PRE-CALCULUS

SPARI

FUNCTIONS

DEFINITION

- A relation is a set of ordered pairs of values (x, y) that
 "go together." Plotted on the Cartesian plane, a relation
 is any set of points. Ex: The unit circle in the plane is a
 relation; it is the set of points (x, y) that satisfy
 x² + y² = 1.
- A function is a set of ordered pairs (x, y) so that for each x-value, there is no more than one y-value. Plotted on the Cartesian plane, a function must pass the vertical line test: Every vertical line cuts the graph of the function at most once.

nction Not a function

- A function can be thought of as a rule for generating values. Plug in a value for the independent variable (frequently x) and receive a value for the dependent variable (frequently y). We say that "y is a function of x," and write y = f(x)—"y equals f of x".
- The domain of a function is the set of all allowable values that can be plugged in for the independent variable.
 Ex: The domain of the function f(x) = \frac{1}{x} is all real numbers except 0.
- The range is the set of all possible outputs (values of the dependent variable). Ex: The range of the function y = sin x is the set of all real numbers between −1 and 1, inclusive (the closed interval [−1, 1]).

WRITING FUNCTIONS DOWN

 A table keeps track of input values (Ex: time of day) and corresponding output values (Ex: number of trucks on U.S. 66) of a function. There may not be a universal equation that describes a function.

- An equotion such as f(x) = x² + 1 describes how to numerically manipulate the incoming variable (here, x) to get the output value f(x).
- A graph represents a function visually. If y = f(x), then
 plotting many points (x, f(x)) on the plane will give a
 picture of the function. Usually, the independent variable is represented horizontally, and the dependent variable vertically. Again, there need not be a single equation
 for a function described graphically, but the graph must
 pass the vertical line test.

VERY FAMILIAR FUNCTIONS

- Linear Functions: The equations whose graph is a line (Ax + By = C) give functions for y in terms of x when they are converted to the form y = mx + b. Exception: If B = 0, the line is vertical and the equation x = \frac{C}{A} is not a function.
- Quadratic Functions: The equations whose graph is a parabola (y = ax² + bx + c) are quadratic functions.

For more on exponents and logarithms, see the Alaebra Land Alaebra II SparkCharts

e is called the **natural logarithm** and is written $\log_e x = \ln x$. The natural log follows all logarithm rules.

 Any logarithmic expression can be written in terms of natural logarithms using the change of base formula log_a b = \frac{\logarithmath{\logatimu}}{\logatimu}.

ADDITIONAL EXPONENT RULES

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{\iota}\right)^n = \frac{a}{\iota}$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)$$

CHANGE OF BASE RULE FOR LOGARITHMS

Changing the base is multiplying by a constant.

 $\log_a b = \log_a c \log_c b$. The c is "canceled."

Also, $\log_a b = \frac{1}{\log_b a}$,

EXPONENT AND LOGARITHM SUMMARY

$a^1=a$ $\log_a a=1$ $a^0=1$ (unless a=0) $\log_a 1=0$ for all (positive) The expression 0^0 is bases a.

LOGRITHM RULE

undefined $a^{\log_a b} = b \qquad \qquad \log_a a^n = n$

 $a^{m+n} = a^m a^n$ $\log_a(bc) = \log_a b + \log_a c$ $a^{m-n} = \frac{a^m}{a^n}$ $\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c$ $a^{-n} = \frac{1}{a^n}$ $\log_a\frac{b}{b} = -\log_a b$

 $a^{-n} = \frac{1}{a^n}$ $\log_a \frac{1}{b} = -\log_a b$ $a^{mn} = (a^m)^n$ $\log_a b^n = n \log_a b$

 $a^{\frac{1}{n}} = \sqrt[n]{a}$ $\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$

 $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ $\log_a \sqrt[n]{b^m} = \frac{m}{n} \log_a b$

REVIEW OF EXPONENTS AND LOGARITHMS

- Exponents: In the expression aⁿ = b, a is the bose, n is the exponent.
- If n is an integer, then a^n represents repeated multiplication: $a^n = \underbrace{a \cdot a \cdot \cdots a}_{}$, and b is called the n^{th} power of a.
- If n is any rational number (say, $n = \frac{r}{a}$), then $a^n = a^{\frac{r}{a}} = \sqrt[a]{a^r}$.
- Logarithms: $\log_a b = n$ is the power to which you raise a to get b. REMEMBER. Logarithms are exponents $\log_a b = n$ if and only if $a^n = b$.

Both a and b must be positive; also $a \neq 1$.

- If base a > 1 then log_a b > 0 when b > 1 and log_a b < 0 when b < 1.
- log b means log₁₀ b. It is often used in applied sciences and by calculators.
- e is a special irrational number (approximately 2.71828) often used as a base for logarithms. The logarithm base

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

BASIC EXPONENTIAL FUNCTIONS: $f(x) = a^x$

An **exponential function** has the basic equation $f(x) = a^x$. Here, a must be positive and $a \neq 1$.

- Domain: all real numbers. Range: all positive numbers.
 v-intercept at 1.
- Behavior: If base a > 1, the function is constantly increasing; it grows extremely fast for positive x, and approaches 0 for negative x. If a < 1, the function is constantly decreasing; it takes very large values for negative x and tends towards 0 for positive x.

- The graph of $f(x) = \left(\frac{1}{n}\right)^x$ is a reflection of the graph of $f(x) = a^x$ over the *y*-axis, See *Reflections over the Axes*
- For a > 1, the graph of f(x) = a^x grows faster the larger a is.

 $f(x)=e^x\approx (2.718)^x$ is often thought of as the quintessential exponential function. Any exponential function can be reexpressed with base $e\colon$ if $f(x)=a^x$, then, since $a=e^{\ln a}$, we have $f(x)=e^{x\ln a}$. If a>1, then the graph of $f(x)=a^x$ is the graph of $f(x)=e^x$ stretched in the x-direction by a factor of $\ln a$. Every exponential function has the same basic shape.

GENERAL EXPONENTIAL FUNCTIONS

The most general exponential function is given by the equation $f(x)=Ca^x+K$. Equivalently, we let $b=\ln a$ and write $f(x)=Ce^{bx}+K$. (Note that C can swallow any constant added to x, since

ax+h = (ah)ax,)
 |C| determines the vertical stretch of the graph. Stretching the graph vertically has the same effect as shifting the graph horizontally. If C > 0.

the graph is oriented upward; if ${\cal C}<0$, it is oriented downward.

- a (or b) determines the horizontal stretch; if a > 1
 (b > 0), the graph increases to the right; if 0 < a < 1
 (b < 0), it increases to the left,
- K is the value the function approaches in the exponential decay. The line y = K is a horizontal asymptote.
 The y-intercept is C + K.

FINDING AN EQUATION FOR AN EXPONENTIAL FUNCTION FROM THE GRAPH

Two points and the height of the asymptote are sufficient to find the equation of an exponential graph.

- If we know asymptote y = K, y-intercept y₀, and point (x₁, y₁): The function is y = Ca^x + K, where C = y₀ K and a is the base such that a^{x₁} = y₁ K.
- If we know asymptote y = K and two points (x₀, y₀) and (x₁, y₁): Divide the two equations y₀ K = Ca^{x₀} and y₁ K = Ca^{x₀} to find base a such that a^{x₁-x₀} = y₁-K y₀. Use a to find C = y₁-K / y₀-K.

LOGARITHMIC FUNCTIONS

A logarithmic function has the form $y = \log_a x$. The domain is positive numbers only $(\log_a 0$ is undefined); the range is all real numbers. There is a vertical asymptote at x = 0. The graph is always increasing; it grows very quickly for 0 < x < 1, crosses

the x-axis at x=0, and then continues growing extremely slowly—slower than any root function—for x>1.

- The graph of the logarithmic function y = log_n x has the exact same shape as the corresponding exponential graph y = a^x, reflected over the line y = x. (True because the two functions are inverses, See Inverse Functions.)
- Natural logarithm: f(x) = ln x is the logarithmic function with base e ≈ 2.718.

PRE-CALCUL

A translation of a function is a shift vertically, horizontally, or both: the shape, the orientation, and the scale of the graph are all unchanged.

- Vertical translation: Adding a constant c to the equation will shift the function vertically c units (up if c is positive, down if c is negative). The new function y = f(x) + c has the same shape and the same domain as the original function.
- Horizontal translation: The function y = f(x c) is a shift of the original function c units horizontally (to the right if c is positive, left if c is negative). The new function has the same shape and the same range as the original function.

STRETCHES

The graph of a function can be stretched or compressed, horizontally or vertically (or both), by multiplying by a constant.

- Vertical stretching, compressing: For positive c, the function y = cf(x) is a vertical stretch or compression of the original function. If c > 1, then the function y = cf(x) is stretch by a factor of c. If c < 1, then y = cf(x) is a compression by a factor of c. Horizontal distances remain unchanged.
- Horizontal stretching, compressing: Again, for positive c, the function $y = f\left(\frac{x}{c}\right)$ is a horizontal stretch of the original function if c < 1 (a compression if c > 1) by a factor of c. Vertical distances remain the same.

REFLECTIONS OVER THE AXES

Reflecting a function over the axes creates a new function which is the same shape and size as the original.

- Reflection over the x-axis: The function y = -f(x) is a reflection of the original function over the x-axis. The new function has the same domain as the original; the range is the negative of the original range.
- Reflection over the y-axis: The function y = f(-x)is a reflection of the original function over the yaxis. The new function has the same range as the original; the domain is the negative of the original

- If f(x) = -f(-x), then Reflecting y = f(x) over y-axis f(x) is called **odd**. A reflection over the x-axis is the same as a reflection over the y-axis. Equivalently, a 180° rotation of f(x) around the origin leaves f(x)unchanged. Ex: sin x is an odd function. Reflection over
- the line y = x: Switch the roles of x and y in the equation; the resulting relation Odd function (set of points in the plane) is a reflection over the line y = x. If you can solve the new expression for u, the reflected relation is a function-the inverse function. See below,

Reflecting y = f(x) over x-axis

ROTATIONS

Rotating 180°: A rotation of 180° is the same thing as a flip over the x-axis followed by a flip over the y-axis (or vice versa, though, in general, order of flips matters). Thus y = -f(-x) is the equation of a function whose graph is a half-circle rotation of the original. Odd functions (Ex:

f(x) = 3x - 2 $f(x) = 2^x$ $x \ge 0$

such a rotation. The domain

and range of the new function

are the negatives of the original

function's domain and range.

To find the inverse function, switch the roles of x and yin the equation, effectively writing x = f(y). Then

solve for y. If you can solve for y "reversibly," then the

Ex: Linear function: y = mx + b. The inverse function

Ex: Exponential function $y = a^x$. The inverse function

NOTE: If f(x) takes the same value more than once, we

restrict the domain before taking the inverse. Ex: $y = x^2$

on the whole real line has no inverse, but the function

 $y = x^2$ on the positive reals only has the inverse $y = \sqrt{x}$.

Graphically, $y = f^{-1}(x)$ has the same shape as the

orginal function, but is reflected over the slanted line

y = x. Ex: $y = 2^x$ and $y = \log_2 x$ are inverse functions.

It is a two-sided inverse; $f^{-1}(f(x)) = x$ for all x in the

domain of f(x) and $f(f^{-1}(x)) = x$ for all x in the

The inverse of the inverse function is the original func-

function has an inverse.

is $y = \frac{1}{m}(x - b)$.

See graphs below.

domain of $f^{-1}(x)$.

Properties of the inverse function

tion: $(f^{-1})^{-1}(x) = f(x)$.

is $y = \log_{\alpha} x$.

 $\sin x$, x^3) are unchanged after

INVERSE FUNCTIONS

If the function f(x) passes the "horizontal line test" in its domain-f(x) never takes the same value twice-then f(x) has a unique **inverse** $f^{-1}(x)$ whose domain is the range of f(x) and vice versa.

POLYNOMIAL REVIEW

A general polynomial in one variable can be reduced to the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. The constants

 a_0, a_1, \ldots, a_n are the coefficients: expressions connected by ± signs are called terms. Two terms are "like" terms if they involve the same power of x: like terms can be collected and added together to simplify the polynomial. The de-

gree of the polynomial is the highest power of x of any term after the polynomial is simplified; that term is called the leading term, and its coefficient is the leading coefficient. The term that involves no xs is the constant term. Ex: The polynomial above has degree n, leading term $a_n x^n$, leading coefficient a_n , and constant term a_0 .

- A root (or a zero) of a polynomial is any number a such that f(a) = 0. On a graph, this corresponds to crossing the x-axis.
- The domain of any polynomial function is all real numbers. A graph is always "smooth"-no kinks.
- A polynomial of degree n will have no more than n-1"turns"-changes of direction-in the graph; it will cross the x-axis no more than n times (and so have at most n roots).

SIMPLEST POLYNOMIAL FUNCTIONS $f(x) = x^{f(x)}$

The polynomial functions $f(x) = x^n$ come in two overall shapes.

- If n is odd, f(x) = xⁿ goes to −∞ for negative x and +∞ for positive x. The range is all real numbers. The function crosses the x-axis at x = 0.
- If n is even. $f(x) = x^n$ goes off to $+\infty$ for large |x| both positive and negative. The function is always nonnegative;

 $y = x^n$ for odd n, $y = x^n$ for even n.

it touches the x-axis at x = 0.

As n increases, $f(x) = x^n$ becomes flatter near the origin and steeper everywhere else for both odd and even n.

LOOKING FOR ROOTS—THEOREMS

The search for roots plays a big role in polynomial life. Factoring is the way to go.

- Factor Theorem: If a is a root of the polynomial f(x), then we can express f(x) = (x - a)g(x) for some other polynomial g(x). In other words, a is a root if and only if x - a is a factor of f(x). To use:
 - 1. Every time you find a root a, factor out x a from the polynomial and continue the hunt for roots on the quotient.
 - 2. Whenever a polynomial has a linear factor ax + b, then $-\frac{b}{a}$ is a root.

- Rational Roots Theorem: If the polynomial with leading coefficient a and constant term b has a rational root. then the root is in the form $\pm \frac{r}{a}$, where r is a factor of b, and s is a factor of a.
- To check for rational roots, list the factors s of the leading coefficient and the factors r of the constant term. Make all the possible fractions $\pm \frac{r}{2}$ and plug them in to the polynomial to check if they are roots.

GENERAL POLYNOMIAL BEHAVIOR FOR LARGE |x|

For any polynomial function of degree n, as x gets very large, either positively or negatively, the leading term will dominate and determine the behavior of the function.

n odd			n even	
Leading coefficient > 0	A.	At least 1 root. Range is all real numbers.	₩.	A minimum value for the function exists, May or may not have roots.
Leading coefficient < 0		At least 1 root. Range is all real numbers.	/M.	A maximum value for the function exists, May or may not have roots,

GENERAL POLYNOMIAL FUNCTIONS (CONTINUED)

• Real roots: Harder to find. Intermediate Value Theorem for Polynomials: If f(x) is a polynomial, and for some two numbers a and b, we have f(a) > 0 and f(b) < 0 (or vice versa), then the polynomial f(x) has a root between a and b. This is intuitive if we believe</p>

- This is intuitive if we believe for Polynomials that polynomial functions always have smooth graphs.
- Descartes' Rule of Signs: The number of positive real roots of a polynomial f(x) is equal to or an even number less than the number of "sign reversals" in f(x).

Ex: The polynomial $3x^5 - x^4 + 5x^3 + 7x^2 - 2x + 5$ has 4 sign reversals, so it has 4, 2, or 0 positive roots.

Also, the number of negative roots of f(x) is equal to or an even number less than the number of sign reversals in f(-x). Ex: With f(x) as above, f(-x) = -3x⁵ - x⁴ - 5x³ + 7x² + 2x + 5. Since there is 1 sign reversal, f(x) must have exactly 1 negative root.

SKETCHING A GENERAL POLYNOMIAL WITHOUT A CALCULATOR

- 1. Determine the behavior of the polynomial for large |x|,
- 2. Find all the roots you can:

- Factor the polynomial as much as possible to find roots and reduce it to terms of smaller degree.
- b. Use the Rational Roots Theorem on the unfactored pieces to find all rational roots. For each root a, divide out x - a to reduce the degree.
- c. Use Descartes' Rule of Signs or the Intermediate Value Theorem to estimate number and location of real roots.
- 3. Plot all the real roots. For each interval between the roots, test a point to see if the graph is positive or negative on the interval. (A polynomial will cross (as opposed to touch) the x-axis at a root if and only if its multiplicity is odd.)
- 4. Sketch the curve.

RATIONAL FUNCTIONS

A **rational function** is a quotient of two polynomials: $f(x) = \frac{p(x)}{q(x)}$, where q(x) is not the zero polynomial. The **domain** of the function is all real numbers except the roots of g(x).

- An asymptote is a line, often vertical or horizontal, that a function gets very close to—but never quite touches—as x → ∞ or x → −∞ (often both). Rational functions will more often than not have at least one vertical asymptote.
- On a graph, an asymptote will usually be marked as a dashed line.

ZEROES

A rational function $\frac{p(x)}{q(x)}$ will cross the x-axis at all the roots of p(x) that are not also roots of q(x).

More precisely, \(\frac{p(x)}{q(x)} \) will also have a zero at \(a \) if it is a root of both \(p(x) \) and \(q(x) \), but the multiplicity of \(a \) as a root of \(p(x) \) is greater than the multiplicity of \(a \) as a root of \(q(x) \).

CALCULUS NOTATION

This notation is frequently used to describe the "end behavior" of a function (i.e., what happens when |x| approaches ∞) or to describe the function near points where it is not defined (such as vertical asymptotes).

Usage: Ex: If $f(x) = x^n$, then $f(x) \to \infty$ as $x \to \infty$. If n is odd, then $f(x) \to -\infty$ as $x \to -\infty$. If n is even, $f(x) \to +\infty$ as $|x| \to \infty$.

Notation Meaning

 $x \to \infty$ x increases without bound

 $\rightarrow -\infty$ x decreases without bound

 $|x| \to \infty$ x increases both positively and negatively

 $x \rightarrow a$ x approaches a

 $x \rightarrow a^+$ x gets close to a while staying greater than a; x approaches a from the right

x gets close to a while staying less than a;
x approaches a from the left

VERTICAL ASYMPTOTES

Near a, f(x) > 0.

Function f(x) has a vertical asymptote given by the equation x=a when the value of of the function increases without bound as x approaches a.

Four types of rational function behavior near a vertical asymptote:

Near a, f(x) < 0.

In other words, x = a is a vertical asymptote if f(x) → ∞ or f(x) → −∞ as x → a⁻ or x → a⁺. For rational functions, f(x) → ±∞ as x → a from both sides.

A rational function $\frac{q(x)}{p(x)}$ will have a vertical asymptote at every root of q(x) that is *not* also a root of p(x).

- More precisely, \(\frac{p(x)}{q(x)} \) will also have vertical asymptote \(x = a \) if \(a \) is a root of both \(p(x) \) and \(q(x) \), but the multiplicity of \(a \) as a root of \(q(x) \) is greater than the multiplicity of \(a \) as a root of \(p(x) \).
- Determining behavior of f(x) near vertical asymptote x = a: check the sign of f(x) (no need to compute values) as x → a⁻ and x → a⁺. Easiest to do when both numerator and denominator are completely factored.
- Ex: The function $f(x) = \frac{(2x-1)(x^2+3)}{x}$ has vertical asymptote x=0. When x approaches 0 from the left, 2x-1<0, x+3>0 and x<0. So the sign of f(x) as $x\to 0^-$ is $\frac{(-)(+)}{(-)(+)}=+$. The sign of f(x) as $x\to 0^+$ is $\frac{(-)(+)}{(-)(+)}=-$. Near 0, the function looks like the figure at right.

HORIZONTAL ASYMPTOTES

Function f(x) has a **horizontal asymptote** at b if f(x) approaches—but never reaches—the line y=b for large |x|

More precisely, y = b is a horizontal asymptote to f(x) if f(x) → b as x → ∞ or x → -∞. For rational functions, f(x) → b as x → ±∞ on both sides.

If $\frac{p(x)}{q(x)}$ is a rational function with p(x) and q(x) polynomials with leading terms ax^n and bx^m , then:

- If n < m, then y = 0 is a horizontal asymptote.
- If n = m, then
 y = \frac{a}{b} is a horizontal asymptote.
- If n>m, then there are no horizontal asymptotes. As x→±∞ on both sides, the function behaves more and more like the polynomial ^a/_bx^{n-m}.

- Rational functions may approach their horizontal asymptotes from above or from below (or from both above and below).
- Even though a function with horizontal asymptote y = b will
 approach but never reach b for large |x|, the function may
 cross the line y = b before it reaches its "asymptotic behavior" stage,

OBLIQUE ASYMPTOTES

If the degree of p(x) is exactly one more than the degree of q(x), then the rational function $\frac{p(x)}{q(x)}$ will have an **oblique** (a.k.a. slanted or skew) asymptote.

To find the equation of a skew asymptote, use long division to express \(\frac{p(x)}{q(x)} = ax + b + \frac{r(x)}{q(x)} \), where the degree of \(r(x) \) is less than the degree of \(q(x) \). The line \(y = ax + b \) is a skew asymptote for the function.

HOLES ("REMOVABLE DISCONTINUITIES")

If vertical asymptotes disrupt the "smoothness" of a graph in a drastic way, **holes** (technically, "**removable discontinuities**") are gaps where a function *could* have been (but wasn't) defined smoothly.

• In the rational function f(x) = \frac{p(x)}{q(x)}, if a is a root of both p(x) and q(x) (with the same multiplicity), then—even though f(a) is not defined because denominator q(a) = 0—the function passes over the point a without major hitches, leaving a small hole.

Note: The function f(x) = (x+2)/(x-3)/x has all the same values as g(x) = 1/x-3 except at x = -2: f(-2) is undefined, while g(-2) = -1/5.

SUMMARY: RATIONAL FUNCTION SKETCHING

Suppose
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$
:

Local behavior:

- If p(x) and q(x) have no roots in common:
 - f(x) will cross the x-axis at each root of p(x).
 - f(x) will have a vertical asymptote at each root of a(x).
- If p(x) and q(x) have a common root a, r is the multiplicity of a as a root of p(x), and s the multiplicity of a as a root of q(x):
 - If r > s, then f(x) crosses the x-axis at a.
 - If r = s, then f(x) has a hole at a.
 - If r < s, then x = a is a vertical asymptote.

End behavior:

- If n ≤ m, then the function has a horizontal asymptote.
- If n = m + 1, then the function has an oblique asymptote.
- If n>m+1, then the function approaches the graph of $\frac{a_n}{L^{n_n}}x^{m-n}$ asymptotically.

Trigonometric functions are commonly thought of in

1. Any angle θ defines a point =(x,y) on the unit circle: if then P has $m \angle AOP = \theta$. Trigonometric functions are defined in terms of x and y,

acute angles θ and $\frac{\pi}{2} - \theta$. For $\theta > \frac{\pi}{2}$, apply the right triangle definitions to a reference angle (if $\frac{\pi}{2} < \theta < \pi$, $\theta_{\rm ref} = \pi - \theta$; if $\pi < \theta < \frac{3\pi}{2}$, $\theta_{\rm ref} = \theta - \pi$; etc.), and attach the appropriate \pm sign (or just use the unit circle).

Func.	Unit circle	Right triangle	Domain	Range
$\sin \theta$	y	opp hyp	all real numbers	[-1, 1]
$\cos \theta$	x	adj hyp	all real numbers	[-1, 1]
$\tan \theta$	$\frac{y}{x}$	opp adj	all reals except $k\pi + \frac{\pi}{2}$	all real numbers
$\csc \theta$	$\frac{1}{y}$	$\frac{\text{hyp}}{\text{opp}}$	all reals except $k\pi$	$(-\infty,-1]\cup[1,+\infty)$
sec θ	$\frac{1}{x}$	hyp adj	all reals except $k\pi + \frac{\pi}{2}$	$(-\infty,-1]\cup[1,+\infty)$
$\cot \theta$	$\frac{x}{y}$	adj opp	all reals except $k\pi$	all real numbers

SOHCAHTOA: "Sine is Opposite over Hypothenuse; Cosine is Adjacent over Hypothenuse; Tangent is Opposite over Adjacent."

All Students Take Calculus tells which of the main trig functions are positive in which quadrants: 1: All; II: Sine only: III: Tangent only: IV: Cosine only

All trigonometric functions are periodic with period 2π (sin, cos, sec, csc) or π (tan, cot).

TRIGONOMETRIC IDENTITIES

Sum and difference formulas

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $cos(A \pm B) = cos A cos B \mp sin A sin B$

Double-angle formulas

 $\sin(2A) = 2\sin A\cos A$ $\cos(2A) = \cos^2 A - \sin^2 A$ $= 2\cos^2 A - 1 = 1 - 2\sin^2 A$

Half-angle formulas

$\sin \frac{A}{2} = \pm $	$\sqrt{1-\cos A}$	$\cos \frac{A}{2} = \pm $	$\sqrt{1 + \cos A}$
	2		2

Pythagorean identities

$$\sin^2 A + \cos^2 A = 1$$

 $\tan^2 A + 1 = \sec^2 A$ $1 + \cot^2 A = \csc^2 A$

Special trigonometric values

θ (deg)	θ (rad)	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	$\frac{\sqrt{0}}{2} = 0$	1	0
30°	$\frac{\pi}{6}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	$\frac{\sqrt{4}}{2} = 1$	0	undefined

GRAPHING SINE AND COSINE CURVES

Sinusoidal functions can be written in the form $y = A \sin B(x - h) + k.$

A is the amplitude.

k is the is the average value: halfway between the maximum and the minimum value of the function.

- $\frac{2\pi}{B}$ is the **period**. There are B cycles in every interval of length 2π , so $\frac{B}{2\pi}$ is the frequency.
- h is phase shift, or how far the beginning of the cycle is from the y-axis.

COOPE

Polar coordinates describe a point $P = (r, \theta)$ on a plane in terms of its distance r from the pole-usually, the origin O-and the (counterclockwise) angle θ that the line \overline{OP} makes with the polar axis—usually, the positive x-axis.

In Cartesian coordinates, To identify a point, it is standard to limit $r \ge 0$ and $0 \le \theta < 2\pi$, although $P = (r \cos \theta, r \sin \theta)$

• $(-r, \theta) = (r, \theta \pm \pi)$, and

• $(r, \theta) = (r, \theta + 2n\pi)$ for integer n.

CARTESIAN—POLAR CONVERSION

- From Cartesian to polar: $r = \sqrt{x^2 + y^2}$; $\theta = \tan^{-1} \frac{y}{x}$
- From polar to Cartesian: $x = r \cos \theta$; $y = r \sin \theta$

FUNCTIONS IN POLAR COORDINATES

Functions in polar coordinates usually define r in terms of θ . They need not (and almost never will) pass the vertical line test. Circles:

- The graph of r = a is a circle of radius |a| centered at the origin.
- The graphs of equations $r = a \sin \theta$ and $r = a \cos \theta$ are circles of has radius | centered at the (Cartesian coordinate) points $(0, \frac{a}{2})$ and $(\frac{a}{2}, 0)$, respectively.

Roses

Ail

The graphs of equations $r = \sin n\theta$ and $r = \cos n\theta$ give roses with n petals if n is odd and 2n petals if n is even.

 Cosine roses: Always symmetric about the x-axis. If n is even, also symmetric about $r = 2 \sin 5\theta$ the y-axis.

Sine roses: Always symmetric about the y-axis. If n is even, also symmetric about the x-axis.

Limaçons and Cardiods:

The graphs of equation $r = 1 \pm c \cos \theta$ and $r = 1 \pm c \sin \theta$ are called limaçons. When c=1, the limaçon is called a cardiod (it is "heart"-shaped).

Assume that c is positive.

- If c > 1, the limaçon has an inner loop. If $\frac{1}{2} < c < 1$, the limaçon has a dimple (or **dent**). If $c \leq \frac{1}{2}$, the limaçon is convex (like a "squashed" circle).
- A sine limacon is oriented up-down. The loop is on the bottom in $r = 1 + c \sin \theta$; on $top in r = 1 - c \sin \theta.$
- A cosine limacon is oriented left-right. The loop is on the left in $r = 1 + c\cos\theta$; right $in r = 1 - c \cos \theta$.
- The graphs of $r = a \pm b \sin \theta$ and $r = a + b \cos \theta$ are limacons stretched by a factor of |a|. Factor out a to get $c = \frac{b}{a}$. If a is negative, its orientation is reversed.

SYMMETRY

These tests guarantee symmetry, but they are not exhaustive.

- **x-axis symmetry:** If the equation is unchanged when θ is replaced by $-\theta$, the graph is symmetric about the x-axis.
- y-axis symmetry: If the equation is unchanged when θ is replaced by $\pi - \theta$, the graph is symmetric about the *y*-axis.
- Origin symmetry: If the equation is unchanged when r is replaced by -r, the graph is symmetric about the origin: the graph is unchanged when it is rotated 180°.
- The graph of the function $r = f(\theta \alpha)$ is a rotation of the graph of $r = f(\theta)$ by α counterclockwise.
- The graph of the function $r = af(\theta)$ is a dilation of the graph of $r = f(\theta)$ by a factor of |a|. If a is negative, the graph is also reflected through the origin (same as a 180° rotation).

COMPLEX NUMBERS

- Imaginary numbers are square roots of negative numbers. They are expressed as real multiples of i = (-1).
- Complex numbers are all numbers a + bi where a and b are real. Complex numbers are all sums and products of real and imaginary numbers.
 - The complex conjugate of a + bi is a + bi = a bi. Also, $\overline{a - bi} = \overline{a + bi} = a + bi$.
 - The product of a complex number and its conjugate is a real number: $(a + bi)(a - bi) = a^2 + b^2$.
- · Addition, subtraction, and multiplication: Complex numbers are added and multiplied like polynomials, keeping the real and the imaginary part separate:

$$(a+bi)\pm(c+di)=(a+c)\pm(b+d)i.$$
 For multiplication, use $i\cdot i=-1$:
$$(a+bi)(c+di)=(ac-bd)+(ad+bc)i.$$

Division: To divide one complex number by another, multiply top and bottom of the fraction by the conjugate of the denominator and simplify the numerator.

 $\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}$

COMPLEX PLANE

- Complex numbers can be represented as points on a plane (just like real numbers can be represented as points on a line). The number a + bi is represented as the point (a, b).
- The horizontal axis is the real axis. Points on the x-axis represent real numbers.
- The vertical axis is the imaginary axis. Points on the y-axis represent imaginary numbers.
- The complex conjugate of a number is represented by the point reflected across the x-axis.
- The product of a number and its conjugate is the square of its distance from the origin: $(a + bi)(a - bi) = a^2 + b^2$

TRIGONOMETRIC FORM: r cosq + i sinq

Trigonometric or polar form of a complex number comes from identifying the points on the complex plane with polar coordinates. Multiplication and division are simple in this form.

- In trigonometric form, $x + yi = r(\cos \theta + i \sin \theta)$. Here, $r = \sqrt{x^2 + y^2}$ is the **modulus**, or the distance of the point from the origin, and $\theta = \arctan \frac{y}{x}$ is the **argument**, or the angle that the line \overline{OP} makes with the positive x-axis.
- Sometimes $\cos \theta + i \sin \theta$ is abbreviated as $\cos \theta$ and this notation is called "cis notation."

PRODUCTS, QUOTIENTS AND DEMOIVRE'S THEOREM

Multiplication:

$$(r_1(\cos\theta_1 + i\sin\theta_2)) (r_2(\cos\theta_2 + i\sin\theta_2))$$

$$= r_1 r_2 (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

In cis notation, $(r_1 \operatorname{cis} \theta_1)(r_2 \operatorname{cis} \theta_2) = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$.

$$\frac{r_1(\cos\theta_1+i\sin\theta_2)}{r_2(\cos\theta_2+i\sin\theta_2)} = \frac{r_1}{r_2} \left(\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)$$

In cis notation, $\frac{r_1 \operatorname{cis} \theta_1}{r_2 \operatorname{cis} \theta_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$.

DeMoivre's Theorem—raising to powers:

 $(r(\cos \theta + i \sin \theta))^n = r^n(\cos n\theta + i \sin n\theta)$ In cis notation, $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} n\theta$.

- Extracting roots: The complex number $r(\cos\theta+i\sin\theta)$ has exactly n complex n^{th} roots (Here, n is a positive integer and r is positive.) The roots are $\sqrt[n]{r}(\cos\phi + i\sin\phi)$, where $\phi = \frac{\theta}{n}, \frac{\theta + 360^{\circ}}{n}, \frac{\theta + 720^{\circ}}{n}, \dots, \frac{\theta + (n-1)360^{\circ}}{n}$
 - The n complex roots of r(cos θ + i sin θ) are evenly spaced on the circle of radius $\sqrt[n]{r}$ centered at the origin.
 - The easiest way to find the n^{th} roots of any complex number a + bi is to convert it to trigonometric form and use this method.