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Preface to the third edition

In this new edition, [ have added a Supplement on Measure and Integral.
The subject matter is first treated in a general setting pestinent to an abstract
measure space, and then specified in the classic Borel-Lebesgue case for the
real line. The latter material, an essential part of real analysis, is presupposed
in the original edition published in 1968 and revised in the second edition
of 1974. When 1 taught the course under the title “Advanced Probability”
at Stanford University beginning in 1962, students from the departments of
statistics, operations research (formerly industrial engineering), electrical engi-
neering, etc. often had to take a prerequisite course given by other instructors
before they enlisted in my course. In later years I prepared a set of notes,
lithographed and distributed in the class, to meet the need. This forms the
basis of the present Supplement. It is hoped that the result may as well serve
in an introductory mode, perhaps also independently for a short course in the
stated topics.

The presentation is largely self-contained with only a few particular refer-
ences to the main text. For instance, after (the old) §2.1 where the basic notions
of set theory are explained, the reader can proceed to the first two sections of
the Supplement for a full treatment of the construction and completion of a
general measure; the next two sections contain a full treatment of the mathe-
matical expectation as an integral, of which the properties are recapitulated in
§3.2. In the final section, application of the new integral to the older Riemann
integral in calculus is described and illustrated with some famous examples.
Throughout the exposition, a few side remarks, pedagogic, historical, even
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judgmental, of the kind I used to drop in the classroom, are approximately
reproduced.

In drafting the Supplement, I consulted Patrick Fitzsimmons on several
occasions for support. Giorgio Letta and Bernard Bru gave me encouragement
for the uncommon approach to Borel’s lemma in §3, for which the usual proof
always left me disconsolate as being too devious for the novice’s appreciation.

A small number of additional remarks and exercises have been added to
the main text.

Warmn thanks are due: to Vanessa Gerhard of Academic Press who deci-
phered my handwritten manuscript with great ease and care; to Isolde Field
of the Mathematics Depariment for unfailing assistence; to Jim Luce for a
mission accomplished. Last and evidently not least, my wife and my daughter
Corinna performed numerous tasks indispensable to the undertaking of this
publication.




Preface to the second edition

This edition contains a good number of additions scattered throughout the
book as well as numerous voluntary and involuntary changes. The reader who
is familiar with the first edition will have the joy (or chagrin) of spotting new
entries. Several sections in Chapters 4 and 9 have been rewritten to make the
material more adaptable to application in stochastic processes. Let me reiterate
that this book was designed as a basic study course prior to various possible
specializations. There is enough material in it to cover an academic year in
class instruction, if the contents are taken seriously, including the exercises.
On the other hand, the ordering of the topics may be varied considerably to
suit individual tastes. For instance, Chapters 6 and 7 dealing with limiting
distributions can be easily made to precede Chapter 5 which treats almost
sure convergence. A specific recommendation is to take up Chapter 9, where
conditioning makes a belated appearance, before much of Chapter 5 or even
Chapter 4. This would be more in the modern spirit of an early weaning from
the independence concept, and could be followed by an excursion into the
Markovian territory.

Thanks are due to many readers who have told me about errors, obscuri-
ties, and inanities in the first edition. An incomplete record includes the names
below (with apology for forgotten ones): Geoff Eagleson, Z. Govindarajulu,
David Heath, Bruce Henry, Donald Iglehart, Anatole Joffe, Joseph Marker,
P. Masani, Warwick Millar, Richard Olshen, S. M. Samuels, David Siegmund.
T. Thedéen, A. Gonzdlez Villa lobos, Michel Weil, and Ward Whitt. The
revised manuscript was checked in large measure by Ditlev Monrad. The
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galley proofs were read by David Kreps and myself independently, and it was
fun to compare scores and see who missed what. But since not all parts of
the old text have undergone the same scrutiny, readers of the new edition
are cordially invited to continue the fault-finding. Martha Kirtley and Joan
Shepard typed portions of the new material. Gail Lemmond took charge of
the final page-by-page revamping and it was through her loving care that the
revision was completed on schedule.

In the third printing a number of misprints and mistakes, mostly minor, are
corrected. I am indebted to the following persons for some of these corrections:
Roger Alexander, Steven Carchedi, Timothy Green, Joseph Horowitz, Edward
Korn, Pierre van Moerbeke, David Siegmund.

In the fourth printing, an oversight in the proof of Theorem 6.3.1 is
corrected, a hint is added to Exercise 2 in Section 6.4, and a simplification
made in (VII) of Section 9.5. A number of minor misprints are also corrected. I
am indebted to several readers, including Asmussen, Robert, Schatte, Whitley
and Yannaros, who wrote me about the text.




Preface to the first edition

A mathematics course is not a stockpile of raw material nor a random selection
of vignettes. It should offer a sustained tour of the field being surveyed and
a preferred approach to it. Such a course is bound to be somewhat subjective
and tentative, neither stationary in time nor homogeneous in space. But it
should represent a considered effort on the part of the author to combine his
philosophy, conviction, and experience as to how the subject may be learned
and taught. The field of probability is already so large and diversified that
even at the level of this introductory book there can be many different views
on orientation and development that affect the choice and arrangement of its
content. The necessary decisions being hard and uncertain, one too often takes
refuge by pleading a matter of “taste.” But there is good tast¢ and bad taste
in mathematics just as in music, literature, or cuisine, and one who dabbles in
it must stand judged thereby.

It might seem superfluous to emphasize the word “probability” in a book
dealing with the subject. Yet on the one hand, one used to hear such specious
utterance as ‘‘probability is just a chapter of measure theory”; on the other
hand, many still use probability as a front for certain types of analysis such as
combinatorial, Fourier, functional, and whatnot. Now a properly constructed
course in probability should indeed make substantial use of these and other
allied disciplines, and a strict line of demarcation need never be drawn. But
PROBABILITY is still distinct from 1ts tools and its applications not only in
the final results achieved but also in the manner of proceeding. This is perhaps




xiv | PREFACE TO THE FIRST EDITION

best seen in the advanced study of stochastic processes, but will already be
abundantly clear from the contents of a general introduction such as this book.

Although many notions of probability theory arise from concrete models
in applied sciences, recalling such familiar objects as coins and dice, genes
and particles, a basic mathematical text (as this pretends to be) can no longer
indulge in diverse applications, just as nowadays a course in real variables
cannot delve into the vibrations of strings or the conduction of heat. Inciden-
tally, merely borrowing the jargon from another branch of science without
treating its genuine problems does not aid in the understanding of concepts or
the mastery of techniques.

A final disclaimer: this book is not the prelude to something else and does
not lead down a strait and nighteous path to any unique fundamental goal.
Fortunately nothing in the theory deserves such single-minded devotion, as
apparently happens in certain other fields of mathematics. Quite the contrary,
a basic course in probability should offer a broad perspective of the open field
and prepare the student for various further possibilities of study and research.
To this aim he must acquire knowledge of ideas and practice in methods, and
dwell with them long and deeply enough to reap the benefits.

A brief description will now be given of the nine chapters, with some
suggestions for reading and instruction. Chapters 1 and 2 are preparatory. A
synopsis of the requisite “measure and integration” is given in Chapter 2,
together with certain supplements essential to probability theory. Chapter 1 is
really a review of elementary real variables; although it is somewhat expend-
able, a reader with adequate background should be able to cover it swiftly and
confidently — with something gained from the effort. For class instruction it
may be advisable to begin the course with Chapter 2 and fill in from Chapter 1
as the occasions arise. Chapter 3 is the true introduction to the language and
framework of probability theory, but I have restricted its content to what is
crucial and feasible at this stage, relegating certain important extensions, such
as shifting and conditioning, to Chapters 8 and 9. This is done to avoid over-
loading the chapter with definitions and generalities that would be meaningless
without frequent application. Chapter 4 may be regarded as an assembly of
notions and techniques of real function theory adapted to the usage of proba-
bility. Thus, Chapter 5 is the first place where the reader encounters bona fide
theorems in the field. The famous landmarks shown there serve also to intro-
duce the ways and means peculiar to the subject. Chapter 6 develops some of
the chief analytical weapons, namely Fourier and I.aplace transforms, needed
for challenges old and new. Quick testing grounds are provided, but for major
battlefields one must await Chapters 7 and 8. Chapter 7 initiates what has been
called the “central problem” of classical probability theory. Time has marched
on and the center of the stage has shifted, but this topic remains without
doubt a crowning achievement. In Chapters 8 and 9 two different aspects of
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(discrete parameter) stochastic processes are presented in some depth. The
random walks in Chapter 8 illustrate the way probability theory transforms
other parts of mathematics. It does so by introducing the trajectories of a
process, thereby turning what was static into a dynamic structure. The same
revolution is now going on in potential theory by the injection of the theory of
Markov processes. In Chapter 9 we return to fundamentals and strike out in
major new directions. While Markov processes can be barely introduced in the
limited space, martingales have become an indispensable tool for any serious
study of contemporary work and are discussed here at length. The fact that
these topics are placed at the end rather than the beginning of the book, where
they might very well be, testifies to my belief that the student of mathematics
1s better advised to learn something old before plunging into the new.

A short course may be built around Chapters 2, 3, 4, selections from
Chapters 3, 6, and the first one or two sections of Chapter 9. For a richer fare,
substantial portions of the last three chapters should be given without skipping
any one of them. In a class with solid background, Chapters 1, 2, and 4 need
not be covered in detail. At the opposite end, Chapter 2 may be filled in with
proofs that are readily available in standard texts. It is my hope that this book
may also be useful to mature mathematicians as a gentle but not so meager
introduction to genuine probability theory. (Often they stop just before things
become interesting!) Such a reader may begin with Chapter 3, go at once to
Chapter 5 with a few glances at Chapter 4, skim through Chapter 6, and take
up the remaining chapters seriously to get a real feeling for the subject.

Several cases of exclusion and inclusion merit special comment. I chose
to construct only a sequence of independent random variables (in Section 3.3),
rather than a more general one, in the belief that the latter is better absorbed in a
course on stochastic processes. I chose to postpone a discussion of conditioning
until quite late, in order to follow it up at once with varied and worthwhile
applications. With a little reshuffling Section 9.1 may be placed right after
Chapter 3 if so desired. I chose not to include a fuller treatment of infinitely
divisible laws, for two reasons: the material is well covered in two or three
treatises, and the best way to develop it would be in the context of the under-
lying additive process, as originally conceived by its creator Paul Lévy. 1
took pains to spell out a peripheral discussion of the logarithm of charac-
teristic function to combat the errors committed on this score by numerous
existing books. Finally, and this is mentioned here only in response to a query
by Doob, I chose to present the brutal Theorem 5.3.2 in the original form
given by Kolmogorov because I want to expose the student to hardships in
mathematics.

There are perhaps some new things in this book, but in general I have
not striven to appear original or merely different, having at heart the interests
of the novice rather than the connoisseur. In the same vein, I favor as a
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rule of writing (euphemistically called “style”) clarity over elegance. In my
opinion the slightly decadent fashion of conciseness has been overwrought,
particularly in the writing of textbooks. The only valid argument I have heard
for an excessively terse style is that it may encourage the reader to think for
himself. Such an effect can be achieved equally well, for anyone who wishes
it, by simply omitting every other sentence in the unabridged version.

This book contains about 500 exercises consisting mostly of special cases
and examples, second thoughts and alternative arguments, natural extensions,
and some novel departures. With a few obvious exceptions they are neither
profound nor trivial, and hints and comments are appended to many of them.
If they tend to be somewhat inbred, at least they are relevant to the text and
should help in its digestion. As a bold venture I have marked a few of them
with * to indicate a “must,” although no ngid standard of selection has been
used. Some of these are needed in the book, but in any case the reader’s study
of the text will be more complete after he has tried at least those problems.

Over a span of nearly twenty years I have taught a course at approx-
imately the level of this book a number of times. The penultimate draft of
the manuscript was tried out in a class given in 1966 at Stanford University.
Because of an anachronism that allowed only two quarters to the course (as
if probability could also blossom faster in the California climate!), I had to
omit the second halves of Chapters 8 and 9 but otherwise kept fairly closely
to the text as presented here. (The second half of Chapter 9 was covered in a
subsequent course called “stochastic processes.”) A good fraction of the exer-
cises were assigned as homework, and in addition a great majority of them
were worked out by volunteers. Among those in the class who cooperated
in this manner and who corrected mistakes and suggested improvements are:
Jack E. Clark, B. Curtis Eaves, Susan D. Horn, Alan T. Huckleberry, Thomas
M. Liggett, and Roy E. Welsch, to whom I owe sincere thanks. The manuscript
was also read by J. L. Doob and Benton Jamison, both of whom contributed
a great deal to the final revision. They have also used part of the manuscript
in their classes. Aside from these personal acknowledgments, the book owes
of course to a large number of authors of original papers, treatises, and text-
books. I have restricted bibliographical references to the major sources while
adding many more names among the exercises. Some oversight is perhaps
inevitable; however, inconsequential or irrelevant “name-dropping” is delib-
erately avoided, with two or three exceptions which should prove the rule.

It is a pleasure to thank Rosemarie Stampfel and Gail Lemmond for their
superb job in typing the manuscript.




1 Distribution function

1.1 Monotone functions

We begin with a discussion of distribution functions as a traditional way
of introducing probability measures. It serves as a convenient bridge from
elementary analysis to probability theory, upon which the beginner may pause
to review his mathematical background and test his mental agility. Some of
the methods as well as results in this chapter are also useful in the theory of
stochastic processes.

In this book we shall follow the fashionable usage of the words “posi-
tive”, “negative”, “increasing”, ‘“‘decreasing” in their loose interpretation.
For example, “x is positive” means “x > Q7; the qualifier “strictly” will be
added when “x > 07 is meant. By a “function” we mean in this chapter a real
finite-valued one unless otherwise specified.

Let then f be an increasing function defined on the real line (—oo, +00).
Thus for any two real numbers x; and xp,

(1) xp < x2 = flx1) < flx).

We begin by reviewing some properties of such a function. The notation

LIS

“t + x” means “f < x,t — x7;“t | X" means “t > x,f = X.
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(i) For each x, both unilateral limits
(2) lrigl f(t) = f(x—) and lrijn Fy=fx+)
exist and are finite. Furthermore the limits at infiniry

l}ifn f({t) = f(—o0) and I%lin f) = f(+00)

exist; the former may be —oo, the latter may be +o0.
This follows from monotonicity; indeed

fx=)y= sup f(), fx+)= inf f().

— 00X X<t 00

(ii) For each x, f is continuous at x if and only if
Fx=)=f@x)= fix+).

To see this, observe that the continuity of a monotone function f at x is
equivalent to the assertion that

lfiTm Ji=fx)= liftl F).
By (i), the limits above exist as f(x—) and f(x+) and
3 FG=) = f(x) = fxt),
from which (ii) follows.

In general, we say that the function f has a jump at x iff the two limits
in (2) both exist but are unequal. The value of f at x itself, viz. f(x), may be
arbitrary, but for an increasing f the relation (3) must hold. As a consequence
of (i) and (i1}, we have the next result.

(iii) The only possible kind of discontinuity of an increasing function is a
jump. [The reader should ask himself what other kinds of discontinuity there
are for a function in general.]

If there is a jump at x, we call x a point of jump of f and the number
f(x+) — f(x—) the size of the jump or simply “the jump” at x.

It 1s worthwhile to observe that points of jump may have a finite point
of accumulation and that such a point of accumulation need not be a point of
jump itself. Thus, the set of points of jump is not necessarily a closed set.
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Example 1. Let xy be an arbitrary real number, and define a function f as follows:

f{x)y=0 for x <xg—1;
1 fi < ! 1.2
=1l——= forxy— — <x<xy— =140
n 0 n - 0 n+1
=1 for x > xy.

The point xg is a point of accumulation of the points of jump {xo — 1/n, n > 1}, but
f is continuous at xg.

Before we discuss the next example, let us introduce a notation that will
be used throughout the book. For any real number ¢, we set

0 for x < 1,
) b (x) = { 1 for x > t.

We shall call the function 8, the point mass at t.

Example 2. Let {a,,n = 1} be any given enumeration of the set of all rational
numbers, and let {b,, n > 1} be a set of positive (>0) numbers such that anz, b, < oco.
For instance, we may take b, = 27", Consider now

(5) &Y= baba, (%),

n=|

Since 0 < §, (x) <1 for every n and x, the series in (5) is absolutely and uniformly
convergent. Since each §,, is increasing, it follows that if x; < xa,

fOay = FOn) = balba, (62) — 84, (x1)] = 0.

n=1

Hence f is increasing. Thanks to the uniform convergence (why?) we may deduce
that for each x,

(6) FO+) = fx=)=> bulda, (x+) — &, (x—)].

=1

But for each n, the number in the square brackets above 1s 0 or 1 according as x # a,
or x = u,. Hence if x is different from all the a,’s, each term on the right side of (6)
vanishes; on the other hand if x = a;, say, then exactly one lerm, that corresponding
to n = k, does not vanish and yields the value b, for the whole series. This proves
that the function f has jumps at all the rational points and nowhere else.

This example shows that the set of points of jump of an increasing function
may be everywhere dense; in fact the set of rational numbers in the example may
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be replaced by an arbitrary countable set without any change of the argument. We
now show that the condition of countability is indispensable. By “countable” we mean
always “finite (possibly empty} or countably infinite”.

(iv) The set of discontinuities of f is countable.

We shall prove this by a topological argument of some general applica-
bility. In Exercise 3 after this section another proof based on an equally useful
counting argument will be indicated. For each point of jump x consider the
open interval I, = (f(x—), f(x+)). If x" is another point of jump and x < x’,
say, then there is a point X such that x < ¥ < x’. Hence by monotonicity we
have

fGx+H) = fG) = fix'—).

It follows that the two intervals I, and [, are disjoint, though they may
abut on each other if f(x+) = f(x'—). Thus we may associate with the set of
points of jump in the domain of f a certain collection of pairwise disjoint open
intervals in the range of f. Now any such collection is necessarily a countable
one, since each interval contains a rational number, so that the collection of
intervals is in one-to-one correspondence with a certain subset of the rational
numbers and the latter is countable. Therefore the set of discontinuities is also
countable, since it 18 in one-to-one correspondence with the set of intervals
associated with it.

(v) Let f, and f, be two increasing functions and D a set that is (every-
where) dense in (—o00, +00). Suppose that

Vx e D: fi(x)= fa(x).

Then f, and f, have the same points of jump of the same size, and they
coincide except possibly at some of these points of jump.
To see this, let x be an arbitrary point and let 1, € D, 1, € D, ¢, * x,
t, 1 x. Such sequences exist since D is dense. It follows from (i) that
fia=) =1m fy@) = lim fr(0) = f2(x-),
(6) : s :
FrleR) = lim f1(]) = lim £2(7,) = fo(e+).

In particular
Vx: fi(x-k) — f1(x=) = falx+)— fa(x—).

The first assertion in (v) follows from this equation and (ii). Furthermore if
Sf1 is continuous at x, then so is f, by what has just been proved, and we
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have

J10) = f1l—) = fL(a—) = f2(x),

proving the second assertion.

How can f; and f, differ at all? This can happen only when f;(x)
and f,(x) assume different values in the interval (f(x—), f{(x+)) =
(f20x—=), f2(x+)). It will turn out in Chapter 2 (see in particular Exercise 21
of Sec. 2.2) that the precise value of f at a point of jump is quite unessential
for our purposes and may be modified, subject to (3), to suit our convenience.
More precisely, given the function f, we can define a new function f in
several different ways, such as

fax—)+ fx+)
7 ;

and use one of these instead of the original one. The third modification is
found to be convenient in Fourier analysis, but either one of the first two is
more suitable for probability theory. We have a free choice between them and
we shall choose the second, namely, right continuity.

f) = fx=) f(x) = fGat), fx) =

(vi) If we put i
Vx: f(x) = fx+),

then f is increasing and right continuous everywhere.

Let us recall that an arbitrary function g is said to be right continuous at
x iff lim;, g(t) exists and the limit, to be denoted by g(x-+), is equal to g(x).
To prove the assertion (vi) we must show that

Vx; lxifl fi+)= fx+).

This is indeed true for any f such that f(t+) exists for every t. For then:
given any € > 0, there exists 6(¢) > 0 such that

Vse (x,x+8):|f(s)— flx+)] <e
Let r € (x,x+ &) and let 5 | 7 in the above, then we obtain
[f+) — fxH) <e,

which proves that f is right continuous. It is easy to see that it is increasing
if f is so.

Let D be dense in (—o0, -+00), and suppose that f is a function with the
domain D. We may speak of the monotonicity, continuity, uniform continuity,
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and so on of f on its domain of definition if in the usual definitions we restrict
ourselves to the points of D. Even if f is defined in a larger domain, we may
still speak of these properties “on D” by considering the “restriction of f
to D”.

(vii) Let f be increasing on D, and define f on (—oc, +0c) as follows:

vx: f(x) = inf f(1).

x<teD

Then f is increasing and right continuous everywhere.

This is a generalization of (vi). f is clearly increasing. To prove right
continuity let an arbitrary xg and € > O be given. There exists 7y € D, #) > xp,
such that

f(t0) — € = f(x0) < f(to).

Hence if t € D, xg <t < 1y, we have
0= f)— flxo) < flto)— fx) <e.

This implies by the definition of f that for xo < x < fo we have
0<fe)—flo)<e

Since € is arbitrary, it follows that £ is right continuous at xg, as was to be
shown.

EXERCISES

1. Prove that for the f in Example 2 we have

fl=00) =0, f(+00)=) by

n=t

2. Construct an increasing function on (—oo, +00) with a jump of size
one at, each integer, and constant between jumps. Such a function cannot be
represented as > oo, by 8, (x) With b, = 1 for each n, but a slight modification
will do. Spell this out.

**3, Suppose that f is increasing and that there exist real numbers A and
B such that Vx: A < f(x) < B. Show that for each ¢ > 0, the number of jumps
of size exceeding ¢ is at most (B — A)/¢. Hence prove (iv), first for bounded
f and then in general.

** indicales specially selected exercises (as mentioned in the Preface).

S smre s wnvLnIVND | 7
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b; the size at jump at g, then
F(aj)— F(aj—) = bj

since F(a;+) = F(a;). Consider the function

Fa(x) = bjdg, (x)
J

which represents the sum of all the jumps of F in the half-line (—o0, x]. It is.
clearly increasing, right continuous, with

3) Fa(—00)=0, Fa(+oo)=3 b;<1.

i
Hence F; is a bounded increasing function. It should constitute the “jumping
part” of F, and if it is subtracted out from F, the remainder should be positive,

contain no more jumps, and so be continuous. These plausible statements will
now be proved — they are easy enough but not really trivial.

Theorem 1.2.1. Let

Fe(x)=F(x)— Fa(x);
then F,. is positive, increasing, and continuous.

PROOE. Let x < x’, then we have
4) FeY—Fay= > bj= > [Flajy)— F(a;-)]
x<a;<x’ x<a;=x’'

< F(x) — F{x).
It follows that both F; and F, are increasing, and if we put x = —o0 in the
above, we see that F; < F and so F, is indeed positive. Next, Fy is right

continuous since each 4,; is and the series defining F, converges uniformly
in x; the same argument yields (cf. Example 2 of Sec. 1.1)

Fyr) = Fa(x—) = {b" x=a;

0 otherwise.

Now this evalvation holds also if F; is replaced by F according to the defi-
nition of a; and b;, hence we obtain for each x:

Fe(x)—F(x=)=F()— Flx—) — [Fa(x) — Fa(x—)] = 0.

This shows that F. is left continuous; since it is also right continuous, being
the difference of two such functions, it is continuous.
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Theorem 1.2.2. Let F be a d.f. Suppose that there exist a continuous func-
tion G, and a function G, of the form

Gy(x) =" b3y (x)
J

!

[where {a;} is a countable set of real numbers and > j }b}l < o¢], such that

F:GC+Gdf

then
GC:F(‘a Gszd:

where F,. and F; are defined as before.

PROOF. If Fy # Gy, then either the sets {a;} and {a}} are not identical,
or we may relabel the a so that o, = a; for all j but b, # b; for some j. In
either case we have for at least one j, and a = g; or a}:

[Fala) — Fa(a—)] — [Gala) — Gy(a—)] # 0.
Since F. — G, = G4 — F4, this implies that
Fc(&) - Gc(a) - [Fc(a_) - Gc(&_)] 7é 0,

contradicting the fact that F. — G, is a continuous function. Hence Fy; = G4
and consequently F, = G,.

DEFINITION. A d.f. F that can be represented in the form
F= Z bja,
J

where {a;} is a countable set of real numbers, b; > O forevery jand . b;=1,
is called a discrete d.f. A d.f. that is continuous everywhere is called a contin-
uous d.f.

Suppose F. #£ 0, F; £ 0 in Theorem 1.2.1, then we may set ¢ = F;(00)

sothat 0 <o < 1,

1 1

Fi=—-Fq4, Fy=-—F,
o l—w

and write
(5) F=aF |+ —a)F;.

Now F; is a discrete d.f., F, is a continuous d.f., and F is exhibited as a
convex combination of them. If ¥, = 0, then F is discrete and we set ¢ = 1,
Fi=F, F,=0;if F; =0, then F is continuous and we set « =0, Fy =0,
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F2 = F; in either extreme case (5) remains valid. We may now summarize
the two theorems above as follows.

Theorem 1.2.3. Every d.f. can be written as the convex combination of a
discrete and a continuous one. Such a decomposition is unique.

EXERCISES

1. Let F be a d.f. Then for each x,
lilr{]l[F(x-i-E)—F(x—e)] =0
€

unless x is a point of jump of F, in which case the limit is equal to the size
of the jump.
*2. Let F be a d.f. with points of jump {a;}. Prove that the sum

Y [Fa))— Fa;—))

X—E<d; <X

converges to zero as € | 0, for every x. What if the summation above is
extended to x — € < g; < x instead? Give another proof of the continuity of
F. in Theorem 1.2.1 by using this problem.

3. A plausible verbal definition of a discrete d.f. may be given thus: “It
is a d.f. that has jumps and is constant between jumps.” [Such a function is
sometimes called a “step function”, though the meaning of this term does not
seem to be well established.] What is wrong with this? But suppose that the set
of points of jump is “discrete” in the Euclidean topology, then the definition
1s valid (apart from our convention of right continuity).

4. For a general increasing function F there is a similar decomposition
F = F.+ F;, where both F. and F,; are increasing, F. is continuous, and
Fg 1s “purely jumping”. [HINT: Let @ be a point of continuity, put F(a) =
F(a), add jumps in (a, o©) and subtract jumps in (—o0, a) to define F,. Cf.
Exercise 2 in Sec. 1.1.]

5. Theorem 1.2.2 can be generalized to any bounded increasing function.
More generally, let f be the difference of two bounded increasing functions on
(—o0, +00); such a function is said to be of bounded variation there. Define
its purely discontinuous and continuous parts and prove the corresponding
decomposition theorem.

*6. A point x is said to belong to the support of the d.f. F iff for every
€ >0 we have F(x +¢) — F(x — ¢) > 0. The set of all such x is called the
support of F. Show that each point of jump belongs to the support, and that
each isolated point of the support is a point of jump. Give an example of a
discrete d.f. whose support is the whole line.




1.3 ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS | 11

7. Prove that the support of any d.f. is a closed set, and the support of
any continuous d.f. is a perfect set.

1.3 Absolutely continuous and singular distributions

Further analysis of d.f.’s requires the theory of Lebesgue measure. Throughout
the book this measure will be denoted by m; “almost everywhere” on the real
line without qualification will refer to it and be abbreviated to “a.e.”; an
integral written in the form [ ...dr is a Lebesgue integral; a function f is
said to be “integrable” in (a, b) iff

b
/ f()dr

is defined and finite [this entails, of course, that f be Lebesgue measurabie].
The class of such functions will be denoted by Ll(a, b), and L'(—o0, 00) is
abbreviated to L'. The complement of a subset S of an understood “space”
such as (—oo, 400) will be denoted by 5¢.

DEFINITION. A function F is called absolutely continuous [in (—oo, 0o}

and with respect to the Lebesgue measure] iff there exists a function f in L!
such that we have for every x < x':

(1) F(x’)—F(x):f f(at.

It follows from a well-known proposition (see, e.g., Natanson [3]*) that such
a function F has a derivative equal to f a.e. In particular, if F is a d.f, then

2) f>0ae and / f)ydr = 1.

Conversely, given any f in L! satisfying the conditions in (2), the function F
defined by

(3) Vx: F(x)= / f@&)yde
00
is easily seen to be a d.f. that is absolutely continuous.

DEFINITION. A function F is called singular iff it is not identically zero
and F' (exists and) equals zero a.e.

* Numbers in brackets refer to the General Bibliography.
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The next theorem summarizes some basic facts of real function theory;
see, e.g., Natanson [3].

Theorem 1.3.1. Let F be bounded increasing with F(—oc) = 0, and let F’
denote its derivative wherever existing. Then the following assertions are true.

(a) If § denotes the set of all x for which F'(x) exists with 0 < F'(x) <
oo, then m(S°) = 0.
(b) This F’ belongs to L!, and we have for every x < x:

}

{4) fx F'(t)ydt < F(x') — F(x).

(c) If we put

X

(5) Vi F oo (x) = f F@)dr, Fux) = F()— F o),

hade

then F. = F' ae. so that F;, = F — F, =0 ae. and consequently F, is
singular if it is not identically zero.

DEFINITION.  Any positive function f that is equal to F’ a.e. is called a
density of F. F is called the absolutely continuous part, F the singular part
of F. Note that the previous F; is part of F, as defined here.

It is clear that F . is increasing and F,. < F. From (4) it follows that if
x < x

Fi(xX'y— F;(x) = F(x')— F(x) — '/X f()ydr > Q.

Hence F; is also increasing and F; < F. We are now in a position to announce
the following result, which is a refinement of Theorem 1.2.3.

Theorem 1.3.2. Every d.f. F can be written as the convex combination of
a discrete, a singular continuous, and an absolutely continuous d.f. Such a
decomposition is unique.

EXERCISES

1. A df. F is singular if and only if F = F; it is absolutely continuous
if and only if F = F.
2. Prove Theorem 1.3.2.

*3. If the support of a d.f. (see Exercise 6 of Sec. 1.2) is of measure zero,
then F 1s singular. The converse is false.
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*4. Suppose that F is a d.f. and (3) holds with a continuous f. Then
F' = f > 0 everywhere.

5. Under the conditions in the preceding exercise, the support of F is the
closure of the set {r | f(¢) > 0}; the complement of the support is the interior
of the set {t | f(r) = 0}.

6. Prove that a discrete distribution is singular. [Cf. Exercise 13 of
Sec. 2.2]

7. Prove that a singular function as defined here 1s (Lebesgue) measurable
but need not be of bounded variation even locally. [HINT: Such a function is
continuous except on a set of Lebesgue measure zero; use the completeness
of the Lebesgue measure.]

The remainder of this section is devoted to the construction of a singular
continuous distribution. For this purpose let us recall the construction of the
Cantor (ternary) set (see, e.g., Natanson [3]). From the closed interval [0,1],
the “middle third” open interval (%, %) is removed; from each of the two
remaining disjoint closed intervals the middle third, (§, 2) and (7, $), respec-
tively, are removed and so on. After n steps, we have removed

1+2+--+2"1=2"—1

disjoint open intervals and are left with 2" disjoint closed intervals each of
length 1/3”. Let these removed ones, in order of position from left to right,
be denoted by J, ;, 1 <k < 2" — 1, and their union by U,. We have

_1 2 4 2n—]_l 2\
m(Ull)_§+—3—2+'3—3+"'+ = 17\3)

As n 1 oc, U, increases to an open set U; the complement C of U with
respect to [0,1] is a perfect set, called the Cantor set. It is of measure zero

since
mCy=1—-m{lH=1-1=0.

Now foreachnand k, n > 1,1 <k <2" — 1, we put

k .
z_ns

and define a function F on U as follows:

Chk —

(7) Fxy=cux forxeJur.

This definition is consistent since two intervals, J,; and J, y, are either
disjoint or identical, and in the latter case so are ¢, ; = ¢, . The last assertion
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becomes obvious if we proceed step by step and observe that
Jntr26 =Inps Cnpr =cpp forl <k <2"—1.

The value of F is constant on each J,; and is strictly greater on any other
J i situated to the right of J,, ;. Thus F is increasing and clearly we have

lim F = imF =1.
x%l (x) =0, algl x)y=1

Let us complete the definition of F by setting
Fx)=0 forx<0, Fx)=1 forx>1.

F is now defined on the domain D = (—oc, ) U U U (1, o¢) and increasing
there. Since each J, ; is at a distance > 1/3" from any distinct J, ;- and the
total vartation of F over each of the 2" disjoint intervals that remain after
removing J, x, 1 <k <2" —1,is 1/2", it follows that

OSx’—xﬁsin:)()fF(x’)—F(x)S 2%
Hence F is uniformly continuous on D. By Exercise 5 of Sec. 1.1, there exists
a continuous increasing F on (—o0, +00) that coincides with F on D. This
F is a continuous d.f. that is constant on each Jux. It follows that Fr=0
on U and so also on (—o0,+00) — C. Thus F is singular. Alternatively, it
is clear that none of the points in D is in the support of F, hence the latter
is contained in C and of measure 0, so that F is singular by Exercise 3
above. [In Exercise 13 of Sec. 2.2, it will become obvious that the megsure
corresponding to F is singular because there is no mass in U J

EXERCISES

The F in these exercises is the F defined above.
8. Prove that the support of F is exactly C.

*9, It is well known that any point x in C has a ternary expansion without
the digit 1:

it a
H
x:é 5, a,,=00r2.

=]

Prove that for this x we have

00
Qn
F(x) = Z n+l’

n=1
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10. For each x € [0, 1], we have

2F G) — F(x), 2F @ n g) —1=F®.

11. Calculate

1 1 1
/ xdF(x), / x% dF(x), f "™ dF(x).
0 0 0

[HinvT: This can be done directly or by using Exercise 10; for a third method
see Exercise 9 of Sec. 5.3.]

12. Extend the function F on [0,1] trivially to (—oo, 00). Let {r,} be an
enumeration of the rationals and

[» @]
Gxy=>)_ Z%F(rn + x).
n=1
Show that G is a d.f. that is strictly increasing for all x and singular. Thus we
have a singular d.f. with support (—o0, 00).

*13. Consider F on [0,1]. Modify its inverse F~' suitably to make it
single-valued in [0,1]. Show that F~! so modified is a discrete d.f. and find
its points of jump and their sizes.

14. Given any closed set C in (—oo0, +00), there exists a d.f. whose
support is exactly C. [HINT: Such a problem becomes easier when the corre-
sponding measure is considered; see Sec. 2.2 below.]

*15. The Cantor d.f. F is a good building block of “pathological”
examples. For example, let H be the inverse of the homeomorphic map of [0,1]
onto itself: x — 1[F(x)+x}; and E a subset of [0,1] which is not Lebesgue
measurable. Show that

Ly = 1

where H(E) is the image of E, 13 is the indicator function of B, and - denotes
the composition of functions. Hence deduce: (1) a Lebesgue measurable func-
tion of a strictly increasing and continuous function need not be Lebesgue
measurable; (2) there exists a Lebesgue measurable function that is not Borel
measurable.




2 ' Measure theory

2.1 Classes of sets

Let 2 be an “abstract space”, namely a nonempty set of elements to be
called “points” and denoted generically by w. Some of the usual opera-
tions and relations between sets, together with the usual notation, are given
below.

Union : EUF, |JE,
Intersection . ENF, NE,
Complement o EC=Q\E

Difference . E\F=ENFC
Symmetric difference : EAF = (E\F)YU(F\E)
Singleton : {w)

Containing (for subsets of §2 as well as for collections thereof):
ECF, FDOE (not excluding £ = F)
S C B, A D/ (not excluding ./ = )
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Belonging (for elements as well as for sets):
w€E, Eesl
Empty set: @
The reader is supposed to be familiar with the elementary properties of these
operations.

A nonempty collection & of subsets of {2 may have certain “closure
properties”. Let us list some of those used below; note that j is always an
index for a countable set and that commas as well as semicolons are used to
denote “conjunctions” of premises.

() Fe s = E° e .

() Fie W, Ehe & = EUE; € 9.

(i) E1e W, Ere W = E\NEye . &.

(ivy Vn>2:Ejed,1<j<n=j_E; e,

M Vn22:Ejed, l<sjsn=[\ Ejed.
(VM) Ej e iE; CEjpl < j<oo= 2 Eje .
(vii) E; € &/iE; DEjy, 1< j<oo = N2 Ej €.
(vili) Eje /. 1< j<oo =2 Ej e

(ix) E; eﬁ,lgj<oo——.>ﬂj‘;1Ejeﬂ.

(x) Ey e/, E> € .57, E|, CE; @Ez\El € ..

It follows from simple set algebra that under (i): (i1) and (iii) are equiv-
alent; (vi) and (vii) are equivalent; (viii) and (ix) are equivalent. Also, (ii)

implies (1v) and (iii) implies (v) by induction. It is trivial that (viil) implies
(i1} and (vi); (ix) implies (iii) and (vii).

DEFINITION. A nonempty collection Z# of subsets of €2 is called a field iff
(1) and (11) hold. It is called a monotone class (M.C.) iff (vi) and (vii) hold. It
is called a Borel field (B.F.) iff (i) and (viii) hoid.

Theorem 2.1.1. A field is a B.F. if and only if it 1s also an M.C.

proOF. The “only if” part is trivial; to prove the “if” part we show that
(iv) and (vi) imply (viii). Let E; € .¢/ for 1 < j < 00, then
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F, = UEJ' €.
j=1

by (iv), which holds in a field, F,, C F,, 4 and

o0
Ui
j=1

x0
Ue,

j=1
hence | J32, E; € &/ by (vi).

The collection ./ of all subsets of €2 is a B.F. called the total B.F.; the
collection of the two sets {&, 2} is a B.F. called the trivial B.F. If A 1s any
index set and if for every ¢ € A, %, 1s a B.F. (or M.C.) then the intersection
(MNyea # of all these B.F.’s (or M.C.’s), namely the collection of sets each
of which belongs to all #, is also a B.F. (or M.C.). Given any nonempty
collection ¢ of sets, there is a minimal B.F. (or field, or M.C.) containing it;
this is just the intersection of all B.F.’s (or fields, or M.C.’s) containing ¢,
of which there is at least one, namely the . mentioned above. This minimal
B.F. (or field, or M.C.) is also said to be generated by ¢. In particular if %,
is a field there is a minimal B.F. (or M.C.) containing .

Theorem 2.1.2. Let 74 be a field, ¢ the minimal M.C. containing #4,, # the
minimal B.F. containing #,, then # = &

prOOF. Since a B.F. is an M.C., we have # D &. To prove # C & itis
sufficient to show that & is a B.F. Hence by Theorem 2.1.1 it is sufficient to

show that ¢ is a field. We shall show that it is closed under intersection and
complementation. Define two classes of subsets of & as follows:

G ={E€ G :ENFeg&foral F € %),
¢6={Ec¢ ENFegforal Feg).

The identities

Fn DEJ; :D(FnEj)

Jj=1 j=1

o0 o0
FolNE; | =NFNE)

=1 j=1

show that both ¢; and ¢, are M.C.’s. Since # is closed under intersection and
contained in &, it is clear that 7% C ¢;. Hence & C ¢; by the minimality of &
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and so & = ¢;. This means for any F € % and E € & we have FNE € &,
which in turn means % C ¢5. Hence & = ¢, and this means ¢ is closed under
intersection.

Next, define another class of subsets of ¢ as follows:

G ={F €& E €4}
The (DeMorgan) identities
[ oo ¢
UEi | =5
\J=1 j=1
[ o ¢ =
NE;| =UE

\ j=1 j=1

show that ¢3 is a M.C. Since % C 6, it follows as before that & = ¢, which
means & is closed under complementation. The proof is complete.

Corollary. Let % be a field, % the minimal B.F. containing %: ¢ a class
of sets containing % and having the closure properties (vi) and (vii), then ¢
contains # .

The theorem above is one of a type called monotone class theorems. They
are among the most useful tools of measure theory, and serve to extend certain
relations which are easily verified for a special class of sets or functions to a
larger class. Many versions of such theorems are known; see Exercise 10, 11,
and 12 below.

EXERCISES

1 (U AU, B € UAAB(N, AN By) € U;(A)\B)). When
is there equality?
*2. The best way to define the symmetric difference is through indicators
of sets as follows:
IAAB: 1A+18 (mod 2)

where we have arithmetical addition modulo 2 on the right side. All properties
of a follow easily from this definition, some of which are rather tedious to
verify otherwise. As examples:

(AaB)AC =AaBar(C),
(AABYA(BAC)Y=AAC,
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AaBYa(CaD)=(AaC)aBaD),
AAB=C & A=BaC,
AaB=CaAD & AAC =BaD.

3. If €2 has exactly » points, then ./ has 2" members. The B.F. generated
by n given sets “without relations among them” has 22" members.
4. If © is countable, then ./ is generated by the singletons, and

conversely. [HiNT: All countable subsets of 2 and their complements form
a B.F.]

5. The intersection of any collection of B.F.’s (%, o € A} is the maximal
B.F. contained in all of them; it is indifferently denoted by ), ., % Or AgesZ.

*6. The union of a countable collection of B.F.’s {#} such that 7#; C #
need not be a B.F., but there is a minimal B.F. containing all of them, denoted
by Vv . In general V4%, denotes the minimal B.F. containing all %, ¢ € A.
[HINT: §2 = the set of positive integers; # = the B.F. generated by those up
to j.]

7. A B.F. is said to be countably generated iff it is generated by a count-
able collection of sets. Prove that if each Z; 1s countably generated, then so
18 V2,7

*8. Let # be a B.F. generated by an arbitrary collection of sets {E,, « €
A}. Prove that for cach FE € #, there exists a countable subcollection {Ea; J >
1} (depending on E) such that E belongs already to the B.F. generated by this
subcollection. [HINT: Consider the class of all sets with the asserted property
and show that 1t is a B.F. containing each E,.]

9. If # is a B.F. generated by a countable collection of disjoint sets
{An}, such that | J, A, = €, then each member of # is just the union of a
countable subcollection of these A,’s.

10. Let & be a class of subsets of £ having the closure property (iii);
let ./ be a class of sets containing 2 as well as &, and having the closure
properties (vi) and (x). Then .2/ contains the B.F. generated by &. (This is
Dynkin’s form of a monotone class theorem which is expedient for certain
applications. The proof proceeds as in Theorem 2.1.2 by replacing %, and &
with & and .</ respectively.)

11. Take §2 = A" or a separable metric space in Exercise 10 and let &/
be the class of all open sets. Let 57 be a class of real-valued functions on §2
satisfying the following conditions.

(a) 1 € # and 1y € # for each D € /;

(b) % 1s a vector space, namely: if f, € 5, f, € 5 and ¢y, ¢, are any

two real constants, then ¢; f1 + ¢y f2 € 4
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(c) A is closed with respect to increasing limits of positive functions,
namely: if f, € #°,0< f, < fyq1 foralln, and f =1im, 1 f, <
oo, then f € 7.
Then 7 contains all Borel measurable functions on €, namely all finite-
valued functions measurable with respect to the topological Borel field (= the
minimal B.F. containing all open sets of 2). [HINT: let ¢ = {E C Q: 1p € 5%);
apply Exercise 10 to show that ¢ contains the B.F. just defined. Each positive
Borel measurable function is the limit of an increasing sequence of simple
(finitely-valued) functions.]

12. Let ¢ be a M.C. of subsets of &" (or a separable metric space)
containing all the open sets and closed sets. Prove that ¢ O 23" (the topological
Borel field defined in Exercise 11). [HINT: Show that the minimal such class
is a field.]

2.2 Probability measures and their distribution
functions

Let 2 be a space, # a B.F. of subsets of 2. A probability measure Z2(-) on #
is a numerically valued set function with domain &, satisfying the following
axioms:

(i) VEe # : P(E) > 0.
(ii) If {E;} is a countable collection of (pairwise) disjoint sets in %, then

7 JE; | =D 2(E).
j j
(iii) 22(Q) = 1.

The abbreviation “p.m.” will be used for “‘probability measure”.
These axioms imply the following consequences, where all sets are
members of # .

(iv) 2(E) < 1.
v) (@) = 0.
(vi) P(ES) = 1 — P(E).
(vil) ZEUF)4+ P(ENF)Y=P(E)+ P(F).
(viii) E € F = P(E) = P(F) — P(F\E) < P(F).
(ix) Monotone property. E, + Eor E, | E = J(E,) — E).
(x) Boole’s inequality. {JI/)(U!- E;) < Zj P(E;).
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Axiom (1) is called *“countable additivity”; the corresponding axiom
restricted to a finite collection {E;} 1s called “finite additivity”.
The following proposition

(1) E,l &= PE)—>0

is called the “axiom of continuity”. It is a particular case of the monotone
property (x) above, which may be deduced from it or proved in the same way
as indicated below.

Theorem 2.2.1. The axioms of finite additivity and of continuity together
are equivalent to the axiom of countable additivity.

PROOF. Let E, |. We have the obvious 1dentity:

oC [» 4]
E, = | J(E\Exs1) U [ ) Ex-
k=1

k=n

If £, { @, the last term is the empty set. Hence if (i1) is assumed, we have

Vi > 1: 2(Ey) = P(E\Exs1);

k=n

the series being convergent, we have lim,_, . 7(E,) = 0. Hence (1) is true.
Conversely, let {E;, k > 1} be pairwise disjoint, then

U E.l @

k=n+1
(why?) and consequently, if (1) 1s true, then
oo
nlggod/j( U Ek) =0.
k=n+1

Now if finite additivity is assumed, we have

= Ll o0
/(U Ek) :%(U Ek) +.->J>( U Ek>
k=1 k=] k=n+1

:Z?ﬂ(Ek)—l—s?ﬂ( U Ek) .

k=1 b=n+1

This shows that the infinite series » .., #’(E;) converges as it is bounded by
the first member above. Letting n — 00, we obtain
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oc n o0
7 =1 I(E, im ,
/D(H EA) HILI"EO;‘ (EL)+"1_15§0 ( U Ea)

k=n+1

= Z P(E}).
k=1

Hence (i1) 1s true.

Remark. For a later application (Theorem 3.3.4) we note the following
extension. Let %2 be defined on a field % which is finitely additive and satis-
fies axioms (i), (iii), and (1). Then (ii) holds whenever | J, Ex € #. For then
U2, 41 Ex also belongs to 7, and the second part of the proof above remains
valid.

The triple (2, #, 27) is called a probability space (triple); €2 alone is
called the sample space, and w is then a sample point.

Let A C §2, then the trace of the B.F. % on A is the collection of all sets
of the form A N F, where F € & . It is easy to see that this is a B.F. of subsets
of A, and we shall denote it by AN . Suppose A € % and Z°(A) > 0; then
we may define the set function %, on ANF as follows:

P(E)
PN

YVEe ANF : Pr(E) =

It is easy to see that 7 is a p.m. on A N 7. The triple (A, ANF, P4) will
be called the frace of (2, #,%°) on A.

Example 1. Let Q be a countable set: &2 = {w;, j € J}, where J is a countable index
set, and let # be the total B.F. of Q. Choose any sequence of numbers {p;, j € J}
satisfying

(2) Vielip;z0, > pi=1

jelt
and define a set function :#” on :# as follows:

(3) VE € T ME) = > pj.

wjek

In words, we assign p; as the value of the “probability” of the singleton {w;}, and
for an arbitrary set of ;s we assign as its probability the sum of all the probabilities
assigned to its elements. Clearly axioms (i), (i1), and (iii) are satisfied. Hence %" so
defined is a p.m.

Conversely, let any such % be given on % . Since {w;} € 7 for every j, . "({w;})
is defined, let its value be p;. Then (2) is satisfied. We have thus exhibited all the
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possible p.m.’s on £, or rather on the pair (£2, ./); this will be called a discrete sample
space. The entire first volume of Feller's well-known book [13] with all its rich content
1s based on just such spaces.

Example 2, Let % = (0, 1], ¢ the collection of intervals:
¢ ={(a,bl0<ca<b=<ll

- the minimal B.F. containing ¢, m the Borel-Lebesgue measure on 3. Then
(%, 23, m) is a probability space.

Let A, be the collection of subsets of % each of which is the union of a finite
number of members of €. Thus a typical set B in % is of the form

B=U(aj,bj] where ¢y < by <a; < by <--- <@, <b,.
j=1
It is easily seen that 75 is a field that is generated by ¢ and in turn generates &,
If we take % = [0, 1] instead, then 5, is no longer a field since % & 93;, but
Z and m may be defined as before. The new 7 is generated by the old 98 and the
singleton {0}.

Example 3. Let &' = (00, +00), # the collection of intervals of the form (a, b].
—o0 < a < b < +00. The field 43 generated by ¢ consists of finite unions of disjoint
sets of the form (a, b], (—oc, a] or (b, 00). The Euclidean B.F. 8! on &’ is the B.F.
generated by ¢ or #y. A set in 7' will be called a (linear) Borel set when there is no
danger of ambiguity. However, the Borel-Lebesgue measure m on %' is not a p.m.;
indeed m(A') = 400 so that m is not a finite measure but it is o-finite on 9By, namely:
there exists a sequence of sets E, € %, E, T A! with m(E,) < oo for each n.

EXERCISES

1. For any countably infinite set €2, the collection of its finite subsets

and their complements forms a field # . If we define Z°(E) on &% to be 0 or 1

according as E is finite or not, then &” is finitely additive but not countably so.

*2. Let 2 be the space of natural numbers. For each E C 2 let N,(F)

be the cardinality of the set £ N [0, n] and let ¢ be the collection of E’s for
which the following limit exists:

_ . N,(E
P(E) = lim n ).

H—=0oC H

# is finitely additive on ¢ and is called the “asymptotic density” of E. Let £ =
{all odd integers}, F = {all odd integers in.[2?", 2%*1] and all even integers
in [22H1, 222 for n > 0}). Show that E € ¢, F € ¢, but ENF ¢ ¢. Hence
£ is not a field.
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3. In the preceding example show that for each real number « in [0, 1]
there is an £ in ¢ such that #*(E) = «. Is the set of all primes in ¢ 7 Give
an example of £ that is not in ¢,

4. Prove the nonexistence of a p.m. on (£2,.77), where (£2,.7) is as in
Example 1, such that the probability of each singleton has the same value.
Hence criticize a sentence such as: “Choose an integer at random”.

5. Prove that the trace of a B.F. % on any subset A of §2 is a B.F.
Prove that the trace of (2,%, %) on any A in # is a probability space, if
P(A) > O

*6. Now let A ¢ # be such that

ACFeF =PF)=1.

Such a set is called thick in (2, F, 7). IfE=ANF, F € #,define " (E) =
P(F). Then 7* is a well-defined (what does it mean?) p.m. on (A, ANZF).
This procedure is called the adjunction of A to (R, #, 7).

7. The B.F. A on %! is also generated by the class of all open intervals
or all closed intervals, or all half-lines of the form (—oc, a] or {a, 0o), or these
intervals with rational endpoints. But it is not generated by all the singletons
of ! nor by any finite collection of subsets of Z!,

8. ' contains every singleton, countable set, open set, closed set, Gs
set, F,, set. (For the last two kinds of sets see, e.g., Natanson [3].)

*9, Let ¢ be a countable collection of pairwise disjoint subsets {E;, j > 1}
of ', and let # be the B.F. generated by ¢. Determine the most general
p.m. on # and show that the resuiting probability space is “isomorphic™ to
that discussed in Example 1.

10. Instead of requiring that the E;’s be pairwise disjoint, we may make
the broader assumption that each of them intersects only a finite number in
the collection, Carry through the rest of the problem.

The question of probability measures on ' is closely related to the
theory of distribution functions studied in Chapter 1. There is in fact a one-to-
one correspondence between the set functions on the one hand, and the point
functions on the other. Both points of view are useful in probability theory.
We establish first the easier half of this correspondence.

Lemma. Eachp.m. i on ' determines a d.f. F through the correspondence

(4) vx € A p((—o0, x}) = F(x).
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As a consequence, we have for —oco < a < b < 400:
u((a, b]) = F(b) — F(a),
1((a, b)) = F(b—) — F(a),
u(la, b)) = F(b—) — F(a—),
u(la, b)) = F(b) — Fa—).

)

Furthermore, let D be any dense subset of !, then the correspondence is
already determined by that in (4) restricted to x € D, or by any of the four
relations in (5) when a and & are both restricted to D.

PROOF. Let us write
vxe R I, = (—o0, x].

Then I, € B! so that u(/,) is defined; call it F(x) and so define the function
F on #!. We shall show that F is a d.f. as defined in Chapter 1. First of all, F
is increasing by property (viii) of the measure. Next, if x, | x, then I, { I,
hence we have by (ix)

(6) Flp) = plly) 4 pllz) = F(x).

Hence F is right continuous. [The reader should ascertain what changes should
be made if we had defined F to be left continuous.] Similarly as x | —oo, I |
@; as x 1 +00, I, 1 &' Hence it follows from (ix) again that
lim F(x)= lim pu{,)= u(@) =0,
xl—o0o

xl—oc

Iim F(x)= }?1—131 wll) = u(2)=1.

Xt 400

This ends the verification that F' is a d.f. The relations in (5) follow easily
from the following complement to (4):

p((—=o0,x)) = Fx—).
To see this let x,, < x and x, 1 x. Since I, 1 (—o00, x}, we have by (ix):
F(x=)= lim F(x,) = u((=00,%,)) 1 u((=00,x)).

To prove the last sentence in the theorem we show first that (4) restricted
to x € D implies (4) unrestricted. For this purpose we note that p((—oc, x]),
as well as F(x), is right continuous as a function of x, as shown in (6).
Hence the two members of the equation in (4), being both right continuous
functions of x and coinciding on a dense set, must coincide everywhere. Now
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suppose, for example, the second relation in (5) holds for rational ¢ and b. For
each real x let a,, b, be rational such that a, | —occ and b, > x, b, { x. Then
w(a,, b)) — pu((—o0,x])and F(b,—) — F(a,) — F(x). Hence (4) follows.

Incidentally, the correspondence (4) “justifies” our previous assumption
that F be right continnous, but what if we have assumed it to be left continuous?
Now we proceed to the second-half of the correspondence.

Theorem 2.2.2. Each d.f. F determines a p.m. . on 3’ through any one of
the relations given in (35), or alternatively through (4).

This i1s the classical theory of Lebesgue-Stieltjes measure; see, e.g.,
Halmos [4] or Royden [5]. However, we shall sketch the basic ideas as an
important review. The d.f. F being given, we may define a set function for
intervals of the form (a, b] by means of the first relation in (5). Such a function
is seen to be countably additive on its domain of definition. (What does this
mean?) Now we proceed to extend its domain of definition while preserving
this additivity. If S is a countable union of such intervals which are disjoint:

S= U(ai, b;]
we are forced to define u(S), if at all, by

w(S) =" ullan by = {Fb:) — Fla;)).

I

But a set § may be representable in the form above in different ways, so
we must check that this definition leads to no contradiction: namely that it
depends really only on the set S and not on the representation. Next, we notice
that any open interval (a, b) is in the extended domain (why?) and indeed the
extended definition agrees with the second relation in (5). Now it 1s well
known that any open set U in &' is the union of a countable collection of
disjoint open intervals [there is no exact analogue of this in " for n > 1], say
U =1{J,{c;, di); and this representation is unique. Hence again we are forced
to define n(U), if at all, by

wW) =" pllei d)) =Y (Fldi=)—F(e)).

i

Having thus defined the measure for all open sets, we find that its values for
all closed sets are thereby also determined by property (vi) of a probability
measure. In particular, its value for each singleton {a} is determined to be
F(a) — F(a—), which is nothing but the jump of F at a. Now we also know its
value on all countable sets, and so on— all this provided that no contradiction
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is ever forced on us so far as we have gone. But even with the class of open
and closed sets we are still far from the B.F. Z3'. The next step will be the G;
sets and the F; sets, and there already the picture is not so clear. Although
it has been shown to be possible to proceed this way by transfinite induction,
this is a rather difficult task. There is a more efficient way to reach the goal
via the notions of outer and inner measures as follows. For any subset S of
A consider the two numbers:

w*(S)= inf w),
{Jopen, UDS
us(S) = sup  u(C).
Cclosed, CCS

w* is the outer measure, 1, the inner measure (both with respect to the given
F). It is clear that 1™ (S) > u.(S). Equality does not in general hold, but when
it does, we call S “measurable” (with respect to F). In this case the common
value will be denoted by u(S). This new definition requires us at once to
check that it agrees with the old one for all the sets for which p has already
been defined. The next task is to prove that: (a) the class of all measurable
sets forms a B.F., say .Z; (b) on this .£, the function w is a p.m. Details of
these proofs are to be found in the references given above. To finish: since
£ i1s a B.F., and it contains all intervals of the form (a, b], it contains the
minimal B.F. #3' with this property. It may be larger than 93!, indeed it is
(see below), but this causes no harm, for the restriction of u to ! is a p.m.
whose existence is asserted in Theorem 2.2.2.

Let us mention that the introduction of both the outer and inner measures
is useful for approximations. It follows, for example, that for each measurable
set S and € > 0, there exists an open set U and a closed set C such that
U2>8>C and

) pU) —e < p(S) < u(C) +e.

There is an alternative way of defining measurability through the use of the
outer measure alone and based on Carathéodory’s criterion.

It should also be remarked that the construction described above for
(&', A, u) is that of a “topological measure space”, where the B.F. is gener-
ated by the open sets of a given topology on 7', here the usual Euclidean
one. In the general case of an “algebraic measure space”, in which there is no
topological structure, the role of the open sets is taken by an arbitrary field #,,
and a measure given on 74 may be extended to the minimal B.F. & containing
74 in a similar way. In the case of %!, such an %; is given by the field %, of
sets, each of which is the union of a finite number of intervals of the form (a,
b, (—oc, b, or (a, 00), where a € %', b € #'. Indeed the definition of the
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outer measure given above may be replaced by the equivalent one:

(8) W*(E) =inf ) u(U,).

where the infimum is taken over all countable unions [, U, such that each
U, € # and |J, U, D E. For another case where such a construction is
required see Sec. 3.3 below.

There is one more question: besides the u discussed above is there any
other p.m. v that corresponds to the given F in the same way? It is important
to realize that this question is not answered by the preceding theorem. It is
also worthwhile to remark that any p.m. v that is defined on a domain strictly
containing ' and that coincides with . on Z3' (such as the u on .2 as
mentioned above) will certainly correspond to F in the same way, and strictly
speaking such a v is to be considered as distinct from w. Hence we should
phrase the question more precisely by considering only p.m.’s on 3. This
will be answered in full generality by the next theorem.

Theorem 2.2.3. Let 4 and v be two measures defined on the same B.F. 7,
which is generated by the field %,. If either u or v is o-finite on %, and
w(E) = v(E) for every E € %, then the same is true for every £ € #, and
thus @ = v.

PROOF. We give the proof only in the case where u and v are both finite,
leaving the rest as an exercise. Let

¢ =[E € F:.u(E) = v(E)}},

then ¢ D F# by hypothesis. But € is also a monotone class, for if £, € ¢ for
every n and E, 1 E or E, | E, then by the monotone property of x and v,
respectively,

It follows from Theorem 2.1.2 that ¢ D #, which proves the theorem.

Remark. 1In order that 1 and v coincide on 7, it is sufficient that they
coincide on a collection & such that finite disjoint unions of members of &
constitute .

Corollary. Let u and v be o-finite measures on 23! that agree on all intervals
of one of the eight kinds: (a, b], (a, b), [a, b), |a. b], (—00, b}, (—o0, b), |a, o),
(a, oc) or merely on those with the endpoints in a given dense set D, then
they agree on %',
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PROOF. In order to apply the theorem, we must verify that any of the
hypotheses implies that i and v agree on a field that generates 3. Let us take
intervals of the first kind and consider the field .73, defined above. If i and v
agree on such intervals, they must agree on %3, by countable additivity. This
finishes the proof.

Returning to Theorems 2.2.1 and 2.2.2, we can now add the following
complement, of which the first part is trivial.

Theorem 2.2.4. Given the pm. i on A3, there is a unique d.f. F satisfying
(4). Conversely, given the d.f. F, there is a unique p.m. satisfying (4) or any
of the relations in (5).

We shall simply call u the p.m. of F, and F the d.f. of p.
Instead of (#', /') we may consider its restriction to a fixed interval [a,
b]. Without loss of generality we may suppose this to be %/ = [0, 1] so that we
are in the situation of Example 2. We can either proceed analogously or reduce
it to the case just discussed, as follows. Let F be ad.f. such that ¥ = 0 for x <
0 and F =1 for x > 1. The probability measure p of F will then have support
in [0, 13, since p((—o0,0)) =0 = 1((1, o)) as a consequence of (4). Thus
the trace of (%', 4!, 1) on % may be denoted simply by (%, 7, u), where
A is the trace of ! on #. Conversely, any p.m. on % may be regarded as
such a trace. The most interesting case is when F is the “uniform distribution”
on %"
0 for x < 0,
F(x)={x for0 <x <1,
1 for x > 1.
The corresponding measure m on & 1s the usual Borel measure on [0, 1],
while its extension on £ as described in Theorem 2.2.2 is the usual Lebesgue
measure there. It is well known that .7 is actually larger than &3; indeed (£, m)
is the completion of (./3, m) to be discussed below.

pEFINITION.  The probability space (2, 7, #°) is said to be complete iff
any subset of a set in .# with .7?(F) = 0 also belongs to #.

Any probability space (2, #, %°) can be completed according to the next
theorem. Let us call a set in % with probability zero a null set. A property
that holds except on a null set is said to hold almost everywhere (a.e.), almost
surely (a.s.), or for almost every .

Theorem 2.2.5. Given the probability space (Q,;’FL@), there exists a
complete space ($2, #,.#”) such that # C % and /=’ on 7.
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__PROOF. Let . {" be the collection of sets that are subsets of null sets, and
let # be the collection of subsets of 2 each of which differs from a set in #
by a subset of a null set. Precisely:

(9) F={ECSuEaFe. 4  forsome F € 7}.

It is easy to verify, using Exercise 1 of Sec. 2.1, that 7 is a B.F. Clearly it
contains % . For each E € #, we put

PE) = P(F),

where F is any set that satisfies the condition indicated in (7). To show that
this definition does not depend on the choice of such an F, suppose that

EaFye A, EaFy,e A7,
Then by Exercise 2 of Sec. 2.1,
(EaFDAMEAF)=(F1aF)AMEAE)=F 8 F,.

Hence Fj A Fa € .17 and so 22(Fy a F) = 0. This implies 2°(F,) = 97(F,),
as was to be shown. We leave it as an exercise to show that 2 is a measure
on%.If Ee %, then EAE = @ € A, hence P(E) = P(E).

Finally, it is easy to verify that if £ € % and Z(E) =0, then E € A"
Hence any subset of E also belongs to .4 and so to 7. This proves that
(2, #, P) is complete.

What is the advantage of completion? Suppose that a certain property,
such as the existence of a certain limit, is known to hold outside a certain set
N with #2(N) = 0. Then the exact set on which it fails to hold is a subset
of N, not necessarily in &%, but will be in # with 22(N) = 0. We need the
measurability of the exact exceptional set to facilitate certain dispositions, such
as defining or redefining a function on it; see Exercise 25 below.

EXERCISES

In the following, & is a p.m. on ' and F is its d.f.

*11. An atom of any measure u on Z3' is a singleton {x} such that
1({x}) > 0. The number of atoms of any o-finite measure is countable. For
each x we have u({x}) = F(x) — F(x—).

12. 1 is called atomic iff its value is zero on any set not containing any
atom. This is the case if and only if F is discrete. p is without any atom or
atomless if and only if F is continuous.

13. p is called singular iff there exists a set Z with m(Z) = 0 such
that #(Z¢) = 0. This is the case if and only if F is singular. [HiNT: One half
is proved by using Theorems 1.3.1 and 2.1.2 to get fB F'(x)dx < u(B) for
B € A'; the other requires Vitali’s covering theorem.]
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14. Translate Theorem 1.3.2 in terms of measures.

*15. Translate the construction of a singular continuous d.f. in Sec. 1.3 in
terms of measures. [It becomes clearer and easier to describe!] Generalize the
construction by replacing the Cantor set with any perfect set of Borel measure
zero. What if the latter has positive measure? Describe a probability scheme
to realize this.

16. Show by a trivial example that Theorem 2.2.3 becomes false if the
field %, is replaced by an arbitrary collection that generates # .

17. Show that Theorem 2.2.3 may be false for measures that are o-finite
on # . [HINT: Take €2 to be {1, 2, ..., oo} and % to be the finite sets excluding
oc and their complements, @ (E) = number of points in E, p£(o0) # v{co).]

18. Show that the # in (9) | is also the collection of sets of the form
FUN [or F\N] where F € % and N € .1".

19. Let .. {" be as in the proof of Theorem 2.2.5 and .15 be the set of all
null sets in (§2, #, 77). Then both these collections are monotone classes, and
closed with respect to the operation “\”.

*20. Let (2, %, %°) be a probability space and 7 a Borel subfield of
# . Prove that there exists a minimal B.F. % satisfying % C %5 C & and
. 1g C %, where _{; is as in Exercise 19. A set E belongs to 7 if and only
if there exists a set F in # such that EAF € .15. This % is called the
augmentation of 77 with respect to (2, #, 7°).

21. Suppose that F has all the defining properties of a d.f. except that it
is not assumed to be right continuous. Show that Theorem 2.2.2 and Lemma
remain valid with F replaced by F, provided that we replace F(x), F(b), F(a)
in (4) and (5) by F(x+), F(b+), F(a+), respectively. What modification is
necessary in Theorem 2.2.47

22. For an arbitrary measure #° on a B.F. ##, a set E in # is called an
atom of 7 iff #(E)>0and F CE, F € # imply 2(F) = Z(E) or P(F) =
0. # is called aromic iff its value is zero over any set in 7 that is disjoint
from all the atoms. Prove that for a measure w on &' this new definition is
equivalent to that given in Exercise 11 above provided we identify two sets
which differ by a 7”-null set.

23. Prove that if the p.m. Z is atomless, then given any « in [0, 1]
there exists a set £ € # with 7’(F) = «. [HINT: Prove first that there exists E
with “arbitrarily small” probability. A quick proof then follows from Zorn’s
lemma by considering a maximal collection of disjoint sets, the sum of whose
probabilities does not exceed «. But an elementary proof without using any
maximality principle is also possible.]

*24. A point x is said to be in the support of a measure @ on A" iff
every open neighborhood of x has strictly positive measure. The set of all
such points is called the support of u. Prove that the support is a closed set
whose complement is the maximal open set on which p vanishes. Show that
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the support of a p.m. on 8! is the same as that of its d.f., defined in Exercise 6
of Sec. 1.2.
*25. Let f be measurable with respect to 7, and Z be contained in a null

set. Define
f= f on Z°,
T 1K on Z,

where X is a constant. Then f is measurable with respect to # provided that
(2, #, 77} is complete. Show that the conclusion may be false otherwise.




3 Random variable.
Expectation. Independence

3.1 General definitions

Let the probability space (2, #, ”) be given. &' = (—o0, +00) the (finite)
real line, #* = [—o0, +00] the extended real line, %! = the Euclidean Borel
field on #', ./3* = the extended Borel field. A set in 73* is just a set in A
possibly enlarged by one or both points oc.

DEFINITION OF A RANDOM VARIABLE. A real, extended-valued random vari-
able is a function X whose domain is a set A in # and whose range is
contained in A* = [—o00, +0o¢] such that for each B in /3%, we have

(1) {w: X(w) € B} € ANF

where A N .# is the trace of # on A. A complex-valued random variable is
a function on a set A in % to the complex plane whose real and imaginary
parts are both real, finite-valued random variables.

This definition in its generality is necessary for logical reasons in many
applications, but for a discussion of basic properties we may suppose A = 2
and rhat X is real and finite-valued with probability one. This restricted meaning
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of a “random variable”, abbreviated as “r.v.”, will be understood in the book
unless otherwise specified. The general case may be reduced to this one by
considering the trace of (2,%,2”) on A, or on the “domain of finiteness”
Ay = {w: | X(w)| < o0}, and taking real and imaginary parts.
Consider the “inverse mapping” X~! from %' to €2, defined (as usual)
as follows:
YA C Z:X7NA) = {w: X(w) € A).

Condition (1) then states that X! carries members of #3' onto members of
(2) VBe B:X"Y(B)e F:
or in the briefest notation:

x'#BHYcF.

Such a function 1s said to be measurable (with respect to 7). Thus, an r.v. is
just a measurable function from Q to #! (or #*).
The next proposition, a standard exercise on inverse mapping, is essential.

Theorem 3.1.1. For any function X from Q to ! (or Z*), not necessarily
an r.v., the inverse mapping X! has the following properties:

XA = (XA,
X~ (UAa) =Jx " @a),
X! (ﬂAa) =X (4.

where « ranges over an arbitrary index set, not necessarily countable,

Theorem 3.1.2. X is an r.v. if and only if for each real number x, or each
real number x in a dense subset of !, we have

{w: X(w) <x} e #.
prOOF. The preceding condition may be written as
3) Va: X ((—o0,x]) € 7.

Consider the collection .7 of all subsets § of %' for which X~1(S5) € .#. From
Theorem 3.1.1 and the defining properties of the Borel field #, it follows that
if § € ./, then

XS =&S €7,
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if Vj:§; € ./, then
xUss | =Ux'Spes
J J

Thus $° € </ and |, S; € .«/ and consequently .< is a B.F. This B.F. contains
all intervals of the form (—oc, x], which generate J3' even if x is restricted to
a dense set, hence .«/ O A', which means that X~ '(B) € # for each B € A!.
Thus X is an r.v. by definition. This proves the “if” part of the theorem; the
“only if” part is trivial.

Since #°(-) 1s defined on #, the probability of the set in (1) is defined
and will be written as

PX(w)eB) or P{X B}

The next theorem relates the p.m. 22 to a p.m. on (R', B!) as discussed
in Sec. 2.2.

Theorem 3.1.3. Each r.v. on the probability space (2, #, %) induces a
probability space (%', 7', 1) by means of the following correspondence:

(4) VB e A wuB)=2X(B)) =PX € B).

PrROOF. Clearly u(B) > 0. If the B,’s are disjoint sets in 3!, then the
X~Y(B,)’s are disjoint by Theorem 3.1.1. Hence

() =2 b)) (o)

= Z;J?)(X_I(Bn)) — ZM(BII)-

Finally X' (#') = Q, hence (') = 1. Thus u is a p.m.

The collection of sets {X'(S), § C #'} is a B.F. for any function X. If
X is a r.v. then the collection {X'(B), B € A"} is called the B.F. generated
by X. It is the smallest Borel subfield of :# which contains all sets of the form
{w:X(w) < x}, where x € 7#'. Thus (4) is a convenient way of representing
the measure % when it is restricted to this subfield; symbolically we may

write it as follows:
w=9oxX '

This w is called the “probability distribution measure” or p.m. of X, and its
associated d.f. F according to Theorem 2.2.4 will be called the d.f. of X.
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Specifically, F is given by
F(x) = p((~o0, x]) = X < x}.

While the r.v. X determines p and therefore F, the converse is obviously
false. A family of r.v.’s having the same distribution is said to be “identically
distributed”.

Example 1. Let (€2,.7) be a discrete sample space (sec Example 1 of Sec. 2.2).
Every numerically valued function is an r.v.

Example 2. (%, 3, m).

In this case anr.v. is by definition just a Borel measurable function. According to
the usual definition, f on % is Borel measurable iff f~'(%') ¢ 3. In particular, the
function f given by f(w) = w is an r.v. The two r.v.’s @ and 1 — @ are not identical
but are identically distributed; in fact their common distribution is the underlying
measure .

Example 3. (#', &', u).

The definition of a Borel measurable function is not affected, since no measure
is involved; so any such function is an r.v., whatever the given p.m. x4 may be. As
in Example 2, there exists an r.v. with the underlying u as its p.m.; see Exercise 3
below.

We proceed to produce new r.v.’s from given ones.

Theorem 3.1.4. If Xisanr.v, f a Borel measurable function [on (!, #1)],
then f(X) is an r.v.

PrOOF. The quickest proof is as follows. Regarding the function f(X) of
w as the “composite mapping”™

feXiw— fX(w),
we have (f e X)™! =X~! o f~! and consequently
(FeX)y /(BY=XTNfT"HBNCX (BT

The reader who is not familiar with operations of this kind is advised to spell
out the proof above in the old-fashioned manner, which takes only a little
longer.

We must now discuss the notion of a random vector. This is just a vector
each of whose components is an r.v. It is sufficient to consider the case of two
dimensions, since there is no essential difference in higher dimensions apart
from complication in notation.
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We recall first that in the 2-dimensional Buclidean space %7, or the plane,
the Euclidean Borel field /3 is generated by rectangles of the form

{x, y)va<x<b,c<y=<d}
A fortiori, it is also generated by product sets of the form
By x By = {(x, y):x € By, y € Ba},

where B; and B; belong to 73!, The collection of sets, each of which is a finite
union of disjoint product sets, forms a field #3}. A function from 2 into 7’
is called a Borel measurable function (of two variables) iff f~'(8') c 2.
Written out, this says that for each 1-dimensional Borel set B, viz., a member
of 43!, the set

{(x, y): f(x,y) € B}

is a 2-dimensional Borel set, viz. a member of J3°.
Now let X and Y be two r.v.’s on (2, #, 7). The random vector (X, Y)
induces a probability v on #3% as follows:

(5) VYA € BLv(A) = PX,Y) € A},

the right side being an abbreviation of Z({w: (X{w), Y(w)) € A}). This v
is called the (2-dimensional, probability) distribution or simply the p.m. of
(X, YY)

Let us also define, in imitation of X!, the inverse mapping (X, ¥Y)™' by
the following formula:

VA € 2% (X, Y)Y 1(A) = {w: (X, Y) € A}

This mapping has properties analogous to those of X~' given in
Theorem 3.1.1, since the latter is actually true for a mapping of any two
abstract spaces. We can now easily generalize Theorem 3.1.4.

Theorem 3.1.5. If X and Y are r.v.’s and f is a Borel measurable function
of two variables, then f(X, Y) is an r.v.

PROOF.
[FoX, YN (ABY=X.Y) e f 1A X, V) (H) CF.

The last inclusion says the inverse mapping (X,Y) ! carries each 2-
dimensional Borel set into a set in 7. This is proved as follows. If A =
B, x B,, where By € A!, B, € A!, then it is clear that

XYY A =x"1B)NY (B eF
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by (2). Now the collection of sets A in :%#? for which (X, Y)"'(4) € # forms
a B.F. by the analogue of Theorem 3.1.1. It follows from what has just been
shown that this B.F. contains .%% hence it must also contain 2. Hence each
set in 3% belongs to the collection, as was to be proved.

Here are some important special cases of Theorems 3.1.4 and 3.1.5.
Throughout the book we shall use the notation for numbers as well as func-
tions:

{6) x V y=max{x, y), XA y=min(x, ¥).

Corollary. If X is anr.v. and f is a continuous function on &', then f(X)
is an r.v.; in particular X" for positive integer r, |X|” for positive real r, e *X,
¢'™ for real A and ¢, are all r.v.’s (the last being complex-valued). If X and Y

are r.v.’s, then
XvY, XAY, X+Y, X-Y X-Y, X/Y

are r.v.’s, the last provided Y does not vanish.

Generalization to a finite number of r.v.’s is immediate. Passing to an
infinite sequence, let us state the following theorem, although its analogue in
real function theory should be well known to the reader.

Theorem 3.1.6. If {X;, j = 1} is a sequence of r.v.’s, then

infX;, supX;, liminfX; limsupX;
b J i i

are r.v.’s, not necessarily finite-valued with probability one though everywhere
defined, and

.lim X j

J—=ce
is an r.v. on the set A on which there is either convergence or divergence to
+00.

PROOF. To see, for example, that sup ; X is anr.v.,, we need only observe
the relation
Vx eé’ﬁ]:{supXj <x}= ﬂ{Xj < x}
J ;
J

and use Theorem 3.1.2. Since

limsup X; = inf(sup X ;),

J n j=n
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and lim; . o X; exists [and is finite] on the set where limsup; X; = lim inf; X ;
[and is finite], which belongs to #, the rest follows.

Here already we see the necessity of the general definition of an r.v.
given at the beginning of this section.

DEFINITION.  An r.v. X is called discrete (or countably valued) iff there
is a countable set B C #! such that 2(X € B) = 1.

It is easy to see that X is discrete if and only if its d.f. is, Perhaps it is
worthwhile to point out that a discrete r.v. need not have a range that is discrete
in the sense of Euclidean topology, even apart from a set of probability zero.
Consider, for example, an r.v. with the d.f. in Example 2 of Sec. 1.1.

The following terminology and notation will be used throughout the book
for an arbitrary set 2, not necessarily the sample space.

DEFINITION.  For each A C €2, the function 1 (-) defined as follows:

1, if w € A,

V“)GQ‘IA(‘”)={0 if € Q\A

is called the indicator (function) of A.

Clearly 14 is anr.v. if and only if A € 7.
A countable partition of Q is a countable family of disjoint sets {A},
with Aj € # for each j and such that & = | J; A;. We have then

I=1g=>) I,,
j

More generally, let b; be arbitrary real numbers, then the function ¢ defined
below:

Vo € Qig(w) =Y bl (w),
7

is a discrete r.v. We shall call ¢ the r.v. belonging to the weighted partition
{A;;b;}. Each discrete r.v. X belongs to a certain partition. For let {b;} be
the countable set in the definition of X and let A; = {w: X(w) = b i}, then X
belongs to the weighted partition {A;;5;}. If j ranges over a finite index set,
the partition is called finite and the r.v. belonging to it simple.

EXERCISES

1. Prove Theorem 3.1.1. For the “direct mapping” X, which of these
properties of X~! holds?
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2. If two r.v.’s are equal a.e., then they have the same p.m.

*3, Given any p.m. x4 on (%!, "), define an r.v. whose p.m. is u. Can
this be done in an arbitrary probability space?

*4, Let 6 be uniformly distributed on [0,1]. For each d.f. F, define G(y) =
sup{x: F(x) < y}. Then G(6) has the d.f. F.

*5. Suppose X has the continuous d.f. F, then F(X) has the uniform
distribution on [0,1]. What if F' is not continuous?

6. Is the range of an r.v. necessarily Borel or Lebesgue measurable?

7. The sum, difference, product, or quotient (denominator nonvanishing)
of the two discrete r.v.’s is discrete,

8. If Q is discrete (countable), then every r.v. is discrete. Conversely,
every r.v. in a probability space is discrete if and only if the p.m. is atomic.
[HmvT: Use Exercise 23 of Sec. 2.2.]

9. If f is Borel measurable, and X and Y are identically distributed, then
so are f{X) and f(Y).

10. Express the indicators of A; U Az, A1 N A2, A\A2, AjaAg,
limsup A,, liminf A, in terms of those of Ay, Ay, or A,. [For the definitions
of the limits see Sec. 4.2.]

*11. Let:# {X} be the minimal B.F. with respect to which X is measurable,
Show that A € #{X} if and only if A = X~ '(B) for some B € 7. Is this B
unique? Can there be a set A ¢ ' such that A = X~ 1(A)?

12. Generalize the assertion in Exercise 11 to a finite set of r.v.’s. [It is
possible to generalize even to an arbitrary set of r.v.’s.]

3.2 Properties of mathematical expectation

The concept of “(mathematical) expectation” is the same as that of integration
in the probability space with respect to the measure 7. The reader is supposed
to have some acquaintance with this, at least in the particular case (#/, 4, m)
or (A", A, m). {In the latter case, the measure not being finite, the theory
of integration is slightly more complicated.] The general theory is not much
different and will be briefly reviewed. The r.v.’s below will be tacitly assumed
to be finite everywhere to avoid trivial complications,

For each positive discrete r.v. X belonging to the weighted partition
{Aj;b;}, we define its expectation to be

(1) X)) =D b {A).
i

This is either a positive finite number or +occ. It is trivial that if X belongs
to different partitions, the corresponding values given by (1) agree. Now let
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X be an arbitrary positive r.v. For any two positive integers m and n, the set

n n+1
Apn = a).z—m < X(w) < o

belongs to #. For each m, let X,, denote the r.v. belonging to the weighted
partition {A,;n/2"}; thus X, =n/2" if and only if n/2" <X < (n +
1)/2™. Tt is easy to see that we have for each m:

1
Yo X p() € Xmi1(@); 02 X(0) — Xn(w) < T
Consequently there is monotone convergence:
Vw: lim Xp(w) = X(w).
m—00
The expectation X, has just been defined; it is

“(Xm) in {"<X "H}
clim) = Py — = < - .
Zaom | 2m 2

If for one value of m we have &(X,,) = +00, then we define £(X) = +o0;
otherwise we define
XY= lim X,
M— 00
the limit existing, finite or infinite, since ¢(X,,) is an increasing sequence of
real numbers. It should be shown that when X is discrete, this new definition
agrees with the previous one.
For an arbitrary X, put as usual

(2) X=Xt"—-X" where XT=XVv0, X =(-X)VvO0.

Both X* and X~ are positive r.v.’s, and so their expectations are defined.
Unless both ¢{X") and ¢(X™) are +o0, we define

3) FX)= X)) - X))

with the usual convention regarding oc. We say X has a finite or infinite
expectation (or expected value) according as «(X) is a finite number or £o0.
In the expected case we shall say that the expectation of X does not exist. The
expectation, when it exists, is also denoted by

f X ()P (dw).
Q

More generally, for each A in 7, we define

(4) / X(w)#(dw) = (X - 15)
A
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and call it “the integral of X (with respect to 7) over the set A”, We shall
say that X is integrable with respect to 7 over A iff the integral above exists
and is finite.

In the case of (%!, !, ), if we write X = f, w = x, the integral

] X(w)P(dw) = / f )pldx)
A A

is just the ordinary Lebesgue-Stieltjes integral of f with respect to . If F
is the d.f. of u and A = (a, b], this is also written as

fx)dF(x).

(a.b]

This classical notation is really an anachronism, originated in the days when a
point function was more popular than a set function. The notation above must

then amend to
B+0  pb+Q0 pb-0 pb—0
' / ’ / ’ /
a+0 a—0 a+0 a—0

to distinguish clearly between the four kinds of intervals (a, b], [a, b], (a, b),
[a, b).

In the case of (#/, 73, m), the integral reduces to the ordinary Lebesgue
integral

b b
f £ Gym(dx) = f £ d.

Here m is atomless, so the notation is adequate and there is no need to distin-
guish between the different kinds of intervals.

The general integral has the familiar properties of the Lebesgue integral
on [0,1]. We list a few below for ready reference, some being easy conse-
quences of others. As a general notation, the left member of (4) will be
abbreviated to [, X d7. In the following, X, Y are r.v.’s; a, b are constants;
A is a set in 7.

(i) Absolute integrabiliry. [, X d7 is finite if and only if
/ |X|d? < o0.
A
(ii) Lineariry.
/(aX + bY)Yd» = a/ Xd.-"f/’+b/ Yd»
A A

A

provided that the right side is meaningful, namely not +00 — 0c or —oc + o¢,
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(iii) Additvity over sets. If the A, s are disjoint, then

Xd7P = [ XdP,
[HAH ; n
(iv) Positivity, If X > 0 a.e. on A, then
/ Xd? > Q.
A
(v) Monotonicity. If X1 <X <X, a.e. on A, then
/de@S/Xd@Sfxzd?/).
A A A
(vi) Mean value theorem. If a < X < b ae.on A, then
aP(A) < / XdP < bP(N).
A
(vil) Modulus inequality.

/Xd@ gflxmzuﬁ.
A A

(viil) Dominated convergence theorem. If im, o X, = X a.e. or merely
in measure on A and Vn: |X,| <Y ae. on A, with [, Y d% < oc, then

{(5) lim | X, d? = / Xdp = lim X, d2.
n—00 A A A n—r 000

(ix) Bounded convergence theorem. If lim,., . X, = X a.e. or merely
in measure on A and there exists a constant M such that Vn: |X,,| < M a.e.
on A, then (5) is true.

(x) Monotone convergence theorem. It X, > 0 and X,, 1 X ae. on A,
then (5) is again true provided that +oc is allowed as a value for either
member. The condition “X, > 0" may be weakened to: “&(X,) > —oo for
some n’”.

(xi) Integration term by term. If

;[A 1X,1 dP < o0,

then 3 |X,| < oo a.e on A sothat ), X, converges a.e. on A and

/Z‘X,, dng:fo,,d;@.
AT o JA
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(xit) Fatou's lemma. If X, > 0 a.e. on A, then
(lim X,)d? < lim { X,d7.
A B—OQ 00 JA

Let us prove the following useful theorem as an instructive example.

Theorem 3.2.1. We have

(6) ST (X 2 n) < EOXD < 1+ Y 2(X] 2 n)

n=1 n=1
so that £(}X|) < oo if and only if the series above converges.

PROOF. By the additivity property (iii), if A, = {n <|X| <n + 1},

=Y [ 1xia,
n=( 7 An

Hence by the mean value theorem (vi) applied to each set A,:
o0 o0 o0

() D nPBa) S E(XD <) (n+ DP(B) = 14D nP(An).
wef) n=0 ==()

It remains to show

(8) Y nPNy) =Y P(X| = n),

n=0 n=0

finite or infinite. Now the partial sums of the series on the left may be rear-
ranged (Abel’s method of partial summation!) to yield, for N > 1,

N
9) D a{P(X| = n)— 2(X| = n + 1))
n=0
N
=Y {n—(n = DIP(X| = n) = N#(X| 2 N + 1)

rpe]
N
=) Z(X| = n) = NP(X| = N +1).
=]
Thus we have

N N N
(10) D n#(Dy) <Y 2(X| 2 n) < Y nP(Ba) +NP(X| 2 N +1).

n=1 n=| n=1
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Another application of the mean value theorem gives

N2(X| zN—I—l)f/ IX| d7.
(IX|=N+1)

Hence if ¢{|X|) < o0, then the last term in (10) converges to zero as N — o0
and (8) follows with both sides finite. On the other hand, if £{]X]) = o, then
the second term in (10) diverges with the first as N — oo, so that (8) is also
true with both sides infinite.

Corollary. If X takes only positive integer values, then
o
EX) =) PX >n).
n=1

EXERCISES

1. f X >0ae on Aand [, Xd?? =0, then X =0 ae. on A.
*2. If £(X]) < o0 and limg— 00 Z(Ay) = 0, then lim, ‘fAn Xdo = 0.
In particular

lim Xd#=0.

"8 J{IX| > n)

3. Let X>0 and [,Xd7? =A,0<A <o0o. Then the set function v
defined on # as follows:

1
v(A):—/Xd??D,
A Ja

is a probability measure on # .
4. Let ¢ be a fixed constant, ¢ > 0. Then £(]X|) < oc if and only if
oo

Zé’@(le > cn) < 0.

n=1

In particular, if the last series converges for one value of ¢, it converges for
all values of c.

8. For any r > 0, #(|X!") < oo if and only if
o]

> w7 2(X| = n) < o0,

n=1
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*6. Suppose that sup, |X,| <Y on A with [, Y d% < 00, Deduce from
Fatou’s lemma:

(Im X,)d7 > Iim [ X,d?.

A n—0Q n—>00 A

Show this is false if the condition involving Y is omitted.
*7. Given the r.v. X with finite ¢(X), and € > 0, there exists a simple r.v.
X, (see the end of Sec. 3.1) such that
(X — X)) < e
Hence there exists a sequence of simple r.v.’s X, such that

lim (X — X)) = 0.
> 00

We can choose {X,,} so that |X,,| < |X] for all m.
*8. For any two sets Ay and A, in :#, define

(A1, Az) = PP(A1 s Ap);

then p is a pseudo-metric in the space of sets in .7 call the resulting metric
space M(F, 7). Prove that for each integrable r.v. X the mapping of M(#, &)
to A given by A — [ X d?P is continuous. Similarly, the mappings on
M(7, %) x M(7#, ) to M(#, &”) given by

(A1, A2) = AU AL AN A, Ai\Ag, Ay a Ag
are all continuous. If (see Sec. 4.2 below)

limsup A, = liminf A,
n Hi

modulo a null set, we denote the common equivalence class of these two sets
by lim, A,. Prove that in this case {A,} converges to lim, A, in the metric
p. Deduce Exercise 2 above as a special case.

There is a basic relation between the abstract integral with respect to
#” over sets in % on the one hand, and the Lebesgue-Stieltjes integral with
respect to i over sets in %! on the other, induced by each r.v. We give the
version in one dimension first.

Theorem 3.2.2. Let X on (Q,.7,7) induce the probability space
(#!, B, 1) according to Theorem 3.1.3 and let f be Borel measurable. Then
we have

(11) L FX (@) dw) = f FCu(dx)

provided that either side exists.




48 | RANDOM VARIABLE. EXPECTATION. INDEPENDENCE

PROOF. Let B € .43, and f = 1z, then the left side in (11) is #2(X € B)
and the night side is w(B). They are equal by the definition of w in (4) of
Sec. 3.1. Now by the linearity of both integrals in (11), it will also hold if

(12) f=> _bilg,
J

namely the r.v. on (!, A!, 1) belonging to an arbitrary weighted partition
{Bj; b;}. For an arbitrary positive Borel measurable function f we can define,
as in the discussion of the abstract integral given above, a sequence {f,,,m >
1} of the form (12) such that f,, 1 f everywhere. For each of them we have

(13) ]Qfm(X)d@= fmdp;

Al
hence, letting m — oc and using the monotone convergence theorem, we
obtain (11) whether the limits are finite or not. This proves the theorem for
f = 0, and the general case follows in the usual way.

We shall need the generalization of the preceding theorem in several
dimensions. No change is necessary except for notation, which we will give
in two dimensions. Instead of the v in (5) of Sec. 3.1, let us write the “mass
element” as u®(dx, dy) so that

v(A) = / / W2 (dx, dy).
A

Theorem 3.2.3. Let (X, Y) on (£2,#,%) induce the probability space
(#%, 72, u?) and let f be a Borel measurable function of two variables.
Then we have

(14) /Q F X (@), Y(@)P(de) = / / £ Y)u(dx, dy).
e

Note that f(X. Y) is an r.v. by Theorem 3.1.5.

As a consequence of Theorem 3.2.2, we have: if uy and Fy denote,
respectively, the p.m. and d.f. induced by X, then we have

;(X):/ﬂx,ux(dx)=/ xdFx(x),

and more generally

(15) A = L FCopx(n) = /_ £ () dFx(x)

with the usual proviso regarding existence and finiteness.
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Another important application is as follows: let 1* be as in Theorem 3.2.3
and take f(x, v) to be x + y there. We obtain

(16) FX+Y)= f (x + Yt dx, dy)
&2

=/]x,u2(dx, dy)+// yul(dx, dy).

7 R

On the other hand, if we take f(x, v) to be x or y, respectively, we obtain

f(X)szxuz(dx, dy), cr‘-‘"(Y)=ffyM2(dxa dy)

e &2
and consequently
(17) FX+Y)y= X0+ ).

This result is a case of the linearity of & given but not proved here: the proof
above reduces this property in the general case of (£, #, 7”) to the corre-
sponding one in the special case (%2, 7%, u?). Such a reduction is frequently
useful when there are technical difficulties in the abstract treatment.

We end this section with a discussion of “moments”.

Let a be real, r positive, then &(|X — a|”) is called the absolute moment
of X of order r, about a. It may be +oc¢; otherwise, and if r is an integer,
E((X — a)’) 1s the corresponding moment. If w and F are, respectively, the
p.m. and d.f. of X, then we have by Theorem 3.2.2:

oo

£OX = al") = L x—al () = / x — al” dF (x),

(X —a))= /m (x —ay uldx) = / (x — a)’ dF (x).

For r = 1, a = 0, this reduces to ¢'(X), which is also called the mean of X.
The moments about the mean are called central moments. That of order 2 is
particularly important and is called the variance, var (X); its positive square
root the standard deviation. o(X):

var (X) = 0> (X) = 1 — £} = €(X?) — (X))

We note the inequality o?(X) < &(X?), which will be used a good deal
in Chapter 5. For any positive number p, X is said to belong to L? =
LP(Q., 7, ) iff £(IX|P) < oo.
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The well-known inequalities of H&lder and Minkowski (see, e.g.,
Natanson [3]) may be written as follows. Let X and ¥ berv.’s, 1 < p < o0
and 1/p+ 1/g =1, then

(18) XY < E(IXY ) < E0XIDHYPE(Y DY,
(19) {EUX + Y PP < (X177 + sy |P)VP,
If Y =1 1n (18), we obtain

(20) (X)) < €(X17)V7;

for p =2, (18) is called the Cauchy—Schwarz inequality. Replacing |X| by
IX|", where 0 < r < p, and writing v’ = pr in (20) we obtain

(21) QXM < EUXIOYT, 0 <r<r < o0,

The last will be referred to as the Liapounov inequality. It is a special case of
the next inequality, of which we will sketch a proof.

Jensen’s inequality. If ¢ is a convex function on %!, and X and ¢(X) are
integrable r.v.’s, then

(22) e(£(X)) < E(pX)).
PROOF. Convexity means : for every positive Ay, ..., A, with sum 1 we
have
n h
(23) oD i | 2D net.
Jj=1 J=1

This 1s known to imply the continuity of ¢, so that ¢(X) is an r.v. We shall
prove (22) for a simple r.v. and refer the general case to Theorem 9.1.4. Let
then X take the value y; with probability A;, 1 < j < n. Then we have by
definition (1):

XY=y E@XD) =Y A0,
j=1

j=1
Thus (22) follows from (23).
Finally, we prove a famous inequality that is almost trivial but very

useful.

Chebyshev inequality. If ¢ is a strictly positive and increasing function
on (0, 0o}, @(u) = @(—u), and X is an r.v. such that £{@(X)} < oo, then for
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each u > O:
X(10.9}
o)

PIX| z u} <
PROOF. We have by the mean value theorem:

Flp(X)) = / H(X)dP > / o(X)dP > oW P{IX| > u)
Q2 {iX|=u)

from which the inequality follows.

The most familiar application is when (1) = |u|? for 0 < p < 00, so
that the inequality yields an upper bound for the “tail” probability in terms of
an absolute moment.

EXERCISES

9. Another proof of (14): verify it first for simple r.v.’s and then use
Exercise 7 of Sec. 3.2.

10. Prove that if 0 < r < ¢ and &(|X|") < oo, then £(]X|7) < o00. Also
that £(|X|") < oo if and only if &(]X — a¢|") < oo for every a.

*11. If £(X2) =1 and &(X|) = a > 0, then P{|X| > Aa} > (1 — A)%a?
forO<ia <.

*2.If X>0 and Y >0, p=>0, then &{(X+ YY)} <2P{EXFP) +
E(YP)). If p > 1, the factor 27 may be replaced by 27~ If 0 < p < 1. it
may be replaced by 1.

*13. If X; =0, then

P

H i
: wry P
& E X < or > E E(X5)
j=1 j=l1

accordingas p<lor p>1.
*14. If p > 1, we have

1 n p 1 n

- X < — .| P

- Z | == Z'Xf'
j=1 J=1

P
n

1
& ;;E:Xj =<

j=1

and so

= |-

> EUX, 1P
j=1
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we have also
P

n

r
1 1<
£ —§X- <<= EUx; )Y

j=1

Compare the inequalities.
15. If p >0, £(]X|?) < o0, then xPP{X| > x} =o(l) as x — oo.
Conversely, if x?2{|X| > x} = o(1), then £(|X|?7¢) < oo for 0 < € < p.
*16. For any d.f and any a > 0, we have

f [F(x4+a)— F(x)}dx = a.
—0Q
17. If F 1s a d.f. such that F{0—) = 0, then
oG o0
/ {1 - F(x))dx =] xdF(x) = 4o0.
0 0
Thus if X is a positive r.v., then we have
oc o0
E(X) =] AX > x}dx =/ PX = x}dx.
0 0

18. Prove that [° |x|dF(x) < oc if and only if

0 o0
/ F(x)dx < o0 and f [1 - F(x)]dx < co.
0

— 20

*19. If {X,} is a sequence of identically distributed r.v.’s with finite mean,
then

1
lim —¢'{ max |X;|} = 0.
R 1=j<n

[HinT: Use Exercise 17 to express the mean of the maximum.]
20. For r > 1, we have

* 1 ool
—é(X Anu')du = (X r)_
o u r—1

[HINT: By Exercise 17,

r

i H
X )= / X > x)dx = f XM > vy do,
0 0

substitute and invert the order of the repeated integrations.]




3.3 INDEPENDENCE | 53

3.3 Independence

We shall now introduce a fundamental new concept peculiar to the theory of
probability, that of “(stochastic) independence”.

DEFINITION OF INDEPENDENCE. The r.v.’s {X;, 1 < j < n} are said to be
(totally) independent 1ff for any linear Borel Sets {Bj,1 < j<n} we have
(1) 7 (X, €B)) ¢ =[[2X; €B).

j=1 j=1
The r.v.’s of an infinite family are said to be independent iff those in every

finite subfamily are. They are said to be pairwise independent iff every two
of them are independent.

Note that (1) implies that the r.v.’s in every subset of {X; 1 < j < n}
are also independent, since we may take some of the B; s as Z&'. On the other
hand, (1) is implied by the apparently weaker hypothesis: for every set of real
numbers {x;,1 < j < n}:

n

(2) 2L X =xp) 3 = []20G < xp).

Jj=1 Jj=1

The proof of the equivalence of (1) and (2) is left as an exercise. In terms
of the p.m. x" induced by the random vector (X, ..., X, ) on (&A", /"), and
the p.m.’s {x;, 1 < j < n} induced by each X; on (&', A!), the relation (1)
may be written as

3) | X By | =11,
=1

where X?=]Bj is the product set B; x - - - x B, discussed in Sec. 3.1. Finally,
we may introduce the n-dimensional distribution function corresponding to
w”, which is defined by the left side of (2) or in alternative notation:

F(xl,..,,x,,)z.‘"/?{)(jng,l5j§n}:,u" X(—OO,)CJ’}) N
J=1

then (2) may be written as

Fex,...ox) =[] Fi@)).
=1
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From now on when the probability space is fixed, a set in # will also be
called an event. The events {E;, 1 < j < n} are said to be independent iff their
indicators are independent; this is equivalent to: for any subset {ji, ... j;} of
{1,..., n}, we have

¢ £
4) 7 { M En} = [17E».
k=1 k=1

Theorem 3.3.1. If {X; 1 < j < n} are independent r.v.’s and {f;,1 < j <
n} are Borel measurable functions, then {f ;(X;), 1 < j < n} are independent
I.v.’s.

PROOF. Let A; € 78!, then f II(A j)E ' by the definition of a Borel
measurable function. By Theorem 3.1.1, we have

n n

&) ery= X, f7 A

j=1 j=1
Hence we have

n

@2 m[fJ(XJ)EAJ] =7 ﬂ[Xjef_;'l(Aj)] =H‘?){Xjef;—l(AJ)}

J=1 j=1 j=1
n
= [[7tf X)) € 45).
J=1

This being true for every choice of the A;’s, the f;(X;)’s are independent
by definition.

The proof of the next theorem is similar and is left as an exercise.

Theorem 3.3.2. Let 1 <n; <ng < ... <np=n;f; a Borel measurable
function of n; variables, f, one of n; — n variables, ..., fyoneof ny — np
variables. If {X;, 1 < j < n} are independent r.v.’s then the & r.v.’s

fl(Xls e ,X,”), fZ(anHa e Xng)s s fk(Xflx-—1+1’ Tt Xm)

are independent.

Theorem 3.3.3. If X and Y are independent and both have finite expecta-
tions, then

(35) F(XY)y=~FX)E(Y).
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PROOF. We give two proofs in detail of this important result to illustrate
the methods. Cf. the two proofs of (14) in Sec. 3.2, one indicated there, and
one in Exercise 9 of Sec. 3.2.

First proof. Suppose first that the two r.v.’s X and Y are both discrete
belonging respectively to the weighted partitions {Aj;¢;} and {My;d,} such
that A; = {X = ¢;}, My = {Y = d;}. Thus

EX) =D (A, EX) =D di (M)
j k

Now we have

Q= LJ_JAJ- ﬁ(LkJMk)ZU(Aij)

ik

and
X(w)Y(w)=cjd if we AjM;.

Hence the r.v. XY is discrete and belongs to the superposed partitions
{A jMy; ¢;di} with both the j and the k varying independently of each other.
Since X and Y are independent, we have for every j and k:

.@(Aij) = ;/'/—)(X =y, Y = dk) = U])(X = Cj);"j/)(Y = dk) = .@(AJ‘).?)(ML{);

and consequently by definition (1) of Sec. 3.2:

CXYY =D deP (A M) = § D eGP 64 Y di M)
-k i k
= EX)E(Y).

Thus (5) is true 1n this case.

Now let X and Y be arbitrary positive r.v.’s with finite expectations. Then,
according to the discussion at the beginning of Sec. 3.2, there are discrete
r.v.’s X, and Y,, such that £(X,,) + ¢(X) and &(Y,,) 1t é(Y). Furthermore,
for each m, X,, and Y,, are independent. Note that for the independence of
discrete r.v.’s it is sufficient to verify the relation (1) when the B;’s are their
possible values and “¢” is replaced by “=" (why 7). Here we have

w{xm=w"—;}’m=§;}=yﬂ{f—<X<"+1-" <y <’ +1}

am = Am 51_{ - am

! i 1
=7 £~<X<n+l 4 “r“l""‘SY<n+
2m - 2m 2m 2m

2m
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=7 {Xp = %}@{szg—m}

The independence of X,, and Y, is also a consequence of Theorem 3.3.1,
since X,, = [2"X]/2", where [X] denotes the greatest integer in X. Finally, it
is clear that X,,Y,, is increasing with m and

0=<XY - XV = X (Y — Ym) + Y (X — X)) —> 0.
Hence, by the monotone convergence theorem, we conclude that
FXY)= lim &X,Y ) = lim £X,)EX )
m——»cC m—>0oo

= lim &(Xn) lim &Y, = EX)EY).
-0

m—+ o

Thus (5) is true also in this case. For the general case, we use (2) and (3) of
Sec. 3.2 and observe that the independence of X and ¥ implies that of Xt and
Y*; X~ and Y™; and so on. This again can be seen directly or as a consequence
of Theorem 3.3.1. Hence we have, under our finiteness hypothesis:

EXY)= X = XYY —Y7))
= XY XY XYt £ XTY)
= XY - XY - EXTYH +EXTYT)
= XN EXT) = EXNEXT) = EXTIEXNT) + EXTIEYT)
= (EXN) = EXRNEET) — ) = D).
The first proof is completed.

Second proof. Consider the random vector (X, Y) and let the p.m.
induced by it be u*(dx, dy). Then we have by Theorem 3.2.3:

c"(XY):/XYd??’:]fxy,uz(dx, dy)
2

#?

By (3), the last integral is equal to

f f/’ xy 1 (dx)paz (dy) = L * 11 (dx) f ¥ pa(dx) = EX)EX),
2 Ja 7! 7!

finishing the proof! Observe that we are using here a very simple form of
Fubini’s theorem (see below). Indeed, the second proof appears to be so much
shorter only because we are relying on the theory of “product measure” p? =
(1 X g on (A2, /7). This is another illustration of the method of reduction
mentioned in connection with the proof of (17) in Sec. 3.2.
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Corollary. If {X;, 1 < j < n} are independent r.v.’s with finite expectations,
then

H

(6) EVT1x | =TT exn.
j=1

j=1

This follows at once by induction from (5), provided we observe that the

two r.v.’s
n
HXj and H Xj

j=1 J=k+1

are independent for each k, 1 <k < n — 1. A rigorous proof of this fact may
be supplied by Theorem 3.3.2.

Do independent random variables exist? Here we can take the cue from
the intuitive background of probability theory which not only has given rise
historically to this branch of mathematical discipline, but remains a source of
inspiration, inculcating a way of thinking peculiar to the discipline. It may
be said that no one could have learned the subject properly without acquiring
some feeling for the intuitive content of the concept of stochastic indepen-
dence, and through it, certain degrees of dependence. Briefly then: events are
determuned by the outcomes of random trials. If an unbiased coin is tossed
and the two possible outcomes are recorded as 0 and 1, this is an r.v., and it
takes these two values with roughly the probabilities % each. Repeated tossing
will produce a sequence of outcomes. If now a die is cast, the outcome may
be similarly represented by an r.v. taking the six values 1 to 6; again this
may be repeated to produce a sequence. Next we may draw a card from a
pack or a ball from an um, or take a measurement of a physical quantity
sampled from a given population, or make an observation of some fortuitous
natural phenomenon, the outcomes in the last two cases being r.v.’s taking
some rational values in terms of certain units; and so on. Now it is very
easy to conceive of undertaking these various trials under conditions such
that their respective outcomes do not appreciably affect each other; indeed it
would take more imagination to conceive the opposite! In this circumstance,
idealized, the trials are carried out “independently of one another” and the
corresponding r.v.’s are “independent” according to definition. We have thus
“constructed” sets of independent r.v.’s in varied contexts and with various
distributions (although they are always discrete on realistic grounds), and the
whole process can be continued indefinitely.

Can such a construction be made rigorous? We begin by an easy special
case.
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Example 1. Let n > 2 and (Q;, ./j, %) be n discrete probability spaces. We define
the product space
Q=) x - x Q,(n factors)

to be the space of all ordered n-tuples w" = (@, ..., wy,), where each w; € ;. The
product B.F. ./™ is simply the collection of all subsets of ", just as ./; is that for Q.
Recall that (Example 1 of Sec. 2.2) the p.m. % is determined by its value for each
point of §2;. Since " is also a countable set, we may define a p.m. %" on /" by the
following assignment:

(7) 7 ({0")) = [ 75},

j=1
namely, to the n-tuple (w,, ..., @,) the probability to be assigned is the product of the
probabilities originally assigned to each component w; by #;. This p.m. will be called
the product measure derived from the p.m.’s {#, 1 < j < n} and denoted by x;f:l@j
It is trivial to verify that this is indeed a p.m. Furthermore, it has the following product
property, extending its definition (7): if §; € ./}, 1 < j < n, then

(8) 7 | X 8| =120
j=1

To see this, we observe that the left side is, by definition, equal to

SN o o= Y ZH?’(%})

w) €5 wn €Sy @y €5 wn €Sy j=1
= ]'[ > Aoy = [[7:6),
: w]ES j=]

the second equation being a matter of simple algebra.
Now let X; be an r.v. (namely an arbitrary function) on Q;; B; be an arbitrary
Borel set; and §; = X' (B,), namely:

S;={w; € Q;: X;(w;) € B;}

so that §; € ./;, We have then by (8):

©  7"¢ XX;eBjlp=2"¢ X 853 =[[#60 =][2:1%; € B}
o J=] j=1

To each function X; on €; let correspond the function X; on Q" defined below, in
which @ = (@, ..., w,) and each “coordinate” w; is regarded as a function of the
point !

Yo € Q": X j(w) = X j(w;)).
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Then we have

lo:X;(w) € Bj} = YW {w;: X (w;) € B;}
i

Jj= j=1

since
{w:jfj(w) €EB}=Q x  x Q1 x{w;:X;(w;) €B;} x Q1 X -r % Q.

It follows from (9) that

7 ()X eB1 3 =]][71X; € B}

J=ti j=ti
Therefore the r.v.’s {f( j» 1 < j < n} are independent.

Example 2. Let %" be the n-dimensional cube (immaterial whether it is closed or
not):
W=, )0 <1 < <n}

The trace on %" of (R", #B", m"), where A" is the n-dimensional Euclidean space,
" and m" the usual Borel field and measure, is a probability space. The p.m. m" on
7" is a product measure having the property analogous to (8). Let {f;, 1< j <n}
be n Borel measurable functions of one variable, and

Xj((xla s s-xn)) = fj(xj)

Then {X;, 1 < j < n} are independent r.v.’s. In particular if f;(x;) = x;, we obtain
the n coordinate variables in the cube. The reader may recall the term “independent
variables” used in calculus, particularly for integration in several variables. The two
usages have some accidental rapport.

Example 3. The point of Example 2 is that there 1s a ready-made product measure
there. Now on (4", 2") it is possible to construct such a one based on given p.m.’s
on (A', A"). Let these be {;, 1 < j < n}; we define 1" for product sets, in analogy
with (8), as follows:

wo| X B | =iy
j=1

It remains to extend this definition to all of Z8", or, more logically speaking, to prove
that there exists a p.m. p” on 3" that has the above “product property”. The situation
is somewhat more complicated than in Example 1, just as Example 3 in Sec. 2.2 is
more complicated than Example 1 there. Indeed, the required construction is exactly
that of the corresponding Lebesgue—Stieltjes measure in n dimensions. This will be
subsumed in the next theorem. Assuming that it has been accomplished, then sets of
n independent r.v.’s can be defined just as in Example 2.
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Example 4. Can we constructr.v.’s on the probability space (%, 73, m) itself, without
going to a product space? Indeed we can, but only by imbedding a product structure
in 7/, The simplest case will now be described and we shall return to it in the next
chapter.

For each real number in (0,1], consider its binary digital expansion

ol
€y
(10) x=-61€2---6n'--=25;;, eache, =0 or 1.
ES ]

This expansion is unique except when x is of the form m/2"; the set of such x is
countable and so of probability zero, hence whatever we decide to do with them will
be immaterial for our purposes. For the sake of definiteness, let us agree that only
expansions with infinitely many digits “1” are used. Now each digit €¢; of x is a
function of x taking the values O and 1 on two Borel sets. Hence they are r.v.’s. Let
{c;, ] = 1} be a given sequence of ('s and 1's. Then the set

n

{x: ej(x) =c¢, 1 <j<n}= ﬂ{x: €:(x) = ¢}
j=I1

is the set of numbers x whose first n digits are the given ¢;’s, thus
X = CiC2 - Cn€py1€pt2 "

with the digits from the (n + 1)st on completely arbitrary. It is clear that this set is
just an interval of length 1/2", hence of probability 1/2". On the other hand for each
7. the set {x:€;{x} = ¢;} has probability 5 for a similar reason. We have therefore

, 1 1 i
HMe;=c; 1 <j<nl= = H (E) = H?p{fj = c;}.

j= j=1

This being true for every choice of the ¢;’s, the r.v.’s {¢;, j = 1} are independent. Let
{f ;. J = 1} be arbitrary functions with domain the two points {0, 1}, then {f ;(¢;), j =
1} are also independent r.v.’s.

This example seems extremely special, but easy extensions are at hand (see
Exercises 13, 14, and 15 below).

We are now ready to state and prove the fundamental existence theorem
of product measures.

Theorem 3.3.4. Let a finite or infinite sequence of p.m.’s {i;} on (A!, A"),
or equivalently their d.f.’s, be given. There exists a probability space
(2, #, %) and a sequence of independent r.v.’s {X;} defined on it such that
for each j, p; is the pm. of X ;.

pROOF. Without loss of generality we may suppose that the given
sequence is infinite. (Why?) For each n, let (2,,, :%,, /3, ) be a probability space
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in which there exists an r.v. X,, with u,, as its p.m. Indeed this is possible if we
take (R,, 7, 7%) to be (#', B, u,) and X, to be the identical function of
the sample point x in 74!, now to be written as w, (cf. Exercise 3 of Sec. 3.1).

Now define the infinite product space
o0
Q= X @,
n=|

on the collection of all “points” @ = {w;, w1, ..., @y, ...}, where for each n,
w, is a point of £2,. A subset E of 2 will be called a “finite-product set” iff
it 1s of the form

(1) E= X Fa,

n=1

where each F, € #, and all but a finite number of these F,’s are equal to the
corresponding £2,,’s. Thus w € E if and only if @, € F,, n > 1, but this is
actually a restriction only for a finite number of values of n. Let the collection
of subsets of €2, each of which is the union of a finite number of disjoint finite-
product sets, be #,. It is easy to see that the collection # is closed with respect
to complementation and pairwise intersection, hence it is a field. We shall take
the # in the theorem to be the B.F. generated by #. This # is called the
product B.F. of the sequence {#, n > 1} and denoted by X°_ 7.

We define a set function & on %, as follows. First, for each finite-product
set such as the E given in (11) we set

(12) PE) =[] A FD,
n=1

where all but a finite number of the factors on the right side are equal to one.
Next, if £ € #4 and
E=|JE®
k=1

where the E%®’s are disjoint finite-product sets, we put

n

(13) PE) =D MEW).
k=1
If a given set E in % has two representations of the form above, then it is

not difficult to see though it is tedious to explain (try drawing some pictures!)
that the two definitions of #’(E) agree. Hence the set function 7 1s uniquely
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defined on 4); it is clearly positive with #2(2) = 1, and it is finitely additive
on 4 by definition. In order to verify countable additivity it is sufficient to
verify the axiom of continuity, by the remark after Theorem 2.2.1. Proceeding
by contraposition, suppose that there exist a § > 0 and a sequence of sets
{C,.n = 1} in 74 such that for each n, we have C, D C,.1 and 2(C,) >
8 > 0; we shall prove that (7., C, # @. Note that each set E in %, as well
as each finite-product set, is “determined” by a finite number of coordinates
in the sense that there exists a finite integer &, depending only on E, such that
if o= (o, w,...)and & = (v, w5, ...) are two points of Q with w; = o'
for 1 < j <k, then either both @ and o’ belong to E or neither of them does.
To simplify the notation and with no real loss of generality (why?) we may
suppose that for each n, the set C, is determined by the first n coordinates.
Given f, for any subset E of  let us write (E | ?) for ; x E;, where E, is
the set of points {(w;, w3, ...) In X;‘T):ZQ,, such that (w?, wr,ws3,...) e EIf w?
does not appear as first coordinate of any point in E, then (E | o) = @. Note
that if E € 7, then (E | 0?) € % for each w?. We claim that there exists an
w{ such that for every n, we have 2((C,, | o)) = /2. To see this we begin
with the equation

(14) ACn) =/Q PCr | @1))71 (dwn).

This is trivial if C,, is a finite-product set by definition (12), and follows by
addition for any C, in #. Now put B, = {w: Z?((C,, | w1)) = §/2}, a subset
of &,; then it follows that

fid

_ 5
55/ 1-’/°1(dﬂ)1)+/ =7 (dwy)
B B 2

and so .7%(B,) > §/2 for every n > 1. Since B, is decreasing with C,,, we have
1 (p=1 By) = 8/2. Choose any f in (22, B,. Then 2((C, | &?)) > 8/2.
Repeating the argument for the set (C,, | w? ), we see that there exists an wg
such that for every n, »((C, | &Y, 0)) > §/4, where (C, | &Y, 09) = ((C,, |
a)(])) | wg) 1s of the form @, x 2; x F3 and E; is the set (w3, w4, ...) In
X 048, such that (@?, 9, w1, ws, ...) € C,: and so forth by induction. Thus

for each k > 1, there exists ) such that

. 8
Vin: 2((Cy | @, ... D) 2 5

Consider the point o’ = (of, oS, ..., &%, ...). Since (Ci | &Y, ..., o)) # 2,
there is a point in C; whose first k coordinates are the same as those of w’;
since C; is determined by the first & coordinates, it follows that w” € C;. This

is true for all &, hence w® € (i, Ci, as was to be shown.
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We have thus proved that 7 as defined on % is a p.m. The next theorem,
which is a generalization of the extension theorem discussed in Theorem 2.2.2
and whose proof can be found in Halmos [4], ensures that it can be extended
to 7 as desired. This extension is called the product measure of the sequence
{#,,n > 1} and denoted by X _,%, with domain the product field X2 T

Theorem 3.3.5. Let % be a field of subsets of an abstract space £2, and &
a p.m. on %. There exists a unique p.m. on the B.F. generated by 4 that
agrees with % on #,.

The uniqueness is proved in Theorem 2.2.3.

Returning to Theorem 3.3.4, it remains to show that the r.v.’s {w;} are
independent. For each k > 2, the independence of {w;, 1 = j < k} is a conse-
quence of the definition in (12); this being so for every k, the independence
of the infinite sequence follows by definition.

We now give a statement of Fubini’s theorem for product measures,
which has already been used above in special cases. It is sufficient to consider
the case n = 2. Let R =, x Qo, F =% x % and P =P x 9 be the
product space, B.F., and measure respectively.

Let (#.A). (%, 95) and (% x %, A x %) be the completions
of (#H.,P), (%, %), and (HA x %h, P x P4), respectively, according to
Theorem 2.2.5.

Fubini’s theorem. Suppose that f is measurable with respect to 7 x %

and integrable with respect to 3 x #. Then

(i) for each w; € 2;\N, where N; € # and PN =0, fwr,-) is
measurable with respect to % and integrable with respect to P
(ii) the integral

o [ )P (dan)

is measurable with respect to 7 and integrable with respect to 20
(iii) The following equation between a double and a repeated integral
holds:

(15) ff flor, 0)A X Pldw) =/ { f(w1,wz)%(dwz)] P (dwy).
Q;){Qj Ql Qz
Furthermore, suppose f is positive and measurable with respect to

7 x 7, then if either member of (13) exists finite or infinite, so does the
other also and the equation holds.
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[13 %

Finally if we remove all the completion signs “— " in the hypotheses
as well as the conclusions above, the resulting statement is true with the
exceptional set Ny in (i) empty, provided the word “integrable” in (i) be
replaced by “has an integral.”

The theorem remains true if the p.m.’s are replaced by o-finite measures;
see, €.g., Royden [5].

The reader should readily recognize the particular cases of the theorem
with one or both of the factor measures discrete, so that the corresponding
integral reduces to a sum. Thus it includes the familiar theorem on evaluating
a double series by repeated summation.

We close this section by stating a generalization of Theorem 3.3.4 to the
case where the finite-dimensional joint distributions of the sequence {X;} are
arbitrarily given, subject only to mutual consistency. This result is a particular
case of Kolmogorov's extension theorem, which is valid for an arbitrary family
of rv.’s,

Let m and n be integers: 1 < m < n, and define m,,, to be the “projection
map” of 3™ onto #3" given by

YB € B™: Tpn (BY = {(x1, ..., %) (X1, ..., Xm) € B}

Theorem 3.3.6. For eachn > 1, let u” be a p.m. on (A", #A") such that

m

(16) Ym < n:u” em,, = u".

Then there exists a probability space (€2, %, 9°) and a sequence of r.v.’s {X}
on it such that for each n, u” is the n-dimensional p.m. of the vector

X, .... X0

Indeed, the  and # may be taken exactly as in Theorem 3.3.4 to be the
product space

X Qj and X t”/_j,
/

J

where (2, 7)) = (A, 3") for each j; only 7 is now more general. In terms
of d.f.’s, the consistency condition (16) may be stated as follows. For each
m>1and (x;,...,x,) € 4", we have if n > m:

hmoc F”()C], s s X1 '--sxn) = Fm(xle ---s-xm)-

For a proof of this first fundamental theorem in the theory of stochastic
processes, see Kolmogorov [8].
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EXERCISES

1. Show that two r.v.’s on (§2, %) may be independent according to one
p.m. & but not according to another!

*2. If X, and X, are independent r.v.’s each assuming the values +1
and —1 with probability % then the three r.v.’s {X|, X», X;X,} are pairwise
independent but not totally independent. Find an example of # r.v.’s such that
every n — 1 of them are independent but not all of them. Find an example
where the events A; and A, are independent, A; and A are independent, but
Ay and A, U Aj are not independent.

*3. If the events {E,,a € A} are independent, then so are the events
{Fa,a € A}, where each F, may be E, or ES; also if {Ag, 8 € B}, where
B 1s an arbitrary index set, is a collection of disjoint countable subsets of A,
then the events

U Ee. BB,

CtEAﬁ

are independent.

4. Fields or B.F.’s %(C %) of any family are said to be independent iff
any collection of events, one from each %, forms a set of independent events.
Let 7" be a field generating %,. Prove that if the fields #° are independent,
then so are the B.F.’s %,. Is the same conclusion true if the fields are replaced
by arbitrary generating sets? Prove, however, that the conditions (1) and (2)
are equivalent. [HINT: Use Theorem 2.1.2 ]

5. If {X,} is a family of independent r.v.’s, then the B.F.’s generated
by disjoint subfamilies are independent. [Theorem 3.3.2 is a corollary to this
proposition. ]

6. The r.v. X is independent of itself if and only if it is constant with
probability one. Can X and f(X) be independent where f € 73'?

7. If {E;,1 < j < oo} are independent events then
oo o
2| E; | =][27Ep.
where the infinite product is defined to be the obvious limit; similarly
o0
2 JE; | =1-
j=1

8. Let {X;, 1 < j < n} be independent with d.f.’s {F;, 1 < j < n}. Find
the d.f. of max; X; and min; X ;.

(1 —22E;)).

oo

Jj=1
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*9, If X and Y are independent and ¢'(X) exists, then for any Borel set
B, we have

/ Xd? = £(X)P(Y € B).
{YeB}

*10. If X and Y are independent and for some p > 0: £(|X + Y|?) < oo,
then #(]X|?) < oo and £(|Y|?) < o0.

11. If X and Y are independent, £(|X|?) < oo for some p > 1, and
(Y) =0, then £(X + Y|?) > &(X|P). [This is a case of Theorem 9.3.2:
but try a direct proof!]

12. The r.v.’s {¢;} in Example 4 are related to the “Rademacher func-
tions’”: _

ri{x) = sgn(sin 2’ mx).

What 15 the precise relation?
13. Generalize Example 4 by considering any s-ary expansion where s >
2 is an integer:
o0

Gn
x= -—, wheree, =0,1,...,5—1.

n=

*14. Modify Example 4 so that to each x in [0, 1] there corresponds a
sequence of independent and identically distributed r.v.’s {¢,, n > 1}, each
taking the values 1 and O with probabilities p and 1 — p, respectively, where
0 < p < 1. Such a sequence will be referred to as a “coin-tossing game (with

probability p for heads)”; when p = % it 1s said to be “fair”.
15. Modify Example 4 further so as to allow ¢, to take the values 1 and
0 with probabilities p, and 1 — p,, where 0 < p, < 1, but p, depends on n.

16. Generalize (14) to

2(C) =/ PUC o, ..., o)A dwy) - T (dox)
CaLLhk

= /Q//')((C | wy, ..., )P {dw),

where C(1,...,k) 1s the set of (w;,...,ay) which appears as the first &
coordinates of at least one point in C and in the second equation wy, ...,
are regarded as functions of w.

*17. For arbitrary events {E;, 1 < j < n}, we have

PV JE | 2 7EN - > PEE.
j=1 =1

l<j<k=n
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If Vn: {Eﬁ-"), 1 < j < n} are independent events, and

n
P UE;") — 0 as n— oo,
j=1

then

7 (UE | ~ Yoo
j=1 j=1

18. Prove that B x 7B # % x 7B, where & is the completion of 7 with
respect to the Lebesgue measure; similarly 3 x 3.
19. If f € A x % and

/ f 14T X TB) < o0,

Q[XQZ

_/S;] !:/szd//ﬁz}d‘@lz./gz !:fglfd@]}dﬁz‘

20. A typical application of Fubini’s theorem is as follows. If f is a
Lebesgue measurable function of (x, ¥) such that f(x, y) = 0 for each x € !
and y ¢ N,, where m(N,) = 0 for each x, then we have also f(x, y) = 0 for
each y ¢ N and x € Ny, where m(N) =0 and m(N,) =0 foreach y ¢ N.

then




4 Convergence concepts

4.1 Various modes of convergence

As numerical-valued functions, the convergence of a sequence of r.v.’s
{Xn,n > 1}, to be denoted simply by {X,} below, is a well-defined concept.
Here and hereafter the term “convergence” will be used to mean convergence
to a finite limit. Thus it makes sense to say: for every w € A, where
A € 7, the sequence {X,(w)} converges. The limit is then a finite-valued
r.v. (see Theorem 3.1.6), say X(w), defined on A. If Q = A, then we have
“convergence every-where”, but a more useful concept is the following one.

DEFINITION OF CONVERGENCE “ALMOST EVERYWHERE" (a.¢.). The sequence of
r.v. {X,} is said to converge almost everywhere [to the r.v. X] iff there exists
a null set N such that

(1) Y € Q\N: lirgoX,, {(w) = X(w) finite.

Recall that our convention stated at the beginning of Sec. 3.1 allows
each r.v. a null set on which it may be 00. The union of all these sets being
still a null set, it may be included in the set N in (1) without modifying the
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conclusion. This type of trivial consideration makes it possible, when dealing
with a countable set of r.v.’s that are finite a.e., to regard them as finite
everywhere.

The reader should learn at an early stage to reason with a single sample
point wy and the corresponding sample sequence {X, (wg), n > 1} as a numer-
ical sequence, and translate the inferences on the latter into probability state-
ments about sets of w. The following characterization of convergence a.e. is
a good illustration of this method.

Theorem 4.1.1. The sequence {X,} converges a.e. to X if and only if for
every € > (0 we have

2) im 2{|X, —X| <eforall n > m} = 1;

m—0c
or equivalently
2" "}Pw@{an — X| > e for some n > m} = (.

PROOF. Suppose there is convergence a.e. and let €y = Q\N where N is

asin (1). For m > 1 let us denote by A,,(¢) the event exhibited 1n (2), namely:

o0

3) Am(e) = [ {1Xn — X < €}

n=m
Then A,,(€) is increasing with m. For each wyg, the convergence of {X, (wo)}
to X (wp) implies that given any € > 0, there exists m(wo, €) such that

4) n = m(wg, €) = | X {wo) — X(wp)| < €.

Hence each such wy belongs to some A,(€) and so £ C U,?;]Am(e).
It follows from the monotone convergence property of a measure that
lim,,_ 00 P(A{€)}) = 1, which is equivalent to (2).

Conversely, suppose (2) holds, then we see above that the set A(e) =
U Am(€) has probability equal to one. For any wp € A(e), (4) is true for
the given €. Let ¢ run through a sequence of values decreasing to zero, for

instance {1/n}. Then the set
~ 1
A=[]A{-
G

still has probability one since

PA)y=lmP (A (l)) .
n n
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If wy belongs to A, then (4) is true for all € = 1/n, hence for all € > 0 (why?).
This means {X,, (wg)} converges to X (wp) for all wq in a set of probability one.

A weaker concept of convergence is of basic importance in probability
theory.

DEFINITION OF CONVERGENCE “IN PROBABILITY" (in pr.). The sequence {X,}
is said to converge in probability to X iff for every ¢ > 0 we have

5 Iim #{|X,, —X| > ¢} =0.

n-—0oQ

Strictly speaking, the definition applies when all X,, and X are finite-
valued. But we may extend it to r.v.’s that are finite a.e. either by agreeing
to ignore a null set or by the logical convention that a formula must first be
defined in order to be valid or invalid. Thus, for example, if X, (w) = +00
and X(w) = +o0 for some w, then X, (w) — X(w) is not defined and therefore
such an w cannot belong to the set {|X, — X| > €} figuring in (5).

Since (2') clearly implies (5), we have the immediate consequence below.

Theorem 4.1.2. Convergence a.e. [to X] implies convergence in pr. [to X].

Sometimes we have to deal with questions of convergence when no limit
1s in evidence. For convergence a.e. this is immediately reducible to the numer-
ical case where the Cauchy criterion is applicable. Specifically, {X,} converges
a.c. iff there exists a null set N such that for every w € Q2\N and every ¢ > 0,
there exists m{w, €) such that

n'>n>mw €)= X, (w) — Xp(w)] <e.

The following analogue of Theorem 4.1.1 is left to the reader.

Theorem 4.1.3. The sequence {X, } converges a.c. if and only if for every ¢
we have

(6) lim 74{|X, — X, | > € for some n’ > n > m} = 0.
H—> 00

For convergence in pr., the obvious analogue of (6) is

(7) lim #{|X, — X,/ > ¢} = 0.

It can be shown (Exercise 6 of Sec. 4.2) that this implies the existence of a
finite r.v. X such that X,, — X in pr.
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DEFINITION OF CONVERGENCEIN LP 0 < p < co. The sequence {X,} is said
to converge in L? to X iff X, e L?, X € L? and

8) lim (X, — X|?) =0,

In all these definitions above, X, converges to X if and only if X,, — X
converges to (. Hence there is no loss of generality if we put X = 0 in the
discussion, provided that any hypothesis involved can be similarly reduced
to this case. We say that X is dominated by Y if |X| <Y a.e., and that the
sequence {X,} is dominated by Y iff this is true for each X, with the same
Y. We say that X or {X,,} 1s uniformly bounded iff the Y above may be taken
to be a constant.

Theorem 4.1.4. If X, converges to 0 in L7, then it converges to O in pr.
The converse is true provided that {X,} is dominated by some Y that belongs
to L”.

Remark. If X,, - X in L?, and {X,} is dominated by Y, then {X, — X}
is dominated by Y 4 |X|, which is in L”. Hence there is no loss of generality
to assume X = 0.

PROOF. By Chebyshev inequality with ¢(x) = |x|?, we have
& (IX n | p)

er
Letting n — oo, the right member — 0 by hypothesis, hence so does the left,

which is equivalent to (5) with X = 0. This proves the first assertion. If now
|X,| <Y ae. with E(Y?) < oc, then we have

<f”(anI”)=/ Ian”de’/Ur/ IX,?Ipdz?PSep—l-f YPdP.
{1 X | <€) {Xuzel X lze)

) T Xnl = €} <

Since {|X,| > €} — 0, the last-written integral > 0 by Exercise 2 in
Sec. 3.2. Letting first n — o0 and then € — 0, we obtain ¢ (| X, |?) — 0; hence
X, converges to (0 in L7,

As a corollary, for a uniformly bounded sequence {X,,} convergence in
pr. and in L7 are equivalent. The general result 1s as follows.

Theorem 4.1.5. X, — 0 in pr. if and only if

(10) & (L) S0
1+ X,

Furthermore, the functional p(:, -) given by

X -V
pX,Y) = ¢ (__'__'m)
1+ X — Y|
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is a metric in the space of r.v.’s, provided that we identify r.v.’s that are
equal a.e.

PROOF. If p(X,Y)=10, then £(X —Y|)=0, hence X =Y ae. by
Exercise 1 of Sec. 3.2. To show that p(., -) is metric it is sufficient to show that

cl— | € ¢ 4+ & .
1+ X — 7| 1+ X| 1+ Y]

For this we need only verify that for every real x and y:

|x 4+ y] - x| Iy

(11) < + .
1+ |x+y 1+ x| 1+]y

By symmetry we may suppose that |y| < |x|; then

Iyl x4yl — Ix|
L+ lx+yl IT+1xl  d4+x+yDA+|x))

Sllx+yl—lxll< |yl .
I+ x| = 141y

For any X the r.v. |X|/(1 + |X]) is bounded by 1, hence by the second
part of Theorem 4.1.4 the first assertion of the theorem will follow if we show
that |X,,| — O in pr. if and only if |X,|/(1 4+ |X,|) = O in pr. But |x| < € is
equivalent to |x|/(1 + [x]) < €/(1 + ¢€); hence the proof is complete.

(12)

Example 1. Convergence in pr. does not imply convergence in L?, and the latter
does not imply convergence a.e.

Take the probability space (2, #,9”) to be (%, %, m) as in Example 2 of
Sec. 2.2. Let ¢, ; be the indicator of the interval

J=17 :
[N B k>1,1< Ek.

Order these functions lexicographically first according to k increasing, and then for
each k according to j increasing, into one sequence {X,} so that if X, = ¢, ; , then
k, — o< as n — o<¢. Thus for each p > 0:

1

and so X, — Oin L7 But for each w and every £, there exists a j such that o (w) = 1;
hence there exist infinitely many values of n such that X, (@) = 1. Similarly there exist
infinitely many values of # such that X, (w) = 0. It follows that the sequence {X,{w)}
of ’s and 1’s cannot converge for any w. In other words, the set on which {X,}
converges is empty.
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Now if we replace ¢:; by k'/7g;, where p > 0, then (X, > 0} = 1/k, —
0 so that X, — 0 1n pr., but for each n, we have <(X,”)=1. Consequently
lim,~~ (X, —0]")=1and X, does not — 0in L”.

Example 2. Convergence a.e. does not imply convergence in L”.
In (#/. A, m) define

1
2”1 f 0! - ;
X,,(w):{ ! we( n)

0, otherwise.

Then £(1X,17)=2""/n — +oc for each p > 0, but X,, — 0 everywhere.

The reader should not be misled by these somewhat “artificial” examples
to think that such counterexamples are rare or abnormal. Natural examples
abound 1n more advanced theory, such as that of stochastic processes, but
they are not as simple as those discussed above. Here are some culled from
later chapters, tersely stated. In the symmetrical Bernoullian random walk
{Sp.n > 1}, let &, = lyg, o). Then lim,_, o £(¢7) =0 for every p > 0, but
Z{lim,, L ¢ &, exists} = 0 because of intermittent return of §, to the origin (see
Sec. 8.3). This kind of example can be formulated for any recurrent process
such as a Brownian motion. On the other hand, if {,,n > 1} denotes the
random walk above stopped at 1, then ¢(&, ) = O for all n but 2P{limy 0 & =
1} = 1. The same holds for the martingale that consists in tossing a fair
coin and doubling the stakes until the first head (see Sec. 9.4). Another
striking example is furnished by the simple Poisson process {N(r), r > 0} (see
Sect. 3.5). If (1) = N(1)/t, then £({(¢)) = A forall t > O; but P{lim,4 {(f) =
0} = 1 because for almost every w, N(z, w) = 0 for all sufficiently small values
of ¢. The continuous parameter may be replaced by a sequence ¢, | 0.

Finally, we mention another kind of convergence which 1s basic in func-
tional analysis, but confine ourselves to L!. The sequence of r.v.’s {X,} in L!
is said to converge weakly in L! to X iff for each bounded r.v. ¥ we have

lim ¢(X,Y) = &(XY), finite.

=0
It is easy to see that X € L' and is unique up to equivalence by taking
Y = lyxzxy if X' is another candidate. Clearly convergence in L' defined
above implies weak convergence; hence the former is sometimes referred to
as “strong”. On the other hand, Example 2 above shows that convergence
a.e. does not imply weak convergence; whereas Exercises 19 and 20 below

show that weak convergence does not imply convergence in pr. (nor even in
distribution; see Sec. 4.4).
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EXERCISES

1. X, — +o0 ae. if and only if YM > 0: (X, < M i.0.}=0.
2.If0<X,, X, <XelL'andX, - X inpr, then X, = X in L.

3. fX,—->X,Y,—-Ybothinpr,thenX,+Y, - X£Y, XY, -
XY, all i pr.

*4. Let f be a bounded uniformly continuous function in %'. Then X, —
0 in pr. implies ¢{f(X, )} — f(0). [Example:

IX|
1+ [X|

fx) =

as in Theorem 4.1.5.]

5. Convergence in L” implies that in L™ for r < p.

6. If X, - X, Y,—> Y, bothinL?, then X, +Y, - X+ Y in L?. If
X, —>XinLfand ¥, - Y in LY, where p > 1 and 1/p+1/g =1, then
XY, — XY in L.

7. If X, > Xinpr.and X, —» Y inpr, then X =Y ae.

8 If X, - X ae. and u, and u are the p.m.’s of X,, and X, it does not
follow that wu,(P) — w(P) even for all intervals P.

9. Give an example in which £{X,) — O but there does not exist any
subsequence {n;} — co such that X,,, — 0 in pr.

*10. Let f be a continuous function on &', If X, — X in pr., then
f(X,) — f(X) in pr. The result is false if f is merely Borel measurable.
[BINT: Truncate f at —A for large A.]

11. The extended-valued r.v. X is said to be bounded in pr. iff for each
€ > 0, there exists a finite M (¢) such that #{|X| < M(¢)} = 1 — €. Prove that
X is bounded in pr. if and only if it is finite a.e.

12. The sequence of extended-valued r.v. {X,} is said to be bounded in
pr. iff sup, |X,| is bounded in pr.; {X,} is said to diverge to +00 in pr. iff for
each M > 0 and € > 0 there exists a finite no{M, €) such that if n > ng, then
Xyl > M} > 1 — €. Prove that if {X,,} diverges to +oc in pr. and {Y,} is
bounded in pr., then {X,, + Y} diverges to +oc in pr.

13. If sup, X, = +o< a.e., there need exist no subsequence {X,,} that
diverges to +o0 in pr.

14. It is possible that for each w, lim,X,(w) = +co, but there does
not exist a subsequence {n;} and a set A of positive probability such that
limg X, (w) = 400 on A. [HINT: On (7/, %3) define X, (w) according to the
nth digit of w.]
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*15. Instead of the p in Theorem 4.1.5 one may define other metrics as
follows. Let p;(X, Y) be the infimum of all € > 0 such that

PX Y| >e)<e

Let ;(X, Y) be the infimum of #{|X — Y| > ¢} + € over all € > 0. Prove
that these are metrics and that convergence in pr. is equivalent to convergence
according to either metric.

*16. Convergence in pr. for arbitrary r.v.’s may be reduced to that of
bounded r.v.’s by the transformation

X' = arctan X.

In a space of uniformly bounded r.v.’s, convergence in pr. is equivalent to
that in the metric pp(X, Y) = £(|X — Y|); this reduces to the definition given
in Exercise 8 of Sec. 3.2 when X and Y are indicators.

17. Unlike convergence in pr., convergence a.e. is not expressible
by means of metric. [HINT: Metric convergence has the property that if
p(xp. x)+> 0, then there exist € > 0 and {n;} such that p(x,,,x) > ¢ for
every k.]

18. If X, | X as,, each X, is integrable and inf, £(X,) > —oo0, then
X, = Xin L'

19. Let f,(x) =1+ cos2mnx, f(x) = 1in [0, 1]. Then for each g € L'

[0, 1] we have
1 1
| fagdx— [ fedx
0 0

but f, does not converge to f in measure. [HINT: This is just the
Riemann-Lebesgue lemma in Fourier series, but we have made f, > 0 to
stress a point.]

20. Let {X,} be a sequence of independent r.v.’s with zero mean and
unit variance. Prove that for any bounded r.v. Y we have lim,, o, ¢(X,Y) = 0.
[NT: Consider ¢{[Y — S"5_; € (XxY)X]?) to get Bessel’s inequality £ (Y?) >
Z};l £ (XY ). The stated result extends to case where the X,,’s are assumed
only to be uniformly integrable (see Sec. 4.5) but now we must approximate
Y by a function of (X, ..., X,,), ¢f. Theorem 8.1.1.]

4.2 Almost sure convergence; Borel-Cantelli lemma
An important concept in set theory is that of the “lim sup” and “lim inf” of

a sequence of sets. These notions can be defined for subsets of an arbitrary
space S2.
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DEFINITION.  Let E, be any sequence of subsets of 2; we define

oc o0 o o0
limsupE, = () |J En,  liminfE, = ] () Ea.
n i m=] n=m

m=1 n=m

Let us observe at once that

(1 liminfE, = (limsup E},)",

n n
so that in a sense one of the two notions suffices, but it is convenient to
employ both. The main properties of these sets will be given in the following
two propositions.

(i) A point belongs to limsup, E, if and only if it belongs to infinitely
many terms of the sequence {E,,n > 1}. A point belongs to liminf, E, if
and only if it belongs to all terms of the sequence from a certain term on.
It follows 1n particular that both sets are independent of the enumeration of
the E,’s.

PROOF. We shall prove the first assertion. Since a point belongs to
infinitely many of the E,’s if and only if it does not belong to all E from
a certain value of n on, the second assertion will follow from (1). Now if w
belongs to infinitely many of the E,’s, then it belongs to

oC
F,= U E, for every m;

hence it belongs to
oC
ﬂ Fp,=lmsupE,.
m=1} n

Conversely, if w belongs to (\o_, F.,, then @ € F,, for every m. Were w to

belong to only a finite number of the E,’s there would be an m such that
w € E, for n > m, so that

o0
wg | )E,=Fn

n=in
This contradiction proves that «» must belong to an infinite number of the E,’s.

In more intuitive language: the event lim sup, E, occurs if and only if the
events E, occur infinitely often. Thus we may write

A(hmsupE,) = P(E, 1.0.)
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where the abbreviation “i.0.” stands for “infinitely often”. The advantage of
such a notation is better shown if we consider, for example, the events “|X, | >
€’ and the probability #?{|X,| > € i.0.}; see Theorem 4.2.3 below.

(ii) If each E,, € #, then we have

o0
(2) Z(limsupE,) = lim & (U E,,) :
n > 0C n—m
(3) «?(llmme Y= lim & (ﬁ E, )

prOOF. Using the notation in the preceding proof, it is clear that F,
decreases as m increases. Hence by the monotone property of p.m.’s:

o0
P (Ol F,,,) = lim P(F),

which 1s (2); (3) 1s proved similarly or via (1).
Theorem 4.2.1. We have for arbitrary events {E,}:

) N PE,) < 00 = PE, i.0)=0

n

PROOF. By Boole’s inequality for p.m.’s, we have

P(F) <Y PEn).

n=m

Hence the hypothesis in (4) implies that #°(F,,) — 0, and the conclusion in
(4) now follows by (2).

As an illustration of the convenience of the new notions, we may restate
Theorem 4.1.1 as follows. The intuitive content of condition (5) below is the
point being stressed here.

Theorem 4.2.2. X, — 0 a.e. if and only if

(3) Ve > 0:7{|X,| >€10}=0

PROOF. Using the notation A, = ﬂfj‘;m{lX,,l < €} as in (3) of Sec. 4.1
(with X = 0), we have

{1X,] > € i.0.] ﬂ U{lX | > €) =ﬂ

m=1 n=m
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According to Theorem 4.1.1, X,, — 0 a.e. if and only if for each ¢ > 0,
P(A;,) — 0 as m — oo; since A, decreases as m increases, this is equivalent
to (5) as asserted.

Theorem 4.2.3. If X, — X in pr., then there exists a sequence {n;} of inte-
gers increasing to infinity such that X,,, — X a.e. Briefly stated: convergence
in pr. implies convergence a.e. along a subsequence.

PROOF. We may suppose X = 0 as explained before. Then the hypothesis
may be written as

Yk > 0: lim & (lX,,l > i) =0.
H— 00 2k

It follows that for each k we can find n) such that

1 1

1
&

k

and consequently

Having so chosen {n;}, we let E; be the event “|X,,,| > 1/2¥”. Then we have

by (4): |
P (|Xm] > E 10) = 0.

[Note: Here the index involved in “1.0.” is k; such ambiguity being harmless
and expedient.] This implies X,, — 0 a.e. (why?) finishing the proof.

EXERCISES

1. Prove that

F(limsup E, ) > lim P(E,,),

#(liminfE,) < lim #°(E,).
2. Let {B,} be a countable collection of Borel sets in #/. If there exists
a & > 0 such that m(8,) > § for every n, then there is at least one point in %/
that belongs to infinitely many B, ’s.
3. If {X,]} converges to a finite limit a.e., then for any e there exists
M(¢) < oo such that 2{sup|X,| <M(e)} =1 —e.
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*4. For any sequence of r.v.’s {X,} there exists a sequence of constants
{A,} such that X, /A, — 0 a.e.

*5. If {X,)} converges on the set C, then for any € > 0, there exists
Co C C with Z(C\Cy) < € such that X, converges uniformly in Cgy. [This
1s Egorov’s theorem. We may suppose C = € and the limit to be zero. Let
Fop = dw: | X, (@) < 1/m}; then ¥m, 3k(m) such that

@(Fm.k(m)) >1— E/Zm

Take C() = moo 1 Fm,k(m)']

6. Cauchy convergence of {X,} in pr. (or in L?) implies the existence of
an X (finite a.e.), such that X,, converges to X in pr. (or in L?). [HINT: Choose

n; so that
1
ZS@{IX,HH —Xn,| > ?} < 00;
k

cf. Theorem 4.2.3.]

*7. {X,} converges in pr. to X if and only if every subsequence
{X,,} contains a further subsequence that converges a.e. to X. [HINT: Use
Theorem 4.1.5.]

8. Let {X,,n > 1} be any sequence of functions on © to ! and let
C denote the set of w for which the numerical sequence {X,{w), n > 1}
converges. Show that

je ol o} o0 1 oo o oC
c=NU N {m-xi=t=NU N Ao
m=]1n=1n'=n+1 m m=1n=1n'=n+1
where

1
Nenonn')y = {w: max |X;(w) — Xe(w)| < ;n—}.

n<j<k<n
Hence if the X, ’s are r.v.’s, we have

AC)= lim lim lim :/’/)(/\(m,n,n’)).

M—=>00 H—=0C ' —0C

9. As in Exercise 8 show that

{: lim X, (@) =0} = NUN {lX,,l < ?n”}‘

m=1k=1 n=k

—

10. Suppose that for a < b, we have

X, <aio. and X, >bi0.}=0
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then lim, .o X, exists a.c. but it may be infinite. [HINT: Consider all pairs of
rational numbers (a. b) and take a union over them.]

Under the assumption of independence, Theorem 4.2.1 has a striking
complement.

Theorem 4.2.4. If the events {E, } are independent, then

(6) > PE,) =00 = PE, i0) =1.

n

PROOF. By (3) we have

oC
N Z{liminfES} = lim 2 ( N E;) .
n m— OO n—m

The events {Ef} are independent as well as {E,}, by Exercise 3 of
Sec. 3.3; hence we have if m’ > m:

P (ﬂ E;;) =[] 7&E) =[]0 - 2E.).

n=m

Now for any x > 0, we have 1 — x < ¢7*; it follows that the last term above
does not exceed

ﬁ e T ED = exp (— ij P(E, )) .
n=m

n=m

Letting m’ — oo, the right member above — 0, since the series in the
exponent — 400 by hypothesis. It follows by monotone property that

jo'e} w
» ES| = lim # ES| =0.
(N&)-m(0e)

Thus the right member in (7) is equal to 0, and consequently so is the left
member in (7). This is equivalent to #(E, i.0.) =1 by (1).

Theorems 4.2.1 and 4.2.4 together will be referred to as the
Borel-Cantelli lemma, the former the “convergence part” and the latter “the
divergence part”. The first is more useful since the events there may be
completely arbitrary. The second has an extension to pairwise independent
r.v.’s; although the result is of some interest, it is the method of proof to be
given below that is more important. It is a useful technique in probability
theory.
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Theorem 4.2.5. The implication (6) remains true if the events {E, } are pair-
wise independent.

prOOF. Let I, denote the indicator of E,, so that our present hypothesis
becomes

(8) Ym # n: EUply) = EU)éUR).

Consider the series of r.v.’s: > .- I, (w). It diverges to 400 if and only if
an infinite number of its terms are equal to one, namely if w belongs to an
infinite number of the E,’s. Hence the conclusion in (6) is equivalent to

9 ?P{Zln=+oo}=1.
n=1

What has been said so far is true for arbitrary E,’s. Now the hypothesis in
{6) may be written as

o0
S e = +oc.
n=1

Consider the partial sum Jj; = ZLI I,. Using Chebyshev’s inequality, we
have for every A > O

7] ¢ gz(Jk) 1
(10) J“Jic—(O(JkNSAUUk)}Z1—m:1—F,

where o2(J) denotes the variance of J. Writing
Pn = SUn) = PEn),
we may calculate 0>(J) by using (8), as follows:

(212+2 > 1,,,1)

1<m<n=<k

£UD)

k
=N fuH+2 D EUEUR)

r==1 1=m<n=<k

k
—Z«un) +2 Y U+ ) ()~ EU))
n=1

1<m<n=<k

k
= (Z prz) + Z(Pn P”
n=1
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lHence

k k
U= EUD = ETD =D (pn— PE) [= Za"-an)} :
n==l

n==1

This calculation will turn out to be a particular case of a simple basic formula;
see (6) of Sec. 5.1. Since S°¥_| pp = é(Jy) — oo, it follows that

o) < EUV? = o(EWUL))

in the classical “o, O™ notation of analysis. Hence if & > kp(A), (10) implies

) 1 1
:7){.];c > Eé(Jk)} >1 —E

(where % may be replaced by any constant < 1). Since J; increases with &

the inequality above holds a fortiori when the first J, there is replaced by
limy., o J1; after that we can let k — 00 in £(J;) to obtain

1
ZZ Rt = >1—-—.
{kin;ojk -|-OO} =1 A2
Since the left member does not depend on A, and A is arbitrary, this implies
that limy_, oo Jx = +00 a.e., namely (9).

Corollary. If the events {E,} are pairwise independent, then

F(limsupE,)=0or 1
according as »_, Z(E,) < 00 Or = 0C.

This is an example of a “zero-or-one” law to be discussed in Chapter &,
though it is not included in any of the general results there.

EXERCISES

Below X,,, Y, are r.v.’s, E, events.

11. Give a trivial example of dependent {E,} satisfying the hypothesis
but not the conclusion of (6); give a less trivial example satisfying the hypoth-
esis but with 7°(lim sup, E,,) = O. [HINT: Let E,, be the event that a real number
in [0, 1] has its n-ary expansion begin with 0.]

*12. Prove that the probability of convergence of a sequence of indepen-
dent r.v.’s is equal to zero or one.

13. If {X,} is a sequence of independent and identically distributed r.v.’s
not constant a.e., then %°{X, converges} = (.
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*14. If {X,) is a sequence of independent r.v.’s with d.f.’s {F,}, then
P{lim, X, = 0} = 1if and only if Ve > 0: >, {1 — Fy(€) + Fn(—€)} < o0,
15. If 3", #(X,| > n) < o0, then

: X
limsup — <1 ae.
n H

*16. Strengthen Theorem 4.2.4 by proving that

lim =1ae.

n—c0 (I,

[uNT; Take a subsequence {k,} such that &(J,) ~ k?; prove the result first
for this subsequence by estimating 2{|Jx — £(Ji)| > 8&(Ji)}; the general
case follows because if ny < n < Ay,

Jﬂk/(gj(‘ln,k.;.l) 5 Jrz/é?(\]n) 5 JNH.;/(’;@(JM)-
17. If £(X,) =1 and &(X?2) is bounded in n, then
P{lim X, > 1} > 0.
n— 00

[This is due to Kochen and Stone. Truncate X, at A to ¥, with A so large
that £(¥,) > 1 — € for all n; then apply Exercise 6 of Sec. 3.2.]

*18. Let {E,} be events and {I,,} their indicators. Prove the inequality

o o) )

Deduce from this that if (i) 3., %?(E,) = oo and (ii) there exists ¢ > 0 such
that we have
Vm < n: P(EpEp) < ¢PEm)T(En-m);

then
P(limsupE,} > 0.

19. If >, #(E,) = oo and

H n n 2
LimJ > > PEE) /{Z@(&)} =1,
H L]

j=1 k=1

then #{limsup, E,} = 1. [HINT: Use (11) above.]
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20. Let {E£,} be arbitrary events satisfying

0) imAE,) =0, () Y PEE5y,) < 00

then Z*{limsup, E,} = 0. [This is due to Barndorff-Nielsen.]

4.3 Vague convergence

If a sequence of r.v.’s {X,} tends to a limit, the corresponding sequence of
p.m.’s {{,} ought to tend to a limit in some sense. Is it true that lim, u, (A)
exists for all A € A! or at least for all intervals A? The answer is no from
trivial examples.

Example 1. Let X, = ¢, where the ¢,’s are constants tending to zero. Then X,, — 0
deterministically. For any interval 7 such that 0 ¢ I, where I is the closure of I, we
have lim, ., {I) = 0 = p(I); for any interval such that ¢ € I°, where I° is the interior
of I, we have lim, u#,(I) =1 = u{I). But if {c,} oscillates between strictly positive
and strictly negative values, and I = (a, Q) or (0, ), where a < 0 < b, then u,(I)
oscillates between ¢ and 1, while w(J) = 0. On the other hand, if I = (a, 0] or [0, b),
then w,{(I) oscillates as before but (/) = 1. Observe that {0} is the sole atom of u
and 1t 1s the root of the trouble,

Instead of the point masses concentrated at ¢,, we may consider, e.g., r.v.’s {X,}
having uniform distributions over intervals (c,, ¢, ) where ¢, <0 < ¢, and ¢, ~ 0,
¢, — 0. Then again X, -> 0 a.e. but y,{{a. 0)) may not converge at all, or converge
to any number between ¢ and 1.

Next, even if {u,} does converge in some weaker sense, is the limit necessarily
a p.m.? The answer is again no.

Example 2. Let X, =¢, where ¢, — +oo. Then X, — -+oc deterministically.
According to our definition of a r.v., the constant 4+oco indeed qualifies. But for
any finite interval (a, b) we have lim, u,({a, b)) = 0, so any limiting measure must
also be identically zero. This example can be casily ramified; e.g. let a, ~> —00,
b, — +o0 and

a, with probability «,

X, =<0 with probability 1 — o — 8,
b, with probability S.

Then X, — X where

+oc with probability «,
X=<0 with probability 1 — o — 8,
—o0 with probability .

For any finite interval (a, #) containing (0 we have

lim Mn((aa b)) = 11}?’1 ,LL,,({O}) =l—-a-— 18




43 VAGUE CONVERGENCE | 85

In this situation it is said that masses of amount « and 8 “have wandered off to +0¢
and —oo respectively.” The remedy here is obvious: we should consider measures on
the extended line #* = [—oc, +o0], with possible atoms at {+oc} and {—oo}. We
leave this to the reader but proceed to give the appropriate definitions which take into
account the two kinds of troubles discussed above.

DEFINITION. A measure  on (&', B") with u(R") < 1 will be called a
subprobability measure (s.p.m.).

DEFINITION OF VAGUE CONVERGENCE. A sequence {i,,n > 1} of s.p.m.s is
said to converge vaguely to an s.p.m. u iff there exists a dense subset D of
A! such that

(1) YaeD,beD,a<b: un((a, b)) — u{(a, b}).
This will be denoted by

) tn O

and u is called the vague limir of {u,}. We shall see that it is unique below.

For brevity’s sake, we will write ((a, b]) as w(a, b] below, and similarly
for other kinds of intervals. An interval (a, b) is called a continuity interval
of w iff neither a nor b is an atom of w; in other words iff w(a, b) = ula, bl.
As a notational convention, u{a, b) = 0 when a > b.

Theorem 4.3.1. Let {u,} and u be s.p.m.’s. The following propositions are
equivalent,

(i) For every finite interval (a, b) and € > 0O, there exists an ng(a, b, €)
such that if n > ng, then

(3) pla+eb—e€)—e<pylab)<ula—eb+e)+e

Here and hereafter the first term is interpreted as O if a+¢€ > b — €.
(i) For every continuity interval (a, b] of u, we have

wnla, b1 — ula, bl.
(i) pn — 1.

proOF. To prove that (i) = (ii), let (a, b) be a continuity interval of w.
It follows from the monotone property of a measure that

limu(a+¢€ b— €)= ufa, b)= ula, b] = limula —¢, b+ e).
€l €l0

Letting n — oo, then € | 0 in (3), we have

u(a, b) < lim pn(a, b) < lim u,la, b] < ula, b] = pla, b),
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which proves (i1); indeed (a, b] may be replaced by (a, k) or [a, b) or [a, b]
there. Next, since the set of atoms of u is countable, the complementary set
D is certainly dense in #'. If a € D, b € D, then (a, b) is a continuity interval
of w. This proves (ii) = (iii). Finally, suppose (iii) is true so that (1) holds.
Given any (a, b) and € > 0, there exist a;, az, by, by all in D satisfying

a—€e<day <a<da; <d-+e, b—e<b <b<h <b+te
By (1). there exists ng such that if n > ng, then
liniai, b1 — ula;, b;]l < ¢
fori =1,2 and j =1, 2. It follows that
pla+e b—e)—e=<p(a, bl —€=<ppla bl £ puua by < ua(ar, bal
<ulan,bl+e<pla—eb+e)+e
Thus (iii) = (i). The theorem is proved.

As an immediate consequence, the vague limit is unique. More precisely,
if besides (1) we have also

VaeD',beD',a<b: ua bl — u'a, bl

then . = u'. For let A be the set of atoms of u and of w'; then if a € A°,
b € A°, we have by Theorem 4.3.1, (ii):

w(a, bl « un(a,b] - u'(a, b

so that u(a, b] = u'(a, b]. Now A is dense in 7!, hence the two measures
and u’ coincide on a set of intervals that is dense in #! and must therefore
be identical (see Corollary to Theorem 2.2.3).

Another consequence is: if u, — w and (@, b) is a continuity interval
of w, then w,(I) — w(l), where I is any of the four kinds of intervals with
endpoints @, b. For it is clear that we may replace w,(a, b) by w,[a, b} in (3).
In particular, we have w, ({a}) = 0, u,.({p}) — O.

The case of strict probability measures will now be treated.

Theorem 4.3.2. Let {u,} and u be p.m.’s. Then (i), (ii), and (iii) in the
preceding theorem are equivalent to the following “uniform” strengthening
of (1).

(i") For any § > O and ¢ > 0, there exists ng(é, €) such that if n = nyp
then we have for every interval (a, b), possibly infinite:

) pla+8,b—8)—e<puy(a.b) s pla—4,b+48)+e
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PROOF. The employment of two numbers § and ¢ instead of one ¢ as in (3)
is an apparent extension only (why?). Since (i)} = (i), the preceding theorem
yields at once (i) = (i1) < (iii). It remains to prove (ii) = (i") when the w,’s
and u are p.m.’s. Let A denote the set of atoms of w. Then there exist an
integer £ and a; € A°, 1 < j < ¢, satisfying:

a; < ajp <aj+94, l<j<t-1,
and
€
(3) wn((ay, ap)) < e

By (i1), there exist ng depending on € and £ (and so on € and §) such that if
n > ng then

€
(6) sup |ulay, aj1] — wa@), ajnll < 45
l<j<i—1 4

It follows by additivity that

€
le(ar, ae] — pn(ay, agll < 7

and consequently by (5):

(7 pn((ar, a)) < %

From (5) and (7) we see that by ignoring the part of (a, b) outside (a;, a;), we
commit at most an error <¢/2 in either one of the inequalities in (4). Thus it
is sufficient to prove (4) with § and ¢/2, assuming that (a, b) C (a;, a;). Let
thena; <a <a;j;yanday < b < apy1, where 0 < j <k < £ — 1. The desired
inequalities follow from (6), since when n > ny we have

€ €
pnla+8,b—8)— 2 < ppl@jir, ap) — n < (a1, o) < ufa, b)

€
< ulag, agp) < pplaj, age) + 1

sun(a—ﬁ,b-ké‘)-lri--

The set of all s.p.m.’s on A' bears close analogy to the set of all
real numbers in [0, 1]. Recall that the latter is sequentially compact, which
means: Given any sequence of numbers in the set, there is a subsequence
which converges, and the limit is also a number in the set. This is the
fundamental Bolzano-Weierstrass theorem. We have the following analogue
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which states: The set of all s.p.m.’s is sequentially compact with respect to
vague convergence. It is often referred to as “Helly’s extraction (or selection)
principle”.

Theorem 4.3.3. Given any sequence of s.p.m.’s, there is a subsequence that
converges vaguely to an s.p.m.

PROOF. Here it is convenient to consider the subdistribution function
(s.d.f.) F, defined as follows:

Vx:F,(x) = ,{—00, x].

If u, is ap.m., then F, is just its d.f. (see Sec. 2.2); in general F, is increasing,
right continuous with F,(—oc) = 0 and F,(+0c) = u,(R!) < 1.

Let D be a countable dense set of %', and let {r,,k > 1) be an
enumeration of it. The sequence of numbers {F, (r1), n > 1} is bounded, hence
by the Bolzano—Weierstrass theorem there is a subsequence {Fy;, k > 1} of
the given sequence such that the limit

llm Flk(rl) = fl
k—o0

exists; clearly 0 < £; < 1. Next, the sequence of numbers {F1;(r2), k > 1} is
bounded, hence there is a subsequence {Fy;, k > 1} of {Fy, k > 1} such that

klim Fo(r) =42

where 0 < £> < 1. Since {F] is a subsequence of {F,}, it converges also at
r; to £;. Continuing, we obtain

Fiu,Fip, oo o, Frgn oo converging at ry;
For,Fogo oo, Fogy ... converging at ry, r2;
Fjl,sz, ...,ij, e converging at ry, 2, .. ., ¥is

Now consider the diagonal sequence {Fy, & > 1}. We assert that it converges
atevery r;, j > 1. To see this let r; be given. Apart from the first j — 1 terms,
the sequence {Fy. k > 1} is a subsequence of {Fj, k > 1}, which converges
at r; and hence limy_, oo Fie(r;) = £}, as desired.

We have thus proved the existence of an infinite subsequence {rn;} and a
function G defined and increasing on D such that

Yr € D: lim F, (r) = G(r).
k—o0

From G we define a function F on #! as follows:

vx e #:F(x) = inf G(r).

x<rel
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By Sec. 1.1, (vii}, F is increasing and right continuous. Let C denote the set
of its points of continuity; C is dense in ! and we show that

{8) Vx € C:klim Fp,(x) = F(x).

For, let x € C and € > 0 be given, there exist r, 7/, and r” in D such that
r<r <x<r"and F(r") — F(r) < €. Then we have

FN<=GUr)=Fx) =G = F(r") = Fin+¢

w o]

Fnk(r,) = Fnk(-x) = Fnk(r”)-

From these (8) follows, since € is arbitrary.
To F corresponds a (unique) s.p.m. g such that

F(x) = F(—00) = ju(—00, x]
as in Theorem 2.2.2. Now the relation (8) yields, upon taking differences:

Vae C,beC,a< b:klim tn{a, b] = wla, bl.
— 00

Thus wu,, S i, and the theorem is proved.

We say that F, converges vaguely to F and write F, > F for u, — i
where u, and u are the s.p.m.’s corresponding to the s.d.f.’s F,, and F.

The reader should be able to confirm the truth of the following proposition
about real numbers. Let {x,} be a sequence of real numbers such that every
subsequence that tends to a limit (oo allowed) has the same value for the
limit; then the whole sequence tends to this limit. In particular a bounded
sequence such that every convergent subsequence has the same limit is
convergent to this limit.

The next theorem generalizes this result to vague convergence of s.p.m.’s.
It is not contained in the preceding proposition but can be reduced to it if we
use the properties of vague convergence; see also Exercise 9 below.

Theorem 4.3.4. If every vaguely convergent subsequence of the sequence
of s.p.m.”s {w,} converges to the same p, then p, 5 .

prOOF. To prove the theorem by contraposition, suppose w, does not
converge vaguely to . Then by Theorem 4.3.1, (ii), there exists a continuity
interval (a, b) of w such that w,(a, b) does not converge to u(a,b). By
the Bolzano—Weierstrass theorem there exists a subsequence {n;} tending to
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infinity such that the numbers ., (a, b) converge to a limit, say L = u(a, b).
By Theorem 4.3.3, the sequence {i,,,k > 1} contains a subsequence, say
{un;,k > 1}, which converges vaguely, hence to u by hypothesis of the
theorem. Hence again by Theorem 4.3.1, (ii), we have

ty (@, b) — pla, b).

But the left side also — L. which is a contradiction.

EXERCISES

1. Perhaps the most logical approach to vague convergence is as follows.
The sequence {pn,,n > 1} of s.p.m.’s is said to converge vaguely iff there
exists a dense subset D of %! such that for everyae D, be D, a <b, the
sequence {ti,(a, b), n > 1} converges. The definition given before implies this,
of course, but prove the converse.

2. Prove that if (1} is true, then there exists a dense set [, such that
tn (I} — wp(l) where I may be any of the four intervals (a, &), (a, b], [a, b),
[a,b] witha e D', be D

3. Can a sequence of absolutely continuous p.m.’s converge vaguely to
a discrete p.m.? Can a sequence of discrete p.m.’s converge vaguely to an
absolutely continuous p.m.?

4. If a sequence of p.m.’s converges vaguely to an atomless p.m., then
the convergence is uniform for all intervals, finite or infinite. (This is due to
Pélya.)

5. Let {f,} be a sequence of functions increasing in %! and uniformly
bounded there: sup,, , |f.(x)| <M < oo. Prove that there exists an increasing
function f on Z! and a subsequence {n;} such that f,, (x) — f(x) for every
x. (This is a form of Theorem 4.3.3 frequently given; the insistence on “‘every
x” requires an additional argument.)

6. Let {1} be a sequence of finite measures on Z3'. It is said to converge
vaguely to a measure w iff (1) holds. The limit 1 is not necessarily a finite
measure. But if u,(#%!) is bounded in n, then w is finite.

7. If 75, is a sequence of p.m.’s on (€2, %) such that 7, (E) converges
for every E € #, then the limit is a p.m. %*. Furthermore, if f is bounded
and % -measurable, then

/fdfﬂﬁ/fd:?’.
Q 19

(The first assertion is the Vitali—-Hahn-Saks theorem and rather deep, but it
can be proved by reducing it to a problem of summability; see A. Rényi, [24].
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8. If ¢, and p are p.m.’s and u,(E)} — w(E) for every open set E, then
this is also true for every Borel set. [HINT: Use (7) of Sec. 2.2.]

9, Prove a convergence theorem in metric space that will include both
Theorem 4.3.3 for p.m.’s and the analogue for real numbers given before the
theorem. [HINT: Use Exercise 9 of Sec. 4.4.]

4.4 Continuation

We proceed to discuss another kind of criterion, which is becoming ever more
popular in measure theory as well as functional analysis. This has to do with
classes of continuous functions on %'.

Cx = the class of continuous functions f each vanishing outside a
compact set K(f);
C = the class of continuous functions f such that

limyose £ () = 0;

Cp = the class of bounded continuous functions;
C = the class of continuous functions.

We have Cx € Cg C Cg C C. It is well known that Cy is the closure of Cx
with respect to uniform convergence.

An arbitrary function f defined on an arbitrary space is said to have
support in a subset S of the space iff it vanishes outside S. Thus if f € Ck,
then it has support in a certain compact set, hence also in a certain compact
interval. A step function on a finite or infinite interval (a, b) is one with support
in it such that f(x) = ¢; for x € (a;,a;41) for 1 < j < £, where £ is finite,
a=a < ---<a;=b, and the ¢;’s are arbitrary real numbers. It will be
called D-valued iff all the a;’s and ¢;’s belong to a given set D. When the
interval (a, b) is AL, f is called just a step function. Note that the values of
f at the points a; are left unspecified to allow for flexibility; frequently they
are defined by right or left continuity. The following lemma is basic.

Approximation Lemma. Suppose that f € Cx has support in the compact
interval [a, b]. Given any dense subset A of ! and € > 0, there exists an
A-valued step function f on (a, ) such that

(1) sup | f(x) — fe(0)] < e

xeR!

If f € Cy, the same is true if (a, b) is replaced by #'.

This lemma becomes obvious as soon as its geometric meaning is grasped.
In fact, for any f in Ck, one may even require that either f. < forfe>f.
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The problem is then that of the approximation of the graph of a plane curve
by inscribed or circumscribed polygons, as treated in elementary calculus. But
let us remark that the lemma is also a particular case of the Stone— Weierstrass
theorem (see, e.g., Rudin [2]) and should be so verified by the reader. Such
a sledgehammer approach has its merit, as other kinds of approximation
soon to be needed can also be subsumed under the same theorem. Indeed,
the discussion in this section is meant in part to introduce some modern
terminology to the relevant applications in probability theory. We can now
state the following alternative criterion for vague convergence.

Theorem 4.4.1. Let {,) and p be s.p.m.’s. Then u, — u if and only if
(2) Vf € Cklor C(}]I/ J Xy (dx) — / J () (dx).
R fZ

PROOF. Suppose i, — w; (2) is true by definition when f is the indicator
of (a, b] for a € D, b € D, where D is the set in (1) of Sec. 4.3. Hence by the
linearity of integrals it is also true when f is any D-valued step function. Now
let f € Co and € > 0; by the approximation lemma there exists a D-valued

step function f. satisfying (1). We have
+}/f6dun —/fedu)

3) deun—/fd.u» [ = rodn,

=

+V(fe—f)du

By the modulus inequality and mean value theorem for integrals (see Sec. 3.2),
the first term on the right side above is bounded by

/If—feldun sefdun <e

similarly for the third term. The second term converges to zero as n — 00
because f. is a D-valued step function. Hence the left side of (3) is bounded
by 2¢ as n — o0, and so converges to zero since € is arbitrary.

Conversely, suppose (2) is true for f € Cg. Let A be the set of atoms
of 1 as in the proof of Theorem 4.3.2; we shall show that vague convergence
holds with D = A°. Let g = 1,4 be the indicator of (a, b] where g € D,
b € D. Then, given € > 0, there exists 8(¢) > O such that a+ 8 < b — §, and
such that u(U) < € where

U=(a—38a+8U(b—25b+s)

Now define g; to be the function that coincides with g on (—oc, a]U[a +
8, b — 8] U[b, 00) and that is linear in (a,a +8) and in (b — 8, b); g, to be
the function that coincides with g on (—00,a — 81U [a, BlJU[b + 6, 00) and
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that is linear in (¢ — 8,a) and (b, b+ 8). Itisclearthat g < g < g2 < g1 +1
and consequently

4) /gldun s/gdun ngzdun,
1 1
(5) /g1du5/gdu5/gzdu«'

Since gy € Cg, g2 € Cg, it follows from (2) that the extreme terms in (4)
converge to the corresponding terms in (5). Since

/gzdu—/gldus/ldu=u(U)<e,
U

and € is arbitrary, it follows that the middle term in (4) also converges to that
in (5), proving the assertion.

Corollary. If {1,} is a sequence of s.p.m.’s such that for every f € Ck,
lim [ f(x)u, (dx)

n :/7{1
exists, then {u,} converges vaguely.

For by Theorem 4.3.3 a subsequence converges vaguely, say to w. By
Theorem 4.4.1, the limit above is equal to fﬁl F(xyue (dx). This must then
be the same for every vaguely convergent subsequence, according to the
hypothesis of the corollary. The vague limit of every such sequence is
therefore uniquely determined (why?) to be w, and the corollary follows from
Theorem 4.3.4.

Theorem 4.4.2. Let {4,,} and w be p.m.’s. Then g, 5 w if and only if
(6) Vi eCoi [ feoun @~ [ femn.
a0 R

PROOF. Suppose i, — . Given € > 0, there exist @ and b in D such that

(7) n((a, b)) =1— pu((a, b)) <«

It follows from vague convergence that there exists ng(e) such that if
n > ng(e), then

(8) pnlla, b)) =1— pup((a, b)) <e.

Let f € Cp be given and suppose that | f| < M < oc. Consider the function
fe, which is equal to f on [a, b], to zero on (—oo,a— 1)U (b +1,00),
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and which is linear in [a—1,a) and in (b,b+1]. Then f.e Cg and
|f — fel <2M. We have by Theorem 4.4.1

©) [ fedun— | fodu.

On the other hand, we have

(10) f — feldisn s/ WM dpiy < 2Me
7! (@,b]

by (8). A similar estimate holds with w replacing u, above, by (7). Now the
argument leading from (3) to (2) finishes the proof of (6} in the same way.
This proves that u, — p implies (6); the converse has already been proved
in Theorem 4.4.1.

Theorems 4.3.3 and 4.3.4 deal with s.p.m.’s. Even if the given sequence
{i,} consists only of strict p.m.’s, the sequential vague limit may not be so.
This is the sense of Example 2 in Sec. 4.3. It is sometimes demanded that
such a limit be a p.m. The following criterion is not deep, but applicable.

Theorem 4.4.3. Let a family of p.m.’s {{t, @ € A} be given on an arbitrary
index set A. In order that every sequence of them contains a subsequence
which converges vaguely to a p.m., it is necessary and sufficient that the
following condition be satisfied: for any € > 0, there exists a finite interval /
such that

(11} inf po(f) > 1 —€.

acA
PROOF. Suppose (11) holds. For any sequence {u,,} from the family, there

exists a subsequence {g, } such that p) = u. We show that p is a p.m. Let J
be a continuity interval of i which contains the / in (11). Then

w(#) > p) = limp, () > Tmp, (1) = 1 — €.
n n
Since ¢ is arbitrary, u(-#') = 1. Conversely, suppose the condition involving

(11) is not satisfied, then there exists € > 0, a sequence of finite intervals /,
increasing to ', and a sequence {{i,} from the family such that

Vip,(I) <1 —e

Let {x,} and u be as before and / any continuity interval of . Then J C 1,
for all sufficiently large n, so that

., lim |,
plJ)y=lmp, (J) < —un, U,y <1—e€
n n

Thus @(#') < 1 — ¢ and w is not a p.m. The theorem is proved.
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A family of p.m.’s satisfying the condition above involving (11) is said to
be right. The preceding theorem can be stated as follows: a family of p.m.’s is
relatively compact if and only if it is tight. The word “relatively” purports that
the limit need not belong to the family; the word “compact” is an abbreviation
of “sequentially vaguely convergent to a strict p.m.” Extension of the result
to p.m.’s in more general topological spaces is straight-forward but plays an
important role in the convergence of stochastic processes.

The new definition of vague convergence in Theorem 4.4.1 has the
advantage over the older ones in that it can be at once carried over to measures
in more general topological spaces. There is no substitute for “intervals” in
such a space but the classes Cx, Cy and Cp are readily available. We will
illustrate the general approach by indicating one more result in this direction.

Recall the notion of a lower semicontinuous function on &! defined by:

(12) VXG%IIf(X)Sggl;f(y)-

¥FEX

There are several equivalent definitions (see, e.g., Royden [5]) but
the following characterization is most useful: f is bounded and lower
semicontinuous if and only if there exists a sequence of functions f; € Cp
which increases to f everywhere, and we call f upper semicontinuous iff — f
is lower semicontinuous. Usunally f is allowed to be extended-valued; but to
avoid complications we will deal with bounded functions only and denote
by L and U respectively the classes of bounded lower semicontinuous and
bounded upper semicontinuous functions.

Theorem 4.4.4. If {©,} and p are p.m.’s, then pu, 5w if and only if one
of the two conditions below is satisfied:

13) v eLilim [ £Coun (@) 2 / £ Gy (d)

Vg e U Tm [ gtun @0 < [ g @v.

PROOF. We begin by observing that the two conditions above are equiv-

alent by putting f = —g. Now suppose ., 5 iand let freCp, fr 1 f.
Then we have

a4 tim [ £, @0 = tim [ £100m0 @0 = [ from @
by Theorem 4.42. Letting k — oc the last integral above converges to

[ f (x)u(dx) by monotone convergence. This gives the first inequality in (13).
Conversely, suppose the latter is satisfied and let ¢ € Cp, then ¢ belongs to
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both L and U, so that
f pxp (dx) <lim | @x)u, (dx) < @ _/ ey (dx) < _/ @(x )} (dx)

which proves

lim / (O (dx) = / (O (dx).

Hence i, — u by Theorem 4.4.2.

Remark. (13) remains true if, e.g., f is lower semicontinuous, with +oc
as a possible value but bounded below.

Corollary. The conditions in (13) may be replaced by the following:
for every open O:lim 11, (0) = u(O);

for every closed C:lim u,(C) < u(C).

We leave this as an exercise.
Finally, we return to the connection between the convergence of 1.v.’s
and that of their distributions.

DEFINITION OF CONVERGENCE "IN DISTRIBUTION” (in dist.). A sequence of
r.v.’s {X,} is said to converge in distribution to F iff the sequence {F,}
of corresponding d.f.’s converges vaguely to the d.f. F.

If X 1s an r.v. that has the d.f. F, then by an abuse of language we shall
also say that {X,} converges in dist. to X.

Theorem 4.4.5. Let {F,}, Fbethedf’'softherv’s {X,}, X.IfX, - X in
pr., then F, = F. More briefly stated, convergence in pr. implies convergence
in dist.

PROOF. If X,, — X in pr,, then for each f € Cg, we have f(X,) —» f(X)
in pr. as easily seen from the uniform continuity of f (actually this is true
for any continuous f, see Exercise 10 of Sec. 4.1). Since f is bounded the
convergence holds also in L! by Theorem 4.1.4. It follows that

Hf X)) — X))

which is just the relation (2) in another guise, hence (i, 5o

Convergence of r.v.’s in dist. is merely a convenient turn of speech; it
does not have the usual properties associated with convergence. For instance,
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if X, — X in dist. and Y,, — Y in dist, it does not follow by any means
that X,, + Y, will converge in dist. to X + Y. This is in contrast to the true
convergence concepts discussed before; cf. Exercises 3 and 6 of Sec. 4.1. But
if X, and Y, are independent, then the preceding assertion is indeed true as a
property of the convergence of convolutions of distributions (see Chapter 6).
However, in the simple situation of the next theorem no independence assump-
tion is needed. The result is useful in dealing with limit distributions in the
presence of nuisance terms.

Theorem 4.4.6. If X, — X in dist, and Y, — 0 in dist., then
{a) X, +Y, = X in dist.
b X,Y, — 0in dist.

PROOF. We begin with the remark that for any constant ¢, ¥, — ¢ in dist.
is equivalent to Y, — ¢ in pr. (Exercise 4 below). To prove (a), let f € Cg,
|f| <M. Since f i1s uniformly continuous, given € > 0 there exists § such
that |[x — y| < 8 implies | f(x} — f(y)| < €. Hence we have

HIfXn +Y0)— fFXDN
e fXn+Y0)— fXD S e} | F2MA{| fXn +¥) — f(Xp)] > €}
< e+ 2MP{Y,| > §}.
The last-written probability tends to zero as n — o0; it follows that
lim X, +Y,)) = lim E(f X)) = S (X))
by Theorem 4.4.1, and (a) follows by the same theorem.

To prove (b), for given € > 0 we choose Ay so that both £24; are points
of continuity of the d.f. of X, and so large that

lim {1 X,| > Ag} = P{|X]| > Ap} < €.
n—oQ

This means #{|X,| > Ag} < € for n > ng(€). Furthermore we choose A > Ag
so that the same inequality holds also for n < ng(€). Now it is clear that

€ €
PXaYal > € < 2(X] > A} + 2 {1Vl > =} e+ 7{1Val > £ ]
The last-written probability tends to zero as n — oo, and (b) follows.

Corollary. If X, - X, a, — a, B, — b, all in dist. where ¢ and b are
constants, then o, X, + £, — aX + b in dist.
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EXERCISES

*1. Let i, and u be p.m.’s such that u, — . Show that the conclusion
in (2) need not hold if (a) f is bounded and Borel measurable and all w,
and p are absolutely continuous, or (b) f is continuous except at one point
and every p, 1s absolutely continuous. {To find even sharper counterexamples
would not be too easy, in view of Exercise 10 of Sec. 4.5.)

2. Let u, — p when the w,’s are s.p.m.’s. Then for each f € C and
each finite continuity interval / we have [, fdu, — [, f du.
*3. Let u, and p be as in Exercise 1. If the f,’s are bounded continuous
functions converging uniformly to £, then [ f,du, — [ fdu.

*4. Give an example to show that convergence in dist. does not imply that
in pr. However, show that convergence to the unit mass §, does imply that in
pr. to the constant a.

5. A set {1} of p.m.’s is tight if and only if the corresponding d.f.’s
{F,} converge uniformly in & as x — —oo and as x — +00.

6. Let the r.v.’s {X,} have the pm.’s {u,}. If for some real r > O,
¢{|X«|"} 1s bounded in «, then {i,]} is tight.
7. Prove the Corollary to Theorem 4.4.4.
8. If the r.v.’s X and Y satisfy
X —Y[ =€} <€
for some ¢, then their d.f.’s F and G satisfying the inequalities:
(15) Vxe R Fx—e)—e<Gx)< F(x+¢)+e.

Derive another proof of Theorem 4.4.5 from this.

*9. The Lévy distance of two s.d.f.’s F and G is defined to be the infimum
of all € > 0 satisfying the inequalities in (15). Prove that this is indeed a metric
in the space of s.d.f.’s, and that ¥, converges to F in this metric if and only

if F, > F and [°_dF, — [ dF.
10. Find two sequences of p.m.’s {z,} and {v,} such that

erCK:/fd,u,,,—/fdv,,ﬁo;

but for no finite (a, b) is it true that
nla, by — v,(a, b)y — 0.
[HINT: Let w,, =4, , v, = &, and choose {r,}, {s,} suitably.]

11. Let {1,} be a sequence of p.m.’s such that for each f € Cp, the
sequence f » | du, converges; then uw, S (., where w0 is a p.m. [tnT: If the
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hypothesis is strengthened to include every f in C, and convergence of real
numbers is interpreted as usual as convergence to a finite limit, the result is
easy by taking an f going to co. In general one may proceed by contradiction
using an f that oscillates at infinity.]

*12. Let F, and F be d.f.’s such that F, > F. Define G,(8) and G(8)
as in Exercise 4 of Sec. 3.1. Then G, (6) — G(@) in a.e. [HNT: Do this first
when F, and F are continuous and strictly increasing. The general case is
obtained by smoothing F, and F by convoluting with a uniform distribution
in [—§, +8] and letting § | O; see the end of Sec. 6.1 below.]

4.5 Uniform integrability; convergence of moments

The function |x|", r > 0, is in C but not in Cg, hence Theorem 4.4.2 does
not apply to it. Indeed, we have seen in Example 2 of Sec. 4.1 that even
convergence a.e. does not imply convergence of any moment of order r > 0.
For, given r, a slight modification of that example will yield X,, — X a.e.,
E(X,]7) =1 but (X)) = 0.

It is useful to have conditions to ensure the convergence of moments
when X, converges a.e. We begin with a standard theorem in this direction
from classical analysis.

Theorem 4.5.1. If X, — X a.e., then for every r > 0:
(1) SUXIN) = lim £(X,17).

H— o0
IfX, > XinL", and X € L', then ¢(|X,|") = £(X|").

PROOF. (1) is just a case of Fatou’s lemma (see Sec. 3.2):

f XV 47 = f lim [X,|" d < lim / Xl d7,
Q Q" n JQ

where +oo is allowed as a value for each member with the usual convention.
In case of convergence in L", r > 1, we have by Minkowski’s inequality
(Sec. 3.2),since X =X, + X -X,)=X, — (X, — X)

XN — E(X, = XY < EQXINDOY < E(X DY+ (X - XDV

Letting n — o0 we obtain the second assertion of the theorem. For 0 < r < 1,
the inequality |x + ¥|” < |x|" + |y|" implies that

X)) = CUX =X, ") < £UXIT) < £UXL D+ X = X0,
whence the same conclusion.

The next result should be compared with Theorem 4.1.4.
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Theorem 4.5.2. If {X,} converges in dist. to X, and for some p > 0,
sup, “{|Xp|"} = M < oo, then for each r < p:

(2) lim &(1X,|") = €(X]") < oo.
n— 00

If r is a positive integer, then we may replace |X,|” and |X|" above by X,"
and X'.

PROOF. We prove the second assertion since the first is similar. Let F,,, F
be the d.f.’s of X,,, X; then F,, 5> F. For A > 0 define f4 on %' as follows:

x", if |x] <A
3) fA(x)z{A’, if x > A;
(=AY, if x < —A.

Then f4 € Cp, hence by Theorem 4.4.4 the “truncated moments” converge:

/ fA(X)an(x)—>/ FaG)dF (x).

Next we have

[ AG) = x| dFn(x) < f xI" dF () = / X, d
-0 |x|>A | X1 =A

< /| X, |7 d
Af’ r

The last term does not depend on n, and converges to zero as A — oo, It
follows that as A — oo, f fadF, converges uniformly in n to f x"dF.
Hence by a standard theorem on the inversion of repeated limits, we have

oo} o0
(4) / x"dF = lim / fadF = hrn lim fadF,

oo A—oo [ A—oon—oo J_

o0 o0
= lim lim / fadF, = lim x"dF,.
H—> 00 A—00 —oo =00 f_ .o
We now introduce the concept of uniform integrability, which is of basic
importance in this connection. It is also an essential hypothesis in certain
convergence questions arising in the theory of martingales (to be treated in
Chapter 9).

DEFINITION OF UNIFORM INTEGRABILITY. A family of r.v.’s {X,}, te T
where T is an arbitrary index set, is said to be uniformly integrable iff

(5) lim 1X,|d:% =0
A—o00 [X,')A

uniformly inr € 7.
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Theorem 4.5.3. The family {X,} is uniformly integrable if and only if the
following two conditions are satisfied:

(a) £(|X,|)i1s boundedint e T;
(b) For every € > 0, there exists 8(¢) > 0 such that for any E € 7

?(E)<5(e)=>/|Xf|d‘37)<efor every t € T.
E

PROOF. Clearly (5) implies (a). Next, let E € % and write E, for the set
{w: |X(w)| > A}. We have by the mean value theorem

]|X,|d@= (/ +/ )|Xf|d9?’sf X,|d2 + AP(E).
E EnE, ENE, E,

Given € > 0, there exists A = A(¢) such that the last-written integral is less
than €/2 for every 1, by (5). Hence (b) will follow if we set § = ¢/2A. Thus
(5) implies (b).

Conversely, suppose that (a) and (b) are true. Then by the Chebyshev
inequality we have for every ¢,

SIXD) M

A A
where M is the bound indicated in (a). Hence if A > M /3, then (E,) < §
and we have by (b):

PX:| > A} =

/ | X, |d” < €.
E;
Thus (5) is true.

Theorem 4.54. Let 0 <r<oo, X, € L', and X, — X in pr. Then the
following three propositions are equivalent:

(1) {|Xn|"} is uniformly integrable;
(i) X, - XinlL";
(iii) £(X,1")Y — X)) < co.
PROOF. Suppose (1) is true; since X, — X in pr, by Theorem 4.2.3, there
exists a subsequence {n;} such that X,, — X a.e. By Theorem 4.5.1 and (a)
above, X € L". The easy inequality

X — XI" < 2{IX, " + 1X17),

valid for all r > 0, together with Theorem 4.5.3 then implies that the sequence
{|X, — X|"} 1s also uniformly integrable. For each ¢ > 0, we have
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(6) /|xn —X|’d.@=/ X, —X|’d57’+/ X, — X" d7
Q X, —X|>e

IXn—X|<e

S/ an _Xlrd@‘{‘ Er.
Xn—X|>e¢

Since #{|1X,, — X| > €} — 0 as n — oo by hypothesis, it follows from (b}
above that the last written integral in (6) also tends to zero. This being true
for every € > 0, (ii) follows.

Suppose (11) is true, then we have (iii) by the second assertion of
Theorem 4.5.1.

Finally suppose (1ii} is true. To prove (i), let A > (0 and consider a function
fa in Cg satisfying the following conditions:

= |x|" for [x|" < A;
fA(x){gle forA <x|” <A+ 1;
=0 for |x|" > A+ 1;

cf. the proof of Theorem 4.4.1 for the construction of such a function. Hence
we have

lim X, d7 > Tim E(fa(Xa)} = ELACO) > f XTI d,
n—oo J|X, I <A+1 noe 1X]"=A

where the inequalities follow from the shape of f,4, while the limit relation
in the middle as in the proof of Theorem 4.4.5. Subtracting from the limit
relation in (1i1), we obtain

Tim X, |7 d7 < / X|" d.
B=20 JIX, 1" =A+] IX|r=A

The last integral does not depend on n and converges to zero as A — oo. This
means: for any € > 0, there exists Ag = Ap(e) and ng = ng(Ag(e)) such that

we have
sup / X" dP < €
n=ng X, >A+1

provided that A > Ay. Since each |X,|" is integrable, there exists A} = A(¢€)
such that the supremum above may be taken over all n > 1 provided that
A > Ag v A). This establishes (1), and completes the proof of the theorem.

In the remainder of this section the term “moment™ will be restricted to a
moment of positive integral order. It is well known (see Exercise 5 of Sec. 6.6)
that on (#, /) any p.m. or equivalently its d.f. is uniquely determined by
its moments of all orders. Precisely, if Fy and F; are two d.f.’s such that
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Fi0)=0,F;(1y=1fori =1, 2; and

1 1
Yn > 1:/ x" dF(x) :/ x" dF,(x),
0 0

then Fi = F,. The corresponding result is false in (!, ') and a further
condition on the moments is required to ensure uniqueness. The sufficient
condition due to Carleman is as follows:

X0

~ 1
Z 773 = 100
r=1 m2f

where m, denotes the moment of order . When a given sequence of numbers
{m,, r > 1) uniquely determines a d.f. F such that

>0
(7) m, = / x" dF(x),

— O
we say that “the moment problem is determinate” for the sequence. Of course
an arbitrary sequence of numbers need not be the sequence of moments for
any d.f.; a necessary but far from sufficient condition, for example, is that
the Liapounov inequality (Sec, 3.2) be satisfied. We shall not go into these
questions here but shall content ourselves with the useful result below, which
is often referred to as the “method of moments”; see also Theorem 6.4.5.

Theorem 4.5.5. Suppose there is a unique d.f. F with the moments {m'”, r >
1}, all finite. Suppose that {F,} is a sequence of d.f.’s, each of which has all

its moments finite: o
m’ = / x"dF,.
— 0

Finally, suppose that for every r > 1:

(®) lim m" = m\".
H—>00

Then F, — F.

PrOOF. Let u, be the p.m. corresponding to F¥,. By Theorem 4.3.3 there
exists a subsequence of {u,} that converges vaguely. Let {u,,} be any sub-
sequence converging vaguely to some u. We shall show that 4 is indeed a
p.m. with the d.f. F. By the Chebyshev inequality, we have for each A > 0:

Mo (A, +A) 2 1 — A7 'mD,

Since m) — m? < oo, it follows that as A — oo, the left side converges
uniformly in k to one. Letting A — oc along a sequence of points such that
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both A belong to the dense set D involved in the definition of vague conver-
gence, we obtain as in (4) above:

w(#N = lim p(—A,4+A) = lim lim w,, (-4, +A)
A— 00 A—=0 koo

= lim lim gy, (~A, +A) = lim p,, (2) =1.
—00

k— o0 A— 00

Now for each r, let p be the next larger even integer. We have

o
/ xP dity, =mP — m'P,

o0

hence mﬁjj) is bounded in k. It follows from Theorem 4.5.2 that

o0 OO
f X dpny, —>/ x du.
-00 -0

But the left side also converges to m"™ by (8). Hence by the uniqueness
hypothesis u is the p.m. determined by F'. We have therefore proved that every
vaguely convergent subsequence of {y,}, or equivalently {F,}, has the same
limit w, or equivalently F. Hence the theorem follows from Theorem 4.3.4.

EXERCISES

1. If sup, [ Xyl € LP and X,, — X ae,then X € L and X, — X in L”,

2. If {X,} is dominated by some Y in L?, and converges in dist. to X,
then £(X,|F) — £(X|7).

3. IfX, > X indist, and f € C, then f(X, ) = f(X) in dist.

*4. Exercise 3 may be reduced to Exercise 10 of Sec. 4.1 as follows. Let
F,.1<n < oc, bedf. s such that F,, - F. Let 8 be uniformly distributed on
[0, 1] and put X,, = FEI(Q), 1 < n < oo, where F;l(y) = sup{x: Fp(x) < vy}
(cf. Exercise 4 of Sec. 3.1). Then X, has d.f. F,, and X,, — X in pr.

5. Find the moments of the normal d.f. @ and the positive normal d.f.
¢, below:

2 )
1 o0 2 Z [Feyil 7 .
P = N/z“n/ eTRay, = Vgl Hx20
—o
0,

if x < 0.

Show that in either case the moments satisfy Carleman’s condition.

6. If {X,) and {Y,} are uniformly integrable, then so is {X, + Y} and
{X,+ Y.}

7. If {X,} is dominated by some Y in L! or if it is identically distributed
with finite mean, then it is uniformly integrable.
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*8. If sup, €(X,|?) < oo for some p > 1, then {X,} is uniformly inte-
grable.
9. If {X,} is uniformly integrable, then the sequence

1 n
—E Xj,l’lZl
n <

J=1

is uniformly integrable.

*10. Suppose the distributions of {X,, 1 < n < oo} are absolutely contin-
uwous with densities {g,) such that g, — g« in Lebesgue measure. Then
gn — 8o in L1(—00, 00), and consequently for every bounded Borel measur-
able function f we have &{f(X,)} = &{f Koo} [HINT: [(goo — gn)T dx =
J(goo — 84) dx and (g — g0 )" < goo; se dominated convergence. ]




5 Law of large numbers.
Random series

5.1 Simple limit theorems

The various concepts of Chapter 4 will be applied to the so-called “law of
large numbers” — a famous name in the theory of probability. This has to do

with partial sums
n
Sn = ZXJ
J=1

of a sequence of r.v.’s. In the most classical formulation, the “weak” or the
“strong” law of large numbers is said to hold for the sequence according as

Su — (Sn)
— — %
n

(1) 0

in pr. or a.e. This, of course, presupposes the finiteness of ¢(S,). A natural
generalization is as follows:

S i
by

where {a,} is a sequence of real numbers and {b,} a sequence of positive
numbers tending to infinity. We shall present several stages of the development,

— 0,
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even though they overlap each other to some extent, for it 1s just as important
to leamn the basic techniques as the resuits themseives.

The simplest cases follow from Theorems 4.1.4 and 4.2.3, according to
which if Z, is any sequence of r.v.’s, then &(Z2) — 0 implies that Z,, — 0
in pr. and Z,, — 0 ae. for a subsequence {n;}. Applied to Z, = S, /n, the
first assertion becomes

Sh .

2) F(82y=o0(n*)= " - 0in pr.
n

Now we can calculate c?’(S,%) more explicitly as follows:

2

(3)  ESH)=¢ Zn:Xj = & Zn:X§+2 y XX
j=1 j=1

l<j<k=<n

=Y EXH+2 D EX X

j=1 1<j<k=<n

Observe that there are n? terms above, so that even if all of them are bounded
by a fixed constant, only &(8 g) = O(n?) will result, which fails critically short
of the hypothesis in (2). The idea then is to introduce certain assumptions to
cause enough cancellation among the “mixed terms” in (3). A salient feature
of probability theory and its applications is that such assumptions are not only
permissible but realistic. We begin with the simplest of its kind.

DEFINITION. Two r.v.'s X and Y are said to be uncorrelated iff both have
finite second moments and

(4) S(XY) = E£X)E(Y).
They are said to be orthogonal iff (4) is replaced by
(5) S(XY)=0.

The 1.v.’s of any family are said to be uncorrelated [orthogonal] iff every two
of them are.

Note that (4) is equivalent to
X — SXNY — &) =0,

which reduces to (5) when ¢(X) = £(Y)=0. The requirement of finite
second moments seems unnecessary, but it does ensure the finiteness of
(XY) (Cauchy~Schwarz inequality!) as well as that of /(X) and ¢(Y), and
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without it the definitions are hardly useful. Finally, it is obvious that pairwise
independence implies uncorrelatedness, provided second moments are finite.

If {X,} 1s a sequence of uncorrelated r.v.’s, then the sequence {X, —
¢ (X, )} is orthogonal, and for the latter (3) reduces to the fundamental relation
below:

©®) o*(S))” =) P (X)),
i=1

which may be called the “additivity of the variance”, Conversely, the validity
of (6) for n = 2 implies that X; and X, are uncorrelated. There are only n
terms on the right side of (6), hence if these are bounded by a fixed constant
we have now o%(S,) = O(n) = o(n?). Thus (2) becomes applicable, and we
have proved the following result.

Theorem 5.1.1. If the X ;’s are uncorrelated and their second moments have
a common bound, then (1) is true in L? and hence also in Pr.

This simple theorem is actually due to Chebyshev, who invented his
famous inequalities for its proof. The next result, due to Rajchman (1932),
strengthens the conclusion by proving convergence a.e. This result is inter-
esting by virtue of its simplicity, and serves well to introduce an important
method, that of taking subsequences.

Theorem 5.1.2. Under the same hypotheses as in Theorem 5.1.1, (1) holds
also a.e.

PROOF. Without loss of generality we Iﬁay suppose that £(X;) =0 for
each j, so that the X ;’s are orthogonal. We have by (6):

E(S2) < Mn,

where M is a bound for the second moments. It follows by Chebyshev’s
inequality that for each ¢ > 0 we have

, Mn M
S| > nel € e = ——,
If we sum this over n, the resulting series on the right diverges. However, if
we confine ourselves to the subsequence {nz}, then

, M
S PS> nlep = —5 < 0.
n n

Hence by Theorem 4.2.1 (Borel~Cantelli) we have

(7 8,2| > n%e 1.0.} = 0;
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and consequently by Theorem 4.2.2

(8) %‘2; — 0 ae.

We have thus proved the desired result for a subsequence; and the “method

of subsequences” aims in general at extending to the whole sequence a result

proved (relatively easily) for a subsequence. In the present case we must show

that Sy does not differ enough from the nearest S, to make any real difference.
Put for each n > 1.

D, = max |85, — 35|
ni<k<(n+1)?

Then we have
(n+11?
ED}) < 208 (Suary = Sal’) = 2n ) | 0*(X)) < 4n’M
j=nld4]

and consequently by Chebyshev’s inequality

4M

E//?){Dn > n2€} = ;‘2’?—2

It follows as before that

Dy
(9) — = 0 ae.
n
Now it is clear that (8) and (9) together imply (1), since

AYY - |Sp2| + D,
k — n2

for n? < k < (n + 1)?. The theorem is proved.

The hypotheses of Theorems 5.1.1 and 5.1.2 are certainly satisfied for a
sequence of independent r.v.’s that are uniformly bounded or that are identi-
cally distributed with a finite second moment. The most celebrated, as well as
the very first case of the strong law of large numbers, due to Borel (1909), is
formulated in terms of the so-called “normal numbers.” Let each real number
in [0, 1] be expanded in the usual decimal system:

(10) W= X|X3...Xn ... -

Except for the countable set of terminating decimals, for which there are two
distinct expansions, this representation is unique. Fix a k:0 <k <9, and let
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v,(c”)(a)) denote the number of digits among the first n digits of w that are
equal to k. Then v\ (w)/n is the relative frequency of the digit & in the first

n places, and the limit, if existing:

(n)
an (w)

(11) lim

n—0C

= @ (w),

may be called the frequency of &k in w. The number w is called simply normal
(to the scale 10) iff this limit exists for each k and is equal to 1/10. Intuitively
all ten possibilities should be equally likely for each digit of a number picked
“at random”. On the other hand, one can write down “at random” any number
of numbers that are ‘“‘abnormal” according to the definition given, such as
-1111 ..., while it is a relatively difficult matter to name even one normal
number in the sense of Exercise 5 below. It turns out that the number

-12345678910111213.. . .,

which is obtained by writing down in succession all the natural numbers in
the decimal system, is a normal number to the scale 10 even in the strin-
gent definition of Exercise 5 below, but the proof is not so easy. As for
determining whether certain well-known numbers such as e — 2 or w — 3 are
normal, the problem seems beyond the reach of our present capability for
mathematics. In spite of these difficulties, Borel’s theorem below asserts that
in a perfectly precise sense almost every number is normal. Furthermore, this
striking proposition is merely a very particular case of Theorem 5.1.2 above.

Theorem 5.1.3. Except for a Borel set of measure zero, every number in
[0, 1] is simply normal.

prOOF. Consider the probability space (7/,23,m) in Example 2 of
Sec. 2.2. Let Z be the subset of the form /10" for integers n > 1, m > 1,
then m(Z) = 0. If w € #\Z, then it has a unique decimal expansion; if w € Z,
it has two such expansions, but we agree to use the “terminating” one for the
sake of definiteness. Thus we have

w='$1$2---$rz-»-s

where for each n > 1, &,(-) is a Borel measurable function of w. Just as in
Example 4 of Sec. 3.3, the sequence {&,, » > 1} is a sequence of independent

r.v.’s with
Py =k} =15 k=0.1,...,9

Indeed according to Theorem 5.1.2 we need only verify that the £,’s are
uncorrelated, which is a very simple matter. For a fixed & we define the
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r.v. X, to be the indicator of the set {w:é&,(w) =k}, then ¢(X,)=1/10,
E(X,1) = 1/10, and
1 H
~> X
n <
J=1

1s the relative frequency of the digit £ in the first » places of the decimal for
w. According to Theorem 5.1.2, we have then

Sn 1

—) RS
n 10
Hence in the notation of (11), we have @{g, = 1/10} =1 for each k£ and

consequently also
9
1
&z ﬂ {Qt?k = _:] } = 1:
{k=0 10

which means that the set of normal numbers has Borel measure one.
Theorem 5.1.3 is proved.

a.c.

The preceding theorem makes a deep impression (at least on the older
generation') because it interprets a general proposition in probability theory
at a most classical and fundamental level. If we use the intuitive language of
probability such as coin-tossing, the result sounds almost trite. For it merely
says that if an unbiased coin is tossed indefinitely, the limiting frequency of
“heads” will be equal to %_that is, its a priori probability. A mathematician
who is unacquainted with and therefore skeptical of probability theory tends
to regard the last statement as either “obvious” or “unprovable”, but he can
scarcely question the authenticity of Borel’s theorem about ordinary decimals.
As a matter of fact, the proof given above, essentially Borel’'s own, is a
lot easier than a straightforward measure-theoretic version, deprived of the
intuitive content [see, e.g., Hardy and Wright, An introduction to the theory of
numbers, 3rd. ed., Oxford University Press, Inc., New York, 1954].

EXERCISES

1. For any sequence of r.v.’s {X,}, if cf‘(Xf;) — 0, then (1) is true in pr.
but not necessarily a.e.

*2. Theorem 5.1.2 may be sharpened as follows: under the same hypo-

3

theses we have S, /n% — 0 ae. for any « > 3.

3. Theorem 5.1.2 remains true if the hypothesis of bounded second mo-
ments is weakened to: o2(X,) = O(n¥) where 0 <8 < % Various combina-
tions of Exercises 2 and 3 are possible.

*4. If {X,} are independent r.v.’s such that the fourth moments ¢ (X?)
have a common bound, then (1) is true a.e. [This is Cantelli’s strong law of
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large numbers. Without using Theorem 5.1.2 we may operate with ¢ (5% /n*)

as we did with ¢(§?/n?). Note that the full strength of independence is not
needed.}

5. We may strengthen the definition of a normal number by considering
blocks of digits. Let r > 1, and consider the successive overlapping blocks of
r consecutive digits in a decimal; there are n — r + 1 such blocks in the first
n places. Let v (w) denote the number of such blocks that are identical with
a given one; for example, if r = 5, the given block may be “21212”, Prove
that for a.e. w, we have for every r:

v w) 1
lim =

n—0C n - 107

[HiNT: Reduce the problem to disjoint blocks, which are independent.]

*6. The above definition may be further strengthened if we consider diffe-
rent scales of expansion. A real number in [0, 1] is said to be completely
normal iff the relative frequency of each block of length r in the scale s tends
to the limit 1/s” for every s and ». Prove that almost every number in [0, 1}
is completely normal.

7. Let o be completely normal. Show that by looking at the expansion
of « in some scale we can rediscover the complete works of Shakespeare
from end to end without a single misprint or interruption. [This 1s Borel's
paradox.]

*8. Let X be an arbitrary r.v. with an absoclutely continuous distribution.
Prove that with probability one the fractional part of X is a normal number.
[HINT: Let N be the set of normal numbers and consider (X — [X] € N}.]

9. Prove that the set of real numbers in [0, 1] whose decimal expansions
do not contain the digit 2 is of measure zero. Deduce from this the existence
of two sets A and B both of measure zero such that every real number is
representable as asuma+ b withae A, b € B.

*10. Is the sum of two normal numbers, modulo 1, normal? Is the product?
[HINT: Consider the differences between a fixed abnormal number and all
normal numbers: this is a set of probability one.]

5.2 Weak law of large numbers

The law of large numbers in the form (1) of Sec. 5.1 involves only the first
moment, but so far we have operated with the second. In order to drop any
assumption on the second moment, we need a new device, that of “equivalent
sequences”, due to Khintchine (1894-1959).
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DEFINITION.  Two sequences of r.v.’s {X,} and {Y,} are said to be equiv-
alent iff

(1) Y P, # Yy} < o0
. n
In practice, an equivalent sequence is obtained by “truncating” in various
ways, as we shall see presently.

Theorem 5.2.1. 1If {X,} and {Y,} are equivalent, then

Z(X,, —Y,) converges a.e.
n

Furthermore if a, 1 o0, then

1 n
2) a—Z(X,-—Yj)ﬁ 0 ae.

el

PROOF. By the Borel-Cantelli lemma, (1) implies that
PX, #Y, 10} =0.

This means that there exists a null set N with the following property: if
w € Q\N, then there exists ng{w) such that

n = no(w) = Xp() = ¥p(w).

Thus for such an w, the two numerical sequences {X,(w)} and {Y,{w)} differ
only in a finite number of terms (how many depending on w). In other words,
the series

D Xn (@) = Ya(w))

consists of zeros from a certain point on. Both assertions of the theorem are
trivial consequences of this fact.

Corollary. With probability one, the expression
1 n
ZX . Or Z ZX j
n J:]
converges, diverges to +00 or —oo, or fluctuates in the same way as

1

n
D Yn ot =D Y5
" Gn Je=1
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respectively. In particular, if

To prove the last assertion of the corollary, observe that by Theorem 4.1.2
the relation (2) holds also in pr. Hence if

1 n

—E X;— X mpr,
a

"j=]

then we have

1 & 1 & 1 &
— Y, = — X, +— Y —X; X+0=X 1 .
anjgl ’ anz J+an Z( g j)_')' * P

j=1 j=1

(see Exercise 3 of Sec. 4.1).

The next law of large numbers is due to Khintchine. Under the stronger
hypothesis of total independence, it will be proved again by an entirely
different method in Chapter 6.

Theorem 5.2.2. Let {X,} be pairwise independent and identically distributed
r.v.’s with finite mean m. Then we have

Sn .
(3) — —m in pr.

H

PROOF. Let the common d.f. be F so that
o0

m= é(X,J:/OO xdF(x), 5(|X,,])=/ |x| dF{x) < o0.

—0C —o0
By Theorem 3.2.1 the finiteness of £(]X;|) is equivalent to
> P(Xy] = n) < 0.

H

Hence we have, since the X,,’s have the same distribution:

@ > " P(Xa| > n) < 0.

n




52 WEAK LAW OF LARGENUMBERS | 115

We introduce a sequence of r.v.’s {¥,} by “truncating at n’":

_J Xpw), if [Xp(w)] < n;
Vnlw) = {0, if X, ()| > n.

This is equivalent to {X,} by (4), since (X, | > n) = PX, #Y,). Let

T, = Z Y.
j=1

By the corollary above, (3) will follow if (and only if) we can prove T,,/n —
m in pr. Now the Y,’s are also pairwise independent by Theorem 3.3.1
(applied to each pair), hence they are uncorrelated, since each, being bounded,
has a finite second moment. Let us calculate o%(T,); we have by (6) of
Sec. 5.1,

I (T)=) (¥ < Y sy = Zf x% dF (x).
Jj=1 J=1 j=1 [x]=j

The crudest estimate of the last term yields

R

S Rarw=>i [ warw <" [T,
xl=j j=1 [x]=<j 2 -0

j=t

which is O(n?), but not o(n?) as required by (2) of Sec. 5.1. To improve
on it, let {a,} be a sequence of integers such that 0 < a,, < n, a, — oo but
a, = o{n). We have

n

E/ xzdF(x)=Z+ Z
lxl<j

Jj=1 jfa, a,<jsn

Yo/ W@+ Y o W

j<an Jxlﬁan an“:jf’] |x|5f1n

+ > / x| dF (x)
a, <|x|<n

ap<j<n

< na, /w |x|dF(x)+n2/ x| dF(x).

—00 |x|=a,

The first term is O(na,) = o(n?); and the second is n2o(1) = o(n?), since
the set {x:|x| > a,} decreases to the empty set and so the last-written inte-
gral above converges to zero. We have thus proved that o(T,,) = o(n?) and
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consequently, by (2) of Sec. 5.1,

T,—&T 1< _ _
R LY, (Th) = Z{Yf —&(Y;))— 0 inpr.
J=1

H [ { B
Now it is clear that as 1 — o¢, é(Y,) = &(X) = m; hence also

1 n
— E &Y ) — m
L1 M

J=1

It follows that
T 1 <
== E Y;—»m inpr,
n n

as was to be proved.

For totally independent r.v.’s, necessary and sufficient conditions for
the weak law of large numbers in the most general formulation, due to
Kolmogorov and Feller, are known. The sufficiency of the following crite-
rion is easily proved, but we omit the proof of its necessity (cf. Gnedenko and

Kolmogorov [12]).

Theorem 5.2.3. Let {X,} be a sequence of independent r.v.’s with d.f’s
{F.};and S, = > ;) X;. Let {b,} be a given sequence of real numbers increa-

sing to 4.
Suppose that we have

) Z'}=1 f;x|>b,, dFj(x) = o(1),

: 1 n
W 77 25 Fixtzp, ¥° dF j(x) = o(1);

then if we put

n
{5 a, = / xdF j(x),
j=1 x| <h,
we have
1
(6) E—(S,, —a,)— 0 inpr.

Next suppose that the F,’s have the property that there exists a A > 0

such that

(7) Y Fp,(0)= A, 1—-F,0-)=A.
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Then if (6) holds for the given {b,} and any sequence of real numbers {a,},
the conditions (i) and (ii) must hold.

Remark. Condition (7) may be written as
P =0} 24, PX, =0} =4

when A = % this means that 0 is a median for each X, ; see Exercise 9 below.
In general it ensures that none of the distribution is too far off center, and it
is certainly satisfied if all F, are the same; see also Exercise 11 below.

It is possible to replace the a, in (5) by

Zf xdF;(x)
|xl=<<h;

j=1
and maintain {6); see Exercise 8 below.

PROOF OF SUFFICIENCY. Define foreachn > land 1 < j < n:

v [Xn X <b
mi=0, X > by

and write .,

T, =ZY"*j'

Jj=1

Then condition (i) may be written as

n

D P # X5} =o0(l);

j=1

and it follows from Boole’s inequality that
n n
®) PTw#S} <P | JWns # X)) ) <) 2P0 # X5} = o0(D).
j=1 je=1
Next, condition (ii) may be written as

n 2
D¢ ((1;’) = o(1);

i=1

from which it follows, since {Y, ;, ] < j < n} are independent r.v.’s:

Tn u Y:z,' a & Yn,' ?
o2 (3;) — Zgz <__b__1) < Z@. ((—5;1) ) = o(1).

j=1
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Hence as in (2) of Sec. 5.1,

T?t - ’( Tn .
9) L—é@n) g pr.
by,
It is clear (why?) that (8) and (9) together imply
Sp— £ Tn .

n

(=Y =3 [ xaFw=an
j=1 j=171

Since

xlfbn

(6) is proved.

As an application of Theorem 5.2.3 we give an example where the weak
but not the strong law of large numbers holds.

Example. Let {X,} be independent r.v.’s with a common d.f. ¥ such that

c

PIX) =n) = PX, = —n} = n=34,...,

n?logn’

-1
1§ 1 )
2 ("_3 n*logn

We have then, for large values of n,

[ C
n dF(x)=n ~ ,
Ll:ﬂx 0 g k2 logk logn

1 1~k
—-n-/ PAF() ==Y — ¢
lrl=h

n* n < klogk logn

where ¢ is the constant

Thus conditions (i) and (ii) are satisfied with b, = n; and we have a, = 0 by (3).
Hence S, /n — 0 in pr. in spite of the fact that &(|X|) = +oc. On the other hand,
we have

X > n) ~ ,
nlogn

so that, since X, and X, have the same d.f,,

Xl > n) = UKl > n} = o0,

n n

Hence by Theorem 4.2.4 (Borel-Cantell1),

DX, > nio) =1




52 WEAK LAW OF LARGENUMBERS | 119

But S, — Su21l = |X,| > n implies |S,| > n/2 or |§,-1| > n/2; it follows that
n
@ - Lo,y =1,
{IS,,I > 5 10} 1

and so it is certainly false that §,/n — 0 a.e. However, we can prove more. For any
A > 0, the same argument as before yiclds

PX,| > An 1.0.) = 1

and consequently

10 li
( ) nl}ngo n -2
Let Z =, Z{m); then Z is still a null set, and if @ € Q\Z, (10) is true for every
A, and therefore the upper limit is +oc. Since X is “symmetric” in the obvious sense,
it follows that

) — S
lim = = —o0, lim — =400 ae.
n—oc N n—=ot N1

EXERCISES

S = ixj.
j=1

1. For any sequence of r.v.’s {X,,}, and any p > L.

S
X, 0ae = = - 0ae,
H

S .
X, > 0inlP= — —-0inL”.
4]

The second result is false for p < 1.
2. Even for a sequence of independent r.v.’s {X,},

S :
X, - 0inpr. % — — 01 pr.
n

[HinNT: Let X, take the values 2" and O with probabilities n~! and 1 —n~".]
3. For any sequence {X,}:

Xn :
§£__>oinpr_:>m-~>0mpr.
H H

More generally, this is true if # is replaced by b, where b, 4, /b, — 1.
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*4, For any 8§ > 0, we have

: n ker sk __
jm S (})rta-prt=o

lk—np|>nd

uniformly in p:0 < p < 1.

*5. Let »*(X) =2")=1/2", n > 1; and let {X,,n > 1} be independent
and identically distributed. Show that the weak law of large numbers does not
hold for &, = n; namely, with this choice of b, no sequence {a,} exists for
which (6) is true. [This is the St. Petersburg paradox, in which you win 2% if
it takes n tosses of a coin to obtain a head. What would you consider as a
fair entry fee? and what is your mathematical expectation?] '

*6. Show on the contrary that a weak law of large numbers does hold for
b, = nlogn and find the corresponding a,. [HiNT: Apply Theorem 5.2.3.]

7. Conditions (i) and (ii) in Theorem 5.2.3 imply that for any é > 0,

Z/ dF ;(x) = o(1)
=1 7 rl>8by

and that a, = o(/nb,).
8. They also imply that

12/ xdF j(x) = o(1).

bn =1 b <|x|=h,
[#mvT: Use the first part of Exercise 7 and divide the interval of integration
b; < |x| < b, into parts of the form A* < |x| < A1 with & > 1.]

9. A median of the r.v. X is any number « such that

7X<a)>), PXza)>

1
3

b2 —

Show that such a number always exists but need not be unique.

*10. Let {X,. | < n < oo} be arbitrary r.v.’s and for each »n let m, be a
median of X,,. Prove that if X,, — X, in pr. and m, is unique, then m, —
Meo. Furthermore, if there exists any sequence of real numbers {c,} such that
X, —¢, = 0inpr,then X,, —m, — 0 in pr.

11. Derive the following form of the weak law of large numbers from
Theorem 5.2.3. Let {b,} be as in Theorem 5.2.3 and put X,, = 2b, forn > 1.
Then there exists {a,} for which (6) holds but condition (i) does not.
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12. Theorem 5.2.2 may be slightly generalized as follows. Let {X,} be
pairwise independent with a common d.f. F such that

{i) xdF(x)=o(1), (ii) n/ dF(x) =o0(l);

|xj<n |x|=n

then §,/n — 0 in pr.

13. Let {X,} be a sequence of identically distributed strictly positive
random variables. For any ¢ such that ¢(n)/n — 0 as n — o¢, show that
P8, > ¢(n)io.} =1, and s0 §, — oo a.e. [HINT: Let N,, denote the number
of k < n such that X; < ¢(n)/n. Use Chebyshev’s inequality to estimate
P{N, > n/2} and so conclude (S, > ¢(n)/2} > 1 — 2F(¢{n)/n). This pro-
blem was proposed as a teaser and the rather unexpected solution was given
by Kesten.]

14. Let {b,} be as in Theorem 5.2.3. and put X,, = 2b, for n > 1. Then
there exists {a,} for which (6) holds, but condition (1) does not hold. Thus
condition (7) cannot be omitted.

5.3 Convergence of series

If the terms of an infinite series are independent r.v.’s, then it will be shown
in Sec. 8.1 that the probability of its convergence is either zero or one. Here
we shall establish a concrete criterion for the latter alternative. Not only is
the result a complete answer to the question of convergence of independent
r.v.’s, but it yields also a satisfactory form of the strong law of large numbers.
This theorem is due to Kolmogorov (1929). We begin with his two remarkable
inequalities. The first is also very useful elsewhere; the second may be circum-
vented (see Exercises 3 to 5 below), but it is given here in Kolmogorov’s
original form as an example of true virtuosity.

Theorem 5.3.1. Let {X,) be independent r.v.’s such that
Vn: £(X,) =0, X3 =0*(X,) < .

Then we have for every € > O:

2
g (S,
(1) #{max |§;] > €} < (2 )
1< j=n €
Remark. If we replace the max;<;<, |S;| in the formula by [S,|. this
becomes a simple case of Chebyshev’s inequality, of which it is thus an
essential improvement.
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PROOF. Fix € > 0. For any w in the set

A = {w: max [§;(w)| > €},
1=j=n

let us define
Ww) =min{j:1 < j < n, |5;(w)| > €}.

Clearly v is an r.v. with domain A. Put

Ay = {wv(w) =k} = {w: , max 1S ()] < €, [Sk(w)] > €},

where for & = 1, max)<j<o |§;(w)| is taken to be zero. Thus v is the “first
time” that the indicated maximum exceeds €, and A, is the event that this
occurs “for the first time at the kth step”. The A;’s are disjoint and we have

A=|J A
k=1
It follows that

(2) /Sids@:Z/ Sﬁdgr':z/ (S + (S, — SO d7
A k=1 YAk k=1"Y M

= | IS +25K(Sn — Sk) + (Su — Sx)*1dP.
k=1 A

Let ¢ denote the indicator of Ay, then the two r.v.’s ¢.S; and S, — S} are
independent by Theorem 3.3.2, and consequently (see Exercise 9 of Sec. 3.3)

/ Se(Sh —Sk)d’fp=/(fﬁk5k)(5n —Su)d7
Ay Q

=/¢k5kd9’/(5,,—5k)d§ﬁ=0,
Q Q

since the last-written integral is

n

ESn—S)= ) &X;)=0.

k1

Using this in (2), we obtain
o2(S,) = / S2dP > / S2dp > 2] S2dap
Q A = Y A

> &) P(Ay) = EP(N),
k=1
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where the last inequality is by the mean value theorem, since |S;| > ¢ on A; by
definition. The theorem now follows upon dividing the inequality above by €.

Theorem 5.3.2. Let {X,} be independent r.v.’s with finite means and sup-
pose that there exists an A such that

(3) Vu: X, — £(X,)| < A < oo.
Then for every € > 0 we have

i} (2A + 4¢)?
4 P | <€) = ———
@ o, il =€l = 02(Sn)

PROOF. Let Mg =, and for I <k < n:

M; = {w: max |§;| < €},
1<j<k

Ap = Mg — M.

We may suppose that #?(M,,) > 0, for otherwise (4) is trivial. Furthermore,
let Sy =0 and for k > 1,

k
X, =X — Xy, S, = ZX;..
j=1

Define numbers a;, 0 < k < n, as follows:
_ 1
PMy) Jm,

ai Sj( d>,
s0o that

(5) (S, — az)d? = 0.
M,

Now we write

O [ S =@ dP = | (= @kt — s + X d7
My M,

—/ (S} — ax + ar — g1 + Xy Y AP
Aigy

and denote the two integrals on the right by 7, and /,, respectively. Using the
definition of M; and (3), we have

Sy — &Sy — [Sp — &S d7

1S, — axl =

PMy) Im,
1
P M) Sm,

Sy — SedP| < ISkl + &
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1 1
lak—ak 1i:] f Skdg/)—————'/ Skdﬂ/j
T 2y Sy, PMit1) Ju,.,
1
(7) —_—— X, . d> <2e¢+A.
PMiy1) Jug,,,

It follows that, since ISkl < € on Ay,

I s/ ISkl + € +2¢ + A+ AV d7 < (de + 24727,
Ay

On the other hand, we have

I, =f {(Sh — @) + (@ — agsy)? X4+ 2055 — a)ag — ary,)
My
+ 2(5;( - ak)X;H_l + 2(ak - ak+1)X;C+]} d9.

The integrals of the last three terms al] vanish by (5) and independence, hence
I > / (S, — ak)zd.”?)—i—/ X2, d>
M; M

_ / (i - ar)d? + DM Xz ).
M;

Substituting into (6), and using My > M,,, we obtain for 0 <k<n-1:

[ S - anyar [ si-araz
Mx 1 Mk

2 PMy)o? (Xep1) — (de + 24)2P(Agy ).

Summing over k and using (7) again for k = -

4’PM,) > / (1S, + € d > / (S, —a,)?dp
M, M,

= PMy) Y (X)) — (de + 24P P(Q\M,),
j=1

hence )
QA +4e)’ = 2M,) > o¥(X)),
j=1
which is (4).
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We can now prove the “three series theorem”™ of Kolmogorov (1929).

Theorem 5.3.3. Let {X,]} be independent r.v.’s and define for a fixed con-

stant A > O:
_ JXulw),  if [ Xp(@)] < A;
nlw) = {0, if X, ()| > A.

Then the series >, X, converges a.e. if and only if the following three series
all converge:

M 2, Xl > A} =30, PX, # Y}
(i) D, €(Yn),
(i) >, o2(¥,).
PROOF. Suppose that the three series converge. Applying Theorem 5.3.1
to the sequence {Y, — &(Y,)}, we have for every m > 1;

k n'
. 1 2 2
P max Z{Yj— EY Y < — > 1—m Za ¥
J=h Jj=n
If we denote the probability on the left by Z°(m, n, n'}, it follows from the
convergence of (iii) that for each m:
lim lim #(m,n,n’)=1.
=200 R 00
This means that the tail of > {¥, — ¢ (¥, )} converges to zero a.e., so that the
series converges a.e. Since (ii) converges, so does Y Y. Since (i) converges,
{X,} and {Y,} are equivalent sequences; hence Zn X, also converges a.e. by
Theorem 5.2.1. We have therefore proved the “if” part of the theorem.
Conversely, suppose that ) X, converges a.e. Then for each A > 0:

P(X,| > Aio)=0.

It follows from the Borel-Cantelli lemma that the series (i) must converge.
Hence as before ) Y, also converges a.e. But since |[¥, — £(Y,)| < 24, we
have by Theorem 5.3.2

k 2
4A + 4
#¢ max [y Y;i<1 5L+—)

n=k=n’ | £

= > oY)

j=n

Were the series (iii) to diverge, the probability above would tend to zero as
n’ —» oo for each n, hence the tail of 3 Y, almost surely would not be
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bounded by 1, so the series could not converge. This contradiction proves that
(iii) must converge. Finally, consider the series Y {¥, — ¢(¥,)} and apply
the proven part of the theorem to it. We have 9°{|Y, — &(¥,;)| > 24} =0 and
&Y, — é(Y,)) =0 so that the two series corresponding to (i) and (i) with
2A for A vanish identically, while (iii) has just been shown to converge. It
follows from the sufficiency of the criterion that > {Y, — &(Y,)} converges
a.e., and so by equivalence the same is true of 3, {X,, — ¢(Y,)}. Since Yo Xn
also converges a.e. by hypothesis, we conclude by subtraction that the series
(ii) converges. This completes the proof of the theorem.

The convergence of a series of r.v.’s is, of course, by definition the same
as its partial sums, in any sense of convergence discussed in Chapter 4. For
series of independent terms we have, however, the following theorem due to
Paul Lévy.

Theorem 5.3.4. If {X,} is a sequence of independent r.v.’s, then the conver-
gence of the series > X, in pr. is equivalent to its convergence a.e.

PrRoOF. By Theorem 4.1.2, it is sufficient to prove that convergence of
> X, in pr. implies its convergence a.e. Suppose the former; then, given
¢:0 < ¢ < 1, there exists mg such that if n > m > mgy, we have

(8) :jp{lsm,nl > E} < G,

where
n
Sm,n = E Xj
J=m+1

It 1s obvious that for m < & < n we have
© U { max 18 < 261Smil > 265 ISkl < €} C (ISl > €]

where the sets in the union are disjoint. Going to probabilities and using
independence, we obtain

n

Do 7t max (Snl <26 |Smil > 26)2(1Skal < €} < PUSpal > €},
kz,nmf...l Hl{_]_ bt
If we suppress the factors #{|S; .| < €}, then the sum is equal to

P max |, ;| > 2e}
m<j<n

(cf. the beginning of the proof of Theorer: 5.3.1). It follows that

2{ max [, ;| > 2e} min P{|Si,| <€) < P{|Smn] > €).

m< JEn m<k<n
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This inequality is due to Ottaviani. By (8), the second factor on the left exceeds
1 — €, hence if m > myg,

€

PlSmnl > €} < :
—€ 1 —¢

(10) Z{ max |5, ;| > 2¢} <
m< j<n 1

Letting n — o0, then m — oo, and finally € — O through a sequence of
values, we see that the triple limit of the first probability in (10) is equal
to zero. This proves the convergence a.e. of > X, by Exercise 8 of Sec. 4.2.

It is worthwhile to observe the underlying similarity between the inequal-
ities (10) and (1). Both give a “probability upper bound” for the maximum of
a number of summands in terms of the last summand as in (10), or its variance
as in (1). The same principle will be used again later.

Let us remark also that even the convergence of S, in dist. is equivalent
to that in pr. or a.e. as just proved; see Theorem 9.5.5.

We give some examples of convergence of series.

Example. >, +1/n.

This is meant to be the “harmonic series” with a random choice of signs in each
term, the choices being totally independent and equally likely to be + or — in each
case. More precisely, it is the series

Xy
>

where {X,, n > 1} is a sequence of independent, identically distributed r.v.’s taking
the values 1 with probability 3 each.

We may take A = ] in Theorem 5.3.3 so that the two series (i) and (ii) vanish iden-
tically. Since ¢*(X,) = 0®(¥,) = 1/n”, the series (iii) converges. Hence, 3, +1/n
converges a.e. by the criterion above. The same conclusion applies to Y, £1/n? if
1 < 8 < 1. Clearly there is no absolute convergence. For 0 < 6 < 1, the probability

of convergence is zero by the same criterion and by Theorem 8.1.2 below.

EXERCISES

1. Theorem 5.3.1 has the following “one-sided” analogue. Under the
same hypotheses, we have

2{ max S->e}<ﬂ.
l<j<n 7T T T g2 + o2(S,)

[This is due to A. W. Marshall.]
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*2. Let {X,} be independent and identically distributed with mean 0 and
variance [. Then we have for every x:

P{max §; > x} <275, = x —+/2n}.

T<j=n

[HiNT: Let
Ay ={max §; < x;5 > x}

I<j<k
then Y, _; P{Ax; Sy — Sk > —/2n} < P{S, > x — +/2n}.]
3. Theorem 5.3.2 has the following companion, which is easier to prove.
Under the joint hypotheses in Theorems 5.3.1 and 5.3.2, we have
(A+ey
o2(S,)

P{max |§;] <€} <
1<j<n

4. Let {X,,,X,,n > 1} be independent r.v.’s such that X,, and X/, have
the same distribution. Suppose further that all these r.v.’s are bounded by the
same constant A. Then

> X=X,
n

converges a.e. If and only if

Zaz(Xn) < 0.

Use Exercise 3 to prove this without recourse to Theorem 35.3.3, and so finish
the converse part of Theorem 5.3.3.

*5. But neither Theorem 5.3.2 nor the alternative indicated in the prece-
ding exercise 1s necessary; what we need is merely the following result, which
is an easy consequence of a general theorem in Chapter 7. Let {X,} be a
sequence of independent and uniformly bounded r.v.’s with ¢%(S,) — +co.
Then for every A > 0 we have

lim 27{|§,| <A} =0
11— 00

Show that this is sufficient to finish the proof of Theorem 5.3.3.

*6. The following analogue of the inequalities of Kolmogorov and Otta-
viani is due to P. Lévy. Let §, be the sum of » independent r.v.’s and
SE =8, — mg(S, ), where mg(S,) 1s a median of §,,. Then we have

o 0 150 ¢
Pl max || > e} < 3./){15n| > 2},

[(aiNT: Try “4” in place of “3” on the right.]
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7. For arbitrary {X,}, if

> E0X,]) < oo,

A

then Y, X, converges absolutely a.e.

8. Let {X,}, where n =0, &1, £2, ..., be independent and identically
distributed according to the normal distribution & (see Exercise 5 of Sec. 4.5).
Then the series of complex-valued r.v.’s

mxX o0 e—mmen
xXo + Z + Z e

n=1 n=1

where i = +/—1 and x is real, converges a.e. and uniformly in x. (This is
Wiener’s representation of the Brownian motion process.)

*9. Let {X,} be independent and identically distributed, taking the values
0 and 2 with probability % each; then

o0 Xn
bl
n=1 3
converges a.e. Prove that the limit has the Cantor d.f. discussed in Sec. 1.3.
Do Exercise 11 in that section again; it is easier now.

*10. If >, =X, converges a.e. for all choices of £1, where the X,,’s are
arbitrary r.v.’s, then 3, X2 converges a.e. [HINT: Consider Y r,(1)X,(w)
where the r,,’s are coin-tossing r.v.’s and apply Fubini’s theorem to the space
of {r, w).]

5.4 Strong law of large numbers

To return to the strong law of large numbers, the link is furnished by the
following lemma on “summability”.

Kronecker’s lemma. Let {x;} be a sequence of real numbers, {a;} a
sequence of numbers >0 and 1 oc. Then

X, 1
E — < converges = — ij — 0.
a?? f’l ] 1

PROCF, For 1 <n < o0 let

-]

j=1
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If we also write ag = 0, by = 0, we have
Xp =an(b, —by_1)
and

1 n 1 n 1 n—1
a—ij—_—a—Zaj(bj—bj_l)—_—b,,—a—ij(ajH—aj)
S n oo =0

n -

(Abel’s method of partial summation). Since a; 1 —a; = 0,

1 n—1
— Z(aj-H —a;) =1,
an ‘=

and b, — b, we have

1 n
—ij—>boo—boo=0.
j=l1

an “

The lemma is proved.

Now let ¢ be a positive, even, and continuous function on %' such that

as |x| increases,
a) plx) " «J(;c) ..

|x| b

Theorem 5.4.1. Let {X,} be a sequence of independent r.v.’s with /(X ) =
0 for every n; and 0 < a, 1 oco. If ¢ satisfies the conditions above and

ElpXn))
(2 —_— " < 00,
) ; plan)
then
(3) Z& converges a.e
. ges a.e.

prROOF. Denote the d.f. of X,, by F,,. Define for each n:

_ [ Xn(w), i X, (@) < an,
@) Vlw) = {o, if X, @)| > ay.

Then 5 )
Y x*
Se(3) =X e

n
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By the second hypothesis in (1), we have
P e

a2z = glay)

2
St () =y e (2) EZ/ L0 dF, )

for x| < a,.

x|<a, fp(an

Thus, for the r.v.’s {¥Y, — &Y, )}/a,, the series (iii) in Theorem 5.3.3 con-
verges, while the two other series vanish for A = 2, since |Y, — &, < 2a,;
hence

1
(5) Z a_{Y" — &(Y,)} converges a.e.

n

Next we have

€Y y)l 1
S5 L

/ xdF,(x)
n n 7 f |X|50n

x|
< — dFy(x),
Z/MI}QH Gn

n

=Zai

n n

/ xdF,(x)
x| >ay,

where the second equation follows from ffooo xdF,(x) = 0. By the first hypo-
thesis in (1), we have
1% < p(x)
Qn e(an)

for |x| > a,.

It follows that

Z [ (Yn)l < Z] @( ) I AF, (x )_Z (’{t(go(XJz)) < o0

Ix|=a, ¢’(Cln " (P(an )

This and (5) imply that 3, (Y, /a, ) converges a.e. Finally, since ¢ 1, we have

Z P Xy # V) 2/ dF,(x) < 2/ o0 dF,(x)

x| =an |x|=>an wla,)

—Z CloXn)) _

n (p(an

Thus, {X,} and {Y,} are equivalent sequences and (3) follows.




132 | LAW OF LARGE NUMBERS. RANDOM SERIES

Applying Kronecker’s lemma to (3) for each @ in a set of probability
one, we obtain the next result.

Corollary. Under the hypotheses of the theorem, we have

1 n
6 — X; 0 ae.
(6) an; i a.e

Particular cases. (i) Let o(x) = |x|?, 1 < p < 2;a, = n. Then we have

¢
n¥

1 1 &
7 ;’EXRP - X O B
(7) ; (| |)<oo.—_>nzj-+ a.e

j=1

For p =2, this is due to Kolmogorov; for 1 < p <2, it is due to
Marcinkiewicz and Zygmund.

(ii) Suppose for some 8§, 0 < 8 <1 and M < oo we have
Vi £0X, 11 < M.

Then the hypothesis in (7) is clearly satisfied with p = 1 4+ 8. This case is
due to Markov. Cantelli’s theorem under total independence (Exercise 4 of
Sec. 5.1) is a special case.

(iii) By proper choice of {a,}, we can considerably sharpen the conclu-
sion (6). Suppose

n
Vot (X,) = 0'5 < 0Q, GE(S,T) = sﬁ = Zajz. - 00.
j=1

Choose ¢(x) =x* and a, = s,(logs,)/2*¢, € >0, in the corollary to

Theorem 5.4.1. Then

E(X3) o)

4

by Dini’s theorem, and consequently

Sn

5, (log 5, )1/2)+¢ — 0 ae.

In case all o2 = 1 so that 52 = n, the above ratio has a denominator that is
close to n'/2. Later we shall see that n'/? is a critical order of magnitude
for S,.
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We now come to the strong version of Theorem 5.2.2 in the totally inde-
pendent case. This result is also due to Kolmogorov.

Theorem 5.4.2, Let {X,} be a sequence of independent and identically distri-
buted r.v.’s. Then we have

Sn
(8) F(X D<= o — &(X;) ae,
IS4l
(9) (X)) = 00 = lim =400 ae.
n—00 R

pPrOOF. To prove (8) define {Y,} as in (4) with a, = n. Since

D PXa#Ya) = PlX,l >0y =) PXi| > n) < o0

"

by Theorem 3.2.1, {X,} and {Y,} are equivalent sequences. Let us apply (7)
to {Y, — £(¥,)), with p(x) = x%. We have

(10) ZG ) (Y )__Z /I 2 dF(x).

n

We are obliged to estimate the last written second moment in terms of the first
moment, since this is the only one assumed in the hypothesis. The standard
technique is to split the interval of integration and then invert the repeated
summation, as follows:

—1l<)x|<f
2 S 1
=> FdF(0)> . —
I<lx|=j =
o0 C o0
<Yl werw-Sscy [ kR
=1 i=l<lx]=j J =1 J/l=x=)
=C<&(X]) < oo.

pein < Cj! for
some constant C and all j > 1. Thus the first sum in (10) converges, and we
conclude by (7) that

In the above we have used the elementary estimate .

—Z{Y — (Y= 0 ae.

J__.
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Clearly #(Y, ) — #(Xy) as n — o0; hence also
1 n
~ Y e > 0,
—

and consequently

1 n
_ZYf — &(X1) ae.
n 4
j=1
By Theorem 5.2.1, the left side above may be replaced by (l/n)Z;le >
proving (8).
To prove (9), we note that £(]X;|) = oo implies £(|X1|/A) = oo for each
A > 0 and hence, by Theorem 3.2.1,

> P(1X1] > An) = +o0.

Since the r.v.’s are identically distributed, it follows that
> P(X,| > An) = +oo.

Now the argument in the example at the end of Sec. 5.2 may be repeated
without any change to establish the conclusion of (9).

Let us remark that the first part of the preceding theorem is a special case
of G. D. Birkhoff’s ergodic theorem, but it was discovered a little earlier and
the proof is substantially simpler.

N. Etemadi proved an unexpected generalization of Theorem 54.2: (8)
is true when the (total) independence of {X,} is weakened to pairwise
independence (An elementary proof of the strong law of large numbers,
Z. Wahrscheinlichkeitstheorie 55 (1981), 119-122).

Here is an interesting extension of the law of large numbers when the
mean is infinite, due to Feller (1946).

Theorem 5.4.3. Let {X,} be as in Theorem 5.4.2 with £(]X|) = co. Let
{a.} be a sequence of positive numbers satisfying the condition a, /n 4. Then
we have

e |Sh
(11) lim 150

n al’l

=0 ae., or=0o0 ae.

according as

(12) Z.@{|X,,| > a,} = 2/ dF(x) <00, or= oo.

x|>da,

PROOF. Writing

/ dF(x)= / dF(x),
|x|zay ar=l|x|<ag

k=n
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substituting into (12) and rearranging the double series, we see that the series
in (12) converges 1f and only if

(13) Zk/ dF(x) < oo.
k ap—1 <lxl<ay

Assuming, this is the case, we put

My = / XdF(X),

v — X, — tn if |1 X, < an,
" —Hn if X, = an-

Thus &£(Y, ) = 0. We have by (12),

(14) > Py # X — it} < 0

Next, with ag = O:

=

and so

Z{s (Z—j) < izk/ dF(x) < o0

by (13). Hence 3" Y,/a, converges (absolutely) a.e. by Theorem 5.4.1, and
so by Kronecker’s lemma:

(15) —ZY,C——>0 a.e.

ankl
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We now estimate the quantity

1 <& 1 &
(16) wm=—3 [ xare
" k=] [x]<ay

a
L .

as n — o0, Clearly for any N < n, it is bounded in absolute value by

n

(17) z (aN + f IxIdF(x)) |
n ap <|x|<a,

Since ¢(|X,]) = oc, the series in (12) cannot converge if a, /n remains boun-
ded (see Exercise 4 of Sec. 3.2). Hence for fixed N the term (n /a, )ay in (17)
tends to 0 as n —» oo. The rest is bounded by

(18) ai D ajfa‘ dFm < ¥ j[ dF (x)

n J=N+1 Jklgix|<aj- J=N+1 a; 1 =|x]<a;

because na;/a, < j for j <n. We may now as well replace the n in the
right-hand member above by oc; as N — o0, it tends to 0 as the remainder of
the convergent series in (13). Thus the quantity in (16) tends to 0 as n — oo;
combine this with (14) and (15), we obtain the first alternative in (11).

The second alternative is proved in much the same way as in Theorem 5.4.2
and 1s left as an exercise. Note that when a,, = n it reduces to (9) above.

Corollary. Under the conditions of the theorem, we have
(19) PS8l z ay 1.0} = P{|X,| = a, 1.0.}.

This follows because the second probability above is equal to 0 or 1
according as the series in (12) converges or diverges, by the Borel-Cantelli
lemma. The result is remarkable in suggesting that the nth partial sum and
the nth individual term of the sequence {X,} have comparable growth in a
certain sense. This is in contrast to the situation when £(|X |} < oo and (19)
is false for a, = n (see Exercise 12 below).

EXERCISES

The X, ’s are independent throughout; in Exercises 1, 6, 8, 9, and 12 they are
also identically distributed; S, = Z'j-:l X;.

*1. If cf(XT) = +o0, £(X]) < o0, then §,/n — +00 a.e.

*2. There is a complement to Theorem 5.4.1 as follows. Let {a,} and ¢
be as there except that the conditions in (1) are replaced by the condition that
@(x) 1 and @(x)/|x| . Then again (2) implies (3).



54 STRONG LAW OF LARGENUMBERS | 137

3. Let {X,} be independent and identically distributed r.v.’s such that
¢ (1X1]7) < oo for some p:0 < P < 2;1in case p > 1, we assume also that
¢(X1) = 0. Then S,n~U/P~¢ 5 0 ae. For p =1 the result is weaker than
Theorem 5.4.2.

4. Both Theorem 5.4.1 and its complement in Exercise 2 above are “best
possible” in the following sense. Let {a,} and ¢ be as before and suppose that

b?l > Oa
by
D=0
~ pla,)

Then there exists a sequence of independent and identically distributed r.v.’s
{X,} such that £(X,) =0, &(p(X,)) = b,, and

Xy
P {Z — converges} = (.
a

n n

[HNT: Make 3 2°{|X,| > a,) = oo by letting each X, take two or three
values only according as b, /¢(a,) <1 or >1.]

5. Let X, take the values #+n® with probability % each. If 0 <6 <
%, then §,/n — 0 a.e. What if 8 > %‘? [HINT: To answer the question, use
Theorem 5.2.3 or Exercise 12 of Sec. 5.2; an alternative method is to consider
the characteristic function of S, /n (see Chapter 6).]

6. Let £(X) = 0 and {c,} be a bounded sequence of real numbers. Then

1 n
—chXj —0 ae
n

Jj=1

[1nT: Truncate X, at n and proceed as in Theorem 5.4.2.]
7. We have S, /n — 0 ae. if and only if the following two conditions

are satisfied:

(i) S,/n - 0 inpr.,
(ii) S,:/2" — O ae,

an alternative set of conditions is (i) and

(ii') Ve > 0: Y, (1821 — Sul > 2"e) < 00,

*8. If £(|X1]) < oo, then the sequence {S,/n} is uniformly integrable and

S, /n— ¢(X1)in L' as well as a.e.



138 | LAW OF LARGE NUMBERS. RANDOM SERIES

9. C £ (X7
onstruct an example where ¢(X =X 1) =+00 and §,/n —

+ooae [HNT: Let 0 < o < B < 1 and take a d.f, F such that 1 — F(x) ~x®
as x — o0, and [°_ |x|f dF(x '
. —oo [P dF(x) < c0. Show that

257){ max Xf < n]/“’} < 00

- I=j=n
for every ¢’ > ¢ and u i X7 i i
y and use Exercise 3 for 377 X 7 This example is due to

Derman agd Robbins. Necessary and sufficient condition for S./n— +o0
has been given recently by K. B. Erickson.

10. Suppose there exist an @, 0 <@ < 2, & # 1, and two constants A;
and A such that

A
Vn,¥x > O —o]; <P{X,] > x} < {1_3
X x“

‘If o > 1 suppose also that ¢(X,,) = 0 for each n. Then for any sequence {a,,}
increasing to infinity, we have

, . 0
P{1S,| > an 1.0} = { if Zi { = oo
1 e s
[This r‘csult, due to P. Lévy and Marcinkiewicz, was stated with a superfluous
condition on {a,}. Proceed as in Theorem 5.3.3 but truncate X,, at a,,; direct
estimates are easy. |

11. Prove the second altermative in Theorem 5.4.3.

12. If £€(X;) # 0, then maxi<g<n [Xzl/|S,]| — O ae. [HNT: |X,|/n —
0 a.e.]
| 13. Under the assumptions in Theorem 5.4.2, if S, /n converges a.e. then
£(1X1]) < oo. [Hint: X,,/n converges to 0 a.e., hence *{|X,| > n 1.0.}) =0,
use Theorem 4.2.4 to get > {|X| > n} < co.]

5.5 Applications

The law of large numbers has numerous applications in all parts of proba-
bility theory and in other related fields such as combinatorial analysis and
statistics. We shall illustrate this by two examples involving certain important
new concepts.

The first deals with so-called “empiric distributions” in sampling theory.
Let {X,,n > 1} be a sequence of independent, identically distributed r.v.’s
with the common d.f. F. This is sometimes referred to as the “underlying”
or “theoretical distribution” and is regarded as “unknown” in statistical lingo.
For each w, the values X, (w) are called “samples” or “observed values”, and
the idea is to get some information on F' by looking at the samples. For each
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n, and each w € Q, let the » real numbers Xij(w),1=<j<n)

. ‘ be arranged in
Increasing order as

(1) Ynl(w) = YnZ(w) == sz(w)-
Now define a discrete d.f. F, (-, @) as follows:

Frx,w)=0, ifx<VY, (o)

k
F,x,0) = e if Yip(w) <x < Yope(@) 1 <k<n-—1,

Fo(x,w)y=1, ifx>Y,, (o).
In other words, for each x, nF, (x, @) is the number of values of 1 =<j=<n,
for which X j(w) < x; or again F, (x, @) is the observed frequency of sample
values not exceeding x. The function F, (-, w) is called the empiric distribution
function based on n samples from F.

For each x, F, (x,-) is an r.v., as we can easily check. Let us introduce
also the indicator r.v.’s {£;(x), j > 1} as follows:

1 if X;(w) <x,
§i(x, w) = {0 if Xj-(w) > X,

We have then
1 n
Fox,w) = - Zlgj(x: ).
j=

For each x, the sequence {;(x)} is totally independent since {X;} is, by
Theorem 3.3.1. Furthermore they have the common “Bernoullian distribution”,
taking the values 1 and 0 with probabilities p and g =1 — p, where

p=F). ¢g=1-Fx)

thus ¢(§;(x)) = F(x). The strong law of large numbers in the form
Theorem 5.1.2 or 5.4.2 applies, and we conclude that

2) F.(x,w)— F(x) ae.

Matters end here if we are interested only in a particular value of x, or a finite
number of values, but since both members in (2} contain the parameter x,
which ranges over the whole real line, how much better it would be to n-lalfe
a global statement about the functions F 2 (-, w) and F(.). We shall do this in
the theorem below. Observe first the precise meaning of (2): for each x, there
exists a null set N(x) such that (2) holds for & € 2\N(x). It follows that (2)
also holds simultaneously for all x in any given countable set Q, such as the
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set of rational numbers, for w € Q\N, where

N = JN@&)
xeg

is again a null set. Hence by the definition of vague convergence in Sec. 4.4,
we can already assert that

F,(, w) = F() forae. w.

This will be further strengthened in two ways: convergence for all x and
uniformity. The result is due to Glivenko and Cantelli.

Theorem 5.5.1. We have as n — o0

sup |F,(x,w)— F(x)| -0 ae.

— 00X 00

PROOF. Let J be the countable set of jumps of F. For each x € J, define

B RT if Xj(w) =x;
n;(x w)= 0, if X;(w)# x.

Then forx e J:

1 h
Fy(ot, @) = Fy(i=, @) = — 3 1700, ),
j=1

and it follows as before that there exists a null set N(x) such that if w &
Q2\N(x), then

3) Fpoxt+, @) — F,(x—, @} > Flx+) — F{x-).

Now let N = [, ¢guy N(x), then Ny is a null set, and if w € 2\Njy, then (3)
holds for every x € J and we have also

4) F,(x, w) = F(x)
for every x € (. Hence the theorem will follow from the following analytical

resulf.

Lemma. Let F, and F be (right continuous) d.f.’s, Q and J as before.
Suppose that we have

Yy e Q. F,.(x) = F(x);

Vel F,(x)—F,(x—)— F(x)— F(x-—).

Then F, converges uniformly to F in #!.
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PROOF. Suppose the contrary, then there exist € > 0, a sequence {n;} of
integers tending to infinity, and a sequence {x;} in #! such that for all k:

(5) | Fouy (i) — Fxp)| > € > 0.

This is clearly impossible if x; ~> +oc or x; — —oo. Excluding these cases,
we may suppose by taking a subsequence that x; — £ € #'. Now consider
four possible cases and the respective inequalities below, valid for all suffi-
ciently large k, where ri e Q,n e Q,rp <& <nrs.

Case 1. xp Y &, x, < & :
€< Fy )= Flx) = Fp(§6—)— F(n)
<Fy (&) — Fn (&) + Fo(r2) — F(r2) + F(ry) = F(ry).
Case 2. xp t &, xp < & ¢
€ < F(xy)— Fn ) < FE—)— Fy (1)
=F{—) = F(r)) + F(r)) = Fp (n).
Case 3. x; | &,x, > £
€ < Flx) — Fu ) < Fr) — Fp, (8)
< F(n)—F(r)+ F(n) — Fop(n)+ Fy (=) = F,, (6).
Case4d.xp | &, xp =&
€ < Fpxx) — FOy) < Fp(r2) — F(§)
= Fn () — Fn (n) + Fu () = F(r1) + F(r)) — F§).

In each case let first ¥ — oo, then ry 1 £, 7> | & then the last member of
each chain of inequalities does not exceed a quantity which tends to 0 and a
contradiction is obtained.

Remark. The reader will do well to observe the way the proof above
is arranged. Having chosen a set of w with probability one, for each fixed
w in this set we reason with the corresponding sample functions F, (-, w)
and F(-, ) without further intervention of probability. Such a procedure is
standard in the theory of stochastic processes.

Qur next application is to renewal theory. Let {X,,n > 1} again be a
sequence of independent and identically distributed r.v.’s. We shall further
assume that they are positive, although this hypothesis can be dropped, and
that they are not identically zero a.e. It follows that the common mean is
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strictly positive but may be +oc0. Now the successive r.v.’s are interpreted as
“lifespans” of certain objects undergoing a process of renewal, or the “return
periods™ of certain recurrent phenomena. Typical examples are the ages of a
succession of living beings and the durations of a sequence of services. This
raises theoretical as well as practical questions such as: given an epoch in
time, how many renewals have there been before 1t? how long ago was the
last renewal? how soon will the next be?

Let us consider the first question. Given the epoch r > 0, let N(z, w)
be the number of renewals up to and including the time ¢. It is clear that
we have

(6) {w:N(f, w) = n}) = {w: Sp(w) <t < Sy11(w)},
valid for n > 0, provided Sy = 0. Summing over n < m — 1, we obtain
(7 {w:N(t, w) < m} = {w: Sy(w) > t}.

This shows in particular that for each ¢ > 0, N(¢) = N(¢, -) is a discrete r.v.
whose range is the set of all natural numbers. The family of r.v.’s {N(7)}
indexed by ¢ € [0, co) may be called a renewal process. If the common distri-
bution F of the X,,’s is the exponential F(x) = 1 — e™**, x > 0; where A > 0,
then {N(¢), t > 0} is just the simple Poisson process with parameter A.

Let us prove first that

(8) lim N(t) = +o0  a.e.,
=00

namely that the total number of renewals becomes infinite with time. This is
almost obvious, but the proof follows. Since N (¢, w) increases with ¢, the limit
in (B) certainly exists for every w. Were it finite on a set of strictly positive
probability, there would exist an integer M such that

{ sup N(t,w) <M} > (.

O<r<o0
This implies by (7) that
Sy (w) = +oc} > 0,

which is impossible. (Only because we have laid down the convention long
ago that an r.v. such as X should be finite-valued unless otherwise specified.)
Next let us write

(%) 0<m=&Xp) < oo,

and suppose for the moment that m < +oc. Then, according to the strong law
of large numbers (Theorem 5.4.2), S, /n — m a.e. Specifically, there exists a
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null set Z, such that

Xi(@)+ o+ Xp ()
n

Yo € Q\Z;: lim m.
n—00
We have just proved that there exists a null set Z, such that

Vo € Q\Z1: rlim N(t, @) = +00.
—00

Now for each fixed «wy, if the numerical sequence {a, (wg), n > 1} converges
to a finite (or infinite) limit m and at the same time the numerical function
{N({r, wg), 0 <t < oo} tends to +o0 as t — +00, then the very definition of a
limit implies that the numerical function {ay,..)(@wo), O <t < oo} converges
to the limit m as r — +oo. Applying this trivial but fundamental observation to

1 I
a,=—>» X;
n n Z J
j=1
for each w 1n Q\(Z; U Z;), we conclude that

(10) lim SNew (@)

Am N(t, w) a.c.

By the definition of N(z, @), the numerator on the left side should be close to
t; this will be confirmed and strengthened in the following theorem.

Theorem 5.5.2. We have

. N( 1
(1) lim ﬁQ = — ae.
oo f n
and )
&N (1)} 1
Iim = —,;
(=00 t m

both being true even if m = +oo, provided we take 1/m to be O in that case.
proOF. It follows from (6) that for every w:
Sniwy(@w) <1t < Snpwr1{w)
and consequently, as soon as 7 is large enough to make N(¢, w) > 0,

Svem(@ L Sne1 (@) N, w) + 1
Nt o) — N, w) NI, o)+ 1 NG, w)

Letting £ — oo and using (8) and (10) (together with Exercise 1 of Sec. 5.4
in case m = +o00), we conclude that (11) is true.
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The deduction of (12) from (11) is more tricky than might have been
thought. Since X, is not zero a.e., there exists 6 > 0 such that

Yn: PX, > 8 = p > 0.

Define
ro_ J8 ifX,(@)=4;
An(@) = {o, if X, (@) < &;

n

and let S, and N'(¢) be the corresponding quantities for the sequence {X],, n >
1}. Tt is obvious that S/ <8, and N'(f) > N(z) for each r. Since the r.v.’s
{X, /8) are independent with a Bernoullian distribution, elementary computa-
tions (see Exercise 7 below) show that

2
EIN'(Y)} =0 (-25) as t — 0.

Hence we have, é being fixed,

2 / 2
A(H2) < o (22) <00

Since (11) implies the convergence of N(r)/t in distribution to 8y, an appli-
cation of Theorem 4.5.2 with X, = N(n)/n and p =2 yields (12) with ¢
replaced by » in (12), from which (12) itself follows at once.

Corollary. For each 1, £{N (1)} < oo.

An interesting relation suggested by (10) is that ¢{Sw¢,} should be close
to m&{N(t)} when 1 is large. The precise result is as follows:

X+ o+ Xy} = S X )ENE) + 1)

This is a striking generalization of the additivity of expectations when the
number of terms as well as the summands is “random.” This follows from the
following more general result, known as “Wald’s equation”.

Theorem 5.5.3. Let {X,,n > 1} be a sequence of independent and identi-
cally distributed r.v.’s with finite mean. For & > 1 let %, 1 < k < 00, be the
Borel field generated by {X;, 1 < j < k}. Suppose that N is an r.v. taking
positive integer values such that

(13) Yk > 1. {N <k} e #,
and £ (V) < oc. Then we have

E(SN) = FXDEWN).
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PROOF. Since Sy = O as usual, we have

e @]
(14) f(SN):fsNdpﬁzzf 5, d = 22/ X,d7
& k=1 7 W=

k=1 j=1

o o0

/ X]d@:Z/N ‘]de{/P
; 2]

{@(X)—/ Xja’@}.
(W<j-1)

Now the set {¥V < j — 1} and the r.v. X ; are independent, hence the last written
integral is equal to ¢(X ;)Z?{N < j — 1}. Substituting this into the above, we
obtain

ESn) = D EXNPIN 2 j} = ¢X1) S _PIN 2 j) = EXDED),

j=1 j=I1
the last equation by the corollary to Theorem 3.2.1.

It remains to justify the interchange of summations in (14), which is
essential here. This is done by replacing X ; with |X;} and obtaining as before
that the repeated sum is equal to £(JX|)¢ (N) < 00,

We leave it to the reader to verify condition (13) for the r.v. N(#) + 1
above. Such an r.v. will be called “optional” in Chapter 8 and will play an
important role there.

Our last example is a noted triumph of the ideas of probability theory
applied to classical analysis. It is S. Bernstein’s proof of Weierstrass’ theorem
on the approximation of continuous functions by polynomials.

Theorem 5.5.4. Let f be a continuous function on [0, 1], and define the
Bernstein polynomials {p,} as follows:

as) pai) = Zf( )( )x(l ek

Then p, converges uniformly to f in [0, 1].

PROOF. For each x, consider a sequence of independent Bernoullian r.v.’s
{X,,n > 1} with success probability x, namely:

Y. = 1 with probability x,
10  with probability 1 — x;
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and let S, = 3"7_; X as usual. We know from elementary probability theory

that

PS, =k} = (z)x"(l —xy*  0<k<n,

pn(x) =& {f (%) } .

We know from the law of large numbers that S, /n — x with probability one,
but it is sufficient to have convergence in probability, which is Bernoulli’s
weak law of large numbers. Since f is uniformly continuous in [0, 1], it
follows as in the proof of Theorem 4.4.5 that

so that

ofr(2)}~ o= oo

We have therefore proved the convergence of p,(x) to f(x) for each x. It
remains to check the uniformity. Now we have for any § > O:

Sy
(16) [pn(x) — fX)] < é"{ f (;) — [ }
> 8}

=é”{f(§i)—f(x) ;}“-S—'i—x
n n
+ff{f(§5)-f(x) 58},
n

where we have written ¢{¥; A} for | s Y dZ. Given € > 0, there exists 3(¢)
such that

Sn
— —X
n

¥

x—yl=é=1fx)— f¥I =€/2.

With this choice of 8 the last term in (16) is bounded by €/2. The preceding
term is clearly bounded by
> 8} .

Now we have by Chebyshev’s inequality, since ¢(5,) = nx, o%(S,) = nx(1 —
x),and x(1 —x) <} for0 <x <1:

S 1 5 /Sx nx(l —x) 1
'/){ n >8}5820 (n) 82n2 T 48n
This is nothing but Chebyshev’s proof of Bemnoulli’s theorem. Hence if n >
I Fll/8%€, we get |p,(x) — f(x)| < € in (16). This proves the uniformity.

— X

2ufnP{ i

h
n

4
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One should remark not only on the lucidity of the above derivation but
also the meaningful construction of the approximating polynomials. Similar
methods can be used to establish a number of well-known analytical results
with relative ease; see Exercise 11 below for another example.

EXERCISES

{X.} is a sequence of independent and identically distributed r.v.’s;

S, = in.

j=1
1. Show that equality can hold somewhere in (1) with strictly positive
probability if and only if the discrete part of F does not vanish.
*2. Let F, and F be as in Theorem 5.5.1; then the distribution of
sup  [F(x, w) — F(x)|

—CO<X=CO

is the same for all continuous F. [HINT: Consider F(X), where X has the
df F}

3. Find the distribution of Y,;, 1 < k& <n, in (1). [These r.v.’s are called
order statistics.)

*4, Let S, and N(¢) be as in Theorem 5.5.2. Show that

e

EINBY =) PSa <1}
n=l
This remains true if X; takes both positive and negative values.
5, If £(X;) > 0, then

IE@W@{U[SH < z}} =0.

n=]
*6. For each ¢ > 0, define
v(t, @) = min{n: |5, (w)| > 1}

if such an n exists, or +00 if not. If 22(X; # 0) > 0, then for every t > 0 and
r > 0 we have 7{v(t) > n} < A" for some A < 1 and all large n; consequently
£{v(t)'} < oo. This implies the corollary of Theorem 5.5.2 without recourse
to the law of large numbers. [This is Charles Stein’s theorem.]

*7_ Consider the special case of renewal where the r.v.’s are Bernoullian
taking the values 1 and O with probabilities p and 1 — p, where 0 < p < L.
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Find explicitly the d.f. of v(0) as defined in Exercise 6, and hence of v(r)
for every ¢ > 0. Find ¢{v(r)} and ¢{v(#)?}. Relate v{f, w) to the N(z, w) in
Theorem 5.5.2 and so calculate €{N(#)} and E{N(@)?).

8. Theorem 5.5.3 remains true if £(X) is defined, possibly 4+0¢ or —

*9. In Exercise 7, find the d.f. of X, for a given 7. &{X,(;} is the mean
lifespan of the object living at the epoch ¢; should it not be the same as ¢ {X},
the mean lifespan of the given species? [This is one of the best examples of
the use or misuse of intuition in probability theory.]

10. Let 7 be a positive integer-valued r.v. that is independent of the X,,’s.
Suppose that both 7 and X; have finite second moments, then

0?(S:) = E(T)ot (X1) + A (DHEX D)

*11. Let f be continuous and belong to L' (0, co) for some r > 1, and
00
g(h) = / e f ()
0

Then o
o= i G (250 (7).

" n—oo (n — 1)

where g™~ is the (n — 1)st derivative of g, uniformly in every finite interval,
[NT: Let & > 0, 724X, (\) < 1} = 1 — e=*. Then

S Sa0NF = [(=D""/(n = D" )

and S,(n/x) — x in pr. This is a somewhat easier version of Widder’s inver-
sion formula for Laplace transforms.]

12. Let X, =k} =pi, 1 <k <& Si_ pr = 1. Let N(n, w) be the
number of values of j, 1 < j < n, for which X; = k and

H(n,w) HpN(nw

Prove that ,
lim — log H(n w) exists a.e.

n—oC n

and find the limit. [This is from information theory.]

Bibliographical Note

Borel's theorem on normal numbers, as well as the Borel-Cantelli lemma in
Secs. 4.2—4.3, is contained in
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Emile Borel, Sur les probabilités dénombrables et leurs applications arithmétiques,
Rend. Circ. Mat. Palermo 26 (1909), 247-271.

This pioneering paper, despite some serious gaps (see Fréchet [9] for comments),
is well worth reading for its historical interest. In Borel's Jubilé Selecta (Gauthier-
Villars, 1940), it 1s followed by a commentary by Paul Lévy with a bibliography on
later developments.

Every serious student of probability theory should read:

A. N. Kolmogoroff, Uber die Summen durch den Zufall bestimmten unabhdingiger
Grossen, Math. Annalen 99 (1928), 309-319; Bermerkungen, 102 (1929),
484488,

This contains Theorems 5.3.1 to 5.3.3 as well as the original version of Theorem 5.2.3.
For all convergence questions regarding sums of independent r.v.’s, the deepest
study is given in Chapter 6 of Lévy’s book [11]. After three decades, this book remains
a source of inspiration.
Theorem 5.5.2 is taken from

J. L. Doob, Renewal theory from the point of view of probability, Trans, Am. Math.
Soc. 63 (1942), 422-438.

Feller’s book [13], both volumes, contains an introduction to renewal theory as well
as some of its latest developments.




6 Characteristic function

6.1 General properties; convolutions

An important tool in the study of r.v.’s and their p.m.’s or d.f.’s is the char-
acteristic function (ch.f.). For any r.v. X with the p.m. i and d.f. F, this is
defined to be the function f on 71 as follows, Vi € R1:

les)
ei!X(m)&,])(dw) — / eit.ru(dx) — / eia‘x dF(X)

#! —00

M so=ce)= [

Q
The equality of the third and fourth terms above is a consequence of
Theorem 3.32.2, while the rest is by definition and notation. We remind the
reader that the last term in (1) is defined to be the one preceding it, where the
one-to-one correspondence between p and F is discussed in Sec. 2.2. We shall
use both of them below. Let us also point out, since our general discussion
of integrals has been confined to the real domain, that f is a complex-valued
function of the real variable ¢, whose real and imaginary parts are given
respectively by

Rf(t) = /cosxt,u(dx), If(t) = /sinxru(dx).
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Here and hereafter, integrals without an indicated domain of integration are
taken over %L

Clearly, the ch.f. is a creature associated with p or F, not with X, but
the first equation in (1) will prove very convenient for us, see e.g. (iii) and (v)
below. In analysis, the ch.f. is known as the Fourier-Stieltjes transform of u
or F. It can also be defined over a wider class of ;& or F and, furthermore,
be considered as a function of a complex variable ¢, under certain conditions
that ensure the existence of the integrals in (1). This extension is important in
some applications, but we will not need it here except in Theorem 6.6.5. As
specified above, it is always well defined (for all real ¢) and has the following
simple properties.

(i) vre A

f@Ol=1=fQO) f(=n=f@),
where 7z denotes the conjugate complex of z.

(ii) f is uniformly continuous in Z!.
To see this, we write for real ¢ and A:

FE+n— ) = / (S _ Y (),

Ift+h)— f@)l < / €] |e™ — 1|p(dx) = / e — 1| p(dx).

The last integrand is bounded by 2 and tends to ( as 2 — 0, for each x. Hence,
the integral converges to 0 by bounded convergence. Since it does not involve
7, the convergence is surely uniform with respect to .

(ili) If we write fx for the ch.f. of X, then for any real numbers a and
b, we have

faxso(t) = fx(at)e™,
f-x(t) = fx(2).
This is easily seen from the first equation in (1), for

(5-(eir(ax+b)) — (,((ei(ra)X . eifb) — {g’(ei(m)x )eirb.

(iv) If {fp,n > 1} are chf’s, &, > 0, 3277 A, = 1, then

n=1
o0
> ko

=1

is a ch.f. Briefly: a convex combination of ch.f.’s is a ch.f.




152 | CHARACTERISTIC FUNCTION

Forif {u,, n > 1} are the corresponding p.m.’s, then > o_, A, /, is a p.m.
whose ch.f.is > oo Ay fn

(vy If {f;,1 < j < n} are ch.t.’s, then

1175
j=1

is a ch.f.

By Theorem 3.3.4, there exist independent r.v.’s {X;, 1 < j < n} with
probability distributions {x;, 1 < j < n}, where ; is as in (iv). Letting

Sp=>_Xj
j=1

we have by the corollary to Theorem 3.3.3:

£ = & HeizX, _ H (™) = Hfj(t)',
=1 j=1 j=1

or in the notation of (iii):
(2) fs, =11 fx;-
j=1

(For an extension to an infinite number of f;’s see Exercise 4 below.)

The ch.f. of S, being so neatly expressed in terms of the ch.f.’s of the
summands, we may wonder about the d.f. of §,. We need the following
definitions.

DEFINITION. The convolution of two d.f.’s F and F is defined to be the
d.f, F such that

OO
3) Vx € Al F(x) = / Fi(x =y dFy(),
—00
and written as
F= F} * F;J_.

It is easy to verify that F is indeed a d.f. The other basic properties of
convolution are consequences of the following theorem.

Theorem 6.1.1. Let X; and X, be independent r.v.’s with d.f.’s F and F»,
respectively. Then X + X, has the d.f. Fy *x F.
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PROOF. We wish to show that
“4) V. P{X1+ X2 <x) = (Fr* Fa)(x).
For this purpose we define a function f of (x;, x;) as follows, for fixed x:

1, if x{ +x < x;
0, otherwise.

f(xl,x2)={

f 1s a Borel measurable function of two variables. By Theorem 3.3.3 and
using the notation of the second proof of Theorem 3.3.3, we have

/Q FX1 X2)dP = / £ G )y, dxo)

R

=/ ;,Lz(d)(z)/ fx1, x2)u1(dxy)
R R!

- / 1a(dx) / pa(dx)
F! {(—00,x—x2]

o0

= / dF2(x2)F1(x — x2).
—00

This reduces to (4). The second equation above, evaluating the double integral

by an iterated one, is an application of Fubini’s theorem (see Sec. 3.3).

Corollary. The binary operation of convolution * is commutative and asso-
ciative.

For the corresponding binary operation of addition of independent r.v.’s
has these two properties.

DEFINITION.  The convolution of two probability density functions p; and
p> is defined to be the probability density function p such that

o0
(5) Vi e R px) = ] p1(x = y)p2(y)dy,
—0O0
and written as
p = pP1* P2

We leave it to the reader to verify that p is indeed a density, but we will
spell out the following connection.

Theorem 6.1.2. The convolution of two absolutely continuous d.f.’s with
densities p; and p, is absolutely continuous with density p1 * p>.
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PROOF. We have by Fubini’s theorem:

/ pwdu= / du / p1( — v)pa () do

= /_ [/_ pi{u —v) du} pa(v)dv

=/ Filx —v)pa(v)duv

—o0
oo
- [ FG-wdRe = s P,
— 00
This shows that p is a density of F % F.

What is the p.m., to be denoted by w1 * iy, that corresponds to Fy x Fo7
For arbitrary subsets A and B of R, we denote their vector sum and difference
by A + B and A — B, respectively:

(6) AxB={xtyxeA yeB}
and write x = B for {x} £ B, —B for 0 — B. There should be no danger of
confusing A — B with A\B.

Theorem 6.1.3. For each B € 23, we have

% (i1 * 2)(B) = / (B~ yua(dy).

&

For each Borel measurable function g that is integrable with respect to 1 * 3,
we have

®) [ s s wxan = [ [ 0+ @)
! e
PROOF. It is easy to verify that the set function (1 * p3)(-) defined by
(7) is a p.m. To show that its d.f. is F; x F';, we need only verify that its value
for B = (—o0, x] is given by the F(x) defined in (3). This is obvious, since
the right side of (7) then becomes

/ Fi(x — yua(dy) = / Fi(x = y)dFa(3).
#1 —00

Now let g be the indicator of the set B, then for each y, the function g, defined
by g,(x) = g(x + y) is the indicator of the set B — y. Hence

/x. gx + yiur{dx) = pi(B—y)
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and, substituting into the right side of (&), we see that it reduces to (7) in this
case. The general case is proved in the usual way by first considering simple
functions g and then passing to the limit for integrable functions.

As an instructive example, let us calculate the ch.f. of the convolution
1 * o, We have by (8)

f (% ) (du) = / / e 1y (dx)n (dy)

= /ei’xul(dx)/ei’}’uz(dY)-

This is as it should be by (v), since the first term above is the ch.f. of X 4 Y,
where X and Y are independent with 1y and i, as p.m.’s. Let us restate the
results, after an obvious induction, as follows.

Theorem 6.1.4. Addition of (a finite number of) independent r.v.’s corre-
sponds to convelution of their d.f.’s and multiplication of their ch.f.’s.

Corollary. If f is a ch.f., then so is | f|%.

To prove the corollary, let X have the ch.f. /. Then there exists on some
£2 (why?) an r.v. Y independent of X and having the same d.f., and so also
the same ch.f. f. The ch.f. of X — Y is

£EI) = (@)Y = £ (=1) = | FOR.

The technique of considering X — Y and |f|? instead of X and f will
be used below and referred to as “symmetrization” (see the end of Sec. 6.2).
This is often expedient, since a real and particularly a positive-valued ch.f.
such as | f|? is easier to handle than a general one.

Let us list a few well-known ch.f.’s together with their d.f.’s or p.d.’s
{(probability densities), the last being given in the interval outside of which
they vanish.

{1) Point mass at a: _
d.f. 8,; chf. .

{2) Symmetric Bernoullian distribution with mass % each at -1 and —1:
df. 381 +6_1); chf cost.
(3) Bernoullian distribution with “success probability” p,andg =1 — p:

d.f g+ pdi; chf g+ pe’" =1+ pe’ —1).
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(4) Binomial distribution for n trials with success probability p:
- n k n—kg . AN
d.f. Z (k) pg &, chi (g4 pe ).
k=0
(5) Geometric distribution with success probability p:

00
d.f. Eq” pén:  chf. p(l — ge)™\.
n=0

(6) Poisson distribution with (mean) parameter A:

00 n
d.f Ze_ll—cﬁ . chf, M€’V
.f. O 0 .t )

(7) Exponential distribution with mean A~':
p.d. 2e™ in [0, 00); chf. (1 —A~lin~L
(8) Uniform distribution in [—a, +a]:

1 inat
p.d. — in [—a,a]; chf Mha
2a at

(9) Triangular distribution in [—a, a]:

(=1 for t =0).

a2
a—|x| 2(1 — cosat) Sin =
pd. " in [—a, a]; ch.f. S v m2
2

(10) Reciprocal of (9):

— : t
L-cosax oo 00): chif (1 _ U) v 0.

a

p.d.

max?
(11) Normal distribution N (m, o) with mean m and variance o*:
1

2o

(x — m)?

2072

p.d. exp [— } in (—o0, oc);

o’t?
ch.f. exp (imr — T) .

Unit normal distribution N(0, 1) = ® with mean 0 and variance 1:

—x272

e in (—o0, 00); ch.f. e 72,

1
d —=
P 2

(12) Cauchy distribution with parameter a > 0:

a - : ~alt|
p.d. m in (—oo, o0); chf. e ",
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Convolution is a smoothing operation widely used in mathematical anal-
ysis, for instance in the proof of Theorem 6.5.2 below. Convolution with the
normal kernel is particularly effective, as illustrated below.

Let 4 be the density of the normal distribution N(0, 6%), namely

x2

1
ns(x) = W, exp (—ﬁ

For any bounded measurable function f on %!, put

), —00 < X < 0Q.

oo

o
O 150 = (f xn)w = [ fa=ynatidy= [ natx=»f)d>
0 —00
It will be seen below that the integrals above converge. Let CJ° denote the
class of functions on &' which have bounded derivatives of all orders; Cy
the class of bounded and uniformly continuous functions on !,

Theorem 6.1.5. For each § > 0, we have f; € C3. Furthermore if f € Cy,
then f5 — f uniformly in A

PROOF. It is easily verified that ns € Cz°. Moreover its kth derivative n¥

is dominated by ¢ sh2s where ¢ 5 is a constant depending only on & and é so
that

l/ n®x — }’)f(Y)d)’l < Ck,éllfll/ nyp(x —y)dy = cisll fl.

Thus the first assertion follows by differentiation under the integral of the last
term in (9), which is justified by elementary rules of calculus. The second
assertion is proved by standard estimation as follows, for any n > (O

um—meEf 0 — Fx — Mins)dy

—00

< sup [ f(x)— fx— I+ 2 f]] ns(yldy.

[¥i=n I¥l=n

Here is the probability idea involved. If f is integrable over 2!, we may
think of f as the density of a r.v. X, and ns as that of an independent normal
r.v. Ys. Then f; is the density of X + Y5 by Theorem 6.1.2. As § J] 0, ¥
converges to 0 in probability and so X 4+ Y converges to X likewise, hence
also in distribution by Theorem 4.4.5. This makes it plausible that the densities
will also converge under certain analytical conditions.

As a corollary, we have shown that the class CF is dense in the class Cyy
with respect to the uniform topology on . This is a basic result in the theory
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of “generalized functions” or “Schwartz distributions”. By way of application,
we state the following strengthening of Theorem 4.4.1.

Theorem 6.1.6. If {x,} and p are s.p.m.’s such that
viecy: [ foman— [ reua,
#1 4

then ,uv,,ai},u,.

This is an immediate consequence of Theorem 4.4.1, and Theorem 6.1.5,
if we observe that Cy C Cy. The reduction of the class of “test functions”
from Cy to Cy is often expedient, as in Lindeberg’s method for proving central
limit theorems: see Sec. 7.1 below.

EXERCISES

1. . If f is a chf, and G a d.f. with G(0—) = 0, then the following
functions are all ch.f.’s:

1 oo o0
/ f(ut)du, / flut)e ™ du, / e " aG W),
0 0 0

/ o dG (), / ” f(ut)dG ().
0 0

*2. Let f(u, t) be a function on (—o00, 00) x (—00, 00) such that for each
u, f(u, ) is a ch.f. and for each ¢, f(-, ) is a continuous function; then

/OO fu, 1YdG(u)

18 a ch.f. for any d.f. G. In particular, if f is a ch.f. such that lim,;_, o, f(#)
exists and & a d.f. with G(0—) =0, then

/wf (i) dG(u) 1s ach.f.
0 U

3. Find the d.f. with the following ch.f.’s (« > 0, § > 0).

o 1 1
a?+12" (1 —ait)? (1 + af —afe)l/E

[HINT: The second and third steps correspond respectively to the gamma and
Pdélva distributions.]
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4. Let S, be as in (v) and suppose that S, — Sy in pr. Prove that
o0
1T 7@
j=1

converges in the sense of infinite product for each ¢ and is the ch.f. of S..
5. If Fy and F, are d.f.’s such that

Fi = ij(?aj
J

and F, has density p, show that F| % F, has a density and find it.

*6. Prove that the convolution of two discrete d.f.’s is discrete; that of a
continuous d.f. with any d.f. is continuous; that of an absolutely continuous
d.f. with any d.f. is absolutely continuous.

7. The convolution of two discrete distributions with exactly m and n
atomns, respectively, has at least m +n — 1 and at most mn atoms.

8. Show that the family of normal (Cauchy, Poisson) distributions is
closed with respect to convolution in the sense that the convolution of any
two in the family with arbitrary parameters is another in the family with some
parameter(s).

9. Find the nth iterated convolution of an exponential distribution.

*10. Let {X;, j > 1} be a sequence of independent r.v.’s having the
common exponential distribution with mean 1/A, A > 0. For given x > 0 let
v be the maximum of n such that S, <x, where 50 =0, §, = Z?:z X; as
usual, Prove that the r.v. v has the Poisson distribution with mean Ax. See
Sec. 5.5 for an interpretation by renewal theory.

11. Let X have the normal distribution ®. Find the d.f., p.d., and ch.f.
of X2.

12. Let {X;, 1 < j < n} be independent r.v.’s each having the d.f. &.
Find the ch.f. of ,

DX
j=1

and show that the corresponding p.d. is 27%/2I'(n/2)~1x"/2=1e=*/2 in (0, o0).
This is called in statistics the “y? distribution with »n degrees of freedom”.

13. For any ch.f. f we have for every r:
R[1 — (1 = ;R[1 - fQ20)].

14. Find an example of two r.v.”s X and Y with the same p.m. u that are
not independent but such that X 4+ ¥ has the p.m. p * p. [HINT: Take X = ¥
and use ch.f.]
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*15, For ad.f. F and & > 0, define
Qr(h) = sup[F(x 4+ h) — F(x—)];

Qr is called the Lévy concentration function of F. Prove that the sup above
is attained, and if G is also a d.f., we have

Vh > 0: Qp-g(h) < Qr(h) A Qg (h).

16. If 0 < hi < 2m, then there is an absolute constant A such that

A A
Or(h) < I/ | f(r)|dr,
0

where f is the ch.f. of F. [HINT: Use Exercise 2 of Sec. 6.2 below.]
17. Let F be a symmetric d.f., with ch.f. f > O then

00 h2 00 n
o= [ i dF@=h [ ety

oo M2+ x

1s a sort of average concentration function. Prove that if G is also a d.f. with
ch.f. g = 0, then we have VA > 0;

erc(h) < op(h) A @g(h);
I —ppglh) < [1—er(W)]+[1 — @ (h)].

*18. Let the support of the p.m. x on 2! be denoted by supp u. Prove
that

supp (@ * v) = closure of supp @ + supp v;
supp (g1 * f2 * - - -) = closure of (supp 1 + supp g2 + - -)

where “4”" denotes vector sum.

6.2 Uniqueness and inversion

To study the deeper properties of Fourier—Stieltjes transforms, we shall need
certain “Dirichlet integrals”. We begin with three basic formulas, where “sgn
a” denotes 1, 0 or —1, according as & > 0, =0, or < 0.

Y i 7 g
() ¥y > 0:0 < (sgn a)/ Smo‘xdxg/ MY ax.
0 0

X X

oo -
(2) / o dx = z sgn a.
0 X 2
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® 1 —cosax T
3 —dx = —|«f.
3) | ar=Te

The substitution «x = u shows at once that it is sufficient to prove all three
formulas for « = 1. The inequality (1) is proved by partitioning the interval
[0, oo) with positive multiples of 7 so as to convert the integral into a series
of alternating signs and decreasing moduli. The integral in (2) is a standard
exercise in contour integration, as is also that in (3). However, we shall indicate
the following neat heuristic calculations, leaving the justifications, which are
not difficult, as exercises.

/ ——dx=/ sinx {/ e‘x“du} a’x:/ [/ e"“‘sinxdx]du
0 X 0 0 0 0

_/°° du o

S 14w 2

%1 —cosx e ] o e < dx
/ mdx:/ — / sinudu dx=/ sinu / — | du
0 x2 o x% |Jo 0 u X2

We are ready to answer the question: given a ch.f. f, how can we find
the corresponding d.f. F or p.m. u«? The formula for doing this, called the
inversion formula, is of theoretical importance, since it will establish a one-
to-one correspondence between the class of d.f.’s or p.m.’s and the class of
ch.f’s (see, however, Exercise 12 below). It is somewhat complicated in its
most general form, but special cases or variants of it can actually be employed
to derive certain properties of a d.f. or p.m. from its ch.f.; see, e.g., (14) and
(15) of Sec. 6.4.

Theorem 6.2.1. If x; < x, then we have

4) w((xr, 22)) + Tu(x ) + )
LT it _ i

(the integrand being defined by continuity at ¢ = 0).

PROOF. Observe first that the integrand above is bounded by |x; — x3|
everywhere and is O(}z|~1) as |t] — oo; yet we cannot assert that the “infinite
integral” ffcoo exists (in the Lebesgue sense). Indeed, it does not in general
(see Exercise 9 below). The fact that the indicated limit, the so-called Cauchy
limit, does exist is part of the assertion.
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We shall prove (4) by actually substituting the definition of f into (4)
and carrying out the integrations. We have

1 T e—im _ e—i.’xg o0
(5) — [/ e”xu(dx)j} dt
{

27 J_r —0

o0 T itlx—x;) __ Lit{x—x2)
_ / U € i dr] (u(dx).
o0 ST 2mit

Leaving aside for the moment the justification of the interchange of the iterated
integral, let us denote the quantity in square brackets above by /(7 x, x1, x2).
Trivial simplification yields

1 /7 sint(x — 1 rTsint(x —
I(T,x,x],x2)=—/ Mdt——/ Mdr.
T Jo 0

) T 7

It follows from (2) that

r 1 1

—5 — (> =10 for x < xq,

0-—(-—%): 3 for x = xq,
Tlirrgol(T,x,xl,xz)=< é—— (—%):1 for x; < x < x3,
- 1 _ 1 _

?_?_E forx—xz,

(53 —5=0 for x > x3.

Furthermore, / is bounded in T by (1). Hence we may let T — o0 under the
integral sign in the right member of (5) by bounded convergence, since

2 7 sinx
(T, % %1, 30)) < —/ sinx o
T Jo X

by (1). The result is

1 1
{/ 0+/ —+/ 1”{“/ —"f“/ O}M(dx)
{—00.xy) {x} 2 {x;.x2) {xz} 2 {x3,00)

= I + (o, 1)) + F(x)).

This proves the theorem. For the justification mentioned above, we invoke
Fubini’s theorem and observe that
X2
/ e—z’ru du
Xi

where the integral is taken along the real axis, and

ei.“(x—.x;) _ eir(x—):g)

< Jx1 — x2/,

it

T
f / |x1 — x| dt uldx) < 2T |x) — x2| < 09,
2 =T
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$0 that the integrand on the right of (5) is dominated by a finitely integrable
function with respect to the finite product measure d7 - u(dx) on [T, +T] x
ZA'. This suffices.

Remark. If x; and x, are points of continuity of F, the left side of (4)
is F(Xg) — F(xl).

‘The following result is often referred to as the “uniqueness theorem™ for
the “determining” @ or F (see also Exercise 12 below).

Theorem 6.2.2. If two p.m.’s or d.f.’s have the same ch.f., then they are the
same.

prROOF. If neither x| nor x, is an atom of w, the inversion formula (4)
shows that the value of u on the interval (x, x;) is determined by its ch.f. It
follows that two p.m.’s having the same ch.f. agree on each interval whose
endpoints are not atoms for either measure. Since each p.m. has only a count-
able set of atoms, points of Z! that are not atoms for either measure form a
dense set. Thus the two p.m.’s agree on a dense set of intervals, and therefore
they are identical by the corollary to Theorem 2.2.3.

We give next an important particular case of Theorem 6.2.1.

Theorem 6.2.3. If f € L'(—o0, 400), then F is continuously differentiable,
and we have

1~ _
(6) F'(x)= —m[ e ™ f(r)dt.
27 J o
PROOF. Applying (4) for x; = x and x; = x — h with & > 0 and vsing F
instead of 1, we have
F(x)+ Fx=) Fx—-h+Fx—h-) 1 /°° el —
2 B 2 T 2m

e~ f (1) dt.
oo 1

Here the infinite integral exists by the hypothesis on f, since the integrand
above is dominated by |2 f(r)|. Hence we may let # — O under the integral
sign by dominated convergence and conclude that the left side is 0. Thus, F
is left continuous and so continuous in &', Now we can write

Fx) - Fx—h) 1 /00 et — 1

- X £ dr.
A ol A

The same argument as before shows that the limit exists as h — 0. Hence
F has a left-hand derivative at x equal to the right member of (6), the latter
being clearly continuous [cf. Proposition (ii) of Sec. 6.1]. Similarly, F" has a
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right-hand derivative given by the same formula. Actually it is known for a
continuous function that, if one of the four “derivates” exists and is continuous
at a point, then the function is continuously differentiable there (see, e.g.,
Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, New York,
1939, p. 355).

The derivative £’ being continuous, we have (why?)
X
Vx: F(x) _—../ F'(u) du.
—oc

Thus F’ is a probability density function. We may now state Theorem 6.2.3
in a more symmetric form familiar in the theory of Fourter integrals.

Corollary. If f € L!, then p € L', where

| <
px) = 2—/ e”™Mf(1)de,
TS

f@) = / ™ p(x) dx.

o0

The next two theorems yield information on the atoms of p by means of
f and are given here as illustrations of the method of “harmonic analysis™.

Theorem 6.2.4. For each x3, we have

T

(7) Am % 7 e f (1) dt = u({x)).

PROOF, Proceeding as in the proof of Theorem 6.2.1, we obtain for the
integral average on the left side of (7):

T (x —
(8) / Mu(dx)_;_/ 1p(dx).
) —{xg) (x — xp) {xo}

The integrand of the first integral above is bounded by ! and tends to O as
T — oo everywhere in the domain of integration; hence the integral converges
to 0 by bounded convergence. The second term is simply the right member
of (7).

Theorem 6.2.5. We have

T
©) Jim = [ If@Fdr =) ux)*

xe#!
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PROOF. Since the set of atoms is countable, all but a countable number
of terms in the sum above vanish, making the sum meaningful with a value
bounded by 1. Formula (9) can be established directly in the manner of (5)
and (7), but the following proof is more illuminating. As noted in the proof
of the corollary to Theorem 6.1.4, | f1? is the ch.f. of the r.v. X — ¥ there,
whose distribution is u * u', where u'(B) = u(—B) for each B € 73. Applying
Theorem 6.2.4 with xo = 0, we see that the left member of (9) is equal to

(e * 1 ){OD).

By (7) of Sec. 6.1, the latter may be evaluated as

/% W {=yDuy) = > p((yHud),

yeR!

since the integrand above is zero unless —y is an atom of x’, which is the
case if and only if y is an atom of u. This gives the right member of (9). The
reader may prefer to carry out the argument above using the r.v.’s X and —Y
in the proof of the Corollary to Theorem 6.1.4.

Corollary. p is atomless (F is continuous) if and only if the limit in the left
member of (9) is zero.

This criterion is occasionally practicable.

DEFINITION. The r.v. X is called symmetric iff X and —X have the same
distribution.

For such an r.v., the distribution g has the following property:
VB € 93 u(B) = u(—B).

Such a p.m. may be called symmetric; an equivalent condition on its d.f. F is

as follows:
Yx € %I:F(x) =1 F(—x-),

(the awkwardness of using d.f. being obvious here).

Theorem 6.2.6. X or w is symmetric if and only if its ch.f. is real-valued
(for all £).

proOF. If X and —X have the same distribution, they must “determine”
the same ch.f. Hence, by (iii) of Sec. 6.1, we have

f@o=f@)
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and so f is real-valued. Conversely, if f is real-valued, the same argument
shows that X and —X must have the same ch.f. Hence, they have the same
distribution by the uniqueness theorem (Theorem 6.2.2).

EXERCISES

f is the ch.f. of F below.
1. Show that

*2. Show that for each 7 > 0:
1 /m (1 —cosTx)costx

5 dx =(T — |t|) v O.
TJ oo X

Deduce from this that for each 7 > 0, the function of ¢ given by

(-5)

is a ch.f. Next, show that as a particular case of Theorem 6.2.3,
l—cosTx 1 /T -
—_— == (T — |t))e'™ dt.

2 2/,

Finally, derive the following particularly useful relation (a case of Parseval's
relation in Fourier analysis), for arbitrary g and T > 0:

®1—cosT{x—a)
[—oc [T(x - a)]2

X

11 r )
dF(X) = iﬁ /_T(T — Itl)e_”af(t)dt
*3. Prove that for each o« > 0:

& 1 /1 —cosar _;
f FGx+u) — F(x — )] du = — / — 2 @y,
0 TS t
As a sort of reciprocal, we have

}«/ du f(r)dr:/ ml_cosaxdF(x)-
2 0 —u —0C x?

4. If f(1)/t € L'(—00, o), then for each & > 0 such that +« are points
of continuity of F, we have

 gin af

1
F(a) — F(—a) = ;/ f(0)dt.
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5. What is the special case of the inversion formula when f = 1?7 Deduce
also the following special cases, where ¢ > 0:

1 £ sinarsint

—_ —z-deCX.f\l,

T fone t
1 [ sinar(sin?)? o?
—/ —gdz‘:a——foragﬁlfora;*l
TS e I 4

6. For each n > 0, we have

l/m (i‘l’) dt = //(pn(t)dtdu
T Jx

where @ = %1[_1‘1] and ©n = Pn_1 * @1 forn > 2.

*7.If F is absolutely continuous, then lim_  f(#) = 0. Hence, if the
absolutely continuous part of F does not vanish, then im0 | f@®)l < 1. If
F is purely discontinuous, then lim,_,o f(z) = 1. [The first assertion is the
Riemann-Lebesgue lemma; prove it first when F has a density that is a
simple function, then approximate. The third assertion is an easy part of the
observation that such an f is “almost periodic”.]

8. Prove that for 0 < r < 2 we have

“1-Rf()

oo 1 -1 I
Cory = (/ L_C‘”’_“du) _ 0"_+1>Sm§,

lulr-i-l T

where

thus C(1) = 1/x. [HINT:
%0 1 — cosxt
xI" = C() / - )

*9, Give a trivial example where the right member of (4) cannot be
replaced by the Lebesgue integral

o0 —itxy __ ,—iixy
1 / RE— % fuydr
27 e it

But it can always be replaced by the improper Riemann integral:

1 T, e—-i.’xI _ e‘l'x'xg
lim —m/ RO ———fmar.
1
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10. Prove the following form of the inversion formula (due to Gil-
Palaez):

T Jitx £r_ 4o —itx
%{F(X+)+F(x—)}:%+lim e fEn= e,

510 i
Bo Js 2rit

[HINT: Use the method of proof of Theorem 6.2.1 rather than the result.]

11. Theorem 6.2.3 has an analogue in L?. If the ch.f. f of F belongs
to L?, then F is absolutely continuous. [HINT: By Plancherel’s theorem, there
exists ¢ € L? such that

—itx __

X 1 X e 1
— dr.
/0 Pl du = ——= /0 —— fwar

Now use the inversion formula to show that

F(x)—F0) = @(u)du.]

1 X
V2 /0
*12. Prove Theorem 6.2.2 by the Stone—Weierstrass theorem. [HiNT: Cf,
Theorem 6.6.2 below, but beware of the differences. Approximate uniformly
€1 and g in the proof of Theorem 4.4.3 by a periodic function with “arbitrarily

large” period.]
13. The uniqueness theorem holds as well for signed measures [or func-

tions of bounded variations]. Precisely, if each u;, i = 1, 2, is the difference
of two finite measures such that

Ve / 7y (dx) = / ¢ 1y (dx),

then w; = u,.
14. There is a deeper supplement to the inversion formula (4) or
Exercise 10 above, due to B. Rosén. Under the condition

oo
/ (1+loglx])dF(x) < oo,
-0

the improper Riemann integral in Exercise 10 may be replaced by a Lebesgue
integral. [HINT: It is a matter of proving the existence of the latter. Since

o0 N
f dF(y) /
—00 1]

we have

oC N o; _ N loss!
/ dF(y)/O Md::/ﬁ ?/ sin(x — Yt dF(y).

sin(x — y)
1

dt 5/ dF{(y){1 +log(l + Nix — y|)} < o0,
—00
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For fixed x, we have

dF(y)
YFEX

o0 o
— )
/ sm(xt ¥) 4

N

+ O f dF (),
O<x—v|<1/N

both integrals on the right converging to 0 as N — o0.]

- C]/ dF(y)
- k—vi>1/8 Nlx — y|

6.3 Convergence theorems

For purposes of probability theory the most fundamental property of the ch.f.
is given in the two propositions below, which will be referred to jointly as the
convergence theorem, due to P. Lévy and H. Cramér. Many applications will
be given in this and the following chapter. We begin with the easier half.

Theorem 6.3.1. Let {i,, ] <n < oc} be p.m.’s on A! with chf’s {f,, 1 <
n < oo}. If i, converges vaguely t0 jto0, then f, converges to f. uniformly
in every finite interval. We shall write this symbolically as

(1) Hu=> oo = o= foo.
Furthermore, the family { f,.} is equicontinuous on 7!

PROOF. Since €™ is a bounded continuous function on %!, although
complex-valued, Theorem 4.4.2 applies to its real and imaginary parts and
yields (1) at once, apart from the asserted uniformity. Now for every 7 and A,
we have, as in (i1) of Sec. 6.1:

Fult+ )= fr ()] < / € — 1]yt (dx) < / x| (d5)

[x|=A

+2/ ia{dx) < IhlA-{-Z/ uldx)+ ¢
jx|>A

[x]>=A

for any € > 0, suitable A and n > ny(A, €). The equicontinuity of {f,} follows.

This and the pointwise convergence f,, — fo imply f n—> Foo by a simple
compactness argument (the “3¢ argument”) left to the reader.

Theorem 6.3.2. Let {i,.1 <n < oo} be p.m.’s on A! withchf’s{f,, 1<
n < oo}. Suppose that

(a) f, converges everywhere in ! and defines the limit function f.;
(b) fo is continuous at t = 0.
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Then we have

(Q’) ﬂn_l;}lgc. where Moo is a p.m,;
(B) foo is the ch.f. of pq.

PROOF. Let us first relax the conditions (a} and (b) to require only conver-
gence of f, in a neighborhood (—&g, o) of + = 0 and the continuity of the
limit function f (defined only in this neighborhood) at r = 0. We shall prove
that any vaguely convergent subsequence of {x,} converges to a p.m. . For
this we use the following lemma, which illustrates a useful technique for
obtaining estimates on a p.m. from its ch.f.

Lemma. For each A > 0, we have

Al

2) u([—24,24]) = A | f@dn =1

—A

PROOF OF THE LEMMA. By (8) of Sec. 6.2, we have

1 [T ®5inT
3) gfﬁmmzf T ).

—00

Since the integrand on the right side is bounded by 1 for all x (it is defined to be
1 at x = 0), and by |Tx|™! < (2TA)™! for |x| > 24, the integral is bounded by

1
u(1=24, 24 + oAl — l(=24, 24 )

1 1
= (1 — ﬁ) p([—24,24]) + T4

Putting T = A~ in (3), we obtain

A—]

é f)yde

1 1
< —u([—24,24) + =
> < Sn([=24,24]) + .

which reduces to (2). The lemma is proved.
Now for each 3, 0 < § < 8y, we have

1 8
ﬂﬁﬁgmw

The first term on the right side tends to 1 as 8§ | 0, since f(0)=1 and f
is continuous at 0; for fixed 8 the second term tends to 0 as n — o0, by
bounded convergence since | f,, — f| < 2. It follows that for any given ¢ > O,

1 &
—75[Amm—fmmL

1 &
(4) ﬁ/;ﬁfn(t)df
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there exist § = 8(¢) < 8 and ng = ny(¢) such that if n > ng, then the left
member of (4) has a value not less than 1 — e, Hence by (2)

(5) pn (2671257 1) > 201 —e)— 1> 1 — 2e.

Let {1n} be a vaguely convergent subsequence of {u,}, which always
exists by Theorem 4.3.3; and let the vague limit be wx, which is always an
s.p.m. For each § satisfying the conditions above, and such that neither —26~!
nor 287! is an atom of u, we have by the property of vague convergence
and (5).

w(RY) > p([(—2871, 2871
= lirgou,,([—Z(S"l,Z(S_l]) > 1 —2e.

Since € is arbitrary, we conclude that x is a p.m., as was to be shown.

Let f be the ch.f. of x. Then, by the preceding theorem, f,, — f every-
where; hence under the original hypothesis (a) we have f = f.,. Thus every
vague limit 4 considered above has the same ch.f. and therefore by the unique-
ness theorem is the same p.m. Rename it pto so that iy is the p.m. having
the chf. f. Then by Theorem 4.3.4 we have ,u,,—vw,oo. Both assertions ()
and (f) are proved.

As a particular case of the above theorem: if {u,,! <n < oo} and
{fn,1 <n < o0} are corresponding p.m.’s and ch.f.’s, then the converse of
(1) 1s also true, namely:

6) = too € fn— foo-

This is an elegant statement, but it lacks the full strength of Theorem 6.3.2,

which lies in concluding that f ., is a ch.f. from more easily verifiable condi-

tions, rather than assuming it. We shall see presently how important this is.
Let us examine some cases of inapplicability of Theorems 6.3.1 and 6.3.2.

Example 1. Let u, have mass § at 0 and mass § at n. Then g, — fix, Where po

3
has mass 4 at 0 and is not a p.m. We have

1 [P
fn(t) =3 + Eelm:
which does not converge as n — 00, except when 1 is equal to a multiple of 2.

Example 2. Let y&, be the uniform distribution {—r, n]. Then u,; — fx, where flo
is identically zero. We have

sinnt
, if t £ 0
fn(t):{ nt #
1, ift=0;
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and

po—so={3 120

L

Thus, condition (a) is satisfied but (b) is not.

Later we shall see that (a) cannot be relaxed to read: f,(z) converges in
lt] < T for some fixed T (Exercise 9 of Sec. 6.5).

The convergence theorem above settles the question of vague conver-
gence of p.m.’s to a p.m. What about just vague convergence without restric-
tion on the limit? Recalling Theorem 4.4.3, this suggests first that we replace
the integrand ™ in the ch.f. £ by a function in Cy. Secondly, going over the
last part of the proof of Theorem 6.3.2, we see that the choice should be made
so as to determine uniquely an s.p.m. (see Sec. 4.3). Now the Fourier—Stieltjes
transform of an s.p.m. is well defined and the inversion formula remains valid,
so that there is unique correspondence just as in the case of a p.m. Thus a
natural choice of g is given by an “indefinite integral” of a ch.f., as follows:

7] ] lllx_l
7) g(u) = / [ / e”m(dx)] dr = / 1w,
0 K Fl X

Let us call g the integrated characteristic function of the s.p.m. yu. We are
thus led to the following companion of (6), the details of the proof being left
as an exercise.

Theorem 6.3.3. A sequence of s.p.m.”’s {i,, 1 <n < oo} converges (10 o)
if and only if the corresponding sequence of integrated ch.f.’s {g,} converges
(to the integrated ch.f. of u..).

Another question concerning (6) arises naturally. We know that vague
convergence for p.m.’s is metric (Exercise 9 of Sec. 4.4); let the metric be
denoted by (-, -);. Uniform convergence on compacts (viz., in finite intervals)
for uniformly bounded subsets of Cg(#%') is also metric, with the metric
denoted by (-, ‘)2, defined as follows:

N IORT10]
(f. 8= !SEIiE ““—1“:{'_7,_—““

It is easy to verify that this is a metric on Cp and that convergence in this metric
is equivalent to uniform convergence on compacts; clearly the denominator
1 + 7> may be replaced by any function continuous on 2!, bounded below
by a strictly positive constant, and tending to 4-00 as |f| — o0. Since there is
a one-to-one correspondence between ch.f.’s and p.m.’s, we may transfer the




63 CONVERGENCE THEOREMS | 173

metric (-, -)2 to the latter by setting

(1, V)2 = (fus fh2

in obvious notation. Now the relation (6) may be restated as follows.

Theorem 6.3.4. The topologies induced by the two metrics { }; and ( ); on
the space of p.m.’s on %! are equivalent.

This means that for each ¢ and given € > 0, there exists 8(x, ¢) such that:
(1, V)1 < 8(u, €) = (1, V) < ¢,
(i, v}y < 8(u, €)= (u, V)1 <e.

Theorem 6.3.4 needs no new proof, since it is merely a paraphrasing of {6) in
new words. However, it is important to notice the dependence of § on w (as
well as €) above. The sharper statement without this dependence, which would
mean the equivalence of the uniform structures induced by the two metrics,
is false with a vengeance; see Exercises 10 and 11 below (Exercises 3 and 4
are also relevant).

EXERCISES

1. Prove the uniform convergence of f, in Theorem 6.3.1 by an inte-
gration by parts of [ e dF,(x).

*2. Instead of using the Lemma in the second part of Theorem 6.3.2,
prove that w is a p.m. by integrating the inversion formula, as in Exercise 3
of Sec. 6.2. (Integration is a smoothing operation and a standard technique in
taming improper integrals: cf. the proof of the second part of Theorem 6.5.2
below.)

3. Let F be a given absolutely continuous d.f. and let ¥, be a sequence
of step functions with equally spaced steps that converge to F' uniformly in
', Show that for the corresponding ch.f.'s we have

VYu:sup | f(t) — fn(t)] = 1.
teRl

4, Let F,, G, be df.’s with ch.f’s f, and g,. If f, —g, — 0 ae,
then for each f € Cx we have [ fdF,— [ fdG, — 0 (see Exercise 10
of Sec. 4.4). This does not imply the Lévy distance {F,,G,); — 0; find
a counterexample. [Hint: Use Exercise 3 of Sec. 6.2 and proceed as in
Theorem 4.3.4.]

5. Let F be a discrete d.f. with points of jump {a;, j > 1} and sizes of
jump {b;, j = 1}. Consider the approximating s.d.f.’s Fy, with the same jumps
but restricted to j < n. Show that F,—F.
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*6. If the sequence of ch.f.’s { f,} converges uniformly in a neighborhood
of the origin, then {f,} is equicontinuous, and there exists a subsequence that
converges to a ch.f. {HINT: Use Ascoli-Arzela’s theorem.]

7. If F,—F and G,~>G, then F,, * G,—>F % G. [A proof of this simple
result without the use of ch.f.’s would be tedious.]
*8. Interpret the remarkable trigonometric identity

. oc
st H t
—_— = COS —
! n=I 2

in terms of ch.f.’s, and hence by addition of independent r.v.’s. (This is an
example of Exercise 4 of Sec. 6.1.)

9. Rewrite the preceding formula as

sin? e t il t
__t— = (E CcQOS __—22k—1) (H COS E:?“;) .

k=1

Prove that either factor on the right is the ch.f. of a singular distribution. Thus
the convolution of two such may be absolutely continuous. [HINT: Use the
same r.v.’s as for the Cantor distribution in Exercise 9 of Sec. 5.3.]

10. Using the strong law of large numbers, prove that the convolution of
two Cantor d.f’s is still singular. [amnT: Inspect the frequency of the digits in
the sum of the corresponding random series; see Exercise 9 of Sec. 5.3.]

*11. Let F,, G, be the d.f.’s of p,, v, and f,, g, their ch.f’s. Even if
SUPyeqi [Fn(x) — Gp(x)| — 0, it does not follow that (f,, gx)2 — 0; indeed
it may happen that {f,, g,)2 = 1 for every ». [HiNT: Take two step functions
“out of phase”.]

12. In the notation of Exercise 11, even if sup,cz | fn(t) — ga(2)] — O,
it does not follow that {F,, G,) — 0; indeed it may — 1. [HINT: Let f be any
ch.f. vanishing outside (—1, 1), f;(r) = e™4 f(m;1), g;(r) = ™' f (m;1). and
Fj, G; be the corresponding d.f.’s. Note that if rnjnJ_.l — 0, then F;(x) — 1,
G ;(x) — O for every x, and that f; — g, vanishes outside (—mjTl
is O(sinm;t) near 1= 0. If m; =2/ and n; = jm; then S fi—g)is
uniformly bounded in 7: for nk_il <t = n,:l consider j > k, j =k, J < k sepa-

rately. Let
n n
—1 * -1
fo=nT'>"Fn &= g
Jj=1 j=1

,m;') and

then sup |f* —g*| = O(n~!) while F} — G} — 0. This example is due to
Katznelson, rivaling an older one due to Dyson, which is as follows. For
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x4+ b?

1 log ra
alog | —
a

forx <(Gand =1 forx > 0; G(x) = 1 — F(—x). Then,

b>a>0,let

t [e_alll — emb“l]

)
a

If a is large, then (F, G} is near 1. If b/a is large, then {f, g) is near 0.]

f@&)—glt)=—mi

6.4 Simple applications

A common type of application of Theorem 6.3.2 depends on power-series
expansions of the ch.f., for which we need its derivatives.

Theorem 6.4.1. If the d.f. has a finite absolute moment of positive integral
order k, then its ch.f. has a bounded continuous derivative of order & given by

(1) F®H = / ” (ix)*e™ dF (x).

Conversely, if f has a finite derivative of even order £ at r = 0, then F has
a finite moment of order %.

PROOF. For k = 1, the first assertion follows from the formula:

SN 1) _ = e

dF{x).
. N P (x)

An elementary inequality already used in the proof of Theorem 6.2.1 shows
that the integrand above is dominated by ix|. Hence if [ |x|dF(x) < o0, we
may let # — 0 under the integral sign and obtain (1). Uniform continuity of
the integral as a function of ¢ is proved as in (ii) of Sec. 6.1. The case of a
general k follows easily by induction.

To prove the second assertion, let ¥ = 2 and suppose that f7(0) exists
and is finite. We have

fR)=2f0)+ f(=h)
k2

f70) = lim




176 | CHARACTERISTIC FUNCTION

eikx _ 2 + e—ikl‘

= Jim 2 aFx)
1 —coshx
2 =21 _ .
(2) ,1]1_1;% %) dF(x)

As h — 0, we have by Fatou’s lemma,

5 ) .1 —coshx _ 1 — cosfx
/.x dF('l)“‘Q/,l,l_‘R)_“_hT_dF(x)Si—l_%z/—_hz—"dF(")

= —f"(0).

Thus F has a finite second moment, and the validity of (1) for ¥k =2 now
follows from the first assertion of the theorem.

The general case can again be reduced to this by induction, as follows.
Suppose the second assertion of the theorem is true for 2k — 2, and that
F@(0) is finite. Then f®*~2)(¢) exists and is continuous in the neighborhood
of t = 0, and by the induction hypothesis we have in particular

(=1 / A2 dE() = FO (),

Put G(x) = ffoc y*~2dF(y) for every x, then G(-}/G(o0) is a d.f. with the
ch.f.

(— D! fE2()
G(o0) '

Hence " exists, and by the case k = 2 proved above, we have

_ 1 iHx _2k-12 o
W(I)_%G(oo)/e X THAF (x) =

1 1
—_ (2) = - 2 = —— 2k
4 2(0) S / x2dG(x) 5 )/x dF(x)
Upon cancelling G(o0), we obtain
(—1¥ F0) = fxz" dF (x),

which proves the finiteness of the 2kth moment. The argument above fails
if G(oc) =0, but then we have (why?) F =&, f =1, and the theorem is
trivial.

Although the next theorem is an immediate corollary to the preceding
one, it is so important as to deserve prominent mention.

Theorem 6.4.2. If F has a finite absolute moment of order &, k an integer
>1, then f has the following expansion in the neighborhood of 7 = 0

k.
(3) o= %mw +o(It%),
=0
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k-1 .;
’ i/ O g :
(3) fo =3 m =+ s
- ]

where m") is the moment of order j, £® is the absolute moment of order ,
and (6] < 1.

PROOF. According to a theorem in calculus (see, e.g., Hardy [1], p. 290)),
if f has a finite 4th derivative at the point f = 0, then the Taylor expansion
below is valid;

k

DN |
) Fo=5" 22O 4 ogepy,

=
If f has a finite kth derivative in the neighborhood of ¢ = 0, then

k=1 (i) ) k)

j=0

6] < 1.

Since the absolute moment of order j is finite for 1 < j <k, and
FRO)=imD, 1 fOln) < u®
from (1), we obtain (3) from (4), and (3') from (4').

1t should be remarked that the form of Taylor expansion given in (4)
1s not always given in textbooks as cited above, but rather under stronger
assumptions, such as “f has a finite kth derivative in the neighborhood of
0”. [For even k this stronger condition is actually implied by the weaker one
stated in the proof above, owing to Theorem 6.4.1.] The reader is advised
to learn the sharper result in calculus, which incidentally also yields a quick
proof of the first equation in (2). Observe that (3) implies (3"} if the last term
in (3") is replaced by the more ambiguous O(|t*), but not as it stands, since
the constant in “O” may depend on the function f and not just on p®.

By way of illustrating the power of the method of ch.f.’s without the
encumbrance of technicalities, although anticipating more elaborate develop-
ments in the next chapter, we shall apply at once the results above to prove two
classical limit theorems: the weak law of large numbers (cf. Theorem 5.2.2),
and the central limit theorem in the identically distributed and finite variance
case. We begin with an elementary lemma from calculus, stated here for the
sake of clarity.

Lemma. If the complex numbers ¢, have the limit ¢, then

5) Jim (1 + fi)" =

B OO 7]

(For real ¢,’s this remains valid for ¢ = +00.)
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Now let {X,, n > 1} be a sequence of independent r.v.’s with the common
df F,and S, = ?=1 X, as in Chapter 5.

Theorem 6.4.3. If F has a finite mean m, then
S

n -
— — m In pL
o P

PROOF. Since convergence to the constant m is equivalent to that in dist.
to §,, (Exercise 4 of Sec. 4.4), it is sufficient by Theorem 6.3.2 to prove that
the ch.f. of S,/n converges to ¢ (which is continuous). Now, by (2) of
Sec. 6.1 we have

n

E(eS:/my = E(el0mS:y — {f (i)r_

By Theorem 6.4.2, the last term above may be written as

(int+o ()

for fixed t and n — oo. It follows from (5) that this converges to €™ as
desired.
Theorem 6.4.4. If F has mean m and finite variance o? > 0, then
S, —mn
o/n

where @ is the normal distribution with mean 0 and vartance 1.

— & 1n dist.

PROOF. We may suppose m = 0O by considering the r.v.’s X; — m, whose
second moment is ¢, As in the preceding proof, we have

(o (7)) = Gm)
- {1 - 2% +0 (g) }n — "2,

The limit being the ch.f. of @, the proof is ended.

The convergence theorem for ch.f.’s may be used to complete the method
of moments in Theorem 4.5.5, yielding a result not very far from what ensues
from that theorem coupled with Carleman’s condition mentioned there,




6.4 SIMPLE APPLICATIONS | 179

Theorem 6.4.5. In the notation of Theorem 4.5.5, if (8) there holds together
with the following condition:
)k

(6) v e %! lim =0,
k—oo k!

then Fni’;F.

PROOF. Let f, be the.ch.f. of F,. For fixed r and an odd & we have by
the Taylor expansion for ¢ with a remainder term:

|k+1

k -
_ ix _ (itxy litx
f,,(z)_/e dF,,(x)_/ y = 0T ( 4P

pr il

(k+1)rk+1

._Z(”) (J) m
! (k—i—l)f ’

where & denotes a “generic” complex number of modulus <1, not necessarily
the same in different appearances. (The use of such a symbol, to be further
indulged in the next chapter, avoids the necessity of transposing terms and
taking moduli of long expressions. It is extremely convenient, but one must
occasionally watch the dependence of # on various quantities involved.) It
follows that

k+1

_ _ N G’ () _ D bt k1) (k+1)
() fal) = Fl8) = JZ% o, >+(k+1),<n +mt+),

Given ¢ > 0, by condition (6) there exists an odd k = k(¢) such that for the
fixed r we have

2m*D Dl ¢

(k+ 1) 2

Since we have fixed k, there exists ng = ng(€) such that if n > ny, then

(8)

[A

m'(?k+]) < m(k+1)+ 1,

and moreover, .
max |m(1) _m(,')l < e M
1<j<k

Then the right side of (7) will not exceed in modulus:

e <<

Z__

2 (k +1)!
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Hence f,(r) — f(r) for each t, and since f is a ch.f., the hypotheses of
Theorem 6.3.2 are satisfied and so F,—> F.

As another kind of application of the convergence theorem in which a
limiting process is implicit rather than explicit, let us prove the following
characterization of the normal distribution.

Theorem 6.4.6. Let X and Y be independent, identically distributed r.v.’s
with mean O and variance 1. If X 4+ Y and X — Y are independent then the
common distribution of X and Y is .

PROOF. Let f be the ch.f., then by (1), f'(0) =0, f"(0) = —1. The ch.f.
of X+ Y is f(r)* and that of X — ¥ is f(¢)f(—1). Since these two r.v.’s are
independent, the ch.f. f(2r) of their sum 2X must satisfy the following relation:

(9) fQ0) = f@ay f(-1).

It follows from (9) that the function f never vanishes. For if it did at #g, then
it would also at 7y/2, and so by induction at #;/2" for every n > 1. This is
impossible, since lim,_ o f(#p/2") = f(0) = 1. Setting for every ¢:

[
plt)y = [Ty
we obtain
(10) p(2t) = p(t)*.

Hence we have by iteration, for each

1\ t\1*
p(t):p(~27> ={1+0(5;)} — 1

by Theorem 6.4.2 and the previous lemma. Thus p(t) = 1, f(t) = f(-1), and
(9) becomes

(11) f@2n = f*

Repeating the argument above with (11), we have

\" 1/ 1\° 2 P
ﬂﬂ=f(§> ={1—5(§)‘“{(F)}} e

This proves the theorem without the use of “logarithms™ (see Sec. 7.6).

EXERCISES

*1. If f is the ch.f. of X, and

I ORE S ¥
10 2 2

> —00,
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then ¢(X) =0 and ¢(X?) = ¢°. In particular, if f(z)=1+o0(2) as t — 0,
then f = 1.

*2. Let {X,} be independent, identically distributed with mean O and vari-
ance ¢, 0 < ¢? < 00. Prove that

lim & (l'&le) 2 lim & S, 2
¢ = 5 = —a
n— oo ﬁ 7= 00 ‘ ﬁ v

[If we assume only Z?{X; # 0} > 0, &(|X1]) < o¢ and &(X,) = 0, then we
have &(|S,|) > C./n for some constant C and all n; this is known as
Hornich’s inequality.] [HiNT: In case 02 = oo, if lim, &(] $,//1) < oc, then
there exists {n;} such that §,/,/n; converges in distribution; use an extension
of Exercise 1 to show | f(t/./n)[*" — 0. This is due to P. Matthews.]
Lt PX =k}=pp, 1 <k <€ <00, S5_, pr =1. The sum §, of
n independent r.v.’s having the same distribution as X is said to have a
multinomial distribution. Define it explicitly. Prove that [§, — &(5,)]/0(S,)
converges to ¢ in distribution as n — oo, provided that o(X) > 0.
*4. Let X, have the binomial distribution with parameter (n, p,), and
suppose that # p, — A > 0. Prove that X,, converges in dist. to the Poisson d.f.
with parameter A. (In the old days this was called the law of small numbers.)

5. Let X, have the Poisson distribution with parameter A. Prove that
[X, — A]/A17% converges in dist. to ® as A — o0.
*6. Prove that in Theorem 6.4.4, S, /o./n does not converge in proba-
bility. [sv: Consider S, /o/n and Sy, /o+/2n.]
7. Let f be the ch.f. of the d.f. F. Suppose that as 1 — 0,

f@)—1=0(01%,

where 0 < o < 2, then as A — 00,

/ dF (x) = O(A™).
jx|=A

[HINT: Integrate fm)_A(l —costx)dF(x) < Cr* over ¢ in (0, A).]

8. If0 <@ < 1and [ |x|*dF(x) < oo, then f(r) — 1 = o(t|*) ast — 0.
For 1 <« < 2 the same result is true under the additional assumption that
fxdF(x)=0. [u~t: The case 1 <« <2 is harder. Consider the real and
imaginary parts of f(r) — 1 separately and write the latter as

f sinzxdF (x) -1-/ sintx dF (x}.
xi<e/t

[x|=¢/|1]
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The second is bounded by (|z|/¢)* fIX\>€f|f] |x|®dF (x) = o(|¢|*) for fixed ¢. In
the first integral use sin x = rx + O(|tx|?),

/ tx dF(x) —_—t/ xdF(x),
lx|=€/]t] lx|>€/ 1]

/ |tx|3dF(x)563_°‘/ ltx|* d F (x).]
[x|=e/l1|

—00

9. Suppose that e~I", where ¢ > 0,0 < @ < 2, is a ch.f. (Theorem 6.5.4
below). Let {X;, j > 1} be independent and identically distributed r.v.’s with
a common ch.f. of the form

1 — Blt1* 4+ o(Jz])

as t — 0. Determine the constants » and 6 so that the ch.f. of S, /bn? converges
to e ",

10. Suppose F satisfies the condition that for every n > 0 such that as
A — 00,

/ dF(x) = O(e™™).
x|>A

Then all moments of F are finite, and condition (6) in Theorem 6.4.5 is satisfied.
11. Let X and Y be independent with the common d.f. 7 of mean 0 and

variance 1. Suppose that (X 4 Y)/+/2 also has the d.f. F. Then F = &. [HINT:
Imitate Theorem 6.4.5.]

*12. Let {X;, j > 1} be independent, identically distributed r.v.’s with
mean O and variance 1. Prove that both

2 X V)X,

j=1 =1

T and —-—
EY 2%
J=1 =

converge in dist. to ®. [Hint: Use the law of large numbers.]

13. The converse part of Theorem 6.4.1 is false for an odd k. Example.
F is a discrete symmetric d.f. with mass C/n?logn for integers n > 3, where
O is the appropriate constant, and k = 1. [HINT: It is well known that the series

Z sinnt
nlogn

i1

converges uniformly in ¢.]
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We end this section with a discussion of a special class of distributions
and their ch.f.’s that is of both theoretical and practical importance.

A distribution or p.m. on ' is said to be of the lattice rype iff its
support is in an arithmetical progression—that is, it is completely atomic
(i.e., discrete) with all the atoms located at points of the form {¢ + jd}, where
a is real, d > 0, and j ranges over a certain nonempty set of integers. The
corresponding lattice d.f. is of form:

F{x)= Z Pibatja(x),

j=—00

where p; > O and 3252 p; = 1. Its ch.f. is

(12) f(t):eai! Z pjejdi’,

j==o0

which is an absolutely convergent Fourier series. Note that the degenerate d.f.
8, with ch.f. e“" is a particular case. We have the following characterization.

Theorem 6.4.7. A chf. is that of a lattice distribution if and only if there
exists a 7y # 0 such that | f(zy)] = 1.

PROOF. The “only if” part is trivial, since it is obvious from (12) that | f|
is periodic of period 27/d. To prove the “if” part, let f(zy) = &%, where 6,
1s real; then we have

1= e f (1) = ] =00 ()
and consequently, taking real parts and transposing:
(13) 0= /[1 — cos{tgx — )] (dx).

The integrand i1s positive everywhere and vanishes if and only if for some

integer j,
6 :
-20()
Hy Hy

It follows that the support of ; must be contained in the set of x of this form
in order that equation (13) may hold, for the integral of a strictly positive
function over a set of strictly positive measure is strictly positive. The theorem
is therefore proved, with a = 6/t and d = 27/t in the definition of a lattice
distribution.
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It should be observed that neither “a” nor “d” is uniquely determined
above; for if we take, e.g., a’' = a4 d’ and d’ a divisor of d, then the support
of w is also contained in the arithmetical progression {a’ + jd'}. However,
unless u is degenerate, there is a unique maximum d, which is called the
“span’ of the lattice distribution. The following corollary is easy.

Corollary. Unless |f| =1, there is a smallest 75 > 0 such that f(zy) = 1.
The span is then 27/¢.

Of particular interest is the “integer lattice” when a = 0, d = 1; that is,
when the support of 1 is a set of integers at least two of which differ by 1. We
have seen many examples of these. The ch.f. f of such an r.v. X has period
2m, and the following simple inversion formula holds, for each integer ;j:

1 (= 3
(14) PX=j)=p;= 5/ fe " dr,

where the range of integration may be replaced by any interval of length
2n. This, of course, is nothing but the well-known formula for the “Fourier
coefficients” of f. If {X,} is a sequence of independent, identically distributed
r.v.’s with the ch.f. f, then §,, = 3" X, has the ch.f. ()", and the inversion
formula above yields:

1 [~ y
(15) P8y =j) = 5;/ [F(O)]) e dt.

This may be used to advantage to obtain estimates for §, (see Exercises 24
to 26 below).

EXERCISES

f or f, is a ch.f. below.

14. If | f ()] =1, |f(t)] =1 and ¢/t is an irrational number, then f is
degenerate. If for a sequence {7;} of nonvanishing constants tending to 0 we
have | f(#x)| = 1, then f is degenerate.

*15. If |f.(1)] = 1 for every t as n — oo, and F, is the d.f. corre-
sponding to f,, then there exist constants a, such that ', (x + ay V5 8. [HINT:
Symmetrize and take a, to be a median of F,.]

*16. Suppose b, > 0 and |f(b,1)| converges everywhere to a ch.f. that
is not identically 1, then b, converges to a finite and strictly positive limit.
[HINT: Show that it is impossible that a subsequence of b, converges to O or
to +oo, or that two subsequences converge to different finite limits.]

*17. Suppose ¢, is real and that e converges to a limit for every ¢
in a set of strictly positive Lebesgue measure. Then ¢, converges to a finite
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limit. [HINT: Proceed as in Exercise 16, and integrate over ¢. Beware of any
argument using “logarithms”, as given in some textbooks, but see Exercise 12
of Sec. 7.6 later.]

*18. Let f and g be two nondegenerate ch.f.’s. Suppose that there exist
real constants a, and b, > 0 such that for every #:

. !
falty = f(t) and "/t f, (F) — g(1).
n
Then ay, — a, b, — b, where q is finite, 0 < b < oo, and g(r) = "™/® f (/).
[aNT: Use Exercises 16 and 17.]
*19. Reformulate Exercise 18 in terms of d.f.’s and deduce the following

consequence. Let I, be a sequence of d.f’s a,, a, real constants, b, > 0,
b > 0. 1If
n

Fn(bux+a,)— F(x) and F,(b,x+d.,)=> F(x),

where F is a nondegenerate d.f., then

E’”——> 1 and b

n

[Two d.f.’s F and G such that G(x) = F(bx + a) for every x, where b > 0
and a is real, are said to be of the same “type”. The two preceding exercises
deal with the convergence of types.]

20. Show by using (14) that | cos¢| is not a ch.f. Thus the modulus of a
ch.f. need not be a ch.f, although the squared modulus always is.

21. The span of an integer lattice distribution is the greatest common
divisor of the set of all differences between points of jump.

22. Let f(s, 1) be the ch.f. of a 2-dimensional p.m. v. If | f(sg, fp)| = 1
for some (sp, fp) # (0, 0), what can one say about the support of v?

*23. If {X, } is a sequence of independent and identically distributed r.v.’s,
then there does not exist a sequence of constants {c,} such that >, (X, —c,)
converges a.e., unless the common d.f. is degenerate,

In Exercises 24 10 26, let S, = __; X j, where the X';s are independent r.v.’s
with a common d.f. F of the integer lattice type with span 1, and taking both
>0 and <0 values.

*24. If {xdF(x) =0, [ x*dF(x) = ¢°, then for each integer j:

1
O’\/ZJT.

[HINT: Proceed as in Theorem 6.4.4, but use (15).]

n'2S, = j) >
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25. If F # &y, then there exists a constant A such that for every j:
P8, = j} < An172,

[iNT: Use a special case of Exercise 27 below.]
26. If F is symmetric and [ [x|dF (x) < oo, then

nP{S, = j} — oo.

[HNT: 1 — f(t) =o0(|t]) as t — 0.]

27. If f is any nondegenerate ch. f, then there exist constants A > 0
and é > 0 such that

If() <1—AF for |1 <S8.

[HINT: Reduce to the case where the d.f. has zero mean and finite variance by
translating and truncating.]
28. Let @, be the concentration function of S, = Z;=1X j» where the
X ;’s are independent r.v.’s having a common nondegenerate d.f. F. Then for
every A > 0,
Qu(h) < An~'/

[HinT: Use Exercise 27 above and Exercise 16 of Sec. 6.1. This result is due
to Lévy and Doeblin, but the proof is due to Rosén.]

In Exercises 29 to 35, p or u; is a p.m. on % = (0, 1].
29, Define for each n:

futny= [ Emmmus)
74

Prove by Weierstrass’s approximation theorem (by trigonometrical polyno-
mials}) that if £, (n) = f,, (n)forevery n > 1, then u; = uz. The conclusion
becomes false if %/ is replaced by [0, 1].

30. Establish the inversion formula expressing p in terms of the f,(n)’s.
Deduce again the uniqueness result in Exercise 29. [1iNT: Find the Fourier
series of the indicator function of an interval contained in %}

31. Prove that |f,(n)| =1 if and only if x has its support in the set
{6+ jn~!1,0 < j <n — 1} for some 8 in (0, n~1.

*32. u is equidistributed on the set {jn~!,0 < j <n — 1} if and only if
fugy=0o0r1 accordingto j{norj|n.

*33. py—> e if and only if f,,(-) > f,(-) everywhere.

34. Suppose that the space %/ is replaced by its closure {0, 1] and the
two points 0 and 1 are identified; in other words, suppose # is regarded as the
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circumference @ of a circle; then we can improve the result in Exercise 33
as follows. If there exists a function g on the integers such that Fu () — g()
eve@vhere, then there exists a p.m. i on @ such that g = f, and ,uk—iu
on :

35. Random variables defined on @ are also referred to as defined
“modulo 17. The theory of addition of independent r.v.’s on @ is somewhat
simpler than on ', as exemplified by the following theorem. Let (X, j > 1}
be independent and identically distributed r.v.’s on and let §; = ’J(':l X;.
Then there are only two possibilities for the asymptotic distributions of S.
Either there exist a constant ¢ and an integer n > 1 such that S; — k¢ converges
in dist. to the equidistribution on {jn~!,0 < j < n — 1}; or S; converges in
dist. to the uniform distribution on @ [HnT: Consider the possible limits of
(f .(n))* as k — o0, for each n.]

6.5 Representation theorems

A ch.f. is defined to be the Fourier- Stieltjes transform of a p.m. Can it be char-
acterized by some other properties? This question arises because frequently
such a function presents itself in a natural fashion while the underlying measure
is hidden and has to be recognized. Several answers are known, but the
following characterization, due to Bochner and Herglotz, is most useful. It
plays a basic role in harmonic analysis and in the theory of second-order
stationary processes.

A complex-valued function f defined on %' is called positive definite iff
for any finite set of real numbers ¢; and complex numbers z; (with conjugate
complex z;), 1 < j < n, we have

) SN fu—tzE = 0.
j=1 k=1

Let us deduce at once some elementary properties of such a function.

Theorem 6.5.1. If f is positive definite, then for each r € #!:

f=n=f@, If®l=fO).

If f is continuous at 7 = 0, then it is uniformly continuous in #'. In
this case, we have for every continuous complex-valued function ¢ on 72! and
every 7 > (.

T T
(2) / / fls —nNe()X () dsdr = 0.
0 0
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PROOF. Takingn =1,1 =0, z; =1 in (1), we see that

f©0)>0.

Taking n =2,61 =0, =1, z1 =2z, = 1, we have

2f)+ f@O+ f(=1) =0

changing z; to i, we have

FO+ f@)i — f(-i+ f(0) =0.

Hence f (7} + f(—1) isreal and f(#) — f(—t) is pure imaginary, which imply
that f(r) = f(—¢). Changing z; to f(¢) and z; to —|f ()|, we obtain

2FfOf @B =21f @) = 0.

Hence f(0) > |f(#)|, whether |f(#)| =0 or > 0. Now, if f(0) =0, then
f () = 0; otherwise we may suppose that f(0) = 1. If we then take n = 3,
1 =0, 1, =1, t3 =t + h, a well-known result in positive definite quadratic
forms implies that the determinant below must have a positive value:

f @ fl=n)  fl=1—-h
f@ F f(=h)
fa+hny  f(h) J )

=1—1fOF = 1f ¢+ mP = |f R+ 2R{f () f (W f (¢ + 7)) > 0.
It follows that
IF@) = FE+RP = 1O+ 1f @+ —2R{F @) f @ + 1))
< 1= [fWPF+2R{f ) f ¢+ WS (h) — 1]}
<1T—[f)P+211 - f() <41 — f(R).

Thus the “modulus of continuity” at each ¢ is bounded by twice the square
root of that at 0; and so continuity at O implies uniform continuity every-
where. Finally, the integrand of the double integral in (2) being continuous,
the integral is the limit of Riemann sums, hence it is positive because these
sums are by (1).

Theorem 6.5.2. f is ach.f.if and only if it is positive definite and continuous
at 0 with f(0) = 1.

Remark. Tt follows trivially that f is the Fourier-Stieltjes transform

f | e v(dx)
@
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of a finite measure v if and only if it is positive definite and finite continuous
at 0: then v(#!) = F(0).

PROOF. If f is the ch.f. of the p.m. u, then we need only verify that it is
positive definite. This is immediate, since the left member of (1) is then

2

fZZe izje Azk;u,(dx) f Ze iz;| pldx) = 0.

=1 k=1

Conversely, if f is positive definite and continuous at 0, then by
Theorem 6.5.1, (2) holds for &(¢) = e~/**. Thus

3 ZJTT_/ / f(s — e % dsdr > 0.

Denote the left member by pr(x); by a change of variable and partial integra-
tion, we have

1 7] —itx
(4) prix) = - / ( ) f@)e " dr.
T J-T

Now observe that for a > 0,

1 /@ A 1 12 2sin Bt 2(1 — cosat
...f dﬁ/ e—uxdx: _f Slnﬁ dﬁ= ( ~ )
a Jo _p a Jo t at

(where at + = O the limit value is meant, similarly later); it follows that

o 8 T —
lf dﬁf pr(0)dx = l/ ( "')f()l Cosa’dz
o Jo -8 TJ-r

| I e 1 —cosat
= —/ fri)———dt
T Joo at

| I t\ 1 —cost

()

T J e o t
where

7] )
. flH<T,
(5) fr) = ( )f(t) el =
0. if 7] > T,

Note that this is the product of f by a ch.f. (see Exercise 2 of Sec. 6.2)
and corresponds to the smoothing of the would-be density which does not
necessarily exist.
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Since [f7(1)| < |f ()] <1 by Theorem 6.5.1, and (1 — cost)/t> belongs to
Ll(—o00, 00), we have by dominated convergence:

1o B 1 [~ t\ 1—cost
(6) algfolC;/O dﬂ/_ﬁpr(x)dx= ;f_ooalggcfr (E) Tdf

1 [ 1—cost
= — o dr =1

T oo 12

Here the second equation follows from the continuity of fr at 0 with
f7(0) = 1, and the third equation from formula (3) of Sec. 6.2. Since pr > 0,

the integral ffﬁ pr(x)dx is increasing in B, hence the existence of the limit of
its “integral average™ in (6) implies that of the plain limit as 8 — 00, namely:

o0 B
(7) ] prx)dx = lim / prix)dx = 1.
-0 B—ooc -8
Therefore pr is a probability density function. Returning to (3) and observing

that for real 1:
/ﬁ it it g _ 2sin B(t — I),
-8 T—1
we obtain, similarly to (4):

o 5 oC _ —
S [Cap [ pan= [~ ot 2t
0 -8 T /-

o a(t — 1)?

1 [ t\ 1—cost
- — fT T— — '—2"-' df.
T Joeo o t
Note that the last two integrals are in reality over finite intervals. Letting
o — 0c, we obtain by bounded convergence as before:

(8) / e pr(x)dx = fr(z),

—0o0

the integral on the left existing by (7). Since equation (8) is valid for each r,
we have proved that fr is the ch.f. of the density function pr. Finally, since
fr(t)—> f(r) as T — oo for every 7, and f is by hypothesis continuous at
7 = 0, Theorem 6.3.2 yields the desired conclusion that f is a ch.f.

As a typical application of the preceding theorem, consider a family of
(real-valued) r.v.’s [X,, t € ¥, }, where A, = [0, c0), satisfying the following
conditions, for every s and ¢ in #,:
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@ ¢&X7) =1
(i) there exists a function r(-) on %! such that £(X,X,) = r(s — 1);
(i) lim, o ¢ ((Xo — X,)2) = 0.

A family satisfying (i) and (ii) is called a second-order stationary process or
stationary process in the wide sense; and condition (iii) means that the process
is continuous in L*(Q, 7, P).

For every finite set of ¢; and z; as in the definitions of positive definite-
ness, we have

n n n n
0< &Y Xizjl p =% EX Xy )tjZ =D Y rlt; — 127

j=1 j=1 k=1 j=1 k=1
Thus r is a positive definite function. Next, we have
r(@) —r(t) = &Xo(Xo — X)),
hence by the Cauchy-Schwarz inequality,
r@) — HO)? < EXEE(Xo — X)),

1t follows that # is continuous at 0, with r(0) = 1. Hence, by Theorem 6.5.2,
r is the ch.f. of a uniquely determined p.m. R:

rt) = f ™ R(dx).
g{?l

This R is called the spectral distribution of the process and is essential in its
further analysis.

Theorem 6.5.2 is not practical in recognizing special ch.f.’s or in
constructing them. In contrast, there is a sufficient condition due to Pélya
that is very easy to apply.

Theorem 6.5.3. Let f on #' satisfy the following conditions, for each #:

(9) fO)=1, f© =0, [f@)=/f(=1,
f is decreasing and continuous convex in &, = [0, co). Then f is a ch.f.

PROOF. Without loss of generality we may suppose that
f(o0) = lim f(t) =0;
[— 00

otherwise we consider [f(#) — f(00)1/[f(0) — f(c0)] unless f(o0) =1, in
which case f = 1. It is well known that a convex function f has right-hand
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and left-hand derivatives everywhere that are equal except on a countable set,
that f is the integral of either one of them, say the right-hand one, which will
be denoted simply by f', and that f’ is increasing. Under the conditions of
the theorem it is also clear that f is decreasing and f’ is negative in A, .
Now consider the fr as defined in (5) above, and observe that

t\ 1 ‘ |
_f’T(,)={_(lhf)f(f)'{-?f(t), if0<t<T;
0, iftr>T.

Thus — f7 is positive and decreasing in 2,. We have for each x % O

/ e~ fo(tydt = 2/ cosixfr(t)dr = %/OC sin 2x(— f (1)) dt
- 0 * 0

o
2 oo (k+1)m/x
= - Z/ sintx(— f7(#)) dt.

A k=0 i

The terms of the series alternate in sign, beginning with a positive one, and
decrease in magnitude, hence the sum > 0. [This is the argument indicated
for formula (1) of Sec. 6.2.] For x = Q, it is trivial that

foe frtydt = 0.

We have therefore proved that the pr defined in (4) is positive everywhere,
and the proof there shows that f is a ch.f. (cf. Exercise 1 below).

Next we will establish an interesting class of ch.f.’s which are natural
extensions of the ch.f.’s corresponding to the normal and the Cauchy distri-
butions.

Theorem 6.5.4. For each « in the range (0, 2],
folt) = e

1s a ch.f.

prOOF. For 0 < a < 1, this is a quick consequence of Pélya’s theorem

above. Other conditions there being obviously satisfied, we need only check

that f, is convex in [0, o). This is true because its second derivative is
equal to
e {czfztz"‘_2 —al@ =14 >0

for the range of « in question. No such luck for 1 < o < 2, and there are

several different proofs in this case. Here is the one given by Lévy which
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works for 0 < o < 2. Consider the density function

24 .
px) = { et L
0 if x| < 1;

and compute its ch.f. f as follows, using symmetry:

* 1 —costx

I—f(r):/ (l—ei’x)p(x)dx=a/ —_—dx

) xcx+1

e ml—cosud "1—cosu
_alli ; W— u— A 7:1—-6111 ,

after the change of variables #x = u. Since 1 — cosu ~ Ju? near u = 0, the first

integral in the last member above is finite while the second is asymptotically

equivalent to
E/’ u? 4 1 2
—_— u: ———
2 Jo uetl 22 — @)

as t | 0. Therefore we obtain

F@) =1 —clt|* + 0(?)

where ¢, 1s a positive constant depending on «.
It now follows that

t ”_1 Colt]® 0 2\
f alie ) = Ty + n2/a

is also a ch.f. (What is the probabilistic meaning in terms of r.v."s?) For each
t,as n — 00, the limit is equal to e =%/ (the lemma in Sec. 6.4 again'). This,
being continuous at ¢ = 0, is also a ch.f. by the basic Theorem 6.3.2, and the
constant ¢, may be absorbed by a change of scale. Finally, for @ =2, f, is
the ch.f. of a normal distribution. This completes the proof of the theorem.

Actually Lévy, who discovered these ch.f.’s around 1923, proved also
that there are complex constants y, such that e~ is a ch.f., and determined
the exact form of these constants (see Gnedenko and Kolmogorov [12]). The
corresponding d.f.’s are called stable distributions, and those with real posi-
tive y, the symmetric stable ones. The parameter « is called the exponent.
These distributions are part of a much larger class called the infinitely divisible
distributions to be discussed in Chapter 7.

Using the Cauchy ch.f. e~/ we can settle a question of historical interest.
Draw the graph of this function, choose an arbitrary T' > 0, and draw the
tangents at =7 meeting the abscissa axis at =7, where 7" > T. Now define
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the function fr to be f in [—7, T, linear in [-7", —T] and in [T, 7'], and
zero in (—oo, —=T") and (7", o0). Clearly fr also satisfies the conditions of
Theorem 6.5.3 and so is a ch.f. Furthermore, f = f7 in [—T, T]. We have
thus established the following theorem and shown indeed how abundant the
desired examples are.

Theorem 6.5.5. There exist two distinct ch.f.’s that coincide in an interval
containing the origin.

That the interval of coincidence can be “arbitrarily large” is, of course,
trivial, for if f; = f, in [—4, 8], then g = g2 in [—nd, né], where

g1(0) = f1 (i) e =1 (i) |
n n

Corollary. There exist three ch.f.’s, f1, f2, f3,such that ) f3 = f>f3 but
f1# fa

To see this, take f; and f, as in the theorem, and take f3 to be any
ch.f. vanishing outside their interval of coincidence, such as the one described
above for a sufficiently small value of 7. This result shows that in the algebra
of ch.f.’s, the cancellation law does not hold.

We end this section by another special but useful way of constructing
ch.f.’s.

Theorem 6.5.6. If f is a ch.f., then so is ¢’ ~1 for each A > 0.

prOOF. For each A > 0, as soon as the integer n > A, the function

A A —
1__+_f=]+£j_r_l)
H H n

is a ch.f., hence so is its nth power; see propositions (iv) and (v) of Sec. 6.1.

Asn — o0,
(14 3L=DY" L, g

n

and the Iimit is clearly continuous. Hence it is a ch.f. by Theorem 6.3.2.
Later we shall see that this class of ch.f.’s is also part of the infinitely
divisible family. For f(¢) = ¢, the comresponding

X e

- it .
en(e -1 — E : ezm
n!

n=(}

is the ch.f. of the Poisson distribution which should be familiar to the reader.
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EXERCISES

1. If f is continuous in %' and satisfies (3) for each x € #! and each
T > 0. then f is positive definite.

2. Show that the following functions are ch.f.’s:

R Sl A S .
T+ f(‘)_{o, iflf>1 O<a<l,
1=, ifo<ll<i
f(t)={ 1 . 1
_—, flz] = =.
41] S

3. If {X,} are independent r.v.’s with the same stable distribution of
exponent a, then 3 }_; X;/n!/® has the same distribution. [This is the origin
of the name “stable”.]

4. If F is a symmetric stable distribution of exponent o, 0 < & < 2, then
[ IxI"dF(x) < 0o for r < a and = oo for r > . [HiNT: Use Exercises 7
and 8 of Sec. 6.4.]

*5. Another proof of Theorem 6.5.3 is as follows. Show that

/mzdf’(t)=1
0

and define the d.f. G on Z#, by

G(u) =f td f'(@).
[0.u}

foo (1 — 'il) dGu) = ().
4] U

7]

f(u,t): (1——)\/0
U

Next show that

Hence if we set

(see Exercise 2 of Sec. 6.2), then

f@)= [ (u, 1)dG(w).
[@,0¢)
Now apply Exercise 2 of Sec. 6.1.
6. Show that there is a ch.f. that has period 2m, m an integer > I, and
that is equal to 1 — [¢| in [—1, 4+1]. [HiNT: Compute the Fourier series of such
a function to show that the coefficients are positive.]
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7. Construct a ch.f. that vanishes in [—b, —a] and [a, b], where 0 < a <
b, but nowhere else. [HINT: Let f,, be the ch.f. in Exercise 6 and consider

mefm’ where p, > 0, me =1,
0 m

and the p,,’s are strategically chosen.]

8. Suppose f(z,u) is a function on %% such that for each u, f(-, u) is a
ch.f.; and for each ¢, f(z, -) is continuous. Then for any d.f. G,

exp {/00 [f(t,u)— l]dG(u)}
is a ch.f.

9. Show that in Theorem 6.3.2, the hypothesis (a) cannot be relaxed to
require convergence of {f,} only in a finite interval || < T.

6.6 Multidimensional case; Laplace transforms

We will discuss very briefly the ch.f. of a p.m. in Euclidean space of more than
one dimension, which we will take to be two since all extensions are straight-
forward. The ch.f. of the random vector (X, ¥) or of its 2-dimensional p.m.
w is defined to be the function f(-,-) on Z*:

(1) f(S, f) — f(X.YJ(S! I) — (g:(ei(sX-i-l‘Y)) — ffei(sx+r‘V)M(dx, dy)
I
Propositions (1) to (v) of Sec. 6.1 have their obvious analogues. The inversion
formula may be formulated as follows. Call an “interval” (rectangle)
{x, y)x1 =x<xy £y < wm}

an interval of continuity iff the p-measure of its boundary (the set of points
on its four sides) is zero. For such an interval /, we have

1 T T e—isx; _ emisxg e—ity; _ e—iry;
= lim / f - - s, tydsdte.
= Jim s | | = ———f(s.)

The proof 1s entirely similar to that in one dimension. It follows, as there, that
f uniquely determines . Only the following result is noteworthy.

Theorem 6.6.1. Two r.v.’s X and Y are independent if and only if
(2) Vs, ¥i:  for(s, 1) = fx(s)fr @),

where fx and fy are the ch.f.’s of X and Y, respectively.
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The condition (2) is to be contrasted with the following identify in one
variable:

Vt: fX+Y(T)=fX(I)fY(I)’

where fx,y is the ch.f. of X + Y. This holds if X and Y are independent, but
the converse 1s false (see Exercise 14 of Sec. 6.1).

~ PROOF OF THEOREM 6.6.1. If X and Y are independent, then so are "X and
¢’ for every s and t, hence

éf(ei(SX-!-!Y)) = ég(eisX ] eifY) — (g?(est)(ga(eirY)’

which is (2). Conversely, consider the 2-dimensional product measure z1 X g,
where 141 and o are the 1-dimensional p.m.’s of X and Y, respectively, and
the product is defined in Sec. 3.3. Its ch.f. is given by definition as

// ei(sx+ty)(#1 % Mz)(dxs dy) = ffeisx . eif}"u](dx)p,z(dy)
2 %

- f eixxﬂl(dx)/ e ua(dy) = fx(s)fr(®)
R R!

(Fubini’s theorem!). If (2) is true, then this is the same as f(x y)(s, f), so that
(1 X o has the same ch.f. as u, the p.m. of (X, Y'). Hence, by the uniqueness
theorem mentioned above, we have u; x g2 = . This 1s equivalent to the
independence of X and Y.

The multidimensional analogues of the convergence theorem, and some
of its applications such as the weak law of large numbers and central limit
theorem, are all valid without new difficulties. Even the characterization of
Bochner has an easy extension. However, these topics are better pursued with
certain objectives in view, such as mathematical statistics, Gaussian processes,
and spectral analysis, that are beyond the scope of this book, and so we shall
not enter into them.

We shall, however, give a short introduction to an allied notion, that of
the Laplace transform, which is sometimes more expedient or appropriate than
the ch.f., and is a basic tool in the theory of Markov processes.

Let X be a positive (>0) r.v. having the d.f. F so that F has support in
[0, o), namely F(0—) = 0. The Laplace transform of X or F is the function

F on #, = [0, 00) given by

(3) FO) = ey = / e dF (x).
[0,00)

It is obvious (why?) that

FO) = lliﬁ}ﬁ(k) =1, Fo)= Jim FO) = F(0).
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More generally, we can define the Laplace transform of an s.d.f. or a function
G of bounded variation satisfying certain “growth condition” at infinity. In
particular, if F is an s.d.f., the Laplace transform of its indefinite integral

Gx) = /xF(u)du
0

is finite for A > 0 and given by

G(A):/ e-“F(x)dx=/ e—“dx/ w(dy)
[0,00) [0,0c) [O,x]

oo 1 X 1 -
- f u(dy) / ey = 1 f M u(dy) = ~E ),
[0,00) ¥ A [0,00) A

where p is the s.p.m. of F. The calculation above, based on Fubini’s theorem,
replaces a familiar “integration by parts”. However, the reader should beware
of the latter operation. For instance, according to the usual definition, as
given in Rudin [1] (and several other standard textbooks!), the value of the

Riemann—Stieltjes integral
oc
/ e M déy(x)
0

is O rather than 1, but

[= & oo
/ e M d8o(x) = lim So(x)e |4 + / So()re ™ dx
0 < 0

Atoo

is correct only if the left member is taken in the Lebesgue-Stieltjes sense, as
1s always done in this book.

There are obvious analogues of propositions (i) to (v) of Sec. 6.1.
However, the inversion formula requiring complex integration will be omitted
and the uniqueness theorem, due to Lerch, will be proved by a different method
(cf. Exercise 12 of Sec. 6.2).

Theorem 6.6.2. Let £, be the Laplace transform of the d.f. F; with support
in%,,j=121f F; = Fy, then F| = F.

PrOOF. We shall apply the Stone-Weierstrass theorem to the algebra
generated by the family of functions {e=**, A > 0}, defined on the closed
positive real line: A, = [0, co], namely the one-point compactification of
#, = [0, 00). A continuous function of x on %, is one that is continuous
in %, and has a finite limit as x — co. This family separates points on Z
and vanishes at no point of 7, (at the point 400, the member e~®* = 1 of the
family does not vanish!). Hence the set of polynomials in the members of the
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family, namely the algebra generated by it, is dense in the uniform topology,
in the space Cp(#4) of bounded continuous functions on A+ That is to say,
given any g € Cp(#4), and € > 0, there exists a polynomial of the form

4]
gelx) =) cje™™”,
j=1

where c; are real and A ; = 0, such that
sup |g(x) — g.(x)| < e.
x€§+
Consequently, we have

[ 80) — g dF, ) <6, j=1,2.

By hypothesis, we have for each A > 0:
/ e dF(x) = f e dF,(x),

and consequently,

/ge(X)dFl(X) = /ge(X)sz(X)-

It now follows, as in the proof of Theorem 4.4 .1, first that
fg(X)dFl(X) = /3(X)sz(X)

for each g € Cy(#,); second, that this also holds for each g that is the
indicator of an interval in 7, (even one of the form (a, oo]); third, that
the two p.m.’s induced by F, and F; are identical, and finaily that F; = F»
as asserted.

Remark. Although it is not necessary here, we may also extend the
domain of definition of a d.f. F to %, thus F(oo) = 1, but with the new
meaning that F(co) is actually the value of F at the point oo, rather than
a notation for lim,_, .. F(x) as previously defined. F is thus continuous at
co. In terms of the p.m. u, this means we extend its domain to 7, but set
1({co}) = 0. On other occasions it may be useful to assign a strictly positive
value to p({oo}).

Passing to the convergence theorem, we shall prove it in a form closest
to Theorem 6.3.2 and refer to Exercise 4 below for improvements.

Theorem 6.6.3. Let{F,, 1 <n < oo} be asequence of s5.d.f.’s with supports
in #4 and {ﬁ” »} the corresponding Laplace transforms. Then F 2> F oo, where
F is a d.f., if and only if:
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(@) limy .o F » () exists for every A > 0O;
(b) the limit function has the limit 1 as A | 0.

Remark. The limit in (a) exists at A = 0 and equals 1 if the F,’s are
d.f.’s, but even so (b) is not guaranteed, as the example F,, = §, shows.

PROOF. The “only if” part follows at once from Theorem 4.4.1 and the
remark that the Laplace transform of an s.d.f. i1s a continuous function in #, .
Conversely, suppose lim F 2(A) = G(A), A > 0; extended G to A, by setting
G(0) =1 so that G 1s continuous in 77, by hypothesis (b). As in the proof
of Theorem 6.3.2, consider any vaguely convergent subsequence F,, with the
vague limit F., necessarily an s.d.f. (see Sec. 4.3). Since for each A > 0,
¢~ € Cy, Theorem 4.4.1 applies to yield £, (A) = Fo(A) for A > 0, where
F,, is the Lapiace transform of Fo. Thus }:"m(k) = G(A) for A > 0, and
consequently for A > 0 by continuity of Fo and G at » = 0. Hence every
vague limit has the same Laplace transform, and therefore is the same F, by
Theorem 6.6.2. It follows by Theorem 4.3.4 that F,— F .. Finally, we have
Foo(oc) = ﬁ“w(()) = G(0) =1, proving that F, is a d.f.

There is a useful characterization, due to S. Bernstein, of Laplace trans-
forms of measures on F#,. A function is called completely monotonic in an
interval (finite or infinite, of any kind) iff it has derivatives of all orders there
satisfying the condition:

“4) 1" %) =0

for each n > 0 and each X in the domain of definition.

Theorem 6.6.4. A function f on (0, oc) is the Laplace transform of ad.f. F:
) )= [ eMdFw,

Rt
if and only if it is completely monotonic in (0, co) with f(0+) =1.

Remark. We then extend f to 2%, by setting f(0) =1, and (5) will
hold for A > 0.
prOOF. The “only if” part is immediate, since
Fm = (—x)'e ™ dF(x).
Tt

Turning to the “if” part, let us first prove that f 1s quasi-analytic in (0, 00},
namely it has a convergent Taylor series there. Let 0 < &g < A < u, then, by
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Taylor’s theorem, with the remainder term in the integral form, we have

ko

(o )
6) fy= Zf (“)a— uy

= '
(=t k=1 p0k)
T / A= O+ G- i
Because of (4), the last term in (6) is positive and does not exceed
(A i
i1 [ (1= 4" D+ (ko — wirydr,

For if k is even, then f® | and (A — u)* > 0, while if & is odd then f® ¢
and (A — w)* < 0. Now, by (6) with A replaced by A, the last expression is
equal to

Y ~ fOw) (A—u)"
Ag) — ho — ) Ag),
(xo_,u,) fGo) g PRl Il Gveaeyg IACO

where the inequality 1s trivial, since each term in the sum on the left is positive
by (4). Therefore, as k — o0, the remainder term in (6) tends to zero and the
Taylor series for f (1) converges.

Now for each n > 1, define the discrete s.d.f. F,, by the formula:

2l i o
) Fa@) =3 -E.—,(-—l)’f‘”(n)-

/=0

This is indeed an s.d.f., since for each € > 0 and & > 1 we have from (6):

A

(€ —n).

1=+ > fle)= Z

j=0

Letting € | 0 and then & 1 0o, we see that F,,(c0) < 1. The Laplace transform
of F, is plainly, for A > O:

oo

/ e dF, () =Y e ”"’( L 0
A =0
= i.(nu —e MM =y fDn) = f(n(1 =),
=07

the last equation from the Taylor series. Letting n — o0, we obtain for the
limit of the last term f(X), since f is continuous at each A. It follows from
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Theorem 6.6.3 that {F,} converges vaguely, say to F, and that the Laplace
transform of F i1s f. Hence F(oo) = f(0) =1, and F is a d.f. The theorem
1s proved.

EXERCISES

1. If X and Y are independent r.v.’s with normal d.f.'s of the same
variance, then X 4+ Y and X — Y are independent.

*2. Two uncorrelated r.v.’s with a joint normal d.f. of arbitrary parameters
are independent. Extend this to any finite number of r.v.’s.

*3. Let Fand Gbe s.d.f.’s. If Ay > O and F(A) = G(k) for all A > Ay, then
F = G. More generally, if I:“(nkg) = G(nko) for integer n > 1, then F = G.
[HvT: In order to apply the Stone—Weierstrass theorem as cited, adjoin the
constant 1 to the family {e™, A > iy}; show that a function in Cy can actually
be uniformly approximated without a constant.]

*4, Let {F,} be s.d.f.’s. If Ag > 0 and lim,—, oo £, (1) exists for all A > 2,
then {F,} converges vaguely to an s.d.f.
5. Use Exercise 3 to prove that for any d.f. whose support 1s in a finite
interval, the moment problem 1s determinate.

6. Let F be an s.d.f. with support in #,. Define Gy = F,
Gy (x) = / Gy (u) d
0
for n > 1. Find G, () in terms of F(A).

7. Let f() = [o° e ™ f(x)dx where f € L'(0, 00). Suppose that f has
a finite right-hand derivative f'(0) at the origin, then

FO)= lim Af (),
A—=00
f'© = lim A[Af () = £O)]
*8. In the notation of Exercise 7, prove that for every A, € #4:

(. —wa foc e~ f(s+ ydsdt = FO) — Fw).
0 0

9. Given a function ¢ on .7 that 1s finite, continuous, and decreasing
to zero at infinity, find a o-finite measure @ on A4 such that

Vi > 0:/ o(t — s)u(ds) = 1.
[Q.]

[HINT: Assume o(0) = 1 and consider the d.f. 1 —o.]
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*10. If £ > 0 on (0, oc) and has a derivative f' that is completely mono-
tonic there, then 1/f 1s also completely monotonic,
11. If f is completely monotonic in (0, co) with f(0+) = 400, then f
is the Laplace transform of an infinite measure @ on % .:

f)= / e M p(dx).
Ry

[HINT: Show that F, (x) < ¢ f(8) for each § > 0 and all large n, where F,,
is defined in (7). Alternatively, apply Theorem 6.6.4 to f(A+n"1)/f(n™!)
for A > 0 and use Exercise 3.]

12. Let {g,.1 < n < o0} on A, satisfy the conditions: (i) for each
n,g,(-) i1s positive and decreasing; (ii) go.(x) is continuous; (iii) for each
A >0,

o]

lim e‘“g,,(x)dxz/ e Mg (X)dx.
0

n—oo 0

Then
Iim g,(x) = geo(x) for every x € A,.
n—00

{HINT: For € > 0 consider the sequence fow e g, (x)dx and show that

b b
im [ e dx = [ e gnwdrn T g ) = gun(-)

n—0o0

and so on.]

Formally, the Fourier transform f and the Laplace transform F of a p.m.
with support in Z2 can be obtained from each other by the substitution r = iA
or A = —itin (1) of Sec. 6.1 or (3) of Sec. 6.6. In practice, a certain expression
may be derived for one of these transforms that is valid only for the pertinent
range, and the question arises as to its validity for the other range. Interesting
cases of this will be encountered in Secs. 8.4 and 8.5. The following theorem
is generally adequate for the situation.

Theorem 6.6.5. The function # of the complex variable z given by

h(z):f e dF (x)
A

Ay

is analytic in Rz < 0 and continuous in Rz < 0. Suppose that g is another
function of z that is analytic in Rz < 0 and continuous in Rz < 0 such that

vt e R h(in) = glin).
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Then A(z) = g(z) in Rz < 0; in particular
Vi e Ry h(—2) = g(—i).

PROOF. For each integer m > 1, the function 4,, defined by

m@= [ earw=Y2 [ Tare
[0.m]

= Jlom !

is clearly an entire function of z. We have

/ e dF(x) < / dF (x)
(m,00) (m,00)

in Rz < 0; hence the sequence A, converges uniformly there to A, and 4
1s continuous In Rz < 0. It follows from a basic proposition in the theory of
analytic functions that 4 is analytic in the interior Rz < 0. Next, the difference
h — g 1s analytic 1n Rz < 0, continuous is Rz < 0, and equal to zero on the
line Rz = 0 by hypothesis. Hence, by Schwarz’s reflection principle, it can be
analytically continued across the line and over the whole complex plane. The
resulting enfire functions, being zero on a line, must be identically zero in the
plane. In particular # — g = 0 in Rz < 0, proving the theorem.
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7 Central limit theorem and
its ramifications

7.1 Liapounov’s theorem

The name “central limit theorem” refers to a result that asserts the convergence
in dist. of a “normed” sum of r.v.’s, (§, — a,)/b., to the unit normal d.f. ®.
We have already proved a neat, though special, version in Theorem 6.4.4.
Here we begin by generalizing the set-up. If we write

Sn — a4y ! Xj ay
1 = - = —
@ b ~\25 | b,

j=1

we see that we are really dealing with a double array, as follows. For each
n > 1 let there be &, r.v.’s {X,;, 1 < j <k,}, where k, — o0 as n — oc:

X1, X1, 0 X
(2) Xo1, X220 -5 Xk
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The r.v.’s with n as first subscript will be referred to as being in the nth row.
Let Fy; be the d.f., f,; the ch.f. of X, ;; and put

kn
Sn=Sni, =3 X

j=1

The particular case k, = n for each » yields a triangular array, and 1if, further-
more, X, ; = X; for every n, then it reduces to the initial sections of a single
sequence {X;, j > 1}.

We shall assume from now on that the r.v.’s in each row in (2) are
independent, but those in different rows may be arbitrarily dependent as in
the case just mentioned — indeed they may be defined on different probability
spaces without any relation to one another. Furthermore, let us introduce the
following notation for moments, whenever they are defined, finite or infinite:

: 2
(f((an)zanja o (X"j)=a-sjs

ky Ky
é;(Sﬂ):Zaﬂj:ans UZ(S”):ngjzsi’
(3) =1 =1

K
g(lX:rj|3)=ynja Ty =Zynj'
i=1

In the special case of (1), we have

>

o*(X ;)

J GZ(an) — 2

an = qz;—-s

If we take b, = 5, then
ky

(4) S ot (X) =1.
i=1

By considering X,,; — a,,; instead of X,,;, we may suppose
(3 Vn,Vja,; =0

whenever the means exist. The reduction (sometimes calied “norming’)
leading to (4) and (5) is always available if each X,; has a finite second
moment, and we shall assume this in the following.

In dealing with the double array (2), it is essential to impose a hypothesis
that individual terms in the sum
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are “negligible” in comparison with the sum itself. Historically, this arose
from the assumption that “small errors” accumulate to cause probabilistically
predictable random mass phenomena. We shall see later that such a hypothesis
1s indeed necessary in a reasonable criterion for the central limit theorem such
as Theorem 7.2.1.

In order to clarify the intuitive notion of the negligibility, let us consider
the following hierarchy of conditions, each to be satisfied for every € > O:

(a) Vjo  lim P{X,;| > €} =0
n— o0
(b) Iim max P{|X,;| > e =0;
n—>o00 1< i<k,
(c) lim @{ max |X,;| > e} = 0;
n—00 1<j<k,
ky
(d) Lim Z PlXn;l > € =0.
j=1

It is clear that (d) = (¢) = (b) = (a); see Exercise 1 below. It turns out that
(b) is the appropriate condition, which will be given a name.

pEFINITION.  The double array (2) is said to be holospoudic* iff (b) holds.

Theorem 7.1.1. A necessary and sufficient condition for (2} to be
holospoudic 1s:

(6) Vi e 2 lim max |f,;(1)— 1] =0.

n—0C 1< j<ky

PROOF. Assumung that (b) is true, we have

|fnj(z)_115[|€“x—1lanj(x)=[‘ +/x
x|>€ x|<¢

< [ 2dF, )+ 1t | Ix|dFa@)
[x|>e€

lxI<e
< 2f dF,;(x)+ €lt];
jxl>¢

and consequently

max | f,;(t) — 1| < 2max:2{|X,;| > €} + €lt].
J J

*1 am indebted to Professor M. Wigodsky for suggesting this word, the only new term coined
in this book.
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Letting n — oo, then € — 0, we obtain (6). Conversely, we have by the
inequality (2) of Sec. 6.3,

/ dF,zj(x)52—’E/ fnj(t)dt
x|>€ 2 Ir=2/¢

and consequently

€
55/ 1 — foi(0)ldr:
[t1<2/e

; €
max {|X,;| > €} < —/ max |1 — fn;()]dr.
I 2 Jin=zre I
Letting n — oc¢, the right-hand side tends to 0 by (6) and bounded conver-
gence; hence (b) follows. Note that the basic independence assumption is not
needed in this theorem.

We shall first give Liapounov’s form of the central limit theorem
involving the third moment by a typical use of the ch.f. From this we deduce
a special case concerning bounded r.v.’s. From this, we deduce the sufficiency
of Lindeberg’s condition by direct arguments. Finally we give Feller’s proof
of the necessity of that condition by a novel application of the ch.f.

In order to bring out the almost mechanical nature of Liapounov’s result
we state and prove a lemma in calculus.

Lemma. Let{6,;,1 < j <k,, 1 < n}beadouble array of complex numbers
satisfying the following conditions as n — oo:

(i) maxXi< <k, |9n]l - Oa

(ii) Z’j‘-":l 6,1 < M < oo, where M does not depend on n;

(iii) Z’;f’:] 6,; — 6, where @ is a (finite) complex number.

Then we have

ky
M [[a+6.,)— ¢

j=1

PROOF. By (i), there exists ny such that if n > ng, then |6,;| < 1 for all
7, so that 1 +6,; # 0. We shall consider only such large values of n below,
and we shall denote by log (1 + 6,;) the determination of logarithm with an
angle in (—m, 7]. Thus

(8) log(1 4 6,j) = 6y + Al6as I,

where A is a complex number depending on various variables but bounded
by some absolute constant not depending on anything, and is not necessarily
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the same in each appearance. In the present case we have in fact

= (=1t = [6nj ™
> —— =2

m—2 ' m=2

16017 o=~ /12 )
===>l5) ==y,

m=2

|[log(1 + 8,;) —6,;| =

so that the absolute constant mentioned above may be taken to be 1. (The
reader will supply such a computation next time.) Hence

kn k, 3
Dlog(l+6,3= b+ A > 16n7
j=1 j=1 =1

(This A is not the same as before, but bounded by the same 1!). It follows
from (11) and (i) that

kp, ky,
2 .
) E 18,17 < 1m_ax 6n 51 E 6p;l <M max |6,;] — 0;
— <j <k, P 1< <k,
J-- =

and consequently we have by (iii),

ky
Zlog(l + 6,;) — 6.
J=1

This is equivalent to (7).

Theorem 7.1.2. Assume that (4) and (5) hold for the double array (2) and
that y, ; is finite for every n and j. If

(10) T, =0
as n — oo, then §, converges in dist. to P.

prOOF. For each n, the range of j below will be from 1 to k,. It follows
from the assumption (10} and Liapounov’s inequality that

(1) maxaijgmaxynjgf‘,,—»().
j J

By (3') of Theorem 6.4.2, we have
fnj(t) =1- %Oﬁjtz + Anjy”-|[13,

where [A, ;] < é. We apply the lemma above, for a fixed ¢, to

1 2 .2 3
9!7]' = _EURJ{I + Anjynjltl .
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Condition (i) is satisfied since

2
t
2 3
mjax 6] < Emj@xanj-f—Altl mjaxy,,j - 0

by (11). Condition (11} is satisfied since
2
> 16wl < = + AP,
N

is bounded by (11); similarly condition (iii) is satisfied since
2

N —ﬁ+A|tl3r S -L
- nj — 7 R 2

It follows that
ky
[[fn0)— e

J=1

This establishes the theorem by the convergence theorem of Sec. 6.3, since
the left member is the ch.f. of §,,.

Corollary. Without supposing that §(X,;) = 0, suppose that for each n and
7 there is a finite constant M ,; such that |X,;| <M, ; a.e., and that

(12) max M,; — 0.

I<j<k,

Then S, — £(5,) converges in dist. to ®.

This follows at once by the trivial inequality

ky kp
. : 3 2
DXy = EXnp)P) 2 max My, 3 0* (X))
=1 == =1
=2 max M,;.
1= j=<kn

The usual formulation of Theorem 7.1.2 for a single sequence of inde-
pendent r.v.’s {X;} with £(X;) =0, 0%(X;) = 07 < o0, ENX Py = y; < o0,

n n n
(13) Si=Y X s£=> 0, Ta=) v,
j=1 j=1 j=1

is as follows.
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If

(14) 533 - 0,
53

then S, /s, converges in dist. to &.

This is obtained by setting X, ; = X ; /s,,. It should be noticed that the double
scheme gets rid of cumbersome fractions in proofs as well as in statements.

We proceed to another proof of Liapounov’s theorem for a single
sequence by the method of Lindeberg, who actually used it to prove his
version of the central limit theorem, see Theorem 7.2.1 below. In recent times
this method has been developed into a general tool by Trotter and Feller.

The idea of Lindeberg is to approximate the sum X; + -+« + X, in (13)
successively by replacing one X at a time with a comparable normal (Gaussian)
r.v. Y, as follows. Let {Y;, j > 1} be r.v.’s having the normal distribution
N(0, g?); thus ¥ ; has the same mean and variance as the corresponding X ;
above; let all the X's and Y’s be totally independent. Now put

ZJ:Y]++YJ_]+XJ+]++XH: 15]5”?
with the obvious convention that
=Xo+-+Xn, Zp=Yi1+-+Y,

To compare the distribution of (X; + Z;)/s, with that of (Y; + Z;)/s,. we
use Theorem 6.1.6 by comparing the expectations of test functions. Namely,
we estimate the difference below for a suitable class of functions f:

e )
£l (52} (59

This equation follows by telescoping since Y; +Z; = X1 + Z;11. We take
f in Cj, the class of bounded continuous functions with three bounded contin-
uous derivatives. By Taylor’s theorem, we have for every x and y:

£, } _ MiyP
-6

fx+y) - [f(x)+f(x)y+

where M = sup,» | f®)(x)|. Hence if & and # are independent r.v.’s such that
#{In’} < oo, we have by substitution followed by integration:

1 , .
[SfE+ ) = = S O n) - Eaﬁ'{f’ )’}

M ¢ 3
(16) < gcf{lnl }-
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Note that the r.v.’s f(£&), f'(&), and f"(§) are bounded hence integrable. If £
is another r.v. independent of £ and having the same mean and variance as 7,
and ¢ {|¢|*} < oo, we obtain by replacing n with ¢ in (16) and then taking the
difference:

M
17) [HfE+m) - AfE+ D) = E«(f‘{lnl3+|§|3}-

This key formula is applied to each term on the right side of (15), with
E=Z;/sn.n=X;[sn,& =Y ;/s,. The bounds on the right-hand side of (17)
then add up to

M|y co
18 — LT )
o 6,-:1{s2+si}

where ¢ = 4/8/x since the absolute third moment of N (0, o) is equal to ca7.
By Liapounov’s inequality (Sec. 3.2) o < y;, so that the quantity in (18) is
O(T,,/s3). Let us introduce a unit normal r.v. N for convenience of notation,

so that (Y; +--- 4+ Y,)/s, may be replaced by N so far as its distribution is
concerned. We have thus obtained the following estimate:

I S" & < _1:’1
() -arm=o().

Consequently, under the condition (14), this converges to zero as n — oc. It
follows by the general criterion for vague convergence in Theorem 6.1.6 that
S, /s, converges in distribution to the unit normal. This is Liapounov’s form of
the central limit theorem proved above by the method of ch.f.’s. Lindeberg’s
idea yields a by-product, due to Pinsky, which will be proved under the same
assumptions as in Liapounov’s theorem above.

(19) vfecC

Theorem 7.1.3. Let {x,} be a sequence of real numbers increasing to +oc
but subject to the growth condition: for some € > 0,

I, x{,z1
(20) log—T + Z2(14+¢)—> —o¢
S;! 2

as n —» 0o. Then for this e, there exists N such that for all n > N we have

x2 x?
21)  exp [—-22(1 +6)} < P{Su = xu8p} < exp [—-5(1 - 6)} :

pROOF. This is derived by choosing particular test functions in (19). Let
f e C? be such that
1

fx)y=0 forxg—%; 0<fxy<1 for—%<x<§;

fxy=1 forx> %;
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and put for all x:
fa@)=fx—x,— 1) @ =fG—x+3)
Thus we have, denoting by /p the indicator function of B C #!:

1[x,,+1,oc} = fn (x) < I[x,,m, = gn(x) = [[x,,—l.oo)-

It follows that

(22) cf{fn (%)} < PISp > X455} < (5'{g,, (gﬁ)}

whereas

(23) PN > x, + 1} < E{fn(N)} = Hgn(N)} = PN > x, — 1L
Using (19) for f = f, and f = g,, and combining the results with (22) and
(23), we obtain

'y _
PIN>x,+1} - O (—3“) < PSh = XuSn}
Ay

n

(24) s@{Nzxn—l}w(E’-'-).

3
S

Now an elementary estimate yields for x — +oco:

PN > x) = : /oo yz)d ! ex ( xz)
= X _\/2—91' . exp 2 y »\/Ex p 2 ?

(see Exercise 4 of Sec. 7.4), and a quick computation shows further that

2
PIN > x+ 1} =exp {—%(1 + o(]))] , X — +00.

Thus (24) may be written as

_ x,zt g
8’a{Sn ansn} =¢€xp {_—2“(1 +0(1))j| +0 (—33_) :

n

Suppose n is so large that the o(1) above is strictly less than € in absolute
value; in order to conclude (23) it is sufficient to have
Ty 2

=0 (exp {—%(1 +€):|> . R > 00,

Y
S?’!

This is the sense of the condition (20), and the theorem is proved.
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Recalling that s, is the standard deviation of S,, we call the probability
in (21) that of a “large deviation”. Observe that the two estimates of this
probability given there have a ratio equal to en? which is large for each e,
as x, — +oo. Nonetheless, it is small relative to the principal factor e~
on the logarithmic scale, which is just to say that ex? is small in absolute
value compared with —xﬁ /2. Thus the estimates in (21) is useful on such a
scale, and may be applied in the proof of the law of the iterated logarithm in
Sec. 7.5.

EXERCISES

*1. Prove that for arbitrary r.v.’s {X, j} in the array (2), the implications
(d) = (c} = (b) => (a) are all strict. On the other hand, if the X, ;’s are
independent in each row, then (d) = (c).

2. For any sequence of r.v.’s {Y,}, if Y, /b, converges in dist. for an
increasing sequence of constants {b,}, then Y,/b) converges in pr. to 0 if
b, = o(b),). In particular, make precise the following statement: “The central
limit theorem implies the weak law of large numbers.”

3. For the double array (2), it is possible that S, /b, converges in dist.
for a sequence of strictly positive constants b, tending to a finite limit. Is it
still possible if b, oscillates between finite limits?

4. Let {X;} be independent r.v.’s such that max,<;<, |X;|/by — O in
pr. and (S, — a,)/b, converges to a nondegenerate d.f. Then b, — oo,
bpi1/by — 1, and (a,+1 —ay)/b, — 0.

*5. In Theorem 7.1.2 let the d.f. of §, be F,,. Prove that given any € > 0,
there exists a 8(¢) such that T, < 8(¢) = L(F,, ®) <¢, where L is Levy
distance. Strengthen the conclusion to read:

sup |F,(x) — ®(x)| < e

xeA!

*6. Prove the assertion made in Exercise 5 of Sec. 5.3 using the methods
of this section. [HINT: use Exercise 4 of Sec. 4.3.]

7.2 Lindeberg-Feller theorem

We can now state the Lindeberg—Feller theorem for the double array (2} of
Sec. 7.1 (with independence in each row).

Theorem 7.2.1. Assume o2 ;<00 for each n and j and the reduction

[

hypotheses (4) and (5) of Sec. 7.1. In order that as n — oc the two conclusions
below both hold:
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(1) S, converges in dist. to @,
(if) the double array (2) of Sec. 7.1 is holospoudic;

it is necessary and sufficient that for each n > 0, we have

kn

(1 Z/ X dF,;(x) = 0.
j=1 [x]=n
The condition (1) is called Lindeberg’s condition; it is manifestly

equivalent to

kn

(1) Z/ XdF, () — 1.
=1 Ixl=n

PROOF. Sufficiency. By the argument that leads to Chebyshev’s inequality,
we have

1
@) PlIXn)| > 1) < 55/

x>

X2 dF,;(x).

Hence (ii) follows from (1); indeed even the stronger form of negligibility (d)
in Sec. 7.1 follows. Now for a fixed n, 0 < n < 1, we truncate X, as follows:

) Xny, A X
) - Xy = {0, otherwise.

Put §, = Z’}Ll X ., 0%(S)) =s2. We have, since £(X,;) =0,

nj
rf(X:UJ:/l xdFyi(x)= —[ xdFpj(x).
x| =<n x| >n

Hence

X, ) < / x| dF(5) < % f x* dF ()
[x]=n

[x|>n

and so by (1),

k
1 "
|£(S))] < 52 x2 dF, ;(x) - 0.

je=1 7 IX>1

Next we have by the Cauchy-Schwarz inequality

s [ RdRye [ 1R

|x[=n lx[>n
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and consequently

#@@hi/ ﬁdﬂﬁﬂ—f@@fa{/'-if }fdﬂﬂﬂ
lx|<n lxl<n [xl=n

It follows by (1"} that

Ky

1=sizs’izz{/ —f }xzanj(x)v»l.
fan] |x|=<n [x|>1n

Thus as n — o¢, we have
! 3 F
$, > 1 and &£(S,)— 0.

Since

S, — &S ELS
g={" mn+a&?§

f ! n
s, s

we conclude (see Theorem 4.4.6, but the situation is even simpler here) that
if [, — £(S;)1 1 /s, converges in dist., so will S, /s, to the same d.f.

Now we try to apply the corollary to Theorem 7.1.2 to the double array
{Xf”-}. We have |X, ;| < n, so that the left member in (12) of Sec. 7.1 corre-
sponding to this array is bounded by 7. But although 7 is at our disposal and
may be taken as small as we please, it is fixed with respect to » in the above.
Hence we cannot yet make use of the cited corollary. What is needed is the

following lemma, which is useful in similar circumstances.

Lemma 1. Le tu(m, n) be a function of positive integers m and n such that

Vm: lim u(m,n)=0.
H—+ 0O

Then there exists a sequence {m,} increasing to oo such that
Iim u(m,,n)=20.
n—oo

PROOF. It is the statement of the lemma and its necessity in our appli-
cation that requires a certain amount of sophistication; the proof is easy. For
each m, there is an n,, such that n > n,, = u(m, n} < 1/m. We may choose
{n,,,m > 1} inductively so that n,, increases strictly with m. Now define

(ng=1)
m,=m forn, <n<npmsy.

Then

1
ulm,, n) < — forn, <n < npet,
m

and consequently the lemma is proved.
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We apply the lemma to (1) as follows. For each m > |, we have

kn
lim mZZL|>1/mx2anj(x) =0

= 00
j=1

It follows that there exists a sequence {»,} decreasing to 0 such that

ky
1 2
—:;—Z/ x“dFp;(x) — 0.
n; j=1 x>,
Now we can go back and modify the definition in (3} by replacing n with
nn. As indicated above, the cited corollary becomes applicable and yields the
convergence of [§, — £(S)]/s, in dist. to @, hence also that of §/ /s as
remarked.

Finally we must go from S, to S,. The idea is similar to Theorem 5.2.1

but simpler. Observe that, for the modified X,; in (3) with »n replaced by 7,,
we have

ky,

kn
PUSn # Sy} < P4 Xy # X051 2 < D P{Xnjl > 1)
Je=1 j=1

/ x anJ(x)
Inn x> 1.

the last inequality from (2). As n — o0, the last term tends to 0 by the above,
hence §,, must have the same limit distribution as §7, (why?) and the sufficiency
of Lindeberg’s condition is proved. Although this method of proof is somewhat
longer than a straightforward approach by means of ch.f.’s (Exercise 4 below),
it involves several good ideas that can be used on other occasions. Indeed the
sufficiency part of the most general form of the central limit theorem (see
below) can be proved in the same way.

Necessity. Here we must resort entirely to manipulations with ch.f.’s. By
the convergence theorem of Sec. 6.3 and Theorem 7.1.1, the conditions (i)
and (ii) are equivalent to:

(4) vr: nlggloﬂfnj(z) —
&) vt lim max |f,u(r) — 1] =0.
n—oC 1< j<

By Theorem 6.3.1, the convergence in (4} is uniform in [¢f| < 7T for each finite
T : similarly for (5) by Theorem 7.1.1. Hence for each T there exists no(7')
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such that if n > ny(T), then

max max Hn—1] <1
max max |£,;() - 1] <}

We shall consider only such values of n below. We may take the distinguished
logarithms (see Theorems 7.6.2 and 7.6.3 below) to conclude that

k, 2
(©) Jim > log £, =~
j=1
By (8) and (9) of Sec. 7.1, we have
(7} logfnj(t)=fnj'(t)_1+A|fnj(t)_112;

®) Zm,m—u < max Ifn,(t)—llZIfn,(t)

j=1
Now the last-written sum is, with some #, |8] < 1:

20 2)(2
=Z / (lfx+9—*2——) dF,,j(x)

J
l‘2 o0 5 2

Hence it follows from (5) and (9) that the left member of (8) tends to 0 as
n — oo. From this, (7), and (6) we obtain

© > / (€™ — 1) dF,;(x)

lim S faj) 1) = -2

n—>oc — 2

Taking real parts, we have
2

lim > / oo(1 —costx)dFn;(x) = =

H— o0

Hence for each n > 0, if we split the integral into two parts and transpose one
of them, we obtain

o
lim *—Z/ (1 — cos tx) dF , ;(x)
x|=n

n— ol

= lim Z/m}n(l — coStx)dF,;(x)

R— 2 "
J
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< Tim Z/lxwzdnj(x)

2
— i 2
< m2%y 2 = 2
H— 00
PR n
the last inequality above by Chebyshev’s inequality. Since 0 < 1 — cos@ <
6%/2 for every real @, this implies

— im {( — — — ;
772 T neoo | 2 ; 2 [I\Snx njtx =

the quantity in braces being clearly positive. Thus

4 &
%—Z-zhm 1—2] xzdF,,j(x) ;

j=1 Ix|<n

t being arbitrarily large while n is fixed; this implies Lindeberg’s condition
(1'). Theorem 7.2.1 is completely proved.

Lindeberg’s theorem contains both the identically distributed case
(Theorem 6.4.4) and Liapounov’s theorem. Let us derive the latter, which
assets that, under (4) and (5) of Sec. 7.1, the condition below for any one
value of § > 0 is a sufficient condition for S, to converge in dist. to ®:

Ky o0
(10 Z/ x[*H dF, (x) — 0.

For § =1 this condition is just (10) of Sec. 7.1. In the general case the asser-
tion follows at once from the following inequalities:

12+5

Z/ x*dF,;(x) <Z/ —5— dF,;(x)
i [x]=n lx

[=1

<=3 / [x|24 dF 5 (x),
n PR

showing that (10) implies (1).

The essence of Theorem 7.2.1 is the assumption of the finiteness of the
second moments together with the “classical” norming factor s,, which is the
standard deviation of the sum §,; see Exercise 10 below for an interesting
possibility. In the most general case where “nothing is assumed,” we have the
following criterion, due to Feller and in a somewhat different form to Lévy.
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Theorem 7.2.2. For the double array (2) of Sec. 7.1 (with independence in
each row), in order that there exists a sequence of constants {a,} such that
(i) Zﬁ’;, X,; — a, converges in dist. to @, and (ii) the array is holospoudic,
it is necessary and sufficient that the following two conditions hold for every
n > 0:

@ Y5y finy dFnj(0) = 0;
() S5 (e A2 dF i (x) = ( i<y XAFnj(OP} = 1.

We refer to the monograph by Gnedenko and Kolmogorov [12} for this
result and its variants, as well as the following criterion for a single sequence
of independent, identically distributed r.v.’s due to Lévy.

Theorem 7.2.3. Let {X;, j > 1} be independent r.v.’s having the common
d.f. F;and S, = }77_; X;. In order that there exist constants a, and b, > 0
(necessarily b, — 400} such that (S, — a,)/b, converges in dist. to P, it is
necessary and sufficient that we have, as y — +oc:

(11) y2/ dF(x):o(] xzdF(x)).
x|y lx|=y

The central limit theorem, applied to concrete cases, leads to asymptotic
formulas. The best-known one is perhaps the following, for 0 < p < 1, p +
g=1, and x1 < xp, as n — ©oC:

(12)

n kE_n-k _ _ 1 xz —3*/2
> (k)pq B (x) — D(x1) = r._zjrfx e dy.
X1 JAPGEk—n psx2 /NG '

This formula, due to DeMoivre, can be derived from Stirling’s formula for
factorials in a rather messy way. But it is just an application of Theorem 6.4.4
(or 7.1.2), where each X ; has the Bernoullian d.f. pd; + géo.

More interesting and less expected applications to combinatorial analysis
will be illustrated by the following example, which incidentally demonstrates
the logical necessity of a double array even in simple situations.

Consider all n! distinct permutations {(ay, a3, ..., a,) of the n integers
(1, 2, ..., n). The sample space 2 = 2, consists of these n! points, and &
assigns probability 1/n! to each of the points. For each j, 1< j <n, and
each @ = (a;, a2, ..., a,) let X,; be the number of “inversions” caused by
; in w; namely X,,;(w) = m if and only if j precedes exactly m of the inte-
gers 1,...,j— 1 in the permutation w. The basic structure of the sequence
{X,;.1 < j <n} is contained in the lemma below.
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Lemma 2. For each n, the r.v.’s {X,;, 1 < j < n} are independent with the
following distributions:

) 1
.Jf’{X,,j=m}=} for0<m<j—1.

The lemma is a striking example that stochastic independence need not
be an obvious phenomenon even in the simplest problems and may require
verification as well as discovery. It is often disposed of perfunctorily but a
formal proof is lengthier than one might think. Observe first that the values of
Xn1, ..., Xn; are determined as soon as the positions of the integers {1, ..., j}
are known, irrespective of those of the rest. Given j arbitrary positions among
n ordered slots, the number of w’s in which {1, ..., j} occupy these positions in
some order is j!(n — j)!. Among these the number of @’s in which j occupies
the (j — m)th place, where 0 < m < j — 1, (in order from left to right) of the
given positions is (j — 1)!(n — j)!. This position being fixed for j, the integers
{1,..., 7 — 1} may occupy the remaining given positions in (j — 1)! distinct
ways, each corresponding uniquely to a possible value of the random vector

Xa, ... Xn j1}

That this correspondence is 1 — 1 is easily seen if we note that the total
number of possible values of this vector is precisely 1-2-.-(j —1)=
(J — DL It follows that for any such value (ci,...,c;-1) the number of
w’s in which, first, {1,..., j} occupy the given positions and, second,
Xo{w) =<1y ..., Xp j-1(@) = cj_1, Xnj(w) = m, is equal to (n — j)!. Hence
the number of w’s satisfying the second condition alone is equal to ('J’.)(n —
J)r=mnl/jl. Summing over m from 0 to j — 1, we obtain the number of
w’s in which X, 1{w) = c1, ..., X, j-1(w) =cjo1 o be ju!/jt = nl/(j — DI
Therefore we have

PEm=ci,...,Xpnj1=cj1,Xpj=m}  j! _
PXpp=c1, .00, X jo1 = ¢t}
(-1
This, as we know, establishes the lemma. The reader is urged to see for himself

whether he can shorten this argument while remaining scrupulous.
The rest is simple algebra. We find

o

: ) 2 3
. J—1 Jjo—1 n
o(X,U'):m—z—, G'gjz 5 ({(Sn)"'?, Si"“—-—.

For each n > 0, and sufficiently large n, we have

Xejl=j—=1=n-1<ns,.
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Hence Lindeberg’s condition is satisfied for the double array

X .
{ ’”;lsjfn,lgn}
Sn

(in fact the Corollary to Theorem 7.1.2 is also applicable) and we obtain the
central limit theorem:

Here for each permutation w, S,(w) = 2;=1X,, j(w) is the total number of
inversions in w; and the result above asserts that among the #! permutations
on {1,...,n}, the number of those in which there are <n?/4 4 x(n*?)/6
inversions has a proportion ®(x), as n — oo. In particular, for example, the
number of those with <n?/4 inversions has an asymptotic proportion of %

EXERCISES

1. Restate Theorem 7.1.2 in terms of normed sums of a single sequence.
2. Prove that Lindeberg’s condition (1)} implies that

max o,; —> 0.
1< j<kn

*3. Prove that in Theorem 7.2.1, (i) does not imply (1). [HINT: Consider
r.v.’s with normal distributions.]

*4. Prove the sufficiency part of Theorem 7.2.1 without using
Theorem 7.1.2, but by elaborating the proof of the latter. [HINT: Use the

expansion
2

- 4
e =1+ ix +9%)_ for |x] > n

and

. tx)? tx|?
e”x:l—l—itx—%)—-{-e’l—gl- for |x| < 7.

As a matter of fact, Lindeberg’s original proof does not even use ch.f.’s; see
Feller [13, vol. 2}.}

5. Derive Theorem 6.4.4 from Theorem 7.2.1.

6. Prove that if § < &', then the condition (10) implies the similar one
when § is replaced by &'
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*7. Find an example where Lindeberg’'s condition is satisfied but
Liapounov’s is not for any § > 0.

In Exercises 8 to 10 below {X;, j > 1} is a sequence of independent r.v.’s.
8. For each j let X; have the uniform distribution in {—j, j]. Show that

Lindeberg’s condition is satisfied and state the resulting central limit theorem.
9. Let X; be defined as follows for some a > 1:

=Jj%, with probability each;

6j2(cr—1)

0, with probability 1 — 32

Prove that Lindeberg’s condition is satisfied if and only if o < 3/2.

*10. It is important to realize that the failure of Lindeberg’s condition
means only the failure of either (i) or (ii) in Theorem 7.2.1 with the specified
constants S,. A central limit theorem may well hold with a different sequence
of constants. Let

1
+j2,  with probability - —= each;
122

1
Xi=1< %], with probability - each,

1 1
\ 0, with probability 1 — £~ 6}5

Prove that Lindeberg’s condition is not satisfied. Nonetheless if we take 42 =
n?/18, then S, /b, converges in dist. to ®. The point is that abnormally large
values may not count! [HINT: Truncate out the abnormal value.]
11. Prove that [°° x?dF(x) < oo implies the condition (11), but not

vice versa.

*12. The following combinatorial problem is similar to that of the number
of inversions. Let Q and & be as in the example in the text. It is standard
knowledge that each permutation

1 2 n

aj as PR ay
can be uniquely decomposed into the product of cycles, as follows. Consider
the permutation as a mapping 7 from the set (1,...,n) onto itself such

that 7(j) = a;. Beginning with 1 and applying the mapping successively,
1 = m(1) = 72(1) — - - -, until the first k such that 7*(1)} = 1. Thus

(1, 7(1), 721, ..., 7271
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is the first cycle of the decomposition. Next, begin with the least integer,
say b, not in the first cycle and apply & to it successively; and so on. We
say 1 — m(1) is the first step, ..., 7*71(1) — 1 the kth step, b — 7(b) the
(k + 1)st step of the decomposition, and so on. Now define X, ;(w) to be equal
to 1 if in the decomposition of w, a cycle is completed at the jth step; otherwise
to be 0. Prove that for each n, {X,;, 1 < j <n}is a set of independent r.v.’s
with the following distributions:

1
n—j+1

1
n—j+1

ij/D{an= 1} =

P =0)=1-

Deduce the central limit theorem for the number of cycles of a permutation.

7.3 Ramifications of the central limit theorem

As an illustration of a general method of extending the central limit theorem
to certain classes of dependent r.v.’s, we prove the following result. Further
elaboration along the same lines is possible, but the basic idea, attributed to
S. Bernstein, consists always in separating into blocks and neglecting small ones.
Let {X,,n > 1} be a sequence of r.v.’s; let &, be the Borel field generated
by {Xk, 1 <k < n}, and # that by {Xz,n < k < oo}. The sequence is called
m-dependent iff there exists an integer m > 0 such that for every n the fields
#, and #/ . are independent. When m = 0, this reduces to independence.

Theorem 7.3.1. Suppose that {X,} is a sequence of m-dependent, uniformly

bounded r.v.’s such that
o(Sy)

W — 4o
as n — o0. Then [S, — £(S,)]/o(S,) converges in dist. to .

pROOF, Let the uniform bound be M. Without loss of generality we may
suppose that ¢(X,) =0 for each n. For an integer £ > 1 let n; = [jn/k],
0 < j <k, and put for large values of n:

Y;=Xn o1+ Xnp2t o+ X g1oms
Zj = an~r—m+l +an+1~m+2 +-t an‘H ’

We have then
k=1 k—1

Sh=>_Y;+> Z;=5,+85,,say.
j=0 J=0
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It follows from the hypothesis of m-dependence and Theorem 3.3.2 that the
Y,’s are independent; so are the Z;’s, provided nj. —m+1—n; > m,
which is the case if n/k is large enough. Although S, and S are not
independent of each other, we shall show that the latter is comparatively
negligible so that S, behaves like §;. Observe that each term X, in S§”
is independent of every term X, in S, except at most m terms, and that
&(X,X;) =0 when they are independent, while |£(X,X,)| < M? otherwise.
Since there are km terms in S, it follows that

| (S, S < kom - m - M? = k(mM )2

We have also

k-1
80 =Y &2 < kimM)?,
j=0

From these inequalities and the identity
E(S2) = ES2) +26(S. 8 + £(572)

we obtain
| E(S2) — 6(S"3)| < 3k’ M2,

Now we choose k =k, =[n*?] and write s2 = £(5%) =0%S,),s% =
£(8'2) = 62(§"). Then we have, as n — o0

7

s
(1) =,
Sn

and

w2
@) {(5—) }ﬁo.
Sp

Hence, first, S, /s, = 0 in pr. (Theorem 4.1.4) and, second, since

S, s 8, S,
l=rn

Sy Sp 8, 5

b

Sn /s, will converge in dist. to & if 5} /s, does.

Since k, is a function of », in the notation above Y ; should be replaced
by Y,; to form the double array {¥,;,0 < j <k, — 1,1 < n}, which retains
independence in each row. We have, since each Y, ; is the sum of no more
than {n/k,] 4+ 1 of the X,;’s,

n )
’Ynjl < (;{" + 1) M= 0(n1/3) = O(Sn) = O(S"),

n
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the last relation from (1) and the one preceding it from a hypothesis of the
theorem. Thus for each n > 0, we have for all sufficiently large n:

/ XdFn(x)=0, 0<j<k,—1,
|x]=ns;,

where F,; is the d.f. of Y, ;. Hence Lindeberg’s condition is satisfied for the
double array {Y,;/s,}, and we conclude that S, /s, converges in dist. to ©.
This establishes the theorem as remarked above.

The next extension of the central limit theorem is to the case of a random
number of terms (cf. the second part of Sec. 5.5). That is, we shall deal with
the r.v. S, whose value at  is given by S, () (w), where

Sn(@) =3 X ()
j=1

as before, and {v,(w),n > 1} 1s a sequence of r.v.’s. The simplest case,
but not a very useful one, is when all the r.v.’s in the “double family”
{X,, vy, n > 1} are independent. The result below is more interesting and is
distinguished by the simple nature of its hypothesis. The proof relies essentially
on Kolmogorov’s inequality given in Theorem 5.3.1.

Theorem 7.3.2. Let {X;, j > 1} be a sequence of independent, identically
distributed r.v.’s with mean 0 and variance 1. Let {v,, n > 1} be a sequence
of r.v.’s taking only strictly positive integer values such that

(3) LU in pr.,
n

where ¢ is a constant: 0 < ¢ < cc. Then §,, /./v, converges in dist. to ©.

PrOOF. We know from Theorem 6.4.4 that S,/./n converges in dist. to
@, so that our conclusion means that we can substitute v, for n there. The
remarkable thing is that no kind of independence is assumed, but only the limit
property in (3). First of all, we observe that in the result of Theorem 6.4.4 we
may substitute {cn} (= integer part of cn) for n to conclude the convergence
in dist. of Sp.j/+/[cn] to @ (why?). Next we write

Sun — ( S[Cn] + SVn - S[C‘n]) Lc_n‘_]
'V Jlen] Jen] Uy
The second factor on the right converges to 1 in pr., by (3). Hence a simple

argument used before (Theorem 4.4.6) shows that the theorem will be proved
if we show that

Sv, — S(en) .

0 in pr.
fen] P

)
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Let € be given, 0 < € < 1; put
an =[(1=Nenl), by =[(+)enli - 1.
By (3}, there exists ng(e) such that if n > ng(e), then the set
A= {wia, < v,(w) < by}

has probability >1 — €. If w is in this set, then S, (,)(w) is one of the sums
§; with a, < j <b,. For [¢n] < j < by, we have

S = Sien] = Xem41 + Xpemp2 + - + X3
hence by Kolmogorov’s inequality

2 _ 3
JP{ max  |S; — Sgen]| > eJc_n} <Z (Sbﬂz Stem)) _ € len

[en]<j<b, elen ~ €cn

A similar inequality holds for a, < j < {cn]; combining the two, we obtain

P{ max |S; — Siemy| > eafen} < 2e.

a,<j<by,

Now we have, if n > ng(e):

@{ Sv, — Sien] 6}
[cn]
= Sy, = Sien]
= Z‘/' Ve = i |— > €
=1 [en]

< Z ;97){1;” = maxbﬂ IS; — Spenyl > 6\/[6”]} + My = J}

f¢ an«bn]

< f/"{ max |Sj — S[Cn]| > €4/ [cn]} _+_{J/7{vn ‘)-é (., bn“

an = jby

<2+ 1—7{A} < 3e.
Since ¢ is arbitrary, this proves (4) and consequently the theorem.

As a third, somewhat deeper application of the central limit theorem, we
give an instance of another limiting distribution inherently tied up with the
normal. In this application the role of the central limit theorem, indeed in
high dimensions, is that of an underlying source giving rise to multifarious
manifestations. The topic really belongs to the theory of Brownian motion
process, to which one must turn for a true understanding.
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Let {X;, j = 1} be a sequence of independent and identically distributed
r.v.’s with mean O and variance 1; and

Sa=> X,
j=1

It will become evident that these assumptions may be considerably weakened,
and the basic hypothesis 1s that the central limit theorem should be applicable.
Consider now the infinite sequence of successive sums {S,,n > 1}. This is
the kind of stochastic process to which an entire chapter will be devoted later
(Chapter 8). The classical limit theorems we have so far discussed deal with
the individunal terms of the sequence {S,} itself, but there are various other
sequences derived from it that are no less interesting and useful. To give a
few examples:

. S|
max §,,, min §,. max |S,|,  max =,
l<m<n 1<m=n I<m=n 1<m=n \/;1

1 H
D 8a(Sm) Y VS Smi1);
m=1 m=1

where p(a,b) =1 if ab <0 and 0 otherwise. Thus the last two examples
represent, respectively, the “number of sums > & and the “number of changes
of sign”. Now the central idea, originating with Erdos and Kac, is that the
asymptotic behavior of these functionals of S, should be the same regardless of
the special properties of {X;}, so long as the central limit theorem applies to it
(at least when certain regularity conditions are satisfied, such as the finiteness
of a higher moment). Thus, in order to obtain the asymptotic distribution of
one of these functionals one may calculate it in a very particular case where
the calculations are feasible. We shall illustrate this method, which has been
called an “invariance principle”, by carrying it out in the case of max S,,; for
other cases see Exercises 6 and 7 below.
Let us therefore put, for a given x:

P,.(x)= ;’7/’{ max S, < xﬁ} )
1<m=<n
For an integer k > 1let n; =[jn/k],0 < j <k, and define
Rux)=2 { max S, < xﬁ} :
l<j<k

Let also

Ej=l{wSn(w) < xy/n, 1 <m < j;S;(@) > xy/n};
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and for each j, define £(j) by
ney-1 < J = Mg

Now we write, for 0 < € < x:

90{ max §,, > xﬁ} = Z.‘f/’{Ej;lS,,g(j) —Sj| =< Eﬁ}

1<m=<n -
j=1

+ Y P Smy = Sil > ey = 4+
i=l1 1 2

say. Since E; is independent of {|Sne;y — S;| > €4/n} and 0% (Spej) — S;) <
n/k, we have by Chebyshev’s inequality:

n

n —
k 1
< P(E ) —— < ——,
;'—; ( J')€2J,z - &2k

On the other hand, since S; > x/n and [Sne) — S;| < €3/n imply Sy >
(x — €)/n, we have

Z < ?{]mgkang > (x -—e)ﬁ} =1—Ru(x —¢).
1 <€<
It follows that
1
(5) Po(x)=1-Y = >Rulx—¢ T
1 2

Since it is trivial that P,(x) < R,:(x), we obtain from (5) the following
inequalities:

1
6) Pn(x)ERnk(x)SPn(x+€)+"€2_k-
We shall show that for fixed x and &, lim,,_, o, R,z (x) exists. Since
Rnk(x) = f:ﬂ{'sﬂx S xﬁa S.’tg E XA\/E, =t S?‘!k E Xﬁ},

it is sufficient to show that the sequence of k-dimensional random vectors

k
(\/ES,“, \/ES@, cey \/iS,lk)
n R n
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converges in distribution as n — oo. Now its ch.f. (71, ..., ;) is given by

E{explivk/n@1Sy, + -+ 1Sa, N} = Elexplvk/nlt + - - + 8)Sy,
+ 2+ 15)(Sny — Sny)
+ -+ tk(Snk - Snk_i)])}a

which converges to
(7)  exp[—3@1 4+ +u)]exp[—2a+ -+ 1) ] exp (—35)

since the ch.f.’s of

k k k
;Sm: ;(Snz —Sn])a ey ;(S!ik _Snk_l)

all converge to e~"/? by the central limit theorem (Theorem 6.4.4), n;4; —
n; being asymptotically equal to n/k for each j. It is well known that the
ch.f. given in (7) is that of the k-dimensional normal distribution, but for our
purpose it is sufficient to know that the convergence theorem for ch.f.’s holds
in any dimension, and so R, converges vaguely to R..;, where Ry is some
fixed k-dimensional distribution.

Now suppose for a special sequence {X ;} satisfying the same conditions
as {X}, the corresponding P, can be shown to converge (“pointwise” in fact,
but “vaguely” if need be):

(8) ¥x: lim P,(x) = G(x).

Then, applying (6) with P, replaced by P, and letting n — oo, we obtain,
since Roo 18 a fixed distribution:

1
G(x) < Roox(x) < G(x +€) + —7.
€k
Substituting back into the original (6) and taking upper and lower limits,
we have

1 1 o
G(X—G)—E‘ESRmk(x—d'—g};Sl_lnmpn(x)

1
L Rock(x) £ Glx+€)+ a7
Letting k£ — oo, we conclude that P, converges vaguely to G, since € is
arbitrary. y
It remains to prove (8) for a special clivice of {X ;1 and determine G. This
can be done most expeditiously by taking the common d.f. of the X;’s to be
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the symmetric Bernoullian %(81 + &6_1). In this case we can indeed compute
the more specific probability

9) .’Jﬁ{max Sm<x;S,,=y},

1<m=<n

where x and y are (wo integers such that x > 0, x > y. If we observe that
in our particular case maxj<yu<n S > x if and only if §; =x for some j,
1 < j < n, the probability in (9) is seen to be equal to

PLS, = v} —:?D{ max S, > x;5, =y}

1<m=<n

=Py =y} — > PSm<x. 1 <m< j;§; =x8, =y}
j=1
=PSu ==Y Py <xl<m<jiS;=x85,~5;=y—x]

i=l1

=Py =N =Y PSm<x1<m<jiS;=x}PS, =S, =y —xl,

j=1
where the last step is by independence. Now, the r.v.

Sp—S;= > Xnm
m=j-+1
being symmetric, we have P{S,—S;=y—x}=PS —S;=x—y}
Substituting this and reversing the steps, we obtain

Pu=Y) =Y PSm<x,1<m< j;S; =x)PS, = Sj =x— )
j=1
n
=Py = ) =S P <x 1 <m< ji8; =185 —5; =5~}
j=1
P =)= 3 P Sw<x1<m<j;S;=x8 =2x =y}
j=1

It

=9’){S,1=y}—(5f’{max szx;S,l:Zx—y}.

l<m=<n

Since 2x — y > x, S, = 2x — y implies maXij<m<n Sm = X, hence the last line
reduces to

(10) ffﬁ{Sn = }’} = EJO{SH =2x — Y}s
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and we have proved that the value of the probability in (9) is given by
(10). The trick used above, which consists in changing the sign of every X
after the first time when S, reaches the value x, or, geometrically speaking,
reflecting the path {(j, S;), j > 1} about the line S; = x upon first reaching it,
is called the “reflection principle”. It is often attributed to Desiré André in its
combinatorial formulation of the so-called “ballot problem” (see Exercise 5
below).

The value of (10) is, of course, well known in the Bernoullian case, and
summing over y we obtain, if n is even:

1 n n
@{1g3§n8m<x}=;5;{(n;y)—(n—2x+y)}

2

m{()- ()

n—x . _n+x
7 <IE
1 1 n
:2—n Z (’;)-FE;(H—}—X),
i-31<3 2

where (’;) =0 if |j| > n or if j is not an integer. Replacing x by x./n (or
[x./n] if one is pedantic) in the last expression, and using the central limit
theorem for the Bernoullian case in the form of (12) of Sec. 7.2 with p =g =
1 we see that the preceding probability tends to the limit

5!
1 2 2 [ _.2
L e—y/zdyzq/_/ eV dy
‘\/271'[): T Jg

as n — o0. It should be obvious, even without a similar calculation, that the
same limit obtains for odd values of »n. Finally, since this limit as a function
of x is a d.f. with support in (0, o¢), the corresponding limit for x < 0 must
be 0. We state the final result below.

Theorem 7.3.3. Let {X;, j > 0} be independent and identically distributed
r.v.’s with mean 0 and variance 1, then (max;<m<n Sm)/+/n converges in dist.
to the “positive normal d.f.” G, where

Vx: G(x) = QPx)—1)v 0.
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EXERCISES

1. Let {X;, j = I} be a sequence of independent r.v.’s, and f a Borel
measurable function of m variables. Then if & = f(Xi41,.... Xpom), the
sequence {&;,k > 1} is (m — 1)-dependent.

*2. Let {X;,j>1} be a sequence of independent r.v.’s having the
Bernoullian d.f. pé; + (1 — p)8p. 0 < p < 1. An r-run of successes in the
sample sequence {X ;(w), j > 1} is defined to be a sequence of r consecutive
“ones” preceded and followed by “zeros”. Let N, be the number of r-runs in
the first n terms of the sample sequence. Prove a central limit theorem for N,,.

3. Let {X;,v;, j = 1} be independent r.v.’s such that the v;’s are integer-
valued, v; — o0 a.e., and the central limit theorem applies to (S, — a,)/b,,
where S, = Z?:] X;,ay, b, are real constants, b, — o¢. Then it also applies
to (5., —ay, )/b,,.

*4. Give an example of a sequence of independent and identically
distributed r.v.’s {X,} with mean ( and variance 1 and a sequence of positive
integer-valued r.v.’s v, tending to oo a.e. such that S, /s, does not converge
in distribution. [HINT: The easiest way is to use Theorem 8.3.3 below.]

*5. There are a ballots marked A and b ballots marked B. Suppose that
these a + b ballots are counted in random order. What is the probability that
the number of ballots for A always leads in the counting?

6. If {X,} are independent, identically distributed symmetric r.v.’s, then
for every x > 0,

PUS,| > x} > —n X1 f=x)7

74 max |X;] > x} = ;1 —e
7. Deduce from Exercise 6 that for a symmetric stable r.v. X with
exponent &, 0 < o < 2 (see Sec. 6.5), there exists a constant ¢ > O such that
#{|X| > n'/®} > ¢/n. [This is due to Feller; use Exercise 3 of Sec. 6.5.]
8. Under the same hypothesis as in Theorem 7.3.3, prove that
MaX|<m<y |Swl/+/M converges in dist. to the d.f. H, where H(x) =0 for
x < 0and

4 & (1) { <2k+1)2n2}
Hio) = & _EET DT x> 0.
W= g TSR )

faint: There is no difficulty in proving that the limiting distribution is the
same for any sequence satisfying the hypothesis. To find it for the symmetric
Bernoullian case, show that for 0 < z < x we have

.’/j{_z < min §, < max §, <x -8, = y_Z}

l<m<n 1<m=n
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o0 n n
- E{(n—}-2kx+y—z)—(n+2kx—y—z)}.
k=—00 2 9}

This can be done by starting the sample path at 7 and reflecting at both barriers
0 and x (Kelvin's method of images). Next, show that

| -

[

lim P{—z/n < 8, < (x —2)\/n for 1 <m < n)
n— 0

1] X Qk+1)x~2 2x—z "
= — E — e’ /" dy.
V2 2 { /m—z /(21& x—z }

-0

Finally, use the Fourier series for the function 4 of period 2x:

N -1 i —x -z <y <z
h(})_{—f—l, if —z<y<x—1z

to convert the above Iimit to

4i 1 S,n(2k+l)7rze { (2k+1)2n2]
- 1 —_—— .
7L k1 ¥ OP 2%

This gives the asymptotic joint distribution of

min S,, and max S,,
l<m<n 1<in<n
of which that of maxj<,<, || 1s a particular case.

9. Let {X; > 1} be independent r.v.’s with the symmetric Bernoullian
distribution. Let N, {w) be the number of zeros in the first n terms of the
sample sequence {S;(w), j > 1}. Prove that N,,/\/n converges in dist. to the
same G as in Theorem 7.3.3. [HINT: Use the method of moments. Show that
for each integer r > 1:

N~ Y PP P2

O<ji<-<j,=n/2

where

sy =0 =(H) L~ ]
p2j =8 =0} = i)

as j — oo. To evaluate the multiple sum, say > (r), use induction on r as

follows. If -
Sw~e(3)
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as n — 0o, then

c ! 1 (r+1)/2
1) ~ = =121 _ /2 o
E r+1 \/_/0 z (1—2) dZ(Z) }

i3
Thus
r
F(§+1)
Cri1 Cr ?‘-!'—1
"(5 )
2
Finally
2 r+1
N I'(r+1) 2F(2) o
« ﬁ - 2r/2F ¥ | = 1 =£ xdG(x).
(EORE

This result remains valid if the common d.f. F of X; is of the integer lattice
type with mean O and variance 1. If F is not of the lattice type, no S, need
ever be zero— but the “next nearest thing”, to wit the number of changes of
sign of S,, is asymptotically distributed as G, at least under the additional
assumption of a finite third absolute moment.]

7.4 Error estimation

Questions of convergence lead inevitably to the question of the “speed” of
convergence —in other words, to an investigation of the difference between
the approximating expression and its limit. Specifically, if a sequence of d.f.’s
F,, converge to the unit normal d.f. $, as in the central limit theorem, what
can one say about the “remainder term” F, (x) — ®(x)? An adequate estimate
of this term is necessary in many mathematical applications, as well as for .
numerical computation. Under Liapounov’s condition there is a neat “order
bound” due to Berry and Esseen, who improved upon Liapounov’s older result,
as follows.

Theorem 7.4.1. Under the hypotheses of Theorem 7.1.2, there is a universal
constant Ag such that

(1) sup |F,(x) — ®x)| < AT,

where F, is the d.f. of §,,.
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In the case of a single sequence of independent and identically distributed
r.v.’s {X;, j > 1} with mean 0, variance o2, and third absolute moment y < oo,
the night side of (1) reduces to

ny Agy 1
Ap = .
(n02)3/2 o3 nl/2

H. Cramér and P. L. Hsu have shown that under somewhat stronger condi-
tions, one may even obtain an asymptotic expansion of the form:

Hi(x)  H(x) Hibx)

Fplx)=®x)+ 172 + n + 2372 + -,

where the H’s are explicit functions involving the Hermite polynomials. We
shall not go into this, as the basic method of obtaining such an expansion is
similar to the proof of the preceding theorem, although considerable technical
complications arise. For this and other variants of the problem see Cramér
[10], Gnedenko and Kolmogorov [12], and Hsu’s paper cited at the end of
this chapter.

We shall give the proof of Theorem 7.4.1 in a series of lemmas, in which
the machinery of operating with ch.f’s is further exploited and found to be
efficient.

Lemma 1. Let F be a df., G a real-valued function satisfying the condi-
tions below:

() lim,, 0 Gx)=0,limy 10, Glx) =1;
(ii) G has a denivative that is bounded everywhere: sup, |G'(x)] < M.

Set

2) A= -zlﬁsgp |F(x) — Gx)|.

Then there exists a real number a such that we have for every 7 > O:

TA 1 —
3) 2MTA{3/ m——czfifdx—n}
0

X

<7

/ I——JC;)S—“{F(X—{-a)— Gx +a)jdx

o0

prooF. Clearly the A in (2) is finite, since G is everywhere bounded by
(i) and (ii). We may suppose that the left member of (3) is strictly positive, for
otherwise there is nothing to prove; hence A > 0. Since F — G vanishes at
+o0 by (i), there exists a sequence of numbers {x, } converging to a finite limit
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b such that F(x,) — G(x,) converges to 2M A or —2M A. Hence either F (b) —
Gb)=2MA or F(b—)— G(b) = —2MA. The two cases being similar, we
shall treat the second one. Put @ = b — A; then if |x| < A, we have by (ii)
and the mean value theorem of differential calculus:

GCx+a)=Gh)+ x— AWM
and consequently
Fx+a)—Gx+a)< Fb—) - [GB)+ (x— A)M] =—-Mx+ A).

It follows that

ol T o T
/ ﬂ{F(x—f—a)—G(x—l—a)}de—Mf ﬂ(x-!—iﬁ)dx
—A x2 A x2

A1 —cosT
=—2MA/ —zxdx;
0 X

-A o0 _
;{f +f }l—w{mm)—cuﬂ)m

~A oo\ | —cos T %1 _cosT
<2MA (/ +/ )_——Egi—fdxzwa/ — k.
—oc A X A X

Adding these inequalities, we obtain

¢ _ A o
/ I—‘fﬂf{F(x+a)—G(x+a)}dxSQMA{—/ +2f }
_ Q A

1 —cosTx a %Y 1 —cosT
DTSN = 2MA —3[ +2/ }—xdx.
2 A A 2

This reduces to (3), since
*1—cosT aT
/ l-costx ™
0

X =
x2 2
by (3) of Sec. 6.2, provided that T is so large that the left member of (3) is
positive; otherwise (3) is trivial.

Lemma 2. In addition to the assumptions of Lemma 1, we assume that

(ifi) G is of bounded variation in (—00, 00);
(v) [T |F(x)— G(x)ldx < 0.

Let

OO

ft) = / e dF(x), gt) = / e dG(x).

oC -
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Then we have

LT r@) —g@) 12
@ aso Tt

PROOF. That the integral on the right side of (4) is finite wil] soon be
apparent, and as a Lebesgue integral the value of the integrand at r = () may
be overlooked. We have, by a partial integration, which is permissible on
account of condition (jii):

(5) £ — gty = —is / (F) — G(x)Je'™ dix:
and consequently
ft)— g(r)e_;m

— = /m{F(x +a)— G(x + a)}e™ dx.

In particular, the left member above is bounded for all ¢ 7 0 by condition (iv).
Multiplying by T — |7| and integrating, we obtain

T _
©) f O 6@ i iy ar
-T —it

T o
= / / {Fix+a)— Gix + a)}e”"(T — |t dx dt.
-TJ-¢c

We may invert the repeated integral by Fubini’s theorem and condition (iv),
and obtain (c¢f. Exercise 2 of Sec. 6.2):

1 —cosTx
3 X

T —
< T/ [f () g(f)ldt_
0

/OO{F(x-!—a)— Gx + a)}

x t
In conjunction with (3), this yields
D amals [T L VO-g0,
0 X 0

The quantity in braces in (7) 1s not less than

*1—cosx « 2 bid
3 dx — 3 —dx—m7 == —
/(; = x R X —7 5

6
TA'
Using this in (7), we obtain (4).

Lemma 2 bounds the maximum difference between two d.f.'s satisfying
certain regularity conditions by means of a certain average difference between
their ch.f.’s (It is stated for a function of bounded variation, since this is needed
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for the asymptotic expansion mentioned above). This should be compared with
the general discussion around Theorem 6.3.4. We shall now apply the lemma
to the specific case of F,, and & in Theorem 7.4.1. Let the ch.f. of F,, be f,,
so that

ky, ’
@y =[] £0;0.

=l
Lemma 3. For |f| < ]/(21*}?/3), we have

@) ) —e " < T, l1ffe™ /2,

PrROOF. We shall denote by # below a “generic” complex number with
|| < 1, otherwise unspecified and not necessarily the same at each appearance.
By Taylor’s expansion:

2
Faft)=1="2mig2 Vi
2 6

For the range of 7 given in the lemma, we have by Liapounov’s inequality:

9) |onjt] < lyn;' Pt < 10,11 < 3,
50 that )

Oni o Oyl 11 1

-+ -+ — < -,

l A R TRY

Using (8) of Sec. 7.1 with A = #/2, we may write

U.%j 9}’)1} 3 6 Grzrjtz Qyﬂjt3 ’
Ing”j(I)':——z—‘f + 6 —r +2 - 5 + 6 .

The absolute value of the last term above is less than

ot vat® (ol | yasltP 11
e MLLE A ) =) il 3 < ( ) njil
4 +36“<4 T )yf"— 355 ) Vil

by (9); hence

o7 2 1,1 1 ok, 8
logfnj(r):_ 5 + 6 6+ 288 yn]ll 3 —=1 +2}"nj

Summing over j, we have

2

f &
logfn(t) = _E + Ern‘st
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or explicitly:
2

logfn(r)+5-

1
< =TI, |t1°.
2172 i

Since |¢* — 1] < |ule™ for all u, it follows that

2 Tt Cult]?
(e’ — 1] < [ :
| (e | < > exp 5

Since I',J71/2 < 1/16 and €'/16 < 2, this implies (8).

Lemma 4. For 7| < 1/(4T,), we have

(10) | ()] <P,

PrROOF. We symmetrize (see end of Sec. 6.2) to facilitate the estimation.
We have

f O = /_ /_ C0 (x — Y)dF;(X)dF;(3),

since | f,;]? is real. Using the elementary inequalities

Lt2

cosu — 1+ — l—ul—
2 6

lx — y* < 4(x]® + [yP)

3
=

we see that the double integral above does not exceed

o0 o0 12 2
[ [ {1 - L0 = 2y 457+ SR P + |y|3>} dF o (x)dF ()

4 4
=1 —o,fjtz + gy,,j|t|3 < exp (—or,::jtz + 5)4;ji"|3) .

Multiplying over j, we obtain

3

for the range of r specified in the lemma, proving (10).

4 2
[fn @) < exp (—ﬁ + ~—I‘,,|z|3> < =@

Note that Lemma 4 is weaker than LLemma 3 but valid in a wider range.
We now combine them.

Lemma 5. For |t| < 1/(4],), we have

(11) |fa(e) — e 2] < 16T, |tPPe ™7




74 ERROR ESTIMATION | 241

PROOF. If |t| < 1/21,'7?), this is implied by (8). If 1/(2I","/%) < 1] <
1/(4T,), then 1 < 8T, |7|*, and so by (10):
|Fn() — €72 < | fo(t)] + /% <2677 < 16T, [t) e 7.

PROOF OF THEOREM 7.4.1. Apply Lemma 2 with F = F,, and G = . The
M in condition (ii) of Lemma 1 may be taken to be 37, since both F,, and &
have mean 0 and variance 1, it follows from Chebyshev’s inequality that

1
Fx)v Gx) < —, if x <0,
X
1
(I—F(x))\/(l—G(x))Sw—z, if x > 0
X
and consequently
1
Vxi |F(x) — G@)| < .
x

Thus condition (iv) of Lemma 2 is satisfied. In (4) we take 7' = 1/(4I",,); we
have then from (4) and (11):

2 [V |£,0) — e 96
sup |Fp(x) — ()| < -—f dr + —TI',
1p )= = A 5 53

17¢4T,)
T Jo N 273
32 /’00 5 P 96 }
<I,¢= e Bar 4 ——— %
{ T Jo A 253

This establishes (1) with a numerical value for Ay (which may be somewhat
improved).

In

Although Theorem 7.4.1 gives the best possible uniform estimate of the
remainder F,(x) — ®(x), namely one that does not depend on x, it becomes
less useful if x = x,, increases with n even at a moderate speed. For instance,
we have

1 — Fo(x,) = Y24y 4+ O,),

1 0
——e e
where the first “principal” term on the right is asymptotically equal to

L e 2,

V21X,

Hence already when x, = /2log(1/T',) this will be o(I',) for I', — 0 and
absorbed by the remainder. For such “large deviations”, what is of interest is
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an asymptotic evaluation of
1 —F n (xn)

1— d(x,)

as x, — oo more rapidly than indicated above. This requires a different type
of approximation by means of “bilateral Laplace transforms”, which will not
be discussed here.

EXERCISES

1. If F and G are d.f.’s with finite first moments, then

/ [F(x) — G(x)|dx < c0.
[hinT: Use Exercise 18 of Sec. 3.2.]
2. If f and g are ch.f.’s such that f(#) = g(¢) for || < T, then

ee T
]:OO |[F(x) — Gx)|dx < T

This is due to Esseen (Acta Math, 77(1944)).

*3. There exists a universal constant A; > 0 such that for any sequence
of independent, identically distributed integer-valued r.v.’s {X;} with mean 0
and variance 1, we have

A
sup |[F () = )| 2 ~175.
x n
where F,, is the d.f. of (Z?__;l X )/ /n. [mnt: Use Exercise 24 of Sec. 6.4.]
4. Prove that for every x > (:

r = —y22 1 .y
—e < e’ “dy < —e i
1+ x2 ~—J ~x

7.5 Law of the iterated logarithm

The law of the iterated logarithm is a crowning achievement in classical proba-
bility theory. It had its origin in attempts to perfect Borel's theorem on normal
numbers (Theorem 5.1.3). In its simplest but basic form, this asserts: if NV, (w)
denotes the number of occurrences of the digit 1 in the first n places of the
binary (dyadic) expansion of the real number w in [0, 1], then N, (w) ~ n/2
for almest every w in Borel measure. What can one say about the devia-
tion N, (w) — n/2? The order bounds O(n"/2%¢), € > 0; O((n log n)'/?) (cf.
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Theorem 5.4.1); and O((n loglog n)'/?) were obtained successively by Haus-
dorff (1913), Hardy and Littlewood (1914), and Khintchine (1922); but in
1924 Khintchine gave the definitive answer:

Np() — —
nlw) — —
fim 21

00 1 | 1
—n10g10
UZH glogn

for almost every w. This sharp result with such a fine order of infinity as “log
log™ earned its celebrated name. No less celebrated is the following extension
given by Kolmogorov (1929). Let {X,, n = 1} be a sequence of independent
r.v.'s, §, = >_7_; X;; suppose that £(X, ) = 0 for each n and

Sp
1 sup [ X, = ——— ).,
(1) gp[ (=0 ( Telors. Sﬂ)
where sfl = 02(S,), then we have for almost every c:

S Sp(w)
lim =1
n—00 /252 loglog s,

The condition (1) was shown by Marcinkiewicz and Zygmund to be of the
best possible kind, but an interesting complement was added by Hartman and
Wintner that (2) also holds if the X,’s are identically distributed with a finite
second moment. Finally, further sharpening of (2) was given by Kolmogorov
and by Erdds in the Bernoullian case, and in the general case under exact
conditions by Feller; the “last word” being as follows: for any increasing
sequence ¢,, we have

2)

PUSn(@) > Snpy 1.0.) = {?

according as the series

oc <<
gn_e_(an-/z 00.
1 n ==

H= -

We shall prove the result (2) under a condition different from (1) and
apparently overlapping it. This makes it possible to avoid an intricate estimate
concerning “large deviations™ in the central limit theorem and to replace it by
an immediate consequence of Theorem 7.4.1.* It will become evident that the

* An alternative which bypasses Sec. 7.4 is to use Theorem 7.1.3; the details are left as an
eXercise.
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proof of such a “strong limit theorem™ (bounds with probability one) as the
law of the iterated logarithm depends essentially on the corresponding “weak
limit theorem” (convergence of distributions) with a sufficiently good estimate
of the remainder term.

The vital link just mentioned will be given below as Lemma 1. In the
sest .of this section “A” will denote a generic strictly positive constant, not
necessarily the same at each appearance, and A will denote a constant such
that |A} < A. We shall also use the notation in the preceding statement of
Kolmogorov’s theorem, and

o= E0Xa P Tw=) v
j=I

as in Sec. 7.4, but for a single sequence of r.v.’s. Let us set also

oA, x) = \/2sz loglogx, A>0,x>0.

Lemma 1. Suppose that for some ¢, ) < € < 1, we have

I, A
(3) — =

53 7 (log sy)t+e

Then for each 8.0 < § < ¢, we have

i) A -
(4) P8y > (1 +8,5,)} < m,
A
(5) 5p{Sr? > (P(l - 83 Sll)}

.
= (ogs,)" =07

PrROOF. By Theorem 7.4.1, we have for each x:

) 1 2 |
(6) 5/’{5,,>x5,,}=ﬁ/x e/ dy—!—Ag.
We have as x — o<
o, ) e X7
(7) fx e Y 2 dy ~ —

(See Exercise 4 of Sec. 7.4). Substituting x = /2(1 & 8)loglog s, the first
term on the right side of (6) is, by (7), asymptotically equal to

] i
JAn(l £ 8)log log s, (log s,)#8"
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This dominates the second (remainder) term on the right side of (6}, by (3)
since 0 < 8 < €. Hence (4) and (5) follow as rather weak consequences.

To establish (2), let us write for each fixed 3,0 < 6 < €
E," ={w:Sy(w) > (1 +8,5,)),
E,” = {(UZS”(CU) > w(l — 4, Sn)}a

and proceed by steps.
1°. We prove first that

(8) PLE,* 1.0) =0

in the notation introduced in Sec. 4.2, by using the convergence part of
the Borel-Cantelli lemma there. But it 1s evident from (4) that the series
>, PAE,T) is far from convergent, since s, is expected to be of the order
of 4/n. The main trick is to apply the lemma to a crucial subsequence {n;}
(see Theorem 5.1.2 for a crude form of the trick) chosen to have two prop-
erties: first, 3, 9°(E,, 7)) converges, and second, “F,* i.0.” already implies
“En, T 1.0 nearly, namely if the given & is slightly decreased. This modified
implication is a consequence of a simple but essential probabilistic argument
spelled out in Lemma 2 below.

Given ¢ > 1, let n; be the largest value of n satisfying s, < c*, so that

k
Spn, TC° < Spy1-

Since (max;<;<n 6;)/s, —> 0 (Why?), we have s,,41/s,, — 1, and s0
9) Sy ~ CF

as k — oo. Now for each k, consider the range of j below:

(10) Mg < J < Mg
and put
(11) Ff = {w ISF!M] _SJ'[ < S’?A-+1}'
By Chebyshev’s inequality, we have
_ She —Sm 1

M+l

hence 2°(F;) = A > 0 for all sufficiently large &.

Lemma 2. Let {E;}and {F;}, 1 < j <n < 00, be two sequences of events.
Suppose that for each j, the event F; is independent of Ef---ES_,E;, and
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that there exists a constant A > 0 such that Z°(F;) > A for every j. Then
we have

n

(12) ZV\JEF; | =A2 EJEJ- :
J=1

i

PROOF. The left member in (12) is equal to

P JUEIF Y - (Ejr F iy ¥ E F

j=1

>\ \JIES - ESLE;F | =) PES - ES_ EDP(F))
J=1

i=1
> > " AE] - ES_E)) - A,
j=1

which is equal to the right member in (12).
Applying Lemma 2 to E;* and the F; in (11), we obtain

g1 npr—1
(13) 28 | EjtFi =420 | ) Ej7

Jj=ng J=ng
It is clear that the event E;7 N F; implies
Snjoy > 8j —Suiy > (1 +8,87) ~ 5,
which is, by (9) and (10), asymptotically greater than

1 3
Egp l—f—ZB, Snper | -

Choose ¢ so close to 1 that (1 +3/48)/¢? > 1+ (8/2) and put

8
G = {w:S,,M > (1 + 5, thl) } :

note that Gy, is just E,,, ,* with & replaced by 8/2. The above implication may
be written as

E j+F i C Gy
for sufficiently lzree & and all j in the range given in (10); hence we have

Riw1—1

(14) |J EfF;c G

J=Hy
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It follows from (4) that

Z'@(Gk) = Z (10gs )1+(6/2) Z klog C)1+(5/2) < .

k k

In conjunction with (13) and (14) we conclude that

niej— 1

Z;@ U E;T 5 < o0

k J=ny
and consequently by the Borel-Cantelli lemma that

nk+]—'1
74 |J Ejfio.p =0.
J=ny
This is equivalent (why?) to the desired result (8).
2°. Next we prove that with the same subsequence {n;} but an arbitrary

¢, if we put 17 = sﬁw ~ 52, and
)
Dk = CI):SnkH(O))—Snk((!)) >0 1 - i’tk B

then we have
(15) P(Dp 1.0.)=1.

Since the differences S,,,, — S, £ = 1, are independent r.v.’s, the divergence
part of the Borel-Cantelli lemma is applicable to them. To estimate (D),
we may apply Lemma 1 to the sequence {X,,.;, j = 1}. We have

1 1 .
2 . I R — ] RG]
1y (1 cz> Spit (1 C2> c .

and consequently by (3):

F"fc+l "h Flu < AF’UJ[ < A
£ TS5, T (ogrtte
Hence by (3), P

P(Di) 2 (log #;)1~@/% z F1=8/4)

and so >, (D) = oo and (15) follows.
3°. We shall use (8) and (15) together to prove

(16) PE,” i0)=1.
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This requires just a rough estimate entailing a suitable choice of ¢. By (8)
applied to {—X,} and (13), for almost every w the following two assertions
are true:

1) Sup. (@) = Sp (@) > @(l — (8/2), 1) for infinitely many k;
(i) S,, (w) > —@(2, s,,) for all sufficiently large k.

For such an w, we have then
8 ) .
{17} S, (wy>epll— 2 e | =92, 54,) for infinitely many £,

Using (9) and log log 77 ~ loglog sﬁm, we see that the expression in the right
side of (17) is asymptotically greater than

[\/(1 - ﬁ) (1 - iz) - 1@»} oL, 50) > 9L = 8,5,
2 c ¢ '

provided that ¢ is chosen sufficiently large. Doing this, we have therefore
proved that

(18) P(Ey,,,” 10) =1,

which certainly implies (16).

4°. The truth of (8) and (16), for each fixed &, 0 < § <€, means exactly
the conclusion (2), by an argument that should by now be familiar to the
reader.

Theorem 7.5.1. Under the condition (3), the limsup and liminf, as n — o0,
of §,/+/2s2 loglogs, are respectively 41 and —1, with probability one.

The assertion zbout lim inf follows, of course, from (2) if we apply it
to {~X;, j = 1}. Recall that (3) is more than sufficient to ensure the validity
of the central limit theorem, namely that S, /s, converges in dist. to $. Thus
the law of the iterated logarithm complements the central limit theorem by
circumscribing the exwaordinary fluctuations of the sequence {S,,n > 1}. An
immediate consequence is that for almost every w, the sample sequence S, (w)
changes sign infinitelv often. For much more precise results in this direction
see Chapter 8.

In view of the discussion preceding Theorem 7.3.3, one may wonder
about the almost evervwhere bounds for

mzx Sp. max |S,], and so on.

I<m=n |<m=zn
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It is interesting to observe that as far as the lim sup,, is concerned, these two
functionals behave exactly like §, itself (Exercise 2 below). However, the
question of liminf, is quite different. In the case of max;<mu<, |Sn|, another
law of the (inverted) iterated logarithm holds as follows. For almost every w,

we have

MaxXi<m<y |8, ()] — 1
i ¥

im
n—00 JTZSn 2

8 log log s,

under a condition analogous to but stronger than (3). Finally, one may wonder
about an asymptotic lower bound for |S,|. It is rather trivial to see that this
is always o(s,) when the central limit theorem is applicable; but actually it is
even o(s;') in some general cases. Indeed in the integer lattice case, under
the conditions of Exercise 9 of 7.3, we have “S, = 0 i.0. a.e.” This kind of
phenomenon belongs really to the recurrence properties of the sequence {S,1},
to be discussed in Chapter 8.

EXERCISES

1. Show that condition (3) is fulfilled if the X;’s have a common d.f.
with a finite third moment.

*2. Prove that whenever (2) holds, then the analogous relations with S,
replaced by max; <<, S, OF Max|<m<n S| also hold.

*3. Let {X,, j > 1} be a sequence of independent, identically distributed
r.v.’s with mean 0 and variance 1, and S, = 3 %_, X;. Then

2 520 o}y

(wint: Consider S, — S, with ng ~k*. A quick proof follows from
Theorem 8.3.3 below.}

4. Prove that in Exercise 9 of Sec. 7.3 we have *{§, =0 1.0} = 1.

*5, The law of the iterated logarithm may be used to supply certain coun-

terexamples. For instance, if the X,,’s are independent and X,, = +n'?/log log
n with probability 12 each, then §,/n — 0 ae., but Kolmogorov’s sufficient
condition (see case (i) after Theorem 5.4.1) >, & (Xﬁ)/n2 < o0 fails.

6. Prove that 27{|S,| > ¢(1 — 8, s,)1.0.) =1, without use of (8), as
follows. Let

ey = {w! |8y, (W) < @l =39, Sn b

é
fi= {w: Sy (@) = Sy (@) > ¢ (z - E,SM) } -
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Show that for sufficiently large k the event e, N f; implies the complement
of ey41; hence deduce

k+1 k
P ﬂej Sg’(ejo)n[l—@(fj)]
i=jo J=jo

and show that the product — 0 as £ — oc.

7.6 Infinite divisibility

The weak law of large numbers and the central limit theorem are concerned,
respectively, with the convergence in dist. of sums of independent r.v.’s to a
degenerate and a normal d.f. It may seem strange that we should be so much
occupied with these two apparently unrelated distributions. Let us point out,
however, that in terms of ch.f.’s these two may be denoted, respectively, by
™" and e*~¥"" _exponentials of polynomials of the first and second degree
in (it). This explains the considerable similarity between the two cases, as
evidenced particularly in Theorems 6.4.3 and 6.4.4.

Now the question arises: what other limiting d.f.’s are there when smal!
independent r.v.’s are added? Specifically, consider the double array (2) in
Sec. 7.1, in which independence in each row and holospoudicity are assumed.
Suppose that for some sequence of constants a,,,

k"
Sp—a, = E Xnj—ay
j=1

converges In dist. to F. What 1s the class of such F’s, and when does
such a convergence take place? For a single sequence of independent r.v.’s
{X;, j > 1}, similar questions may be posed for the “normed sums” (5, —
tn)/bn.
These questions have been answered completely by the work of Lévy, Khint-
chine, Kolmogorov, and others; for a comprehensive treatment we refer to the
book by Gnedenko and Kolmogorov {12]. Here we must content ourselves
with a modest introduction to this important and beautiful subject.

We begin by recalling other cases of the above-mentioned limiting distri-
butions, conveniently dispizved by their ch.f.’s:

—cltf*

el 5> 0 e~ D<a<2c>0.

The former is the Poisscn distribution; the latter is called the symmerric
stable distribution of exporent « (see the discussion in Sec. 6.5), including
the Cauchy distribution for o = 1. We may include the normal distribution
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among the latter for « = 2. All these are exponentials and have the further
property that their “nth roots™:

eitn A/ Wair=b*1%) p*/n e =1) o~ te/ml
are also ch.f.’s. It is remarkable that this simple property already characterizes
the class of distributions we are looking for (although we shall prove only
part of this fact here).

DEFINITION OF INFINITE DIVISIBILITY. A ch.f. f is called infinitely divisible iff
for each integer n > 1, there exists a ch.f. f, such that

(D f=a"
In terms of d.f.’s, this becomes in obvious notation:

F=Fﬁ*=f,,*F,,*-~-*F,,J.

(n factors)

In terms of r.v.’s this means, for each n > 1, in a suitable probability space
(why “suitable”?): there exist r.v.’s X and X,;, 1 < j < n, the latter being
independent among themselves, such that X has ch.f. f, X,,; has ch.f. f,, and

(2) X=>" Xu
j=1

X 1s thus “divisible” into n independent and identically distributed parts, for
each n, That such an X, and only such a one, can be the “limit” of sums of
small independent terms as described above seems at least plausible.

A vital, though not characteristic, property of an infinitely divisible ch.f.
will be given first.

Theorem 7.6.1. An infinitely divisible ch.f. never vanishes (for real ¢).

PROOF. We shall see presently that a complex-valued ch.f. is trouble-some
when its “nth root” is to be extracted. So let us avoid this by going to the real,
using the Corollary to Theorem 6.1.4. Let f and f, be as in (1) and write

g=1f% g =Ifal.

For each t € ', g(t) being real and positive, though conceivably vanishing,
its real positive nth root is uniquely defined; let us denote it by [g()}'/". Since

by (1) we have
g(t) = {g. )",

and g,(r) > 0, it follows that
3) Viiga (1) = [g01'/".
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But 0 < g(#) < 1, hence lim,_.o[g(H}'/" is 0 or 1 according as g(r) = 0 or
g(t) # 0. Thus lim,_. g,(?) exists for every 1, and the limit function, say
h(t), can take at most the two possible values 0 and 1. Furthermore, since g is
continuous at 7 = with g(0) = 1, there exists a 75 > 0 such that g(r) £ 0 for
|| < #o. It follows that A(7) = 1 for |#| < 1. Therefore the sequence of ch.f.’s
g» converges to the function h, which has just been shown to be continuous
at the origin. By the convergence theorem of Sec. 6.3, # must be a ch.f. and
$0 continuous evervwhere. Hence 4 is identically equal to 1, and so by the
remark after (3) we have

Ve f O = g(1) # 0.
The theorem is proved.

Theorem 7.6.1 immediately shows that the uniform distribution on [—1, 1]
is not infinitely divisible, since its ch.f. is sin #/¢, which vanishes for some 7,
although in a literal sense it has infinitely many divisors! (See Exercise 8 of
Sec. 6.3.) On the other hand, the ch.f,

2 4 cost?
3

never vanishes, but for it (1) fails even when # = 2; when n > 3, the failure
of (1) for this ch.f. 1s an immediate consequence of Exercise 7 of Sec. 6.1, if
we notice that the corresponding p.m. consists of exactly 3 atoms.

Now that we have proved Theorem 7.6.1, it seems natural to go back to
an arbitrary infinitzlv divisible ch.f. and establish the generalization of (3):

fo@)=[f@""

for some “determir.z:ion” of the multiple-valued nth root on the right side. This
can be done by a s-mple process of “continuous continuation” of a complex-
valued function of z real variable. Although merely an elementary exercise in
“complex variables”. it has been treated in the existing literature in a cavalier
fashion and then —isused or abused. For this reason the main propositions
will be spelled ou: in meticulous detail here.

Theorem 7.6.2. _zt a complex-valued function f of the real variable 7 be
given. Suppose thi: f(0) = 1 and that for some 7 > 0, f is continuous in
[~T, T] and does =zt vanish in the interval. Then there exists a unique (single-
valued) function ;. :f ¢ in {—7, T] with A(0) = 0 that is continuous there and
satisfies

4) f(y=e", —T<t<T.
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The corresponding statement when [—7, 71} is replaced by (—oc, 00) is
also true.

PROOF. Consider the range of f(r),r € [T, T]; this is a closed set of
points in the complex plane. Since it does not contain the origin, we have

inf |f(1)—-0]=p7r>0.
~T=<t<T
Next, since f 1s uniformly continuous in [T, T], there exists a 87,0 < 87 <
pr, such that if 7 and ¢’ both belong to [~7", 7] and |t — ¢'| < 8, then | f (1) —
F() < pr/2 < 1. Now divide [~T, 7] into equal parts of length less than
&7, say:
T =t,< <t <tp=0<t)j <.+ <ty=T.

Fori_; <t <1, we define A as follows:

= (=1Y -
) M=) ———{fO - 1Y
- ]
J
This is a continuous function of ¢ in |7, 7], representing that determination

of log f{7) which equals 0 for + = 0. Suppose that A has already been defined
in [7_z, 1x}; then we define A in [#, f541] as follows:

X =W O - feY
©) Aty = A() + . ( ) ;
Z“]’ J fe)

similarly in [z_;_y, 7_4] by replacing #; with 7_; everywhere on the right side
above. Since we have, for 1, <1 < 1,41,

or
f@)— f) <i=£
f@) T pr 2

the power series in (6) converges uniformly in {7, 7:41] and represents a
continuous function there equal to that determination of the logarithm of the
function f(r)/f (1) — 1 which is 0 for r = 1. Specifically, for the “schlicht
neighborhood” |z — 1] < Lolet

oo _11' )
7) L(z>=z( j) @- 1

j=1

be the unique determination of log z vanishing at z = 1. Then (5) and (6)
become, respectively:

A) =L{f (), o) £ty

f@)
M) =rt)+ L (f(tk) ;

fy <1 = 1pq3
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with a similar expression for 7., <t < 1_;. Thus (4) is satisfied in [7_y, ],
and if it is satisfied for # = #;, then it is satisfied in [t;, #;41], since

) f@
(1 — HOHLS O/ F ) S _
f(rk)f(rk) f0
Thus (4) is satisfied in [T, 7] by induction, and the theorem is proved for
such an interval. To prove it for (—oc, 00) let us observe that, having defined
A In [—-n, n], we can extend it to [-n — 1, n + 1] with the previous method,
by dividing [n, n + 1], for example, into small equal parts whose length must
be chosen dependent on n at each stage (why?). The continuity of A is clear
from the construction.
To prove the uniqueness of A, suppose that A" has the same properties as
A. Since both satisfy equation (4), it follows that for each ¢, there exists an
integer m(¢) such that
A1) — AN@) = 2mim(r).

The left side being continuous in ¢, m(-) must be a constant (why?), which

must be equal to m(0) = 0. Thus A(t) = A'(2).

Remark. It may not be amiss to point out that A{r) is a single-valued
function of 7 but not of f(r); see Exercise 7 below.

Theorem 7.6.3. Fora fixed 7, let each f,k > 1, as well as f satisfy the
conditions for f in Theorem 7.6.2, and denote the corresponding A by ;A.
Suppose that ;f cooverges uniformly to f in [—7,T), then ;A converges
uniformly to A in [-7.T].

PROOF., Let L bz as in (7), then there exists 2 8,0 < 8 < % such that
IL(z)] <1, if [z— 1] <é.

By the hypothesis of uniformity, there exists k;(7) such that if & > & (T),
then we have

(8)

n=r

- [t
sup L("f())} <1
itj=<T f@
Since for each 1, the xponentials of ;A(z) — A(r) and L(x f(t)/ f (1)) are equal,
there exists an integer-valued function gmn(t), |t| < T, such that

and consequently

(9)

(10) L ("; ) = A1) — A() + 2mi (D), 1] < T.
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Since L is continuous in |z — 1] < &, it follows that ;#1(-) is continuous in
it < T. Since it is integer-valued and equals O at + = 0, it is identically zero.
Thus (10) reduces to

L

(11) kx(z)—x(r)=L<"f(’)),

f@

The function L being continuous at z = I, the uniform convergence of ; f/ f
to 1 in [T, T} implies that of ;A — A to 0, as asserted by the theorem.

Thanks to Theorem 7.6.1, Theorem 7.6.2 is applicable to each infinitely
divisible ch.f. f in (—o0, oc). Henceforth we shall call the corresponding A
the distinguished logarithm, and €*"/" the distinguished nth root of f. We
can now extract the correct nth root in (1) above.

Theorem 7.6.4. For each n, the f, in (1) is just the distinguished nth root

of f.

PROOF. It follows from Theorem 7.6.1 and (1) that the ch.f. f, never
vanishes in (—~o0, 00), hence its distinguished logarithm A, is defined. Taking
multiple-valued logarithms in (1), we obtain as in {10):

Yt:2(t) — nd,(t) = 2mim, (1),

where m,(-) takes only integer values. We conclude as before that m, () = 0,
and consequently

(12) Fnt) = M@ = O/

as asserted.

Corollary. If f is a positive infinitely divisible ch.f., then for every ¢ the
fn(t)in (1) is just the real positive nth root of f(z).

PrROOF. Elementary analysis shows that the real-valued logarithm of a
real number x in (0, co) is a continuous function of x. It follows that this is
a continuous solution of equation (4) in (—oc, 00). The uniqueness assertion
in Theorem 7.6.2 then identifies it with the distinguished logarithm of f, and
the corollary follows, since the real positive nth root is the exponential of 1/n
times the real logarithm.

As an immediate consequence of (12), we have
v lim fa() = 1.
n— 00

Thus by Theorem 7.1.1 the double array {X,;,1 < j<n, 1< ni givipg .rise
to (2) is holospoudic. We have therefore proved that each infinitely divisible
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distribution can be obtained as the limiting distribution of S, = ELI Xp; in
such an array.

It 1s trivial that the product of two infinitely divisible ch.f.’s is again such
a one, for we have in obvious notation:

12 f =0 ) faY =0 n 2 fa).

The next proposition lies deeper.

Theorem 7.6.5. Let {{ f, k > 1} be a sequence of infinitely divisible ch.f.’s
converging everywhere to the ch.f. f. Then f is infinitely divisible.

PrOOF. The difficulty is to prove first that f never vanishes. Consider, as
in the proof of Theorem 7.6.1: g = |f|*,x g = |+ f|*. For each n > 1, let x!/"
denote the real positive nth root of a real positive x. Then we have, by the
hypothesis of convergence and the continuity of x'/* as a function of x,

(13) vr:Lg(O1'" — [g(0))".

By the Corollary to Theorem 7.6.4, the left member in (13) is a ch.f. The right
member is continuous everywhere. It follows from the convergence theorem
for ch.f.’s that [g(-)]/" is a ch.f. Since g is its nth power, and this is true for
each n > 1, we have proved that g is infinitely divisible and so never vanishes.
Hence f never vanishes and has a distinguished logarithm A defined every-
where. Let that of ; f be ;A. Since the convergence of ; f to f is necessarily
uniform in each finite interval (see Sec. 6.3), it follows from Theorem 7.6.3
that ;A — A everywhere, and consequently

(14) exp(rA()/n) — exp(i(t)/n)

for every 1. The left member in (14} is a ch.f. by Theorem 7.6.4, and the right
member is continuous by the definition of A. Hence it follows as before that
e @M s a chf. and f is infinitely divisible.

The following alternative proof is interesting. There exists a § > 0 such
that f does not vanish for |7| <4, hence A is defined in this interval. For
each n, (14) holds uniformly in this interval by Theorem 7.6.3. By Exercise 6
of Sec. 6.3, this is sufficient to ensure the existence of a subsequence from
lexp(zA(t)/n), k > 1} converging everywhere to some ch.f. ¢,. The nth power
of this subsequence then converges to (@, )", but being a subsequence of {; f}
it also converges to f. Hence f = (¢,)", and we conclude again that f is
infinitely divisible.

Using the preceding theorem, we can construct a wide class of ch.f.’s
that are infinitely divisible. For each a and real u, the function

(15) Bty a, u) = 7D




7.6 INFINITE DIVISIBILITY | 257

1s an infinitely divisible ch.f., since it is obtained from the Poisson ch.f. with
parameter g by substituting us for r. We shall call such a ch.f. a generalized
Poisson ch.f. A finite product of these:

K k
(16) [[B@a,u)=exp | > aje™ —1)

j=1 j=1
is then also infinitely divisible. Now if G is any bounded increasing function,
the integral [ ("™ — 1)dG(u) may be approximated by sums of the kind
appearing as exponent in the right member of (16), for all 7 in ¢! and indeed

uniformly so in every finite interval (why?). It follows that for each such G,
the function

(17) f ) =exp Um (e™ — 1)dG(u)

is an infinitely divisible ch.f. Now it turns out that although this falls some-
what short of being the most general form of an infinitely divisible ch.f.,
we have nevertheless the following qualititive result, which is a complete
generalization of (16).

Theorem 7.6.6. For each infinitely divisible ch.f. f, there exists a double
array of pairs of real constants (a,;,un;), 1 < j <k,, 1 <n, where a; > 0,
such that

kn
(18) F@y = lim [T B ans, uny).
j=1

The converse is also true. Thus the class of infinitely divisible d.f.’s coincides
with the closure, with respect to vague convergence, of convolutions of a finite
number of generalized Poisson d.f.’s.

PrOOF. Let f and f, be as in (1) and let A be the distinguished logarithm
of f, F, the d.f. corresponding to f,. We have for each ¢, as n — 00:

n[fa() =11 =n[e"" - 1] - A(t)
and consequently
(19) MO A0 p (.

Actually the first member in (19) is a ch.f. by Theorem 6.5.6, so that the
convergence is uniform in each finite interval, but this fact alone is neither
necessary nor sufficient for what follows. We have

nlfa(t)y—1]= /OO (e"™ — Dn dF ,(u).
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For each n, nF, is a bounded increasing function, hence there exists
{auj9 unj;l = J =< kn}

where —00 < U1 < U2 < -+ < Uy, <00 anda,; = nF o (un ;) — Fp (U 1)1,
such that
k, oo I
(20) sup | > (€™ — g, ; ~ / (€™ — DndF,(u)| < —.
—60 n

lrl<n j=1

(Which theorem in Chapter 6 implies this?) Taking exponentials and using
the elementary inequality |e* — &°'| < |e*l(el*"%1 = 1), we conclude that as
n— oo,

k |
" - - | )
vay sup |e Uan=11 _ HiB(r;a,,j, u,,j)E =0 (—) .

41
ffi=n =1

This and (19) imply (18). The converse is proved at once by Theorem 7.6.5.
We are now in a position to state the fundamental theorem on infinitely

divisible ch.f.’s, due to P. Lévy and Khintchine.

Theorem 7.6.7. Every infinitely divisible ch.f. f has the following canonical
representation:

©opoo . 2
f(1) =exp [air +/ (e”" -1 i ) ! +2u dG(u)}
u

oo 14l

where a is a real constant, & is a bounded increasing function in {(—oo, 00),
and the integrand is defined by continuity to be —?/2 at u = 0. Furthermore,
the class of infinitely divisible ch.f.’s coincides with the class of limiting ch.f.’s

of Z'j‘z y Xuj — a, in a holospoudic double array
{ans I = J = kil! 1 = n.},

where k, — oo and for each n, the r.v.’s {X,,;, 1 < j < k,} are independent.

Note that we have proved above that every infinitely divisible ch.f. is in
the class of limiting ch.f.’s described here, although we did not establish the
canonical representation. Note also that if the hypothesis of “holospoudicity”
is omitted, then every ch.f. is such a limit, trivially (why?). For a complete
proof of the theorem, various special cases, and further developments, see the
book by Gnedenko and Kolmogorov [12].
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Let us end this section with an interesting example. Put s = o +it, 0 > 1
and ¢ real; consider the Riemann zeta function:

21 1y}
Hey=Y — = (1——;) ,

where p ranges over all prime numbers. Fix ¢ > 1 and define

_ Sle+in
f()= T

We assert that f is an infinitely divisible ch.f. For each p and every real 1,
the complex number 1 — p~7~* lies within the circle {z: |z — 1| < 1}. Let
log z denote that determination of the logarithm with an angle in (-, 7]. By
looking at the angles, we see that

-—~a

l1-p - —a—i
logmzlog(l—p 7y —log(1 — p™™)

> 1
— E : (eﬂ(mlogp)it . 1)
mpfflﬂ
m=1

o0
= Zlog B, m™ p™™, —mlog p).

m=1

Since
f() = lim ] ] B.m ™ p™™, —mlog p),
n—s 00

psn

it follows that f is an infinitely divisible ch.f.
So far as known, this famous relationship between two “big names” has
produced no important issue.

EXERCISES

1. Is the convex combination of infinitely divisible ch.f.’s also infinitely
divisible?

2. If f is an infinitely divisible ch.f. and A its distinguished logarithm,
r > O, then the rth power of f is defined to be ™). Prove that for each r > 0
it 1s an infinitely divisible ch.f.

*3, Let f be a ch.f. such that there exists a sequence of positive integers

n, going to infinity and a sequence of ch.f.’s ¢; satisfying f = (¢ )"*; then
f is infinitely divisible.

4. Give another proof that the right member of (17) is an infinitely divis-
ible ch.f. by using Theorem 6.5.6.
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5. Show that f(r) = (1 ~b)/(1 — be'"), 0 < b < 1, is an infinitely divis-
ible ch.f. {ninT: Use canonical form.]

6. Show that the d.f. with density BT (@) 'x* Te™# a >0, B> 0, in
(0, c0), and 0 otherwise, is infinitely divisible.

7. Carry out the proof of Theorem 7.6.2 specifically for the “trivial” but
instructive case f(r) = e“', where g is a fixed real number.

*8. Give an example to show that in Theorem 7.6.3, if the uniformity of
convergence of ; f to f is omitted, then ;A need not converge to A. [HINT:
wf () = exp2ri(— 1)kt (1 + k) 1))

9. Let f()=1—1¢t, fr(t)=1—r+(=D*itk 1, 0<t<2,k> 1. Then
f« never vanishes and converges uniformly to f in [0, 2]. Let ./ denote the
distinguished square root of f in [0, 2]. Show that /f does not converge
in any neighborhood of r = 1. Why is Theorem 7.6.3 not applicable? {This
example is supplied by E. Reich].

*10. Some writers have given the proof of Theorem 7.6.6 by apparently
considering each fixed r and using an analogue of (21) without the “sup,,,,”
there. Criticize this “quick proof”. [HINT: Show that the two relations

¥t and YV Hm u,,, (1) = u, (1),
= 00
vt lim u,(t) = u(),
n—r 00

do not imply the existence of a sequence {m,} such that
Vi lim uy, (1) = u(z).
n— ol

Indeed, they do not even imply the existence of two subsequences {m,} and
{n,} such that
Ve: im uy, ., (1) = u(z).
v OO

Thus the extension of Lemma 1 in Sec. 7.2 is false.]
The three “counterexamples” in Exercises 7 to 9 go to show that the
cavalienism alluded to above is not to be shrugged off easily.
11. Strengthening Theorem 6.5.5, show that two infinitely divisible
ch.f.’s may coincide in a neighborhood of 0 without being identical.

*12. Reconsider Exercise 17 of Sec. 6.4 and try to apply Theorem 7.6.3.
[ninT: The latter is not immediately applicable, owing to the lack of uniform
convergence. However, show first that if " converges for r € A, where
m(A) > 0, then it converges for all 7. This follows from a result due to Stein-
haus, asserting that the difference set A — A contains a neighborhood of 0 (see,
e.g., Halmos [4, p. 68]), and from the equation ¢ /et'" = e+ Let {b,},
{b"} be any two subsequences of c,, then e~ — 1 forall 1. Since 1 is a
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ch.f., the convergence is uniform in every finite interval by the convergence
theorem for ch.f.’s. Alternatively, if

cpit

@(t) = lim e
n—= 0o

then ¢ satisfies Cauchy’s functional equation and must be of the form e,
which is a ch.f. These approaches are fancier than the simple one indicated
in the hint for the said exercise, but they are interesting. There is no known
quick proof by “taking logarithms”, as some authors have done.]
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8 Random walk

8.1 Zero-or-one laws

In this chapter we adopt the notation N for the set of strictly positive integers,
and N° for the set of positive integers; used as an index set, each is endowed
with the natural ordering and interpreted as a discrete time parameter. Simi-
larly, for each n € N, N, denotes the ordered set of integers from 1 to n (both
inclusive); Ng that of integers from 0 to n (both inclusive); and N/, that of
integers beginning with n + 1.

On the probability triple (Q2, #, &°), a sequence {X,, n € N} where each
X, 1s anr.v. (defined on Q2 and finite a.e.), will be called a (discrete parameter)
stochastic process. Various Borel fields connected with such a process will now
be introduced. For any sub-B.F. & of &%, we shall write

1 Xe&

and use the expression “X belongs to & or “4 contains X to mean that
X~NA) C & (see Sec. 3.1 for notation): in the customary language X is said
to be “measurable with respect to £”. For each n € N, we define two B.F.’s
as follows:
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“#, = the augmented B.F. generated by the family of r.v.’s {X;, k € N,.};
that 1s, #, 18 the smallest B.F.& containing all Xin the family
and all null sets;

# = the augmented B.F. generated by the family of r.v.’s {X;, k € N 1

Recall that the union | J;_; % is a field but not necessarily a B.F. The

smallest B.F. containing it, or equivalently containing every %, n € N, is
denoted by

oC
Foe =\ T
n=l]

it is the B.F. generated by the stochastic process {X,,n € N}. On the other
hand, the intersection (), #' is a B.F. denoted also by A°%, 4. It will be
called the remote field of the stochastic process and a member of it a remote
event,

Since #,, C #, 2 is defined on #Z,,. For the study of the process {X,,n €
N} alone, it is sufficient to consider the reduced triple (2, %, % |&_ ). The
following approximation theorem is fundamental.

Theorem 8.1.1. Given €> 0 and A € %, there exists A, €2, #
such that

(2 PAaA,) < e

PROOF. Let & be the collection of sets A for which the assertion of the
theorem is true. Suppose Ay € & foreachk e Nand Ay + A or Ay L A. Then
A also belongs to &, as we can easily see by first taking & large and then
applying the asserted property to A,. Thus & is a monotone class. Since it is
trivial that & contains the field { J,_, %, that generates %, ¢ must contain
-+~ by the Corollary to Theorem 2.1.2, proving the theorem.

Without using Theorem 2.1.2, one can verify that £ is closed with respect
to complementation (trivial), finite union (by Exercise 1 of Sec. 2.1), and
countable union (as increasing limit of finite unions). Hence & is a B.F. that
must contain F,.

It will be convenient to use a particular type of sample space 2. In the
noation of Sec. 3.4, let

oC
Q=X Qu,

n=1

where each €, is a “copy” of the real line #&'. Thus  is just the space of all
indinite sequences of real numbers. A point w will be written as {w,,n € N},
and w, as a function of w will be called the nth coordinate (function) of w.
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Each Q, is endowed with the Euclidean B.F. 3!, and the product Bore] field
# (= “# In the notation above) on Q is defined to be the B.F. generated by
the finite-product sets of the form

&
(3) ({w:wn, € By}

/=1

where (nq, ..., n;) is an arbitrary finite subset of N and where each B, € Al
In contrast to the case discussed in Sec. 3.3, however, no restriction is made on
the p.m. # on .#. We shall not enter here into the matter of a general construc-
tion of 7. The Kolmogorov extension theorem (Theorem 3.3.6) asserts that
on the concrete space-field (§2, ) just specified, there exists a p.m. & whose
projection on each finite-dimensional subspace may be arbitrarily preassigned,
subject only to consistency (where one such subspace contains the other).
Theorem 3.3.4 is a particular case of this theorermn.

In this chapter we shall use the concrete probability space above, of the
so-called “function space type”, to simplify the exposition, but all the results
below remain valid without this specification. This follows from a measure-
preserving homomorphism between an abstract probability space and one of
the function-space type; see Doob [17, chap. 2].

The chief advantage of this concrete representation of £ 1s that it enables
us to define an important mapping on the space.

DEFINITION OF THE sHIFT.  The shift 7 is a mapping of €2 such that
T.w={w,,n EN} - w = {w,41,n € N}
in other words, the image of a point has as its nth coordinate the (n + 1)st

coordinate of the original point.

Clearly 7 is an oc-to-1 mapping and it is from £ onfo 2. Its iterates
are defined as usual by composition: t° = identity, T8 = v o ¥ fork > 1. It
induces a direct set mapping T and an inverse set mapping 7~! according to
the usual definitions. Thus

A = {w:ww € A}

and 77" is the nth iterate of T7'. If A is the set in (3), then

k
4) TTIA = ﬂ{a): wn,+1 € By}
=1

It follows from this that T=! maps # into %, more precisely,

vAeZ:tT"AeZ/, neN,
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where -+ is the Borel field generated by {wy, k > n}. This is obvious by (4)
if A 1s of the form above, and since the class of A for which the assertion
holds is a B.F., the result is true in general.

DEFINITION. A set in # is called invariant (under the shift) iff A = T A.
Anr.v. Y on Q is invariant iff Y(w) = ¥ (rw) for every w € Q.

Observe the following general relation, valid for each point mapping 7
and the associated inverse set mapping 77!, each function ¥ on § and each
subset A of . &'

(5) TTHw: Y(w) € A} = {w: Y(ww) € A).

This follows from t=1 e ¥=1 = (¥ o 1)~ 1.
We shall need another kind of mapping of Q. A permutation on N, is a
1-to-1 mapping of N, to itself, denoted as usual by

I, 2., n
al, o2, ..., on |’

The collection of such mappings forms a group with respect to composition.
A finite permutation on N 1s by definition a permutation on a certain “initial
segment” N, of N. Given such a permutation as shown above, we define ow
to be the point in 2 whose coordinates are obtained from those of w by the
corresponding permutation, namely

o Waj, ifjeNn;
(ow); = { wj, if jeN,.

As usual. o induces a direct set mapping o and an inverse set mapping ¢!,
the latter being also the direct set mapping induced by the “group inverse”
7! of 0. In analogy with the preceding definition we have the following.

DEFINITION. A set in .7 is called permutable iff A = ¢ A for every finite
permutation ¢ on N. A function ¥ on € is permutable iff ¥ (w) = Y (cw) for.
every finite permutation ¢ and every w € 2.

It is fairly obvious that an invariant set is remote and a remote set is
permutable: also that each of the collections: all invariant events, all remote
events, all permutable events, forms a sub-B.F. of .# . If each of these B.F.’s
is augmented (see Exercise 20 of Sec 2.2), the resulting augmented B.F.’s

will be called “almost invariant”, “almost remote”, and “almost permutable”,
respectivelv. Finally, the collection of all sets in .# of probability either O or
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1 clearly forms a B.F., which may be called the “all-or-nothing” field. This
B.F. will also be referred to as “almost trivial”.

Now that we have defined all these concepts for the general stochastic
process, 1t must be admitted that they are not very useful without further
specifications of the process. We proceed at once to the particular case below.

DEFINITION. A sequence of independent r.v.’s will be called an indepen-
dent process; 1t 1s called a stationary independent process iff the r.v.’s have a
common distribution.

Aspects of this type of process have been our main object of study,
usually under additional assumptions on the distributions. Having christened
it, we shall henceforth focus our attention on “the evolution of the process
as a whole” — whatever this phrase may mean. For this type of process, the
specific probability triple described above has been constructed in Sec. 3.3.
Indeed, # = #,, and the sequence of independent r.v.’s is just that of the
successive coordinate functions {w,,n € N}, which, however, will also be
interchangeably denoted by {X,,n € N}. If ¢ is any Borel measurable func-
tion, then {¢(X,), n € N} i1s another such process.

The following result is called Kolmogorov’s “zero-or-one law”.

Theorem 8.1.2. For an independent process, each remote event has proba-
bility zero or one.

PROOF. Let A € (Yoo, % and suppose that #(A) > 0; we are going to
prove that #?(A) = 1. Since #, and :# are independent fields (see Exercise 5
of Sec. 3.3), A is independent of every set in %, for each n € N; namely, 1if
M e U5, #,, then

©) (A NM) = 2(A)Z7(M).
I we set
= PO NN
TAYET ()

for M € #, then 4 (-) is clearly a p.m. (the conditional probability relative to
A; see Chapter 9). By (6) it coincides with #* on [ ., 7, and consequently
also on # by Theorem 2.2.3. Hence we may take M to be A in (6) to conclude
that 7(A) = 2(A) or P(A) = 1.

The usefulness of the notions of shift and permutation in a stationary
independent process is based on the next result, which says that both =1 and
o are “measure-preserving’’.
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Theorem 8.1.3. For a stationary independent process, if A € # and o is
any finite permutation, we have

(7) P(TTA) = P(A);
(8) P oA) = P(A).

pROOF. Define a set function 2 on # as follows:
PAY= P(T7IA).

Since v~! maps disjoint sets into disjoint sets, it is clear that & is a p.m. For
a finite-product set A, such as the one in (3), it follows from (4) that

k
7 =[] u®,) =20

i=1

Hence & and 2 coincide also on each set that is the union of a finite number
of such disjoint sets, and so on the B.F. # generated by them, according to
Theorem 2.2.3. This proves (7); (8) is proved similarly.

The following companion to Theorem 8.1.2, due to Hewitt and Savage,
i1s very useful.

Theorem 8.1.4. For a stationary independent process, each permutable event
has probability zero or one.

PROCF. Let A be a permutable event. Given € > 0, we may choose ¢; > 0

so that
(o)
Z € < €.
k=1

By Theorem 8.1.1, there exists Ay € .%,, such that (A A A;) < €, and we

14
may suppose that n; 1 oo, Let

o= 1,....0n0, 00+ 1, ...,2¢0
S \me 41, .20, 1,000 )7

and M; = oA;. Then clearly M; € 7/ . It follows from (8) that
(A AMy) £ €.
For any sequence of sets {£,} in #, we have

o0 o0 o0
2(lim sup Ey) = & (ﬂ U Ek) <N P(E;).
k k=1

m=1k=m =
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Applying this to E; = A a My, and observing the simple identity
limsup(A A M;) = (A\liminf M) U (lim sup M\ A),
we deduce that
(A alimsup M) < 22(limsup(A a Mp)) < e.

Since {J;2,, My € #/ , the set lim sup My belongs to (;2,, %/, which is seen
to coincide with the remote field. Thus lim sup M, has probability zero or one
by Theorem 8.1.2, and the same must be true of A, since € is arbitrary in the
inequality above.

Here is a more transparent proof of the theorem based on the metric on
the measure space (2, %, %°) given in Exercise 8 of Sec. 3.2. Since A; and

M, are independent, we have
P(Ar NMy) = P(AP M)
Now Ay — A and My — A in the metric just mentioned, hence also
ArNMg = ANA

in the same sense. Since convergence of events in this metric implies conver-
gence of their probabilities, it follows that Z2(A N A) = 22(A)7?(A), and the
theorem is proved.

Corollary. For a stationary independent process, the B.E.’s of almost
permutable or almost remote or almost invariant sets all coincide with the
all-or-nothing field.

EXERCISES
€2 and # are the infinite product space and field specified above.

1. Find an example of a remote field that is not the trivial one; to make
it interesting, insist that the r.v.’s are not identical.

2. An r.v. belongs to the all-or-nothing field if and only if it is constant
a.e.

3. If A is invariant then A = TA; the converse is false.

4. An r.v. is invariant [permutable] if and only if it belongs to the
invariant [permutable] field.

5. The set of convergence of an arbitrary sequence of r.v.’s {¥Y,, n € N}
or of the sequence of their partial sums 233:1 Y ; are both permutable. Their
limits are permutable r.v.’s with domain the set of convergence.
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*6. Ifa, > 0,lim,_,  a, exists > O finite or infinite, and lim,_, oo (@y41/as )
= 1, then the set of convergence of {a,' }"_, ¥} is invariant. If ¢, — +o0,
the upper and lower limits of this sequence are invariant r.v.’s.

*7. The set {Y2, € A i.0.}, where A € ¥8!, is remote but not necessarily
invariant; the set {Z’}f:] Y; A 1.0.} is permutable but not necessarily remote.
Find some other essentially different examples of these two kinds.

8. Find trivial examples of independent processes where the three
numbers 2(t71A), P(A), #(rA) take the values 1, 0, 1; or 0, % 1.

9. Prove that an invariant event is remote and a remote event is
permutable.

*10. Consider the bi-infinite product space of all bi-infinite sequences of
real numbers {w,,n € N}, where N is the set of all integers in its natural
(algebraic) ordering. Define the shift as in the text with N replacing N, and
show that it 1s 1-to-1 on this space. Prove the analogue of (7).

11. Show that the conclusion of Theorem 8.1.4 holds true for a sequence
of independent r.v.’s, not necessarily stationary, but satisfying the following
condition: for every j there exists a k > j such that X has the same distribu-
tion as X;. [This remark is due to Susan Horn.]

12. Let {X,, n > 1} be independent r.v.’s with 22X, = 47"} = 2[X, =
—47" = % Then the remote field of {§,, n > 1}, where §, = Z?zl X, 1s not
trivial.

8.2 Basic notions

From now on we consider only a stationary independent process {X,,n ¢
N} on the concrete probability triple specified in the preceding section. The
common distribution of X, will be denoted by & (p.m.) or F (d.f.); when only
this is involved, we shall write X for a representative X, thus £(X) for £(X,,).

Our interest in such a process derives mainly from the fact that it under-
lies another process of richer content. This is obtained by forming the succes-
sive partial sums as follows:

M Sa=5 X, nen.
J=1

An initial r.v. §¢ = 0 is adjoined whenever this serves notational convenience,
as in X, =S, —S,_; for n € N. The sequence {S,,n € N} is then a very
familiar object in this book, but now we wish to find a proper name for it. An
officially correct one would be “stochastic process with stationary independent
differences”; the name “homogeneous additive process” can also be used. We
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have, however, decided to call it a “random walk (process)”, although the use
of this term is frequently restricted to the case when w is of the integer lattice
type or even more narrowly a Bernoullian distribution.

DEFINITION OF RANDOM WALK. A random walk is the process {§,,n € N}
defined in (1) where {X,,n € N} is a stationary independent process. By
convention we set also Sy = 0.

A similar definition applies in a Euclidean space of any dimension, but
we shall be concerned only with 2! except in some exercises later.

Let us observe that even for an independent process {X,,n € N}, its
remote field 1s in general different from the remote field of {S,, n € N}, where
Sn =371 X;. They are almost the same, being both almost trivial, for a
stationary independent process by virtue of Theorem 8.1.4, since the remote
field of the random walk is clearly contained in the permutable field of the
corresponding stationary independent process.

We add that, while the notion of remoteness applies to any process,
“(shift)-invariant” and “permutable” will be used here only for the underlying
“coordinate process” {w,,n € N} or {X,,n € N}.

The following relation will be much used below, for m < n:

Sp-m(T"@) =Y X;(T"0) = Y X jim(@) = 5p(@) = Su(@).
j=1

j=1

It follows from Theorem 8.1.3 that §,_,, and §,, — S,, have the same distri-
bution. This is obvious directly, since it is just u™ ™",

As an application of the results of Sec. 8.1 to a random walk, we state
the following consequence of Theorem 8.1.4.

Theorem 8.2.1. Let B, ¢ ' for each n € N. Then
S, € B, i.0.)

is equal to zero or one.

prOOF. If ¢ is a permutation on N, then §,(cw) = §,(w) for n > m,
hence the set

o0
Ay = U {Sn € B,}

n=m

is unchanged under o1 or o. Since A, decreases as m increases, it
follows that

o0

() A

mn=1}

is permutable, and the theorem is proved.
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Even for a fixed B = B, the result is significant, since it is by no means
evident that the set {§, > 0 1.0.}, for instance, is even vaguely invariant
or remote with respect to {X,,n € N} (cf. Exercise 7 of Sec. 8.1). Yet the
preceding theorem implies that it is in fact almost invariant. This is the strength
of the notion of permutability as against invariance or remoteness.

For any serious study of the random walk process, it is imperative to
introduce the concept of an “optional r.v.” This notion has already been used
more than once in the book (where?) but has not yet been named. Since the
basic inferences are very simple and are supposed to be intuitively obvious,
it has been the custom in the literature until recently not to make the formal
introduction at all. However, the reader will profit by meeting these funda-
mental ideas for the theory of stochastic processes at the earliest possible time.
They will be needed in the next chapter, too.

DEFINITION OF OPTIONAL I.v. An r.v. « 1$ called optional relative to the
arbitrary stochastic process {Z,,n € N} iff it takes strictly positive integer
values or 400 and satisfies the following condition:

(2) Yn e N U{oo) {w: a(w) = n} € %,,

where #, is the B.F. generated by {Z;,k € N;}.

Similarly if the process is indexed by MY (as in Chapter 9), then the range
of o will be N°. Thus if the index n is regarded as the time parameter, then
o effects a choice of time (an “option”) for each sample point w. One may
think of this choice as a time to “stop”, whence the popular alias “stopping
time”, but this i1s usually rather a momentary pause after which the process
proceeds again: time marches on!

Associated with each optional r.v. « there are two or three important
objects. First, the pre-« field 7, is the collection of all sets in %, of the form

(3) U He=n}na,l

1<n=<o00

where A, € #, for each n € N U {o0}. This collection is easily verified to be
a B.F. (thow?). If A € %, then we have clearly A N {o = n} € %, for every
n. This property also characterizes the members of .7, (see Exercise 1 below).
Next, the post-a process is the process | {Zyy,, n € N} defined on the trace
of the original probability triple on the set {&¢ < oo}, where

4) Vi € N: Zyin (@) = Zoyguygn(@).

Each Z,, . is seen to be an r.v. with domain {& < oc}; indeed it is finite a.e.
there provided the original Z,’s are finite a.e. It is easy to see that Z, € #,.
The post-a field #] is the B.F. generated by the post-« process: it is a sub-B.F.
of {o < oo} N H,.
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Instead of requiring « to be defined on all £2 but possibly taking the value
00, wWe may suppose it to be defined on a set A in #,,. Note that a strictly
positive integer n is an optional r.v. The concepts of pre-« and post-o fields
reduce in this case to the previous %, and & .

A vital example of optional r.v. is that of the first entrance time into a
given Borel set A:

) ay(@) = min{n € N:Z,(w) € A} on HD:l{w: Z,(w) € A);

+0o0 elsewhere.

To see that this is optional, we need only observe that for each n € N:
{wagw)=n)={w:Zj(w) €A1 <j<n—1;Z,(w) €A}

which clearly belongs to Z,; similarly for n = co.

Concepts connected with optionality have everyday counterparts, implicit
in phrases such as “within thirty days of the accident (should it occur)”. Histor-
ically, they arose from “gambling systems”, in which the gambler chooses
opportune times to enter his bets according to previous observations, experi-
ments, or whatnot. In this interpretation, « 4 1 is the time chosen to gamble
and is determined by events strictly prior to it. Note that, along with o, o + 1
is also an optional r.v., but the converse is false.

So far the notions are valid for an arbitrary process on an arbitrary triple.
We now return to a stationary independent process on the specified triple and
extend the notion of “shift” to an “w«-shiff” as follows: 7 is a mapping on
{a < oo} such that

(6) w=1"w on{walw)=nl.

Thus the post-a process is just the process {X,(t%w), n € N}. Recalling that
X, 1s a mapping on $2, we may also write

(7 Xatn(@) =X, (t%0) = (X, © ) w)

and regard X, ° 7%, n € N, as the r.v.’s of the new process. The inverse set
mapping (z%)"!, to be written more simply as 77¢, is defined as usual:

T7%A = {w: %0 € A).

Let us now prove the fundamental theorem about “stopping™ a stationary
independent process.

Theorem 8.2.2. For a stationary independent process and an almost every-
where finite optional r.v. & relative to it, the pre-« and post-« fields are inde-
pendent. Furthermore the post-« process is a stationary independent process
with the same common distribution as the original one.
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PROOF. Both assertions are summarized in the formula below. For any
Ae# keN,BjeR 1< j<k, wehave

k
(8) PN Xor; € By, 1 < j < k)= P{A ][ nB)).

j=1
To prove (8), we observe that it follows from the definition of « and 7, that
(9) ANjo=n}=A, N{a=n) e #%,
where A, € #, for each n € N. Consequently we have
PN a=nmXej€B), 12 jsk}=PApa=n;X,,;€B;,1 <] <k}
=P Ao =n}P{Xp ;€81 <j=<k}

k
= P{Asa = n) [T u)),
Jj=1

where the second equation is a consequence of (9) and the independence of
%, and #/. Summing over n € N, we obtain (8).

An immediate corollary is the extension of (7) of Sec. 8.1 to an o-shift.
Corollary. For each A € 7 we have
(10) PATUA) = P(A).

Tust as we iterate the shift T, we can iterate . Put ¢! = &, and define
o inductively by
o w) = of (%w), keN.

Each o is finite a.e. if « is. Next, define 8y = 0, and
k -
ﬁk = Za*’, keN.
=1

We are now in a position to state the following result, which will be
needad later.

Theorem 8.2.3. Let o be an a.e. finite optional r.v. relative to a stationary
indepzndent process. Then the random vectors {V;, k € N}, where

Vi(w) = (@ (@), X5, 11(@), ..., Xp, (@),

are independent and identically distributed.
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proOF. The independence follows from Theorem 8.2.2 by our showing
that V;,..., V.. belong to the pre-§;_ field, while V; belongs to the post-
Bi_1 field. The details are left to the reader; cf. Exercise 6 below.

To prove that V; and V4 have the same distribution, we may suppose
that k = 1. Then for each n € N, and each n-dimensional Borel set A, we have

{wie (@) =n; X 11(@), ..., Xol4a2 (@) € A}
= {w: o' (T%w) = n; X1 (%), ..., X (T0) € A,
since
X (T* ) = X (1o (17 @) = X2 () (T7 @)
= Xl (w)+e2(w) (@) = Xgi 42 (@)
by the quirk of notation that denotes by X, () the function whose value at

w is given by Xue (@) and by (7) with n = o*(w). By (5) of Sec. 8.1, the
preceding set is the T™%-image (inverse image under %) of the set

{w o' (@) =n, (X (@), ..., Xa(w)) € A},

and so by (10) has the same probability as the latter. This proves our assertion.

Corollary. The r.v.’s {Yy, k € N}, where

B
Yi)= D ¢X,(@))

n=,8k_.|+‘

and ¢ is a Borel measurable function, are independent and identically
distributed.

For ¢ =1, ¥, reduces to af . Foro(x) =x, Y, = Sg. — Sp,.,. The reader
is advised to get a clear picture of the quantities o, B, and Y, before
proceeding further, perhaps by considering a special case such as (5).

We shall now apply these considerations to obtain results on the “global
behavior” of the random walk. These will be broad qualitative statements
distinguished by their generality without any additional assumptions.

The optional r.v. to be considered is the first entrance time into the strictly
positive half of the real line, namely A = (0, oc) in (5) above. Similar results
hold for [0, c0); and then by taking the negative of each X,, we may deduce
the corresponding result for (—oc, 0] or (—oo, 0). Results obtained in this way
will be labeled as “dual” below. Thus, omitting A from the notation:

(1) () = min{n € N:§, > 0} on nf=j1{w: S, (w) > 0};

+o00 elsewhere;
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and
VoaeNi{jea=n}=(§;<0forl <j<n-1§, >0}

Define also the r.v. M, as follows:

(12) vhn e N M,(0)= [max §;(e).
=Jj=n

The inclusion of Sy above in the maximum may seem artificial, but it does
not affect the next theorem and will be essential in later developments in the
next section. Since each X, is assumed to be finite a.e., so is each 5, and M.
Since M, increases with n, it tends to a limit, finite or positive infinite, to be
denoted by

(13) Mw) = nl_i_)n;OM,,(w) = sup Sj(w).

O<j<oo

Theorem 8.2.4. The statements (a), (b), and (c) below are equivalent; the
statements (a’), (b'), and (¢') are equivalent.

(a) Pla < +o0} = 1; @) Pla < o0} < 1;
(b) 9@{’@0 S, = +oo} =1; (b) @{n@; S, =+o0) =0
(¢) M = +4+oc} =1, (¢ P{M =+o0} =0.

PROCF. If (a) is true, we may suppose ¢ < oo everywhere. Consider the
r.v. S, it is strictly positive by definition and so 0 < £(§,) < +o0. By the
Corollary to Theorem 8.2.3, {8p,., — Sg.,k > 1} is a sequence of indepen-
dent and identically distributed r.v.’s. Hence the strong law of large numbers
(Theorem 5.4.2 supplemented by Exercise 1 of Sec. 5.4) asserts that, if «® = 0
and S% = 0:

n—1
Sp, 1 T .
?— = ; k=O(Sﬂk+l - Sﬁf.-) — (0'(80,) >0 a.e.

This implies (b). Since lim,_» S, < M, (b) implies (c). It is trivial that (c)
implies (a). We have thus proved the equivalence of (a), (b), and (c). If (a’)
is true, then (a) is false, hence (b) is false. But the set
H—+ 00

1s clearly permutable (it is even invariant, but this requires a little more reflec-
tion), hence (b') is true by Theorem 8.1.4. Now any numerical sequence with
finite upper limit is bounded above, hence (b') implies (¢'). Finally, if (¢) is
true then (c) is false, hence (a) is false, and (a’) is true. Thus (a’), (b"), and
(c") are also equivalent.
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Theorem 8.2.5. For the general random walk, there are four mutually exclu-
sive possibilities, each taking place a.e.:

(i) Yn e N:§, =0,
(if) S, — —o0;
(iii) S, — +o0;
(iv) —00 = lim,_, o Sy < Myms00 Sp = +00.
pROOF. If X = 0 a.e., then (i) happens. Excluding this, let ¢, = lim,, S,,.

Then ¢ is a permutable r.v., hence a constant ¢, possibly *oo, a.e. by
Theorem 8.1.4. Since

imS, = X; + im(S, —X,),
n n

we have ¢ =X + ¢, where ¢y(w) = ¢ (tw) = ¢ a.e. Since X; #0, it
follows that ¢ = 400 or —oo. This means that

either lim$, = +oo or lim§, = —oc.
n n

By symmetry we have also

either limS, = —oo or imS§, = +oc.
n

n

These double alternatives yield the new possibilities (i1), (11i), or (iv), other
combinations being impossible.
This last possibility will be elaborated upon in the next section.

EXERCISES
In Exercises 1-6, the stochastic process is arbitrary.

*1. « is optional if and only if Va € N:{a < n} € #,.
*2. For each optional o we have « € %, and X, € %, If « and § are both
optional and o < B, then %, C Z.
3. If oy and «; are both optional, then so is a; Ao, 0y V ag, o) + ap. If
o is optional and A € %, then «, defined below is also optional:

o on A
A= 1 400  on Q\A.

*4. If « is optional and B is optional relative to the post-a process, then
« + f is optional (relative to the original process).
5. Vke N:a' 4+ --- +of is optional. [For the ¢ in (11), this has been
called the kth ladder variable.]
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*6. Prove the following relations:
F=aorhy oot =gh Xp et =Xg
7. If @ and $ are any two optional r.v.’s, then

Xﬁ+j (r&w) = Xcr(w)+ﬂ(r“cu)+j (w);

(tF o ) (w) = PO y)) L PT () in general.

*8. Find an example of two optional r.v.’s o and B such that oo < § but
#, D #5. However, if y is optional relative to the post-o process and g =
o + y, then indeed # D 54;3’ As a particular case, J@’k is decreasing (while
g, 1s increasing) as k increases.

9. Find an example of two optional r.v.”s « and 8 such that « < § but
B — o is not optional.

10. Generalize Theorem 8.2.2 to the case where the domain of definition
and finiteness of o is A with 0 < 9?(A) < 1. [This leads to a useful extension
of the notion of independence. For a given A in & with 2°(A) > 0, two
events A and M, where M C A, are said to be independent relative to A iff
PIANANM) = P{AN AN {M)]

*11. Let {X,,n € N} be a stationary independent process and {ay, k € N)
a sequence of strictly increasing finite optional r.v.’s. Then {X,, 1,k € N} is
a stationary independent process with the same common distribution as the
original process. [This is the gambling-system theorem first given by Doob in
1936.]

12. Prove the Corollary to Theorem 8.2.2.

13. State and prove the analogue of Theorem 8.2.4 with « replaced by
@[0,00)- [The inclusion of 0 in the set of entrance causes a small difference.]

14. In an independent process where all X, have a common bound,
F{a} < oo implies ¢'{Sy} < oo for each optional ¢ [cf. Theorem 5.5.3].

8.3 Recurrence

A basic question about the random walk is the range of the whole process:
Ui, Sa(w) for ae. w; or, “where does it ever go?” Theorem 8.2.5 tells us
that, ignoring the trivial case where it stays put at (), it either goes off to —oco
or +o0, or fluctuates between them. But how does it fluctuate? Exercise 9
below will show that the random walk can take large leaps from one end to
the other without stopping in any middle range more than a finite number of
times. On the other hand, it may revisit every neighborhood of every point an
infinite number of times. The latter circumstance calls for a definition.
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DEFINITION. The number x € ¢! is called a recurrent value of the random
walk {S,,n € N}, iff for every € > 0 we have

(1) PUS, — x| < €i0) = 1.

The set of all recurrent values will be denoted by .

Taking a sequence of € decreasing to zero, we see that (1) implies the
apparently stronger statement that the random walk is in each neighborhood
of x i.0. a.e.

Let us also call the number x a possible value of the random walk iff
for every € > 0, there exists n € N such that 9*{|§, — x| < €} > 0. Clearly a
recurrent value is a possibie value of the random walk (see Exercise 2 below).

Theorem 8.3.1. The set i is either empty or a closed additive group of real
numbers. In the latter case it reduces to the singleton {0} if and only if X =0
a.e.; otherwise M is either the whole %! or the infinite cyclic group generated
by a nonzero number ¢, namely {+nc:n € N}

PROOF. Suppose R # ¢ throughout the proof. To prove that R is a group,
let us show that if x is a possible value and y € !, then y — x € M. Suppose
not; then there is a strictly positive probability that from a certain value of n
on, S, will not be in a certain neighborhood of y — x. Let us put for z € R

(2) Pem(2) = P{IS, —z| = € for all n = m};

so that p; ,,(y —x) > O for some ¢ > 0 and m € N. Since x is a possible
value, for the same € we have a k such that 2P{|S§; — x| < €} > 0. Now the
two independent events |S; — x| < € and |§, — S¢ — (¥ — x)| > 2¢ together
imply that |§, — v| > €; hence

(3)  Peitm(y) = P{S, — y| = e for all n > k + m}
> PS8, — x| < €)P{IS, — Sp — (y —x)| = 2e for all n > k + m).

The last-written probability is equal to pac (¥ — x), since S, — 5, has the
same distribution as S,,_ ;. It follows that the first term in (3} is strictly positive,
contradicting the assumption that y € . We have thus proved that R is an
additive subgroup of #'. It is trivial that & as a subset of .Z! is closed in the
Euclidean topology. A well-known proposition (proof?) asserts that the only
closed additive subgroups of .#' are those mentioned in the second sentence
of the theorem. Unless X = 0 a.e., it has at least one possibie value x #£ 0,
and the argument above shows that —x =0 —x € 3 and consequently also
x=0—(—x) € 9. Suppose R is not empty, then 0 € R. Hence M is not a
singleton. The theorem is completely proved.
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It is clear from the preceding theorem that the key to recurrence is the
value 0, for which we have the criterion below.

Theorem 8.3.2. If for some € > () we have

(4) D_PUSal < &) < o0,
then
(5) |Spl < €10} =0

(for the same ¢) so that 0 ¢ R. If for every € > 0 we have

(6) D_PUSal < €} = o0,
then
N S, < eio) =1

for every € > 0 and so 0 € R,

Remark. Actually if (4) or (6) holds for any € > 0, then it holds for
every € > 0; this fact follows from Lemma 1 below but is not needed here.

PROOF. The first assertion follows at once from the convergence part of
the Borel-Cantelli lemma (Theorem 4.2.1). To prove the second part consider

F = liminf{|S,| > €},

n

namely F is the event that |S,| < € for only a finite number of values of x.
For each w on F, there is an m(w) such that |S,(w)| > € for all n > m(w); it
follows that if we consider “the last time that |S,| < €7, we have

o0
PFY=)_ P{Sul < €1, = € forall n > m + 1).

m=0

Since the two independent events |S,,| < € and |5, — S| > 2¢ together imply
that |S,| > ¢, we have

1> 9(F) > Z.@{|S,,,| < }P||S, — S| > 2e forall n > m + 1}

m=1

o
= > P{ISwl < €} p2c,1(0)

m=]
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by the previous notation (2), since S, — §,, has the same distribution as S, _,,.
Consequently (6) cannot be true unless pj.1(0) = 0. We proceed to extend
this to show that p;.; = 0 for every k € N. To this aim we fix k and consider
the event

An=1{ISn| <€, |85, = e forall n > m + k};

then A,, and A, are disjoint whenever m’ > m + k and consequently (why?)
o0
k2 ) P(An).
m=1
The argument above for the case k = 1 can now be repeated to yield

k> PlSnl < €)paci(0),

m=1
and so pae(0) = 0 for every € > 0. Thus
P(F)= lim pex(0) =0,
k—o0

which is equivalent to (7).
A simple sufficient condition for 0 € R, or equivalently for it # ¢, will
now be given.

Theorem 8.3.3. If the weak law of large numbers holds for the random walk
{S,,n € N} in the form that §,,/n — O in pr., then R # ¢.

pPrROOF. We need two lemmas, the first of which is also useful elsewhere.

Lemma 1. For any € > 0 and m € N we have

o o]

®) > " PISal < me) <2m ) P{IS,| < €).

=0 n=0

PROOF OF LEMMA 1. It is sufficient to prove that if the right member of (8)
1s finite, then so is the left member and (8) is true. Put

I =(-¢¢), J=[je (j+ De),

for a fixed j € N, and denote by ¢;, ¢; the respective indicator functions.
Denote also by o the first entrance time into J, as defined in (5) of Sec. 8.2
with Z, replaced by S, and A by J. We have

©) ff’{Zw(sﬂ)}:Z /{ k}Zw(sn)d:ff’.
n=1 k=1 =R op=1
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The typical integral on the right side is by definition of & equal to

/ {1+ Z fpj(Sn)}d?/)S/ {1+ Z go;(S,,——Sk)}d?/?’,
(e=k) fe=k}

n=k+1 n=k+1

sincelo =k} C{SreJland (S, € JIN{S, €J} C {5, — S €I} Now {o =
k} and §, — S, are independent, hence the last-written integral is equal to

P(a =k>{1 +/Q > s, —sk)d@} = Pla = k)é“*{z@(sn},

n=k+1 n=0

since ¢;(Sp) = 1. Summing over k and observing that ¢;(0) = 1 only if j =0,
in which case J C I and the inequality below is trivial, we obtain for each j:

& {Z(pJ(Sn)} =< ng{ZWI(Sn)} .
n=0

n=0

Now if we write J; for J and sum over j from —m to m — 1, the inequality
(8) ensues in disguised form.

This lemma is often demonstrated by a geometrical type of argument.
We have written out the preceding proof in some detail as an example of the
maxim: whatever can be shown by drawing pictures can also be set down in
symbols!

Lemma 2. Let the positive numbers {u, (m)}, where n € N and m is a real
number >1, satisfy the following conditions:
(1) VYp:u,(m) is increasing in m and tends to 1 as m — o0;
(i) Jc > 0: 30 un(m) <emS o2 yuy(1) for all m > 1
(iii) V&6 > 0:lim,,_, o, 4, (8,) = 1.

Then we have

(10) > uy(1) = o0,
n=0

Remark. If (ii) is true for all integer m > 1, then it is true for all real
m > 1, with ¢ doubled.

PROOF OF LEMMA 2. Suppose not; then for every A > O
[Am]

o0 (v o]
1 1
00 > gun(l) > ;;r;un(m) > —C;;un(m
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[Am]

1 H
> LS (4.
_cmn:O (A

Letting m — oo and applying (iii) with § = A™}, we obtain

- A
> ()= =
n=0 ¢

since A is arbitrary, this is a contradiction, which proves the lemma

To return to the proof of Theorem 8.3.3, we apply Lemma 2 with
un(m) = Pl < m}.

Then condition (i) is obviously satisfied and condition (ii} with ¢ = 2 follows
from Lemma 1. The hypothesis that S,/n — 0 in pr. may be written as

<8}—>1

for every § > 0 as n — 00, hence condition (iii) is also satisfied. Thus Lemma 2
yields

Sp

u, (8n) = ?79{
n

o0

> " P{iSnl < 1} = +o0.
n=0

Applying this to the “magnified” random walk with each X, replaced by X, /¢,
which does not disturb the hypothesis of the theorem, we obtain (6) for every
€ > 0, and so the theorem is proved.

In practice, the following criterion is more expedient (Chung and Fuchs,
1951).

Theorem 8.3.4. Suppose that at least one of &(X*) and £(X™) is finite. The
M £ ¢ if and only if &(X) = 0; otherwise case (ii) or (iii) of Theorem 8.2.5
happens according as £(X) < 0 or > 0.

PROOE, If —00 < £(X) < 0 or 0 < &(X) < oo, then by the strong law
of large numbers (as amended by Exercise 1 of Sec. 5.4), we have

Sn
— — &(X) ae.,
n

so that either (ii) or (iii) happens as asserted. If £(X) = 0, then the same law
or its weaker form Theorem 5.2.2 applies; hence Theorem 8.3.3 yields the
conclusion,
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DEFINITION OF RECURRENT RANDOM WALK. A random walk will be called
recurrent iff N £ & it is degenerate iff ® = {0}; and it is of the lartice rype
iff M is generated by a nonzero element.

The most exact kind of recurrence happens when the X,,’s have a common
distribution which is concentrated on the integers, such that every integer is
a possible value (for some S,), and which has mean zero. In this case for
each integer ¢ we have #’{S, = ¢ i.0.} = 1. For the symmetrical Bernoullian
random walk this was first proved by P6lya in 1921.

We shall give another proof of the recurrence part of Theorem 8.3.4,
namely that &(X) = 0 is a sufficient condition for the random walk to be recur-
rent as just defined. This method is applicable in cases not covered by the two
preceding theorems (see Exercises 6-9 below), and the analytic machinery
of ch.f.’s which it employs opens the way to the considerations in the next
section.

The starting point is the integrated form of the inversion formula in
Exercise 3 of Sec. 6.2. Talking x =0, u = ¢, and F 10 be the d.f. of S, we
have

] 1 r< 1 [ 1—coser
(11) :"j(lSnl<€)ZE/O @(|5n|<u)du=;/ ——ﬁm——f(t)”dr.

Thus the series in (6) may be bounded below by summing the last expres-
sion in (11). The latter does not sum well as it stands, and it is natural to resort
to a summability method. The Abelian method suits it well and leads to, for
O<r<l:

(12) i " (IS, ) > 1 /00 1—coserR 1 dt
i nl <€)= — 3
ot € J_oo 12 1—rf()

where R and I later denote the real and imaginary parts or a complex quan-
tity. Since

1 1—+¢
R > >
1—rf(t) = 11 —rf(n)?

and (1 —coser)/t* > Ce? for |ef] < 1 and some constant C, it follows that
for n < I\e the right member of (12) is not less than

Ce [T 1
e — dt.
T Sy 1—=rf()

Now the existence of ¢(|X|) implies by Theorem 6.4.2 that 1 — (1) = o(r)
as t — 0. Hence for any given § > 0 we may choose the n above so that

1 —rfOF < (0 =r+r[1 —REOD + (FLF (D)

(13)

(14)
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< 2(1 — P)? 4 2(rdr)? + (#81)? = 2(1 — r)? + 3r28%12.

The integral in (14) is then not less than

U (1 - r)dt 1 =0Tt g
2 s Az 3 2.2°
—n 2(1 — r)y* + 3réé<t 3 wn(1=p)~! 1+ 8%
As r 1 1, the right member above tends to \34; since § is arbitrary, we have
proved that the right member of (12) tends to +o00 as r 1 1. Since the series

in (6) dominates that on the left member of (12) for every r, it follows that
(6} is true and so 0 € R by Theorem §.3.2.

EXERCISES
f is the ch.f. of u.

1. Generalize Theorems 8.3.1 and 8.3.2 to %&¢. (For d > 3 the general-
ization is illusory; see Exercise 12 below.)

*2. If a random walk in %¢ is recurrent, then every possible value is a
recurrent value,

3. Prove the Remark after Theorem 8.3.2.

*4. Assume that 7*{X; = 0} < 1. Prove that x is a recurrent value of the
random walk if and only if

oC
Z@ﬂ&, — x| <€} =o0c foreverye> (.

n=1

5. For a recurrent random walk that is neither degenerate nor of the
lattice type, the countable set of points {S,(w), n € N} is everywhere dense in
A for a.e.w. Hence prove the following result in Diophantine approximation:
if y is irrational, then given any real x and € > 0 there exist integers m and n
such that {my +n — x| < €.

*6. If there exists a § > 0 such that (the integral below being real-valued)

Y dt
hm —_— =
il J_s 1 —rf(t)

L)

then the random walk is recurrent.
*7. If there exists a § > 0 such that

/5 dt o
su —_— < 00,
O<r§1 sl =rf®




286 | RANDOM WALK

then the random walk is not recurrent. [HINT: Use Exercise 3 of Sec. 6.2 to
show that there exists a constant C{¢) such that

1 —cose™! C(e) [Ve u
(80 <€) = Cle) *—““r“—x,u»n (dx) < 0 du [ f()"dt,
1 X 2 0 —u .

where u, is the distribution of §,, and use (13). [Exercises 6 and 7 give,
respectively, a necessary and a sufficient condition for recurrence. If w is of
the integer lattice type with span one, then

| =
AT 0

is such a condition according to Kesten and Spitzer.]

*8. Prove that the random walk with f(#) = e~!! (Cauchy distribution) is
recurrent.

*9. Prove that the random walk with f(f) = e "®, 0 < a < 1, (Stable
law) is not recurrent, but (iv) of Theorem 8.2.5 holds.

10. Generalize Exercises 6 and 7 above to ¢,

*11. Prove that in 7 if the common distribution of the random vector
X, ¥) has mean zero and finite second moment, namely:

FX)=0, &£Y)=0, 0< &X2+Y?) < oo,

then the random walk is recurrent. This implies by Exercise 5 above that
almost every Brownian motion path is everywhere dense in #°. [HINT: Use
the generalization of Exercise 6 and show that

1 o c
1— f(h, ) ~ 241

tor sufficiently small |r1] + |72]. One can also make a direct estimate:

!

P80 < €) %-]

*12. Prove that no truly 3-dimensional random walk, namely one whose
common distribution does not have its support in a plane, is recurrent. [HINT:
There exists A > 0 such that

[ (80e) s
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1s a strictly positive quadratic form Q in (¢1, f3, t3). If

3
Dol <47,
=1

then
R{l = f(t1,12,13)} = CQ(t1, 12, 13).]

13. Generalize Lemma 1 in the proof of Theorem 8.3.3 to #%. Ford = 2
the constant 2m in the right member of (8) is to be replaced by 4m?, and
“S, < € means S, is in the open square with center at the origin and side
length 2e.

14. Extend Lemma 2 in the proof of Theorem 8.3.3 as follows. Keep
condition (i) but replace (ii) and (iii) by

Gy 35 o tn(m) < cm? 35 _pun(1);
There exists d > 0 such that for every & > 1 and m = m(b):

2
Gil') 1, (m) > o for m? < n < (bm)?
n

Then (10) is true.”

15. Generalize Theorem 8.3.3 to %2 as follows. If the central limit
theorem applies in the form that S, | «/n converges in dist. to the unit
normal, then the random walk is recurrent. [HINT: Use Exercises 13 and 14 and
Exercise 4 of § 4.3. This is sharper than Exercise 11. No proof of Exercise 12
using a similar method is known.]

16. Suppose &(X) =10, 0 < £(X?) < o0, and y is of the integer lattice
type, then

2§, =010} =1.

17. The basic argument in the proof of Theorem 8.3.2 was the “last time
in (—e, €)". A harder but instructive argument using the “first time” may be
given as follows.

fr=2{Sj|=eform=<j=<n—18,] <€} gnle)={S:] <€}
Show that for 1 < m < M:
M M M
Y ogn@ <Y £ ga(2e).
n=rm n=m n=0

* This form of condition (iii’) is due to Hsu Pei; see also Chung and Lindvall, Proc. Amer. Math.
Soc. Vol. 78 (1980), p. 285.
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It follows by a form of Lemma 1 in this section that
-l 1
I' (m) =
ml—rg’ Z f” -4’
h=m

now use Theorem 8.1.4.
18. For an arbitrary random walk, if 22{vn e N : §,, > 0} > 0, then

D PSh <0,8p41 > 0} < 00

Hence if in addition 2{¥n € N : §,, <0} > 0, then

> 128 > 0} — P{Spq1 > O} < 00;

and consequently

> (_n]")n?ﬁ{sn > 0} < o0.

"

[HINT: For the first series, consider the last time that §,, < O; for the third series,
apply Du Bois—Reymond’s test. Cf. Theorem 8.4.4 below; this exercise will
be completed in Exercise 15 of Sec. 8.5.]

8.4 Fine structure

In this section we embark on a probing in depth of the r.v. « defined in (11)
of Sec. 8.2 and some related r.v.’s.

The r.v. « being optional, the key to its introduction is to break up the
time sequence into a pre-o and a post-« era, as already anticipated in the
terminology employed with a general optional r.v. We do this with a sort of
characteristic functional of the process which has already made its appearance
1n the last section:

(1) { » “5} " = ———,
MZ_O Z rf(t)

where 0 < r < 1, ¢ is real, and f is the ch.f. of X. Applying the principle just
enunciated, we break this up into two parts:

a—1 00
é& Z rnetIS,, + é. Z rneUS

n=0 n=g
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with the understanding that on the set {o = o0}, the first sum above is 3 ooy
while the second is empty and hence equal to zero. Now the second part may
be written as

o0 o0
(2) & {Zrﬂ+"ei’5“+“} =& {r"’e'rs" Zr”e"(s"“ S")} i

n=0 n=0
It follows from (7) of Sec. 8.2 that
Sain — Sa = Spot®

has the same distribution as S,, and by Theorem 8.2.2 that for each n it is
independent of S,. [Note that the same fact has been used more than once
before, but for a constant «.] Hence the right member of (2) is equal to

oQ

@ jtS, n i8S, o itSa ____1
£{re }@@{Zr e } S

n==l{)
where r®e'S= is taken to be O for @ = oo. Substituting this into (1), we obtain

1 o _itSeyvy . # & n _itS,
(3) m[l—é"{re }]_5{Zre }

=0
We have

&0
(4) — &Sy =1 — Z r”f eSn g
nel {a=n

and

a—1
(5) é’f{z n uS } Z/ Y Z US,, dop
=1 +Z / 'St d

by an interchange of summation. Let us record the two power series appearing
in (4) and (5) as
o0
P(r,t)=1— E{re™Se} = 1" pp(t);
n=>0

a—1 oo
Q(r, 1) = (gg{z r" tSe } = Z"n%(f),

n=0 n=0
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where

polt) = 1, pa(t) = —f

fa=n)

eﬁﬂ@=—/fmmmm
R

Go() = 1,4, (1) = f &5 dp = | v, (dx),

fa>n} P!

Now U,{(-) = Pl = n;S, € -} is a finite measure with support in (0, c0),
while V, (:) = #{« > n; S, € -} is a finite measure with support in (—oc, 0].
Thus each p, is the Fourier transform of a finite measure in (0, o¢), while
each g, is the Fourier transform of a finite measure in (—oc, 0]. Returning to
(3), we may now write it as

(6) P(r,1) = Q(r, 1).

1
1—rf(@)
The next step is to observe the familiar Taylor series:

o0 n

1 X
= — 2, 1.
T~ exp{zn} x| <

n=1

Thus we have

1 acl n
D e =exp{§ —f () }

O0C n
= exp Z r— L/ e’ dp + / et d@b}
h {Sn >0} {5, =0

n=1
= f+(?", !)_]f_(r, I),

where

f+(f,f)=eXP{_Z%/

n=1 (©,00)

f-(r, z)=exp{+§:% /( O]e“mn(m},

n=1

eitxl"-’n (dx)} 1

and pu,(-) = %S, € -} is the distribution of S,. Since the convolution of
two measures both with support in (G, co) has support in (0, o¢), and the
convolution of two measures both with support in (—oo, 0] has support in
{—o00, 0], it follows by expansion of the exponential functions above and
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rearrangements of the resulting double series that

Fern =143 g, f-(n)=1+4) i),

n=1 n=1

where each ¢, is the Fourier transform of a measure in (0, o¢), while each
Y, is the Fourier transform of a measure in (—o00, 0]. Substituting (7) into (6)
and multiplying through by f,(r, ), we obtain

(8) P(?", t)f—(rs t) = Q(r’ t)f-’!-(r! t)

The next theorem below supplies the basic analytic technique for this devel-
opment, known as the Wiener—Hopf technique.

Theorem 8.4.1. Let

Pr.y=Y rpa(t), Q=) r'g. ),
n=0 n=0
Py =Y r"pin), Q=) rg®,
n=0 n=(}

where py(t) = go(t) = pi(t) = gi(t) = 1; and for n > 1, p, and p; as func-
tions of ¢ are Fourier transforms of measures with support in (0, 00); g, and
g as functions of r are Fourier transforms of measures in (—o0, 0]. Suppose
that for some ry > O the four power series converge for r in (0, ry) and all
real 7, and the identity

9) P(r,nQ%(r,) = P (r,)Q(r, 1)
holds there. Then
P=P,0=0"
The theorem is also true if (0, oo) and (—oc, 0] are replaced by [0, oo) and
(—oc, 0), respectively.

prROOE. It follows from (9) and the identity theorem for power series that
for every n = 0:

(10) 3" g (0 =) POk ().

k=0 k=0

Then for n = 1 equation (10) reduces to the following:

pi1(t) — pi(t) = qi(1) — 47 ().
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By hypothesis, the left member above is the Fourier transform of a finite signed
measure v; with support in (0, 0o), while the right member is the Fourier
transform of a finite signed measure with support in (—oc, 0]. It follows from
the uniqueness theorem for such transforms (Exercise 13 of Sec. 6.2) that
we must have v; = v;, and so both must be identically zero since they have
disjoint supports. Thus p, = p} and ¢; = g7. To proceed by induction on n,
suppose that we have proved that p; = p} and g; = 95 for0<j<n-—1.
Then it follows from (10) that

pr®)+ g () = pr (1) + g. ().

Exactly the same argument as before yields that p, = p}, and g, = g;. Hence
the induction is complete and the first assertion of the theorem is proved; the
second 1s proved in the same way.

Applying the preceding theorem to (8), we obtain the next theorem in
the case A = (0, 00); the rest is proved in exactly the same way.

Theorem 8.4.2. If ¢ = w4 is the first entrance time into A, where A is one
of the four sets: (0, o0), [0, 00), {(—o0, 0), (—o0, 0], then we have

%0 on
(11) 1— ¢{re™ ) =expl =3 e dp
P
ne1 P JiSaea)

a—1
(12) £ {Z " "S”} = exp {+ Z / Pl d?}
(S, €Ac)

n=0

From this result we shall deduce certain analytic expressions involving
the r.v. . Before we do that, let us list a number of classical Abelian and
Tauberian theorems below for ready reference.

(A) If ¢, = 0and 5 .2, c,r" converges for 0 < r < I, then

(%) Iich r" _ch

r1l n=0
finite or infinite.
(B) If ¢, are complex numbers and Z?;o:o c,r" converges for 0 <r <1,
then (*) is true.
(C) If ¢, are complex numbers such that ¢, = o(n~1) [or just O(n~1)]
as n — oo, and the limit in the left member of (%) exists and is finite, then
(%) is true.
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M) If ¢&' >0, 302, c®r" converges for 0 < r < 1 and diverges for

r=1,i=1,2; and
n H
>~ Y
k=0 k=0

[or more particularly ¢i ~ Kc¢@] as n — oo, where 0 < K < +00, then

o0 oC
ch)r" ~ KZ cff)r"
n=0 r=0

asr T 1.
(E) If ¢, = 0 and
o0
" 1
zcnr ~1
n=0 -

as r 11, then

Observe that (C) is a partial converse of (B), and (E) is a partial converse
of (D). There is also an analogue of (D), which is actually a consequence of
(B): if ¢, are complex numbers converging to a finite limit ¢, then as r 1 1,

i c
E cpr’ ~ I )
n=0 -r

Proposition (A) is trivial. Proposition (B) is Abel’s theorem, and proposi-
tion (C) is Tauber’s theorem in the “little 0" version and Littlewood’s theorem
in the “big O” version; only the former will be needed below. Proposition (D)
1 an Abelian theorem, and proposition (E) a Tauberian theorem, the latter
being sometimes referred to as that of Hardy-Littlewood-Karamata. All four
can be found in the admirable book by Titchmarsh, The theory of functions
(2nd ed., Oxford University Press, Inc., New York, 1939, pp. 9-10, 224 ff.).

Theorem 8.4.3. The generating function of « in Theorem 8.4.2 is given by

(13) o) =1 —cxp{—Z%ff?[Sn eA]}

n=1

=1—(1—r)exp {Z ;—ns@[sn € Ac]} .

n=1
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We have

(14) P{a < oo} = 1 if and only if Z P(Sn € Al =
n=1

in which case

(15) o) = exp { > %:&7)[5,, € AC]} .

n=]

PROOF. Setting + = 0 in (11), we obtain the first equation in (13), from
which the second follows at once through

lir=exp{§:%}=exp{z Z eA]—{—Z Z eA‘"]}

nz] n=1

Since

Ilm &{r*} _llmz Pla=npr" = Z”/’{a- n} = Pla < o}

=1

by proposition (A), the middle term in (13) tends to a finite limit, hence also
the power series in r there (why7). By proposition (A), the said limit may be
obtained by setting » = 1 in the series. This establishes (14). Finally, setting
t = 0 in (12), we obtain

(16) & {azl }_exp{+2 — S, € A }

n=0 n=1
Rewriting the left member in (16) as in (5) and letting r 1 1, we obtain

o0

(17) hmz PPl >n]=Y Pla>n]= e} <00

n=(} n=0

by proposition (A). The right member of (16) tends to the right member of
{15) by the same token, proving (15).
When is ¢{a} in (15) finite? This is answered by the next theorem.*

Theorem 8.4.4. Suppose that X # 0 and at least one of &(X™) and ¢(X™)
is finite; then

(18) X)) > 0= Elape} < 00;

(19) SX)<0= «‘f’{a[g,oo)} =00

*It can be shown that §, — +oc ae. if and only if #{o )} < o0; see A. 1. Lemoine, Annals
of Probability 2(1974).
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prOOF. If £(X) > 0, then 2°{§, — +oc} = 1 by the strong law of large
numbers. Hence {lim,_,o S, = —oo} =0, and this implies by the dual
of Theorem 8.2.4 that 9°{e(_c.0) < 00} < 1. Let us sharpen this slightly to
P (_o0.0) < 00} < 1. To see this, write &' = (0,01 and consider Sz as
in the proof of Theorem 8.2.4. Clearly Sg <0, and so if #{a’ < o0} =1,
one would have #°{S, < 0 i.0.} = 1, which is impossible. Now apply (14) to
®(—o0,0)] aNd (15) 10 (g ) to infer

n=1

201
¢ {eg.00)} = exp {Z ~PLSn = 0]} < 0,

proving (18). Nextif £(X) = 0, then P{c(_co.0) < 00} = 1 by Theorem 8.3.4.
Hence, applying (14) t0 (0,0 and (15) to «qp o). we infer

® 1 )
Hogo,00)) = exp {Z ;W[Sn < 0]} = oC.
n=1

Finally, if ¢(X) < 0, then P{ap 00) = o0} > 0 by an argument dual to that
given above for (s o}, and so &{on o0y} = 00 trivially.

Incidentally we have shown that the two r.v.’s (g 0y and oo c0) have
both finite or both infinite expectations. Comparing this remark with (15), we
derive an analytic by-product as follows.

Corollary. We have

o0

(20) }: %97)[5,, = 0] < oo.

n=1

This can also be shown, purely analytically, by means of Exercise 25 of
Sec. 6.4.

The astonishing part of Theorem 8.4.4 is the case when the random walk
is recurrent, which is the case if #(X) = 0 by Theorem 8.3.4. Then the set
[0, o0), which is more than half of the whole range, is revisited an infinite
number of times. Nevertheless (19) says that the expected time for even one
visit is infinite! This phenomenon becomes more paradoxical if one reflects
that the same is true for the other half (—oc, 0], and yet in a single step one
of the two halves will certainly be visited. Thus we have:

oc0) A U000y = 1, E{t—oe,01} = ¢{0.00)} = 00.

Another curious by-product concerning the strong law of large numbers
is obtained by combining Theorem 8.4.3 with Theorem 8.2.4.
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Theorem 8.4.5. S,/n — m ae. for a finite constant m if and only if for
every € > 0 we have
; > e} < 0.

(21) Z_m{

PrROOF. Without loss of generality we may suppose m = 0. We know from
Theorem 5.4.2 that S,,/n — 0 a.e. if and only if £{|X|) < oo and £(X) =0
If this is so, consider the stationary independent process {X, n € N}, where
X,=X,—¢€¢e>0; and let §; and o = oy, be the corresponding r.v.’s
for this modified process. Since £(X') = —e, it follows from the strong law
of large numbers that §; — —oo a.c., and consequently by Theorem 8.2.4 we
have #{a’ < oo} < 1. Hence we have by (14) applied to «':

20

(22) Z %@[sn —ne > 0] < o0

n=1

By considering X, + € instead of X, — ¢, we obtain a similar result with
“S, —ne > 0" in (22) replaced by “S, + ne < 0”. Combining the two, we
obtain (21) when m = Q.

Conversely, if (21) is true with m = 0, then the argument above yields
Pl < o0} < 1, and so by Theorem 8.2.4, P{lim,_ o S; = -+00} =
fortiori we have

Ve > 0: PS, > neio} =S, > 2neio}=0
Similarly we obtain Ve > 0 : 2?{S, < —2ne€ i.0.} =0, and the last two rela-
tions together mean exactly S,/n — 0 a.e. (cf. Theorem 4.2.2).

Having investigated the stopping time «, we proceed to investigate the
stopping place S, where o < oo. The crucial case will be handled first.

Theorem 8.4.6. If £(X)=0and 0 < &(X?) = 0? < oo, then

. o =171
(23) E{Sq) = Eexp{zg [5 — (S, eA)}} < OQ.

n=1

PROOF. Observe that &(X) = 0 implies each of the four r.v.’s « is finite
a.e. by Theorem 8.3.4. We now switch from Fourier transform to Laplace
transform in (11), and suppose for the sake of definiteness that A = (0, 00).
It is readily verified that Theorem 6.6.5 is applicable, which yields

ook
(24) 1 — F{r¥e ™) =exp{ — Z r_ f e M dp
= n S0
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for0 <r<1,0=< X < oco. Letting r 1 1 in (24), we obtain an expression for
the Laplace transform of §,, but we must go further by differentiating (24)
with respect to A to obtain

(25) {r¥e*%S,)
o0 r o0 r
= — S,e " do - exp q — —/ e Mndp
; m /fwm { 2 " J 520}

the justification for termwise differentiation being easy, since ¢ {|5,|} < n &{|X|}.
If we now set A = 01n (25), the result is

o0 rn oo rn
f L0 — cr o+ &
(26) EriSy) = ,,'S'zi ;@{Sn }exp {— E ;.?[S,, > 0]} )

n=1

By Exercise 2 of Sec. 6.4, we have as n — oo,

{ A } o

n 2mn

so that the coefficients in the first power series in (26) are asymptotically equal
to o/+/2 times those of

—1/2 = 1 2n n
(I-7) =222n R

n=0

(é?)

since

221\ n Jn
1t follows from proposition (D) above that
o o c 2o
Z —«‘{S:} ~ —(1 — r)_l/2 = —exp {-{—Z %} )
n=l n \/i ﬁ n=1 2n

Substituting into (26), and observing that as r 1 1, the left member of (26)
tends to ¢{S,} < oo by the monotone convergence theorem, we obtain

o0 n 1
2N Sy} = % limexp {Z % [5 - (S, > 0)} } .

rtl
T 1=1

It remains to prove that the limit above is finite, for then the limit of the
power series is also finite (why? it is precisely here that the Laplace transform
saves the day for us), and since the coefficients are o(1/n) by the central
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limit theorem, and certainly O(1/n) in any event, proposition (C) above will
identify it as the right member of (23) with A = (0, o0).

Now by analogy with (27), replacing (0, oc) by (—o0, 0] and writing
(—00,0) 85 B, we have

. = (1
(28) 1S5} = % lim exp {Z % [5 (S, < 0)} } .
n=1

Clearly the product of the two exponentials in (27) and (28) is just exp 0 = 1,
hence if the limit in (27) were +o0, that in (28) would have to be 0. But
since ¢ (X) =0 and £(X?) > 0, we have (X < 0) > 0, which implies at
once #(Sg < 0) > 0 and consequently ¢{Sg} < 0. This contradiction proves
that the limits in (27) and (28) must both be finite, and the theorem is proved.

Theorem 8.4.7. Suppose that X £ 0 and at least one of £(XT) and £(X)
is finite; and let @ = g o), f = Ut(—00.0]-

(i) If £(X) > 0 but may be +oo, then £(S,) = &) E(X).

(i) If €(X) =0, then &(S,) and &(Sg) are both finite if and only if
E(X*) < oc.

PROOF. The assertion (i) is a consequence of (18) and Wald’s equation
(Theorem 5.5.3 and Exercise 8 of Sec. 5.5). The “if” part of assertion (ii)
has been proved in the preceding theorem; indeed we have even “evaluated”
&(Sy). To prove the “only if” part, we apply (11) to both « and B in the
preceding proof and multiply the results together to obtain the remarkable
equation:

(29) [1 — ¢{r*e™))[1 — &{rfe">}] = exp {‘ > ﬂf<:>"} =1=rf(.
n=1 n

Setting r = 1, we obtain for ¢ 5 (-
1—f(6)  1—¢{e™}1— &{e™s)
£ i +it

Letting 7 | 0, the right member above tends to £{S,}{—Sz} by Theorem 6.4.2.
Hence the left member has a real and finite limit. This implies ¢(X*) < oc by
Exercise | of Sec. 6.4.

8.5 Continuation

Our next study concerns the r.v.’s M, and M defined in (12) and (13) of
Sec. 8.2. It is convenient to introduce a new 1.v. L,, which is the first time
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(necessarily belonging to N°) that M, is attained:

(1) vrneNY:  L,(w)=min{k € N0 : Sp(w) = M, (w)};
note that Ly = 0. We shall also use the abbreviation

(2) =000 B = A 000]

as in Theorems 8.4.6 and 8.4.7.
For each n consider the special permutation below:

1, 2, e n
3) p”_(n, n—1, e, 1)’

which amounts to a “reversal” of the ordered set of indices in N,. Recalling
that o p, is the r.v. whose value at w is B(p,w), and Sy © p, = S, — Sas
for 1 <k < n, we have

{ﬁopn>n}:ﬂ{skopn>0}

k=1

n—l1

= [(Y{Sh > Snci) = [ 1{Sn > Si} = (L, = n}.
k=1

k=0

It follows from (8) of Sec. 8.1 that

4) / et dp = / e'15:%0n) gop — f &S dp.
{f=>n} {8%p,>n} {(La=n}

Applying (5) and (12) of Sec. 8.4 to 8 and substituting (4), we obtain

(5) Z n/ | e''Sn d ‘//)_CXP {+Z ]S ) PRIy df}

applying (5) and (12) of Sec. 8.4 to « and substituting the obvious relation
{ > n} = {L, = 0}, we obtain

oo X n
. r .
(6) E r"f e dP = exp { + E —/ eSndp
n=0 {LHIO} n (Sns()]

n=l

We are ready for the main results for M, and M, known as Spitzer’s identity:

Theorem 8.5.1. We have for0 <r < 1:

00 & _h
noep G itMyy r_ @ is; )
(7) S o™} = exp {Z — e )}

n=0 n=1
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M is finite a.e. if and only if

o0

1
8 -P5, >0 ,
(8) 2 ~P(Sn > 0} < 00
in which case we have
. 21 .
9) &le™) = exp {Z — (") - 1]} .
nml

PROOF. Observe the basic equation that follows at once from the meaning
of Ly:

(10) Lo =k} ={Li =k}N{L, o T =0},

where t* is the kth iterate of the shift. Since the two events on the right side
of (10) are independent, we obtain for each n € N°, and real ¢ and u:

(l l) g{efIM,, eiu(S,,—M,,)} — Z/ ei!Skeiu(Sn—Sk) d»
k=0 {L,=k)

n
kzo {Lkzk} (Ln-.kosz()]
n

=> / &' dop / &Sk gop,
k=0 ¥ {Le=k} [Ln =0}

It follows that

o

(12) Z " Cﬂm{el'rM,.,efu(S,,—M,,)}

=0
o0 oo

=y / endp? .y " f e dp.
won VL w0 Y 1L=0}

Setting ¥ = 0 in (12) and using (5) as it stands and (6) with 1 = 0, we obtain

=
ir” &le™r) = exp Zﬂ { / ¢ dP + f ld@} ,
noLJ(5,>0) (8, <0}

n=0 n=1

=n}

which reduces to (7).

Next, by Theorem 8.2.4, M < o0 a.e. if and only if Z{a < o0} <1 or
equivalently by (14) of Sec. 8.4 if and only if (8) holds. In this case the
convergence theorem for ch.f.’s asserts that

Ele™) = lim £{e™r),

= OO
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and consequently

e8]
cle™y=1im(1 —r) Y s ¢{e™n)
rrl oo

o0 p o0 g
— 1 T P e itSy
—I}TI?CXP{_Z;}CXP{Z;"{(" )}

n=1 n=1

oC . -

— 1 - £ HSn _ 1 ,

lim exp {Z;: —[¢ (") — 1]

where the first equation is by proposition (B) in Sec. 8.4. Since
o o

1 : 2
Yo @~ 11 <) PS> 0] < o0
n=1] n n=1 n
by (8), the last-written limit above is equal to the right member of (9), by
proposition (B). Theorem 8.5.1. is completely proved.

By switching to Laplace transforms in (7) as done in the proof of
Theorem 8.4.6 and using proposition (E) in Sec. 8.4, it is possible to give
an “analytic” derivation of the second assertion of Theorem 8.5.1 without
recourse to the “probabilistic” result in Theorem 8.2.4. This kind of mathemat-
ical gambit should appeal to the curious as well as the obstinate; see Exercise 9
below. Another interesting exercise is to establish the following result:

n 1 w
(13) EMp) =3 2 ESD)
k=1
by differentiating (7) with respect to ¢. But a neat little formula such as (13)
deserves a simpler proof, so here it is.

Proof of (13). Writing

and dropping “d7" in the integrals below:

n

E(Mp) = / Sk
{Mru:v()}k\:/l

n n
= Xi+0\/ S —XD + / Sk
-/{M,,>0;S,,>O§ [ v (M, >0:8, <0} k\=/l

k=2

r—1

= X, +] 0 Sy — X1) +/ Sk.
[S,;>O] {S,>0) { \/ (M1 >0:5, <0} k\=/]

k=2
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Call the last three integrals f,, f,, and [;. We have on grounds of symmetry

J/ 1
=-/ 5,
1 n Jjs, =0}

Apply the cyclical permutation

to f, to obtain

Obviously, we have

/=/ Mn—l=/ M, ;.
3 {My_1>0.85, =0} [5.=0}

Gathering these, we obtain

i 1
£M,) = —f Sn+/ M,,..1+/ M,_,
n Jis, >0} {$,>0} {5, <0

1
= ~E(SH) + EM ),
and (13) follows by recursion.

Another interesting quantity in the development was the “number of
strictly positive terms” in the random walk. We shall treat this by combinatorial
methods as an antidote to the analytic skulduggery above. Let us define

v, () = the number of & in N,, such that S {(w) > 0;

v (w) = the number of k in N, such that Sy (w) < 0.

For easy reference let us repeat two previous definitions together with two
new ones below, for n € N*:

My (@)= max S;(@); Ln(w)=min{j € N, : §;(@) = My(w)};
<j=n

M, (w) = Orrljn Si(w); L) (w)=max{je N : Si(w) = M, ().
<j=n

Since the reversal given in (3) is a 1-to-1 measure preserving mapping
that leaves S, unchanged, it is clear that for each A € %, the measures on
' below are equal:

(14) PN Sy € -} = P{pp A5 Sn € 1)
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Lemma. For each n € N°, the two random vectors
(L,,S,) and (n—L . S,)
have the same distribution.
PrOOF. This will follow from (14) if we show that

(15) VkeNY: oYL, =kl={L,=n—k}
Now for p,w the first n + 1 partial sums S;(p,w), j € Ng, are

0, Wn, Wn +Wno1, oo, Wn F Oy 1s O+ o,
which is the same as

S = Sns S = Suc12 Sn = Su—2e- -2 Sp = Sucjs - Su— So,

from which (15) follows by inspection.

Theorem 8.5.2. For each n € N°, the random vectors
(16) (Ln, Sn) and (v, 5,)
have the same distribution; and the random vectors
(16") (L,,S,) and (),S,)

have the same distribution.

PROOF. For n = 0 there is nothing to prove; for n = 1, the assertion about
(16) is trivially true since {L; = 0} = {S; < 0} = {v; = 0}; similarly for (16").
We shall prove the general case by simultaneous induction, supposing that both
assertions have been proved when n is replaced by n — 1. For each k € NO |

and y € A&, let us put
G()’) = E/]){er—l = k;Sn—l = }’}, H(Y) = ?7}{1"11—] = k;Sn—l =< }}

Then the induction hypothesis implies that G = H. Since X, is independent
of #,_; and so of the vector (L, _;, S,—1), we have for each x € 7

00

(17) ALy = ki Sy <3} = f Fx— ) dG()

—00

=[ Fx — y)dH(3)

—0C

= Va1 = Kk Sn = x},
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where F is the common d.f. of each X,,. Now observe that on the set {S, <0}
we have L, = L, _; by definition, hence if x < 0;

(18) {w: Ly() =k Sp(@) <3} = {w: Ly_1 () = k; S, (@) < x}.
On the other hand, on the set {S, < 0} we have v,_; = v,, so that if x < 0,
(19 o :v(w) =k S(e) <x}={w:vy_1() =k S,(w) <x}.
Combining (17) with (19), we obtain
(20)  VkeNLx<0: P, =k;S, <x} =P, =k.S, < x}.
Nextif k € NS, and x > 0, then by similar arguments:
{w: L) =n—kS,(w)>x}={w:L,_;(w)=n—k S (w) > x},
{wv (@ =n—kS,(w)>x}={w:v,_(w)=n—kS(w) > x}.
Using (16") when n is replaced by n — 1, we obtain the analogue of (20):
(21) YkeNYx20: 2L, =n—k S, >x} =PQ, =n—k; S, > x).

The left members in (21) and (22) below are equal by the lemma above, while
the right members are trivially equal since v, -+ 1], = n:

(22) VkeN)  x>0:2L,=Kk;S, > x} =P, =k, S, > x].
Combining (20) and (22) for x = 0, we have
(23) Yk € N : P{L, =k} = Py, = k),

subtracting (22) from (23), we obtain the equation in (20) for x > 0; hence it
is true for every x, proving the assertion about (16). Similarly for (16), and
the induction is complete.

As an immediate consequence of Theorem 8.5.2, the obvious relation
(10) is translated into the by-no-means obvious relation (24) below:

Theorem 8.5.3. We have for k € NY:
(24) P, = k) = Py = k}P{v,_; = 0).

If the commion distribution of each X,, is symmetric with no atom at zero,
then

N
(25) vk € N :I%{vn=k}=(—1)"<_l{5) (n—2k>'
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PROOF. Let us denote the number on right side of (25), which is equal to

__1_ 2k 2n — 2k

22n Ak n—k J’
by a, (k). Then for each n € N, {a,(k),k € Ng} is a well-known probability
distribution. For » = 1 we have

Ploy =0} = Py = 1) = § = 4, (0) = a, (),

so that (25) holds trivially. Suppose now that it holds when n is replaced by
n — 1; then for k € N,_; we have by (24):

1

1
7 — P — (1 2Vl 2 ) =
vy =k} =(=1) (k )( 1) (n—k) = an (k).

It follows that

n—1
Plog =0} 4+ Plu, =n) =1-_ Plv, =k)
k=1
n—1

=1-> an(k) = a,(0) + an(n).

k=1

Under the hypotheses of the theorem, it is clear by considering the dual random
walk that the two terms in the first member above are equal; since the two
terms in the last member are obviously equal, they are all equal and the
theorem 1s proved.

Stirling’s formula and elementary calculus now lead to the famous “arcsin
law”, first discovered by Paul Lévy (1939) for Brownian motion.

Theorem 8.5.4. If the common distribution of a stationary independent
process is symmetric, then we have

¥x € [0,1]: lim J/D{v" < } 2 arc sin /x : /.Jr du
X ] . . —_— X = — - — _—_—
"o n - T wJo Ju(l —u)

This limit theorem also holds for an independent, not necessarily stationary
process, in which each X, has mean 0 and variance 1 and such that the

classical central limit theorem is applicable. This can be proved by the same
method (invariance principle) as Theorem 7.3.3.
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EXERCISES

1. Denive (3) of Sec. 8.4 by considering

o0
éf’{rae“s"} —_ Zrn {/ efIS,-,d:J?) _/ ef!s,-, d?/):l )
n=1 fa>n—1} {a=n]

*2. Under the conditions of Theorem 8.4.6, show that

£1S,) = — lim S, dP.

=300 {fa>n}

3. Find an expression for the Laplace transform of S,. Is the corre-
sponding formula for the Fourier transform valid?

*4. Prove (13) of Sec. 8.5 by differentiating (7) there; justify the steps.
5. Prove that

0

. R — — rnu
> PM, = 0] —exp{Z;?[Sn < 0]}

n=(} n=1
and deduce that
=1
PIM = 0] = exp {— > =S, > 01} .
n=1 n

6. If M < oo ae., then it has an infinitely divisible distribution.

7. Prove that
oo oC 1
> ALy =0, =0} =exp {Z—@[sn = 01} .
n=0 n=1 n

[HINT: One way to deduce this is to switch to Laplace transforms in (6) of
Sec. 8.5 and let A — o0.]

8. Prove that the left member of the equation in Exercise 7 1s equal to

00 -1
{1 — > P =n;S, =0}} :

n=1

where o = ¢ 0): hence prove its convergence.

*9. Prove that o

1
Y =S, > 0] < 00
n

n=1
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implies (M < oo) = 1 as follows. From the Laplace transform version of
(7) of Sec. 8.5, show that for 2 > 0,

o0
lim(l —r r" e Mn
im( )2 éle M)

exists and is finite, say = x{A). Now use proposition (E) in Sec. 8.4 and apply
the convergence theorem for Laplace transforms (Theorem 6.6.3).

*10. Define a sequence of r.v.’s {¥,, n € N°} as follows:
Y():Ov Yn+]=(Yn +XR+])+! nENO,

where {X,,n € N} is a stationary independent sequence. Prove that for each
n,Y, and M, have the same distribution. [This approach is useful in queuing
theory.]
11. If —o0 < &(X) < 0, then
FX)= &(—=V™), where V= sup ;.

1<j<oo
[HNT: If V,, = max <;<, 5}, then
) . + ) . - . o . +
EET) + ) — 1= E(e)") = £ f);

let n — oc, then ¢ | 0. For the case £(X) = —oo, truncate. This result is due
to S. Port.]

*12. If Plaw,oc) < 00} < 1, then v, — v, L, — L, both limits being finite
a.e. and having the generating functions:

o0 n_l

E(r°) = ElrF) = exp {Z d

nzl

7S, > 0]} .

[u~T: Consider limy o0 O neg P{vm = n}r" and use (24) of Sec. 8.5.]
13. If £(X) =0, &X?) =0?%,0 < o < o0, then as n — oo we have

< —C

- €
\/j-'[;, «Oj)[vn:n]m

Jan’
211
= — = =P[5, >0],.
=3 {3 -~ )

Plv, = 0] ~

where

[HinT: Consider

20
lim(1 — N2y v, =0]
rtl g
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as in the proof of Theorem 8.4.6, and use the following lemma: if p, is a
decreasing sequence of positive numbers such that

> o~ ont?,
k=1

then p, ~ n~12]
*14. Prove Theorem 8.5.4.
15. For an arbitrary random walk, we have

3 =D P(S, > 0} < 0.

H

[HinT: Half of the result is given in Exercise 18 of Sec. 8.3. For the remaining
case, apply proposition (C) in the O-form to equation (5) of Sec. 8.5 with L,
replaced by v, and t = 0. This result is due to D. L. Hanson and M. Katz.]
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9 Conditioning. Markov
property. Martingale

9.1 Basic properties of conditional expectation

If A is any set in # with Z7(A)>0, we define 7, (-) on F as follows:

PANE)

(1) FA(E) = P

Clearly % is a p.m. on #; it is called the “conditional probability relative to
A”. The integral with respect to this p.m. is called the “conditional expectation
relative to A™:

1 _
(2) YY) = /s; Y()Pr(dw) = —//_;EX-)—/A Y(w)?(dw).

If »(A) =0, we decree that 4 (E) = 0 for every E € Z . This convention is
expedient as in (3} and (4) below.
Let now {A,, n > 1} be a countable measurable partition of 2, namely:

Q:UAR, A, €7, AnNA, =2, if m+# n.
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Then we have

(3) SE) =D PN NE)=> P(Dn) 7, (E);
n=l n=1

) S EDY / Y(@)P(dw)y =Y P (Ap)éa, (¥),
n=1"fn n=l

provided that &(Y) is defined. We have already used such decompositions
before, for example in the proof of Kolmogorov's inequality (Theorem 5.3.1):

/ S2AP =" P(Ai)én,(S).
A

k=1
Another example is in the proof of Wald’s equation (Theorem 5.5.3), where

o0

ESN) = PN = k) =iy (Sn).
k=1

Thus the notion of conditioning gives rise to a decomposition when a given
event or r.v. is considered on various parts of the sample space, on each of
which some particular information may be obtained.

Let us, however, reflect for a few moments on the even more elementary
example below. From a pack of 52 playing cards one card is drawn and seen
to be a spade. What is the probability that a second card drawn from the
remaining deck will also be a spade? Since there are 51 cards left, among
which are 12 spades, it is clear that the required probability is 12/51. But 1s
this the conditional probability % (E) defined above, where A = “first card
is a spade” and E = “second card is a spade”? According to the definition,

13.12

AANE) 35351 12

2Ny 130 st
52

where the denominator and numerator have been separately evaluated by
elementary combinatorial formulas. Hence the answer to the question above is
indeed “yes”; but this verification would be futile if we did not have another
way to evaluate 7% (E) as first indicated. Indeed, conditional probability is
often used to evaluate a joint probability by turmning the formula (1) around as
follows:

PANE) = P E) = = - oo

‘ 52 51
In general, it is used to reduce the calculation of a probability or expectation
to a modified one which can be handled more easily. '
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Let 4 be the Borel field generated by a countable partition {A,}, for
example that by a discrete r.v. X, where A, = {X = a,}. Given an integrable
r.v. Y, we define the function £;(Y) on Q by:

(5) E(Y) =) éx, (V)1a, ().

n

Thus ¢&¢(Y) is a discrete r.v. that assumes that value &, (Y) on the set A,,
for each n. Now we can rewrite (4) as follows:

é’(Y):Z] &(Y)d?—’z/ EAY)YdP.
o A Q

Furthermore, for any A € 4, A is the union of a subcollection of the A,’s
(see Exercise 9 of Sec. 2.1), and the same manipulation yields

(©) VA € & / YdP = / E(Y)dP.
A A

In particular, this shows that £;(Y) is integrable. Formula (6) equates two
integrals over the same set with an essential difference: while the integrand
Y on the left belongs to &%, the integrand (Y} on the right belongs to the
subfield &. [The fact that &z(Y ) is discrete is incidental to the nature of &.]
It holds for every A in the subfield &, but not necessarily for a set in #\&.
Now suppose that there are two functions ¢; and ¢;, both belonging to &,
such that

VAGé:/Yd?:](p;d@, i=1,2.
A A
Let A = {w : ¢ {w) > ¢:(w)}, then A € & and so

/ (1 — @2)dP = 0.
A

Hence %°(A) = 0; interchanging ¢, and ¢, above we conclude that ¢; = ¢,
a.e. We have therefore proved that the &,(Y) in (6) is unique up to an equiv-
alence. Let us agree to use &¢(Y) or &(Y | &) to denote the corresponding
equivalence class, and let us call any particular member of the class a “version”
of the conditional expectation.

The results above are valid for an arbitrary Borel subfield & and will be
stated in the theorem below.

Theorem 9.1.1. If £(]Y|) < oo and ' is a Borel subfield of #, then there
exists a unique equivalence class of integrable r.v.’s &(Y | &) belonging to &
such that (6) holds.
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prROOF. Consider the set function v on &

VYA e &6:v(A)= / Ydo.
A
It is finite-valued and countably additive, hence a “signed measure” on &.
If ”(A) = 0. then v(A) = 0; hence it is absolutely continuous with respect
to #* . v « #°. The theorem then follows from the Radon-Nikodym theorem
(see, e.g., Royden [5] or Halmos [4]), the resulting “derivative” dv/d%” being
what we have denoted by £(Y | &).

Having established the existence and uniqueness, we may repeat the defi-
nition as follows.

DEFINITION OF CONDITIONAL EXPECTATION.  Given an integrable r.v. ¥ and a
Borel subfield ¢, the conditional expectation &(Y | &) of Y relative to &' 1s
any one of the equivalence class of r.v.’s on £ satisfying the two properties:

(a) it belongs to &
(b) it has the same integral as ¥ over any set in &.

We shall refer to (b), or equivalently formula (6) above, as the “defining
relation” of the conditional expectation. In practice as well as in theory, the
identification of conditional expectations or relations between them is estab-
lished by verifying the two properties listed above. When Y = 1,, where
A € 7, we write

PN Y= E(a | )

and call it the “conditional probability of A relative to 7. Specifically, (A |
&) is any one of the equivalence class of r.v.’s belonging to & and satisfying
the condition

7 YA €5 P(ANA) = / DA | 8)dP.
A

It follows from the definition that for an integrable r.v. ¥ and a Borel
subfield &, we have

/[Y— &Y | £)1d =0,
A
for every A € &, and consequently also
Y — XY | eNZy=0
for every bounded Z € & (why?). This implies the decomposition:

Y=Y 4Y" where Y =¢F|&) andY" L&,
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where “Y"” L & means that £(Y"Z) = 0 for every bounded Z € &. In the
language of Banach space, Y’ is the “projection” of ¥ on & and Y” its “orthog-
onal complement”.

For the Borel field # {X} generated by the r.v. X, we write also &(Y | X)
for &Y | #{X}); similarly for £(Y | X, ..., X,). The next theorem clarifies
certain useful connections.

Theorem 9.1.2. One version of the conditional expectation &(Y | X) is given
by @(X), where ¢ is a Borel measurable function on %!, Furthermore, if we
define the signed measure A on %! by

VB E%l:k(B)zf YdP,
x~(B)

and the p.m. of X by pu, then ¢ is one version of the Radon—Nikodym deriva-
tive dA/dpu.

PrOOF. The first assertion of the theorem is a particular case of the
following lemma.

Lemma. If Z e % {X}, then Z = ¢(X) for some extended-valued Borel
measurable function ¢.

PROOF OF THE LEMMA. It is sufficient to prove this for a bounded positive Z
(why?). Then there exists a sequence of simple functions Z,, which increases
to Z everywhere, and each Z,, is of the form

¢
chl,\j
J=1

where A; € Z{X}. Hence A; = X~ '(B;) for some B; € #B' (see Exercise 11
of Sec. 3.1). Thus if we take
I3
@m == ch.lBja
j=1

we have Z,, = ¢,,(X). Since ¢, (X) — Z, it follows that ¢,, converges on the
range of X. But this range need not be Borel or even Lebesgue measurable
(Exercise 6 of Sec. 3.1). To overcome this nuisance, we put,

vx € Rl p(x) = ml—i;ﬁ‘l;o O (X).

Then Z = lim,, ¢.(X) = ¢(X), and ¢ is Borel measurable, proving the lemma.
To prove the second assertion: given any B € 4, let A = X ~1(B), then
by Theorem 3.2.2 we have

fff'(Y |X)d?/'°=/ 13(X)p(X)d? = IB(x)w(x)du=A¢(x)du.
A Q

%l
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Hence by (6),
A(B) = / Ydo = f p{x)du.
A B
This being true for every B in 3!, it follows that ¢ is a version of the derivative
dA/du. Theorem 9.1.2 is proved.

As a consequence of the theorem, the function £(Y | X) of w is constant
a.e. on each set on which X(w) is constant. By an abuse of notation, the ¢(x)
above is sometimes written as (¥ | X = x). We may then write, for example,
for each real ¢:

] ng?ﬂ:/ EY | X =x)dPIX < x}.
{XSC} (_OO!C]

Generalization to a finite number of X’s is straightforward. Thus one

version of &(¥ | Xy, ..., Xn)1s Xy, ..., X,), where ¢ is an n-dimensional
Borel measurable function, and by &(Y | Xy =x1,...,X, =Xx,) is meant
(p(xl» LR »xn)-

It is worthwhile to point out the extreme cases of £(Y | &):
Y| y=E1), EX|F)=Y; a.e.

where ¢ 1s the trivial field (@, Q). If & is the field generated by one set
A:{D, A, A, Q}, then &Y | &) is equal to (Y | A) on A and &(Y | A®)
on A°. All these equations, as hereafter, are between equivalent classes of
I.V.’S.

We shall suppose the pair (%, #°) to be complete and each Borel subfield
G of # to be augmented (see Exercise 20 of Sec. 2.2). But even if & is
not augmented and & is its augmentation, it follows from the definition that
E(Y | €)= &Y | €), since an 1.v. belonging to & is equal to one belonging
to & almost everywhere (why 7). Finally, if & is a field generating &, or just
a collection of sets whose finite disjoint unions form such a field, then the
validity of (6) for each A in & is sufficient for (6) as it stands. This follows
easily from Theorem 2.2.3.

The next result 1s basic.

Theorem 9.1.3. Let ¥ and YZ be integrable r.v.’s and Z € &' then we have
(8) EYZ|S$)Y=2&Y | 6) ae.

[Here “a.e.” is necessary, since we have not stipulated to regard Z as an
equivalence class of r.v.’s, although conditional expectations are so regarded

by definition. Nevertheless we shall sometimes omit such obvious “a.e.’s
from now on.]
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PROOF. As usual we may suppose Y > 0, Z > 0 (see property (ii) below).
The proof consists in observing that the right member of (8) belongs to & and
satisfies the defining relation for the left member, namely:

&) VA € 9“:]Z<F(Y 1 ﬁ)d&?:/zycggﬁ
A A

For (9) is true if Z = 1,5, where A € &, hence it is true if Z is a simple
r.v. belonging to ¢ and consequently also for each Z in & by monotone
convergence, whether the limits are finite or positive infinite. Note that the
integrability of Z&(Y | &) is part of the assertion of the theorem.

Recall that when & is generated by a partition {A,}, we have exhibited a
specific version (5) of £(Y | &). Now consider the corresponding (M | 4)
as a function of the pair (M, w):

PM | 9)w) =D PM| A, ().

For each fixed M, as a function of w this is a specific version of (M | &).
For each fixed ax, as a function of M this is a p.m. on % given by 2{- | Ap}
for wg € A,. Let us denote for a moment the family of p.m.’s arising in this
manner by C{wy, -). We have then for each integrable r.v. ¥ and each «wy in £2:

(10) &Y | 9)wn) =3 EX | Ap)la, (o) = fn YC(w, dw).

Thus the specific version of £(Y | ) may be evaluated, at each wg € £2, by
integrating ¥ with respect to the p.m. C(ay, -). In this case the conditional
expectation £(- | ¢) as a functional on integrable r.v.’s is an integral in the
literal sense. But in general such a representation is impossible {(see Doob
[16, Sec. 1.9}) and we must fall back on the defining relations to deduce its
properties, usually from the unconditional analogues. Below are some of the
simplest examples, in which X and X, are integrable r.v.’s.

(i) f X € &, then #£(X | ¥) = X a.e.; this is true in particular if X is a
constant a.e.
(i) €X) +X2| 9) =X | &)Y+ £(Xp | 4).
(dii) If X; <Xy, then £(X; | )< &#Xa | &)
(v) 10X | 9)] < E(XT 1),
(v) If X, 1 X, then &£(X,, | &)1 &(X | 9).
(vi) If X, § X, then £(X,, | &) | £X | &).
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(vii) If |X,| <Y where ¢(¥Y) <oc and X, — X, then (X, | &) —
X | o)

To illustrate, (iii} is proved by observing that for each A € &:

/ Xy | €)dP = / X,d7 < / X, d? = / E(Xy | €)dP.
A A A A

Hence if A = {{ (X, | &) > £(X5 | ©)}, we have P(A) = 0. The inequality
(iv) may be proved by (ii), (iii), and the equation X = X* — X~. To prove
(v), let the limit of £(X,, | ) be Z, which exists a.e. by (iii). Then for each
A € ¢, we have by the monotone convergence theorem:

fzagbznm/ EX, |€)d@=1im/Xnd@=/Xd;aﬁ.
A noJA 2 A A

Thus Z satisfies the defining relation for &£(X | &), and it belongs to & with
the £(X, | €)s, hence Z = &£(X | ).

To appreciate the caution that is necessary in handling conditional expec-
tations, let us consider the Cauchy-Schwarz inequality:

CIXY || )P < £X? | §)E(Y? | 9).

If we try to extend one of the usual proofs based on the positiveness of the
quadratic form in A : £((X + AY)? | &), the question arises that for each A
the quantity is defined only up to a null set N;, and the union of these over
all A cannot be ignored without comment. The reader 1s advised to think this
difficulty through to its logical end, and then get out of it by restricting the
A’s to the rationals. Here is another way out: start from the following trivial
inequality:
1X||y| x* Yy?
< +
af T 2w 28%

where o = £(X? | )12, B = &(¥Y? | ¢)'/%, and aB>0; apply the operation
é{— | ¢} using (ii) and (i1i) above to obtain

Jlogxr 1 Y?
Al <3 (Gl (e

Now use Theorem 9.1.3 to infer that this can be reduced to

1 . a2 1 B2

the desired inequality.
The following theorem is a generalization of Jensen’s inequality in Sec. 3.2,
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Theorem 9.1.4. If ¢ is a convex function on A' and X and @(X) are inte-
grable r.v.’s, then for each &:

(i1) (X | €)) < SpX) | 4).

PROOF. If X is a simple r.v. taking the values {y;} on the sets {A;},1 <
J < n, which forms a partition of £, we have

EX |9y =) yP(h 19,
J=1
QX)) | 8= o3P | ),
j=1

where > P(A; | ) = 1 a.e. Hence (11) is true in this case by the property
of convexity. In general let {X,,} be a sequence of simple r.v.’s converging to
X a.e. and satisfying |X,,| < |X| for all m (see Exercise 7 of Sec. 3.2). If we
let m — oo below:

(12) P(EXm | 6)) < E@Xm) | 9),

the left-hand member converges to the left-hand member of (11} by the conti-
nuity of ¢, but we need dominated convergence on the right-hand side. To get
this we first consider ¢, which is obtained from ¢ by replacing the graph of
@ outside (-n, n) with tangential lines. Thus for each » there is a constant
C, such that

Vx € A g ()| < Cu(lx] + 1),

Consequently, we have
on X}l < Co(l Xl + 1) = Cu(IX[+ 1)

and the last term is integrable by hypothesis. It now follows from property
(vii} of conditional expectations that

Jim (@nXm) | €)= E(n(X) | ).

This establishes (11) when ¢ is replaced by ¢,. Letting n — 00 we have
o, T @ and @, (X) is integrable; hence (11) follows for a general convex ¢,
by monotone convergence (v).

Here is an alternative proof, slightly more elegant and more delicate. We
have for any x and y:

P(x) — (¥} = ¢ (Mx — ¥)
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where ¢’ is the right-hand derivative of ¢. Hence

eX) —@(d(X | £)) 2 @' (¢ X | $NIX - £X | )]

The right member may not be integrable; but let A = {w : [£(X | &} < A}
for A>0. Replace X by X1, in the above, take expectations of both sides, and
let A 4+ co. Observe that

ElpX10) | 9 = ElpD1a + 9O 14 | ) = E(@C0) | $Ha + 90 ac.

We now come to the most important property of conditional expectation
relating to changing fields. Note that when A = €, the defining relation (6)
may be written as

E(E () = &) = &(& (),

This has an immediate generalization.

Theorem 9.1.5. If Y is integrable and & C %, then

(13) fx(Y)= &z (Y)  if and only if éz(Y) € FA;
and
(14) Er(dz (1) = é&x(Y) = dx(d5(Y)).

PROOF. Since Y satisfies trivially the defining relation for £(Y | #), it
will be equal to the latter if and only if ¥ € #. Now if we replace our basic
F by % and Y by &% (Y), the assertion (13) ensues. Next, since

Ex(Y) € A C A,

the second equation in (14) follows from the same observation. It remains
to prove the first equation in (14). Let A € %, then A € 7; applying the
defining relation twice, we obtain

/ Ealdn(Y)dP = / Ex(Y)dP = f Ydz.
A A A

Hence ¢z (&x(Y)) satisfies the defining relation for &z (Y); since it belongs
to 7, it 1s equal to the latter.
As a particular case, we note, for example,

(15) ALY 1 X1, X) | X} =X [ X)) = SE | X)Xy, Xo)

To understand the meaning of this formula, we may think of X, and X; as
discrete, each producing a countable partition. The superimposition of both
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partitions yields sets of the form {A; N Mg}. The “inner” expectation on the
left of (15) 1s the result of replacing Y by its “average” over each A; N M;.
Now if we replace this average r.v. again by its average over each A;, then
the result is the same as if we had simply replaced ¥ by its average over each
A ;. The second equation has a similar interpretation.

Another kind of simple situation is afforded by the probability triple
(7™, A", m") discussed in Example 2 of Sec. 3.3. Let xq, ..., x, be the coor-
dinate r.v.'s eee = f(x|,...,x,), where f is (Borel) measurable and inte-
grable. It is easy to see that for 1 <k <n — 1,

1 1
ff((yixl,---,xk)=/ / SO, o Xy Y Xy - - dxy,
0 0

while for k = n, the left side is just v (a.e.). Thus, taking conditional expec-
tation with respect to certain coordinate r.v.’s here amounts to infegrating out
the other r.v.’s. The first equation in (15) in this case merely asserts the possi-
bility of iterated integration, while the second reduces to a banality, which we
leave to the reader to write out.

EXERCISES

1. Prove Lemma 2 in Sec. 7.2 by using conditional probabilities.
2. Let {A,]} be a countable measurable partition of €2, and £ € # with
P(E)>0; then we have for each m:
P(Am)P,, (E)
3 PA)Pp(E)

H

[This 1s Bayes’ rule.]
*3. If X is an integrable r.v., ¥ a bounded r.v., and ¢ a Borel subfield,

then we have
X | Y} = AXET | D))

4. Prove Fatou’s lemma and Lebesgue’s dominated convergence theorem
for conditional expectations.

*5. Give an example where (&Y | X 1) |X,) # S(EX | X)) | Xy).
[uiNT: It 1s sufficient to give an example where (X | ¥) # £{&(X | Y) | X}
consider an 2 with three points.]

*6. Prove that 02(¢£,(Y)) < o*(Y), where o is the variance.

7. If the random vector has the probability density function p(-,-) and
X is integrable, then one version of £(X | X 4+ Y =z) is given by

/xp(x,z-—x)dx//p(x,z —x)dx.
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*8. In the case above, there exists an integrable function ¢(-, -) with the
property that for each B € 4!,

fw(x, ndy
B

is a version of Z2{¥ € B | X = x}. [This is called a “conditional density func-
tion in the wide sense” and

n
Bx, ) = / o(x, y)dy

is the corresponding conditional distribution in the wide sense:
O, ) =AY <n|X =x}

The term “wide sense” refers to the fact that these are functions on G rather
than on 2; see Doob [1, Sec. 1.9].]

9. Let the p(:, -) above be the 2-dimensional normal density:

1 1 x2 2pxy ¥
expy—5 s \Z oo T2
2noi004/ 1 — p? 2(1—p°) \oj o0, 03
where o;>0, 02>0, 0 < p < 1. Find the ¢ mentioned in Exercise 8 and

/ yo(x, y)dy.

-

The latter should be a version of &£(Y | X = x); verify it.
10. Let € be a B.F., X and Y two r.v."s such that

XYY 6) =X, Y | &) =X.

Then ¥ =X ae.
11. As in Exercise 10 but suppose now for any f € Ck;

X FOO) = (X FOO) X | fFX =&Y | fFEO)

Then ¥ = X a.e. [HiNT: By a monotone class theorem the equations hold for
f =1z, B € 2'; now apply Exercise 10 with & = F{X}.]

12. Recall that X, in L' converges weakly in L! to X iff £(X,Y) -~
£(XY) for every bounded r.v. Y. Prove that this implies ¢(X,, | &) converges
weakly in L! to &X | €) for any Borel subfield & of #.

*13. Let S be an r.v. such that 22{S > t} = ¢~*, 1>0. Compute &{S | SAt}
and &S| Svt} foreacht > 0.
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9.2 Conditional independence; Markov property

In this section we shall first apply the concept of conditioning to independent
r.v.’s and to random walks, the two basic types of stochastic processes that
have been extensively studied in this book; then we shall generalize to a
Markov process. Another important generalization, the martingale theory, will
be taken up in the next three sections.

All the B.F.”s (Borel fields) below will be subfields of % . The B.F.’s
{#, a € A}, where A is an arbitrary index set, are said to be conditionally inde-
pendent relative to the B.F. &, iff for any finite collection of sets Ay, ..., A,
such that A; € %, and the a;’s are distinct indices from A, we have

n

43
2| as1¢]| =]]2n;19).
j=1 J=1

When ¢ is the trivial B.F., this reduces to unconditional independence.

Theorem 9.2.1. For each a € A let # ©®’ denote the smallest B.F. containing
all #g, p € A — {a}. Then the s are conditionally independent relative to
& if and only if for each o and A, € %, we have

P(Na | FOVEG) = P (Ao | 9),
where % @ v & denotes the smallest B.F. containing % and &.

PrOOF. It is sufficient to prove this for two B.F.’s & and 7, since the
general result follows by induction (how?). Suppose then that for each A € #
we have

(1) PA| BV E) =P | 6.
Let M € 7, then
PAM | &) = HAPAM | BV E) | &) = EPA | FV Gy | 6)
=HPA | 9)Im | &} =P(A | OHPM | &),

where the first equation follows from Theorem 9.1.5, the second and fourth
from Theorem 9.1.3, and the third from (1). Thus # and % are conditionally
independent relative to 4. Conversely, suppose the latter assertion is true, then

AP | G)Im | 4} = A | HPM | &)
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where the first equation follows from Theorem 9.1.3, the second by hypothesis,
and the third as shown above. Hence for every A € &, we have

fsﬂAwM?=/ PN | RN G)dP = P(AMA)
MA MA

It follows from Theorem 2.1.2 (take %, to be finite disjoint unions of sets like
M A) or more quickly from Exercise 10 of Sec. 2.1 that this remains true if
MA is replaced by any set in % Vv 4. The resulting equation implies (1), and
the theorem is proved.

When & is trivial and each 7%, is generated by a single r.v., we have the
following corollary.

Corollary. Let {X,, « € A) be an arbitrary set of r.v.’s. For each a let %@
denote the Borel field generated by all the r.v.’s in the set except X,. Then
the X,'s are independent if and only if: for each a and each B € ', we have

PX, € B|FV) = PX,€B) ae.

An equivalent form of the corollary is as follows: for each integrable r.v.
Y belonging to the Borel field generated by X,, we have

(2) Y | FYy = £{Y).

This is left as an exercise.

Roughly speaking, independence among r.v.’s is equivalent to the lack
of effect by conditioning relative to one another. However, such intuitive
statements must be treated with caution, as shown by the following example
which will be needed later.

If 7, 7, and & are three Borel fields such that % Vv /4 is independent
of /A&, then for each integrable X € 74, we have

(3) (FE'{X | ;J/-Q vV j/‘—;.} = (f{X | "’;;_}

Instead of a direct verification, which is left to the reader, it is interesting
to deduce this from Theorem 9.2.1 by proving the following proposition.

If # v % is independent of /&, then # and 74 are conditionally inde-
pendent relative to 4.

To see this, let A| € #, A3 € /4. Since

(A1 A AL) = P(AA2)P(Ay) = / PNy | AP (N3)dP
Az

for every A, € .%5, we have
A As | B) = DA | BYP(A) = DA | )P (A5 | A,

which proves the proposition.
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Next we ask: if X| and X, are independent, what is the effect of condi-
tioning X, + X, by X?

Theorem 9.2.2. Let X; and X; be independent r.v.’s with p.m.’s £, and u»;
then for each B € A%

{4) X1+ X2 € B X1} = ma(B—X;) ae

More generally, if {X,,n > 1} is a sequence of independent r.v.’s with p.m.’s
{ttn.n = 1}, and S, = >_}_, X, then for each B € Al

(5) ZPS, €B|Si....,Sn-1} = tin(B—Sp_1) = P{S, €B|Sn_1) ae.

prOOF. To prove (4), since its right member belongs to #{X;}, it
is sufficient to verify that it satisfies the defining relation for its left
member. Let A € #{X;},then A =X TI(A) for some A € AL, It follows from
Theorem 3.2.2 that

]Mz(B—Xl)d@z/ﬂz(B—xl),U«l(dxl)-
A A

Writing ¢ = u, X 7 and applying Fubini’s theorem to the right side above,
then using Theorem 3.2.3, we obtain

/I—Ll(dxl) p2(dxy) = // pnldxy, dxz)
A x1+x-eB

x1€A4
A taned

=/ . d? =P{X, € A; X, + X, € B}.
Xl—.nlfzeﬂ
This establishes (4).
To prove (5), we begin by observing that the second equation has just been
proved. Next we observe that since {X,, ..., X,} and {S;,...,S,} obviously

generate the same Borel field, the left member of (5) is just
PSS, =B | X1,..., X1}

Now it is trivial that as a function of (X, ..., X,_1), S, “depends on them
only through their sum S,_,”. It thus appears obvious that the first term in (5)
should depend only on S, ;, namely belong to :#{S, -} (rather than the larger
{81, ..., S,—1D. Hence the equality of the first and third terms in (5) should
be a consequence of the assertion (13) in Theorem 9.1.5. This argument,
however, is not rigorous, and requires the following formal substantiation.

Let u™ =y - X iy = ;,L("_” X [, and

n—1
A=[)S;'®).

j=1
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where B, = B. Sets of the form of A generate the Borel field # (S, ..., 5,1}
It is therefore sufficient to verify that for each such A, we have

/ Un(By — S,—1)d% = P{A;S, € B,).
A
If we proceed as before and write 5, = ZL] x;, the left side above is equal to

/- : / tn(By — 5"V (dxy, .., dXy1)

SjEBj,]SjSH—l

"

= // pu™Mdx,, ..., dx,) =P ﬂ[Sjij} ;

SjEBj,lijH j=1

as was to be shown. In the first equation above, we have made use of the fact
that the set of (x;,...,x,) in &" for which x, € B, — 5, is exactly the set
for which s, € B,, which is the formal counterpart of the heuristic argument
above. The theorem is proved.

The fact of the equality of the two extreme terms in (5) is a fundamental
property of the sequence {S,}. We have indeed made frequent use of this
in the study of sums of independent r.v.’s, particularly for a random walk
(Chapter 8), although no explicit mention has been made of it. It would be
instructive for the reader to review the material there and locate some instances
of its application. As an example, we prove the following proposition, where
the intuitive picture of conditioning is particularly clear.

Theorem 9.2.3. Let {X,,n > 1} be an independent (but not necessanly
stationary) process such that for A>0 there exists 6>0 satisfying

inf (X, > A) > 6.
1

Then we have
vin > 1:2{S; € (0,Alfor 1 < j<n}<(1-8".
Furthermore, given any finite interval 7, there exists an >0 such that
PASjel, for1 < j=n}=Al —€)".
PROOF. We write A, for the event that S; € (0, A] for 1 < j < n; then
PlAp} = P{Ap_1;0 < Sp <A}

By the definition of conditional probability and (5), the last-written probability
is equal to
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/ 20 < Sy <A|S1,...,80_1}d7
AllAl

:/ [Fn(A—Sn—l)— Fn(O—Sn—l)]d*O?)a
Ay

where F, is the d.f. of u,. [A quirk of notation forbids us to write the
integrand on the right as 2{-S,..; < X, <A —5,_1}!] Now for each w in
Ap_1, Sn—1{wp)=0, hence

Fn(A - Sn—l(w())) = jp{Xn < A} = 1-4
by hypothesis. It follows that

Pabs [ (1=8d7 =1 =8P (80
Au-l

and the first assertion of the theorem follows by iteration. The second is proved

similarly by observing that 2{X, + -+ + X, 4m—1 = mA} > §™ and choosing

m so that mA exceeds the length of /. The details are left to the reader.

Let N = {0} U N denote the set of positive integers. For a given sequence
of r.v.’s {X,,, n € N} let us denote by # the Borel field generated by {X,,n €
I}, where I is a subset of N°, such as [0, n]. (n, 00), or {n}. Thus Fny, #o,n,
and F, ) have been denoted earlier by #{X, }, %, and F',, respectively.

DEFINITION OF MARKOV PROCESS. The sequence of r.v.’s {X,,n € N% is
said to be a Markov process or to possess the “Markov property” iff for
every n € N and every B € 4!, we have

(6) PAXni1 € B| Xos..., Xn) = P{Xny1 € B| Xy},

This property may be verbally announced as: the conditional distribution
(in the wide sense!) of each r.v. relative to all the preceding ones is the same
as that relative to the last preceding one. Thus if {X,} is an independent
process as defined in Chapter 8, then both the process itself and the process
of the successive partial sums {S,} are Markov processes by Theorems 9.2.1
and 9.2.2. The latter category includes random walk as a particular case; note
that in this case our notation X, rather than S, differs from that employed in
Chapter 8.

Equation (6) is equivalent to the apparently stronger proposition: for
every integrable Y € 74,41, we have

(6') AY | X1, .o X} = (Y | X0)-

It is clear that (6') implies (6). To see the converse, let Y, be a sequence of
simple r.v.’s belonging to %,y and increasing to Y. By (6) and property (i)
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of conditional expectation in Sec. 9.1, (6') is true when Y is replaced by Y ,,;
hence by property (v) there, it is also true for V.
The following remark will be repeatedly used. If ¥ and Z are integrable,

Z € A, and
/Yd:&“:/ZdV?
A A

(X5 ®).

Jely

for each A of the form

where I is an arbitrary finite subset of 7 and each B; is an arbitrary Borel set,
then Z = &(Y | ). This follows from the uniqueness of conditional expec-
tation and a previous remark given before Theorem 9.1.3, since finite disjoint
unions of sets of this form generate a field that generates #.

If the index n is regarded as a discrete time parameter, as is usual in
the theory of stochastic processes, then g, is the field of “the past and the
present”, while 7, 0 i that of “the future”; whether the present is adjoined
to the past or the future is often a matter of convenience. The Markov property
just defined may be further characterized as follows.

Theorem 9.2.4. The Markov property is equivalent to either one of the two
propositions below:

(7) Vn e NyM € #, o0): P{IM | o) = PM| X}
(8) ¥n € N,M;| € #onp, M2 € Zn ooy PMIM; | X}

= PM,; | X,}7My | X,}.
These conclusions remain true if 7, ) is replaced by #p o).
prOOF. To prove (7) implies (8), let ¥; = Ly, i = 1, 2. We then have
©  2M X7 M | Xa) = (X ] X Y2 | Xn)
= MY 1 EX 2 | X)) | Xl
= &Y 1E(Y2 | Fon) | Xn}
= HEX1 Y2 | Aon) | Xn)
= &Y Y3 | X, ) = 2{MiM; | X, ],

where the second and fourth equations follow from Theorems 9.1.3, the third
from assumption (7), and the fifth from Theorem 91.5.

Conversely, to prove that (8) implies (7), let A € F,), My € Fg.n), M; €
Fin.o0) By the second equation in (9) applied to the fourth equation below,
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we have

/ -gp(M2|Xn)dng:/ g(YﬂX,,)d@:/chf(Ylen)d@
AM] AMi A
=/ E¥LEX2 | X,) | Xa}dP
A
=/ EX L | XDEX, | X)dP
A
- / P, | X,)PM; | Xn)dP
A
= / PMIM, | X,)dP = P(AMM,).
A

Since disjoint unions of sets of the form AM, as specified above generate the
Borel field #yg ), the uniqueness of (M | #p ) shows that it is equal to
P(My | X,,), proving (7).

Finally, we prove the equivalence of the Markov property and the propo-
sition (7). Clearly the former is implied by the latter; to prove the converse
we shall operate with conditional expectations instead of probabilities and use
induction. Suppose that it has been shown that for every n € N, and every
bounded f belonging t0 HA, 41 n4k), W€ have

(10) Cg(f I iéT[O,n]) = (g)(f I 9;[;1})-

This is true for k = 1 by (6'). Let g be bounded, g € F,,4+1,n4+k+1]; WE are going
to show that (10) remains true when f is replaced by g. For this purpose it
is sufficient to consider a g of the form g;g;, where g1 € A, 41044 &2 €
H(n+k+1), Doth bounded. The successive steps, in slow motion fashion, are as
follows:

Elg | Fomt = €@ | Fonin) | Fomt = g1 (g2 | Honrn) | Fom}
= {81 (g2 | Fnany) | Fom) = €816 @2 | Ann)) | Anyd
= 81682 | Fnnan) | Fimy} = 168182 | Annin) | Hmy)
= {g182 | Any} = g | Aml-

It is left to the reader to scrutinize each equation carefully for explanation,
except that the fifth one is an immediate consequence of the Markov property
{82 | Py} = €182 | Aon+ig) and (13) of Sec. 9.1. This establishes (7) for
M € \Us2 | Zn nriy, Which is a field generating %, ). Hence (7) is true (why?).
The last assertion of the theorem is left as an exercise.




9.2 CONDITIONAL INDEPENDENCE; MARKOV PROPERTY | 329

The property embodied in (8) may be announced as follows: “The past
and the future are conditionally independent given the present”. In this form
there is a symmetry that is not apparent in the other equivalent forms.

The Markov property has an extension known as the “strong Markov
property”. In the case discussed here, where the time index is N, it is an
automatic consequence of the ordinary Markov property, but it is of great
conceptual importance in applications. We recall the notions of an optional
r.v. a, the r.v. X,, and the fields #, and %, which are defined for a general
sequence of r.v.’s in Sec. 8.2. Note that here o may take the value 0, which
is included in N°. We shall give the extension in the form (7).

Theorem 9.2.5. Let {X,,n € N° be a Markov process and « a finite
optional r.v. relative to it. Then for each M € #’, we have
(11) PM| F} = PM |, Xo}.

PROOF. Since « € %, and X, € %, (Exercise 2 of Sec. 8.2), the right
member above belongs to #,. To prove (11) it is then sufficient to verify
that the right member satisfies the defining relation for the left, when M is of
the form

£
({Xas; €B;}, BjeB,1<j<til<l<oo
j=1

Put for each n,

£
M, = D{Xn+j € Bj} € ;J}En.oo)-

j=1
Now the crucial step is to show that
o0
(12) S P | Xblgmn) = M | @, Xa).

n=0
By the lemma in the proof of Theorem 9.1.2, there exists a Borel measurable
function ¢, such that (M, | X,,} = ¢, (X, ), from which it follows that the
left member of (12) belongs to the Borel field generated by the two.r.v.’s «
and X,. Hence we shall prove (12) by verifying that its left member satisfies
the defining relation for its right member, as follows. For each m € N and

B € !, we have
o0

f > My | XM jgmn) 47 = / PMpy | X} dF
la=m:X, B} =0 {a=m:X ., €B)

/ M, | T} 4 = Plat = m; X € B; M)
J (o= X €B)

= //){O_’ = m;Xa € B; M},
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where the second equation follows from an application of (7), and the third
from the optionality of «, namely

{(1 =m} € lj/;_[O,m]

This establishes {12).
Now let A € #, then [cf. (3) of Sec. 8.2] we have

0
A= U{(a = H) N An}s
n=0
where A, € “#p. It follows that

o0

o0
PAMI =Y Pa=niniMl =Y [ oM Fold
n=0 ¢

r=0 a=n)NA,

o0
=Y [ M Xy d7 = [ PIM X} 02,

n=0 4 A
where the third equation is by an application of (7) while the fourth is by (12).
This being true for each A, we obtain (11). The theorem is proved.

When « is a constant z, it may be omitted from the right member of
(11), and so (11) includes (7) as a particular case. It may be omitted also in
the homogeneous case discussed below (because then the ¢, above may be
chosen to be independent of n).

There is a very general method of constructing a Markov process with
given “transition probability functions”, as follows. Let Pp(-) be an arbitrary
p.m. on (%!, 7). For each n > 1 let P,,(-, -) be a function of the pair (x, B)
where x € 4! and B € ./, having the measurability properties below:

(a) for each x, P,(x, ) is a p.m. on A,
(b) for each B, P, (-, B) € A

It is a consequence of Kolmogorov’s extension theorem (see Sec. 3.3) that
there exists a sequence of r.v.’s {X,, n € N% on some probability space
with the. following “finite-dimensional joint distributions”: for each 0 < £ <
0o, Bje AL 0<j<m

LK € Byl p = fB Pod) [ Pacso, d)
=0 ] ]

(13) X X / Pn(xn—la dxn)-
Bn

There is no difficulty in verifying that (13) yields an (# + 1)-dimensional p.m.
on (%"t 2"y and so also on each subspace by setting some of the B;'s
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above to be !, and that the resulting collection of p.m.’s are mutually consis-
tent in the obvious sense [see (16) of Sec. 3.3]. But the actual construction of
the process {X,, n € N°} with these given “marginal distributions” is omitted
here, the procedure being similar to but somewhat more sophisticated than that
given in Theorem 3.3.4, which is a particular case. Assuming the existence,
we will now show that it has the Markov property by verifying (6) briefly.
By Theorem 9.1.5, it will be sufficient to show that one version of the left
member of (6) is given by P, (X, B), which belongs to #,, by condition
{b) above, Let then

A =X, €B))
Jj=0

and u®t!" be the (n+ 1)-dimensional p.m. of the random vector
(Xq,...,X,). It follows from Theorem 3.2.3 and (13) used twice that

/ Pn+1(anB) dP = / / Pn+1(xn,8)d/.,(,(”+1)
A

Byx--xB,

n+1
= /f Po(dxo) | [ Pi(xjo1s dxj)
Byx.xB,xB j=1

= P(A; Xns1 € B).

This is what was to be shown.

We call Py(-) the initial distribution of the Markov process and P, (-, -)
its “nth-stage transition probability function”. The case where the latter 1s the
same for all n > 1 is particularly important, and the corresponding Markov
process is said to be “(temporally) homogeneous™ or “with stationary transition
probabilities”. In this case we write, with x = xp:

n—l1

(14) P (x,B) = / . / HP(XJ" dxji1),

A x A xB j=0

and call it the “n-step transition probability function”; when n = 1, the qual-
ifier “I-step” is usually dropped. We also put POx, B) = 15(x). It is easy to
see that

(15) PG B) = [ PO BPGdy)
ar!
so that all P are just the iterates of P1).
1t follows from Theorem 9.2.2 that for the Markov process {S,,n € N}

there, we have
P,(x,B) = p,{B —x).
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In particular, a random walk is a homogeneous Markov process with the 1-step
transition probability function

PYx, B) = w(B — x).

In the homogeneous case Theorem 9.2.4 may be sharpened to read like
Theorem 8.2.2, which becomes then a particular case. The proof 1s left as an
exercise.

Theorem 9.2.6. For a homogeneous Markov process and a finite r.v. o which
is optional relative to the process, the pre-o and post-o fields are conditionally
independent relative to X,, namely:

VA €%, M e F P{AM | Xo} = P{A | Xo}PM | Xo}

Furthermore, the post-a process {Xq4n,n € N} is a homogeneous Markov
process with the same transition probability function as the original one.

Given a Markov process {X,, n € N}, the distribution of X; is a p.m.
and for each B € %!, there is according to Theorem 9.1.2 a Borel measurable
function ¢, (-, B) such that

PXps1 € B| Xp =x) = @u(x, B).

It seems plausible that the function ¢, (-, -) would correspond to the n-stage
transition probability function just discussed. The trouble is that while condi-
tion (b) above may be satisfied for each B by a particular choice of ¢,(-, B), it
is by no means clear why the resulting collection for varying B would satisfy
condition (a). Although it is possible to ensure this by means of conditional
distributions in the wide sense alluded to in Exercise 8 of Sec. 9.1, we shall
not discuss it here (see Doob [16, chap. 2]).

The theory of Markov processes is the most highly developed branch
of stochastic processes. Special cases such as Markov chains, diffusion, and
processes with independent increments have been treated in many mono-
graphs, a few of which are listed in the Bibliography at the end of the book.

EXERCISES

*1. Prove that the Markov property is also equivalent to the following
proposition : if f; <+ -+ < 1, < t,4 are indices in NYand Bj,1 <j<n+1,
are Borel sets, then

@{Xln.,«.i € Bn+1 l Xl']s v er,,} = ?{Xl,,_,q € BR"I'"I l Xln}'

In this form we can define a Markov process {X,} with a continuous parameter
t ranging in [0, co).
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2. Does the Markov property imply the following (notation as in
Exercise 1):

5-/7){Xn+1 = Bn+1 | Xl € Blo v -an 1= Bn} = @{XWH € Bn+l | Xn € Bn}?

3. Unlike independence, the Markov property is not necessarily preserved
by a “functional”: { f (X, ). n € N°}. Give an example of this, but show that it
is preserved by each one-to-one Borel measurable mapping f.

*4. Prove the strong Markov property in the form of (8).
5. Prove Theorem 9.2.6.

*6. For the P“ defined in (14), prove the “Chapman—Kolmogorov
equations”:

VYmeN,neN:P"™(x B)= f P™(x, dy)P"™(y, B).
224

7. Generalize the Chapman-Kolmogorov equation in the nonhomo-

geneous case.

*8. For the homogeneous Markov process constructed in the text, show
that for each f > 0 we have

ELF Komn) | X} = / FOP™ Ko, dy).

Ja

*9. Let B be a Borel set, f(x, B) = P(x, B), and define f, for n > 2
inductively by

fnlxB) = / P(x, dy) fn-1(3 BY:

put f(x,B)=>"2, fa(x,B). Prove that f(X,.B) is a version of the

oC

conditional probability Z°{| J i=nt11X; € B] | X} for the homogeneous Markov
process with transition probability function P(., -).

*10. Using the f defined in Exercise 9, put

s, B) = f.B) = Y [ PPyl - £ B

n=1
Prove that g(X,, B) is a version of the conditional probability

Z{limsup[X; € B] | X,.}.
J

*11. Suppose that for a homogeneous Markov process the initial distri-
bution has support in N® as a subset of 4!, and that for each i € N°, the
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transition probability function P(Z, ), also has support in N°. Thus
{PG, j); (. j) € N® x N%)

is an infinite matrix called the “transition matrix”. Show that P as a matrix
is just the nth power of P'V. Express the probability (X, = i;, 1 <k < n}
in terms of the elements of these matrices. [This is the case of homogeneous
Markov chains.]

12. A process {X,,n € N° is said to possess the “rth-order Markov
property”, where r > 1, iff (6) is replaced by

PXni1 € B Xo. ... Xn} = PXp1 €B| Xny oo Xori1}

for n > r — 1. Show that if r < s, then the rth-order Markov property implies
the sth. The ordinary Markov property is the case r = 1,

13. Let ¥, be the random vector (X,,X,i1,...,Xs+r-1). Then the
vector process {¥,,n € N°} has the ordinary Markov property (trivially
generalized to vectors) if and only if {X,,n e N 0} has the rth-order Markov
property.

14. Let {X,,, n € N%) be an independent process. Let

n hn
D _ +1) (r)
sP=>"X;, stV =>"s]
j=0 j==()

for r > 1. Then {S%, n € N°) has the rth-order Markov property. For r = 2,

an ot

give an example to show that it need not be a Markov process.

15. If {S,.n € N} is a random walk such that (S, # 0}>0, then for
any finite interval [a, b] there exists an € < 1 such that

P{Sjela,bl,1 < j<n}<é€.

This is just Exercise 6 of Sec. 5.5 again.]

16. The same conclusion is true if the random walk above is replaced
by a homogeneous Markov process for which, e.g., there exist >0 and >0
such that P(x, 7! — (x — 8, x + 8)) = n for every x.

9.3 Basic properties of smartingales
The sequence of sums of independent r.v.’s has motivated the generalization

to a Markov process in the preceding section; in another direction it will now
motivate a martingale. Changing our previous notation to conform with later
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usage, let {x,,n € N} denote independent r.v.’s with mean zero and write
X, = Z;=1 x; for the partial sum. Then we have

FXpay | X1, X)) = EXG 4 Xna | X1y oees X))
=Xn + (’ﬁ(xn—H |x1a ---sxn) :sz + f’((xn+1) = Xu.

Note that the conditioning with respect to xj,...,x, may be replaced by
conditioning with respect to Xy, ..., X, (why?). Historically, the equation
above led to the consideration of dependent r.v.’s {x,} satisfying the condition

(1) @@(xu—'rl | x1, ..., x) = 0.

It is astonishing that this simple property should delineate such a useful class
of stochastic processes which will now be introduced. In what follows, where
the index set for n is not specified, it is understood to be either N or some
initial segment N,, of N.

DEFINITION OF MARTINGALE. The sequence of r.v.’s and B.F.’s {X,,, %} is
called a martingale iff we have for each n:

(a) # C 4y and X, € A
(b) £(1Xx]) < o0;
©) Xp=éXnn1 | 7), ae

1t is called a supermartingale iff the “=" in (c) above is replaced by “>”, and
a submartingale iff it is replaced by “<”. For abbreviation we shall use the
term smartingale to cover all three varieties. In case %, = 7 ,,) as defined in
Sec. 9.2, we shall omit %, and write simply {X,}; more frequently however
we shall consider {%,} as given in advance and omitted from the notation.

Condition (a) is nowadays referred to as: {X,} is adapted to {#4,}. Condi-
tion (b) says that all the r.v.’s are integrable; we shall have to impose stronger
conditions to obtain most of our results. A particularly important one is the
uniform integrability of the sequence {X,}, which is discussed in Sec. 4.5. A
weaker condition 1s given by

(2) sup €(|1X,]) < o0

when this is satisfied we shall say that {X,,} is L!-bounded. Condition {(c) leads
at once to the more general relation:

(3) n<m=2X,=dXnu|%)

This follows from Theorem 9.1.5 by induction since

(X | T) = E(EXo | Fin1) | ) = E(Xom1 | F ).
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An equivalent form of (3) is as follows: for each A € %, and n < m, we have

(4) ] X,d» = / X d,
A A

It is often safer to use the explicit formula (4) rather than (3), because condi-
tional expectations can be slippery things to handle. We shall refer to (3) or
(4) as the defining relation of a martingale; similarly for the “super” and “sub”
varieties.

Let us observe that in the form (3) or (4), the definition of a smartingale
is meaningful if the index set N is replaced by any linearly ordered set, with
“<” as the strict order. For instance, it may be an interval or the set of
rational numbers in the interval. But even if we confine ourselves to a discrete
parameter (as we shall do) there are other index sets to be considered below.

It is scarcely worth mentioning that {X,} is a supermartingale if and
only if {—X,} is a submartingale, and that a martingale is both. However the
extension of results from a martingale to a smartingale is not always trivial, nor
is it done for the sheer pleasure of generalization. For it is clear that martingales
are harder to come by than the other varieties. As between the super and sub
cases, though we can pass from one to the other by simply changing signs,
our force of habit may influence the choice. The next proposition is a case in
point.

Theorem 9.3.1. Let {X,, #,} be a submartingale and let ¢ be an increasing
convex function defined on A&!. If ¢(X,) is integrable for every n, then
{¢(X,), #} 1s also a submartingale.

PROOF. Since ¢ is increasing, and
Xn =< (g:{anH [Ljﬁ‘n}
we have

(5) o(Xp) < o(é{Xnq1 | F )

By Jensen’s inequality (Sec. 9.1), the right member above does not exceed
(X 41) | # }; this proves the theorem. As forewarned in 9.1, we have left
out some “a.e.” above and shall continue to do so.

Corollary 1. If {X,, .%,} is a submartingale, then so is {X}, #,}. Thus £(X;})
as well as ¢ (X,,) is increasing with n.

Corollary 2. If {X,, %)} is a martingale, then {|X,|, %} is a submartingale;
and {|X,|”, %4}, 1 < p < oo, is a submartingale provided that every X, € L7,
similarly for {|X,|log* |X,|, 7%} where log* x = (logx) v 0 for x > 0.
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PROOF. For a martingale we have equality in (5) for any convex ¢, hence
we may take @(x) = |x]|, |x|” or |x|log? |x| in the proof above.

Thus for a martingale {X,}, all three transmutations: {X}, {X;} and
{|X,1} are submartingales. For a submartingale {X, }, nothing is said about the
last two.

Corollary 3. If {X,, %)} is a supermartingale, then so is {X,, A A, %,} where
A is any constant.

pROOE. We leave it to the reader to deduce this from the theorem, but
here is a quick direct proof:

Xp AA > EXppr | T) A EA]T) 2 EXit AA | ).

It is possible to represent any smartingale as a martingale plus or minus
something special. Let us call a sequence of r.v.’s {Z,,n € N} an increasing
process iff it satisfies the conditions:

( i)ZIZO;Zn Szn—H forn > 1
( ii) £(Z,) < oo for each n.

It follows that Z. = lim,_ 00 T Z, eXists but may take the value +00;Zx
is integrable if and only if {Z,} is L'-bounded as defined above, which
means here lim,_ . % €(Z,) < co. This is also equivalent to the uniform
integrability of {Z,} because of (i). We can now state the result as follows.

Theorem 9.3.2. Any submartingale {X,, %,} can be written as
(6) X.u = Yn +Zna
where {Y,, %} is a martingale, and {Z,} is an increasing process.

proOF. From {X,} we define its difference sequence as follows:
(7) X1 = X1, Xp = X}z - Xn»—ls nz= Zs

so that X, = 3_7_;x;,n = 1 (cf. the notation in the first paragraph of this
section). The defining relation for a submartingale then becomes

AXy | :ﬁ—l} > 0,

with equality for a martingale. Furthermore, we put

n
y1 =X, Yo = Xp — ¢ {xp | -1} Y, = E ¥Yis
=1

n
a=0,  za= ¢l Fah Z,=3 %
j=1
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Then clearly x, = y, + z, and (6) follows by addition. To show that {Y,,, 7,)
is a martingale, we may verify that &{y, | %, ,} = 0 as indicated 2 moment
ago, and this is trivial by Theorem 9.1.5. Since each z, > 0, it is equally
obvious that {Z,} is an increasing process. The theorem is proved.

Observe that Z,, € #,_; for each n, by definition. This has important
consequences; see Exercise 9 below. The decomposition (6) will be called
Doob’s decomposition. For a supermartingale we need only change the “+”
there into “—”, since {-Y,, #,} is a martingale. The following complement
1s useful.

Corollary. If {X,} is L'-bounded [or uniformly integrable], then both {¥,}
and {Z,} are L'-bounded [or uniformly integrable].

PROOF. We have from (6):
EZy) < E(Xal) — EX)

since £(Y,) = &(Y;). Since Z,, > 0 this shows that if {X,} is L!-bounded,
then so is {Z,}; and {Y,} 1s too because

(Y n) < E(Xn D) + ().

Next if {X,} is uniformly integrable, then it is L!-bounded by Theorem 4.5.3,
hence {Z,} is L'-bounded and therefore uniformly integrable as remarked
before. The uniform integrability of {Y,} then follows from the last-written
inequality.

We come now to the fundamental notion of optional sampling of a
smartingale. This consists in substituting certain random variables for the orig-
inal index n regarded as the time parameter of the process. Although this kind
of thing has been done in Chapter &, we will reintroduce it here in a slightly
different way for the convenience of the reader. To begin with we adjoin a last
index oo to the set N and call it N, = {1, 2, ..., 00}. This is an example of
a linearly ordered set mentioned above. Next, adjoin %, = \/,‘fc’=1 F, to {F#, ).

A r.v. o taking values in N, is called optional (relative to {%,, n € Ny})
iff for every n € Ny, we have

(8) @ < n} e,

Since 7%, increases with n, the condition in (8) is unchanged if {a < n} is
replaced by {o = n}. Next, for an optional «, the pre-« field %, is defined
to be the class of all subsets A of Z, satisfying the following condition: for
each n € N we have

(9) AN{e <n} e,
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where again {o < n} may be replaced by {« = n}. Writing then
(10) Ay =AN{a=n},

we have A, € %, and

A =JAs =t =njn Ay

where the index n ranges over No. This is (3) of Sec. 8.2. The reader should
now do Exercises 1-4 in Sec. 8.2 to get acquainted with the simplest proper-
ties of optionality. Here are some of them which will be needed soon: %, is
a B.F. and a € %,; if « is optional then so is aAn foreachn e N; if e < 8
where f is also optional then #, C %; in particular %4, C %, N %, and in
fact this inclusion is an equation.

Next we assume X, has been defined and X, € %. We then define X,
as follows:

(11) Xo(@) = Koy (@),
in other words,
Xo(@)y=X,(w) on {a=mn}, nelNy

This definition makes sense for any « taking values in N, but for an optional
o we can assert moreover that

(12) X, € 7.

This is an exercise the reader should not miss; observe that it is a natural
but nontrivial extension of the assumption X, € #, for every n. Indeed, all
the general propositions concerning optional sampling aimn at the same thing,
namely to make optional times behave like constant times, or again to enable
us to substitute optional r.v.’s for constants. For this purpose conditions must
sometimes be imposed either on « or on the smartingale {X,,}. Let us however
begin with a perfect case which tums out to be also very important.

We introduce a class of martingales as follows. For any integrable r.v. ¥
we put

(13) X, =&Y | %), nelNg.
By Theorem 9.1.5, if n < m:
(14) Xy =EEX | A F) = X | F}

which shows {X,, %} is a martingale, not only on N but also on N. The
following properties extend both (13) and (14) to optional times.
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Theorem 9.3.3. For any optional «, we have
(15) Xo = E(Y | 7).

If @ < 8 where f§ is also optional, then {X,, %;Xg, #} forms a two-term
martingale.

prOOF. Let us first show that X, is integrable. It follows from (13) and
Jensen's inequality that
1Xa| < (Y] [ ).

Since {« = n} € #,, we may apply this to get
/ |Xa|d373=2/ X, d2P < Z/
Q " {a=n} n e
Next if A € #,, we have, using the notation in (10):

/[\Xad;’?’z;/ARXnd??xzn:/nYd@:/AYd@,

where the second equation holds by (13) because A, € :%,. This establishes
(15). Now if @ < f, then #, C % and consequently by Theorem 9.1.5.

Y |dP = / 1Y]d9P < .
J3

~_—n}

Xo = &Y | Fp) | A = 6{Xp | A,
which proves the second assertion of the theorem.

As an immediate corollary, if {e,} is a sequence of optional r.v.’s such
that

(16) o) Sy <<y <

then {X,,.#,} is a martingale. This new martingale is obtained by sampling
the original one at the optional times {&;}. We now proceed to extend the
second part of Theorem 9.3.3 to a supermartingale. There are two important
cases which will be discussed separately.

Theorem 9.3.4. Let o and £ be two bounded optional r.v.’s such that
a < fB. Then for any [super]martingale {X,}, {X,, % Xg,: 7} forms a
{super]martingale.

PROOF. Let A € #,; using (10) again we have for each &k > j:

Ajﬂ{ﬁ>k}€:7/i
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because A; € % C %, whereas {§ > k} = {§ < k}* € . It follows from the
defining relation of a supermartingale that

/ X d?’ > / X;vhqci!'.'?j

and consequently

] X d? > / Xkd@'f-/ Xpp1d?
AN (B=k) J AN B=k} A B>k}

Rewriting this as

f Xkd:/’})—/ Xk_{_ld:f;/jz/ X'Bdf"?);
AN{pzk} AjN{fzk+1} An{p=k}

summing over k& from j to m, where m is an upper bound for f; and then
replacing X; by X, on A, we obtain

a7 f Xad'{/?’—/ X,,,Hd@zf X5 d2P.
A= ji Ain{gzm+1] AN[j<p=m}

/Xad??f’zf XpdP.

F I
Another summation over j from [ to m yields the desired result. In the case
of a martingale the inequalities above become equations.

A particular case of a bounded optional r.v. is a, = aAn where « is
an arbitrary optional r.v. and n is a positive integer. Applying the preceding
theorem to the sequence {,} as under Theorem 9.3.3, we have the following
corollary.

Corollary. If {X,,, #} is a [super]martingale and « is an arbitrary optional
r.v., then {X anFnn} 18 @ [super]martingale.

In the next basic theorem we shall assume that the [super]martingale
is given on the index set N.. This is necessary when the optional r.v.
can take the value 400, as required in many applications; see the typical
example in (5) of Sec. 8.2. It turns out that if {X,} is originally given only
for n € N, we may take X, = lim,_. o X, to extend it to N under certain
conditions, see Theorems 9.4.5 and 9.4.6 and Exercise 6 of Sec. 9.4. A trivial
case occurs when {X,., Z,;n € N} is a positive supermartingale; we may then
take X, = 0.

Theorem 9.3.5. Let o and § be two arbitrary optional r.v.’s such that o < §.
Then the conclusion of Theorem 9.3.4 holds true for any supermartingale
{Xn. #pin € N
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Remark. For a martingale {X,, #,.n € N4} this theorem is contained
in Theorem 9.3.3 since we may take the ¥ in (13) to be X here.

PROOF. (a) Suppose first that the supermartingale is positive with X, = 0
a.e. The inequality (17) is true for every m € N, but now the second integral
there is positive so that we have

/ Xadsf?JE/ Xgd7.
Aj AN[B<m)

}

Since the integrands are positive, the integrals exist and we may let m — oo
and then sum over j € N. The result is

/ XodP > / Xg a7’
Anja<oo} Anff<oo}

which falls short of the goal. But we can add the inequality

/ XodP = f XoodP = Xod? = Xgd 7
AN{oe=o0]} ANfa=00} AN{p=0c} A f=co}

which is trivial because X, = 0 a.e. This yields the desired

(18) fXad;’?/JE/Xﬁd{?/).
A A

Let us show that X, and Xz are in fact integrable. Since X, > X we have
X < lim,_, o Xoan so that by Fatou’s lemma,

(19) (‘E(Xot) = 1_1_H_1_ (’-(:}(Xomn)‘
=30
Since 1 and oAn are two bounded optional r.v.’s satisfying 1 < aAn; the
right-hand side of (19) does not exceed ¢(X;) by Theorem 9.3.4. This shows
X, is integrable since it 1s positive.
(b) In the general case we put

X, = Xoo | %), X, =X, - X,

Then {X/,, #:n € Ny} is a martingale of the kind introduced in (13), and
X, = X, by the defining property of supermartingale applied to X, and X .
Hence the difference {X|,, %,;n € N} is a positive supermartingale with X7 =
0 a.e. By Theorem 9.3.3, {X|, %, X}, 75} forms a martingale; by case (a),
(X5, % X ;; “#} forms a supermartingale. Hence the conclusion of the theorem

follows simply by addition.

The two preceding theorems are the basic cases of Doob’s optional
sampling theorem. They do not cover all cases of optional sampling (see e.g.
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Exercise 11 of Sec. 8.2 and Exercise 11 below), but are adequate for many
applications, some of which will be given later.

Martingale theory has its intuitive background in gambling. If X, is inter-
preted as the gambler’s capital at time #, then the defining property postulates
that his expected capital after one more game, played with the knowledge of
the entire past and present, is exactly equal to his current capital. In other
words, his expected gain is zero, and in this sense the game is said to be
“fair”. Similarly a smartingale is a game consistently biased in one direc-
tion. Now the gambler may opt to play the game only at certain preferred
times, chosen with the benefit of past experience and present observation,
but without clairvoyance into the future. [The inclusion of the present status
in his knowledge seems to violate raw intuition, but examine the example
below and Exercise 13.] He hopes of course to gain advantage by devising
such a “system” but Doob’s theorem forestalls him, at least mathematically.
We have already mentioned such an interpretation in Sec. 8.2 (see in partic-
ular Exercise 11 of Sec. 8.2; note that o+ [ rather than « is the optional
time there.) The present generalization consists in replacing a stationary inde-
pendent process by a smartingale. The classical problem of “gambler’s ruin”
illustrates very well the ideas involved, as follows.

Let {S,, n € N%) be a random walk in the notation of Chapter 8, and let S;
have the Bernoullian distribution %31 + %6_1. It follows from Theorem &.3.4,
or the more elementary Exercise 15 of Sec. 9.2, that the walk will almost
certainly leave the interval [—a, b], where a and b are strictly positive integers;
and since it can move only one unit a time, it must reach either —a or b. This
means that if we set

(20) a=min{n > 1:§, = —a}, f=min{n > 11§, = b},

then y = aAfB is a finite optional r.v. It follows from the Corollary to
Theorem 9.3.4 that {S A} is a martingale. Now
(21 nl_lgo S,an =9, ae.
and clearly S, takes only the values —a and b. The question is: with what
probabilities? In the gambling interpretation: if two gamblers play a fair coin-
tossing gaime and possess, respectively, a and b units of the constant stake as
initial capitals, what is the probability of ruin for each?

The answer is immediate (‘‘without any computation™!) if we show first
that the two r.v.’s {S7, S, } form a martingale, for then

(22) £(8,) = €S =0,
which is to say that
—aS, = —a} + bS, = b} =0,
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so that the probability of ruin is inversely proportional to the initial capital of
the gambler, a most sensible solution.

To show that the pair {S1, S, } forms a martingale we use Theorem 9.3.5
since {Syan,n€Nx] is a bounded martingale. The more -elementary
Theorem 9.3.4 is inapplicable, since y is not bounded. However, there is
a simpler way out in this case: (21) and the boundedness just mentioned
imply that

£8)) = lim & (Syan),

and since ¢ (S,a1) = €(S1), (22) follows directly.

The ruvin problem belonged to the ancient history of probability theory,
and can be solved by elementary methods based on difference equations (see,
e.g., Uspensky, Introduction to mathematical probabiliry, McGraw-Hill, New
York, 1937). The approach sketched above, however, has all the main ingredi-
ents of an elaborate modern theory. The little equation (22) is the prototype of
a “harmonic equation”, and the problem itself is a “boundary-value problem”.
The steps used in the solution—to wit; the introduction of a martingale,
its optional stopping, its convergence to a limit, and the extension of the
martingale property to include the limit with the consequent convergence of
expectations —are all part of a standard procedure now ensconced in the
general theory of Markov processes and the allied potential theory.

EXERCISES

1. The defining relation for a martingale may be generalized as follows.
For each optional r.v. « <n, we have ¢{X, | %} = X,. Similarly for a
smartingale.

*2. If X is an integrable r.v., then the collection of (equivalence classes
of) r.v.’s £ (X | &) with & ranging over all Borel subfields of %, 1s uniformly
integrable.

3. Suppose {X®, 7}, k =1, 2, are two [super]martingales, « is a finite
optional r.v., and X" = [>]X?. Define X, = X{"lj4<q) + XP {5015 show
that {X,, #,} is a [super]martingale. [HiNT: Verify the defining relation in (4)
form=n-+1]

4. Suppose each X, is integrable and

f”({anl |X1,...,X,,} :n-l(X1 +-- 4+ X))

then {{(n~")Y(X, +---+X,), n € N} is a martingale.

5. Every sequence of integrable r.v.’s is the sum of a supermartingale
and a submartingale.

6. If {X,,#} and {X!, #] are martingales, then so is {X, + X, #}.
But it may happen that {X,} and {X!} are martingales while {X, + X} is not.
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[HNT: Let xy and x; be independent Bernoullian r.v.’s; and x, = x} = 41 or
—1 according as x; + x; = 0 or # 0; notation as in (7).]

7. Find an example of a positive martingale which is not uniformly inte-
grable. [HINT: You win 2" if it’s heads » times in a row, and you lose everything
as soon as it’s tails.]

8. Find an example of a martingale {X,} such that X,, -+ —o¢ a.e. This
implies that even in a “fair” game one player may be bound to lose an
arbitrarily large amount if he plays long enough (and no limit is set to the
liability of the other player). [HiNT: Try sums of independent but not identically
distributed r.v.’s with mean 0.]

*9. Prove that if {¥,, %} is a martingale such that ¥, € %,_;, then for
every n, Y, = Y a.e. Deduce from this result that Doob’s decomposition (6)
is unique (up to equivalent r.v.’s) under the condition that Z,, € %,_, for every
n > 2. If this condition is not imposed, find two different decompositions.

10. If {X,} is a uniformly integrable submartingale, then for any optional
r.v. @ we have

(1) {X4an} 1s a uniformly integrable submartingale;
(i) &(X1) < €(Xq) < sup, (Xn).

[HINT: lXaAnl < |X0’1 + anl]
*11. Let {X,, #;n € N} be a [super]martingale satisfying the following
condition: there exists a constant M such that for every n > 1:

Xy — Xuoil| 71} < Mace.

where Xy =0 and % is trivial. Then for any two optional r.v.’s « and B
such that « < g and &(f) < oo, {Xu, Z; X g, F) is a [super]martingale. This
1s another case of optional sampling given by Doob, which includes Wald’s
equation (Theorem 5.5.3) as a special case. [HINT: Dominate the integrand in
the second integral in (17) by Y where Xg =0 and ¥, =3 ' |X, — X,_1|.
We have

=3 [ Xy Xpsld? <MEB)]

n=1 {pzn}

12. Apply Exercise 11 to the gambler’s ruin problem discussed in the
text and conclude that for the « in (20) we must have ¢{«) = +o00. Verify
this by elementary computation.

*13. In the gambler’s ruin problem take & = I in (20). Compute ¢ (Sgan)
for a fixed n and show that {So, Sg..} forms a martingale. Observe that {Sy, Sg}
does not form a martingale and explain in gambling terms the effect of stopping
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£ at . This example shows why in optional sampling the option may be taken
even with the knowledge of the present moment under certain conditions. In
the case here the present (namely S A n) may leave one no choice!

14. In the gambler’s ruin problem, suppose that S; has the distribution
péi+ (1 —p)_y, p#i;

and let d = 2p — 1. Show that £(S,) = d¢(y). Compute the probabilities of
ruin by using difference equations to deduce &£(y), and vice versa.
15. Prove that for any L'-bounded smartingale {X,, %, n € N}, and
any optional «, we have £(|X4|) < oc. [HINT: Prove the result first for a
martingale, then use Doob’s decomposition.]
*16. Let {X,,#,} be a martingale: x; = X1, x, = X, — Xn,_1 for n > 2;
let v, € #,_1 for n > 1 where % = %; now put

13
T, = E VX
i=1

Show that {7, #,} is a martingale provided that T, is integrable for every n.
The martingale may be replaced by a smartingale if v, > 0 for every n. As
a particular case take v, = I,<4 Where « is an optional r.v. relative to {#,}.
What then is 7,7 Hence deduce the Corollary to Theorem 9.3 4.

17. As in the preceding exercise, deduce a new proof of Theorem 9.3.4
by taking v, = ljg<n<p-

9.4 Inequalities and convergence

We begin with two inequalities, the first of which is a generalization of
Kolmogorov’s inequality (Theorem 5.3.1).

Theorem 9.4.1. If {X;, #, j € N,} is a submartingale, then for each real A
we have

(13 AZ°{ max X}-ZK}E/ X, dP < é(X:),
{maxy<jen X;20)

1=j=n

(2) AZ{ min X; < —A} < £(X,, —X,)—/ X,d?
1<y [ming<jc, X;<—A}

< &XE) - X)),

PROOF. Let « be the first j such that X; > A if there is such a j inN,,
otherwise let & = n (optional stopping at #n). It 1s clear that « is optional;
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since it takes only a finite number of values, Theorem 9.3.4 shows that the
pair {X,, X,} forms a submartingale. If we write

M= {max X; > A},

1=j=n

then M € %, (why?) and X, > A on M, hence the first inequality follows
from

APM) < / XodP < / X, do
M M

the second is just a cruder consequence.
Similarly let 8 be the first j such that X; < —A if there is such a j in
N, ., otherwise let 8 = n. Put also

M, = in X; <—A}
k {glgkj_ }

Then {X,, Xz} is a submartingale by Theorem 9.3.4, and so
XpdP + /

MC

n—1

can < sxp) = [

XndP + / XpndP
(=n—1} M, M:

< APM,) + EXy) — / X, d?,
Mll

which reduces to (2).

Corollary 1. If {X,} is a martingale, then for each A>0:

1=f=n

1 1
G) P max X = A) < _/ Xl d7 < = E(Xnl).
[max; << X ;122) A
If in addition £(X2) < oo for each n, then we have also

I
4) P{max |X;| > 1) < Fﬁ(xﬁ).

1=j=n

These are obtained by applying the theorem to the submartingales {|X,|}
and {X2}. In case X, is the S, in Theorem 5.3.1, (4) is precisely the Kolmo-
gorov inequality there.

Corollary 2. Let1 <m <n, A, € %, and M = {maxpy<;<, X; > A}, then

APIA, M} < ] X, dP.

ApM

This is proved just as (1) and will be needed later.
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We now come to a new kind of inequality, which will be the tool for
proving the main convergence theorem below. Given any sequence of r.v.’s
{X 1, for each sample point w, the convergence properties of the numerical
sequence {X ;(w)} hinge on the oscillation of the finite segments {X ;(w), j €
N,}as n — oo. In particular the sequence will have a limit, finite or infinite, if
and only if the number of its oscillations between any two [rational] numbers a
and & is finite (depending on a, & and w). This is a standard type of argument
used in measure and integration theory (cf. Exercise 10 of Sec. 4.2). The
interesting thing is that for a smartingale, a sharp estimate of the expected
number of oscillations is obtainable.

Let a < b. The number v of “upcrossings” of the interval [a, b] by a
numerical sequence {xj, ..., x,} is defined as follows. Set

ar =min{j:1 < j<n,x; <a},
ay =min{jioa; < j <n,x; = b},

if either «y or «; i1s not defined because no such j exists, we define v = 0. In
general, for k¥ > 2 we set

a1 = min{j:ay_» < j <n,x; < a},

ay = min{jian_) < j <n,x; = b};

if any one of these is undefined, then all the subsequent ones will be undefined.
Let «; be the last defined one, with £ = 0 if @, is undefined, then v is defined
to be [£/2]. Thus v is the actual number of successive times that the sequence
crosses from < a to > b. Although the exact number is not essential, since a
couple of crossings more or less would make no difference, we must adhere
to a rigid way of counting in order to be accurate below.

Theorem 9.4.2. Let {X;, #;, j € N,} be a submartingale and —o0 < a <
b < oo, Let u[(;'},,] {(w) denote the number of upcrossings of [a, b] by the sample

sequence {X ;(w), j € N, }. We have then

X, —a)t) — X —a)t) - XY A+ lal
b—a - b—a
prOOF. Consider first the case where X; > 0 for every jand 0 = a < b,
so that v{fb](a}) becomes ”[{S_)b] (w), and X, (w) =0 if j is odd, where a; =
a;(w) is defined as above with x; = X ;(w). For each w, the sequence o ;(w)
is defined only up to £{w), where 0 < £{w) < n. But now we modify the
definition so that «;(w) is defined for I < j < n by setting it to be equal to n
wherever it was previously undefined. Since for some w, a previously defined
o ;(w) may also be equal to n, this apparent confusion will actually simplify

G) gyl <
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the formulas below. In the same vein we set ag = 1. Observe that o, = # in
any case, so that

n—1

X, — X1 = Xan - Z(XQ’JH Xaf) - Z + Z

jeven  jodd

If jisodd and j 4+ 1 < £(w), then

Xo,,, (@) > >0 = X, ();
If jis odd and j = £(w), then

Xoj (@) =X, (@) 2 0= X, (0);

if j1s odd and £(w) < J, then

Xo,,, (@) = X, (0) = Xy, (w).
Hence in all cases we have
(6) > Koy (@) — Xa (@) > Z KXo, (@) — Xq, (@)

J odd

J*l‘(l(w)
£(w) L(m)
> ‘:le = Vio.h) (w)b.

Next, observe that {a;, 0 < j < n} as modified above is in general of the form
=y <ar<ay<---<a;<apy = --=0a, =n, and since constants
are optional, this is an increasing sequence of optional r.v.’s. Hence by
Theorem 9.3.4, {X4,,0 < j < n} i1s a submartingale so that for each ;,0 <
J=n—1, we have &{X, 11 — Xy} = 0 and consequently

> Xayy —Xa)) ¢ 2 0.

] even

Adding to this the expectations of the extreme terms in (6), we obtain
(7 Xy — X1) 2 EQfg )b,

which is the particular case of (5) under consideration.

In the general case we apply the case just proved to {(X; — a)*, j € N,)},
which is a submartingale by Corollary 1 to Theorem 9.3.1. It is clear that
the number of upcrossings of [a, b1 by the given submartingale is exactly
that of [0, b — a} by the modified one. The inequality (7) becomes the first
inequality in (5) after the substitutions, and the second one follows since
(X, —a)* <X} 4+ |a|. Theorem 9.4.2 is proved.
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The corresponding result for a supermartingale will be given below; but
after such a painstaking definition of upcrossing, we may leave the dual defi-
nition of downcrossing to the reader.

Theorem 9.4.3. Let {X; #;.j € N,} be a supermartingale and let —oc <

ab < o0, Let ﬁf;’_)b] be the number of downcrossings of [a, b] by the sample
sequence {X ;(w), j € N,}. We have then

Xy A Dby = E{X, A b
b—a
PROOF. {—X;, J € N,} is a submartingale and D[(;’,)b] is vf’fbra] for this
submartingale. Hence the first part of (5) becomes
PH 1 < (=X, + )" — (=X, + b)) B -X)" ~ 0 -X)Y)
« st
S el = —a — (—=b) b—a
Since (b —x)" = b — (b A x) this is the same as in (8).

@) ATy <

Corollary. For a positive supermartingale we have for 0 <a < b < o0
b
po(n)

& < —
{ [G,b]} — b_a

G. Letta proved the sharper “dual™:

of () a

{(Martingales et intégration stochastique, Quaderni, Pisa, 1984, 48-49.)
The basic convergence theorem is an immediate consequence of the
upcrossing inequality.

Theorem 9.4.4. If {X,,%:.n € N} is an L'-bounded submartingale, then
{X,} converges a.e. to a finite limit.

Remark. Since
X, D) =280 — X, < 26X — £X0D),

the condition of L'-boundedness is equivalent to the apparently weaker one
below:

(9 sup £ (X)) < o0.

PROOF. Let v, 5 = lim, ufi)b]. Our hypothesis implies that the last term
in (5) is bounded in »n; letting n — 00, we obtain ¢ {vy, )} < oo for every a
and b, and consequently v, ;) is finite with probability one. Hence, for each
pair of rational numbers a < b, the set
A!a,b] = {l_i_an <u<b< H;rHXn}

n
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1s a null set; and so is the union over all such pairs. Since this union contains
the set where lim, X, < lim, X,,, the limit exists a.e. It must be finite a.e. by
Fatou’s lemma applied to the sequence |X,,].

Corollary. Every uniformly bounded smartingale converges a.e. Every posi-
tive supermartingale and every negative submartingale converge a.e.

It may be instructive to sketch a direct proof of Theorem 9.4.4 which is
done “by hand”, so to speak. This is the original proof given by Doob (1940)
for a martingale.

Suppose that the set A, above has probability > n>0. For each w in
Aqap), the sequence {X,(w), n € N} takes an infinite number of values < a
and an infinite number of values > b. Let ] = ny < n; < ... and put

Azj_l = m_in X; < al, Azj' = { max X; > b}
n2j2<i<nzj. Raj-1 <UZRY

Then for each £ it is possible to choose the n;’s successively so that the differ-
ences n; — n;—) for 1 <i < 2k are so large that “most” of A, s is contained

in (7, A;, so that
2%
@{m At} > 7.

i=I

Fixing an n > ny and applying Corollary 2 to Theorem 94.1 to {—X;} as
well as {X;], we have

2j—1
N (A
f==1

=1

2j
b7 (ﬂ A,-)
=1

where the equalities follow from the martingale property. Upon subtraction
we obtain

2j 2j—1
b —a)? (ﬂ Af) —a? ( N A,-Agj) < — ﬁ X, dP,
i=1 AiA;j

i=l

i=1

S /ZJ Xngj- d@: 2j Xn dé/?,
mAi ﬂA;
=1 i)

i

jus ]
and consequently, upon summing over 1 < j < k:
k(b —ayn — {af = &(1X,, ).

This is impossible if & is large enough, since {X,} is L'-bounded.
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Once Theorem 9.4.4 has been proved for a martingale, we can extend it
easily to a positive or uniformly integrable supermartingale by using Doob’s
decomposition. Suppose {X,} is a positive supermartingale and X, = Y,, — Z,
as in Theorem 93.2. Then 0 < Z,, < Y, and consequently

(r((zoc) = lim (g(Zn) = (f'(Yl);
n—=>00
next we have
E¥n) = EX) + EZn) < EX)) + E(Z0).

Hence {Y,} is an L'-bounded martingale and so converges to a finite limit
as n — oc. Since Z, 1+ Z < oc a.e., the convergence of {X,;} follows. The
case of a uniformly integrable supermartingale is just as easy by the corollary
to Theorem 9.3.2.

It is trivial that a positive submartingale need not converge, since the
sequence {n} is such a one. The classical random walk {S,} (coin-tossing
game) is an example of a martingale that does not converge (why?). An
interesting and not so trivial consequence is that both £(S}) and &(|S, ) must
diverge to +oo! (Cf. Exercise 2 of Sec. 6.4.) Further examples are furnished
by “stopped random walk”. For the sake of concreteness, let us stay with the
classical case and define y to be the first time the walk reaches +1. As in our
previous discussion of the gambler’s-ruin problem, the modified random walk
{S }, where S, = = Syan. i still a martingale, hence in particular we have for
each n:

£G0) = @) = f

S d?/>+/ 51dP = &(81)=0
ty=11 ty=1}
As in (21) of Sec. 9.3 we have, writing Soo = §, = 1,
IimS’,, =S’OO a.e.,
n

since y < o a.e., but this convergence now also follows from Theorem 9 .4 4,
since §7 < 1. Observe, however, that

EE)=0<1=ESs0)

Next, we change the definition of y to be the first time (= 1) the walk “returns”
to 0, as usual supposing So = 0. Then S, = 0 and we have indeed ¢ (8, =
& (SDC)_ But for each n,

f S, d7>0= f S0 dP,
{(5,=0) {5,>0}

so that the “extended sequence” {S1,....8,...., S} is no longer a martin-
gale. These diverse circumstances will be dealt with below.
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Theorem 9.4.5. The three propositions below are equivalent for a sub-
martingale {X,, #,;n € N}:

(a) 1t 1s a uniformly integrable sequence;

(b) it converges in L!;

(c) it converges a.e. to an integrable X, such that {X,, %, n € Ny} is
a submartingale and #(X,) converges to ¢ (X ).

PROOF. (a) => (b): under (a) the condition in Theorem 9.4.4 is satisfied so
that X, — X a.e. This together with uniform integrability implies X,, — X
in L! by Theorem 4.5.4 with r = 1.

(b) = (¢): under (b) let X,, — X4 in L', then £(Xn]) = (1 Xool) <
oc and so X, — X4 a.e. by Theorem 9.44. For each A € #, and n < n’,

we have
/Xnd:'f)S/X,,,df?ﬁ
A A

by the defining relation. The right member converges to [, Xo d? by L'-
convergence and the resulting inequality shows that {X,,%#,:n € Ny} is a
submartingale. Since L'-convergence also implies convergence of expecta-
tions, all three conditions in (c) are proved.

(¢) = (a); under (c), {X}, #;n € Ny} is a submartingale; hence we
have for every A>0:

(10) / Xtdp < [ X do,
{X5 =4} (X >4}

which shows that {X, n € N} is uniformly integrable. Since X — X7 ae.,
this implies ¢ (X} )— £(XZ). Since by hypothesis ¢ (X)) — ¢ (X). it follows
that £ (X ) — #(X2)). This and X, — X__ a.e. imply that {X, ] is uniformly
integrable by Theorem 4.5.4 for r = 1. Hence so is {X,,}.

Theorem 9.4.6. In the case of a martingale, propositions (a) and (b) above
are equivalent to (¢’) or (d) below:

(¢’) it converges a.e. to an integrable X, such that {X,, %, n € Ny} 1s
a martingale;

{d) there exists an integrable r.v. ¥ such that X,, = £(¥Y | ) for each
nenN.

prOOF. (b) = (¢’) as before; (¢/) = (a) as before if we observe that
¢ (X,) = ¢ (X ) for every n in the present case, or more rapidly by consid-
ering |X,| instead of X ;ﬁ“ as below. (¢’ = (d) 1s trivial, since we may take
the ¥ in (d) to be the X4 in (). To prove (d) = (a), let » < »n’, then by
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Theorem 9.1.5;
Xy | F) = EEX | F) | F) = X | F) =X,

hence {X,,#,.n € N;Y,#} is a martingale by definition. Consequently
{1 X |, #,.n € N;|Y|,#} is a submartingale, and we have for each A>0:

f lxnid.@s/ ¥1d,
{[Xnlz2) {IXq =2}

1 1,

PXnl > A} = (X)) = va"(lYl),

> |

which together imply (a).

Corollary. Under (d), {X,,, %, n € N; Xoo. Zoo; Y, # } is a martingale, where
X is given in (¢).

Recall that we have introduced martingales of the form in (d) earlier in
(13) in Sec. 9.3. Now we know this class coincides with the class of uniformly
integrable martingales.

We have already observed that the defining relation for a smartingale
is meaningful on any linearly ordered (or even partially ordered) index set.
The idea of extending the latter to a limit index is useful in applications to
continuous-time stochastic processes, where, for example, a martingale may
be defined on a dense set of real numbers in (7;,7;) and extended to 1,.
This corresponds to the case of extension from N to N. The dual extension
corresponding to that to #; will now be considered. Let —N denote the set of
strictly negative integers in their natural order, let —oc precede every element
in —N, and denote by —N the set {—oc} U (—N) in the prescribed order.
If {#,,n € —N} is a decreasing (with decreasing n) sequence of Borel fields,
their intersection [ . _y % will be denoted by #_ .

The convergence results for a submartingale on —N are simpler because
the right side of the upcrossing inequality (5) involves the expectation of the
r.v. with the largest index, which in this case is the fixed —1 rather than the
previous varying n. Hence for mere convergence there is no need for an extra
condition such as (9).

Theorem 94.7. Let {X,.n € —N} be a submartingale. Then
(11) Im X, =X_,, where —o0<X_, <00 ae.
n—r—0C

The following conditions are equivalent, and they are automatically satisfied
in case of a martingale with “submartingale” replaced by “martingale” in (c):
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(a) {X,} is uniformly integrable;

) X, > X. inL"

(¢) {X,.n € =N} is a submartingale;
(d) imy_ o 4 € (X)) > —00.

PROOF. Let UE:L] be the number of upcrossings of [a, b] by the sequence

{X_n..x_,}. We have from Theorem 9.4.2:

£ + lal
b—a '

o (n)
Evian) <

Letting n — oo and arguing as the proof of Theorem 9.4.4, we conclude (11)
by observing that

F(X1 ) < lim (XF,) < #(XH) < 0.
The proofs of (a) = (b) = (c) are entirely similar to those in Theorem 9.4.5.

(¢) = (d) is trivial, since —o0 < F(X_o) < £(X_,) for each n. It remains
to prove (d) = (a). Letting C denote the limit in (d), we have for each A>0:

(12) AP{X,| > 2} < E(XR) = 286X} ) — E(X,) <26X7)) — C < o0,

It follows that 27{|X,| > A} converges to zero uniformly in n as A — o¢. Since

/ X,"j"d.@gf Xt d7,
{(XT>a) (X1 =)

this implies that {X'} is uniformly integrable. Next if n < i, then

n

0> / X, d7 = E(X,) — [ X, d?
{X,,<—;‘.} {Xu?.";‘}

> £(X,) — / X, d7
{XHZ_)‘}

= EXy — X)) + EX) — f X d?
{XlaE_A}

(X — X))+ / X, d7
{Xy <-4}

By (d), we may choose —m so large that (X, — X,,) > —e for any given >0
and for every n < m. Having fixed such an m, we may choose A so large that

n

sup/ | Xm!ld? < €
{Xn‘:_“)"}
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by the remark after (12). It follows that {X '} is also uniformly integrable, and
therefore (a) is proved.

The next result will be stated for the index set N of all integers in their
natural order:

N={.,-n...,=2,-1.0,1,2,....n,...}.

Let {%,) be increasing B.F.’s on N, namely: 7% C %, if n <m. We may
“close” them at both ends by adjoining the B.F.’s below:

Fow=\F F=\7
n

n

Let {Y,} be r.v.’s indexed by N. If the B.F.’s and r.v.’s are only given on N
or —N, they can be trivially extended to N by putting %, = #, Y, =Y, for
all n <0, 0or # =%_,,Y, =Y_, for all n > 0. The following convergence
theorem is very useful.

Theorem 9.4.8. Suppose that the ¥,,’s are dominated by an integrable r.v.Z:

(13) sup [Yn| < Z;

and lim, Y, =Y 0or Y _. as 1 — 00 or —o0. Then we have

(14a) lim Y, {#} = Y o | )i
n—0C
(14b) im Y, |7} = E1Y oo | Fooo)-
H— —0O0

In particular for a fixed integrable r.v. ¥, we have

(15a) lim (Y | 7} = (Y | Fook;
(15b) im Y | F) = Y | Foo)
H—>—00

where the convergence holds also in L' in both cases.

PROOF. We prove (15) first. Let X, = &{Y | #,}. For n e N, {X,,, %}
is a martingale already introduced in (13) of Sec. 9.3; the same is true for
n € —N. To prove (15a), we apply Theorem 9.4.6 to deduce (¢') there. It
remains to identify the limit X,, with the right member of (15a). For each

A € #,, we have
./Yd;QP:/X,,d.‘//’:/Xoodij/).
A A A




9.4 INEQUALITIES AND CONVERGENCE | 357

Hence the equations hold also for A € %, (why?), and this shows that X
has the defining property of &(Y | #, since Xoo € Fo. Similarly, the limit
X_oo in (15b) exists by Theorem 9.4.7; to identify it, we have by (c) there,

for each A € 7 !
/Xmmd@zf){nd?ﬁ‘):/Yd@.
A A A

This shows that X_. ., is equal to the right member of (15b).
We can now prove (14a). Put for m € N:

W =supl|Y, — Yl

n>m

then |W,,| < 2Z and lim,,—, oo W, = 0 a.e. Applying (15a) to W,, we obtain

lim &{|Y, — Yool
H—0C

F) < lim EWa | Fal = E(Wa | Fao).
=0

As m — oo, the last term above converges to zero by dominated convergence
(see (vii) of Sec. 9.1). Hence the first term must be zero and this clearly
implies (14a). The proof of (14b) is completely similar.

Although the corollary below is a very special case we give it for histor-
ical interest. It is called Paul Lévy’s zero-or-one law (1935) and includes
Theorem 8.1.1 as a particular case.

Corollary. If A € 7, then
(16) lim (A | %) =1, ae.
n—»0C

The reader 1s urged to ponder over the intuitive meaning of this result and
judge for himself whether it is “obvious” or “incredible”.

EXERCISES

*1. Prove that for any smartingale, we have for each A>0:

AP (sup |Xp| = A} < 3sup 6(|1X, ).
n n

For a martingale or a positive or negative smartingale the constant 3 may be
replaced by 1.

2, Let {X,} be a positive supermartingale. Then for almost every w,
Xi(w) =0 implies X, (w)=0 for all n > k. [This is the analogue of a
minimum principle in potential theory.]

3. Generalize the upcrossing inequality for a submartingale {X,,, #,} as
follows:

HXy —a)' | FA) - —a)+_

LAY <
{[a.b]{ ]}_ h—a
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Similarly, generalize the downcrossing inequality for a positive supermartin-
gale {X,, #,} as follows:
X1 Ab

! "() e
(’{U[Z‘b} I./;l} S b_a .

*4. As a sharpening of Theorems 9.4.2 and 9.4.3 we have, for a positive
supermartingale {X,,,#,,n € N}:

G F(X1 Aa) rayk-!
//){VE‘:!);,] >k} < — (E) ;

e Xy A b)) pank-]
Ay 2k s === (5]

These inequalities are due to Dubins. Derive Theorems 9.3.6 and 9.3.7 from
them. [HINT:

bMay; < n} < /

{azj<n}

X, d7 < / Xoy, d7

{(Igj...] <n}

< / Xazjml as < a@{azj_l < nj
{ora; .t <n}

since {azj_1 < 1} € Fy, ]

*S, Every L'-bounded martingale is the difference of two positive L!-
bounded martingales. This is due to Krickeberg. [HiNT: Take one of them to
be lim; . X5 | 7))

*6. A smartingale {X,, #:n € N} is said to be closable [on the right]
iff there exists a r.v. X, such that {X,,, #,.n € N} is a smartingale of the
same kind. Prove that if so then we can always take X, = lim,_, o, X,,. This
supplies a missing link in the literature. {HINT: For a supermartingale consider
X, =X |#)+Y,, then {Y,,#) is a positive supermartingale so we
may apply the convergence theorems to both terms of the decomposition.]

7. Prove a result for closability [on the left] which is similar to Exercise 6
but for the index set —N. Give an example to show that in case of N we may
have lim,— .. ¢(X,) 5% ¢ (Xo), whereas in case of —N closability implies
lim,_, o ¢ (Xp) = (X o).

8. Let {X,, %, n € N} be a submartingale and let « be a finite optional
r.v. satisfying the conditions: (a) ¢ (|X,|) < oo, and (b)

lim f X,1ds =0,
{a>n}

n—0Q

Then {X i n, Zarn:lt € Noo) 18 @ submartingale. [HINT: for A € %,,, bound
fA (Xy — Xg-n)d7 below by interposing X, ., where n < m.}
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9. Let {X,,#:;n € N} be a supermartingale satisfying the condition
lim,t_}:,b “(X,) > —oo. Then we have the representation X,, = X, + X" where
{X!,,#,} is a martingale and {X"/, 7,} is a positive supermartingale such that
hm,,_,ooX:: =0 in L' as well as ae. This is the analogue of F. Riesz’s
decomposition of a superharmonic function, X, being the arnmonic part and
X" the potential part. [HINT: Use Doob’s decomposition X, =Y, —Z, and
put X;) =Y, — {(Zx | 7).}

10. Let {X,,, #,} be a potential; namely a positive supermartingale such
that lim, o ¢(X,)=0; and let X, =¥, — Z,, be the Doob decomposition

[cf. (6) of Sec. 9.3]. Show that
Xy = oo | ) — £y

*11. If {X,} is a martingale or positive submartingale such that
sup,, ¢ (X%) < 00, then {X,} converges in L? as well as a.e.

12. Let {&,,n € N} be a sequence of independent and identically
distributed r.v.’s with zero mean and unit variance; and §, = Z'szl £;.
Then for any optional r.v. « relative to {£,) such that £(/a) < oo, we
have ¢(|Sq]) < v2¢(/a) and £(S,) = 0. This is an extension of Wald’s
equanon due to Louis Gordon. [HINT: Truncate « and put m = (S5} /f ) —

._]/»./ 1); then

N Z/ ) pd7 <Y Plo > k)N <26(Va)
{or> k=1

now use Schwarz’s inequality followed by Fatou’s lemma.]

The next two problems are meant to give an idea of the passage from
discrete parameter martingale theory to the continuous parameter theory.

13. Let {X,. #;t € [0, 1]} be a continuous parameter Supermartingale.
For each € [0, 1] and sequence {r,} decreasing to ¢, {X, } converges a.e. and
in L'. For each t € [0, 1] and sequence {¢,} increasing to 7, {X, } converges a.c.
but not necessarily in Z'. [HINT: In the second case consider X,, — £{X, | 7, }.]

*14. In Exercise 13 let Q be the set of rational numbers in [0, 1]. For
each r € (0, 1) both limits below exist a.e.:

ImX,, limX,.
st (P4
w{ se ()

[HINT: Let {O,,, n > 1} be finite subsets of O such that O, 1 @; and apply the
upcrossing inequality to {X,, s € O,}, then let n — o]
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9.5 Applications

Although some of the major successes of martingale theory lie in the field of
continuous-parameter stochastic processes, which cannot be discussed here, it
has also made various important contributions within the scope of this work.
We shall illustrate these below with a few that are related to our previous
topics, and indicate some others among the exercises.

(Il The notions of “at least once” and “infinitely often”

These have been a recurring theme in Chapters 4, 5, 8, and 9 and play impor-
tant roles in the theory of random walk and its generalization to Markov
processes. Let {X,,n € N be an arbitrary stochastic process; the notation

for fields in Sec. 9.2 will be used. FFor each n consider the events:
oo

A, = U{XJ- € B},

J=n
oC

M=(]A,=1{X, €B;iol,
n=]

where B, are arbitrary Borel sets.

Theorem 9.5.1. We have
(1) lim P{Ap | Hom) =1 ae.,

n—>0oC
where # ,) may be replaced by #,,, or X, if the process is Markovian.

PrROOF. By Theorem 9.4.8, (14a), the limit is
PIM | Ap 001} = 1ag-

The next result is a “principle of recurrence” which is useful in Markov
processes; it 1s an extension of the idea in Theorem 9.2.3 (see also Exercises 15
and 16 of Sec. 9.2).

Theorem 9.5.2. Let {X,,n € N°} be a Markov process and 4,, B, Borel
sets. Suppose that there exists >0 such that for every n,

o0
(2) 7 ) X;€B;]1X,) 28 ae. onthe set {X, €A,};
j=nil

then we have

3) PX; €A, Lo\X; € B; i0.]} =0.
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PROOF. Let A = {X; € A; i.0.} and use the notation A, and M above.
We may ignore the null sets in (1) and (2). Then if w € A, our hypothesis
implies that
P Apsr | Xn}w) =6 i0.

In view of (1) this is possible only if @ € M. Thus A C M, which implies (3).

The intuitive meaning of the preceding theorem has been given by
Doeblin as follows: if the chance of a pedestrian’s getting run over is greater
than & > O each time he crosses a certain street, then he will not be crossing
it indefinitely (since he will be killed first)! Here {X, € A, } is the event of
the nth crossing, {X, € B, )} that of being run over at the nth crossing.

(il Harmonic and superharmonic functions for a Markov process

Let {X,,n e N°) bea homogeneous Markov process as discussed in Sec. 9.2
with the transition probability function P(-, -). An extended-valued function
f on & is said to be harmonic (with respect to P) iff it is integrable with
respect to the measure P(x, -) for each x and satisfies the following “harmonic
equation”;

@) Ve R fx) = /

N P, dy)f(».

It is superharmonic (with respect to P) iff the “="in (4) is replaced by “>";
in this case f may take the value +oc.

Lemma. If f is [superlharmonic, then {f(X,), n € N°}, where Xy = x; for
some given xg in 7!, is a [superJmartingale.

PROOF. We have, recalling (14) of Sec. 9.2,

s = [

IP(”’(xo, dy)f(y) < 00,
R4

as is easily seen by iterating (4) and applying an extended form of Fubini’s
theorem (see, e.g., Neveu [6]). Next we have, upon substituting X, for x in (4):

10 = [ PO ANFO) = AL Ran) LX) = €1 i) | Fo)

where the second equation follows by Exercise 8 of Sec. 9.2 and the third by
Markov property. This proves the lemma in the harmonic case; the other case
is similar. (Why not also the “sub” case?)

The most important example of a harmonic function is the g(-, B) of
Exercise 10 of Sec. 9.2 for a given B; that of a superharmonic function is the
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f (-, B) of Exercise 9 there. These assertions follow easily from their proba-
bilistic meanings given in the cited exercises, but purely analytic verifications
are also simple and instructive. Finally, if for some B we have

o0

7(x) =Y P"(x,B) < o0

=0

for every x, then m(-) 1s superharmonic and is cailed the “potential” of the
set B.

Theorem 9.5.3. Suppose that the remote field of {X,,n € N°} is trivial.
Then each bounded harmonic function is a constant a.e. with respect to each
Un, Where p, is the p.m. of X,.

PrROOF. By Theorem 9.4.5, f(X,) converges a.e. to Z such that
X)) A0, 2 Fo,00) )

is a martingale. Clearly Z belongs to the remote field and so is a constant ¢
a.e. Since

fXn)=HZ | F),

each f(X,) is the same constant ¢ a.e. Mapped into ', the last assertion
becomes the conclusion of the theorem.

(i} The supremum of a subhmartingale

The first inequality in (1) of Sec. 9.4 1s of a type familiar in ergodic theory
and leads to the result below, which has been called the “dominated ergodic
theorem” by Wiener. In the case where X, is the sum of independent r.v.’s
with mean 0, it is due to Marcinkiewicz and Zygmund. We write ||X]}, for
the LP-norm of X: [IX||F = &£ (1X]7).

Theorem 9.54. Letl < p<ooand 1/p+ 1/q = 1. Suppose that {X,,,n €
N} is a positive submartingale satisfying the condition

(5) sup ¢ {XF} < oc.

n

Then sup, .y X € L7 and
(6) Hsupxn”p = qSUpHXan-
" n

prROOF. The condition (5) implies that {X,} 1s uniformly integrable
(Exercise 8 of Sec. 4.5), hence by Theorem 94.5,X,, — X ae.and {X,, n €
Noo) is a submartingale. Writing ¥ for sup X,, we have by an obvious
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extension of the first equation in (1) of Sec. 9.4:
(7) VAax0: AP(Y = A} < / Xoo dZ.
{¥=2a}

Now it turns out that such an inequality for any two r.v.’s ¥ and X, implies
the inequality [[Y]], < ¢lIXllp, from which (6) follows by Fatou’s lemma.
This is shown by the calculation below, where G(A) = #{Y > A}.

oC OC
EFPY = —/ AP AG(A) 5/ pAPIG() dA
0 0

& 1
5/ pAr] [-f dey’"v} d
0 A Siy=a
Y
= / Xoo [ / pAP-zd;.] dP
2 0

_ q/QXmYP” d7 < gl\X el 1YL,

= q|Xocl |, {£X P},

Since we do not yet know &(¥?) < oo, It is necessary to replace Y first
with ¥ Am, where m 1s a constant, and verify the truth of (7) after this
replacement, before dividing through in the obvious way. We then let m 1 oo
and conclude (6).

The result above is false for p = 1 and is replaced by a more complicated
one (Exercise 7 below).

(IV) Convergence of sums of independent r.v.’s

We return to Theorem 5.3.4 and complete the discussion there by showing
that the convergence in distribution of the series »_, X, already implies its
convergence a.e. This can also be proved by an analytic method based on
estimation of ch.f.’s, but the martingale approach is more illuminating.

Theorem 9.5.5. If {X,,n € N} is a sequence of independent r.v.’s such that
Sn = ;-1 X converges in distribution as n — oc, then §, converges a.e.

prROOF. Let f; be the ch.f. of X, so that

Oy = H fj
j=1




364 | CONDITIONING. MARKOV PROPERTY, MARTINGALE

1s the chi. of S,. By the convergence theorem of Sec. 6.3, ¢, converges
everywhere to ¢, the ch.f. of the limit distribution of §,. We shall need only
this fact for |#{ < 1y, where 1y is so small that @(¢) # 0 for |f] < #; then this
1s also true of ¢, for all sufficiently large n. For such values of n and a fixed
¢t with {r} <1y, we define the complex-valued r.v. Z,, as follows:

FEA
®) Zy=——.
®nft)
Then each Z, is integrable; indeed the sequence {Z,} is uniformly bounded.
We have for each n, if %, denotes the Borel field generated by S, ..., S,:
nS,, uX,,u

%)

3 euS,, ég{ it X e /}_} irS f —H(t)
@ e on(0) fap1 ()

where the second equation follows from Theorem 9.1.3 and the third from
independence. Thus {Z,, #,} is a martingale, in the sense that its real and
imaginary parts are both martingales. Since it is uniformly bounded, it follows
from Theorem 9.4.4 that Z,, converges a.e. This means, for each # with |t < ¢,
there is a set 2, with 2°(€2,) = 1 such that if w € €, then the sequence of
complex numbers e /g, (1) converges and so also does 5}, But how
does one deduce from this the convergence of S, («)? The argument below
may seem unnecessanly tedious, but it is of a familiar and indispensable kind
in certain parts of stochastic processes.

Consider ¢""5'®) as a function of (¢, w) in the product space T x £2, where
T = {—1g, tg], with the product measure m x -/, where m is the Lebesgue
measure on 7. Since this function is measurable in (¢, w) for each n, the
set C of (¢, ) for which lim,_, o "> exists is measurable with respect to
m x 2°. Each section of C by a fixed ¢ has full measure 7°(£2,) =1 as just
shown, hence Fubini’s theorem asserts that almost every section of C by a
fixed « must also have full measure m(T) = 2ty. This means that there exists
an  with ﬁ(Q) — 1, and for each w € Q there is a subset T, of T with
m(T,,) = m(T), such that if # € T, then lim,_, o, ”**} exists. Now we are
in a position to apply Exercise 17 of Sec. 64 to conclude the convergence of
Sy (w) for w e Q, thus finishing the proof of the theorem.

NZuss | ) = &
s | ] {qon(r) P ®

"

According to the preceding proof, due to Doob, the hypothesis of
Theorem 9.5.5 may be further weakened to that the sequence of ch.f.’s of
S, converges on a set of ¢ of strictly positive Lebesgue measure. In particular,
if an infinite product I, f,, of ch.f.’s converges on such a set, then it converges
everywhere.
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{V} The strong law of large numbers

Our next example is a new proof of the classical strong law of large numbers
in the form of Theorem 5.4.2, (8). This basically different approach, which
has more a measure-theoretic than an analytic flavor, is one of the striking
successes of martingale theory. It was given by Doob (1949).

Theorem 9.5.6. Let {S,,n € N} be a random walk (in the sense of
Chapter 8) with ¢{|S;{} < co. Then we have

Sn \
lim — = #£{§,} ae.
n—o00 R

prOOF. Recall that S, = Zle X; and consider for 1 <k < n:
9) X | Sny Snats -} = X | G )
where &, is the Borel field generated by {S;, j = n}. Thus
wls= N\
neN

as n increases. By Theorem 9.4.8, (15b), the right side of (9) converges to
X | ). Now &, is also generated by §, and {X;, j > n + 1}, hence it
follows from the independence of the latter from the pair (X, S,,) and (3) of
Sec. 9.2 that we have

(10) (f{Xk ] Srf:Xr:+]!Xn+2e .. } = "G{Xk ! Sn‘} = (’G{Xl l Sn},

the second equation by reason of symmetry (proof?). Summing over £ from
1 to n and taking the average, we infer that

Sy . .
— = &X) | Gl
n
sothatif ¥_, = S, /n forn € N, {¥,,n € —N} is a martingale. In particular,

S, _ , _
lim = = lim &{X; | 4.} = (X | 6],
n—0C 1 -3 00
where the second equation follows from the argument above. On the other
hand, the first limit is a remote (even invariant) r.v. in the sense of Sec. 8.1,
since for every m > 1 we have

Sn e X (@)
im 22 i 2 jmmX;(@) ;

n—00 n n—oC n
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hence it must be a constant a.e. by Theorem 8.1.2. [Alternatively we may use
Theorem 8.1.4, the limit above being even more obviously a permutable r.v.}
This constant must be £{&{X; | ¢} = ¢{X;}, proving the theorem.

{Vl} Exchangeable events

The method used in the preceding example can also be applied to the theory
of exchangeable events. The events {£,, n € N} are said to be exchangeable
iff for every & > 1, the probability of the joint occurrence of any & of them is
the same for every choice of k¥ members from the sequence, namely we have

(11) '@{Emﬂ'mEm}zwk: kENa
for any subset {n;,...,n;} of N. Let us denote the indicator of £, by e,,
and put

n

N, =Zej;

j=1

then N, is the number of occurrences among the first n events of the sequence.
Denote by &, the B.F. generated by {N;, j > n}, and

5= N4

Then the definition of exchangeability implies that if n; <n for 1 < j <
k, then

k k
(12) A TIen 1% | = ]en, | Vn

j=1 j=1
and that this conditional expectation is the same for any subset (nq, ..., 7g)

of (1,...,n). Put then f,q=1 and

k
fnk: Z Hen}s Il <k=<n,

(nl....,nk) Jm]

where the sum is extended over all (}) choices; this is the “elementary
symmetric function” of degree k formed by ey, ..., e,. Introducing an inde-
terminate z we have the formal identity in z:

n n
S faid = ][ +ej2).
i=1

j=0
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But it is trivial that 1 + ¢;z = (I 4 2)* since e¢; takes only the values 0 and
1, hence’

anjzf — H(l +2)% = (1 +Z)Nn_
j=0 j=1

From this we obtain by comparing the coefficients:

(13) fnk:(",’("), 0<k<n.

It follows that the right member of (12) is equal to

(¥)/ (%)

Letting n — oc and using Theorem 9.4.8 (15b) in the left member of (12),
we conclude that

k N k
@ ] R T n
(14) é Hlenj | & | = lim (-;-> .
J::

This is the key to the theory. It shows first that the limit below exists almost
surely:

N i
lim — =n,
H=00 N

and clearly n is a r.v. satisfying 0 < < 1. Going back to (14) we have
established the formula

(14 PEn, M- NE, | $)=1", keN;
and taking expectations we have identified the wy in (11):
wy = ().
Thus {wy, ¥ € N} is the sequence of moments of the distribution of n. This is
de Finetti’s theorem, as proved by D. G. Kendall. We leave some easy conse-

quences as exercises below. An interesting classical example of exchangeable
events is Polya’s urn scheme, see Rényi [24], and Chung [25].

{vil) Squared variation

Here is a small sample of the latest developments in martingale theory. Let
X = {X,. 7} be a martingale; using the notation in (7) of Sec. 9.3, we put

P =02X)=) x.
j=1 '

*I owe this derivation to David Klarner.
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The sequence {Q%(X), n € N} associated with X is called its squared varia-
tion process and is useful in many applications. We begin with the algebraic
identity:

2
n 14 R
(15) = (> x] = 3+2> Xz,
j=1 j=1

j=2

If X,, € L? for every n, then all terms above are integrable, and we have for
each j:

(16) CXjmx) = X1 1 75-1)) = 0.
It follows that ,
EXY =€) = HQD).
j=1

When X, is the nth partial sum of a sequence of independent r.v.’s with zero
mean and finite variance, the preceding formula reduces to the additivity of
variances; see (6) of Sec. 5.1.

Now suppose that {X,} is a positive bounded supermartingale such that
0 <X, <X for all n, where A is a constant. Then the quantity of (16) is
negative and bounded below by

EAE( | F1)) = AE(x;) < 0.
In this case we obtain from (15):
AEX ) > (:((sz) > (f(Qﬁ) + 2AZ é(x;) = rf(Qﬁ) +2A[E (X)) = AXD];
=2
50 that
(a7 Q%) < 216 (Xp) < 202,

If X is a positive martingale, then XAA is a supermartingale of the kind
just considered so that (17) is applicable to it. Letting X* = sup;_,, o, Xn.

PO X) = A} < PXT > A+ 22X < A Qu(XAX) = AL

By Theorem 9.4.1, the first term on the right is bounded by A~!¢ (X ). The
second term may be estimated by Chebyshev’s inequality followed by (17)
applied to XAA:

2
QKA 2 ) < QXA £ 240X




9.5 APPLICATIONS | 369

We have therefore established the inequality:

3
(18) AOn(X) = A} = T ¢ &)

for any positive martingale. Letting n — oo and then A — oo, we obtain
o0
Zx? = lm Qi(X) < 00 ae.
H=—r0OQ
j=1

Using Krickeberg's decomposition (Exercise 5 of Sec. 9.4) the last result
extends at once to any L'-bounded martingale. This was first proved by D. G.
Austin. Similarly, the inequality (18) extends to any L'-bounded martingale
as follows:

__ 6
(19) Pl (X) = A} < 7 Sup E(Xn1).

The details are left as an exercise. This result is due to D. Burkholder. The
simplified proofs given above are due to A. Garsia.

{VIll} Derivation

QOur final example is a feedback to the beginning of this chapter, namely to
use martingale theory to obtain a Radon-Nikodym derivative. Let ¥ be an
integrable r.v. and consider, as in the proof of Theorem 9.1.1, the countably
additive set function v below:

(20) V(A) = / Ydor.
A

For any countable measurable partition {AE-”) , ] € N} of , let #, be the Borel
field generated by it. Define the approximating function X,, as follows:

v
= —‘J_" in
@1) X, *Z@(Am)la;"
where the fraction is taken to be zero if the denominator vanishes. According
to the discussion of Sec. 9.1, we have
X, = (Y | ).

Now suppose that the partitions become finer as » increases so that {:%,, n € N}
is an increasing sequence of Borel fields. Then we obtain by Theorem 9.4.8:

lim X, = &Y | Z).
H—> 00




370 | CONDITIONING. MARKOV PROPERTY. MARTINGALE

In particular if ¥ € #, we have obtained the Radon-Nikodym derivative
Y = dv/d-" as the almost everywhere limit of “increment ratios” over a “net’”:

w(AY)

Y(w) = lim ——f—((i
n—0g ?(& (w))

where j(w) is the unique j such that w € AE").
If (2,7,2") 1s (%,%5,m) as in Example 2 of Sec. 3.1, and v is an
arbitrary measure which is absolutely continuous with respect to the Lebesgue

measure m, we may take the nth partition to be 0 = S(”} < g =1
such that
(n) (n)
max
e 60— &

For in this case 7, will contain each open interval and so also &3. If v is not
absolutely continuous, the procedure above will lead to the derivative of its
absolutely continuous part (see Exercise 14 below). In particular, if F is the
d.f. associated with the p.m. v, and we put

k k k k+1
fn(.X) =2" [F (—%_1> - F (5:)} for 5}‘; < X =< ;; R

where &k ranges over all integers, then we have

hm Falx) =F'(x)

for almost all x with respect to m; and F' is the density of the absolutely
continuous part of F, see Theorem 1.3.1. So we have come around to the
beginning of this course, and the book is hereby ended.

EXERCISES

*1. Suppose that {X,, n € N} is a sequence of integer-valued r.v.’s having
the following property. For each n, there exists a function p, of n integers
such that for every k € N, we have

PXpp; =x, 1 < j = nt= pyxy, ..., xp)

Define for a fixed xp:

_ pﬂ+l(x01X11 "‘,X!I)
! PnXy, o  Xp)

if the denominator >0, otherwise Z, = 0. Then {Z,,n € N} 1s a martingale
that converges a.e. and in L'. [This is from information theory.]




95 APPLICATIONS | 371

2. Suppose that for each n, {X;, 1 < j <n} and {X, 1 < j=n} have
respectively the n-dimensional probability density functions p, and g,. Define

_ X, X
Pn(Xla ---;Xn)

if the denominator >0 and =0 otherwise. Then {¥,,n € N} is a super-
martingale that converges a.e. [This is from statistics.]

3. Let {Z,,n € N% be positive integer-valued r.v.’s such that Zy = 1
and for each n > 1, the conditional distribution of Z,, given Zy, ..., Z,_ 18
that of Z,_, independent r.v.’s with the common distribution {py, k € N},
where p; < 1 and

Y,

o0
0 <m=kak < CO.
k=0

Then {W,,, n € N°}, where W,, = Z,,/m", is a martingale that converges, the
limit being zero if m < 1. [This is from branching process.]

4. Let {X,,n € N} be an arbitrary stochastic process and let % be as in
Sec. 8.1. Prove that the remote field is almost trivial if and only if for each
A € #,, we have

lim sup {Z7(AM) — 2(A)ZPM)| = 0.

n—=00 Meg!
n

[anT: Consider (A | %) and apply 9.4.8. This is due to Blackwell and
Freedman.]
*5. In the notation of Theorem 9.6.2, suppose that there exists §>0 such
that
PX;eBjio. X} <1—-68 ae on{X, €A,};

then we have
PlX; €A ro. and X; € B; i.o.} =0.

6. Let f be a real bounded continuous function on &' and x a p.m. on
A' such that

Vi€ A fx) = / [+ yudy).
2l

Then f(x + ) = f(x) for each s in the support of w. In particular, if 1 is not of
the lattice type, then f is constant everywhere. {This is due to G. A. Hunt, who
used it to prove renewal limit theorems. The approach was later rediscovered
by other authors, and the above result in somewhat more general context is
now referred to as Choquet—-Deny’s theorem.]
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*7. The analogue of Theorem 9.5.4 for p = 1 is as follows: if X, > 0 for
all n, then

S{supX,) < —8—1[1 + sup £ {X, log* X, }1,
H € — n

where log" x = logx if x > 1 and 0 if x < 1.

*8. As an example of a more sophisticated application of the martingale
convergence theorem, consider the following result due to Paul Lévy. Let
{X,,n € N be a sequence of uniformly bounded r.v.’s, then the two series

D Xn and Y EX, | Xi X,
n n
converge or diverge together. [HINT: Let

H
Yo=X,— Xy | Xy, Xyi}and Z, = Y Y,
j=1

Define o to be the first time that Z, > A and show that £(Z;,, ) is bounded
in n. Apply Theorem 9.4.4 to {Z,an} for each A to show that Z,, converges on
the set where lim,, Z,, < oc; similarly also on the set where lim, Z, > —o0.

The situation is reminiscent of Theorem 8.2.5.]
9. Let {Y;.1 <k < n} be independent r.v.’s with mean zero and finite
variances o7
k

k
2
S :ZYj, S; = Zcrjz->0, 2 =S,2L,—s;‘;

j=1 j=1

Prove that {Z;. 1 < &k < n} i1s a martingale. Suppose now all Y are bounded
by a constant A, and define o and M as in the proof of Theorem 9.4.1, with
the X; there replaced by the S; here. Prove that

S2AMEY < £(S2) = #(S2)y < (L + A

Thus we obtain
Pmax 15 <4 < EEA
© l<k<n - - S’%
an improvement on Exercise 3 of Sec. 5.3. [This is communicated by Doob.]
10. Let {X,.n € N} be a sequence of independent, identically distributed
rv.’s with ¢({X;{) < oo; and §, = ., X;. Define a = inf{n > 1:|X,| >
n}. Prove that if ¢((|Sq|/@)]jx<o0)) < 00, then E(0Xq)logT |1X1]) < co. This
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18 due to McCabe and Shepp. [HINT:

Cn = H.@{IXJ-{ < Jj} = ¢c>0;
ot
{

J
>
n=1 n
21
E—/ 1S,-11dP < c0.)

n Jia=n)

n=l

o0
Xold7 =3 22 [ a7
n=1 {0

a=n) X [>n)

11. Deduce from Exercise 10 that &(sup, (S,|/n) < oo if and only
if £(iX1llog® |X;]) < o0. [HINT: Apply Exercise 7 to the martingale
{ ... 8, /n,...,8/2, 8} in Example (V).]

12. In Example (VI) show that (i) & is generated by #; (ii) the events
{Ey,n € N} are conditionally independent given »; (iii) for any / events E, ,
]l =j<1[andany k </ we have

1
PEn, O NEy NES, M- NES) =/ (i)x"(l ~x) G (dx)
0
where G is the distributions of 7.
13. Prove the inequality (19).

*14. Prove that if v is a measure on %, that is singular with respect to
7, then the X,,’s in (21) converge a.e. to zero. [HINT: Show that

v(A):/Xnd?ﬁ for A€, m<n,
A

and apply Fatou’s lemma. {X,]} i1s a supermartingale, not necessarily a martin-
gale!]

15. In the case of (%, 53, m), suppose that v = §; and the nth partition
is obtained by dividing %/ into 2" equal parts: what are the X,,’s in (21)? Use
this to “explain away” the St. Peterburg paradox (see Exercise 5 of Sec. 5.2).

Bibliographical Note

Most of the results can be found in Chapter 7 of Doob [17]. Another useful account is
given by Meyer [20]. For an early but stimulating account of the connections between
random walks and partial differential equations, see

A. Khintchine, Asymprotische Gesetze der Wahrscheinlichkeitsrechnung. Springer-
Verlag, Berlin, 1933.
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Theorems 9.5.1 and 9.5.2 are contained in

Kai Lai Chung. The general theory of Markov processes according to Doeblin,
Z. Wahrscheinlichkeitstheorie 2 (1964), 230-254.

For Theorem 9.5.4 in the case of an independent process, see

J. Marcinkiewicz and A. Zygmund, Sur les fonctions independants, Fund. Math.
29 (1937), 60-90,

which contains other interesting and useful relics.
The following article serves as a guide to the recent literature on martingale
inequalities and their uses:

D. L. Burkholder, Distribution function inegualities for martingales, Ann, Proba-
bility 1 (1973), 19-42.




Supplement: Measure and
Integral

For basic mathematical vocabulary and notation the reader is referred to §1.1
and §2.1 of the main text.

1 Construction of measure

Let 2 be an abstract space and .~ its total Borel field, then A € ./ means
AC K.

DEFINITION 1. A function p* with domain ./ and range in [0, oc] is an
outer measure iff the following properties hold:

(@) pu*(@)=10;

{b) (monotonicity) if A} C Aj, then u™(4;) < u*(A2);

(c) (subadditivity) if {4} is a countable sequence of sets in ./, then

w A =D wrEy.
j J

DEFRNITION 2. Let 7% be a field in 2. A function y with domain %, and
range in [0, oo] is a measure on 7 iff (a) and the following property hold:
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(d) (additivity) if {B;} is a countable sequence of disjoint sets in %, and

() w|UBi | =2 u@).
J J

Let us show that the properties (b) and (c) for outer measure hold for a measure
., provided all the sets involved belong to 7.

If Ay € %, A2 € %, and Ay C A,, then ASA; € #, because F# is a field;
A» = Ay UAJA; and so by (d):

m{A2) = p(Ar) + u(AJA2) = u(d)).

Next, if each A; € %, and furthermore if UjAj € F, (this must be assumed
for a countably infinite union because it is not implied by the definition of a
field!), then

JA; =41 UAf4,uAas4, UL

J

and so by (d). since each member of the disjoint union above belongs to F:

w4 | = n@n + nA84:) + nasasas) + -
J

< p(Ap) + A2y + uA) + - -

by property (b) just proved.

The symbol N denotes the sequence of natural numbers (strictly positive
integers); when used as index set, it will frequently be omitted as understood.
For instance, the index j used above ranges over NV or a finite segment of N.

Now let us suppose that the field 4 is a Borel field to be denoted by #
and that u 1s a measure on it. Then if 4, € % for each n € N, the countable
union | J, A, and countable intersection [}, A4,, both belong to &% . In this case
we have the following fundamental properties.

(e) (increasing limit) if A, C A, for all n and A, + A = J, A,, then

Im 1 p(An) = u(A).

(N (decreasing limit) if A, D A, for all n, A, | A ={), A, and for
some n we have w(A,) < oo, then

li};n I pu(dy) = p(a).
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The additional assumption in (f) is essential. For a counterexample let
A, = (n.0o)in R, then A, | ¢ the empty set, but the measure (length!) of 4,,
is +co for all n, while ¢ surely must have measure 0. See §3 for formalities
of this trivial example. It can even be made discrete if we use the counting
measure # of natural numbers: let A, = {(n,n+1,n+2,...) so that #(4,) =
+oo, #((, A,) = 0.

Beginning with a measure x on a field %), not a Borel field, we proceed
to construct a measure on the Borel field # generated by 7. namely the
minimal Borel field containing %, (see §2.1). This is called an extension of
u from # to 7, when the notation w is maintained. Curiously, we do this
by first constructing an outer measure u~ on the total Borel field ./ and then
showing that x* 1s in truth a measure on a certain Borel field to be denoted
by #* that contains :%;. Then of course % * must contain the minimal &%, and
so u* restricted to F is an extension of the original u from % to #. But we
have obtained a further extension to # * that is in general “larger” than # and
possesses a further desirable property to be discussed.

DEFINITION 3.  Given a measure u on a field # in £2, we define u* on
~ as follows, for any A € /"

(2)  wrA)=inf{> (BB €% forall jand | JB; D 4
J J

A countable (possibly finite) collection of sets {B;} satisfying the conditions
indicated in (2) will be referred to below as a *“‘covering” of A. The infimum
taken over all such coverings exists because the single set §2 constitutes a
covering of A, so that

0 < u™(4) < u'(Q) < +oo.
It is not trivial that ©*(A) = w(A) if A € %, which is part of the next theorem.

Theorem 1. We have u* = u on #; 1™ on ./ Is an outer measure.
PROOF. Let A € %, then the single set A serves as a covering of A; hence
w*(A) < w(A). For any covering {B;} of A, we have AB; € # and
| JA4B; = 4 e H;
b

hence by property (c) of u on 4, followed by property (b):

w@y=u || JAB; | <Y u@By) <) ).
i J J
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It follows from (2) that w(A) < w*(A4). Thus u* = 1 on #,.

To prove u* is an outer measure, the properties (a) and (b) are trivial.
To prove (c), let € > 0. For each j, by the definition of u*(4;), there exists a
covering {B i} of A; such that

€
D uBp) < A+ .
k Y
The double sequence {B i} is a covering of [ J;A; such that
ZZM(Bjk) < Zu*(Aj) + €.

ik J
Hence for any € > 0:

w lUas ) =X wr@p+e

J J

that establishes (c) for u*, since € is arbitrarily small.
With the outer measure 1, a class of sets % * is associated as follows.

DEFINITION 4. A set A C {2 belongs to # ™ iff for every Z C {2 we have

(3) w2y = u*(AZ) + u*(A°Z).
If in (3) we change “=" into “<”, the resulting inequality holds by (c}; hence
(3} is equivalent to the reverse inequality when “="" is changed into “>".

Theorem 2. #™* is a Borel field and contains %. On # ™, u* is a measure.
PROOF. Let A € #. For any Z C 2 and any € > 0, there exists a covenng
{B;} of Z such that

“) D B <p@) e

J

Since AB; € #, {AB,} is a covering of AZ; {A°B} is a covering of A°Z; hence

(5) WHAZ) <) p(ABy), ut(AZ) <Y u(A°By).
i J

Since ;¢ is a measure on ), we have for each j:

- (6) W(AB;) + u(A°B)) = u(B)).
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It follows from (4), (5), and (6) that
WAZ) + nAZ) < w™(2) + e

Letting € | O establishes the criterion (3) in its “>” form. Thus A € % *, and
we have proved that % C 7™,

To prove that ™ is a Borel field, it is trivial that it is closed under
complementation because the criterion (3) is unaltered when A is changed
into A°. Next, to show that %* is closed under union, let A € %* and B € 7.
Then for any Z C €2, we have by (3) with A replaced by B and Z replaced by
ZA or ZA®:

w(ZA) = p(ZAB) + 1™ (ZAB%);
WHZAT) = W (ZAB) + 1" (ZA°B°).
Hence by (3) again as written:
W (Z) = u"(ZAB) + " (ZAB ) + nw*(ZAB) + u*(ZA°B°).
Applying (3) with Z replaced by Z{(A U B), we have
W(ZAUB) = u*(Z(AUBA) + 1™ (Z(A UB)A®)

= u(ZA)+ n*(ZA°B)

= W (ZAB) + u*(ZAB) + " (ZA“B).
Comparing the two preceding equations, we see that

WZ) = p (ZAUB) + u™(Z(A U BY).

Hence AU B € #*, and we have proved that #* is a field.
Now let {A,} be an infinite sequence of sets in & *; put

j—1
.&:Ab.&:AA(UA)ﬂijZ

i=1

Then {B;} is a sequence of disjoint sets in %™ (because & is a field) and has
the same union as {4,}. For any Z C £, we have for each n > 1:

wlzUB | =w|z|UBi |8 )+ {2 UBi B
Jj=1 J=1 J=1

n—1

=u @B +u | Z|JB,

j=1
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because B, € #*. It follows by induction on n that
) plzUBi ) =2 w@s).
=1 =1

Since |J;_; B; € #*, we have by (7) and the monotonicity of u*:
wWZy=p" {2z U B | +u |z U B;
j=1 Jj=1

C
H o0

=) w@Bp+ut(z[UB

Letting n 1 oo and using property (c) of u*, we obtain

o0 oC ¢
w@y=pt |l zUBy |+ (2| U3
j=1 =1

that establishes | J72; B; € #™*. Thus #* is a Borel field.
Finally, let {B;} be a sequence of disjoint sets in #*, By the property (b)
of 1* and (7) with Z = 2, we have

[=.8] n o)
SLEAE lim sup 4* UB =lm ) u*(B) =) uB).
j=1 7=l j=l

Combined with the property (c) of u*, we obtain the countable additivity of
1* on #*, namely the property (d) for a measure:

o0 o0
B | = wa).
i=1 j=1

The proof of Theorem 2 is complete.

2 Characterization of extensions

We have proved that
S DFTDF DR,

where some of the “D7 may turn out to be “=". Since we have extended the
measure u from 7 to #* in Theorem 2, what for % 7 The answer will appear
in the sequel.
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The triple (§2. 7, u) where = is a Borel field of subsets of 2, and u is a
measure on 7, will be called a measure space. It is qualified by the adjective
“finite” when (2} < oo, and by the noun “probability” when u(§2) = 1.

A more general case is defined below.

DEFINITION 5. A measure x4 on a field :%, (not necessarily Borel field) is
said to be o-finite iff there exists a sequence of sets {2,,n € N} in 7 such
that 1£(£2,)) < co for each n, and | J, 2, = . In this case the measure space
(82, #, p), where 7 is the minimal Borel field containing %, is said to be
“o-finite on #".

Theorem 3. Let A be a field and # the Borel field generated by %,. Let 1
and 2 be two measures on % that agree on %,. If one of them, hence both
are o-finite on #,, then they agree on #.

PROOF. Let {£2,} be as in Definition 5. Define a class ¢ of subsets of 2
as follows:

€ ={A C Q: 11 (QpA) = 17(2,4) for all n € N},

Since £2, € #, for any A € %, we have Q2,4 € A for all n; hence ¢ D .
Suppose Ay € ¢, A C Ay for all k£ € N and A; 1 A. Then by property (e)
of u; and 1, as measures on %, we have for each n:

m1{82,A) = lipﬂ T 1 (2,A8) = ligl T 2(82,Ar) = (a2 (§2,4).

Thus A € ¢. Similarly by property (f), and the hypothesis w;($2,) =
U2(2,) < o0, if A; € ¢ and A | A, then A € . Therefore ¢ is closed under
both increasing and decreasing limits; hence ¢ 2 # by Theorem 2.1.2 of the
main text. This implies for any A € #:

mi1(A) = li,gn T u1(2,4) = li'gn T 12(82,4) = u24)

by property (e) once again. Thus u; and u; agree on .#.

It follows from Theorem 3 that under the o-finite assumption there, the
outer measure u* in Theorem 2 restricted to the minimal Borel field #
containing % is the unique extension of u from % to #. What about the
more extensive extension to .7 *? We are going to prove that it is also unique
when a further property is imposed on the extension. We begin by defining
two classes of special sets 1n .

DEFINITION 6. Given the field % of sets in 2, let %, be the collection
of all sets of the form (o Usw.; Bmn where each B,,, € 7%, and Ziss be the
collection of all sets of the form %, (Yoo, Bmn where each B, € 4.
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Both these collections belong to % because the Borel field is closed under
countable union and intersection, and these operations may be iterated, here
twice only, for each collection. If B € %), then B belongs to both #,; and
“yse because we can take B,,, = B. Finally, A € 7, if and only if A € H;,

because .
(ﬂ UBm") = UﬂBfnn

Theorem 4. Let A € 7 *. There exists B € %,; such that
ACB; pu*a)=u*B).

If 1 18 o-finite on #, then there exists C € 43, such that
CCA; ui(C)=pu*A).

pROOF. For each m, there exists {B,,,} in # such that

ACUBm: S ut B < @)+ -

n n

Put
B, = Uan; B = mBma

then A C B and B € #,;. We have

1
WHB) S W B) < 3 " Ban) S pTA) +

n

Letting m 1 oo we see that u*(B) < u*(4); hence p*(B) = u*(A). The first
assertion of the theorem is proved.

To prove the second assertion, let €2, be as in Definition 5. Applying the
first assertion to 2,,A¢, we have B, € Zy,s such that

QA C By, W (S2,A9) = u(B,).
Hence we have
QAT C 2By p(2,A%) = (2, By).
Taking complements with respect to £2,,, we have since ©*(£2,) < oc:
Q,AD QB ;

e

wHRA) = () — wH (A7) = p™ () — 1 (QuBr) = 17 (2,8)).
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Since 2, € # and BY € HAy;,, it is easy to verify that 2, B; € Ay, by the
distributive law for the intersection with a union. Put

C = Q.B;.

It is tnvial that C € g, and

A:UQMDC.

Consequently, we have
u*(A) > u*(C) > liminf 1™ (2, B;,)

= liminf " (£2,4) = u*(4),

the last equation owing to property (e) of the measure p*. Thus p*(4) =
©*(C), and the assertion is proved.

The measure u* on & ™ is constructed from the measure p on the field
#y. The restriction of u* to the minimal Borel field % containing 7 will
henceforth be denoted by . instead of p*.

In a general measure space (2, &, v), let us denote by .47(&, v) the class
of all sets A in & with v(A) = 0. They are called the null sets when & and
v are understood, or v-null sets when & is understood. Beware that if A C B
and B is a null set, it does not follow that A is a null set because A may not
be in ¢! This remark introduces the following definition.

DEFINITION 7. The measure space (82, ¢, v) is called complete iff any
subset of a null set is a null set.

Theorem 5. The following three collections of subsets of £2 are idential:

(i) A C Q and the outer measure p*(A) = 0;
(i) A € #* and u*(4) =0,
(iii) A C B where Be % and u(B) =0.
It 1s the collection .A°(Z*, u*).

PROOF. If u*(A) =0, we will prove A € F#* by verifying the criterion
(3). For any Z C 2, we have by properties (a) and (b) of u*:

0 < u™(ZA) < u*A)=0; u"(ZA%) = u™(&);
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and consequently by property (c):
pZ) = p (ZAUZA®) < u™(ZA) + u*(ZA") = n*(2).
Thus (3) is satisfied and we have proved that (1) and (ii) are equivalent.

Next, let A € #* and u*(A) = 0. Then we have by the first assertion in
Theorem 4 that there exists B € # such that A C B and u*(A) = u(B). Thus
A satisfies (iii). Conversely, if A satisfies (iii), then by property (b) of outer
measure: p*(4) < u*(B) = u(B) =0, and so (1) 1s true.

As consequence, any subset of a (#*, u*)-null set is a (%, w*)-null set.
This is the first assertion in the next theorem.

Theorem 6. The measure space (2, #*, u*) is complete. Let (£2, &, v) be a
complete measure space; ¢ O % and v = g on . If u is o-finite on % then

¢ DO>F andv=pyu* on 7",

PROOF. Let A € 7 *, then by Theorem 4 there exists B € % and C € #
such that

(8) CCACHB, w)=u"A)=uB).

Since v =y on %, we have by Theorem 3, v = on #. Hence by (8) we
have (B —C)=0. Since A—-CCB-Cand B—Ce ¥, and (Q,4,v) is
complete, we have A—Ce€ g andsoA=CUMA-C)e ¥,

Moreover, since C, A, and B belong to &, it follows from (8) that

u(C) =v(C) = v(A) = v(B) = n(B)

and consequently by (8) again v(A) = 1(4). The theorem is proved.

To summarize the gist of Theorems 4 and 6, if the measure y on the field
% is o-finite on 7, then (F, ) is its unique extension to 7, and (7, ™)
is its minimal complete extension. Here one is tempted to change the notation
w to o on H!

We will complete the picture by showing how to obtain (#*, u*) from
(7, u), reversing the order of previous construction, Given the measure space
(2, .7, 1), let us denote by ¢ the collection of subsets of 2 as follows: 4 € ¢
iff there exists B € . [ (7, u) such that A C B. Clearly ¢ has the “hereditary”
property: if A belongs to ¢, then all subsets of A belong to ¢ ¢ is also closed
under countable union. Next, we define the collection

(9 FZ={ACQ|A=B—C where Be 7#,C € ¢}.

where the symbol “—"" denotes strict difference of sets, namely B — C = BC*
where C C B. Finally we define a function & on # as follows, for the A
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shown in (9):

(10) #(A) = pu(B).

We will legitimize this definition and with the same stroke prove the mono-
tonicity of 7. Suppose then

(11) B -CiCBy—Cy, BieF,Ciet,i=1,2

Let C,CDe 1(#,u). Then By C B, UD and so u(B;) < u(B, UD) =
((B>2). When the C in (I11) is “=", we can interchange B; and B» to conclude
that u{B1) = p(B2), so that the definition (10) is legitimate.

Theorem 7. F is a Borel field and jZ is a measure on #,

PROOF. Let A, € 7, n € N; so that 4, = B, C} as in (9). We have then

A= ()2 (9e)

Since the class ¢ is closed under countable union, this shows that # is closed

under countable intersection. Next let C C D, D € A7(#, u); then
A=B°UC=B"UBC=BUBD-—(D-C))

= (B°UBD)— B(D — C).
Since B(D — C) C D, we have B(D — C) € ¢; hence the above shows that F
is also closed under complementation and therefore is a Borel field. Clearly
F D F because we may take C = ¢ in (9).
To prove 7 is countably additive on 7, let {4,} be disjoint sets in
7. Then
A,=B,-C,, B,e# Ch€EC.

There exists D in . {°(#,u) comaining {J°2, C,. Then {B, —D} are
disjoint and

o0 jo o] oG
U@, - cJa. c s
n=1 n=] n=I

All these sets belong to 7 and so by the monotonicity of Z:

7 (L"J(B,, — D)) <k (UA> <E (L}}Jm) .
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Since @ = p on #, the first and third members above are equal to, respec-
tively:

u (U(Bn - D)) =D UB,=D)=) uB) =) A
z (UB,I) <Y uBy) =) A,

Therefore we have
Z (UA,:) =D AA).
Since () = (¢ — ¢) = u($) = 0, 7 is a measure on % .

Corollary. Intruth: % = #* and 7 = p*.

PROOF. For any A € &%, by the first part of Theorem 4, there exists B &
# such that
A=B—(B—A), u*(B-—A)=0.

Hence by Theorem 5, B—A € ¢ and s0 A € ?72)/ (9). Thus F* C 7. Since
# C #*and ¢ € #* by Theorem 6, we have % C % * by (9). Hence 7 =
#*. It follows from the above that u*(4) = w(B) = u(A). Hence u* = 1z on

Fr=F.

The question arises naturally whether we can extend p from # to F
directly without the intervention of & *. This is indeed possible by a method of
transfinite induction originally conceived by Borel; see an article by LeBlanc
and G.E. Fox: “On the extension of measure by the method of Borel”, Cana-
dian Journal of Mathematics, 1956, pp. 516-523. Tt is technically lengthier
than the method of outer measure expounded here.

Although the case of a countable space €2 can be treated in an obvious
way, it is instructive to apply the general theory to see what happens.

Let £2 = N Uw; # is the minimal field (not Borel field) containing each
singleton n in N, but not w. Let Ny denote the collection of all finite subsets
of N; then 7 consists of Ny and the complements of members of Ny (with
respect to £2), the latter all containing @. Let 0 < u(n) < oo foralln e N; a
measure w15 defined on %4 as follows:

wA) = ) ifAE€ N A = w(Q) - n@).
neA

We must still define w(£2). Observe that by the properties of a measure, we
have p(S2) = >, v p(n) = s, say.
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Now we use Definition 3 to determine the outer measure p*. It is easy
to see that for any A C N, we have

WA= uln).
neA

In particular u*(N) = s. Next we have

pr (@) = inf p(A%) = u(2) — sup u(d) = u(2) —s
AGNf AGNf

provided s < o0; otherwise the inf above is co. Thus we have
pur(w) = () — s if p(2) < ooy pu™(w) = oo if u(2) = oc.

It follows that for any A C

WA= ut(n) :

ncA

where u*(n) = u(n) for n € N. Thus pt* is a measure on ./, namely, % * = ./,

But 1t is obvious that % = ./ since # contains NV as countable union and
so contains w as complement. Hence # = #* = /.

If u(2) = o0 and s = oo, the extension p* of w to ./ is not unique,
because we can define u(w) to be any positive number and get an exten-
sion. Thus . is not o-finite on %, by Theorem 3. But we can verify this
directly when p(§2) = oo, whether s = o0 or s < o0. Thus in the latter case,
(@) = oo is also the unique extension of u from # to./. This means that
the condition of o-finiteness on %, is only a sufficient and not a necessary
condition for the unique extension.

As a ramification of the example above, let 2 = N Uw; U ws, with two
extra points adjoined to N, but keep # as before. Then # (=#*) is strictly
smaller than ./ because neither w; nor w; belongs to it. From Definition 3 we
obtain

w ey Uwr) = u™(w)) = 1™ (w2).

Thus u* is not even two-by-two additive on ./ unless the three quantities
above are zero. The two points w; and w; form an inseparable couple. We
leave it to the curious reader to wonder about other possibilities.

3 Measuresin R

Let R = (—oxo, --00) be the set of real members, alias the real line, with its
Euclidean topology. For —o0 <a < b < X,

(12) (a,b]={xeRa<x<b}
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is an interval of a particular shape, namely open at left end and closed at right
end. For b = +o0, (a, +o0] = (a, +o¢) because +0o0 is not in R. By choice
of the particular shape, the complement of such an interval is the union of
two intervals of the same shape:

(a, b]° = (—~00, al U (b, o<].

When a = b, of course (a,a] = ¢ is the empty set. A finite or countably
infinite number of such intervals may merge end to end into a single one as
illustrated below:

(13) (0,2]=(0, 17U (1, 2]; (0,1]=U( : 1].

n—{-l’;
n=1

Apart from this possibility, the representation of (a, b] is unique.

The minimal Borel field containing all (g, #] will be denoted by &% and
called the Borel field of R. Since a bounded open interval is the countable
union of intervals like (a, #], and any open set in R is the countable union
of (disjount) bounded open intervals, the Borel field Z3 contains all open
sets; hence by complementation it contains all closed sets, in particular all
compact sets. Starting from one of these collections, forming countable union
and countable intersection successively, a countable number of times, one can
build up # through a transfinite induction.

Now suppose a measure m has been defined on 3, subject to the sole
assumption that its value for a finite (alias bounded) interval be finite, namely
if —co <a < b < +00, then

(14) 0 <m((a, b]) < <.
We associate a point function F on R with the set function m on 7, as follows:
(15) FOO)=0; F(x)=m(0,xDforx>0;, F(x) = —m{(x,0]) for x < 0.

This function may be called the “generalized distribution” for m. We see that
F is finite everywhere owing to (14), and

(16) m((a, b)) = F(b) — F(a).
F is increasing (viz. nondecreasing) in R and so the limits
F(+o0)= lim F(x) < +4+oc0, F(—cx)= lim F(x)> —o
X400 X —00

both exist. We shall write oc for +o¢ sometimes. Next, F has unilateral limits
everywhere, and is right-continuous:

Flx—) < F(x) = F(x+).




3 MEASURES IN R | 389

The right-continuity follows from the monotone limit properties (e) and (f)
of m and the primary assumption (14). The measure of a single point x is
given by

m(x) = F(x) — F(x~).

We shall denote a point and the set consisting of it (singleton) by the same
symbol.

The simplest example of F is given by F(x) = x. In this case F' is continu-
ous everywhere and (14) becomes

m{(a,b]) =56 —a.

We can replace (a, b] above by (a, b), [a, b) or [a, b] because m(x) = 0O for
each x. This measure is the length of the line-segment from a to b. It was
in this classic case that the following extension was first conceived by Emile
Borel (1871-1956).

We shall follow the methods in §§1-2, due to H. Lebesgue and
C. Carathéodory. Given F as specified above, we are going to construct a
measure m on 3 and a larger Borel field #3* that fulfills the prescription (16).

The first step is to determine the minimal field %3, containing all (a, b].
Since a field is closed under finite union, it must contain all sets of the form

a7 B=\|J1;, I;=(a;. bj), 1<j<n;, neN.
Jj=1

Without loss of generality, we may suppose the intervals /; to be disjoint, by
merging intersections as illustiated by

(1,3]U(2,4] = (1,4].

Then it 1s clear that the complement B¢ is of the same form. The union of
two sets like B is also of the same form. Thus the collection of all sets like
B already forms a field and so it must be Z3;. Of course it contains (includes)
the empty set ¢ = (a, a] and R. However, it does not contain any (g, b) except
R, la, b), [a, b], or any single point!

Next we define a measure m on 3, satisfying (16). Since the condition
(d) in Definition 2 requires it to be finitely additive, there is only one way:
for the generic B in (17) with disjoint /; we must put

n

(18) mBy="Y ml;) =Y (F(b;)— F(a,)).

j=1 j=1

Having so defined m on 93, we must now prove that it satisfies the condi-
tion (d) in toto, in order to proclaim it to be a measure on Jy. Namely, if
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{Br, 1 <k <1 < oo} is a finite or countable sequence of disjoint sets in 4y,
we must prove

I {
(19) m (U Bk) = Zm(Bk).
k=1 k=1

whenever / is finite, and moreover when [/ = co and the union U2 | By happens
to be in #y.

The case for a finite / is really clear. If each B, is represented as in
(17), then the disjoint union of a finite number of them is represented in a
similar manner by pooling together all the disjoint /;’s from the B;’s. Then the
equation (19) just means that a finite double array of numbers can be summed
in two orders.

If that is so easy, what is the difficulty when / = oc? It turns out, as
Borel saw clearly, that the crux of the matter lies in the following fabulous
“banality.”

Borel’'s lemma. If —oco <a < b < +00 and

(20) (a,b] = | J(a;, b;].
j=1
where a; < b; for each j, and the intervals (a;, b;] are disjoint, then we have
(21) Fb)—F(a)=>_(F(b;)— Flay)).
J=1

PROOF. We will first give a transfinite argument that requires knowledge
of ordinal numbers. But it is so intuitively clear that it can be appreciated
without that prerequisite. Looking at (20) we see there is a unique index
j such that h; = b; name that index £ and rename g; as ¢;. By removing
{ay, by] = (c1, b] from both sides of {20) we obtain

(22) (@, 1] = Jiaj, b)].
ol

This small but giant step shortens the original (a, 5] to (a, c;]. Obviously we
can repeat the process and shorten it to (a, ¢;] where a < ¢; < ¢; = b, and so
by mathernatical induction we obtain a sequence a < ¢, < --- <z < =b.

Needless to say, if for some n we have ¢, = a, then we have accom-
plished our purpose, but this cannot happen under our specific assumptions
because we have not used up all the infinite number of intervals in the union.
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Therefore the process must go on ad infinitum. Suppose then ¢, > ¢, for
all n ¢ N, so that ¢, = lim,, | ¢, exists, then ¢, > a. If ¢, = a (which can
easily happen, see (13)), then we are done and (21) follows, although the terms
in the series have been gathered step by step in a (possibly) different order.
What if ¢, > a? In this case there is a unique j such that #; = ¢,,; rename
the corresponding a; as c,1. We have now

(23) (a, cu] = | @}, b,
j=1

where the (a’j, b’1’s are the leftovers from the original collection in (20} after
an infinite number of them have been removed in the process. The interval
{cu1, €] 1s contained in the reduced new collection and we can begin a new
process by first removing it from both sides of (23), then the next, to be
denoted by [c,7. ¢,1], and so on. If for some n we have ¢, = a, then (21)
is proved because at each step a term in the sum is gathered. Otherwise there
exists the limit lign d Con = € = a. If ¢, = a, then (21) follows in the limit.

Otherwise c,, must be equal to some b; (why?), and the induction goes on.
Let us spare ourselves of the cumbersome notation for the successive well-
ordered ordinal numbers. But will this process stop after a countable number
of steps, namely, does there exist an ordinal number « of countable cardinality
such that ¢, = a? The answer is “yes” because there are only countably many
intervals in the union (20).

The preceding proof (which may be made logically formal) reveals the
possibly complex structure hidden in the “order-blind” union in (20). Borel in
his These (1894) adopted a similar argument to prove a more general result
that becarmne known as his Covering Theorem (see below). A proof of the latter
can be found in any text on real analysis, without the use of ordinal numbers.
We will use the covering theorem to give another proof of Borel's lemma, for
the sake of comparison (and learning).

This second proof establishes the equation (21) by two inequalities in
opposite direction. The first inequality is easy by considering the first n terms
in the disjoint union (20):

Fby~ Fla) = Y (F(b;) — F(a;).

j=1

(13 b

As n goes to infinity we obtain (21) with the “=" replaced by “>".
The other half is more subtle: the reader should pause and think why?
The previous argument with ordinal numbers tells the story.
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Borel’s covering theorem. Let [a, 5] be a compact interval, and (a b,
J €N, be bounded open intervals, which may intersect arbitrarily, such that

(24) [a. 5] C | (a;. b))
j=1

Then there exists a finite integer / such that when / is substituted for oo in
the above, the inclusion remains valid.

In other words, a finite subset of the original infinite set of open inter-
vals suffices to do the covering. This theorem is also called the Heine—Borel
Theorem; see Hardy [1] (in the general Bibliography) for two proofs by Besi-
covitch.

To apply (24) to (20), we must alter the shape of the intervals (a j»bilto
fit the picture in (24).

Let —o¢ < a < b < o0; and € > 0. Choose a’ in (a, b), and for each j
choose b} > b; such that

25) F(d)— F(a) < g; F,) — F(bj) < 2—;}

These choices are possible because F is right continuous; and now we have
o0
[a, b C | J(a;. b))
Jj=1
as required in (24). Hence by Borel’s theorem, there exists a finite / such that
!
(26) [@, 6] C | (a;, B)).
j=1

From this it follows “easily” that

{
Q7) F(b)— F(d') <) (F(¥}) — F(a))).

j=1

We will spell out the proof by induction on {. When / =1 it is obvious.
Suppose the assertion has been proved for I — 1, [ > 2. From (26) as written,
there is k, 1 < k </, such that a; < &' < b and so

(28) Fby) — Fa') < F(b,) ~ F(a).
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If we intersect both sides of (26) with the complement of (a, b,.), we obtain

I
By, ] € [ J@a), &)
i
Here the number of intervals on the right side is / — 1; hence by the induction
hypothesis we have

I
F(b) — F(by) < > (F(¥}) — F(a;)).

Adding this to (28) we obtain (27), and the induction is complete. It follows
from (27) and (25) that

i
Fb) - Fla) <> (Fby)— Flap)+e.

j=1

Beware that the / above depends on €. However, if we change [ to co (back to
infinity!) then the infinite series of course does not depend on €. Therefore we
can let € — 0 to obtain (21) when the “=" there is changed to “ <”, namely
the other half of Borel’s lemma, for finite 4 and b.

It remains to treat the case a = ~oc¢ and/or b = +oc. Let

(—o0,b] C | J(a;, ;]
j=1

Then for any a in (—oo, b), (21) holds with “=" replaced by “<”. Letting
a —» —oo we obtain the desired result. The case b = +oc is similar. Q.E.D.

In the following, all / with subscripts denote intervals of the shape (a, b];
Y denotes union of disjoint sets. Let B € 98y, B; € %y, j € N. Thus

n nj
B=>1;; Bj=)Y Iy
f==] k=1

Suppose
o0
B=> B,
j=1
so that
n o M
(29) L= Y Iu
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We will prove

(30) domU) =" mly).
i=1 =1 k=1

For n =1, (29) is of the form (20) since a countable set of sets can be
ordered as a sequence. Hence (30) follows by Borel’s lemma. In general,
simple geometry shows that each /; in (29) is the union of a subcollection of
the 7 ;;’s. This is easier to see if we order the I;’s in algebraic order and, after
merging where possible, separate them at nonzero distances. Therefore (30)
follows by adding n equations, each of which results from Borel’s lemma.

This completes the proof of the countable additivity of m on 43y, namely
(19) is true as stipulated there for [ = oc as well as [ < oc.

The general method developed in §1 can now be applied to (R, Bp, m).
Substituting 3 for %, m for p in Definition 3, we obtain the outer measure
m*. It is remarkable that the countable additivity of m on Z, for which two
painstaking proofs were given above, is used exactly in one place, at the begin-
ning of Theorem 1, to prove that m* = m on %By. Next, we define the Borel
field 8" as in Definition 4. By Theorem 6, (R, #3*, m*) is a complete measure
space. By Definition 5, m is o-finite on 73y because (—n, n] 1 (—oc, 0o) as
n 1 oo and m((—n, n]) is finite by our primary assumption (14). Hence by
Theorem 3, the restriction of m™ to 48 is the unique extension of m from 73,
to 4.

In the most important case where F(x) = x, the measure m on % is the
length: m((a, b]) = b — a. It was Borel who, around the turn of the twentieth
century, first conceived of the notion of a countably additive “length” on an
extensive class of sets, now named after him: the Borel field 3. A member of
this class is called a Borel set. The larger Borel field /3* was first constructed
by Lebesgue from an outer and an inner measure (see pp. 28—-29 of main
text). The latter was later bypassed by Carathéodory, whose method is adopted
here. A member of /" is usually called Lebesgue-measurable. The intimate
relationship between /3 and #43* is best seen from Theorem 7.

The generalization to a generalized distribution function F is sometimes
referred to as Borel-Lebesgue—Stieltjes. See §2.2 of the main text for the
special case of a probability distribution.

The generalization to a Euclidean space of higher dimension presents no
new difficulty and is encumbered with tedious geometrical “baggage”.

It can be proved that the cardinal number of all Borel sets is that of the
real numbers (viz. all points in R), commonly denoted by ¢ (the continuum).
On the other hand, if Z is & Borel set of cardinal ¢ with m(Z) = 0, such
as the Cantor ternary set (p. 13 of main text), then by the remark preceding
Theorem 6, all subsets of Z are Lebesgue-measurable and hence their totality
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has cardinal 2¢ which is strictly greater than c (see e.g. [3]). It follows that
there are incomparably more Lebesgue-measurable sets than Borel sets.

It 1s however not easy to exhibit a set in #3* but not in ; see Exercise
No. 15 on p. 15 of the main text for a clue, but that example uses a non-
Lebesgue-measurable set to begin with.

Are there non-Lebesgue-measurable sets? Using the Axiom of Choice,
we can “define” such a set rather easily; see example [3] or [5]. However, Paul
Cohen has proved that the axiom is independent of the other logical axioms
known as Zermelo—Fraenkel system commonly adopted in mathematics; and
Robert Solovay has proved that in a certain model without the axiom of
choice, all sets of real numbers are Lebesgue-measurable. In the notation of
Definition 1 in §1 in this case, #* = ./ and the outer measure m* is a measure
on .*.

N.B. Although no explicit invocation is made of the axiom of choice in
the main text of this book, a weaker version of it under the prefix “countable”
must have been casually employed on the g.t. Without the latter, allegedly it is
impossible to show that the union of a countable collection of countable sets
is countable. This kind of logical finesse is beyond the scope of this book.

4 integral

The measure space (2,7, u) is fixed. A function f with domain 2 and
range in R* = [—oc, +00] is called # -measurable iff for each real number ¢
we have

{(f=cl={we flw) =cleF.

We write f € % in this case. It follows that for each set A € 3, namely a

Borel set, we have
{f eA)e 7,

and both {f = +o0) and {f = —o¢} also belong to # . Properties of measur-
able functions are given in Chapter 3, although the measure there is a proba-
bility measure.

A function f € % with range a countable set in [0, co] will be called
a basic function. Let {a;} be its range (which may include “oc™), and A; =
{f =a;). Then the A;’s are disjoint sets with union €2 and

(31 f=> ajla,
7

where the sum is over a countable set of j.
We proceed to define an integral for functions in #, in three stages,
beginning with basic functions.
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DEFINITION 8(a). For the basic function f in (31), its integral is defined
to be

(32) E(f)=) a;u(4))
J

and 1s also denoted by

[ rn= ]Q f (@)n(dw).

If a term in (32) is 0.00 or 00.0, it is taken to be 0. In particular if f = 0, then
E{0)=0evenif u(2) =00. If A € # and (A) = 0, then the basic function

oC. lA + 0 IAC
has integral equal to

00.04+0.u(A°) =0

We list some of the properties of the integral.
(i) Let {B;} be a countable set of disjoint sets in %, with union 2 and {b;}
arbitrary positive numbers or oc, not necessarily d1st1nct Then the functlon

(33) > bjlp,
F
is basic, and its integral is equal to
ji:biﬂ(le

PROOF. Collect all equal b;’s into a; and the corresponding B;i’s into A;
as in (31). The result follows from the theorem on double series of posmve
terms that it may be summed in any order to yield a unique sum, possibly +oc.

(ii) If f and g are basic and f < g, then
E(f) = E(g).

In particular if E(f) = 400, then E(g) =

PROOF. Let f be as in (31) and g as in (33). The doubly indexed set
{A; N By} are disjoint and their union is 2. We have using (i):

E(f)=>> a;u(A;NBy);
Jk

E®) =) Y bu(A;NBy).

ko
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The order of surnmation in the second double series may be reversed, and the
result follows by the countable additivity of w.

(ii)) If f and g are basic functions, a and & positive numbers, then a f +
bg is basic and
E(af +bg) = aE(f) + bE(g).

PROOF. It is trivial that af is basic and

Eaf) =aE(f).

Hence it is sufficient to prove the result for a = b = 1. Using the double
decomposition in (ii), we have

E(f+8)=) > (aj+buA; NBy).
J ok

Splitting the double series in two and then summing in two orders, we obtain
the result.

It is good time to state a general result that contains the double series
theorem used above and some other version of it that will be used below.

Double Limit Lemma. Let {Cy;j € N,k € N} be a doubly indexed array
of real numbers with the following properties:

(a) for each fixed j, the sequence {C .k € N} is increasing in k;
(b) for each fixed k, the sequence {C;; j € N} is increasing in j.

Then we have

Iim 4 li{ﬂ t Cjk = li{n 1 lim ¢ Cjk =< +ocC.
J J

The proof is surprisingly simple. Both repeated limits exist by funda-
mental analysis. Suppose first that one of these is the finite number C. Then
for any e > 0, there exist jo and k¢ such that C;;, > C — e. This implies
that the other limit > C — €. Since € is arbitrary and the two indices are
interchangeable, the two limits must be equal. Next if the C above is +o0,
then changing C - ¢ into ¢! finishes the same argument.

As an easy exercise, the reader should derive the cited theorem on double
series from the Lemma.

Let A €% and f be a basic function. Then the product 14 f is a basic
function and its integral will be denoted by

(34) E(4; f) = A F@uldew) = /A fdp.
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(v) LetA, € #,A, C A,y forall n and A = U,A,. Then we have
(35) ImEA,; f)=E@A; f).
n

PROOF. Denote f by (33), so that 1,f = Zj bilag,. By (1),

E@A;f)=) bju(AB))
J

with a similar equation where A is replaced by A,. Since n(A,B;) 1 u(AB;)
as n t oo, and ZT:] 0 Z;’il as m 1 oo, (35) follows by the double limit
theorem.

Consider now an increasing sequence {f,} of basic functions, namely,
fn € fay forall n. Then f =lim, 1 f, exists and f € &, but of course f
need not be basic; and its integral has yet to be defined. By property (ii), the
numerical sequence E(f,) is increasing and so lim, 1 E(f,) exists, possibly
equal to +co. It is tempting to define E(f) to be that limit, but we need the
following result to legitimize the idea.

Theorem 8. Let {f,} and {g,} be two increasing sequences of basic func-
tions such that

(36) lim 4 f, =1lim 1 g,
(everywhere 1n €2). Then we have
(37) lim t E(f,) = lim 1 E(gy).
PrROOF. Denote the common limit function in (36) by f and put
A={weQ: f(w) >0},

then A € #. Since 0 < g, < f, we have 1,4.g, = O identically; hence by prop-
erty (1ii):

(38) E(gn) = E(A;8,) +EA":8,) = E(A; 8n)

Fix an n and put for each & € N:

-1
Ay = {CU € Q: fr{w) > "?n—gax(w)} :

Since fi < fiy1. we have Ay C Ay for all k. We are going to prove that

(39) A=A
k=1
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If @ € A;, then f(w) = firlw) > [(n — 1)/nlg,(w) > 0; hence w € A. On the
other hand, if w € A then

lim 1 fi@) = f (@) 2 g»(w)
and f(w) > 0; hence there exists an index & such that
n—1
Filw) > —n—gn(w)

and so @ € A;. Thus (39) is proved. By property (ii), since

n—1
S = 1a, fr = 1ga, (Tgn>

we have
-1
E(fx) > EAi fr) = ”—rEcAk;g,,).

Letting &£ 1 oo, we obtain by property (iv):

n

—1
]i}l{"nTE(fk)Z Im E(Ax; 8n)
n

n—1

n—1
E(As8n) = TE(gn)
where the last equation is due to (38). Now let n 1 oo to obtain
lim 1 E(fi) 2 lim 1 E(gn).

Since {f,} and {g,} are interchangeable, (37) is proved.

Corollary. Let f, and f be basic functions such that f, 1 f, then E(f,) t
E(f).

prROOF. Take g, = f for all n in the theorem.

The class of positive :#-measurable functions will be denoted by .#,.
Such a function can be approximated in various ways by basic functions. It is
nice to do so by an increasing sequence, and of course we should approximate
all functions in # in the same way. We choose a particular mode as follows.

Define a function on [0, oo} by the (uncommon) symbol ) I:

0] =0; )oo] =

Wl=n—-1forxe(n—1,n),neN.
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Thus )] = 3, )4] = 3. Next we define for any f € %, the approximating
sequence { "'}, m € N, by

2" f @)

(40) @)= —5

Each £ is a basic function with range in the set of dyadic (binary) numbers:
{k/2™} where k is a nonnegative integer or co. We have f < F»+b for
all m, by the magic property of bisection, Finally f® ¢ f owing to the
left -continuity of the function x — )x].

pEFINITION 8(b). For f € 7, its integral is defined to be
(41) E(f)=1lim 1 E(f").
m

When f is basic, Definition 8(b) is consistent with 8(a), by Corollary to
Theorem 8. The extension of property (i1) of integrals to Z. is trivial, because
f < g implies f® < g™, On the contrary, (f + g)" is not f@ + g™ but
since £ + g™ 4 (f + g), it follows from Theorem 8 that

lim 1+ E(f™ + ™) =1lim 1 E((f +£)™)
m m
that yields property (iii) for %, together with E(af ") 1 aE(f), for a > 0.

Property (iv) for 7 will be given in an equivalent form as follows.
(1v) For f € Z, the function of sets defined on &% by

A— EA f)

1s a measure.

PROOF. We need omly prove that if A =U}2 A, where the A,’s are
disjoint sets in .7, then

EA: )= EAuf).

n=1

For a basic f, this follows from properties (iii) and (iv). The extension to “,
can be done by the double limit theorem and is left as an exercise.

There are three fundamental theorems relating the convergence of func-
tions with the convergence of their integrals. We begin with Beppo Levi’s
theorem on Monotone Convergence (1906), which is the extension of Corol-
lary to Theorem 8 to 7.
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Theorem 9. Let {f,] be an increasing sequence of functions in #_ with
limit f: f, 1+ f. Then we have
lim 4 E(f4) = E(f) < +0c.

PROOF. We have f € #_; hence by Definition &(b), (41) holds. For each
fn. we have, using analogous notation:

(42) lim 4+ E(fI™)y = E(fn).

Since f, 1 f, the numbers )2™ f,(w)] 12" f(w)] as n 1 oo, owing to the
left continuity of x — )x]. Hence by Corollary to Theorem 8,

43) lim 1 E(f;") = E(f™).
It follows that
lim 1 lim 1 E(f;") =lim t E(f™) = E(f).
On the other hand, it follows from (42) that
lim t im 1 E(f,;”) = 1im 1 E(f2).

Therefore the theorem is proved by the double limit lemma.

From Theorem 9 we derive Lebesgue’s theorem in its pristine positive
guise.

Theorem 10. Let f, € #., n € N. Suppose

(a) im, f, =0;
(b) E(sup,, fp) < co.

Then we have

(44) ImE(f,)=0.
2
PROOF. Put for n € N:
(45) gn = sup fi.
k>n

Then g, € #,,and as n 1 o0, g, 4 limsup, f, =0 by (a); and g, = sup, f»
so that E(g;) < oo by (b).

Now consider the sequence {g, — g,}, n € N. This is increasing with limit
g1- Hence by Theorem 9, we have

ii;n t+ E(g1 —gn) = E1)
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By property (ii1) for F_,

E{g _gn)+E(gn) =E(g1).

Substituting into the preceding relation and cancelling the finite E(g;), we
obtain E(g,) | 0. Since 0 < f,, < gn,sothat 0 < E(f,) < E{g,) by property
(i1) for F, (44) follows.

The next result is known as Fatou’s lemma, of the same vintage 1906
as Beppo Levi's. It has the virtue of “no assumptions” with the consequent
one-sided conclusion, which is however often useful.

Theorem 11. Let {f,} be an arbitrary sequence of functions in f,. Then
we have

(46) E(liminf f,) < liminfE(f,).
PROOF. Put for n € N:
&n = inf fk,
k>n

then
liminf f, =lim 1 g,.
n n

Hence by Theorem 9,
(47) E(liminf f,) =lim 1 E(g,).
n n

Since g, < f,, we have E(g,) < E(f,) and
IminfE(g,) < liminfE(f,).

The left member above is in truth the right member of (47); therefore (46)
follows as a milder but neater conclusion.

We have derived Theorem 11 from Theorem 9. Conversely, it is easy to
go the other way. For if f, 1 f, then (46) yields E(f) < lim, 1 E(f,). Since
f = fa, E(f)=1lim, 1 E(f,); hence there is equality.

We can also derive Theorem 10 directly from Theorem 11. Using the
notation in (45), we have 0 < gy — f, < g,. Hence by condition (a) and (46),

E(g1) = E(liminf(g) — f,)) < liminf(E(g1) — E(f )
= E(g1) — limsup E(f )

that yields (44).
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The three theorems 9, 10, and 11 are intimately woven.
We proceed to the final stage of the integral. For any f € # with range
in [—oc, o], put

f+={f on {f =0} f_z{—f on {f =0},
0 on {f <0} - 0 on {f > 0}.

Then f* € %, f~ € #., and
f=rT=rafl=r"+f"
By Definition 8(b) and property (iii):
(48) E(f)=E(f")+E().
DEFINITION 8(c). For f € &, its integral is defined to be

(49) E(f)=E(fT) = E(f7)

provided the right side above is defined, namely not oo —oo. We say f is
integrable, or f € L!, iff both E(f™) and E(f ™) are finite; in this case E(f)
is a finite number. When E(f) exists but f is not integrable, then it must be
equal to +00 or —oc, by (49).

AsetAin Q is called a null set iff A € # and (4) = 0. A mathematical
proposition is said to hold almost everywhere, or a.e. iff there is a null set A
such that it holds outside A, namely in A€.

A number of important observations are collected below.

Theorem 12. (i) The function f in # is integrable if and only if |f]| is
integrable; we have

(50) E(OHI < E(fD-

(il) For any f € % and any null set A, we have

51 E4if)= [ fdu=0. BE(H=E&)= [ fdu

(iii) If f € L', then the set {w € Q:|f(w)| = oo} is a null set.

GV If f €L, g e %, and |g| < |f] ae., then g e L.

WIffeF, geF,andg = f ae., then E(g) exists if and only if E{f)
exists, and then E(g) = E(f).

(vi) If ;£(£2) < o0, then any a.e. bounded 7 -measurable function is inte-

grable.
PROOF. (i) is trivial from (48) and (49); (ii) follows from

141f] < 1400
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so that
0 < E(14lf1) < E(14.00) = u(A).oc = 0.

This implies (51).
To prove (i), let

An) ={lf| =z n}.
Then A(n) € # and
ni(A(n))y = E(A(n);n) < EA@M) 1 fD) < E(SD.

Hence

1
(32) p(An)) < —E(SD-

Letting n 1 oc, so that A(n) { {|f| = o<}; since w(A(1)) < E(|f]) < oo, we
have by property (f) of the measure p:

nQlf=ooh) =lim | pu(A(n)) = 0.
To prove (iv), let |g] < | f| on A, where w(A) = 0. Then
gl < 1a.00 + 14e.] f]
and consequently
E(|g]) = pA).o0o + EA% | f1) < Qoo+ E(f]) = E(fD.

Hencege L'if felLl.

The proof of (v) is similar to that of (iv) and is left as an exercise. The
assertion (vi) is a special case of (iv) since a constant is integrable when
n(£2) < oc.

Remark. A case of (52) is known as Chebyshev’s inequality; see p. 48
of the main text. Indeed, it can be strengthened as follows:

(53) limnu(A(n)) < lim E(A(n); | f]) = 0.

This follows from property (f) of the measure
A — EA[FI)

see property (iv) of the integral for #,.
There is also a strengthening of (ii), as follows.
If B, € #% and u(B;) — 0 as k — oo, then
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To prove this we may suppose, without loss of generality, that f € 7, . We
have then

EBi: fY=EBNAMn);, [)+EBNAMnN) f)
<EA®) f)+EB)n.

Hence
limsupE(Bx; f) < E(A(n); f)
k

and the result follows by letting » — o0 and using (53).

It is convenient to define, for any f in #, a class of functions denoted
by C(f), as follows: g € C(f)iff g = f a.e. When (2, 7, u) is a complete
measure space, such a g is automatically in #". To see this, let B = {g # f}.
Our definition of “a.e.” means only that B is a subset of a null set A; in plain
English this does not say whether g is equal to f or not anywhere in A — B.
However if the measure is complete, then any subset of a null set is also a
null set, so that not only the set B but all its subsets are null, hence in & .
Hence for any real number ¢,

lgscl={g=figscadUlg# fig=<c}

belongs to 7, and s0 g € #.

A member of C(f) may be called a version of f, and may be substituted
for f wherever a null set “does not count”. This is the point of (iv} and (v) in
Theorem 12. Note that when the measure space is complete, the assumption
“g € F7 there may be omitted. A particularly simple version of f is the
following finite version:

F= fon  {|f]<oec),
10 on  {|fl=00k

where 0 may be replaced by some other number, e.g., by 1 in E(log f).

In functional analysis, it is the class C(f) rather than an individual f
that is a member of L!.

As examples of the preceding remarks, let us prove properties (ii) and
(iit) for integrable functions.

(iyif feLl,ge L', and f < g ae., then

E(f) < E(g).
PROOF. We have, except on a null set:
ff—-f<g"-¢

but we cannot transpose terms that may be -+oco! Now substitute finite versions
of f and g in the above (without changing their notation) and then transpose




406 | SUPPLEMENT: MEASURE AND INTEGRAL

as follows:
ff+eg <gt+f.

Applying properties (ii) and (i11) for 7, , we obtain
E(f))+E@)<EQE)+E({f)

By the assumptions of 1!, all the four quantities above are finite numbers.
Transposing back we obtain the desired conclusion.

(iii) if f e L', ge L', then f +g € L!, and
E(f+g)=E(f)+E(g).

Let us leave this as an exercise. If we assume only that both E(f) and
E{g) exist and that the right member in the equation above is defined, namely
not (+o0) + (—o0) or (—0) + (+00), does E(f + g) then exist and equal
to the sum? We leave this as a good exercise for the curious, and return to
Theorem 10 in its practical form.

Theorem 10%. Let f, € #; suppose

{a) im,, f, = f ae;

(b) there exists ¢ € L! such that for all n:

lfal <@ ae

Then we have

(c) lim, E(|f» — fI)=0.

PROOF. observe first that
lim f.| < sup | ful;
n

|frz—f| = |fn|+lf| stupl.frzl;

provided the left members are defined. Since the union of a countable collec-
tion of null sets is a null set, under the hypotheses (a) and (b) there is a null set
A such that on Q — A, we have sup, |f,| < ¢ hence by Theorem 12 (iv), all
| fuls|fl, |1 fn — f| are integrable, and therefore we can substitute their finite
versions without affecting their integrals, and moreover lim,, | f,, — f| =0 on
2 —~ A. (Remember that f,, — f need not be defined before the substitutions!).
By using Theorem 12 (ii) once more if need be, we obtain the conclusion (c)
from the positive version of Theorem 10.

This theorem is known as Lebesgue’s dominated convergence theorem,
vintage 1908. When u(£2) < oo, any constant C is integrable and may be used
for ¢; hence in this case the result is called bounded convergence theorem.
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Curiously, the best known part of the theorem is the corollary below with a
fixed B.

Corollary. We have

lim [ fudu= [ £ du
" JB B
uniformly in B € %

This is trivial from (¢), because, in altemative notation:

|EB, fn) —EB I <EB;|fn~fDE(fu—fD).

In the particular case where B = €2, the Corollary contains a number of useful
results such as the integration term by term of power series or Fourier series.
A glimpse of this i1s given below.

5 Applications

The general theory of integration applied to a probability space is summarized
in §§3.1-3.2 of the main text. The specialization to R expounded in §3 above
will now be described and illustrated.

A function f defined on R with range in [—oc, +0o0] is called a Borel
function ff f € 98; it is called a Lebesgue-measurable function iff f € #A*.
The domain of definition f may be an arbitrary Borel set or Lebesgue-
measurable set D. This case is reduced to that for D = R by extending the
definition of f to be zero outside D. The integral of f € #3* corresponding
to the measure m* constructed from F is denoted by

E(f) = / £ @) dF ).

In case F(x) = x, this is called the Lebesgue integral of f; in this case the
usual notation is, for A € A*:

/Af(x)dx=E(A;f).

Below are some examples of the application of preceding theorems to classic
analysis.

Example 1. Let/ be a bounded interval in R; {u;} a sequence of functions on /; and
forx el

1

5.0 =D m(x), neN.

k=
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Suppose the infinite series Y, u,(x) converges I; then in the usual notation:
” >
lim ;ux *) ;ug (x) = s(x)

exists and is finite. Now suppose each #; is Lebesgue-integrable, then so is each s,,
by property (iii) of the integral; and

/I'S,,(x)dx = g/,uk(x)dx.

Question: does the numerical series above converge? and if so is the sum of integrals
equal to the integral of the sum:

u(x)dxz/ w(x)dx = | s(x)dx?
2 fuez= [Suwar= |

This is the problem of integration term by term.

A very special but important case is when the interval 7 = [a, b] is compact
and the functions ;. are all continuous in /. If we assume that the series 3 .o | u; (x)
converges uniformly in I, then it follows from elementary analysis that the sequence
of partial sums {s,(x)} is totally bounded, that is,

sup sup |5, (x)| = sup sup [s,(x)| < o0.

n X "

Since m(l) < oo, the bounded convergence theorem applies to yield

lim/s,,(x) dx = /lim s.(x)dx.
noJi F

The Taylor series of an analytic function always converges uniformly and abso-
lutely in any compact subinterval of its interval of convergence. Thus the result above
1s fruitful.

Another example of term-by-term integration goes back to Theorem 8.

Example 2. Letw, > 0,1, € L', then

b [ @ %
(54) /; (guk) du:;/ﬂ . dp.

Let f,=3 ., then f, €L, f, 4 f =51 u. Hence by monotone conver-
gence

that is (54).
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When u; is general the preceding result may be applied to [u;] to obtain

/ (g |uk|)du - 2/ el dp.

If this is finite, then the same is true when |u| is replaced by u; and u; . It then
follows by subtraction that (54) is also true. This result of term-by-term integration
may be regarded as a special case of the Fubini—Tonelli theorem (pp. 63-64), where
one of the measures is the counting measure on .

For another perspective, we will apply the Borel-Lebesgue theory of integral to
the older Riemann context.

Example 3. Let (/, 78", m) be as in the preceding example, but let / = [a, 5] be
compact. Let f be a continuous function on /. Denote by P a partition of I as follows:

a=xp <X <X <--<X,=b
and put

S(P) = lmkax (x;. — Xj—1 )

For each k, choose a point &, in [x;..;, x¢], and define a function fp as follows:

_J &, forx e [xp,xl
frt) = {fk, forx € (-1, ), 2 =k < n.

Particular choices of &, are: & = f(x_1)i & = f(xe);

(55) & = min_ f(x); &= max f(x).

Xp o) =Xy X 1SR
The fp is called a step function; it is an approximant of f. It is not basic by Defini-
tion 8(a) but f7 and f> are. Hence by Definitions 8(a) and 8(c), we have

E(fp) =) FEQG: — %),
k=1

The sum above is called a Riemann sum; when the &, are chosen as in (55), they are
called lower and upper sums, respectively.
Now let {P(n),n € N} be a sequence of partitions such that 8(P(n)) — 0 as
n - co. Since f is continuous on a compact set, it is bounded. It follows that there
is a constant C such that
supsup | fpemy(x) < C.

neN xef

Since 1 is bounded, we can apply the bounded convergence theorem to conclude that

li'an(fP(,;)) = E(f)
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The finite existence of the limit above signifies the Riemann-integrability of f, and the
limit is then its Riemann-integral ff f(x)dx. Thus we have proved that a continuous
function on a compact interval is Riemann-integrable, and its Riemann-integral is equal
to the Lebesgue integral. Let us recall that in the new theory, any bounded measurable
function is integrable over any bounded measurable set. For example, the function

1
sin—, xe(0,1]
x
being bounded by 1 is integrable. But from the strict Riemannian point of view it

has only an “improper” integral because (0, 1] is not closed and the function is not
continuous on [0, 1], indeed it is not definable there. Yet the limit

! 1
lim / sin — dx
0 J, X

exists and can be defined to be fn] sin(1/x)dx, As a matter of fact, the Riemann sums
do converge despite the unceasing oscillation of f between G and 1 as x | 0.

Example 4. The Riemann integral of a function on (0, o) is called an “infinite
integral” and is definable as follows:

/ocf(x)dx= lim /" fFx)dx
0 =00 0

when the limit exists and is finite. A famous example is

(56) F) = 3;35 % € (0, 00).

This function is bounded by 1 and is continuous. It can be extended to [0, 0o) by
defining f(0) = 1 by continuity. A cute calculation (see §6.2 of main text) yields the

result (useful in Optics):
. 7 sinx T
lim / dx = —,
roJg X 2

By contrast, the function [f| is not Lebesgue-integrable. To show this, we use
trigonometry:

. +
sinx 1 1 T 3
i > e = cl2nm+ =, 2no+— 1 =1,.
(x) 2 Gt or x (mr 2 7 4)

Thus for x > 0:
sinx\ ™ >
—— > C,l .
(x ) _HX;: 1 ()

The right member above is a basic function, with its integral:

rid
2 Cmll) =) oy, =
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It follows that E(f") = +oc. Similarly E(f ™) = +00; therefore by Definition 8(¢c)
E(f) does not exist! This example is a splendid illustration of the following
Non-Theorem.

Let f e and f, = flgn.n €N. Then f, € B and f, — f as n — oo,
Even when the f| s are “totally bounded”, it does not follow that

57 imE(f,) = E(/);

indeed E(f) may not exist.

On the other hand, if we assume, in addition, either (a) f > 0; or (b) E(f)
exists, in particular f € L'; then the limit relation will hold, by Theorems 9 and 10,
respectively. The next example falls in both categories.

Example 5. The square of the function f in (56):

- 2
FOP = (39—’5) . xeR

X

is integrable in the Lebesgue sense, and is also improperly integrable in the Riemann
sense.

We have i
2
fo&)Y <14+ l(noc.—l}U(+1.+oc};§

and the function on the right side is integrable, hence so is f~.
Incredibly, we have

]m (m—Si“x)z dx= 2 = (RI)/OC Sminx.dx,
i) X 2 0 X

where we have inserted an “RI” to warn against taking the second integral as a
Lebesgue integral. See §6.2 for the calculation. So far as I know, nobody has explained
the equaliry of these two integrals.

Example 6. The most notorious example of a simple function that is not Riemann-
integrable and that baffled a generation of mathematicians is the function 15, where @
is the set of rational numbers. Its Riemann sums can be made to equal any real number
between O and 1, when we confine  to the unit interval (0, 1). The function is so
totally discontinuous that the Riemannian way of approximating it, horizontally so to
speak, fails utterly. But of course it is ludicrous even to consider this indicator function
rather than the set @ itself. There was a historical reason for this folly: integration was
regarded as the inverse operation to differentiation, so that to integrate was meant to
“find the primitive” whose derivative is to be the integrand, for example,
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A pnmitive i1s called “indefinite integral”, and flz(l /X)dx e.g. is called a “definite
integral.” Thus the unsolvable problem was to find f(f lo(x)dx,0 <& < 1.

The notion of measure as length, area, and volume is much more ancient than
Newton's fluxion (derivative), not to mention the primitive measure of counting with
fingers (and toes). The notion of “countable additivity” of a measure, although seem-
ingly natural and facile, somehow did not take hold until Borel saw that

mQ)=> migy=3Y 0=0.

ge(} ged

There can be no question that the “length” of a single point g is zero. Euclid gave it
“zero dimension”.

This is the beginning of MEASURE. An INTEGRAL is a weighted measure,
as is obvious from Definition 8(a). The rest is approximation, vertically as in Defini-
tion 8(b), and convergence, as in all analysis.

As for the connexion with differentiation, Lebesgue made it, and a clue is given
in §1.3 of the main text.
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Differentiation:

of ch.f., 175

of df., 163
Dicphantine approximation, 285
Discrete random variable, 39
Distinguished logarithm, sth root, 255
Distribution function, 7

continupus, 9

degenerate, 7

discrete, 9

n-dimensional, 53

of p.m., 30
Dominated convergence theorem, 44
Dominated ergodic theorem, 362
Dominated r.v., 71
Doob’s martingale convergence, 351
Doob’s sampling theorem, 342
Double array, 205
Double limit lemma, 397
Downcrossing inequality, 350

E

Egorov’s theorem, 79
Empiric distribution, 138
Equi-continuity of ch.f.’s, 169
Equivalent sequences, 112
Event, 54

Exchangeable, event, 366

Existence theorem for independent r.v."s, 60

Expectation, 41
Extension theorem, see Kolmogorov's
extension theorem

F

G, F,F*, 380
F*-measurability, 378

approximation of % *-measurable set, 382

Fatou’s lemuma, 45, 402
Feller’s dichotomy, 134
Field, 17
Finite-product set, 61
First entrance time, 273
Fourier series, 183
Fourier—Stieltjes transform, 151
of a complex variable, 203
Fubini’s theorem, 63
Functionals of S,, 228
Function space, 265




G

Gambler’s ruin, 343

Gambling system, 273, 278, see also Optional
sampling

Gamima distribution, 158

Generalized Poisson distribution, 257

Glivenko-Cantelli theorem, 140

H

Harmonic analysis, 164

Harmonic equation, 344

Harmonic function, 361

Helley's extraction principle, 88

Holder’s inequality, 50

Holospoudicity, 207

Homogeneous Markov chain, process,
333

i

Identically distributed, 37
Independence, 53
characterizations, 197, 322
Independent process, 267
Indicator, 40
In dist., see In distribution
In distribution, 96
Induced measure, 36
Infinitely divisible, 250
Infinitely often, 77, 360
Infinite product space, 61
Information theory, 148, 414
Inner measure, 28
In pr., see In probability
In probability, 70
Integrable random variable, 43
Imtegrable function, 403
Integral, 396, 400, 403
additivity, 406
convergence theorems, 401, 406-408
Integrated ch.f., 172
Integration term by term, 44, 408
Invariance principle, 228
Invariant, 266
Inverse mapping, 35
Inversion formula for ch.f., 161, 196
Inversions, 220
1.0., see Infinitely often
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J

Jensen’s inequality, 50, 317
Jump, 3
Jumping part of d.f., 7

K

Kolmogorov extension theorem, 64, 265
Kolmogorov’s inequalites, 121, 125
Kronecker’s lemma, 129

L

Laplace transform, 196
Large deviations, 214, 241
Lattice d.f., 183
Law of iterated logarithm, 242, 248
Law of large numbers
converse, 138
for pairwise independent r.v.’s, 134
for uncorrelated r.v.’s, 108
identically distributed case, 133, 295, 365
strong, 109, 129
weak, 114, 177
Law of small numbers, 181
Lebesgue measurable, 394
Lebesgue’s dominated and bounded
convergence, 401, 406
Levi's monotone convergence, 401
Lévy-Cramér theorem, 169
Lévy distance, 98
Lévy’s formula, se¢ Canonical representation
Lévy's theorem on series of independent
r.v.’s, 126
strengthened, 363
Liapounov’s central limit theorem, 208
Liapounov’s inequality, 50
Liminf, Limsup, 75
Lindeberg’s method, 211
Lindeberg -Feller thecrem, 214
Lower semicontinuous function, 95

M

Marcinkiewicz—-Zygmund inequality, 362
Markov chain, homogeneous, 333
Markov process, 326

homogeneous, 330

or rth order, 333
Markov property, 326

strong, 327
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Martingale, 335, see alse Submartingale,
Supermartingale
difference sequence, 337
Krickeberg's decomposition, 358
of conditional expectations, 338
stopped, 341
Maximum of §,, 228, 299
Maximum of submartingaie, 346, 362
M.C., see Monotone class
m-dependent, 224
Mean, 49
Measurable with respect to #, 35
Measure
Completion, 384
Extension, 377, 380
o-finite, 381
Transfinite construction, 386
Uniqueness, 381
Measure space, 381
discrete, 386
Median, 117
Method of moments, 103, 178
Metric
for ch.f.’s, 172
for convergence in pr., 71
for df.’s, 98
for measure space, 47
for p.m.’s, 172
Minimal B.F., 18
Minkowski’s inequality, 50
Moment, 49
Moment problem, 103
Monotone class theorems, 19
Monotone convergence theorem, 44, 401
Monotone property of measure, 21
Multinomial distribution, 181

N

n-dimensional distribution, 53
Negligibility, 206
Non-measurable set, 395
Normal d.f., 104
characterization of, 180, 182

convergence to, see Central limit theorem

kernel, 157

positive, 104, 232
Normal number, 109, 112
Norming, 206
Null set, 30, 383
Number of positive terms, 302
Number of zeros, 234

0

Optional r.v., 259, 338

Optional sampling, 338, 346
Order statistics, 147

Orthogonal, 107

Qutcome, 57

Quter measure, 28, 375, 377-378

P

Pairwise independence, 53
Partition, 40
Permutable, 266
p.m., see Probability measure
Poisson d.f., 194
Poisson process, 142
Pélya criterion, 191
Pélya distribution, 158
Positive definite, 187
Positive normal, see Normal
Post-w, 259
Potential, 359, 361
Pre-a, 259
Probability distribution, 36

on circle, 107
Probability measure, 20

of d.f,, 30
Probability space, triple, 23
Product B.E. measure, space, 58
Projection, 64

Q
Queuing theory, 307

R

Radon-Nikodym theorem, 313, 369

Random variable, 34, see also Discrete,
integrable, simple, symmetric random
variable

Random vector, 37

Random walk, 271

recurrent, 284

Recurrence principle, 360

Recustent value, 278

Reflection principle, 232

Remainder term, 235

Remote event, field, 264

Renewal theory, 142

Riemann integral, 409




improper, infinite, 410
primitive, 411
Riemann-Lebesgue lemma, 167
Riemann—Stieltjes integrai, 198
Riemann zeta function, 259
Riesz decomposition, 359
Raght continuity, §
r.v., see Random variable

S

Sample function, 141
Sample space, 23

discrete, 23
s.d.f., see Subdistribution function
Second-order stochastic process, 191
Sequentially vaguely compact, 88
Set of convergence, 79
Shifi, 265

optional, 273
Simple random variable, 40
Singleton, 16
Singular d.f., 12

measure, 31
Singular part of d.f., 12
Smartingale, 333

closeable, 359
Span, 184
Spectral distribution, 191
St. Petersburg paradox, 120, 373
Spitzer’s identity, 299
Squared variation, 367
Stable distribution, 193
Standard deviation, 49
Stationary independent process, 267
Stationary transition probabilities, 331
Step function, 92

Stochastic process, with discrete parameter,

263
Stone—Weierstrass theorem, 92, 198
Stopped (super) martingale, 340341
Stopping time, see Optional sampling
Subdistribution function, 88
Submartingale, 335
convergence theorems for, 350
convex transformation of, 336
Doob decomposition, 337
inequal.ties, 346
‘Subprobability measure, 85
Subsequences, method of, 109
Superharmenic function, 361
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Supermartingale, 335

optional sampling, 340
Support of d.f,, 10
Support of p.m., 32
Symmetric difference (a), 16
Symmetric random variable, 165
Symmetric stable law, 193, 250
Symmetrization, 155
System theorem, see Gambling system,

Submartingale

T

Tauberian theorem, 292

Taylor’s series, 177

Three series theorem, 125

Tight, 95

Topological measure space, 28
Trace, 23

Transition probability function, 331
Trial, 57

Truncation, 115

Types of d.f., 184

U

Uncorrelated, 107
Uniform distribution, 30
Uniform integrability, 99
Uniqueness theorem
for ch.f., 160, 168
for Laplace transform, 199, 201
for measure, 30
Upcrossing inequality, 348

v

Vague convergence, 85, 92
general criterion, 96
Variance, 49

w

Wald’s equation, 144, 345
Weak convergence, 73
Weierstrass theorem, 145
Wiener—~Hopf technique, 291

z

Zero-or-one law
Hewitt—Savage, 268
Kolmogorov, 267
Lévy, 357




