SPARKCHA

PRE-CALCULUS

FUNCTIONS

DEFINITIO

+ A relafion is a set of ordered pairs of values (. y) that
“go together,” Plotted on the Cartesian plane, 4 relation
is any set of points. Bx: The unit circle in the plane is a”
relation; it is the set of points (r,y) that satisfy

i e

* Afunction is a set of ordered pairs (r. y) so that for each
r-value, there is no more than one y-value. Plotted on
the Cartesian plane, a function must pass the vertical line
test: Every vertical line cuts the graph of the function at
most onee.
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Funchion Nof a funchion

* A function can be thought of as a rule for generating val-
ues. Plug in a value for the independent variable (fre-
guently ) and receive a value for the dependent vari-
able (frequently i), We sav that “y is a function of r,”
and write y = fx)—"y equals [ of &".

* The domain of a function is the set of all allowable val-
ues that can be plugged in for the independent variable.
Ex: The domain of the funetion f(r) = ‘ is all real num-
bers except (),

* The range is the set of all possible outputs (values of the
dependent variable). Ex: The range of the function
i = =in.r is the set of all real numbers between —1 and
1, inclusive (the closed interval [—1, 1]).

WRITING FUNCTIONS DOWN

* A table keeps track of inpul values (Ex: time of day) and
carresponding output values (Ex: number of trucks on
U.8. 66) of a function. There may not be a universal
equation that describes a funetion.

An equation such as fir) = ¥ + | describes how to
numerically manipulate the incoming variable (here, r)
to get the output value f(ir).

A graph represents a funetion visually. If y = £z}, then
plotting many paints (o, f(r)) on the plane will give a
picture of the function, Usually, the independent vari-
able is represented horizontally, and the dependent vari-
able vertically. Again, there need not be a single equation
for a function described graphically, but the graph must
pass the vertical line test.

VERY FAMILIAR FUNCTIONS

Linear Functions: The equations whose graph is a line
(Ax + By = ') give functions for y in terms of r when

they are converted to the form y = wr + b, Exception:
If B = 0, the line is vertical and the equation v = 5 is
not a function,

Quadratic Functions: The equations whose graph is a

parabola (y = aa” + ha -+ ¢) are quadratic functions.

For more on exponents and logarithms, see the

EXPONENT RU LOGRITHM RULE:

a =a log,a=1

a" =1 (unless ¢ = 1) log, | =0 forall (positive)

The expression (1" is bases a.

undefined

a'oat = log, a" =n

At = gt log, (he) = log, b+ log, ¢

.. b )

Ll e log, ( ,) = log, b~ log, ¢
I 1

a " =— log, — = —log, b
an b ¥

Q' = l“m i ]UK.-, W= Iug_, h

) = ~ 1
a* = ya log, Vb= —log, b
n

nhf = Vam= {i‘/?]-}m lngq V’fF = E higu b
n

i BASIC EXPONENTIAL FUNCTIONS:
i fix)

An exponential function has the basic equation f(r) = a”".

Here, @ must be positive and a # 1

* Domain: all real numbers. Range: all positive numbers.
y-intercept at 1.

* Behavior: If hase o > 1. the funetion is constantly
increasing; it grows extremely fast for positive &, and
approaches 0 for negative x. If @ < 1, the function is
constantly decreasing; it takes very large values for neg-
ative r and tends towards () for positive .
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nl '} nl =

y=a " wiha > | =a*wilhil <na

e The graphof f(w) = ()" is a reflection of the graph of
Slx) = a* over the y-axis. See Refleciions over the Axes

¢ Fora = |, thegraphof f(xr) = a* grows faster the larger
i i8.

Reciprocal boses Boses greater than |

AND LOGARITHMS

* Exponents: In the expression a” = h. o is the bose, n is
the exponent.

* 1f nis an integer, then o represents repeated multiplica-
1 . L - 1 o > th
tion: a" = g - a---a, and bis called the n'" power of o,

e If nois :m_;: ”tl‘lil;lil}]‘l:il number (say, n =), then
" =at = Ja*

* Logarithms: lug, b = n is the power to which you raise
to get b, REMEMBER Logarithms are exponents
log, b =mnifand onlyifa" = 6
Both a and b must be positive: alsoa = 1.

o Ifhasea > 1 thenlog, b > Owhenb = 1andlog, b < ()
when b < 1.

* logh means log, b 1t is often used in applied sciences
and by ¢

* @isaspecial irrational number (approximately 2.71828)
often used as a base for logarithms. The logarithm base

culators.,

flr) = ¢* = (2.718)" is often thought of as the quintes-
sential exponential function. Any exponential function can
be reexpressed with base e if f(r) = a®, then, since
a =" wehave f{x) = ¢* " Ifa > |, then the graph of
Sflr) = a* is the graph of f{r) = ¢* stretched in the -
direction by a factor of ln a. Every exponential function has
the same basic shape.

GENERAL EXPONENTIAL FUNCTIONS

The most general exponential function is given by the equa-
tion f(x) = Ca® + K, Equivalently, we let b = Ina and
write fr) = C'e™ + K, [Note that " can swallow any con-
stant added to o« since ¥
a™ " = (aMa*.) . 13
e || determines the
vertical stretch of the
graph. Stretching the =™ @]\
graph vertically has
the same effect as
shifting the graph hor-
izontally. 1If " >0,
the graph is oriented upward; if (' < U, it is oriented
downward,
* u (or b} determines the horizontal stretch: if o
(b = 0), the graph increases to the right; if 0 < a < |
(b < (), it increases to the left,

¢ /s the value the funetion approaches in the exponen-
tial decay. The line y = K is a horizontal asymptote.
The y-intercept is ' + K.

bra I and Algebra Il SparkCharis.

e is called the notural logarithm and is written

log, & = lur. The natural log follows all logarithm

ritles.

* Any logarithmic expression can be written in terms
of natural logarithms using the change of base for-

Ik

mula log, b = o

| _ADDITIONALEXPONENTRULES |
(ah)™ = a"b" (“}“ a"
g e Fhy"
3" =)

| CHANGE OF BASE RULE FOR LOGARITHMS |

Changing the base s multiplying by a constant

T

b

log,, b= log, elog, b, The ¢ is “canceled.”

Also, log, b =

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

fag, o

NDING AN EG

Two points and the height of the asymptote are sufficient to
find the equation of an exponential graph.

If we know asymptote y = K, g-intercept . and point
(.10 The funetion is y=Cua" + K, where
"= o — K and « is the base such that a”" - "'—r£

If we know asymptote y = A and two points (1. 5]

and (2, gy )2 Divide the two equations g — N = Ca”
and 1 — N =Ca"' to find base o such that

N Thet T P o .
f s Useato find ¢ o el

LOGARITHMIC FUNCTIONS

A logarithmic function has the

form y = log, &, The domain
is
(log, 0 is undefined); the
range is all real numbers,
There is a vertical asymptote
at.r = (). The graph is always
increasing; it grows very
quickly for () <
the &

positive  numbers  only

1, crosses

xis at @ = (), and then continues growing extremely

slowly—slower than any root function—for » > 1.

¢ The graph of the Jogarithmic function jy =

1 has theexact

same shape as the corresponding exponential graph y = a’,
reflected over the line y = . (True because the two functions
are inverses, See Inverse Funictions))

Natural logarithm: f{r] = Ina is the logarithmic
funetion with base ¢ = 2.715,
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NS OVER THE AXES To find the inverse function, switch the roles of  and y
in the equation, effectively writing x = f(y). Then
solve for y. If vou can solve for y “reversibly,” then the

TRANSLATIONS | REFLEC
A translation of a function is a shift vertically, horizontally, ' Reflecting a fi
or both; the shape, the orientation, and the scale of the | which is the same shape and size as the original.

ction over the axes creates a new function

function has an inverse.

graph are all unchanged. = Reflection over the x-axis: The function y = — f(r)isa _ : sy 2 .

* Verfical translation: Adding a constant ¢ to the equation reflection of the original function over the r-axis. The = * Ex: Linear function: y = mx +b. The inverse function
will shift the function vertically ¢ units (up if ¢ is posi- new function has the same domain as the original; the isy = (r—b) . o .
tive, down if ¢ is negative). The new function range is the negative of the : : Ex Exponential function y = a”. The.inverse function
y = f({x) + ¢ has the same shape and the same domain original range. ’ sy =log, x
as the original function. * Reflection over the y-axis: fixl MNOTE: If f(r) takes the same value more than once, we

+ Horizontal translation: The function iy = (i — ) isa The function y = f(—ux) restrict the domain before taking the inverse, Ex: y = o ]
shift of the original function ¢ units horizontally (to the is a reflection of the origi- :;| % | on the whole real line has no inverse, but the function
right if e is positive, left if ¢ is negative). The new function nal function over the y- /\/\\/\/-\’ y = on the positive reals only has the inverse jy = /1.
has t?’m same shape and the same range as the original axis. The new [ull_clmn il_:l& | * Graphically, y= j~'(z) has:the: same shape-as the
funetion. the same range as the ong- ) . 5 . .

¥, nity s P — e [l the domal is the Reflecting iy = [f(x) over r-qxis orginal function, but is reflected over the slanted line
ma

; fhes i = a. By = 2" and y = log, > are inverse functions.
negative of the original : -
¥y See graphs below,

2 | i)=& =4 =3 domain. ) - e o the Trversefanchon
T o If fix)= fi—x). then 2 A ; .
" r,lf % 1;’;“! i \/\ /’_‘\/ o Itisatwo-sided inverse: f~' (f{r)) = » forall # in the
) is calle ; ; | ) 3
} . ) p o T domain of flr) and f(f '(x)) = for all & in the
remains unchanged when d in of £~
omtin o x).
reflected over the y-axis. T 3 —_— -
Verical shit I : * The inverse of the inverse function is the original fune-
Ex: cos.r is an even func- : 141 :
tion: (f~') " (x)= flx)

tion.
STRETCHES
T b ofa &ancti 8 horke | If f(x)= —f(—ix), then Reflecting
Ihe graph ofa _11|ll.'tl(1nhl11 e sh'd'ched_ urm ari- Flx) is called odd. A reflection over the -
zontally or verticallv (or both), by multiplving by a constant. 3 SRS
A . ' < pos same as a reflection over the y-axis, Equivalently, a -
* Vertical stretching, compressing: For positive ¢, the : " . : = ;
5 o 7 ; 1807 rotation of fir) around the orgin leaves () =T % i ] E
function iy = cf (;r) is a vertical streteh or compression Z X L : .
SR o . by Wb Bkt unchanged. Ex: sinr is an odd function. {
of the Inr]j,‘ml function. If ¢ =1, lun_ s: Refischion ‘over
i = cf(r) is stretch by a factor of e, If ¢ < 1, then

Hattzonal

fla) over i-Qxis

is is the

by a f; f e, Hori | the line y = x | Fle)=8r—2 fla)=2 0
y = cflr) is a compression by a factor of . Horizonta " L WY )
;;, fla) . P I N F : Switch the roles '/
stances rema ‘hanged. : —
Il‘l:mu;:l"“mm l_"“ e g . of # and yinthe —~~—— ;- ROTATIONS
* Horizontal stretching, compressing: Again. for positive s \? \ n : n .
; "9' 2 .P ng 3 Pt equation; the re- Wl * Rotating 180°: A rotation of 18(1° is the same thing as a
e, the function y = f (<) is a horizontal stretch of the . A J ! < i 7
o i " P sulting relation | i Nip over the r-axis followed by a flip over the y-axis (or
original function if ¢ < 1 (a compression if ¢ > 1) by a y iy i . » _ . -
e i (set of points in  Odd lunction Even function wice versa, though, in general, order of flips matters).
factor of ¢, Vertical distances remain the same. i - y . i f
the plane) is a reflection over the line y = =, If you can Thus 5= —fl—x) is the
vt s o solve the new expression for y, the reflected relation is | equation of a function whose d|
a function—the inverse function. See below, graph is a half-circle rotation of

fisi : " S o 1 the original. Odd functions (Bx:
\ } ; : INVERSE FUNCTIONS i " g..
fx s | h . _ sina, x7) are unchanged after
o] If the function f(a) passes the “horizontal line test” in its such a rotation. The domain
domain—f{x] never takes th‘ same value twice—then

and range of the new function
Sflx) has a unique inverse [~ ) whose domain is the are the negatives of the original |
range of f{r) and vice versa.

funetion’s domain and range.

ormation on polgnomials, see the SparkChart an Algebra 11,

POLYNOMIAL REVIEW S R e o L I Gl | © Rational Roots Theorem: If the polynomial with leading

eoefficient o and constant term b has a rational root,

A general polynomial in one variable can be reduced to the  The polynomial functions f{2) = " come in two overall shapes. : i L
then the root is in the form £ =, where r is a factor of b,

form a, 0" +a, 2" 4o+ agr + g, The constants e Ifnisodd. f(r) = +" goesto — oc for negative  and + ¢ :

Wy 1)y .o (1, are the for positive ., The range is all real numbers. The function and s isa fa:'ltm' nl'_u. ) i )
coefficients:  expres- x crosses the c-axis at - = (), * Tocheck for rational roots, list the factors = of the lead-
sions connected by + o i n iz even; ! ing coefficient and the factors » of the constant term

Make all the possible fractions =~ and plug them in to -

the polynomial to check if they are roots.

GENERAL POLYNOMIAL
BEHAVIOR FOR LARGE |x|
The function is al-

Polynomial of dégree 5 o y= 2" forodd n: y = »" forevenn, | FoOr :m‘\l' pul.\'nmlnf'al funetion u_l' degree n, u:f I ogets \‘uf‘_\'
+ L large, cither positively or negatively, the leading term will
dominate and determine the behavior of the function,
n odd neven

signs are called terms. fle)=ux" goes
Two terms are “like” off to +0c for "'

terms if they involve _M 'E‘L/% P large || both pos- F?r

the same power of

itive and negative,

like terms can be col-
lected  and  added
together to simplify the
polynomial. The de-
gree of the polynomial is the highest power of & of any term
after the lmi_\-:.mminl i‘s :aiml:tliﬁurl: tha! term is cazllr.(! ‘Ihclaod-» isoding | & e ; e
ing term, and its coefficient is the leading coefficient. The term coelficient \ i)

F ) . - A . ——ft— root, - value for the |
that involves no s is the constant term. Bx: The polynomial * The search for roots plays a big role in polynomial life.

Roais: —2, —1 B .
4 turns* " it touches the r-axis at o« = (0.

As n inere

s, fla) = 2" becomes flatter near the origin
and steeper evervwhere else for both odd and even n.

above has degree n, leading term o, 2", leading coefficient Factoring is the way to go. u | ; [;R;]":ﬁ; Is | f:?;:s"-‘;‘“

. and constant term ay. * Factor Theorem: If « is a root of the polynomial f(r), wimbone "Ir ma.\' nut

*  Aroot (or azero) of 4 polyvnomial is any number a such then we can express f(r) = (i — a)g{x) for some other ‘ i, v r'uuts
that f(a) = 0. Ona graph, this corresponds to crossing polynomial g(.r). In other \-\-'l)l'll‘\' a is a root if and only | - :
the r-axis. if 2 — t'is & factor of f(i). To us Leading | oM least 1 1 A maximum

* The domain of any polynomial function is all real num- 1. Every time vou find a root , factor out x — a from coeflicien | ——— root. P ““'”l’_r‘“‘ the
bers. A graph is always “smooth”—no kinks. the palynomial and continue the hunt for roots on g ‘ Range is 4 fm"urtmn

* A pohmomial of degree n will have no more than n — 1 the quotient. all real exists. May
“turns”—changes of direction—in the graph: it will cross the 2, Whenever a polynomial has a linear factor wr = b, numbers. Ornay not
r-uxis no more than n times (and so have at most n roots), then :. isd root: have roots.




GENERAL POLYNOMIAL FUNCTIONS (CONTINUED)

| * Real roots: Harder to find. ¥ Ex: The polynomial 32° —r' 4 52% + T2f =20 +5 | a. Factor the polynomial as much as possible to find |
' Ir diate Vialue T roll has 4 sign reversals, so it has 4, 2, or () positive roots. ! roots and reduce it to terms of smaller degree.
for Polynomials: If /() is ,./I i *  Also, the number of negative roots of f(x)isequalto | b. Use the Rational Roots Theorem on the unfactored
a polynomial, and for root / or an even number less than the number of sign | pieces to find all rational roats. For each root a,
some two numbers o and \ reversals in f(—z), Ex: With fi{r) as above, divide out x — a ta reduce the degree.
b, we have f(a) >0 and fl=2) = =32° — 2 — 5" + 722 —.'3,1- +5. Since c. Use Descartes’ Rule of Signs or the Intermediate |

f(b) < U (or vice versa), Value Theorem to estimate number and location of |

then the polynomial fix) real roots. ) ‘
has a root between aand b, |yermadiate Value Theorem 3. Plot all the real roats. For each interval between the roots, |

“This is intuitive if we believe for Polynamials { SKETCHING A GENERAL POLYNOMIAL test a point to see if the graph s positive or negative on the |
that polynomial functions always have smooth graphs. B WITHOUT A CALCULATOR mlerl\':ll. (A wlg.rnumuul \\'Illl Cross {:Lt;luil)‘pf)sq_\i to touch) the |
* Descartes’ Rule of Signs: The number of positive real 1. Determine the behavior of the polvnomial for large 2], -axds at a root ifand only ifits multiplicity is odd.)

roots of a polynomial f(xr) is equal to or an even number | 2. Find all the roots you ean: 4. Sketch the curve.
less than the number of “sign reversals™ in f(x).

RATIONAL FUNCTION

Arational function is a quotient of two polynomials: f(x) = £, | * Inother words, .- = a is a vertical asymptote if () — ! * To find the equation of a skew asymptote, use long divi- |

gz

there is | sign reversal, f(r) must have exactly 1
negative root.

, i | oL~ ST ¢ S : vasran P IR LU ) ey }
where () is not the zero polynomial. The domain of the func- | :fr fle) = —oc as r —a~ or ¢ —a*. For rational | sion to express [ = ar + b+ T W here the degree:
tion is all real numbers except the roots of g (). i funetions, flx) — =20 as r — a from hoth sides. ! of r(r) is less than the degree of ¢(r). The line!
« An asympfote is a line, often vertical or horizontal, that a | A rational function %55 will have a vertical asymptote at y = ar + bis a skew asymptote for the function.

function gets very close to—but never quite touches—as | every root of g(x) that is not also a root of p(r). : - ..

o O :;. A ;\ (often both). Rﬂﬁ;:ml functions will | ® More precisely, f;ﬁ will also have vertical asymptote _ HOLS { HEMOVBLE DlCONTlNITIES ) !

more often than not have at least one vertical asymptote. | + = aifaisaroot of both p(x) and ¢(r), but the multi- .” \'umuall SEYmpIOses d]smp': the “smaotinesy of 8 gexpl |

plicity of a as a root of g(x} is greater than the mult- | 0@ drastic way, holes (technically, “removable disconfinu- |

plicity of @ as a root of p(x). | Mies”) are gaps where a function could have been (but!
wasn't) defined smoothly.

T * Dc'oining behavor of /(1) near vrtical ssymplote | 2y the ational func |

= a: check the sign of fir) (no need to compute val- | . Pl — BLE)
A rational funetion kit ! P 2 tion f(x) = =, if a
ues) as & — a~ and ¥ — ™. Easiest to do when both | T F hatl ;
of p(r) that are not als 3 is a root of both p(a)
% W g numerator and denominator are completely factored. 4 a{x) (with th
s More precisely, “= will also have a zero at a if it is a root | . (22=1) (253} . and qix) (with the |
gz} — e Ex: The function [(r)==""—"2""2 has vertical
of both pl.r) and g(x), but the multiplicity of o as a root of

same  multiplicity),
plir ) is greater than the multiplicity of o as a root of g(ir).

* On a graph, an asvmptote will usually be marked as a
dashed line.

asymptote & = . When x approaches () from the left, then—even  though -
2r—1 <0,z +3>0andx < (). So the sign of f({x) as

fla) is not defined
CALCULUS NOTATION r—07 s +. The sign of f(r) as

because denominator
s " & b J. s |
This notation is frequently used to deseribe the “end behav- =0T 1 » Near 0, the ——=

. T : ! gla) = (l—the func-
ior” of a funetion (i.e., what happens when || approaches function looks like the figure at right. tion passes over the

) or to describe the function near points where it is not HORIZONTAL ASYMPTOTES point o without major

ﬂ‘ﬁ“m}éjlﬁl as_"c?wf.l ;:':'mi}tmfs)' — s - Function f(r) has a horizontal asymptote at b if f(xr) i?ltc:e;'l eamibg.
g BRIEA = 2 R AR S Sk — co, iR | approaches—but never reaches—the line y = b for large || AR

. B lr} — —20 as ¥ — —2¢. If is even, ! 5 N ; * Note: The *t ) = 33 s game
m.id then f(x} 20 as T TS EVEN o More precisely, y = b is a horizontal asymptote to f(x) ote: The I'um_llunlfu )= — has all ll.u same!
Jix) — +2c as x| — oc. ' = . 3 values as g(r) = —2: f(—2) is unde-
i if flor) — basr — oc or & — — . For rational fune- fined ‘h'll i
Notation ~ Meaning tions, f{x) — basx — £oc on both sides. tned. while gi B |
r—2  wincreases without bound { If G5y is a rational . ll SUMMARY: RATIONAL FUNCTION SKETCHING |
function with p(r) | \ . T n=l I
. : | plr) B ™ b Gy + -4y
o — =2 r decreases without bound | and ¢(x) polynomials A e \ | Suppose f(x) = x = : : >
] L L st il ! qla D ™ by 2™ ey
|| = = x increases both positively and negatively i with leading terms A " s ! .
! aa™ and be™, then: ‘___'\1 i Local behavior:
r—a x approaches a ‘e« f m<m, then 0 \ 4 * | & Ifpir) and g(x] have no roots in common:
& —at rgets close to a while staying greater thana; | # = 0 is a horizon- | *  flr) will cross the w-axis at each root of p(x). |
x approaches a from the right : tal asymptote. g = [lx) will have a vertical asymptote at each root of |
X - - i e If n=m, then | qlx). i
r—a o gets close to o while staying less than a; i y=1% is a hori- ¥, o If pla) and g(x) have a common root a, r is the multi-|
| zapproaches o from the leh i zontal asymptote, ! plicity of @ as a root of p(r), and s the multiplicity of a !
. : as a root of g(x): !
l VERTICAL ASYMPTOTES i ¢ If n>m, then 2 () _
: there are no hori- I * Ifr > s, then flr) crosses the r-axis at a,

Function f(xr) has a vertical asymptote given by the equa-
tion » = a when the value of of the function increases with-
out bound as » approaches a.

* Ifr = s then f(x) has a hole at a.
* Ifr < s, then r = a is a vertical asymptote,
End behavior:

zontal asymptotes.
As T — Xo0 on
both  sides, the

Four types of rational function behavior function behaves
near g verfical asymplote

¢ 1f n < m, then the function has a horizontal asymptote.

more and more Fris . . ¢ Ifn=ym + |, then the function has an oblique asymp-
¥, ¥ 1 . like the polynomi- v Al ; tote. !
i a symplote i = ( ;
| al Egn—m, SRS S ¢ 1fn > m + 1, then the function approaches the graph of |
| | * Rational functions may approach their horizontal a7 asymptotically. !
\ W, - asymptotes from above or from below (or from hoth
=T ~x DE| 3 above and below).
e . . . - '
| |5i | = Even though a function with horizontal asymptote y = bwill | :
: | ! approach but never reach b for large ||, the function may
1] cross the line y = b before it reaches its “asymptotic behav-
Neara, fia) <Oforz <a Neara, f(r) > Oforzr < a lor” stage. |
and Sl > Ofore > a and fizi<blorr>a 1 P
- OBLIQUE ASYMPTOTES ..__,_:"__.. —
__-_—_‘__-_""‘\.I 4 I b
- ¥ If the degree of plx) is - 2 _.‘1 )‘! '3 '.‘
| . : exactly one more than the !
i ! degree of g(x), then the |
14 i+ | rational funetion £ will
=t 2 = Afs————— | have an oblique (a.k.a. =1

|
[ slanted or skew) asymp-
‘ ' ftote.

| Horizontol asyrm ==

| Verlicol asymplote: » = | and x 2
|

: Femovoble discontinuity of x '}

Near u, flar) >0 MNeara, fle) <)




TRIG SUMMARY

POLAR COORDINATES

TRIGONOMETRIC FUNCTIONS

Trigonometric functions are commonly thought of in

| two ways:

1. Any angle # defines a point
P = {z.y) on the unit circle: if
Qistheoriginand A = (1,0}, 24—
then P has miAOP =0,
Trigonometric functions are et
defined in terms of r and y,
the coordinates of point P,

2. Trigonometric functions are
also given by ratios of side
lengths of a right triangle with * ’ i
acute angles # and 5 - 8. For i
f > Z. apply the right triangle definitions to a
reference angle (if 3 <8<7m Oy=m—thif
T<h< !T Bt = 6 — m; ete)), and attach the

appropriate = sign (or just use the unit circle).

Func. Unit Right Domain Range
circle ftriangle
sint! |y IPE ol veal numbers [=1.1
¥ hyp \ .
dj ¥ |
cos ff | = 25| 1 veal numbers [=1.1]
| hyp
y ) eals
tan ff | = B all r_leb E!...t‘fpl all veal numbers
P ad) br+ 5
|1 hy o
escf | = hyp | all reals except (—oe, —1]ufl.+o¢)
ly | opp km
isac @] “ll: all reals excepl | (o U1, )
T | kv + %
| .
| x #
cot | — l‘:li all reals all real numbers
|y opp except kv

SOHCAHTOA: “Sine |s Opposite over Hypothenuse; Cosine i
Adacent over Mypothenuse; Tangent is Opposite over Adjacent ”
All Students Take Calculus tells which of the
main trig functhons are positive in which

1: All;

[11: Tangent only:

ine Al

I1: Sine only;
IV: Cosine anly

quadrants Tangent| Cosine

All trigonometric functions are periodic with period 27
(sin. vos, sec, esc) or 7 (tan, cot )

TRIGONOMETRIC IDENTITIES

Sum and difference formulas

sinfA= B) =sinAcos B £ cos Asin B

cos(A+ B) =cosAcos B FsinAsin B

Double-angle formulas

sin{24) = 2sin Acos 4

cos(24) = cos® A — sin® A
=2cos*A—1=1-2sin"A

Half-angle formulas

A
| =0 e :l“}

9

| Pythagorean identities

sin A +cos’A=1

tan® A+ 1 =sec? A l+cot? A =csc? A
Special frigonometric values

# [deg! @ Irad) sinf cosf tanf

0° 0 A 0

o = /T a

° = =13 3

15° - = 1

60° % L V3

90" 5 {:—‘ =1 5 undefined

GRAPHING SINE AND COSINE CURVES
Sinusoidal functions can be written in the form
y=AsinB(xz - h)+ k.

= Al is the amplitude,

amplituds

* L is the is the %
average  value: G g_-\""l 7-==%
halfway between the <57
maximum and the period 2%

minimum value of ;
the function,

= Asin iz - his b

5 is the period. There are B cycles in every inter-
val of length 27, so —_,li is the frequency.

* |, is phase shift, or how far the beginning of the
cyele is from the y-axis,

Polar coordinates describe a point

F = (r.#) on a plane in terms of its

distance r from the pole—usually, the 4

origin (J—and the (counterclockwise)

angle # that the line OF makes with the

polar axis—usually, the positive r-axis.

To identify a point, it is standard to

limit r > Oand ) < # < 27 although  F
o (—rf)=(r.0£7), and

polar axis

In Cartesian
coordinates,

® (r0) = (r, 8 + 2n7) for integer n.

reosé, rsint);

CARTESIAN—POLAR CONVERSION i

* From Carfesian fo polar: r = /7 + % # = tan~ ' ¥
* From polar to Cartesian: r = rcosf: y = rsinfl

FUNCTIONS IN POLAR COORDINATES

Functions in polar coordinates usually define r in terms of #.
They need not (and almost never will) pass the vertical line test.
Circles:

* Thegraphof r = a isacircle of radius |a] centered at the origin.

s The graphs of equations r = asin# and r = acos# are |
circles of has radius | 5| centered at the (Cartesian coordi- |

nate) paints (0. %) and (4, 0), respectively,
Roses:

The graphs of equations » = sinnfl and r = cos nf give roses |

with n petals if n1 is odd and 2n petals if n is even,

* Cosine roses: Always svmmetric about the r-axis. 1f n is |

even, also sym- o
metric  about N
the y-axis. 18y
= Sine roses:
Always  sym-
metrie  about
the y-axis. If 11 is
even, also sym-
metric  about

= 2 sin Hff

fex S
the ir-axis. =

Limagons and Cardiods:

The graphs of equation r =

are called limagons. When ¢ = |, the limagon is

cardiod (it is “heart™-shaped).

Assume that ¢ is positive.

I+ ecosf and r =1+ esinf

called a

COMPLEX NUMBERS

* Imaginary numbers are square roots of negative numbers.
They are expressed as real multiples of i (= =1).

. These tests guarantee symmetry, but they are not exhaustive,

COMPLEX NUMBERS |

. Trigonometric or pelar form of a complex number comes from

* Complex numbers are all numbers o + b where o and b |
are real. Complex numbers are all sums and products of |

real and imaginary numbers.

« The complex conjugate of o« bi is o+ bi = a — bi.,
Also,a — bi = a+bi = a+ I,

*  The product of a complex number and its conjugate is a
real number: (@ + bi)(a — bi) = a® + b*,

* Addition, subftraction, and multiplication: Complex num-
bers are added and multiplied like polynomials, keeping
the real and the imaginary part separate:

(a+b) % (e+di) = (a+e) = (b+d)i.
For multiplication, use i - i = —1:
(a+ bi)(e + di) = (ac — bd) + (ad + be)i.

* Division: To divide one complex number by another, mul-
tiply top and hottom of the fraction by the conjugate of the
denominator and simplify the numerator.

il

COMPLEX PLANE

* Complex numbers can be y
represented as points on a — itmagi
plane (just like real num-

bers van be represented as
points on a line). The num-
ber a + bi is represented renl axis
as the point (a, b).

* The horizontal axis is the
real axis. Points on the r-axis represent real numbers.

¢ The vertical axis is the imaginary axis. Points on the y-axis
represent imaginary numbers.

* The complex conjugate of a number is represented by the
point reflected across the r-axis.

+ The product of a number and its conjugate is the square of |

its distance from the origin: (o + bi)(a — bi) = a® + I*.

# PRODUCTS, QUOTIENTS,
| AND DEMOIVRE'S THEOREM

* If ¢ > 1, the limagon i
has an inner loop. If o | o
E < e <1, the lim-
acon has a dimple (or
dent). If ¢ < 1, the rEdirmont
limagon is convex (like
a “squashed” circle),

* Asine limagon is ori-

" ~down. The - ) =
ented up-down. The Cardhod

loop is on the bottom
inr=14esinf;on o
topinr = 1 — ¢sin #,

* A cosine limagon is -
oriented left-right. The rely2mn

loop is on the left in
r =1+ pcost; right

inr=1-ccosf.
The  graphs  of o aw
r=a<bsinf and o

r=a+beosf
limagons. stretched

by a factor of |af.

Factor out o to get r o
o= f—J If a is nega-
tive, its orientation
is reversed.

are

Dimnpled limagon oy

SYMMETRY

+  x-axis symmetry: If the equation is unchanged when ¢ s
replaced by —#, the graph is symmetric about the r-axis.

* y-axis symmetry: If the equation is unchanged when # is re-
placed by = — #, the graph is symmetric about the y-axis,

* Origin symmetry: If the equation is unchanged when r is
replaced by —r, the graph is symmetric about the origin:
the graph is unchanged when it is rotated 1807, :
The graph of the function r = f({# — a) is a rotation of the
graph of r = f(#) by & counterclockwise. ‘

* The graph of the function r = a f(#) is a dilation of the graph
of r = f(#) by a factor of |a. If a is negative, the graph is
also reflected through the origin (same as a 1807 rotation).

TRIGONOMETRIC FORM:
r cosq + i sing

identifying the points on the complex plane with polar coordi-

nates, Multiplication and division are simple in this form,

* In trigonometric form, x + i = r{cos# + 1sinf), Here
r= y/2? + y¥ is the modulus, or the distance of the point :
from the origin, and # = arctan £ is the argument, or the :
angle that the line OF makes with the positive z-axis. i

* Sometimes cosf + [ sin# is abbreviated as cis# and this
notation is called “cis notation.”

*  Multiplication:
(ri(cosfy + isinfy)) (ra(cosfs + isinéy))
= ryre( cos(8y + 02) + isin(#; +6;))
In cis notation, (v cig 8y )(ra cisfly) = ryracis(@) + ).

* Division:

rifeost +isinfy) vy (6 — 85) A(B; — 8a))
——— = — | cos(#; —0¢) +izin(ty —4)
raleosfl; 4 isind;) g A = h 2t
; g ry cisfl) w TP
In cis notation, = — cis(f; — 03).
Facistly ra
« DeMoivre’s Th ising to p

(rleasf + isinf))" = r™(cosnfl + i sin nf)
In cis notation, (rcis#]" = r" vis nfl,

* Extracting roots: The complex number rlcosf + fsind)
has exactly n complex n'" roots (Here, n is a positive inte

er and r is positive.) The roots are /r{coso + ising)
v
where ¢ = —:

* The n complex roots of r{cos# + isinfl) are evenly
spaced on the cirele of radius {/r centered at the origin

* The easiest way to find the n'™" roots of any complex
number a + bi is to convert it to trigonometrie form :
and use this method.




