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Preface 

There seems to be no doubt that geometry originates from such practical activ
ities as weather observation and terrain survey. But there are different manners, 
methods, and ways to raise the various experiences to the level of theory so that 
they finally constitute a science. F. Engels said, "The objective of mathematics 
is the study of space forms and quantitative relations of the real world." Dur
ing the time of the ancient Greeks, there were two different methods dealing 
with geometry: one, represented by the Euclid's "Elements," purely pursued the 
logical relations among geometric entities, excluding completely the quantita
tive relations, as to establish the axiom system of geometry. This method has 
become a model of deduction methods in mathematics. The other, represented 
by the relevant work of Archimedes, focused on the study of quantitative re
lations of geometric objects as well as their measures such as the ratio of the 
circumference of a circle to its diameter and the area of a spherical surface and 
of a parabolic sector. Though these approaches vary in style, have their own 
features, and reflect different viewpoints in the development of geometry, both 
have made great contributions to the development of mathematics. 

The development of geometry in China was all along concerned with quanti
tative relations. For example, the measure of area and volume and the application 
of the Kou-Ku theorem! occupied a central position in ancient Chinese geom
etry. At that time, Chinese mathematicians did not work out a tedious stack of 
axioms but extracted a few general principles and took them as the basis of wide 
applications, deductions and proofs. Such principles include the out-in comple
mentary principle, Liu-Hui's principle in volume theory, and Liu-Zu's principle. 
The last corresponds to Cavalieri's principle which appeared in Europe in the 
sixteenth century. The two different systems of Archimedes and Euclid both 
appeared in ancient Chinese geometry. The Kou-Ku theorem led naturally to 
the evaluation problem of square roots while the method of extracting square 
roots and cubic roots in ancient Chinese mathematics proceeded step by step 
with the out-in complementary principle as its geometric background. From the 
evaluation of square and cubic roots, the method and theory of solving quadratic 
equations and equations of higher degree were developed progressively, which 
led to the discovery of Thieh Yuan Shu2 as well as the algebraization of geome
try, polynomial operations, elimination methods and so forth. The mechanization 
problem of theorem proving in geometry elaborated in this book, from thoughts 
to methods, can be traced back at least to the Song-Yuan dynasties (960-1368). 

1 Called the Pythagorean theorem in the West. [Transl.] 
2 A method for solving algebraic equations of higher degree. [Transl.] 
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Though those ideas were very primitive, they are the main inspiration to the 
author's findings. 

The various tendencies that arose due to different understandings in the de
velopment of ancient geometry were not united until the appearance of analytic 
geometry in the seventeenth century. The final union has made it possible to 
treat geometric problems using algebraic methods, so that one can avoid the high 
proof techniques involved in the synthetical method of Euclid. Even though the 
synthetical proof method is fascinating and absorbing by its intuition and had a 
period of renaissance in the nineteenth century, it is eventually unable to match 
the algebraic method of analytic geometry. In many important areas of modem 
geometry, such as differential geometry and algebraic geometry, a number sys
tem (generally a field, or, more particularly, the real field or the complex field) 
is usually assumed at the beginning. From this system one forms an affine or 
a projective space and then introduces geometric configurations such as curves 
and surfaces and their relations by using coordinates and algebraic relations 
among functions and their derivatives. The purely synthetical method starting 
from axioms occupies only a small, and mainly an elementary, comer. More
over, the use of this method to give a detailed analysis of the logical relations 
among axioms is usual for considering foundations, but not for enriching the 
concrete contents of geometry. It seems to be the trend of the times to build 
geometry on the basis of numbers. 

Nevertheless, we cannot always only consider the intuitive background and 
the origination of geometry, but also have to consider its foundations even 
though it can be established in the form of pure quantitative relations. How to 
refine axiom systems (or some principles) of geometry from the original figures 
in the real world and how to develop coordinate systems from axiom systems so 
that algebraic methods can play their role in geometry are all problems which 
should be explained. For the often seen and often used Euclidean geometry, 
a detailed exposition is given in the classical work "Grundlagen der Geometrie" 
by Hilbert (1899). One might think it easy to establish analytic geometry from 
geometric axioms by introducing coordinates. This is due to the illusion given 
by the application of all our knowledge about the real number system and ele
mentary geometry. In fact, along the way there are quite a few difficulties and 
setbacks. This can be seen clearly from the manner in which the number system 
and then the coordinate system were introduced according to the axiom system 
in Hilbert's book. In this development, Desargues' two axioms and Pascal's ax
iom named by Hilbert play an extremely important role. As will be pointed out 
in Chaps. 2 and 6 of this book, there is a big difference in the introduction of 
number systems for projective geometry and for affine geometry. Though both 
depend only upon Desargues' axioms (and some simplest incidence axioms, etc.) 
so that one may introduce isomorphic number systems on lines, in affine geom
etry there is a canonical isomorphism relation among these number systems. In 
contrast to that, in projective geometry the isomorphism is canonical only under 
the assumption that the so-called Pappus' axiom holds. This seems to be ne
glected in popular geometry books. Perhaps one of the reasons for this is that in 
these books either Euclid's tradition is stressed, i.e., the logical relations among 
axioms are emphasized while leaving the number system and the introduction 
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of coordinates to a secondary position, or the geometries are established directly 
from the number system without considering the real originality and axiomatic 
foundation of geometric objects. Of those which take the connection of axiom 
system and quantitative relations as the subject of exploration, Hilbert's book 
is still a good representative up to the present day. Also, one can see that the 
introduction of coordinates, even for the commonly known projective geometry 
and affine geometry, is not as simple as often imagined. For other geometries 
based on various axiom systems, the difficulty of introducing number systems 
and coordinate systems is not hard to imagine. 

Moreover, it is usually not easy to completely reduce the proof-problems of 
geometric theorems to purely algebraic problems even if we have arrived at the 
coordinate system and established the corresponding analytical geometry, start
ing from the axiom system. First of all, the number of calculations for solving 
these algebraic problems is often so large that we are deterred from making 
further efforts. Secondly, the algebraic relations representing the geometric rela
tions are usually disorderly and unsystematic and we are at a loss as to what to 
do. It often requires high techniques to fiijd a way from these unorderly algebraic 
relations to achieve a proof. This can become clear as soon as we have a look 
at many books written in the past as, for example, Salmon (l879a, b). Now, in 
virtue of the emergence of the computer, we have efficient means to deal with 
complicated calculations. Therefore, putting the unorderly algebraic relations in 
perfect order so that the computer can display its full power becomes the key 
to the whole problem. 

Up to this point, the problem of proving geometric theorems can be divided 
into three steps: 

First, starting from the axiom system of a geometry, introduce a number 
system and a coordinate system to reduce the problem of proving geometric 
theorems to a purely algebraic problem. 

Second, well-order the algebraic relations corresponding to the hypothesis 
of a geometric theorem and then verify whether the algebraic relations corre
sponding to the conclusion of the theorem can be deduced from the well-ordered 
hypothesis relations according to some specific decision procedure. 

Third, implement the decision procedure mentioned in the second step and 
run it on a computer in order to confirm the truth of the theorem. 

We shall call the first step the algebraization and coordinatization, and the 
second step the mechanization of geometry. For the third step, whether a com
puter can be used to finally verify the theorem depends completely on the possi
bility of mechanization in the second step. Since computers can recognize only 
a finite number of objects, a precondition is that the algebraic relations in the 
second step must appear in a finite form. Hence, if the algebraic relations in 
the second step involve notions such as continuity and limit or even appear in 
the form of transcendental functions, it will exclude the possibility of using a 
computer. On the contrary, if these algebraic relations appear in the form of 
polynomials with integers as coefficients, the use of a computer is only the pro
gramming of the procedure of the second step and will not lead to any essential 
difficulties. If one can perform these three steps (in fact, only the first two steps 
are required) to complete theorem proving for a geometry, we shall say that 
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the geometry is mechanizable and call this conclusion a mechanization theorem. 
Whether the mechanization theorem holds depends on the realization of the first 
two steps, both of which are purely theoretical problems. 

Whether or not a geometry is mechanizable is not obvious. For the various, 
usual geometries, in particular differential geometry, which cannot be separated 
from function and differential and extensively uses concepts like continuity and 
limit, it appears that we are unable to perform theorem proving using a com
puter. It is actually not so and the reason is quite deep. According to Hilbert's 
"Grundlagen der Geometrie," an important point is that, usually, the foundation 
of geometry can completely exclude such axioms as the axioms of continuity. 
In Rashevsky's preface to the Russian edition of Hilbert's book, the central idea 
was precisely pointed out. In fact, the development of geometry may be inde
pendent of the axioms of continuity. At the end of another article concerning 
Bolyai-Lobachevsky's non-Euclidean geometry, Hilbert (1903) also pointed out 
this fact. The geometric axioms, theorems, and proofs can, in fact, be stated and 
completed in a finite number of constructive steps. This also serves as a basis 
for the mechanizability of theorem proving in geometry. As to the knowledge of 
the author, one of the earliest real mechanization theorems appeared in Hilbert's 
book "Grundlagen der Geometrie." The third chapter of this book will be de
voted to the proof of this mechanization theorem and we shall call it Hilbert's 
mechanization theorem (cf. Wu 1982b). 

The same arguments apply to differential geometry as well. If we leave aside 
the essence of geometry and take only the logical relations for consideration (this 
is enough for theorem proving), those functions and derivatives occurring in the 
statement of various concepts and theorems in differential geometry may be 
completely formally treated, yet we need not consider whether they are related 
to the real continuity and limit process. Therefore, even in differential geometry 
there are possibilities for processing theorem proving using a computer through 
a finite number of formal constructive steps. It is actually so. We have already 
proved some theorems in differential geometry with the aid of computers (some 
experiments were made on microcomputers, cf. Wu 1979, 1982a). 

We roughly identify geometries into two classes according to whether or 
not they involve the concept of differentiation. One class consists of differential 
geometries, and the other of the so-called elementary geometries. For conve
nience, we rename the elementary geometry that is usually called Euclidean 
geometry ordinary geometry. The author will elaborate (in succession) on the 
theory and methods of the mechanization of various geometries. In this book 
we shall only be concerned with the basic principles of the mechanization of 
elementary geometries. In its twist book "Theory, Methods and Practice of Me
chanical Theorem Proving in Geometries (Part on Elementary Geometries)," we 
shall explain the concrete implementation of these methods, including program
ming, the estimation of computational complexity, proofs of concrete theorems, 
the discovery of new theorems and the improvements of efficiency by using 
geometric theory and methods as well as other diverse applications. In other 
relevant books by this author, we shall devote ourselves to expounding on the 
mechanization problem and related theoretical problems in differential geometry. 

This book is divided into six chapters. The first two chapters are the prelimi-
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naries to the mechanization of geometry. As a concrete example, we concentrate 
on ordinary geometry, i.e., Euclidean geometry as it is usually called, and ex
plain in detail the process of establishing a coordinate system starting from the 
axiom system. For the sake of simplicity, we consider only the planar case; 
and in order to have a foundation, all our discussions will be made around the 
five groups of axioms (axioms of incidence, axioms of order, axioms of con
gruence, axiom of parallels and axioms of continuity) proposed by Hilbert. In 
establishing ordinary geometry, Hilbert abandoned axioms of continuity, but the 
axioms of order and axioms of incidence run all through his system, and even 
the concept and axioms of incidence themselves cannot be independently stated 
without the concept of order. How to introduce perpendicularity, congruence, 
and other metric concepts earlier, not depending on the concept and axioms of 
order, seemingly was first proposed by Hjelmslev and had lasted until the 50-
60s of this century, cf. Bachmann (l959a) and the works of Klingenberg, Lenz, 
Reidemeister, Schi.ilte, Sperner, Winterniz, and others. Their studies focused on 
the logical dependency relations among different groups of axioms which reflect 
the major geometric concepts. As opposed to this character, this book aims at 
studying the mechanization rather than axiomatization of geometry. Problems 
concerning the dependence and independence of axioms are not what we are 
interested in. But as for the theme of mechanization, whether or not the axioms 
of order are involved has extreme relevance for both theory and methods. More
over, in some modern geometries such as algebraic geometry, the considered 
fields are mainly the complex field and arbitrary fields of characteristic 0, so 
no order relation exists. Even in an ordered geometry, theorems which really 
involve the order relation do not occupy a major position. In view of this, an 
order relation is necessarily relegated to a secondary position in establishing 
geometry from the axiom system. For this reason, during the establishment of 
ordinary geometry in the first two chapters, the introduction of an order relation 
is postponed as long as possible in order to introduce various unordered ge
ometries and ordered geometries in succession. The introduction of the number 
system associated with a geometry to complete the algebraization and coordina
tization (as indicated before), though still based on the two axioms named after 
Desargues and Pascal (as in Hilbert's book), is not like Hilbert's mixing it with 
the axioms of order. Moreover, we add an axiom of infinity to exclude finite 
geometry, for the mechanizability of finite geometry is obvious. 

The latter four chapters of this book are devoted to the mechanization prob
lem of various geometries. The traditional manner of Euclid requires finding an 
individual proof method for an individual theorem, while every proof requires 
some new and usually ingenious ideas (see Kline 1972: pp. 307 f.; Chinese edi
tion, II. 8). The method sought in the present book on the mechanization of 
theorem proving in geometry is going to be a general method which can be 
used not only for an individual theorem, but also for a whole class of theorems, 
or even all theorems in a geometry. Based on the methods described in this 
book, one can obtain unified proofs or disproofs for whole classes of theorems 
after a finite number of steps regardless of difficulty or ease. To achieve this 
goal, it is necessary to use algebraic techniques that take quantitative relations 
as their main objects, with the algebraization of geometry as a key step. This 
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just follows the idea of Descartes in reducing the bulk of problem solving to the 
mechanization of deduction procedures by using algebraic methods. It is also 
like the words "by performing with the heaven element as to make clear the 
problem and elastic the method and to save labour many times" in Suan Hsiieh 
Chhi Meng3 (1299) by Chu Shih-Chieh, the earlier Chinese creator of Thieh
Yuan Shu for the algebraization of geometry in the Yuan dynasty. In summary, 
if we can really reach the effective mechanization, "for doing a little bit to help 
build geometry there will be no need to have geniuses" - a phrase borrowed 
from Chasles (1889: p. 269). 

Not every geometry nor every class of geometric theorems has mechanical 
proving methods. For those theorems which can be exactly proved mechani
cally, we consider them to be of three types, for which three corresponding 
mechanical methods will be discussed in Chaps. 3, 4, and 5, respectively. It is 
assumed that for each type of theorem the algebraization and coordinatization 
at the first step are already completed and the proof-problem is turned into a 
problem of manipulating algebraic expressions. Theorems of the first type are 
characterized by the fact that the algebraic expressions corresponding to the 
hypothesis are linear with respect to certain variables. This type of theorem in
cludes the so-called pure point of intersection theorems for which a mechanical 
proof method appeared in Hilbert (1899); so we shall call this result Hilbert's 
mechanization theorem. Theorems of the second type are characterized by the 
fact that the algebraic expressions corresponding to the hypothesis and conclu
sion may be given as polynomial equations. A mechanical method for proving 
this type of theorem was proposed by Wu (1978) and has been experimented 
on using several computers. Theorems of the third type are characterized by 
the fact that the hypothesis and conclusion may be expressed as arbitrary poly
nomial equations or inequalities with coefficients in a real closed field, so that 
the original geometry should involve an order relation. A mechanical method 
for proving this type of theorem was given by Tarski (1948). We shall call the 
corresponding result Tarski's mechanization theorem. Each of the above three 
mechanization theorems has its own application domain, in particular, the sec
ond and the third do not contain one another.4 Our mechanization theorem is not 
suited for those theorems whose conclusion involves an order relation, whereas 
Tarski's mechanization theorem can only be applied to the case in which the 
geometry-associated field is a real closed field, but not to the case in which 
the associated field is the complex field or some other general field. From the 
viewpoint of applicability, the relationships among the three (denoted by I, II, 
and III, respectively) are depicted below. As to the methods, the three differ 
from each other. Therefore, for the overlapping parts of the application do
mains, theorems can be proved by different mechanical methods. With respect 

3 "Introduction to Mathematical Studies." [Transl.] 
4 Dr. Hoon Hong has pointed out that the mechanization theorem presented in 

Chap. 4 of this book may be considered as a special case of the mechanization theorem 
of Tarski, because any complex number can be represented by means of two real numbers 
and thus the decision problem for the complexes can be reduced to that for the reals 
(cf. Tarski 1948: chap. 3). [Trans!.] 
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to efficiency, I is the most efficient; with it one can prove quite non-trivial the
orems even with hand-calculation. Then comes II, the power of which cannot 
be seen with hand-calculation, though, one can prove quite non-trivial theorems 
even on a microcomputer. For III, the efficiency is rather low, and there is no 
report that any significant theorem has been proved up to this day. This is true 
even when the method runs on big, high speed computers. 

Since the applicability of Hilbert's mechanical method is too narrow and 
the efficiency of Tarski' s mechanical method is too low, our focal point will be 
Method II, which is presented in Chap. 4. The mechanical method presented in 
that chapter, in theory, requires the help of algebraic geometry. Though modern 
algebraic geometry is one of the most active branches of mathematics, it does 
not fit our requirement because of its existential character. For the demands of 
mechanization, the provided means must be constructive, and only in this case 
will we then have the possibility to implement the corresponding procedure on 
computer. Fortunately, such a constructive theory of algebraic geometry that 
satisfies our need had been developed by Ritt (1932, 1950) early on. Ritt used 
analytic methods in his argumentation, whereas concepts like continuity and limit 
are inconsistent with mechanical proving methods. It is therefore necessary to 
make a proper revision of Ritt's work and part of Chap. 4 will be devoted to 
this revision. Some concepts and methods like the reduction and well-ordering 
of polynomial sets are taken directly from Ritt and differ only slightly in our 
elaboration. Ritt's method may also be used for the mechanical proving of 
theorems in differential geometries for which a brief description may be found 
in Wu (1979, 1982a). The author will give a more detailed elaboration on this 
in relevant books. 

Applying the methods presented in those chapters to investigate geometry, 
one can prove that theorem proving in numerous geometries - those occurring 
in the course of establishing ordinary geometry, starting from the so-called 
unordered Pascalian geometry - is all mechanizable, i.e., the mechanization 
theorems for those geometries hold. In Chap. 6, we shall also investigate other 
geometries such as projective geometry, hyperbolic and elliptic non-Euclidean 
geometries, and Mbbiusian and Laguerrean circle geometries that are different 
from ordinary geometry, and prove similar mechanization theorems. Since in 
these geometries the process of coordinatization from axiomatization is rather 
tedious, we will not be able to argue in as much detail as in Chaps. 1 and 2. 

Although this book exhibits many mechanizable geometries, not every geom
etry is mechanizable. What counts is whether Pappus' or Pascal's axiom holds, 
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or whether the commutative law of multiplication in the geometry-associated 
number system holds. Concretely speaking, we have the following 

Conjecture. Desarguesian geometry is non-mechanizable. 

We are, however, unable to prove this conjecture. Mathematical logicians 
might give a correct answer. 

Since the discovery (at the end of 1976 and beginning of 1977) of the me
chanical method of theorem proving shown in Chap. 4 of this book, more than 
five years have quickly elapsed. In this period, the author has received much 
encouragement and sometimes unforeseen, warm help. Those to be acknowl
edged are too many to be listed here. Nevertheless, there are three who deserve 
special thanks. 

For theoretical developments the author is deeply grateful to Prof. Shihua 
Hu and Prof. Hao Wang for their encouragement and support. The author's ideas 
and methods on the mechanization of geometry theorem proving conflict with 
the long-evolved traditional ones. Without first the consent of Prof. Hu from 
the viewpoint of mathematical logic at that time, it would have been possi
ble for our ideas and methods to come to a premature end. Professor Wang's 
penetrative achievements in mechanical theorem proving have won him uni
versal praise for a long time while his incisive arguments call for more deep 
thought. His arguments such as replacing qualitative difficulties by quantitative 
complexities and making differences between foundational proof and example 
proof in mechanical theorem proving all give the author deep inspirations for 
his research. 

Mr. Fanshu Mong provided much convenience for the author to experiment 
on a table-computer, Great Wall 203. A few months of experiments on that 
computer convinced the author to purchase a more modem table computer to do 
more experiments. Those experiments demonstrated that our method can be put 
to practice, so that we do not become armchair strategists. We therefore express 
our deep thanks to Mr. Mong. 

Wen-tsiin Wu 
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Author's note 
to the English-language edition 

Mechanical theorem proving (MTP) is a traditional topic of mathematical logic. 
In contrast to the usual approaches to MTP by mathematical logic, approaches 
using algebraic methods seem to be originated in the paper by the present writer 
(Wu 1978). In 1984 appeared the present book "Basic Principles of Mechanical 
Theorem Proving in Geometries" devoted to a systematic exposition of such 
algebraic methods for MTP. The book, written in Chinese and published in China, 
was little known beyond China. The method became widely known owing to 
papers by Wu (1978, 1984a) and Chou (1984) published in the anthology edited 
by Bledsoe and Loveland (1984). Since that time the algebraic methods of 
treating MTP have been developed rapidly and vigorously in various directions. 
For example, in 1986 there appeared several papers on MTP based on Grobner 
basis method and others (e.g., Kutzler and Stifter 1986, Kapur 1986). In this note 
we shall give a brief review of the achievements of MTP in recent years restricted, 
however, to the methods as exhibited in the present book alone. Thus it may 
serve merely as complement and addendum to the original version of the book. 

The book had a subtitle "Part I on Elementary Geometries." It was intended 
to be followed by a Part II on differential geometries. The basic principles 
underlying such MTP of differential geometries have been described in detail in 
the paper by Wu (1989b) and a survey article has also been published recently 
(Wu 1991). However, it seems that the time for writing such a book has not yet 
come. The computational difficulties are awful and up to now only a few results 
have been shown (Chou and Gao 1989b, 1991; Li 1991). We shall thus restrict 
ourselves below to the case of elementary geometries alone. 

The present writer has emphasized on various occasions that our method 
of MTP may be considered as a particular application of our general method of 
polynomial equations-solving, which has an immense domain of applications 
besides MTP. Again, we shall restrict ourselves to MTP proper alone. 

This book spends more than one-third of its length, viz. Chaps. 1 and 2, to 
re-visit Hilbert's axiomatization of Euclidean geometry, modified to meet the 
purpose of MTP. They are followed by Chap. 3, which is devoted to the Hilbert 
mechanization theorem, the earliest and also the simplest of such mechanization 
theorems. The theorem had already appeared in the first edition of Hilbert's 
classic "Grundlagen der Geometrie" in 1899, however, in a disguised form. The 
significance of the theorem seems to have been first recognized by the present 
writer when he taught a course on MTP at the Graduate School of the University 
of Science and Technology, associated with the Chinese Academy of Sciences, 
during the academic year 1979/1980. We remark in passing that Professor S. C. 
Chou, now renowned for his work on MTP, was at that time a graduate student at 
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the school and attended the previously mentioned course, unnoticed, however, 
by the present writer. 

The contents of Chap. 3 were first published in a separate paper (Wu 1982). 
Owing to the great importance of Hilbert's contributions, little recognized before 
or even now, it seems appropriate to reproduce below the opening passage of 
this paper: 

"The great merit of Hilbert's classic "Grundlagen der Geometrie" of 1899 is uni
versally recognized as being representative for axiomatization of mathematics, 
laying in particular a rigorous foundation of the Euclidean geometry. However, 
another great merit (perhaps greater in the opinion of the present author) of this 
classic seems hardly to be noticed up to the present. In fact, this classic is also 
representative for the mechanization of geometry, showing clearly at the same 
time the way to achieve it." 

In another paper (Wu 1983), the present writer pointed out some contrasts 
between the MTP based on our algebraic methods and the ordinary theorem 
proving in Euclidean fashion based on logical deductions. We reproduce below 
also the opening passage of that paper: 

" ... almost all theorems in ordinary geometry (i.e. ordinary Euclidean geometry) 
are only generically true, or true only under some non-degeneracy conditions 
usually not explicitly described in the statement of the theorem. This fact is 
quite fatal to make the usual Euclidean fashion of proving theorems rigorous 
as one believes to be so, since it is difficult to state clearly the non-degeneracy 
conditions to be observed and to verify that the previous theorems to be applied 
in the proof of the theorem in question do not fall into the degeneracy cases 
under which the previous theorems to be applied might not be true. On the 
contrary our mechanical method of theorem-proving in geometry permits to 
discover automatically the non-degeneracy conditions to be observed and offers 
the means of dealing with such degeneracy cases in systematic mechanical way. 
It is in fact this crucial point which is responsible for the high efficiency of 
our method in proving quite non-trivial theorems without the defect pointed out 
above." 

The domain of applicability of Hilbert's mechanization theorem is very lim
ited: It concerns only pure intersection theorems. It was D. M. Wang who first 
noticed that the method may be extended to theorems of metric character, mid
point, orthogonality, etc. (Wang 1989b). However, the domain of applicability 
is still quite limited: For example, it does not work for most theorems involving 
distances or circles. 

The heart of this book is Chap. 4. It deals with MTP for which both hypothesis 
and conclusion of a theorem to be proved may be expressed in the form of 
polynomial equations of arbitrary degree. Part of the contents of this chapter 
were also published in a separate paper (Wu 1984b). The notations used in 
both Chap. 4 and the previously mentioned paper are rather cumbersome. Of 
late (from 1985-86 onwards) these notations have been replaced by the naive 
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notions of zero-set. Thus for any pol set PS and any pol G in the polynomial 
ring K[X] = K[x] , ... ,xn] over a field K of characteristic 0, we denote by 
Zero(PS j G) the totality of zeros of PS which are not zeros of G. Here, by a 
zero we mean one in an arbitrary extension field of K. In particular, we put 

Zero(PSjl) = Zero(PS). 

Besides, various notions and notations have been made precise in later devel
opments. For example, the remainder of a polynomial G W.r.t. an ascending set 
(asc-set) AS as defined in Sect. 4.5 has been denoted as Remdr(GjAS). Observe 
that it is different from the notion of pseudo remainder usually adopted in the 
literature (see Wu 1986a, 1987a). 

In this way the Lemma 1 of Sect. 4.5 as well as the accompanying formula 

(1) 

has been reformulated ~md generalized as the following. 

Well-ordering principle. There is an algorithm which permits one to determine 
for any polset PS an asc-set CS in a finite number of steps such that 

Zero(PS) C Zero(CS) and (2) 

Remdr(P jCS) = 0, for all P in PS. (3) 

Moreover, let Ii be the initials of pols in CS, and J the product of all such 
initials; then we have 

Zero (CSj J) c Zero(PS) C Zero(CS), (4) 

Zero(PS) = Zero ( CS j J) + UNIONi Zero(PS + {Ii}). (I) 

In (I) the asc-set CS corresponds to <P of Lemma 1. It is one of particular 
interest associated to the given polset PS and is characterized by the two prop
erties (2) and (3). It is in later developments called a characteristic set (char-set) 
of PS. 

The algorithm for arriving at a char-set CS of a pol set PS as given in Sect. 4.3 
was turned in later developments into the following concise form: 

PS 

= CS 

Empty. 

(S) 

In the scheme (S) each BSi is an asc-set of lowest ordering contained in the 
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pol set PSi, RSi is the set of non-zero remainders of pols in PSi - BSi w.r.t. BSi, 
and 

(5) 

Consider a geometric theorem T = {HYP, CONC} for which the hypothe
sis and conclusion are given respectively in the form of polynomial equations 
HYP = 0, CONC = 0 with HYP c K[X] and CONC E K[X]. Then a zero 
of HYP is nothing else but a geometrical configuration verifying the hypoth
esis of the theorem T, eventually in some fictitious extended space. With this 
understanding the mechanization theorem of unordered geometries as given in 
Sect. 4.1 has been reformulated and made precise as the following. 

Special MTP-principle I. Given a theorem T = {HYP, CONC} with HYP c 
K[X] and CONC E K[X] let Zero(HYP) be decomposed as in (I) with corre
sponding char-set CS and initials Ii. Then we have (J is the product of all 0 

Zero (HYP / J) c Zero(CONC) (6) 
if 

Remdr(CONC/CS) = O. (7) 

In other words, the theorem is generically true under the non-degeneracy con
ditions 

J =j:. 0 or Ii =j:. 0 for all i (8) 

if (7) is true. The condition (7) is also necessary for the above to hold in case 
CS is an irreducible asc-set. 

From the well-ordering principle the following can easily be deduced. 

Zero-decomposition theorem (special form). There is an algorithm which per
mits one to determine for any pol set PS a finite number of asc-sets AS} in a 
finite number of steps such that 

(II) 

in which each J} is the product of all initials of pols in the corresponding asc-set 
AS}. 

Corresponding to this zero-decomposition theorem we have then the follow-
ing. 

Special MTP-principle II. Given a theorem T = {HYP, CONC} with HYP c 
K[X] and CONC E K[X] let Zero(HYP) be decomposed as in (II). Then we 
have for each j (J) is the product of all initials of pols in AS}) 
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Zero (AS) j J}) c Zero(CONC) (9) 

if 

Remdr(CONCjAS}) = O. (10) 

In other words, the theorem is generically true under the non-degeneracy con
dition 

(11) 

for those geometrical configurations verifying hypothesis as well as AS} = 0 if 
(10) is true. The condition (10) is also necessary for the above to hold in case 
AS} is an irreducible asc-set. 

Suppose now IRR is an irreducible asc-set with a generic point Gz. The 
totality of all specializations of the generic point GZ is then an irreducible 
algebraic variety with GZ as a generic point in the ordinary sense which will be 
denoted by Spec(GZ), or Var[IRR] since GZ is determined by IRR. Note that 
here square brackets instead of parentheses have been used. In fact, Var[IRR] 
is a subvariety of the algebraic variety Zero(lRR) but usually only a proper 
one. The latter one is the variety associated with the ideal Ideal(lRR) with IRR 
as a basis which may well be denoted by Var(lRR) with IRR in parentheses. 
Furthermore, the finite basis of the ideal associated with the irreducible variety 
Var[IRR] may be determined by computations if required. This was announced 
as a theorem in Sect. 4.4 without indicating how such computations should be 
carried out. Such explicit computations based on the theory of Chow forms were 
given in Wu (1989c). An alternative, ingenious method of such computations 
based on Grabner basis determination was given by Chou et al. (1985) and also 
by Wang (1989c). 

With these notions, the main theorem in Sect. 4.5, viz., the irreducible de
composition theorem of algebraic varieties, has been refined to the following. 

Zero-decomposition theorem (general form). There is an algorithm which 
permits one to determine for any pol set PS a finite number of irreducible asc
sets IRRk in a finite number of steps such that 

Zero(PS) = UNIONk Var[IRRk], (III) 

the union being uncontractible and unique up to order. 

Corresponding to the above zero-decomposition theorem we have now the 
following. 

General MTP-principle III. Given a theorem T = {HYP, CONC} with HYP c 
K[X] and CONC E K[X] let Zero(HYP) be decomposed as in (III). Then we 
have for each k 

Var[IRRk] c Zero(CONC) (12) 
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if and only if 

Remdr(CONCjIRRk) = O. (13) 

In other words, the theorem T is true on the whole component Var[IRRk] if and 
only if (13) is verified. 

For these decomposition theorems and the corresponding MTP principles we 
refer again to Wu (1986a, 1987a) as well as a survey paper (Wu 1992a). Among 
the MTP principles, Principle III is clearly the most general and also the complete 
one. However, MTP principle I, though less general and not so precise, is already 
powerful enough and has been applied with great success in recent years. In fact, 
up to now most of the geometric theorems which have been proved are based 
on the special principle I alone. The most far-reaching scale of experiments on 
the method, with some variations and improvements, was carried out by Chou 
and has been published in book form (Chou 1988). In addition, Wang and Gao 
also proved a lot of theorems which have been collected in a summary article 
(Wang and Gao 1987). The method has also been applied to the discovery of 
new theorems. As examples we may cite the Pascal conic theorem already given 
in this book's original version, the theorems for Leisenring lines by D. M. Wang 
(1989a), a generalization of Gauss mid-line theorem of a complete quadrilateral 
to a 6-pole configuration in planar kinematics (see Wu 1989a), and an interesting 
theorem for regular pentagonal planar sections of square pyramids (D. K. Wang 
1990, 1992). 

The general MTP principle III shows that, for MTP, the notions of non
degeneracy conditions and generic truth of a geometric theorem are not at all 
indispensable and may be avoided if we like. It is merely owing to the extreme 
computational complexity involved in a decomposition like (III) that we would 
prefer to satisfy ourselves in proving the mere generic truth of a theorem using 
Principle I. 

The decomposition of Zero(PS) in the form of (III) for a general polset PS is 
usually too complicated to be carried out. However, in the case of PS being the 
hypothesis set of a geometric theorem, we may sometimes take advantage of the 
inherent geometric properties to render the decomposition easy to attain. Thus, 
the present writer introduced the notions of oriented lines, oriented circles, etc. to 
simplify the hypothesis equations of a geometric theorem in order to bring about 
such decompositions in an easy way (Wu 1987b). As an example we may cite the 
theorem of Feuerbach of which a proof has already been given in Sect. 4.8. By 
the new method, it is shown that Zero(PS) with PS the corresponding hypothesis 
set will be decomposed into 8 irreducible components, for which the theorem 
will be true on the whole of 4 of them but not so for the other 4. The theorem 
becomes even more precise in that sense of contact of circles will be clarified. 
As a further example, let us consider a conjecture by Thebault in 1938. The 
conjecture was first proved by Taylor in 1982 in ordinary Euclidean fashion 
and then by Chou in 1986 by means of the special MTP principle I. On the 
other hand, the present writer gave a proof in showing that the corresponding 
algebraic variety will be decomposed into 4 irreducible components, for which 
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the Thebault conjecture will be true on one of them but not so on the other three. 
No non-degeneracy conditions will be involved and the statement of the theorem 
is quite precise, for which the usual proofs may be lacking. The same method has 
also been applied to give a more precise and exact answer to an enumerative 
problem of algebraic geometry (Wu 1992d). It seems that the method may 
be successively applied to other circumstances, e.g., the case of Appolonius 
and Hart configurations of 3 or 4 circles for which the Thebault-Taylor-Chou 
theorem is probably just a very special result. 

Though the computer can distinguish real variables +x and -x of opposite 
sign, it has no means to decide whether the variable x itself is positive or nega
tive. For example, it is impossible to realize the non-negative distance between 
two points in a simple way on a computer. The MTP method in Chap. 4 and 
the MTP principles described above are all restricted to unordered geometries, 
for which order relations or algebraically relations like > 0, < 0, :::: 0, :::: ° are 
neglected. In this respect, we may cite an ingenious device by Gao (1987, 1990) 
by which the difficulties can be partially resolved. A lot of interesting theorems 
have been proved in this way. In general, according to a device of Seidenberg, 
inequalities can be turned into equalities by introducing new variables. Thus, 
x > ° is equivalent to the existence of a variable y such that y2 . x = 1, simi
larly for the others. With this device the hypotheses and conclusions of geometry 
theorems involving order relations will all be turned into polynomial equations 
and, apparently, the method of Chap. 4 or the above MTP principles may again 
be applied. Chapter 5 is devoted to its exposition. Just in this way Chou and the 
present writer in collaboration were able to prove the delicate bisector theorem 
that triangles with equal internal bisectors are isosceles (Wu and Lu 1985). The 
applicability of the method is, however, quite limited. In fact, usually it will 
arrive at the problem of deciding whether an algebraic expression is always 
positive or not, a problem out of reach of the MTP methods described in this 
book and those described above. 

Early in 1950, Tarski already gave a general MTP method for proving all 
theorems involving both equations and inequations as well as inequalities. The 
effectiveness of Tarski's method has been highly raised in later years mostly due 
to the invention of the CAD method by Collins. In various ways the CAD method 
has been improved by students of Collins and in recent years has been applied to 
prove some interesting geometry theorems involving inequalities. On the other 
hand, Chou and Gao (1989a) have combined the CAD method with our MTP 

method to prove a lot of non-trivial geometry theorems involving inequalities 
too. Besides, the present writer has discovered a general optimization method 
and reduced the problem of proving such geometry theorems to problems of 
optimization. A number of such non-trivial theorems have been proved in this 
way (Wu 1988, 1992b, c). However, all the proofs of Chou, Gao, and the present 
writer will rely heavily on the ultimate decision of positiveness of algebraic 
expressions. More powerful methods remain to be sought. 

The final Chap. 6 deals with some miscellaneous topics. For MTP of various 
kinds of geometries and for the role of transcendental functions we may mention 
the papers by Gao (1987, 1989, 1990). However, much more can be done and 
they are waiting to be further developed. For other ramifications which have 
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been developed in later years but not touched on in this book, we may cite par
ticularly automatic discovering of unknown relations, initiated in Wu (1986b, c). 
In this respect we may also cite an interesting paper by Gao and D. K. Wang 
(1992). The methods of proving by examples owing to Hong, Zhang, and Yang 
are exceedingly interesting and deserve special notice (e.g., Hong 1986, Yang 
et al. 1992; also D. M. Wang 1988, Shi 1989). Furthermore, this whole book is 
restricted to the case for which the basic field K is of characteristic O. Lin and 
Liu (1992), however, have extended our MTP method to the case of fields of 
finite characteristic; interesting theorems have been proved which show clearly 
the difference between the cases of even and odd characteristic. Applications 
of our MTP methods have also been made to domains beyond mathematics, for 
which we may mention in particular the paper by Kapur and Mundy (1988). 

The ordinary Euclidean geometry occupies a particularly important place in 
high school teaching. It is therefore natural that our MTP methods will have 
a large impact on education in mathematics. Unfortunately, the reformation of 
geometry teaching in this direction has never been realized in China, though 
it is one of the earliest desires of the present writer to usher in at least the 
Hilbert MTP in high schools. Most recently, at Zhang's initiative, there appeared 
papers by Chou et al. (1992a, b) which give MTP a traditional fashion. Here 
"traditional" means that the use of coordinates will be avoided so that each step 
of the proofs will have evident geometrical meaning. Both methods of MTP, 

traditional and not, are now under consideration in China so that perhaps they 
will actually be taught in our high schools. Clearly, it is a matter of highest 
importance. 

The algorithms of MTP have been turned into programs of which the earliest 
and simplest one was first done by the present writer under the name of China 
Prover, in memory of the fact that our MTP method had its origin in the study 
of our ancient Chinese mathematics, as explained in the original preface of this 
book. The program is obsolete and has been replaced by those on polynomial 
equations solving which include MTP as a particular application. The original 
Prover may still have some interest in that the branching process had been 
taken into account which is peculiar to MTP but not so to general polynomial 
equations solving. Besides, almost all the members in the Mathematics Mecha
nization Center (MMC) here in China and those in close connection with MMC 
have their own programs, both for MTP and polynomial equations solving. We 
may cite in particular the program systems described in Chou and Gao (1992) 
and Gao et al. (1992). Packages about zero-set decompositions based on our 
methods have appeared also beyond China in various forms in software sys
tems like REDUCE, SCRATCHPAD, etc. Perhaps the most complete and also the 
most powerful package is due to D. M. Wang and has been implemented in 
the software system MAPLE under the name of CharSets. This package includes 
also a rare method of factorization of multivariate polynomials in general alge
braic field due to S. Hu and D. M. Wang (1986). This method of factorization 
based on the well-ordering principle was discovered by Hu and Wang when they 
were graduate students in the previously mentioned graduate school, attending 
a course given by the present writer on MTP in 1984. 

The present writer owes much to many colleagues in reading and checking 
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the original Chinese text. Particularly Dr. X. S. Gao has pointed out some gap 
in the proof of dimension theorem in Sect. 4.6 which has been accordingly filled 
in this English translation. Finally, the writer would like to express his gratitude 
to Ms. X. F. Jin and Dr. D. M. Wang who have undertaken the painstaking work 
of translation. 
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1 Desarguesian geometry 
and the Desarguesian 
number system 

1.1 Hilbert's axiom system of ordinary geometry 

What we call ordinary geometry in this book is the usual Euclidean geometry. 
The famous book "Grundlagen der Geometrie" by Hilbert (1899) first put 

forward a complete axiom system for ordinary geometry, so that since then it 
has had a truly rigorous foundation. The axiom system of Hilbert takes some 
fundamental concepts, which need not be defined, as the target of discussion. 
These fundamental concepts are divided into two classes - fundamental objects 
like points, lines, and planes, and fundamental relations among these objects like 
belonging to, between, and congruent to. They obey a certain number of axioms 
and are considered the starting point of logical deduction. Hilbert classified these 
axioms into five groups which together constitute a rigorous axiom system that 
suffices to completely capture ordinary geometry. The names of these five groups 
of axioms are as follows: 

H I Axioms of incidence (axioms of subordination); 
H II Axioms of order; 
H III Axioms of congruence; 
H IV Axiom of parallels; 
H V Axioms of continuity. 

The main goal of Hilbert was to give a systematic logical analysis for the 
perception of space. To achieve this goal, he explored in detail the logical 
relationships among some axioms and introduced the concept of independence. 
However, when Hilbert actually set up his axiom system, he did not strictly abide 
by the requirement of independence of axioms. For example, the statement of 
the axioms of order H II must depend on the axioms of incidence H I while 
the statement of axioms of congruence H III must depend on the first and the 
second group of axioms. The axioms listed in the first edition of "Grundlagen 
der Geometrie" in 1899 are not completely independent of each other; some 
can be deduced from the others. Only in later editions did Hilbert make some 
revision of his axiom system so that the "superfluous" axioms do not appear any 
more, which in turn makes some axioms unnatural. Moreover, some intuitively 
quite self-evident theorems also have to be inferred from axioms while the 
inferences are often rather cumbersome and lengthy. In our opinion, the tendency 
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to eliminate axioms in order to pursue independence at the cost of the simplicity 
of whole theory may make us lose more than what we wish to gain and is best 
avoided. As to the main subject of this book, the mechanization of geometry, 
we are even less concerned with the independence of axioms. 

Actually, in contrast with the idea ofaxiomatization, the original book by 
Hilbert already contained the ideas and methods of mechanization consistent 
with the main subject of this book. It seems that this fact has not been ob
served previously. It is even hard to say whether Hilbert himself had definitely 
recognized this point. In this chapter and Chaps. 2 and 3, we shall explain the 
important role Hilbert's book has played on the mechanization of geometry. 

Although for our purposes we do not think the axiom system of Hilbert is 
completely satisfactory, below we shall still list the revised axiom system given 
in the 8th edition of Hilbert's book (1956) as the basis of our discussions. The 
listed axioms will at the same time be restricted to the case of ordinary plane 
geometry in order to simplify our presentation. Thus, the fundamental objects 
only consist of two kinds, i.e., points and lines. In addition, to simplify the 
terminology, two, three, ... points or lines are always understood to be two, 
three, ... distinct points or lines unless stated otherwise. 

HI Axioms of incidence (axioms of subordination) 
The fundamental relation is that a point belongs to a line. We shall also follow 
the customary phraseologies such as a point lies on a line, a line passes through 
a point, a line connects two points, two lines intersect at a point. The axioms are: 

11. For every two points A, B there exists a line that passes through each of 
the points A, B. 
12. For every two points A, B there exists no more than one line that passes 
through each of the points A, B. 
13. There exist at least two points on a line. There exist at least three points 
that do not lie on a line. 

By Axioms 11 and 12, the line uniquely defined by the two points A, B 
will be denoted by A B. In case the two lines 11, h intersect, we denote the 
corresponding point of intersection by 11 /\ h. 

H II Axioms of order 
The fundamental relation is that a point is between or lies between two points. 
In the planar case, there are four axioms including Pasch's axiom. By these 
axioms, one may define segment, ray or half-line, polygonal line, angle and 
derive some theorems such as a point on a line separates the line into two sides, 
a line in a plane separates the plane into two sides and an angle or a polygon 
separates the plane into interior and exterior parts. A more detailed recounting 
can be found in Sect. 2.5 and is omitted here. 

H III Axioms of congruence 
The fundamental relation is the congruence or equality of segments and angles. 
The axioms are: 
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IIIl. If A, B are two points on a line a and A' is a point on another line a', 
then it is always possible to find a point B' on a given side of line a' through 
A' such that segment AB is congruent or equal to segment A' B'. In symbols, 

AB == A'B'. 

1112. If a segment A' B' and a segment A" B" are congruent to the same segment 
AB, then segment A' B' is also congruent to segment A" B". 
III3. On a line a let AB and BC be two segments which except for B have no 
point in common. Furthermore, on the same or on another line a' let A' B' and 
B' C' be two segments which except for B' also have no point in common. In 
that case, if 

AB == A'B', BC == B'C', 

then 

AC == A'C'. 

1114. Let L(h, k) be an angle and a' a line and let a definite side of a' be given. 
Let h' be a rayon line a' that emanates from the point 0'. Then there exists 
one ray k' emanating from 0' such that angle L(h, k) is congruent or equal to 
the angle L(h', k') and at the same time all interior points of angle L(h', k') lie 
on the given side of a'. Symbolically, 

L(h, k) == L(h', k'). 

Every angle is congruent to itself, i.e., 

L(h, k) == L(h, k) 

is always true. 
IllS. If for two triangles ABC and A' B'C' the congruences 

AB == A' B', AC == A'C', LBAC == LB' A'C' 

hold, then the congruence 

LABC == LA'B'C' 

is also satisfied. 

Starting from these axioms and Axioms H I-H II, one may define such con
cepts as right angle, perpendicularity, displacement of segments and of angles, 
addition of segments and of angles as well as quantitative comparison of seg
ments and of angles. 

By applying Axioms H I-H III, we may prove the theorems about congruent 
triangles, isosceles triangles, perpendicular lines, bisection of segments and of 
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angles and so on in ordinary geometry. In addition, we can prove some theorems 
of inequalities such as the exterior angle of a triangle is greater than any interior 
angle that is not adjacent to it and the sum of two sides of a triangle is greater 
than its third side as was done in Euclid's "Elements." However, by axioms 
H I-H III one can only prove that the sum of the three angles of a triangle is 
less than or equal to two right angles, but cannot prove that it must be equal to 
two right angles. 

H IV Axiom of parallels 
This group of axioms consists only of one, the so-called Euclid's axiom: Let a 
be any line and A a point not on it. Then there is at most one line, determined 
by a and A, that passes through A and does not intersect a. 

By this axiom and the axioms of congruence listed before, we can infer that 
there is not only at most one line but also exactly one line that passes through 
A and does not intersect a, and we can prove that the sum of the three interior 
angles of a triangle equals that of two right angles. 

As our exposition hereafter will involve no axioms of congruence or order, 
we shall take the axiom of parallels in a sharper form which was denoted as 
axiom of parallels IV* in Hilbert's book and is denoted here simply as axiom 
of parallels IV, stated as follows. 

IV. Let a be any line and A a point not on a. Then there exists one and only 
one line determined by a and A that passes through A and does not intersect a. 

These two non-intersecting lines are said to be parallel, which is denoted by 

a II h. 

It can be seen from Axiom IV that if two lines are both parallel to a third 
line, they are also parallel to each other. 

H V Axioms of continuity 
Here we do not need to introduce any new fundamental relation. There are two 
axioms: 

Vl (Axiom of measure or Archimedes' axiom). If AB and CD are any two 
segments, then there exists a finite number of points AI, A2, ... ,An on the 
ray from A through B such that the segments AAI , AIA2, ... , An-IAn are all 
congruent to the segment CD while B lies between A and An. 
V2 (Axiom of line completeness). An extension of a set of points on a line 
with its order and the first congruence axiom as well as Archimedes' axiom 
(i.e., Axioms HI, HIll, H lIIl, H VI) being preserved is impossible. 

Among the above five groups of axioms, the fifth which consists of two 
axioms, i.e., the axiom of measure or Archimedes' axiom and the axiom of 
line completeness, has special significance for this book. Axioms in this group 
deal with properties of intuitive continuity, and the role, as stated in Hilbert's 
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book, of the first is on preparation for the requirement of continuity and of the 
second together with other axioms is for completing the whole axiom system. 
In addition, Hilbert stated that the exposition of "Grundlagen der Geometrie" 
is principally based on Archimedes' axiom and generally does not assume the 
validity of the second axiom of line completeness. In fact, in the first edition of 
Hilbert's book the fifth group of axioms only consists of Archimedes' axiom as 
the axiom of line completeness was added only in later editions. The addition 
of this axiom, aimed purely at filling the "gap" between plane and space and at 
making the geometry discussed uniquely become the usual Euclidean geometry, 
is quite unnatural. Not only did the axiom of line completeness not play any role 
but the use of Archimedes' axiom was also avoided for all discussions when 
Hilbert established the important theory about geometry in his book. Therefore, 
the Euclidean geometry of Hilbert is essentially a non-Archimedean geometry. 
In the preface to the Russian edition of "Grundlagen der Geometrie," Rashevsky 
made a brilliant comment on this point. 

It is very important to point out this fact for the mechanization of geometry to 
be explained in this book. First of all, axioms of continuity unavoidably involve 
concepts like the set of all points or infinite number of points on a line or in 
a plane. On the other hand, in the hypothesis and conclusion of an axiom or a 
theorem, it is always the case that only a finite number of points, lines, circles 
or other geometric objects are involved. Also, the process of proving a theorem 
is no more than a repeated application of the axioms and given theorems to 
this finite number of points, lines or circles in a finite number of constructive 
steps, so that the proof can proceed from hypothesis to conclusion. The so-called 
mechanization of theorem proving does mean that the constructive steps of proof 
for some classes of theorems can be given step by step according to a certain 
mechanical procedure, which ensures either getting to the conclusion from the 
hypothesis or reporting the impossibility of eliciting the conclusion after a finite 
number of steps. This finite number of mechanical steps can be easily realized on 
computer and is what mechanical proving aims to do. Since electronic computers 
can only deal with a finite number of things, the finiteness of stating and proving 
theorems becomes a prerequisite to using computers. Hilbert's development of 
geometry by avoiding axioms of continuity as exhibited in "Grundlagen der 
Geometrie" removes the obstacle for the mechanization and the use of computers 
in proving geometric theorems and thus provides a necessary precondition for 
its success. 

Actually, Hilbert himself already gave a concrete result on the mechanization 
of geometry theorem proving (see Chap. 3 for details). Hilbert started from his 
axiom system without assuming axioms of continuity and arrived at a certain 
level of concrete mechanization. His method is principally that of introduc
ing the number system determined by geometry on the basis of axioms. This 
process is called the algebraization of geometry. According to the correspon
dence relation between points on a line and numbers in a system, coordinates 
may be introduced. Geometric theorems can then be transformed into theorems 
about algebraic expressions, of which the problem of mechanical proving can 
be described much more clearly and is usually easily solved. Those algebraic 
expressions are either polynomial equations or polynomial inequalities in the 
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coordinates, of which the latter reflect some relations of order in geometry. 
However, except for those in elementary plane geometry, theorems which really 
deal with relations of order are generally rather rare. In addition, our mechanical 
method of theorem proving is very efficient in case we are dealing with those 
theorems whose algebraic form corresponds to polynomial equations. Whereas 
in the case of dealing with inequality relations, the problem becomes much 
more complicated (with respect to the complexity and feasibility of computa
tion). Therefore, in theory there are reasons to avoid using axioms of order to 
establish more general ordinary geometry. For this purpose, in later sections of 
this chapter we shall introduce an axiom system with a slight difference from 
Hilbert's which avoids using not only the axioms of continuity but also the 
axioms of order. Based on this axiom system, we shall set up many kinds of 
ordinary geometries in a broad sense. This and the next chapter will explain 
how to get to coordinatization from axiomatization while the remaining chap
ters will be focused on the mechanization problem of theorem proving in these 
geometries. 

1.2 The axiom of infinity and Desargues' axioms 

In the (plane) geometry considered below, we shall still take points and lines 
as fundamental objects and that a point lies on a line as a fundamental relation. 
We assume Hilbert's axioms of incidence H I and axiom of parallels H IV but 
do not introduce any concept nor assume any axiom of order. In this geometry, 
words like segment and ray do not have any meaning and thus angle, triangle, 
and polygon cannot be defined in the usual way. Even so, we can still define the 
concepts of triangles and parallelograms in another way as follows. Remember 
that, when parallel lines are mentioned, they are always meant to be neither 
intersecting nor the same. 

Definition 1. Three points A, B, C with a fixed order, if distinct from each other 
and not lying on the same line, constitute a triangle ABC, denoted as 6ABC. 
In this case, the points A, B, C are called the vertices and the connecting lines 
AB, AC, BC the sides of this triangle. For two triangles ABC and A' B'C', we 
say, according to the order of their vertices, that A, A'; B, B' and C, C' are the 
three pairs of corresponding vertices and AB, A' B'; AC, A'C'; BC, B'C' are 
the three pairs of corresponding sides (cf. Fig. 1.1). 

Fig. 1.1 
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Fig. 1.2 

Definition 2. Four points A, B, C, D with a fixed order constitute a parallelo
gram, denoted as 0 ABC D; if these points are distinct from each other, any 
three of them are not collinear and the connecting line AB of A, B and the 
connecting line CD of C, D are parallel, and so are the connecting line A D of 
A, D and the connecting line BC of B, C, i.e., AB /I CD, AD II BC. In this 
case the points A, B, C, D are called the vertices and, A, C and B, D two pairs 
of opposite vertices of OABCD. We say that AB, BC, CD, AD are four sides 
of OABCD, in which AB, CD are a pair of opposite sides, so are AD, Be. 
Furthermore, we call the connecting line A C of A, C and the connecting line 
BD of B, D the diagonals of OABCD (cf. Fig. 1.2). 

Starting from two points A, B one can construct a parallelogram as follows. 
By Axiom H I, there is another point, say C, not on the line AB. By Axiom 
H IV, we may draw through B a parallel to AC and through C a parallel to 
AB. By Axiom H IV again, these two parallels are not parallel but necessarily 
meet at a point D; then AB DC is a parallelogram. 

Instead of the axioms of order, we introduce the following. 

Axiom of infinity I. Let Ao, Al be any two points on a line I and construct an 
arbitrary OAoAIBe. 1 Through B draw a line BA2 /I CAl, meeting I at point 
A2, and then a line BA3 II CA2, meeting I at point A3, and so on analogously. 
Similarly, through C draw a line CA-I II BAo, meeting I at point A-I, and then 
a line CA-2 II BA_I, meeting l at point A-2, and so on analogously. Then, in 
the infinite series 

... , A-2, A-I, Ao, AI, A2, ... , 

no two points are the same (cf. Fig. 1.3). 

This Axiom I is sometimes denoted as Axiom Doo and the part A2 =1= Ao 
is equivalent to saying that the diagonals of OAoAIBC must meet each other, 
which is called Fano's axiom in the literature. 

Axiom I ensures that the diagonals of a parallelogram must intersect and 

1 Throughout the book we use a symbolized expression typically of the form "draw 
through A, AB II a, meeting b at C." This expression may be restated in full length as 
"draw through the point A a parallel AB to the line a. This parallel meets the line b at 
a point C." [Transl.] 
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Fig. 1.3 

that there are infinitely many points on a line and thus in a plane. From this we 
also know that there are infinitely many distinct lines through an arbitrary point. 

Besides the above axiom of infinity I, we introduce two axioms associated 
with the name of Desargues which play a decisive role in establishing the alge
braization and then the mechanization of geometry. These two axioms are stated 
as follows. 

Desargues' axiom Dl. If the three pairs of the corresponding sides of two 
triangles ABC and A' B'C' are all parallel to each other, i.e., 

AB II A'B', AC II A'C', BC II B'C', 

then the three lines AA', BB', CC' joining the corresponding vertices of these 
two triangles are either parallel to each other or concurrent. 

Desargues' axiom D2. If two pairs of the corresponding sides of two triangles 
ABC and A' B'C' are parallel to each other, say 

AB II A'B', AC II A'C', 

and the three lines joining the corresponding vertices are distinct yet either 
concurrent or parallel to each other, then the third pair of the corresponding 
sides are also parallel to each other, i.e., 

BC II B'C' 

(Fig. 1.4). 

Evidently, Desargues' two axioms Dl and D2 are not independent of each 
other, i.e., under the assumption of the Axioms HI, H IV, and I (or Doo) Dl 
and D2 can be deduced from each other. 

A direct corollary of Desargues' two axioms is that one may introduce the 
concepts of midpoints and symmetric points as follows. 

As shown in Fig. 1.5, let A, B be two arbitrary points on a line 1. Construct 
OABDE arbitrarily as before. Through D draw a parallel to BE, meeting I 
at a point C. By the axiom of infinity I, C and A are distinct. By applying 
Desargues' axiom, we may show that point C is independent of the construction 
of OABDE as follows. 
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Fig. 1.4 

Fig.I.S Fig. 1.6 

Let ABD' E' be another parallelogram and draw D'e' II E' B, meeting I 
at point e'. We need to prove e' = e. Let us discuss some different cases 
respectively. 

Firstly, suppose that the line AE' is distinct from AE, the three points 
E, B, E' do not lie on the same line and E E'· is not parallel to I (cf. Fig. 1.6). In 
this case DE, D' E', I are pairwise distinct but parallel to each other. As A, E, E' 
do not lie on the same line, they form a triangle. By Axiom H IV, B, D, D' 
are not collinear and thus also constitute a triangle. Applying Oesargues' axiom 
02 to 6.AEE' and 6.BDD', we have EE' II DD'. Moreover, since B, E, E' 
are not collinear and thus form a triangle, by Axiom H IV, e, D, D' are not 
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Fig.t.7 Fig. 1.8 

collinear and.also form a triangle. Applying Desargues' axiom D2 once more to 
!J.BEE' and !J.CDD' yields D'C II E'B. Then by Axiom HIV, the two lines 
D' C and D' C' are the same, so C and C' coincide. 

Secondly, suppose that the line AE' is still distinct from AE while E, B, E' 
are collinear (cf. Fig. 1.7). As before, we still have DD' II EE'. Thus, the lines 
D' C', D D' and DC are the same, which implies that C' = C. 

Finally, suppose that the lines AE' and AE are the same (Fig. 1.8), or they 
are distinct but E E' III (Fig. 1.9). In either case one can always construct a line 
through A distinct from AE, AE' and I, and choose a point E" distinct from A 
on this line such that both E E", E' E" are not parallel to I. Construct in addition 
OABD"E" and D"C" II E"B, meeting I at point C". By applying the case 
we have proved before to 0 AB DE and 0 AB D" E", it follows that C" = C. 
Applying that case again to 0 A B D' E' and 0 A B D" E" yields C" = C'. Hence, 
C'=C. 

We have taken great pains to write down the explicit proof above, for which 
the reason will be explained in Sect. 3.1. 

From the above proof, we see that the following definition is proper. 

Definition 3. For two arbitrary points A #- B on a line I, let us construct 
GABDE and DC II EB, meeting 1 at C. Then point C is independent of 
the construction of GAB DE. We say that C is the symmetric point of A with 

//.1 / 

1// 1// 

~.--/i"g. 

Fig.t.9 Fig.t.tO 
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Fig. 1.11 Fig. 1.12 

respect to B. In addition, any point is said to be a symmetric point of the point 
with respect to itself. 

By this definition, it is easy to prove that if e is the symmetric point of A 
with respect to B, then A is also the symmetric point of e with respect to B. 
One may also prove that if two lines I, I' meet at a point A, and two points 
B, B' distinct from A lie on I, I', respectively, while e, e' are the symmetric 
points of A with respect to B, B', respectively, then ee' is parallel to BB'. 

The proof is self-evident from Fig. 1.10, in which A B DB' is a parallelogram. 
We now introduce the concept of a midpoint of two points as follows. 
Let A and B be any two points on a line I as in Fig. 1.11. Draw through A 

a line I' distinct from I and take thereon a point M', distinct from A. Construct 
the symmetric point B' of A with respect to M' and the parallel of B B' through 
M', meeting I at M. Let us prove that M is independent of the choice of I' and 
M' as follows. 

Note first that the symmetric point of A with respect to M is B. To see this, 
let the symmetric point of A with respect to M be B; we have B' B II M'M 
from the above. Then the two lines B' Band B' B are the same. Hence, B = B, 
i.e., the symmetric point of A with respect to M is B. 

To prove that M is independent ofthe choice of (I', M'), we may assume that 
the line I" is distinct from I and that M" is a point distinct from A on I" (I" may 
be the same as I') (Figs. 1.11 and 1.12). Construct the symmetric point B" of 
A with respect to M". Then B" B II M" M from the above, for the symmetric 
point of A with respect to M is B. Hence, (I", M") and (I', M') lead to the 
same point M. 

Based on the above proof, the following definition is proper. 

Definition 4. Let A, B be two points on a line I. Draw through A a line I' distinct 
from I and take thereon a point M' distinct from A. Construct the symmetric 
point B' of A with respect to M' and draw through M' a line M'M II B' B, 
meeting I at M. Then M is independent of the choice of I', M', and is called 
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Fig. 1.13 

the midpoint of A and B. Define the midpoint of two coincident points to be 
the point itself. 

By this definition, it is easy to show that the midpoint of A, B is also the 
midpoint of B, A and that, for a l1ABC, if the midpoints of A, B and A, C are 
M and N, respectively, then MN is parallel to AB. 

Theorem 1. The two diagonals of a parallelogram must intersect and bisect one 
another. Namely, the point of intersection of the two diagonals is the common 
midpoint of the two pairs of opposite vertices. 

Proof As in Fig. 1.l3, let OABCD be a parallelogram. By Axiom I, its diag
onals AC, BD intersect, say at a point M. Draw through B, C the parallels of 
AC, BD, respectively, and let their point of intersection be E. Application of 
Desargues' axiom Dl to l1AMD and l1BEC yields ME II AB II CD. As both 
AMEB and MCEB are parallelograms, C is the symmetric point of A with re
spect to M, i.e., M is the midpoint of AC. Similarly, M is the midpoint of BD. 
Therefore, AC, BD bisect one another and meet at point M. This completes the 
proof. 0 

Apparently, the inverse of the above theorem holds as well. In other words, 
we have the following. 

Theorem 2. Suppose four points A, B, C, D are pairwise distinct and any three 
of them are not collinear. If the midpoint of A, C is the same as the midpoint 
of B, D, then ABC D is a parallelogram. 

From the results on midpoints and symmetric points, one knows that the 
points An (n = ±1, ±2, ... ) determined by Ao, Al in the axiom of infinity I (or 
Doo) may also be determined in the following way. 

Fig. 1.14 



1.3 Rational points 25 

As in Fig. 1.14, draw I' III and, AoBo II AlBl , meeting I' at points Bo and Bl, 
respectively. Draw through Bl, BlA2 II BoAl, meeting I at A2 and through A2, 
A2B2 II AlBl, meeting l' at B2. Draw further, through B2, B2A3 II BlA2, meet
ing I at A3. By analogy, we get successively the points A2, A3, A4, .... Draw, 
on the other hand, through Bo, BoA-l II BlAo, meeting I at A-I and through 
A-I, A-I B-1 II AoBo, meeting I' at B-1. Construct then B-lA_2 through B-1, 
meeting I at A-2. Analogously, we get the points A-I, A-2, A-3, .... 

It is easy to see that all these points An are the same as those constructed 
in Axiom 1. One may also consider all distinct points obtained from the present 
construction as Axiom I, then introduce the concepts of symmetric points and 
midpoints and finally prove that the points An in the original axiom are the same 
as those constructed in the present way. In one word, under the assumption of 
Axioms H I, H IV and Dl, D2, two different statements about the axiom of 
infinity I are equivalent to each other. 

1.3 Rational points in a Desarguesian plane 

We have introduced the axiom of infinity Doo and Desargues' axioms Dl, D2 
in the last section. From them, the concepts of midpoints and symmetric points 
are derived (under the assumption of H I, H IV). Looking back at Fig. 1.3 about 
the axiom of infinity Doo at the beginning of Sect. 1.2, it is seen that A 1 is the 
midpoint of Ao and A2, A2 is the midpoint of Al and A3, and Ao is the midpoint 
of A-I and AI, etc. In this section we further explore this kind of relation. 

Definition 1. Let the Axioms Doo, Dl and D2 altogether be denoted as D. Then 
the set of points and lines which satisfy Hilbert's axioms of incidence H I and 
axiom of parallels H IV and the Axioms D is said to constitute a Desargue
sian plane, and the corresponding geometry is called a Desarguesian (plane) 
geometry. 

In Hilbert's original axiom system, the congruence relation is an undefined 
fundamental relation. In Desarguesian geometry, neither is congruence intro
duced as a fundamental concept nor is any axiom of congruence assumed, but 
the congruence relation and a certain addition may still be defined on an arbitrary 
line such that the series (see Fig. 1.3 for the axiom of infinity I or Doo) 

has some isomorphism relation to the integer sequence. Observe the following. 
First of all, any two points A, B with a fixed order, whether they are the 

same or not, are called a pair of points, denoted by (AB). In case A, B are 
distinct, we define the midpoint of the pair (AB) to be the midpoint of A and 
B and, in case A, B are the same, the midpoint of the pair (AB) is defined to 
be A. Now let us define the concept of congruence on a line. 

Definition 2. Let four points A, B, C, D, not necessarily distinct, lie on a line I. 
If the pairs (AD) and (BC) have the same midpoint, we say that the pair (AB) 
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is congruent to pair (C D), denoted by 

(AB) == (CD). 

From some simple properties of midpoints and the above definition, it is 
clearly seen that in case (AB) == (CD) we also have 

(AC) == (BD). 

Let A, B, C be three, not necessarily distinct, fixed points on a line I. The point 
D such that (AB) == (CD) will be uniquely determined by A, B, C. This point 
can also be constructed in the following way. 

Obviously, we have D = C when B = A, and D = B when C = A. 
Thus, we may assume that both Band C are distinct from A. Since in this 
case B # A, we may construct GABB' A'. Now through B' draw B'D II A'C, 
meeting I at D. Then D is the point desired such that (AB) == (CD). This can 
be shown as follows. 

Suppose first that C = B. By definition, C is the midpoint of A, D and of 
(BC). Hence (AB) == (CD) and point D is what we wanted (cf. Fig. 1.15). 

Suppose next that C # B and M is the midpoint of B, C. If M = A, then 
B'D II A' C and it is the same as B' A, so D is the same as A and the midpoint 
of (AD) is also M. Therefore (AB) == (CD) and point D is what we wanted 
(cf. Fig. 1.16). 

Suppose finally that C # B and the midpoint M of B, C does not coincide 
with A. Construct, as in Fig. 1.17, the diagonals A'D and B' C of 0 A' B' DC, 
meeting at point N. By Theorem 1 in the last section, N is the midpoint of both 
B', C and A', D. From /::,.BCB' one knows MN II BB' and MN II AA'. From 

A=M=D 

Fig. US Fig. 1.16 

Fig. 1.17 
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.6.ADA', One knows that M is also the midpoint of A, D. So, by definition we 
have 

(AB) == (CD) 

and thus point D is what we wanted. 
The above proof is rather cumbersome and the interested reader may refer 

to Sect. 3.1. 
From this proof and the definition itself, it is easy to see the reflexivity, 

symmetry, and transitivity of the congruence relation. In other words, we have 
the following. 

Theorem. The congruence relation "==" among pairs of points on a line is an 
equivalence relation. 

Below we shall introduce the addition of pairs of points. For this purpose, 
we first prove the following. 

Lemma. Let the points A, B, C, D, E, F lie on one and the same line 1 with 

(AB) == (DE), (BC) == (EF). 

Then whether or not some of these points are the same, one always has 

(AC) == (DF). 

Proof See Fig. 1.18. If A, B, C are all distinct, one may construct OABB'A' 
and OBCC' B'. Then, by the construction of congruence A' DEB' and B' EFC' 
are both parallelograms, and so are ACC' A' and DFC' A'. By the construction 
of congruence again, One obtains (AC) == (DF). 

If some of A, B, C are the same, one may still show (AC) == (DF) by 
verifying every case. We omit the cumbersome verifications, even though they 
are necessary (cf. Sect. 3.1). D 

According to the above lemma, the following definition is proper. 

Definition 3. Fix a point Ao on a line / and construct, for any two points R, S 
on /, a point T such that (ST) == (AoR). We say that the pair (AoT) is the sum 

Fig.1.1S 
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of the pairs (AoR) and (AoS), which is denoted by 

(AoT) = (AoR) + (AoS). 

For fixed Ao, the above expression is denoted simply as 

T = R+S. 

T is called the sum of Rand S (for fixed Ao). 

Ao R S T Fig. 1.19 

By this definition, we have in particular (with respect to Ao) 

R = Ao+R. 

At the beginning of the last section, we have constructed from two points, 
Ao, AI, an infinite sequence of points 

on a line I. It is easy to prove, according to the above definition of addition 
among pairs of points, that if (AoAn) corresponds to the integer n, then the 
addition among the pairs (AoAn) corresponds to the addition among the inte
gers, i.e., 

or 

for fixed Ao, AI. 
Besides this, we may construct, for any rational number r = p / q (p, q 

are integers and q is positive), a point A, on line 1 such that in the case that 
(AoA,) corresponds to r, the addition relation is still valid (r, s are any rational 

Fig. 1.20 
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Fig. 1.21 

numbers): 

or written simply as 

for a fixed Ao. 
Construct through Ao, as shown in Fig. 1.21, a line [' distinct from [, take 

thereon a point A~ distinct from Ao, and rewrite Ao as A~. Starting from A~, A~, 
as in Fig. 1.3 for the axiom of infinity Doo in Sect. 1.2, construct the series 

and the connecting line AIA~. Draw A~Bn II A~AI' meeting [ at Bn. Then, it 
can be easily seen that Bp depends upon neither the choice of [' and A~ nor the 
expression r = p / q, so B p can be denoted as 

Definition 4. In the case r = p / q is a rational number, we say that the point 
Ap / q depends rationally upon the points Ao, AI. 

According to this definition, 

Ap / q ~ p/q 

induces a one-to-one correspondence between all the points depending ratio
nally upon Ao, A I and all the rational numbers. Under this correspondence, the 
addition among Ar with respect to Ao, Al corresponds to that among the ratio
nal numbers. If we define the product of Ar and As as Ars (still with respect 
to Ao, AI), then the multiplication among these points also corresponds to that 
among the rational numbers and, the addition and multiplication among these 
points retain all operation rules corresponding to those among rational numbers, 
especially Ao corresponding to 0 and A I to 1. 

There is a greatness relation among the rational numbers which makes the 
set of rational numbers ordered, wherein the usual relations of order, addition, 
and multiplication are satisfied. Therefore, under the correspondence Ap / q ~ 
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p / q, we can introduce the concept of order among those points which depend 
rationally upon Ao, Al according to the corresponding order among the rational 
numbers such that the usual relations of order are satisfied. In particular, the 
points which depend rationally upon Ao, AI, except Ao, Al themselves, can be 
divided into two parts: one consists of those points which are between Ao, AI, 
i.e., those points Ar which correspond to such rational numbers r that are greater 
than 0 and less than 1. They are called the interior points of the rational segment 
AoA 1. The other part consists of those points Ar which are not between Ao, AI, 
i.e., those points for which r is either less than 0 or greater than 1. They are 
called the exterior points of the rational segment AoA 1. In one word, for any 
three points Ar , As, At which depend rationally upon Ao, AI, we can define, 
according to the order of the rational numbers r, s, t, the order relation that one 
point lies between the other two. Such a betweenness relation satisfies the order 
axioms of Hilbert on the line, but is restricted only to the points which depend 
rationally upon Ao, A 1. It should be stressed that in Desarguesian geometry 
discussed in this section, three arbitrary points on a line cannot lead to the 
relations of order which satisfy Hilbert's axioms of order. 

Starting from the rational dependence of points on a line for three points 
A, B, C, not collinear, in the plane it is also easy to define the points which 
depend rationally upon them. First, take an arbitrary point D which depends 
rationally upon B, C on the line BC, and then an arbitrary point E which 
depends rationally upon A, D on the line AD. So, point E is one which depends 
rationally upon A, B, C. It is easy to prove that all points, except for those lying 
on the three sides AB, AC and BC of the triangle ABC, which depend rationally 
upon A, B, C can be divided into the interior and the exterior two parts - called 
the rational interior part and rational exterior part - of triangle ABC which 
have those properties concerning the interior and exterior of triangles in usual 
geometry. Although for all points in a plane the corresponding Pasch's axiom 
may not necessarily be satisfied or may even become meaningless, we can still 
prove that all points which depend rationally upon A, B, C satisfy the so-called 
Pasch's axiom of the triangle ABC. 

For a parallelogram, we may define rational points with respect to it and 
prove that the rational points which do not lie on the four sides of the parallel
ogram can be divided into the rational interior and the rational exterior parts 
which satisfy those properties concerning the interior and exterior of parallelo
grams derived from axioms of order in usual geometry. 

The proofs of many of the above assertions are easy and are omitted here. 

1.4 The Desarguesian number system and rational number subsystem 

The points and lines satisfying the Axioms H I, H IV and D constitute a De
sarguesian plane. In the preceding section, we have proved that after fixing two 
points on an arbitrary line in a Desarguesian plane, one can determine a corre
spondence between an infinite number of points and the rational number system 
such that the two fixed points correspond to 0 and 1 respectively. However, be
sides these points there are generally other points on the line. In the following 
sections we shall prove that among all points on a line, after having fixed two, 
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one can introduce some operations such that they correspond to numbers in a 
certain system, called a Desarguesian number system, which has some special 
properties and contains all rational numbers. It will organically relate to and be 
uniquely determined by the Desarguesian plane. For this end, let us first define 
the Desarguesian number system as follows. 

Definition. Let N be a set in which there are two binary operations addition and 
multiplication among its elements, satisfying the following Axioms 1-12. We 
call N a Desarguesian number system and the elements of N numbers. 

The axioms are divided into three groups. 

Group I Axioms of incidence (N 1-N 6) 
N 1. There is a binary operation, called addition (+), such that for any two 
numbers a, bEN, there is a definite number c EN. Symbolically, 

c = a + b or a + b = c. 

N 2. For any two numbers a, bEN, there always exists one and only one 
number x E N such that 

a+x=b 

and one and only one number yEN such that 

y +a = b. 

N 3. There exists a definite number 0, called "zero," such that for every a EN 
both 

a + 0 = a and 0 + a = a. 

N 4. There is a binary operation, called multiplication (-), such that for any two 
numbers a, bEN, there is a definite number dEN. Symbolically, 

a·b=d or d=a·b 

or by omitting the dot "." as 

ab = d or d = abo 

N 5. For any given numbers a, bEN, where a =1= 0, there always exists one 
and only one number x E N such that 

ax =b 

and also one and only one number yEN such that 

ya =b. 
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N 6. There exists a definite number 1, called "unit," such that for every a EN 
both 

a . 1 = a and 1· a = a. 

Group II Axioms of operation (N 7-N 11) 
Let a, b, e be any three numbers in N. Then the following rules of operation 
hold: 

N7. a+(b+e)=(a+b)+e. 
N 8. a + b = b + a. 
N 9. a(be) = (ab)e. 
N 10. a(b + e) = ab + ae. 
N 11. (a + b)e = ae + be. 

Because of the Axioms N 7 and N 9, some parentheses can be omitted. 

Group III Axiom of infinity (N 12) 
N 12. For the zero "0" and unit "1," we consider them as 0 and 1 of the usual 
natural numbers and define 2 = 1 + 1, 3 = 2 + 1, etc. Then these numbers are 
pairwise distinct. In other words, the usual natural numbers altogether can be 
considered as a subset of N. 

The above Axioms N 1-N 12 are not independent of each other (see Hilbert 
1900, for instance). 

Proposition 1. Axiom N 3 can be deduced from Axioms N 1, N 2 and N 7. 

Proof Take any fixed number a EN. By Axioms N 1, N 2, there is an x EN 
such that 

a +x =a. 

For any bEN set 
a +b = e. 

Then 
(a +x) + b = e. 

By Axiom N 7, we have 
a + (x +b) = e, 

and by the uniqueness in Axiom N 2 

x +b = b. 

Similarly, for an arbitrary e EN, the above x satisfies 

e+x = e. 

Therefore, this x can be regarded as 0 in Axiom N 3. o 
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Proposition 2. Axiom N 6 can be deduced from Axioms N 4, N 5, N 9. 

Proof Similar to the proof of Proposition 1 above. D 

Proposition 3. Axiom N 8 can be deduced from the axioms of incidence N I
N 6 and the axioms of operation N 7, N 10, N 11. 

Proof For any a, bEN, by applying first Axiom N 10 and then Axiom N 11 
we have 

(a +b)(l + 1) = (a +b)l + (a +b)l = (a +b) + (a +b). 

And by applying first Axiom N 11 and then Axiom N 10, we have 

(a + b)(l + 1) = a(l + 1) + b(l + 1) = (a + a) + (b + b). 

Hence, 

(a + b) + (a + b) = (a + a) + (b + b) 

or, by Axiom N 7, 

a + (b + a) + b = a + (a + b) + b. 

According to Axioms N 2, N 7, we have therefore 

b+a=a+b 

which is Axiom N 8. o 

Some simple facts below can also be easily proved. 

Proposition 4. According to Axioms N 2, N 3, N 8, for an arbitrary a E N there 
exists one and only one number x E N such that 

x+a =a+x =0. 

This number is denoted as -a and is called the negative of a. 

The concept of negative numbers observes the usual rules such as -(-a) 
= a. But we should note that in a Desarguesian number system, there is no 
concept of order nor of absolute values. Any number necessarily has its negative, 
but the number itself does not have positiveness or negativeness. 
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Proposition 5. For any number a E N, we have 

Oa = aO = O. 

Proof By Axioms N 11 and N 3, we have 

Oa + Oa = (0 + O)a = Oa. 

Hence, from Axiom N 2 it follows that Oa = O. Similarly, we have aO = O. D 

Proposition 6. For any number a =F 0, by Axiom N 5 there are numbers x, y 
EN such that 

xa = 1, ay = 1. 

They are called the left inverse element and right inverse element of a. Further
more, 

x =y, 

i.e., the left inverse element and the right inverse element of a are equal, simply 
called the inverse element of a and denoted by a-I. 

Proof By Axioms N 9 and N 6, we have 

(ax)a = a(xa) = a ·1 = a. 

Since 
(ay)a = l·a =a, 

one obtains from Axiom N 5 that ax = ay. Applying Axiom N 5 again yields 
x =y. D 

Proposition 7. Starting from the natural numbers, one may define, by Axioms 
N 2 and N 5, any positive or negative rational number p/q (where p is an 
integer and q a positive integer) such that it satisfies the usual rational operation 
laws and such that for any rational number r and any number a E N, 

ra = ar. 

From the last proposition, one knows that in a Desarguesian number system 
the concept of rational numbers may be introduced, while the multiplication of 
a rational number and any other number is commutative. In general, the multi
plication of any two numbers is not necessarily commutative. Furthermore, we 
can introduce a greatness relation among the rational numbers in a Desarguesian 
number system, satisfying the usual properties. But, generally speaking, there 
is no greatness relation between two arbitrary numbers. In order to meet our 
later requirements, we shall extend the concept of number systems and introduce 
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some supplementary axioms below. Whether or not a number system is assumed 
to satisfy these axioms will depend on the concrete situation. 

Commutative axiom of multiplication (N 13) 
N 13. For any two numbers a, bEN, 

ab = ba 

always holds. 

Axioms of order (N 14-N 17) 
N 14. Let a, b be any two distinct numbers in N. Then one and only one of 
them is always greater than the other. Let the former be a; then the latter b is 
said to be less than a. Symbolically, 

a> b and b < a. 

For any number a, a > a does not .hold. 
N 15. If a > b and b > c, then 

a> c. 

N 16. If a > b, then 

for any c. 
N 17. If a > b and c > 0, then 

ac > bc. 

Axioms of continuity (N 18-N 20) 
N 18 (Archimedes' axiom). Let a > 0 and b > 0 be any two numbers. Then 
it is always possible to add a to itself a sufficient number of times so that the 
resulting sum is greater than b. Symbolically, 

~ + a + ... + a, > b. 
n 

In other words, there is a natural number n such that na > b. 
N 19 (Rolle's axiom). Let 

f(x) = coxn + qxn- l + ... + Cn 

be a polynomial with coefficients Co, CI, ... ,Cn in N. If, for any two numbers 
a, bEN with a < b, f(a)· f(b) < 0, i.e., both f(a) and f(b) are not zero, one 
of them is greater than 0 and the other is less than 0 (or said to have different 
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signs), then there must be a number ~ EN greater than a and less than b such 
that f(~) = O. 
N 20 (Axiom of completeness). Let N satisfy Axioms N 1-N 18. Then it is 
impossible to adjoin new objects (called new numbers) to N so that in the 
extended new number system the original addition, multiplication, and greatness 
relations are preserved while the Axioms N 1-N 18 still hold; or briefly, under 
the assumption of the Axioms N 1-N 18 and by preserving all relations, N 
admits no extension. 

The above axioms are listed and classified more or less according to Hilbert's 
"Grundlagen der Geometrie." Only some slight modifications are made on a few 
axioms in order to match the special need of this book. Following the original 
terminology of Hilbert, a set of numbers which satisfies some of the Axioms 
N 1-N 20 will be called a complex number system. In particular, a complex num
ber system satisfying the Axioms N 1-N 12 has already been called a Desar
guesian number system, which is the most fundamental complex number system 
for the algebraization and mechanization of geometry. In modem terminology a 
complex number system satisfying the Axioms N 1-N 13, i.e., a Desarguesian 
number system satisfying the commutative axiom of multiplication, is called a 
field, whereas a Desarguesian number system is called a skew field, or some
times a sfield or a division ring. Axiom N 12 is not completely necessary for 
these concepts, but it restricts the field or sfie1d considered in the case of char
acteristic O. A field satisfying the axioms of order N 13-N 17 is now commonly 
called an ordered field. If, furthermore, it satisfies Rolle's axiom N 19, then it is 
called a real closed field; if it satisfies all the Axioms N 1-N 20, then it must be 
isomorphic to the usual real field. Generally speaking, the construction of fields 
and sfields may be rather complicated. The real and complex number fields and 
the four;element sfie1d are only a few very simple and classical examples, but 
they are representative in a certain sense. 

The above newly added axioms are also not necessarily independent of each 
other. For example, the axiom of infinity N 12 and Rolle's axiom N 19 can both 
be deduced from the other Axioms N I-N 11, N 13-N 18, N 20. In addition, 
Hilbert proved the following proposition. 

Proposition 8. If a complex number system N satisfies the Axioms N I-N 16 
and Archimedes' axiom N 18, then it must also satisfy the commutative axiom 
of multiplication N 17 and thus is a field. 

Proof. See Hilbert (1899: theorem 59). o 

The above axioms about the complex number system all have a certain ge
ometric background. In the following sections and the next chapter, we shall 
explain how to determine a Desarguesian number system from a Desargue
sian geometry, the geometric fact corresponding to the commutative axiom of 
multiplication and the corresponding relations between geometry and complex 
number system and between axioms of order and axioms of continuity etc. Based 
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on Hilbert's concept of "numbers" (see Hilbert 1900), we shall recall a field a 
number field, a sfield a number sfield and their elements numbers in this book. 

1.5 The Desarguesian number system on a line 

The points and lines satisfying the geometric axioms H I, H IV and D constitute 
a Desarguesian plane and the corresponding geometry will be called a Desar
guesian (plane) geometry. A complex number system satisfying the Axioms 
N I-N 12 in Sect. 1.4 will be called a Desarguesian number system. In this and 
the next section, we shall prove that every Desarguesian plane has a definite 
Desarguesian number system in correspondence. For this purpose let us first 
consider the problem of introducing a Desarguesian number system on a line. 

Let I be a line in a Desarguesian plane and 0, I be two points chosen 
arbitrarily thereon. We shall construct a Desarguesian number system N = 
N (I, 0, /) such that the points on I have a one-to-one correspondence with the 
numbers in N, while 0 corresponds to 0 and I to 1. In this case line I will be 
said to be the base line of the number system N. 

To do so, we consider the totality of points on I as a set N. Points will be de
noted by capital Roman letters, and by the corresponding lowercase letters when 
they are considered as elements of N (except for 0 and 1). We shall introduce 
addition and multiplication in N and prove that N constitutes a Desarguesian 
number system under the addition and multiplication, while 0, I correspond 
exactly to 0 and 1. 

Let A, B be two arbitrary points on I, denoted as elements a, b of N. 
First introduce addition, i.e., define a + bEN, as follows. 
Let B # 0 as in Fig. 1.22. In this case, one may draw through 0 a line 

1/ distinct from I. Take a point A' distinct from 0 on 1/ and construct a par
allelogram OBQA'. Through Q draw QC II A/A, meeting I at C. Then the 
corresponding element c of C in N is defined to be a + b. 

As shown in Fig. 1.23, in the case B = 0, i.e., b = 0, one can directly define 
C to be A. Then the corresponding element c = a is defined as a +b = a +0. If 
we suppose that Q = A' and consider 0 B QA' as a degenerate parallelogram, 
then the direct definition here may be put in a nutshell as a degenerate case of 
the above definition. 

Now we need to prove the propriety of the definition of addition, i.e., to 
prove that the constructed point C is independent of the choice of // and A'. In 

l' 

B"-'b 

Fig. 1.22 Fig. 1.23 
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Fig. 1.24 

case B = 0, C = A is obviously independent of the choice of l' and A', so we 
need only consider the case B =1= O. 

As in Fig. 1.24, let us draw through 0 a line 1" distinct from 1, take thereon 
an arbitrary point A" and construct further a parallelogram 0 BRA". We only 
need to prove RC II AA". 

The proof requires repeated use of Desargues' axioms. Note first that in 
the statement of Desargues' axioms, triangles and parallel lines are all defined 
according to those in Sects. 1.1 and 1.2. Hence, while speaking about a triangle, 
we mean neither that the three vertices are collinear nor that two of them are 
coincident. Also, parallel lines must be distinct lines. Similarly, parallelograms 
are defined according to Definition 2 in Sect. 1.2. 

Suppose first that 1" is distinct from 1', the points A', A, A" are not collinear 
and A' A" is not parallel to 1. In this case 0 A' A", AA' A", B Q R, C Q R are all 
triangles. Apply now Desargues' axiom D2 to .0. 0 A' A" and .0. B Q R. Since the 
connecting lines of the corresponding vertices 0 B, A' Q, A" R are parallel to 
each other and so are two pairs of the corresponding sides of the triangles, 
i.e., OA' II BQ,OA" II BR, we have A' A" II QR. Apply Desargues' axiom 
D2 again to .0.AA' A" and .0.C Q R. Now all the connecting lines of the corre
sponding vertices are parallel to each other as well, and so are two pairs of 
the corresponding sides, i.e., AA' II C Q, A' A" II Q R. Hence AA" II CR. This 
completes our proof. 

In the case 1" and l' are the same, or they are not, but A', A, A" are collinear, 
or A' A" II 1, we are unable to apply Desargues' axioms as above and need to 
deal with each case in another way. The process is rather tedious, but completely 
necessary. The reason can still be seen in Sect. 3.1. As the process of dealing 
with each case is similar to some proofs in Sect. 1.2, it is omitted here. 

It may be seen from the definition of a + b that, if 0 corresponds to the 
element 0 of N, then a + 0 = a, 0 + a = a, i.e., 0 plays the role of the element 0 
of the Desarguesian number system, see Axiom N 3 in Sect. 1.4. 

Secondly, let us define a . b or ab E N. 
In the definition of a + b, the point I plays no role, but in the definition of 

ab, it is indispensable. 
Define now ab as follows. As in Fig. 1.25, draw through 0 a line l' distinct 

from 1 and take thereon a point I' distinct from O. For l' and I' we determine 
a point D on 1 as ab in the following way: Suppose first that A =1= 0, B =1= I. In 
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Fig. 1.25 

/' 
/' 

7 I=B " Fig. 1.26 

this case let us draw through B, BB' II II', meeting I' at B'. Since B' does not 
lie on the line I' A, we may draw B'D II I' A, meeting I at D. The corresponding 
element d of the point D in N is then defined as ab, i.e., d = abo If A = 0 or 
B = I, then the above construction is no longer possible. But we may define 
D = A, i.e., 0 . b = 0, a . 1 = a. If we consider two coincident lines as two 
degenerate parallel lines, then in case A = 0 and B = I, the definition of ab 
can be put in a nutshell as a degenerate case of the definition for A =1= 0, B =1= I 
(see Fig. 1.26). 

Now we need to prove the propriety of the above definition of multiplication, 
i.e., the constructed point D is independent of the choice of I' and I'. In case 
A = 0 or B = I, the proof is quite obvious, so the following proof is restricted 
to the case A =1= 0 and B =1= I. -

As in Fig. 1.27, let us draw through 0 a line I" distinct from I, I' and take 
an arbitrary point I" thereon. Suppose first that I" lies neither on the line 1'1 
nor on I' A. Draw through B, BB" II II", meeting I" at B". We want to prove 
that B" D II IliA. 

Under the above conditions, we can apply Desargues' axiom Dz to 6.1 1'1" 
and 6.BB' B" to get 1'1" II B' B" and to 6.AI'I" and 6.DB' B" to get B" D II 
I" A. This is actually what we need. In case the conditions are not satisfied, we 
should verify each case individually for the same reasons as before. In any case 
it is easy to show that B" D II I" A. Hence, the construction of the point D is 
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Fig. 1.27 

always independent of the choice of 1" and I", which ensures the propriety of 
the definition of multiplication. 

By definition, we immediately have 1 . a = a and a . 1 = a. Therefore, the 
role of the element 1 corresponding to I is equivalent to that of the element 1 
in Axiom N 6 of the complex number system, which thus causes no confusion 
in notation. 

When we have defined the elements 0 and 1 as well as the operations of 
addition and multiplication in N, we can prove by repeated use of Desargues' 
axioms that N satisfies all the Axioms N 1-N 12 in a Desarguesian number 
system. However, the proofs are cumbersome and not always easy. They can 
all be found in Hilbert's "Grundlagen der Geometrie." It should be noted that 
Hilbert's proofs were only given for the generic cases, whereas the degenerate 
cases also need to be considered (cf. Sect. 3.1). Thus, the complete proofs are 
actually much more cumbersome than the original ones. We shall omit most of 
the proofs and give only some additional explanation for the inverse elements 
and a few special problems. As for the proofs in Axioms N 1-N 12, one may 
refer to Hilbert (1899). 

Direct proof for the existence of inverse elements. Let I, 0, I be as before and 
A be a point on I, not identical to 0 or I, corresponding to the number a i= 
0, 1 (cf. Fig. 1.28). Draw through 0 a line l' distinct from I and take a point 
I' i= 0 thereon. Construct moreover, through A, AA' II II', meeting I' at A' 
and, through I', I' X II A'I, meeting I at X, which corresponds to a number 
x in N. By the definition of multiplication, xa = 1, i.e., x is the left inverse 
element of a. Construct then, through I, IY' II AI', meeting I' at Y' and, through 
Y', y'y II 1'1, meeting I at Y, which corresponds to a number yin N. By the 
definition of multiplication, ay = 1, i.e., y is the right inverse element of a. 
Let us prove x = y, i.e., the left inverse element is equal to the right inverse 
element, as follows. 

Consider first the case I A' II I' A. Now I' X coincides with I' A, so does 
X with A. As IY' also coincides with I A', so does y' with A'. Hence, y'y 
coincides with A' A and so does Y with A and thus with X, that is, x = y. 
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Fig. 1.28 Fig. 1.29 

Now suppose that I A' is not parallel to I' A, so they meet at a point, say 
P, as in Fig. 1.29. Then IY' and I'X are not parallel either, so they meet at a 
point, say Q. Applying Desargues' axiom Dl to 6.11' Q and 6.AA' P, we see 
that the line P Q passes through O. Applying Desargues' axiom D2 again to 
6.P I l' and 6.QXY', we have I I' II Xy'. Hence, the line XY' coincides with 
YY' and so does X with Y, i.e., x = y. This is what we wanted to prove. 

We have assumed A 1= 0, I above. If A 1= 0 but A = I, then the inverse 
element of a = 1 is clearly 1 itself. 0 

Concept of midpoints 

Let the line I and the points 0, I be as before and let A, B be any two points 
on I corresponding to two numbers a and b in N. Let M be the midpoint of the 
pair CAB), corresponding to a number m. Then 

m=~(a+b). 

To prove this, suppose that A, B, 0, M are all pairwise distinct (in the 
case some of them are the same, one can verify directly). In this case we may 
construct 0 AM C D as shown in Fig. 1.30. Since B is the symmetric point of 
A with respect to M, we have CB II DM by definition. Now draw through 0, 
I' II AD II MC. Let CD meet I' at a point E and draw through D, DF II EB, 
meeting I at F. According to the definition of addition, F corresponds to the 
number b + a in N, or by Axiom N 8, i.e., a + b. Draw then, through C, 
CF' II EM, meeting I at F'. By definition, F' corresponds to the number 2m. 

Fig. 1.30 
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By Theorem 1 in Sect. 1.2, the diagonals M C and B D of OM BCD bisect 
the pairs (BD) and (MC) at their common midpoint, say P. Similarly, the 
diagonals E F and B D of 0 B F D E also bisect one another, in particular, E F 
passes through P. For OM F' C E, one sees that E F' passes through P as well. 
Therefore EF coincides with EF' and so does F with F'. Thus 2m = a + b. 

Concept of congruence 

Let four points A, B, C, D on I correspond to a, b, c, din N, respectively. As 
in Sect. 1.3, we define the congruence 

(AB) == (CD) 

of two pairs of points, which says equivalently that the pairs (BC) and (AD) 
have a common midpoint M. By the concept of midpoints, we have 

2m =b+c=a+d. 

This implies that a condition for (AB) = (CD) is 

b -a = d -c. 

1.6 The Desarguesian number system associated with 
a Desarguesian plane 

Choose an arbitrary line I in a Desarguesian plane and two distinct points 0, I 
on I. Taking 0 and I as 0 and 1, we may define, according to Sect. 1.5, 
a Desarguesian number system N = N(Z, 0, I). This section aims to prove 
that this Desarguesian number system is actually independent of the choice of 
I, 0, I and is determined by the Desarguesian plane. In other words, we have 
the following: 

Theorem 1. Take two points 0 i- I on a line I as 0 and 1. The Desarguesian 
number system N defined according to Sect. 1.5 is independent of the choice 
of 1,0, I. 

Proof. Take another line I' in the plane and two distinct points 0' and I' on I' as 
0' and I' so as to define another Desarguesian number system N' = N(/', 0', I'). 
The theorem means that N is isomorphic to N', i.e., there is a one-to-one 
correspondence 

F: N ---+ N' 

such that under F, 0 corresponds to 0' and 1 to I' while the addition and 
multiplication of the number systems are preserved. That is, for arbitrary a, b 
EN, we have 

F(a + b) = F(a) + F(b), 

F(a . b) = F(a) . F(b). 
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I' 

Fig. 1.31 

To prove this, we shall discuss several separate cases. 

Case 1. [ and [' meet at a point 0 = 0' (cf. Fig. 1.31). 
For an arbitrary point X on [, let us draw XX' II I I', meeting [' at X' when 

X -1= I, and take X' = I' when X = I. If X corresponds to x E N, then the 
corresponding number of X' in N' will be denoted by x'. According to 

F(x) = x', 

we define a correspondence relation 

F: N -+ N'. 

In particular, 
F(O) = 0', F(1) = I', 

i.e., 0 and 1 in N'. Thus, the theorem is equivalent to saying that for arbitrary 
a,b E N, 

(a + b)' = a' + b' 

and 

(ab)' = a'b'. 

We first prove (a + b)' = a' + b' as follows. 
Let A, Bon [ correspond to a, bEN and A', B' on [' to a', b' EN'. In the 

case A = B and the case A = 0 or B = 0, (a + b)' = a' + b' clearly holds. So 
we suppose hereafter that A, B, 0 are distinct from each other (see Figs. 1.32 
and 1.33). In this case AA' II II', B B' II II'. Now construct 00 B Q B' and, 
through Q, QC II AB', QC' II A' B, meeting [, [' at C, C' respectively. By the 
definition of addition in N, N', we know that C, C' correspond respectively to 
a +b E N,a' +b' EN'. 

Since the three pairs of the corresponding sides of .:::}. 0 AA' and .:::}. Q B' B 
are parallel to each other, by Desargues' axiom Dl the lines OQ, AB', A'B are 
also parallel to each other or are concurrent at a point P. In the former case, 
C = C' = 0 = 0'. Hence, a' + b' = 0' = (a + b), and the conclusion is 
proved. In the latter case, the connecting lines of the corresponding vertices of 
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Fig. 1.32 Fig. 1.33 

!:J.QCC' and !:J.PAA' are concurrent at point 0, and QC II PA, QC' II PA', so 
CC' II AA'. Therefore CC' II I I' and (a + b)' = a' + b' still holds. 

Next, we prove that (ab)' = a'b'. 
Symbolically, A, A', B, B' are as before. In case A = B or one of A, B 

is the same as 0 or I, it is easy to verify (ab)' = a'b'. In what follows, we 
suppose that A, B, 0, I are all pairwise distinct. 

Draw B'D II I' A, meeting I at D, and BD' II I A', meeting I' at D'. Then 
D corresponds to ab E N and D' to a'b' EN'. Let us first assume that I A' 
is not parallel to I' A; they meet at a point, say P (see Fig. 1.34). In this case, 
B D' is not parallel to B'D either. Let them meet at a point Q. Application of 
Desargues' axiom DI to !:J.II'P and !:J.BB'Q implies that PQ passes through 
point o. Applying Desargues' axiom D2 to !:J.PAA' and !:J.QDD', one sees that 
DD' II AA'. Hence, DD' II II' and (ab)' = a'b' holds. 

Consider now I A' II I' A. The above proof is not applicable and we need to 

Fig. 1.34 

l' 

Fig. 1.35 
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find another proof. To do so, we draw through A a parallel to I', through I' a 
parallel to I and let them meet at a point P (see Fig. 1.35). Draw again, through 
B', B' Q Ill, meeting 0 P at Q. Applying Desargues' axiom D2 to 6.P AI' and 
6.QDB' yields PA II QD. Hence, QD Ill' and OB'QD is a parallelogram. 
Applying Theorem 1 in Sect. 1.2 to DOB'QD, DOI'PA and DAA'II', we 
know that the intersection points R, S, 0 of the corresponding diagonals are the 
midpoints of B', D; A,!'; and A, I respectively. For 6.AI I', the connecting 
line of the midpoints of two sides is parallel to II', i.e., 0 S II I I'. From this 
we see that R is the midpoint of B'D in 6. D B B' and 0 R II B B'. Hence, 0 is 
the midpoint of B, D. Considering I' instead of I, we should infer that 0 is also 
the midpoint of B', D'. From 6. B' D D' it follows that D D' II 0 R. Therefore, 
DD' II BB' II II', i.e., (ab)' = a'b' still holds. 

This direct geometric proof is too tortuous. In fact, we can give a sim
ple proof by using properties of the given number system as follows. By 
Proposition 4 in Sect. 1.4 and the concept of midpoints in Sect. 1.5, we have 
a = -1, a' = -I' and thus D corresponds to ab = (-I)b = -b and D' to 
a'b' = (-I')b' = -b'. By using the result that the operation of addition remains 
under the correspondence F, one knows 

(-b)' +b' = «-b) +b)' = 0'. 

Hence, 

(-b)' = -b' 

or 

(ab)' = a'b'. 

This is what we needed to prove. 
Similarly, for proving (a + b)' = a' + b', in the case AB' II A' B the direct 

geometric proof can also be transformed into a simple proof by using properties 
of the number system. In comparing these two kinds of proofs, i.e., the direct 
geometric proof starting from geometric axioms and the algebraic proof based 
on properties of the number system, one may observe that for the former the 
introduction of auxiliary lines is not simple and the proof steps follow no rules, 
whereas for the latter the deduction rules can be more easily sought from the 
calculations, which thus provides the possibility for mechanical proving. Here 
we have given only some rather primitive examples. 

Case 2. I Ill' and I I' II 00'. 
Through a point X#-O on I, draw XX' II 00', meeting I' at X'. If X and 

X' correspond to x E N and x' E N' respectively, then we define 

F: N -+ N' 

as 

F(x) = x' 

and set 

F(O) = 0'. 
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Fig. 1.36 

Then under F, 0 and 1 in N correspond to 0' and l' in N' respectively, i.e., 

F(O) = 0', F(I) = 1'. 

Now take arbitrary A, B on I, corresponding to a, b, and A', B' on I', corre
sponding to a', b' E N' respectively. Then AA', BB' are both parallel to 00' 
or I I'. We want to prove 

(a + b)' = a' + b', 

(ab)' = a'b'. 

First, we prove that (a + b)' = a' + b'. The case in which A or B is equal 
to a is quite evident, so we may assume that both A and B are not equal to O. 

As in Fig. 1.36, draw B' C II 0' A, meeting I at C. Since a B B' 0' is a 
parallelogram, by the definition of addition C corresponds to a + bEN. Sim
ilarly, draw through B, BC' II OA', meeting l' at C'. Then C' corresponds to 
a' + b' E N'. Let the intersection point of the diagonals of 0 a AA' 0' be P. 
Since BC' and B'C are parallel to OA' and 0' A respectively, they must meet 
at a point, say Q. Applying Desargues' axiom Dl to !:::..POO' and !:::..QBB' 
yields PQ II I II I', and D2 to !:::..PAA' and !:::..QCC' yields CC' II AA'. Thus 
CC'II 00', i.e., (a + b)' = a' + b'. 

Next we prove that (ab)' = a'b'. 
If B is equal to I or 0 and thus B' is equal to I' or 0', the equality 

obviously holds. Let us suppose in what follows that B i= I, B i= 0 and also 
that A i= I, O. 

As shown in Fig. 1.37, in this case BI' meets 00' at a point E'. Draw 
through I, IE II BE', meeting 00' at E. Applying Desargues' axiom D2 to 
!:::..I AE and !:::..I' A' E' yields AE II A' E'. By the definition of multiplication, we 
know that the intersection point D of A' E' and I corresponds to ab EN. Now 
draw through B', B'F II I'E', meeting 00' at F and through F, FD' II A'E', 
meeting I' at D'. By the definition of multiplication again, D' corresponds to 
a'b' EN'. Applying Desargues' axiom Dl to !:::..BDE' and !:::..B' D' F yields 
DD' II BB'. Thus DD' II 00', i.e., (ab)' = a'b' holds. 

Case 3. I and I' are neither coincident nor parallel and their intersection point 
is not equal to 0 or 0' (see Fig. 1.38). In this case we may draw through 0, 
I" II I' and take I" on I" such that 1'1" II 0' O. Set 0 = 0" and construct a 
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Fig. 1.37 

Fig. 1.38 

Desarguesian number system N" by taking 0" and I" as 0 and 1 on I". From 
Case 1, Nis isomorphic to N", denoted as P: N ---+ N", with P(O) = 0", 
P(I) = I". From Case 2, there is an isomorphism P': N" ---+ N' such that 
P'(O") = 0', P'(I") = 1'. This implies that under P' P, N is isomorphic to N' 
and such that 0, 1 and 0', l' correspond to each other. 

Apparently the general case may be put in a nutshell as one of the above 
three cases with the aid of at most a third line. This completes the proof of 
Theorem 1. 0 

Theorem 1 has shown that two Desarguesian number systems determined 
by any two lines I and I' are isomorphic to each other, i.e., 

F: N(l, 0, l) ~ N(l', 0', I'). 

In addition to this, we shall further prove the following. 

Theorem 2. The above isomorphism F can be determined in a unique manner, 
i.e., there exists a canonical isomorphism between any two Desarguesian number 
systems. 

To prove this, we note first that in the proof of Theorem 1, two kinds of 
isomorphism correspondences have been used. They correspond to the two cases 
1 and 2 in the proof and are denoted by F/ and F// respectively. In the first 
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kind of isomorphism correspondence FJ, I, I' are two distinct lines meeting at 
a = a'. In the second kind of isomorphism correspondence FIl, I, I' are two 
distinct parallel lines with 00' II I I'. Now suppose that there is a series of 
isomorphism correspondences between two Desarguesian number systems N 
and N': 

FJ F2 
-+ -+ 

N = N(I, 0, 1) ~ N(l}, a}, It) ~ N(l2, 02, lz) 

Fn F' 
-+ -+ -+ ", , 
~ ... ~ N(ln, On, In) ~ N(I , a ,I) = N . 

To prove the theorem, it suffices to prove that regardless of whether the inter
mediate isomorphisms are of the kind F/ or F/ /, the final result F' Fn ... F2F} 
is always the same. 

Before proving Theorem 2, we state a few simple assertions below. 

1. The order of action of two successive isomorphism correspondences of 
different kinds can be interchanged, i.e., F/ FJ J = F; / F;. We state it in detail 
as follows. 

Let 
FIl: N(l}, a}, It) ~ N(12, 02, lz) 

be an isomorphism of the second kind and 

be an isomorphism of the first kind. Draw through a}, 14 II 13 and, through 
h h I4 II a} 02 II Ith meeting 14 at 14 as in Fig. 1.39. Then we have an 
isomorphism of the first kind 

in which 04 = a}, and an isomorphism of the second kind 

We shall prove that F/ FJ / can be interchanged with F; J F;. 

b 

--"*--4r--:--------l\--- 11 
Fig. 1.39 
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If II, h 13 lie on the same line, then 14 also lies on this line. In this case, 

is quite evident. In what follows we assume that II, h 13 are not collinear. 
Applying Oesargues' axiom 02 to LOllI14 and L02hh one has 1I14 II 

hh Now draw through a point XI (# 01, II) on line iI, XI X2 II 0102, 
meeting i2 at X2, through X2, X2X3 II hh meeting i3 at X3 and, through X3, 
X3X4 II 1)14, meeting i4 at X4. Applying Oesargues' axiom 02 to L04XIX4 
and L03X2X3 yields XIX4 II X2X3, and they are parallel to hI) and IIk By 
definition, we have 

FII(Xj) = X2, F[ (X2) = X3, 

F; (XI) = X4, F;[(X4) = X3· 

In the case XI = 01, II, the above formula is more obvious (X3 = 01, II), so 

Similarly, if there are two successive isomorphism correspondences F[[ F[ of 
different kinds, then there are F; and F; [ such that F[[ F[ = F; F; [. This proves 
assertion 1. 

2. In case il is distinct from i3, the action of two successive isomorphism 
correspondences 

and 

of the first kind can be merged into one isomorphism correspondence 

F" - F'F . [- [ [. 

of the first kind. The proof is quite easy and is thus omitted here (cf. Fig. 1.40). 
3. In case il is distinct from i3, the action of two successive isomorphism 

correspondences 

and 
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~=--------lk--:---1r-----11 

Fig. 1.40 

Fig. 1.41 

of the second kind can be merged into one isomorphism correspondence 

F" F' F . II = II II· 

of the second kind. 
For the proof, see Fig. 1.41. 
4. Let 

F/: N(ll, 01, II) ~ N(l2, 0 2, h), 

F;: N(l2, 0 2, h) ~ N(l3, 0 3, h) 

be two successive isomorphism correspondences of the first kind, where 01 = 
02 = 03 and the beginning and the end base lines are the same, i.e., 11 = 13. 
Then the intermediate base line 12 and h can be arbitrarily alternated to another 
base line 14 and ]4. That is, while introducing isomorphism correspondences 

F;': N(h, 01, II) ~ N(l4, 04, ]4), 

F;": N(14, 04, ]4) ~ N(13, 03, h), 
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where 04 = 01, one should have 

F'F - F"'F" / /- / /. 

51 

Fig. 1.42 

For the proof, see Fig. 1.42. If Xl, ... , X4 lie on 11, ... , 14 respectively, and 
XIX2 Illth X2 X3 II hh XI X4 II It 14, then application of Desargues' axiom 
yields X3X4 II hk Hence, 

i.e., F; FI is independent of the choice of 12 and h 
We call F; FI an isomorphism correspondence of the third kind, denoted as 

Fill or so. 
5. Let 

F//: N(lI, 01, It) ~ N(l2, 02, h), 

F;/: N(/2, 02, h) ~ N(l3, 03, h), 

where 11 II 12,12 II 13 and 13 = 11, be two successive isomorphism correspon
dences of the second kind. Then the intermediate base line hand 02 can be 
arbitrarily alternated to another base line 14 and 04. In this case, 

which is called an isomorphism correspondence of the fourth kind, denoted as 
FIV, or F;v etc. 

The proof is analogous to 4, see Fig. 1.43. 
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6. The action of two successive isomorphism correspondences 

FIll: N(ll, 01, II) ~ N(h, 02, h), 

F;Il: N(ll, 03, h) ~ N(h, 04,14) 

Fig. 1.43 

of the third kind, where 01 = 02 = 03 = 04, h = h can be merged into one 
isomorphism correspondence of the third kind. 

According to 4, we can take two lines 15,16 through 01, which are both 
distinct from each other and distinct from II, and two points 15 and h on 15 and 
16 respectively. Set 05 = 06 = 01 such that 

where 

F F*F F' F'*F' III = I I, III = I I' 

FI: N(ll, 01, II) ~ N(l5, 05, 15), 

F;: N(l5, 05, 15) ~ N(h, 02, h), 

F;: N(ll, 03, h) ~ N(l6, 06,16), 

F';: N(16, 06, 16) ~ N(ll, 04,14) 

are all isomorphism correspondences of the first kind. By 2, F;Fj is an isomor
phism correspondence of the first kind. Similarly, (F;Fj)FI is also an isomor
phism correspondence of the first kind. Therefore, F; II FII I = F'; «F; Fj) FI) 
is an isomorphism correspondence of the third kind. 

In the same way, we get: 
7. The action of two successive isomorphism correspondences of the fourth 

kind can be merged into one isomorphism correspondence of the fourth kind. 

Proof of Theorem 2. Let 

F: N(l, 0, /) ~ N(l', 0', I') 

be a correspondence obtained from the action of a sequence of successive iso
morphism correspondences of kinds I and II. According to 1, by interchanging 
the order of isomorphism correspondences of the first kind and of the second 
kind in this sequence one can make F become the composition of first the action 
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of a sequence of successive isomorphism correspondences of the second kind 
and then the action of a sequence of successive isomorphism correspondences 
of the first kind. According to 2 and 6, one can merge the composition of 
a sequence of isomorphism correspondences of kind I into one isomorphism 
correspondence of kind I or of kind III. According to 3 and 7, one can merge in 
the same way the composition of a sequence of isomorphism correspondences of 
kind II into one isomorphism correspondence of kind II or of kind IV. Hence, the 
original F must be equivalent to one of the following eight kinds of isomorphism 
correspondences: 

Denote the unit isomorphism by Fo and suppose that the isomorphisms FI I I, Flv 
of the above eight kinds are both not unit. Then the original isomorphism cor
respondence F is equivalent to one of the following nine kinds of isomorphism 
correspondences whose geometric characters are shown together: 

Fo [= [' 0=0' [= [' 

FI [ =1= [' [ .tt [' 0=0' (= [ /\ Ii) 

FIl [ =1= [' [ 11[' 00'11 II' 

FIll [= [' 0=0' [ =1= [' 

Flv [= [' o =1= 0' (01) == (0' I') 

FIFII [ =1= [' [ .tt [' 0=1=0' 0' is not on [ 

FIFlv [ =P [' [ .tt [' 0=1=0' 0' is on [ 

FIIIFIl [ =1= [' [ 11[' 00' .tt II' 
FIIIFlv [= [' o =1= 0' (01) ¥= (0'['). 

From the above, we see that the nine different kinds of isomorphisms corre
spond to different geometric characters (cf. Fig. 1.44). According to the geo
metric characters of [, 1',0,0' and [, 1', one knows which of the nine kinds of 
isomorphism correspondences is the isomorphism correspondence F. Moreover, 
this correspondence is completely determined by I, 1',0,0' and [, Ii. There
fore, from the number system N([, 0, I) to N(l', 0',1'), no matter how the 
sequence of isomorphism correspondences of the kinds I and II proceeds, the 
isomorphism correspondence F finally obtained is completely determined by 
the two number systems. This proves Theorem 2. 0 

From Theorem 1 of this section, it is known that one can determine, after 
taking any two distinct points as 0 and 1, a Desarguesian number system, while 
number systems determined in this way are all isomorphic to each other. Fur
thermore, it is known from Theorem 2 that the isomorphism among the number 
systems can be uniquely determined. Thus, under this unique canonical isomor
phism, we can identify the number systems to a single one, denoted by N. Then 
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Fo: 
0=0' 1=1' ____________ _+_----1=l' 

FII: 
___ ----,f-/....;;.O_· ------1-1...;.1-· -- I' 

T 7 

FlU: 

FIV: 

----->?----- ~-----. 
/ \ / \ 

/ \ / \ 
/ \ / , ---r.;----->-...-----:' ..... -----;-;->,.------ 1=1' '0 o· \ 'I I' '. 

FrF.: 

0', I" 

FrFIV : 

I' 

~ • o 

FIOF. : 

0,/ I 1'/ 

0/ IV 
7 /1 

----~~----_r~~--- I' 

FDIFIV : • • • • 
0 I o· I' Fig. 1.44 

------+-----------1=1· 

there is a canonical isomorphism 

F: N ~ N(/, 0, l) 

between N and any Desarguesian number system N (I, 0, l) on each line. Since 
N is a sfie1d of characteristic 0, we shall say N is a Desarguesian sfield associ-
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ated with the original Desarguesian plane or Desarguesian geometry. In general, 
it is not a field, i.e., the commutative law of multiplication generally does not 
hold. Whether or not it holds is related to Pappus' axiom or what Hilbert called 
Pascal's axiom (for intersecting lines), see Sect. 2.1. The associated Desargue
sian number sfield depends upon the considered geometry, but it sufficiently 
reflects the character of the original geometry. In fact, the original geometry can 
be recovered from its associated Desarguesian number sfield (see the book of 
Hilbert or other books on the foundations of geometry). 

Remark. The content of Theorem 2 in this section is by no means simple. Ac
tually, in projective geometry if we assume only the axioms of incidence, the 
axiom of infinity, and axioms equivalent to Desargues' axioms but no others, 
then the corresponding theorem 1 holds, while theorem 2 falls into fallacy. In 
detail, under the assumption of the above-mentioned axioms, while taking three 
distinct points as 0, 1,00 on a line, one can uniquely determine a Desarguesian 
number sfield (except for 00) and all number sfields determined in this way 
are isomorphic to each other. But these isomorphisms are non-canonical unless 
there is an additional assumption of other axioms such as the so-called Pap
pus' axiom. Only under the assumption of Pappus' axiom, can one prove the 
fundamental theorem of projective geometry, establish canonical isomorphism 
correspondences among various Desarguesian number sfields and prove the sat
isfaction of the commutative law of mUltiplication so that the sfield becomes a 
number field. The proofs are all non-trivial and are the most abstruse part of 
the foundations of projective geometry, for which the reader may refer to some 
general books in projective geometry or Sect. 6.2 in this book. 

1.7 The coordinate system of Desarguesian plane geometry 

According to Sects. 1.5 and 1.6, one can uniquely determine a Desarguesian 
number system N in a Desarguesian plane such that, after taking two points 0 
and I on an arbitrary line, the points on this line will correspond one-to-one 
to the numbers in N with 0 to 0 and I to 1. From this we can introduce a 
plane coordinate system by the usual method of analytic geometry such that the 
points in the plane correspond one-to-one to the pairs of numbers in N x N. We 
explain this in detail in what follows. 

As shown in Fig. 1.45, we take two arbitrary intersecting lines 11 and 12 in 

-----r.~--~----~~----------h 

Fig. 1.45 
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the plane with 0 as their intersection point. Take two points It and h distinct 
from 0 on II and 12 respectively. Then, by mapping 0, It to 0,1 we can set 
up a canonical one-to-one correspondence between the points on II and the 
numbers in N. Similarly, by mapping 0, h to 0, 1 there is a canonical one-to
one correspondence between the points on 12 and the numbers in N, too. As 
usual, 0, iI, 12, It and h constitute a coordinate system, of which 0 is called 
the origin, 11, 12 are called the first and the second axes and It, h the units. 

Now, let P be a point in the plane. If P does not lie on line II, we draw 
through P a parallel PI to II. Otherwise, set PI = II. Similarly, in the case P 
does not lie on 12, let P2 be a line through P and parallel to h and, otherwise, set 
P2 = 12. Suppose that P2, PI meet 11,12 at Xl, X2 respectively, which correspond 
to two numbers Xl, x2 in N. Then 

clearly induces a one-to-one correspondence between points in the plane and 
pairs of numbers in N x N, where Xl and X2 are called the first and the second 
coordinates of P respectively in the above coordinate system and (Xl, X2) is 
called the coordinate representation of P, denoted as 

After fixing a coordinate system, the one-to-one correspondence relation 
between points and coordinates makes it possible to express the properties and 
relations of a geometric configuration in terms of numbers and relations among 
numbers. This is what we call the algebraization of geometry. In the following, 
we take a few most fundamental relations in Desarguesian geometry as examples 
for illustration. 

Example 1. Let R = (Zl, Z2) be the midpoint of two points P = (Xl, X2) 
and Q = (Yl, Y2). Express this geometric relation in terms of relations among 
numbers. 

As in Fig. 1.46, let us draw through P, Q, R three lines P2, Q2, r2 respec
tively, such that each of them is parallel to h if the corresponding point P, 
Q or R does not lie on 12, or otherwise is just the line h itself. Let P2, Q2, r2 
meet II at points Xl, fl' Zl respectively, which correspond to three numbers 

fJ2 I. I ,.. 

~/P ;' Ill> 
I I 

I I IQ 
I II I 

II I I 
->7-----r'-----+------r----/l 

I Zl I Yl 
I I 

I Fig. 1.46 
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Xl, YI, ZI in N. It is easy to prove that in each case ZI is always the midpoint 
of the pair (Xl, YI). According to the concept of midpoints in Sect. 1.5, one 
should have 2Z1 = Xl + YI and, similarly, 2Z2 = X2 + Y2. On the contrary, if 
there are relations 

2ZI=XI+YI, 2Z2=X2+Y2 

among the coordinates of the three points P = (Xl, X2), Q = (YI, Y2), R = 
(ZI, Z2), then point R must be the midpoint of the pair (P, Q). Hence, the 
above two equations give an algebraic expression for the geometric relation that 
"R is the midpoint of (P, Q)." 

Why we explain this simple example in so much detail can be seen in 
Sect. 3.1. 

Example 2. Let 

be four points with P =j:. Q, R =j:. S. Find an algebraic relation corresponding to 
the geometric relation that the two lines P Q and R S are parallel or coincident. 

To do so, let us first prove two lemmas below. 

Lemma 1. Let P = (Xl, X2), Q = (YI, Y2) with P =j:. Q. Take a point Al on 
the first axis 11 corresponding to the number YI - Xl in N, and a point A2 on 
the second axis 12 corresponding to the number X2 - Y2 in N. Then AIA2 and 
P Q are either parallel or coincident. 

Proof. We only consider the case in which P, Q do not lie on 11, 12 and P Q 
neither passes through the origin 0 nor is parallel to 11,12. As in Fig. 1.47, 
draw, through P, PXl 1112, PX2 1111, meeting 11,12 at Xl, X2 and, through Q, 
Q YI II 12, Q Y2 II 11, meeting 11, 12 at YI, Y2 respectively. Then Xl, YI correspond 
to Xl, X2 in N and X2, Y2 to X2, Y2 in N respectively. Since (YI - Xl) +XI = YI, 
by the definition of addition on II we have PYI 1\ X2Al. Similarly, we have 

h 

-1-----+------''''\00::,---=''1--:=-----1, 

Fig. 1.47 
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QX2 II YIA2 as (X2 - Y2) + Y2 = X2 on 12. Since PX2AIYl is a parallelogram, 
by Theorem 1 in Sect. 1.2 the two diagonals PAl and X2Yl bisect one another. 
Similarly, the diagonals QA2 and X2Yl of OQX2A2Yl also bisect one another. 
Hence, the three lines PAl, QA2, X2Yl pass through one common point, i.e., 
the common midpoint of the pairs (PAl), (QA2), (X2Yl). Applying Oesargues' 
axiom 02 to 6.PQX2 and 6.AIA2Yl yields AIA2 II PQ, which is what we 
wanted to prove. 

For the other cases, the above proof is not applicable and further verification 
one by one is required. The reason can be seen again in Sect. 3.1. The proofs 
are easy yet cumbersome and are all omitted here. D 

Lemma 2. Let A, B be two points on the axis 11 corresponding to two numbers 
a, bin N, and C, D two points on the axis 12 corresponding to two numbers c, d 
in N. Suppose A, C are both distinct from 0, so that a-I, c-1 can be defined. 
Then a necessary and sufficient condition for the two lines A C and B D to be 
parallel or coincident is 

Proof. We suppose that AC is parallel to or coincident with BD as to prove 
a-lb = c-ld, from which the inverse can be easily obtained. 

Below we shall assume that the points A, B are distinct from It, the points 
C, D are distinct from h and AC II BD (and thus not coincident), while both 
are not parallel to It h 

Under these conditions, we may draw, through It, itA II hA, meeting 12 at 
A and, through h hC lilt C, meeting 11 at C (see Fig. 1.48). By the definition 
of multiplication, A, C correspond respectively to a-I, c- l in N. Now draw 
through B, BF II itA, meeting 12 at F and through D, DE II hC, meeting It 
at E. Again, by the definition of multiplication, E, F correspond respectively 
to c-1d, a-1b in N. We need to prove that a-1b = c-1d or EF Illth 

Fig. 1.48 
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To do so, let us draw through E, E F' II h h meeting 12 at F'. Then both 
F' and E correspond to c-1d. Since AC is not parallel to hh it meets hh 
at a point, say G. Since BD, EF' are parallel to AC, hh respectively, they 
also meet at a point, say H. Applying Desargues' axiom Dl to !:::. G h C and 
!:::.HED, it follows that HG passes through O. Applying Desargues' axiom D2 
to !:::.G Ah and !:::.H B F' yields B F' II Ah Because B F II Ah B F coincides 
with B F', as does F with F'. That is, 

-Ib -Id a = c , 

and the proof is complete. 
It is also not difficult to check all other cases one by one. We omit the 

verifications. D 

Remark. The condition in Lemma 2, in the case that B, D are also distinct from 
0, can be rewritten as 

But it cannot be rewritten as ba- I = dc-I, since the commutative law of 
mUltiplication generally does not hold (cf. Sect. 2.1). 

Returning to Example 2, we have the following. 

Theorem 1. Let 

P = (XI, X2), Q = (YI, Y2), R = (ZI, Z2), S = (UI, U2) 

be four points with P =1= Q, R =1= S. Suppose both PQ, RS are neither parallel to 
or coincident with It nor parallel to or coincident with 12. Then a necessary and 
sufficient condition for the two lines P Q and R S to be parallel or coincident is 

Proof Take two points A, B on II, corresponding to YI - XI, UI - ZI in N, and 
two points C, D on h, corresponding to X2 - Y2, Z2 - U2 in N. Since PQ is 
not parallel to nor coincident with 12, XI =1= YI and thus A is distinct from O. 
Similarly, B, C, D are all distinct from O. By Lemma 1, AC and PQ are 
either parallel or coincident, and so are BD and RS. Therefore, a necessary and 
sufficient condition for P Q and R S to be parallel or coincident is that A C and 
B D are parallel or coincident. By Lemma 2, a necessary and sufficient condition 
for the latter is 
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This is the formula we wanted to prove. Apparently, the condition may also be 
rewritten as 

o 

Exampie 3. We call any necessary and sufficient condition between XI and X2 
that the point (XI, X2) in the figure satisfies the equation of this figure. Derive 
the equation of a line and a necessary and sufficient condition for a point to lie 
on a line. 

Let the line be L and the point be P = (XI, X2). If L is parallel to or 
coincident with h (or i l ), then the equation of L is clearly of the form 

XI = c (or X2 = c), 

in which c is a constant corresponding to the intersection point of Land il 
(or i2) (see Fig. 1.49). 

We assume that L is not parallel to iI, i2 but meets i2 at C, which corresponds 
to a number c in N (cf. Fig. 1.50). Consider first the case in which L does not 
pass through h. Then we can draw through h, hA parallel to L, meeting i2 
at A, which corresponds to a number a =1= 0 in N. The numbers c and a are 
all determined by the line L. Now suppose P = (XI, X2) lies on L but not 
on i l nor on i2. Draw through P, PI II iI, P2 II i2, meeting i2, i l at X2, XI 
respectively. Furthermore draw, through XI, XIZ II L, meeting i2 at Z. Then 
X I, X 2 correspond respectively to Xl, x2 in N. By the definition of multiplication, 
Z corresponds to aXI. Moreover, by the definition of addition, 

aXI +X2 = c. 

L 

~~--------~---L 

----'~--------+-----l, 

................................ // 
/ 

fJ2 
/ 

/ 
-- PI 

/ P L 

Fig. 1.49 

-~--~~-~~-------------ll [, . /x ........ 
/ I Fig. 1.50 
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h 

/ " L 

Fig. 1.51 Fig. 1.52 

If P lies on both Land 11, then X2 = 0 (cf. Fig. 1.51). As C corresponds to 
e = aXI, Xl, X2 still satisfy the above equation. If P is on both L and h, i.e., 
P = C, then Xl = 0, X2 = e and Xl, X2 also satisfy the above equation. 

Finally, suppose that L is not parallel to It, 12 but passes through It (cf. 
Fig. 1.52). Let C be the intersection point of Land 12, which corresponds to a 
number e =j:. 0 in N. Then by an analogy to the proof before, an arbitrary point 
P = (Xl, X2) on L satisfies the equation 

eXI +X2 = e. 

On the contrary, every point P = (Xl, X2) which satisfies one of the follow
ing equations lies on a definite line: 

Xl = e, 

X2 = e, 

aXI + x2 = e (a =j:. 0). 

Summing up all the cases, we have: 

Theorem 2. The equation of a line in the plane is 

where al and a2 are not simultaneously zero. If a2 =j:. 0, then the line meets 12 
and the point of intersection corresponds to the number aile. If al =j:. 0, then 
the line meets 11 and the point of intersection corresponds to the number all e. 

Remark. Since the multiplication in the associated Desarguesian number system 
of a Desarguesian plane in general is not commutative, the equation of a line 
above cannot be written as 

In fact, this equation does not even represent a line. 
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Example 4. Let P = (Xl, X2), Q = (YI, Y2), R = (Zl, Z2) be three points. Find 
a necessary and sufficient condition for a line to pass through these three points, 
or equivalently for these three points to be collinear. 

Clearly, a necessary and sufficient condition for the three points P, Q, R to 
be collinear is that either at least two of them coincide, or all three are distinct 
from each other while the lines P Q and P R coincide. Therefore, according to 
the lemmas of Example 2 the necessary and sufficient condition to be found is 
that at least one of the following relations holds: 

1. Xl = YI = Zl, 

2. X2 = Y2 = Z2, 

3. Xl = YI and X2 = Y2, 

4. Xl = Zl and X2 = Z2, 

5. YI = Zl and Y2 = Z2, 

6. Xl ¥- YI, X2 ¥- Y2 and (YI - XI)-I(ZI - Xl) = (Y2 - X2)-I(Z2 - X2), 

7. YI ¥- Zl, Y2 ¥- Z2 and (Zl - YI)-I(XI - YI) = (Z2 - Y2)-I(X2 - Y2), 

8. Xl ¥- Zl, X2 ¥- Z2 and (Xl - ZI)-I(YI - Zl) = (X2 - Z2)-I(Y2 - Z2). 



2 Orthogonal geometry, 
metric geometry 
and ordinary geometry 

2.1 The Pascalian axiom and commutative axiom of multiplication 
- (unordered) Pascalian geometry 

In Desarguesian (plane) geometry which takes Hilbert's axioms of incidence 
H I, (sharper) axiom of parallels H IV, the axiom of infinity Doo , and Desar
gues' axioms D as its basis, one can uniquely determine a Desarguesian number 
system N, called a geometry-associated Desarguesian number system, as has 
been exhibited in the previous sections. This number system is actually a skew 
field (of characteristic 0) and in general it does not satisfy the commutative 
axiom of multiplication N 13 of the complex number system. In order to let 
the commutative axiom of multiplication be satisfied, too, so that N becomes 
a number field, we must introduce other axioms in this geometry. One way, as 
shown in Hilbert's "Grundlagen der Geometrie," is to introduce the so-called 
Pascali an axiom. What Hilbert called the Pascalian axiom is actually a special 
case of the theorem commonly named after Pappus. It is also a special case of 
Pascal's theorem in usual projective geometry where the conic section degen
erates into two lines. To distinguish the axiom considered by Hilbert from the 
general Pappus' and Pascal's theorems, we call it the linear Pascalian axiom, 
stated as follows. 

Linear Pascalian axiom. Let two sets of points A, B, C and A', B', C' respec
tively on two distinct lines I and [' be pairwise distinct (see Fig. 2.1). If 

BC' II B'C, AB' II A'B, 

then 

AC'II A'C. 

In this I and [' are called two base lines of the axiom. When they intersect, 
the corresponding axiom is called the Pascalian axiomfor intersecting lines. The 
Pascalian axiom given in Hilbert's book is the Pascalian axiom for intersecting 
lines. Below we shall call it Axiom P, denoted sometimes as Axiom 
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l' 

Fig. 2.1 

---"f.::,-----iK.------c:J<-'---l' 

Fig. 2.2 

The relation between this axiom and Desarguesian geometry is explained by 
the following points. 

1. Linear Pascalian axiom with the base lines parallel to each other. In this 
case the axiom can be deduced from other axioms, so it in fact is a theorem in 
Desarguesian geometry. The proof proceeds as follows. 

Since I and l' are parallel, the hypothesis implies that C BC' B' is a paral
lelogram. By Theorem 1 in Sect. 1.2 the diagonals BB' and CC' bisect one 
another. Similarly, ABA' B' is a parallelogram and thus AA' and BB' bisect 
one another. Thus AA' and CC' bisect one another too. Applying Theorem 2 in 
Sect. 1.2, one sees that ACA'C' is also a parallelogram; therefore, AC' II A'C. 
This is what we wanted to prove (cf. Fig. 2.2). 

2. Pascalian axiom for intersecting lines P and the commutative axiom of 
multiplication N 13. The significance of the Pascalian axiom for intersecting 
lines P in Desarguesian geometry is that it provides a necessary and sufficient 
condition for the geometry-associated Desarguesian number system to satisfy 
the commutative axiom of multiplication N 13. 

To explain this fact, we first assume that Axiom P holds. Take an arbitrary 
line I in the Desarguesian plane and two points 0 and I on I. Define a De
sarguesian number system such that 0 corresponds to 0 and I to 1. Let A 
and B be two points on I corresponding respectively to a and b in N. When 
A = B or one of A and B is 0 or I, ab = ba is apparent. So we assume 
that A, B, 0, I are all pairwise distinct (see Fig. 2.3). Now, we may take any 
line i' through 0 but distinct from I and an arbitrary point I' distinct from 
o on I'. Draw AB' II I I', BA' II II', meeting I' at B', A' respectively. Draw, 
moreover, through B', B'C II I' B, meeting I at C. If we define a Desarguesian 
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Fig. 2.3 

number system N on I' such that 0 corresponds to 0 and I' to 1, then it follows 
from Sect. 1.6 that A' corresponds to band B' to a in N. By the definition of 
multiplication, one knows that C corresponds to ba. Application of the linear 
Pascalian axiom 

p[1 / ABC] 
I' / A' B' I' 

yields A'C II I' A. Therefore, the definition of multiplication implies that C 
also corresponds to abo This means ab = ba, i.e., the commutative axiom of 
multiplication can be deduced from Axiom P. It is also easy to prove, on the 
other hand, that if the commutative axiom of multiplication of the geometry
associated Desarguesian number system N holds, then so does the Pascalian 
axiom for intersecting lines P. Therefore, the geometric axiom P is equivalent 
to the Axiom N 13 of number systems. 

From the above proof, one also sees that if the Pascalian axiom holds with 
respect to a certain pair of intersecting base lines I, I' in Desarguesian geometry, 
i.e., 

holds, then the commutative axiom of multiplication holds. Thus the Pascalian 
axiom holds with respect to an arbitrary pair of intersecting base lines, too. 

3. Pascalian axiom for intersecting lines and the theory of proportion. In his 
"Grundlagen der Geometrie," Hilbert derived the Pascalian axiom as a theorem 
by axioms of congruence H III, and based on it he established the theory of 
proportion. However, in the establishment of this theory, axioms of congruence 
had to be used. In the supplement to a revised edition of Hilbert's book, Bernays 
simplified the theory of proportion but still made use of axioms of congruence. 
We shall point out below that in Desarguesian geometry, the theory of proportion 
can be completely set up under the assumption of the Pascalian axiom for 
intersecting lines P alone, without the use of axioms of congruence (and axioms 
of order). However, if we do not assume Axiom P, it is impossible to establish 
such a theory of proportion in Desarguesian geometry. 

To demonstrate this recall the theorem that was proved in Sect. 1.7: 
Let two distinct lines I and I' meet at a point O. Take two arbitrary points 

I, I' distinct from 0 on I, I' respectively, and define a Desarguesian number 
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system N such that 0 corresponds to 0 and I, I' to 1. Let A, B be two points 
distinct from 0 on [, corresponding to two numbers a, b in Nand C, D be two 
points distinct from 0 on [', corresponding to two numbers c, d in N. Then a 
necessary and sufficient condition for AC and BD to be parallel or coincident is 

or 

Note first that in Desarguesian geometry, if we do not assume the Pascalian 
axiom for intersecting lines, then the above necessary and sufficient condition 
in general cannot be written as 

or 

To prove this, we suppose that A and B are distinct from 0, I (in the 
contrary case the condition may naturally be written in the above form) (see 
Fig. 2.4). For the sake of simplicity, let us consider the case D = I', i.e., d = 1. 
Then, from a theorem proved before one sees that AC II B D implies 

We need to prove that without the assumption of Axiom P, AC II BD does not 
imply 

ba- l = c- l or ab- l = c. 

Since in the case a#-O and b #- 0, a-I and b- I may be arbitrary non-zero 
numbers, this conclusion can be deduced directly from 2 above. Let us write 
down the proof as follows. 

Through I draw IE II BD, meeting [' at E. Then, according to Sect. 1.5, 
E corresponds to the inverse element b- I of b. Through E draw EF II AD, 
meeting I at F. Then F corresponds to the number ab -I in N. If the Pascalian 

Fig. 2.4 
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axiom P holds, then its application to 

P [I / 
I' / 

FAI] 
DEC 

67 

yields CF II DI and, therefore, ab- I = c. If, on the contrary, the Pascalian 
axiom P does not hold, e.g., 

P [I / 
I' / 

FAI] 
DEC 

is false, we may take I' = D and draw l' B II IE, meeting I at B. Thus C F is 
not parallel to I D. If we assume that A, B correspond to a, band C to c, then F 
corresponds to ab- I, while if C F is not parallel to I D then ab- I i= c. It follows 
that in the general case from AC II BD one can deduce a-Ib = c-Id but not 
ba- I = dc-I. Hence, it is impossible to set up a proper theory of proportion. 

If we assume the Pascalian axiom for intersecting lines, then by 2 above the 
commutative axiom of multiplication holds. Thus, the condition a-Ib = c-1d 
for AC II BD can be written not only as 

but also as 

ad = bc 

which can be defined furthermore as 

a: b = c: d. 

Based on this, the establishment of the theory of proportion is easy. 
4. From the Pascalian axiom for intersecting lines, one can deduce De

sargues' axioms D I , D2 (under the assumption of other axioms). This is the 
well-known Hessenberg theorem (cf. Hessenberg 1905a). 

Theorem (Hessenberg). In a geometry which satisfies the axioms of incidence 
H I, the (sharper) axiom of parallels H IV, the axiom of infinity Doo, and the 
Pascalian axiom for intersecting lines P, Desargues' axioms D I, D2 become 
theorems. 

Proof We need only prove Desargues' axiom D2. It is sufficient to prove only 
the case stated as follows, from which the other cases can be deduced. 

Let the vertices of the two triangles ABC and A' B' C' be distinct from each 
other and suppose that the connecting lines AA', BB', CC' of the corresponding 
vertices are distinct from each other and pass through one point O. Suppose 

AB II A'B', AC II A'C'. 
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We need to prove 
BC II B'C'. 

Let us consider the following four different cases: 

Fig. 2.5 

(1) AB is not parallel to OC and neither is AC to OB. 
(2) AB is not parallel to OC but AC is parallel to 0 B. 
(3) A C is not parallel to 0 B but A B is parallel to 0 C. 
(4) AB is parallel to OC and so is AC to 0 B. 

Case 1. See Fig. 2.5. Draw through A a parallel to B B': this parallel should meet 
A'C' at a point, say L, and meet CC' at a point, say M. Assume for the time 
being that LB' is neither parallel to AA' nor to CC'. Let the intersection point 
of LB' and AB be N. Since LB' intersects AA', application of the Pascalian 
axiom for intersecting lines 

p [L B' NJ 
o A A' 

yields LA' II NO. Therefore, AC II NO. Since AB also intersects CC', appli
cation of the Pascalian axiom for intersecting lines 

A B] 
o M 

yields N M BC. Applying once more the Pascalian axiom for intersecting 
lines 

p[N 
C' 

L B'] 
o M 

one obtains N M II B'C'. Hence, BC II B'C'. D 

The above assumption can be treated in the following way (see Fig. 2.6). 
Draw through B two parallels to AA' and CC', meeting AC at P and Q respec
tively. Similarly, draw through B' two parallels to AA' and CC', meeting A'C' 
at p' and Q' respectively. Draw through P, Q, P', Q' parallels to BB', meet-
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L' 

Fig. 2.6 

Fig. 2.7 

ing AA' at R, S, R', S/ respectively. Take an arbitrary point A* on AA', distinct 
from 0 and any of R, S, R', Sf. Draw through A* a parallel to AB, meeting BB' 
at B* and a parallel to AC, meeting CC/ at C*. Draw next through A* a parallel 
to BB', meeting AC and A'C' at Land L' respectively. Then L is distinct from 
P, Q and thus LB is neither parallel to AA' nor to CC/. Therefore, 6.A*B*C* 
and 6.ABC satisfy the hypotheses of Case 1 and the assumed condition. By the 
previous proof, we have B*C* II BC. Similarly, for 6.A* B*C* and 6.A' B'C', 
we have B*C* II B'C' and thus BC II B'C'. 

Case 2. See Fig. 2.7. In this case, AC II BB', but AB is not parallel to CC/. 
Take a point D on A B such that CD is not parallel to B B'. Extend the line 
o D to meet A' B' at D'. Then we may apply Case 1 to 6.AC D and 6.A' C/ D' 
to get CD II C'D'. Also, 6.DBC and 6.D'B'C' satisfy Case 1, so BC II B'C'. 

Case 3. This is similar to Case 2. 

Case 4. In this case, AB II CC/ and AC II BB'. As in Case 2, let us draw a line 
distinct from AA', BB', CC/ through 0 so as to intersect AB, A'B' at D, D' 
respectively, whereas CD is not parallel to B B'. Then 6.AC D and 6.A' C/ D' 
are as in Case 3, i.e., CD II C/ D'. Similarly, 6.DBC and 6.D' B'C' are as in 
Case 2 or Case 3; therefore, BC II B'C'. 
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This completes the proof of Hessenberg's theorem. The reason why we 
are so patient to write down the detailed proof in all different cases is still as 
mentioned before (also see Sect. 3.1). D 

5. Pascalian geometry 

Definition. If a (plane) geometry satisfies the following axioms: 

Hilbert's axioms of incidence H I; 
Hilbert's (sharper) axiom of parallels H IV; 
Axiom of infinity Doo; 
Pascalian axiom for intersecting lines P, 

it is called Pascalian geometry. 

In Pascalian geometry, by Hessenberg's theorem Desargues' axioms DI, 
D2 are naturally satisfied and thus, according to Sects. 1.5 and 1.6, there is 
an associated Desarguesian number system. According to 2 above, this system 
satisfies the commutative axiom of multiplication N 13. Thus, it is not only 
a number skew field but also a number field (of characteristic 0 due to the 
axiom of infinity). We shall call this field the number field associated with 
Pascalian geometry. In this geometry, after having fixed a coordinate system, 
the algebraic expressions of geometric relations become very simple because 
of the commutativity of multiplication. Consider, for instance, the lemma of 
Example 2 in Sect. 1.7. Then for four points P = (Xl, X2), Q = (YI, Y2), 
R = (ZI, Z2) and S = (UI, U2), so long as P =j:. Q, R =j:. S, a necessary and 
sufficient condition for P Q to be parallel to or coincident with RS becomes 

Here we no longer need the restriction that P Q, R S are not parallel to or 
coincident with 11, 12. 

2.2 Orthogonal axioms and (unordered) orthogonal geometry 

The usual Euclidean geometry, called ordinary geometry in this book, is mainly 
the study of metric properties of geometric configurations. In an axiom system, 
especially in Hilbert's, the metric properties are expressed by means of the un
defined fundamental concept congruence and some related congruence axioms. 
The introduction of these congruence axioms in the third group by Hilbert is 
not independent of the other groups of axioms, but uses the axioms of order. 
However, for those reasons stated in the preface, we shall establish geometry 
avoiding the use of the concept and axioms of order. Consequently, so-called 
segments, rays, angles, etc. all become meaningless, not to mention the length 
of segments or the size of angles. In order to establish, without assuming the 
axioms of order, an ordinary geometry similar to Euclidean geometry but in
cluding even wider metric geometries, whilst preserving the axioms of incidence 
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H I, the axiom of parallels H IV as well as the axiom of infinity and Oesargues' 
axioms 0, we shall introduce a few additional concepts and related axioms 
to replace partially the concepts and axioms of congruence. This and the next 
section are devoted to the exposition of such concepts. 

The relation of orthogonality is one of the clearest and most natural of metric 
properties. Many ancient cultures discovered figures such as Kou-Ku triangles 
and rectangles. The concept of orthogonality may be even more fundamental 
than that of parallelism. For example, the parallel relation of two lines can be 
described by means of the relation that both of the lines are perpendicular to a 
third one. In ancient Chinese geometry, the relation of orthogonality pervaded the 
whole system through rectangles, Kou-Ku triangles and various other constructs. 
In contrast, the concept of parallelism was rare. In the modern study of geomet
ric axioms, many authors have discarded the axiom of parallels but preserved the 
idea of orthogonality in order to unify all kinds of Euclidean and non-Euclidean 
geometries, cf. Bachmann (1959a, b) and the literature therein. The reader may 
also refer to Greenberg (1973). Those books all consider related problems from 
the viewpoint ofaxiomatization. Even so, from the viewpoint of mechanization, 
the orthogonal properties should also occupy a special position. Since the con
cepts of incidence and parallelism are essentially linear, this section focuses on 
orthogonality, which may be considered as the simplest non-linear one. 

Now we introduce perpendicularity as an undefined fundamental concept: A 
line I is perpendicular to a line I', denoted as I ..il'. This orthogonal concept 
satisfies the following axioms. 

Orthogonal axioms 0 
01. If I ..iI', then I' ..il. 
02. Given a point 0 and an arbitrary line I, there exists one and only one line 
I' ..il through o. 
03. If two lines I' and I" are both perpendicular to a third line I, i.e., I' ..i I 
and I" ..iI, then I' III". 

Our geometry will be assumed to satisfy the axioms of incidence H I, the 
axiom of parallels H IV, the axiom of infinity, and Desargues' axioms D as well 
as the above three orthogonal axioms. 

In this geometry, a line I may be perpendicular to itself, i.e., I ..il. Such a 
line is called an isotropic line. From Axioms 0 2, 0 3 and the axiom of parallels 
one knows that a line which is parallel to an isotropic line should also be an 
isotropic line, i.e., it is self-perpendicular. Moreover, any two parallel isotropic 
lines are perpendicular to each other. Therefore, if every line is isotropic then 
the concepts of orthogonality and of parallelism or congruence are identical. 
In such a geometry, the concept of orthogonality will be superfluous. For this 
reason we shall add some axioms. 

04. Through any point, there always exists a non-isotropic line. 

In order to make our geometry to have richer metric properties and to 
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approach the ordinary geometry as closely as possible, we further add the 
following. 

05 (Axiom of orthocenter). Let the vertices A, B, C of 6.ABC be non-collin
ear. Drop from A, B, C three perpendiculars LA ~ BC, LB ~ AC, Le ~ AB 
respectively. Then LA, LB, Le are concurrent. 

The three perpendiculars in this axiom dropped from the three vertices to 
the three sides of the triangle will be called the aLtitudes of the triangle. The 
common point of intersection of the three altitudes will be called the orthocenter. 

Now, let A, B, C be non-collinear and suppose that both AB and AC are 
isotropic lines. Draw through B, C two parallels to AC, AB respectively. Then 
by the axiom of parallels, these two lines meet each other, say at A'. By the 
orthogonal axioms 0 2 and 0 3, CA'is also an isotropic line and it is both 
parallel and perpendicular to AB. Similarly, BA' is also an isotropic line and is 
both parallel and perpendicular to AC. By the axiom of orthocenter 05, A' is 
the orthocenter of 6.ABC and AA' ~ BC. If BC is also an isotropic line, then 
AA' II BC, too. Since ABA'C is a parallelogram, this contradicts the axiom of 
infinity. Therefore, the three sides of a triangle whose vertices are not collinear 
cannot all be isotropic lines. 

From this, one may also show that Axiom 0 4 can actually be deduced from 
Axiom 0 5 and the other axioms. 

We call the geometry which satisfies the following axioms an unordered 
orthogonaL geometry or, simply, an orthogonaL geometry: 

Hilbert's axioms of incidence HI; 
Hilbert's (sharper) axiom of parallels H IV; 
Axiom of infinity and Desargues' axioms D; 
Orthogonal axioms 0 1-0 5. 

In this orthogonal geometry, the Pascali an axiom for intersecting lines is 
a theorem. A direct result is that the associated Desarguesian number system 
introduced according to Desargues' axioms is not only a sfield but also a field in 
which multiplication is commutative. This fact was found by Schur (1903). To 
prove it, we shall first prove the Pascalian axiom in the case that the intersecting 
lines are two distinct orthogonal lines. 

Orthogonal Pascalian theorem. Let A, B, C and A', B', C' be two sets of 
points respectively on two distinct orthogonal lines [ and L' that are distinct 
from each other and distinct from the intersection point 0 of [ and ['. If 

AB' II A'B, BC' II B'C, 

then 

AC'II A'C. 
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Proof. See Fig. 2.8. First of all, both 1 and l' are non-isotropic lines. By Axiom 
o 2, construct a line through B perpendicular to A' C; then, according to Axiom 
03 and the axiom of parallels, this line intersects l' at a point, say D'. 

Applying now the axiom of the orthocenter to .6.A' B D', we have D' C ..1 
A'B. 

Since AB' 1\ A' B, Axiom 03 and the axiom of parallels imply that D'C ..1 
AB'. 

Applying the axiom of the orthocenter to .6.AB'D' yields B'C ..1 AD'. 
By BC' II B'C, we have BC' ..1 AD'. 
Applying the axiom of the orthocenter to .6.C' AD' yields AC' ..1 BD'. 
Since AC' and A'C are both perpendicular to BD', Axiom 03 implies that 

AC' 1\ A'C. This completes the proof. D 

According to Schur's theorem and its proof above, Pascal's theorem for 
intersecting lines holds for two orthogonal lines in orthogonal geometry. Since 
we have assumed Desargues' theorem as an axiom, according to Sect. 2.1 the 
multiplication in the Desarguesian number system associated with this geometry 
is commutative. Again, from 2 in Sect. 2.1 one knows that the general Pascalian 
theorem for intersecting lines still holds. This theorem can also be proved by a 
direct use of the orthogonal axioms, without reference to Sect. 2.1. The following 
proof originates from Guse (cf. Bachmann 1959a: p. 208). 

We designate the intersection point of the two lines 1, l' as 0 and two sets of 
points on these lines as AI, A2, A3 and A~, A;, A~ respectively. The hypothesis 
consists of 

We want to prove 
AIA~ II A3 A;. 

For this purpose, we assume that AI, A 2, A3 are all distinct from each other 
and distinct from 0, and so are A~, A;, A~. Suppose the two lines 1 and l' are 
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Fig. 2.9 

not perpendicular nor isotropic and Ai Aj is not perpendicular to either I or I'. 
When all lines are perpendicular to each other, the proof below needs to be 
slightly modified. 

Take an arbitrary permutation ijk of 123 and 

let Fi be the orthocenter of b.Ai AjA~, 
let F: be the orthocenter of b.A;AjAb 
let Oij be the orthocenter of b.OAiAj. 

From Fig. 2.9, one sees that F2F3 and 023032 are perpendicular to A2A~ 
and A2A~ 1/ A3A;, so F2F3 1/ 023032. As F2023 and F3032 are perpendicular 
to I', we have F2023 1/ F3032. Similarly, F~F~ 1/ 023032 and F~032 1/ F~023. 
Applying Desargues' theorem to b.F2F~023 and b.F3F~032 yields F2F~ 1/ F3F~. 
Therefore F2F3F~F~ is a parallelogram. According to Sect. 1.2, the diagonals 
F2F~ and F3F~ bisect one another. 

In the same way, one can infer from AlA; II A2A~ that F1F2F{ F~ is also a 
parallelogram and, therefore, the diagonals F1F{ and F2F~ bisect one another. 

It follows from the above that F1F{ and F3F~ bisect one another. According 
to Sect. 1.2, F1 F3 F{ F~ is a parallelogram. Now using Desargues' theorem for 
b.F1F~013 and b.F3F{031' one obtains 013031 II F1F3 II F{F~. 

Assume that F1 F3 does not pass through A; so that A; F1 F3 is a triangle. 
As A;F1 and 0013 are both perpendicular to A1A~, we have A;F1 1/ 0013. 
Also A;F3 and 0031 are both perpendicular to A3A~, so A;F3 II 0031. Using 
Desargues' theorem for b.A;F1F3 and b.0013031, one obtains A;O 1/ F1013 1/ 

F3031. But this contradicts the fact that I' .1 F1013 and I' is a non-isotropic 
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line. Hence, FlF3 passes through A;, i.e., FlF3 .1 AlA;, FlF3 .1 A3A~. Hence 
AlA; II A3A~. 

Although we have used the axiom of the orthocenter to prove the Pascalian 
axiom for intersecting lines and, according to Sect. 2.1, one can deduce Desar
gues' axioms from the Pascali an axiom for intersecting lines by applying the 
axioms of incidence, parallels, infinity, etc., we still cannot readily omit De
sargues' axioms from the axiom system of orthogonal geometry. The proofs of 
Schur and Guse both use Desargues' theorems and theorems about midpoints. 
Since our purpose is not to study the logical relations and independence among 
axioms, the problem whether Desargues' axioms can be deduced from other 
axioms of orthogonal geometry so as to be regarded as theorems will not be 
discussed further. 

Since, on the other hand, there are concepts of both orthogonality and par
allelism as well as midpoints, we may define, for any pair (AB) of two distinct 
points, the line through the midpoint of the pair (AB) and perpendicular to the 
line AB as the perpendicular bisector of (AB). Clearly, if AB is an isotropic 
line, then its perpendicular bisector is A B itself. 

For L.ABC, the perpendicular bisectors of the pairs (AB), (AC), (BC) will 
be simply said to be the perpendicular bisectors of the three sides. As in ordinary 
geometry, the theorem on the circumcenter is still valid in orthogonal geometry. 
Namely, we have the following result. 

Theorem 1. The perpendicular bisectors of the three sides of any triangle are 
concurrent. 

Proof As in Fig. 2.10, let the midpoints of the pairs (BC), (AC), (AB) be 
AI, BI, CI respectively. According to Sect. 1.2, BICI " BC, AICI " AC, AI BI " 
AB. By the orthogonal axioms, the perpendicular bisector of BC is perpen
dicular to BICI, i.e., it is the altitude of L.AI BICI on side BICI. Similarly, the 
perpendicular bisectors of AC, AB are the altitudes of L.AI BICI respectively on 
the sides AI CI, AI BI. From the axiom of the orthocenter, we see that the three 
perpendicular bisectors are concurrent. The theorem is then proved. 0 

As in ordinary geometry, we call the common intersection point of the 
three perpendicular bisectors of the three sides of a triangle the circumcenter 
of the triangle. Since the concepts of distance and a circle do not exist in 
orthogonal geometry, the circumcenter here does not have the properties that 
the circumcenter of a triangle has in ordinary geometry. 

There are concepts of incenter and excenters of a triangle in ordinary geom
etry, but they cannot be extended directly in orthogonal geometry. In orthogonal 
geometry we do not assume any axiom of order nor do we have any concept of 
order and, thus, segments and angles have no meaning in this geometry. More
over, we do not assume any axiom nor any concept of congruence in orthogonal 
geometry, so we cannot even have a concept of bisectors of an angle. Even so, 
we can still introduce the concept of symmetric axes in this geometry (instead 
partially of the concept of bisectors of angles in ordinary geometry), as we do 
have concepts of orthogonality and midpoints. Let us state this as follows. 
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Let the perpendicular bisector of the pair (AB) of two points A, B be I. We 
call A the symmetric point of B with respect to I or I the symmetric axis of 
(AB). Any point A on I is said to be a symmetric point of itself with respect 
to I. Obviously, this definition has meaning only if I is a non-isotropic line. 

We may construct the symmetric point of any point A with respect to (a non
isotropic line) I in the same way as in ordinary geometry. By the orthogonal 
axiom 0 2, there is a line through A and perpendicular to I. Since I is non
isotropic, this line must meet I at a point, say M. According to Sect. 1.2, we 
construct the symmetric point B of A with respect to M. Then B is the symmetric 
point of A with respect to I. 

We show below some simple properties about symmetry. 

Property 1. Let I be a non-isotropic line. If the points AI, A2, ... are collinear, 
then the symmetric points BI, B2, ... of AI, A2, ... with respect to I are also 
collinear. 

Proof As in Fig. 2.11, construct perpendiculars to I through A I, A2, .... Since 
I is non-isotropic, these perpendiculars meet I at points, MI, M2, ... , say. Then 
the symmetric points BI, B2, ... of AI, A2, ... with respect to I are those of 
AI, A2, ... with respect to MI, M2, .... According to Sect. 1.2, BI, B2, ... are 
collinear. D 

Let a and b be the lines determined by A I, A2, . .. and by B I, B2, . .. re
spectively. We also know that, if a III, then b III. If a intersects I at 0, then 
b also intersects I at the same point o. Because of this property, we call b the 
symmetric line of a with respect to I, or I the symmetric axis of a and b. 

Property 2. Let I be a non-isotropic line. If the lines al and a2 are parallel, then 
the symmetric lines bl and b2 of al and a2 with respect to I are also parallel. 

Proof If bl and b2 intersect, say at B, rather than being parallel, then al and 
a2 intersect at the symmetric point of B. This contradicts the hypothesis. D 
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If we replace parallelism in Property 2 by perpendicularity, then the proof 
becomes much more complicated, see details below. 

Property 3. Let 1 be a non-isotropic line. If the lines a1 and a2 are perpendicular 
to each other, then the symmetric lines b1 and b2 of a1 and a2 with respect to 1 
are also perpendicular to each other. 

Proof. If one of a1 and a2, say a1, is parallel to I, then b1 is also parallel to 1 
and a2, b2 are the same, both perpendicular to I. Hence b1 .l b2. As shown in 
Fig. 2.12, suppose that both a1 and a2 are not parallel to 1 but meet 1 at 01 and 
02 respectively. When a1 or a2 is isotropic, a1 is coincident with a2 and thus 
b1 and b2 should also be isotropic and coincident, therefore b1 .l b2. Hence, in 
what follows we assume that a1, a2, bl , b2 are all non-isotropic lines. 

Under this assumption, a1 and a2 are distinct and meet at a point, say A. 
Suppose first A is distinct from 01 and 02. Let the symmetric point of A with 
respect to 1 be B; then B is the intersection point of h1 and b2. In addition, 
AB .l I, so the intersection point M of AB and I is the midpoint of the pair 
(AB). 

Now, if A02 II 01B, then by Property 2 we have B02 II 01A, for the sym
metric lines of A02 and 01B with respect to 1 are B02 and 01A respectively. 
Hence, a1 .l a2 or OIA .l 02A implies that 01B .l 02B or bl .l b2. 

If A 02 is not parallel to 01 B, then we may assume that A 02 (i.e., a2) 
meets h1 at A'. Similarly, b2 should also meet a1 at a point, say B'. Since the 
symmetric lines of a2 and b1 with respect to 1 are b2 and al respectively, the 
symmetric point of the intersection point A' of a2 and b1 with respect to 1 is the 
intersection point B' of b2 and a1. In particular, we have A' B' .l/. Applying 
the axiom of the orthocenter to LOlA' B', one sees that 02 is the orthocenter 
of the triangle and thus B' 02 .l 01A', i.e., b1 .l b2. 

Suppose finally the intersection point A of a1 and a2 on 1 coincides with 
01,02. Then the intersection point B of II and h is the same as point A. As in 
Fig. 2.13, take a point A' distinct from A on a1 and draw a; II a2 through A'. 
Let the symmetric point and line of A' and a; with respect to 1 be B' and b; 
respectively. Then a; II a2, a2 .l a1 imply a; .l a1. Using the case we have 
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proved already, it follows that b; ..i bi and thus bi ..i b2. This completes the 
proof. D 

Property 4. For any two non-isotropic parallel lines a and b, there is one and 
only one line I such that a and b are symmetric with respect to I. 

Proof. If such a line I exists, then I should be parallel to a and b. Therefore, 
for an arbitrary point A on a, the symmetric point B of A, with respect to I, 
lies on band AB ..iI, i.e., AB is perpendicular to a and b. Hence, we may take 
a point A on a and through it construct a perpendicular to a, meeting b at B. 
Thus the perpendicular bisector of AB is the unique symmetric axis I. D 

For two intersecting lines, the symmetric axes are similar to, but not the 
same as, the bisectors of angles in ordinary geometry. In orthogonal geometry, 
there is no guarantee that two intersecting lines have a symmetric axis. If the 
symmetric axes of two intersecting lines exist, there are two of them and they 
are perpendicular to each other. In that case, they are analogous to the angular 
bisectors of two intersecting lines in ordinary geometry. In detail, we have the 
following. 

Property 5. Two intersecting lines have either no symmetric axis or exactly two 
symmetric axes. In the latter case, the two axes are perpendicular to each other. 

Proof. See Fig. 2.14. Let the lines a and b intersect at 0 and have I as their 
symmetric axis. Take a point A distinct from 0 on a and let the symmetric point 
of A with respect to I be B. Then B lies on b, AB ..i I and the intersection 
point M of AB and I is the midpoint of the pair (AB). 

Erect now the perpendicular I' to I at 0 and construct through A a perpen
dicular to I', meeting I' at M' and bat B'. As AB' and I are perpendicular to I', 
by the orthogonal axiom 03 we have AB' 110M. Also, as M is the midpoint 
of (AB), according to Sect. 1.2, 0 is the midpoint of the pair (B B'). Next, since 
AB and I' are perpendicular to I, we have AB II I'. As 0 is the midpoint of 
(BB'), M' is the midpoint of the pair (AB'). This implies that I' is the perpen-
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dicular bisector of the pair (AB'). Thus, A and B' are symmetric with respect 
to I', and so are a and b. Hence a and b have two mutually perpendicular lines 
I and I' as their symmetric axes. 

Suppose that a and b have another symmetric axis I" different from I. Con
struct now A and B as before and the symmetric point B" of A with respect 
to I". Then I and I" are the perpendicular bisectors of two sides AB and AB" 
of !::::.ABB", so their intersection point 0 is the circumcenter of !::::'ABB". From 
the theorem about the circumcenter, one knows that the perpendicular bisector 
of (BB') passes through 0, in particular 0 is the midpoint of (BB'). Similarly 
as before, we have I" ..L I while I" coincides with I'. Thus there are exactly two 
symmetric axes of a and b, i.e., I and I'. The property is proved. 0 

Analogous to the theorem about incenter and excenters of a triangle in or
dinary geometry, in orthogonal geometry we have the following. 

Theorem 2. If the two lines AB, BC of !::::.ABC have as their symmetric axes 
b, b' and the two lines AC, BC have as their symmetric axes c, c', then the two 
lines AB, AC also have two symmetric axes, say a, a'. Furthermore, all these 
symmetric axes, three-to-three, intersect at four distinct points respectively. 

Proof. First of all, it is easy to know that the three sides of !::::.ABC are non
isotropic. 

Take a symmetric axis b of B A, B C and a symmetric axis c of C A, C B 
(see Fig. 2.15). Let us first show that b and c cannot be parallel. Assume that b 
and c are parallel. Let the midpoint of (BC) be M and construct through M a 
perpendicular to band c. Let this perpendicular meet b, cat B', C' and BA, CA 
at P, Q. Note that BC is not perpendicular to b, c, otherwise BC would coincide 
with BA, CA. Hence B', C' are distinct from B, C. According to Chap. 1, M 
is the midpoint of (B' C'). Since B', C' are the midpoints of (M P) and (M Q), 
it is easy to show that M is the midpoint of (PQ). Therefore, BA II CA cannot 
be true. 

From the above, b and c intersect at a point, say o. As in Fig. 2.16, through 

c 

Fig. 2.15 Fig. 2.16 
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o construct OA' .1 BC, OB' .1 AB, OC' .1 AC, and let these perpendiculars 
meet Be, AB, AC at A', B', C'. As the symmetric line of BA' with respect 
to b is B B', by Property 3 one knows that the symmetric line of 0 A' with 
respect to b is 0 B' and the symmetric point of A' with respect to b is B', 
so b is the perpendicular bisector of the pair (A' B'). Similarly, A' and C' are 
symmetric with respect to c, so c is the perpendicular bisector of the pair (A' C'). 
By the theorem about the circumcenter, 0 is the circumcenter of b.A' B' C' and 
the perpendicular bisector, say a, of the pair (B'C') also passes through O. 
Therefore B' and C' are symmetric with respect to a and the lines 0 B' and 
OC' are symmetric with respect to a, too. By Property 3 again, the lines AB' 
and AC' are symmetric with respect to a. Therefore, a passes through the point 
A and is a symmetric axis of AB and AC. 

This implies that AB and AC have another symmetric axis, say a', different 
from a, and a, b', c' are concurrent as before. Similarly, b, c', a' and c, a', b' are 
respectively concurrent. This completes the proof. D 

2.3 The orthogonal coordinate system of (unordered) orthogonal 
geometry 

In Pascalian geometry or Desarguesian geometry, the choice of coordinate axes, 
except for being intersecting, may be arbitrary. In (unordered) orthogonal geom
etry, as there are orthogonal lines, we may take any two intersecting orthogonal 
and thus non-isotropic lines as the coordinate axes 11 and 12. The intersection 
point 0 is the origin and the unit points It and h can be arbitrarily chosen on 11 
and 12, so long as they are distinct from O. Through a point P in the plane, con
struct two perpendiculars to It and 12, meeting them at Xl and X2 respectively. 
On 11 and 12 let Xl and X2 correspond respectively to Xl and X2 in the number 
system determined by mapping 0 to 0 and It, h to 1. Then the coordinates of 
P are the pair (Xl, X2) of numbers: P = (Xl, X2). Such a coordinate system de
termined by two intersecting orthogonal lines is called an orthogonal coordinate 
system and the coordinates of P are also called orthogonal coordinates. Since 
orthogonal geometry is a special kind of Pascalian geometry and the orthogonal 
coordinate system is a special kind of coordinate system, those algebraic expres
sions corresponding to the geometric relations such as parallelism, midpoint and 
equation of a line in Pascalian geometry are still valid. However, for concepts 
like perpendicUlarity, symmetry, etc. which appear in orthogonal geometry there 
are no corresponding ones in Pascalian geometry. The goal of this section is to 
set up the algebraic expressions for these geometric relations in an orthogonal 
coordinate system. 

Below, the number system associated with orthogonal geometry will be 
denoted by K. The number system defined by taking any line I and two distinct 
points 0 and I on it as 0 and 1 will be denoted by N (I, 0, l) as before. In 
view of Pascal's theorem in orthogonal geometry, those number systems are all 
number fields, i.e., the commutative law of multiplication holds, and there is a 
canonical isomorphism between N (I, 0, l) and K. Therefore, we shall identify 
N(/, 0, I) and K. 

An orthogonal coordinate system determined by two intersecting orthogonal 
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lines II, Iz and two points II, /z respectively on II, Iz (distinct from the intersec
tion point 0 of II, Iz) is denoted by C (II, Iz, II, /z) or simply by C. First of all, 
we introduce the concept of slope for a family of parallel lines with respect to 
the orthogonal coordinate system C. 

According to Sect. 1.7, the equation of a line parallel to Iz is always of the 
form 

Xl = C, 

in which c is a constant in K. And, the equation of a line not parallel to Iz is of 
the form 

in which a, m are also constants in K. The equations of those lines that are not 
parallel to lz but parallel to each other may have different a but the same m. 
We call m the slope of those parallel lines. Especially, for those lines parallel 
to II, the slope will be m = O. As for those parallel to Iz, we introduce a new 
symbol 00 and define their slope to be 00. 

If the slope of a family of parallel lines is m, then those lines which are 
perpendicular to these are also parallel to each other and their slope is a function 
of m. Let this function be f. Then 

f(O) = 00, f(oo) = o. 

Below we shall derive the value of f(m) for m =1= 0 and m =1= 00. 

See Fig. 2.18. To determine the function f, take Jz as the symmetric point 
of /z with respect to O. Then the coordinates of Jz are (0, -1). Construct 
the orthocenter E of 6.1I/zJz by the axiom of the orthocenter. Then E lies 
on the axis II. Let the coordinates of E be (k,O), where k is a constant in K 
determined by the orthogonal coordinate system C (II, Iz, II, /z). We say that k 
is the orthogonal rate of this coordinate system whose meaning is explained as 
follows. 

As II = (1,0), /z = (0, 1), Jz = (0, -1), E = (k, 0), the equation of the 
line II Jz is Xz = Xl -1 which has slope 1. Similarly, the slopes of II /z, hE, JzE 
are -1, _k-l, k- 1 respectively. Since II/z ..1 JzE and IIJz ..1 /zE, we have 

f(1)=-k- l , f(-l)=k- l , 

f(k- I ) = -1, f(-k- I ) = 1. 
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Fig. 2.18 

From those formulas, one sees that if 

m=+I, -1, k- I , or _k- I 

and 

f(m) = m', 

then 

kmm' + 1 = 0. 

Theorem 1. If the orthogonal rate of an orthogonal coordinate system is k, then 
for any two lines which are not parallel to an axis but perpendicular to each 
other, their slopes m and m' satisfy the relation 

kmm' + 1 = ° 
or 

f(m) = -1/km. 

Proof. Draw a line through h with slope m (m i= 0, (0), meeting 12 at A2, and 
a line through A2 parallel to hh meeting the axis 11 at AI. Then the equation 
of hA2 is X2 = mXI -m and the coordinates of A2 are (0, -m). In other words, 
the corresponding numbers of Al and A2 in the number systems N(lI, 0, h) 
and N(/2, 0, h) are both -m. Construct the orthocenter F of b.A2hlz. Clearly 
F lies on the axis 11. Since A2F and hE are both perpendicular to hlz, A2F II 
hE. As E and Al correspond respectively to the numbers k and -m in the 
number system on 11, F corresponds to -km in the number system, i.e., F = 
(-km, 0). Therefore, the slope of lzF is -1/ km. As lzF ..1 hA2, we have 
m' = -1/ km and the theorem is proved. 0 
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Let the equations of two perpendicular lines be expressed as 

Lu: UIXI + U2X2 + u3 = 0, 

Lv: VI XI + V2X2 + V3 = 0, 

in which U I, U2 are not simultaneously 0, and neither are VI, V2. If none of 
UI, U2, VI, V2 is 0, then the slopes of Lu, Lv are mu = -Ut!U2, mv = -Vt!V2 
respectively. Thus the condition for Lu, Lv to be perpendicular to each other 
becomes 

If one of UI, U2, VI, V2, say U2, is 0, then mu = 00. In this case, one should 
have mv = ° or VI = 0, so the above condition still holds. The other cases are 
similar. That is, the above condition is satisfied in all cases, so Theorem 1 can 
be restated in the following form. 

Theorem 1', A necessary and sufficient condition for two lines Lu and Lv to 
be perpendicular to each other is 

in which k is the orthogonal rate of the corresponding coordinate system. 

In particular, the theorem remains true in the case of there being only one 
line. For instance, a necessary and sufficient condition for Lu to be isotropic is 
that Lu is perpendicular to itself and thus is 

The orthogonal rate k depends apparently on the choice of coordinate sys
tems. We shall investigate the relation between the orthogonal rates k and k* 
determined by two different orthogonal coordinate systems C = C (11, 12 , It, lz) 
and C* = C(l;, l~, It, I{). Consider first the case I; = ii, l~ = Zz but It, I{ 
are not necessarily the same as It, h We denote the number systems on II, 12 
simply by NI = N(lI, 0, ft), Nt = N(lj, 0, In, N2 = N(Zz, 0, lz), N{ = 
N(12, 0, I{). Construct as before the symmetric point lz of lz with respect to ° 
and the orthocenter E of Lftlzlz (see Fig. 2.19). Then the coordinates of E 
in Care (k, 0), i.e., E corresponds to the number k in Nj. Let the coordinates 
of It and I; in C be (ai, 0) and (0, a2), i.e., they correspond to the numbers 
at and a2 respectively in Nt and N2. Then the coordinates of II, h lz in C* 
are (all, 0)*, (0, ai t )*, (0, -ai l)* respectively, or correspond to the numbers 

a t l , ail, -ail in Nt, N{. Since E corresponds to the number kat j in Nt, its 
coordinates are (kat I , 0)* in C*. Hence in C* the slope of the line ft lz is 
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and the slope of hE is 

As hE ~ It lz, by the previous theorem we have 

k*m*m*' + I = 0, 

where k* is the corresponding orthogonal rate of C*. This implies that 

Therefore the orthogonal rate k* differs from k by the square of a non-zero 
factor a2/al, where a2/al is a number in K. 

We thus have the following result. 

Theorem 2. The orthogonal rates of any two orthogonal coordinate systems are 
different by a non-zero square factor in K. 

From this theorem, one knows that orthogonal geometry determines a set of 
numbers {ka2 I a =j:. 0, a E K} which are different from each other by non-zero 
square factors. We call this set of numbers the orthogonal square set of the 
geometry. A proof of the theorem follows. 

Proof If Ii = 11 and Ii. = 12, the theorem has been proved before. Consider 
now the case in which 0* does not lie on either of 11 and 12, and Ii 11/1, Ii. 11/2. 
As in Fig. 2.20, construct the connecting line 00* and draw through It, h two 
parallels to 00*, meeting Ii, Ii. at It, It respectively. Let us consider first the 
case in which the unit points in C* are It and It. Construct the symmetric 
point lz of h with respect to 0, the symmetric point N of It with respect 
to 0*, and the orthocenters E and E* of !:::.lthlz and !:::.ItItN. Then the 
corresponding number k of E in the number system N = N (11, 0, It) is the 
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orthogonal rate determined by the coordinate system C (11, 12, h, h). Similarly, 
E* in N* = N (It, 0 *, In corresponds to the orthogonal rate k* determined 
by C*(lt,/~,I{,I{). Applying Desargues' axiom to l::,hOh and l::,I{O*I{, 
we have hh II I{ I{. Similarly, hh II I{ Ji. Hence hE II Ji E* and hE II 
I{E*. Applying again Desargues' axiom to l::,Ehh and l::,E*I{Ji, we have 
EE* II hI; II 00*. Thus E* corresponds to the number k* in N*, i.e., the 
corresponding number of E in N is k and k* = k. If we change the unit points 
to I{ and I{, then by the previous proof the orthogonal rate differs from k*, k 
by non-zero square factors. So the theorem holds in this case. 

Consider now the case that 0* is the same as 0 but It, Ii are distinct 
from 11, 12. Take an arbitrary h on h as the unit point (see Fig. 2.21) and 
draw through h a parallel to 12, meeting It at I{, considered as the unit point 
on It. Draw through I{ a parallel to 11, meeting 12, Ii at h I{, considered as 
the unit points on h, I~. For the coordinate systems C = C(ll, 12, h, h) and 
C* = C(lt, I~, I{, I{), the corresponding orthogonal rates will be denoted by k 
and k*. We want to find the relation between k and k*. 

For this purpose, let the number systems on the lines 11, 12 etc. be simply 
denoted as 

N(ll, 0, h) = N1, N(/2, 0, lz) = N2, 

N(lt, 0, In = N{, N(li, 0, I{) = Ni. 

Draw through I{ a parallel to Ii, meeting 11 at A 1 and through I{ a parallel to It, 
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meeting 12 at A2. Draw through A2 a parallel to 1~, meeting lr at B, through B 
and Ii two parallels to 12, meeting 11 at C and D respectively, and through Al 
a parallel to Zr, meeting Z~ at E. 

Obviously, the coordinates of It in C and in C* are (1,1) and (1,0)* 
respectively, denoted simply as 

It = (1,1) = (1,0)*. 

From this, one knows that the slope of the line lr = 0 It in C is 

and the slope of the line Z~ = 0 Ii which is perpendicular to Zr is 

As the second coordinate of Ii in C is clearly 1, the first coordinate of Ii in C 
should be -k, i.e., 

Ii = (-k, 1) = (0,1)*. 

Now we determine the coordinates of Al in C*. By construction, we know 
that OIiNAl and OItA1E are parallelograms. Thus E is the symmetric point 
of Ii with respect to 0, so E corresponds to the number -1 in Ni. It follows 
that the coordinates of Al in C* are 

Al = (1, -1)*. 

Hence the slope of the line It in the coordinate system C* is 

mt =-1. 

Next, we determine the coordinates of A2 in C*. By construction, 0 Ii A2B 
is a parallelogram. Hence, according to Sect. 1.2 the diagonals 0 A2 and Ii B of 
00 Ii A2B bisect. As Ii D and BC are both parallel to 12, 0 is the midpoint 
of the pair (C D). It is known from the above that the first coordinate of Ii in 
Cis -k. Therefore, D corresponds to -k in N1, so C corresponds to k in N1. 
As BC, hIt ..lZl, one has BC II hIt- Since h and It correspond to 1 in N1 
and in Nt respectively, C and B correspond to k in both N1 and Nt. From this, 
we know that 

A2 = (k, 1)*, 

so that the slope of the line Z2 = 0 A2 in the coordinate system C* is 

* 1 
m2 ="k' 
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Now, the lines 11 and 12 are perpendicular, so their slopes mt = -1 and 
mi = 1/ k in C* satisfy the relation 

* 1 k ·(-1)·-+1=0. 
k 

This implies that 
k* = k. 

If we take two points distinct from 0 on It and I~ as the unit points, then 
by our earlier proof, the corresponding orthogonal rates k* and k differ by a 
non-zero square factor. 

Clearly, any two orthogonal coordinate systems can be obtained by a re
peated application of the above. Hence, in all cases the orthogonal rates are 
only different by a non-zero square factor and the theorem is proved. 0 

We have already explained the algebraic expression for the orthogonal re
lation between two lines in an orthogonal coordinate system. We have also 
introduced the orthogonal rate corresponding to the coordinate system, as well 
as a set of numbers - the concept of orthogonal square set - as a characteristic 
of orthogonal geometry. Next we shall discuss the algebraic expression for the 
symmetric relation. 

Consider an orthogonal coordinate system C(lI, 12, II, h) with orthogonal 
rate k. Let 

Lu: UIXI + U2X2 + U3 = 0 

be a line in which U 1, U2 are not simultaneously zero. When discussing the 
symmetric relation for Lu, we suppose that Lu is a non-isotropic line. So, in 
what follows, 

Now, for a point 

let us determine the symmetric point 

of A with respect to Lu as follows. 
First of all, if A lies on Lu , i.e., 

then A * = A, i.e., 

Suppose otherwise A does not lie on Lu. Then A* and A are distinct and 
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detennine a line AA * having the equation 

As AA* is perpendicular to Lu , by Theorem I' we have 

Since the midpoint of the pair (AA *) is 

M = (at +at a; +a2) 
2 ' 2 ' 

which lies on the line Lu, substitution of M into the equation of Lu leads to 

Solving the last two equations, we get 

* -(kuI - u~)aj - 2kujU2a2 - 2kujU3 
aj = ku2 + u2 ' 

j 2 

* -2UjU2a j + (kUI - u~)a2 - 2U2U3 
a2 = ku2 + u2 

j 2 

Clearly, when A lies on Lu , i.e., Ujaj + U2a2 + U3 = 0, the above two 
equations become at = aj, aI = a2. Hence, they are always satisfied no matter 



2.3 Orthogonal coordinate system 89 

whether or not A lies on Lu. We may rewrite them in matrix form: 

ku2 - u2 
I 2 - 2ku IU2 -2kuIU3 

[:n~ 
ku2 + u2 ku2 + u2 ku2 + u2 

[~:l 
I 2 I 2 I 2 

2UI U2 ku2 - u2 - 2U2U3 I 2 

ku2 + u2 ku2 + u2 ku2 + u2 I 2 I 2 I 2 

0 0 1 

in which 
kui + uhf O. 

We also call the correspondence relation 

{
A---+A* 

(ai, a2) ---+ (a~, aD 

a reflection with respect to line Lu, denoted by Ru. The above matrix equation 
may also be written as 

A* = RuA, 

where 
ku2 - u2 

I 2 - 2ku 1U2 - 2ku IU3 

ku2 + u2 
I 2 ku2 + u2 

I 2 ku2 + u2 
I 2 

Ru = 2UIU2 ku2 - u2 
I 2 - 2U2U3 

ku2 + u2 
I 2 ku2 + u2 

I 2 ku2 + u2 
I 2 

0 0 1 

Now, let 
Lv: VI (XI - al) + V2(X2 - a2) = 0 

be a line through A = (ai, a2) (VI, V2 are not simultaneously 0). According to 
the last section, the reflection of Lv with respect to Lu, i.e., its symmetry with 
respect to Lu, is a line, denoted as 

Let us determine the equation of L~ as follows. Take a point 

on Lv, where 
V2 = bl - aI, -VI = b2 - a2· 

Then the symmetric point B* = (b~, bi) of B with respect to Lu is determined 
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by the following two equations: 

(kUI + u~)br = -(kuI - U~)bl - 2kuIU2b2 - 2kuIU3, 

(kuI + u~)b~ = -2UIU2bl + (kuI - u~)b - 2U2U3· 

From br, b~ and the previous ar, a~, we obtain 

(kUI + u~)(br - an = 2kuIU2Vl - (kuI - U~)V2' 

(kuI + u~)(b~ - aD = -(kuI - U~)Vl - 2UIU2V2. 

Since L~ is determined by the two points A * and B*, its equation is 

As kUI + u~ =1= 0, we may set 

vt = -(kui + u~)(b! - a!), 

v! = (kui + u~)(br - an· 

In this case L~ may also be written as 

where 
vi = (kuI - U~)Vl + 2UIU2V2, 

v~ = 2kuIU2VI - (kui - U~)V2' 

For any two lines Lu, Lv, not perpendicular to each other, we define a 
function 

UIV2- U2VI 
T(u, v) = = -T(v, u). 

kUI VI + U2V2 
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Now kUI VI + U2V2 -# 0, i.e., Lu, Lv are not perpendicular to each other, so 
T(u, v) is well defined. Therefore, there is a relation 

T(u, v) + T(u, v*) = 0 

between Lu, Lv and the reflection Lv* of Lv with respect to Lu, where Lu, Lv* 
are also not perpendicular to each other and thus T(u, v*) is well defined. 

2.4 (Unordered) metric geometry 

In (unordered) orthogonal geometry, two intersecting lines do not necessarily 
have a symmetric axis. For instance, if one of the two lines is isotropic but the 
other is not, then they cannot have a symmetric axis. In fact, even when two 
intersecting lines are non-isotropic, the existence of a symmetric axis cannot 
be derived from the original axioms of orthogonal geometry. It is proved in 
this section that the existence of symmetric axes is in essence equivalent to the 
inclusion of the concepts of congruence and metricity in the geometry. Even 
though there is no order relation in orthogonal geometry so that congruence 
and metricity concepts do not have all the properties associated with them in 
ordinary geometry, a rather important part of the properties (e.g., the Kou-Ku 
theorem) can be retained. 

For this end, we introduce the following axiom. 

Axiom of symmetric axes S. Any two non-isotropic intersecting lines have a 
symmetric axis. 

By Property 5 in Sect. 2.2, two intersecting lines have exactly two sym
metric axes. We call an (unordered) orthogonal geometry satisfying the axiom 
of symmetric axes an (unordered) metric geometry. We call it so because one 
can introduce some metric properties as long as the axiom of symmetric axes 
is assumed, see below for details. 

First, we discuss the orthogonal rate and orthogonal square set in unordered 
metric geometry. 

Take any two intersecting orthogonal lines 11 and 12 as the coordinate axes 
(see Fig. 2.24) and any point h distinct from the intersection point 0 as the unit 
point on 11. As 11, 12 are evidently non-isotropic, by the axiom of symmetric axes 

la 

s 

-~7f------7-:----- 11 

Fig. 2.24 
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we may take a symmetric axis of It, 12, say s, and construct the symmetric point 
/z of It with respect to s. Then /z, lying on 12, will be taken as the unit point 
on 12. In this case the orthogonal rate k of the orthogonal coordinate system 
C (11, 12, It, /z) is 1. We show this as follows. 

The symmetric axis s is the perpendicular bisector of the pair (It /z) and thus 
passes through the midpoint M = (1, 1) of (It/z). Therefore, the slope of s 

is m = 1/1 = 1. On the other hand, It = (1,0), /z = (0, 1), so the slope of 
It 12 is m' = -1. As s is perpendicular to It /z, their slopes satisfy the relation 
kmm' + 1 = O. This yields k = 1. 

Consider now two intersecting orthogonal lines as the coordinate axes and 
two points, which are on these two lines and are symmetric with respect to one 
symmetric axis of these two lines, as the unit points. The coordinate system 
formed in this way is called a Desarguesian coordinate system in unordered 
metric geometry and the corresponding coordinates of points are called Desar
guesian coordinates. According to the last section, the above result can be stated 
as follows. 

Theorem 1. The orthogonal square set of (unordered) metric geometry consists 
of non-zero square numbers. In particular, the orthogonal rate of a Desarguesian 
coordinate system is 1. 

It follows from Sect. 2.3 and this theorem that as for a Desarguesian coor
dinate system, a necessary and sufficient condition for two lines 

Lu: UIXI + U2X2 + U3 = 0, 

Lv: VIXI + V2X2 + V3 = 0 

(u I, U2 are not simultaneously 0 and neither are VI, V2) to be perpendicular to 
each other is 

while a necessary and sufficient condition for Lu to be isotropic is 

As for two lines Lu, Lv with slopes mu, mv '# 0 or 00, the condition can also 
be written as mumv + 1 = O. These are all the same as in ordinary geometry. 

Next, we introduce the concept of congruence. 
If AI, A2 are respectively the symmetric points of two points RI, R2 with 

respect to a non-isotropic line, then we say that the pair (AIA2) is congruent 
to the pair (RIR2). If (AIA2) is congruent to (RIR2) and (RIR2) is congruent 
to (CIC2), then the pair (AIA2) is also congruent to the pair (CIC2). When 
(AIA2) is congruent to (RIR2), we write 
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The relation of congruence has some simple properties shown below. 

Property 1. The relation of congruence among pairs of points is an equivalence 
relation. 

Proof The symmetry and transitivity of the relation of congruence can be ob
tained directly from the definition. We now prove the reflexivity as follows. 

If Al is distinct from A2 and the line [ connecting AI, A2 is non-isotropic, 
then it is known from the definition that (AIA2) == (AIA2), for the symmetric 
points of A I, A2 with respect to [ are themselves. In any case we can always 
take a non-isotropic line I in the plane. Letting the symmetric points of AI, A2 
with respect to [ be A~, A; respectively, by definition we have 

Since, on the other hand, the symmetric points of A~, A; with respect to I are 
AI, A2, we also have 

(A~A;) == (AIA2). 

Hence, by symmetry in the definition, (AIA2) == (A]A2). o 

Property 2. For any pair (A]A2) of points 

Proof If A], A2 are distinct and the connecting line A I A2 is non-isotropic, then 
we may take the perpendicular bisector [' of (A]A2) as a symmetric axis. As 
A], A2 are respectively symmetric to A2, A], we have (AIA2) == (A2AI). See 
Fig. 2.25. 

Suppose now A] A2 is isotropic. Then we may take the midpoint M of 
(AIA2) and construct a non-isotropic line [ through M using Axiom 04. Con
struct through M a perpendicular [' to [ using Axiom 0 2 and construct the 
symmetric point A'] of Al with respect to [. As [' II AIA~ and M is the mid
point of (A] A2), [' passes through the midpoint of (A~ A2). Furthermore, [ passes 

/' 

Fig. 2.25 
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Fig. 2.26 

through the common midpoint of (AlA;) and (AIA2), so III A;A2. Therefore, 
I' 1. A; A2 and thus the symmetric point of A; with respect to I' is A2. Similarly, 
when the symmetric point of A2 with respect to I is A;, A; lies on the line 
A; M and M is the midpoint of (A; A;). Also, the symmetric point of A; with 
respect to I' is AI. Hence, with respect to the symmetric axes 1,1', we have 
(AIA2) == (A; A;), (A; A;) == (A2AI). Therefore, (AIA2) == (A2AI). D 

Property 3. Two opposite sides of a parallelogram ABC D are congruent to each 
other, i.e., 

(AB) == (C D), (AD) == (BC). 

Proof According to Sect. 1.2, the diagonals AC and B D of 0 ABC D bisect 
one another at their intersection point O. That is, 0 is the common midpoint 
of the pairs (AC) and (B D) (Fig. 2.26). 

Suppose first that at least one of AC, BD (say AC) is non-isotropic. Let 
AC = I and construct through 0 a perpendicular I' to I. Let the symmetric 
point of D with respect to I be designated by D'. Then, as in the proof of 
Property 2 the symmetric point of D' with respect to I' is identical to B. Now 
we have 

(AD) == (AD') 

with respect to the symmetric axis I, and 

(AD') == (CB) 

with respect to the symmetric axis I'. Hence (AD) == (CB) or, by Property 2, 
(AD) == (BC). Similarly, we also have (AB) == (C D). 

Suppose now the diagonals AC and B D are all isotropic (Fig. 2.27). Ac
cording to Sect. 2.2, the three sides of a triangle cannot all be isotropic, so 
the lines AB, BC, CD, AD cannot all be isotropic. Hence, we can construct a 
line I through 0 which, if perpendicular to AB and CD, will meet them. Let 
us denote the points of intersection by E and F. Construct through C and D 
respectively two perpendiculars to AB, meeting it at points A' and B'. Then E 
is the midpoint of both (AA') and (B B') because 0 is the midpoint of both 
(AC) and (BD). Since the symmetric points of A, B with respect to I are A', B' 
respectively, we have 

(AB) == (A' B'). 
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Moreover, the two opposite sides A' B' and CD of the parallelogram A' B' DC 
are respectively perpendicular to A' C and B' D. From this it is easy to show 

(A' B') == (C D). 

In virtue of the transitivity of congruence, (AB) == (CD). Similarly, we have 
(BC) == (AD). 0 

The above definition and properties of congruence (except Theorem 1) do 
not actually use the axiom of symmetric axes and can thus still be regarded 
as the contents of orthogonal geometry. However, for some results below, the 
axiom of symmetric axes will be indispensable. 

First of all, a pair of points on an isotropic line apparently cannot be congru
ent to a pair of points on a non-isotropic line. Thus the relation of congruence 
may be restricted to the pairs of points on non-isotropic lines. On the other 
hand, because of the axiom of symmetric axes any two non-isotropic lines al
ways have symmetric axes, so we can consider the problem of congruence for 
pairs of points lying on any two non-isotropic lines. 

For this purpose, we first take a fixed non-isotropic line I in the plane and 
two points I, J on [ with midpoint o. For these fixed [, I, J, we say that (I J) 
is a standard pair of points. Then we may restate the axiom of symmetric axes 
in the following form. 

Axiom of transposition 0'. After fixing a point 0' on any non-isotropic line [', 
there are exactly two points I' and J' with 0' as their midpoint such that 

(I' J') == (1' I') == (I J). 

If, for instance, a non-isotropic line [' passes through 0 but it is distinct 
from I and the chosen 0' is the same as 0, then, by setting s, s' to be the 
two symmetric axes of [, [', the two points I', J' are identical to the symmetric 
points of I, J with respect to s, s'. If l' does not pass through 0 and is not 
parallel to I, we can draw I" II [' through 0, and take 0" = 0 on [" and I", 1" 
as the symmetric points of I, J with respect to s, s'. While drawing through 
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1", J" parallels to 00/, meeting 1/ at 1/, J/, one sees that 1/, J/ are the two 
points on 1/ with 0 as their midpoint in the axiom of transposition. 

Now fix a line I and take thereon a standard pair (I J) of points with mid
point O. Then we may determine Desarguesian number systems N (I, 0, I) and 
N(I, 0, J) on I. Similarly, for any line 1/, a point 0/ on it and a pair (1/ J/) 
of points congruent to (I J) with 0/ as their midpoint, we can determine the 
number systems N (1/, 0/, 1') and N (1/, 0/, J/), too. Such number systems are 
said to be matchable, with 0 and 0/ respectively as their centers. 

Consider any two points A, B on I. Let A', B' be two points on another 
non-isotropic line 1/ such that (A' B') == (AB). If A, B correspond respectively 
to the numbers a, b in the number system N(I, 0, I), then they correspond to 
-a, -b in the number system N(I, 0, J). For the matchable number systems 
N(I', 0/,1/) and N(I', 0/, J/) on 1/, it is easy to prove that there are c, d such 
that A', B' correspond to a/ = a + c, b' = b + cor a/ = -a + d, b' = -b + d. 
Hence, in any case we have 

(b - a)2 = [(-b) - (-a)f = (b' - a/)2. 

In other words, the square of difference of the two corresponding numbers of 
a congruent pair of points in any matchable number system on the line where 
the two points lie is a constant. We call this constant the square of distance of 

the pair (AB), denoted as AB. This result can be summarized as the following 
important property. 

Property 4. Non-isotropic congruent pairs of points have one and the same 
square of distance. The square of distance of a pair of points is 0 when the 
two points are the same, and is non-zero - more precisely, is the square of a 
non-zero number in the number field associated with the geometry - when the 
two points are distinct from each other. In the latter case the non-zero number 
is determined not uniquely but only up to sign. 

Here, by a non-isotropic pair of points we mean that the two points, when 
distinct, do not lie on an isotropic line. The square of distance is with respect 
to a fixed standard pair of points. 
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We call a triangle with two perpendicular sides which together with the third 
one are all non-isotropic a Kou-Ku triangle. We call the third side of a Kou-Ku 
triangle its hypotenuse and the intersection point of the two perpendicular sides 
its vertex. The theorem about Kou-Ku triangles below is the main theorem of 
this section. It is also the main benefit of introducing the axiom of symmetric 
axes or of transposition. 

Theorem 2 (Kou-Ku theorem). Let the vertex of a Kou-Ku triangle ABC be C. 
Then there is a relation 

among the squares of distances of the pairs (AB), (AC), (BC). 

Before coming to the proof of this theorem, let us first prove the following 
lemma. 

Lemma. Let the vertex of a Kou-Ku triangle ABC be C. Construct through C 
a perpendicular to A B, meeting A B at a point D. If we introduce two matchable 
number systems with A as their center on the lines AB and AC, and let C, B, D 
correspond to c, b, d respectively, then we have the relation 

Proof. See Fig. 2.29. Let the two matchable number systems with center A on 
AB = I and AC = I' be N = N(/, A, l) and N' = N(/', A, I') respectively. Let 
s be a symmetric axis of I, I' and suppose that I is symmetric to I' with respect 
to s. Moreover, let the symmetric point of D with respect to s be D' on I' and 
the symmetric point of C with respect to s be C' on I. Then C C' and D D' are 
both perpendicular to s. Furthermore, the symmetric line of CD with respect 
to s is C' D', so they intersect at a point E on s. By Property 3 of Sect. 2.2 or 
the axiom of the orthocenter, it is known from CD ..11 that C'D' ..1/', so that 
C'D' II Be. Now through C draw a parallel to ['C', meeting I at a point, say F. 
By applying Pascal's theorem to the intersecting lines I, I' and the two sets of 
points F, C', B and I', C, D' thereon, it follows that FD' II BI'. By hypothesis, 

I' 

"'s 

F D .,.. \ --B 
,.. --,.. -

~----

Fig. 2.29 



98 Orthogonal, metric, and ordinary geometries 

B, C', D correspond respectively to b, c, d in the number system N. Similarly, 
C, D' correspond respectively to c, d in the number system N'. By the definition 
of multiplication in number systems, point F corresponds to both c2 and bd in 
the number system N, i.e., c2 = bd. 0 

Proof of the Kou-Ku theorem. Let AB = I, AC = Ii, BC = I~ as in Fig. 2.30. 
Draw a perpendicular through C to I, meeting I at a point D, and construct the 
midpoint M of the pair (AB) and the symmetric point E of D with respect 
to M. Form the matchable number systems NI = N(l, A, h) on I and N; = 
N(li, A, I{) on Ii. Let the symmetric point of h with respect to M be h 
Furthermore, form the matchable number systems N2 = N (I, B, h) on I and 
N~ = N(l~, B, I~) on I~. 

Suppose that 

B, D correspond to bl, d l in NI, 
C corresponds to CI in N{, 
A, D correspond to a2, d2 in N2, 
C corresponds to C2 in N~. 

Then, by the above lemma we have 

Obviously, 

hdi = ci, 
a2d2 = c~. 

Moreover, the corresponding number d2 of D in N2 is the corresponding number 
of E in NI, while M corresponds to a2/2 = bd2, in both NI and N2. Since M 
is the midpoint of D and E, we have 

Fig. 2.30 
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From the definition of the square of distance, it follows that 

2 = 2 -
CI = AC, C2 = BC, 

2 2 = bl = a2 = AB. 

Combining the above equations, we have AB = AC + BC, which is what we 
wanted to prove. D 

By the Kou-Ku theorem just proved we immediately obtain the following 
result. 

Theorem 3. If the coordinates of two points P and Q in a Desarguesian coor
dinate system are 

P = (XI, X2), Q = (YI, Y2) 

respectively, then the square of distance of (P Q) is 

- 2 2 P Q = (XI - yj) + (X2 - Y2) , 

where it is assumed that P Q is non-isotropic when P and Q are distinct from 
each other. 

Until now we have only been concerned with the congruence of pairs of 
points but not the congruence of angles. Even though we have added the axiom 
of symmetric axes to the orthogonal axioms, there is still no concept of the 
length of a segment in unordered metric geometry. Hence, we have introduced 
only the square of distance of a pair of points but not the length of a segment 
nor the distance between two points. Also, rays and angles are not defined in 
this geometry. Therefore, we cannot speak about four intersectional angles of 
two intersecting lines. However, we might still say that two intersecting lines 
constitute a total angle. If these two lines are I and I' with intersection point 0, 
we denote the total angle by LO(l, I') or by LO(l', I). If no confusion can arise, 
it is also simply denoted as LO or L(l, I'). We shall extend this to the case of 
two coincident lines I and l' with a point 0 thereon. In that case, the total angle 
will be called a straight angle. When I and I' are perpendicular to each other and 
intersect at point 0, the total angle formed is called a right angle. Whenever 
a total angle is referred to, it will always be restricted to the case in which I 
and I' are non-isotropic. Then, point 0 is called the vertex and I, I' the two sides 
of the total angle. According to the axiom of symmetric axes, the two sides of 
a total angle, when they do not coincide, i.e., the total angle is not a straight 
angle, have exactly two symmetric axes which will be called the bisectors of 
this total angle. 

We say that two angles L 0 (II, 12) and L 0' (Ii ' I~) are congruent if there is a 
non-isotropic line s such that the symmetric point of 0 and the symmetric lines 
of 11,12 with respect to s are 0' and Ii, I~ respectively. If LO(lI, h) is congruent 
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to LO'(l~,I~) and LO'(I~,I~) to LO"(I~,I~), we also define LO(l\, 12) to be 
congruent to LO"(l~, ID. If two angles LO(I\, 12) and LO'(l~, I~) are congruent 
to each other, we write 

Suppose that for triangles ABC and A' B'C' the following congruences hold: 

(AB) == (A' B'), (AC) == (A'C'), (BC) == (B'C'), 

LA(AB, AC) == LA' (A' B', A'C'), 

LB(BA, BC) == LB'(B'A', B'C'), 

LC(CA, CB) == LC'(C'A', C'B'). 

Then we say that 6ABC is congruent to 6A' B'C', and write simply 

6ABC == 6A'B'C'. 

Clearly we have the following property. 

Property 5. LO(I\, lz) == LO(12, II), and the relation of congruence among 
angles is an equivalence relation. The relation of congruence among triangles is 
also an equivalence relation. 

Theorem 4. Suppose that the sides of two triangles ABC and A' B'C' are all 
non-isotropic and 

(AB) == (A' B'), (AC) == (A'C'), (BC) == (B'C'). 

Then these two triangles are congruent. 

Proof. If A' and A are distinct and AA' is non-isotropic, we may construct the 
perpendicular bisector s of the pair (AA'). Let the symmetric points of B', C' 
with respect to s be B", C"; then we have 6A' B'C' == 6AB"C". Suppose that 
B" is distinct from B. If AB and AB" do not coincide, we may take one of their 
angular bisectors as s'. If AB and AB" coincide, construct their perpendicular 
s' through A. Let the symmetric point of C" with respect to s' be C"'. Then 

6AB"C" == ABC"'. 

Since the relation of congruence among triangles is an equivalence relation, to 
prove that LA == LA' it suffices to consider only the case in which A', B' of 
6A' B'C' coincide respectively with A, B. There is also no difficulty when AA' 
is an isotropic line. 

Let us introduce a Desarguesian coordinate system with A as its origin and 
the line AB as 1\, one of the coordinate axes (see Fig. 2.31). Choose the unit 
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-------A~~----------~B-----Il 

Fig. 2.31 

points on the coordinate axes such that the number systems so determined are 
matchable with the standard number system. Let the coordinates of points be 

B = (b,O), C = (c, d), C' = (c', d'). 

Since the congruence of pairs of points corresponds to the equality of squares 
of distances, by Theorem 3 it follows from 

(AC) == (AC'), (BC) == (BC') 

that 
c2 + d2 = cr2 + d,2, 

(c - b)2 + d2 = (c' - b)2 + d,2. 

A subtraction of the above two equations yields 

2cb = 2c'b. 

As B does not coincide with A, we have b ::j:. O. This implies that 

, 
c = c. 

It follows then from the first of the above two equations that d2 = d r2 , i.e., 

d = d' or d = -d'. 

In the former case C' coincides with C, and in the latter case C' is symmetric 
to C with respect to AB. Therefore, in any case we have 

!::.ABC == !::.ABC'. 

The proof is thus complete. o 
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In contrast to Theorem 4, the other two theorems about the congruence of 
triangles in ordinary geometry do not hold here. On the other hand, though 
we cannot define the distance and length of a pair of points, we may define the 
square of distance as a certain measure of distance between two points which has 
some of the properties that the distance and length have in ordinary geometry. 
Similarly, we cannot define the size of a total angle, but we may still introduce a 
measure of the size of an angle having some of the properties it has in ordinary 
geometry. For instance, the square of the function T of two intersecting lines 
at the end of the last section may be taken as such a measure. Thus, unordered 
metric geometry retains some of the metric properties of ordinary geometry. 
Nevertheless, as there is no concept of order, these metric properties are not 
complete in comparison with those of ordinary geometry. The next section will 
discuss this problem further. 

2.5 The axioms of order and ordered metric geometry 

In the previous sections, we have established unordered orthogonal geometry 
and unordered metric geometry from the axioms of incidence H I, the axiom of 
parallels H IV, the axiom of infinity, Desargues' axioms D, and the orthogonal 
axioms 0 as well as the axiom of symmetric axes S. Although we can par
tially introduce the usual relation of congruence and metric properties in such 
geometries, as there is no concept of order, numbers in the geometry-associated 
field do not have positiveness and negativeness nor can their sizes be com
pared. Thus the corresponding relation of congruence and metric properties are 
not complete in comparison with those in ordinary geometry. For this reason we 
have to introduce an order or similar concept. These concepts and axioms can be 
introduced in different ways; while this book follows the original "Grundlagen 
der Geometrie" by Hilbert. There were several editions of Hilbert's book and 
the axioms of order were revised from time to time; the details were all slightly 
different but the final outcomes remain the same. Even though the axioms are 
not as completely independent of each other in the first edition as they are in 
later editions, in what follows we shall state them on the basis of the first edition 
since our goal is not the logical relation among axioms and their independence. 

The axioms of order deal with three distinct points on a line, and include 
an undefined fundamental concept of one point lying between two other points. 
This concept satisfies the following axioms (in the plane). 

Axioms of order H II 
H Ill. Let A, B, C be three distinct points on a line. If B lies between A and 
C, then B also lies between C and A. 
H 112. For any two distinct points A and C on a line, there always exists 
another point B which lies between A and C, and another point D such that C 
lies between A and D. 
H 113. Given any three distinct points A, B, C on a line, one and only one of 
the following three cases holds: B lies between A and C, A lies between B 
and C, and C lies between A and B. 
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Given two distinct points A and B, the totality of points on the line deter
mined by A, B and between A and B is called a segment, denoted as IABI. By 
Axiom H Ill, it may also be denoted as I B A I. A and B are called the end points 
of IABI or IBAI. As usual, we may also define a polygonal line IABC··· KLI 
formed by the segments A B, B C, ... , K L with A and L as end points and 
define a polygon, a simple polygon and so on. We do not explain them in further 
detail. 

H 114 (Pasch's axiom). Let A, B, C be three points which are not collinear. If 
a line I passes through a point of the segment I A B I, then I passes through either 
point C, or a point on the segment lAC!, or a point on the segment IBC!. 

By the axioms of incidence H I and axioms of order H III-H II4, we can 
have some separation properties as listed below. 

Separation property 1. Let a line I and a point 0 on I be given. Then all points 
on I distinct from 0 can be separated into two parts, called the two sides of 0 
on I, such that 0 lies between A, B when A, B lie on different sides, and 0 
does not lie between A, B when A, B lie on the same side. Each of the two 
parts is a half-line or a ray emanating from 0 on I. 

Separation property 2. Given any line I in the plane, all points not on I can be 
separated into two parts, called the two sides of I in the plane such that any 
segment IABI and I have no common point when the two points A and B lie 
on the same side, and any polygonal line IA··· BI connecting A, B and I must 
have common points when A and B lie on different sides. 

Separation property 3. Any two half-lines It, 12 emanating from a point 0 which 
together do not form a line are said to form an angle with 0 as its vertex and 
11,12 as its sides, denoted by 1.(11,12) or 1.(12, It). Then all points not lying in 
the angle (neither the vertex nor on the sides) can be separated by the angle into 
the interior and exterior parts. Any two points lying in the interior (exterior) 
of the angle can be connected by a segment (or polygonal segment) without 
meeting the angle. But if one of the two points lies in the interior and the other 
in the exterior of the angle, any polygonal segment connecting these two points 
meets the angle. Furthermore, the interior is the common part of the following 
two parts: one is that side of 11 which contains points on h and the other is 
that side of 12 which contains points on 11. As for the exterior of the angle, it 
consists of all points that lie neither in the interior of the angle nor in the angle. 

Separation property 4. Given any simple polygon P, all points not on P can be 
separated into two parts, called the interior and exterior of P, such that there is 
a polygonal segment IA·· . BI connecting two points A, B that does not meet P 
when A, B lie in the interior or exterior, and any polygonal segment IA··· BI 
connecting two points A, B should meet P when A, B lie respectively in the 
interior and the exterior. Furthermore, the difference between the interior and 
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the exterior is that there are lines lying completely in the exterior but no line 
can lie completely in the interior of P. 

Let P be a polygon. If for any two adjacent vertices of P, other vertices of 
P all lie on the same side of the line connecting these two adjacent vertices, we 
call this polygon a convex polygon. The segment connecting any two adjacent 
vertices is called a diagonal segment of this convex polygon. We then have the 
following. 

Separation property 5. Any diagonal segment of a convex polygon lies in its 
interior. 

The proofs of these separation properties are rather involved and some of 
them are not very easy. The reader may refer to the translators' notes in the 
Russian and Chinese editions of Hilbert's "Grundlagen der Geometrie," the book 
by Kerekjan:6 (1969), or the last chapter in vol. 2 of Veblen and Young (1918), 
etc. 

Below we shall assume that besides all or part of the axioms in (unordered) 
metric geometry the plane also satisfies the axioms of order H III-H II4. Such 
a geometry will be called an ordered metric geometry, or an ordered Pascalian 
geometry, or an ordered orthogonal geometry, or so forth. In these ordered 
geometries, one can easily obtain some corollaries from the separation properties. 

Corollary 1. Let two sets of points AI, Bl, Cl and A2, B2, C2, pairwise distinct 
and distinct from the possible intersection points of their connecting lines, lie 
on two distinct lines II, h respectively. If AIA2 II BIB2 II CIC2, then whether 
or not Bl lies between Al and C1 (or C1 lies between Al and B\) depends on 
whether or not B2 lies between A2 and C2 (or C2 lies between A2 and B2). 
If II meets h at a point 0 while C 1, C2 coincide with 0, then in the case 
AIA2 II BIB2, the same conclusion holds. 

Proof. Let us consider the former case (Fig. 2.32). As AIA2 II BIB2, the two 
points AI, A2 lie on the same side of the line BIB2. Similarly, Cl, C2 lie also 
on the same side of BIB2. Hence, whether or not AI, Cl lie on different sides 
of BIB2 depends on whether or not A2, C2 lie on different sides of BIB2. That 
is, whether or not Bl lies between Al and Cl depends on whether or not B2 
lies between A2 and C2. The other cases are analogous. D 

--:--1-----+---+----- I. 
Fig. 2.32 
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Corollary 2. Triangles and parallelograms are all convex polygons. 

Proof This is immediate from the definition. D 

Corollary 3. The midpoint of two distinct points lies between these two points. 

Proof Omitted. D 

Now fix two points 0 and I on a line I and take them as 0 and I in order 
to determine a Desarguesian number system N = N (I, 0, l). We define those 
numbers in N whose corresponding points lie on the same side of 0 on I as I 
to be positive numbers and those whose corresponding points lie on the other 
side of 0 on I to be negative numbers. In particular, 1 is a positive number 
and by Corollary 3, -I is a negative number. By Corollary 1, if we take points 
0' and I' on another line I' as 0 and 1 to form a Desarguesian number system 
N' = N(I', 0', I'), then under the canonical isomorphism N ~ N', the positive 
numbers in N correspond to the positive numbers in N' and the negative numbers 
in N correspond to the negative numbers in N'. On this basis we can define 
positiveness and negativeness for numbers other than 0 and the absolute value 
of any number in the number field associated with the geometry. 

The following theorem can be considered the main theorem of this section. 

Theorem 1. Under the above definition of positive and negative numbers, the 
number field N associated with ordered Pascalian geometry forms an ordered 
field. Namely, it has the following three properties: 

1. If a is a positive number, then -a is a negative number. If, on the contrary, 
a is a negative number, then -a is a positive number. 

2. If a and b are both positive numbers, then a + b is also a positive number. 
3. If a and b are both positive numbers or both negative numbers, then ab is 

a positive number. If one of a, b is positive and the other is negative, then 
ab is a negative number. 

Proof I. Take 0 and I on the line I as 0 and 1 to define a Desarguesian 
number system N = N (I, 0, l). Let a =j:. 0 and -a =j:. 0 be considered as 
numbers in N and correspond respectively to two points A and B on I. Then 
o is the midpoint of A, B. By Corollary 3, A, B lie on different sides of 0 
on I. So of the corresponding numbers a and -a, one is positive and the other 
is negative. Since 1 is positive and -1 is negative, this property may also be 
obtained by seeing -a = (-1) . a from the third property. 

2. We prove the second property by assuming the third. 
Take 0, I on I and define the number system N as before. See Fig. 2.33. 

Let a, b on I correspond to points A, B and let C correspond to a + b. Construct 
a parallelogram OADE. By definition, BCDE is also a parallelogram. 

When a = b, A is the midpoint of 0, C, so A, C lie on the same side of 0 
and thus c, a are both positive numbers. Therefore, we may suppose that a =j:. b 
and, without loss of generality, A lies between 0 and B. Since 0, E lie on the 
same side of the line AD while 0, B lie on different sides of AD, points B, E 
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c Fig. 2.33 

lie on different sides of AD and the segment IBEI meets line AD at a point, 
say F. As the segment IEFI does not contain any point of I, i.e., E, F lie on 
the same side of I and so do E, D, the points D, F lie on the same side of I. 
Therefore, the segment I D F I does not meet I, or A does not lie between D 
and F. Similarly, one may show that the segment I B F I does not meet line DE 
and thus B, F lie on the same side of DE, and so do A, B. Since, moreover, 
A, F lie on the same side of DE, D does not lie between A and F but Flies 
between A and D. It follows from Corollary 1 that B lies between A and C. 
Hence on I, C and A, B all lie on the same side of 0, which implies that a + b 
is a positive number. 

3. Let 1,0, I, N be as before and A, B on I correspond respectively to the 
numbers a, b. Construct arbitrarily another line I' through 0 and take a point I' 
distinct from 0 on I'. Draw through B a parallel to I I', meeting I' at a point B', 
and through B' a parallel to AI', meeting I at a point C. By the definition of 
multiplication, the corresponding number c of C is ab, i.e., c = abo 

By Corollary 1, whether or not A, C lie on the same side of 0 on I depends 
on whether or not I', B' lie on the same side of 0; whereas, whether or not 
I', B' lie on the same side of 0 depends on whether or not I, B lie on the same 
side of 0 on I. Therefore, whether a, c are both positive or negative depends on 
whether b is positive or negative. The third property is proved (see Fig. 2.34). 

D 

l' l' 

A 

Fig. 2.34 
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From this theorem one immediately obtains the following result. 

Theorem 2. Introduce the concepts of "greater than" > and "less than" < in 
the number field N associated with ordered Pascalian geometry as follows: 

a > 0 <===} a is a positive number; 

a < 0 <===} a is a negative number; 

b > a <===} b - a > 0 <===} a < b <===} a - b < O. 

Then the number field satisfies Axioms N I-N 17 of Sect. 1.4. 

Another important theorem is 

Theorem 3. There are no isotropic lines in ordered metric geometry. 

Proof. Let us introduce a Desarguesian coordinate system. If there exists an 
isotropic line L, we may suppose that its equation is 

where Ul, U2 are not simultaneously 0 (actually neither is 0). As the orthogonal 
rate of the Desarguesian coordinate system is 1, we have 

2 2 0 ul + u2 = , 

so -1 = (uI/u2)2. No matter whether Ul/U2 is positive or negative, by the 
third property in Theorem 1, (uI/u2)2 is always a positive number. But -1 is 
a negative number, which leads to a contradiction. Hence there are no isotropic 
~~. 0 

We have defined the congruence of pairs of points and of total angles. How
ever, unlike the axiom system of Hilbert in ordinary geometry we Introduced 
congruence without treating it as a fundamental concept nor mentioning the ax
ioms of congruence. In fact, there is no necessity to do so because in this ordered 
metric geometry the concept of congruence of segments and of angles can be 
considered as derived from other axioms. To explain this, let us consider a line I 
which, by Theorem 3, is not isotropic. Now, let A, B, C be three points on an 
arbitrary line and B lie between A and C. We designate the symmetric points of 
A, B, C with respect to I as A', B', C'. Then, according to Sect. 2.2, A', B', C' 
are collinear. In addition, as AA' II BB' II CC', it follows from Corollary 1 
that B' lies between A' and C', and thus the reflection of the segment lAC! 
with respect to I is also a segment IA'C'I. Similarly, the reflection of a half-line 
or a ray with respect to I is also a half-line or a ray, and the reflection of an 
angle with respect to I is also an angle. Therefore we can naturally define the 
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congruence of segments and congruence of angles. When they can be obtained 
by means of some reflections, we shall still use the symbol == for congruence 
as before. As for !:::.ABC and !:::.A' B'C', we say that they are congruent, i.e., 

if 

and 

!:::.ABC == !:::.A'B'C', 

IABI == IA'B'I, lAC! == IA'C'I, IBC! == IB'C'I 

LBAC == LB'A'C', LABC == LA'B'C', 

LACB == LA'C'B', 

where LBAC denotes the angle formed by the two half-lines emanating from 
A and passing through Band C, and similar for the others. Then Theorem 4 in 
Sect. 2.4 can be generalized to the following form. 

Theorem 4. If for !:::.ABC and !:::.A' B'C' 

IABI == IA'B'I, lAC! == IA'C'I, IBC! == IB'C'I, 

then these two triangles are congruent (according to the new definition above): 

!:::.ABC == !:::.A'B'C'. 

In unordered metric geometry, even though there is a theorem of type s.s.s 
about congruence of two triangles in correspondence with that in ordinary geom
etry, theorems corresponding to the types a.s.a and s.a.s do not hold. However, 
in ordered metric geometry it is easy to prove that the latter two theorems still 
hold. In fact, under the above definition of congruence of segments, of angles, 
and of triangles it is easy to prove the following. 

Theorem 5. In ordered metric geometry, according to the above definition 
of congruence all axioms of congruence H III in Hilbert's axiom system are 
satisfied. 

After fixing a standard pair of points in unordered metric geometry, any pair 
(AB) of points has a definite number in the associated number field K as its 
correspondence. This number is called the square of distance of (AB), denoted 

by AB. It is the square of a number in K and can be taken as +c and -c, 
two distinct values (A, B are assumed to be distinct). Since numbers in K do 
not have positiveness and negativeness, we have no way to distinguish between 
the two values +c and -c. However, in ordered metric geometry the non-zero 
numbers in the associated number field K have been separated into positive 
and negative ones. Thus we may speak about the absolute value of a number, 
denoted by using the usu~ symbol I . I. Therefore, for the square of distance 
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AB = (+C)2 = (-c)2 we may take 1+ cl = I - cl = Icl and define it to be the 
distance between the two points A and B or the length of the segment I A B I, 
denoted as AB, i.e., 

Hence, in ordered metric geometry points and lines are taken as the funda
mental objects and incidence, parallelism, orthogonality, and order or between
ness are taken as the fundamental relations. Starting from some relevant axioms, 
including the axioms of incidence H I, the axiom of parallels H IV, the axiom 
of infinity, Desargues' axioms D, the orthogonal axioms 0, the axiom of sym
metric axes S, and the axioms of order H II, we may introduce the concepts of 
congruence, distance, length, and so on which have the familiar properties of 
congruence and measure in ordinary geometry. 

2.6 Ordinary geometry and its subordinate geometries 

In the previous sections, we have established various kinds of geometries start
ing from the axioms. In view of this, it is necessary to give the concept geometry 
itself a strict mathematical definition. If one wishes to make clear the signifi
cance, goal, and essence of geometry, what geometry is, what geometry intends 
to study, and other such problems, one is thrown into problems of philosophy, 
history, and sociology and enters the realm of opinion and argument. For the 
aim of this book, we restrict ourselves to the descriptive manner of the axioma
tization of geometry, i.e., we define geometry by adopting the formal manner of 
Hilbert. Of course, this is not the only way, and is not necessarily the best in all 
circumstances. It is not suitable for some of the most active branches of modern 
geometry, such as algebraic geometry, differential geometry, and topology. But 
for this book, in which the mechanization problem of elementary geometries is 
the theme, such an approach starting from axioms is proper. 

For the aim of this book, we first give the following: 

Definition 1. A geometry G is an aggregate consisting of three kinds of entities 
E, R, A. E is a set consisting of sets of fundamental objects: E = {E I, ... , Ee}. 
R is a set of fundamental relations among the fundamental objects: R = 
{RI, ... , Rr }. A is a set of axioms: A = {AI, ... , Aa}, in which each axiom Ai 
is of the form: 

(S) Let 

be some fundamental objects and suppose there are some fundamental relations 

among these fundamental objects. Then there are some other fundamental rela-
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tions 

among these fundamental objects. 

Due to different choices of fundamental objects E, fundamental relations R 
and axioms A, there are various kinds of geometries G. For a fixed geometry G, 
in terms of some fundamental objects that satisfy some fundamental relations, 
we may define new relations among these objects. We call such kinds of relations 
derived relations or inferred relations. Similarly, we may define derived objects 
or inferred objects, derived concepts or inferred concepts, etc. 

Let us take Desarguesian (plane) geometry as an example. In this case, the 
set of fundamental objects E consists of two sets: El and E2. The elements of El 
are called points and the elements of E2 are called lines. The set of fundamental 
relations R consists of two elements Rl and R2. Rl is called the relation of 
incidence and R2 the parallel relation. The relation Rl (el, e2) means that el is 
a point in E 1, e2 is a line in E2 and point el lies on line e2. The relation R2 (e, e') 
means that e, e' are two distinct lines in E2 and e, e' are parallel to each other. 
The axiom set A consists of Hilbert's axioms of incidence H I, the axiom of 
infinity Doo , Desargues' axioms Dl, D2 and the (sharper) axiom of parallels 
H IV, etc. For (unordered) orthogonal geometry, besides the above fundamental 
objects and relations, there is one more fundamental relation - the orthogonal 
relation - and some so-called orthogonal axioms are added to the axiom set. 
In this orthogonal geometry, for some fundamental objects such as two points 
A, BEE 1 and a line I satisfying some relations, we may define some derived 
relations such as the symmetry of A and B with respect to I. In this geometry, 
moreover, we can define derived objects including triangles, parallelograms, and 
Kou-Ku triangles. The other geometries we have mentioned before can all be 
precisely defined in this manner. 

In Sect. 1.1, we listed the fundamental objects, fundamental relations, and 
five groups of axioms that are satisfied by elementary (plane) geometry proposed 
in Hilbert's book "Grundlagen der Geometrie." The fundamental objects are 
points and lines. There are four kinds of fundamental relations: the relations of 
incidence, order, congruence, and parallelism. And the five groups of axioms: 
those of incidence, order, congruence, parallels, and continuity, denoted as H 1-
H V respectively. According to the strict definition of geometry above, these 
fundamental objects, relations, and axioms constitute a geometry. This special 
geometry is commonly called Euclidean geometry in the literature. The name 
originates from the Euclid's "Elements" written in ancient Greece, even though 
this geometry was prevalent in other ancient nations. There are big differences in 
the way in which the subject is presented, but in essence this geometry is such a 
geometry that all people over the world have consistently observed and used in 
daily life since ancient times. In comparison With other geometries such as non
Euclidean geometry which is widely known only among scientists or even only 
among some specialists of mathematics, we rename such a commonly called 
Euclidean geometry ordinary geometry in this book. 

Ordinary geometry is not irrelevant to those geometries that we have previ-
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ously mentioned. To explain some logical incidence among them, let us first give 
a strict mathematical definition for the concept geometric theorem as follows. 

Definition 2. Let the fundamental objects and relations ei, Eik' Rv , Ru, etc. men
tioned in the sentence (S) (see above) belong to a given geometry G. Then (S) 
is called a geometric sentence or assertion in geometry G or we say that the 
sentence (S) is meaningful in geometry G. In this case, the relations Rv are 
called the hypothesis part and Ru the conclusion part of this sentence. 

Definition 3. In a geometry G, if a meaningful geometric sentence can be de
duced from axioms in G according to the general logical rules, then we say that 
(S) is a theorem in geometry G or that the theorem (S) holds. Otherwise we say 
that (S) is not a theorem in geometry G or that the theorem (S) does not hold. 

Certainly, every axiom of G is a theorem in G. The word theorem in the 
above definition has two different usages. This is to follow convention and is 
unlikely to lead to confusion. 

There is no difficulty in precisely formulating the above definition of sen
tence and theorem by using the language and symbols of mathematical logic. 
However, to avoid having the statement be excessively lengthy and tedious, we 
do not proceed in that way. It is necessary to remark that the definition does 
not involve any existential problems. Hence, in the precise logical formulation 
the existential quantifier 3 should not occur, because the existence of various 
fundamental objects appearing in the conclusion of a sentence or a theorem has 
been already assumed in the hypothesis. 

Now, we may make some comparison among different geometries as follows. 

Definition 4. Let G and G' be two geometries. If every meaningful sentence 
in G' is also a meaningful sentence in G while each axiom in G' is a theorem 
in G, we say that the geometry G' is subordinate to the geometry G or G' is a 
subordinate geometry of G, symbolically 

G' ---+ G. 

According to Definition 4, the significance that the geometry G' is subordi
nate to the geometry G is only in logic, i.e., the fundamental relations among 
fundamental objects in G' remain in G and the theorems in G' also remain true 
in G. The concrete significance of the fundamental objects and relations, axioms, 
and theorems as well as such questions as of whether or not there are inclusion 
relations among sets is not under consideration. These formal definitions and 
language, stemming from Hilbert, exclude various additional factors irrelevant 
to logical proof and are appropriate and effective for the logical problem of how 
to prove geometric theorems. 

According to the above definition of geometries and their reciprocal subor
dinate relations, it may be seen that all (plane) geometries previously introduced 
are the subordinate geometries of ordinary (plane) geometry. First, the funda-
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mental objects all consist of the same two classes: points and lines, and the 
fundamental relations (or derived relations) contain the following kinds: 

RJ Relation of incidence; 
R2 Parallel relation; 
R3 Orthogonal relation; 
R4 Relation of congruence; 
R5 Relation of symmetry; 
R6 Relation of order. 

Among those above, some relations such as the orthogonal relation and the 
relation of congruence are fundamental relations in some geometries but not 
in others, that is, they may be defined from other fundamental relations and 
axioms, or the so-called derived relations. 

Among the (plane) geometries (the word plane will be omitted below) de
fined on the basis of these fundamental objects, relations and some axioms, we 
have mentioned the following: 

Desarguesian geometry; 
Pascalian geometry; 
(Unordered) orthogonal geometry; 
(Unordered) metric geometry; 
Ordered Pascalian geometry; 
Ordered metric geometry; 
Ordinary geometry. 

We may also add some fundamental relations or axioms to the geometries listed 
above or combine them to form other geometries. For example, we can add the 
relation and axioms of order to Desarguesian geometry and orthogonal geometry 
and call the geometries formed in this way ordered Desarguesian geometry and 
ordered orthogonal geometry. 

There are simple subordinate relations among the above-mentioned geome
tries. For instance, each axiom in Pascali an geometry, if not an axiom in (un
ordered) orthogonal geometry, must be a theorem in this geometry (e.g., the 
Pascalian axiom, see Sect. 2.2). Thus Pascalian geometry is subordinate to (un
ordered) orthogonal geometry. In fact, all these geometries are subordinate to 
ordinary geometry (Fig. 2.35). 

The various geometries discussed above are all restricted to the case of 
plane and thus the fundamental objects are only of two classes: points and lines. 
This restriction naturally does not have to be imposed. We may consider spatial 
and higher dimensional geometries, in which besides points and lines, there are 
other fundamental objects such as planes and hyperplanes. Furthermore, we may 
also consider other geometries that are subordinate to ordinary geometry and 
whose fundamental objects are not restricted to points and lines. For example, 
the line geometry which takes lines as its fundamental objects (Plucker, Klein, 
and others), various circle geometries whose fundamental objects are either 
points and circles or oriented vectors and oriented circles and whose fundamental 
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relations are incidence, orthogonality, and tangency or directional tangency (Mo
bius, Laguerre, and others), the spherical geometry with points and spheres 
as its fundamental objects (S. Lie and others), and so on. For the choice of 
axiom systems, there is plenty of room. Besides so-called projective geometry, 
there are various non-Euclidean geometries (Lobachevsky, Bolyai, Riemann) 
resulting from the modification of the axiom of parallels. In virtue of the revision 
of Archimedes' and other axioms (Dehn and others) there are various semi
Euclidean geometries and non-Legendrean geometry, and so on. Avoiding the 
axiom of parallels, we have natural geometry and absolute geometry (Bachmann) 
and so forth. If no restriction is imposed, such geometries may be defined as 
one pleases. 



3 Mechanization of theorem 
proving in geometry and 
Hilbert's mechanization 
theorem 

3.1 Comments on Euclidean proof method 

Generally speaking, Euclid's "Elements" is the origin ofaxiomatization of math
ematics. However, from the viewpoint of rigor, it has many blemishes. This has 
been recognized for thousands of years. In the middle and late nineteenth cen
tury a critical movement attesting the very foundation of mathematics began. 
Mathematicians made a comprehensive analysis of the axioms besides the inde
pendence problem of the axiom of parallels in the "Elements." This movement 
was initiated in Germany and Italy by Pasch and Peano, followed by others and 
epitomized later on by Hilbert. He classified the axioms of Euclidean geometry 
into five groups (cf. Sect. 1.1) as the basis and starting point of all theorem 
proving so that Euclidean geometry has had a rigorous foundation ever since. 
However, even though there is a rigorous axiom system as the basis of all reason
ing and proving, by using the Euclidean proof method for geometric theorems 
it is still impossible to reach an extent of rigor without flaws. This opposes all 
conventional understandings, as it seems that nobody has ever precisely pointed 
out or even recognized this fact. This section focuses on explaining this issue. 

We are saying that by using the Euclidean method to prove theorems in 
geometry it is impossible to logically reach an extent of rigor. The crux in 
question lies in the following. 

In Euclidean geometry, the statement of axioms and theorems usually in
volves an implicit assumption - the considered figures must be normal, generic 
cases but not abnormal, degenerate ones. For example, the statement that two 
straight lines are parallel implies that they are two distinct lines, not two coin
cident lines. Similarly, speaking about the intersection of two lines implies that 
they are neither parallel nor coincident lines. Also, the construction of a triangle 
implies that it is an ordinary, real triangle - its three vertices are distinct from 
each other, they are not collinear, and so forth. We can make various restrictions 
on the statements of definitions and theorems as we did for the definitions of 
parallel lines and triangles in Chap. 1, but the statements will become very ver
bose. It may be unclear what kind of non-degenerate restrictions are appropriate. 
Also, there is no precise definition for the word degenerate, so it is difficult to 
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determine in advance whether or not an isosceles triangle or a right triangle 
should be included as a degenerate triangle. 

It is particularly serious that the proof of a theorem is usually valid only 
for the normal, generic cases, but not for the abnormal, degenerate cases. In 
the degenerate cases, it may be necessary to change part or even all of the 
proof. Sometimes, the theorem itself may be meaningless or even invalid in the 
degenerate cases. The following examples may serve as illustrations. 

Example 1 (Theorem). The diagonals AC and B D of any parallelogram ABC D 
bisect one another (see Sect. 1.2). 

This statement implies some assumptions about the configuration, i.e., 
ABC D is a real quadrilateral, the points A, B, C, D are distinct, the parallel 
opposite sides A Band CD lie on two non-coincident parallel lines, and so 
do AD and BC (the definition of parallelogram in Sect. 1.2 has intentionally 
excluded the degenerate cases). 

A C B D 
• • 

A=C B=D 

In some degenerate cases, such as where A, B, C, D coincide, the theorem 
may still be considered true by a proper interpretation of the terms used in its 
statement. In the case where A, B, C, D are distinct but collinear, though it is 
still possible to make the hypothesis of the theorem meaningful by a proper 
interpretation (for instance, the coincidence of AB and CD can be regarded as 
a degenerate case of AB II CD), the conclusion will lose its meaning. If we 
interpret the bisection of AC and BD as the pairs of points (AC) and (BD) 
having a common midpoint, then the theorem falls into fallacies. If A and B 
are distinct while C degenerates to coincide with A and D to coincide with B, 
then the theorem is always false, regardless of the interpretation. 

Example 2 (Desargues' axiom Dl). Suppose the three pairs of the corresponding 
sides of 

6.ABC and 6.A' B' C' 

are all parallel to each other, i.e., 

AB II A'B', AC II A'C', BC II B'C'. 

Then either the three connecting lines AA', B B', C C' of the corresponding ver
tices are parallel to each other or they all intersect at the same point. 

In the statement of this theorem, the triangles should be seen as normal and 
real triangles and the parallel lines should be understood as non-coincident, real 
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Fig. 3.1 

parallel lines (see the definitions of parallel lines and triangles in Sects. 1.1 
and 1.2). 

As an example of a degenerate case, let us consider ~ABe where the three 
points A, B, e are distinct but collinear, and A'B', AB are parallel but not 
coincident. Then A', B', e' are collinear and the theorem is obviously false (see 
Fig. 3.1). For other degenerate cases, whether the theorem is meaningless or 
false can be ascertained only after a detailed, careful analysis. 

Example 3 (Desargues' axiom D2)' If two pairs of the corresponding sides of 
~ABe and ~A' B'e' are parallel to each other, e.g., 

AB II A'B', Ae II A'e', 

and the three lines AA', BB', ee' connecting the corresponding vertices are 
either parallel to each other or intersect at the same point, then the third pair of 
the corresponding sides of these two triangles are also parallel to each other. 

In the same degenerate case as discussed in Example 2, i.e., where A, B, e 
are collinear, the theorem may be considered (vacuously) true. However, the 
theorem is no longer true if the parallel lines AB II A' B' degenerate to coincide 
(see Fig. 3.2). 

Fig. 3.2 
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The above examples indicate that an axiom or theorem often contains im
plicit, not clearly mentioned assumptions or restrictions on its genericity and 
applicability. The axiom or theorem may lose its meaning or even become in
valid in those cases which go beyond these implicit assumptions. So in the 
proof of each theorem, whenever introducing auxiliary lines or applying given 
axioms and known theorems, we must always carefully verify whether the ap
plied theorems are within the restrictions on their applicability and consider 
every possible degenerate case separately. This makes the proofs of theorems 
lengthy and tedious, but in order to meet the usual standard of rigor, the over
elaborate consideration is indispensable. For a concrete example, one may see 
the proof of Hessenberg's theorem in Sect. 2.2. We have repeatedly applied 
the theorem that the diagonals of any parallelogram bisect one another and De
sargues' two axioms to many proofs in Chap. 1. These theorems and axioms 
may be meaningless or false in some degenerate cases as has been shown in 
Examples 1-3. Therefore we must be very careful each time when we use them 
so that the degenerate cases do not occur. This explains why we consumed so 
much space for some proofs in Chap. 1. 

In the proof of a theorem, even though the configuration of the hypothesis 
at the outset is located in a generic, non-degenerate position, we are still unable 
to determine ahead of time whether or not the degenerate cases will occur when 
applying other theorems in the proof process. Not only is the verification of 
every applied theorem cumbersome and difficult, but it is actually also impossi
ble to guarantee that the degenerate cases (in which the theorem is meaningless 
or false) do not happen in the proof process. On the other hand, we have no 
effective means to judge how much to restrict the statement of a theorem (to be 
proved) in order to ensure the truth of the theorem. These problems make it im
possible for the Euclidean method of theorem proving to meet the requirements 
of necessary rigor. Therefore, even though there is a rigorous axiom system as 
the basis of theorem proving in geometry, following the Euclidean method it is 
still impossible to reach rigor from the logical point of view. 

In order to make theorem proving in geometry rigorous, we must adopt a 
method that is different from the traditional Euclidean proof method. 

In contrast to the Euclidean method, the method of mechanical theorem 
proving in geometry we are proposing not only reduces the amount of mental 
work but also really satisfies the requirements of rigor. 

3.2 The standardization of coordinate representation 
of geometric concepts 

According to the analysis in the preceding section, the various problems on the 
loss of rigor in geometry theorem proving are mainly caused by the degenerate 
cases. The traditional Euclidean proof method in geometry is unable to handle 
such situations. But, by imposing a number system and a coordinate system on 
the basis of the axiom system so that geometric statements are made algebraic as 
had been done from Descartes to Hilbert, one can effectively treat the degenerate 
cases and thus reach the true rigor required for theorem proving. 

First, the word "degenerate" is in contrast with "generic," where the word 
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"generic" has a strict definition, usually seen in algebraic geometry as generic 
point and generic plane. For our purpose, we do not adopt the strict definition 
from algebraic geometry but understand its meaning as follows. 

A point is a generic point if some of its coordinates are parameters or inde
terminates and a configuration is in a generic position if some of the coordinates 
of points in the configuration are parameters or indeterminates. The configura
tion degenerates if these parameters or indeterminates are specialized to values 
such that some algebraic expressions among some of the coordinates vanish. 

Geometry theorems treated by the Euclidean proof method usually imply 
the assumption that the considered figures are in certain generic positions. To 
achieve a strict proof, one needs not only to show a theorem to be true in the 
generic case but also to explicitly point out the degenerate cases for which the 
theorem is false, and the region on which the theorem is true. The former can 
be expressed by means of the parameter coordinates, while the latter can be 
expressed by using some inequations involving the coordinates, i.e., by means 
of non-degeneracy conditions. 

In Sect. 1.7 and in Chap. 2, in the process of expressing some fundamental 
geometric relations in terms of the quantitative relations among coordinates, we 
have added many restrictions which make the exposition very cumbersome. In 
order to identify degenerate cases, we first slightly modify the definitions of 
some fundamental geometric relations so that the quantitative relations among 
coordinates can both capture the generic and degenerate cases and make the latter 
easily distinguishable from the former. The fundamental geometric relations to 
be discussed are as follows. 

Parallel relation 

Let the coordinates of four points Ai in a certain coordinate system be (Xi, Yi), 
i = 1, ... , 4. Set 

Definition 1. We say that AIA2 is parallel to A3A4, which is denoted as 

if 

ex =0. 

In case the points AI, ... , A4 are distinct from each other and AIA2, A3A4 
are two distinct lines, the definition of parallelism here coincides with that given 
in Chap. 1, whereas the new definition also contains the degenerate cases, while 
the one in Chap. 1 does not. In order to distinguish the definitions, we call 
the parallelism previously defined geometric parallelism, and designate the term 
algebraic parallelism (or parallelism for short) for ex = 0, which contains the 
geometric parallelism and various degenerate cases such as A 1 coincides with 
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A2; A3 coincides with A4; and AI, A2 are distinct, A3, A4 are distinct while 
the lines AIA2 and A3A4 coincide. The degenerate cases may be expressed by 
means of equations and the non-degenerate cases by means of inequations. For 
instance, Al = A2 means that Xl = X2 and YI = Y2, and Al i- A2 means that 
Xl i- X2 or YI i- Y2· 

Collinear relation 

Let the coordinates of three points A; in a coordinate system be (x;, Y;), i = 
1,2,3. Set 

XI YI 1 

f3 = X2 Y2 1 
X3 Y3 1 

= (X2Y3 - X3Y2) + (X3YI - XIY3) + (XIY2 - X2YI). 

Definition 2. We say that the three points AI, A2, A3 lie on the same line or are 
collinear, or A3 lies on the line AIA2, or Al lies on A2A3, or A2 lies on AIA3, 
if f3 = o. 

In case the three points A I, A2, A3 are distinct from each other, the definition 
here coincides with the definition previously given, but the new definition also 
contains the degenerate cases that some of the three points coincide. In order 
to distinguish this definition from the previous one where the three points are 
distinct, we call the previously defined collinearity geometric collinearity. While 
speaking about collinearity of three points AI, A2 , A3 hereafter, we shall mean 
that either the three points are distinct and collinear, or two of them coincide, 
or all three coincide. 

Orthogonal relation 

Let the coordinates of four points A; in an orthogonal coordinate system be 
(x;, Y;), i = 1, ... , 4. 

Definition 3. Let the orthogonal rate of the orthogonal coordinate system be k. 
The two lines AIA2 and A3A4 are said to be perpendicular, which is denoted as 

if 

In particular, in a Descartes coordinate system, k = 1. 

Evidently, in case A I, A2 are distinct and A3, A4 are distinct, the new defini
tion coincides with the previous definition of perpendicularity of two lines, but 
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the new one also contains the degenerate case that Al coincides with A2 or A3 
coincides with A4. To distinguish them from each other, we call the previously 
defined perpendicularity geometric perpendicularity. 

Order relation 

In any ordered geometry (see Sect. 2.6), we may take an arbitrary coordinate 
system and define an order relation as follows. 

Definition 4. Let three points Ai = (Xi, Yi), i = 1,2,3, be on the same line. We 
say that A2 lies between Al and A3 if at least one of the following cases holds: 

(1) Xl < X2 < X3; 
(2) Xl > X2 > X3; 
(3) YI < Y2 < Y3; 
(4) YI > Y2 > Y3· 

This definition has excluded the degenerate cases that some of the points Ai 
coincide. 

Definition 5. Let 
L: UIXI + U2X2 + U3 = 0 

be a line, where (XI, X2) are the coordinates of the moving point and U I, U2 are 
not simultaneously O. If two points A = (ai, a2) and B = (bl' b2) do not lie 
on the line L, we say that A and B lie on the same side or different sides of 
L according to whether ulal + U2a2 + U3 and ulbl + U2b2 + U3 have the same 
sign or different signs. 

Metric property 

We have introduced the concept of square of the distance between a pair of 
points in an unordered metric geometry. Moreover, the concepts of distance and 
length have been defined in an ordered metric geometry. The definition after 
standardization is stated as follows. 

Definition 6. Take a Descartes coordinate system in metric geometry. For two 
arbitrary points A = (ai, a2) and B = (bl, b2), the scalar 

= 2 2 AB = (bl - al) + (b2 - a2) 

is called the square of the distance between a pair (AB) or (BA) of points. If 
the metric geometry has an order, then there is one and only one real number 
c 2: 0 such that 

c2 = (bl - al)2 + (b2 - a2)2. 

This number, denoted as AB, is called the distance between the two points A 
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and B or the length of the segment IABI: 

AB2 = AB, AB ~ O. 

The concept of angles and their measure are much more complicated than 
those of point pairs and segments and are often ambiguous (without the help 
of the concept of continuity and related axioms). By appealing to the theorem 
that the three pairs of the corresponding angles of two triangles respectively are 
equal (i.e., congruent) if the three pairs of their corresponding sides respectively 
are equal, the degree of angles can be indirectly treated by using the length 
of segments. For theorem proving in geometry, we can avoid direct use of the 
measure of angles, so we do not give it a definition. 

Symmetry and reflection 

In orthogonal geometry, we have already defined the relations of symmetry and 
reflection with respect to a non-isotropic line (see Sect. 2.3). Now, we restate 
the definition as follows. 

Definition 7. Take an orthogonal coordinate system in orthogonal geometry with 
orthogonal rate k. Let the line 

be non-isotropic, i.e., 

kUT + u~ # o. 

The symmetric point of a point A = (ai, a2) with respect to Lu is defined to be 
A* = (at, ai), where 

(ku~ + u~)a; = -(ku~ - u~)al - 2kulU2a2 - 2ku1U3, 

(ku~ + u~)a~ = -2u1U2al + (ku~ - u~)a2 - 2U2U3. 

The symmetric line of a line 

passing through point A = (ai, a2) with respect to Lu is defined to be 
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which passes through the point A *, where 

vt = (kuT - U~)VI + 2UI U2V2, 

v~ = 2kuIU2VI - (kuT - U~)V2. 

123 

The above A* and L~ are also called the reflections of A and Lv respectively, 
with respect to line Lu. 

Angular bisectors 

In unordered orthogonal geometry or unordered metric geometry, there is only 
the concept of total angles but not the concept of angles. For a total angle, in 
unordered orthogonal geometry either there are exactly two bisectors or there 
is none. It is ensured that in unordered metric geometry there are exactly two 
bisectors for any total angle, but they cannot be distinguished from each other. 
Now we give a standardized definition of angular bisectors as follows. 

Definition 8. Let the orthogonal rate of an orthogonal coordinate system be k. 
For three arbitrary points Ai = (ai, bi ), i = 0, 1, 2, we say that the following 
equation defines the bisectors of the angle LAo(AoAI, AoA2) or LAJAoA2: 

[(bl - bo)(x - ao) - (al - ao)(y - bo)] . [(a2 - ao)(x - ao) 

+ k(b2 - bo)(y - bo)] 

= [(a2 - ao)(y - bo) - (b2 - bo)(x - ao)] . [(al - ao)(x - ao) 

+ k(bl - bo)(y - bo)]. 

In the non-degenerate case that A 1 and A2 are both distinct from Ao, one 
sees that this equation determines two lines which are in accordance with the 
usual concept of angular bisectors. If the geometry is ordered, we may further 
distinguish these two angular bisectors into an internal angular bisector and an 
external angular bisector according to the order relation above. 

Derived concepts and derived relations 

Among the above definitions, there are both fundamental relations, such as 
parallel relation and orthogonal relation, and derived relations, such as symmetry 
and congruence. We may also consider other derived concepts and relations, for 
instance, slope, area, midpoint, circle, radius, (internal, external) tangency of 
circles, orthogonality of circles as well as tangent lines and singular points of 
curves. These derived concepts and relations may be added if necessary and will 
not be listed here. The following two points should be noted. 

(1) When giving a standardized definition via the coordinate system (of a 
subordinate geometry), the non-degenerate cases should agree with their original 



124 Hilbert's mechanization theorem 

geometric meaning. In the degenerate cases, the definition may be arbitrary, but 
once fixed, it should not be altered. 

(2) The definition should not vary with different choices of coordinate sys
tems (of the subordinate geometry), i.e., the algebraic expressions (or relations) 
in the definition should be invariant (relations) or semi-invariant (relations) un
der the coordinate transformation of the subordinate geometry. 

A detailed discussion of (2) goes far beyond the scope of this book, while 
from this perspective the corresponding invariant theory is far from being devel
oped to a mature extent. However, the invariance of the algebraic expressions 
(relations) listed above is evident. 

3.3 The mechanization of theorem proving and Hilbert's 
mechanization theorem about pure point of intersection theorems 
in Pascalian geometry 

Descartes pointed out that every proof of a theorem in Euclidean geometry re
quires some new and often ingenious ideas. In contrast, he proposed the scheme 
of mechanizing the reasoning procedure to reduce the amount of work for prob
lem solving (cf. Kline 1972: chap. 15). According to this scheme, for a certain 
class of geometric theorems, no matter how they are stated concretely, we would 
have a common proof method which is applicable to all of them. This method 
proceeds for the proof of every theorem according to a mechanical reasoning 
procedure and can ensure, after a finite number of steps, whether or not the the
orem is true. Furthermore, when the theorem is proved to be true in the generic 
case, the method can mechanically find all degeneracy conditions that may make 
the theorem meaningless or false during the mechanical proof process. Such a 
method that can be used to prove a certain class of theorems is called a me
chanical method. The statement that there is a mechanical method for proving 
a certain class of theorems is itself a theorem, called a mechanization theorem. 

In Chap. 1 we introduced, starting from some axioms, the number system and 
coordinate system based roughly on the model exhibited in Hilbert's "Grundla
gen der Geometrie," which follows a path from axiomatization to algebraization 
to coordinatization. On the way, we have to prove many theorems. The proof of 
these theorems all follows the Euclidean method: individual theorem by individ
ual method, yielding an individual proof. As we have pointed out in Sect. 3.1, 
this method actually cannot reach the extent of necessary rigor. Moreover, when 
using the Euclidean method one is in need of some new and often ingenious 
ideas for every proof as pointed out by Descartes. Although the ingenious ideas 
are fascinating and make the method aesthetically attractive, from the viewpoint 
of effectiveness this method has many limitations. Maybe this is one of the 
major reasons why Descartes proposed the scheme of mechanical proving; it 
is the reason why we investigate mechanical proving in this book. Owing to 
the appearance of electronic computers, the scheme of mechanical proving has 
been promoted from the status of idle dream to the reality of accomplishment in 
practice. This chapter provides a theoretical basis for the scheme of mechanical 
proving, while the later chapters will present concrete examples with hand-
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calculation and computer experiments. The author will supply more examples 
in other relevant books in order to illustrate the efficiency of this method. 

As we have indicated in Sect. 3.1, geometry theorems are true only under 
some conditions, i.e., the so-called non-degeneracy conditions. These conditions 
are not usually explicitly expressed in the hypothesis of a theorem. In fact, it is 
also difficult to determine at the beginning under which conditions the theorem 
will be true. For this reason, we give some explicit definitions for theorem, 
proof, mechanized proof and mechanization theorem. 

Definition 1. If a meaningful geometric sentence (S) in a geometry G will be true 
after the addition of some conditions meaningful in the geometry as subsidiary 
hypotheses, then we call the sentence (S) a conditional theorem or say that the 
theorem (S) is generically true. The subsidiary conditions are called the non
degeneracy conditions for the theorem to be true. 

Definition 2. For a generically true theorem (S), if there is a process starting 
from the hypothesis of (S), proceeding step by step according to axioms in 
geometry G and logical inference rules, meanwhile adding some subsidiary 
conditions to the hypothesis, and finally arriving at the conclusion of (S), then 
this process is called a proof of the conditional theorem. 

Definition 3. If for a certain class of meaningful geometric sentences S in ge
ometry G, there is a mechanical procedure such that for any sentence in S, 
starting from its hypothesis and proceeding with logical inference, in every step 
one can determine mechanically the next step, give the subsidiary conditions 
which must be added according to the procedure, and, after a finite number of 
steps, the conclusion of the sentence or its opposite is finally reached, then we 
say that there is a mechanical method for proving this class of theorems S or 
the proof of this class of theorems is mechanizable. The mechanical procedure 
is called a mechanical method for proving this class of theorems. 

Definition 4. If S in the above definition contains all meaningful geometric 
sentences in geometry G, we say that theorem proving in geometry G is mech
anizable, or simply that G is mechanizable. 

The assertion "theorem proving in geometry G is mechanizable" or "the 
proof of a certain class of theorems in G is mechanizable" is itself a theorem 
that has to be proved, and of which the proof requires the exhibition of the 
mechanical procedure mentioned in the definition. This type of theorem will be 
commonly called a mechanization theorem. 

Of course, the subsidiary hypotheses or subsidiary conditions in the above 
definitions cannot be arbitrary. For example, the negation of one of the original 
hypotheses obviously cannot be added as a subsidiary condition. What we call 
subsidiary conditions are such conditions that supply only a negligible (poly
nomial) equality relation among the coordinates, after the original geometric 
hypotheses have been expressed in a chosen coordinate system as (polynomial) 
equality and/or inequality relations among the coordinates according to Sect. 3.2. 



126 Hilbert's mechanization theorem 

In other words, if we consider the coordinate variables in a fixed order as a 
point in a vector space, all hypothesis (polynomial) equality relations (and/or 
inequality relations) will define a set V of points in this vector space, which is 
commonly called an algebraic variety (or algebraic set if there are inequality 
relations). Then the supplied (polynomial) equality relation corresponding to the 
subsidiary condition should define a true subset of V. Using the terminology 
of algebraic geometry, we have no difficulty in giving a precise definition, for 
which the reader may refer to Chap. 4. 

In mathematical logic, a terminology analogous to mechanizability is de
cidability. As in mathematical logic where many mathematical problems and 
theories have proved undecidable, we have the following: 

Conjecture. Desarguesian geometry is non-mechanizable, that is, it is impossible 
to find a mechanical method for proving all theorems in this geometry. 

In geometric reasoning and proving, we expect to discover and prove true 
theorems rather than obtain the negative conclusion that a theorem is not true or 
cannot be proved. In fact, our desire is not extravagant but fair and reasonable. 
It can be completely satisfied. We will show that as long as the Pascalian axiom 
for intersecting lines is added to Desarguesian geometry so that the geometry
associated number sfield becomes commutative, the geometries usually encoun
tered in mathematical research such as those we have mentioned in Chap. 2 
and will mention in Chap. 6 are all mechanizable. The geometries which are 
conjectured to be non-mechanizable are probably so only due to some artificial, 
impractical restrictions. In this chapter, we present a simple example for which 
theorem proving is mechanizable. This example originates from Hilbert and will 
be called Hilbert's mechanization theorem. 

Although the main contents of Hilbert's book are in laying down the rigor
ous foundation of geometry and in elaborating the logical relations among some 
important geometric axioms and facts, the book spends most of its space on ex
pounding how to advance towards algebraization from axiomatization, and thus 
paves a way for the mechanization of theorem proving in geometry. Actually, 
one of the earliest mechanization theorems appeared in Hilbert's "Grundlagen 
der Geometrie," though he did not describe the theorem with ideas of mecha
nization, and it is even difficult to say whether Hilbert himself was aware of 
this aspect. 

What is here called Hilbert's mechanization theorem appeared at the end 
of chap. 6 of "Grundlagen der Geometrie." In the first edition of his book, 
this result was written only in italics without being listed as a theorem. It was 
formally numbered as theorem 62 in later editions. The original statement of 
this theorem runs as follows. 

Theorem 62. Every pure point of intersection theorem that holds in a plane 
geometry in which Axioms I, 1-3, II, IV* and Pascal's Theorem are valid 
takes, through the construction of suitable auxiliary points and lines, the form 
of a combination of finite number of Pascalian configurations. 
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Let us first explain some phrases occurring in the theorem one by one ac
cording to the original interpretation in Hilbert's book. 

The so-called "Axioms I, 1-3" stand for the first group of axioms of inci
dence, "II" for the second group of axioms of order and "IV*" for the fourth 
group of axiom of parallels in sharper form in a plane, i.e., Axioms H I, H II 
and the (sharper) axiom of parallels H IV in Sect. 1.1 of this book. 

The so-called "Pascal's Theorem" is Pascal's theorem for intersecting lines 
in Sect. 2.1. The so-called "Pascalian configuration" is a configuration corre
sponding to the contents of Pascal's theorem, including two intersecting lines 
1,1', three points A, B, C on I, three points A', B', C' on I' and AB' II A' B, 
BC'II B'C. 

The so-called "pure point of intersection theorem" is a "theorem that contains 
an assertion about the common locus of points and lines and the parallelism of 
lines without the use of other relations such as congruence and perpendicularity." 

Following this sentence in Hilbert's book a more detailed explanation for 
this class of theorems was given as follows: 

"Every such pure point of intersection theorem in a plane geometry can be 
put in the following form: 

Choose an arbitrary set of a finite number of points and lines. Then draw 
in a prescribed manner any parallels to some of these lines. Choose any points 
on some of the lines and draw any lines through some of these points. Then, 
after having constructed connecting lines and points of intersection as well as 
parallels through the points already existing in the prescribed manner, a definite 
set of finitely many lines is eventually reached, about which the theorem asserts 
that they either pass through the same point or are parallel." 

In Sect. 3.4, we shall illustrate by examples that the two explanations about 
pure point of intersection theorems (PIP theorems for short) are in fact not 
equivalent. To distinguish between the two types of theorems, we shall call the 
latter, the special pure point of intersection theorems, PIP theorems of Hilbert's 
type or of constructive type and simply use PIP theorems for the general pure 
point of intersection theorems. 

Moreover, following Theorem 62 in his book Hilbert made a supplement: 

"In proving the point of intersection theorem with the aid of Pascal's The
orem it is then no longer necessary to revert to the congruence and continuity 
axioms." 

This indicates that Hilbert had the same spirit for Theorem 62 as for the 
whole book, with logical relations of dependence among axioms and theorems 
in mind. But from the explanation in the paragraph preceding Theorem 62, 
which in essence is equivalent to a proof of the theorem, we see that Hilbert 
already gave a mechanical method, at least for proving PIP theorems of Hilbert's 
type. 

In the previous chapter, we indicated how to partially replace the axioms of 
order and continuity by an axiom of infinity and Desargues' axioms in Hilbert's 
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axiom system, and called a geometry, which satisfies the (plane) axioms of inci
dence H I, the (sharper) axiom of parallels H IV, the axiom of infinity Doo and 
the Pascalian axiom for intersecting lines, a (plane) Pascalian geometry. Now, 
based on the idea furnished by Hilbert in his proof, we may restate Theorem 62 
in the following alternative form. 

Hilbert's mechanization theorem. There is a mechanical method for proving 
pure point of intersection theorems of Hilbert's type in (plane) Pascalian geom
etry. This method can mechanically find all the degeneracy conditions that may 
make a theorem false during the proof process. 

In the next section, we shall give some mechanized proofs of several PIP 

theorems on the basis of Hilbert's method. The proof of Hilbert's mechanization 
theorem itself will be given in Sect. 3.5. 

3.4 Examples for Hilbert's mechanical method 

Before giving the proof of Hilbert's mechanization theorem, in this section we 
illustrate by examples the mechanical method used by Hilbert and explain the 
difference between PIP theorems of Hilbert's type and the general PIP theorems. 

Example 1 (Theorem). The diagonals of any generic parallelogram bisect one 
another. 

Let the generic parallelogram be 0 ABC D (see Fig. 3.3). Denote the inter
section point of the diagonals A C and B D by E. Choose a coordinate system 
with A as its origin 0, B on the first axis It and the second axis arbitrary. Such 
a choice is not material and does not affect explaining the method. It is only 
intended to simplify the calculation and to avoid unnecessary complication. 

To reflect the genericity of the parallelogram ABC D, the coordinates of 
the points B and D may be chosen as (UI, 0) and (U2, U3) respectively, where 
UI, U2, U3 are all considered as parameters. Then the points C and E are no 
longer generic but are constrained by the geometric conditions. Let their coordi
nates be C = (Xl, X2), E = (X3, X4). Then these Xi, according to the geometric 
hypotheses, should satisfy the following algebraic relations: 

~~--------~---------- 11 
Fig. 3.3 
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(1) 

<===} UI (X2 - U3) = 0, (2) 

x3 X4 1 
E lies on A C <===} XI X2 1 = 0 <===} X2X3 - XIX4 = 0, (3) 

0 0 1 

X3 X4 1 
E lies on B D <===} U2 U3 1 =0 

UI 0 1 

<===} U3X3 + (UI - U2)X4 - UIU3 = O. (4) 

The expressions (1 )-(4) above constitute the hypothesis of this theorem. The 
conclusion to be proved consists of 

!2X3 - XI = 0, 
E is the midpoint of A C <===} 

2X4 - X2 = 0, 

!2X3 - (UI + U2) = 0, 
E is the midpoint of B D <===} _ 

2X4 - U3 - O. 

(5) 

(6) 

(7) 

(8) 

The problem of proving this theorem amounts to a deduction of the con
clusion (5)-(8) from the hypothesis (1)-(4). The mechanized proof consists in 
designing a mechanical method which decides whether (5)-(8) can be deduced 
from (1)-(4) in a finite number of steps, and finds all possible degeneracy con
ditions that are sufficient to make the theorem meaningless or false during the 
deduction process. 

Such a mechanical method proceeds by first fixing an order of the variables, 
such as XI, X2, X3, X4, then making some necessary elimination for (1)-(4) in 
order to find each Xi successively (according to the above order) and deter
mining meanwhile the non-degeneracy conditions which appear in the process. 
Finally, substitute the x's into (5)-(8) in order to verify whether the equations 
are satisfied. 

In detail, we first find XI,X2 from (1)-(2) and obtain 

(9) 

(10) 
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The non-degeneracy condition to be observed is 

Substituting the obtained Xl and X2 into (3), we have 

From (12) and (4) we find X3 and X4: 

X3 = !(UI + U2), 

I 
X4 = 2U3· 

The corresponding non-degeneracy condition is still (11), or written as 

UI # 0, 

U3 # O. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

The geometric meanings of the non-degeneracy conditions can be easily ex
plained: 

U I # 0 {=::::} B and A do not coincide, 

U3 # 0 {=::::} D does not lie on AB. 

Denote the expressions on the left-hand side of the conclusion equations 
(5)-(8) by gl, ... , g4 respectively. Substituting all the x's found from (9), (10), 
(13) and (14) into each gi and calculating its value directly, we can verify that 
gi = O. In other words, under the non-degeneracy conditions (15) and (16), 
the theorem holds true. The calculational procedure above yields a proof of the 
theorem. 

Thus, we arrive at the following conclusion: 
So long as the vertices B and A of 0 ABC D do not coincide and the vertex 

D does not lie on line AB, the diagonals AC and BD bisect one another. 
If necessary, we may check either of the two degeneracy cases individually, 

or consider each case as a new theorem and prove its truth by the same procedure 
as above. l We do not explain this in more detail. 

Though this example is rather simple, it is very typical. The mechanical 
procedure used is applicable to theorems that are much more complex than this 
one, but the number of calculations will be greatly increased. Therefore, we 
have to use modem equipment such as an electronic computer. In the following 
we shall give a few more complex examples to explain this point. 

1 For example, Pascal's theorem about the inscribed hexagon of a conic in projective 
geometry, in the cases that some vertices of the hexagon degenerate to coincide, may 
be proved as other theorems. 
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--....... ----t--:-----f-----l, 

Fig. 3.4 

Example 2 (Desargues' theorem). Suppose the three pairs of the corresponding 
sides of two generic triangles ABC and A' B' C' respectively are parallel to each 
other and both AA' and BB' pass through a point O. Then CC' also passes 
through point 0 (cf. Fig. 3.4). 

We want to prove this theorem and determine the subsidiary conditions about 
genericity. The theorem has already been introduced as an axiom to set up the 
Desarguesian number system and coordinate system. Here we prove it. This is 
only to illustrate the mechanical method and is independent of the problem of 
cyclical proof. 

Let us assume that the lines AA' and B B' do not coincide. To simplify the 
calculation, we take these two lines as the axes II and 12 and 0 as the origin. 
Let the coordinates of points be 

A = (UI, 0), A' = (U2, 0), 
B = (0, U3), C = (U4, us), 

B' = (0, Xl), c' = (X2, X3), 

where UI, ... , Us are considered as parameters and Xl, X2, X3 are constrained by 
the geometric conditions. 

The hypothesis of this theorem is expressed by the following algebraic re
lations with the corresponding geometric conditions indicated: 

A' B' II AB {:::=} U IXI - U2U3 = 0, (17) 

A'e' II AC {:::=} (U4 - UI)X3 - US(X2 - U2) = 0, (18) 

B'e' II BC {:::=} U4(X3 - Xl) - (Us - U3)X2 = O. (19) 

The conclusion of the theorem is given by 

o is on CC' {:::=} U4X3 - USX2 = O. (20) 

From (17), we obtain 

(21) 
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with the non-degeneracy condition 

(22) 

introduced. Substituting Xl in (21) into (19) and solving (18) and (19) for X2 

and X3, we have 

U2U4 
X2 = --, 

UI 

U2US 
X3 = --. 

Ul 

(23) 

(24) 

The non-degeneracy condition is that the coefficient determinant of (18) and 
(19) does not vanish, i.e., 

(25) 

Denote the left-hand side of the conclusion equation (20) by g. Substituting 
all the x's in (21), (23) and (24) into g and simplifying it, we have g = O. 
Therefore, the theorem is true when the non-degeneracy conditions (22) and 
(25) are satisfied. 

The geometric meanings of the non-degeneracy conditions are 

U I i- 0 {:=::> A and 0 do not coincide, 

UIU3 - UIUS - U3U4 i- 0 {:=::> A, B, C do not lie on the same line. 

Hence we arrive at the following conclusion: 
Under the generic or non-degeneracy conditions that AA' and B B' do not 

coincide and intersect at a point 0, A does not coincide with 0 and A, B, C 
are not collinear, the theorem holds true. 

Whether or not the theorem holds in the two degeneracy cases may be 
further verified if necessary. For instance, in the degeneracy case that A, B, C 
are collinear, i.e., 

U4 and Us can no longer be parameters at the same time. In this case, let us 
change, without loss of generality, Us to Xo. Then the geometric hypotheses are 

From them, one obtains 

(U4 - UI)X3 - XO(X2 - U2) = 0, 

U4(X3 - Xl) - (xo - U3)X2 = O. 
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UI 

U2U3 
Xl = --, 

UI 

X2 = arbitrary, 

U3 
X3 = --(X2 - U2), 

UI 

with the non-degeneracy conditions 

introduced. 

U 1 =1= ° {:=::} A does not coincide with 0, 

UI - U4 =1= ° {:=::} AC ,If BB' 

Substituting all the x' s into the expression to be proved, we verify that 

g = U4 X3 - XOX2 

U3 U3(UI - U4) 
= -U4 . - (X2 - U2) - . X2 

Ul UI 
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Therefore, in this case the theorem is no longer true unless other degeneracy 
conditions, e.g., U 1 = ° or U 1 - U4 = 0, are added. This may be in contrast with 
Example 3 in Sect. 3.1. 

Example 3 (Desargues' theorem). Suppose the three lines AA', BB', ce' con
necting the corresponding vertices of two generic triangles ABC and A' B'C' 
are concurrent at 0 and two pairs of the corresponding sides respectively are 
parallel to each other, e.g., 

AB II A'B', AC II A'C'. 

Then the third pair of the corresponding sides are also parallel to each other: 
BC II B'C'. 

As in Example 2, we assume that the two lines AA' and B B' do not coincide, 
and are taken as the coordinate axes with 0 as the origin. Let the coordinates 
of points be also as in Example 2. Then the hypothesis consists of 

A' B' II AB {:=::} UIXI - U2U3 = 0, 

A'C' II AC {:=::} (U4 - UI)X3 - U5(X2 - U2) = 0, 

CC' passes through 0 {:=::} U4X3 - U5X2 = 0, 
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and the conclusion is 

Solving the hypothesis equations for the x' s, we get 

where the non-degeneracy conditions are 

U 1 =1= 0 {::::::} A does not coincide with 0, 

U5 =1= 0 {::::::} C does not lie on AA'. 

Substituting all the Xi into g, we have 

( U2U5 U2U3) U2U4 g = U4' -- - -- - (U5 - U3) . -- = o. 
Ul Ul Ul 

Hence the theorem in question is true under the above non-degeneracy condi
tions. 

Upon verifying further, one finds that in the case U5 = 0, i.e., C lies on 
AA', the theorem is no longer true if no other degeneracy conditions are added. 
This may be in contrast with Example 2 in Sect. 3.1. 

From the above three examples, we see that the mechanical method used 
can cause the various degenerate cases in which the truth of the theorem may 
be affected to naturally appear one by one, and the degenerate cases can be 
treated individually in the same way as necessary. From the three examples in 
Sect. 3.1, we see on the contrary that the discovery and treatment of degenerate 
cases using the usual Euclidean method are practically blindfold and also almost 
powerless. 

To explain the mechanical method of this section further, we shall give 
another example which is less trivial. 

The linear Pascalian axiom, which is very important for the algebraization 
of geometry, is a degenerate case of Pascal's theorem in projective geometry. 
Pascal's original theorem says that a necessary and sufficient condition for the 
six vertices of a hexagon to lie on a conic is that the intersection points of 
the three pairs of opposite sides of the hexagon are collinear. In this case, the 
hexagon (with a fixed order of vertices) is called a Pascalian hexagon and the 
line on which the intersection points of the three pairs of opposite sides lie is 
called a Pascali an line of the hexagon. As usual, the statement of this theorem 
implies some assumptions about genericity. The degenerate cases are rather 
complicated. In addition, the statement of the theorem is related to conic and is 
beyond the scope of Hilbert's mechanical method for PIP theorems. However, 
we can easily transform the theorem into a PIP theorem in the following way. 
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Suppose AIA2A3A4ASA6 is a generic Pascalian hexagon with the intersec
tion points of the three pairs of opposite sides 

collinear (where /\ stands for intersection). According to Pascal's original theo
rem, the six points A I, ... , A6 should lie on a common conic. Therefore, if we 
make an arbitrary permutation for these six points, by Pascal's original theorem 
the obtained hexagon Ail Ai2 .. . Ai6 is also a Pascalian hexagon, i.e., the points 
of intersection 

are collinear. In this way, we can avoid involving conics and get different 
PIP theorems in terms of different permutations. We pick out one of them for 
illustration. 

Example 4 (Theorem). If AIA2A3A4ASA6 is a generic Pascalian hexagon, then 
AIA4A3A2AsA6 is also a Pascalian hexagon. In other words, for six points 
AI, A2, ... , A6, if 

are collinear in the generic case, then the points of intersection 

are also collinear. 
For the sake of simplicity, we take A6 as the origin 0 and the lines A6Al 

and A6AS, which are supposed to be distinct, as the two coordinate axes it 
and [2. The coordinates of points are chosen as 

Al = (UI, 0), A2 = (U2, U3), 

A3 = (U4, us), A4 = (U6, U7), 

R = A3A4 /\ A6AI = (Xl, 0), 

Q = A2A3 /\ AsA6 = (0, X2), 

Q' = A3A4 /\ AsA6 = (0, X3), 

R' = A2A3 /\ A6AI = (X4, 0), 

P = AIA2 /\ A4AS = (xs, X6), 

As = (0,X7), 

p' = AIA4 /\ A2AS = (xg, X9). 
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h 

--------~r-~~+-----~----------- I, 

Q Fig. 3.5 

The geometric conditions in the hypothesis are 

R lies on A3A4 {=::::} (us - U7)Xl + U4U7 - USU6 = 0, 

Q lies on A2A3 {=::::} (U2 - U4)X2 - U2US + U3U4 = 0, 

Q' lies on A3A4 {=::::} (U4 - U6)X3 - U4U7 + USU6 = 0, 

R' lies on A2A3 {=::::} (U3 - US)X4 + U2US - U3U4 = 0, 

P lies on AIA2 {=::::} U3US + (Ul - U2)X6 - UIU3 = 0, 

P, Q, R are collinear {=::::} X2XS + XIX6 - XIX2 = 0, 

P lies on A4AS {=::::} (U6 - XS)X7 + U7XS - U6X6 = 0, 

p' lies on AIA4 {=::::} U7XS + (Ul - U6)X9 - UIU7 = 0, 

p' lies on A2As {=::::} (U3 - X7 )xs - U2X9 + U2X7 = 0. 

The geometric relation to be proved is 

p', Q', R' are collinear {=::::} g == X3XS + X4X9 - X3X4 = 0. 
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Solving the hypothesis equations for all the x's, we obtain 

U2 US - U3 U4 
X2 = = R2(U), 

U2 - U4 

U4U7 - USU6 
X3 = = R3(U), 

U4 - U6 

U3 U4 - U2US 
X4 = = R4(U), 

U3 - Us 

U1 U3 - (U1 - U2)X2 
Xs = . Xl = Rs(u), 

U3 X1 - (U1 - U2)X2 

U3 X2(X1 - U1) 
X6 = = R6(U), 

U3 X1 - (u 1 - U2)X2 

U7 XS - U6X6 
X7 = = R7(U), 

Xs - U6 

U2[U1 U7 + (U6 - U1)X7] 
Xs = = Rs(u), 

(U1 - U6)(U3 - X7) + U2U7 

U1 U3U7 + (U2 - Ul)U7 X7 
X9 = = R9(U), 

(U1 - U6)(U3 - X7) + U2U7 

The non-degeneracy conditions introduced are 

Us - U7 #- 0 {=::} A3A4 is not parallel to II, 

u2 - u4 #- 0 {=::} A2A3 is not parallel to 12, 

U4 - U6 #- 0 {=::} A3A4 is not parallel to 12 , 

u3 - Us #- 0 {=::} A2A3 is not parallel to 11, 

ex == U3X1 - (U1 - U2)X2 #- 0 {=::} QR is not parallel to A1A2, 

Xs - U6 #- 0 {=::} P A4 is not parallel to 12, 

f3 == (UI - U6)(U3 - X7) + U2U7 #- 0 {=::} A1A4 is not parallel to A2AS. 
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There are simple geometric interpretations for some of the non-degeneracy 
conditions. Consider, for instance, the third non-degeneracy condition. Since 
A3A4 and 12 contain a common point Qt, the condition that A3A4 is not parallel 
to 12 means that they do not coincide, or A3, A4, As, A6 are not collinear. Clearly, 
degeneracy cases of this kind are all short of geometric interest and not worth 
being further considered. 
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In case the non-degeneracy conditions are satisfied, we substitute all the 
Xi = Ri(U) into the conclusion expression g. By tedious yet direct calculation, 
we may verify that 

and thus the theorem holds true. 

Example 5. The theorem is the same as the preceding one. 
If we take A6 as the origin 0, A6AI and A5A6 as the two coordinates axes 

11 and 12 as in Example 4, but the coordinates of points as 

Al = (UI, 0), 

A3 = (U4, U5), 

A4 = (U7, Xl), 

R = (X3, 0), 

P = (X5, X6), 

P' = (X8, X9), 

then the hypothesis relations become 

A2 = (U2, U3), 

A5 = (0, U6), 

Q = (0, X2), 

R' = (X4, 0), 

Q' = (0, X7), 

A4, A 5, P are collinear {:=:} (Xl - U6)X5 - U7(X6 - U6) = 0, 

P, Q, R are collinear {:=:} X2X5 + X3X6 - X2X3 = 0, 

A3, A4, R are collinear {:=:} (Xl - U5)X3 - U4XI + U5U7 = 0, 

AI, A2, P are collinear {:=:} U3x5 + (UI - U2)X6 - Ulu3 = 0, 

A2, A3, Q are collinear {:=:} (U2 - U4)X2 - u2u5 + u3u4 = 0, 

and some others. If we proceed with elimination so that the x's are successively 
introduced, we shall get an expression of the form 

Axr + BXI + C = ° 
and some others (under certain non-degeneracy conditions), where A, B, C are 
polynomials in UI, ... , U7. Under the non-degeneracy condition A i- 0, one 
obtains an equation of degree 2 in Xl. Therefore, we are unable to prove this 
same theorem by using the previous method. 

The difference between this example and the last example is that in the 
previous example the theorem was transformed to a PIP theorem of constructive 
type, where in this example it was not. In other words, the points of the geometric 
configuration in Example 4 can be introduced constructively step by step in the 
following order: 
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Take first an arbitrary point A6 as the origin O. 
Take then two arbitrary lines It, 12 through 0 as the coordinate axes. 
Take an arbitrary point Al = (UI, 0) on II. 
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Construct through A I an arbitrary line and take thereon an arbitrary point 
A2 = (U2, U3). 

Construct through A2 an arbitrary line and take thereon an arbitrary point 
A3 = (U4, us). 

Construct through A3 an arbitrary line and take thereon an arbitrary point 
A4 = (U6, U7). 

Let the line A3A4 meet II at the point R = (XI, 0). 
Let the line A2A3 meet 12 at the point Q = (0, X2). 
Let the line A3A4 meet 12 at the point Q' = (0, X3). 
Let the line A2A3 meet II at the point R' = (X4, 0). 
Extend the line QR to meet AIA2 at the point P = (xs, X6). 
Extend the line PA4 to meet h at the point As = (0, X7). 
Extend the lines AIA4 and A2AS to meet at the point pi = (xs, X9). 
The conclusion is: pi, Q', R' are collinear. 

Obviously, such a statement is equivalent to the original theorem, but has 
become one of a constructive type. 

3.5 Proof of Hilbert's mechanization theorem 

In this section we give a proof of Hilbert's mechanization theorem stated in 
Sect. 3.3. The contents of this mechanization theorem are directed to a cer
tain class of PIP theorems in Pascalian geometry. The number field associated 
with Pascalian geometry will be denoted by N. The proof of the mechanization 
theorem consists in designing a mechanical method for proving this class of 
PIP theorems. As indicated in Example 5 of Sect. 3.4, the PIP theorems will be 
restricted to those which have been transformed into a constructive type. The 
feature of this class of PIP theorems is that the points and lines involved in the 
statement of each theorem are introduced or constructed one by one according to 
some definite steps. Moreover, at each step the construction proceeds by taking 
an arbitrary point, constructing an arbitrary line, letting two lines meet at a point 
or constructing a parallel. 

Below we shall present the mechanical procedure for proving the class of 
PIP theorems of constructive type. 

First, take an arbitrary coordinate system. Then the points and lines involved 
in a theorem may all be represented by pairs of numbers and linear equations in 
terms of the coordinates of points. The numbers in the pairs and the coefficients 
of equations are all taken from the number field N associated with the geometry 
and will not be further explained. 

We shall avoid using equations of lines and represent lines by pairs of points. 
Moreover, among the points and lines, some are arbitrarily chosen and the others 
are constructed in a certain manner. Therefore, in the coordinate representation 
of points, some coordinates are arbitrary and are denoted by Ui, whereby Ui 

are considered as parameters, and the others are determined in a certain manner 
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according to the prescribed geometric conditions and denoted by Xj. When no 
distinction between these two kinds of coordinates is necessary, they will be 
denoted by ak. 

In the considered PIP theorems, the following constructions are involved. 

1. A point is arbitrarily given or chosen. 
This point will be represented as (u i, U j ) . 

2. A line is arbitrarily given or chosen. 
We may arbitrarily choose two points (Ui, Uj) and (Uk. Ut) with the line 

determined by these two points. 
3. Draw an arbitrary line through a point (ai, aj) already constructed. 
We may take instead an arbitrary point (Uk. Ut) and represent the line by the 

points (ai, aj) and (Uk. Ut). 
4. Draw the connecting line of two points already constructed. 
As the line has been determined by two points thereon, this construction 

needs no further consideration. 
5. Choose an arbitrary point on a line already drawn. 
If the line is determined by two points (ai, aj) and (ak. at) already con

structed, then the arbitrary point chosen thereon may be represented either as 
(u r , xs) or as (xs, ur ) satisfying the equation 

U r Xs 1 
1 = 0 or 

1 

Xs U r 1 
1 = O. 
1 

6. Construct an arbitrary parallel to a line already drawn. 
As the line is determined as before by two points thereon already constructed, 

say (ai, aj) and (ak. at), the parallel to be constructed will be determined instead 
as follows. Take first an arbitrary point (urn, un), and then a point (ur , xs) or 
(xs, ur ) such that the connecting line of this point to the point (urn, un) is parallel 
to the line determined by (ai, aj) and (ak. at), so that Xs satisfies the equation 

or 

7. Draw a line through a point (am, an) already constructed parallel to a 
line already constructed. 

Let the line already constructed be determined by two points (ai, aj) and 
(ak. at), then the line to be drawn will be taken to be one determined instead 
by (am, an) and another point (u r , xs) or (xs, ur ) satisfying the equation 

or 
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8. Construct the intersection point of two intersecting lines already con
structed. 

Let the two lines be determined respectively by two pairs of points (ai, aj), 
(ak, az) and (ap, aq), (ar , as) already constructed. Then the point of intersection 
may be taken as (xg , Xh), satisfying the system of equations 

( 

(aj - az)xg - (ai - ak)xh + aiaZ - ajak = 0, 

(aq - as)xg - (ap - ar)xh + apas - aqar = O. 

Denote the coefficient determinant of this system of equations by 

D = [ aj - az ak - ai [. 
aq - as a r - ap 

Now introduce the non-degeneracy condition 

Then under this condition, the original system is equivalent to the following 
system of two equations 

DXg + (ar - ap)(aiaz - ajak) - (ak - ai)(apas - aqar ) = 0, 

-DXh + (aq - as)(aiaz - ajak) - (aj - az)(apas - aqar ) = O. 

In case D = 0, either the original system of equations is contradictory and 
thus the theorem is meaningless, or one of xg , Xh (or both of them) may take 
arbitrary value and may thus be considered as a parameter u, while the other x 
is determined by one of the original two equations. 

9. Construct the intersection point of a line already constructed and a line 
through a point (am, an) already constructed and parallel to a second line already 
constructed. 

Let the two lines already constructed be determined respectively by two 
pairs of points (ai, aj), (ak, az) and (ap, aq), (ar , as). Represent the point to be 
constructed by (xg, Xh). Then xg, Xh satisfy the system of equations 

(ak - ai)(xh - an) - (az - aj)(xg - am) = 0, 

(aq - as)xg - (ap - ar)xh + apas - aqar = O. 

As before, introduce the non-degeneracy condition 

D =1= O. 

Then the system of equations is equivalent to a system of two equations of the 
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form 
DXg + ... = 0, 

DXh + ... = 0. 

In case D = 0, either the original equations are contradictory and thus the 
theorem is meaningless, or one of xg , Xh (or both of them) may be taken as a 
parameter while the other x is determined by one of the original two equations. 

10. Construct the intersection point of two lines passing through each of the 
two points already constructed and parallel respectively to each of the two lines 
already constructed. 

This is similar to 8 and 9. 

Since we only consider PIP theorems of constructive type, the points and 
lines in a theorem will occur one after another in a definite order of succession. 
It follows that the coordinates of points involved (with lines replaced by two 
points thereon, see above) can be arranged in a definite order in accordance with 
their ordering of appearance in the construction as follows: 

Xl -< X2 -< ... -< X n · 

In particular, whenever a new point is introduced by the construction 8, 9, or 10, 
its coordinates attributed will be two x's in succession, say (xg, Xg+I). 

According to 1-10, we may successively introduce the equations for all Xi 

and the associated non-degeneracy conditions as follows. 
Consider the first step of construction in the statement of a theorem and 

assume that some parameters Ui have already been introduced. We may have 
three cases according as the construction is one of 1-4, or of 5-7, or of 8-10. 

If the construction is one of 1-4, some new Uj should be introduced. 
If the construction is one of 5-7, then an equation of the following form 

will be obtained: 
AIXI + BI = 0, 

where Al and BI are both polynomials in the variables UI, ... , Urn, the pa
rameters already introduced, with coefficients in N. By the commonly used 
denotation, that is 

AI, BI E N[UI, ... , urn]. 

When Al is identically equal to ° but BI is not, the non-degeneracy condition 

is introduced. In this case, the procedure terminates and reports that the hy
pothesis of the theorem is self-contradictory under the above non-degeneracy 
condition. In case both Al and BI are identically equal to 0, we introduce a new 
parameter Urn+! and set 

Xl = Urn+l. 
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In case A I is not identically equal to 0, we introduce a non-degeneracy condition 

Al =1= 0, 

and solve the equation for Xl: 

BI 
Xl = --. 

Al 

If the construction is one of 8-10, then the following two equations will be 
obtained: 

AllXI + AI2X2 + BI = 0, 

A2IXI + A22X2 + B2 = 0, 

where all Au, A12, A2I, A22, BI, B2 E N[UI, ... , urn]. 
Consider the coefficient determinants 

In case P is not identically equal to 0, i.e., 

rank of [
Au 

A21 
A12] = 2, 
A22 

we introduce a non-degeneracy condition 

P =1= 0, 

and solve the equations for Xl, X2: 

i.e., 

QI 
XI=-p' 

When P is identically equal to ° but not all of A II, ... , A22 are identically 0, 

rank of [Au A12] = 1, 
A21 A22 

there are two polynomials aI, a2 E N[u I, ... , urn], not all 0, such that 

alAu + a2A21 == 0, 

al A I2 + a2A22 == 0. 

In this case, from the original system of equations we obtain 
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Now, if al BI + a2B2 is not identically equal to 0, then we introduce a non
degeneracy condition 

and report that the hypothesis of the theorem is self-contradictory under this 
non-degeneracy condition and the procedure terminates. 

When P and alBI + a2B2 are both identically equal to ° but not all of 
All, ... , A22 are identically 0, for instance, A 11 is not identically equal to 0, 
we introduce a new parameter Um+l and a non-degeneracy condition 

All i- ° 
and solve the equations for Xl, X2: 

A12Um+1 + BI 
XI=------

All 
X2 = Um+l· 

When All, ... , A22 are all identically equal to ° but not both of BI and B2 
are identically 0, we introduce the non-degeneracy condition(s) 

BI i- ° and/or B2 i- 0, 

and report that the hypothesis of the theorem is contradictory under the above 
non-degeneracy condition(s) and the procedure terminates. 

Finally, if All, ... , A22, BI, B2 are all identically equal to 0, we introduce 
two new parameters Um+!, Um+2 and set 

XI = Um+l, X2 = U m+2· 

If no contradiction for the hypothesis has occurred (i.e., the procedure has 
not already terminated), proceed to the second step of the construction according 
to the statement of the theorem. 

Now suppose that the constructions according to the statement of the theorem 
have proceeded up to a certain step, but not the last, meanwhile some new 
parameters 

Um+l, ... , Um+s 

have been introduced, some non-degeneracy conditions 

have been obtained and Xl, ... ,xi have been found: 
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in which 

and PI, ... ,Pi are the power products (i.e., products of non-negative powers) 
of DI, ... , Dj. 

Suppose no contradiction for the hypothesis did occur (and thus the pro
cedure did not terminate yet). Then proceed to the next step of construction. 
According as the construction is one of 1-4, or of 5-7, or of 8-10, either some 
parameters are introduced, or an equation of the form 

is obtained, or two equations of the form 

Ai+I,IXi+1 + Ai+I,2Xi+2 + Bi+1 = 0, 

Ai+2,IXi+1 + Ai+2,2Xi+2 + Bi+2 = 0, 

are obtained, where the A, B's are all polynomials in the variables UI, ... , Um+s , 

XI, ... ,Xi with coefficients in N. 
Now substituting all the rational expressions of XI, ... ,Xi previously found 

into these equations (where PI #- 0, ... , Pi #- ° in the non-degeneracy cases 
DI #- 0, ... , Dj #- 0), we obtain, after the reduction of fractions to a common 
denominator, an equation 

or a system of two equations 

At+I,IXi+1 + At+I,2Xi+2 + Bt+l = 0, 

A7+2,IXi+1 + A7+2,2Xi+2 + Bt+2 = 0, 

in which the A*, B*'s are all polynomials in N[Ul, ... , um+s ]' 
In the same way as before, it is known that either under some newly intro

duced non-degeneracy conditions 

the hypothesis of the theorem is self-contradictory and the procedure termi
nates, or one can introduce some new parameter Um+s+l (or parameters Um+s+l, 

Um+s+2) and some non-degeneracy conditions as above and solve the equation 
(or equations) for Xi+1 (or Xi+l, Xi+2) to get 
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where all Dj+l (or Dj+l, Dj+2) and Pi+!, Qi+! (or Pi+l, Pi+2, Qi+l, Qi+2) 
are polynomials in UI, ... , Um+s and the introduced new parameter Um+s+l 
(or parameters Um+s+l, Um+s+2), and Pi+l (or PHI, P i +2) is (are) some power 
product(s) of DI, ... , Dj and the possibly introduced new polynomial Dj+l (or 
polynomials DJ+I, Dj+2). 

If we still have not already arrived at the last, continue to proceed to the 
next step of construction. In this way, one of the following two cases finally 
must occur. 

Case 1. In addition to the parameters UI, ... , Um which have been specified in 
the statement of the theorem, some new parameters Um+l, ... , Um+t (each of 
which is a coordinate) are introduced: 

Moreover, some non-degeneracy conditions 

DI =1= 0, ... , Dr =1= ° 
are obtained, where all the D's are polynomials in the new and old param
eters U I, ... ,Um and Xim+!, ... , Xim+t • Under these non-degeneracy conditions, 
the hypothesis of the theorem is self-contradictory and the procedure terminates. 

Case 2. Some new parameters UI, ... , Um+t and some non-degeneracy condi
tions are introduced as above, and under these non-degeneracy conditions all 
the x' s are found as 

QI Qn 
Xl = -, ... ,Xn = -, 

PI Pn 

where the P, Q's are all polynomials in the new and old parameters UI, ... , Um+t 
and all the P' s are some power products of DJ, ... , Dr. 

The conclusion of the PIP theorem can be expressed as some equations 

where 

Suppose now we are in Case 2. Then under the non-degeneracy conditions 

DI =1= 0, ... , Dr =1= 0, 

we substitute the found 
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into Sk and obtain 

where both R~ and R~ are polynomials in the new and old parameters UI, .•. , 

Urn+t and R~ is a power product of the P's and thus of the D's and, therefore, is 
not equal to 0 under the non-degeneracy conditions. Evidently, we can determine 
whether or not R~ is identically equal to 0 by very complicated yet rather easy 
mechanical computation and thus can determine whether or not the theorem is 
true under the assumption that the non-degeneracy conditions are satisfied. 

From the above, we draw the following conclusion: 
For any PIP theorem of constructive type, one can always choose coordinates 

UI, ••• , Urn, Xl, ... , Xn , pick up some coordinates out of x's as new parameters 
according to a certain mechanical procedure and get, after a finite number of 
steps, a set of polynomials DI, ... , Dr in the new and old coordinates and de
termine that one and only one of the following cases holds under the assumption 
that the non-degeneracy conditions 

DI f. 0, ... , Dr f. 0 

are satisfied: 

(1) The hypothesis of the theorem is self-contradictory; 
(2) the theorem is true; 
(3) the theorem is false. 

In case the theorem is true, the above mechanical steps constitute a mecha
nized proof of the considered PIP theorem with the corresponding non-degeneracy 
conditions provided. 

The proof of Hilbert's mechanization theorem is now complete. 0 



4 The mechanization 
theorem of (ordinary) 
unordered geometry 

4.1 Introduction 

This is the principal chapter of the book. It aims to prove that if the associ
ated number system of a certain geometry is a number field, i.e., multiplication 
is commutative, then the proving of theorems whose hypotheses and conclu
sions can be expressed as polynomial equality relations is mechanizable. This 
class of theorems will be called theorems of equality type. In fact, this class 
contains most of the important theorems in elementary geometries though it 
excludes theorems involving order relations and thus polynomial inequalities in 
the algebraic relations. However, the latter does not often occur except in high 
school Euclidean geometry. In modem geometries such as algebraic geometry, 
the associated number fields are usually the complex field and arbitrary fields 
of characteristic 0, so no order relation is involved. Therefore it is compatible 
with the current state of geometry to restrict mechanical proving to theorems 
that can be expressed by means of only equalities. 

According to Sects. 3.2 and 3.3, the mechanical proving of theorems of 
equality type may be reduced to the following mechanization problem stated in 
algebraic form. 

Mechanization problem (algebraic form). Given a number field K, a set of vari
ables 

Xl,.·., Xn , 

a set of polynomials 

and any other polynomial 

find a mechanical method which determines, after a finite number of steps, 
a finite set of non-degeneracy conditions 
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and decides whether the following conclusion holds true for some extension 
field X of K: 

(1 ) For arbitrary a I, ... ,an E X, if 

Ii (aI, ... , an) = 0, i E I, 

Dj(al, ... , an) =P 0, j E J, then g(al, ... , an) = O. 

When (1) holds, we say that the equation 

g(XI, ... ,xn) = 0 

is a formal consequence of the equations 

fi (Xl, ... ,Xn) = 0, i E I 

under the non-degeneracy conditions 

The above non-degeneracy conditions Dj cannot be arbitrary. They must 
satisfy the requirement that each 

is not a formal consequence of 

In other words, for each j E J there is at least one n-tuple of numbers 

such that 

while 

See the remarks on non-degeneragr conditions in Sect. 3.3. 
In statement (1), if X is the geometry-associated number field K itself, then 

any n-tuple of numbers aI, ... ,an E X corresponds to a geometric configuration 
satisfying the hypotheses of the considered theorem, and g(al' ... , an) = 0 is 
equivalent to saying that the conclusion of the theorem is true for this geometric 
configuration. Hence, the resolution of the mechanization problem of algebraic 
form in the case X = K shows that the corresponding theorem proving in geom-
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etry is mechanizable. That is, the mechanization theorem of the corresponding 
geometry holds true. 

The following sections are devoted to solving the algebraic form of the 
mechanization problem. In our solution, however, the field K in (1) is not the 
original geometry-associated number field K, but an algebraically closed exten
sion field of K. For the goal of mec~anical proving in geometry, this is sufficient. 
If (1) holds for the extension field K, then it holds for the original number field 
K as well, and thus the corresponding geometric theorem is true. If (l) does not 
hold for the extension field K, even though we cannot conclude that it does not 
hold for K, and thus cannot conclude that the corresponding geometric theorem 
is false either, we can at least point out that the probability that this theorem is 
true is small, or at least that the theorem is not true after slightly enlarging the 
geometric configuration (for example, enlarging the real geometric configuration 
to the complex configuration). If we use the language of algebraic geometry and 
apply the theorem that the dimension of an algebraic variety does not depend 
on the base field, then, at least for ordinary geometry, the above case does not 
occur. However, we wish to obtain positive proofs of geometric theorems rather 
than negative disproofs. Therefore, it is not so important whether K and K are 
the same. In view of this point, we shall extend the definitions of mechanical 
methods and the mechanizability of theorem proving in geometry to include the 
above case. In detail, when K is taken as an extension field of the correspond
ing field associated with the geometry and the mechanization problem of the 
algebraic form has a solution, we shall still say that the corresponding theorem 
proving in geometry is mechanizable. When the considered geometric theorem 
is true, the algebraic mechanical procedure used gives a mechanized proof of 
this theorem. Under this wider notion, this chapter will give a solution to the 
mechanization problem in algebraic form which leads to the following. 

Mechanization theorem. There is a mechanical method for proving theorems in 
various unordered geometries such as unordered Pascalian geometry, unordered 
orthogonal geometry, and unordered metric geometry (in which the Pascalian 
axiom for intersecting lines holds true) subordinate to ordinary geometry as 
described in Chap. 2. 

The above-mentioned algebraic problem is actually a problem of algebraic 
geometry. Its solution relies upon algebraic geometry, a rather modem subject 
of mathematics. But much of modem algebraic geometry has been developed 
to a purely existential theory. Since the solution we require must be a mechan
ical method, we need a constructive theory - the purely existential one is not 
sufficient. Fortunately, J. F. Ritt (1932, 1950) has already developed such a con
structive algebraic geometry, which fulfills our requirements. As Ritt's work is 
little known and his arguments are often analytic, in this chapter we shall rewrite 
Ritt's theory in a form that better fits our needs. Ritt's constructive theory of 
algebraic geometry is itself worthy of our attention. For example, the idea of 
dimension of an algebraic variety is one of the most fundamental and intuitive 
notions; and the dimension theorem on the sections of an algebraic variety by a 
hyperplane is one of the most fundamental and intuitive theorems in algebraic 
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geometry. Nevertheless, in popular books of algebraic geometry, both the intro
duction of the notion and proof of the theorem are not simple and need to use 
some deep methods. Moreover, they are all existential. On the contrary, Ritt's 
theory gives not only an elementary and direct proof of the theorem, but also a 
constructive method for the determination of dimensions (cf. Sect. 4.6). 

4.2 Factorization of polynomials 

Let K be a fixed number field. We shall restrict ourselves, without further indi
cation from now on, to the case in which K is of characteristic O. As usual, the 
ring formed by all polynomials in the variables Xl, X2, ... ,Xn with coefficients 
in K is denoted by K[XI, X2, ... ,Xn). Similarly, if the coefficients are in some 
ring A, the corresponding polynomial ring is denoted by A[XI, X2, ... , xn). 

Let K be any number field containing K, called an extension field of K. For 
a f) in K but not in K, let us consider the sequence 

1, f), e2, ... , em, .... 

Denote by K(f) the totality of elements f(e)/g(e) in K, in which f, g are 
both polynomials in f) with coefficients in K and g(f) is not 0 in K. Under the 
operations of K, K(f) constitutes a number field containing K, called a simple 
extension field obtained from K by adjoining e. There are two cases as follows. 

Case 1. In the sequence formed by the powers of f), any finite number of terms 
are linearly independent over K. In this case, f) is a transcendental number with 
respect to K and K(f) is a transcendental extension field obtained from K by 
adjoining e. 

Case 2. There is a finite number of terms in the sequence such that they are 
linearly dependent over K. Let m be the minimal integer such that 1, f), ... , f)m 
are linearly dependent over K. Then there are numbers ao, aI, ... , am, not all 0, 
in K such that 

ao +alf) + ... +amf)m = O. 

But, for any n + 1 (n < m) numbers bo, bI, ... , bn, not all 0, we have 

and thus am i- 0 in particular. Now, f) is an algebraic number over K, K(f) is 
an algebraic extension field obtained from K by adjoining f) and m is the degree 
of f) or K(f) over K. 

In the second case, we denote the polynomial ao + alx + ... + amxm by 

Pe(X) = ao + aIX + ... + amxm E K[x]. 

Then Pe(x) is obviously irreducible in K[x], i.e., it cannot be factorized as a 
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product of two polynomials of degree at least 1 in K[x]. In particular, we have 
ao '# O. Apparently, Pe can be uniquely determined up to a non-zero factor in K. 
We shall call any such polynomial Pe (x) an adjoining polynomial of (J. We see 
that Pe(x) is irreducible in K[x] and 

i.e., (J is a solution of Pe (x) = 0 in a certain extension field of K. 
Let f«(J)/g«(J) be an arbitrary number in K«(J), whence f(x), g(x) E K[x] 

and g«(J) '# O. Since Pe(x) is irreducible in K[x], g(x) and Pe(x) cannot 
have a common divisor. By the division algorithm of polynomials, there are 
cp(x), 1/J(x), Q(x), R(x) E K[x] such that 

cp(x)g(x) + 1/J (x) Pe (x) = 1, 

f(x)cp(x) = Q(x)Pe(x) + R(x), 

where the degrees of cp(x) and R(x) in x are less than the degree of Pe(x) 
in x (i.e. m), and the degree of 1/J(x) is less than the degree of g(x) in x. As 
Pe«(J) = 0, 

Therefore, an arbitrary number in K«(J) can be represented as a polynomial of (J 
whose degree is less than or equal to m - 1. This representation is unique and 
can be constructively determined via algebraic operations. 

Suppose now that the field K is the quotient field of a domain A which has 
a unit element. Then no matter whether K«(J) is a transcendental extension or 
an algebraic extension, the set A[(J] of polynomials in (J with coefficients in A 
is a domain which has a unit element and K(e) is the quotient field of A(e). 
According to Gauss' theorem, if a polynomial in A[x] can be factorized in K[x], 
it can also be factorized in A [x]. Moreover, if A is a unique factorization domain 
(UFD), then A[x] is a unique factorization domain as well. Without further indi
cation, domains considered hereafter are assumed to be UFDS. A simple concrete 
example is the ring of integers, i.e., A = Z. 

The main questions discussed in this section are the following - suppose we 
know how to factorize elements of A into irreducible factors. 

1. How can we factorize an arbitrary polynomial in A[z] into irreducible 
factors, where z is a variable? 

2. How can we factorize an arbitrary polynomial in A[e][z] = A[e, z] into 
irreducible factors, where K(e) is a simple extension of the quotient field of A 
by adjoining e? 

In most books on algebra, the answers to these two questions are often re
stricted to existence and possibility, but not concerned with constructive meth
ods. This is not sufficient for the requirements of mechanization. In the first 
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edition of van der Waerden's "Modem Algebra" (1930a), there were two para
graphs (§23 and §37) devoted to a mechanical method of solving the above 
problems in a finite number of steps. But in later editions, though the contents 
corresponding to §23 remained, those corresponding to §37 were completely left 
out. Because these problems are rather important for the mechanical method of 
theorem proving in geometry, and they cannot be easily found in common books, 
we shall give a detailed introduction below. 

As the characteristic of K is 0, the domain A which has K as its quotient field 
must consist of infinitely many elements. Take, for example, a unit element e 
of A. Then all ne (n any integer) constitute a set of infinitely many elements. 
In fact, if A contains only a finite number of elements, then for an arbitrary 
polynomial fez) in A[z] or A[e][z] there are only finitely many polynomials 
which are the factors of fez). Dividing fez) by each of these polynomials, we 
can determine whether or not f (z) is irreducible in a finite number of steps and 
factorize it into irreducible factors in the reducible case. Therefore, when A is 
finite, it is easy to answer the above questions. 

In what follows, we only consider the case when A consists of an infinite 
number of elements and the characteristic of the quotient field K is O. Under 
this condition, question 2 can be separated into two cases according to whether 
e is transcendental or algebraic. For the former, we may rewrite e as another 
variable, say y. Then question 2 becomes that of factorizing polynomials in 
A [y, z]. In combination with question I, we can ask a more general question, 
i.e., the question of how to factorize polynomials inA[xl, ... , xn]. We formulate 
the answers to these questions as the following two theorems. 

Theorem 1. Let A be a domain with unit element and let a mechanical method 
which can uniquely factorize an arbitrary element in A into irreducible factors 
in a finite number of steps (determined up to an invertible factor in A) be 
given. Then there is a mechanical method which can factorize an arbitrary 
polynomial in A[Xl, X2, ... ,xn] into irreducible factors in a finite number of 
steps (determined up to an invertible factor in A). 

Theorem 2. Let A be the same as in Theorem I, K be the quotient field of A 
and K(e) be an algebraic extension field formed by adjoining e to K, with 

the adjoining polynomial of e, where aj E A, aoam '# 0 and ao, aI, ... ,am do 
not have non-invertible common divisors. Then there is a mechanical method 
which can factorize an arbitrary polynomial in A[e][z] into irreducible factors 
in a finite number of steps (determined up to an invertible factor in A). 

Proof of Theorem 1. Let the given polynomial be 

f(x1, ... , xn) E A[X1, ... , xn]. 
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Take an integer m bigger than the degree of f in any Xi, introduce a new 
variable t and set 

m mn- 1 
Xl = t, X2 = t , ... , Xn = t 

Then we have 

When 0 :s ki :s m -1, the above expression induces a one-to-one correspondence 
between the power products of x's whose degrees are less than m in each Xi 
on the left-hand side and the powers of t whose degrees are less than mn on 
the right-hand side, so a one-to-one correspondence between polynomials in 
A[Xl, ... , xn] of degree less than m in each Xi and polynomials in A[t] of 
degree less than mn. Let I correspond to F: 

I(Xl, ... , xn) = F(t). 

Suppose we know how to factorize F(t) into irreducible factors 

F(t) = Fl (t) ... Fs(t)· 

Then the irreducible factors of f are among the inverses Ii l ... im (Xl, ... , xn) of 

under the above one-to-one correspondence. Hence the factorization of polyno
mials in n variables Xl, ... ,Xn may be reduced to the factorization of polyno
mials in one variable with some simple division tests and substitutions. 

Consider now a unary polynomial F(t) E A[t] of degree r. By Gauss' 
theorem, the problem of factorizing F(t) in A[t] is the same as that in K[t]. If 
F can be factorized into two irreducible factors of degree greater than or equal 
to one in K[t] and thus in A[t]: F(t) = cp(t) ·1jf(t), where the degree of cp(t) is 
less than or equal to the degree of 1jf(t), then the degree of cp(t), say q, is less 
than or equal to [r /2], the integer part of r /2. We need to provide a mechanical 
method which either determines that no such factor of F exists, i.e., F cannot 
be factorized and thus is irreducible, or finds a factor cp(t) in a finite number 
of steps. In the latter case, we can get another factor 1jf(t) of F(t) by using the 
division algorithm. Applying the same mechanical method again to cp(t) and 
1jf(t), we should arrive finally at an irreducible factorization of F(t). 

To this end, set q = 1,2, ... , [r/2] successively and determine if F(t) has a 
polynomial factor of degree q. Since A is infinite, we can choose q + 1 pairwise 
distinct elements aQ, a1, ... ,aq of A, for instance, ak = ke, where e is a unit 
element of A. For arbitrary Ci E A, construct 
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Then <p(t) is a polynomial of degree q such that 

If <pet) is a factor of F(t) in A[t], then <p(ai) = Ci is a factor of F(ad EA. By 
assumption one knows that all possible factors of F(ai) can be determined by 
using the factorization method for A. So there is only a finite number of such 
Ci'S and they can be found by a mechanical method. Hence, those polynomials 
<pet) of degree q which are possible factors of F(t) are finite in number and 
can be mechanically found. Dividing F(t) by this finite number of polynomials 
respectively, we can mechanically determine whether or not F(t) can be factor
ized and, if so, find a factor of it. In this way, the irreducible factorization of 
F(t) can be accomplished in a finite number of steps. This proves the theorem. 

D 

The proof of Theorem 2 is much more difficult than that of Theorem 1. We 
base our exposition on Trager's improved form (1976) of the proof given in §37 
of van der Waerden (1930a). For this purpose, we first make some preparations 
as follows. 

Let the adjoining polynomial of the algebraic extension field K(B) be 

By the extension theory of fields, K has an extension field K such that Po(y), 
as a polynomial in K[y], can be completely factorized into linear factors: 

where Bj = B and all 02, ... , Bm are called the conjugate elements of B. Here 
it suffices to know the existence of Oi (instead of considering their construc
tion). What we actually need to know is that (-l)j aj are elementary symmetric 
functions of Oi. 

Let I(B, z) be a polynomial in K(B)[z] = K[O, z]. The product 

is called the norm of I. In its expansion, each coefficient of the powers of z is 
a symmetric function of OJ, ... , Bm. Therefore, by the fundamental theorem of 
symmetric functions, all of them are polynomials in aj, ... ,am and thus can be 
computed directly from I and Po, without needing to consider the exact form 
of Oi. 

Lemma 1. Let I(B, z) be irreducible in K(B)[z]. Then Norm I is a power of 
an irreducible polynomial in K[z]. 
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Proof Suppose the lemma does not hold. Then we have 

Norm 1= g(z) . h(z), 

where both g and h are polynomials of degree greater than or equal to 1 in K[z) 
and they have no common divisor in K[z). Since 1(0, z) is irreducible, it must 
be a factor of g or h in K(O)[z). Let 1(0, z) be a factor of g; then Norm 1(0, z) 
will be a factor of Norm g = gm. Hence g h is a factor of gm. This contradicts 
the assumption that g and h have no common divisor and the lemma is proved. 

o 

Lemma 2. There is a mechanical method which determines, for an arbitrary 
square-free polynomial 1(0, z) in K(O)[z), a square-free polynomial g(z) in K[z) 
in a finite number of steps such that g(z) has 1(0, z) as a factor in K(O)[z). 

Proof First construct 
Norm I = G(z) E K[z) 

mechanically. Form the derivative G'(z) of G(z) and the greatest common divi
sor of G(z) and G'(z) by using the division algorithm. Then g(z) = G(z)/ D(z) 
is what we want to determine. Suppose 1(0, z) in K(O)[z) can be factorized 
into the product !I (0, z)··· Ir(O, z) of r distinct irreducible factors. Then by 
Lemma 1 we have 

in which gl, ... , gr are irreducible polynomials in K[z) and Si > 0. Hence 

g(z) = gil· .. gik E K[z), 

where gil' ... , gik are those gi of gl, ... , gr which are distinct from each other. 
As every Ii is a factor of g;i, it is also a factor of gi and g(z). On the other 
hand, all f; are pairwise distinct, so the product I of the Ii is also a factor 
of g(z). Clearly g(z) is square-free. This completes the proof. 0 

Lemma 3. There is a mechanical method which determines, in a finite number 
of steps for an arbitrary square-free polynomial g(z) E K[z]' an integer s such 
that Norm g(z - sO) is square-free in K[z). 

Proof Set Gs = Normg(z - sO) for s = 1,2, .... Form the derivative G~ of 
Gs and find the greatest common divisor Ds of Gs and G~ by using the division 
algorithm. Then there must be an s such that the degree of Ds in z is 0, i.e., 
Gs is square-free. For in some extension field K of K, g(z) can be factorized 
into linear factors z - {3j, where all {3j are pairwise distinct. Hence G s will 
be factorized into linear factors z - ({3j + SOi), and thus there are only finitely 
many s such that Gs is not square-free. 0 
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Lemma 4. Let fee, Z) E K(e)[z] be square-free. Then there is a mechanical 
method which finds an integer s such that Norm f (e , z - se) is square-free 
in K[z]. 

Proof By Lemma 2, we can find a square-free polynomial g(z) E K[z] having 
fee, z) as a factor in K(e)[z] by using a mechanical method. By Lemma 3, we 
can find an integer s such that Norm g(z - se) is square-free in K[z] by using a 
mechanical method, too. Now g(z - se) has fee, z - se) as a factor in K(e)[z]. 
Since Norm g(z - se) is square-free, Norm f (e, z - se) is also square-free. D 

Lemma 5. Let the norm Normh(e, z) of h(e, z) E K(e)[z] be square-free and 
its irreducible factorization in K[z] be 

Normh = HI (z)··· Hr(z). 

Then the irreducible factorization of h(e, z) in K(e)[z] is 

r 

h = TI gcd(h(e, z), Hi(z», 
i=I 

where gcd denotes the greatest common divisor in K(e)[z] which can be deter
mined by using the division algorithm. 

Proof Let the irreducible factorization of h in K(e)[z] be 

Then 
Normh = Norm hI ... Normhs = HI ... Hr. 

Since each hi is irreducible in K(e)[z], by Lemma 1, Norm hi is a power of an 
irreducible polynomial in K[z]. Furthermore, Normh is square-free, so Norm hi 
itself is an irreducible polynomial and actually is one of HI, ... , Hr , up to a 
non-zero factor in K. For the same reason these irreducible polynomials Norm hi 
are distinct from each other, so we have s = r and we may assume, without 
loss of generality, that NormhI = HI, ... , Normhr = Hr. Evidently, h and 
Hi = Norm hi have a common divisor hi in K(e)[z], but they cannot have other 
hj (j #- i) as their common divisors. Hence gcd(h, Hi) = hi and the lemma is 
proved. D 

Proof of Theorem 2. (Recall that A is infinite and K is the quotient field of A.) 
Let fee, z) E K(e)[z] be the polynomial to be factorized. First, form the 

greatest common divisor dee, z) of fee, z) and its derivative f'(e, z) in K(e)[z]. 
Then gee, z) = fee, z)/d(e, z) is square-free in K(e)[z]. By Lemma 4, we can 
find an integer s such that Normh of h(e, z) = gee, z - se) in K[z] is square
free. From the hypothesis one already knows a factorization method for A, so 
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by Theorem 1 we may factorize Normh in K[z] into irreducible factors: 

Normh = HI (z)··· H,(z). 

Form the greatest common divisor of Hi(Z) and h in K(e)[z] by using the 
division algorithm 

hi(e, z) = gcd(h(e, z), Hi (z)). 

Then by Lemma 5, h has an irreducible factorization in K(e)[z]: 

Hence gee, z) has an irreducible factorization in K(e)[z]: 

gee, z) = h(e, z + se) = hI (£1, z + se)··· h,(e, z + se). 

Therefore, the irreducible factorization of the given polynomial fee, z) 
gee, z)d(e, z) can be obtained by some divisions. 0 

Theorems 1 and 2 above are both restricted to the case of finite extension 
fields of K. If there is no such restriction, probably no mechanical method 
exists, see van der Waerden (1930b). The mechanical methods mentioned in 
Theorems 1 and 2 all originate from Kronecker (cf. Hermann 1926). A little 
thought shows that the efficiency of these methods is not especially high. In 
recent years, developments of computer science have led to the discovery of 
new, more efficient methods. These new methods employ the Chinese remainder 
theorem, p-adic number theory and other mathematical tools. The reader may 
refer to works by Berlekamp, Zassenhaus, P. S. Wang, and the relevant part of 
"The Art of Computer Programming" by Knuth (1969). 

4.3 Well-ordering of polynomial sets 

Example 5 in Sect. 3.4 indicates that even for a pure point of intersection (PIP) 
theorem in Pascalian geometry, if it is not expressed in the form of construc
tive type, during the processing of its hypothesis, polynomials of higher degree 
may occur and thus Hilbert's mechanical method cannot be used. For non-PIP 
theorems or tbeorems in other geometries, in general tbere will be polynomials 
of higher degree occurring in tbe hypotbeses. We shall prove later tbat in tbis 
case tbere is still a mechanical method so long as tbe hypotbeses and conclu
sions of tbe considered tbeorems can be expressed as polynomial eqUalities, i.e., 
tbeorems of equality type (see Sect. 4.1). Of course, tbis mechanical method is 
totally different from Hilbert's. While applying it to PIP theorems of constructive 
type in Pascalian geometry, we get two different mechanical metbods. Before 
presenting tbis widely applicable mechanical method, tbis and the next section 
will make some preparations. The main basis for our exposition is tbe work by 
Ritt (1932, 1950). Many concepts, metbods, and results originate in tbese books. 

In what follows, we consider a basic field K of characteristic 0, and two sets 
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of variables 

with a fixed order 

UI -< U2 -< ... -< Ue -<XI -<X2 -< ... -<XN. 

Consider U I, ... , Ue , Xl, ..• , X N as the base of the (e + N)-dimensionallinear 
space Ke+N over K. 

By a polynomial we shall mean one in the variables U I, ... , Ue, XI, ... , X N 
with coefficients in K, i.e., an element in the polynomial ring K[UI, ... , Ue , Xl, 

... , XN]. 

A monomial 
il ie m, mN ( K) fL=au I ",uex i ",xN a E 

will sometimes also be written as 

or 

where ii, ... , ie, m I, ... , m N are non-negative integers. If a f. 0, and the last 
non-zero component of the N-tuple (ml' ... ,mN) is mp , we say that the mono
mial fL is of class p; otherwise we say that the monomial fL f. ° is of class 0. 
In the latter case, there may occur u' s, but no x' s in fl. 

For two s-tuples 

of non-negative integers, we say that ct precedes f3 or f3 follows ct, which we 
denote as 

ct -< f3 or f3 ~ ct, 

if there is an index k such that 

For two non-zero monomials 

a f. 0, 

b f. 0, 

we say that A precedes fL or fL follows A, which we denote as 

A -< fL or fL ~ A, 
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if 

Any non-zero polynomial F can be written in the form 

where 
ai EK, 

al i= 0, ... , as i= 0, 

In this case, al Z(¥I is called the leading term of F and the class of Zal is called 
the class of F. 

If a non-zero polynomial F has its class = p > ° and the leading term 
al Zal of F has degree m in xP' then F can be written in the form 

in which the C's are all polynomials in the u's and Xl, ... , Xp-l, containing 
none of xp , Xp+l,"" XN, and Co i= 0. The polynomial Co will then be called 
the initial of F. If the leading term of Co is Co, then the leading term of F is 
clearly cox;. 

Consider two non-zero polynomials F and G and any variable xp. If the 
highest degree of xp appearing in F is less than that in G, we say that F has a 
lower rank than G or G has a higher rank than F with respect to xp. We say 
that F and G have the same rank with respect to X p when neither of them is of 
higher rank than the other. 

For two non-zero polynomials F and G we say that F has a lower rank than 
G or G has a higher rank than F, which is denoted as 

F -< G or G >- F, 

if either 

(l) class F < class G; or 
(2) class F = class G = P > 0, while the degree of xp in F is less than that of 

xp in G, or in other words, F has a lower rank than G with respect to xp. 

In case neither of F and G is of higher rank than the other, F and G will 
be said to be of the same rank, denoted as 

For instance, two non-zero polynomials whose classes are ° have the same rank. 
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Let F be a polynomial of class p > 0. Any polynomial whose rank is lower 
than that of F with respect to xp will be said to be reduced with respect to F. 
Clearly the initial of F is of class < p and is thus reduced with respect to F. 

Let F be of class p > ° and written in the form 

F = foX; + ftx;-l + ... + fm, 

in which 

fi E K[UI, ... , ue, Xl, ... , xp-d and fo =F 0. 

Any non-zero polynomial G which is not reduced with respect to F can always 
be put in the form 

G M M-I + + = goxP + glxp ... gM, 

in which 

and 

go =1= 0, M::: m. 

By the division algorithm of polynomials, we may get, in dividing G by F, an 
expression of the form 

foG = QF+R, 

where Q and R are both polynomials. In case R =1= 0, the degree of R in 
xp is less than m so that R is reduced with respect to F. The integer s will 
be determined as the smallest which makes such an expression possible, so 
s ::::: M - m. If G is already reduced with respect to F, then we can simply take 
s = 0, Q = 0, R = G so that the above expression holds true. In any case, 
the (uniquely determined) polynomial R will be called the remainder of F with 
respect to G. The procedure for getting the remainder R from G will be called 
the reduction of G with respect to F. 

It is particularly important for us that when R and G are considered as 
polynomials in xP' all coefficients of the powers of xp in R are linear sums of 
those in G, i.e., of the form 

where all the coefficients ho, ... , hM of the sum are polynomials in the coeffi
cients fo, ... , fm of the powers of xp in F and thus polynomials in UI, ... , Ue , 

Xl, ... , Xp-l. In later relevant books by this author in which we shall make 
a complexity analysis for the process of mechanical theorem proving, more 
explicit description about this representation will be given. 

Consider now a sequence consisting of finite number of polynomials, say 
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This sequence is called an ascending set if either 

r = 1 and Al # 0, 

or 

r> 1, 

0< class Al < class A2 < ... < class Ar, 

and A j is, moreover, reduced with respect to Ai for each pair j > i. 
Obviously, for any ascending set we always have r :s N. 
An ascending set is said to be contradictory if r = 1, A I # 0 and class 

Al = O. 
Consider two ascending sets A and 

We say that A has a higher rank than B or B has a lower rank than A, denoted as 

A >- B or B -< A, 

if there is some j :s min(r, s) such that 

or 

s>r and AI"'BI, ... ,Ar"'Br . 

If neither of the ascending sets A and B is of higher rank than the other, we 
say that A and B are of the same rank, denoted as 

A'" B. 

In this case we have 

r=s and AI"'BI, ... ,Ar"'Br . 

It is clear that ascending sets are partially ordered by rank. Hence for any 
collection of ascending sets we can introduce the notion of minimal ascending 
set, i.e., one whose rank is not higher than any other's in the collection if it 
exists. The following lemma is fundamental and will play an important role in 
this book. 

Lemma 1. Let 

be a sequence of ascending sets <t>q for which the ranks never increase, i.e., for 
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any q we have either 

Then there is an index q' such that for any q > q' we have 

In other words, there is a q' such that any <Pq for q :::: q' is a minimal ascending 
set of the above sequence. 

Proof. For each ascending set <P q let us denote the first polynomial and the 
number of polynomials in <Pq by Aq and rq respectively. Then 

is a sequence of polynomials for which the ranks never increase, i.e., for any q 
we have either 

Aq+1 -< Aq or Aq+1 rv Aq. 

Consequently, for any q we have class Aq+1 .:::: class Aq and in the case 
class Aq+1 = class Aq = p > 0, the degree of Aq+1 in xp is less than or equal 
to the degree of Aq in xp. As both class and degree are non-negative integers, 
there should be some index ql such that all Aq are of the same rank for q :::: ql. 

If there is some q; :::: ql such that all rq = I for any q :::: q;, then the lemma 
is clearly true. Otherwise, there should be some q; :::: ql such that all rq :::: 2 

for any q :::: q;. Denote the second polynomial in such <Pq by A~l). Then 

(I) (I) (I) 
A , , A '+1' ... ,Aq , ... q, q, 

will be a sequence of polynomials with non-increasing ranks. As before there 
will be some q2 :::: q; such that all A~l) are of the same rank for any q :::: q2 :::: 

q; :::: ql· 
If all r q .:::: 2, then the lemma is already proved. Otherwise, there will be 

some q~ :::: q2 such that all r q :::: 3 for any q :::: q~ and we may take the third 

polynomials in such <P q 's, say A~2), to form a sequence of polynomials with 
non-increasing ranks. As for all q we have rq .:::: N, so proceeding in this way 
we should stop at some r and some q' such that for all q :::: q' we have rq = r 
and the r-th polynomials taken from such <Pq will all have the same rank. It 
follows that all such <P q 's will have the same rank and the lemma is proved. 

D 

From this lemma we obtain the following 

Lemma 1'. If in a sequence of ascending sets the ranks are steadily decreasing, 
then such a sequence is composed of a finite number of ascending sets. 
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Suppose now we have a non-empty set ~ = {Fa} of non-zero polynomials. 
An ascending set A is said to belong to ~ if all polynomials in A belong to ~. 
Since each non-zero polynomial Fa forms by itself an ascending set, there exist 
ascending sets which belong to ~. In the collection of all ascending sets which 
belong to ~, any minimal ascending set will be called a basic set of ~. 

The following lemma points out not only the existence of such basic sets 
but also an algorithmic method for determining the basic sets. 

Lemma 2. Let ~ be a finite set of non-zero polynomials. Then ~ necessarily 
has basic sets and there is a mechanical method for determining such a basic 
set in a finite number of steps. 

Proof. As ~ is finite, the existence of basic sets is quite evident. So the problem 
is to provide a mechanical method for the determination of such a basic set. 

To show this let us find at the outset a polynomial, say AI, of lowest rank: 
from ~ = ~ 1. This can clearly be done in a mechanical manner. If class Al = 0, 
then Al alone already forms a basic set. Suppose therefore class Al > 0. Check 
whether there are polynomials other than Al in ~I which are reduced with 
respect to A 1. If no such polynomial exists in ~ 1, then A 1 by itself forms a 
basic set of ~I. Otherwise, let ~2 be the subset of ~1 formed by all polynomials 
except AI, which are reduced with respect to A 1. From the choice of A 1 all 
polynomials in ~2 will have ranks higher than that of AI. Now, let A2 be a 
polynomial in ~2 of lowest rank. If there is not any polynomial in ~2 which is 
different from A2 and is already reduced with respect to A2, then AI, A2 will 
form a basic set of ~. Otherwise, let ~3 be the subset of ~2 consisting of all 
polynomials except A2 which are already reduced with respect to A2. Choose 
from ~3 a polynomial A3 of lowest rank and proceed as before. As the classes 
of the polynomials AI, A2, A3, ... are steadily increasing and cannot become 
greater than N, we have to stop in a finite number of steps and get, finally, 
a basic set of ~ in a mechanical manner. The lemma is proved. D 

Lemma 3. Let :E be a finite set of non-zero polynomials with a basic set 

A: AI, A2, ... , Ar , 

of which class Al > 0. Let B be a non-zero polynomial reduced with respect to 
all the A's. Then the set :E' obtained from ~ by adjoining B will have a basic 
set of rank lower than that of A. 

Proof. If class B = 0, then B alone will form a basic set of ~' of rank lower 
than that of A. Suppose therefore class B = p > 0. As B is already reduced 
with respect to all the A's, there should be some i such that p > class Ai -1 and 
p ::: class Ai. Moreover, in the case p = class Ai, the degree of B in xp is less 
than the degree of Ai in xp. Hence, 

AI, A2, ... , Ai-I, B 
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will be an ascending set contained in 1:' with its rank lower than that of A. The 
basic set of 1:' will have therefore a fortiori its rank lower than that of A. D 

Remark. If we assume the axiom of choice, then all the above lemmas can be 
extended to the case of arbitrary infinite sets of polynomials. But this is not in 
accordance with the idea of mechanization in this book. Hence, the description 
of above lemmas has been restricted to finite sets or countable sequences. 

Suppose now 
A: AI, A2, ... , Ar 

is an ascending set as before with class Al > O. Let class Ai = Pi and the initial 
of Ai be Ii. Then 

0< PI < P2 < ... < Pr, 

and for each i we have 

class Ii < Pi, and 

h is reduced with respect to AI, ... , Ai -1. 

Let B be an arbitrary polynomial. Set B = Rr . We can successively form the 
remainders Rr-l, ... , Ro of Rr with respect to polynomials in A starting from 
Ar to Al by using the division algorithm, so that we get: 

I:r Rr = QrAr + Rr-l, 

1:'--11 Rr-l = Qr-I Ar-l + Rr-2, 

Set Ro = R. Then we have an expression of the form 

in which Q; are polynomials. The polynomial R is uniquely determined from 
B and the ascending set A. We shall call R the remainder of B with respect 
to A. We shall also call the above formula the remainder formula. 

From the remark on remainder formula given before, one knows that the 
degree of an arbitrary term of R in xPi is less than that of Ai in xpi ' i.e., R is 
reduced with respect to each polynomial Ai in A. We shall say briefly that R is 
reduced with respect to A and call the above procedure of getting R from B and 
A the reduction of B with respect to A. As the determination of the remainder 
of one polynomial with respect to the other is done mechanically by using the 
division algorithm, we have the following. 

Lemma 4. Let B be a non-zero polynomial and A an ascending set of which 
the class of the first polynomial is greater than o. Then there is an algorithmic 
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method which determines the remainder R of B with respect to A in a finite 
number of steps. Denote the i -th term of A by Ai and its class by Pi. Then the 
degree of any term of the remainder R in xPi is less than the degree of Ai in 
xPi for each i. 

Mter having introduced a number of notions such as class, rank, initial, 
leading term, reduction, remainder, ascending set, basic set, etc. and proved 
several simple lemmas, we now come to the theme of this section: the notion 
of zeros and the method of well-ordering polynomial sets. 

For this purpose let us consider an arbitrary polynomial F. Let 

be an (e + N)-tuple of numbers in the field K which, when substituted for 
U1, ..• , ue , Xl, •.• , XN in F, are such that F = O. This (e+N)-tuple of numbers, 
considered as the coordinates of a point in the linear space Ke+N , is called a 
zero of the polynomial F or alternatively a solution to the polynomial equation 
F = O. If the various uo,s and xo,s are all numbers of some extension field 
X of K, which still make F vanish when substituted for the variables, then the 
(e + N)-tuple of numbers, considered as a point of the linear space Xe+N over 
K, will be called an extended zero of F or an extended solution of F = O. In 
order to make the involved field X explicit, it will also be called a X-zero of F 
or a X-solution of F = O. 

Let ~ be a set of polynomials. If an (e + N)-tuple of numbers as given 
above is a zero (or an extended zero, or a X-zero) of every polynomial in ~, 
it will be called a zero (respectively, an extended zero or a X-zero) of ~, or 
a solution (respectively, an extended solution or a X-solution) of the system of 
equations F = 0, F E ~ or simply of ~ = O. 

Now, let ~ = ~1 be a finite set of non-zero polynomials. By Lemma 2, 
~1 will have some basic set, say <1>1. If <1>1 is contradictory, then it consists 
of a single polynomial Al that is of class 0 and belongs to ~1. Suppose on 
the contrary that <1>1 is not contradictory so that the first polynomial in <1>1 
has its class greater than O. For all polynomials B, belonging to ~1 but not to 
<1>1, we form the remainders RB of B with respect to <1>1, supposed not all O. 
Adjoin all such remainders RB, whenever non-zero, to the set ~1 to get an 
enlarged set ~2 of non-zero polynomials. From the formula about remainders, 
each RB will be a linear sum of polynomials in <1>1 and the polynomial B, with 
polynomial coefficients. It follows that the set ~2 will have the same set of 
zeros (or extended zeros, or X zeros for any extension field k) as that of the 
original set ~1. By Lemma 3, the basic set <1>2 of ~2 will have its rank lower 
than that of <1>1. If <1>2 is contradictory, then it consists of a single polynomial 
A2 of class O. In this case, A2 belongs to ~2 and can be expressed as a linear 
sum of polynomials in ~1, in which all coefficients are polynomials. If <1>2 is a 
non-contradictory ascending set, then we can proceed as before. In this way we 
shall get either a contradictory ascending set after a finite number of steps or a 
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sequence of finite sets 

of polynomials, where all bi have the same set of zeros (or extended zeros or 
K zeros for any extended field i() with 

as their corresponding non-contradictory basic sets, having steadily decreasing 
ranks. Now by Lemma 1, such a sequence can have only a finite number of 
terms. In other words, if the last set of such a sequence is b q , with <P q as its 
basic set, then the remainder of any polynomial in b q , not in <P q' with respect 
to <Pq will be equal to O. 

Let <Pq be 

in which each Fi either is contained in <Pq-I or is the non-zero remainder of 
some polynomial in bq-I. Thus, by the remainder formula each Fi is a linear 
sum of polynomials in <Pq-I with polynomial coefficients. It follows that any 
zero of bq-I and thus any zero of b is also a zero of <Pq . 

On the other hand, let the initials of the polynomials in <P q be II, h ... , I r . 

From the construction we know that for any polynomial G in b q , there should 
be non-negative integers Si ~ 0 such that 

It follows that any zero of <Pq , if not a zero of any of the initials II, ... , I r , is 
necessarily also a zero of b q and thus a zero of b = bl. The same is clearly 
true for extended zeros or K-zeros for any extended field K of K. 

Denote <P q simply by <P. Summing up the above we obtain the following. 

Theorem. There is an algorithm which mechanically determines for any finite 
set b of non-zero polynomials, after a finite number of steps, either a non-zero 
polynomial A of class 0 (i.e., one involving only the variables UI, •.• ,ue) so 
that any zero of b is also a zero of A; or, a non-contradictory ascending set 

<P : FI , ... , Fr 

with initials II, h ... , Ir such that any zero of b is also a zero of <P, and any 
zero of <P which is not a zero of any of the initials Ii will be a zero of b. The 
same is true for extended zeros and K-zeros. 

We shall call the mechanical procedure of determining <P from b the well
ordering of b, and the above theorem Jhe well-ordering theorem. 
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4.4 A constructive theory of algebraic varieties 
- irreducible ascending sets and irreducible algebraic varieties 

We shall continue using the notations introduced in the preceding section, denote 
the basic field of characteristic 0 by K, fix the order of the variables as 

and omit the variables Ul, ••• , Ue. By a polynomial, unless further indicated, we 
always mean in the variables Xl, ... ,XN with coefficients in K, i.e., an element 
of K[Xl, ... , XN]. 

A finite set of non-zero polynomials will be simply called a polynomial set. 
The union oftwo sets ~l and ~2 of polynomials will be denoted as ~l + ~2. For 
polynomials F, G, etc., we shall simply denote ~ + {F} by ~ + F, ~ + {F, G} 
by ~ + F + G, and so forth. 

We say that a polynomial set ~ defines an algebraic variety, denoted by 
I~I, with ~ as its defining set. Let ~l and ~2 be two polynomial sets. If any 
extended zero of ~l is also an extended zero of ~2, then the algebraic variety 
defined by ~l is called a subvariety of that defined by ~2, denoted as 

If, further, we have 1~21 C I~ll so that ~l and ~2 have one and the same set 
of extended zeros, then we say that ~l and ~2 are equivalent, denoted as 

~l ~ ~2. 

If I~ll c 1~21 but I~ll i= 1~21, i.e., 

I~ll ~ 1~21, 

then the algebraic variety defined by bl is said to be a true subvariety of that 
defined by ~2. 

Given a polynomial F, if any extended zero of a polynomial set ~ is also 
one of F, i.e., 

{F} = Ol~ or I~I C I{F}I, 

we say that F vanishes on ~, denoted as 

F=OI~· 

Otherwise we write 

F i= Ol~· 

Given k + 1 polynomial sets ~,~l, ... , ~k (k > 1) having the following 
property: Any extended zero of ~ is also an extended zero of at least one 
~i of the sets ~l, ... , ~b and conversely, any extended zero of any ~i is 
also one of ~, then we say that ~l, ... , ~k are a decomposition of ~, or the 
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corresponding algebraic varieties I I: 11, ... , I I:k I are a decomposition of I I: I, 
denoted as 

II:I = lI:ll U··· U lI:kl· 

If all I I:iI and I I:j I (j =I- i) in the above union have no c relations, then such 
a decomposition is said to be non-contractible. In this case, the variety defined 
by every I:i is a true subvariety of I I: I, but not a subvariety of any other II: j I 
in the union. 

We say that a polynomial set I: is reducible if it has a non-contractible 
decomposition, while the variety defined by I: is also said to be reducible. In 
the contrary case we say that I: as well as the variety defined by it is irreducible. 
If in a certain decomposition of I: each I:i is irreducible, then we say that this 
decomposition is an irreducible decomposition of I:, and the same for the variety 
I I: I. In this case, each I:i or I I:iI is called an irreducible component of I: or I I: I. 

In this section we consider the problem of reducibility of a polynomial set 
or its defining algebraic variety and in the next section we shall consider the 
problem of irreducible decomposition of an algebraic variety. The following 
lemma provides a simple criterion for the irreducibility of an algebraic variety. 

Lemma 1. A necessary and sufficient condition for a polynomial set I: to be 
irreducible is that there cannot exist two non-zero polynomials G and H such 
that 

GH = 01I: 

while 

G =I- 01I:, H =I- 01I:· 

Proof. If there do exist G and H satisfying all the above conditions, then we 
clearly have a decomposition 

and this decomposition is non-contractible, so I: is reducible. 
On the other hand, let I: be reducible and 

be a non-contractible decomposition of I:. Then there must exist a polynomial 
Fl in I:l such that Fl =I- 01I:2, so Fl =I- 01I:. Similarly, in I:2 there exists a 
polynomial F2 such that F2 =I- OII:l, so F2 =I- 01I:.- But any extended zero of 
I: should also be an extended zero of I: 1 or I:2, thus also an extended zero of 
Fl or F2. Hence any extended zero of I: is also one of the product Fl F2, i.e., 
FIF2 = OII:. SO G = Fl and H = F2 satisfy the condition in the lemma. This 
completes the proof. 0 

We shall give another criterion for the irreducibility of a polynomial set I: 
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or the algebraic variety I b I defined by it. For this purpose let us first introduce 
some notions as follows. 

Consider two extension fields k and K' of K and two points ~ = (Xl, ... , XN), 

Xi E k and ~' = (x~, ... , x~), x; E K' in the N-dimensional linear spaces kN 

and K'N over k and K' respectively. Suppose these two points possess the fol
lowing property: 

For any polynomial F(Xl, ... , XN) in K[Xl, ... ,XN], if ~ is an extended zero 
of F then ~' is also an extended zero of F. In other words, F (x~, ... , x~) = 0 
as long as F(Xl, ... , XN) = O. 

In this case we shall call ~ a generic point of ~', or ~' a special point of ~, 
or ~' a specialization of ~ with respect to K. In case no misunderstanding can 
occur, the words "with respect to /C' will be omitted. 

Suppose the polynomial set b has an extended zero ~ such that any extended 
zero of b is a specialization of ~ with respect to K. Then we say that ~ is a 
generic point of the polynomial set b or the algebraic variety I b I. 

The following lemma gives the second irreducibility criterion of polynomial 
sets or algebraic varieties. 

Lemma 2. A necessary and sufficient condition for a polynomial set b or its 
variety to be irreducible is that b has generic points. 

Proof Suppose first that b has a generic point ~ = (Xl, ... ,XN), in which Xi 
belongs to some extension field k of K. Let G and H be two polynomials in 
K[Xl, ... , XN] such that GH = OIL Then G(~)H(~) = 0, so either G(~) = 0 
or H(~) = O. To fix the idea let G(~) = O. As ~ is a generic point of b, for 
any extended zero ~' of b we have G(~') = 0, i.e., G = OIL Similarly, in the 
case H(~) = 0 we have H = 0lb. By Lemma 1, b is irreducible. 

Suppose secondly that b is irreducible. We shall construct a generic point 
of b as follows. 

For two arbitrary polynomials F and G, if 

F - G = Olb, 

then F and G are said to be equivalent for b, denoted as 

F rv G(b). 

Thus polynomials can be divided into equivalence classes. Clearly, if 

then 

Fl ± F2 rv Gl ± G2(b), 

FlF2 rv Gl G2(b). 
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Therefore, on the equivalence classes of :E we can perform the operations of 
addition, subtraction and multiplication. We shall call the equivalence class con
taining the polynomial 0 the zero class, denoted as e, and denote the equivalence 
class containing the polynomial 1 by w. Any element a in K may be identified 
with the equivalence class aw. Since :E has been assumed to be irreducible, 
when two arbitrary equivalence classes a and fJ are both not equal to the zero 
class e, by Lemma 1, afJ is not equal to e either. In fact, these equivalence 
classes form a domain, denoted by R,,£, with w as its unit element. 

Consider now the quotient field of R"£ which, in other words, is the totality 
of all the pairs (a, fJ) of equivalence classes with fJ i= e under the equivalence 
relation 

(a, fJ) '" (y, 0) {::::=} ao = fJy, 

in which the operations of addition, subtraction and multiplication can be natu
rally defined. In particular, when (y,o) "'"' (e, w), 

(a, fJ)/(y, 0) '" (ao, fJy). 

If we identify each element a in K with the equivalence class ofthe pair (aw, w), 
then this quotient field may be considered as an extension field of K. We denote 
this field by K"£. In addition, any element a in R"£ will be identified with the 
equivalence class of the pair (a, w) in K"£. 

Let the equivalence class defined by the polynomial Xi in R"£ be ~i and that 
defined by the pair (~i, w) in K"£ still be denoted ~i. Then ~ = (~l, ... , ~N) is a 
point in the linear space KN over K = K"£. We prove below that ~ is a generic 
point of :E. 

First, for an arbitrary polynomial F = F(Xl, ... , XN) in :E we have F = 
Ol~, so the equivalence class ¢ of F in R"£ is e. Obviously, in R,,£ and thus 
in K"£ too, we have ¢ = F(~l, ... , ~N). Hence ~ is an extended zero of F E 

K[Xl, ... , XN]. Because F was arbitrary in ~, ~ is an extended zero of~. 
Now, let G = G(Xl, ... , XN) be an arbitrary polynomial in K[Xl, ... , XN] 

with ~ as its extended zero, i.e., G(~l, ... , ~N) = e. Then G(Xl, ... , XN) be
longs to the zero class e, i.e., G = Ol~. Therefore, for any extended zero ~' of 
:E we have G(~') = 0, i.e., 

G(~) = 0 ===> G(~') = O. 

As G was arbitrary, any extended zero ~' of :E is a special point of ~. It follows 
that ~ is a generic point of :E and the lemma is proved. 0 

Although the above two lemmas give necessary and sufficient conditions 
for a polynomial set to be irreducible, these criteria are merely existential and 
not constructive. Given a polynomial set ~, these two lemmas do not provide 
methods for deciding in a finite number of steps whether or not there exist 
polynomials G and H to satisfy the conditions of Lemma 1, or whether there 
exists an extension field k and a point € in k N as a generic point of ~. To meet 
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the requirement of the gist of this book - mechanical theorem proving - we 
have to devise a mechanical method which decides in a finite number of steps 
whether or not a given polynomial set is irreducible, and if not, finds in a finite 
number of steps every irreducible component of the irreducible decomposition. 
In this and the next few sections we shall give such a mechanical method in 
order to set up a constructive theory of algebraic geometry. 

Consider an ascending set 

in which the class of Ai is Pi with 

0< PI < P2 < ... < Pn· 

We shall rename the variables X' s to y' s and u' s by setting 

xP1 = YI, ... ,xpn = Yn 

and all the other x' s in the original order to u I, ... , Ud. Here d = N - n is 
called the dimension of the ascending set <1> and denoted as 

d = dim <1>. 

Now the polynomials Ai in <1> can be written in the form: 

A C ml C ml-I C 
I = lOYI + llYI + ... + Imp 

<1>: 
A C m2 C m2- 1 C 

2 = 20Y2 + 21 Y2 + ... + 2m2' 

where each Co =I- 0 is the initial of Ai. In addition, each Cij is a polynomial in 
UI, ... ,Ud, YI, ... , Yi-I with coefficients in K and each Ai is already reduced 
with respect to A I, ... , Ai -I so that the degrees of Cij in YI, ... , Yi -I are less 
than m I, ... , mi -I respectively. The first problem to be considered is to give 
conditions for <1> to be the basic set of a certain irreducible polynomial set. 

For this problem let us suppose that the ascending set <1> has the following 
properties: 

Let the transcendental extension field K(UI, ... , Ud) of K, acquired by ad
joining U I, ... , Ud, be denoted as Ko; then A I as a polynomial in Ko [yJl is 
irreducible. 

Let the algebraic extension field of Ko, acquired by adjoining an extended 
zero 111 of Al = 0, be denoted as Ko(11I) = KI; then the polynomial A2 in 
KI [Y2] obtained from A2 by substituting 1']1 for YI is irreducible in KI [Y2]. 

Let the algebraic extension field of KI, acquired by adjoining an extended 
zero 1']2 of A2 = 0, be denoted as KI (1']2) = K2; then the polynomial A3 in 
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K2[Y3] obtained from A3 by substituting r/1 for Y1 and 1'/2 for Y2 is irreducible 
in K2[Y3]. 

Suppose that proceeding in the same manner we get algebraic extensions 

Ki = Ki -1 (I'/i), polynomials Ai obtained from Ai by substituting 1'/1, ... , l'/i-1 
for Y1, ... , Yi-1 and some extended zeros I'/i of Ai = 0, where each Ai is 
irreducible in Ki -1 [Yi] for i = 1, 2, ... , n. 

Under the above conditions we say that the ascending set <I> is irreducible. 
From Sect. 4.2 we know that there is a mechanical method which decides in a 
finite number of steps whether or not <I> is irreducible. 

Let <I> be irreducible and thus satisfy the above conditions. Then Ui and 
I'/j are all elements of i< = Kn, so ry = (u 1, .•. , Ud, 1'/1, •.• , I'/n) is a point of 

the linear space i<d+n = i<N. We shall call ry a generic point of <I> and i< a 
generating field of <1>. 

The following lemma is quite important. 

Lemma 3. If an ascending set <I> is irreducible with 

as a generic point, then a necessary and sufficient condition for a polynomial 
F E K[U1, ... , Ud, Y1, ... , Yn] to have remainder R equal to 0 with respect to 
<I> is: ry is an extended zero of F. 

Proof Let the ascending set formed by the first k polynomials in <I> be 

Denote by Kd+k the (d + k )-dimensionallinear space over K with base U 1, ... , 

Ud, Y1, ... , Yb and similarly for the others. Then <l>k is clearly irreducible, and 

when considered as a point in Kfc+k, is a generic point of <l>k while Kk is the 
generating field of <I> k. 

We shall prove by induction on k the following two assertions: 

1%. ryk-1 is not an extended zero of CkO; 
2%. If Rk E K[U1, ... , Ud, Y1, ... , Yk] is already reduced with respect to <l>k and 

ryk is an extended zero of Rb then Rk is identically O. 

As Ck+1.0 E K[U1, ... , Ud, Y1, ... , Yk] is known to be reduced with respect 
to <l>k and is not 0, we see that 1%+1 is a consequence of 2%. 

Suppose now 2%_1 has already been proved. Consider any Rk satisfying the 
conditions in 2;;. Write Rk as a polynomial in Yk: 
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in which Sj E K[Ul, ... , Ud, Yl, ... , Yk-Il with r < mk. Substitute Yl, ... , Yk-l 

in Si with T}1, ... , T}k-l, the resulting Si being denoted as Si E Kk-l. Set 

By hypothesis, T}k is an extended zero of Rk. As r < mk and T}k is an ex
tended zero of the irreducible Ak in Kk-l, Rk should be identically 0, so 
So = 0, ... , Sr = O. Since Rk is reduced with respect to <I>b each Si is reduced 
with respect to <I>k-l, so by the induction hypothesis 2%-1 we have Si = 0 and 
hence Rk = 0, i.e., 2% holds true. It follows that 1%+1 is also true. The above 
proof is clearly valid for 2]' while I]' is quite evident. Consequently, 1% and 2% 
are true for k = 1,2, ... , n. 

It is now easy to complete the proof of Lemma 3 as follows. Let the re
mainder of F with respect to <I>n = <I> be R. Then there are integers Si ~ 0 and 
polynomials Qi such that 

Suppose R = O. Since ~ is an extended zero of the Ak'S, but by 1% it is not an 
extended zero of any CkO, by the remainder formula above it is an extended zero 
of F. Conversely, if ~ is an extended zero of F, then by the same formula ~ is 
also an extended zero of R. By 2~ we necessarily have R = O. This completes 
the proof. D 

Lemma 4. Let an ascending set 

<I>: Al,A2, ... ,An 

be irreducible with a generic point 

as before. If a polynomial F E K[Ul, ... , Ud, Yl, ... , Yn] has non-zero remainder 
with respect to <I>, then in K[ U 1, ..• , Ud, Yl, ... , Yn] there are polynomials G and 
Qi, i = 1, ... , n, such that 

and 

G(~) "10. 

Proof. We shall prove the following assertion (Tk) by induction on k, while the 
lemma itself is equivalent to the case k = n. 

(Tk) Suppose the remainder of 
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with respect to 

is non-zero. Then there must be Gk and Qki in K[UI, ... , Ud, YI,···, Yk], 
i = 1, ... , k, such that 

and 

The case k = ° is trivial. Suppose (Tk) holds true for k < n. Let us prove 
(TH j) as follows. 

Since the initial h+1 of AHI obviously satisfies the conditions of (n), by the 
induction hypothesis there are polynomials Hk, Rkl, ... , Rkk E K[UI, ... , Ud, 
YI, ... , Yk] such that 

and 

Suppose FH I E K[ U I, ... , Ud, YI, ... , YH JJ has a non-zero remainder with 
respect to <PHI. By Lemma 3 we have FHI(iiHI) i= 0. Now let us form the 
resultant of FH I and AH I as polynomials in YH I. Then there are polynomials 
UHI, VHI E K[Ul, ... ,Ud,Yl,···,YHJJ and Fk E K[UI, ... ,Ud,Yl, ... ,Yk] 
such that 

in which the degree of Uk+l in YHI is less than mHI (the degree of Ak+l in 
YH 1) and the degree of VH I is less than that of FH I in YH I· Let (; HI, VH 1 , 
etc. be the polynomials in KdYHtJ obtained from UHI, VHl, etc. by substitut
ing 1]1, ... , 1]k for YI, ... , Yk respectively. Then the above expression leads to 

""' "'" -,.., -
UH1 FHI + VHIAk+1 = Fk· 

As AHI is an irreducible polynomial in KdYHJJ and AHI (1]H]) = 0, 
A+I (1]Hj) = FHI (i7H]) i= 0. Hence, PHI and AHI cannot have common 
divisors of YHI, and thus Pk i= ° or Fk(ilk) = FkCiiHj) i= 0. Since AHI(~HI) 
= 0, we have UHI (~k+j) i= 0. 

From Fk(~k) i= 0, by Lemma 3 we know that the remainder of Fk with re
spect to <Pk is non-zero. Thus, by the induction hypothesis there are polynomials 
Gk, Qkl, ... , Qkk E K[UI, ... , Uk, Yl,···, Yk] satisfying the formulas in (n): 
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and 

Now set 

Then we have 

GH1 = GkUHl, 

QHl,1 = Qkl, ... , QHl,k = Qk,k, 

QHI,Hl = -GkVHI. 

GHI, QH1,1,"" QHI,k+1 E K[UI, ... , Ud, Yl,···, YHI], 

GHIFHI - (Qk+I,1 A I + ... + QHl,HIAHd E K[Ul, ... , Ud], 

and 

So (THd holds true and the lemma is proved. 
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D 

Given an irreducible ascending set cP as above, let Q be the set of all those 
polynomials in K[u 1, ... , Ud, Yl, ... ,Yn] whose remainders with respect to cP 
are O. By Lemma 3, this set will clearly form a module. By Hilbert's basis 
theorem, there will be a finite set of polynomials in Q such that any polynomial 
of Q is a linear combination of these polynomials with polynomial coefficients. 
We may add AI, ... ,An of cP to this finite set and denote the enlarged set 
by Qq,. By Lemma 3, this polynomial set will clearly have cP as its basic set 
and ij as an extended zero. Let G be any polynomial with ij as an extended 
zero. By Lemma 3 again, G has remainder 0 with respect to CP. According to 
the construction of Qq" G can be expressed as a linear sum of polynomials in 
Qq" so G = 01 Qq,. It follows that any extended zero of Qq, is a specialization 
of ij or that Qq, is an irreducible polynomial set with ij as a generic point. 

The above proof of the possibility of constructing an irreducible set Qq, of 
polynomials from an irreducible ascending set cP is based on Hilbert's finite 
basis theorem. Since Q is an infinite set, the proof depends on the axiom of 
choice and only the existence of Qq, can be proved. Actually, we can construct 
such a finite set Qq, of polynomials in a finite number of steps by using a 
mechanical method. In other words, we have the following theorem. 

Theorem. There is a mechanical method which determines for any irreducible 
ascending set cP a finite number of polynomials including those of cP that form 
an irreducible polynomial set Qq, with cP as its basic set and any generic point 
of cP as its generic point in a finite number of steps. 

The proof of this theorem is not simple. As for application, the mere ex
istence of such an irreducible polynomial set Qq, as guaranteed by Hilbert's 
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basis theorem will be more than sufficient. We shall satisfy ourselves in merely 
stating the theorem while putting aside the proof. 

4.5 A constructive theory of algebraic varieties 
- irreducible decomposition of algebraic varieties 

In this section we propose a mechanical method to decompose a polynomial set 
into irreducible polynomial sets in a finite number of steps. 

Continuing the use of notations in the preceding section, we shall denote 
the basic field by K and fix the order of the variables as Xl -< ... -< X N. By a 
polynomial, unless further indicated otherwise, we always mean an element in 
K[XI, ... , XN]. Let 

<1>: AI,A2, ... ,An 

be an ascending set with the class Pi of Ai satisfying 

0< PI < ... < Pn· 

As in the last section we denote the variables x' s by u' s and y' s, and change 
their order to 

U I -< ... -< Ud -< YI -< ... -< Yn, 

in which Yi = xpi ' d = N - n, Uj = Xk (k =P Pi). As before, set 

in which Cij E K[UI, ... , Ud, YI, ... , Yi-d, and Cio =P 0 is the initial of Ai, 
denoted as 

Let <I> be irreducible with 

as a generic point, and let iii have the same meaning as that at the end of the 
last section. By the theorem in the last section, we know there is an irreducible 
polynomial set Q<I> with <I> as its basic set and ii as a generic point and that Q<I> 
can be determined from <I> in a mechanical manner. Therefore, the irreducibility 
of <I> is a sufficient condition for <I> to be the basic set of some irreducible 
polynomial set Q<I>. To this we add the following. 

Lemma 1. Let the basic set <I> of a polynomial set A be irreducible with the 
class of each polynomial Ai in <I> being> O. Denote the initial of Ai by Ii for 
i = 1, ... , n. If every polynomial in A has remainder 0 with respect to <1>, then 
A has a decomposition 
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in which n<t> or the corresponding algebraic variety 1 n<t> 1 is irreducible. 

Proof For any polynomial whose remainder with respect to <I> is 0, in particular, 
any polynomial G in 1\., there are Si ::: 0 and Qi E K[UI, ... , Ud, YI,···, Yn] 
such that 

It) ... I~/G = QIAI + ... QnAn. 

From our discussion in the last section, G is a linear sum of polynomials in 
n<t> so that any extended zero of n<t> is an extended zero of G and hence an 
extended zero of 1\.. Conversely, any extended zero of I\. may be considered 
as an extended zero of the Ai'S. Thus by the above formula it should be an 
extended zero of either G or some Ii. That is, it should be an extended zero of 
n<t> or some I\. + Ii. Hence we have the decomposition claimed in the lemma. 

D 

Lemma 2. Let 1\., <I> be as in Lemma 1 with I\. irreducible. Then 

Proof Let the initials of the polynomials in <I> be Ii for i = 1, ... ,n. Then it 
is clear by definition that 

The decomposition given in Lemma I can therefore be written as 

Any generic point of <I> is also a generic point of [2<1>, but not an extended zero 
of h ... In, so 

If I\. has some extended zero which is not an extended zero of n<t>, it should be 
an extended zero of I\. + II ... In, so that 

In this way 1 I\. 1 would have a non-contractible decomposition contrary to the 
irreducibility hypothesis on 1\.. Hence we have 11\.1 c In<t>l. On the other hand, 
we have 1[2<t>1 C 11\.1, and thus 11\.1 = 1[2<t>I. The lemma is proved. D 

Consider now an ascending set <I> as before but with <I> reducible. Then there 
will be some k such that 
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is irreducible with 

iik-I = (UI, ... , Ud, Til,···, Tlk-d 

as a generic point, and the polynomial Ak obtained from Ak by substituting 
Til, ... , Tlk-I for YI, ... , Yk-I is reducible in Kk-I [Yk], where Kk- I = KO(TlI, ... , 
Tlk-d. Let the irreducible factorization of Ak in Kk- I [Yk] be given by 

in which each gi E Kk-I [Yk] is irreducible and h ::: 2. As in gi the coefficients 
of the powers of Yk are all elements of Kk- I and can thus be expressed as the 
quotients of two polynomials in U I, ... , Ud, TI I, ... , Tlk-I. By reducing fractions 
to a common denominator, we get an expression of the form 

- -
DAk = GI···Gh, 

~heEe D E K[UI, ... , Ud, Yl,···, Yk-JJ, G i E K[UI, ... , Ud, YI,···, Yk], while 
D, G i are polynomials in Kk-I [ykJ, acquired from D, G i by substituting Til, ... , 
Tlk-J for YJ, ... , Yk-J· We may also consider D to already be reduced with 
respect to <I> k-J and similarly G j already reduced with respect to <I> k. 

Write the polynomial Gl ... Gh - DAk according to the powers of Yb say 

GI ··· Gh - DAk = 'LBjYk, 
j 

in which Bj E K[UI, ... , Ud, Yl, ... , Yk-I]. Denote by bj the element in Kk-I = 
KO(TlI, ... , Tlk-l) acquired from Bj by substituting Til, ... , Tlk-l for Yl, ... , Yk-l· 

,.., ,.." ,.." ,.." 

Then we have bj = 0 since D Ak = G 1 ... G h. In other words, each Bj will have 
iik-l as an extended zero. It follows from the proof of Lemma 3 in Sect. 4.4 
that each Bj will have remainder 0 with respect to the irreducible ascending 
set <l>k-I, so there are non-negative integers Sj,I, ... , Sj,k-I and polynomials 
Qji E K[u I, ... , Ud, Yl, ... , Yk- d satisfying the relation 

or 

k-I 
I Sj,l ISj,k-l B "Q A 

I ... k-l j = L... ji i· 
i=l 

k-I 
Itl ... It~-i(GI .. ·Gh - DAk) = 'LQiAi, 

i=1 

k 
Itl ... It~-i Gl ... Gh = L QiAi, 

i=1 

in which the Qi are all polynomials in Ul,···, Ud, YI,···, Yk· 



4.5 Irreducible decomposition 181 

From the above it is easy to obtain the following. 

Lemma 3. Let a polynomial set A have <I> as its basic set, and let the class of Ai 
in <I> be > ° and the initial of Ai be Ii for i = 1, ... ,n. Suppose <I> is reducible, 
so that there is some k for which the ascending set <l>k-1 formed by the first 
k - 1 terms of <I> is irreducible with iik-1 E Kk- 1 as a generic point, while the 
polynomial gotten from Ak by substituting iik-1 for the corresponding variables 
is reducible with an irreducible factorization into polynomials G1, ... , Gh. Then 
there is a decomposition of I A I of the form 

Proof Any extended zero of either A + Ii or A + G j on the right-hand side of 
the above expression is clearly an extended zero of A. Conversely, any extended 
zero of A is also an extended zero of the Ai'S. By the expression just preceding 
this lemma, an extended zero of A is an extended zero of some Ii or some Gj , 

i.e., one of some A + Ii or some A + Gj . This proves the lemma. 0 

Lemma 4. Let A be a polynomial set with <I> as its basic set as in Lemma I 
or 3. Then the basic set of any polynomial set A + Ii or A + G j appearing in the 
right-hand side of the decomposition in Lemma I or 3 will have a rank lower 
than that of <1>. 

Proof As each Ii is already reduced with respect to <I> and each G j is assumed 
to be reduced with respect to <l>k and hence also reduced with respect to <1>, the 
present lemma is an immediate consequence of Lemma 3 of Sect. 4.3. 0 

Lemma 5. Let a polynomial set A be irreducible with an irreducible ascending 
set <I> as its basic set. Suppose also that any polynomial in the polynomial sets 
A, A' has its remainder ° with respect to <1>. Then 

IAI u IA'I = IA'I 

or, in other words, the decomposition IAI U IA'I is contractible. 

Proof By Lemma 2 we have I Q<1> I = I A I. According to the hypothesis any 
polynomial G' in A' has its remainder ° with respect to <1>. By Lemma 3 of 
Sect. 4.4, it follows that any generic point of <I> or of Q<1> is an extended zero 
of G', whence G' = 0IQ<1>. Consequently, A' = 0IQ<1> or IQ<1>1 C IA'I, i.e. 
I A I c I A' I. This proves the lemma. 0 

From the above lemmas and Sects. 4.3 and 4.4 we get a mechanical method 
for computing a non-contractible irreducible decomposition of any polynomial 
set as follows. 

Let the given polynomial set be I:. By the well-ordering theorem given in 
Sect. 4.3, we can successively enlarge the given set I:, by following a mechanical 
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procedure, to get a sequence of polynomial sets steadily increasing as shown 
below: 

~ = ~I C ~2 C ... ~q = A. 

These polynomial sets are actually mutually equivalent, i.e., 

~ = ~I ~ ~2 ~ ... ~ ~q = A. 

Two cases may occur. In one case, A turns out, in a certain step, to be a 
contradictory set, i.e., its basic set consists of a single term which is a non-zero 
element of K. In that case, ~ itself is a contradictory set having no extended 
zeros. Hence it is only necessary to consider the second case, in which A has a 
basic set 

<I>: AI,A2, ... ,An 

with h, ... , In as initials and with the class of Al greater than O. Moreover, A 
will possess the following properties: Any polynomial in A will have remain
der 0 with respect to <I> , any extended zero of ~ is also one of <I> , and any 
extended zero of <I>, if not one of any initial Ii, is also an extended zero of ~. 

Now, by the mechanical method presented in Sect. 4.2 we can verify whether 
<I> is reducible, or whether the Ai'S are reducible in the successive extension 
fields Ki -I. Again we have two subcases. 

In the first subcase, <I> is irreducible. By Lemma 1, there is a decomposition 

in which Q<I> is irreducible while all A + Ii have basic sets of ranks lower than 
that of A. We may then consider each A + Ii as a new polynomial set ~ and 
proceed again in the same way. 

In the second subcase, <I> is reducible. Then by Lemma 3 we have a decom
position 

IAI = IA + hi U··· U IA + h-il U IA + Gil U··· U IA + Ghl, 

in which each A + Ii or A + Gj has a basic set of rank lower than that of A. 
We may then consider each A + h or A + Gj as a new polynomial set and 
proceed again as before. 

Whatever the subcase we are in, we may take each A + Ii or A + Gi as a 
new polynomial set ~' in succession and proceed as before to get a sequence 

..... 1 ..... 1 '" ..... 1 '" '" ..... 1 A' 
fJ = fJI '" fJ2 '" ••• '" fJq' = . 

If A' has a basic set consisting of a single term which is a non-zero element 
of the field K, we may remove IA'I or the original IA + Iii or IA + Gjl from 
the decomposition. In the contrary case, IA'I will be decomposed further into 
several algebraic varieties with basic sets of ranks lower than that of the cor
responding preceding polynomial set, plus possibly one with the corresponding 
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irreducible polynomial set Q<\>, having an irreducible ascending set <p' as its 
basic set. By Lemma 5 we can check whether Q<\>, can be removed from the 
decomposition or remain in the coming decomposition. In this way we will get 
a further decomposition of I A I or I ~ I itself. In the decomposition, there will 
appear irreducible polynomial sets of the form Q<\>, Q<\>, as well as those of the 
form A' + I' or A' + G'. For the latter ones we may decompose them further 
as before. 

Since in each step the polynomial sets A' + I' or A' + G' to be further 
decomposed have basic sets of lower rank than those of the preceding ones, 
by Lemma 1 or l' in Sect. 4.3 the decomposition terminates in a finite number 
of steps. Consequently, after such a finite number of steps we shall arrive at a 
decomposition of the following form 

in which each <P; is an irreducible ascending set, and Q<\>; is the irreducible 
polynomial set gotten from <P; as described in the theorem of Sect. 4.4. 

According to the above construction, each I Q<\>; I is not contained in any 
I Q<\>j I for j > i, but there is no guarantee of this for j < i. This is because 
we have applied only that part of the theorem in Sect. 4.4 which asserts the 
existence of Q<\>; for <P;. If we take into account the assertion of a mechanical 
procedure for the determination of Q<\>; from <P;, then we may use Lemma 5 
to examine whether I Q<\>; I is contained in a preceding I Q<\>j I for j < i and 
can thus be removed from the decomposition. It follows that, on the basis of 
the theorem in Sect. 4.4 with the determination procedure given, we can get a 
non-contractible irreducible decomposition of I ~ I in a mechanical manner. In 
summary, we get the following theorem. 

Theorem. There is a mechanical procedure which determines in a finite number 
of steps, for any polynomial set ~, a non-contractible irreducible decomposition 
of the form 

in which each '11; is an irreducible basic set of QIjI;. 

However, for the application of mechanical theorem proving it is not neces
sary to carry out the decomposition to the end and reach a non-contractible one. 
In fact, it is usually sufficient to have an irreducible decomposition, contractible 
or not. Hence, for applications the existential part of the theorem in Sect. 4.4 
will be quite sufficient. 

4.6 A constructive theory of algebraic varieties 
- the notion of dimension and the dimension theorem 

Denote the basic field of characteristic 0 by K and fix the order of the variables 

XI -< X2 -< ... -< XN 
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as before. Let L be an irreducible polynomial set. Then, after having changed 
the name of x' s and reordered them as 

Ul -< ... -< Ud -< Yl -< ... -< Yn (n + d = N), 

the basic set 
<P: Al,A2, ... ,An 

of L possesses the following property: 

in which Cij E K[Ul, ... , Ud, Yl, ... , Yi-d, Ko = K(Ul, ... , Ud), Ki = Ki- 1 (l7i), 

the polynomial Ai obtained from Ai by substituting 171, ... , l7i -1 for Yl, ... , Yi-I 
is irreducible in Ki -1 [Yi] and l7i is an extended solution of Ai = O. As before, 

is called a generic point of the irreducible polynomial set <P, and d the dimension 
of <P, denoted as 

d = dim <P. 

There are some relations between Land <P as follows. <P is a basic set of L 
and L is equivalent to an irreducible polynomial set Q<I> determined from <P by 
a mechanical procedure: L ~ Q<I> or 1 L 1 = 1 Q<I> I. Recovering the original name 
x of U and Y and changing ~ to € = (~1, ... , ~N) according to the original order 
(the order of the variables within the parentheses under the two kinds of names 
is different, and should not be mixed with each other), ~ is then a generic point 
of the irreducible algebraic variety 1 L I. Moreover, for an arbitrary polynomial 
F E K[Xl, ... , XN] the following conditions are equivalent: 

1. F=OIL; 
2. F = 0 has ~ as an extended zero; 
3. The remainder of F with respect to <P is 0; 
4. F is a linear sum of polynomials in Q<I> with coefficients polynomials in 

K[Xl, ... ,XN]. 

The properties above were proved in the previous sections. We shall sup
ply one more property below. For this purpose, we say that the transcendence 
degree of an extension field K of Kover K is d if there are d elements in K 
which are algebraically independent, while .II1Y d + I elements in K are alge
braically dependent over K, i.e., d is the largest integer such that K contains d 
numbers algebraically independent over K. Here, algebraic independency is de
fined as follows: e numbers Tl, ... , Te in K are called algebraically independent 
over K if for any non-zero polynomial f (tl, ... , te ) E K[tl, ... , te ] we have 
f(T1, .. " Te) i- O. 
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As before, we say that the extension field 

obtained by adjoining the generic point ~ = (~l, ... , ~N) or ~ = (UI, ... , Ud, 1/1, 
... , 1/n) of <I> to K is a generating field of <1>. Then, since X is an extension field 
of Ko = K(UI, ... , Ud) and thus the transcendence degree of Ko over K is d, by 
the general theory of field extensions we have the following. 

Lemma 1. Let <I> be an irreducible ascending set with a generic point ~ or 
~ and a generating field X = K(~) = K(~). Then dim <I> is the transcendence 
degree of X over K. 

Lemma 2. Let the linear space KN over K with base corresponding to (Xl, ... , 

XN) have two extended points ~ = (~l, ... , ~N) and €, = (~~, ... , ~~), in which 

~' is a special point of ~. Then the transcendence degree of the extension field 
K' = K(~~, ... , ~~) is less than or equal to that of X = K(~l, ... , ~N) over K. 

Proof Let the transcendence degree of X over K be d. Consider a subset, say 
~:1' ... , ~:d+1' of ~~, ... , ~~. As the transcendence degree of X over K is d, we 
see that ~il' ... '~id+1 are algebraically dependent over K, i.e., there is a non-zero 
polynomial f(ZI, ... , Zd+l) E K[ZI, ... , Zd+tl such that f(~il' ... , ~id+1) = O. 
On the other hand, ~' is a special point of ~, so f (~l: , ... '~l: ) = 0 and thus 

1 d+l 

~l: , ... , ~l: are algebraically dependent over K. From the general theory of 
1 d+l 

algebraic extensions, we know that any d + 1 elements of X' are algebraically 
dependent, i.e., the transcendence degree of X' over K is less than or equal to d. 
This completes the proof of the lemma. 0 

Theorem. Let two irreducible polynomial sets ~ and ~' be equivalent with 
irreducible basic sets <I> and <1>' respectively. Then 

dim <I> = dim <1>'. 

Proof. Let ~ and ~' be the generic points of <I> and <1>' respectively. Then ~ and 
~' are also the respective generic points of the irreducible algebraic varieties 
I~I and I~'I. As ~ ~ ~', both I~I and I~'I have the same set of extended 
zeros. Thus ~' is also an extended zero of I ~ I and a special point of the generic 
point ~ of I~I. Similarly, ~ is also a special point of ~'. By Lemma 2, the 
extension fields K(~) and K(~') have the same transcendence degree over K, 
i.e., dim <I> = dim <1>'. The proof is complete. 0 

Owing to this theorem the following definition is proper. 
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Definition. Let an irreducible polynomial set ~ have <I> as its basic set. Then the 
dimension of <I> will also be called the dimension of ~ or the dimension of the 
irreducible algebraic variety 1 ~ I, denoted by dim ~ or dim 1 ~ I. For an arbitrary 
polynomial set ~, we can construct a non-contractible irreducible decomposition 
of 1 ~ 1 according to the preceding section. In this decomposition, the biggest 
dimension of the irreducible components will be called the dimension of ~ 
or 1 ~ I, denoted by dim ~ or dim 1 ~ 1 still. 

The main purpose of this section is to prove the following. 

Dimension theorem. Let ~ be an irreducible polynomial set with <I> as its 
irreducible basic set and let B be a polynomial with non-zero remainder with 
respect to <1>. Then 

dim(E + B) < dim E. 

Proof Remark first that under a non-singular linear transformation T in XI , ... , 

X N the new E and ~ + B will have their dimension unchanged and the new B 
will still have non-zero remainder with respect to the new <1>. All these follow 
easily from the general theory, in particular, the equivalence of properties 1-4 
listed above. We may therefore prove below the theorem with some such linear 
transformation already done. 

Let <I> : AI, A2, ... , An have a generic point ij = (UI, ... , Ud, TJI,···, TJn) 
as before. Then 

dimE = dim <I> = d. 

By Lemma 4 in Sect. 4.4, there are polynomials 

such that 

and 

C(ij) =I o. 

Thus we have 

Now suppose the polynomial set A is an arbitrary irreducible component of 
E + Band 

is a generic point of A. As t is also an extended zero of E, it is a special point 
of the generic point ij of E, and especially 

Ai(t) =0, i=l, ... ,n. 
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In addition, we have 

B(O = O. 

This implies that D(~) = 0, i.e., 

Hence VI, ... , Vd are algebraically dependent. 
As the transcendence degree of ~ is d and U I, ... , Ud are algebraically 

independent, for each i (1 ::: i ::: n) there is a non-zero polynomial Pi E 

K[Ul, ... , Ud, t] such that 

while the coefficient of the highest power of t in Pi (u I, ... , Ud, t) is a non-zero 
polynomial in U I, ... , Ud. Since ~ is a special point of ~, we have 

By a preliminary suitable linear transformation T in XI, ... , XN supposed al
ready done, we may assume that the coefficient of the highest power of t in 
each Pi (u I, ... , Ud, t) is some non-zero constant in K. Then TJi will actually 
appear in Pi(UI, ... , Ud, TJi) and so will Si in Pi(VI, ... , Vd, Si). It follows that 
Si is algebraically dependent on VI, ... ,Vd, i.e., the number of algebraically 
independent elements among V I, ... , Vd, S I, ... , Sn is at most d - 1. Hence we 
have 

dim A = dim ~ ::: d - 1. 

As this is so for any irreducible component A of b + B, the theorem is proved. 
o 

The above dimension theorem is intuitively quite evident, but its proof is not 
simple at all. For this we may refer to some popular books of algebraic geometry 
and see that the proofs therein need rather profound tools. For instance, the proof 
in Hodge and Pedoe (1952) uses Chow coordinates, the proof in van der Waerden 
(1945) uses the principle of algebraic correspondence, and the proof in Grobner 
(1949) uses Hilbert's theory of characteristic polynomials. The proof here seems 
much simpler and is not only elementary but also constructive. 

4.7 Proof of the mechanization theorem of unordered geometry 

In this section we give a proof of the mechanization theorem stated in Sect. 4.1. 
For this let us first make some preparations. 

Suppose we are given a set of variables XI, ...• XN with a fixed order 
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a basic field K of characteristic 0 and an ascending set 

of polynomials in K[XI, ... , XN] for which the classes Pi satisfy the relation 

o < PI < P2 < ... < Pn· 

Let us rewrite each xPi as Yi and all the other x's as UI, ... , Ud with d = N -no 
Then Ai can be put in the form 

in which 

Cij E K[UI, ... , Ud, YI, ... , Yi-tl (i = 1, ... , n; j = 0,1, ... , mi). 

Set 
Ii = Cw E K[UI, ... , Ud, YI, ... , Yi-Il. 

Thus Ii is the initial of Ai for i = 1, ... ,n. We call each inequation 

a non-degeneracy condition. 
Let a polynomial G E K[UI, ... , Ud, YI, ... , Yn] be given and form its re

mainder R with respect to <1>. By the remainder formula we have 

for some non-negative integers Si :::: 0 with each Qi E K[UI, ... , Ud, YI,···, Yn]. 
We shall investigate the necessary and sufficient conditions such that 

may be deduced as a consequence of the equations Ai = 0, i = 1, ... , n. In 
fact we shall prove that, under the non-degeneracy conditions Ii '#- 0 and under 
the hypothesis that <I> is irreducible, a necessary and sufficient condition is just 
that R = O. 

No matter whether the ascending set <I> is irreducible or not, the sufficiency 
of this condition is quite evident from the above remainder formula. 

Theorem 1. Let <1>, Ai, Ii, G be as above and R = O. Then under the non
degeneracy conditions 

h ,#-0, i = 1, ... ,n, 

G = 0 is a consequence of Ai = 0, i = 1, ... , n. 
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If ct> is irreducible, then under the non-degeneracy conditions for G = 0 
to be a consequence of Ai = 0, i = 1, ... , n, the condition R = 0 is also 
necessary. But in this case the proof is much more difficult. 

Theorem 2. Let ct>, Ai, Ii, G be as above and ct> be irreducible. If under the 
non-degeneracy conditions Ii i= 0 the equation G = 0 is a consequence of the 
equations Ai = 0, i = 1, ... , n (over a certain extension field of K), then the 
remainder R of G with respect to ct> is O. 

Proof Suppose R is not O. We want to derive a contradiction. For this purpose, 
apply Lemma 4 of Sect. 4.4: there are polynomials S, Qi E K[u I, ... , Ud, YI, ... , 
Yn] such that 

and T is not O. From Lemma 3 in Sect. 4.4 together with its proof, we know 
that the initials Ii of Ai have non-zero remainders with respect to ct>, so there 
are Ii, Qij E K[UI, ... , ud, YI, ... , Yi-d such that 

Hi = IiIi - (QilAI + ... + Qi,i-IAi-l) i= 0 and E K[UI, ... , Ud]. 

Hence there is a point U = (UI, ... , Ud) in Kd(UI, ... , Ud) such that 

THI'" Hn i= 0 

at U, where U may be taken as a rational point from the interior of an arbitrary 
d-dimensional cube. 

We shall prove by induction on i that there is a number ~i in some appropriate 
extension field of K such that the point 

( - - - - ) rnl+i ( ) {i = UI,···,Ud,'f/I,···,'f/i EA- UI,···,Ud,YI,···,Yi 

satisfies the relations 

Ai({i) = 0, Ii+I({i) i= O. 

Consider first the case i = 1. Denote, by A I E K[YI] and /1 E K, the 
polynomial and the number gotten from A I and II by substituting U I, ... , Ud 
for U I, ... , Ud respectively. Since 

- -
is not equal to 0 at u, II i= 0 and A I is a polynomial of degree m I ~ 1 in YI, 
so we can take ~l from some extension field of K such that Al (~I) = 0 or 
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A I ((]) = 0. Furthermore, 

so we have 

H2 = hI2 - Q2I A I, 

H2({d = H2(U) i= 0, 

i.e., the induction hypothesis holds for i = 1. 

Unordered geometry 

Suppose iiI, ... , iii, {i have already been found to satisfy the induction hy
pothesis. Let us find iii+1 and {i+1 as follows. 

Denote by Ai +1 E KTyi+d the polynomial obtained from Ai+1 by substitut
ing U I, ... , Ud, ii I, ... , iii for U I, ... , Ud, YI, ... , Yi, where K is some extension 
field of K containing iii, ... , iii. Then the coefficient Ii+1 ({i) of the highest 

power y;.::i' of Ai+1 in Yi+1 is non-zero. Hence we can take iii+1 from K, an 

extension field of K, such that Ai+1 (iii+l) = ° or 

Now we have 

and 

Hi+2 = Ji+2Ii+2 - (Qi+2.IAI + ... + Qi+2,i+,Ai+,), 

Hi+2({i+l) = Hi+2(U) i= 0 

Plunging l,"i+' into the formula of Hi+2, we get 

Now the induction is proved. 
Since R is the remainder of G with respect to <1>, there are integers Si ::::: 0 

and polynomials Bi E K[UI, ... , Ud, YI, ... , Yn] such that 

From the above induction proof we have 

Since G = 0 is a formal consequence of Ai = 0 under the non-degeneracy 
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conditions Ii =I=- 0, the above formulas lead to 

Hence, by substituting ~n into the remainder formula for G we get 

But, according to the choice of u we have 

Thus, by substituting ~n into 

T = SR - I:QiAi, 

we have derived a contradiction. 
Therefore, the assumption that R =I=- ° cannot be true and the theorem is 

proved. D 

Below we give the proof of the mechanization theorem of unordered geome-
try. 

Let a geometric statement (S) in a certain unordered geometry be given. Our 
objective is to provide a mechanical method to decide whether (S) is true or 
not. For this we first choose a coordinate system, represent the points involved 
by means of coordinates, denote these coordinates by Xi, and arrange them in a 
definite order 

Next we express the various geometric relations in the statement (S) by algebraic 
relations among these coordinates. Then the hypothesis in the statement (S) will 
be translated into a system of equations 

FJ = 0, ... , Fs = 0, 

in which Fi are polynomials in K[Xl, ... , XN], with K being the basic field 
of characteristic ° associated with the geometry in question. Actually all these 
polynomials are with rational or even integer coefficients. The conclusion of the 
statement (S) will then be turned into another system of equations 

Gl = 0, ... , Gt = 0, 

where all Gj are polynomials in K[x] , ... ,XN], actually with rational or integer 
coefficients, too. Without loss of generality we may suppose that there is only 
one such polynomial Gj, denoted simply by G henceforth. The polynomials Fj 
are then called the hypothesis polynomials of the statement (S), and the G/s or 
G the conclusion polynomial(s) of (S). 
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The proof of the mechanization theorem consists of exhibiting a mechanical 
procedure which determines first, in a finite number of steps, a set of polynomials 
D1, .•. , Dr for the non-degeneracy conditions, with all Dk in K[Xl, .•. , XN] 

and actually all with rational or even integer coefficients. Secondly, the same 
mechanical procedure will also decide in a finite number of steps whether under 
the non-degeneracy conditions 

Dl i= 0, ... , Dr i= 0, 

the equation G = ° is a consequence of 

Fl = 0, ... , Fs = 0. 

Using the language of algebraic geometry developed in the previous sections, 
the proof of the mechanization theorem can be stated more precisely as follows. 

Denote the set of hypothesis polynomials Fi by 

~ = {Fd· 

Then ~ defines an algebraic variety I ~ I, having a fixed dimension d. We need to 
find a mechanical procedure 1 which determines a set of polynomials Dl, ... , Dr 
such that by adjoining each Di to ~, the resulting polynomial set ~ + Di will 
define an algebraic variety I ~ + Di I of dimension < d. Furthermore, the same 
procedure will decide, under the non-degeneracy conditions Dl i= 0, ... , Dr i= 
0, whether or not G = 0; in other words, whether or not G will vanish on the 
remaining part of the algebraic variety I ~ I after removal of the true subvarieties 
1~+Dil· 

The theory of constructive algebraic varieties in the previous sections of this 
chapter and the two theorems in this section already provide such a mechanical 
method. 

According to Sect. 4.5, we can decompose the algebraic variety I b I into 
irreducible components, of which each has an irreducible basic set <l>i' which 
determines in tum that irreducible component in question, denoted by I QCPi I as 
before. Furthermore, if the dimension di of I QCPi I is less than the dimension d 

1 The argument based on dimensionality of algebraic varieties needs some clarifica
tion. When Xl, ... , XN are considered as corresponding to the base of the N-dimensional 
linear space iN, it may occur that some irreducible component 1 Q<I>i 1 corresponds to a 
degenerate case of the geometric theorem while dim IQ<I>i 1 = di = d = dim 11:1, and that 
IQ<I>i 1 corresponds to a non-degenerate case of the theorem yet dim IQ<I>i 1 = di < d. This 
situation can be settled roughly as follows. Let the variables XI, •.. , XN be properly dis
tinguished into parameters U I, ... , Ud and geometric dependents Yl, ... , Yn Cd + n = N) 
as before. In the irreducible decomposition, we remove those components 1 Q<I>i 1 for 
which <1>; contains a polynomial D; involving the parameters Ul, •.. , Ud only and take 
each Di as a non-degeneracy polynomial. That is, only those components 1 Q<I>i 1 for which 
<t>i contains no polynomial involving UI, ... , Ud only are considered. They should all 
be of dimension d. Otherwise, the theorem is not well-formulated. [Transl.] 
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of I I; I, then this true subvariety should be a subvariety of some I <I> j + Di I 
obtained from a certain previous I Q<f>j I of dimension d by adjoining to <I> j a 
polynomial Di (which is either an initial h or some Gl in the previous notations). 
In this case, we take each Di as a non-degeneracy polynomial. Suppose after 
removal of all these true subvarieties, the remaining irreducible components of 
dimension dare 

Denote the initials of polynomials in each <I>j by IjJ, .•. , Iju and consider them 
as non-degeneracy polynomials Djk. By Theorems 1 and 2, whether G = 0 
is a consequence of FJ = 0, ... , Fs = 0 under the non-degeneracy conditions 
Di =1= 0, Djk =1= 0, is just the same as whether G = 0 on the remaining part of 
IQ<f>, I, ... , IQ<f>t I after removal of the components l<I>j + Di I and those defined 
by Djk = 0, which can be decided by verifying whether the remainders of G 
with respect to <I>j are all O. This furnishes the mechanical procedure required 
and thus gives the proof of the mechanization theorem in question. 

The above mechanical procedure of theorem proving is quite simple in ap
pearance. However, it would be rather difficult to apply this method to the 
proof of concrete theorems. The reason is that the irreducible decJmposition 
of algebraic varieties depends on factorization of polynomials which, though 
theoretically almost self-evident, is a rather difficult problem in practice and for 
which no method of high efficiency is now available. Consequently, the above 
method, if followed according to that procedure, is entirely impracticable, i.e., 
non-feasible in the terminology of mathematical logic. Fortunately, for theorem 
proving in geometries, we may hope that the theorem under consideration is 
really a true theorem and we want to prove its truth in an affirmative manner. 
For this purpose it is enough to verify, by using Theorem 1, that the remainder 
of the conclusion polynomial G is 0 with respect to some ascending set, no mat
ter whether it is irreducible or not. Therefore, to each concrete theorem whose 
truth is to be tested and to be proved in the case it is really true, we may apply 
Theorem 1 directly. If we know from computation that G has its remainder 0 
with respect to the ascending set, then the theorem under consideration is true 
and the computation furnishes a proof of this theorem, and so in this case ev
erything is done. Only in the case that the remainder is not zero should we ask 
further whether the corresponding ascending set is irreducible or not. For this 
reason we shall modify the above mechanical procedure of theorem proving to 
the following form which has proved to be very efficient in practice. 

The modified mechanical procedure runs as follows. 
Consider a set p of polynomial sets and a set /). of polynomials, where /). is 

called the non-degeneracy set. In the outset, p will consist of a single polynomial 
set, viz. the set 

of hypothesis polynomials, and the non-degeneracy set will be an empty one, 
viz. 

/). = <p. 
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During the procedure we shall increase or decrease the number of polynomial 
sets in p and also adjoin non-degeneracy polynomials into II to get the final 

as required. 
Step 1. Let p be non-empty. Then take an arbitrary polynomial set ~ from p, 

and remove it from p to get a new p. Use the well-ordering theorem in Sect. 4.3 
to enlarge ~ to successive polynomial sets as shown below: 

If A has an element which is a non-zero number in K, then A is contradictory. 
In this case, the hypothesis in the statement (S) is contradictory in itself and the 
procedure terminates. In the contrary case, let the basic set of A be 

The initials of Ai will be denoted as Ii. By construction, any polynomial in A 
will have its remainder 0 with respect to <1>. In that case we also have 

diml~1 =dim<l>=N-n=d. 

If Step 1 is just the first step of the whole procedure, then the dimension d 
will be recorded for future reference. 

If Step 1 is a later step during the procedure, then we compare the new 
dimension d with the previous d recorded at the beginning. 

If this new d is equal to the previously recorded d, then adjoin the initials 
Ii to II to get an enlarged non-degeneracy set ll, and proceed to Step 2. 

If this new d is less than the previously recorded d, and the present ~ is 
obtained as some A + Ii or A + G j from Step 3 below, then adjoin this Ii or 
Gj to II to get a new ll. Then go back to Step 1 and proceed as before. 

Step 2. Find the remainder R of G with respect to <1>. 
Suppose first R = O. If in p there are no more polynomial sets, then the 

statement (S) is true under the non-degeneracy conditions 

and the procedure terminates. In this case, the theorem is true and is proved 
under the non-degeneracy conditions. Otherwise go back to Step I and proceed 
as before. 

If R =1= 0, then proceed to Step 3. 
Step 3. Check the irreducibility of the basic set <I> according to Sect. 4.2. 
If <I> is irreducible, then, as G has remainder R =1= 0 with respect to <1>, by 

Theorem 2 under the non-degeneracy conditions 
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the statement (S) is not true and the procedure terminates. In this case, the 
theorem is not true under the non-degeneracy conditions. 

If <I> is reducible, then according to Sect. 4.5 there will be some decompo
sition 

Consider such A + Ii and A + G j as new polynomial sets ~, and adjoin all these 
to p to get an enlarged set p. Then go back to Step I and proceed as before. 

According to the previous sections, the above procedure will terminate in a 
finite number of steps. In this way we shall get a final non-degeneracy set 

!:1 = {Dd 

and one of the following three conclusions should be true: 

1. Under the non-degeneracy conditions 

the hypotheses in the statement (S) are contradictory; 
2. under the above non-degeneracy conditions, or under the additional hypothe

ses Dk 1= 0, the statement (S) is true, or what is the same, the theorem under 
consideration is true; 

3. under the above non-degeneracy conditions, or under the additional hypothe
ses Dk 1= 0, the statement (S) is not true, or what is the same, the theorem 
is not true. 

Generally speaking, the degeneracy conditions 

are not worthy of any more consideration. If there is necessity to consider some 
degeneracy condition Dk = 0, we may simply take it as a new hypothesis 
to adjoin to the statement (S), i.e., we consider {F], ... , FI" Dd instead of 
{F], ... , Fs} and then proceed as above. 

The above simplified mechanical procedure is very feasible. The next section 
will give a few illustrative examples (mainly with hand calculation). More ex
amples by computer may be seen in relevant books by the author to be published 
in the near future. 

4.8 Examples for the mechanical method of unordered geometry 

The following examples illustrate the main idea of the mechanical procedure 
presented in the preceding section. Since the calculations in this book are done 
only by hand, we shall take examples which are as simple as possible and 
choose suitable coordinate systems in order to further simplify the calculations. 
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In the book "Theory, Method and Practice of Mechanical Theorem Proving in 
Geometries" under preparation by the author, the mechanized proofs of more 
complicated theorems will be given, but the principle is the same as what is 
shown in this section. 

Example 1 (Theorem of orthocenter). The three altitudes of any triangle are 
concurrent. 

In orthogonal geometry, this theorem is introduced as an axiom (cf. Sect. 2.2). 
Here we take it as a theorem to be proved as an explanation of the method of 
mechanical proving. This is independent of the problem of circular proof. 

According to Sect. 2.2, the three sides of lJ.ABC cannot all be isotropic. We 
may suppose AB is a non-isotropic line. In this case, AB and the altitude on 
AB should intersect, say at a point o. We take an orthogonal coordinate system 
with 0 as its origin, AB and co as its first and second axes respectively. Let 
D be the intersection point of the two altitudes on the sides BC and AC. Then 
we need to prove that D lies on the altitude CO (see Fig. 4.1). 

For this purpose, let the orthogonal rate of the orthogonal coordinate system 
be k and the coordinates of points be 

According to Sect. 2.3, the hypothesis of the theorem consists of 

AD ~ BC {::::::} kx3X5 - XZ(X4 - Xl) = 0, 

B D ~ AC {::::::} kx3X5 - Xl (X4 - Xz) = o. 

Denote the two polynomials on the left-hand side by FI and Fz respectively, 
and well-order the set ~ = {FI, Fz} of polynomials according to Sect. 4.3 to 
get a polynomial set A with basic set 

Fig. 4.1 
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in which 
Al = (Xl - X2)X4, 

A2 = kx3X5 - X2(X4 - Xl). 

Now the non-degeneracy condition 

is introduced. The conclusion of the theorem is 

CO passes through D <===} X4 = O. 

Under the non-degeneracy conditions 

the theorem is clearly true. 
The geometric meanings of the non-degeneracy conditions are also evident: 

X3 i= 0 <===} C does not lie on AB; 

Xl i= X2 <===} A and B do not coincide. 

For these simple degeneracy cases it is obviously unnecessary to make a 
further investigation and the following conclusion may be drawn: 

(In orthogonal geometry) the three altitudes of any non-degenerate triangle 
are concurrent. 

In fact, this is an axiom in orthogonal geometry. Although the "proof' here is 
simple, it is representative: The non-degeneracy conditions appear successively 
in the course of mechanical proving and need not be considered in advance. 
As for the occurring non-degeneracy conditions, we can take them successively 
as degeneracy ones to be adjoined to the hypothesis in order to further verify 
whether or not the theorem holds, if necessary. It all proceeds systematically 
and mechanically, without need of further consideration. 

Example 2 (Theorem about incenter and excenters). The bisectors of the three 
angles of any triangle, three-to-three, intersect at four points. 

In unordered metric geometry, there is only the concept of total angles but 
not the concept of general angles. The two bisectors of a total angle cannot 
be distinguished either. Therefore, the four intersection points in the theorem 
cannot be distinguished into incenter and excenters as in ordinary geometry. 
This fact is reflected in the following mechanized proof. 

To simplify the calculation, we shall take one side (non-isotropic line) AB 
of b.ABC as the first axis of a Descartes coordinate system and the line passing 
through C perpendicular to AB, i.e., the altitude on side AB, as the second axis. 
Let one of the bisectors of the total angle A and one of those of the total angle 
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D(x..,xs) 

A (XI, 0) o B (Xl, 0) Fig. 4.2 

B intersect at D. We want to prove that CD is a bisector of the total angle C 
(see Fig. 4.2). 

Let the coordinates of points be 

A = (Xl, 0), B = (X2, 0), C = (0, X3), D = (X4, xs). 

According to Sect. 2.4, the hypothesis of the theorem consists of 

AD = the bisector of the total angle A {:::=} 

Fl == X3[X~ - (X4 - x])2] - 2XlXS(X4 - xI> = 0, 

B D = the bisector of the total angle {:::=} 

F2 == X3[X~ - (X4 - X2)2] - 2X2XS(X4 - X2) = 0. 

The conclusion of the theorem is 

CD = the bisector of the total angle C {:::=} 

G == [Xl (Xs - X3) + X3X4] . [X3(XS - X3) - X2 X4] 

+ [X2(XS - X3) + X3X4] . [X3(XS - X3) - XlX4] = 0. 

Starting from the hypothesis-polynomial set 

we can get a polynomial set A having basic set 

where 

Al = 4X4(X4 - Xl)(X4 - X2)(X4 - Xl - X2) - X~(2X4 - Xl - X2)2, 

A2 = 2(X4 - Xl - X2)XS - X3(2x4 - Xl - X2). 
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The non-degeneracy conditions introduced are 

X3 =F 0, XI =F X2, X4 =F XI + X2· 

Reducing G with respect to <1>, we can easily find that 4(X4 - XI - X2)2G is 
a linear sum of A I and A2 under the above non-degeneracy conditions, and the 
theorem thus holds true under these non-degeneracy conditions. 

The geometric meanings of the non-degeneracy conditions 

X3 =F ° and XI =F X2 

are rather evident. To verify whether the theorem still holds in the degeneracy 
case 

X4 = XI +X2, 

we may adjoin 

to the original :E and proceed in the same way for the new set 

We then get 
XI + X2 = 0, X4 = ° 

under the same non-degeneracy conditions 

X3 =F 0, XI =F X2· 

So the theorem holds true as well. Actually, in this case the triangle is symmetric 
with respect to CO. 

In the original basic set <1>: A I, A2, the polynomial A I is of degree 4 in X4 
and A2 is linear in Xs. This indicates a geometric fact: The common intersection 
points of the angular bisectors are exactly four in number. 

Example 3. The theorem is the same as the preceding one. 
Since the bisectors of a total angle in (unordered) orthogonal geometry may 

not necessarily exist, in the above example the theorem has been proved as one 
in (unordered) metric geometry. In the course of its proof, we have chosen a 
Descartes coordinate system. Such a system generally does not exist in orthogo
nal geometry. But in fact, the same theorem also holds in orthogonal geometry, 
as long as we modify its statement a little bit. 

In orthogonal geometry, though angular bisectors may not necessarily exist, 
we can always define the symmetric line of any straight line with respect to 
another non-isotropic line. In this case, the non-isotropic line is just a bisector of 
the total angle constituted by the original line and its reflection. Hence, we may 
consider the assertion having the following meaning in orthogonal geometry. 

Let the three sides of f:.AB D be all non-isotropic and the symmetric lines 
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o B (Xl, 0) Fig. 4.3 

of AB with respect to AD and with respect to BD intersect at a point C. Then 
AC and BC are symmetric with respect to CD (cf. Fig. 4.3). 

To prove this, choose an orthogonal coordinate system with AB as its first 
axis and the line passing through D and perpendicular to A B as its second 
axis. Let the orthogonal rate of the coordinate system be k and represent the 
coordinates of points as 

Then the hypothesis of the theorem consists of 

AC = the reflection of AB with respect to AD ¢=> 

FI == (xr - kx~)X5 + 2XIX3(X4 - Xl) = 0, 

BC = the reflection of AB with respect to BD ¢=> 

F2 == (xi - kx~)X5 + 2X2X3(X4 - X2) = 0, 

and the conclusion is 

AC = the reflection of BC with respect to CD¢=> 

G == [(X4 - XI)(X5 - X3) - X4X5] . [kx5(X5 - X3) + X4(X4 - X2)] 

+ [(X4 - X2)(X5 - X3) - X4X5] . [kx5(X5 - X3) + X4(X4 - xd] = 0. 

Starting from the polynomial set b = {Fj, F2}, by the well-ordering proce
dure we get a polynomial set A having basic set 

where 
Al = (kx~ + XjX2)X4 - k(xj + X2)X~, 

A2 = (xr - kx~)X5 + 2XIX3(X4 - Xl). 
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In the course of well-ordering, the non-degeneracy conditions 

X3 =1= 0, XI =1= X2, 

have already been introduced. 
Reducing G by the two polynomials in <1>, we see that G has its remainder 0 

with respect to <I> under the above non-degeneracy conditions. Therefore, the 
theorem is true under the non-degeneracy conditions 

X3 =1= 0, XI =1= X2, 

kx~ + XIX2 =1= 0, xr - kx~ =1= o. 

The geometric meanings of these non-degeneracy conditions can be easily ex
plained. For instance, 

kx~ +XIX2 = 0 

means AD ...L BD. If we adjoin it to the hypothesis and well-order the obtained 
set in the same way, we shall get 

XI = X2, kx~ +xr = 0, 

under the non-degeneracy conditions 

XI =1= 0, X2 =1= 0, X3 =1= O. 

In other words, A and B coincide while AD = B D is an isotropic line. So the 
hypothesis of the theorem itself is contradictory. 

Let us compare this example with the preceding one. This example, being a 
theorem in orthogonal geometry, is obviously more general than the preceding 
one, which is meaningful only in metric geometry. Therefore, if the statement 
is proper, we can get a more general theorem while the calculation used for its 
proof becomes simpler. For example, both AI and A2 here are polynomials of 
degree 1 in X4 and Xs, whereas AI in the preceding example is of degree 4 in X4. 

The reason is that if point D is fixed, then point C can be uniquely determined. 
The contrary is not so, however. 

For this example, as a theorem in an arbitrary orthogonal geometry, the 
proof by applying the metric concepts such as distance and congruence is clearly 
not suitable. Although it is not difficult to get a direct proof by following the 
Euclidean fashion (for instance, the direct proof in Sect. 2.2), the proof method 
would depend upon the theorem and is not in accordance with the teachings of 
Descartes. 

Example 4 (Feuerbach's theorem). The nine-point circle of a triangle is tangent 
to any circle that is tangent to all the three sides of the triangle. 

This is one of the most famous theorems in elementary geometry. There is 
an interesting discussion of this theorem in Davis (1927). To prove the theorem 
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Fig. 4.4 

using the classical method of Euclid, one certainly needs some techniques. Even 
using analytic geometry, some ingenious ideas are still necessary: see the proof 
in Salmon (l879a: p. 127), in which trigonometric functions are used and the 
theorem was thus proved as one in ordinary geometry. In fact, the statement of 
the above theorem does not concern the internal tangency and external tangency 
but only the tangency of circles; hence, the theorem is one in unordered metric 
geometry. By applying the mechanical method of this chapter, the proof is very 
easy - not much different from the previous three examples. The only difference 
is the number of calculations. It is both complicated and error-prone to use hand
calculation, so we should use a computer to perform the proof. Let us state the 
proof process as follows. 

According to Sect. 2.4, there are four circles that are tangent to the three 
sides of a triangle. Take anyone of them and denote its center by I. Choose 
a Descartes coordinate system with AB as its first axis II and the line passing 
through I and perpendicular to AB as its second axis. Let the coordinates of 
points be as follows 

Let the midpoints ofthe pairs (BC), (AC), (AB) of flABC be MA, MB, Me 
respectively. According to the definition, the nine-point circle of flABC is the 
circle passing through MA, MB and Me. It is easy to prove that this circle also 
passes through six other well-known points. Let the center of this nine-point 
circle be N with coordinates 

Suppose 

xl = the square of radius of the nine-point circle = N M A, etc., 

x~ = the square of distance of the pair (N I), i.e., N I. 

Since we do not assume any order relation, radius and distance have no meaning 
in our geometry. But according to Sect. 2.4, we can define the square of radius 
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and the square of distance of pair of points. So the hypothesis of the theorem 
reads as follows: 

AI is one of the bisectors of 1.A(BC), or 
A C = the symmetric line of II with respect to A I 

B I is one of the bisectors of 1. B (A C), or 
B C = the symmetric line of II with respect to B I 

N = the center of the nine-point circle M AM B Me, or 

the square of radius of the nine-point circle = N M A = N M B = N Me 

2_( X2+X3)2 2 
Xs - X6 - 2 + X7 

{=:::} = (X6 _ X2 : X4 ) 2 + (X7 _ X;) 2 

= (X6 _ X3 : x4 ) 2 + (X7 _ X;) 2. 

Now fix the order of the x's as 

and well-order the set of polynomials appearing in the above hypothesis. Then 
we may introduce the non-degeneracy conditions 

and get, under these conditions, a quasi-basic set 

Al == (x? + X2X3)X4 - X?(X2 + X3) = 0, 

A2 == (x? + X2X3)X5 - 2XIX2X3 = 0, 

A3 == 4X6 - (X2 + X3 + 2X4) = 0, 

A4 == 4X5X7 - x~ - (X3 - X4)(4x6 - 2X2 - X3 - X4) = 0, 

As == 4x~ - (2X6 - X2 - X3)2 - 4xi = 0, 

A6 == x~ - x~ - (X7 - xd2 = 0, 

where quasi-basic set means that the initial of each polynomial in the set is 
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reduced, though the polynomial itself may not necessarily be reduced, with re
spect to the preceding polynomials. This is enough for application of Theorem 1 
in Sect. 4.7. 

The conclusion of the theorem becomes 

G - 4 4 42222222220 = X9 +Xg +X1 - X9 Xg - X9X1 - XgXl = . 

Introduce further non-degeneracy conditions 

for the initial of each Ai to be non-zero. Then the successive remainders of G 
with respect to Ai are Rs, R4, ... , R1, Ro listed as follows: 

Rs = xt - 4xfx~ - 2xix~ + 4xfxi - 2x~x~ 

+ 4XIX7X~ + xj + 2x~xi - 4X1X? + xt 

- 4X1X~X7' 

R4 = - 64xfx~ + 64xfx2 - 64XIX2X6X7 + 64xfx3X6 

- 64xIX3X6X7 - 32xfx2X3 + 32x2X3X~ + 32x\X2X3X7 

- 16xfxi + 16xix~ + 16xIXix7 - 16xfxj + 16xjx~ 
+ 16xlxjx7 - 24xix3X6 - 8X~X6 - 24x2xjx6 - 8xjX6 

6 22 4 3 4 3 4 4 + x2 x3 + x2 X3 + X2x3 +x2 +x3' 

R3 = - 64xfxsx~ + 64xfx2XSX6 + 64xfx3XSX6 

- 32xfx2X3XS + 32x2X3XSX; - 16xfxixs 

+ 16xixsx; - 16xfxJx5 + 16xJx5x~ - 24xix3X5X6 

- 8X~X5X6 - 24x2xjX5X6 - 8xjX5X6 + 6xixJX5 

+ 4X~X3XS + 4X2xjxS + xixs + xjxs - 16xIX2X~X6 

- 16xIX3X~X6 + 8XIX2X3X~ + 4X1Xix~ + 4XIxjx~ 
- 64xIX2X3X~ -64x1xjx~ +80XIX2xjX6 + 49xIXix3X6 

+ 32xIxjX6 + 64X1X2X4X~ + 64x1X3X4X~ - 64xIX2X3X4X6 

- 48xIXix4X6 - 16xIxjX4X6 - 20XIxixj - 8XIX~X3 

- 16x1x2xj + 16x1xix3x4 + 8XIX~X4 + 8XIX2XJX4 

- 4xlxj - 16xIX2Xlx6 - 16xlx3xlx6 + 8XIX2X3Xl 

4 224 22 + Xlx2x4 + Xlx3x4' 
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R2 = 2XIX2XjX4 + 2XIXix3X4 + 4XrX2X4XS 

+ 4XrX3X4XS - 2XIX2X4X~ - 2XIX3X4X~ 

- 4XIX2X3Xi - 2XIXixi + 2XIX2Xl- 2XIX3Xl 

22 22 22 2 22 
- Xl X2 XS - Xl X2X3XS - Xl X3 XS - Xlx3 x 4 

4 22 2 2 22 22 
- Xl X4 XS + X2 X3X4XS + X2 X4 XS + X3 X4XS, 

R 5 4 2 5 42 6 4 2 I = Xl X2X3X4 + Xl X2 X3X4 - Xl X2X3X4 

422 4 3 4 3 422 
- Xl X2 X4 + Xl X2 X4 + Xl X3 X4 - Xl X3 X4 

+ 2xrxixjX4 + 2xrX~XjX4 + 2xrxix 3Xl 

2 2 23 43 2422 4 3 + Xl X2 X3X4 - Xl X2 X3 - Xl X2 X3 - Xl X2 X3 

6 2222 23 2 2 32 
- XIX2 X3X4 -XIX2X3X4 -XIX2X3X4 

34 43 323 233 
- X2 X3X4 + X2X3X4 + X2 X3X4 + X2 X3X4 

2422233 224 
-XIX2X3- XIX2 X3- X I X2X3' 

Ro =0. 

The number of terms of the remainders Rs, ... , Ro is 

11, 23, 45, 18, 24, 0, 
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respectively. Since the remainder Ro is equal to 0, the remainder of G with 
respect to the quasi-basic set is 0 under the previous non-degeneracy conditions. 
Therefore, by Theorem 1 of the last section (which also holds in the case of 
quasi-basic sets) Feuerbach's theorem holds true under these non-degeneracy 
conditions. 

The geometric meanings of the non-degeneracy conditions are clear and it 
is unnecessary to check further every degeneracy case. We conclude that Feuer
bach's theorem is generically true, or simply say in accordance with the conven
tion that Feuerbach's theorem is true, while the above process of calculations 
provides a proof of this theorem. 

The above examples show that the mechanical method is sufficient to prove 
some rather difficult theorems with the aid of a computer or by hand. For the 
proof of these theorems, not only is the classical method of Euclid difficult to 
use but also the usual method of analytic geometry is unable to give a solution 
owing to the overly complicated calculations. However, by using computers and 
within the limitation of their speed, all kinds of theorems, as long as they belong 
to the class considered in this chapter, can be easily proved. 

Our contention is not restricted to proving known theorems. We have already 
shown a means to make theorem proving easy, and consequently such a means 
also makes it possible to concentrate our creativity on the discovery of new 
theorems. We can make various kinds of conjectures and verify them on a 
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computer. If a conjecture is verified to be true, we then get a new theorem. 
Of course, here the computer is employed only as a tool for computation. As 
for this role, it is not much different from the subsidiary apparatus of pen and 
paper used for mathematical calculations and proofs, but as for the efficiency, 
there is a big difference. The manner for discovering new theorems with the aid 
of computers will be simply called mechanical discovering. We shall give two 
such examples as follows. 

Example 5 (The configuration of Pappusian lines). The so-called Pappus's the
orem states that, if there are two sets of distinct points A, B, C and A', B', C' 
respectively on two distinct lines I and I', and these points are also distinct from 
the possible intersection point of I and I', then the following intersection points 

P = AB' /\ BA', Q = AC' /\ CA', R = BC' /\ CB', 

if they exist (i.e., the corresponding lines are not parallel to each other), are 
collinear. The line determined by P, Q, R will be called a Pappusian line and 
denoted by 

B C] 
B' C' . 

Making various permutations of A, B, C; A', B', C', if all the corresponding 
intersection points exist, we get six Pappusian lines by applying the above 
method. In addition to the one above, the other five lines are 

[;, ~, ~,l 

[;, :' ~,l 

[~, ~, ~,l 

[:' ~, ~,l 
Let us investigate the geometric property of the configuration of these six 

Pappusian lines. 
In unordered Pascalian geometry, we may naturally introduce some derived 

concepts such as algebraic curves, the degree of algebraic curves and tangent 
lines. It is easy to know that generally five lines may be tangent to a curve of 
the second degree (conic), but for six lines this is possible only if these lines 
satisfy some condition (the so-called Brianchon theorem). Hence we may ask 
the following question: Are the above six Pappusian lines all tangent to a conic? 

Drawing a figure, one finds that these six Pappusian lines are indeed tangent 
to a conic, but this conic has degenerated into two points. In other words, each 
of the six Pappusian lines passes through one of the two points. Formulating 
this observation as a geometric sentence, we make the following: 
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Conjecture. The three Pappusian lines 

B 

B' 
B 

C' 
B 

A' 
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in the above-mentioned configuration, if not parallel to each other, are concur
rent, and so are the other three. 

Applying our mechanical procedure and performing the computation on a 
computer, it is easy to verify the truth of this conjecture, from which we thus 
get a new theorem.2 

Example 6 (Pascal-conic theorem). As another example of mechanical discov
ering, let us consider the following problem. 

Suppose we are given 6 points AI, ... , A6 on the same conic. Take 4 distinct 
ones Ai, A j, Ak, Al from them and construct the intersection point 

There are 45 such intersection points in all (assume the corresponding lines not 
parallel to each other), which are called Pascali an points. 

Let us fix the six points Ai in an arbitrary order Ail Ai2 ... Air, to get a 
hexagon. Then the intersection points 

of the three opposite sides of the hexagon are collinear, called a Pascalian line 
of the hexagon Ail Ai2 ... Aie,. There are 60 such Pascalian lines in all and they 
constitute a complicated configuration. Among these 45 Pascalian points and 
60 Pascalian lines, there are many interesting geometric properties which have 
been much studied by numerous geometers including Steiner, Cayley, Kirk
mann, Veronese (cf. the remark at the end of Salmon's book (Salmon I 879a)). 
However, most of the interesting theorems found by them are of a linear char
acter: Collinearity of certain points and concurrency of certain lines. Now we 
pose the question: What relations of quadratic or even higher degree character 
can be found among these 45 Pascalian points and 60 Pascalian lines? 

Of course, such relations should exist. For instance, six Pascalian points on 
two arbitrary Pascalian lines have a quadratic relation: They lie on a degenerate 
conic constituted by these two Pascalian lines. Such a quadratic relation is clearly 
trivial. Therefore, for the simplest case we may ask: Do there exist six points 
among the 45 Pascali an points lying on the same non-degenerate conic? 

2 This theorem is now known as a special case of Steiner's theorem. [Trans!.] 
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We shall consider this question in the following way. 
In the symmetric group S6 generated by 1, 2, ... , 6, let us consider a sub

group G of order 6, for example, the subgroup 

generated by a permutation 
g = (123456). 

Consider now an arbitrary Pascali an point 

P = Pij,kl 

and apply an element a of G6 to P; we get a point 

a P = PaU)a(J),a(k)a(l)' 

Let us ask: Do the six points 

generated by P and G6 lie on the same conic? 
According to the relation between Pij,kl = Ai Aj 1\ AkAl and g = (123456), 

we may classify the 45 Pascalian points into 10 types listed in Table 1, in which 
the second and the last actually belong to the same type. 

AIA2 /\ A3A4 

AIA2 /\ A3AS 

AIA2 /\ A3A6 

AIA3 /\ A2A4 

AIA3 /\ A2As 

AIA3 /\ A2A6 

AIA3 /\ A4AS 

AIA3 /\ A4A6 

AIA3 /\ AsA6 

Table 1 

Quadratic relation among the six points gS P 

No quadratic relation exists 

No quadratic relation exists 

On a degenerate conic constituted by two 
Pascalian lines 

On a degenerate conic constituted by two 
coincident Pascalian lines 

No quadratic relation exists 

? 

No quadratic relation exists 

No quadratic relation exists 

No quadratic relation exists or meaningless 

No quadratic relation exists. 
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The only case that is not easy to determine in Table 1 is the case 

By applying the mechanical procedure of this chapter with an implementation 
of it on a computer, we verified that the six points are indeed on the same conic, 
from which the following theorem is obtained. 

Theorem. Let g = (123456) and P = AIA3 1\ A2As. Then the six points 

P, gP, ... , gS P 

lie on the same non-degenerate conic. The conics of this type obtained from 
different g and P are 60 in all. 

The computer we used is one with a speed of 3000 additions per second. 
The computing time required for proving this theorem is about sixty hours. If 
we use a microcomputer with a speed of 200,000-300,000 additions per second, 
the proof can be completed within one hour. This demonstrates the efficiency of 
our mechanical method. By combining and permuting the six points AI, ... , A6, 
we should be able to find all possible non-degenerate quadratic relations among 
the 45 Pascalian points and give their proof without much difficulty. We can 
even consider non-degenerate cubic relations and other complicated relations. 
This is almost impossible to be accomplished by using the classical methods 
(whether they are synthetic or analytic). 

This section has given several examples to explain the role of the mechanical 
method. Naturally, both mechanical proving and mechanical discovering may 
be replaced by using the usual, traditional method. The following is a direct 
proof of the theorem in Example 6. 

Denote P!3,2S by A7 and gA7, g2 A7, ... , gS A7 by As, A9, ... , A12, respec
tively. To prove that the six points A7, As, ... , A\2 lie on the same conic, it 
suffices to prove that A7AsAllA\2A9AIO is a Pascalian hexagon, while the latter 
is equivalent to proving that 

are collinear. 
By the hypothesis that AI, A2, ... , A6lie on the same conic, A \ A3A6ASA2A4 

is a Pascalian hexagon, so the three points 

are collinear. In other words, AsA6 1\ A\A4 is identical to A!3. 
Similarly, the fact that A I A2AsA3A6A4 is a Pascalian hexagon implies that 

AIA2 1\ A3A6 = A14, and that AIAsA2A6A3A4 is a Pascalian hexagon implies 
that A2As 1\ A3A4 = Ais. 
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Finally, from the hypothesis that Al A2A5A6A3A4 is a Pascalian hexagon, 
one knows that Al3, A14, AI5 are collinear, so that A7 , As, ... , AI2 lie on the 
same conic. This is what we wanted to prove. 

The above proof is simple and direct, and it sufficiently reflects the character 
of the traditional, purely geometric proof. But as pointed out by Descartes, 
every such proof needs some ingenious idea, an individual theorem needs an 
individual proof and thus an individual, ingenious idea. For mechanical proving, 
the situation is just the contrary. So long as one has theoretically proved that 
some class of theorems or some geometry is mechanizable and has given the 
corresponding mechanical procedure, the proof of every theorem in that class -
no matter which one it is - is the same without any difference between difficulty 
and ease; and, within the limitation of the computer's memory and speed, the 
proof can be constructed in practice without requiring any other consideration. 
Here, the relation between mechanical proving and traditional proving is similar 
to the relation between algebraic methods and arithmetic methods. Taking the 
four-arithmetic-operation problem of the so-called chicken-rabbit-co-coop as an 
example, the arithmetic method supposes that every chicken would have four 
feet or every rabbit would have only two feet, which may be well considered of 
exhausting all ingenious ideas. The method is also vivid, beautiful, fascinating 
and attractive. On the contrary, the algebraic method (i.e., the Thieh Yuan Shu 
of ancient China) is mechanical and uninteresting, but it is applicable to a large 
class of problems, not just a special one. At the beginning, the creation of the 
algebraic method or Thieh Yuan Shu was only directed to a certain class of 
problems in order to "save labour many times." But as for its development up 
to this day, the role has been as we all know. 

Remark. The author has written a program on a small computer - HP 1000 -
according to the mechanical method proposed in this book and made some ex
periments, including examples for mechanical theorem discovering. We present 
them as follows. 

1. Theorems about the inversion center and the inversion-center line 
Fix a line I in the plane. If the two angles formed by the lines II, 12 with I are 
complementary, we say that 11,12 are inversional (with respect to I). 

Theorem 1. The three inversion lines of the three sides of an arbitrary trian
gle A I A2A3 drawn from their opposite vertices respectively are concurrent. 
The intersection point will be called the inversion center of LA I A2A3 (with 
respect to I). 

Theorem 2. The four inversion centers of the four triangles determined by 
an arbitrary complete quadrilateral are collinear. 

The proof of these two theorems on our HP 1000 takes about 1 min and 
4 min running time respectively. 
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2. Pappus-point theorem in Example 5 of this section 
The running time for the proof of the Pappus-point theorem on HP 1000 is about 
33 min. 

This theorem was discovered and proved in 1980 on an HP 9835A. At that 
time the printings were recorded, but we did not record the exact running time 
which is around 20 h. 

3. Pascal-conic theorem in Example 6 of this section 
The running time for the proof of this theorem on our HP 1000 is about 1 h and 
23 min. 

The theorem was discovered and proved also in 1980 on the HP 9835A. At 
that time, the printings were also recorded and the computing time required for 
the proof is about 60 h. 

We have recorded the detailed printings of the proving process for the above 
three theorems on the HP 1000. 

Further remark. Since the proving process was displayed in detail on the screen 
during the computation, the above-listed timings are actually much more than the 
true CPU time. A Chinese student, S. C. Chou, studying now in the University 
of Texas at Austin, USA for his doctoral degree, has written a program on a 
Dec-20 computer based on our method. He has proved 150 theorems in ordinary 
geometry and has also discovered some interesting theorems, of which one is 
as follows: 

Draw a circle cocentered with the circumcircle of a triangle. From an ar
bitrary point on this circle drop three perpendiculars to the three sides of the 
triangle respectively. Then the triangle formed by the three perpendicular feet 
has a constant area. In case the cocentered circle is identical to the circumcircle, 
this constant becomes 0, i.e., the three perpendicular feet are collinear - this is 
commonly called Simson's theorem. 

Chou's paper "Proving Elementary Geometry Theorems Using Wu's Al
gorithm" will appear in Contemporary Mathematics, American Mathematical 
Society, 1984. 



5 Mechanization theorems 
of (ordinary) ordered 
geometries 

5.1 Introduction 

The geometries, such as unordered Pascalian geometry and orthogonal geometry, 
which were considered in Chaps. 3 and 4 do not assume any relation of order. 
In geometries of this kind the statement of theorems, after fixing the coordinate 
system, involves only some equality relations. We have proposed a mechanical 
method which usually is quite efficient and can be used to prove rather dif
ficult theorems. Practice will show the extent of efficiency of our method for 
unordered geometries. In the book "Theory, Method and Practice of Mechan
ical Theorem Proving in Geometries" (under preparation), we shall explain in 
detail the algorithmic procedure, implementation and computer experiments of 
this method and give more examples. This book is restricted only to the basic 
principles. If a geometry assumes an order relation and the statement - espe
cially the conclusion part - of a theorem involves such an order relation, then 
the situation becomes not only much more complicated but also different in 
essence. In this case, there are methods for mechanical proving in theory, but 
their efficiency is not high. It still seems difficult to prove non-trivial theorems 
by using these methods. 

In Chaps. 1 and 2 the following kinds of ordered geometries were presented: 

1. Ordered Pascalian geometry, i.e., the geometry obtained by adjoining the 
Pascalian geometry defined in Chap. 1 with the relation of order and assum
ing Hilbert's axioms of order H II. 

2. Ordered orthogonal geometry (Chap. 2). 
3. Ordered metric geometry (Chap. 2). 
4. Ordinary geometry, i.e., the geometry mentioned in Sect. 1.1 which has such 

fundamental relations as incidence, order, congruence, and parallelism given 
in Hilbert's "Grundlagen der Geometrie" and which satisfies all five groups 
of axioms H I-H V. This geometry is usually called Euclidean geometry in 
the literature. 

For the sake of simplicity, any ordered geometry mentioned above will be 
called a usual ordered geometry. In this chapter, we sometimes omit the word 
usual and simply call it an ordered geometry. 

The associated field of every ordered geometry is an ordered field. In par-
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ticular, the associated field of ordinary geometry is just the usual real number 
field. The problem of mechanical theorem proving in these geometries depends 
upon the order property of the associated field. For this purpose, in the following 
we first give a brief review of ordered fields. The reader may refer to van der 
Waerden (1930a: chap. 10, 1955: chap. 9), or Artin (1950: chap. 1 sect. 9), 
Jacobson (1974: chap. 5), or the original article by Artin and Schreier (1927) 
for details. Since the axiom of infinity holds in the considered geometries, the 
corresponding associated fields are all of characteristic 0, which we shall not 
explain further. 

Definition 1. A number field K is called an ordered field if the numbers other 
than 0 in K can be divided into two parts K+ and K-, satisfying the following 
properties: 

1. If a E K+, then -a E K-. Similarly, if a E K-, then -a E K+. 
2. If a, bE K+, then a + bE K+ and ab E K+. 

For an ordered field K, the numbers in K+ are called positive numbers and 
the numbers in K- are called negative numbers. If a - b E K+, it is denoted 
as a > b or b < a. Moreover, we denote the absolute value of a by lal which 
is 0, a or -a, depending on a = 0, a E K+ or a E K- respectively. 

From the definition one knows that in an ordered field the integers and 
rational numbers remain their usual order relation. For example, + 1 is a positive 
number and -1 is a negative number. 

Definition 2. A number field K is called a formally real number field if the 
square sum of any finitely many numbers in K is not equal to -1. 

Definition 3. A number field K is called a real closed field if K is a formally 
real number field and any algebraic extension of K, so long as it is different 
from K, is not a formally real number field. 

Definition 4. A polynomial 

over an ordered field K is said to be positive definite (or semi-positive definite) 
if for an arbitrary set of numbers al, ... ,an in K 

If - f is positive definite (or semi-positive definite), then we say that f is 
negative definite (or semi-negative definite). 

Below are some main results about ordered fields which will be used for the 
mechanization of geometry. 
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Theorem 1. It is not possible to introduce an order relation in a non-formally 
real number field so that it becomes an ordered field. On the contrary, one can 
introduce at least one order relation in an arbitrary formally real number field 
so that it becomes an ordered field. 

Theorem 2. If K is an ordered field, then there is one and only one real closed 
algebraic extension t of K, up to equivalence, so that the order in K remains in 
t, i.e., for a, b E K, if a < b (or a > b, a = b), then as elements in t, a < b 
(or a > b, a = b) still holds. 

Theorem 3. The rational number field Q has only one uniquely determined 
order so that it becomes an ordered field with the integers retaining the usual 
order; and there is one and only one real closed algebraic extension of Q, up to 
isomorphism. 

Theorem 4 (Rolle's zero theorem). Let R be a real closed field and f(x) E R[x] 
be a polynomial over R. If a, b E R are such that f(a) < 0, f(b) > 0, then 
there exists a number c between a and b such that f(c) = 0. 

As a corollary of Theorem 4, we have the following. 

Theorem 5. Let R be a real closed field. Then: 

1. An arbitrary positive number in R has exactly two square roots whose ab
solute values are equal and signs are opposite; 

2. An arbitrary polynomial equation f (x) = ° of odd degree in R has at least 
one root in R. 

For a real closed field, we have the following. 

Sturm's theorem. Let R be a real closed field, f (x) be a polynomial over R 
of degree greater than ° and f'(x) be the formal derivative of f(x). Form the 
Sturm series of f (x) 

S = {fo(x), !I (x), ... , fs(x)}, 

where the polynomials are obtained by using the division algorithm as follows: 

fo(x) = I(x), 

II (x) = f' (x), 

h(x) = ql(x)fl(x) - fo(x), degh < deg!I, 
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For any e E R with fee) i- 0, let Vee) denote the number of sign changes in 
the series 

{fo(e), fl(e), ... , fs(e)}. 

Then, when f(a) i- 0, feb) i- 0, a, b E R and a < b, the number of roots of 
f(x) = ° in the interval (a, b) is V(a) - V(b). 

Properties 1 and 2 in Theorem 5 are considered as two characteristics of 
real closed fields. In fact, in some books an ordered field satisfying Properties 1 
and 2 is also called a real closed field. Moreover, the proof of Sturm's theorem 
depends only on these two properties (cf. Jacobson 1974; and Sect. 5.2). 

Like the relation between the real number field and the complex number 
field, we have the following. 

Theorem 6. The algebraic extension R(A) obtained from a real closed field 
R by adjunction of the algebraic element A is algebraically closed. On the 
contrary, if a formally real number field R becomes an algebraically closed field 
after adjoining A to it, then R is a real closed field. 

From this theorem, we know that the roots of any equation f (x) = ° (f (x) E 

R[xD over an arbitrary real closed field R are contained in R(A). If the 
roots themselves are not in R, they appear in the form of a conjugate pair 
a±bA, where a, b E R. The symmetric functions ofthe roots can be obtained 
constructively via operations on the coefficients of f(x), which is analogous to 
the usual case. 

Now, let K be an ordered field. Then the inequality relations among numbers 
of K may be derived from the existence relations on the solvability of some 
equations, where solvability means that the equations have solutions in K (which 
we shall not further explain). For example, if a, b are numbers in K and x, y 
are variables, then 

ax2 = 1 has a solution (in K) ====} a> 0, 

ax2 =-1 .................. ====} a < 0, 

x 2 = a .................. ====} a:::: 0, 

x 2 =-a .................. ====} a ~ 0, 

abx2 = 1 .................. ====} a, b have the same sign, i.e., 
they are non-zero and both 
positive or both negative, 

abx2 = -1 .................. ====} a, b have different signs, 

ax = 1 .................. ====} a i- 0. 

If K is not only an ordered field but moreover a real closed field or an ordered 
field satisfying the Properties 1 and 2 in Theorem 5, then the implication relation 
in the above expressions can all be replaced by equivalence relation. In this case, 
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the inequality relations among numbers can be completely reduced to existence 
relations on the solvability of equations. 

Consider now an arbitrary ordered geometry as mentioned at the beginning 
of this section, with which the associated field is an ordered field K. After fixing 
a proper coordinate system, some of the fundamental relations such as incidence, 
parallelism, and perpendicularity in this geometry can be expressed as equality 
relations among the coordinates. However, in expressing the fundamental rela
tion of order, inequalities in the coordinates have to be involved. We give some 
examples according to the discussions in Sect. 3.3 as follows. 

Example 1. For three points 

lying on the same line, the order relation that point A2 lies between A I and A3 
may be expressed as 

or 

Thus, according to the discussion before, this order relation can be derived from 
the solvability of an equation: 

or 

where the solvability of an equation is meant to be in K. If K itself is a real 
closed field, then the geometric fact that A2 lies between A 1 and A3 is equivalent 
to the solvability of either of the two equations. 

If the line is represented by a parametric equation with parameter t, and Ai 
corresponds respectively to t = ti, then the order relation that A2 lies between 
A I and A3 can be expressed as an inequality relation 

and thus can be derived from or is equivalent to the solvability of the equation 

Example 2. Two points A = (ai, a2), A' = (a;, a;) lie on the same side (or 
different sides) of a line 
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This geometric relation corresponds to the fact that 

and 

have the same sign (or different signs). Hence it can be derived from the solv
ability of the equation 

or 

in K. If K is a real closed field, whether A, A'lie on the same side or different 
sides of I is equivalent to whether the former or the latter equation has a solution. 

Now consider an arbitrary theorem in the abo~e-mentioned ordered geom
etry. Let K be the geometry-associated field and K be a real closed algebraic 
extension of K. In a proper coordinate system, the hypothesis and conclusion of 
this theorem can both be expressed by some equality and/or inequality relations 
over K. If we introduce - besides all the coordinates of points - some new vari
ables, then the inequality relations can be replaced by the solvability relations 
of some polynomial equations for these new variables over t, according to the 
discussion before. Now we may divide the theorems into two classes, according 
to whether their conclusions can be expressed by equality relations or inequality 
relations. If the conclusion of a theorem does not involve the order relation and 
thus can be expressed by the usual equality relations over K while all the vari
ables appearing in the equalities are the original coordinate variables, then this 
theorem is called a theorem of equality type; otherwise, it is called a theorem 
of inequality type. For instance, in ordinary geometry the following theorem is 
one of equality type. 

Theorem 7. Construct outside of each side of a triangle an equilateral trian
gle. Then the three lines connecting, respectively, each vertex of the original 
triangle to the opposite vertex of the equilateral triangle on its opposite side are 
concurrent. 

In this theorem, the hypothesis involves the order relation, but the conclusion 
involves only the incidence relation. 

Let us come to the next theorem. 

Theorem 8. The nine-point circle of any triangle is tangent internally to the 
inscribed circle and externally to the escribed circles of the triangle. 

Since the tangency of circles involves the order relation, this theorem is one 
of inequality type. However, if we are not required to prove that the nine-point 
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circle is tangent internally to the inscribed circle and externally to the escribed 
circles, but only to prove that the circles are tangent to each other, then the 
conclusion no longer involves the order relation. If the radii of the nine-point 
circle and the inscribed or an escribed circle are denoted by Rand r respectively, 
and the distance between the center of the nine-point circle and the center of 
the inscribed or escribed circle is denoted by d, then the tangency relation of 
the two circles can be expressed by the following equality: 

Hence the theorem now is still one of equality type. 
There are too many theorems of this kind in elementary geometry to be 

mentioned one by one. Generally speaking, since the notion of angles does 
not exist or at least is indeterminate in unordered geometry and the angular 
bisectors of two intersecting lines, two in number, cannot be distinguished from 
each other, the above situation occurs often in the case that the theorem concerns 
angles and angular bisectors. 

For a theorem of equality type, after introducing some new variables the 
original hypothesis can be expressed by equality relations in the new and old 
variables over K while the conclusion may be expressed by ~quality relations 
only in the original variables with coefficients not only in K but also in the 
original unextended number field K (actually, the coefficients can all be taken 
as integers). In this case, the algebraic form of the theorem may be taken as that 
in Sect. 4.1: Deduce, from a set of polynomial relations in some variables over 
a number field, another polynomial relation in these variables (actually, some of 
the variables in the hypothesis relations) over the same number field, while the 
coefficients of these polynomials may be actually taken as integers. Therefore, 
by the method of Chap. 4 we have the following. 

Mechanization theorem 1. There is a mechanical method for proving theorems 
of equality type in an arbitrary (usual) ordered geometry. 

For theorems of inequality type, the situation is totally different. Let the vari
ables in the hypothesis of a theorem be Xl, ... , Xm. Then the conclusion of the 
theorem can be expressed as an inequality relation in the variables Xl, ... , Xm. 
After introducing a new variable, say y, whether this inequality relation holds 
is equivalent to whether an equation of the form 

g(y,XI, ... ,Xm)=O 

is solvable for y in K. This is an existence problem of the solution of an equation, 
which is essentially different from the problem of formula inference as for theo
rems of equality type, where only the inference among equalities is encountered. 
The manners of dealing with these two kinds of problems are also completely 
different. After introducing some new variables in order to reduce the hypothesis 
of a theorem of inequality type to equality relations over K and letting the new 
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and old variables altogether be Xl, ... , Xn, the problem of proving the theorem 
is reduced to an algebraic problem of the following form: 

Let K be an ordered field and 

be a set of finitely many polynomials in the variables Xl, ... ,Xn over K. Let y 
be another variable and 

g(y,Xl, ... ,Xn)=O 

be another polynomial equation over K. Find _ a mechanical method which de
termines for any numbers aI, ... ,an in K or K, satisfying the equations 

whether or not the equation 

has a solution for y in K. 
A solution to this problem is provided by the so-called Tarski's theorem. 

The proof of this theorem and the underlying method will be presented in the 
next section. From it we immediately obtain the following. 

Mechanization theorem 2. There is a mechanical method for proving theorems 
in usual ordered geometries. 

It should be stressed that neither the mechanization theorem 1 nor the mech
anization theorem 2 here contains the mechanization theorem in Chap. 4 or 
even in Chap. 3. This is because the mechanization theorems here can only 
be applied to really ordered geometries, so the associated field K must be an 
ordered field. However, the geometries to which the mechanization theorems in 
Chaps. 4 and 3 can be applied do not need to have an order relation and do not 
even have to have the possibility of introducing an order relation. This is, for 
instance, the case for orthogonal geometry, in which isotropic lines exist, or for 
complex geometry. Hence, the mechanization theorems in Chaps. 3 and 4 and 
those in this chapter do not contain each other, while for the geometries and 
theorems to which both kinds of mechanical methods can be applied (i.e., their 
overlapping part), the methods in Chaps. 3 and 4 are completely different from 
that in this chapter and the former are much more efficient than the latter. 

5.2 Tarski's theorem and Seidenberg's method 

We have mentioned in the preceding section that in a proper coordinate system 
the problem of proving theorems of inequality type in ordered geometries can 
be transformed into a purely algebraic problem, which can then be solved by 
using Tarski's theorem. However, both the original method of Tarski and its 



5.2 Tarski's theorem 221 

later simplification by Seidenberg are all rather complicated. These methods are 
not only less efficient, but the provided solution also does not well satisfy the 
requirements of geometry. In what follows we reduce this algebraic problem to 
another form and treat it by an improved version of Tarski-Seidenberg's method. 
For this purpose, let us first restate below the algebraic problem formulated at the 
end of the last section. When polynomials are mentioned, they will be assumed 
to have integer coefficients, unless indicated otherwise. The polynomial sets will 
all be assumed to consist of only a finite number of polynomials. 

Algebraic problem 1. Let K be a real closed field, 

be a finite set of polynomials and g(y, XI, ... , xn) be a polynomial in which y 
actually appears. Find a mechanical method which decides from 

Hypothesis: Ii (XI, ... ,xn ) = 0, Ji E L 

whether or not 

Conclusion: g(y,xI, ... ,xn) = 0 

has a solution in K. 

In detail, when for any ak E K, k = 1, ... , n, that satisfy the hypothesis, the 
equation g (y, a I, ... , an) = 0 has a solution for y, the corresponding geometric 
theorem is true. If there are ak' s such that the above equation has no solution, 
then the corresponding geometric theorem is not true at least in the case Xk = ak. 

As only the non-degenerate cases of a geometric theorem need to be consid
ered, we may leave out of account the degenerate cases. For in the degenerate 
cases, a theorem is either meaningless or even false. Hence the algebraic prob
lem we really need to solve does not completely agree with the problem I above. 
The problem in fact is to find a set 

!:l. = {DI, ... , Dr} 

of non-degeneracy conditions, where each Di is also a polynomial in the vari
ables XI, ... ,Xn with integer coefficients, so as to determine whether or not the 
equation g = 0 has a solution under the subsidiary conditions 

The resolution of the algebraic problem in this form is not only much easier 
than that of the problem I, but also more in accordance with the real situation 
of geometry. 

On the other hand, the above conclusion polynomial g(y, XI, ... ,xn) is not 



222 Ordered geometries 

arbitrary but is obtained from a polynomial inequality 

h(Xl, ... , Xn) > 0 or < 0 

according to the original meaning of the geometric theorem by introducing a 
new variable y, i.e., 

g = y2h =f 1, 

in which the sign is taken to be negative when h < 0, to be positive when h > O. 
We will not directly prove the theorem to hold (under some non-degeneracy 
conditions) but prove its negation to fall into fallacies, i.e., prove that the set of 
following equations and inequality 

fi (Xl, ... , Xn) = 0 (fi E I:), 

h(Xl, ... ,Xn):SO or ~O, 

has no solution in K. In other words, if we introduce a new variable z and set 

in which the sign is taken to be + or - depending on h :s 0 or ~ 0, then proving 
the original theorem to hold is equivalent to proving that the set of equations 

fi(Xl, ... ,Xn) =0 (fi E I:), 

g(z, Xl, ... , Xn) = 0, 

has no solution in K under some subsidiary conditions. 
Now according to Seidenberg, set 

As K is a real closed field, whether or not the set of equations in K has a 
solution is equivalent to whether or not F = 0 has a solution. Furthermore, by 
taking into account the geometric reality as before, we need only to consider 
the non-degenerate cases. Therefore we arrive finally at the following. 

Algebraic problem 2. Let K be a real closed field, z, Xl, ... , Xn be variables 
and 

F(z, Xl, ... , xn) 

be a polynomial. Find a mechanical method which determines a set 

of polynomials in the variables xl, ... , Xn and decides whether or not the set of 
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equation and inequations 

F(z, Xl, .•. , xn) = 0, 

Di (XI, ... ,xn ) =/:. 0 (Di E b.) 

has a solution in K in a finite number of steps. 

If it is decided that the set has no solution, then the original geometric 
theorem is true under the non-degeneracy conditions Di =/:. O. Otherwise, the 
theorem is false under the same non-degeneracy conditions. As for Di, they 
should be so restricted that every Di = 0 is not a formal consequence of F = 0 
(cf. Sect. 4.1). 

The method of Tarski-Seidenberg may be used to deal with the more gen
eral algebraic problem 1, but it is not very appropriate for theorem proving in 
geometries. If we restrict ourselves to algebraic problem 2, then the method 
can be much simplified to satisfy the requirements of geometry and to have the 
possibility for proving some really complicated theorems. Let us give a solution 
to algebraic problem 2 as follows. 

The method will make induction on the number n of variables x. For this 
purpose, we first introduce some notations. Denote simply the polynomial with 
integer coefficients of the form 

F(z, XI, ... , xn) 

by 

where 

Similarly, an n-tuple (aI, ... , an) of values in K is simply denoted by a(n) and 

means that 

In addition, let 

/j.n = {Dnl, ... , DnrJ 

be a set of non-degeneracy conditions, where Dni = Dni (Xl, ••• ,Xn) are all 
non-zero polynomials in the variables Xl, ••• ,Xn with integer coefficients and 
each Dni =/:. 0 is not a formal consequence of F = O. Simply write 
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We say that Qn has a solution if for an arbitrary n-tuple a(n) in K with 

the equation 
Fn(Z, a(n)) = 0 

has a solution for Z in K. If Z = c is a solution of the above equation, we say 
that (c, a(n)) satisfies Qn. Now we are ready to state the following. 

Theorem. There is a mechanical method which finds, for an arbitrary polyno
mial 

Fn = Fn(z, x(n)), 

a polynomial Fn-l in the variables z and x(n-l) and a finite set !:::J.n of polyno
mials Dnl, ... , Dnrn in x(n-l) such that whether or not 

has a solution depends on whether or not 

has a solution. 

By using this theorem we can immediately solve the algebraic problem 2: 
Starting from the polynomial Fn = Fn(z, x(n)), we get Fn-l and /:)"n, and from 
Fn-l, we get Fn-2 and !:::J.n-l. On the analogy of this, we finally get a polynomial 
Fo(z). Merge the successively obtained 

/:)"n, !:::J.n-l, ... , !:::J.I 

into a set !:::J. of polynomials. Then whether or not 

has a solution depends on whether or not 

Fo(z) = 0 

has a solution for z, while the latter can be determined by using Sturm's theorem. 
Therefore, when the geometry-associated field is a real closed field, there is a 
mechanical method which finds a set {Di } = /:)" of polynomials for the non
degeneracy conditions from Fn = Fn(Z, Xl, ... , xn) and determines whether or 
not Fn = 0 has a solution and thus determines whether or not the geometric 
theorem holds under the non-degeneracy conditions Dj #- O. In other words, 
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theorem proving in the corresponding geometry is mechanizable or the mecha
nization theorem of the corresponding geometry holds. 

The above theorem solves algebraic problem 2 and thus the corresponding 
geometric problem. It is especially worth pointing out that our main interest 
is in positively proving theorems rather than negating them. For the former, 
we need only to verify that the final Fo = 0 has no solution in K so that the 
original polynomial equation Fn = 0 has no solution in K, at least under some 
non-degeneracy conditions, and thus has no solution in the original geometry
associated field. Therefore, even if the geometry-associated field is not a real 
closed but an ordered field, we can take its extended real closed field and apply 
the above conclusion to get a set of non-degeneracy conditions and positively 
prove the theorem to be true under these non-degeneracy conditions, which is 
what we aim to do. As for the case in which the final equation Fo = 0 has a 
solution, we know that the theorem is false only when the solution is considered 
for a real closed field. When it is considered for a general ordered geometry
associated field we cannot conclude the falsity of the theorem yet, but this is not 
really a problem we are concerned with and thus less important to us. For our 
point of interest, the result achieved by using the above method is sufficient. 

The proof of the theorem is based on the simplified method of Seidenberg 
(cf. Seidenberg 1954, Jacobson 1974: chap. 5). We only give an outline of the 
proof and mainly explain where the proof of Seidenberg can be modified. 

Seidenberg's proof of the theorem is based principally on a geometric fact 
stated in the following. 

Seidenberg's lemma. Let the coordinates of a Descartes coordinate system be 
(x, y) and let 

c: f(x, y) = 0 

be a curve, where f is a polynomial over a real closed field K. If C has points 
in K or f = 0 has solutions in K, then among these points there is one (a, b) 
with shortest distance to the origin. Furthermore, if (a, b) is neither the origin 
nor a singular point of C, then the curve, C is tangent at this point to the circle 

which passes through the point (a, b). 

Since we also need to consider more general ordered geometries such as 
ordered Pascalian geometry, in which the concept of orthogonality and other 
metric concepts do not necessarily exist, and so-called Descartes coordinates, 
circles and distance, etc. have no meaning, we cannot directly use the proof 
of Seidenberg. However, as long as some concepts are properly modified, the 
lemma still holds and the original proof is available as well. Let us give an 
account of this modification as follows. 

Let r be a coordinate system with (x, y) as coordinates in an ordered ge
ometry. Here r is arbitrary, so there are no concepts of circles and distance, 
etc. However, some concepts may still retain their usual meaning. For example, 
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let the equation 

f(x, y) = 0 

define a curve C, where f is supposed, without loss of generality, to be a 
polynomial with integer coefficients. If a, b are both in k while f(a, b) = 0, 
we say that Pea, b) is a point on C. Set 

af 
a = ax I(a,b)' 

f3 - af - ay I(a,b) . 

If Pea, b) is a point on C with 

a = 0, f3 = 0, 

then P is called a singular point of C. If P is a point on C, not singular, then 
the equation 

a(x - a) + f3(y - b) = 0 

defines a line, called the tangent line of C at point P. These definitions are 
proper in an arbitrary coordinate system and coincide with the usual concepts. 
Although there is no concept of orthogonality in the considered geometry, we 
still say that the line 

f3(x - a) = a(y - b) 

is the "normal line" of C at point P in the coordinate system r, which is, 
however, different from the usual case. Of course, the "normal line" here is to 
be understood with respect to the coordinate system. Similarly, any equation 

(r ::::: 0) is said to define a "circle" with "radius" r and "center" at the origin 
in the coordinate system r and a point (a, b) is said to be inside the "circle," 
or on the "circle" or outside the "circle," respectively, depending on 

Furthermore, for any point Po(xo, Yo) there is a number ro greater than 0 such 
that r5 = x5 + Y5' This number ro is called the "distance" between Po and the 
center (0, 0) of the "circle." 

Let P = (a, b) be an intersection point of the curve C and the "circle" 

where 
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and r :::: 0 is the "radius" of S. Suppose P is not a singular point of C and set 

c = ba - af3, 

d = -aa - bf3. 

Then by transforming the coordinate system into a new one that has P as 
its origin and the tangent line and "normal line" of C at P as its axes Ii, I; 
respectively, with new coordinates (x', y'), we have 

x' = f3(x - a) - a(y - b), 

y' = a(x - a) + f3(y - b). 

Thus the equation of the "circle" S in the new coordinate system r ' becomes 

where 

As K is a real closed field, there is ayE K such that a2 + f32 = y2 and y :::: o. 
Hence the new equation of S is 

where r' = ry :::: O. 
We call S a "circle" with "center" (c, d) and "radius" r' :::: 0 in the new 

coordinate system r'. Similarly, we can define the notions "on circle," or "inside 
circle" or "outside circle" and "distance" between a point and the "center" etc. 

In this way, with respect to a fixed coordinate system we may still define the 
notions of circles, radius and distance etc., so that Seidenberg's lemma holds 
under the corresponding notions and his proof is also available. For the detailed 
proof, the reader may refer to Jacobson (1974: chap. 5 sect. 5). We do not repeat 
it here. 

Another place where we need to modify the proof of Tarski-Seidenberg is 
the introduction of non-degeneracy conditions. For instance, in the original proof 
the division of polynomials was often applied: Let tl, ... ,tr be parameters and 

F(t, x) = unxn + Un_IXn- 1 + ... + uo, 

G(t, x) = vrnxrn + Vrn_IXrn - 1 + ... + Vo 

be two polynomials in x with all coefficients Ui, Vi polynomials in tl, ... , t r . In 
dividing F by G, the original proof needs to proceed by distinguishing 

Vrn = 0, Vrn-I = 0, ... , Vk+1 = 0, Vk =j:. 0, 
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for all cases k = m, m - 1, ... , O. But in our modified proof, we need only to 
consider the case 

Vm =1= 0 

by taking Vm as a non-degeneracy polynomial, adjoined to the non-degeneracy 
set ~. If one of the parameters t1, ... , tn say tr , occupies a special position, we 
may consider Vm as a polynomial in tr and take the leading coefficient of tr 

as a non-degeneracy polynomial, adjoined to ~, i.e., only consider the case 

Wm =1= 0 

during the proof. In this way, the proof and method of Tarski-Seidenberg can 
be simplified a great deal. 

As the proof and method of Tarski-Seidenberg have been described in detail 
by Jacobson (1974: chap. 5 sects. 3-6), we are satisfied to only point out the 
places where the original proof needs to be modified in order to fit our require
ments and do not make a cumbersome presentation again. From the previous 
explanation of mechanical theorem proving, we can summarize the main results 
of this chapter in a theorem of the following form. 

Mechanization theorem. Theorem proving is mechanizable in all such ordered 
geometries as ordered Pascalian geometry, ordered orthogonal geometry and 
ordered metric geometry, which are subordinate to ordinary geometry and satisfy 
the Pascali an axiom for intersecting lines, and ordinary geometry itself. 

5.3 Examples for the mechanical method of ordered geometries 

The mechanical method presented in the preceding two sections for proving 
theorems in ordered geometries is not only essentially different from but also 
much more complicated than the methods in Chaps. 3 and 4 for proving theorems 
in unordered geometries. Within the capability of hand-calculation, below we 
give a few examples for this method. Some simplification is made by combining 
it with the method in Chap. 4. 

Example 1 (Pasch's axiom). As an alternative form of Pasch's axiom, let us 
consider the following proposition. 

Let the sides A B, A C, Be of /:;A B C intersect a line at three points D, E, 
F respectively. If B lies between A and D, and C between A and E, then F 
does not lie between Band C. 

To simplify the calculation, let us take a coordinate system with origin A 
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and axes A B and A C. Let the coordinates of points be 

B = (Xl, 0), C = (0, X2), 

D = (X3, 0), E = (0, X4), 

F = (xs, X6). 

From the hypothesis of the order relations, we know that there are Yl, Y2 E K 
such that 

Moreover, we have 

yfXl (Xl - X3) = -1, 

Y~X2(X2 - X4) = -l. 

Fix the order of all the variables as 

Y2 -< Yl -< Xl -< X2 -< X3 -< X4 -< Xs -< X6· 

The hypothesis relations, after being well-ordered, are 

2 2 2 1 
YlXlX3 = Ylxl + , 

2 2 2 1 
Y2 X2X4 = Y2 x 2 + , 

(XlX4 - X2X3)XS = XjX3(X4 - X2), 

(Xj X4 - X2 X3)X6 = X2X4(Xj - X3), 

provided with the non-degeneracy conditions 

and 

Yl # 0, Y2 # O. 
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The geometric meanings of these non-degeneracy conditions are obvious and 
the conditions are all naturally satisfied by the hypothesis of the theorem. Under 
these non-degeneracy conditions the conclusion of the theorem to be proved 
corresponds to 

81 == XS(XS - Xl) > 0, 

82 == X6(X6 - X2) > o. 
We prove that 82 > 0 as follows. Applying the last hypothesis relation to 

eliminate X6, we have 

Applying then the first two hypothesis relations to eliminate X3 and X4, we finally 
get 

This implies that 82 > o. 
In the last step, to prove 

(Y?X? + l)(yixi + 1) > 0, 

we can of course proceed mechanically by using the method of Tarski-Seiden
berg, but that would be very complicated. Also, the theorem can be proved 
instead by determining whether or not some equations have solutions in K. 

Example 2 (Geometric absurdity). Euclid's "Elements" is a model of books 
edited according to axiom systems in history. Nevertheless, its axiom system 
is incomplete. This fact has constantly received critiques with discussions con
centrated on the independence of the axiom of parallels. In the later nineteenth 
century, along with the upsurge of critical tides for mathematics, mathematicians 
started making a comprehensive analysis of Euclid's axiom system, no longer 
only restricted to the axiom of parallels. At that time some geometric absurdities 
appeared. The one presented below is better-known. 

Absurdity. Any triangle is an isosceles triangle. 

Proof. Let ABC be an arbitrary triangle (see Fig. 5.2). Construct a bisector of 
the angle C to intersect the perpendicular bisector of the opposite side AB at a 
point D. Construct further DE ..L A C, D F ..L B C. Then, by the congruence of 
triangles we have 

CE = CF, AE = BF. 

This implies that AC = BC. Hence any triangle ABC is an isosceles triangle. 
o 

For the above absurdity and its proof, the reader may refer to Klein (1939: 
p.202) or Kline (1972: p. 1007). The error in the proof occurs because point 
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D in the figure should be outside, not inside D.ABC. This can be proved by 
introducing the axioms of order, while the order relation was not considered in 
"Elements" at all. In detail, we have the following proposition. 

Let D be the intersection point of a bisector of angle C and the perpendicular 
bisector of the opposite side AB of D.ABC. If CD is the internal angular 
bisector, then D and C lie on different sides of line AB; if CD is the external 
angular bisector, then D and C lie on the same side of AB. 

The statement of this proposition, actually the same as that of other geo
metric theorems, is directed only to the generic cases. For example, if in the 
proposition AB = AC, then the bisector of the angle C coincides with the 
perpendicular bisector of AB so that the statement of the proposition itself be
comes meaningless. Therefore, the case AB = AC should be excluded from 
the hypothesis and be treated as a degenerate case of the proposition. For the 
occurrence and treatment of such kinds of non-degeneracy conditions, the tradi
tional Euclidean method is powerless, while our mechanical method can give a 
systematic, mechanical treatment (see the previous chapters, in particular Sects. 
3.1 and 3.2). 

As an explanation of the method of this chapter, let us prove the above 
proposition as follows. 

For the sake of simplifying calculations, we take a Descartes coordinate 
system with C as its origin and the bisector of angle C as its first axis (where 
it is not necessary to use the theorem that the two bisectors of an angle are 
perpendicular to each other). Then the point D lies on the first axis. Let the 
coordinates of points be 

Then the hypothesis of the proposition consists of 

o D is a bisector of angle C ~ XIX4 + X2X3 = 0, 

D lies on the perpendicular bisector of A B ~ 

2(X3 - Xl)XS + xr + xi - xi - xl = o. 

As to whether 0 D is the internal or the external bisector of angle C, it corre
sponds to whether A and B lie on different sides or the same side of the first 
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axis, i.e., whether X2 and X4 have different signs or the same sign, or whether 
or not the equation 

has a solution, where 

8 = {-I ( 0 D is the internal bisector of angle C), 
+ 1 (0 D is the external bisector of angle C). 

The conclusion that D and C lie on the same side or different sides of A B 
corresponds to whether or not the equation 

has a solution, where 

{ + 1 (on the same side), 
11 = -1 (on different sides). 

Hence, the proposition is equivalent to saying that under its hypothesis 

the equation has a solution for y when 11 = 8, and 
the equation has no solution for y when 11 = -8. 

Fix now the order of the variables appearing in the hypothesis as 

The hypothesis relations, after being well-ordered, are 

x5xix3 + 8Xl = 0, 

X5X2X4 - 8 = 0, 

2(X5xi + 8)XlX5 - x5xi(x? + xi - X~ - xi) = 0, 
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of which the last equation can be reduced to 

2X5xi . XIXS - (Xr + xi) (x5xi - 8) = O. 

The non-degeneracy conditions already used are 

Xo -# 0, Xl -# 0, X2 -# 0, xJxi + 8 -# o. 

The equation corresponding to the conclusion is 

g == ih - 1] = 0, 

in which 
h = (X2XS - X4XS + XIX4 - X2X3)(XIX4 - X2X3). 

Reducing h and g by the hypothesis polynomials, we have 

As X2 -# 0 and Xo -# 0, under the above non-degeneracy conditions g = 0 is 
equivalent to the equation 

where the expression inside the brackets is positive definite under the non
degeneracy conditions 

Hence under these conditions, the equation has a solution when 8 and 1] have 
the same sign, and it has no solution when 8 and 1] have different signs. This is 
what we wanted to prove. 

The geometric meanings of the non-degeneracy conditions can be easily 
understood. The condition xJxi ± 8 -# 0 means that X3 -# Xl when 8 = -1 and 
X3 -# -Xl when 8 = +1. In any case, this condition means that AC -# BC. As 
we said at the beginning of this example, it is worth repeating that these non
degeneracy conditions occur naturally during the process of mechanical proving 
and need not be pre-considered. 

In the above two examples, we did not completely follow the mechanical 
method of Tarski-Seidenberg, but used a simplified one. In detail, let the set of 
hypothesis polynomials be denoted by {Ii} and the conclusion polynomial by g. 
We did not first form F = L f? + g2 and then repeatedly apply Seidenberg's 
lemma and theorem. Instead, we have used the method of Chap. 4 by first well
ordering {Ii} to get a basic set <1>: AI, A2, ... , An, then reducing the polynomial 
g by <I> (where the existence of solutions of g = 0 needs to be determined) so as 
to successively eliminate the variables Xn, Xn-I, ... ,Xl and to get the remainder 
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polynomials gn-I, ... , go (where gn = g, gi E K[UI, ... , Ue, Xl, ... , xi-Il and 
Ui are parameters other than the x's), and finally determining whether or not the 
last polynomial equation go = 0 has a solution. All non-degeneracy conditions 
automatically occur during the process of well-ordering and reduction. This 
method is feasible because in the above two examples the degree of gi in Xi 
is 1 so that under the corresponding non-degeneracy conditions the question of 
whether or not gi+1 = 0 has a solution is equivalent to whether or not gi = 0 has 
a solution. This situation is similar to the case of applying Hilbert's mechanical 
method to prove the class of (linear) PIP theorems in Chap. 3. If some gi = 0 
has degree in Xi greater than 1, this method, of course, cannot be applied. 

In the above two examples, the problem is reduced to finally determining 
whether a polynomial g is positive definite or semi-positive definite. In fact, the 
mechanization problem of ordered geometries can be reduced to the problem of 
determining under the hypothesis conditions 

II = 0, ... , In = 0, 

how to adjoin subsidiary conditions 

so that a polynomial g becomes positive definite or semi-positive definite. If 
there is no hypothesis condition and g is known to be positive definite or semi
positive definite, then by the 17th of Hilbert's 23 famous problems, g can be 
represented as the square sum of some rational functions. This problem was 
positively solved by Artin (1927) and extended to the general case of having 
hypothesis conditions It = 0, ... , In = 0 by A. Robinson (1955, 1956). As 
pointed out by Artin (1927), his proof is indirect and cannot lead to an explicit 
representation of the square sum decomposition. So it is necessary to have a 
more complete proof. Such a constructive proof was later given by Kreisel 
(1958). But for us, the more important problem is the pre-problem of finding 
an efficient method for determining whether or not a polynomial is positive. 
Although this method has been provided by Tarski-Seidenberg, a problem that 
still remains to be solved is how to find more efficient methods. 



6 Mechanization theorems 
of various geometries 

6.1 Introduction 

We introduced the concept of geometry from the viewpoint ofaxiomatization 
in Sect. 2.6 and the concepts of mechanical methods and mechanizability of 
theorem proving in geometry in Sect. 3.3. Furthermore, in Chaps. 3-5 we showed 
the mechanizability and presented the corresponding mechanical methods for 
some geometries or some classes of theorems. From the axiomatization to the 
mechanization, we have roughly gone through such a path as 

Axiomatization -----,)- Algebraization -----,)- Coordinatization -----,)- Mechanization. 

For the mechanization problem after having established the coordinate system, 
the previous three chapters provided three different manners which may be clas
sified into three different types of mechanization problems in algebraic form and 
correspondingly three mechanical methods for their solutions were given. How
ever, to establish the coordinate system, one first has to pass through a rather 
lengthy and tedious process which starts from the axiom system via algebraiza
tion and ends up with the number system. The steps in this way are often not 
as simple as usually imagined. 

The geometries considered in the previous chapters are actually all subor
dinate to ordinary geometry, so the process of algebraization may have the aid 
of the familiar proof methods of ordinary geometry and analytic geometry. For 
other geometries which are not subordinate to ordinary geometry, we need to 
proceed to algebraization and coordinatization according to the special forms 
of the geometric axioms. We give in this chapter a few such examples - pro
jective geometry and two non-Euclidean geometries. In these geometries, after 
algebraization and coordinatization the theorems can also be formulated into 
the algebraic form as in the previous three chapters. Therefore, the conclusion 
that theorem proving is mechanizable drawn from methods in the previous three 
chapters is also valid for all these theorems, see the mechanization theorems for 
these geometries in Sects. 6.2-6.5. 

For the sake of simplicity, we restrict these geometries to the planar case, so 
their fundamental objects are points and lines. But as pointed out in the general 
definition in Sect. 2.6, we may also consider geometries with other elements 
as their fundamental objects, for instance, Mobiusian geometry with points and 
circles as its fundamental objects and Laguerrean geometry with points and 
oriented circles as its fundamental objects - two circle geometries one often 
encounters. For these two geometries, we may get the corresponding mecha-
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nization theorems by following the general approach, i.e., proceeding from the 
axioms through algebraization and coordinatization, and by using the methods 
of the previous three chapters. As a full presentation is too long (on this topic 
the author is going to write a technical article later on), we only give a short 
introduction in Sect. 6.5. For many other axiomatizable geometries not included 
in this book the mechanization problem may be considered in the same way. 

The last section of this chapter will consider the mechanization problem of 
proving formulas involving transcendental functions. From this section one will 
see that, as for theorem proving in geometry, the way of using transcendental 
functions, which is popularized in geometry books and periodicals, may be 
avoided or, in other words, is mechanizable, too. 

6.2 The mechanization of theorem proving in projective geometry 

Projective geometry in what follows is restricted to plane projective geometry. 
In the higher dimensional case the situation is basically the same. The places 
where there are differences will be pointed out if necessary. 

As it is restricted to the planar case, the fundamental objects in this geometry 
consist of two kinds: points and lines, and the fundamental relation consists of 
only one kind: points lying on lines or lines passing through points. Below are 
the axioms which the fundamental relation satisfies. 

Axioms of incidence P 
Pt. There is one and only one line passing through two distinct points. 
P2• Two arbitrary lines have one and only one intersection point. 
P 3. There are at least three distinct points on an arbitrary line. 
P 4. There are at least three distinct points which do not lie on the same line. 

From PI-P4 one knows that there are at least three distinct lines passing 
through an arbitrary point. Moreover, the axioms PI-P4 are not completely 
independent of each other, but this is not important for this book. 

In order to exclude the case in which there is only a finite number of points, 
i.e., the case of finite geometry, we introduce the following axiom. 

Axiom of infinity I. Take three distinct points 00, 01, and 0 00 on a line I, 
a point Qoo not on I and a line m passing through point Qoo but distinct from 
QooOoo = 100 and I. Extend QooOo and QooOI to meet m at points Po and 
P1 respectively. Connect P1 and 01 Po 1\ 100 = Roo to meet I at point 02, 
extend Q 00 02 to meet m at point P2, and construct the intersection point 03 
of P2Roo and I. In this way, we can construct 0 4 , 05, .... Similarly, connect 
Po and 00P1 1\ 100 = Soo to meet I at point 0-1, and 0-1 and Qoo to meet m 
at point P -1. Extend P -I SOO to meet I at point 0-2. In this way, we can get 
0-3, 0-4, .... Then the points in the obtained series 

... , O-n, ... , 0-1, 00, 01, 02, ... , On, ... 

are distinct from each other (see Fig. 6.1). 
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Furthermore, we introduce the following axioms (cf. Fig. 6.2). 

Desargues' axiom D1• Let !:'ABC and LA' B'C' be two triangles, where A, 
B, C do not lie on the same line and neither do A', B', C'. Let the lines AB 
and A' B'; AC and A'C'; and BC and B'C' respectively be distinct from each 
other, and the three intersection points 

P = AB 1\ A'B', Q = AC 1\ A'C', R = BC 1\ B'C' 

be collinear. Then, when A, A' are distinct, and so are B, B' and C, C', the 
three lines AA', BB' and CC' are concurrent. 

Desargues' axiom D2• Let !:'ABC and !:'A' B'C' be two triangles, where A, 
B, C respectively are distinct from A', B', C' and the lines AA', BB', CC' are 
pairwise distinct and concurrent at o. Then, when the lines A B, A' B' are dis
tinct, and so are AC, A'C' and BC, B'C', the three intersection points 

P = AB 1\ A' B', Q = AC 1\ A'C', R = BC 1\ B'C' 

are collinear. 

As we know, Desargues' axioms can be proved as theorems in space pro-
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Fig. 6.3 

jective geometry. But here the geometry is restricted to the planar case, they 
cannot be derived from the axioms of incidence and the axiom of infinity, and 
thus have to be introduced as independent axioms. The statement of Desargues' 
axioms above is much more complicated than that in a usual book on projective 
geometry. The reason, as pointed out in Sect. 3.1, is that without adding some 
non-degeneracy conditions the axioms may become meaningless and even fall 
into fallacies. For example, in Desargues' axiom Dl, if the three points A, B, C 
lie on the same line, even though the other non-degeneracy conditions are all 
satisfied and the three points 

P = AB /\ A'B', Q = AC /\ A'C', R = BC /\ B'C' 

are collinear (on the line determined by A, B, C), the three lines AA', B B', C C' 
are not necessarily concurrent (see Fig. 6.3). 

It is very important to repeat this point, and the occurrence of similar cases 
is rather widespread, not limited to projective geometry. So we restate the view 
expressed in Sect. 3.1 as follows: 

Even though every geometry may have a rigorous and non-contradictory 
axiom system as the starting point of all reasoning and proving, using the tradi
tional Euclidean method it is impossible to logically reach the necessary rigor, 
at least in practice, as the method cannot deal with various degenerate cases. 

Under the assumption of the axioms of incidence P, the axiom of infinity I 
and Desargues' axioms D, it is possible to introduce a number system associated 
intrinsically with the geometry as follows. 

First, take three distinct points, denoted by 00, 01, 0 00 , on an arbitrary line 1 
and regard a point A distinct from 0 00 as a number, denoted by the correspond
ing low case a, with A *+ a inducing a one-to-one correspondence. All such 
numbers constitute a set N = N(Oo, 01, 0 (0), Now we introduce the operations 
of addition and multiplication among elements of N in the following way. 

1. Addition. See Fig. 6.4. Let A, B be two points distinct from 0 00 on 1 and 
be regarded respectively as two numbers a and b. We define a + b and the 
corresponding point C on 1 as follows. 

Suppose first that A, B are distinct from each other and distinct from 00. 
Draw two lines distinct from 1 through A and B and let their intersection point 
be P. Draw a line distinct from I through 00 and not passing through P, 
meeting the two previous lines at points A', B' respectively. Extend OooB' to 
intersect AA' at point M and OooA to intersect B B' at point N. Since both M 
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and N are distinct from P, they are distinct from each other, so we can extend 
M N to meet I at a point C. Obviously C is distinct from 0 00 and, by applying 
Desargues' axioms, one can prove that C is independent of the choice of all 
lines in the construction. Hence C corresponds to a unique number in N, defined 
to be the sum of the two numbers a and b and denoted as a + b: C +* a + b. 

When A and B are the same but distinct from 00 (see Fig. 6.5), we can 
still define C +* a + b according to the construction above, so long as a slight 
modification is made. When A and 00 are the same, the above construction is 
impossible. But in this case we can directly define C to be B or a + b = b. 
Similarly, when Band 00 are the same, we directly define C to be A or 
a +b = a. 

In any case we have defined an addition in N = N(Oo, OJ, 0 00), 

2. Multiplication. Let A, B be distinct from 0 00 with A +* a, B +* b as 
before. As in Fig. 6.6, suppose first that A, B are distinct from each other and 
distinct from 00, OJ. Draw two lines distinct from I through A, B respectively, 
meeting at point P. Draw another line distinct from I passing through 00 but 
not through P, meeting the two lines previously drawn at points Land K 
respectively. Extend OjL to meet BP at point M, OooM to meet AP at point 
Nand K N to meet I at point C. Then C is distinct from 0 00 and by applying 
Desargues' axioms one can prove that C is independent of the choice of the 
lines drawn through A, B, 00. The number corresponding to C in N is defined 
to be the product of a and b, denoted as ab, i.e., C +* abo 

When A, B are the same but distinct from 00, OJ, 0 00 , we can still define 
C according to the above construction, as long as a slight modification is made 
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as well. In other cases, the above construction is impossible, but we can directly 
define ab as follows: C = 00 or ab = 0 when A = 00 or B = 00; C = B or 
ab = b when A = 01; C = A or ab = a when B = 01. 

In any case the multiplication of a and b is well-defined. 

The first and also the crucial step of the algebraization of projective geometry 
is the following. 

Theorem 1. After fixing three distinct points 00, 01, 0 00 on an arbitrary line I, 
the points distinct from 0 00 on I correspond one-to-one to numbers in the 
number system N = N(Oo, 01, 0 00 ), in particular 00 corresponds to 0 and 
01 to 1. Under the addition and multiplication defined above, N constitutes a 
Desarguesian number system, i.e., a number sfield, satisfying the axioms N I
N 12 in Sect. 1.4. Moreover, when taking three distinct points Ob, 0;, O~ on 
another line l' and establishing a one-to-one correspondence between points 
distinct from O~ on l' and numbers in the Desarguesian number system N ' = 
N'(Ob, 0;, O~) in the same way, there is an isomorphism F: N ~ N' such 
that under F, the numbers 0, 1 in N correspond to 0, 1 in N'. 

The number sfield N uniquely determined up to isomorphism in the theorem 
is called a geometry-associated number sfield. 

The proof of the propriety of the definitions of a +b and ab and many asser
tions involved in Theorem 1 requires repeated use of Desargues' axioms. Such 
a method of introducing number sfield in geometry originates from V. Staudt. 
If one line in the plane is taken as the infinite line and 0 00 is on this infinite 
line, then we get a Desarguesian plane and the corresponding Desarguesian num
ber system. Actually, Hilbert's method of introducing a Desarguesian number 
system in Chap. 1 is obtained from the method of V. Staudt. 

The geometry-associated number system N introduced in Theorem 1 is a 
number sfield, in which the commutative law of mUltiplication generally does 
not hold. Now we introduce the following 

Pappus' axiom. Let A, B, C and A', B', C' be two sets of points on two distinct 
lines 1 and l' respectively, which are distinct from each other and distinct from 
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the intersection point of I and I'. Then the three points 

P = BC' 1\ B'C, Q = CA' 1\ C'A, R = AB' 1\ A'B 

are collinear. 

The significance of this axiom for the foundation of the geometry is the 
following theorem which was first proposed by V. Staudt. 

Theorem 2. Whether or not Pappus' axiom holds is equivalent to whether or 
not the commutative law of multiplication for the number sfield N holds. In 
other words, Pappus' axiom provides a necessary and sufficient condition for N 
to become a number field. 

We call a geometry, which takes points and lines as its fundamental objects, 
the incidence relation as its fundamental relation and satisfies the following 
axioms, an unordered projective geometry: 

1. Axioms of incidence PI-P4; 
2. Axiom of infinity I; 
3. Pappus' axiom. 

By the well-known Hessenberg theorem, Desargues' axioms can be derived 
from axioms PI, P2, and P3 and can thus be considered as theorems in this 
geometry. 

Pappus' axiom also provides a condition for the so-called fundamental the
orem of projective geometry to hold, and under the assumption of other axioms 
both are equivalent to each other. Assume that Pappus' axiom holds and thus 
the fundamental theorem of projective geometry holds. Let two lines I and I' 
and three pairwise distinct points 00, 0), 0 00 on I and Ob, 0;, O~ on I' be 
given and map the points on I to the points on I' such that 00, 0), 0 00 corre
spond to Ob, 0;, O~ respectively, by a variety of perspective transformations. 
Then the correspondence between points on I and points on I' can be uniquely 
determined. From this it follows that the isomorphism 

in Theorem 1 can be taken as a canonical one realized by a variety of per
spective transformations, not depending on the choice of these transformations. 
Therefore, all number sfields N(Oo, 0), 0 00 ) (which are also number fields in 
this case) can be identified as a single one. Denoting it by N as before, N not 
only is isomorphic to an arbitrary N (00, 0), 0 00 ), but also is uniquely deter
mined. In addition, the concept of cross ratio may be introduced as a number 
in N in the usual manner. 

The above assertions hold only under the assumption of Pappus' axiom, i.e., 
in unordered projective geometry as defined above. In the "affine" case where 
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the situation is somewhat different, the so-called Pascalian axiom for intersecting 
lines corresponding to Pappus' axiom is not necessary (see Sect. 1.6). 

We introduce a coordinate system in unordered projective geometry as fol
lows. 

As in Fig. 6.7, take four points AI, A2, A3, I in the plane, of which any 
three are not collinear. Let 

determine the number systems 

on the lines A2A3, A3AI, AIA2 respectively. 
These number systems are all number fields and determine isomorphisms 

with each other. Denote the geometry-associated number field by N; then there 
are canonical isomorphisms 

Fi : N~ Ni , i = 1,2,3. 

We identify the numbers in Ni to those in N under these canonical isomorphisms 
and do not distinguish them in notation. 

We say that A I A2A3 is a coordinate tripoint, I is a unit point and (A I A2A3 I) 
constitutes a coordinate system. 

For an X that is not on any of A2A3, A3AI and AIA2, set 

Then XI, X2, X3 correspond to numbers 

in NI, N2, N3 or N. It can be proved that 
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In general, this relation does not hold for points on AIA2, A2A3 and A3AI. For 
this reason we rewrite the x' s as 

_ X3 
XI =-, 

X2 

_ X2 
X3 =-, 

XI 

where (XI, X2, X3) are uniquely determined, up to a non-zero factor. We call 
(XI, X2, X3) the homogeneous coordinates of X with respect to the coordinate 
system (AIA2A3/) and write 

If X = X I lies on A2A3 but it is neither A2 nor A3 and X I corresponds to XI 
in NI or N, then the homogeneous coordinates of XI are uniquely determined, 
up to a non-zero factor, as (0, 1, XI), i.e., 

For points which lie on A3AI or AIA2 but are distinct from AI, A2, A3, it is 
similar. The homogeneous coordinates of A I, A2, A3 are given as 

Al = (l : 0 : 0), A2 = (0: 1 : 0), A3 = (0: 0 : 1) 

respectively. 
In the coordinate system (AIA2A3/), any point P = (XI: X2 : X3) on a 

line I satisfies the homogeneous linear equation 

where Ul,U2,U3 are not all 0, determined up to a non-zero factor. The triple 
(Ul, U2, U3) of numbers is called the homogeneous coordinates of the line I in 
the coordinate system (AIA2A3/), which we denote as 

Therefore a necessary and sufficient condition for a point P = (Xl : X2 : X3) 
and a line I = (Ul : U2 : U3) to be incident is given by the above homogeneous 
equation. 

Since in unordered projective geometry the fundamental objects consist of 
points and lines and the incidence relation between points and lines is the only 
fundamental relation, and since this relation can be expressed, after fixing a 
certain coordinate system and representing points and lines by homogeneous 
coordinates, as a polynomial relation 
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in the number field, according to the general principle indicated in Sect. 6.1 we 
have the following. 

Mechanization theorem 1. There is a mechanical method for proving theorems 
in unordered projective geometry. 

The following two theorems are not very relevant to the mechanization 
problem of this section, but they will be used in the proof of other mechanization 
theorems, see Sects. 6.4 and 6.5. We first introduce some notions. 

Suppose there is a one-to-one correspondence T which maps the set of 
points and lines in the plane of an unordered projective geometry to itself. If T 
transforms points to points, lines to lines and preserves the incidence relation 
(i.e., if a point P lies on a line 1 then the point T(P) lies on the line T(l)), then 
T is called a collineatory transformation. If T transforms points to lines, lines 
to points and preserves the incidence relation (i.e., if a point P lies on a line 1 
then the point T(l) lies on the line T(P», then T is called an inverse morphism 
transformation. 

Theorem 3. In a coordinate system (AIA2A3/), for every collineatory trans
formation T there are numbers aij, i, j = 1, 2, 3 in N and an automorphism J 
of N such that laij I =1= 0 and, if T transforms the point P = (Xl: X2 : X3) to the 
point pi = (xi : X~ : X~), we have p =1= 0 and 

3 
px; = 'LaijJ(Xj), i = 1,2,3. 

j=l 

Theorem 4. As above, for any inverse morphism transformation T there are 
aij and J such that laij I =1= 0 and, if T transforms the point P = (Xl : X2 : X3) 
to the line 1 = (UI : U2 : U3), we have p =1= 0 and 

3 
PUi = 'LaijJ(Xj), i = 1,2,3. 

j=l 

Up to now we have not yet introduced any concept of order in the dis
cussed projective geometry, so the geometry-associated number field may be an 
arbitrary unordered number field such as the complex number field. When con
sidering the relation of order, we certainly cannot take the relation that one of 
three points lies between the two others as a fundamental relation as in ordinary 
geometry. Instead, we take the relation of separation among four points. In other 
words, for any four points A, B, C, D we introduce the relation that A, C are 
separated by B, D (without definition) as a fundamental relation, denoted as 

ACjBD. 

The following axioms are taken as those satisfied by this fundamental relation. 
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Axioms of separation S 
S1' If A B I CD, then the points A, B, C, D are pairwise distinct and lie on the 
same line. 
S2' If ABICD, then CDIAB and BAICD. 
S3' If AB lCD, then AC I B D does not hold. 
S4' If four points A, B, C, D are pairwise distinct and lie on the same line, then 
one of the three cases AB lCD, AC I B D and AD I BC holds. 
S5' If three points A, B, C are pairwise distinct and lie on the same line, then 
there is a point D such that A B I CD. 
S6' For five points A, B, C, D, E, pairwise distinct and on the same line, if 
ABIDE, then either ABICD or ABICE holds. 
S7 (Perspective axiom). Let A, B, C, D and A', B', C' , D' be two sets of points 
lying respectively on two lines I and I' with I =1= I'. Let 0 be a point such that 
0, A, A'lie on the same line and so do 0, B, B'; 0, C, C' and 0, D, D'. Then 
A'B'IC'D' holds if ABICD, where the case of A = A' does not have to be 
excluded. 

An unordered projective geometry that satisfies the axioms of separation 
SI-S7 is called an ordered projective geometry. 

For an ordered projective geometry, let us take three distinct points 00, 01, 
0 00 on a line I to form a number field N = N(Oo, 01, 0 (0). For any point 
A distinct from 0 00 on I, if AOI/OoOoo, then the corresponding number a of 
A is said to be negative, denoted as a < o. If a point B is distinct from 0 00 

and 00 and the corresponding number b is not less than 0, then b is said to be 
positive, denoted as b > O. From the perspective axiom S7, one knows that the 
positiveness and negativeness of numbers in N are independent of the choice 
of line I and the points 00, 01, 0 00 , so that one may define positiveness and 
negativeness of numbers in the geometry-associated number field N. 

Using the usual method one may define the relation of order among numbers 
in the geometry-associated number field N and prove that this relation satisfies 
the axioms N 1-N 17 in Sect. 1.4, so that N becomes an ordered number field. 

In a projective coordinate system (AIA2A3/), the relation of separation 
among four points on a line can clearly be expressed by some linear inequalities 
in their coordinates. Therefore, according to the general principle of Sect. 6.1 
we have the following. 

Mechanization theorem 2. There is a mechanical method for proving theorems 
in ordered projective geometry. 

Note that the two mechanization theorems in this section are independent 
of each other. This is because, on the one hand, ordered projective geometry is 
only a special case of unordered projective geometry and, on the other hand, the 
content of theorems in the former is richer than that in the latter. Hence, there 
is no subordinate relation between these two mechanization theorems and none 
can be inferred from the other. Also, the mechanical methods for them are quite 
different. This also holds for similar cases in later sections. 
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6.3 The mechanization of theorem proving in Bolyai-Lobachevsky's 
hyperbolic non-Euclidean geometry 

The axiom of parallels in Euclid's "Elements" says that, through a point not on 
a given line there is one and only one line parallel to the given line (i.e., they 
never intersect). 

The long-term dispute about whether or not this axiom is independent of the 
others in Euclid's whole axiom system led to the discovery of non-Euclidean 
geometries in the 19th century, to a completely logical analysis and investigation 
of the axiom system of ordinary geometry, and finally to the birth of Hilbert's 
book "Grundlagen der Geometrie." 

In Sect. 1.1, we recalled the axiom system of Hilbert about ordinary geome
try, in which the sharper axiom of parallels H IV is Euclid's axiom of parallels 
mentioned above. If we appropriately modify this and the axioms of incidence 
but preserve all the others, we may get two usual non-Euclidean geometries, 
i.e., 

Balyai-Lobachevsky's hyperbolic non-Euclidean geometry, and 
Riemann's elliptic non-Euclidean geometry. 

These two non-Euclidean geometries will be called BL geometry and R ge
ometry in what follows, of which the former has been more extensively studied. 
This section focuses on the problem of how to realize the mechanization of BL 

geometry from axiomatization. 
For usual BL geometry, we only modify the axiom of parallels. As the axioms 

of incidence H I and the axioms of order H II are assumed, we can define the 
concepts of segments, half-lines, angles and the interior of angles, etc. The 
substitution axiom for H IV in this geometry is the following: 

Axiom H IVBL. For any given line b and a point A not on b, there always 
exist two half-lines aI, a2 emanating from A which neither form one and the 
same line nor intersect line b, while any half-line emanating from A that lies in 
the interior of the angle formed by aI, a2 does intersect line b. 

In this axiom, the lines determined by the two half-lines aI, a2 are usually 
called two parallel lines of b passing through A. More precisely, let a half-line 
emanating from A that lies in the interior of the angle formed by aI, a2 intersect 

A 

~ ------------------~\--------~ 
b B \ Fig. 6.8 
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b at a point B, and let B divide b into two half-lines bl and b2 with bl, al lying 
on one side and b2, a2 on the other side of the line AB. Then we say that the 
half-line al is parallel to b l and a2 is parallel to b2. 

We may take the axioms of incidence H I and the new axiom of parallels 
H IVBL as the basis and adjoin other axioms to it to establish various kinds 
of geometries (as in Chaps. 1 and 2) so as to explore the dependence relations 
among axioms. Leaving aside the significance of that attempt, it at least does not 
agree with the gist of this book - to provide mechanical methods for theorem 
proving by algebraization and coordinatization starting from axioms. 

The representative book in this respect is the one by Hilbert. After the 
appearance of "Grundlagen der Geometrie" in 1899, Hilbert published an article 
entitled "A New Development of Bolyai-Lobachevskian Geometry" (see Hilbert 
1903) and included it as one of the appendices in later editions of "Grundlagen 
der Geometrie." In this article, Hilbert described a method for the establishment 
of this non-Euclidean geometry starting from the axioms HI, H II, H III, and 
H IVBL. In comparison with a number of other publications about non-Euclidean 
geometry around that time, this article has the following two characteristics: 

1. Hilbert clearly pointed out at the end of his article that the establishment of 
BL geometry and the derivation of many famous formulas in this geometry 
do not need the axioms of continuity but only the axioms H I-H IV. Here 
the axiom H IV is taken to be the axiom H IVBL above. 

2. Hilbert introduced an algorithm called end (Enden) by which he set up 
the coordinate system and proved that points can be expressed as linear 
equations. From that he could conclude that the establishment of BL geometry 
does not have to use the axioms of continuity. 

As we pointed out in Chaps. I and 2 for the mechanization problem of 
ordinary geometry, since the assumption of continuity is not necessary, the 
possibility for the mechanization of BL geometry is guaranteed in theory. The 
second point above actually indicates a way of mechanization via algebraization 
and coordinatization from axiomatization. 

The article by Hilbert is brief. Afterwards Gerretsen (1942a, b), Szasz (1958; 
1959a, b) and Szmielew (1959, 1961) elaborated further on the basis of this 
article. In what follows we give a brief introduction by following the works of 
Hilbert and Szasz and show the reason for BL geometry to be mechanizable. 

We say that every half-line determines an end and all parallel half-lines 
determine the same end. Ends are denoted by letters from the Greek alphabet. 
Denote the half-line emanating from A with end a by Aa or (A, a). Each line 
has exactly two ends, say a and {3; this line is also called the connecting line 
of a and {3, denoted by a{3 or {3a and sometimes by (a, (3) or ({3, a). 

By the axioms H I-H IV in which H IV means H IVBL, one may prove that 
for any two half-lines, with a and {3 as their ends, there must be a line which 
has a, {3 as its two ends. Similarly, for any point A there is a half-line Aa. One 
may also prove that two lines which are neither parallel nor intersecting must 
have a common perpendicular and the relevant propositions of the concept of 
reflection etc. (which we will not list here). 
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We take an arbitrary point 0 as the origin and two half-lines emanating 
from 0, perpendicular to each other, as the axes in the plane of BL geometry to 
form a coordinate system, called a Hilbert coordinate system. Denote the ends 

+ 
of these two half-lines by 00 and 1 and the ends of the two half-lines which 

+ 
have an opposite direction to 000 and 01 by Band 1 respectively. 

Now we introduce the notions of positiveness and negativeness and define 
addition and multiplication for ends other than 00 in the plane as follows. 

1. Positiveness and negativeness of ends 
+ 

For ends a i- 00 and B, draw the line aoo. If this line and the half-line Ollie 
on the same side of the line Boo, ex is said to be positive, which we denote as 
ex > 0; otherwise ex is said to be negative, which we denote as ex < o. 

2. Addition of ends 
Let ex and fJ be two ends. Draw the lines aoo and fJoo, the symmetric point 
Oa of 0 with respect to aoo and the symmetric point Op of 0 with respect 
to fJoo. Draw the perpendicular bisector of OaOp. One may prove that one 
end of this perpendicular bisector is 00 (this is equivalent to the theorem that 
the three perpendicular bisectors on the three sides of lJ. 0 0 a 0 p are concurrent 
at (0), so that the other is defined to be a + fJ. 

3. Multiplication of ends 
+- +- + + 

Let aa and fJfJ be two lines perpendicular to Boo, where a and fJ lie on the 
+ -

same side of line Boo as 1 does, and a and fJ on the same side of line Boo as 
- + + - -
1 does. Therefore, according to 1 above we have a, fJ > 0 and a, fJ < O. Let 

~a, ~{J intersect Boo at points A, B respectively. Now take a point C on Boo 
such that the segments I B CI and lOA I are congruent and the direction from B 
to C is the same as that from 0 to A. Erect a perpendicular to Boo at C (which 
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+-
is 11 itself in case C = 0). Let us denote its two ends by t and y; ct and 

+ -
Ollie on one and the same side of e 00 while C y and Ollie on the other side 

of eoo, i.e., t > 0 and y < O. Then, we define the multiplication as follows: 

In particular, we have 

Moreover, we define 

++ + 
af3 = y, 

-- + 
af3 = y, 

+- -
af3 = y, 

-+ -
af3 = y. 

-+ - -- + 
la = a, la = a, 

++ + +- -
la = a, la = a. 

+ + - -
ae = ea = ae = ea = e, 

+ + a = -a, a = -a. 

Hilbert proved the following: 

Theorem 1. Introduce a Hilbert coordinate system and define the positiveness, 
negativeness, addition, and multiplication for ends other than 00 in the BL non
Euclidean plane as above. Then the ends other than 00 constitute an ordered 
number field, i.e., a Desarguesian number system with multiplication commu-
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tative that has an order relation and satisfies the axioms N I-N 17 of number 
+ -

systems in Sect. 1.4. In this number field, the ends B, 1, 1 play the role of 
0, + 1, -1 and are simply denoted as 

+ 
B = 0, 1 = + 1, 1 = -1. 

The number field in the theorem is called an associated number field with 
hyperbolic non-Euclidean geometry. 

In Schur (1904) there are good geometric explanations of Hilbert's method 
of introducing the addition and multiplication of ends: afJ = y if and only if 
on the infinite line where all ends lie, the following two series of points form a 
projective correspondence: 

-
(ooOlfJ) 1\ (ooOay). 

To introduce the coordinates of points, let us first explain some notations as 
follows. 

As in Fig. 6.12, we introduce the addition of oriented segments starting 
from 0 on an arbitrary line, say the axis Boo, according to the axioms of 
congruence. For any point A on Boo, we denote the oriented segment from 

o to A by IOAI. Then for two arbitrary points A, B on Boo, the sum of the 
~ ~ ~ 

oriented segments lOA I and lOB I is still an oriented segment I 0 C I, where C 
~ 

also lies on Boo. Now, for an arbitrary oriented segment t = IOAI on Boo, draw 
+ 

a half-line from A, perpendicular to Boo and on the same side of 01. Let us 
denote its end by At. Then it is easy to see 

9 
A' --t 0 

1 

+ 
1 

S 

A B C 

~ 
t 

'---v----' 
sH Fig. 6.12 
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AD = 1, At > 0, 

At· A-t = 1, 

See Fig. 6.13. It is easy to prove that A induces a one-to-one correspondence 
--+ 

between positive ends and oriented segments t = lOA I or their end points A on 
eoo. Let a be an arbitrary positive end. Construct the connecting line Oa and 

the symmetric half-line Oa of Oa with respect to eoo; then its end is a = -a. 

Construct the connecting line aa according to Hilbert (1903), let it meet eoo 
--+ -

at a point A and set 10AI = t. Then, obviously aa is perpendicular to eoo, so 
a = At. 

--+ 
If another positive end f3 corresponds to s = lOB I in the above way, then 

it is easy to know from the axioms of order that f3 > a or f3 < a, depending on 
whether or not the direction from A to B is the same as that of eoo. It follows 
that the correspondence a ~ A or At ~ t is one-to-one. 

Now introduce the following ends (according to the operations of ends): 

Yt = 1(At + A_t), 

at = 1(Af - A-f), 

Then among these ends the following relations hold: 
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If the considered geometry moreover satisfies the axioms of continuity (in
cluding Archimedes' axiom and the axiom of completeness), i.e., the case of 
the usual BL non-Euclidean geometry, then we may consider the oriented seg
ment t as a real number representing its length. Thus At, Yt, (Jt, it respectively 
will be the exponential function exp and the hyperbolic trigonometric functions 
cosh, sinh, tanh of t. However, we do not assume any axiom of continuity. As 
At, Yt, etc. are introduced according to the operations of ends, they do not in
volve any concept of transcendental functions. The entire proof and calculation 
are not beyond the scope of finiteness and rationality. For this point the reader 
may refer to Sect. 6.6. 

See Fig. 6.14. For an arbitrary point P in the plane, construct a half-line 
Poo and let the end of the line determined by Poo which is opposite to 00 

be a. Moreover, construct the end fJ = a/2, the line fJoo and the symmetric 
point P' of P with respect to fJoo. Then P' lies on the axis Boo, so we may 
suppose that 

IOP'1 =t 

is an oriented segment. Now set 

~l = (Jt + !a2 • A-t, 

~2 = a· A_t, 

~3 = Yt + !a2 . A-t· 

Then the triple (~l, ~2, ~3) of ends is called the Hilbert homogeneous coordinates 
of point P in this Hilbert coordinate system. In particular, the coordinates of 
the origin 0 are (0, 0, 1). 

t 
a 

9~------r---~-----' 

Fig. 6.14 
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Theorem 2. Take a Hilbert coordinate system in the Bolyai-Lobachevsky non
Euclidean plane. Then the Hilbert coordinates (~l, ~2, ~3) of an arbitrary point 
P satisfy the relation 

~; - ~l- M = 1, 

~3 > O. 

Moreover, 

induces a one-to-one correspondence between points P in the plane and those 
triples of ends which are not 00 and satisfy the above two relations. This cor
respondence will be written as 

in what follows. 

Theorem 3. Let the Hilbert coordinates of two arbitrary points P, Q in the 
Bolyai-Lobachevsky non-Euclidean plane be 

Then 
~3 TJ3 - ~l TJl - ~2TJ2 > O. 

Let 
p' = (~{, ~~, ~~), Q' = (11;, TJ;, TJ~) 

be another two points. Then a necessary and sufficient condition for the segments 
I P Q I and I P' Q' I to be congruent is 

Theorem 4. The equation of the connecting line a{3 of two non-oo ends a, {3 is 

(a{3 - 1)~1 + (a + {3)~2 - (a{3 + 1)~3 = O. 

The equation of the connecting line aoo of a non-oo end a and the end 00 is 

In the above equations, (~1, ~2, ~3) are the Hilbert homogeneous coordinates of 
an arbitrary point on line a{3 or aoo. 

Now write the equations of the two lines in the above theorem as 
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in which 
af3 - 1 a+f3 af3 + 1 

UI = , 
f3-a 

U2= --, 
f3-a 

U3 = ---
f3-a 

for line af3, and 

UI=a, u2=1, u3=a 

for line aoo. In both cases, the above equation is called a normal form of line 
af3 or aoo approaching a with (UI, U2, U3) as its Hilbert homogeneous line 
coordinates. This is denoted simply as 

-+ -+ 

f3a = (UI, U2, U3) or ooa = (UI, U2, U3). 

Thus, line af3 approaching another end f3 may be denoted as 

-+ 

af3 = (-UI, -U2, -U3). 

For line aoo approaching the end 00, we say that 

is its normal form. When setting UI = U3 = a, U2 = 1 as before, we have 

-+ 
aoo = (-UI, -U2, -U3), 

where the right-hand side of the equation is the Hilbert homogeneous line coor-
-+ 

dinates of aoo. 
It is easy to see that these line coordinates satisfy the relation 

On the other hand, three arbitrary ends UI, U2, U3 satisfying this relation must 
be the Hilbert homogeneous coordinates of a line approaching an end. It is also 
easy to prove that an arbitrary equation 

can be transformed into the normal form, as long as 

In fact, for any end a > 0, let t be such that At = a. Then At /2 = f3 satisfies the 
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relations that /3 > 0 and /32 = a, so it can be denoted as ,Ja. Then by setting 

we immediately get the normal form, where ± indicates the two different direc
tions approaching the ends. 

By now we have established the (Hilbert) coordinate system and represented 
points and oriented segments by triples of ends satisfying some equality and 
inequality relations, i.e., by the (Hilbert) homogeneous point coordinates or line 
coordinates. Therefore, some meaningful geometric relations can be expressed 
as relations among the corresponding point coordinates and line coordinates. We 
now list the majority of them. 

1. Parallelism 
Let the line coordinates of two oriented lines be 

-> -> 
lu = (UI, U2, U3), Iv = (VI, V2, V3) 

respectively. Then a necessary and sufficient condition for these two oriented 
lines to be parallel along the prescribed direction is 

2. Perpendicularity 
-> -> 

Let two oriented lines lu, Iv be as above. Then the condition for them to be 
perpendicular is 

UI VI + U2V2 - U3V3 = o. 
3. Congruence of segments 

See Theorem 3 above. 

4. Distance between two points 
The distance d between two points 

is defined by the following relation: 

Yd = ~3113 - ~1111 - ~2112 (> 0), 

where d, as a positive segment on the axis eoo, always takes a positive value. 

5. Distance from a point to a line 
Let the point be 
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and the oriented line be 

--+ 

Then the distance t from point P to line 1 is given by the following relation: 

When P does not lie on line I, we have (Jt =1= 0, so that t, as an oriented segment 
on 000, can take positive or negative value. Whether a positive or a negative 

--+ 

value is taken depends on which side of 1 point P lies on, see 7 below. 

6. Incidence of a point and a line 
--+ 

Let point P and line 1 be as in 5 above. Then a necessary and sufficient 
--+ 

condition for P and 1 to be incident is 

7. Two sides of a line 
Let the oriented line be 

--+ 

--+ 

lu = (UI, U2, U3). 

Then the two sides of lu are determined by 

and 

respectively. If P = (~I, ~2, ~3) and the directional position of P with respect to 
--+ + 
lu is just the same as that of 1 with respect to 000, then the inequality is taken 
with> 0; otherwise, the inequality is taken with < O. These two sides will be 
called respectively the positive and the negative sides of the oriented line. 

8. Degree of an angle 
For an angle iO(a, f3) = q; at origin 0, let us take, without loss of generality, 
(a - f3)/(af3 + 1), as a function T of q;, to measure the degree of q;: 

a-f3 
T(q;) = af3 + l' 

If there is another angle i 0 (f3, Y) = l/!: 

f3-y 
T(l/!) = f3y + l' 
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1/1 1/2 Fig. 6.15 

then for the sum <p + 1/1 = '- 0 (a, y) of <p and 1/1, it is easy to see that 

T(<p) + T(1/I) 
T(<p + 1/1) = 1 _ T(<p) . T(1/I) 
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See Fig. 6.15. If the vertex of angle <p is at an arbitrary point P with the 
ends of its two sides being ~ I, 7) 1 and ~2, 7)2 respectively: <p = '- P (~I , ~2), then 
according to Liebmann (1904), the degree of <p may be given by the following 
function T: 

[T(<p)]2 = _ ~I - ~2 / 7)1 - ~2 . 
~l - 7)2 7)1 - 7)2 

One may prove that the right-hand side of the above formula always takes 
positive value or O. As for the value of T(<p), it can be positive or negative, 
determined according to 7 above. Furthermore, if P is the origin 0 and thus 
7) 1 = -1 / ~ I, 7)2 = -1 / ~2, we immediately get the preceding expression. 

If the geometry satisfies the axioms of continuity so that the degrees of angles 
can be regarded as real numbers, then T is just the usual tangent function: 

T(<p) = tan ~<p. 

However, we do not assume any axiom of continuity, so T and the previous 
functions y, CY, r are all introduced by using other axioms in the geometry and 
their properties are purely algebraic. 

9. Parallel angles 
As in Fig. 6.16, let the ends of a line l be a, f3 and P be a point not on l 
with P A = p as its perpendicular distance to l. Then Pa is parallel to Aa 
and '-PcP A, Pa) is generally called the parallel angle of P with respect to l, 

p 

p 

{J--------'-------a Fig. 6.16 



258 Various geometries 

denoted as <po Thus we have 

where T and <p are purely algebraically defined by using geometric axioms, not 
necessarily depending on the axioms of continuity as usual. 

10. Two arbitrary lines 11= (UI, VI, WI) and 12 = (U2, V2, W2) have the follow
ing relations: 

11,12 intersect {::::::} IUIU2 + VIV2 - wlw21 < 1, 

11,12 are parallel {::::::} IUIU2 + VIV2 - wlw21 = 1, 

II, 12 have a common perpendicular (neither intersecting nor parallel) 

{::::::} IUIU2 + VIV2 - wlw21 > 1. 

Whether the absolute value of the middle expression above takes positive or 
negative sign depends on the ends in the parallel direction. 

Summarizing the above, one sees that in Bolyai-Lobachevskian geometry 
which takes points and lines as fundamental objects and the axioms H I-H IV 
(H IV means H IVBL) as a basis, points and lines can be represented by triples 
of ends via the operations of ends and the Hilbert coordinate system. In this 
geometry, all fundamental relations and derived relations such as incidence, 
parallelism, perpendicularity, the separation of order, and the congruence of 
segments and of angles can be expressed as polynomial equality or inequality 
relations among the coordinates of points and lines. Therefore, according to 
Sect. 6.1 we arrive at the following fundamental theorem. 

Mechanization theorem. There is a mechanical method for proving theorems 
in Bolyai-Lobachevsky's hyperbolic plane non-Euclidean geometry. 

Some metric concepts such as the lengths of segments and the degrees 
of angles in the geometry have to be expressed by means of functions like 
T, A, y, a, r. But these functions can be expressed in terms of some rational 
functions of the ends, and the relations among these functions are algebraic, 
polynomial ones. Hence the identities and the corresponding geometric theo
rems among them may also be derived and proved mechanically, see Sect. 6.6 
for details. 

6.4 The mechanization of theorem proving in Riemann's elliptic 
non-Euclidean geometry 

So-called Riemann's elliptic non-Euclidean geometry, simply speaking, is pro
jective geometry with metric concepts. For the sake of simplicity, the following 
discussions will be restricted to the planar case. We base our presentation on the 



6.4 Elliptic non-Euclidean geometry 259 

two articles by Podehl and Reidemeister (1934) and Bachmann and Reidemeister 
(1937) with some modifications. 

First, the fundamental objects of this geometry are also points and lines. 
Assume that there is no relation of order, and the incidence relation and or
thogonal relation are taken as fundamental relations. But different from Podehl 
and Reidemeister (1934), the congruence relation among pairs of points will 
be introduced as a derived relation. The fundamental objects and relations are 
assumed to satisfy the following axioms. 

E I Axioms of incidence. The axioms of incidence, the axiom of infinity, and 
Pappus' (projective) axiom in plane unordered projective geometry are all in
cluded, see Sect. 6.2 for details. Now Desargues' (projective) axioms are theo
rems. 

E II Orthogonal axioms (E 1I1-E 114) 
Ill. Let a be a line. Then through an arbitrary point there is at least one line b 
that is distinct from a and perpendicular to a, denoted as b .1 a. 
112. Through a point on an arbitrary line a there is one and only one line b 
perpendicular to a, also denoted as b .1 a. 
II3. If b .1 a, then a .1 b. 
114. If one can draw two different lines passing through a point P and perpen
dicular to a line a, then any line passing through P is perpendicular to a. 

In Axiom E 114, point P is called the pole of a and a is called the polar 
line of P. 

From these axioms, one knows that a point cannot lie on its polar line and the 
perpendicular of any line through an arbitrary point on the line passes through 
the pole of this line. If a point B lies on the polar line of A, then point A 
also lies on the polar line of B. In this case the two points A, B are said to be 
conjugate with each other. The above axioms exclude the existence of isotropic 
lines, i.e., such lines that are perpendicular to themselves. 

Due to Axioms E I, the usual theorems in unordered projective geometry all 
hold true. Moreover, we can define the harmonic series of points, the harmonic 
separation and the involution of pairs of points etc. on a line as usual. Now we 
add the following axiom to the geometry. 

115. The points conjugate with each other on an arbitrary line constitute an 
involution. 

The geometric meaning of this axiom will be explained later. 

Definition. A geometry which takes points and lines as its fundamental objects, 
the incidence relation and orthogonal relation as its fundamental relations, and 
satisfies the above axioms E I, E II is called an unordered Riemannian (plane) 
elliptic orthogonal geometry. 

The above axioms are not independent of each other. For example, Pappus' 
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projective axiom may be derived from other axioms. But in this book, we do 
not investigate the logical relations among these axioms. What is of significance 
for us is the following. 

Mechanization theorem 1. There is a mechanical method for proving theorems 
in unordered Riemannian (plane) elliptic orthogonal geometry. 

To prove this theorem, let us first make the following preparations. 
Introduce a projective coordinate system (AIA2A3l) such that each vertex 

of the triangle AIA2A3 is the pole of the opposite side. This coordinate system 
is called a polar reciprocal coordinate system. 

According to Sect. 6.2, for an arbitrary projective coordinate system a nec
essary and sufficient condition for a point (Xl : X2 : X3) to lie on a line 
(UI : U2 : U3) is 

UIXI + U2X2 + U3X3 = o. 
An arbitrary collineatory transformation that transforms any point (Xl: X2 : X3) 

to another point (x~ : x~ : x~) may be expressed by means of a set of equations 

3 

X; = 'LaijJ(Xj), i = 1,2,3, 
j=l 

where J is an automorphism of the geometry-associated number field K and 
the determinant laij I i= O. Similarly, the inverse morphism that transforms an 
arbitrary point (XI : X2 : X3) to a line (UI : U2 : U3) may also be expressed by 
means of a set of equations 

3 
ui = LaijJ(Xj), i = 1,2,3, 

j=l 

where J is also an automorphism of K and the determinant laij I i= O. 
The transformation which transforms a point into its polar line and a line 

into its pole is called a polar reciprocal transformation of elliptic orthogonal 
geometry. Apparently, this transformation is an inverse morphism which not only 
preserves the incidence relation between points and lines but also transforms the 
points conjugate with each other into orthogonal lines and the orthogonal lines 
into points conjugate with each other. Of course, such a transformation may 
be expressed as a set of equations of the last form above, but in which aij 

and the automorphism J have some special properties. If the coordinate system 
is a polar reciprocal one, then the set of equations can be much simplified, 
in particular, the automorphism J will become an identity isomorphism. The 
following theorem originating from Reidemeister (1930) shows the form of 
polar reciprocal transformations and may be regarded as the main theorem of 
elliptic orthogonal geometry. 

Theorem 1. In a polar reciprocal coordinate system, the polar reciprocal trans-



6.4 Elliptic non-Euclidean geometry 261 

Fig. 6.17 

formation may be expressed as 

Proof To prove this theorem, let AJ and Ai+IAi+2 of the polar reciprocal 
coordinate system (A I A2A3l) intersect at a point Ii. Define the number field 

on Ai+IAi+2 according to Sect. 6.2 and identify it to the geometry-associated 
number field K, where i = 1, 2, 3 and each Ai is defined according to the index i 
modulo 3. Let the homogeneous coordinates of a point P in this coordinate 
system be (al : a2 : a3) and the polar line of P be I with its homogeneous 
coordinates (bl : b2 : b3). Let Ai P and I respectively intersect Ai+1 and Ai+2 
at points Qi and Ri. Then Qi and Ri are conjugate with each other and their 
homogeneous coordinates are 

respectively. Our goal is to prove that there are non-zero numbers ki E K 
determined by the coordinate system (AIA2A3l) such that 

regardless of point P. 
For this purpose, we construct a new geometry as follows. 
This new geometry consists of two kinds of fundamental objects: "points" 

and "lines," where "points" are those which are not on AIA2 and "lines" are 
arbitrary ones but distinct from A I A 2 in the original geometry. Regard a point A 
not on AIA2 and a line a distinct from AIA2 in the original geometry as a "point" 
and a "line" in the new geometry, denoted by "A" and "a" respectively. 

Now introduce three fundamental relations, namely, the relation of "inci
dence," the relation of "parallelism," and the "orthogonal" relation, in the new 
geometry as follows: 
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"Point" "A" lies on "line" "a" {::::::} A lies on line a; 
"Line" "a" is parallel to the "line" "b" {::::::} The intersection point of a, b 

lie" on line AIA2; 
"Line" "a" is perpendicular to "line" "b" {::::::} The intersection points of 

a, b and A I A2 are conjugate. 

It is not difficult to verify by the original geometric axioms E I, E II that the 
new geometry satisfies all axioms of unordered orthogonal geometry in Sect. 2.2. 
For instance, the axiom of orthocenter 0 5 in that section may be derived from 
the involutory axiom E 1I5 of this section. This also explains the geometric 
meaning of axiom E 1I5. 

In this new geometry, the "lines" "A3AI" and "A3A2" are perpendicUlar. 
Hence we may take an "orthogonal coordinate system" with "origin" "A3," the 
first and the second "axes" "A3AI," "A3A2" and the "unit points" "h" and "h" 
in the new geometry. In this case, from the definition of number systems on the 
line one easily sees that there are natural isomorphisms 

N(A3, h) ~ N(A3, hAd, 

N(A 3, h) ~ N(A3, II, A2). 

Furthermore, for any point X distinct from A2, A3 on line A2A3, when its corre
sponding numbers in N(A2, h, A3) and N(A3, h, A2) are x and x' respectively, 
one sees that there is a relation xx' = 1. From this we know that if the point 
P = (al : a2 : a3) does not lie on A2A3 and thus a3 i- 0, then the "coordinates" 

of point "P" in the "orthogonal coordinate system" will be "P" = (~, a2 ). 
a3 a3 

The equations of the "lines" "A 3 Q 3" and "A 3 R 3" will be 

According to Sect. 2.3, the "orthogonal coordinate system" above determines 
a non-zero "orthogonal rate," denoted by k3'. Then, we have 

for "A3Q3" is perpendicular to "A3R3." 
In the same way, we can construct another new geometry which takes the 

points other than those on A I A3 in the original geometry as its "points," the lines 
distinct from A I A3 as its "lines" and introduce the corresponding fundamental 
relations such as "incidence," "parallelism," and "orthogonality" as before. Then 
we may prove as before that there is a non-zero number k~ such that 

Since aI, a2, a3 are not simultaneously zero and neither are b l , b2, b3, from the 
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two equations above we may obtain non-zero numbers kl' k2, k3, for example 

such that 

This proves Theorem 1. D 

Obviously, kl' k2, k3 in Theorem 1 are uniquely determined only up to a 
non-zero proportional divisor. We say that kl : k2 : k3 is the ratio of orthogonal 
rates determined by the polar reciprocal coordinate system (AIA2A3l). 

By Theorem 1, it is easy to give a proof of mechanization theorem 1 as 
follows. 

Take an arbitrary polar reciprocal coordinate system and let the correspond
ing ratio of orthogonal rates be kl : k2 : k3 by Theorem 1, where klk2k3 #- O. 
In this coordinate system, a necessary and sufficient condition for a point 
P = (XI : X2 : X3) and a line I = (u I : U2 : U3) to be incident is 

Let 
lu = (UI : U2 : U3), Iv = (VI: V2 : V3) 

be two lines. If the pole of lu is P = (XI : X2 : X3), then by Theorem 1 we have 

Since a necessary and sufficient condition for lu, Iv to be parallel to each other 
is that Iv passes through pole P of lu, that is 

or 

the fundamental relations in the geometry can all be expressed as polynomial 
equality relations among the coordinates. According to the basic principle of 
Sect. 6.1, theorem proving in this geometry is mechanizable. D 

As in Sects. 2.2-2.4, we may introduce some derived concepts such as 
midpoint, symmetry, and reflection in unordered elliptic orthogonal geometry 
and introduce a new axiom. 

Axiom of symmetric axes. For two arbitrary lines ai, a2, there is a symmetric 
axis I such that al and a2 are symmetric with respect to I. 
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We say that an unordered elliptic orthogonal geometry satisfying this axiom 
of symmetric axes is an unordered (plane) elliptic metric geometry, in which 
the congruence relation may be introduced as a derived relation and the metric 
concept as a derived concept. We may add the relation of separation as a funda
mental relation and introduce some axioms of separation as we did in Sect. 6.2 
so as to define various ordered elliptic orthogonal geometry, metric geometry, 
and the usually so-called Riemann's elliptic non-Euclidean geometry. Just like 
the mechanization theorem above, we may prove the following: 

Mechanization theorem 2. Theorem proving is mechanizable in unordered el
liptic metric geometry as well as various ordered elliptic orthogonal geometry, 
metric geometry, and non-Euclidean geometry. 

The proof of this theorem is quite easy and thus omitted. As a supplement 
we give a theorem below, also without proof. 

Theorem 2. In a polar reciprocal coordinate system, let 

A = (Xl: X2 : X3), B = (YI : Y2 : Y3), 

A' = (xi : x~ : x~), B' = (yi : Y~ : y~) 

be four points. Then a necessary and sufficient condition for two pairs of the 
points to be congruent 

is 

(AB) == (A' B') 

(klxt + k2Xi + k3Xi)(klYt + k2yi + k3yi) 

(klxiyi + k2X~Y~ + k3x~y~)2 
=--~~---7~--~~~~~~----~ 

(klx'r + k2X'~ + k3X'~)(kIY'r + k2Y'~ + k3Y'~) . 

6.5 The mechanization of theorem proving in two circle geometries 

All (plane) geometries considered so far in this book take only points and lines as 
their fundamental objects. Of course, this is not a restriction necessarily required. 
Several geometries that take other figures, in particular circles, as their funda
mental objects have also appeared. Among circle geometries, two were more 
extensively investigated: one is the so-called Mobiusian geometry or inversive 
geometry which studies such properties as the tangency and intersection of cir
cles in the complex plane and the other is the so-called Laguerrean geometry 
or equilong geometry which studies such properties as the oriented tangency of 
oriented lines and oriented circles in the complex plane (cf. Klein 1926: sects. 49 
and 67, Morley and Morley 1933, and others). These geometries were treated 
axiomatically in van der Waerden and Smid (1935), and later Ewald (1956a) 
and Uhl (1964) made some modifications. We point out that theorem proving in 
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these geometries is also mechanizable and give a very brief introduction below. 
For further details, the author will write a technical article. 

M6biusian circle geometry 

The fundamental objects for this geometry consist of two kinds: points and 
circles, and the fundamental relation consists of the incidence relation: points 
lying on circles. The tangency or orthogonality of two circles may be introduced 
either as a fundamental relation or as a derived relation. In the axiom system, 
one axiom associated with the name of Miquel plays a very important role which 
is similar to the role of Pappus' axiom in projective geometry. Now we state it 
as follows. 

Miquel's axiom. Let 

ABC D 
A' B' C' D' 

be eight points. Take arbitrarily two from the first four points and take two 
others from the last four points in such a way that they are not on the same 
columns as the two points previously taken. Such quadruplets of points are six 
in number. If the four points in five of the six quadruplets all lie on the same 
circle while these circles and points are pairwise distinct, then the four points 
in the sixth also lie on the same circle. 

Miquel's axiom has various weaker forms. 
We call all circles that are tangent together at the same point a pencil of 

circles. Van der Waerden has used the following method to introduce a number 
system so as to get coordinatization in the plane. 

Take a fixed point W in the plane of circle geometry. Now construct a 
projective plane P as follows. 

A "point" in P is either a point distinct from W in the original plane or an 
arbitrary pencil of circles with W as its common tangent point. The former is 
called a "principal point" and the latter a "secondary point" of P. 

A "line" in P is either a circle passing through the point W in the origi
nal plane, called a "principal line," or a "line" passing through all "secondary 
points," called a "secondary line," denoted by g. 

The definition of the incidence relation between "points" and "lines" in P is 
evident. 

It is easy to prove that under the incidence relation, the "points" and "lines" 
in P satisfy all axioms of the usual unordered projective geometry. In particular, 
Pappus' axiom can be derived from Miquel's axiom. So in the corresponding 
projective geometry one may introduce an associated number field K. After 
fixing a projective coordinate system, in which one side of the coordinate triangle 
is a secondary line g, we may prove that circles in the original plane are all 
"conics" in the new projective plane and the quadric part of their equations 
(corresponding to the other two sides of the coordinate triangle) have a fixed 
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form. From this it is easy to elicit the conclusion that theorem proving in this 
circle geometry is mechanizable. 

Laguerrean circle geometry 

This geometry takes the geometry constituted by such figures as oriented lines 
and oriented circles in ordinary plane geometry as a concrete model. After 
axiomatization, Laguerrean geometry has spears (Speere, oriented lines) and 
cycles (Zykel, oriented circles) as its fundamental objects. The fundamental 
relations consist of the incidence between spears and cycles, the tangency of 
cycles and the parallelism of spears. The parallel relation of spears may also 
be defined as a derived relation, namely that they are not incident to the same 
cycle. Likewise the tangency of cycles may be defined as a derived relation, 
namely that they are exactly incident to one and the same spear. Sometimes 
the incidence of spears and cycles is also said to be the tangency of spears and 
cycles. The number of spears which are incident to two cycles can only be 0, 
I, or 2. There is no concept of points, which can at most be introduced as a 
derived concept in this geometry. See Fig. 6.18. 

In the axiom system, there is an axiom which occupies a similarly impor
tant position as Miguel's axiom does in Mobiusian geometry, denoted still as 
Miguel's axiom. Let us state it as follows. 

Miquel's axiom. Let a spear W be tangent to (i.e., incident to) three cycles 
a) , a2, a3. Suppose the cycles a2, a3 have spear A) as one of their common 
tangent spears; similarly, the cycles a3, a) and a), a2 respectively have common 
tangent spears A2 and A3. Furthermore, the cycles a), a2, a3 are tangent to three 
other spears p), P2, P3 respectively, where the latter are not parallel to each 
other. Let all spears above be distinct from each other and the cycles r), r2, r3 
be tangent to the spears A)P2P3, A2P3P), A3P)P2 respectively. Then r), r2, r3 
have a common tangent spear B. 

We say that the collection of cycles which are tangent to each other and 
tangent to a fixed spear S is a tangent family with S as its common tangent 

Q@)// 
(Incident or tangent) (Tangent) (parallel) 

Fig. 6.18 
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A. 

Al 

Fig. 6.19 

spear. Similarly as for Mobiusian geometry, we may construct a projective plane 
in a dual way as follows. 

Take a fixed spear W in the original plane of the circle geometry, called a 
base spear. Define a projective plane P, on which the "points" consist of three 
kinds: an arbitrary spear not parallel to W, called a "principal point"; an arbitrary 
tangent family with W as its common tangent spear, called a "secondary point"; 
a single point, called a "base point" and denoted by G. The "lines" in P also 
consist of three kinds: an arbitrary cycle z tangent to W, called a "principal 
line," on which the "points" consist of the corresponding "principal points" of 
the spears tangent to z but not parallel to Wand the corresponding "secondary 
point" of the tangent family defined by Wand z; an arbitrary spear family 
consisting of a family of parallel spears, called a "secondary line," on which the 
"points" consist of the corresponding "principal points" of the spears in the spear 
family and a "base point" G; a single "line," called a "base line," on which the 
"points" consist of the corresponding "secondary points" of the tangent family 
with W as their common tangent spear and the "base point" G. 

In van der Waerden and Smid (1935), Smid proved that the geometry de
termined by these "points" and "lines" satisfies a number of axioms of un
ordered projective geometry. In particular, Pappus' axiom can be proved by 
using Miquel's axiom. Therefore, in this geometry one may introduce a co
ordinate system, in which a cycle not tangent to W will be expressed as a 
conic. From this it is easy to elicit the corresponding mechanization theorem 
that theorem proving in Laguerrean geometry is mechanizable. 

6.6 The mechanization of formula proving 
with transcendental functions 

Mechanical proving of identities involving trigonometric functions 

In the ordinary geometry of ancient China, the measurement of length, area, 
and volume occupied an important position, but angles and their measure were 
seldom mentioned. In modem Riemannian geometry, ds 2 or the length of arcs 
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is taken as a fundamental concept, from which the others such as the measure 
of angles are derived. In contrast with these two, in ordinary geometry of the 
usual Euclidean form angles and segments are two important metric concepts 
that almost occupy an equal position. Especially for a triangle the consideration 
of relations between sides and angles has cardinal significance. These relations 
are all expressed by means of some trigonometric functions such as sin, cos, tan, 
which are transcendental with respect to the angles and of which the investigation 
is often not easy. Nevertheless, if we take a Descartes coordinate system, let 
the initial side of an angle A coincide with the positive ray of the abscissa 
axis and take an arbitrary point P = (x, y) on the terminate side, then these 
trigonometric functions all become rational functions of x, y and 0 P = r, i.e., 

sin A = y/r, cos A = x/r, tan A = y/x, 

where 

Hence, in principle these transcendental functions can be treated via the relations 
among rational functions or even polynomials. This makes it possible to express 
the concept of angles and transcendental relations among segments and angles 
in other forms or even to avoid using them. If we really need to consider the 
so-called trigonometric identities led by these relations, we may also give a 
mechanized proof according to Sect. 6.1 by using the methods of Chaps. 3-5. 
We shall explain this below. 

There are various polynomial relations among trigonometric functions. Let 
us list some of them as follows. 

1. Relations among the six trigonometric functions of an angle: 

sin2 A + cos2 A = 1, 

tan A cos A = sin A, 

cot A sin A = cos A, 

sec A cos A = 1, 

csc A sin A = 1, 

sec2 A = 1 + tan2 A, 

csc2 A = 1 + cot2 A. 

2. Relations for the negative of an angle: 

sine-A) = - sinA, 

tan(-A) = -tanA, 

sec(-A) = secA, 

cos(-A) = cosA, } 
cot(-A) = -cotA, 
csc(-A) = -cscA. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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3. Relations for the sum and difference of angles: 

sin(A ± B) = sin A cos B ± cos A sin B, 

cos(A ± B) = cos A cos B =f sin A sin B, 

tan(A ± B) (1 =pan A tan B) = tan A ± tan B. 
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(9) 

(10) 

(11) 

4. Relations for some special angles such as 0, n /2, n etc. (where n is an 
arbitrary integer): 

A = nn ¢=} sin A = 0, 

A = 2nn ¢=} cos A = +1, sin A = 0, 

A = (2n + l)n ¢=} cos A = -1, sin A = 0, 

n 
A ="2 +nn ¢=} cos A = 0, 

n . 
A ="2 +2nn ¢=} smA = 1, cosA = 0, 

n . ° A = -"2 + 2nn ¢=} sm A = -1, cos A = . 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

This kind of relations for special angles may be augmented in different cases. 
We can also consider the formulas for half an angle: 

A 1 - cos A 
sin2 - (18) 

2 2 

A 1 + cosA 
cos2 - (19) 

2 2 

A . A 1 - cos A 
tan2 - = sm (20) 

2 1 + cos A sin A 

Of course, none of the above relations is independent of the others and they 
can be elicited from the original definition of sin, cos, tan, etc. 

If a trigonometric identity to be proved involves the angles A and B, then 
the trigonometric functions of angles may be expressed in terms of x, U, etc., 
so that the original identity is transformed to a polynomial relation according 
to (1 )-( 17) above. Whether or not this polynomial relation is satisfied can be 
proved by the mechanical method mentioned in Sect. 6.1. The following is a 
concrete example. 

Example 1. Prove that for the three angles AI, A2, A3 of a triangle AIA2A3, 
there is an identity 

sin2A I + sin2A2 + sin2A3 = 4sinA I sinA2 sinA3. 
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Solution. For the three angles of a triangle we have 

By using the formulas of angular sum (9), (10) and (14), we obtain from this 
relation that 

and 

cos A I cos A2 cos A3 - cos A I sin A2 sin A3 - sin A I cos A2 sin A3 

- sinAI sinA2 cos A3 + 1 = ° 
sin A I cos A2 cos A3 + cos A I sin A2 cos A3 + cos A I cos A2 cos A3 

- sinAI sinA2 sinA3 = 0. 

Similarly, the identity to be proved may be transformed to 

sin A I cos A I + sin A2 cos A2 + sin A3 cos A3 - 2 sin A I sin A2 sin A3 = 0. 

Now set 
sinAI = UI, sinA2 = U2, 

cosAI = XI, COSA2 = X2, 

sin A3 = X3, cos A3 = X4. 

Then the original problem is reduced to the following one. 
The set of hypothesis equations may be taken as 

FI == x; + u; - 1 = 0, 

F2 == xi + u~ - 1 = 0, 

F3 == (XIX2 - UIU2)X3 + (UIX2 + U2XI)X4 = 0, 

F4 == -(UIX2 + U2XI)X3 + (XIX2 - UIU2)X4 + 1 = 0, 

and the conclusion equation is 

The problem amounts to proving that g = ° is a formal consequence of 
FI = 0, ... , F4 = 0. 

Since the coefficient determinant of X3, X4 in F3, F4 is 1, we may solve the 
two equations for X3, X4 and obtain 

F~ == X3 - (UIX2 + U2XI) = 0, 

F~ == X4 + (XIX2 - UIU2) = 0. 
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Hence, the problem is further reduced to proving that g 0 is the formal 
consequence of FI = 0, F2 = 0, F~ = 0, F~ = O. 

Using the general method, we reduce g successively by F~, F~, F2, FI with 
respect to X4,X3,X2,XI and get 

g == - (UIX2 + U2X])(XIX2 - UIU2) - 2UIU2(UIX2 + U2X]) 

+ U2X2 + UIXI mod (F~, F;) 

== - ulxlxi - u2xfx2 - UIU2(UIX2 + U2XI) + U2X2 + UIXI mod (F~, F~) 

== - UIXI (l - u~) - u2x2(1 - uT) - UIU2(UIX2 + U2X]) 

+ U2X2 + UIXI mod (F~, F;, F2, F]) 

== 0 mod (F~, F;, F2, F]). 

That is, g = 0 is a formal consequence of F~ = 0, F; = 0, F2 = 0, FI = O. In 
other words, for the three angles of L'lA I A2A3 the original identity holds. 

The above method proceeds in a mechanical way and is applicable to various 
trigonometric identities. For instance, using the same mechanical method we may 
prove: 

If three angles A I, A2, A3 satisfy 

Al + A2 + A3 = (2n + l)rr, 

then the identity 

cos 2AI + cos 2A2 + cos 2A3 + 4cos Al cos A2 cos A3 = 0 

does not hold. 

Mechanical proving of theorems in non-Euclidean geometries and 
identities involving hyperbolic functions 

In the usual literature, the treatment of the two non-Euclidean geometries con
sidered above often requires using transcendental functions such as trigonomet
ric, exponential, and hyperbolic functions; and so does the proof of the cor
responding theorems and formulas require using methods of expanding power 
series and limit approximation. Take Bolyai-Lobachevsky's plane hyperbolic 
non-Euclidean geometry as an example. For the sake of simplicity, let the asso
ciated constant of this geometry be k = I (cf. Greenberg 1973). As in Fig. 6.20, 
take two oriented perpendiculars with foot at a in the plane as axes. From a 
point P draw two lines PU and PV perpendicular to the two axes respectively. 
The quadrilateral au PV is all of right angles at 0, U, V, commonly called a 
Lambert quadrilateral. Let the oriented distances be denoted as 

au = u, av = v, 

UP = w, V P = z. 
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Fig. 6.20 

Then, among u, v, W, Z there are two transcendental relations as follows: 

Set 

tanh W = tanh v cosh u, 

tanh z = tanh u cosh v. 

x = tanhu, y = tanh v, 

T = cosh u cosh w, X = xT, Y = yT. 

There are different manners to introduce coordinates for point P. For example, 

(u, v) = axis coordinates of P, 

(u, w) = Lobachevsky coordinates of P, 

(x, y) = Beltrami coordinates of P, 

(T, X, Y) = Weierstrass coordinates of P. 

As these coordinates all use transcendental functions, some relations and prop
erties with geometric meaning have to be expressed by means of transcendental 
functions, and so do the theorems and formulas. We give a few examples below. 

1. Distance between two points 
In an axis coordinate system the distance PI P2 between two points PI (u I, VI) 

and P2(U2, V2) may be determined by 

1 - tanh u I tanh U2 - tanh VI tanh V2 
COShPIP2 = , 

Jl - tanh2 UI - tanh2 VI . Jl - tanh2 U2 - tanh2 V2 

while in a Beltrami coordinate system it can be simplified to 

-- 1 - XIX2 - YlY2 
~h~~= , J 1 - xf - yf . J 1 - xi - yi 

where, however, the transcendental and irrational functions still appear. 
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2. Hyperbolic Kou-Ku theorem 
Let C be the right angle and a, b, c be the lengths of the three sides of 

a triangle ABC, where c is the opposite side of the right angle C. Then the 
relation corresponding to the Kou-Ku theorem in ordinary geometry is 

cosh c = cosh a cosh b. 

3. Hyperbolic cosine law 
For an arbitrary triangle ABC with three angles A, B, C and lengths a, b, c 

of their corresponding sides, there is a cosine formula 

cosh c = cosh a cosh b - sinh a sinh b cos c. 

When C is a right angle, this formula is simplified to the Kou-Ku relation. 

Other cases such as the intersectional angle of two lines, the distance from a 
point to a line, circles, maximal circles, equidistant lines and even the equations 
of lines as well as the conditions for parallelism, perpendiCUlarity, incidence 
etc., all cannot be deviated from transcendental functions, mainly hyperbolic 
functions. We do not give further examples. 

The occurrence of these transcendental functions makes that the traditional 
proof of theorems in non-Euclidean geometries often has to be completed by 
complicated calculations of trigonometric formulas. One method is to list various 
formulas of hyperbolic functions such as 

cosh2 X - sinh2 x = 1, 

sinh(x ± y) = sinh x cosh y ± cosh x sinh y, 

so that the proof of identities and geometric theorems can proceed in a mechan
ical way as previously done for the proof of trigonometric formulas. However, 
since the occurring hyperbolic functions all need to be defined by using analyt
ical methods, it makes that at least in theory the geometry has to be restricted 
to the case of having the real or complex number field as its basic number field. 
This excludes the possibility of considering geometries like non-Euclidean ge
ometry over more general fields, while geometries over general fields occupy 
an important position in modem mathematics. 

But, the method of Hilbert (1903) by introducing the operations of ends 
for hyperbolic non-Euclidean geometry completely avoids using the concept of 
continuity to establish the axiom system of this geometry so that transcendental 
functions become unnecessary, as Hilbert wrote at the end of that paper: "The 
familiar formulas of Bolyai-Lobachevskian geometry can then also be derived 
with no difficulty and the development of this geometry has been thus completed 
with the aid of Axioms I-IV alone." 

The assertion that the trigonometric formulas of non-Euclidean geometry 
may be derived easily without the aid of the axioms of continuity by Hilbert 
was confirmed a few years afterwards (cf. the books of Liebmann, Gerretsen, 
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Szasz, Szmielew, and others). This has already been explained somewhat in 
Sect. 6.3. We now restate the relevant part as follows. 

Let hyperbolic plane non-Euclidean geometry satisfy the system of axioms 
H I-H IV (where H IV means H IVBL) as shown in Sect. 6.3. By applying the 
operations of ends, one gets a geometry-associated number field K of character-

-+ 
istic O. Introduce the orthogonal axes ()oo and 11 so as to determine a Hilbert 
coordinate system. Then the coordinates of a point P are represented by a triple 
(~I, ~2, ~3) of numbers in K, where 

and an arbitrary oriented line is also represented by a triple (u I, U2, U3) of 
numbers in K, where 

If the two ends of an oriented line are a and f3 with direction from f3 to a, then 

and 

af3 - 1 
UI = , 

a-f3 

a+f3 
U2=--, 

a-f3 
U3 = af3 + 1 if a, f3 =I 00, 

a-f3 

UI = -a, U2 = -1, U3 = -a if f3 = 00, 

UI = f3, U2 = 1, U3 = f3 if a = 00. 

Dually, if (u I, U2, U3) are fixed, then the two ends a, f3 are 

a= 
U2 + 1 U2 - 1 

f3 = if UI =I U3, 
U3 - UI U3 - UI 

a = 00, f3 = UI if UI = U3, U2 = 1, 

and 

f3=00, a=-ul if UI =U3, U2=-1. 

Furthermore, the condition for a point (~I, ~2, ~3) to lie on a line (UI, U2, U3) is 

In Sect. 6.3, we have also introduced some functions At, Yt, crt and rt which 
will be redenoted as A(t), yet), cr(t) and ret) in what follows. These functions 
are defined over the geometry-associated number field K with ends as their 
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values. Here 

yet) = 4 ().(t) + ).(-t)), 

(J(t) = 4 ().(t) - ).(-t)), 

ret) = ().(t) - ).(-t))/().(t) + ).(-t)). 
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The introduction of these functions depends on the operations of ends, but not on 
any concept of continuity. They are purely algebraic and satisfy some relations 
that are similar to those that the real transcendental functions exp t, cosh t, sinh t, 
tanh t satisfy, which we will not list here. In the same section, we have also 
introduced the function 

a-f3 
T(q;) = af3 + 1 

of the angle q; between two oriented lines which pass through the origin and 
approximate to two ends a and f3. This function has some properties that are 
similar to those of the usual real transcendental function tan 1q;. From this 
function, we can purely algebraically introduce two other functions 

2T(q;) 
Seq;) = 1+ [T(q;)]2' 

1- [T(q;)]2 
C(q;) = 1+ [T(q;)]2' 

which correspond to the usual real transcendental functions sin q; and cos q; 
respectively. 

Various geometric properties and relations with geometric meaning such 
as the parallelism and perpendicularity of two lines, the distance between two 
points, the distance from a point to a line and the angle between two lines may 
all be concretely expressed by means of these functions, as we have stated al
ready in Sect. 6.3. From this it follows that the mechanical method mentioned 
in Sect. 6.1 can immediately be applied to proving theorems and formulas in 
this non-Euclidean geometry, without need of any assumption on continuity as 
pointed out by Hilbert. As examples, let us prove the above-mentioned hyper
bolic Kou-Ku theorem and the cosine formula as follows. 

Example 2 (Kou-Ku theorem). To simplify the calculation, we suppose that the 
vertex of the right angle C of 6.ABC is at the origin 0 of a Hilbert coordinate 
system, i.e., 

C = (0,0,1). 

Let A, B not lie on the axis ()oo with 

A = (~1, ~2, ~3), 

B = (111, 'T/2, 'T/3)' 
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\1 
a 

e.-------~~-----------

a Fig. 6.21 

Then 
~i - ~f - M = 1, ~3 > 0, 

2 2 2 1 1]3 - 1]1 - 1]2 = , 1]3 > 0. 

According to the distance formula (see Sect. 6.3), we have 

yea) = 1]3, 

y(b) = ~3, 

y(c) = ~31]3 - ~11]1 - ~21]2. 

Various geometries 

Now, let one end of the line OA be 0:. Then the other is -1/0:, so the coordinates 
-+ 

(u I, U2, U3) of 00: are 

20: 
UI = - 0:2 + l' U3 = 0. 

Similarly, if one end of the line OBis fJ, then the other is -1/ fJ, so the 
-+ 

coordinates (VI, V2, V3) of OfJ are 

2fJ 
VI = - fJ2 + l' V3 = 0. 

The conditions for the points A, B to lie on lines 0 A and 0 B respectively are 

- 20:~1 + (0:2 - 1)~2 = 0, 

- 2fJ1]1 + (fJ2 - 1)1]2 = 0. 

Furthermore, the condition for C to be a right angle is 

i.e., 

4afJ + (0: 2 - 1)(fJ2 - 1) = 0. 
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The formula to be proved becomes 

y(c) = y(a)y(b). 

Now introduce the variables 

corresponding successively to 

~I, ~2, ~3, 171, 172, 173, y(a), y(b), y(c), a, {3, 

in which 

a, {3 -# (), 00, 

due to the hypothesis that A, B are not on the axis ()oo. Therefore, 

Moreover, 

XIO -# 0, Xll -# 0. 

X3 > ° (i.e. ~3 > 0), 

X6 > ° (i.e. 173 > 0). 

The remaining hypothesis relations are 

Fl == x~ - xr - xi - 1 = 0, 

F2 == x~ - xl - x; - 1 = 0, 

F3 == X7 - X6 = 0, 

F4 == Xg - X3 = 0, 

Fs == X9 - X3X6 + XIX4 + X2XS = 0, 

F6 == X2XrO - 2XIXIO - X2 = 0, 

F7 == XSXrl - 2X4Xll - Xs = 0, 

Fg == (xfo - l)(xfl - 1) + 4XlOXll = 0. 

The conclusion relation to be proved is 

G == X9 - X7X8 = 0. 
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Proceeding now according to the method of Chap. 4, we first well-order Fl, ... , 
F8. From F6 = 0, F7 = 0, F8 = 0, we obtain 
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Under the non-degeneracy conditions 

XIO =I 0, XII =I 0, 

(which are already true by hypotheses) we have 

Adjoining F9 to the polynomial set {FI, ... , Fs}, we get 

A quasi-basic set of A is 

Reducing G with respect to <1>, the remainder is simply verified to be 0, or 

Hence, G = ° is a formal consequence of FI = 0, ... , Fs = 0, and the Kou-Ku 
theorem is proved. 

Example 3 (Cosine formula). We still suppose the vertex C of 6.ABC is at 0 
but do not suppose that C is a right angle. Similarly, let A, B not lie on the axis 

---+ ---+ 

Boo and denote the angle between OOl and OfJ by f{J. Then we have 

Ol-fJ 
T (f{J) = 1 + OlfJ ' 

(1 + OlfJ)2 - (Ol - fJ)2 
C(f{J) = (1 + OlfJ)2 + (Ol - fJ)2· 

Similar to Example 2, let ~l, ... , Ol, fJ be denoted by Xl, ... , XlO, Xu. In addition, 
we introduce the variables X12, X13, Xl4 such that 

X12 = C(f{J), X13 = (T(a), Xl4 = (T(b). 

Then in the hypothesis relations, FI = 0, ... , F7 = ° are the same as before, 
while Fs = 0 becomes 
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and in addition we have 

F~ == Xl3 - xi + 1 = 0, 

F{o == X~4 - X~ + 1 = 0. 
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The set of polynomials L = {Fl, ... , F7 , F~, F~, F{o} corresponds to the set of 
hypothesis relations (excluding the part of inequalities). The cosine formula 

y(c) = y(a)y(b) - (J(a)(J(b)C(gJ) 

to be proved can be rewritten as 

G' == (X9 - X7XS) - XI2X13XI4 = 0. 

Due to the indefiniteness of signs, we relax in proving that 

Gil == [(X9 - X7XS) + X12X13XI4][(X9 - X7XS) - X12X13X14] 

_ ( )2 2 2 2 ° = X9 - X7 XS - x12x 13x I4 = . 

Using the general method of Chap. 4, we well-order L so as to enlarge 
it to another set A of polynomials. Then by reducing Gil with respect to the 
quasi-basic set of A, we know that under the non-degeneracy conditions 

X2 i= 0, Xs i= 0, XIO i= 0, Xli i= 0, 

the remainder of Gil with respect to the quasi-basic set of A is 0, i.e., Gil = ° is 
a formal consequence of Fl = 0, ... , F7 = 0, F~ = 0, F~ = 0, F{o = 0. From 
the original hypotheses, we know that these non-degeneracy conditions are all 
naturally satisfied, so the cosine formula Gil = 0, without considering the sign, 
is proved. We may prove the original cosine formula G' = ° by considering 
~3 > 0, 113 > 0 and using the method of Chap. 5. 

Mechanical proving of formulas involving other transcendental functions 

The method explained above can be applied to prove not only theorems and 
formulas in ordinary geometry and hyperbolic non-Euclidean geometry, but 
also theorems and formulas involving trigonometric and hyperbolic functions in 
sphere geometry or elliptic non-Euclidean geometry. Moreover, for other types 
of transcendental functions, when we do not need to know the exact definition 
and real meaning of continuity but only to find the formal identity relations 
among them, we can also apply methods similar to those above to achieve 
mechanical proving. Such methods may also be applied to prove relevant geo
metric theorems in which transcendental functions such as elliptic functions in 
the theory of cubic curves and the e function in the theory of some algebraic 
curves and surfaces appear. This makes the use of the great part of transcen-
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dental functions in the research of various geometries unnecessary, or it can be 
reduced to problems treatable by purely algebraic methods. We hope to be able 
to systematically treat this topic in the near future. 
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