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Preface to the Second Edition

The changes from the first edition to the second have two sources: the many helpful
suggestions the author has received from colleagues, reviewers, students and others
who took the time and effort to contact me, and the author’s experience teaching with
this text in the years since the first edition was published.

Though the bulk of the text has remained unchanged from the first edition, there
are a number of changes, large and small, that will hopefully improve the text. As
always, any remaining problems are solely the fault of the author.

Changes from the First Edition to the Second Edition

(1) A new section about the foundations of set theory has been added at the end
of Chapter 3, about sets. This section includes a very informal discussion of
the Zermelo—Fraenkel Axioms for set theory. We do not make use of these
axioms subsequently in the text, but it is valuable for any mathematician to
be aware that an axiomatic basis for set theory exists. Also included in this
new section is a slightly expanded discussion of the Axiom of Choice, and
new discussion of Zorn’s Lemma.

(2) Chapter 6, about the cardinality of sets, has been rearranged and expanded.
There is a new section at the start of the chapter that summarizes various
properties of the set of natural numbers; these properties play important roles
subsequently in the chapter. The sections on induction and recursion have
been slightly expanded, and have been relocated to an earlier place in the
chapter (following the new section), both because they are more concrete than
the material found in the other sections of the chapter, and because ideas from
the sections on induction and recursion are used in the other sections. Next
comes the section on the cardinality of sets (which was originally the first
section of the chapter); this section gained proofs of the Schroeder—Bernstein
theorem and the Trichotomy Law for Sets, and lost most of the material about
finite and countable sets, which has now been moved to a new section devoted
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to those two types of sets. The chapter concludes with the section on the
cardinality of the number systems.

(3) The chapter on the construction of the natural numbers, integers and ratio-

nal numbers from the Peano Postulates was removed entirely. That material
was originally included to provide the needed background about the number
systems, particularly for the discussion of the cardinality of sets in Chapter 6,
but it was always somewhat out of place given the level and scope of this text.
The background material needed for Chapter 6 has now been summarized in a
new section at the start of that chapter, making the chapter both self-contained
and more accessible than it previously was. The construction of the number
systems from the Peano Postulates more properly belongs to a course in real
analysis or in the foundations of mathematics; the curious reader may find
this material in a variety of sources, for example [Blo11, Chapter 1].

(4) Section 3.4 on families of sets has been thoroughly revised, with the focus

being on families of sets in general, not necessarily thought of as indexed.

(5) A new section about the convergence of sequences has been added to Chap-

ter 7. This new section, which treats a topic from real analysis, adds some
diversity to Chapter 7, which had hitherto contained selected topics of only
an algebraic or combinatorial nature.

(6) A new section called “You Are the Professor” has been added to Chapter 8.

This new section, which includes a number of attempted proofs taken from
actual homework exercises submitted by students, offers the reader the op-
portunity to solidify her facility for writing proofs by critiquing these sub-
missions as if she were the instructor for the course.

(7) The notation for images and inverse images of sets under a function, defined

in Section 4.2, has been changed from the non-standard notation f;(P) and
f*(Q) used in the first edition to the standard notation f(P) and f~'(Q),
respectively. Whereas the author still finds the notation used in the first edi-
tion superior in terms of avoiding confusion with inverse functions, he has
deferred to requests from colleagues and reviewers to switch to the standard
notation, with the hope that any confusion due to the standard notation will
be outweighed by the benefit for students in preparing to read mathematical
texts that use the standard notation.

(8) All known errors have been corrected.

(9) Many minor adjustments of wording have been made throughout the text,

with the hope of improving the exposition.
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Errors

Although all known errors from the first edition have been corrected, there are likely
to be some remaining undetected errors, and, in spite of the author’s best effort,
there are likely to be some errors in the new sections and revisions of older material
that were written for the second edition. If the reader finds any such errors—which
will hopefully be few in number—it would be very helpful if you would send them
to the author at bloch@bard.edu. An updated list of errors is available at http:
//math.bard.edu/bloch/proofs2_errata.pdf.
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Preface to the First Edition

In an effort to make advanced mathematics accessible to a wide variety of students,
and to give even the most mathematically inclined students a solid basis upon which
to build their continuing study of mathematics, there has been a tendency in recent
years to introduce students to the formulation and writing of rigorous mathematical
proofs, and to teach topics such as sets, functions, relations and countability, in a
“transition” course, rather than in traditional courses such as linear algebra. A tran-
sition course functions as a bridge between computational courses such as calculus,
and more theoretical courses such as linear algebra and abstract algebra.

This text contains core topics that the author believes any transition course should
cover, as well as some optional material intended to give the instructor some flexi-
bility in designing a course. The presentation is straightforward and focuses on the
essentials, without being too elementary, too excessively pedagogical, and too full of
distractions.

Some of the features of this text are the following:

(1) Symbolic logic and the use of logical notation are kept to a minimum. We
discuss only what is absolutely necessary—as is the case in most advanced
mathematics courses that are not focused on logic per se.

(2) We distinguish between truly general techniques (for example, direct proof
and proof by contradiction) and specialized techniques, such as mathematical
induction, which are particular mathematical tools rather than general proof
techniques.

(3) We avoid an overemphasis on “fun” topics such as number theory, combi-
natorics or computer science-related topics, because they are not as central
as a thorough treatment of sets, functions and relations for core mathemat-
ics courses such as linear algebra, abstract algebra and real analysis. Even
the two sections on combinatorics in Chapter 7 were written with a focus on
reinforcing the use of sets, functions and relations, rather than emphasizing
clever counting arguments.
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(4) The material is presented in the way that mathematicians actually use it rather
than in the most axiomatically direct way. For example, a function is a special
type of a relation, and from a strictly axiomatic point of view, it would make
sense to treat relations first, and then develop functions as a special case of
relations. Most mathematicians do not think of functions in this way (except
perhaps for some combinatorialists), and we cover functions before relations,
offering clearer treatments of each topic.

(5) A section devoted to the proper writing of mathematics has been included, to
help remind students and instructors of the importance of good writing.

Outline of the text

The book is divided into three parts: Proofs, Fundamentals and Extras. At the end of
the book is a brief Appendix summarizing a few basic properties of the real numbers,
an index and a bibliography. The core material in this text, which should be included
in any course, consists of Parts I and II (Chapters 1-6). A one-semester course can
comfortably include all the core material, together with a small amount of material
from Part III, chosen according to the taste of the instructor.

Part I, Proofs, consists of Chapters 1 and 2, covering informal logic and proof
techniques, respectively. These two chapters discuss the “how” of modern mathe-
matics, that is, the methodology of rigorous proofs as is currently practiced by math-
ematicians. Chapter 1 is a precursor to rigorous proofs, and is not about mathematical
proofs per se. The exercises in this chapter are all informal, in contrast to the rest of
the book. Chapter 2, while including some real proofs, also has a good bit of informal
discussion.

Part II, Fundamentals, consists of Chapters 3—6, covering sets, functions, rela-
tions and cardinality, respectively. This material is basic to all of modern mathemat-
ics. In contrast to Part I, this material is written in a more straightforward defini-
tion/theorem/proof style, as is found in most contemporary advanced mathematics
texts.

Part III, Extras, consists of Chapters 7 and 8, and has brief treatments of a variety
of topics, including groups, homomorphisms, partially ordered sets, lattices, combi-
natorics and sequences, and concludes with additional topics for exploration by the
reader, as well as a collection of attempted proofs (actually submitted by students)
which the reader should critique as if she were the professor.

Some instructors might choose to skip Section 4.5 and Section 6.4, the former be-
cause it is very abstract, and the latter because it is viewed as not necessary. Though
skipping either or both of these two sections is certainly plausible, instructors are
urged to consider not to do so. Section 4.5 is intended to help students prepare for
dealing with sets of linear maps in linear algebra, and comparable constructions in
other branches of mathematics. Section 6.4 is a topic that is often skipped over in the
mathematical education of many undergraduates, and that is unfortunate, because
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it prevents the all too common (though incorrect) attempt to define sequences “by
induction.”
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To the Student

This book is designed to bridge the large conceptual gap between computational
courses such as calculus, usually taken by first- and second-year college students,
and more theoretical courses such as linear algebra, abstract algebra and real anal-
ysis, which feature rigorous definitions and proofs of a type not usually found in
calculus and lower-level courses. The material in this text was chosen because it is,
in the author’s experience, what students need to be ready for advanced mathematics
courses. The material is also worth studying in its own right, by anyone who wishes
to get a feel for how contemporary mathematicians do mathematics.

Though we emphasize proofs in this book, serious mathematics is—contrary to
a popular misconception—not “about” proofs and logic any more than serious lit-
erature is “about” grammar, or music is “about” notes. Mathematics is the study of
some fascinating ideas and insights concerning such topics as numbers, geometry,
counting and the like. Ultimately, intuition and imagination are as valuable in math-
ematics as rigor. Both mathematical intuition and facility with writing proofs can
be developed with practice, just as artists and musicians develop their creative skills
through training and practice.

Mathematicians construct valid proofs to verify that their intuitive ideas are cor-
rect. How can you be sure, for example, that the famous Pythagorean Theorem is
true? There are infinitely many possible triangles, so no one can check whether the
Pythagorean Theorem holds for all triangles by checking each possible triangle di-
rectly. As you learn more abstract mathematical subjects, it will be even harder to be
sure whether certain ideas that seem right intuitively are indeed correct. Hence we
need to adhere to accepted standards of rigor.

There are two foci in this text: proofs and fundamentals. Just as writing a novel
ultimately relies upon the imagination, but needs a good command of grammar, as
well as an understanding of the basics of fiction such as plot and character, so too
for mathematics. Our “grammar” is logic and proof techniques; our “basics” are sets,
functions, relations and so on. You will have to add your own imagination to the mix.
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Prerequisites

A course that uses this text would generally have as a prerequisite a standard calculus
sequence, or at least one solid semester of calculus. In fact, the calculus prerequisite
is used only to insure a certain level of “mathematical maturity,” which means suf-
ficient experience—and comfort — with mathematics and mathematical thinking.
Calculus per se is not used in this text (other than an occasional reference to it in
the exercises); neither is there much of pre-calculus. We do use standard facts about
numbers (the natural numbers, the integers, the rational numbers and the real num-
bers) with which the reader is certainly familiar. See the Appendix for a brief list of
some of the standard properties of real numbers that we use. On a few occasions we
will give an example with matrices, though such examples can easily be skipped.

Exercises

Similarly to music and art, mathematics is learned by doing, not just by reading texts
and listening to lectures. Doing the exercises in this text is the best way to get a
feel for the material, to see what you understand, and to identify what needs further
study. Exercises range from routine examples to rather tricky proofs. The exercises
have been arranged in order so that in the course of working on an exercise, you
may use any previous theorem or exercise (whether or not you did it), but not any
subsequent result (unless stated otherwise). Some exercises are used in the text, and
are so labeled.

Writing Mathematics

It is impossible to separate rigor in mathematics from the proper writing of proofs.
Proper writing is necessary to maintain the logical flow of an argument, to keep
quantifiers straight, and more. The reader would surely not turn in a literature paper
written without proper grammar, punctuation and literary usage, and no such paper
would be accepted by a serious instructor of literature. Please approach mathematics
with the same attitude. (Proper writing of mathematics may not have been empha-
sized in your previous mathematics courses, but as you now start learning advanced
mathematics, you may have to adjust your approach to doing mathematics.)

In particular, mathematicians write formal proofs in proper English (or whatever
language they speak), with complete sentences and correct grammar. Even mathe-
matical symbols are included in sentences. Two-column proofs, of the type used in
some high school geometry classes, are not used in advanced mathematics (except
for certain aspects of logic). So, beginning with Chapter 2, you should forget two-
column proofs, and stick to proper English. In Chapter 1 we will be doing preparatory
work, so we will be less concerned with proper writing there.
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Mathematical Notation and Terminology

Just as mathematics is not “about” proofs and logic (as mentioned above), so too
mathematics is not “about” obscure terminology and symbols. Mathematical ter-
minology and symbols (such as Greek letters) are simply shorthand for otherwise
cumbersome expressions. For example, it is much easier to solve the equation
3x+5 =7 — 6x written in symbols than it is to solve the equation given by the phrase
“the sum of three times an unknown number and the number five equals the differ-
ence between the number seven and six times the unknown number.” If we wrote out
all of mathematics without symbols or specialized terminology, we would drown in
a sea of words, and we would be distracted from the essential mathematical ideas.
On the other hand, whereas the use of mathematical symbols is of great convenience,
it is important to keep in mind at all times that mathematics is not the mere manipu-
lation of symbols—every symbol means something, and it is that meaning in which
we are ultimately interested.

There is no central authority that determines mathematical notation, and varia-
tions exist in the literature for the notation for some fundamental mathematical con-
cepts; in this text we have adopted the most commonly used notation as much as
possible. It should be noted that mathematical notation has evolved over time, and
care is needed when studying older books and papers.

To help with readability, we have added a few symbols that are analogs of the
very useful (and widely used) end-of-proof symbol, which is 0. This symbol lets the
reader know when a proof is done, signaling that the end is in sight, and allowing
a proof to be skipped upon first reading. Mathematics texts are rarely read straight
from beginning to end, but are gone over back and forth in whatever path the reader
finds most helpful. In this book we decided to take a good thing and make it better,
adding the symbol A for the end of a definition, the symbol ¢ for the end of an
example, and the symbol /// for the end of scratch work or other non-proofs. The
point of all these symbols is to separate formal mathematical writing, namely, proofs,
definitions and the like, from the informal discussion between the formal writing.

An important point to note concerning mathematical terminology is that whereas
some names are invented specifically for mathematical use (for example the word
“injective”), other mathematical terms are borrowed from colloquial English. For
example, the words “group,” “orbit” and “relation” all have technical meanings in
mathematics. It is important to keep in mind, however, that the mathematical usage
of these words is not the same as their colloquial usage. Even the seemingly simple
word “or” has a different mathematical meaning than it does colloquially.

What This Text Is Not

Mathematics as an intellectual endeavor has an interesting history, starting in such
ancient civilizations such as Egypt, Greece, Babylonia, India and China, progressing
through the Middle Ages (especially in the non-Western world), and accelerating up
until the present time. The greatest mathematicians of all time, such as Archimedes,
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Newton and Gauss, have had no less of an impact on human civilization than their
non-mathematical counterparts such as Plato, Buddha, Shakespeare and Beethoven.
Unbeknownst to many non-mathematicians, mathematical research is thriving today,
with more active mathematicians and more published papers than in any previous
era. For lack of space, we will not be discussing the fascinating history of mathe-
matics in this text. See [Boy91], [Str87] or [Ang94] for a treatment of the history of
mathematics.

The study of mathematics raises some very important philosophical questions.
Do mathematical objects exist? Do we discover mathematics or invent it? Is math-
ematics universal, or a product of specific cultures? What assumptions about logic
(for example, the Law of the Excluded Middle) should we make? Should set the-
ory form the basis of mathematics, as is standard at present? We will not be dis-
cussing these, and other, philosophical questions in this text, not because they are
not important, but because it would be a diversion from our goal of treating certain
fundamental mathematical topics. Mathematicians tend, with some exceptions, to be
only minimally reflective about the philosophical underpinnings of their mathemat-
ical activity; for better or worse, this book shares that approach. There is so much
interesting mathematics to do that most mathematicians—who do mathematics for
the joy of it—would rather spend their time doing mathematics than worrying about
philosophical questions.

The majority of mathematicians are fundamentally closet Platonists, who view
mathematical objects as existing in some idealized sense, similar to Platonic forms.
Our job, as we view it, is to discover what we can about these mathematical objects,
and we are happy to use whatever valid tools we can, including philosophically con-
troversial notions such as the Law of the Excluded Middle (see Section 1.2 for further
discussion). Philosophers of mathematics, and those mathematicians prone to philos-
ophizing, can be somewhat frustrated by the unwillingness of most mathematicians
to deviate from the standard ways in which mathematics is done; most mathemati-
cians, seeing how well mathematics works, and how many interesting things can be
proved, see no reason to abandon a ship that appears (perhaps deceptively) to be very
sturdy. In this text we take the mainstream approach, and we do mathematics as it is
commonly practiced today (though we mention a few places where other approaches
might be taken). For further discussion of philosophical issues related to mathemat-
ics, a good place to start is [DHM95] or [Her97]; see also [GG94, Section 5.9]. For a
succinct and entertaining critique of the standard approach to doing mathematics as
described in texts such as the present one, see [Pou99].
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There is an opposing set of pedagogical imperatives when teaching a transition
course of the kind for which this text is designed: On the one hand, students often
need assistance making the transition from computational mathematics to abstract
mathematics, and as such it is important not to jump straight into water that is too
deep. On the other hand, the only way to learn to write rigorous proofs is to write
rigorous proofs; shielding students from rigor of the type mathematicians use will
only ensure that they will not learn how to do mathematics properly.

To resolve this tension, a transition course should simultaneously maintain high
standards in content, rigor and in writing, both by the instructor and by the students,
while also giving the students a lot of individual attention and feedback. Watering
down the core content of a transition course, choosing “fun” topics instead of central
ones, making the material easier than it really is, or spending too much time on
clever pedagogical devices instead of core mathematics, will allow students to have
an easier time passing the course, but will result in students who are not ready to
take more advanced mathematics courses—which is the whole point of the transition
course.

When teaching students to write proofs, there is no substitute for regularly as-
signed homework problems, and for regular, and detailed, feedback on the homework
assignments. Students can learn from their mistakes only if the mistakes are pointed
out, and if better approaches are suggested. Having students present their proofs to
the class is an additional forum for helpful feedback.

Most mathematicians of the author’s generation never had a transition course,
and simply picked up the techniques of writing proofs, and the basics of such fun-
damental topics as sets and functions, while they were taking courses such as linear
algebra and abstract algebra. However, what worked for those who went on to be-
come professors of mathematics does not always work for all students, and extra
effort is needed to guide students until the basic idea of what constitutes a proof has
sunk in. Hence, a dedicated focus on the formulation and writing of proofs, attention
to the details of student work, and supportive guidance during this learning process
are all very helpful to students as they make the transition to advanced mathematics.
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One place where too much indulgence is given, however, even in more advanced
mathematics courses, and where such indulgence is, the author believes, quite mis-
guided, involves the proper and careful writing of proofs. Seasoned mathematicians
make honest mathematical errors all the time (as we should point out to our students),
and we should certainly understand such errors by our students. By contrast, there is
simply no excuse for sloppiness in writing proofs, whether the sloppiness is physical
(hastily written first drafts of proofs handed in rather than neatly written final drafts)
or in the writing style (incorrect grammar, undefined symbols, etc.). Physical sloppi-
ness is often a sign of either laziness or disrespect, and sloppiness in writing style is
often a mask for sloppy thinking.

The elements of writing mathematics are discussed in detail in Section 2.6. It
is suggested that these notions be used in any course taught with this book (though
of course it is possible to teach the material in this text without paying attention to
proper writing). The author has heard the argument that students in an introductory
course are simply not ready for an emphasis on the proper writing of mathematics,
but his experience teaching says otherwise: not only are students ready and able
to write carefully no matter what their mathematical sophistication, but they gain
much from the experience because careful writing helps enforce careful thinking.
Of course, students will only learn to write carefully if their instructor stresses the
importance of writing by word and example, and if their homework assignments and
tests include comments on writing as well as mathematical substance.






Part 1
PROOFS

Mathematics, like other human endeavors, has both a “what” and a
“how.” The “what” is the subject matter of mathematics, ranging from
numbers to geometry to calculus and beyond. The “how” depends upon
who is doing the mathematics. At the elementary school level, we deal
with everything very concretely. At the high school level, when we learn
algebra and geometry, things get more abstract. We prove some things,
for example in geometry, and do others computationally, for example al-
gebra. To a mathematician, by contrast, there is no split between how we
do algebra and how we do geometry: everything is developed axiomat-
ically, and all facts are proved rigorously. The methodology of rigorous
proofs done the contemporary way—quite different from the two-column
proofs sometimes used in high school geometry—is the “how” of math-
ematics, and is the subject of this part of the text. In Chapter 1 we give a
brief treatment of informal logic, the minimum needed to construct sound
proofs. This chapter is much more informal than the rest of the book, and
should not be taken as a sign of things to come. In Chapter 2 we discuss
mathematical proofs, and the various approaches to constructing them.
Both of these chapters have a good bit of informal discussion, in contrast
to some later parts of the book.






1

Informal Logic

Logic is the hygiene the mathematician practices to keep his ideas healthy
and strong.
— Hermann Weyl (1885-1955)

1.1 Introduction

Logic is the framework upon which rigorous proofs are built. Without some basic
logical concepts, which we will study in this chapter, it would not be possible to
structure proofs properly. It will suffice for our purposes to approach these logical
concepts informally (and briefly). Though logic is the foundation of mathematical
reasoning, it is important not to overemphasize the use of formal logic in mathemat-
ics. Outside of the field of mathematical logic, proofs in mathematics almost never
involve formal logic, nor do they generally involve logical symbols (although we will
need such symbols in the present chapter).

Logic is an ancient subject, going back in the West to thinkers such as Aristotle,
as well as to ancient non-Western thinkers. Having originated as an analysis of valid
argumentation, logic is strongly linked to philosophy. Mathematicians have devel-
oped a mathematical approach to logic, although there is no rigid boundary between
the study of logic by mathematicians and by philosophers; indeed, some logicians
have excelled in both fields. Some aspects of logic have taken on new importance
in recent years with the advent of computers, because logical ideas are at the basis
of some aspects of computer science. For more about traditional logic, see [Cop68],
which is very readable, and [KMMS80], which is more formal. For mathematical
logic, see [End72], [Mal79] or [EFT94]. See the introduction to Chapter 1 of the last
of these books for a discussion of the relation of mathematical logic to traditional
logic. For an interesting discussion of logic, see [EC89, Chapters 19 and 20]. For a
treatment of logic in the context of computer science, see [DSW94, Part 3].

Although the informal logic we discuss in this chapter provides the underpinning
for rigorous proofs, informal logic is not in itself rigorous. Hence the present chapter
is substantially different from the rest of the book in that it is entirely informal.

E.D. Bloch, Proofs and Fundamentals: A First Course in Abstract Mathematics, 3
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Because we start discussing mathematical proofs only in the next chapter, for now
our discussion is not written in the style appropriate for rigorous proofs. The same
goes for the homework exercises in this chapter.

In this chapter, and throughout this text, we will use the basic properties of the
integers, rational numbers and real numbers in some of our examples. We will as-
sume that the reader is informally familiar with these numbers. The basic properties
of the natural numbers will be discussed briefly in Section 6.2. See the Appendix for
a brief list of some of the standard properties of real numbers; see [Blo11, Chapters 1
and 2] for a detailed treatment of the standard number systems.

The aspect of mathematics we are learning about in this text is to state results,
such as theorems, and then prove them. Of course, a great deal of intuition, informal
exploration, calculation and grunt work goes into figuring out what to try to prove,
but that is another matter. Logic, at its most basic, is concerned with the construc-
tion of well-formed statements and valid arguments; these two notions will form the
logical framework for the proper stating and proving of theorems. The actual math-
ematics of doing proofs will have to wait until Chapter 2.

1.2 Statements

When we prove theorems in mathematics, we are demonstrating the truth of certain
statements. We therefore need to start our discussion of logic with a look at state-
ments, and at how we recognize certain statements as true or false. A statement is
anything we can say, write or otherwise express that is either true or false. For ex-
ample, the expression “Fred Smith is twenty years old” is a statement, because it
is either true or false. We might not know whether this statement is actually true or
not, because to know that would require that we know some information about Fred
Smith, for example his date of birth, and that information might not be available to
us. For something to be a statement, it has to be either true or false in principle; it
does not matter whether we personally can verify its truth or falsity. By contrast, the
expression “Eat a pineapple” is not a statement, because it cannot be said to be either
true or false.

It is important to distinguish between English expressions that we might say, and
the statements they make. For example, when we wrote “Fred Smith is twenty years
old,” we could just as well have written “Fred Smith’s age is twenty.” These two
English expressions are not identical because they do not have the exact same words,
but they certainly make the same statement. For the sake of convenience, we will
refer to expressions such as “‘Fred Smith is twenty years old” as statements, though
we should realize that we are really referring to the statement that the expression is
making. In practice, there should not be any confusion on this point.

We will be making two assumptions when dealing with statements: every state-
ment is either true or false, and no statement is both true and false. The first of these
assumptions, often referred to as the Law of the Excluded Middle (and known for-
mally as bivalence), may seem innocuous enough, but in fact some mathematicians
have chosen to work without this powerful axiom. The majority of mathematicians
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do use the Law of the Excluded Middle (the author of this book among them), and we
will not hesitate to use it implicitly throughout this book. One of the consequences
of this law is that if a statement is not false, then it must be true. Hence, to prove that
something is true, it would suffice to prove that it is not false; this strategy is very
useful in some proofs. Mathematicians who do not accept the Law of the Excluded
Middle would not consider as valid any proof that uses the law (though the incorrect-
ness of a proof does not necessitate the falsity of the statement being proved, only
that another proof has to be sought). See [Wil65, Chapter 10] or [Cop68, Section 8.7]
for more discussion of these issues.

If the only thing we could do with statements is to decide whether something
is a statement or not, the whole concept would be fairly uninteresting. What makes
statements more valuable for our purposes is that there are a number of useful ways of
forming new statements out of old ones. An analog to this would be the ways we have
of combining numbers to get new ones, such as addition and multiplication; if we did
not have these operations, then numbers would not be very interesting. In this section
we will discuss five ways of forming new statements out of old ones, corresponding
to the English expressions: and; or; not; if, then; if and only if. The statements out of
which we form a new one will at times be referred to as the component statements
of the new statement.

For our definitions of these five constructions, we let P and Q be statements.

Our first construction, the conjunction of P and Q, which is denoted P A Q, is
the statement that, intuitively, is true if both P and Q are true, and is false otherwise.
We read P A Q as “P and Q.” The precise definition of P A Q is given by the “truth
table”

This truth table, and all others like it, shows whether the new statement (in this case
P A Q) is true or false for each possible combination of the truth or falsity of each of
P and Q.

As an example of conjunction, let P = “it is raining today,” and let Q = “it is
cold today.” The statement P A Q would formally be “it is raining today and it is cold
today.” Of course, we could express the same idea more succinctly in English by
saying “it is raining and cold today.” In general, we will try to use statements that
read well in English, as well as being logically correct.

The colloquial use of the word “and” differs from the mathematical usage stated
above. The mathematical usage means the above truth table, and nothing else, while
colloquially there are other meanings in addition to this one. One source of confusion
involving the word “and” that is well worth avoiding is the colloquial use of this word
in the sense of “therefore.” For example, it is not uncommon to find a sentence such
as “From the previous equation we see that 3x < 6, and x < 2.” What is really meant
by this sentence is “From the previous equation we see that 3x < 6, which implies
that x < 2.” Such a use of “and” to mean “therefore” is virtually never necessary, and
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because it can lead to possible confusion, it is best avoided. It would be fine to say
“From the previous equation we see that 3x < 6, and x < 2,” because in that case the
“and” is functioning only as the conjunction between the two parts of the sentence,
and is not a substitute for the word “therefore.”

Another colloquial use of “and” that differs from mathematical usage, though
one that is less likely to cause us problems here, is seen in the statement “Fred and
Susan are married.” Interpreted in the strict mathematical sense, we could only con-
clude from this statement that each of Fred and Susan is married, possibly to different
people. In colloquial usage, by contrast, this statement would almost always be inter-
preted as meaning that Fred and Susan are married to each other. In literary writing,
some measure of ambiguity, or some implied meaning that is not stated explicitly, is
often valuable. In mathematics, on the other hand, precision is key, and ambiguity is
to be avoided at all costs. When using a mathematical term, always stick to the pre-
cise mathematical definition, regardless of any other colloquial usage. For example,
in mathematical writing, if we wanted to indicate that Fred and Susan are married
to each other, we should state explicitly “Fred and Susan are married to each other,”
and if we want to state only that each of Fred and Susan is married, we should say
“Fred is married and Susan is married.”

Our second construction, the disjunction of P and Q, which is denoted PV Q, is
the statement that, intuitively, is true if either P is true or Q is true or both are true,
and is false otherwise. We read PV Q as “P or Q.” The precise definition of PV Q is
given by the truth table

The truth of the statement PV Q means that at least one of P or Q is true. Though
we write PV Q in English as “P or Q,” it is very important to distinguish the mathe-
matical use of the word “or”” from the colloquial use of the word. The mathematical
use of the word “or” always means an inclusive “or,” so that if “P or Q” is true, then
either P is true, or Q is true, or both P and Q are true. By contrast, the colloquial
use of the word “or” often means an exclusive “or,” which does not allow for both P
and Q to be true. In this text, as in all mathematical works, we will always mean an
inclusive “or,” as given in the truth table above.

A simple example of a disjunction is the statement “my car is red or it will rain
today.” This statement has the form PV Q, where P = “my car is red,” and Q = “it
will rain today.” The truth of this statement implies that at least one of the statements
“my car is red” or “it will rain today” is true. The only thing not allowed is that both
“my car is red” and “it will rain today” are false.

Now consider the statement “tonight I will see a play or I will see a movie.” In
colloquial usage it would be common to interpret this statement as an exclusive or,
meaning that either I will see a play, or I will see a movie, but not both. In colloquial
usage, if I wanted to include the possibility that I might see both a play and a movie, |
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would likely say “tonight I will see a play, or I will see a movie, or both.” By contrast,
in mathematical usage the statement “tonight I will see a play or I will see a movie”
would always be interpreted as meaning that either I will see a play, or I will see a
movie, or both. In mathematical usage, if I wanted to exclude the possibility that I
might see both a play and a movie, I would say “tonight I will see a play or I will see
a movie, but not both.”

One other source of confusion involving the word “or” that is well worth avoiding
is the colloquial use of this word in the sense of “that is.” Consider the colloquial
sentence “when I was in France I enjoyed eating the local fromage, or, cheese.”
What is really meant is “when I was in France, I enjoyed eating the local fromage,
that is, cheese.” Such a use of “or” is best avoided in mathematical writing, because
it is virtually never necessary, and can lead to confusion.

Our third construction, the negation of P, which is denoted —P, is the statement
that, intuitively, is true if P is false, and is false if P is true. We read —P as “not P.”
The precise definition of —P is given in the truth table

P|-P
T|F
F|T

Let P = “Susan likes mushy bananas.” It would not work in English to write —P
as “Not Susan likes mushy bananas,” both because that is not proper English, and
because it appears as if the subject of the sentence is someone named “Not Susan.”
The most straightforward way of negating P is to write —P = “it is not the case
that Susan likes mushy bananas.” While formally correct, this last statement is quite
awkward to read, and it is preferable to replace it with an easier-to-read expression,
for example “Susan does not like mushy bananas.”

Our final two ways of combining statements, both of which are connected to the
idea of logical implication, are slightly more subtle than what we have seen so far.
Consider the statement “If Fred goes on vacation, he will read a book.” What would
it mean to say that this statement is true? It would not mean that Fred is going on
vacation, nor would it mean that Fred will read a book. The truth of this statement
means only that if one thing happens (namely, Fred goes on vacation), then another
thing will happen (namely, Fred reads a book). In other words, the one way in which
this statement would be false would be if Fred goes on vacation, but does not read
a book. The truth of this statement would not say anything about whether Fred will
or will not go on vacation, nor would it say anything about what will happen if Fred
does not go on vacation. In particular, if Fred did not go on vacation, then it would
not contradict this statement if Fred read a book nonetheless.

Now consider the statement “If grass is green, then Paris is in France.” Is this
statement true? In colloquial usage, this statement would seem strange, because there
does not seem any inherent connection, not to mention causality, between the first
part of the sentence and the second. In mathematical usage, however, we want to be
able to decide whether a statement of any form is true simply by knowing the truth or
falsity of each of its component statements, without having to assess something more
vague such as causality. For example, the statement “Cows make milk and cars make
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noise” is certainly true, even though the two parts of the sentence are not inherently
connected. Similarly, the statement “If grass is green, then Paris is in France” also
ought to be decidable as true or false depending only upon whether “grass is green”
and “Paris is in France” are each true or false. As in the previous paragraph, we take
the approach that a statement of the form “if P then Q” should be true if it is not
the case that P is true and Q is false. Therefore, because grass is indeed green and
Paris is indeed in France, the statement “If grass is green, then Paris is in France” is
true. This approach to the notion of “if ... then ...” is somewhat different from the
colloquial use of the term, just as our uses of “and” and “or”” were not the same as
their colloquial uses. We formalize this approach as follows.

Our fourth construction, the conditional from P to Q, which is denoted P — Q,
is the statement that, intuitively, is true if it is never the case that P is true and Q is
false. We read P — Q as “if P then Q.” The precise definition of P — Q is given in
the truth table

The first two rows of the truth table are fairly reasonable intuitively. If P is true
and Q is true, then certainly P — Q should be true; if P is true and Q is false, then
P — Q should be false. The third and fourth rows of the truth table, which say that
the statement P — Q is true whenever P is false, regardless of the value of Q, are less
intuitively obvious. There is, however, no other plausible way to fill in these rows,
given that we want the entries in the truth table to depend only on the truth or falsity
of P and Q, and that the one situation with which we are primarily concerned is that
we do not want P to be true and Q to be false. Moreover, if we were to make the
value of P — Q false in the third and fourth rows, we would obtain a truth table that
is identical to the truth table for P A Q, which would make P — Q redundant. The
above truth table for P A Q, which is universally accepted by mathematicians and
logicians, may seem strange at first glance, and perhaps even contrary to intuition,
but it is important to get used to it, because we will always use P — Q as we have
defined it.

A simple example of a conditional statement is “if it rains today, then I will see a
movie this evening.” This statement has the form P — Q, where P = “it rains today,”
and Q = “T will see a movie this evening.” The truth of this statement does not say
that it is raining today, nor that I will see a movie this evening. It only says what will
happen if it rains today, which is that I will see a movie this evening. If it does not
rain, I still might see a movie this evening, or I might not; both of these possibilities
would be consistent with the truth of the original statement “if it rains today, then I
will see a movie this evening.”

Although it is standard to write P — (, it is not the order of writing that counts,
but the logical relationship. It would be identical to write Q < P instead of P — Q.
Either way, each of P and Q has a specified—and distinct—role. By contrast, if we
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write Q — P, then we have switched the roles of Q and P, resulting in a statement
that is not equivalent to P — Q (as will be discussed in Section 1.3).

There are a number of variations as to how to write the statement P — Q in
English. In addition to writing “if P then Q,” we could just as well write any of the
following:

ItP, O;

Qif P,

Ponly if Q;

Q provided that P;
Assuming that P, then Q;
Q given that P;

P is sufficient for Q;

0 is necessary for P.

These variants are each useful in particular situations. For example, the statement
“if it rains today, then I will see a movie this evening” could just as well be written
“I will see a movie this evening if it rains today.” It would also be formally correct to
say “it is raining today is sufficient for me to see a movie this evening,” though such
a sentence would, of course, be rather awkward.

Our fifth construction, the biconditional from P to Q, which is denoted P < Q,
is the statement that, intuitively, is true if P and Q are both true or both false, and is
false otherwise. We read P < Q as “P if and only if Q.” The phrase “if and only if” is
often abbreviated as “iff.” The precise definition of P < Q is given in the truth table

An example of a biconditional statement is “I will go for a walk if and only if
Fred will join me.” This statement has the form P < Q, where P = “I will go for
a walk,” and Q = “Fred will join me.” The truth of this statement does not say that
I will go for a walk, or that Fred will join me. It says that either Fred will join me
and I will go for a walk, or that neither of these things will happen. In other words,
it could not be the case that Fred joins me and yet I do not go for a walk, and it also
could not be the case that I go for a walk, and yet Fred has not joined me.

There are some variations as to how to write the statement P < Q in English. In
addition to writing “P if and only if Q,” it is common to write “P is necessary and
sufficient for Q.”

In Section 1.3 we will clarify further the meaning of biconditional statements.
Among other things, we will see that the order of writing a biconditional statement
makes no difference, that is, it makes no difference whether we write P < Q or
0« P.

Now that we have defined our five basic ways of combining statements, we can
form more complicated compound statements by using combinations of the basic
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operations. For example, we can form PV (Q — —R) out of statements P, Q and R.
We need to use parentheses in this compound statement, to make sure it is unam-
biguous. We use the standard convention that — takes precedence over the other four
operations, but none of these four takes precedence over the others. Hence, writing
“PV Q — —R” would be ambiguous, and we would never write such an expression.

We can form the truth table for the statement PV (Q — —R), doing one operation
at a time, as follows:

P|Q|R|-R|Q — —R|PV (Q — —R)
TIT|T|F| F T
T\IT\F|T| T T
T|FIT|F| T T
TIFIF|T| T T
FIT|T|F| F F
FITIFlT| T T
FIFIT|F| T T
FIFIF|T| T T

To save time and effort, it is possible to write a smaller truth table with the same
information as the truth table above, by writing one column at a time, and labeling
the columns in the order of how we write them. In the truth table shown below, we
first write columns 1 and 2, which are just copies of the P and Q columns; we then
write column 3, which is the negation of the R column; column 4 is formed from
columns 2 and 3, and column 5 is formed from columns 1 and 4. We put the label
“5” in a box, to highlight that its column is the final result of the truth table, and
refers to the compound statement in which we are interested. It is, of course, the
same result as in the previous truth table.

P|O|R|P Vv (Q — —R)
TITITIT T T F F
TIT\FlT T T T T
TIFITIT T F T F
TIFIFlT T F T T
FlT|T\F F T F F
FITIFlFT T T T
FIFITIF T F T F
FIFIFlIF T FT T

1[5]2 4 3

Just as we can form compound statements written with symbols, we can also
form such statements written in English. The role that parentheses play in avoiding
ambiguity in statements written with symbols is often played in English sentences
by punctuation. For example, the sentence “I like to eat apples or pears, and I like
to eat peaches” is unambiguous. If we let A = “I like to eat apples,” let B = “I like
to eat pears” and let C = “I like to eat peaches,” then the sentence can be written in
symbols as (A V B) AC. On the other hand, suppose that we were given the statement
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(AV B) AC, and were told to translate it into English, knowing that A = “I like to eat
apples,” etc., but without knowing that the statement had originally been formulated
in English. A careful translation into English might result in the original statement,
or in some equally valid variant, such as “I like to eat apples or I like to eat pears,
and I like to eat peaches.” Unfortunately, imprecise translations such as “I like to eat
apples or pears and peaches,” or “I like to eat apples, or I like to eat pears, and I like to
eat peaches,” are often made. These two statements are ambiguous; the ambiguity in
the first statement results from the lack of necessary punctuation, and the ambiguity
in the second statement results from incorrect punctuation. In both these statements
the problem with the punctuation is not a matter of grammar, but rather of capturing
accurately and unambiguously the meaning of the statement (A V B) AC.

We end this section with a brief mention of two important concepts. A tautology
is a statement that is always true by logical necessity, regardless of whether the com-
ponent statements are true or false, and regardless of what we happen to observe in
the real world. A contradiction is a statement that is always false by logical neces-
sity. Most statements we encounter will be neither of these types. For example, the
statement “Irene has red hair” is neither a tautology nor a contradiction, because it
is not necessarily either true or false—it is logically plausible that Irene does have
red hair, and it is just as plausible that she does not. Even the statement “1 # 2” is
not a tautology. It is certainly true in our standard mathematical system, as far as we
know, but the truth of this statement is an observation about the way human beings
have constructed their number system, not a logical necessity.

An example of a tautology is the statement “Irene has red hair or she does not
have red hair.” It seems intuitively clear that this statement is a tautology, and we can
verify this fact formally by using truth tables. Let P = “Irene has red hair.” Then our
purported tautology is the statement PV —P. The truth table for this statement is

We see in column 3 that the statement PV —P is always true, regardless of whether P
is true or false. This fact tells us that PV —P is a tautology. In general, a statement is
a tautology if, as verified using a truth table, it is always true, regardless of whether
its component statements are true or false.

The statement “Irene has red hair and she does not have red hair” is a contradic-
tion. In symbols this statement is P A —P, and it has truth table

The statement P A =P is always false, regardless of whether P is true or false. In
general, a statement is a contradiction if, as verified using a truth table, it is always
false, regardless of whether its component statements are true or false.
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That PV —P is a tautology, and that P A =P is a contradiction, seems quite in-
tuitively reasonable. It is possible, however, to have more complicated (and not so
intuitive) tautologies and contradictions. For example, the truth table of the statement
[(PAQ)—R]—=[P—(Q—R)is

[
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We see in column 11 that the statement [(P A Q) — R] — [P — (Q — R) is always
true, regardless of whether each of P, Q and R is true or false. Hence the statement
is a tautology. Suppose that P = “Sam is sad,” let Q = “Warren is sad” and R =
“Sam and Warren eat pasta.” Then the statement becomes “If it is true that if Sam
and Warren are both sad then they eat pasta, then it is true that if Sam is sad, then if
Warren is sad they eat pasta.”

As an example of a contradiction, the reader can verify with a truth table that the
statement [Q — (P A—Q)] A Q is always false.

Exercises

Exercise 1.2.1. Which of the following expressions are statements?

(1) Today is a nice day.

(2) Go to sleep.

(3) Is it going to snow tomorrow?

(4) The U.S. has 49 states.

(5) Ilike to eat fruit, and you often think about traveling to Spain.
(6) If we go out tonight, the babysitter will be unhappy.

(7) Call me on Thursday if you are home.

Exercise 1.2.2. Which of the following expressions are statements?

1) 4<3. (5) (a+b)> =a’>+2ab+ b,
(2) Ifx >2thenx’ > 1. (6) a*+b*=c2

3) y<. (7) If w=3thenz" #0.

@ x+y=z

Exercise 1.2.3. Let P = “I like fruit,” let Q = “I do not like cereal” and R = “I know
how to cook an omelette.” Translate the following statements into words.
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(1) PAOQ. (5) =PV Q.
(2) QVR. 6) —PV Q.

3) -R. (7) (RAP)VQ.
@) —~(PVQ). 8) RA(PVQ).

Exercise 1.2.4. Let X = “I am happy,” let Y = “T am watching a movie” and Z = “I
am eating spaghetti.” Translate the following statements into words.

1) Z—X. @) YV (Z—X).
Q) X7Y. (5) (Y = ~X)A(Z — —X).
3) (YVZ)—X. 6) (XA-Y) < (YVZ).

Exercise 1.2.5. Let X = “Fred has red hair,” let Y = “Fred has a big nose” and R =
“Fred likes to eat figs.” Translate the following statements into symbols.

(1) Fred does not like to eat figs.

(2) Fred has red hair, and does not have a big nose.

(3) Fred has red hair or he likes to eat figs.

(4) Fred likes to eat figs, and he has red hair or he has a big nose.

(5) Fred likes to eat figs and he has red hair, or he has a big nose.

(6) It is not the case that Fred has a big nose or he has red hair.

(7) Itis not the case that Fred has a big nose, or he has red hair.

(8) Fred has a big nose and red hair, or he has a big nose and likes to eat figs.

Exercise 1.2.6. Let E = “The house is blue,” let F = “The house is 30 years old”
and G = “The house is ugly.” Translate the following statements into symbols.

(1) If the house is 30 years old, then it is ugly.

(2) If the house is blue, then it is ugly or it is 30 years old.

(3) If the house is blue then it is ugly, or it is 30 years old.

(4) The house is not ugly if and only if it is 30 years old.

(5) The house is 30 years old if it is blue, and it is not ugly if it is 30 years old.

(6) For the house to be ugly, it is necessary and sufficient that it be ugly and 30
years old.

Exercise 1.2.7. Suppose that A is a true statement, that B is a false statement, that C
is a false statement and that D is a true statement. Which of the following statements
are true, and which are false?

1) AVC. @) ~DVC.
(2) (CAD)VB. (5) (DAA)V (BAC).
(3) ~(AAB). 6) CV[DV(AAB).

Exercise 1.2.8. Suppose that X is a false statement, that Y is a true statement, that Z
is a false statement and that W is a true statement. Which of the following statements
are true, and which are false?
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1 zZz—-Y. 4 W— (X —-W).
2) X—Z. B) [Y = W) = W]A—X.
3 (Y<—>W)/\X. (6) (W—>X)Hﬁ(Z\/Y).

Exercise 1.2.9. Suppose that Flora likes fruit, does not like carrots, likes nuts and
does not like rutabagas. Which of the following statements are true, and which are
false?

(1) Flora likes fruit and carrots.

(2) Flora likes nuts or rutabagas, and she does not like carrots.

(3) Flora likes carrots, or she likes fruit and nuts.

(4) Flora likes fruit or nuts, and she likes carrots or rutabagas.

(5) Flora likes rutabagas, or she likes fruit and either carrots or rutabagas.

Exercise 1.2.10. Suppose that Hector likes beans, does not like peas, does not like
lentils and likes sunflower seeds. Which of the following statements are true, and
which are false?

(1) If Hector likes beans, then he likes lentils.

(2) Hector likes lentils if and only if he likes peas.

(3) Hector likes sunflower seeds, and if he likes lentils then he likes beans.

(4) Hector likes peas and sunflower seeds if he likes beans.

(5) If Hector likes lentils then he likes sunflower seeds, or Hector likes lentils if
and only if he likes peas.

(6) For Hector to like beans and lentils it is necessary and sufficient for him to
like peas or sunflower seeds.

Exercise 1.2.11. Make a truth table for each of the following statements.

(1) PA-Q. 4) (AVB)A(AVC).
(2) (RVS)A—R. (5) (PAR)V—(QAS).
(3 XVv(-rvz).

Exercise 1.2.12. Make a truth table for each of the following statements.

1 X — Y. 4) (E—F)— (E<G).
2) (R—S) <R 5) (P—=R)V-(Q<09).
3) -M — (NAL).

Exercise 1.2.13. Which of the following statements are tautologies, which are con-
tradictions and which are neither?

1) PV (=PAQ).

2) (XVY) = (X —=7Y).

3) (AN-B)A(=AVB).

@) [ZV(2ZVW)]A=(WAU).
6) (X =Z2)AN(X —Y)|AX.
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() [(P——=Q)APINQ.

Exercise 1.2.14. Which of the following statements are tautologies, which are con-
tradictions and which are neither?

(1) If John eats a blueberry pizza, then he either eats a blueberry pizza or he does
not.

(2) If John either eats a blueberry pizza or he does not, then he eats a blueberry
pizza.

(3) If pigs have wings and pigs do not have wings, then the sun sets in the east.

(4) If Ethel goes to the movies then Agnes will eat a cake, and Agnes does not
eat cake, and Ethel goes to the movies.

(5) Rabbits eat cake or pie, and if rabbits eat pie then they eat cake.

(6) The cow is green or the cow is not green, if and only if the goat is blue and
the goat is not blue.

Exercise 1.2.15. Let P be a statement, let 7 be a tautology and let C be a contradic-
tion.

(1) Show that PV T is a tautology.
(2) Show that P A C is a contradiction.

1.3 Relations Between Statements

Up until now we have constructed statements; now we want to discuss relations be-
tween them. Relations between statements are not formal statements in themselves,
but are “meta-statements” that we make about statements. An example of a meta-
statement is the observation that “if the statement ‘Ethel is tall and Agnes is short’
is true, then the statement ‘Ethel is tall’ is true.” Another example is “the statement
‘Irving has brown hair or Mel has red hair’ being true is equivalent to the statement
‘Mel has red hair or Irving has brown hair’ being true.” Of course, we will need
to clarify what it means for one statement to imply another, or be equivalent to an-
other, but whatever the formal approach to these concepts is, intuitively the above
two meta-statements seem correct.

It might be objected to that the above examples of meta-statements are in fact
statements in themselves, which is true enough informally, though in a formal setting,
which we are not presenting here, there is indeed a difference between a well-formed
statement in a given formal language and a meta-statement that we might make about
such formal statements. In practice, the distinction between statements and meta-
statements is straightforward enough for us to make use of it here.

The two examples of relations between statements given above represent the two
types of such relations we will study, namely, implication and equivalence, which
are the meta-statement analogs of conditionals and biconditionals. We start with im-
plication.

The intuitive idea of logical implication is that statement P implies statement Q if
necessarily Q is true whenever P is true. In other words, it can never be the case that
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P is true and Q is false. Necessity is the key here, because one statement implying
another should not simply be a matter of coincidentally appropriate truth values.
Consider the statements P = “the sky is blue” and Q = “grass is green.” Given what
we know about sky and grass, the statement “if the sky is blue then grass is green” is
certainly true (that is, the statement P — Q is true), because both P and Q are true.
However, and this is the key point, we would not want to say that “the sky is blue”
logically implies “grass is green,” because logical implication should not depend
upon the particular truth values of the particular statements. What would happen if,
due to some environmental disaster, all the grass in the world suddenly turned black,
although the sky still stayed blue. Then the statement “if the sky is blue then grass is
green” would be false. Because this possibility could in principle happen, we do not
say that “the sky is blue” implies “grass is green.” In general, even though P — Q
happens to be true now, given that it might be false under other circumstances, we
cannot say that P implies Q. To have P imply Q, we need P — Q to be true under all
possible circumstances.

Now consider the two statements “it is not the case that, if Susan thinks Lisa is
cute then she likes Lisa” and “Susan thinks Lisa is cute or she likes Lisa.” Whether or
not each of these statements is actually true or false depends upon knowing whether
or not Susan thinks Lisa is cute, and whether or not Susan likes Lisa. What will
always be the case, as we will soon see, is that the statement “it is not the case that,
if Susan thinks Lisa is cute then she likes Lisa” implies the statement “Susan thinks
Lisa is cute or she likes Lisa,” regardless of whether each component statement is
true or false.

Let P = “Susan thinks Lisa is cute” and Q =“Susan likes Lisa.” Then we want to
show that —=(P — Q) implies PV Q. We show this implication in two ways. First, we
check the truth tables for each of —(P — Q) and PV Q, which are

Plo| -~ (P — Q) Plo|P v 0
TIT|/F T T T TITIT T T
TIF|T T F F TIFIT T F
FIT/F FTT FITIF T T
FIF|F F T F FIFIF F F

[4]1 3 2 1[3]2

The column numbered 4 in the first truth table has the truth values for ~(P — Q),
and the column numbered 3 in the second truth table has the truth values for PV Q.
We observe that in any row that has a T as the truth value for —(P — Q), there is
also a T for the truth value of PV Q (there is only one such row in this case, but that
is immaterial). It makes no difference what happens in the rows in which —(P — Q)
has truth value F. Hence —(P — Q) logically implies PV Q.

Alternatively, rather than having two truth tables to compare, we can use the con-
ditional (defined in Section 1.2) to recognize that our observations about the above
two truth tables is the same as saying that the single statement [~(P — Q)] — (PV Q)
will always be true, regardless of the truth or falsity of P and Q. In other words, the
statement [=(P — Q)] — (P V Q) will be a tautology (also in Section 1.2), as can be
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seen in the truth table

PO~ (P— Q)] — (PVO)
TTIFTT T T TTT
TIF\T TF F TTTF
FIT/FFT T TFTT
FIFIFFT F T FFF

413 2[8]/576.

We see in Column 8 that the statement [=(P — Q)] — (PV Q) is always true, and
hence it is indeed a tautology.

This last consideration leads to the precise notion of implication. Let P and Q
be statements. We say that P implies Q if the statement P — Q is a tautology. We
abbreviate the English expression “P implies O with the notation “P = Q.”

It is important to note the difference between the notations “P = Q” and “P —
Q. The notation “P — Q” is a statement; it is a compound statement built up out of
the statements P and Q. The notation “P = Q” is a meta-statement, which is simply
a shorthand way of writing the English expression “P implies Q,” and it means that
P — Qs not just true in some particular instances, but is a tautology.

It might appear at first glance as if we are not introducing anything new here,
given that we are defining implication in terms of conditional statements, but there
is a significant new idea in the present discussion, which is that we single out those
situations where P — Q is not just a statement (which is always the case), but where
P — Q is a tautology. Moreover, we will see in Section 1.4 that implications of
statements will be extremely useful in constructing valid arguments. In particular,
the following implications will be used extensively.

Fact 1.3.1. Let P, Q, R and S be statements.

(P—Q)ANP=Q (Modus Ponens).

(P— Q)AN—=Q= —P (Modus Tollens).

PANQ= P (Simplification).

PANQ= Q (Simplification).

P=PVQ (Addition).

Q= PVQ (Addition).

(PVO)AN—-P=Q (Modus Tollendo Ponens).

(PVO)AN—=Q =P (Modus Tollendo Ponens).

. P— Q= P— Q (Biconditional-Conditional).

10. P— Q= Q — P (Biconditional-Conditional).

11. (P— Q)N (Q— P)=P < Q (Conditional-Biconditional).
12. (P—Q)N(Q—R)=P—R (Hypothetical Syllogism).
13. (P—Q)AN(R— S)AN(PVR)=QVS (Constructive Dilemma).

NN KN WDNN

o

Demonstration. We will show that Part (1) holds, leaving the rest to the reader in
Exercise 1.3.6.

(1). To demonstrate that (P — Q) A P = Q, we need to show that the statement
[(P— Q) AP] — Qis a tautology, which we do with the truth table
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PO|[(P—Q)ANP] = Q
TIT|T T T T T T T
TIF\T FFFT TF
FIT|/F TTFFTT
FIF|[F T FFFTF

1 3 254[7]6

We see in Column 7 that the statement [(P — Q) A P] — Q is always true, and hence
it is a tautology. ///

The implications stated in Fact 1.3.1 were chosen because they are symbolic
statements of various rules of valid argumentation. Consider, for example, Part (7).
Suppose that P = “the cow has a big nose” and Q = “the cow has a small head.”
Translating our statement yields “the cow has a big nose or a small head, and the
cow does not have a big nose” implies “the cow has a small head.” This implication
is indeed intuitively reasonable. The implications stated in Fact 1.3.1 will be used in
Section 1.4, and so we will not discuss them in detail here.

Logical implication is not always reversible. For example, we saw that “it is not
the case that, if Susan thinks Lisa is cute then she likes Lisa” implies “Susan thinks
Lisa is cute or she likes Lisa.” Written in symbols, we saw that =(P — Q) = PV Q.
On the other hand, the same truth tables used to establish this implication also show
that PV Q does not imply —(P — Q). For example, when P and Q are both true, then
PV Qs true, but —(P — Q) is false. Alternatively, it can be seen by a truth table that
(PV Q) — [-(P — Q)] is not a tautology. Hence “Susan thinks Lisa is cute or she
likes Lisa” does not imply “it is not the case that, if Susan thinks Lisa is cute then
she likes Lisa.”

Some logical implications, however, are reversible. Such implications are very
convenient, and they convey the idea of logical equivalence, to which we now turn.
Certainly, two different English sentences can convey equivalent statements, for ex-
ample “if it rains I will stay home” and “I will stay home if it rains.” These two
statements are both English variants of P — Q, where P = “it rains,” and Q = “I
will stay home.” The difference between these two statements is an issue only of the
flexibility of the English language; symbolically, these two statements are identical,
not just equivalent.

What interests us are logically equivalent statements that are not simply English
variants of the same symbolic statement, but rather are truly different statements. For
example, the statement “it is not that case that I do not own a bicycle” will be seen to
be equivalent to “T own a bicycle.” If we let P = “I own a bicycle,” then the statement
“it is not that case that I do not own a bicycle” is ~(—P). This statement is not identi-
cal to P. It will be very important to us to be able to recognize that some non-identical
statements, for example —(—P) and P, are in fact logically equivalent. Such equiv-
alences will allow us to find alternative forms of the statements of some theorems,
and these alternative forms are sometimes easier to prove than the originals.

The intuitive idea of equivalence of statements is that to claim that statements
P and Q are equivalent means that necessarily P is true if and only if Q is true.
Necessity is once again the key here, as can be seen once more using the statements
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“the sky is blue” and “grass is green,” which are not equivalent, even though both are
true. By contrast, consider the two statements “if Fred has good taste in food, then
he likes to eat liver” and “if Fred does not like to eat liver, then he does not have
good taste in food.” We will show that these statements are equivalent, as follows.
Let P = “Fred has good taste in food” and Q = “Fred likes to eat liver.” Then we
want to show the equivalence of P — Q and =Q — —P. We need to see that each of
these two statements is true when the other is true, and each is false when the other
is false. Once again we can use truth tables. If we use separate truth tables, we see

that
PlolP — 0 P|Q]-Q — —P
TIT|T T T TIT|F T F
T|F|T F F TIF|T F F
FIT|F T T FIT|F T T
FIF|F T F FIF|T T T
13]2, 1[3] 2

The columns numbered 3 in the truth tables have the truth values for P — Q and
—Q — —P respectively. These columns are identical, which says that P — Q is true
if and only if =Q — —P is true. We can avoid having to compare two truth tables,
this time by using the biconditional (defined in Section 1.2). The equality of the truth
values of our two statements in the two truth tables above is the same as saying that
the single statement (P — Q) < (—Q — —P) is a tautology, as can be seen in the
truth table

P|Q|(P — Q) < (-Q — —P)
TIT[T T T T F T F
TIF|T FFT T F F
FITIFTTT F T T
FIFfFTFT T T T

132[7] 4 6 5

4
We see in Column 7 that the statement (P — Q) « (=Q — —P) is always true, and
hence it is a tautology.

In general, let P and Q be statements. We say that P and Q are equivalent if the
statement P < Q is a tautology. We abbreviate the English expression “P and Q are
equivalent” with the notation “P < Q.”

It is important to note the difference between the notations “P < Q” and “P <
Q. The latter is a statement, whereas the former is a meta-statement, which is simply
a shorthand way of writing the English expression “P is equivalent to Q.”

Listed below are some equivalences of statements that will be particularly useful.
We will discuss some of these equivalences after stating them.

Fact 1.3.2. Let P, Q and R be statements.

1. =(=P)< P (Double Negation).

2. PVQ< QVP (Commutative Law).

3. PANQ< QAP (Commutative Law).

4. (PVQ)VR< PV (QVR) (Associative Law).
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5. PANQ)AR< PA(QAR) (Associative Law).

6. PA(QVR)< (PNQ)V (PAR) (Distributive Law).
7. PV(QAR) < (PVO)A(PVR)  (Distributive Law).
8 P Q& -PVO.

9. P— Q< -0 — —P (Contrapositive).

10. P~ Q< Q<P

1. P> Q< (P— Q)N (Q—P).

12. -(PANQ) < —~PV—Q (De Morgan’s Law).

13. -(PV Q)< —~PA—Q (De Morgan’s Law).

14. =(P— Q)= PA-Q.

15. =(P— Q)< (PA-Q)V (=PAQ).

Demonstration. Part (9) was discussed previously. We will show here that Part (7)
holds, leaving the rest to the reader in Exercise 1.3.7. The demonstration here is very
similar to the demonstration of Fact 1.3.1 (1).

(7). We need to demonstrate that PV (Q AR) < (PV Q) A (PV R), which we
do by showing that the statement [PV (Q AR)] < [(PV Q) A (PV R)] is a tautology,
which in turn we do with the truth table

PIOIR|[PV (QAR)] < [(PVQ) A (PVR)
TITIT[TTTTT T TTTTTTT
TITIFITTTFF T TTTTTTF
TIFIT|/TTFFT T TTFTTTT
TIFIFITTFFF T TTFTTTF
FIT\T\FTTTT T FTTTFTT
FITIFNFFTFF T FTTFFTFF
FIFlT\FFFFT T FFFFFTT
FIF[FNFFFFF T FFFFFFTF

45132[13]6871291110-

We see in Column 13 that the statement[PV (QAR)] < [(PV Q) A (PV R)], and hence
it is a tautology. ///

Part (1) of Fact 1.3.2 might appear innocuous, but this equivalence plays a very
important role in standard mathematical proofs. In informal terms, the equivalence
of =(—P) and P means that “two negatives cancel each other out.” From the point
of view of constructing mathematical proofs, suppose that we want to show that a
statement P is true. One method to prove this statement would be to hypothesize that
=P is true, and derive a contradiction. It would then follow that —P is false, which
implies that —(—P) is true. Because —(—P) and P are equivalent, it would follow
that P is true. This methodology of proof might sound rather convoluted, but it is
often quite useful, and is called proof by contradiction. A detailed discussion of this
method of proof is in Section 2.3.

Part (11) of Fact 1.3.2 gives a reformulation of the biconditional in terms of
conditionals. For example, the statement “I will play the flute today if and only if I
listen to the radio” is equivalent to the statement “if I play the flute today I will listen
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to the radio, and if I listen to the radio I will play the flute today.” The equivalence
of P Qand (P — Q) A (Q — P) says that to prove a statement of the form P < Q,
it is sufficient to prove (P — Q) A (Q — P); it therefore suffices to prove each of
(P— Q) and (Q — P). As we will see in Chapter 2, the most basic type of statement
that is proved in mathematics is a conditional statement. Hence, when we want to
prove a theorem with a statement that is a biconditional, we will often prove the two
corresponding conditional statements instead. See Section 2.4 for more discussion.

Part (9) of Fact 1.3.2 allows us to reformulate one conditional statement in terms
of another. For example, the statement “if it snows today, Yolanda will wash her
clothes” is equivalent to “if Yolanda did not wash her clothes, it did not snow today.”
Suppose that we know that the statement “if it snows today, Yolanda will wash her
clothes” is true. Suppose further that in fact Yolanda did not wash her clothes. Then
it could not have snowed, because if it had snowed, then surely Yolanda would have
washed her clothes. On the other hand, if Yolanda did wash her clothes, we could not
automatically conclude that it snowed, because Yolanda might choose to wash her
clothes even when it does not snow. Therefore “if Yolanda did not wash her clothes,
it did not snow today” must be true whenever “if it snows today, Yolanda will wash
her clothes” is true. Similar reasoning shows that if the latter statement is true, then
so is the former.

Because the equivalence of the statements P — Q and ~Q — —P will be so impor-
tant for constructing mathematical proofs, as seen in Section 2.3, relevant terminol-
ogy is merited. Given a conditional statement of the form P — Q, we call -Q — —P
the contrapositive of the original statement. For example, the contrapositive of “if
I eat too much I will feel sick” is “if I do not feel sick I did not eat too much.”
Fact 1.3.2 (9) says that a statement and its contrapositive are always equivalent.

We also give names to two other variants of statements of the form P — Q. We
call Q — P the converse of the original statement, and we call -P — —Q the inverse
of the original statement. Continuing the example of the previous paragraph, the con-
verse of “if I eat too much I will feel sick™ is “if I feel sick then I ate too much”; the
inverse of the original statement is “if I did not eat too much then I will not feel sick.”
It is important to recognize that neither the converse nor the inverse is equivalent to
the original statement, as the reader can verify by constructing the appropriate truth
tables. If we look at the statements “if I feel sick then I ate too much” and “if I did not
eat too much then I will not feel sick,” we observe that both of them mean that there
is no other possible cause of feeling sick than eating too much, whereas the original
statement “if I eat too much I will feel sick” says nothing of the sort. Although the
converse and inverse of a statement are not equivalent to the original statement, we
note that, however, that the converse and the inverse are equivalent to each another,
as can be seen by applying Fact 1.3.2 (9) to the statement Q — P.

One important use of equivalences of statements is to find convenient formu-
las for the negations of statements. Such formulas are found in Parts (12)—(15) of
Fact 1.3.2, which show how to negate conjunctions, disjunctions, conditionals and
biconditionals. For example, what is the negation of the statement ““it is raining and I
am happy”’? We could write “it is not the case that it is raining and I am happy,” but
that is cumbersome, and slightly ambiguous (does the phrase “it is not the case that”
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apply only to “it is raining,” or also to “I am happy”?) A common error would be to
say “it is not raining and I am unhappy.” Observe that the original statement “it is
raining and I am happy” is true if and only if both “it is raining” is true and if “T am
happy” is true. If either of these two component statements is false, then the whole
original statement is false. Hence, to negate “it is raining and I am happy,” it is not
necessary to negate both component statements, but only to know that at least one of
them is false. Hence the correct negation of “it is raining and I am happy” is “it is not
raining or I am unhappy.” A similar phenomenon occurs when negating a statement
with “or” in it. The precise formulation of these ideas, known as De Morgan’s Laws,
are Fact 1.3.2 (12) (13).

What is the negation of the statement “if it snows, I will go outside”? As before,
we could write “it is not the case that if it snows, I will go outside,” and again that
would be cumbersome. A common error would be to say “if it snows, I will not go
outside.” To see that this latter statement is not the negation of the original statement,
suppose that “it snows” is false, and “I will go outside” is true. Then both “if it snows,
T will go outside” and “if it snows, I will not go outside” are true, so the latter is not
the negation of the former. The original statement “if it snows, I will go outside” is
true if and only if “I will go outside” is true whenever “it snows” is true. The negation
of the original statement therefore holds whenever “it snows” is true and “T will go
outside” is false; that is, whenever the statement “it snows and I will not go outside”
is true. The precise formulation of this observation is Fact 1.3.2 (14).

Exercises

Exercise 1.3.1. Let P, O, R and S be statements. Show that the following are true.

@ -(P—Q)=P.

2) (P— Q)N (P— —Q)= —P.

(3) P—» Q= (PAR) — (QAR).

4 PAN(Q<—R)= (PNQ) < R.

(5) P— (OAR)= (PAQ) < (PAR).

6) (P—=R)N(Q<S)=(PVQ) < (RVS).

Exercise 1.3.2. [Used in Exercise 1.3.12 and Section 2.4.] Let P, O, A and B be state-
ments. Show that the following are true.

1) PPV (PAQ).

2) P& PA(PVO).

@) P—=Qs (P—Q)AN(—P— Q).
4) P—(AAB)< (P—A)A(P— B).
(5) P~ (AVB)< (PAN—A) — B.

6) (AVB) - 0= (A— Q)N (B— Q).
(7) (ANB) - Q< (A—Q)V(B— Q).
8 (ANB) - Q<= A— (B—Q).
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Exercise 1.3.3. Let P be a statement, let 7" be a tautology and let C be a contradiction.

(1) Show that PAT < P.
(2) Show that PVC < P.

Exercise 1.3.4. For each pair of statements, determine whether or not the first im-
plies the second.

(1) “If you will kiss me I will dance a jig, and I will dance a jig”; and “you will
kiss me.”

(2) “Yolanda has a cat and a dog, and Yolanda has a python”; and “Yolanda has
a dog.”

(3) “If cars pollute then we are in trouble, and cars pollute”; and “we are in
trouble.”

(4) “Our time is short or the end is near, and doom is impending”; and “the end
is near.”

(5) “Vermeer was a musician or a painter, and he was not a musician”; and “Ver-
meer was a painter.”

(6) “If I eat frogs’ legs I will get sick, or if I eat snails I will get sick™; and “if I
eat frogs’ legs or snails I will get sick.”

Exercise 1.3.5. For each pair of statements, determine whether or not the two state-
ments are equivalent.

(1) “If it rains, then I will see a movie”; and “it is not raining or I will see a
movie.”

(2) “This shirt has stripes, and it has short sleeves or a band collar”’; and “this
shirt has stripes and it has short sleeves, or it has a band collar.”

(3) “It is not true that I like apples and oranges™’; and “I do not like apples and I
do not like oranges.”

(4) “The cat is gray, or it has stripes and speckles”; and “the cat is gray or it has
stripes, and the cat is gray or it has speckles.”

(5) “It is not the case that: melons are ripe if and only if they are soft to the
touch”; and “melons are ripe and soft to the touch, or they are not ripe or not
soft to the touch.”

Exercise 1.3.6. [Used in Fact 1.3.1.] Prove Fact 1.3.1 (2) (3) (4) (5) (6) (7) (8) (9)
(10) (11) (12) (13).

Exercise 1.3.7. [Used in Fact 1.3.2.] Prove Fact 1.3.2 (1) (2) (3) (4) (5) (6) (8) (10)
(11) (12) (13) (14) (15).

Exercise 1.3.8. State the inverse, converse and contrapositive of each of the follow-
ing statements.

(1) If it’s Tuesday, it must be Belgium.

(2) I'will go home if it is after midnight.

(3) Good fences make good neighbors.

(4) Lousy food is sufficient for a quick meal.
(5) If you like him, you should give him a hug.
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Exercise 1.3.9. For each of the following pair of statements, determine whether the
second statement is the inverse, converse or contrapositive of the first statements, or
none of these.

(1) “If I buy a new book, I will be happy”’; and “If I do not buy a new book, I will
be unhappy.”

(2) “I will be cold if I do not wear a jacket”; and “I will not be cold if I do not
wear a jacket.”

(3) “If you smile a lot, your mouth will hurt”; and “If your mouth hurts, you will
smile a lot.”

(4) “A warm house implies a warm bathroom”; and “A cold bathroom implies a
cold house.”

(5) “Eating corn implies that I will have to floss my teeth”; and “Not having to
floss my teeth implies that I will eat corn.”

(6) “Going to the beach is sufficient for me to have fun”; and “Not going to the
beach is sufficient for me not to have fun.”

Exercise 1.3.10. Negate each of the following statements.

1) & >0. (4) If y=3theny> =7.
(2) 3<50r7>8. (5) w—23 > 0implies w2 +9 > 6w.
(3) sin(%) < 0and tan(0) > 0. (6) a—b=cifandonlyifa=b+c.

Exercise 1.3.11. Negate each of the following statements.

(1) Itis Monday and it is snowing.

(2) This book is red or it was written in 1997.

(3) Susan likes to eat figs and drink prune juice.

(4) If I tell you a joke, you will smile.

(5) The play will end on time if and only if the actors are in good spirits.
(6) The room will get painted if you buy the paint.

Exercise 1.3.12. Simplify the following statements. You can make use of the equiv-
alences in Exercise 1.3.2 in addition to the equivalences discussed in the text.

1) —(P— —0Q). (4) ~(MVL)AL.
(2) A— (AAB). S P—0Q)VO.
(3) (XAY)—X. 6) ~(X > Y)VY.

Exercise 1.3.13. [Used in Example 6.3.5.] This exercise is related to switching cir-
cuits, which are the basis for computer technology. See Example 6.3.5 for further
discussion and references.

(1) The operations A and V are examples of binary logical operations, in that
they take two inputs and give one output; the operation — is an example of a
unary logical operation, in that it takes one input and gives one output. How
many possible unary and binary logical operations are there? List all of them
using truth tables, and give the familiar names to those that we have already
seen.
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(2) Show that all the operations you found in Part (1) can be obtained by combi-
nations of A and — operations.

(3) Let A be the binary logical operation, often referred to as nand, defined by
the truth table

It is straightforward to verify that PA Q < —(P A Q). Show that all the opera-
tions you found in Part (1) can be obtained by combinations of A operations.

1.4 Valid Arguments

In the previous sections of this chapter we looked at statements from the point of
view of truth and falsity. We verified the truth or falsity of statements via truth ta-
bles, which allowed us to consider all possible ways in which various component
statements might be true or false. This approach, while the most basic way to treat
the truth or falsity of statements, does not appear to resemble the way mathemati-
cians prove theorems, which is by starting with the hypotheses, and then writing one
new statement at a time, each of which is implied by the previous statements, until
the conclusion is reached. In this section we look at the analogous construction in
logic, that is, the rules of logical argumentation, and we will see the relation of this
approach to what was discussed in the previous sections of this chapter.

When we turn to the formulation of mathematical proofs in Chapter 2, we will
be focusing on the mathematical content of our proofs, and we will not explicitly
refer to the rules of logical argumentation discussed in the present section—doing
so would be a distraction from the mathematical issues involved. We will also not
be using the logical notation of the present section in future chapters. Nonetheless,
we will be using the rules of logical argumentation implicitly all the time. For a
mathematician these rules of logic are somewhat similar to a body builder’s relation
to the skeleton of the human body—you do not always think about it explicitly as
you do your work, but it is the framework upon which all is built.

Consider the following collection of statements, which has a number of premises
together with a conclusion.

If the poodle-o-matic is cheap or is energy efficient, then it will not make
money for the manufacturer. If the poodle-o-matic is painted red, then it will
make money for the manufacturer. The poodle-o-matic is cheap. Therefore
the poodle-o-matic is not painted red.

This collection of statements is an example of a logical argument, which in general
is a collection of statements, the last of which is the conclusion of the argument,
and the rest of which are the premises of the argument. Clearly, the use of the word
“argument” in logic is different from the colloquial use of the word, where it could
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mean the reasons given for thinking that something is true, or it could mean a heated
(and not necessarily logical) discussion.

An argument is a collection of statements that are broken up into premises and
a conclusion. Of course, a random collection of statements, in which there is no in-
herent connection between those designated as premises and the one designated as
conclusion, will not be of much use. An argument is valid if the conclusion necessar-
ily follows from the premises. Thinking about the notion of logical implication used
in Section 1.3, we can say that an argument is valid if we cannot assign truth values
to the component statements used in the argument in such a way that the premises
are all true but the conclusion is false. To a mathematician, what logicians call an
argument would simply correspond to the statement of a theorem; the justification
that an argument is valid would correspond to what mathematicians call the proof of
the theorem.

How can we show that our sample argument given above is valid? We start by
converting the argument to symbols. Let C = “the poodle-o-matic is cheap,” let E =
“the poodle-o-matic is energy efficient,” let M = “the poodle-o-matic makes money
for the manufacturer” and let R = “the poodle-o-matic is painted red.” The argument
then becomes

(CVE) — M
R—M

C

-R,

where the horizontal line separates the premises from the conclusion. Alternatively,
in keeping with our notation from Section 1.3, we could write this argument as [(C'V
E) — M)A (R— M)AC = —R.

Considering the last way we wrote our argument, we could attempt to show that
it is valid just as we showed that certain logical implications were true in Section 1.3,
that is, by showing that the statement {[(CVE) — -M]A(R— M)AC} — —-Ris a
tautology, which we could accomplish by using a truth table. This method would
indeed work, but it would be neither pleasant nor helpful. First, given that there are
four statements involved, the needed truth table would have 16 rows, which would
be somewhat tedious. For even more complicated arguments, the truth tables would
have to be even larger. Second, using a truth table gives no intuitive insight into why
the argument is valid. Finally, when proving mathematical statements, we often use
quantifiers (as described in Section 1.5), which make truth tables virtually impossible
to use. Mathematical proofs (except perhaps in the field of logic) are never done with
truth tables.

Instead of using truth tables, we will try to justify the validity of arguments by
making use of what we learned in Section 1.3 about logical implication. If we want
to show that a complicated logical implication holds, perhaps we could do so by
breaking it down into a collection of simpler implications, taken one at a time. If
the simpler implications are already known, then they could be building blocks for
the more complicated implication. Some of the standard simple implications that we
use, known as rules of inference, are listed below. Most of these simple implications
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should be familiar—they were proved in Fact 1.3.1, although we are stating them in
a different format here, to conform to the notation used for logical arguments.

Modus Ponens P—Q Modus Tollendo Ponens PVQ
P -P
0 0
Modus Tollens P—Q Modus Tollendo Ponens PVQ
—P P
Double Negation ~ ——P Biconditional-Conditional P < Q
P P—Q
Double Negation P Biconditional-Conditional P <+ Q
Repetition P Conditional-Biconditional P — Q
P
Q—P
Simplification PAQ P—Q
P
Hypothetical Syllogism P—0
Simplification PAQ 0—R
0 P—R
Adjunction p Constructive Dilemma P—Q
o R—S
PNQ PVR
Addition P Qvs
PVQ
Addition 0
PVQ

The names for some of the above rules of inference, such as modus ponens,
are quite standard; a few of the rules of inference have slightly different names in
different texts. There are more rules of inference, but the ones listed above suffice
for our purposes. See [KMM&80] for a thorough discussion of rules of inference.

A few of the rules of inference listed above were not treated in Fact 1.3.1, al-
though they are easily seen to be true. Double Negation is proved in Fact 1.3.2,
although here we state it as two implications, rather than one equivalence. Repetition
is evidently true (because P — P is a tautology), but is still useful as a rule of infer-
ence. Adjunction is just a glorified version of repetition, because if we stated it in the
format of Fact 1.3.1, it would look like PA Q = P A Q.

We now return to our argument concerning the poodle-o-matic. Using the rules
of inference listed above, we can construct a justification for the argument. We use
here the two-column format that may be familiar from high school geometry proofs,
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in which each line is labeled by a number, and is given a justification for why it
is true in terms of previous lines and rules of inference; no justification is needed
for the premises. (We will not, it is worth noting, use this two-column format in
mathematical proofs, starting in Chapter 2.) Our justification for the argument is

(1) (CVE) — M

2) R—M

(3) C

4 CVE (3), Addition

5) M (1), (4), Modus Ponens
(6) =R (2), (5), Modus Tollens.

This sort of justification, often referred to by logicians as a derivation, is a chain
of statements connected by meta-statements (namely, the justifications for each line).
If an argument has a derivation, we say that the argument is derivable. Observe
that the derivability of an argument is one thing, and the truth of the component
statements involved is another. We can have a derivable argument with component
statements that happen to be true, or happen to be false, and we can have a non-
derivable argument with component statements that happen to be true, or happen
to be false. The derivability of an argument is only a question of the relation of
the conclusion of the argument with the premises, not whether the conclusion or
premises are actually true.

For a given argument, there is often more than one possible derivation. The fol-
lowing is another derivation for the poodle-o-matic argument, this time making use
of the equivalences of statements given in Fact 1.3.2, in addition to our rules of infer-
ence. In general, it is acceptable in a derivation to replace one statement with another
that is equivalent to it. The alternative derivation is

(1) (CVE) — —-M

2) R—M

3 c

4 CVE (3), Addition

5) M — =R (2), Contrapositive

(6) (CVE)— —R (1), (5), Hypothetical Syllogism
(7) 'R (4), (6), Modus Ponens.

This alternative derivation happens to be longer than the previous one, but our pur-
pose here is only to show that alternatives exist, not to find the most efficient deriva-
tion.

We now face an important question: given an argument, we have two notions
of whether the argument works, which are that it is or is not valid, and that it is or
is not derivable. The former notion involves checking truth values (which is done
with truth tables), the latter constructing a chain of statements linked by rules of in-
ference. What is the relation between these two approaches? Though it is not at all
obvious, nor easy to prove, it turns out quite remarkably that these two approaches,
while different in nature, always yield the same result. That is, an argument is valid
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if and only if it is derivable. Hence, if we want to show that a given argument is
valid, it will suffice to show that it is derivable, and vice versa. The equivalence of
these two approaches is a major result in logic. That validity implies derivability is
often referred to as the “Completeness Theorem,” and that derivability implies valid-
ity is often referred to as the “Soundness Theorem” or “Correctness Theorem.” See
[End72, Section 25] and [EFT94, Chapters 4 and 5] for details. (Different treatments
of this subject might use different collections of rules of inference, but the basic ideas
are the same.)

From the above considerations we see that to show that a given argument is valid,
we simply need to find a derivation, which is often a much more pleasant prospect
than showing validity directly. To show that a given argument is invalid, however,
derivations are not much help, because we would need to show that no derivation
could possibly be found. It would not suffice to say that you tried your best to find a
derivation but could not find one, because you cannot be sure that you have not sim-
ply overlooked a derivation that works. Rather, to show that an argument is invalid,
we use the definition of validity directly, and we find some truth values for the com-
ponent statements of the argument that make the premises all true but the conclusion
false.

Consider the following argument.

If aliens land on planet Earth, then all people will buy flowers. If Earth
receives signals from outer space, then all people will grow long hair. Aliens
land on Earth, and all people are growing long hair. Therefore all people buy
flowers, and the Earth receives signals from outer space.

This argument is invalid, which we can see as follows. Let A = “aliens land on planet
Earth,” let R = “all people buy flowers,” let S = “Earth receives signals from outer
space” and let H = “all people grow long hair.” The argument then becomes

A—R
S—H
ANH
RAS.

Suppose that A is true, that R is true, that S is false and that H is true. Then A — R and
S — H and A A H are all true, but R A S is false. Therefore the premises are all true
but the conclusion is false, which means that the argument is invalid. For some other
combinations of A, R, S and H being true or false, it works out that the premises are
all true and the conclusion is true, and for some combinations of A, R, S and H being
true or false, it works out that the premises are not all true (in which case it does not
matter whether the conclusion is true or false for the conclusion to be implied by the
premises). Nonetheless, the existence of at least one set of truth values for A, R, S
and H for which the premises are all true but the conclusion is false is sufficient to
cause the argument to be invalid.

We now look at a particular type of argument for which special care is needed.
Before reading further, try to figure out what is strange about this argument.



30 1 Informal Logic

Jethro does not play the guitar, or Susan plays the flute. If Leslie does not
play the xylophone, then Susan does not play the flute. Jethro plays the gui-
tar, and Leslie does not play the xylophone. Therefore Ferdinand plays the
accordion.

The strange thing about this argument is that there is no apparent connection between
the conclusion and the premises. However, try as you might, you will not be able to
find truth values for the component statements used in the argument for which the
premises are all true but the conclusion is false. The argument is in fact valid, as odd
as that might appear. Let J = “Jethro plays the guitar,” let S = “Susan plays the flute,”
let L = “Leslie plays the xylophone” and let F' = “Ferdinand plays the accordion.”
A derivation for this argument is

(1 =-JVvS

2) -L— =S

(3) JASL

@HJ (3), Simplification

B)JVF (4), Addition

(6) -L (3), Simplification

(7) =S (2), (6), Modus Ponens

8) ~J (1), (7), Modus Tollendo Ponens
9 F (5), (8), Modus Tollendo Ponens.

This derivation has no flaws, though there is still something suspicious about it. To
see what is going on, consider the following derivation, which is also completely
correct.

(1 =JVvS

) °L— S

(3) JA-L

@ J (3), Simplification

&) JV-F (4), Addition

(6) ~L (3), Simplification

(7) =S (2), (6), Modus Ponens

(8) ~J (1), (7), Modus Tollendo Ponens
©) -F (5), (8), Modus Tollendo Ponens.

In other words, the same premises can be used to imply the negation of the conclusion
in the original argument.

How can it be that the same premises can imply a conclusion and its negation?
The answer is that the premises themselves are no good, in that they form a contra-
diction (as defined in Section 1.2). In symbols, the premises are (=J V S) A (-L —
=S) A (JA-L), and, as is left to the reader to check with a truth table, this statement
is a contradiction. We leave it to the reader to supply the details. The key to this
strange state of affairs is the definition of the conditional. Recall that a statement of
the form P — Q is always true whenever P is false, regardless of whether Q is true
or false. So, if we have premises that form a contradiction, that is, they are always
false, then we can logically derive any desired conclusion from these premises.
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The moral of this story is that we should avoid arguments that have premises that
form contradictions. Such premises are often called inconsistent. Premises that are
not inconsistent are called consistent. It is not that there is anything logically wrong
with inconsistent premises, they are simply of no use to mathematicians, because we
can derive anything from them. For example, when non-Euclidean geometry was first
discovered in the early nineteenth century, it was important to determine whether the
proposed axiom system for such geometry was consistent or not. In many mathemat-
ical situations, for example geometry, it is not possible to demonstrate consistency
directly via truth tables and the like, but it was eventually shown that non-Euclidean
is no less consistent than Euclidean geometry. Because Euclidean geometry is so well
studied and so widely used, and its consistency is not generally doubted, it followed
that non-Euclidean geometry was no less worthwhile mathematically than Euclidean
geometry. See [Tru87, Chapter 7] for details.

Whereas arguments with inconsistent premises are not logically flawed, but
rather do not allow for any useful conclusions, we often do encounter logical er-
rors in both formal and informal argumentation. We conclude this section with a
brief mention of a few common logical errors, often referred to as fallacies, that are
regularly found in attempted mathematical proofs (and elsewhere).

The first two errors we mention involve applications of commonly used non-
existent “rules of inference.” For example, consider the following argument.

If Fred eats a good dinner, then he will drink a beer. Fred drank a beer.
Therefore Fred ate a good dinner.

This argument is definitely invalid. The first premise states that Fred will drink a
beer if something happens, namely, if he eats a good dinner. It does not say that he
would not drink a beer otherwise. Hence, just because we assume that Fred drank a
beer, we cannot conclude anything about Fred’s dinner. In symbols, the argument is
(P — Q) AQ = P. There is no such implication, as can be seen by checking the truth
table for [(P — Q) A Q] — P, which is not a tautology. This fallacy is known as the
fallacy of the converse (and is also known as the fallacy of affirming the consequent).
Our next type of fallacy is seen in the following argument.

If Senator Bullnose votes himself a raise, then he is a sleazebucket. Senator
Bullnose did not vote himself a raise. Therefore the senator is not a sleaze-
bucket.

Again this argument is invalid. The first premise says what we could conclude if the
senator does a certain thing, namely, votes himself a raise. It does not say anything
if that certain thing does not happen. Therefore, just because the senator did not vote
himself a raise, we cannot conclude anything about his character—there could be
many other things that might raise questions about him. In symbols, the argument
here is (P — Q) A =P = —(Q. Again, there is no such implication, as can be seen
by checking the appropriate truth table. This fallacy is known as the fallacy of the
inverse (and is also known as the fallacy of denying the antecedent).

The third type of error we mention is of a slightly different nature. Consider the
following argument.
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If Deirdre has hay fever, then she sneezes a lot. Therefore Deirdre sneezes a
lot.

The problem with this argument, which again is invalid, is not the use of an incorrect
“rule of inference,” but rather the making of an unjustified assumption. If we were
also to assume that in fact Deirdre has hay fever, then we could use Modus Ponens to
conclude that she sneezes a lot. Without that assumption, however, no such conclu-
sion can be drawn. This fallacy is known as the fallacy of unwarranted assumptions.

The examples we just gave of fallacious arguments might seem so trivial that
they are hardly worth dwelling on, not to mention give names to. They are ubig-
uitous, however, both in everyday usage (in political discussions, for example) and
in mathematics classes, and are especially hard to spot when embedded in lengthier
and more convoluted argumentation. Hence we alert you to them here. For further
discussion of fallacies in formal and informal argumentation, see [KMMS80, Sec-
tion 1.5]. For errors in argumentation involving not only logical mistakes but also
rhetorical devices such as appeals to authority, irrelevant circumstances and abusive
statements, see [Cop68, Chapter 3].

Exercises

Exercise 1.4.1. For each of the following arguments, if it is valid, give a derivation,
and if it is not valid, show why.

1) PAQ 4 LM
(PVQ)—R (MVN)— (L—K)
R -PAL
K
2 —~X-VY 5 P—Q
X—Z “-R— (S—T)
~Z—Y RV (PVT)
R
3 E—F QvVsSs
;{G_)—} ~F 6 —A—(B——C)
C— A
EVH (~DVA) = =~C
GVI ‘D
-B

Exercise 1.4.2. For each of the following arguments, if it is valid, give a derivation,
and if it is not valid, show why.

(1) If Fishville is boring, then it is hard to find. If Fishville is not small, then it is
not hard to find. Fishville is boring. Therefore Fishville is small.

(2) If the new CD by The Geeks is loud or tedious, then it is not long and not
cacophonous. The new CD by The Geeks is tedious. Therefore the CD is not
long.
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(3) If the food is green, then it is undercooked. If the food is smelly, then it is
stale. The food is green or it is stale. Therefore the food is undercooked or it
is smelly.

(4) If Susan likes fish, then she likes onions. If Susan does not like garlic, then
she does not like onions. If she likes garlic, then she likes guavas. She likes
fish or she likes cilantro. She does not like guavas. Therefore, Susan likes
cilantro.

(5) It is not the case that Fred plays both guitar and flute. If Fred does not play
guitar and he does not play flute, then he plays both organ and harp. If he
plays harp, then he plays organ. Therefore Fred plays organ.

(6) If you rob a bank, you go to jail. If you go to jail, you do not have fun. If
you have a vacation, you have fun. You rob a bank or you have a vacation.
Therefore you go to jail or you have fun.

Exercise 1.4.3. Write a derivation for each of the following arguments, all of which
are valid. State whether the premises are consistent or inconsistent

(1) If amoebas can dance, then they are friendly. If amoebas make people sick,
then they are not friendly. Amoebas can dance and they make people sick.
Therefore people are friendly.

(2) If warthogs are smart, then they are interesting. Warthogs are not interesting
or they are sneaky. It is not the case that warthogs are pleasant or not smart.
Therefore warthogs are sneaky.

(3) Itis not the case that clothes are annoying or not cheap. Clothes are not cheap
or they are unfashionable. If clothes are unfashionable they are silly. There-
fore clothes are silly.

(4) If music soothes the soul then souls have ears. Music soothes the soul or
musicians are calm. It is not the case that souls have ears or musicians are
calm. Therefore musicians have souls.

(5) Computers are useful and fun, and computers are time consuming. If comput-
ers are hard to use, then they are not fun. If computers are not well designed,
then they are hard to use. Therefore computers are well designed.

(6) If Marcus likes pizza then he likes beer. If Marcus likes beer then he does not
like herring. If Marcus likes pizza then he likes herring. Marcus likes pizza.
Therefore he likes herring pizza.

Exercise 1.4.4. Find the fallacy, or fallacies, in each of the following arguments.

(1) Good fences make good neighbors. Therefore we have good neighbors.

(2) If Fred eats a frog then Susan will eat a snake. Fred does not eat a frog.
Therefore Susan does not eat a snake.

(3) The cow moos whenever the pig oinks. The cow moos. Therefore the pig
oinks.

(4) A nice day is sufficient for frolicking children or napping adults. Adults are
napping. Therefore it is a nice day.

(5) If my rabbit eats a hamburger, then she gets sick. If my rabbit gets sick, then
she is unhappy. Therefore my rabbit gets sick.
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(6) If Snoozetown elects a mayor, then it will raise taxes. If Snoozetown does not
raise taxes, then it will not build a new stadium. Snoozetown does not elect a
mayor. Therefore it will not build a new stadium.

1.5 Quantifiers

Our discussion of logic so far has been missing one crucial ingredient used in the
formulation of theorems and proofs. We often encounter in mathematics expressions
such as “x* > 8,” which we might wish to prove. This expression as written is not
precise, however, because it does not state which possible values of x are under con-
sideration. Indeed, the expression is not a statement. A more useful expression, which
is a statement, would be “x* > 8, for all real numbers x > 2.” The phrase “for all real
numbers x > 2” is an example of a quantifier. The other type of quantifier commonly
used is the first part of the statement “there exists a real number x such that x> = 9.”
What is common to both these phrases is that they tell us about the variables under
consideration; they tell us what the possible values of the variable are, and whether
the statement involving the variable necessarily holds for all possible values of the
variable or only for some values (that is, one or more value).

The use of quantifiers vastly expands the range of possible statements that can be
formed in comparison with the statements that were made in previous sections of this
chapter. Quantifiers are so important that the type of logic that involves quantifiers
has its own name, which is “first-order” (and is also known as “predicate”) logic;
the type of logic we looked at previously is called “sentential” (and is also known as
“propositional”) logic.

Many statements of theorem in mathematics have quantifiers in them, some-
times multiple quantifiers. The importance of quantifiers in rigorous proofs cannot
be overestimated. From the author’s experience teaching undergraduate mathemat-
ics courses, confusion arising out of either the misunderstanding of quantifiers in
complicated definitions and theorems, or the ignoring of quantifiers when writing
proofs, is the single largest cause of problems for students who are learning to con-
struct proofs. A solid understanding of how to use quantifiers is therefore well worth
acquiring.

Quantifiers can arise in a variety of statements. Consider the statement “some
people in this room have red hair.” Though it might not appear so at first, this state-
ment does inherently have a quantifier, because it could be rephrased as “there exists
a person in this room who has red hair.” The statement “all cats like to eat all mice”
has two quantifiers. We could rephrase this statement as “for each cat x, and each
mouse y, cat x likes to eat mouse y.” The statement “every person has a mother”
combines two different types of quantifiers, because it could be rephrased as “for
each person A, there is a woman B such that B is the mother of A.” Of course, as
with any other type of statement, a statement involving quantifiers is either true or
false. The statement “every person has a mother” is true, whereas “every person has
a sister” is false.
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Quantifiers often occur in both colloquial and mathematical statements, even
when they are not mentioned explicitly. Non-explicit quantifiers in colloquial English
can occasionally lead to some odd confusions. What does the sentence “someone is
hit by a car every hour” mean? Does the same person keep getting hit every hour? In
mathematics there is no room for ambiguous statements, and so when we attempt to
prove a complicated mathematical statement, it is often useful to start by rephrasing
it so as to make the quantifiers explicit.

As a preliminary to our discussion of quantifiers, consider the expression P =
“x+y > 0.” Observe that x and y have the same roles in P. Using P we can form a
new expression Q = “for all positive real numbers x, the inequality x+y > 0 holds.”
In contrast to P, there is a substantial difference between the roles of x and y in Q. The
symbol x is called a bound variable in Q, in that we have no ability to choose which
values of x we want to consider. By contrast, the symbol y is called a free variable
in Q, because its possible values are not limited. Because y is a free variable in Q, it
is often useful to write Q(y) instead of Q to indicate that y is free. In P both x and y
are free variables, and we would denote that by writing P(x,y).

The difference between a bound variable and a free one can be seen by changing
the variables in Q. If we change every occurrence of x to w in Q, we obtain 0=
“for all positive real numbers w, the inequality w4y > 0 holds.” For each possible
value of y, we observe that O and Q have precisely the same meaning. In other
words, if Q were part of a larger expression, then the larger expression would be
entirely unchanged by replacing Q with Q. By contrast, suppose that we change
every occurrence of y to z in Q, obtaining Q = “for all positive real numbers x, the
inequality x +z > 0 holds.” Then Q does not have the same meaning as Q, because
y and z (over which we have no control in Q and Q respectively) might be assigned
different values, for example if Q were part of a larger expression that had both y
and z appearing outside Q. In other words, changing the y to z made a difference
precisely because y is a free variable in Q.

Observe that an expression with a free variable is not a statement. Our expression
Q in the previous paragraph is not a statement because we cannot determine its truth
or falsity without knowing something about the possible values of y under considera-
tion. By contrast, the expression “for all positive real numbers x, and all real numbers
v, the inequality x 4y > 0 holds,” has no free variables, and it is indeed a statement
(which happens to be false).

We are now ready for a closer look at the two types of quantifiers that we will
use. Let P(x) be an expression with free variable x. Let U denote a collection of
possible values of x. A universal quantifier applied to P(x) is the statement, denoted
(Vx in U)P(x), which is true if P(x) is true for all possible values of x in U. If the
collection U is understood from the context, then we will write (Vx)P(x).

One way to think of the statement (Vx in U)P(x) is to view it as the conditional
statement “if x is in U, then P(x) is true.” As we saw in our discussion of conditional
statements in Section 1.2, the truth of the statement “if x is in U, then P(x) is true”
does not say anything about what happens if x is not in U. That is, if the statement
(Vx in U)P(x) is true, it tells us only about P(x) when x is in U; it might or might not
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be the case that P(x) is true for some values of x that are not in U, but we cannot tell
that from the statement as written.
There are a variety of ways to write (Vx in U)P(x) in English, for example:

For all values of x in U, the statement P(x) is true;
For each x in U, the statement P(x) is true;

The statement P(x) is true for all x in U;

All values of x in U satisfy the P(x).

For example, let P(a) = “person o has red hair,” and let W be the collection of
all people in the world. The statement (Vo in W)P(a) would mean that “all people
in the world have red hair” (which is certainly not a true statement). Let S(n) = “n is
a perfect square greater than 1,” and C(n) = “n is a composite number” (a composite
number is an integer that is not a prime number), where the collection of possible
values of n is the integers. The statement (Vn)[S(n) — C(n)] can be written in English
as “for all integers n, if n is a perfect square greater than 1, then n is a composite
number” (this statement happens to be true). We could rephrase this statement by
saying “for all perfect squares n greater than 1, the number n is a composite number,”
or even more concisely as “all perfect squares greater than 1 are composite,” where
it is taken as implicitly known that the terms “perfect square” and “composite” apply
only to integers (and not other types of numbers).

Changing the collection U in a statement of the form (Vx in U)P(x) can change
the truth or falsity of the statement, so that the choice of U is crucial. For example,
let R(x) = “the number x has a square root.” If we let U be the collection of positive
real numbers, then the statement (Vx in U)R(x) is true. On the other hand, if we let
W be the collection of all real numbers, then the statement (Vx in W)R(x) is certainly
false.

For the sake of completeness, we need to allow the case where the collection U
has nothing in it. In that case, the statement (Vx in U)P(x) is always true, no matter
what P(x) is, for the following reason. The statement “(Vx in U)P(x)” is equivalent
to the statement “if x is in U, then P(x) is true.” When the collection U has nothing
in it, then the statement “x is in U” is false, and hence the conditional statement “if x
is in U, then P(x) is true” is true.

For the other type of quantifier we are interested in, once again let P(x) be a
statement with free variable x, and let U denote a collection of possible values of x.
An existential quantifier applied to P(x) is the statement, denoted (3x in U)P(x),
which is true if P(x) is true for at least one value of x in U. If the collection U
is understood from the context, then we will write (3x)P(x). Observe that if the
collection U has nothing in it, then the statement (3x)P(x) is false.

It is important to note that the phrase “at least one value of x in U”” means one or
more, possibly many, or even all x in U. In particular, if (Vx in U)P(x) is true, then
(3xin U)P(x) is true, except in the special case that U has nothing in it. Of course,
the statement (3x in U)P(x) does not imply that (Vx in U)P(x) is true, except in the
case that U has either one thing or nothing in it.

There are a variety of ways to write (3x in U)P(x) in English, for example:

There exists some x in U such that P(x) holds;
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There is x in U such that P(x) holds;

There exists at least one x in U such that P(x) holds;
For some value of x in U, the condition P(x) holds;
It is the case that P(x) is true for some x in U.

Let Q(r) = “person r has brown hair,” and let W be the collection of all people
in the world. Then the statement (Jr in W)Q(r) would mean that “there is some-
one with brown hair,” or equivalently “some people have brown hair” (which is a
true statement). Let E(m) = “m is an even number” and let M(m) = “m is a prime
number,” where the collection of possible values of m is the integers. The statement
“some integers are even and prime” can be expressed symbolically by first rephras-
ing it as “there exists x such that x is even and x is prime,” which is (3x)[E(x) AM (x)]
(this statement is true, because 2 is both even and prime).

The reader might wonder why we use only the above two types of quantifiers,
and whether other quantifiers are needed. For example, the statement “no dog likes
cats” clearly has a quantifier, but which quantifier is it? If we let U be the collection
of all dogs, and if we let P(x) = “dog x likes cats,” then our statement is “there is no
xin U such that P(x).” However, the expression “there is no x in U,” though certainly
a quantifier of some sort, is neither a universal quantifier nor an existential quantifier.
Fortunately, rather than needing to define a third type of quantifier to be able to
handle the present statement, we can rewrite our statement in English as “every dog
does not like cats,” and in symbols that becomes (Vx in U)(—P(x)). In general, all
the quantification that we need in mathematics can be expressed in terms of universal
quantifiers and existential quantifiers.

We can form statements with more than one quantifier, as long as different quan-
tifiers involve different variables. Suppose that P(x,y) = “x+y*> = 3,” where x and
y are real numbers. The statement (Vy)(3x)P(x,y) can then be written in English as
“for all y there exists some x such that x4+ y> = 3,” or equivalently “for each y there
is some x such that x +y? = 3.” This statement is true, because for any real number y
we can always solve for x in terms of y, yielding x = 3 — y?. If we reverse the order
of the quantifiers, we obtain the statement (3x)(Vy)P(x,y), which can be written in
English as “there exists some x such that for all y, the equation x +y> = 3 holds.” This
statement is clearly false, because for any given x, there can be at most two values of
y such that x4 y? = 3. The order of the quantifiers therefore matters.

When attempting to prove a theorem, the statement of which involves multiple
quantifiers, it is sometimes useful to translate the statement of the theorem into sym-
bols, to help keep track of the meaning of the quantifiers. Suppose that we are given
the statement “if x is a non-negative real number, then x is a perfect square.” This
statement can be interpreted as a doubly quantified statement by rephrasing it as “for
each non-negative real number x, there is some real number y such that x = y=.”
Written symbolically, the statement is

(Vx in the non-negative real numbers)(Jy in the real numbers)(x = y?).

Once again, it can be seen that reversing the order of the quantifiers in this statement
would change its meaning. A lack of attention to the order of quantifiers can easily
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lead to mistakes in proving theorems that have statements with multiple quantifiers.
A very important occurrence of the importance of the order of multiple quantifiers is
in the “e-8” proofs treated in real analysis courses; see Section 7.8 for a similar type
of proof from real analysis, and see any introductory real analysis text for a detailed
discussion of €-0 proofs.

A non-mathematical example of a statement that can be clarified by writing it
symbolically in terms of quantifiers is the statement “someone is hit by a car every
hour,” which we encountered previously. Suppose that the possible values of x are
all people, that the possible values of ¢ are all hour-long time intervals that start
precisely on the hour and that C(x,7) = “person x is hit by a car at time ¢.” The
statement “someone is hit by a car every hour” can then be written symbolically
as (V7)(3x)C(x,t). Once again, the order of the quantifiers matters. The statement
(3x)(Vr)C(x,7) would mean that there is a single person who gets hit by a car every
hour, which is not what the original statement intended to say.

There are eight possible generic ways of writing two quantifiers in a statement
that has variables. Most of the eight possibilities have different meanings from one
another. Suppose, for example, that the possible values of x are all people, the possi-
ble values of y are all types of , and that L(x,y) = “person x likes to eat fruit y.” The
eight ways of applying two quantifiers to L(x,y) are as follows.

(1) (Vx)(Vy)L(x,y). This statement can be written in English as “for each person
x, for each type of fruit y, person x likes to eat y,” and more simply as “every
person likes every type of fruit.” To verify whether this statement is true, we
would have to ask each person in the world if she likes every type of fruit; if
even one person does not like one type of fruit, then the statement would be
false.

(2) (Vy)(Vx)L(x,y). This statement can be written as “for each type of fruit y, for
each person x, we know x likes to eat y,” and more simply as “every type of
fruit is liked by every person.” This statement is equivalent to Statement 1.

(3) (Vx)(3y)L(x,y). This statement can be written as “for each person x, there is
a type of fruit y such that x likes to eat y,” and more simply as “every person
likes at least one type of fruit.” To verify whether this statement is true, we
would have to ask each person in the world if she likes some type of fruit; if
at least one person does not like any type of fruit, then the statement would
be false.

(4) (3x)(Vy)L(x,y). This statement can be written as “there is a person x such that
for all types of fruit y, person x likes to eat y,” and more simply as “there is a
person who likes every type of fruit.” To verify whether this statement is true,
we would start asking one person at a time if she likes every type of fruit;
as soon as we found one person who answers yes, we would know that the
statement is true, and we could stop asking more people. If no such person is
found, then the statement would be false.

(5) (¥y)(3x)L(x,y). This statement can be written as “for each type of fruit y,
there is a person x such that x likes to eat y,” and more simply as “every type
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of fruit is liked by at least one person.” To verify whether this statement is
true, we would have to list all the types of fruit, and then for each type of fruit,
ask one person at a time whether she likes the fruit; once we found someone
who liked that fruit, we could move onto the next fruit, and again ask one
person at a time about it. For the statement to be true, we would have to find
at least one person per fruit, though the same person could be selected for
more than one fruit.

(6) (3y)(Vx)L(x,y). This statement can be written as “there is a type of fruit y
such that for all persons x, we know that x likes to eat y,” and more simply as
“there is a type of fruit that all people like.” To verify whether this statement
is true, we would have to list all the types of fruit, and then for one type of
fruit at a time, ask each person in the world if she likes that type of fruit; as
soon as we found one type of fruit that everyone likes, we would know that
the statement is true, and we could stop asking about more types of fruit.

(7) (3x)(Jy)L(x,y). This statement can be written as “there is a person x such
that there is a type of fruit y such that x likes to eat y,” and more simply as
“there is a person who likes at least one type of fruit.” To verify whether this
statement is true, we would have to start asking one person at a time if she
likes some type of fruit; as soon as we found one person who answers yes, we
would know that the statement is true, and we could stop asking more people.

(8) (Jy)(Ix)L(x,y). This statement can be written as “there is a type of fruit y
such that there is a person x such that x likes to eat y,” and more simply as
“there is a type of fruit that is liked by at least one person.” This statement is
equivalent to Statement 7.

In the above example we had eight cases, because there were two variables. When
there are more variables, then the number of cases will be even larger. Also, we
observe that whereas most of the cases in the above example are different from one
another, there exist some examples of statements where some of the distinct cases
above happen to coincide (for example, where the roles of x and y in P(x,y) are
equal).

Some statements with quantifiers imply others. For the sake of avoiding special
cases, we will assume that the collection U, which is often not written explicitly but
is implicitly assumed, always has something it it. With one variable, we saw that
(Vx)P(x) implies (3x)P(x). With two variables, the various implications are shown
in Figure 1.5.1.

We now look at the negation of statements with quantifiers. For example, let
Q = “all people have red hair.” The negation of this statement can, most directly,
be written as =Q = “it is not the case that all people have red hair.” For this last
statement to be true, it would have to be the case that at least one person does not
have red hair. Hence, we could rewrite —=Q as “there are people who do not have
red hair.” We can rewrite Q and —~Q using symbols as follows. Let P(x) = “person
x has red hair” Then Q = (Vx)P(x), and =Q = (3x)(—P(x)). It is very important
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to recognize that =Q is not the same as the statement “all people do not have red
hair,” which in symbols would be written (Vx)(—P(x)). This last statement is much
stronger than is needed to say that Q is false. The effect of the negation of Q is to
change the quantifier, as well as to negate the statement being quantified.

(V) (W)P(x,y) = (W)(V0)P(x,y)

/ N\

(F) (Vy)ﬂ’(x,y) (Fy) (Vx) P(x,y)
(V) (3x)P(x,y) (Vx)(3y)P(x,y)

N\ 7

@) @)P(ry) = (Fy)E0)P(xy)

Fig. 1.5.1.

Similar reasoning holds for the negation of a statement with an existential quan-
tifier. Let R = “there is a pig with wings.” The negation of this statement can be
written most directly as =R = “it is not the case that there is a pig with wings,” and
more simply as =R = “all pigs have no wings.” (It would be more natural in English
to say “no pigs have wings,” but that phrasing is not useful to us here, because we
do not have a quantifier that corresponds directly to “no pigs.”) Let W (x) = “pig x
has wings.” Then R = (3x)W (x), and =R = (Vx)(—W (x)). Observe that —R is not the
same as the statement “there is a pig with no wings,” which in symbols would be
written (3x)(—W (x)). This last statement is much weaker than is needed to say that
R is false. Again, the effect of the negation of R is to change the quantifier, as well as
to negate the statement being quantified.

The two cases examined above are completely typical, as we now see.

Fact 1.5.1. Let P(x) be a statement with free variable x, which takes values in some
collection U.

1. =[(VxinU)P(x)] < (3x in U)(=P(x)).
2. =[(IxinU)P(x)] & (Vxin U)(—P(x)).

Unlike the equivalences discussed in Section 1.3, we cannot use truth tables to
verify the equivalences in Fact 1.5.1, though they are true nonetheless, based on the
meanings of the quantifiers.

We can use the above equivalences to negate statements with more than one quan-
tifier. For example, suppose that f is a function that takes real numbers to real num-
bers (for example f(x) = x? for all real numbers x). Let Q = “for each real number w,
there is some real number y such that f(y) = w.” We would like to find —Q. We start
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by writing Q symbolically. Let P(w,y) = “f(y) = w.” Then Q = (¥Yw)(3y)P(w,y).
Using our equivalences we have

—Q & =[(Vw)(Iy)P(w,y)] < (Fw)=[(EFy)P(w,y)]
< () (Vy) (=P(w,)).

Rephrasing this last expression in English yields -Q = “there exists a real number
w such that for all real numbers y, the relation f(y) # w holds.” It is often easier to
negate statements with multiple quantifiers by first translating them into symbolic
form, negating them symbolically and then translating back into English. With a bit
of practice it is possible to negate such statements directly in English as well, as long
as the statements are not too complicated.

Finally, we turn to rules of inference with quantifiers. There are four such rules
of inference, and while their use requires a bit more care than the rules of inference
in Section 1.4, they are used for the same purpose, which is to show the validity of
logical arguments.

Universal Instantiation (Vxin U)P(x)
P(a)

where a is anything in U.

Existential Instantiation (3xin U)P(x)
P(b)

where b is something of U, and where the symbol “b” does not
already have any other meaning in the given argument.

Universal Generalization P(c)
(Vxin U)P(x)

where c is an arbitrary thing in U.

Existential Generalization — P(d)
(Ixin U)P(x)

where d is something in U.

Observe the restrictions on the variables used in each rule. For example, in Ex-
istential Instantiation, it is important that when we deduce from (3x in U)P(x) that
P(D) holds for some b in U, we cannot assume that the letter “b” refers to any other
symbol already being used in the argument. Hence we need to choose a new letter,
rather than one already used for something else. In Universal Generalization, when
we deduce from P(c) that (Vx in U)P(x), it is crucial that ¢ be an arbitrarily chosen
member of U. Otherwise, we could not conclude that P(x) is true for all x in U.
This last observation is crucial when we attempt to prove mathematical statements
involving universal quantifiers, as we will see in Section 2.5, and throughout this
book. Though we will not necessarily be referring to them by name, these four rules
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of inference will be used regularly in our mathematical proofs. See [Cop68, Chap-
ter 10] for further discussion of these rules of inference.
An example of a simple logical argument involving quantifiers is the following.

Every cat that is nice and smart likes chopped liver. Every Siamese cat is
nice. There is a Siamese cat that does not like chopped liver. Therefore there
is a stupid cat.

(We are assuming here that “stupid” is the negation of “smart.”) To translate this
argument into symbols, let U be the collection of all cats, let N(x) = “cat x is nice,”
let S(x) = “cat x is smart,” let C(x) = “cat x likes chopped liver” and let 7' (x) = “cat
x is Siamese.” The argument then becomes

(Vxin U)[(N(x) AS(x)) — C(x)]
(VxinU)[T (x) — N(x)]

(Ix in U)[T (x) A —C(x)]

(3xin U)[-S(x)].

A derivation for this argument, using rules of inference from Section 1.4 as well
as from this section, is

(1) (Vxin U)[(N(x) AS(x)) — C(x)]
() (Vxin U)[T (x)

— N(x)]
(3) (Fxin U)[T(x) A —C(x)]
4) T(a) N—C(a) (3), Existential Instantiation
(5) —C(a) (4), Simplification
6) T(a) (4), Simplification
(7) T(a) — N(a) (2), Universal Instantiation
(8) N(a) (7), (6), Modus Ponens
(9) =—N(a) (8), Double Negation
(10) (N(a) AS(a)) — C(a) (1), Universal Instantiation
(11) =(N(a) AS(a)) (10), (5), Modus Tollens
(12) =N(a) Vv —S(a) (11), De Morgan’s Law
(13) =S(a) (12), (9), Modus Tollendo Ponens
(14) (Ixin U)[~S(x)] (13), Existential Generalization.

“ th}

Observe that in line (4) we chose some letter that was not in use prior to that
line, because we are using Existential Instantiation. We needed to use that rule of
inference at that point in the derivation in order to remove the quantifier in line (3) of
the premises, which then allows us to use the rules of inference given in Section 1.4
(which did not involve quantifiers). In lines (7) and (10) we were free to use the same
letter “a” as in line (4), because Universal Instantiation allows us to choose anything

in U that we want.

Exercise 1.5.1. Suppose that the possible values of x are all people. Let Y (x) =
“x has green hair,” let Z(x) = “x likes pickles” and let W (x) = “x has a pet frog.”
Translate the following statements into words.
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1) (V)Y (x). @) ([ (x) = W(x)].
) (I)Z(x). () (V0)[W(x) & —Z(x)].
3) (Vx)[W(x) AZ(x)].

Exercise 1.5.2. Suppose that the possible values of x and y are all cars. Let L(x,y) =
“x is as fast as y,” let M(x,y) = “x is as expensive as y” and let N(x,y) = “x is as old
as y.” Translate the following statements into words.

(1) (3x)(Vy)L(x,y). 3) (3y)(Vo)[Lx,y) VN (x,y)].
@) (Vx)(Ey)M(x,y). @) (v)(F)[~M(x,y) = L(x,y)].

Exercise 1.5.3. Suppose that the possible values of y are all cows. Let P(y) = “y is
brown,” let Q(y) = “y is four years old” and let R(y) = “‘y has white spots.” Translate
the following statements into symbols.

(1) There is a brown cow.

(2) All cows are four years old.

(3) There is a brown cow with white spots.

(4) All four-year-old cows have white spots.

(5) There exists a cow such that if it is four years old, then it has no white spots.
(6) All cows are brown if and only if they are not four years old.

(7) There are no brown cows.

Exercise 1.5.4. Suppose that the possible values of p and ¢ are all fruit. Let A(p,q) =
“p tastes better than ¢,” let B(p,q) = “p is riper than ¢” and let C(p,q) = “p is the
same species as ¢g.” Translate the following statements into symbols.

(1) There is a fruit such that all fruit taste better than it.

(2) For every fruit, there is a fruit that is riper than it.

(3) There is a fruit such that all fruit taste better than it and is not riper than it.

(4) For every fruit, there is a fruit of the same species that does not taste better
than it.

Exercise 1.5.5. Convert the following statements, which do not have their quantifiers
explicitly given, into statements with explicit quantifiers, both in symbols and in
English.

(1) People are nice.

(2) Someone gave me a present.

(3) Cats like eating fish and taking naps.

(4) Iliked one of the books I read last summer.
(5) No one likes ice cream and pickles together.

Exercise 1.5.6. Write a negation of each statement. Do not write the word “not”
applied to any of the objects being quantified (for example, do not write “Not all
boys are good” for Part (1) of this exercise).

(1) All boys are good.
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(2) There are bats that weigh 50 1bs or more.

(3) The equation x> — 2x > 0 holds for all real numbers x.

(4) Every parent has to change diapers.

(5) Every flying saucer is aiming to conquer some galaxy.

(6) There is an integer n such that n? is a perfect number.

(7) There is a house in Kansas such that everyone who enters the house goes
blind.

(8) Every house has a door that is white.

(9) Atleast one person in New York City owns every book published in 1990.

Exercise 1.5.7. Negate the following statement: There exists an integer Q such that
for all real numbers x > 0, there exists a positive integer k such that In(Q — x) >
5 and that if x < k then Q is cacophonous. (The last term used in this exercise is
meaningless.)

Exercise 1.5.8. Negate the following statement: For every real number € > 0 there
exists a positive integer k such that for all positive integers n, it is the case that
la, —k*| < €.

Exercise 1.5.9. Let x be a real number. The number x is gelatinous if it is both
phlegmatic, and if for every integer n there is some real number y such that y* upper-

encapsulates x or y 4 n lower-encapsulates x. How would you characterize a non-
gelatinous real number x? (The terms used in this exercise are meaningless.)

Exercise 1.5.10. Someone claims that the argument

(Fxin U)[P(x) A Q(x)]
(Ixin U)[M(x)]
(Sxin U)[M(x) A Q(x)]

is valid, using the alleged derivation

(1) (Gxin U)[P(x) A Q()]
(2) (Bxin U)M()

3) P(a) ANQ(a) (1), Existential Instantiation
4) O(a) (3), Simplification

(5) M(a) (2), Existential Instantiation
(6) M(a) A Q(a) (5), (4), Adjunction

(7) (Ixin U)[M(x) AQ(x)] (6), Existential Generalization.

Find the flaw(s) in the derivation.
Exercise 1.5.11. Write a derivation for each of the following arguments.

@ (vxinU)[R(x) — C(x)]
(Vxin U)[T (x) — R(x)]
(Vx in U)[=C(x) — =T (x)].
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@

3

C))
—(Vx in W)[M(x)]
(Vx in W)[E (x)]
(3x in W)[N(x)].

Exercise 1.5.12. Write a derivation for each of the following arguments.

(1) Every fish that is bony is not pleasant to eat. Every fish that is not bony is
slimy. Therefore every fish that is pleasant to eat is slimy.

(2) Each high school student in Slumpville who takes an honors class is cool.
There is a high school student in Slumpville who is smart and not cool. There-
fore there is a high school student in Slumpville who is smart and not taking
an honors class.

(3) Every baby who eats will make a mess and drool. Every baby who drools will
smile. There is a baby who eats and screams. Therefore there is a baby who
smiles.

(4) Every cockroach that is clever eats garbage. There is a cockroach that likes
dirt or does not like dust. For each cockroach, it is not the case that it likes
dirt or eats garbage. Therefore there is a cockroach such that it is not the case
that if it is not clever then it likes dust.
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Strategies for Proofs

Rigour is to the mathematician what morality is to men.
— André Weil (1906-1998)

2.1 Mathematical Proofs—What They Are and
Why We Need Them

Not all mathematics involves proofs. We learn a good bit of arithmetic in grade
school long before we learn how to prove that the rules of arithmetic are correct.
Mathematics originated in the ancient world, in various cultures, prior to the notion
of proof. It was the contribution of the ancient Greeks (who, contrary to popular
misconception, did not invent mathematics, nor even geometry) to bring the notion
of proof into mathematics. The first use of proof is generally attributed to Thales of
Miletus, who lived in the sixth century B.C.E. Euclid, who lived in Alexandria in the
third century B.C.E., brought the notion of proofs based on axioms to its first peak
of success. See [Hea21] for a discussion of ancient Greek mathematics.

Euclid used an axiomatic system—which is needed for proofs—in the field of
geometry. Today, virtually all branches of pure mathematics are based on axiomatic
systems, and work in pure mathematics involves the construction of rigorous proofs
for new theorems. Much of the great mathematics of the past has been recast with a
precision missing from its original treatment. Abstract algebra, for example, which
received its modern form only in the last one hundred years, reconstructs the elemen-
tary algebra studied in high school in a rigorous, axiomatic fashion. A lot of applied
mathematics today also has rigorous foundations (though the work of applied math-
ematicians, while no less challenging than pure mathematics, is not always oriented
toward proofs).

Be the above as it may, the importance of proofs should be put in the proper
perspective. Intuition, experimentation and even play are no less important in today’s
mathematical climate than rigor, because it is only by our intuition that we decide
what new results to try to prove. The relation between intuition and formal rigor is not
a trivial matter. Formal proofs and intuitive ideas essentially occupy different realms,
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and we cannot “prove” that an intuitive idea is true. Instead, there is essentially a
dialectical relationship between intuition and rigor. We set up formal systems that
mirror our intuition as closely as possible; we then use what we prove rigorously to
further our intuitive understanding, which in turn points to new theorems requiring
rigorous proofs, and so forth.

Mathematics has moved over time in the direction of ever greater rigor, though
why that has happened is a question we leave to historians of mathematics to explain.
We can, nonetheless, articulate a number of reasons why mathematicians today use
proofs. The main reason, of course, is to be sure that something is true. Contrary
to popular misconception, mathematics is not a formal game in which we derive
theorems from arbitrarily chosen axioms. Rather, we discuss various types of mathe-
matical objects, some geometric (for example, circles), some algebraic (for example,
polynomials), some analytic (for example, derivatives) and the like. To understand
these objects fully, we need to use both intuition and rigor. Our intuition tells us
what is important, what we think might be true, what to try next and so forth. Unfor-
tunately, mathematical objects are often so complicated or abstract that our intuition
at times fails, even for the most experienced mathematicians. We use rigorous proofs
to verify that a given statement that appears intuitively true is indeed true.

Another use of mathematical proofs is to explain why things are true, though
not every proof does that. Some proofs tell us that certain statements are true, but
shed no intuitive light on their subjects. Other proofs might help explain the ideas
that underpin the result being proved; such proofs are preferable, though any proof,
even if non-intuitive, is better than no proof at all. A third reason for having proofs
in mathematics is pedagogical. A student (or experienced mathematician for that
matter) might feel that she understands a new concept, but it is often only when
attempting to construct a proof using the concept that a more thorough understanding
emerges. Finally, a mathematical proof is a way of communicating to another person
an idea that one person believes intuitively, but the other does not.

What does a rigorous proof consist of? The word “proof” has a different meaning
in different intellectual pursuits. A “proof” in biology might consist of experimental
data confirming a certain hypothesis; a “proof” in sociology or psychology might
consist of the results of a survey. What is common to all forms of proof is that they
are arguments that convince experienced practitioners of the given field. So too for
mathematical proofs. Such proofs are, ultimately, convincing arguments that show
that the desired conclusions follow logically from the given hypotheses.

There is no formal definition of proof that mathematicians use (except for math-
ematical logicians, when they develop formal theories of proofs, but these theories
are distinct from the way mathematicians go about their daily business). Although we
briefly discussed rules of inference and logical derivations in Section 1.4, what we are
really interested in for the rest of this book is the way contemporary mathematicians
do proofs, in order to prepare you for the kinds of proofs and basic mathematical
concepts you will encounter in advanced mathematics courses.

Mathematicians who are not logicians virtually never write proofs as strings of
logical symbols and rules of inference, for a number of reasons. First, and fore-
most, mathematical proofs are often much too long and complicated to be conve-
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niently broken down into the two-column (statement-justification) format. Second,
the mathematical ideas of the proof, not its logical underpinnings, are the main is-
sue on which we want to focus, and so we do not even mention the rules of logical
inference used, but rather mention only the mathematical justification of each step.
Second, mathematicians who are not logicians, which means most mathematicians,
find long strings of logical symbols not only unpleasant to look at, but in most cases
rather difficult to follow. See [EFT94, pp. 70-71] for a fully worked out example
of putting a standard mathematical proof in group theory into a two-column format
using formal logic. The mathematical result proved in that example is given in Ex-
ercise 7.2.8; see Sections 7.2 and 7.3 for a brief introduction to groups. One look at
the difference between the mathematicians’ version of the proof and the logicians’
version, in terms of both length and complexity, should suffice to convince the reader
why mathematicians do things as they do.

To some extent mathematicians relate to proofs the way the general public often
reacts to art—they know it when they see it. But a proof is not like a work of modern
art, where self-expression and creativity are key, and all rules are to be broken, but
rather like classical art that followed formal rules. (This analogy is not meant as an
endorsement of the public’s often negative reaction to serious modern art—classical
art simply provides the analog we need here.) Also similarly to art, learning to recog-
nize and construct rigorous mathematical proofs is accomplished not by discussing
the philosophy of what constitutes a proof, but by learning the basic techniques,
studying correct proofs, and, most importantly, doing lots of them. Just as art criti-
cism is one thing and creating art is another, philosophizing about mathematics and
doing mathematics are distinct activities (though of course it helps for the practi-
tioner of each to know something about the other). For further discussion about the
conceptual nature of proofs, see [Die92, Section 3.2] or [EC89, Chapter 5], and for
more general discussion about mathematical activity see [Wil65] or [DHM95].

Ultimately, a mathematical proof is a convincing argument that starts from the
premises, and logically deduces the desired conclusion. How someone may have
thought of a proof is one thing, but the proof itself has to proceed logically from start
to finish. The distinction between a valid mathematical proof itself and how it was
thought of is something that is very important to keep in mind when you work on
your own proofs. When solving a problem, you first try all sorts of approaches to find
something that works, perhaps starting with the hypotheses and working forwards,
or starting with the conclusion and working backwards, or some combination of
the two. Whatever your explorations might be, a record of such exploration should
never be mistaken for a final proof. Confusing the exploration with the proof is a
very common mistake for students first learning advanced mathematics. We will see
some examples of this distinction later on.

What is it that we prove in mathematics? We prove statements, which are usu-
ally called theorems, propositions, lemmas, corollaries and exercises. There is not
much difference between these types of statements; all need proofs. Theorems tend
to be important results; propositions are usually slightly less important than theo-
rems; lemmas are statements that are used in the proofs of other results; corollaries
are statements that follow easily from other results; exercises are statements that are
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left to the reader to prove. When discussing proofs, we will generically refer to “the-
orems” when we mean any of theorems, propositions and the like.
Let us examine the statement of a very famous theorem.

Theorem 2.1.1 (Pythagorean Theorem). Let AABC be a right triangle, with sides
of length a, b and c, where c is the length of the hypotenuse. Then a* + b* = ¢2.

When asked what the Pythagorean Theorem says, students often state “a> + b*> =
¢2” This expression alone is not the statement of the theorem—indeed, it is not a
statement at all. Unless we know that a, b and c are the lengths of the sides of a right
triangle, with ¢ the length of the hypotenuse, we cannot conclude that a* + b* = 2.
(The formula a® + b> = ¢? is never true for the sides of a non-right triangle.) It is
crucial to state theorems with all their hypotheses if we want to be able to prove
them.

We will not give a proof of the Pythagorean Theorem; see [Loo40] for a variety
of proofs. Rather, we want to consider its logical form. Although the words “if ...
then” do not appear in the statement of the theorem, the statement is nonetheless a
conditional statement (as discussed in Section 1.2). If we let P = “a, b and ¢ are
the lengths of the sides of a right triangle, with ¢ the length of the hypotenuse,”
and let Q = “a®> 4+ b*> = ¢?,” then the theorem has the form P — Q. Many (if not
all) statements of theorems are essentially conditional statements, or combinations
of them, even though the words “if ... then” do not appear explicitly. A proof of
a theorem is therefore an argument that shows that one thing implies another, or a
combination of such arguments. It is usually much easier to formulate proofs for
theorems when we recognize that they have the form P — Q, even if they are not
given to us in that form.

Theorems are not proved in a vacuum. To prove one theorem, we usually need to
use various relevant definitions, and theorems that have already been proved. If we
do not want to keep going backwards infinitely, we need to start with some objects
that we use without definition, as well as some facts about these objects that are as-
sumed without proof. Such facts are called axioms, and a body of knowledge that can
be derived from a set of axioms is called an axiomatic system. In modern abstract
mathematics, we take set theory as our basis for all arguments. In each branch of
mathematics, we then give specific axioms for the objects being studied. For exam-
ple, in abstract algebra, we study constructs such as groups, rings and fields, each of
which is defined by a list of axioms; the axioms for groups are given in Section 7.2.

In Chapters 3—-6 we will discuss sets, and various basic constructs using sets
such as functions and relations, which together form the basis for much of modern
mathematics. Our concern in the present chapter, by contrast, is not with the basis
upon which we rely when we construct proofs, but rather the construction of proofs
themselves. It may appear as if we are doing things backwards, in that we are not
starting with what we say is the basis for modern mathematics, but we want to be
able to give proofs about sets in Chapter 3, so we need to know how to write proofs
before discussing set theory. As a basis for our work in the present chapter, we will
make use of standard definitions and properties of the familiar number systems such
as the integers, rational numbers and real numbers. We will assume that the reader is
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informally familiar with these numbers. See the Appendix for a brief list of some of
the standard properties of the real numbers.

We conclude this section with our first example of a proof. You are probably
familiar with the statement “the sum of even numbers is even.” This statement can
be viewed in the form P — Q if we look at it properly, because it actually says “if
n and m are even numbers, then n + m is an even number.” To construct a rigorous
proof of our statement (as well as the corresponding result for odd numbers), we first
need precise definitions of the terms involved.

Our theorem is concerned with the integers, that is, the numbers

e =3,-2,-1,0,1,2,3,...,

and so we need to assume that we know what the integers are, that we have the op-
erations addition, subtraction, multiplication and division, and that these operations
satisfy standard properties, for example the Distributive Law. Using only those stan-
dard facts about the integers, we can make the following definition, which is the basis
for our theorem and its proof.

Definition 2.1.2. Let n be an integer. The number 7 is even if there is some integer
k such that n = 2k. The number n is odd if there is some integer j such that n =
2j+ 1. A

As the reader knows intuitively, and as we will prove in Corollary 5.2.6, every
integer is either even or odd, but not both.

We are now ready to state and prove our theorem. This result may seem rather
trivial, but our point here is to see a properly done proof, not to learn an exciting new
result about numbers.

Theorem 2.1.3. Let n and m be integers.

1. If n and m are both even, then n+m is even.
2. If n and m are both odd, then n+m is even.
3. Ifnis even and m is odd, then n+m is odd.

Proof.

(1). Suppose that n and m are both even. Then there exist integers k and j such
that n = 2k and m = 2j. Then

n+m=2k+2j=2(k+ ).

Because k and j are integers, so is k+ j. Hence m +n is even.

(2) & (3). These two parts are proved similarly to Part (1), and the details are
left to the reader. a



52 2 Strategies for Proofs

There is a fourth possible case we did not state in Theorem 2.1.3, namely, the case
when n is odd and m is even, because that case is really no different from Part (3)
of the theorem, and hence it would not tell us anything new; it makes no difference
whether we call the even number n and the odd number m, or vice versa.

The proof of Part (1) of Theorem 2.1.3 is quite simple, but there are a few fea-
tures worth mentioning, because they are typical of what is found in virtually all our
subsequent proofs (and in the proofs you will need to write). First, the proof relies
completely on the definition of what it means to be an even or an odd integer. In a
large number of proofs, going back to the formal definitions involved is the key step;
forgetting to do so is a major source of error by students who are first learning about
proofs.

Second, observe that the proof is written in grammatically correct English. Com-
plete sentences are used, with proper punctuation. Each sentence begins with a cap-
ital letter, and ends with a period, even if the end of the sentence is in a displayed
equation. Mathematical formulas and symbols are parts of sentences, and are treated
no differently from other words. We will be writing all our proofs in this style; scratch
work, by contrast, can be as careless as desired. The two-column method of writing
proofs, which we used in our discussion of valid logical arguments in Section 1.4,
and is often used in high school geometry, should be left behind at this point. Math-
ematics texts and research papers are all written in the style of Theorem 2.1.3. See
Section 2.6 for more about writing mathematics.

An important consideration when writing a proof is recognizing what needs to be
proved and what doesn’t. There is no precise formula for such a determination, but
the main factor is the context of the proof. In an advanced book on number theory,
it would be unnecessary to prove the fact that the sum of two even integers is even;
it would be safe to assume that the reader of such a book would either have seen
the proof of this fact, or could prove it herself. For us, however, because we are just
learning how to do such proofs, it is necessary to write out the proof of this fact in
detail, even though we know from experience that the result is true. The reasons to
prove facts that we already know are twofold: first, in order to gain practice writing
proofs, we start with simple results, so that we can focus on the writing, and not on
mathematical difficulties; second, there are cases where “facts” that seem obviously
true turn out to be false, and the only way to be sure is to construct valid proofs.

Though mathematical proofs are logical arguments, observe that in the proof of
Theorem 2.1.3 we did not use the logical symbols we discussed in Chapter 1. In
general, it is not proper to use logical symbols in the writing of mathematical proofs.
Logical symbols were used in Chapter 1 to help us become familiar with informal
logic. When writing mathematical proofs, we make use of that informal logic, but
we write using standard English (or whatever language is being used).

For the record, in the proof of Theorem 2.1.3 we did make use of some of the
rules of inference discussed in Section 1.4, though as will always be the case, these
rules are not mentioned explicitly in proofs to avoid unnecessary length and clutter.
For instance, the hypothesis in Part (1) has the form P A Q, where P = “n is even”
and Q = “m is even.” The proofs starts by assuming that P A Q is true. We then
used Simplification to deduce that each of P and Q is true, so that we could apply
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the definition of even numbers to each, to deduce that each of the statements “there
exists an integer k such that n = 2k” and “there exists an integer j such that m =2;”
holds. We then applied Adjunction to deduce that the statement “n =2k and m = 2"
holds, so that we could do the calculation involving n + m. Finally, we made repeated
use of Hypothetical Syllogism to put all the pieces of the proof together. Of course,
even though mathematicians do not generally mention the rules of logical inference
used in their proofs, care must be taken to ensure that the rules of inference are used
correctly, even when not stated explicitly.

One final comment on writing proofs: neither thinking up proofs nor writing
them properly is easy, especially as the material under consideration becomes more
and more abstract. Mathematics is not a speed activity, and you should not expect to
construct proofs rapidly. You will often need to do scratch work first, before writing
up the actual proof. As part of the scratch work, it is very important to figure out
the overall strategy for the problem being solved, prior to looking at the details.
What type of proof is to be used? What definitions are involved? Not every choice
of strategy ultimately works, of course, and so any approach needs to be understood
as only one possible way to attempt to prove the theorem. If one approach fails, try
another. Every mathematician has, in some situations, had to try many approaches
to proving a theorem before finding one that works; the same is true for students of
mathematics.

Exercises

Exercise 2.1.1. Reformulate each of the following theorems in the form P — Q.
(The statements of the theorems as given below are commonly used in mathematics
courses; they are not necessarily the best possible ways to state these theorems.)

(1) The area of the region inside a circle of radius r is 772.

(2) Given a line / and a point P not on /, there is exactly one line m containing P
that is parallel to /.

(3) Let AABC be a triangle, with sides of length a, b and c. Then

a b ¢
sinA  sinB  sinC’

4) e = e,
(5) (Fundamental Theorem of Calculus) Let f be a continuous function on [a, b],
and let F be any function for which F'(x) = f(x). Then

/abf(x)dx:F(b)—F(a).

2.2 Direct Proofs

As mentioned in the previous section, the statement of virtually every theorem, when
viewed appropriately, is of the form P — Q, or some combination of such statements.
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For example, each of the three parts of Theorem 2.1.3 is of the form P — Q. To prove
theorems, we therefore need to know how to prove statements of the form P — Q.

The simplest form of proof, which we treat in this section, is the most obvious
one: assume that P is true, and produce a series of steps, each one following from
the previous ones, which eventually lead to Q. This type of proof is called a direct
proof. That this sort of proof deserves a name is because there are other approaches
that can be taken, as we will see in Section 2.3. An example of a direct proof is the
proof of Theorem 2.1.3.

How do we construct direct proofs? There is no single answer to this question,
but some useful strategies exist. To start, it is important to recognize that what is
“direct” about a direct proof is the way the proof reads when you are done writing
it. The completed proof starts at the beginning (the statement P) and ends at the end
(the statement Q), and shows how to get logically from the former to the latter. How
you think of the proof is another matter entirely. The way a proof looks when you
are done constructing it often has little relation to how you went about thinking of it,
especially for more difficult proofs. Similarly to writing a literature paper, for which
you might take notes, make an outline, prepare a rough draft and revise it a number of
times, so too with constructing a rigorous mathematical proof—the final version may
be the result of a process involving a number of distinct steps, and much revision.

When constructing a proof, the first thing to do is specify what you are assuming,
and what it is you are trying to prove. This comment may sound trivial, but the author
has seen many students skip this important step in their rush to get to the details
(which are usually more interesting). Then you pick a strategy for the proof; one
such strategy is direct proof. The next stage is actually figuring out a proof, making
use of your chosen strategy. If you cannot devise a proof using your chosen strategy,
perhaps another strategy should be attempted. There is no fixed way of finding a
proof; it requires experimentation, playing around and trying different things. Of
course, with experience some standard ways of constructing proofs in certain familiar
situations tend to suggest themselves.

Even when the chosen strategy is direct proof, there are a number of ways of
trying to figure out the details of the proof. To find a direct proof of P — Q, you
might try assuming P, playing around with it, seeing where it leads. Or you might
try looking at Q, determining what is needed to prove Q, and then what is needed to
prove that, etc. Or you might do both of these, hoping to meet in the middle. However
you go about working out the proof, once you understand it informally, you have only
completed the “scratch work™ stage of constructing the proof. Then comes the next
stage, which is writing the proof in final form. No matter how convoluted a route
you took in thinking up the proof, the final write-up should be direct and logical. In a
direct proof, the write-up should start with P and go step by step until Q is reached.
Therefore, this type of proof typically has the following form.

Proof. Suppose that P is true.

(argumentation)
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Then Q is true. a

We are now ready to give two simple examples of direct proof. We will put in
more details here than one might normally include, in order to make each step as
explicit as possible. We start with a definition concerning the integers.

Definition 2.2.1. Let a and b be integers. The number a divides the number b if
there is some integer ¢ such that ag = b. If a divides b, we write a|b, and we say that
a is a factor of b, and that b is divisible by a. AN

Before discussing the content of Definition 2.2.1, we need to make an important
remark about its logical structure. The definition says that “the number a divides the
number b if ...,” where the ... describe a certain condition involving the numbers a
and b. Strictly speaking, it would have been proper to write “if and only if” instead
of just “if,” because it is certainly meant to be the case that if the condition does not
hold, then we do not say that a divides b. However, it is customary in definitions
to write “if” rather than “if and only if,” because it is taken as assumed that if the
condition does not hold, then the term being defined cannot be applied. We will
stick with the customary formulation of definitions, but it is important to think of
definitions as meaning “if and only if.”

To show the truth of a statement of the form “a|b,” it is necessary to find an
integer ¢ such that ag = b. Therefore, a statement of the form “a|b” is an existence
statement.

The expression “a|b” should not be confused with the fraction “a/b.” The latter
is a number, whereas the former is a shorthand way of writing the statement “the
integer a divides the integer b.” For example, even though it is not sensible to write
the fraction 7/0, it is perfectly reasonable to write the expression 7|0, because 7 does
in fact divide 0, because 7 -0 = 0. Because of this potential confusion, and also to
avoid ambiguous expressions such as 1/2+3 (is that %—l— 3 or ﬁ?), we suggest
writing all fractions as § rather than a/b.

We now have two simple results about divisibility. The proof of each theorem
is preceded by scratch work, to show how one might go about formulating such a
proof.

Theorem 2.2.2. Let a, b and c be integers. If a|b and b

¢, then alc.

Scratch Work. Our goal is to show that a|c, so that we need to find some integer
k such that ak = ¢. We are free to choose any k that we can think of. Because a|b
and b|c, there are integers ¢ and r such that ag = b and br = c. Substituting the
first equation into the second equation looks like a good idea to try, and we obtain
(aq)r = c. By rearranging the left-hand side of this equation, we see that k = gr is a

good guess. ///

Proof. Suppose that a|b and b|c. Hence there are integers g and r such that ag = b
and br = c. Define the integer k by k = gr. Then ak = a(qr) = (aq)r = br = c.
Because ak = ¢, it follows that alc. O
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Compare the proof with the scratch work. The proof might not appear substan-
tially better than the scratch work at first glance, and it might even seem a bit mys-
terious to someone who had not done the scratch work. Nonetheless, the proof is
better than the scratch work, though in such a simple case the advantage might not
be readily apparent. Unlike the scratch work, the proof starts with the hypotheses and
proceeds logically to the conclusion, using the definition of divisibility precisely as
stated. Later on we will see examples where the scratch work and the proof are more
strikingly different.

Theorem 2.2.3. Any integer divides zero.

Scratch Work. In the statement of this theorem we are not given any particular
choices of “variables,” in contrast to the previous theorem (which was stated in terms
of a, b and ¢). To prove something about any possible integer, we pick an arbitrary
one, say n. Then we need to show that n|0. It would certainly not suffice to choose
one particular number, say 5, and then show that 5 divides 0. Once we have chosen
an arbitrary n, the rest of the details in this proof are extremely simple. ///

Proof. Let n be an integer. Observe that n-0 = 0. Hence n|0. a

The first step in proving a theorem often involves reformulating it in a more
useful way, such as choosing 7 in the above proof.

The reader might be concerned that, in comparison to the scratch work for the
above two theorems, the way we wrote the proofs involves “covering up our tracks.”
Although it might appear that way, the purpose of the proper writing of proofs is
not at all to hide anything, but rather to make sure that what seemed like a good
idea intuitively is indeed logical. The only way to check whether a proof is really
valid is to write it up properly, and such a write-up does not include a description
of everything that went through your mind when you were figuring out the details
of the proof. The final proof must stand on its own, with no reference to what was
written in the scratch work. For example, not all arguments are reversible, and an
argument that worked backwards during scratch work might not work when written
forwards, and it is only by writing the proof properly that we find out if the idea
really works. Intuitive thinking that may have been useful in formulating the proof
should be replaced with logical deduction in the final written proof.

In sum, there are two main steps to the process of producing a rigorous proof:
formulating it and writing it. These two activities are quite distinct, though in some
very simple and straightforward proofs you might formulate as you write. In most
cases, you first formulate the proof (at least in outline form) prior to writing. For a
difficult proof the relation between formulating and writing is essentially dialectical.
You might formulate a tentative proof, try writing it up, discover some flaws, go back
to the formulating stage and so on.

Exercises

Exercise 2.2.1. Outline the strategy for a direct proof of each of the following state-
ments (do not prove them, because the terms are meaningless).
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(1) Let n be an integer. If 7|n, then n is bulbous.

(2) Every globular integer is even.

(3) If an integer is divisible by 13 and is greater than 100, then it is pesky.
(4) An integer is both tactile and filigreed whenever it is odd.

Exercise 2.2.2. Let n and m be integers.

(1) Prove that 1|n.
(2) Prove that n|n.
(3) Prove that if m|n, then m|(—n).

Exercise 2.2.3. Let n be an integer.

(1) Prove that if n is even, then 3n is even.
(2) Prove that if n is odd, then 37 is odd.

Exercise 2.2.4. [Used in Theorem 2.3.5 and Theorem 2.4.1.] Let n be an integer. Prove
that if n is even then n? is even, and if n is odd then n? is odd.

Exercise 2.2.5. Let n and m be integers. Suppose that n and m are divisible by 3.

(1) Prove that n+m is divisible by 3.
(2) Prove that nm is divisible by 3.

Exercise 2.2.6. Let a, b, ¢, m and n be integers. Prove that if a|b and alc, then

al(bm—+cn).

Exercise 2.2.7. Let a, b, ¢ and d be integers. Prove that if a|b and c|d, then ac|bd.

Exercise 2.2.8. Let a and b be integers. Prove that if a|b, then a"|b" for all positive
integers n. (There is no need for mathematical induction here.)

2.3 Proofs by Contrapositive and Contradiction

In this section we discuss two strategies for proving statements of the form P —
Q. Both these strategies are a bit more convoluted than direct proof, but in some
situations they are nonetheless easier to work with. A less than perfect analogy might
be when the straightest road between two cities leads up and down a mountain and
through difficult terrain, whereas a curved road might at first seem to be going in
the wrong direction, but in fact it bypasses the mountain and is ultimately easier and
quicker than the straight road.

There is no foolproof method for knowing ahead of time whether a proof on
which you are working should be a direct proof or a proof by one of these other
methods. Experience often allows for an educated guess as to which strategy to try
first. In any case, if one strategy does not appear to bear fruit, then another strategy
should be attempted. It is only when the proof is completed that we know whether a
given choice of strategy works.

Both strategies discussed in this section rely on ideas from our discussion of
equivalence of statements in Section 1.3. For our first method, recall that the contra-
positive of P — Q, the statement ~Q — —P, is equivalent to P — Q. Hence, in order
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to prove P — Q, we could just as well prove =Q — —P, which we would do by the
method of direct proof. We construct such a proof by assuming that Q is false, and
then, in the final write-up, presenting a step-by-step argument going from —Q to —P.
A proof of this sort is called proof by contrapositive. This type of proof typically
has the following form.

Proof. Suppose that Q is false.
(argumentation)

Then P is false. O

The following proof is a simple example of proof by contrapositive.
Theorem 2.3.1. Let n be an integer. If n? is odd, then n is odd.

Scratch Work. If we wanted to use a direct proof, we would have to start with the
assumption that n” is odd. Then there would be some integer j such that n*> =2+ 1.
It is not clear, however, how to proceed from this point, so instead we try proof by
contrapositive. Such a proof would involve assuming that 7 is not odd, which implies
that it is even, and then deducing that n? is even, which implies that it is not odd. We
start such a proof by observing that if n is even, then there is some integer k such that
n = 2k, and we then compute 7> in terms of k, leading to the desired result. ///

Proof. Suppose that n is even. Then there is some integer k such that n = 2k. Hence
n? = (2k)?> = 4k> = 2(2k*). Because 2k is an integer, it follows that n” is even. By
contrapositive, we see that if n? is odd then 7 is odd. O

In the above proof we mentioned that we used proof by contrapositive. In general,
it is often helpful to the reader to have the method of proof stated explicitly.

Another method of proof for theorems with statements of the form P — Q, which
looks similar to proof by contrapositive but is actually distinct from it, is proof by
contradiction.

Logicians use the term “proof by contradiction” to mean the proof of a statement
A by assuming —A, then reaching a contradiction, and then deducing that A must be
true. For our purposes, we are interested in proof by contradiction for the special
case where the statement A has the form P — Q, because that is how mathematical
theorems are formulated. We now take a closer look at this particular type of proof
by contradiction.

Recall from Section 1.3 that —(P — Q) is equivalent to P A =Q. Suppose that we
could prove that P A —=Q is false. It would follow that —(P — Q) is false, and hence
that —=(—(P — Q)) is true. Then, using Double Negation (Fact 1.3.2 (1)), we could
conclude that P — Q is true.

The method of proof by contradiction is to show that P — Q is true by assuming
that P A —Q is true, and then deriving a logical contradiction, by which we mean, as
discussed in Section 1.2, a statement that cannot be true under any circumstances;
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often such statements have the form B A =B for some statement B. Once we reach a
contradiction, we conclude that P A —Q is false, and then as above we deduce that
P — Qs true.

Another way to think of proof by contradiction is to observe from the truth table
for P — Q that the only way for this statement to be false is if P is true and Q is false,
that is, if P is true and —Q is true. Hence, if we assume both of these, and then derive
a contradiction, we would know that P — Q cannot be false; hence P — Q must be
true.

A proof by contradiction typically has the following form.

Proof. We prove the result by contradiction. Suppose that P is true and that Q is
false.

(argumentation)

We have therefore reached a contradiction. Therefore P implies Q. a

We now turn to a simple example of proof by contradiction. It is a good idea to
start such a proof by stating that you are using this strategy.

Theorem 2.3.2. The only consecutive non-negative integers a, b and c that satisfy
a+b*=c*are3, 4and>5.

Scratch Work. The statement of this theorem has the form P — Q, because it can be
restated as “if a, b and ¢ are consecutive non-negative integers such that a> +b> = ¢2,
then a, b and c are 3, 4 and 5.” It is hard to prove the result directly, because we are
trying to prove that something does not exist. Rather, we will assume that consecutive
integers a, b and ¢, other than 3, 4 and 5, exist and satisfy a®+b* =%, and we
will then derive a contradiction. Also, we observe that if a, b and ¢ are consecutive
integers, thenb =a+1and c =a+2. ///

Proof. We prove the result by contradiction. Suppose that a, b and ¢ are non-negative
consecutive integers other than 3, 4 and 5, and that a?® + b? = ¢%. Because a, b and
c are not 3, 4 and 5, we know that a # 3, and because the three numbers are con-
secutive, we know that b = a+ 1 and ¢ = a + 2. From a® + b*> = ¢? we deduce that
a®>+ (a+1)? = (a+2)?. After expanding and rearranging we obtain a> —2a —3 =0.
This equation factors as (a —3)(a+ 1) = 0. Hence a = 3 or a = —1. We have al-
ready remarked that a # 3, and we know « is non-negative. Therefore we have a
contradiction, and the theorem is proved. O

Our next two theorems are both famous results that have well-known proofs by
contradiction. These clever proofs are much more difficult than what we have seen
so far, and are more than would be expected of a student to figure out on her own at
this point.

Our first result involves irrational numbers, which we will shortly define. Irra-
tional numbers are a type of real number, and so we need to assume informal knowl-
edge of the real numbers, just as we assumed informal knowledge of the integers
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in Sections 2.1 and 2.2. The real numbers are the collection of all the numbers that
are generally used in elementary mathematics (not including the complex numbers),
and they have operations addition, subtraction, multiplication and division, and these
operations satisfy standard properties such as the Commutative Law for addition and
multiplication. See the Appendix for a brief summary of some of the standard prop-
erties of real numbers. We now turn to the matter at hand.

Definition 2.3.3. Let x be a real number. The number x is a rational number if there

exist integers n and m such that m # 0 and x = .. If x is not a rational number, it is

an irrational number. A

Observe that if x is a rational number, then there are many different fractions of
the form . such that x = --. Given any fraction ;- such that n # 0, we can always
reduce it to “lowest terms,” by which we mean that the numerator and denominator
have no common factors other than 1 and —1. See the Appendix for a reference,
where this fact about rational numbers is stated as Theorem A.6.

Are there any irrational numbers? Though it is not at all obvious, there are in fact
infinitely many of them, and in a certain sense there are more irrational numbers than
rational ones, as will be made precise in Section 6.7.

At this point, however, we will have to be satisfied with verifying that irrational
numbers exist. In particular, we will prove that v/2 is an irrational number. To us this
fact may seem rather innocuous, though when first discovered it was something of a
shock. The result was discovered by someone in the Pythagorean school in ancient
Greece (possibly the sixth century B.C.E.). This school, centered around the figure
of Pythagoras, was dedicated to mathematics as well as various mystical beliefs.
Among other things, the Pythagoreans believed in the importance of whole numbers,
and held that anything meaningful in the universe could be related to whole numbers
or to ratios of whole numbers. The ancient Greeks tended to think of numbers geo-
metrically, and they probably did not think of 1/2 as an algebraically defined object,
as we do today. However, by using the Pythagorean Theorem, we see that if a square
has sides of length 1, then the diagonal of the square will have length /2. Hence
/2 would be a geometrically meaningful number to the Pythagoreans, and therefore
they were very disturbed to discover that this number was not expressible as a ratio
of whole numbers. One legend has it that the discoverer of this fact, in despair, threw
himself overboard from a ship.

Before we state and prove our theorem about /2, we need a proper definition for
this number.

Definition 2.3.4. Let p be a positive real number. The square root of p, denoted
\/P- 18 a positive real number x such that X2 =p. A

Our goal is to prove that V/2 is an irrational number, but there is a more funda-
mental question about \/2 that needs to be addressed first, which is whether it exists.
Definition 2.3.4 states that if there is a number denoted ﬂ, it would be a positive
real number x such that x> = 2, but nothing in the definition guarantees that such a
number x exists. Clearly, if there is no such real number x, it would make no sense
to try to prove that such a number is irrational. In fact, as expected, it is indeed true
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that there is a positive real number x such that x> = 2 (and there is only one such
number), but unfortunately it is beyond the scope of this book to give a proof of that
fact. The proof requires tools from real analysis; see [Blo11, Theorem 2.6.9] for a
proof.

Assuming that V2 exists, however, we can prove here that this number is irra-
tional. Observe that the following theorem is self-contained, and does not rely upon
a proof that /2 exists; it only says that if v/2 exists, then it is irrational.

Theorem 2.3.5. There is no rational number x such that x* = 2.

Preliminary Analysis. The statement of our theorem says that something does not
exist, which is hard to prove directly. However, we can easily reformulate the state-
ment to avoid that problem, because to say that there is no rational number with a
certain property means that if a real number has that property, that number cannot
be rational. That is, we can reformulate our theorem as “if x is a real number and
x? =2, then x is irrational,” which has the familiar form P — Q. We then use proof
by contradiction, which we start by assuming that x is a real number such that x> =2,
and also that x is not irrational (and hence it is rational). ///

Proof. Let x be a real number. Suppose that x> = 2, and that x is rational. We will
derive a contradiction. Because x is rational, there are integers n and m such that
x = -.. Observe that n # 0. If 7 is not in lowest terms, then we could cancel any
common factors, bringing it to lowest terms. There is no problem assuming that this
has been done already, and so we may assume that n and m have no common factors
other than 1 and —1.

Because x* = 2, then (%)2 = 2. It follows that % =2, and hence n? =2m?%. We
now ask whether 7 is even or odd. If n were odd, then using Exercise 2.2.4 we would
see that n> would be odd. This last statement is not possible, because n> = 2m?, and
2m? must be even, because it is divisible by 2. It follows that n cannot be odd; hence n
must be even. Therefore there is some integer k such that n = 2k. Then (2k)? = 2m?,
so that 4k> = 2m?, and therefore 2k> = m*. By an argument similar to the one used
above, we see that m is even. We therefore conclude that both n and m are even. We
have therefore reached a contradiction, because any two even numbers have 2 as a
common factor, and yet we assumed that n and m have no common factors other than
1 and —1. Hence x is not rational. a

The proof of Theorem 2.3.5 is mentioned (without details) in Aristotle’s “Prior
Analytics” (I.23), and is presumed to be of earlier origin; perhaps it is the proof used
by the Pythagoreans (though they would not have formulated it as we do).

Our second famous result involves prime numbers, and has a proof by contradic-
tion for a subpart of a proof by contradiction. We will make use of the definition of
divisibility given in Section 2.2.

Definition 2.3.6. Let p be an integer greater than 1. The number p is a prime num-
ber if the only positive integers that divide p are 1 and p. The number p is a com-
posite number if it is not a prime number. A
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The first few prime numbers are 2,3,5,7,11,.... The study of prime numbers is
quite old and very extensive; see any book on elementary number theory, for example
[Ros05], for details.

The number 1 is not considered to be either prime or composite. On the one hand,
the only positive integers that divide 1 are 1 and itself, which would make it seem as
if 1 were a prime number. However, the prime numbers are always defined as being 2
or larger to avoid special cases and awkward statements of theorems. For example, if
1 were a prime number, then the factorization of integers into prime numbers would
not be unique, and uniqueness would hold only for “factorization into prime numbers
other than 1,” which is cumbersome to state. On the other hand, the number 1 is not
considered composite, because there are no positive integers other than 1 and itself
that divide it.

Whereas we restrict our attention to the integers greater than 1 when we discuss
prime numbers and composite numbers, some authors consider negative numbers
such as —2,—3,—5,... to be prime numbers, and similarly for composite numbers.
Moreover, the term “prime” is used in the more general context of rings, a structure
that is studied in abstract algebra, and that includes the integers as a special case; see
any introductory abstract algebra text, for example [Fra03], for details.

Observe that a composite number n can always be written as n = ab for some
positive integers a and b such that 1 <a <mand 1 <b <n.

How many prime numbers are there? In particular, are there only finitely many
prime numbers, or infinitely many? The following theorem answers this question.
The proof we give is very commonly used, and goes back to Euclid; see [Rib96,
Chapter 1] for further discussion, as well as some other nice proofs of this theorem.

Theorem 2.3.7. There are infinitely many prime numbers.

Preliminary Analysis. We have not yet seen a rigorous treatment of what it means
for there to be infinitely many of something, and so for now we need to use this
concept in an intuitive fashion. A thorough discussion of finite vs. infinite is found
in Chapter 6. The essential idea discussed in that chapter is that if a collection of
objects can be listed in the form ay,as,...,a, for some positive integer 7, then the
collection of objects is finite; if the collection of objects cannot be described by any
such list, then it is infinite. In Chapter 6 we will see a rigorous formulation of this
idea in terms of sets and functions, but this intuitive explanation of finite vs. infinite
completely captures the rigorous definition.

To say that there are infinitely many prime numbers means that there is no list
of the form P, P, ..., P,, for any positive integer n, that contains all prime numbers.
It is easier to prove this statement if we reformulate it as “if n is a positive integer,

and P, P,,...,P, are prime numbers, then P, P,,...,P, does not include all prime
numbers.” The proof of this last statement is by contradiction. ///
Proof. Letn be a positive integer, and let P, P>, ..., P, be a collection of prime num-

bers. Suppose that Py, P, ..., P, contains all prime numbers.
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Let Q= (P x P, X --- X P;) + 1. We will show that Q is a prime number. Be-
cause Q is clearly larger than any of the numbers Py, P, ..., P,, it will follow that Q
is a prime number that is not in the collection P;,P,...,P,, and we will therefore
know that the collection Py, P, ..., P, does not contain all prime numbers, which is
a contradiction. It will then follow that if n is a positive integer, and Py, P, ..., P, are
prime numbers, then Py, P>, ..., P, does not include all prime numbers, and we will
conclude that there are infinitely many prime numbers.

To show that Q is a prime number, we use proof by contradiction. Suppose that
Q is not a prime number. Therefore Q is a composite number. By Theorem 6.3.10 we
deduce that Q has a factor that is a prime number. (Though this theorem comes later
in the text, because it needs some tools we have not yet developed, it does not use
the result we are now proving, and so it is safe to use.) The only prime numbers are
P, P,..., P, and therefore one of these numbers must be a factor of Q. Suppose that
Py is a factor of Q, for some integer k such that 1 < k < n. Therefore there is some
integer R such that P.R = Q. Hence

PR= (P XPyx---XPy)+1,

and therefore
Pk[Rf(Pl X oeee ka71 XPkJrl X oo XP,,)} =1.

It follows that P, divides 1. However, the only integers that divide 1 are 1 and —1.
(We will not provide a proof of this last fact; it is stated as Theorem A.4 in the
Appendix.) Because Py is a prime number it cannot possibly equal 1 or —1, which is
a contradiction. We deduce that Q is not a composite number, and hence it is a prime
number. a

The proof of Theorem 2.3.7 actually yields more than just what the statement of
the theorem says; it in fact gives an explicit procedure for producing arbitrarily many
prime numbers. We start by letting P; = 2, which is the smallest prime number. We
then let P, = Py + 1 =3, and then P; = (P, X P,) + 1 =7, and then P, = (P; X P, X
P3)+ 1 =43, and so on. We could continue this process indefinitely, producing as
many prime numbers as we liked. This process is not entirely satisfying, however,
both because it does not yield a simple explicit formula for P, as a function of n, and
also because this process skips over many prime numbers. In fact, no one has yet
found a simple procedure to produce all prime numbers.

We conclude this section with the observation that proof by contradiction implic-
itly uses Double Negation, which ultimately relies upon the Law of the Excluded
Middle, which says that any statement is either true or false. (See Section 1.2 for
more discussion of this issue.) Any mathematician who does not believe in the Law
of the Excluded Middle would therefore object to proof by contradiction. There are
such mathematicians, though the majority of mathematicians, including the author
of this book, are quite comfortable with the Law of the Excluded Middle, and hence
with proof by contradiction.
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Exercises

Exercise 2.3.1. For each of the statements in Exercise 2.2.1, outline the strategy for
a proof by contrapositive, and the strategy for a proof by contradiction (do not prove
the statements, because the terms are meaningless).

Exercise 2.3.2. Let n be an integer. Prove that if 1 is even, then 7 is even.

Exercise 2.3.3. Let a, b and ¢ be integers. Prove that if a does not divide bc, then a
does not divide b.

Exercise 2.3.4. [Used in Theorem 6.7.4.] Prove that the product of a non-zero rational
number and an irrational number is irrational.

Exercise 2.3.5. Let a, b and ¢ be integers. Suppose that there is an integer d such
that d|a and d|b, but that d does not divide c¢. Prove that the equation ax+ by = ¢ has
no solution such that x and y are integers.

Exercise 2.3.6. Let ¢ be an integer. Suppose that ¢ > 2, and that ¢ is not a prime
number. Prove that there is an integer b such that b > 2, that b|c and that b < /c.

Exercise 2.3.7. Let g be an integer. Suppose that ¢ > 2, and that for any integers a
and b, if glab then g|a or g|b. Prove that /g is irrational.

Exercise 2.3.8. Let ¢ be an integer. Suppose that ¢ > 2, and that for any integers
a and b, if glab then gla or g|b. Prove that ¢ is a prime number. (The converse to
this statement is also true, though it is harder to prove; see [Dea66, Section 3.6] for
details, though note that his use of the term “prime,” while keeping with the standard
usage in ring theory, is not the same as ours.)

2.4 Cases, and If and Only If

The notion of equivalence of statements, as discussed in Section 1.3, has already
been seen to be useful in proving theorems, for example in proof by contrapositive.
In this section we will make use of some other equivalences of statements to prove
certain types of theorems.

One commonly used method for proving a statement of the form P — Q is by
breaking up the proof into a number of cases (and possibly subcases, subsubcases
and so on). Formally, we use proof by cases when the premise P can be written in the
form A V B. We then use Exercise 1.3.2 (6) to see that (A V B) — Q is equivalent to
(A— Q)A(B— Q). Hence, in order to prove that a statement of the form (AV B) —
Qs true, it is sufficient to prove that each of the statements A — Q and B — Q is true.
The use of this strategy often occurs when proving a statement involving a quantifier
of the form “for all x in U,” and where no single proof can be found for all such x, but
where U can be divided up into two or more parts, and where a proof can be found
for each part.

For the following simple example of proof by cases, recall the definition of even
and odd integers in Section 2.1.



2.4 Cases, and If and Only If 65

Theorem 2.4.1. Let n be an integer. Then n> +n is even.

Preliminary Analysis. Because we know about sums and products of even numbers
and odd numbers, it seems like a good idea to try breaking up the proof into two
cases, one case where n is even and one case where n is odd. Formally, let A =
“n is an even integer,” let B = “n is an odd integer” and let Q = “n” +n is even.”
Then the theorem has the form (A V B) — Q. We will prove the theorem by proving
that (A — Q) and (B — Q) are both true; each of these statements will be proved
as a separate case. The proof of this theorem could be done either by making use
of Theorem 2.1.3 and Exercise 2.2.4, or from scratch; because the latter is simple

enough, we will do that. /]

Proof. Case 1: Suppose that n is even. By definition we know that there is some
integer k such that n = 2k. Hence

n® +n = (2k)? + 2k = 4k* + 2k = 2(2k> + k).

Because k is an integer, so is 2k> + k. Therefore n> +n is even.

Case 2: Suppose that n is odd. By definition we know that there is some integer j
such that n = 2j+ 1. Hence

P n=2j+1)*+Q2j+1)= @47 +4j+1)+2j+1)
=477 4 6j4+2=2(2/2+3j+1).

Because j is an integer so is 2> +3j + 1. Therefore n®> + n is even. a

It is not really necessary to define A and B explicitly as we did in the scratch work
for Theorem 2.4.1, and we will not do so in the future, but it was worthwhile doing
it once, just to see how the equivalence of statements is being used.

In the proof of Theorem 2.4.1 we had two cases, which together covered all pos-
sibilities, and which were exclusive of each other. It is certainly possible to have more
than two cases, and it is also possible to have non-exclusive cases; all that is needed
is that all the cases combined cover all possibilities. The proof of Theorem 2.4.4
below has two non-exclusive cases.

We now turn to theorems that have statements of the form P — (A V B). Such
theorems are less common than the previously discussed type, but do occur, and it is
worth being familiar with the standard proof strategies for such theorems. There are
two commonly used strategies, each one being advantageous in certain situations.
One approach would be to use the contrapositive together with De Morgan’s Law
(Fact 1.3.2 (13)), which together imply that P — (A V B) is equivalent to (—FAA—B) —
—P. The other would be to use Exercise 1.3.2 (5), which says that P — (A V B) is
equivalent to (P A —=A) — B. The roles of A and B could also be interchanged in this
last statement. The second approach is more commonly used, and so we use it in the
following proof, although in this particular case the first approach would work quite
easily, as the reader should verify.
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Theorem 2.4.2. Let x and y be real numbers. If xy is irrational, then x or y is irra-
tional.

Preliminary Analysis. The statement of this theorem has the form P — (A V B). We
will prove (P A—A) — B, which we do by assuming that xy is irrational and that x is
rational, and deducing that y is irrational. ///

Proof. Suppose that xy is irrational and that x is rational. Hence x = § for some

integers a and b such that b # 0. We will show that y is irrational, by using proof by

contradiction. Suppose that y is rational. It follows that y = “* for some integers m
am

and n such that n # 0. Hence xy = %, and bn # 0, contradicting the fact that xy is
irrational. Hence y is irrational. a

Having discussed the appearance of V in the statements of theorems, we could
also consider the appearance of A, though these occurrences are more straightfor-
ward. As expected, a theorem with statement of the form (A A B) — Q is proved by
assuming A and B, and using both of these statements to derive Q. To prove a theo-
rem with statement of the form P — (A A B), we can use Exercise 1.3.2 (4), which
states that P — (A A B) is equivalent to (P — A) A (P — B). Hence, to prove a the-
orem with statement of the form P — (A A B), we simply prove each of P — A and
P — B, again as expected.

Not only are there a variety of ways to structure proofs, but there are also variants
in the logical form of the statements of theorems. Whereas the most common logical
form of the statement of a theorem is P — Q, as we have discussed so far, another
common form is P «<» Q. We refer to such theorems as “if and only if”’ theorems
(often abbreviated “iff”” theorems). To prove such a theorem, we make use of the fact
that P «— Q is equivalent to (P — Q) A (Q — P), as was shown in Fact 1.3.2 (11).
Hence, to prove a single statement of the form P < Q, it is sufficient to prove the two
statements P — Q and Q — P, each of which can be proved using any of the methods
we have seen so far. We now give a typical example of such a proof; it is sufficiently
straightforward so that we dispense with the scratch work. Recall the definition of
divisibility of integers in Section 2.2.

Theorem 2.4.3. Let a and b be non-zero integers. Then alb and bla if and only if
a=bora=—b.

Proof.

=. Suppose that a|b and b|a. Because a|b, there is some integer m such that
am = b, and because b|a, there is some integer k such that bk = a. Substituting this
last equation into the previous one, we obtain (bk)m = b, and hence b(km) = b.
Because b # 0, it follows that km = 1. Because k and m are integers, then either
k=1landm=1, or k=—1 and m = —1. (We will not provide a proof of this last
fact; it is stated as Theorem A.4 in the Appendix.) In the former case a = b, and in
the latter case a = —b.

<. Suppose that a = b or a = —b. First, suppose that a =b. Then a-1 = b, so
alb,and b -1 = a, so b|a. Similarly, suppose that a = —b. Then a- (—1) = b, so a|b,
and b-(—1) =a, so b|a. O
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Our next example of an if and only if theorem combines a number of the methods
we have discussed so far.

Theorem 2.4.4. Let m and n be integers. Then mn is odd if and only if both m and n
are odd.

Scratch Work. The “<” part of this theorem, which is the “if” part, says that if m
and n are both odd, then mn is odd. This implication will be straightforward to prove,
using the definition of odd integers.

The “=" part of this theorem, which is the “only if” part, says that if mn is odd,
then both m and n are odd. A direct proof of this part of the theorem would start with
the assumption that mn is odd, which would mean that mn = 2p 4 1 for some integer
p, but it is not clear how to go from there to the desired conclusion. It is easier to
make assumptions about m and n and proceed from there, so we will prove this part
of the theorem by contrapositive, in which case we assume that m and n are not both
odd, and deduce that mn is not odd. When we assume that m and n are not both odd,
we will have two (overlapping) cases to consider, namely, when m is even or when
n is even. Alternatively, it would be possible to make use of three non-overlapping
cases, which are when m is even and » is odd, when m is odd and 7 is even, and
when m and n are both even; however, the proof is no simpler as a result of the non-
overlapping cases, and in fact the proof would be longer with these three cases rather
than the two overlapping ones as originally proposed, and so we will stick with the

latter. /1]
Proof.

<. Suppose that m and n are both odd. Hence there is an integer j such that
m = 2j+ 1, and there is an integer k such that n = 2k + 1. Therefore

mn=2j+1)2k+1)=4jk+2j+2k+1=22jk+ j+k)+1.

Because k and j are integers, so is 2 jk + j + k. Therefore mn is odd.

=. Suppose that m and n are not both odd. We will deduce that mn is not odd,
and the desired result will follow by contrapositive. If m and n are not both odd, then
at least one of them is even. Suppose first that m is even. Then there is an integer p
such that m = 2p. Hence mn = (2p)n = 2(pn). Because p and n are integers, so is
pn. Therefore mn is even. Next assume that n is even. The proof in this case is similar
to the previous case, and we omit the details. O

A slightly more built-up version of an if and only if theorem is a theorem that
states that three or more statements are all mutually equivalent. Such theorems often
include the phrase “the following are equivalent,” sometimes abbreviated “TFAE.”
The following theorem, which involves 2 x 2 matrices, is an example of this type of
result. For the reader who is not familiar with matrices, we summarize the relevant
notation. A 2 x 2 matrix is a square array of numbers of the form M = (¢ %), for
some real numbers a, b, ¢ and d. The determinant of such a matrix is defined by
detM = ad — bc, and the trace of the matrix is defined by trM = a +d. An upper
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triangular 2 x 2 matrix has the form (8 Z) for some real numbers a, b and d. See

any introductory text on linear algebra, for example [AROS, Chapters 1 and 2], for
the relevant information about matrices.

Theorem 2.4.5. Let M = (8 Z) be an upper triangular 2 x 2 matrix. Suppose that a,
b and d are integers. The following are equivalent.

a. detM = 1.
b. a=d==1.
c. trM==+2anda=4d.

What Theorem 2.4.5 says is that (a) if and only if (b), that (a) if and only if (¢),
and that (b) if and only if (c). Hence, to prove these three if and only if statements
we would in principle need to prove that (a) = (b), that (b) = (a), that (a) = (c), that
(c) = (a), that (b) = (c), and that (c) = (b). In practice we do not always need to
prove six separate statements. The idea is to use the transitivity of logical implication,
which follows from Fact 1.3.1 (12). For example, suppose that we could prove that
(a) = (b), that (b) = (c), and that (c) = (a); the other three implications would then
hold automatically. We could just as well prove that (a) = (c), that (c) = (b), and that
(b) = (a), if that were easier. Another way to prove the theorem would be to prove
that (a) = (b), that (b) = (a), that (a) = (c), and that (c) = (a). It is sufficient to prove
any collection of logical implications from which the remaining logical implications
can be deduced using transitivity; the choice of what to prove and what to deduce
depends upon the particular theorem being proved. Similar reasoning holds when
more than three statements are being proved equivalent.

Proof of Theorem 2.4.5. We will prove that (a) = (b), that (b) = (c), and that (c) =
(a).

(a) = (b). Suppose that detM = 1. Hence ad — b -0 = 1, and therefore ad = 1.
Because both a and d are integers, it must be the case that eithera = 1 and d = 1, or
a=—1and d = —1, using Theorem A.4.

(b) = (c). Suppose that a =d = £1. First, suppose thata =d = 1. Then trM =
a+d =2. Second, suppose thata =d = —1. Then trM =a+d = —2. Hence trM =
+2anda =d.

(c) = (a). Suppose that trM = £2 and a = d. We can rewrite trM = £2 as
a+d=+2.Hence 4 = (a+d)?* = a* +2ad +d*. Because a = d, then a* = ad = d?,
and therefore 4 = 4ad. It follows that ad = 1. Because detM = ad —b-0 = ad, we
deduce that detM = 1. a

Exercises

Exercise 2.4.1. Outline the strategy for a proof of each of the following statements
(do not prove them, because the terms are meaningless).

(1) If an integer is combustible then it is even or prime.
(2) A 2 x 2 matrix is collapsible if and only if its determinant is greater than 3.
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(3) For an integer to be putrid, it is necessary and sufficient that it is both odd and
divisible by 50.

(4) Let n be an integer. The following are equivalent: (a) the integer n is com-
posite and greater than 8; (b) the integer n is suggestive; (c) the integer n is
indifferent or fragile.

Exercise 2.4.2. Let a, b and ¢ be integers. Suppose that ¢ # 0. Prove that a/|b if and
only if ac|bc.

Exercise 2.4.3. [Used in Exercise 4.4.8, Exercise 6.7.9 and Section 8.8.] Let a and b be
integers. The numbers a and b are relatively prime if the following condition holds:
if n is an integer such that n|a and n|b, then n = £1. See Section 8.2 for further
discussion and references.

(1) Find two integers p and ¢ that are relatively prime. Find two integers ¢ and d
that are not relatively prime.
(2) Prove that the following are equivalent.
a. a and b are relatively prime.
b. a and —b are relatively prime.
¢. a+ b and b are relatively prime.
d. a—b and b are relatively prime.

Exercise 2.4.4. Let n be an integer. Prove that one of the two numbers n and n+ 1 is
even, and the other is odd. (You may use the fact that every integer is even or odd.)

Exercise 2.4.5. It follows from Corollary 5.2.5, using n = 3, that if a is an integer,
then precisely one of the following holds: either a = 3k for some integer k, or a =
3k+ 1 for some integer k, or a = 3k + 2 for some integer k.

Let n and m be integers.

(1) Suppose that 3 divides n, and that 3 does not divide m. Prove that 3 does not
divide n +m.
(2) Prove that 3 divides mn if and only if 3 divides m or 3 divides n.

Exercise 2.4.6. Are there any integers p such that p > 1, and such that all three
numbers p, p+2 and p + 4 are prime numbers? If there are such triples, prove that
you have all of them; if there are no such triples, prove why not. Use the discussion
at the start of Exercise 2.4.5.

Exercise 2.4.7. Let n be an integer. Using only the fact that every integer is even
or odd, and without using Corollary 5.2.5, prove that precisely one of the following
holds: either n = 4k for some integer k, or n = 4k + 1 for some integer k, or n = 4k +2
for some integer k, or n = 4k + 3 for some integer k.

Exercise 2.4.8. Let n be an integer. Suppose that n is odd. Prove that there is an
integer k such that n> = 8k + 1.

Exercise 2.4.9. Let x be a real number. Define the absolute value of x, denoted |x|,
by
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o X, if0<x
Xl =
—x, ifx<O0.

Let a and b be real numbers. Prove the following statements.

M) |~a|=la|. 3) la—b|=|b—dl.
Q) |a? =2 @) |ab| = |al|b].

Exercise 2.4.10. Let x and y be real numbers. Let x ~y and x «— y be defined by

X, 1fx2y Y lfoy
X~y= ) and xXwy= .
y, ifx <y, x, ifx<y.

(Observe that x ~ y is simply the maximum of x and y, and x -« y is the mini-
mum, though our notation is more convenient for the present exercise than writing
max{x,y} and similarly for the minimum.)

Let a, b and c be real numbers. Prove the following statements. The definition of
absolute value is given in Exercise 2.4.9.

1) (a~b)+(a~b)=a+b.

) (a~b)+c=(a+c)— (b+c)and (a~b)+c=(a+c)~(b+c).
3) (a~b)~c=a~(b~c)and (a—b)—wc=a~ (b-c).

@ (a~b)—(avb)=|a—b]

(5) a~b=3(a+b+la—b|)anda~ b= L(a+b—|a—b]).

2.5 Quantifiers in Theorems

A close look at the theorems we have already seen, and those we will be seeing,
shows that quantifiers (as discussed in Section 1.5) appear in the statements of many
theorems—implicitly if not explicitly. The presence of quantifiers, and especially
multiple quantifiers, in the statements of theorems is a major source of error in the
construction of valid proofs by beginners. So, extra care should be taken with the
material in this section; mastering it now will save much difficulty later on. Before
proceeding, it is worth reviewing the material in Section 1.5. Though we will not
usually invoke them by name, to avoid distraction, the rules of inference for quanti-
fiers discussed in Section 1.5 are at the heart of much of what we do with quantifiers
in theorems.

We start by considering statements with a single universal quantifier, that is, state-
ments of the form “(Vx in U)P(x).” Many of the theorems we have already seen have
this form, even though the expression “for all” might not appear in their statements.
For example, Theorem 2.3.1 says “Let n be an integer. If n? is odd, then n is odd.”
This statement implicitly involves a universal quantifier, and it can be rephrased as
“For all integers n, if n? is odd, then n is odd.” In order to prove that something is true
for all integers, we picked an arbitrary integer that we labeled n (any other symbol
would do), and proved the result for this arbitrarily chosen integer n. It was crucial
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that we picked an arbitrary integer n, rather than a specific integer, for example 7. It
is true that 72 = 49 is odd, and that 7 is odd, but checking this one particular case
does not tell us anything about what happens in all the other cases where n is an
integer with n? odd.

More generally, suppose that we want to prove a theorem with statement of the
form (Vxin U)P(x). The key observation is that the statement “(Vx in U)P(x)” is
equivalent to “if x is in U, then P(x) is true.” This latter statement has the form
A — B, and it can be proved by any of the methods discussed previously. A direct
proof for (Vx in U)P(x) would therefore proceed by choosing some arbitrary xo in U,
and then deducing that P(xp) holds. Phrases such as “let xo be in U” are often used
at the start of an argument to indicate an arbitrary choice of xy. This type of proof
typically has the following form.

Proof. LetxgbeinU.
(argumentation)

Then P(x) is true. O

Again, we stress that it is crucial in this type of proof that an arbitrary x¢ in
U is picked, not some particularly convenient value. It is not possible to prove that
something is true for all values in U by looking at only one (or more) particular
cases. In terms of rules of inference, look closely at the discussion of the variable in
the Universal Generalization rule of inference in Section 1.5.

For example, a well-known function due to Leonhard Euler is defined by the
formula f(n) = n*> + n+ 41 for all integers n. If you substitute the numbers n =
0,1,2,...,39 into this function, you obtain the numbers 41, 43, 47, ..., 1601, all
of which are prime numbers. It therefore might appear that substituting in every
positive integer into this function would result in a prime number (which would be
a very nice property), but it turns out that £(40) = 1681 = 412, which is not prime.
See [Rib96, p. 199] for more discussion of this, and related, functions. The point is
that if you want to prove that a statement is true for all x in U, it does not suffice to
try only some of the possible values of x.

Statements of the form (Vx in U)P(x) can be proved by strategies other than di-
rect proof. For example, the proof of such a statement using proof by contradiction
typically has the following form.

Proof. We use proof by contradiction. Let yy be in U. Suppose that P(yy) is false.

(argumentation)

Then we arrive at a contradiction. O
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We will not show here any examples of proofs of statements of the form
(Vxin U)P(x), because we have already seen a number of such proofs in the pre-
vious sections of this chapter.

We now consider statements with a single existential quantifier, that is, statements
of the form “(3x in U)P(x).” Using the Existential Generalization rule of inference in
Section 1.5, we see that to prove a theorem of the form (3x)P(x) means that we need
to find some zp in U such that P(zp) holds. It does not matter if there are actually
many x in U such that P(x) holds; we need to produce only one of them to prove
existence. A proof of “(3xin U)P(x)” can also be viewed as involving a statement
of the form A — B. After we produce the desired object zp in U, we then prove the
statement “if x = zo, then P(x) is true.” Such a proof typically has the following form.

Proof. Letzp=...
(argu.mentation)
Then.z() isin U.
(argu‘mentation)

Then P(zp) is true. O

How we find the element zj in the above type of proof is often of great interest,
and sometimes is the bulk of the effort we spend in figuring out the proof, but it is
not part of the actual proof itself. We do not need to explain how we found zp in
the final write-up of the proof. The proof consists only of defining zp, and showing
that 7o is in U, and that P(zp) is true. It is often the case that we find zo by going
backwards, that is, assuming that P(zo) is true, and seeing what zo has to be. However,
this backwards work is not the same as the actual proof, because, as we shall see,
not all mathematical arguments can be reversed—what works backwards does not
necessarily work forwards.

We now turn to a simple example of a proof involving an existential quantifier.
Recall the definitions concerning 2 x 2 matrices prior to Theorem 2.4.5. We say that
a2 x 2 matrix M = (%) has integer entries if a, b, ¢ and d are integers.

Proposition 2.5.1. There exists a 2 X 2 matrix A with integer entries such that detA =
4 and trA =17.

Scratch Work. Let A = (5). The condition detA = 4 means that ad — bc = 4; the
condition trA = 7 means that a+d = 7. We have two equations with four unknowns.
Substituting d = 7 — a into the first equation and rearranging, we obtain a*> — 7a +
(bc+4) = 0. Applying the quadratic equation yields

7++/33—4bc
a= —"———"._
2



2.5 Quantifiers in Theorems 73

Because we want a, b, ¢ and d to be integers, we need to find integer values of b and
¢ such that 33 — 4bc is the square of an odd integer. Trial and error shows that b =2
and ¢ = 3 yield eithera = 5 and d =2, or a =2 and d = 5. (There are other possible
solutions, for example b = —2 and ¢ = 2, but we do not need them). ///

Proof. LetA=(33). ThendetA=5-2—-2-3 =4, andrA =5+2=7. 0

The difference between the scratch work and the actual proof for the above
proposition is quite striking, as often occurs in proofs of theorems involving exis-
tential quantifiers. In the scratch work we went backwards, by which we mean that
we started with the desired conclusion, in this case the assumption that there is some
matrix A as desired, and proceeded to find out what criteria would then be imposed
ona, b, ¢, d. We then found a, b, ¢, d that satisfy these criteria. Such a procedure was
helpful, but it could not be our final proof, because we needed to show that the matrix
A existed; we were not asked to show what could be said about A if it existed, which
is what we did in the scratch work. To show that the desired matrix A existed, we
simply had to produce it, and then show that it satisfied the requisite properties re-
garding its determinant and trace. This is what we did in the proof. How we produced
A is irrelevant to the final proof (though not to our understanding of matrices). It is
important that the actual proof reads “forwards,” not backwards. Moreover, because
we were asked to show only that A existed, and not describe how many possible ma-
trices A there were, we needed to exhibit only one value of A in the actual proof, even
though we knew that there was more than one possibility from our scratch work. Not
everything we learn in the scratch work is necessarily needed in the final proof.

Backwards proofs are so common, especially in elementary mathematics, that
unfortunately they are often unnoticed by students, and rarely criticized by instruc-
tors. Whereas backwards proofs might not produce any real harm in elementary
mathematics, it is crucial to avoid them in advanced mathematics, where questions
of logical implication are often much trickier.

Let us examine two simple examples of backwards proofs. First, suppose that we
are asked to solve the equation 7x + 6 = 21 4 4x. A typical solution submitted by a
high school student might look like

Tx+6=21+4x

3x—15=0 (2.5.1)
3x=15
x=35.

There is nothing wrong with the algebra here, and indeed x = 5 is the correct solution.
For computational purposes such a write-up is fine, but logically it is backwards. We
were asked to find the solutions to the original equation. A solution to an equation is
a number that can be plugged into the equation to obtain a true statement. To solve
an equation in the variable x, we simply have to produce a collection of numbers,
which we then plug into the equation one at a time, verifying that each one makes
the equation a true statement when plugged in. How these solutions are found is
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logically irrelevant (though, of course, of great pedagogical interest). A logically
correct “forwards” write-up of the solution to 7x+ 6 = 21 4 4x would be as follows.

“Let x = 5. Plugging x = 5 into the left-hand side of the equation yields 7x 4
6 =7-5+6 =41, and plugging it into the right-hand side of the equation yields
21 4+4x =2144-5 = 41. Therefore x =5 is a solution. Because the equation is
linear, it has at most one solution. Hence x = 5 is the only solution.”

Such a write-up seems ridiculously long and overly pedantic, given the simplic-
ity of the original equation, and in practice no one would (or should) write such a
solution. Logically, however, it is the correct form for the solution to the problem as
stated. The backwards approach in Equation 2.5.1 did happen to produce the correct
solution to our problem, because all steps in this particular case are reversible. Not
all computations are reversible, however, as we now see.

Suppose that we are asked to solve the equation

Va2 —=5=vx+1,

where, as is common in high school, we consider only real number solutions. A
typical (and backwards) write-up might look like

VS VAT

2

x*—=5=x+1
X —x—6=0
(x=3)(x+2)=0
x=3 or x=-2.
The above write-up is definitely not correct, because x = —2 is not a solution to the

original equation. In fact, it is not even possible to substitute x = —2 into either side of
the original equation, because we cannot take the square root of negative numbers.
The source of the error in the write-up is that not every step in it is reversible; it
is left to the reader to figure out which step cannot be reversed. In an elementary
course such as high school algebra or calculus, it would suffice to write up the above
computation, and then observe that x = —2 should be dropped. In more rigorous
proofs, however, it is best to stick to logically correct writing, in order to avoid errors
that might otherwise be hard to spot. In your scratch work you can go forwards,
backwards, sideways or any combination of these; in the final write-up, however, a
proof should always go forwards, starting with the hypothesis and ending up with
the desired conclusion.

Returning to our discussion of existence results, one variant on such results con-
cerns theorems that involve existence and uniqueness, of which the following the-
orem is an example. This theorem concerns 2 X 2 matrices, as discussed prior to
Theorem 2.4.5. This time we need some additional aspects of matrices, namely, the
2 x 2 identity matrix I = (} 9), and matrix multiplication. It would take us too far
afield to define matrix multiplication here; we assume that the reader is familiar
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with such multiplication. See any introductory text on linear algebra, for example
[AROS, Chapter 1], for information about matrix multiplication. It is easy to verify
that AT = A = IA for any 2 x 2 matrix A. It can also be verified (by a slightly tedious
computation) that (AB)C = A(BC) for any three 2 x 2 matrices A, B and C.

The following theorem concerns inverse matrices. Given a 2 x 2 matrix A, an
inverse matrix for A is a 2 X 2 matrix B such that AB = I = BA. Does every 2 x 2
matrix have an inverse matrix? The answer is no. For example, the matrix ((3) 8) has
no inverse matrix, as the reader may verify (by supposing it has an inverse matrix,
and seeing what happens). The following theorem gives a very useful criterion for
the existence of inverse matrices. In fact, the criterion is both necessary and sufficient
for the existence of inverse matrices, and its analog holds for square matrices of any
size, but we will not prove these stronger results.

Theorem 2.5.2. Let A be a 2 X 2 matrix such that detA # 0. Then A has a unique
inverse matrix.

The phrase “A has a unique inverse matrix” means that an inverse matrix for A
exists, and that only one such inverse matrix exists. The logical notation for such a
statement is (3!x)P(x), where “J!x” means “there exists unique x.” To prove such
a statement, we need to prove two things, namely, existence and uniqueness, and it
is usually best to prove each of these two things separately. It makes no difference
which part is proved first. To prove existence, we proceed as before, and produce
an example of the desired object. To prove uniqueness, the standard strategy is to
assume that there are two objects of the sort we are looking for, and then show that
they are the same. (It is also possible to assume that there are two different objects of
the sort we are looking for, and then arrive at a contradiction by showing that the two
object are actually the same, but there is rarely any advantage to using this alternative
strategy.)

Scratch Work for Theorem 2.5.2. We start with the uniqueness part of the proof,
to show that it really is independent of the existence part of the proof. To prove
uniqueness, we assume that A has two inverse matrices, say B and C, and then use the
properties of matrices cited above, together with the definition of inverse matrices, to
show that B = C. The proof of existence is rather different. A backwards calculation
to try to find an inverse matrix for A would be as follows. Let A = (¢ %). Suppose
that B = (7 ;,) is an inverse matrix of A. Then BA = I and AB = I. The latter equality

N (€9 ()~ ()

ax+bzay+bw\ (10
cx+dzey+dw)  \01)°

This matrix equation yields the four equations

which yields

ax+bz=1
ay+bw=0
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cx+dz=0
cy+dw=1,

where x, y, z and w are to be thought of as the variables and a, b, ¢ and d are to be
thought of as constants. We then solve for x, y, z and w in terms of a, b, ¢ and d.

The solution to these four equations turns out to be x = ﬁ, and y = ad’—f’bc, and
7= 75 and w = % Because detA = ad — bc, we see why the hypothesis that
detA # 0 is necessary. ///

Proof of Theorem 2.5.2. Uniqueness: Suppose that A has two inverse matrices, say
B and C. Then AB =1 = BA and AC =1 = CA. Using standard properties of matrix
multiplication, we then compute

B =BI = B(AC) = (BA)C =IC =C.

Because B = C, we deduce that A has a unique inverse.
Existence: Let A = (¢ %). The condition detA 0 means that ad — bc # 0. Let B be
the 2 x 2 matrix defined by
d —b
B= (adcbc adabc> .

ad—bc ad—bc

Then
d —b ad —bc —ab ab
AB = ab ad—bc ad—bc | — [ ad—bc + ad—bc ad—bc + ad—bc
cd —c a cd + —cd —bc 4 ad
ad—bc ad—bc ad—bc ad—bc ad—bc ad—bc
10
= =1.
01
A similar calculation shows that BA = I. Hence B is an inverse matrix of A. O

An understanding of quantifiers is also useful when we want to prove that a
given statement is false. Suppose that we want to prove that a statement of the form
“(Vxin U)P(x)” is false. We saw in Section 1.5 that —[(Vx in U)Q(x)] is equivalent
to (Ixin U)(—Q(x)). To prove that the original statement is false, it is sufficient to
prove that (3x in U)(—Q(x)) is true. Such a proof would work exactly the same as
any other proof of a statement with an existential quantifier, that is, by finding some
Xo in U such that =Q(xo) is true, which means that Q(xo) is false. The element xo is
called a “counterexample” to the original statement (Vx in U)P(x).

For example, suppose that we want to prove that the statement “all prime numbers
are odd” is false. The statement has the form (Vx)Q(x), where x has values in the
integers, and where Q(x) = “if x is prime, then it is odd.” Using the reasoning above,
it is sufficient to prove that (3x)(—Q(x)) is true. Using Fact 1.3.2 (14), we see that
—Q(x) is equivalent to “x is prime, and it is not odd.” Hence, we need to find some
integer x( such that x( is prime, and it is not odd, which would be a counterexample
to the original statement. The number xy = 2 is just such a number (and in fact it is
the only even prime number, though we do not need that fact). This example is so
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simple that it may seem unnecessary to go through a lengthy discussion of it, but our
point is to illustrate the general approach.

Similar considerations can be used to prove that a statement of the form (3y)R(y)
is false. It is often very hard to show directly that something does not exist, be-
cause one would have to examine all possible cases, and show that none of them
have the desired property. Rather, we use the fact that —[(Jy)R(y)] is equivalent to
(Vy)(=R(y)), and we prove this last statement by our usual methods.

Finally, we look at theorems with statements that involve more than one quanti-
fier. Such theorems might typically have the form (Vy)(3x)P(x,y) or (3a)(Vb)Q(a,D).
We saw in Section 1.5 that there are eight possible ways of forming statements with
two quantifiers, and clearly with more than two quantifiers there are many more pos-
sibilities. There is no point in giving detailed instructions on how to proceed for each
different combination of quantifiers, both because there would be too many cases to
consider, and because one single strategy works in all cases: take one quantifier at a
time, from the outside in. The following two simple results are typical examples of
this strategy.

Proposition 2.5.3. For every real number a, there exists a real number b such that
a®—b*+4=0.

Scratch Work. This proposition has the form (Va)(3b)(a*> — b* +4 = 0), where a
and b are real numbers. To prove this proposition, we start with the outside quantifier,
which is Va. We can rewrite the statement to be proved as (Va)Q(a), where Q(a) =
“(3b)(a*> — b* +4 = 0).” To prove the statement (Va)Q(a), which is a statement with
a single universal quantifier, we proceed as before, namely, by picking an arbitrary
real number ap, and then showing that Q(ao) holds. Therefore we need to show that
(3b)((ag)? — b* +4 = 0) is true for the given ag. Again, we have a statement with
one quantifier, this time an existential quantifier, and we do a backwards computation
to solve for b, which yields b = ++/(ap)? +4, though we need only one of these
solutions. As always, we now write the proof forwards, to make sure that everything
is correct. ///

Proof. Let ag be a real number. Let by = +/(ap)? + 4. Then
(a0)* — (bo)* +4 = (a0)* — (1/ (a0)> +4)* +4 =0.

Hence, for each real number ag, we found a real number b such that (ag)* — (bg)> +
4=0. ad

Proposition 2.5.4. There exists a real number x such that (3 —x)(y*>+1) > 0 for all
real numbers y.

Scratch Work. This proposition has the form (3x)(¥y)((3 —x)(y*> 4+ 1) > 0), where
x and y are real numbers. Again, we start with the outside quantifier, which is Jx. We
rewrite the statement to be proved as (3x)R(x), where R(x) = “(Vy)((3—x)(y* +1) >
0).” We prove the statement (3x)R(x) by producing a single real number x( for which
R(x0) holds. That is, we need to find a real number xo such that (Vy)((3 —xo)(y* +
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1) > 0) is true, and hence we need to find a real number xy, such that if we pick an
arbitrary real number yo, then (3 —x0)((yo)? + 1) > 0 will hold. Again we do our
scratch work backwards. Observe that (yp)? + 1 > 0 for all real numbers yj, and that
3 —xp > 0 for all xg < 3. We need to pick a single value of xq that works, and we
randomly pick xp = 2. ///

Proof. Let xo = 2. Let yg be a real number. Observe that (yg)> + 1 > 0. Then
(3—x0)((v0)* +1) = (3-2)(()* +1) > 0.

Hence, we have found a real number x such that (3 —xo)((yo)?+ 1) > 0 for all real
numbers yy. a

As discussed in Section 1.5, the order of the quantifiers in the statement of a
theorem often matters. The statement of Proposition 2.5.3 is “For every real number
a, there exists a real number b such that a> —b? +4 = 0,” which is (Va)(3b)(a® —b*> +
4 =0). If we were to reverse the quantifiers, we would obtain (3b)(Va)(a®> —b* +4 =
0), which in English would read “there is a real number b such that -0 +4=0
for all real numbers a.” This last statement is not true, which we can demonstrate by
showing that its negation is true. Using Fact 1.5.1 (2), it follows that —[(3b)(Va)(a® —
b?+4=0)] is equivalent to (Vb)(3a)(a* — b* +4 # 0). To prove this latter statement,
let by be an arbitrary real number. We then choose ay = by, in which case (ao)2 —
(bg)* +4 = 4 # 0. Hence the negation of the statement is true, so the statement is
false. We therefore see that the order of the quantifiers in Proposition 2.5.3 does
matter. On the other hand, changing the order of the quantifiers in the statement of
Proposition 2.5.4, while changing the meaning of the statement, does not make it
become false, as the reader may verify.

Exercises

Exercise 2.5.1. Convert the following statements, which do not have their quanti-
fiers explicitly written, into statements with explicit quantifiers (do not prove them,
because the terms are meaningless).

(1) If a5 x 5 matrix has positive determinant then it is bouncy.

(2) There is a crusty integer that is greater than 7.

(3) For each integer k, there is an opulent integer w such that k|w.

(4) There is a fibrous 2 x 2 matrix P such that det P > m, for each ribbed integer
m.

(5) Some 2 x 2 matrix M has the property that every subtle integer divides tr M.

Exercise 2.5.2. A problem that might be given in a high school mathematics class is
“Prove that the equation ¢* = 5 has a unique solution.” We could rewrite the problem
as “Prove that there exists a unique real number x such that ¢* = 5. First, write
up a solution to the problem as would be typically found in a high school class.
Second, write up a proper solution to the problem, using the ideas discussed in this
section. Write up the uniqueness first, without making use of the existence part of
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the proof; avoid a backwards proof when showing existence. Do not use a calculator
(the number x does not have to be given explicitly in decimal expansion).

Exercise 2.5.3. Prove or give a counterexample to each of the following statements.

(1) For each non-negative number s, there exists a non-negative number ¢ such
that s > 1.

(2) There exists a non-negative number ¢ such that for all non-negative numbers
s, the inequality s > ¢ holds.

(3) For each non-negative number ¢, there exists a non-negative number s such
that s > ¢.

(4) There exists a non-negative number s such that for all non-negative numbers
t, the inequality s > ¢ holds.

Exercise 2.5.4. Prove or give a counterexample to each of the following statements.

(1) For each integer a, there exists an integer b such that a|b.
(2) There exists an integer b such that for all integers a, the relation a|b holds.
(3) For each integer b, there exists an integer a such that a|b.
(4) There exists an integer a such that for all integers b, the relation a|b holds.

Exercise 2.5.5. Prove or give a counterexample to each of the following statements.

(1) For each real number x, there exists a real number y such that ¢* —y > 0.

(2) There exists a real number y such that for all real numbers x, the inequality
e* —y > 0 holds.

(3) For each real number y, there exists a real number x such that e* —y > 0.

(4) There exists a real number x such that for all real numbers y, the inequality
e* —y > 0 holds.

Exercise 2.5.6. Prove or give a counterexample to the following statement. For each
positive integer a, there exists a positive integer b such that

1 1

5 < —5-

2b2+b  ab?
Exercise 2.5.7. Prove or give a counterexample to the following statement. For every
real number y, there is a real number x such that e +y = y> — 1.

Exercise 2.5.8. Prove or give a counterexample to the following statement. For each
real number p, there exist real numbers ¢ and r such that gsin (g) =p.

Exercise 2.5.9. Prove or give a counterexample to the following statement. For each
integer x, and for each integer y, there exists an integer z such that z> +2xz — y> = 0.

Exercise 2.5.10. Let P(x,y) be a statement with free variables x and y that are real
numbers. Let a and b be real numbers. The real number u is called the least P-number
for a and b if two conditions hold: (1) the statements P(a,u) and P(b,u) are both true;
and (2) if w is a real number such that P(a,w) and P(b,w) are both true, then u < w.
Suppose that ¢ and d are real numbers, and that there is a least P-number for ¢ and
d. Prove that this least P-number is unique.
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Exercise 2.5.11. A student is asked to show that the equation x(x — 1) = 2(x+2) has
a solution. In the context of writing rigorous proofs, what is wrong with the following
solution she handed in?

“Proof:

x(x—1)=2(x+2)

K —x=2x+4
X —3x—4=0
(x—4)(x+1)=0
x=4 or x=-1

Therefore there are two solutions.”

Exercise 2.5.12. Look through mathematics textbooks that you have previously used
(in either high school or college), and find an example of a backwards proof.

2.6 Writing Mathematics

In mathematics—as in any other field—careful writing is of great importance for
both the writer and the reader. Careful writing is clearly necessary if the writer’s
proofs are to be understood by the reader. For the writer’s own benefit, putting a
mathematical idea into written form forces her to pay attention to all the details of
an argument. Often an idea that seemed to make sense in one’s head is found to be
insufficient when put on paper. Any experienced mathematician knows that until an
idea has been written up carefully, its correctness cannot be assumed, no matter how
good the idea seemed at first.

Mathematical correctness is certainly the ultimate test of the validity of a proof,
but to allow us to judge mathematical correctness, however, a number of important
factors in the proper writing of mathematics are needed. Some of these ideas are de-
scribed below. See [Gil87], [Hig98], [KLR89] and [SHSD73] for further discussion
of writing mathematics.

1. A Written Proof Should Stand on Its Own

The first rule of writing proofs actually applies to all forms of writing, not just math-
ematical writing: The written text should stand on its own, without any need for clar-
ification by the writer. Unlike writing of a more personal nature such as poetry and
fiction, a written proof is not an expression of the writer’s feelings, but rather a docu-
ment that should work according to objective standards. When writing a proof, state
everything you are doing as explicitly and clearly as possible. DO NOT ASSUME
THE READER IS A MIND READER. Err on the side of too much explanation.
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2. Write Precisely and Carefully

There is no room in mathematics for ambiguity. The most minute matters of phrase-
ology in mathematics may make a difference. For example, compare the statement
“If the given integer n is prime then it is not less than 2, and it is a perfect number”
with “If the given integer n is prime, then it is not less than 2 and it is a perfect
number.” Something as seemingly insignificant as the change of the location of a
comma can change the meaning of a statement. MAKE SURE WHAT YOU WRITE
IS WHAT YOU MEAN.

As in non-mathematical writing, revision is often the key to achieving precision
and clarity. Do not confuse the rough drafts of a proof with the final written version.
You should revise your proofs just as you should revise all writing, which is by trying
to read what you wrote as if someone else (whose thoughts you do not know) had
written it.

Write mathematics in simple, straightforward, plodding prose. Leave your imag-
ination to the mathematical content of your writing, but keep it out of your writing
style, so that your writing does not get in the way of communicating your mathemat-
ical ideas. Serious mathematics is hard enough as it is, without having unnecessary
verbiage or convoluted sentences making it even less clear.

Particular care should be taken with the use of mathematical terminology, where
common words are sometimes given technical meanings different from their collo-
quial meanings (for example, the word “or”). Precision should not be overlooked in
the statement of what is being proved. Mathematics is often read by skipping back
and forth, and so it is important that the statements of theorems, lemmas, proposi-
tions and the like contain all their hypotheses, rather than having the hypotheses in
some earlier paragraphs. Better a bit of redundancy than a confused reader.

3. Prove What Is Appropriate

A good proof should have just the right amount of detail—neither too little nor too
much. The question of what needs to be included in a proof, and what can be taken as
known by the reader, is often a matter of judgment. A good guideline is to assume that
the reader is at the exact same level of knowledge as you are, but does not know the
proof you are writing. It is certainly safe to assume that the reader knows elementary
mathematics at the high school level (for example, the quadratic formula). In general,
do not assume that the reader knows anything beyond what has been covered in your
mathematics courses. When in doubt—prove.

4. Be Careful with Saying Things Are “Obvious”

It is very tempting to skip over some details in a proof by saying that they are “obvi-
ous” or are “‘similar to what has already been shown.” Such statements are legitimate
if true, but are often used as a cover for uncertainty or laziness. “Obvious” is in the
eye of the beholder; what may seem obvious to the writer after spending hours (or
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days) on a problem might not be so obvious to the reader. That something is obvi-
ous should mean that another person at your level of mathematical knowledge could
figure it out in very little time and with little effort. If it does not conform to this cri-
terion, it is not “obvious.” As an insightful colleague once pointed out, if something
is truly obvious, then there is probably no need to remind the reader of that fact.

The words “trivial” and “obvious” mean different things when used by math-
ematicians. Something is trivial if, after some amount of thought, a logically very
simple proof is found. Something is obvious if, relative to a given amount of math-
ematical knowledge, a proof can be thought of very quickly by anyone at the given
level. According to an old joke, a professor tells students during a lecture that a
certain theorem is trivial; when challenged by one student, the professor thinks and
thinks, steps out of the room to think some more, comes back an hour later, and an-
nounces to the class that the student was right, and that the result really is trivial. The
joke hinges on the fact that something can be trivial without being obvious.

5. Use Full Sentences and Correct Grammar

The use of correct grammar (such as complete sentences and correct punctuation)
is crucial if the reader is to follow what is written. Mathematical writing should
be no less grammatically correct than literary prose. Mathematics is not written in
a language different from the language we use for general speech. In this text all
mathematics is written in English.

A distinguishing feature of mathematical writing is the use of symbols. It is very
important to understand that mathematical symbols are nothing but shorthand for
expressions that could just as well be written out in words. For example, the phrase
“x = z%” could be written as “the variable x equals the square of the variable z.”
Mathematical symbols are therefore subject to the rules of grammar just as words
are. Mathematical symbols floating freely on a page are neither understandable nor
acceptable. All symbols, even those displayed between lines, should be embedded in
sentences and paragraphs.

A proof is an explanation of why something is true. A well-written proof is an ex-
planation that someone else can understand. Proper grammar helps the reader follow
the logical flow of the proof. Connective words such as “therefore,” “hence” and “it
follows that” help guide the logical flow, and should be used liberally. Look through
this entire book, and you will see that we always use complete sentences and para-
graphs, as well as correct grammar and the frequent use of connective words (except,
of course, for some instances of typographical errors). Though it may at times seem
cumbersome when you are writing a proof, and would like to get it done as quickly
as possible, sticking with correct grammar and a readable style will pay off in the
long run.

The following two examples of poor writing, both of which contain all the math-
ematical ideas of the proof of Theorem 2.3.5, are written without regard to proper
grammar and style, and are modeled on homework assignments the author has re-
ceived from students. Compare these versions of the proof with the proof as origi-
nally given in Section 2.3.
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The first version is genuinely awful, though for reasons the author does not un-
derstand, some students seem to be given the impression in high school that this sort
of writing is acceptable.

x? =2 and x rational
Sx=a
n and m have no common factors
(%)2 =2= :1—22 =2 = n? = 2m? which is even
if n odd, n? odd (Exercise 2.2.4) contradiction
. neven
n =2k = (2k)> =2m* = 4k> = 2m*> = 2k> = m?

m even (as before)
.".n and m both even—impossible (no common factors)

.. x 1s not rational.

This second version is slightly better, being in paragraph form and with a few more
words, but it is still far from desirable.

L 2
x* =2, xis rational. so x = £; n and m have no common factors. (£)” =2,

;1722 =2, n* = 2m?. If n were odd, then n> would be odd by Exercise 2.2.4
a contradiction because 2m? is even because it is divisible by 2. n not odd
and hence is even. n = 2k (2k)2 = 2m?, 4k* = 2m?, 2k* = m*. m is even
as before both n and m even—impossible because any two even numbers
have 2 as a factor, but n and m have no common factors. x is not rational.

Mathematicians do not write papers and books this way; please do not write this way
yourself!

6. Use “="’ Signs Properly

One of the hallmarks of poor mathematical writing is the improper use of “="" signs.
It is common for beginners in mathematics to write “="" when it is not appropriate,
and to drop “=" signs when they are needed. Both these mistakes should be stu-
diously avoided. For example, suppose that a student is asked to take the derivative
of the function defined by f(x) = x? for all real numbers x. The first type of mistake
occurs when someone writes something such as “f(x) = ¥ =2=f (x).” What is
meant is correct, but what is actually written is false (because this function does not
equal its derivative), and it is therefore extremely confusing to anyone other than the
writer of the statement. THE READER SHOULD NOT HAVE TO GUESS WHAT
THE WRITER INTENDED.

The second type of mistake occurs when someone writes “f(x) = x2, and so 2x.”
Here again the reader has to guess what is meant by 2x. If it is meant that f(x) = 2x,
then why not write that?

Both of these examples of the improper use of “=" signs may seem far-fetched,
but the author has seen these and similar mistakes quite regularly on homework as-
signments and tests in calculus courses. A proper write-up could be either “f(x) = x?
for all real numbers x, so f(x) = 2x for all x,” or simply “(x?)’ = 2x.”
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w__

Another common type of error involving signs involves lengthier calcula-

tions. Suppose that a student is asked to show that
(X% 4 2x) (2 — 4) (x* — 2x) = (x* — 4x)°.

An incorrect way of writing the calculation, which the author has seen very regularly
on homework assignments, would be

(x% 4 2x) (x> — 4) (x* = 2x) = (x* —4x)?
x(x4+2)(x—2)(x+2)x(x —2) = (x* —4x)?
KPx4+2) 2 (x—2)2 = (x* —4x)?
r(x—2)(x+2) = (x* —4x)?

(X —4x)? = (x* —4x)2.

The problem here is that this calculation as written is a backwards proof, as discussed
in Section 2.5. The calculation starts by stating the equation that we are trying to
prove, and deducing from it an equation that is clearly true. A correct proof should
start from what we know to be true, and deduce that which we are trying to prove.
In principle, if the writer of such a backwards proof were to verify that every step is
reversible, and indicate this fact after the above write-up, then the calculation would
be correct. However, no one ever does that, and doing so would be more complicated
than doing the proof correctly to begin with.

Another incorrect way of writing this same calculation, and also one that the
author has seen regularly, is

(X% 4 2x) (x> — 4) (x* — 2x)
x(x4+2)(x—=2)(x+2)x(x—2)
P (x+2)%(x—2)?
e(x—2)(x +2)]?

(x* —4x)2.

The problem here is with what is not written, namely, the “="" signs. What is written
is a collections of formulas, without any explicit indication of what equals what.
The reader can often deduce what the writer of such a collection of formulas meant,
but why risk confusion? Written mathematics should strive for clarity, and should
therefore state exactly what the writer means.

A helpful way to think about this second type of error is via the need for correct
grammar. The statement “(x> + 2x) (x> — 4)(x* — 2x) = (x> — 4x)?” is a complete
sentence, with subject “(x? + 2x) (x> — 4) (x> — 2x),” with verb “=" and with object
“(x* — 4x)%” To drop the = sign is to drop the verb in this sentence. Few students
would ever turn in a literature paper with missing verbs. And yet, unfortunately, many
students do the equivalent in mathematics homework assignments—not because of
any ill intention, but because, sadly, improper ways of writing lengthy calculations
are actually taught to many students in high school. These errors should be discarded.
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There are a number of correct ways of writing the above calculation, for example
(0 +2x) (2 —4) (x* = 2x) = x(x+2) (x — 2) (x +2)x(x — 2)
P(x+2)*(x-2)?
= (r—2)(x+2)]°
= (o —4x)?,

and

(X% 42x) (x> —4) (2 = 2x) = x(x +2) (x — 2) (x 4+ 2)x(x — 2)
=2 (x+2)2(x—2)% = x(x—2)(x+2)]> = (£ —4x)%.

The differences between these correctly written calculations and the incorrect ones
may seem extremely minor and overly picky, but mathematics is a difficult subject,
and every little detail that makes something easier to follow (not to mention log-
ically correct) is worthwhile. A lack of attention to fundamentals such as writing
“="signs correctly can often be a symptom of a general lack of attention to logical
thoroughness. A good place to start building logical thinking is with the basics.

7. Define All Symbols and Terms You Make Up

Any mathematical symbols used as variables, even simple ones such as x or n, need
to be defined before they are used. Such a definition might be as simple as “let x be a
real number.” (If you are familiar with programming languages such as C++ or Java,
think of having to declare all variables before they are used.) For example, it is not
acceptable to write “x + y” without somewhere stating that x and y are real numbers
(or whatever else they might be); the symbol + needs no definition, because it is not
a variable, and its meaning is well-known. The same need for definition holds when
the variable is a set, function, relation or anything else. Just because a letter such as
n is often used to denote an integer, or the letter f is often used to denote a function,
one cannot rely upon such conventions, because these same letters can be used to
mean other things as well. If you want to use n to denote an integer, you must say so
explicitly, and similarly for f denoting a function.

The need to define variables can get a bit tricky when quantifiers are involved.
It is important to understand the scope of any quantifier being used. Suppose that
somewhere in a proof you have the statement “for each positive integer n, there
is an integer p such that ....” The variables n and p are bound variables, and are
defined only inside that statement. They cannot be used subsequently, unless they
are redefined. If you subsequently want to use a positive integer, you cannot assume
that the symbol 7 has already been defined as such. You would need to define it for
the current use, by saying, as usual, something such as “let n be a positive integer.”

Finally, it is tempting in the course of a complicated proof to make up new words
and symbols, and to use all sorts of exotic alphabets. For the sake of readability, avoid
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this temptation as much as possible. Do not use more symbols than absolutely nec-
essary, and avoid exotic letters and complications (such as subscripts of subscripts)
where feasible. Try to stick to standard notation. If you do make up some notation,
make sure you define it explicitly.

8. Break Up a Long Proof into Steps

If a proof is long and difficult to follow, it is often wise to break it up into steps, or to
isolate preliminary parts of the proof as lemmas (which are simply smaller theorems
used to prove bigger theorems). If you use lemmas, be sure to state them precisely.
Prior to going into the details of a long proof, it is often useful to give a sentence or
two outlining the strategy of the proof. All lemmas and their proofs should be placed
before they are used in the main theorem. Do not put a lemma inside the proof of the
main theorem—doing so can be very confusing to the reader.

9. Distinguish Formal vs. Informal Writing

Writing mathematics involves both formal and informal writing. Formal writing is
used for definitions, statements of theorems, proofs and examples; informal writing
is for motivation, intuitive explanations, descriptions of the mathematical literature,
etc. When writing up the solution to an exercise for a mathematics course, the writ-
ing should be a formal proof. A lengthier exposition (such as a thesis or a book)
will make use of both kinds of writing—formal writing to make sure that mathemat-
ical rigor is maintained, and informal writing to make the text understandable and
interesting. Do not confuse the two types of writing, or each will fail to do what it
is supposed to do. Intuitive aids such as drawings, graphs, Venn diagrams and the
like are extremely helpful when writing up a proof, though such aids should be in
addition to the proof, not instead of it.

10. Miscellaneous Writing Tips

Most of the following items are from [KLR89] and [0OZ96, pp. 109-118], which
have many other valuable suggestions not included here for the sake of brevity. All
the examples of poor writing given below are based on what the author has seen in
homework assignments and tests.

(A) Do not put a mathematical symbol directly following punctuation. As a corol-
lary, do not start a sentence with a symbol. The only exception to this rule is when the
punctuation is part of the mathematical notation, for example (x,y). It is important to
avoid ambiguities that might arise from using punctuation without proper care. For
example, does the expression “0 < x,y < 17 mean that both x and y are between 0
and 1, or does it mean that 0 < xand y < 1?

Bad: For all x > 3, x> > 9. y <0, so xy < 0.

Good: For all x > 3, it follows that x> > 9. Moreover, because y <0, then

xy < 0.



2.6 Writing Mathematics 87

(B) In the final write-up of a proof, do not use logical symbols, such as A, V, 3, V
and =, as abbreviations for words. Unless you are writing about logic, where logical
symbols are necessary, the use of logical symbols makes proofs harder for others to
read. Of course, you may use any symbols you want in your scratch work.

Bad: V distinct real numbers x A y, if x < y = Jrational g such thatx < g < y.

Good: For all distinct real numbers x and y, if x < y then there exists a

rational number ¢ such that x < g < y.
(C) Use equal signs only in equations (and only then when the two sides are equal!).
Do not use equal signs when you mean “implies,” “the next step is” or “denotes.” Do
not use equal signs instead of punctuation, or as a substitute for something properly
expressed in words.

Bad: n = odd =2k+1.

Good: Let n be an odd number. Then n = 2k + 1 for some integer k.

Bad: For the next step, leti =i+ 1.

Good: For the next step, replace i with i+ 1.

Bad: Let P = the # of people in the room.

Good: Let P denote the number of people in the room.
(D) Use consistent notation throughout a proof. For example, if you start a proof
using uppercase letters for matrices and lowercase letters for numbers, stick with
that notation for the duration of the proof. Do not use the same notation to mean
two different things, except when it is unavoidable due to standard mathematical
usage—for example, the multiple uses of the notation “(a,b).”
(E) Display long formulas, as well as short ones that are important, on their own
lines. Recall, however, that such displayed formulas are still parts of sentences, and
require normal punctuation. In particular, if a sentence ends with a displayed formula,
do not forget the period at the end of the formula. Also, do not put an unnecessary
colon in front of a displayed formula that does not require it.

Bad: From our previous calculations, we see that:

X —rcosf =/y2+3

Good: From our previous calculations, we see that

X —rcos = +/y2+3.

(F) Colons are very rarely needed. They are usually either unnecessary, as in the
bad example in Item (E), or meant as substitutes for words in situations where words
would be much more clear. In mathematical writing, colons should normally be used
only in headings or at the starts of lists, and in certain mathematical symbols. Do
not use a colon in mathematical writing in a place where you would not use one in
non-mathematical writing.

Bad: x> 4 10x + 3 = 0 has two real solutions: 10> —4-1-3 > 0.

Good: The equation x> + 10x + 3 = 0 has two real solutions because 10> —

4-1-3>0.
(G) Capitalize names such as “Theorem 2.3” and “Lemma 17.” No capitalization is
needed in phrases such as “by the previous theorem.”
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Exercises

Exercise 2.6.1. State what is wrong with each of the following write-ups; some have
more than one error.

(1) We make use of the fact about the real numbers that if x > 0, x> > 0.
(2) To solve x* + 6x = 16:

2 +6x=16
P 4+6x—16=0
(x=2)(x+8)=0

and x =2, x = —8.

(3) In order to solve x> 4 6x = 16, then x*> + 6x — 16 =0, (x —2)(x+8) = 0, and
therefore x =2, x = —8.

(4) We want to solve the equation x> — 2x = x + 10. then x> — 3x — 10, so (x—
5)(x+2),s05 and —2.

(5) We want to multiply the two polynomials (7 +2y) and (y* + 5y — 6), which
we do by computing

(7+2y)(y* +5y—6)
7y 435y — 4242y° + 10y* — 12y
293 +17y* + 23y — 42

the answer is 2y* + 17y 423y — 42.

(6) A real number x is gloppy if there is some integer n such that x> — n is sloppy.
Suppose that x is gloppy. Because 7 is an integer, then its square is an integer,
... . (The terms here are meaningless.)

(7) Let x be a real number. Then x% > 0 for all real numbers x, ... .

(8) It is known that \/a < a for all @ > 1. Hence /a + 3 < a+ 3. Hence (y/a+
3)2 < (a+3)>



Part 11
FUNDAMENTALS

We turn now from the “how” of mathematics, which is the methodol-
ogy of proofs, to the “what,” which is the content of mathematics. In
such a vastly broad subject as mathematics, it might be hard to imag-
ine that there is anything common to all aspects of it, but in fact most
of modern pure mathematics is based upon a few shared fundamental
ideas such as sets, functions and relations. We now discuss the basic
features of these ideas. The tone and style of writing in the text now
changes correspondingly to the change in our subject matter. We will
have less informal discussion, and will write in the more straightforward
definition/theorem/proof style used in most advanced mathematics texts
(though we will not drop all intuitive explanation). This change in style
occurs for several reasons: the need to cover a fairly large amount of ma-
terial in a reasonable amount of space; the intention of familiarizing the
reader with the standard way in which mathematics is written; the fact
that with practice (which comes from doing exercises), the reader will
not need to be led through the proofs so slowly any more.






Sets

No one shall expel us from the paradise that Cantor created for us.
— David Hilbert (1862-1943)

3.1 Introduction

A completely rigorous treatment of mathematics, it might seem, would require us to
define every term and prove every statement we encounter. However, unless we want
to engage in circular reasoning, or have an argument that goes backwards infinitely
far, we have to choose some place as a logical starting point, and then do every-
thing else on the basis of this starting point. This approach is precisely what Euclid
attempted to do for geometry in “The Elements,” where certain axioms were for-
mulated, and everything else was deduced from them. (We say “attempted” because
there are some logical gaps in “The Elements,” starting with the proof of the very first
proposition in Book I. Fortunately, these gaps can be fixed by using a more complete
collection of axioms, such as the one proposed by Hilbert in 1899, which made Eu-
clidean geometry into the rigorous system that most people believed it was all along.
The discovery of non-Euclidean geometry is a separate matter. See [WW98] for de-
tails on both these issues. This critique of Euclid, it should be stressed, is in no way
intended to deny the overwhelming importance of his work.)

What Euclid did not seem to realize was that what holds for theorems also holds
for definitions. Consider, for example, Euclid’s definition of a straight line, found
at the start of “The Elements”: “A line is breadthless length. A straight line is a line
which lies evenly with itself.” By modern standards this definition is rather worthless.
What is a “length,” breadthless or not, and what is “breadth”? What does it mean
for something to “lie evenly with itself”’? This last phrase does correspond to our
intuitive understanding of straight lines, but if we want to give a rigorous definition
such vague language will definitely not do.

The problem with Euclid’s definitions is not just their details, but rather the at-
tempt to define every term used. Just as we cannot prove every theorem, and have
to start with some unproved results, we cannot define every object, and need to
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start with some undefined terms. Even analytic geometry (invented long after Eu-
clid), which appears to do geometry without the use of axioms about geometry, ul-
timately relies upon some axioms and undefined terms regarding the real numbers.
Axioms and undefined terms are unavoidable for rigorous mathematics. The modern
approach in mathematics accepts the existence of undefined terms, as long as they
are used properly. Ultimately, undefined objects do not bother us because such ob-
jects do not so much exist in themselves as they are determined by the axiomatic
properties hypothesized for them, and it is these properties that we use in proofs.

A common misconception is that mathematicians spend their time writing down
arbitrary collections of axioms, and then playing with them to see what they can de-
duce from each collection. Mathematics (at least of the pure variety) is then thought
to be a kind of formal, abstract game with no purpose other than the fun of play-
ing it (others might phrase it less kindly). In fact, nothing could be further from the
truth. Not only would arbitrarily chosen axioms quite likely be contradictory, but, no
less important, they would not describe anything of interest. The various axiomatic
schemes used in modern mathematics, in such areas as group theory, linear alge-
bra and topology, were arrived at only after long periods of study, involving many
concrete examples and much trial and error. You will see these various collections
of axioms in subsequent mathematics courses. The point of axiomatic systems is to
rigorize various parts of mathematics that are otherwise of interest, for either his-
torical or applied reasons. Of course, mathematicians do find real pleasure in doing
mathematics—that is why most of us do it—but it is the pleasure of thinking about
subtle and fascinating ideas, not the pleasure of playing games.

In this text we will not focus on developing mathematics in an axiomatic fashion,
though a few systems of axioms will be given in Chapter 7. In the present chapter
we will discuss the common basis for all systems of axioms used in contemporary
mathematics, which is set theory. Though of surprisingly recent vintage, having been
developed by Georg Cantor in the late nineteenth century, set theory has become
widely accepted among mathematicians as the starting place for rigorous mathemat-
ics. We will take an intuitive approach to set theory (often referred to as “naive set
theory”), but then build on it rigorously. Set theory itself can be done axiomatically,
though doing so is non-trivial, and there are a number of different approaches that
are used. In Section 3.5 we will informally discuss the most common axiomatic ap-
proach to set theory, the Zermelo—Fraenkel Axioms, but other than in that section we
maintain the standard approach of taking an intuitive approach to the foundations of
set theory, but then proving everything else rigorously on the basis of sets.

For additional information about naive set theory see the classic reference [Hal60];
see [EFT94, Section 7.4] for a discussion of the role of set theory as a basis for math-
ematics; and see [Sup60], [Ham82], [Dev93] and [Vau95] for more about axiomatic
set theory.
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3.2 Sets—Basic Definitions

The basic undefined term we will use is that of a set, which we take to be any col-
lection of objects, not necessarily mathematical ones. For example, we can take the
set of all people born in San Francisco in 1963. The objects contained in the set are
called the elements or members of the set. If A is a set and « is an element of A, we
write

acA.

If a is not in the set A, we write
ag¢A.

Given any set A and any object @, we assume that precisely one of « € A or a ¢ A
holds.

The simplest way of presenting a set is to list its elements, which by standard
convention are written between curly brackets. For example, the set consisting of the
letters a, b, ¢ and d is written

{a,b,c,d}.

The order in which the elements of a set are listed is irrelevant. Hence the set {1,2,3}
is the same as the set {2,3, 1}. Each element of a set is listed once and only once, so
that we would never write {1,2,2,3}.

There are four sets of numbers that we will use regularly: the set of natural
numbers

{1,2,3,...},

denoted N; the set of integers
{..,—2,—1,0,1,2,...},

denoted 7Z; the set of rational numbers, denoted QQ, which is the set of fractions;
the set of real numbers, denoted R, which is the set of all the numbers that are
informally thought of as forming the number line.

An extremely valuable set we will regularly encounter is the empty set (also
called the null set) which is the set that does not have any elements in it. That is, the
empty set is the set { }. This set is denoted 0. It may seem strange to consider a set
that doesn’t have anything in it, but the role of the empty set in set theory is somewhat
analogous to the role of zero in arithmetic. (The number zero was a historically late
arrival, and presumably might have seemed strange to some at first, just as the empty
set might seem strange at first today; zero does not seem strange to us today because
we start getting used to it at a young age).

It is sometimes not convenient, or not possible, to list explicitly all the elements
of a set. In such situations it is sometimes possible to present a set by describing it as
the set of all elements satisfying some criteria. For example, consider the set of all
integers that are perfect squares. We could write this set as

S={n€Z|nisaperfect square},
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which is read “the set of all n in Z such that n is a perfect square.” Some books use

[T

a colon “:” instead of a vertical line in the above set notation, though the meaning is
exactly the same, namely, “such that.” If we want to write the above set even more
carefully we could write

S={n€Z|n=k*for some k € Z}.
If we wanted to emphasize the existential quantifier, we could write
S = {n € Z | there exists k € Z such that n = k>}. (3.2.1)

The letters n and k used in this definition are “dummy variables.” We would obtain
the exact same set if we wrote

S = {x € Z | there exists r € Z such that x = r*}. (3.2.2)

The above method of defining sets is quite straightforward, but there is one point
about this method that needs to be stressed. Because the letters x and r in Equa-
tion 3.2.2 are dummy variables, we cannot use them outside the “{ | }”” notation
without redefinition. Hence, if we want to refer to some element of the set defined
in Equation 3.2.1 and Equation 3.2.2, for example pointing out that such elements
must be non-negative, it would not be correct to say simply “observe that x > 0.” By
contrast, it would be correct to say “observe that x > 0 for all x € S.” However, this
latter formulation has the defect that if we want to continue to discuss elements in S,
we would have to define x once again, because the x in “x > 0 for all x € S is bound
by the quantifier. A better approach would be to write “let x € S; then x > 0.” Now
that x has been defined as an element of S, not bound by a quantifier, we can use it
as often as we wish without redefinition.

An example of the above method of defining sets is seen in the following widely
used definition.

Definition 3.2.1. An open bounded interval is a set of the form
(a,b) ={xeR|a<x<b},
where a,b € R and a < b. A closed bounded interval is a set of the form
[a,b] ={xeR|a<x<b},
where a,b € R and a < b. A half-open interval is a set of the form
[a,b) ={xeR|a<x<b} or (a,b]={xeR|a<x<b},
where a,b € R and a < b. An open unbounded interval is a set of the form
(a,0) ={xeR|a<x} or (—eo,b)={xeR|x<b} or (—oo,00)=R,
where a,b € R. A closed unbounded interval is a set of the form
[a,0)={xeR|a<x} or (—oo,b]={xeR|x<b},
where a,b € R. A
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Observe that there are no intervals that are “closed” at co or —eo, for example

[T39 L)

there is no interval of the form [a, o], because “eo” is not a real number, and therefore
it cannot be included in an interval contained in the real numbers. The symbol “co”
is simply a shorthand way of saying that an interval “goes on forever.”

If a,b € R and a < b, then the set (a, b) is “contained in” the set [a, b]. This notion

of a set being contained in another is formalized as follows.

Definition 3.2.2. Let A and B be sets. The set A is a subset of the set B, denoted
A C B, if x € A implies x € B. If A is not a subset of B, we write A  B. AN

Observe that if A and B are sets and if A ¢ B, then it is still possible that some of
the elements of A are in B, just not all. See Figure 3.2.1 for a schematic drawing of
ACBandA ¢ B.

oL (4

ACB AZB

Fig. 3.2.1.

Example 3.2.3.

(1) LetA={1,2,3,4} and B={1,3}. Then BC A and A Z B.

(2) Let M be the set of all men, and let T be the set of all proctologists. Then
T ¢ M because not all proctologists are men, and M ¢ T because not all men are
proctologists. O

There is a standard strategy for proving a statement of the form “A C B,” which
is to take an arbitrary element a € A, and then to use the definitions of A and B to
deduce that a € B. Such a proof typically has the following form.

Proof. Letac A.
(argumentation)

Then a € B. Hence A C B. O

We will see a number of proofs using this strategy throughout this chapter. To
prove a statement of the form “A ¢ B,” by contrast, we simply need to find some a € A
such that a ¢ B, a fact that seems intuitively clear, and that can be seen formally as
follows. The statement A C B can be written as (Vx)([x € A] — [x € B]). Then A Z B
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can be written as —(Vx)([x € A] — [x € B]), which is equivalent to (3x)([x € A] A [x ¢
BJ) by Fact 1.5.1 (1) and Fact 1.3.2 (14).

It is important to distinguish between the notion of an object being an element
of a set, and the notion of a set being a subset of another set. For example, let A =
{a,b,c}. Then a € A and {a} C A are true, whereas the statements “a C A” and
“{a} € A” are false. Also, observe that a set can be an element of another set. Let
B = {{a},b,c}. Observe that B is not the same as the set A. Then {a} € B and
{{a}} C B are true, but “a € B” and “{a} C B” are false.

The following lemma states some basic properties of subsets. The proof of this
lemma, our first proof about sets, makes repeated use of the strategy mentioned above
for showing that one set is a subset of another set.

Lemma 3.2.4. Let A, B and C be sets.

1. ACA.
2. 0 CA.
3. fACBand BCC, then A C C.

Proof.

(1). To show that A C A, we start by choosing an arbitrary element a € A, where
we think of this “A” as the one on the left-hand side of the expression “A C A.” It
then follows that a € A, where we now think of this “A” as the one on the right-hand
side of the expression “A C A.” Hence A C A, using the definition of subsets.

(2). We give two proofs, because both are instructive. First, we have a direct
proof. To show that @ C A, we need to show that if a € @, then a € A. Because a € 0
is always false, then the logical implication “if a € 0, then a € A” is always true,
using the precise definition of the conditional given in Section 1.2.

Next, we have a proof by contradiction. Suppose that @ Z A. Then there exists
some x € @ such that x ¢ A. This statement cannot be true, however, because there
is no x such that x € @. We have therefore reached a contradiction, and hence the
desired result is true.

This proof by contradiction might not appear to fit the standard outline for such
proofs as described in Section 2.3, because it does not appear as if we are viewing
the statement being proved as having the form P — Q. In fact, there are two ways of
viewing the statement being proved as having this form. For the direct proof given
above, we viewed the statement being proved as (VA)([a € 0] — [a € A]). We then
chose an arbitrary set A, and proved the statement [a € 0] — [a € A]. For the proof
by contradiction, we viewed the statement being proved as “if A is a set, then 0 C A,”
and then indeed used our standard method of doing proof by contradiction.

(3). This proof, having no logical tricks, is extremely typical. Let a € A. Because
A C B, it follows that a € B. Because B C C, it follows that a € C. Therefore we see
that a € A implies a € C, and hence A C C. O

When are two sets equal to one another? Intuitively, two sets are equal when they
have the same elements. We formally define this concept as follows.
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Definition 3.2.5. Let A and B be sets. The set A equals the set B, denoted A = B, if
A C Band B C A. The set A is a proper subset of the set B, denoted A ; B,ifACB
and A # B. A

There is a bit of variation in the mathematical literature for the notation used for
proper subsets. Some texts use A C B to mean A is a proper subset of B, whereas
others use the notation A C B to mean what we write as A C B.

Example 3.2.6.

(1) Let A and B be the sets in Example 3.2.3 (1). Then B is a proper subset of A.
(2) Let X = {a,b,c}, and let Y = {c¢,b,a}. Then clearly X CY and Y C X, so
X=Y.
(3) Let
P={xcR|x*—5x+6<0},

and
O0={xeR|2<x<3}

We will show that P = Q, putting in more detail than is really necessary for a prob-
lem at this level of difficulty, but we want to make the proof strategy as explicit as
possible.

First, we show that P C Q. Lety € P. Then y> —5y+6 < 0. Hence (y—2)(y—3) <
0. It follows that either y—2 <0 and y—3 >0, orthat y—2 >0 and y —3 < 0. If
y—2<0andy—3>0,theny < 2and 3 <y; because there is no number that satisfies
both these inequalities, then this case cannot occur. If y —2 > 0 and y — 3 < 0, then
2 <yandy < 3. Hence 2 <y < 3. It follows that y € Q. Therefore P C Q.

Next, we show that Q C P. Letz € Q. Then 2 < 7z < 3. Hence 2 < zand z < 3, and
s0z—2>0and z— 3 < 0. Therefore (z —2)(z—3) < 0, and therefore z> — 57+ 6 < 0.
Hence z € P. Therefore Q C P.

By combining the previous two paragraphs we deduce that P = Q. %

Example 3.2.6 (3) may seem to be much ado about nothing, because the result
proved is trivial, but the strategy used is not. Virtually every time we show that two
sets A and B are equal, we go back to the definition of equality of sets. The strategy
for proving a statement of the form “A = B” for sets A and B is therefore to prove
that A C B and that B C A. Such a proof typically has the following form.

Proof. Leta € A.
(argumentation)

Then a € B. Therefore A C B.
Next, Let b € B.

(argumentation)
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Then b € A. Hence B C A.
We conclude that A = B. O

We will see a number of examples of this strategy, starting with the proof of
Theorem 3.3.3 (4) in the next section.

The following lemma gives the most basic properties of equality of sets. The
three parts of the lemma correspond to three properties of relations we will discuss
in Sections 5.1 and 5.3.

Lemma 3.2.7. Let A, B and C be sets.

1. A=A
2. If A= B then B=A.
3. fA=Band B=C, then A =C.

Proof. All three parts of this lemma follow straightforwardly from the definition of
equality of sets together with Lemma 3.2.4. Details are left to the reader. 0O

In some situations we will find it useful to look at not just one subset of a given
set, but at all subsets of the set. In particular, we can form a new set, the elements of
which are the subsets of the given set.

Definition 3.2.8. Let A be a set. The power set of A, denoted ?(A), is the set defined
by

PA)={X|X CA}. A
Example 3.2.9.

(1) Because @ C 0, then P(0) = {0}. In particular, we see that 2(0) # 0.

(2) Let A ={a,b,c}. Then the subsets of A are 0, {a}, {b}, {c}, {a,b}, {a,c},
{b,c} and {a,b,c}. The last of these subsets is not proper, but we need all subsets,
not only the proper ones. Therefore

?(A) = {0,{a},{b},{c} {a,b},{a,c},{b,c},{a,b,c}}.

It can be seen intuitively that if A is a finite set with n elements, then P(A) is a finite
set with 2" elements; by Part (1) of this exercise we see that this formula holds even
when n = 0. This formula is proved in Theorem 7.7.10 (1). O

Sets can be either finite or infinite in size. The set A in Example 3.2.9 (2) is finite,
whereas sets such as N or R are infinite. For now we will use the terms “finite” and
“infinite” intuitively. These concepts will be defined rigorously in Section 6.5. If a
set A is finite, then we use the notation |A| to denote the number of elements in A
(often referred to as the “cardinality” of A). Some basic facts about the cardinalities
of finite sets can be found in Sections 6.5, 7.6 and 7.7.

Exercises

Exercise 3.2.1. How many elements does the set A = {a,b,{a,b}} have?

Exercise 3.2.2. Which of the following are true and which are false?
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(1) 3¢ (3,5). (6) [1,2] € {0,1,2,3}.

(2) 10 ¢ (7°°a 77:2]. (7) {717071} - [7171)'
(3) 7€{2,3,4,...,11}. 8) [5,7] C (4,00).

@) 7e(2,0). 9) {2,4,8,16,...} C [2,00).

(5) —13€{...,-3,-2,~1}.

Exercise 3.2.3. What are the following sets commonly called?

1) {n€Z|n="2mforsomemec Z}.

(2) {keN|there exist p,q € N such that k= pg, and that 1 < p<kand 1 <g <
k}.

(3) {x € R|there exista,b € Z such that b # 0 and x = ¢ }.

Exercise 3.2.4. Let P be the set of all people, let M be the set of all men and let F
be the set of all women. Describe each of the following sets with words.

(1) {x € P|x€ M and x has a child}.

(2) {x € P|there exist y,z € P such that y is a child of x, and z is a child of y}.
(3) {x € P|there exist m € F such that x is married to m}.

(4) {x € P | there exist g € P such that x and ¢ have the same mother}.

(5) {x € P | there exist & € P such that A is older than x}.

(6) {x € P|there exist n € M such that x is the child of n, and x is older than n}.

Exercise 3.2.5. Describe the following sets in the style of Equation 3.2.1.

(1) The set of all positive real numbers.

(2) The set of all odd integers.

(3) The set of all rational numbers that have a factor of 5 in their denominators.

(4) The set {—64,—27,—8,—1,0,1,8,27,64}.

(5) The set {1,5,9,13,17,21,...}.
Exercise 3.2.6. We assume for this exercise that functions are intuitively familiar
to the reader (a formal definition will be given in Chapter 4). Let F denote the set
of all functions from the real numbers to the real numbers; let D denote the set of
all differentiable functions from the real numbers to the real numbers; let P denote
the set of all polynomial functions from the real numbers to the real numbers; let C
denote the set of all continuous functions from the real numbers to the real numbers;
let E denote the set of all exponential functions from the real numbers to the real
numbers. Which of these sets are subsets of which?

Exercise 3.2.7. Among the following sets, which is a subset of which?

M is the set of all men;

W is the set of all women;
P is the set of all parents;
O is the set of all mothers;
F is the set of all fathers;
U is the set of all uncles;
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A is the set of all aunts;

C is the set of all people who are children of other people.
Exercise 3.2.8. Among the following sets, which is a subset of which?

C = {n € 7 | there exists k € Z such that n = k*};

E = {n € Z | there exists k € Z such that n = 2k};
P={n €7 |nisaprime number};

N = {n € Z | there exists k € Z such that n = k*};

S = {n € Z | there exists k € Z such that n = 6k};
D = {n € Z | there exists k € Z such that n = k— 5};

B = {n €Z/|nisnon-negative}.

Exercise 3.2.9. Find sets A and B such that A € B and A C B. (It might appear as if
we are contradicting what was discussed after Example 3.2.3; the solution, however,
is the “exception that proves the rule.”)

Exercise 3.2.10. Let A, B and C be sets. Suppose that A C Band B C C and C C A.
Prove that A =B =C.

Exercise 3.2.11. [Used in Theorem 3.5.6.] Let A and B be sets. Prove that it is not
possible that A g B and B C A are both true.

Exercise 3.2.12. Let A and B be any two sets. Is it true that one of A C Bor A =B
or A DO B must be true? Give a proof or a counterexample.

Exercise 3.2.13. Let A = {x,y,z,w}. List all the elements in P(A)?
Exercise 3.2.14. Let A and B be sets. Suppose that A C B. Prove that P(A) C ?(B).

Exercise 3.2.15. List all elements of each of the following sets.
1) 2(2(0)). @) 2(2({0})).

Exercise 3.2.16. Which of the following are true and which are false?

(1) {0} C G forall sets G. (6) 0 € 2(G) for all sets G.
(2) 0 C G forall sets G. (7 {{0}} C 2(0).

3) 0 C 2(G) for all sets G. 8) {0} C {{0,{0},{{0}}}}.
4) {0} C 2(G) for all sets G. ) 2({0}) ={0,{0}}.

(5) 0 € G for all sets G.
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3.3 Set Operations

There are a number of ways to make new sets out of old, somewhat analogous to
combining numbers via addition and multiplication. A closer analogy is the way in
which we combined statements in Section 1.2. The two most basic set operations,
which we now describe, correspond to the logical operations “or” and “and.”

Definition 3.3.1. Let A and B be sets. The union of A and B, denoted A U B, is the
set defined by
AUB={x|xc€AorxeB}.

The intersection of A and B, denoted A N B, is the set defined by
ANB={x|x€Aandx € B}. A

If A and B are sets, the set AU B is the set containing everything that is either
in A or B or both (recall our discussion of the mathematical use of the word “or” in
Section 1.2). The set A N B is the set containing everything that is in both A and B.

Example 3.3.2. LetA = {x,y,z,p} and B = {x,q}. Then
AUB={x,y,z,p,q} and ANB={x}. O

To help visualize unions and intersections of sets (as well as other constructions
we will define), we can make use of what are known as Venn diagrams. A Venn
diagram for a set is simply a region of the plane that schematically represents the
set. See Figure 3.3.1 (i) for a Venn diagram representing two sets A and B, placed
in the most general possible relation to each other. In Figure 3.3.1 (ii) the region
representing A U B is shaded, and in Figure 3.3.1 (iii) the region representing A N B is
shaded.

AUB ANB
QD @D o
(1) (i1) (i)
Fig. 3.3.1.

Venn diagrams can be useful for convincing ourselves of the intuitive truth of var-
ious propositions concerning sets. For instance, we will prove in Theorem 3.3.3 (5)
that AN(BUC) = (ANB)U(ANC) for any three sets A, B and C. To gain an intuitive
feeling for this result, we can find the region in a Venn diagram for each of the two
sides of the equation, and then observe that the two regions are the same, namely,
the shaded region in Figure 3.3.2. Although Venn diagrams seem much easier to use
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than proofs, a Venn diagram is no more than a visual aid, and is never a substitute
for a real proof. Moreover, it is tricky to use Venn diagrams for more than three sets
at a time, and this severely limits their use.

C

Fig. 3.3.2.

Do the familiar properties of addition and multiplication of numbers (such as
commutativity and associativity) also hold for union and intersection of sets? The
following theorem shows that such properties do hold, although they are not exactly
the same as for addition and multiplication.

Theorem 3.3.3. Let A, B and C be sets.
1. ANBCAand ANB C B. If X is a set such that X C A and X C B, then

X CANB.
2. ACAUB and BCTAUB. IfY is a set such that A CY and B CY, then
AUBCY.
3. AUB=BUAand ANB=BNA (Commutative Laws).
4. (AUB)UC=AU(BUC) and (ANB)NC=AN(BNC) (Associative Laws).
5. AN(BUC)=(ANB)U(ANC)and AU(BNC) =(AUB)N(AUC) (Dis-

tributive Laws).
. AUD=Aand ANO =0 (Identity Laws).
AUA=Aand ANA=A (ldempotent Laws).
. AU(ANB)=Aand AN(AUB) =A (Absorption Laws).
. IfACB, then AUC CBUCand ANC CBNC.

o %o N

Proof. We will prove Parts (4) and (5), leaving the rest to the reader in Exercise 3.3.6.

(4). We will show that (AUB)UC = AU (BUC); the other equation can be
proved similarly, and we omit the details. As usual, the equality of the two sets under
consideration is demonstrated by showing that each is a subset of the other.

Letx € (AUB)UC. Then x € AUB or x € C. First, suppose that x € AUB. Then
x€AorxeB. Ifx € Athenx € AU(BUC) by Part (2) of this theorem, and if x € B
then x € BUC, and hence x € AU (BUC). Second, suppose that x € C. It follows
from Part (2) of this theorem that x € BUC, and hence x € AU (BUC). Putting the
two cases together, we deduce that (AUB)UC CAU(BUC).

The proof that AU(BUC) C (AUB)UC is similar to the above proof, simply
changing the roles of A and C, and we omit the details.
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We deduce that (AUB)UC =AU (BUC).

(5). We prove AN (BUC) = (ANB)U(ANC); the other equation can be proved
similarly. Let x € AN (BUC). Then x € A and x € BUC. Hence x € Bor x € C. If
x € B we deduce that x € AN B, and if x € C we deduce that x € ANC. In either
case, we use Part (2) of this theorem to see that x € (AN B) U (A NC). Therefore
AN(BUC) C(ANB)U(ANC).

Now lety € (ANB)U(ANC). Theny € ANB ory € ANC. First, suppose that
y€ANB. Theny € A and y € B. Hence y € BUC by Part (2) of the theorem, and
therefore y € AN (BUC). Second, suppose that y € ANC. A similar argument to the
previous case shows that y € AN (BUC); we omit the details. Combining the two
cases we deduce that (ANB)U(ANC) CAN(BUC).

We conclude that AN (BUC) = (ANB)U(ANC). O

It is seen in Part (5) of Theorem 3.3.3 that both union and intersection distribute
over each other, which is quite different from addition and multiplication of numbers,
where multiplication distributes over addition, but not vice versa.

The following definition formalizes the notion of two sets having no elements in
common.

Definition 3.3.4. Let A and B be sets. The sets A and B are disjoint if ANB=0. A

Example 3.3.5. Let E be the set of even integers, let O be the set of odd integers and
let P be the set of prime numbers. Then E and O are disjoint, whereas E and P are
not disjoint (because ENP = {2}). O

Another useful set operation is given in the following definition.
Definition 3.3.6. Let A and B be sets. The difference (also called the set difference)
of A and B, denoted A — B, is the set defined by
A—B={x|x€Aandx¢ B}. A

Some books use the notation A \ B instead of A — B. The set A — B is the set
containing everything that is in A but is not in B. The set A — B is defined for any two
sets A and B; it is not necessary to have B C A. See Figure 3.3.3 for a Venn diagram
of the A —B.
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Example 3.3.7. Let A and B be the sets in Example 3.3.2. Then
A—B={yzp}. %

The following theorem gives some standard properties of set difference.

Theorem 3.3.8. Let A, B and C be sets.

1. A-BCA.

2. A—-B)NB=0.

3. A—B=0ifandonly if A C B.

4. B—(B—A)=Aifand only if A C B.

5. IfACB, thenA—C=AN(B—C).

6. fACB, thenC—ADC—B.

7. C—(AUB)=(C—A)N(C—B)andC—(ANB) = (C—A)U(C—B) (De

Morgan’s Laws).

Proof. We will prove Part (7), leaving the rest to the reader in Exercise 3.3.7.

(7). We will show that C — (AUB) = (C—A) N (C — B); the other equation can
be proved similarly, and we omit the details. Let x € C — (AUB). Then x € C and
x ¢ AUB. It follows that x ¢ A and x ¢ B, because x € A or x € B would imply that
x € AUB. Because x € C and x ¢ A, then x € C — A. Because x € C and x ¢ B, then
x € C—B.Hence x € (C—A)N(C—B). Therefore C— (AUB) C (C—A)N(C—B).

Now lety € (C—A)N(C—B).Henceyc C—Aandy e C—B.Becausey € C—A,
it follows that y € C and y ¢ A. Because y € C — B, it follows that y € C and y ¢ B.
Because y ¢ A and y ¢ B, it follows that y ¢ AU B. Therefore y € C — (AUB). Hence
(C—A)N(C—B)CC—(AUB).

We conclude that C — (AUB) = (C—A)N(C —B). O

There is one more fundamental way of forming new sets out of old that we will
be using regularly. Think of how the plane is coordinatized by ordered pairs of real
numbers. In the following definition we make use of the notion of an ordered pair of
elements, denoted (a,b), where a and b are elements of some given sets. Unlike a set
{a,b}, where the order of the elements does not matter (so that {a,b} = {b,a}), in
an ordered pair the order of the elements does matter. We take this idea intuitively,
though it can be defined rigorously in terms of sets (see [Mac96]). The idea is to
represent the ordered pair (a,b) as the set {{a},{a,b}}. Though it may seem obvi-
ous, it is important to state that the ordered pair (a,b) equals the ordered pair (c,d)
if and only if @ = ¢ and b = d. (The notation “(a,b)” used to denote an ordered pair
is, unfortunately, identical to the notation “(a,b)” used to denote an open bounded
interval of real numbers, as defined in Section 3.2. Both uses of this notation are very
widespread, so we are stuck with them. In practice the meaning of “(a,b)” is usually
clear from the context.)

Definition 3.3.9. Let A and B be sets. The product (also called the Cartesian prod-
uct) of A and B, denoted A X B, is the set
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AxB={(a,b)|a€Aandbc B},

where (a,b) denotes an ordered pair. A
Example 3.3.10.
(1) LetA={a,b,c} and B={1,2}. Then

AxB={(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)}.

(2) Roll a pair of dice. The possible outcomes are

(
(
(
(
(

1,5
2,5
3,5
4,5
5,5
(6,5

This table is the product of the set {1,...,6} with itself.
(3) It can be seen intuitively that if A and B are finite sets, then A X B is finite and
|A x B| = |A| - |B|. This fact is proved in Theorem 7.6.3. O

(1
(2
(3
(4
(5
(6

We can form the product of more than two sets, and although there is no essential
problem doing so, there is one slight technicality worth mentioning. Suppose that we
want to form the product of the three sets A, B and C. Keeping these sets in the given
order, we could form the triple product in two ways, yielding the sets (A X B) x C and
A x (BxC). Strictly speaking, these two triple products are not the same, because the
first has elements of the form ((a,b),c), whereas the second has elements of the form
(a,(b,c)). There is, however, no practical difference between the two triple products,
and we will therefore gloss over this technicality, simply referring to A x B x C, and
writing a typical element as (a,b,c). The precise relation between (A x B) x C and
A x (B x C), which is given in Exercise 4.4.6, makes use of the concepts developed
in Section 4.4.

Example 3.3.11. We can think of R?, which is defined in terms of ordered pairs of
real numbers, as R2 =R x R. Similarly, we think of R” as
RfF=Rx---xR. O
——
n times
The following theorem gives some standard properties of products of sets.
Theorem 3.3.12. Let A, B, C and D be sets.

1. fACBand CC D, then AxCCBxD.

2. AXx(BUC)=(AxB)U(AXC)and (BUC)xA=(BxA)U(CxA) (Dis-
tributive Laws).

3. Ax(BNC)=(AxB)N(AxC)and (BNC)xA=(BxA)N(CxA) (Dis-
tributive Laws).
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4. AxO=0and 0 x A =0.
5. (ANB) x (CND) = (AxC)N (B x D).

Proof. We will prove Part (3), leaving the rest to the reader in Exercise 3.3.8.

(3). We will prove A x (BNC) = (A x B)N (A x C); the other equation can be
proved similarly, and we omit the details. As usual, we will show that the sets on
the two sides of the equation are subsets of each other. First, we show that (A x
B)N (A xC) CAx (BNC). This part of the proof proceeds in the standard way. Let
y € (Ax B)N (A x C). It would not be correct at this point to say that y equals some
ordered pair (p, ), because (A x B) N (A x C) does not have the form X x Y for some
sets X and Y. We can say, however, that y € A x B and y € A x C. Using the former
we deduce that y = (a,b) for some a € A and b € B. Because y € A x C, we then
have (a,b) € A x C. It follows that b € C. Hence b € BNC. Therefore y = (a,b) €
A X (BNC). We deduce that (Ax B)N(AxC) CAx (BNC).

Next, we show that A x (BNC) C (A x B)N (A x C). In this part of the proof we
take a slightly different approach than the one we have been using so far (though the
standard method would work here too). By Lemma 3.2.4 (1) we know that A C A.
Using the first sentence in Theorem 3.3.3 (1) we know that BNC C Band BNC C C.
By Part (1) of this theorem we deduce that A x (BNC) CAxBand A x (BNC) C
A x C. It now follows from the second sentence in Theorem 3.3.3 (1) that A x (BN
C)C(AxB)N(AXC).

We conclude that A x (BNC) = (Ax B)N(A xC). ]

Observe that A x B is not the same as B X A, unless A and B happen to be equal.
The following example shows that the statement analogous to Part (5) of Theo-
rem 3.3.12, but with U instead of N, is not true.

Example 3.3.13. LetA = {1,2} and B={2,3} and C = {x,y} and D = {y, z}. First,
just to see that it works, we verify that Theorem 3.3.12 (5) holds for these sets. We
see that ANB = {2} and CND = {y}, and so (ANB) x (CND) ={(2,y)}, and that
AxC={(1,x),(1,y),(2,x),(2,y)} and Bx D = {(2,y),(2,2),(3,y),(3,2)}, and so
(AxC)N(BxD)={(2,y)}. Hence (ANB) x (CND) = (AxC)N(BxD).

Now replace N with U in the above calculation. We then have AUB = {1,2,3}
and CUD = {x,y,z}, and so (AUB) x (CUD) = {(1,x),(1,y),(1,2),(2,x),(2,y),
(2,2),(3,x),(3,y),(3,2)}. Using A x C and B x D as calculated in the previous para-
graph, we see that (A x C)U(Bx D) ={(1,x),(1,y),(2,x),(2,y),(2,2),(3,y),(3,2) }.
Therefore (AUB) x (CUD) # (A x C) U (B x D). The difference between the situa-
tion in this paragraph and the previous one can be seen schematically in Figure 3.3.4,
which is not a Venn diagram, and where we need to think of A, B, C and D as subsets
of R. O

Exercises

Exercise 3.3.1. Let A = {1,3,5,7} and B ={1,2,3,4}. Find each of the following
sets.
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(1) AUB. @) A—B.
(2) ANB. (5) B—A.
(3) AxB.

(AUB) x (CUD)

AxC

BxD

Fig. 3.3.4.

Exercise 3.3.2. LetC ={a,b,c,d,e,f} and D ={a,c,e} and E = {d,e, f} and F =
{a,b}. Find each of the following sets.

(1) C— (DUE). @) FN(DUE).
(2) (C—D)UE. (5) (FND)UE.
(3) F—(C—E). (6) (C—D)U(FNE).

Exercise 3.3.3. Let X =[0,5) and Y = [2,4] and Z = (1,3] and W = (3,5) be inter-
vals in R. Find each of the following sets.

1) YUZ. @) X xW.
Q) ZNW. (5) (XNY)UZ.
B3) Y —W. 6) X —(ZUW).

Exercise 3.3.4. Let

G={ne€Z|n=2mforsomemec Z}
H={necZ|n=3kforsome k € Z}
I={neZ|n*isodd}
J={neZ|0<n<10}.

Find each of the following sets.
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1) GUI. @) J—G.
2) GNlI. (5) I—H.
3) GNH. 6) JN(G—H).

Exercise 3.3.5. Given two sets A and B, are the sets A — B and B — A necessarily
disjoint? Give a proof or a counterexample.

Exercise 3.3.6. [Used in Theorem 3.3.3.] Prove Theorem 3.3.3 (1) (2) (3) (6) (7) (8)
9).

Exercise 3.3.7. [Used in Theorem 3.3.8.] Prove Theorem 3.3.8 (1) (2) (3) (4) (5) (6).
Exercise 3.3.8. [Used in Theorem 3.3.12.] Prove Theorem 3.3.12 (1) (2) (4) (5).
Exercise 3.3.9. [Used in Theorem 7.6.7.] Let A and B be sets. Prove that (AUB) —A =
B—(ANB)

Exercise 3.3.10. [Used in Theorem 6.3.6.] Let A, B and C be sets. Suppose that
C C AUB, and that CNA = 0. Prove that C C B.

Exercise 3.3.11. Let X be a set, and let A, B,C C X be subsets. Suppose that ANB =
ANC, and that (X —A)NB = (X —A)NC. Prove that B=C.

Exercise 3.3.12. Let A, B and C be sets. Prove that (A—B)NC = (ANC)—B =
(ANC)—(BNC).

Exercise 3.3.13. [Used in Exercise 6.5.15.] For real numbers a, b and ¢, we know that
a—(b—c)=(a—b)+c.LetA, Band C be sets.

(1) Suppose that C C A. Prove that A— (B—C) = (A—B) UC.

(2) Does A— (B—C) = (A—B)UC hold for all sets A, B and C? Prove or give
a counterexample for this formula. If the formula is false, find and prove a
modification of this formula that holds for all sets.

Exercise 3.3.14. Let A and B be sets. The symmetric difference of A and B, denoted
AAB,isthesetAAB=(A—B)U(B—A).
Let X, Y and Z be sets. Prove the following statements.

1) XAD=X. @XAYAZ)=(XAY)AZ
2 XAX=0. (5) XN(Y AZ)=(XNY) A (XNZ).
(B) XAY=YAX. 6) X AY =(XUY)—(XNY).

Exercise 3.3.15. Prove or find a counterexample to the following statement. Let A,
B and C be sets. Then (A —B)UC = (AUBUC) — (ANB).

Exercise 3.3.16. Prove or find a counterexample to the following statement. Let A,
B and C be sets. Then (AUC) —B = (A—B)U(C—B).

Exercise 3.3.17. Let A, B and C be sets. Prove that A C C if and only if AU (BNC) =
(AUB)NC.
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Exercise 3.3.18. Prove or give a counterexample for each of the following state-
ments.

(1) Let A and B be sets. Then P(AUB) = P(A) U ?(B).
(2) Let A and B be sets. Then P(ANB) = P(A) N P(B).

Exercise 3.3.19. Let A, B and C be sets. Prove that A x (B—C) = (A x B) — (A x C).

Exercise 3.3.20. Let A and B be sets. Suppose that B C A. Prove that AXA—Bx B =
[(A—B) x A]JUJA x (A—B)].

Exercise 3.3.21. Let A and B be sets. Suppose that A # B. Suppose that E is a set
such that A X E = B x E. Prove that E = 0.

Exercise 3.3.22. Let X be a set. Suppose that X is finite. Which of the two sets
P(X xX)x P(X xX) and P(P(X)) has more elements?

3.4 Families of Sets

So far we have dealt with unions and intersections of only two sets at a time. We now
want to apply these operations to more than two sets.

For the sake of comparison, let us look at addition of real numbers. Formally,
addition is what is called a binary operation, which takes pairs of numbers as input
and produces single numbers as output. We will see a rigorous treatment of binary
operations in Section 7.1, but for now it is sufficient to take an informal approach
to this concept. In particular, we see that in principle it is possible to add only two
numbers at a time. Of course, in practice it is often necessary to add three or more
numbers together, and here is how it is done. Suppose that we want to compute
2+3+9. We would proceed in one of two ways, either first computing 243 =5
and then computing 5+ 9 = 14, or first computing 3 + 9 = 12 and then computing
2412 = 14. As expected, we obtained the same answer both ways, and this common
answer is what we would call the sum of the three numbers 2 + 3 + 9. Another way
of writing these two ways of computing the sum is as (2+3) +9 and 2+ (3+9).
It turns out that there is a general rule about addition, called the Associative Law,
that says that in all cases of three numbers that are being added, the same result is
obtained from either way of positioning the parentheses. This property of addition is
stated in Theorem A.1 (1) in the Appendix. Hence, for any three numbers a, b and c,
we can define the sum a + b + ¢ to be the number that results from computing either
(a+b)+cora+(b+c).

Intuitively, a similar approach would work for the sum of any finite collection
of numbers, though to do so formally would require definition by recursion, a topic
we will see in Section 6.4; see Example 6.4.4 (2) for the use of recursion for adding
finitely many numbers. Sums of infinite collections of numbers are much trickier.
The reader has most likely encountered the notion of a series of numbers, for example
Yo n%, in a calculus course. Not all such series actually add up to a real number,
and the question of figuring out for which series that happens is somewhat tricky,
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especially if done rigorously, because it involves limits; see any introductory real
analysis text, for example [Blo11, Chapter 9], for details.

Let us now compare the above discussion of the addition of numbers to unions
and intersections of sets. For the union and intersection of three sets, the exact analog
holds because Theorem 3.3.3 (4) for union and intersection of sets is the exact analog
of Theorem A.1 (1) for addition and multiplication of numbers. Hence, if we are
given three sets A, B and C, and we wanted to form the union of all three of them, we
could compute either one of (AUB)UC and AU (BUC), which are always equal, and
we could label the result as AUBUC. The same idea holds for the intersection of three
sets. In principle, we could extend this idea to unions and intersections of any finite
collection of sets A1,A»,...,A,, where the word “finite” refers only to the number of
sets, not the sizes of the individual sets, which could be infinite. Once again, to make
such a definition work rigorously, we would need to use definition by recursion, and
so we cannot do it properly yet. As for the union of an infinite sequence of sets
A1,A2,As,. .., there is no simple analog for sets of series of numbers, and even if
there were, series of numbers are rather tricky, and presumably series of sets would
be too.

Fortunately, we can solve this problem for unions and intersections of sets in a
very simple way that is not available to us with addition of numbers. For addition, we
really do not have a choice but to add two numbers at a time, and then extend that by
recursion to finite sums, and use limits for infinite sums. For unions and intersections,
however, rather than defining unions and intersections of arbitrary collections of sets
in terms of unions and intersections of two sets at a time, we can define unions and
intersections of arbitrary collections of sets from scratch, using the case of two sets
at a time simply by way of analogy.

For two sets A; and A, the union A; UA, is the set of all elements x such that
x € Ay or x € Ap. We cannot directly generalize the notion of “or” directly to an
infinite collection of sets, because “or” is also defined for only two things at a time,
but let us look at A; UA; slightly differently. Recall that for mathematics, the word
“or” always means the inclusive or, that is, one or the other or both. Hence, instead
of thinking of A UA> as the set of all elements x such that x € A| or x € A,, we can
just as well think of it as the set of all elements x such that x € A; for some i € {1,2}.
In other words, we have replaced the use of “or” in the definition of the union of two
sets with an existential quantifier. The advantage of this approach is that whereas “or”
cannot be generalized to more than two things at a time, the existential quantifier can
be used on sets of arbitrary size. Hence, if we have an infinite collection of sets
A1,A2,A3, ..., we can define the union of these sets as the set of all elements x such
that x € A; for some i € N. Using notation that is analogous to the notation for series
of numbers, we then write

JAi=A1UAUA3U... = {x| x € A, for some n € N}.
i=1

Now let us look at intersections. For two sets A; and A», the intersection A} NA»
is the set of all elements x such that x € A| and x € A,. The alternative approach is to
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think of A} NA; as the set of all elements x such that x € A; for all i € {1,2}. Here we
have replaced the use of “and” in the definition of the intersection of two sets with
a universal quantifier. If we have an infinite collection of sets Aj,A,,As,..., we can
define the intersection of these sets as the set of all elements x such that x € A; for
some i € N, and we write

(A =A1NANA3N... = {x|xEA, foralln € N}.

i=1

Example 3.4.1.

(1) For each i € N, let B; = {1,2,...,3i}. Then U2 B; = N and N2, B; =
{1,2,3}.

(2) Recall the notation for intervals in R in Definition 3.2.1. For each k£ € N, let
Fi= (1,84 3). Then UZ, F = (0,11) and (2, F = (1,8]. 0

What we have said so far, though correct, is not sufficient for our purposes. Sup-
pose, for example, that for each real number x we define the set O, to be the set of all
real numbers less than x, so that Q, = (—e,x). Though it is not obvious, and it will
only be proved in Section 6.7, it turns out that there is no possible way to line up all
the sets of the form Q, in order analogously to Aj,A»,A3,.... We are therefore not in
precisely the same situation as discussed previously. However, in contrast to series of
numbers such as ) -, niz, where the definition of the sum depends very much upon
the order of the numbers in the series, for unions and intersections of sets the order
of the sets does not matter at all. In particular, if we look at the definitions of [J;; A;
and N, A;, we observe that we do not need to think of the sets Aj,A3,As,... as
written in order, and we can think of this collection of sets as having one set for each
number in N. We can therefore rewrite | J;~; A; and (;2; A; as UjenAi and NjenAi,
respectively.

The following definition, based upon the above ideas, will allow us to define
unions and intersections in the most general situation possible. We note that this def-
inition is based upon the informal distinction between sets and element; we will see
a different approach when we discuss the Zermelo—Fraenkel Axioms for set theory
in Section 3.5.

Definition 3.4.2. Let 4 be a set. The set 4 is called a family of sets if all the elements
of 4 are sets. The family of sets 4 is indexed by 7, denoted 4 = {A;},.,, if there is
a non-empty set / such that there is an element A; € 4 for each i € I, and that every
element of 4 equals A; for exactly one i € . A

Observe that the empty set is a family of sets. When we define a family of sets, if
we do not need to view the family of sets as indexed, we will write “let 4 be a family
of sets.” If we want to use an indexed family of sets, we will write “let  be a set, and
let {A;},c; be a family of sets indexed by I””; in such cases we will often not give the
family of sets a name such as 4.

Although it is often easier to think of, and work with, families of sets when they
are indexed, it is important for various applications to have the non-indexed way of
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working with families of sets as well. For example, suppose that we have a set A,
and we want to consider the family of all finite subsets of A; we could write such a
family as

A={B|BCA and B is finite }.

(We have not formally defined finiteness yet, but the above example is just for illus-
trative purposes; we will see the definition of finite sets in Section 6.5.) It is quite
natural to consider such families of sets in many parts of mathematics (not just col-
lections of finite subsets, but subsets characterized by other criteria as well), and
there is no natural way to index the elements of such a family of sets. Actually, that
is not quite true—we can index each element of 4 by itself! That is, we can write
a4={Ax} xca» Which would lead us to think of any family of sets as “self-indexed.”
However, while that is technically correct, in practice viewing every family of sets as
self-indexed is not particularly helpful, and so we will continue to think of families
of sets written as 4 as non-indexed, and families of sets written as {A;},_; as indexed.
In our discussion of families of sets in this section, and our use of them in subsequent
sections, we will use both indexed and non-indexed notation as suits each situation.

On the one hand, families of sets are just sets, and hence everything that we
have previously said about sets still holds for families of sets. For example, given
two families of sets, we could ask whether one is a subset of the other. On the other
hand, because all the elements of a family of sets are themselves sets, then we can do
something special with families of sets, which is to take the union and intersection
of all the elements of the family of sets, which we define as follows.

Definition 3.4.3. Let 4 be a family of sets. The union of the sets in 4, denoted
Uxeq X, is defined as follows. If 4 # 0, then

| X ={x|x€AforsomeA € a};
xea

if 4 =0, then Uyc4X = 0. The intersection of the sets in 4, denoted (yc4X, is
defined as follows. If 4 # 0, then

(1X={x|xcAforallAc a};
Xea

if 4 =0, then (Nyc 4 X is not defined.
If 4= {A;},;, is indexed by a set /, then we write

UAi:{x|x€A,~f0rsomei€I} and ﬂAiz{x|xeA,~f0ralliel}
iel i€l
to denote the union and intersection of the sets in 4, respectively. A

Intuitively, the set [ J;c;A; is the set that contains everything that is in at least one
of the sets A;; the set [);c;A; is the set containing everything that is in all of the sets
A;. The same holds for the non-indexed notation.

Formally, the proper way to describe ( Jyc ;X is as “the union of the elements of
the family of sets 4,” but informally we simply say “the union of the sets in 2” or
“the union of the family of sets 4,” and similarly for intersection.
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Example 3.4.4.

(1) Foreach x € R, let C, be the interval C, = [—2,sinx]. Then J,cr Cx = [—2, 1]
and Nyer Cx = [-2,—1].

(2) Let ¥ be the family of all finite subsets of N. Then Ux.4sX = N and
Nxes X =0. O

The following theorem gives some of the standard properties of unions and in-
tersections of arbitrary families of sets, generalizing various properties we saw in
Section 3.3. Part (1) of the theorem says that [);c; A; is the largest set contained in
all the sets in {A;},;, and Part (2) of the theorem says that | J;c;A; is the smallest set
containing all the sets in {A;},,;. To allow the reader to gain familiarity with both the
indexed and the non-indexed notations, we state the theorem in both forms, proving
one part of the theorem using one notation, and another part of the theorem using the
other notation. Subsequent theorems will be stated in only one of these two styles
(usually the indexed notation), leaving it to the reader to convert it to the other style
as needed.

Theorem 3.4.5.
Non-Indexed Version: Let A be a non-empty family of sets and let B be a set.

NxeaX CAforallAc A IfBC X forall X € 4, then BC (xcqX.
ACUyxeqX forallAc A If X CBforallX € A, then | JxcqX C B.
BN (UxeaX) =Uxea(BNX)  (Distributive Law).

BU(NxeaX) =Nxea(BUX)  (Distributive Law).

B— (UxeaX) =Nxeca(B—X) (De Morgan’s Law).
B—(NxeaX) =Uxea(B—X) (De Morgan’s Law).

S RNw N~

Indexed Version: Let I be a non-empty set, let {A;};-; be a family of sets indexed by
I and let B be a set.

1. NicjAi CAxforallk el If BC Ay forall k € I, then B C ;¢ A;.
2. A CUjcjAiforallk e 1. If Ay C B forall k € I, then | J;c;A; € B.
3. BN (UicsAi) = Ui (BNA;)  (Distributive Law).

4. BU(NicsAi) =Nici(BUA;)  (Distributive Law).

5 UictAi) =Nici(B—Ai)  (De Morgan’s Law).

6. NiciAi) = Uici(B—Ai)  (De Morgan’s Law).

Proof. We will prove Parts (3) and (6), leaving the rest to the reader in Exercise 3.4.3.

. B—(
. B—(

i
i

(3). Letx € BN (U;;Ai)- Then x € B and x € J;;A;. Tt follows that x € A for
some k € I. Hence x € BNAy. Therefore x € J;c;(BNA;) by Part (2) of this theorem.
Hence BN (UjerAi) € Uier(BNA)).

Now lety € U;c;(BNA;). Theny € BNA; for some j € I. Hencey € Bandy € A;.
Therefore x € (J;c;A; by Part (2) of this theorem. It follows that y € BN (U Ai).
Hence Uic;(BNA;) € BN (Uic/Ai)-

We conclude that BN (U;c;Ai) = Ui, (BNA;).
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(6). Leta€ B—((NxcqX)- Thena € B and a ¢ (\yc4X. Then a ¢ Y for some
Y € 4. Thena € B—Y . Hence a € Uy 4(B—X) by Part (2) of this theorem. It follows
that B— (NxeaX) € Uxea(B—X).

Now let b € Uyeq(B—X). Then b € B— Z for some Z € 4. Then b € B and
b ¢ Z.Hence b ¢ (xcqX. It follows that b € B—(\yc4X. Therefore Uxc4(B—X) C
B (yeaX).

We conclude that B— (Nxcq1X) = Uxea(B—X). O

It can be verified that all the parts of Theorem 3.4.5 that involve union but not
intersection hold also when 4 = 0; the parts of the theorem that involve intersection
are not defined when 4 = 0.

It is interesting to compare the proof of Theorem 3.4.5 (3) with the proof of The-
orem 3.3.3 (5). Though Theorem 3.4.5 (3) is a generalization of Theorem 3.3.3 (5),
the proof of the generalized statement is slightly more concise than the proof of the
simpler statement. The proof of Theorem 3.4.5 (3) is more concise precisely because
it is phrased explicitly in terms of quantifiers, which allows us to avoid the need for
cases as in the proof of Theorem 3.3.3 (5).

In addition to defining the union and intersection of families of sets, it is also
possible to form the product of a family of sets, though doing so requires the use of
functions, and hence we will wait until the end of Section 4.5 for the definition.

Exercises

Exercise 3.4.1. In each of the following parts, we are given a set By, for each k € N.
Find U;en Br and (e B

1) By ={0,1,2,3,...,2k}. @) Bi=[-1,3+3]u[s, %),
@ Bi={k—_1kk+1}. (5) B = (— U2, 2F].
@) Bi=[3,%2)U{10+k}. (6) By =10, 4]U[7, L),

Exercise 3.4.2. In each of the following parts, you need to find a family of sets
{Ei}ren such that Ex C R for each k € N, that no two sets E are equal to each other
and that the given conditions hold.

(1) UkENEk = [0,00) and mkENEk = [07 1]

2) UgenEx = (0,00) and Mken Ex = 0.

(3) Uken Ex = R and Ny Ex = {3}

4) UrenEx = (2,8) and My Ex = [3,6].

(5) Ugen Ex = [0,00) and (e Ex = {1} U[2,3).

(6) UrenEx =Z and (yen Ex = {...,=2,0,2,4,6,...}.
(7) Uren Ex =Rand ey Ex = N.

Exercise 3.4.3. [Used in Theorem 3.4.5.] Prove Theorem 3.4.5 (1) (2) (4) (5). Do
some in the indexed notation and some in the non-indexed notation.

Exercise 3.4.4. Let 4 and B be non-empty families of sets. Suppose that 2 C B.
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(1) Prove that Jyc 2 X € Uyea?.
(2) Prove that (yc X € (yca?.

Exercise 3.4.5. Let / be a non-empty set, and let {A;},.; and {B;},; be families of
sets indexed by I. Suppose that A; C B; for all i € I.

(1) Prove that J;c;A; € U Bi-
(2) Prove that (;c;A; € N Bi-

Exercise 3.4.6. Let 4 be a non-empty family of sets and let B be a set.

(1) Prove that (UxcqX) — B =Uxecq(X —B).
(2) Prove that (NxcqX) —B=xeca(X —B).

Exercise 3.4.7. Let I be a non-empty set, let {A;}
I and let B be a set.

;7 be a family of sets indexed by

Exercise 3.4.8. Suppose that 7/ is some property of subsets of R (for example, being
finite). A subset X C R is called co-7/ if R — X has property W.

Let 4 be a non-empty family of sets. Suppose that X is a co-7/ subset of R for all
X € 4. For each of the properties 7 listed below, either prove that Uxc2X is co-W,
or give a counterexample. Try to figure out a general rule for deciding when Uxc 2X
is co-W for a given property W .

(1) A subset of R has property %/ if and only if it is finite.

(2) A subset of R has property 7/ if and only if it has at most 7 elements.

(3) A subset of R has property W if and only if it has precisely 7 elements.

(4) A subset of R has property 7/ if and only if it contains only integers.

(5) A subset of R has property 7/ if and only if it is finite, and has an even
number of elements.

3.5 Axioms for Set Theory

Set theory is a very remarkable idea that works so very well, and is so broadly useful,
that it is used as the basis for modern mathematics. Unfortunately, however, it does
not work quite as nicely as we might have made it appear in the previous sections of
this chapter. Early in the development of set theory, a number of “paradoxes” were
discovered, the most well-known of which is Russell’s Paradox, which is as follows.
Suppose that we could form the set of all sets; let S denote this set. Observe
that S € S. We then define the set 7T = {A € S |A ¢ A}. Is T a member of itself?
Suppose first that 7 ¢ T. Then T € T. Now suppose that T € T. Then T ¢ T. There
is something wrong here. The problem is that we are trying to use a set of all sets, and
more generally the problem is that we have to be more careful how we quantify over
sets. See [GG94, Section 5.3] for further comments on the paradoxes of set theory.



116 3 Sets

In our use of sets in this text, as well as in the use of sets in much of mathematics,
problems such as Russell’s Paradox do not arise because we do not use the set of all
sets and similar problematic constructs. To treat set theory rigorously, however, some
subtlety is needed. Various axiom systems for set theory have been developed that
avoid paradoxes such as Russell’s Paradox. See [Vau95, Introduction] for a succinct
discussion of the history of set theory and its axiomatization.

The first axiom scheme for set theory was due to Zermelo in 1908. This scheme
was subsequently modified into what is now the most commonly used axiom system
for set theory, which is referred to as the Zermelo—Fraenkel Axioms. These axioms
are often abbreviated as “ZF.” There are a number of equivalent variations of ZF,
of which we state one below. See [End77] or [Sto79, Chapter 7] for an accessible
discussion of the ZF axioms, and see [Lev02] for a more advanced look at these
axioms.

The ZF axioms are properly formulated in the context of symbolic logic, in which
case the axioms are written out in logical notation. Because our purpose here is just
to gain an informal familiarity with the ZF axioms, and because it would take us too
far afield to develop the needed logic, we will write the axioms informally (though
we will write the first one in logical symbols just to show that it can be done).

We need two additional comments before listing the axioms. First, whereas in-
formally we tend to distinguish between sets and elements, for example we think
of A= {1,2} as a set and each of 1 and 2 as elements, in the ZF axioms we make
no such distinction. Everything in the ZF axioms is a set. It might seem strange to
think of the numbers 1 and 2 as sets, but from the perspective of the ZF axioms the
symbols “1” and “2” denote the sets {0} and {0, {0} }, respectively. (We will say a
bit more about this idea shortly.)

Once we assume that everything in the ZF axioms is a set, then the relation of
elementhood, which is denoted by the symbol €, is a relation between sets. That is,
given two sets x and y, it might or might not be the case that x € y. However, even
if x € y, we still think of both x and y as sets, regardless of whether or not one is
an element of the other. Of course, if everything is a set, and we do not distinguish
between what is a set and what is an element, we have to worry about potentially
problematic constructions such as x = {x}, which would not specify what the set x
is, because x is defined in terms of itself. Fortunately, the ZF axioms are designed
to prevent such problems; this particular problem is disallowed by the Axiom of
Regularity.

Of course, if everything in the ZF axioms is viewed as a set, then the concept of a
“family of sets” as discussed in Section 3.4 is unnecessary, because every non-empty
set is a family of sets. Nonetheless, for the informal approach to sets used on a daily
basis in modern mathematics, and used throughout this text (other than during our
discussion of the ZF Axioms), the distinction between sets and elements, and the
notion of a family of sets, are quite useful, and we will continue to make use of these
ideas.

Second, because the ZF axioms are formulated in terms of formal logic, and
because we are not discussing such such logic, our informal treatment of the ZF
axioms will necessarily be, indeed, informal. See [EFT94] and [Mal79] for more
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about logic. In particular, whereas most of the axioms can be stated in terms of

familiar logical notions (for example, “and,” “or,” “not” and “for all”’), which we

saw informally in Sections 1.2 and 1.5, two of the axioms (the Axiom of Selection

and the Axiom of Replacement) use the concepts of logical properties of sets, which

require a more extensive treatment of logic than we have the ability to provide here.

Hence, our phrasing of these two axioms is, unfortunately, not entirely satisfactory.
Here, finally, are the ZF axiom:s.

Axiom of Extensionality Let x and y be sets. If x and y have the same elements,
then x = y.

This axiom is simply another way of stating the definition of the equality of sets
that we saw in Definition 3.2.5. This axiom can be written in logical notation as

VaVy(Vz(z€Ex —z€y) —x=1y).

We will not write the other axioms in this type of notation, but they all can, and
should, be written that way in the context of a more detailed look at the axioms via
the study of logic.

Axiom of Empty Set There is a set z such that x ¢ z for all sets x.

This axiom is also referred to as the Axiom of Null Set. By the Axiom of Ex-
tensionality there is only one set z as described in this axiom, and this set is usually
denoted 0.

Axiom of Pairing Let x and y be sets. There is a set z such that w € z if and only
ifw=xorw=y.

The set z described in the axiom is unique by the Axiom of Extensionality, and it
is denoted {x,y}. In this axiom it is not required that x # y, and we abbreviate {x,x}

by {x}.

Axiom of Union Let x be a set. There is a set z such that w € z if and only if there
is some y € x such that w € y.

Once again the set z described in the axiom is unique, and it is denoted Ux.
Because the ZF axioms allow us to view every set as a family of sets, then Ux is the
same as what we informally defined as {Jy¢,y in Section 3.4.

Axiom of Power Set Let x be a set. There is a set z such that w € z if and only if
w C x.

The notation “w C x” is simply an abbreviated way of writing the expression
“y € wimplies y € x,” so that it is valid to use that notation in the ZF axioms. Once
again the set z described in this axiom is unique, and it is the same as what we
informally defined as ?(x) in Section 3.2.

Axiom of Regularity Let x be a set. Suppose that x # 0. Then there is some y € x
such that xNy = 0.
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This axiom is also referred to as the Axiom of Foundation. The notation “xNy =
0” is simply an abbreviated way of writing the expression “there does not exist a set
zsuch that z € x and z € y,” so that it valid to use that notation in the ZF axioms. This
axiom is needed to rule out problematic situations such as a non-empty set x such
that x € x. To see why x € x is not allowed when x # 0, observe that if there were
such a set x, then the set {x} would violate the Axiom of Regularity.

Axiom of Selection Let P(7) be a logical property of sets with one free variable ¢
that can be formulated in the context of the ZF axioms. Let x be a set. Then
there is a set z such that y € z if and only if y € x and P(y) is true.

This axiom has a variety of names, including the Axiom of Specification, Axiom
of Comprehension and Axiom of Separation. The set z described in the axiom is
unique, and it is usually denoted {y € x | P(y)}. It is very important to observe that
this axiom states that we can take an existing set, and then form the subset of those
elements that satisfy the given property. It is not possible to define a set of elements
that satisfy a given property if it is not specified what set the elements belong to.
Consider, for example, the definition of the union and intersection of a family of sets
given in Definition 3.4.3, which said

UAi: {x|x€A;forsomeiel} and ﬂAi: {x|x€A;forallicl}.

iel il
In fact, Definition 3.4.3 is not valid as stated if we adhere to the Axiom of Se-
lection, because we are not specifying which set the element x belongs to. It
would be tempting to write something such as “let S be the set of all sets, and let
UicrAi = {x € S| x € A; for some i € I}, but that would not be valid, because we saw
at the start of this section that the set of all sets is not a concept we can use. The
reader might, quite reasonably, be troubled that we used a definition in Section 3.4
that was not technically valid, but no real harm was done (other than perhaps to the
credibility of the author). Definition 3.4.3 conveys the correct intuitive idea behind
the union and intersection of a family of sets, and given that we had not yet dis-
cussed the ZF axioms, it was the best we could do at the time. Moreover, the ZF
axioms allow for a rigorous treatment of union and intersection, and this rigorous
approach works precisely as did the intuitive approach used in Definition 3.4.3, so
we can confidently continue to use union and intersection just as we have until now.

Interestingly, the way the ZF axioms treat union is quite different from the way it
treats intersection. The ability to take the union of a family of sets is given axiomat-
ically in the Axiom of Union; by contrast, the ability to take the intersection of a
family of sets can be deduced from the ZF axioms, as follows. Let x be a non-empty
set. Then (¢, z is then defined to be {y € Ux | y € z for all z € x}, which is possible
by the Axiom of Selection.

Although we used the name “Axiom of Selection,” this axiom is actually not a
single axiom, but a collection of axioms, one axiom for each property P(z). Such a
collection of axioms is often called an “axiom schema.” It is not possible to coalesce
this collection of axioms into a single axiom, because it is not possible in the ZF
axioms to quantify over all possible properties of sets.
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Axiom of Infinity There is a set z such that @ € z, and if x € z then xU {x} € z.

We can make use of @ and U in the Axiom of Infinity because of the Axiom of
Empty Set and the Axiom of Union, and we can make use of {x} because of the
Axiom of Power Set and the Axiom of Selection, though we omit the details of the
latter. The set z in this axiom, which is not necessarily unique, can be thought of
informally as a set that contains the sets

0,{0},{0,{0}},{0,{0}.{0,{0}}},.... (3.5.1)

Intuitively, any such set z must be infinite, which leads to the name of the axiom. (We
have not yet formally defined what it means for a set to be infinite; we will see that
in Section 6.5.)

Axiom of Replacement Let F(s,7) be a functional property of sets with two free
variables s and 7 that can be formulated in the context of the ZF axioms. Let x
be a set. Then there is a set z such that y € z if and only if there is some w € x
such that F(w,y) is true.

As with the Axiom of Selection, the Axiom of Replacement is also a collection
of axioms, one for each functional property F. A functional property is the formal
way of describing what is standardly called a function. We will discuss functions
extensively in Chapter 4; in particular, we will see in Section 4.1 that functions can
be described in terms of sets, and hence functional properties are valid in the ZF
axioms. We will put off any further discussion of functions till Chapter 4. The Axiom
of Replacement is used primarily for technical purposes in advanced set theory, and
we will not discuss it any further. See [Pot04, Appendix A.3] for some philosophical
reservations about the Axiom of Replacement, though other mathematicians do not
seem to have qualms about this axiom.

The ZF axioms can be used not only to prove many useful facts about sets, but
also to construct many familiar mathematical objects, for example the set of natural
numbers. The basic idea of this construction is found in the list of sets in Equa-
tion 3.5.1. These sets should remind the reader of the numbers 0,0+ 1,0+ 1+ 1,0+
1+ 1+1,..., which intuitively are the non-negative integers; the natural numbers
are then obtained by removing 0 from this set. The Axiom of Infinity guarantees the
existence of at least one set w that contains these “numbers,” though the set w is not
necessarily unique. We then let z be the intersection of all subsets of w that contain
these “numbers,” and it can be seen that z is then the minimal such set. With some
work, the set z is seen to contain precisely the sets listed in Equation 3.5.1, and is
seen to behave just as one would expect the set of natural numbers together with 0 to
behave; the choice of w turns out not to matter. The details of this construction may
be found in [End77, Chapter 4].

Once the natural numbers have been defined, it is possible to construct the in-
tegers, the rational numbers and the real numbers from the natural numbers. See
[Blol11, Chapter 1] for the construction of these number systems. Moreover, many
branches of mathematics such as real analysis (the rigorous study of calculus) and
Euclidean geometry are based upon the properties of the real numbers. Hence, if we
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accept the ZF axioms, then we have at our disposal the familiar number systems with
their standard properties, and a variety of branches of mathematics, all constructed
completely rigorously.

A review of the ZF axioms raises the question of why these particular axioms and
not others were chosen. The answer is that it would be possible to use variants of the
axioms. These particular axioms were chosen because they seem to be convenient to
work with, and because they suffice to imply everything that needs to be done with
sets.

Is there any redundancy in the ZF axioms? In other words, is it possible to prove
one or more of the axioms from the remaining ones? The answer is yes. For exam-
ple, the Axiom of Infinity together with the Axiom of Selection imply the Axiom
of Empty Set, because the Axiom of Infinity states that there is some set w, and the
Axiom of Selection implies that we can define a new set z = {x € w | x # x}, which
in turn satisfies the Axiom of Empty Set. Hence, in principle, it would be possible to
drop the Axiom of Empty Set from the ZF axioms if we want to have the smallest
possible set of axioms. However, the Axiom of Empty Set is used regularly through-
out mathematics, and because it is so important, it is standard to include this axiom
in the ZF axioms, even though keeping it is redundant.

Similarly, though of a more technical nature, it is shown in [Lev02, Section 1.5]
that the Axiom of Selection can be proved using the Axiom of Replacement and other
axioms, which means that the Axiom of Selection is redundant. In practice, however,
the Axiom of Selection is used frequently throughout mathematics, whereas the Ax-
iom of Replacement is not used nearly as often, so both axioms are included in the
ZF axioms, the former to emphasize its usefulness, and the latter because it is needed
for some technicalities.

Are the ZF axioms consistent? That is, are we certain that if we deduce every-
thing that can be deduced from the ZF axioms, we would never encounter a logical
contradiction? The answer is that we cannot be completely sure. In general, if some-
one starts with a set of axioms and deduces a specific logical contradiction, then
we know that the set of axioms is inconsistent; on the other hand, if no one has yet
produced a logical contradiction from a set of axioms, we cannot know if that is be-
cause no logical contradiction can possibly be deduced, or if that is because there is
a logical contradiction waiting to be found and it has just not been found yet.

However, even if no one has definitively proved that the ZF axioms are consistent,
we observe that these axioms have been designed to remove the known problems of
naive set theory such as Russell’s Paradox. As discussed at the start of the section,
Russell’s Paradox arises when we let S denote the set of all sets, and we then looked
attheset T = {A € S| A ¢ A}. Observe, however, that if S is the set of all sets, then
S € §, and yet we saw that that was not possible in our discussion of the Axiom
of Regularity. Without the existence of the set S, then we cannot use the Axiom of
Selection to define the set 7', because that axiom does not allow definitions of the
form7T ={A|A ¢ A}.

Ultimately, the ZF axioms seem reasonable intuitively; they work well in provid-
ing a framework for set theory as we would want it; the known problems with naive
set theory have been eliminated by the ZF axioms; and experts in the field have not
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found any new problems that arise out of these axioms. Hence, we can feel confident
that the ZF axioms are a very reasonable choice as the basis for mathematics. We
simply cannot do any better than that.

In practice, most mathematicians who are not logicians use set theory in the in-
formal and intuitive way that we saw in the previous sections of this chapter; most
mathematicians accept the fact that set theory seems to work as it is supposed to, and
do not worry about it beyond that. It is very good that there are logicians who make it
their business to work out the foundations of mathematics, but most mathematicians
want to prove theorems in their areas of interest (algebra, analysis, topology, combi-
natorics, etc.), and spending time worrying about the subtleties of the ZF axioms and
the like would be too large a distraction. That attitude is certainly recommended for
the reader (except when you study logic or set theory in courses dedicated to those
fields), and that is the approach we take in this text. Nonetheless, even if most math-
ematicians do not explicitly think about the ZF axioms on a daily basis, it is well
worth knowing that such an axiom system exists, and knowing roughly what it says.

Although we do not recommend getting too caught up in the details of the ZF
axioms at this point, there is one additional axiom for set theory with which it is
worth spending more time, namely, the famous Axiom of Choice. In contrast to the
axioms of ZF, which arouse little controversy and are used implicitly by most math-
ematicians, the Axiom of Choice is thought by some to be controversial, and when
used by mathematicians (and most do use it), it is used much more explicitly than
the ZF axioms. The Axiom of Choice is often abbreviated as “AC,” and when ZF is
combined with AC, the resulting collection of axioms is often abbreviated as “ZFC.”

Intuitively, the Axiom of Choice states that if we have a family of non-empty
sets, we can simultaneously choose one element from each of the sets in the family.
For a single non-empty set, there is no problem choosing an element from the set.
Indeed, we regularly say things such as “let A be a non-empty set, and let a € A.” For
a finite family of non-empty sets, we can choose an element from the first set, and
then an element from the second set, and so on, and we will be done after a finite
number of steps. Again, there is no problem in making such choices. The problem
arises when we have an infinite family of sets (particularly an uncountable family—
uncountability will be defined in Section 6.5). From both a practical and a logical
point of view, we cannot assume that it is possible to perform an infinite number of
steps one at a time, and expect the process ever to be completed. In particular, we
cannot choose one element from each set in an infinite family of non-empty sets by
making the choices one at a time. If we want to choose one element from each set
in an infinite family of non-empty sets, we need to make the choices simultaneously.
Such a simultaneous choice is not something we could physically do, and the ability
to do so mathematicially does not follow from the other axioms of set theory. There-
fore, we need an additional axiom to guarantee our ability to make such choices, and
that axiom is the Axiom of Choice.

There are a number of equivalent variants of the Axiom of Choice; we use the
following. The most convenient, and useful, way of phrasing the Axiom of Choice is
with the help of functions, but because we have not defined functions yet, we use the
following version that is stated strictly in terms of sets. We will restate the Axiom of
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Choice using functions in Section 4.1. Although the problem with choosing elements
occurs only in infinite families of sets, the Axiom of Choice is stated for all sets in
order to avoid special cases.

For the following version of the Axiom of Choice, recall that in the ZF axioms,
all sets are viewed as families of sets.

Axiom of Choice Let x be a set. Suppose that if y,w € x, then y # 0 and yNnw = 0.
Then there is a set z such that if y € x, then y Nz contains a single element.

The set z in the Axiom of Choice contains one element from each set in x, and
these elements can be thought of as having been “chosen” by z, which leads to the
name of the axiom, though of course sets do not actually make choices. The re-
quirement that if y,w € x, then y # 0 and y Nw = ) guarantees that every set in x has
something in it that can be chosen, and that nothing in z could belong to two different
sets in x, so that there is genuinely one element in z for each set in x.

For practical applications, it is convenient to reformulate the Axiom of Choice in
terms of families of sets indexed by a set. We start with the following definition.

Definition 3.5.1. Let / be a non-empty set, and let {A, },; be a family of sets indexed
by 7. The family of sets {A;},, is pairwise disjoint if i, j € [ and i # j imply that
AiNA; = 0. A

We now restate the Axiom of Choice as follows.

Axiom 3.5.2 (Axiom of Choice for Pairwise Disjoint Sets—Family of Sets Ver-
sion). Let I be a non-empty set, and let {A;};; be a family of non-empty sets indexed
by I. Suppose that {A;},.; is pairwise disjoint. Then there is a family of sets {Ci};;
such that C; C A; and C; has exactly one element for all i € I.

Axiom 3.5.2 has the requirement of pairwise disjoint sets because the original
statement of the Axiom of Choice did. In practice, however, it is often necessary
to apply this axiom to families of non-empty sets that are not necessarily pairwise
disjoint. Fortunately, the following version of the Axiom of Choice, which does not
assume pairwise disjoint sets, can be deduced from Axiom 3.5.2. A proof of that
fact is left to the reader in Exercise 3.5.2. We name the following theorem “Axiom
of Choice” without mentioning the fact that pairwise disjoint sets are not required
because this version of the Axiom of Choice is the one that is commonly used, and
it is the one which we will use subsequently.

Theorem 3.5.3 (Axiom of Choice—Family of Sets Version). Let I be a non-empty
set, and let {A;};c; be a family of non-empty sets indexed by I. Then there is a family
of sets {Ci}iel such that C; C A; and C; has exactly one element for all i € I.

The Axiom of Choice is to be used only when there is no way to avoid it; that is,
when we need to choose a single element from each set of a family of non-empty sets
and when there is no explicit procedure for such a choice. This point was described
amusingly by Bertrand Russell in [Rus19, Chapter 12] as follows. Suppose that a
millionaire possesses an infinite number of pairs of boots, and an equal number of
pairs of socks. If the millionaire wants to select one boot from each pair, he can
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prescribe a specific method for doing so, for example by stating that the left shoe
of each pair be chosen; in this case, the Axiom of Choice is not needed. On the
other hand, if the millionaire wants to select one sock from each pair, he has no way
to prescribe a specific method for doing so, because the two socks in each pair are
indistinguishable; hence, for such a selection, an arbitrary choice must be made, and
formally such a choice uses the Axiom of Choice (though Russell does not phrase it
exactly that way).

For a more mathematical example, suppose that we have a family {[a;,b;]},; of
closed bounded intervals in R, and suppose that we wanted to choose an element
from each interval. We would not need to use the Axiom of Choice in this case,
because we could, for example, choose the smallest element of each interval, which
is a;.

One of the reasons we single out the Axiom of Choice from the other axioms of
set theory is because there are some mathematicians who do not accept the Axiom
of Choice. It turns out that the Axiom of Choice is independent of the other axioms
of ZF, and hence it can either be accepted or not without having to change the other
axioms. This independence, which is due in part to Kurt Godel in 1938 and in part
to Paul Cohen in 1963, means that if the ZF axioms are consistent, then so are the
ZF axioms together with the Axiom of Choice, and so are the ZF axioms together
with the negation of the Axiom of Choice. For more about the Axiom of Choice, see
[Mos06, Chapter 8], and [Moo82], which has a very extensive historical discussion,
and [Pot04, Chapter 14], which has some philosophical discussion.

The author, and the majority of mathematicians, have no qualms about using the
Axiom of Choice. Indeed, we will use the Axiom of Choice in a few places in this
text, for example in the proof of Zorn’s Lemma (Theorem 3.5.6) later in this section,
and in the proof of Theorem 4.4.5. However, because some mathematicians have
reservations about the Axiom of Choice, this axiom should always be mentioned
when it is used.

In addition to using the Axiom of Choice directly, we will need a technical fact
about sets that is known as Zorn’s Lemma, and that is equivalent to the Axiom of
Choice. We start with the following definition.

Definition 3.5.4. Let ? be a non-empty family of sets.

1. Let M € P. The set M is a maximal element of 2 if there is no Q € P such
that M G Q.
2. Let ¢ C P. The family Cis a chainif A,B € CimpliesA CBorADB. A

Intuitively, a chain in 2 is a subset of 2 for which the elements can be lined up
in order of inclusion.

As we see in the following example, not every family of sets has a maximal
element. In fact, the point of Zorn’s Lemma is that it gives a criterion that guarantees
the existence of such an element. Observe that a maximal element of a family of
sets need not be the largest element of the family; that is, it need not have all the
other elements of the family as subsets. A maximal element is simply one that is not
a proper subset of any other element of the family. Also, a family of sets can have
more than one maximal element.
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Example 3.5.5.

(1) Let » = {{1},{1,2},{1,2,3},{5}}. Then 2 has two maximal elements,
which are {1,2,3} and {5}. There are nine chains in 2, which are

0, {{13 1 {{1,2}}, {{1,2,3}},{{5}},
AL 23 ({1 {1,233 {{1,2),{1,2,3}},
{1 {1,2},{1,2,3}}.

(2) Let Q = 2(N), let S denote the family of all finite subsets of N and let ¢ =
{{2},{2,4},{2,4,6},...}. Then C is a chain in each of Q and . Clearly UccC =
{2,4,6,...}. Then UceC € Q, but UceC ¢ 5. Observe also that Q has a maximal
element, which is N, whereas § has no maximal element, because any finite subset
of N is a proper subset of many other finite subsets of N. O

In Example 3.5.5 (2) we observe that in Q, the union of the elements of the chain
Cisin Q, and that Q has a maximal element; in S, by contrast, neither of these facts
holds. Zorn’s Lemma, which we now state, shows that the situation just observed
is no coincidence. More specifically, Zorn’s Lemma says that if a family of sets
contains the union of the elements of each chain in the family, then the family has a
maximal element.

Theorem 3.5.6 (Zorn’s Lemma). Let P be a non-empty family of sets. Suppose that
for each chain C in P, the set | Jcc-C is in P. Then P has a maximal element.

Proof. Suppose that P does not have a maximal element. Then for every A € P, the
set Ty = {Q € P| A G Q} is non-empty. Therefore {7y } 4, is a family of non-empty
sets. By the Axiom of Choice (Theorem 3.5.3) there is a family of sets {F4 } 5, such
that F4 C Ty and Fj4 has exactly one element for all A € 2. For each A € 2, let S4 be
the single element in Fy, and then S4 € P and A g Sy forall A € 2.

Let & C P. We say that the family ® is chain-closed if for each chain C in %,
the set Jce-C is in R..

By hypothesis the family ©? is chain-closed. Let M be the intersection of all
chain-closed families in . Let C be a chain in M. Then (C is a chain in % for all
chain-closed families ® C , and hence Jcc-C € R for all chain-closed families
R C P, and therefore Joc-C € M. Hence M is chain-closed.

Observe that 0 is a chain in M, and that | J-.»C = 0. Hence 0 € %, which means
that M # 0.

Let Ac?. Let A={X € P|S4y CX}. Then 4 C 2. Let C be a chain in 4.
Then C is a chain in 2, and hence UccC € P by hypothesis. If C € C then S4 C C,
and hence Sy € UceC. Therefore (Joc-C € A. It follows that 4 is chain-closed.
Therefore M C 4. However, we note that A ¢ 4, because otherwise we would have
Sa C A, which would contradict the fact that A g Sa.Hence A ¢ M.

Because M C P, and because A ¢ M for all A € P, we deduce that M = @, which
is a contradiction. We conclude that 2 must have a maximal element. a



3.5 Axioms for Set Theory 125

The statement of Zorn’s Lemma in Theorem 3.5.6 is not the most general form
of the Lemma. The most general version is stated in terms of partially ordered sets
(also called posets), which we define in Section 7.4, rather than the more narrow
context of set inclusion. Moreover, the most general version requires only that every
chain has an upper bound, not necessarily a least upper bound; see Exercise 3.5.7
for the definitions of these terms in the context of set inclusion, and Section 7.4 for
the definitions for posets. However, even though our version of Zorn’s Lemma is not
the strongest possible version, it suffices for our purposes, and it is easier to prove.
Moreover, it turns out that our version of Zorn’s Lemma is actually equivalent to the
more general version; see [RR85, Section 1.4] for details. Hence, we name Theo-
rem 3.5.6 “Zorn’s Lemma” without mentioning the fact that its statement is weaker
than other versions. Also, we remark that Zorn’s Lemma is not really a lemma, but is
rather a very important theorem; the name of this theorem is standard, however, and
we will stick with it.

In the proof of Zorn’s Lemma (Theorem 3.5.6) we used the Axiom of Choice
explicitly by writing out the appropriate family of sets. In practice, however, for
the sake of not overly burdening the reader with unnecessary details, most proofs
involving the Axiom of Choice use that axiom in a less formal manner, by simply
saying that we are choosing something, but without explicitly writing things out in
terms of sets, and sometimes without even mentioning the Axiom of Choice at all.
For example, a more typical way of defining S4 in the proof of Zorn’s Lemma would
be: “Suppose that 2 does not have a maximal element. Then for every A € P, there
is some Q € P such that A ;Cé 0, and we let s4 = Q; if there is more than one such Q,
we let s4 be any choice of such Q.” We will also use this informal style of invoking
the Axiom of Choice when we use it subsequently.

Would it have been possible to prove Zorn’s Lemma without invoking the Axiom
of Choice? The answer is no, because Zorn’s Lemma is equivalent to the Axiom
of Choice, by which we mean that if the ZF axioms are assumed together with the
Axiom of Choice, it is possible to prove Zorn’s Lemma (as we have seen), and if
the ZF axioms are assumed together with Zorn’s Lemma, it is possible to prove the
Axiom of Choice (as will be seen in Exercise 4.1.11). Given that the Axiom of Choice
is independent of the ZF axioms, which implies that it is not possible to deduce the
Axiom of Choice from only the ZF axioms, it is therefore also not possible to deduce
Zorn’s Lemma from only the ZF axioms. Hence, we cannot avoid using the Axiom
of Choice, or something else equivalent to it, in the proof of Zorn’s Lemma. It is a
matter of convenience—and choice—which of these two facts is taken as an axiom,
and which is to be deduced. The Axiom of Choice is much more intuitively appealing
than Zorn’s Lemma, and that is perhaps one of the reasons why the former is more
often taken axiomatically. On the other hand, there are situations where Zorn’s is
easier to use directly than the Axiom of Choice, for example in the proof of the
Trichotomy Law for Sets (Theorem 6.5.13).

Besides being of great mathematical use, the equivalence of the Axiom of Choice
and Zorn’s Lemma also explains the following well-known joke (well-known among
mathematicians, at least). Question: What is yellow and equivalent to the Axiom of
Choice? Answer: Zorn’s lemon.



126 3 Sets

There are also a number of other important facts in mathematics that are equiv-
alent to the Axiom of Choice, a few of which are the following. See [RR85] for an
extremely extensive list of statements that are equivalent to the Axiom of Choice.

1. The Trichotomy Law for Sets. See Theorem 6.5.13 for the statement of this
theorem and a proof of it using Zorn’s Lemma, and see [Sto79, Section 2.9]
or [RR85, Section 1.3] for the other implication.

2. The Well-Ordering Theorem. This theorem states that for any set, there is an
order relation on the set that is well-ordered, which means that every subset
has a least element. (An order relation is, informally, a relation that behaves
similarly to the standard order on R; a formal definition of an order relation is
given in Section 7.4, where it is called a “total ordering” to distinguish it from
a “partial ordering.”) The standard order on N is well-ordered by the Well-
Ordering Principle (Theorem 6.2.5), but the standard order on R is certainly
not well-ordered. The Well-Ordering Theorem implies that in principle there
is some other order on R that is well-ordered, though there does not appear
to be a concrete description of such an order. A proof that the Well-Ordering
Theorem implies the Axiom of Choice may be found in Exercise 7.4.18; a
proof of the other implication may be found in [HJ99, Section 8.1] or [Sto79,
Section 2.9].

3. If {A;},c; is a family of non-empty sets indexed by 7, then the product [T;c; A;
is not empty. See Section 4.5 for the definition of the product of a family of
sets, and discussion of the equivalence of this fact with the Axiom of Choice.

4. For any infinite set A, the set A x A has the same cardinality as A. See Sec-
tion 6.5 for the definition of infinite sets, and the definition of two sets hav-
ing the same cardinality. This result is certainly not true for finite sets. See
[Sto79, Sections 2.9 and 2.10] or [RR85, Section 1.7] for details.

5. Any surjective function has a right inverse. See Section 4.4 for the definition
of surjectivity, see Theorem 4.4.5 (1) for a proof that the Axiom of Choice
implies this fact, and see Exercise 4.4.19 for the other implication.

We conclude this section with two quotes illustrating the controversy and confu-
sion surrounding the Axiom of Choice.

As mentioned in Item (4) above, the statement “if A is an infinite set then A x A
has the same cardinality as A” implies the Axiom of Choice. This fact is due to
Alfred Tarski. In [Myc06] it is related: “Tarski told me the following story. He tried
to publish his theorem ... in the Comptes Rendus Acad. Sci. Paris but Fréchet and
Lebesgue refused to present it. Fréchet wrote that an implication between two well
known propositions is not a new result. Lebesgue wrote that an implication between
two false propositions is of no interest. And Tarski said that after this misadventure
he never tried to publish in the Comptes Rendus.” It should be noted that Tarski,
Fréchet and Lebesgue are all very important mathematicians of their era, and yet
they had very different views about the Axiom of Choice.
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Finally, the following widely cited quote, found among other places at [Sch],
is due to Jerry Bona: “The Axiom of Choice is obviously true; the Well Ordering
Principle is obviously false; and who can tell about Zorn’s Lemma?” This quote is
amusing precisely because it captures how difficult it is to be sure that the Axiom of
Choice is true, because even though it seems very appealing intuitively, it is known
to be equivalent to statements that are much less self-evident.

Exercises

Exercise 3.5.1. For each of the following families of intervals in R, suppose that we
wanted to choose an element from each interval simultaneously. Would we need to
use the Axiom of Choice?

(1) Let {(a;,b;)};c; be a family of non-degenerate open bounded intervals in R.
(2) Let {(ci,o0)};-; be a family of open unbounded intervals in R.

Exercise 3.5.2. [Used in Section 3.5 and Exercise 4.4.19.] Prove that the version of the
Axiom of Choice that assumes pairwise disjoint sets (Axiom 3.5.2) implies the ver-
sion of the Axiom of Choice that does not make such an assumption (Theorem 3.5.3).
The idea of the proof is that if we are given a non-empty set J, and a (not necessarily
pairwise disjoint) family of sets {B f}/ ¢, indexed by J, we can form a new family of

sets {D,-}J.EJ defined by D; = {(x,j) | x € B;} forall j € J.
Exercise 3.5.3. Let ? = {{1},{2},{1,2},{2,3},{1,2,3}}. List all the chains in .

Exercise 3.5.4. Let P be a non-empty family of sets, and let C be a non-empty chain
in 2. Suppose that C # 0 for all C € C. Is (¢ C always non-empty? Give a proof
or a counterexample.

Exercise 3.5.5. Let 7 and Q be non-empty families of sets, and let C C P and D C Q
be chains. Is € x 9 always a chain in 2 x Q? Give a proof or a counterexample.

Exercise 3.5.6. Let 2 be a non-empty family of sets, let / be a non-empty set and let
{G}ic; be a family of chains in .

(1) Is ;¢ G always a chain in ?? Give a proof or a counterexample.
(2) Is U;e; G always a chain in #? Give a proof or a counterexample.

Exercise 3.5.7. [Used in Section 3.5.] Let 2 be a non-empty family of sets, let ¢ C P
be a chain and let A € 2. The set A is an upper bound of Cif X C A forall X € C.
The set A is a least upper bound of ( if it is an upper bound of ¢, and A C Z for any
other upper bound Z of C.

(1) Suppose that C has a least upper bound in ©?. Prove that the least upper bound
is unique.

(2) Suppose that JocC € P. Must it be the case that Joc~C is the least upper
bound of C? Give a proof or a counterexample.

(3) Suppose that ¢ has a least upper bound in ?. Must it be the case that the least
upper bound equals | Jce ~C? Give a proof or a counterexample.
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(4) Give an example of a non-empty family Q of subsets of R, and a chain D C Q,
such that © has an upper bound in Q but not a least upper bound.



4

Functions

A function is the abstract image of the dependence of one magnitude on
another.
— A. D. Aleksandrov (1912-1999)

4.1 Functions

The reader has encountered functions repeatedly in previous mathematics courses. In
high school one learns about polynomial, exponential, logarithmic and trigonomet-
ric functions, among others. Although logarithms and trigonometry are often first
encountered without thinking about functions (for example, sines and cosines are
thought of in terms of solving right triangles), in calculus courses and above the
focus shifts to the point of view of functions (for example, thinking of sine and co-
sine as functions defined on the entire real number line). The operation of taking
a derivative, for example, is something that is done to functions. In applications of
calculus, such as in physics or chemistry, it is crucial to think of exponentials, sines
and cosines as functions. For example, sine and cosine functions are used to describe
simple harmonic motion.

In modern mathematics, where we make use of set theory, functions play an even
more important role than in calculus. For example, if we want to compare two sets to
see if they have the same size (as discussed in Section 6.5), we use functions between
the sets. In group theory, if we want to show that two groups are essentially the same,
we use certain types of functions between groups, as discussed briefly in Section 7.3.
The same idea holds in many other branches of modern mathematics.

But what is a function really? We all have an intuitive idea of what a function is,
usually something of the form f(x) = x?. However, a function need not be described
by a formula, nor need it deal with numbers at all. For example, we can form the
function that assigns to each person her biological mother; there is certainly no nu-
merical formula that describes this function. We can think of a function informally as
a machine, where the input is placed in an opening at the top, and for each object that
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is put in, the machine spits a corresponding object out. See Figure 4.1.1. For exam-
ple, if a function is given by the formula f(x) = x2, then the machine takes numbers
as input, and if we put @ = 5 into the machine, then it will spit out f(a) = 25.

function N ()

Fig. 4.1.1.

You may have seen a definition of functions that looks something like “a function
is a rule of assignment that assigns to each member of one set a unique member of
another set.” Such a definition is often given in introductory calculus classes, and
there is nothing blatantly incorrect about it, but it does not really say anything either.
What is a “rule of assignment?” Well, it is a function—but then we are going in
circles.

To get out of the above predicament, we give a definition of functions in terms
of sets. This rigorous definition will be seen to fit our intuitive picture of functions
quite nicely; we cannot formally prove that this definition is identical to our intuitive
notion, because formal proofs cannot be applied to informal concepts. To get a feel
for our definition, given below, let us consider the function that assigns to each person
her biological mother. Although there is no numerical formula that describes this
function, we can, however, completely specify this function in a different way, which
is by means of a two-column list, where on the left-hand side we list all the people
in the world, and on the right-hand side we list each person’s mother. Part of this list

would be
person person’s mother

Fred Smith Mary Smith
Susan Levy | Miriam Cohen
Joe al-Haddad | Maryam Mansur

Even for functions that are described by nice formulas, we can also think of them
as given by lists. Consider the function defined by the formula f(x) = x> for all
integers x. We can make a list for this function, part of which would be
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Of course, the list for this function is infinite, so we cannot physically write it all
down, but in principle such a list could be made.

By thinking of functions as lists, we have a uniform way of treating all functions,
whether given by formulas or not. To make this approach more compatible with set
theory, we make one modification. Instead of using a list consisting of two columns,
we could use a one-column list, where each entry in the new list is an ordered pair
representing the corresponding row of the original two-column list. So, for the func-
tion defined by f(x) = x? for all integers x, we have an infinite list of pairs, containing
(2,4), (—=2,4), (5,25), and so on. For any given integer c, there will be one and only
one ordered pair in this list that has ¢ in its left-hand slot, namely, the pair (c,cz).
On the other hand, the number ¢? appears in the right-hand slot of two pairs, which
are (c,c?) and (—c,c?), unless ¢ = 0. In fact, once we have the idea of representing a
function by ordered pairs, we do not need to think of the collection of ordered pairs
as being written in a list, but rather, we simply think of it as a set of ordered pairs, as
we now see formally in the following definition.

Definition 4.1.1. Let A and B be sets. A function (also called a map) f from A to B,
denoted f: A — B, is a subset F C A x B such that for each a € A, there is one and
only one pair in F' of the form (a,b). The set A is called the domain of f and the set
B is called the codomain of f. A

Definition 4.1.1 is stated entirely in terms of sets, which shows that once we
accept set theory as the basis of mathematics, then the use of functions requires no
additional hypotheses.

It is important to observe that a function consists of three things: a domain, a
codomain, and a subset of the product of the domain and the codomain satisfying a
certain condition. Indeed, one way of defining a function is as a triple of sets (A, B, F)
where F is a subset of A x B that satisfies the conditions given in Definition 4.1.1.
However, we avoid writing this cumbersome triple notation by observing that in
Definition 4.1.1 every function is defined as being from a set A to a set B, denoted
f: A — B, and therefore the domain and the codomain of a function are always
specified in the definition of the function. Hence, to define a function properly, it
is necessary to say “let A and B be sets, and let f: A — B be a function.” We will
sometimes be more concise and just say “let f: A — B be a function,” where it is
understood from the notation that A and B are sets. It will not suffice, however, to
write only “let f be a function” without specifying the domain and codomain, unless
the domain and codomain are known from the context.
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The need to specify the domain and codomain of a function when defining a
function is not a mere formality, but a necessity when treating functions rigorously.
For example, consider the set F = {(n,n?) | n € Z}. The set F is a subset of Z x Z
that satisfies the conditions given in Definition 4.1.1, and hence F can be thought
of as defining a function Z — Z. However, the set F' is also a subset of Z x R that
satisfies the conditions in the definition of a function, and hence F can be thought
of as defining a function Z — R. Such ambiguity is not acceptable when we use
functions in rigorous proofs, and so the domain and codomain of a function must be
specified as part of the definition of a function.

Example 4.1.2.

(1) Let A and B be sets. A function from A to B is a subset of A x B. When the sets
A and B are finite, rather than thinking of such a subset of A x B in terms of ordered
pairs of the form (a,b), where a € A and b € B, we can think of the subset graphically
in terms of a diagram with the sets A and B and arrows from certain elements of A to
certain elements of B, where there is an arrow from a to b when (a, b) is in the subset.
For example, let A = {a,b,c,d} and B={1,2,3,4}. Two diagrams with arrows from
A to B are seen in Figure 4.1.2. In Part (i) of the figure the diagram corresponds to the
subset {(a,2),(b,1),(c,4),(d,4)} C A x B, and this subset is a function; in Part (ii)
of the figure, the corresponding subset of A x B is {(a, 1), (a,2),(b,3),(c,4)}, and it
is not a function.

A B A B
a 1 a 1
b 2 b 2
c o |3 c 3
d 4 d\ e 4

(1) (ii)

Fig. 4.1.2.

(2) A “rule of assignment” is given by assigning to each person her sister. Is
this rule a function? The answer depends upon the choice of domain and codomain,
which we have been sloppy in not stating. If the domain is all people, then we cer-
tainly do not have a function, because not everyone has a sister. Even if we restrict
the domain to all people with sisters there is a problem, because some people have
more than one sister, and we do not know which sister is being assigned. Therefore
we need to restrict the domain even further to all people with precisely one sister.
As for the codomain, it needs to be a set that contains at least all those women who
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have siblings, and it could be any choice of such a set (different choices give rise to
different functions).

(3) Consider the formula f(x) = vx2 — 5x+ 6. On its own, this formula does not
properly define a function, because we are not given a domain and codomain. It is
standard, however, when given a formula such as this to take as its domain the largest
subset of R that can serve as a domain; in this case the set (—eo,2] U [3,00) is taken
as the domain. The codomain might as well be taken to be R, though various subsets
of R could be taken as the codomain as well, for example [—17,00). O

We defined functions in terms of sets in Definition 4.1.1, but we can in fact re-
cover the intuitive “rule of assignment” approach to functions. Let f: A — B be a
function. Then for each a € A there is one and only one pair of the form (a,b) in the
subset F' C A x B that defines the function. In other words, for each a € A there is a
unique corresponding b € B, where this b is the unique element of B such that the
pair (a,b) is in F. We could then define the term “f(a)” (which was not mentioned
in our definition of functions) to be f(a) = b, where b is as just stated. Hence our for-
mal definition of functions leads to the more usual notation for functions, and so we
can now revert to using the more usual notation, though with one important caveat,
which we now state.

The use of the “f(x)” notation, though legitimate when used properly, often leads
to a very common mistake. It is customary in elementary courses (such as calculus)
to write phrases such as “let f(x) be a function.” Such a phrase, however, is not
technically valid. If f: A — B is a function, then the name of the function is “f,” not
“f(x).” The notation “f(x)” means the value of the function f at the element x in the
domain; therefore f(x) is an element of the codomain B, rather than the name of the
function.

It is often mistakenly thought that “f(x)” is the name of the function because x is
a “variable,” rather than a specific element of the domain. In reality, however, there
is no such thing as a variable in a function. It would be commonly understood that
the notation “f(c)” denotes the value of the function f at the element ¢ in the do-
main, and so f(c) is an element of the codomain. Why should “f(x)” mean anything
different from “f(c),” except that ¢ is one choice of element in the domain, and x is
another such element? Historically, following Descartes, mathematicians have often
used letters such as x, y and z to denote “variables,” and letters such as a, b and ¢
to denote “constants,” but from a rigorous standpoint there is no such distinction.
In careful mathematical writing, we always use the notation f to denote the name
of the function, and the notation f(x) to denote an element of the codomain. This
distinction between f and f(x) might seem to be an overly picky technicality, but it
is in fact nothing of the sort. A careless approach in this matter can lead to definite
misunderstandings in some tricky situations, such as in Section 4.5.

The proper way to define a function is to state its domain and its codomain, and
to state what the function “does” to each element of the domain (which is really
the same as defining an appropriate subset of the product of the domain and the
codomain). For example, we might write “let f: R — R be defined by f(x) = cosx
for all x € R.” The phrase “for all x € R” is crucial, and the definition would not be
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correct without it. All the more so, simply stating “let f(x) = cosx” does not define
a function. A proper definition of a function based upon a formula must include both
the domain and codomain of the function, and it must quantify the “variable” in the
formula. We cannot assume that x “ranges over the whole domain” just because it
is the letter x. We need the quantifier to tell us which elements of the domain are
treated by the formula. Hence the entire statement of the definition of f given above
is necessary.

Having just said that it is not correct to present a function by simply writing a
formula, there are some situations in which presentations of functions by formulas
are considered acceptable. If, in a given context, the domain and codomain can be
plausibly guessed, then giving a formula can be sufficient. For example, in an intro-
ductory calculus class, we might be given a formula such as f(x) = vx2 —5x+6.
Because the functions considered in introductory calculus virtually all have domains
and codomains that are subsets of R, we could follow the standard practice, as in
Example 4.1.2 (3), and take (—e0,2] U[3,00) as the domain, and R as the codomain.
However, because we now wish to attain a higher level of rigor than is found in
more elementary mathematics courses, it is usually best to avoid all such informal
conventions concerning definitions of functions, and give truly proper definitions, as
discussed in the previous paragraph.

Not all functions, even with domain and codomain equal to R, can be defined by
a numerical formula. Even when a function is defined by a formula, it is not always
possible to use a single formula, and sometimes the formula must be given in cases.
Consider, for example, the function f: R — R defined by

X, ifx>0
Jx) = {1, if x < 0.

In general, a function can be presented by breaking up the domain as the union of two
or more pairwise disjoint subsets, and defining the function on each of the subsets.
To see the subsets used for the above function f, we mention that a more proper,
though less pleasant and less commonly used, way to write the above formula would

be
NE? if x € [0,00)
f(x)_{l, if x € (—o0,0).

Whereas the most sensible way to break up the domain of a function is into
pairwise disjoint subsets, it is sometimes more convenient to break up the domain
into subsets that are not disjoint. For example, we might define a function g: R — R
by

xz, ifx>3

S =1 e, ifx<s.

In contrast to the case in which the domain is broken up into pairwise disjoint sub-
sets, where there is nothing to check, in this case we must verify that the formulas
for the two subsets agree when evaluated at the element common to both subsets
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(which is x = 3). Everything works out fine, because 32=9and 3+6 =9, and so
the way we presented g makes sense. This situation is usually expressed by saying
that the function g is well-defined. On the other hand, if a function is presented with
overlapping subsets, and if the formulas do not agree on the overlap, then we do not
have a function at all.

The concept of a function being well-defined has a more general meaning than
what we stated above. In general, a function is said to be well-defined if there is
some potential problem with the definition of the function, and it turns out that the
problem does not in fact occur. In practice, saying that a function is well-defined
usually means that one of two things has been verified: that every element of the
domain is indeed taken into the codomain, or that the function has only one value
for every element of the domain. Our use of the term well-defined in the previous
paragraph is of the second type. An example of the first type of use of the term
well-defined occurs in Exercise 4.4.8.

A look at the special case of functions R — R can help us gain some insight into
functions generally. Let f: R — R be a function. Then f gives rise to a graph in
IR?, where the graph consists of all points in R? of the form (x, f(x)), where x € R.
For each such x, the definition of functions implies that there is one and only one
corresponding value f(x) € R. Hence, for each x € R there is one and only one point
on the graph of f that is on the vertical line through x. See Figure 4.1.3. Conversely,
suppose that we are given a curve in R2. Is this curve necessarily the graph of some
function g: R — R? If the curve has the property that it intersects each vertical line
in the plane at precisely one point, then the curve will be the graph of some function
g: R — RR; if this property does not hold, then the curve will not be the graph of such
a function.

Fig. 4.1.3.

As we noted earlier, a function consists of three things: a domain, a codomain
and a subset of the product of the domain and the codomain satisfying a certain
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condition. For two functions to be considered equal, they need to have all three of
these things be the same. If even one of these three things is changed, a different
function is obtained. For example, the function f: R — R defined by f(x) = x>+ 1
for all x € R is not the same function as g: R — (0,0) defined by g(x) = x>+ 1 for
all x € R, even though they both have the same formula and the same domain.

Let f: A— Band g: C — D be functions. To say that “f = g”’ means that A = C,
that B = D and that the two functions correspond to the same subset of A x B. This
last statement can be rephrased by saying that f(x) = g(x) for all x € A. Observe that
the statement “f(x) = g(x) for all x € A” is not a statement about equivalent formulas
for f and g, because the functions f and g might not be given by formulas at all, but
is rather a statement about the equality of various elements in the codomain. That is,
a single statement about functions, namely, the statement f = g, is equivalent to a
collection of statements about elements in the codomain (once it is ascertained that
the two functions have the same domain and codomain). A proof that f and g are
equal typically has the following form.

Proof. (Argumentation)
Therefore the domain of f is the same as the domain of g.
(argumentation)

Therefore the codomain of f is the same as the codomain of g.
Let a be in the domain of f and g.

(argumentation)

Then f(a) = g(a).
Therefore f = g. a

There are some particularly useful types of functions that are encountered through-
out mathematics.

Definition 4.1.3. Let A and B be sets, and let S C A be a subset.

1. A constant map f: A — B is any function of the form f(x) = b for all x € A,
where b € B is some fixed element.

2. The identity map on A is the function 14: A — A defined by 14(x) = x for
all x € A.

3. The inclusion map from S to A is the function j: S — A defined by j(x) =x
for all x € S.

4. If f: A — B is a function, the restriction of f to S, denoted f
tion f|s: S — B defined by f|s(x) = f(x) forallx € S.

s, 1s the func-
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5. If g: S — B is a function, an extension of g to A is any function G: A — B
such that G|s = g.

6. The projection maps from A x B are the functions 7;: AXxB — A and
m: A X B — B defined by 7 ((a,b)) = a and my((a,b)) = b for all (a,b) €
A x B. For any finite collection of sets Ay,...,A,, projection maps

TG . A1 Xoees XAP —>A,'
foralli € {1,...,p} can be defined similarly. A
Example 4.1.4.

(1) Let f: R — R be defined by f(x) = sinx for all x € R. Then the restriction
of f to Q is the function f|g: Q — R defined by f|g(x) = sinx for all x € Q.

(2) LetX ={a,b,c},letY ={a,b}andletZ={1,2,3}. Let f: Y — Z be defined
by f(a) =3 and f(b) =2, and let g,h: X — Z be defined by g(a) =3, and g(b) =2,
and g(c¢) =1, and h(a) = 3, and h(b) = 1, and h(c) = 2. Then g is an extension of f,
because g|y = f, but & is not an extension of f. There are other possible extensions
of f.

(3) We can think of R? as R x R. We then have the two projection maps 7; : R? —
R and 7, : R? — R that are defined by 71 ((x,y)) =x and m>((x,y)) =y forall (x,y) €
R?. That is, the projection map 7; picks out the first coordinate of the point (x,y),
for all (x,y) € RR?, and similarly for 7. O

In addition to the general types of functions given in Definition 4.1.3, which
we will use throughout this text, we will also make use of some standard functions
R — R, such as polynomials, exponentials, logarithms and trigonometric functions
in various examples. It is beyond the scope of this text to define these standard func-
tions, but they can indeed be defined rigorously, and all the familiar properties can
be proved, so no harm is done in our using these functions. See [Blo11, Chapter 7]
for rigorous definitions of such functions.

‘We conclude this section with a brief comment about the Axiom of Choice, which
was first discussed in Section 3.5. In that section we did not have functions at our
disposal, and hence our statement of the axiom in Theorem 3.5.3 was in terms of
families of sets. However, it is much more natural, and convenient, to use functions
to state the Axiom of Choice, which we now do. We do not need to prove this new
version of the Axiom of Choice, because it is simply a restatement of Theorem 3.5.3.

Theorem 4.1.5 (Axiom of Choice—Functions Version). Let I be a non-empty set,
and let {A;};c; be a family of non-empty sets indexed by I. Then there is a function
fi1— UicsAi such that f(i) € A; forall i € L.

The function given in Theorem 4.1.5 is called a choice function for {A;},.,. It
is also possible to formulate a non-indexed version of the Axiom of Choice using
functions, which we leave to the reader in Exercise 4.1.9.

Exercises

Exercise 4.1.1. Let A = {a,b,c} and B = {1,2,3}. Which of the following subsets
of A x B are functions A — B?
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™ {(b,1),(c,2),(a,3)}. @) {(a,1),(b,3)}.
@) {(a,3),(c,2),(a, 1)} ®) {(c,1),(a,2),(b,3),(c,2)}.
3 {(c,1),(b,1),(a,2)}. ©) {(a,3),(¢,3),(b,3)}.

Exercise 4.1.2. Let X denote the set of all people. Which of the following descrip-
tions define functions X — X?

(1) f(a) is the mother of a.

(2) g(a) is a brother of a.

(3) h(a) is the best friend of a.

(4) k(a) is the firstborn child of « if she is a parent, and is the father of a other-
wise.

(5) j(a) is the sibling of « if she has siblings, and is a otherwise.

Exercise 4.1.3. Which of the diagrams in Figure 4.1.4 represent functions?

= 6=
=

4

(iii) (iv)

Fig. 4.14.

Exercise 4.1.4. Which of the following descriptions properly describe functions?

(1) Let f(x) = cosx.
(2) To every person a, let g(a) be the height of a in inches.
(3) For every real number, assign the real number that is the logarithm of the

original number.
(4) Let g: R — R be defined by g(x) = ¢*.

Exercise 4.1.5. Which of the following formulas define functions R — R?
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1) f(x) =sinx forall x € R. 5) s(v) X2, ifx>1
s(x) =
243 X, ifx<o0.
(2) p(x):ﬁforalleR. x3_2 x>
6) 1(x) = ' -
(3) g(x) =In(x*+1) for all x € R. ©) %) {x|7 ifx<1.

sinx, ifx>nm

i N
@) r(x) = {Lﬁ’ =0 @ 8(x) {x, ifx<m.

cosx, ifx<O.

Exercise 4.1.6. For each of the following formulas, find the largest subset X C R
such that g: X — R is a function.

1) g(x :)ﬁforalleX.
(2) g(x)=+1—x%forall x € X.

(x)
(x)

(3) g(x) =3In(sinx) for all x € X.
(x)

VX, ifxeXandx>0
x+1, ifxeXandx<O0.

tantx+4, ifxeXandx>1

5 =
S g(x) 3X2+17 ifxeXandx<1.

Exercise 4.1.7. Let A and B be sets, let S C A be a subset and let f: A — B be a
function. Let g: A — B be an extension of f]|s to A. Does g equal f? Give a proof or
a counterexample.

Exercise 4.1.8. [Used in Theorem 4.5.4 and Section 8.7.] Let X be a non-empty set,
and let S C X be a subset. The characteristic map for S in X, denoted ), is the
function xs: X — {0, 1} defined by

1, ifyes
xs() = {0, ifycX—S.

Let A,B C X be subsets. Prove that y4 = xp if and only if A = B. (Observe that
“xa = xB” 1s a statement of equality of functions, whereas “A = B” is a statement of
equality of sets.)

Exercise 4.1.9. [Used in Section 4.1.] Restate Theorem 4.1.5 in a non-indexed ver-
sion.

Exercise 4.1.10. [Used in Exercise 4.1.11.] Let A and B be sets. A partial function
from A to B is a function of the form f;: J — B, where J C A. We can think of partial
functions from A to B as subsets of A x B that satisfy a certain condition.

Let f; and gk be partial functions from A to B. Prove that f; C gx if and only if
JCKand ggls = fJ.

Exercise 4.1.11. [Used in Section 3.5.] The purpose of this exercise is to prove that
Zorn’s Lemma (Theorem 3.5.6) implies the Axiom of Choice. Given that we used
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the latter in the proof of the former, it will follow that the two results are equivalent.

We make use here of the version of the Axiom of Choice stated in Theorem 4.1.5.
Let I be a non-empty set, and let {A;},_, be a family of non-empty sets indexed by

1. Assume Zorn’s Lemma. We will show that there is a choice function for {A;},.,.

(1) A partial choice function for {A;},; is a function f;: J — U c,A; for some
J C I such that f;(j) € A; for all j € J. If f; is a partial choice function for
{Ai} ;> we can think of f; as a subset of J x U ;A € 1% U A

(2) Let P be the set of all partial choice functions for {Ai}igl, and let C be a chain
in 2. Prove that [ Jo-C is in 2. [Use Exercise 4.1.10.]

(3) By Zorn’s Lemma the family of sets 2 has a maximal element. Let fx € P be
such a maximal element. Prove that K = I. (Recall that the Axiom of Choice
is not needed to choose an element from a single non-empty set.)

(4) Deduce Theorem 4.1.5.

4.2 Image and Inverse Image

Let A denote the set of all adults (defined for example to be people 18 years
and older), and let h: A — R be defined by letting h(x) be the height in inches
of person x. There are a number of things we might want to do with this func-
tion. For example, we might want to find the various heights found among all
adults living in France. This set of heights would be written in set notation as
{h(x) | x lives in France}. Alternatively, and more useful to us, we could write this
set as {r € R | r = h(x) for some x who lives in France}. What we are doing here is
taking a subset of the domain, namely, all adults living in France, and finding the
corresponding subset of the codomain, namely, all possible real numbers that arise
as the heights of adults in France.

We might also want to find all the adults whose heights are at least 6 ft. and
no more than 6 ft. 3 in. Because we are working in inches, we therefore want to
find all people whose heights are in the interval [72,75]. Hence, we want the set
{x €A h(x) €[72,75]}. In this case we are taking a subset of the codomain, namely,
a certain set of possible heights, and finding the corresponding subset of the domain,
namely, all people whose heights are as desired.

The following definition generalizes the above process. Given a function f: A —
B, we want to take each subset P of A, and see where f sends all of its elements
(which will give us a subset of B), and we want to take each subset Q of B, and see
which elements of A are mapped into it by f (which will give us a subset of A).

Definition 4.2.1. Let A and B be sets, and let f: A — B be a function.
1. Let P C A. The image of P under f, denoted f(P), is the set defined by

f(P)={beB|b= f(p) for some p € P}.

The range of f (also called the image of f) is the set f(A).
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2. Let Q C B. The inverse image of Q under f, denoted f~'(Q), is the set
defined by
Q) ={acA|f(a) €0} A

See Figure 4.2.1 for a schematic drawing of f(P) and f~'(Q).

O
9

Fig. 4.2.1.

Example 4.2.2. Let f: R — R be defined by f(x) = x> — 6x for all x € R. Tt is
straightforward to compute that £([6,7]) = [0,7], that f~'([0,4]) = [3—V/13,0] U
(6,34 V/13], that f~'([—12,—10]) = 0 and that the range of the function is [~9,);
the details are left to the reader (it helps to graph the function). O

In Part (1) of Definition 4.2.1 it would have been possible to have written

f(P)={f(p) | per},

and in Part (2) of the definition it would have been possible to have written

Q) ={acA| f(a) = g for some g € O}.

However, the method of defining these sets given in Definition 4.2.1 will be more
useful to us than these alternatives.

The terms “range” and “codomain” are often confused, so precise use of language
is needed.

The notations “f(P)” and “f~!(Q)” are widely used, and so we will use them too,
but they need some clarification. The notation “f(P)” is not formally meaningful,
because only elements of the domain (not subsets of it) can be substituted into f.
Writing f(P) is an example of what mathematicians refer to as “abuse of notation,”
which means a way of writing something that is technically incorrect, but which is
convenient to use and which causes no problems.

Unfortunately, it cannot be said that the notation “f~!(Q)” causes no problems.
We urge the reader to use this notation with caution, for the following reason. Later
in this chapter, we will discuss the notion of an inverse function (in Definition 4.3.6).
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If a function f: A — B has an inverse function (which is not true for all functions),
then the inverse function is denoted f~'. Even though this latter notation is very
similar to the notation f~!(Q), the concept of an inverse image of a set and the
concept of an inverse function are quite different, and it is the similarity of notation
for different concepts that is the source of the problem. The inverse image f~'(Q) is
a subset of the domain of f, and is always defined for any function f and any subset
Q of the codomain. By contrast, the inverse function f~!' does not always exist; if
it does exist, then it is a function B — A, not a subset of A. It is very important to
keep in mind that the notation f~!(Q) does not necessarily mean the image of the
set Q under !, because f~!(Q) is used even in cases where the function f~! does
not exist. Proofs about sets of the form f~!(Q) should not make use of an inverse
function f~! unless there is a specific reason to assume that f~!exists.

The following example should further demonstrate that the notation f~!(D)
should be used with caution, because in this context the notations “f” and “f~!”
do not necessarily “cancel each other out,” as might be mistakenly assumed.

Example 4.2.3. Let i: R — R be defined by (x) = x> for all x € R. It is straightfor-
ward to compute that /2([0,3]) = [0,9] and ([—2,2]) = [0,4]. Then A~ (h(]0,3])) =
h=1([0,9]) = [~3,3]. We therefore see that 4! (h([0,3])) # [0,3]. Similarly, we
compute that h(h~!([~4,4])) = h([-2,2]) = [0,4], and hence h(h~'([—4,4])) #
[—4,4]. O

For the proof of the following theorem, as well as for subsequent results involving
images and inverse images, we need two observations about proof strategies. First,
suppose that we wish to prove that either of f(P) or £~!(Q) is equal to some other
set. Though we are dealing with functions, we observe that objects of the form f(P)
or f~1(Q) are sets, and to prove that they are equal to other sets (which is the only
sort of thing to which they could be equal), we use the standard strategy for proving
equality of sets, which is showing that each set is a subset of the other.

Second, we mention that statements of the form “x € f(P)” and “z € f~1(Q)”
are difficult to work with directly, and it is usually easier if we first transform such
statements into equivalent ones that do not involve images and inverse images. More
specifically, suppose that we start with a statement of the form “x € f(P).” The defi-
nition of f(P) then allows us to rewrite the statement as “x = f(a) for some a € P,”
and we observe that this latter statement does not involve the image of a set, making
it easier to work with than the original statement. Conversely, a statement of the form
“x = f(a) for some a € P” can be rewritten as ‘“x € f(P).” Similarly, suppose that we
start with a statement of the form “z € £~!(Q).” The definition of f~!(Q) allows us
to rewrite the statement as “f(z) € Q,” which again is easier to work with than the
original statement. Conversely, a statement of the form “f(z) € Q" can be rewritten
as “z € f~1(Q).” As is the case with many problems in mathematics, going back to
the definitions is often the best way to start creating a proof.

The following theorem, the proof of which uses the above mentioned strategies,
gives some of the most basic properties of images and inverse images. Observe in
Part (7) of the theorem that images are not quite as well behaved as inverse images.
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Theorem 4.2.4. Let A and B be sets, let C,D C A and S,T C B be subsets, and let
f: A — B be a function. Let I and K be non-empty sets, let {U;};.; be a family of
subsets of A indexed by I, and let {Vi.}, g be a family of subsets of B indexed by K.

f(0)=0 and f~! (0) =0.

1 (B) =A.

f(C) C Sifand only if C C f~1(S).
IfCCD,then f(C) C f(D).
IfSCT, then f~1(S) C f~1(T).
f(UieI Ui) = Uielf(Ui)'
F(NierUi) € Nier f(U3).

I (Uker Vo) = Uker /7 (Vo).
f_l (ﬂkeK Vk) = ﬂker_l(Vk)~

Proof. We will prove Parts (5) and (6), leaving the rest to the reader in Exercise 4.2.6.

(5). Suppose that S C T. Let x € f~(S). Then by definition f(x) € S. Because
S C T, itfollows that f(x) € T.Hence x € f~!(T). We deduce that f~1(S) C f~!(T).

(6). First, let b € f(U;c;Ui). Then b = f(u) for some u € J;c; U;. Therefore
u € U for some j € I. Hence b € f(U;) C U, f(U;). It follows that f (U;c;Ui) C
Uier f(Ui). Next, let a € U;e; f(U;). Then a € f(Uy) for some k € 1. Hence a =
f(v) for some v € Uy. Because v € | J;; Ui, it follows that a € f (U;c; U;). Therefore

Uier f(Ui) € £ (Uie; Ui). We conclude that f (U;e; Ur) = Uier f(Us). 0

We conclude our discussion of images and inverse images with a slightly more
abstract approach to the subject. Let f: A — B be a function. If P C A, then f(P) C B.
That is, for every element P € P(A), we obtain an element f(P) € ?(B). Hence, the
process of taking images of subsets of A amounts to the fact that the function f
induces a new function f,: ?(A) — 2(B), which is defined by f.(P) = f(P) for all
P € P(A). Similarly, for every element Q € ?(B), we obtain an element f~!(Q) €
P(A), and hence, the process of taking inverse images of subsets of B amounts to the
fact that the function f induces a new function f*: ®(B) — P(A), which is defined
by f*(P) = f~1(Q) for all Q € P(B). From that point of view, the terms “image” and
“inverse image” are redundant. For example, the notation “f,(P)” simply means the
result of applying the function f, to the element P in the domain of f,, and hence we
do not need to call “f,(P)” by the special name “the image of P under f.” However,
although this more abstract point of view is a technically correct way to think of
images and inverse images, it is usually more useful in the course of formulating
proofs to think of images and inverse images as we have done until now, and so we
will not be making use of this more abstract approach other than in a few exercises.

Exercises

Exercise 4.2.1. Find the range of each of the following functions.

(1) Let f: R — R be defined by f(x) = x® — 5 for all x € R.

2NN KBNS



144 4 Functions

(2) Let g: R — R be defined by g(x) = x> —x* for all x € R.

(3) Let h: R — (0,0) be defined by h(x) = ¢*! +3 for all x € R.

(4) Let p: R — R be defined by p(x) = vx* +5 for all x € R.

(5) Letg: R — [—10,10] be defined by g(x) = sinx + cosx for all x € R.

Exercise 4.2.2. Let C be the set of all cows in the world. Let m: C — R be the
function defined by letting m(c) equal the average daily milk production in gallons
of cow c¢. Describe in words each of the following sets.

(1) m({Bessie,Bossie}).
(2) m(F), where F denotes all the cows in India.
3) m~I([1,3]).
4 m([-5,3]).
5) m~'({0}).
Exercise 4.2.3. For each of the following functions f: R — R and each set T C R,
find £(T), f~1(T). f(f~(T)) and f~'(£(T)).
(1) Let f: R — Rbe defined by f(x) = (x+ 1) forall x € R, and let T = [—1,1].
(2) Let f: R — R be defined by f(x) = (x+1)? forall x € R, and let T = [-5,2].
(3) Let f: R — R bedefined by f(x) = [x] for all x € R, where [x] is the smallest
integer greater than or equal to x, and let 7 = (1, 3).
(4) Let f: R — Rbedefined by f(x) = |x] forall x € R, where |x] is the greatest
integer less than or equal to x, and let 7 = [0,2] U (5,7).

Exercise 4.2.4. Let g: R?> — R be defined by g((x,y)) = xy for all (x,y) € R. Sketch
each of the following subsets of R?.

@ ¢ '({3}). @ g '([-1,1]).

Exercise 4.2.5. Let X and Y be sets, let A C X and B C Y be subsets and let
m:XxY—Xandm: X xY — Y be projection maps as defined in Section 4.1.

(1) Prove that (m;) '(A) =Ax Y and (m) ' (B) = X x B.
(2) Prove that (m) ' (A) N (m) "' (B) = A x B.
(3) Let P C X xY.Does 7 (P) x m(P) = P? Give a proof or a counterexample.

Exercise 4.2.6. [Used in Theorem 4.2.4.] Prove Theorem 4.2.4 (1) (2) (3) (4) (7) (8)
).

Exercise 4.2.7. Find the flaw(s) in the following alleged proof of Theorem 4.2.4 (8),
assuming that Parts (1)—(7) have already been proved: “Applying f to f~' (Urex Vi)
we obtain f (/' (Usek Vi) = Ukek Vi Applying f to Ugex /™' (Vi) and using
Part (6) of the theorem, we obtain f (Uker’l (Vi) = Usek FUF V) = Ukek Vr.
Because applying f to both sides of the equation in Part (8) yields the same result,
we deduce that the equation in Part (8) is true.”

Exercise 4.2.8. In this exercise we show that it is not possible to strengthen Theo-
rem 4.2.4 (3).
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(1) Find an example of a function f: A — B together with sets X CAandY C B
such that f(X) =Y and X # f~1(Y).

(2) Find an example of a function g: J — K together with sets ZC Jand W C K
such that f~'(W) =Z and f(Z) #W.

Exercise 4.2.9. Find an example to show that the “C” in Theorem 4.2.4 (7) cannot
be replaced with “=. It is sufficient to use the intersection of two sets.

Exercise 4.2.10.

(1) Find an example of a function f: A — B and subsets P, Q C A such that P ; 0,
but that f(P) = f(Q).

(2) Find an example of a function g: C — D and subsets S,7 C D such that
SC T, but that g~!(S) =g (T).

Exercise 4.2.11. [Used in Exercise 4.4.11.] Let A and B be sets, let P, Q C A be subsets
and let f: A — B be a function.

(1) Prove that f(P) — f(Q) € f(P— Q).
(2) Is it necessarily the case that f(P— Q) C f(P) — f(Q)? Give a proof or a
counterexample.

Exercise 4.2.12. Let A and B be sets, let C,D C B be subsets and let f: A — Bbe a
function. Prove that f~!(D—C) = f~1(D) — f~1(C).

Exercise 4.2.13. Let A and B be sets, let X C A and Y C B be subsets and let f: A —
B be a function.

(1) Prove that X C f LF(x).

(2) Prove that f(f~1(Y))CY.

(3) Prove that X = f~!(f(X)) if and only if X = f~!(Z) for some Z C B.
(4) Prove thatY = f( f~1(Y)) if and only if Y = f(W) for some W C A.
(3) Prove that (1 ((X))) = /(X).

(6) Prove that f~'(f(f~'(Y))) = f~'(¥).

Exercise 4.2.14. Let A and B be sets, and let f,g: A — B be functions. Think of these
functions as inducing functions f;,g.: P(A) — P(B), and functions f*,¢*: P(B) —
P(A). Prove that f, = g, if and only if f* = g* if and only if f = g.

Exercise 4.2.15. [Used in Exercise 6.5.15.] Let A be a non-empty set, and let
g: P(A) — P(A) be a function. The function g is monotone if X C Y implies
g(X) Cg(Y)forall X,Y € P(A).

Suppose that g is monotone.

(1) Let D be a family of subsets of A. Prove that g (NxcpX) C Nyepg(X). Itis
not sufficient simply to cite Theorem 4.2.4 (7), because it is not necessarily
the case that g = f, for some function f: A — A.

(2) Prove that there is some T € P(A) such that g(7') = T'. Such an element 7 is
called a fixed point of g. Use Part (1) of this exercise.
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4.3 Composition and Inverse Functions

Functions can be combined to form new functions in a variety of ways. One simple
way of combining functions that is seen in courses such as calculus is to add or
multiply functions R — R. Though very useful, this method of combining functions
is not applicable to all sets, because the ability to add or multiply functions R —
R relies upon the addition or multiplication of the real numbers, and not all sets
have such operations. A more broadly applicable way of combining functions, also
encountered in calculus, is seen when the Chain Rule for taking derivatives is used.
This rule is used with functions such as f: R — R defined by f(x) = vx2+3 for
all x € R, which are built up out of a function “inside” a function. The following
definition formalizes this notion.

Definition 4.3.1. Let A, B and C be sets, and let f: A — Band g: B— C be functions.
The composition of f and g is the function go f: A — C defined by

(gof)(x) =g(f(x))
for all x € A. A

Observe that the notation “g o f” in Definition 4.3.1 is the name of a single func-
tion A — C, which we constructed out of the two functions f and g. By contrast,
the notation “(go f)(x)” denotes a single value in the set C. It would not be correct
to write “g o f(x),” because o is an operation that combines two functions, whereas
“f(x)” is not a function but a single element in the set B. Observe also that for the
composition of two functions to be defined, the codomain of the first function must
equal the domain of the second function.

The reader who is encountering the notation g o f for the first time might find it
necessary to get used to the fact that it is “backwards” from what might be expected,
because go f means doing f first and then g even though we generally read from left
to right in English. Think of “o” as meaning “following.” We will stick with the “o”
notation in spite of any slight confusion it might cause at first, because it is extremely
widespread, and because the reader will find that it works well once she is used to it.

Example 4.3.2.

(1) Let P be the set of all people, and let m: P — P be the function that assigns
to each person her mother. Then m om is the function that assigns to each person her
maternal grandmother.

(2) Let f,g: R — R be defined by f(x) = x~ and g(x) = x+ 3 for all x € R.
Then both fog and go f are defined, and (f o )( ) = (x+3)? for all x € R, and
(gof)(x) =x>+3forallx e R.

(3) Let k: R — R be defined by k(x) = sinx for all x € R, and let /: (0,00) —
R be defined by h(x) = Inx for all x € (0,00). Then koA is defined, and is given
by (koh)(x) = sin(Inx) for all x € (0,0). On the other hand, we cannot form the
composition % o k, because the domain of /4 is not the same as the codomain of k,
reflecting the observation that In(sinx) is not defined for all x € R. O
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One way to visualize the composition of functions is to use “‘commutative dia-
grams.” If f: A — B and g: B — C are functions, then we can form go f: A — C,
and we can represent all three of these functions in the following diagram.

This diagram is referred to as a commutative diagram, which means that if we
start with any element x € A, and trace what happens to it going along either of the
two possible paths from A to C, we end up with the same result. If we go first down
and then across, the result is g(f(x)), and if we go diagonally, the result is (g o f)(x).
Commutative diagrams (often much more complicated than the one seen above) are
important in some branches of mathematics, for example algebraic topology.

An example of the use of the composition of functions is coordinate functions. In
multivariable calculus it is standard to write functions into R" in terms of coordinate
functions, and we can now generalize this notion to arbitrary sets.

Definition 4.3.3. Let B be a set, let Aj,...,A, be sets for some n € N and let
fiB— A;x---xA, be a function. For each i € {1,...,n}, the i-th coordinate
function of f, denoted f;, is the function f;: B — A; defined by f; = m; o f, where
mi: Ay X -+ XA, — A, is the projection map. A

The fact that f; = m;o f forall i € {1,...,n}, as given in Definition 4.3.3, means
that f(x) = (f1(x),..., fu(x)) for all x € B. In some texts this fact is abbreviated
by writing f = (fi,...,fn), or alternatively by writing f = f; x --- x f,. How-
ever, although the notations (fi,...,f,) and fj X --- X f;; could be formally de-
fined to be the function we have denoted f, the reader is urged to use these two
notations with caution, or to avoid them at all, for the following reason. Whereas
writing f(x) = (f1(x),..., fu(x)) is perfectly sensible, the two sides of the equa-
tion being different expressions for the same element of A| X --- X A, using the
notation f = (f,...,f,) might mistakenly suggest that the function f is an ele-
ment of the product of n sets, which is not necessarily true, and using the notation
f = f1 x---x f, might mistakenly suggest that f is the product of n sets, which is
also not necessarily true.

Coordinate functions when n = 2 can be represented by the following commuta-
tive diagram. Each triangle of functions in the diagram is commutative in the sense
described previously.

Al TA]XAQT)'AZ
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Example 4.3.4. Let f: R> — R3 be defined by

F((x,y)) = (xy,sinx® x+7)

for all (x,y) € R2. The three coordinate functions of f are fi, f>, f3: R*> — R defined
by

filEy) =xy,  flxy) =sind, and  f3((x,y) =x+)
for all (x,y) € R2. O

Which of the familiar properties of operations (for example commutativity and
associativity) hold for the composition of functions? The Commutative Law, which
for the real numbers and addition states that a +b = b+ a for all a,b € R, does
not hold for functions and composition, for two reasons. First, suppose that we have
functions f: A — Band g: B — C, so that we can form go f. Unless it happens to be
the case that A = C, then we could not even form f o g, and so commutativity is not
relevant. Even in situations where we can form composition both ways, however, the
Commutative Law does not always hold, as seen in Example 4.3.2 (2). The following
lemma shows, however, that some nice properties do hold for composition.

Lemma 4.3.5. Let A, B, C and D be sets, and let f: A — B and g: B — C and
h: C — D be functions.

1. (hog)of=ho(gof) (Associative Law).
2. fola=fandlgof=f (Identity Law).

Proof.

(1). Itis seen from the definition of composition that both (hog)o f and ho (go f)
have the same domain, the set A, and the same codomain, the set D. If a € A, then

((hog)of)(a) = (hog)(f(a)) = h(g(f(a)))
=h((gof)(a)) = (ho(gof))(a).

Hence (hog)o f=ho(gof).
(2). This part is straightforward, and is left to the reader. O

Do functions have inverses under composition? That is, for any given function
is there another that “cancels it out” by composition? In arithmetic, for example,
we can cancel out the number 3 by adding —3 to it, which yields 0. For functions,
the operation addition and the number 0 are replaced with composition of functions
and the identity map, respectively. However, the non-commutativity of composition
means that we need a bit more care when we define “canceling out” for functions
than we do with addition (which is commutative).

Definition 4.3.6. Let A and B be sets, and let f: A — B and g: B — A be functions.

1. The function g is a right inverse for f if fog = 1.
2. The function g is a left inverse for f if go f = 14.
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3. The function g is an inverse for f if it is both a right inverse and a left
inverse. A

Definition 4.3.6 (1) (2) was stated in the most concise possible way using only
the names of the functions involved. In practice, however, it is often convenient to
use the fact that fog = 1z means f(g(x)) = x for all x € B, and that go f = 14
means g(f(x)) = x for all x € A. Also, although we used the term “an inverse” in
Definition 4.3.6 (3), it is seen in Part (1) of the following result that we could actually
have written “the inverse.”

Lemma 4.3.7. Let A and B be sets, and let f: A — B be a function.

1. If f has an inverse, then the inverse is unique.

2. If f has a right inverse g and a left inverse h, then g = h, and hence f has an
inverse.

3. If g is an inverse of f, then f is an inverse of g.

Proof.

(1). Suppose that g,h: B — A are both inverses of f. We will show that g = h. By
hypothesis on g and & we know, among other things, that fog = lg and ho f = 14.
Using Lemma 4.3.5 repeatedly we then have

g=1laog=(hof)og=ho(fog)=holg=h.

(2). The proof is the same as in Part (1).

(3). Suppose that g: B — A is an inverse of f. Then go f =14 and fog = 1p.
By the definition of inverses, it follows that f is an inverse of g. O

Observe that the proof of Lemma 4.3.7 (1) is virtually identical to the proof of
the uniqueness part of Theorem 2.5.2. The same proof in a more generalized setting
is also used for Lemma 7.2.4. Lemma 4.3.7 (1) allows us to make the following
definition.

Definition 4.3.8. Let A and B be sets, and let f: A — B be a function. If f has an
inverse, the inverse is denoted f~!: B — A. VAN

It is important to keep in mind the great difference in meaning between the no-
tation “f~!(Q)” discussed in Section 4.2 and the notation “f~!” given in Defini-
tion 4.3.8. The notation f~!(Q) denotes a set, not a function, and it exists even if the
function f~! does not exist. In particular, the use of the notation f~'(Q) should not
be taken as implying that f has an inverse.

Moreover, suppose that the inverse function f~! does exist. Then the notation
£~1(Q) has two meanings, which are the inverse image of Q under f and the image
of Q under f~!. The former of these meanings is the set {a € A | f(a) € Q}, and the
latter of these meanings is the set {a € A | a = f~!(g) for some g € Q}. Fortunately,
as the reader can verify, these two sets are equal, and so there is no ambiguity in the
meaning of the notation £~!(Q) in those cases when f~! exists.
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We note that if f: A — B has an inverse f~': B — A, then f~!(f(x)) = x for all
x €A and f(f~'(x)) = x for all x € B. Another way of stating the relation between
fand f~!is to say that y = f~!(x) if and only if x = f(y) for all y € A and x € B.
This latter formulation will not be particularly useful to us in the construction of
rigorous proofs, but we mention it because the reader has likely encountered it in
precalculus and calculus courses, for example where the natural logarithm function
In is defined by saying that y = Inx if and only if x = ¢”. Moreover, we observe that
to say y = f~!(x) if and only if x = f(y) for all y € A and x € B means that f~! is
obtained from f by interchanging the roles of x and y, a fact that has a very important
application if we look at the particular case where A, B C R. In that case, the graph of
! can be obtained from the graph of f by reflecting the x-y plane in the line y = x,
which precisely has the effect of interchanging the roles of x and y. See Figure 4.3.1
for an example of such graphs.

Fig. 4.3.1.

As seen in the following example, some functions have neither right nor left
inverse, some have only one but not the other, and some have both. Moreover, if a
function has only a right inverse or a left inverse but not both, the right inverse or left
inverse need not be unique.

Example 4.3.9.

(1) Letk: (0,1) — (3,5) be defined by k(x) =2x+3 forall x € (0,1). We claim
that k has an inverse, the function j: (3,5) — (0,1) defined by ji(x) = %52 for all
x € (3,5). We compute j(k(x)) = % = x for all x € (0,1), and hence jok =
1(0,1)- Similarly, we compute k(j(x)) =2- 13 43 =x forall x € (3,5), and hence
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ko j=13,5). Therefore j is both a right inverse and a left inverse for k, and hence it
is an inverse for k. We conclude that j = k'

(2) Let f: R — [0,c0) be defined by f(x) = x* for all x € R. This function has
no left inverse, but many right inverses, of which we will see two. Let g, /1: [0,00) —
R be defined by g(x) = v/x and h(x) = —/x for all x € [0,00). Both g and & are
right inverses for f, because (fog)(x) = f(g(x)) = (v/x)? = x for all x € [0, ), and
(foh)(x) = f(h(x)) = (—/x)?> = x for all x € [0,0). To see that f has no left inverse,
suppose to the contrary that f has a left inverse m: [0,00) — R. How should we define
m(9)? Because m is a left inverse for f, we know that mo f = lg. Hence m(f(x)) =x
for all x € R. We would then need to have m(9) = m(3%) = (mo f)(3) = 3, but we
would also need to have m(9) = m((—3)?) = (mo f)(—3) = —3. Therefore there is
no possible way to define m(9), and hence m does not exist. It follows that f has no
left inverse. (Observe that we could have used any other positive number instead of
9.)

(3) Let p: [0,00) — R be defined by p(x) = x? for all x € [0,c0). Then p has no
right inverse, but many left inverses, of which we will see two. Let ¢,r: R — [0, )
be defined by

atx) = {ﬁ’ Y = {f pr=g
1, if x <0, sinx, ifx<O.
Both ¢ and r are left inverses for p, because (g o p)(x) = g(p(x)) = Va2 = x for all
x €[0,00), and (rop)(x) = r(p(x)) = Vx? = x for all x € [0, o). To see that p has no
right inverse, suppose to the contrary that p has a right inverse u: R — [0,0). How
should we define u(—4)? Because u is a right inverse for p, we know that pou = 1.
Hence p(u(x)) = x for all x € R. Therefore (u(x))? = x for all x € R. Hence we would
need to have (u(—4))?> = —4, which is impossible, because u(—4) is a real number,
and no real number squared is negative. Therefore there is no possible way to define
u(—4), and hence u does not exist. It follows that p has no right inverse.

(4) Let s: R — R be defined by s(x) = x” for all x € R. The function s has no
left inverse by from the same argument used to show that the function f in Part (2)
of this example had no left inverse, and s has no right inverse by the same argument
used to show that the function p in Part (3) of this example had no right inverse. ¢

Exercises

Exercise 4.3.1. For each pair of functions f and g given below, find formulas for
fogand go f (simplifying when possible).

(1) Let f: R — R be defined by f(x) =¢* for all x € R, and let g: R — R be
defined by g(x) = sinx for all x € R.

(2) Let f: (0,00) — (0,00) be defined by f(x) = x’ for all x € R, and let
g: (0,00) — (0,00) be defined by g(x) = x> for all x € (0,0).

(3) Let f: R — [0,0) be defined by f(x) = x° forall x € R, and let g: [0,00) — R
be defined by g(x) = /x for all x € [0,0).
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(4) Let f: R — R be defined by f(x) = |x] forallx ¢ R, and let g: R — R be
defined by g(x) = [x] for all x € R, where |x]| and [x] are respectively the
greatest integer less than or equal to x and the least integer greater than or
equal to x.

Exercise 4.3.2. For each of the following functions f: R — R, find functions
g,h: R — R, neither of which is the identity map, such that f = hog.

(1) f(x)=+/x+7forallx € R.
@) f(x)= Jx+7forallx € R.

x°, if0<x
®) flx) = {x4, if x < 0.
X, ifo<x
@ 0= {x, if x <O0.

Exercise 4.3.3. Let f,g: R — R be defined by

) 1—2x, ifx>0 ) 3x, ifx>0
X) = X) =
|x], it x <0, § x—1, ifx<O.

Find fogand go f.
Exercise 4.3.4.
(1) Find two functions &,k: R — R such that neither / nor k is a constant map,

but ko & is a constant map.
(2) Find two functions s,7: R — R such that s # 1g and t # 1g, buttos = 1.

Exercise 4.3.5. [Used in Theorem 6.3.11 and Theorem 6.6.5.] Let A and B be sets, let
U CAandV CC be subsets, and let f: A — B and g: B — C be functions. Prove
that

(go(U)=g(f(U)) and (gof)"'(V)=/""(g"'(V))
Exercise 4.3.6. Let A, B and C be sets, and let f: A — Band g: B — C be functions.
Suppose that f and g have inverses. Prove that g o f has an inverse, and that (go
Ht=flogh.
Exercise 4.3.7. Find two right inverses for each of the following functions.
(1) Let h: R — [0,00) be defined by h(x) = |x| for all x € R.
(2) Letk: R — [1,00) be defined by k(x) = ¢ forall x € R.

Exercise 4.3.8. Find two left inverses for each of the following functions.

(1) Let f: [0,00) — R be defined by f(x) = x> +4 for all x € [0, o).
(2) Let g: R — R be defined by g(x) = ¢* for all x € R.
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Exercise 4.3.9. Let h,k: R — R be defined by

4x+1, ifx>0 3 ifx>0
)= L e k)= 0 e
X, if x <0, x+3, ifx<O.

Find an inverse for ko h.

Exercise 4.3.10. Let A and B be sets, and let f: A — B be a function. Prove that if f
has two distinct left inverses then it has no right inverse, and that if f has two distinct
right inverses then it has no left inverse.

Exercise 4.3.11. Let Bbe a set, let Aj,...,A; be sets for some k € N, let U; C A; be
asubset foralli € {1,...,k} and let f: B— A X --- X Ay be a function. Prove that

k
FHU < xU) =N (KW,

i=1
where the f; are the coordinate functions of f.
Exercise 4.3.12. Let Bbe aset, let Aj,...,A; be sets for some k € Nand let #;: B—
A; be a function for each i € {1,...,k}. Prove that there is a unique function g: B —
Aj X -+ X Ay such that myog = h; foralli € {1,...,k}, where 7;: A} X - X Ay — A;
is the projection map. This exercise can be represented by the following commutative
diagram.

B Al X - X Ag

T

A

Exercise 4.3.13. This exercise and the next give examples of definitions of functions
by universal property. Rather than defining what a certain function is, we state how
it should behave, and then prove that there exists a function satisfying the given be-
havior. Such constructions are important in category theory, a branch of mathematics
that provides a useful (though abstract) language for many familiar mathematical
ideas, and has applications to various aspects of mathematics, logic and computer
science. See [AM75] or [Kri81] for an introduction to category theory, and [Pie91]
for some uses of category theory in computer science.

Let A and B be sets, and let f,g: A — B be functions. Prove that there exist a set
E and a function e: E — A such that foe = goe, and that for any set C and function
h: C — A such that foh = goh, there is a unique function t: C — E such that
h = eot. This last condition is represented by the following commutative diagram.
The function e is called an equalizer of f and g. To define E, consider subsets of A.
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C

f
E—e——>A:g;B

Exercise 4.3.14. This exercise is similar to Exercise 4.3.13. Let A, B and C be sets,
and let f: A — C and g: B — C be functions. Prove that there exist a set P and
functions 4: P — A and k: P — B such that foh = gok, and that for any set X and
functions s: X — A and ¢: X — B such that fos = got, there is a unique function
u: X — P such that s = hou and t = kou. This last condition is represented by the
following commutative diagram. The set P together with the functions 4 and k are
called a pullback of f and g. To define P, consider subsets of A X B.

X

Pk—>B

(O

A——C
f

4.4 Injectivity, Surjectivity and Bijectivity

As we saw in Example 4.3.9, there exist functions with neither right inverse nor left
inverse; others with a right inverse but not a left inverse; others with a left inverse
but not a right inverse; and yet others with both a right and a left inverse, and hence
with an inverse by Lemma 4.3.7 (2). Unfortunately, it is not always easy to verify
whether a function has a right inverse, left inverse or both directly from the definition,
because such verification entails finding a suitable candidate for the appropriate type
of inverse, and doing so for any but the simplest functions is often quite difficult,
and at times virtually impossible. Given the importance of inverse functions in many
parts of mathematics, it would be very nice if there were some convenient criteria by
which to check whether a function in principle has a right inverse, left inverse or both
without having to produce the desired function. Remarkably, there are such criteria,
as seen in Theorem 4.4.5 below.

To understand the criteria for the existence of right inverses and left inverses, we
start with an example.

Example 4.4.1. Let P be the set of all people, and let m: P — P be the function that
assigns to each person her mother. Does this function have a right inverse or a left
inverse? Suppose first that g: P — P is a right inverse for m. That would mean that
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mo g = 1p, and therefore m(g(x)) = x for every x € P. Let y € P, and suppose that
y is @ man. Then m(g(y)) = y, which would mean that y is the mother of g(y), and
that is not possible, because y cannot be anyone’s mother. Therefore m has no right
inverse. Observe that the obstacle to finding a right inverse for m is that there are
objects in the codomain (namely, all men and some women) who are not in the range
of m (which is the set of mothers).

Now suppose that i: P — P is a left inverse for m. That would mean that hom =
1p, and therefore i(m(x)) = x for every person x. Here we will encounter a different
problem than with the proposed right inverse. Let a,b € P, and suppose that a and b
are siblings. Then m(a) = m(b), and hence h(m(a)) = h(m(b)). Because h(m(x)) =x
for every x € P, we deduce that a = b, which is a contradiction. Hence m has no
left inverse. The obstacle to finding a left inverse for f is that there are two different
objects in the domain (namely, a pair of siblings) that are mapped to the same element
of the codomain (namely, their mother). O

It turns out that the two problems identified in Example 4.4.1 are the only obsta-
cles to finding right inverses and left inverses, respectively. We now give names to
functions that do not have these problems.

Definition 4.4.2. Let A and B be sets, and let f: A — B be a function.

1. The function f is injective (also called one-to-one or monic) if x # y implies
f(x) # f(y) for all x,y € A; equivalently, if f(x) = f(y) implies x = y for all
x,y € A.

2. The function f is surjective (also called onto or epic) if for every b € B,
there exists some a € A such that f(a) = b; equivalently, if f(A) = B.

3. The function f is bijective if it is both injective and surjective. A

Observe that a function is surjective if and only if its range equals its codomain.

There exist functions that are both injective and surjective, that are surjective but
not injective, that are injective but not surjective and that are neither injective nor
surjective. Examples of such functions are seen graphically in Figure 4.4.1, and via
formulas in the following example respectively.

injective surjective bijective

Fig. 4.4.1.
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Example 4.4.3.

(1) Letk: [0,00) — [0,00) be defined by k(x) = x* for all x € [0, ). This function
is surjective and injective, and hence bijective. First, we show that k is injective. Let
x,y € [0,00). Suppose that k(x) = k(y). Then x> = y2. It follows that Vx2 = /y2,
and because x > 0 and y > 0, we deduce that x = Va2 = \/)? =y. Hence £ is injec-
tive. Second, we show that k is surjective. Let b € [0,0). Then v/b € [0,0), and so
k(v/b) = (v/b)? = b. Hence k is surjective.

(2) Let g: [0,0) — R be defined by g(x) = x? for all x € [0,0). This function is
injective but not surjective. The proof of the injectivity of g is the same as the proof
of the injectivity of the function k in Part (1) of this example. The reason that g is not
surjective is that g(a) # —2 for any a € [0,0), though —2 is in the codomain of g.

(3) Let i: R — [0,0) be defined by h(x) = x? for all x € R. This function is
surjective but not injective. The proof of the surjectivity of / is the same as the proof
of the surjectivity of the function & in Part (1) of this example. The reason # is not
injective is because h(—3) =9 = h(3) even though —3 # 3. (Observe that instead of
+3 we could have used +a for any positive number a, but a single instance where
the definition of injectivity fails is sufficient.)

(4) Let f: R — R be defined by f(x) = x for all x € R. This function is neither
injective nor surjective, which is seen using the same arguments as the corresponding
arguments for g and 4 in Parts (2) and (3) of this example. O

Observe from Example 4.4.3 that injectivity and surjectivity very much depend
upon the choice of domain and codomain of a function. That is one of the reasons
why we need to specify the domain and codomain when we define a function.

In many texts, especially at the elementary level, the terms “one-to-one” and
“onto” are used instead of “injective” and “surjective,” respectively, and the reader
should therefore be familiar with the former terms, though the author finds the latter
terms (also widely used) to be preferable. The term “one-to-one” is awkward, and
the word “onto” is a preposition (in contrast to the adjective “one-to-one”), and as
such is not grammatically parallel to “one-to-one.” By contrast, the two adjectives
“injective” and “surjective” are grammatically parallel, reflecting the parallel roles
of these two concepts, as the reader will soon see. Moreover, some texts use the
word “onto” as if it were an adjective, leading to grammatically problematic phrases
such as “the function f is a one-to-one and onto function.” Other texts are careful
to use “onto” as a preposition, leading to awkward (though correct) phrases such as
“the function f is a one-to-one function from A onto B,” which again make the two
concepts seem not parallel. (If the reader really prefers to use prepositions rather
than adjectives to describe functions, the author’s proposed scheme would be that
an arbitrary function f: A — B is described as a function from A fo B; an injective
function is described as a function from A info B; a surjective function is described
as a function from A onto B; and a bijective function is described as a function from
A unto B. The author would not necessarily recommend the use of this scheme, but
it is grammatically consistent.)
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One way of thinking about injectivity, surjectivity and bijectivity is as follows.
Let f: A — B be a function. The function f is injective if and only if for each b €
B, there is at most one element in the inverse image f~'({b}); the function f is
surjective if and only if for each b € B, there is at least one element in the inverse
image f~!({b}); the function f is bijective if and only if for each b € B, there is
precisely one element in the inverse image f~!({b}). Consider now the special case
of a function f: R — R. Then the function f is injective if and only if each horizontal
line in the plane intersects its graph at most once; see Figure 4.4.2 (i). The function
f is surjective if and only if each horizontal line intersects its graph at least once;
see Figure 4.4.2 (ii). The function f is bijective if and only if each horizontal line
intersects its graph once and only once.

Fig. 4.4.2.

There are standard strategies for proving that a function is each of injective and
surjective. Let f: A — B be a function. If we wish to prove that f is injective, then
we need to show that f(x) = f(y) implies x =y for all x,y € A. As usual, if we need
to show that something is true for all x,y € A, we will choose arbitrary x and y, and
then prove the desired property for this choice. Hence, a proof of the injectivity of f
typically has the following form.

Proof. Let x,y € A. Suppose that f(x) = f(y).
(argumentation)

Then x = y. Hence f is injective. a

If we wish to prove that f is surjective, we need to show that for every b € B,
there exists some a € A such that f(a) = b. A proof of the surjectivity of f would
therefore have the following form.
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Proof. Letb € B.

Leta=....
(argumentation)
Then b = f(a). Hence f is surjective. O

We will use the above strategies repeatedly, starting with the proof of the follow-
ing lemma, which shows that composition of functions behaves nicely with respect
to injectivity, surjectivity and bijectivity.

Lemmad4.4.4. Let A, B and C be sets, and let f: A— Band g: B— C be functions.

1. If f and g are injective, then g o f is injective.
2. If f and g are surjective, then g o f is surjective.
3. If f and g are bijective, then go f is bijective.

Proof.

(1). Suppose that f and g are injective. We wish to show that gof: A — C
is injective. Let x,y € A. We will show that (go f)(x) = (go f)(y) implies x = y.

Suppose that (go f)(x) = (go f)(y). Then g(f(x)) = g(f(y)). Because g is injective,
we deduce that f(x) = f(y). Because f is injective, we deduce that x = y.

(2). Suppose that f and g are surjective. We wish to show that gof: A — C
is surjective. Let ¢ € C. We will show that there exists some element a € A such
that (go f)(a) = p. Because ¢ € C and g is surjective, there is some b € B such
that g(b) = c. Because f is surjective, we know that there is some a € A such that

f(a) = b. It follows that (go f)(a) = g(f(a)) = g(b) =c.
(3). This part is derived easily from Parts (1) and (2) of this lemma. O

As seen in Exercise 4.4.14, the converse to each of the parts of Lemma 4.4.4 is
not true, though a partial result does hold.

The following theorem, which is extremely useful throughout mathematics (and
is perhaps the author’s favorite theorem in this text), answers the question posed at
the start of this section concerning criteria for the existence of inverse functions.

Theorem 4.4.5. Let A and B be non-empty sets, and let f: A — B be a function.

1. The function f has a right inverse if and only if f is surjective.
2. The function f has a left inverse if and only if f is injective.
3. The function f has an inverse if and only if f is bijective.
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Proof.

(1). Suppose that f has a right inverse g. Then f o g = 15. We wish to show that
f is surjective. Let b € B. We need to find an element a € A such that f(a) = b. Let
a= g(b). Then f(g(b)) = (fog)(h) = 15(b) =b.

Now suppose that f is surjective. We wish to show that f has a right inverse,
which means that we need to find a function 4: B — A such that foh = 1. We
define h as follows. For each b € B, the surjectivity of f implies that there is at least
one element a € A such that f(a) = b; let h(b) = a for some choice of such a (it
doesn’t matter which one). It is now true by definition that f(k(b)) = b for all b € B.
Hence foh = 1.

(2). Left to the reader in Exercise 4.4.9.

(3). This part follows from Parts (1) and (2) of this theorem, together with
Lemma 4.3.7 (2). O

The alert reader will have noticed that in the proof of Part (1) of Theorem 4.4.5,
we had to choose, simultaneously, one element @ € A such that f(a) = b, for each
b € B. That is, we implicitly made use of the Axiom of Choice which was discussed
in Section 3.5, and reformulated in terms of function in Section 4.1. As is common,
for the sake of brevity and in order to avoid distraction from the essential idea of the
proof of Theorem 4.4.5, we did not explicitly make use of the Axiom of Choice in
that proof, though it would certainly have been possible to have done so. For exam-
ple, we could have written: “We define / as follows. The surjectivity of f implies
that the set f~!({b}) is non-empty for each b € B. Then {f’l({b})}beB is a fam-
ily of non-empty sets. By the Axiom of Choice (Theorem 4.1.5) there is a function
h: B — Upeg f~({b}) such that h(b) € f~({b}) for all b € B. It is now true by def-
inition that f(h(b)) = b for all b € B. Hence f oh = 1p.” The reader might wonder
whether it would have been possible to prove Theorem 4.4.5 (1) without the Axiom
of Choice or something equivalent, but it turns out that that would not have been pos-
sible, because Theorem 4.4.5 (1) is in fact equivalent to the Axiom of Choice, as seen
in Exercise 4.4.19. Interestingly, as the reader will see if she does Exercise 4.4.9, the
proof of Theorem 4.4.5 (2) does not require the Axiom of Choice.

The following result concerning “cancellation” of functions is a typical applica-
tion of Theorem 4.4.5.

Theorem 4.4.6. Let A and B be non-empty sets, and let f: A — B be a function.

1. The function f is injective if and only if fog = foh implies g = h for all
functions g,h: Y — A for all sets Y.

2. The function f is surjective if and only if go f = ho f implies g = h for all
functions g,h: B — X for all sets X.

Proof. We will prove Part (2), leaving the remaining part to the reader in Exer-
cise 4.4.15.

(2). First assume that f is surjective. Let g,h: B — X be functions such that
go f=ho f for some set X. By Theorem 4.4.5 (1), the function f has a right inverse
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q: B— A. Then (go f)og = (ho f)ogq. Using Lemma 4.3.5 and the definition of
right inverses, it follows that go (fog) =ho(fogq), and hence go 1g = ho lp, and
therefore g = h.

Now assume f is not surjective. Let b € B be an element that is not in the range
of f.Let X ={1,2}, and let g,hi: B— X be defined by g(y) =1 for all y € B, and by
h(y) =1 for all y € B— {b} and h(b) = 2. It can then be verified that go f = ho f,
even though g # h. The desired result now follows using the contrapositive. O

Exercises

Exercise 4.4.1. Is each of the following functions injective, surjective, both or nei-
ther? Prove your answers. Feel free to use standard properties of functions such as
polynomials, logarithms and the like.

(1) Letz: (1,00) — R be defined by #(x) = Inx for all x € (1,).

(2) Lets: R — R be defined by s(x) = x* — 5 for all x € R.

(3) Letg: [0,00) — [0,1) be defined by g(x) = 3 for all x € [0,0).

(4) Let k: R?> — R be defined by k((x,y)) = x>+ y* for all (x,y) € R?.

(5) Let 0: N — 2(N) be defined by Q(n) = {1,2,...,n} foralln € N.

Exercise 4.4.2. In each of the four cases below, we are given a function f such that
f(x) =3x+5 for all x in the domain. Is each function injective, surjective, both or
neither?

A f:2—7Z. 3) f: Q=R
@ f:Q-Q @ f:R—R.

Exercise 4.4.3. [Used in Example 6.5.3.] Let f: R — (—1,1) be defined by

2 .
£ = {H pr=g
— ifx<0.

2 !

Prove that f is bijective. Use only the methods we have used in this text, including
the standard algebraic properties of the real numbers; do not use calculus.

Exercise 4.4.4. Let A and B be sets, and let S C A be a subset. We will use various
definitions from Section 4.1.

(1) Prove that the identity map 14: A — A is bijective.

(2) Prove that inclusion map j: S — A is injective.

(3) Let f: A — B be a function. Suppose that f is injective. Is the restriction f|s
necessarily injective? Give a proof or a counterexample.

(4) Let g: A — B be a function. Suppose that g is surjective. Is the restriction g|s
necessarily surjective? Give a proof or a counterexample.

(5) Let h: S — B be a function, and let H: A — B be an extension of 4. Suppose
that £ is injective. Is H necessarily injective? Give a proof or a counterexam-
ple.
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(6) Letk: S — B be a function, and let K: A — B be an extension of k. Suppose
that & is surjective. Is K necessarily surjective? Give a proof or a counterex-
ample.

(7) Prove that the projection maps ;: A X B— A and mp: A X B — B are surjec-
tive. Are the projection maps injective?

Exercise 4.4.5. Let A and B be sets. Prove that there is a bijective function f: A X B —
BxA.

Exercise 4.4.6. [Used in Section 3.3.] Let A, B and C be sets. Prove that there is a
bijective function g: (A x B) x C — A x (BxC).

Exercise 4.4.7. Let A be aset. Let ¢: P(A) — P(A) be defined by ¢(X) =A—X for
all X € P(A). Prove that ¢ is bijective.

Exercise 4.4.8. [Used in Exercise 6.7.9.] This exercise makes use of Exercise 2.4.3.
Let
L ={(a,b) € Nx N|a and b are relatively prime},

and let U,D: L — L be defined by U((a,b)) = (a+ b,b) and D((a,b)) = (a,a+b)
for all (a,b) € L. These functions are well-defined by Exercise 2.4.3.

(1) Prove that (1,1) ¢ U(L) and (1,1) ¢ D(L).

(2) Prove that U((a,b)) # (a,b) and D((a,b)) # (a,b) for all (a,b) € LL.
(3) Prove that U and D are injective.

(4) Prove that U(L)ND(L) = 0.

Exercise 4.4.9. [Used in Theorem 4.4.5.] Prove Theorem 4.4.5 (2).

Exercise 4.4.10. In Theorem 4.4.5 it was assumed that A and B are non-empty sets.
Which parts of the theorem still hold when A or B is empty? (Do not forget the case
where A and B are both empty.)

Exercise 4.4.11. [Used in Exercise 6.5.15 and Theorem 6.6.5.] Let A and B be sets,
let P,Q C A be subsets and let f: A — B be a function. Suppose that f is injective.
Prove that f(P— Q) = f(P) — f(Q). [Use Exercise 4.2.11.]

Exercise 4.4.12. Let A and B be sets, and let f: A — B be a function.

(1) Prove that f is injective if and only if E = f~!(f(E)) for all subsets E C A.
(2) Prove that f is surjective if and only if F = f(f~!(F)) for all subsets F C B.

Exercise 4.4.13. [Used in Lemma 6.5.11, Theorem 6.5.13, Theorem 6.6.8 and Theo-
rem 7.7.10.] Let A and B be sets, and let f: A — B and g: B — A be functions.

(1) Suppose that f is injective, and that g is a left inverse of f. Prove that g is
surjective.

(2) Suppose that f is surjective, and that g is a right inverse of f. Prove that g is
injective.

(3) Suppose that f is bijective, and that g is the inverse of f. Prove that g is
bijective.
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Exercise 4.4.14. [Used in Section 4.4.] Let A, B and C be sets, and let f: A — B and
g: B — C be functions.

(1) Prove thatif go f is injective, then f is injective.

(2) Prove thatif go f is surjective, then g is surjective.

(3) Prove that if go f is bijective, then f is injective, and g is surjective.

(4) Find an example of functions f: A — B and g: B — C such that go f is
bijective, but f is not surjective, and g is not injective. Hence Parts (1)—(3) of
this exercise are the best possible results.

Exercise 4.4.15. [Used in Theorem 4.4.6.] Prove Theorem 4.4.6 (1).

Exercise 4.4.16. Let A and B be sets, and let 4: A — B be a function. Prove that £ is
injective if and only if (X NY) = h(X)NA(Y) for all X, Y C A.

Exercise 4.4.17. Let A and B be sets, and let f: A — B be a function. Prove that f
is surjective if and only if B — f(X) C f(A—X) for all X C A.

Exercise 4.4.18. Let A and B be sets, and let f: A — B be a function. As discussed
at the end of Section 4.2, we can think of f as inducing a function f.: P(A) — ?(B),
and a function f*: ?(B) — P(A).

(1) Prove that f, is injective if and only if f is injective.

(2) Prove that f, is surjective if and only if f is surjective.

(3) Prove that f* is injective if and only if f is surjective.

(4) Prove that f* is surjective if and only if f is injective.

(5) Prove that f. is bijective if and only if f* is bijective if and only if f is
bijective.

(6) Suppose that f is bijective. Prove that f, and f* are inverses of each other.

Exercise 4.4.19. [Used in Section 3.5 and Section 4.4.] Suppose that every surjec-
tive function has a right inverse. Prove the Axiom of Choice. By Exercise 3.5.2, it
is sufficient to prove the Axiom of Choice for Pairwise Disjoint Sets. Although Ex-
ercise 3.5.2 was stated for the family of sets versions of the Axiom of Choice, that
exercise also applies to functions versions of the axiom (which are equivalent to the
family of sets versions). We did not explicitly state what would be called the Axiom
of Choice for Pairwise Disjoint Sets—Functions Version, but the reader can figure
out what that version would be (by comparing the statements of Axiom 3.5.2 and
Theorem 4.1.5), and make use of that version in this exercise.

Exercise 4.4.20. [Used in Exercise 4.4.21.] Let A be a non-empty set, and let f: A —
A be a function. Suppose that f is bijective. For each n € N, let " denote the function
A — A given by
fr=fo-of.
S——

n times
The function f" is the n-fold iteration of f. (Such a definition, while intuitively rea-

sonable, is not entirely rigorous, because the use of - - - is not rigorous; a completely
rigorous definition will be given in Example 6.4.2 (2).)
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We now extend the definition of f” to all n € Z. Let f° = 1,. Because f is
bijective, it follows from Exercise 6.4.4 that /" is bijective. Hence f” has an inverse.
For each n € N, let ™" = (")~ It can be verified that f%o f* = fo+? and (f*)" =
f¢ for all a, b € Z, though we omit the details for the sake of getting to the interesting
part of this exercise; the interested reader can find the details of the first of these
equalities, though in a different setting, in the proof of [Blo11, Lemma 2.5.9].

(1) Letux,y,z € A. Prove that the following three properties hold.
a. x= f"(x) for some n € Z.
b. If y = f"(x) for some n € Z, then x = f™(y) for some m € Z.
c. If y= f"(x) for some n € Z, and z = f™(y) for some m € Z, then z =
fP(x) for some p € Z.
(In Section 5.3 we will see that these three properties are particularly impor-
tant.)
(2) Let a € A. The orbit of a with respect to f, denoted O,, is the set defined by
0u=1{f"(a) | neZ}.
Let x,y € A. Prove that the following properties hold.
a. If y = f"(x) for some m € Z, then O, = Oy,
b. If y # f"(x) for any n € Z, then O, N O, = 0.
¢. x € Oyif and only if y € Oy.
d. A=y Ox.
Putting these observations together, we see that A can be broken up into dis-
joint sets, each of which is the orbit of all its members. (Using the terminol-
ogy of Section 5.3, we will say that the orbits of f form a partition of A.)
(3) Give an example of a bijective function Z — Z with infinitely many orbits.
For each r € N, give an example of a bijective function Z — Z with precisely
r orbits.

Exercise 4.4.21. This exercise makes use of Exercise 4.4.20. Let A be a non-empty
set, and let f: A — A be a function. Suppose that f is bijective. Suppose further that
A is finite; the results in this exercise are valid only for finite sets. Let x,y € A.

(1) Prove that f™ = 14 for some m € N. Use the fact that because A is finite,
there are only finitely many bijective functions A — A; this fact is proved in
Theorem 7.7.4 (3). Let » € N be the smallest natural number such that f" =
14. (It makes sense intuitively that there is such a smallest natural number;
formally we make use of the Well-Ordering Principle (Theorem 6.2.5).)

(2) Suppose that y = fi(x) for some i € Z. Prove that there is some s € NU {0}
such that y = f*(x).

(3) Prove that if f*(x) = x for some k € Z, then f*(w) = w for all w € O,.

(4) The stabilizer of x with respect to f, denoted fy, is the set defined by f, =
{meZ| f™(x) =xand 0 <m < r}. Suppose that y € Oy. Prove that f, = f;.

(5) Prove that there is some v € N such that f”(x) = x. Use the fact that A is finite.
The order of x with respect to f, denoted n,, is the smallest ¢ € N such that
fl(x) =x.

(6) Prove that O, = {f°(x), f(x), f2(x),..., "' (x)}. Use the Division Algo-
rithm (Theorem A.5 in the Appendix).
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(7) Prove that n,|r.

(8) Prove that if k € f;, then n.|k.

(9) Prove that r = |Ox| - | fx]-

(10) Prove that r =Y 0. |fyl-

(11) Because A is finite, there are finitely many distinct orbits in A. Let B denote
the number of distinct orbits of f. Prove that r- B =}, cs | fy]-

(12) Foreachm € {0,...,r— 1}, the fixed set of m, denoted A,,, is the set defined
by A = {z € A| f"(z) = z}. Prove that r- B = ¥~/ |A;|. This result is a
special case of Burnside’s Formula; see [Fra03, Section 17] for details.

4.5 Sets of Functions

We now go to one level higher of abstraction than we have seen so far. Until now we
have looked at one function at a time; now we discuss sets of functions, for example
the set of all functions from one set to another. Such sets are useful in many branches
of mathematics, for example linear algebra, and hence are well worth studying. We
will use sets of functions briefly at the end of Section 6.7, and a bit more exten-
sively in Section 7.7. The material in this section is among the most conceptually
difficult in this book, but the reader who has understood the previous material can,
with sufficient effort, master the present section as well. We start with the following
definition.

Definition 4.5.1. Let A and B be sets. The set of all functions A — B is denoted
F(A,B). A

For any set A and B, we observe that 7 (A, B) is also a set, where each element of
the set F (A, B) is a function A — B. There is no theoretical problem with having a set
that has elements that are functions, though sometimes it is hard to get an intuitive
picture of what is going on with such sets. Results about sets of functions are proved
no differently from results about sets containing intuitively simpler objects such as
numbers.

Example 4.5.2.

(1) IfA#0and B=0, then ¥(A,B) =0.IfA =0, then ¥(A,B) = {0}. IfA#0
and B # 0, then 7 (A, B) # 0, because there is at least one constant map A — B.

(2) Let A ={1,2} and B = {x,y}. Then 7 (A,B) = {f,g,h,k}, where the func-
tions f,g,h,k: A— Baredefined by f(1) =xand f(2) =x,by g(1) =xand g(2) =y,
by (1) =y and h(2) =x, and by k(1) =y and k(2) = y.

(3) The set 7 (R,R) has a number of useful subsets, including the set C(R,R) of
all continuous functions R — R, and the set D(R,R) of all differentiable functions
R — R. Observe that D(R,R) & C(R,R) & 7(R,R). We can define some useful
functions between these three sets, for example K: D(R,R) — #(R,R) defined by
K(f)=f forall f € D(R,R). We observe that the function K is not injective. For
instance, let f,g € D(R,R) be defined by f(x) = x>+ 5 and g(x) = x> +7 for all
x € R. Then K(f) = K(g), even though f # g. Though it is not obvious, the function
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K is also not surjective; in other words, there are functions R — R that do not have
antiderivatives. A proof of this fact is beyond the scope of this book, and can be
found in [Blo11, Example 4.4.11].

(4) We can give an intuitive interpretation of the set F(N,R) as follows. Let
f € F(N,R). Then we obtain a sequence of real numbers by writing f(1), f(2),
f(3), .... Conversely, given a sequence of real numbers a;, az, as, ..., we can define
an element g € 7 (N,R) by setting g(1) = aj, and g(2) = ay, and so on. Hence each
element of 7 (N,R) corresponds to a sequence of real numbers, and conversely. In
fact, the formal definition of a sequence of real numbers is simply an element of
F(N,R). O

There are many possible results that can be proved concerning sets of functions;
we give two typical results. We start with a relatively simple lemma, which will be
of use later on.

Lemma 4.5.3. Let A, B, C and D be sets, and let f: A — C and g: B — D be
functions. Suppose that f and g are bijective. Then there is a bijective function from
F(A,B) to F(C,D).

Proof. Because f and g are both bijective, they have inverses f~!' and g~!, re-

spectively. Let @: 7(A,B) — (C,D) be defined by ®(h) = goho f~! for all
h € F(A,B). The function @ is represented in the commutative diagram following
this proof. It is straightforward to see that @(h) € F(C,D) for all h € F(A,B), so
@ is well-defined. We need to show that @ is bijective. Let h,k € 7 (A,B). Suppose
that @(h) = @ (k). Then goho f~' =goko f~!. Hence g 7' o(goho f~)of=
g 'o(gokof~!) o f, and making repeated use of Lemma 4.3.5 it follows that = k.
Therefore @ is injective. Now let r € #(C,D). Lett = g~ ' oro f. It can be seen that
t € F(A,B). We compute ®(t) =gotof ! =go(glorof)of ! =r It follows
that @ is surjective. Hence @ is bijective. a

h

—).B

A
f] g
C

_—
D(h)

Our next result, which is a bit more complicated than the previous one, gives

a relation between power sets and sets of functions. More precisely, let A be a set.
The theorem says that there is a bijective function from ?(A) to ¥ (A,{0,1}). What,
intuitively, is the relation between elements of ?(A), each of which is a subset of A,
and elements of 7 (A,{0,1}), each of which is a function A — {0,1}? Let S € P(A),
so that S C A. We want to associate with this set S a function A — {0, 1}. To do so,
observe that we can divide A into the two disjoint subsets S and A — S. We then define
a function from A to {0, 1} by assigning the value of 1 to every element in S, and 0 to
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every element in A — S. For different choices of S, we will obtain different functions
A — {0, 1}. For convenience, we will use the notation and result of Exercise 4.1.8.
This theorem might seem rather technical, but we will use it in a few places, for
example Example 6.3.5, which is about switching circuits, and Example 6.7.6 (via
the proof of Exercise 6.7.7), which is about programming languages.

Theorem 4.5.4. Let A be a set. Then there is a bijective function from P(A) to
F(A,{0,1}).

Proof. 1If A =0, then 2(0) = {0} by Example 3.2.9 (1), and 7 (A,{0,1}) = {0} by
Example 4.5.2 (1), and therefore the identity map is a bijective function from P(A)
to F(A,{0,1}). Now suppose that A # (). Recall the notation of Exercise 4.1.8.
Let @: P(A) — F(A,{0,1}) be defined ®(S) = xs forall S € P(A). We give two
proofs that @ is bijective, because each is instructive.
First Proof: We will show that @ is bijective by showing that it is injective and
surjective, starting with the former. Let S,7 € P(A). Suppose that @(S) = (7).
Then xs = xr, and it follows from Exercise 4.1.8 that S = T'. Therefore @ is injective.
We now show that @ is surjective. Let f € F(A,{0,1}). Let S = f~1({1}), so
that S € P(A). We will show that @(S) = f, which is the same as showing that ys = f.
Both x5 and f are functions A — {0,1}. Observe that A —S = f~!({0}). Then, if
y € A, we see that

o ifyes 1, ifye ({1}
XS(y)_{o, ifyeA—S_{O, ifye f~'({0})

1 ity =1

_{0, irf(y =0 ~ 7%

Hence x5 = f, and it follows that @ is surjective.
Second Proof: We will show that @ is bijective by producing an inverse for it. Let

¥: 7(A,{0,1}) — P(A) be defined by ¥(f) = f~'({1}) for all f € F(A,{0,1}).
We will show that ¥ is an inverse for @ by showing that
Yo = IT(A) and PoY¥ = IT(A,{O.I})'
Let S € P(A). Then
(Pod)(S) =P(B(S)) = [xs] ' ({1}) = 5.

It follows that ¥ o @ = 14(4).
Let f € F(A,{0,1}). Then

(@o¥)(f)=P(¥(f) =2(f " ({1}) = 21101

We therefore need to show that -1 ¢13) = f. Observe thatA—f=1({1}) = £~ ({0}).
Then, if y € A, we see that
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1, ifye f1({1})

)L it fy) =1
- {0, ity =0 /0
Hence X1y = f, and we conclude that @ oW = 1yr(A,{0,1})~ O

In addition to the set of all functions from one set to another, there are a number
of other sets of functions that are of interest. We now define two types of sets of
functions, though there are many other such sets of functions that the reader might
encounter during further study of mathematics, for example the set of all linear maps
from one vector space to another, which is an important concept in linear algebra.

Definition 4.5.5. Let A and B be sets. The set of all injective functions A — B is
denoted 1(A,B), and the set of all bijective functions A — B is denoted B(A,B). A

It is also possible to look at the set of all surjective functions from one set to
another, but we will not need it later on, and so we will not treat it here. For any
sets A and B, we observe that B(A,B) C I(A,B) C ¥ (A,B). Unlike the set ¥ (A, B),
which is never the empty set as long as both A and B are not empty, the set B(A, B)
will be the empty set whenever A and B do not have “the same size” (a concept that
is intuitively clear for finite sets, and that will be discussed for both finite sets and
infinite sets in Section 6.5). Similarly, the set I(A,B) will be empty whenever A is
“larger” than B.

Example 4.5.6.

(1) Let A and B be the sets given in Example 4.5.2 (2). It is seen that B(A,B) =
1(A,B) = {g,h}.

(2) Let A ={1,2} and C = {x,y,z}. Then B(A,C) = 0. As the reader is asked to
show in Exercise 4.5.8, it turns out that 7(A,C) has six elements. This example is a
special case of general results given in Theorem 7.7.4. %

Finally, we use sets of functions to resolve an issue that was left outstanding
in Chapter 3. In Section 3.3 we defined the union, intersection and product of two
sets. In Section 3.4 we showed how the definitions of union and intersection can be
extended to arbitrary families of sets, rather than just two sets at a time, but we did
not state how to form the product of an arbitrary family of sets, because we did not
have the needed tools. We are now ready for the definition.

We defined the product of two sets in terms of ordered pairs. Intuitively, an or-
dered pair is something that picks out a “first” element and a “second” one. To gen-
eralize this idea, we reformulate the notion of an ordered pair by using functions.
(However, we could not have used this reformulation instead of our original dis-
cussion of ordered pairs in Section 3.3, because we needed ordered pairs to define
functions.)

Let A and B be sets. We can think of an ordered pair (a,b) witha € A and b € B as
afunction f: {1,2} — AU B that satisfies the conditions f(1) € A and f(2) € B. The
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element f(1) is the first element in the ordered pair, and f(2) is the second element
in the ordered pair. Hence the product A x B can be thought of as the set of functions

{fe F({1,2},AUB) | f(1) € A and £(2) € B}.

This reformulation of the definition of A X B can be generalized to arbitrary families
of sets. We use the indexed form of such families, though the non-indexed version
would work as well.

Definition 4.5.7. Let / be a non-empty set, and let {A; };; be a family of sets indexed
by I. The product of the family of sets, denoted [];-;A;, is the set defined by

[TAi={reF@|JA) | f(i) € Aiforalliel}.

icl il
If all the sets A; are equal to a single set A, the product [T;c; A; is denoted by A/, A

It is not hard to verify that if 7/ is a non-empty set, and if A is a set, then
Al = 7(I,A). An example of this fact is RY = #(N,R). Given our discussion in
Example 4.5.2 (4), we therefore see that RY is the set of sequences of real numbers.

The reader might have noticed that Definition 4.5.7 looks somewhat familiar, and
that would be good, because it will help us address a subtlety about this definition that
we have so far glossed over. It is fine to write such a definition, but simply writing
something does not always suffice to make it work. In this specific case, we need to
ask whether for any family of non-empty sets {A;},.;, there actually is something in
the set [];c;A;. In other words, is there at least one function f: I — J;c;A; such that
f(i) € A; for all i € I? Such a function would choose a single element from each set
A;. Our ability to make such a choice is exactly what is axiomatized in the Axiom of
Choice, and that is what looks so familiar in Definition 4.5.7. If the reader compares
the statement of the Axiom of Choice given in Theorem 4.1.5 with Definition 4.5.7,
itis immediately evident that not only does the Axiom of Choice imply the following
theorem, but the following theorem implies the Axiom of Choice; that is, the Axiom
of Choice and the following theorem are equivalent.

Theorem 4.5.8. Let I be a non-empty set, and let {A;};c; be a family of non-empty
sets indexed by I. Then [;c;Ai # 0.

Exercises

Exercise 4.5.1. Let X = {/,m,n} and Y = {a,}. Describe all the elements of
F(X.Y).

Exercise 4.5.2. [Used in Theorem 7.7.4.] Let A and B be sets. Prove that if A or B has
one element, there is a bijective function from ¥ (A, B) to B.

Exercise 4.5.3. Let A and B be non-empty sets. Let @: F(A,B) — F(P(A),P(B))
be the function defined by @(f) = f, for all f € F(A,B), where f.: P(A) — P(B)
is defined at the end of Section 4.2. Is @ injective, surjective, both or neither?
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Exercise 4.5.4. Let A, B and C be sets. Suppose that A C B.

(1) Prove that 7 (C,A) C ¥(C,B).
(2) Prove that there is an injective function ¥ (A,C) — ¥ (B,C).

Exercise 4.5.5. Let A, B, C be sets. Prove that there is a bijective function from
F(C,AxB)to F(C,A) x F(C,B).

Exercise 4.5.6. Let A, B, C be sets. Prove that there is a bijective function from
F(A,F(B,C)) to F(B,F(A,Q)).

Exercise 4.5.7. Let A be a set, and let g: A — A be a function. Suppose that g is
bijective.
(1) Let Q,: F(A,A) — F(A,A) be defined by Q,(f) =go fforall f € 7(A,A).
Prove that £2, is bijective.
(2) Let Ay: F(A,A) — F(A,A) be defined by A,(f) =gofog ! forall fe
F(A,A). Prove that A, is bijective. Also, prove that Ag(hok) = Ag(h)o Ag(k)
forall h,k € 7(A,A).

Exercise 4.5.8. [Used in Example 4.5.6.] Let A = {1,2} and C = {x,y,z}. Describe
explicitly all the elements of 1(A,C).

Exercise 4.5.9. [Used in Section 7.7.] Let A, B, C and D be sets, and let f: A — C
and g: B — D be functions. Suppose that f and g are bijective.

(1) Prove that there is a bijective function from I(A,B) to I(C,D).
(2) Prove that there is a bijective function from B(A,B) to B(C,D).

Exercise 4.5.10. [Used in Theorem 7.7.4 and Theorem 7.7.12.] Let A and B be sets,
andleta € Aand b € B.

(1) Prove that there is a bijective function from {f € F(A,B) | f(a) = b} to
F(A—{a},B).

(2) Prove that there is a bijective function from {f € I(A,B) | f(a) = b} to
[(A—{a},B—{b}).

(3) Prove that there is a bijective function from {f € B(A,B) | f(a) = b} to

B(A—{a},B—{b}).

Exercise 4.5.11. Let A be a set. Let @: B(A,A) — B(A,A) be defined by ®(f) =
f~ ! forall f € B(A). Prove that @ is bijective.

Exercise 4.5.12. Let A be a set. A Z-action on A is a function I': Z — B(A,A) that
satisfies the following two properties: (1) I'(0) = 14, and 2) I'(a+b) =T (a)oI"(b)
forall a,b € Z.

(1) Prove that I'(—a) = [["(a)]~! for alla € Z.

(2) Suppose that I'(e) = 14 for some e € Z. Prove that I'(ne) = 1,4 for all n € Z.
(3) Give two different examples of Z-actions on R.

(4) Give two different examples of Z-actions on the set {1,2,3,4}.






5

Relations

Mathematicians do not study objects, but relations between objects.
— Henri Poincaré (1854—-1912)

5.1 Relations

In colloquial usage we say that there is a “relation” between two things if there is
some connection between them. An example of a relation between people is that of
having the same color hair, and another example is that of one person being the child
of another person. In mathematics we also discuss relations between objects, but, as
is often the case, the technical meaning of the word “relation” in mathematics is not
entirely the same as the colloquial use of the word. Some examples of relations be-
tween mathematical objects are very familiar, such as the relations = and < between
real numbers. We saw some other relations in previous chapters, without having used
the term “relation.” For example, we can define a relation between integers by say-
ing that two integers a and b are related if and only if a|b. Relations (and especially
equivalence relations, as discussed in Section 5.3), are used in crucial ways in many
branches of mathematics, for example abstract algebra, number theory, topology and
geometry.

To get a feeling for the formal approach to relations, consider the relation of one
person being a biological parent of another person. If we take any two people at
random, say persons X and Y, then either X is a parent of Y or not. We can decide
whether X is the parent of Y because we know the meaning of the word “parent,” and
we know how to verify whether the condition of being someone’s parent is fulfilled.
Alternatively, rather than relying on our knowledge of what being a parent means,
we could list all pairs of people (X,Y), where X is a parent of Y. To verify whether
two given people are a parent—child pair, we would then simply check two people
against the list; such verification could be done by someone who did not know what
the words “parent” and ““child” meant.

Similar to our formal definition of functions in Section 4.1, the formal approach
to relations between mathematical objects is done in terms of listing pairs of related
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objects. A mathematical relation might be randomly constructed, and is not neces-
sarily based on any inherent connection between “related” objects, in contrast to the
colloquial use of the word “relation.” To get the most broadly applicable definition,
we allow relations between different types of objects (for example, a relation between
people and numbers), rather than only between two objects of the same type.

Definition 5.1.1. Let A and B be sets. A relation R from A to B is a subset R C A x B.
Ifa€Aandb € B, we write a R D if (a,b) € R, and a R b if (a,b) ¢ R. A relation on
A is a relation from A to A. A

Example 5.1.2.

(1) Let A ={1,2,3} and B = {x,y,z}. There are many possible relations from
A to B, one example of which would be the relation E defined by the set £ =
{(1,y),(1,2),(2,y)}. Then 1 Ey,and  E z,and 2 E y, but 3 £ x.

(2) Let P be the set of all people. Define a relation on P by having person x
related to person y if and only if x and y have at least one parent in common.

(3) The symbols < and < both represent relations on R.

(4) Let P be the set of all people, and let B be the set of all books. Define a
relation from P to B by having person x related to book b if and only if x has read b.

(5) Let A be a set. The symbol “C” represents a relation on P(A), where P,Q €
P(A) are related if and only if P C Q.

(6) Let f: A — Bbe a function. Then f is defined by a subset of A x B satisfying
a certain condition. Hence f is also a relation from A to B. The concept of a relation
is therefore seen to be more general than the concept of a function. In principle,
it would have been logical to have the chapter on relations before the chapter on
functions, and to view functions as a special case of relations. In practice, however,
most mathematicians do not think of functions as special types of relations when they
use functions on a daily basis, and therefore functions deserve their own treatment
independent of the study of relations. %

Let R and S be relations from A to B. To say that “R = §” means that the two
relations are both defined by the same subset of A x B. This criterion can be rephrased
by saying that x Ry if and only if x Sy, for all x € A and y € B. A proof that R and §
are equal typically has the following form.

Proof. Letx € A and y € B. First, suppose that xR y.
(argumentation)

Then x S'y.
Second, suppose that x S y.

(argumentation)



5.1 Relations 173

Then xR y.
Therefore R = S. O

We will see an example of this strategy in the proof of Theorem 5.3.18.

Just as a person might wish to find out who all of her relatives are, if we have a
relation from a set A to a set B, it is sometimes useful to find all the elements of B
that are related to a given element in A.

Definition 5.1.3. Let A and B be non-empty sets, let R be a relation from A to B, and
let x € A. The relation class of x with respect to R, denoted R [x], is the set defined
by

R[x]={yeB|xRy}.

If the relation R is understood from the context, we will often write [x] instead of
RI[x]. A

Example 5.1.4. We continue the first three parts of Example 5.1.2.

(1) For this relation we see that [1] = {y,z}, and [2] = {y}, and [3] = 0.

(2) There are a number of distinct cases here, and we will examine a few of them.
If x is the only child of each of her parents, then [x] = {x}, where we observe that
x has the same parents as herself. If y and z are the only two children of each of
their parents, then [y] = {y,z} = [z]. If a has one half-sibling b by her father, and
another half-sibling ¢ by her mother, and each of b and ¢ has no other siblings or
half-siblings, then [a] = {a,b,c}, and [b] = {a,b}, and [c] = {a,c}.

(3) For the relation <, we see that [x] = (x,00) for all x € R, and for the relation
<, we see that [x] = [x, o) for all x € R. O

In Example 5.1.4 we saw various possible behaviors of relation classes. The re-
lation class of an element may be empty, for example [3] in Part (1) of the example.
The relation class of an element need not contain that element, for example [x] for
any x € R with respect to the relation < in Part (3) of the example. Different elements
may have overlapping relation classes, for example [b] and [c] in Part (2) of the ex-
ample. In fact, different elements can have identical relation classes, for example [y]
and [z] in Part (2) of the example. In Section 5.3 we will discuss a certain type of
relation with particularly nicely behaved relation classes.

In the following definition we give three such properties of relations that will be
useful to us in the next two sections, and in many parts of mathematics.

Definition 5.1.5. Let A be a non-empty set, and let R be a relation on A.

1. The relation R is reflexive if x R x, for all x € A.
2. The relation R is symmetric if x R y implies y R x, for all x,y € A.
3. The relation R is transitive if x Ry and y R zimply xR z, for all x,y,z € A. A

As seen in the following example, a relation can have any combination of the
above three properties. In most of the parts of this example we leave it to the reader
to verify that the given relation has the stated properties.
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Example 5.1.6.

(1) The relation of congruence of triangles in the plane is reflexive, symmetric
and transitive.

(2) The relation of one person weighing within 5 1bs of another person is reflexive
and symmetric, but not transitive. The relation is not transitive, because if A, B and
C are people who weigh 130, 133 and 136 1bs respectively, then A is related to B,
and B is related to C, but A is not related to C. The relation is reflexive, because any
person is within O Ibs of her own weight. The relation is symmetric, because if X and
Y are people who weigh within 5 lbs of each other, then Y and X weigh within 5 Ibs
of each other.

(3) The relation < on R is reflexive and transitive, but not symmetric.

(4) Let C = {1,2,3}, and let P be the relation on C defined by the set P =
{(2,2),(3,3),(2,3),(3,2)}. Then P is symmetric and transitive, but not reflexive.

(5) Let B = {x,y,z}, and let E be the relation on B defined by the set £ =
{(x,x),(»,5),(z,2), (x,y), (»,2)}. Then E is reflexive, but neither symmetric nor tran-
sitive. The relation is reflexive, because (x,x), and (y,y) and (z,z) are all in E, and
therefore x E x, and y E y and z E z. The relation is not symmetric, because x E y but
y £ x. The relation is not transitive, because x E y and y E z, but x ¥ z.

(6) The relation of one person being the cousin of another is symmetric, but
neither reflexive nor transitive.

(7) The relation < on R is transitive, but neither reflexive nor symmetric. Let
x,v,z € R. The relation is transitive, because if x,y,z € R, and if x < y and y < z, then
x < z. The relation is not reflexive, because it is never the case that x < x, for any
x € R. (Observe that we have much more here than the minimum needed to prove
that the relation < is not reflexive; it would have sufficed to know that z £ z for a
single z € R.) The relation is not symmetric, because if x,y € R, and x <y, it is never
the case that y < x. (Again, we have much more than is minimally needed to prove
that < is not symmetric.)

(8) The relation of one person being the daughter of another person is neither
reflexive, symmetric nor transitive. O

There are standard proof strategies for proving that a relation is reflexive, sym-
metric or transitive. Let A be a non-empty set, and let R be a relation on A.

If we wish to prove that R is reflexive, we need to show that for every x € A,
the condition x R x is true. Hence, a proof of the reflexivity of R typically has the
following form.

Proof. Letx € A.
(argumentation)

Then x R x. Hence R is reflexive. O

If we wish to prove that R is symmetric, we need to show that x R y implies y R x
for every x,y € A. Observe that to prove that R is symmetric, we do not prove that
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either x Ry or y R x is true (in fact they might not be true for some values of x,y € A),
but only that x R y implies y R x. Hence, a proof of the symmetry of R typically has
the following form.

Proof. Letx,y € A. Suppose that x R y.
(argumentation)

Then y R x. Hence R is symmetric. a

If we wish to prove that R is transitive, we need to show that x Ry and y R 2
together imply x R z for every x,y,z € A. Again, observe that we do not prove that
x RyandyR zare true, but only that they imply x R z. Hence, a proof of the transitivity
of R typically has the following form.

Proof. Letx,y,z € A. Suppose that x Ry and y R z.
(argumentation)

Then x R z. Hence R is transitive. O

Exercises

Exercise 5.1.1. For each of the following relations on Z, find the relation classes [3]
and [—3] and [6].

(1) Let S be the relation defined by a S b if and only if a = |b|, for all a,b € Z.
(2) Let D be the relation defined by a D b if and only if a|b, for all a,b € Z.

(3) Let T be the relation defined by a T b if and only if b|a, for all a,b € Z.

(4) Let Q be the relation defined by a Q b if and only if a+b =7, forall a,b € Z.

Exercise 5.1.2. For each of the following relations on R?, give a geometric descrip-
tion of the relation classes [(0,0)] and [(3,4)].

(1) Let S be the relation defined by (x,y) S (z,w) if and only if y = 3w, for all
(x,y), (z,w) € R%.

(2) Let T be the relation defined by (x,y) T (z,w) if and only if x*> 4+ 3y? = 77> +
w2, for all (x,y), (z,w) € R%.

(3) Let Z be the relation defined by (x,y) Z (z,w) if and only if x =z or y = w,
for all (x,y), (z,w) € R%.

Exercise 5.1.3. Let A = {1,2,3}. Each of the following subsets of A x A defines a
relation on A. Is each relation reflexive, symmetric and/or transitive?

(0)) A_Z: {(3a3)a(272)’(172)a(2a1)}'
(2) N= {(1’1)7(2a2)a(373)’(1’2)}'
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3 Q:{(lvl)a(za ),(1,2)}

4) 6:{(171)7(2a2)a(3a3)}

%) Q:{(172)7(2’1)’(]’3)7< ) )}

(6) R:{(],Z),(Z,?)),(?),])}

@ T={(1,1),(1,2),(2,2),(2,3),(3,3),(1,3)}

Exercise 5.1.4. Is each of the following relations reflexive, symmetric and/or transi-
tive?

(1) Let S be the relation on R defined by x Sy if and only if x = |y|, forall x,y € R.

(2) Let P be the set of all people, and let R be the relation on P defined by x R y
if and only if x and y were not born in the same city, for all x,y € P.

(3) Let T be the set of all triangles in the plane, and let G be the relation on T
defined by s G ¢ if and only if s has greater area than ¢, for all triangles s,z € T

(4) Let P be the set of all people, and let M be the relation on P defined by x M y
if and only if x and y have the same mother, for all x,y € P.

(5) Let P be the set of all people, and let N be the relation on P defined by x N y
if and only if x and y have the same color hair or the same color eyes, for all
x,y €P.

(6) Let D be the relation on N defined by a D b if and only if a|b, for all a,b € N.

(7) Let T be the relation on Z x Z defined by (x,y) T (z,w) if and only if there
is a line in R? that contains (x,y) and (z,w) and has slope an integer, for all
(x,), (z,w) € Z X Z.

Exercise 5.1.5. Let A be a set, and let R be a relation on A. Suppose that R is defined
by the set R C A x A. Let R be the relation on A defined by the set (A x A) —

(1) If R reflexive, is R’ necessarily reflexive, necessarily not reflexive or not nec-
essarily either?

(2) If R symmetric, is R’ necessarily symmetric, necessarily not symmetric or not
necessarily either?

(3) If R transitive, is R’ necessarily transitive, necessarily not transitive or not
necessarily either?

Exercise 5.1.6. Let A be a set, and let R be a relation on A. Suppose that R is sym-
metric and transitive. Find the flaw in the following alleged proof that this relation is
necessarily reflexive; there must be a flaw by Example 5.1.6 (4). “Let x € A. Choose
y € A such that x R y. By symmetry know that y R x, and then by transitivity we see
that x R x. Hence R is reflexive.”

Exercise 5.1.7. Let A be a set, and think of C as defining a relation on ?(A), as
stated in Example 5.1.2 (5). Is this relation reflexive, symmetric and/or transitive?

Exercise 5.1.8. Let A be a set, and let R be a relation on A.

(1) Suppose that R is reflexive. Prove that | J,c4[x] = A.

(2) Suppose that R is symmetric. Prove that x € [y] if and only if y € [x], for all
x,y €A.

(3) Suppose that R is transitive. Prove that if x R y, then [y] C [x], for all x,y € A.
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Exercise 5.1.9. Let A and B be sets, let R be a relation on A and let f: A — B be a
function. The function f respects the relation R if x R y implies f(x) = f(y), for all
x,y € A. Which of the following functions respects the given relation?

(1) Let f: R — R be defined by f(x) = x° for all x € R; let S be the relation on
R defined by x Sy if and only if |x| = |y|, for all x,y € R.

(2) Let g: R — R be defined by g(x) = cosx for all x € R; let W be the relation
on R defined by x W y if and only if x —y = %k for some k € Z, for all x,y € R.

(3) Let i: R — R be defined by h(x) = | x| for all x € R, where | x| denotes the
greatest integer less than or equal to x; let 7' be the relation on R defined by
x T yifand only if |[x—y| < 1, for all x,y € R.

(4) Letk: R? — R be defined by k((x,y)) = 3x% +6xy+3y? for all (x,y) € R?; let
M be the relation on R? defined by (x,y) M (z,w) if and only if x +y =z +w,
for all (x,y), (z,w) € R2.

Exercise 5.1.10. Let A and B be sets, let R be a relation on A and let f: A — Bbe a
function. Suppose that f is injective, and that it respects the relation R, as defined in
Exercise 5.1.9. What, if anything, can be proved about the relation R?

Exercise 5.1.11. LetA and B be sets, let R and S be relations on A and B, respectively,
and let f: A — B be a function. The function f is relation preserving if x R y if and
only if f(x) S f(y), for all x,y € A.

(1) Suppose that f is bijective and relation preserving. Prove that f~! is relation
preserving.

(2) Suppose that f is surjective and relation preserving. Prove that R is reflexive,
symmetric or transitive if and only if S is reflexive, symmetric or transitive,
respectively.

5.2 Congruence

In this section we discuss a very important type of relation on the set of integers,
which will serve to illustrate the general topic discussed in the next section, and is
also a valuable tool in various parts of mathematics and its applications, for example
number theory, cryptography and calendars. See [Ros05, Chapters 4 and 5] for fur-
ther discussion of congruence and its applications, and see [Kob87] for a treatment
of congruence and cryptography.

The idea of congruence is based upon the notion of “clock arithmetic,” a term
sometimes used in elementary mathematics. (For the reader who has not seen “clock
arithmetic,” it will be sufficient to have seen a clock). For the sake of uniformity, we
will make all references to time using the American 12-hour system (ignoring a.m.
vs. p.m.), as opposed to the 24-hour system used many places around the world, and
in the U.S. military.

Suppose that it is 2 o’clock, and you want to know what time it will be in 3
hours. Clearly the answer is 243 = 5 o’clock. Now suppose that it is 7 o’clock, and
you want to know what time it will be in 6 hours. A similar calculation would yield
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7+ 6 = 13 o’clock, but the correct answer would be 1 o’clock, which is found by
subtracting 12 from 13, because 13 is greater than 12. Similarly, if itis 11 o’clock and
you want to know what time it will be after 30 hours, you first compute 11+30 =41,
and you obtain a number from 1 to 12 by subtracting the number 12 as many times as
needed from 41 until a number in the 1 to 12 range is obtained. This method yields
41 —36 =5 o’clock.

Let us now drop the “o’clock.” In the previous paragraph, there were two con-
flicting things we wanted to accomplish: to restrict ourselves to the integers from 1 to
12, and to be able to add numbers even when it took us outside of the 1 to 12 range.
To resolve this problem, we took any number that was outside the desired range,
and reduced it by multiples of 12 until we were back in the 1 to 12 range, where by
“multiple” we mean in integer multiple. For example, we reduced 41 to 5 by sub-
tracting 3 times 12. We therefore consider 41 and 5 as equivalent from the point of
view of clocks (though of course these two numbers are not necessarily equivalent
from other points of view). In general, two integers are equivalent in this approach if
they differ by some multiple of 12. For example, we see that 28 and 4 are equivalent
in this sense, but 17 and 3 are not.

We used the number 12 in the above discussion because of our familiarity with
clocks, but, as we state formally in the following definition, the same procedure
works with any other natural number replacing 12.

Definition 5.2.1. Let n € N, and let a,b € Z. The number «a is congruent to the
number b modulo 7, denoted a = b (mod n), if a — b = kn for some k € Z. A

Example 5.2.2. We see that 19 = —5 (mod 4), because 19— (—5) =24 =6-4; and
7=7 (mod 3), because 7—7=0=0-3; and 13#2 (mod 9), because 13—2=11
and 11 is not a multiple of 9. O

For each n € N, we obtain a relation on Z given by congruence modulo n. The
following lemma shows that for each n, this relation is reflexive, symmetric and
transitive, as defined in Section 5.1.

Lemma 5.2.3. Letn € N, and let a,b,c € Z.

1. a=a (mod n).
2. Ifa=b (mod n) then b=a (mod n).
3. Ifa=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).

Proof.
(1). Observe thata —a =0-n.

(2). Suppose thata=» (mod n). Then a — b = kn for some k € Z. Hence b—a =
(—k)n. Because —k € Z, it follows that b = a (mod n).

(3). Suppose thata=5b (mod n) andb=c (mod n). Thena—b=knandb—c=
Jjn for some k, j € Z. Adding these two equations we obtain a — ¢ = (k+ j)n. Because
k+ j € Z, it follows that a = ¢ (mod n). 0O
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We now prove a more substantial result about congruence modulo n. The proof of
this theorem makes use of an important fact about the integers known as the Division
Algorithm, which is stated as Theorem A.5 in the Appendix.

Theorem 5.2.4. Let n € N, and let a € 7. Then there is a unique r € {0,...,n— 1}
such that a = r (mod n).

Proof. To prove uniqueness, suppose that there are x,y € {0,...,n — 1} such that
a=x (mod n) and a =y (mod n). It follows from Lemma 5.2.3 (2) that x = a
(mod n), and from Lemma 5.2.3 (3) that x =y (mod n). That is, we have x —y = pn
for some p € Z. On the other hand, because x,y € {0,...,n— 1}, it follows that
—(n—1) <x—y <n-—1. We deduce that p = 0, and hence that x = y.

To prove existence, we use the Division Algorithm (Theorem A.5) to deduce that
there are g, r € Z such that a = ng+r and 0 < r < n. Hence a — r = gn, and therefore
a=r (mod n). O

We can restate Theorem 5.2.4 without reference to congruence modulo 7.

Corollary 5.2.5. Letn € N, and let a € Z. Then precisely one of the following holds:
either a = nk for some k € Z, or a = nk+ 1 for some k € Z, or a = nk+ 2 for some
ke€Z, ...,ora=nk+ (n—1)for somekeZ.

If we use n =2 in Corollary 5.2.5, we deduce the following familiar result.
Corollary 5.2.6. Let a € Z.. Then a is even or odd, but not both.

Another way to think about Theorem 5.2.4 is by using relation classes with re-
spect to congruence modulo n. Let us examine the case n = 5, where we list a few of
the relation classes:

0] ={...,~10,-5,0,5,10,...}
M={..,-9,-4,1,6,11,...}
2] ={..,-8-32712,..}
Bl={..,~7,-2,3,8,13,...}
4 ={...,~6,-1,4,9,14,...}
5]={...,—5,0,5,10,15...}.

[0] = [5] = [10] =
[1] =1[6] = [11] =
2] =1[7]=[12] =
3] = [8] = [13] =
[4] =9 = [14] =
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Although a relation class is defined for every integer, there are in fact only five dis-
tinct classes. Moreover, these classes are disjoint, and their union is all of Z. The
analogous result holds for arbitrary n, as stated in the following theorem.

Theorem 5.2.7. Letn € N.

1. Leta,b € Z. If a=b (mod n), then [a] = [b]. If a £ b (mod n), then [a] N
[b] = 0.
2. [OJU[U...U[n—1]=2Z.

Proof.

(1). Suppose that a = b (mod n). Let x € [a]. Then by the definition of relation
classes we know that @ = x (mod n). By Lemma 5.2.3 (2) it follows that b = a
(mod n), and hence by Lemma 5.2.3 (3) we deduce that b = x (mod n). Therefore
x € [b], and hence [a] C [b]. A similar argument shows that [6] C [a]. We conclude
that [a] = [D].

Now assume that a Z b (mod n). We use proof by contradiction. Suppose that
[a] N [b] # 0. Hence there is some y € [a] N [b]. Theny € [a] and y € [b], so thata =y
(mod n) and b =y (mod n). By Lemma 5.2.3 (2) we see that y = b (mod n), and
by Lemma 5.2.3 (3) it follows that ¢ = b (mod n), which is a contradiction. We
conclude that [a] N [b] = 0.

(2). By definition [a] C Z for all a € Z, and therefore [0]U...U[n—1] C Z. Let
X €Z.By Theorem 5.2.4 there is a unique r € {0,...,n— 1} such thatx =r (mod n).
It follows from Lemma 5.2.3 (2) that r = x (mod n). Hence x € [r]. Because r €
{0,...,n— 1}, it follows that x € [0]U...U[n — 1]. Therefore Z C [0]U...U[n—1].
We conclude that [0]U...U[n— 1] =Z. O

Theorem 5.2.7 shows that relation classes for congruence modulo n are much
better behaved than relation classes for arbitrary relations, as seen in Example 5.1.4.
We are now ready for the following definition.

Definition 5.2.8. Let n € N. The set of integers modulo 7, denoted Z,,, is the set
defined by Z, = {[0],[1],...,[n — 1]}, where the relation classes are for congruence
modulo 7. A

The set Z, is also denoted Z/nZ in some texts, for reasons that will become
apparent if the reader learns about group theory.

Example 5.2.9. The integers modulo 12 is the set Z, = {[0],[1],...,[11]}. This
set has 12 elements, each of which is itself a set (namely, a relation class), but
which is viewed here as a single element in the set Zj>. The relation classes in
Z13 could each be described differently. For example, we see that [0] = [12], and
so Zip = {[12],[1],...,[11]}, which is what we see on the face of a clock. For math-
ematical purposes it is more convenient to write [0] rather than [12], and so we will
continue to write Zj, as we did originally; it would also be nice to have the 12 on
clocks replaced with O, but historical practice holds sway over mathematics in this
situation. There are, of course, many other ways to rewrite the elements of Z,, for
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example Z, = {[—36],[25],[—10],...,[131]}, and so it would in principle be possi-
ble to replace the number on a clock with —36,25, —10,...,131, though presumably
only mathematicians would find that amusing. O

For each n € N, the set Z, has n elements. Of course, for each n € N, there
are many sets with n elements, but what makes 7Z,, particularly useful is that there
is a natural way to define addition and multiplication on it, as seen in the follow-
ing definition. Addition and multiplication are examples of binary operations, which
produce one output for every pair of inputs. Binary operations will be discussed in
Section 7.1, but for now it is sufficient to think of addition and multiplication on Z,
simply as analogs of the familiar addition and multiplication of real numbers.

Definition 5.2.10. Let n € N. Let + and - be the binary operations on Z, defined by
[a] + [b] = [a+ b] and [a] - [b] = [ab] for all [a],[b] € Z,. VAN

As reasonable as Definition 5.2.10 seems, there is a potential problem. Let n €
N, and let [a],[b],[c],[d] € Zy. Suppose that [a] = [c] and [b] = [d]. Do [a+b] =
[c+d] and [ab] = [cd] necessarily hold? If not, then we could not say that [a] +
[b] = [¢] + [d] and [a] - [b] = [c] - [d], and then + and - would not be well-defined
binary operations on Z,, because [a] 4 [b] and [a] - [b] would depend not just on
the relation classes [a] and [b], but on the particular choice of a and b. This sort
of verification is often needed whenever something is defined for relation classes
by using representative elements of the classes. Neglecting such verification is a
common mistake. Fortunately, everything works as desired in the present case, which
we verify using the following lemma.

Lemma 5.2.11. Let n € N, and let a,b,c,d € Z. Suppose that a = ¢ (mod n) and
b=d (mod n). Then a+b = c+d (mod n) and ab = c¢d (mod n).

Proof. There exist k, j € Z such that @ —c¢ = kn and b —d = jn. Then a = ¢+ kn and
b = d + jn, and therefore

a+b=(c+kn)+(d+ jn)=c+d+ (k+ j)n,
ab = (c+kn)(d+ jn) = cd+ (cj+dk+kjn)n.

The desired result now follows. O

From Lemma 5.2.11, together with Theorem 5.2.7 (1), we deduce the following
corollary, which we state without proof. This corollary tells us that + and - as given
in Definition 5.2.10 are indeed well-defined for each Z,,.

Corollary 5.2.12. Let n € N, and let [al,[b],[c],[d] € Zy. Suppose that [a] = [c] and
[b] = [d]. Then [a+ b] = [c +d] and [ab] = [cd].

It is important to observe that the binary operations + and - are different in each
set Z,. For example, in Z7; we see that [6] + [4] = [10] = [3], whereas in Zg we see
that [6] + [4] = [10] = [1].

One nice way of working with the + and - on Z, is to make operation tables,
which are analogous to the multiplication tables often used in elementary school.
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(See Section 7.1 for more discussion of such operation tables.) Consider the follow-
ing tables for Zg.

+[[0] [1] 2] [3] [4] [3] -~ |[0] [1] [2] 3] [4] [3]
[O]|[0] [1] [2] 3] [4] [5] [0]}[0] [0] o] [0] [0] [0]
[1]\[1] 2] 3] 4] 5] [O] [1]1[0} [1] [2] (3] [4] [5]
[2])(2] 3] [4] 5] [0] [1] [2]1[0) 2] [4] (0] [2] [4]
[31\(3] [4] [5] [0 [1] [2] [3]1[0} 3] [0] (3] [0] [3]
[4])[4] 5] [0] [1] [2] [3] [4]1[0] 4] [2] [0] [4] [2]
[S]1(5] [0] [1] 2] 3] [4] [s]1[0] [5) [4] (3] [2] [1].

The table for 4 has a very nice pattern, in which the entries are constant on each line
of slope 1. Moreover, every element of Zg appears precisely once in each row and
in each column of the table. These same properties hold in the table for + for every
Zy. The table for - for Zg is not as well behaved. For example, not every element
of Z¢ appears in each row and in each column, though some rows and columns do
have all elements. However, the tables for - for the other Z, do not all behave the
same as for Zg. The issue has to do with prime numbers, and whether or not various
numbers have common factors. A thorough study of these questions makes use of
some number theoretic issues. See [Fra03, Section 20] for details.

A related question is whether equations of the form [a] - x = [b] can be solved
in any Z,. The analogous equation involving real numbers, that is, an equation of
the form ax = b, always has a unique solution whenever a # 0. The situation in Z,
is more complicated. Consider the equation [4]-x = [3]. In Zj; there is a unique
solution, which is x = [9], as can be verified simply by trying each element of Z;; as
a possible candidate for x. In Zj, the same equation has no solution, as can again be
verified by trying each element of Z,. The equation [3] - x = [0] has three solutions
in Zg, which are x = [0],[2], [4], as can be seen using the operation table for - for Z.
We therefore see that in Zg it is possible to have two non-zero elements such that
their product is [0], in contrast to the situation for multiplication of real numbers. See
[Fra03, Section 20] for further discussion of this type of equation in Z,,.

Our final comment about 7, takes us back to our initial discussion of clocks,
where we took the number 41 (which was the result of starting at 11 o’clock and
adding 30 hours), and we then subtracted the number 12 as many times as needed
from 41 until a number in the 1 to 12 range was obtained; in this case we obtained
the number 5. There are, of course, infinitely many numbers in Z that, when treated
in this same way, will yield the number 5. Rather than thinking of the number 5 here
as an integer, it is more correct to think of it as an element of Zj,. That is, we think
of taking infinitely many elements of Z, and we send them all to a single element
in Z1;. Of course, there is nothing special about the number 5, and there is nothing
special about working modulo 12. We now use functions to formalize this process.

Definition 5.2.13. Let n € N. The canonical map for congruence modulo 7 is the
function y: Z — Z, defined by y(a) = [a] for all a € Z. A



5.2 Congruence 183

Observe that there is a distinct function ¥ for each n € N, but to avoid unneces-
sarily cumbersome notation (such as ¥;,), we will assume that the number 7 is always
known from the context.

The canonical map y: Z — Z, is a special case of a more general type of canon-
ical map that will be seen in Definition 5.3.8.

We now see two simple results about the canonical map that are examples of
more general, though rather different, phenomena we will see subsequently.

Lemma 5.2.14. Let n € N, let B be a set and let f: 7 — B be a function. Suppose
that if a,b € Z and a = b (mod n), then f(a) = f(b). Then there exists a unique
function g: Z,, — B such that f = goY.

Proof. Left to the reader in Exercise 5.2.10. a

Using the terminology of Exercise 5.1.9, we say that the function f in Lemma 5.2.14
respects congruence modulo n. The condition f = go 7y in Lemma 5.2.14 is repre-
sented by the following commutative diagram (as discussed in Section 4.3).

In contrast to Lemma 5.2.14, which can be generalized to all equivalence re-
lations, as seen in Lemma 5.3.9, the following property of the canonical map for
congruence modulo 7 is not applicable to most equivalence relations, though it can
be generalized in a very different way, as discussed in Section 7.3.

Lemma 5.2.15. Letn € N, and let a,b € Z. Then Y(a+b) = y(a)+y(b) and y(ab) =
Y(a)-v(b).
Proof. Left to the reader in Exercise 5.2.11. a

Exercises

Exercise 5.2.1. Which of the following are true and which are false?

1) 13=5 (mod 2). 4) 3=28 (mod 5).
) 21=7 (mod 5). (5) 23 =23 (mod 7).
3) 7=0 (mod 2)

Exercise 5.2.2. Solve each of the following equations in the given set Z,. (In some
cases there is no solution.)
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@) [5]+x=[1] in Zo. @) x-[6] = 2] in Zo.
@) [2]-x=[7]in Zu1. (5) [3]-x+[4] = [1]in Zs.
3) x-[6] = [4] in Zy5.

Exercise 5.2.3. Find n € N and a,b € Z such that @*> = b*> (mod n) but a # b
(mod n).

Exercise 5.2.4. Letn,q € N, and let a,b € Z. Suppose thata = b (mod n), and that
g|n. Prove thata = b (mod q).

Exercise 5.2.5. Letn € N, and let a,b € Z. Suppose that a = b (mod n). Prove that
n|a if and only if n|b.

Exercise 5.2.6. Prove or give a counterexample for each of the following proposed
cancellation laws.

(1) Let n € N, and let a,b,c € Z. Then a+c = b+c¢ (mod n) implies a = b
(mod n).

(2) Letne N, and leta,b,c € Z—{0}. Suppose that ¢ is not a multiple of n. Then
ac =bc (mod n) implies a = b (mod n).

Exercise 5.2.7. For this exercise we use factorials. If m € N, then the factorial of m is
m!=m(m—1)(m—2)---2-1.Itis assumed that the reader is familiar with factorials
informally; a formal definition of this concept is given in Example 6.4.4 (1), where
the “---” are avoided.

Let n € N. Suppose that n > 1, and that (n — 1)! = —1 (mod n). Prove that n is a
prime number. The converse to this result, known as Wilson’s Theorem, is also true,
but has a slightly lengthier proof; see [AR89, Section 3.5] or [Ros05, Section 6.1]
for details.

Exercise 5.2.8. Let n € Z. Prove that n’ = n (mod 6).

Exercise 5.2.9. Let n € Z. Prove that precisely one of the following is true: n> =0
(mod 16), or n? =1 (mod 8), or n> =4 (mod 16).

Exercise 5.2.10. [Used in Lemma 5.2.14.] Prove Lemma 5.2.14.
Exercise 5.2.11. [Used in Lemma 5.2.15.] Prove Lemma 5.2.15.

Exercise 5.2.12. [Used in Exercise 5.2.13 and Section 8.3.] Is there a relation between
a natural number and the sum of its digits? We now have the tools to answer this
question. Let x € N. We can write x in decimal notation as a,,a,,—1 - - -aa;, where
a; is an integer such that 0 < a; <9 for all i € {1,...,m}. That notation means
x=Y"",a;10". The sum of the digits of x is therefore Z' 1 a;. Prove that

Za,lO’ '= Zal (mod 9).

You may use the fact that the statement of Lemma 5.2.11 can be extended to sums
and products of any finite number of integers.
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Exercise 5.2.13. This exercise continues Exercise 5.2.12. For each part of this exer-

cise, it is acceptable to use informal arguments, because rigorous proofs require proof

by induction, which we have not yet seen (we will see it in detail in Section 6.3).
Leta,b € N.

(1) Let X(a) denote the sum of the digits of a. For any m € N, let 2" (a) denote
Z(Z(Z(---Z(a)---))), with X repeated m times. Let £°(a) = a. Prove that
there is some r € NU {0} such that X" (a) has a single digit.

(2) Let M(a) denote the smallest n € N such that £ (a) is a single digit. (It makes
sense intuitively that there is such a smallest natural number; formally we
make use of the Well-Ordering Principle (Theorem 6.2.5).) If a has only one
digit, let M(a) = 0. Does M(a + b) = M(a) + M(b) always hold? Give a
proof or a counterexample. Does M (a+b) > M(a)+ M (b) always hold? Give
a proof or a counterexample. Does M(a + b) < M(a)+ M (b) always hold?
Give a proof or a counterexample.

(3) Let £(a) be an abbreviation for M@ (g); that is, the number £(a) is the
result of repeatedly adding the digits of the number a until a single digit
remains. (This process is used in gematria, a method employed in Jewish
mysticism, as well as in similar constructions in Greek and Arab traditions;
see [Ifr85, Chapter 21] for details.) Does £(a+b) = Z(a) + £(b) always
hold? Give a proof or a counterexample. Does X (ab) = Z(a) - £(b) always
hold? Give a proof or a counterexample.

(4) Prove that X(a+b) = £(Z(a) +X(b)) and Z(ab) = £(X(a)-Z(b)).

5.3 Equivalence Relations

In Lemma 5.2.3 we saw that for each n € N, congruence modulo 7 satisfied the three
properties of reflexivity, symmetry and transitivity. It turns out that many important
relations found throughout mathematics satisfy these three properties.

Definition 5.3.1. Let A be a set, and let ~ be a relation on A. The relation ~ is an
equivalence relation if it is reflexive, symmetric and transitive. A

Example 5.3.2. Some examples of equivalence relations are equality on the set R;
congruence modulo n on Z for any n € N; similarity of triangles on the set of all
triangles in the plane; being the same age on the set of all people. O

Because we can form relation classes for arbitrary relations, we can in partic-
ular form them for equivalence relations. Because relation classes for equivalence
relations turn out to behave particularly nicely, and are of great importance, we give
them a special name.

Definition 5.3.3. Let A be a non-empty set, and let ~ be an equivalence relation on
A. The relation classes of A with respect to ~ are called equivalence classes. A

For the rest of this section, in order to avoid trivial cases, we will restrict our
attention to non-empty sets. We start with the following theorem, which generalizes
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Theorem 5.2.7, and which shows that equivalence classes are much better behaved
than arbitrary relation classes, as seen in Example 5.1.4. The proof of Part (1) of the
following proposition, which is left to the reader as an exercise, is simply a rewriting
of the proof of Theorem 5.2.7 (1) in the more general setting of equivalence classes.

Theorem 5.3.4. Let A be a non-empty set, and let ~ be an equivalence relation on
A.

1. Letx,y € A. If x ~y, then [x] = [y]. If x £y, then [x]| N [y] = 0.
2. UXEA [x] =A

Proof. We will prove Part (2), leaving the remaining part to the reader in Exer-
cise 5.3.6.

(2). By definition [x] C A for all x € A, and hence [, [x] C A. Now let ¢ € A.
By reflexivity we see that g ~ g, and therefore g € [g] C U 4 [x]. Hence A C U 4 [x].
We conclude that [J,4 [x] = A. O

A careful look at the proofs of both parts of Theorem 5.3.4 reveals that the proof
of Part (1) uses the symmetry and transitivity of the relation, and the proof of Part (2)
uses reflexivity; we therefore see precisely where the three properties in the definition
of equivalence relation are used in this proof.

There is a redundancy in the expression J,,[x] in Theorem 5.3.4 (2), because
some of the sets [x] might be equal to one another. For example, Theorem 5.3.4 (2)
applied to congruence modulo n for a given n € N would say that --- U [—1] U [0] U
[1JU[2]U--- =Z, which is not nearly as strong as the statement in Theorem 5.2.7 (2),
which says that [0] U[1]U...U[n — 1] = Z, and which has no redundancy. The reason
that the statement in Theorem 5.2.7 (2) is stronger is that in the particular case of
congruence modulo n we made use of the Division Algorithm (Theorem A.5 in the
Appendix), which has no analog for arbitrary equivalence relations.

The following corollary is derived immediately from Theorem 5.3.4 (1).

Corollary 5.3.5. Let A be a non-empty set, let ~ be an equivalence relation on A
and let x,y € A. Then [x] = [y] if and only if x ~ y.

Recall that in Section 5.2, for each n € N we formed the set Z,, of all equivalence
classes of Z with respect to congruence modulo n. We now turn to the analog of this
construction for arbitrary equivalence relations.

Definition 5.3.6. Let A be a non-empty set, and let ~ be an equivalence relation
on A. The quotient set of A with respect to ~, denoted A/~, is the set defined by
A/~ ={][x€A}. A

The set A/~ in Definition 5.3.6 is the set of all equivalence classes of A with
respect to ~. As in all sets, each element of the set A/~ occurs only once in the set,
even if it might not appear that way from the expression {[x] | x € A}. That is, even
though this expression might make it appear as if there is one element of the form [x]
in A/~ for each x € A, that is not the case in general, because it will often happen
that [x] = [y] for some distinct x,y € A, that is, when x ~y by Corollary 5.3.5. Looked
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at another way, each equivalence class is named after each of its elements, so that a
single equivalence class may have many names, but it is still a single set, and a single
element of A/~.

Example 5.3.7. Let P be the set of all people, and let ~ be the relation on P defined
by x ~ y if and only if x and y are the same age (in years). If person x is 19 years
old, then the equivalence class of x is the set of all 19-year-olds. Each element of the
quotient set P/~ is itself a set, where there is one such set consisting of all 1-year-
olds, another consisting of all 2-year-olds, and so on. Although there are billions of
people in P, there are fewer than 125 elements in P/~, because no currently living
person has reached the age of 125. O

In the following definition, which generalizes Definition 5.2.13, we use functions
to relate a set and its quotient set.

Definition 5.3.8. Let A be a non-empty set, and let ~ be an equivalence relation on
A. The canonical map for A and ~ is the function y: A — A/~ defined by y(x) = [«]
for all x € A. AN

We now have a generalization of Lemma 5.2.14.

Lemma 5.3.9. Let A and B be non-empty sets, let ~ be an equivalence relation on
A and let f: A — B be a function. Suppose that a ~y implies f(x) = f(y), for all
X,y € A. Then there exists a unique function g: A/~ — B such that f = goYy, where
Y: A — A/~ is the canonical map.

Proof. Left to the reader in Exercise 5.3.7. O

Using the terminology of Exercise 5.1.9, we say that the function fin Lemma 5.3.9
respects ~. The condition f = go7yin Lemma 5.2.14 is represented by the following
commutative diagram (as discussed in Section 4.3).

f

A——— B

|
A~
Suppose that we have a quotient set A/~. We see from Theorem 5.3.4 that any
two distinct equivalence classes in A/~ are disjoint, and that the union of all the
equivalence classes is the original set A. We can therefore think of A/~ as the result

of breaking up the set A into disjoint subsets. The following definition generalizes
this notion of breaking up a set into disjoint subsets.

Definition 5.3.10. Let A be a non-empty set. A partition of A is a family D of
non-empty subsets of A such that

(a) if P,Q € Dand P # Q, then PNQ = 0;
() Upcp P =A. A
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Definition 5.3.10 (a) can be rephrased more concisely by saying that D is pair-
wise disjoint, using the terminology of Definition 3.5.1, though here we use the non-
indexed version of the definition. A schematic representation of a partition of a set is
seen in Figure 5.3.1. Another way of looking at partitions is to observe that if £ is a
family of subsets of a set A, then Z is a partition of A if and only if for each x € A,
there is one and only one P € ‘E such that x € P.

ERTIN

Fig. 5.3.1.

It is important to distinguish between the mathematical usage of the word “parti-
tion” and the colloquial usage of the word. In the colloquial usage, a partition that one
places in a room is something that divides the room into smaller parts; in the math-
ematical usage, it is the collection of those smaller parts of the room that forms the
partition of the room, not the dividers between the smaller parts. In Figure 5.3.1, the
partition of the set S has five elements, namely, the sets Dy,...,Ds, each of which
contains all the elements in the region of the plane with the appropriate label; the
curved lines that separate these five regions do not have a name in mathematical us-
age (and indeed, they exist only in pictures, not in actual sets). Observe also that the
word “partition” refers only to the family of sets, not to the elements of the family. In
Figure 5.3.1, the partition is the family © = {D,...,Ds}; the elements D,...,Ds
of D are not themselves called “partitions,” but rather “elements of the partition.”

Example 5.3.11.

(1) Let E denote the set of even integers, and let O denote the set of odd integers.
Then D = {E, O} is a partition of Z.

(2) Let C={[n,n+1)},;. Then C is a partition of R.

(3) Let G ={(n—1,n+1)},.4. Then G is not a partition of R, because it is
not pairwise disjoint. For example, we observe that (1—1,1+1)N(2—-1,2+1) =
(1,2).

Using the terminology of partitions, we can now state the following immediate
corollary to Theorem 5.3.4.

Corollary 5.3.12. Let A be a non-empty set, and let ~ be an equivalence relation on
A. Then A/~ is a partition of A.

We see from Corollary 5.3.12 that there is a connection between equivalence
relations on a set and partitions of the set. This connection can be made more precise
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using bijective functions. To state our result, we will need the following definition,
which takes us to one higher level of abstraction than we have seen until now in our
discussion of relations.

Definition 5.3.13. Let A be a non-empty set. Let £(A) denote the set of all equiva-
lence relations on A. Let 7y denote the set of all partitions of A. VAN

For a given set A, it is important to keep in mind what the elements of £(A) and
T4 are. Each element of £(A) is an equivalence relation on A, which formally is a
subset of A x A that satisfies certain conditions. Each element of 7, is a partition of
A, which is a family of subsets of A that satisfy certain conditions.

Example 5.3.14. Let A = {1,2,3}. Then Ty = {Dy, Ds,..., D5}, where

1)1:{{1},{2},{3}}, 1342{{2,3},{1}},
92:{{172}3{3}}7 ’135:{{1,2,3}}.
Dy = {{1’3}7{2}}7

Also, we see that £(A) = {R},Rz,...,Rs}, where these relations are defined by the
sets

Ri= {(17 1)7(2’2)7 (3,3)},

Ry = {(17 1),(2,2),(3,3),(1,2),(2, 1)}»

Ry ={(1,1),(2,2),(3,3),(1,3),(3, 1)},
Ry={(1,1),(2,2),(3,3),(2,3),(3,2)},

Rs ={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2) }.

It is straightforward to verify that each of the relations R; listed above is an equiva-
lence relation on A. O

Is it a coincidence that the sets Z£(A) and 7; in Example 5.3.14 have the same
number of elements? In fact, we will see shortly that for any set A, whether finite
or infinite, there is a correspondence between the equivalence relations on A and the
partitions of A. To state this correspondence precisely, we start by defining, for each
non-empty set A, a function from Z(A) to 74, and a function in the other direction. It
is not entirely obvious that these functions make sense, but they do indeed work, as
noted in the lemma following the definition.

Definition 5.3.15. Let A be a non-empty set. Let @: E(A) — T4 be defined as fol-
lows. If ~ is an equivalence relation on A, let &(~) be the family of sets A/~. Let
¥ T4 — E(A) be defined as follows. If D is a partition of A, let ¥(D) be the relation
on A defined by x ¥(D) y if and only if there is some P € D such that x,y € P, for all
x,y €A. VAN

Observe that there is a distinct function @ and a distinct function ¥ for each
non-empty set A, but to avoid unnecessarily cumbersome notation (such as @4 and
¥,), we will assume that the set A is always known from the context.
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Lemma 5.3.16. Let A be a non-empty set. The functions @ and ¥ are well-defined.

Proof. To prove the lemma, we need to show the following two things: (1) For any
equivalence relation ~ on A, the family of sets @ (~) is a partition of A; and (2) for
any partition D of A, the relation ¥ (D) is an equivalence relation on A. The first of
these claims follows immediately from the definition of @ and Corollary 5.3.12. The
second claim is left to the reader in Exercise 5.3.11. O

Example 5.3.17.

(1) Let ~ be the relation on R? defined by (x,y) ~ (z,w) if and only if y —x =
w—z, forall (x,y), (z,w) € R?. It can be verified that ~ is an equivalence relation. We
want to describe the partition @(~) of R2. Let (x,y) € R%. Then [(x,y)] = {(z,w) €
R? |w—z=y—x}.Letc =y—x. Then [(x,y)] = {(z,w) € R? | w = z+c}, which is
just a line in R? with slope 1 and y-intercept ¢. Hence @ (~) is the collection of all
lines in R? with slope 1.

(2) Let C be the partition of R given in Example 5.3.11 (2). We want to describe
the equivalence relation ¥ (). For convenience let =~ = ¥((). Suppose that x,y € R.
Then x ~ y if and only if there is some n € Z such that x,y € [n,n+ 1). Using the
notation | x| to denote the greatest integer less than or equal to x, we see that x = y if
and only if x| = |y].

(3) Let Dy, D, ..., Ds be the partitions and Ry, R»,...,Rs5 be the relations given
in Example 5.3.14. It can be verified that @(R;) = D; and ¥(D;) =R; for all i €
{1,...,5}; details are left to the reader. O

In Example 5.3.17 (3), we see that @ and ¥ are inverses of each other. Quite
remarkably, the following theorem says that the same result holds for any non-empty
set. Consequently, we have a complete picture of the connection between equivalence
relations and partitions for a given set A: there is a bijective function from the set of
equivalence relations on A and the set of partitions of A. That is, to each equivalence
relation on A there corresponds a unique partition of A, and vice versa. Moreover, not
only do we know in principle that there is such a correspondence, but, even better,
we have an explicit description of this correspondence, namely, the functions ¢ and
.

Theorem 5.3.18. Let A be a non-empty set. Then the functions ® and ¥ are inverses
of each other, and hence both are bijective.

Proof. We need to show that
Yo = I‘Z(A) and PoY¥ = lq:q.

First, we prove that ¥ o @ = l4 (4. Let ~ € £(A) be an equivalence relation
on A. Let ~ = ¥ (P(~)). We will show that ~ = ~, and it will then follow that
W o® = lg ). For convenience let D = @(~), so that ~ =¥ (D).

Let x,y € A. Suppose that x = y. Then by the definition of ¥ there is some D € D
such that x,y € D. By the definition of @, we know that D is an equivalence class
of ~, so that D = [g] for some g € A. Then g ~ x and ¢ ~ y, and by the symmetry
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and transitivity of ~ it follows that x ~ y. Now suppose that x ~ y. Then y € [x]. By
the reflexivity of ~, we know that x € [x]. The definition of & implies that [x] € D.
Hence, by the definition of W, it follows that x ~ y. Therefore x ~ y if and only if
x ~y. We conclude that ~ = ~.

Second, we prove that @ oW = 14,. Let D € 74 be a partition of A. Let ¥ =
@ (¥(D)). We will show that ¥ = D, and it will then follow that @ o ¥ = 1. For
convenience let = = ¥(D), so that F = & ().

Let B € 7. Then by the definition of @ we know that B is an equivalence class of
<, so that B = [z] for some z € A. Because ‘B is a partition of A, then there is a unique
P € Bsuch z € P. Let w € A. Then by the definition of ¥ we see that z < w if and
only if w € P. It follows that w € [z] if and only if w € P, and hence P = [z]. Hence
B = [z] = P € B. Therefore ¥ C B.

Let C € B. Let y € C. As before, it follows from the definition of ¥ that C = [y].
Therefore by the definition of & we see that C € @(<) = 7. Hence B C F. We
conclude that ¥ = B. O

Exercises

Exercise 5.3.1. Which of the following relations is an equivalence relation?

(1) Let M be the relation on R defined by x M y if and only if x — y is an integer,
forall x,y e R.

(2) Let S be the relation on R defined by x Sy if and only if x = |y|, forall x,y € R.

(3) Let T be the relation on R defined by x 7'y if and only if sinx = siny, for all
x,yeR.

(4) Let P be the set of all people, and let Z be the relation on P defined by x Z y
if and only if x and y are first cousins, for all x,y € P.

(5) Let P be the set of all people, and let R be the relation on P defined by xRy
if and only if x and y have the same maternal grandmother, for all x,y € P.

(6) Let L be the set of all lines in the plane, and let W be the relation on L defined
by a W B if and only if o and 3 are parallel, for all o, f € L.

Exercise 5.3.2. For each of the following equivalence relations on R, find the equiv-
alence classes [0] and [3].

(1) Let R be the relation defined by a R b if and only if |a| = |b|, for all a,b € R.

(2) Let S be the relation defined by a S b if and only if sina = sinb, forall a,b € R.

(3) Let T be the relation defined by a T b if and only if there is some n € Z such
that a =2"b, for all a,b € N.

Exercise 5.3.3. For each of the following equivalence relations on R?, give a geo-
metric description of the equivalence classes [(0,0)] and [(3,4)].

(1) Let Q be the relation defined by (x,y) Q (z,w) if and only if x*> +y? = 22 +w?,
for all (x,y), (z,w) € R2.

(2) Let U be the relation defined by (x,y) U (z,w) if and only if |x| + |y| = |z] +
lwl, for all (x,y), (z,w) € R2.
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(3) Let V be the relation defined by (x,y) V (z,w) if and only if max{|x|,|y|} =
max{|z|,|wl}, for all (x,y), (z,w) € R

Exercise 5.3.4. Let A and B be sets, and let f: A — B be a function. Let ~ be the
relation on A defined by x ~ y if and only if f(x) = f(y), for all x,y € A.

(1) Prove that ~ is an equivalence relation.
(2) What can be proved about the equivalence classes of ~? Does the answer
depend upon whether f is injective and/or surjective?

Exercise 5.3.5. Let A be a set, and let < be a relation on A. Prove that < is an
equivalence relation if and only if the following two conditions hold.

(1) x=<x, forall x € A.
(2) x<yandyxzimplies z < x, for all x,y,z € A.

Exercise 5.3.6. [Used in Theorem 5.3.4.] Prove Theorem 5.3.4 (1).
Exercise 5.3.7. [Used in Lemma 5.3.9.] Prove Lemma 5.3.9.

Exercise 5.3.8. Which of the following families of subsets of R are partitions of

[0,00)?
) 7 ={ln—1,n)},cn- @ 1={n—1,n+1)},cn-
@) 6={r—1x)} ¢/ ) 7={[0,1)},en-
A3 F= {{x}}xdo,w)- 6) K= {[2’171 -1,2" - 1)}n€N'

Exercise 5.3.9. For each of the following equivalence relations, describe the corre-
sponding partition. Your description of each partition should have no redundancy,
and should not refer to the name of the relation.

(1) Let P be the set of all people, and let < be the relation on P defined by x <y
if and only if x and y have the same mother, for all x,y € P.

(2) Let ~ be the relation on R — {0} defined by x ~ y if and only if xy > 0, for
all x,y € R—{0}.

(3) Let ~ be the relation on R? defined by (x,y) ~ (z,w) if and only if (x — 1)? +
y? = (z—1)2 +w?, forall (x,y),(z,w) € R?.

(4) Let L be the set of all lines in R2, and let = be the relation on L defined by
Iy = I, if and only if /; is parallel to [, or is equal to I, for all /1,1, € L.

Exercise 5.3.10. For each of the following partitions, describe the corresponding
equivalence relation. Your description of each equivalence relation should not refer
to the name of the partition.

(1) Let £ be the partition of A = {1,2,3,4,5} defined by £ = {{1,5},{2,3,4}}.

(2) Let z be the partition of R defined by Z = {T;}cr, where T, = {x, —x} for
allx e R.

(3) Let D be the partition of R? consisting of all circles in R? centered at the
origin (the origin is considered a “degenerate” circle).

(4) Let W be the partition of R defined by W = {[n,n+2) | nis an even integer}.
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Exercise 5.3.11. [Used in Lemma 5.3.16.] Prove Item (2) in the proof of Lemma 5.3.16.

Exercise 5.3.12. Let X and Y be sets, and let 2: X — Y be a function. Let < be the
relation on X defined by s < ¢ if and only if A(s) = A(r), for all 5,7 € X.

(1) Prove that =< is an equivalence relation on X.

(2) Let y: X — X/= be the canonical map. Let j: h(X) — Y be the inclusion
map. Prove that there is a unique bijective function /: X /< — h(X) such that
h = johoy. This last condition is represented by the following commutative
diagram (as discussed in Section 4.3).

f

X — 7Y

X/= —il—a— h(X)

Observe that ¥ is surjective (because = is reflexive), that / is bijective and
that j is injective. Hence any function can be written as a composition of a
surjective function, a bijective function and an injective function.

Exercise 5.3.13. [Used in Exercise 5.3.14.] Let A be a non-empty set. Let R (A) denote
the set of all relations on A, and let S4 denote the set of all families of subsets of A.

(1) Clearly £(A) C R(A) and T4 C 4. Are these inclusions proper?

(2) Express the sets R (A) and S4 in terms of products of sets and power sets.

(3) LetA={1,2}. What are R (A) and $54?

(4) Suppose that A is a finite set. Express |R (A)| and |S4| in terms of |A]. Do
R(A) and S4 have the same number of elements? Use Example 3.2.9 (2) and
Example 3.3.10 (3).

Exercise 5.3.14. This exercise makes use of the definitions given at the start of
Exercise 5.3.13. We generalize the functions @ and ¥ given in Definition 5.3.15 as
follows. Let A be a non-empty set. Let @: R (A) — S4 be defined as follows. If o< is
a relation on A, let @ (<) be the family of all relation classes of A with respect to e<.
Let ¥: 54 — R (A) be defined as follows. If D is a family of subsets of A, let ¥(D)
be the relation on A defined by x W(D) y if and only if there is some D € D such that
x,y € D, for all x,y € A. (There is a distinct function & and a distinct function ¥ for
each non-empty set A, but we will assume that the set A is always known from the
context.)

(1) Find a set B and an element D € Sg such that ¥() is not reflexive. Find a
set C and an element Z € S¢ such that ¥(Z) is not transitive.

(2) Suppose that A is finite and has at least two elements. Prove that each of @
and ¥ is neither injective nor surjective. Is it necessary to restrict our attention
to sets with at least two elements?
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(3) Suppose that A has at least two elements. Describe the images of the functions
@ and ¥, and prove your results. For @ restrict your attention to the case
where A is finite.
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Finite Sets and Infinite Sets

These are among the marvels that surpass the bounds of our imagination, and
that must warn us how gravely one errs in trying to reason about infinites by
using the same attributes that we apply to finites.

— Galileo Galilei (1564-1642)

6.1 Introduction

Infinite sets appear to behave more strangely than finite ones, at least from our per-
spective as human beings, whose daily experience is of the finite. The difficulty of
dealing with infinite sets was raised by the ancient Greek Zeno in his four “para-
doxes”; see [Ang94, Chapter 8] or [Boy91, pp. 74-76] for details. From a modern
perspective Zeno’s paradoxes are not paradoxes at all, and can be resolved using
tools from real analysis, developed long after Zeno. However, these paradoxes had a
historical impact on the study of the infinite, and they indicate how much trickier it
is to understand the infinite than the finite.

In order to have a better understanding of sets, and in order to develop tools
that are very important in a variety of branches of mathematics, we need to under-
stand how to compare “sizes” of sets, and in particular to understand the difference
between finite sets and infinite sets, and between countably infinite sets and uncount-
able sets (both of which are types of infinite sets that will be defined in this chapter).
In Section 6.5 we discuss the general notion of the cardinality of sets, which is the
proper way to understand the intuitive notion of the “size” of sets, and we define
finite sets, countable sets and uncountable sets. In Section 6.6 we discuss some im-
portant properties of finite sets and countable sets. In Section 6.7 we apply the ideas
of Sections 6.5 and 6.6 to study the cardinalities of the standard number systems.
(Further topics pertaining to combinatorial questions about finite sets may be found
in Sections 7.6 and 7.7.)

As will be seen in Sections 6.5 and 6.6, the distinctions between finite sets, count-
able sets and uncountable sets are very much tied to properties of the natural num-
bers. We therefore start this chapter with a summary of some of the basic properties
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of the natural numbers in Section 6.2. We will not prove these properties (doing so
would take us too far afield), but these properties are very familiar, and the reader can
either take them on faith, or look at the proofs found in the supplied references. One
of the most important properties of the natural numbers, indeed one of the defining
properties of that set of numbers, is the ability to do proof by induction, often referred
to as the Principle of Mathematical Induction. We discuss proof by induction in detail
in Section 6.3, both because it is a very useful technique for proofs of certain types of
statements found in many parts of mathematics, and because in particular it is help-
ful in proving some aspects of the natural numbers that are needed in later sections
of this chapter. Another fundamental feature of the natural numbers is definition by
recursion, which is related to, but not identical with, proof by induction. We discuss
definition by recursion in Section 6.4, again both to gain a general understanding of
that concept and because it will be useful later in the chapter.

6.2 Properties of the Natural Numbers

Many of the topics in the present chapter depend crucially upon the properties of the
natural numbers. We will not prove these properties in this text, but will present a
very brief summary of the minimum that is needed for our subsequent discussion.
The curious reader can find proofs of all the relevant properties of the natural num-
bers in [Blo11, Chapters 1 and 2].

Any rigorous treatment of the natural numbers must ultimately rely upon some
axioms. There are two standard axiomatic approaches to developing the natural num-
bers. One approach, involving the minimal axiomatic assumptions and the most ef-
fort deducing facts from the axioms, is to assume the Peano Postulates for the natural
numbers, stated below as Axiom 6.2.1. From these postulates, it is then possible to
prove all the expected properties of the natural numbers, and, no less important, it
is possible to construct first the integers, then the rational numbers and then the real
numbers. This process is not brief, and some of the proofs are a bit tricky, though in
principle all that is needed as background for such a construction is the material about
sets, functions and relations that we have seen in previous chapters of this text. The
details of this approach may be found in [Blo11, Chapter 1]. The other approach is to
assume axioms for the real numbers, and then to locate the natural numbers inside the
real numbers, and then prove all the usual properties of the natural numbers using
the properties of the real numbers. This approach is shorter than the previous ap-
proach, though it is ultimately less satisfying, because much more is being assumed
axiomatically. The details of this approach may be found in [Blo11, Chapter 2].

The Peano Postulates for the natural numbers are based on the insight that the
most fundamental property of the natural numbers is the ability to do proof by in-
duction. Although it might seem that in order to do proof by induction it would also
be necessary to be able to do other things with the natural numbers such as addition,
it turns out that very little indeed is needed to do proof by induction. We need to
have a set, denoted N; we need to have a distinguished element in the set, denoted 1,
with which to start proof by induction; and we need to have a function from the set
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to itself, denoted s: N — N, which intuitively takes each natural number to its suc-
cessor. Intuitively, we think of the successor of a natural number as being the result
of adding 1 to the number, though formally the notion of addition does not appear in
the statement of the Peano Postulates.

Of course, not every set with a distinguished element and a function from the set
to itself behaves the way the natural numbers ought to behave, and hence the Peano
Postulates require that three entities N, 1 and s satisfy a few simple properties. One
of these properties, listed as Part (c) of Axiom 6.2.1 below, is just the formal state-
ment that proof by induction works. This discussion might seem quite mysterious
to the reader who has not previously encountered proof by induction, but we appeal
to the patience of such reader, who will see a thorough discussion of this topic in
Section 6.3.

Axiom 6.2.1 (Peano Postulates). There exists a set N with an element 1 € N and a
function s: N — N that satisfy the following three properties.

a. There is no n € N such that s(n) = 1.

b. The function s is injective.

¢. Let G C Nbe a set. Suppose that 1 € G, and that if g € G then s(g) € G. Then
G=N.

If we think intuitively of the function s in the Peano Postulates as taking each
natural number to its successor, then Part (a) of the postulates says that 1 is the first
number in N, because it is not the successor of anything.

Although it does not say in the Peano Postulates (Axiom 6.2.1) that the set N is
unique, in fact that turns out to be true. See [Blo11, Exercise 1.2.8] for a proof. We
can therefore make the following definition.

Definition 6.2.2. The set of natural numbers is the set N, the existence of which is
given in the Peano Postulates. A

How do we know that there is a set, and an element of the set, and a function
of the set to itself, that satisfy the Peano Postulates? There are two approaches to
resolving this matter. When we do mathematics, we have to take something as ax-
iomatic, which we use as the basis upon which we prove all our other results. Hence,
one approach to the Peano Postulates is to recognize their very reasonable and min-
imal nature, and to be satisfied with taking them axiomatically. Alternatively, if one
takes the Zermelo—Fraenkel Axioms as the basis for set theory, then it is not neces-
sary to assume additionally that the Peano Postulates hold, because the existence of
something satisfying the Peano Postulates can be derived from the Zermelo—Fraenkel
Axioms. See [End77, Chapter 4] for details.

The Peano Postulates are very minimal, and the reader might wonder how we
can be sure that so minimal a hypothesis really characterizes the natural numbers
as we intuitively know them. The answer is that we cannot resolve such a question
rigorously, because we cannot prove things about our intuition. What does turn out
to be true, as seen rigorously in [Blo11, Chapter 1], is that from the Peano Postulates
we can define all the other familiar aspects of the natural numbers such as addition
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and multiplication, and we can prove that these operations satisfy all the proper-
ties we would intuitively expect. Could it happen that one day someone will deduce
something from the Peano Postulates that we would not want to attribute to the nat-
ural numbers as we intuitively conceive of them? In principle that could happen,
but given that the Peano Postulates have been around for over a hundred years, and
have been used extensively by many mathematicians, and no problems have yet been
found, it seems quite unlikely that any secret problems are lurking around unseen.

If one goes through the full development of the natural numbers starting from
the Peano Postulates, the first major theorem one encounters is the one we now state.
This theorem is used in particular in the definition of addition and multiplication
of the natural numbers, and although we will not go over those definitions (see the
reference given above), this theorem has many other applications in many parts of
mathematics. This theorem, called Definition by Recursion, is in fact so valuable that
it merits a section of its own, Section 6.4.

Definition by Recursion allows us to define functions with domain N by defining
a function at 1, and then defining it at n+ 1 in terms of the definition of the function
at n. It is important to recognize that recursion, while intimately related to induction,
is not the same as induction (though it is sometimes mistakenly thought to be); the
essential difference is that induction is used to prove statements about things that are
already defined, whereas recursion is used to define things. The proof of the follow-
ing theorem, which relies upon nothing but the Peano Postulates (Axiom 6.2.1), is
somewhat tricky; see [Blo11, Theorem 2.5.5] for details.

Theorem 6.2.3 (Definition by Recursion). Let A be a set, letb € Aandletk: A — A
be a function. Then there is a unique function f: N — A such that f(1) = b and
fos=kof.

The equation fos = ko f in the statement of Definition by Recursion (Theo-
rem 6.2.3) means that f(s(n)) = k(f(n)) for all n € N. If s(n) were to be inter-
preted as n+ 1, as indeed it is once addition for N is rigorously defined (a defini-
tion that requires Definition by Recursion), then f(s(n)) = k(f(n)) would mean that
f(n+1)=k(f(n)), which looks more familiar intuitively. Additionally, the equation
fos =ko f can be represented by the following commutative diagram, which as
always means that going either way around the square yields the same result.

f f

H—k—>'H

Once Definition by Recursion has been established, it is possible to define addi-
tion, multiplication and the relation less than for the natural numbers, and it is then
possible to prove all the standard properties of these numbers; many of the proofs,
not surprisingly, are by induction. The following theorem lists some of the most basic
properties of addition, multiplication and less than for the natural numbers, though
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of course not all such properties are listed. Again, all the details can be found in the
reference cited above.

Theorem 6.2.4. Let a,b,c,d € N.

Ifa+c=b+c, thena=h.

(a+b)+c=a+(b+c).

s(a)=a+1.

a+b=>b+a.

a-l=a=1-a

(a+Db)c=ac+bc.

ab = ba.

cla+b)=ca+ch.

. (ab)c = a(bc).

10. If ac = bc then a = b.

11. a>a,anda % a, anda+1 > a.

12. a>1,andifa+# 1 thena > 1.

13. Ifa<bandb <c, thena<c;ifa<bandb <c, thena <c; ifa<band
b<c thena<c;ifa<bandb<c, thena<c.

14. a<bifandonlyifa+c < b+c.

15. a < bifand only if ac < bc.

16. Precisely one of the following holds: a < b, ora=b, ora>b (Trichotomy
Law).

17. a<borb<a.

18. Ifa<bandb < a, then a=b.

19. It cannot be that b < a < b+ 1.

20. a<bifandonlyifa+1<b.

21. Ifa < b, there is a unique p € N such that a+ p = b.

NN KNS

)

Observe that Theorem 6.2.4 (3) states that the function s is just what we thought
it would be. Most of the parts of Theorem 6.2.4 are very familiar to the reader, and
most—though not all—also apply to all real numbers, not just the natural numbers.
Parts (12) and (15) are specific to the natural numbers, because, intuitively, these
numbers do not include zero, negative numbers and fractions. Parts (19) and (20) are
both ways of saying that the natural numbers are “discrete,” a feature not shared by
the rational numbers or the real numbers.

The integers are also discrete in the sense of Theorem 6.2.4 (19) (20), so dis-
creteness does not distinguish between the set of natural numbers and the set of inte-
gers. There is, however, a very important difference between the natural numbers and
the integers, which is that the integers intuitively “go to infinity” in two directions,
whereas the natural numbers do so in only one direction. The following theorem in-
tuitively combines the discreteness of the natural numbers together with this idea of
“going to infinity” in only one direction. This theorem has many uses throughout
mathematics; we will use it later in this chapter. See [Blo11, Theorem 2.4.6] for a
proof.
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Theorem 6.2.5 (Well-Ordering Principle). Let A C N be a set. If A is non-empty,
then there is a unique m € A such that m < a for all a € A.

The hard part of the proof of the Well-Ordering Principle (Theorem 6.2.5) is the
existence of the number m given in the statement of the theorem; the uniqueness is
very simple, following immediately from Theorem 6.2.4 (18).

Finally, we note that in various places in this chapter, we will need to use subsets
of the natural numbers of the form {q,...,b}. Because the concept of “...” is not in
itself a rigorous one, we make this notation precise by using the following definition.
There is nothing subtle in the following definition, but it is important to emphasize
that writing “...” alone is not rigorous, except when we give it a rigorous meaning
in specific cases, such as the following.

Definition 6.2.6. Let a,b € N. The sets {a,...,b} and {q,...} are defined by
{a,...;b} ={xeN|a<x<b} and {a,...} ={xeN|a<x}. A

Because 0 is not a natural number, then technically the set {1,...,0} is not de-
fined. However, in order to avoid special cases in some proofs, we will allow our-
selves to write the nonsensical expression “{1,...,0},” and it should be interpreted
as the empty set.

For the exercises in this section, the reader should use only the properties of the
natural numbers stated in this section. Subsequently, the reader should feel free to
use any standard properties of the natural numbers, as we have done until now. For
the rest of this chapter, we will at times refer to some of the properties of the natural
numbers stated in this section to emphasize their role in various proofs.

Exercises

Exercise 6.2.1. [Used in Theorem 6.3.11 and Exercise 6.3.16.] Let n € N. Prove that
{1,...,n+1}={1,....n} ={n+1}.

Exercise 6.2.2. [Used in Theorem 6.6.5.] Let a,b € N. Suppose that a < b.

(1) Letk € N. Prove that there is a bijective function {a, ...,b} — {a+k,...,b+k}.
(2) Let p € N be the unique element such that a4 p = b, using Theorem 6.2.4 (21).
Prove that there is a bijective function {a,...,b} — {I,...,p+1}.

Exercise 6.2.3. [Used in Theorem 6.3.6.] Let b € N. Prove that {1,...,.b}U{b+1,...} =
Nand {1,...,b}N{b+1,...} =0

Exercise 6.2.4. [Used in Theorem 6.4.5.] Let H be a non-empty set, let a,b € H and
let p: Hx H — H be a function. Prove that there is a unique function g: N — H
such that g(1) = a, that g(s(1)) = b and that g(s(s(n))) = p((g(n),g(s(n)))) for all
neN.

The main step of the proof is to apply Definition by Recursion (Theorem 6.2.3)
to the set H X H, the element (a,b) and the function k: H X H — H x H defined by
k((x,y)) = (v, p(x,y)) for all (x,y) € H x H. Use the result of that step to find the
desired function g.
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Exercise 6.2.5. [Used in Theorem 6.4.3.] Let H be a non-empty set, let e € H and let
q: H xN — H be a function. Prove that there is a unique function 7: N — H such
that (1) = e, and that h(s(n)) = g((h(n),n)) for all n € N.

The main step of the proof is to apply Definition by Recursion (Theorem 6.2.3)
to the set H x N, the element (e, 1) and the function r: H x N — H x N defined by
r((x,m)) = (g(x,m),s(m)) for all (x,m) € H x N. Use the result of that step to find
the desired function A.

6.3 Mathematical Induction

Mathematical induction is a very useful method of proving certain types of state-
ments that involve the natural numbers. It is quite distinct from the informal concept
of “inductive reasoning,” which refers to the process of going from specific exam-
ples to more general statements, and which is not restricted to mathematics. When
we use the phrase “proof by induction” we will always refer to the mathematical sort
of induction, not this other use of the term.

More precisely, mathematical induction is a method that can be used to prove
statements of the form (Vn € N)(P(n)), where P(n) is a statement with a free vari-
able n that is a natural number. For example, we will shortly prove that the statement
P(n) = “8" — 3" is divisible by 5” is true for all natural numbers n. How you origi-
nally thought of trying to prove such a statement might have occurred in many ways,
one of which is by playing around with various numerical examples, for example
looking at 8l — 31 at 82 —32, and at 8 — 33, and then using informal “inductive
reasoning” to conjecture that 8" — 3" is divisible by 5 for all natural numbers 7.
Such reasoning by example does not, of course, constitute a proof that this conjec-
ture is really true. For such a proof we will use induction. The formal statement
of this method, usually referred to as the Principle of Mathematical Induction, ab-
breviated PMI, is stated below. (For a more general look at proof by induction, see
[End72, Section 1.2].)

The intuitive notion of PMI is that to show that a statement about the natural
numbers is true for all natural numbers, it is sufficient to show that the statement
holds for n = 1, and that if it holds for n = 1 then it holds for n = 2, and that if it
holds for n = 2 then it holds for n = 3, continuing ad infinitum. Of course, we cannot
prove infinitely many such implications, but it is sufficient to prove that the statement
is true for n = 1, and that for an arbitrary natural number n, if the statement holds for
n then it holds for n 4 1.

Our statement of PMI is given as Theorem 6.3.1 below, and it is stated with-
out proof, because it is just a restatement of Part (c) of the Peano Postulates (Ax-
iom 6.2.1). Formally, the statement of PMI gives criteria that guarantee that a subset
of N subject to certain criteria is in fact all of N. We will see how to use these criteria
in practice shortly.

Theorem 6.3.1 (Principle of Mathematical Induction). Let G C N. Suppose that
a. 1€G;
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b. ifneG, thenn+1€G.
Then G =N.

It is important to make use of Part (b) of PMI precisely as it is written. This part
has the form P — Q. To show that Part (b) is true in some given situation, we do not
show that P is true or that Q is true, but only that the conditional statement P — Q
is true. In other words, to prove Part (b) of PMI, we do not show directly that n € G,
nor that n+ 1 € G, but only that n € G implies n+ 1 € G. This fact is what makes
PMI so convenient to use.

We now have our first example of proof by induction.

Proposition 6.3.2. Ifn € N, then 8" — 3" is divisible by 5.

Proof. Let
G = {n e N|8"—3"is divisible by 5}.

We will use PMI to show that G = N, and it will then follow that 8" — 3" is divisible
by 5 for all n € N, which is what we need to prove. First, we observe that G C N by
definition, and hence PMI is applicable. To use PMI, we need to show two things,
which are that 1 € G, and that if n € G then n+ 1 € G. We start with the first of these.
Observe that 8' — 3! =5, and therefore 8' — 3! is indeed divisible by 5. Hence 1 € G,
which is Part (a) of the statement of PMI.

To show Part (b) of the statement of PMI, let n € G. We then need to deduce
that n+ 1 € G. Because n € G, we know that 8" — 3" is divisible by 5, which means
that there is some k € Z such that 8" — 3" = 5k (recall the definition of divisibility in
Section 2.2). To show that n+ 1 € G will require showing that 8" —3"*1 is divisible
by 5; we can make use of our hypothesis that 8" — 3" is divisible by 5 in this proof.
We compute

8n+1_3n+1 :88n_33n:(5811+38n)_33n
—5.8" 1 3. (8" —3") =5.8" +3(5k) = 5(8" +3Kk).

Because n and k are integers, then 8" + 3k is an integer, and hence gl _ 3ntl g
divisible by 5. It follows that n+ 1 € G. We have therefore proved that Part (b) of the
statement of PMI holds. PMI now implies that G = N, and the result is proved. O

The strategy used in the proof of Proposition 6.3.2 is quite typical. We first de-
fined the set G; we then showed separately that Parts (a) and (b) of the statement
of PMI each hold; and we then concluded that the desired result is true. It is often
possible to make a proof by induction less cumbersome by avoiding mentioning the
set G explicitly. Suppose that we are trying to show that the statement P(n) holds for
all n € N. The formal way to proceed would be to define the set G to be those natu-
ral numbers for which P(n) is satisfied, and then verify that G = N by showing that
1 € G, and that n € G implies n+ 1 € G, for all n € N. The less cuambersome, but just
as valid, way of proceeding is to state that we are trying to prove that the statement
P(n) holds for all n € N by induction. We then show that P(1) holds, and that if P(n)
holds so does P(n+ 1) for all n € N. The latter of these two parts is often referred
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to as the “inductive step,” and the assumption that P(n) holds in the inductive step is
often referred to as the “inductive hypothesis.” It is often convenient to use clearly
equivalent variants of the inductive step, for example showing that if P(n — 1) holds
then so does P(n) for all n € N such that n > 2. We will see more significant variants
of the inductive step shortly.

The following example of proof by induction, which we write in the less cum-
bersome style mentioned above, is quite standard. We note, as always, that ““---,” as
in the following proposition, is not completely rigorous, unless a valid definition of
“...” is provided for the particular case under consideration. Such a definition for the
type of formula in the following proposition is found in Example 6.4.4 (2); we will
not discuss this use of ““---” more extensively at present, to avoid a detour from our
task at hand, which is proof by induction.

Proposition 6.3.3. Ifn € N, then

n(n+1)

B
Proof. We prove the result by induction on n. First, suppose that n = 1. Then 1 +
24---+n=1,and w = w = 1. Therefore Equation 6.3.1 holds for the case
n = 1. Now let n € N. Suppose that Equation 6.3.1 holds for this n. It then follows
from that equation that

142+ +n= 6.3.1)

14244 (n+ 1) = {1424 +n} + (n+1)
:n(n+1)

+(n+1)

n
=+ (3+1)
_ (n+1)(n+2)
B 2
_ (n4+1)[(n+1)+1]
= 3 .
This last expression is precisely the right-hand side of Equation 6.3.1 with n+ 1

replacing n. Hence we have proved the inductive step. Therefore Equation 6.3.1 holds
foralln € N. o

It is important to observe that proof by induction shows only that a statement
of the form P(n) is true for each n € N. We cannot prove that P(n) is true for n =
co, whatever this might mean. A proof by induction does show that P(n) holds for
infinitely many numbers n, but each such number is a finite number. We do not
consider oo to be a natural number (or any other type of real number), and so PMI
does not apply to it.

Proof by induction is not always as straightforward as it appears. The following
example is a well-known alleged “proof” by induction, which clearly cannot be valid.

Example 6.3.4. We will prove that all horses have the same color. More precisely,
we will show that the statement “for any set of n horses, all the horses in the set have
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the same color,” is true for all n € N. Because there are only finitely many horses
in the world, it will then follow that all existing horses have the same color. First,
suppose that n = 1. It is certainly true that for any set of one horse, all the horses
in the set have the same color. Next, suppose that the result is true for 7, so that for
any set of n horses, all the horses in the set have the same color. We need to show
that the result is true for n+ 1. Let {Hj,...,H, 1} be a set of n+ 1 horses. The set
{H,,...,H,} has n horses, so by the inductive hypothesis all the horses in this set
have the same color. On the other hand, the set {Ha,...,H,} also has n horses, so
all horses in this set have the same color. In particular, it then follows that H, and
H,+1 have the same color. Combining this fact with the previous observation that
horses Hy,...,H, all have the same color, it follows that Hy,...,H, all have the
same color. We have therefore proved the inductive step. Hence all horses have the
same color.

The reader is asked in Exercise 6.3.5 to find the flaw in the above argument.

The following example gives an application of induction to switching circuits,
and hence to computers, which are built out of such circuits.

Example 6.3.5. Digital computers are based on circuits in which each input and
each output is either on or off (as the result of having, or not having, electric cur-
rent). These two states are often represented as 1 or 0, respectively. At its simplest,
a switching circuit is a device with some number of inputs, say xi,...,X,, and one
output, say y; each input and the output can have values 1 or O only. The switch-
ing circuit takes each collection of values of the inputs, and produces a correspond-
ing value for the output. A switching circuit can therefore be viewed as a function
F:{0,1}" — {0,1}, and it can also be represented schematically by the type of dia-
gram seen in Figure 6.3.1.

X1
x2 . .
switching -y
: circuit
Xn
Fig. 6.3.1.

Different types of calculations require different switching circuits. For each n €
N, there are 22" possible switching circuits with n inputs; for the sake of keeping to
the topic at hand, we will omit the proof of this fact, other than to note that it is an
application of Theorem 4.5.4, combined with basic facts about the sizes of products
of finite sets and the sizes of power sets of finite sets, which are proved in Sections 7.6
and 7.7, together with proof by induction. The important point to keep in mind for



6.3 Mathematical Induction 205

the present example is that even for fairly small values of #, the number of possible
switching circuits with # inputs is quite large; for example, when n =5 there are over
4 billion possible switching circuits. From a manufacturing point of view, it would
therefore be very unfortunate if each possible switching circuit would have to be built
by an independent process. Fortunately, as we will now show, all switching circuits
can be built up out a small number of simple (and familiar) components.

In Exercise 1.3.13 we discussed the notion of binary and unary logical operations,
of which A, V and — are examples; we also defined a new binary logical operation,
denoted A. If we replace the values T and F that we used in our discussion of logic
with the values 1 and 0, respectively, then we see that a unary logical operation
is nothing but a switching circuit with one input, and a binary logical operation is
a switching circuit with two inputs. It is common to denote —, A, V and A with
schematic symbols, such as those shown in Figure 6.3.2.

D D D> D

nand

Fig. 6.3.2.

We now prove by induction that every switching circuit can be built up out of
A, V and — circuits. The induction is on n, the number of inputs in our switching
circuits. That the result is true for n = 1 and for n = 2 follows immediately from
Exercise 1.3.13 (2). Now suppose that the result is true for all switching circuits
with n inputs. Let C be a switching circuit with n+ 1 inputs, labeled x1,...,x,41.
We define two new switching circuits Cp and C as follows. Let Cy be the switching
circuit with inputs x1,...,x,, such that the output of Cy for each collection of values
of x1,...,x, equals the output of C for the same values of xi,...,x, and the value
Xp+1 = 0. Define C; similarly, using x,,+; = 1. The reader can then verify that the
circuit shown in Figure 6.3.3 has the same output as C for each collection of values
of x1,...,x,41. Because Cy and C; both have n inputs, it follows from the inductive
hypothesis that each can be constructed out of A, VV and — circuits. Hence C can be
constructed out of A, V and — circuits. By induction, it follows that every switching
circuit can be made out of our three building blocks. Even better, Exercise 1.3.13 (3)
shows that every switching circuit can be built out of only A circuits.
See [LP98, Sections 2.7 and 2.8] or [Fab92] for more about switching circuits.
¢

There are various alternative versions of PMI, each of which is useful in cer-
tain situations where PMI might not be directly applicable. There do not seem to be
standard names for these variants. Different texts use terms such as “Extended Princi-
ple of Mathematical Induction,” “Second Principle of Mathematical Induction,” and
the like. We will simply call them Principle of Mathematical Induction—Variant 1,
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Variant 2 and Variant 3, respectively, using the abbreviations PMI-V1, PMI-V2 and
PMI-V3. All three variants work similarly to PMI, in that they all have two parts, the
second of which is the inductive step.

X1
X2
C
Xn
Xn+1 y
I N
l/'
Co
Fig. 6.3.3.

The first of the variants on PMI is useful when we wish to prove that a statement
P(n) is true for all natural numbers 7 such that n > ko, for some given natural number
ko.

Theorem 6.3.6 (Principle of Mathematical Induction—Variant 1). Let G C N,
and let ky € N. Suppose that

a. ko € G;
b. ifne{ko,...} andn € G, thenn+1 € G.

Then {ky,...} CG.

Proof. First, suppose that ky = 1. It then follows from Theorem 6.2.4 (12) that the
condition “n > ko” is true for all n € N. In particular, we see that {ko,...} = N.
Because G C N, the statement “{ko,...} C G” is then equivalent to “G = N.” It
follows that when ky = 1, the statement of PMI-V1 is equivalent to the statement
of PMI (Theorem 6.3.1), and so there is nothing to prove in this case. From now
on assume that ky # 1. By Theorem 6.2.4 (12) (21) there is some b € N such that
b+1=ko.

Let G = {1,...,b} UG. We will show that G’ = N. It will then follow that
{1,...,b}UG =N, and hence that {ko,...} C G by using Exercise 6.2.3 and Ex-
ercise 3.3.10.
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We now use PMI to show that G’ = N. By definition we know that 1 € G’. Sup-
pose that g € G'. We will show that g+ 1 € G', and the proof will be complete. By
Theorem 6.2.4 (16) we know that precisely one of the following holds: either g < b,
or g = b, or g > b. We treat each case separately.

Case 1: Suppose that g < b. Then g+ 1 < b by Theorem 6.2.4 (20). By Part (12) of
the same theorem, we know that 1 < g+ 1, and hence g+1 € {1,...,b} CG'.

Case 2: Suppose that g=b. Then g+ 1=b+1=ko. Henceg+1€ GC G'.

Case 3: Suppose that g > b. Then g £ b by Theorem 6.2.4 (16), and hence g ¢
{1,...,b}.Because g € G’ ={1,...,b} UG, it follows that g € G. Moreover, because
g > b, we know by Theorem 6.2.4 (20) that g > b+ 1 = k¢, and hence g € {ko, ... }.
We now use the hypothesis on G to see thatg+1 € G C G'. a

Observe that in PMI-V1 we do not deduce that G = N, only that {kg,...} C G. Tt
might be the case that the set G contains numbers less than ky, but we cannot deduce
that from the statement of PMI-V1. The following proof is an example of the use
of PMI-V1. As always, note the difference between the scratch work and the actual
proof.

Proposition 6.3.7. Ifn € N and n > 5, then 4" > n*.

Scratch Work. For the case n = 5, it is easy to verify that 4> > 5* Now suppose that
we know the result for some 7, so that 4" > n*. We want to deduce that 4"+ > (n+
1)*. By brute force multiplication, or using the binomial formula (Theorem 7.7.14),
we see that (n+41)* = n* 4 4n3 4-6n® +4n -+ 1. Because this expression has a number
of pieces, it might be helpful to write 47! = 4.4" = 4" 44" + 4" + 4", Because
we know that 4" > r*, it would suffice to show the three inequalities 4" > 4n3 and
4" > 6n® and 4" > 4n+ 1 hold. To show these inequalities, we can make use of the
fact that n > 5, as well as the fact that 4" > n*. First, we observe that 4n> < 513 <
n-n’ =n* < 4" Next, we observe that 6n> < 520> < n’n> = n* < 4". Finally, we
have 4n+1 < 4n+n=>5n<n-n < n* < 4". Putting all these observations together
will do the trick. ///

Proof. We prove the result by induction on 7, making use of PMI-V1 with kg = 5.
First, suppose that 7 = 5. Then 4> = 1024 > 625 = 5*. Hence the desired result holds
when n = 5. Now suppose that the result holds for some n € N such that n > 5, which
means that 4" > n* for this n. We start with three preliminary observations, which
are

4”>n4>n225n:4n+n>4n+1,

and
4" > nt > 5% > 67127
and
4" > nt > dnd.

Combining the three inequalities with the inductive hypothesis we obtain

A 44 4 A A st dnd n + (An+ 1) = (n+ 1)
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Therefore the desired result holds for n + 1. The proof is then complete by PMI-
V1. O

The second variant on PMI again reverts to starting at n = 1, and to deducing that
the set G equals all of N, but it has a slightly different type of inductive step than
either PMI or PMI-V 1.

Theorem 6.3.8 (Principle of Mathematical Induction—Variant 2). Ler G C N.
Suppose that

a 1€G;
b. ifneNand{1,...,n} CG, thenn+1€G.

Then G = N.

Proof. Suppose that G # N; we will derive a contradiction. Let H = N — G. Because
H C N and H # 0, the Well-Ordering Principle (Theorem 6.2.5) implies that there is
some m € H such that m < h for all h € H. Because 1 € G we know that | ¢ H, and
therefore m # 1. By Theorem 6.2.4 (12) (21) there is some b € N such that b+ 1 = m.

Let p € {1,...,b}. It follows that p < b < b+ 1 = m by Theorem 6.2.4 (11).
Part (16) of the same theorem implies that p  m. Therefore p ¢ H, and so p € G.
We have therefore shown that {1,...,b} C G. Part (b) of the hypothesis on G then
says that b+ 1 € G, which means that m € G. This last statement is a contradiction
to the fact that m € H. We conclude that G = N. 0O

When using PMI-V2, the inductive step involves showing that if the desired state-
ment is assumed to hold for all values in {1,...,n}, then it holds for n+ 1. This
method contrasts with PMI and PMI-V 1, where we showed that if the statement is
assumed to hold only for n, then it holds for n+ 1. It might appear as if we are unfairly
making life easier for ourselves when we use PMI-V2, by allowing a larger hypoth-
esis in order to derive the same conclusion, but PMI-V2 has been derived rigorously
from PMI, and so we are free to use it whenever we need to. (The proof of PMI-V2
does not appear to make use of PMI, but the latter is nonetheless used implicitly,
because it is needed for the proof of the Well-Ordering Principle (Theorem 6.2.5);
see [Blo11, Theorem 2.4.6] for details.)

Our third variant on PMI combines the first two variants.

Theorem 6.3.9 (Principle of Mathematical Induction—Variant 3). Let G C N,
and let kg € N. Suppose that

a. k()EG;
b. ifne {ko,...} and {ko,...,n} CG, thenn+1€G.

Then {ky,...} CG.

Proof. Left to the reader in Exercise 6.3.13. a
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An example of using PMI-V3 is the proof of the following theorem, which is
a basic tool in number theory. An examination of the proof reveals why PMI-V3
is used in this case rather than PMI-V1. Recall the definition of prime numbers in
Definition 2.3.6.

Theorem 6.3.10. Let n € N. Suppose that n > 2. Then n is either a prime number or
a product of finitely many prime numbers.

Proof. We will use PMI-V3 with kg = 2. First, suppose that n = 2. Because 2 is
a prime number, the desired result is true for n = 2. Now let n € N. Suppose that
n > 2, and that the desired result holds for all natural numbers in the set {2,...,n};
that is, we assume that each of the numbers in {2,...,n} is either a prime number
or a product of finitely many prime numbers. We need to show that n+ 1 is either
a prime number or a product of finitely many prime numbers. There are two cases,
depending upon whether or not n+ 1 is a prime number. If 7+ 1 is a prime number,
then there is nothing to prove. Now assume that n+ 1 is not a prime number. Then
there are natural numbers a and b such that n+1 = ab, and that 1 <a <n+1 and
1 <b <n+1.Therefore a,b € {2,...,n}. By the inductive hypothesis we know that
each of a and b is either a prime number or a product of finitely many prime numbers.
It now follows that n+ 1 = ab is the product of finitely many prime numbers. ad

The above result can be proved for all integers (and not just natural numbers),
and it can also be proved that the decomposition into prime numbers is unique. The
version of the theorem for integers that includes both existence and uniqueness is
known as the Fundamental Theorem of Arithmetic. See [Ros05, Section 3.5] for
details.

We conclude this section with the following somewhat technical theorem about
functions between sets of the form {1,...,n}; we will need this theorem when we
discuss properties of finite sets in Section 6.6.

Theorem 6.3.11. Let n,k € N.

1. Let f: {l,...,n} — N be a function. Then there is some q € {1,... ,n} such
that f(q) > f(i) foralli e {1,...,n}.

2. Let S C{1,...,n} be a non-empty subset. Then there is a bijective function
g: {1,....,n} = {1,...,n} such that g(S) = {1,...,r} for some r € N such
that r < n. If S is a proper subset of {1,...,n}, then r < n.

3. Let f: {1,...,n} — {1,...,k} be a function. If f is bijective, thenn =k. If f

is injective but not surjective, then n < k.

Proof. We will prove Part (3), leaving the rest to the reader in Exercise 6.3.16.

(3). First, suppose that f is bijective. We prove the result by induction on k,
where for each k we will assume that n is arbitrary. Suppose that k = 1. Then
{1,..k}={1}.If p: {1,...,n} — {1,...,k} is a bijective function, then {1,...,n}
must also have one element, which implies that n = 1. Hence n = k.

Now suppose that the resultis true forsome k € N. Let h: {1,...,n} — {1,...,k+ 1}
be a function. Suppose that / is bijective. We know that k+1 > k > 1. It follows that
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{1,...,k+ 1} has more than one element, and hence it must be the case that n > 1
in order for 4 to be bijective. By Theorem 6.2.4 (21) we see that there is some ¢ € N
such that g+ 1 = n. There are now two cases.

Suppose first that h(n) = k+ 1. Let h: {1,...,q} — {1,...,k} be defined by
h(a) = h(a) forall a € {1,...,q}, which makes sense because of Exercise 6.2.1 and
the fact that  is injective. Because / is bijective, and because h(n) = k+ 1, it follows
that 1 is bijective. The inductive hypothesis applied to h implies that g = k. It follows
that n = g+ 1 = k+ 1. Hence the result holds for k+ 1.

Suppose second that i(n) # k+ 1. Then, using Exercise 6.2.1 again, together with
the fact that £ is bijective, we deduce that k+ 1 = A(s) for a unique s € {1,...,q}.
Leth: {1,...,n} — {1,...,k+ 1} be defined by

h(n), ifa=s
h(a)=<k+1, ifa=n

h(a), otherwise.

Then £ is bijective, and /(n) = k+ 1. By applying the previous case to &, we deduce
that n = k+ 1. The proof in the case that f is bijective is now complete.

Next, suppose that f is injective but not surjective. Then f({1,...,n}) G{l,... .k}
Let f: {1,...,n} — f({1,...,n}) be defined by f(a) = f(a) foralla € {1,...,n}.
Then f({1,...,n}) = f({1,...,n}), and f is bijective. By Part (2) of this theorem
there is a bijective function g: {1,...,k} — {1,...,k}, such that g(f({1,...,n})) =
{1,...,r} for some r € N such that r < k. Let §: f({1,...,n}) — {1,...,r} be
defined by g(a) = g(a) for all a € f({1,...,n}). Then g is bijective. It follows
from Exercise 4.3.5 that (g0 f)({1,...,n}) =8(f({1,...,n})) =&(f({1,...,n})) =
{1,...,r}. Because f and g are both bijective, then go f: {1,....,n} — {1,...,r} is
bijective by Lemma 4.4.4 (3). It now follows from what we proved about bijective
functions that n = r. We deduce that n < k. O

Exercises

Exercise 6.3.1. Prove that each of the following formulas holds for all n € N.

(D 14+3+5+-+(2n—1)=n

_ n(n+1)(2n+1)
2) 12+22+-~~+n2—%.
+1

@) B4+23 4. gpd =

@ P+3F 4+ +2n-1)3=n22n2-1).

(5) 1-242-34--+n(n+1) = Hotnt2)

1 1 1

6) ﬁ+f3+"'+m:ﬁ.

Exercise 6.3.2. Prove that 1 +2n < 3" forall n € N.

Exercise 6.3.3. Let a,b € N. Prove that ¢" — b" is divisible by a — b for all n € N.
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Exercise 6.3.4. [Used in Theorem 6.6.7.] Let f: N — N be a function. Suppose that
f(n) < f(n+1) for all n € N. Prove that f(n) > n for all n € N. Be explicit about
which properties of N, as stated in Section 6.2, you are using.

Exercise 6.3.5. [Used in Example 6.3.4.] Find the flaw in Example 6.3.4.

Exercise 6.3.6. For which values of n € N does the inequality n> —9n+ 19 > 0 hold?
Prove your answer by induction.

Exercise 6.3.7. Prove that (1 + %)n < n for all n € N such that n > 3.
Exercise 6.3.8. Prove that 7n < 2" for all n € N such that n > 6.
Exercise 6.3.9. Prove 3" > 13 for all n € N such that n > 4.

Exercise 6.3.10. Prove that

2o n—|—2
Y5=2">
i=1

foralln € N.

Exercise 6.3.11. Prove that

ﬁ 171 n+l1
J 2) 2n

i=2
for all n € N such that n > 2. (The symbol [] denotes the product of all the terms.)
Exercise 6.3.12. Prove that .,

i=1

&\—

for all n € N such that n > 2.
Exercise 6.3.13. [Used in Theorem 6.3.9.] Prove Theorem 6.3.9.

Exercise 6.3.14. [Used in Theorem 6.6.9 and Exercise 6.6.12.] Let f: N — NU {0} be
a function. Suppose that f(1) = 0, and that if n < m then f(n) < f(m), for all n,m €
N. Prove that for each x € N, there are unique n, p € N such that f(n) <x < f(n+1)
and x = f(n) + p. (If, for example, we let b € N, and we use the function f defined
by f(n) = (n—1)b for all n € N, then we obtain a variant of the Division Algorithm
(Theorem A.5).)

Exercise 6.3.15. [Used in Theorem 6.4.8.] Let p € N, and let G C N. Suppose that

a. 1 €G;
b. ifne{l,...,p—1}and {I,...,n} CG,thenn+1€G.

Prove that {1,...,p} CG.

Exercise 6.3.16. [Used in Theorem 6.3.11.] Prove Theorem 6.3.11 (1) (2).
[Use Exercise 6.2.1.]
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Exercise 6.3.17. Let k,m € N, and let f: {1,...,m} — {1,...,k} be a function.
Prove that if m > k, then f is not injective. A combinatorial interpretation of this
fact is known as the Pigeonhole Principle, which says that if m objects are placed
in k boxes, where m > k, then there will be a box with more than one object in it.
Though this principle may seem innocuous, it is very important in combinatorics.
See [Rob84, Section 8.1] for further discussion and applications.

6.4 Recursion

Consider the familiar sequence 1,2,4,8,16,.... If we let a, denote the n' term of the
sequence, then a, = 2! for all n € N. Such a formula describes each term of the
sequence explicitly in terms of 7, and is a very convenient way of describing the se-
quence. There is, however, another useful way of describing this sequence, which is
by stating that a; = 1, and that a,,+; = 2a,, for all n € N. Such a description is called
a recursive description of the sequence. Recursion, of which we will see some inter-
esting examples shortly, is important not only in mathematics, but also in logic, and
in the application of logic to computer science; see [Rob86] or [DSW94, Chapter 3]
for details. See [End72, Section 1.2] for a more general look at the mathematical
approach to recursion, and see [Rob84, Section 5.1] for various applied uses of re-
cursion.

Given a sequence for which we already have an explicit formula for each a,
in terms of n, it can be useful to find a recursive formula, but there is no question
that the sequence exists. What about a sequence for which we have only a recur-
sive description, but no explicit formula? For example, suppose that we have the
recursive description ¢y =4, and ¢,+1 = 3+ 2¢, for all n € N. Is there a sequence
c1,¢2,c3,. .. satisfying such a description? That is, does this description actually de-
fine a sequence? It does appear intuitively as if there is such a sequence, because we
can proceed “inductively,” producing one element at a time. We know that ¢; = 4.
We then compute ¢c; =3+2c; =3+2-4=11,andc3 =3+2c; =3+2-11 =25,
and so on. We could continue indefintely in this way, and it would seem that the se-
quence ci,c3,c¢3,. .. is defined for all n € N. Our intuition will turn out to be correct,
and the sequence is indeed defined, and moreover uniquely defined, for all n € N. In
fact, we will give an explicit formula for this sequence in Example 6.4.2.

However, although the method of definition by recursion for defining sequences
can be made completely rigorous, it is not as simple as we made it appear in the
previous paragraph. Just saying “proceed inductively” is not satisfactory. Proof by
induction, as discussed in Section 6.3, works for something that is already defined;
here, by contrast, we are defining something, so proof by induction is not applicable.
Of course, once something is defined by recursion, it is very common to prove things
about it using induction.

There are a number of variations of the process of definition by recursion, the
most basic of which is as follows. Suppose that we are given a number b € R, and a
function #: R — R. We then want to define a sequence aj,as, ... such that a; = b and
that a,,+1 = h(a,) for all n € N. To be more precise, recall from Example 4.5.2 (4)
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that the formal definition of a sequence of real numbers is simply a function f: N —
R, which can be converted to the more standard notation for sequences by letting
a, = f(n) for all n € N. Although the sequences discussed in Example 4.5.2 (4) were
in R, the same approach applies to sequences in any set, so that a sequence in the set
A is simply a function f: N — A.

We can now state the theorem that guarantees the validity of definition by re-
cursion. We have in fact already seen this theorem in Section 6.2, stated as Theo-
rem 6.2.3, and we are simply restating it here in a form that is more familiar and easy
to use.

Theorem 6.4.1 (Definition by Recursion). Let A be a set, letb € A and letk: A — A
be a function. Then there is a unique function f: N — A such that f(1) = b, and that
f(n+1)=k(f(n)) forallneN.

Stated more informally, Definition by Recursion (Theorem 6.4.1) says that if A
is a set, if b € A and if k: A — A is a function, then there is a unique sequence
ay,ap,as, ... in A such that ¢y = b, and that a,1 = k(a,) foralln € N.

Example 6.4.2.

(1) We previously asked whether there is a sequence that satisfies the conditions
c1 =4, and ¢,41 = 3+ 2¢, for all n € N. We can now treat this example rigorously.
Letbh=4,andleti: R — R be defined by /(x) = 34 2x for all x € R. Then Definition
by Recursion (Theorem 6.4.1) tells us that there is a unique function f: N — R such
that f(1) =4, and that f(n+ 1) = 3 +2f(n) for all n € N. If we let ¢, = f(n)
for all n € N, then the sequence c|,c»,c3,... satisfies the conditions ¢; = 4, and
Cp+1 =3+ 2c, foralln € N.

Definition by Recursion tells us only that the sequence cy,c2,c3,... with the de-
sired properties exists; it does not give us an explicit formula for this sequence. It
is not always possible to find an explicit formula for every sequence defined by re-
cursion, although in the present case such a formula can be found. By calculating
the first few terms of the sequence, and a bit of trial and error, it is possible to guess
the formula ¢, = 7-2"~! — 3 for all n € N. To prove that this formula holds, we use
PML. First, we show that the formula holds for n = 1, which is seen by computing
7-2!1=1 —3 = 4, and observing that ¢; = 4. Next, suppose that the result holds for
some n € N, which means that ¢, = 7-2"~! — 3 for this n. We then show that the
result holds for n+ 1, which we accomplish by computing

Cni1 =3+2¢, =342{7-2""1 =3} =7.20+ D=1 _3

It then follows from PMI that the formula holds for all n € N.
(2) Let A be a non-empty set, and let f: A — A be a function. For any n € N, we
would like to define a function, denoted f”, by the formula

fr=fo-of.
S——
n times
However, anything involving *“- - - is not rigorous, unless the “- - - is an abbreviation
for something that has been rigorously defined, which we can do in the present case
by using Definition by Recursion.
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Recall the notation 7 (A,A) defined in Section 4.5. Let k: F(A,A) — F(A,A)
be defined by k(g) = fog for all g € F(A,A). We can then apply Definition by
Recursion (Theorem 6.4.1) to the set F(A,A), the element f € F(A,A) and the
function k: F(A,A) — F(A,A), and we deduce that there is a unique function
¢: N— F(A,A) suchthat ¢(1) = f and that ¢ (n+1) =k(¢(n)) = (fo @) (n) for all
n € N. We now simply let the notation “f™” be defined to mean ¢(n), for all n € N.
Then f! = f, and f"™"! = fo f" forall n € N, just as expected. We refer to " as the
n-fold iteration of f. This topic was discussed briefly in Exercise 4.4.20 and Exer-
cise 4.4.21, where we assumed that f” was defined intuitively, because we did not
yet have Definition by Recursion at our disposal. Iterations of functions are widely
used in mathematics, and in particular are central to the study of dynamical systems
and chaos; see [ASY97]. O

In the formulation of Definition by Recursion we have used so far, we defined
a sequence dj,ds,ds, ... in a set A by specifying that a; = b, and that a,| = k(a,)
for all n € N, where b and k are the appropriate objects. In particular, each a, 1 is a
function of a, alone. In some situations, however, we might need a more complicated
formula for a, . For example, suppose that we want to define a sequence by speci-
fying that a; = 1, and a,4+1 = n+a, for all n € N. Such a definition of a sequence is
not covered by Definition by Recursion (Theorem 6.4.1), though it does turn out to
produce a well-defined sequence, which starts 1,2,4,7,11,.... The following result,
a variant of Definition by Recursion, shows that everything works out as expected.

Theorem 6.4.3. Let A be a set, let b € A and let t: AXN — A be a function.
Then there is a unique function g: N — A such that g(1) = b, and that g(n+ 1) =
t((g(n),n)) foralln € N.

Proof. This theorem is just a restatement of Exercise 6.2.5. O

Example 6.4.4.

(1) We want to define a sequence by specifying that a; = 1, and that a, 1 = (n+
1)ay, for all n € N. Using Theorem 6.4.3 with b = 1, and with 7: R x N — R defined
by #(x,m) = (m+ 1)x for all (x,m) € R x N, we see that there is a unique sequence
satisfying these conditions. This sequence starts 1,2,6,24,120, ..., and consists of
the familiar factorial numbers. We use the symbol n! to denote a,, for all n € N.
The reader might wonder whether we could have dispensed with the Definition by
Recursion entirely, and have simply defined a,, to be n! for all n € N, but that would
be doing things backwards. The notation n! is informally defined by writing n! =
n(n—1)(n—2)---2-1, but this is not a rigorous definition, because of the appearance
of ““---.” The formal way to define n! is to say that it is the value of a,, for the sequence
we have defined by recursion; doing so then gives a rigorous meaning to the ---
appearing in the expression n(n—1)(n—2)---2- 1. From Definition by Recursion,
we deduce immediately that (n+ 1)! = (n+ 1)n! for all n € N, because that is the
result of substituting n! for a,, in the condition @, = (n+ 1)a,,.

(2) In Proposition 6.3.3 we wrote the expression “1 +2+ ---+n,” and in Ex-
ercise 6.3.1 we had similar expressions, such as “12422 4 ... +n2” We now
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EL)

use Theorem 6.4.3 to give this use of “:--” a rigorous definition. In general, let
f: N — R be a function. We want to give a rigorous meaning to the expression
SO SR+ S ()7

Let g: R x N — R be defined by g((x,n)) =x+ f(n+1) for all (x,n) € RxN.
We then apply Theorem 6.4.3 to the set R, the element f(1) € R and the function ¢,
and we deduce that there is a unique function 4: N — R such that (1) = f(1), and
that h(n+ 1) = g((h(n),n)) = h(n) + f(n+1) for all n € N. We now let the notation
“f(1)+ f(2) +---+ f(n)” be defined to mean h(n), for all n € N. O

Our next version of Definition by Recursion is used for a particularly interesting
sequence, namely, the well-known Fibonacci sequence, which starts

1,1,2,3,5,8,13,21,34,55,89, 144 . ...

The numbers in this sequence are referred to as Fibonacci numbers, named after the
medieval mathematician Fibonacci (also known as Leonardo of Pisa), who discov-
ered these numbers when investigating a mathematical problem concerning rabbits.
See [Hun70, Chapter 12] for details.

The Fibonacci numbers arise in a variety of unexpected places, such as in phyl-
lotaxis, which is the study of certain numbers that arise in plants, for example, the
numbers of petals in flowers, the numbers of spirals in pine cones, and others. See
Figure 6.4.1 for some of the spirals formed by the seeds of a sunflower; it often hap-
pens that the number of spirals in each direction is a Fibonacci number (we note
that the number of spirals in each of the two directions are not necessarily equal).
See [Cox61, Chapter 11] and [Rob84, Section 5.1.2] for further discussion and ref-
erences to the use of Fibonacci numbers in phyllotaxis and other areas. Why the
Fibonacci numbers show up in the study of plants appears not to be known, as stated
in [Rob84, pp. 202-203]. On the other hand, in [Tho59, Chapter XIV], an earlier
study of growth, form and shape in biological phenomena, it is claimed that there
are mathematical reasons for the Fibonacci numbers appearing in pine cones and the
like; the reader should decide for herself what to make of that author’s arguments.
Even he says, however, “We come then without much ado to the conclusion that
while the Fibonacci series stares us in the face in the fir-cone, it does so for mathe-
matical reasons; and its supposed usefulness, and the hypothesis of its introduction
into plant structure through natural selection, are matters which deserve no place in
the plain study of botanical phenomena. As Sachs shrewdly recognized years ago,
all such speculations as these hark to a school of mystical idealism.”

What concerns us here is not biology but the mathematical properties of the Fi-
bonacci numbers. Some mathematically serious treatments of the Fibonacci numbers
are found in [Knu73, Section 1.2.8], [GKP94, Section 6.6] and [HHP97, Chapter 3].
See [Gar87] or [Hun70] for slightly more offbeat discussions of the Fibonacci num-
bers.

Let the elements of the Fibonacci sequence be denoted Fi, F5, .. .. An examination
of the sequence reveals its basic pattern, which is F,4» = F, 11 + F, for all n € N.
Formally, the Fibonacci sequence is the unique sequence specified by F; = 1, and
F>, =1, and F,1» = F,+1 + F, for all n € N. This type of definition of a sequence is
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not covered by either Theorem 6.4.1 or Theorem 6.4.3, but the following variant of
these theorems suffices.

Fig. 6.4.1.

Theorem 6.4.5. Let A be a set, let a,b € A and let p: A XA — A be a function.
Then there is a unique function f: N — A such that f(1) = a, that f(2) = b and that

f(n+2)=p((f(n),f(n+1))) foralln € N.

Proof. This theorem is just a restatement of Exercise 6.2.4. a

The Fibonacci sequence is defined using Theorem 6.4.5 with a = 1, with b = 1,
and with p: R x R — R defined by p((x,y)) = x+y for all (x,y) € R x R. The fol-
lowing proposition gives a few examples of formulas involving the sums and prod-
ucts of Fibonacci numbers. For more such formulas (of which there are remarkably
many), see [Knu73, Section 1.2.8 and exercises] and [GKP94, Section 6.6], as well
as the exercise at the end of this section.

Proposition 6.4.6. Letn € N.

1. +FKB+--+F=Fi—1
2. F?+ B>+ -+ E2 = FFy.
3. Ifn>2, then (F,)? —Fyy 1 Fq = (—1)"+

Proof. We will prove Part (3), leaving the rest to the reader in Exercise 6.4.6.

(3). We use induction, using PMI-V3 with ky = 2. We see that (F)? — F3F =
12—-2-1=—1=(—1)?>!, so the equation holds for n = 2. Now let n € N. Suppose
that n > 3, and that the equation holds for all values in {2,...,n}. (Given that we
already know that the equation holds for n = 2, it will suffice to prove that it holds
for n > 3, and restricting to such values of n allows the following argument to work
without special cases.) We compute

(Fn+1)2_Fn+2F = (Fn +Fn—1)2_ (Fn+1 +Fn)Fn
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= (B)?+2FFy 1+ (Fy1)? — B By — (F)?

= (Fy1)? + Fu(2F,1 — Fup1)

= (Fac1)* + Fa2Fu1 — (Fy+ Foy))
=(F1)? +Fy(F1— F)

(Fn 1)2 FF,, 2_( ]>(nfl)+l :(_])(n+l)+]

where the last line holds by the inductive hypothesis. O

Although the natural way to think of the Fibonacci numbers is in terms of Defini-
tion by Recursion, it turns out that there is also an explicit formula for these numbers,

which is i .
= () - (=)'

for all n € N. This formula, which is proved in Exercise 6.4.12 (4), is known as
Binet’s formula (though it is attributed to Euler and Daniel Bernoulli in [GKP94,
Section 6.6] and [Tho59, Chapter XIV]). For those familiar with the “golden ratio,”
ﬂ

which equals and is often denoted ¢, observe that Binet’s formula is F, =

% {9"— (;¢) } for all n € N. See Exercise 6.4.14 for another relation between the

Fibonacci numbers and the golden ratio. See [Hun70] for more on the golden ratio.

We conclude this section with an even more complicated version of Definition
by Recursion than the ones we have seen so far. We will need this additional version
in the proof of Theorem 6.6.7, which is part of our discussion of countable sets. The
reader might find the following definition and proof to be somewhat technical upon
first reading, but hopefully will not be deterred from working through the proof,
which uses a clever construction.

The idea of this variation of Definition by Recursion is that we want to have
each term of the sequence be dependent upon all the terms that came earlier in the
sequence, not just the previous term, or the previous two terms, or any other fixed
number of previous terms. In other words, we want to define a sequence ¢y, c2,c¢3, ...
by specifying ¢y, and by specifying ¢, in terms of cy,...,c,, for each n € N. That
is, we want ¢; to depend upon ¢y, and c3 to depend upon ¢ and c;, and so on. The
complication here is that there cannot be a single function to specify ¢, in terms
of cq,...,c, that works for all n € N, because any single function must have a fixed
number of “variables.” To resolve this matter, we use the following definition.

Definition 6.4.7. Let A be a set. Let G(A) be the set defined by
G(4)=U7{1,....n}A). A

Theorem 6.4.8. Let A be a set, let b € A and let k: G(A) — A be a function.
Then there is a unique function f: N — A such that f(1) = b, and that f(n+1) =
k(flq1,..ny) for alln € N.
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Proof. We follow [Mun00, Section 8].

Uniqueness: Let s,7: N — A be functions. Suppose that s(1) = b and #(1) = b,
and that s(n+ 1) = k(s|{1,...»3) and #(n+ 1) = k(t|(; . ) for all n € N. We will
show that s(n) = t(n) for all n € N by induction on n, using PMI-V2 (Theo-
rem 6.3.8). By hypothesis we know that s(1) = b =¢(1). Next, let n € N and sup-
pose that s(j) = #(j) for all j € {1,...,n}. Then s[y; 3 =t|{, 4, and therefore

s(n+1) = k(slq1,..ny) = k(tlf1,..ny) = t(n+1). It now follows from PMI-V2 that

s(n) =t(n) for all n € N, which means that s =1.
Existence: There are three steps in the definition of f.

Step 1. We will shown that for each p € N, there is a function 2,,: {1,...,p} — A
such that i1, (1) = b, and that hy(n+1) = k(hy |, ) foralln e {1,....,p—1}.

The proof is by induction on p. First, let p = 1. Then {1,...,p} = {1}. Let
hy:{l,...,1} — A be defined by h; (1) = b. Observe that {1,...,p—1} ={1,...,0} =
0, and hence Ay (n+1) = k(hi|qy,... q)) foralln € {1,..., p— 1} is necessarily true.

Next, let p € N. Suppose there is a function i,,: {1,...,p} — A such that h,(1) =b,
and that hy(n+1) =k(hplgy . ) forallne {1,...,p—1}. Lethyyp: {1,...,p+1} —
A be defined by

) hp(n), ifne{l,... p}
hpii( ){kl(Jhp), ifn=p+1.

Then hpi1lfy..p) = hp. It follows that hpi1(1) = hy(1) = b, that hypyi(n+1) =
hy(n+1) =k(hplqi,.. ) =k(hpi1lq,.. ) forallne{1,...,p—1} and that h, 41 (p+

1) = k(hp) = k(hpy1lq1,..p))- Hence hyyq has the desired properties. The proof of

this step is then complete by PMI.

Step 2. Let p,q € N. Suppose that p < g. We will show that h,(n) = h,(n) for all
ne{l,...,p} by using Exercise 6.3.15. By Step 1 we know that h,(1) =b = h,(1).
Next, suppose that n € {1,...,p— 1} and that h,(j) = h,(j) for all j € {1,...,n}.
Hence hyl(1... 0y = hplq1....n)- Then by Step 1 we see that hy(n+1) = k(g1 ny) =
k(hplir....ny) = hp(n+1). Tt now follows from Exercise 6.3.15 that i, (n) = hy(n) for
allne{l,...,p}.

Step 3. Let f: N — A be defined by f(n) = h,(n) for all n € N. Then f(1) =
hi(1)=bby Step 1. Let pe N.If j € {1,...,p}, then j < p+ 1, and it follows from

see that f satisfies the desired properties. O

Exercises

Exercise 6.4.1. Let r,r,73,... be the sequence defined by r; = 1, and r,.1 = 4r, +
7 for all n € N. Prove that r,, = % (10~4”’1 —7) for all n € N.



6.4 Recursion 219

Exercise 6.4.2. Let by,b;,bs, ... be the sequence defined by b; = 1, and b, = 1, and
b, = % (bn,l + %) for all n € N such that n > 3. Prove that 1 < b, < % for all
neN.

Exercise 6.4.3. Let d;,d»,ds,. .. be the sequence defined by d; =2, and d, = 3, and
dy, =d,_ -d,_» for all n € N such that n > 3. Find an explicit formula for d,, and
prove that your formula works.

Exercise 6.4.4. [Used in Exercise 4.4.20.] Let A be a non-empty set, andlet f: A — A
be a function. Suppose that f is bijective. Prove that f” is bijective for each n € N.

Exercise 6.4.5. For eachn € N, find an example of a function f: A — A for some set
A such that f” is a constant map, but f” is not a constant map for all r € {1,...,n—1}.

Exercise 6.4.6. [Used in Proposition 6.4.6.] Prove Proposition 6.4.6 (1) (2).
Exercise 6.4.7. [Used in Section 8.6.] Letn € N.

(1) Prove that 2|F;, if and only if 3|n.
(2) Prove that 3|F;, if and only if 4|n.
(3) Prove that 4|F, if and only if 6|n.

Exercise 6.4.8. [Used in Section 8.6.] Let n € N. Suppose that n > 5. Prove that
F,=5F,_4+3F, s.

Exercise 6.4.9. [Used in Section 8.6.] Let n,k € N. Suppose that k > 2. Prove that
each of the following holds.

1) Fopx = Fibpy1 + Fe 1 By
(2) FulFin.

Exercise 6.4.10. Define a sequence by specifying that G; = 1, that G = 1 and that
Gpi2 = Gyi1 +Gn+ Gui1 G, for all n € N. Prove that G, = 2f» — 1 forall n € N.

Exercise 6.4.11. Letn € N.

(1) Letp = HT‘E and ¢’ = # ;ql) Prove that ¢" + ¢'" is an integer.
(2) Prove that the integer 5(F;,)> +4(—1)" is a perfect square.

Exercise 6.4.12. [Used in Section 6.4.] The purpose of this exercise is to prove Binet’s
formula (Equation 6.4.1). Let ¢,d € R. Suppose that ¢ and d are non-zero, and that the
equation x> —cx —d = 0 has two distinct real solutions r1 and ry. Let A;,As, A3, . ..
be a sequence satisfying A,+2 = cA,+1 +dA, for all n € N. (By Theorem 6.4.5 there
is a unique such sequence for each choice of A| and A;.) Let
P A —A and Q— riA; —A; .
ri(ra—rp) ra(ri—r)
(1) Let Dy,D,,D3,... be the sequence defined by the explicit formula D, =
P(rl)" + Q(rz)" for all n € N. Verify that D; = A; and D, = A;.
(2) Prove that D,y » = c¢Dy+1 +dD,, foralln € N.
(3) Use Theorem 6.4.5 to deduce that A,, = D,, for all n € N.
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(4) Apply Part (3) of this exercise to the Fibonacci sequence, and deduce Equa-
tion 6.4.1.

Exercise 6.4.13. We discuss a curious geometric puzzle; see [Wea38] for the history
of this puzzle. Start with a square that has sides of length 13 units. Dissect the square
into four pieces, as depicted in Figure 6.4.2 (i). The four pieces can be rearranged
into a rectangle, as shown in Figure 6.4.2 (ii). Try making the puzzle out of paper, and
doing the rearranging. The curious thing is that the area of the square is 13> = 169,
whereas the area of the rectangle is 21 - 8 = 168. How can it happen that the same
four pieces form shapes with different area?

13
(@) (i)

Fig. 6.4.2.

(1) Explain the puzzle by showing that there is a slight overlap among the pieces.

(2) We now generalize the above puzzle. Rather than starting with a square with
sides of length 13 units, and breaking the sides up into pieces of length 8 and
5, we start with an arbitrary square, and break its sides into pieces of lengths
a and b. Find the only possible value for the ratio 3 so that there is no overlap
or underlap when the pieces are rearranged into a rectangle.

(3) We continue Part (2) of this exercise. Suppose that we want a puzzle with a
and b both natural numbers (as is the case in the original puzzle). Because
the areas of both the square and rectangle will be integers in this case, the
difference of these areas, which is the amount of overlap or underlap, will also
be an integer. Hence, with a and b both natural numbers, the minimal overlap
will be 1. This minimal overlap is very hard to notice when the puzzle is
made out of pieces of paper, which is why it fools people. A larger overlap or
underlap would be much easier to spot. Prove that if @ and b are consecutive
Fibonacci numbers, then the overlap or underlap is minimal. Observe that
the original puzzle did use consecutive Fibonacci numbers. (It can be shown,
moreover, that no two natural numbers other than two consecutive Fibonacci
numbers have the minimal overlap or underlap, though that requires a more
difficult proof.)
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Exercise 6.4.14. [Used in Section 6.4 and Section 7.8.] This exercise is for the reader
who is familiar, at least informally, with limits of sequences. (We will discuss limits
of sequences rigorously, albeit briefly, in Section 7.8; see any introductory text in real
analysis, for example [Blo11, Chapter 8], for details.) We saw in Equation 6.4.1 that
the Fibonacci numbers can be computed using the number ¢ = 1+T\/§ =1.618....
There is another relation between the Fibonacci numbers and ¢, which is seen by
looking at successive ratios of Fibonacci numbers, that is, the numbers

1235813

A calculation of the first few terms of this sequence shows that they appear to ap-
proach the number 1.618..., which looks suspiciously like ¢, at least up to a few
decimal places. In fact, it can be proved that

lim 2L g,

n—oo n
The proof of this equation has two parts: (1) that the limit exists and (2) that the
limit equals ¢. The reader is asked to prove Part (2), assuming that Part (1) is true.
(Proving Part (1) is more advanced, requiring a knowledge of Cauchy sequences and
the completeness of the real numbers. See [Blol1, Example 8.4.10] for a detailed
proof of Part (1).)

6.5 Cardinality of Sets

Intuitively, we know what it means to talk about the “size” of a finite set, and it
seems intuitively clear that finite sets come in different sizes. What about infinite
sets? Does it make sense to discuss the “size” of an infinite set, and if it does, do
infinite sets come in different sizes? Galileo, writing in the early seventeenth century
in [Gal74, pp. 38—47], thought that all infinite sets had the same size. Though he had
some very good insights into infinite sets, even the brilliant Galileo was mistaken on
this matter, as we shall see below. A correct understanding of the sizes of infinite
sets was due to Cantor, the developer of set theory, two and a half centuries after
Galileo. In the remaining sections of this chapter we will see a number of important
arguments by Cantor; these ideas helped propel set theory into its prominent role in
modern mathematics.

How do we determine when two sets have the same size? It might appear at first
glance that to answer this question we would need to be able to compute the size
of each of the two sets before we could compare them, and the need for finding the
“size” of an infinite set might seem to be an insurmountable obstacle if we want to
compare the sizes of different infinite sets. It turns out, and this is a great insight, that
it is possible to discuss whether two sets have the “same size” without first having to
figure out the size of each set.

We start with a simple example. Suppose that a group of people want to stay at
a hotel, with each person in a separate room. The hotel manager will take the group
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only if it completely fills up the hotel, and so it is necessary to figure out whether
the right number of rooms are vacant. This is a very simple problem to solve, but
there are in fact two ways to proceed. One way would be to count the number of
people, and count the number of free rooms, and then see if the two numbers are the
same. Another way would be to make a list of people, a list of free rooms, and then
start going down the two lists, matching up each successive person with a distinct
vacant room; if all the people and all the rooms are taken care of by this process,
then everyone would be happy. The method of matching up people and rooms is
cumbersome, but unlike counting, it has the advantage of working even if the number
of people and the number of rooms are infinite. The method of counting, by contrast,
works only when everything is finite.

To determine whether two sets have the same size, we will try to pair up the
elements of the two sets. Our tool for “pairing up” is bijective functions, as in the
following definition.

Definition 6.5.1. Let A and B be sets. The sets A and B have the same cardinality,
denoted A ~ B, if there is a bijective function f: A — B. AN

Observe that Definition 6.5.1 refers only to whether rwo sets have the “same
cardinality”’; nothing is stated about the “cardinality” (which means size) of each of
the two sets. Using bijective functions allows us to compare two sets, but not to say
anything about each of the individual sets.

If two sets have the same cardinality, then by definition there is a bijective func-
tion from one to the other. Unless each of the two sets has only zero or one element,
there will in fact be more than one such bijective function. When proving that two
sets have the same cardinality, it is sufficient to find a single bijective function.

The following lemma gives the basic properties of ~, which should look familiar.

Lemma 6.5.2. Let A, B and C be sets.

1. A~ A
2. IfA ~ B, then B ~ A.
3. fA~Band B~ C, then A ~C.

Proof. See Exercise 6.5.3. ]

Lemma 6.5.2 might lead the reader to think of ~ as an equivalence relation, but
we need to proceed with caution here. If ~ were a relation, on what set would it be
a relation? We might want to think of ~ as a relation on the set of all sets, because
for any two sets A and B, it must be the case that either A ~ B or A ¢ B. However,
because of foundational problems such as Russell’s Paradox, which was discussed in
Section 3.5, we avoid things such as the set of all sets. Hence, although ~ satisfies
the three properties of an equivalence relation, it is not technically a relation on a set
at all. If, however, all sets of interest are subsets of a given set X, then it is correct to
say that ~ is an equivalence relation on P(X).

We now have some examples of sets that have the same cardinality.
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Example 6.5.3.

(1) Though he made one major mistake concerning infinite sets (to be discussed
shortly), Galileo understood the idea of using bijective functions (as we now call
them) to show that two sets have the same cardinality. In the following quote from
[Gal74, pp. 40—41], Galileo discusses some sets of positive natural numbers in a
dialogue between two of his protagonists.

Salviati. .. .1f I say that all numbers, including squares and non-squares, are

more [numerous] than the squares alone, I shall be saying a perfectly true

proposition; is that not so?

Simplicio. One cannot say otherwise.

Salviati. Next, I ask how many are the square numbers; and it may be truly

answered that they are just as many as are their own roots, because every

square has its root, and every root its square; nor is there any square that has
more than just one root, or any root that has more than just one square.

Simplicio. Precisely so.

Salviati. But if I were to ask how many roots there are, it could not be denied

that those are as numerous as all the numbers, because there is no number

that is not the root of some square. That being the case, it must be said that

the square numbers are as numerous as all numbers, because they are as

many as their roots, and all numbers are roots.

In modern terminology, Galileo states that the set of natural numbers N =
{1,2,3,...} and the set of squares S = {1,4,9,16,...} have the same cardinality.
Galileo’s argument is precisely the same as our modern one, which is that there is a
bijective function #: N — S. The function 4 that Galileo suggests is the most natural
one to use, namely, the function defined by /() = n* for all n € N. That  is bijective
follows from the fact that k: S — N defined by k(n) = \/n for all n € S is an inverse
of h, where we make use of Theorem 4.4.5 (3).

(2) The set of natural numbers N and the set of integers Z have the same cardi-
nality. One choice of a bijective function f: N — Z is the one defined by

5 if nis even

fOO{_ﬁzh if n is odd.

It is left to the reader to verify that this function is bijective.

(3) Let a,b,c,d € R. Suppose that a < b and ¢ < d. We will show that [a,b] ~
[c,d], that (a,b) ~ (c,d), and similarly for half-open intervals. Let g: [a,b] — [c,d]
be defined by

d—c
) =7 —

for all x € [a,b]. It is straightforward to verify that the function g is bijective; we
leave the details to the reader. It follows that [a,b] ~ [c,d]. A similar argument shows
that (a,b) ~ (c,d), and similarly for half-open intervals; we omit the details.

(4) Let a,b € R. Suppose that a < b. We will show that (a,b) ~ R. By Part (3)
of this example we know that (a,b) ~ (—1,1). Hence, it is sufficient to show that

(x—a)+c



224 6 Finite Sets and Infinite Sets

(—1,1) ~ R. Actually, we have already done all the work of proving that fact, be-
cause in Exercise 4.4.3 there is an example of a bijective function f: R — (—1,1).
(Instead of this function f, it is common to use the function /: (— z, %) — R defined
by h(x) = tanx for all x € (—%,%), and then to use known properties of the tangent
function to show that / is a bijective function. However, it is beyond the scope of this
book to give a rigorous treatment of the tangent function, and so we have provided

the more elementary function f.) %

For a better analysis of the cardinality of sets, we need to make various useful
distinctions, such as finite sets vs. infinite sets. We have used the notion of finite-
ness intuitively until now in this text, but we are now prepared to deal with this
concept more precisely. The simplest approach to finiteness makes use of subsets of
the natural numbers of the form {1,...,n}; recall the definition of such sets given in
Definition 6.2.6. More generally, observe in the following definition how important
the set N is in understanding the cardinality of sets (this set is referred to directly or
indirectly in the first four parts of the definition).

Definition 6.5.4.

1. A set is finite if it is either the empty set or it has the same cardinality as
{1,...,n} for some n € N.

2. A set is infinite if it is not finite.

3. A set is countably infinite if it has the same cardinality as N.

4. A set is countable (also called denumerable) if it is finite or countably infi-
nite.

5. A set is uncountable if it is not countable. A

The reader is asked to prove in Exercise 6.5.5 that if A and B are sets such that
A ~ B, and if A is finite, infinite, countably infinite, countable or uncountable, then
so is B. We will use this simple fact, without explicitly mentioning it, throughout the
rest of this chapter.

It is evident that three of the types of sets described in Definition 6.5.4 in fact
exist. There are finite sets, because the set {1,...,n} is finite for all n € N; there are
countably infinite sets, because N is countably infinite; and there are countable sets,
because there are countably infinite sets. On the other hand, it is not immediately
evident whether there are infinite sets, and whether there are uncountable sets. We
will show that there are uncountable sets shortly, but we first turn to the existence
of infinite sets. The reader might think that this fact is self-evident, because we have
already remarked that there exist countably infinite sets. However, the terms “count-
ably infinite” and “infinite” were defined entirely separately, and it is not true simply
by definition that a “countably infinite” set is in fact “infinite,” and so a proof is
needed. The following lemma resolves this matter.

Lemma 6.5.5.

1. The set N is infinite.
2. A countably infinite set is infinite.
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Proof.

(1). Suppose that N is finite. Because N # 0, then there is some n € N such that
N~ {1,...,n}. Let f: {1,...,n} — N be a bijective function. It then follows from
Theorem 6.3.11 (1) that there is some k € {1,...,n} such that f(k) > f(i) for any
i € {l,...,n}. Therefore f(k)+1 > f(i) for all i € {1,...,n}. Hence f(k)+1¢
Ff{1,...,n}). Because f(k)+ 1 € N, we deduce that f is not surjective, which is a
contradiction. Hence N is not finite, and so it is infinite.

(2). Let B be a set. Suppose that B is countably infinite. Then B ~ N. Suppose
further that B is finite. It would then follow from Exercise 6.5.5 that N is finite, which
is a contradiction to Part (1) of this lemma. Hence B is infinite. O

From Part (1) of Lemma 6.5.5 we see that there are infinite sets.

The one remaining question about Definition 6.5.4 is whether there are any un-
countable sets. This issue is not at all trivial, and in fact it has fooled many great
minds. For example, shortly after the quote from Galileo given above, Galileo con-
tinues as follows.

Salviati. I don’t see how any other decision can be reached than to say that
all the numbers are infinitely many; all squares infinitely many; all their
roots infinitely many; that the multitude of squares is not less than that of
all numbers nor is the latter greater than the former. And in final conclusion,
the attributes of equal, greater, and less have no place in infinite, but only
in bounded quantities. So when Simplicio proposes to me several unequal
lines, and asks me how it can be that there are not more points in the greater
than in the lesser, I reply to him that there are neither more, nor less, nor
the same number, but in each there are infinitely many. Or truly, might I
not reply to him that the points in one are as many as the square numbers;
in another and greater line, as many as all numbers; and in some tiny little
[line], only as many as the cube numbers .. ..

In this quote Galileo essentially says that all infinite sets have the same cardi-
nality, which would make them all countably infinite in our terminology. In fact, we
will see in Corollary 6.5.8 below that Galileo was wrong, and that there are indeed
uncountable sets. To prove that corollary, we make use of the cardinality of the power
set of a set. We start with an example.

Example 6.5.6. Let A = {1,2}. Then ?(A) = {0,{1},{2},{1,2}}. Therefore A £
P(A). 0

The following theorem shows that Example 6.5.6 is typical.
Theorem 6.5.7. Let A be a set. Then A ot P(A).

Proof. There are two cases. First, suppose that A = 0. Observe that P(A) = {0}, and
therefore there cannot be a bijective function P(A) — A, because there cannot be a
function from a non-empty set to the empty set. Hence P(A) + A.
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Next, suppose that A # 0. Suppose further that A ~ P(A). Then there is a bijective
function f: A — P(A). Let D={a € A|a ¢ f(a)}. Observe that D C A, and so
D € P(A). Because f is surjective, there is some d € A such that f(d) =D. Isd €
D? Suppose that d € D. Then by the definition of D we see that d ¢ f(d) = D.
Suppose that d ¢ D. Then d € f(d) = D. We therefore have a contradiction, and so
A A4 P(A). O

In the following proof we will use Theorem 6.6.5 (1) from Section 6.6, though
there is no circular reasoning here, because the proof of Theorem 6.6.5 does not
make use of the corollary we are about to prove.

Corollary 6.5.8. The set P(N) is uncountable.

Proof. By Theorem 6.5.7 we know that P(N) ¢ N, and so ?(N) is not countably
infinite. If we could show that ?(N) were not finite, then it would follow that it is not
countable. Suppose that P(N) is finite. Let 7 = {{n} | n € N} C ?(N). It follows from
Theorem 6.6.5 (1) that 7 is finite. However, it is evident that 7 ~ N, and this would
imply that N is finite, which is a contradiction to Lemma 6.5.5 (1). We conclude that
2 (N) is uncountable. O

Corollary 6.5.8 is not entirely satisfying, because, even though its proof is short,
it would be nice to see a more familiar and concrete set that is uncountable. In fact,
we will see in Theorem 6.7.3 that the set R is uncountable.

Putting all our results so far together, we deduce that any set is precisely one of
finite, countably infinite or uncountable, and that there are sets of each type.

We conclude this