execution model fairly closely for Horn clauses, and so they 
actually correspond to last-in first-out SLD-resolution. However, they 
permit duplicate literals to be deleted, unlike actual Prolog execution. 
Also, the search formalism is different because this strategy in the gen
eral (non-Horn) case is still an input strategy, that is, each inference 
involves a "chain" and an input clause. Therefore, what appears as 
duplication by combination in all-negative resolution with ordering, 
appears as duplication by case analysis in model elimination and the 
MESON strategy. There is another difference, namely, the MESON 
strategy and model elimination have a feature that prevents infinite 
loops. For example, we might have clauses oP, P : - Q, Q : - R, 
and R : - Q. Now, letting P be the starting subgoal, we succes
sively generate Q, R, then Q again, and can get into an infinite loop in 
Prolog. This cannot happen with model elimination and the MESON 
strategy. The reason is that their data structures (chains) keep infor
mation corresponding to the stack of subgoals activated. Whenever it 
is detected that a subgoal has been attempted from within a call of the 
same subgoal, that particular chain can be deleted. 

By considering these strategies in terms of SLD-resolution in this 
way, we can analyze them and see that they are goal-sensitive (if a 
negative clause is chosen to start the search), have no (i.e., constant) 
duplication by combination, since each node in the search space con
sists of a single chain, and have exponential duplication by case analysis. 
The exponential behaviors are from the clause sets S;, S~, T;, and T~, 
and the reason for this is essentially the same as that for all-negative 
resolution with a bad ordering. The search depth (and therefore the 
duplication by iteration) is exponential, because the last-in first-out 
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restriction causes subgoals to be solved repeatedly in T;. This is true 
even with a good ordering, since even with an ordering the strategy is 
subject to the last-in first-out restriction. These results hold even for 
minimal unsatisfiable clause sets, as witnessed by a minimal unsatis
fiable subset of T;. For satisfiable, deterministic, well-ordered clause 
sets with a good ordering, the behavior can be made polynomial. This 
is because there must be at least one subgoal that is not derivable, and 
by properly guessing which one it is one can fail quickly. For clause 
sets that are not well-ordered, it is not clear what happens in general, 
even with a good ordering. 

1.5.14 Lemmas and caching 

It is possible to use a lemma mechanism with model elimination and 
the MESON strategy. This makes use of the fact that when a negative 
literal -op is eliminated by resolution, and all literals descending from 
-,p are also eliminated, then we have essentially derived a proof of P. 
This corresponds to a successful return from a call to the procedure P 
in Prolog. This means that any further occurrences of -,p can also be 
eliminated by the "lemma" P. That is, further calls to the procedure 
P will also return successfully, so the computation does not need to 
be repeated. When using lemmas, we have to modify the search space 
structure, since the chains interact. This makes the search linear, and 
so instead of duplication by case analysis we now have duplication by 
combination. Therefore the duplication by case analysis is 0(1). The 
search depth is now linear, because of the lemmas, as is the duplica
tion by iteration. To see this, note that whenever a subgoal is called, 
it increases the length of the procedure stack by one. This stack is 
linearly bounded in length, because a chain can be deleted if some pro
cedure appears twice on the stack. Whenever a procedure returns, the 
stack reduces in length by one but the fact that this procedure has 
successfully returned is added as a lemma. Therefore, each call to a 
non-lemma procedure and each return from a non-lemma procedure ei
ther increase the size of the stack or increase the number of lemmas Let 
N be the sum of the stack size and twice the number of lemmas. Then 
N increases by 1 whenever a non-lemma procedure is called or returns 
successfully. The maximum value of N is three times the number of 
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predicates in the original set of clauses. This shows that the search 
depth and the duplication by iteration are linear. We are not counting 
the procedure calls that are already lemmas. Each such call only leads 
to a constant amount of additional search depth, and the number of 
such calls is bounded by the sum of the sizes of the clauses in the set 
of input clauses. Therefore the linear bounds are still valid. The du
plication by combination is still exponential, as verified by S~ and S~, 
where no lemmas are generated. 

We now consider caching. By this we mean that failures as well as 
successful returns from a procedure are remembered. If a procedure 
was called and failed before, then the computation does not have to be 
repeated when it is called again. This caching of failures only helps re
duce the search space if the search is done in a depth-first manner as in 
Prolog, because then there are no two calls to the same procedure oper
ating in parallel, or if parallel calls to a procedure are combined in some 
way. Depth-first search can be done because the loop-detecting feature 
of these strategies prevents infinite chains of procedure calls. However, 
this loop-detection makes the search space dependent not only on the 
current procedure being called but also on procedure calls earlier in the 
stack. This means that the caching is unsound unless this dependence 
on the stack is eliminated by removing loop-detection, and thereby los
ing first-order completeness. We assume that some kind of depth-first 
iterative deepening [Kor85, ST85] search is done to avoid infinite loops 
and help organize the caching. Then, with each subgoal, we cache not 
only whether it returns successfully, but how much depth of search it 
was permitted. Assuming the search is done in this way, each failing re
turn from a procedure increases the size of the cache, and so reasoning 
as above we can show that the duplication by combination is linear, as 
well as the search depth and duplication by iteration. However, since 
there are a number of stages of depth-first iterative deepening, each one 
taking a linear amount of duplication, it may be more accurate to say 
that the duplication is quadratic. But our search formalism is not really 
adapted to consider depth-first iterative deepening in a natural way, so 
we just assume an optimal depth bound and state the duplication as 
linear. 
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1.5.15 The MESON strategy 

The MESON strategy has behavior like model elimination for Horn 
clauses, so the bounds are the same. For the MESON strategy, unit 
lemmas result in behavior like that of model elimination with unit lem
mas. The MESON strategy with unit lemmas and caching has behavior 
like model elimination with unit lemmas and caching. 

1.5.16 Problem reduction formats 

The simplified and modified problem reduction formats [Pla82, Pla88] 
simulate Prolog's back chaining mechanism, but are complete for first
order logic. The simplified problem reduction format [Pla82] without 
caching is much the same as model elimination, for Horn clauses. The 
simplified problem reduction format generates formulae called decompo
sitions. For Horn problems, all the decompositions generated are input 
Horn clauses, so the number of them is linear (if caching is done). The 
inference mechanism essentially simulates hyper-resolution, once a suf
ficient number of decompositions are generated. Thus, the search depth 
and duplication by iteration are linear. The duplication by combination 
is linear as for hyper-resolution, if caching is done. As with model elim
ination and the MESON strategies, the organization of the search for 
depth-first iterative deepening may mean that the duplication should 
really be considered as quadratic. However, for simplicity we assume 
an optimal depth bound and thus have linear duplication. Actually, 
it is possible to obtain these good bounds without caching or lemmas; 
it is only necessary to eliminate duplicate decompositions. The reason 
for this is that the decompositions are "local" and contain all necessary 
information about the chain of procedure calls. This makes it possible 
to cache without losing first-order completeness or efficiency for Horn 
problems. This is an advantage over MESON and model elimination. 
The behavior of the modified problem reduction format [Pla88] for Horn 
clauses is the same as that of the simplified problem reduction format, 
both with and without caching, since the two methods differ only in 
how non-Horn clauses are treated. 
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1.5.17 Clause linking 

The clause linking method [LP92] reduces first-order logic to proposi
tional calculus, and then applies a Davis and Putnam-like procedure 
[DP60, DLL62]. This reduction to the propositional calculus is done by 
successively instantiating the clauses using unification with literals of 
other clauses. A propositional decision procedure is then periodically 
applied to the resulting clauses. We consider the application of this 
method to propositional Horn clauses. For the clause linking method 
with forward support, we note that this method behaves essentially 
the same as hyper-resolution, and the same bounds apply to it. For 
backward support, we note that no new clauses are generated, and it 
is only the support status that gets changed. If S is unsatisfiable, then 
eventually an unsatisfiable subset of S will be marked as backward sup
ported. After a linear number of rounds, all the clauses that can be 
backward supported, will be, and the search will terminate. Then the 
Davis-and-Putnam-like decision procedure will terminate in polynomial 
time, since S is a Horn set. Thus the search depth and duplication by 
iteration are linear. The duplication by combination is linear, since no 
new clauses are generated (except by unit simplification). The dupli
cation by case analysis is 0(1) because each state has one successor. 
Caching is not necessary, because clauses are never combined except 
briefly in the Davis-and-Putnam-like decision procedure. Thus we ob
tain goal-sensitivity and good behavior without requiring caching or 
losing first-order completeness. These are advantages over the simple 
and modified problem reduction formats as well as over MESON and 
model elimination. 

1.5.18 Connection calculi 

As for connection calculi [Bib87], there are many of them. The con
nection calculi make use of connections between literals in (possibly) 
different clauses to control the search. The chart is only intended to 
show that they can be implemented to simulate forward reasoning, like 
hyper-resolution, or the backward chaining resolution strategies. It is 
also of course possible that connection calculi with behavior like that 
of the clause linking method exist. 
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1.5.19 Caching 

Several of these strategies perform similarly on Horn sets. They are 
model elimination and the MESON strategy with caching of unit sub
goals and lemmas, the simplified and modified problem reduction for
mats with caching, and clause linking with backward support. We refer 
to these collectively as backward chaining methods with caching (or, 
as caching strategies). Though clause linking does not cache, we in
clude it here because the behavior is similar and because the deletion 
of duplicate copies of a clause can be regarded as caching. 

1.6 Preventing Unit Simplifications 

We now give modifications of these clause sets that still display the 
same exponential behavior, even for strategies used together with unit 
simplification. For some of these clause sets, we do not know how well 
the various theorem proving strategies will perform. First we give a 
transformation within propositional calculus that defeats unit simpli
fication by introducing non-Horn features. A second transformation 
prevents unit simplification by introducing first-order features but re
tains the Horn property. 

The following transformation eliminates unit simplifications for back 
chaining methods: For each Horn clause L : - L1 , ... , Ln where Land 
all Li are positive literals, delete this clause and replace it by the clauses 
L, P : - L1 , ... , Ln and L : - P, where P is a new predicate symbol. 
Note that the first of these is a non-Horn clause, since both Land P 
are positive literals. This eliminates the possible unit simplifications for 
back chaining methods, but produces a non-Horn set of clauses. For 
forward chaining methods, the unit L can be rederived and some unit 
simplification can still occur. Let U(8) be 8 transformed in this way. 
Later we discuss the search space sizes of various strategies on clause 
sets produced by the U operator. 

We now give alternative methods to avoid unit simplification effi
ciencies, which introduce first-order features but retain the Horn prop
erty. Also, these transformations often produce unsatisfiable sets of 
Horn clauses; this answers the question whether such exponential be-
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havior can be produced in unsatisfiable Horn sets. Of course, such 
behavior cannot be produced in unsatisfiable propositional Horn sets 
if unit simplification is allowed, since that will in itself find a contra
diction. However, by allowing limited first-order features, we can still 
obtain exponential behavior for Horn sets. Formally, if S is a set of 
propositional clauses, let M(S) be a set of monadic first-order clauses 
with positive unit clauses P in S replaced by P(a), and other clauses 
in S transformed by replacing positive literals P by P(x) and negative 
literals -,p by -,P(x). Thus a clause {P, -'Q, -,R} would be replaced by 
{P(x), -,Q(x), -,R(x)}, but {P} would be replaced by {P(a)}. Then 
M(T;) and M(T~) are unsatisfiable Horn sets and have exponential 
behavior for back chaining strategies without caching, and unit sim
plification doesn't remove the exponential behavior. During the proof 
search, some generated clauses will have the variable x bound to a, 
but this only has the effect of replacing some of the unit resolutions on 
these clauses with unit simplifications, and does not significantly affect 
the search space. 

1.7 Additional Hard Sets of Clauses 

In addition to these transformations, we give some more hard clause 
sets. We give a set of clauses that is hard for forward chaining methods 
but easy for backward chaining methods. We also give an example that 
is hard for both forward and backward chaining methods, but for which 
clause linking still has polynomial behavior. For some of the clause 
sets, we do not know which strategies exhibit polynomial behavior. 
We give non-Horn propositional examples, and Horn non-propositional 
examples. 

We first give an example of a first-order Horn set that is hard for 
forward-chaining methods but easy for back chaining methods. Con
sider the set containing the clause P(Xl"'Xn) : - Ql(Xt), ... , Qn(xn), 
together with the unit clauses Qi(a) and Qi(b), for all i. Suppose the 
goal is : - P(a, a, ... , a). Call this set S!. Then there are exponentially 
many hyper-resolvents, but back chaining is linear. Note that back 
chaining methods will bind the variables to a and then limit the use of 
the Qi, but forward chaining strategies will generate many bindings of 
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variables to combinations of a and b. 
We now exhibit a Horn set that is hard for all the non-caching strate

gies considered here. Given a set S of propositional clauses, let N(S, n) 
be S with clauses P : - PI, ... , Pm for m ~ 1 replaced by P(XI ... Xn) : 
- PI(XI ... Xn), ... , Pm(XI ... Xn). Also, a positive unit clause {P} is re-
placed by P(XI ... Xn) : - QI(xd, ... , Qn(xn). In addition, negative 
clauses: - PI ... Pm are replaced by : - PI(a, a, ... , a), ... , Pm(a, a, ... , a). 
Finally, the unit clauses Q;(a) and Q;(b) are added. Then the sets 
N (T; , n) and N (T~, n) are unsatisfiable first-order Horn sets that pro
duce exponential behavior for backward chaining strategies (except the 
caching strategies) because T; and T~ do. They also produce expo
nential behavior for forward chaining strategies because there are ex
ponentially many combinations of a and b for the n variables. This 
includes clause linking with forward support. However, these can be 
solved in polynomial time by strategies with caching because the back
ward chaining from the goal binds variables to a, and eliminates the 
exponentially many combinations of a and b. This includes clause link
ing with backward support. In addition, unit simplification for these 
clause sets does not help; it only replaces some of the unit resolutions 
with unit simplifications. 

We now consider the operation of reversing the signs of all the lit
erals in a clause. Equivalently, we could consider leaving the signs 
unchanged but reversing the way the strategies treat the signs. This 
causes hyper-resolution to become negative hyper-resolution, which 
means that all the positive literals in a clause are resolved in one oper
ation. For Horn clauses, each clause has only one positive literal, and 
so negative hyper-resolution is the same as all-negative resolution, with 
the same search space complexities. 

If S is a set of clauses, let S be S with the signs of all predicate 
symbols changed, and predicate symbols systematically renamed to new 
predicate symbols. Note that this causes forward chaining strategies to 
behave like backward chaining strategies, and vice versa. Let Sym(S) 
be SuS. Note that Sym( S~) and Sym( S~) have exponential behavior 
for hyper-resolution, since negative hyper-resolution (all-negative res
olution) is exponential for S~ and S~. These satisfiable propositional 
sets of clauses have exponential behavior for all strategies (and refine
ments) discussed except clause linking and possibly MESON, model 
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elimination, and the two problem reduction formats, all with caching. 
The reason these clause sets are easy for clause linking is that the Davis 
and Putnam-like decision procedure will quickly find a model and de
tect satisfiability. This is because the Davis and Putnam method is 
polynomial time on Horn sets [GU89], and these clause sets are similar 
enough to Horn sets to exhibit the same behavior. These sets will prob
ably be quite a challenge for most theorem provers. However, they are 
not Horn sets. To obtain unsatisfiable propositional sets of clauses with 
this property, we can use Sym(U(T;)) and Sym(U(T~)), discussed be
low. Even for the simplified and modified problem reduction formats, 
the behavior is probably exponential, because many combinations of 
literals will be generated. It is possible that clause linking has poly
nomial behavior, but that depends on how the Davis and Putnam-like 
decision procedure works. 

Consider U(T;) and U(T~). These are unsatisfiable propositional 
non-Horn sets which have polynomial behavior for Pl-deductionand 
hyper-resolution, even though unit simplification will not decide these 
clause sets. To show this, recall that in these clause sets we have 
clauses of the form L, P : - L1, ... , Ln and L : - P, where P is a 
new predicate symbol. We can show that the literals Li will eventually 
be derived, and then the clause L, P will be derived by a sequence of 
unit resolutions (unit simplifications). Finally, a resolution operation 
between the clauses L, P and L : - P will produce the resolvent L, 
and the proof will proceed further. U(T;) has exponential behavior 
for all the back chaining methods even with unit simplification, except 
possibly the caching strategies, since T; does. U(T~) can be solved in 
polynomial time by all-negative resolution with a proper ordering of 
negative literals. It is possible that U(T;) and U(T~) can be decided 
in polynomial time by a Davis-Putnam-like method with lemmas, as 
described in [Pla90J. We don't know how fast they can be solved by 
the ordinary Davis-Putnam method. 

To defeat forward chaining methods, consider the clause sets Sym 
(U (T;)) and Sym (U (T~)). These still have exponential behavior for 
back chaining methods except possibly the caching strategies. In ad
dition, they have exponential behavior for forward chaining methods, 
since the Sym operation causes forward chaining strategies to behave 
like backward chaining strategies. However, it is possible that a mod-
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ified Davis-Putnam method with lemmas, as described in [Pla90], will 
decide these in polynomial time. If so, clause linking will also have 
polynomial behavior on these clause sets. 

my prover does 
on wos953! 

on this simple 
problem. 
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1.8 Discussion 

Since our chart only considers propositional Horn sets, the results are 
somewhat limited. Still, even here some unexpected behavior occurs. 
In addition, we present other clause sets that are non-Horn or first-order 
and discuss the behavior of strategies on them. However, a more formal 
analysis for non-Horn propositional logic and for first-order logic would 
be interesting and probably difficult. Also, these results do not say 
how a theorem prover will perform on real theorems. Despite this, we 
believe that strategies having a large amount of search duplication often 
perform badly. Since the successes of a prover are usually more widely 
publicized than the failures, the poor performance of some provers on 
certain problems may not be well known to those outside of the theorem 
proving community. Our experience has been that on simple set theory 
problems, logic puzzles, and even propositional calculus problems, most 
of the strategies listed in the chart perform very badly. Also, we have 
found that on typical theorems, back-chaining strategies that do not use 
caching perform badly on Horn sets, and even back-chaining strategies 
that do cache (except for clause linking) perform badly on non-Horn 
sets. Forward chaining strategies generally seem to do well on Horn 
sets, but badly on non-Horn sets. Of course, forward chaining strategies 
are typically not sensitive to the theorem being proved, and function 
somewhat like blind search. 

The methods of this paper are in a way more discriminating than 
the results of Haken [Hak85]' who showed that resolution is exponential 
for any refinement. This tends to suggest that all strategies are the 
same. Our methods discriminate between strategies more finely, and 
support the argument that some strategies are better than others. Eder 
[Ede92] analyzed the sizes of proofs in different strategies. In contrast, 
we analyze the size of the entire search space. 

We now consider briefly the behavior of clause linking in first-order 
logic. For a description of this strategy see [LP92]. The question arises 
whether clause linking is exponential on any first-order clause set for 
which other methods are polynomial. This is unlikely for any clause 
set for which the term sizes are small, since the behavior approximates 
propositional logic in that case. We note that for typical theorems, if 
the term sizes get large, often the proofs are too difficult to obtain. So, 
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if a small bound on term size is set, then clause linking will probably be 
efficient, even for first-order logic. However, [Zam72, Zam89, Tam90, 
Tam91] have some first-order examples where a particular refinement 
of resolution similar to A-ordering is a decision procedure, but clause 
linking may generate an infinite search space. On the other hand, it is 
possible to construct simple first-order examples where clause linking 
generates a finite search space but resolution generates an infinite search 
space. For example, clause linking has a finite search space on clause 
sets containing variables and constant symbols but no function symbols. 
Thus clause linking is a decision procedure for this class. However, 
resolution can generate an infinite search space on these clause sets. 
For example, consider the following clause set: {-,X = Y, -,y = Z, X = 
Z}, { -,a = b}. All-negative resolution generates an infinite search space 
on this clause set. For almost any two theorem proving strategies, it's 
possible to find examples where one performs better than the other. We 
would at least hope to have a good understanding of where this occurs 
and why. Also, we would like to find strategies that have polynomial 
behavior on the examples presented here and also decide the clause sets 
decidable by resolution with A-ordering. 

1.8.1 Adequacy 

We have given a theoretical analysis of a number of strategies on propo
sitional Horn sets and some first-order clause sets. We do not suggest 
that all theorem proving methods should be analyzed theoretically in 
this manner, since that would require all researchers to be theoreticians 
to some extent. Another acceptable alternative is to run a theorem 
prover on the clause sets given above and estimate the growth rate of 
the time taken. We propose that all new strategies be analyzed this way, 
analytically where possible and also by running them on these clause 
sets for all n up to say 50 (subject to time and space limitations!). 
The clause sets that seem most significant for this are S~, S~, T;, T~, 
An, Sym(S;), Sym(S~), U(T;), U(T;), M(T;), M(T;), Sym(U(T;)), 
Sym(U(T;)), Sym(M(T;)), Sym(M(T;)), N(T;,n), and N(T;,n). 
Note that some of these clause sets are easy for standard methods; this 
helps to distinguish between methods that have exponential behavior 
on the harder clause sets. The performance of a strategy on these exam-
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pIes doesn't tell everything about the strategy, but does tell something. 
We say a strategy is adequate if it runs in polynomial time on all these 
clause sets, as well as propositional Horn sets, and satisfies the following 
additional requirements: It should be complete, goal-oriented, and nat
ural. Natural means that the strategy is not specifically designed to do 
well on these clause sets. It is possible that a good theorem prover may 
behave poorly on these examples. However, we believe that a strategy 
that performs well on these example clause sets will also do well on 
typical theorems. We don't know if any existing strategy is adequate, 
but clause linking may be. We note that clause linking has polynomial 
behavior on all the above clause sets, because the time taken by the 
Davis and Putnam procedure is not reflected in the search space size. 
However, since adequacy is defined in terms of running time, clause 
linking could still fail to be adequate. 

1.8.2 Extensions 

It would also be possible to extend this analysis to renameable Horn 
sets, that is, sets of clauses that can be transformed into Horn sets by 
changing the signs of some predicate symbols. Such an analysis would 
treat forward chaining and backward chaining strategies the same, and 
both would have exponential behavior. However, clause linking and 
maybe some of the other caching strategies would still have polyno
mial behavior. Note that UR-resolution has polynomial behavior on 
renameable Horn sets. However, this is not a complete strategy in 
general. Still, its good performance in practice tends to confirm its 
favorable theoretical properties. 

We now briefly discuss a general analysis for first-order logic. For 
this case, it is not possible to bound search space size in the same way, 
since there is no recursive bound on the length of proofs and hence 
on the search space size. However, what we can do is analyze how 
efficient a strategy is on the structures it generates. For resolution, 
if the same literals are generated over and over again and combined 
in many different ways, then this may indicate an inefficiency. We 
can analyze this behavior for a general strategy by associating with 
each generated clause a set of instances of the input clauses that were 
used to generate it. We can then consider how often a given input 
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instance contributes to the different clauses in a state, on a path of 
states, or in a set of states no two of which are on the same path. In 
this way, we might learn something about the various types of search 
space duplication that occur in first-order logic theorem proving. 



Chapter 2 

The First-Order Complexity 
of First-Order Theorem 
Proving Strategies 

2.1 Introduction 

We would like to study the complexity of first-order theorem proving 
procedures. A first-order theorem prover typically takes as input a 
formula A of first-order logic and, if the formula is valid, eventually 
outputs a proof. Otherwise, the prover may run forever. Since first
order logic is only partially decidable, this is the best we can hope for. 
One can easily show that there can be no recursive bound on the length 
of the running time in terms of the length of the input, even for valid 
formulas. This makes it appear impossible to do any meaningful com
plexity analysis, since it is impossible to have a theorem prover with, 
say, exponential running time. However, we would like some kind of 
an asymptotic complexity analysis, because it would give valuable and 
machine-independent insight into theorem provers, insight that is dif
ficult to obtain by running examples alone. A theoretical analysis, for 
example, can tell us something about the behavior of a prover on infinite 
classes of problems, which cannot be determined by running examples. 
Such an analysis would enable us to say in a rigorous way what it means 
for one theorem proving method to be better than another, at least on 
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certain kinds of problems, and would enable us to pose interesting open 
questions about the existence of theorem provers of various complexi
ties. It would also suggests new approaches to theorem proving, as we 
will show, approaches that might not have been considered otherwise. 
Of course, experimental studies of theorem provers provide additional 
information that should be combined with theoretical insights to obtain 
a complete picture. 

Our approach to a theoretical analysis of theorem provers is to find 
some natural partial function F from first-order formulas into the nat
ural numbers such that F(A) is defined iff A is valid and such that 
theorem provers exist whose complexity on valid formulas is recursive 
in F(A). Also, we require that the question whether F(A) :::; n should 
be decidable, given A and n. We call such an F a theorem proving 
complexity measure because it measures how hard A is, from a theorem 
proving perspective. Of course, such a function F cannot be recursive. 
We can take for F the minimal length of a proof of A in some logical 
system, for example. Then, since one can enumerate all possible proofs, 
one might be able to do theorem proving in time exponential in F(A). 
However, it seems better to find measures F that do not depend on a 
particular system of logical inference, since there are many plausible in
ference systems, and the choice of one is, after all, somewhat arbitrary. 
We exhibit a number of such theorem proving complexity functions F 
that are not inference-based, and use them to analyze the performance 
of theorem proving procedures. We also consider functions F that are 
inference based; these are defined in terms of the lengths or depths of 
resolution proofs. 

In addition to studying the time needed to show that A is valid 
as a function of F(A), we can also study the relation of the size of a 
minimal proof of A to F(A). Since minimal proof size can be taken as 
another function F'(A), this question is essentially that of studying the 
relationship between different theorem proving complexity functions. 

Now, in addition to measuring the complexity of theorem proving 
procedures relative to F, we also want to study the inherent complexity 
of theorem proving relative to F, that is, what can we say about the 
best possible complexity of a theorem proving procedure relative to 
F. For this, we use a slightly different formalism. We consider the 
problem, given a pair (A, n), where A is a first-order formula and n is 
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an integer in unary, to determine whether F(A) is defined and F(A) ~ 
n. We are interested in the complexity of this problem. Note that if 
F(A) is defined, A is valid, so that any algorithm to solve this problem 
can be used as a theorem prover for first-order logic. However, the 
problem as stated is a purely complexity theoretic problem, and one 
can ask whether it is NP-complete, exponential time complete, or in 
some other complexity class. This formulation leads to a number of 
interesting questions and results in complexity theory, and we hope that 
this will stimulate some work in computational complexity concerning 
the complexity of theorem proving in first-order logic and other logics. 

The above discussion is concerned with the validity of first-order 
formulas, to bring out the essential ideas. However, in our study, we 
will consider clause-form formulas. It is known that for any first-order 
formula A, there is a set S of clauses such that A is valid iff S is unsat
isfiable, and S can effectively be computed from A. Then in order to 
prove that A is valid, we can prove that S is unsatisfiable, and this is 
the approach used by many current theorem provers. In this context, 
we define a theorem proving complexity measure as a partial function 
F from sets S of clauses into the natural numbers such that F(S) is 
defined iff S is unsatisfiable and such that there are theorem proving 
procedures that are recursive with respect to F on unsatisfiable clause 
sets. Also, we require that the question whether F(S) ~ n should 
be decidable, given Sand n. One advantage of this approach is that 
clauses are considerably simpler syntactically than full first-order logic, 
and therefore more amenable to machine proving. Clauses are essen
tially conjunctive normal form formulas in which existential quantifiers 
have been eliminated, so that all variables are implicitly universally 
quantified. Another advantage of considering clause form is that we 
can apply Herbrand's theorem, which states that S is unsatisfiable iff 
there is a finite unsatisfiable set T of ground (propositional) clauses 
such that each clause of T is an instance of some clause in S. Now, 
the length of a shortest such T, written as a character string, can be 
much longer than the length of S. In fact, there is no recursive bound 
on the length of such a set T in terms of the length of S. However, we 
can bound the complexity of theorem proving procedures in terms of 
the length of T. It is not hard to devise a theorem prover that is expo
nential in the length of T, for example. One only needs to enumerate 
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all possible T of length n, of which there are a number exponential in 
n, and apply an exponential propositional decision procedure to each 
one. Therefore we can let F(S) be the length of the shortest such T, 
and then F is a theorem proving complexity measure. There are other 
measures one can use, such as the minimal number of clauses in any 
such T, or the minimum over all such T of the maximum size of the 
literals in T, or the length of a minimal resolution proof of the empty 
clause from S. We will define the measures M pd , Mpl, M dup , M lin , and 
Msub in this paper. The first two are inference-based, but the last three 
are not. Relative to these (and other) measures, we can study the com
plexity of theorem proving strategies. We can also compare the various 
measures with each other, and comment on which measures seem more 
reasonable. This is the approach that will be taken in this paper. 

In the past, there has been some work on the complexity of theorem 
proving strategies, but mostly with respect to the length of proofs, and 
not to the difficulty of finding a proof. For some examples of stud
ies of proof lengths, see [CR79, Hak85, Urq87, Ede92]. Haken [Hak85] 
showed that for a set of propositional problems, known as the pigeon
hole problems, resolution needs to generate an exponential number of 
clauses in order to find a proof. This means that the minimum proof 
length is exponential for resolution, in this case. This work was ex
tended by Buss and Tunin [BT88]. The difficulty of finding a proof, 
and the size of the search space, are more relevant for the efficiency 
of theorem provers than the size of a minimal proof. There has been 
very little work on search space size. The paper [KBL93] shows that 
many refinements of resolution do not increase a certain measure of 
search space size by more than a factor of four, but does not com
pare refinements with one another. Their paper considers monotone 
refinements of resolution; these do not allow deletion operations such 
as deletion of subsumed clauses. However, the results are otherwise 
very general. An exception is the work of Plaisted [Pla94b, Pla94c]' 
which considers the size of the search space generated. However, this 
work is largely propositional in nature, and here we wish to extend this 
work to an inherently first-order context. The price for this is that we 
need to consider specific search strategies, which was not necessary in 
[Pla94b, Pla94c]. Plaisted [Pla84] and Goubault [Gou94] studied com
plete problems in first-order logic. In particular, [Pla84] studied the 
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problem of determining the minimal depth of binary resolution proofs 
from a set of clauses. A series of completeness results was obtained, 
ranging from nondeterministic exponential time for general first-order 
clauses to exponential time for some restricted subsets. Many other 
completeness results related to first-order logic were also presented in 
[Pla84]. Goubault [Gou94] showed that the problem of determining 
the minimal number of copies of first-order clauses needed for a proof 
is L;~ complete. The paper [Let93] studies how accurately the length of 
a derivation reflects the actual complexity of a proof. For some work 
concerning the effect of different translations to clause form on the 
proof complexity, and how they can make a non-elementary difference 
in proof length, see [BFL94, Eg196]. 

There has been a considerable amount of work on the complexity of 
unification problems (for example, see [KN92]), but we are more con
cerned with pure first-order strategies here. There have also been works 
showing how one strategy can simulate another, which is more relevant 
for proof length than search complexity. One such study is [BF93], in 
which the consolution calculus is modified in such a way that it can 
be instantiated to a number of strategies. The paper [Bib82] presents 
a method of embedding ME-like strategies into each other. The hand
book article [BE93] presents a great variety of calculi and compares 
their properties, as well as giving some simulation results. The book 
[Ede92] gives precise simulation results between first-order calculi from 
a complexity point of view. Hsiang and Bonacina [BH96] present a for
malism that facilitates the study of infinite search spaces. The paper 
[BH98] presents a model for representing search in theorem proving. 
This model captures the notion of contraction, which is basically dele
tion of a derived clause or formula. The ability of contraction to reduce 
search spaces is studied. The paper [Bon] analyzes parallel implementa
tions of contraction-based strategies in a machine-independent manner. 

Here we analyze the complexity of first-order theorem provers. This 
work reveals a number of surprising differences in efficiency among com
mon theorem proving strategies, ranging from single to quintuple expo
nential. These differences are not at all obvious from a casual inspection 
of these strategies. This analysis also suggests some simple modifica
tions of existing strategies that have a better asymptotic behavior. We 
have felt for a number of years that common strategies were very in-
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efficient on some problems and that this was significantly hindering 
the field, and this current analysis helps to confirm this and to sug
gest the advantages of certain methods which avoid these inefficiencies. 
On the other hand, this analysis also reveals cases where these tradi
tional strategies perform fairly well, possibly helping to explain their 
popularity. 

Another outcome of this work is that we can begin to say something 
about which kinds of clause sets S are best for which strategies in terms 
of various measures F1(S),"', Fn(S), Even though we cannot always 
compute the Fi measures, this does at least help us to understand why 
different methods are better on different kinds of problems. It does not 
seem reasonable to expect that one method will be optimal on all sets 
S of clauses. In fact, it may be possible to show that such an optimal 
method does not exist. 

One interesting feature of the present work is it gives a theoretical 
justification for using a size bound with an inference method. For 
example, Otter [McC90] prefers small clauses. Our analysis shows how 
the use of a size bound can improve the asymptotic complexity of a 
method, and how the choice of the right size measure can also make a 
significant difference. 

Some of the results we present are already known, and our contri
bution is to put them into a common perspective. 

2.2 Proof Complexity measures 

The arity of a function symbol is the number of arguments it takes. A 
term is a well-formed expression containing function symbols, constant 
symbols, and variables, as, f( x, g( a)) for f of arity 2, 9 of arity 1, 
and a of arity 0 (a constant symbol). An atom is a predicate symbol 
followed by a list of terms, as, P(x,g(a,b)). A literal is an atom or 
an atom preceded by a negation sign, as, -,Q( a, x). A literal preceded 
by a negation sign is negative and a literal without a negation sign is 
positive. The literals Land -,L are said to be complementary. A clause 
is a disjunction of literals, written as a set, as, {-,P(x),Q(f(x))}. Free 
variablesin a clause are assumed to be universally quantified. Thus the 
clause {-,P( x), Q(f( x))} represents the formula Vx( -,P( x) V Q(f( x))). 
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A term, literal, or clause not containing any variables is said to be 
ground. A clause containing only negative literals is negative and one 
containing only positive literals is positive. A clause containing only one 
literal is a unit clause. A set of clauses represents the conjunction of the 
clauses in the set. Thus the set {{-,P(x),Q(f(x))}, {-,Q(y),R(g(y))}, 
{P(a)}, {-'R(z)}} represents the formula (V'x(-,P(x) V Q(f(x)))) 1\ 
(V'y(-,Q(y) V R(g(y)))) 1\ P(a) 1\ (V'z-'R(z)). 

Definition 2.2.1 The linear size s/in of a term, literal, clause, or set 
of clauses is its length, written as a character string (ignoring com
mas and parentheses within a term). Thus the linear size of the literal 
P(f(x),g(y)) is 5. 

Definition 2.2.2 The subterm size ssub of a term, literal, clause, or set 
of clauses is its number of distinct subterms, with duplicate occurrences 
of the same subterm counted only once. Thus the subterm size of the 
literal P(f(x),f(x)) is 3, since it has only the subterms x, I(x), and 
P(f(x),J(x)). (We count the entire literal as a term, too.) 

Definition 2.2.3 A substitution is a mapping from variables to terms 
which is the identity on all but finitely many variables. If L is a literal 
and a is a substitution, then La is the result of replacing all variables 
in L by their image under a. We define the application of substitutions 
to terms, clauses, and sets of clauses similarly. A substitution a is a 
unifier of literals Land M if La = M a. If such a substitution exists, 
we say that Land M are unifiable. A substitution a is a most general 
unifier of Land M if for any other unifier f3 of Land M, there is a 
substitution, such that Lf3 = La, and M f3 = M a,. 

Definition 2.2.4 We say clause Ga is a factor of clause G if a is a 
most general unifier of two literals of G. Also, D is a (simple) resolvent 
0lG1 and G2 il D = ((G1 - {Ld) U (G2 - {L2 }))8, where L1 E G1 and 
L2 E G2, and 8 is a most general unifier of L1 and L2. The clause D is 
a resolvent ofG1 and G2 with factoring if D = ((G1-B1)U(G2-B2))8, 
where B1 ~ G1 and B2 ~ G2, and 8 is a most general substitution 
unifying {L : L E Bd U {-,L : L E B2}. In both cases, the clauses 
G1 and G2 are parents of D. The resolution is said to be positive 
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if one of the parents is a positive clause and negative if one of the 
parents is a negative clause. It is a unit resolution if one of the parents 
is a unit clause. It is an A resolution if the literals (or subsets) Bl 
and B2 of resolution are minimal in their respective clauses in a pre
specified ordering on literals. For a discussion of these strategies, see 
[GL 13, Fit90, Lov18, WOLB84}. 

Definition 2.2.5 A resolution proof from a set S of clauses is a se
quence Gl , C2 , ••• , Gn of clauses, where each Gi is either in S or is a 
resolvent of previous clauses in the sequence. The length of this proof is 
n. The depth of this proof is defined recursively, as follows: The depth 
of an input clause is O. If Ci is a resolvent of Gj and Gk , then the depth 
of Gi is one plus the maximum depth of Gj and Ck. The depth of the 
proof is the maximum depth of any Gi in it. This proof is a refutation 
if it contains the empty clause. A Pl-deduction proof is a resolution 
proof in which every resolution is positive. A negative resolution proof 
is a resolution proof in which every resolution is negative. A unit res
olution proof is a resolution proof in which every resolution is a unit 
resolution. An A-resolution proof is a resolution proof in which every 
resolution is an A -resolution. 

Definition 2.2.6 A (refutational) theorem proving method is complete 
if for every unsatisfiable clause set S, there is a proof that S is unsat
isfiable using the method. 

It is known that resolution is complete [Rob65b]. Many ofthe refine
ments of resolution are also complete, including Pl-deduction, negative 
resolution, and A-resolution. Unit resolution, however, is not complete. 

For those who may not be familiar with the refutational style of the
orem proving, we give an example. Suppose that we want to show that 
the first-order formula (Vx3y (P(x) ::) Q(y))) 1\ (Vy3z (Q(y) ::) R(z))) 
::) (Vx3z (P(x) ::) R(z))) is valid. Here::) represents logical impli
cation. In the refutational approach, we negate this formula to ob
tain -,[(Vx3y(P(x) ::) Q(y))) 1\ (Vy3z(Q(y) ::) R(z))) ::) (Vx3z(P(x) ::) 
R( z)))]' and show that this formula is unsatisfiable. This is translated 
into clause form by rearranging the Boolean connectives and replacing 
existential quantifiers by new function symbols, called Skolem func
tions. By this means, we obtain the formula (Vx3y( P( x) ::) Q(y))) 1\ 
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('v'y:3z(Q(y) :::> R(z))) /\ (:3x'v'z(P(x) /\ -,R(z))), that is, ('v'x:3y(P(x) :::> 
Q(y))) /\ ('v'y:3z(Q(y) :::> R(z))) /\ (:3xP(x)) /\ 'v'z-,R(z). Inserting 
Skolem functions, we obtain ('v'x(P(x) :::> Q(J(x)))) /\ ('v'y(Q(y) :::> 
R(g(y)))) /\ P( a) /\ 'v' z-,R( z). This translation is satisfiability pre
serving. Translating this formula into a set S of clauses, we obtain 
{{ -'P(x), Q(J(x))}, {-,Q(y), R(g(y))}, {P( a)}, {-,R(z)}}. The vari
ables are implicitly regarded as universally quantified. We then have 
the following resolution refutation: 

1. P( a) (input) 
2. -,P(x), Q(J(x)) (input) 
3. Q(J(a)) (resolution, 1,2) 
4. -,Q(y), R(g(y)) (input) 
5. R(g(J(a))) (3,4, resolution) 
6. -,R(z) (input) 
7. false (5,6, resolution) 

The designation "input" means that a clause is in S. Since false has 
been derived from S by resolution, we have proven that S is unsatisfi
able, and so the original first-order formula is valid. 

We now resume our discussion of the complexity of theorem proving 
strategies. 

Definition 2.2.7 The prooflength complexity measure Mp/(S) for un
satisfiable clause sets S is the minimum length of any resolution proof 
of the empty clause (i.e, false) from S. The proof depth complexity 
measure Mpd(S) of S is the minimum depth of any resolution proof of 
the empty clause from S. 

We note that although the depth measure is inference based, it can 
be viewed in a non-inference based manner, as suggested by [PZ]. It 
is equivalent to the depth of the minimal closed binary semantic tree 
over S (for the definition of this, see for example [CL73]). 

In general, the proof complexity measures that are not inference 
based are instance based, that is, they are based on Herbrand's theorem. 
Herbrand's theorem says that if a set S of clauses is unsatisfiable, then 
there is an unsatisfiable set T of ground instances of the clauses in S. 
We call such a set T a Herbrand set for S. We obtain instance based 
complexity measures uniformly in the following way: 
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Definition 2.2.8 We use lSI to refer to the number of elements in a 
set S, that is, its cardinality. 

Theorem 2.2.9 Suppose that f is a computable (i.e., recursive) func
tion of ground clause sets, and 9 is a computable function such that for 
all clause sets S and all Herbrand sets T for S, there is a a Herbrand set 
T' for S such that f(T) = f(T') and slin(T') :::; g(f(T), S). Let F(S) 
for unsatisfiable clause sets S be the minimum value of f(T) such that 
T is a Herbrand set for S. Then F is a theorem proving complexity 
measure. 

Proof. We first show that, given n, it is possible to test if S has 
a Herbrand set T such that f(T) = n. For this, it is only necessary 
to examine all Herbrand sets T' such that slin(T') :::; g(f(T), S), that 
is, slin(T') :::; g(n, S). Since 9 is recursive, this is decidable. It follows 
that we can find the minimal n such that S has a Herbrand set T with 
f(T) = n by enumerating n and applying the preceding procedure. 
Such a minimal n is by definition F(S). This procedure runs in time 
recursive in F(S), since 9 is recursive and one can test unsatisfiability 
in recursive (exponential) time. Therefore, one can prove theorems in 
time recursive in F(S). Similarly, testing if F(S) < n is decidable, 
since we can compute F(S) if S is unsatisfiable. 

o 

We will need to derive some properties of the subterm size measure 
ssub. 

Theorem 2.2.10 Suppose Land M are unifiable atoms and 8 is a 
most general unifier of Land M. Then sSUb({L8,M8}) :::; sSUb(L) + 
sSUb(M). 

Proof. By considering the working of a unification algorithm, we can 
express 8 as a composition of substitutions a1a2··· an, where each ai 

binds one variable Xi in {La1 a2 ... ai-1, Mal a2 ... ai-i} to a term 
ti in {La1a2 ... ai-1, Ma1a2 ... ai-i} not containing Xi. Let 8i be 
a1 a2 ... ai. We consider the effect that ai has on the subterm size 
of {L8i- 1 , M8i-d, that is, what is the subterm size of {L8i , M8;}. 
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Each subterm u of {L8i- l , M8i-d is replaced by uni, so the number 
of subterms is not thereby increased. Also, the subterms in ti are 
added to the set of subterms of {L8i- l , M8i-d. However, since ti 
is a subterm of {L8i- l , M8i-d, and ti does not contain x, ti and 
all its subterms still occur in {L8i,M8d. Thus sSUb({L8i,M8i}) ~ 
ssub( {L8i - l , M8i-d). 

o 

Corollary 2.2.11 Suppose C is a clause and D is a factor of C. Then 
ssub(lJ) ~ ssub(C). 

Proof. A factoring operation is a unification between literals of C. 
Reasoning as in the theorem, the result follows. 

o 

Corollary 2.2.12 Suppose lJ is a resolvent ofCl and C2. Then ssub(lJ) ~ 
ssub( Cd + ssub( C2). 

Proof. A resolution can be expressed as a sequence of factorings 
followed by a unification of two literals. Assuming that Cl and C2 

have no common variables, we can regard a resolution of Cl and C2 

as a sequence of factorings on Cl U C2 followed by a unification of 
complementary literals and the deletion of two literals. The result then 
follows by the preceding corollary and the fact that ssub( C l U C2) < 
ssub(Cl ) + ssub(C2). 

o 

Lemma 2.2.13 1ft is a term, then slin(t) ~ 1 + r + r2 + ... + rsSUb(t), 
where r is the maximum arity of any function symbol in t. 

Proof. Let d be the depth of t, and let r be the maximum arity of any 
function symbol in t. Then ssub(t) ~ d, since there has to be at least 
one distinct subterm of each depth, and slin (t) ~ 1 + r + r2 + ... + rd , 

adding the numbers of symbols at different depths. Therefore slin (t) ~ 
1 + r + r2 + ... + rsSUb(t). 

o 
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Lemma 2.2.14 If S is a set of clauses, then slin(s) ::; 5(1 + r + r2 + 
.. '+rsSUb(S)), where r is the maximum arity of any function or predicate 
in S. Note that r ::; slin(s). 

Proof. For literals L, slin( L) ::; 1 + r + r2 + ... + rssub(L) as for 
terms, treating a predicate symbol as a function symbol. For clauses 
C, slin( {Ll' L2,"', Ln}) ::; (n + 1) + 'Eislin(Li), since we only have to 
add commas and parentheses to express a clause as a set of literals. 
For sets S of clauses, slin( {C1 , C2, ... , Cn}) ::; (n + 1) + 'Eislin( Ci) for 
the same reason. By simple reasoning, one can then show that if S is a 
set of clauses, slin(s) ::; 5(1 + r + r2 + ... + rsSUb(S)) in general. This is 
because the worst case is when there is only one very large literal, that 
is, S = {{ L}} for some literal L. 

D 

Definition 2.2.15 Suppose S is a set of clauses and S' is a set of 
copies of the clauses in S with variables renamed in each copy. We call 
S' an amplification of S. 

Definition 2.2.16 We define the duplication measure Mdup(S) for S 
to be the minimal number of clauses ITI in any Herbrand set T for S. 
We define M~up(S) to be the minimum of ssub(S') over all amplifica
tions S' of S such that there exists a 8 such that S'8 is ground and 
unsatisfiable. 

Theorem 2.2.17 If set S of clauses is unsatisfiable and T is a Her
brand set for S, then there is an amplification S' of S and a substitution 
8 such that T = S'8. (This essentially means that S' has as many 
copies of each clause in S as there are instances of it in T.) 

Proof. A simple consequence of Herbrand's theorem. 
D 

Lemma 2.2.18 Suppose S' is an amplification of Sand 8 1 and 8 2 

are substitutions such that S'8 1 and S'82 are ground. Suppose for all 
literals Ll and L2 in clauses of S', L 18 1 and L2 8 1 are identical (com
plementary) iff L 18 2 and L28 2 are identical (complementary). Then 
S'8 1 is unsatisfiable iff S'82 is unsatisfiable. 
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Proof. Under these assumptions, one can show how a model for S'8 1 

may be obtained from a model for S'82 and vice versa. 
o 

Theorem 2.2.19 Suppose that S is an unsatisfiable set of clauses and 
T is a Herbrand set for S. Then there is a Herbrand set T' for S such 
that sSUb(T') ~ ITlssub(S). Furthermore, if S' is an amplification of 
Sand 8 is a substitution such that T = S'8, then such a T' may be 
obtained by a number of unifications on S' that is linear in the number 
of literals in S', followed by a replacement of variables by a constant 
symbol. 

Proof. Let, be a most general substitution such that for two liter
als L1 and L2 in S', L1/ and L2/ are identical (or complementary) iff 
the corresponding literals L 18 and L28 in T are identical (or comple
mentary). Such a , may be obtained by a sequence of unifications on 
atoms of S', at most m - 1 unifications in all, where m is the number of 
literals in S'. Each such unification does not increase the subterm size 
of S', as we showed in [PSK95] and above in theorem 2.2.10. Therefore 
ssub(S',) ~ ssub(S') ~ ITlssub(S). Also, let " be ,0 where 0 replaces 
all remaining variables by a fixed constant symbol. Then by lemma 
2.2.18, S',' is unsatisfiable. Therefore S',' is a Herbrand set for S, and 
ssub(S',') = ssub(S',). 

o 

The preceding theorem suggests that it would be reasonable to de
fine the duplication measure to be ssub(S'), that is, M~up, rather than 

ITI· 

Theorem 2.2.20 The duplication measure is a theorem proving com
plexity measure. 

Proof. This proof is not obvious, which makes this measure somewhat 
interesting. We need to show that a 9 as in theorem 2.2.9 exists. The 
idea is that if we know there is a Herbrand set having only n clauses, 
then we can bound the linear size of the clauses in some Herbrand 
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set recursively in nand S. Suppose S is a set of clauses and T is 
a Herbrand set for S with n clauses. By theorem 2.2.19, there is a 
Herbrand set T' for S such that sSUb(T') :::; ITlssub(S). We need to 
show that there is a computable 9 such that slin(T') :::; g(ITI, S). By 
lemma 2.2.13 above, it suffices to show that there is a recursive g' such 
that sSUb(T') :::; g'(ITI, S). However, this follows from the fact that 
sSUb(T') :::; ITlssub(S), since we can let g'(n, S) be nssub(S). 

o 

We note that there are a number of other reasonable ways one could 
define this duplication complexity measure. One could also define it 
based on the maximum number of copies of anyone clause in S', or 
(as noted) Mdup . Each of these two additional measures would have 
slightly different implications for theorem proving complexity. 

One reason we feel that the duplication measure is interesting (apart 
from the fact that it is not inference based) is the fact that it incorpo
rates unification. By this we mean that the sizes of the instances in a 
Herbrand set can be much larger than the sizes of the clauses in S, but 
the duplication measure Mdup only counts the number of clauses in a 
Herbrand set. Most theorem provers generate the extra term structure 
in a Herbrand set using unification. 

Definition 2.2.21 The linear complexity measure Mlin(S) of a set S 
of clauses is the minimum, over all Herbrand sets T for S, of the max
imum linear size of a literal in T. The subterm complexity measure 
Msub(S) of a set S of clauses is the minimum, over all Herbrand sets 
T for S, of the maximum subterm size of a literal in T. 

It is straightforward to show that these are theorem proving com
plexity measures. Note that we could also define these based on the 
linear or subterm size of the largest clause in T, or the linear or sub
term size of T itself. This gives us four more plausible theorem proving 
complexity measures. 

Definition 2.2.22 The time complexity of a theorem proving strategy 
with respect to a complexity measure F is the time taken by the strategy 
on an input S, as a function of F(S). The space complexity of a 
theorem proving strategy with respect to a complexity measure F is the 
space used, as a function of F(S). 
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As noted above, the time (or space) taken by a prover to find a 
proof is another complexity measure (if the prover is complete), and 
so in this definition we are really considering a relationship between 
complexity measures. 

Definition 2.2.23 The measure estimation problem for a complexity 
measure F is the set of pairs (S, n), where n is in unary, such that 
F(S) ~ n. 

We can ask what is the time or space complexity of recognizing this 
set. This is a purely complexity theoretic problem, which in some sense 
tells us how hard it is to prove theorems with respect to this complexity 
measure. 

Definition 2.2.24 The inherent (time or space) complexity of a com
plexity measure F is the complexity of deciding the measure estimation 
problem for F. 

Definition 2.2.25 Suppose that f and 9 are functions of clause sets 
S. We say that the function g(S) is (upper bounded by a) single expo
nential in f(S) (or 9 is exponential with respect to f) if g(S) is upper 
bounded by a function of the form 

c * 2p(s'm(s),j(S)) , 

where p is a polynomial in two variables, and we write the set of such 
functions as exp(f). We say that g(S) is lower bounded by a single 
exponential in f(S) if g(S) is lower bounded by some function of the 
form 

or 

for some c, d, E > O. We say a function g(S) is (upper bounded by a) 
double exponential in f( S) (or 9 is double exponential with respect to 
f) if g( S) is upper bounded by a function of the form 
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with similar assumptions on p. We write this set of functions as exp2(J) 
or dexp(J). We say that g(8) is lower bounded by a double exponential 
in f(8) if g(8) is lower bounded by some function of the form 

or 

for some c, d, f > O. We define triple, quadruple, and quintuple expo
nential similarly. The idea is that polynomials in slin(8) for a clause 
set 8 may be regarded as constants, with respect to the polynomial p. 

We now clarify to some extent some relationships between the in
herent complexity of a complexity measure and the complexity of a 
particular theorem prover with respect to a measure: 

Theorem 2.2.26 Suppose a prover finds proofs from sets S of clauses 
in time t(F(S)), where F is a theorem proving complexity measure. If 
F is inference-based and the prover finds proofs that are minimal with 
respect to F and F has inherent time complexity bounded below by t', 
that is, n( t'), then there exists a constant c > 0 such that the prover 
requires n(t'(ISI + F(8)) - c * F(8)) time to find proofs from S. 

Proof. Suppose solving the measure estimation problem for (S, n) 
takes time at least t'(ISI+n), that is, n(ISI+n) time. Now, we can solve 
the measure estimation problem for (8, n) by calling the prover on 8, 
computing F(8), and testing if F(S) ::; n. This takes timet(F(8))+en 
(en for the comparison). Thus t(F(S)) + en is n(t'(ISI + n)). Letting 
n be F(S) and rearranging the inequality, we obtain that t(F(8)) is 
n(t'(181 + F(8)) - e * F(S)). 

o 

For example, if F is the proof depth measure and a prover does 
breadth-first search, it will find a minimal depth proof and therefore the 
prover can calculate F. Thus we can lower bound the time for depth
bounded (breadth-first) theorem proving using the inherent complexity 
of the proof depth complexity measure. 
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Theorem 2.2.27 If the measure estimation problem for F is solvable 
in time t, then there is a theorem prover with time complexity t' relative 
to F, where t'(F(S)) = E~~)t(lSI + i). 

Proof. We can recognize in time t(ISI +n) if F(S) ~ n, where n is in 
unary. We can do theorem proving by testing if F(S) ~ 1, F(S) ~ 2, 
. ... If any of these tests succeed, we know that S is unsatisfiable. We 
know that the test will succeed when i becomes F(S). The total time 
taken is then t(ISI + 1) + ... + t(ISI + F(S)), since t is a function of the 
length of the input. 

o 
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By the way, my 
prover is especially 
good on four literal 

I wonder why there 
are so many four 

literal clauses in 

these problems. 
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2.3 Inherent complexities 

We now consider the inherent complexities of various complexity mea
sures. Some previous studies of the complexities of various resource
bounded theorem proving problems [Pla84, Gou94] are relevant here. 
We mention some of these results, and state their relevance at the end 
of this section. 

Theorem 2.3.1 The problem of determining whether a depth d binary 
resolution proof exists from a set S of first-order clauses is NEXPTIME 
complete, where d is represented in unary [Pla84}. 

Definition 2.3.2 A Horn clause is a clause containing at most one 
positive literal. Thus {--,P, --'Q, R} is a Horn clause. A Horn set is a 
set of Horn clauses. 

Theorem 2.3.3 The problem of determining whether a binary resolu
tion proof with length n or less exists from a set S of propositional Horn 
clauses is NP-complete, where n is represented in unary [Pla84J. 

From theorem 2.3.3 we derive a corresponding NP-completeness re
sult for first-order logic. 

Theorem 2.3.4 The problem of determining whether a binary resolu
tion proof with length n or less and maximum clause size c or less exists 
from a set S of first-order clauses is NP-complete, where nand care 
represented in unary. 

Proof. For propositional problems, we can choose c to be the length of 
the input, and we know that no clause longer than this will be generated 
by resolution. The NP-hardness result follows then from theorem 2.3.3. 
For first-order clause sets, we can show that this problem is still in NP, 
since we can nondeterministically generate n resolvents, each of which 
has size c or less. Using a polynomial time unification algorithm, the 
problem is solvable in nondeterministic polynomial time. 

Note that we need to include the maximum clause size as an input, 
otherwise we cannot obtain the NP membership of the problem. This 
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is due to the fact that resolution for first-order logic is not polynomially 
transparent [Let93], that is, clauses of size exponential in n are possibly 
needed for n step resolution proofs. 

o 

Theorem 2.3.5 The problem of determining whether a set S of first
order clauses has a Herbrand set T with ITI = d is ~~ complete, where 
d is represented in unary [Gou94J. 

Theorem 2.3.6 The satisfiability problem for Schonfinkel-Bernays form 
formulas is NEXPTIME complete [Pla84}. 

Theorem 2.3.7 The problem of determining whether a set S of first
order clauses has a Herbrand set T such that every clause D in T has 
linear size slin(D) ~ n is co-NEXPTIME hard, where n is represented 
zn unary. 

Proof. This is a consequence of theorem 2.3.6 by observing that 
formulas in Schonfinkel-Bernays form do not have function symbols, 
and therefore the linear size of D for such clause sets is bounded by the 
linear size of clauses in S. 

o 

We now relate the completeness results of resource-bounded theo
rem proving to our study of complexity measures and complexity anal
ysis. We draw a correspondence between theorem 2.3.1 and complexity 
analysis with respect to the proof depth measure. A theorem proving 
strategy is a minimal strategy with respect to proof depth if the depth 
of its proof always equals the proof depth measure, namely, the depth 
of the minimal binary resolution proof. To verify a proof depth mea
sure of a set of clauses S, we can use a minimal strategy with respect 
to proof depth, and compute the depth of its proof. Theorem 2.3.1 
states that the problem of verifying the proof depth measure of a set 
of clauses is NEXPTIME complete. Assuming that NP-hard prob
lems require exponential time, all minimal strategies with respect to 
proof depth are likely to have no less than double exponential com
plexity with respect to the depth measure. A similar argument can be 
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made for the other three complexity measures. Minimal strategies with 
respect to the proof length measure, duplication measure, and linear 
size measure are likely to have no less than exponential, exponential, 
and double exponential complexity with respect to the corresponding 
complexity measures. Note that the requirement of minimal strategy 
is needed. For example, to determine the proof length measure for 
propositional Horn clauses is NP-complete, but hyper-resolution solves 
the propositional Horn satisfiability problem in polynomial time. How
ever, hyper-resolution is not a minimal strategy with respect to proof 
length. Note that the proof length measure is defined based on binary 
resolution. 

These results give bounds on what is the best possible, at least for a 
minimal strategy. We now analyze the complexity of various strategies 
with respect to various measures and can compare them to the above 
bounds to get an idea of how close to optimal they are. Independent 
of that, we can compare the strategies with each other to get another 
measure of how good they are. 

2.4 Inference Based Measures 

First we give some interesting sets of clauses that cause various theo
rem proving strategies to exhibit various kinds of exponential behavior. 
These will be used to give lower bound on their complexity with respect 
to various measures. The upper bounds will be given based on general 
arguments. 

Definition 2.4.1 Clause C is a hyper-resolvent of clauses B l , •.• , Bk 
if C is positive and may be obtained by a sequence of positive resolutions 
from Bt, ... ,Bk in which no earlier resolvent is positive. Thus {R, T} 
is a hyper-resolvent of the clauses {P, T}, {Q}, and {..,P,..,Q, R}. A 
hyper-resolution proof from S is a sequence Ct, C2 , ••• , Cn of clauses 
in which each Ci is either in S or is a hyper-resolvent of earlier clauses 
in the sequence. Clause C is a UR resolvent of clauses B l , ... , Bk if 
C is a unit and may be obtained by a sequence of unit resolutions from 
B l , ... , Bk in which no earlier resolvent is a unit. Thus {R} is a UR
resolvent of the clauses {P}, {Q}, and {..,P, ..,Q, R}. A UR-resolution 
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proof from S is a sequence C1, C2 , ••• , Cn of clauses in which each Cj 
is either in S or is a UR-resolvent of earlier clauses in the sequence. 
A set S of clauses is unit-resolvable or UR-resolvable if it has a UR
resolution refutation. 

Definition 2.4.2 The clause set Sfg consists of the two clauses {-,P(x), 
P(J(x))} and {-'P(x), P(g(x))}. 

Theorem 2.4.3 It is possible to generate 22n clauses whose literals are 
of linear size 2n + 2 using depth n binary resolution proofs from Sfg. 

Proof. By induction. For n = 0 we observe that Sfg has two 
clauses whose literals are of size 3. For n = 1 we obtain the fol
lowing clauses: {-,P(x), P(J(J(x)))}, {-,P(x), P(J(g(x)))}, {-,P(x), 
P(g(J(x)))}, {-'P(x), P(g(g(x)))}. This gives four clauses of literal 
size 4. In general, the number of function symbols at depth n is 2n , so 
the literal size is 2 n + 2 and the number of clauses possible is 22n. Ac
tually, even more clauses are derivable by resolving clauses at depths i 
and j, for i ~ j, but the given bounds are asymptotically still optimal. 

o 

Definition 2.4.4 The clause setTfg consists of the three clauses {-,T(x,y), 
-,T(y,z), T(x,z)}, {T(x,f(x))}, and {T(x,g(x))}. 

Theorem 2.4.5 It is possible to generate 22n unit clauses having liter
als with 2n function symbols using depth n hyper-resolution proofs from 

Tfg · 

Proof. By induction. For n = 0 we have two unit clauses, each with 
one function symbol. With one hyper-resolution step, we can generate 
the four units {T(x,f(J(x)))}, {T(x,f(g(x)))}, {T(x,g(J(x)))}, and 
{T(x,g(g(x)))}. With depth two proofs, we generate units having four 
function symbols, sixteen in all. In general, at depth n we generate all 
possible units having 2n function symbols, 22n in all. As before, even 
more clauses are derivable by resolving clauses at depths i and j, for 
i ~ j, but the stated bounds are asymptotically still optimal. 

o 
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Similar bounds are derivable for PI-deduction (positive resolution), 
since a hyper-resolution corresponds to two PI-deductions. We now 
consider how one may derive many clauses having large numbers of 
small literals, rather than a few large literals. 

Definition 2.4.6 Let Ttrans be the clause set consisting of the eight 
clauses {-,Ti(x,y), -,TJ(y,z), Tk(x,zn for i,j,k in {1,2}. 

Theorem 2.4.7 One can derive 22n- 1 +2 clauses having 2n - 1 + 2 literals 

with binary resolution proofs of depth n from Ttrans. 

Proof. By induction. For n = 1, we derive eight clauses with three 
literals. For length two, we resolve two clauses having three literals and 
obtain the following four-literal clauses: 

{-,Ti(x, y), -,Tj(y, z), -,Tk(z, w), T/(x, wn. 
For length three, we can resolve these clauses to obtain the following 

64 six-literal clauses: 
{-,Ti(x, y), -,Tj(y, z), -,Tk(Z, w), -,Tl(w, v), -,Tm(v, u), Tn(x, un 
In general, for length n + 1, we resolve two clauses having 2n - 1 + 2 

literals and obtain a clause having 2n + 2 literals. (Two of the literals 
are deleted by the resolution operation.) 

o 

Theorem 2.4.8 It is possible to derive an exponential number of one
literal clauses from the input set 5 f 9 U {P( a n using length n PI deduc
tions. 

Proof. A simple induction. In a length n proof, one can derive 
clauses having a linear number of function symbols, of which there are 
an exponential number (that is, exponential in n). 

o 

Theorem 2.4.9 If there is a PI deduction proof of length n from 5, 
then there is a hyper-resolution proof of length between nj(slin(5)) and 
n. If there is a hyper-resolution proof of length n, then there is a PI 
deduction proof of length between nand nslin(5). 
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Proof. Each hyper-resolution step corresponds to k Pi steps, where k 
is bounded by the maximum number of negative literals in a clause in 
S, and k is in turn bounded by slin(s) (the length of S in characters). 
Also, the number of negative literals in a clause never increases during 
Pi deduction. 

o 

It will turn out that Pi deduction is simpler to analyze than hyper
resolution. However, using the above theorem, many results about 
Pi-deduction apply immediately to hyper-resolution also, especially 
asymptotic complexity results. This equivalence between the two will 
often be taken for granted. We now introduce a set of clauses that 
encodes a binary counter; this clause set will be useful in the following 
discussion. 

Definition 2.4.10 The binary counter clause set Bn consists of the 
following clauses: 

{P(Xi' X 2 , • •• ,Xn - i , 1), -'P(Xi' X 2 , ••• ,Xn - i , On 
{P(Xi' X 2 , ••• , X n - 2 , 1,0), -'p(Xi , X 2 , ••• , X n - 2 , 0, In 

{p(l, 0, 0, ... ,0), -'p(O, 1, 1, ... ,In 
{p(O,O,o, ... ,O)} 
{ -,p( 1, 1, 1, ... , I)} 

Theorem 2.4.11 Any binary resolution refutation for the binary counter 
Bn has a proof depth (and length) at least n + 1. Also, there is a binary 
resolution proof of depth 2n and length 2n + 1. 

Proof. We first consider Herbrand sets T for Bn. Such a Herbrand 
set T must have 2n - 1 clauses in it of the form 

where the ai are either ° or 1. We can show that all these ground 
clauses are needed by the fact that if any of them are missing we can 
construct a model of the remaining ground instances of Bn over its 
Herbrand universe. We also have two unit clauses in the proof, namely, 
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{p(O, 0, 0, ... ,O)} and {-,p(l, 1, 1, ... ,I)}, for 2n + 1 ground clauses in 
all. 

Now, any binary resolution prooffrom T has to have depth n + 1 in 
order to include all of these 2n + 1 ground clauses, since a binary tree 
of depth n can only have 2n leaves. Lifting to the first-order case, any 
binary resolution proof from En also has to have depth at least n + 1. 
This proof therefore has length at least n + 2. 

To obtain a proof of depth 2n, we successively derive the clauses of 
the form 

for i = n, n -1, ... ,1. This can be done in two resolutions from the 
clauses 

{-,p(X1 , X 2 , ••• , Xi+l, 0, 0, ... , 0),p(X1 , X 2 , ••• , X j+l , 1, 1, ... , I)} 

and 

{-'P(X1,X2 , ••• ,Xj,O, 1, ... , 1),P(X1 ,X2 , ••• ,Xj, 1,0, ... ,O)}, 

the latter of which is in En. Therefore the clause 

{-,p(O, 0, ... , O),p(l, 1, ... ,I)} 

can be derived at depth 2n - 2, and a contradiction can be found 
at depth 2n. We observe that this proof also has length 2n + 1. 

o 

Theorem 2.4.12 Any PI deduction refutation from En has depth at 
least 2n and length at least 2n + 1. Also} there is a proof at depth 2n 
with length 2n + 1. 

Proof. By examining the clauses that may be generated. One starts 
with p(O, 0, 0, ... ,0) and generates the binary sequences in order, with 
one more resolution at the end to generate the empty clause. This is 
2n resolution steps in all, for a length of 2n + 1 and a depth of 2n. No 
other steps are possible, so no shorter proof exists. 

o 
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Theorem 2.4.13 The number of atoms over k predicate / function / 
constant symbols, and having subterm size n, is bounded by (2n + k)nr, 
where r is the maximum arity of any predicate or function symbol. We 
are assuming the variables are chosen from the set Xl, X2, ... , Xn. 

Proof. The subterms of an atom can be given integer labels by 
their first occurrence in the atom, reading left to right. Thus for 
P(f(g(a, b))), the term f(g(a, b)) would have index 1, the term g(a, b) 
would have index 2, the term a would have 3, and the term b would 
have index 4. Later occurrences of a term can then be replaced by 
the integer index, so we can represent P(g(f(a), f(a))) as P(g(f(a), 2)) 
where the 2 indicates an occurrence of the term f( a) having index 2. 
The number of occurrences of predicate, function, and constant, sym
bols in this representation is then the subterm size of the atom. If the 
maximum arity is r, then the number of occurrences of function sym
bols and integer indices is at most nr. Each one of these nr positions 
can be either a function symbol, a constant, or an integer between 1 
and n, n+k possibilities in all. Thus there are at most (n+k)nr ground 
terms of subterm size n. If one also considers variables, there can be 
at most n variables since each variable is a term, and we get at most 
(2n + k)nr terms. These bounds are all of the form cn1og(n), and are 
therefore still single exponential. 

o 

Corollary 2.4.14 The number of clauses over k function/constant and 
predicate symbols, and having subterm size n, is bounded by (2n + k + 
1 )2nr, where r is the maximum of 2 and the arities of all function and 
predicate symbols. We are assuming as before that variables are chosen 
from the set Xl, X2, ... , xn. We are also only counting the subterms ap
pearing in the literals, as well as the literals themselves, in the sub term 
size. The number of sets of clauses over k function/constant and pred
icate symbols, and having subterm size n, is bounded by (2n + k + 2)4nr, 
under the same assumptions. 

Proof. We can consider a clause {Ll' L2, ... , Lp} as having a top-level 
binary "or" connective, that is, or(Ll , or(L2' ... , or(Ln- l , Ln) ... )) and 
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we can consider the predicate symbols as function symbols as before. 
We can assume that all literals are distinct, since a clause is a set. 
Therefore, the number of distinct subterms in the literals is at least 
p. There are at most p - 1 extra subterms added by the binary "or" 
connective, and p - 1 < n. Thus the clause may have 2nr symbols, and 
each symbol can be one of the 2n + k symbols for an atom, or the "or" 
connective. This gives (2n + k + 1 )2nr altogether. For sets S of clauses, 
we can add an "and" connective between the clauses. This can double 
the length again, and adds one more symbol. Therefore, we obtain the 
stated bound of (2n + k + 2)4nr clauses having subterm size n. 

o 

In general, we need ways of describing various search strategies for 
a given theorem proving strategy. 

Definition 2.4.15 We say that a search strategy is depth-bounded if 
it generates proofs in order of increasing depth, length-bounded if it 
generates proofs in order of increasing length, subterm-size bounded if 
it generates clauses in order of increasing subterm size, and linear-size 
bounded if it generates clauses in order of increasing linear size. To 
clarify this further, a subterm-size (linear-size) bounded search strategy 
will do the following: For all i from 1 to infinity until a proof is found, 
generate all proofs in which all clauses have subterm size (linear size) 
bounded by i. 

2.4.1 Resolution Based Methods 

Theorem 2.4.16 Depth-bounded binary resolution has a complexity 
that is at worst double exponential with respect to the proof depth com
plexity measure Mpd. 

Proof. We note that if D is a resolvent of C1 and C2 , then IDI ~ 
ICll + IC2 1 where ICI is the number of literals in a clause C. Therefore 
the number of literals in a clause can at worst double in each round of 
resolution. Therefore in a depth n binary resolution proof, the number 
of literals in clauses can be at most exponential in n. This implies 
at most double exponentially many resolvents between any two clauses 
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(with factoring). Furthermore, we note by corollary 2.2.12 that if D is a 
resolvent of CI and C2 , with or without factoring, then the subterm size 
of D is at most the sum of the subterm sizes of C1 and C2 • Therefore 
the subterm sizes of clauses occurring in depth n proofs is at worst 
exponential in n. By corollary 2.4.14 above, this means that there are 
only double exponentially many clauses that can occur in such proofs. 
Thus the total search can be done in double exponential time. 

o 

Theorem 2.4.17 Depth-bounded binary resolution has a search com
plexity that is double exponential with respect to the proof depth com
plexity measure Mpd. 

Proof. The upper bound was just given. We now give a lower bound. 
Consider the set of clauses Sig U En. We showed in theorem 2.4.11 that 
En requires a depth n + 1 binary resolution proof to find a refutation, 
and there is a refutation at depth 2n. Doing depth-bounded (breadth
first) resolution on the clause set Sig will generate a number of clauses 
that is double exponential in n, as shown in theorem 2.4.3. 

o 

Theorem 2.4.18 Length bounded binary resolution (without factor
ing) has single exponential complexity with respect to the proof length 
complexity measure Mp/, if resolution and factoring are separated. 

Proof. By resolution without factoring we mean that resolution and 
factoring are considered as separate operations in the proof. We want 
to consider the total number of proofs of length n and show that this 
is exponential in n. We also want to show that we can generate each 
such proof in time exponential in n. In addition, we need to give a 
corresponding lower bound. 

Now, suppose that the input clause set S has a maximum of c literals 
per clause. We want to count the number of possible resolutions at step 
i when we have already generated the clauses C1, C2 , • •• , Ci-I. We 
have to choose two clauses to resolve, which can be one of the clauses 
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in the proof or a clause in S. There are lSI + i-I possibilities at 
most. Then we have to choose two literals to resolve. The number of 
literals can at most double, so the number in any clause is bounded 
by 2i - I c. Therefore there are at most (lSI + i - 1)2 * (2i- I c)2 possible 
resolvents, bounded by (lSI + n)2 * (2nC)2. We must resolve n times, 
so this must be raised to the nth power, giving (lSI + n)2n * (2nc)2n, or 
(lSI + n )2n * (4n2 )c2n . This has a quadratic in the exponent, but is still 
single exponential. 

We also need to show that each resolution can be done in exponential 
time. The subterm size of a resolvent can at most double at each 
resolution, and so it is at worst exponential in n. Factoring does not 
increase the subterm size. Therefore each resolution can be done in 
exponential time, since resolution may be done in time polynomial in 
the subterm size. 

For the lower bound, we can take the clause set Sfg U {P(a)} U Bn
The shortest proof from Bn has linear length, as we showed in theorem 
2.4.11. Also, from Sfg U {P(a)}, one can derive an exponential number 
of proofs of linear length, as we showed in theorem 2.4.8. 

o 

We note that this result does not appear to hold if we allow many 
factoring operations to be included in a single resolution operation. 
However, even in that case, if we consider the sum of the sizes of the 
clauses in the proof instead of the length n of the proof, we can still 
obtain a complexity exponential in the proof length. 

Lemma 2.4.19 Suppose that S is a set of clauses with a depth n bi
nary resolution refutation. Then there is a depth 2n - 1 PI deduction 
refutation from S (with factoring) and a length ISI(2n - 1) PI deduc
tion refutation (with factoring). Also, on the ground level, clauses of 
size at most n are needed. If resolution and factoring are considered 
as separate operations, then there is a depth n(2n - 1) + (m - 1) PI 
refutation and a length nlSI(2n - 1) + M -lSI PI refutation, where m 
is the maximum number of literals in a clause of Sand M is the sum 
of the number of literals in the clauses of S. All of these bounds are 
single exponential in n. 
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Proof. We show this for propositional logic, and then lift to first
order logic. For propositional logic, the case n = 0 is immediate. Now, 
we show that from any set 5' of propositional clauses having a depth k 
binary resolution proof, k > 0, there is a PI-deduction proof of depth 
2k - 1. For this, we consider the last predicate symbol P that gets 
resolved away to produce the empty clause. Then there must be a 
depth k - 1 binary resolution proof of P (with clauses of size at most 
k) and a depth k - 1 binary resolution proof of ...,p with clauses of size 
at most k. From the first proof, we can remove occurrences of P from 
5', and then we obtain a depth k - 1 binary resolution refutation from 
this clause set with clauses of size at most k - 1. By induction, we 
get a PI proof of the empty clause of depth 2k- 1 - 1 from S' with P 
occurrences removed and with clauses of size at most k - 1. Putting P 
back in, we get a PI proof of depth 2k- 1 - 1 of P from 5' with clauses 
of size at most k. Resolving this P with 5', we remove all occurrences 
of ...,P. This takes one more depth of proof. Then there is a depth k - 1 
proof of the empty clause from 5' with all ...,p removed. By induction, 
this can be made into a depth 2k- 1 -1 PI-deduction proof with clauses 
of size at most k - 1. The total depth is then 2k- 1 - 1 + 1 + 2k- 1 - 1, 
or, 2k - 1. This completes the induction. 

Lifting this result to first-order logic, we obtain that there is a depth 
2n - 1 PI deduction proof from S. Also, since each clause in the lifted 
proof corresponds to a ground instance with at most n literals, it turns 
out that each resolvent corresponds to a ground instance with at most 
n - 1 literals, since one literal was removed. Therefore we can perform 
at most n - 1 factoring operations after each resolution to insure that 
the non-ground clauses have the same number of literals as their ground 
instances. Thus for resolution and factoring as separate operations, the 
depth may be n(2n - 1). We may also have to factor the input clauses 
so that they have the same number of literals as their ground instances. 
This may require a maximum depth of m - 1 factorings, where m is 
the maximum number of literals of a clause in 5. Thus the total depth 
may be n(2n - 1) + (m - 1). 

To get the length ISI(2n - 1) result, we notice that the step of 
resolving P with S' will require at most lSI resolutions in the lifted 
clause set. This step has to be done once for each resolution in the depth 
n proof. Since there will be at most 2n -1 resolutions in a depth n proof, 
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the result follows. If factoring and resolution are separate operations, 
then we may need n-1 factoring operations after each resolution, giving 
a length of at most nlSI(2n - 1). Considering factorings of the input 
clauses as before, this can be at most nlSI(2n -1) + M -lSI, where M 
is the sum of the number of literals in the clauses of S. 

o 

Theorem 2.4.20 Depth-bounded hyper-resolution has triple exponen
tial complexity with respect to the proof depth complexity measure M pd ' 

Proof. Consider the clause set Bn U Tfg • To refute Bn, hyper
resolution needs an exponential number (2n) of steps. But hyper
resolution from the clause set Tfg can generate a triple exponential 
number of clauses with proofs of depth 2n, by theorem 2.4.5. This 
gives the lower bound. 

Now, suppose that S is a set of clauses having a depth n binary 
resolution proof. By lemma 2.4.19, S has an exponential depth PI -

deduction proof. Now, by general arguments, in exponential depth, 
the subterm size and number of literals of the clauses generated can 
be at most double exponential, and there can then be at most a triple 
exponential number of clauses generated, by corollary 2.4.14. This 
makes the total work at most triple exponential. 

o 

Theorem 2.4.21 Length-bounded PI-deduction has double exponential 
complexity with respect to the proof length complexity measure Mpl , if 
resolution and factoring are considered as separate operations. 

Proof. To get the upper bound, if there is a length n binary resolution 
proof, then the proof has depth at most n. Therefore by lemma 2.4.19, 
there is a PI deduction proof of length at most single exponential in 
n. Then, reasoning as for binary resolution with respect to the proof 
length measure, we obtain a double exponential upper bound for the 
complexity. That is, the subterm size measure and number of literals 
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can at most double at each resolution, so they have a double exponen
tial bound. Therefore we get a possibly double exponential number of 
choices at each step of a resolution to perform, and in a single expo
nential number of choices, this results altogether in at most a double 
exponential complexity. 

For the lower bound, consider the clause set En U Big U {P(a)}. 
En is a binary counter, which PI deduction needs exponentially many 
resolutions to refute, but binary resolution requires only linear depth. 
Then the clauses Big U {P(a)} give a double exponential number of 
single literal resolvents of exponential length using PI deduction, by 
theorem 2.4.8. 

D 

The following result is interesting because it has to do with the 
complexity of a length-bounded strategy with respect to a proof depth 
measure: 

Theorem 2.4.22 Length-bounded binary resolution has double expo
nential complexity with respect to the proof depth complexity measure 
Mpd, if resolution and factoring are separated. 

Proof. Note that if there is a depth n binary resolution proof, 
then there is an exponential length binary resolution proof, since each 
clause has at most two parents. The number of proofs of exponential 
length is at most double exponential. For the lower bound, consider 
the clause set Pn U Big, where Pn is the pigeonhole problem of size n. 
This is a propositional problem for which Haken [Hak85] showed that 
any resolution proof has exponential length. Since any propositional 
problem has a linear depth proof, Pn does too. However, it requires 
an exponential length proof, and there are double exponentially many 
clauses that may be generated from Big in exponential length. 

D 

2.4.2 Model Elimination 

We now consider the complexity of model elimination [Lov69] with 
respect to the proof length and proof depth complexity measures. 
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Theorem 2.4.23 With respect to the proof depth complexity measure 
MpdJ the complexity of model elimination is at least double exponential 
and at most triple exponential. 

Proof. For the lower bound, consider the clause set BnUSfgU{P(a)}. 
This has linear complexity with respect to the proof depth bound, due 
to Bn. However, the minimal length proof for model elimination is 
single exponential, analogous to the situation for PI-deduction. The 
clause set Sf 9 U { P( a)} in single exponential length proofs can generate 
a double exponential number of proofs, leading to the lower bound. 

For the upper bound, if there is a depth n proof from S, then on 
the ground level, at most 2n literals are involved in the proof (that is, 
in a Herbrand set for S). Now, we consider the tableau formulation 
of model elimination, for simplicity; in this formulation, we construct 
trees in which, at each node, there are outgoing edges labeled with 
LI, ... , Lm for some clause {LI' ... , Lm} in S (or an instance of a clause 
in S). The tree can be stopped when there are complementary edges 
on a path, and one never needs paths with identical literals appearing 
more than once. For 2n propositions, the depth of the tree can therefore 
be at most single exponential, the number of nodes in the tree can be 
at most double exponential, and the number of choices altogether is at 
most triple exponential, since model elimination has at most a bounded 
number of choices at each step involving the addition of a new clause. 
There are also a number of choices proportional to the length of the 
chain, involving applying a substitution and deleting literals, but the 
overall result is still triple exponential. 

D 

Theorem 2.4.24 With respect to the proof length complexity measure 
Mp/J the complexity of model elimination is at least double exponential 
and at most triple exponential. 

Proof. The upper bound follows because a proof of length n has 
depth no larger than n. It is surprising that we cannot derive a bet
ter result than this. The lower bound is from Bn U Sfg U {P(a)}. We 
know that there is a linear length refutation from Bn by theorem 2.4.11. 
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However, any model elimination refutation from Bn requires an expo
nential number of steps. In this many steps, the clause set Sig U {P( a)} 
permits a double exponential number of choices. 

o 

2.5 The Duplication Measure 

We now consider the instance-based theorem proving complexity mea
sures M dup , Msub, and M1in , as opposed to the inference-based measures 
Mpd and Mpl considered above. The first such measure to be considered 
is the duplication complexity Mdup. 

2.5.1 Clause Linking 

We begin by analyzing the time complexity of methods based on clause 
linking with respect to the duplication complexity measure, first prov
ing some results about the lengths of clause linking proofs. For this, 
we define Gr(S) to be S with all variables replaced by a fixed constant 
symbol, as in [LP92], and similarly for literals and clauses. 

Definition 2.5.1 A linking operation between two clauses C and D 
is a unification between literals L E C and M E D such that Land 
M have opposite sign, generating instances ce and De such that Le 
and Me are complementary. This is the basic operation in the clause 
linking strategy of [LP92], although that paper uses a slightly different 
notion of hyper-linking that links all the literals of a clause at once 
instead of only one. We say that the clauses ce and De are obtained 
from C and D by a linking operation. 

Definition 2.5.2 A clause linking proof from S is a sequence C l , C2, 

... , Cn of clauses where each Ci is either in S or is obtained by a link
ing operation from two earlier clauses in the sequence. We assume 
that variables in the Ci are renamed so that no two clauses share any 
variables. We call n the length of the proof. A clause linking refuta
tion is a clause linking proof in which the set Gr( {C1 , C2, ... , Cn }) zs 
propositionally unsatisfiable. 
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Definition 2.5.3 The depth of a clause C in a clause linking proof 
from S is 0, if C E S, else it is 1 + max(d1, d2), where d1 and d2 
are the depths of the clauses from which C was obtained by a linking 
operation. The depth of a clause linking proof is the maximum depth 
of any clause in the proof. 

We comment on how depth-bounded and size-bounded clause link
ing is implemented, for purposes of this discussion. For depth-bounded 
clause linking from a set S of input clauses, for each depth d from 1 
until a proof is found, we do the following: 

1. Generate all clauses of depth d or less that may be ob
tained by linking previously generated clauses of depth 
d or less. Call this set of clauses Sd. 

2. Test Gr(Sd) for satisfiability using some efficient propo
sitional decision procedure such as Davis and Putnam's 
method. 

Note that there is no nondeterminism in clause linking, implemented 
in this way, since the sets Sd are generated exhaustively in order of in
creasing d. That is, Sd is a function of Sd-1 and S. The time required, 
then, to find a proof, is the time to generate the sets Sd for d up to the 
required depth, plus the time to test each set Gr(Sd) for satisfiability. 
Subterm-size bounded and linear-size bounded clause linking are anal
ogous, except that instead of the depth d, we use the subterm size or 
linear size of the clauses generated as the bound. 

Recall that a theorem proving method is complete if it permits a 
proof of unsatisfiability for every unsatisfiable clause set. We recall 
from [LP92] that clause linking is complete, that is, if S is unsatisfiable, 
then there is a clause linking refutation from S. 

Definition 2.5.4 A rigid clause linking proof from S is a sequence 
S1, S2, ... , Sn of sets of clauses where S1 is an amplification of S, each 
Si+1 may be expressed as Sj8 j, and 8 j is a unifier of two complementary 
literals in different clauses of Sj. We call n the length of the proof. A 
rigid clause linking refutation is a clause linking refutation in which the 
set Gr(Sn) is propositionally unsatisfiable. 
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Definition 2.5.5 A clause C8 is a variant of C if 8 is a 1-1 mapping 
of variables to variables. Thus C8 is C with the variables renamed. 

Definition 2.5.6 If {C1, ... , Cn} is a set of clauses, then a separation 
of {C1 , ••. , Cn} is a set {C~, ... , C~} of clauses where each CJ is a 
variant of Ci and CJ and Cj do not share variables for distinct i and j. 
We use Sep(S) to refer to a separation of S chosen in some way. 

Definition 2.5.7 An amplified clause linking proof from S is a se
quence Sl, S2, ... , Sn of sets of clauses where Sl is an amplification of 
S, each Si+1 may be expressed as Sep(Si8i ), and 8i is a unifier of two 
complementary literals in different clauses of Si. We call n the length 
of the proof. An amplified clause linking refutation is a clause linking 
refutation in which the set Gr(Sn) is propositionally unsatisfiable. 

We develop some technical results to relate the length of clause 
linking proofs, amplified clause linking proofs, and rigid clause linking 
proofs. The problem is that variables are held rigid in the latter but 
not in the former two. 

Proposition 2.5.8 If there is an amplified clause linking refutation 
from S of length n, then there is a clause linking refutationfrom S of 
length 4(n - 1) and depth n - 1. 

Proof. Suppose Sl, S2, ... , Sn is an amplified clause linking refutation 
from S. One obtains the clause linking refutation by listing for each 
Si, i > 1, the two clauses that were modified by the substitution 8 i- 1 

and possibly their two parents, if they were not listed yet. Therefore 
each amplified step Si for i > 1 may generate four clauses in the clause 
linking proof. Thus the 4( n - 1) bound. Each amplified step Si only 
increases the depth by one, whence the n - 1 bound. 

o 

The following result gives a basis for bounding the length of ampli
fied clause linking proofs. 
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Lemma 2.5.9 Suppose that Land M are unifiable literals and that 
Gr( L) and Gr( M) are different. Let 0 be a most general unifier of L 
and M. Then 0 binds at least one variable of L or M to a non-variable 
term) and hence the number of variables in {L, M}0 is less than the 
number of variables in {L, M}. Also) the number of non-variable symbol 
occurrences in {L, M}0 is larger than the number in {L, M}. 

Proof. Consider the first subterms rand s of Land M, respectively, 
such that Gr( r) and Gr( s) differ. Since Land M are unifiable, both 
of these terms cannot start with a function symbol. Since Gr(r) and 
Gr( s) differ, both of these terms cannot be variables. Therefore one of 
these terms is a variable x and the other is a non-variable term t. On 
unification, x will be bound to t, so the number of variables will decrease 
and the number of non-variable symbol occurrences will increase. 

o 

Definition 2.5.10 If T is a set of ground clauses and L is a literal 
such that for some clause C in T) LEe) we say that L is pure in 
T if there is no other clause D and literal M E D such that M is 
complementary to L. 

We note that if T is minimal unsatisfiable, then T contains no pure 
literals. 

Theorem 2.5.11 Suppose S is unsatisfiable and T is a Herbrand set 
for S. Then there is an amplified clause linking refutation from S of 
length not greater than slin (T). 

Proof. There is an amplification Sl of S such that for some at, 

T = Sla1. We can assume that T is minimal unsatisfiable, implying 
that T has no pure literals. 

We know from lemma 2.2.18 that if T = Siai and Gr(Si) has all 
literals identical/complementary when the corresponding literals in T 
are identical/complementary, then Gr( S;) will be unsatisfiable. Other
wise, there must be two literals L1 and L2 of Si such that Gr(L1) and 
Gr( L 2 ) are not identical/complementary but the corresponding literals 
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L10:i and L20:j of Tare identical/complementary. If L1 and L2 are 
of the same sign, then there must be some literal M in Sj such that 
LiO:i and M O:i are of opposite sign in T (since T has no pure literals). 
Then since Gr( L1) and Gr( L2) are not identical, it must be that some 
Gr(Li) is not identical to Gr(M), too. Thus there must be two literals 
of Gr(Si) that are not complementary when the corresponding literals 
of T are. Thus there is a clause linking substitution 8 i unifying these 
two complementary literals, and the number of non-variable symbol oc
currences in Si8i will be larger than the number in Si, by lemma 2.5.9. 
Since clause linking substitutions are most general unifiers, there will 
still be a substitution O:iH such that Sep(Sj8i)0:i+1 = T. We can let 
Si+1 be Sep(Si8i). Thus this process can be continued. The number 
of such steps is then bounded by slin(T), since this is a bound on the 
number of non-variable symbol occurrences in T. (We have, by the 
way, just proved the completeness of amplified clause linking.) 

o 

Corollary 2.5.12 If S is unsatisfiable and T is a Herbrand set for S, 
then there is a clause linking refutation from S having length at most 
4slin(T) . 

Proof. This follows from theorem 2.5.11 and proposition 2.5.8. 
o 

We have now bounded the lengths of amplified clause linking proofs 
and clause linking proofs. We now bound the lengths of rigid clause 
linking proofs, and then give some examples to show that the former 
can sometimes be much longer than the latter. 

Definition 2.5.13 If S is a set of clauses, then s:::~A S) is maxcEsssub ( C) 
d lin (S) . lin (C) an smax ZS max CESS . 

We note that Mdup(S) S; Mdup(S) * s:::~x(S), Some of the following 
results could more accurately be stated in terms of Mdup(S). 

Theorem 2.5.14 Suppose that S is unsatisfiable. Then there is a rigid 
clause linking refutation of S of length at most 1 + MduP(S)s:::~AS). 
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Proof. Similar to the proof of theorem 2.5.11. We know that there 
is a Herbrand set T for S such that ITI = Mdup(S). Thus there is 
an amplification Sl of S such that for some aI, T = SIal. Thus 
IS11 = ITI = Mdup(S). We can assume that T is minimal unsatisfiable, 
implying that T has no pure literals. We show that there is a rigid clause 
linking refutation from Sl of length at most 1 + Mdup(S)S:::~x(S). 

We know from lemma 2.2.18 that if T = Siai and Gr(Si) has all 
literals identical/complementary when the corresponding literals in T 
are identical/complementary, then Gr(Si) will be unsatisfiable. Other
wise, there must be two literals L1 and L2 of Si such that Gr( L1) and 
Gr( L2 ) are not identical/complementary but the corresponding literals 
L1ai and L2ai of T are identical/complementary. If L1 and L2 are 
of the same sign, then there must be some literal M in Si such that 
Liai and M ai are of opposite sign in T (since T has no pure literals). 
Then since Gr(Ld and Gr(L2) are not identical, it must be that some 
Gr(L;) is not identical to Gr(M), too. Thus there must be two lit
erals of Gr(S;) that are not complementary when the corresponding 
literals of T are. This means that one can obtain Si+1 by applying a 
clause linking substitution to Si, and this will reduce the number of 
variables in Si, by lemma 2.5.9. Since clause linking substitutions are 
most general unifiers, there will still be a substitution ai+1 such that 
Si+1ai+1 = T. Thus this process can be continued. The number of 
such steps is then bounded by IS1Is:::~x(S), since this is a bound on the 
number of variables in Sl. (We have, by the way, just proved the com
pleteness of rigid clause linking.) But ISds::~x(S) = Mdup(S)S::~x(S), 
and one more step may be needed in the proof to list Sl itself. 

o 

This result implies that the bound for amplified clause linking can 
be exponentially larger than the bound for rigid clause linking. The 
question arises whether this can actually happen or whether the bound 
can be improved. We now give some surprising clause sets showing that 
this bound cannot be improved, and that clause linking and amplified 
clause linking can take much longer to find proofs than resolution and 
rigid clause linking. First we give a simple example to illustrate the 
idea, and then a more complicated example. 

Consider the following clause set Scyc: 
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{P(XI, X2,·.·, Xn), Q(X2, X3,···, Xn, xd} 
{-,P(XI, X2,.·., Xn), Q(g(a), X2, ... , Xn)} 
{-, R(XI,X2, ... ,Xn), -, Q(X2,X3, ... ,xn,xd} 
{R(XI,X2, ... ,Xn), -, Q(g(a),X2, ... ,Xn)} 

We develop some lemmas and results to show that this clause set 
requires exponential length clause linking refutations. In ths discussion, 
the term input clause refers to an element of SCYc. 

Definition 2.5.15 A g-clause is an instance of a clause m SCYC m 
which either 

• All variables are bound to g( a)) or 

• the variables X2, ... , Xi have been bound to the term g( a)) for some 
i) and the other variables are bound to distinct variables. 

A ground g-literal is a ground literal in which either 

• the predicate symbol is Q) and for some i) the first i arguments to 
Q are bound to g( a)) and the remainder to constant symbols) or 

• the predicate symbol is P or R) and for some i) the second through 
ith arguments of this predicate symbol are bound to g( a)) and the 
others are bound to constants) or 

• the predicate symbol is P or R) and all the arguments of this 
predicate symbol are bound to g( a) 

A ground g-clause is a ground clause all of whose literals are ground 
g-literals. 

We observe that all clauses in Scyc are g-clauses. Also, a hyper-link 
operation between two g-clauses produces another g-clause. 

Definition 2.5.16 The degree of a g-clause is n) if Xl is bound to 
g( a )) and otherwise i-I) where i is the highest integer not equal to one 
such that Xi is bound to g( a). The degrees of the clauses in Scyc are 
zero. 
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Definition 2.5.17 If L is a ground g-literal of the form P(Sl, ... , sn), 
Q(Sl,"" sn), or R(Sl, ... , sn), or their negations, then the degree of L 
is the maximum i such that Si is the term g( a). 

Recall that Gr( C) is the clause C with all variables replaced by a 
fixed constant symbol. 

Lemma 2.5.18 If C is a g-clause, then Gr( C) is a ground g-clause. 

Lemma 2.5.19 We can relate the parity of clauses and their ground 
instances in the following way: 

1. If{ P(rl,r2"""n), Q(r2"3, ... ,rn,rt}} is ag-clause of positive 
deg,ee less than n, then the degrees of the literals GI( P(rl, r2, 
... , In)) and G,(Q(r2, '3, ... , 'n, It}) have opposite parity, that 
is, one is odd and the othe, is even. 

2. If {-,P('l, r2, ... , rn), Q(g(a), '2, ... , In)} is a g-clause of positive 
degree less than n, then the degrees of the literals Gr( -,P( rl, '2, 
... , In)) and G,(Q(g(a),12"""n)) have the same parity. 

3. If{-, R(11,12"""n), -,Q(r2,r3, ... ,rn,rt}} is agroundg-clause 
of positive degree less than n, then the degrees of the literals Gr(-, 
R('l, '2,···, In)) and Gr(-,Q('2, '3, ... , rn, 11)) have opposite 
parity. 

4. If {R(11,r2"""n), -,Q(g(a)"2, ... ,rn)} is a ground g-clause 
of positive degree less than n, then the degrees of the literals 
Gr(R('l,r2, ... ,rn)) and Gr(-,Q(g(a),r2"""n)) have the same 
parity. 

Theorem 2.5.20 Any clause linking refutation of this clause set has 
length at least 2n+4, but there is a resolution proof (with factoring) 
involving 3 resolutions, and a proof without factoring involving 3 reso
lutions and two factoring steps. We note that this clause set has dupli
cation complexity 4. 
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Proof. We show then that if T is a set of instances of S and every 
element of T is a ground g-clause of degree less than n, then T is 
satisfiable. This can be shown by considering the model M such that 
M F L iff L has positive even degree. The model M' such that M' F L 
iff L has odd or zero degree will also work. We then show that it 
takes over 2n links to create elements of large degree. First, each link 
operation can increase the degree by at most one. This gives a lower 
bound of n link operations. To get a 2n - 1 lower bound, we observe 
that only every other link operation can increase the degree, due to 
the structure of SCyc' We can increase the bound to 2n by noting that 
just one clause of degree n is not enough to get a contradiction, since 
we have two models M and M', one of which will satisfy any given 
clause. Thus we need at least 2n link operations. With the four input 
clauses, we obtain a lower bound of 2n + 4 on the length of a clause 
linking refutation. In fact, with two more link operations, we can get 
a refutation, so the optimal bound is somewhere between 2n + 4 and 
2n + 6. The resolution proofs mentioned in the theorem are easy to 
find. 

o 

We illustrate by giving a (not necessarily optimal) clause linking 
refutation for the case n = 2: 

1. P(Xl,X2),Q(X2,Xt) (input) (degree 0) 
2. ,P(Xl,X2),Q(g(a),x2) (input) (degree 0) 
3 .• R(Xl,X2),.Q(X2,Xt) (input) (degree 0) 
4. R(Xl,X2),.Q(g(a),x2) (input) (degree 0) 
5. .R(xl,g(a)), .Q(g(a), xd (2,3) (degree 1) 
6. R(xl,g(a)),.Q(g(a),g(a)) (5,4) (degree 1) 
7. P(g(a),g(a)), Q(g(a),g(a)) (6,1) (degree 2) 
S. .P(g(a),g(a)),Q(g(a),g(a)) (7,2) (degree 2) 
9. .R(g(a),g(a)), .Q(g(a),g(a)) (S,3) (degree 2) 
10. R(g(a),g(a)), .Q(g(a),g(a)) (9,4) (degree 2) 

The final set {7,S,9,10} is ground and unsatisfiable. We note that 
the clauses SCyc essentially express a cyclic permutation between the 
two literals. To get more extreme examples, we need to encode clauses 
in which a permutation of exponentially many variables is expressed. 
The following set of four two-literal clauses accomplishes this: 
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Definition 2.5.21 SpQ is the following set of four two-literal clauses: 

{P(f(f( .. .f(f(XI, yd, Y2), ···Yn-d, Yn)), 
Q(f(Yn, f(Yn-l, f(Yn-2, ... , f(Y2, f(YI, xd)··))))} 

{-,P(f(f( .. .f(f( Xl, YI), Y2), "'Yn-l), Yn)), 
Q(f(f(···f(f(g(a), yd, Y2), ···Yn-d, Yn))} 

{-,R(f(f( .. .f(f(XI, YI), Y2), ···Yn-l), Yn)), 
-'Q(f(Yn, f(Yn-l, f(Yn-2, ... , f(Y2, f(Yb Xd)··))))} 

{R(f(f(···f(f(XI, yd, Y2), "'Yn-d, Yn)), 
-,Q(f(f( .. .f(f(g( a), Yd, Y2), "'Yn-l), Yn))} 

Theorem 2.5.22 Any clause linking refutation of SpQ must have length 
at least 2 * 2n + 4. There is a resolution proof (with factoring) involving 
3 resolutions, and a proof without factoring involving 3 resolutions and 
2 factoring steps. We note that SpQ has duplication complexity 4, and 
that n < slin(s). 

Proof. The idea is the same as the preceding theorem. Each clause 
expresses a permutation on a binary tree having 2n leaves. To see this, 
consider f(x, y) as a binary tree with X as the left subtree and Y as 
the right subtree. Thus f(f( ... f(f(XI' yd, Y2), ... Yn-d, Yn) is a binary 
tree in which Yn is the right subtree, f( ... f(f(XI, YI), Y2), "'Yn-l) is the 
left subtree, and Xl is a leaf. Then the term f(Yn, f(Yn-l, f(Yn-2, ... , 
f(Y2, f(YI, Xl))"))) is a binary subtree with the leaves permuted; the 
positions of the left and right subtrees down the leftmost path have 
all been reversed. This permutes the positions of the 2n leaves, and 
one can show without much trouble that repeating this permutation 2n 

times will bring every element into every position. 
To obtain a clause linking refutation, each of these 2n leaves must 

be bound to g( a), as in the preceding theorem. The bound is obtained 
in a way similar to that for the set SCYC, but here the degrees can be as 
high as 2n , instead of n. One sees also that the depth of this refutation 
must be 2n , since each linking operation can increase the degree by 
at most one, and we need clauses of degree 2n for a refutation. The 
resolution proofs, as before, are easy to construct. 

o 
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Permutations Induced by a Pair of Terms 

and 

tA tA 
abc d c d b a 

tA 
c d b a 

tA 
bad c 

tA tA 
7A 

d cab 

tA 
d cab abc d 
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We note that the preceding clause set has a very short (length 7) 
rigid clause linking refutation. Therefore clause linking is much worse 
than rigid clause linking on this example. It is interesting that for some 
sets of Horn clauses, one obtains a much better result for clause linking, 
which may help to explain the good performance of clause linking in 
practice. 

Theorem 2.5.23 Suppose S is a Horn set having duplication com
plexity n. Suppose that there is a hyper-resolution refutation from S in 
which each derived unit is used only once as a lemma. Then there is a 
clause linking refutation from S of length 3n - 2. 

Proof. Let B be a substitution such that S'B is a Herbrand set for 
S, where S' is an amplification of S. Consider the set (L, M) of pairs 
of literals of S' such that LB and MB are complementary. We order 
the clauses of S' so that Gi is before Gj if there is such a link (L, M) 
with L E Gi and M E Gj and L is positive and M is negative. Since 
S is a Horn set, such an ordering is possible. Then we order the links 
(L, M) by the ordering of Gi , where L is positive and L E Gi . We 
obtain the clause linking proof by performing clause linking operations 
corresponding to these links once in order and then once in reverse 
order. This will give us 2n operations, and with n input clauses, the 
total proof length is 3n. With a more careful analysis, one can show 
that 3n - 2 suffices. 

We give an example to make the construction clear. Suppose S = S' 
= {{P(a, x)}, {--,P(u, v), Q(u, v)}, {--,Q(w, b)}}. Then we order these 
clauses left to right and have the following clause linking refutation: 

1. P( a, x) (input) 
2. --,P( u, v), Q( u, v) (input) 
3. --,Q(w,b) (input) 
4. --,P(a,v),Q(a,v) (1,2) (beginning the forward phase) 
5. Q(a,b) (4,3) 
6. --,P( a, b), Q( a, b) (4,5) (beginning the backwards phase) 
7. P(a, b) (1,6) 

We note that the last three clauses are ground and unsatisfiable and 
that the length of this proof is 7 which is 3 * 3 - 2. 

o 
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However, even for Horn clauses, clause linking (and resolution) can 
generate terms of subterm size exponential in the duplication complex
ity Mdup, as the following example shows: 

{g(f(x, y)), -,P1(x), -'Pl(Y)}· 
{P3(f( x, y)), -,P2(x), -,P2(y)}. 

{Pn(f(x, y)), -,Pn-1(x), -,Pn-l(y)}. 
{PI (g(z))} 
{-,Pn(x)} 

This set of clauses has duplication complexity n + 1. By the above 
theorem, there is a clause linking proof of length proportional to n. 
However, this proof generates clauses whose subterm size is exponential 
in n, and this is unavoidable. We illustrate a few steps to show how 
this occurs: 

1. PI (g(z)) 
2. P2(f(x, y)), -,P1(x), -,P1(y) 
3. P2(f(g(ZI),g(Z2))), -,PI(g(Zt}), -,P1(g(Z2)) 
4. P3(f( x, y)), -,P2(x), -,P2(y) 
5. P3(f(f(g(Zt} , g(Z2)), f(g(z3), g(Z4)) )), 

(input) 
(input) 
(1,2, two steps) 
(input) 

-,P2(f(g(Zt},g(Z2))), -,P2(f(g(Z3),g(Z4))) (3,4,two steps) 

This shows that sometimes clause linking generates instances having 
much larger subterm size than necessary (by an exponential) and im
pairs the efficiency of clause linking. Rigid clause linking overcomes this 
problem, since by the proof of theorem 2.5.14, the subterm size needed 
is bounded by M~up(S). Thus there is a rigid clause linking refutation 
for this set of clauses in which the subterm size remains small. Another 
way to overcome the problem is to allow a subterm factoring operation 
as follows: 

Definition 2.5.24 The subterm factoring operation generates a clause 
ce from C, where e is a most general unifier of two terms in C. 

With subterm factoring, clause linking can always find proofs by 
generating instances having a subterm size that is bounded by 2 * 
M~up(S). This may be a useful operation to add for this reason. We 
have the following general lifting theorem for resolution with subterm 
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factoring, and similar theorems may be proven for clause linking and 
other inference systems: 

Theorem 2.5.25 Suppose S is a set of clauses and T is a Herbrand 
set for S. Suppose Dl , D2 , ••. ,Dn is a resolution refutation from T. 
Then there is a resolution refutation Cl , C2 , • •• , Cp from S with subterm 
factoring such that for all i, ssub ( Ci ) :::; 2 * ssub (T). 

Proof. We lift the proof from T as usual and insert subterm fac
toring operations whenever two subterms of Di are identical but the 
corresponding subterms of Cj are not. After performing these factoring 
operations, we obtain that ssub(Cj) is bounded by sSUb(D;) for the cor
responding clause Di in the ground proof. If we resolve two clauses Cj 

and Ck , we produce a clause C such that ssub(C)::; ssub(Cj)+ssub(Ck ). 

Thus we only know that ssub( C) :::; 2 * sSUb(T). 
o 

We note that resolution without factoring also has a problem with 
the above clause set, generating terms having exponential subterm size 
for it. This may indicate a deficiency in the search efficiency of reso
lution without factoring, even though it is complete for Horn clauses. 
By factoring the clauses 

we can generate the clauses 

Pi(f(x, x)), -,Pi-l(X) 

and then obtain a refutation with small subterm size. We still don't 
know whether factoring can always permit refutations with small sub
term size to be found, and leave this as an open problem. However, 
a change in the clause set prevents this for many common resolution 
strategies. Consider the following clause set SPQR: 
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{QI(X), 
{RI(X), 
{P2(f(X, y)), 
{Q2(X), 
{R2(X), 
{P3(f(X, y)), 

{Qn-I(X), 
{Rn-I(x), 
{Pn(f(X, y)), 
{PI (g(Z))} 
{ -,Pn(x)} 
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-,PI(X)} 
-,PI(X)} 
-,QI(X), -,RI(y)} 
-,P2(X)} 
-,P2(X)} 
-,Q2(X), -,R2(y)} 

-'Pn- 2 (X)} 
-,Pn - 2(X)} 
-,Qn-I(X), -,Rn-I(y)} 

For this clause set, the following strategies require subterm size that 
is exponential in the duplication complexity Mdup for refutations, even 
with factoring: PI deduction, hyper-resolution, A-resolution, and UR 
resolution. We can get the same result for negative resolution by using 
SPQR with the signs of all literals changed. However, with the subterm 
factoring operation added, these strategies can find proofs by generating 
clauses having subterm size bounded by 2*M~up(S), by theorem 2.5.25. 

Having completed these preliminaries, we now begin analyzing the 
complexity of various strategies with respect to the duplication com
plexity measure Mdup • We first consider clause linking and a related 
strategy. 

Theorem 2.5.26 Depth-bounded clause linking has a quadruple expo
nential complexity with respect to the duplication complexity measure 
Mdup • This can be reduced to triple exponential by a modification of 
the satisfiability procedure. Length-bounded clause linking has double 
exponential complexity with respect to the duplication measure Mdup • 

Proof. Recall that depth-bounded clause linking means that one per
forms linking operations in order of their depth. We essentially showed 
in corollary 2.5.12 that the length (hence the depth) of a clause linking 
refutation from S is at worst exponential in the duplication complexity 
of S. This can generate clauses whose subterm size is double expo
nential in the duplication complexity of S (by theorem 2.2.10). The 
number of clauses having this subterm size can be triple exponential in 
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the duplication complexity of S, by corollary 2.4.14. Testing unsatisfi
ability on this many clauses can take quadruple exponential time. This 
gives the upper bound. 

For the lower bound, consider the clause set SpQ U Tjg • The clauses 
SpQ require a number of linking operations exponential in slin(s) to 
generate the ground instances needed for the proof. In this many op
erations, the clauses T jg can generate a triple exponential number of 
instances. 

We can reduce this bound to triple exponential by testing all sub
sets of size equal to the length of the clause linking proofs constructed. 
That is, when we construct proofs of depth p, we test only subsets of 
size linear in p for satisfiability. There will be at most triple exponen
tially many such subsets, and even with exponential time for testing 
satisfiability, the worst case time overall is still triple exponential in the 
duplication complexity of S. 

For length-bounded clause linking, we observe that the number of 
proofs of length p is single exponential in p, since the number of literals 
in the clauses never increases. For each proof Cll C2 , ••• ,Cp , we can 
test the set {C1 , C2 , ••. ,Cp } for satisfiability in time exponential in p 
in the worst case. This leads to a double exponential bound overall, 
since we may need exponential length clause linking refutations. 

o 

It is remarkable to get so much variation in running time by such 
seemingly small changes in strategy. Even for the quadruple expo
nential version, it is possible that the fast running time of Davis and 
Putnam's method [Dav63, DP60, DLL62, Fit90] on the average can 
make the bound triple exponential in practice. 

We now consider search strategies based on the size of the instances 
rather than on the length or depth of the proofs. Again we get some 
dramatic differences in the complexity. 

Theorem 2.5.27 Linear-size bounded clause linking is triple exponen
tial with respect to the duplication complexity measure Mdup. This may 
be reduced to double exponential by testing subsets of cardinality equal 
to the size bound. 
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Proof. Recall the definition of linear-size bounded search (definition 
2.4.15). The upper bound is obtained as before, by noting that the 
linear size measure can be exponential with respect to the duplication 
complexity, and there can be a double exponential number of clauses 
within this size bound, requiring triple exponential time to test satisfi
ability. For the lower bound, consider the clause set Tfg together with 
the following clause set, where sand t are terms whose most general 
instance is exponentially large: 

{{P(s), Q(s)}, {P(s), ..,Q(t)} , {..,P(t), Q(s)}, {..,P(t), ..,Q(t)}} 

This will require the size bound to become exponentially large before 
a proof is found, and within this size bound, the clause set T fg will 
generate a double exponential number of instances. 

The worst case bound can be reduced to double exponential as be
fore by testing small subsets for satisfiability. For this, when the size 
bound is n, we consider subsets of the instances containing n clauses. 
When n becomes exponential in the duplication complexity, this guar
antees that a proof will be found. 

o 

Theorem 2.5.28 Subterm-size bounded clause linking is triple expo
nential with respect to the duplication complexity measure Mdup. This 
may be reduced to double exponential by testing subsets of cardinality 
equal to the size bound, for satisfiability. If the subterm factoring op
eration is allowed, the bounds become double and single exponential, 
respectively. 

Proof. If S is the set of input clauses and n is its duplication 
complexity, then we may need to generate instances of size exponential 
in n to obtain the clause linking refutation. There can be a double 
exponential number of clauses having sub term size less than or equal 
to this size bound, by corollary 2.4.14. When the size bound reaches 
this value, then a proof will be found. The time to apply a propositional 
satisfiability test to them can then be triple exponential. 

To reduce the time to double exponential, we can test subsets R of 
the generated instances such that R has cardinality m when the size 
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bound is m. This will guarantee that a proof is found when m becomes 
exponential in n. There are a double exponential number of subsets 
of this size, and the propositional satisfiability test on each one takes 
double exponential time, leading to a double exponential bound overall. 

The lower bound is obtained by letting 5 be Tjg U SpQ When the 
subterm size becomes exponential in n, a proof can be found, but then 
Tjg will have generated a double exponential number of instances. 

For the sub term factoring operation, one obtains bounds that are 
better by an exponential, because one can insure that the subterm size 
needed for a refutation is linear in the duplication complexity of S. 

o 

These results show the strong (asymptotic) influence the use of a 
size bound can have on a strategy, and how the choice of size bound can 
make a large difference. We note as before that the good performance of 
Davis and Putnam's method may reduce the triple exponential bound 
to double exponential in practice. 

We now define CLIN-D, a version of CLIN (clause linking) with 
rigid variables, and analyze its complexity properties. 

Definition 2.5.29 A CLIN-D prooffrom S is a sequence 51, S2, ... , Sn 
of sets of clauses such that Sl is empty and for all i, either Si+1 is 
Si U {C ai} for some C E S where C ai is a variant of C, or Si+1 is 
Si8; and 8; is a linking substitution for S;, that is, 8 i is a most general 
unifier of two literals of Si of opposite sign. The length of this proof is 
n. Such a proof is a refutation if Gr(Sn) is unsatisfiable. 

Theorem 2.5.30 Suppose S is unsatisfiable. Then there is a CLIN-D 

refutation of length at most Mdup(S)(l + s:::~x(S)). 

Proof. By theorem 2.5.14, there is a rigid proof of length 1 + 
Mdup(S)S:::~x(S) from S starting with an amplification having Mdup(S) 
clauses in it. To obtain a CLIN-D proof, it is only necessary to delete 
the first step of the rigid proof, and add at most Mdup(S) steps to the 
beginning of the proof to introduce all the clauses in the amplification. 

o 
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Theorem 2.5.31 Length-bounded CLIN-D has a single exponential com
plexity with respect to the duplication measure Mdup ' 

Proof. We are assuming that CLIN-D proofs are generated in order 
of their length. To get the upper bound, we note that the number of 
choices in constructing the proof is exponential in the length of the 
proof, and we just showed that the proof length is linear in the duplica
tion complexity. Thus there are exponentially many proofs to consider, 
and the propositional satisfiability test for each one is of exponential 
complexity, leading to an exponential bound overall. To get the lower 
bound, we can take any propositional clause set for which Davis and 
Putnam's method takes exponential time, such as the pigeonhole prob
lems. 

D 

CLIN-D is essentially different from the matings method of Andrews 
[And81], which essentially performs the propositional satisfiability test 
at the start in the sense of finding a spanning set. CLIN-D performs 
this test at the end, which is possibly more efficient, since efficient 
propositional satisfiability tests may be used. However, CLIN-D may 
do unnecessary work, since the generation of instances is not guided 
by the propositional satisfiability test. CLIN-D is also essentially dif
ferent from CLIN, which does not have rigid variables. It is not clear 
how well CLIN-D would perform in practice, since it involves many 
nondeterministic choices. 

We can modify CLIN-D to make it more flexible by also allowing the 
8i to be replacements of a variable by terms of the form f(xl,"" xn) 
where the Xi are distinct new variables. We know that each literal 
in Si has to unify with some other literal and each variable has to 
be replaced by some function or constant symbol. Depending on the 
number of function symbols and literals, we can always try to perform 
whichever operation has the smaller number of choices. This may make 
this method more efficient. 
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2.5.2 Resolution Based Methods 

We now analyze resolution-based methods with respect to the duplica
tion measure. 

Theorem 2.5.32 Depth-bounded binary resolution is of double expo
nential complexity with respect to the duplication complexity measure 

Mdup. 

Proof. Suppose S is the set of input clauses. Then there is a Herbrand 
set T for S of subterm complexity linear in the duplication complexity 
of S. It follows that the number of (distinct) literals in T is also linear 
in the duplication complexity, so there is a semantic tree of depth linear 
in this quantity. Therefore, there is a resolution proof of depth linear in 
the duplication complexity. If factoring steps are separated, the depth 
can become quadratic. Within a linear (or quadratic) depth, one can 
generate clauses of at most exponential subterm size, and there can 
be at most a double exponential number of them. The bound holds 
whether resolution and factoring are combined or separate. 

For the lower bound, consider the clause set Pn U S Ig where Pn is the 
pigeonhole problem of size n. The clause sets Pn require linear depth 
proofs, and have a linear duplication complexity (since they are propo
sitional). Within a linear proof depth, the clauses Sig can generate a 
double exponential number of resolvents. 

o 

Note that such a simple-minded resolution strategy is actually bet
ter than depth-bounded clause linking in the worst case, with respect 
to the duplication measure. 

Theorem 2.5.33 Length-bounded binary resolution is of double expo
nential complexity with respect to the duplication complexity measure 
M dup , if resolution and factoring are separated. 

Proof. The proof is much the same as the above. For the lower 
bound, one notes that any clause derivable in linear depth is derivable in 
exponential length. The upper bound is based on theorem 2.4.18. The 
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reason we cannot immediately derive this result from the previous one is 
that we are assuming that the length-bounded proofs are enumerated, 
one by one, and so the same clauses may be generated repeatedly. 
Possibly a better search method could reduce the work. For depth
bounded resolution, in contrast, each clause only needs to be generated 
once. 

o 

Theorem 2.5.34 Linear-size bounded binary resolution has a double 
exponential complexity with respect to the duplication complexity mea

sure Mdup. 

Proof. We are assuming that we only save resolvents whose linear 
term size (that is, the size of the clause) is within the size bound, 
and that this size bound is gradually increased until a proof is found. 
Suppose 8 is a set of clauses. Consider the Herbrand set T for 8 such 
that slin(T) is minimal. Then slin(T) can be at worst exponential in the 
duplication complexity of 8. When the size bound reaches this value, 
we will obtain a proof (because the sum of the sizes of the literals in 
T is exponential in the duplication complexity of 8). There can be at 
most a double exponential number of clauses generated within this size 
bound. 

For the lower bound, let 8 be 8ig together with the clause set 

{{P(s), Q(s)}, {P(s), -,Q(t)} , {-,P(t), Q(s)}, {-,P(t), -,Q(t)}} 

where sand t are terms whose most general instance is exponen
tially large. In order to get the proof, we need to reach an exponential 
size, and within this size bound, 8ig can generate a double exponential 
number of clauses. 

o 

Definition 2.5.35 The clauses set Tjg consists of the clauses {-,Ti(x, y), 
-,Ti(y,z), Ti+1(X,Z)} for 1 ::; i ::; n -1 and the clauses {T1(x,J(x))} 
and {Tl(X,g(X))}. 
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Theorem 2.5.36 Subterm-size bounded binary resolution has double 
exponential complexity with respect to the duplication complexity mea
sure Mdup. If the subterm factoring operation is used, the complexity 
becomes single exponential. 

Proof. Recall that we only save resolvents whose subterm size 
is within the size bound, and that this size bound is gradually in
creased until a proof is found. Suppose S is a set of clauses. Con
sider the Herbrand set T for S such that sSUb(T) is minimal. Then 
sSUb(T) :::; M~up( S). However, it suffices to generate clauses of subterm 
size exponential in sSUb(T) to obtain a proof. There can be at most a 
double exponential number of clauses generated within this size bound. 
If the subterm factoring operation is used, we can guarantee that the 
clauses generated never have a subterm size larger than 2 * M~up(T), 
obtaining the exponential bound. 

Although we cannot prove the lower bound in general at present, 
we can do it for many resolution strategies using the clause set TJg U 
SPQR. In order to generate a refutation from SPQR, we need to generate 
terms having exponential subterm size, and within this size bound, TJg 
can generate a double exponential number of clauses. This works for 
PI deduction, hyper-resolution, A-resolution, and UR-resolution. The 
same clause set with signs of literals reversed gives the lower bound for 
negative resolution. 

o 

In the case of resolution, it does not seem to matter much in general 
which kind of a bound is used, as far as the number of exponentials is 
concerned, since all the strategies considered have a double exponential 
complexity. The exception is a subterm size bound with the subterm 
factoring operation allowed, which has a much better complexity. It 
might be worthwhile implementing this strategy and testing it. This is 
one advantage of such complexity analysis, namely, it suggests possi
bilities and combinations that one otherwise might never consider. 

We consider one more kind of clause set that seems to explain to 
some extent the success of resolution in practice. 

Theorem 2.5.37 If S is UR-resolvable and has duplication complexity 
n, then there is a UR-refutation from S having less than n UR resolu-
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tion steps. 

Proof. Consider the ground level. Suppose S is a unit resolvable set 
of ground clauses. Let C1 , C2 , ••. , Cn be a DR refutation, that is, each 
Ci is either in S or it is a DR-resolvent of previous clauses. Note that 
DR-resolvents are unit clauses. Also, a given clause need not appear 
more than once in this proof. If Ci is a DR-resolvent, then Ci is {L} for 
some literal L in an input clause Di in S. We claim that these clauses 
Di are all distinct in a minimal DR-refutation. The only way this 
can fail is if two literals from some Di appear in the proof in different 
places, say Di = Dj with i < j. This implies that all but one of the 
literals of Di resolved with unit clauses, and all but one of the literals 
of Dj resolved with unit clauses. Thus there are enough unit clauses to 
resolve away all the literals of Dj , and we could have derived the empty 
clause instead at step j. This shows that the length of this proof need 
not be larger than the number of clauses in S used in the proof, that 
is, the duplication complexity of S. Lifting this result to the first-order 
case, we obtain the theorem. 

o 

Theorem 2.5.38 Length-bounded binary resolution is of single expo
nential complexity with respect to the duplication measure Mdup for UR 
resolvable clause sets S. 

Proof. By the preceding theorem, we only need to consider proofs of 
length polynomial in the duplication complexity. 

o 

This may explain why resolution (without subterm factoring) per
forms well in practice, since many common clause sets are DR resolvable 
and have short proofs, that is, have small duplication complexity. We 
note that common implementations of resolution tend to prefer short 
proofs and short clauses, which tends to approximate length-bounded 
DR resolution or even length-bounded binary resolution. 
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2.5.3 British Museum Methods 

We now try to determine some of the reasons for the various bounds 
that have been proved above. We show that some very simple-minded 
strategies achieve the same or better bounds, which implies that the 
bounds do not depend on detailed features of the methods. This also 
raises the question of whether some of these simple methods should be 
implemented to see if they perform well in practice. 

Theorem 2.5.39 Consider the following method, which we call sub
term size clause enumeration. 

For each size bound m, enumerate all ground instances D 
of clauses C of S such that sSUb(D) ::; m. Test this set of 
ground clauses for satisfiability. 

We call this a British Museum method. This method is then double 
exponential with respect to the duplication complexity measure M dup ' If 
we only test subsets of ground clauses of size m or less for satisfiability, 
the method becomes single exponential. 

Proof. When m reaches the duplication complexity of S, we will 
obtain a proof. Within this size bound, we can generate an exponential 
number of ground clauses. It takes double exponential time to test their 
satisfiability. By considering small subsets, this worst-case time can be 
reduced to single exponential. Clause sets to achieve these bounds are 
easily constructed (assuming propositional satisfiability requires expo
nential time). For example, we can combine an unsatisfiable set of small 
duplication complexity and literal size larger than n with Bn or Tfg • 

o 

Also, the good performance of Davis and Putnam's method in prac
tice may mean that the double exponential bound is single exponential 
in practice. The fact that we can obtain performance that compares 
favorably with many versions of resolution and clause linking, suggests 
that such methods merit more study. That is, instance-based strategies, 
which generate ground instances of clauses and test for satisfiability, 
may be more effective than is commonly supposed. 
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Theorem 2.5.40 Consider the following method, which we call linear 
size clause enumeration. 

For each size bound m, enumerate all ground instances D 
of clauses C of S such that slin(D) :::; m. Test this set of 
ground clauses for satisfiability. 

This is also a British Museum method. This method is then triple 
exponential with respect to the duplication complexity measure Mdup ' If 
we only test subsets of ground clauses of size m or less for satisfiability, 
the method becomes double exponential. 

Proof. When m becomes exponential in the duplication complexity 
of S, we will obtain a proof. Within this size bound, we can generate 
a double exponential number of ground clauses. It takes triple expo
nential time to test their satisfiability. By considering small subsets, 
this worst-case time can be reduced to double exponential. Clause sets 
to achieve these bounds are easily constructed (assuming propositional 
satisfiability requires exponential time). 

o 

We now present a method with good asymptotic performance even 
without any special device such as testing small subsets for satisfiability. 
If such methods are not good in practice, it would be interesting to 
refine the analysis to understand why. 

Theorem 2.5.41 Consider the following method, which we call sub
term size clause set enumeration. 

For each size bound m, generate one by one all sets T of 
ground instances of S whose subterm size is not larger than 
m. Test each set T for satisfiability. 

This method is of single exponential complexity with respect to the du
plication complexity measure Mdup ' 

Proof. The number of such T is exponential in m, and when m 
reaches M~up(S) we will find a proof. Also, the test for satisfiability 
will take time exponential in m. 

o 
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2.5.4 Other Methods 

We now discuss the matings method of Andrews [And81]. 

Definition 2.5.42 Suppose S is a set of clauses and S' is an amplifi
cation of S. A path in S' is a mapping ¢> from S' to literals such that 
for each C E S', ¢>( C) E C. A mating is a set of pairs of literals of S', 
having opposite sign. A mating M is spanning for S' if for every path 
in S' there is a pair (L, M) in M such that both Land M are in the 
(image of the) path. 

The matings method is to generate amplifications S' of S and find 
matings that are spanning for S'. For each mating, one then looks 
for a simultaneous most general unifier of all the pairs in the mating. 
If this can be found, then S is unsatisfiable. This complete method 
essentially guides the instantiation of S' to achieve unsatisfiability, and 
does the unsatisfiability test before the instantiation, in contrast to 
clause linking, which does it afterwards. This method works well on 
many second-order logic problems. 

Theorem 2.5.43 The matings method is single exponential (in time) 
with respect to the duplication complexity measure M dup . 

Proof. For this, we assume that there is an increasing size bound 
m, and that for each m, we examine all amplifications S' of S whose 
subterm size is not more than m. For each such S', we seek a mating 
as specified. The number of such amplifications is exponential in the 
duplication complexity. The number of matings is also exponential, as 
is the test for the spanning property. The unification may be done in 
polynomial time. Thus the method overall is single exponential in the 
duplication complexity. 

o 

Theorem 2.5.44 Length-bounded model elimination is of double ex
ponential complexity with respect to the duplication complexity measure 

Mdup. 
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Proof. Suppose S is a set of clauses and T is a Herbrand set for S 
such that the subterm size of T is minimal. Let n be the duplication 
complexity of S. Then n is not smaller than the subterm size of T. It 
follows that the number of literals in T is bounded by n. Therefore, 
one only needs to consider chains of length n to get a proof. The entire 
proof can then have a length exponential in n, leading to a double 
exponential complexity altogether. 

As for the lower bound, in [Pla94b] we gave propositional clause 
sets for which model elimination requires exponential length proofs. 
By adding S fg U {P( a)} to such a clause set, model elimination will 
generate a double exponential number of clauses altogether (assuming 
the search is started from the literal P(a)). 

o 

Note that these results about duplication complexity seem to imply 
a dramatic difference in the efficiencies of various strategies on theorems 
that have a small number of clause instances needed but of unknown 
literal size, since the complexities vary from single to quadruple expo
nential. However, traditional strategies are single or double exponential 
in complexity, generally double, and it is only the clause linking-related 
strategies that can have a worse complexity for certain search strategies. 
A couple of variants of clause linking have single exponential complex
ity, as well as some enumerative strategies and matings. One variant 
of resolution has single exponential complexity, but appears to require 
subterm factoring to achieve it, an operation rarely if ever implemented 
to date. 
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not inference based. From now on we mostly derive just upper bounds 
on the complexity. 

To understand the complexity results, it helps to observe that if 
there is a proof within a given literal size measure, then the proof can 
involve an exponential number of clauses and an exponential number 
of literals. 

2.6.1 Clause Linking 

Theorem 2.6.1 Depth-bounded clause linking has a quintuple expo
nential complexity with respect to the subterm size proof complexity 
measure Msub. Length-bounded clause linking has a triple exponential 
complexity with respect to the subterm size proof complexity measure. 

Proof. Here we will just prove the upper bounds. If the subterm 
size proof complexity measure of S is n, then the largest clause can 
have a subterm size measure of at most kn where k is the maximum 
number of literals in a clause in S. (Note that k < slin(s).) Thus the 
duplication complexity of S can be at most single exponential in kn. 
The depth required for a clause linking refutation can be proportional 
to slin(T) where T is a Herbrand set for S. Thus the depth required 
may be double exponential in kn. This can generate clauses of triple 
exponential subterm size complexity, and there can be a quadruple 
exponential number of them. Applying a satisfiability procedure raises 
the time to quintuple exponential. 

For length-bounded clause linking, we need proofs of length double 
exponential in kn. There can be at most a triple exponential number 
of such proofs. Each proof will be tested separately for satisfiability in 
double exponential time, leading to a triple exponential bound overall. 

o 

Depth-bounded clause linking can be reduced to quadruple expo
nential complexity by testing small subsets for satisfiability, as before. 

Theorem 2.6.2 Linear-size bounded clause linking has a triple ex
ponential complexity with respect to the subterm size measure Msub. 
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Subterm-size bounded clause linking also has triple exponential com
plexity. However, if subterm factoring is used, this latter bound can be 
reduced to double exponential. 

Proof. Again we just prove the upper bound. First, the linear 
size complexity can be exponential with respect to the subterm size 
measure. There are a double exponential number of clauses having a 
linear size within this exponential bound. It requires triple exponential 
complexity to test them for satisfiability. 

For a size bound based on the subterm size measure, we saw in the
orem 2.5.22 that clause linking may need to generate instances whose 
subterm size is exponential with respect to the subterm size proof com
plexity measure. There may be a double exponential number of clauses 
within the size bound. The satisfiability test raises this to triple ex
ponential. However, if subterm factoring is used, we can reduce the 
bound by an exponential, because we only need to generate instances 
whose subterm size is bounded by 2 * M~up(S), by theorem 2.5.25. 

o 

In this case we can't use the small subsets idea, because we know 
nothing more about the size of a Herbrand set for S. However, the good 
performance of satisfiability tests in practice may mean that the usual 
performance is an exponential better. In particular, if we assume that 
Davis and Putnam's method runs in expected polynomial time, then 
the time bound for subterm-size bounded clause linking with subterm 
factoring becomes expected single exponential. 

We now consider CLIN-D. For this, we need to modify the binary 
counter clause set Bn , as follows: 

Definition 2.6.3 The modified binary counter clause set B~ consists 
of the following clauses: 
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{Pi (Xl , X 2 , • •• , Xn - l , 1), -'Pj(Xl , X 2 , ••• , Xn - l , On, 
1 5, i,j 5, 2 

{pi (Xl , X 2 , • •• , X n- 2 , 1,0), -'Pj(Xl , X 2 , • •• , X n - 2 , 0, In, 
1 5, i,j 5, 2 

{pi(I,O,O, ... ,0), -'Pj(O, 1, 1, ... , In, 
1 5, i,j ~ 2 

{pi(O,O,O, ... ,O)}, 
15,i5,2 

{-'pj(l, 1, 1, ... , In, 
15,j5,2 

Theorem 2.6.4 CLIN-D is of double exponential complexity with re
spect to the subterm size proof complexity measure Msub. 

Proof. Suppose S has subterm size proof complexity Msub(S) equal 
to n. Then there is a Herbrand set T having at most a number of 
literals that is exponential in n. Recall that the number of literals 
in a clause in S is bounded by slin(s). Thus ITI is exponential in 
nslin (S), and the duplication complexity of S is exponential in nslin (S). 
This counts as single exponential in n, according to our conventions. 
By theorem 2.5.31, CLIN-D is of single exponential complexity with 
respect to the duplication complexity. Therefore CLIN-D is of at worst 
double exponential complexity with respect to the subterm size proof 
complexity measure. The lower bound is obtained from B~, noting 
that this proof requires exponentially many instances. Each instance 
can be chosen in two or more ways, due to the subscripts i and j. Thus 
there are a double exponential number of choices, and CLIN-D will take 
double exponential time. 

o 

The preceding result holds even if we use some kind of subterm-size 
bounded CLIN-D, and also applies to the linear size proof complexity 
measure Mlin . Note also that B~ is DR-resolvable, so the bound holds 
for DR-resolvable sets, too. 
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2.6.2 Resolution 

Theorem 2.6.5 Depth-bounded binary resolution is of triple exponen
tial complexity with respect to the subterm size proof complexity measure 

Msub. 

Proof. Suppose S has subterm size complexity n. Then there is a 
Herbrand set T having at most a number of literals that is exponential 
in n. Thus there is a binary resolution proof of depth exponential in 
n. Within this depth, we can generate clauses of double exponential 
subterm size complexity, and there can be a triple exponential number 
of them overall. 

o 

This bound is actually better than for depth-bounded clause linking. 
It does not appear that length-bounded binary resolution will do any 
better. 

Theorem 2.6.6 Linear-size bounded binary resolution has a triple ex
ponential complexity with respect to the subterm size proof complexity 
measure Msub. 

Proof. Suppose S has subterm size complexity n. Then there is 
a Herbrand set T having literals whose linear complexity is at most 
exponential in n. The number of literals can therefore be at worst 
double exponential in n. Since a clause is a set of literals, the number 
of clauses generated within the size bound is at most triple exponential 
III n. 

o 

Theorem 2.6.7 Subterm-size bounded binary resolution has a triple 
exponential complexity with respect to the subterm size proof complexity 
measure Msub. With subterm factoring) this bound can be reduced to 
double exponential. For UR-resolvable clause sets) with subterm factor
ing) the bound is single exponential. 
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Proof. Suppose S has subterm size complexity n. Then there is a 
Herbrand set T having literals whose subterm size complexity is at most 
n. We saw in section 2.5 a Horn set SPQR in which resolution needs to 
generate literals having a subterm size exponential in n. The number 
of literals can therefore be at worst double exponential in n. Since a 
clause is a set of literals, the number of clauses generated within the 
size bound is at most triple exponential in n. With subterm factoring, 
the bound can be reduced by an exponential, because we only need 
to generate clauses having a subterm size bounded by 2 * M~up(S) by 
theorem 2.5.25. For UR-resolvable clause sets, one never needs to gen
erate clauses having more literals than appear in a clause in S. Thus 
the maximum subterm size of a generated clause will be nslin(S). The 
number of generated clauses, and the work, will be exponential in this 
quantity, which still qualifies as single exponential in our formalism. 

o 

This is the same complexity as clause linking with the same kind of 
a size bound, but we miss the practical efficiency of the propositional 
satisfiability test. 

Theorem 2.6.8 For UR-resolvable clause sets, subterm-size bounded 
UR resolution has a double exponential complexity with respect to the 
subterm size proof complexity measure Msub. With subterm factoring, 
this bound can be reduced to single exponential. 

Proof. Similar to the above theorem. 
o 

2.6.3 British Museum Methods 

Theorem 2.6.9 Let's reconsider the following subterm size clause enu
meration method: 

For each size bound m, enumerate all ground instances D 
of clauses C of S such that sSUb(D) ::; m. Test this set of 
ground clauses for satisfiability. 
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This method has double exponential complexity with respect to the sub
term size proof complexity measure Msub. 

Proof. The number of such D generated is exponential in the subterm 
size complexity measure of S. The work to test satisfiability is then 
double exponential. 

o 

Again, the good performance of satisfiability methods may reduce 
this to single exponential in practice. If we assume Davis and Putnam's 
method runs in expected polynomial time, the time bound would be 
expected single exponential. The good asymptotic performance of this 
method in comparison to others listed here is remarkable, especially in 
view of the fact that it does not use unification or resolution. Perhaps 
this method should be implemented and tested. Refinements of this 
method to guarantee no pure literals, for example, are easy to imagine. 

Theorem 2.6.10 Consider the following linear size clause enumera
tion method: 

For each size bound m} enumerate all ground instances D 
of clauses C of S such that slin(D) :::; m. Test this set of 
ground clauses for satisfiability. 

This method has triple exponential complexity with respect to the sub
term size proof complexity measure Msub. 

Proof. The linear size needed for the proof can be exponential in the 
subterm size measure of S. The number of such D generated can be 
double exponential in the subterm size complexity measure of S, and 
the work to test satisfiability can be triple exponential. 

o 

In this case, we can apply the satisfiability procedure to subsets of 
size exponential in m and reduce the upper bound by one exponential. 

Theorem 2.6.11 Consider the following subterm size clause set enu
meration method: 



134 The Propositional and First-Order Complexity 

For each size bound m, generate one by one all sets T of 
ground instances of S whose subterm size is not larger than 
m. Test each set T for satisfiability. 

This method is of double exponential complexity with respect to the sub
term size proof complexity measure Msub. 

Proof. If S has subterm size complexity n, then there will be a 
Herbrand set T for S all of whose literals have subterm size n or less. 
This T may have a number of literals that is exponential in n. Thus m 
may need to become exponentially large before a proof is found. The 
number of T generated can then be double exponential in n. The time 
to test each one for satisfiability is also double exponential, leading to 
a double exponential bound overall. 

o 

This bound may not be reduced to expected single exponential time, 
even if satisfiability routines run in expected polynomial time. 

2.6.4 Other Methods 

Theorem 2.6.12 The matings method is double exponential with re
spect to the subterm size proof complexity measure Msub. 

Proof. If S has subterm size complexity n, then the matings method 
may need to construct an amplification having an exponential number 
of clauses in it to get the proof. Processing all amplifications up to this 
size (or anyone of the large ones) will take double exponential time. 
The lower bound is obtained from the set B~ of clauses. 

o 

We note that matings does not appear to take advantage of the 
fast performance of satisfiability algorithms on many examples. This 
could imply that clause linking with a size bound based on subterm 
size will be better with respect to this measure. We note also that the 
lower bound is still valid for the linear size proof complexity measure, 
and also for UR-resolvable sets, since B~ is UR-resolvable. These lower 
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bounds probably apply to many connection methods, too; it is possible, 
on the other hand, that the behavior of connection methods is like that 
of model elimination. 

Theorem 2.6.13 Model elimination has triple exponential complexity 
with respect to the subterm size proof complexity measure Msub. 

Proof. Suppose S has subterm size proof complexity n. Then there is 
a Herbrand set T for S such that T has a number of clauses exponential 
in n. Thus the number of literals in T is exponential in n. This means 
that model elimination may need to construct chains of exponential 
length, and the proof overall may be double exponential in length. 
(It really helps to consider the tableau formulation to see this easily.) 
Within a double exponential bound, there can be at worst a triple 
exponential number of proofs. 

o 

We observe that this complexity is worse than that of the best 
resolution variant, the best clause linking variant, and matings. 

The subterm size measure Msub seems most appropriate when the 
Herbrand set has many clauses, but the literals are small. For such 
problems, clause linking (with a suitable size bound) is better than 
binary resolution, matings, and model elimination. Although a res
olution variant also has double exponential complexity, that variant 
cannot take advantage of the good performance of satisfiability algo
rithms in practice. Also, the subterm size clause enumeration method 
has a similar asymptotic complexity, and also takes advantage of the 
satisfiability test. However, it does not incorporate unification, as does 
clause linking. 

For VR-resolvable clause sets, subterm-size bounded binary resolu
tion with subterm factoring and VR resolution with subterm factor
ing have single exponential complexity with respect to this measure, 
regardless of assumptions about the performance of the satisfiability 
procedure. This shows a definite advantage of these strategies, since 
VR-resolvable (or nearly VR-resolvable) clause sets are fairly common 
among easy problems. Only if we assume that a satisfiability procedure 
runs in expected polynomial time can we obtain nearly comparable per
formance from other methods. 
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2.7 The Linear Size Measure 

In general, when we analyze the complexity of strategies that search 
using a size-bounded search strategy, the analyses of the complexities of 
strategies with respect to the linear size proof complexity measure Mlin 

are the same as those with respect to the subterm size proof complex
ity measure Msub using sub term factoring, since the number of literals 
within a linear size bound is exponential. That is to say, the per
formance of method X which searches according to subterm size or 
linear size, with respect to the linear proof complexity measure, will be 
asymptotically the same as the performance of method X (with sub
term factoring) which searches according to a subterm size bound with 
respect to the subterm size proof complexity measure. This is because 
the subterm size measure is linearly bounded by the linear measure. 
Also, upper bounds for the subterm size measure are valid for the lin
ear size measure, too, since subterm size is bounded by linear size. Thus 
the literals of subterm size m or less are a superset of the literals of 
linear size m or less. A disadvantage of the linear measure is that it 
does not relate so well to the duplication complexity measure as the 
subterm size proof complexity measure does (see Table 2.1 below). We 
list a number of results, mostly without proof. 

Theorem 2.7.1 Depth-bounded clause linking has quintuple exponen
tial complexity with respect to the linear size proof complexity measure 
Mlin. Length-bounded clause linking has a triple exponential complexity 
with respect to the linear size proof complexity measure. 

Theorem 2.7.2 Linear-size or subterm-size bounded clause linking is 
of double exponential time complexity with respect to the linear size 
proof complexity measure Mlin. 

Proof. Suppose S has linear proof complexity n. Then there is a 
Herbrand set T all of whose literals have linear size n or less. When 
the size bound reaches n, clause linking will find a proof. There can 
be at most an exponential number of clauses generated within this 
size bound. The time to test them for satisfiability is at most double 
exponential. 

o 
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If one assumes that Davis and Putnam's method runs in expected 
polynomial time, the time is reduced to expected single exponential. 

Theorem 2.7.3 CLIN-D is of double exponential complexity with re
spect to the linear size proof complexity measure M1in • 

We note that this result also applies to linear-size bounded CLIN-D 
and applies to VR-resolvable clause sets, and probably extends to many 
connection methods. 

Theorem 2.7.4 Depth-bounded binary resolution has triple exponen
tial complexity with respect to the linear size proof complexity measure 
M1in . 

Theorem 2.7.5 Linear-size or subterm-size bounded binary resolution 
has a double exponential complexity with respect to the linear size proof 
complexity measure M 1in . For UR-resolvable clause sets, the bound is 
single exponential. 

Theorem 2.7.6 For UR-resolvable clause sets, linear-size or subterm
size bounded UR resolution has single exponential complexity with re
spect to the linear size proof complexity measure M1in . 

Theorem 2.7.7 Linear or subterm size clause enumeration has double 
exponential complexity with respect to the linear size proof complexity 
measure M 1in . If one assumes that Davis and Putnam's method runs in 
expected polynomial time, this is reduced to expected single exponential. 

Theorem 2.7.8 Subterm or linear size clause set enumeration has 
double exponential complexity with respect to the linear size proof com
plexity measure M 1in . 

Theorem 2.7.9 M atings has a double exponential complexity with re
spect to the linear size proof complexity measure M1in . 

Theorem 2.7.1 0 Model elimination has a triple exponential complex
ity with respect to the linear size proof complexity measure M 1in • 
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In general, with respect to this measure, linear or subterm-size 
bounded clause linking and linear or subterm-size bounded clause enu
meration methods have an advantage over all other methods, since 
they not only have a double exponential complexity, but can also take 
advantage of the fast performance of satisfiability algorithms. Clause 
linking also has the advantage of unification, which enumeration meth
ods lack. For DR-resolvable sets, linear-size bounded binary resolution 
and linear-size bounded DR-resolution are asymptotically the fastest, 
having a single exponential time bound. 

2.8 Sets with Large Literals 

We now attempt to find a measure for which resolution and other tra
ditional strategies perform well, to help explain their popularity. The 
measure we construct is somewhat artificial, corresponding to our intu
ition about the weaknesses of these traditional methods. However, this 
measure is reasonable for many small, toy problems, and does help to 
give us some insight. 

Definition 2.8.1 The literal count of a clause set S is LeEs ICI, where 
ICI is the number of literals in C. Thus the literal count of S is the 
total number of occurrences of literals in S. 

Consider clause sets whose literal count and duplication complexity 
is fixed, but the subterm size ssub(S) may vary. Intuitively, such clause 
sets have few literals and short proofs but large terms. We then may ask 
how the complexity of various strategies depends on the subterm size 
for such clause sets. We refer to this measure as duplication-bounded 
subterm complexity. 

We will need some results about literal counts for minimal unsatis
fiable clause sets. 

Theorem 2.8.2 In any minimal unsatisfiable set S of ground clauses 
with d elements, each clause has at most d - 1 literals. Also, there is 
an A-resolution refutation of depth at most d - 1. 
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Proof. Consider an A-resolution refutation of S in which no tau-
tologies are derived. Such a refutation must exist. Suppose a clause 
C in S has d (distinct) literals LI,L2, ... ,Ld. Let MI,M2, ... ,Md be 
the literals that resolve against L1, L2, ... , Ld, respectively; thus Mi is 
the complement of Li. Suppose Mi descends from a clause Ci in the 
in pu t set S. None of these Ci can be C, or else C would be a tautology, 
since it can resolve with itself. Since S has only d elements, for some 
i # j we have Ci = Cj. Thus Ci contains both literals Mi and Mj . 

Suppose Li resolves before Lj . The resolvent on Li will then contain 
both Lj (from C) and Mj (from Ci ), since we are doing A-resolution, 
which resolves predicate symbols in a fixed order. However, Lj and M j 

are complementary, so this resolvent is a tautology, contradicting our 
assumption that this proof contains no tautologies. 

To see that an A resolution refutation without tautologies can have 
depth at most d, consider a sequence DI , D2 , ••• , Dd , each Dk being a 
resolvent of Dk - l and some clause containing Mi. Reasoning as above, 
some Mi and Mj descend from the same input clause, and if Mi resolves 
first, then the resolvent will contain M j . But in this sequence of clauses 
Dk , the literal Mj will never resolve away before Dj is derived, since 
we are doing A-resolution. So DJ will contain both M j and Lj , and is 
therefore a tautology, contradiction. 

o 

Corollary 2.8.3 If S is a minimal unsatisJiable set of ground clauses 
with d elements, then the literal count of S is at most d( d - 1). 

That this is optimal to within a constant factor may be seen from 
the clause set 

PI 
--,PI , P2 

--,PI , --,P2 , P3 

--,PI , --,P2 , ••• , --,Pn - l , Pn 

--'Pn 

which is minimal unsatisfiable and has n + 1 clauses and literal count 
(n 2 + n + 2)/2. 
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Theorem 2.8.4 Consider clause sets S having bounded literal count 
and duplication complexity. For such clause sets, depth-bounded reso
lution has a polynomial dependence on ssub (S). 

Proof. Suppose the duplication complexity is bounded by d. By 
theorem 2.8.2, the depth of the proof need be no greater than d. Each 
depth of resolution can at most double the subterm size of the clauses, 
and so one needs only clauses having subterm size 2dssub(S) for the 
proof. Since S is of bounded literal count, the number of clauses that 
can be derived in depth d is bounded by some function of d and the 
literal count of S that does not depend on ssub(S). Since resolving two 
clauses takes work polynomial in their subterm sizes, the total work is a 
polynomial in ssub(S) times a function that depends only on d and the 
literal count of S. Since the duplication complexity of S and its literal 
count are kept constant, the total work has a polynomial dependence 
on ssub(S). 

o 

Corollary 2.8.5 For minimal unsatisfiable clause sets S having bounded 
duplication complexity, depth-bounded resolution has a polynomial de
pendence on ssub(S). 

Proof. This follows from the theorem and corollary 2.8.3. 
o 

This is relevant because many theorems on which provers are tested 
are minimal unsatisfiable clause sets, or only have a small number of 
clauses not needed in the proof. Furthermore, the proofs are often 
relatively short (or else the prover could not find them), implying that 
the duplication complexity is also small. Thus the conditions of the 
theorem and corollary, though restrictive, are reasonable for many of 
the theorems typically used to test theorem provers. 

Similar polynomial dependencies on the subterm size can easily 
be established for length-bounded resolution, depth or length-bounded 
CLIN-D, matings, model elimination, and connection methods. With 
respect to the linear size slin(s), one obtains an exponential depen
dence. 
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2.9 Unit Resolvable Clause Sets 

The fact that resolution is so often used in practice leads one to ques
tion why, in view of its often poor asymptotic complexity. We have just 
given one justification for this, in terms of duplication-bounded subterm 
complexity. We believe that another reason is that many proofs may be 
obtained purely by unit resolution, and for UR-resolvable clause sets, 
by theorems 2.6.7 and 2.6.8, subterm-size bounded resolution with sub
term factoring and subterm-size bounded UR-resolution with subterm 
factoring perform better than any other methods with respect to the 
subterm size measure Msub. We note that Horn sets always have UR 
proofs, and are very common. The version of resolution that is typ
ically implemented is linear-size bounded, not subterm-size bounded. 
But even linear size-bounded UR resolution has a complexity that is 
single exponential with respect to the linear proof complexity mea
sure Mlin for unit resolvable clause sets, better than any other method 
except UR-resolution. The subterm factoring operation becomes sig
nificant for the subterm size measure Msub; with respect to Msub, linear 
or subterm-size bounded UR resolution has a double exponential com
plexity even on unit resolvable clause sets, as the set SPQR of clauses 
shows. With subterm factoring, subterm-size bounded UR resolution 
has single exponential complexity with respect to the subterm size proof 
complexity measure Msub, on unit resolvable clause sets. 

All the other methods do not seem to be sensitive to the unit re
solvable property. That is, they seem to have the same behavior on 
unit resolvable sets (even using size-bounded search) as they do with 
respect to arbitrary sets. 

Even subterm-size bounded clause linking is double exponential 
with respect to the subterm or linear size proof complexity measure 
(if subterm factoring is used), so binary resolution and UR resolution 
on UR-resolvable sets have an advantage here, being single exponen
tial. If we assume the satisfiability test is polynomial on the average, 
subterm-size bounded clause linking is better, but still not as fast in 
the worst case. Length-bounded resolution is single exponential with 
respect to duplication complexity for UR-resolvable clause sets, by the
orem 2.5.38. Since UR-resolvable clause sets with small duplication 
complexity are common in toy problem sets, this may help to explain 
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the good performance of resolution there. For VR-resolvable clause 
sets, the proof for an instance-based method will be found by the unit 
simplification part of Davis and Putnam's method, so for clause link
ing and similar instance-based strategies, the propositional part will 
be polynomial once enough instances have been found. So even here, 
clause linking can compete with resolution if we cut off long runs of the 
propositional satisfiability procedure, but this would sacrifice complete
ness in general. If Davis and Putnam's procedure is called too early, the 
clause set will be satisfiable and in practice, such clause sets usually run 
quickly for Davis and Putnam's method. To make clause linking expo
nential on unit resolvable sets, with the loss of completeness, we can 
restrict Davis and Putnam's method to do only unit simplifications. In 
fact, these simplifications are done by clause linking before Davis and 
Putnam's method is even called as a rule anyway, and we often find 
proofs there. This gives something of a theoretical justification for why 
the unit rules are important for clause linking. 

So clause linking with a subterm size bound and subterm unifica
tion seems to extend subterm-size bounded resolution's good behavior 
on VR-resolvable clause sets relative to Msub to the general case, assum
ing good behavior from the propositional satisfiability test. Although 
matings is of single exponential complexity relative to the duplication 
complexity measure M dup , and also makes essential use of unification, 
it is double exponential relative to the subterm or linear size proof 
complexity measures, even for VR resolvable sets, and is therefore at a 
drastic disadvantage relative to VR resolution. 

2.10 Implications for Choice of Strategy 

When there are few instances needed for the proof but the literals are 
comparatively large, then the duplication proof complexity measure 
seems most appropriate. The best strategies then have exponential 
complexity; they are the following: subterm-size bounded clause link
ing, with subterm factoring; subterm-size bounded binary resolution, 
with subterm factoring; subterm size clause enumeration; subterm size 
clause set enumeration; and matings. 

When there are many instances and small literals with respect to 
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the subterm size measure (especially for highly non-Horn sets), then 
the subterm size proof complexity measure seems most appropriate. In 
this case, the best bound for any strategy is double exponential. The 
best strategies would seem to be the following: subterm-size bounded 
clause linking, with subterm factoring; subterm-size bounded binary 
resolution, with subterm factoring; subterm size clause enumeration; 
subterm size clause set enumeration; and matings. These are exactly 
the same strategies as above. 

Assuming that Davis and Putnam's method (or some other satisfi
ability test) runs in expected polynomial time, then the methods that 
have expected single exponential time with respect to the subterm size 
measure are the following: subterm-size bounded clause linking with 
subterm factoring, and subterm size clause enumeration. This shows 
a distinct advantage of clause linking with subterm factoring over all 
other non-enumerative methods considered, and shows the importance 
of using a size bound. Of course, clause linking also has the advantage 
over enumerative methods of using unification. 

When there are many instances and small literals with respect to the 
linear size measure, then the linear size proof complexity measure seems 
to be most appropriate. In this case, assuming that Davis and Putnam's 
method runs in expected polynomial time, the strategies running in 
expected single exponential time with respect to this measure are size
bounded clause linking with or without subterm factoring, and subterm 
or linear size clause enumeration. This shows a distinct advantage of 
size-based clause linking without subterm factoring, which is interesting 
because that is the only method that has been implemented, and it 
has often performed well in practice, even much better than resolution 
[LP92] on some problems. This analysis helps us to understand why, 
and for which types of clauses this is likely to occur. 

For unit resolvable sets (including Horn sets), when the literals 
needed are small but the proof may be long, then the subterm size 
and linear size measures seem most suitable. With respect to the for
mer, subterm size-bounded (binary and UR) resolution with subterm 
factoring have a single exponential complexity, and therefore are better 
than any other strategy listed above. For this, subterm factoring is 
essential. We gave in section 2.5 the set SPQR of Horn clauses where 
resolution (and UR resolution) generate literals having a subterm size 
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exponentially larger than necessary, and there can be a double exponen
tial number of unit clauses generated within this size bound, leading 
to a double exponential bound without subterm factoring. With re
spect to the linear measure, subterm or linear-size bounded (binary 
and UR) resolution without subterm factoring are of single exponential 
complexity. Clause linking and subterm size clause enumeration come 
close, but they can only reach expected exponential complexity, and 
this under the assumption that the used satisfiability procedure runs in 
expected polynomial time. This suggests also that if clause linking or 
enumerative methods are used, then they should employ special rules 
for unit clauses to improve their performance on unit resolvable sets. 

Another interesting class of clauses are those with small duplica
tion complexity and small numbers of clauses and literals but for which 
ssub(S) may be large. That is, as we keep the duplication complexity 
of S fixed, and keep the number of clauses and their number of literals 
fixed, and increase ssub(S) (or, equivalently, Msub(S)), as is done in 
SPQ' we can ask how the complexity of various strategies is affected. 
This aspect was discussed in section 2.8. Clause linking and enumer
ative strategies will be exponential (or worse) with respect to ssub(S), 
since they have a hard time generating large terms. Size-bounded res
olution will also be exponential with respect to ssub(S). However, it is 
not difficult to show that the following strategies are polynomial with 
respect to ssub(S): depth-bounded resolution, length-bounded resolu
tion, matings, CLIN-D, connection methods, and model elimination. 
In short, all of the traditional unification-based strategies do compar
atively well here. This is because these methods depend only on the 
propositional structure of proofs, and are not very sensitive to the sizes 
of terms produced by unifications (assuming terms are represented ef
ficiently in a directed acyclic graph representation). This shows that 
these strategies are good when the proofs are relatively short but the 
terms needed may be large, which agrees with common sense and ex
perience. However, this makes it more difficult to say which strategy is 
best in general, because the strategies that perform well with respect 
to term size, generally do not do well with respect to the linear or 
subterm size proof complexity measures. Also, of the strategies that 
perform well with respect to term size, only length-bounded CLIN-D, 
matings, and probably the connection methods are exponential with 
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respect to duplication complexity, and therefore are to be preferred. 
But these strategies do not perform well even for VR resolvable sets 
with respect to the subterm or linear size measures. 

A further interesting class of problems are VR-resolvable clause sets 
with small duplication complexity. We commented on these clause sets 
in theorem 2.5.38. We note that length-bounded VR-resolution and 
length-bounded binary resolution have reasonably good performance 
(single exponential) with respect to the duplication measure in this 
case, as do CLIN-D and matings. The subterm-size based enumerative 
methods also perform well here, assuming Davis and Putnam's method 
runs in polynomial time. 

We therefore have six different classes of clauses to consider: those 
with small duplication complexity M dup , those with a small subterm size 
measure Msub, those with a small linear size measure M1in , unit resolv
able sets, unit resolvable sets with a small duplication complexity, and 
clause sets having large term size and a small duplication complexity. 

We now discuss the overall performances of some of the strategies. 
Resolution is not single exponential complexity except in the unit re
solvable case, and for one of its variants with respect to the duplication 
complexity. However, the unit resolvable case is very common, making 
resolution often good. Note that smallest first (that is, size-bounded) 
search (as resolution is often implemented) helps to do many unit reso
lutions. Also, the fact that resolution uses unification is an advantage. 
Another good feature of resolution is its deletion criteria such as sub
sumption deletion, whose value does not appear in this analysis. 

Clause linking has a wide variety of asymptotic behaviors, depend
ing on the manner of search and the size bound used. However, with 
subterm-size bounded search and subterm factoring, it is never much 
worse than the best strategy, assuming good behavior from the propo
sitional satisfiability test. The one possible exception is for clause sets 
with small duplication complexities and large term sizes. It is also 
somewhat less efficient than binary and VR resolution on VR resolv
able clause sets. 

We also note that subterm-size clause enumeration seems to have a 
surprisingly good asymptotic performance, and therefore deserves fur
ther study, despite its lack of use of unification. Another promising 
enumerative method that involves semantics and orderings is the or-
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dered semantic hyper-linking strategy [Pla94a]' although it may have 
to be adapted to use subterm size to obtain good asymptotic behavior. 
One reason for the promise of this method is that it can be made goal
sensitive by the appropriate use of semantics. Recall that a method is 
goal-sensitive if every inference or instance used is related to the par
ticular clauses in the theorem being proved, as opposed to clauses that 
encode general axioms. 

Matings has an advantage over clause linking with respect to the 
duplication complexity measure, because it does not require the use of 
small subsets or the assumption that a satisfiability procedure runs in 
expected polynomial time. It also does not require subterm factoring. 

CLIN-D has an advantage over matings in that it can take advantage 
of efficiencies in Davis and Putnam's method. It works well (exponen
tial time) with respect to the duplication complexity measure, but for 
the subterm size measure, it is double exponential regardless of whether 
the satisfiability procedure runs fast. This makes it worse than clause 
linking, surprisingly. It seems that the duplication by combination re
ferred to in [Pla94b, Pla94c] is the problem here. With respect to the 
linear size measure, CLIN-D is double exponential regardless of whether 
the propositional test is fast. In general, CLIN-D is like matings and 
(probably) the connection methods of [Bib87] in its performance, we 
feel, and illustrates well their advantages and disadvantages with re
spect to other strategies. 

Model elimination never looks very good in this analysis. How
ever, it is a set of support strategy, and our analysis does not consider 
this property. Also, for Horn sets or unit resolvable sets, caching can 
improve the performance of model elimination, and we have not an
alyzed the performance of model elimination with caching for Horn 
sets (which are fairly common). The performance of model elimination 
with caching would probably be about the same as DR-resolution for 
Horn sets, but model elimination has the advantage of goal-sensitivity. 
Other methods (with caching) that would have the same advantages for 
Horn sets are the simplified and modified problem reduction formats 
[Pla82, Pla88]. 

The best strategies overall, when term sizes are not too large and 
assuming satisfiability can be done quickly on the average, are subterm 
size-bounded clause linking with subterm factoring and subterm-size 
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clause enumeration. For DR-resolvable sets, subterm-size bounded DR 
resolution with subterm factoring has a slight advantage. For clause 
sets with short proofs but large term sizes, traditional strategies such 
as resolution and matings have an advantage. It would be interesting 
to find strategies that perform well on all three classes of problems. For 
this, it appears that a combination of strategies will be required. It is an 
interesting problem to determine which mix of strategies or new strat
egy will perform well with respect to all of these measures. It currently 
looks like the following combinations are attractive: 1) Subterm-size 
bounded clause linking with subterm factoring, or subterm-size clause 
enumeration, together with 2) length-bounded CLIN-D, matings, or 
(probably) a connection method, for problems with large terms, to
gether with 3) subterm-size bounded DR-resolution with subterm fac
toring. These methods could simply be run in parallel, but it might 
make more sense to use clauses derived in one method as simplifiers 
for the other methods. This is one benefit of our complexity analysis, 
namely, it suggests which combinations of strategies to use to obtain 
good performance overall. Now one does not have to say that it is an 
arbitrary choice to combine DR resolution with some other method. 

So we see from this discussion that we obtain some fairly definite 
and strong preferences between strategies based on complexity con
siderations, and some suggestions for good combinations of strategies. 
Of course, it can be that for specific problems and small values of the 
complexity measures that these general conclusions do not always hold. 
There might be other strategies with good performance, too. 

Note that this analysis reveals features that were not evident from 
the mostly propositional analysis of [Pla94b, Pla94c]. We see, then, 
some of the advantages of going to a first-order framework. It would 
be interesting also to analyze some traditional deductive systems such 
as sequent style, Hilbert style, and other systems from a similar stand
point, for first-order formulas containing quantifiers. 
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2.11 

The Propositional and First-Order Complexity 

- Mpd Mp/ Mdup Msub 
Mpd - Mp/ poly(Mdup) [exp(Msub)] 
Mp/ exp(Mpd) - exp(Mdup) [dexp(Msub)] 
Mdup exp(Mpd) exp(Mp/) - exp(Msub) 
Msub exp(Mpd ) exp(Mp/) poly(Mdup) -

Table 2.1: Table of relations among complexity measures 

Relations among complexity mea
sures 

In the previous sections, we introduced several different complexity 
measures, and we analyzed the complexity of various theorem proving 
strategies with respect to these measures. In this section, we study the 
relationships among the complexity measures. These relationships al
low us transfer the complexity of a strategy with respect to one measure 
to complexities with respect to other measures. 

In Table 2.1, we list the relations among the four complexity mea
sures: depth measure (Mpd ), length measure (Mpz), duplication mea
sure (Mdup ), and literal size measure (Msub). We use exp to abbreviate 
"exponential" and dexp to abbreviate "double exponential", as before. 

An entry in row i and column j (i, j) denotes the worst case bound of 
the measure in row i with respect to the measure in column j. For exam
ple, entry (1,2) is exp(Mpd)' It means that the length measure is expo
nential with respect to the depth measure, that is, Mp/ = O(exp(Mpd)). 
All bounds in Table 2.1 are tight, except for those in square brackets. 
We now derive the entries in Table 2.1; we will include a worst case 
example when the tightness of a bound is not obvious. 

Theorem 2.11.1 For a set of first order clauses S, the length measure, 
duplication measure, and literal size measure of S are all exponentially 
bounded by the depth measure of S. All three bounds are tight. 

We prove theorem 2.11.1 by deriving the entries in the first column 
of table 2.1. For the first column, the depth measure is fixed, and we 
derive the worst case bounds for the other three measures. We construct 
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:- PI(X),P2(X), ... 'Pn(X), 
PI(S(S(X))) :- PI(X), 
P2(S(S(S(X))) :- P2(X). 
P3(S(S(S(S(S(X)))))) :- P3(X), 

Pn(S(S ... S(X))) :- Pn(X). 
PI (0). 
P2(0). 

Pn(O). 

Figure 2.1: An example of the common prime divider [Let93] 
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a binary resolution proof with minimal depth bound. In an extreme 
case, the proof corresponds to a tree of height Mpd and branching factor 
2. There are at most 2(pd+1) - 1 nodes in the proof, and at most 2pd leaf 
nodes in the tree. Every leaf node corresponds to an input clause. The 
length measure and the duplication measure are bounded by the total 
number of nodes and the number of leaf nodes in the tree, respectively. 
Thus entry (2,1), the length measure, is exp(Mpd). Entry (3,1), the 
duplication measure, is also exp(Mpd)' We derive the bounds of literal 
size by recursion. Assume the literal size of a clause at depth n is T( n), 
that is, a clause only has literals of size less than or equal to T(n). A 
literal can have M distinct variables, and after one step of resolution, 
the total size of the instances of these M distinct variables is always 
less than T( n). If a directed acyclic graph representation of terms is 
used, the maximal literal size of a clause at depth n + 1 is less than 
T(n) + T(n). Thus entry (4,1), which equals T(Mpd), is exp(Mpd)' If 
a linear representation of terms is used, the maximal literal size of a 
clause at depth n + 1 is bounded by T(n) * T(n), because a literal can 
have T( n) copies of a variable, which is instantiated to a term of size 
T(n). Thus the linear literal size measure is double exponential with 
respect to the proof depth. In Figure 2.1, the literal size measure is 
exponential with respect to to the proof depth, so the bound for entry 
(4,1) is tight. This is so because in order to find a proof, one needs 
to construct an X of the form sm(o) for an m that is exponential in 



150 The Propositional and First-Order Complexity 

n, but the proof depth (and length) is relatively small. The number 
of successors in the clauses of Figure 2.1 are given by successive prime 
numbers, and so such an X must be divisible by the first n primes. 

Theorem 2.11.2 For a set of first order clauses S, the depth mea
sure, duplication measure, and literal size measure of S are linearly, 
exponentially, and exponentially bounded by the length measure of S, 
respectively. All three bounds are tight. 

For the second column, the length measure is fixed, and we derive 
the upper bounds for the depth measure, duplication measure and lit
eral size measure. It is trivial to see that the depth measure is always 
less than the length measure. Thus entry (1,2), the depth measure is 
M p1 ' The duplication measure is exponential with respect to the proof 
depth measure, thus it is exponential with respect to the proof length 
measure. By the same argument, the literal size measure is also ex
ponential with respect to the proof length measure. Thus entry (3,2) 
and (4,2) are exp(Mpt). The binary counter clause set En shows that 
the exponential bound for the duplication measure is tight. Figure 2.1 
shows that the exponential bound for the literal size measure is tight. 

Theorem 2.11.3 For a set of first order clauses S, the depth measure, 
length measure, and literal size measure of S are polynomially, expo
nentially, and polynomially bounded by the duplication measure of S, 
respectively. All three bounds are tight. 

For the third column, the duplication measure is fixed. In some 
unsatisfiable instance set S' of an input clause set S, only Mdup copies 
of S are needed, and there are at most Mdup * slin(s) literals in S'. 
We can construct an A-resolution proof for S' in which one literal is 
resolved away at each level. The same A-resolution proof can be lifted 
to prove unsatisfiability of S. The A-resolution proof has a depth of 
at most Mdup * slin(s). The A-resolution proof has a length of at most 
exp(Mdup * slin(s)). Since A-resolution is a special case of binary res
olution, the depth measure and the length measure are polynomially 
bounded and exponentially bounded with respect to the duplication 
measure, respectively. Haken [Hak85] shows that an exponential num
ber of resolvents are needed for every resolution proof of the pigeonhole 
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length(O, 0). 
length(f(X), s(Y)) :- length(X, Y). 
length(g(X), s(Y)) :- length(X, Y). 
p(X) :- length(X, s(s(s( ... s(O) .. . )))). 
p(X) :- p(f(X)),p(g(X)). 
:- p(O). 
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Figure 2.2: Duplication measure is exponential with respect to literal 
SIze measure 

problem. The pigeonhole problem is a propositional problem, and its 
duplication measure equals the input clause size. Thus the bound of 
length measure with respect to duplication measure is tight. We now 
analyze the literal size measure. By theorem 2.2.19, the subterm size of 
an instance set S', ssub(S'), is bounded by IS'lssub(S), which is in turn 
bounded by Mdup * slin(s). Thus the subterm size measure Msub(S) of 
S is polynomial with respect to the duplication measure, that is, entry 
(4,3) is poly(Mdup). The linear literal size measure is exponential with 
respect to the duplication measure. 

Theorem 2.11.4 For a set of first order clauses S, the depth measure, 
length measure, and duplication measure of S are exponentially, double 
exponentially, and exponentially bounded by the literal size measure of 
S, respectively. The bound for the duplication measure is tight. 

For the fourth column, the literal size measure is fixed. In an unsat
isfiable instance set S' of input set S, the literal size of S' is Msub(S), 
and thus there are at most exp(Msub(S)) distinct literals. By the same 
argument in the last paragraph, an A-resolution of depth exp(Msub(S)) 
exists. Thus entry (1,4), the depth measure, is exp( Msub). Because the 
length measure Mpl is bounded by exp(Mpd) and Mpd is bounded by 
exp(Msub), Mpl is bounded by dexp(Msub). Whether the bounds for the 
depth measure and the length measure are tight is an open question. 
The duplication measure is bounded by the number of instances needed 
in a proof, which is less than the number of literals in S', thus entry 
(3,4) is exp(Msub). Figure 2.2 also shows that the bound in entry (3,4) 
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is tight, since one needs an exponential number of small ground clauses 
to obtain a refutation. 

Remarks: Note that the entries in Table 2.1 denote worst case upper 
bounds as opposed to analytical relations between complexity measures. 
Entry (i, j) does not usually have a direct relation with entry (j, i). For 
example, the literal size measure is exponential with respect to the 
depth measure, and the depth measure is also exponential with respect 
to the literal size measure. This occurs because the worst cases are 
achieved in different sets of first order problems. Although the bounds 
in Table 2.1 are tight, the composition of two bounds are not necessarily 
tight. For example, the duplication measure is exponential with respect 
to the length measure, which in turn is exponential with respect to 
the depth measure. However, the duplication measure is exponential 
instead of double exponential with respect to the depth measure. 

The relations in Table 2.1 allow us to compare different theorem 
proving strategies. Assume that a theorem proving strategy is a breadth 
first strategy with respect to complexity measure Yl and has complex
ity of !(Yd, and Yl is tightly bounded by g(Y2). We argue that the 
strategy is likely to have a tight complexity of !(g(Y2)) with respect 
to complexity measure Y2. We illustrate this by an example. Length
bound binary resolution is exponential with respect to the length mea
sure. The length measure is exponential with respect to the duplication 
measure. We now construct a set of first order problems S. Each prob
lem S in the set S contains the pigeonhole problem Pn of size n together 
with Sfg. The pigeonhole problem is propositionally unsatisfiable, so 
the duplication measure Mdup of S is IPnl. The minimal binary reso
lution proof length, i.e. the length measure, of S is exp(n), which is 
also exp(Mpd). Within the proof length of exp(Mpd), exp(exp(Mpd)) 
resolvents can be generated from C. Thus length-bound binary reso
lution has complexity exp( exp( Mpd )) on the problems in S. Similar 
constructions can be carried out for many other breadth first theorem 
proving strategies. The basic idea is to include in the input clauses a 
group that exhibits the complexity of !(Yd and another group that 
exhibits the complexity of g(Yd. 

Finally, we attempt to address the question which measure is best. 
Of course, the appropriate measure will vary with the application. How
ever, those measures not based on particular inference schemes seem 



of Theorem Proving Strategies 153 

better from a philosophical standpoint. We have to choose, then, be
tween the duplication complexity measure and two term size measures, 
linear and subterm size. The subterm size measure is better related 
to duplication complexity, and therefore is preferable to the linear size 
measure. The linear size measure has the advantage of permitting sim
pler implementations. Still, the most natural measures seem to be 
subterm size Msub and duplication M dup ' It is not clear which, if either, 
is better. Note that there are also other measures based on the Her
brand sets such as clause size (2 measures) and sum of clause sizes (2 
measures). With respect to clause size, we can easily show that many 
methods are double exponential, since we can have exponentially many 
clauses. With respect to the sum of clause sizes measure, we can easily 
devise theorem proving methods that are single exponential, since we 
have a linear number of clauses of small size. For the clause size and 
sum of clause sizes measures, it is better to use subterm size, as before. 
Duplication complexity seems better than sum of clause sizes, however, 
since it is smaller, but still permits an exponential theorem prover. 

For hard problems, the lengths of the proofs and the duplication 
complexity will likely be large. This means that even a method that 
is single exponential with respect to the duplication complexity will 
probably be too slow. However, on the other side, we mention that 
Andrews' matings prover is exponential with respect to the duplication 
complexity, but has found some fairly interesting proofs. The expla
nation seems to be that the expressive power of second-order logic, 
employed by this prover, permits shorter proofs and smaller amplifi
cations. Still, this may be an exceptional phenomenon. Also, hard 
theorems will probably involve many input clauses. This makes goal
sensitivity more important, to reduce irrelevant inferences, and makes 
it unlikely that the clause set will be Horn or UR-resolvable. The 
only chance that we have to obtain such hard proofs automatically, 
then, is to use methods that perform well with respect to the literal 
size measures Msub or M 1in • Even for complex proofs, it is conceiv
able that the sizes of the literals are still reasonably small, and so a 
method that is exponential with respect to Msub has a chance of being 
of practical value for such hard proofs. The only methods that are ex
pected single exponential with respect to Msub or M 1in , assuming that 
a propositional satisfiability test runs in expected polynomial time, are 
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subterm-size bounded clause linking with subterm factoring, subterm
size clause enumeration, or some other enumeration method such as 
ordered semantic hyper-linking [Pla94a]. It will be advantageous to 
choose goal-sensitive versions of these strategies. The enumerative ap
proach becomes even more feasible when there are equations, since then 
the enumerative methods only need to generate ground clauses that are 
in normal form with respect to a term-rewriting system. Since many 
ground clauses are not in normal form, this increases the sizes of the 
terms that can be generated. All in all, we feel that these several strate
gies, especially ordered semantic hyper-linking [Pla94a]' have the most 
long-term promise for a generally useful theorem prover. 

2.12 Conclusions and future work 

We see that much can be said about the complexities of various strate
gies on various kinds of input clauses. This can help to give insight into 
their performance in practice. However, this analysis does not take into 
account factors such as careful programming technique or the unusual 
distributions of problems that may arise in practice. Also, it does not 
consider all aspects of a strategy, such as the fact that model elimina
tion is a set-of-support strategy, or the benefits to be obtained from 
caching. The classification into exponential, double exponential, et 
cetera, is also coarse and could be refined, yielding additional insights. 
The assumption that Davis and Putnam's method runs in expected 
polynomial time is also open to question, although it seems plausible 
based on experience, and has been verified analytically for a number of 
reasonable probability distributions on formulas. One might also argue 
that we are estimating the average case performance of methods using 
a propositional satisfiability test, but the worst-case time of methods 
that do not. This places these other methods at an unfair disadvan
tage. However, Davis and Putnam's method often stops early when it 
detects satisfiability. Inference-based methods such as resolution and 
model elimination have to exhaust the search space in order to detect 
satisfiability, and this usually does not happen early. Therefore, there 
is some reason to believe that inference-based methods will have an 
average-case performance that is not much better than their worst-case 
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performance. There also seems to be no reason why the matings method 
should perform better on the average than in the worst case. Another 
issue related to the complexity of theorem provers is that truly powerful 
provers may need to use semantics, specialized rules of inference that 
were not considered here, and even human guidance. It is also possible 
that a more careful analysis may bring out other advantages and dis
advantages of strategies (and their refinements) that are not obvious 
here. We encourage others to fill in the gaps we have left. In addi
tion, this analysis can be extended to strategies with special rules for 
the equality predicate; for a start in this direction, see [PSK95]. Still, 
we believe that we have made a significant contribution. Especially as 
machines become faster and faster, asymptotic performance will playa 
larger and larger role, and constant factors of speed obtained by good 
programming technique or choice of programming language will become 
relatively less important. We hope that insights gained from this work 
will help to direct implementors into fruitful methods and combinations 
of methods. In addition, the many specific example clause sets given 
above to exhibit worst-case behavior of strategies may be useful in their 
own right as tests of the efficiencies of various strategies. 
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