

David A. Plaisted
Yunshan Zhu

The Efficiency of
Theorem Proving Strategies

The books in this series contribute to the long-range goal of understanding and
realizing intelligent behaviour In some environment. Thus they cover topics from
the disciplines of Artiflclallntelligence and Cognitive Science, combined also called
Intellectics, as well as from fields Interdisclplinarily related with these. Compu
tationallntelligence comprises basic knowledge as well as applications.

Da. rec:hnend. Oehlm
by Patricia S. Churchland and Terrence 1. SeJnowski

N.urolUll. Netze und Fuzzy-Syateme
by DetlefNauck, Frank Klawonn and Rudolf Kruse

Fuzzy-Cluatel'lllUllyae
by Frank Hoppner, Frank K1awonn and Rudolf Kruse

ElnfOhrunc In Evolution Alprlthm.n
by Volker Nissen

NeurolUll. Metze
by Andreas Scherer

Seh.n und dl. V.l'llrbeitunc Ylag.lierlnformatlonn
by Hanspeter A. Mallot

Betrlebawlrtach.ttllch. Anw.ndunpn d •• Soft Computlne
by Biethahn et aJ. (Ed.)

Fuzzyllteorl. und Stochaatlk
by Rudolf Seising (Ed.)

MultiobJecttv. H.urldlc Se.rch
by Pallab Dasgupta, P. P. Chakrabarti and S. C. DeSarkar

The EffIciency of lheol'llm ProvIne Stratect ••
by David A. Plaisted and Yunshan Zhu

Among others the following books were published
in the series of Artificial IntelUgence

Autom.ted lheol'llm ProvIne
by Wolfgang Blbel (out of print)

Fuzzy Seta and Fuzzy Loclc
Foundation of AppUcation - from a Mathematical Point of View
by Siegfried Gottwald

Fuzzy Syst.ma In Computer Sclenc.
edited by Rudolf Kruse, Jorg Gebhard and Rainer Palm

Automatiache SprllCherk.nnunc
by Ernst Giinter Schukat-Talamazzini

Deduktlve Datenbanken
by Annin B. Cremers, Ulrike Grlefhahn and Ralf Hinze

WI areprlHntatlon und Infel'llftZ
by Wolfgang Bibel, Steffen Holldobler and Torsten Schaub

David A. Plaisted
Yunshan Zhu

The Efficiency
of Theorem
Proving Strategies
A Comparative and Asymptotic Analysis

2nd, revised Edition

~
SPRINGER FACHMEDIEN WIESBADEN GMBH

1 sI Edition 1997
2nd Edition 1999

AII rights reserved
© Springer Fachmedien Wiesbaden 1999

Originally published by Friedr. Vieweg & Sohn VerlagsgeselIschaft mbH,
Braunschweig/Wiesbaden, in 1999

Vieweg is a subsidiary company of Bertelsmann Professional Information.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted, mechanical, photocopying or otherwise
without prior permis sion of the copyright holder.

http://www.vieweg.de

Cover design: Ulrike Weigel, www.CorporateDesignGroup.de
Produced by: Lengericher Handelsdruckerei, Lengerich
Printed on acid-free paper

ISSN 0949-5665
ISBN 978-3-528-15574-2 ISBN 978-3-663-07847-0 (eBook)
DOI 10.1007/978-3-663-07847-0

Contents

Preface VII

1 The Propositional Complexity of First-Order Theorem
Proving Strategies 1
1.1 Introduction. 1
1.2 First Order Logic and Refutational Theorem Proving 7
1.3 Search Space Formalism 8
1.4 Measures of Search Duplication 9
1.5 Analysis of Duplication for Various Strategies 13

1.5.1 Hard sets of clauses for the strategies 16
1.5.2 Hyper-resolution 22
1.5.3 PI deduction '" . . . 23
1.5.4 A-ordering. 24
1.5.5 Implications for term rewriting 27
1.5.6 Proof dags . . . 28
1.5.7 Other properties of clause sets . 29
1.5.8 All-negative resolution 29
1.5.9 All-negative resolution with ordering 31
1.5.10 A-ordering and proof dags 40
1.5.11 SLD-resolution .. 49
1.5.12 Set of support. . . 51
1.5.13 Model elimination. 52
1.5.14 Lemmas and caching 53
1.5.15 The MESON strategy 55
1.5.16 Problem reduction formats. 55
1.5.17 Clause linking. . . 56
1.5.18 Connection calculi .. 56

1.5.19 Caching
1.6 Preventing Unit Simplifications
1.7 Additional Hard Sets of Clauses
1.8 Discussion.....

1.8.1 Adequacy .
1.8.2 Extensions.

57
57
58
62
63
64

2 The First-Order Complexity
Proving Strategies

of First-Order Theorem

2.1 Introduction
2.2 Proof Complexity measures
2.3 Inherent complexities
2.4 Inference Based Measures .

2.4.1 Resolution Based Methods
2.4.2 Model Elimination

2.5 The Duplication Measure.
2.5.1 Clause Linking
2.5.2 Resolution Based Methods
2.5.3 British Museum Methods
2.5.4 Other Methods ...

2.6 The Subterm Size Measure .
2.6.1 Clause Linking ...
2.6.2 Resolution......
2.6.3 British Museum Methods
2.6.4 Other Methods .

2.7 The Linear Size Measure . .
2.8 Sets with Large Literals ..
2.9 Unit Resolvable Clause Sets
2.10 Implications for Choice of Strategy
2.11 Relations among complexity measures.
2.12 Conclusions and future work

Bibliography

Index

67
67
72
85
87
93
98

· 100
· 100
.119
· 123
· 125
· 127
· 128
· 131
· 132
· 134
· 136
· 138
· 141
· 142
· 148
· 154

157

164

Preface

This is the second and slightly revised edition of this book. A few errors
have been fixed, and some references to related work have been added.
I thank the readers for their comments on the first edition.

We analyze the search efficiency of a number of common refutational
theorem proving strategies on propositional and near-propositional prob
lems. Search efficiency is concerned with the total number of proofs
and partial proofs generated, rather than with the sizes of the proofs.
We show that most common strategies produce search spaces of expo
nential size even on simple sets of clauses, or else are not sensitive to
the goal. However, clause linking, which uses a reduction to proposi
tional calculus, has behavior that is more favorable in some respects,
a property that it shares with methods that cache subgoals. A strat
egy which is of interest for term-rewriting based theorem proving is
the A-ordering strategy, and we discuss it in some detail. We show
some advantages of A-ordering over other strategies, which may help
to explain its efficiency in practice. We also point out some of its com
binatorial inefficiencies, especially in relation to goal-sensitivity and
irrelevant clauses. In addition, SLD-resolution, which is of importance
for Prolog implementation, has combinatorial inefficiencies; this may
suggest basing Prolog implementations on a different theorem proving
strategy.

We also develop techniques for studying the asymptotic complexity
of first-order theorem provers. This permits an analytic comparison of
the worst-case performances of various theorem proving methods. We
show that the speeds of various well-known methods range in complex
ity from singe to quintuple exponential with respect to various natural
measures of the hardness of the input. This study reveals some of the
efficiencies and inefficiencies of known methods, and also helps to sug
gest new strategies and combinations of strategies with good complexity
properties.

Chapters 1 and 2 are completely independent of one another. The
work in Chapter 1 was done while the first author was on sabbatical
and leave of absence at the Max Planck Institute in Saarbriicken, Ger
many. This work was partially supported by UNC Chapel Hill and by
the National Science Foundation under grant number CCR-9108904.

Vlll Preface

A short version of Chapter 1 appeared at the Twelfth Conference on
Automated Deduction in Nancy, France, June - July, 1994. A longer
version appeared in [Pla94cJ. Portions of Chapter 1 also appeared in
[PA96J. The work in Chapter 2 was jointly done by both authors and
was partially supported by UNC Chapel Hill and by the National Sci
ence Foundation under grant number CCR-9627316. This book was
typeset by the first author using Jh\TEX and BIBJEX. Thanks are due
to Sid Chatterjee for explaining xfig and embedded postscript.

Chapter 1

The Propositional
Complexity of First-Order
Theorem Proving Strategies

Many shall run to and fro, and knowledge shall be
increased.

Dan. 12:4

1.1 Introduction

The efficiency of a theorem prover is more directly influenced by the
total number of inferences performed before a proof is found than by
the size of the final proof. In general, in the field of automated deduc
tion for full first-order logic, there has been a great deal of attention
devoted to the completeness of strategies but little to their efficiency,
in the sense of the total work expended in the search for a proof. The
main efficiency considerations to date have to do with the times needed
by particular implementations to find proofs of particular example the
orems, or with the efficiencies of decision procedures for specialized
theories. Of course, there has also been work on the efficiencies of low
level operations employed by theorem provers (such as unification). It
is informative (and fun) to evaluate a prover by running it on a series

2 The Propositional and First-Order Complexity

of examples, but this could well be supplemented by analytical results.
To this end, a theoretical study would be useful. It would be nice to
know something about the behaviors of proposed new strategies with
out having to read and understand papers about them or having to run
them on examples. Theoretical measures of search space size would
permit this. Such measures would also make it easier to weed out bad
strategies early and would stimulate the development of good ones.
There is more at issue than just a quantitative measure of performance
- analytical measures reveal something about how a strategy works,
and how it does subgoaling. This gives some insight into the strategy.
A theoretical approach could also help to pinpoint problem areas and
weaknesses in a method and lead to improvements. In general, theory
does not replace experiment but it does supplement it, and provides
insights that might otherwise be missed. Theory tends to make gen
eral statements and to be machine-independent, whereas experiment
tends to deal in specifics and to be machine-dependent. This paper is
an attempt to initiate (or further) a theory of the search efficiency of
automated theorem proving.

In sum, we are interested in the sizes of the search spaces produced
by clause form refutational theorem proving strategies for first-order
logic. This interest is different from that of most logicians who are
interested in provability or the length of proofs. For some examples of
the latter, see [CR79, Hak85, Urq87, Ede92]. The paper [Let93] studies
how accurately the length of a derivation reflects the actual complexity
of a proof. By the search space size we mean the number of proofs
and partial proofs. This latter measure is more relevant for the effi
ciency of theorem provers than the size of a minimal proof. There has
been very little work on search space size. The paper [KBL93] shows
that many refinements of resolution do not increase a certain measure
of search space size by more than a factor of four, but does not com
pare refinements with one another. Their paper considers monotone
refinements of resolution; these do not allow deletion operations such
as deletion of subsumed clauses. However, the results are otherwise
very general. We demonstrate some surprising and little appreciated
inefficiencies of many common strategies, which may help to explain
their poor performance on some kinds of problems. We also discuss
the clause linking method [LP92] and methods that cache subgoals and

of Theorem Proving Strategies 3

show that they overcome some of these limitations. We present some
examples where resolution has better performance. These analyses are
interesting because they do not depend on particular machine archi
tectures or data structures used to implement strategies, and are thus
of a more universal nature. We only consider clause form refutational
theorem proving methods for first-order logic; it would be interesting
to extend this analysis to Hilbert-style, sequent-style, semantic tableau,
and other methods. We emphasize Horn clauses, which are common
in practice. We analyze the behavior of strategies on propositional
Horn sets as well as giving some first-order clauses sets with a similar
behavior.

We believe that our theoretical results are reflected in practice, both
for strategies and their refinements. For example, we show that negative
resolution on Horn sets is inefficient theoretically; this is also frequently
true in practice. As a result, one can expect some practical benefit from
this work. It may lead to the development of strategies that are more
efficient in practice, as well as helping to reveal the comparative value
of refinements to strategies. For example, under some circumstances,
ordering predicate symbols improves the efficiency of resolution, and
in other cases, it significantly degrades performance. This analysis
also highlights the efficiency to be gained in model elimination and the
MESON strategy [Lov78] by unit lemmas and caching, which reduce
exponential behavior to polynomial behavior for Horn clauses. Also, we
feel that an analytical approach will help to point out some underly
ing problems in the field, which need to be addressed before mechanical
theorem provers can be reliable assistants to human mathematicians. A
failure to address these issues can only be detrimental, as users become
frustrated with the performance of their provers and don't understand
the reasons for the inefficiencies. The kinds of problems where resolu
tion and similar methods perform well are in many cases Horn clause
problems, or problems of a similar nature; these are also the kinds of
problems for which the theoretical analysis indicates good behavior (as
long as goal-sensitivity is not important). It is on such Horn clause
problems that many of the publicized successes of resolution in solv
ing open problems, have occurred. This may give an impression of the
power of existing theorem provers that does not correspond to their
performance on the types of problems more likely to be encountered by

4 The Propositional and First-Order Complexity

a typical user.
Some of these results are particularly interesting because of their im

plications for neighboring areas of research. We discuss theorem proving
methods based on term-rewriting, which correspond to the A-ordering
refinement of resolution for propositional logic. Term-rewriting is of in
terest because it is often very efficient on pure equational problems. We
show that from a theoretical standpoint, A-ordering has some signifi
cant advantages over other strategies, although it also has some severe
problems, especially if the ordering is not chosen properly. Moreover,
a good ordering can be hard to find: we give some evidence in sec
tion 1.5.10 that it is not always possible to choose an ordering that is
natural, goal-sensitive, and efficient, even for unsatisfiable clause sets.
This suggests that it may be difficult in general to obtain efficient goal
sensitive term-rewriting based theorem provers for first-order logic, and
that other methods may have to be used. Giving up goal-sensitivity
seems like a high price to pay, although it is conceivable that one could
prove theorems efficiently without considering the goal. Also, we give
a set of clauses for which A-ordering, even with a good ordering, gen
erates an exponential number of clauses. Turning our attention now
to logic programming, we show that SLD-resolution [Ll087] also has
severe inefficiencies in some cases. Since SLD-resolution is the basis for
logic programming implementations, this result may suggest the pos
sibility of basing Horn-clause logic programming implementations on
other theorem proving strategies.

Furthermore, this work highlights what we feel is a dilemma of theo
rem proving, namely, that most strategies are either inefficient on Horn
clauses or are not sensitive to the theorem being proved. For hard
problems, it seems essential to have a strategy that works backwards
from the theorem to try to find a proof. Although some fairly hard
theorems can be proved without backward reasoning, it seems unlikely
that a strategy that simply combines general axioms will make much
progress, in general. However, for Horn clauses, strategies that work
backwards tend to be highly inefficient, and many problems consist
largely of Horn clauses. The author has been aware of this problem
for some time, and has developed some strategies to avoid this prob
lem. But our impression is that few in the field appreciate this issue
properly. Even the strategies that overcome this problem have addi-

of Theorem Proving Strategies 5

tional problems of their own. The clause linking strategy of [LP92] is
a back chaining strategy that is efficient on Horn clauses but some
times needs to retain instances of more general clauses. Clause linking
with semantics [CP94] is efficient on Horn clauses and makes use of
semantics, but sometimes needs to enumerate ground terms, which we
would also like to avoid. Also, the base method used for clause linking
with semantics does not involve unification. Despite this, its notable
successes on certain hard problems tends to confirm our theoretical
considerations. We would like to find a back chaining strategy that is
efficient on Horn clauses, based on unification, and still always permits
instances to be deleted. Some such strategies exist; they are the ME
SON strategy, model elimination [Lov78]' and the simple and modified
problem reduction formats [Pla82, Pla88], all with caching. However,
of these, either caching of unit lemmas and subgoals is not complete
for first-order logic, as for the first two, or the strategies have proposi
tional inefficiencies for non-Horn problems, as for the second two. For
the MESON strategy and model elimination, if caching of non-unit
lemmas and subgoals is done, then the efficiency on Horn clauses is
lost.

6 The Propositional and First-Order Complexity

My prover can prove
Fermat's last theorem
automatically.

But what is its

asymptotic

of Theorem Proving Strategies 7

1.2 First Order Logic and Refutational
Theorem Proving

We assume the standard definitions of propositional and first-order
logic. For a discussion of first-order logic and theorem proving strate
gies see [CL73, Lov78, Bun83, WOLB84J. We restrict our attention to
clause form first-order refutational theorem proving. A term is a well
formed expression composed of variables and function and constant
symbols, such as, f(x,g(y, c)). An atom is a predicate symbol, possibly
followed by a list of terms. For example, P and Q(a, f(x)) are atoms. A
literal is an atom or an atom preceded by a negation sign. For example,
-,P(b) is a literal. A literal is called positive if it lacks a negation sign
and negative if it contains a (single) negation sign. A clause is a set of
literals, signifying their disjunction. Thus {P, -,Q} is a clause signifying
P V -,Q. Variables in a clause are assumed to be implicitly universally
quantified. Thus the clause {P(x), -,Q(x)} means (\lx)(P(x) V -,Q(x)).
A clause is positive if all of its literals are positive, and negative if all of
its literals are negative; often we say all-negative for emphasis. A Horn
clause is a clause having at most one positive literal. Thus { -,P, -'Q, R}
is a Horn clause. Such clauses are commonly used in Prolog programs.
A set of clauses signifies the conjunction of the clauses in the set. For
example, the set {{ -,Q(x), P(x)}, {-,P(y), Q(y)}} signifies the formula
(\Ix)(\ly)((-,Q(x) V P(x)) 1\ (-'P(y) V Q(y))). Thus, a set of clauses
represents a quantifier-free first-order formula in conjunctive normal
form. It is known that any first-order formula can be converted to
this form efficiently in a satisfiability-preserving manner. The theorem
proving problem (in this refutational format) is to decide if such a set
of clauses is unsatisfiable. The general problem is only partially decid
able. A number of strategies have been developed to partially decide
this property. We are interested in comparing their efficiency. We say
a strategy is complete if it correctly reports whenever a set of clauses is
unsatisfiable but may fail to terminate if the set of clauses is satisfiable.

A literal M is an instance of a literal L if M is obtained from L by
replacing variables by terms in a systematic way, that is, all occurrences
of the same variable are replaced by the same term. Thus P(J(a), f(a))
is an instance of P(x, x). We similarly define what it means for a clause

8 The Propositional and First-Order Complexity

D to be an instance of a clause C. We define the operation of unit sim
plification as follows: Suppose we have a unit clause {L} and another
clause {Ml' ... , Mn}, where Land Ml are complementary. Then, the
clause {Ml' ... , Mn} can be deleted and replaced by {M2, ... , Mn}. This
extends to first-order logic; in that case, we require that Ml be an
instance of the negation of L.

We also define pure literal clause deletion as follows: Suppose 5
is a set of clauses and C is a clause in 5. Suppose L is a literal in
C and there is no literal M in any clause of 5 such that L and the
complement of M are unifiable. Then L is said to be pure. Also, in this
case, 5 - {C} is unsatisfiable iff 5 is. So, pure literal clause deletion
is the operation of deleting such clauses from 5. This may cause other
literals to become pure. Sometimes all of 5 can be deleted by repeated
pure literal clause deletion. In this case, 5 is satisfiable.

We also define subsumption. In the propositional setting, a clause
C subsumes D if C is a subset of D. We say C properly subsumes D
if C is a proper subset of D. In the first-order setting, we say that C
subsumes D if C has a (substitution) instance that is a subset of D.
Note that if C subsumes D, then C logically implies D. If C is derived,
then one can often simplify clause sets by removing subsumed clauses
D without losing completeness.

1.3 Search Space Formalism

We formalize theorem proving strategies as directed graphs. Formally,
a theorem proving strategy is a 5-tuple < 5, V, i, E, u > where 5 is a set
of states, i maps the input clauses to a set of states, E is a set of edges
(pairs of states), and u maps 5 to {True, False}. Each state s is labeled
with a set label (s) of elements from some underlying set V of structures
(such as clauses or chains). If an edge (s, t) is in E, this means that t
is a possible successor state to s. Thus, (5, E) is a directed graph. We
require that no two distinct edges (SI, t1), (S2' t2) have tl = t2. Thus the
graph is a set of trees. Also, u is an unsatisfiability test; u(s) is True
if the state s corresponds to a proof of unsatisfiability. We say such a
strategy is complete if for all sets R of clauses, if R is unsatisfiable then
there exists a path from some element of i(R) to a state s such that u(s)

of Theorem Proving Strategies 9

is True. We say such a strategy is sound if R is unsatisfiable whenever
there is a path from some element of i (R) to a state s such that u(8) is
True. A strategy is linear iffor all 8 in S, there is a unique t in S such
that there is an edge from 8 to t in E. The intention of this definition is
that i and u are computable and of low complexity. Let FM be the set
of ordered pairs {(8, {t : (8, t) E E}) : 8 E S} for a strategy M. Thus,
FM(8) is the set of successors of a state 8. We require that FM be a
function, in the sense that if the labels of 81 and 82 are the same then
the sets of labels of their successors should also be the same. (Recall
that each state is labeled with a set of elements of V.) Also, we intend
that FM should be computable and of low complexity. Often we omit
V and write the strategy as a 4-tuple < S, i, E, u >.

As an example, we formalize resolution in this way. For this, we
have the 5-tuple < S, V, i, E, u > where each state in S is labeled with a
finite set of clauses, V is the set of all clauses over some set of predicates
and function symbols, i (R) = {R} for all R, and (8, t) is in E if t is 8
together with all resolvents of clauses in 8. Thus resolution is a linear
strategy, in this formalism. Finally, u(8) = True iff the empty clause
is in label(8). Now, resolution formalized in this way is complete, since
if R is unsatisfiable, there is a resolution proof of the empty clause
from R. Also, resolution is sound. In contrast, model elimination is
not linear in this formalism. For model elimination, the labels of the
states consist of single chains. Here i(R) is a set of states, one for each
clause in R, each state labeled with a singleton set containing a single
chain. Also, (8, t) is in E if the chain in the label of t is obtained by
a permissible operation (extension, reduction, or contraction) from the
chain in the label of 8. Thus, strategies that are conventionally thought
of as linear, become non-linear in this framework, but strategies that
are non-linear like resolution become linear in this framework.

1.4 Measures of Search Duplication

We now define some measures of search space duplication for such
strategies. For this, we assume that R is a set of propositional clauses,
for simplicity, although these ideas can be lifted to first-order logic. We
can think of a search space G =< S, V, i, E, u > as a function mapping

10 The Propositional and First-Order Complexity

a set R of clauses to a graph G(R) representing the search space for R.
For this, we define an initial state to be an element of i (R) and a final
state to be a state s such that u(s) = True. Thus the task of the the
orem prover is to find a path from an initial to a final state. We say a
state s is reachable from R if there is a path from some element of i (R),
to s. We are only interested in the nodes s that are reachable from R.
Also, we are only interested in edges in E that occur on some such path.
So, we define S(R) to be the set of nodes reachable from R. We define
E(R) to be the set of edges in E that occur on some path of reachable
states. Also, we define G(R) to be the graph < S(R), E(R) >. Let ITI
be the number of elements in a set T. Then, we are interested to know
how IS(R)I depends on the length c(R) of R, represented as a string of
characters. For example, is IS(R)llinear in c(R), polynomial in c(R),
or exponential in c(R)? Also, we are interested in the structure of the
states. Recall that S is a set of states, each labeled with a set of struc
tures indicating lemmas or partial proofs. We are interested in how
big these sets of structures can become, because this is a meaningful
measure of search complexity. Thus, the most meaningful measure of
search complexity is the sum, over all s in S(R), of Ilabel(s)l. Let us
call this measure IIG(R)II, and refer to it as the total duplication for R.

To further refine this measure, we consider three other measures: 1.
The maximum length of a path in G(R). 2. The maximum size of a
subset of S(R), no two elements of which are on the same path. 3. The
maximum of Ilabel(s) I for all s in S(R). We call the first, the duplication
by iteration, the second, the duplication by case analysis, and the third,
the duplication by combination. The intuition for this is that the length
of a path represents the number of times that search must be iterated.
Also, each path represents a case that must be considered in the search,
so the second measure indicates the number of cases there are. The
third measure concerns the sizes of the labels of the states. If the sizes
of the labels are large, then there must be many elements of V in the
same state label. However, in common propositional strategies, the
elements of V are constructed from the predicates appearing in the
input clauses. This means that there must be many combinations of
these predicates, hence the term duplication by combination.

For each measure, we are interested in whether it is a constant,
polynomial, or exponential in c(R). We are also interested in the size

of Theorem Proving Strategies 11

ofthe total duplication IIG(R)II. It is not difficult to show that IIG(R)II
is bounded by the product of these three measures. To see this, we note
that G(R) is a tree. Each tree is a union of a set of paths from the
root to a leaf. We can thus identify each state of G(R) with a pair
(path, position) where the position tells the distance from the root. We
thus have that the number of ordered pairs (s, v) such that v E label (s)
is equal to the number of triples (path, position, v) where v E label(s)
for s the state corresponding to (path, position). Thus the number of
such ordered pairs (s, v) is bounded by the product of the number of
paths, the length of the longest path, and the number of elements in the
largest label. But the number of such ordered pairs is just IIG(R) II and
the product is just the product of the three measures of duplication.
This shows that the total duplication is bounded by the product of
duplication by iteration, combination, and case analysis.

We say the duplication by iteration for R is constant if the duplica
tion by iteration is bounded. We say the duplication by iteration for R
is linear if the ratio of the duplication by iteration to c(R) is bounded.
We say it is polynomial if the duplication by iteration is polynomial in
c(R). We say it is exponential ifthe duplication by iteration is exponen
tial in c(R). Similarly, we can define what it means for duplication by
combination and case analysis to be constant, linear, et cetera. We also
define in this way what it means for the total duplication to be linear,
et cetera. We say a strategy has polynomial behavior if all three kinds
of duplication are polynomial, or equivalently, if the total duplication
is polynomial. We say a strategy has exponential behavior if the total
duplication is exponential, or equivalently, if one of the three kinds of
duplication is exponential.

If a strategy is linear, then a round is an edge in E(R). The rounds
are ordered; the first round is the edge of the form (i(R), s), the second
round is the edge of the form (s, t), and so on, so the edges are ordered
by their distance from i(R). Sometimes we use a similar terminology
for non-linear strategies. It is often useful to discuss the behavior of
the rounds in order to analyze a strategy.

12 The Propositional and First-Order Complexity

I've developed a

new strategy! The

completeness proof is

contained in this

400 page monograph! Have you run it on
any examples?

Have you analyzed its

of Theorem Proving Strategies 13

1.5 Analysis of Duplication for Various
Strategies

We are interested in determining the degree of duplication for various
strategies and their refinements. In this way we obtain the following
chart. This chart shows, in addition to the search space measures for
each strategy, whether the strategy is goal sensitive. A strategy is
goal sensitive for Horn clauses if each inference depends on a negative
Horn clause; this means that some kind of backward chaining from
the goal clauses is being done. In logic programming applications, one
considers the negative clauses as goals or queries, and we adopt the
same convention here. This seems to be true of many mathematical
theorems as well as logic programs. Of course, there is no intrinsic
reason why negative literals should be treated differently than positive
literals in a more general context. If a strategy G is goal sensitive, then
G(R) will be empty for sets R of Horn clauses containing no all-negative
clauses. We also indicate the search depth; this is the maximum length
of a path in the search space from an initial to a final state. This
indicates the depth at which a proof can be found. This differs from
duplication by iteration; duplication by iteration considers essentially
the maximum number of rounds of inference that can be done, whether
or not a proof is found. This could conceivably be larger than the search
depth (for example, if the set of input clauses is satisfiable or if we chose
the wrong path to search). Presumably, the prover will not continue to
search beyond nodes s for which u(s) = True. Thus, in some situations,
search depth may give better information than duplication by iteration.

The chart is based on propositional Horn clauses. Horn clauses are
interesting because they correspond to a derivation of a fact (atom)
from a collection of facts (atoms), and such derivations are common.
Horn clauses as a result appear frequently in sets of clauses seen by
theorem provers. In addition, Horn clauses are useful for studying how
a theorem prover performs subgoaling. Such clause sets are decidable
in linear time [DG84]. However, it is conceivable that one could do even
better than that. One may not even have to look at all the input if a
goal-directed method is used; only the clauses that are in some sense
relevant to the goal need to be considered. This could be relevant if

14 The Propositional and First-Order Complexity

there are thousands of input clauses and if many queries are given to
the same database of clauses. In addition, our results are transferrable
to certain first-order clause sets, as we will show. It is instructive at
the beginning to give the simplest sets of clauses illustrating the var
ious behaviors. Another reason for the interest in propositional Horn
clauses is because of the dramatic differences they reveal between differ
ent strategies, often strategies that differ in fairly small and seemingly
insignificant ways.

We would like to emphasize that the functions in this chart are
upper bounds, valid for all propositional Horn sets. In addition, the
bounds are tight, meaning that there are propositional Horn sets for
which these bounds are achieved. Since we give several specific sets
of clauses below, the reader may get the impression that we are only
measuring the search behavior for these sets of clauses. This is an
incorrect impression. These clause sets are only used to show that the
bounds are tight.

Also, we are not considering which search method is used, whether
depth-first, breadth-first, best-first, or some other search method. We
only consider the total size of the search space. It's possible that a
very good search method could lead to better bounds. However, we
are not aware of any search method that can improve on the bounds
given below. In particular, breadth-first search and depth-first iterative
deepening [Kor85, ST85] should explore a portion of the search space
having the same size as that indicated here. That is, if any of the
bounds are exponential, these search methods will explore an exponen
tial amount of the search space. Also, for theorem proving strategies
having exponential search depth, any search method will (sometimes)
explore an exponential amount of the search space.

The following abbreviations are used in this table: hyper-res means
hyper-resolution, ord means ordering the literals, Prded means P1-

deduction, 3-lit means 3-literal clauses, res means resolution, A-ord
means A-ordering, neg means negative, g.o. means good ordering, b.o.
means bad ordering, supp means support, ME means model elimina
tion, lemm means lemmas, cach means caching, sprf means the simpli
fied problem reduction format, mprf means the modified problem re
duction format, clin means clause linking, f. means forward, b. means
backward, and conn means a connection calculus.

of Theorem Proving Strategies 15

Search Case Goal
Strategy Depth Combination Iteration Analysis Sensitive

hyper-res linear linear linear 0(1) no
hyper-res, ord linear linear linear 0(1) no
Pt-ded linear expo linear 0(1) no
Prded, 3 lit linear linear linear 0(1) no
Pt-ded, ord neg linear linear linear 0(1) no
res, A-ord linear expo linear 0(1) no
all-neg res linear expo linear 0(1) yes
all-neg res, g.o. linear expo ? 0(1) yes
all-neg res, b.o. expo expo expo 0(1) yes
res, neg supp linear expo linear 0(1) yes
ME expo 0(1) expo expo yes
ME, unit lemm linear expo linear 0(1) yes
ME, unit lemm, cach linear linear linear 0(1) yes
MESON expo 0(1) expo expo yes
MESON, unit lemm, linear linear linear 0(1) yes

cach
sprf, no cach expo 0(1) expo expo yes
sprf, cach linear linear linear 0(1) yes
mprf, no cach expo 0(1) expo expo yes
mprf, cach linear linear linear 0(1) yes
din, f. supp linear linear linear 0(1) no
din, b. supp, linear linear linear 0(1) yes
f. conn. linear linear linear 0(1) no
b. conn. expo 0(1) expo expo yes

We can make some general observations about this table. The back
ward chaining strategies are goal-sensitive, but are mostly inefficient.
Forward chaining strategies, though efficient for Horn clauses, are not
goal-sensitive. All of the strategies that are goal sensitive have expo
nential duplication, except for the simplified problem reduction format
with caching, the modified problem reduction format with caching, and
clause linking with backward support. MESON and model elimination

16 The Propositional and First-Order Complexity

with caching and unit lemmas have this property, but these are not com
plete for general first-order clauses. A recent implementation of model
elimination and unit lemmas with caching is described in [AS92]. Note
that some refinements can be very damaging to a strategy. For exam
ple, ordering negative literals can severely degrade the performance of
negative resolution.

These results are valid for sets of Horn clauses. We might consider
a more general set of clauses, namely, those for which a renaming of
predicate symbols produces a Horn set. For such clauses, none of the
results given above are any better, and many of the results are much
worse. For example, PI deduction and hyper-resolution can be made as
bad as all-negative resolution, since we can choose to reverse the signs
of the literals, making PI deduction and hyper-resolution simulate all
negative resolution. We believe that the behavior of the simplified
and modified problem reduction formats degrades in a similar way.
However, clause linking still has only linear duplication of search. This
sets it apart from all other strategies considered, but the reason is that
unit simplification is built in to this strategy. Without this, it might
not have such good behavior either. And of course, other strategies
with unit simplification added would have this good behavior also on
unsatisfiable Horn sets. However, satisfiable Horn sets are more of a
problem for the strategies other than clause linking since clause linking
has a model-finding approach to detecting satisfiability that doesn't
seem to fit into the other strategies given here. One can show that the
model-finding part of Davis and Putnam's method will always succeed
in polynomial time for satisfiable propositional Horn sets [GU89].

1.5.1 Hard sets of clauses for the strategies

We now indicate how the above results were derived. For this we con
sider the sets of clauses S~, S~, and S~ defined as follows. Note that
S~ is unsatisfiable but S~ and S~ are satisfiable.

Let S~ be the set of n + 2 clauses {{,PI"P2 , ... "Pn ,P}, {Pd,
{P2 }, ... , {Pn }, {,P}}. We sometimes write clauses in Prolog format;
a clause {P, ,PI, ... , ,Pn } is written as P : - PI, ... , Pn . A clause
{,PI, ... , ,Pn } is written as : - PI, ... , Pn • Let S~ be the following
clauses, written in Prolog format for readability:

of Theorem Proving Strategies 17

goal clause ;- Pi,n

type 1 clauses Pi,J ; - Pi+1,j, Pi,j-b l~i<j~n

Pi,J ; - Qi+i,J' Qi,j-i, l~i<j~n

Qi,J ; - Pi+i,J' Qi,J-i, l~i<j~n

Qi,J ; - Qi+i,J' Pi,j-i, l~i<j~n

type 2 clauses p..
',' ; - Pi,i+n/2, i ~ n/2

Qi,i ; - Qi,i+n/2, i ~ n/2
p..
',' ; - Pi- n/2,i, i > n/2

Qi,i ; - Q i-n/2,i, i > n/2

The following picture should help to illustrate the structure of S~.
The type 2 clauses are not shown.

P2,n

/QI"-I~ /Q2,. ~
Pi ,n-2 P2,n-i

Qi,n-2 Q2,n-i

18 The Propositional and First-Order Complexity

We can think of backward chaining theorem proving strategies on this
set of clauses as ways of moving P-pebbles and Q-pebbles around on
this graph. Initially, there is a P-pebble on the (1, n) vertex. At each
step, we are permitted to remove a pebble. If we remove a P pebble
from vertex (i,j), we must either add two P pebbles or two Q pebbles
to the two vertices (i,j - 1) and (i + 1,j) below. If we remove a Q
pebble, we must add a P pebble and a Q pebble to these vertices. Note
that the parity of the number of Q pebbles never changes unless some
Q literal is generated in two or more ways. Later we will formalize this
pebbling idea in a more general context.

Let S~ be the following clauses, in Prolog format:

goal clause : - Po, Qo

type 1 clauses Pi : - Pi+l, Pi+2 , 0 ~ i < 2n - 2

Pi : - Qi+l' Qi+2' 0 ~ i < 2n - 2

Qi :- Pi+1,Qi+2, 0::; i < 2n - 2

Qi : - Qi+l' Pi+2, 0 ~ i < 2n - 2

type 2 clauses P2n- 1 : - Pn - 1

P2n :- Pn

Q2n-l : - Qn-l

Q2n : - Qn

The following picture should help to illustrate the structure of S~.
As before, the type 2 clauses are not shown.

of Theorem Proving Strategies 19

Here we can think of backward chaining strategies as methods of peb
bling this graph. Whenever a pebble is removed from vertex i, pebbles
must be added to vertices i + 1 and i + 2. As before, there are P pebbles
and Q pebbles and the parity of the number of Q pebbles is preserved
unless a Q pebble is generated in two ways.

We also introduce the set T; of clauses which is S~ together with
the unit clauses Pi,i and Qi,i for 1 ::; i ::; n. We introduce T~ which is
S~ together with the unit clauses PZn- Z, PZn- 1, QZn-Z' and QZn-l. T;
and T; are unsatisfiable, but easy if unit simplification is done.

We now give a sample backward chaining proof attempt. Consider
S~. We can resolve the initial goal clause,P1,n with P1,n : - PZ,n, P1,n-l
to obtain the clause {"",PZ,n, ""'Pl,n-d. Then we can resolve this with
PZ,n : - Q3,n, QZ,n-l to obtain the clause {....,Q3,n,,QZ,n-l,,P1,n-l}.
Different choices for these two resolutions would have led to eight
clauses in all (because we have a choice which literal to resolve on).

20 The Propositional and First-Order Complexity

As the number of resolutions increases, the number of clauses gener
ated increases exponentially. For s~, the graph is narrower, but one
can still get exponentially many such proofs by backward chaining.

We use these clause sets to show exponential behavior of some of the
strategies. The strategies that have exponential behavior are often back
chaining strategies that are similar to Prolog (SLD resolution [11087]
) in their execution; thus, a clause {P, -'Q, -,R} can be viewed as a
Prolog clause P : - Q, R, which means that if P is a goal, then Q
and R become subgoals that are solved in turn. An SLD-resolution
between this clause and some all-negative clause C such that -,p E C
produces the clause C - { -,P} U { -'Q, -'R}. This replaces the literal -,p
by -,Q and -,R, corresponding in Prolog terms to replacing the subgoal
P by the subgoals Q and R. Initially, an all-negative clause is chosen to
start the search. The literals of the all-negative clauses are considered
as (sub)goals. The search proceeds by subgoaling.

We now indicate why these clauses sets are difficult for some strate
gies. In S;., there are a large number of negative literals in the non-unit
clause, and if an order for resolving them is not specified, many clauses
can be generated with some of the negative literals deleted, since there
are exponentially many orders for resolving the literals. This causes
a problem for forward chaining methods that do not order the nega
tive literals. In S;, for each subgoal Pi,j and Qi,j, there is a choice of
two clauses to resolve with it, each generating two more literals (sub
goals). (This corresponds to the two ways of choosing P pebbles and Q
pebbles.) These choices each generate more subgoals, each having two
choices for a clause to solve it. Therefore, these choices can be made
in many ways, generating many combinations of the Pi,] and Qi,j for
backward chaining methods. Also, for some methods, the same subgoal
will be solved repeatedly. This set of clauses was chosen to neutralize
the obvious methods of reducing the search space. The type 2 clauses
were added so there would be no pure literals, to neutralize pure-literal
clause deletion. In S~ and T;, there are fewer clauses altogether and
fewer subgoals at each level. The subgoals Pi and Qi both depend on
P,+l, Qi+l, Pi+2, and Qi+2' for all i < n - 1.

Let's adopt the Prolog subgoal calling formalism to describe the
search space for all-negative resolution. In T;, the top-level goal clause
is {-'Po, -,Qo}. This corresponds to the two subgoals Po and Qo. If we

of Theorem Proving Strategies 21

call subgoals in a depth-first manner, we will first attempt Po, which
will eventually succeed, and then we will call Qo. During one attempt
to solve Po (one resolution), the subgoals PI and P2 will be generated,
and in another attempt to solve Po, the subgoals Q1 and Q2 will be
generated. During one attempt to solve Qo, the subgoals PI and Q2
will be generated, and during the other attempt, the subgoals Q1 and
P2 will be generated. This leads to a total of two occurrences of each
of the subgoals Ph P2, Qh and Q2. Each occurrence of PI and Q1
will eventually be called, each call corresponds to two resolution oper
ations, and each resolution generates two more subgoals. All subgoals
attempted will eventually succeed, and later subgoals in the same clause
will be called. Thus four more occurrences of the subgoals P2 and Q2
will be generated and eventually called. So the subgoals PI and Q1
will both be solved twice, the subgoals P2 and Q2 will both be solved
six times, et cetera, in an exponential sequence generated by a simple
recurrence relation. Let t(L) be the time required to generate a proof
of a literal L using some strategy. With depth-first search as indicated
here, we have t(P,) = 1 + t(Pi+d + t(Pi+2) + t(Qi+d + t(Qi+2) and
t(Qi) = 1 + t(Pi+d + t(Q,+2) + t(Qi+1) + t(Pi+2) for i < 2n - 2. The
solution is exponential, and this leads to exponential behavior for most
backward chaining methods, and often to exponential search depth.

In S~ the behavior is a little better; all the attempts to solve a
subgoal will fail and this will be detected within a linear number of
rounds. Thus, for example, in the top-level clause { .. po, .. Qo}, if the
subgoal Po is attempted first, it will eventually fail and Qo will never be
called. This considerably reduces the size of the search space. However,
the duplication by combination will still be exponential, since there are
an exponential number of paths of subgoal calls that are possible from
each top-level goal. We believe that T; and T~ will be quite a challenge
for pure back-chaining methods without unit simplification, and S~ and
S~ will be a challenge for pure back-chaining methods even with unit
simplification. Of course, these clause sets can be solved fast by forward
chaining methods.

Now, the strategies that have exponential behavior can often be
made more efficient in simple ways, such as adding unit simplification.
For example, T;, and T;, can be shown unsatisfiable in polynomial time
in this way. However, unit simplification and subsumption do not help

22 The Propositional and First-Order Complexity

s~ and S~ because there are no positive unit clauses in the input. Also,
these examples could be made slightly more complicated or lifted to first
order logic and would still reveal the same poor behavior, even with unit
simplification. Later we give such simple modifications to these sets of
clauses. We think it is most illuminating initially to give the simplest
examples demonstrating bad behavior. Furthermore, we believe that
the kinds of bad behavior illustrated here often occur in practice in the
execution of theorem provers, but they are masked by the thousands
and thousands of clauses generated. A straightforward implementation
of various strategies can produce combinatorial problems of which the
programmer is not aware. An awareness of these problems can lead
to modest changes to the search procedure which can have dramatic
(positive) effects on its performance.

We now discuss the strategies in turn, justifying the entries in the
above chart. Often we identify a state with its label, and thus each
state is considered as a set of elements of V, though this is not formally
correct. First we consider hyper-resolution [Rob65a].

1.5.2 Hyper-resolution

Hyper-resolution is equivalent to a sequence of resolutions that elim
inate all the negative literals in a clause, by resolving with clauses
that are all-positive. The positive clauses are called electrons and the
clause containing negative literals is called the nucleus. For example,
by hyper-resolving the nucleus {-,P, -'Q, R} and the two electrons P
and Q we obtain the hyper-resolvent R. Now R (really {R}) subsumes
the original nucleus {-,P, -'Q, R}. For theorem proving purposes, sub
sumed clauses can be deleted, so that we delete the original nucleus
and only retain the simpler clause R. We assume that such subsumed
clauses are deleted. In general, for propositional Horn clauses, each
hyper-resolvent is a positive unit clause that subsumes the parent (nu
cleus) clause, causing the parent to be deleted. Therefore, each round
of hyper-resolution reduces the size of the clause set. Therefore, after
a linear number of rounds, either a proof is found or the search stops
(for Horn sets). This means that the search depth and the duplica
tion by iteration are linear. Also, there is constant duplication by case
analysis (since this method is linear in our formulation) and linear du-

of Theorem Proving Strategies 23

plication by combination (since literals from different clauses are never
combined, and the number of clauses in each state is no greater than
that in the previous state). Also, the same analysis applies to hyper
resolution enhanced with any literal ordering method (ordering of the
positive literals), since in the Horn case each clause has at most one
positive literal.

1.5.3 PI deduction

Pl-deduction is the strategy that resolves two clauses only if one of
them is positive [Rob65a]. For Horn clauses, as in hyper-resolution,
this produces a clause that subsumes its parent. For example, if we re
solve P (which is positive) and {-,P, -'Q, R} we obtain {-,Q, R}, which
subsumes {-,P, -'Q, R}. Thus the parent clause {-,P, -'Q, R} can be
deleted. In this way, if subsumption (at least parent subsumption) is
tested after each resolution, then each P1 resolution reduces the size
of the set of clauses, so that the search depth and the duplication by
iteration and combination are always linear.

Assuming that subsumption is only tested after each round of res
olution, it is possible to obtain additional resolvents. We could have
resolved Q with {-,P, -'Q, R} to obtain {-,P, R}, for example. In this
way, we can obtain resolvents containing arbitrary subsets of the nega
tive literals of a clause. Because any subset of the n subgoals (negative
literals) can be generated, there are 2n clauses that can be generated.
Subsumption testing after each round will reduce this number to some
extent, since sets need not be retained if proper subsets have been gen
erated. To analyze this, we consider the order in which the clauses are
generated. P1 deduction on S~ will first generate all subsets of size
n - 1, then all subsets of size n - 2, deleting those of size n - 1 by sub
sumption, then all subsets of size n - 3, deleting all those of size n - 2
by subsumption, and so on. Also, given two distinct ground clauses of
size k, neither can subsume the other. Therefore, the number of clauses
generated is at least the maximum over k of the number of subsets of
n elements of size k. This implies that there will be at least 2n /(n + 1)
clauses generated such that no such clause subsumes any other. This
bound is actually not as good as possible, but it is still exponential. We
can derive this bound by noting that for some k, the number of subsets

24 The Propositional and First-Order Complexity

of size k must be at least 2n / (n + 1), since there are at most n + 1
sizes and 2n subsets altogether. However, the search depth and the
duplication by iteration are linear, and there is a constant duplication
by case analysis.

If the input clauses are restricted to have 3 literals, then there are
at most two subgoals per clause, and at most 4 subsets of these exist.
Thus the duplication by combination is linear. Another refinement is
to specify a total ordering on the negative literals of a clause. Only the
negative literal that is smallest in this ordering can be resolved on. This
is still complete. If an ordering on predicate symbols is specified, then
the subgoals will be solved in order, reducing the number of subsets of
the subgoals generated to a linear amount. This indicates the potential
importance of limiting the number of literals per clause (which can be
done by introducing new predicate symbols), and ordering the predicate
symbols.

1.5.4 A-ordering

Resolution with A-ordering [Sla67] is the strategy in which an ordering
is specified on predicate symbols, and literals with predicates that are
maximal in the ordering, are resolved on first. For example, suppose
we have clauses {-,P, -'Q, R} and {-,R, T}. Suppose R > P, R >
Q, R > T where > is the ordering on predicates. Then R is the
predicate that will be resolved on, and we can resolve these two clauses
to produce the clause {-,P, -'Q, T}. We assume that the ordering used
is a total ordering, although one could just as well define A-ordering
with a partial ordering on the predicate symbols. We note that A
ordering proofs are regular, in the sense of [Tse68], so that the proof
length is exponential for all clause sets for which regular resolution has
exponential length proofs. But this does not settle its behavior on Horn
sets. A-ordering does not behave exactly like PI-deduction or like all
negative resolution with ordering. One would think that by choosing
a suitable ordering we could simulate these, but it does not appear in
general to be possible. We would have to make the unit clauses maximal
in the ordering to simulate PI deduction, but because these unit clauses
may also appear elsewhere, some non-PI deductions may occur. For
example, we could have a clause set containing, among other clauses,

of Theorem Proving Strategies 25

{..,Q, P}, {P}, and {..,P, R}. If we make P maximal in the ordering
to simulate PI deduction, there will also be an unwanted resolution
on the occurrence of the literal P in the clause {..,Q, Pl. However, we
note that the clause {P} subsumes { ..,Q, P}, so if subsumed clauses are
deleted, the problem disappears. There is another problem, however,
that prevents the simulation of PI-deduction in some cases; we will
present this additional problem later in section 1.5.10.

It is conceptually simpler to think of A-ordering with the search
reordered a little: Suppose the predicate symbols are ordered PI >
P2 > ... > Pn • Then in the first round, all A-ordering resolutions
on the literal PI are done, and in the second round, all A-ordering
resolutions on the literal P2 are done, and so on. Let us call this uni
form A-ordering, in contrast to the usual search method in which all
possible A-ordering resolutions are done at each round; we call the
latter breadth-first A-ordering search. The uniform version is still a
complete theorem proving strategy for propositional clauses, even non
Horn clauses. This uniform search method explores essentially the same
search space as breadth-first A-ordering, but it can result in a search
space larger or smaller than breadth-first search due to the different
subsumption deletions that can occur. We can express one relationship
between the two methods of search as follows:

Theorem 1.5.1 Suppose S is a set of clauses and uniform A-ordering
without subsumption deletion generates a search space of size SI from S.
Suppose breadth-first A-ordering with subsumption deletion generates a
search space of size S2. Then S2 ::; SI.

Proof. Breadth-first A-ordering does the same resolutions as uni
form A-ordering, but some of them occur in earlier rounds. Therefore
breadth-first A-ordering without subsumption deletion generates the
same search space as uniform A-ordering without subsumption dele
tion. It follows that breadth-first A-ordering with subsumption dele
tion generates a search space that is the same size or possibly smaller.

o

It is clear that uniform search will stop after a linear number of
rounds (when all the predicate symbols have been eliminated). There-

26 The Propositional and First-Order Complexity

fore the search depth and the duplication by iteration for uniform A
ordering are always linear, regardless of the ordering. After all pred
icates have been resolved on, the search stops. This holds even for
non-Horn clauses, by the way. This shows that uniform A-ordering
has a definite global notion of progress (elimination of predicates from
the set of clauses). Because of the similarity of uniform A-ordering to
the usual breadth-first A-ordering, it turns out that breadth-first A
ordering also has linear search depth and duplication by iteration, and
a definite notion of progress. However, we give a formal proof of this
as follows:

Theorem 1.5.2 The search depth and duplication by iteration for A
ordering is linear, in fact, bounded by the number of predicates in S.

Proof. Suppose C is an A-ordering resolvent of C1 and C2 • Then the
maximum predicate symbol in C is smaller than the maximum pred
icate symbols in C1 and C2 • Then if C resolves against some other
clause D, the resolvent of C and D will have a maximum predicate
symbol that is yet smaller. A simple induction shows that no new re
solvents can be produced beyond a depth of search equal to the number
of predicate symbols.

o

For Horn sets, this is actually not better than the situation for
all-negative resolution without ordering, where the search depth is also
linear. But it is better than all-negative resolution with ordering, which
can produce an exponential search depth for a bad ordering. However,
duplication by combination for A-ordering can still be exponential, as
shown by S;. If we choose the A-ordering in S; so that the predicates
Pi,j are ordered by j - i, that is, Pi,j > Pk,/ if j - i > I - k, then
exponentially many combinations of literals are generated. This is so
because whenever we resolve on a literal Pi,j we have two clauses to
choose from, each generating a different combination of literals. The
same is true for Qi,j' Each such resolution produces literals whose Ij - i I
value is one less. Thus it takes n stages until all such resolutions are
exhausted, and a number of combinations exponential in n is generated.
Also, A-ordering is not goal-sensitive. To verify this, it is only necessary

of Theorem Proving Strategies 27

to choose a set of Horn clauses with one goal clause .,p that is a negative
unit clause, and to order the predicate symbols so that P is smallest.
Then the goal clause .,p will not participate in any resolutions until
the very end. One might ask whether we can make the A-ordering
strategy goal sensitive by a proper choice of ordering. This is not always
possible; if the goal is .,P,.,Q then it can happen that P also appears
in other clauses. If P is made maximal in the ordering, then resolutions
involving P may occur that are not goal-sensitive (say, a resolution with
the clause .,P, R). However, later on we give special cases for which
an ordering can be found that is goal-sensitive. Another question is
whether there is always a good ordering for every set S of clauses, that
is, an ordering that will produce polynomial behavior for A-ordering.
Later we show that this is not always possible, but give some special
cases where such a good ordering always exists.

1.5.5 Implications for term rewriting

Note that the first-order strategies based on term-rewriting techniques
[HR91, BG90] generally reduce to A-ordering methods on clauses with
out equality. This shows that these methods also sometimes suffer from
exponential search inefficiency and often lack goal sensitivity. Nor do
they have smaller search depth than all-negative resolution. However,
there is some advantage for A-ordering strategies over all-negative res
olution in this framework, and that is that regardless of the ordering
used, the search depth is still linear. (This holds even for non-Horn
sets.) Also, term-rewriting methods are often very efficient on pure
equality problems. An advantage of all-negative resolution is that it is
goal-sensitive. Because of its importance for term-rewriting, we explore
the behavior of A-ordering further, after introducing proof dags. This
will reveal some additional advantages (and disadvantages) of resolution
with A-ordering. It seems that methods based on conditional rewriting
[ZK88] may order the search differently and may have different search
behavior.

28 The Propositional and First-Order Complexity

1.5.6 Proof dags

To facilitate the analysis of the remaining strategies, and even to clarify
the analysis of the preceding ones, we introduce the concept of a proof
dag (directed acyclic graph). This illustrates the dependencies between
the literals in a minimal unsatisfiable set of Horn clauses. Let S be
a minimal unsatisfiable set of Horn clauses. The proof dag D(S) of
S has as vertices the predicates appearing in S. Since S is minimal
unsatisfiable, for every positive literal P in S there is a unique clause
C in S containing P positively, and there will be one or more clauses
containing -,P. Suppose C is PI /\ P2 /\ ... /\ Pn :J P. Then the proof dag
D(S) has edges from Pi to P for all such i. Given a predicate P in S,
define its subgraph D(P) to be the vertices v in D(S) from which there
is a path to P, together with edges between such vertices. These are
the predicates that contribute to a proof of P and their dependencies.
Note that a clause is a set of literals, and this can often be associated
with a set of vertices of the proof dag. This can in turn be regarded
as a pebbling of the graph, that is, we can think of some of the ver
tices as having pebbles on them. The inference procedure on a clause
will often correspond to natural ways of moving these pebbles around
the graph. This helps to explain and to understand the performance
of the various strategies. For all-negative resolution, we can think of
a clause C as a pebbling in which the predicates appearing in Care
pebbled. Thus if Cis {-,P, -'Q}, then the pebbling corresponding to C
would include the vertices P and Q in the proof dag. An all-negative
resolution corresponds to the removal of a pebble from a vertex and
the addition of pebbles to its predecessors. For example, a resolution
of an all-negative clause {-,P, -,Q} with the clause {-,PI , -,p2 , P} cor
responds to a removal of a pebble from P and the addition of pebbles
to the predecessor vertices PI and P2 • For hyper-resolution, each re
solvent is a positive unit clause, and we place a pebble on each vertex
P for which the corresponding positive unit clause P has been derived.
Though formally adding nothing new, this terminology sometimes helps
to clarify the underlying ideas.

Define the proof complexity cp(P) to be the number of vertices in
D(P). For example, suppose S is the set of clauses containing {P},
{-,P, Q}, and {-,Q}. Then the proof dag D(S) has two vertices P and

of Theorem Proving Strategies 29

Q and an edge from P to Q. Also, cp(P) is 1 and cp(Q) is 2. Now, if
Qb ... , Qn are the vertices of D(S) with no outgoing edges, then these
are goal vertices and there must be a goal clause {-,Ql, ... , -,Qn} in S. In
our example, Q is a goal vertex. Also, a vertex with no incoming edges
is a fact (a positive unit clause), like P in our example. It is convenient
to use proof dags because it is often convenient to specify orderings on
predicate symbols in terms of their structure and thereby derive bounds
on the performance of resolution strategies. For example, if we choose
an A-ordering in which literals with small cp values are resolved on first,
then we can cause A-ordering to simulate forward reasoning, that is,
Pl deduction with ordering of negative literals. This yields polynomial
behavior on minimal unsatisfiable sets of Horn clauses.

1.5.7 Other properties of clause sets

Proof dags are only defined for minimal unsatisfiable clause sets. How
ever, we would like to use the machinery of proof dags even on satisfiable
sets of clauses. We can do this as follows. We say that a set S of Horn
clauses is well-ordered if there is a partial ordering < on the predicate
symbols such that if P : - Pl, ... , Pn is a clause in S then Pi < P
for all i. Note that minimal unsatisfiable Horn sets are well-ordered.
We call the minimal such ordering the well-ordering of the predicate
symbols. We say that a set S of Horn clauses is deterministic if for
every predicate symbol P there is at most one clause C in S such that
P appears positively in C, that is, P E C. We note that minimal
unsatisfiable Horn sets are both well-ordered and deterministic. Also,
many of the results that are stated for minimal unsatisfiable clause
sets apply equally well to well-ordered, deterministic clause sets. In
order to apply well-orderings to A-ordering and all-negative resolution,
it is convenient to extend these orderings to total orderings on S, and
we typically assume that this is done in some manner, especially for
A-ordering.

1.5.8 All-negative resolution

All-negative resolution is like Prdeduction with signs reversed: One of
the parent clauses in a resolution must be all-negative. As explained

30 The Propositional and First-Order Complexity

earlier, this strategy does poorly on S~ and S~, generating exponen
tially many combinations of subgoals. However, the search depth for
all-negative resolution is still linear, and there is no (i.e., constant)
duplication by case analysis. To see that the search depth is linear,
suppose that S is minimal unsatisfiable and consider a proof dag D(S)
for S. Each resolution involves a literal ..,p from an all-negative clause
C and a literal P from another clause D. Now, the effect of the resolu
tion is to replace the literal..,P in C by the other literals in D. However,
these other literals ..,Q in D will satisfy cp(Q) < cp(P). Therefore, if
one always chooses the literal ..,p such that cp(P) is maximal, each
resolution will reduce the maximum cp(P) value of predicates P in the
clause, and a proof will be found after a linear number of resolutions.
Or it may be necessary to perform a sequence of resolutions to effect
this, if there are more than one negative literal with the same maxi
mum cp value. If S is unsatisfiable but not minimal unsatisfiable, this
reasoning can still be applied to a minimal unsatisfiable subset of S. If
S is satisfiable, then we can still show that the duplication by iteration
is linear, but the argument is a little more complicated, as follows.

Theorem 1.5.3 Suppose S is a propositional Horn set containing n
different predicate symbols. Let C be some clause generated from S by
all-negative resolution. Then there is some clause C' generated from S
by not more than n all-negative resolutions such that C' is a subset of
C.

Proof. Suppose C1 , C2 , ••• , Cp is a minimal-length all-negative reso
lution proof of C. This means that Cp is C and every clause in the
sequence is either in S or is an all-negative resolvent of two earlier
clauses in the sequence. It is not hard to see that in this proof, at most
one all-negative input clause is involved. Suppose without loss of gener
ality that this clause is C1 • Now, from this proof, we construct a proof
D1D2 ... Dk of length at most n of a clause C' such that C' subsumes C.
We choose Dl to be C1• For each literal L that does not appear in C,
let last(L) be the maximum i such that L E Ci . We obtain Di+1 from
Di by applying the following rule: Pick a literal ..,p of Di to resolve
such that last(..,P) is as small as possible. Let j be last(..,P). This

of Theorem Proving Strategies 31

literal was removed from Cj by resolving with some clause D of S con
taining P to give Cj +1 • We resolve Di with D on the literals P and ...,p
to obtain Di+1 • This has the effect of replacing the literal ...,p of Di
with other literals of D. We note that these other literals of D appear
in Cj +!. Therefore their last appearance in the proof of C is later than
the last appearance of ...,P. Each step of this proof increases the min
imum value of last(L) for literals L in the clause C i . This means that
the literal ...,p will never be reintroduced into a clause Dm for m > j.
Therefore, after n such resolutions, all literals that can be resolved on
will have been, so that there are no resolutions left to do. This implies
that a clause Cj has been derived containing only literals of C, so Cj

subsumes C, and we can choose C' to be Cj .

o

Corollary 1.5.4 After n rounds of all-negative resolution, all such C'
will be generated, and so every clause C that can be generated by all
negative resolution will be subsumed by an already-generated clause.
Then the search will stop, assuming that subsumed clauses are deleted.
Thus the duplication by iteration is linear for all-negative resolution.

1.5.9 All-negative resolution with ordering

We can specify an ordering on the predicate symbols for all-negative
resolution. This means that in an all-negative clause C, the predicate
symbol P of C that is maximal in the ordering is the only one that is
resolved on. Typically a total ordering is used, but one can just as well
use a partial ordering. One would expect that this use of an ordering
would improve the behavior of the strategy, since fewer resolutions are
possible. However, if an ordering on predicate symbols is specified, it
can actually make the behavior much worse. It is only necessary to
order the predicates so that the predicates P with smaller values of
cp(P) are resolved on first. This corresponds to moving the pebbles
first that are farthest from the goal clause. For example, on T~, this
can cause each subgoal to be completely solved before working on the
others, if we order the predicate symbols so that the Pj and Qj with
high j are resolved first. This can lead to exponential search depth

32 The Propositional and First-Order Complexity

(and duplication by iteration), and still allows exponential duplication
by combination on T~ and T;. We give an example of a sequence of
moves in a pebbling for T;. We note that this only gives a portion
of the search, since other clauses also can be used. First we remove a
pebble from Po and place pebbles on Pl and P2 , say. This corresponds
to deriving the clause {-,Pl , -,P2 }. (We could also have chosen Ql and
Q2') Then we remove the pebble from P2, and place pebbles on P3 and
P4 . Then we remove the pebble from P4 and place pebbles on P5 and
P6 • Eventually we solve P6 , removing the pebble from P6 and all lower
pebbles. We then remove the pebble from P5 and add pebbles on P6

and P7 • Eventually P6 and P7 are solved. Then pebbles are left on Qo,
Pl , and P3 • Next we remove the pebble from P3 and place pebbles on
P4 and P5 , and so on. The fact that the lowest pebble is always moved
means that subgoals are solved repeatedly.

A good ordering can lead to a linear search depth. We obtain a
good ordering by resolving first on the predicate symbols P with a high
value of cp(P). For example, on S~ and T~, this means that we resolve
the Pj and Qj with low j first. Then we obtain linear search depth and
polynomial behavior. For S~ and T~ this corresponds to a pebbling as
follows: The pebble on Po is removed and pebbles are placed on Pl and
P2 (say). Then the pebble on Qo is removed and replaced by pebbles
on Pl and Q2, say. But there is only one pebble kept on Pl even though
it has been pebbled twice. Then the pebble is removed from Pl and
pebbles are added to P2 and P3 • Then the pebble is removed from Pz
and replaced by pebbles on P3 and P4 ; at this stage there are pebbles
on Q2, P3 and P4. In a small number of steps we will reach the bottom
and the search will end.

In general, if S is deterministic and well-ordered, and we use the
well-ordering < on S, then all-negative resolution with ordering may
not have polynomial behavior. The reason for this is that the ordering
< may not be total, so an all-negative clause may have many maximal
literals that are not ordered with respect to each other. Therefore many
resolutions may be possible, an exponential number of clauses may be
generated, and the duplication by combination may be exponential.
However, if we extend the well-ordering < to a total ordering <', then
the behavior will be polynomial for deterministic, well-ordered clause
sets. This is because every resolution will replace a maximal literal

of Theorem Proving Strategies 33

-,p in an all-negative clause by other literals -,Q such that Q <' P,
and therefore the maximal negative literal in an all-negative clause will
decrease in the ordering with every resolution operation. Note that
this result applies to minimal unsatisfiable Horn sets, too, since they
are deterministic and well-ordered.

However, a good (even total) ordering cannot always reduce the
duplication by combination to a polynomial amount, if S is not de
terministic. On S~, there is exponential duplication by combination
regardless of the ordering on predicate symbols chosen, but the proof
is somewhat subtle. The reason for this is that we have to consider all
possible orderings of predicate symbols and show that for all of them,
the duplication by combination is exponential.

Theorem 1.5.5 All-negative resolution with an ordering on the nega
tive literals produces an exponential search space on S~, regardless of
the ordering used.

Proof. We construct a set E of 2n - 1 interpretations I of the set
{Pi,j, Q i,j : 1 ~ i ~ j ~ n}. We consider an interpretation as a
function from predicate symbols to truth values, such that I assigns P
a value of True iff I 1= P. For an arbitrary ordering> on the predicate
symbols, we show that there exists a set of 2n - 1 critical clauses GI , one
for each interpretation lEE, such that all the critical clauses will be
generated by all-negative resolution with the ordering >. The set E of
interpretations is defined as the set of interpretations that are models
of the following set of formulae:

-,(P. . == Q . .) 1 < i < J' < n 1,,) 't,)' _ _ _

Pi,j == (Pi+I,j == Pi,j-d, 1 ~ i < j ~ n

These define Pi,j and Qi,j in terms of literals with smaller values of
j - i. The entire interpretation is therefore determined by the assign
ments to Pi,; and Q;,;. However, Qi,j is defined in terms of P;,j, hence
the entire interpretation is defined by the 2n possible assignments to
Pi,i for 1 ~ i ~ n. The formula PI,n also constrains these interpreta
tions. However, one can show by a simple induction that if I and J

34 The Propositional and First-Order Complexity

are two interpretations agreeing on the literals of form Pi,i for i > 1
but disagreeing in their assignment to PI, then I and J will assign dif
ferent truth values to P1,n. Thus half of the 2n interpretations of the
Pi,; will result in P1,n being assigned true, so there are a total of 2n - 1

interpretations in E.
Define the weight of a literal Pi,j or Qi,j to be j - i, and the weight

of ,L to be equal to the weight of L. Let w(L) be the weight of L.
Define the weight w(C) of a clause C to be ~LEC3w(L). We note that
the type 1 clauses are all of the form L : - M1 , M2 where w(Mt} =
w(M2) < w(L). Thus, each all-negative resolution replaces a literal of
weight w with two literals of weight w - 1. Now, 3w- 1 + 3w- 1 < 3 w .

It follows that each all-negative resolution produces a clause smaller
than its all-negative parent in the weight ordering. Eventually a clause
will be produced with two literals of weight zero. Call such a clause a
critical clause. We show that for each interpretation lEE, a critical
clause CJ will be generated, all of whose literals are false in I. Also, we
show that no two such critical clauses are identical, and none of them
will be supersets of other clauses generated. This means that none of
these clauses will be deleted by subsumption deletion. Therefore there
will be at least 2n - 1 clauses generated, regardless of the choice of the
ordering.

We now show that if C is an all-negative clause and I is in E and
C is false in I (that is, (I ~ C)), and L is a literal in C, and w(L) > 0,
then there is an input clause Cf and a resolvent D of C and Cf such that
D is false in I and w(D) < w(C). Note that this result is independent
of which literal L is chosen, so it holds for an arbitrary ordering of
literals. Suppose L is ,P;,j for some i and j. Let Dl be (C - {L}) U
{,PH1,j, 'Pi,j-d and let D2 be (C-{L})U{'QHl,j, ,Qi,j-d. These
are the only two all-negative resolvents on L, using the structure of S~.
Since (I ~ L), we have that IF P;,j. Thus IF (Pi+1,j == Pi,j-t) since
I was defined to satisfy the formulae Pi,j == (Pi+1,j == Pi,j-t), 1 ~ i <
j ~ n. Therefore either I F Pj+1,j 1\ Pj,j-l or I F Qi+1,j 1\ Qi,j-l. In
the former case, we can let D be Dl and in the latter case we can let
D be D2 • The argument is similar if L is 'Qi,j.

For now, let's assume that the type 2 clauses are omitted. In the
beginning, ,P1,n is in S~, and this clause is false in all lEE. It fol
lows that all-negative resolution will generate clauses C of smaller and

of Theorem Proving Strategies 35

smaller weight, for all lEE, such that (I ~ C). Eventually, for all
lEE, there will be a critical clause C[that is false in I. We need to
show that none of these clauses will be identical. For this we consider
S~ as a graph, in the following way:

P1,n

/Ql,n ~

P1,n-l P2 ,n

/ Ql,n-l ~ / Q"n ~
P1,n-2

Ql,n-2

The nodes of this graph are ordered pairs of integers called positions,
and the edges are the arrows. Each all-negative resolution replaces a
literal by a literal in a position immediately below it. We call the i + 1, j
and i, j - 1 positions the children of the i, j position. The weight of a
position i, j is j - i. Define a complete path in this graph structure to
be a path starting at the root (the 1, n position) and extending down
to some i, i position following the arrows; there will be exponentially
many such paths. Note that each all-negative resolvent will contain a
literal on each such path, since each all-negative resolution replaces a
literal at the i, j position with literals at the i + 1, j and i, j -1 positions

36 The Propositional and First-Order Complexity

(its children), and any path that passes through the i, j position must
also pass through either the i + 1, j position or the i, j - 1 position.
Therefore, the critical clauses will also have literals on all such paths.

Finally, we show that there is a function from critical clauses that
maps CJ onto I. This implies that if I differs from J then CJ is differ
ent from CJ as desired. This is given by a kind of geometric argument.
Namely, suppose that I is in E. Suppose that two of the three assign
ments of I for the literals Pi,i' Pi+1,h and Pi,i-l are given. We claim that
the third is uniquely determined. We call this the triangle property. A
simple way to see this is that an odd number of the statements I F Pi,i'
I F Pi+l,i' and I F Pi,i-l must be true, by the way E is defined, since
all interpretations in E satisfy the formulae Pi,i == (Pi+1,i == Pi,i-l), 1 ::;
i < j ::; n. In general, we say that a position (a, b) is determined by
a set (aI, bt) ... , (an, bn) of positions if for all pairs I, J of elements of
E, ((I F Pa"b,) == (J F Pa"b,)) /\ ... /\ ((I F Pan,bn) == (J F Pan,bn))
implies ((I F Pa,b) == (J F Pa,b))' We say a clause C determines a
position (a, b) if the positions of the literals in C determine (a, b).

Lemma 1.5.6 If C is an all-negative clause generated from S~ by all
negative resolution not using the type 2 clauses, then for every literal L
in C there is a path from the root to L such that every position on this
path is determined by C.

Proof. To begin with, -.Pl,n is the only all-negative clause, and
the lemma holds for this clause. Assume by induction that a negative
clause C is generated by all-negative resolution and the lemma holds
for it. Let D be a clause generated by one all-negative resolution from
C. Then some literal L of C is replaced by literals Ll , L2 at the two
children positions, to obtain D. Now, the positions of Li are in D,
hence they are determined by D. Therefore, by the triangle property,
the L position is also determined by D. Since the other literals of Care
in D, D determines the positions of all the literals of C. By induction,
C determines paths to all its literals. Hence D determines paths to all
the literals of C. D has the two new literals Li . We obtain paths to
these literals by adding their positions to the end of the paths to L.

o

of Theorem Proving Strategies 37

Lemma 1.5.7 A critical clause determines every position.

Proof. Suppose C is a critical clause. Then C has two literals L1 , L2
of weight zero. By the preceding lemma, C determines paths Ll and L2.
We show that these paths determine all the other positions. Suppose
to the contrary that some position is not determined by these paths.
We say two positions P and q are neighbors if there is some position
having both P and q as children. Let w be the largest weight of an
undetermined position. Now, the paths to Ll and L2 are complete paths
and so will contain some position of weight w. So there must be some
undetermined position PI which has a neighbor P2 of weight w such that
P2 is determined. Thus PI and P2 are children of some other position
p. Now, P is determined since w(p) < w. By the triangle property, PI
is also determined, since P2 is. This contradicts our inference that PI is
undetermined. Therefore we conclude that all positions are determined
by C.

o

Corollary 1.5.8 The critical clauses C1 and CJ for I different from J
are different} hence there are 2n - 1 critical clauses and the search space
is exponential.

Proof. Suppose C1 and CJ are critical clauses for I different from
J. Both C1 and CJ determine all positions. Hence they determine the
positions of weight O. Hence they determine different truth values for
some position of weight 0, since I and J are different. Hence C1 and CJ

are different. Since E has 2n - 1 elements, there are 2n - 1 critical clauses
generated at some time during the search, and all-negative resolution
with ordering on S~ has exponential behavior, regardless of the ordering
chosen.

o

The preceding discussion has not considered deletion of subsumed
clauses. For this we note that if C subsumes D and C and D are differ
ent then w(C) < w(D). For each interpretation lEE, we consider the
clause C of minimal weight such that I ~ C. Each round of all-negative

38 The Propositional and First-Order Complexity

resolution will reduce the weight of such a clause, until a critical clause
is produced. Subsumption will not affect this, since if I ~ C and D
subsumes C then I ~ D. Therefore such minimal clauses will not be
deleted by subsumption.

We now consider the type 2 clauses, though it is not strictly nec
essary to do so to demonstrate the exponential behavior of ordered
all-negative resolution. A simple way to consider the type 2 clauses is
just to restrict attention to the top part of the graph, that is, the clauses
all of whose vertices are of weight larger than n/2. These clauses are
unaffected by the type 2 clauses or their resolvents. The structure of
this top part of the graph is similar to that of the whole graph, and the
same arguments can be applied to it.

o

We note that this exponential bound applies also to all-negative res
olution without an ordering on negative literals, and provides a rigorous
proof for that case. Many of our other exponential lower bounds are
based on this one, so we have also established them. We recall that s~
has polynomial behavior for all-negative resolution with a good order
ing. This shows a significant difference between S;, and S~, since even
with a good ordering we obtain exponential behavior for all-negative
resolution on S;,.

We now state these results in a slightly different way, which is closer
to the search space formalism of [KBL93].

Definition 1.5.9 A proof path from S is a sequence C1 C2C3 • •• of
clauses such that each Cj is either in S or is a resolvent of previous
clauses Cj and Ck, with j, k < i. We also require that if i oF j then
C j oF Cj . A proof path is maximal if it cannot be extended, that is,
there is no other proof path having it as a proper prefix.

The question we would like to address is how long these proof paths
are. For this we assume that the resolution strategy used is all-negative
resolution with an ordering on the negative literals, and that subsumed
clauses are deleted. This means that every clause Ck must have two
parent clauses Cj and Cj such that neither one is properly subsumed
by another clause among the first k - 1 clauses in the sequence.

of Theorem Proving Strategies 39

Theorem 1.S.10 Let C1 C2C3 ••• be a maximal proof path from S;, in
which the resolution strategy is all-negative resolution with an ordering
on the negative literals. Then the length of this path is at least 2n / 2 ,

regardless of the ordering used.

Proof. The proof is essentially the same as that given above. Namely,
we construct the same set E of interpretations and show that for each
one a distinct critical clause will eventually be produced.

o

This result was first presented in [Pla94d]. We think that this latter
version of the result is more striking, because the simplicity of the
formulation eliminates the need to describe the search space formally.
Note that we are considering all possible orderings and also all possible
choices of sequences of resolution operations, and that for all these
possibilities the search is still exponential. The question then arises,
can such behavior also be produced for unsatisfiable clause sets? What
if breadth-first search is specified? We do not have the answers at
present.

Returning to our usual search space formalism, we do not know
whether a good ordering can always lead to linear duplication by itera
tion for all-negative resolution with ordering. If S is deterministic and
well-ordered, then totally ordering the literals according to proof com
plexity will cause all-negative resolution with ordering to have poly
nomial behavior (and therefore polynomial duplication by iteration).
The problematic case is satisfiable clause sets that are not determin
istic or not well-ordered. The reason that the proof of theorem 1.5.3
for the unordered case does not work is that it imposes an ordering
that depends on the proof being considered. For ordered resolution,
the order has to be global. It's interesting to see that for the set S~,
using unrestricted ordering and just limiting the size of the resolvents
to four or fewer literals will lead to good behavior, though this is not
a complete restriction in general. Another interesting open problem is
whether all-negative resolution with a good ordering has exponential
behavior on unsatisfiable Horn sets. We only showed this for S;, which
is satisfiable. We show later that A-ordering with a good ordering has
exponential behavior on (some) satisfiable clause sets. These results

40 The Propositional and First-Order Complexity

indicate that sometimes even a good ordering cannot help the ordering
strategies to perform well on easy problems.

1.5.10 A-ordering and proof dags

We now return to develop additional properties of A-orderings in re
lation to proof dags and minimal unsatisfiable sets of clauses. This
will reveal some additional advantages of A-orderings and perhaps help
to explain the success of term-rewriting based methods. On the other
hand, the weaknesses of this strategy will also be more clearly delin
eated.

First, we note that if S is a minimal unsatisfiable Horn set, and
if we use resolution with A-ordering where the ordering on literals
L is according to their proof complexity cp(L), that is, literals with
larger proof complexity are resolved away first, then A-ordering is goal
sensitive and has polynomial behavior. For this we assume that the
proof complexity ordering is extended to a total ordering in some way.
The goal-sensitivity follows because A-ordering mimics all-negative res
olution in this case and the polynomial behavior follows from the poly
nomial behavior of all-negative resolution on minimal unsatisfiable clause
sets using the proof complexity ordering. This suggests that A-ordering
is good when there are no irrelevant clauses. In fact, we can say even
more: If S is a minimal unsatisfiable set of clauses, then A-ordering
with an arbitrary literal ordering has polynomial behavior. This is eas
iest to see for uniform A-ordering resolution: The number of clauses
that can participate in future resolutions never grows; clauses contain
ing eliminated predicate symbols cannot again produce new resolvents.
(A predicate symbol is considered as eliminated when it is the largest
literal of resolution in a round.) The reason that the number of clauses
does not grow, is that minimal unsatisfiable clause sets are determin
istic, so that each negative literal can be eliminated from a clause in
exactly one way. If we could resolve a negative literal op against two
other clauses, then there would have to be two clauses containing P,
and so S would not be deterministic; this property is preserved among
the clauses that can participate in future resolutions. Also, the number
of literals in each clause is bounded by the number of predicate symbols
in S altogether. Finally, after all the predicate symbols have been elim-

of Theorem Proving Strategies 41

inated, the search will stop. This result holds even if no subsumption
deletion is done; therefore it follows by theorem 1.5.1 that the search
space for breadth-first A-ordering is also polynomial, regardless of the
ordering.

This is a positive result, indicating that if there are no irrelevant
clauses then A-ordering performs well, regardless of the ordering. The
behavior is even better (at least, goal-sensitive) if we choose the order
ing so that literals with high proof complexity resolve first. Unfortu
nately, it does not always suffice to use the proof complexity ordering
in this way, even for unsatisfiable clause sets. Consider the set T;; if
A-ordering resolution is applied to this set with the proof complexity
ordering, then the behavior is exponential, as noted before. There does
not seem to be any natural way to overcome this problem, because the
symmetries in T; make it hard to justify a preference for one of Pij and
Qij over the other one. This shows that if there are enough redundan
cies in the input, then it can be impossible to find a natural ordering
that is efficient and goal-sensitive, for resolution with A-ordering.

Note that minimal unsatisfiable clause sets are deterministic. The
above result concerning minimal unsatisfiable clause sete can easily be
extended to all deterministic clause sets. That is to say, A-ordering
on deterministic clause sets has polynomial behavior regardless of the
ordering.

We can give another positive result for A-ordering, without goal
sensitivity. Recall that minimal unsatisfiable sets of clauses are well
ordered. We now consider well-ordered sets in general, and show that
A-ordering with a suitable ordering has polynomial behavior. Suppose
S is well-ordered, and suppose we perform resolution with A-ordering
where the literal of resolution is chosen as the smallest literal in the
well-ordering, that is, the literal farthest away from the goal (or goals).
Note that if a positive literal in a clause C is minimal in the well
ordering, then there must not be any negative literals in C, so C must
be a positive unit clause. This means that every A-ordering resolution
will involve a positive unit clause and another clause, and so we will
simulate PI-deduction, which has polynomial behavior. This result, in
contrast to that for PI-deduction, does not require that parent clauses
be subsumed after each resolution, since A-ordering will impose an
ordering on the negative literals automatically. This result applies both

42 The Propositional and First-Order Complexity

to satisfiable and unsatisfiable clause sets.
From the above result, it follows that if there is a clause set S for

which A-ordering (with a good ordering) has exponential behavior, then
S must not be well-ordered. We now exhibit such a set of clauses. In
particular, we show that the following set An of clauses will produce
exponential behavior for A-ordering resolution, regardless of the order
ing:

p.
I,J : - Pi,j+1, P j +1,j+1, 0$ i,j < n

p.
I,J : - P j ,j +1 , Qi+1,j+1, 0$ i,j < n

p.
I,J : - Qi,j+l, Pi+1,j+1, 0$ i,j < n

p ..
I,J : - Qi,j+1, Qi+1,j+l, 0$ i,j < n

Qi,j : - Pi,j+l, P i+1,j+1, 0$ i,j < n

Qi,j : - Pi,j+1, Qi+l,j+1, 0$ i,j < n

Qi,j : - Qi,j+l, Pi+1,j+1, 0:::; i,j < n

Qi,j : - Qi,j+l, Qi+1,j+l, o :::; i,j < n

Here we assume that Pi,n and Pi,o are identified, for all i, and that
Pn,j and PO,j are identified, for all j, and similarly for Q. Thus we have
a kind of a "torus" structure. This set of clauses is not deterministic or
well-ordered, and is trivial for forward and backward chaining strate
gies, due to the lack of positive and negative clauses. However, for the
A-ordering strategy, larger and larger clauses will be generated, and
the larger the clauses become, the more combinations of P and Q are
possible. Therefore, there is exponential behavior for A-ordering, re
gardless of the ordering. This clause set should be an interesting set to
test A-ordering based theorem provers on. The structure is reminiscent
of S~ in some ways. One could obtain unsatisfiable clause sets hard for
the A-ordering strategy by considering An U Tin (with the predicate
symbols in Tin renamed) or by adding some other unsatisfiable clause
set with a sufficiently long proof to An' We now prove the exponential
bound on search space size (duplication by combination).

of Theorem Proving Strategies 43

Definition 1.5.11 A position of An is an ordered pair (i,j) of inte
gers from the set {O,l, ... ,n}, where the positions (i,O) and (i,n) are
identified for all i, and the positions (0, j) and (n, j) are also identified,
for all j. We consider these positions as nodes of a graph; there is an
edge from (i,j) to (i,j + 1) and an edge from (i,j) to (i + 1,j + 1) for
all i and j such that these ordered pairs are valid positions. We call the
node (i,j + 1) the left child of(i,j) and we call (i + 1,j + 1) the right
child of node (i, j). A path is a sequence of positions al, ... ,ak of An
such that for all a, aa+1 is either a left or a right child of aa; that is,
there is an edge from aa to aa+l. The length of this path is k. The
distance from position a to position {3 is the length of the shortest path
from a to {3. If a is (i,j) then Pcx denotes Pi,j and Qcx denotes Qi,j'

Definition 1.5.12 If P is a set of positions (ill jt), ... , (i k, jk) of An
then a cluster of clauses for P is the set of clauses of the form {Rt J' ,

1, 1

... , Rf J' } where each Ra is either -,p or -'Q, except for one of the
k' k

positions (ib' jb), for which Ra is either P or Q. We call this position
(ib' jb) the distinguished position of the cluster. Thus all the clauses in
a cluster are Horn clauses, the positive literals all appear at the same
position, and ifP has k elements, a cluster for P consists of2k clauses.
The area of a cluster for P is the number of elements ofP. The cluster
height of a cluster A for P is the maximum distance (of length n or
less) from the distinguished position a of A to some other position {3 of
A. Note that An is the union of n 2 clusters, all of area 3 and height 2.

Definition 1.5.13 A cluster A for set P of positions has the path
property if for every path of length n or less from the distinguished
position a ofP there is a non-distinguished position {3 in P on the path.
A cluster A has the clear path property if it has the path property and
if for every non-distinguished position {3 in P, there is a path x from
the distinguished position a to {3 such that none of the interior nodes
of x are positions in P. Only the first and last nodes in the path are in
P. Such a path is called a clear path for A. We can also define what
it means for a (definite) Horn clause to have the (clear) path property,
in a similar way. Note that An is the union of n 2 clusters, all of which
possess the path property and the clear path property.

44 The Propositional and First-Order Complexity

Definition 1.5.14 Suppose A is a cluster for P of height h with dis
tinguished position a. A position 13 of A is exterior if there is some path
x of length h from a that passes through 13 such that no other positions
on this path besides a and 13 are in P. Such a path is called an exterior
path for 13. A position is interior if it is not exterior. The frontier of a
cluster is the set of positions at maximal distance from the distinguished
position. Note that the height of a cluster is the maximum distance from
the distinguished position of the cluster, to a frontier position. Also, a
frontier position is exterior.

Lemma 1.5.15 Suppose A is a cluster that has the clear path property,
and has height h. Then A has area at least h + 1, and has at least h
exterior positions.

Proof. Suppose a is the distinguished position of A and 13 is some
frontier position. Then there is a clear path x from a to 13. Now, for
each position / in x, we construct two paths /1 and /2, one by taking left
children repeatedly and the other by taking right children repeatedly.
Both /1 and /2 must contain positions of A, since their initial positions
can be reached by a clear path. However, among all the paths /i that
can be constructed in this way for various /, at least h of them must be
mutually disjoint, as a simple geometric argument shows. (The ones to
choose depend on how x goes from positions to left or right children.)
Since each of these h mutually disjoint paths contains a position of
A, there must be h distinct such positions altogether. In fact, each of
these paths must contain an exterior position, since we can take the
last position of A encountered on that path. Thus there are at least
h exterior positions, as claimed. This does not count the distinguished
position, giving a total of h + 1 positions and thus an area of h + 1 or
more, as asserted in the theorem.

o

Lemma 1.5.16 Suppose A is a cluster that has the clear path prop
erty, and has height h. Suppose B is another cluster that has the path
property and "subsumes" A, in the sense that its positions are a proper
subset of those of A. Then B also has height h and contains all the
exterior positions of A.

of Theorem Proving Strategies 45

Proof. Since B subsumes A, it must have the same distinguished
position a. Let (3 be a frontier position of A, and let x be a clear
path from a to (3. Note that the length of x is h. Since B subsumes
A, B cannot have any positions anywhere else on the path x besides
at a and (3. Since B has the path property, it must have (3 as one of
its positions. Since the distance from a to (3 is h, B has height h or
more. However, the height of B cannot be greater than h, so it must be
exactly h. Now, the same argument (except for height considerations)
applies to any exterior position, of A too. There must be an exterior
path passing through ,. Any cluster having the path property must
contain some position on this exterior path, and so B must also. But
since B subsumes A, it must contain the position ,.

D

The same argument applies to subsumptions between individual
clauses, which shows that the clauses eliminated from consideration by
a cluster resolution (defined below) cannot cause trouble.

Definition 1.5.17 Suppose Al for PI and A2 for P2 are two clusters.
Suppose that there is a non-distinguished position a of A2 which is also
the distinguished position of AI. Suppose that Pa or Qa is the maximal
predicate symbol in both clusters, in an ordering < on predicate symbols.
We define a cluster resolution that resolves on this maximal predicate
symbol (Pa or Qa) in all possible ways among the clauses in these two
clusters according to A -ordering with the ordering <. Afterwards, the
clauses in the clusters Al and A2 are deleted. It turns out that the
clauses produced by a cluster resolution are themselves a cluster for the
set of positions PI U P 2 - {a}.

The reason for the definition of cluster resolution and the associated
deletion of clusters is that since Pa or Qa has effectively been elimi
nated, due to the way that A-ordering resolution works, the clusters Al
and A2 no longer effectively have all their clauses; such "partial clus
ters" complicate the analysis. We show an exponential lower bound
even with them deleted, which implies an exponential lower bound if
they are retained. Clauses that have been deleted will still have the path
property, by reasoning similar to that in the following lemma; this is
enough to show an analogue of lemma 1.5.16 for individual clauses.

46 The Propositional and First-Order Complexity

Lemma 1.5.18 Suppose Al for PI and A2 for P 2 are two clusters, of
heights hi and h2' respectively, where hi + h2 ::; n. Suppose that there
is a frontier position a of A2 which is also the distinguished position
of AI. Suppose that Po: or Q 0: is the maximal predicate symbol in both
clusters, in an ordering < on predicate symbols. Then in one round of
breadth-first A-ordering resolution using this ordering, we can resolve
on Po: or Qo: and generate a cluster A of height hi + h2 - 1. Also, A
satisfies the (clear) path property if Al and A2 do. The set of positions
for A is PI U P2 - {a}.

Proof. The height will be hi + h2 - 1 since a path of this length
may be obtained by joining longest paths from Al and A2. One of
these paths will end at a and the other will begin there. This will
create a cluster, because one can obtain all combinations of literals
at the various positions by resolving on appropriate clauses from the
respective clusters. The path property is easy to verify, by piecing
together paths in Al and A 2• The clear path property can be verified
with a little geometric insight by considering the fact that a is a frontier
posi tion of A2, so that the paths in Al and A2 are disjoint (except for
position a).

o

For this result, even if a is not a frontier position of A2 , predicates
that have been eliminated by A-ordering resolution cannot again be in
troduced, which prevents existing clear paths of A2 from being blocked
by new positions from AI. This means that A will have the clear path
property in this case, too. This is necessary to know, because cluster
resolutions involving non-frontier positions may also be performed, and
it is necessary to know that the clear path property is preserved.

Lemma 1.5.19 Suppose uniform A-ordering resolution is done, start
ing from the set An of clauses. Suppose cluster resolution is done, so
that clusters are deleted when some predicate in them is resolved on.
Then, if the maximum area of any cluster is less than n/2, after every
resolution, every predicate symbol will appear positively in one cluster
and negatively in another cluster. Thus additional resolutions will al
ways be possible, as long as the areas of the clusters are small.

of Theorem Proving Strategies 47

Proof. If the property is true before a round of uniform A-ordering
resolution, it will be true after the round, since the effect of a round
is to remove some clauses and generate new clusters. All predicate
symbols that occurred positively and negatively in different clusters
before the round, will still do so, because only one predicate symbol
is eliminated per round, and that symbol will no longer appear in the
remaining clauses. The limitation on height insures that the cluster
will not border on itself, which could happen if it were so large that
it could intersect all rows or columns of An. If a cluster bordered on
itself, it would contain tautologous clauses (clauses that contain both
a predicate symbol and its negation, for some predicate symbol).

o

Theorem 1.5.20 Uniform A-ordering resolution on An will produce
an exponential number of clauses, regardless of the ordering.

Proof. Each cluster resolution increases the maximum height of a
cluster by a factor of less than two. Also, if the maximum height is less
than n/2, then eventually a cluster resolution will be done that increases
the height of a cluster, since eventually some frontier literal will be the
largest literal and will be chosen for resolution. Thus eventually a
cluster with height h will be produced, where n/2 ::; h < n. A cluster
of height h has area at least h + 1 and therefore at least 2h+1 clauses;
for h ;::: n/2 this is exponential in n. Now, if subsumptions occur,
they only replace clusters by others of the same height, and having the
same exterior positions. Any cluster of height h has at least h exterior
positions, enough to give the exponential bound, so the argument is not
affected. A subsumed clause is replaced by a clause having exactly the
same exterior literals, which is all that we are concerned with anyway.

o

We note that this result is not affected by tautology deletion, since
the heights remain less than n.

Corollary 1.5.21 Breadth-first A-ordering resolution on An with an
arbitrary ordering, will generate an exponential number of clauses.

48 The Propositional and First-Order Complexity

Proof. We note that the search space for breadth-first and uniform
A-ordering resolution are essentially the same, except for subsumption
deletion. However, as long as the heights are less than n, we have shown
that subsumption deletion will not affect the exponential bound.

There is a subtlety that has to be dealt with in order to carry
this through, and we indicate it here. That is, there are resolvents
that do not correspond to cluster resolutions; these may involve clauses
deleted in cluster resolution. Now, these "spurious" resolvents might
conceivably increase in height much faster than the cluster resolvents,
and then create clauses that would subsume the cluster resolvents and
thereby reduce the search space. We sketch how this possibility can be
excluded. First, it is not difficult to show that even the large spurious
resolvents have to satisfy an extended path property that applies to
paths of arbitrary length, not just n or less. Now, we are only concerned
about the case when the maximum size of a cluster resolvent is less
than n/2, since otherwise we know that the search space is exponential.
The only problem is if there is a cluster A and some spurious clause
C generated that properly subsumes some of the elements of A, in
particular, lacks some of the exterior nodes of A. This can only happen
if the "height" of C is larger than n, that is, it has wrapped around the
torus. However, if this happens, then one can without much trouble
construct an infinite path starting at the distinguished position of C
that contains no other position of C, contradicting the extended path
property. Such a path is obtained by going through the missing exterior
position of A, then taking enough right children until one can take a
cycle of left children and never again encounter A. This is always
possible because A can be at most n/2 "wide," and an infinite path in
wrapping around the torus can move to the right far enough to avoid
A altogether.

As a consequence of this, the A-ordering resolutions can be done
in an arbitrary fashion, not necessarily breadth-first, and we still can
guarantee an exponential search space. Thus we can obtain an analogue
of theorem 1.5.10 for A-ordering resolution, too, even with a good or
dering.

o

of Theorem Proving Strategies 49

We now continue a line of investigation begun earlier in section 1.5.4
about simulating PI-deduction by A-ordering for unsatisfiable sets of
clauses. It can happen that S is unsatisfiable but not well-ordered.
In this case, it may not be possible to simulate PI-deduction by A
ordering, since some of the A-ordering resolutions may involve positive
literals from non-unit clauses. (This can happen if a clause contains
only literals that are not derivable by positive unit resolution.) This
is additional evidence that irrelevant clauses can cause combinatorial
problems for the A-ordering strategy.

1.5.11 SLD-resolution

SLD-resolution is essentially the same as all-negative resolution with
ordering of the negative literals, and has similar complexity properties.
We do not explicitly mention it in the chart for this reason. However,
because of its importance for Prolog, we make some comments con
cerning it. There are actually some differences between SLD resolution
and all-negative resolution. One difference is that for each all-negative
clause C, one of the literals L of C is chosen in an arbitrary way and
all resolutions of C must resolve on the literal L. This is more flexible
than all-negative resolution with ordering of the negative literals. Also,
the search is typically performed depth-first rather than breadth-first
as in our formalism. This can make Prolog programs faster than our
analysis would indicate, because the ordering of clauses can cause the
proof to be found early in the search. However, the proof depth is still
a bound for the worst-case execution time, even with depth-first search.

The actual execution of Prolog programs is more restrictive than
SLD-resolution; there is less flexibility in which literals can be resolved.
Literals must be chosen for resolution in a last-in first-out manner.
Subject to this, a Prolog program specifies the ordering by the order
of the (negative) literals in the body of the clauses. Another differ
ence between SLD-resolution and Prolog is that duplicate subgoals will
be deleted from a clause but not from the Prolog execution. Thus if
we have the clause {-,P, -,Q} and resolve with {Q, -,P, -,R} we obtain
{-,P, -,P, R} and the two occurrences of -,p merge into one. However,
in Prolog execution, the procedure P would be called twice.

The last-in first-out restriction for SLD-resolution means that the

50 The Propositional and First-Order Complexity

literal of an all-negative clause C chosen to resolve on must be one of
the literals most recently added to C. It turns out that the complexity
properties of this "last-in first-out" SLD-resolution are different than
those of SLD-resolution in general on some clause sets. For example,
any Prolog program for T; will have exponential proof depth, even
though there is a polynomial length all-negative resolution proof. The
same subgoals will be created and solved repeatedly. Another kind of
exponential behavior occurs for the satisfiable Horn set S~, even though
none of the subgoals will be successfully solved. This suggests a possi
ble deficiency in the current methods of logic programming implemen
tation. One would expect Prolog programmers to choose good literal
orderings, which should help the complexity in most cases. However,
on unstructured problems, inefficiencies might occur. Some method of
caching successes and failures is necessary to overcome these inefficien
cies. It might make Prolog more convenient in some cases if it were
automatic. One strategy that appears to overcome the problems with
SLD resolution is mentioned in [Lyn94]. Actually, that paper considers
a more general framework than just SLD-resolution and gives a fairly
general mechanism for reducing the search space.

Since Prolog is efficient in practice, we look for special cases where
SLD-resolution performs well. For deterministic, well-ordered clause
sets, there is an ordering that causes breadth-first SLD-resolution to
have polynomial search depth and duplication by iteration and also
polynomial duplication by combination. For such clause sets, A-ordering
and all-negative resolution with a good ordering of the predicate sym
bols also have polynomial search depth and duplication by iteration
and polynomial duplication by combination. For all these strategies,
the good behavior can be obtained by always resolving on the predicate
symbols that are largest in the well-ordering (or some total extension of
it). The polynomial duplication by combination occurs because there
is always only one such resolution possible from a given all-negative
clause, since the clause set is deterministic, and the linear duplication
by iteration follows because the ordering prevents predicate symbols
that have been resolved away, from being reintroduced. Recall that
minimal unsatisfiable Horn sets are deterministic and well-ordered.

For arbitrary unsatisfiable Horn sets, these results continue to hold
if depth-first search is specified and the proper ordering of clauses and

of Theorem Proving Strategies 51

literals is used. To see this, suppose S is an unsatisfiable Horn set, and
let T be a minimal unsatisfiable subset of S. Note that T is determin
istic and well-ordered. Suppose we order the clauses so that the clauses
in T are used before those in S. Also, suppose we choose the ordering
for SLD-resolution so that the literals with the highest proof complexity
are resolved on first. Then each SLD resolution will replace a negative
literal by negative literals of smaller proof complexity. Assuming that
duplicates of a given literal are deleted, this will result in a proof in
a linear number of steps. In general, of course, depth-first search can
lead to infinite loops and sacrifices completeness. We note that Prolog
cannot always achieve this good behavior (proofs in a linear number of
steps) because last-in first-out SLD resolution does not always permit
the desired ordering of literals and because a given subgoal may be
solved repeatedly. If each literal occurs at most once in the body of
a clause (that is, negatively) then even Prolog can achieve polynomial
behavior since subgoals will be solved at most once.

1.5.12 Set of support

The set-of-support restriction [WRC65] initially chooses some subset of
the input clauses as the support set. This should have the property that
the remaining clauses (not chosen) are satisfiable. A clause is supported
if it is in the support set, or if it is the resolvent of two clauses, at least
one of which is supported. The support strategy restricts resolutions
to those in which one of the parent clauses is supported. The behavior
of resolution with the set-of-support restriction and a negative set of
support is the same as all-negative resolution, for Horn clauses. For
Horn clauses, a resolvent of an all-negative clause and another clause
is always all-negative. Therefore all-negative resolution produces the
same search space as set of support. If the set of support is chosen as
the set of positive clauses, then the behavior is like PI-deduction except
that additional resolvents can be generated. If some other support set is
chosen, it is conceivable that the behavior could be worse. We note that
there is no way to get polynomial behavior and goal sensitivity with set
of support, regardless of the choice of support set. In order to get goal
sensitivity, the set of support has to consist only of the negative clauses.
This means that the behavior is the same as all-negative resolution,

52 The Propositional and First-Order Complexity

which has exponential duplication by combination. We view this as
evidence that set-of-support is also combinatorially inefficient, though
in practice it is one of the better traditional strategies.

1.5.13 Model elimination

For Horn sets, assuming that a negative clause is chosen to start the
search, model elimination [Lov69] and the MESON strategy [Lov78]
behave essentially the same as SLD-resolution or all-negative resolu
tion with an ordering on the negative literals. These strategies follow
Prolog's execution model fairly closely for Horn clauses, and so they
actually correspond to last-in first-out SLD-resolution. However, they
permit duplicate literals to be deleted, unlike actual Prolog execution.
Also, the search formalism is different because this strategy in the gen
eral (non-Horn) case is still an input strategy, that is, each inference
involves a "chain" and an input clause. Therefore, what appears as
duplication by combination in all-negative resolution with ordering,
appears as duplication by case analysis in model elimination and the
MESON strategy. There is another difference, namely, the MESON
strategy and model elimination have a feature that prevents infinite
loops. For example, we might have clauses oP, P : - Q, Q : - R,
and R : - Q. Now, letting P be the starting subgoal, we succes
sively generate Q, R, then Q again, and can get into an infinite loop in
Prolog. This cannot happen with model elimination and the MESON
strategy. The reason is that their data structures (chains) keep infor
mation corresponding to the stack of subgoals activated. Whenever it
is detected that a subgoal has been attempted from within a call of the
same subgoal, that particular chain can be deleted.

By considering these strategies in terms of SLD-resolution in this
way, we can analyze them and see that they are goal-sensitive (if a
negative clause is chosen to start the search), have no (i.e., constant)
duplication by combination, since each node in the search space con
sists of a single chain, and have exponential duplication by case analysis.
The exponential behaviors are from the clause sets S;, S~, T;, and T~,
and the reason for this is essentially the same as that for all-negative
resolution with a bad ordering. The search depth (and therefore the
duplication by iteration) is exponential, because the last-in first-out

of Theorem Proving Strategies 53

restriction causes subgoals to be solved repeatedly in T;. This is true
even with a good ordering, since even with an ordering the strategy is
subject to the last-in first-out restriction. These results hold even for
minimal unsatisfiable clause sets, as witnessed by a minimal unsatis
fiable subset of T;. For satisfiable, deterministic, well-ordered clause
sets with a good ordering, the behavior can be made polynomial. This
is because there must be at least one subgoal that is not derivable, and
by properly guessing which one it is one can fail quickly. For clause
sets that are not well-ordered, it is not clear what happens in general,
even with a good ordering.

1.5.14 Lemmas and caching

It is possible to use a lemma mechanism with model elimination and
the MESON strategy. This makes use of the fact that when a negative
literal -op is eliminated by resolution, and all literals descending from
-,p are also eliminated, then we have essentially derived a proof of P.
This corresponds to a successful return from a call to the procedure P
in Prolog. This means that any further occurrences of -,p can also be
eliminated by the "lemma" P. That is, further calls to the procedure
P will also return successfully, so the computation does not need to
be repeated. When using lemmas, we have to modify the search space
structure, since the chains interact. This makes the search linear, and
so instead of duplication by case analysis we now have duplication by
combination. Therefore the duplication by case analysis is 0(1). The
search depth is now linear, because of the lemmas, as is the duplica
tion by iteration. To see this, note that whenever a subgoal is called,
it increases the length of the procedure stack by one. This stack is
linearly bounded in length, because a chain can be deleted if some pro
cedure appears twice on the stack. Whenever a procedure returns, the
stack reduces in length by one but the fact that this procedure has
successfully returned is added as a lemma. Therefore, each call to a
non-lemma procedure and each return from a non-lemma procedure ei
ther increase the size of the stack or increase the number of lemmas Let
N be the sum of the stack size and twice the number of lemmas. Then
N increases by 1 whenever a non-lemma procedure is called or returns
successfully. The maximum value of N is three times the number of

54 The Propositional and First-Order Complexity

predicates in the original set of clauses. This shows that the search
depth and the duplication by iteration are linear. We are not counting
the procedure calls that are already lemmas. Each such call only leads
to a constant amount of additional search depth, and the number of
such calls is bounded by the sum of the sizes of the clauses in the set
of input clauses. Therefore the linear bounds are still valid. The du
plication by combination is still exponential, as verified by S~ and S~,
where no lemmas are generated.

We now consider caching. By this we mean that failures as well as
successful returns from a procedure are remembered. If a procedure
was called and failed before, then the computation does not have to be
repeated when it is called again. This caching of failures only helps re
duce the search space if the search is done in a depth-first manner as in
Prolog, because then there are no two calls to the same procedure oper
ating in parallel, or if parallel calls to a procedure are combined in some
way. Depth-first search can be done because the loop-detecting feature
of these strategies prevents infinite chains of procedure calls. However,
this loop-detection makes the search space dependent not only on the
current procedure being called but also on procedure calls earlier in the
stack. This means that the caching is unsound unless this dependence
on the stack is eliminated by removing loop-detection, and thereby los
ing first-order completeness. We assume that some kind of depth-first
iterative deepening [Kor85, ST85] search is done to avoid infinite loops
and help organize the caching. Then, with each subgoal, we cache not
only whether it returns successfully, but how much depth of search it
was permitted. Assuming the search is done in this way, each failing re
turn from a procedure increases the size of the cache, and so reasoning
as above we can show that the duplication by combination is linear, as
well as the search depth and duplication by iteration. However, since
there are a number of stages of depth-first iterative deepening, each one
taking a linear amount of duplication, it may be more accurate to say
that the duplication is quadratic. But our search formalism is not really
adapted to consider depth-first iterative deepening in a natural way, so
we just assume an optimal depth bound and state the duplication as
linear.

of Theorem Proving Strategies 55

1.5.15 The MESON strategy

The MESON strategy has behavior like model elimination for Horn
clauses, so the bounds are the same. For the MESON strategy, unit
lemmas result in behavior like that of model elimination with unit lem
mas. The MESON strategy with unit lemmas and caching has behavior
like model elimination with unit lemmas and caching.

1.5.16 Problem reduction formats

The simplified and modified problem reduction formats [Pla82, Pla88]
simulate Prolog's back chaining mechanism, but are complete for first
order logic. The simplified problem reduction format [Pla82] without
caching is much the same as model elimination, for Horn clauses. The
simplified problem reduction format generates formulae called decompo
sitions. For Horn problems, all the decompositions generated are input
Horn clauses, so the number of them is linear (if caching is done). The
inference mechanism essentially simulates hyper-resolution, once a suf
ficient number of decompositions are generated. Thus, the search depth
and duplication by iteration are linear. The duplication by combination
is linear as for hyper-resolution, if caching is done. As with model elim
ination and the MESON strategies, the organization of the search for
depth-first iterative deepening may mean that the duplication should
really be considered as quadratic. However, for simplicity we assume
an optimal depth bound and thus have linear duplication. Actually,
it is possible to obtain these good bounds without caching or lemmas;
it is only necessary to eliminate duplicate decompositions. The reason
for this is that the decompositions are "local" and contain all necessary
information about the chain of procedure calls. This makes it possible
to cache without losing first-order completeness or efficiency for Horn
problems. This is an advantage over MESON and model elimination.
The behavior of the modified problem reduction format [Pla88] for Horn
clauses is the same as that of the simplified problem reduction format,
both with and without caching, since the two methods differ only in
how non-Horn clauses are treated.

56 The Propositional and First-Order Complexity

1.5.17 Clause linking

The clause linking method [LP92] reduces first-order logic to proposi
tional calculus, and then applies a Davis and Putnam-like procedure
[DP60, DLL62]. This reduction to the propositional calculus is done by
successively instantiating the clauses using unification with literals of
other clauses. A propositional decision procedure is then periodically
applied to the resulting clauses. We consider the application of this
method to propositional Horn clauses. For the clause linking method
with forward support, we note that this method behaves essentially
the same as hyper-resolution, and the same bounds apply to it. For
backward support, we note that no new clauses are generated, and it
is only the support status that gets changed. If S is unsatisfiable, then
eventually an unsatisfiable subset of S will be marked as backward sup
ported. After a linear number of rounds, all the clauses that can be
backward supported, will be, and the search will terminate. Then the
Davis-and-Putnam-like decision procedure will terminate in polynomial
time, since S is a Horn set. Thus the search depth and duplication by
iteration are linear. The duplication by combination is linear, since no
new clauses are generated (except by unit simplification). The dupli
cation by case analysis is 0(1) because each state has one successor.
Caching is not necessary, because clauses are never combined except
briefly in the Davis-and-Putnam-like decision procedure. Thus we ob
tain goal-sensitivity and good behavior without requiring caching or
losing first-order completeness. These are advantages over the simple
and modified problem reduction formats as well as over MESON and
model elimination.

1.5.18 Connection calculi

As for connection calculi [Bib87], there are many of them. The con
nection calculi make use of connections between literals in (possibly)
different clauses to control the search. The chart is only intended to
show that they can be implemented to simulate forward reasoning, like
hyper-resolution, or the backward chaining resolution strategies. It is
also of course possible that connection calculi with behavior like that
of the clause linking method exist.

of Theorem Proving Strategies 57

1.5.19 Caching

Several of these strategies perform similarly on Horn sets. They are
model elimination and the MESON strategy with caching of unit sub
goals and lemmas, the simplified and modified problem reduction for
mats with caching, and clause linking with backward support. We refer
to these collectively as backward chaining methods with caching (or,
as caching strategies). Though clause linking does not cache, we in
clude it here because the behavior is similar and because the deletion
of duplicate copies of a clause can be regarded as caching.

1.6 Preventing Unit Simplifications

We now give modifications of these clause sets that still display the
same exponential behavior, even for strategies used together with unit
simplification. For some of these clause sets, we do not know how well
the various theorem proving strategies will perform. First we give a
transformation within propositional calculus that defeats unit simpli
fication by introducing non-Horn features. A second transformation
prevents unit simplification by introducing first-order features but re
tains the Horn property.

The following transformation eliminates unit simplifications for back
chaining methods: For each Horn clause L : - L1 , ... , Ln where Land
all Li are positive literals, delete this clause and replace it by the clauses
L, P : - L1 , ... , Ln and L : - P, where P is a new predicate symbol.
Note that the first of these is a non-Horn clause, since both Land P
are positive literals. This eliminates the possible unit simplifications for
back chaining methods, but produces a non-Horn set of clauses. For
forward chaining methods, the unit L can be rederived and some unit
simplification can still occur. Let U(8) be 8 transformed in this way.
Later we discuss the search space sizes of various strategies on clause
sets produced by the U operator.

We now give alternative methods to avoid unit simplification effi
ciencies, which introduce first-order features but retain the Horn prop
erty. Also, these transformations often produce unsatisfiable sets of
Horn clauses; this answers the question whether such exponential be-

58 The Propositional and First-Order Complexity

havior can be produced in unsatisfiable Horn sets. Of course, such
behavior cannot be produced in unsatisfiable propositional Horn sets
if unit simplification is allowed, since that will in itself find a contra
diction. However, by allowing limited first-order features, we can still
obtain exponential behavior for Horn sets. Formally, if S is a set of
propositional clauses, let M(S) be a set of monadic first-order clauses
with positive unit clauses P in S replaced by P(a), and other clauses
in S transformed by replacing positive literals P by P(x) and negative
literals -,p by -,P(x). Thus a clause {P, -'Q, -,R} would be replaced by
{P(x), -,Q(x), -,R(x)}, but {P} would be replaced by {P(a)}. Then
M(T;) and M(T~) are unsatisfiable Horn sets and have exponential
behavior for back chaining strategies without caching, and unit sim
plification doesn't remove the exponential behavior. During the proof
search, some generated clauses will have the variable x bound to a,
but this only has the effect of replacing some of the unit resolutions on
these clauses with unit simplifications, and does not significantly affect
the search space.

1.7 Additional Hard Sets of Clauses

In addition to these transformations, we give some more hard clause
sets. We give a set of clauses that is hard for forward chaining methods
but easy for backward chaining methods. We also give an example that
is hard for both forward and backward chaining methods, but for which
clause linking still has polynomial behavior. For some of the clause
sets, we do not know which strategies exhibit polynomial behavior.
We give non-Horn propositional examples, and Horn non-propositional
examples.

We first give an example of a first-order Horn set that is hard for
forward-chaining methods but easy for back chaining methods. Con
sider the set containing the clause P(Xl"'Xn) : - Ql(Xt), ... , Qn(xn),
together with the unit clauses Qi(a) and Qi(b), for all i. Suppose the
goal is : - P(a, a, ... , a). Call this set S!. Then there are exponentially
many hyper-resolvents, but back chaining is linear. Note that back
chaining methods will bind the variables to a and then limit the use of
the Qi, but forward chaining strategies will generate many bindings of

of Theorem Proving Strategies 59

variables to combinations of a and b.
We now exhibit a Horn set that is hard for all the non-caching strate

gies considered here. Given a set S of propositional clauses, let N(S, n)
be S with clauses P : - PI, ... , Pm for m ~ 1 replaced by P(XI ... Xn) :
- PI(XI ... Xn), ... , Pm(XI ... Xn). Also, a positive unit clause {P} is re-
placed by P(XI ... Xn) : - QI(xd, ... , Qn(xn). In addition, negative
clauses: - PI ... Pm are replaced by : - PI(a, a, ... , a), ... , Pm(a, a, ... , a).
Finally, the unit clauses Q;(a) and Q;(b) are added. Then the sets
N (T; , n) and N (T~, n) are unsatisfiable first-order Horn sets that pro
duce exponential behavior for backward chaining strategies (except the
caching strategies) because T; and T~ do. They also produce expo
nential behavior for forward chaining strategies because there are ex
ponentially many combinations of a and b for the n variables. This
includes clause linking with forward support. However, these can be
solved in polynomial time by strategies with caching because the back
ward chaining from the goal binds variables to a, and eliminates the
exponentially many combinations of a and b. This includes clause link
ing with backward support. In addition, unit simplification for these
clause sets does not help; it only replaces some of the unit resolutions
with unit simplifications.

We now consider the operation of reversing the signs of all the lit
erals in a clause. Equivalently, we could consider leaving the signs
unchanged but reversing the way the strategies treat the signs. This
causes hyper-resolution to become negative hyper-resolution, which
means that all the positive literals in a clause are resolved in one oper
ation. For Horn clauses, each clause has only one positive literal, and
so negative hyper-resolution is the same as all-negative resolution, with
the same search space complexities.

If S is a set of clauses, let S be S with the signs of all predicate
symbols changed, and predicate symbols systematically renamed to new
predicate symbols. Note that this causes forward chaining strategies to
behave like backward chaining strategies, and vice versa. Let Sym(S)
be SuS. Note that Sym(S~) and Sym(S~) have exponential behavior
for hyper-resolution, since negative hyper-resolution (all-negative res
olution) is exponential for S~ and S~. These satisfiable propositional
sets of clauses have exponential behavior for all strategies (and refine
ments) discussed except clause linking and possibly MESON, model

60 The Propositional and First-Order Complexity

elimination, and the two problem reduction formats, all with caching.
The reason these clause sets are easy for clause linking is that the Davis
and Putnam-like decision procedure will quickly find a model and de
tect satisfiability. This is because the Davis and Putnam method is
polynomial time on Horn sets [GU89], and these clause sets are similar
enough to Horn sets to exhibit the same behavior. These sets will prob
ably be quite a challenge for most theorem provers. However, they are
not Horn sets. To obtain unsatisfiable propositional sets of clauses with
this property, we can use Sym(U(T;)) and Sym(U(T~)), discussed be
low. Even for the simplified and modified problem reduction formats,
the behavior is probably exponential, because many combinations of
literals will be generated. It is possible that clause linking has poly
nomial behavior, but that depends on how the Davis and Putnam-like
decision procedure works.

Consider U(T;) and U(T~). These are unsatisfiable propositional
non-Horn sets which have polynomial behavior for Pl-deductionand
hyper-resolution, even though unit simplification will not decide these
clause sets. To show this, recall that in these clause sets we have
clauses of the form L, P : - L1, ... , Ln and L : - P, where P is a
new predicate symbol. We can show that the literals Li will eventually
be derived, and then the clause L, P will be derived by a sequence of
unit resolutions (unit simplifications). Finally, a resolution operation
between the clauses L, P and L : - P will produce the resolvent L,
and the proof will proceed further. U(T;) has exponential behavior
for all the back chaining methods even with unit simplification, except
possibly the caching strategies, since T; does. U(T~) can be solved in
polynomial time by all-negative resolution with a proper ordering of
negative literals. It is possible that U(T;) and U(T~) can be decided
in polynomial time by a Davis-Putnam-like method with lemmas, as
described in [Pla90J. We don't know how fast they can be solved by
the ordinary Davis-Putnam method.

To defeat forward chaining methods, consider the clause sets Sym
(U (T;)) and Sym (U (T~)). These still have exponential behavior for
back chaining methods except possibly the caching strategies. In ad
dition, they have exponential behavior for forward chaining methods,
since the Sym operation causes forward chaining strategies to behave
like backward chaining strategies. However, it is possible that a mod-

of Theorem Proving Strategies 61

ified Davis-Putnam method with lemmas, as described in [Pla90], will
decide these in polynomial time. If so, clause linking will also have
polynomial behavior on these clause sets.

my prover does
on wos953!

on this simple
problem.

62 The Propositional and First-Order Complexity

1.8 Discussion

Since our chart only considers propositional Horn sets, the results are
somewhat limited. Still, even here some unexpected behavior occurs.
In addition, we present other clause sets that are non-Horn or first-order
and discuss the behavior of strategies on them. However, a more formal
analysis for non-Horn propositional logic and for first-order logic would
be interesting and probably difficult. Also, these results do not say
how a theorem prover will perform on real theorems. Despite this, we
believe that strategies having a large amount of search duplication often
perform badly. Since the successes of a prover are usually more widely
publicized than the failures, the poor performance of some provers on
certain problems may not be well known to those outside of the theorem
proving community. Our experience has been that on simple set theory
problems, logic puzzles, and even propositional calculus problems, most
of the strategies listed in the chart perform very badly. Also, we have
found that on typical theorems, back-chaining strategies that do not use
caching perform badly on Horn sets, and even back-chaining strategies
that do cache (except for clause linking) perform badly on non-Horn
sets. Forward chaining strategies generally seem to do well on Horn
sets, but badly on non-Horn sets. Of course, forward chaining strategies
are typically not sensitive to the theorem being proved, and function
somewhat like blind search.

The methods of this paper are in a way more discriminating than
the results of Haken [Hak85]' who showed that resolution is exponential
for any refinement. This tends to suggest that all strategies are the
same. Our methods discriminate between strategies more finely, and
support the argument that some strategies are better than others. Eder
[Ede92] analyzed the sizes of proofs in different strategies. In contrast,
we analyze the size of the entire search space.

We now consider briefly the behavior of clause linking in first-order
logic. For a description of this strategy see [LP92]. The question arises
whether clause linking is exponential on any first-order clause set for
which other methods are polynomial. This is unlikely for any clause
set for which the term sizes are small, since the behavior approximates
propositional logic in that case. We note that for typical theorems, if
the term sizes get large, often the proofs are too difficult to obtain. So,

of Theorem Proving Strategies 63

if a small bound on term size is set, then clause linking will probably be
efficient, even for first-order logic. However, [Zam72, Zam89, Tam90,
Tam91] have some first-order examples where a particular refinement
of resolution similar to A-ordering is a decision procedure, but clause
linking may generate an infinite search space. On the other hand, it is
possible to construct simple first-order examples where clause linking
generates a finite search space but resolution generates an infinite search
space. For example, clause linking has a finite search space on clause
sets containing variables and constant symbols but no function symbols.
Thus clause linking is a decision procedure for this class. However,
resolution can generate an infinite search space on these clause sets.
For example, consider the following clause set: {-,X = Y, -,y = Z, X =
Z}, { -,a = b}. All-negative resolution generates an infinite search space
on this clause set. For almost any two theorem proving strategies, it's
possible to find examples where one performs better than the other. We
would at least hope to have a good understanding of where this occurs
and why. Also, we would like to find strategies that have polynomial
behavior on the examples presented here and also decide the clause sets
decidable by resolution with A-ordering.

1.8.1 Adequacy

We have given a theoretical analysis of a number of strategies on propo
sitional Horn sets and some first-order clause sets. We do not suggest
that all theorem proving methods should be analyzed theoretically in
this manner, since that would require all researchers to be theoreticians
to some extent. Another acceptable alternative is to run a theorem
prover on the clause sets given above and estimate the growth rate of
the time taken. We propose that all new strategies be analyzed this way,
analytically where possible and also by running them on these clause
sets for all n up to say 50 (subject to time and space limitations!).
The clause sets that seem most significant for this are S~, S~, T;, T~,
An, Sym(S;), Sym(S~), U(T;), U(T;), M(T;), M(T;), Sym(U(T;)),
Sym(U(T;)), Sym(M(T;)), Sym(M(T;)), N(T;,n), and N(T;,n).
Note that some of these clause sets are easy for standard methods; this
helps to distinguish between methods that have exponential behavior
on the harder clause sets. The performance of a strategy on these exam-

64 The Propositional and First-Order Complexity

pIes doesn't tell everything about the strategy, but does tell something.
We say a strategy is adequate if it runs in polynomial time on all these
clause sets, as well as propositional Horn sets, and satisfies the following
additional requirements: It should be complete, goal-oriented, and nat
ural. Natural means that the strategy is not specifically designed to do
well on these clause sets. It is possible that a good theorem prover may
behave poorly on these examples. However, we believe that a strategy
that performs well on these example clause sets will also do well on
typical theorems. We don't know if any existing strategy is adequate,
but clause linking may be. We note that clause linking has polynomial
behavior on all the above clause sets, because the time taken by the
Davis and Putnam procedure is not reflected in the search space size.
However, since adequacy is defined in terms of running time, clause
linking could still fail to be adequate.

1.8.2 Extensions

It would also be possible to extend this analysis to renameable Horn
sets, that is, sets of clauses that can be transformed into Horn sets by
changing the signs of some predicate symbols. Such an analysis would
treat forward chaining and backward chaining strategies the same, and
both would have exponential behavior. However, clause linking and
maybe some of the other caching strategies would still have polyno
mial behavior. Note that UR-resolution has polynomial behavior on
renameable Horn sets. However, this is not a complete strategy in
general. Still, its good performance in practice tends to confirm its
favorable theoretical properties.

We now briefly discuss a general analysis for first-order logic. For
this case, it is not possible to bound search space size in the same way,
since there is no recursive bound on the length of proofs and hence
on the search space size. However, what we can do is analyze how
efficient a strategy is on the structures it generates. For resolution,
if the same literals are generated over and over again and combined
in many different ways, then this may indicate an inefficiency. We
can analyze this behavior for a general strategy by associating with
each generated clause a set of instances of the input clauses that were
used to generate it. We can then consider how often a given input

of Theorem Proving Strategies 65

instance contributes to the different clauses in a state, on a path of
states, or in a set of states no two of which are on the same path. In
this way, we might learn something about the various types of search
space duplication that occur in first-order logic theorem proving.

Chapter 2

The First-Order Complexity
of First-Order Theorem
Proving Strategies

2.1 Introduction

We would like to study the complexity of first-order theorem proving
procedures. A first-order theorem prover typically takes as input a
formula A of first-order logic and, if the formula is valid, eventually
outputs a proof. Otherwise, the prover may run forever. Since first
order logic is only partially decidable, this is the best we can hope for.
One can easily show that there can be no recursive bound on the length
of the running time in terms of the length of the input, even for valid
formulas. This makes it appear impossible to do any meaningful com
plexity analysis, since it is impossible to have a theorem prover with,
say, exponential running time. However, we would like some kind of
an asymptotic complexity analysis, because it would give valuable and
machine-independent insight into theorem provers, insight that is dif
ficult to obtain by running examples alone. A theoretical analysis, for
example, can tell us something about the behavior of a prover on infinite
classes of problems, which cannot be determined by running examples.
Such an analysis would enable us to say in a rigorous way what it means
for one theorem proving method to be better than another, at least on

68 The Propositional and First-Order Complexity

certain kinds of problems, and would enable us to pose interesting open
questions about the existence of theorem provers of various complexi
ties. It would also suggests new approaches to theorem proving, as we
will show, approaches that might not have been considered otherwise.
Of course, experimental studies of theorem provers provide additional
information that should be combined with theoretical insights to obtain
a complete picture.

Our approach to a theoretical analysis of theorem provers is to find
some natural partial function F from first-order formulas into the nat
ural numbers such that F(A) is defined iff A is valid and such that
theorem provers exist whose complexity on valid formulas is recursive
in F(A). Also, we require that the question whether F(A) :::; n should
be decidable, given A and n. We call such an F a theorem proving
complexity measure because it measures how hard A is, from a theorem
proving perspective. Of course, such a function F cannot be recursive.
We can take for F the minimal length of a proof of A in some logical
system, for example. Then, since one can enumerate all possible proofs,
one might be able to do theorem proving in time exponential in F(A).
However, it seems better to find measures F that do not depend on a
particular system of logical inference, since there are many plausible in
ference systems, and the choice of one is, after all, somewhat arbitrary.
We exhibit a number of such theorem proving complexity functions F
that are not inference-based, and use them to analyze the performance
of theorem proving procedures. We also consider functions F that are
inference based; these are defined in terms of the lengths or depths of
resolution proofs.

In addition to studying the time needed to show that A is valid
as a function of F(A), we can also study the relation of the size of a
minimal proof of A to F(A). Since minimal proof size can be taken as
another function F'(A), this question is essentially that of studying the
relationship between different theorem proving complexity functions.

Now, in addition to measuring the complexity of theorem proving
procedures relative to F, we also want to study the inherent complexity
of theorem proving relative to F, that is, what can we say about the
best possible complexity of a theorem proving procedure relative to
F. For this, we use a slightly different formalism. We consider the
problem, given a pair (A, n), where A is a first-order formula and n is

of Theorem Proving Strategies 69

an integer in unary, to determine whether F(A) is defined and F(A) ~
n. We are interested in the complexity of this problem. Note that if
F(A) is defined, A is valid, so that any algorithm to solve this problem
can be used as a theorem prover for first-order logic. However, the
problem as stated is a purely complexity theoretic problem, and one
can ask whether it is NP-complete, exponential time complete, or in
some other complexity class. This formulation leads to a number of
interesting questions and results in complexity theory, and we hope that
this will stimulate some work in computational complexity concerning
the complexity of theorem proving in first-order logic and other logics.

The above discussion is concerned with the validity of first-order
formulas, to bring out the essential ideas. However, in our study, we
will consider clause-form formulas. It is known that for any first-order
formula A, there is a set S of clauses such that A is valid iff S is unsat
isfiable, and S can effectively be computed from A. Then in order to
prove that A is valid, we can prove that S is unsatisfiable, and this is
the approach used by many current theorem provers. In this context,
we define a theorem proving complexity measure as a partial function
F from sets S of clauses into the natural numbers such that F(S) is
defined iff S is unsatisfiable and such that there are theorem proving
procedures that are recursive with respect to F on unsatisfiable clause
sets. Also, we require that the question whether F(S) ~ n should
be decidable, given Sand n. One advantage of this approach is that
clauses are considerably simpler syntactically than full first-order logic,
and therefore more amenable to machine proving. Clauses are essen
tially conjunctive normal form formulas in which existential quantifiers
have been eliminated, so that all variables are implicitly universally
quantified. Another advantage of considering clause form is that we
can apply Herbrand's theorem, which states that S is unsatisfiable iff
there is a finite unsatisfiable set T of ground (propositional) clauses
such that each clause of T is an instance of some clause in S. Now,
the length of a shortest such T, written as a character string, can be
much longer than the length of S. In fact, there is no recursive bound
on the length of such a set T in terms of the length of S. However, we
can bound the complexity of theorem proving procedures in terms of
the length of T. It is not hard to devise a theorem prover that is expo
nential in the length of T, for example. One only needs to enumerate

70 The Propositional and First-Order Complexity

all possible T of length n, of which there are a number exponential in
n, and apply an exponential propositional decision procedure to each
one. Therefore we can let F(S) be the length of the shortest such T,
and then F is a theorem proving complexity measure. There are other
measures one can use, such as the minimal number of clauses in any
such T, or the minimum over all such T of the maximum size of the
literals in T, or the length of a minimal resolution proof of the empty
clause from S. We will define the measures M pd , Mpl, M dup , M lin , and
Msub in this paper. The first two are inference-based, but the last three
are not. Relative to these (and other) measures, we can study the com
plexity of theorem proving strategies. We can also compare the various
measures with each other, and comment on which measures seem more
reasonable. This is the approach that will be taken in this paper.

In the past, there has been some work on the complexity of theorem
proving strategies, but mostly with respect to the length of proofs, and
not to the difficulty of finding a proof. For some examples of stud
ies of proof lengths, see [CR79, Hak85, Urq87, Ede92]. Haken [Hak85]
showed that for a set of propositional problems, known as the pigeon
hole problems, resolution needs to generate an exponential number of
clauses in order to find a proof. This means that the minimum proof
length is exponential for resolution, in this case. This work was ex
tended by Buss and Tunin [BT88]. The difficulty of finding a proof,
and the size of the search space, are more relevant for the efficiency
of theorem provers than the size of a minimal proof. There has been
very little work on search space size. The paper [KBL93] shows that
many refinements of resolution do not increase a certain measure of
search space size by more than a factor of four, but does not com
pare refinements with one another. Their paper considers monotone
refinements of resolution; these do not allow deletion operations such
as deletion of subsumed clauses. However, the results are otherwise
very general. An exception is the work of Plaisted [Pla94b, Pla94c]'
which considers the size of the search space generated. However, this
work is largely propositional in nature, and here we wish to extend this
work to an inherently first-order context. The price for this is that we
need to consider specific search strategies, which was not necessary in
[Pla94b, Pla94c]. Plaisted [Pla84] and Goubault [Gou94] studied com
plete problems in first-order logic. In particular, [Pla84] studied the

of Theorem Proving Strategies 71

problem of determining the minimal depth of binary resolution proofs
from a set of clauses. A series of completeness results was obtained,
ranging from nondeterministic exponential time for general first-order
clauses to exponential time for some restricted subsets. Many other
completeness results related to first-order logic were also presented in
[Pla84]. Goubault [Gou94] showed that the problem of determining
the minimal number of copies of first-order clauses needed for a proof
is L;~ complete. The paper [Let93] studies how accurately the length of
a derivation reflects the actual complexity of a proof. For some work
concerning the effect of different translations to clause form on the
proof complexity, and how they can make a non-elementary difference
in proof length, see [BFL94, Eg196].

There has been a considerable amount of work on the complexity of
unification problems (for example, see [KN92]), but we are more con
cerned with pure first-order strategies here. There have also been works
showing how one strategy can simulate another, which is more relevant
for proof length than search complexity. One such study is [BF93], in
which the consolution calculus is modified in such a way that it can
be instantiated to a number of strategies. The paper [Bib82] presents
a method of embedding ME-like strategies into each other. The hand
book article [BE93] presents a great variety of calculi and compares
their properties, as well as giving some simulation results. The book
[Ede92] gives precise simulation results between first-order calculi from
a complexity point of view. Hsiang and Bonacina [BH96] present a for
malism that facilitates the study of infinite search spaces. The paper
[BH98] presents a model for representing search in theorem proving.
This model captures the notion of contraction, which is basically dele
tion of a derived clause or formula. The ability of contraction to reduce
search spaces is studied. The paper [Bon] analyzes parallel implementa
tions of contraction-based strategies in a machine-independent manner.

Here we analyze the complexity of first-order theorem provers. This
work reveals a number of surprising differences in efficiency among com
mon theorem proving strategies, ranging from single to quintuple expo
nential. These differences are not at all obvious from a casual inspection
of these strategies. This analysis also suggests some simple modifica
tions of existing strategies that have a better asymptotic behavior. We
have felt for a number of years that common strategies were very in-

72 The Propositional and First-Order Complexity

efficient on some problems and that this was significantly hindering
the field, and this current analysis helps to confirm this and to sug
gest the advantages of certain methods which avoid these inefficiencies.
On the other hand, this analysis also reveals cases where these tradi
tional strategies perform fairly well, possibly helping to explain their
popularity.

Another outcome of this work is that we can begin to say something
about which kinds of clause sets S are best for which strategies in terms
of various measures F1(S),"', Fn(S), Even though we cannot always
compute the Fi measures, this does at least help us to understand why
different methods are better on different kinds of problems. It does not
seem reasonable to expect that one method will be optimal on all sets
S of clauses. In fact, it may be possible to show that such an optimal
method does not exist.

One interesting feature of the present work is it gives a theoretical
justification for using a size bound with an inference method. For
example, Otter [McC90] prefers small clauses. Our analysis shows how
the use of a size bound can improve the asymptotic complexity of a
method, and how the choice of the right size measure can also make a
significant difference.

Some of the results we present are already known, and our contri
bution is to put them into a common perspective.

2.2 Proof Complexity measures

The arity of a function symbol is the number of arguments it takes. A
term is a well-formed expression containing function symbols, constant
symbols, and variables, as, f(x, g(a)) for f of arity 2, 9 of arity 1,
and a of arity 0 (a constant symbol). An atom is a predicate symbol
followed by a list of terms, as, P(x,g(a,b)). A literal is an atom or
an atom preceded by a negation sign, as, -,Q(a, x). A literal preceded
by a negation sign is negative and a literal without a negation sign is
positive. The literals Land -,L are said to be complementary. A clause
is a disjunction of literals, written as a set, as, {-,P(x),Q(f(x))}. Free
variablesin a clause are assumed to be universally quantified. Thus the
clause {-,P(x), Q(f(x))} represents the formula Vx(-,P(x) V Q(f(x))).

of Theorem Proving Strategies 73

A term, literal, or clause not containing any variables is said to be
ground. A clause containing only negative literals is negative and one
containing only positive literals is positive. A clause containing only one
literal is a unit clause. A set of clauses represents the conjunction of the
clauses in the set. Thus the set {{-,P(x),Q(f(x))}, {-,Q(y),R(g(y))},
{P(a)}, {-'R(z)}} represents the formula (V'x(-,P(x) V Q(f(x)))) 1\
(V'y(-,Q(y) V R(g(y)))) 1\ P(a) 1\ (V'z-'R(z)).

Definition 2.2.1 The linear size s/in of a term, literal, clause, or set
of clauses is its length, written as a character string (ignoring com
mas and parentheses within a term). Thus the linear size of the literal
P(f(x),g(y)) is 5.

Definition 2.2.2 The subterm size ssub of a term, literal, clause, or set
of clauses is its number of distinct subterms, with duplicate occurrences
of the same subterm counted only once. Thus the subterm size of the
literal P(f(x),f(x)) is 3, since it has only the subterms x, I(x), and
P(f(x),J(x)). (We count the entire literal as a term, too.)

Definition 2.2.3 A substitution is a mapping from variables to terms
which is the identity on all but finitely many variables. If L is a literal
and a is a substitution, then La is the result of replacing all variables
in L by their image under a. We define the application of substitutions
to terms, clauses, and sets of clauses similarly. A substitution a is a
unifier of literals Land M if La = M a. If such a substitution exists,
we say that Land M are unifiable. A substitution a is a most general
unifier of Land M if for any other unifier f3 of Land M, there is a
substitution, such that Lf3 = La, and M f3 = M a,.

Definition 2.2.4 We say clause Ga is a factor of clause G if a is a
most general unifier of two literals of G. Also, D is a (simple) resolvent
0lG1 and G2 il D = ((G1 - {Ld) U (G2 - {L2 }))8, where L1 E G1 and
L2 E G2, and 8 is a most general unifier of L1 and L2. The clause D is
a resolvent ofG1 and G2 with factoring if D = ((G1-B1)U(G2-B2))8,
where B1 ~ G1 and B2 ~ G2, and 8 is a most general substitution
unifying {L : L E Bd U {-,L : L E B2}. In both cases, the clauses
G1 and G2 are parents of D. The resolution is said to be positive

74 The Propositional and First-Order Complexity

if one of the parents is a positive clause and negative if one of the
parents is a negative clause. It is a unit resolution if one of the parents
is a unit clause. It is an A resolution if the literals (or subsets) Bl
and B2 of resolution are minimal in their respective clauses in a pre
specified ordering on literals. For a discussion of these strategies, see
[GL 13, Fit90, Lov18, WOLB84}.

Definition 2.2.5 A resolution proof from a set S of clauses is a se
quence Gl , C2 , ••• , Gn of clauses, where each Gi is either in S or is a
resolvent of previous clauses in the sequence. The length of this proof is
n. The depth of this proof is defined recursively, as follows: The depth
of an input clause is O. If Ci is a resolvent of Gj and Gk , then the depth
of Gi is one plus the maximum depth of Gj and Ck. The depth of the
proof is the maximum depth of any Gi in it. This proof is a refutation
if it contains the empty clause. A Pl-deduction proof is a resolution
proof in which every resolution is positive. A negative resolution proof
is a resolution proof in which every resolution is negative. A unit res
olution proof is a resolution proof in which every resolution is a unit
resolution. An A-resolution proof is a resolution proof in which every
resolution is an A -resolution.

Definition 2.2.6 A (refutational) theorem proving method is complete
if for every unsatisfiable clause set S, there is a proof that S is unsat
isfiable using the method.

It is known that resolution is complete [Rob65b]. Many ofthe refine
ments of resolution are also complete, including Pl-deduction, negative
resolution, and A-resolution. Unit resolution, however, is not complete.

For those who may not be familiar with the refutational style of the
orem proving, we give an example. Suppose that we want to show that
the first-order formula (Vx3y (P(x) ::) Q(y))) 1\ (Vy3z (Q(y) ::) R(z)))
::) (Vx3z (P(x) ::) R(z))) is valid. Here::) represents logical impli
cation. In the refutational approach, we negate this formula to ob
tain -,[(Vx3y(P(x) ::) Q(y))) 1\ (Vy3z(Q(y) ::) R(z))) ::) (Vx3z(P(x) ::)
R(z)))]' and show that this formula is unsatisfiable. This is translated
into clause form by rearranging the Boolean connectives and replacing
existential quantifiers by new function symbols, called Skolem func
tions. By this means, we obtain the formula (Vx3y(P(x) ::) Q(y))) 1\

of Theorem Proving Strategies 75

('v'y:3z(Q(y) :::> R(z))) /\ (:3x'v'z(P(x) /\ -,R(z))), that is, ('v'x:3y(P(x) :::>
Q(y))) /\ ('v'y:3z(Q(y) :::> R(z))) /\ (:3xP(x)) /\ 'v'z-,R(z). Inserting
Skolem functions, we obtain ('v'x(P(x) :::> Q(J(x)))) /\ ('v'y(Q(y) :::>
R(g(y)))) /\ P(a) /\ 'v' z-,R(z). This translation is satisfiability pre
serving. Translating this formula into a set S of clauses, we obtain
{{ -'P(x), Q(J(x))}, {-,Q(y), R(g(y))}, {P(a)}, {-,R(z)}}. The vari
ables are implicitly regarded as universally quantified. We then have
the following resolution refutation:

1. P(a) (input)
2. -,P(x), Q(J(x)) (input)
3. Q(J(a)) (resolution, 1,2)
4. -,Q(y), R(g(y)) (input)
5. R(g(J(a))) (3,4, resolution)
6. -,R(z) (input)
7. false (5,6, resolution)

The designation "input" means that a clause is in S. Since false has
been derived from S by resolution, we have proven that S is unsatisfi
able, and so the original first-order formula is valid.

We now resume our discussion of the complexity of theorem proving
strategies.

Definition 2.2.7 The prooflength complexity measure Mp/(S) for un
satisfiable clause sets S is the minimum length of any resolution proof
of the empty clause (i.e, false) from S. The proof depth complexity
measure Mpd(S) of S is the minimum depth of any resolution proof of
the empty clause from S.

We note that although the depth measure is inference based, it can
be viewed in a non-inference based manner, as suggested by [PZ]. It
is equivalent to the depth of the minimal closed binary semantic tree
over S (for the definition of this, see for example [CL73]).

In general, the proof complexity measures that are not inference
based are instance based, that is, they are based on Herbrand's theorem.
Herbrand's theorem says that if a set S of clauses is unsatisfiable, then
there is an unsatisfiable set T of ground instances of the clauses in S.
We call such a set T a Herbrand set for S. We obtain instance based
complexity measures uniformly in the following way:

76 The Propositional and First-Order Complexity

Definition 2.2.8 We use lSI to refer to the number of elements in a
set S, that is, its cardinality.

Theorem 2.2.9 Suppose that f is a computable (i.e., recursive) func
tion of ground clause sets, and 9 is a computable function such that for
all clause sets S and all Herbrand sets T for S, there is a a Herbrand set
T' for S such that f(T) = f(T') and slin(T') :::; g(f(T), S). Let F(S)
for unsatisfiable clause sets S be the minimum value of f(T) such that
T is a Herbrand set for S. Then F is a theorem proving complexity
measure.

Proof. We first show that, given n, it is possible to test if S has
a Herbrand set T such that f(T) = n. For this, it is only necessary
to examine all Herbrand sets T' such that slin(T') :::; g(f(T), S), that
is, slin(T') :::; g(n, S). Since 9 is recursive, this is decidable. It follows
that we can find the minimal n such that S has a Herbrand set T with
f(T) = n by enumerating n and applying the preceding procedure.
Such a minimal n is by definition F(S). This procedure runs in time
recursive in F(S), since 9 is recursive and one can test unsatisfiability
in recursive (exponential) time. Therefore, one can prove theorems in
time recursive in F(S). Similarly, testing if F(S) < n is decidable,
since we can compute F(S) if S is unsatisfiable.

o

We will need to derive some properties of the subterm size measure
ssub.

Theorem 2.2.10 Suppose Land M are unifiable atoms and 8 is a
most general unifier of Land M. Then sSUb({L8,M8}) :::; sSUb(L) +
sSUb(M).

Proof. By considering the working of a unification algorithm, we can
express 8 as a composition of substitutions a1a2··· an, where each ai

binds one variable Xi in {La1 a2 ... ai-1, Mal a2 ... ai-i} to a term
ti in {La1a2 ... ai-1, Ma1a2 ... ai-i} not containing Xi. Let 8i be
a1 a2 ... ai. We consider the effect that ai has on the subterm size
of {L8i- 1 , M8i-d, that is, what is the subterm size of {L8i , M8;}.

of Theorem Proving Strategies 77

Each subterm u of {L8i- l , M8i-d is replaced by uni, so the number
of subterms is not thereby increased. Also, the subterms in ti are
added to the set of subterms of {L8i- l , M8i-d. However, since ti
is a subterm of {L8i- l , M8i-d, and ti does not contain x, ti and
all its subterms still occur in {L8i,M8d. Thus sSUb({L8i,M8i}) ~
ssub({L8i - l , M8i-d).

o

Corollary 2.2.11 Suppose C is a clause and D is a factor of C. Then
ssub(lJ) ~ ssub(C).

Proof. A factoring operation is a unification between literals of C.
Reasoning as in the theorem, the result follows.

o

Corollary 2.2.12 Suppose lJ is a resolvent ofCl and C2. Then ssub(lJ) ~
ssub(Cd + ssub(C2).

Proof. A resolution can be expressed as a sequence of factorings
followed by a unification of two literals. Assuming that Cl and C2

have no common variables, we can regard a resolution of Cl and C2

as a sequence of factorings on Cl U C2 followed by a unification of
complementary literals and the deletion of two literals. The result then
follows by the preceding corollary and the fact that ssub(C l U C2) <
ssub(Cl) + ssub(C2).

o

Lemma 2.2.13 1ft is a term, then slin(t) ~ 1 + r + r2 + ... + rsSUb(t),
where r is the maximum arity of any function symbol in t.

Proof. Let d be the depth of t, and let r be the maximum arity of any
function symbol in t. Then ssub(t) ~ d, since there has to be at least
one distinct subterm of each depth, and slin (t) ~ 1 + r + r2 + ... + rd ,

adding the numbers of symbols at different depths. Therefore slin (t) ~
1 + r + r2 + ... + rsSUb(t).

o

78 The Propositional and First-Order Complexity

Lemma 2.2.14 If S is a set of clauses, then slin(s) ::; 5(1 + r + r2 +
.. '+rsSUb(S)), where r is the maximum arity of any function or predicate
in S. Note that r ::; slin(s).

Proof. For literals L, slin(L) ::; 1 + r + r2 + ... + rssub(L) as for
terms, treating a predicate symbol as a function symbol. For clauses
C, slin({Ll' L2,"', Ln}) ::; (n + 1) + 'Eislin(Li), since we only have to
add commas and parentheses to express a clause as a set of literals.
For sets S of clauses, slin({C1 , C2, ... , Cn}) ::; (n + 1) + 'Eislin(Ci) for
the same reason. By simple reasoning, one can then show that if S is a
set of clauses, slin(s) ::; 5(1 + r + r2 + ... + rsSUb(S)) in general. This is
because the worst case is when there is only one very large literal, that
is, S = {{ L}} for some literal L.

D

Definition 2.2.15 Suppose S is a set of clauses and S' is a set of
copies of the clauses in S with variables renamed in each copy. We call
S' an amplification of S.

Definition 2.2.16 We define the duplication measure Mdup(S) for S
to be the minimal number of clauses ITI in any Herbrand set T for S.
We define M~up(S) to be the minimum of ssub(S') over all amplifica
tions S' of S such that there exists a 8 such that S'8 is ground and
unsatisfiable.

Theorem 2.2.17 If set S of clauses is unsatisfiable and T is a Her
brand set for S, then there is an amplification S' of S and a substitution
8 such that T = S'8. (This essentially means that S' has as many
copies of each clause in S as there are instances of it in T.)

Proof. A simple consequence of Herbrand's theorem.
D

Lemma 2.2.18 Suppose S' is an amplification of Sand 8 1 and 8 2

are substitutions such that S'8 1 and S'82 are ground. Suppose for all
literals Ll and L2 in clauses of S', L 18 1 and L2 8 1 are identical (com
plementary) iff L 18 2 and L28 2 are identical (complementary). Then
S'8 1 is unsatisfiable iff S'82 is unsatisfiable.

of Theorem Proving Strategies 79

Proof. Under these assumptions, one can show how a model for S'8 1

may be obtained from a model for S'82 and vice versa.
o

Theorem 2.2.19 Suppose that S is an unsatisfiable set of clauses and
T is a Herbrand set for S. Then there is a Herbrand set T' for S such
that sSUb(T') ~ ITlssub(S). Furthermore, if S' is an amplification of
Sand 8 is a substitution such that T = S'8, then such a T' may be
obtained by a number of unifications on S' that is linear in the number
of literals in S', followed by a replacement of variables by a constant
symbol.

Proof. Let, be a most general substitution such that for two liter
als L1 and L2 in S', L1/ and L2/ are identical (or complementary) iff
the corresponding literals L 18 and L28 in T are identical (or comple
mentary). Such a , may be obtained by a sequence of unifications on
atoms of S', at most m - 1 unifications in all, where m is the number of
literals in S'. Each such unification does not increase the subterm size
of S', as we showed in [PSK95] and above in theorem 2.2.10. Therefore
ssub(S',) ~ ssub(S') ~ ITlssub(S). Also, let " be ,0 where 0 replaces
all remaining variables by a fixed constant symbol. Then by lemma
2.2.18, S',' is unsatisfiable. Therefore S',' is a Herbrand set for S, and
ssub(S',') = ssub(S',).

o

The preceding theorem suggests that it would be reasonable to de
fine the duplication measure to be ssub(S'), that is, M~up, rather than

ITI·

Theorem 2.2.20 The duplication measure is a theorem proving com
plexity measure.

Proof. This proof is not obvious, which makes this measure somewhat
interesting. We need to show that a 9 as in theorem 2.2.9 exists. The
idea is that if we know there is a Herbrand set having only n clauses,
then we can bound the linear size of the clauses in some Herbrand

80 The Propositional and First-Order Complexity

set recursively in nand S. Suppose S is a set of clauses and T is
a Herbrand set for S with n clauses. By theorem 2.2.19, there is a
Herbrand set T' for S such that sSUb(T') :::; ITlssub(S). We need to
show that there is a computable 9 such that slin(T') :::; g(ITI, S). By
lemma 2.2.13 above, it suffices to show that there is a recursive g' such
that sSUb(T') :::; g'(ITI, S). However, this follows from the fact that
sSUb(T') :::; ITlssub(S), since we can let g'(n, S) be nssub(S).

o

We note that there are a number of other reasonable ways one could
define this duplication complexity measure. One could also define it
based on the maximum number of copies of anyone clause in S', or
(as noted) Mdup . Each of these two additional measures would have
slightly different implications for theorem proving complexity.

One reason we feel that the duplication measure is interesting (apart
from the fact that it is not inference based) is the fact that it incorpo
rates unification. By this we mean that the sizes of the instances in a
Herbrand set can be much larger than the sizes of the clauses in S, but
the duplication measure Mdup only counts the number of clauses in a
Herbrand set. Most theorem provers generate the extra term structure
in a Herbrand set using unification.

Definition 2.2.21 The linear complexity measure Mlin(S) of a set S
of clauses is the minimum, over all Herbrand sets T for S, of the max
imum linear size of a literal in T. The subterm complexity measure
Msub(S) of a set S of clauses is the minimum, over all Herbrand sets
T for S, of the maximum subterm size of a literal in T.

It is straightforward to show that these are theorem proving com
plexity measures. Note that we could also define these based on the
linear or subterm size of the largest clause in T, or the linear or sub
term size of T itself. This gives us four more plausible theorem proving
complexity measures.

Definition 2.2.22 The time complexity of a theorem proving strategy
with respect to a complexity measure F is the time taken by the strategy
on an input S, as a function of F(S). The space complexity of a
theorem proving strategy with respect to a complexity measure F is the
space used, as a function of F(S).

of Theorem Proving Strategies 81

As noted above, the time (or space) taken by a prover to find a
proof is another complexity measure (if the prover is complete), and
so in this definition we are really considering a relationship between
complexity measures.

Definition 2.2.23 The measure estimation problem for a complexity
measure F is the set of pairs (S, n), where n is in unary, such that
F(S) ~ n.

We can ask what is the time or space complexity of recognizing this
set. This is a purely complexity theoretic problem, which in some sense
tells us how hard it is to prove theorems with respect to this complexity
measure.

Definition 2.2.24 The inherent (time or space) complexity of a com
plexity measure F is the complexity of deciding the measure estimation
problem for F.

Definition 2.2.25 Suppose that f and 9 are functions of clause sets
S. We say that the function g(S) is (upper bounded by a) single expo
nential in f(S) (or 9 is exponential with respect to f) if g(S) is upper
bounded by a function of the form

c * 2p(s'm(s),j(S)) ,

where p is a polynomial in two variables, and we write the set of such
functions as exp(f). We say that g(S) is lower bounded by a single
exponential in f(S) if g(S) is lower bounded by some function of the
form

or

for some c, d, E > O. We say a function g(S) is (upper bounded by a)
double exponential in f(S) (or 9 is double exponential with respect to
f) if g(S) is upper bounded by a function of the form

82 The Propositional and First-Order Complexity

with similar assumptions on p. We write this set of functions as exp2(J)
or dexp(J). We say that g(8) is lower bounded by a double exponential
in f(8) if g(8) is lower bounded by some function of the form

or

for some c, d, f > O. We define triple, quadruple, and quintuple expo
nential similarly. The idea is that polynomials in slin(8) for a clause
set 8 may be regarded as constants, with respect to the polynomial p.

We now clarify to some extent some relationships between the in
herent complexity of a complexity measure and the complexity of a
particular theorem prover with respect to a measure:

Theorem 2.2.26 Suppose a prover finds proofs from sets S of clauses
in time t(F(S)), where F is a theorem proving complexity measure. If
F is inference-based and the prover finds proofs that are minimal with
respect to F and F has inherent time complexity bounded below by t',
that is, n(t'), then there exists a constant c > 0 such that the prover
requires n(t'(ISI + F(8)) - c * F(8)) time to find proofs from S.

Proof. Suppose solving the measure estimation problem for (S, n)
takes time at least t'(ISI+n), that is, n(ISI+n) time. Now, we can solve
the measure estimation problem for (8, n) by calling the prover on 8,
computing F(8), and testing if F(S) ::; n. This takes timet(F(8))+en
(en for the comparison). Thus t(F(S)) + en is n(t'(ISI + n)). Letting
n be F(S) and rearranging the inequality, we obtain that t(F(8)) is
n(t'(181 + F(8)) - e * F(S)).

o

For example, if F is the proof depth measure and a prover does
breadth-first search, it will find a minimal depth proof and therefore the
prover can calculate F. Thus we can lower bound the time for depth
bounded (breadth-first) theorem proving using the inherent complexity
of the proof depth complexity measure.

of Theorem Proving Strategies 83

Theorem 2.2.27 If the measure estimation problem for F is solvable
in time t, then there is a theorem prover with time complexity t' relative
to F, where t'(F(S)) = E~~)t(lSI + i).

Proof. We can recognize in time t(ISI +n) if F(S) ~ n, where n is in
unary. We can do theorem proving by testing if F(S) ~ 1, F(S) ~ 2,
. ... If any of these tests succeed, we know that S is unsatisfiable. We
know that the test will succeed when i becomes F(S). The total time
taken is then t(ISI + 1) + ... + t(ISI + F(S)), since t is a function of the
length of the input.

o

84 The Propositional and First-Order Complexity

By the way, my
prover is especially
good on four literal

I wonder why there
are so many four

literal clauses in

these problems.

of Theorem Proving Strategies 85

2.3 Inherent complexities

We now consider the inherent complexities of various complexity mea
sures. Some previous studies of the complexities of various resource
bounded theorem proving problems [Pla84, Gou94] are relevant here.
We mention some of these results, and state their relevance at the end
of this section.

Theorem 2.3.1 The problem of determining whether a depth d binary
resolution proof exists from a set S of first-order clauses is NEXPTIME
complete, where d is represented in unary [Pla84}.

Definition 2.3.2 A Horn clause is a clause containing at most one
positive literal. Thus {--,P, --'Q, R} is a Horn clause. A Horn set is a
set of Horn clauses.

Theorem 2.3.3 The problem of determining whether a binary resolu
tion proof with length n or less exists from a set S of propositional Horn
clauses is NP-complete, where n is represented in unary [Pla84J.

From theorem 2.3.3 we derive a corresponding NP-completeness re
sult for first-order logic.

Theorem 2.3.4 The problem of determining whether a binary resolu
tion proof with length n or less and maximum clause size c or less exists
from a set S of first-order clauses is NP-complete, where nand care
represented in unary.

Proof. For propositional problems, we can choose c to be the length of
the input, and we know that no clause longer than this will be generated
by resolution. The NP-hardness result follows then from theorem 2.3.3.
For first-order clause sets, we can show that this problem is still in NP,
since we can nondeterministically generate n resolvents, each of which
has size c or less. Using a polynomial time unification algorithm, the
problem is solvable in nondeterministic polynomial time.

Note that we need to include the maximum clause size as an input,
otherwise we cannot obtain the NP membership of the problem. This

86 The Propositional and First-Order Complexity

is due to the fact that resolution for first-order logic is not polynomially
transparent [Let93], that is, clauses of size exponential in n are possibly
needed for n step resolution proofs.

o

Theorem 2.3.5 The problem of determining whether a set S of first
order clauses has a Herbrand set T with ITI = d is ~~ complete, where
d is represented in unary [Gou94J.

Theorem 2.3.6 The satisfiability problem for Schonfinkel-Bernays form
formulas is NEXPTIME complete [Pla84}.

Theorem 2.3.7 The problem of determining whether a set S of first
order clauses has a Herbrand set T such that every clause D in T has
linear size slin(D) ~ n is co-NEXPTIME hard, where n is represented
zn unary.

Proof. This is a consequence of theorem 2.3.6 by observing that
formulas in Schonfinkel-Bernays form do not have function symbols,
and therefore the linear size of D for such clause sets is bounded by the
linear size of clauses in S.

o

We now relate the completeness results of resource-bounded theo
rem proving to our study of complexity measures and complexity anal
ysis. We draw a correspondence between theorem 2.3.1 and complexity
analysis with respect to the proof depth measure. A theorem proving
strategy is a minimal strategy with respect to proof depth if the depth
of its proof always equals the proof depth measure, namely, the depth
of the minimal binary resolution proof. To verify a proof depth mea
sure of a set of clauses S, we can use a minimal strategy with respect
to proof depth, and compute the depth of its proof. Theorem 2.3.1
states that the problem of verifying the proof depth measure of a set
of clauses is NEXPTIME complete. Assuming that NP-hard prob
lems require exponential time, all minimal strategies with respect to
proof depth are likely to have no less than double exponential com
plexity with respect to the depth measure. A similar argument can be

of Theorem Proving Strategies 87

made for the other three complexity measures. Minimal strategies with
respect to the proof length measure, duplication measure, and linear
size measure are likely to have no less than exponential, exponential,
and double exponential complexity with respect to the corresponding
complexity measures. Note that the requirement of minimal strategy
is needed. For example, to determine the proof length measure for
propositional Horn clauses is NP-complete, but hyper-resolution solves
the propositional Horn satisfiability problem in polynomial time. How
ever, hyper-resolution is not a minimal strategy with respect to proof
length. Note that the proof length measure is defined based on binary
resolution.

These results give bounds on what is the best possible, at least for a
minimal strategy. We now analyze the complexity of various strategies
with respect to various measures and can compare them to the above
bounds to get an idea of how close to optimal they are. Independent
of that, we can compare the strategies with each other to get another
measure of how good they are.

2.4 Inference Based Measures

First we give some interesting sets of clauses that cause various theo
rem proving strategies to exhibit various kinds of exponential behavior.
These will be used to give lower bound on their complexity with respect
to various measures. The upper bounds will be given based on general
arguments.

Definition 2.4.1 Clause C is a hyper-resolvent of clauses B l , •.• , Bk
if C is positive and may be obtained by a sequence of positive resolutions
from Bt, ... ,Bk in which no earlier resolvent is positive. Thus {R, T}
is a hyper-resolvent of the clauses {P, T}, {Q}, and {..,P,..,Q, R}. A
hyper-resolution proof from S is a sequence Ct, C2 , ••• , Cn of clauses
in which each Ci is either in S or is a hyper-resolvent of earlier clauses
in the sequence. Clause C is a UR resolvent of clauses B l , ... , Bk if
C is a unit and may be obtained by a sequence of unit resolutions from
B l , ... , Bk in which no earlier resolvent is a unit. Thus {R} is a UR
resolvent of the clauses {P}, {Q}, and {..,P, ..,Q, R}. A UR-resolution

88 The Propositional and First-Order Complexity

proof from S is a sequence C1, C2 , ••• , Cn of clauses in which each Cj
is either in S or is a UR-resolvent of earlier clauses in the sequence.
A set S of clauses is unit-resolvable or UR-resolvable if it has a UR
resolution refutation.

Definition 2.4.2 The clause set Sfg consists of the two clauses {-,P(x),
P(J(x))} and {-'P(x), P(g(x))}.

Theorem 2.4.3 It is possible to generate 22n clauses whose literals are
of linear size 2n + 2 using depth n binary resolution proofs from Sfg.

Proof. By induction. For n = 0 we observe that Sfg has two
clauses whose literals are of size 3. For n = 1 we obtain the fol
lowing clauses: {-,P(x), P(J(J(x)))}, {-,P(x), P(J(g(x)))}, {-,P(x),
P(g(J(x)))}, {-'P(x), P(g(g(x)))}. This gives four clauses of literal
size 4. In general, the number of function symbols at depth n is 2n , so
the literal size is 2 n + 2 and the number of clauses possible is 22n. Ac
tually, even more clauses are derivable by resolving clauses at depths i
and j, for i ~ j, but the given bounds are asymptotically still optimal.

o

Definition 2.4.4 The clause setTfg consists of the three clauses {-,T(x,y),
-,T(y,z), T(x,z)}, {T(x,f(x))}, and {T(x,g(x))}.

Theorem 2.4.5 It is possible to generate 22n unit clauses having liter
als with 2n function symbols using depth n hyper-resolution proofs from

Tfg ·

Proof. By induction. For n = 0 we have two unit clauses, each with
one function symbol. With one hyper-resolution step, we can generate
the four units {T(x,f(J(x)))}, {T(x,f(g(x)))}, {T(x,g(J(x)))}, and
{T(x,g(g(x)))}. With depth two proofs, we generate units having four
function symbols, sixteen in all. In general, at depth n we generate all
possible units having 2n function symbols, 22n in all. As before, even
more clauses are derivable by resolving clauses at depths i and j, for
i ~ j, but the stated bounds are asymptotically still optimal.

o

of Theorem Proving Strategies 89

Similar bounds are derivable for PI-deduction (positive resolution),
since a hyper-resolution corresponds to two PI-deductions. We now
consider how one may derive many clauses having large numbers of
small literals, rather than a few large literals.

Definition 2.4.6 Let Ttrans be the clause set consisting of the eight
clauses {-,Ti(x,y), -,TJ(y,z), Tk(x,zn for i,j,k in {1,2}.

Theorem 2.4.7 One can derive 22n- 1 +2 clauses having 2n - 1 + 2 literals

with binary resolution proofs of depth n from Ttrans.

Proof. By induction. For n = 1, we derive eight clauses with three
literals. For length two, we resolve two clauses having three literals and
obtain the following four-literal clauses:

{-,Ti(x, y), -,Tj(y, z), -,Tk(z, w), T/(x, wn.
For length three, we can resolve these clauses to obtain the following

64 six-literal clauses:
{-,Ti(x, y), -,Tj(y, z), -,Tk(Z, w), -,Tl(w, v), -,Tm(v, u), Tn(x, un
In general, for length n + 1, we resolve two clauses having 2n - 1 + 2

literals and obtain a clause having 2n + 2 literals. (Two of the literals
are deleted by the resolution operation.)

o

Theorem 2.4.8 It is possible to derive an exponential number of one
literal clauses from the input set 5 f 9 U {P(a n using length n PI deduc
tions.

Proof. A simple induction. In a length n proof, one can derive
clauses having a linear number of function symbols, of which there are
an exponential number (that is, exponential in n).

o

Theorem 2.4.9 If there is a PI deduction proof of length n from 5,
then there is a hyper-resolution proof of length between nj(slin(5)) and
n. If there is a hyper-resolution proof of length n, then there is a PI
deduction proof of length between nand nslin(5).

90 The Propositional and First-Order Complexity

Proof. Each hyper-resolution step corresponds to k Pi steps, where k
is bounded by the maximum number of negative literals in a clause in
S, and k is in turn bounded by slin(s) (the length of S in characters).
Also, the number of negative literals in a clause never increases during
Pi deduction.

o

It will turn out that Pi deduction is simpler to analyze than hyper
resolution. However, using the above theorem, many results about
Pi-deduction apply immediately to hyper-resolution also, especially
asymptotic complexity results. This equivalence between the two will
often be taken for granted. We now introduce a set of clauses that
encodes a binary counter; this clause set will be useful in the following
discussion.

Definition 2.4.10 The binary counter clause set Bn consists of the
following clauses:

{P(Xi' X 2 , • •• ,Xn - i , 1), -'P(Xi' X 2 , ••• ,Xn - i , On
{P(Xi' X 2 , ••• , X n - 2 , 1,0), -'p(Xi , X 2 , ••• , X n - 2 , 0, In

{p(l, 0, 0, ... ,0), -'p(O, 1, 1, ... ,In
{p(O,O,o, ... ,O)}
{ -,p(1, 1, 1, ... , I)}

Theorem 2.4.11 Any binary resolution refutation for the binary counter
Bn has a proof depth (and length) at least n + 1. Also, there is a binary
resolution proof of depth 2n and length 2n + 1.

Proof. We first consider Herbrand sets T for Bn. Such a Herbrand
set T must have 2n - 1 clauses in it of the form

where the ai are either ° or 1. We can show that all these ground
clauses are needed by the fact that if any of them are missing we can
construct a model of the remaining ground instances of Bn over its
Herbrand universe. We also have two unit clauses in the proof, namely,

of Theorem Proving Strategies 91

{p(O, 0, 0, ... ,O)} and {-,p(l, 1, 1, ... ,I)}, for 2n + 1 ground clauses in
all.

Now, any binary resolution prooffrom T has to have depth n + 1 in
order to include all of these 2n + 1 ground clauses, since a binary tree
of depth n can only have 2n leaves. Lifting to the first-order case, any
binary resolution proof from En also has to have depth at least n + 1.
This proof therefore has length at least n + 2.

To obtain a proof of depth 2n, we successively derive the clauses of
the form

for i = n, n -1, ... ,1. This can be done in two resolutions from the
clauses

{-,p(X1 , X 2 , ••• , Xi+l, 0, 0, ... , 0),p(X1 , X 2 , ••• , X j+l , 1, 1, ... , I)}

and

{-'P(X1,X2 , ••• ,Xj,O, 1, ... , 1),P(X1 ,X2 , ••• ,Xj, 1,0, ... ,O)},

the latter of which is in En. Therefore the clause

{-,p(O, 0, ... , O),p(l, 1, ... ,I)}

can be derived at depth 2n - 2, and a contradiction can be found
at depth 2n. We observe that this proof also has length 2n + 1.

o

Theorem 2.4.12 Any PI deduction refutation from En has depth at
least 2n and length at least 2n + 1. Also} there is a proof at depth 2n
with length 2n + 1.

Proof. By examining the clauses that may be generated. One starts
with p(O, 0, 0, ... ,0) and generates the binary sequences in order, with
one more resolution at the end to generate the empty clause. This is
2n resolution steps in all, for a length of 2n + 1 and a depth of 2n. No
other steps are possible, so no shorter proof exists.

o

92 The Propositional and First-Order Complexity

Theorem 2.4.13 The number of atoms over k predicate / function /
constant symbols, and having subterm size n, is bounded by (2n + k)nr,
where r is the maximum arity of any predicate or function symbol. We
are assuming the variables are chosen from the set Xl, X2, ... , Xn.

Proof. The subterms of an atom can be given integer labels by
their first occurrence in the atom, reading left to right. Thus for
P(f(g(a, b))), the term f(g(a, b)) would have index 1, the term g(a, b)
would have index 2, the term a would have 3, and the term b would
have index 4. Later occurrences of a term can then be replaced by
the integer index, so we can represent P(g(f(a), f(a))) as P(g(f(a), 2))
where the 2 indicates an occurrence of the term f(a) having index 2.
The number of occurrences of predicate, function, and constant, sym
bols in this representation is then the subterm size of the atom. If the
maximum arity is r, then the number of occurrences of function sym
bols and integer indices is at most nr. Each one of these nr positions
can be either a function symbol, a constant, or an integer between 1
and n, n+k possibilities in all. Thus there are at most (n+k)nr ground
terms of subterm size n. If one also considers variables, there can be
at most n variables since each variable is a term, and we get at most
(2n + k)nr terms. These bounds are all of the form cn1og(n), and are
therefore still single exponential.

o

Corollary 2.4.14 The number of clauses over k function/constant and
predicate symbols, and having subterm size n, is bounded by (2n + k +
1)2nr, where r is the maximum of 2 and the arities of all function and
predicate symbols. We are assuming as before that variables are chosen
from the set Xl, X2, ... , xn. We are also only counting the subterms ap
pearing in the literals, as well as the literals themselves, in the sub term
size. The number of sets of clauses over k function/constant and pred
icate symbols, and having subterm size n, is bounded by (2n + k + 2)4nr,
under the same assumptions.

Proof. We can consider a clause {Ll' L2, ... , Lp} as having a top-level
binary "or" connective, that is, or(Ll , or(L2' ... , or(Ln- l , Ln) ...)) and

of Theorem Proving Strategies 93

we can consider the predicate symbols as function symbols as before.
We can assume that all literals are distinct, since a clause is a set.
Therefore, the number of distinct subterms in the literals is at least
p. There are at most p - 1 extra subterms added by the binary "or"
connective, and p - 1 < n. Thus the clause may have 2nr symbols, and
each symbol can be one of the 2n + k symbols for an atom, or the "or"
connective. This gives (2n + k + 1)2nr altogether. For sets S of clauses,
we can add an "and" connective between the clauses. This can double
the length again, and adds one more symbol. Therefore, we obtain the
stated bound of (2n + k + 2)4nr clauses having subterm size n.

o

In general, we need ways of describing various search strategies for
a given theorem proving strategy.

Definition 2.4.15 We say that a search strategy is depth-bounded if
it generates proofs in order of increasing depth, length-bounded if it
generates proofs in order of increasing length, subterm-size bounded if
it generates clauses in order of increasing subterm size, and linear-size
bounded if it generates clauses in order of increasing linear size. To
clarify this further, a subterm-size (linear-size) bounded search strategy
will do the following: For all i from 1 to infinity until a proof is found,
generate all proofs in which all clauses have subterm size (linear size)
bounded by i.

2.4.1 Resolution Based Methods

Theorem 2.4.16 Depth-bounded binary resolution has a complexity
that is at worst double exponential with respect to the proof depth com
plexity measure Mpd.

Proof. We note that if D is a resolvent of C1 and C2 , then IDI ~
ICll + IC2 1 where ICI is the number of literals in a clause C. Therefore
the number of literals in a clause can at worst double in each round of
resolution. Therefore in a depth n binary resolution proof, the number
of literals in clauses can be at most exponential in n. This implies
at most double exponentially many resolvents between any two clauses

94 The Propositional and First-Order Complexity

(with factoring). Furthermore, we note by corollary 2.2.12 that if D is a
resolvent of CI and C2 , with or without factoring, then the subterm size
of D is at most the sum of the subterm sizes of C1 and C2 • Therefore
the subterm sizes of clauses occurring in depth n proofs is at worst
exponential in n. By corollary 2.4.14 above, this means that there are
only double exponentially many clauses that can occur in such proofs.
Thus the total search can be done in double exponential time.

o

Theorem 2.4.17 Depth-bounded binary resolution has a search com
plexity that is double exponential with respect to the proof depth com
plexity measure Mpd.

Proof. The upper bound was just given. We now give a lower bound.
Consider the set of clauses Sig U En. We showed in theorem 2.4.11 that
En requires a depth n + 1 binary resolution proof to find a refutation,
and there is a refutation at depth 2n. Doing depth-bounded (breadth
first) resolution on the clause set Sig will generate a number of clauses
that is double exponential in n, as shown in theorem 2.4.3.

o

Theorem 2.4.18 Length bounded binary resolution (without factor
ing) has single exponential complexity with respect to the proof length
complexity measure Mp/, if resolution and factoring are separated.

Proof. By resolution without factoring we mean that resolution and
factoring are considered as separate operations in the proof. We want
to consider the total number of proofs of length n and show that this
is exponential in n. We also want to show that we can generate each
such proof in time exponential in n. In addition, we need to give a
corresponding lower bound.

Now, suppose that the input clause set S has a maximum of c literals
per clause. We want to count the number of possible resolutions at step
i when we have already generated the clauses C1, C2 , • •• , Ci-I. We
have to choose two clauses to resolve, which can be one of the clauses

of Theorem Proving Strategies 95

in the proof or a clause in S. There are lSI + i-I possibilities at
most. Then we have to choose two literals to resolve. The number of
literals can at most double, so the number in any clause is bounded
by 2i - I c. Therefore there are at most (lSI + i - 1)2 * (2i- I c)2 possible
resolvents, bounded by (lSI + n)2 * (2nC)2. We must resolve n times,
so this must be raised to the nth power, giving (lSI + n)2n * (2nc)2n, or
(lSI + n)2n * (4n2)c2n . This has a quadratic in the exponent, but is still
single exponential.

We also need to show that each resolution can be done in exponential
time. The subterm size of a resolvent can at most double at each
resolution, and so it is at worst exponential in n. Factoring does not
increase the subterm size. Therefore each resolution can be done in
exponential time, since resolution may be done in time polynomial in
the subterm size.

For the lower bound, we can take the clause set Sfg U {P(a)} U Bn
The shortest proof from Bn has linear length, as we showed in theorem
2.4.11. Also, from Sfg U {P(a)}, one can derive an exponential number
of proofs of linear length, as we showed in theorem 2.4.8.

o

We note that this result does not appear to hold if we allow many
factoring operations to be included in a single resolution operation.
However, even in that case, if we consider the sum of the sizes of the
clauses in the proof instead of the length n of the proof, we can still
obtain a complexity exponential in the proof length.

Lemma 2.4.19 Suppose that S is a set of clauses with a depth n bi
nary resolution refutation. Then there is a depth 2n - 1 PI deduction
refutation from S (with factoring) and a length ISI(2n - 1) PI deduc
tion refutation (with factoring). Also, on the ground level, clauses of
size at most n are needed. If resolution and factoring are considered
as separate operations, then there is a depth n(2n - 1) + (m - 1) PI
refutation and a length nlSI(2n - 1) + M -lSI PI refutation, where m
is the maximum number of literals in a clause of Sand M is the sum
of the number of literals in the clauses of S. All of these bounds are
single exponential in n.

96 The Propositional and First-Order Complexity

Proof. We show this for propositional logic, and then lift to first
order logic. For propositional logic, the case n = 0 is immediate. Now,
we show that from any set 5' of propositional clauses having a depth k
binary resolution proof, k > 0, there is a PI-deduction proof of depth
2k - 1. For this, we consider the last predicate symbol P that gets
resolved away to produce the empty clause. Then there must be a
depth k - 1 binary resolution proof of P (with clauses of size at most
k) and a depth k - 1 binary resolution proof of ...,p with clauses of size
at most k. From the first proof, we can remove occurrences of P from
5', and then we obtain a depth k - 1 binary resolution refutation from
this clause set with clauses of size at most k - 1. By induction, we
get a PI proof of the empty clause of depth 2k- 1 - 1 from S' with P
occurrences removed and with clauses of size at most k - 1. Putting P
back in, we get a PI proof of depth 2k- 1 - 1 of P from 5' with clauses
of size at most k. Resolving this P with 5', we remove all occurrences
of ...,P. This takes one more depth of proof. Then there is a depth k - 1
proof of the empty clause from 5' with all ...,p removed. By induction,
this can be made into a depth 2k- 1 -1 PI-deduction proof with clauses
of size at most k - 1. The total depth is then 2k- 1 - 1 + 1 + 2k- 1 - 1,
or, 2k - 1. This completes the induction.

Lifting this result to first-order logic, we obtain that there is a depth
2n - 1 PI deduction proof from S. Also, since each clause in the lifted
proof corresponds to a ground instance with at most n literals, it turns
out that each resolvent corresponds to a ground instance with at most
n - 1 literals, since one literal was removed. Therefore we can perform
at most n - 1 factoring operations after each resolution to insure that
the non-ground clauses have the same number of literals as their ground
instances. Thus for resolution and factoring as separate operations, the
depth may be n(2n - 1). We may also have to factor the input clauses
so that they have the same number of literals as their ground instances.
This may require a maximum depth of m - 1 factorings, where m is
the maximum number of literals of a clause in 5. Thus the total depth
may be n(2n - 1) + (m - 1).

To get the length ISI(2n - 1) result, we notice that the step of
resolving P with S' will require at most lSI resolutions in the lifted
clause set. This step has to be done once for each resolution in the depth
n proof. Since there will be at most 2n -1 resolutions in a depth n proof,

of Theorem Proving Strategies 97

the result follows. If factoring and resolution are separate operations,
then we may need n-1 factoring operations after each resolution, giving
a length of at most nlSI(2n - 1). Considering factorings of the input
clauses as before, this can be at most nlSI(2n -1) + M -lSI, where M
is the sum of the number of literals in the clauses of S.

o

Theorem 2.4.20 Depth-bounded hyper-resolution has triple exponen
tial complexity with respect to the proof depth complexity measure M pd '

Proof. Consider the clause set Bn U Tfg • To refute Bn, hyper
resolution needs an exponential number (2n) of steps. But hyper
resolution from the clause set Tfg can generate a triple exponential
number of clauses with proofs of depth 2n, by theorem 2.4.5. This
gives the lower bound.

Now, suppose that S is a set of clauses having a depth n binary
resolution proof. By lemma 2.4.19, S has an exponential depth PI -

deduction proof. Now, by general arguments, in exponential depth,
the subterm size and number of literals of the clauses generated can
be at most double exponential, and there can then be at most a triple
exponential number of clauses generated, by corollary 2.4.14. This
makes the total work at most triple exponential.

o

Theorem 2.4.21 Length-bounded PI-deduction has double exponential
complexity with respect to the proof length complexity measure Mpl , if
resolution and factoring are considered as separate operations.

Proof. To get the upper bound, if there is a length n binary resolution
proof, then the proof has depth at most n. Therefore by lemma 2.4.19,
there is a PI deduction proof of length at most single exponential in
n. Then, reasoning as for binary resolution with respect to the proof
length measure, we obtain a double exponential upper bound for the
complexity. That is, the subterm size measure and number of literals

98 The Propositional and First-Order Complexity

can at most double at each resolution, so they have a double exponen
tial bound. Therefore we get a possibly double exponential number of
choices at each step of a resolution to perform, and in a single expo
nential number of choices, this results altogether in at most a double
exponential complexity.

For the lower bound, consider the clause set En U Big U {P(a)}.
En is a binary counter, which PI deduction needs exponentially many
resolutions to refute, but binary resolution requires only linear depth.
Then the clauses Big U {P(a)} give a double exponential number of
single literal resolvents of exponential length using PI deduction, by
theorem 2.4.8.

D

The following result is interesting because it has to do with the
complexity of a length-bounded strategy with respect to a proof depth
measure:

Theorem 2.4.22 Length-bounded binary resolution has double expo
nential complexity with respect to the proof depth complexity measure
Mpd, if resolution and factoring are separated.

Proof. Note that if there is a depth n binary resolution proof,
then there is an exponential length binary resolution proof, since each
clause has at most two parents. The number of proofs of exponential
length is at most double exponential. For the lower bound, consider
the clause set Pn U Big, where Pn is the pigeonhole problem of size n.
This is a propositional problem for which Haken [Hak85] showed that
any resolution proof has exponential length. Since any propositional
problem has a linear depth proof, Pn does too. However, it requires
an exponential length proof, and there are double exponentially many
clauses that may be generated from Big in exponential length.

D

2.4.2 Model Elimination

We now consider the complexity of model elimination [Lov69] with
respect to the proof length and proof depth complexity measures.

of Theorem Proving Strategies 99

Theorem 2.4.23 With respect to the proof depth complexity measure
MpdJ the complexity of model elimination is at least double exponential
and at most triple exponential.

Proof. For the lower bound, consider the clause set BnUSfgU{P(a)}.
This has linear complexity with respect to the proof depth bound, due
to Bn. However, the minimal length proof for model elimination is
single exponential, analogous to the situation for PI-deduction. The
clause set Sf 9 U { P(a)} in single exponential length proofs can generate
a double exponential number of proofs, leading to the lower bound.

For the upper bound, if there is a depth n proof from S, then on
the ground level, at most 2n literals are involved in the proof (that is,
in a Herbrand set for S). Now, we consider the tableau formulation
of model elimination, for simplicity; in this formulation, we construct
trees in which, at each node, there are outgoing edges labeled with
LI, ... , Lm for some clause {LI' ... , Lm} in S (or an instance of a clause
in S). The tree can be stopped when there are complementary edges
on a path, and one never needs paths with identical literals appearing
more than once. For 2n propositions, the depth of the tree can therefore
be at most single exponential, the number of nodes in the tree can be
at most double exponential, and the number of choices altogether is at
most triple exponential, since model elimination has at most a bounded
number of choices at each step involving the addition of a new clause.
There are also a number of choices proportional to the length of the
chain, involving applying a substitution and deleting literals, but the
overall result is still triple exponential.

D

Theorem 2.4.24 With respect to the proof length complexity measure
Mp/J the complexity of model elimination is at least double exponential
and at most triple exponential.

Proof. The upper bound follows because a proof of length n has
depth no larger than n. It is surprising that we cannot derive a bet
ter result than this. The lower bound is from Bn U Sfg U {P(a)}. We
know that there is a linear length refutation from Bn by theorem 2.4.11.

100 The Propositional and First-Order Complexity

However, any model elimination refutation from Bn requires an expo
nential number of steps. In this many steps, the clause set Sig U {P(a)}
permits a double exponential number of choices.

o

2.5 The Duplication Measure

We now consider the instance-based theorem proving complexity mea
sures M dup , Msub, and M1in , as opposed to the inference-based measures
Mpd and Mpl considered above. The first such measure to be considered
is the duplication complexity Mdup.

2.5.1 Clause Linking

We begin by analyzing the time complexity of methods based on clause
linking with respect to the duplication complexity measure, first prov
ing some results about the lengths of clause linking proofs. For this,
we define Gr(S) to be S with all variables replaced by a fixed constant
symbol, as in [LP92], and similarly for literals and clauses.

Definition 2.5.1 A linking operation between two clauses C and D
is a unification between literals L E C and M E D such that Land
M have opposite sign, generating instances ce and De such that Le
and Me are complementary. This is the basic operation in the clause
linking strategy of [LP92], although that paper uses a slightly different
notion of hyper-linking that links all the literals of a clause at once
instead of only one. We say that the clauses ce and De are obtained
from C and D by a linking operation.

Definition 2.5.2 A clause linking proof from S is a sequence C l , C2,

... , Cn of clauses where each Ci is either in S or is obtained by a link
ing operation from two earlier clauses in the sequence. We assume
that variables in the Ci are renamed so that no two clauses share any
variables. We call n the length of the proof. A clause linking refuta
tion is a clause linking proof in which the set Gr({C1 , C2, ... , Cn }) zs
propositionally unsatisfiable.

of Theorem Proving Strategies 101

Definition 2.5.3 The depth of a clause C in a clause linking proof
from S is 0, if C E S, else it is 1 + max(d1, d2), where d1 and d2
are the depths of the clauses from which C was obtained by a linking
operation. The depth of a clause linking proof is the maximum depth
of any clause in the proof.

We comment on how depth-bounded and size-bounded clause link
ing is implemented, for purposes of this discussion. For depth-bounded
clause linking from a set S of input clauses, for each depth d from 1
until a proof is found, we do the following:

1. Generate all clauses of depth d or less that may be ob
tained by linking previously generated clauses of depth
d or less. Call this set of clauses Sd.

2. Test Gr(Sd) for satisfiability using some efficient propo
sitional decision procedure such as Davis and Putnam's
method.

Note that there is no nondeterminism in clause linking, implemented
in this way, since the sets Sd are generated exhaustively in order of in
creasing d. That is, Sd is a function of Sd-1 and S. The time required,
then, to find a proof, is the time to generate the sets Sd for d up to the
required depth, plus the time to test each set Gr(Sd) for satisfiability.
Subterm-size bounded and linear-size bounded clause linking are anal
ogous, except that instead of the depth d, we use the subterm size or
linear size of the clauses generated as the bound.

Recall that a theorem proving method is complete if it permits a
proof of unsatisfiability for every unsatisfiable clause set. We recall
from [LP92] that clause linking is complete, that is, if S is unsatisfiable,
then there is a clause linking refutation from S.

Definition 2.5.4 A rigid clause linking proof from S is a sequence
S1, S2, ... , Sn of sets of clauses where S1 is an amplification of S, each
Si+1 may be expressed as Sj8 j, and 8 j is a unifier of two complementary
literals in different clauses of Sj. We call n the length of the proof. A
rigid clause linking refutation is a clause linking refutation in which the
set Gr(Sn) is propositionally unsatisfiable.

102 The Propositional and First-Order Complexity

Definition 2.5.5 A clause C8 is a variant of C if 8 is a 1-1 mapping
of variables to variables. Thus C8 is C with the variables renamed.

Definition 2.5.6 If {C1, ... , Cn} is a set of clauses, then a separation
of {C1 , ••. , Cn} is a set {C~, ... , C~} of clauses where each CJ is a
variant of Ci and CJ and Cj do not share variables for distinct i and j.
We use Sep(S) to refer to a separation of S chosen in some way.

Definition 2.5.7 An amplified clause linking proof from S is a se
quence Sl, S2, ... , Sn of sets of clauses where Sl is an amplification of
S, each Si+1 may be expressed as Sep(Si8i), and 8i is a unifier of two
complementary literals in different clauses of Si. We call n the length
of the proof. An amplified clause linking refutation is a clause linking
refutation in which the set Gr(Sn) is propositionally unsatisfiable.

We develop some technical results to relate the length of clause
linking proofs, amplified clause linking proofs, and rigid clause linking
proofs. The problem is that variables are held rigid in the latter but
not in the former two.

Proposition 2.5.8 If there is an amplified clause linking refutation
from S of length n, then there is a clause linking refutationfrom S of
length 4(n - 1) and depth n - 1.

Proof. Suppose Sl, S2, ... , Sn is an amplified clause linking refutation
from S. One obtains the clause linking refutation by listing for each
Si, i > 1, the two clauses that were modified by the substitution 8 i- 1

and possibly their two parents, if they were not listed yet. Therefore
each amplified step Si for i > 1 may generate four clauses in the clause
linking proof. Thus the 4(n - 1) bound. Each amplified step Si only
increases the depth by one, whence the n - 1 bound.

o

The following result gives a basis for bounding the length of ampli
fied clause linking proofs.

of Theorem Proving Strategies 103

Lemma 2.5.9 Suppose that Land M are unifiable literals and that
Gr(L) and Gr(M) are different. Let 0 be a most general unifier of L
and M. Then 0 binds at least one variable of L or M to a non-variable
term) and hence the number of variables in {L, M}0 is less than the
number of variables in {L, M}. Also) the number of non-variable symbol
occurrences in {L, M}0 is larger than the number in {L, M}.

Proof. Consider the first subterms rand s of Land M, respectively,
such that Gr(r) and Gr(s) differ. Since Land M are unifiable, both
of these terms cannot start with a function symbol. Since Gr(r) and
Gr(s) differ, both of these terms cannot be variables. Therefore one of
these terms is a variable x and the other is a non-variable term t. On
unification, x will be bound to t, so the number of variables will decrease
and the number of non-variable symbol occurrences will increase.

o

Definition 2.5.10 If T is a set of ground clauses and L is a literal
such that for some clause C in T) LEe) we say that L is pure in
T if there is no other clause D and literal M E D such that M is
complementary to L.

We note that if T is minimal unsatisfiable, then T contains no pure
literals.

Theorem 2.5.11 Suppose S is unsatisfiable and T is a Herbrand set
for S. Then there is an amplified clause linking refutation from S of
length not greater than slin (T).

Proof. There is an amplification Sl of S such that for some at,

T = Sla1. We can assume that T is minimal unsatisfiable, implying
that T has no pure literals.

We know from lemma 2.2.18 that if T = Siai and Gr(Si) has all
literals identical/complementary when the corresponding literals in T
are identical/complementary, then Gr(S;) will be unsatisfiable. Other
wise, there must be two literals L1 and L2 of Si such that Gr(L1) and
Gr(L 2) are not identical/complementary but the corresponding literals

104 The Propositional and First-Order Complexity

L10:i and L20:j of Tare identical/complementary. If L1 and L2 are
of the same sign, then there must be some literal M in Sj such that
LiO:i and M O:i are of opposite sign in T (since T has no pure literals).
Then since Gr(L1) and Gr(L2) are not identical, it must be that some
Gr(Li) is not identical to Gr(M), too. Thus there must be two literals
of Gr(Si) that are not complementary when the corresponding literals
of T are. Thus there is a clause linking substitution 8 i unifying these
two complementary literals, and the number of non-variable symbol oc
currences in Si8i will be larger than the number in Si, by lemma 2.5.9.
Since clause linking substitutions are most general unifiers, there will
still be a substitution O:iH such that Sep(Sj8i)0:i+1 = T. We can let
Si+1 be Sep(Si8i). Thus this process can be continued. The number
of such steps is then bounded by slin(T), since this is a bound on the
number of non-variable symbol occurrences in T. (We have, by the
way, just proved the completeness of amplified clause linking.)

o

Corollary 2.5.12 If S is unsatisfiable and T is a Herbrand set for S,
then there is a clause linking refutation from S having length at most
4slin(T) .

Proof. This follows from theorem 2.5.11 and proposition 2.5.8.
o

We have now bounded the lengths of amplified clause linking proofs
and clause linking proofs. We now bound the lengths of rigid clause
linking proofs, and then give some examples to show that the former
can sometimes be much longer than the latter.

Definition 2.5.13 If S is a set of clauses, then s:::~A S) is maxcEsssub (C)
d lin (S) . lin (C) an smax ZS max CESS .

We note that Mdup(S) S; Mdup(S) * s:::~x(S), Some of the following
results could more accurately be stated in terms of Mdup(S).

Theorem 2.5.14 Suppose that S is unsatisfiable. Then there is a rigid
clause linking refutation of S of length at most 1 + MduP(S)s:::~AS).

of Theorem Proving Strategies 105

Proof. Similar to the proof of theorem 2.5.11. We know that there
is a Herbrand set T for S such that ITI = Mdup(S). Thus there is
an amplification Sl of S such that for some aI, T = SIal. Thus
IS11 = ITI = Mdup(S). We can assume that T is minimal unsatisfiable,
implying that T has no pure literals. We show that there is a rigid clause
linking refutation from Sl of length at most 1 + Mdup(S)S:::~x(S).

We know from lemma 2.2.18 that if T = Siai and Gr(Si) has all
literals identical/complementary when the corresponding literals in T
are identical/complementary, then Gr(Si) will be unsatisfiable. Other
wise, there must be two literals L1 and L2 of Si such that Gr(L1) and
Gr(L2) are not identical/complementary but the corresponding literals
L1ai and L2ai of T are identical/complementary. If L1 and L2 are
of the same sign, then there must be some literal M in Si such that
Liai and M ai are of opposite sign in T (since T has no pure literals).
Then since Gr(Ld and Gr(L2) are not identical, it must be that some
Gr(L;) is not identical to Gr(M), too. Thus there must be two lit
erals of Gr(S;) that are not complementary when the corresponding
literals of T are. This means that one can obtain Si+1 by applying a
clause linking substitution to Si, and this will reduce the number of
variables in Si, by lemma 2.5.9. Since clause linking substitutions are
most general unifiers, there will still be a substitution ai+1 such that
Si+1ai+1 = T. Thus this process can be continued. The number of
such steps is then bounded by IS1Is:::~x(S), since this is a bound on the
number of variables in Sl. (We have, by the way, just proved the com
pleteness of rigid clause linking.) But ISds::~x(S) = Mdup(S)S::~x(S),
and one more step may be needed in the proof to list Sl itself.

o

This result implies that the bound for amplified clause linking can
be exponentially larger than the bound for rigid clause linking. The
question arises whether this can actually happen or whether the bound
can be improved. We now give some surprising clause sets showing that
this bound cannot be improved, and that clause linking and amplified
clause linking can take much longer to find proofs than resolution and
rigid clause linking. First we give a simple example to illustrate the
idea, and then a more complicated example.

Consider the following clause set Scyc:

106 The Propositional and First-Order Complexity

{P(XI, X2,·.·, Xn), Q(X2, X3,···, Xn, xd}
{-,P(XI, X2,.·., Xn), Q(g(a), X2, ... , Xn)}
{-, R(XI,X2, ... ,Xn), -, Q(X2,X3, ... ,xn,xd}
{R(XI,X2, ... ,Xn), -, Q(g(a),X2, ... ,Xn)}

We develop some lemmas and results to show that this clause set
requires exponential length clause linking refutations. In ths discussion,
the term input clause refers to an element of SCYc.

Definition 2.5.15 A g-clause is an instance of a clause m SCYC m
which either

• All variables are bound to g(a)) or

• the variables X2, ... , Xi have been bound to the term g(a)) for some
i) and the other variables are bound to distinct variables.

A ground g-literal is a ground literal in which either

• the predicate symbol is Q) and for some i) the first i arguments to
Q are bound to g(a)) and the remainder to constant symbols) or

• the predicate symbol is P or R) and for some i) the second through
ith arguments of this predicate symbol are bound to g(a)) and the
others are bound to constants) or

• the predicate symbol is P or R) and all the arguments of this
predicate symbol are bound to g(a)

A ground g-clause is a ground clause all of whose literals are ground
g-literals.

We observe that all clauses in Scyc are g-clauses. Also, a hyper-link
operation between two g-clauses produces another g-clause.

Definition 2.5.16 The degree of a g-clause is n) if Xl is bound to
g(a)) and otherwise i-I) where i is the highest integer not equal to one
such that Xi is bound to g(a). The degrees of the clauses in Scyc are
zero.

of Theorem Proving Strategies 107

Definition 2.5.17 If L is a ground g-literal of the form P(Sl, ... , sn),
Q(Sl,"" sn), or R(Sl, ... , sn), or their negations, then the degree of L
is the maximum i such that Si is the term g(a).

Recall that Gr(C) is the clause C with all variables replaced by a
fixed constant symbol.

Lemma 2.5.18 If C is a g-clause, then Gr(C) is a ground g-clause.

Lemma 2.5.19 We can relate the parity of clauses and their ground
instances in the following way:

1. If{ P(rl,r2"""n), Q(r2"3, ... ,rn,rt}} is ag-clause of positive
deg,ee less than n, then the degrees of the literals GI(P(rl, r2,
... , In)) and G,(Q(r2, '3, ... , 'n, It}) have opposite parity, that
is, one is odd and the othe, is even.

2. If {-,P('l, r2, ... , rn), Q(g(a), '2, ... , In)} is a g-clause of positive
degree less than n, then the degrees of the literals Gr(-,P(rl, '2,
... , In)) and G,(Q(g(a),12"""n)) have the same parity.

3. If{-, R(11,12"""n), -,Q(r2,r3, ... ,rn,rt}} is agroundg-clause
of positive degree less than n, then the degrees of the literals Gr(-,
R('l, '2,···, In)) and Gr(-,Q('2, '3, ... , rn, 11)) have opposite
parity.

4. If {R(11,r2"""n), -,Q(g(a)"2, ... ,rn)} is a ground g-clause
of positive degree less than n, then the degrees of the literals
Gr(R('l,r2, ... ,rn)) and Gr(-,Q(g(a),r2"""n)) have the same
parity.

Theorem 2.5.20 Any clause linking refutation of this clause set has
length at least 2n+4, but there is a resolution proof (with factoring)
involving 3 resolutions, and a proof without factoring involving 3 reso
lutions and two factoring steps. We note that this clause set has dupli
cation complexity 4.

lOS The Propositional and First-Order Complexity

Proof. We show then that if T is a set of instances of S and every
element of T is a ground g-clause of degree less than n, then T is
satisfiable. This can be shown by considering the model M such that
M F L iff L has positive even degree. The model M' such that M' F L
iff L has odd or zero degree will also work. We then show that it
takes over 2n links to create elements of large degree. First, each link
operation can increase the degree by at most one. This gives a lower
bound of n link operations. To get a 2n - 1 lower bound, we observe
that only every other link operation can increase the degree, due to
the structure of SCyc' We can increase the bound to 2n by noting that
just one clause of degree n is not enough to get a contradiction, since
we have two models M and M', one of which will satisfy any given
clause. Thus we need at least 2n link operations. With the four input
clauses, we obtain a lower bound of 2n + 4 on the length of a clause
linking refutation. In fact, with two more link operations, we can get
a refutation, so the optimal bound is somewhere between 2n + 4 and
2n + 6. The resolution proofs mentioned in the theorem are easy to
find.

o

We illustrate by giving a (not necessarily optimal) clause linking
refutation for the case n = 2:

1. P(Xl,X2),Q(X2,Xt) (input) (degree 0)
2. ,P(Xl,X2),Q(g(a),x2) (input) (degree 0)
3 .• R(Xl,X2),.Q(X2,Xt) (input) (degree 0)
4. R(Xl,X2),.Q(g(a),x2) (input) (degree 0)
5. .R(xl,g(a)), .Q(g(a), xd (2,3) (degree 1)
6. R(xl,g(a)),.Q(g(a),g(a)) (5,4) (degree 1)
7. P(g(a),g(a)), Q(g(a),g(a)) (6,1) (degree 2)
S. .P(g(a),g(a)),Q(g(a),g(a)) (7,2) (degree 2)
9. .R(g(a),g(a)), .Q(g(a),g(a)) (S,3) (degree 2)
10. R(g(a),g(a)), .Q(g(a),g(a)) (9,4) (degree 2)

The final set {7,S,9,10} is ground and unsatisfiable. We note that
the clauses SCyc essentially express a cyclic permutation between the
two literals. To get more extreme examples, we need to encode clauses
in which a permutation of exponentially many variables is expressed.
The following set of four two-literal clauses accomplishes this:

of Theorem Proving Strategies 109

Definition 2.5.21 SpQ is the following set of four two-literal clauses:

{P(f(f(.. .f(f(XI, yd, Y2), ···Yn-d, Yn)),
Q(f(Yn, f(Yn-l, f(Yn-2, ... , f(Y2, f(YI, xd)··))))}

{-,P(f(f(.. .f(f(Xl, YI), Y2), "'Yn-l), Yn)),
Q(f(f(···f(f(g(a), yd, Y2), ···Yn-d, Yn))}

{-,R(f(f(.. .f(f(XI, YI), Y2), ···Yn-l), Yn)),
-'Q(f(Yn, f(Yn-l, f(Yn-2, ... , f(Y2, f(Yb Xd)··))))}

{R(f(f(···f(f(XI, yd, Y2), "'Yn-d, Yn)),
-,Q(f(f(.. .f(f(g(a), Yd, Y2), "'Yn-l), Yn))}

Theorem 2.5.22 Any clause linking refutation of SpQ must have length
at least 2 * 2n + 4. There is a resolution proof (with factoring) involving
3 resolutions, and a proof without factoring involving 3 resolutions and
2 factoring steps. We note that SpQ has duplication complexity 4, and
that n < slin(s).

Proof. The idea is the same as the preceding theorem. Each clause
expresses a permutation on a binary tree having 2n leaves. To see this,
consider f(x, y) as a binary tree with X as the left subtree and Y as
the right subtree. Thus f(f(... f(f(XI' yd, Y2), ... Yn-d, Yn) is a binary
tree in which Yn is the right subtree, f(... f(f(XI, YI), Y2), "'Yn-l) is the
left subtree, and Xl is a leaf. Then the term f(Yn, f(Yn-l, f(Yn-2, ... ,
f(Y2, f(YI, Xl))"))) is a binary subtree with the leaves permuted; the
positions of the left and right subtrees down the leftmost path have
all been reversed. This permutes the positions of the 2n leaves, and
one can show without much trouble that repeating this permutation 2n

times will bring every element into every position.
To obtain a clause linking refutation, each of these 2n leaves must

be bound to g(a), as in the preceding theorem. The bound is obtained
in a way similar to that for the set SCYC, but here the degrees can be as
high as 2n , instead of n. One sees also that the depth of this refutation
must be 2n , since each linking operation can increase the degree by
at most one, and we need clauses of degree 2n for a refutation. The
resolution proofs, as before, are easy to construct.

o

110 The Propositional and First-Order Complexity

Permutations Induced by a Pair of Terms

and

tA tA
abc d c d b a

tA
c d b a

tA
bad c

tA tA
7A

d cab

tA
d cab abc d

of Theorem Proving Strategies 111

We note that the preceding clause set has a very short (length 7)
rigid clause linking refutation. Therefore clause linking is much worse
than rigid clause linking on this example. It is interesting that for some
sets of Horn clauses, one obtains a much better result for clause linking,
which may help to explain the good performance of clause linking in
practice.

Theorem 2.5.23 Suppose S is a Horn set having duplication com
plexity n. Suppose that there is a hyper-resolution refutation from S in
which each derived unit is used only once as a lemma. Then there is a
clause linking refutation from S of length 3n - 2.

Proof. Let B be a substitution such that S'B is a Herbrand set for
S, where S' is an amplification of S. Consider the set (L, M) of pairs
of literals of S' such that LB and MB are complementary. We order
the clauses of S' so that Gi is before Gj if there is such a link (L, M)
with L E Gi and M E Gj and L is positive and M is negative. Since
S is a Horn set, such an ordering is possible. Then we order the links
(L, M) by the ordering of Gi , where L is positive and L E Gi . We
obtain the clause linking proof by performing clause linking operations
corresponding to these links once in order and then once in reverse
order. This will give us 2n operations, and with n input clauses, the
total proof length is 3n. With a more careful analysis, one can show
that 3n - 2 suffices.

We give an example to make the construction clear. Suppose S = S'
= {{P(a, x)}, {--,P(u, v), Q(u, v)}, {--,Q(w, b)}}. Then we order these
clauses left to right and have the following clause linking refutation:

1. P(a, x) (input)
2. --,P(u, v), Q(u, v) (input)
3. --,Q(w,b) (input)
4. --,P(a,v),Q(a,v) (1,2) (beginning the forward phase)
5. Q(a,b) (4,3)
6. --,P(a, b), Q(a, b) (4,5) (beginning the backwards phase)
7. P(a, b) (1,6)

We note that the last three clauses are ground and unsatisfiable and
that the length of this proof is 7 which is 3 * 3 - 2.

o

112 The Propositional and First-Order Complexity

However, even for Horn clauses, clause linking (and resolution) can
generate terms of subterm size exponential in the duplication complex
ity Mdup, as the following example shows:

{g(f(x, y)), -,P1(x), -'Pl(Y)}·
{P3(f(x, y)), -,P2(x), -,P2(y)}.

{Pn(f(x, y)), -,Pn-1(x), -,Pn-l(y)}.
{PI (g(z))}
{-,Pn(x)}

This set of clauses has duplication complexity n + 1. By the above
theorem, there is a clause linking proof of length proportional to n.
However, this proof generates clauses whose subterm size is exponential
in n, and this is unavoidable. We illustrate a few steps to show how
this occurs:

1. PI (g(z))
2. P2(f(x, y)), -,P1(x), -,P1(y)
3. P2(f(g(ZI),g(Z2))), -,PI(g(Zt}), -,P1(g(Z2))
4. P3(f(x, y)), -,P2(x), -,P2(y)
5. P3(f(f(g(Zt} , g(Z2)), f(g(z3), g(Z4)))),

(input)
(input)
(1,2, two steps)
(input)

-,P2(f(g(Zt},g(Z2))), -,P2(f(g(Z3),g(Z4))) (3,4,two steps)

This shows that sometimes clause linking generates instances having
much larger subterm size than necessary (by an exponential) and im
pairs the efficiency of clause linking. Rigid clause linking overcomes this
problem, since by the proof of theorem 2.5.14, the subterm size needed
is bounded by M~up(S). Thus there is a rigid clause linking refutation
for this set of clauses in which the subterm size remains small. Another
way to overcome the problem is to allow a subterm factoring operation
as follows:

Definition 2.5.24 The subterm factoring operation generates a clause
ce from C, where e is a most general unifier of two terms in C.

With subterm factoring, clause linking can always find proofs by
generating instances having a subterm size that is bounded by 2 *
M~up(S). This may be a useful operation to add for this reason. We
have the following general lifting theorem for resolution with subterm

of Theorem Proving Strategies 113

factoring, and similar theorems may be proven for clause linking and
other inference systems:

Theorem 2.5.25 Suppose S is a set of clauses and T is a Herbrand
set for S. Suppose Dl , D2 , ••. ,Dn is a resolution refutation from T.
Then there is a resolution refutation Cl , C2 , • •• , Cp from S with subterm
factoring such that for all i, ssub (Ci) :::; 2 * ssub (T).

Proof. We lift the proof from T as usual and insert subterm fac
toring operations whenever two subterms of Di are identical but the
corresponding subterms of Cj are not. After performing these factoring
operations, we obtain that ssub(Cj) is bounded by sSUb(D;) for the cor
responding clause Di in the ground proof. If we resolve two clauses Cj

and Ck , we produce a clause C such that ssub(C)::; ssub(Cj)+ssub(Ck).

Thus we only know that ssub(C) :::; 2 * sSUb(T).
o

We note that resolution without factoring also has a problem with
the above clause set, generating terms having exponential subterm size
for it. This may indicate a deficiency in the search efficiency of reso
lution without factoring, even though it is complete for Horn clauses.
By factoring the clauses

we can generate the clauses

Pi(f(x, x)), -,Pi-l(X)

and then obtain a refutation with small subterm size. We still don't
know whether factoring can always permit refutations with small sub
term size to be found, and leave this as an open problem. However,
a change in the clause set prevents this for many common resolution
strategies. Consider the following clause set SPQR:

114

{QI(X),
{RI(X),
{P2(f(X, y)),
{Q2(X),
{R2(X),
{P3(f(X, y)),

{Qn-I(X),
{Rn-I(x),
{Pn(f(X, y)),
{PI (g(Z))}
{ -,Pn(x)}

The Propositional and First-Order Complexity

-,PI(X)}
-,PI(X)}
-,QI(X), -,RI(y)}
-,P2(X)}
-,P2(X)}
-,Q2(X), -,R2(y)}

-'Pn- 2 (X)}
-,Pn - 2(X)}
-,Qn-I(X), -,Rn-I(y)}

For this clause set, the following strategies require subterm size that
is exponential in the duplication complexity Mdup for refutations, even
with factoring: PI deduction, hyper-resolution, A-resolution, and UR
resolution. We can get the same result for negative resolution by using
SPQR with the signs of all literals changed. However, with the subterm
factoring operation added, these strategies can find proofs by generating
clauses having subterm size bounded by 2*M~up(S), by theorem 2.5.25.

Having completed these preliminaries, we now begin analyzing the
complexity of various strategies with respect to the duplication com
plexity measure Mdup • We first consider clause linking and a related
strategy.

Theorem 2.5.26 Depth-bounded clause linking has a quadruple expo
nential complexity with respect to the duplication complexity measure
Mdup • This can be reduced to triple exponential by a modification of
the satisfiability procedure. Length-bounded clause linking has double
exponential complexity with respect to the duplication measure Mdup •

Proof. Recall that depth-bounded clause linking means that one per
forms linking operations in order of their depth. We essentially showed
in corollary 2.5.12 that the length (hence the depth) of a clause linking
refutation from S is at worst exponential in the duplication complexity
of S. This can generate clauses whose subterm size is double expo
nential in the duplication complexity of S (by theorem 2.2.10). The
number of clauses having this subterm size can be triple exponential in

of Theorem Proving Strategies 115

the duplication complexity of S, by corollary 2.4.14. Testing unsatisfi
ability on this many clauses can take quadruple exponential time. This
gives the upper bound.

For the lower bound, consider the clause set SpQ U Tjg • The clauses
SpQ require a number of linking operations exponential in slin(s) to
generate the ground instances needed for the proof. In this many op
erations, the clauses T jg can generate a triple exponential number of
instances.

We can reduce this bound to triple exponential by testing all sub
sets of size equal to the length of the clause linking proofs constructed.
That is, when we construct proofs of depth p, we test only subsets of
size linear in p for satisfiability. There will be at most triple exponen
tially many such subsets, and even with exponential time for testing
satisfiability, the worst case time overall is still triple exponential in the
duplication complexity of S.

For length-bounded clause linking, we observe that the number of
proofs of length p is single exponential in p, since the number of literals
in the clauses never increases. For each proof Cll C2 , ••• ,Cp , we can
test the set {C1 , C2 , ••. ,Cp } for satisfiability in time exponential in p
in the worst case. This leads to a double exponential bound overall,
since we may need exponential length clause linking refutations.

o

It is remarkable to get so much variation in running time by such
seemingly small changes in strategy. Even for the quadruple expo
nential version, it is possible that the fast running time of Davis and
Putnam's method [Dav63, DP60, DLL62, Fit90] on the average can
make the bound triple exponential in practice.

We now consider search strategies based on the size of the instances
rather than on the length or depth of the proofs. Again we get some
dramatic differences in the complexity.

Theorem 2.5.27 Linear-size bounded clause linking is triple exponen
tial with respect to the duplication complexity measure Mdup. This may
be reduced to double exponential by testing subsets of cardinality equal
to the size bound.

116 The Propositional and First-Order Complexity

Proof. Recall the definition of linear-size bounded search (definition
2.4.15). The upper bound is obtained as before, by noting that the
linear size measure can be exponential with respect to the duplication
complexity, and there can be a double exponential number of clauses
within this size bound, requiring triple exponential time to test satisfi
ability. For the lower bound, consider the clause set Tfg together with
the following clause set, where sand t are terms whose most general
instance is exponentially large:

{{P(s), Q(s)}, {P(s), ..,Q(t)} , {..,P(t), Q(s)}, {..,P(t), ..,Q(t)}}

This will require the size bound to become exponentially large before
a proof is found, and within this size bound, the clause set T fg will
generate a double exponential number of instances.

The worst case bound can be reduced to double exponential as be
fore by testing small subsets for satisfiability. For this, when the size
bound is n, we consider subsets of the instances containing n clauses.
When n becomes exponential in the duplication complexity, this guar
antees that a proof will be found.

o

Theorem 2.5.28 Subterm-size bounded clause linking is triple expo
nential with respect to the duplication complexity measure Mdup. This
may be reduced to double exponential by testing subsets of cardinality
equal to the size bound, for satisfiability. If the subterm factoring op
eration is allowed, the bounds become double and single exponential,
respectively.

Proof. If S is the set of input clauses and n is its duplication
complexity, then we may need to generate instances of size exponential
in n to obtain the clause linking refutation. There can be a double
exponential number of clauses having sub term size less than or equal
to this size bound, by corollary 2.4.14. When the size bound reaches
this value, then a proof will be found. The time to apply a propositional
satisfiability test to them can then be triple exponential.

To reduce the time to double exponential, we can test subsets R of
the generated instances such that R has cardinality m when the size

of Theorem Proving Strategies 117

bound is m. This will guarantee that a proof is found when m becomes
exponential in n. There are a double exponential number of subsets
of this size, and the propositional satisfiability test on each one takes
double exponential time, leading to a double exponential bound overall.

The lower bound is obtained by letting 5 be Tjg U SpQ When the
subterm size becomes exponential in n, a proof can be found, but then
Tjg will have generated a double exponential number of instances.

For the sub term factoring operation, one obtains bounds that are
better by an exponential, because one can insure that the subterm size
needed for a refutation is linear in the duplication complexity of S.

o

These results show the strong (asymptotic) influence the use of a
size bound can have on a strategy, and how the choice of size bound can
make a large difference. We note as before that the good performance of
Davis and Putnam's method may reduce the triple exponential bound
to double exponential in practice.

We now define CLIN-D, a version of CLIN (clause linking) with
rigid variables, and analyze its complexity properties.

Definition 2.5.29 A CLIN-D prooffrom S is a sequence 51, S2, ... , Sn
of sets of clauses such that Sl is empty and for all i, either Si+1 is
Si U {C ai} for some C E S where C ai is a variant of C, or Si+1 is
Si8; and 8; is a linking substitution for S;, that is, 8 i is a most general
unifier of two literals of Si of opposite sign. The length of this proof is
n. Such a proof is a refutation if Gr(Sn) is unsatisfiable.

Theorem 2.5.30 Suppose S is unsatisfiable. Then there is a CLIN-D

refutation of length at most Mdup(S)(l + s:::~x(S)).

Proof. By theorem 2.5.14, there is a rigid proof of length 1 +
Mdup(S)S:::~x(S) from S starting with an amplification having Mdup(S)
clauses in it. To obtain a CLIN-D proof, it is only necessary to delete
the first step of the rigid proof, and add at most Mdup(S) steps to the
beginning of the proof to introduce all the clauses in the amplification.

o

118 The Propositional and First-Order Complexity

Theorem 2.5.31 Length-bounded CLIN-D has a single exponential com
plexity with respect to the duplication measure Mdup '

Proof. We are assuming that CLIN-D proofs are generated in order
of their length. To get the upper bound, we note that the number of
choices in constructing the proof is exponential in the length of the
proof, and we just showed that the proof length is linear in the duplica
tion complexity. Thus there are exponentially many proofs to consider,
and the propositional satisfiability test for each one is of exponential
complexity, leading to an exponential bound overall. To get the lower
bound, we can take any propositional clause set for which Davis and
Putnam's method takes exponential time, such as the pigeonhole prob
lems.

D

CLIN-D is essentially different from the matings method of Andrews
[And81], which essentially performs the propositional satisfiability test
at the start in the sense of finding a spanning set. CLIN-D performs
this test at the end, which is possibly more efficient, since efficient
propositional satisfiability tests may be used. However, CLIN-D may
do unnecessary work, since the generation of instances is not guided
by the propositional satisfiability test. CLIN-D is also essentially dif
ferent from CLIN, which does not have rigid variables. It is not clear
how well CLIN-D would perform in practice, since it involves many
nondeterministic choices.

We can modify CLIN-D to make it more flexible by also allowing the
8i to be replacements of a variable by terms of the form f(xl,"" xn)
where the Xi are distinct new variables. We know that each literal
in Si has to unify with some other literal and each variable has to
be replaced by some function or constant symbol. Depending on the
number of function symbols and literals, we can always try to perform
whichever operation has the smaller number of choices. This may make
this method more efficient.

of Tbeorem Proving Strategies 119

2.5.2 Resolution Based Methods

We now analyze resolution-based methods with respect to the duplica
tion measure.

Theorem 2.5.32 Depth-bounded binary resolution is of double expo
nential complexity with respect to the duplication complexity measure

Mdup.

Proof. Suppose S is the set of input clauses. Then there is a Herbrand
set T for S of subterm complexity linear in the duplication complexity
of S. It follows that the number of (distinct) literals in T is also linear
in the duplication complexity, so there is a semantic tree of depth linear
in this quantity. Therefore, there is a resolution proof of depth linear in
the duplication complexity. If factoring steps are separated, the depth
can become quadratic. Within a linear (or quadratic) depth, one can
generate clauses of at most exponential subterm size, and there can
be at most a double exponential number of them. The bound holds
whether resolution and factoring are combined or separate.

For the lower bound, consider the clause set Pn U S Ig where Pn is the
pigeonhole problem of size n. The clause sets Pn require linear depth
proofs, and have a linear duplication complexity (since they are propo
sitional). Within a linear proof depth, the clauses Sig can generate a
double exponential number of resolvents.

o

Note that such a simple-minded resolution strategy is actually bet
ter than depth-bounded clause linking in the worst case, with respect
to the duplication measure.

Theorem 2.5.33 Length-bounded binary resolution is of double expo
nential complexity with respect to the duplication complexity measure
M dup , if resolution and factoring are separated.

Proof. The proof is much the same as the above. For the lower
bound, one notes that any clause derivable in linear depth is derivable in
exponential length. The upper bound is based on theorem 2.4.18. The

120 The Propositional and First-Order Complexity

reason we cannot immediately derive this result from the previous one is
that we are assuming that the length-bounded proofs are enumerated,
one by one, and so the same clauses may be generated repeatedly.
Possibly a better search method could reduce the work. For depth
bounded resolution, in contrast, each clause only needs to be generated
once.

o

Theorem 2.5.34 Linear-size bounded binary resolution has a double
exponential complexity with respect to the duplication complexity mea

sure Mdup.

Proof. We are assuming that we only save resolvents whose linear
term size (that is, the size of the clause) is within the size bound,
and that this size bound is gradually increased until a proof is found.
Suppose 8 is a set of clauses. Consider the Herbrand set T for 8 such
that slin(T) is minimal. Then slin(T) can be at worst exponential in the
duplication complexity of 8. When the size bound reaches this value,
we will obtain a proof (because the sum of the sizes of the literals in
T is exponential in the duplication complexity of 8). There can be at
most a double exponential number of clauses generated within this size
bound.

For the lower bound, let 8 be 8ig together with the clause set

{{P(s), Q(s)}, {P(s), -,Q(t)} , {-,P(t), Q(s)}, {-,P(t), -,Q(t)}}

where sand t are terms whose most general instance is exponen
tially large. In order to get the proof, we need to reach an exponential
size, and within this size bound, 8ig can generate a double exponential
number of clauses.

o

Definition 2.5.35 The clauses set Tjg consists of the clauses {-,Ti(x, y),
-,Ti(y,z), Ti+1(X,Z)} for 1 ::; i ::; n -1 and the clauses {T1(x,J(x))}
and {Tl(X,g(X))}.

of Theorem Proving Strategies 121

Theorem 2.5.36 Subterm-size bounded binary resolution has double
exponential complexity with respect to the duplication complexity mea
sure Mdup. If the subterm factoring operation is used, the complexity
becomes single exponential.

Proof. Recall that we only save resolvents whose subterm size
is within the size bound, and that this size bound is gradually in
creased until a proof is found. Suppose S is a set of clauses. Con
sider the Herbrand set T for S such that sSUb(T) is minimal. Then
sSUb(T) :::; M~up(S). However, it suffices to generate clauses of subterm
size exponential in sSUb(T) to obtain a proof. There can be at most a
double exponential number of clauses generated within this size bound.
If the subterm factoring operation is used, we can guarantee that the
clauses generated never have a subterm size larger than 2 * M~up(T),
obtaining the exponential bound.

Although we cannot prove the lower bound in general at present,
we can do it for many resolution strategies using the clause set TJg U
SPQR. In order to generate a refutation from SPQR, we need to generate
terms having exponential subterm size, and within this size bound, TJg
can generate a double exponential number of clauses. This works for
PI deduction, hyper-resolution, A-resolution, and UR-resolution. The
same clause set with signs of literals reversed gives the lower bound for
negative resolution.

o

In the case of resolution, it does not seem to matter much in general
which kind of a bound is used, as far as the number of exponentials is
concerned, since all the strategies considered have a double exponential
complexity. The exception is a subterm size bound with the subterm
factoring operation allowed, which has a much better complexity. It
might be worthwhile implementing this strategy and testing it. This is
one advantage of such complexity analysis, namely, it suggests possi
bilities and combinations that one otherwise might never consider.

We consider one more kind of clause set that seems to explain to
some extent the success of resolution in practice.

Theorem 2.5.37 If S is UR-resolvable and has duplication complexity
n, then there is a UR-refutation from S having less than n UR resolu-

122 The Propositional and First-Order Complexity

tion steps.

Proof. Consider the ground level. Suppose S is a unit resolvable set
of ground clauses. Let C1 , C2 , ••. , Cn be a DR refutation, that is, each
Ci is either in S or it is a DR-resolvent of previous clauses. Note that
DR-resolvents are unit clauses. Also, a given clause need not appear
more than once in this proof. If Ci is a DR-resolvent, then Ci is {L} for
some literal L in an input clause Di in S. We claim that these clauses
Di are all distinct in a minimal DR-refutation. The only way this
can fail is if two literals from some Di appear in the proof in different
places, say Di = Dj with i < j. This implies that all but one of the
literals of Di resolved with unit clauses, and all but one of the literals
of Dj resolved with unit clauses. Thus there are enough unit clauses to
resolve away all the literals of Dj , and we could have derived the empty
clause instead at step j. This shows that the length of this proof need
not be larger than the number of clauses in S used in the proof, that
is, the duplication complexity of S. Lifting this result to the first-order
case, we obtain the theorem.

o

Theorem 2.5.38 Length-bounded binary resolution is of single expo
nential complexity with respect to the duplication measure Mdup for UR
resolvable clause sets S.

Proof. By the preceding theorem, we only need to consider proofs of
length polynomial in the duplication complexity.

o

This may explain why resolution (without subterm factoring) per
forms well in practice, since many common clause sets are DR resolvable
and have short proofs, that is, have small duplication complexity. We
note that common implementations of resolution tend to prefer short
proofs and short clauses, which tends to approximate length-bounded
DR resolution or even length-bounded binary resolution.

of Theorem Proving Strategies 123

2.5.3 British Museum Methods

We now try to determine some of the reasons for the various bounds
that have been proved above. We show that some very simple-minded
strategies achieve the same or better bounds, which implies that the
bounds do not depend on detailed features of the methods. This also
raises the question of whether some of these simple methods should be
implemented to see if they perform well in practice.

Theorem 2.5.39 Consider the following method, which we call sub
term size clause enumeration.

For each size bound m, enumerate all ground instances D
of clauses C of S such that sSUb(D) ::; m. Test this set of
ground clauses for satisfiability.

We call this a British Museum method. This method is then double
exponential with respect to the duplication complexity measure M dup ' If
we only test subsets of ground clauses of size m or less for satisfiability,
the method becomes single exponential.

Proof. When m reaches the duplication complexity of S, we will
obtain a proof. Within this size bound, we can generate an exponential
number of ground clauses. It takes double exponential time to test their
satisfiability. By considering small subsets, this worst-case time can be
reduced to single exponential. Clause sets to achieve these bounds are
easily constructed (assuming propositional satisfiability requires expo
nential time). For example, we can combine an unsatisfiable set of small
duplication complexity and literal size larger than n with Bn or Tfg •

o

Also, the good performance of Davis and Putnam's method in prac
tice may mean that the double exponential bound is single exponential
in practice. The fact that we can obtain performance that compares
favorably with many versions of resolution and clause linking, suggests
that such methods merit more study. That is, instance-based strategies,
which generate ground instances of clauses and test for satisfiability,
may be more effective than is commonly supposed.

124 The Propositional and First-Order Complexity

Theorem 2.5.40 Consider the following method, which we call linear
size clause enumeration.

For each size bound m, enumerate all ground instances D
of clauses C of S such that slin(D) :::; m. Test this set of
ground clauses for satisfiability.

This is also a British Museum method. This method is then triple
exponential with respect to the duplication complexity measure Mdup ' If
we only test subsets of ground clauses of size m or less for satisfiability,
the method becomes double exponential.

Proof. When m becomes exponential in the duplication complexity
of S, we will obtain a proof. Within this size bound, we can generate
a double exponential number of ground clauses. It takes triple expo
nential time to test their satisfiability. By considering small subsets,
this worst-case time can be reduced to double exponential. Clause sets
to achieve these bounds are easily constructed (assuming propositional
satisfiability requires exponential time).

o

We now present a method with good asymptotic performance even
without any special device such as testing small subsets for satisfiability.
If such methods are not good in practice, it would be interesting to
refine the analysis to understand why.

Theorem 2.5.41 Consider the following method, which we call sub
term size clause set enumeration.

For each size bound m, generate one by one all sets T of
ground instances of S whose subterm size is not larger than
m. Test each set T for satisfiability.

This method is of single exponential complexity with respect to the du
plication complexity measure Mdup '

Proof. The number of such T is exponential in m, and when m
reaches M~up(S) we will find a proof. Also, the test for satisfiability
will take time exponential in m.

o

of Theorem Proving Strategies 125

2.5.4 Other Methods

We now discuss the matings method of Andrews [And81].

Definition 2.5.42 Suppose S is a set of clauses and S' is an amplifi
cation of S. A path in S' is a mapping ¢> from S' to literals such that
for each C E S', ¢>(C) E C. A mating is a set of pairs of literals of S',
having opposite sign. A mating M is spanning for S' if for every path
in S' there is a pair (L, M) in M such that both Land M are in the
(image of the) path.

The matings method is to generate amplifications S' of S and find
matings that are spanning for S'. For each mating, one then looks
for a simultaneous most general unifier of all the pairs in the mating.
If this can be found, then S is unsatisfiable. This complete method
essentially guides the instantiation of S' to achieve unsatisfiability, and
does the unsatisfiability test before the instantiation, in contrast to
clause linking, which does it afterwards. This method works well on
many second-order logic problems.

Theorem 2.5.43 The matings method is single exponential (in time)
with respect to the duplication complexity measure M dup .

Proof. For this, we assume that there is an increasing size bound
m, and that for each m, we examine all amplifications S' of S whose
subterm size is not more than m. For each such S', we seek a mating
as specified. The number of such amplifications is exponential in the
duplication complexity. The number of matings is also exponential, as
is the test for the spanning property. The unification may be done in
polynomial time. Thus the method overall is single exponential in the
duplication complexity.

o

Theorem 2.5.44 Length-bounded model elimination is of double ex
ponential complexity with respect to the duplication complexity measure

Mdup.

126 The Propositional and First-Order Complexity

Proof. Suppose S is a set of clauses and T is a Herbrand set for S
such that the subterm size of T is minimal. Let n be the duplication
complexity of S. Then n is not smaller than the subterm size of T. It
follows that the number of literals in T is bounded by n. Therefore,
one only needs to consider chains of length n to get a proof. The entire
proof can then have a length exponential in n, leading to a double
exponential complexity altogether.

As for the lower bound, in [Pla94b] we gave propositional clause
sets for which model elimination requires exponential length proofs.
By adding S fg U {P(a)} to such a clause set, model elimination will
generate a double exponential number of clauses altogether (assuming
the search is started from the literal P(a)).

o

Note that these results about duplication complexity seem to imply
a dramatic difference in the efficiencies of various strategies on theorems
that have a small number of clause instances needed but of unknown
literal size, since the complexities vary from single to quadruple expo
nential. However, traditional strategies are single or double exponential
in complexity, generally double, and it is only the clause linking-related
strategies that can have a worse complexity for certain search strategies.
A couple of variants of clause linking have single exponential complex
ity, as well as some enumerative strategies and matings. One variant
of resolution has single exponential complexity, but appears to require
subterm factoring to achieve it, an operation rarely if ever implemented
to date.

of Theorem Proving Strategies

Look how quickly

I can get this proof

if I set coefficient A

to 3.14159 and B to

2.71828!!

127

128 The Propositional and First-Order Complexity

not inference based. From now on we mostly derive just upper bounds
on the complexity.

To understand the complexity results, it helps to observe that if
there is a proof within a given literal size measure, then the proof can
involve an exponential number of clauses and an exponential number
of literals.

2.6.1 Clause Linking

Theorem 2.6.1 Depth-bounded clause linking has a quintuple expo
nential complexity with respect to the subterm size proof complexity
measure Msub. Length-bounded clause linking has a triple exponential
complexity with respect to the subterm size proof complexity measure.

Proof. Here we will just prove the upper bounds. If the subterm
size proof complexity measure of S is n, then the largest clause can
have a subterm size measure of at most kn where k is the maximum
number of literals in a clause in S. (Note that k < slin(s).) Thus the
duplication complexity of S can be at most single exponential in kn.
The depth required for a clause linking refutation can be proportional
to slin(T) where T is a Herbrand set for S. Thus the depth required
may be double exponential in kn. This can generate clauses of triple
exponential subterm size complexity, and there can be a quadruple
exponential number of them. Applying a satisfiability procedure raises
the time to quintuple exponential.

For length-bounded clause linking, we need proofs of length double
exponential in kn. There can be at most a triple exponential number
of such proofs. Each proof will be tested separately for satisfiability in
double exponential time, leading to a triple exponential bound overall.

o

Depth-bounded clause linking can be reduced to quadruple expo
nential complexity by testing small subsets for satisfiability, as before.

Theorem 2.6.2 Linear-size bounded clause linking has a triple ex
ponential complexity with respect to the subterm size measure Msub.

of Theorem Proving Strategies 129

Subterm-size bounded clause linking also has triple exponential com
plexity. However, if subterm factoring is used, this latter bound can be
reduced to double exponential.

Proof. Again we just prove the upper bound. First, the linear
size complexity can be exponential with respect to the subterm size
measure. There are a double exponential number of clauses having a
linear size within this exponential bound. It requires triple exponential
complexity to test them for satisfiability.

For a size bound based on the subterm size measure, we saw in the
orem 2.5.22 that clause linking may need to generate instances whose
subterm size is exponential with respect to the subterm size proof com
plexity measure. There may be a double exponential number of clauses
within the size bound. The satisfiability test raises this to triple ex
ponential. However, if subterm factoring is used, we can reduce the
bound by an exponential, because we only need to generate instances
whose subterm size is bounded by 2 * M~up(S), by theorem 2.5.25.

o

In this case we can't use the small subsets idea, because we know
nothing more about the size of a Herbrand set for S. However, the good
performance of satisfiability tests in practice may mean that the usual
performance is an exponential better. In particular, if we assume that
Davis and Putnam's method runs in expected polynomial time, then
the time bound for subterm-size bounded clause linking with subterm
factoring becomes expected single exponential.

We now consider CLIN-D. For this, we need to modify the binary
counter clause set Bn , as follows:

Definition 2.6.3 The modified binary counter clause set B~ consists
of the following clauses:

130 The Propositional and First-Order Complexity

{Pi (Xl , X 2 , • •• , Xn - l , 1), -'Pj(Xl , X 2 , ••• , Xn - l , On,
1 5, i,j 5, 2

{pi (Xl , X 2 , • •• , X n- 2 , 1,0), -'Pj(Xl , X 2 , • •• , X n - 2 , 0, In,
1 5, i,j 5, 2

{pi(I,O,O, ... ,0), -'Pj(O, 1, 1, ... , In,
1 5, i,j ~ 2

{pi(O,O,O, ... ,O)},
15,i5,2

{-'pj(l, 1, 1, ... , In,
15,j5,2

Theorem 2.6.4 CLIN-D is of double exponential complexity with re
spect to the subterm size proof complexity measure Msub.

Proof. Suppose S has subterm size proof complexity Msub(S) equal
to n. Then there is a Herbrand set T having at most a number of
literals that is exponential in n. Recall that the number of literals
in a clause in S is bounded by slin(s). Thus ITI is exponential in
nslin (S), and the duplication complexity of S is exponential in nslin (S).
This counts as single exponential in n, according to our conventions.
By theorem 2.5.31, CLIN-D is of single exponential complexity with
respect to the duplication complexity. Therefore CLIN-D is of at worst
double exponential complexity with respect to the subterm size proof
complexity measure. The lower bound is obtained from B~, noting
that this proof requires exponentially many instances. Each instance
can be chosen in two or more ways, due to the subscripts i and j. Thus
there are a double exponential number of choices, and CLIN-D will take
double exponential time.

o

The preceding result holds even if we use some kind of subterm-size
bounded CLIN-D, and also applies to the linear size proof complexity
measure Mlin . Note also that B~ is DR-resolvable, so the bound holds
for DR-resolvable sets, too.

of Theorem Proving Strategies 131

2.6.2 Resolution

Theorem 2.6.5 Depth-bounded binary resolution is of triple exponen
tial complexity with respect to the subterm size proof complexity measure

Msub.

Proof. Suppose S has subterm size complexity n. Then there is a
Herbrand set T having at most a number of literals that is exponential
in n. Thus there is a binary resolution proof of depth exponential in
n. Within this depth, we can generate clauses of double exponential
subterm size complexity, and there can be a triple exponential number
of them overall.

o

This bound is actually better than for depth-bounded clause linking.
It does not appear that length-bounded binary resolution will do any
better.

Theorem 2.6.6 Linear-size bounded binary resolution has a triple ex
ponential complexity with respect to the subterm size proof complexity
measure Msub.

Proof. Suppose S has subterm size complexity n. Then there is
a Herbrand set T having literals whose linear complexity is at most
exponential in n. The number of literals can therefore be at worst
double exponential in n. Since a clause is a set of literals, the number
of clauses generated within the size bound is at most triple exponential
III n.

o

Theorem 2.6.7 Subterm-size bounded binary resolution has a triple
exponential complexity with respect to the subterm size proof complexity
measure Msub. With subterm factoring) this bound can be reduced to
double exponential. For UR-resolvable clause sets) with subterm factor
ing) the bound is single exponential.

132 The Propositional and First-Order Complexity

Proof. Suppose S has subterm size complexity n. Then there is a
Herbrand set T having literals whose subterm size complexity is at most
n. We saw in section 2.5 a Horn set SPQR in which resolution needs to
generate literals having a subterm size exponential in n. The number
of literals can therefore be at worst double exponential in n. Since a
clause is a set of literals, the number of clauses generated within the
size bound is at most triple exponential in n. With subterm factoring,
the bound can be reduced by an exponential, because we only need
to generate clauses having a subterm size bounded by 2 * M~up(S) by
theorem 2.5.25. For UR-resolvable clause sets, one never needs to gen
erate clauses having more literals than appear in a clause in S. Thus
the maximum subterm size of a generated clause will be nslin(S). The
number of generated clauses, and the work, will be exponential in this
quantity, which still qualifies as single exponential in our formalism.

o

This is the same complexity as clause linking with the same kind of
a size bound, but we miss the practical efficiency of the propositional
satisfiability test.

Theorem 2.6.8 For UR-resolvable clause sets, subterm-size bounded
UR resolution has a double exponential complexity with respect to the
subterm size proof complexity measure Msub. With subterm factoring,
this bound can be reduced to single exponential.

Proof. Similar to the above theorem.
o

2.6.3 British Museum Methods

Theorem 2.6.9 Let's reconsider the following subterm size clause enu
meration method:

For each size bound m, enumerate all ground instances D
of clauses C of S such that sSUb(D) ::; m. Test this set of
ground clauses for satisfiability.

of Theorem Proving Strategies 133

This method has double exponential complexity with respect to the sub
term size proof complexity measure Msub.

Proof. The number of such D generated is exponential in the subterm
size complexity measure of S. The work to test satisfiability is then
double exponential.

o

Again, the good performance of satisfiability methods may reduce
this to single exponential in practice. If we assume Davis and Putnam's
method runs in expected polynomial time, the time bound would be
expected single exponential. The good asymptotic performance of this
method in comparison to others listed here is remarkable, especially in
view of the fact that it does not use unification or resolution. Perhaps
this method should be implemented and tested. Refinements of this
method to guarantee no pure literals, for example, are easy to imagine.

Theorem 2.6.10 Consider the following linear size clause enumera
tion method:

For each size bound m} enumerate all ground instances D
of clauses C of S such that slin(D) :::; m. Test this set of
ground clauses for satisfiability.

This method has triple exponential complexity with respect to the sub
term size proof complexity measure Msub.

Proof. The linear size needed for the proof can be exponential in the
subterm size measure of S. The number of such D generated can be
double exponential in the subterm size complexity measure of S, and
the work to test satisfiability can be triple exponential.

o

In this case, we can apply the satisfiability procedure to subsets of
size exponential in m and reduce the upper bound by one exponential.

Theorem 2.6.11 Consider the following subterm size clause set enu
meration method:

134 The Propositional and First-Order Complexity

For each size bound m, generate one by one all sets T of
ground instances of S whose subterm size is not larger than
m. Test each set T for satisfiability.

This method is of double exponential complexity with respect to the sub
term size proof complexity measure Msub.

Proof. If S has subterm size complexity n, then there will be a
Herbrand set T for S all of whose literals have subterm size n or less.
This T may have a number of literals that is exponential in n. Thus m
may need to become exponentially large before a proof is found. The
number of T generated can then be double exponential in n. The time
to test each one for satisfiability is also double exponential, leading to
a double exponential bound overall.

o

This bound may not be reduced to expected single exponential time,
even if satisfiability routines run in expected polynomial time.

2.6.4 Other Methods

Theorem 2.6.12 The matings method is double exponential with re
spect to the subterm size proof complexity measure Msub.

Proof. If S has subterm size complexity n, then the matings method
may need to construct an amplification having an exponential number
of clauses in it to get the proof. Processing all amplifications up to this
size (or anyone of the large ones) will take double exponential time.
The lower bound is obtained from the set B~ of clauses.

o

We note that matings does not appear to take advantage of the
fast performance of satisfiability algorithms on many examples. This
could imply that clause linking with a size bound based on subterm
size will be better with respect to this measure. We note also that the
lower bound is still valid for the linear size proof complexity measure,
and also for UR-resolvable sets, since B~ is UR-resolvable. These lower

of Theorem Proving Strategies 135

bounds probably apply to many connection methods, too; it is possible,
on the other hand, that the behavior of connection methods is like that
of model elimination.

Theorem 2.6.13 Model elimination has triple exponential complexity
with respect to the subterm size proof complexity measure Msub.

Proof. Suppose S has subterm size proof complexity n. Then there is
a Herbrand set T for S such that T has a number of clauses exponential
in n. Thus the number of literals in T is exponential in n. This means
that model elimination may need to construct chains of exponential
length, and the proof overall may be double exponential in length.
(It really helps to consider the tableau formulation to see this easily.)
Within a double exponential bound, there can be at worst a triple
exponential number of proofs.

o

We observe that this complexity is worse than that of the best
resolution variant, the best clause linking variant, and matings.

The subterm size measure Msub seems most appropriate when the
Herbrand set has many clauses, but the literals are small. For such
problems, clause linking (with a suitable size bound) is better than
binary resolution, matings, and model elimination. Although a res
olution variant also has double exponential complexity, that variant
cannot take advantage of the good performance of satisfiability algo
rithms in practice. Also, the subterm size clause enumeration method
has a similar asymptotic complexity, and also takes advantage of the
satisfiability test. However, it does not incorporate unification, as does
clause linking.

For VR-resolvable clause sets, subterm-size bounded binary resolu
tion with subterm factoring and VR resolution with subterm factor
ing have single exponential complexity with respect to this measure,
regardless of assumptions about the performance of the satisfiability
procedure. This shows a definite advantage of these strategies, since
VR-resolvable (or nearly VR-resolvable) clause sets are fairly common
among easy problems. Only if we assume that a satisfiability procedure
runs in expected polynomial time can we obtain nearly comparable per
formance from other methods.

136 The Propositional and First-Order Complexity

2.7 The Linear Size Measure

In general, when we analyze the complexity of strategies that search
using a size-bounded search strategy, the analyses of the complexities of
strategies with respect to the linear size proof complexity measure Mlin

are the same as those with respect to the subterm size proof complex
ity measure Msub using sub term factoring, since the number of literals
within a linear size bound is exponential. That is to say, the per
formance of method X which searches according to subterm size or
linear size, with respect to the linear proof complexity measure, will be
asymptotically the same as the performance of method X (with sub
term factoring) which searches according to a subterm size bound with
respect to the subterm size proof complexity measure. This is because
the subterm size measure is linearly bounded by the linear measure.
Also, upper bounds for the subterm size measure are valid for the lin
ear size measure, too, since subterm size is bounded by linear size. Thus
the literals of subterm size m or less are a superset of the literals of
linear size m or less. A disadvantage of the linear measure is that it
does not relate so well to the duplication complexity measure as the
subterm size proof complexity measure does (see Table 2.1 below). We
list a number of results, mostly without proof.

Theorem 2.7.1 Depth-bounded clause linking has quintuple exponen
tial complexity with respect to the linear size proof complexity measure
Mlin. Length-bounded clause linking has a triple exponential complexity
with respect to the linear size proof complexity measure.

Theorem 2.7.2 Linear-size or subterm-size bounded clause linking is
of double exponential time complexity with respect to the linear size
proof complexity measure Mlin.

Proof. Suppose S has linear proof complexity n. Then there is a
Herbrand set T all of whose literals have linear size n or less. When
the size bound reaches n, clause linking will find a proof. There can
be at most an exponential number of clauses generated within this
size bound. The time to test them for satisfiability is at most double
exponential.

o

of Theorem Proving Strategies 137

If one assumes that Davis and Putnam's method runs in expected
polynomial time, the time is reduced to expected single exponential.

Theorem 2.7.3 CLIN-D is of double exponential complexity with re
spect to the linear size proof complexity measure M1in •

We note that this result also applies to linear-size bounded CLIN-D
and applies to VR-resolvable clause sets, and probably extends to many
connection methods.

Theorem 2.7.4 Depth-bounded binary resolution has triple exponen
tial complexity with respect to the linear size proof complexity measure
M1in .

Theorem 2.7.5 Linear-size or subterm-size bounded binary resolution
has a double exponential complexity with respect to the linear size proof
complexity measure M 1in . For UR-resolvable clause sets, the bound is
single exponential.

Theorem 2.7.6 For UR-resolvable clause sets, linear-size or subterm
size bounded UR resolution has single exponential complexity with re
spect to the linear size proof complexity measure M1in .

Theorem 2.7.7 Linear or subterm size clause enumeration has double
exponential complexity with respect to the linear size proof complexity
measure M 1in . If one assumes that Davis and Putnam's method runs in
expected polynomial time, this is reduced to expected single exponential.

Theorem 2.7.8 Subterm or linear size clause set enumeration has
double exponential complexity with respect to the linear size proof com
plexity measure M 1in .

Theorem 2.7.9 M atings has a double exponential complexity with re
spect to the linear size proof complexity measure M1in .

Theorem 2.7.1 0 Model elimination has a triple exponential complex
ity with respect to the linear size proof complexity measure M 1in •

138 The Propositional and First-Order Complexity

In general, with respect to this measure, linear or subterm-size
bounded clause linking and linear or subterm-size bounded clause enu
meration methods have an advantage over all other methods, since
they not only have a double exponential complexity, but can also take
advantage of the fast performance of satisfiability algorithms. Clause
linking also has the advantage of unification, which enumeration meth
ods lack. For DR-resolvable sets, linear-size bounded binary resolution
and linear-size bounded DR-resolution are asymptotically the fastest,
having a single exponential time bound.

2.8 Sets with Large Literals

We now attempt to find a measure for which resolution and other tra
ditional strategies perform well, to help explain their popularity. The
measure we construct is somewhat artificial, corresponding to our intu
ition about the weaknesses of these traditional methods. However, this
measure is reasonable for many small, toy problems, and does help to
give us some insight.

Definition 2.8.1 The literal count of a clause set S is LeEs ICI, where
ICI is the number of literals in C. Thus the literal count of S is the
total number of occurrences of literals in S.

Consider clause sets whose literal count and duplication complexity
is fixed, but the subterm size ssub(S) may vary. Intuitively, such clause
sets have few literals and short proofs but large terms. We then may ask
how the complexity of various strategies depends on the subterm size
for such clause sets. We refer to this measure as duplication-bounded
subterm complexity.

We will need some results about literal counts for minimal unsatis
fiable clause sets.

Theorem 2.8.2 In any minimal unsatisfiable set S of ground clauses
with d elements, each clause has at most d - 1 literals. Also, there is
an A-resolution refutation of depth at most d - 1.

of Theorem Proving Strategies 139

Proof. Consider an A-resolution refutation of S in which no tau-
tologies are derived. Such a refutation must exist. Suppose a clause
C in S has d (distinct) literals LI,L2, ... ,Ld. Let MI,M2, ... ,Md be
the literals that resolve against L1, L2, ... , Ld, respectively; thus Mi is
the complement of Li. Suppose Mi descends from a clause Ci in the
in pu t set S. None of these Ci can be C, or else C would be a tautology,
since it can resolve with itself. Since S has only d elements, for some
i # j we have Ci = Cj. Thus Ci contains both literals Mi and Mj .

Suppose Li resolves before Lj . The resolvent on Li will then contain
both Lj (from C) and Mj (from Ci), since we are doing A-resolution,
which resolves predicate symbols in a fixed order. However, Lj and M j

are complementary, so this resolvent is a tautology, contradicting our
assumption that this proof contains no tautologies.

To see that an A resolution refutation without tautologies can have
depth at most d, consider a sequence DI , D2 , ••• , Dd , each Dk being a
resolvent of Dk - l and some clause containing Mi. Reasoning as above,
some Mi and Mj descend from the same input clause, and if Mi resolves
first, then the resolvent will contain M j . But in this sequence of clauses
Dk , the literal Mj will never resolve away before Dj is derived, since
we are doing A-resolution. So DJ will contain both M j and Lj , and is
therefore a tautology, contradiction.

o

Corollary 2.8.3 If S is a minimal unsatisJiable set of ground clauses
with d elements, then the literal count of S is at most d(d - 1).

That this is optimal to within a constant factor may be seen from
the clause set

PI
--,PI , P2

--,PI , --,P2 , P3

--,PI , --,P2 , ••• , --,Pn - l , Pn

--'Pn

which is minimal unsatisfiable and has n + 1 clauses and literal count
(n 2 + n + 2)/2.

140 The Propositional and First-Order Complexity

Theorem 2.8.4 Consider clause sets S having bounded literal count
and duplication complexity. For such clause sets, depth-bounded reso
lution has a polynomial dependence on ssub (S).

Proof. Suppose the duplication complexity is bounded by d. By
theorem 2.8.2, the depth of the proof need be no greater than d. Each
depth of resolution can at most double the subterm size of the clauses,
and so one needs only clauses having subterm size 2dssub(S) for the
proof. Since S is of bounded literal count, the number of clauses that
can be derived in depth d is bounded by some function of d and the
literal count of S that does not depend on ssub(S). Since resolving two
clauses takes work polynomial in their subterm sizes, the total work is a
polynomial in ssub(S) times a function that depends only on d and the
literal count of S. Since the duplication complexity of S and its literal
count are kept constant, the total work has a polynomial dependence
on ssub(S).

o

Corollary 2.8.5 For minimal unsatisfiable clause sets S having bounded
duplication complexity, depth-bounded resolution has a polynomial de
pendence on ssub(S).

Proof. This follows from the theorem and corollary 2.8.3.
o

This is relevant because many theorems on which provers are tested
are minimal unsatisfiable clause sets, or only have a small number of
clauses not needed in the proof. Furthermore, the proofs are often
relatively short (or else the prover could not find them), implying that
the duplication complexity is also small. Thus the conditions of the
theorem and corollary, though restrictive, are reasonable for many of
the theorems typically used to test theorem provers.

Similar polynomial dependencies on the subterm size can easily
be established for length-bounded resolution, depth or length-bounded
CLIN-D, matings, model elimination, and connection methods. With
respect to the linear size slin(s), one obtains an exponential depen
dence.

of Theorem Proving Strategies 141

2.9 Unit Resolvable Clause Sets

The fact that resolution is so often used in practice leads one to ques
tion why, in view of its often poor asymptotic complexity. We have just
given one justification for this, in terms of duplication-bounded subterm
complexity. We believe that another reason is that many proofs may be
obtained purely by unit resolution, and for UR-resolvable clause sets,
by theorems 2.6.7 and 2.6.8, subterm-size bounded resolution with sub
term factoring and subterm-size bounded UR-resolution with subterm
factoring perform better than any other methods with respect to the
subterm size measure Msub. We note that Horn sets always have UR
proofs, and are very common. The version of resolution that is typ
ically implemented is linear-size bounded, not subterm-size bounded.
But even linear size-bounded UR resolution has a complexity that is
single exponential with respect to the linear proof complexity mea
sure Mlin for unit resolvable clause sets, better than any other method
except UR-resolution. The subterm factoring operation becomes sig
nificant for the subterm size measure Msub; with respect to Msub, linear
or subterm-size bounded UR resolution has a double exponential com
plexity even on unit resolvable clause sets, as the set SPQR of clauses
shows. With subterm factoring, subterm-size bounded UR resolution
has single exponential complexity with respect to the subterm size proof
complexity measure Msub, on unit resolvable clause sets.

All the other methods do not seem to be sensitive to the unit re
solvable property. That is, they seem to have the same behavior on
unit resolvable sets (even using size-bounded search) as they do with
respect to arbitrary sets.

Even subterm-size bounded clause linking is double exponential
with respect to the subterm or linear size proof complexity measure
(if subterm factoring is used), so binary resolution and UR resolution
on UR-resolvable sets have an advantage here, being single exponen
tial. If we assume the satisfiability test is polynomial on the average,
subterm-size bounded clause linking is better, but still not as fast in
the worst case. Length-bounded resolution is single exponential with
respect to duplication complexity for UR-resolvable clause sets, by the
orem 2.5.38. Since UR-resolvable clause sets with small duplication
complexity are common in toy problem sets, this may help to explain

142 The Propositional and First-Order Complexity

the good performance of resolution there. For VR-resolvable clause
sets, the proof for an instance-based method will be found by the unit
simplification part of Davis and Putnam's method, so for clause link
ing and similar instance-based strategies, the propositional part will
be polynomial once enough instances have been found. So even here,
clause linking can compete with resolution if we cut off long runs of the
propositional satisfiability procedure, but this would sacrifice complete
ness in general. If Davis and Putnam's procedure is called too early, the
clause set will be satisfiable and in practice, such clause sets usually run
quickly for Davis and Putnam's method. To make clause linking expo
nential on unit resolvable sets, with the loss of completeness, we can
restrict Davis and Putnam's method to do only unit simplifications. In
fact, these simplifications are done by clause linking before Davis and
Putnam's method is even called as a rule anyway, and we often find
proofs there. This gives something of a theoretical justification for why
the unit rules are important for clause linking.

So clause linking with a subterm size bound and subterm unifica
tion seems to extend subterm-size bounded resolution's good behavior
on VR-resolvable clause sets relative to Msub to the general case, assum
ing good behavior from the propositional satisfiability test. Although
matings is of single exponential complexity relative to the duplication
complexity measure M dup , and also makes essential use of unification,
it is double exponential relative to the subterm or linear size proof
complexity measures, even for VR resolvable sets, and is therefore at a
drastic disadvantage relative to VR resolution.

2.10 Implications for Choice of Strategy

When there are few instances needed for the proof but the literals are
comparatively large, then the duplication proof complexity measure
seems most appropriate. The best strategies then have exponential
complexity; they are the following: subterm-size bounded clause link
ing, with subterm factoring; subterm-size bounded binary resolution,
with subterm factoring; subterm size clause enumeration; subterm size
clause set enumeration; and matings.

When there are many instances and small literals with respect to

of Theorem Proving Strategies 143

the subterm size measure (especially for highly non-Horn sets), then
the subterm size proof complexity measure seems most appropriate. In
this case, the best bound for any strategy is double exponential. The
best strategies would seem to be the following: subterm-size bounded
clause linking, with subterm factoring; subterm-size bounded binary
resolution, with subterm factoring; subterm size clause enumeration;
subterm size clause set enumeration; and matings. These are exactly
the same strategies as above.

Assuming that Davis and Putnam's method (or some other satisfi
ability test) runs in expected polynomial time, then the methods that
have expected single exponential time with respect to the subterm size
measure are the following: subterm-size bounded clause linking with
subterm factoring, and subterm size clause enumeration. This shows
a distinct advantage of clause linking with subterm factoring over all
other non-enumerative methods considered, and shows the importance
of using a size bound. Of course, clause linking also has the advantage
over enumerative methods of using unification.

When there are many instances and small literals with respect to the
linear size measure, then the linear size proof complexity measure seems
to be most appropriate. In this case, assuming that Davis and Putnam's
method runs in expected polynomial time, the strategies running in
expected single exponential time with respect to this measure are size
bounded clause linking with or without subterm factoring, and subterm
or linear size clause enumeration. This shows a distinct advantage of
size-based clause linking without subterm factoring, which is interesting
because that is the only method that has been implemented, and it
has often performed well in practice, even much better than resolution
[LP92] on some problems. This analysis helps us to understand why,
and for which types of clauses this is likely to occur.

For unit resolvable sets (including Horn sets), when the literals
needed are small but the proof may be long, then the subterm size
and linear size measures seem most suitable. With respect to the for
mer, subterm size-bounded (binary and UR) resolution with subterm
factoring have a single exponential complexity, and therefore are better
than any other strategy listed above. For this, subterm factoring is
essential. We gave in section 2.5 the set SPQR of Horn clauses where
resolution (and UR resolution) generate literals having a subterm size

144 The Propositional and First-Order Complexity

exponentially larger than necessary, and there can be a double exponen
tial number of unit clauses generated within this size bound, leading
to a double exponential bound without subterm factoring. With re
spect to the linear measure, subterm or linear-size bounded (binary
and UR) resolution without subterm factoring are of single exponential
complexity. Clause linking and subterm size clause enumeration come
close, but they can only reach expected exponential complexity, and
this under the assumption that the used satisfiability procedure runs in
expected polynomial time. This suggests also that if clause linking or
enumerative methods are used, then they should employ special rules
for unit clauses to improve their performance on unit resolvable sets.

Another interesting class of clauses are those with small duplica
tion complexity and small numbers of clauses and literals but for which
ssub(S) may be large. That is, as we keep the duplication complexity
of S fixed, and keep the number of clauses and their number of literals
fixed, and increase ssub(S) (or, equivalently, Msub(S)), as is done in
SPQ' we can ask how the complexity of various strategies is affected.
This aspect was discussed in section 2.8. Clause linking and enumer
ative strategies will be exponential (or worse) with respect to ssub(S),
since they have a hard time generating large terms. Size-bounded res
olution will also be exponential with respect to ssub(S). However, it is
not difficult to show that the following strategies are polynomial with
respect to ssub(S): depth-bounded resolution, length-bounded resolu
tion, matings, CLIN-D, connection methods, and model elimination.
In short, all of the traditional unification-based strategies do compar
atively well here. This is because these methods depend only on the
propositional structure of proofs, and are not very sensitive to the sizes
of terms produced by unifications (assuming terms are represented ef
ficiently in a directed acyclic graph representation). This shows that
these strategies are good when the proofs are relatively short but the
terms needed may be large, which agrees with common sense and ex
perience. However, this makes it more difficult to say which strategy is
best in general, because the strategies that perform well with respect
to term size, generally do not do well with respect to the linear or
subterm size proof complexity measures. Also, of the strategies that
perform well with respect to term size, only length-bounded CLIN-D,
matings, and probably the connection methods are exponential with

of Theorem Proving Strategies 145

respect to duplication complexity, and therefore are to be preferred.
But these strategies do not perform well even for VR resolvable sets
with respect to the subterm or linear size measures.

A further interesting class of problems are VR-resolvable clause sets
with small duplication complexity. We commented on these clause sets
in theorem 2.5.38. We note that length-bounded VR-resolution and
length-bounded binary resolution have reasonably good performance
(single exponential) with respect to the duplication measure in this
case, as do CLIN-D and matings. The subterm-size based enumerative
methods also perform well here, assuming Davis and Putnam's method
runs in polynomial time.

We therefore have six different classes of clauses to consider: those
with small duplication complexity M dup , those with a small subterm size
measure Msub, those with a small linear size measure M1in , unit resolv
able sets, unit resolvable sets with a small duplication complexity, and
clause sets having large term size and a small duplication complexity.

We now discuss the overall performances of some of the strategies.
Resolution is not single exponential complexity except in the unit re
solvable case, and for one of its variants with respect to the duplication
complexity. However, the unit resolvable case is very common, making
resolution often good. Note that smallest first (that is, size-bounded)
search (as resolution is often implemented) helps to do many unit reso
lutions. Also, the fact that resolution uses unification is an advantage.
Another good feature of resolution is its deletion criteria such as sub
sumption deletion, whose value does not appear in this analysis.

Clause linking has a wide variety of asymptotic behaviors, depend
ing on the manner of search and the size bound used. However, with
subterm-size bounded search and subterm factoring, it is never much
worse than the best strategy, assuming good behavior from the propo
sitional satisfiability test. The one possible exception is for clause sets
with small duplication complexities and large term sizes. It is also
somewhat less efficient than binary and VR resolution on VR resolv
able clause sets.

We also note that subterm-size clause enumeration seems to have a
surprisingly good asymptotic performance, and therefore deserves fur
ther study, despite its lack of use of unification. Another promising
enumerative method that involves semantics and orderings is the or-

146 The Propositional and First-Order Complexity

dered semantic hyper-linking strategy [Pla94a]' although it may have
to be adapted to use subterm size to obtain good asymptotic behavior.
One reason for the promise of this method is that it can be made goal
sensitive by the appropriate use of semantics. Recall that a method is
goal-sensitive if every inference or instance used is related to the par
ticular clauses in the theorem being proved, as opposed to clauses that
encode general axioms.

Matings has an advantage over clause linking with respect to the
duplication complexity measure, because it does not require the use of
small subsets or the assumption that a satisfiability procedure runs in
expected polynomial time. It also does not require subterm factoring.

CLIN-D has an advantage over matings in that it can take advantage
of efficiencies in Davis and Putnam's method. It works well (exponen
tial time) with respect to the duplication complexity measure, but for
the subterm size measure, it is double exponential regardless of whether
the satisfiability procedure runs fast. This makes it worse than clause
linking, surprisingly. It seems that the duplication by combination re
ferred to in [Pla94b, Pla94c] is the problem here. With respect to the
linear size measure, CLIN-D is double exponential regardless of whether
the propositional test is fast. In general, CLIN-D is like matings and
(probably) the connection methods of [Bib87] in its performance, we
feel, and illustrates well their advantages and disadvantages with re
spect to other strategies.

Model elimination never looks very good in this analysis. How
ever, it is a set of support strategy, and our analysis does not consider
this property. Also, for Horn sets or unit resolvable sets, caching can
improve the performance of model elimination, and we have not an
alyzed the performance of model elimination with caching for Horn
sets (which are fairly common). The performance of model elimination
with caching would probably be about the same as DR-resolution for
Horn sets, but model elimination has the advantage of goal-sensitivity.
Other methods (with caching) that would have the same advantages for
Horn sets are the simplified and modified problem reduction formats
[Pla82, Pla88].

The best strategies overall, when term sizes are not too large and
assuming satisfiability can be done quickly on the average, are subterm
size-bounded clause linking with subterm factoring and subterm-size

of Tbeorem Proving Strategies 147

clause enumeration. For DR-resolvable sets, subterm-size bounded DR
resolution with subterm factoring has a slight advantage. For clause
sets with short proofs but large term sizes, traditional strategies such
as resolution and matings have an advantage. It would be interesting
to find strategies that perform well on all three classes of problems. For
this, it appears that a combination of strategies will be required. It is an
interesting problem to determine which mix of strategies or new strat
egy will perform well with respect to all of these measures. It currently
looks like the following combinations are attractive: 1) Subterm-size
bounded clause linking with subterm factoring, or subterm-size clause
enumeration, together with 2) length-bounded CLIN-D, matings, or
(probably) a connection method, for problems with large terms, to
gether with 3) subterm-size bounded DR-resolution with subterm fac
toring. These methods could simply be run in parallel, but it might
make more sense to use clauses derived in one method as simplifiers
for the other methods. This is one benefit of our complexity analysis,
namely, it suggests which combinations of strategies to use to obtain
good performance overall. Now one does not have to say that it is an
arbitrary choice to combine DR resolution with some other method.

So we see from this discussion that we obtain some fairly definite
and strong preferences between strategies based on complexity con
siderations, and some suggestions for good combinations of strategies.
Of course, it can be that for specific problems and small values of the
complexity measures that these general conclusions do not always hold.
There might be other strategies with good performance, too.

Note that this analysis reveals features that were not evident from
the mostly propositional analysis of [Pla94b, Pla94c]. We see, then,
some of the advantages of going to a first-order framework. It would
be interesting also to analyze some traditional deductive systems such
as sequent style, Hilbert style, and other systems from a similar stand
point, for first-order formulas containing quantifiers.

148

2.11

The Propositional and First-Order Complexity

- Mpd Mp/ Mdup Msub
Mpd - Mp/ poly(Mdup) [exp(Msub)]
Mp/ exp(Mpd) - exp(Mdup) [dexp(Msub)]
Mdup exp(Mpd) exp(Mp/) - exp(Msub)
Msub exp(Mpd) exp(Mp/) poly(Mdup) -

Table 2.1: Table of relations among complexity measures

Relations among complexity mea
sures

In the previous sections, we introduced several different complexity
measures, and we analyzed the complexity of various theorem proving
strategies with respect to these measures. In this section, we study the
relationships among the complexity measures. These relationships al
low us transfer the complexity of a strategy with respect to one measure
to complexities with respect to other measures.

In Table 2.1, we list the relations among the four complexity mea
sures: depth measure (Mpd), length measure (Mpz), duplication mea
sure (Mdup), and literal size measure (Msub). We use exp to abbreviate
"exponential" and dexp to abbreviate "double exponential", as before.

An entry in row i and column j (i, j) denotes the worst case bound of
the measure in row i with respect to the measure in column j. For exam
ple, entry (1,2) is exp(Mpd)' It means that the length measure is expo
nential with respect to the depth measure, that is, Mp/ = O(exp(Mpd)).
All bounds in Table 2.1 are tight, except for those in square brackets.
We now derive the entries in Table 2.1; we will include a worst case
example when the tightness of a bound is not obvious.

Theorem 2.11.1 For a set of first order clauses S, the length measure,
duplication measure, and literal size measure of S are all exponentially
bounded by the depth measure of S. All three bounds are tight.

We prove theorem 2.11.1 by deriving the entries in the first column
of table 2.1. For the first column, the depth measure is fixed, and we
derive the worst case bounds for the other three measures. We construct

of Theorem Proving Strategies

:- PI(X),P2(X), ... 'Pn(X),
PI(S(S(X))) :- PI(X),
P2(S(S(S(X))) :- P2(X).
P3(S(S(S(S(S(X)))))) :- P3(X),

Pn(S(S ... S(X))) :- Pn(X).
PI (0).
P2(0).

Pn(O).

Figure 2.1: An example of the common prime divider [Let93]

149

a binary resolution proof with minimal depth bound. In an extreme
case, the proof corresponds to a tree of height Mpd and branching factor
2. There are at most 2(pd+1) - 1 nodes in the proof, and at most 2pd leaf
nodes in the tree. Every leaf node corresponds to an input clause. The
length measure and the duplication measure are bounded by the total
number of nodes and the number of leaf nodes in the tree, respectively.
Thus entry (2,1), the length measure, is exp(Mpd). Entry (3,1), the
duplication measure, is also exp(Mpd)' We derive the bounds of literal
size by recursion. Assume the literal size of a clause at depth n is T(n),
that is, a clause only has literals of size less than or equal to T(n). A
literal can have M distinct variables, and after one step of resolution,
the total size of the instances of these M distinct variables is always
less than T(n). If a directed acyclic graph representation of terms is
used, the maximal literal size of a clause at depth n + 1 is less than
T(n) + T(n). Thus entry (4,1), which equals T(Mpd), is exp(Mpd)' If
a linear representation of terms is used, the maximal literal size of a
clause at depth n + 1 is bounded by T(n) * T(n), because a literal can
have T(n) copies of a variable, which is instantiated to a term of size
T(n). Thus the linear literal size measure is double exponential with
respect to the proof depth. In Figure 2.1, the literal size measure is
exponential with respect to to the proof depth, so the bound for entry
(4,1) is tight. This is so because in order to find a proof, one needs
to construct an X of the form sm(o) for an m that is exponential in

150 The Propositional and First-Order Complexity

n, but the proof depth (and length) is relatively small. The number
of successors in the clauses of Figure 2.1 are given by successive prime
numbers, and so such an X must be divisible by the first n primes.

Theorem 2.11.2 For a set of first order clauses S, the depth mea
sure, duplication measure, and literal size measure of S are linearly,
exponentially, and exponentially bounded by the length measure of S,
respectively. All three bounds are tight.

For the second column, the length measure is fixed, and we derive
the upper bounds for the depth measure, duplication measure and lit
eral size measure. It is trivial to see that the depth measure is always
less than the length measure. Thus entry (1,2), the depth measure is
M p1 ' The duplication measure is exponential with respect to the proof
depth measure, thus it is exponential with respect to the proof length
measure. By the same argument, the literal size measure is also ex
ponential with respect to the proof length measure. Thus entry (3,2)
and (4,2) are exp(Mpt). The binary counter clause set En shows that
the exponential bound for the duplication measure is tight. Figure 2.1
shows that the exponential bound for the literal size measure is tight.

Theorem 2.11.3 For a set of first order clauses S, the depth measure,
length measure, and literal size measure of S are polynomially, expo
nentially, and polynomially bounded by the duplication measure of S,
respectively. All three bounds are tight.

For the third column, the duplication measure is fixed. In some
unsatisfiable instance set S' of an input clause set S, only Mdup copies
of S are needed, and there are at most Mdup * slin(s) literals in S'.
We can construct an A-resolution proof for S' in which one literal is
resolved away at each level. The same A-resolution proof can be lifted
to prove unsatisfiability of S. The A-resolution proof has a depth of
at most Mdup * slin(s). The A-resolution proof has a length of at most
exp(Mdup * slin(s)). Since A-resolution is a special case of binary res
olution, the depth measure and the length measure are polynomially
bounded and exponentially bounded with respect to the duplication
measure, respectively. Haken [Hak85] shows that an exponential num
ber of resolvents are needed for every resolution proof of the pigeonhole

of Theorem Proving Strategies

length(O, 0).
length(f(X), s(Y)) :- length(X, Y).
length(g(X), s(Y)) :- length(X, Y).
p(X) :- length(X, s(s(s(... s(O) .. .)))).
p(X) :- p(f(X)),p(g(X)).
:- p(O).

151

Figure 2.2: Duplication measure is exponential with respect to literal
SIze measure

problem. The pigeonhole problem is a propositional problem, and its
duplication measure equals the input clause size. Thus the bound of
length measure with respect to duplication measure is tight. We now
analyze the literal size measure. By theorem 2.2.19, the subterm size of
an instance set S', ssub(S'), is bounded by IS'lssub(S), which is in turn
bounded by Mdup * slin(s). Thus the subterm size measure Msub(S) of
S is polynomial with respect to the duplication measure, that is, entry
(4,3) is poly(Mdup). The linear literal size measure is exponential with
respect to the duplication measure.

Theorem 2.11.4 For a set of first order clauses S, the depth measure,
length measure, and duplication measure of S are exponentially, double
exponentially, and exponentially bounded by the literal size measure of
S, respectively. The bound for the duplication measure is tight.

For the fourth column, the literal size measure is fixed. In an unsat
isfiable instance set S' of input set S, the literal size of S' is Msub(S),
and thus there are at most exp(Msub(S)) distinct literals. By the same
argument in the last paragraph, an A-resolution of depth exp(Msub(S))
exists. Thus entry (1,4), the depth measure, is exp(Msub). Because the
length measure Mpl is bounded by exp(Mpd) and Mpd is bounded by
exp(Msub), Mpl is bounded by dexp(Msub). Whether the bounds for the
depth measure and the length measure are tight is an open question.
The duplication measure is bounded by the number of instances needed
in a proof, which is less than the number of literals in S', thus entry
(3,4) is exp(Msub). Figure 2.2 also shows that the bound in entry (3,4)

152 The Propositional and First-Order Complexity

is tight, since one needs an exponential number of small ground clauses
to obtain a refutation.

Remarks: Note that the entries in Table 2.1 denote worst case upper
bounds as opposed to analytical relations between complexity measures.
Entry (i, j) does not usually have a direct relation with entry (j, i). For
example, the literal size measure is exponential with respect to the
depth measure, and the depth measure is also exponential with respect
to the literal size measure. This occurs because the worst cases are
achieved in different sets of first order problems. Although the bounds
in Table 2.1 are tight, the composition of two bounds are not necessarily
tight. For example, the duplication measure is exponential with respect
to the length measure, which in turn is exponential with respect to
the depth measure. However, the duplication measure is exponential
instead of double exponential with respect to the depth measure.

The relations in Table 2.1 allow us to compare different theorem
proving strategies. Assume that a theorem proving strategy is a breadth
first strategy with respect to complexity measure Yl and has complex
ity of !(Yd, and Yl is tightly bounded by g(Y2). We argue that the
strategy is likely to have a tight complexity of !(g(Y2)) with respect
to complexity measure Y2. We illustrate this by an example. Length
bound binary resolution is exponential with respect to the length mea
sure. The length measure is exponential with respect to the duplication
measure. We now construct a set of first order problems S. Each prob
lem S in the set S contains the pigeonhole problem Pn of size n together
with Sfg. The pigeonhole problem is propositionally unsatisfiable, so
the duplication measure Mdup of S is IPnl. The minimal binary reso
lution proof length, i.e. the length measure, of S is exp(n), which is
also exp(Mpd). Within the proof length of exp(Mpd), exp(exp(Mpd))
resolvents can be generated from C. Thus length-bound binary reso
lution has complexity exp(exp(Mpd)) on the problems in S. Similar
constructions can be carried out for many other breadth first theorem
proving strategies. The basic idea is to include in the input clauses a
group that exhibits the complexity of !(Yd and another group that
exhibits the complexity of g(Yd.

Finally, we attempt to address the question which measure is best.
Of course, the appropriate measure will vary with the application. How
ever, those measures not based on particular inference schemes seem

of Theorem Proving Strategies 153

better from a philosophical standpoint. We have to choose, then, be
tween the duplication complexity measure and two term size measures,
linear and subterm size. The subterm size measure is better related
to duplication complexity, and therefore is preferable to the linear size
measure. The linear size measure has the advantage of permitting sim
pler implementations. Still, the most natural measures seem to be
subterm size Msub and duplication M dup ' It is not clear which, if either,
is better. Note that there are also other measures based on the Her
brand sets such as clause size (2 measures) and sum of clause sizes (2
measures). With respect to clause size, we can easily show that many
methods are double exponential, since we can have exponentially many
clauses. With respect to the sum of clause sizes measure, we can easily
devise theorem proving methods that are single exponential, since we
have a linear number of clauses of small size. For the clause size and
sum of clause sizes measures, it is better to use subterm size, as before.
Duplication complexity seems better than sum of clause sizes, however,
since it is smaller, but still permits an exponential theorem prover.

For hard problems, the lengths of the proofs and the duplication
complexity will likely be large. This means that even a method that
is single exponential with respect to the duplication complexity will
probably be too slow. However, on the other side, we mention that
Andrews' matings prover is exponential with respect to the duplication
complexity, but has found some fairly interesting proofs. The expla
nation seems to be that the expressive power of second-order logic,
employed by this prover, permits shorter proofs and smaller amplifi
cations. Still, this may be an exceptional phenomenon. Also, hard
theorems will probably involve many input clauses. This makes goal
sensitivity more important, to reduce irrelevant inferences, and makes
it unlikely that the clause set will be Horn or UR-resolvable. The
only chance that we have to obtain such hard proofs automatically,
then, is to use methods that perform well with respect to the literal
size measures Msub or M 1in • Even for complex proofs, it is conceiv
able that the sizes of the literals are still reasonably small, and so a
method that is exponential with respect to Msub has a chance of being
of practical value for such hard proofs. The only methods that are ex
pected single exponential with respect to Msub or M 1in , assuming that
a propositional satisfiability test runs in expected polynomial time, are

154 The Propositional and First-Order Complexity

subterm-size bounded clause linking with subterm factoring, subterm
size clause enumeration, or some other enumeration method such as
ordered semantic hyper-linking [Pla94a]. It will be advantageous to
choose goal-sensitive versions of these strategies. The enumerative ap
proach becomes even more feasible when there are equations, since then
the enumerative methods only need to generate ground clauses that are
in normal form with respect to a term-rewriting system. Since many
ground clauses are not in normal form, this increases the sizes of the
terms that can be generated. All in all, we feel that these several strate
gies, especially ordered semantic hyper-linking [Pla94a]' have the most
long-term promise for a generally useful theorem prover.

2.12 Conclusions and future work

We see that much can be said about the complexities of various strate
gies on various kinds of input clauses. This can help to give insight into
their performance in practice. However, this analysis does not take into
account factors such as careful programming technique or the unusual
distributions of problems that may arise in practice. Also, it does not
consider all aspects of a strategy, such as the fact that model elimina
tion is a set-of-support strategy, or the benefits to be obtained from
caching. The classification into exponential, double exponential, et
cetera, is also coarse and could be refined, yielding additional insights.
The assumption that Davis and Putnam's method runs in expected
polynomial time is also open to question, although it seems plausible
based on experience, and has been verified analytically for a number of
reasonable probability distributions on formulas. One might also argue
that we are estimating the average case performance of methods using
a propositional satisfiability test, but the worst-case time of methods
that do not. This places these other methods at an unfair disadvan
tage. However, Davis and Putnam's method often stops early when it
detects satisfiability. Inference-based methods such as resolution and
model elimination have to exhaust the search space in order to detect
satisfiability, and this usually does not happen early. Therefore, there
is some reason to believe that inference-based methods will have an
average-case performance that is not much better than their worst-case

of Theorem Proving Strategies 155

performance. There also seems to be no reason why the matings method
should perform better on the average than in the worst case. Another
issue related to the complexity of theorem provers is that truly powerful
provers may need to use semantics, specialized rules of inference that
were not considered here, and even human guidance. It is also possible
that a more careful analysis may bring out other advantages and dis
advantages of strategies (and their refinements) that are not obvious
here. We encourage others to fill in the gaps we have left. In addi
tion, this analysis can be extended to strategies with special rules for
the equality predicate; for a start in this direction, see [PSK95]. Still,
we believe that we have made a significant contribution. Especially as
machines become faster and faster, asymptotic performance will playa
larger and larger role, and constant factors of speed obtained by good
programming technique or choice of programming language will become
relatively less important. We hope that insights gained from this work
will help to direct implementors into fruitful methods and combinations
of methods. In addition, the many specific example clause sets given
above to exhibit worst-case behavior of strategies may be useful in their
own right as tests of the efficiencies of various strategies.

Bibliography

[And81]

[AS92]

[BE93]

[BF93]

[BFL94]

[BG90]

P. B. Andrews. Theorem proving via general matings. Jour
nal of the Association for Computing Machinery, 28:193-
214, 1981.

Owen Astrachan and M. Stickel. Caching and lemma use
in model elimination theorem provers. In D. Kapur, edi
tor, Proceedings of the Eleventh International Conference
on Automated Deduction, 1992.

w. Bibel and E. Eder. Methods and calculi for deduction.
In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, edi
tors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, chapter 3, pages 71-193. Oxford
University Press, Oxford, 1993.

Peter Baumgartner and Ulrich Furbach. Consolution as
a Framework for Comparing Calculi. Journal of Symbolic
Computation, 16(5):445-477, 1993.

M. Baaz, C. Fermiiller, and A. Leitsch. A Non-Elementary
Speed Up in Proof Length by Structural Clause Form
Transformation. In LICS'94, pages 213-219, Los Alami
tos, California, 1994. IEEE Computer Society Press.

Leo Bachmair and Harald Ganzinger. On restrictions of or
dered paramodulation with simplification. In Mark Stickel,
editor, Proceedings of the 10th International Conference
on Automated Deduction, pages 427-441, New York, 1990.
Springer-Verlag.

158

[BH96]

[BH98]

[Bib82]

[Bib87]

[Bon]

[BT88]

[Bun83]

[CL73]

[CP94]

[CR79]

[Dav63]

The Propositional and First-Order Complexity

M. Bonacina and J. Hsiang. On the modelling of search
in theorem proving - towards a theory of strategy analysis.
1996. Unpublished.

Maria Paola Bonacina and Jieh Hsiang. On the modelling
of search in theorem proving - towards a theory of strategy
analysis. Information and Computation, 147:171-208,1998.

W. Bibel. A comparative study of several proof procedures.
Artificial Intelligence, 12:269-293, 1982.

W. Bibel. Automated Theorem Proving. Vieweg, Braun
schweig/Wiesbaden, 1987. Second edition.

Maria Paola Bonacina. A model and a first analysis of
distributed-search contraction-based strategies. Annals of
Mathematics and Artificial Intelligence, to appear.

S. R. Buss and G. Turan. Resolution proofs of general
ized pigeonhole principles. Theoretical Computer Science,
62(3):311-317, 1988.

A. Bundy. The Computer Modelling of Mathematical Rea
soning. Academic Press, New York, 1983.

C. Chang and R. Lee. Symbolic Logic and Mechanical The
orem Proving. Academic Press, New York, 1973.

Ritu Chadha and D. Plaisted. Correctness of unification
without occur check in prolog. Journal of Logic Program
ming, 18:2:99-122, 1994.

S. A. Cook and R. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic,
44(1):36-50, March 1979.

M. Davis. Eliminating the irrelevant from machanical
proofs. In Proceedings Symp. of Applied Math, volume 15,
pages 15-30, 1963.

of Theorem Proving Strategies 159

[DG84] W. Dowling and J. Gallier. Linear-time algorithms for test
ing the satisfiability of propositional horn formulae. Journal
of Logic Programming, 1:267-284, 1984.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine pro
gram for theorem-proving. Communications of the ACM,
5:394-397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quan
tification theory. Journal of the Association for Computing
Machinery, 7:201-215, 1960.

[Ede92] E. Eder. Relative Complexities of First-Order Calculi.
Vieweg, Braunschweig, 1992.

[EgI96] U. Egly. On Different Structure-preserving Translations to
Normal Form. Journal of Symbolic Computation, 22:121-
142, 1996.

[Fit90] M. Fitting. First-Order Logic and Automated Theorem
Proving. Springer-Verlag, New York, 1990.

[Gou94] Jean Goubault. The complexity of resource-bounded first
order classical logic. In P. Enjalbert, E.W. Mayr, and K.W.
Wagner, editors, 11th Symposium on Theoretical Aspects
of Computer Science, pages 59-70, Caen, France, February
1994. Springer Verlag LNCS 775.

[GU89] G. Gallo and Y. Urbani. Algorithms for testing the satisfia
bility of propositional formulae. Journal of Logic Program
ming, 7:45-61, 1989.

[Hak85]

[HR91]

A. Haken. The intractability of resolution. Theoretical
Computer Science, 39:297-308, 1985.

J. Hsiang and M Rusinowitch. Proving refutational com
pleteness of theorem-proving strategies: the transfinite se
mantic tree method. J. Assoc. Comput. Mach., 38(3):559-
587, July 1991.

160 The Propositional and First-Order Complexity

[KBL93] H. Kleine Buening and T. Lettman. Search space and av
erage proof length of resolution. Unpublished, 1993.

[KN92] D. Kapur and P. Narendran. Double-exponential complex
ity of computing a complete set of AC-unifiers. In Proceed
ings 7th IEEE Symposium on Logic in Computer Science,
pages 11-21, Santa Cruz, California, 1992.

[Kor85] R. E. Korf. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97-109,
1985.

[Let93] R. Letz. On the polynomial transparency of resolution. In
Proceedings of the 13th International Joint Conference on
Artificial Intelligence, pages 123-129, 1993.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer
Verlag, Berlin, 1987. 2nd edn.

[Lov69] D. Loveland. A simplified format for the model elimination
procedure. J. ACM, 16:349-363, 1969.

[Lov78] D. Loveland. Automated Theorem Proving: A Logical Ba
sis. North-Holland, New York, 1978.

[LP92] S.-J. Lee and D. Plaisted. Eliminating duplication with the
hyper-linking strategy. Journal of Automated Reasoning,
9(1):25-42, 1992.

[Lyn94] Christopher Lynch. Local simplification. In Constraints in
Computational Logics, Munich, Germany, September 1994.

[McC90] W. McCune. Otter 2.0 (theorem prover). In M.E. Stickel,
editor, Proceedings of the 10th International Conference on
Automated Deduction, pages 663-4, July 1990.

[PA96] D. Plaisted and G. Alexander. Propositional search effi
ciency and first-order theorem proving. In Ding-Zhu Du,
Jun Gu, and Panos Pardalos, editors, Proceedings of the
Workshop on SATISFIABILITY PROBLEM: THEORY
AND APPLICATIONS, March 12-13 1996.

of Theorem Proving Strategies 161

[Pla82] D. Plaisted. A simplified problem reduction format. Arti
ficial Intelligence, 18:227-261, 1982.

[Pla84] D. Plaisted. Complete problems in the first-order predi
cate calculus. Journal of Computer and System Sciences,
29(1):8-35, 1984.

[Pla88] D. Plaisted. Non-Horn clause logic programming without
contrapositives. Journal of Automated Reasoning, 4:287-
325, 1988.

[Pla90] D. Plaisted. Mechanical theorem proving. In R. Banerji,
editor, A Sourcebook on Formal Techniques in Artificial In
telligence. Elsevier, Amsterdam, 1990.

[Pla94a] D. Plaisted. Ordered semantic hyper-linking. Technical
Report MPI-I-94-235, Max-Planck Institut fuer Informatik,
Saarbruecken, Germany, 1994.

[Pla94b] D. Plaisted. The search efficiency of theorem proving strate
gies. In Proceedings of the Twelfth International Conference
on Automated Deduction, pages 57-71, 1994. Lecture Notes
in Artificial Intelligence 814.

[Pla94c] D. Plaisted. The search efficiency of theorem proving strate
gies: an analytical comparison. Technical Report MPI-I-94-
233, Max-Planck Institut fuer Informatik, Saarbruecken,
Germany, 1994.

[Pla94d] D. Plaisted. The search space size for a class of resolution
strategies. In Workshop der GI-Fachgruppe Logik in der
Informatik, Paderborn, Germany, May 1994. organized by
Prof. H. Kleine Buening.

[PSK95] D. Plaisted and Andrea Sattler-Klein. Proof lengths for
equational completion. Technical Report SEKI Report SR-
95-06, University of Kaiserslautern, Kaiserslautern, Ger
many, 1995.

[PZ] M. Paramasivam and Y. Zhu. Personal communication.

162 The Propositional and First-Order Complexity

[Rob65a] J. Robinson. Automatic deduction with hyper-resolution.
Int. J. Comput. Math., 1:227-234, 1965.

[Rob65b] J. Robinson. A machine-oriented logic based on the reso
lution principle. Journal of the Association for Computing
Machinery, 12:23-41, 1965.

[Sla67] J.R. Slagle. Automatic theorem proving with renameable
and semantic resolution. J. ACM, 14:687-697, 1967.

[ST85] M.E. Stickel and W.M. Tyson. An analysis of consecu
tively bounded depth-first search with applications in au
tomated deduction. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 1073-
1075, 1985.

[Tam90] T. Tammet. The resolution program: able to decide some
solvable classes. In International Conference on Computer
Logic, 1988, pages 300-312, 1990. Springer Verlag LNCS
417.

[Tam91] T. Tammet. Using resolution for deciding solvable classes
and building finite models. In Baltic Computer Science,
pages 33-64, 1991. Springer Verlag LNCS 502.

[Tse68] G.S. Tseitin. On the complexity of derivation in propo
sitional calculus. In A.O. Slisenko, editor, Studies in
Constructive Mathematics and Mathematical Logic, Part
II, pages 234-259. V.A. Steklov Mathematical Institute,
Leningrad, 1968. English translation: Consultants Bureau,
New York, 1970, pp. 115-125.

[Urq87] A. Urquhart. Hard examples for resolution. J. ACM,
34(1):209-219, 1987.

[WOLB84] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated
Reasoning: Introduction and Applications. Prentice Hall,
Englewood Cliffs, N.J., 1984.

of Theorem Proving Strategies 163

[WRC65] L. Wos, G. Robinson, and D. Carson. Efficiency and com
pleteness of the set of support strategy in theorem prov
ing. Journal of the Association for Computing Machinery,
12:536-541, 1965.

[Zam72] N.K. Zamov. On a bound for the complexity of terms in
the resolution method. Trudy. Mat. Inst. Steklov, 128:5-13,
1972.

[Zam89] N.K. Zamov. Maslov's inverse method and decidable
classes. Annals of pure and applied logic, 42:165-194, 1989.

[ZK88] H. Zhang and D. Kapur. First order theorem proving using
conditional rewrite rules. In E. Lusk and R. Overbeek,
editors, Proceedings of the 9th International Conference on
A utomated Deduction, pages 1-20. Springer-Verlag, 1988.

Index

B~, 128
Bn , 89, 149
Gr(S),99
Mdup (S),78
Mdup (S),78
M1in(S), 80
M pd (S),75
Mpl(S), 75
Msub(S), 80
PI deduction, 23, 88, 90, 94, 113,

120
PI-deduction, 14,25, 29,49,51,

60, 88, 96
PI-deduction proof, 73
SPQ' 108, 143
SPQR, 112, 140, 142
Seye, 104
Slg, 87, 151
TJg,119
Tlg , 87
Ttrans, 88
g-clause, 105
slin 72 ,
s;;'~x (S), 103
ssub 72 ,
s:::!x(S) , 103

A-ordering, 4, 14,24, 29,40,42,
50,63

A-resolution, 73, 113, 120, 137,
149

A-resolution proof, 73
adequacy, 63
all-negative resolution, 26, 28, 29,

50, 51, 60, 63
all-negative resolution with or-

dering, 31
amplification, 78
amplified clause linking proof, 101
amplified clause linking refuta-

tion, 101, 102
Andrews, 117, 124, 152
area, 43
arity,72
asymptotic performance, 154
atom, 7, 72

backward chaining, 15, 18-20, 57-
60,62

Bibel, 56, 145
binary counter, 89, 128
binary resolution, 92, 93, 97,118-

121, 130, 134, 136, 137,
140-144, 151

Bonacina, 71
breadth-first search, 14, 25, 46,

49
breadth-first strategy, 151
British Museum method, 122

British Museum methods, 122,
131

Bundy, 7

caching, 14, 53, 55, 57, 59, 60,
62, 64, 145, 153

clause, 7, 72
clause form, 69
clause linking, 5, 14, 56-59, 61,

62,64, 111, 113-115, 118,
125, 127, 128, 130, 133-
135, 137, 140-146, 153

clause linking proof, 99
clause linking refutation, 99, 101,

103, 105, 106, 108, 110
clause linking strategy, 99
clause linking with semantics, 5
clear path, 43
clear path property, 43
CLIN-D, 116, 117, 129, 136, 139,

143-146
CLIN-D refutation, 116
cluster, 43
co-NEXPTIME,85
complementary, 72
complete, 74
complete path, 35
complete problems, 70
complete strategy, 7, 8
connection calculi, 56
connection calculus, 14
connection method, 146
connection methods, 134, 136,

139, 143, 145
constant duplication by iteration,

11
critical clause, 34

165

critical clauses, 33

Davis and Putnam procedure, 16,
56,60,64,100,122,128,
132, 136, 141, 142, 144,
145, 153

degree of a g-clause, 105
degree of literal, 106
depth complexity measure, 147
depth of a clause, 100
depth of a clause linking proof,

100
depth of resolution proof, 73
depth proof complexity measure,

147, 149, 150
depth-bounded strategy, 92
depth-first iterative deepening,

14,54
depth-first search, 49, 50, 54
determines, 36
deterministic, 29
distinguished position, 43
duplication by case analysis, 10
duplication by combination, 10,

21, 145
duplication by iteration, 10
duplication complexity, 99, 106,

120, 123, 125, 135, 137,
139, 140, 143, 144, 152

duplication complexity measure,
113-115, 118-120, 122-
124, 141, 145, 152

duplication measure, 78,117, 121,
144, 147, 149-151

duplication proof complexity mea
sure, 141

166

duplication-bounded subterm com
plexity, 137, 140

Eder, 2, 62, 70
electrons, 22
enumerative methods, 144
enumerative strategies, 125, 143
equality predicate, 154
exponential behavior, 11
exponential duplication by iter-

ation, 11
exterior path, 44
exterior position, 44

factor, 73
final state, 10
first-order logic, 62, 64, 67, 146
Fitting, 73, 114
forward chaining, 15, 20, 58, 60,

62
forward reasoning, 29
free variables, 72
frontier, 44

goal sensitive, 13
goal sensitivity, 51
goal-sensitive, 26, 27,40, 52, 145,

153
goal-sensitivity, 145, 152
Goubault, 70, 71, 84, 85
ground, 72
ground g-clause, 105
ground g-literal, 105

Haken, 2, 62, 70, 97, 149
height, 43
Herbrand set, 75
Herbrand's theorem, 69, 75

Hilbert style system, 146
Horn clause, 7, 84
Horn clauses, 13, 16, 86, 152
Horn set, 84, 110
Horn sets, 26, 62, 140, 142, 145
Hsiang, 71
hyper-linking, 99
hyper-resolution, 14, 22, 28, 55,

59, 60, 86, 88, 96, 110,
113, 120

hyper-resolution proof, 86
hyper-resolvent, 58, 86

inference-based measure, 70
inherent (time or space) complex-

ity, 81
inherent complexity, 68
initial state, 10
input clause, 74, 105
instance, 7
instance-based method, 141
interior position, 44

Korf, 14,54

left child, 43
lemmas, 53
length complexity measure, 147
length of amplified clause link-

ing proof, 101
length of clause linking proof, 99
length of CLIN-D proof, 116
length of resolution proof, 73
length of rigid clause linking proof,

100
length proof complexity measure,

147, 149, 150
length-bounded strategy, 92

Letz, 2, 71, 85
linear complexity measure, 80
linear duplication by iteration,

11
linear proof complexity measure,

140
linear size, 72
linear size bounded strategy, 92
linear size clause enumeration,

123, 132, 136, 137, 142
linear size clause set enumera

tion, 136
linear size measure, 135, 139
linear size proof complexity mea

sure, 133, 135, 136, 140-
142, 144, 145, 152

linear strategy, 9
linking operation, 99
literal, 7, 72
literal count, 137-139
literal size measure, 147
literal size proof complexity mea

sure, 147, 149, 150
literal size proof complexity mea-

sures, 152
Lloyd, 4, 20
logic programming, 50
logic puzzles, 62
Loveland, 3, 5, 7, 52, 73, 97
lower bounded by a double ex-

ponential, 81
lower bounded by a single expo

nential, 81
Lynch, 50

mating, 124

167

matings, 125,134,136,139,141-
146, 152

matings method, 117, 124, 133,
154

maximal proof path, 38
McCune, 71
measure estimation problem, 80
MESON, 55
MESON strategy, 3, 52, 55, 57,

59
minimal strategy with respect to

proof depth, 85
minimal unsatisfiable set, 137
model elimination, 3, 9, 14, 52,

55, 57, 60, 97, 98, 124,
134, 136, 139, 143, 145,
153

modified problem reduction for
mat, 14, 55, 145

most general unifier, 73

natural, 64
natural ordering, 41
negative, 72
negative clause, 7, 72
negative literal, 7
negative resolution, 73, 113, 120
negative resolution proof, 73
neighbors, 37
NEXPTIME, 84, 85
non-Horn clause sets, 142
non-Horn sets, 27
NP-complete, 84
nucleus, 22

ordered semantic hyper-linking,
145, 153

168

Otter, 71

parent clauses, 73
path, 43, 124
path property, 43
pebbling, 28
pigeonhole problem, 150, 151
pigeonhole problems, 70
Plaisted, viii, 5, 39, 55, 60, 61,

70, 71, 84, 85, 125, 145,
146, 153

polynomial behavior, 11
polynomial duplication by iter-

ation, 11
position, 43
positive, 72
positive clause, 7, 72
positive literal, 7
positive resolution, 73
problem reduction formats, 5, 55,

57,60
Prolog, vii, 7, 16, 18,20, 49-52,

55
proof complexity, 28
proof dag, 28
proof depth complexity measure,

75, 92, 93, 96-98
proof length complexity measure,

75, 93, 96, 98
proof lengths, 70
proof path, 38
propositional calculus, 62
propositional problems, 84
pure literal, 8, 102
pure literal clause deletion, 8

quantifiers, 146

quintuple exponential, 81

reachable, 10
refutation, resolution, 73
regular proofs, 24
renameable Horn sets, 64
resolution, 9, 14, 70, 120, 121,

125, 134, 137, 139-144,
146, 153

resolution proof, 73, 106, 108
resolution without factoring, 112
resolvent, 73
right child, 43
rigid clause linking, III
rigid clause linking proof, 100
rigid clause linking refutation, 100,

103
Robinson, 22, 23, 74
round, 11

Schonfinkel-Bernays form, 85
search depth, 13
search method, 14
second-order logic, 152
semantic tree, 75
semantics, 154
separation of a clause set, 101
sequent style system, 146
set of clauses, 7, 72
set of support, 14, 51, 145
set theory problems, 62
set-of-support strategy, 153
simplified problem reduction for-

mat, 14, 55, 145
Skolem functions, 74
Slagle, 24
SLD resolution, 20

SLD-resolution, 4, 49, 51, 52
sound strategy, 9
space complexity, 80
spanning for 5', 124
subgoaling, 13
substitution, 72
subsumption, 8, 23, 38
subterm complexity measure, 80
subterm factoring, 111, 121, 125,

128, 130, 131, 134, 135,
140-146, 153

subterm factoring operation, 113,
115, 120, 140

subterm size, 72, 111, 137, 141
subterm size bound, 120
subterm size bounded search, 144
subterm size bounded strategy,

92
subterm size clause enumeration,

122, 134, 136, 137, 141-
144, 146, 153

subterm size clause enumeration
method, 131

subterm size clause set enumera
tion, 123, 132, 136, 141,
142

subterm size measure, 126, 127,
134, 140, 142, 144, 145

subterm size proof complexity mea
sure, 127, 129-135, 140-
142, 144, 152

subterm unification, 141
supported clause, 51

Tammet, 63
term, 7, 72
term rewriting, 27

169

term-rewriting systems, 153
theorem proving complexity mea-

sure, 68, 69
theorem proving strategy, 8
time complexity, 80
total duplication, 10
triangle property, 36
Tseitin,24

unification-based strategies, 143
unifier, 73
uniform A-ordering, 25
uniform A-ordering resolution, 47
unit clause, 72
unit resolution, 73, 140
unit resolution proof, 73
unit resolvable, 87
unit resolvable clause sets, 144
unit resolvable sets, 142, 145
unit simplification, 8, 16, 19, 21,

57, 59, 60
unit simplifications, 141
upper bounded by a double ex

ponential, 81
upper bounded by a single ex

ponential, 81
DR-refutation, 120
DR-resolution, 64,113, 120, 131,

134, 136, 137, 140, 142-
146

DR-resolution proof, 87
DR-resolution proofs, 140
DR-resolvable, 87, 120,121, 129,

140, 141, 152
DR-resolvable clause sets, 130,

131, 134, 136, 144
DR-resolvable sets, 133, 137, 144

170

UR-resolvent, 86
Urquhart, 2, 70

variant, 101

weight of a clause, 34
weight of a literal, 34
well-ordered, 29
well-ordered sets, 41
well-ordering, 29

Zamov, 63

Das erste Buch zur multiobjek
tiven heuristischen Suche

Multiobjective
Heuristic Search

An introduction to intel li
gent search methods for
multicriteria optimization

Pallab OasguptajP. P.
ChakrabartijS. C. OeSarkar

1999. x, 134 pp. with 25 figs.
softe. OM 98,00
ISBN 3-528-05708-4

Solutions to most real-world opti
mization problems involve a trade
off between multiple conflicting
and non-commensurate objectives.
Some of the most challenging ones

~
vleweg

Abraham-Uncoln-StraBe 46
65189 Wiesbaden
Fax 0180.57878-80
www.vieweg.de

are area-delay trade-off in VLSI syn
thesis and design space explorati
on, time-space trade-off in computa
tion, and multi-strategy games.
Conventional search techniques are
not equipped to handle the partial
order state spaces of multiobjective
problems since they inherently
assume a single scalar objective
function. Multiobjective heuristic
search techniques have been deve
loped to specifically address mul
ticriteria combinatorial optimization
problems. This text describes the
multiobjective search model and
develops the theoretical foundations
of the subject, including complexity
results . The fundamental algorith
ms for three major problem formu
lation schemes, namely state-space
formulations, problem-reduction
formulations, and game-tree formu
lations are developed with the sup
port of illustrative examples.

Stand September 1999
Anderungen vorbehalten.
ErMltlich belm Buchhandel oder belm Verlag,

Das praxisorientierte
Buch fur DB-Spezialisten!

Recovery in Parallel
Database Systems

Svein-Olaf Hvasshovd

2. Ed. 1999. xx, 302 pp. with 71 figs.
softe. OM 118.00
ISBN 3-528-1S411 -X

aI
vleweg

Abraham-Uncoln-StraBe 46
65189 Wlesbaden
Fax 0180.57678-80
www.vieweg.de

This book presents and analysis in
a systematic way the main recovery
approaches for centralised DBMSs
developed over the last two deca
des, in particular to how well they
fulfil the requirements for availabi
lity and soft real-time response.
The analysis relates specifically to
approaches used in current com
mercial and research systems. The
element in particular lacking in the
current methods is the ability to on
line re-establish the faulttolerance
level automatically and without
blocking. A set of novel recovery
methods for parallel DBM's based
on multi-computer shared nothing
hardware is presented. The reco
very methods are intended to sup
port: Continuously available tran
saction services, very high transac
tion loads, and soft real-time tran
saction response.

Stand September 1999
Anderungen vorbehalten.
Erhliltlich belm Buchhandei oder belm Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

