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Preface 

Sir Isaac Newton's Philosophil£ Naturalis Principia Mathematica (the Prin­
cipia) was first published in 1687 and set much of the foundations that led 
to profound changes in modern science. Despite the influence of the work, the 
elegance of the geometrical techniques used by Newton is little known since the 
demonstrations of most of the theorems set out in it are usually done using 
calculus. Newton's reasoning also goes beyond the traditional boundaries of 
Euclidean geometry with the presence of both motion and infinitesimals. 

This book describes the mechanization of lemmas and propositions from the 
Principia using formal tools developed in the generic theorem prover Isabelle. 
We discuss the formalization of a geometry theory based on existing methods 
from automated geometry theorem proving. The theory contains extra geo­
metric notions, including definitions of the ellipse and its tangent, that enable 
us to deal with the motion of bodies and other physical aspects. 

We introduce the formalization of a theory of filters and ultrafilters, and 
the purely definitional construction of the hyperreal numbers of Nonstandard 
Analysis (NSA). The hyperreals form a proper field extension of the reals that 
contain new types of numbers including infinitesimals and infinite numbers. 

By combining notions from NSA and geometry theorem proving, we propose 
an "infinitesimal geometry" in which quantities can be infinitely small. This 
approach then reveals new properties of the geometry that only hold because 
infinitesimal elements are allowed. We also mechanize some analytic geometry 
and use it to verify the geometry theories of Isabelle. 

We then report on the main application of this framework by discussing the 
formalization of several results from the Principia and giving a detailed case 
study of one of its most important propositions: the Propositio Kepleriana. An 
anomaly is revealed in Newton's reasoning through our rigorous mechanization. 

Finally, we present the formalization of a portion of mathematical analysis 
using the nonstandard approach. We mechanize both standard and nonstan­
dard definitions of familiar concepts, prove their equivalence, and use non­
standard arguments to provide intuitive yet rigorous proofs of many of their 
properties. 
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1. Introduction 

It is often argued that the history of nineteenth-century mathematics is that of 
the replacement of geometry by algebra and analysis. Synthetic or coordinate­
free geometric reasoning which had produced some of the greatest achievements 
of mankind - Euclid's Elements and Newton's Philosophice Naturalis Principia 
Mathematica (the Principia) to name but two - was finally shifted from its 
long-standing central position in mathematics to a marginal one. 

The process, aimed at increasing rigour in mathematics, arguably began 
with the introduction of analytic geometry and culminated with the expulsion 
of the infinitesimal. It laid the foundations of modern mathematics where rigour 
became the central tenet, mostly at the cost of intuition. 

Throughout the seventeenth century though, and in the Principia in parti­
cular, geometric reasoning in the tradition of the ancient Greek geometers 
prevailed over everything else. Even though Newton uses his own infinitesimal 
procedures, these are introduced and justified geometrically to keep the reaso­
ning of the Principia essentially in the spirit of the Ancients. The Principia, in 
this sense, embodies concepts that one might deem both devalued and difficult 
to make rigorous within the conceptual bounds of modern mathematics. 

In this work, we show that a formalization that respects much of Newton's 
original reasoning is possible by combining adequate synthetic geometric me­
thods with rigorous notions of infinitesimals. We mechanize, within the theorem 
prover Isabelle, procedures of the Principia that have often been regarded 
as logically vague by investigating and applying concepts from both mecha­
nical geometry theorem proving (GTP) and Nonstandard Analysis (NSA). This 
results in an enriched geometry with powerful and intuitive tools that also have 
application to mechanical theorem proving in ordinary Euclidean geometry. 

The formalization of infinitesimals using NSA also results in a framework 
that is important and powerful in its own right. One of its first and natural 
applications is also investigated in this work: the mechanization of the calculus. 
We apply the rich array of concepts from NSA to the treatment of mathematical 
analysis in an intuitive and often illuminating way. 

As a further observation, the powerful intuitions that infinitesimals provide 
are often used in constructing proofs of theorems. However, one is not allowed 
to use them in the proofs themselves without formal justification. So, the overall 
result that this work achieves is a rigorous and powerful treatment of geometry 

J. Fleuriot, A Combination of Geometry Theorem Proving and Nonstandard Analysis with
 Application to Newton’s Principia © Springer-Verlag London 2001



2 1. Introduction 

and analysis that incorporates the intuitive notions often used as tools into the 
actual proof. 

1.1 A Brief History of the Infinitesimal 

The infinitesimal throughout its history has been at the centre of many con­
troversies. Its use was widespread in geometry and other mathematical fields 
prior to the nineteenth century until a return to mathematical rigour drove it 
out of mathematics once and for all, or so it seemed. The infinitesimal calculus 
of Newton and Leibniz was then reformulated by the methods of Cauchy and 
Weierstrass to meet rigorous modern standards. Yet today, through the power 
and sophistication of mathematical logic, the infinitesimal has been revived and 
been made acceptable again. Abraham Robinson's Nonstandard Analysis [72) 
is viewed as a viable Calculus of Infinitesimals. Moreover, NSA is regarded by 
some as a vindication of the informal use of infinitesimals of eighteenth-century 
mathematics against the absolute rigour of the nineteenth century, adding a 
new development to the long lasting war between the finite and the infinite, 
the continuous and the discontinuous [26). 

The first calculus textbook was written by the Marquis de L'Hospital in 
1696. His enthusiasm for the use of infinitesimals is obvious since right at the 
outset it is stated as an axiom that two quantities differing by an infinitely 
small amount can be substituted for one another. Thus, two quantities are 
simultaneously considered to be equal and not equal to each other. Moreover, a 
second supposition of de L'Hospital regards a curve as the "totality of an infinity 
of straight segments, each infinitely small" . De L'Hospital axioms imply a belief 
in the existence of the infinitely small quantities since it was common at that 
time, in the tradition of Euclid and Archimedes, to view axioms as empirical 
facts. On the Principia itself, de L'Hospital observes that it is "almost wholly 
of this [infinitesimal) calculus" [81). 

It should be noted that even though de L'Hospital was a student of Leibniz, 
the latter did not share his belief in the existence of the infinitesimal. Indeed 
Leibniz was rather critical of his student's enthusiasm and, although he was 
a proponent of the use of infinitesimal methods, he had more subtle ideas 
regarding the foundations of his calculus. He did not claim that infinitesimals 
really existed. Leibniz instead viewed infinitesimals and infinitely large numbers 
as "ideal" or fictitious numbers that still obeyed the same laws of arithmetic 
as ordinary numbers of mathematics. However, just like de L'Hospital, he also 
stated that two quantities differing by an infinitesimal amount could be viewed 
as equal. The inconsistency of these two assumptions was clear right from the 
start. 

The belief in the existence of the infinitesimals, despite the obvious founda­
tional flaws, prevailed throughout the eighteenth century in most parts of 
Europe. Although after the nineteenth century infinitesimal methods were no 
longer allowed in any rigorous arguments, physicists and engineers never ceased 
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to rely on them. The powerful and intuitive tools that infinitesimals provided, 
and still provide, have made sure that they never lose their appeal to them. 

The original formulation of calculus by either Leibniz or Newton left much 
to be desired. The vagueness and lack of solid foundations made it prone to 
attacks on technical, philosophical and even theological grounds. What were 
these infinitesimals that could be both equal to and different from zero? Indeed 
Bishop Berkeley's famous Analyst [10] constitutes a brilliant and invective 
attack on both Newton's theory of fluxions and Leibniz Differential Calculus. 
Berkeley's criticism, seemingly addressed to an "infidel" mathematician (most 
probably the astronomer Edmund Halley), was logically valid, devastating and 
left unanswered. In this, Berkeley said of infinitesimals: 

They are neither finite quantities, nor quantities infinitely small, nor 
yet nothing. May we not call them the ghosts of departed quantities? 

Throughout the nineteenth century, as the foundations of modern analysis 
were being set, mathematicians made sure that it was free of contradictions by 
doing what the Greeks had done previously: they banned the use of infinitesi­
mals. It is only recently, in such a long history, that infinitesimals have become 
acceptable again. NSA shows, by slightly modifying the ideas of Leibniz and his 
followers, how a consistent theory can be obtained. It introduces a new equi­
valence relation, Rj, that relates two quantities that differ only by an infinitely 
small amount. Two such quantities are no longer claimed to be equal but equi­
valent in a well-defined sense and can be substituted for one another in some 
cases but not in others. This effectively solves the contradiction quoted above 
from Bishop Berkeley that required an infinitesimal to be both zero and yet 
not equal to zero. NSA effectively shows that the "infidel mathematician" is 
innocent [75]. 

1.2 The Principia and its Methods 

The Principia is considered to be one of the greatest intellectual achievements 
in the history of exact science. It has, however, been influential for over three 
centuries rarely in the geometrical terms in which it was originally written but 
mostly in the analytico-algebraic form that was used very early to reproduce 
the work. We examine some of the original methods used in the Principia in 
the following sections. 

1.2.1 Newton's Style and Reasoning 

Newton's reasoning rests on both his own methods and on geometric facts 
that, though well known for his time (for example, propositions of Apollonius 
of Perga and of Archimedes), might not be easily accessible to modern readers. 
Moreover, the style of his proofs is notoriously convoluted due to the use of a 
repetitive, connected prose. Whiteside [81] notes the following: 
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I do not deny that this hallowed ikon of scientific history is far from easy 
to read ... we must suffer the crudities of the text as Newton resigned 
it to us when we seek to master the Principia's complex mathematical 
content. 

According to Whiteside's analysis of the mathematical principles behind the 
Principia, Newton's work is written in a relatively standard late seventeenth­
century form, that is a mixture of synthetic and algebraic-geometric reasoning. 
Moreover, Newton also adds his own informal geometrical-limit (or ultimate) 
arguments to the reasoning procedures; these are essential reasoning techniques 
on which we shall expand in the sequel. 

Newton suggested after the publication of the Principia that he first did 
the work using calculus and then wrote it up in synthetic form so that the 
mathematics would not be too unusual or innovative for his audience. These 
suggestions are now widely believed to have been circulated due to the priority 
dispute that raged at the time between Newton and Leibniz about the invention 
of the calculus. In fact, even Newton's preliminary work on the motion of bodies 
has the same sort of synthetic form as the Principia. Newton's style of reasoning 
is reminiscent to some extent of that of Isaac Barrow who had shown that all 
the infinitesimal and algebraic geometric results of the mid-seventeenth century 
could be reconstructed using more or less proper synthetic geometry. 

1.2.2 From Prose to Mathematical Statements 

Sometimes Newton's prose tends to obscure the aim of particular arguments or 
geometric constructions. One might also argue, however, that the inventiveness 
of Newton's use of geometry often requires dedication on the part of the reader. 

However, as remarked by Lamport [56], the difficulty with prose-style proof 
is the inherent lack of information about its logical structure. This observation 
applies aptly to the Principia since the reader has the often difficult task of 
extracting a proof out of Newton's elaborate prose. Moreover, to formalize the 
Principia, there is the additional burden of unravelling Newton's reasoning from 
the standpoint of a modern reader. Indeed, the mathematical notation of the 
seventeenth century can be rather obscure and primitive when compared with 
that used by twentieth-century mathematicians. This can lead to ambiguities 
and wrong interpretation if not examined and checked carefully. The noticeable 
effect is a rather long formalization process. 

Due to the much greater wealth of notation and concepts in modern math­
ematics, variables can now be named and formulae structured. This produces 
succinct mathematical statements rather than long-winded, possibly erroneous 
or ambiguous ones. Consider the enunciation of Lemma 11, as a typical example 
from Newton's Principia (see Figure 1.1): 

The evanescent subtense of the angle of contact, in all curves having a 
finite curvature at the point of contact, is ultimately in the duplicate 
ratio of the subtense of the conterminous arc. 
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In order to formalize this lemma, we first need to recast Newton's terminology 
using more familiar geometric notions. The accompanying figure, to which 
Newton makes no reference in his enunciation, becomes essential for this 
process: 

Subtense of the angle of contact. 
BD is Newton's so-called sub tense of the angle of contact. It is the perpen­
dicular to the tangent AD meeting the curve at B. 

Subtense of the conterminous arc. 
The sub tense is chord AB and arc AB is its conterminous arc. 

Duplicate ratio. 
The duplicate ratio of a number x is x2 • 

So essentially, in modern notation, Newton is saying in Lemma 11 that BD ex: 
AB2 ultimately. 

The next task in formalizing this theorem and making it amenable to mech­
anization requires making notions such as evanescent and ultimately rigorous. 
These are special concepts from Newton's reasoning that have been the object 
of the current research work and which will now be introduced in more detail. 

Fig 1.1. Diagram accompanying Newton's Lemma 11 

In the various figures used by Newton, some elements must be considered as 
"very small": for example, we encounter lines that are infinitely or indefinitely 
small or arcs that may be nascent or evanescent. De Gandt [36] argues that 
there is a temporal infinitesimal that acts as the independent variable in terms 
of which other magnitudes are expressed. However, since time itself is often 
represented geometrically using certain procedures, the infinitesimal time or 
"particle of time" in Newton's own expression appears as distance or area. 

1.2.3 The Infinitesimal Geometry of the Principia 

On reading the enunciation of many of the lemmas of the Principia, one 
often comes across what Newton calls ultimate quantities or properties -
for example, ultimate ratio (Lemmas 2, 3, 4 ... ), ultimately vanishing angle 
(Lemma 6), and ultimately similar triangles (Lemma 8). Whenever Newton 
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uses the term, he is referring to some "extreme" situation where, for example, 
one point might be about to coincide with another one thereby making the 
length of the line or arc between them vanishing, that is infinitesimal. 

Furthermore, as points move along arcs or curves, deformations of the 
diagrams usually take place; other geometric quantities that, at first sight, 
might not appear directly involved can start changing and, as we reach the 
extreme situation, new ultimate geometric properties usually emerge. We need 
to be able to capture these properties and reason about them. The use of infini­
tesimals allows us to "freeze" the diagram when such extreme conditions are 
reached: we introduce, for example, the notion of the distance between two 
points being infinitesimal, that is, infinitely close to zero and yet not zero when 
they are about to coincide. With this done, we can then deduce new or ultimate 
properties about angles between lines, areas of triangles, similarity of triangles 
and so on. This is what distinguishes our geometry from ordinary Euclidean 
geometry. 

The infinitesimal aspects of the geometry give it an intuitive nature that 
seems to agree with the notions of infinitesimals from NSA. Unlike Newton's 
reasoning, for which there are no formal rules of writing and manipulation, the 
intuitive infinitesimals have a formal basis in Robinson's NSA. This enables 
us to master motion, which is part of Newton's geometry, and consider the 
relations between geometric quantities when it really matters, that is at the 
point when the relations are ultimate. 

1.3 On Nonstandard Analysis 

The rise of Nonstandard Analysis in recent years has provided what is regarded 
as a good alternative to the classical treatment of mathematical analysis. It 
deals simply and elegantly with concepts and processes - essentially those 
associated with the notion of limits - that are at the heart of analysis. The 
nonstandard approach not only shortens many proofs, but also removes the 
huge gap that lies between an initial intuitive approach to analysis - found, 
say, in a first course in calculus - and a rigorous one offered in more advanced 
classical analysis. 

Many people, who are interested in analysis primarily as a tool, are dis­
couraged from using it when faced with the exacting, rather dry nature of the 
standard treatment. Viewed in this light, the nonstandard approach can make 
mathematical analysis available as a rigorous tool to a wider audience, while 
not forsaking intuition. 

The general agreement about the power of NSA has already resulted in 
its application in several different fields: economics [71] and physics [2], for 
instance. However, its role in elementary mathematics education is still a matter 
of much discussion and controversy. The main drawback, it is often believed, 
lies in the need to make the logical foundations of NSA clear before it can 
be used safely and effectively. Such a task is not easy and opinions differ on 
how much mathematical background is needed. There has been progress in 
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the exposition of NSA over the years: Robinson's original treatment required 
a rather advanced understanding of mathematical logic and model theory. 
Subsequent reformulations of the theory, using set theory for example, have 
made it more accessible to a wider and less specialized audience. The current 
work has benefited from these later developments. Once the foundations of 
NSA have been clearly understood though, its algebraic power and simplicity 
bear much fruit in teaching analysis. 

Perhaps the best approach though lies in a combination of the standard and 
nonstandard treatment of analysis. The nonstandard treatment can then be 
used in situations where it brings a clear advantage to the classical treatment. 
Our work, in that regard, can be viewed as taking this middle way: standard 
and nonstandard definitions are provided for all concepts developed. The non­
standard methods then make use of the properties of standard mathematics 
to obtain those of the nonstandard extensions. Also, the nonstandard proofs 
are usually compared and contrasted with the corresponding standard ones to 
highlight any conceptual and mechanical benefits gained. 

1.4 Objectives 

One of the main objectives of this research is to study the geometric proofs 
of the Principia and investigate ways of mechanizing them using the rigorous 
framework provided by the computer proof assistant Isabelle [66]. From the 
outset, a major consideration has been to respect as much as possible Newton's 
reasoning. We want to demonstrate, with the help of (mathematical) logic 
and geometry theorem proving, that Newton's proof sketches are rigorous even 
though they might appear informal. We are especially interested in validating 
Newton's ultimate reasoning procedures which deal with vanishing or infinite­
simal quantities. 

To progress towards the above objective, a sound formalization of infinitesi­
mals is necessary. Since Robinson's NSA makes the infinitely small respectable 
and rigorous, this makes it fit for mechanization. Our task therefore is to 
develop, through the use of definitions only, a theory which introduces the 
new types of numbers from NSA. Then by combining concepts from NSA and 
geometry, we expect to capture the reasoning that takes Newton's geometry 
beyond conventional Euclidean geometry. 

Also, in our development of Euclidean and infinitesimal geometry, some 
basic analytic geometry is carried out. The approach is again purely definitional 
and is aimed at verifying the rules of geometry emanating from the methods 
formalized in Isabelle. 

The last motivation for this work is to provide a mechanized treatment of 
analysis within a nonstandard framework. This aspect of our research arose as 
a result of the formal development of infinitesimals, and of the other classes of 
nonstandard numbers in Isabelle. Notions from NSA are used to give a simpler, 
algebraic formulation to many familiar concepts from standard calculus. We 
aim to show the numerous advantages that infinitesimals, and the nonstandard 
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approach in general, bring to the mechanization of analysis in terms of shorter, 
simpler and more intuitive proofs. 

1.5 Achieving our Goals 

To achieve the above objectives, various theories had to be built in Isabelle. 
We now give an overview of the development by highlighting our contributions 
and describing the main components of this research. Figure 1.2 gives a dia­
grammatic overview and the relations between the various parts. -Below, the 
numbers in brackets refer to the diagram. 

Constructions up to the reals (1, 2). 
Since Isabelle only had the natural numbers and a simple integer theory 
(at the time), we constructed all the number systems up to the reals. These 
are the positive natural numbers, the positive rationals, the positive reals, 
and then the reals. All the important properties of each number system 
had to be proved before the next one could be constructed. 

Mechanization of geometry (3). 
To mechanize the geometric arguments of the Principia, a geometry theory 
has been developed in the theorem prover Isabelle. The main concern was 
to have methods powerful enough for us to derive the theorems that follow 
from Newton's diagrams. No geometry theory had been built in Isabelle 
previously; so, we had to investigate and formalize geometric methods that 
would fit well within Isabelle's framework while satisfying our aims. 

Construction of hyperreals (4). 
The theory of nonstandard reals extends that of the real numbers in Isa­
belle. The construction involved adding new theories about filters and 
ultrafilters and also proving Zorn's Lemma in Isabelle/HOL. The algebra of 
the operations on the nonstandard numbers was developed and new rela­
tions introduced. The hypernaturals were also constructed; these extend 
the natural numbers. 

Combination of geometry and NSA (5). 
A theory combining geometry and infinitesimals has been developed. This 
contains proofs of infinitesimal geometry theorems. Nonstandard tools are 
developed that can also be applied to Euclidean geometry. An elementary 
theory of vectors is formalized which is used to verify the geometry axioms 
of Isabelle. 

Mechanization of Principia (6). 
The combination of geometry and nonstandard numbers have then been 
applied to Newton's Principia. Proofs of several important lemmas and 
propositions of the Principia are formalized in the theory. An anomaly 
in Newton's demonstration of the Kepler Problem is revealed using the 
rigorous techniques. 

Mechanization of NSA (7). 
Some elementary analysis has been investigated using the nonstandard 
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approach. The hyperreals provide a wide array of numbers and notions 
that model familiar concepts from mathematical analysis. 

7 
Analysis 

sequences 
derivatives 
continuity 
NS extensions ... 

Isabelle 

infinites 
infinitely close 
algebraic laws ... 

infinitesimals artS, areas 
L--_______ --...... ultimately similar ..• 

L--__ -.-__ ..J algebraic laws 
Archimedean property •.. 

Fig 1.2. Overview of development 

1.6 Organisation of this Book 

This book first provides a survey (Chapter 2) of the background of geometry 
theorem proving prior to the publication of Wu's deeply influential method. We 
then review and point out the relative merits of the algebraic and coordinate­
free techniques that have been successfully applied to GTP since 1977. The 
choice of which geometric methods to formalize in Isabelle is discussed. The 
new notions with which the GTP methods are extended to deal with various 
(physical) concepts from the Principia, such as motion, are also introduced. 

We then discuss the ultrapower construction of the hyperreals in Isabelle 
(Chapter 3). Using the reals and numbers beyond, the concept of an infinite­
simal geometry is examined where quantities can be infinitely small and new 
geometric properties emerge (Chapter 4). 

Hyperreal vectors and their associated algebra are then used to provide a 
definitional foundation to the geometry techniques axiomatized in Isabelle. The 
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analytic geometry theory is used to capture the infinitesimal geometric notions 
as well. We then describe how· the various tools - hyperreals, infinitesimal 
geometric relations etc. - are applied to the mechanization of some of the 
lemmas and propositions from Newton's Principia (Chapter 5). This shows how 
various notions from Newton's reasoning are formalized using a combination of 
NSA and geometry. The mechanization of one of the most important theorems 
of the Principia is examined as a detailed case study; the goal is to demonstrate 
clearly the interaction between geometry and the tools of nonstandard analysis. 
A flaw in Newton's reasoning emerges through the rigour of mechanization 
within the nonstandard framework. 

As a further contribution, the hyperreals are applied to the formal devel­
opment of some aspects of nonstandard real analysis or infinitesimal calculus 
(Chapter 6). This includes concepts from the theories of limits, series, conti­
nuous functions, and differentiation. Finally, we offer our conclusions and survey 
some possible further work (Chapter 7). 



2. Geometry Theorem Proving 

This chapter first surveys the early development of mechanical theorem proving 
in geometry. GTP was initially viewed as an artificial intelligence problem 
that many believed would be easily tackled by machines. However, the initial 
optimism soon vanished as various difficulties associated with the domain 
emerged and no significant results could be proved. The developments over 
the last twenty years or so though have led to a revolution in the field. We 
survey several of the powerful methods proposed and analyse our own choice 
for formalization in Isabelle. Concepts that are important to deal with the 
geometry of the Principia are also introduced. 

2.1 Historical Background 

In 1899, Hilbert proposed five groups of axioms in his Grundlagen der Geome­
trie (Foundations of Geometry) [46]. In this classic work, Hilbert showed the 
consistency and independence of the sets of axioms and from them derived the 
various properties of plane (Euclidean) geometry. Hilbert's geometry consists 
of points, lines, and planes as primitives and of relations between these for 
angle congruence and incidence amongst others. The relationships between the 
primitives are completely determined by the axioms. Hilbert's insistence that 
no geometrical intuition was needed to prove any results - he suggested that the 
primitives could be replaced by chairs, tables, and beer mugs, as long as these 
satisfied the axioms - marked a clear departure from the geometry of Euclid. 
Geometry of the Ancient Greeks was meant as an axiomatization of concepts 
that were intuitively obvious, while Hilbert abstracted geometry away from any 
concrete interpretation. 

The role of Hilbert's Grundlagen in relation to mechanical GTP is quite an 
important one. Indeed, the formalization given by Hilbert made clear for the 
first time the possibility of mechanizing elementary geometry. This was realized 
by Poincare who, with great prescience, argued the following in his review of 
the Grundlagen (1902) [70]: 

Thus Hilbert has, so to speak, tried to put the axioms in such a form 
that they could be applied by someone who did not understand their 
meaning because he had never seen a point, a straight line, or a plane. 
Reasoning should, according to him, be capable of being carried out 
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according to purely mechanical rules, and for doing geometry it suffices 
to apply these rules to the axioms slavishly without knowing what they 
mean. In this way one could build up all of geometry, I will not say 
without understanding anything at all since one must grasp the logical 
sequence of the propositions, but at least without perceiving anything. 
One could give the axioms to a logic machine, for example the logical 
piano of Stanley Jevons, and one would see all of geometry emerge 
from it. 

Hilbert's geometry, despite its great influence, has been criticized though for 
giving the same status to points, lines, and planes. It can be contrasted with 
Tarski's theoretical contribution published in 1926 which is an axiom system 
for Euclidean geometry. In Tarski's geometry, the universe contains only points 
with two primitive relations on them: betweenness and equidistance. A direct 
consequence was that much more work had to be done to prove results in the 
Tarski system. 

As far as actual machine geometry is concerned, the first geometry theorem 
prover (the Geometry Machine) was developed by Gelernter in 1959; it was then 
extended and used to prove a number of theorems from high-school textbooks of 
the time [37]. Gelernter's Geometry Machine included specific heuristic know­
ledge about the geometry domain and had a backward chaining search strategy. 
The main heuristic built into the machine was to use the diagram accompanying 
the statement of the geometry problem to reject false goal statements. 

More work was also done using the same approach by Gilmore [38], Nevins 
[63] and Elcock [29], with additions such as forward chaining for example. The 
axiomatic or synthetic approaches used by Gelernter and the others above were, 
however, not very successful in proving or discovering any non-trivial theorems. 
The main problem, despite the numerous search strategies and heuristics that 
have been tried, is the high inefficiency; this is due to factors such as the huge 
search space of geometry rule applications. Koedinger argues that traditional 
geometry problem solving is hard [54] and outlines how the number of inferences 
that can be made rapidly increases at each layer in the proof (from seven at 
the beginning of the proof of a typical problem to over 100 000 at the third 
layer where a minimum of six layers are required). This makes it essential to 
add sophisticated search strategies and heuristic knowledge to GTP systems 
for them to have any chance of proving anything in the geometry domain. 
Koedinger further argues that the lack of success of these approaches lies in 
the fact that the underlying problem representation on which most of them are 
built has remained the same; namely one that has the formal geometry rules 
as operators and requires a search in the problem space for the rules that can 
be applied. 

In 1969, Cerutti and Davis, rather ahead of their time, used symbolic 
manipulation in a system called FORMAC to prove theorems in elementary 
analytic geometry [15]. They used Descartes' method, that is an essentially 
algebraic approach that assigns coordinates to points, to prove Pappus' the­
orem. In the same paper, the authors also outlined how they obtained two 
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new theorems by going through the output of the machine. Even though this 
algebraic approach was relatively successful, Wang thinks it unfortunate that 
the techniques described in it were not investigated any further to give a gen­
eral GTP method [79]. It took several more years before the potential of the 
algebraic approach was finally recognized. This changed a rather stagnant area 
into one which has achievements ranking, most probably, amongst the best in 
automated reasoning so far. 

2.2 Algebraic Techniques 

The algebraic techniques usually proceed through the introduction and use of 
some coordinate system. The geometry problem or statement is then translated 
into an algebraic form that can be dealt with using a number of powerful 
algorithms. We outline a few of the most successful algebraic techniques next. 

2.2.1 Wu's Method 

The work of Wu Wen-tsiin laid the foundations for automatic theorem proving 
in geometry. Wu's seminal paper, first published in China in 1977, heralded 
a new era in GTP and radically improved the power of mechanical reasoning 
in geometry. The method has been successfully applied to Euclidean geometry 
and has been used to discover several non-trivial geometric theorems. Wu's 
technique, in contrast to Tarski's complicated decision procedure for element­
ary geometry, is a feasible method for mechanical GTP. To prove a particular 
geometry theorem, the method works as follows: 

• First, it translates the geometry theorems into polynomial equations, polyno­
mial inequations, and polynomial inequalities. This corresponds to the initial 
introduction of coordinates and symbolic transformation of the problem 
whereby geometric relations and entities are converted into corresponding 
algebraic ones. This approach can be traced back to Hilbert's Foundations of 
Geometry, where starting from an initial set of axioms, a number system and 
a coordinate system are introduced to provide a model for the axioms. The 
polynomial inequations mentioned above express the so-called degenerate 
cases that need to be ruled out (see Section 2.4.2) . 

• Next, the method decides algorithmically if the conclusion c of the geo­
metric theorem follows from the relations that make up the hypothesis 
of the theorem under the non-degenerate conditions. This step involves 
triangulating the hypothesis polynomials {hi, ... ,hn } using pseudo-division 
to yield the characteristic set d: of the hi'S and the pseudo-remainder r of c 
with respect to d:. Then, if r is zero, the geometry statement is generally true. 
Otherwise, the set d: is further decomposed by factoring and each component 
examined to decide the validity of the statement. As a final stage, the non­
degenerate conditions can be analysed, if necessary and if possible [83, 79]. 
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This simple algebraic procedure works well to prove a remarkable number of 
theorems. Moreover, it can even prove theorems that are under-specified and 
generate sufficient non-degeneracy conditions to make a particular geometry 
statement valid. Wu's method acts as a complete decision procedure for 
statements whose hypotheses and conclusion can be expressed by polynomial 
equations and has a rather deep underlying mathematical theory. We urge the 
interested reader to consult Wu's influential paper for a thorough exposition of 
this powerful mechanical procedure [83]. 

2.2.2 Grabner Bases Method 

Wu's work resulted in a rekindled interest in the field of GTP and led to the 
application of Buchberger's Grabner bases method to automated GTP [51, 55]. 
As outlined by Wang in his survey paper [79], there are two main approaches 
to using Grabner bases in geometry: 

• The first approach, mainly due to Kutzler and Stifter [55], and Chou [21] 
involves computing the Grabner bases, G, of the set of hypothesis polynomials 
and then the normal form h of the conclusion polynomial c modulo G. The 
polynomial c is in normal form modulo G if and only if it cannot be reduced 
to another polynomial using the elements of G. It has been shown that any 
polynomial can be reduced to normal form modulo some set of polynomials 
in finitely many steps. The theorem is then true if the normal form h = O . 

• The other main approach is due to Kapur [51] and involves deciding whether 
a finite set of polynomials does not have a solution in an algebraically closed 
field. According to Kapur, using Hilbert's Nullstellensatz, this refutational 
approach is equivalent to checking whether 1 is in the ideal generated by 
the polynomials. Thus, as described by Wang [79], the method proceeds by 
computing a Grabner basis G* of {hI, ... , hn } U {zc - 1} and then checking 
whether 1 E G*. 

There exist several other well-established algebraic methods for automated 
geometry theorem proving. We have, for example, those based on Cylindrical 
Algebraic Decomposition [24] developed by Arnon [4] and by Buchberger et al. 
[13] amongst others. These quantifier elimination methods can be applied to 
an array of decision problems that can be expressed in prenex form [79]. The 
method was developed as an improvement over the original, complex decision 
procedure proposed by Tarski for elementary geometry [77]. Wu's method has 
also been improved and even combined with Arnon's in an attempt to deal 
with theorems that involve inequalities [16]. 

2.2.3 On the Algebraic Methods 

Computer algebra systems (CAS) seem ideally suited for dealing with the 
various GTP methods described above. Indeed, packages for Grabner bases 
are routinely provided by most serious systems, for example. There has been 
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work done by Fearnley-Sander [32], Kutzler et al. [55] and others in which 
geometric problems are translated into corresponding algebraic ones that are 
then solved by computer algebra methods. 

Algebraic reasoning techniques despite their power are, however, not perfect 
and have several crucial limitations. They have problems, in general, dealing 
with geometric situations involving inequalities. Therefore, in geometric terms, 
this means that techniques such as Wu's and the Grabner bases methods cannot 
handle adequately concepts involving order relations such as betweenness and 
congruent angles. Traditional synthetic (logical) geometric reasoning methods, 
however, have no problems with order relations; so an interesting approach 
might be using both of these approaches to tackle GTP. Matsuyama and Nitta 
[61] have done some work on integrating logical and algebraic reasoning. Their 
system suffers from several problems though, especially on the side of the logical 
reasoner which is not strong enough to represent some of the geometric rela­
tions. Arnon [4] has also done some work on combining, rather than integrating, 
the two approaches but his work mainly uses the logical reasoner for expressing 
the geometric problem (through the use of predicates) and relies on the algebra 
component for actual geometric reasoning. 

In the light of recent work done by Harrison [43], Ballarin and Paulson 
[7], and others in interfacing theorem provers such as Isabelle and HOL, with 
computer algebra systems, it might be interesting and fruitful to have the 
two components cooperate to solve geometry problems. The more powerful 
capabilities of theorem proving systems would improve logical reasoning, where 
needed, while the algebra system could then be used to deal (easily in many 
cases) with the aspects of the proof not involving order relations. The problems 
would be expressed logically in the theorem prover using primitive predicates 
which would also be responsible for transformation and interaction with the 
computer algebra system when needed. 

2.3 Coordinate-Free Techniques 

The main drawbacks of the algebraic techniques are the long and hard to 
read proofs they usually generate. This makes it difficult to explain the proofs 
geometrically and might be viewed as taking away the intuitive appeal usually 
associated with geometry reasoning. We next describe a few of the so-called 
coordinate-free techniques that have been used successfully in automated GTP. 
The techniques are generally not as powerful as those involving coordinates but 
have been quite successful in proving a large number of theorems in several 
provers. Moreover, the geometric interpretation that can be attached to these 
methods adds a lot to their appeal. We start with a description of Clifford 
algebra, which has been generating a lot of attention recently. 
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2.3.1 Clifford Algebra 

A geometric algebra is one which can be used as a suitable grammar for 
representing basic geometrical relations. Clifford algebra has been proposed 
as a unifying framework for various fields encompassing physics, mathematics 
and computer science since it admits a geometric interpretation [45]. In fact, 
Clifford (in 1878) originally suggested the name Geometric Algebra for what 
he called a "grammar of space" . Once the algebra is chosen, the next step is to 
construct a theory or calculus for representing complex geometrical relations 
and structures. 

Directed Number Systems. The first step in developing a geometric cal­
culus involves choosing and encoding the basic geometric concepts in symbolic 
form. The concepts of magnitude and direction are usually taken as basic, and 
the concept of vector as the basic kind of directed number. 

A directed number is defined algebraically but interpreted geometrically. 
The number is defined implicitly by specifying rules for adding and multiplying 
vectors. The vectors are assumed to generate an associative algebra in which 
the square of every vector is a scalar. Let Vn be an n-dimensional vector space 
over the real numbers. For any vectors u, v, w in Vn , the geometric product is 
defined by the basic axioms: 

u(vw) = (uv)w 
u( v + w) = uv + uw 
(v +w)u = vu +wu 
uu = lul2 (contraction rule) 

The contraction rule determines a measure of distance between vectors in Vn 
and the vector space can be regarded as an n-dimensional Euclidean space. 

These simple rules defining vectors are the basic rules of Clifford algebra. 
They determine the mathematical properties of vectors completely and gener­
ate a rich mathematical structure. The outstanding feature that differentiates 
Clifford algebra from other algebraic systems is the geometric interpretation 
that can be attributed to multiplication. To make this apparent, the geometric 
product uv is decomposed into symmetric and antisymmetric parts defined by 

giving 

u . v = ~(uv + vu) 
ul\v= ~(uv-vu) 

uv = u . v + u 1\ v 

The symmetric product u . v is the conventional Euclidean dot or inner product 
on a vector space with its usual geometrical interpretation. The antisymmetric 
product u 1\ v is called the outer product and is neither a scalar nor vector. The 
outer product u 1\ v is called a bivector and geometrically can be interpreted as 
a directed area, in the same way that a vector represents a directed line. The 
two products combined together yield the geometric product uv and determine 
its geometric interpretation: 
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uv = -vu {:::::::} u· v = 0 
uv = vu {:::::::} u A v = 0 

This means that the geometric product uv of non-zero vectors u and v anti­
commutes if and only if u and v are orthogonal, and commutes if and only if 
the vectors are collinear. The geometric product thus completely describes the 
relative directions and magnitudes of the vectors u and v since, for example, 
the degree of commutativity of the product uv is a measure of the direction of 
u relative to v. In fact, the quantity u-1v = uv/uu is a measure of the relative 
direction and magnitude of u and v. Another geometric interpretation can 
regard u-1v as an operator which transforms u into v, as expressed algebraically 
by the equation u(u-1v) = v. We thus have a complete and powerful geometric 
interpretation for the product of two vectors. This can be extended to the 
product of many vectors. 

Clifford Algebra and GTP. Clifford algebraic techniques have been studied 
extensively in recent times and used for automated theorem proving in several 
geometries. Li and Cheng, for example, have done some notable work in apply­
ing a combination of Clifford algebra and Wu's method to differential geometry 
[59]. The work is able to prove theorems in the local theory of space curves. 
Also worth mentioning is the work by Wang who derived sets of rewrite rules 
for simplification of Clifford algebraic expressions [80]. Wang's approach was 
also applied to problems in computer vision. The keen interest in applying 
Clifford algebra to GTP results from its expressiveness: it allows numerous 
concepts to be expressed in various geometries. FUrthermore, it provides an 
efficient approach to automatic GTP while remaining more or less meaningful 
geometrically when compared to the algebraic methods involving coordinates. 

Despite the advantages of Clifford algebra, it does not seem, at first sight, 
directly relevant to our work since it does not match closely the geometric 
concepts and infinitesimal nature of Newton's proofs. However, the simple and 
intuitive algebra is of intrinsic interest since its formalization would open up 
application in many areas. In Chapter 4, we outline a related but simpler and 
more familiar theory based on vectors. This is formalized in Isabelle mainly for 
verifying its geometric theory. 

In the next sections, we introduce more "traditional" methods that are 
based on geometric invariants [19, 20] and high level geometry lemmas about 
these invariants. These are powerful methods developed originally in China (by 
Zhang) for geometry education. 

2.3.2 The Area Method 

A particular property is ideal as an invariant if it ensures that the proofs 
generated are short. Also, the methods should be powerful enough to prove 
many properties without adding auxiliary points or lines. The other important 
aspect is to achieve diagram independence for the proofs, that is, the same 
proof can be applied to several diagrams. 
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In this method, there are basic lemmas about geometric properties called 
signed areas. Other rules are obtained by combining several of the basic ones 
to cover frequently-used cases and simplify the search process. 

The line segment from point A to point B is represented by A -- B, its 
length by len (A - B), and the signed area S,6,ABC of a triangle is the usual 
notion of area with its sign depending on how the vertices are ordered. 1 The 
usual approach consists of having S,6,ABC as positive if A-B-C is in anti­
clockwise direction and negative otherwise. Familiar geometric properties such 
as collinearity, coll, and parallelism, II, can then be defined as follows: 

collabc=: (S,6,abc= 0) 

a -- b II c -- d =: (S,6, abc = S,6, abd) 

New points can be introduced and the signed area of a quadrilateral So abc d 
defined in terms of signed areas of triangles: 

S,6, abc = S,6, abd + S,6, adc + S,6, dbc 

Soabed=: S,6,abc+S,6,aed 

(2.1) 

(2.2) 

Properties about So can now be derived by changing the order of the points 
and sign of the geometric quantity. We have, for example: 

So a bcd = So bcda 

Soabed=: S,6,abd+S,6,bed 

-So abed =: S,6, bac+ S,6, ade 

(2.3) 

(2.4) 

An Example. The power and elegance of the area method can be seen at 
work in the proof of the relatively hard Pascal's theorem.2 

Example 2.3.1. Let A, Band C be three points on one line and let P, Q and 
R be three points on another line. If C -- Q II B -- P and R -- B II Q -- A 
then C -- R II A -- P (Figure 2.1). 

Below we give a rather detailed overview of how this example can be stated 
and proved in Isabelle. Each step shows the current subgoal (after the ~) 
to be proved by applying one or more tactics. The premises, especially if they 
have been modified, are also shown in some cases. 

Main Goal 
[lcoll ABC; coll PQR; C -- Q II B -- P;R -- B II Q -- All 
~C--RIIA--P 

Our aim is to show that the area of /::)"C AP = /::)"RAP which follows from the 
definition of parallel lines. To assist the simplification later on, we substitute 
with S,6,RAP = -S,6,RP A: 

1 Isabelle's notation s_delta will also be used to denote the signed area. 
2 This theorem is sometimes known as Pappus' theorem (Artin [5]). 
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Fig 2.1. Pascal's theorem 

[lcoll A B Cj coll P Q Rj C -- Q II B -- Pj R -- B II Q -- AI] 
==> s_delta CAP = -s_delta R P A 

Next, the theorem para_Bum_area, shown below, is used to express one of the 
signed areas in the conclusion of the subgoal as the sum of the areas of two 
triangles: 

para..sum..area 
[lcoll ABCjC -- Q II B -- PI] 
==> s_delta CAP = s_delta Q B P + s_delta B A P 

This theorem is based on property 2.1 of section 2.3.2 and on the definition of 
parallel lines. The following goal with its associated premises now results: 

[Is_delta CAP = s_delta Q B P + s_delta B A Pj 
s_delta R P A = s_delta B Q A + s_delta Q PAl] 

==> s_delta CAP = -s_delta R P A 

The next steps are trivial and follow from the theorems we proved about areas 
of quadrilaterals. The subgoals are routinely proved by Isabelle's simplifier, 
thereby proving Pascal's theorem. We give a rather more detailed Isabelle 
proof to show the area method at work. Replacing with the decompositions 
of s_del ta CAP and s_del ta R P A, we simplify the goal to: 

==> s_delta Q B P + s_delta B A P = -(s_delta B Q A + s_delta Q P A) 

By applying theorems (2.3) and (2.4), we can reduce the sums of signed trian­
gular areas in the goal to one involving the signed areas of quadrilaterals. This 
new goal is then trivially true: 

==> s_quad Q B A P = - - s_quad Q B A P 

2.3.3 The Full-Angle Method 

The concept of the angle and its associated properties provide powerful tools 
that have been used traditionally in geometry theorem proving. In their work on 
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producing automated readable proofs, Chou et al. [20] also propose a method 
based on the concept of full-angles that can be used to deal with classes of 
theorems that pose problems to the area method. A full-angle (u, v) is the 
angle from line u to line v measured anti-clockwise. We note that u and v are 
lines rather than rays; this has the major advantage of simplifying proofs by 
eliminating case-splits in certain cases. 

The full-angle is then used to express other familiar geometric properties 
and augment the reasoning capabilities of the geometry theory. For example, 
Chou et al. express that two lines are perpendicular, .1, as follows, 

u .1 v == (u, v) = (1) 

where (1) is a constant in their theory satisfying (1) + (1) = O. In addition, 
there are other rules that enable new lines to be introduced such as: 

p -- x II u -- v::::::} (a -- b,p -- x) = (a -- b, u -- v) 

In their paper [20], Chou et al. propose 14 basic rules about the properties of 
full-angles and some seven extra rules obtained (without proofs) by combining 
the basic ones. In our approach, described in Section 2.4.1, we define the notion 
of full-angle between lines and derive some of the basic and combined rules 
needed for our development. 

A Simple Example: Euclid 1.29. Euclid's Proposition 29 of Book I [30] can 
be easily proved using the full-angle method. The proposition states that if 
A -- B II C - D and the transversal P - Q intersects A - B and C - D, 
then (A -- B, P -- Q) = (C -- D, P -- Q) (Figure 2.2). 

D c 

A B 

Fig 2.2. Euclid's Proposition 1.29 

This theorem admits a straightforward proof by using the rules about full­
angles given in Section 2.3.3, since the angle between two parallel lines is zero. 

Proof· 

A -- B II C -- D ::::::} (A -- B, C -- D) =a 0 

(A -- B, P -- Q) + (P -- Q, C -- D) =a 0 

(A--B,P--Q) =a -(P--Q,C--D) 

(A -- B,P -- Q) =a (C -- D,P -- Q) 0 
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This demonstration also shows how an angle can be split to introduce a line into 
the goal. This typically happens when doing a forward proof construction in Isa­
belle. On the other hand, in a backward proof, this corresponds to eliminating a 
line from the current goal and reflects the way in which the automatic method 
actually proceeds. By working in the interactive environment of Isabelle, there 
is the added flexibility of being able to work in the forward direction, which is 
not possible in the fully automatic provers. Another advantage is that variable 
instantiation can be delayed in Isabelle, so one can bind a newly introduced 
line when sufficient information becomes available. 

2.3.4 Which Method? 

The choice of which particular geometric method to develop in Isabelle was 
an interesting one. On the one hand, there are the highly successful algebraic 
methods, as we have outlined above, and on the other hand, the relatively less 
successful synthetic techniques. The efficiency of the algebraic GTP techniques 
makes the former ideally suited for automatic theorem provers but in our case 
they do have several limitations. 

A first possible candidate for formalization in Isabelle was Hilbert's geo­
metry, especially considering Poincare's comment on the classic work. In fact, 
we did formalize the first two groups of axioms proposed by Hilbert as a simple 
case study on geometric proofs in Isabelle. The first group of seven axioms 
establishes the connection between the fundamental concepts that exist in 
Hilbert's universe, namely points, lines, and planes. The two theorems stated 
by Hilbert (without proof) about intersections of lines and planes were verified. 
The second group of five axioms defines the concept of a line segment AB as the 
set of points lying between A and B. These axioms effectively axiomatize the 
idea of betweenness which was implicitly assumed by Euclid. With the second 
set of axioms, we were able to prove several of Hilbert's results including the 
important theorem that any simple polygon divides the plane into two disjoint 
regions, an interior and an exterior, and that the line joining any point in the 
interior with any point in the exterior must have a point in common with the 
polygon. 

There was scope for formalizing the remaining three groups of axioms in 
Isabelle but our partial mechanization indicated that a rather large amount of 
work would be involved to get to the results needed for our proofs of Newton's 
Principia. Our main aim was not the formalization of geometry in Isabelle just 
for the sake of mechanical theorem proving in Euclidean geometry: there are 
already many successful automatic provers dealing with this, as outlined above. 
We were interested in formalizing concepts from powerful, established methods 
that would fit well with the type of reasoning present in the Principia. 

Thus, we chose the full angle method since it deals extremely well with 
theorems about circles (and angles). Moreover, its blend of algebra and synthetic 
deduction provides geometrically intuitive and high-level steps that enable 
proofs to remain short. The area method has similar advantages. Also, Newton 
himself uses area properties and ratios of segments in many cases when proving 
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his lemmas and propositions. As a result, rules from the area method were also 
formalized to produce Isabelle's geometry theory. 

2.4 Formalizing Geometry in Isabelle 

As just mentioned, the rules and definitions that we use constitute a mixture 
of the algebraic and synthetic approach. The algebra is, however, much simpler 
than that arising from the introduction of coordinates (cf. Section 2.2) and 
most of the work can be viewed as being done in the spirit of logical deduction 
rather than pure algebraic reasoning. The area axioms in Isabelle are related 
to the ones proposed by Chou, Gao, and Zhang in their work on Euclidean 
geometry using the area method [17]. In this work, Chou et al. present a strict 
set of axioms that enables their GTP technique to work for affine geometries 
over any fields. This suits our purpose well as we certainly want a minimal set 
of axioms. In fact, by introducing definitions, we manage to derive some of the 
axioms of Chou et al. as theorems. 

2.4.1 Defining the Theories 

The Axioms of the Area Method. We present below the axioms that are 
used for GTP in Isabelle. Two types of geometric concepts, namely, points and 
lines are introduced. If a point x is on a line I (on (x, I)), or equivalently, I goes 
through {x}, then they are said to be incident. This is the only basic geometric 
relation: 

incident A I = Yx E A. on (x, I) 

The properties that are required are: 

1) a:f: b ~ incident {a,b} (a -- b) 
2) len (a --a) = 0 
3) a:f: b ~ 3p. incident {p} (a -- b) A 

len (a -- p) + len (p -- b) = len (a -- b) 
4) Three points a, b, and c determine a signed area s_delta abc E ]R. sat­

isfying s_delta abc = s_delta cab = s_delta b c a = -s_delta b c a = 
-s_delta b c a = -s_delta c b a = -s_delta a c b 

5) There exists at least three non-collinear points i.e. 3a b c. s_del ta abc :f: 0 
6) A new point d can be introduced or eliminated using the following rule: 

s_delta abc = s_delta a b d + s_delta ad c + s_delta d b c 
7) Lengths of segments are given in terms of areas using the following rule: 

[lincident {a, b, c, d} (L); len (a -- b) = a . len (c -- d) 11 
~ s_deltap a b = a· s_deltap c d 

The definition for parallelism given in Section 2.3.2 is also present in the theory. 
After assuming the basic rules as axioms, we formally verified that the various 
theorems, as well as the combined rules built in as high level lemmas, in the 
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area method hold [19]. We also proved a number of theorems about the sign of 
So abc d that depend on the ordering of the vertices, for example So abc d = 
-So ad c b. With these few basic rules, a surprisingly large number of Euclidean 
geometry theorems can be proved - some of which, like Pascal's theorem in 
Section 2.3.2, are relatively advanced. 

The Full-Angle Method. As mentioned, our aim is not to improve Chou's 
approaches to GTP, since they are essentially algorithmic and designed to per­
form automatic proofs. We have, however, provided a definition for the equality 
between full-angles. In Isabelle, we define the relation of angular equality as 
follows: 

X =a Y == 3n E 1N.lx - yl = mr 

where 7r is introduced as a constant in the theory. 
We can then easily prove that 7r =a 0 and 3271" =a I. Moreover, this enables 

us to combine the area and full-angles methods when carrying out our proofs 
and deduce, for example, that (a -- b, b -- c) =a 0 <==> Sll. abc = o. The 
problems, such as 7r = 0, that would arise if the ordinary equality for angles 
was used are avoided. 

The relation =a is an equivalence relation that is also used to express the 
properties that we might want. For example the idea of two lines being per­
pendicular becomes: 

7r 
a -- b ..1. c -- d = (a -- b c -- d) - -- , -a 2 

The two other main properties of full-angles deal with their sign and how they 
can be split or joined. The same rule therefore either introduces a new line x 
or eliminates it from the full angles depending on the direction in which it is 
used: 

(u, v) =a -(v, u) 

(u, v) =a (u, x) + (x, v) 

2.4.2 Formulating Degenerate Conditions 

When dealing with geometry proofs, we often take for granted conditions that 
need to be stated explicitly for machine proofs: for example, two points making 
up a line should not coincide. The machine proofs are valid only if these con­
ditions are met. These subsidiary requirements are known as non-degenerate 
conditions and are required in our case mostly to prevent the denominators of 
fractions from becoming zero in the various algebraic statements. 

It is often easy to omit non-degenerate conditions especially when the user 
formulates a theorem to be proved using a diagram as a guide. We tend to draw 
on paper "well-formed" diagrams that enable us to picture the property we are 
trying to prove. However, for the automatic theorem prover, if the necessary 
conditions are not available then it might fail to find a proof. For example, in 
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a parallelogram ABCD, the two diagonals AC and BD bisect each other if A, 
B, C and D are not collinear. The case where AB and CD are on the same 
line is a degeneracy. 

In practice, it is usually unreasonable to have the user of an automatic geo­
metry theorem prover specify the many non-degenerate conditions of compli­
cated theorems. Thus, one approach, is to have the automatic prover generate 
these conditions and present them to the user. There are various techniques that 
have been developed to find conditions that make particular geometry conjec­
tures false; for example,. in the algebraic cases, the solutions of the hypothesis 
equations that are not solutions of the equations in the conclusions can be 
sought. These extra solutions usually represent conditions that falsify the theo­
rem and are then returned as desired side conditions to the user. 

In our case, however, since we are dealing with an interactive theorem 
prover, it often becomes obvious rather early in the proof if any non-degenerate 
conditions have been missed out. Indeed, a mismatch is usually noticed between 
the assumptions of the goal in hand with those of the theorems that we have 
available as rules to apply. When this occurs, the statement of the problem 
needs to be refined and the extra (non-degenerate) conditions added. From our 
own experience, we feel that this often provides us with a deeper understanding 
of many theorems that we are trying to prove. We become more aware of the 
amount of information that resides in a diagram and that is often assumed 
implicitly when trying to prove a theorem on paper. In this respect, an inter­
active approach to GTP might be more rewarding as an educational tool since 
one learns how to refine the statement of a geometry problem. More impor­
tantly, many subtleties are discovered that might otherwise go unnoticed or be 
taken for granted if returned as an automatic side-condition, for example. A 
challenging experiment would be in designing a graphical front end to this or 
some other geometry theory formalized in Isabelle as has been done for some 
automatic provers such as Euclid [19]. 

It is also worth noting that often theorems can be true even in some de­
generate cases. For example, the sum of the three interior angles of a triangle 
is 11" even if the three vertices are collinear. This sometimes makes it hard for 
automatic provers to rule out degenerate conditions that genuinely falsify a 
theorem. As will be seen in Chapter 5, an important aspect of our approach 
is that it enables us to deduce how various geometric quantities behave when 
we reach conditions that existing GTP techniques would consider degenerate 
since they are infinitesimal. We thus provide powerful notions that extend the 
abilities of the geometric methods and enable them to probe into situations 
that they cannot handle otherwise. Furthermore, we observe that geometric 
theorems and lemmas that hold at the infinitesimal level do not necessarily 
hold in general and our approach provides tools to prove them. 

2.4.3 The Geometry of Motion 

The Principia is mainly concerned with the mathematics of the motion of 
bodies such as planets. Thus, our geometry theory needs to provide definitions 
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and rules that are required for such proofs [34]. These include length of arcs, 
length of chords and area of sectors. Since Newton deals with circular motion, 
and the paths of planets around the sun are elliptical, definitions for the circle, 
the ellipse and tangents to these figures are also provided. We review some of 
these definitions next. 

b 

Fig 2.3. The ellipse and its tangent 

The Ellipse and the Circle. The definition of the ellipse uses the familiar 
string and tack construction in which the distance from one focus of the ellipse 
to a point on the ellipse back to the other focus is constant [40]. The definition 
in Isabelle specifies the corresponding set of points: 

ellipse 11 I~ r == {p.llen(f1 -- p)l + Ilen(f~ --p)l = r} 

The ellipse is especially important since one of the major tasks of the Principia 
lies in providing the mathematical analysis that explains and confirms Kepler's 
guess that planets travelled in ellipses round the sun [81]. In our work, the 
circle is viewed as a special case of the ellipse where the foci coincide: 

circlexr == ellipse x x (2· r) 

We show that the circle has another, equivalent definition by proving the fol­
lowing theorem: 

circle x r <==> {p.llen (x -- p)l = r} 

The Circular Arc. The arc is an important tool in Newton's reasoning pro­
cedures. When analysing motion at a particular point on an ellipse or circle, it 
is the (infinitesimal) arc at that point that is usually considered. Through the 
use of suitable devices, the circular arc is used in most cases as an adequate 
approximation of any arc of finite curvature. Thus, the following definitions are 
provided for the length and curvilinear area (i.e. area of sector) of an arc ab 
with centre of curvature at x (see Figure 2.4): 

arc_len x a b == lIen (x -- a}l· (a -- x,x -- b) 
arc_area x a b == 1/2· len (x -- a}2 . (a -- x, x -- b) 
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b 

X~. 
Fig 2.4. The circular arc 

The Tangent. The tangent to the ellipse (and the circle) at a point is an 
important concept since it gives the direction of motion at that particular 
point. This is the direction in which the body would move in the absence of 
the centripetal force. The deviation from the tangent can thus be viewed as a 
measure of the force acting on a body as we shall see in Section 5.2.5. We use 
the following definition for the tangent to the ellipse: 

is_e_tangent (a -- b) h fa E == (is_ellipseh fa E 1\ a E E 1\ 

(h -- a, a -- b) =a (b -- a, a -- fa}) 

The definition of the tangent to an ellipse relies on a nice property of the curve 
(which also could provide an alternative definition): light emitted from one 
focus, say h, will reflect at some point p on the ellipse to the other focus fa 
(Figure 2.3). Thus, light reflects from the curve in exactly the same way as it 
would from the tangent line at p. Since the law of reflection means that the 
angle of incidence is the same as the angle of reflection, the above definition 
follows. Given a point on an ellipse, we are also interested in finding the set of 
points that belong to the tangent at that point. We add the following definition 
to deal with this situation: 

e_tangent x h fa E == {po is_e_tangent (x -- p) h fa E} 

Definitions relating to the tangent to the circle are also made straightforwardly 
in Isabelle. This is also an important notion since circular motion is a significant 
aspect of the Principia: 

is_c_tangent (a -- b) x C == 
(is_circle xC 1\ a E C 1\ x -- a.l a -- b) 

c_tangent a x C == {po is_c_tangent (a -- p) x C} 

Various theorems can be proved about ellipses, circles, and their tangents. 
Examples of useful and interesting results are (see Figure 2.5): 

• is_c_tangent (a -- b) xC {:::::} is_e_tangent (a -- b) x xC 
• [I is_c_tangent( a -- d) x Cj b E Cil 

==:} 2· (b -- a, a -- d) =a (b -- x, x -- a) 
• [lis_c_tangent(a--d)xCj {b,e} ~ Cj 

coll ebdj -,coll a ebj b =I dll ==:} SIM a bdead 
• [lis_c_tangent(a --d)xCj {b,e} ~ Cjb =I ell 

==:} (b -- e, e -- a) =a (b -- a, a -- d) 
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• [lis_c_tangent(a -- d) x Cj {b, c} s;; Cj b ~ cll 
~ len (d -- a)2 = len (d -- b) . len (b -- c) 

Fig 2.5. Geometric constructions for various circle theorems 

More Properties of the Ellipse. We define a few other notions associated 
with the ellipse that are required in the development of the geometry theory. 
These are all geometric notions that were well known by Newton and on whose 
properties he sometimes relied implicitly. The centre of the ellipse is defined as 
the point collinear with the foci and halfway between them: 

is_centre_ellipse c h 12 E == (is_ellipse h 12 E 1\ coll h 12 c 
1\ lIen (h -- c)1 = lIen (c -- 12)1) 

If a chord p -- 9 goes through the centre of the ellipse, then it is called a 
diameter of the ellipse. Assuming it meets the ellipse at two points p and g, 
the following definition is used: 

is_diameter_ellipse (p -- g) h 12 E == 
(p E E 1\ gEE 1\ (Vc. is_centre_ellipse c h 12 E --t coll pcg)) 

Consider Figure 2.6: take the diameter p -- 9 of an ellipse E, the diameter 
u - v parallel to the tangent at p (or to the one at g) is known as the conjugate 
diameter [3]: 

is_conj_diameter_ellipse (u -- v) (p -- g) h 12 E == 
(is_diameter_ellipse (p -- g) h 12 E 1\ 

((Vt E e_tangent p h 12 E. u -- v II p -- t) V 
(Vt E e_tangent 9 h 12 E. u -- v II 9 -- t))) 

From this definition, it follows that the conjugate of the conjugate of a diameter 
is the original diameter: 

[lis_conj_diameter_ellipse d1 d2 h 12 Ej 
is_conj_diameter_ellipse d2 d3 h 12 Ell ~ d1 = d3 
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Fig 2.6. Conjugate diameters of the ellipse 

A number of other properties relating to the ellipse are proved such as the one 
stating that all parallelograms described around a given ellipse have the same 
area (Figure 2.7). 

This relationship appears (in slightly different wording) as Lemma 12 of 
the Principia where it is employed in the solution of the famous Propositio 
Kepleriana or Kepler Problem. Newton refers us to the "writers on the conics 
sections" for a proof of the lemma. This is demonstrated in Book 7, Propo­
sition 31 in the Conics of Apollonius of Perga [3]. Unlike Newton, we have 
to prove this result explicitly in Isabelle to make it available to other proofs. 
The formalization is rather involved and proceeds by a series of construction 
to show that the area of parallelograms cgov is equal to that of parallelogram 
catd and hence that areas of circumscribing parallelograms rxfYIj and ltzk are 
equal. 

y 

x 

Fig 2.1. The areas of the two bounding parallelograms are the same 

2.4.4 Other Geometric Properties 

The other main geometric notions include those of similar and congruent tri­
angles. We look at the second notion more closely. Intuitively, two triangles 
are congruent if one figure can be moved without changing its size or shape, 
so as to coincide with the other. There are two possible approaches for the 
mathematical treatment of congruence. One way is to state enough postulates 
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to describe its essential properties, and then prove the theorems that follow. 
However, congruence can also be treated definitionally in terms of lengths (dis­
tance) and angles. 

Two triangles 6.abc and 6.a' b' d are congruent if they have equal angles at 
a and a', at b and b', and at c and c' and every pair of corresponding sides 
have equal lengths. In fact in Isabelle, congruence is defined by building on the 
notion of similar (SIM) triangles. Thus, these are defined by 

and 

SIM abc a' b' c' == (b -- a, a -- c) =a (b' -- a', a' -- c') A 

(a -- c, c -- b) =a (a' -- c', c' -- b') A 

(c -- b, b -- a) =a (c' -- b', b' -- a') 

CONG abc a' b' c' == SIM abc a' b' c' A 
lIen (a -- b)1 = lIen (a' -- b')1 A 
lIen (a -- c)1 = lIen (a' -- d)1 A 
lIen (b -- c)1 = lIen (b -- d)1 

An additional postulate is needed to prove theorems about congruence. This is 
known as the SAS (Side Angle Side) axiom: 

SAS. If two sides and the included angle of the first triangle are con­
gruent to the corresponding parts of the second triangle, then the two 
triangles are congruent. 

In Isabelle, this is stated as the following rule: 

[I...,coll a b Cj ...,coll a' b' d j (c -- b, b -- a) =a (d -- b', b' -- a') 
lIen (a -- b)1 = lIen (a' -- b')lj lIen (b -- c)1 = lIen (b' -- e')lj 

11 => CONG abc a' b' d 

Using the definition of congruence and the SAS postulate, the basic congruence 
theorems are proved. We list some of these: 

• If two sides of a triangle are equal, then the angles opposite them are equal. 
This is an easy consequence of the SAS postulate. In Isabelle, we have: 

[I...,coll abcj lIen (a -- b)1 = lIen (a -- c)11l 
=> (e -- b, b -- a) =a (a -- c, e -- b) 

• The ASA theorem. If two angles and the included side of the first triangle 
are equal to the corresponding parts of the second, then the two triangles 
are congruent: 

[I...,coll abej ...,coll a' b' e'j (c -- b, b -- a) =a (d -- b', b' -- a'}j 
(a--c,e--b) =a (a' --e',e'--b'}jllen (b--e)1 = lIen (b' --c')1 

11 => CONG abc a' b' c' 
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• The SSS theorem. Given two triangles, if all three pairs of corresponding 
sides are equal, then the triangles are congruent: 

[I-,coll abc; -,coll a' b' c'; lIen (a -- b)1 = lIen (a' -- b')I; 
lIen (a -- c)1 = lIen (a' -- c')I; lIen (b -- c)1 = lIen (b' -- c')1 

I] => CONG abc a' b' c' 

The proof of the SSS theorem is more involved than the other congruence the­
orems due to case splits. In addition to these theorems, we prove that triangle 
congruence is an equivalence relation. Also, analogous properties for similarity 
of triangles (e.g. SAS and SSS) are proved. 

2.5 Concluding Remarks 

This chapter has outlined the theories developed for Euclidean geometry in 
Isabelle. These are based on well-known methods in automated GTP that are 
designed to produce short and human-readable proofs. The work has involved 
adding concepts such as similar and congruent triangles since they are needed 
for formalizing Newton's proofs. Such notions have traditionally been used in 
geometry, though Chou et al. note that they have limitations when dealing 
with automated GTP [19]. However, our proofs are not affected since we are 
not concerned with completely automatic proofs. To deal with some of the main 
types of motion analysed by Newton, definitions of ellipses, circles, tangents, 
and arcs amongst others have also been added to the theory. Many properties 
resulting from constructions based on these geometric objects have been proved. 
The proofs in Isabelle tend to be short since the geometry theory is powerful. 
We have also verified many of the results of the signed area and full-angles 
methods. 

As far as related work is concerned, we know of few examples of geometry 
theory developed in interactive theorem provers. A theory that can deal with 
collinearity and betweenness was developed in IMPS [31] but to our knowledge 
can only prove a limited number of theorems. The possibility of developing such 
a powerful geometric framework in Isabelle owes much to the versatility of the 
system; its theory mechanism enabled us to formalize the main concepts behind 
the traditional methods of Chou et al., while its various proof procedures and 
simplification routines helped preserve many of their important properties. 

As mentioned previously, using Isabelle's theory, many theorems of Eu­
clidean geometry can be proved. However, this is not sufficient to prove results 
from the Principia that involve Newton's ultimate reasoning. For that, more 
tools are needed to capture the notion of infinitesimal. In the next chapter, we 
describe the formalization of the infinitesimal in Isabelle using the ultrapow­
er construction of NSA. Several other classes of numbers are also constructed 
that have application not only in geometry and the formalization of Newton's 
reasoning but also in other areas. 
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In the early 1960s, Abraham Robinson finally provided a rigorous foundation for 
the use of infinitesimals in analysis by developing the new concept of NSA. The 
idea was to introduce a new number system known as the hyperreals which con­
tains the real numbers but also infinitesimals and infinite numbers. The notions 
of infinitesimals and other nonstandard numbers introduce many subtleties into 
the theory that need to be dealt with. 

In this chapter, we describe the constructions of Robinson's hyperreals in 
Isabelle. Our approach is purely definitional to ensure that infinitesimals and 
other nonstandard numbers have a sound foundation in the system. To reach 
our goal has required constructing the various number systems leading to the 
reals and then going one step further to define the hyperreals by working on 
sequences of reals. The hyperreals have considerable intrinsic interest since they 
exhibit many new properties. Moreover, as a tool, they are of great value to 
the formalization of analysis - an aspect that will be described as we report on 
the mechanization of nonstandard real analysis. 

We start by giving a description of Isabelle and of the HOL object logic in 
which this work was carried out. 

3.1 Isabelle/HOL 

Isabelle [66] is a generic theorem prover, written in ML, into which the user 
can encode their own object-level logics. Examples of such object logics are 
higher order logic (HOL), Zermelo-Fraenkel set theory (ZF), and first order 
logic (FOL). Terms from the object logics are represented and manipulated in 
Isabelle's intuitionistic higher order meta-logic, which supports polymorphic 
typing. 

3.1.1 Theories in Isabelle 

Isabelle's theories provide a hierarchical organization for the syntax, decla­
rations and axioms of a mathematical development and are developed using 
theory definition files [66]. A typical theory file will organize the definitions of 
types and functions. It may also contain the primitive axioms that are assert­
ed (without proofs) by the user. A particular theory will usually collect {in a 
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separate file) the proven named theorems and make them available to all its 
children theories. 

The meta-level connectives are implication (==», universal quantifier and 
equality. In Figure 3.1, we give the description of some of the notations used 
in Isabelle/HOL. Throughout the presentation, we will be using mostly con­
ventional mathematical notations when describing our development. However, 
there are cases where we might use the ASCII notations actually used to express 
terms and rules in Isabelle as explicit examples. 

An inference rule with n premises or antecedents has the following form in 
Isabelle: 

[lif>1; ••• ; if>nlJ ==> 1/; 

This abbreviates the nested implication if>1 ==> ( ... if>n ==> 1/; ... ). Such a rule 
can also be viewed as the proof state with subgoals if>1, ••• , if>n and main goal 
1/; [66]. Alternatively, this can be viewed as meaning "if if>1 " ••• " if>n then 1/;". 

3.1.2 Proof Construction 

Rules can be combined in various ways to derive new ones using higher order 
resolution; this process is known as proof construction and can proceed in both 
backward and forward directions: 

• In backward fashion, the user supplies a goal and reduces it to simpler sub­
goals by applying existing rules until they are solved. A goal is solved when 
it becomes the instance of some previously proved theorem. 

• In forward proofs, the antecedents or assumptions of a rule can be resolved 
with other rules to derive new assumptions. This process can be carried on 
until either the conclusion is the instance of some assumption or the goal is 
an instance of a theorem. 

3.1.3 Higher Order Logic in Isabelle 

One ofIsabelle's logics is HOL, a higher order logic that supports polymorphism 
and type constructors. Isabelle/HOL is based on Gordon's HOL theorem prover 
[41] which itself originates from Church's paper [23]. Isabelle/HOL is well de­
veloped and widely used. It has a wide library of theories defined in it including 
the natural numbers, set theory, well-founded recursion, inductive definitions, 
and equivalence relations. Isabelle/HOL has been applied to reasoning in many 
fields including the verification of security protocols [67] and verifying the type 
system of the Java programming language [64]. 

Though Isabelle is mainly used interactively as a proof assistant, it also pro­
vides substantial support for automation. It has a generic simplification pack­
age, which is set up for many of the logics including HOL. Isabelle's simplifier 
performs conditional and unconditional rewritings and makes use of context 
information [66]. The user is free to add new rules to the simplification set (the 
simpset) either permanently or temporarily. Isabelle also provides a number 



3.2 Properties of an Infinitesimal Calculus 33 

of generic automatic tactics that can execute proof procedures in the various 
logics. The automatic tactics provided by Isabelle's classical reasoner include a 
fast tableau prover called Blast_tac coded directly in ML and Auto_tac which 
attempts to prove all subgoals by a combination of simplification and clas­
sical reasoning. Other powerful theorem proving tactics include those which, 
unlike Blast_tac, construct proofs directly in Isabelle: for example, Fast_tac 
implements a depth-first search automatic tactic. 

The HOL Methodology. Isabelle/HOL has been chosen as the logic in which 
to carry out our proofs. One of the main reasons is that it provides strong typ­
ing and therefore ensures that only type correct terms are accepted. Moreover, 
the HOL methodology is to admit only conservative extensions to a theory. 
This means defining and deriving the required mathematical notions rather 
than postulating them. The definitional approach of HOL requires that asser­
tions are proved about some model instead of being postulated. Such a rigorous 
definitional extension guarantees consistency, which cannot be ensured when 
axioms are introduced. As pointed out by Harrison [43], such an approach pro­
vides a simple logical "basis that can be seen to be correct once and for all". 
With regards to the foundations of infinitesimals, the definitional approach is 
certainly advisable when one considers the numerous inconsistent axiomatiza­
tions that have been proposed in the past [26]. Of course, care still needs to be 
exercised, as a wrong definition will almost certainly yield the wrong properties. 

syntax description 
I; 1\, and 

..." not 
==> ==>, implication (meta level) 
--> --+, implication (object level) 

==, if and only if 
! or ALL \;/, for all 
? or EX 3, exists 
GI f, Hilbert choice 
Yo >., lambda abstraction 
- A A, set complement 
Union cUe, union over sets of sets 

Fig 3.1. ASCII notation for HOL 

3.2 Properties of an Infinitesimal Calculus 

We first look at some of the requirements for a set of infinitesimals that could 
be useful for the development of an infinitesimal calculus. Keisler [52] and 
Vesley [78], for example, discuss the various properties that need to hold for 
developing a calculus for the infinitesimals. Let the set Infinitesimal denote 
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the set of infinitesimals where an infinitesimal can, for the time being, be viewed 
intuitively as a number smaller in magnitude than all positive reals. 

We would like the following properties: 

1) 0 is an Infinitesimal 
2) There is a non-zero infinitesimal 
3) Infinitesimal is a ring 

It might seem reasonable also to want the following: 

4) Infinitesimal is a subring of the real numbers JR 
5) Infinitesimal is an ideal in JR: 

Vr E JR "Ix E Infinitesimal. rx E Infinitesimal 

6) Also we expect Infinitesimal to be non-Archimedean: 

3x E Infinitesimal. "In. nx < 1 

The above, (1)-(6), look sufficient for a simple theory of infinitesimals but 
unfortunately such a theory would be inconsistent. Furthermore, as Vesley [78] 
notes, if JR is the set of classical reals, then any nontrivial ideal in JR is equal 
to JR. Thus, if Infinitesimal satisfies (2), (4), (5) then Infinitesimal = 
JR. This problem is tackled in NSA by dispensing with property (4). Instead, 
using the axioms of classical set theory, a set JR. of hyperreals is obtained 
with properties that include Infinitesimal ~ JR., JR ~ JR*, (1)-(3), (6), but 
not Infinitesimal ~ JR and therefore not (4). As a result, (5) now requires 
Infinitesimal to be an ideal in the set of finite members of JR •. This set 
includes the reals and the infinitesimals amongst other numbers. 

Though an axiomatic approach seems the easiest way to get quickly to the 
infinitesimals, there is always the possibility that the set of axioms might lead 
to an inconsistency, as we saw above. We would rather have a development of 
infinitesimals that is guaranteed to be sound - especially with regards to the 
stormy history of infinitesimals. 

3.3 Internal Set Theory 

There is, in the literature, an axiomatic version of NSA introduced by Nelson 
and based on ZF set theory with the Axiom of Choice (ZFC)[62]. Nelson's 
approach is known as Internal Set Theory (1ST) and adds three additional 
axioms to those of ZFC. We have not developed Nelson's theory, even though 
ZF is one of the object-logics of Isabelle, because there are aspects of the 
additional axioms that seem hard to formalize in Isabelle. 

We give a brief description of 1ST which formalizes a portion of Robinson's 
NSA. The language of 1ST adds the new undefined unary predicate standard 
to the usual undefined binary E relation of ZFC. A formula of 1ST that does 
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not involve the new predicate, that is a formula of ZFC, is called internal; 
otherwise, a formula is called external. As mentioned by Nelson, both of these 
concepts are metamathematical notions - they are properties of formulae and 
do not apply to sets themselves. 

New axioms are added to those of ZFC by 1ST to govern the behaviour of 
standard. The following abbreviations are first introduced: 

VBtx ifJ for Vx[standard(x) =} ifJ] 

3Bt x ifJ for 3x[standard(x) /\ ifJ] 

Similarly, with finite(x) meaning that set x is finite, these further abbreviations 
become possible: 

VBt Jinx ifJ for Vx[standard(x) /\ finite(x) =} ifJ] 

3Bt Jinx ifJ for 3x[standard(x) /\ finite(x) /\ ifJ] 

The axiom schemas can now be given for 1ST: 

(T) Transfer. 
Let A be an internal formula whose only free variables are X,tl,'" ,tn' 
Then the transfer principle is: 

VBttl ... VBttn['v'BtxA {:::::} VxA] 

It is convenient to interpret the tl,'" ,tn as parameters; we are mainly 
concerned with x. The transfer principle asserts, to quote Nelson [62], that 
"if we have an internal formula A, and all the parameters have standard 
values, and if we know that A holds for all standard x, then it holds for all 
x". 

(I) Idealization. 
The idealization principle enables us to prove the existence of nonstandard 
objects. Let A be an internal formula. Then the idealization principle is: 

VBt Jinz3xVy E zA(x, y) {:::::} 3xoVBtyA(xo, y) 

To illustrate how this schema ensures the existence of nonstandard objects, 
let our internal formula be A(x,y) == x E 1N /\ (y E 1N =} y ~ x). We 
choose x to be Max z n 1N if z n 1N :f. 0, otherwise we choose x = O. 
Thus, the idealization principle says that there exists a natural number Xo 
greater (or equal) than all standard natural numbers; therefore, it ensures 
the existence of (nonstandard) infinitely large natural numbers. 

(S) Standardization. 
The final assumption that is asserted about the predicate standard is known 
as the standardization principle. Let A be any formula, external or internal, 
not containing y. Then the standardization principle is: 
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It follows from (S) that for any formula A, whether it contains the predicate 
standard or not, for all standard set x, there exists a unique standard y ~ x 
whose standard elements z are precisely those of x and such that A holds. 
The set y is usually denoted by B{Z E x. A}. A point worth noting is that 
if A involves the predicate standard or something based on the latter such 
as the concept of being infinitely small, then A is no longer a formula of 
ZFC and so the axiom of separation cannot be applied to it. 

The (S) axiom above thus points out an important subtlety of 1ST which 
should not be overlooked: since no axiom of ZFC refers to the new predicate 
standard, these cannot be applied to any external formula (i.e. one involving 
standard directly or indirectly). We cannot, for instance, apply the separation 
axiom to any external formula: it is therefore illegal to form the set {x E R. x E 
Infinitesimal} in 1ST. 

We also observe that, since the addition of axiom (I) to ZFC set theory 
enables us to show the existence of infinitely large natural numbers without 
introducing any contradiction, the set 1N does not consist solely of the usual 
natural numbers. When expressed formally, this is sometimes known as Reeb's 
thesis. 

Nelson also proves that 1ST is a conservative extension of ZFC. This means 
that if A is an internal formula provable in 1ST, then A has a proof in the 
standard set theory, that is A has a proof in ZFC. The rather different method 
that was chosen for NSA in Isabelle is examined next. Whereas Nelson's 1ST 
can be viewed as an intentional approach, this is an explicit extensional one. 

3.4 Constructions Leading to the Reals 

There are various classical methods in existence in the literature on the con­
struction of the various number systems. The usual approach is to arrange them 
in a lattice respecting the inclusions between the sets. Let 2Z, <Q, R be the sets 
of integers, rationals, and reals respectively, and 2Z+, <Q+, R+ be their positive 
elements. Note that 2Z+ is the set of elements of type pnat. 

R 

/~ 
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As can be seen in the figure, there are several ways to reach lR from 7Z+. 
These various paths, however, differ greatly in the technical details of the con­
structions along them. Conway [25] suggests that there is a best way through 
the lattice to the reals that avoids, as much as possible, case splits. These are 
tedious and unnecessary complications that are often treated superficially in 
textbooks giving "natural" constructions of number systems. Conway proposes 
the following general methods that we implement in Isabelle. 

To add negative numbers, that is to proceed, for example, from lR+ to lR, 
the signed number, x E lR+, is represented as an ordered pair of unsigned 
numbers (a, b) meaning a - b and the equivalence relation 

( a, b) '" (c, d) ¢=:} a + d = b + c (3.1) 

is used. This is better than the obvious approach of adding zero and -x for 
each x E Z+ which leads to too much case-splitting. 

Similarly, one can go from 7Z to <Q or from 7Z+ to <Q+ by taking ordered 
pairs (a, b) meaning alb and the equivalence relation: 

(a, b) '" (c, d) ¢=:} a· d = b . c (3.2) 

To proceed from <Q to lR or from <Q+ to lR+, the method of Dedekind cuts 
is used. There are several other methods available such as Cauchy sequences 
and positional expansions [43]. The best path, as suggested by Conway, is 
7Z+ ---t <Q+ ---t lR + ---t lR. 

3.4.1 Equivalence Relations in Isabelle/HOL 

We use Isabelle's Equi v theory, which defines equivalence relations in higher­
order set theory, to define the new type of positive rationals. First, we recall 
the definitions of equivalence relations, set quotients and equivalence classes: 

Definition 3.4.1. A relation '" is said to be an equivalence relation if and 
only if it is reflexive (x '" x), symmetric (x '" y ==> y '" x), and transitive 
(x'" Y 1\ Y '" z ==> x '" z). 

Definition 3.4.2. Given an equivalence relation", on a set S, then the quo­
tient of S with respect to '" is the set of all equivalence classes, and is defined 
by Sf'" == {[xli XES} where [xl == {y E S I x'" y}. 

The set of all equivalence classes Sf'" is called the quotient set of S by '" and 
a member of an equivalence class is often referred to as a representative of the 
class. 

3.4.2 Example: Constructing Q+ from 7Z+ 

In this section, we illustrate, by means of an example, how a new type can be 
introduced in Isabelle as the quotient set of some equivalence relation. We also 
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show how primitive functions are defined on the new type using abstraction 
and representation functions. Other operations derived from the primitive 
functions are also introduced. 

The theory PRAT, shown in Figure 3.2 and developed on our way to the 
reals (and beyond), defines the type prat of positive rational numbers and its 
associated operations. The new type is defined on pairs of elements of pnat 
which denotes the positive natural numbers introduced as an explicit type in 
Isabelle. 

PRAT = PMAT + Equiv + 

constdefs 
(* equivalence relation *) 
pratrel :: "«pnat * pnat) * (pnat * pnat» set" 
"pratrel = {p. 3 abc d. p = «a,b), (c,d» " ad = bc}" 

typedef 
prat = 

"{x:: (pnat*pnat). True}/pratrel" (Equiv.quotient_def) 

instance 
prat :: {ord, plUS, times} 

constdefs 
prat_oCpnat :: pnat ::} prat (11$#_" [80] 80) 
"prat_oCpnat m = Abs_prat(pratrel-A{(m,Abs_pnat i)})" 

qinv :: prat ::} prat 
"qinv Q = Abs_prat(U(x,y)ERep_prat(Q). pratrel AA{(y ,x)}) II 

defs 
prat_add_def 
IIp + Q = Abs_prat (UpERep_prat (P). UqERep_prat (Q) • 

spli t (.~a b. spli t (.~c d. pratrel A A {(ad + bc, bd)}) q) p) II 

prat_less_def 
lip < (Q::prat) = 3T. P + T = Q" 

end 

Fig 3.2. Isabelle/HOL Theory for Rationals using Equivalence Classes 

Under the constdefs keyword, we declare and define the equivalence relation 
(3.2) specified at the beginning of Section 3.4 above that enables us to proceed 
from m+ to CQ+ in the lattice: 

pratrel == {po 3abcd.p = ((a, b), (c, d)) 1\ a· d = b· c} 

Using typedef, we declare the new type prat: 
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prat == {x. True}/pratrel (Equiv.quotient--<ief) 

The representing set of elements is defined as the set of equivalence classes of 
fractions, that is the set of equivalence classes consisting of ordered pairs of 
positive natural numbers. The theorem quotient_def (from the theory Equiv) 
acts as witness to prove the non-emptiness of the new type and is given in 
brackets next to the new type. Non-emptiness needs to be proved to ensure 
that the quantifier rules of HOL are sound [68], otherwise the new type is 
rejected. 

Once a new type has been introduced successfully, Isabelle provides coercion 
functions - the abstraction and representation functi<)ns - that enable us to 
define basic operations on the new type. Thus, in this particular example, the 
functions 

Abs_prat :: (pnat * pnat) set => prat 
Rep_prat :: prat => (pnat * pnat) set 

are added to the theory such that prat is isomorphic to {x. True} /pratrel 
by Rep..hyprat and its inverse Abs_prat. Using these functions and other op­
erations from Isabelle's Set and Equi v theories, we are now ready to define 
operations on the positive rationals. For example, the inverse function qinv, 
which swaps the elements of the ordered pairs (x, y) representing x/y around 
to give y/x, is constructed in Isabelle by 

qinv Q == Abs_prat (U(x,y) E Rep_prat (Q).pratrel AA{(y,X)}) 

where 

• U x E A. B[x] == {y.3x E A. y E B} (union offamily of sets) . 
• rAAs == {yo 3x E s. (x, y) E r} (image of set s under relation r). 

Once the primitive operations such as addition and multiplication are defined, 
we can use them to derive other operations such as the ordering relation: 

P < Q == 3T. P + T = Q 

We then show that the operations on the new type respect the various field 
properties and that we have indeed defined the densely ordered (but not 
Dedekind-complete) field of the positive rationals. 

3.4.3 A Few Important Theorems 

In this section, some of the more important theorems that we proved during our 
constructions leading up to the reals are given. We are especially concerned with 
those that will be needed to establish properties of hyperreals and nonstandard 
real analysis later on. 

1) Completeness of the reals. The supremum property, which states that 
every non-empty set of reals X that has an upper bound has a least upper 
bound, is proved: 
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"Ix. (3x. x E X) 1\ (3U. "Ix E X. x ::; U) 
===> 3u. ("Ix E X. x::; u) 1\ 'Vu'. ("Ix E X. x::; u') ===> u ::; u' 

2) The Archimedean property for the reals. This simple result has far­
reaching implications since it rules out the existence of infinitely small 
quantities or infinitesimals in 1R. Any such infinitesimal in 1R would mean 
that its reciprocal is an upper bound of IN in 1R thereby contradicting the 
Archimedean property: 

"Ix. 3n. x < n 

Various mechanizations of standard analysis (see for example Harrison's work 
in HOL [42, 43]) have developed theories of limits, derivatives, continuity of 
functions and so on, taking as their foundations the real numbers. Our work, 
however, will now go one step further and show how the reals can be used to 
build a richer number system. 

3.5 Filters and Ultrafilters 

In this section, the preliminaries necessary to our construction are presented. 
The definitions and theorems that we need and their formalization in the set 
theory of Isabelle/HOL are reviewed. Our aim is to establish an equivalence 
relation on the set of all infinite sequences of reals and use the system of equi­
valence classes as a model for 1R *. We start with the concept of a filter. 

Definition 3.5.1. Let S be any non-empty set. A filter F over S is a collection 
of subsets of S such that 

Fl) S E F 1\ 0 f/ F 
F2) X E F 1\ Y E F ===> X n Y E F 
F3) X E F 1\ X ~ Y ~ S ===> Y E F 

Every filter is a non-empty collection of subsets since S E F, and filters are 
closed under finite intersection and supersets. There are numerous examples 
of filters including the trivial filter {S} and, if S is infinite, the F'rechet or 
cofinite filter {X. finite (S - X)}. In Isabelle, we develop a theory Filter 
and formalize the notions described above as follows: 

isFilter F S == (F ~ PowS 1\ S E F 1\ 

"IX E F. W E F. X n Y E F 1\ 

"IX Y. X E F 1\ Y ~ S -t Y E F) 

Filters S == {X. isFilter X S} 

We note in the above definitions the occurrence of Filters S which is defined 
to be the set of all filters over S. We adopt this general approach of defining 
sets of the various structures that are dealt with for clarity; this is possible 
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since in Isabelle/HOL's set theory the type Q set is isomorphic to the type 
Q ~ bool [66J. 

Let us mention some of the terminology often encountered when filters and 
related concepts are used. A set X ~ S is sometimes said to be large [74J or 
quasi-big [44] if X E :F. Other terms used include residual or generic when 
dealing with directed sets or Baire category theory. Moreover, and of relevance 
to our development, a condition P on points xES is said to be satisfied almost 
everywhere (a.e.) or almost always, or is :F-true or almost true, if the set 
{x E S. P is satisfied at x} is a member of :F. 

A refinement of the concept of a filter is now introduced by defining· the 
notion of an ultrafilter over the non-empty set S: 

Definition 3.5.2. An ultrafilter U over S is a filter over S such that 

Ul) U ~ :F /I.:F E Filters S ~ U = :F 

An ultrafilter is thus a maximal filter, that is a filter that cannot be enlarged. 
An ultrafilter (and hence a filter) is said to be free if and only if it does not 
contain any finite sets. A filter which is not free is said to be fixed. We are 
mainly interested in free ultrafilters. The definitions used in Isabelle's Filter 
theory follow: 

Ultrafilters S == {X. X E Filters S /I. 
VG E Filters S. X ~ G -+ X = G} 

FreeUltrafilters S == {X. X E Ultrafilters S /I. 
Vx E X. -.finite x} 

We proceed to prove various properties of filters, ultrafilters and so on from 
these definitions. These include a theorem about ultrafilters that states that U 
is an ultrafilter on S if and only if for any subset A of S, either A belongs to 
U or else its complement S - A.belongs to U, but not both: 

U E Ultrafilters S ¢::::} (U E Filters (S) /I. VA E Pow S. A E UV S - A E U) 

The content of this theorem is critically important to our development and an 
outline of its proof in Isabelle is given below: 

Proof. Suppose that U is a filter such that for every A ~ S either A E U or 
S - A E U. Let G be a super filter of U i.e. a filter such that U ~ G and suppose 
that BEG and B ¢ U. But then, from our initial assumption, it follows that 
S - B E U ~ G, and so 0 = B n (S - B) E G which contradicts property 
(Fl) for a filter. Hence there is no proper filter containing G, and so U is an 
ultrafilter. 

Conversely, suppose that U is an ultrafilter and A ¢ U. Define a set G == 
{X ~ S.3J E U. An J ~ X}. Then U ~ G and U i:- G since A E G, and so 
G cannot be a filter since by assumption U is maximal. But G is not empty, 
and if B, C E G and B ~ D then B neE G and D E G (verifying conditions 
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(F2) and (F3) for G to be a filter). Since S E G, G can fail to be a filter only 
if 0 E G. That is, we have An J = 0 for some J E U for which we must then 
have J ~ (S - A). It follows that S - A E U. 0 

From this result, it can be seen that the Frechet filter on an infinite set S is 
not an ultrafilter though it follows that it is free. What is needed to progress any 
further in the development is to show the existence of a free ultrafilter 
on any infinite set - this result is a corollary of the important Ultrafilter 
Theorem [48, 74]. Using the result above, we can see that for an ultrafilter U 
to be free, every cofinite subset of S, and hence the Frechet filter, has to be 
contained in U. This result will be useful to us in Section 3.5.2 but first, we 
give an overview of our proof of Zorn's Lemma and how we appeal to it to 
guarantee the existence of an ultrafilter. We then extend this result and show 
that the ultrafilter can be free as well. 

3.5.1 Zorn's Lemma 

The existence of free ultrafilters is not obvious at first sight. To show that 
the ultrafilter theorem holds and to carry out our construction, we need Zorn's 
Lemma. This is an equivalent form of the Axiom of Choice (AC) and first needs 
to be proved in Isabelle/HOL. 

Zorn's Lemma. Let S be a non-empty set of sets such that each chain 
c ~ S has an upper bound in S. Then S has a maximal element y, i.e. 
a set yES such that no member of S properly contains y. 

The statement of Zorn's Lemma involves the idea of a partially ordered set 
and related concepts. We present briefly various mathematical concepts and 
theorems about them needed in Isabelle/HOL to express Zorn's Lemma. 

Paulson has already proved Zorn's Lemma in Isabelle's Zermelo-Fraenkel set 
theory (Isabelle/ZF) [69] by mechanizing a paper by Abrial and Laffitte [1]. Re­
porting on the mechanization, Paulson remarks that the formal language used 
by Abrial and Laffitte is close to higher order logic and thus should be useful 
to Isabelle/HOL amongst other proof assistants. In our current work, we have 
adapted the mechanization of Zorn's Lemma developed in Isabelle/ZF to Isa­
belle/HOL. Below, we briefly mention how our formalization in Isabelle/HOL 
compares with the one in Isabelle/ZF. 

The definitions used by Abrial and Laffitte require the choice operator 
since starting from AC, they prove Hausdorff's Maximal Principle and then 
derive Zorn's Lemma. Unlike its ZF counterpart, Isabelle/HOL provides such an 
operator, the so-called Hilbert description operator, c. Thus, the formulation 
of the various theorems in Isabelle/HOL is somewhat simpler than that given 
by Paulson for ZF. The latter requires that the existence of the choice function 
be stated explicitly as a temporary additional assumption [69]. 

We also use Isabelle's inductive package to define a set that is totally ordered 
by set inclusion. In general, the construction of the inductive set relies on 
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defining a suitable successor function which, in our case, is defined using the 
choice or description operator: 

succ S c == if (c ¢ chain S V c E max chain S) 
then c else (eC'. c' E super S c) 

Our other definitions of set of chains, super chains and maximal chains are 
similar to those in IsabellejZF. Note that the definitions suppose that the set 
S has some partial ordering defined on it which is denoted by $: 

chain S == {F. F ~ S A ("Ix E F. Vy E F. x $ y Vy $ x)} 
super S c == {d. d E chain SAc C d} _ 
max chain S == {c. c E chain S A super S c = 0} 

We tried to simplify these definitions at first by removing references to the 
inductive set S, since it is actually used by Abrial and Laffitte to provide typing 
in their version of ZF. Thus, S as a parameter seems redundant when working 
in Isabelle's typed higher order logic. However, relying on the type made some 
of our proofs about ultrafilters unnecessarily complicated and prompted us 
to refer explicitly to the underlying set in definitions and hence in our proof 
of Zorn's Lemma. In outline, with these definitions, we prove the theorem of 
Hausdorff: every partially-ordered set contains a maximal chain. So, taking the 
subset relation as the partial ordering on S, we have 

3c. c E max chain S 

and then consider an upper bound u of such a maximal chain c - guaranteed 
to exist according to the premise of Zorn's Lemma - which we prove to be 
a maximal element. Expressed formally in Isabelle, the following theorem is 
established: 

Vc E chain S. 3u E S. "Ix E c. x ~ u 
==> 3y E S. "Ix E S. Y ~ x ~ y = x 

3.5.2 The Ultrafilter Theorem 

The Ultrafilter Theorem (UFT) is a complicated but important principle that 
lies midway between AC and the Axiom of Choice for Finite Sets [74]. Moreover, 
UFT like the Axiom of Choice has many important equivalent forms. Schechter 
presents and discusses 25 of these occurring in many areas of mathematics [74] 
and points to the many more equivalents occurring in the literature. The version 
that we are interested in is: 

(UFT) Ultrafilter Theorem (Cartan). If F is a filter on a set S 
then there is an ultrafilter U on S with F ~ U. 

This result can be proved using Zorn's Lemma. In fact, we are really interested 
in proving a corollary of UFT about the existence of free ultrafilters:1 

1 Some authors like Hoskins (48) and Keisler [52) state the corollary (or even one of 
its special cases) as the actual Ultrafilter Theorem. 
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Corollary. On every infinite set there exists a free ultrafilter. 

Expressed in Isabelle, we want to prove: 

..,finite S ==> 3u. u E FreeUltrafilters S 

To do so, we define in the theory Filter the set, SuperFrechet S, of all filters 
on S that contain the Fnkhet filter (Le. the set of superfilters of the Frechet 
filter) : 

Frechet S == {A. finite S - A} 
SuperFrechet S == {G. G E Filters S 1\ Frechet S ~ G} 

Our proof consists first in showing that SuperFrechet S contains a maximal 
element, that is, an ultrafilter on the (infinite) set S, and then in showing 
that this maximal element does not contain any finite sets. Stated formally in 
Isabelle, the following goal needs to be established: 

..,finite S ==> 3U E SuperFrechet S. 
\:IG E SuperFrechet S. U ~ G ---* U = G 1\ 
\:Ix E U . ..,finite x 

Existence of Ultrafilter. We split the main goal above in two parts and 
outline in this section how the existence of the ultrafilter is proved. Formally, 
we need to prove: 

..,finite S ==> 3U E SuperFrechet S. 
\:IG E SuperFrechet S. U ~ G ---* U = G 

Applying Zorn's Lemma (as an introduction rule in Isabelle) and with some 
simplification, this reduces the above to the following new subgoal: 

[I..,finite S; c E chain (SuperFrechet S)1l 
==> 3u E SuperFrechet S. \:Ix E c. x ~ u 

Thus, we now have to show that each chain of SuperFrechet S has an upper 
bound in SuperFrechet S. Since the empty set is also a chain, we need to 
consider the two possibilities for the chain c: 

1) c = 0: We simply use the fact that Frechet S E Filters S and hence that 
Frechet S E SuperFrechet S to prove the theorem for this case.2 

2) c i- 0: This case is trickier. The proof consists in choosing the union of 
the non-empty chain c, U c, as the upper bound we are looking for. It is 
trivially true that x ~ U c for all x E c. To bring the proof to conclusion, 
it just remains to show that SuperFrechet S is closed under the union of 
non-empty chains: 

2 We have noticed that many proofs given in the literature neglect to consider the 
case where c is the empty chain. 
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[le"# 0j ..,finite Sj e E chain {SuperFrechet S)I] 
==> U e E SuperFrechet S 

The proof requires showing that U c is a filter. Property (Fl) for a filter is 
proved easily using Isabelle's classical reasoner. In outline, to prove (F2), 
we choose Xo E Uc, and Xl E Uc. Then Xo E Go and Xl E Gl for some 
filters G1 and G2 in the chain c. Since c is a chain we have G1 ~ G2 or 
G2 ~ G1 • IfGl ~ G2 then XO,Xl E G2 and so, by (Fl), XOnXI E G2 ~ UCj 
the case G2 ~ G1 is proved in a similar way. Finally, we prove that Property 
(F3) also holds from the properties of chains and unions. We shall omit the 
details for this last step since they are easily deduced. 

Freeness Property. The second part of the main goal consists of proving 
that the ultrafilter does not contain any finite set. Making use of the statement 
proved in the previous part, this reduces to solving the following subgoal (i.e. 
deriving a contradiction) in Isabelle: 

[lU E SuperFrechet SjX E Ujfinite xl] ==> False 

To prove this, we first deduce that (S - x) E U since finite {8 - (S - x)) and 
Frechet S ~ U. Hence, since U is closed under set intersection, it follows that 
o = x n (S - x) E U which is a contradiction of Property (Fl) of the filter. 
Thus U is free. 

This concludes our proof of the existence of a free ultrafilter on any in­
finite set. This important theorem will be used in the next section to define 
the hyperreals by considering a special case known as the Weak Ultrafilter 
Theorem. 

We have described so far the mathematical foundations set up in Isabelle to 
enable the new types of numbers going beyond the traditional number systems 
to be defined. After carrying out constructions up to the reals, proving Zorn's 
Lemma in Isabelle and developing a theory of filters, we are now ready to apply 
the so-called ultrapower construction to get the hyperreals. 

3.6 Ultrapower Construction of the Hyperreals 

Our aim is to construct a linearly ordered field IR· that contains an isomorphic 
copy of the reals IR extended with other elements. This new, strictly larger field 
is known as a nonstandard or hyperreal number system and obeys the same 
laws as the reals. 

As Simpson [75], Hurd and Loeb [49], and others have pointed out, the 
construction of the hyperreals is reminiscent of the construction of the reals 
from the rationals using equivalence classes induced by Cauchy sequences. In 
this case, however, we use a free ultrafilter to partition the set of all sequences 
of real numbers into equivalence classes. The set of these equivalence classes, 
that is the quotient set, is used to define the new type hypreal denoting the 
hyperreal numbers. 
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HYPREAL = REAL + FILTER + 

constdefs 
UIN :: "nat set set" 
"UIN == (<<IU. u E FreeUltrafilters (ONIV: : nat set»" 

(* equivalence relation *) 
hyprel "( (nat :::} real) * (nat :::} real» set" 
"hyprel == {po 3 r S. p = (r,s) A {no r n = s n}EUIN}" 

typedef 
hypreal _ "{x:: (nat:::} real). True}/hyprel" (Equiv.quotient_def) 

instance 
hypreal .. {ord, plus, times} 

defs 

hypreal_zero_def 
hypreal_one_def 

constdefs 

"Ohr _ Abs_hypreal (hyprel •• {An: : nat. Or})" 
"lhr _ Abs_hypreal(hyprel··{An::nat. lr})" 

hypreal_minus :: hypreal :::} hypreal 
"- p _ Abs_hypreal(UXERep_hypreal(P). 

hyprel··{An: :nat. - (X n)})" 

(* embedding for the reals *) 
hypreal_of_real :: real:::} hypreal 
"hypreal_oCreal r == Abs_hypreal(hyprel··{An: :nat. r})" 

hrinv .. hypreal :::} hypreal 
"hrinv P == Abs_hypreal (UXE Rep_hypreal (P) . 

hyprel··{An. if X n = Or then Or else rinv (X n)})" 

defs 
hypreal_add_def 
IIp + Q == Abs_hypreal (UXERep_hypreal (P) . 

UYERep_hypreal(Q). hyprel··{An::nat. X n + Y n})" 

hypreal_Iess_def 
"p < (Q:: hypreal) == 3x Y. XERep_hypreal (p) A 

YERep_hypreal(Q) A {n: :nat. X n < Y n} EUIN" 

Fig 3.3. Isabelle/HOL Theory for Hyperreals 
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3.6.1 Choosing a Free Ultrafilter 

To start the construction, a free ultrafilter UIN is chosen on the set of natural 
numbers IN. There exists one according to the Weak Ultrafilter Theorem: 

(WUF) Weak Ultrafilter Theorem. There exists a free ultrafilter 
on IN. 

As can be seen, this is a special case of the UFT corollary from the last section. 
In fact, we have the implications AC => UFT => WUF, which are not reversible. 
Thus, UFT is strictly weaker than AC, and WUF is weaker still. To prove WUF, 
we show that the set of naturals is not finite by an inductive proof and then 
discharge the premise of the UFT corollary. 

This ultrafilter need not be explicitly defined: it does not matter which 
ultrafilter on IN is used. The set of all free ultrafilters on IN determines a set 
of isomorphic fields from which we can choose any member to be the set of 
hyperreal numbers. Thus, in our formalization, we use Hilbert's €-operator to 
define UIN: 

UIN == (cU. U E FreeUltrafilters (UNIV :: nat set)) 

Here (UNIV :: nat set) denotes the set {n:: nat. True} i.e. the set IN. Higher 
order logic provides a typed set theory in which the universal set exists. 

Once we have defined UIN, its properties that will be used in the proofs 
involving the hyperreals are established. We give here a list of the theorems 
that we proved, many of which follow from the definitions given in the previous 
sections: 

1) (UNIV:: nat set) E UIN 
2) 0 ¢ UIN 
3) [IX E UINjY E UINIl => X nY E UIN 
4) [IX E UINjX ~ Yll => Y E UIN 
5) X E UIN => ...,finite X 
6) X E UIN {::::::} -X ¢ UIN 
7) {no P(n)} E UIN => :In. P(n) 
8) Xu Y E UIN => X E UIN V Y E UIN 

3.6.2 Equality 

Using UIN, the hyperreals are constructed by considering the set of all sequences 
of real numbers indexed by IN and defining the following equivalence relation 
on this set: 

Definition 3.6.1. Given two sequences of real numbers (rn) and (sn), 

(rn) "'U/N (sn) {::::::} {n E IN I rn = sn} E UIN 
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The sequences (rn) and (sn) are sometimes said to be equal almost everywhere 
(a.e.). This terminology is used to mean that the entries of a sequence determine 
some set in the ultrafilter UIN. 

Figure 3.3 shows Isabelle's theory HYPREAL in which the new type hypreal 
is introduced using the definition above. The relation hyprel denotes "'Uri in 
the theory: 

hyprel == {po 3r s. p = (r, s) " {n. r(n) = s(n)} E UIN} 

The first property that we prove is that hyprel is an equivalence relation. 

Proposition 3.6.1. The relation "'Uri is an equivalence relation. 

Proof. Let (an},(bn), (cn) be sequences of real numbers. 
reflexivity: Since IN E UIN, we have (an) "'Uri (an) and thus "'Uri is reflexive. 

symmetry: if (an) "'UN (bn) then, by symmetry of equality, (bn ) "'UN (an) 
implying that "'UIN is symmetric. 

transitivity: Now, given (an) "'UIN (bn) and (bn) "'UIN (en), let A = {n E 
IN I an = bn} and B = {n E IN I bn = cn }, and C = {n E IN I an = en} then 
An B ~ C. Since A, B E UIN, it follows that An B E UIN since UIN is n-closed, 
and hence C E UIN since UIN is also ~-closed. Therefore, (an) "'UN (en). 0 

3.6.3 Defining Operations on the Hyperreals 

Arithmetic operations on the new type, that is on the equivalence classes, are 
usually defined in terms of the pointwise operations on the sequences. Let [(Xn) 1 
denote the equivalence class containing (Xn ). Addition, for example, is defined 
by 

(3.3) 

In Isabelle, however, using the abstraction and representation functions, we 
define addition on hyperreals P and Q as follows: 

P + Q == Abs..hypreal (U X E Rep..hypreal(P). 
UY E Rep..hypreal(Q).hyprel~~{An.Xn + Yn}) 

Then we prove equation (3.3) above as a theorem. It can then be supplied to 
the simplifier for use in many of the proofs. In Isabelle, equation (3.3) takes 
the following form: 

Abs..hypreal (hyprel ~~ {An. X n}) + Abs..hypreal (hyprel ~~ {An. Y n} ) 
= Abs..hypreal (hyprel ~~ {An. X n + Y n} ) 

(3.4) 

Properties such as commutativity and associativity follow straightforwardly 
from the corresponding properties of the reals. We can similarly prove Ohr+ P = 
P when Ohr is defined as shown in Figure 3.3. Multiplication is defined in 
a similar way to addition. Associativity, commutativity, and distributivity of 
multiplication are all directly inherited from the reals and easily proved. 
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3.6.4 Ordering 

The ordering relation on the hyperreals is defined as follows: 

P < Q = 3X E Rep.hypreal P. 
3Y E Rep.hypreal Q. {n.Xn < Yn} E UIN 

We prove the following simplification theorem expressing the order relation in 
terms of equivalence classes of sequences of real numbers. A hyperreal [(Xn)] is 
less than a hyperreal [(Yn )] if and only if Xn is less than Yn almost everywhere: 

Abs.hypreal (hyprel-- {X n}) < Abs.hypreal-(hyprel-- {Y n}) 
{::::::} {n. X n < Y n} E UIN 

Also, the system of hyperreal numbers generated by the free ultrafilter is a 
totally ordered field. To show this, we first prove that the ordering relation is 
total. This proof is relatively simple and follows from the fact that given any 
two hyperreals [(xn)] and [(Yn)], either they are equal leading to 

{n E 1N I Xn = Yn} E UIN 

or else, by the complement property of the ultrafilter as given in Section 3.6.1, 
we have: 

{n E 1N I Xn ¥- Yn} E UIN 

In the second case, since the reals are totally ordered, we have to consider the 
sets {n E 1N I Xn < Yn} and {n E 1N I Yn < xn}. We know that only one of these 
can belong to the free ultrafilter UIN (since otherwise, closure of UIN under 
intersection would entail that 0 E UIN which contradicts property (Fl) of the 
filter). 

3.6.5 Multiplicative Inverse 

To show that JR. is a field, we need only prove that each non-zero element 
[(Xn)] E JR. has a multiplicative inverse. For any non-zero element, we have 

{n E 1NIXn = O} ¢ UIN 

and therefore, once more by the complement property of UIN, 

{n E 1NIXn ¥- O} E UIN 

Therefore, define Yn = 1/ Xn for each value of n for which Xn ¥- 0 and set 
Yn = 0 otherwise. Then the set {n E 1N,Xn' Yn = I} E UIN, so that [(Xn )]· 

[(Yn )] = [(I)]. This motivates the following definition, in Isabelle, for the inverse 
function hrinv: 

hrinv P = Abs.hypreal (U X E Rep.hypreal(P). 
hyprel-- {An. if X n = Or then Or else rinv (X n)}) 
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It is easily proved that for all non-zero x, hrinv X· x = 1hr as required. A few 
points worth mentioning are that hrinv x stands for the more conventional 
notation X-l when x is an hyperreal; the inverse function for the reals is itself 
denoted by rinv, while Or and 1r are defined as the zero and one respectively 
of the real field. Once again, for simplification purposes, we prove the useful 
theorem about inverse involving the equivalence classes of real sequences: 

hrinv (Abs-1lypreal (hyprel ~~ {X n})) {:::::? 

Abs-1lypreal (hyprel ~~ {if X n = Or then Or else rinv (X n)}) 

We have shown in the above that JR.. is a totally ordered field. The next im­
portant step is to show that JR. * contains a proper subfield that is isomorphic 
to the reals JR.. 

3.7 Structure of the Hyperreal Number Line 

In this section, we continue our investigation by introducing and defining the 
various elements that make up the new totally ordered field which we show to 
be a proper extension of the reals. We also define a number of concepts that 
follow from this classification of the elements of JR. •. 

3.7.1 Embedding the Reals 

Since our free ultrafilter has been fixed, we have effectively restricted our at­
tention to one particular totally ordered field JR. *, though as we mentioned 
previously, there are infinitely many distinct but isomorphic number systems. 
We now embed the reals in our hyperreals by defining a map hypreaLof ...real :: 
real ~ hypreal in Isabelle. This embedding is defined by 

hypreaLof...real r = [(r, r, r, ... )] 

and expressed in Isabelle as 

hypreaLof ...real r == Abs-1lypreal (hyprel ~~ {An:: nat. r}) 

In what follows, any embedded real r will be denoted by r unless the embed­
ding function hypreaLof...real is used explicitly. Thus, the additive identity 
element Ohr and the multiplicative identity element 1hr of the hyperreals are 
the explicit images of the real numbers zero (Or) and one (lr) respectively 
under the embedding. To show that hypreaLof ...real maps JR. to a proper 
subfield of JR.., we first define the following hyperreal number 

w == Abs-1lypreal (hyprel ~~{An::nat. reaLof..nat n}) 

where reaLof ..nat :: nat ~ real maps its natural argument n to the real n+ l. 
For clarity, we omit the details of the various intermediate embeddings (nat ~ 
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pnat, pnat => prat, prat => preal, etc.} required for defining reaLof...nat, 
though we do need to prove their various properties (e.g. they are injective 
and order preserving) explicitly in Isabelle. This sort of detail is not usually 
mentioned in textbooks where it is assumed that one can define a map in one 
step. 

We can now exhibit a member of JR * that is not equal to any real number, 
since there is no r such that r = w. This is because the set on which {r, r, r, ... } 
and {I, 2, 3, ... } coincide can consist of at most one element. Hence, by the 
definition of ultrafilter UIN, the two sequences cannot be equivalent since no 
finite set can belong to UIN. In fact, as we shall see shortly, r < w for any 
real number r, that is, w is a so-called infinite number. Similarly, € = w-1 = 
[{1,~,~, ... }] is an infinitesimal. 

We will call all members of JR * that are images of the reals, the standard 
elements of JR *. We then define the set of standard reals SReal in the theory 
NSA as follows, 

SReal == range (hypreaLof...real) 

where 
range f = {yo 3x. Y = f x} 

We can now view SReal as the real numbers embedded in JR * , that is as a sub­
ordered field if we agree to identify each real number r with the corresponding 
standard element r of JR *. We then have JR * as an extension or enlargement 
of JR. We shall come across the general concept of set extensions once more in 
Section 6.1. 

3.7.2 Nonstandard Numbers 

We have exhibited in the previous section a hyperreal, w, that does not belong 
to SReal. There are infinitely many of these so-called nonstandard hyperreal 
numbers. They can be classified into various sets that include, for example, 
infinitesimals and the infinite numbers. We start this section with a preamble 
where the absolute value function for the hyperreals is introduced. This function 
is needed in order to define the various types of numbers found in our theo­
ry. Moreover, it also shows some of the characteristics that we will encounter 
later on when dealing with functions in a nonstandard setting. We present the 
important theorems proved in Isabelle as we proceed in our exposition. 

The definitions of infinitesimal, finite, and infinite numbers use the absolute 
value function. This function, which we also defined on the reals, needs to be 
extended to the hyperreal numbers. The definition that we use is analogous to 
that used for the reals. Using the if-then-else construct of Isabelle HOL, we 
have: 

hrabs x == if Ohr ~ x then x else - x 

In fact, an alternative definition exists in which the (real) absolute value func­
tion is simply applied pointwise to an equivalence class representative in JR*. 
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In Isabelle, with rabs denoting the absolute value function for the reals, this 
takes the form of the following theorem: 

hrabs (Abs..hypreal (hyprel ~~{X}) = 
Abs..hypreal (hyprel ~~ {An. rabs (X n)}) 

This result, taken in conjunction with the definitions of the operations such as 
addition, multiplication, and reciprocal hints at a general technique in which 
functions can be defined on the hyperreals through extensions of the analogous 
ones defined on the reals using our free ultrafilter UIN. We shall be examining 
this notion of extension in Section 6.1. 

The intuitive notion of an infinitesimal number can now be formally defined. 
Sets of finite and infinite numbers are also introduced formally. 

Definition 3.7.1. An element x ofR· is said to be an infinitesimal if and 
only if for every positive standard real number r we have Ixl < r. It is finite if 
and only if for some standard real number r we have Ixl < r i and infinite if 
and only if for every standard real number r we have r < Ixl. 
In the literature, the definition will often just say that an infinitesimal is less 
in magnitude than any positive (standard) real number. Here, since we have 
different types, it becomes explicit that such a definition is actually referring 
to the standard copy in lR·. This leads to the following definition in Isabelle 
for the set of Infinitesimal: 

Infinitesimal::hyprealset 
Infinitesimal == {x. '<Ir E SReal. Ohr < r --+ hrabs x < r} 

This definition can be considered as a high level one. Indeed, it is possible to 
define the set of infinitesimals by going down to the level of our free ultrafilter 
UIN itself. We thus prove the next theorem, which turns out to be useful when 
supplied to Isabelle's simplifier in cases where one wants to deal with properties 
of real sequences rather than notions of infinitesimals. 

(x E Infinitesimal) ¢::::} (3X E Rep..hypreal x. '<Iu. Or < u 
--+ {no rabs (X n) < u} E UIN) 

We give below the definitions for the sets Finite and Inf ini te of finite and in­
finite numbers respectively, as declared in Isabelle, and the equivalent theorems 
derived in terms of the free ultrafilter: 

Finite::hyprealset 
Fini te == {x. 3r E SReal. hrabs x < r} 

(x E Finite) ¢::::} (3X E Rep..hypreal X. 3u. {no rabs (X n) < u} E UIN) 

Infinite::hyprealset 
Infinite == {x. '<Ir E SReal. r < hrabs x} 

(x E Inf ini te) ¢::::} (3X E Rep...hypreal X. '<Iu. {n. u < rabs (X n)} E UIN) 
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In fact, we can view the various low-level theorems as lemmas that enable 
us to translate properties involving the hyperreals into those depending on the 
ultrafilter. This is useful in our mechanization when we deal with real functions 
and their extensions. 

An important point, highlighted through the definition of infinite and infini­
tesimal numbers, and already mentioned in Section 3.2, is that the set of hyper­
real numbers is non-Archimedean. This is because not every bounded subset 
of R* is guaranteed to have a least upper bound or greatest lower bound. For 
example, the set of infinite numbers is bounded below by any finite number 
but has no greatest lower bound. In Section 6.1, we consider sets of hyperreals 
that do have least upper bounds and use their special properties. 

3.7.3 On Infinitesimals, Finite and Infinite Numbers 

We have proved various properties of infinitesimals, finite and infinite numbers. 
A few of the theorems are listed below: 

• The set Finite of finite elements is a subring of R* i.e. sums, differences 
and products of finite elements are finite. 

• The set Infinitesimal of infinitesimals is also a subring of R*. 
• The set Infinitesimal is an ideal in Finite i.e. the product of an infinite-

simal and a finite number is infinitesimal. 
• x is infinite if and only if hrinv x is infinitesimal for all non-zero x. 

The hyperreal number w defined in Section 3.7.1 is a member of Infinite: for 
any given real number x, for all sufficiently large values of n, we have x < n. The 
infinitesimal number f defined by the equivalence class containing the sequence 
(l/n) is a member of Infinitesimal since for any given x, for all sufficiently 
large values of n, we have 0 < l/n < x. We have also proved that w is the 
multiplicative inverse of f, since: 

w· f = [(1,2,3, ... )] . [(1,1/2,1/3, ... )] 
= [(1·1,2·1/2,3·1/3, ... )] 
= [(1,1,1, ... )] 
= 1hr. 

We next introduce an important equivalence relation that will be extremely 
useful to our mechanization. 

Definition 3.7.2. Two hyperreal numbers x and yare said to be infinitely 
close, x ~ y, if and only if their difference x - y is infinitesimal. 

It is easily proved that x is an infinitesimal if and only if x ~ O. To show 
that ~ is an equivalence relation is trivial. In addition, we prove the following 
theorems (amongst others): 

1) [la ~ b; c ~ dl] ==} a + c ~ b + d 
2) [la ~ b; c ~ dl] ==} a - c ~ b - d 
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3) (a + b R;; a + c) <==> b R;; C 

4) [la R;; bj c E Finitell => a . c R;; b· c 
5) [la R;; bj C R;; dj bE Finitej C E Finitell => a· C R;; b· d 
6) [la E Fini tej a R;; bll => b E Finite 
7) [la E SRealj a =F Ohrll => (a· x R;; a . y) = (x R;; y) 
8) [Ix E SRealj y E SRealll => (x R;; y) = (x = y) 
9) [Ix R;; Yj Y E Finite - Infinitesimalll => hrinv x R;; hrinv Y 

10) x R;; Y => hrabs x R;; hrabs Y 

We continue in the next section with another basic fact about the structure of 
JR., which defines a function from the set of finite numbers onto the reals. 

3.7.4 The Standard Part Theorem 

The standard part of a finite nonstandard number is defined to be the unique 
real infinitely close to it. We use Hilbert's choice operator, E, to express this in 
Isabelle: 

st x == (cr. r E SReal/\ r R;; x) 

We now prove the existence and uniqueness of the standard part. Existence 
needs to be demonstrated in any case whenever Hilbert's operator is used. 

Proposition 3.7.1. Let x be a finite hyperreal number. Then, there exists a 
unique standard real number r such that r R;; X. 

Proof. Let A = {y E JR I y ;:; x}. Since x is finite, A is non-empty and is 
bounded above. Let r be the least upper bound of A. For any real E > 0, 
r - E E A and r + E (/. A and thus r - E ;:; X < r + E. SO Ir - xl ;:; E from which 
it follows that r R;; x. 

To show uniqueness, suppose that there exists a real number s such that 
s R;; x. Then, since R;; is transitive, S R;; r and so r - S R;; O. But r - S is real, so 
r - S = 0 and r = s. 0 

The proof given above glosses over many of the details that need to be 
satisfied for mechanization. Indeed, the completeness of the reals, and hence of 
the embedded reals, is needed in the form of the supremum property, which 
ensures that any non-empty set of reals that is bounded above has a least upper 
bound. We first proved the property for the positive real numbers (preal) 
and then extended it to the reals (real). Now, since we are dealing with the 
hyperreals and identifying the reals with the proper subfield of JR. which is 
isomorphic to JR, we have to transfer this theorem explicitly to the isomorphic 
copy of JR, namely SReal. 

Once the existence of the standard part has been proved, we prove various 
of their properties: for any x, y E Finite, we have, 

• x R;; Y <==> st x = st y 
• x R;; st x 
• x E SReal => st x = x 
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• st (x + y) = st x + st Y 
• st (x· y) = st x . st y 
• if st y '" Ohr then st (x· hrinv (y)) = st X· hrinv (st y) 
• if x ~ y then st x ~ st Y 
• st (st x) = st x 
• st (hrabs x) = hrabs (st x) 

From some of these theorems, we can see that the map preserves algebraic 
structure. The standard part function can be defined in other ways for an 
ultrapower. For example, it corresponds to the order homomorphism of Finite 
with kernel Infinitesimal onto m. [76]. The standard part is an important 
concept that can be used when formulating the nonstandard definition for the 
limit of a sequence of reals (see Section 6.3.1) and also when defining the slope 
of a real function at a real point, as we shall see in Section 6.6. 

3.8 The Hypernatural Numbers 

We can construct a set of numbers IN* that contains both finite elements, 
identifiable with the ordinary natural numbers themselves, and infinite num­
bers greater than all natural numbers. This discrete set is known as the 
hypernaturals. We are interested in this type of numbers as they will be 
needed in the nonstandard formalization of real sequences and series (see Sec­
tion 6.3). 

The construction of the hypernaturals in Isabelle is analogous to that of the 
hyperreals: we use the same free ultrafilter UIN but replace sequence of reals 
by sequences of natural numbers. Thus, IN* is now characterized explicitly as 
the set of equivalence classes [(mn ) 1 determined by sequences mn of natural 
numbers. The new equivalence relation on sequences is denoted by hypnatrel 
in Isabelle. In what follows, we make some observations on the construction 
and properties that apply to members of IN*. These are interesting in their 
own right but also in view of the applications to mechanization of analysis 
using nonstandard methods. 

We define an embedding function that identifies each natural number m 
with the hypernatural number determined by the constant sequence (m, m, ... ). 
In Isabelle, we define the function hypnat_of..nat :: nat:::} hypnat: 

hypnat_of ..nat m == Abs-hypnat (hypnatrel AA {An:: nat. m}) 

Using the map hypnat_of..nat, we easily define the set SHNat of standard nat­
ural numbers embedded in IN*: 

SHNat == range (hypnat_of..nat) 

In what follows, a natural number n embedded in the hypernaturals will also 
be denoted by n in some cases. 



56 3. Constructing the Hyperreals 

3.8.1 Infinite Hypernaturals 

We define a hypernatural {} denoting [(n)] = [(0,1,2, ... )] by 

{} :: Abs..hypnat (hypnatrel-- {An:: nat. n}) 

We prove that for any embedded natural number n E SHNat, {} :/; n meaning 
that IN* properly includes IN. This motivates the following definition for the 
set of nonstandard hypernaturals: 

HNatlnfinite:: - SHNat 

To establish that the only nonstandard hypernaturals are the infinite ones, we 
prove the following equivalence theorem: 

HNatInfinite -<==> {N. Vn E SHNat. n < N} 

Thus, IN* consists of the finite standard copies of the ordinary natural numbers 
and of the infinite hypernatural numbers only. 

3.8.2 Properties of the Hypernaturals 

Some of the properties proved for the hypernatural numbers are these: 

1) IN* is a discrete subset of m* 
2) IN* is closed under addition and multiplication. 
3) Every infinite number has an immediate predecessor which is also infinite. 

The first property can be proved either by defining directly an embedding 
function from the hypernaturals to the hyperreals or by taking the nonstandard 
extension of the set of natural numbers (embedded in the reals). 

An important observation, following from the third theorem above, is that 
the non-empty set of infinite hypernatural numbers, HNatInfinite, does not 
have a least element. Thus, the well-ordering property of the natural numbers 
does not extend to the hypernaturals. This observation shows that, though 
most properties of the natural numbers are transferred to the hypernaturals, 
there are important exceptions. It will be seen in our subsequent exposition 
that properties such as the one above and the Archimedean property extend 
only to special subsets of the hypernaturals and hyperreals respectively. 

3.9 An Alternative Construction for the Reals 

The construction of the reals using Dedekind cuts is well established in the 
literature. However, the method has many critics due to the problems that 
arise with negative cuts, case splitting and so on. We avoided these by defining 
only the positive reals. 
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NSA can be used to provide an alternative construction for the reals. The 
idea is to apply the same techniques that we have used to enlarge the reals 
into the hyperreals to the rationals, ~, in order to get the hypenutionals, ~ •. 
The sets of infinitesimal rationals and finite rational numbers are then defined 
in a similar way to the sets Infinitesimal and Finite respectively. The set 
of infinitesimal rationals is a maximal ideal and the reals can then be seen 
as the quotient ring of the finite elements of ~. modulo the maximal ideal 
of the infinitesimal rationals. This quotient set defines an Archimedean field 
isomorphic to the reals. 

It should be relatively straightforward to carry out this construction in 
Isabelle, given that we already have the necessary framework to extend the 
rationals. Our experience with extending the reals and the naturals shows that 
much of the code can be reused. Most of the proofs (e.g. that ~. is an ordered 
field) will not only follow directly from the rationals but will also have exactly 
the same steps as those for the hyperreals. This possible construction of the 
reals in Isabelle is left as a potentially instructive exercise - especially when 
compared to Dedekind cuts or other more conventional constructions. 

3.10 Related Work 

The reals were first constructed in Automath in 1977 by Jutting [50] who 
translated Landau's famous monograph on the foundations of analysis [57]. 
More recently, Harrison has constructed the reals and formalized a substantial 
amount of analysis in HOL [43]. The work of Harrison has influenced some 
of our decisions during mechanization, especially when formalizing analysis, 
where we have benefited from the observations made by him on notations, 
for example. We shall be coming back to these aspects when describing our 
formalization of analysis using the hyperreals. As far as our own constructions 
up to the reals are concerned, we have followed mostly the presentation given 
by Gleason [39], since it matches the sequence of constructions that Conway 
advocates [25]. 

3.11 Concluding Remarks 

As far as we are aware, there has not been any previously published construc­
tion of the hyperreals using a mechanical theorem prover. This chapter has 
described the construction process resulting in a proper field extension of the 
reals. Various classes of numbers, including the notorious infinitesimals, have 
been introduced and their properties formalized. The ~ (infinitely close) rela­
tion has been introduced, which is crucial to the formalization of both Newton's 
Principia and of nonstandard real analysis. The framework has been shown to 
be flexible by allowing the hypernaturals, and their associated properties, to 
be formalized with minimal effort. 
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Reaching the hyperreals has involved all the constructions up to the reals 
(which we have not described in much detail) and proving the various properties 
of each number system introduced; it also involved working in Isabelle/HOL 
set theory to formalize Zorn's Lemma and the theory of filters and ultrafilters. 
As might be expected, a number of interesting remarks emerge from this 
development. We outline some of these next. 

The formalization of filters is an important contribution since these are 
useful concepts with numerous applications in set theory, logic, algebra etc. 
They can also be used to study the various notions of convergence: they yield 
essentially the same results as (convergence) nets [74]. Nets provide a natural 
generalization of sequences and are commonly used in analysis. In fact, nets 
are also useful to the mechanization of analysis, as was shown by Harrison in 
HOL [43]. Thus, Isabelle's theory of filters could be used for a general theory 
of convergence. 

Since this work formalizes the Ultrafilter Theorem, the ultrapower con­
struction becomes available for the development of other nonstandard number 
systems. For instance, the hyperintegers could be introduced. In particular, it 
becomes possible to construct the hyperhyperreal numbers from the hyperreals. 
These numbers are introduced by Henle and Kleinberg [44], for example, and 
are shown to contain, in addition to the field lR *, numbers even smaller than 
the infinitesimals. The new hyperhyperreal field can be used, with benefits, for 
analysis over the hyperreals. On the other hand, ultrapowers also have other 
independent uses: they are important concepts in the study of Banach spaces, 
for instance. 

In Chapter 6, the development of some real analysis in Isabelle, using non­
standard techniques, is covered. This formalization is compared with the work 
carried out by Harrison in HOL. The advantages that the more algebraic and 
often more intuitive nonstandard formulation of familiar concepts has over the 
standard approach are pointed out. Of course, the work still proceeds strictly 
through definitions. 

Before this, we examine in the next chapter some of the notions that arise 
with the introduction of infinitesimals in geometry. In particular, we mention 
non-Archimedean geometry and some of the new concepts are defined using 
the infinitely close relation. Using the hyperreals, we then build a theory of 
elementary vector geometry and use it to verify the geometric methods of Isa­
belle. 
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This chapter covers some of the concepts and properties that arise when infini­
tesimal notions are introduced in the geometry theory. The hyperreal space is 
shown to have a practical and rich application in geometry. A few theorems and 
proofs are examined. Also as an important part of this work, some algebraic 
geometry is developed using hyperreal vectors. This is a definitional approach 
used to formalize notions from the traditional GTP methods and to verify their 
basic axioms. We start with a brief review of non-Archimedean geometry. 

4.1 Non-Archimedean Geometry 

The Axiom of Archimedes or Axiom of Continuity from Hilbert's Foundations 
of Geometry [46] may be stated as follows: 

Let A, B, C, and D be four distinct points. Then on the ray AB there 
is a finite set of distinct points, Ai, A2 , • •• , An such that each segment 
AiAi+i is congruent to the segment CD and such that B is between 
A and An. 

This means that given any line segment of length I and any measure m, there 
exists an integer n such that n units of measure yield a line segment greater 
than the given line segment, i.e. I < n . m. Geometrically speaking, this means 
that the length of a line has no limit, which is a tacit assumption of Euclid. 
This axiom of Hilbert can therefore be viewed as stating that the points on the 
line are in one-to-one correspondence with the real numbers IR. 

After introducing the various groups of axioms, Hilbert proceeds to show 
their consistency and mutual independence. This is done by interpreting every 
geometric concept arithmetically and making sure that all the axioms are sat­
isfied in the interpretation. For example, a point is identified with the ordered 
pair of real numbers (a,b) and a line with the ratio (u:v:w) in which u and v 
are both non-zero. A point lies on a line if ua + vb + w = O. Properties such 
as convergence are interpreted algebraically by means of the expressions for 
translation and rotation of analytic geometry. Thus, a model is constructed for 
the axioms of geometry and any contradiction deduced from these would mean 
that the axioms of arithmetic are inconsistent. 

The possibility of a non-Archimedean geometry is exposed when proving 
the mutual independence of Hilbert's sets of axioms. Indeed, it is possible to 
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construct a model that satisfies all the various axioms except the Axiom of 
Archimedes. In such a geometry, our measure m can be laid off successively 
upon our line segment of length 1 ali arbitrary number of times without ever 
reaching the end point of the line. This geometry might be seen, intuitively, 
as one in which infinitesimal notions are allowed. Of course, the most famous 
example of an axiom being denied in geometry is that of the parallel axiom, 
which leads to non-Euclidean geometry. 

It is worth noting that one of the first to attempt a systematic investigation 
of non-Archimedean geometry was the Italian mathematician Veronese in his 
Fundamenti di Geometria. As observed by Fisher [33], his work was often un­
acknowledged by contemporary mathematicians such as Hilbert and Poincare 
and only recently have historians given its influence due recognition. Veronese's 
poor and tortuous exposition has been blamed to some extent for this. 

In his review of Hilbert's Foundations of Geometry, Henri Poincare makes 
the following important observation about non-Archimedean geometry [70]: 

. .. the coordinates of a point would be measured not by ordinary 
numbers but by non-Archimedean numbers, while the usual operations 
of the straight lines and the plane would hold, as well as the analytic 
expressions for angles and lengths. It is clear that in this space all the 
axioms would remain true except that of Archimedes. 

And moreover, he notes: 

On every straight line new points would be interpolated between ordi­
nary points. 

This matches our approach in which we effectively replace the real number 
line with a hyperreal one. Poincare also gives a geometric example where an 
ordinary line is compared with a non-Archimedean one: 

If, for example, Do is an ordinary straight line, and Dl the correspond­
ing non-Archimedean straight line; if P is any ordinary point of Do, 
and if this point divides Do into two half rays S and S' (I add, for 
precision, that I consider P as not belonging to either S or S') then 
there will be on Dl an infinity of new points as well between P and 
S as between P and S'. Then there will be on Dl an infinity of new 
points which will lie to the right of all the ordinary points of Do. In 
short, our ordinary space is only a part of the non-Archimedean space. 

This geometrical representation means that points can be infinitely close to each 
other on line D1 • Indeed, the first infinity of new points mentioned by Poincare 
corresponds to those infinitely close to P. And then, we also have the new points 
on Dl that lie beyond those of Do. These points to the right of all of the points 
of Do thus correspond to the infinite hyperreals. These observations motivate 
the establishment of a one-to-one correspondence f between the hyperreals 
and a line L instead of the usual correspondence with the reals. A coordinate 
system, f, for L is then such that each point P on it has a unique hyperreal 
coordinate given by x = f(P). 
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4.2 New Definitions and Relations 

Since we have explicitly defined the notion of equality between angles, we also 
need to define the idea of two angles being infinitely close to one another. We 
use the infinitely close relation to do so: 

This is an equivalence relation. We prove in Isabelle the following property, 
which could provide an alternative definition for Rja: 

We also have the theorem al Rj a2 ~ al Rja a2. We now introduce a novel 
property that can be expressed using the concepts that we have developed so 
far in our theory - that of two triangles being ultimately similar. Recall that 
two triangles f},abc and f},a'b'd are similar if they have equal angles at a and 
a', at b and b', and at c and d. The definition of ultimately similar triangles 
follows: 

US1M abc a' b' c' == (b -- a,a -- c) ~a (b' -- a',a' -- c') A 

(a -- c, c -- b) ~a (a' -- c', c' -- b') A 

(c -- b, b -- a) Rja (c' -- b', b' -- a') 

This property allows the treatment of triangles that are being deformed 
and tending towards similarity as points move in Newton's dynamic geo­
metry. Elimination and introduction rules are developed to deal with the US1M 
property. We only need to know that two corresponding angles are infinitely 
close to deduce that two triangles are ultimately similar: 

[I(b -- a, a -- c} Rja (b' -- a', a' -- c'); 
(a -- c,c -- b) Rja (a' -- c',d -- b')!] ~ US1M abca' b' d 

It follows also, trivially, that S1M abc a' b' c' ~ US1M abc a' b' c'. Similarly, we 
also define the geometric relation of ultimate congruence UCONG. Areas, angles 
and lengths can be made infinitesimal as needed when carrying out the proofs 
leading to theorems such as these (see Figure 4.1): 

• [lcoll abc; s_del ta p b c Rj Ohrll ~ s_del ta pac Rj s_del ta p a b 
• [lcoll a bc; len (b -- c) Rj Ohrll ~ s_deltap a c ~ s_deltap a b 
• [lcoll abc; (b -- p,p -- c) Rja Ohrll ~ US1Mpabpac 

The above theorems formalize intuitive properties that result when parts of 
f},abc are allowed to become infinitesimal. Such new relations do not hold in 
pure Euclidean geometry and therefore cannot be derived from the diagram 
alone. 
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p 

a'------"'-~c 

Fig 4.1. Infinitely close areas 

4.3 Infinitesimal Geometry Proofs 

We now give an example that illustrates the use of infinitesimal arguments in 
geometry. This is an argument attributed to Nicholas of Cusa who lived in the 
fifteenth century and which we quote from the book by Davis and Hersh [26] 

We wish to find the relation between the area of a circle and its cir­
cumference. For simplicity we suppose that the radius of the circle is 
1. Now, the circle can be thought of as composed of infinitely many 
straight-line segments, all equal to each other and infinitely short. The 
circle is then the sum of infinitesimal triangles, all of which have al­
titude 1. For a triangle the area is half the base times the altitude. 
Therefore the sum of the areas of the triangles is half the sum of the 
bases. But the sum of the areas of the triangles is the area of the circle, 
and the sum of the bases of the triangles is its circumference. Therefore 
the area of the circle of radius 1 is equal to one half of its circumference. 

0 ......... ____ -1 

Fig 4.2. Infinitesimal triangles inscribed in a circle 

The conclusion of this proof is true though the proof itself without a proper 
theory of infinitesimals was prone to attacks. As Davis and Hersh mention, the 
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notion of a triangle with infinitely small base was viewed as elusive: either the 
base, hence the area of the triangle was zero or else it was greater than zero. 
In the first case, the resulting sum of the areas would also be zero, while in 
the second an infinitely large sum would result since infinitely many terms were 
being added together. In neither case, could the circle of finite circumference be 
obtained as a sum of infinitely many identical pieces. We show that this "proof" 
by Nicholas of Cusa is correct once we have infinitesimals and infinite numbers 
available. Indeed, one can prove that the area of the circle is the standard part 
of the sum of infinitely many infinitesimals. We assume that the area of the 
circle and its circumference are both real, non-zero quantities Le.: 

area of circle E R - {O} and circumference of circle E R - {O} 

Let the base of each triangle be of length x E Infinitesimal and let there be 
N E HNatInfinite of them. Now, following Nicholas of Cusa's argument we 
have: 

area of circle ~ N . (1/2 . x) 

circumference of circle ~ N . x 

(4.1) 

(4.2) 

Now we have as a theorem that any real number infinitely close to another 
number is the standard part of that number (stated as a theorem of Isabelle):l 

[Ix E SReal;x ~ yll ==> x = st y 

Therefore by (4.3), (4.1) and (4.2) become 

area of circle = st (N . (1/2· x)) 

circumference of circle = st (N . x) 

(4.3) 

(4.4) 

(4.5) 

We want to divide (4.4) by (4.5) to get the required result. However, first we 
need to simplify (4.4). We know that N· (1/2· x) = 1/2· (N . x) E Finite 
since it is infinitely close to area of circle E R. Thus, we can use the following 
theorem to deduce that N . x E Finite: 

[la E SReal; a· y E Finitel] ==> y E Finite 

We can now simplify the standard part of the product (4.4) using the following 
theorems about products of standard parts: 

[la E SReal;y E Finitell ==> st (a· y) = st (a)· st y 
a E SReal ==> st (a) = a 

From which, we get the desired conclusion: 

1 In stating the various theorems, for clarity, we do not show the embedding functions 
explicitly; however, the reader should bear in mind that we are working in the 
hyperreals and so when referring to a real number, for example, we are actually 
working with its embedded copy. 
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area of circle 1/2· st (N . x) 1 
--'-----:--'--:-~ = 

st (N· x) 2 
(4.6) 

circumference of circle 

Our proof is coherent because: 

• infinitesimals are not necessarily zero and hence we can have a sum greater 
than zero . 

• also, JR* is a non-Archimedean field, and the sum of finitely many infinitesi­
mals is always an infinitesimal, that is 

"Ix E Finite. Vy E Infinitesimal. X· Y E Infinitesimal 

where Finite contains arbitrarily large real numbers since JR ~ Finite. 
Thus, the infinite number of line-segments, N, needs to be a nonstandard 
natural number. That is, N E IN* - lN (an infinite hypernatural), for the 
sum of areas of the triangles to be infinitely close to the area of the circle 
which is assumed to be a real quantity (Le. non-infinitesimal). 

4.3.1 Infinitesimal Notions in Euclid's Elements 

We mentioned that our geometry differs from Euclidean geometry in its infini­
tesimal aspects. However, while investigating Euclid's Elements [30], we did 
come across a proposition which immediately struck us as involving infinite­
simal notions. 

Book III of the Elements contains definitions relating to the geometry of 
circles and discusses properties of chords, tangents, inscribed angles etc. The 
theorem we are interested in is Proposition 16, which we quote: 

The straight line drawn at right angles to the diameter of a circle from 
its extremity will fall outside the circle, and into the space between 
the straight line and the circumference another straight line cannot 
be interposed; further the angle of the semi-circle is greater, and the 
remaining angle less than any acute rectilinear angle. 

Euclid's proposition thus deals with the space between the tangent T A and 
the arc ACE (Figure 4.3). He notes firstly that no line drawn in that space 
and going through A can fall entirely outside the circle. Secondly, he considers 
the angle between the tangent T A and the arc ACE, known as a horn angle. 
Our investigation revealed that the exact magnitude of horn angles was the 
subject of much controversy amongst the ancient Greek geometers and indeed 
for many centuries afterwards. Kline notes, in his survey of Ancient and modern 
mathematics, that although Proposition 16 states that the angle is smaller in 
magnitude than any acute angles between straight lines, it does not mention 
that the angle is of zero magnitude [53]. 

The horn angle posed numerous problems to mathematicians since one 
would intuitively expect the size of the angle to increase as circles of decreas­
ing diameters pass through A and the tangent to T A; however, according to 
the preceding proposition, this is not possible. On the other hand, if two horn 



4.3 Infinitesimal Geometry Proofs 65 

Fig 4.3. The horn angle from Proposition 16 of Euclid's Elements 

angles are of zero magnitude (i.e. equal) they should be superposablej but this 
is not so. This led to suggestions that horn angles were not actual angles. 

Formulated in terms of the geometric notions in our framework, horn angles 
can be viewed as infinitesimal angles since they are smaller in magnitude than 
any finite angles. This also explains why, without infinitesimals, it is impossible 
to notice any increase in the size of the horn angle when circles of decreasing 
diameters are drawn. Viewed in this light, horn angles probably represent one of 
the first areas of mathematics where notions of infinitesimals appeared. Rather 
more recently, there has been a revival of interest in these angles and they 
can now be encountered in fields such as conformal mappings and indirectly in 
non-Archimedean analysis. 

4.3.2 Useful Infinitesimal Geometric Theorems 

As we worked with the infinitesimal geometry, we investigated the effects of 
allowing infinitely small elements. We wanted to prove results that we felt 
intuitively should hold and also discover other more subtle ones. As expected, 
many new properties emerged from the formalization of Newton's ultimate 
reasoning. We give below a few of the interesting theorems that we provedj more 
are presented when we go through proofs of Newton's lemmas and propositions 
in the next chapter. 

Consider a triangle bac with sides of finite lengths as the angle (b- a, a- c) 
becomes infinitesimal but the altitude does not change. The following theorems 
follow: 

[I...,coll abcj (b -- a, a -- c) R:ia Ohrj len (a -- b) E Finitej 
len (a -- c) E Finitell => len (b -- c) R:i Ohr 

[I...,coll a bCj (b -- a, a -- c) R:ia Ohrj len (a -- b) E Finitej 
len (a -- c) E Finitel] => s_delta abc R:i Ohr 

[I...,coll a b Cj (b -- a, a -- c) R:ia Ohrj len (a -- b) E Finitej 
len (a -- c) E Finitell => len (a -- b) R:i len (a -- c) 

As can be seen from Figure 4.4, we should expect these theorems to hold when 
point b, moving towards point c, becomes infinitely close to it. These results 
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a 

c 
Fig 4.4. A "shrinking" triangle 

become useful when dealing with more complex geometric constructions that 
arise when modelling motion. Consider, for example, the case in which a point 
e is moving along a circle towards a point a as in Figure 4.5. 

a 

It! 
... ! d 

Fig 4.5. When point e is infinitely close to a, be is infinitesimal 

The ultimate situation, where we have infinitesimal quantities involved in the 
geometry, is of interest to us. This is when e is infinitely close to a. When this 
occurs, we prove that the angle between the chord ae and the tangent ab is 
infinitesimal, that is (b -- a, a -- e) :::::::a Ohr and so it follows that length be is 
also infinitesimal in this situation. From these, we can deduce that the length 
of segment bd is infinitely close to that of segment cd. It is obvious that this 
theorem does not hold in general. Moreover, this shows how various simpler, 
intuitive theorems combine to derive new Ones when several geometric concepts 
are involved - with some of the latter changing (e.g . .0.bae) while others remain 
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fixed (the circle i.e. the path of motion). The proof of some of these theorems 
will be described in more detail in the next chapter since they occur in the 
Principia. 

4.4 Verifying the Axioms of Geometry 

The geometric theories of Isabelle are built around the basic rules given by 
Chou et al. for their area and full-angle methods. In their main papers about 
these methods [19,20], the authors simply assert these rules as facts. They do 
provide, however, a definition for the tangent of the full-angle in terms of the 
signed area and the Pythagorean difference when discussing a complete method 
for GTP based on their notion of angles. 

As already mentioned, many of the combined rules that are used as high 
level lemmas by Chou et al. have been verified in Isabelle. One of our goals, 
after a successful initial investigation of the Principia, was to justify the axioms 
used in Isabelle's geometry theory. It is our experience that in most automated 
geometry theorem provers using axiomatic methods, the basic facts or rules 
seem to be chosen on the basis of intuition. Moreover, Chou et al. do not 
usually justify the choice of their basic rules for their traditional methods; they 
use their common experience to decide on which extra lemmas to add to the 
prover. Such an approach is open to criticism from a formal point of view, but 
it should be mentioned the traditional concern in mechanical GTP has mainly 
been about the power and performance, rather than rigour. 

Apart from using an interactive (hence slower) approach to GTP, the 
current work also differs from the traditional approach since it is done within 
the framework of Isabelle/HOL. This ensures that all the rules are rigorously 
proved and applied. To achieve a fully strict treatment of geometry in Isa­
belle/HOL involves verifying that the set of basic axioms proposed for the 
area method is consistent. It is worth noting that the reluctance to accept the 
axiomatic approach to geometry, despite the influence of Euclid's Elements for 
over two millenia, is not new. One can quote this anecdotal, yet important, 
observation from Russell's autobiography [73]: 

I had been told that Euclid proved things, and was much disappointed 
that he started with axioms. At first I refused to accept them unless 
my brother could offer me some reason for doing so, but he said: 'if 
you don't accept them we cannot go on', and as I wished to go on, 
I reluctantly admitted them pro tern. The doubt as to the premises 
of mathematics which I felt at that moment remained with me, and 
determined the course of my subsequent work. 

One way to verify the axioms, is to show, in the spirit of Hilbert's Grund­
lagen, that there is a number system (say a field such as the hyperreals) 
associated with the geometry and reducing consistency of Isabelle's geometric 
theory to that of hyperreal arithmetic. This is achieved when working within 
the context of Isabelle/HOL, by developing a geometry theory according to 



68 4. Infinitesimal and Analytic Geometry 

the HOL-methodology i.e. strictly through definitions that capture the notions 
(points, lines, signed areas, etc.) that are being dealt with and then prove that 
the various properties follow. Of course, getting the right definitions is once 
more crucial since otherwise, we are likely to end up with the wrong properties. 

To carry out this task, the hyperreal theories of Isabelle are extended with 
the notions of hyperreal vectors. In essence, this is an algebraic approach which 
develops geometric objects and relations between these objects in the Cartesian 
product 1R*n of the field of hyperreals, where n = 3. We developed a theory of 
vectors in three dimensions, although we were only interested in plane prop­
erties since this has an algebra rich enough to capture the various notions we 
want to deal with. Thus, it also has more scope for future use. The hyperreals 
are chosen rather than the reals since we can then express infinitesimal geo­
metric notions as well. The definitions that are used in the theories are given 
next. One theory introduces the algebraic operations on vectors while the other 
deals with the development of simple analytic geometry. 

4.4.1 Euclidean Vector Space 

In general, the simplest definition for a real vector in n dimensions is as an n­
tuple of real numbers, (rl, ... , r n). However, a more geometric definition can 
be provided that suits our purpose well. 

Definition 4.4.1. Given two points P = (XI,Yl,ZI) and Q = (X2,Y2,Z2) in 
1R * 3 , the vector Q - P is called the directed line segment from P to Q. The 
components of the directed line segment are the terms in the 3-tuple (X2 -
Xl, Y2 - YI, Z2 - Zl). 

In this definition, we implicitly assume that the origin is given by the hyperreal 
coordinates (Ohr, Ohr, Ohr) and hence that a particular point is specified by the 
vector whose components correspond to its Cartesian coordinates. In Isabelle, 
we formulate a theory of three-dimensional vectors by first introducing vectors 
as a new type corresponding to a triple of hyperreal numbers: 

hypvec == UNIV :: (hypreal * (hypreal * hypreal» set 

We can then define the various operations on the new type. For example, the 
inner product or dot product of two vectors P and Q is defined, using tuples as 
patterns in abstractions [68], by:2 

p.Q == (A«XI,YI,ZI),(X2,Y2,Z2)). 
XIX2 + YIY2 + ZIZ2) 
(Rep..b.ypvec P, Rep..b.ypvec Q) 

This definition is slightly more complicated than the usual textbook one since 
it uses an explicit A-abstraction and the representation function. Just as in 

2 In what follows, the multiplication sign (-) between hyperreal variables is omitted 
whenever no ambiguity is likely to result. 
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Fig 4.6. Geometric representation of the cross product 

the other cases where we used the coercion functions (see Section 3.4.2, for 
example), we prove theorems that capture the more familiar definitions and 
which can then be fed to Isabelle's simplifier. So for the dot product, we have 
the expected: 

Abs..hypvec (Xl, Yl, zt) . Abs..hypvec (X2' Y2, Z2) = XlX2 + YlY2 + ZlZ2 

Similarly, we also define other important operations, such as cross product and 
scalar multiplication (. s). For clarity, we give their definitions as the simplifica­
tion theorems proved in Isabelle rather than the actual definitions in terms of 
Rep..hypvec and A-abstractions. The Isabelle definitions unfortunately tend to 
be slightly cluttered and become somewhat hard to read, especially in the case 
of the cross product. So for cross and scalar products we prove the following 
rules: 

Abs..hypvec (Xl, Yl, zt) x Abs..hypvec (X2' Y2, Z2) = 
Abs..hypvec (YlZ2 - ZlY2, ZlX2 - XlZ2, XlY2 - YlX2) 

a·s Abs..hypvec (x,y,z) = Abs..hypvec (ax,ay,az) 

For any two vectors P and Q, the cross product can be viewed as defining 
the vector area of a parallelogram, with the vectors as two of the sides of the 
parallelogram and P x Q perpendicular to the plane containing P and Q (see 
Figure 4.6). With this nice geometric interpretation in mind, the next step 
involves proving various properties of the cross product that will enable us to 
capture the notion of signed area when verifying the axioms of the area method. 
The following theorem, which shows that the cross product is not commutative, 
is thus proved: 

P x Q = (-Q) x P 

Geometrically, this means a change in the direction of the vector while its 
magnitude remains unaffected. The negative of a vector P, for its part, is 
defined by negating its various components. In Isabelle: 

-P = (A(xl,x2, X3). Abs..hypvec (-Xl, -X2, -x3))(Rep..hypvec P) 

In the next section, the definition of signed area of a triangle follows directly 
from the geometric interpretation and algebraic behaviour associated with the 
cross product. 

Various other algebraic properties of the operations introduced so far are 
proved in Isabelle. A few straightforward ones that are useful to the develop­
ment are as follows: 
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• p.Q=Q.p 
• p. (Q+R) = P·Q+P·R 
• (a· s P) . (b ·s Q) = ab ·s (p. Q) 
• P x (Q + R) = P x Q + P x R 
• -(P x Q) = (-P) x Q 
• -(P x Q) = P x (-Q) 
• -(P x Q) = Q x P 
• (a· s P) x (b ·s Q) = ab· s (P x Q) 
• P x P = Ohv 
• p. (P x R) = Ohr 
• P x (Q x R) = (P . R) ·s Q - (P . Q) ·s R 
• (a· s P + b·s Q) x R = a ·s (P x R) + b·s (Q x R) 

In these theorems, Ohv denotes the zero vector and is defined in Isabelle as: 

Ohv = Abs..hypvec (Ohr, Ohr, Ohr) 

Another important concept that has not yet been introduced is that of the 
length or norm of a vector. For a vector P, this is usually denoted by IFI and 
defined by taking the square root of the dot product P . P. In Isabelle: 

hypveclen P = hsqrt (P . P) 

The square root operation over the hyperreais, denoted by hsqrt in Isabelle, is 
defined as the nonstandard extension of the square root operation (sqrt) over 
the reals. Details of these concepts will be given in Chapter 6. It is sufficient for 
the time being to regard taking the square root of a hyperreal as a well-defined 
operation with the usual properties. 

After proving some further results of vector algebra, we developed a simple 
geometry theory based on the geometric interpretation of vectors and their op­
erations. Our main motivation, as outlined earlier, was to verify the basic rules 
of the area method. However, having formalized hyperreal vectors rather than 
real vectors, we also performed some direct investigation of the infinitesimal 
geometric notions expressed using vectors. In the next sections, the definitions 
and results of the vector geometry development are outlined. 

4.4.2 Using Vectors in Euclidean Geometry 

Chou, Gao, and Zhang have also used vector calculations in automated geo­
metry theorem proving [18]. They assert a set of basic rules about the op­
erations that can be carried out on vectors. Theorems are then derived using 
these basic axioms of the theory. The algorithm used by Chou et al. is relatively 
simple: given a construction sequence for a geometric configuration, the points 
(i.e. vector variables) are eliminated one at a time from the vector expression 
standing for the conclusion, until only independent vector variables are left. 
The conclusion that results is then tested to see if it is identically zero. 
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In contrast to the above approach, we proceed by means of definitions only 
and having introduced hyperreal vectors and defined the operations on them, 
there is enough algebraic power for the theories to express geometric concepts: 
orthogonality and parallelism, signed areas, congruence of angles, infinitesimal 
geometric notions and much more. Moreover, we proceed mostly through sim­
plification and substitution steps that are applied to both the conclusion and 
premises of the current goal. That is, the proof steps in Isabelle are not limited 
to point elimination only. 

Using the theory, we can attain our aim and derive the basic axioms of Chou 
et al. about signed areas in our theory. We first introduce as basic geometric 
objects the notions of points and lines by defining the following types in Isabelle: 

pt := UNIV :: hypvec set 
line := UNIV :: (pt * pt) set 

From these definitions, a point is therefore specified by a position vector and 
a (directed) line given by a pair of vectors representing its end-points. These 
definitions give the theory a separate, nicer geometric interpretation in which 
geometric objects (points and lines) are dealt with rather than vectors of hyper­
real numbers. The abstraction and representation functions of Isabelle enable 
us to deal with the underlying vector theory to prove basic properties of para­
llelism, perpendicularity, collinearity etc. Once this is done, we can hope to 
work at a higher abstract level which deals with geometric relations and inter­
act rather minimally with the underlying vector constructions. This is similar 
in spirit with our construction of numbers, say the reals by Dedekind cuts, 
where initially for each operation we have to prove cut properties but as more 
theorems are proved, we deal less and less with the actual cuts and more with 
the algebra of the reals. 

However, in the subsequent exposition we shall regard position vectors and 
points as being interchangeable when giving the definitions and describing prop­
erties proved. This abuse of notation is simply to make the definitions more 
readable on paper since it avoids the use of the coercion functions. We will 
show the definitions or theorems as actually formulated if the need ever arises. 
Therefore, for each geometric condition, we have the corresponding vector def­
inition: 

1) That C is on line AB: 

incident C (A -- B) := (C - A) x (B - A) = Ohv 

2) That AB is parallel to CD: 

A -- B II C -- D := (B - A) x (D - C) = Ohv 

3) That AB is perpendicular to CD: 

A -- B .1 C -- D := (B - A) . (D - C) ~ Ohr 
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4) The length of a line AB: 

len (A -- B) == hypveclen (B - A) 

5) The signed vector area of triangle ABC: 

s-«ielta ABC == 1/2·. (A - B) x (C - B) 

6) That the f::.ABC and f::.XY Z are similar, with vertices in the same direc­
tion: 

SIM ABC XY Z == ..,coll ABC 1\ ..,coll XY Z 1\ 

(hypveclen (C - A)/hypveclen (B ~ A) = 
hypveclen (Z - X)/hypveclen (Y - X» 

7) That the angles (A -- B, B -- C) and (X -- Y, Y -- Z) are congruent. 
For this, we define the cosine and sine functions: 

Cos (A -- B,B -- C) == unitvec (A - B)· unitvec (C - B) 

where uni tvec is the unit vector which is defined in the next section, and 

Sin (A-B,B-C) == hypveclen «A - B) x (C - B»· 
briny (hypveclen (A - B) . hypveclen (C - B» 

Then, since we want directed angles and distinguish between an angle and 
its supplement, we have the following definition for congruence of angles: 

(A --B,B --C) =a (X -- Y,Y -- Z) == 
(Cos (A --B,B --C) = Cos (X -- Y, Y -- Z) 1\ 

Sin (A --B,B --C) = Sin (X -- Y,Y -- Z» 

With these definitions set up, we prove that the basic properties of signed areas 
actually hold and justify the statements of geometric relations that were made 
in terms of them. The rules about the sign of the area depending on the order­
ing of the vertices of the triangle (Property 4 of Section 2.4.1) are all proved 
without any problems since our definition makes them direct consequences of 
the algebraic properties of the cross product. Consider, for example: 

-s_delta c b a= -1/2·. (c - b) x (a - b) 
= -1/2·s (-(a - b» x (c - b) 
= - - 1/2·. (a - b) x (c - b) 
= s_delta abc 

This and similar rules are proved with the help of Isabelle's automatic tactic 
and added to the simplifier. The definition of parallelism in terms of signed 
areas is also easily verified and the following theorem defines incidence (or 
collinearity) in terms of signed area: 

incident a (b -- c) <===} (s_delta abc = Ohv) 

We also extend the definition of incidence to that of a set of points incident on 
a line, thereby enabling us to verify axiom 7 of Section 2.4.1. We can deal with 
the ratios of oriented lines by proving theorems such as these: 
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• A -- B II C -- D (C ~ D): 

len (A - B) (B - A) . (D - C) 
= 7::::-~-:-""----::~ 

len (C -- D) (D - C)· (D - C) 

• if R is the foot of the perpendicular from point A to line PQ (P ~ Q): 

len (P -- R) (A - P) . (Q - P) 
= len (P -- Q) len (P -- Q)2 

• if two non-parallel lines intersect at a point R: 

len (P -- R)·8 (Q - P) x (V - U) = 
len (P -- Q)·8 (U - P) x (V - U) 

Some of the results above are high level lemmas stated by Chou et al. as being 
used in their automated GTP method based on vectors [18]. We verify all of 
them in Isabelle and store them as lemmas that become valuable when proving 
complicated geometry theorems. 

4.4.3 Using Vectors in Infinitesimal Geometry 

We start by extending some of the definitions used for the hyperreals to their 
vectors. 

Definition 4.4.2. A hyperreal vector P is said to be infinitesimal, finite, or 
infinite if its length IFI is infinitesimal, finite or infinite respectively. Moreover, 
P is infinitely close to Q if and only if P - Q is infinitesimal. 

With this definition formalized in Isabelle, the following useful and equivalent 
theorems about infinitely close vectors are proved: 

P ~1I Q ~ (A«Xl,Yl,Zt}, (X2,Y2,Z2». 

Xl ~ X2 A Yl ~ Y2 A Zl ~ Z2) 

(Rep..hypvec P, Rep..hypvec Q) 

Abs..hypvec (Xl,Yl,Zt) ~1I Abs..hypvec (X2,Y2,Z2) 

~ Xl ~ X2 A Yl ~ Y2 A Zl ~ Z2 

In other words, two hyperreal vectors are infinitely close if and only if their 
components in corresponding positions are infinitely close to one another. The 
second theorem is the most useful one as it can be added to the simplifier. 
It is also simpler to work with than the actual definition since most of the 
infinitely close properties of vectors are then inherited directly from those of the 
hyperreals and can therefore be proved automatically using Isabelle's auto_taco 
The two theorems just given are formalized without much difficulty though they 
involve dealing with properties of nonstandard extensions of functions. We also 
prove the following theorems: 
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1) P is infinitesimal if and only if all its components are infinitesimal. 
2) P is finite if and only if all its components are finite. 
3) P is infinite if and only if at least one of its components is infinite. 

Just as the concept of two lines being parallel was introduced, using hyperreal 
vectors the weaker notion of two lines being almost parallel is defined: 

A -- B lIa C -- D == (B - A) x (D - C) ~ Ohv 

The notion of the unit vector is also introduced and defined for a vector P by 
1/IPI·s P. In Isabelle: 

unitvec P = hrinv (hypveclen P) ·s P 

Any vector P can be classified according to the behaviour of its length IPI and 
unit vector. Moreover, the following geometric results follow (with A -=F B and 
C -=F D): 

A -- B lIa C -- D ¢:::::} unitvec (B - A) ~v unitvec (D - C) V 
unitvec (B - A) ~v -unitvec (D - C) 

Interestingly, other "almost relations" seem possible in principle and might be 
worth investigating: for example, an ellipse with infinitely close foci is almost 
a circle. 

More relevant to this work, various useful infinitesimal geometric theorems 
are proved now using infinitesimal vector geometry. These include the ones 
shown in Section 4.3.2, and others such as this one: 

[lincident a (b -- c); s_deltap c b ~v Ohvll 
==> s_del ta pac ~v s_del ta p a b 

The proofs tend to require theorems about the infinitely close relation as proved 
especially for hyperreal vectors. For example, to prove the theorem above, one 
needs a cancellation law: 

[la E SReal; a -=F Ohrll ==> (a ·s w ~v a ·s z)= (w ~v z) 

as well as various others involving associativity and commutativity of vector 
addition to perform AC-rewriting. 

4.5 Concluding Remarks 

In this chapter, we have proposed the notion of an infinitesimal geometry. 
We have related aspects of non-Archimedean geometry to our geometry and 
introduced new concepts based on the introduction of hyperreals and their 
relations. Various theorems have been proved that have no direct counterparts 
in Euclidean geometry since the latter only deals with real numbers. 
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Vector algebra offers an attractive approach to mechanical geometry theo­
rem proving. We have already mentioned the active research going on using 
the related field of Clifford algebra, which is generally regarded as being more 
expressive. In our case, since we are doing interactive rather than automatic 
theorem proving, vectors provide a simple and adequate approach to analytic 
geometry. Also, as was shown by Dieudonne, inner (dot) and cross products of 
vectors are sufficient to develop elementary geometry [28]. 

We have shown that hyperreal vectors obey the usual algebraic rules for 
vectors since they form an inner product space over the field 1R *. By using the 
extended vectors instead of real vectors, it is possible to describe, in addition 
to ordinary geometric concepts, the novel notions of infinitesimal geometry 
presented at the beginning of this chapter. 

The analytic geometry development was carried out to provide a definitional 
foundation in which to verify the basic rules of the geometric methods as 
postulated by Chou et al. These could be seen to be intuitively correct though 
no formal proofs had been provided. In so doing, we have ensured that the 
geometric theory respects as much as possible the HOL methodology. 
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Results obtained through the combination of geometric and NSA techniques 
can now be presented. The methods have been used to investigate the infini­
tesimal geometry. Some of the results confirm what one intuitively might 
expect to hold when elements are allowed to be infinitesimal. In what follows, 
the formalization of various notions found in Newton's prose is examined. 
Important theorems about motion along arcs, circular paths and elliptical orbits 
are mechanized. 

5.1 Formalizing Newton's Properties 

We first describe how we formalize some of the expressions used by Newton in 
his various proofs. The technical meaning of some of the ultimate properties 
are represented in a consistent way as follows: 

Ultimately vanishing or evanescent quantity. 
We represent this as being infinitely close to zero i.e. x is vanishing 
means x E Infinitesimal (or equivalently x ~ 0). If x is an angle then we 
can have x ~a O. No claims are made that ultimately vanishing quantities 
are eventually equal to zero. This is also used to model Newton's nascent 
quantities. 

Finite but not vanishing. 
x E Finite - Infinitesimal. Sometimes this property needs to be stated 
explicitly, for example when taking the ratios of two quantities. 

Ultimately equal quantities. 
x is ultimately equal to y means x ~ y. Here again, we use the infinitely 
close relation because the quantities, though their difference may become 
infinitely small, do not necessarily ever become equal. The infinitely close 
relation gives us the freedom of making the quantities arbitrarily close 
without ever claiming that they are equal. 

Ultimately increased without limit. 
Depending on whether the quantity is continuous or discrete, we have x E 
Infinite or x E HNatInfinite respectively. 

Ultimately similar triangles. 
USIMabca'b' c' 
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 Application to Newton’s Principia © Springer-Verlag London 2001
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Ultimately congruent triangles. 
UCONGabca'b' c' 

5.2 Mechanized Propositions and Lemmas 

Some of the results obtained with the help of notions discussed in Chapter 
4 can now be presented. We analyse several significant properties mechanized 
using our combination of NSA and geometry. 

5.2.1 Newton's First Lemma 

Newton's lemmas are derivations that are set up at the beginning of the Prin­
cipia, and to which Newton appeals afterwards when needed in his proofs. We 
examine the proofs of various of these theorems. In some cases we compare our 
proofs with Newton's. The relatively long enunciation of these lemmas shows 
some of the difficulties encountered when dealing with Newton's mathematical 
prose. Newton's first Lemma enables us to introduce our infinitely close relation 
in the geometry. 

Newton's Lemma 1. Quantities, as well as ratios of quantities, which in any 
finite time you please constantly tend towards equality, and before the end of 
that time approach nearer to each other than by any given difference you please, 
become ultimately equal. 

This lemma is formalized, with x and y as Newton's quantities and D as 
the difference, by the following theorem of Isabelle: 

VD E SReal.lx - yl < D ~ x ~ y 

The proof is trivial since it follows directly from our definition of the infinitely 
close relation and of infinitesimals. In fact, by having as a condition that the 
difference D is greater than zero, we have an equivalence relation. Newton's 
proof is short and proceeds by reductio ad absurdum: 

If you deny it, let them become ultimately unequal, and let their ulti­
mate difference be D. Therefore, they cannot approach nearer to each 
other than by the given difference D, contrary to the hypothesis. 

One point worth noting is that time is absent from our formalization, even 
though Newton's quantities can be viewed as depending continuously on it. 
This is because we are only interested in a specific time: when the situation 
is ultimate. This is the time when the new and useful properties emerge since 
quantities are infinitesimal. As can be seen, Newton's proof itself only considers 
the ultimate quantities, which provides support for our approach. 

We also note that if the quantities themselves, and not just the difference 
between them, are vanishing then greater care is necessary. Newton explains in 
the scholium to the lemmas: 
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by the ultimate ratio of evanescent quantities is to be understood 
the ratio of quantities not before they vanish, nor afterwards, but with 
which they vanish. 

We can allow ratios of evanescent quantities by insisting that such evanescent 
quantities can be infinitesimal but not necessarily zero i.e. x ~ 0 but not 
necessarily x :f: O. Thus, the existence of the infinitely close relation enables the 
denominator of the ratio to be smaller than any other real quantity and still be a 
well-defined quantity. However, care needs to be exercised when manipulating 
such ratios and the rules of NSA make explicit the conditions that need to 
be satisfied before one can multiply and divide them, for example. We shall 
describe later how rigorous concepts from NSA enable us to deal formally with 
ratios of vanishing or infinitesimal quantities. Moreover, we shall also examine 
the geometric tools developed by Newton to deal with his ratios of evanescent 
quantities soundly. 

5.2.2 Motion along an Arc of Finite Curvature 

Newton's Lemma 6. If any arc ACB, given in position, is subtended by 
its chord AB, and in any point A, in the middle of the continued curvature, 
is touched by a right line AD, produced both ways; then if the points A and 
B approach one another and meet, I say, the angle BAD, contained between 
the chord and the tangent, will be diminished in infinitum, and ultimately will 
vanish. 

Fig 5.1. Figure based on Newton's diagram for Lemma 6 



80 5. Mechanizing Newton's Principia 

In Figure 5.1, let R be the centre of curvature and let line AD touch the arc 
at A. We follow Newton's assumption, given in the scholium to the lemmas, 
that the curvature is finite. We assume that our (vanishing) circular arc has the 
same curvature as the general curve at point A and hence the same tangent. 
The circle of contact at A is extended to its antipodal point at r. The latter is 
not used but shown for completeness. We prove that {B -- A, A -- D} :::::a 0 
when B is infinitely close to A. 

We give below an overview of our reasoning and theorems proved to reach 
the conclusion. We show that the angle subtended by the arc becomes infinite­
simal as B approaches A and that the angle between the chord and the tangent 
is always half that angle: 

[larc~en R A B ::::: Ohr; len (A -- R) E Finite - Infinitesimalll 
:=:} {B -- R, R -- A} :::::a Ohr 

[lis_c_tangent (A -- D) R Circle; B E Circlell 
:=:} {B -- A, A -- D} ==a {B -- R, R -- A} /2 

We use the theorem from NSA that Infinitesimal is an ideal in Finite and 
the results above to prove that the angle between the chord and the tangent 
also becomes infinitesimal: 

[I{B -- R,R -- A} E Infinitesimal; 1/2 E Finitell 
:=:} {B -- R, R -- A} . 1/2 E Infinitesimal 

[lis_c_tangent (A -- D) R Circle; BE Circle; arc~en R A B ::::: Ohr; 
len (A -- R) E Finite - Inf ini tesimalll :=:} {B -- A, A -- D} :::::a Ohr 

We next use our concept of ultimately similar triangles to prove part of 
Newton's Lemma 8. According to this lemma, the ultimate form of evanescent 
~ABR and ~AD'R is that of similitude in Figure 5.l. 

It is clear from the diagram that ~ABR and ~AD'R are not similar in ordinary 
Euclidean geometry. Infinitesimal notions reveal that we are tending towards 
similarity of these triangles when the point B is about to meet point A. This 
property cannot be deduced from just the static diagram. Understanding the 
dynamics of Newton's geometry requires the use of imagination to incorporate 
motion and see what is happening to the relations between various parts of 
the diagram as points are moving. This task is not always trivial. The relation 
USIM A BRA D' R can be illustrated by considering the relation between the 
various parts of the diagram as point B moves towards point A (Figure 5.2). 

We have already proved in Lemma 6 that the angle between the chord and 
the tangent is infinitesimal i.e. {B -- A, A -- D'} :::::a O. From this result, we 
can deduce that {R -- A, A -- D'} and {R -- A, A -- B} are infinitely close: 

{B -- A, A -- D'} :::::a Ohr :=:} {R -- A, A -- D'} :::::a {R -- A, A -- B} 

Finally, since ~ABR and ~AD'R have two corresponding angles that are infinitely 
close (they have one common angle in fact), we can show that they are ulti­
mately similar (and even ultimately congruent): 
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A 0' 
~~~----~----~ 

R 

Fig 5.2. Ultimately similar triangles 

(B -- R, R -- A) =a (B -- R, R -- A) 
==} (B -- R, R -- A) ~a (B -- R, R -- A) 

[I(B -- R, R -- A} ~a (B -- R, R -- A); 
(R -- A,A -- D') ~a (R -- A,A -- B}1l ==} USIH AB RAD' R 

In the various proofs just described, the use of a circular arc for the arc of 
finite curvature is justified because it is possible to construct a circle at the 
point A that represents the best approximation to the curvature there (see 
section 5.2.4 for more details on circular approximations). We can also list a 
few more properties that are proved about motion along an arc (see Figure 
5.1): 

• t:,BDA and t:,ABr are similar and hence len (A -- B)2 = len (A -- r) . 
len (D - B). The latter result is stated and used but not proved by Newton 
in Lemma 11. 

• len (A -- B), arc_len R A B, and len (A -- D') are infinitely close and, 
in fact, their ultimate ratio is infinitely close to 1. This is Lemma 7. 

We now further apply our infinitesimal techniques to various kinds of mo­
tions that are studied in the Principia. Infinitesimals and Newton's lemmas 
are required to deal with the ultimate situation and enable various kinds of 
approximations where a particular figure can be replaced by another one in 
whole or in parts. 

5.2.3 Circular Motion 

Motion along a circle is the simplest type of conic motion and was originally 
thought to be the type of orbits in which planets moved. We examine next 
the various procedures used to investigate circular motion and to derive the 
physical laws governing it. 
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The Polygonal Approximation and Kepler's Law of Equal Areas. In 
this technique, the circle or circular path is approximated by a circumscribed 
polygon or polygonal path of n sides. The number of sides, n, is ultimately in­
creased without limit, that is n E HNatInfinite in the ultimate situation. As 
the number of sides increases, the polygonal path approaches the circular one 
and, when the number of sides is infinite, Newton no longer distinguishes be­
tween the polygon and the actual circle. This approach is, of course, reminiscent 
of the one used to prove the relation between the area and the circumference of 
the circle that we formalized in Section 4.3. Newton's approximation is justified 
by assuming that an impulsive force acts intermittently to deviate the motion 
of the body from a rectilinear path as shown in Figure 5.3. The impulsive force 
is known as the centripetal force which acts towards the centre of the circle. 

F 

~ F 

Fig 5.3. A circular path approximated by a polygon (octagon) with an impulsive 
force F acting at each intersection point 

Using the polygonal approximation, Newton sets up the first important 
theorem of the Principia, namely Kepler's second law! or Kepler's Law of 
Equal Areas. This was published in 1609 and was often regarded until Newton's 
Principia as the least important of Kepler's Laws. It is established by Newton 
as the first mathematical Proposition of the Principia. 

In Newton's diagram (Figure 5.4), the polygons ABCDEF are used to 
approximate the continuous motion of a planet in its orbit. The motion between 
any two points such as A and B of the path is not influenced by any force 
though there are impulsive forces, all directed towards the fixed centre S, that 
act at A, B, C, .... Newton proved that if the time interval between successive 
impulses is fixed then all the triangular areas SAB, SBC, ... , are equal, that is 
equal areas are described in equal times. The demonstration of this law makes 
no assumption about how this force varies with distance from the centre of 
force Sj its only restriction is that it be directed toward S. Newton reduces 

1 This was actually Kepler's first observation originally. 
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Fig 5.4. Original diagram from the Principia showing a body moving under the 
influence of a series of impulsive centripetal forces 

the discontinuous motion along the straight edges AB, BC, ... , to continuous 
motion along a smooth orbital path by using an infinitesimal process that lets 
the size of the triangles become infinitely small. 

We follow Newton's argument and prove that the area of SAB is equal 
to that of SBC using our geometric tools. We quote from the exposition of 
Proposition 1 in the Principia: 

Let time be divided into equal parts, and in the first part of the time 
let the body, by its inherent force, describe the straight line AB. In the 
second part of the time, the same body, if nothing were to impede it, 
would pass on by means of a straight line to c (by Law 1), describing 
the line Bc equal to AB, with the result that, radii AS, BS, cS being 
drawn to the centre, the areas ASB, BSc would come out equal. 

We first observe that the area of SAB equals that of SBc because the triangles 
have equal bases (since the times are equal and no force has acted to change 
the velocity) and the same height: 

[lcoH AB c; len (A -- B) = len (B -- c) 11 
==> s_delta SA B = s_delta S B c 

The impulsive centripetal force at B makes the body depart from motion 
in a straight line and Newton makes the following construction (using the 
Parallelogram Law of Forces): 
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Let eC be drawn parallel to BS, meeting BC at C; and, the second 
part of the time being completed, the body (by Corollary I of the laws) 
will be located at C, in the same plane as the triangle ASB . .. Connect 
SC, and because of the parallels SB, Ce, triangle SBC will be equal 
[in area] to triangle SBe, and therefore to triangle SAB. 

This leads to the following lemma, which is also easily proved in Isabelle 
since it follows from the definition of parallel lines: 

[IS -- B /I e -- CIl ==> s_delta S B e = s_delta S B C 

The proof that the areas are equal follows. In fact, this first part of Kepler's 
Law of Equal Areas is proved automatically in one step by Isabelle thanks to 
the presence of powerful proof tactics. 

The next step in Newton's proof is to decrease the breadth of the triangles to 
be infinitesimally small. By formalizing Newton's Lemma 3 and its corollaries, 
we can substitute the straight edge by a curved line: 

(A -- S, S -- B) ~ Ohr ==> len (A -- B) ~ arc~en S A B 

And furthermore using the same lemma, the area of the infinitesimal triangle 
SAB is infinitely close to the area of the arc and can be substituted: 

(A -- S, S -- B) ~ Ohr ==> s_del ta S A B ~ arc_area S A B 

As the triangles become infinitesimal, the perimeter of the path becomes 
infinitely close to a curvilinear one and the force can be viewed as acting con­
tinuously since the times between the impulses are infinitesimal. We note here 
the geometrical representation of time since making the triangles infinitesimal 
effectively makes the time intervals also infinitely close to zero. The result that 
the area described is proportional to time still holds for the evanescent triangles 
and hence also holds for the infinitely close curvilinear areas. 
The Parabolic Approximation. The parabolic approximation to circular 
motion also introduces infinitesimals in the analysis but in a different way. This 
technique, developed after the polygonal approximation, is usually used right at 
the beginning or right at the end of motion of a body. It derives its name from 
Galileo's demonstration that the combination of uniform rectilinear motion and 
uniform accelerated rectilinear motion (at right angles to one another) gives rise 
to a parabolic path [12]. Thus, the portion of the circle infinitely close to some 
point is approximated by the corresponding portion of a parabola since the 
centripetal force acting perpendicularly disturbs the rectilinear motion of the 
body along the tangent. This approximation enables Newton to use Galileo's 
results about motion to relate the force F with the deviation denoted by BC 
in Figure 5.5. 

5.2.4 Elliptical Motion 

The analysis of elliptical motion is of utmost importance since planets were 
observed to move in elliptical orbits around the sun. Newton's analysis of the 
force required for elliptical motion relies on the circle of curvature. 
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I 

Fig 5.5. The parabolic approximation 

The Circular Approximation using Osculating Circles. A circle is used 
to approximate the ellipse at a point (and in its infinitesimal neighbourhood). 
For example, in Figure 5.6, we have a circle at A and one at B approximating 
the curvature at these two points. 

B 

Fig 5.6. Osculating circles 

This circle, sometimes known as the osculating circle,2 has the same first and 
second derivative as the curve at the given point A. Thus, the osculating circle 
has the same curvature and tangent at A as the general curve and therefore 
both have the same infinitesimal arc at A. Brackenridge gives more details on 
the technique [11, 12] and notes that the circle of curvature is small where 
the ellipse curves more rapidly, for example at B, and larger where it curves 
more slowly, such as at point A. This approximation also enables us to use a 
circular arc to derive results about any arcs with finite curvatures as we already 

2 From the Latin osculare meaning to kiss - the term was first used by Leibniz. 
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observed. We can then make use of the definitions for areas of sectors, length 
of arcs etc., for example (cf. Section 5.2.3). 

5.2.5 Geometric Representation for the Force 

With the help of Kepler's Law of Equal Areas and the circular approximation, 
we can now derive' a completely geometric representation for the force acting 
on the orbiting body. Consider Figure 5.7, in which a point P is moving along 
an arc of finite curvature under the influence of a centripetal force acting 
towards S. Let Q be a point infinitely close to P, that is the length of the arc 
from P to Q is infinitesimaL QR, parallel to SP, represents the displacement 
from the rectilinear motion (along the tangent) due to the force acting on 
P. Line segment QT is the perpendicular dropped to SP, From Newton's 
Lemma 10, Corollary 3 (one of Galileo's results about parabolic motion in Two 
New Sciences [35]), we see that the displacement "in the very beginning 
of motion" is proportional to the force and to the inverse square of the time. 
Hence, formalized in our framework, we have (for some real proportionality 
constant k1 ) that: 

len(Q -- R) 
force ~ kl . . 2 

T~me 
(5.1) 

Since the distance between P and Q is infinitesimal, the angle (P - S, S - Q) 
is infinitely small, and hence the area of the sector SPQ (Sue S P Q) is infinitely 
close to that of the triangle SPQ: 

(P -- S, S -- Q) ~a 0 ==} Sue S P Q ~ S~ S P Q 

==} Sue S P Q ~ 1/2· len(Q -- T) . len(S -- P) (5.2) 

From Kepler's Law of Equal Areas (Section 5.2.3), we have that the area of 
sector SPQ is proportional to the time taken (Time) to describe it. Thus, we can 
replace Time by SueSPQ in (5.1) and, hence, using (5.1) and (5.2), we have the 
following geometric representation for the force (for some new proportionality 
constant k): 

force ~ k . ___ le_n..,..:(,-Q _-_-_R.,:-) ---,."0' 

len{Q -- T)2 ·len{S -- P)2 
(5.3) 

The geometric expression given above is a general theorem: it holds for any 
body moving under the influence of a centripetal force. In Section 5.4, the 
result is applied to the study of elliptical motion; this results in anew, more 
specific geometric expression for the force. 

5.3 Ratios of Infinitesimals 

We know that Infinitesimal is not an ideal in IR. It follows that the ratio of 
two infinitesimals {equivalently, the product of an infinitesimal and an infinite 
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S 

Fig 5.7. Representing the centripetal force geometrically 

number) is not necessarily an infinitesimal. In other words, we cannot be sure 
whether the ratio of two infinitesimals is infinitesimal, finite or infinite. For any 
given positive infinitesimal f, we have f ~ f2, but see that: 

f2 . l/f E Infinitesimal 

f· l/f E Finite 

f· 1/f2 E Infinite 

Therefore, whenever an infinitesimal quantity is divided by another in one of 
Newton's ultimate situation, the type of number obtained for the ratio will need 
to be known to be of any use in subsequent deductions. Failure to establish the 
nature of a ratio of vanishing quantities within our framework might prevent 
a theorem from being applicable (since one or more of its premises cannot be 
discharged). This is due to the rigour with which infinitesimals, and relations 
based on them, are treated in NSA to prevent unsound steps. 

Finite Geometric Witnesses. How does Newton deal with ratios of van­
ishing quantities? Whenever he is manipulating the ratio of infinitely small 
quantities, he usually makes sure that this can be expressed in terms of some 
finite (geometric) quantity in the proof. Thus, the ratio of infinitesimals is 
shown to be infinitely close or even equal to some finite quantity. We illustrate 
this important aspect by means of a simple example. 

Let ~abc be an "infinitesimal" triangle, i.e. its sides are all of infinitesimal 
lengths. Based on this information only, it is not possible to determine the 
nature of the ratio of any two of its sides since it could be finite, infinitesimal 
or infinite. If we have a second triangle ~a'b'c' with sides of finite but not 
vanishing lengths, say all the sides have real lengths, and given furthermore 
that ~abc and f:::.a'b'c' are similar (or even ultimately similar), then it becomes 
possible to deduce the following (see Figure 5.8): 

SIM abc a' b' c' 
==> len (a -- b)/len (a' -- b') = len (a -- c)/len (a' -- c') 
==> len (a -- b)/len (a -- c) = len (a' -- b')/len (a' -- c') 
==> len (a -- b)/len (a -- c) E SReal 

Thus, because the two triangles are similar, we have been able to deduce 
that the ratio of infinitesimal is a finite (real) quantity. We are now free to 
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a' 

b"L------~c' 

Fig 5.S. Geometric witness: similar "infinitesimal" and "real" triangles 

manipulate the ratio and use it safely and soundly within our framework. The 
triangle a'b'd is a simple example of a finite geometric witness. Setting up or 
identifying such witnesses is a crucial step of Newton's analysis. This enables 
him to reason about infinitesimals and their ratios in ultimate situations by 
relating them to macroscopic features of the geometric diagram. In some cases, 
exhibiting a witness can be a rather complicated task that involves proving a 
large number of intermediate theorems. This is the case for the most famous 
result of Newton's Principia: the Propositio Kepleriana or Kepler Prob­
lem. 

5.4 Case Study: Propositio Kepleriana 

This is Proposition 11 of Book 1 of the Principia. This proposition is important 
for both mathematical and historical reasons, as it lays the foundations for 
Kepler's first law of Gravitation. It provides the mathematical analysis that 
could explain and confirm Kepler's guess that planets travelled in ellipses round 
the sun [81]. 

The proof of this proposition will be shown in detail as it gives a good 
overview of the mixture of geometry, algebra and limit reasoning that is so 
characteristic of Newton's Principia. It also gives an idea of the depth and 
amount of mathematical expertise involved in Newton's proof. The proof that 
Newton describes, though relatively short on paper, becomes a major demon­
stration when expanded and reproduced using Isabelle. The elegance of many of 
the constructions, which could be glossed over, is revealed through the detailed 
analysis. 

We give formal justifications for the steps made by Newton in ultimate 
situations through our rigorous and logical use of infinitesimals. Infinitesimal 
reasoning is notorious for leading to contradictions. However, since nonstandard 
analysis is generally believed to be consistent, it ensures that our mechaniza­
tion is rigorous. We will give the enunciation of the proposition and the proof 
(sketch) provided by Newton. We will then expand on the sketch and provide 
detailed proofs of the steps that are made by Newton. This will require the 
use of the rules from the geometric and NSA theories developed in Isabelle. 
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Moreover, an anomaly is revealed in Newton's reasoning through our rigorous 
formalization. 

5.4.1 Proposition 11 and Newton's Proof 

Proposition 11 is in fact stated as a problem by Newton at the start of Section 
3 of the Principia. This section deals with "the motion of bodies in eccentric 
conic section". Particular orbits and laws governing forces that are relevant 
to the universe are investigated. The mathematical tools are developed for 
later use in Book III of the Principia, when natural phenomena of our world 
are investigated. Our task consists in expressing Newton's result as a goal 
which is then proved. Figure 5.9 shows Newton's original diagram used for this 
Proposition. 

Newton's Proposition 11. If a body revolves in an ellipse; it is required to 
find the law of the centripetal force tending to the focus of the ellipse. 

Fig 5.9. Newton's original diagram for Proposition 11 

Newton's Solution: Let S be the focus of the ellipse. Draw SP cutting the 
diameter D K of the ellipse in E, and the ordinate Qv in x; and complete the 
parallelogram QxP R. It is evident that EP is equal to the greater semiaxis AC: 
for drawing HI from the other focus H of the ellipse parallel to EC, because 
CS, CH are equal, ES, EI will be also equal; so that EP is the half-sum of 
PS, PI, that is (because of the parallels HI, PR, and the equal angles IPR, 
H P Z ), of P S, PH, which taken together are equal to the whole axis 2AC. 
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Draw QT perpendicular to SP, and putting L for the principal latus rectum of 
the ellipse (or for 2~g2 ), we shall have 

L· QR: L· Pv = QR: Pv = PE: PC = AC : PC, 
also, L· Pv: Gv· Pv = L: Gv, and, Gv· Pv: Qv2 = PC2 : CD2 

By Corollary 2, Lemma 7, when the points P and Q coincide, Qv2 = Qx2, and 
Qx2 or Qv2 : QT2 = Ep2 : PF2 = CA2 : PF2, and (by Lemma 12) = CD2 : 
C B2. Multiplying together corresponding terms of the four proportions, and by 
simplifying, we shall have 

L· QR: QT2 = AC· L· PC2 . CD2 : PC· Gv· CD2. CB2 = 2PC: Gv, 

since AC . L = 2BC2. But the points Q and P coinciding, 2PC and Gv are 
equal. And therefore the quantities L· QR and QT2, proportional to these, will 
also be equal. Let those equals be multiplied by ~;, and L . SP2 will become 

equal to SP;jT2. And therefore (by Corollary 1 and 5, Proposition 6) the 

centripetal force is inversely as L . SP2, that is, inversely as the square of the 
distance SP. Q.E.1. 

Newton's derivation concludes that the centripetal force, for a body moving 
in an ellipse, is inversely proportional to the square of the distance. 

Our proof proceeds in several steps. We set up various relationships that 
we will need for the conclusion. This involves proving Newton's intermediate 
results. 

5.4.2 Expanding Newton's Proof 

Newton's argument for Proposition 11 is complex and represents a major mech­
anization task. In what follows, we highlight the main results that were proved 
and, in some cases, details of the properties that needed to be set up first. We 
mention the constraints that needed to be satisfied within our framework before 
the various ratios that were proved could be combined. Our mechanization was 
broken down into several steps that roughly followed from Newton's original 
proof. The analysis provided by Brackenridge [12) and Densmore [27) clarified 
several aspects of the proof and its formalization. The main results that are set 
up are as follows {see Figure 5.9}: 

• len{E - P} = len{A - C} 
• len{A - C}/len{P - C} = L· len{Q - R)/L· len(P - v) 
• L ·len{P - v)/{len{G - v) ·len{P - v)) = L/len{G - v) 
• len{G - v) ·len{P - v}/len{Q - v)2 = len{P - C)2/1en{C - 0)2 
• len(Q - v}2/1en(Q - T}2 :::::: len(C - O? /len(C - B)2 
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Step 1: Proving len(E - p) = len(A - C) 

This result shows that the length of EP is independent of P, and Newton's 
proof uses several properties of the ellipse. A rather detailed overview of this 
particular proof is provided as it gives an idea of the amount of work involved 
in mechanizing Newton's geometric reasoning. Moreover, the reader can then 
compare Newton's proof style and prose with our own proof and see the GTP 
methods we have formalized in action. 

R 

Fig 5.10. Construction for Step 1 of Proposition 11 

In Figure 5.10, the following holds 

• C is the centre of the ellipse with S and H as the foci 
• P is a point on the curve 
• RZ is the tangent at P 
• the conjugate diameter D - K II P - Z 
• P - S intersects D - K at E 
• H - I II E - C and H - I intersects P - S at I 

Since H - I II E - C, the following theorem holds, 

H - I II E - C =::::} Sdelta C E I = Sdelta C E H (5.4) 

But the foci are collinear with and (by Apollonius III.45 [3]) equidistant from 
the centre of the ellipse; so the following can be derived using the signed-area 
method: 

coll S C H =::::} len( S - C) . Sdelta C E H = len( C - H) . Sdelta C S E 

=::::} Sdelta C E H = Sdelta C S E (5.5) 

Also, points S, E and I are collinear and therefore combining with (5.4) and 
(5.5) above, we verify Newton's "ES, EI will also be equal": 

coll S E I =::::} len(S - E) . Sdelta C E I = len(E - I) . Sdelta C S E 

=::::} len(S - E) = len(E - I) (5.6) 
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Next, the following derivations can be made, with the help of the last result 
proving Newton's "EP is the half-sum of PS, PI": 

coll E I P ==} len(E - P) = len(E - I) + len(I - P) 

==} len(E - P) = len(S - E) + len(I - P) 

==} 2 ·len(E - P) = len(E - P) + len(S - E) + len(I - P) 

==} 2 ·len(E - P) = len(S - P) + len(I - P) 

( ) len(S - P) + len(I - P) 
==} len E - P = 2 

Note the use of the following theorem in the derivation above: 

coll SEP ==} len(S - E) + len(E - P) = len(S - P) 

Next, Newton argues that in fact (5.7) can be written as: 

( ) len(S - P) + len(H - P) 
len E - P = 2 

(5.7) 

(5.8) 

So, a proof of len(I - P) = len(H - P) is needed to progress further. This will 
follow if it can be shown that l!,PHI is an isosceles, that is: 

(p - H,H - I) = (H - I, I - P) (5.9) 

To prove (5.9), both H - I II P - Z and H - I II P - R are derived first using: 

[lH - I II E - C; E - Clip - zll ==} H - I II P - Z (5.10) 

[lH - I II P - Z; coll P Z Ril ==} H - I II P - R (5.11) 

From (5.10), (5.11), and the proof of Euclid 1.29 given in Section 2.3.3: 

H - I II P - Z ==} (P - H, H - I) = (H - P, P - Z) (5.12) 

H - I II P - R ==} (H - I, I - P) = (R - P,P - I) 

==} (H- I,I-P) = (R-P,P-S) (5.13) 

From the definition of the tangent to an ellipse and the collinearity of P, I, and 
S (also recall that full-angles are angles between lines rather than rays and are 
measured anti-clockwise): 

is_e_tangent (P - Z) S H Ellipse ==} (H - P,P - Z) = (R - P,P - I) 

==} (H - P, P - Z) = (R - P, P - S) 

(5.14) 

From (5.12), (5.13) and (5.14), the following is deduced as required: 

(P - H, H - I) = (H - I, I - P) 
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Thus, we have len(! - P) = len(H - P) (Euclid 1.6 [30)), and hence (5.8) is 
proved, that is, Newton's assertion that "[EP is the half sum of] PS, PH". 
It then follows from the definition of an ellipse that the sum of len(S - P) and 
len(P - H) is equal to the length of the major axis, that is: 

P E Ellipse ===> len(S - P) + len(P - H) = 2 . len(A - C) (5.15) 

From (5.15) and (5.8), we can finally derive the property that Newton states 
as being evident: "EP is equal to the greater semiaxis AC": 

len(E - P) = len(A - C) (5.16) 

The first step has shown Newton's geometric reasoning in action. For the next 
steps, as the various ratios are derived, the detailed derivations of the geometric 
theorems are not always shown. We will concentrate on the setting up of the 
proportions and how everything is put together to get the final result. We will 
state Newton's lemmas when they are used and theorems about infinitesimals 
that we use. 

Step 2: Showing ~'.q,~ = ~ = ~g = ~g 

R 

Fig 5.11. Construction for Steps 2-4 of Proposition 11 

In Figure 5.11, in addition to properties already mentioned, the following 
relations hold: 

• QT 1. SP 
• QxP R is a parallelogram 
• Q, x, and v are collinear 
• Q is infinitely close to P 

The (finite and non-zero) constant L, present in the ratio above, is known as 
the latus rectum of the ellipse at A (see Figure 5.9) and is defined as: 

L == 2 . len(B - C)2/1en(A - C) 
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It is easily proved that v - x /I C - E and so the theorem below follows: 

v - x /I C - E => (P - v, v - x) = (P - C, C - E) (5.17) 

From (5.17) and the fact that l:l.Pvx and l:l.PCE share P as a common vertex, 
it follows that they are similar. Also, since QxPR is a parallelogram, we have 
len{Q - R) = len{P - x). Thus, the following derivations can be made: 

len{P - E) len{P - x) len{Q - R) len{A - C) 
81M PVxPCE => = = = ---'---'-

len{P - C) len{P - v) len{P - v) len{P - C) 
(5.18) 

One of the substitutions used in (5.18) follows from (5.16) proved in the previ­
ous step. The equations above verify Newton's ratios. 

Step 3' Showing L·Pv =..k. • Gv·Pv Gv 

The proof of the ratio 

L . len{P - v) L -....,.---,-..:.....--..,."'"-----.,.- = --,---~ 
len{G - v) . len{P - v) len{G - v) 

is trivial and we will not expand on it. 

Step 4: Showing GQ$V = ~g; 

(5.19) 

By Apollonius 1.21 [3], if the lines DC and Qv are dropped ordinatewise to the 
diameter PG, the squ.ares on them DC2 and Qv2 will be to each other as the 
areas contained by the straight lines cu.t off GC, CP, and Gv, vP on diameter 
PG. Algebraically, we proved the following property of the ellipse: 

len{D - C)2 len{G - C) . len{P - C) 
= len(Q - V)2 len{G - v) . len{P - v) 

len{P - C)2 = --,--~-~-~ 
len{G - v) ·len{P - v) 

Rearranging the terms, we get the required ratio: 

len{G - v) . len{P - v) len{P - C)2 = --:-----:-;:-
len{Q - V)2 len{D - C)2 

Step 5: Showing 8;; ~ g~~ and intermediate ratios 

In Figure 5.12, we have the additional property: 

• PF.l DK 

(5.20) 

Again, it can be easily proved that Qx II EF. The next theorem then follows from 
Euclid 1.29 as given in Section 2.3.3: 
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Q - x /I E - F ==} (Q - x, x - E) = (F - E, E - x) 

==} (Q - x,x - T) = (F - E,E - P) (5.21) 

Since (P - F, F - E,) = (x - T, T - Q) = 7f' /2 and (5.21), it follows that .6.PEF 
and .6.QxT are similar. The next theorems (using (5.16) where needed) then 
hold and verify Newton's intermediate results for the current step: 

len(Q - X)2 len(P - E)2 len(C - A)2 (5.22) 
8IM PEFQxT ==} = = -""":""'--'-:-

len(Q - T)2 len(P - F)2 len(P - F)2 

R 

Fig 5.12. Construction for Step 5 of Proposition 11 

Newton's Lemma 12 (see Figure 2.7) is now needed for the next result. Ac­
cording to the Lemma, the parallelogram circumscribed about D K and PG is 
equal to the parallelogram circumscribed about the major and minor axes of 
the ellipse. Thence, we have the following theorem: 

len(C - A) . len(C - B) = len(C - D) . len(P - F) (5.23) 

Rearranging (5.23) gives len(C - A)/len(P - F) = len(C - D)/len(C - B) and 
substituting in (5.22) leads to: 

len(Q - X)2 len(C - D)2 
= len(Q - T)2 len(C - B)2 

(5.24) 

By Newton's Lemma 7, Corollary 2, when the distance between Q and P be­
comes infinitesimal as they coincide, we have the following result: 

len(Q - v) ~ 1 
len(Q - x) 

(5.25) 

Now, to reach the final result for this step, we need to substitute len(Q - v) 
for len(Q - x) in (5.24). However, we cannot simply carry out the substitution 
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even though the quantities are infinitely close. Indeed, one has to be careful 
when multiplying the quantities on both sides of the R$ relation because they 
might no longer be infinitely close after the multiplication (cf. Section 5.3). 
Consider, the non-zero infinitesimal ~: 

~ R$ ~2 but ~ . 1/~ ¢ ~2 . 1/~ 

It is possible, however, to multiply two infinitely close quantities by any fi­
nite quantity; the results are still infinitely close. This is a consequence of the 
following theorem, proved in Isabelle's NSA theory: 

[Ix R$ y; u E Finitell ~ x . u R$ Y . u (5.26) 

Now, assuming that len(C - 0) and len(C - B) are both finite but not infinite­
simal (for example, len(C - 0), len(C - B) E JR), then len(C - O)/len(C - B) 
is Finite. Hence, the ratio of infinitesimals len(Q - x)/len(Q - T) is Finite. 
Therefore, from (5.25), (5.26) and using (5.24) the following theorem is derived: 

len(Q - v)2 len(C - 0)2 
len(Q - T)2 R$ len(C _ B)2 (5.27) 

This gives the result that we wanted for the fifth step of the proof of Proposition 
11. We are now ready to put all the various results together in the next and 
final step. This will then conclude the formal proof of the Proposition. 

Step 6: Putting the ratios together Combining (5.20) and (5.27), with 

the help of theorem (5.26) and some algebra, yields: 

[l len(Q - V)2 len(C - 0)2 len(G - v) . len(P - v) .. I] 
-~-~ R$; E F1n1te 
len(Q - T)2 len(C - B)2 len(Q - v)2 

~ len(G - v) . len(P - v) R$ len(P - C)2 (5.28) 
len(Q - T)2 len(C - B)2 

This is combined with (5.19) to derive the next relation between ratios. The 
reader can check that both sides of the R$ relation are multiplied" by finite 
quantities ensuring the results are infinitely close: 

L ·len(P - v) len(P - C)2 . L 
len(Q - T)2 R$ len(C - B)2 . len(G - v) 

(5.29) 

The next task is to combine the last result (5.29) with (5.18) to yield the fol­
lowing ratio which is equivalent to Newton's L· QR: QT2 = AC· L· PC2 . CD2 : 
PC· Gv ·CD2. CB2: 

L· len(Q - R) len(P - C) . L . len(A - C) 
len(Q - T)2 R$ len(C - B)2 . len(G - v) 

(5.30) 

But, we know that L = 2 . len(B - C)2/len(A - C), so (5.30) can be further 
simplified to give Newton's other ratio "L· QR: QT2 = 2PC: Gv": 
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L· len(Q - R) 2· len(P - C) (5.31) 
len(Q - T)2 Rj len(G - v) 

Once these ratios have been derived, Newton says "But the points Q and P 
coinciding, 2PC and Gv are equal. And therefore the quantities L· Q R 
and QT2 , proportional to these are also equal." 

We formalize this by showing that len{P - v) Rj 0 as the distance between Q 
and P becomes infinitesimalj thus, it follows that 2 • len(P - C)/len(G - v) Rj 1 
and so, using (5.31) and the transitivity of Rj, we have the result: 

L . len(Q - R) Rj 1 
len(Q - T}2 

(5.32) 

The final step in Newton's derivation is "Let those equals be multiplied 
by ~ and L . SP2 will become equal to SP~jT2". This final ratio gives 
the geometric representation for the force, as we showed in Section 5.2.5, and 
hence enables Newton to deduce immediately that the centripetal force obeys 
an inverse square law. 

We would like to derive Newton's result in the same way, but remark that 

[Ilen(S - p} E Finite - Infinitesimaljlen(Q - R) E Infinitesimalll 
len(S _ p)2 

~ ( ) E Infinite (5.33) 
len Q - R 

as Q and P become coincident. So, there seems to be a problem with simply 
multiplying (5.32) by Newton's ratio SP2/QR: we cannot ensure that the re­
sults are infinitely close. Our formal framework forbids the multiplication that 
Newton performs. 

Therefore, we need to find an alternative way of arriving at the same re­
sult. Recall from Section 5.2.5, that we have proved the following geometric 
representation for the centripetal force: 

I k len(Q - R} 1 
J orce Rj • • ---,---~ 

len(Q - T)2 len(S _ P)2 (5.34) 

Now from (5.32), we can deduce that since L E Finite - Infinitesimal, the 
following theorems hold: 

len(Q - R} 
len(Q _ T)2 E Finite - Infinitesimal 

len(Q - T}2 
-"""'--~RjL 
len(Q - R) 
len(Q - T}2 
--';---',- E Finite 
len(Q - R) 

(5.35) 

(5.36) 

(5.37) 



98 5. Mechanizing Newton's Principia 

Since (5.35) holds and l/len(S - p)2 E Finite, it follows that force E Finite 
and so we can now use the following theorem about the product of finite, 
infinitely close quantities: 

Ila ~ b; c ~ d; a E Finite; c E Fini tel] ==> a . c ~ b . d 

with (5.34), (5.36), and (5.37) to yield 

len(Q - R) 1 
force· L ~ k . . ---:--~ 

len(Q - T)2 len(S - P)2 
1 

~ k· ---,----:--=-
len(S - P)2 

len(Q - T)2 

len(Q - R) 

(5.38) 

Note that we also used the symmetry of ~ in the derivation above. Finally from 
(5.38), we get to the celebrated result. Since L is finite (real) and constant for 
a given ellipse: 

5.4.3 Conclusions 

k 1 
force ~ - . --;----:-;:­

L len(S - p)2 

1 
force C:Xu/timate ( )2 len S - P 

(5.39) 

We have described in detail the machine proof of Proposition 11 of the Prin­
cipia and shown how the theories developed in Isabelle can be used to derive 
Newton's geometric representations for physical concepts. We have used a com­
bination of geometry and NSA rules to confirm, through a study of one of the 
most important propositions of the Principia, that Newton's geometric and ul­
timate procedures can be cast within the rigour of our formal framework. The 
discovery of a step in Newton's reasoning that could not be justified formally­
in contrast with other ones where Newton explicitly sets up finite witnesses- is 
noteworthy. The alternative derivation presented in this work is original, as far 
as we know. It shows how to use our rules to deduce the same result soundly. 

Once again, the mechanization of results from the Principia has been an in­
teresting and challenging exercise. Newton's original reasoning, though complex 
and often hard to follow, displays the impressive deductive power of geometry. 
The addition of infinitesimal notions results in a richer, more powerful geo­
metry in which new properties can emerge in ultimate situations. These tools 
can be used to model physical phenomena, and also to provide rigorous proofs 
in geometry that make use of infinitesimal arguments. 
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Classical or standard analysis is mostly concerned with the study of the real 
numbers and with the properties of functions defined on them. We shall now 
describe the use of the hyperreals as valuable tools for mathematical analysis. 
Through the existence of infinitesimals, finite, and infinite numbers, NSA pro­
vides us with a rich structure which we use to formalize alternative treatments 
of topics in classical analysis. Such treatments are not only valuable for the 
additional light that they cast on the processes of analysis, but also for the 
simplification they bring to many concepts and arguments. As will be seen, the 
mechanization of analysis can benefit directly from this simplification, since 
difficult instantiation steps in proofs are simply eliminated in many cases. We 
start by showing how functions defined over the reals and naturals can be sys­
tematically extended to the hyperreals and hypernaturals, respectively. These 
notions are crucial to nonstandard real analysis. We then proceed to develop 
some elementary analysis that will make use of the new classes of numbers, the 
infinitely close relation, and other notions induced on them. 

6.1 Extending a Relation to the Hyperreals 

There are systematic methods through which functions defined on the reals are 
extended to the hyperreals. This process of extending a relation from m. to m. * 
is known as the *-transform. 

6.1.1 Internal Sets and Nonstandard Extensions 

Many properties of the reals, suitably reinterpreted, can be transferred to 
the hyperreal number system. For example, we have seen that m. *, like m., 
is a totally ordered field. Also, just as m. contains the natural numbers IN 
as a discrete subset with its own characteristic properties, m.* contains the 
hypernaturals IN* as a corresponding discrete subset with analogous properties. 
Moreover, subsets 2Z* (the hyperintegers) and <Q* of m.* exhibit relations to 
IN* similar to those that 2Z and <Q bear to IN in m.. 

However, there are properties of m. that do not transfer to m. *. This is the 
case for the fundamental supremum property of the reals stated in Section 
3.4.3. It is easy to see that this upper bound property does not necessarily hold 
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by considering, for example, the set R itself, which we regard as embedded into 
the hyperreals (Le. the set SReal). This is a non-empty set which is bounded 
above (by any of the infinite numbers in R*) but does not have a least upper 
bound in R*. 

Proof. Suppose that r is the least upper bound of R. Then, it follows that 
r is infinite since it is an upper bound. But as r E lnf ini te, it follows that 
r -1 E lnf ini te, so r -1 is a smaller upper bound which is a contradiction. 0 

We now introduce an important refinement which classifies subsets of R * into 
two types: internal and external subsets. With this done, we shall be able to 
prove the following statement, for example, about the supremum property for 
the hyperreals: 

Every non-empty internal subset of R* which has an upper bound in 
R * has a least upper bound in R * 

Definition 6.1.1. Let An, n E 1N, be any sequence of sets of real numbers. 
This sequence determines a certain set A of hyperreals according to the rule: 
the hyperreal number x = [(Xn)] is a member of set A ~ R* if and only if the 
set {n E 1N. Xn E An} belongs to the ultrafilter UIN. 

This definition is analogous to the one we used to define hyperreals in terms 
of sequence of reals. The sequences of sets of real numbers can then be used to 
define the so-called internal sets of hyperreals. In Isabelle, we have the following 
declaration and definition for an internal set: 

*sn* :: (nat => real set) => hypreal set 
*sn* A == {x.VX E Rep..hypreal(x). {n.X(n) E A(n)} E UIN} 

We are particularly interested in the special case when the sequence is constant, 
that is An = A for all (or almost all) n. The internal set determined by such 
a sequence is called the nonstandard extension of A and, since this is the 
actual property that will be used more often in the course of our mechanization, 
it is defined explicitly: 

*s* :: real set => hypreal set 
*s* A == {x. VX E Rep..hypreal(x). {no X(n) E A} E UIN} 

Thus, it follows that *s* A = *SD* (An. A). In the mathematical literature, 
the nonstandard extension of a set A is usually denoted by A *. While making 
use of this conventional mathematical notation, we shall also frequently use 
the actual Isabelle/HOL notation (*s* A), especially to show how a particular 
concept is expressed in the theorem prover. 

It can be shown that any non-empty, internal subset of R* has the supre­
mum property though the proof will not be given here. In fact, for any subset 
of S of R * that fails to have a least upper bound one can infer that it is not 
internal. Any subset of hyperreals that is not internal is called an external 
set. 
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The process of extending a set of real numbers to a set of hyperreals has 
shown an example of the *-transform at work. In general, this transformation 
procedure can be applied to any n-ary relation on the reals, extending it to an 
n-ary relation on the hyperreals. This is done using the rule that P holds on 
an n-tuple in (JR*)n if the index set where P holds on the representative real 
n-tuple sequence is in the chosen free ultrafilter. More instances of *-transforms 
will be met when nonstandard extensions of functions are introduced. 

6.1.2 Properties of Extended Sets 

Various properties of nonstandard extensions of sets of real numbers can now be 
derived. The first result proved (in one step using Isabelle's automatic tactic) 
is that JR * is the nonstandard extension of JR. The nonstandard extensions of 
sets of reals will, in general, be different from the original set. The exception 
occurs for finite sets since then the extension function simply degenerates to 
the embedding function. This is confirmed by the following theorem, where " 
denotes the image operator for relations: 

finite A ==> *8* A = hypreaLof..real "A 

If the set A is infinite, however, then we prove that A* contains elements 
that are not standard copies of the members of A. The nonstandard extension 
provides us with a new set that is an enlargement of A. Thus, the enlargement 
of JR yields a new set that contains infinitesimals and infinite elements that 
have no counterparts in the real number system. A number of useful results 
involving boolean operations on nonstandard extensions of sets are proved: 

1) hypreaLof..real "A ~ *8* A 
2) A ~ B ==> (*8* A) ~ (*8* B) 
3) (*8* 0) = 0 
4) *8* (A U B) = (*8* A) U (*8* B) 
5) *8* (A n B) = (*8* A) n (*8* B) 
6) *8* (-A) = -(*8* A) 
7) 'v'n. X(n) f/. M ==> Ab8.hypreal (hyprel AA{X}) f/. (*8* M) 

The proofs of these various theorems all follow from the basic and derived 
properties of the free ultrafilter (see Section 3.6.1). For example, property (3) 
follows quite straightforwardly from the fact that no filter contains the empty 
set. Property (5) is a direct consequence of the fact that filters are closed under 
the n and ~ operations. Proving properties (4) and (6) needs the fact that for 
any subset A of 1N, either A or -A belongs to the ultrafilter. The proofs are all 
straightforwardly carried through with the help of Isabelle's automatic tactic. 
The tactic can, in general, prove many of the theorems about set operations 
automatically given the right rules in the simplification set. 
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6.1.3 Internal Functions and Nonstandard Extensions 

Given a standard function which takes real arguments, we want to be able 
to define an analogous one that will also take nonstandard arguments. This 
leads to the notions of internal functions and to nonstandard extensions. These 
concepts are crucial as they will enable the formulation of familiar concepts 
in analysis using nonstandard definitions. Also, they give a systematic way of 
extending any function over the reals to one over the hyperreals. We give the 
definition for the case dealing with function of one real variable [48]: 

Definition 6.1.2. Let (Fn) be any sequence 01 standard functions-from JR to 
JR. This sequence determines an internal function 1 = [(Fn)] from JR. to JR. 
according to the rule x = [(Xn)] E JR. maps into y = [(Yn)] = I(x) E JR. il 
and only il {n E IN. Yn = Fn(Xn)} E UIN. 

Expressed in Isabelle, we have this rather more concise definition for the internal 
function: 

*fM :: (nat ~ (real ~ real)) ~ hypreal ~ hypreal 
*fM Fx = Abs...hypreal (UX E Rep...hypreal(x).hyprel--{An. (Fn)(Xn))) 

Thus, according to this definition, with F and x defined as above, the value of 
the internal function (*fn* F) at x is given by: 

Of interest here as well, is the nonstandard extension of a standard function F 
as an important special type of internal functions. The nonstandard extension 
is obtained by having a constant sequence of functions i.e. one for which Fn = F 
for (almost) all n. Once again, we define the special case explicitly: 

*h :: (real ~ real) ~ hypreal ~ hypreal 
*h Fx = Abs...hypreal (UX E Rep...hypreal(x).hyprel--{An. F(Xn)}) 

We will denote the nonstandard extension of a given function either by f* or 
by the equivalent Isabelle notation (*f* f). Referring back to the construction 
of the hyperreals in Isabelle, the definitions given for the field operations on 
them can all be viewed as nonstandard extensions of the analogous operations 
on the reals (e.g. addition on the hyperreals is actually +*). We also note that 
our definition for nonstandard extension corresponds to Keisler's Function 
Axiom which states that "for each real function 1 of n variables there is a 
corresponding function f* of n variables, called the natural extension of f" 
[52]. 

6.1.4 Properties of Extended Functions 

We prove, as we did for set extensions, a number of useful properties about 
nonstandard extensions of functions. One of the first and most useful simpli­
fication theorems shows that the nonstandard extension of a function, f*, is 
equivalent to applying 1 entrywise to an equivalence class representative in JR.: 
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(*h f) (Abs..hypreal (hyprel ~~ {).n. X n}» = 
(Abs..hypreal (hyprel~~{).n. J(Xn)}» 

This enables us to prove theorems about nonstandard functions by using the 
properties of the corresponding standard real function, the reals, and of the 
free ultrafilter. We then prove various theorems about preservation of rules 
across the *-transformation and other properties. Some of these Isabelle theo­
rems are listed next. Most of the proofs are mechanized in two steps or fewer 
with the help of Isabelle's automatic tactic auto_tac; the latter is supplied 
with simplification rules such as the theorem above and others about addition, 
multiplication and other operations (Equation 3.4, fot example):l 

1) (*h (>.y. Jy + gy»x = (*h f)x + (*h g)x 
2) (*h (>.y. Jy. gy))x = (*h f)x· (*h g)x 
3) (*h (J 0 g)) = (*h f) 0 (*h g) 
4) (*h >.y. k)x = k 
5) (*h (>.y. - Jy))x = - (*h f)x 
6) (*h (>.y. y)) x ~x 
7) (*h f) (a) = J(a) 
8) (*h (>.h. J(y + h))) x = (*h f) (fj + x) 
9) (*h (>.h. J(g(y + h)))) x = (*h (J 0 g)) (fj + x) 

10) *h rabs = hrabs 
11) x:/= Ohr ==> (*h rinv) x = hrinv x 
12) (*h f)x E *s* A ==> x E *s* {y.Jy E A} 

Theorem (7) is important as it tells us that the extended function has the 
same solutions as its standard counterpart for all (embedded) real arguments. 
Theorems (8) and (9) are proved because of their importance in the non­
standard definition of derivatives. From theorem (11), we prove specific cases 
such as (*h rinv) f = hrinv f. Theorem (12) is a general lemma needed for 
proofs in elementary real topology. One might try and picture these various 
theorems mentally to get abetter, more intuitive feel for the properties. If we 
combine *-transforms of both sets and functions, we can derive further theorems 
such as: 

• *s* (range f) = range (*h f) 
• *8* {x. rabs (J x - y) < r} = {x. hrabs «*h f) x - fj) < T} 

We note that any real constant is mapped to its embedded counterpart in the 
transform, as expected, while the functions are replaced by their nonstandard 
extensions. 

The importance of internal sets and functions cannot be overstated. Lind­
str0m calls them the "nice" subsets and functions of nonstandard analysis [60], 
and draws an analogy to topology where, for example, the nice sets and func­
tions are the open sets and continuous functions. Nice concepts are those that 
we are interested in whenever a new mathematical structure is introduced. In 

1 Recall from Section 3.7.1 that r stands for the image ofreal number r in m:. 
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NSA, they are important because they enable hyperreal sets and functions to 
inherit properties from their standard counterparts in a natural way. Moreover, 
they also enable us to express familiar concepts for our new mathematical struc­
ture that may be only partially inherited (such as the supremum property which 
only applies to internal subsets of R*). They introduce new subtleties that one 
has to grasp in order to use the richer nonstandard concepts adequately and 
beneficially. The strict typing of Isabelle/HOL makes the new concepts clearer 
to understand and definitions ensure that their use is rigorous. We will later 
introduce some further extensions that enable us to deal with functions from 
IN to R, for example. 

6.2 Towards an Intuitive Calculus 

Consider the real function f(x) = x2 • This extends naturally to a function J* 
over R*. Now, if a is finite and f is infinitesimal then J*(a + f) = (a + f)2 = 
a2 +f(2a+f) ~ a2 = J*(a) since the set Infinitesimal is an ideal in Finite. 
Thus, an infinitesimal change in the argument x only produces an infinitesimal 
change in f. This is, intuitively, the behaviour expected from a continuous 
function such as f(x) above: broadly speaking, one does not expect any sudden 
gap or jumps in the graph that represents the behaviour of the function. As 
pointed out by Keisler [52] and Simpson [75], students who are just beginning to 
study calculus often find it difficult to cope with formulas involving quantifiers. 
The traditional epsilon-delta ('f-6') approach, for example, is a sudden leap 
from the intuitive calculus of school to the rigour and formality of real analysis. 
One of the advantages of introducing the hyperreals is the simplification that 
this brings to the statement of many properties such as limits and continuity. 
For instance, the f - 6 condition for a function f to be continuous at a: 

'tIf. (0 < f -t 36. (0 < 6 A'tIx. (0 < Ix - al < 6 -t If(x) - f(a)1 < f))) 

is equivalent to the simpler formula 

'tIx. x ~ a -t f*(x) ~ f(a) 

The approach, through the formal use of infinitesimals and relations such as 
~, retains much of the intuition that was present in school mathematics. The 
nonstandard treatment has been expounded in textbooks by Keisler [52], Henle 
and Kleinberg [44], and more recently by Hoskins [48], for example. Keisler's 
text has even been used successfully as an introductory textbook in calculus 
courses. There is much to be gained from carrying out proofs using a nonstan­
dard formulation in general, and as this work shows next, even mechanization 
of analysis becomes simpler and shorter due to the more algebraic nature of 
nonstandard analysis. 

In applying nonstandard analysis to the formalization, we first introduce the 
standard and nonstandard formulations for the basic definitions in the theory. 
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In the next step we prove that the standard and nonstandard definitions are 
equivalent. The nonstandard equivalents are then applied, whenever appropri­
ate, to produce (often shorter) proofs of standard results. In the next sections, 
we will illustrate these points by mechanizing basic notions from the theories 
of limits for real sequences and series, elementary topology on the reaIs, limits 
and continuity of functions, and differentiability. We introduce and prove in 
Isabelle propositions stating that the standard and nonstandard definitions for 
the various concepts are equivalent. 

6.3 Real Sequences and Series 

A real sequence (an) is viewed as a standard function, a, mapping the natural 
numbers into the reaIs i.e. a : IN -t nt. The notation a(n) is also used to denote 
a typical term an of the sequence. 

The function a has a nonstandard extension a* which maps the hypernatu­
rals into the hyperreals. The *-transform of a is thus the function a* : IN· -t nt* 
where a*([{Xn)]) = [(a(Xn))J for any [{Xn}] E IN*. We therefore define this in 
a similar fashion to the extension *h for real functions. In Isabelle, the non­
standard extension of a is given by (*fNat* a) and defined as: 

*fNat* :: (nat ~ real) ~ hypnat ~ hypreal 
*fNat* aN = Abs...hypreal (UX E Rep...hypnat(N).hyprel--{An.a{Xn)}) 

As can be seen, the nonstandard extension results in a sequence of hyperreals, 
meaning that we are actually dealing with a sequence of sequences of real 
numbers, and this sequence is indexed not by the natural numbers but by 
the hypernaturals. For this reason, the extended sequence is also known as a 
hypersequence. 

Similar theorems to those presented in Section 6.1.4 about *h are proved 
together with some new ones such as:2 

(*fNat* (An. a{Suc n))) N = (*fNat* a) (N + 1) 

Of particular importance is the theorem (*fNah a)(n) = a{n) which shows 
that the hypersequence agrees with the original sequence on IN; that is for any 
n E IN, a~ is simply the image of an in the hyperreals. We recall that we are 
actually referring to the embedded copy of IN in the hypernaturals and to the 
embedded copy of m in the hyperreals. This explains the appear~ of the 
mapping functions hypnat..of..nat (in n) and hypreaLof..real (in a{n», from 
sections 3.8 and 3.7.1 respectively, in the formulation of the theorem. 

2 From now on, we shall assume, for darity, that 0 and 1 are overloaded over all the 
various types of numbers and refrain from using Or, Ohr, lhr, etc. 
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6.3.1 On Limits 

The hyperreals are now used to define the concept of limit. A few observations 
about the notation need to be made first. The symbol 00 is usually used in the 
real number system to denote that which is potentially arbitrarily large. The 
expression limn-too an thus denotes the limiting value of a as n becomes an 
arbitrarily large natural number. In IR *, the symbol 00 can be viewed as hav­
ing a similar meaning but this time, by arbitrarily large, one effectively means 
a number larger than any finite number in IR *. So the expression limn-too a~ 
denotes the value that a* approaches as n becomes an arbitrarily large hy­
pernatural number or, more formally, the value infinitely close to a~ for any 
infinite hypernatural number n. This motivates the nonstandard definition for 
sequential limit that is given below. 

With regards to the formalization in Isabelle, we decided to follow an ap­
proach similar to that used by Harrison in HOL [43] and formulate both a 
relational and functional form for sequential limits. We declare and define an 
infix "tends to" relation "---->" and use it to express statements such as an 
tends to I by an ----> l. The standard definition used in Isabelle is: 

x ----> I == Yr. (0 < r ~ (3N. Vn. N ~ n ~ rabs (Xn - L) < r)) 

Our formalization, however, also has a second version of the predicate denoted 
by "----NS>"; this second notion of convergence is defined using nonstandard 
concepts and expressed by the following simpler statement not involving any 
existential quantifiers: 

X ----NS> I == (VN E HNatInfinite. (*fNah X)N ~ T) 

The first task is to prove the equivalence of the two definitions. Before coming 
to this, we briefly make some remarks about the functional form of sequential 
limit. We declare a constant lim and use it to denote the statement limn-too an 
by lim a (equivalent by 7]-expansion to lim (An. an)). A nonstandard version 
of the function is also introduced that is denoted by nslim. The following 
definitions are made, using Hilbert's f-operator to denote the unique limit (if 
it exists): 

• lim a == cl. a ----> e 
• nslim a == cl. a ----NS> e 
The relational form is effectively used to prove properties about limits rather 
than the functional form since, as mentioned by Harrison, the latter is less 
powerful. This is because all functions in HOL and, of course, Isabelle/HOL 
are total. The interested reader should consult Harrison's PhD thesis for an 
extended discussion on binders, relational versus functional forms of mathe­
matical statements, and other related issues arising from HOL's lack of partial 
functions [43]. These points are equally relevant to the aspects of analysis that 
we have formalized in Isabelle. One last point that is worth noting is that, for 
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a convergent sequence, the following theorem is proved which could be used as 
an alternative definition for nslim (and hence lim) 

nslim a = st ((*fNah a) 0) 

where 0 denotes the infinite hypernatural [(n)] defined in Section 3.8. This 
is an interesting characterization of limit that arises due to the nonstandard 
framework. 

We will now outline the steps needed to prove the equivalence of the stan­
dard and nonstandard definitions for limits. 

6.3.2 Equivalence of Standard and Nonstandard Definitions 

Proving the equivalence of the standard and nonstandard formulations of a 
particular property is important as it will guarantee that a standard theorem 
proved using nonstandard methods is true. The proof that the nonstandard 
definition implies the standard definition is usually the trickier part. We need 
to go down to the level of the ultrafilter and use the theorems that recast 
properties such as belonging to the set Infinitesimal in terms of membership 
of UIN (as presented in Section 3.7.2). 

Theorem 6.3.1. A sequence a : 1N -t 1R converges to the real number 1 as its 
limit if and only if for each infinitely large hypernatural number 11 = [(mn )] E 
1N* - 1N we have that a~ is infinitely close to 1. In symbols, a ----> 1 <=> 
a ----NS> l. 

Proof. 

1) a ----> I ::=::::} a ----NS> I. Assume that the sequence (an) converges to l. 
Let 0 < r be given and let 11 = [(mn ) 1 be any given infinite hypernatural 
number. a ----> I implies that there exists a natural number N such that 
Ian - II < r for all N ~ n. Now since 11 is an infinite hypernatural with 
representative sequence (mn), we know, from Section 3.8, that N ~ mn for 
almost all the mn , that is {no N ~ mn } E UIN. But, we can also prove that 

{no N ~ mn } ~ {no lamn -ll < r} 
from which it immediately follows that {no lamn -ll < r} E UIN. Thus, 
given any positive real number r, we have that lamn -ll < r for almost 
all the amn . From thi~ it follows (again from Section 3.8) that a~ - Tis 

infinitesimal i.e. a~ R;j l. 
2) a ----NS> I ::=::::} a ----> I. Suppose that (an) does not converge to l. Then, 

there is some standard real r > 0 and a function f : 1N -t 1N satisfying 
n ~ f(n) and r ~ laf(n) - II for all n E 1N. Now, writing f(n) == fn, 
the sequence (In) defines a hypernatural number 11, which we prove to be 
infinite. We have {no r ~ laIn -II} E UIN since it coincides with 1N. Thus, 
it follows that a~ - T is not infinitesimal. 0 
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6.3.3 Remarks on the Proof 

There are several points that need to be made about the mechanical proof of 
the theorem above. As we mentioned already, the first part of the proof was 
relatively easy to mechanize given that we had already proved various theorems 
expressing each class of hyperreal numbers in terms of the free ultrafilter. The 
second part needed several lemmas since it is more complicated. It involves, 
for example, a Skolemization step that textbook proofs often fail to mention 
explicitly. This requires the use of AC, which here can be proved using Hilbert's 
description operator. It enables the existential quantifier to be pulled across the 
universal quantifier: 

"Ix. 3y. Q xy ===> 3J. "Ix. Q x (f x) 

This theorem allows us to introduce a function from IN to IN - effectively 
a sequence of natural numbers - that can then be used to define an infinite 
hypernatural number. The following lemma is thus proved on the way to the 
main result: 

"In. n ::s: In ===> Abs..hypnat (hypnatrel--{f}) E HNatInfinite 

Another important observation is that the structure of the proof follows a gen­
eral pattern that will occur again when we mechanize the equivalence proofs 
for other properties. Indeed, the need to use AC when proving that a particular 
nonstandard definition implies the standard one is a typical situation. Mecha­
nical theorem proving benefits from re-use of code and of important theorems. 

The fact that there is a general pattern in the proofs is not a coincidence and 
can be related to one of the central features of NSA known as the Transfer 
Principle. This provides a context in which true statements about R are 
transformed into statements about R * through a general procedure. Within 
a typed logic, this procedure would involve lifting results from the type real 
to the type hypreal, from nat to hypnat or viewed more generally, from any 
particular type to its extended counterpart. 

In the subsequent survey of the development of NSA in Isabelle, we shall 
state the standard and nonstandard formulations of various concepts but often 
omit explicit details of the equivalence proof unless they differ considerably in 
nature from the proof just given. We shall, however, mention any interesting 
lemmas that were needed, as well as any particular difficulties encountered. 

6.3.4 Properties of Sequential Limits 

With the nonstandard formulation, the proofs of basic properties of sequences 
all become trivial. Indeed, their mechanization mostly involves simple algebraic 
manipulations that can be handled automatically by Isabelle's simplifier. We 
prove the following theorems: 

1) [IX ----NS> a; Y ----NS> bll ===> (An. X n + Y n) ----NS> a + b 
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2) [IX ----NS> aj Y ----NS> bl] => (An. X n . Y n) ----NS> a· b 
3) X ----NS> a => An. - X n ----NS> - a 
4) [IX ----NS>aj a '::f 01] => (An. rinv Xn) ----NS> rinv (a) 
5) [IX ----NS> aj X ----NS> bl] => a = b 

For the proof of (1) above, for example, we have that X~ ~ a and Y': ~ h, 
and hence X~ + Y': ~ a + h for any infinite hypernatural n by Theorem 1 of 
Section 3.7.3. The proof is done in one step using Isabelle's automatic tactic. 
The other theorems are all proved as simply, the only slight exception being 
(4). This requires a bit more work and the following simple lemma shown here 
with a mixture of conventional and Isabelle notation: 

X*(N) '::f 0 => (Am. rinv (X m))*(N) = briny (X*(N)) 

This result effectively performs the *-transform over both the inverse function 
and the sequence function since briny = rinv*, as mentioned in the previous 
chapter. Once these various basic properties are proved, we can deal with the 
important concept of Cauchy sequences and their associated theorems. 

6.3.5 Sequences 

In this section, we examine some of the important properties of sequences 
formalized in Isabelle. We first examine the concept of a bounded sequence. 

Boundedness and Monotonicity. We define the standard and nonstandard 
notions of a bounded sequence as follows: 

Bseq X == 3K. (Or < K A 'Vn. rabs (X n) ::; K) 
NSBseq X == 'VN E HNatlnfinite. (*fNat* X) N E Finite 

The equivalence of the standard and nonstandard definitions for boundedness is 
first proved, thereby making two characterizations of the concept available for 
use in our proofs. The nonstandard definition, NSBseq, makes it immediately 
obvious that boundedness is a necessary condition for convergence i.e. we have 
the following theorem 

NSconvergent X => NSBseq X 

where 
NSconvergent X == (31. X ----NS> I) 

This reduces, in Isabelle, to proving the following (simple) goal: 

3l. 'VN E HNatInfinite. (*fNat* X) N ~ T 
=> 'VN E HNatInfinite. (*fNat* X) N E Finite 

Proof. Suppose that (Xn) converges to some a E 1R then X~ ~ a for every 
infinite hypernatural n and must therefore be finite by the following lemma: 
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[Ix E Finite; x R:l yl] ==} Y E Finite 

The theorem is proved in one step by Isabelle's blast_taco We also prove that 
boundedness is a sufficient condition for convergence provided a given sequence 
is monotone 

[lBseq X; mono seq X I] ==} convergent X 

where the monotonicity of a sequence X is defined by 

monoseqX == (('v'(m:: nat)n. m ~ n --? Xm ~ Xn) V 
('v'mn. m ~ n --? Xn ~ Xm)) 

The proof of the above theorem proceeds through a mixture of both standard 
and nonstandard arguments: for some of the lemmas needed, it is easier to 
prove a standard version rather than a nonstandard one. This is the case for 
the following result, for example: 

'v'n. m ~ n --? X n = X m ==} 31. X ----> I 

The standard proof is trivial since the variables are easy to instantiate by 
a routine examination of the goal. Isabelle's automatic tactic then proves 
the theorem without difficulty. A nonstandard proof, however, would require 
proving a more demanding theorem: 

'v'n. m ~ n --? X n = X m ==} 31. 'v' N E HNatlnf ini teo (*fNah X)N R:l T 

This is one of the few cases where we have noticed that a nonstandard proof 
seems to be more complicated than its standard counterpart. The main diffi­
culty here lies in finding the right instantiation for the existential variable. This 
happens to be easier for the standard theorem in this particular case. 

Cauchy Sequences. The following statements are equivalent: 

1) Convergence. The sequence (an) converges i.e. 31. an ----> I. 
2) Hyperreal Cauchy Condition. For all infinite hypernatural numbers N 

and M, aN R:l aM. 
3) Real Cauchy Condition. For all 0 < f there is an integer M such that 

for all m,n ~ M, lam - ani < f. 

The standard proof that a sequence is Cauchy if and only if it is convergent 
can be obtained from most traditional textbooks on analysis. Harrison [43], for 
example, uses the proof from Burkill and Burkill [14] in HOL. Although, the 
mechanization is reported as being a direct formalization in HOL, Harrison's 
proof is rather complicated and long. This is partly due to difficulties inherent in 
finding the right instantiations for variables in f-c5 proofs, especially since HOL 
does not allow unknown variables whose instantiations can be delayed. Owing 
to this problem, Harrison suggests that Isabelle might provide a more natural 
environment for f-c5 proofs since it allows unknown variables to propagate and 
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be instantiated later in the proof. Although this in itself seems a reasonable 
argument, we actually go one step further by using nonstandard arguments: 
our formalization avoids the need for € - 8 arguments altogether. 

To prove the Cauchy criterion for convergence, Burkill and Burkill, and 
hence Harrison in HOL, define the extra notion of a subsequence. They then 
prove that every sequence has a monotonic subsequence. Although the main 
theorem is not difficult to reach once this result and a few other lemmas have 
been set up, one might feel that the need for various auxiliary notions (Harrison 
also needs to define a "reindexing" function in his formalization, for example) 
diverts attention from what is actually being proved. The need to introduce 
and use the properties of subsequences is not immediately obvious to anyone 
trying to prove the theorem (without the help of a textbook, for instance). 

Our formalization avoids the notion of a subsequence and goes for a direct 
and more intuitive proof. First we prove the equivalence of the real (standard) 
and hyperreal (nonstandard) Cauchy conditions. This proceeds in a similar way 
to that of Theorem 6.3.1. The formalization is, in fact, more straightforward in 
this particular case and we shall not go into the details. With this equivalence 
set up, the proof of the main result is simple and direct within the nonstandard 
framework. 

Theorem 6.3.2. The sequence (Xn) converges if and only if it is a Cauchy 
sequence. 

Proof. If (Xn) converges to I then X~ ~ T ~ X;;" for all infinite n and m by the 
NS definition of convergence; so (Xn) is a Cauchy sequence by the NS definition 
of Cauchy criterion. 

Conversely, if (Xn) is a Cauchy sequence then (Xn) is bounded and so 
X~ is finite for all infinite n. Therefore, using the Standard Part Theorem, 
there exists a standard (embedded) real number I infinitely close to Xn where 
{} is our infinite hypernatural number from Section 3.8. Thus, we have that 
X~ ~ Xn ~ I for all infinite n (NS Cauchy criterion), and so (Xn) converges 
to I (NS formulation for convergence). 0 

This formalization is simple and short as was pointed out previously. One 
lemma, also needed by Harrison in HOL, requires proving that every Cauchy 
sequence is bounded. We actually use the nonstandard version of this theo­
rem involving the hyperreal formulations of both the Cauchy and boundedness 
properties. 

As a historical note, it is interesting to observe that though infinitesimals 
do not appear in the standard definition of Cauchy convergence, Cauchy used 
them as a tool in his Cours d'analyse (1821) [58). Indeed, Cauchy explicitly 
states the following as an alternative version of convergence: "in other words, 
it is necessary and sufficient that, for infinitely large values of the number n, 
the sums sn,sn+!,Sn+2, ... differ from the limit s, and consequently among 
themselves, by infinitely small quantities". Reinterpreted, within the context 
of nonstandard real analysis, this corresponds exactly to the hyperreal Cauchy 



112 6. Nonstandard Real Analysis 

condition. Laugwitz (further) mentions t.hat Euler was the first one, much ear­
lier in 1735, to state that 8 n - 8 m be infinitesimal for infinitely large m, n was 
a necessary and sufficient condition for convergence [58]. Such use of infinitesi­
mals, especially by the rigorous Cauchy, gives yet another indication of their 
power as a tool in analysis throughout centuries. 

An important general result proved in our theory of sequences concerns the 
existence of the n-th root of any positive real numbers.3 For any positive real 
number a and natural number n, there exists a unique positive real number r 
such that rn = a. The proof proceeds by considering the set S = {x E nt. xn ~ 
a 1\ 0 < x} and showing that S is non-empty and bounded above. The number r 
is then shown to be the supremum of S. With this theorem formalized, we can, 
for example, define the square root function and its nonstandard extension in 
Isabelle. 

Sequences and Hyperreals. There is, as expected, a close relationship be­
tween the various properties of sequences and hyperreal numbers. Indeed since 
the development of the hyperreals has been based on the use of sequences of 
real numbers, we can prove the following theorems: 

• IT (an) is bounded then [(an)] is finite; expressed as a theorem of Isabelle we 
have, 

NSBseqX => Abs..hypreal (hyprel--{X}) E Finite 

• IT (an) converges to zero then [(an)] is an infinitesimal. 
• IT (an) is an unbounded sequence then [(an)] is an infinite hyperreal. 

6.3.6 Series 

In standard analysis an infinite series is the limit of a sequence of finite sums. 
Despite the notation 

one does not try in classical analysis to interpret it literally as an infinite number 
of additions. Instead, one considers the sums of finitely many of the terms of 
the series, and examines the behaviour of such sums as an increasingly large, 
but still finite, number of terms are allowed. Using our framework, however, it 
is possible to use the nonstandard criterion for sequential convergence to define 
literally infinite sums. 

Infinite Sums and Infinite Series. Given a real sequence (In), we define 
the standard notion of finite sum (I:~:~ fi) using Isabelle's recdef package, 
which implements well-founded recursion:4 

3 The proof mechanized in Isabelle is from J. L. Orr's Webnotes found on the Web 
at http://vww.math.unl.edu/-webnotes/contents/chapters.htm 

4 This function could also be defined using Isabelle's primitive recursion (primrec) 
package. 
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eonsts sumr :: (nat * nat * (nat =? real)) =? real 
reedef sumr measure (A(m, n, I). n) 

sumr (m, 0, I) = 0 
sumr (m, Sue n, I) = if n < m then 0 

else sumr (m, n, I) + f(n) 

The first line declares sumr to be a constant. The well-founded relation is 
measure (A(m, n, I). n) which is given to show that the argument of sumr is 
"smaller" at each recursive call, and hence that it terminates [68]. The operator 
measure is part of a suite of operators recognized and used by Isabelle/HOL to 
automatically prove that the constructed relation is well-founded. The function 
"A(m, n, I).n" is called a measure function which specifies that the recursion 
terminates because n decreases. 

The reedef definition also provides an induction rule specialized for sumr 
which enables direct proofs of the theorem. The expected theorems about finite 
sums are then all derived. We shall not list them here but instead describe how 
the canonical nonstandard extension of sumr is defined. 

Consider a sequence of finite sums: this constitutes a mapping from 1N to IR 
which has a unique nonstandard extension defined, for any infinite hypernatural 
numbers M = [(Xn)] and N = [(Yn)], as: 

(6.1) 

This enables one to talk of the sum being taken to N terms (M can be set 
to 0), where N is any hypernatural number. The value of such an infinite 
sum is a hyperreal number which depends on the number of terms taken. The 
formalization of the nonstandard extension in (6.1) is given in Isabelle by: 

sumhr :: (hypnat * hypnat * (nat =? real)) =? hypreal 
sumhr p == (A(M, N, I). 

Abs.hypreal(U X E Rep.hypnat M. 
U Y E Rep.hypnat N. 
hyprel-- {An. sumr «Xn), (Yn), fn)) p 

As is usual in such cases, the corresponding simplification theorem is proved; 
it can be added to Isabelle's simplifier when needed: 

sumhr (Abs.hypnat (hypnatrel-- {An. X n}), 
Abs.hypnat (hypnatrel-- {An. Y n}), I) 
= Abs.hypreal (hyprel-- {An. sumr (X n, Y n, I)}) 

Using this definition, theorems similar to the two reduction rules in the recursive 
definition of sumr are proved: 

sumhr (m, 0, I) = 0 
sumhr (m,n + 1,1) = if n < m then 0 

else sumhr (m,n,1) + (*fNaU I)n 
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The nonstandard extension with its possible infinite hypernatural limits, pre­
serves the formal behaviour of finite summation. In fact, with the help of the 
theorems just introduced, the properties of the finite sum are directly trans­
ferred from sumr to sumhr. A few of the theorems proved in Isabelle are: 

1) sumhr (m,n.i) + sumhr (m,n,g) = sumhr (m,n,Ai. fi + gi) 
2) sumhr (0, n, Ai. 1) = w - 1 
3) sumhr (m, n, Ai. r . (f i)) = r· sumhr (m, n, f) 
4) n < p ===} sumhr (0, n, f) + sumhr (n,p, f) = sumhr (O,p, f) 
5) hrabs (sumhr (m, n, f)) ~ sumhr (m, n, Ai. rabs (f i)) 
6) ('Vr.m~rAr<n---+fr=gr) 

===} sumhr (m,n,f) = sumhr (m,n,g) 
7) sumhr (0,2n,Ai. (_l)SUci) = ° 
8) sumhr (0, 2n - 1, Ai. (_l)SUC i) = 1 
9) sumhr (0, N, f) = (*fNat* (An. sumr (0, n, f)))N 

In theorem (2), n refers to the infinite hypernatural [(0, 1,2, ... )] defined in Sec­
tion 3.8.1, while w refers to the infinite hyperreal [(1,2, ... )] defined in Section 
3.7. The sum involved in this theorem can thus be literally taken as infinite. It 
is proved by observing that, according to the definitions formalized in Isabelle: 

t.·l~ [(t1,t1,t,I, ... )] 
= [(0,1,2, ... )] 
= [(1,2,3, ... )] - [(1,1,1, ... )] 
=w-1 

Of the other theorems shown, (9) is perhaps the best illustration that sumhr 
is the nonstandard extension of sumr. It shows how the framework natural­
ly extends any standard function (of a single variable), enabling it to take a 
nonstandard argument. This theorem is important to the derivation of results 
about convergence of series. Theorems (7) and (8) illustrate the comment made 
above that the value of the infinite sum depends on the number of terms taken. 

Following Harrison [43], a relation sums is defined to denote that an infinite 
series converges to some limit c as its sum. An infinite series E:o Ii "sums 
to" some real number c if and only if the sequence of partial sums E~=o Ii 
converges to c as its limit. This provides the following definition in Isabelle: 

f sums c == (An. sumr (0, n, f)) ----> c 

Hence, it also follows that the infinite series is convergent if and only if the 
sequence (An. sumr (0, n, f)) is a Cauchy sequence. 

In nonstandard terms, the definition of a convergent series is given by 

Definition 6.3.1. The infinite series defined by the sequence (fn) is said to 
converge if there exists some real number c such that for every infinite hyper­
natural number N: 
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i=O 

In Isabelle, this definition becomes: 

jNSsumsc == ('iN E HNatInfinite. sumhr (O,N,f) ~ C) 

From this definition, the following theorems are proved: 

• A necessary and sufficient condition for an infinite series to converge is that 
for any two infinite hypernatural numbers M and N, we have: 

Or equivalently in Isabelle: 

3c. jNSsumsc {::::} 'iM E HNatInfinite. 'iN E HNatInfinite. 
sumhr (0, M, f) ~ sumhr (0, N, f) 

• The theorem above is also expressed in an alternative form using result (4) 
from the list of theorems given about sumhr: 

3c. jNSsumsc {::::} 'iM E HNatlnfinite. 'iN E HNatInfinite. 
M < N ~ sumhr (M,N,f) ~ ° 

As we have seen, NSA does indeed simplify the treatment of real sequences 
and infinite series. As a further benefit, the nonstandard extension of sums 
enables us to treat finite and infinite series in a homogeneous fashion. There is 
no need to use 00 as a purely notational device in defining infinite series: it is 
now possible to take the sum to N terms, where N can be a natural number or 
an infinite hypernatural. In a sense, the 00 symbol now stands for any member 
of HNatlnfinite. 

6.4 Some Elementary Topology of the Reals 

We now survey the development of some basic topology on the reals in Isabelle. 
The aim of this formalization is to see the benefits that might be gained using 
nonstandard analysis when dealing with elementary topological notions such 
as open sets and neighbourhoods. 

6.4.1 Neighbourhoods 

We begin by giving the standard and nonstandard definitions of the neigh­
bourhood of a point. For the standard definition, the concept of a ball is first 
defined. If c is any point in ffi and r is any real number, then the set of all real 
points x whose distance from c is less than r is defined as: 

rBall c r == {x. rabs (c - x) < r} 
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Definition 6.4.1. Standard Neighbourhood. A set M ~ lR is said to be a 
neighbourhood of point c E lR if and only if there exists some r > 0 such that 

rBallcr ~ M 

Expressing this in Isabelle, we have: 

isnbhd c M == 3r. 0 < r 1\ rBall c r ~ M 

The nonstandard formulation, on the other hand, is given by the following: 

Definition 6.4.2. Nonstandard Neighbourhood. A set M ~ lR is said to 
be a neighbourhood of point c if and only if every hyperreal x infinitely close to 
c belongs to the nonstandard extension M* of M. 

In Isabelle, this is formalized as: 

isNSnbhd c M == monad (C) ~ *s* M 

As can be seen, the concept of a monad enables the definition to be expressed 
concisely. The monad is a set of hyperreals, formally defined by:5 

monad x == {y.x ~ y} 

The next step, as usual, is to prove the equivalence of the two definitions as 
a theorem in Isabelle. The proof is mechanized without much difficulty with 
the help of result (7) from Section 6.1.2. This lemma is necessary to prove that 
the nonstandard definition implies the standard one. The formulations are next 
used to deal with the notion of open sets. 

6.4.2 Open Sets 

A subset G of lR is said to be open if and only if G is a neighbourhood of each 
of its points. This leads to the following direct formalization of the standard 
and nonstandard characterizations: 

isOpen G == 'Va E G. isnbhd a G 
isNSOpen G == 'Va E G. isNSnbhd a G 

The equivalence proof follows trivially from that of neighbourhood. The follow­
ing theorems are all proved automatically since they are direct consequences of 
the results about boolean operations on nonstandard extensions of sets (Section 
6.1.2): 

1) [lisOpen A; isOpen Bil ===? isOpen A n B 
2) [IisOpen A; isOpen BI] ===? isOpen A u B 
3) [IisOpen AI] ===? isOpen (U A) 
4) isOpen (UNIV :: real set) 

5 The name monad was originally chosen as a tribute to Leibniz. 
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5) isOpen 0 

By contrast, and as an example, a standard proof in Isabelle that open sets 
are closed under finite intersections requires several steps including an explicit 
instantiation of variables, a case split, and the use of the following lemma: 

[ITt < r2jX E rBall a rll] ==> x E rBall a r2 

The benefit from using NSA again seems obvious. In this development of ele­
mentary real topology, several other concepts such as closed sets, limit points, 
and derived sets are also introduced. Their various properties are formalized 
and in most cases the proofs are automatic. One of the main results to be for­
malized in this theory using a nonstandard approach is the Bolzano-Weierstrass 
theorem. Its nonstandard proof, as given by Hurd [49] is extremely short and 
simple compared to the standard proof. 

6.5 Limits and Continuity 

There are several notions of limits that share a number of common theorems 
(such as uniqueness, for example). It is clear that an efficient mechanization of 
standard analysis should seek to limit proof replication by developing a generic 
treatment of limits. Harrison uses the well-known theory of convergence nets 
to prove a number of general theorems that can then be specialized to fit each 
notion of limit [43]. 

Since the development, however, involves standard theorems about limits 
using a nonstandard approach, we did not initially feel a need for such a stream­
lined generic treatment of limits. Moreover, this is only an initial investigation 
into the benefits gained from working in the hyperreals. So there is scope for 
further improvement. An interesting idea would be to seek a generalization 
for the nonstandard theory of limits as well. However, since we are already 
working with much simpler and more algebraic formulations than in the 
standard case, the gains might not be worth the trouble. After all, as we 
noticed in our development, having independent notions of sequential and 
pointwise limits does not represent a lot of extra work since the proofs of 
similar properties are all done automatically. Having said this, it is probably 
wise in any mechanization to favour the approach that cuts down on work. So, 
when trying to prove addition of limits, for example, we might like to have a 
general lemma, in the spirit of convergence nets, that can be specialized when 
needed. This would prevent us from having two similar-looking theorems like 
the ones below that were used for sequential and pointwise limits respectively: 

[I(dNah f)x ~ lj (*fNah g)x ~ ml] 
==> (*fNat* (>..y. fy + gy)) x ~ I + m 

[I(*h f) x ~ lj (*h g) x ~ mil 
==> (d * (>..y. f y + 9 y)) x ~ 1 + m 



118 6. Nonstandard Real Analysis 

All this falls under the more general concept of preservation of properties across 
nonstandard extensions. We would like to prove general properties that hold 
for all nonstandard extensions of fmi.ctions rather than deal with specific cases 
like those above. Textbooks usually state the properties that we presented in 
Section 6.1.4 as general results that apply to all extensions. In our case, since 
we extend each type of function explicitly, we need to prove similar properties 
each time. 

Let us now return to the standard and nonstandard characterizations of 
the notions of pointwise limits. A function f is said to have a limit I as x 
approaches a point a if and only if for any given f > 0, there exists a 6 > 0 
such that for every value of x satisfying the inequality 0 < Ix - al < 6, we have 
If(x) -II < f. This is the standard f-6 definition for the limit of a function at 
a given point. The conventional notation used when this condition is satisfied 
is limx--ta f(x) = I. We will, however, use a relational approach in this case as 
well and denote the condition by f -- a --> I for the standard case, and by 
f -- a --NS> I for the nonstandard one. In Isabelle, we have: 

f -- a --> I == 'tlf. 0 < f -t (36.0 < 6 1\ 

('t/x.O < rabs (x - a) 1\ rabs (x - a) < 6 
-t rabs (J x -I) < f)) 

The nonstandard definition, once again, is more concise and captures the 
intuition behind the notion: 

f -- a --NS> I == 't/x. x'" a 1\ x ~ a -t (*1* f) x ~ T 

The equivalence of the two definitions is not too difficult to prove and has the 
same structure as the other similar proofs. We make use of a few lemmas such 
as 

't/n. rabs (X n - x) < rinv (n) ==> 
(Abs.hypreal (hyprel -- {X}) - x) E Inf ini tesimal 

which enables us to define a hyperreal infinitely close to a real number x given 
a real sequence converging towards that number. 

We prove properties analogous to those presented in Section 6.3.4. In this 
part of the formal investigation, however, we decided to prove some of the 
properties twice: first using only the standard approach and then using the 
nonstandard approach. The aim was to examine more closely the gains from 
using nonstandard analysis in terms of the number of steps required to complete 
each proof, instantiations of variables, and theorems used. If we consider, for 
example, the formalization of the addition property 

[If -- a --NS> li9 -- a --NS> mil ==> (,xx. f(x) + g(x)) -- a --NS> 1+ m 

a few interesting remarks can be made: 

• The nonstandard proof expands the definitions and is completed automati­
cally in one step (0.08 seconds): 
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Goalw [NSLIM_def] 
"[I f -- x --NS> 1; g -- x --NS> m I] 
==> (Xx. f(x) + g(x» -- x --NS> (1 + m)"; 
by (auto_tac (claset() addSIs [starfun_add_inf_close], 

simpset() adds imps [hypreal_real_add]»; 

while the standard proof, with our direct formalization, takes some 15 steps . 
• We need to give instantiations of variables in a large number of steps for 

the standard proof - the level of automation is thus fairly low and requires 
the user paying attention to a lot of details. Moreover, there is the added 
difficulty of deciding what the instantiation should be and dealing with a 
three-way case split arising from the linearity of the reals . 

• The standard proof requires theorems about transitivity of the ordering 
relation, absolute function (triangle inequality theorem), monotonicity of the 
ordering relation under addition, etc., while the nonstandard proof only needs 
a theorem about monotonicity of the infinitely close relation under addition, 
and one about the preservation of the addition operation by the embedding 
function for the reals. Both of these are supplied to Isabelle's automatic tactic 
as just shown. 

Therefore, we notice that the nonstandard proof offers a clear gain in terms of 
automation. The user is freed from some of the more difficult and tedious steps 
through the use of the simpler formalization. 

In addition, theorems such as 

f -- a --> I <=> (>.h. f(a + h)) -- 0 --> I 

are simple to prove using the nonstandard formulation. This is a useful lemma 
that can be used to simplify theorems about continuity and differentiability, 
for example. Next, the standard notion of continuity is examined. A standard 
real function f is continuous at a point a when f(x) tends to f(a) as x tends 
to a. In Isabelle: 

isCont f a == (f -- a --> fa) 

We give again the nonstandard definition of continuity that we mentioned in 
Section 6.2. A standard real function f is continuous at the point a if and only 
if f*(x) is infinitely close to f(a) for every hyperreal x infinitely close to a. 
Expressed formally in Isabelle: 

isNSCont f a == (Vx. x ~ a -+ (d* f) x ~ f(a)) 

Once again, the formalization makes it explicit that the definition is referring 
to the embedded copies of a and f(a) in the hyperreals. The equivalence of 
the two definitions follows immediately from that of standard and nonstandard 
limits. A number of useful theorems are proved immediately. Examples are: 

1) isNSCont fa<=> (f -- a --NS> fa) 
2) isCont fa<=> (>.h. f(a + h) -- 0 --> fa) 
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We also have two distinct ways of proving the usual theorems about continuous 
functions: 

i) As results of the corresponding theorems for pointwise limits. This is a 
conventional approach and, though (some of) the limit theorems themselves 
might have been proved using NSA, the process is wholly standard. 

ii) As simple algebraic consequences of the nonstandard formulation of conti­
nuity. This approach bypasses the limit results - one of the main achieve­
ments of NSA in general- and provides alternative simple proofs. Moreover, 
it has an added power. It can prove at least one elementary result - the com­
position of continuous functions - that does not follow from limit theorems. 
This is examined next. 

We prove that the sum, product, and division of continuous functions are also 
continuous. These are results that can be proved by either of the two ways 
above. We also prove that the composition of continuous functions is continu-
ous: 

[lisCont I aj isCont 9 (fa)1J ~ isCont (go!) a 

Prool. If x ~ a then f*(x) ~ I(a), and so it follows that g*(f*(x» ~ g(f(a». 
o 

This result is proved automatically by Isabelle's auto_taco Contrast with 
Harrison's corresponding one in HOL, which is longer and required instanti­
ating € - 6 properties. In a sense, this also hints at another powerful aspect of 
nonstandard techniques in mechanical theorem proving: their simple algebra 
enables them to deal uniformly with a wide range of theorems. The standard 
approach, on the other hand, required Harrison to go back to a direct formal­
ization in HOL because the theorem does not follow from any of the results 
about limits. An analogous difficulty occurs if the standard treatment is used 
to formalize the chain rule of differentiation. 

Using the nonstandard framework, it is an interesting exercise to prove 
more involved theorems such as the following topological characterization of 
continuity. A function I is continuous on lR if and only if the inverse image 
{x E lR./(x) E A} of any open set A is itself always an open set. In Isabelle, 
the following theorem is proved without any difficulties: 

("Ix. isCont I x) <==> (VA. isOpen A ~ isOpen {x. I(x) E A}) 

The formalization of all the theorems about limits, topological notions and so 
on only needs to use the theorems about the free ultrafilter directly when we 
are proving the equivalence of the standard and nonstandard definitions. All 
the other theorems are proved at the higher, more intuitive algebraic level. The 
equivalence theorems are essential because the standard formulations are the 
ones that are in widespread use. With the success and widening acceptance of 
NSA, it might be that in a few decades the so-called nonstandard definitions 
will become the established ones. 

Using the various continuity theorems, nonstandard proofs are produced for 
some important results of real analysis. These include: 
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Intermediate Value Theorem. 
IT I is continuous on the closed interval [a,b] and I(a) < d < I(b) for some 
d, then there exists a c between a and b with I (c) = d. The proof formal­
ized in Isabelle is given by Hurd [49] and proceeds through nonstandard 
arguments. It considers the points X/c = a + k(a - b)ln, 0 $ k $ n and the 
values of I at Xk. The proof then proceeds through a Skolemization step 
and a *-transform to get to the result directly. 

Extreme Value Theorem. 
IT I is continuous on the closed and bounded interval [a,b], then there exists 
a c between a and b so that I(x) $ I(c) for all x between a and b. The 
proof is also provided by Hurd and proceeds elegantly and succinctly using 
arguments similar to the ones above. The points xn,/c = a + k(b - a)/n, 0 $ 
k $ n are considered this time. 

More theorems about elementary analysis are developed by considering the 
important notion of differentiability. Its nonstandard treatment is examined 
next. 

6.6 Differentiation 

The development of the theory of differentiation which follows using results 
of the previous section can now be surveyed. The standard formulation states 
that a function I has a derivative d at a point x if (f(x + h) - l(x»lh -+ d 
as h -+ O. In Isabelle, we formalize the relational definition DERIV(x) I :> d 
meaning 'the derivative of I at x is d' as: 

DERIV(x) I:> d = ()"h. (f(x + h) - I(x» . brinv h) -- 0 --> d 

The notation DERIV(x) can be regarded as a variation of the Leibniz notation 
and standing for dl dx. We prove this equivalent form of the standard definition: 

DERIV(x) I :> d ¢::::> ()..z. (f(z) - I(x» . rinv (z - x» -- x --> d (6.2) 

The nonstandard definition is stated as: 

NSDERIV(x) I :> d = 'r/h E Infinitesimal- {OJ. 
«*h f)(x + h) - f(;» . brinv h ~ J 

We first prove that this nonstandard definition can also be given in terms of 
limits exactly as the standard definition. The proof does not cause much diffi­
culty and, from it, we know immediately that the two definitions of derivative 
are equivalent. In addition, using Theorem 6.2, we provide a second useful non­
standard characterization for the differentiability of a function I at a point 
x: 

NSDERIV(x) I :> d ¢::::> 'r/y. y ~ x A Y '" x --+ 
«*h f)(y) - I(x» . hrinv (y - x) ~ J 
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We then proceed to prove standard results in an extremely simple fashion. 
For example, we prove that a function f differentiable at a point x is continuous 
at that point: 

NSDERIV(x) f :> d ~ isNSCont f x 

This is a simple algebraic theorem using the nonstandard formulation since 
rex + h) - f(x) ~ d· h for all h ~ 0, and so rex + h) ~ f(x) i.e. f is 
continuous at x. 

A functional form is also defined for the derivative using the standard part 
function and the non-zero infinitesimal € defined previously: 

nsderiv(x) f = st (((*h f)(x + €) - f(x)) . hrinv €) 

The right hand side of the definition is sometimes known as the slope of the 
real function f [52]. 

6.6.1 Standard Properties of Derivatives 

We prove the familiar rules about the differentiation of simple functions and 
their combination: 

• NSDERIV(x) (Ax.k):> 0 
• NSDERIV(x) f :> d ~ NSDERIV(x) (Ay. c· f(y)) :> c· d 
• NSDERIV(x) f :> d ~ NSDERIV(x) (Ay· - f(y)):> - d 
• [lNSDERIV(x) f :> d;NSDERIV(x) g:> ell 

~ NSDERIV(x) (Ay. f(y) + g(y)) :> d + e 
• [lNSDERIV(x) f :> d; NSDERIV(x) 9 :> ell 

~ NSDERIV(x) (Ay. f(y) . g(y)) :> d· g(x) + e . f(x) 

The absence of any explicit notions of limits makes many of the standard results 
about derivatives straightforward to derive. The properties follow from simple 
algebraic manipulations of infinitesimals. As a result, the simplifier of Isabelle 
plays an important part in these proofs to do the tedious term manipulation 
and cancellation. To achieve this, we might need to add rules for associative­
commutative rewriting, for example. However, there are cases when we need 
to prove lemmas explicitly to help the simplifier rearrange terms. For example, 
to prove the theorem about the derivative of product, we need the following 
lemma: 

(a· b) - (c· d) = b· (a - c) + c· (b - d) 

6.6.2 Chain Rule 

One of the important theorems about differentiation is the chain rule. In his 
formalization of differentiation in HOL, Harrison reports on the problems that 
arise when proving this theorem directly. The main difficulty is that, when us­
ing the standard definition, the theorem does not follow directly from any limit 
results. Indeed, unlike continuity, limits are not compositional. To deal with 



6.6 Differentiation 123 

this problem, Harrison had to formalize an alternative, rather different charac­
terization of differentiability in HOL, the so-called Caratheodory derivative. In 
our case, however, due to the nonstandard formulation, the chain rule admits 
an entirely straighforward derivation. The Isabelle theorem is given by: 

[INSDERIV(a) 9 :> dj NSDERIV((g a» J :> ell ==> NSDERIV(a) (f 0 g) :> d· e 

Proof. This follows immediately from: 

J*(g*(x» - !*(g(a» = J*(g*(x» - !:J!l(a» g*(x) - !(a) ~ d. e 
x - a g*(x) - g(a) x - a 

o 

This nonstandard proof, unlike its standard counterpart, reflects nicely and 
directly the intuition behind the Leibnizian notation for the rule: 

dJ d/ dg 
= dx dg dx 

It is to be noted that Ballantyne and Bledsoe's prover [6) could not prove the 
chain rule automatically. In our case, we use a simple lemma to help set up the 
required product of fractions: 

Y i' a ==> X· z = (x· hrinv y) . (y . z) 

The main proof is directly formalized, though we have to do some manipulations 
explicitly - for example, we need to use one of Isabelle's instantiation tactics 
with the lemma above to set the variable y in it to the correct binding. The 
level of automation could be made higher by building stronger routines in the 
simplifier to deal with division. For example, the recent addition of generic 
simplification procedures for subtraction have been helpful to many algebraic 
proofs. This is a case where development of new theories can call for more 
support from the prover. This ultimately benefits many other theories. 

Coming back to our development, we prove the theorems about the inverses 
and quotients of functions using the chain rule and the fact that, for non-zero x, 
the derivative of J(x) = l/x is -1/x2 • The proofs remain simple and algebraic. 
Stated as theorems of Isabelle, these various extra results (shown in terms of 
the equivalent standard notation) are formalized like this: 

• x i' a ==> DERIV(x) (Ax. rinv x) :> - rinv (x2) 
• [IDERIV(x) J :> dj J(x) i' all 

==> DERIV(x) (Ax. rinv (f x»:> - d· rinv (f(x)2) 
• [IDERIV(x) J :> dj DERIV(x) 9 :> ej g(x) i' all 

==> DERIV(x) (Az. J(z)· rinv (gz» :> (d· g(x) - e· J(x»· rinv (g(X)2) 
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6.6.3 Rolle's Theorem 

More classic theorems of analysis are proved. These include Rolle's theorem 
that involves notions from both continuity and differentiability: 

Rolle's Theorem. If f is defined and continuous on the finite closed 
interval [a,b] and differentiable at least on the open interval (a,b), then 
there exists Xo between a and b such that f'(xo) = O. 

The formalized proof is from Hoskins [48] and proceeds through a case analysis 
on the values that f can take in the interval between a and b. The argument 
is once again nonstandard and yields a direct formalization. In Isabelle, the 
theorem is given by 

[I a < bj f(a) = f(b)j 
'<:Ix. a ~ x /\ x ~ b ---+ isNSCont f Xj 

'<:Ix. a < x /\ x < b ---+ f NSdifferentiable Xj 

Il ==> 3xO. a < xO /\ xO < b /\ NSDERIV(xO) f :> Or 

where the nonstandard infix predicate NSdifferentiable stands for 'the real 
function f is differentiable at x' and is defined by 

f NSdifferentiable x == 3d. NSDERIV(x) f :> d 

In the previous sections, we have presented the initial investigation of 
analysis using a nonstandard treatment. There are several important aspects 
of elementary analysis that still need to be formalized including Taylor and 
power series and the theory of Integration. A nonstandard approach promises 
to be useful for these as well. We next give a brief overview of one of the major 
theorems from which much of the power of NSA stems. We look at a version 
of the theorem specialized for the purpose of real analysis. 

6.7 On the Transfer Principle 

We now expand some more on the Transfer Principle, on which we remarked 
briefly in Section 6.3.3. Consider the statement, true in JR., stating that the 
set of natural numbers lN is unbounded as a subset of JR.: the Archimedean 
property holds for the reals. Formalized in Isabelle, this is expressed by: 

'<:Ix:: real. 3n::nat. x < &n 

Using the definitions of hyperreals, hypernaturals, and the properties of the 
free ultrafilter, we can then deduce the theorem that the set of hypernaturals 
IN* is unbounded as a subset of the hyperreals JR.*. Stated in Isabelle HOL, 
with explicit typing information shown, we have:6 

6 The notations 1m and &:Im stand for embed dings in the reals and hyperreals res­
pectively. 



6.8 Related Work and Conclusions 125 

Vx::hypreal. 3n::hypnat. X < ttn 

This second statement about the hyperreals thus appears to be, in some sense, 
a transform of the original statement about the reals. One can go from one 
to the other, as this example illustrates, by making certain specific changes 
about the types of the terms (and the embedding functions) appearing in each. 
The crux of NSA is that transformation of statements along these lines can be 
carried out generally. It is this general idea that is captured by the Transfer 
Principle [48]: 

Theorem 6.7.1. Transfer Principle for real analysis. There exists a set 
m. * such that 

1} m. is a proper subset 01 m. * . 
2) to each function 1 : m. -t m. there corresponds a function f* : m. * -t m. * 

which agrees with 1 on m.. 
3) to each n-place relation P on m.* there corresponds a n-place relation P* 

on m. * which agrees with P on m.. 
Further, every well-Iormed statement cp lormulated in terms 01 

• particular real numbers rl, r2, ... ,r m, 

• particular functions h, h, ... ,1m, 
• particular relations Pl , P2, . .. , Pm, 
• logical connectives and quantifiers, with variables ranging over m. 
is true with respect to m. il and only il the statement cp* obtained from cp by 
replacing each Ik by I: and each Pk by P;, and by allowing variables to range 
over m. *, is true with respect to m. * . 
In the current work, proving the equivalence of standard and nonstandard 
formulation has involved working with sequences and checking whether certain 
sets belong to the ultrafilter or not each time a new property is introduced. 
By implementing some form of the transfer principle, one should be able to 
capture much of the power that NSA derives from the use of such meta­
theorems. This has not been investigated thoroughly - we have formalized 
(1), and particular cases of (2) and (3) above though - and so, producing an 
effective form of the principle provides scope for further research. Our work 
has shown, though, that a powerful theory is still possible if one is willing 
to transfer properties by separate proofs. General automatic tactics to check 
whether supersets, intersections, or complements of sets belonged to the free 
ultrafilter have been coded that enabled many of the goals to be simplified 
greatly, and in quite a few cases to be proved automatically. 

6.8 Related Work and Conclusions 

The automated theorem proving community does not seem to have shown much 
interest in NSA, even though its importance has grown in many fields such 
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as physics, analysis and economics, where it has successfully been applied. 
Ballantyne and Bledsoe [6] implemented a prover using nonstandard techniques 
in the late 1970s. Their work basically involved substituting any theorem in 
the reals 1R by its analogue in the extended reals 1R * and proving it in this 
new setting. Even though the prover had many limitations, and the work was 
just a preliminary investigation, the authors argued that through the use of 
nonstandard analysis, they had brought some new and powerful mathematical 
techniques to bear on the problem. 

Despite this rather promising work, there does not seem to have been much 
done over the last two decades. Chuaqui and Suppes [22] have proposed an 
axiomatic framework for doing proofs in NSA, and Bedrax has implemented a 
prototype for a simplified version of the Suppes-Chuaqui system called Infmal 
[8]. Infmal is implemented in Common Lisp and contains the various axioms 
(logical, algebraic and infinitesimal) required by the deduction system and ex­
tensions to the usual arithmetic operations. Unfortunately, Infmal is a simple 
experiment and though interactive, is rather limited in the proofs it can carry 
out. There has also been some work carried out by Beeson [9] who developed 
a restricted axiomatic version of NSA using the logic of partial terms. The 
properties of the infinitely close relation (cf. Section 3.7.3), standard parts (cf. 
Section 3.7.4), infinitesimals and so on, are asserted as axioms leading to a 
theory similar in spirit to the one that could be developed starting from the 
axioms of Section 3.2. Beeson uses NSA to ensure the correctness of applica­
tions of calculus in a system called Mathpert which combines computer algebra 
with theorem-proving. 

We have verified the various basic axioms asserted by Beeson in his approach 
in our development. Moreover, we have also verified, through our strictly defini­
tional approach, the axioms about properties of the hyperreals that were built 
into Ballantyne and Bledsoe's prover. 

In summary, this work describes an initial and rigorous investigation of 
the mechanization of analysis using nonstandard techniques. As shown by the 
extensive development of analysis in HOL by Harrison, the need for abstraction 
leading to general theories is important since it saves a lot of similar proofs from 
being repeated. Our main aim has been to show that there are advantages to 
be gained by using nonstandard analysis as the framework for real analysis. 
We feel that the simplicity of the formulations and relative ease with which 
many different results are proved have amply justified the promises held by the 
approach. 
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The various chapters of this book have covered the development of a range of 
theories in the theorem prover Isabelle. The main unifying theme has been the 
use of infinitesimals as valuable tools that are once again respectable in mathe­
matics. Infinitesimals have been around for over 2 000 years and generally had 
a bad press. Their use has at times been free and viewed as a blessing (through­
out the eighteenth century, for example), and at others viewed as heresy and 
banned (from the nineteenth century until the middle of this century). What 
is undeniable is that they have been valued as intuitive tools at all times by 
generations of mathematicians who used them to solve problems and carry out 
proofs. Even those trying to get rid of them sometimes lapsed into infinitesimal 
reasoning. The great insight of Robinson, leading to the creation of NSA, has 
been praised over and over again. In a sense, his work vindicates the (sometimes 
blind) faith of influential mathematicians such as the Marquis de L'Hospital in 
the use of infinitesimals. The major achievement of Robinson and his followers 
was not only to rehabilitate the infinitesimal as a sound mathematical concept 
but also to bring along new types of numbers that added to the power of the 
nonstandard approach. 

In the next few sections, we reflect on the aspects of this work we feel are 
most important. We recapitulate some of the points that were made in the 
previous chapters and add concluding remarks. We also give an indication of a 
few areas that might yield interesting further work. 

7.1 Geometry, Newton, and the Principia 

Geometry is one of the oldest and most trusted areas of mathematics. Indeed, 
Euclidean geometry was believed for over 2 000 years to be the faithful model 
of reality and space. This trust was based on human perception and experience 
of the world. This explains partly the drive of mathematicians before, and 
even for some time after, the seventeenth century to carry out mathematical 
demonstrations using geometric arguments. Such an approach was, in any case, 
de rigueur for any mathematical result to gain peer acceptance and not be 
ridiculed. 

Proofs in geometry are usually hard. Newton's use of geometric arguments 
to prove the complex results of the Principia is a marvel of intellectual achieve­
ment and insight. For over three centuries, thousands of mathematicians, physi-
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cists, historians, and philosophers have contributed a large volume of work 
analysing and discussing the influence, thought processes, and reasoning of 
Newton. Many people though, with the exception of historians of science, are 
familiar with the various results of the Principia expressed algebraically. The 
proofs are done using differential calculus and vectors in most cases. 

In this work, we aimed at mechanizing Newton's work by respecting as 
much as possible the geometric reasoning. Our goal was not just to derive 
the theorems by any means possible, as for that we could have used our 
theory of vectors and reproduce the modern proofs found in most textbooks 
on mechanics and dynamics. Instead, the aim was to capture the proofs as 
Newton intended them and to that effect formal concepts had to be devised 
that would capture his reasoning. This was especially important in the cases 
where Newton's procedures departed from the usual Euclidean arguments. In 
a sense, we have developed a calculus that provides formal rules enabling us to 
capture Newton's reasoning. 

The pleasing aspect is the way infinitesimals have blended nicely with geo­
metric concepts to give a theory that remains intuitive, but is nevertheless 
more powerful than pure Euclidean geometry. In it, one can prove the type of 
theorems that occur in the Principia but also deal with ordinary theorems of 
Euclidean geometry, by incorporating infinitesimal arguments. The proofs can 
be viewed as moving into the hyperreal space, just as it is possible to move into 
complex space when dealing with proofs in analytic geometry. 

It is hoped that the mechanization of some of the important theorems of 
the Principia will help point out the intricate nature of Newton's geometry and 
also its rigour. The discovery of finite witnesses that enable many steps to be 
fitted within the NSA framework shows that Newton was aware of the problems 
that arise when dealing with ratios of infinitesimals. The flaw that we found, 
we believe, is the exception rather than the rule and caused much surprise. 
That there is a step that cannot be carried out exactly as Newton intended, 
and for explicit reasons borne out by nonstandard analysis, is a vindication 
of the rigour of our framework, and of infinitesimals in particular. We have 
checked numerous textbook proofs reproducing Newton's reasoning about the 
Propositio K epleriana: all carry out the final multiplication step without any 
remarks. In fact, none have any formal devices or notation to handle ultimate 
situations as systematically as this work does. 

7.2 Hyperreal Analysis 

In the light of the impressive gains that the nonstandard treatment can bring to 
the process of mathematical analysis, it is somewhat surprising to note the sus­
picions still harboured by the mathematics community towards it. The historic 
legacy of Weierstrass and Cauchy is the enduring belief that the f-iS approach 
is the only acceptable, or even natural, approach to analysis. Yet, its inherent 
difficulties and complexity are striking when compared with the intuition and 
simplicity of nonstandard methods. Of course, such an attitude is merely an 
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echo of the behaviour of mathematicians towards new concepts throughout the 
centuries. Terms such as "irrational" and "imaginary", for instance, reflect at­
titudes as new and unfamiliar notions were introduced that extended existing 
numbers. 

This work has shown, we hope, that, as far as number constructions are con­
cerned, going beyond the real numbers is the next evident progression. Godel, as 
quoted from the preface of Robinson's Non-standard Analysis [72], eloquently 
sums this up for us: 

Arithmetic starts with the integers and proceeds by successively en­
larging the number system by negative and rational numbers, irrational 
numbers, etc. But the next quite natural step after the reals, namely 
the introduction of infinitesimals, has simply been omitted. I think, in 
incoming centuries it will be considered a great oddity in the history of 
mathematics that the first exact theory of infinitesimals was developed 
300 years after the invention of the differential calculus. 

Our work also shows the benefits that NSA brings to mechanization. The non­
standard approach can be viewed as adding greater computational abilities to 
the theorem prover. It enables, in that sense, a better mixture of logic and 
computation which is needed for a more straightforward, and powerful, for­
malization of mathematics in mechanical systems. Moreover, NSA provides 
intuitive methods while preserving mathematical rigour. The pressing need is 
for wider recognition of the many advantages that are being ignored due to the 
rigidity of current mathematical practice. 

7.3 Further Work 

Some of the possible ways of extending and applying the work described in this 
book are now outlined. We believe that there is scope for future work in areas 
ranging from mathematical analysis to diagrammatic reasoning and problem 
solving in physics. It should be mentioned at the outset that any areas where 
theorem proving in the reals have applications are also valid for the hyperreals. 
Several of these are mentioned in Harrison's thesis [43] to which we refer the 
interested reader. Some of the areas we mention next are those where the 
richness of the extended number systems brings additional tools or benefits. 

7.3.1 Geometry Theorem Proving 

One of the important roles that mechanical geometry theorem proving is set to 
play in the future is in education. Cognitive research has shown that traditional 
geometry problem solving is hard [54]. It is crucial that more research is done 
in the field to come up with systems that can be used effectively as educational 
tools. More generally, there has not been much interest in the United King­
dom for research in GTP despite this being one of the fields where automated 
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reasoning has been the most successful so far. There are numerous powerful 
GTP techniques [82, 84] that can potentially be applied in other fields such 
as geometric constraints solving. These are of considerable commercial interest 
since they are essential to computer aided modelling systems, for example.1 We 
believe that some of the ideas introduced in this work can be used to produce 
new techniques in automated GTP, especially in dealing with conditions that 
are nearly degenerate. 

7.3.2 Numerical Software Verification 

Notions of infinitesimals from NSA have application in floating point error ana­
lysis. There have been theoretical techniques - known as asymptotic methods 
[47] - developed for formal verification of mathematical software. These deal 
with numerical error without quantifying it and model the behaviour of math­
ematical programs by considering their overall accuracy when that of their 
sequences of operations tends to infinity. In nonstandard terms, each sequence 
of operations represents an internal function whose result can be viewed as 
being infinitely close to the ideal value the program should yield. Asymptotic 
methods can expose the same problems as classical error analysis but require 
less effort and expertise. They deal well with cases where small numerical values 
(modelled by infinitesimals) lead to numerically ill-defined computations. With 
the framework established in Isabelle, this is an interesting and promising area 
of application for nonstandard concepts. 

7.3.3 Physics Problem Solving 

Novak has implemented several systems for problem solving in classical physics 
with the help of diagrams [65]. Although his work falls into the field of diagram­
matic reasoning rather than GTP, it does require the implicit applications of 
geometry theorems to derive relations between various physical quantities rep­
resented geometrically in the diagrams. This work also shows that it is possible 
to closely relate physical and geometric principles through diagrams. 

The use of geometry to represent physical situations is another potential 
area of applications for our techniques. Indeed, the geometric and infinitesimal 
tools developed for Newton's Principia can be applied to the study of the 
rich model built on Newton's exposition of the physical world. Infinitesimals 
are often introduced in geometric diagrams of physical systems, for example 
to characterise the small virtual displacement of a pendulum bob, of a body 
sliding down an inclined slope, or of light going through a lens. Infinitesimal 
arguments have been used informally by physicists for a long time to explain 
and predict the behaviour of physical systems. Physicists often make state­
ments such as "when 0 is small, sin(O) = 0" and rely on intuition to explain 

1 Some of these important aspects were only recently presented and discussed at 
the workshop on Automated Deduction in Geometry. This was held by the leading 
centre for automated GTP research, the Chinese Institute of Systems Science, 
Academia Sinica, Beijing. 
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their approximation. The substitution of a quantity by an infinitely close One 
generally requires care and should be justified formally. Once the justification 
is made, the advantages gained through the use of infinitesimals are enormous 
in terms of clarity and intuitive meaning. 

7.4 Concluding Remarks 

Reading the Principia and making sense of the reasoning of Newton is a difficult 
but rewarding task. As is commOn with proofs using geometric tools, once the 
hard task of constructing the diagram and proof is done, the result that follows 
usually looks simple and intuitive. We have shown that, though Newton does 
not provide a set of rules for carrying out his proofs, the reasoning is rigorous 
and can be mechanized. We have formally defined and proved the ultimate 
properties Newton tried to demonstrate. This provides a means of validating, 
through mathematical logic, what have often been regarded as informal argu­
ments by Newton. We have in effect bridged the gap between intuition and 
formality. 

We have developed a formal theory of infinitesimals by constructing a suc­
cession of number systems leading to the hyperreals. This approach has been 
adopted since it provides a clear and consistent way of introducing new type­
s. The axiomatic approach for the development of NSA has been avoided as 
infinitesimals are always tricky and can lead to paradoxes if not used properly. 
The conservative definition of types in Isabelle HOL guarantees the soundness 
of the infinitesimal theory. 

The introduction of infinitesimal elements in the geometry is an exciting 
aspect that can lead to the discovery of interesting properties that cannot be 
seen ordinarily. We have outlined the scope for more research that exists in 
several fields as a result of our investigation. These applications show that 
techniques involving NSA, geometry or a combination of both have powerful 
practical significance. 
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