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1 Axioms, rules, and what logic is all about

1.1 Two kinds of proof system

There are at least two styles of proof system for propositional logic other than trees that
beginners ought to know about.

The real interest here, of course, is not in learning yet more about classical proposi-
tional logic per se. For how much fun is that? Rather, what we are doing – as always –
is illustrating some Big Ideas using propositional logic as a baby example.

The two new styles are:

1. Axiomatic systems The first system of formal logic in anything like the contempo-
rary sense – Frege’s system in his Begriffsschrift of 1879 – is an axiomatic one.

What is meant by ‘axiomatic’ in this context? Think of Euclid’s geometry for
example. In such an axiomatic theory, we are given a “starter pack” of basic as-
sumptions or axioms (we are often given a package of supplementary definitions as
well, enabling us to introduce new ideas as abbreviations for constructs out of old
ideas). And then the theorems of the theory are those claims that can deduced by
allowed moves from the axioms, perhaps invoking definitions where appropriate.

In Euclid’s case, the axioms and definitions are of course geometrical, and he
just helps himself to whatever logical inferences he needs to execute the deductions.
But, if we are going to go on to axiomatize logic itself, we are going to need to be
explicit not just about the basic logical axioms we take as given starting points for
deductions, but also about the rules of inference that we are permitted to use.

Frege’s axiomatization of logic in fact goes further than familiar (‘first-order’1)
quantification theory: but its first-order fragment is equivalent to standard modern
systems (though it is presented using a very idiosyncratic – and pretty unreadable
– notation that never caught on). Likewise, Russell and Whitehead’s system in
their Principia Mathematica of 1910–1913 goes beyond first-order logic: it is given
in another axiomatic presentation, which is symbolically quite a bit nicer than
Frege, though a significant step backwards in terms of real rigour. Again, Hilbert
and Ackermann present an axiomatic system in the first book which begins to have
something like the ‘look and feel’ of a modern logic text, namely their rather stun-
ning short book Mathematical Logic (original German edition 1928). And Hilbert
and Ackermann do nicely isolate standard first-order quantificational logic, under
the label ‘the restricted predicate calculus’.2

As we’ll see, however, axiomatic systems of logic are not very nice to work with,

1First-order logic allows quantifications just over objects, and has variables that can replace names;
second-order quantification allows quantifications over properties and has variables that can replace
predicates.

2I hope your logical curiosity will prompt you to get each of those off the library shelf and browse
through for just a few minutes! You can find Frege’s little book reproduced in J. van Heijenoort ed. From

Frege to Gödel and also in T. W. Bynum ed. Frege: Conceptual Notation, from p. 101 onwards.
David Hilbert was the greatest mathematician of his generation. His 1928 based on earlier lectures

consequently had a very profound influence.
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and don’t reflect the natural ways of reasoning used in common-or-garden real-
world deductive reasoning (e.g. in mathematical proofs).

2. Natural deduction systems By contrast natural deduction systems are intended to
reflect much more closely those natural ways of reasoning, by encoding the sort of
inference moves that we ordinarily make, and giving us a regimented framework
for setting out arguments using these moves.

As we’ll see, there are various ways of setting out natural deductions. But
such systems all share the core features of (i) having no axioms and lots of rules of
inference (rather than having lots of axioms and just one or two rules of inference),
and – crucially – (ii) allowing suppositional proofs, in which some proposition is
temporarily assumed for the sake of argument and then the assumption is later
‘discharged’ (as, for example, in a reductio proof).

A natural deduction system in pretty much the modern form was proposed by
Gerhard Gentzen in his doctoral thesis of 1933.

1.2 What logic is about

The historical move from axiomatic systems to natural deduction systems is not just
of formal interest: it reflects a change in the conception of what logic is fundamentally
about.

Frege thinks of logic as a science, a body of truths governing a special subject matter
(logical concepts such as identity, etc.). And in Begriffsschrift §13, he extols the general
procedure of axiomatizing a science to reveal how a bunch of laws hang together: ‘we
obtain a small number of laws [the axioms] in which . . . is included, though in embryonic
form, the content of all of them’. So it is not surprising that Frege takes it as appropriate
to present logic axiomatically too.

In a significantly different way to Frege, Russell also thought of logic as science, as
being in the business of systematizing the most general truths about the world. A special
science like chemistry tells us truths about certain kinds of constituents of the world and
certain of their properties; logic tells us absolutely general truths about everything. If
you think like that, treating logic as (so to speak) the most general science, then of course
you’ll again be inclined to regiment logic as you do other scientific theories, ideally by
laying down a few ‘basic laws’ and then showing that other general truths follow.

Famously, Wittgenstein in the Tractatus reacted radically against Russell’s concep-
tion of logic. For him, truth-functional tautologies and other logical truths are indeed
tautologies – not deep ultimate truths about the most general, logical, structure of the
universe, but rather empty claims in the sense that they tell us nothing informative
about how the world is: they merely fall out as byproducts of the meanings of the basic
logical particles.

That last idea can be developed in more than one way. But one approach is Gentzen’s.
Think of the logical connectives as getting their meanings from how they are used in
inference (so grasping their meaning involves grasping the inference rules governing their
use). For example, grasping ‘and’ involves grasping, inter alia, that from ‘A and B’ you
can (of course!) derive A. Similarly, grasping the conditional involves grasping, inter
alia, that a derivation of the conclusion C from the temporary supposition A warrants
an assertion of ‘if A then C’. And now those trivial logical inference rules enable us to
derive ‘for free’ (so to speak) various truths. For instance, suppose that A and B; then
we can derive A (by the ‘and’ rule). And reflecting on that little suppositional inference,
we see that a rule of inference governing ‘if’ entitles us to assert if A and B, then A.
If that is right, and if the point generalizes, then we just don’t have to see such logical
truths as reflecting deep facts about the logical structure of the world (whatever that
could mean): logical truth falls out just as a byproduct of the inference rules whose
applicability is, in some sense, built into the very meaning of e.g. the connectives and
the quantifiers.
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However, whether or not you fully buy that story about the nature of logical truth,
there surely is something odd about thinking of systematized logic as primarily aiming
to regiment a special class of ultra-general truths. Isn’t logic, rather, at bottom about
good and bad reasoning practices, about what makes for a good proof? Shouldn’t its
prime concern be the correct styles of valid inference? So isn’t it more natural for a for-
malized logic to highlight rules of proof-building rather than stressing axiomatic truths?
(Of course, we mustn’t make too much of this contrast: for corresponding e.g. to the
inferential rule ‘from A you can infer (A or B)’ there is indeed the logical truth ‘if A

then (A or B)’. So we can, up to a point, trade off rules for corresponding truths –
although of course we need to keep at least one rule of inference if we are ever to be able
to infer anything from anything! Still, there is something natural about the suggestion
that the study of inference should come first in logic.)

2 Logic in an axiomatic style

2.1 M, a sample axiomatic logic

Let’s have an example of an axiomatic system to be going on with. In this system M ,
to be found e.g. in Mendelson’s classic Introduction to Mathematical Logic, the only
propositional connectives built into the basic language of the theory are ‘→’ and ‘¬’ (‘if
... then ...’ and ‘not’, the same choice of basic connectives as in Frege’s Begriffsschrift).
The axioms are then all wffs which are instances of the schemata3

Ax1. (A → (B → A))
Ax2. ((A → (B → C)) → ((A → B) → (A → C)))
Ax3. ((¬B → ¬A) → ((¬B → A) → B))

M ’s one and only rule of inference is modus ponens, the rule from A and (A → C) infer
C.

In this axiomatic system, a proof from the given premisses A1, A2, . . . An to conclusion
C is a linear sequence of wffs such that each wff is either (i) a premiss Ai, (ii) a logical
axiom, i.e. an instance of Ax1, Ax2 or Ax3, or (iii) follows from two previous wffs in the
sequence by modus ponens, and (iv) the final wff in the sequence if C. When there is
such a proof we will write A1, A2, . . . An ⊢M C.

If we can prove C from the axioms alone without additional premisses, we’ll say that
C is a theorem, and write simply ⊢M C.

2.2 System M in action

We’ll first show that (P → P) is a theorem, i.e. ⊢M (P → P). Here’s the proof:

1. ((P → ((P → P) → P)) → ((P → (P → P)) → (P → P))) by Ax2
2. (P → ((P → P) → P)) by Ax1
3. ((P → (P → P)) → (P → P)) from 2, 1 by MP
4. (P → (P → P)) Ax1
5. (P → P) from 4, 3 by MP

Next, let’s show that (P → Q), (Q → R) ⊢M (P → R):

1. (P → Q) premiss
2. (Q → R) premiss
3. ((Q → R) → (P → (Q → R))) by Ax1
4. (P → (Q → R)) from 2, 3 by MP
5. ((P → (Q → R) → ((P → Q) → (P → R))) by Ax2

3‘Instances of the schemata’? An wff is an instance of a schema (plural: schemata) if it results for
systematically replacing schematic letters A, B, C etc. in the schema by particular wffs – with, in a given
case, the same schematic letter always being substituted by the same wff. But you knew that!
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6. ((P → Q) → (P → R)) from 4, 5 by MP
7. (P → R) from 1, 6 by MP

I take it that neither of those proofs is wonderfully obvious or natural. For another
example, consider (P → (Q → R)) ⊢M (Q → (P → R)). Again, that’s an intuitively ob-
vious validity, and can be checked by a quick tree proof (do it!). But the shortest known
M -proof has twenty-one lines, starting of course

1. (P → (Q → R)) premiss

and then going (I kid you not!) via

13. (((Q → ((P → Q) → (P → R))) → ((Q → (P → Q)) → (Q → (P → R)))) →
(((Q → ((P → Q) → (P → R))) →

(Q → (P → Q))) → ((Q → ((P → Q) → (P → R))) → (Q → (P → R)))))

which, if you look at it very hard and count brackets, is in fact an instance of the axiom
schema Ax1. But even with that hint, I take it that it isn’t in the slightest bit obvious
how actually to complete the proof.

2.3 Augmenting the system

Let’s now augment this basic system M with definitions for the other two familiar basic
connectives to get the system M ′ where we can write (A ∧ B) as an abbreviation for
¬(A → ¬B) and (A ∨B) for (¬A → B). A proof in M ′ is like a proof in M except that
we can use the definitions to decode and to introduce abbreviations for M -wffs using the
new connectives.

As a ludicrously nasty challenge, you might like to try to show that in the extended
proof system, we have (P ∧ Q) ⊢M ′ P. You know that the proof is going to have to start

1. (P ∧ Q) premiss
2. ¬(P → ¬Q) by definition of ‘∧’

But now where? How do you get from ¬(P → ¬Q) to the desired conclusion P? It can
be done, but as far as I know it takes well over fifty lines (if done from first principles,
without appealing to any previously-established results about the system M).

Evidently, then, in the axiomatic systems M and M ′, even the most simple and in-
tuitively primitive results about valid inference – e.g. that (P ∧ Q) entails P – can have
not-at-all-simple and not-at-all-intuitive proofs which are very remote inded from “nat-
ural” ways of arguing for the validities concerned. Still, ease-of-use wasn’t the prime
concern of the founding fathers: they were much more concerned with showing in princi-
ple how the best mathematical standards of rigour could be brought to logical systems,
and showing how the body of logical truths hangs together in virtue of flowing from a
small number of self-evident assumptions.

2.4 The deduction theorem

Actually, M isn’t quite as unusable as you might think at first acquaintance. True, M -
proofs are ploddingly linear; in M , we can’t do the natural thing of making suppositions
‘for the sake of argument’ and then discharging them (about which more in a moment).
But there’s a sort of surrogate for that. For we can show the following metalogical result
– it is called the deduction theorem.

If A1, A2, . . . An, B ⊢M C then A1, A2, . . . An ⊢M (B → C).

This says that if there is an M -proof from A1, A2, . . . An and the extra assumption B to
the conclusion C, then there is also always an M -proof (differently structured but still
using just the initial rules of M) from A1, A2, . . . An to (B → C). There is a parallel
result for M ′.

With the deduction theorem to hand, go back to the problem of showing that
(P → (Q → R)) ⊢M (Q → (P → R)). It is trivially easy to show that
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(P → (Q → R)),Q,P ⊢M R

since that conclusion immediately follows from the premisses by two applications of MP.
Then one appeal of the deduction theorem tells us that

(P → (Q → R)),Q ⊢M (P → R)

and then another appeal tells us that

(P → (Q → R)) ⊢M (Q → (P → R))

That is to say, two applications of the deduction theorem tell us that there must be such
a proof, though note it doesn’t explicitly tell us what the proof is.

Frequent such appeals to the deduction theorem will evidently make working with
a theory like M much more manageable. Standard textbooks dealing with axiomatic
systems tell you how to prove the deduction theorem for a system like M .

2.5 M is sound and complete

The logical system M is sound and complete with respect to the usual truth-functional
semantics S for ‘→’ and ‘¬’. That is to say, if there’s a proof from the premisses
A1, A2, . . . An to conclusion C in system M , then the inference A1, A2, . . . An ∴ C is
indeed tautologically valid using the truth-functional interpretations of the connectives
given in S (the proof-system is sound, i.e. reliable). And if the inference A1, A2, . . . An ∴

C is tautologically valid there is indeed a proof from the premisses A1, A2, . . . An to con-
clusion C in system M (the proof-system is complete, i.e. covers all the tautologically
valid inferences featuring ‘→’ and/or ‘¬’).

Actually, in advanced work, we’ll for technical reasons want to consider the case
which allows an infinite number of premisses to be given: but for present introductory
purposes let’s forget about that!

In symbols, then, soundness and completeness correspond to the two directions of
the biconditional (which direction is which?):

A1, A2, . . . An ⊢M C if and only if A1, A2, . . . An �S C.

(where of course ‘�’ indicates tautological entailment).
Similarly, the extended axiomatic system M ′ is sound and complete given the truth-

functional semantics S′ for its four connectives: or in symbols

A1, A2, . . . An ⊢M ′ C if and only if A1, A2, . . . An �S′ C.

Now compare: the tree-system T (i.e. the system in IFL) was initially introduced via
the idea of ‘truth-tables done backwards’, so it was no surprise at all that T is sound and
complete (though that doesn’t mean we don’t have to check that T works as advertised).
But M has been – so to speak – just plonked on the table. So this time we are going to
have to work a bit harder to show that the system is sound and complete.

The appendix to this handout explores the needed soundness and completeness
proofs. But NB that’s just for mathmos and/or logic enthusiasts.

3 Natural deduction systems

3.1 Conditional proof

Let’s reinforce the point about the way that the axiomatic system M doesn’t reflect
natural modes of inference by thinking again about how to argue with conditionals.

Now, as we’ve already remarked, a natural way of establishing a conditional conclu-
sion of the form ‘if A then C’ is to argue along the following lines: ‘Suppose for the sake
of argument that A is true. Then blah, blah, blah. So (still on that supposition) C. But
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if we can show that C given the supposition that A, then that shows that if indeed A is
true, then C.’ Well, we can’t argue like that inside M .

Let’s put that suppositional mode of inference to work to show that the premisses
(P → Q) and (Q → R) entail (P → R). We can argue: Look, suppose for the sake of
argument that P is true. Then, from that supposition plus the first premiss, we can
deduce Q by modus ponens. And from that plus the second premiss, we can deduce R
by modus ponens again. Hence we can show that R given the supposition that P: so that
shows that (P → R).

Setting that out symbolically, we could display the argument like this, arranging
things Fitch-style (as in a classic 1952 logic text, Symbolic Logic: an Introduction by
Frederic B. Fitch):

1 (P → Q) premiss

2 (Q → R) premiss

3 P supposition

4 Q from 3, 1 by MP

5 R from 4, 2 by MP

6 (P → R) by the subproof from 3 to 5, by CP

Here, when we make a new temporary supposition, we indent the line of argument to
the right (and use a vertical line to mark the new column, and a short horizontal line
under the new supposition). When we come to the end of the ‘subproof’ depending on
a supposition and then ‘discharge’ the supposition, we move back a column to the left.
In this case, the little subproof from lines 3 to 5 shows that the supposition P (given
the other initial premisses) implies R. We can now stop making that supposition (we
discharge it), and can assert straight out that if P then R. The inference move here –
the move from giving a proof of R from the supposition P to asserting (P → R) – is an
instance of conditional proof (CP).

More generally, then, an inference by conditional proof has the form

A supposition
...

C

(A → C) by CP

Three points about this. First, subproofs can be nested, one inside another. Here’s
a demonstration, using CP, of the entailment from (P → (Q → R)) to (Q → (P → R)) –
which we said took twenty-one pretty unobvious lines in M .

1 (P → (Q → R)) premiss

2 Q supposition

3 P supposition

4 (Q → R) from 3, 1 by MP

5 R from 2, 4 by MP

6 (P → R) by the subproof from 3 to 5, by CP

7 (Q → (P → R)) by the subproof from 2 to 6, by CP

The layout should make it very clear what is going on here. We first suppose Q. Then,
with that supposition still in play, we also suppose P. A couple of applications of modus
ponens allow us to infer R. So, given that the supposition P implies R we can now cease
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to make that supposition and infer (P → R) by CP. But that conclusion still depends
on the supposition Q which is still in play. However, since that supposition Q implies
(P → R) we can now cease to make that supposition too, and infer (Q → (P → R)) by
CP again.

A second point: we can use suppositional reasoning to establish conclusions by CP
which rest on no premisses at all. Consider again the informal reasoning to the conclusion
‘if A and B, then A’ in §1.2. Here is a corresponding Fitch-style proof:

1 (P ∧ Q) supposition

2 P from 1 by ∧E

3 ((P ∧ Q) → P) by the subproof from 1 to 2, by CP

where ∧E is the obvious ‘and-elimination’ inference rule which allows us to infer a con-
junct from a conjunction. Note the conclusion of this proof depends on no initial pre-
misses – it is a theorem, expressing a logical truth.

Thirdly, how do we prove the obvious theorem (P → P)? We want something along
the following lines:

1 P supposition

2 P trivially, since we have 1!

3 (P → P) by the subproof from 1 to 2, by CP

One way of implementing this is to add a ‘reiteration’ rule to allow you to repeat a wff
already in play. Or we could just allow the trivial case of a subproof whose first and
last wff is one and the same. But for our purposes, we needn’t fuss about such very fine
details.

We’ll return to consider systems with other ways of laying out proofs with rules like
CP in a moment.

3.2 Reductio ad absurdum

Consider next another familiar everyday rule of inference which involves making and
discharging temporary suppositions, namely reductio ad absurdum (RAA). Here, we
show that some proposition is false by assuming the opposite for the sake of argument,
and showing that that supposition leads to contradiction. So schematically, the pattern
is this:

A supposition
...

⊥

¬A by RAA

where ⊥ stands for ‘absurdity’.
And what does ‘absurdity’ mean here? Well, this much is sure: if we have argued

ourselves to both A and ¬A, then we’ve certainly arrived at an absurd upshot. We can
encapsulate that in the so-called absurdity rule (Abs): given A and ¬A you can write
down ‘⊥’.

Now, there are a number of ways of fully implementing this idea. We could treat
the absurdity constant here rather as we treat ‘V’ on a tree – i.e. just as signal that a
contradiction has indeed been reached. On this treatment ‘⊥’ isn’t itself a wff, and so
e.g. the expression ‘(P → ⊥)’ would be ill-formed. And read this way, the absurdity rule,
while a rule of proof-construction, isn’t strictly speaking a rule-of-inference.
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But in fact, it is actually rather neat to treat the absurdity constant ‘⊥’ as built
into the language as a new genuine atomic wff (the falsum) which always evaluates as
false, and which can embed in more complex formulae, and even feature as a premiss
or conclusion in an argument. And on that understanding, the absurdity rule can be
treated alongside other inference rules.

Here, using the reductio rule, is a proof from the premiss (P → Q) to the conclusion
¬(P ∧ ¬Q):

1 (P → Q) premiss

2 (P ∧ ¬Q) supposition

3 P from 2 by ∧E

4 ¬Q from 2 by ∧E

5 Q from 1,3 by MP

6 ⊥ from 4, 5 by Abs

7 ¬(P ∧ ¬Q) from 2 to 6, by RAA

And now let’s prove the reverse, that from ¬(P ∧ ¬Q) we can infer (P → Q):

1 ¬(P ∧ ¬Q) premiss

2 P supposition

3 ¬Q supposition

4 (P ∧ ¬Q) from 2, 3 by ∧I

5 ⊥ from 1, 4 by Abs

6 ¬¬Q from 3 to 5 by RAA

7 Q from 6, by DN

8 (P → Q) from 2 to 7 by CP

Here we’ve called upon two new, but obvious, rules. First ∧I is the ‘and-introduction’
rule that allows us to infer a conjunction given both its conjuncts. And DN of course is
the ‘double negation’ rule that allows us to strip off initial double negations.4

3.3 Introduction and elimination rules

3.3.1 Introduction, elimination and harmony

So far we’ve met a pair of rules for ‘∧’ – an introduction rule ∧I, which tells us how
to argue to a wff introducing a (new) occurrence of ‘∧’ as its main connective, and an
elimination rule telling us how to argue from a wff with ‘∧’ as the main connective to a
result lacking that occurrence of the connective.

Likewise we have met a pair of rules for ‘→’. You can think of CP as an introduction
rule, which tells us how to argue to a wff introducing a (new) occurrence of ‘→’ as its
main connective. And MP is an elimination rule telling us how to argue from a wff with
‘→’ as the main connective to a result lacking that occurrence of the connective.

Now, in each of those cases, the elimination rule is in a certain sense in harmony
with the introduction rule. Gentzen puts it like this:

The introductions represent, as it were, the ‘definitions’ of the symbols con-
cerned, and the eliminations are no more, in the final analysis, than the
consequences of these definitions.

4Note an implication of this pair of proofs! Assuming two very obvious and natural rules for the
conditional, CP and MP, then – assuming some other standard rules of inference – it turns out that
(P → Q) is interderivable with ¬(P ∧ ¬Q). The material conditional rules, OK!
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That’s obvious for the pair of ‘∧’ rules: ∧E just takes out again from a conjunction what
∧I puts in. For the ‘→’ rules, think of it like this. The CP introduction rule tells us
that the proper warrant for (A → C) is a derivation of C from A. So to be given A and
(A → C) is in effect to be given A and told that there is a derivation of C from A, so of
course that entitles you to derive C – thus warranting the elimination rule MP.

It is the same for the rules for ‘∨’. First, there is the obvious introduction rule ∨I,
which tells us that we can infer a disjunction from one of its disjuncts. Now suppose you
are given (A ∨ B); then you know that you are entitled to at least one of A and B but
not which. So how can you proceed from there? Well you can argue by cases. That is to
say, you can argue: I’m given (A ∨ B), I don’t know which. But suppose A, blah, blah,
blah, so C. Suppose on the other hand B, mumble, mumble, mumble, so C. So, either
way, C! This seems to be warranted by the introduction rule tells you about disjunction.
Laying out that reasoning Fitch-style, the rule ∨E that apparently harmonizes with the
introduction rule (we haven’t strictly shown it is the only/best candidate) has the form

(A ∨ B)

A supposition
...

C

B supposition
...

C

C by ∨E

To illustrate, we’ll use the ∨-rules to show (P ∧ (Q ∨ R)) entails ((P ∧ Q) ∨ (P ∧ R)):

1 (P ∧ (Q ∨ R)) premiss

2 P from 1, by ∧E

3 (Q ∨ R) from 1, by ∧E

4 Q supposition

5 (P ∧ Q) from 2, 4 by ∧I

6 ((P ∧ Q) ∨ (R ∧ Q)) from 5 by ∨I

7 P supposition

8 (P ∧ R) from 2, 7 by ∧I

9 ((P ∧ Q) ∨ (R ∧ Q)) from 8 by ∨I

10 ((P ∧ Q) ∨ (R ∧ Q)) from 3, 4–6, 7–9, by ∨E

3.3.2 The case of negation

The classical negation rules don’t quite have the sort of neat, harmonious, correspondence
we’ve just been talking about.

RAA can be said to be serve an introduction-like (and indeed is sometimes called
¬I). Though you might think that since the RAA rule mentions ‘⊥’, and ‘⊥’ is in turn
introduced by a rule relating it immediately to negation, we would be going round in
circles here if we tried to use RAA to introduce negation to someone. Compare, say,
the introduction rule for ‘→’. It seems that we could use that rule to fix the meaning
of the connective for someone who hadn’t encountered it before, while by contrast RAA
introduces a negated conclusion ultimately by reference to a prior use of negation.
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But let that first observation pass. Suppose, just suppose, we think that somehow ‘⊥’,
the idea of absurdity (a wildly unwanted outcome) can in fact be understood without
understanding negation per se. Then RAA can be regarded as a kosher introduction rule
for negation: what would be the negation-elimination rule that stands in harmony to
this introduction rule? Here’s RAA again:

A supposition
...

⊥

¬A

Well, suppose you are given ¬A Then, with the negation understood via RAA as its
introduction rule, this would convey to you that there is an inference from A to ⊥ (to
warrant the assertion of ¬A). So, if you were both given ¬A (so you can take it that
there is such an inference from A to ⊥) and also given A, then you could infer ⊥. In
other words, an ‘elimination’ rule co-ordinate to RAA treated as an ‘introduction’ rule
for negation is just the absurdity rule Abs again, ‘from A and ¬A infer ⊥’.

Well, so far so good. But note that leaves the double negation rule ‘from ¬¬A infer
A’ out in the cold. Where does that fit into the picture? Well, arguably it doesn’t – i.e.
arguably DN can’t be justified in the same way as other rules are justified. The thought
is that introduction rules don’t really need justifying in any substantial sense as they
simply define a connective, while harmonious elimination rules are justified as in effect
extracting from a complex wff what the corresponding introduction rule put in: DN has
no justification of those kinds. Which is one reason you might worry about accepting
DN as a law of pure logic that holds across the board. Perhaps it is a legitimate local
principle in some domains of discourse but not in others, but not a fundamental law of
thought that applies across the board – which is in effect the intuitionist ’s view.

Suppose for example that you think that, in some domain, for a proposition to obtain
is for there to be (at least in principle) a means of verifying it. E.g. suppose you think
that for a mathematical proposition to be hold is for there to be at least in principle a
way of proving it. Then, on that view, from a demonstration D that there is no means
of verifying ¬A, i.e. no means of showing the supposition that A must lead to absurdity
(so D warrants ¬¬A), it evidently does not follow that there is a means of verifying A.
So at least in this domain, from ¬¬A we are not entitled to infer A.

3.3.3 Ex falso quodlibet

Now, on the classical analysis of logical consequence, an absurdity entails any conclusion
C – for it is impossible for an absurdity to be true and C false (since it is impossible for
an absurdity to be true, period). We can reflect that thought in another rule of inference
– often called ex falso quodlibet (EFQ): from ⊥ infer anything. So once you find yourself
with an absurd conclusion, you really ought to backtrack and discharge some premiss,
because if you carry on then really anything goes and craziness explodes everywhere!

Now, you might hesitate over this rule. But in fact it adds almost nothing to what
we already have, given the other rules. For consider the proof at the top of the next side.
This shows that from the premisses P,¬P we can infer Q by our existing rules. And we
can now generalize this form of inference, to show that we can always infer from A and
¬A to any conclusion C. All that EFQ adds is that the same happens if we start from
the contradiction wrapped up into a single absurd proposition, the falsum. So, in fact,
adding EFQ to the other rules doesn’t actually significantly add to what we can infer,
and we shouldn’t fuss about that if we are already prepared to accept the inference from
A and ¬A to any conclusion.5

5To put things the other way around: if we want to avoid the ‘explosion’ result that we can get
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1 P premiss

2 (¬P ∧ ¬Q) supposition

3 ¬P from 1, by ∧E

4 ⊥ from 1, 3 by Abs

5 ¬(¬P ∧ ¬Q) from 2–4, by RAA

6 ¬P premiss

7 ¬Q supposition

8 (¬P ∧ ¬Q) from 6, 7 by ∧I

9 ⊥ from 5, 8 by Abs

10 ¬¬Q from 7–9 by RAA

11 Q from 10 by DN

3.4 Putting everything together

In sum, then, we now have met ten inference rules governing the connectives – ∧I, ∧E,
∨I, ∨E, →I (a.k.a. CP), →E (a.k.a. MP), ¬I (a.k.a. RAA), ¬E (a.k.a. the absurdity
rule), plus DN and EFQ. And we’ve seen – at least in a rough and ready way – how to
begin to put together inferences using these rules into a Fitch-style proof. To be sure, we
haven’t explained the detailed proof-building rules very carefully: but you should at least
have got the basic flavour of the thing. Let’s pretend we’ve tidied things up properly.
Then, when there is a well-formed Fitch proof from the premisses A1, A2, . . . An to the
conclusion S, we’ll write A1, A2, . . . An ⊢F C. The usual soundness and completeness
results obtain, as you’ll not be surprised to be told. In symbols,

A1, A2, . . . An ⊢F C if and only if A1, A2, . . . An �S′′ C.

where S′′ is the semantics you get for the language with the usual connectives plus ⊥

by requiring that the falsum always evaluates as false.

3.5 Another way of laying out proofs

3.5.1 Gentzen-style proofs – the general idea

Fitch-style proofs are very ‘natural’ and easy to follow. The practice of indenting a sub-
proof every time a new supposition is made reveals very clearly which suppositions are in
play at which point in the argument (much more so than the layout that LO uses, which
just uses a written commentary to tell us what is going on in a proof). On the other hand,
Fitch’s way of displaying an argument doesn’t make it immediately transparent what
the ‘input’ to each step is – which is why we have also given a step-by-step commentary
to the right of a proof.

Of course, in a short proof it is easy enough to check back and see where a line must
have come from. For example, take the entirely uncommented proof on the next page. It
only takes a moment to see that if this is a proof it must be one whose underived initial
premisses are at lines 1, 2 and 5, that line 6 is derived from line 1 (rather than any of
the other preceding lines), while line 8 is derived from lines 5 and 7. But still, the layout
of the proof doesn’t display the relations of immediate consequence between the various
steps.

from contradictory wffs to anything at all, it isn’t enough to drop EFQ. We’ll have to adjust the other
principles somehow. And dropping DN won’t help much as we’ll still be able to get to the negation of
any proposition. Now, there are ways of avoiding ‘explosion’ at greater or lesser cost – but exploring
them will take us far too far afield here.
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1 (P ∧ Q)

2 (Q → R)

3 Q

4 R

5 ((P ∧ R) → S)

6 P

7 (P ∧ R)

8 S

9 (S ∧ Q)

Here, then, is an alternative way of laying out the same argument, Gentzen-style.
This time, steps are separated by horizontal lines: the immediate input(s) to an inference
appear above the line – inputs, plural, for rules like ∧I and MP – and the immediate
conclusion of the inference appears below the line.

(P ∧ Q)

P

(P ∧ Q)

Q (Q → R)

R
(P ∧ R) ((P ∧ R) → S)

S

(P ∧ Q)

Q

(S ∧ Q)

This layout presents visually a lot more information about the proof. It displays the
premisses at the top of branches of the tree. The premiss (P ∧ Q) appears three times,
reflecting that it is used in three different threads of argument. And – most importantly –
at each step, it is entirely clear what inference is being made from the inputs immediately
above a line to the conclusion below.

So far so good. But how are suppositional inferences to be displayed in this type of tree
layout? Well, here’s an inference from the premiss P together with the two conditional
premisses (P → Q) , (Q → R) to the conclusion R:

P (P → Q)

Q (Q → R)

R

Now, instead of treating P as a premiss, we can if we want regard it as a temporary
assumption waiting to be discharged, e.g. in a CP inference. So let’s do that – and we’ll
write square brackets round an assumption at the top of a thread of argument when we
go on to discharge it. Taking that step gives us:

[P] (P → Q)

Q (Q → R)

R
(P → R)

And here next is the inference from (P → (Q → R)) to (Q → (P → R)) (which we
previously did Fitch-style) set out in the Gentzen style. To make things clear, I’ll grow the
proof in stages. So we start by showing that (P → (Q → R)), along with the temporary-
assumptions-waiting-to-be discharged P and Q, together entail R.

Q

P (P → (Q → R))

(Q → R)

R
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Now we discharge the assumption P and apply CP:

Q

[P](1) (P → (Q → R))

(Q → R)

R
(1)

(P → R)

Here, for extra clarity, we label together by (1) the first assumption which is discharged
and the inference line where the discharging takes place. And now we can use CP and
discharge another assumption labelled (2) to get

[Q](2)
[P](1) (P → (Q → R))

(Q → R)

R
(1)

(P → R)
(2)

(Q → (P → R))

So, as we wanted, we have just the one premiss remaining, and the desired conclusion
at the bottom of the proof-tree.

As another illustration of this way of laying out proofs, here is a proof warranting
the inference from ¬(P ∧ ¬Q) to (P → Q) which we earlier did Fitch-style:

[P](2) [¬Q](1)

(P ∧ ¬Q) ¬(P ∧ ¬Q)

⊥
(1)

¬¬Q
Q

(2)
(P → Q)

Here at the step labelled (1) we use ¬I to discharge one of the three assumptions alive
at that time which lead to a contradiction (we could, of course, discharge any of them).

3.5.2 The rules!

Let’s gather our proof-building rules together again, now using this time an obvious
Gentzen-style notation: so we have

A B
∧I:

(A ∧ B)
(A ∧ B)

∧El:
A

(A ∧ B)
∧Er:

B

A
∨Il:

(A ∨ B)
B

∨Ir:
(A ∨ B) ∨E:

(A ∨ B)

[A]

...
C

[B]

...
C

C

[A]

...
→ I:

B

(A → B)

A (A → B)
→ E:

B

[A]

...
¬I:

⊥
¬A

A ¬A
¬E:

⊥
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¬¬A
DN :

A
⊥EFQ:
C

We also need instructions for putting together applications of the rules thus stated into
composite proofs. The tricky thing is to state carefully the principles for discharging
assumptions in applications of the rules ∨E, → I and ¬I.

(i) Note, by the way, that these aren’t the only set of rules we could adopt for a natural
deduction logic: in fact we see some others for classical negation in just a moment (so
‘natural deduction’ labels a style of doing logic, rather than a unique system).

(ii) Note also that the discharge rules are permissive: in other words, discharging one
or more of the relevant assumptions in applying these rules is optional – for we can’t go
wrong in perhaps keeping used assumptions active (we’ll just end up with a proof with
some unnecessary premisses still in play).

(iii) Assumptions and conclusions may be the same wff in subproofs. In other words,
instead of writing

[P]

...
P

(P → P)

(going round the houses somehow to get from P to P), we can just write

[P]

(P → P)

treating P by itself as a subproof starting with P and finishing with P!
(iv) Furthermore it is convenient, in applying →I, to allow cancellation of assumptions

that aren’t even used, thus allowing

P
(Q → P)

where we discharge the unused assumption Q. Though in the presence of the other rules,
we don’t really need this little convention, for consider e.g.

P

[(¬P ∧ Q)]1

¬P
⊥

(1)
¬(¬P ∧ Q)

[¬P]2 [Q]3

(¬P ∧ Q)

⊥
¬¬P

(2)
P

(3)
(Q → P)

Here, note how the numbering helps indicate clearly which assumption is discharged at
which step.

3.5.3 More on the negation rules

(a) Sometimes, instead of DN, systems use the rule ‘Classical Reductio’, on the right
below, a companion for our previous version of RAA:

[A]

...
RAA:

⊥
¬A

[¬A]

...
Cl.RAA:

⊥
A

It is plain that the other rules plus DN yields Classical Reductio: for consider
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[¬A]

...
⊥

RAA
¬¬A

DN
A

Conversely, given Classical Reductio plus the other rules, we get back DN: for consider

[¬A] ¬¬A
¬E

⊥
Cl.RAA

A

(b) It is also worth noting too that, in the presence of the other rules, DN is equivalent
to the law of excluded middle – i.e. to the principle that (A ∨ ¬A) can be proved from
no premisses. Firstly, let’s show how – given DN – we can show (A∨¬A) as a theorem.
And actually, this is an interesting case to prove first in Fitch-style and then in Gentzen
style, to give a further comparison of the different proof-styles.

So first, here is a Fitch-style working out of a proof that it is derivable from no
premisses) that (P ∨ ¬P).

Since there are no premisses to use, and the conclusion isn’t a conditional, we are
going to have to kick off by assuming the opposite of what we want to prove, and aim
for a reductio:

1 ¬(P ∨ ¬P) supposition

But we can’t apply any rule to that, except the ‘∨’ introduction rule, so we are going
to have to make another assumption to get anywhere! What shall we assume? Let’s try
the simplest option . . .

1 ¬(P ∨ ¬P) supposition

2 P supposition

It is obvious that we can get a contradiction from that assumption:

1 ¬(P ∨ ¬P) supposition

2 P supposition

3 (P ∨ ¬P) from 2 by ∨I

4 ⊥ by 1, 3!

5 ¬P from 2 to 4 by RAA

And now it is equally obvious how to finish the argument to get a contradiction from
the initial supposition, and hence the desired result.

6 (P ∨ ¬P) from 5 by ∨I

7 ⊥ by 1, 6!

8 ¬¬(P ∨ ¬P) from 1 to 7 by RAA

9 (P ∨ ¬P) from 8 by DN

And now that we’ve got the proof, we can if we want rearrange it into a Gentzen-style
presentation, thus:

[P](1)

(P ∨ ¬P) [¬(P ∨ ¬P)](2)

⊥
(1)

¬P
(P ∨ ¬P) [¬(P ∨ ¬P)](2)

⊥
(2)

¬¬(P ∨ ¬P)
DN

(P ∨ ¬P)
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where at the step labelled (2) we use the reductio rule →I to discharge the supposition
¬(P ∨ ¬P) that we’ve used twice in getting to the contradiction. Which way is the proof
easier to follow, Fitch-style or Gentzen-style? Why?

Obviously the proof of that instance of excluded middle generalizes. Which goes to
show that DN implies excluded middle, in the presence of the other inference rules. And
now let’s show conversely that, if we can assume instances of excluded middle as a ‘free
go’, then (in the presence of the other rules) we can recover DN, as promised. So consider
the following pattern of inference:

(P ∨ ¬P)

P
...
P

¬P ¬¬P

. . . . .
.

P
∨E

P

If we can fill in the dots, then we can use ∨E as indicated to discharge the premisses P
and ¬P, and we’ll have a proof from the sole remaining assumption ¬¬P to the conclusion
P. Now, there is no need for any filling on the left, given we allow minimal subproofs
whose initial assumption and whose conclusion is the same. And on the right we can get
from the contradictory pair ¬P and ¬¬P to anywhere we like in various ways, including
by a simple appeal to EFQ. So here’s a completed proof:

(P ∨ ¬P) [P](1)

[¬P](1) ¬¬P
¬E

⊥ EFQ
P

(1) ∨E
P

Again, of course, the proof generalizes.
We’ve shown then that in the presence of the other rules, DN is equivalent to classical

reductio is equivalent to the law of excluded middle. So an intuitionist who doesn’t
endorse double negation won’t endorse the other principles either – these are therefore
the distinctively classical (i.e. non-intuitionist) laws/rules.

And that’s enough to be going on with. We haven’t explained entirely carefully the
rules for building Gentzen-style proofs using our eight introduction and elimination rules,
plus DN plus EFQ. But imagine that done. Then, when there is a well-formed Gentzen
proof from the (unbracketed!) premisses A1, A2, . . . An at the top of branches to the
conclusion C at the bottom, we’ll write A1, A2, . . . An ⊢G C. The expected soundness
and completeness results obtain, as once more will be no surprise. In symbols,

A1, A2, . . . An ⊢G C if and only if A1, A2, . . . An �S′′ C.

3.6 Natural deduction summarized

Let’s summarize. An axiomatic system like M only allows ploddingly linear proofs, in
which every step is either a premiss or an axiom or follows from earlier steps. We aren’t
allowed to make temporary suppositions ‘for the sake of argument’ and then discharge
them, even though that is a crucial everyday mode of inference.6 By contrast, natural
deduction systems – and this really is perhaps their crucial differentiating feature –
allow us to make temporary suppositions for the sake of argument and hence implement
rules like CP and RAA. In addition, since Gentzen, it is canonical to present rules for
connectives (aside from negation) – and quantifiers, when we come to them – in matching
pairs of an introduction rule and an elimination rule which (as it were) undoes the effect
of that introduction rule.

6Note then the difference between the deduction theorem which does apply to M , and CP which isn’t
a rule of M . CP, to repeat, is a rule of inference that operates inside a certain kind of proof system
which allows detours via suppositional inferences. The deduction theorem is a result about the ‘linear’
system M , standing outside it, so to speak.
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But we’ve also seen that there is more than one way of arranging a natural de-
duction proof, Fitch’s and Gentzen’s being the two nicest. The Fitch style perhaps is
the more ‘natural’, reflecting the essentially one-thing-after-another flow of ordinary
bits of argumentation: it works well as a tool to organize thoughts in the process of
constructing arguments. The Gentzen mode of presentation, however, perhaps more
tellingly reveals the logical structure and internal dependencies of arguments once dis-
covered. To illustrate what I mean, check out again those two proofs of excluded middle.
For more on Fitch-style proofs, there’s a very clearly explained presentation in Paul
Teller, A Modern Formal Logic Primer, Prentice-Hall, 1989 (now freely available on-line
at http://tellerprimer.ucdavis.edu/). Gentzen-style proofs are used in e.g. Neil Tennant,
Natural Logic, Edinburgh UP, 2nd edn 1990; or in the excellent but more advanced Dirk
van Dalen, Logic and Structure, Springer, 4th edn 2004.

4 Appendix: Soundness and completeness proofs for M

We’ll now return to the task that we shelved so as not to interrupt the business of
comparing different styles of logical system, and show that the axiomatic system M

is sound and complete. As noted before, for our purposes, you certainly don’t need to
master all the details of such proofs. So this is just an appendix for enthusiasts. Don’t
read on if this sort of thing fazes you: there’s nothing of philosophical significance here
at all. But for those with a taste for the mathematical details, it is worth getting some
sense of how these things are proved.

4.1 The proof that all M -theorems are tautologies, more carefully done

Our soundness proof relies on two lemmata:7

1. Every M -axiom is a tautology. (Proof by checking that instances of Ax1, Ax2, Ax3
must indeed always be tautologies. Why is that so?)

2. If the valuation V makes both A and (A → C) true, then it makes C true too.
(Proof by appeal to truth-table definition of ‘→’. Spell that out!)

And now here’s the soundness proof. Suppose A1, A2, . . . An ⊢M C. And suppose too
that V is a valuation which makes all the premisses Aj true. We are assuming then that
there is a proof-sequence of wffs P1, P2, . . . Pn which forms a proof of C, where each wff
Pj is either (i) one of the Aj , or (ii) is an axiom, or (iii) follows from earlier wffs in the
sequence by MP, and (iv) where Pn = C. Then V makes each Pj true. Why? Because
as we walk along the sequence every wff Pj is either (i) one of the Aj so is true on V

by hypothesis; or (ii) it is an axiom, and hence a tautology by (1), and hence true on
any valuation, and hence true on V in particular; or (iii) the wff is derived by modus
ponens from two earlier wffs which have already been seen to be true on valuation V as
we walked past them, and so is true on V by (2). So every Pj is true on V . Whence in
particular (iv) the last wff Pn, i.e. C, is true on V .

So what we’ve shown is that, assuming that A1, A2, . . . An ⊢M C, then any valuation
V which makes the Aj all true makes C true. Which, of course, is just to say that
A1, A2, . . . An � C.8 QED.

An immediate corollary is that, if C is an M -theorem, then C is a tautology. In
symbols,

If ⊢M C then � C.

7‘Lemma’ (pl. lemmata): a subsidiary or intermediate theorem in a proof.
8We can drop subscripts from � when it is obvious which semantics is in play!
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4.2 Proofs by induction

The key part of the soundness argument is essentially an argument by induction on the
length of the proof.

Now, in general, a proof by induction has the following form. Suppose (i) F (0), i.e.
0 has property F . And suppose that (ii) for every j, F (j) → F (j + 1). Then since F (0)
and F (0) → F (1), it follows that F (1). And since F (1) → F (2), it follows that F (2).
And since F (2) → F (3), it follows that F (3). And so on through all the numbers. So,
(iii) F (n), whatever n is.

In this particular case, put F (n) for: in an M -proof sequence of length n, every wff
is true on any valuation V which makes the premisses true. Then, vacuously, we have
(i) F (0). And we also have (ii), for every j, if F (j) then F (j +1). Hence F (n), for any n.
So the last wff in any proof-sequence is true on any valuation which makes the premisses
true. So it is a tautological entailment of the premisses.

And why does (ii) hold? The argument is essentially as above in §4.1. Take a proof n

steps long, where by hypothesis F (n). Now add another wff to the proof (premiss, axiom,
deduction by MP). The next wff will still be true on any V that makes the premisses
true. So we get F (n + 1). (Spell that out!)

4.3 Sketching a direct proof that M is complete

We want to show that M has a proof corresponding to any tautologically valid argument
in ‘→’ and ‘¬’:

If A1, A2, . . . An � C then A1, A2, . . . An ⊢M C.

Let’s say that a set of wffs Γ (wffs from our propositional language with just ‘→’
and ‘¬’ built in) is M -consistent if it isn’t the case that for some C, both Γ ⊢M C and
Γ ⊢M ¬C. In other words, Γ is M -consistent if you can’t prove a contradiction from Γ in
M . And of course, a set of wffs Γ is semantically consistent if there’s a valuation which
makes every wff in Γ true. Then it is enough to prove M ’s completeness that we prove

(**) If Γ is M -consistent, Γ is semantically consistent.

Why is that enough? Well, suppose A1, A2, . . . An 0M C. A bit of fiddling around in
M shows that this implies A1, A2, . . . An,¬C is M -consistent (in effect, a reductio prin-
ciple holds for M ; if A1, A2, . . . An,¬C is M -inconsistent and entails a contradiction,
then A1, A2, . . . An ⊢M C, and vice versa). So by (**) A1, A2, . . . An,¬C is semantically
consistent. So there is a valuation which makes A1, A2, . . . An,¬C all true, i.e. makes
A1, A2, . . . An true and C false, and so A1, A2, . . . An 2 C. In short, if A1, A2, . . . An 0M C

then A1, A2, . . . An 2 C. Contraposing gives us the completeness result. QED.
So we ‘just’ have to prove (**).
Here’s one way to do it, informally described.

i. First we show that, for any set Γ, if it is M -consistent, it can be beefed up to a
(usually) bigger but still M -consistent Γ′ which includes everything in Γ but now
also includes truth-makers for all the complex wffs in Γ. That is to say, for every
wff A more complex than an atom or a negated atom we put into the set one or
two other wffs which, if true, make A true. Since we are only dealing with the
two connectives ‘→’ and ‘¬’, complex wffs will be of the form ¬¬A, (A → B) and
¬(A → B). In the first case, the relevant truth-maker is the corresponding plain
A; in the second case, ¬A and B are alternative truth-makers; and in the third
case, we need both A and ¬B to make the complex wff true.

ii. If Γ′ is M -consistent and contains truth-makers for all its complex wffs, it is se-
mantically consistent. Why? Because there will be a valuation V which makes all
the shortest wffs true – i.e. which makes true all the atoms and negated atoms
in Γ′ (NB no atom can appear both naked and negated in Γ′, or it wouldn’t be
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M -consistent after all). And this valuation V which makes all the minimal truth-
makers true will make the next most complex wffs true and these will make the
next most complex wffs true, and so on percolating truth upwards throughout Γ′.

But of course, if V makes everything in the bigger set Γ′ true, then V makes everything
in the original set Γ true (since Γ ⊆ Γ′). So Γ is semantically consistent.

Let’s now put that more carefully. Keeping to the case of a set of wffs Σ from our
propositional language with just ‘→’ and ‘¬’ built in, let’s say (to use fancy jargon) that
Σ is saturated if the following conditions hold:

1. If Σ contains a wff ¬¬A it also contains A.

2. If Σ contains a wff ¬(A → C) it also contains A and ¬C.

3. If Σ contains a wff (A → C) it also contains ¬A and/or C.

(Do those clauses look familiar? Remember tree-building: applying the unpacking rules
as often as you can to the initial wffs will – if you don’t hit a contradiction – give you a
set of wffs Σ which will be saturated in this sense!)

Putting the argument in terms of this jargon, we can show the following:

i′. If Γ is M -consistent, it can be extended to a saturated M -consistent set Γ′ such
that Γ ⊆ Γ′.

ii′. If Γ′ is saturated M -consistent, it is semantically consistent.

As we said, these two together entail (**). For if the ‘little’ set Γ can be extended to
a ‘big’ set Γ′ whose wffs can all be true together, obviously Γ’s wffs can all be true
together.

We prove (i′) by brute force. Put the wffs in Γ into some convenient order (we’ll for
present purposes assume Γ is finite, though that isn’t actually necessary). Walk along the
list. When we encounter a wff of the form ¬¬A, add A to the end of the list. (Fiddling
around in M , you can check that this can’t change a so-far M -consistent list of wffs to an
inconsistent one. Why? Because ⊢M ¬¬A → A. So if we can prove a contradiction from
stuff-plus-A, we can already prove the same contradiction from stuff-plus-¬¬A. Since
¬¬A by hypothesis didn’t generate a contradiction, A won’t.) When we encounter a wff
of the form ¬(A → C), add A and ¬C to the end of the list. (Fiddling around in M , you
can again check that this can’t change an M -consistent list of wffs to an inconsistent
one.) If you encounter a wff of the form (A → C) add one of ¬A and C, whichever
doesn’t make the list inconsistent (once again, it can be shown that you can always
make such an addition, preserving M -consistency: for suppose otherwise; suppose both
adding ¬A and adding C makes the list M -inconsistent; that means the wffs already
on the list, including (A → C), entail A and ¬C; which makes the wffs already on the
list inconsistent after all, contrary to hypothesis). Keep on going, adding truth-makers
for the complex wffs we encounter, while preserving M -consistency. The added wffs get
simpler and simpler, and eventually you’ve got a saturated but still consistent set. QED.

We prove (ii′) just as we prove that there’s a valuation of the wffs on a completed
open branch of a tree in ‘→’ and ‘¬’ that makes every wff on the branch true (because,
as we just said, the set of wffs on a completed open branch is saturated). Take the atoms
that appear somewhere in the wffs in Γ. Consider the valuation that assigns the atom
A the value T if it appears naked as a wff in Γ, and the value F if the atom appears
negated as ¬A (it can only appear one way or the other, and since all complex wffs are
fully unpacked, every atom which appears in a complex wff also appears either naked or
negated). Then it is easily checked that this valuation makes every wff in Γ true. QED.

So we are done, albeit with a few gaps. Still, the strategy is the thing! And note
that, whatever rich-enough propositional logic L we might be using, if we can prove the
corresponding version of (i) – perhaps with the notion of ‘saturation’ expanded to cover
other connectives in the obvious ways familiar from our work with trees – we’ll get a
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completeness proof! That’s why it is worth knowing about the strategy here: it is, as it
were, all-purpose.

4.4 Sketching an indirect proof that M is complete

Finally, just for masochists, let’s also sketch an indirect proof of M ’s soundness, because
that’s the way Logical Options does things for the axiomatic system it presents.

Suppose we can show

(***) If A1, A2, . . . An ⊢T− C then A1, A2, . . . An ⊢M C.

(Here, T− is the tree-system cut down to deal with just the connectives ‘→’ and ‘¬’ that
appear in M .) Then the proof of completeness for such trees tells us that, for arguments
restricted to ‘→’ and ‘¬’,

If A1, A2, . . . An � C then A1, A2, . . . An ⊢T− C.

And obviously these two results together entail the desired completeness result:

If A1, A2, . . . An � C then A1, A2, . . . An ⊢M C.

So how might we go about showing (***)?
We’ll use another proof by induction, this time by induction on the complexity of

tree proofs. Let’s say that a tree-proof has depth d if – on the longest branch – the
unpacking rules get applied d times.

(1) Then, first we show that if A1, A2, . . . An ⊢T− C, then A1, A2, . . . An ⊢M C in
any case where the tree proof has depth d = 0. That is to say, when the tree starting
A1, A2, . . . An,¬C closes immediately, without any unpacking rules being applied. That is
to say, when one of those wffs is the contradictory of the other. If Ai is the negation of Aj ,
then it is easy to show Ai and Aj M -entail anything you like, and so A1, A2, . . . An ⊢M C.
And if Ai is the contradictory of ¬C, then again it is easy to show that Ai ⊢M C and
hence A1, A2, . . . An ⊢M C.

(2) Suppose now that when A1, A2, . . . An ⊢T− C, then A1, A2, . . . An ⊢M C, in any
case where the tree proof has depth no more than d = j. We show on that induction
hypothesis that the same thing holds when the tree proof has depth up to d = (j + 1).

Suppose, then, there is a closed tree starting starting A1, A2, . . . An,¬C which is of
depth j +1. How does the tree start? Either the first rule applied is the rule for splitting
conditionals, or it is the rule for unpacking negated conditionals, or it is the double
negation rule. Take the first case. Then the tree has the form

A1

A2
...

(A → B)
...

An

¬C

�
�

�
��

H
H

H
HH

¬A B
...

...

V V

where, by hypothesis, eventually both branches close, and both branches have additional
depth ≤ j. And now look at those branches separately.

With trivial rearrangement, the left one forms a closed tree of depth ≤ j, starting
A1, A2, . . . , (A → B), . . . An,¬A,¬C: the right one forms another closed tree of depth
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≤ j, this time starting A1, A2, . . . , (A → B), . . . An, B,¬C. Since these trees do have
depth ≤ j, the induction hypothesis applies; so A1, A2, . . . , (A → B), . . . An,¬A �M C

and A1, A2, . . . , (A → B), . . . An, B �M C. By the deduction theorem, the premisses
A1, A2, . . . , (A → B), . . . An therefore prove (¬A → C) and (B → C), and the premisses
trivially prove (A → C). It quickly follows that those premisses therefore prove C, which
was to be shown.

So much, then, for the case where the first rule applied in our tree of depth j + 1 is
the rule for splitting conditionals. The same holds similarly in the other two cases where
the first rule applied is the negated-conditional rule or the double negation rule. So we’ve
established (2) if A1, A2, . . . An ⊢T− C implies A1, A2, . . . An ⊢M C in any case where
the tree proof has depth no more than d = j, the implication also holds for tree-proofs
of depth up to d = (j + 1).

Hence, from (1) and (2) by induction, the desired implication holds for trees of any
depth. Phew. QED.
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