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Preface

Welcome to the new edition of Precalculus. In this edition, we have combined two
previous versions: Precalculus, A Problems-Oriented Approach, 6th ed., and
Precalculus, with Unit-Circle Trigonometry, 4th ed. This single book now accom-
modates introducing trigonometry with either a right-triangle approach or a unit-
circle approach.

This text develops the elements of college algebra and trigonometry in a straight-
forward manner. As in the earlier editions, our goal has been to create a book that is
accessible to the student. The presentation is student-oriented in three specific ways.
First, we’ve tried to talk to, rather than lecture at, the student. Second, examples are
used to introduce, to explain, and to motivate concepts. Third, most of the initial
exercises for each section are carefully coordinated with the worked examples in that
section.

With all the changes that come with this new edition, please rest assured that we
have made every effort to maintain the quality and style that users of previous
versions of the book have come to expect. We take very seriously our ongoing
responsibility to continue the legacy of David Cohen’s wonderful textbook, with his
careful balancing of precalculus as a subject in its own right and as a stepping-stone
to calculus. We hope you will be pleased with this new edition.

AUDIENCE
In writing Precalculus, we have assumed that the students have been exposed to in-
termediate algebra but that they have not necessarily mastered the subject. Also, for
many college algebra students, there may be a gap of several years between their last
mathematics course and the present one. Appendix B, accessible online at
http://www.cengage.com/math/cohen/precalculus7e, consists of review sections for
such students, reviewing topics on integer exponents, nth roots, rational exponents,
factoring, and fractional expressions. In Chapter 1, the reader is often referred to
Appendix B for further practice.

CURRICULUM REFORM
This new edition of Precalculus reflects several of the major themes that have devel-
oped in the curriculum reform movement of the past decade. Graphs, visualization of
data, and functions are now introduced much earlier and receive greater emphasis.
Many sections contain examples and exercises involving applications and real-life
data. In addition to the Writing Mathematics sections from previous editions, there
are Projects and Mini Projects. These, or references to them, appear at the ends 
of many sections. All of the Projects and Mini Projects are available online at

http://www.cengage.com/math/cohen/precalculus7e
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http://www.cengage.com/math/cohen/precalculus7e. Writing Mathematics, Projects,
and Mini Projects give students additional opportunities to discuss, explore, learn,
and explain mathematics, often using real-life data.

TECHNOLOGY
In the following discussion and throughout this text, the term “graphing utility”
refers to either a graphing calculator or a computer with software for graphing and
analyzing functions. Over the past decade, all of us in the mathematics teaching com-
munity have become increasingly aware of the graphing utility and its potential for
making a positive impact on our students’ learning. We are also aware of the limita-
tions of the graphing utility as a sole analysis device.

The role of the graphing utility has continued to expand in this edition. The exis-
tence of the graphing utility is taken for granted, and a number of examples make use
of this technology. However, just as in the previous edition, this remains a text in
which the central focus is on mathematics and its applications. If the instructor
chooses, the text can be used without reference to the graphing utility, but a scientific
calculator will be required for numerical calculations. Students already familiar with
a graphing utility will, at a minimum, need to read the explanation in Section 1.5 on
how to specify the dimensions of a viewing rectangle, since that notation accompa-
nies some figures in the text. Graphing utility exercises (identified by the symbol )
are integrated into the regular exercise sets.

CHANGES IN THIS EDITION
The main change in this new edition is that it accommodates introducing trigonome-
try with either a right-triangle approach or a unit-circle approach. A complete pre-
sentation of trigonometry is given in Chapters 6–10.

• To introduce trigonometry via right triangles, just follow Chapter 6–Chapter 10.
Some right-triangle material in Chapter 7, Section 5, is clearly labeled as being
repeated from Chapter 6 and may be skipped.

• To introduce trigonometry via the unit circle, merely skip Chapter 6, start with
Chapter 7, and proceed through Chapter 10.

There are other major changes in this edition.

Chapter 1. In Section 1.7, the presentation of symmetry has been largely rewritten,
with increased emphasis on geometry. Symmetry to a point or to a line is based on
pairs of points. We focus on the three basic symmetries of a curve: to the origin, to
the x-axis, and to the y-axis. From a pair of points with a particular symmetry we
build to symmetry of a curve as a set of pairs of points with that symmetry. Next we
discuss symmetry of a curve given by an equation. Then we focus on symmetry of
the graph of a function. Throughout, we take advantage of two very useful facts.

• The graph of y as a function of x cannot have x-axis symmetry.
• If a graph has any two of the three basic symmetries, then it must have all three

basic symmetries.

http://www.cengage.com/math/cohen/precalculus7e


Chapter 2. In Section 2.4 we complement our “table” presentation of nonlinear
inequalities with a sign chart on a number line.

Chapter 3. The material on graphing techniques in Section 3.4 has been entirely
rewritten. In addition to vertical and horizontal shifts and reflections in the x-axis and
y-axis, we cover vertical and horizontal scaling of graphs. Emphasis is on graphs of
functions. There are two main types of problems.

• Given the graph of a function given by an equation, if we apply a sequence of
transformations to the graph, find the new equation of the resulting graph.

• Given the equation of a graph that has been obtained by applying a sequence of
transformations to the graph of a function, find the sequence of transformations.

In the latter situation, determining the sequence of transformations on the original
graph, especially when unsure of a correct order, we find it useful to follow order of
operation. Students can draw on their previous experience with order of operation
and, perhaps more importantly, it always works! We break down transformations one
at a time as listed in the Property Summary table on page 173. The key idea is to de-
termine how x or y changes at each step. Finally, we conclude this section with an in-
troduction to even functions and odd functions. 

In Section 3.5, there is more discussion of finding the domain of a composition of
two functions before finding the formula for that composition. We include new ma-
terial of an abstract nature in discussing various combinations of two even functions,
or two odd functions, or an even function and an odd function to determine whether
these properties are “preserved.”

The presentation of inverse functions in Section 3.6 has been almost completely
rewritten, starting with the definition of inverse function. We now start with the con-
cept of a one-to-one function and then define an inverse function. The emphasis
throughout is on the connection between a one-to-one function and its inverse func-
tion. The theme is that any property of the inverse function is essentially a restate-
ment of an already known property of the original function. In this way, domain and
range, function values, and the graph of an inverse function follow immediately from
corresponding information about the original function. Finally, using the fundamen-
tal relationships that the composition of a one-to-one function and its inverse func-
tion is an appropriate identity function, we can describe what an inverse function
does and often find an explicit formula for the inverse function. 

Chapter 4. Section 4.6 has been extensively rewritten. There is more detailed
discussion and analysis of limiting behavior without using limits or limit notation.
We start with a detailed analysis of the squaring and cubing functions. Using only
algebra and symmetry, we determine increasing and decreasing behavior and end
behavior for these power functions, including a careful comparison of the two. We
generalize our results to any power function with a positive integer power of at least
two. Then we discuss polynomial functions, using these power functions to analyze
a polynomial’s end behavior and approximate power function behavior near 
x-intercepts. 

In Section 4.7, we take an approach similar to our development of polynomial
functions to discuss rational functions. We start with a detailed analysis of the reci-
procal function and the reciprocal square function. Again, we use only algebra to
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compare and determine important limiting properties of these two reciprocal functions.
We generalize these properties to all reciprocal power functions for positive integer
powers. Then we use these reciprocal power functions to help us analyze rational func-
tion behavior. Our discussion of the graph of a rational function with a horizontal
asymptote includes determining whether the graph approaches the asymptote from
above or below.

Chapter 5. The enhanced discussion of limiting behavior developed in Sections 4.6
and 4.7 continues in Sections 5.1–5.3, with the analysis of asymptote and other end
behaviors of graphs of exponential and logarithmic functions.

Chapter 6. As mentioned, this chapter provides an introduction to the trigonomet-
ric functions through the study of right triangles. Those who prefer to introduce the
trigonometric functions via the unit circle should skip this chapter.

Chapters 7–10. These chapters contain a full development of trigonometry from a
unit-circle point of view. Section 10.8 discusses the polar form of complex numbers
and DeMoivre’s theorem.

Chapters 11–14. These chapters largely coincide with Chapters 10–13 of the
previous edition. There are two major changes. First, as mentioned, DeMoivre’s
theorem has been moved to Chapter 10. Second, the book concludes with a brand
new Section 14.6 on limits at infinity. Here we review our earlier work on limiting
behavior in Sections 4.6 and 4.7, introduce limit notation, and use it in several
examples. We then proceed to rigorous definitions of both infinite and finite limits 
at infinity and utilize them to prove a few familiar limits. We hope this final look at
limits will help students in the transition to a calculus course.

Other Important Changes

Many Projects and Mini Projects are no longer included in the text, but are
referenced at appropriate places in the book and are now accessible online at
http://www.cengage.com/math/cohen/precalculus7e. Similarly, the only appendices
included in the book are those on significant digits, the irrationality of the square root
of 2, and the presentation of complex numbers. All other appendices are now acces-
sible online at http://www.cengage.com/math/cohen/precalculus7e.

Homework problems from the previous edition are essentially intact except in
sections that have been significantly changed, where new problems have been
added and instructions for some old problems have been modified to reflect the new
presentation. We have retained the division of the exercise sets into groups A, B, and
C. Group A exercises are based fairly directly on the examples and definitions in
that section of the text. Usually, these problems treat topics in the same order in
which they appear in the text. Group B exercises are more difficult, involving
some conceptual understanding, and tend to require the use of several different tech-
niques or topics in a single solution. Group C problems are more challenging and
may develop extensions of the material in the text and require more conceptual
understanding.

http://www.cengage.com/math/cohen/precalculus7e
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FOR INSTRUCTORS
• Enhanced WebAssign. Exclusively from Cengage Learning, Enhanced

WebAssign® offers an extensive online program for Precalculus to encourage the
practice that is so critical for concept mastery. The meticulously crafted peda-
gogy and exercises in our proven texts become even more effective in Enhanced
WebAssign, supplemented by multimedia tutorial support and immediate feed-
back as students complete their assignments. Additionally, students will have
access to the Premium eBook, which offers an interactive version of the textbook
with search features, highlighting and note-making tools, and direct links to
videos or tutorials that elaborate on the text discussions.

• PowerLecture with ExamView (ISBN: 1-111-42879-4). This CD-ROM provides
the instructor with dynamic media tools for teaching. Create, deliver, and customize
tests (both print and online) in minutes with ExamView® Computerized Testing
Featuring Algorithmic Equations. Easily build solution sets for homework or exams
using Solution Builder’s online solutions manual. Microsoft® PowerPoint® lecture
slides and figures from the book are also included on this CD-ROM.

• Companion Website (http://www.cengage.com/math/cohen/precalculus7e).
The companion website provides you with Appendices, Projects, Supplemental
readings, and other study tools.

• CengageBrain.com. Visit www.cengagebrain.com to access additional course
materials and companion resources. At the CengageBrain.com home page,
search for the ISBN of your title (from the back cover of your book) using the
search box at the top of the page. This will take you to the product page where
free companion resources can be found.

• Complete Solutions Manual (ISBN: 1-111-42884-0, Ross Rueger, College of
the Sequoias). The Complete Solutions Manual provides worked-out solutions to
all of the problems in the text.

• Text-Specific Videos (ISBN: 1-111-42885-9). These DVDs cover all sections in
the text. Ideal for promoting individual study and review, these comprehensive
DVDs also support students in online courses or those who may have missed a
lecture.

FOR STUDENTS
• Enhanced WebAssign. Exclusively from Cengage Learning, Enhanced

WebAssign® is designed for you to do your homework online. This proven and
reliable system uses pedagogy and content found in the text, and then enhances it
to help you learn precalculus more effectively. Automatically graded homework
allows you to focus on your learning and get interactive study assistance outside
of class.

• Companion Website (http://www.cengage.com/math/cohen/precalculus7e). The
companion website provides you with Appendices, Projects, Supplemental read-
ings, and other study tools.

• CengageBrain.com. Visit www.cengagebrain.com to access additional course
materials and companion resources.  At the CengageBrain.com home page, search
for the ISBN of your title (from the back cover of your book) using the search box
at the top of the page. This will take you to the product page where free compan-
ion resources can be found.
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• Student Solutions Manual (ISBN: 1-111-42824-7, Ross Rueger, College of the
Sequoias). The Student Solutions Manual contains fully worked-out solutions to
all of the odd-numbered end-of-section exercises as well as the complete worked-
out solutions to all of the exercises included at the end of each chapter in the text,
giving students a way to check their answers and ensure that they took the correct
steps to arrive at an answer.
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1

1.1 Sets of Real Numbers

1.2 Absolute Value

1.3 Solving Equations (Review
and Preview)

1.4 Rectangular Coordinates.
Visualizing Data

1.5 Graphs and Graphing
Utilities

1.6 Equations of Lines

1.7 Symmetry and Graphs.
Circles

Real numbers, equations, graphs—these topics set
the stage for our work in precalculus. How much
from previous courses should you remember about
solving equations? Section 1.3 provides a review of
the fundamentals. The rest of the chapter reviews and begins to extend what you’ve
learned in previous courses about graphs and graphing. For example, we use graphs
to visualize trends in

• Spending by the television networks to broadcast the Olympic Games (Exercise 21
in Section 1.4.)

• Internet usage (Exercise 23 in Section 1.4.)
• Carbon dioxide levels in the atmosphere (Example 5 in Section 1.4.)
• U.S. population growth (Exercises 7 and 8 in Section 1.6.)

CHAPTER

1 Fundamentals

1.1
Natural numbers have been used since
time immemorial; fractions were
employed by the ancient Egyptians 
as early as 1700 B.C.; and the
Pythagoreans, in ancient Greece, about
400 B.C., discovered numbers, like 
which cannot be fractions. —Stefan
Drobot in Real Numbers (Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1964)

What secrets lie hidden in decimals? 
—Stephan P. Richards in A Number for
Your Thoughts (New Providence, N.J.: 
S. P. Richards, 1982)

12,

SETS OF REAL NUMBERS
Here, as in your previous mathematics courses, most of the numbers we deal with are
real numbers. These are the numbers used in everyday life, in the sciences, in indus-
try, and in business. Perhaps the simplest way to define a real number is this: A real
number is any number that can be expressed in decimal form. Some examples of
real numbers are

(Recall that the bar above the 6 in the decimal indicates that the 6 repeats
indefinitely.)

Certain sets of real numbers are referred to often enough to be given special
names. These are summarized in the box that follows.

As you’ve seen in previous courses, the real numbers can be represented as
points on a number line, as shown in Figure 1. As indicated in Figure 1, the point
associated with the number zero is referred to as the origin.

The fundamental fact here is that there is a one-to-one correspondence between
the set of real numbers and the set of points on the line. This means that each real

�0.6

 �2�3 (� �0.6)
 12 (� 1.4142 . . .)

 7 (� 7.000 . . .)

0_4 _3 _2 _1 1 2 3 4

Origin

Figure 1

Photo by Nelson Ching/Bloomberg via Getty Images



number is identified with exactly one point on the line; conversely, with each point
on the line we identify exactly one real number. The real number associated with a
given point is called the coordinate of the point. As a practical matter, we’re usually
more interested in relative locations than precise locations on a number line. For in-
stance, since p is approximately 3.1, we show p slightly to the right of 3 in Figure 2.
Similarly, since is approximately 1.4, we show slightly less than halfway
from 1 to 2 in Figure 2.

It is often convenient to use number lines that show reference points other than
the integers used in Figure 2. For instance, Figure 3(a) displays a number line with
reference points that are multiples of p. In this case it is the integers that we then
locate approximately. For example, in Figure 3(b) we show the approximate location
of the number 1 on such a line.

Two of the most basic relations for real numbers are less than and greater than,
symbolized by � and �, respectively. For ease of reference, we review these and two
related symbols in the box on page 3.

In general, relationships involving real numbers and any of the four symbols �,
�, �, and � are called inequalities. One of the simplest uses of inequalities is
in defining certain sets of real numbers called intervals. Roughly speaking, any
uninterrupted portion of the number line is referred to as an interval. In the defini-
tions that follow, you’ll see notations such as a � x � b. This means that both
of the inequalities a � x and x � b hold; in other words, the number x is between
a and b.

1212

Figure 2

2 CHAPTER 1 Fundamentals

1_1 0 2 3

œ„2 π

Figure 4

(a) The open interval (a, b) contains
all real numbers from a to b,
excluding a and b.

a b

(b) The closed interval [a, b] contains
all real numbers from a to b,
including a and b.

a b

PROPERTY SUMMARY Sets of Real Numbers

Name Definition and Comments Examples

Natural numbers These are the ordinary counting numbers: 1, 2, 3, and so on. 1, 4, 29, 1066

Integers These are the natural numbers along with their negatives and zero. �26, 0, 1, 1776

Rational numbers As the name suggests, these are the real numbers that are ratios of
two integers (with nonzero denominators). It can be proved that
a real number is rational if and only if its decimal expansion 
terminates (for example, 3.15) or repeats (for example, ).

Irrational numbers These are the real numbers that are not rational. Section A.2 of , 
the Appendix contains a proof of the fact that the number is p, 4 � p, 
irrational. The proof that p is irrational is more difficult. The first 4p
person to prove that p is irrational was the Swiss mathematician 
J. H. Lambert (1728–1777).

312,12
3 � 12,12

2.43
4.173

4.3,1.7 1�  17
10 2 ,

� 
2
3 ,4 1�  

4
1 2 ,

π_π 0 2π 3π_2π

(a)

(b)

π_π 0 2π 3π_2π

1

Figure 3

Definition Open Intervals and Closed Intervals

The open interval (a, b) consists of all real numbers x such that a � x � b. See
Figure 4(a).

The closed interval [a, b] consists of all real numbers x such that a � x � b. See
Figure 4(b).



Note that the brackets in Figure 4(b) are used to indicate that the numbers a and
b are included in the interval [a, b], whereas the parentheses in Figure 4(a) indicate
that a and b are excluded from the interval (a, b). At times you’ll see notation such
as [a, b). This stands for the set of all real numbers x such that a � x � b. Similarly,
(a, b] denotes the set of all numbers x such that a � x � b.

1.1 Sets of Real Numbers 3

PROPERTY SUMMARY Notation for Less Than and Greater Than

Notation Definition Examples

a � b a is less than b. On a number line, oriented as in Figure 1, 2 � 3; �3 ��2
2, or 3, the point a lies to the left of b.

a � b a is less than or equal to b. 2 � 3; 3 � 3

b � a b is greater than a. On a number line oriented as in Figure 1, 3 � 2; 0 � �1
2, or 3, the point b lies to the right of a. (b � a is equivalent 
to a � b.)

b � a b is greater than or equal to a. 3 � 2; 3 � 3

EXAMPLE 1 Understanding Interval Notation

Show each interval on a number line, and specify inequalities describing the numbers
x in each interval.

[�1, 2]  (�1, 2)  (�1, 2]  [�1, 2)

SOLUTION See Figure 5.

Figure 5

In addition to the four types of intervals shown in Figure 5, we can also consider
unbounded intervals. These are intervals that extend indefinitely in one direction or
the other, as shown, for example, in Figure 6. We also have a convenient notation for
unbounded intervals; for example, we indicate the unbounded interval in Figure 6
with the notation (2, q).

[_1, 2]

_1≤x≤2

_1 2

(_1, 2)

_1<x<2

_1 2

(_1, 2]

_1<x≤2

_1 2

[_1, 2)

_1≤x<2

_1 2

2

Figure 6

Comment and caution: The symbol q is read infinity. It is not a real number, and its
use in the context (2, q) is only to indicate that the interval has no right-hand bound-
ary. In the box that follows we define the five types of unbounded intervals. Note that
the last interval, (�q, q), is actually the entire real-number line.
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(a) The interval (�q, 4] consists of all real numbers that are less than or equal to 4.
See Figure 7.

(b) The interval (�3, q) consists of all real numbers that are greater than �3. See
Figure 8.

We conclude this section by mentioning that our treatment of the real-number
system has been rather informal, and we have not derived any of the rules of arith-
metic and algebra using the most basic properties of the real numbers. However, we
do list those basic properties and derive some of their consequences in Section B.6 of
the online Appendix.

PROPERTY SUMMARY Unbounded Intervals

For a real number a the notations for unbounded intervals are:

Notation Defining Inequality Example

(a, q) x � a

[a, q) x � a

(�q, a) x � a

(�q, a] x � a

(�q, q)

2

(2, ̀ )

2

[2, ̀ )

2

(_`, 2)

2

(_`, 2]

2

(_`, ̀ )

EXAMPLE 2 Understanding Notation for Unbounded Intervals

Indicate each set of real numbers on a number line:

(a) (�q, 4]; (b) (�3, q).

SOLUTION

Figure 8

Figure 7

EXERCISE SET 1.1

A
In Exercises 1–10, determine whether the number is a natural
number, an integer, a rational number, or an irrational number.
(Some numbers fit in more than one category.) The following
facts will be helpful in some cases: Any number of the form 
where n is a natural number that is not a perfect square, is irra-
tional. Also, the sum, difference, product, and quotient of an
irrational number and a nonzero rational are all irrational.
(For example, the following four numbers are irrational: 

, and .)�513�23115110 � 2,
16,

1n,

1. (a) �203 (b) 203�2

2. (a) 27�4 (b)

3. (a) 106 (b) 106�107

4. (a) 8.7 (b)

5. (a) 8.74 (b)

6. (a) (b)

7. 8.

9. 10. (0.1234)�(0.5677)115 � 1 2�4

13 � 12 2 � 13 � 12 231101 � 1

199 � 1199

8.74

8.7

227�4

_4 0_3 _2 _1 1

0 1 2 3 4 5
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In each of Exercises 11–20, draw a number line similar to the
one shown in Figure 1. Then indicate the approximate location
of the given number. Where necessary, make use of the approxi-
mations 1.4 and 1.7. (The symbol means is
approximately equal to.)

11. 11�4 12. �7�8 13.

14. 15. 16.

17. 18. 19.

20.

In Exercises 21–30, draw a number line similar to the one
shown in Figure 3(a). Then indicate the approximate location
of the given number.

21. p�2 22. 3p�2 23. p�6 24. 7p�4
25. �1 26. 3 27. p�3 28. 3�2
29. 2p � 1 30. 2p � 1

In Exercises 31–40, say whether the statement is TRUE or
FALSE. (In Exercises 37–40, do not use a calculator or table;
use instead the approximations and .)

31. �5 � �50 32. 0 � �1 33. �2 � �2

34. 35. 36.

37. 2p � 6 38. 2 � (p � 1)�2 39.
40. p2 � 12

In Exercises 41–54, express each interval using inequality
notation and show the given interval on a number line.

41. (2, 5) 42. (�2, 2) 43. [1, 4]

44. 45. [0, 3) 46. (�4, 0]

47. (�3, q) 48. 49. [�1, q)

50. [0, q) 51. (�q, 1) 52. (�q, �2)

53. (�q, p] 54. (�q, q)

B
55. The value of the irrational number p, correct to ten decimal

places (without rounding off), is 3.1415926535. By using a
calculator, determine to how many decimal places each of
the following quantities agrees with p.
(a) (4�3)4: This is the value used forp in the Rhind papyrus,

an ancient Babylonian text written about 1650 B.C.
(b) 22�7: Archimedes (287–212 B.C.) showed that

223�71 � p � 22�7. The use of the approximation
22�7 for p was introduced to the Western world
through the writings of Boethius (ca. 480–520), a
Roman philosopher, mathematician, and statesman.
Among all fractions with numerators and denominators
less than 100, the fraction 22�7 is the best approxi-
mation to p.

112, q 2
3� 

3
2 , 12 4

212 � 2

0.7 � 0.713
14 � 15

1617 � 2 � 0

p � 3.112 � 1.4

1213 � 1 2�2

11 � 12 2�212 � 1312 � 13

�12 � 112 � 11 � 12

1 � 12

�13 �12 �

(c) 355�113: This approximation of p was obtained in
fifth-century China by Zu Chong-Zhi (430–501) and his
son. According to David Wells in The Penguin
Dictionary of Curious and Interesting Numbers
(Harmondsworth, Middlesex, England: Viking Penguin,
Ltd., 1986), “This is the best approximation of any frac-
tion below 103993�33102.”

(d) This approximation for p was 

obtained by the Indian mathematician Scrinivasa
Ramanujan (1887–1920).

Remark: A simple approximation that agrees with p through 

the first 14 decimal places is This 

approximation was also discovered by Ramanujan. For a
fascinating account of the history of �, see the book by Petr
Beckmann, A History of �, 16th ed. (New York: Barnes &
Noble Books, 1989), and for a more modern look at �, see
Richard Preston’s article, “The Mountains of Pi,” in The New
Yorker (March 2, 1992, pp. 36–67).

C
In Exercises 56–58, give an example of irrational numbers a
and b such that the indicated expression is (a) rational and 
(b) irrational.

56. a � b 57. ab 58. a�b
59. (a) Give an example in which the result of raising a

rational number to a rational power is an irrational
number.

(b) Give an example in which the result of raising an
irrational number to a rational power is a rational
number.

60. Can an irrational number raised to an irrational power
yield an answer that is rational? This problem shows that
the answer is “yes.” (However, if you study the following
solution very carefully, you’ll see that even though we’ve
answered the question in the affirmative, we’ve not
pinpointed the specific case in which an irrational
number raised to an irrational power is rational.)
(a) Let Now, either A is rational or A is

irrational. If A is rational, we are done. Why?
(b) If A is irrational, we are done. Why?

Hint: Consider 

Remark: For more about this problem and related
questions, see the article “Irrational Numbers,” 
by J. P. Jones and S. Toporowski in American
Mathematical Monthly, vol. 80 (1973), 
pp. 423–424.

A12.

A � 112 212.

355

113
 a1 �

0.0003

3533
b .

63

25
 a 17 � 1515

7 � 1515
b :



ABSOLUTE VALUE
As an aid in measuring distances on the number line, we review the concept of
absolute value. We begin with a definition of absolute value that is geometric in
nature. Then, after you have developed some familiarity with the concept, we explain
a more algebraic approach that is often useful in analytical work.

6 CHAPTER 1 Fundamentals

1.2
There has been a real need in analysis
for a convenient symbolism for
“absolute value” . . . and the two
vertical bars introduced in 1841 by
Weierstrass, as in have met with
wide adoption; . . . —Florian Cajori in
A History of Mathematical Notations,
vol. 1 (La Salle, Ill.: The Open Court
Publishing Co., 1928)

0 z 0 ,

Figure 1

EXAMPLE 2 Rewriting Expressions to Eliminate Absolute Value

Rewrite each expression in a form that does not contain absolute values:

(a) ; (b) , given that x � 5; (c) , given that t � 5.0 t � 5 00 x � 5 00p � 4 0 � 1

EXAMPLE 1 Evaluating Expressions Containing Absolute Values

Evaluate each expression:

(a) ; (b) � 0�2 0 � 0� 3 0 �.5 � 06 � 7 0
SOLUTION (a) (b)

5 � 5 � 1 � 4

As we said at the beginning of this section, there is an equivalent, more algebraic
way to define absolute value. According to this equivalent definition, the value of 
is x itself when x � 0, and the value of is �x when x � 0. We can write this sym-
bolically as follows:

0 x 0 0 x 0

� 0�1 0 � 1

� 0�2 0 � 0�3 0 � � 0 2 � 3 05 � 06 � 7 0 � 5 � 0�1 0

0 5_5

_5 =5 5 =5

Definition Absolute Value (Geometric Version)

The absolute value of a real number x, denoted by is the distance from x to the
origin.

0 x 0 ,

For instance, because the numbers 5 and �5 are both five units from the origin, we
have and . See Figure 1. Here are three more examples:

0 17 0 � 17  0�2�3 0 � 2�3  0 0 0 � 0

0�5 0 � 505 0 � 5

Definition Absolute Value (Algebraic Version)

EXAMPLE

By looking at examples with specific numbers, you should be able to convince your-
self that both definitions yield the same result. We use the algebraic definition of
absolute value in Examples 2 and 3.

0�7 0 � �(�7) � 70 x 0 � e x when x � 0

�x when x � 0
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SOLUTION (a) The quantity p� 4 is negative (since p� 3.14), and therefore its absolute value
is equal to �(p � 4). In view of this, we have

(b) Since x � 5, the quantity x � 5 is nonnegative, and therefore its absolute value
is equal to x � 5 itself. Thus we have

(c) Since t � 5, the quantity t � 5 is negative. Therefore its absolute value is equal
to �(t � 5), which in turn is equal to 5 � t. In view of this, we have

0 t � 5 0 � 5 � t  when t � 5

0 x � 5 0 � x � 5  when x � 5

0p � 4 0 � 1 � �(p � 4) � 1 � �p � 5

EXAMPLE 3 Simplifying an Expression Containing Absolute Values

Simplify the expression , given that x is in the open interval (1, 2).0 x � 1 0 � 0 x � 2 0
SOLUTION Since x is greater than 1, the quantity x � 1 is positive, and consequently,

On the other hand, we are also given that x is less than 2. Therefore the quantity 
x � 2 is negative, and we have

Putting things together now, we can write

In the box that follows, we list several basic properties of the absolute value.
Each of these properties can be derived from the definitions. (With the exception of
the triangle inequality, we shall omit the derivations. For a proof of the triangle
inequality, see Exercise 67.)

 � �1 � 2 � 1
 � (x � 1) � (�x � 2)

 0 x � 1 0 � 0 x � 2 0 � (x � 1) � [�(x � 2)]

0 x � 2 0 � �(x � 2)

0 x � 1 0 � x � 1

PROPERTY SUMMARY Properties of Absolute Value

1. For all real numbers x, we have

(a) x � 0;

(b) x � x and �x � x ;

(c) x 2 � x2;

(d) � x .

2. For all real numbers a and b, we have

(a) ab � a b and a�b � a � b (b 	 0);

(b) a � b � a � b (the triangle inequality).000000
000000000000

002x2

00
0000

00



4 Rewriting an Expression to Eliminate Absolute Value

Write the expression �2 � x2 in an equivalent form that does not contain absolute
values.

Note that x2 is nonnegative for any real number x, so 2 � x2 is positive. Then
is negative. Thus

using the algebraic definition of
absolute value

Alternatively,

using Property 2(a)

If we think of the real numbers as points on a number line, the distance between
two numbers a and b is given by the absolute value of their difference. For instance,
as indicated in Figure 2, the distance between 5 and 7, namely, 2 , is given by either 
5 � 7 or 7 � 5 . For reference, we summarize this simple but important fact as

follows.
0000

 � 2 � x2

 � 0�1 0 0 2 � x2 0
 0�2 � x2 0 � 0�1(2 � x2) 0

 � 2 � x2

 0�2 � x2 0 � �(�2 � x2)

�2 � x2 � �(2 � x2)

00
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EXAMPLE

SOLUTION

Figure 2

PROPERTY SUMMARY Distance on a Number Line

For real numbers a and b, the distance between a and b is 0 a � b 0 � 0b � a 0

5 Using Absolute Value to Rewrite Statements Regarding Distance

Rewrite each of the following statements using absolute value notation:

(a) The distance between 12 and �5 is 17.
(b) The distance between x and 2 is 4.
(c) The distance between x and 2 is less than 4.
(d) The number t is more than five units from the origin.

(a) 12 � (�5) � 17 or �5 � 12 � 17
(b) x � 2 � 4 or 2 � x � 4
(c) x � 2 � 4 or 2 � x � 4
(d) t � 5

6 Displaying Intervals Defined by Absolute Value Inequalities

In each case, the set of real numbers satisfying the given inequality is one or more
intervals on the number line. Show the interval(s) on a number line.

(a) x � 2 (b) x � 2 (c) x � 3 � 1 (d) x � 3 � 1

(a) The given inequality tells us that the distance from x to the origin is less 
than two units. So, as indicated in Figure 3, the number x must lie in the open 
interval (�2, 2).

00000000

00 0000
0000 0000

EXAMPLE

SOLUTION

EXAMPLE

SOLUTION
Figure 3
0 x 0 � 2

3 4 5 6 7 8

distance =|5-7|=|7-5|=2

0_1_2 1 2



(b) The condition x � 2 means that x is more than two units from the origin. Thus,
as indicated in Figure 4, the number x lies either to the right of 2 or to the left 
of �2.

(c) The given inequality tells us that x must be less than one unit away from 3 on the
number line. Looking one unit to either side of 3, then, we see that x must lie
between 2 and 4 and x cannot equal 2 or 4. See Figure 5.

(d) The inequality x � 3 � 1 says that x is at least one unit away from 3 on the
number line. This means that either x � 4 or x � 2, as shown in Figure 6. [Here’s
an alternative way of thinking about this: The numbers satisfying the given in-
equality are precisely those numbers that do not satisfy the inequality in part (c).
So for part (d), we need to shade that portion of the number line that was not
shaded in part (c).]

00

00
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0_1 1_2 2

Figure 4
0 x 0 � 2

32 4

Figure 5
0 x � 3 0 � 1

32 4

Figure 6
0 x � 3 0 � 1

EXERCISE SET 1.2

A
In Exercises 1–16, evaluate each expression.

1. 3 2. 3 � �3
3. �6 4. �6 � �6
5. �1 � 3 6. �6 � 3

7. 8.
9. �6 � 2 � 4 10. �3 � 4 � �4

11. 12.

13. 14.

15. 7(�8) � 7 � �8
16. (�7)2 � �7 2 � (� �3 )3

In Exercises 17–24, evaluate each expression, given that
a � �2, b � 3, and c � �4.

17. a � b 2 18. a2 � bc
19. c � b � a 20. b � c � b � c

21. a � b 2 � b � c 2 22.

23. 24.

In Exercises 25–38, rewrite each expression without using
absolute value notation.

25. 26.
27. x � 3 given that x � 3 28. x � 3 given that x � 3
29. t 2 � 1 30. x4 � 1
31. 32.
33. x � 3 � x � 4 given that x � 30000

��13 � 15 ���13 � 4 �
0000
0000

01 � 12 0 � 1�12 � 1 � � 1

a � b � 0a � b 0
2

a � b � 0 a � b 0
2

0a 0 � 0 b 0 � 0 c 0
0a � b � c 00000

000000000000
0000

000000
000000

0 27 � 5 0
0 5 � 27 0` 27 � 5

5 � 27
`

� 0�8 0 � 0�9 0 �� 0�8 0 � 0�9 0 �
00000000

0  45 0 � 4
50� 

4
5 0 � 4

5

0000
0000
0000

34. x � 3 � x � 4 given that x � 4
35. x � 3 � x � 4 given that 3 � x � 4
36. x � 3 � x � 4 given that x � 4
37. x � 1 � 4 x � 3 given that 
38. x � 1 � 4 x � 3 given that x � �3

In Exercises 39–48, rewrite each statement using absolute
value notation, as in Example 5.

39. The distance between x and 1 is 1�2.
40. The distance between x and 1 is less than 1�2.
41. The distance between x and 1 is at least 1�2.
42. The distance between x and 1 exceeds 1�2.
43. The distance between y and �4 is less than 1.
44. The distance between x3 and �1 is at most 0.001.
45. The number y is less than three units from the origin.
46. The number y is less than one unit from the number t.
47. The distance between x2 and a2 is less than M.
48. The sum of the distances of a and b from the origin is

greater than or equal to the distance of a � b from the
origin.

In Exercises 49–60, the set of real numbers satisfying the given
inequality is one or more intervals on the number line. Show
the interval(s) on a number line.

49. x � 4 50. x � 2
51. x � 1 52. x � 0
53. x � 5 � 3 54. x � 4 � 4
55. x � 3 � 4 56. x � 1 �

57. 58.
59. x � 5 � 2 60. x � 5 � 20000

0 x � p
2  0 � 10 x � 1

3 0 � 3
2

1
20000

0000
0000
0000

0000
� 

5
2 � x � � 

3
20000

0000
0000
0000



B
61. In parts (a) and (b), sketch the interval or intervals corre-

sponding to the given inequality:
(a) x � 2 � 1;
(b) 0 � x � 2 � 1.
(c) In what way do your answers in (a) and (b) differ? (The

distinction is important in the study of limits in calculus.)
62. Show that for all real numbers a and b, we have

Hint: Beginning with the identity a � (a � b) � b, take 
the absolute value of each side and then use the triangle
inequality.

63. Show that

for all real numbers a, b, and c. Hint: The left-hand 
side can be written a � (b � c) . Now use the triangle
inequality.

64. Explain why there are no real numbers that satisfy the
equation x2 � 4x � �12.00

00

0 a � b � c 0 � 0a 0 � 0b 0 � 0 c 0

0a 0 � 0b 0 � 0a � b 0

00
00

C
65. (As background for this exercise, you might want to work

Exercise 23.) Prove that

Hint: Consider three separate cases: a � b; a � b; and
b � a.

66. (As background for this exercise, you might want to work
Exercise 24.) Prove that

67. Complete the following steps to prove the triangle
inequality.
(a) Let a and b be real numbers. Which property in the

summary box on page 7 tells us that a � a and 
b � b ?

(b) Add the two inequalities in part (a) to obtain
a � b � a � b .

(c) In a similar fashion, add the two inequalities �a � a
and �b � b and deduce that �(a � b) � a � b .

(d) Why do the results in parts (b) and (c) imply that 
a � b � a � b ?000000

000000
00

0000
00

00

min(a, b ) �
a � b � 0 a � b 0

2

max(a, b ) �
a � b � 0 a � b 0

2
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1.3 SOLVING EQUATIONS (REVIEW AND PREVIEW)
The title of al-Khwarizmi’s second and most important book, Hisab al-jabr w’al
muqabala [830] . . . has given us the word algebra. Al-jabr means transposing a
quantity from one side of an equation to the other, while muqabala signifies the
simplification of the resulting equation. —Stuart Hollingdale in Makers of Mathematics

(Harmondsworth, Middlesex, UK: Penguin Books, Ltd., 1989)

“Algebra is a merry science,” Uncle Jakob would say. “We go hunting for a little
animal whose name we don’t know, so we call it x. When we bag our game we pounce
on it and give it its right name.” —Physicist Albert Einstein (1879–1955)

Consider the familiar expression for the area of a circle of radius r, namely, pr2. Here
p is a constant; its value never changes throughout the discussion. On the other hand,
r is a variable; we can substitute any positive number for r to obtain the area of a par-
ticular circle. More generally, by a constant we mean either a particular number
(such as p, or �17, or or a letter with a value that remains fixed (although per-
haps unspecified) throughout a given discussion. In contrast, a variable is a letter for
which we can substitute any number selected from a given set of numbers. The given
set of numbers is called the domain of the variable.

Some expressions will make sense only for certain values of the variable. For
instance, 1�(x � 3) will be undefined when x is 3 (for then the denominator is zero).
So in this case we would agree that the domain of the variable x consists of all real
numbers except x � 3. Similarly, throughout this chapter we adopt the following
convention.

12)

I learned algebra fortunately by not
learning it at school, and knowing that
the whole idea was to find out what x
was, and it didn’t make any difference
how you did it. —Physicist Richard
Feynman (1918–1988) in Jagdish
Mehra’s The Beat of a Different Drum
(New York: Oxford University Press,
1994)



The domain of a variable in a given expression is the set of all real-number values of
the variable for which the expression is defined.

It’s customary to use the letters near the end of the alphabet for variables; letters
from the beginning of the alphabet are used for constants. For example, in the ex-
pression ax � b, the letter x is the variable and a and b are constants.

The Domain Convention

1.3 Solving Equations (Review and Preview) 11

EXAMPLE 1 Specifying Variables, Constants, and the Domain in an Expression

Specify the variable, the constants, and the domain of the variable for each of the fol-
lowing expressions:

(a) 3x � 4; (b) (c) ay2 � by � c; (d) 4x � 3x�1.
1

(t � 1)(t � 3)
 ;

SOLUTION Variable Constants Domain

(a) 3x � 4 x 3, 4 The set of all real numbers.

(b) t 1, �1, 3 The set of all real numbers
except t � 1 and t � �3.

(c) ay2 � by � c y a, b, c The set of all real numbers.

(d) 4x � 3x�1 x 4, 3 The set of all real numbers
except x � 0.

Note: The number 2 that appears in part (c) above is an exponent; y2 is shorthand
notation for the product y 
 y. Similarly, in part (d) is shorthand notation 
for 1�x.

Now let’s review the terminology and skills used in solving two basic types of
equations: linear equations and quadratic equations.

x�1

1

(t � 1) (t � 3)

Definition Linear Equation in One Variable

A linear or first-degree equation in one variable is an equation that can be written
in the form

ax � b � 0 with a and b real numbers and a 	 0

Here are three examples of linear equations in one variable:

As with any equation involving a variable, each of these equations is neither true nor
false until we replace the variable with a number. By a solution or a root of an equa-
tion in one variable, we mean a value for the variable that makes the equation a true

2x � 10,  3m � 1 � 2,  and  
y

2
�

y

3
� 1



statement. For example, the value x � 5 is a solution of the equation 2x � 10, since,
with x � 5, the equation becomes 2(5) � 10, which is certainly true. We also say in
this case that the value x � 5 satisfies the equation. To check an equation means to
verify that the original equation with the solution substituted for the variable is a true
statement.

Equations that become true statements for all values in the domain of the variable
are called identities. Two examples of identities are

The first is true for all real numbers; the second is true for all real numbers except 0.
In contrast to this, a conditional equation is true only for some (or perhaps none) of
the values of the variable. Two examples of conditional equations are 2x � 10 and
x � x � 1. The first of these is true only when x � 5. The second equation has no
solution (because, intuitively at least, no number can be one more than itself).

We say that two equations are equivalent when they have exactly the same solu-
tions. In this section, and throughout the text, the basic method for solving an equa-
tion in one variable involves writing a sequence of equivalent equations until we
finally reach an equivalent equation of the form

which explicitly displays a solution of the original equation. In generating equivalent
equations, we rely on the following three principles. (These can be justified by using
the properties of real numbers discussed in the online Appendix B.6.)

1. Adding or subtracting the same quantity on both sides of an equation produces
an equivalent equation.

2. Multiplying or dividing both sides of an equation by the same nonzero quantity
produces an equivalent equation.

3. Simplifying an expression on either side of an equation produces an equivalent
equation.

The examples that follow show how these principles are applied in solving
various equations. Note: Beginning in Example 2, we use some basic factoring
techniques from elementary or intermediate algebra. If you find that you need a
quick reference for factoring formulas, see the inside back cover of this book. For a
detailed review (with many examples and practice exercises) see the online
Appendix B.4.

Procedures That Yield Equivalent Equations

variable � a number

x2 � 9 � (x � 3)(x � 3)  and  
4x2

x
� 4x

12 CHAPTER 1 Fundamentals

EXAMPLE 2 Solving Equations Equivalent to Linear Equations

(a) Solve: 
(b) Solve: ax � b � c; where a, b, and c are constants, a 	 0.

(c) Solve: 
1

x � 5
�

2

x � 3
�

2x � 2

x2 � 2x � 15
 .

3[1 � 2(x � 1)] � 2 � x.
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SOLUTION (a)
simplifying the left-hand side

adding x to both sides

adding 3 to both sides

dividing both sides by �5

CHECK Substituting �1 for x, the left-hand side of the original equation yields

3[1 � 2(�1 � 1)] � 3[1 � 2(0)] � 3[1] � 3

and the right-hand side of the original equation yields

2 �(�1) � 2 � 1 � 3

Therefore x � �1 is the solution of the given equation.

(b)
subtracting b from both sides

dividing both sides by a (recall that a 	 0)

CHECK Replacing x with , the left-hand side of the original equation 
becomes

and c is the right-hand side of the original equation. So is the solution
of the given equation.

(c) A common strategy in solving equations with fractions is to multiply through by
the least common denominator. This eliminates the need to work with fractions.
By factoring the denominator x2 � 2x � 15, we obtain

From this we see that the least common denominator for the three fractions is
(x � 5)(x � 3). Now, multiplying both sides by this least common denominator,
we have

simplifying

simplifying

subtracting 4x from both sides

adding 3 to both sides

dividing both sides by �3 x � �5

 �3x � 15

 �3x � 3 � 12

 x � 3 � 4x � 12

 x � 3 � 2x � 10 � 2x � 2

 x � 3 � 2(x � 5) � 2x � 2

 
(x � 5)(x � 3)

x � 5
�

2(x � 5)(x � 3)

x � 3
�

(2x � 2)(x � 5)(x � 3)

(x � 5)(x � 3)

1

x � 5
�

2

x � 3
�

2x � 2

(x � 5) (x � 3)

x �
c � b

a

a a c � b
a
b � b � c � b � b � c

c � b
a

 x �
c � b

a

 ax � c � b
 ax � b � c

 x � �1

 �5x � 5

 �3 � 5x � 2

 �3 � 6x � 2 � x
 3(�1 � 2x) � 2 � x

 3[1 � 2x � 2)] � 2 � x

 3[1 � 2(x � 1)] � 2 � x



CHECK The preceding steps show that if the equation has a solution, then the solu-
tion is x � �5. With x � �5, however, the left-hand side of the original equation
becomes 1�(�5 � 5), or 1�0, which is undefined. We conclude therefore that the
given equation has no solution.

In Example 2(c) the value x � �5, which we obtained in simplifying the original
equation but which does not check in the original equation, is called an extraneous
root or an extraneous solution. How is it that an extraneous solution was generated
in Example 2(c)? We multiplied both sides by (x � 5)(x � 3). Since we didn’t know
at that stage whether the quantity (x � 5)(x � 3) was nonzero, we could not be cer-
tain that the resulting equation was actually equivalent to the original equation.
[Indeed, when x � �5, the quantity (x � 5)(x � 3) is equal to zero.] For this reason,
it is always necessary to check in the original equation any solutions you obtain as a
result of multiplying both sides of an equation by an expression involving the vari-
able. We restate this advice in the box that follows.

14 CHAPTER 1 Fundamentals

PROPERTY SUMMARY Extraneous Solutions

Multiplying both sides of an equation by an expression involving the variable may
introduce extraneous solutions. Therefore, it is always necessary to check in the
original equation any candidates for solutions.

EXAMPLE 3 Solving Equations Where the Unknown Is the Denominator

Solve the given equation for x and check your solution.

where cx � d 	 0, yc � a 	 0y �
ax � b

cx � d

SOLUTION Multiplying both sides of the given equation by the nonzero quantity cx � d yields

simplifying

gathering terms involving x

factoring

dividing both sides by 

CHECK Substituting for x in the right-hand side of the original equation
we have

�
bcy � ady

bc � ad
�

(bc � ad )y

bc � ad
� y

�
a(b � yd ) � b(yc � a )

c(b � yd ) � d(yc � a )
�

ab � ady � bcy � ab

bc � cdy � cdy � ad

a a b � yd

yc � a
b � b

c a b � yd

yc � a
b � d

�

a a b � yd

yc � a
b � b

c a b � yd

yc � a
b � d

 �  
yc � a

yc � a

b � yd

yc � a

yc � a 	 0 x �
b � yd

yc � a

 x(yc � a ) � b � yd

 ycx � ax � b � yd

 ycx � yd � ax � b

 y(cx � d ) � ax � b



1.3 Solving Equations (Review and Preview) 15

Definition Quadratic Equation

A quadratic equation is an equation in one variable that can be written in the form

ax2 � bx � c � 0 with a, b, and c real numbers and a 	 0

To solve a quadratic equation by factoring, we rely on the following familiar and
important property of the real-number system.

In the example just concluded, we used a basic factoring technique from elemen-
tary algebra to solve the equations. Factoring is also useful in solving quadratic
equations.

PROPERTY SUMMARY Zero-Product Property of Real Numbers

pq � 0    if and only if    p � 0 or q � 0  (or both)

EXAMPLE 4 Applying the Zero-Product Property to Solve Quadratic Equations

Solve:

(a) 8x2 � 3 � 10x; (b) 4x2 � 9 � 0.

SOLUTION (a) In preparation for using the zero-product property, we first rewrite the equation
so the right-hand side is zero. Then we have

Check the factoring.

You can check that the values x � 3�2 and x � �1�4 both satisfy the given
equation.

(b) Using difference-of-squares factoring, we have

You can check that the values x � 3�2 and x � �3�2 both satisfy the given
equation.

Here’s another perspective on Example 4(b). Instead of using factoring to solve
the equation 4x2 � 9 � 0, we can instead rewrite it as x2 � 9�4. Taking the principal
square root of each side then yields

2x2 � 29�4

 x � �
3

2
x �

3

2

 2x � 3 � 02x � 3 � 0

 (2x � 3)(2x � 3) � 0

 x � �
1

4
x �

3

2

 4x � 1 � 02x � 3 � 0

 (2x � 3)(4x � 1) � 0

 8x2 � 10x � 3 � 0



and therefore

By looking at this last equation, we can see that there are two solutions, x � 3�2 and
x � �3�2. (Those are the only two numbers with absolute values of 3�2.) We
abbreviate these two solutions by writing x � �3�2. In practice, we usually omit
showing the step involving the absolute value. For example, to solve the equation
4x2 � 9 � 0, just rewrite it as x2 � 9�4. Then “taking square roots” immediately 
yields the two solutions x � � � �

Not all quadratic equations can be solved by factoring. Consider, for example,
the equation x2 � 2x � 4 � 0. The only three possible factorizations with integer 
coefficients are

but none yields the appropriate middle term, �2x, when multiplied out. In cases such
as these, we can use the quadratic formula, given in the box that follows. (In Sec-
tion 2.1, we’ll derive this formula and look at some of its implications. For now,
though, the focus is simply on using this formula to calculate solutions.)

The solutions of the quadratic equation ax2 � bx � c � 0, where a 	 0, are given by

x �
�b � 2b2 � 4ac

2a

The Quadratic Formula

(x � 4)(x � 1)  (x � 4)(x � 1)  (x � 2)(x � 2)

3�2.29�4

�x � �
3

2
    since 2x2 � 0 x 0
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EXAMPLE 5 Using the Quadratic Formula to Solve a Quadratic Equation

Use the quadratic formula to solve the equation 2x2 � 3 � 4x.

SOLUTION We first rewrite the given equation as 2x2 � 4x � 3 � 0, so that it has the form
ax2 � bx � c � 0. By comparing these last two equations, we see that a � 2, b � 4,
and c � �3. Therefore

Thus, the two solutions are or

The techniques that we’ve reviewed in this section for solving linear and qua-
dratic equations will be used throughout this book; you’ll see applications in analyz-
ing graphs and functions and in solving many types of applied problems. Linear and
quadratic equations both fall under the general heading of polynomial equations.

�2 � 110

2
.x �

�2 � 110

2

 �
�4 � 140

4
�

�4 � 2110

4
�

 2  (�2 � 110)

       4 
2

�
�2 � 110

2

 x �
�b � 2b2 � 4ac

2a
�

�4 � 242 � 4(2)(�3)

2(2)
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Definition Polynomial Equation

A polynomial equation in one variable is EXAMPLES
an equation of the form (a) 4x2 � 5x � 1 � 0

(b) x3 � 2x2 � 3x � 0

where the subscripted letter a’s represent (c) 2x4 � � x2 � 3x � � 0

constants and the exponents on the
variable are nonnegative integers.

If an is not zero, the degree of the polynomial equation is the largest exponent of the
variable that appears in the equation. For example, the degrees of equations (a), (b),
and (c) in the box above are 2, 3, and 4, respectively.

As we’ve seen in this section, polynomial equations of degree 1 (linear equa-
tions) and polynomial equations of degree 2 (quadratic equations) can be solved by
using fairly basic algebra. So too can some higher-degree equations. For instance, we
can use factoring and the zero-product property to solve equation (b) in the box
above. We have

factoring out the common factor x

factoring the quadratic

Therefore

using the zero-
product property

From these last three equations we conclude that the solutions of the third-degree
polynomial equation x3 � 2x2 � 3x � 0 are x � 0, 3, and �1. (You should check for
yourself that each of these numbers indeed satisfies the equation.)

Unfortunately, not all polynomial equations are as easy to solve as this last one.
Chapter 13 contains a more complete discussion of polynomial equations and an

answer to the following question: Is there a general formula, similar to the quadratic
formula, for solving any polynomial equation?

x � 0    or    x � 3 � 0    or    x � 1 � 0

 x(x � 3)(x � 1) � 0

 x(x2 � 2x � 3) � 0

 x3 � 2x2 � 3x � 0

124
3 x3

anx
n � an�1x

n�1 � p � a1x � a0 � 0

EXERCISE SET 1.3

A
In Exercises 1–5, determine whether the given value is a
solution of the equation.

1. 4x � 5 � �13; x � �2 2.

3.

4. (y � 1)(y � 5) � 0; y � 5

5. m2 � m � � 0; m �

6. Verify that the numbers 1 � and 1 � both satisfy
the equation x2 � 2x � 4 � 0.

1515

1
4

5
16

2

y � 1
�

3
y

�
7

y2 � y
 ; y � �3

1
x

�
3
x

� 1; x � 2

Solve each equation in Exercises 7–23.

7. 2x � 3 � �5
8. 2m � 1 � 3m � 5 � 6m � 8
9. 1 � (2m � 5) � �3m

10. (x � 2)(x � 1) � x2 � 11
11. t � {4 � [t � (4 � t)]} � 6

12. 13.

14. 15.
1
x

�
4
x

� 1
x � 1

4
�

2x � 3

�1
� 0

1 �
y

3
� 6

x

3
�

2x

5
�

�11

5



56. (a) y � mx � b, where m 	 0
(b) y � y1 � m(x � x1), where m 	 0

(c)

(d) Ax � By � C � 0, where A 	 0
57. (ax � b)2 � (bx � a)2 � 0, where a 	 �b
58.

B
In Exercises 59–64, solve each equation for x in terms of the
other letters.

59. a2(a � x) � b2(b � x) � 2abx, where a 	 b

60. where a 	 b

61.

62.

63. , where a 	 b

64.

In Exercises 65–68, solve each equation for the indicated
variable, and check your solution.

65. S � 2pr2 � 2prh; for h 66. for y

67. for r 68. for r

Solve the equations in Exercises 69–74. (In these exercises,
you’ll need to multiply both sides of the equations by expres-
sions involving the variable. Remember to check your answers
in these cases.)

69. 70.

71. 72.

73. 74.

75. Given the equation 

(a) Solve to show provided 

(b) Check the solution.

a � b 	 0.x �
ab

a � b
 ,

1
x

�
1
a

�
1

b
 :

2x

x2 � 1
�

1

x � 3
� 0

x

x � 2
�

x

x � 2
�

8

x2 � 4

x2 � 3x

x � 1
�

4

x � 1
1 � x �

2

6x � 1
� 0

5

x � 2
�

2x � 1

5
� 0

3

x � 5
�

4
x

� 2

S �
rl � a

r � 1
 ;d �

r

1 � rt
 ;

x1x

a2 �
y1y

b2 � 1;

1 �
a

b
a1 �

a

x
b �

b

a
a1 �

b

x
b � 0

x � a

x � b
�

b � x

a � x

x � 2p

2q � x
�

x � 2p

2q � x
�

4pq

4q2 � x2 � 0

a � x

a � b
� 2 �

c � x

b � c

b

ax � 1
�

a

bx � 1
� 0,

(x � p)2 � (x � q)2 � p2 � q2

x

a
�

y

b
� 1

16.

17.

18.

19.

20.

21.

22. (a) (b) (c)

23. (a) (b) (c)

In Exercises 24–33, solve each equation by factoring.

24. x2 � 5x � 6 � 0 25. x2 � 5x � �6
26. 10z2 � 13z � 3 � 0 27. 3t2 � t � 4 � 0
28. (x � 1)2 � 4 � 0 29. x2 � 3x � 40 � 0
30. x(2x � 13) � �6 31. x(3x � 23) � 8
32. x(x � 1) � 156 33. x2 � � 5 � 0

In Exercises 34–41, use the quadratic formula to solve each
equation. In Exercises 34–39, give two forms for each solution:
an expression containing a radical and a calculator approxima-
tion rounded off to two decimal places.

34. 2x2 � 3x � 4 � 0 35. 4x2 � 3x � 9 � 0
36. x(x � 6) � �2 37. x(3x � 8) � �2
38. 2x2 � 10 � � 39.
40. 12x2 � 25x � �12 41. 24x2 � 23x � �5

In Exercises 42–47, solve the equations using any method you
choose.

42. x2 � 24 43. 2y2 � 50 � 0
44. 45. x2 � � 0
46. (a) u(u � 18) � �81 (b) u(u � 18) � 81
47. (a) x2 � 156x � 5963 � 0 (b) 144y2 � 54y � 13
48. Solve each of the following equations for x. Hint: As in

the text, begin by factoring out a common factor.
(a) x3 � 13x2 � 42x � 0
(b) x3 � 6x2 � x � 0

For Exercises 49–58, solve each equation for x in terms of the
other letters.

49. 3ax � 2b � b � 3 50. ax � b � bx � a

51. ax � b � bx � a 52.

53. 54. 55.
1
a

�
1
x

�
1
x

�
1

b

1
ax

�
1

bx
�

1
c

1
x

� a � b

x

a
�

x

b
� 1

151
8 � t2 � 0

13x2 � 13 � 6x12x

1215 2 x

3

x � 2
�

5
5
3 x � 2

3

x � 2
�

5

9x � 2

3

x � 2
�

5

9x

2

3x
�

3
x

� 1
2

3x
�

3

x � 1

2

3x
�

3
x

5

x � 4
�

3

2x2 � 5x � 12
�

1

2x � 3

3

2x � 1
�

4

x � 1
�

2

2x2 � 3x � 1

4

x � 2
�

1

x � 2
�

4

x2 � 4

1

x � 5
�

1

x � 5
�

2x � 1

x2 � 25

1

x � 3
�

2

x � 3
�

1

x2 � 9

1
y

� 1 �
3
y

�
1

2y
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(a) A graph of the formula s � 16t@ in  a t-s coordinate system. 
[The formula relates the distance s (in feet) and the time t  
(in seconds) for an object falling in a vacuum.]
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A graph of the equation F � _ C � 32 in a C-F coordinate system.
(The equation gives the relationship between the temperature C 
on the Celsius scale and F on the Fahrenheit scale.)
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1.4 RECTANGULAR COORDINATES. VISUALIZING DATA
The name coordinate does not appear in the work of Descartes. This term is due to
Leibniz and so are abscissa and ordinate (1692). —David M. Burton in The History of

Mathematics: An Introduction, 2nd ed. (Dubuque, Iowa: Wm. C. Brown Publishers, 1991)

In previous courses you learned to work with a rectangular coordinate system such
as that shown in Figure 1. In this section we review some of the most basic formulas
and techniques that are useful here.

The point of intersection of the two perpendicular number lines, or axes, is called
the origin and is denoted by the letter O. The horizontal and vertical axes are often
labeled the x-axis and the y-axis, respectively, but any other variables will do just as
well for labeling the axes. See Figure 2 for examples of this. (We’ll discuss curves or
graphs like the ones in Figure 2 in later sections.)

Note that in Figures 1 and 2 the axes divide the plane into four regions, or
quadrants, labeled I through IV, as shown in Figure 1. Unless indicated otherwise,
we assume that the same unit of length is used on both axes. In Figure 1, the same
scales are used on both axes; not so in Figure 2.

Now look at the point P in Figure 3(a). Starting from the origin O, one way to
reach P is to move three units in the positive x-direction and then two units in the
positive y-direction. That is, the location of P relative to the origin and the axes is
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“right 3, up 2.” We say that the coordinates of P are (3, 2). The first number within
the parentheses conveys the information “right 3,” and the second number conveys
the information “up 2.” We say that the x-coordinate of P is 3 and the y-coordinate
of P is 2. Likewise, the coordinates of point Q in Figure 3(a) are (�2, 4). With this
coordinate notation in mind, observe in Figure 3(b) that (3, 2) and (2, 3) represent
different points; that is, the order in which the two numbers appear within the paren-
theses affects the location of the point. Figure 3(c) displays various points with given
coordinates; you should check for yourself that the coordinates correspond correctly
to the location of each point.

Some terminology and notation: The x-y coordinate system that we have de-
scribed is often called a Cartesian coordinate system. The term Cartesian is used
in honor of René Descartes, the seventeenth-century French philosopher and mathe-
matician. The coordinates (x, y) of a point P are referred to as an ordered pair.
Recall, for example, that (3, 2) and (2, 3) represent different points; that is, the order
of the numbers matters. The x-coordinate of a point is sometimes referred to as the
abscissa of the point; the y-coordinate is the ordinate. The notation P(x, y) means
that P is a point that has coordinates (x, y). At times, we abbreviate the phrase the
point whose coordinates are (x, y) to simply the point (x, y).

The next part of our work in this section depends on a key result from elementary
geometry, the Pythagorean theorem. For reference, we state this theorem and its
converse in the box that follows. (See Exercises 32 and 33 at the end of this section
or Exercise 100 in the Chapter Review for outlines of proofs of the Pythagorean
theorem.)
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1. Pythagorean Theorem
(See Figure 4.) In a right triangle the lengths of the sides are related by the
equation

a2 � b2 � c2

where a and b are the lengths of the sides forming the right angle and c is the
length of the hypotenuse (the side opposite the right angle).

2. Converse
If the lengths a, b, and c of the sides of a triangle are related by an equation
of the form a2 � b2 � c2, then the triangle is a right triangle, and c is the length
of the hypotenuse.

The Pythagorean Theorem and Its Converse

cb

a

Figure 4

EXAMPLE 1 Using the Pythagorean Theorem to Find a Distance

Use the Pythagorean theorem to calculate the distance d between the points 
(2, 1) and (6, 3).

SOLUTION We plot the two given points and draw a line connecting them, as shown in 
Figure 5. Then we draw the broken lines as shown, parallel to the axes, and apply the
Pythagorean theorem to the right triangle that is formed. The base of the triangle is
four units long. You can see this by simply counting spaces or by using absolute
value, as discussed in Section 1.2: 6 � 2 � 4. The height of the triangle is found to00



d

(x™, y™)

(x¡, y¡)

| fi-› |

(x™, ›)

y

x
O

| x2-⁄ |

be two units, either by counting spaces or by computing the absolute value:
. Thus we have

Note: Since d is a distance, we disregard the solution � of the equation .

The method we used in Example 1 can be applied to derive a general formula for
the distance d between any two points (x1, y1) and (x2, y2) (see Figure 6). Just as be-
fore, we draw in the right triangle and apply the Pythagorean theorem. We have

(Why?)

and therefore

This last equation is referred to as the distance formula. For reference, we restate it
in the box that follows.

d � 2(x2 � x1)
2 � (y2 � y1)

2

� (x2 � x1)
2 � (y2 � y1)

2

 d2 � 0 x2 � x1 0 2 � 0 y2 � y1 0 2

d2 � 20120

 d � 120 � 1415 � 215

 d2 � 42 � 22 � 20

03 � 1 0 � 2
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The distance d between the points (x1, y1) and (x2, y2 ) is given by

Examples 2–4 demonstrate some simple calculations involving the distance
formula.

Note: In computing the distance between two given points, it does not matter which
one you treat as (x1, y1) and which as (x2, y2), because quantities such as x2 � x1 and
x1 � x2 are negatives of each other and so have equal squares.

d � 2(x2 � x1 ) 2 � (y2 � y1 ) 2

The Distance Formula

EXAMPLE 2 Using the Distance Formula

Calculate the distance between the points (2, �6) and (5, 3).

SOLUTION Substituting (2, �6) for (x1, y1) and (5, 3) for (x2, y2) in the distance formula, we have

You should check for yourself that the same answer is obtained using (2, �6) as 
(x2, y2) and (5, 3) as (x1, y1).

 � 29210 � 3210

 � 232 � 92 � 290

 d � 2(5 � 2)2 � [3 � (�6)]2
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EXAMPLE 3 Using the Distance Formula and the Converse of the Pythagorean Theorem

Is the triangle with vertices D(�2, �1), E(4, 1), and F(3, 4) a right triangle?

SOLUTION First we sketch the triangle in question (see Figure 7). From the sketch it appears that
angle E could be a right angle, but certainly this is not a proof. We need to use the dis-
tance formula to calculate the lengths of the three sides and then check whether any
relation of the form a2 � b2 � c2 holds. The calculations are as follows:

Because � � , D, E, and F are vertices of a right triangle
with hypotenuse and right angle at vertex E, and so ¢DEF is a right triangle. (In
Section 1.6 you’ll see that this result can be obtained more easily by using the con-
cept of slope.)

DF
1150 221110 221140 22

 DF � 2[3 � (�2)]2 � [4 � (�1)]2 � 125 � 25 � 150

 EF � 2(4 � 3)2 � (1 � 4)2 � 11 � 9 � 110

 DE � 2[4 � (�2)]2 � [1 � (�1)]2 � 136 � 4 � 140

EXAMPLE 4 Using the Distance Formula to Find a Radius

(a) Find the radius r of the circle in Figure 8. (Assume that the center of the circle is
located at the origin.)

(b) Compute the area and the circumference of the circle. For each answer, give
exact expressions and also calculator approximations rounded to one decimal
place.

SOLUTION (a) The radius r is the distance from center (0, 0) to the given point (�3, 2) on the
circle. Using the distance formula, we have

(b) Recall the formulas for the area A and the circumference C of a circle of radius
r : A � pr2 and C � 2pr. Using the value for r from part (a), we have

One of the important applications of rectangular coordinates is in displaying
quantitative data. You see instances of this every day in newspapers, in magazines,
and in textbooks as diverse as astronomy to zoology. We show some examples in the
figures and discussion that follow.

Table 1 provides world population data for the period 1975–2005. In Figure 9(a) the
familiar bar graph (or column chart) format is used to display the data from the table.
In Figure 9(b) we’ve plotted the data in a rectangular coordinate system. On the hori-
zontal axis the variable t represents years; the variable P represents population in
units of one billion. The data in the first row of the table (which state that the popu-
lation in 1975 was 4.068 billion) are plotted in Figure 9(b) as the point (1975, 4.068).

� 40.8 square units

� 22.7 units� 13p square units

C � pr � 2p113 unitsA � pr2 � p 1113 2 2

 � 19 � 4 � 113 units

r � 2(�3 � 0)2 � (2 � 0)2



Likewise, the second row of data in the table gives us the point (1985, 4.831), and so
on. Sometimes it is more convenient to work with smaller numbers on the horizontal
axis than those used in Figure 9(b). One very common way to do this is indicated in
Figure 9(c), where we are now letting the variable t represent years since 1975. In
other words, the year 1975 is t � 0, 1976 is t � 1, 1977 is t � 2, and so on. The data
in the first row of Table 1 are then plotted in Figure 9(c) as the point (0, 4.068), rather
than (1975, 4.068). Likewise, the second row of data in Table 1 is plotted in
Figure 9(c) as (10, 4.831), and so on.

Both the bar graph and the rectangular plots in Figure 9 make it immediately
clear that the world population is increasing. Is it increasing at a steady rate? Is it
increasing rapidly? In fact, one needs to exercise caution in using graphs to draw
conclusions about how fast the quantity being graphed (in this case, population) is
increasing or decreasing. For instance, Figure 10 shows another graph of world
population, this time covering the period 1800–2005. Figure 9(b) and Figure 10 may
lead to different interpretations about the nature of world population growth. [In
Figure 10, the four blue dots are the data points that appear in Figure 9(b).]

As another example about the need for caution in interpreting graphs, look at Fig-
ure 11, which shows two very different interpretations of the data for SAT mathematics
scores in Table 2. The bottom line is that graphs are useful, even indispensible, in
giving us an easy way to see general trends in data, but we must exercise care in
drawing further conclusions, especially regarding rates of increase or decrease. A
complete analysis of how fast a quantity is increasing or decreasing may require
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Figure 9
World population 1975–2005.

TABLE 1 World Population 1975–2005

Year Population (billions)

1975 4.068
1985 4.831
1995 5.674
2005 6.454

Source: http://en.wikipedia.org/wiki/World_population

http://en.wikipedia.org/wiki/World_population


topics from calculus or the field of statistics. For straight-line graphs, however, the
concept of slope (reviewed in Section 1.6) tells us definitively about rates of increase
or decrease. Also, when we study functions in Chapter 3, we’ll make a first step
toward answering general questions about rates of change.

In Example 5 we make use of a simple result that you may recall from previous
courses: the midpoint formula. This result is summarized in the box that follows. (For
a proof of the formula, see Exercise 31 at the end of this section.)
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Two visualizations and
interpretations of the data in Table 2.

TABLE 2 SAT Math Scores: National Averages 2004–2007

Year SAT Math Score

0 (2004) 518
1 (2005) 520
2 (2006) 518
3 (2007) 515

Source: The College Board
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EXAMPLE 5 An Application of the Midpoint Formula

Data concerning the amount of carbon dioxide in the atmosphere (measured in parts
per million or ppm) is used by environmental scientists in the study of global warm-
ing. Table 3 provides some figures for the period 2002 to 2008.

(a) Plot the data in a rectangular coordinate system. Use the variable t on the
horizontal axis, with t � 0 corresponding to the year 2002. Use the variable c
(to denote carbon dioxide levels, in ppm) on the vertical axis.

(b) Use the midpoint formula and the data for 2004 and 2006 to estimate the amount
of carbon dioxide for the year 2005.

(c) Compute the percentage error in the estimation in part (b), given that the actual
2005 value is 377.6 ppm. The general formula for percentage error in an estima-
tion or approximation is

percentage error � ` actual value � approximate value

actual value
` 
 100

TABLE 3 Atmospheric Carbon Dioxide

Carbon Dioxide 
Year in Atmosphere (PPM)

2002 372.2
2004 376.0
2006 379.9
2008 383.9

Source: http://www.noaanews.noaa.gov, Carbon Dioxide, Methane Rise Sharply in 2007,
April 23, 2008

SOLUTION (a) See Figure 12. Note that if t � 0 corresponds to 2002, then t � 2 corresponds to
2004, t � 4 corresponds to 2006, and t � 6 corresponds to 2008.

Example

The midpoint of the line segment The midpoint of the line segment
joining the points P(x1, y1) and joining (2, �15) and (4, 5) is
Q(x2, y2) is a 2 � 4

2
, 

�15 � 5

2
b � (3, �5)a x1 � x2

2
, 

y1 � y2

2
b

Q(¤, fi)

P(⁄, ›) Midpoint

x

y

The Midpoint Formula

http://www.noaanews.noaa.gov


(b) The midpoint of the line segment joining the points (2, 376.0) and (4, 379.9) is

which, as you can verify, works out to

(3, 378.0)

Thus, our approximation for the carbon dioxide level in 2005 (t � 3) is 
378.0 ppm.

(c) We have

using a calculator and rounding to one
decimal place

In Figure 13 we show the given data for 2004 and 2006 along with the estimated
and the actual values for 2005.

 � 0.1%

 � ` 377.6 � 378.0

377.6
` 
 100

 percentage error �  ` actual value � approximate value

actual value
` 
 100

a 2 � 4

2
, 

376.0 � 379.9

2
b
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The midpoint of the line
segment is close to the
actual data point.

Caution: Do not assume on the basis of this one example that the midpoint approxi-
mation always works as well as it does here. In this regard, be sure to work Exercise 23
at the end of this section.
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EXERCISE SET 1.4

A
1. Plot the points (5, 2), (�4, 5), (�4, 0), (�1, �1), and (5, �2).
2. Draw the square ABCD with vertices (corners) A(1, 0), 

B(0, 1), C(�1, 0), and D(0, �1).
3. (a) Draw the right triangle PQR with vertices P(1, 0), 

Q(5, 0), and R(5, 3).
(b) Use the formula for the area of a triangle, 

to find the area of triangle PQR in part (a).
4. (a) Draw the trapezoid ABCD with vertices A(0, 0), 

B(7, 0), C(6, 4), and D(4, 4).
(b) Compute the area of the trapezoid. (See the inside front

cover of this book for the appropriate formula.)

In Exercises 5–10, calculate the distance between the given points.

5. (a) (0, 0) and (�3, 4) (b) (2, 1) and (7, 13)
6. (a) (�1, �3) and (�5, 4) (b) (6, �2) and (�1, 1)
7. (a) (�5, 0) and (5, 0) (b) (0, �8) and (0, 1)
8. (a) (�5, �3) and (�9, �6) (b) 32 and 1�2 �12
9. 11, and 1�1, �

10. (�3, 1) and (374, �335)
11. Which point is farther from the origin?

(a) (3, �2) or 14, 2 (b) (�6, 7) or (9, 0)
12. Use the distance formula to show that, in each case, the

triangle with given vertices is an isosceles triangle.
(a) (0, 2), (7, 4), (2, �5)
(b) (�1, �8), (0, �1), (�4, �4)
(c) (�7, 4), (�3, 10), (1, 3)

13. In each case, determine whether the triangle with the given
vertices is a right triangle.
(a) (7, �1), (�3, 5), (�12, �10)
(b) (4, 5), (�3, 9), (1, 3)
(c) (�8, �2), (1, �1), (10, 19)

14. (a) Two of the three triangles specified in Exercise 13
are right triangles. Find their areas.

(b) Calculate the area of the remaining triangle in Exercise 13
by using the following formula for the area A of a
triangle with vertices (x1, y1), (x2, y2), and (x3, y3):

The derivation of this formula is given in Exercise 34.
(c) Use the formula given in part (b) to check your an-

swers in part (a).
15. Use the formula given in Exercise 14(b) to calculate the area

of the triangle with vertices (1, �4), (5, 3), and (13, 17).
What do you conclude?

16. The coordinates of points A, B, and C are A(�4, 6), 
B(�1, 2), and C(2, �2).
(a) Show that AB � BC by using the distance formula.
(b) Show that AB � BC � AC by using the distance formula.
(c) What can you conclude from parts (a) and (b)?

A � 1
2 0

 
x1y2 � x2y1 � x2y3 � x3y2 � x3y1 � x1y3 0

1
2

132132
1
2 ,1 92 ,

A � 1
2 bh,

In Exercises 17 and 18, find the midpoint of the line segment
joining points P and Q.

17. (a) P(3, 2) and Q(9, 8)
(b) P(�4, 0) and Q(5, �3)
(c) P(3, �6) and Q(�1, �2)

18. (a) P(12, 0) and Q(12, 8)
(b) P and Q(0, 0)
(c) P(1, p) and Q(3, 3p)

In Exercises 19 and 20, the given points P and Q are the end-
points of a diameter of a circle. Find (a) the center of the circle;
(b) the radius of the circle.

19. P(�4, �2) and Q(6, 4)
20. P(1, �3) and Q(�5, �5)
21. (a) Using a coordinate system similar to the one shown 

in the following figure (or a photocopy), plot the two
points from Table A corresponding to the data for the
years 1992 and 2000.

(b) Use the midpoint formula with the two points that you
plotted in part (a) to obtain an approximation for the
total dollar amount paid in 1996. (Round the answer to
two decimal places.)

(c) Compute the percentage error in the approximation in
part (b). The actual 1996 value is given in the table.
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TABLE A How Much the Networks (Worldwide)
Paid to Televise the Summer Olympic
Games, 1988–2008

Year 1988 1992 1996 2000 2004 2008
City Seoul Barcelona Atlanta Sydney Athens Beijing

Billions
of 0.40 0.64 0.90 1.33 1.49 1.74
dollars

Source: International Olympic Committee, Olympic Marketing Fact
File 2008 Edition



(a) Use Figure A to complete the following table. Round
the values of n to the nearest ten million. Then use
the midpoint formula and the numbers in your table
to estimate the global number of Internet host
computers for the year 2005.

t 2003 2007
n

(b) Use Figure B to complete the following table. Round
the values of n to the nearest two thousand. Then use
the midpoint formula and the numbers in your table
to estimate the global number of Internet host
computers for the year 1986.

t 1985 1987
n

(c) Compute the percentage errors to determine which
estimate, the one for 1986 or the one for 2005, is
more accurate. Use the following data from Network
Wizards (http//www.nw.com) in computing the
percentage errors: The number of host computers
for 1986 and 2005 were 5089 and 317,646,084,
respectively. (Round each answer to the nearest one
percent.)

Note: You’ll find out in part (c) that one estimate is very
good, the other is way off. The point here is that without more
initial information, it’s hard to say whether the midpoint for-
mula will produce a useful estimate. In subsequent chapters,
we’ll use functions and larger data sets to obtain more reliable
estimates.

24. Have you or a friend ever run in a 10K (10,000 meter)
race? When one of the authors polled his large precalcu-
lus class, he found that there were five (out of 160) stu-
dents who said that they had run a 10K under 50 minutes.
Of those five, two (one male, one female) said they had run
a 10K in under 40 minutes. The world record for this
event is well under 30 minutes. In this exercise you’ll look
at some of the world records in this event over the past
decade.
(a) The table that follows lists the world records in the

(men’s) 10,000 meter race as of the end of the years
1996, 2000, and 2004. After converting the times into
seconds, plot the three points corresponding to these
records in a coordinate system similar to the one
shown.

Year Time Runner

1996 26:38.08 Salah Hissou (Morocco)
2000 26:22.75 Haile Gebreselasie (Ethiopia)
2004 26:20.31 Kenenisa Bekele (Ethiopia)

22. (a) Set up a coordinate system with the horizontal t-axis
(running from 0 to at least 12) representing years after
1992 and the vertical P-axis (running from 25 to at
least 40) representing percentage of sales due to
imports; then use it to plot the data in Table B. 
Note: you should use a broken vertical axis as in
Figures 11 through 13.

(b) What are the coordinates of the point in your graph that
corresponds to the data for 1992? For 1996?

(c) Use the midpoint formula with the two points that you
listed in part (b) to estimate the percentage of import
sales for the year 1994. (Round the answer to one deci-
mal place.)

(d) Compute the percentage error in the estimate in 
part (c), given that the actual 1994 value is 26.6%.
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TABLE B Imported Vehicles as a Percentage of
New Vehicles Sold in the United States
1992–2004

Year 1992 1996 2000 2004

Percentage
imported 27.6 26.9 33.3 39.8

Source: http://econstats.com

23. Over the past two decades the Internet has grown very
rapidly. Figures A and B provide estimates for the number n
of Internet host computers, worldwide, for the years
t � 2003–2007 and 1985–1987. Source: Network Wizards
(http//www.nw.com)
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(b) Find the perimeter of the triangle that is formed by
joining the midpoints of the three sides of ¢ABC.

(c) Compute the ratio of the perimeter in part (a) to the
perimeter in part (b).

(d) What theorem from geometry provides the answer for
part (c) without using the results in (a) and (b)?

27. Use the Pythagorean theorem to find the length a in the
figure. Then find b, c, d, e, f, and g.

Note: This figure provides a geometric construction for
the irrational numbers . . . , where n is a 
nonsquare natural number. According to Boyer’s A History
of Mathematics, 2nd ed. (New York: John Wiley & Sons,
Inc., 1991), “Plato . . . says that his teacher Theodorus of
Cyrene . . . was the first to prove the irrationality of the
square roots of the nonsquare integers from 3 to 17, 
inclusive. It is not known how he did this, nor why he
stopped with One plausible reason for Theodorus’s
stopping with may have to do with the figure shown
here. Theodorus may have known that the figure begins 
to overlap itself at the stage where would be
constructed.

28. (A numerologist’s delight) Using the Pythagorean
theorem and your calculator, compute the area of a right tri-
angle in which the lengths of the hypotenuse and one leg
are 2045 and 693, respectively.

B
29. The diagonals of a parallelogram bisect each other. Steps

(a), (b), and (c) outline a proof of this theorem. (See
Exercise 25 for a particular instance of this theorem.)
(a) In the parallelogram OABC shown in the figure, check

that the coordinates of B must be (a � b, c).
(b) Use the midpoint formula to calculate the midpoints of

diagonals and 
(c) The two answers in part (b) are identical. This shows

that the two diagonals do indeed bisect each other, as
we wished to prove.
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(b) Use the midpoint formula and the data for 1996 and
2000 to compute an estimate for what the world record
might have been by the end of 1998. Then compute the
percentage error (rounded to two decimal places),
given that the record at the end of 1998 was 26:22.75
(set by Haile Gebreselasie on August 4, 1998). Was
your estimate high or low?

(c) Use the midpoint formula and the data for 2000 and
2004 to compute an estimate for what the world record
might have been by the end of 2002. Then compute 
the percentage error given that the record at the end of
2002 was still the 26:22.75 set by Haile Gebreselasie 
in 1998. Was your estimate high or low? Is the 
percentage error more or less than that obtained in 
part (b)?

(d) Using a coordinate system similar to the one shown in
part (a), or using a photocopy, plot the points corre-
sponding to the (actual, not estimated) world records
for the years 1996, 1998, 2000, 2002, 2004, and 2006.
Except for 2006, all the records have been given above.
The world record at the end of 2006 was 26:17.53 (set
by Kenenisa Bekele Aug. 26, 2005). Use the picture
you obtain to say whether or not the record times 
seem to be leveling off. (Note: Bekele’s record still
stood in 2008.)

25. (a) Sketch the parallelogram with vertices A(�7, �1),
B(4, 3), C(7, 8), and D(�4, 4).

(b) Compute the midpoints of the diagonals and 
(c) What conclusion can you draw from part (b)?

26. The vertices of ¢ABC are A(1, 1), B(9, 3), and C(3, 5).
(a) Find the perimeter of ¢ABC.
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33. One of the oldest and simplest proofs of the Pythagorean
theorem is found in the ancient Chinese text Chou Pei 
Suan Ching. This text was written during the Han period
(206 B.C.–A.D. 222), but portions of it may date back to 
600 B.C. The proof in Chou Pei Suan Ching is based on 
this diagram from the text. In this exercise we explain the
details of the proof.

A diagram accompanying a proof of the “Pythagorean” theorem
in the ancient Chinese text Chou Pei Suan Ching [from Science
and Civilisation in China, vol. 3, by Joseph Needham
(Cambridge, England: Cambridge University Press, 1959)].
(a) Starting with the right triangle in Figure A, we make four

replicas of this triangle and arrange them to form the pat-
tern shown in Figure B. Explain why the outer quadrilateral
in Figure B is a square.

Figure A Figure B

(b) The unshaded region in the center of Figure B is a square.
What is the length of each side?

(c) The area of the outer square in Figure B is (side)2 � c2. This
area can also be computed by adding up the areas of the four
right triangles and the inner square. Compute the area in
this fashion. After simplifying, you should obtain a2 � b2.
Now conclude that a2 � b2 � c2, since both expressions
represent the same area.

c b

a

30. Prove that in a parallelogram, the sum of the squares of
the lengths of the diagonals equals the sum of the squares
of the lengths of the four sides. (Use the figure in
Exercise 29.)

31. Suppose that the coordinates of points P, Q, and M are

Follow steps (a) and (b) to prove that M is the midpoint of
the line segment from P to Q.
(a) By computing both of the distances PM and MQ, show

that . (This shows that M lies on the perpen-
dicular bisector of line segment but it does not
show that M actually lies on )

(b) Show that . (This shows that M does
lie on )

32. This problem outlines one of the shortest proofs of the
Pythagorean theorem. The proof was discovered by the
Hindu mathematician Bhāskara (1114–ca. 1185). (For 
other proofs, see the next exercise and also Exercise 100 
on page 79.) In the figure we are given a right triangle 
ACB with the right angle at C, and we want to prove that
a2 � b2 � c2. In the figure, is drawn perpendicular 
to 
(a) Check that and that ¢BCD and

¢BAC are similar.
(b) Use the result in part (a) to obtain the equation

a�y � c�a, and conclude that a2 � cy.
(c) Show that ¢ACD is similar to ¢ABC, and use this to

deduce that b2 � c2 � cy.
(d) Combine the two equations deduced in parts (b) and (c)

to arrive at a2 � b2 � c2.

A B

C

D

c-y

b a
x

y

c

�CAD � �DCB
AB.

CD

PQ.
PM � MQ � PQ

PQ.
PQ,

PM � MQ

M a x1 � x2

2
, 

y1 � y2

2
b

P(x1, y1)  Q(x2, y2)

O A (a, 0)

C (b, c) B

x

y
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(c) Using the same technique that you used in parts (a) and
(b), show that the area of the triangle in the following
figure is given by

Remark: If we use absolute value signs instead of the
parentheses, then the formula will hold regardless of
the relative positions or quadrants of the three vertices.
Thus the area of a triangle with vertices (x1, y1), (x2, y2),
(x3, y3) is given by

(⁄, ›)

(‹, y£)

(¤, fi)

x

y

A � 1
2 0

 
x1y2 � x2y1 � x2y3 � x3y2 � x3y1 � x1y3 0

A � 1
2 (x1y2 � x2y1 � x2y3 � x3y2 � x3y1 � x1y3)

C
34. This problem indicates a method for calculating the area of

a triangle when the coordinates of the three vertices are
given.
(a) Calculate the area of ¢ABC in the figure.

Hint: First calculate the area of the rectangle enclosing
¢ABC, and then subtract the areas of the three right
triangles.

(b) Calculate the area of the triangle with vertices (1, 3),
(4, 1), and (10, 4). Hint: Work with an enclosing
rectangle and three right triangles, as in part (a).

A(3, 4)

B(8, 5)

C(7, 8)
y

x
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The Mini Project, Discuss, Compute, Reassess, at http://www.cengage.com/math/cohen/precalc7e develops an
interesting application of the material from Section 1.4.

1.5 GRAPHS AND GRAPHING UTILITIES
In this section we look at the connection between two basic skills that you’ve worked
on in previous courses:

• graphing equations
• solving equations

We also look at these topics in terms of graphing utilities. By a graphing utility we
mean either a graphing calculator or a computer with software for graphing and
analyzing equations. Whether we are working “by hand” or with technology, the
following definition underlies all.

Definition The Graph of an Equation

The graph of an equation in two variables is the set of all points with coordinates
satisfying the equation.

Suppose, for example, that we want to graph the equation y � 3x � 2. We begin
by noting that the domain of the variable x in the expression 3x � 2 is the set of all
real numbers. Now we choose values for x and in each case compute the corre-
sponding y-value from the equation y � 3x � 2. For example, if x is zero, then
y � 3(0) � 2 � �2. Table 1 summarizes the results of some of these calculations.

TABLE 1 y � 3x � 2

x y

0 �2
1 1
2 4
3 7

�1 �5
�2 �8

http://www.cengage.com/math/cohen/precalc7e


The first line in Table 1 tells us that the point with coordinates (0, �2) is on the graph
of y � 3x � 2. Reading down the table, we see that some other points on the graph
are (1, 1), (2, 4), (3, 7), (�1, �5), and (�2, �8).

We now plot (locate) the points we have determined and we note, in this exam-
ple, that they all appear to lie on a straight line. We draw the line indicated; this is
the graph of y � 3x � 2 (see Figure 1). In Example 1 we ask a simple question 
that will test your understanding of the process we’ve just described and of graphing
in general.
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Figure 1
y � 3x � 2

Figure 2
A graph of y � 3x � 2.

EXAMPLE 1 Applying the Definition of the Graph of an Equation

Does the point lie on the graph of y � 3x � 2?11 
2
3 , 2 

2
3 2

SOLUTION Looking at the graph in Figure 1, we certainly see that the point is very close
to the line, but from this visual inspection alone, we cannot be certain that this point
actually lies on the line. To settle the question, then, we check to see whether the val-
ues x � and y � together satisfy the equation y � 3x � 2. Substituting
x � 5�3 in the right-hand side of the equation gives

Since the coordinates do not satisfy equation y � 3x � 2, we conclude that
the point is not on the graph. [The calculation further tells us that the point

is on the graph.]

A graphing utility produces graphs of equations in essentially the same way that
we did in Table 1 and Figure 1. The graphing utility uses the given equation to com-
pute pairs of points (x, y), and it plots these points one at a time on the viewing screen.
Of course, the machine is able to quickly compute and plot many more points than we
used in Table 1—that’s an advantage. On the other hand, the graphing utility is not
“smart.” For example, it does not know ahead of time that the graph of the equation
y � 3x � 2 will be a straight line. (You’ll know this by the end of the next section, or
maybe you already remember from a previous course that the graph of any equation
of the form y � mx � b is always a straight line.) Later in this section and in the ex-
ercises we’ll say more about some of the limitations of a graphing utility and how
some thought or experimentation on your part is often necessary.

In Figure 2 we show a graph of the equation y � 3x � 2 obtained with a graph-
ing utility. Actually, since there are so many different types of graphing utilities, the
picture we’ve chosen to show in this text is a kind of amalgam containing features
from several types of utilities. If you have a graphing utility, you should now produce
a graph of y � 3x � 2 for yourself and compare it to Figure 2. (If necessary refer to
the user’s manual that came with your calculator or software.) In this text, the label
Graphical Perspective (as you see above Figure 2) is a signal for those students with
graphing utilities: Use your graphing utility, making adjustments as necessary, to ob-
tain a view that is similar to the one shown here in the textbook. For many graphing
utilities, the default view or standard viewing rectangle is �10 � x � 10 and
�10 � y � 10. This is the view shown in Figure 2. In the next example we graph an

11 
2
3 , 3 2 11 

2
3 , 2 

2
3 2

11 
2
3 , 2 
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3 2

 3 a 5

3
b � 2 � 5 � 2 � 3 	

8

3

2 
2
3 � 8

31 
2
3 � 5

3

11 
2
3 , 2 

2
3 2

Graphical Perspective

_10

_5

0

5

10

_10 _5 0 5 10



equation first by hand, then with a graphing utility. In the graphing utility portion,
you’ll see a case in which the standard viewing rectangle is inappropriate and needs
to be modified.
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EXAMPLE 2 An Application of Linear Equations and Graphs to Temperature Scales

The equation 5F � 9C � 160 relates temperature F on the Fahrenheit scale to tem-
perature C on the Celsius scale.

(a) Solve the given equation for F in terms of C. Then set up a table and graph the
equation in a C-F coordinate system (C on the horizontal axis, F on the vertical).

(b) Use a graphing utility to obtain a graph of 5F � 9C � 160.

SOLUTION (a) We have

adding 9C to both sides

dividing both sides by 5 (1)

Using equation (1) now, we pick values for C and compute the corresponding
values for F. To avoid working with fractions, we take values for C that are mul-
tiples of 5, as indicated in Table 2. (Check for yourself that the entries in the
right-hand column of the table are correct.)

In view of the data in Table 2, we’ll mark off the axes as indicated in 
Figure 3(a), with tick marks five units apart on the C-axis and ten units apart on
the F-axis. (Other markings are feasible. For example, it would be reasonable to
use markings of 20 instead of 10 on the vertical axis, but it would be very clumsy
to use markings at one-unit intervals.) In Figure 3(b) we’ve plotted the data pairs
(C, F ) given by Table 2. These points appear to lie on a straight line, and we’ve
drawn the line in Figure 3(c). This is the required graph.

Note: In elementary graphing, there is the question of how many points must
be plotted before the essential features of a graph are clear. As you’ll see through-
out this text, there are a number of techniques and concepts that make it

 F �
9

5
 C � 32

 5F � 9C � 160

 5F � 9C � 160

TABLE 2 F � C � 32

C F

0 32
5 41

10 50
15 59

�5 23
�10 14

9
5 

Figure 3

(_10, 14)

(_5, 23)

(0, 32)

(5, 41)

(10, 50)

(15, 59)

Graph of F=_ C+32
(or 5F-9C=160)

(a) Scales on axes are chosen to accommodate
the range of numbers in Table 2.

(b) Plot of data points (C, F) from Table 2. (c) 9
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unnecessary to plot a large number of points. For instance, if you knew ahead of
time that the graph of F � � 32 were a straight line, then you would need to
plot only two points in order to draw the line.

(b) With a graphing utility, just as in graphing by hand, we first need to solve the
given equation for one variable in terms of the other. From part (a) we have
F � � 32. Because most graphing calculators (and some types of computer
software) require that we use x and y for the variables, we’ll rewrite the equation
as y � � 32. Then we can enter it in the graphing utility as

The symbol * denotes multiplication.

or better yet (with fewer keystrokes and less chance of a typing error) as

(2)

Figure 4(a) shows the “graph” of equation (2) in the standard viewing rectangle. Yes,
nothing’s there; evidently, no point of the required graph passes through the standard
viewing rectangle. We need to find a more appropriate viewing rectangle. After some
experimenting with the dimensions of the viewing rectangle, we obtain the views
shown in Figure 4(b), then Figure 4(c). Figure 4(c) is an appropriate viewing rectan-
gle; the essential features of the graph are clear, and there is not a lot of wasted space
in the viewing screen, as there is in Figure 4(b).

We can use Figure 4 to introduce some common notation that is often used in
describing viewing rectangles. (Even if you are not working with a graphing utility,
you are apt to see this notation in other math books or on a friend’s math paper.) In
Figure 4(a), x runs from �10 to 10 in increments of 5. A notation for this is

Xmin = -10 Xmax = 10 Xscl = 5

In the rightmost equation, “Xscl” refers to the scale on the x-axis, and the equation
Xscl � 5 tells you that it is five units between adjacent tick marks or grid lines. In

y �
9x

5
� 32

y � a 9

5
b  * x � 32

9
5 x

9
5 C

9
5 C
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Figure 4(a), y also runs from �10 to 10 in increments of 5, so we write
Ymin = -10, Ymax = 10, and Yscl = 5.As another example of this nota-
tion, for Figure 4(c) we have (as you should check)

Xmin = -30 and Ymin = -20
Xmax = 30 and Ymax = 800
Xscl = 10 and Yscl = 200

Another type of shorthand that you’ll see is based on the closed interval notation 
[a, b] described in Section 1.1. With this notation we specify the size of the viewing
rectangle in Figure 4(c) as

In this notation the 
x-interval precedes 
the y-interval.

The only drawback to this notation is that the scale or number of units between tick
marks is not specified. We remedy this by inserting a third number, denoting scale,
in each bracket. The viewing rectangle in Figure 4(c) is then completely specified
by writing

3�30, 30, 10 4  by 3�20, 80, 20 4

[�30, 30]  by [�20, 80]
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Figure 5
Two views of y � 2x3 � x2.

EXAMPLE 3 Specifying Viewing Rectangles on a Graphing Utility

Figure 5 shows two views of the graph of the equation y � 2x3 � x2. Describe each
viewing rectangle using the two types of notation discussed above (that is, the min-
max-scl equations and the bracket notation).

SOLUTION For Figure 5(a) we have

Xmin = -4 and Ymin = -40
Xmax = 4 and Ymax = 60
Xscl = 2 and Yscl = 20

The bracket notation describing the viewing rectangle in Figure 5(a) is

[�4, 4, 2]  by [�40, 60, 20]

_4 _2 0 2 4
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For Figure 5(b) we have

Xmin = -0.2 and Ymin = -0.06
Xmax = 0.6 and Ymax = 0.02
Xscl = 0.2 and Yscl = 0.02

The bracket notation describing the viewing rectangle in Figure 5(b) is

When we graph an equation, it’s helpful to know where the curve intersects the
x- or y-axis. By an x-intercept of a graph we mean the x-coordinate of a point where
the graph intersects the x-axis. For instance, in Figure 6 there are two x-intercepts:
�2 and 4. We define y-intercepts in a similar manner: A y-intercept of a graph is the
y-coordinate of a point where the graph intersects the y-axis. Thus, the y-intercept of
the graph in Figure 6 is 1.

[�0.2, 0.6, 0.2]  by [�0.06, 0.02, 0.02]
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Figure 6
x-intercepts: �2 and 4 
y-intercept: 1.

x

y

3x+5y=15

Figure 7

EXAMPLE 4 Computing x-intercepts and y-intercepts

Figure 7 shows the graph of the equation 3x � 5y � 15. Find the x-intercept and
the y-intercept.

SOLUTION At the point where the graph crosses the x-axis, the y-coordinate is zero. So, to find
the x-intercept, we set y � 0 in the given equation 3x � 5y � 15 and solve for x:

Thus, the x-intercept is 5. Similarly, to find the y-intercept, we set x � 0 in the given
equation 3x � 5y � 15 and solve for y:

The y-intercept is 3.

In the next example we show two different ways to determine x-intercepts. First
we use a graphing utility to obtain approximate values for the intercepts; then we use
algebra to find exact values.

 y � 3
 5y � 15

 3(0 ) � 5y � 15

 x � 5
 3x � 15

 3x � 5(0 ) � 15

EXAMPLE 5 Finding Approximate and Exact Values for x-intercepts

Figure 8 shows a graph of the equation y � x3 � 2x2 � 2x obtained with a graphing
utility.

(a) Use a graphing utility to estimate (to one decimal place) the x-intercepts of the graph.
(b) Use algebra to determine the exact values for the x-intercepts. Then use a calculator

to check that the answers are consistent with the estimates obtained in part (a).

(a) According to Figure 8, there appear to be three x-intercepts: one between �1
and 0, one that is either zero or very close to zero, and one between 2 and 3. To
estimate the intercept that is between �1 and 0 as well as the intercept near (or
possibly at) zero, we’ll change the viewing rectangle shown in Figure 8 so that

SOLUTION

x

y

(4, 0)
(0, 1)

(_2, 0)
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Regarding the intercept that appears in Figure 8 to be at or near zero,
Figure 9(a) tells us that to one decimal place, the intercept is 0.0. In part (b) we’ll
show that this intercept is indeed exactly zero. [You cannot conclude this fact
from Figure 9(a); see Exercise 35 for an example along these lines.]

There is one more x-intercept to estimate, the one in Figure 8 that is between
2 and 3. Exercise 36 asks you to use the methods we’ve just demonstrated to
show that this rightmost x-intercept is approximately 2.7.

(b) To compute the exact values for the x-intercepts of the graph, we set y equal to
zero in the given equation y � x3 � 2x2 � 2x to obtain 0 � x3 � 2x2 � 2x. We
then have

(3)

factoring out the common factor x

The zero product property from Section 1.3 now tells us that x � 0 or
x2 � 2x � 2 � 0. We can use the quadratic formula (from Section 1.3) to solve
the equation x2 � 2x � 2 � 0:

using a � 1, b � �2, c � �2

See online Appendix B.2 if you 
need to review working with
radicals.

 �
2 � 213

2
�

2 11 � 13 2
2

� 1 � 13

 �
2 � 112

2

 �
�(�2) � 2(�2)2 � 4(1) (�2)

2(1)

 x �
�b � 2b2 � 4ac

2a

 x(x2 � 2x � 2) � 0

 x3 � 2x2 � 2x � 0

Figure 8
y � x3 � 2x2 � 2x
viewing rectangle: [�2, 4, 1] 
by [�6, 4, 2].
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Adjusting the viewing rectangle to
estimate an x-intercept for
y � x3 � 2x2 � 2x.

Graphical Perspective

x runs from �1 to 0.1 in increments of 0.1. After some experimenting with the
y-values, we obtain the graph in Figure 9(a), which shows that the leftmost
intercept is between �0.8 and �0.7. Is it closer to �0.8 or �0.7? On a graphing
calculator screen (as opposed to a larger picture on a computer monitor) it may
not be clear that the intercept is closer to �0.7 than to �0.8. In Figure 9(b) we’ve
adjusted the viewing rectangle for a closer view, which shows that the intercept
is indeed closer to �0.7 than to �0.8. So to one decimal place, we can say that
the leftmost intercept is �0.7. [Actually, Figure 9(b) tells us more than this. The
intercept is between �0.74 and �0.73.]
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Putting things together now, we have found three roots for equation (3): 0, 1 �
and 1 � The largest (and the only positive root) of these three is 1 � that
is the rightmost x-intercept for the graph in Figure 8. The smallest (and the only neg-
ative root) is 1 � that is the leftmost x-intercept for the graph in Figure 8.
Finally, the root x � 0 tells us that the middle x-intercept is indeed exactly zero. As
you should check for yourself using a calculator, we have 1 � � �0.73 and
1 � � 2.73. Note that these values are indeed consistent with the estimates
obtained in part (a).

In the graphing utility portion of the example just concluded, we started with
the viewing rectangle in Figure 8 and then adjusted it to obtain a closer look at the 
x-intercepts. Most graphing utilities also allow you to obtain a closer look in another
way, by using a ZOOM feature and a TRACE feature. For details, see the user’s manual
for your graphing utility. Another technology note: In part (b) of Example 5 we used
algebra to determine the exact roots of the equation x3 � 2x2 � 2x � 0. Most graph-
ing utilities have a SOLVE feature that can be used to obtain roots that, while only
approximate, are accurate to several decimal places. Again, for details consult your
user’s manual.

As was mentioned previously in this section, when we first graph a given equa-
tion (either by hand or with a graphing utility), we try to present a view that shows
all the essential features of the graph. The next example deals with one aspect of
this issue.

13
13

13;

13;13.
13,
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Figure 10
Does the graph ever cross the y-axis?

EXAMPLE 6 Obtaining Information About a Graph Through Its Equation

Figure 10 shows a graph of the equation x2y � x3 � 3 � 0.

(a) From the portion of the graph shown in Figure 10, it appears that there is no 
y-intercept. Use the given equation to show that this is indeed the case.

(b) As is indicated in Figure 10, there is an x-intercept between 1 and 2. Find this
intercept. Give two forms for the answer: an exact expression and a calculator
approximation rounded to two decimal places.

SOLUTION (a) If there were a y-intercept (perhaps somewhere below the portion of the graph
displayed in Figure 10), we could find it by setting x equal to zero in the given
equation. But with x � 0, the given equation becomes 3 � 0, which is clearly im-
possible. We thus conclude that there is no y-intercept; the graph never crosses
the y-axis.

(b) The x-intercept of the graph is determined by setting y equal to zero in the given
equation. That gives us x2(0) � x3 � 3 � 0, and therefore x3 � 3. To solve this
equation for x, just take the cube root of both sides to obtain

using a calculator

As you can see, the value x � 1.44 is consistent with the graph shown in Figure 10.
Also, see the Graphical Perspective in Figure 11. Note that in the caption for
Figure 11 we’ve solved the given equation for y in terms of x. Most graphing utilities
require that you enter the equation in this form.

 � 1.44

 x � 1
3 3
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Graphical Perspective

_2
1.0 1.2 1.4 1.6 1.8 2.0

_1

0

1

2

(a) Zoom-in view of y=(˛-3)/≈ shows
that the graph has an x-intercept
between 1.4 and 1.5.

(b) Further magnification shows that the
x-intercept is between 1.44 and 1.45
(closer to 1.44 than 1.45).

1.40
_0.2

1.45 1.50

_0.1

0

0.1

0.2

Figure 11
To graph x2y � x3 � 3 � 0, first
solve for y: 

 y �
x3 � 3

x2

 x2y � x3 � 3

EXERCISE SET 1.5

A
In Exercises 1–6, determine whether the given point lies on the
graph of the equation, as in Example 1. Note: You are not
asked to draw the graph.

1. (8, 6); y � � 3 2. y � � 3
3. (4, 3); 3x2 � y2 � 52 4. (4, �2); 3x2 � y2 � 52
5. (a, 4a); y � 4x 6. (a � 1, a � 1); y � x � 2
7. (a) Solve the equation 2x � 3y � �3 for y and then

complete the following table.

x �6 �3 0 3 6

y

(b) Use your table from part (a) to graph the equation
2x � 3y � �3.

8. (a) Solve the equation 3x � 2y � 6 for y and then com-
plete the following table.

x �4 �2 0 2 4

y

(b) Use your table from part (a) to graph the equation
3x � 2y � 6.

In Exercises 9–14, the graph of each equation is a straight line.
Graph the equation after finding the x- and the y-intercepts.
(Since you are given that the graph is a line, you need only plot
two points before drawing the line.)

9. 3x � 4y � 12 10. 3x � 4y � 12

� 
2
3 x1  35 , � 

17
5 2 ;1

2 x

11. y � 2x � 4 12. x � 2y � 4
13. x � y � 1 14. 2x � 3y � 6

For Exercises 15 and 16: As in Example 5, describe each view-
ing rectangle using the two types of notation discussed in the
text (that is, the min-max-scl equations and the bracket notation).

15. Two views of y � x5 � x4

(a)

(b)

_1 0 1.250.25
_0.2

_0.1

0

0.1

_200

_100

0

100

200

_3 _2 _1 0 1 2 3



22.

23.

24.

For Exercises 25–30:
(a) Use a graphing utility to graph the equation.
(b) Use a graphing utility, as in Example 5, to estimate to 

one decimal place the x-intercepts.
(c) Use algebra to determine the exact values for the 

x-intercepts. Then use a calculator to check that the 
answers are consistent with the estimates obtained in 
part (b).

25. y � x2 � 2x � 2
26. y � 2x2 � x � 5
27. y � 2x3 � 5x

1
x

-5

y

2 3

5
10

˛+≈y=12

5

x

y

2 4 6_4

2
4
6

_4

¥-4y-8=3x

y

2
x

_1_2_3

2
3
4

y=˛+≈-3x

16. Two views of y �
(a)

(b)

In Exercises 17–20, determine any x- or y-intercepts for the
graph of the equation. Note: You’re not asked to draw the
graph.

17. (a) y � x2 � 3x � 2 (b) y � x2 � 2x � 3
18. (a) y � x2 � 4x � 12 (b) y � x2 � 4x � 12
19. (a) y � x2 � x � 1 (b) y � x2 � x � 1
20. (a) y � 6x3 � 9x2 � x (b) y � 9x3 � 6x2 � x

In Exercises 21–24, each figure shows the graph of an equation.
Find the x- and y-intercepts of the graph. If an intercept 
involves a radical, give both the radical form of the answer 
and a calculator approximation rounded to two decimal places.
(Check to see that your answer is consistent with the given
figure.)

21. y

x
1 2 4

10
20
30

y=11x-2≈-˛

0.600 0.700

0.72

0.74

0.76

0.78

0

1

_1 0 1

21 � x2
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(b) Estimate the x-intercept to three decimal places by
finding a suitable viewing rectangle.

B
For Exercises 37 and 38, refer to Figure 3(c) on page 33, 
which shows a graph of the equation F � � 32. The 
equation relates temperature C on the Celsius scale to tem-
perature F on the Fahrenheit scale. [In Figure 3(c), C is the
variable for the horizontal axis and F is the variable for 
the vertical axis.]

37. (a) Use Figure 3(c) to estimate (to the nearest 5 degrees) 
the Celsius temperature corresponding to 0 degrees 
on the Fahrenheit scale. When you do this, which
intercept are you looking at, the C-intercept or the 
F-intercept?

(b) Use the equation F � � 32 to give the exact
temperature on the Celsius scale corresponding to 
0 degrees on the Fahrenheit scale.

38. (a) Use Figure 3(c) to estimate (to the nearest 10 degrees)
the temperature on the Fahrenheit scale corresponding
to 0 degrees on the Celsius scale. When you do this,
which intercept are you looking at, the C-intercept or
the F-intercept?

(b) Use the equation F � � 32 to give the exact tem-
perature on the Fahrenheit scale corresponding to 
0 degrees on the Celsius scale.

39. The following figure shows the graph of y � Use this
graph to estimate the following quantities (to one decimal
place).
(a)
(b)
(c)
Hint: 

y

1

2

1 2 3
x

y=œ„x

1ab � 1a1b
16
13
12

1x.

9
5 C

9
5 C

9
5 C

28. y � 3x3 � 5x2 � x
29. 2xy � x3 � 5 � 0

Hint: See Example 6(b) and the caption for Figure 11.
30. xy � 12y � x2 � x � 1

Hint for part (a): To solve the equation for y, first notice
that the y terms appear only on the left-hand side, then 
factor out the common factor y. Regarding the essential fea-
tures of the graph, you should find that there are two distinct
pieces. You may have to adjust the viewing rectangle.

In Exercises 31–34, use a graphing utility to graph the equa-
tions and to approximate the x-intercepts. In approximating the
x-intercepts, use a “solve” key or a sufficiently magnified view 
to ensure that the values you give are correct in the first three 
decimal places. Remark: None of the x-intercepts for 
these four equations can be obtained using factoring 
techniques.)

31. y � x3 � 3x � 1
32. y � 8x3 � 6x � 1
33. y � x5 � 6x4 � 3
34. y � 2x5 � 5x4 � 5
35. (a) Graph the equation y � x3 � 10x � 2 in the standard

viewing rectangle. On the basis of this view, what can you
say about the location of any x-intercepts?

(b) The following viewing rectangle shows that
y � x3 � 10x � 2 has an x-intercept either at �0.2 or
very close to �0.2.

Find a viewing rectangle to demonstrate that �0.2 is
not an x-intercept.

(c) Looking at your picture and your result in part (b),
what would you say is the moral of the story?

36. This exercise refers to Example 5 and Figure 8.
(a) According to Figure 8, the graph of y � x3 � 2x2 � 2x

has an x-intercept between 2 and 3, slightly closer to 3
than to 2. Graph the equation in the viewing rectangle
[2.5, 3, 0.1] by [�2, 3, 1] to see that the intercept is
between 2.7 and 2.8, closer to 2.7 than to 2.8. Thus, to
one decimal place, the intercept is 2.7, as stated in
Example 5.

_10

0

10

_1.0 0 1.0
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(a) How many bacteria are initially present when t � 0?
(b) Approximately how long does it take for the original

colony to double in size?
(c) For which value of t is the population approximately

2500?
(d) During which time interval does the population

increase more rapidly, between t � 0 and t � 1 or
between t � 3 and t � 4?

In Exercises 42 and 43, determine the x-coordinates of the points
A and B. (Each dashed line is parallel to a coordinate axis.)

42.

43.

x

y

AB

0.4
0.6 y= ≈1

2

y= 1
2

A

y

B

1.5

2.5

x

x+1

40. The following figure shows the graph of y � use it to
estimate the following quantities. (a) (b) (c)
In each case, compare your estimate with a value obtained
from a calculator.

41. In a certain biology experiment, the number N of bacteria
increases with time t in hours as indicated in the following
figure.

Number of hours (t )

N
um

be
r 

of
 b

ac
te

ri
a 

(N
)

1000

2000

3000

N

t
1 2 3 4

y

1

0.25

2 3 4 5 6 7 8

0.50

1.00

1.50

2.00

x

1
3 6.5.1

3 5;1
3 2;

1
3 x;

The Mini Project, Drawing Conclusions from Visual Evidence, at http://www.cengage.com/math/cohen/precalc7e
uses material from Section 1.5.

1.6 EQUATIONS OF LINES
He [Pierre de Fermat (1601–1665)] introduced perpendicular axes and found the gen-
eral equations of straight lines and circles and the simplest equations of parabolas,
ellipses, and hyperbolas; and he further showed in a fairly complete and systematic
way that every first- or second-degree equation can be reduced to one of these types.
—George F. Simmons in Calculus Gems, Brief Lives and Memorable Moments (New York:

McGraw-Hill Book Company, 1992)

For sufficiently short periods of time, the graphs of many real-world quantities can
be closely approximated by a straight-line graph. In this section we take a system-
atic look at equations of lines and their graphs. (In Section 4.1 we’ll see applications 

http://www.cengage.com/math/cohen/precalc7e


that use the material developed here.) We begin by recalling the concept of slope,
which you’ve seen in previous courses. As defined in the box that follows, the
slope of a nonvertical line is a number that measures the slant or direction of
the line.
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Definition Slope

The slope of a nonvertical line EXAMPLE
passing through the two points
(x1, y1) and (x2, y2) is the number 
m defined by

Calculating m using (�2, 2) and (4, 5):

m �
5 � 2

4 � (�2)
�

3

4 � 2
�

3

6
�

1

2

m �
y2 � y1

x2 � x1

y

x

(4, 5)

(-2, 2)

(x™, y™)

(x¡, y¡)

y

x

(x™, y™)

(x¡, y¡)

 �x=¤-⁄ 

�y=fi-›

(x™, y¡)

Figure 1
The delta notation.

y

          x 
5 10 15 20 25 30

15
30

45
60
75

90

Fe
et

Seconds

Figure 2 

The two quantities x2 � x1 and y2 � y1 that appear in the definition of slope can
be interpreted geometrically. As indicated in Figure 1, x2 � x1 is the amount by which
x changes as we move from (x1, y1) to (x2, y2) along the line. We denote this change
in x by ¢x (read: delta x). Thus ¢x � x2 � x1. Similarly, ¢y is defined to mean the
change in y: ¢y � y2 � y1. Using this notation, we can rewrite our definition of slope
as m � ¢y�¢x.

EXAMPLE 1 Using the Delta Notation in Computing Slope

Suppose a cardiologist asks a patient to walk on a treadmill at a slow steady pace and
Table 1 lists some of the data collected. In Table 1, x represents time, in seconds, with
x � 0 corresponding to the instant that the patient starts walking. The variable y
stands for the total distance covered by the patient after x seconds. Figure 2 shows a
graph obtained from these data. Compute ¢x, ¢y, and the slope m for each of the fol-
lowing intervals:

(a) from x � 5 seconds to x � 10 seconds;
(b) from x � 10 seconds to x � 30 seconds.

TABLE 1

x 0 5 10 15 20 25 30
(time in seconds)

y 0 15 30 45 60 75 90
(distance in feet)



To see why slope of a line does not depend on which two particular points on the
line are used in the calculation, consider Figure 3. The two right triangles are similar
(because the corresponding angles are equal). This implies that the corresponding
sides of the two triangles are proportional, and so we have

Now notice that the left-hand side of this equation represents the slope ¢y�¢x
calculated using the points A and D, and the right-hand side represents the slope
calculated using the points B and C. Thus the values we obtain for the slope are
indeed equal.

a

d
�

b
c
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SOLUTION (a) From x � 5 seconds to x � 10 seconds:

(b) From x � 10 seconds to x � 30 seconds:

Note: Both parts of this exercise lead to the same value for slope. Exercises 5 and 6
ask you to check other instances of this, and in the next paragraph we prove that for
a given line, the same value is obtained for slope no matter which pair of points on
the line is used. Another point to observe: Slope is a rate of change. In this example,
it is the rate of change of distance with respect to time, or velocity. We’ll talk more
about slope as a rate of change in Section 4.1.

 
¢y

¢x
�

60 ft

20 sec
� 3 ft/sec

 ¢y � y2 � y1 � 90 ft � 30 ft � 60 ft

 ¢x � x2 � x1 � 30 sec � 10 sec � 20 sec

 
¢y

¢x
�

15 ft

5 sec
� 3 ft/sec

 ¢y � y2 � y1 � 30 ft � 15 ft � 15 ft

 ¢x � x2 � x1 � 10 sec � 5 sec � 5 sec

EXAMPLE 2 Comparing Slopes

Compute and compare the slopes of the three lines shown in Figure 4.

x

y

A
B

C
D

b

c

a

d

Figure 3 

y

x

Line 1
Line 2 Line 3

(_2, 4)

(_3, _1)
(_1, _1)

(2, 0) (9, _1)

(7, 3)

Figure 4 



The observations made in Example 2 are true in general. Lines with a positive
slope slant upward to the right, the steeper line having the larger slope. Likewise,
lines with a negative slope slant downward to the right. See Figure 5.

We have yet to mention slopes for horizontal or vertical lines. In Figure 6
line 1 is horizontal; it passes through the points (a, b) and (c, b). Note that the two
y-coordinates must be the same for the line to be horizontal. Line 2 in Figure 6
is vertical; it passes through (d, e) and (d, f ). Note that the two x-coordinates
must be the same for the line to be vertical. For the slope of line 1 we have 

m � 0 (provided that a � c). Thus the slope of line 1, a horizontal

line, is zero. For the vertical line in Figure 6 the calculation of slope begins with

0
c � a

 �
b � b
c � a

 �
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SOLUTION First, we will calculate the slope of line 1, using the formula . Which

point should we use as (x1, y1) and which as (x2, y2)? In fact, it doesn’t matter how we
label our points. Using (�3, �1) for (x1, y1) and (�2, 4) for (x2, y2), we have

So the slope of line 1 is 5. If, instead, we had used (�2, 4) for (x1, y1) and (�3, �1)
for (x2, y2), then we’d have m � (�1 � 4)�(�3 � 2) � 5, the same result. This is not
accidental because, in general,

(Exercise 55 asks you to verify this identity.) Next, we calculate the slopes of lines 2
and 3.

Lines 1 and 2 both have positive slopes and slant upward to the right. Note that line 1
is steeper than line 2 and correspondingly has the larger slope, 5. Line 3 has a nega-
tive slope, �2, and slants downward to the right.

Slope of line 2:   
0 � (�1)

2 � (�1)
�

1

3
  Slope of line 3:   

3 � (�1)

7 � 9
� �2

y2 � y1

x2 � x1
�

y1 � y2

x1 � x2

m �
y2 � y1

x2 � x1
�

4 � (�1)

�2 � (�3)
� 5

m �
y2 � y1

x2 � x1

y

x

Larg
er 

po
sit

ive
 sl

op
e 

Positiv
e slo

pe 

Negative slope 

Figure 5 

x

y

Line 1

Line 2

(d, f)

(d, e)

(c, b)(a, b)

Figure 6 



writing but the denominator is zero, and since division by zero is undefined, 

we conclude that slope is undefined for vertical lines. We summarize these results
in the box that follows. Figure 7 shows for comparison some values of m for vari-
ous lines.

1. The slope of a horizontal line is zero.
2. Slope is not defined for vertical lines.

We can use the concept of slope to find the equation of a line. Suppose we have
a line with slope m and passing through the point (x1, y1), as shown in Figure 8. Let
(x, y) be any other point on the line, as in Figure 8. Then the slope of the line is given
by m � (y � y1)�(x � x1), and therefore, y � y1 � m (x � x1). Note that the given
point (x1, y1) also satisfies this last equation, because in that case we have
y1 � y1 � m(x1 � x1), or 0 � 0. The equation y � y1 � m (x � x1) is called the
point–slope formula. We have shown that any point on the line satisfies this equa-
tion. (Conversely, it can be shown that if a point satisfies this equation, then the point
does lie on the given line.)

An equation of the line with slope m passing through the point (x1, y1) is 

y � y1 � m(x � x1 )

The Point–Slope Formula

Horizontal and Vertical Lines

e � f

d � d
,
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x

y
m=4

m=1

m=0

m=_1

m=_4

1
4m=_

1
4m=

Figure 7 

(x, y)

y

x

Slope is m

(⁄, ›)

Figure 8 

y

x

0
_3

y=_2x-5

(0, _5)

(_3, 1)

y=_2x-5

_5
1

x y

Figure 9
y � �2x � 5

EXAMPLE 3 Using the Point–Slope Formula

Write an equation of the line passing through (�3, 1) with a slope of �2. Sketch a
graph of the line.

SOLUTION Since the slope and a point are given, we use the point–slope formula:

This is the desired equation. Since two points determine a line, we need to find one
more point on the line. For example, for x � 0, y � �5. So the y-intercept is �5. A
table and graph are displayed in Figure 9.

 y � �2x � 5

 y � 1 � �2x � 6

 y � 1 � �2[x � (�3)]

 y � y1 � m(x � x1)



Note: The expression “the line y � �2x � 5” is a common abuse of mathematical
language. It is an abbreviated form of “the line whose equation is y � �2x � 5.”
In the same way we usually say “the curve xy � 1” rather than “the curve whose
equation is xy � 1.” This abuse of language rarely causes confusion, and we shall use
the shortened expressions.

There is another way to go about graphing the line y � �2x � 5 in Example 3.
Since slope is (change in y)�(change in x), a slope of �2 (or �2�1) can be interpreted
as telling us that if we start at (�3, 1) and let x increase by one unit, then y must
decrease by two units to bring us back to the line. Following this path in Figure 10
takes us from (�3, 1) to (�2, �1). To see this argument algebraically, we have 

. Then for , . Hence . So again, 

for each one unit increase in x, y decreases 2 units. We now draw the line through
these two points, as shown in Figure 10.

¢y � �2�2 �
¢y

¢x
�

¢y

1
� ¢y¢x � 1m �

¢y

¢x
� �2
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x
_1

y

_3

_1

1

2

y=_2x-5

(_3, 1)

(_2, _1)

�x=1

�y=_2

Figure 10

EXAMPLE 4 Finding the Equation of a Line Through Two Points

Find an equation of the line passing through the points (�2, �3) and (2, 5).

SOLUTION The slope of the line is

Knowing the slope, we can apply the point–slope formula, making use of either 
(�2, �3) or (2, 5). Using the point (2, 5) as (x1, y1), we have

Thus the required equation is y � 2x � 1. You should check for yourself that the
same answer is obtained using the point (�2, �3) instead of (2, 5).

 y � 2x � 1

 y � 5 � 2x � 4

 y � 5 � 2(x � 2)

 y � y1 � m(x � x1)

m �
y2 � y1

x2 � x1
�

5 � (�3)

2 � (�2)
�

8

4
� 2



By using the point–slope formula exactly as we did in Example 5, we can
show more generally that the equation of the horizontal line in Figure 12 is y � b.
What about the equation of the vertical line in Figure 13 passing through the point
(a, b)? Because slope is not defined for vertical lines, the point–slope formula does
not apply. However, note that as we move along the vertical line, the x-coordinate
is always a, since only the y-coordinate varies. The equation x � a expresses
exactly these two facts; it says that x must always be a, and it places no restrictions
on y. 

In the box that follows, we summarize our results concerning horizontal and
vertical lines.

1. The equation of a horizontal line through the point (a, b) is y � b. (See Fig. 12.)
2. The equation of a vertical line through the point (a, b) is x � a. (See Fig. 13.)

Another basic form for the equation of a line is the slope–intercept form. We are
given the slope m and the y-intercept b, as shown in Figure 14, and we want to find
an equation of the line. To say that the line has a y-intercept of b is the same as say-
ing that the line passes through (0, b). The point–slope formula is applicable now,
using the slope m and the point (0, b). We have

This last equation is called the slope–intercept formula. This derivation shows that
any point on the line satisfies this equation. (Conversely, it can be shown that if a
point satisfies the equation, then it lies on the given line.)

An equation of the line with slope m and y-intercept b is

y � mx � b

The Slope–Intercept Formula

 y � mx � b

 y � b � m(x � 0)

 y � y1 � m(x � x1)

Equations of Horizontal and Vertical Lines
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y

x

(4, _2)

Figure 11

y

x

y=b

(a, b)

Figure 12

y

x

x=a

(a, b)

Figure 13

x

y

(0, b)
Slope is m

Figure 14

EXAMPLE 5 Finding the Equation of a Horizontal Line

Find an equation of the horizontal line passing through the point (4, �2). See Figure 11.

SOLUTION Since the slope of a horizontal line is zero, we have

Thus the equation of the horizontal line passing through (4, �2) is y � �2.

 y � �2

 y � (�2) � 0(x � 4)

 y � y1 � m(x � x1)



x

y

2

1

1

3

4

5

6

2 3

(1, 5)

�x=1

�y=4

y=4x+1

As a consequence of our work up to this point, we can say that the graph of any
linear equation Ax � By � C � 0, where A and B are not both zero, is a line, since
an equation of this type can always be rewritten in one of the following three forms:
y � mx � b, x � a, or y � b. In the box that follows, we summarize our basic results
on equations of lines.
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EXAMPLE 6 Using the Slope–Intercept Formula

Write an equation of the line with slope 4 and y-intercept 1. Graph the line.

SOLUTION Substituting m � 4 and b � 1 in the equation y � mx � b yields

This is the required equation. We could draw the graph by first setting up a simple
table, but for purposes of emphasis and review we proceed as we did just after
Example 3. Starting from the point (0, 1), we interpret the slope of 4 as saying that if
x increases by 1, then y increases by 4. This takes us from (0, 1) to the point (1, 5),
and the line can now be sketched as in Figure 15.

y � 4x � 1

Figure 15
EXAMPLE 7 Determining the Slope and y-intercept

Find the slope and y-intercept of the line 3x � 5y � 15.

SOLUTION First we solve for y to write the equation in the form y � mx � b:

and therefore

The slope m and the y-intercept b can now be read directly from the equation:
m � 3�5 and b � �3.

y �
3

5
x � 3

 �5y � �3x � 15
 3x � 5y � 15

PROPERTY SUMMARY Equations of Lines

Equation Comment

y � y1 � m(x � x1) This is an equation of the line with slope m, 
(the point–slope formula) passing through the point (x1, y1).

y � mx � b This is an equation of the line with slope m
(the slope–intercept formula) and y-intercept b.

Ax � By � C � 0 The graph of any equation of this form (where
A and B are not both zero) is a line. Special
cases: If A � 0, then the equation can be
written y � �C�B, which is the equation of
the horizontal line with y-intercept �C�B.
If B � 0, then the equation can be written
x � �C�A, which represents the vertical line
with x-intercept �C�A.



We conclude this section by discussing two useful relationships regarding the
slopes of parallel lines and the slopes of perpendicular lines. First, nonvertical par-
allel lines have the same slope. (See Figure 16.) This should seem reasonable if you
recall that slope is a number indicating the direction or slant of a line. The rela-
tionship concerning slopes of perpendicular lines is not so obvious. The slopes of
two nonvertical perpendicular lines are negative reciprocals of each other. That is,
if m1 and m2 denote the slopes of the two perpendicular lines, then m1 � �1�m2 or,
equivalently, m1m2 � �1. For example, if a line has a slope of 2�3, then any line
perpendicular to it must have a slope of �3�2. For reference we summarize these
facts in the box that follows. (Proofs of these facts are outlined in detail in
Exercises 53 and 54.)

Let m1 and m2 denote the slopes of two distinct nonvertical lines. Then:

1. The lines are parallel if and only if m1 � m2;
2. The lines are perpendicular if and only if m1 � �1�m2.

Note: If two lines have the same slope and the same y-intercept, then they are the
same line. So one way to show that parallel lines are distinct is to check that they
have different y-intercepts.

Parallel and Perpendicular Lines
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Graphical Perspective
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Figure 16
Parallel lines have the same slope.
Each line here has a slope of 0.5.
The equations of the lines, from 
top to bottom, are y � 0.5x � 2,
y � 0.5x � 1, y � 0.5x, and
y � 0.5x � 1.

EXAMPLE 8 Determining Whether Two Lines Are Parallel

Determine whether the two lines 3x � 6y � 8 � 0 and 2y � x � 1 are parallel.

SOLUTION By solving each equation for y, we can see what the slopes are:

From this we see that both lines have the same slope (m � 1�2) and different 
y-intercepts. It follows therefore that the lines are parallel.

Note: In the solution to part (b) of Example 9 we discuss how to get your graphing
utility to show true proportions so that when you display the graphs of two perpen-
dicular lines they actually look perpendicular on the display screen.

 y �
1

2
x �

4

3
   

 y �
�3

�6
 x �

8

�6
   

 �6y � �3x � 8     y �
1

2
 x �

1

2

 3x � 6y � 8 � 0        2y � x � 1

EXAMPLE 9 Finding Parallel Lines and Perpendicular Lines

In each case, find an equation for the line satisfying the given conditions, and then
use a graphing utility to check that the result appears reasonable.

(a) The line passes through the point (2, 0) and is parallel to the line 5x � 6y � 30.
(b) The line passes through the point (2, 0) and is perpendicular to 5x � 6y � 30.
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Graphical Perspective

Figure 17
The line y � (in red)
passes through the point (2, 0) 
and is parallel to 5x � 6y � 30 
(in black).

� 
5
6 x � 5

3

SOLUTION (a) The line we are looking for is parallel to 5x � 6y � 30 and therefore has the same
slope. To find that slope, we solve the equation 5x � 6y � 30 for y as follows:

The slope is the x-coefficient in this last equation, so m � �5�6. Knowing now
that the required line has slope �5�6 and that it passes through the given point
(2, 0), we can use the point–slope formula y � y1 � m(x � x1) to obtain
y � 0 � (x � 2), and consequently,

This is the required equation of the line passing through the point (2, 0) and par-
allel to 5x � 6y � 30. See the graphical perspective in Figure 17.

(b) In part (a) we found that the slope of the line 5x � 6y � 30 is �5�6. The slope
of a perpendicular line is the negative reciprocal of this, which is 6�5. Knowing
now that the slope of the required line is 6�5 and that it passes through the point
(2, 0), we use the point–slope formula to obtain

This is an equation of the line that passes through the point (2, 0) and that is per-
pendicular to 5x � 6y � 30. For a quick visual check to see whether our result is
reasonable, we’ve used a graphing utility in Figure 18(a) to plot the given line
5x � 6y � 30 (entering it as y � � 5) and the perpendicular through (2, 0) 
that we found to be y � The latter line, shown in red in Figure 18(a),
does appear to pass through (2, 0). It does not, however, appear to be perpendic-
ular to 5x � 6y � 30. Assuming that our graphing utility work is correct, does
this mean we’ve made an error in our algebra? The answer is “No, not necessar-
ily.” The problem with the graph in Figure 18(a) is that it does not show true
proportions. The actual length (or number of pixels) for one unit on the x-axis
is not the same as that on the y-axis. In Figure 18(b) we show a view using true

6
5 x � 12

5 .
� 

5
6 x

 y �
6

5
 x �

12

5

 y � 0 �
6

5
 (x � 2)
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5

6
 x �

5

3

� 
5
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 y � � 
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 x � 5

 6y � �5x � 30

Graphical Perspective
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(b) A true proportions command was used
to generate this view. The two lines do
appear to be perpendicular.

_4

0
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(a) This view does not show
true proportions.

Figure 18
Two views of the lines y �

(in red) and y � (in black).� 
5
6 x � 5

6
5 x � 12

5



proportions, and the two lines do indeed appear to be perpendicular. (If you need
help obtaining a view showing true proportions, see the user’s manual that came
with your graphing utility. Example: On the Texas Instruments graphing calcula-
tors, the zoom choice “ZSquare” yields a viewing screen showing true propor-
tions, albeit often with awkward numbers for Xmin and Xmax.)
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EXERCISE SET 1.6

A
In Exercises 1–3, compute the slope of the line passing through
the two given points. In Exercise 3, include a sketch with your
answers.

1. (a) (�3, 2), (1, �6) 2. (a) (�3, 0), (4, 9)
(b) (2, �5), (4, 1) (b) (�1, 2), (3, 0)
(c) (�2, 7), (1, 0) (c)
(d) (4, 5), (5, 8) (d)

3. (a) (1, 1), (�1, �1)
(b) (0, 5), (�8, 5)

4. Compute the slope of the line in the following figure using
each pair of points indicated.
(a) A and B (b) B and C (c) A and C
The principle involved here is that no matter which pair of
points you choose, the slope is the same.

For Exercises 5 and 6, refer to Figure 2 on page 43 and find
¢x, ¢y, and m � ¢y�¢x for each of the indicated intervals.
(Be sure to include units with your answers.)

5. (a) x � 10 sec to x � 15 sec
(b) x � 10 sec to x � 25 sec
(c) x � 5 sec to x � 30 sec

6. (a) x � 0 sec to x � 5 sec
(b) x � 0 sec to x � 30 sec

For Exercises 7 and 8, refer to Figure A, which follows. At the
beginning of this section it was mentioned that for sufficiently
short periods of time, the graphs of many real-world quantities
can be approximated quite accurately by a straight line. For
instance, the following graph provides a close approximation to
U.S. population data for the years 1970–1990.

y

x
B(2, 0)

A(3, _2)

C(_1, 6)

1  17
3 , � 

1
2 2 , 1� 

1
2, 

17
3 2

1  12, � 
3
5 2 , 1  32, 34 2

Figure A
(Source: Adapted from U.S. Bureau of the Census data) U.S. population
(as of July 1) for years 1970–1990.

7. Specify ¢x and ¢y for each of the following intervals.
(a) x � 1970 to x � 1980
(b) x � 1970 to x � 1990
(c) x � 1980 to x � 1990

8. What is the slope of the population graph in Figure A? (Be
sure to include units with your answer.)

9. The following straight-line graph summarizes the data for
world cigarette production over the years 1990–1993.
Specify ¢t and ¢N for the period 1990–1993. (Include units
with each answer.)

World cigarette production, 1990–1993.

[Source: Adapted from data compiled in Vital Signs, 1998, Lester R.
Brown et al. (New York: W. W. Norton & Company, 1998)]

10. Compute the slope for the straight-line graph shown in

Exercise 9. (Be sure to include units as part of your answer.)
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18. (a) (7, 9) and (�11, 9)
(b) (5�4, 2) and (3�4, 3)
(c) (12, 13) and (13, 12)

In Exercises 19 and 20, write an equation of:
(a) a vertical line passing through the given point;
(b) a horizontal line passing through the given point.

19. (�3, 4) 20. (5, 8)
21. Is the graph of the line x � 0 the x-axis or the y-axis?
22. Is the graph of the line y � 0 the x-axis or the y-axis?

In Exercises 23 and 24, find an equation of the line with the
given slope and y-intercept.

23. (a) slope �4; y-intercept 7
(b) slope 2; y-intercept 3�2

24. (a) slope 0; y-intercept 14
(b) slope 14; y-intercept 0

In Exercises 25–28, find an equation for the line that is de-
scribed, and sketch the graph. For Exercises 25 and 26, write
the final answer in the form y � mx � b; for Exercises 27 and
28, write the answer in the form Ax � By � C � 0.

25. (a) Passes through (�3, �1) and has slope 4
(b) Passes through (5�2, 0) and has slope 1�2
(c) Has x-intercept 6 and y-intercept 5
(d) Has x-intercept �2 and slope 3�4
(e) Passes through (1, 2) and (2, 6)

26. (a) Passes through (�7, �2) and (0, 0)
(b) Passes through (6, �3) and has y-intercept 8
(c) Passes through (0, �1) and has the same slope as the

line 3x � 4y � 12
(d) Passes through (6, 2) and has the same x-intercept as

the line �2x � y � 1
(e) Has x-intercept �6 and y-intercept 

27. Passes through (�3, 4) and is parallel to the x-axis
28. Passes through (�3, 4) and is parallel to the y-axis

In Exercises 29 and 30, find the x- and y-intercepts of the line,
and find the area and the perimeter of the triangle formed by
the line and the axes.

29. (a) 3x � 5y � 15 30. (a) 5x � 4y � 40
(b) 3x � 5y � 15 (b) 2x � 4y �

31. Determine whether each pair of lines is parallel, perpendic-
ular, or neither.
(a) 3x � 4y � 12; 4x � 3y � 12
(b) y � 5x � 16; y � 5x � 2
(c) 5x � 6y � 25; 6x � 5y � 0

(d) y � � � 1; y � � 1
32. Are the lines y � x � 1 and y � 1 � x parallel, perpendicu-

lar, or neither?

3
2 x2

3 x

12

12

11. The slopes of four lines are indicated in the figure. List the
slopes m1, m2, m3, and m4 in order of increasing value.

12. Refer to the accompanying figure.
(a) List the slopes m1, m2, and m3 in order of increasing size.
(b) List the numbers b1, b2, and b3 in order of increasing size.

In Exercises 13 and 14(a), three points A, B, and C are speci-
fied. Determine whether A, B, and C are collinear (lie on the
same line) by checking to see whether the slope of equals
the slope of 

13. A(�8, �2); B12, ; C(11, �1)
14. (a) A(0, �5); B(3, 4); C(�1, �8)

(b) If the area of the “triangle” formed by three points is
zero, then the points must in fact be collinear. Use this
observation, along with the formula in Exercise 14(b)
of Exercise Set 1.4, to rework part (a).

In Exercises 15 and 16, find an equation for the line having the
given slope and passing through the given point. Write your an-
swers in the form y � mx � b.

15. (a) m � �5; through (�2, 1)
(b) m � through 1�6, �

16. (a) m � 22; through (0, 0)
(b) m � �222; through (0, 0)

In Exercises 17 and 18, find an equation for the line passing
through the two given points. Write your answer in the form
y � mx � b.

17. (a) (4, 8) and (�3, �6)
(b) (�2, 0) and (3, �10)
(c) (�3, �2) and (4, �1)

2
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produced the following graph relating the selling price P
(in dollars) and the number y of units that can be sold
each month at that price. For instance, as the graph shows,
setting the selling price at $225 yields sales of 260 units
per month.

(a) Find an equation of the line. (Remember to use the
letter P instead of the usual x.)

(b) Use the equation that you found in part (a) to determine
how many units can be sold in a month when the price
is $303 per unit.

(c) What should the price be to sell 288 units per month?
42. Imagine that you own a grove of orange trees, and suppose

that from past experience you know that when 100 trees
are planted, each tree will yield approximately 240 oranges
per year. Furthermore, you’ve noticed that when additional
trees are planted in the grove, the yield per tree decreases.
Specifically, you have noted that the yield per tree
decreases by about 20 oranges for each additional tree
planted.
(a) Let y denote the yield per tree when x trees are planted.

Find a linear equation relating x and y. 
Hint: You are given that the point (100, 240) is on the
line. What is given about ¢y�¢x?

(b) Use the equation in part (a) to determine how many
trees should be planted to obtain a yield of 400 oranges
per tree.

(c) If the grove contains 95 trees, what yield can you ex-
pect from each tree?

43. Show that the slope of the line passing through the two
points (a, a2) and (x, x2) is x � a. Hint: You’ll need to use
difference of squares factoring from intermediate algebra.
If you need a review, see online Appendix B.4.

44. Show that the slope of the line passing through the two
points (3, 9) and (3 � h, (3 � h)2) is 6 � h.

45. Show that the slope of the line passing through the 
two points (a, a3) and (x, x3) is x2 � ax � a2.
Hint: You’ll need to use difference of cubes factoring
from intermediate algebra. If you need a review, see 
online Appendix B.4.
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In Exercises 33–36, find an equation for the line that is 
described. Write the answer in the two forms y � mx � b 
and Ax � By � C � 0.

33. Is parallel to 2x � 5y � 10 and passes through (�1, 2)
34. Is parallel to 4x � 5y � 20 and passes through (0, 0)
35. Is perpendicular to 4y � 3x � 1 and passes through (4, 0)
36. Is perpendicular to x � y � 2 � 0 and passes

through (3, 1)
37. (a) Use a graphing utility to graph the following three

parallel lines in the standard viewing rectangle:
y � 4 � �0.5(x � 2); y � 3 � �0.5(x � 2);
y � �0.5x.

(b) Experiment with different settings for Xmin, Xmax,
Ymin, and Ymax. In each case, do the three lines still
appear to be parallel?

38. (a) The lines y � 4x and y � �0.25x are perpendicular
because their slopes are negative reciprocals. Use a
graphing utility to graph these two lines in the standard
viewing rectangle. Unless your graphing utility auto-
matically shows true proportions, the lines will not
appear to be perpendicular.

(b) If necessary, modify the viewing rectangle in part (a)
so that true proportions are used and the two lines
indeed appear perpendicular.

39. (a) Find an equation of the line that passes through 
the origin and is perpendicular to the line
3x � 4y � 12.

(b) Use a graphing utility to check that your answer in
part (a) is reasonable. (That is, graph the two lines
using true proportions; the line you found should
appear to pass through the origin and be perpendicular
to 3x � 4y � 12.)

40. In each of parts (a) through (d), first solve the equation
for y so that you can enter it in your graphing utility.
Then use the graphing utility to graph the equation in an
appropriate viewing rectangle. In each case, the graph is
a line. Given that the x- and y-intercepts are (in every
case here) integers, read their values off the screen 
and write them down for easy reference when you get to
part (e).

(a) (c)

(b) (d)

(e) On the basis of your results in parts (a) through 
(d), describe, in general, the graph of the equation 

where a and b are nonzero constants.

B
41. After analyzing sales figures for a particular model of CD

player, the accountant for College Sound Company has 
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For Exercises 51 and 52, you’ll need to recall the following
definitions and results from elementary geometry. In a triangle, a
line segment drawn from a vertex to the midpoint of the opposite
side is called a median. The three medians of a triangle are
concurrent; that is, they intersect in a single point. This point of
intersection is called the centroid of the triangle. A line segment
drawn from a vertex perpendicular to the opposite side is an alti-
tude. The three altitudes of a triangle are concurrent; the point
where the altitudes intersect is the orthocenter of the triangle.

51. This exercise provides an example of the fact that the
medians of a triangle are concurrent.

(a) The vertices of ¢ABC are as follows:

Use a graphing utility to draw ¢ABC. (Since 
coincides with the x-axis, you won’t need to draw a line
segment for this side.) Note: If the graphing utility
you use does not have a provision for drawing line
segments, you will need to determine an equation for
the line in each case and then graph the line.

(b) Find the coordinates of the midpoint of each side of the
triangle, then include the three medians in your picture
from part (a). Note that the three medians do appear to
intersect in a single point. Use the graphing utility to
estimate the coordinates of the centroid.

(c) Using paper and pencil, find the equation of the medians
from A to and from B to Then (using simultane-
ous equations from intermediate algebra), determine the
exact coordinates of the centroid. How do these numbers
compare with your estimates in part (b)?

52. This exercise illustrates the fact that the altitudes of a tri-
angle are concurrent. Again, we’ll be using ¢ABC with ver-
tices A(�4, 0), B(2, 0), and C(0, 6). Note that one of the
altitudes of this triangle is just the portion of the y-axis ex-
tending from y � 0 to y � 6; thus, you won’t need to graph
this altitude; it will already be in the picture.
(a) Using paper and pencil, find the equations for the three

altitudes. (Actually, you are finding equations for the
lines that coincide with the altitude segments.)

(b) Use a graphing utility to draw ¢ABC along with the three
altitude lines that you determined in part (a). Note that
the altitudes appear to intersect in a single point. Use the
graphing utility to estimate the coordinates of this point.

(c) Using simultaneous equations (from intermediate alge-
bra), find the exact coordinates of the orthocenter. Are
your estimates in part (b) close to these values?

53. This exercise outlines a proof of the fact that two non-
vertical lines are parallel if and only if their slopes are
equal. The proof relies on the following observation for the
given figure: The lines y � m1x � b1 and y � m2x � b2 will
be parallel if and only if the two vertical distances AB and
CD are equal. (In the figure, the points C and D both have
x-coordinate 1.)

AC.BC

AB

A(�4, 0)  B(2, 0)  C(0, 6)

46. Write down, and then simplify as much as possible, an 
expression for the slope of the line passing through the 
two points (a, 1�a) and (x, 1�x).

47. A line with a slope of �5 passes through the point (3, 6).
Find the area of the triangle in the first quadrant formed by
this line and the coordinate axes.

48. The y-intercept of the line in the figure is 6. Find the slope
of the line if the area of the shaded triangle is 72 square
units.

49. (a) Sketch the line y � � 5 and the point P(1, 3).
Follow parts (b)–(d) to calculate the perpendicular
distance from point P(1, 3) to the line.

(b) Find an equation of the line that passes through 
P(1, 3) and is perpendicular to the line y � � 5.

(c) Find the coordinates of the point where these two lines
intersect. Hint: From intermediate algebra, to find
where two lines y � mx � b and y � Mx � B intersect,
set the expressions mx � b and Mx � B equal to each
other, and solve for x.

(d) Use the distance formula to find the perpendicular 
distance from P(1, 3) to the line y � � 5.

50. The following figure shows a circle centered at the 
origin and a line that is tangent to the circle at the 
point (3, �4).

(a) Find an equation of the tangent line. Hint: Make use
of the theorem from elementary geometry stating that
the tangent line is perpendicular to the radius drawn to
the point of contact.

(b) Find the intercepts of the tangent line.
(c) Find the length of the portion of the tangent line in

quadrant IV.
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(c) Use part (b) to show that the equation 

OA2 � OB2 � AB2

is equivalent to m1m2 � �1.

55. Verify the identity

What does this identity tell you about calculating slope?

C
56. Find the slope m of the line in the following figure.

y

x
area is 4

(2, 1)

m=?

(y2 � y1)�(x2 � x1) � (y1 � y2)�(x1 � x2)

y

x
O

B

A
y=m¡x

y=m™x

(1, 0)(a) Verify that the coordinates of A, B, C, and D are

(b) Using the coordinates in part (a), check that

(c) Use part (b) to show that the equation AB � CD is
equivalent to m1 � m2.

54. This exercise outlines a proof of the fact that two nonvertical
lines with slopes m1 and m2 are perpendicular if and only if
m1m2 � �1. In the following figure, we’ve assumed that our
two nonvertical lines y � m1x and y � m2x intersect at the
origin. [If they did not intersect there, we could just as well
work with lines parallel to these that do intersect at (0, 0),
recalling that parallel lines have the same slope.] The proof
relies on the following geometric fact:

(a) Verify that the coordinates of A and B are A(1, m1) and
B(1, m2).

(b) Show that

AB2 � m2
1 � 2m1m2 � m2

2

OB2 � 1 � m2
2

OA2 � 1 � m2
1

OA � OB if and only if  (OA)2 � (OB)2 � (AB)2

AB � b1 � b2 and CD � (m1 � b1) � (m2 � b2)

A(0, b1) B(0, b2) C(1, m1 � b1) D(1, m2 � b2)

y

x
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D

1

y=m™x+b™

y=m¡x+b¡

56 CHAPTER 1 Fundamentals

The Mini Project, Thinking About Slope, http://www.cengage.com/math/cohen/precalc7e uses material from
Section 1.6.

1.7 SYMMETRY AND GRAPHS. CIRCLES
Symmetry is a working concept. If all the object is symmetrical, then the parts must
be halves (or some other rational fraction) and the amount of information necessary
to describe the object is halved (etc.). —Alan L. Macay, Department of Crystallography,

University of London

As you will see throughout this text, there are some basic techniques that help us to
understand the essential features of a graph. We start with a discussion about sym-
metry. What does it mean for two points in a plane to be symmetric to a fixed point
in the same plane? Let’s draw a picture. Let the fixed point be P and another point 
be A. See Figure 1(a). Where is a point B such that points A and B are symmetric to
the point P? We say A and B are symmetric with respect to point P or (symmetric
about point P) if P is the midpoint of the line segment . See Figure 1(b).AB

http://www.cengage.com/math/cohen/precalc7e


What does it mean for two points in the plane to be symmetric to a line in the plane?
Again let’s draw a picture. Let the line be l and one of the points be A. See Figure 2(a).
We choose another point B such that there is a point on the line l that is the midpoint
of the line segment . To achieve this, l must be the perpendicular bisector of .
See Figure 2(b). We say two points are symmetric with respect to the line l if the
line is the perpendicular bisector of the line segment joining the points.

For the purposes of graphing curves in the x–y plane, the most basic point symmetry
is symmetry with respect to the origin. The most basic line symmetries are symmet-
ric with respect to the x-axis and symmetric with respect to the y-axis.
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Figure 1

Figure 2

EXAMPLE 1 Plotting Points Symmetric to a Given Point

For each of the given points in the x–y plane, plot the point. Then find the coordinates
of and plot the points symmetric to the given point with respect to the x-axis, the 
y-axis, and the origin. Sketch the four points.

(a) P(3, 2) (b) Q(�2, 4) (c) R(a, b); a � 0, b � 0

SOLUTION (a) P has coordinates (3, 2). For symmetry with respect to the y-axis we need
another point A such that the y-axis is the perpendicular bisector of the line
segment . See Figure 3(a). We must choose A to be (�3, 2). For symmetry
with respect to the x-axis we need another point B such that the x-axis is the
perpendicular bisector of the line segment . We must choose B to be
(3, �2). For symmetry with respect to the origin we need another point C for
which the origin is the midpoint of the line segment . We must choose C to
be (�3, �2).

(b) Q has coordinates (�2, 4). For symmetry with respect to the y-axis we need
another point A such that the y-axis is the perpendicular bisector of the line
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segment . See Figure 3(b). We must choose A to be (2, 4). For symmetry
with respect to the x-axis we need another point B such that the x-axis is the
perpendicular bisector of the line segment . We must choose B to be 
(�2, �4). For symmetry with respect to the origin we need another point C for
which the origin is the midpoint of the line segment . We must choose C to
be (2, �4).

(c) R has coordinates (a, b). For symmetry with respect to the y-axis we need another
point A such that the y-axis is the perpendicular bisector of the line segment .
See Figure 3(c). We must choose A to be (�a, b). For symmetry with respect to
the x-axis we need another point B such that the x-axis is the perpendicular
bisector of the line segment . We must choose B to be (a, �b). For symmetry
with respect to the origin we need another point C for which the origin is the mid-
point of the line segment We must choose C to be (�a, �b).                     

We observe from our work in Example 1 that two points are symmetric with
respect to the y-axis if their y-coordinates are the same and their x-coordinates are
negatives of one another. Similarly, two points are symmetric with respect to the
x-axis if their x-coordinates are the same and their y-coordinates are negatives
of one another. And two points are symmetric with respect to the origin if their
x-coordinates are negatives of one another and their y-coordinates are negatives
of one another.

We can generalize Example 1 to arrive at the following definitions. Let (a, b) be
any point in the x-y plane. Then we have the the following points symmetric with
respect to (a, b).

1. The point symmetric to (a, b) with respect to the x-axis is (a, �b).
2. The point symmetric to (a, b) with respect to the y-axis is (�a, b).
3. The point symmetric to (a, b) with respect to the origin is (�a, �b).

With these definitions it is unimportant in which quadrant the original point (a, b)
lies. Figure 3(c) shows the situation for an original point (a, b) in the first quadrant.
Figure 4 shows the situation for a point (a, b) in the second quadrant. The points sym-
metric to (a, b) with respect to the y-axis, x-axis, and the origin are (�a, b), (a, �b),
and (�a, �b), respectively.

From symmetry of pairs of points we can define symmetry of sets of points in the
plane. In particular, we define certain symmetries of plane curves.
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Type of Symmetry Example Definition

1. Symmetry about the x-axis A curve in the x–y plane is symmetric with
respect to the x-axis if and only if for each 
point (x, y) on the curve, the point (x, �y) is 
also on the curve. In other words, each point on
the curve is one of a pair of points on the curve
symmetric to the x-axis. We say that points on
the curve occur in symmetric pairs about the 
x-axis. We also say that the points (x, y) and 
(x, �y) are reflections of one another in the 
x-axis. In Figure 5 the portions of the graph
above and below the x-axis are also said to be
reflections of each other about the x-axis.

2. Symmetry about the y-axis A curve in the x–y plane is symmetric with
respect to the y-axis if and only if for each point
(x, y) on the curve, the point (�x, y) is also on
the curve. In other words, points on the curve
occur in symmetric pairs about the y-axis.
We say that the points (x, y) and (�x, y) are
reflections of one another about the y-axis.
In Figure 6 the portions of the graph to the left
and right of the y-axis are said to be reflections
of each other about the y-axis.

3. Symmetry about the origin A curve in the x–y plane is symmetric with
respect to the origin if and only if for each point
(x, y) on the curve, the point (�x, �y) is also on
the curve. In other words, points on the curve
occur in symmetric pairs about the origin. We say
that the points (x, y) and (�x, �y) are reflections
of one another in the origin. In Figure 7 the
portions of the graph in the first and third
quadrants are said to be symmetric to each other
about the origin. In terms of the two previous
symmetries, the point (�x, �y) can be obtained
from the point (x, y) as follows: First reflect 
(x, y), in the y-axis to get (�x, y); then reflect
(�x, y) about the x-axis to obtain (�x, �y).
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Basic Symmetries of a Curve

Figure 7
Symmetry about the origin.

Figure 5
Symmetry about the x-axis.

Figure 6
Symmetry about the y-axis.

2 Sketching Reflections

A line segment l has endpoints (1, 2) and (5, 3). Sketch the reflection of l about:
(a) the x-axis; (b) the y-axis; and (c) the origin.

EXAMPLE



EXAMPLE

SOLUTION

(a) First reflect the endpoints (1, 2) and (5, 3) about the x-axis to obtain the new end-
points (1, �2) and (5, �3), respectively. Then join these two points as indicated
in Figure 8(a), in quadrant IV.
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SOLUTION
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(b) Reflect the given endpoints about the y-axis to obtain the new endpoints
(�1, 2) and (�5, 3); then join these two points as shown in Figure 8(a), in
quadrant II.

(c) As described in the box preceding this example, reflection about the origin
can be carried out in two steps: First reflect about the y-axis, then reflect about
the x-axis. In part (b) we obtained the reflection of l in the y-axis, so now we
need only reflect the line segment obtained in part (b) about the x-axis. See
Figure 8(b).

3 Exhibiting the Basic Symmetries

Complete the given graph to obtain a graph with each of the basic symmetries.

(a) Completed graphs with:
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(b) Completed graphs with:

y-axis symmetry x-axis symmetry origin symmetry

(c) Completed graphs with:

y-axis symmetry x-axis symmetry origin symmetry
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EXAMPLE 4 Exhibiting the Basic Symmetries

Complete the given graph to a graph with the specified symmetry.

x-axis symmetry y-axis symmetry origin symmetry
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For a curve defined by an equation we have the following tests for symmetry.
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Graphical Perspective
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(b) x=¥- 1 10 y-15
[-20, 5, 5] by [-10, 10, 5 ]

(a) y=x$-3≈+1
[-4, 4, 2] by [-4, 10, 2]Figure 9

1. The graph of an equation is symmetric about the y-axis if replacing x with 
�x yields an equivalent equation.

2. The graph of an equation is symmetric about the x-axis if replacing y with 
�y yields an equivalent equation.

3. The graph of an equation is symmetric about the origin if replacing x and y with
�x and �y, respectively, yields an equivalent equation.

Tests for Basic Symmetries

EXAMPLE 5 Testing for Symmetry About the x-axis and the y-axis

(a) In Figure 9(a), obtained with a graphing utility, the graph of y � x4 � 3x2 � 1 
appears to be symmetric about the y-axis. Use an appropriate symmetry test to
find out whether the graph indeed possesses this type of symmetry.

(b) In Figure 9(b), obtained with a graphing utility, the graph of x � y2 � � 15 
appears to be symmetric about the x-axis. Use an appropriate symmetry test to
find out whether the graph indeed possesses this type of symmetry. Remark: Most
graphing utilities require that you solve the equation for y before you enter it. See
Exercise 63 for details.

1
10 y

SOLUTION (a) To test for symmetry about the y-axis, we replace x with �x in the given equa-
tion, to obtain

Since this last equation is the same as the original equation, we conclude that the
graph is indeed symmetric about the y-axis.

(b) To test for symmetry about the x-axis, we replace y with �y in the given equa-
tion, to obtain

x � (�y)2 �
1

10
(�y) � 15  or  x � y2 �

1

10
y � 15

y � (�x)4 � 3(�x)2 � 1  or  y � x4 � 3x2 � 1



EXAMPLE

SOLUTION

EXAMPLE

SOLUTION

This last equation is not equivalent to the given equation. This tells us that
the graph is not symmetric about the x-axis. (Exercise 63(c), a graphing
utility exercise, asks for a viewing rectangle that clearly shows this lack of
symmetry.)

6 Testing for Symmetry About the Origin

In Figure 10 it appears that the graph of y � 2x3 � 3x is symmetric about the origin.
Use a symmetry test to find out whether this is indeed the case.
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Graphical Perspective
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Replacing x and y with �x and �y, respectively, gives us

multiplying through by �1

This last equation is identical to the given equation, and we conclude that in this
case appearances are not deceiving; the graph is indeed symmetric about the 
origin.

7 Testing for More Than One Basic Symmetry

Which of the basic symmetries does the graph of the equation x2 � 4y2 � 4 possess?

� y � 2x3 � 3x

 �y � 2(�x) 3 � 3(�x) � �2x3 � 3x

Graphical Perspective

_2 0 2
_2
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2

Figure 11
x2 � 4y2 � 4
[�2, 2, 1] by [�2, 2, 1].

Figure 10
y � 2x3 � 3x, 
[�2, 2, 1] by [�10, 10, 5]
The graph appears to be 
symmetric about the origin. 
Is this really the case?



The graphical perspective shown in Figure 11 suggests that the curve has all three
basic symmetries. Testing for the basic symmetries we have

(�x)2 � 4y2 � 4 is equivalent to x2 � 4y2 � 4, the original equation.
So the curve is symmetric to the y-axis.

x2 � 4(�y)2 � 4 is equivalent to x2 � 4y2 � 4, the original equation.
So the curve is symmetric to the x-axis.

(�x)2 � 4(�y)2 � 4 is equivalent to x2 � 4y2 � 4, the original equation.
So the curve is symmetric to the origin.

As suggested in Example 7, if a curve has any two of the basic symmetries then it
must also have the third. For example, if a curve is symmetric to the x- and y-axis,
then it must also be symmetric to the origin. To see this, consider any point (x, y) on
the curve (see Figure 12). Now

1. the curve is symmetric to the x-axis hence (x, �y) is on the curve,
2. (x, �y) is on the curve and the curve is symmetric to the y-axis hence (�x, �y)

is on the curve,
3. the previous two steps show that when (x, y) is on the curve, then (�x, �y) is

also on the curve. Therefore the curve has origin symmetry.

We have proven that if a curve in the x–y plane is symmetric to the x- and y-axis
then the curve is symmetric to the origin. Using similar reasoning, you can prove the
two other cases:

1. A curve in the x–y plane that is symmetric to both the x-axis and the origin must
be symmetric to the y-axis.

2. A curve in the x–y plane that is symmetric to both the y-axis and the origin must
be symmetric to the x-axis.

Exercise 66 at the end of the section asks you to prove these cases.
In the next two examples we use the notions of symmetry and intercepts as

guides for drawing graphs. True, the graphs could be obtained more quickly using a
graphing utility. The idea here, however, is to understand why the graphs look as
they do.
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EXAMPLE 8 Using Symmetry and Intercepts as Aids in Graphing

Graph the equation y � �x2 � 5.

SOLUTION The domain of the variable x in the expression �x2 � 5 is the set of all real numbers.
However, since the graph must be symmetric about the y-axis (why?), we need only
sketch the graph to the right of the y-axis; the portion to the left will then be the
mirror image of this (with the y-axis as the mirror). The x- and y-intercepts (if any)
are computed as follows:

x-Intercepts y-Intercepts

 x � �15 (� �2.2)
y � 5 x2 � 5
y � �(0)2 � 5 �x2 � 5 � 0



In Figure 13(a) we’ve set up a short table of values and sketched the graph for x � 0.
The complete graph is then obtained by reflection about the y-axis, as shown in
Figure 13(b). [The curve in Figure 13(b) is a parabola. This type of curve will be
considered in detail in later chapters.]
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Figure 13
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EXAMPLE 9 Using Symmetry and Domain as Aids in Graphing

Graph: y � �4�x.

SOLUTION Before doing any calculations, note that the domain of the variable x consists of all real
numbers other than zero. So, however the resulting graph might look, it cannot contain
a point with an x-coordinate of zero. In other words, the graph cannot cross the y-axis.
(Check for yourself that the graph cannot cross the x-axis either.) Now, since the
graph is symmetric about the origin (why?), we need only sketch the graph for x � 0;
the portion corresponding to x 	 0 can then be obtained by reflection about the ori-
gin. In Figure 14(a) we’ve set up a table of values and sketched the graph for x � 0.
(Note the fractional x-values at the end of the table: since y is undefined when x is
zero, it’s informative to pick x-values near zero and look at the corresponding y-values.)



In Figure 14(b) we have reflected the fourth-quadrant portion of the graph first about
the y-axis and then about the x-axis to obtain the required reflection about the origin.
Figure 15 shows our final graph of y � �4�x.

We can use the graph in Figure 14(a) to introduce the idea of an asymptote. A
line is an asymptote for a curve if the distance between the line and the curve ap-
proaches zero as we move farther and farther out along the line. So for the curve
in Figure 15 both the x-axis and the y-axis are asymptotes. (We’ll return to this
idea several times later in the text. For other pictures of asymptotes, see Figure 1
in Section 4.7.)

Since we’ve been discussing symmetry in this section, it seems appropriate to
conclude with a discussion of the circle, because in some sense, this is the most sym-
metric curve. We can use the distance formula to obtain the equation of a circle.
Figure 16 shows a circle with center (h, k) and radius r. By definition, a point (x, y)
is on this circle if and only if the distance from (x, y) to (h, k) is r. Thus we have

or, equivalently,

(1)

(These last two equations are equivalent because two nonnegative quantities are
equal if and only if their squares are equal.)

The work in the previous paragraph tells us two things. First, if a point (x, y) lies
on the circle in Figure 16, then x and y together satisfy equation (1). Second, if a pair
of numbers x and y satisfies equation (1), then the point (x, y) lies on the circle in
Figure 16. (Does it sound to you as if the previous two sentences say the same thing?
They don’t! Think about it.) Equation (1) is called the standard form for the
equation of a circle or the standard equation of a circle. For reference, we record
the result in the box that follows.

(x � h)2 � (y � k)2 � r2

2(x � h)2 � (y � k)2 � r
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The graph of y � �4�x is
symmetric about the origin.
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The standard equation of the circle with center (h, k) and radius r is

(x � h ) 2 � (y � k ) 2 � r 2

The Equation of a Circle in Standard Form



EXAMPLE

SOLUTION

10 Finding the Equation of a Circle

(a) Write the equation of the circle with center (�2, 1) and radius 3.
(b) Does the point (�4, 3) lie on this circle?

(a) In the equation (x � h)2 � (y � k)2 � r2, we substitute the given values h � �2,
k � 1, and r � 3. This yields

or

(2)

This is the standard form for the equation of the given circle.
(b) To find out whether the point (�4, 3) lies on the circle, we check to see if the

coordinates x � �4 and y � 3 satisfy equation (2). We have

which is not equal to 9.
This shows that the values x � �4 and y � 3 do not satisfy equation (2).

Consequently, the point (�4, 3) does not lie on the circle.

In the example just concluded we found that an equation for the circle with cen-
ter (�2, 1) and radius 3 is (x � 2)2 � (y � 1)2 � 9. There is another way to write this
equation that is useful for work with graphing utilities. It involves solving the equa-
tion for y in terms of x, as follows:

Thus the equation of the circle is equivalent to the pair of equations 

y � 1 � and y � 1 � In working with a graphing
calculator or a computer, both of these equations are graphed to yield the required
circle. See Figure 17 and the Graphical Perspective in Figure 18. In Figure 17, note
that the equation with the positive square root represents the upper semicircle, while
the equation with the negative square root represents the lower semicircle.

29 � (x � 2)2.29 � (x � 2)2

 y � 1 � 29 � (x � 2)2

 y � 1 � �29 � (x � 2)2

 (y � 1)2 � 9 � (x � 2)2

 (�4 � 2)2 � (3 � 1)2 � (�2)2 � (2)2 � 4 � 4 � 8

(x � 2)2 � (y � 1)2 � 9

3x � (�2) 42 � (y � 1)2 � 32
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Again, let us go back to the equation obtained in Example 10 for the circle with
center (�2, 1) and radius 3: (x � 2)2 � (y � 1)2 � 9. An alternative form for this
equation is found by carrying out the indicated algebra:

(3)

The disadvantage of this last equation is that the center and radius are no longer read-
ily apparent. For this reason it is useful to have a systematic procedure for converting
equations such as equation (3) back into standard form. The algebraic technique from
intermediate algebra known as completing the square allows us to accomplish this.
We’ll review (or reintroduce) this technique for you with two examples. (We’ll have
several other uses for completing the square later in this text. It’s also useful at times
in calculus.)

As a first example in completing the square, we convert the equation x2 � y2 �
10x � 6y � 4 � 0 into the standard form for a circle. We begin by grouping the
x-terms, grouping the y-terms, and moving the constant to the other side (that is,
adding 4 to both sides of the equation):

(4)

We’ve left the extra space within each set of parentheses because we are going to add
something there. (You’ll see in a moment why we want to do this.) To determine the
number that we want to add in the first set of parentheses, we follow the completing-
the-square procedure:

Take half of the coefficient of x and square it.

From equation (4), the coefficient of x is 10. Taking half of 10 and then squaring it
gives us 52, or 25. That’s the number we want to add in the first set of parentheses. Of
course, to keep the equation in balance, we have to add 25 on the other side too. So
equation (4) becomes

(5)

In the same way now, to determine the number that we want to add in the second set
of parentheses, we

Take half of the coefficient of y and square it.

(x2 � 10x � 25) � (y2 � 6y    ) � 4 � 25

(x2 � 10x    ) � (y2 � 6y    ) � 4

 x2 � 4x � y2 � 2y � 4 � 0

 x2 � 4x � 4 � y2 � 2y � 1 � 9

 (x � 2)2 � (y � 1)2 � 9
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Graphical Perspective
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A distorted view of the circle
(x � 2)2 � (y � 1)2 � 9 results 
when a true proportions option is
not selected on the graphing utility.



From equation (5), the coefficient of y is �6. Taking half of �6 and squaring gives
us (�3)2, or 9. That’s the number we want to add in the second set of parentheses. To
keep the equation in balance, we also add 9 to the right side to obtain

(6)

The whole point in completing the square is that the expressions within the paren-
theses are now perfect squares, and we can rewrite equation (6) as

Verify this factoring for yourself.

This last equation is the standard form for the equation of a circle. From the equation
we see that the center of the circle is (�5, 3). What about the radius r? In standard
form, the right side of the equation is r2. So we have r2 � 38, and consequently

The process that we’ve just described for completing the square requires that the
coefficients of x2 and y2 both be 1. If this is not the case at the start, then you need to
divide both sides of the equation by an appropriate constant, as indicated in the next
example. We will modify this technique in Chapter 12 when we discuss equations in
which the x2 and y2 terms have different coefficients.

r � 138.

(x � 5)2 � (y � 3)2 � 38

(x2 � 10x � 25) � (y2 � 6y � 9) � 4 � 25 � 9 � 38
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EXAMPLE 11 Completing the Square and Determining x-intercepts

Refer to Figure 19, which shows a graph of the circle 

4x2 � 4y2 � 24x � 12y � 29 � 0

(a) Find the center and radius of the circle.
(b) Use a graphing utility to estimate (to two decimal places) the x-intercepts of the

circle.
(c) Use algebra to find exact values for the x-intercepts.

SOLUTION (a) To obtain coefficients of 1 for both x2 and y2, we divide both sides of the equa-
tion by 4:

Next, we group the x-terms, group the y-terms, and subtract the constant 29�4
from both sides of the equation. This gives us

To complete the square within the first set of parentheses we need to add 
which is 9. Likewise in the second set of parentheses, we want to add or 
So we obtain

or, equivalently,

Check the arithmetic. (7)

Looking at this last equation, we see that the center of the circle is and the
radius is 2.

13, 32 2
(x � 3)2 � a y �

3

2
b 2

� 4

(x2 � 6x � 9) � a y2 � 3y �
9

4
b � � 

29

4
� 9 �

9

4

9
4.1  �3

2 2 2
1  �6

2 2 2,
(x2 � 6x    ) � (y2 � 3y    ) � � 

29

4

x2 � y2 � 6x � 3y �
29

4
� 0



(b) To use a graphing utility to graph the circle, we solve equation (7) for y in terms
of x as follows.

Figure 20(a) shows a graph of this pair of equations (using true proportions).
The view in Figure 20(a) indicates that the smaller x-intercept is between 1 and
2, closer to 2 than to 1; the larger x-intercept is between 4 and 5, closer to 4 than
to 5. Figure 20(b) shows a close-up view of the smaller x-intercept. Evidently,
it is closer to 1.680 than to 1.670, and so our estimate to two decimal places is
1.68. Exercise 64 asks you to use a graphing utility in a similar manner to show
that the larger x-intercept is approximately 4.32.

 y �
3

2
� 24 � (x � 3)2  or  y �

3

2
� 24 � (x � 3)2

 y �
3

2
� �24 � (x � 3)2

  a y �
3

2
b 2

� 4 � (x � 3)2

70 CHAPTER 1 Fundamentals

1.670 1.675 1.680
_0.005

0

0.005

(b) [1.670, 1.680, 0.005 ] by
[-0.005, 0.005, 0.005 ]

_1

0

1

2

3

4

0 4 62

(a) [0, 6, 1] by [-1, 4, 1]
True proportions

Figure 20
A graph of the circle
(x � 3)2 � � 4 along
with a magnified view near the
smaller of the two x-intercepts.

1y � 3
2 2 2

Graphical Perspective

(c) The easiest way to find exact expressions for the x-intercepts is to use equa-
tion (7). Setting y � 0 in equation (7) yields

Check the arithmetic.

In summary, the two x-intercepts are 3 � �2 and 3 � �2. As you can check
for yourself with a calculator, these last two expressions are approximately 1.68
and 4.32, respectively. These values are consistent with the numbers that we
obtained graphically in part (b).

1717

 x � 3 �
17

2

 x � 3 � �
A

7

4
� �

17

2

 (x � 3)2 �
7

4

 (x � 3)2 �
9

4
� 4



A
In Exercises 1–6, the endpoints of a line segment are given.
Sketch the reflection of about (a) the x-axis; (b) the y-axis;
and (c) the origin.

1. A(1, 4) and B(3, 1)
2. A(�1, �2) and B(�5, �2)
3. A(�2, �3) and B(2, �1)
4. A(�3, �3) and B(�3, �1)
5. A(0, 1) and B(3, 1)
6. A(�2, �2) and B(0, 0)

In Exercises 7 and 8, complete the given graph to obtain graphs
with each of the basic symmetries.

7. 8.

In Exercises 9–26, graph the equation after determining the 
x- and y-intercepts and whether the graph possesses any of the
three types of symmetry described on page 59.

9. y � 4 � x2 10. y � �x3

11. y � �1�x 12. x � y2 � 1
13. y � �x2 14. y � 1�x2

15. y � �1�x3 16. y � x � 2

17. 18. y � x � 1
19. y � x2 � 2x � 1 20. x � y3 � 1
21. y2 � 2x � 4 22. y � 2x � 4
23. y � 2x2 � x � 4 24. y � 2x2

25. (a) x � y � 2 (b) x � y � 2
26. (a) x � y � 2 (b) x � y � 2

In Exercises 27–40:
(a) Use a graphing utility to graph each equation in the

standard viewing rectangle.
(b) Does the graph in part (a) appear to possess any of the

three types of symmetry defined on page 59?
(c) In cases in which your answer to part (b) is Yes, adjust your

viewing rectangle for a second, more careful inspection.
(In Exercises 27–33, suggestions for the second look are
provided.)

(d) In cases in which, after the second look, it still appears that
the graph possesses symmetry, use an appropriate symme-
try test from page 62 to settle the matter.

27. y � x2 � 3x (second view: x from �2 to 5; y from �4 to 10)
28. y � x3 � 3x (second view: x from �3 to 3; y unchanged)

0000
00
00

y � 2x2

00

x

y

x

y

AB
AB

29. y � 2x (second view: x from �3 to 3; y from 0 to 8)
30. y � (second view: x from �3 to 3; y from 0 to 8)
31. y � 1�(x2 � x) (second view: x from �2 to 2; y unchanged)
32. y � 1�(x3 � x) (second view: x from �2 to 2; y unchanged)
33. y � x2 � 0.2x � 15 Hint: Look closely at the x-intercepts.

34. y � x2 � 2x3 35. 36.

37. y � 2x � x3 � x5 � x7 38. y � 2x � x3 � x5 � x7

39. y � x4 � 10x2 � Suggestion: For the second view, try
zooming out in the y-direction.

40. y � x4 � 10x2 �

In Exercises 41–44, specify the center and radius of each circle.
Also, determine whether the given point lies on the circle.

41. (x � 1)2 � (y � 5)2 � 169; (6, �7)
42. (x � 4)2 � (y � 2)2 � 20; (0, 1)
43. (x � 8)2 � (y � 5)2 � 13; (�5, 2)
44. x2 � y2 � 1; 11�2, �22
In Exercises 45–50, determine the center and the radius for the
circle. Also, find the y-coordinates of the points (if any) where
the circle intersects the y-axis.

45. x2 � y2 �
46. x2 � y2 � 10x � 2y � 17 � 0
47. x2 � y2 � 8x � 6y � �24
48. 4x2 � 4x � 4y2 � 63 � 0
49. 9x2 � 54x � 9y2 � 6y � 64 � 0
50. 3x2 � 3y2 � 5x � 4y � 1

In Exercises 51 and 52, use the techniques shown in Example 11
to carry out the following procedures.

(a) Find the center and radius of the circle.
(b) Use a graphing utility to graph the circle and to estimate

(to two decimal places) the x-intercepts.
(c) Use algebra to find exact values for the x-intercepts, and

then use a calculator to check that the results are consistent
with the estimates in part (b).

51. 16x2 � 64x � 16y2 � 48y � 69 � 0
52. 3x2 � x � 3y2 � 3y � 1 � 0
53. In the text we said that a line is an asymptote for a curve

if the distance between the line and the curve approaches
zero as we move farther and farther out along the line. In
terms of graphing, this means that as we zoom out, the curve
and the line eventually appear indistinguishable. In this
exercise, we’ll demonstrate this using the curve y � �4�x
(which we graphed in Figure 15). As indicated in the text,
both the x- and y-axes are asymptotes for this curve. First,
graph y � �4�x using a viewing rectangle that extends
from �5 to 5 in both the x- and the y-directions. Then take
a second look using a viewing rectangle that extends from

12

13

1
4

1
4 x

00
y � 2 0 x 0 3y � 2 0 x 0

2 0 x 0
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�30 to 30 in both the x- and y-directions. At this scale,
you’ll see that the curve is virtually indistinguishable from
an asymptote when either � 8 or � 8.

54. (a) Graph the equation y � 20�x using a standard
viewing rectangle.

(b) Although both the x- and the y-axes are asymptotes for
this curve, the graph in part (a) does not show this
clearly. Take a second look, using a viewing rectangle
that extends from �100 to 100 in both the x- and the 
y-directions. Note that the curve indeed appears in-
distinguishable from an asymptote when either or 

is sufficiently large.

B
55. The center of a circle is the point (3, 2). If the point 

(�2, �10) lies on this circle, find the standard equation
for the circle.

56. Find the standard equation of the circle tangent to the 
x-axis and with center (3, 5). Hint: First draw a sketch.

57. Find the standard equation of the circle tangent to the 
y-axis and with center (3, 5).

58. Find the standard equation of the circle passing through the
origin and with center (3, 5).

59. The points A(�1, 6) and B(3, �2) are the endpoints of a
diameter of a circle, as indicated in the accompanying
figure. Find the y-intercepts of the circle. Hint: Could you
do the problem if you had the equation of the circle?

60. (a) Verify that the point (3, 7) is on the circle 
x2 � y2 � 2x � 6y � 10 � 0

(b) Find the equation of the line tangent to this circle at the
point (3, 7). Hint: A result from elementary geometry
says that the tangent to a circle is perpendicular to the
radius drawn to the point of contact.

61. The accompanying figure shows the graphs of 
and y � � 34 x � 2 �.

y � 3
4 x � 2

y

x

B(3, -2)

A(-1, 6)

0 y 0
0 x 0

0 y 00 x 0

(a) Determine the x- and y-intercepts for each graph.
(b) Which portions of the two graphs are identical? (Give

your answer in terms of an interval along the x-axis.)
(c) Explain how the graph of can be obtained

from that of by means of reflection.
62. The accompanying figure shows the graphs of the two

equations y � x2 � 6x � 8 and y � x2 � 6x � 8

(a) Determine the x- and y-intercepts for each graph.
(b) Which portions of the two graphs are identical? (Give

your answer in terms of intervals along the x-axis.)
(c) Explain how the graph of y � x2 � 6x � 8 can be 

obtained from that of y � x2 � 6x � 8 by means of
reflection.

63. This exercise relates to Figure 9(b) on page 62. That 
figure shows a graph of the equation x � y2 � 0.1y � 15.
Note that this equation is solved for x rather than y. In the
standard Cartesian graphing mode, however, most graphing
utilities require that the equation be solved for y. This exer-
cise shows one method for obtaining the graph. (A remark
at the end of this exercise mentions a second method.)
(a) Rewrite the equation as 

Then solve for y in terms of x by using the quadratic for-
mula with a � 1, b � �0.1, and c � �(15 � x). After
simplifying, you should obtain

(b) Enter and graph the pair of equations

y �
0.1 � 160.01 � 4x

2
 and y �

0.1 � 160.01 � 4x

2

y �
0.1 � 160.01 � 4x

2

y2 � 0.1y � (15 � x) � 0

00

≈-6x+8y=

x

yy

x

y=≈-6x+8

0 .0
y � 3

4 x � 2
y � � 34 x � 2 �

3
4y= x-2

x

y

3
4x-2y=

x

y
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using the viewing rectangle [�20, 5, 5] by [�10, 10, 5].
Check that your graph agrees with that shown in
Figure 9(b).
(c) Experiment to find a viewing rectangle in which it is

clear that the graph of the equation x � y2 � 0.1y � 15
is not symmetric about the x-axis.

Remark: A second method for graphing x � y2 � 0.1y � 15
requires the parametric mode on your graphing utility.
Consult the user’s manual for your graphing utility to see
how to access and operate this mode. Entering the follow-
ing pair of equations in the parametric mode will yield the
graph (or a portion of the graph): x � t2 � 0.1t � 15; y � t.

64. Use a graphing utility and the method shown in the solu-
tion of Example 11(b) to show that the larger of the two 
x-intercepts of the circle 4x2 � 4y2 � 24x � 12y � 29 � 0
is (to two decimal places) 4.32.

C
65. Suppose that the circle x2 � 2Ax � y2 � 2By � C has two

x-intercepts, x1 and x2, and two y-intercepts, y1 and y2.
Prove each statement.

(a)

(b) x1x2 � y1y2 � 0
(c) x1x2 � y1y2 � �2C

66. Prove each statement.
(a) If the graph of an equation is symmetric to both the 

x-axis and the origin, then it is also symmetric to the 
y-axis.

(b) If the graph of an equation is symmetric to both the 
y-axis and the origin, then it is also symmetric to the 
x-axis.

x1 � x2

y1 � y2
�

A

B

The Mini Project, Thinking About Symmetry, at http://www.cengage.com/math/cohen/precalc7e, contains some
interesting excercises on the material from Section 1.7.

CHAPTER 1 Summary of Principal Terms and Formulas

Page
Terms or Notation Reference Comments

1. Natural numbers, integers, 2 The box on page 2 provides both definitions and examples.
rational numbers, and Also note the theorem in the box, which explains how to 
irrational numbers distinguish between rationals and irrationals in terms of their decimal

representations.

2. a 	 b 3 a is less than b.
b � a b is greater than a.

3. (a, b) 3 The open interval (a, b) consists of all real numbers between a
[a, b] and b, excluding a and b. The closed interval [a, b] consists of all real

numbers between a and b, including a and b.

4. (a, q) 4 The unbounded interval (a, q) consists of all real numbers x such that
x � a. The infinity symbol, q, does not denote a real number. It is used in
the context (a, q) to indicate that the interval has no right-hand boundary.
For the definitions of the other types of unbounded intervals, see the box
on page 4.

5. 6 The absolute value of a real number x is the distance from x to the origin
on a number line. This is equivalent to the following algebraic definition:

0 x 0 � e x if x � 0

�x if x 	 0

0 x 0

CHAPTER 1 Summary

http://www.cengage.com/math/cohen/precalc7e
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Page
Terms or Notation Reference Comments

6. Constant, variable, and 10 By a constant we mean either a particular number (such as �8 or p) 
the domain convention or a letter that remains fixed (although perhaps unspecified) throughout a

given discussion. In contrast, a variable is a letter for which we can
substitute any number from a given set of numbers. The given set is called
the domain of the variable. According to the domain convention, the
domain of a variable in a given expression consists of all real numbers for
which the expression is defined.

7. Linear (or first-degree) 11 These are equations that can be written in the form ax � b � 0, 
equation in one variable where a and b are constants with a � 0.

8. Solution (or root) of 11 A solution or root is a number that, when substituted for the 
an equation variable in an equation, yields a true statement.

9. Equivalent equations 12 Two equations are equivalent if they have the same set of solutions.

10. Extraneous solution 14 In solving equations, certain processes can lead to answers that 
(or extraneous root) do not check in the original equation. These numbers are called

extraneous solutions (or extraneous roots).

11. Quadratic (or second- 15 A quadratic equation is one that can be written in the form 
degree) equation ax2 � bx � c � 0, where a, b, and c are constants with a � 0.

12. Zero-product property 15 If pq � 0 then p � 0 or q � 0; conversely, if p � 0 or q � 0, then 
of real numbers pq � 0. (We used this property in solving quadratic equations by factoring.)

13. Quadratic formula 16 This is the quadratic formula; it provides the solutions of the 
quadratic equation ax2 � bx � c � 0, where a � 0. The formula is 
derived in Section 2.1.

14. Polynomial equation in one 17 A polynomial equation is an equation of the form
variable

where the subscripted letter a’s represent constants and the exponents on
the variable are nonnegative integers. The degree of the polynomial
equation is the largest exponent of the variable that appears in the equation.

15. Pythagorean theorem 20 In a right triangle, the lengths of the sides are related by this 
a2 � b2 � c2 equation, where c is the length of the hypotenuse. Conversely, if the

lengths of the sides of a triangle are related by an equation 
of the form a2 � b2 � c2, then the triangle is a right triangle, and 
c is the length of the hypotenuse.

16. Distance formula 21 d is the distance between the points (x1, y1) and (x2, y2).

d �

17. Midpoint formula 25 This is the midpoint of the line segment joining (x1, y1) and (x2, y2).

18. Graph of an equation 31 The graph of an equation in the variables x and y is the set of all points 
(x, y) with coordinates that satisfy the equation.

a x1 � x2

2
 , 

y1 � y2

2
b

2(x2 � x1 ) 2 � (y2 � y1 ) 2

anx
n � an�1x

n�1 � p � a1x � a0 � 0

x �
�b � 2b2 � 4ac

2a
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Page
Terms or Notation Reference Comments

19. Graphing utility and 32 By a graphing utility we mean either a graphing calculator or a 
standard viewing rectangle computer with software for graphing and analyzing equations or data. The

standard viewing rectangle on a graphing utility is the default view screen
and coordinate system for graphing. For many graphing utilities, the standard
viewing rectangle extends from �10 to 10 in both the x- and y-directions.

20. x-intercept and y-intercept 36 An x-intercept of a graph is the x-coordinate of a point where the graph
intersects the x-axis. Similarly, a y-intercept is the y-coordinate of a point
where the graph intersects the y-axis.

21. Slope 43 m is the slope of a nonvertical line passing through the points 
(x1, y1) and (x2, y2).

22. 
x, 
y 43 If the value of a variable x changes from x1 to x2, then 
x de-
notes the amount by which x changes: 
x � x2 � x1. Similarly, 
if y changes from y1 to y2 then 
y � y2 � y1. With this notation, the slope
formula becomes m � 
y�
x.

23. Point–slope formula 46 This is the point–slope form for the equation of the line passing 
y � y1 � m(x � x1) through the point (x1, y1) with slope m.

24. Slope–intercept formula 48 This is the slope–intercept form for the equation of the line with 
y � mx � b slope m and y-intercept b.

25. Parallel lines 50 Nonvertical parallel lines have the same slope.
m1 � m2

26. Perpendicular lines 50 Two nonvertical lines are perpendicular if and only if the slopes 
m1 � �1�m2 are negative reciprocals of one another.

27. Symmetry about the x-axis 59 A graph is symmetric about the x-axis if, for each point (x, y) 
on the graph, the point (x, �y) is also on the graph. The points (x, y) and
(x, �y) are reflections of each other about (or in) the x-axis.

28. Symmetry about the y-axis 59 A graph is symmetric about the y-axis if, for each point (x, y) 
on the graph, the point (�x, y) is also on the graph. The points (x, y) and
(�x, y) are reflections of each other about (or in) the y-axis.

29. Symmetry about the origin 59 A graph is symmetric about the origin if, for each point (x, y) on the graph,
the point (�x, �y) is also on the graph. The points (x, y) and (�x, �y) are
reflections of each other about the origin.

30. Symmetry tests 62 (i) The graph of an equation is symmetric about the y-axis if replacing x
with �x yields an equivalent equation.

(ii) The graph of an equation is symmetric about the x-axis if replacing y
with �y yields an equivalent equation.

(iii) The graph of an equation is symmetric about the origin if replacing x
and y with �x and �y, respectively, yields an equivalent equation.

31. Equation of a circle 66 This is the standard form for the equation of the circle with 
(x � h)2 � (y � k)2 � r2 center (h, k) and radius r.

m �
y2 � y1

x2 � x1
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Writing Mathematics

1. The following geometric method for solving quadratic equa-
tions of the form x2 � ax � b � 0 is due to the British writer
Thomas Carlyle (1795–1881):

To solve the equation x2 � ax � b � 0, plot the points
A(0, 1) and B(a, b). Then draw the circle with as
diameter. The x-intercepts of this circle are the roots
of the equation.

Use the techniques of this chapter to verify for yourself that
this method indeed yields the roots for the equation
x2 � 6x � 5 � 0. (You need to find the equation of the circle,
determine the x-intercepts, and then check that the numbers

AB

you obtain are the roots of the given equation.) After you have
done this, carefully write out your verification in detail (using
complete sentences), as if you were explaining the method to
a classmate. Be sure to make explicit reference to any formu-
las or equations that you use from the chapter.

2. In Section 1.6 we developed the point–slope formula,
y � y1 � m(x � x1), and the slope–intercept formula,
y � mx � b. Although these two formulas look quite different
from one another, both are merely restatements of the defini-
tion of slope. Write a paragraph (or two, at the most) to ex-
plain this last sentence. Make use of the following two
figures.

Slope is m

x

(0, b)

y

(x, y)

x

y

(x, y)
(⁄, ›)

Slope is m

CHAPTER 1 Review Exercises

For Exercises 1–6 rewrite the statements using absolute values
and inequalities or equalities.

1. The distance between x and 6 is 2.
2. The distance between x and a is less than 1�2.
3. The distance between a and b is 3.
4. The distance between x and �1 is 5.
5. The distance between x and 0 exceeds 10.
6. What can you say about x if x � 5 � 0?

Rewrite each of the expressions in Exercises 7–12 in a form
that does not contain absolute values.

7. 8.
9. 10. (a) x � 3 , if x 	 3

(b) x � 3 , if x � 3
11. , if: 12. x � 2 � x � 1 , if:

(a) x 	 2 (a) x 	 �2
(b) 2 	 x 	 3 (b) �2 	 x 	 1
(c) x � 3 (c) x � 1

00000 x � 2 0 � 0 x � 3 0
00
000 x4 � x2 � 10

02 � 16 0�16 � 2 �

00

In Exercises 13–18, express each interval in inequality notation
and sketch the interval on a number line.

13. (3, 5) 14. (3, 5]
15. The set of all negative real numbers that are in the interval

[�5, 2]
16. (�q, 4) 17. [�1, q)
18. The set of real numbers that belongs to either of the intervals

or 

In Exercises 19–23, sketch the intervals described by the given
inequalities.

19. 20.
21. 22. x � 5
23. (a) (b) x � 4 	 5
24. Determine whether each of the following is true or false.

(You should be able to do these without a calculator.)
(a) (b) 1

5 � �12p � 13

000 	 0 x � 4 0 	 5
000 x � 1 0 � 1

�x � 1
2 � 	 10 x � 6 0 	 3

112, 2 410, 12 4



In Exercises 25–40, find all the real solutions of each equation.

25. 5 � 9x � 2 26.
27. (t � 4)(t � 3) � (t � 5)2

28. 29.

30. 31.

32. 33. 12x2 � 2x � 2 � 0

34. 4y2 � 21y � 18 35.

36. 37.

38. 4x2 � x � 2 � 0 39.
40. x3 � 8x2 � 9x � 0

In Exercises 41–57, find an equation for the line satisfying the
given conditions. For Exercises 41–49, write the answer in
the form y � mx � b; in Exercises 50–57, write the answer
in the form Ax � By � C � 0.

41. Passes through (�4, 2) and (�6, 6)
42. m � �2; y-intercept 5
43. m � 1�4; passes through (�2, �3)
44. m � 1�3; x-intercept �1
45. x-intercept �4; y-intercept 8
46. m � �10; y-intercept 0
47. y-intercept �2; parallel to the x-axis
48. Passes through (0, 0) and is parallel to 6x � 3y � 5
49. Passes through (1, 2) and is perpendicular to the line 

x � y � 1 � 0
50. Passes through (1, 1) and through the center of the circle 

(x � 2)2 � (y � 4)2 � 20
51. Passes through the centers of the circles

(x � 2)2 � (y � 1)2 � 5 and (x � 2)2 � (y � 8)2 � 68
52. m � 3 and has the same x-intercept as the line 3x � 8y � 12
53. Passes through the origin and the midpoint of the line

segment joining the points (�2, �3) and (6, �5)
54. Is tangent to the circle x2 � y2 � 20 at the point (�2, 4)
55. Is tangent to the circle (x � 3)2 � (y � 4)2 � 25 at the point

(0, 0)

Hint: In Exercises 56 and 57 you might try the intercept form 

of the equation for a line: where a and where 

a and b are the x and y intercepts. See Exercise 40 in 
Section 1.6.
56. Passes through (2, 4); the y-intercept is twice the 

x-intercept
57. Passes through (2, �1); the sum of the x- and y-intercepts 

is 2. (There are two answers.)
58. (a) Find the perimeter of the triangle with vertices A(3, 1),

B(7, 4), and C(�2, 13).
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b
� 1,

t2 � t � 1
2 � 0
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5 � x
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x2 � 13

2  x � 10 � 0

1
2 x2 � x � 12 � 0

2x � 3

x � 2
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1

x � 2
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1
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3
�

3x

5
�
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6
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(b) Find the perimeter of the triangle formed by joining the
midpoints of the sides of the triangle in part (a).

In Exercises 59–62, test each equation for symmetry about the
x-axis, the y-axis, and the origin.

59. y � x4 � 2x2 60. y � x3 � 5x � 1
61. y � 2x � 2�x 62. y � 2x � 2�x

For Exercises 63–68, tell whether each graph appears to be
symmetric about the x-axis, the y-axis, or the origin.

63. 64.

65. 66.

67. 68.

Graph the equations in Exercises 69–74.

69. x � 9 � y2 70. (x � 2)2 � y2 � 1
71. y � 1 � 72. y � � � 2
73. (4x � y � 4)(4x � y � 4) � 0

Hint: Use the zero-product property.
74. (y � x)(y � x � 2)(y � x � 2) � 0

You know from the text that the graph of the equation
x2 � y2 � 9 is a circle with center (0, 0) and radius 3. In
Exercises 75–81, use a graphing utility to investigate what 
happens when the equation is changed slightly. (As in graphing
circles, you’ll first need to solve the given equations for y.)

75. (a) x2 � 2y2 � 9 (The resulting curve is an ellipse. We’ll
study this curve in a later chapter.)

2 00 x0 x 0
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x

yy
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Hint: Compute the slope of and the slope of 

(b) Show that P1Q � (In other words, Q is on the line
segment and two-thirds of the way from P1 to P2.)

89. (a) Let the vertices of ¢ABC be A(�5, 3), B(7, 7), and 
C(3, 1). Find the point on each median that is two-thirds
of the way from the vertex to the midpoint of the oppo-
site side. (Recall that a median of a triangle is a line
segment drawn from a vertex to the midpoint of the
opposite side.) What do you observe?

Hint: Use the result in Exercise 88.
(b) Follow part (a) but take the vertices to be A(0, 0), 

B(2a, 0), and C(2b, 2c). What do you observe? What
does this prove?

90. In the following figure, points P and Q trisect the hypotenuse
in ¢ABC. Prove that the square of the hypotenuse is equal to
9�5 the sum of the squares of the distances from the trisec-
tion points to the vertex A of the right angle.

Hint: Let the coordinates of B and C be (0, 3b) and (3c, 0),
respectively. Then the coordinates of P and Q are (c, 2b) and
(2c, b), respectively.

91. Figure A shows a triangle with sides of lengths s, t, and u and
a median of length m. Prove that

Hint: Set up a coordinate system as indicated in Figure B.
Then each of the quantities m2, s2, t2, and u2 can be
computed in terms of a, b, and c.

Figure A Figure B

y

(2c, 0)(0, 0)

(2a, 2b)

x

m

t

u
s

m2 �
1

2
 (s2 � t2) �

1

4
 u2

y

x
C

Q

P

B

A

P1P2

2
3 P1P2.

QP2.P1Q(b) On the same set of axes, graph the ellipse x2 � 2y2 � 9
and the circle x2 � y2 � 9. At which points do the two
curves appear to intersect?

(c) Carry out the calculations to verify that the points 
indicated in part (b) are indeed the exact intersection
points.

76. 2x2 � y2 � 9
77. (a) x2 � y2 � 9 (The resulting curve is a hyperbola. We’ll

study this curve in a later chapter.)
(b) x2 � y2 � 0
(c) On the same set of axes, graph the equations given in

parts (a) and (b). Are there any intersection points?
78. x2 � y3 � 9 79. x3 � y2 � 9
80. (a) x3 � y3 � 9

(b) x5 � y5 � 9
(c) On the same set of axes, graph the equations given in

parts (a) and (b). On the basis of the pattern you see,
what do you think the graph of the equation x7 � y7 � 9
will look like? Draw a sketch (by hand) to show your pre-
diction. Then use a graphing utility to see how accurate
your prediction is.

81. (a) x4 � y4 � 9
(b) x6 � y6 � 9
(c) On the same set of axes, graph the equations given in

parts (a) and (b). Based on the pattern you see, what do
you think the graph of the equation x8 � y8 � 9 will look
like? Draw a sketch (by hand) to show your prediction.
Then use a graphing utility to see how accurate your
prediction is.

82. Find a value for t such that the slope of the line passing
through (2, 1) and (5, t) is 6.

83. The vertices of a right triangle are A(0, 0), B(0, 2b), and
C(2c, 0). Let M be the midpoint of the hypotenuse.
Compute the three distances MA, MB, and MC. What do you
observe?

84. The vertices of parallelogram ABCD are A(�4, �1), B(2, 1),
C(3, 3), and D(�3, 1).
(a) Compute the sum of the squares of the two diagonals.
(b) Compute the sum of the squares of the four sides. What

do you observe?

In Exercises 85 and 86, two points are given. In each case 
compute (a) the distance between the two points, (b) the 
slope of the line segment joining the two points, and (c) the
midpoint of the line segment joining the two points.

85. (2, 5) and (5, �6)
86. �2, 1�22 and 1� �2, �1�22
87. A line passes through the points (1, 2) and (4, 1). Find the

area of the triangle bounded by this line and the coordinate
axes.

88. Let P1(x1, y1) and P2(x2, y2) be two given points. Let Q be 
the point 
(a) Show that the points P1, Q, and P2 are collinear.

1  13 x1 � 2
3 x2, 

1
3 y1 � 2

3 y2 2 .

13113



(a) Find the equation of the circle.
Suggestion: First decide what the relationships must be
between h, k, and r in the equation (x � h)2 � (y � k)2 �
r2. Then find a way to apply the formula given in
Exercise 94.

(b) Let S, T, and U denote the points where the circle
touches the x-axis, the line 3x � 4y � 12, and the y-axis,
respectively. Find the equation of the line through A and
T; through B and U; through S and C.

(c) Where do the line segments and intersect? 
Where do and intersect? What do you observe?
Remark: The point determined here is called the
Gergonne point of triangle ABC, so named in honor of
its discoverer, French mathematician Joseph Diaz
Gergonne (1771–1859).

100. This exercise outlines a proof of the Pythagorean theorem
that was discovered by James A. Garfield, the twentieth
President of the United States. Garfield published the proof
in 1876, when he was the Republican leader in the House of
Representatives. We start with a right triangle with legs of
length a and b and hypotenuse of length c. We want to
prove that a2 � b2 � c2.
(a) Take two copies of the given triangle and arrange them

as shown in Figure A. Explain why the angle marked u
is a right angle. (u is the Greek letter “theta.”)

(b) Draw the line segment indicated in Figure B. Notice that
the outer quadrilateral in Figure B is a trapezoid. (Two
sides are parallel.) The area of this trapezoid can be com-
puted in two distinct ways: using the formula for the area
of a trapezoid (given on the inside front cover of this
book) or adding the areas of the three right triangles in
Figure B. Compute the area of the trapezoid in each of
these two ways. When you equate the two answers and
simplify, you should obtain a2 � b2 � c2.

Figure A Figure B
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In Exercises 92 and 93, the endpoints of a line segment are
given. Sketch the reflection of about (a) the origin; 
(b) the x-axis; and (c) the y-axis.

92. A(�2, �3) and B(0, 2)
93. A(3, 1) and B(3, �2)
94. In this exercise you’ll derive a useful formula for the 

(perpendicular) distance d from the point (x0, y0) to the line
y � mx � b. The formula is

(a) Refer to the figure. Use similar triangles to show that

Therefore, d � AB�

(b) Check that AB � AC � BC � y0 � mx0 � b.
(c) Conclude from parts (a) and (b) that

For the general case (in which the point and line may not
be situated as in our figure), we need to use the absolute
value of the quantity in the numerator to ensure that AB and d
are nonnegative.

95. Use the formula given in Exercise 94 to find the distance
from the point (1, 2) to the line y � � 5.

96. Use the formula given in Exercise 94 to demonstrate that the
distance from the point (x0, y0) to the line Ax � By � C � 0 is

97. Use the formula given in Exercise 96 to find the distance 
from the point (�1, �3) to the line 2x � 3y � 6 � 0.

98. Find the equation of the circle that has center (2, 3) and is
tangent to the line x � y � 1 � 0.
Hint: Use the formula given in Exercise 96 to find the radius.

99. In the figure, the circle is tangent to the x-axis, to the y-axis,
and to the line 3x � 4y � 12.

d �
0Ax0 � By0 � C 0
2A2 � B2

1
2 x
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d m
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1
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CHAPTER 1 Test

1. Simplify x � 6 � x � 7 , where 6 	 x 	 7.
2. Specify the intervals that are described by the inequalities.

(a) (b) x � 2

In Problems 3–5, find all the real solutions of each equation.

3. 4.

5. (a) x2 � 4x � 5 (b) x2 � 4x � 1
6. Solve the following equation for x in terms of the other letters:

7. Refer to the following graph. As indicated in the graph, the
number N of U.S. radio stations on the air increased in
(approximately) a straight-line fashion from 1990 to 1994.
Source of data: The Universal Almanac 1997, John W. Wright
(ed.) (Kansas City: Andrews and McMeel, 1997)

(a) As t increases from 0 to 4, we have ¢t � 4 years. What is
the corresponding value of ¢N?

(b) Find the slope ¢N�¢t for the line. Round the answer to
the nearest integer. (Include units with your answer.)

(c) Use your result in part (b) to answer the following ques-
tion. If the number of radio stations had continued to grow
in a straight-line fashion, how many stations would there
have been in 1995?

8. The following data are from a classic experiment in biology
that measured the average height of a group of sunflower
plants at seven-day intervals.

Growth in (Mean) Height of Sunflower Plants

Day t Mean Height h (cm)

7 17.93
21 67.76

Source: H. S. Reed and R. H. Holland in Proceedings of the National
Academy of Sciences, vol. 5 (1919), p. 140.

(a) Plot the two data points in the following coordinate system.
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(4, 11565)
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(b) Use the midpoint formula and the data for t � 7 days
and t � 21 days to estimate what the average height of
the sunflowers might have been at t � 14 days. (Round
the answer to one decimal place.)

(c) Compute the percentage error in the estimation in 
part (b), given that the actual average height at t � 14
days was 36.36 cm. Round the answer to the nearest
whole percent. Check: You should obtain a substan-
tial percentage error. In Chapter 5 we’ll study some
types of equations that do a much better job than the
midpoint formula in modeling biological growth.)

In Problems 9 and 10, find an equation for the line satisfying the
given conditions. Write the answer in the form y � mx � b.

9. Passes through (1, �2) and the y-intercept is 6
10. Passes through (2, �1) and is perpendicular to the line

5x � 6y � 30
11. Which point is farther from the origin, (3, 9) or (5, 8)?
12. Test each equation for symmetry of the graph about the 

x-axis, the y-axis, and the origin:
(a) y � x3 � 5x (b) y � 3x � 3�x (c) y2 � 5x2 � x

In Problems 13 and 14, graph the equations and specify all 
x- and y-intercepts.

13. 3x � 5y � 15 14. (x � 1)2 � (y � 2)2 � 9
15. (a) Use a graphing utility to graph the equation 

y � x3 � 2x2 � 9x in an appropriate viewing rectangle.
(b) Use a graphing utility to estimate to one decimal place

the x-intercepts of the graph.
(c) Use algebra to find exact values for the x-intercepts.

16. Does the point (�1�2, 5) lie on the graph of the equation
y � 4x2 � 8x?

17. The endpoints of line segment are A(3, �1) and 
B(�1, 2). Sketch the reflection of about (a) the x-axis;
(b) the y-axis; and (c) the origin.

18. A line passes through the points (6, 2) and (1, 4). Find the area
of the triangle bounded by this line and the x- and y-axes.
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CHAPTER

2 Equations 
and 
Inequalities

2.1 Quadratic Equations:
Theory and Examples

2.2 Other Types of Equations

2.3 Inequalities

2.4 More on Inequalities

We continue the work begun in Section 1.3 on solv-
ing equations, and then we adapt those skills in
solving inequalities. Some of the applications that
you’ll see in this chapter are:

• Tracking population growth in the United States (Example 1 in Section 2.1)
• Predicting world records for the men’s and women’s 10,000-meter race (Exercises 21

and 22 in Section 2.1)
• Predicting sulfur dioxide emissions for the United States and Asia (Exercises 42 and

43 in Section 2.3) (Sulfur dioxide emissions are the main contributor to acid rain.)

By 1900 B.C. the Babylonians had a well-
established algebra. They could solve
quadratic equations (positive coefficients
and positive solutions only) and some
types of higher degree equations as well.
—Stuart Hollingdale in Makers of
Mathematics (London: Penguin 
Books, 1989)

[’Abd-al-Hamid ibn-Turk, a ninth-
century Persian mathematician] gives
geometric figures to prove if the
discriminant is negative, a quadratic
equation has no [real] solution.
—Carl B. Boyer in A History of
Mathematics, 2nd ed. (Uta C. Merzbach,
revision editor) (New York: John Wiley
& Sons, 1991)

2.1 QUADRATIC EQUATIONS: THEORY AND EXAMPLES
A wealth of quadratic equations applied to genetic problems can be found in . . . [the
textbook byAlbert Jacquard, The Genetic Structure of Populations]. —Edward Batschelet,

Introduction to Mathematics for Life Scientists, 3rd ed. (New York: Springer-Verlag, 1979)

Recall (from Section 1.3, or from a previous course) that a quadratic equation is an
equation that can be written in the form ax2 � bx � c � 0, where a, b, and c are real
numbers and a is not zero. In Section 1.3 we solved quadratic equations in two ways:
by factoring and by the quadratic formula. The factoring method is the simpler of the
two, but it can’t be used in every instance. (Example: Try solving x2 � 2x � 4 � 0
by factoring.) The quadratic formula, on the other hand, can be used to solve any
quadratic equation. In this section we take a more careful look at the quadratic for-
mula: We derive the formula, and we use it, not only to solve equations but also to
analyze them. The technique that we’ll use to derive the quadratic formula is com-
pleting the square (introduced in Section 1.7).

We’ll review the technique of completing the square by solving the equation
x2 � 2x � 4 � 0. First, we rewrite the equation in the form

(1)

with the x-terms isolated on the left-hand side of the equation. To complete the
square, we follow these two steps:

Step 1 Take half of the coefficient of x and square it.
Step 2 Add the number obtained in Step 1 to both sides of the equation.

x2 � 2x � 4

Image copyright Andrew F. Kazmierski, 2010. Used under
license from Shutterstock.com



For equation (1), the coefficient of x is �2. Taking half of �2 and then squaring it
gives us (�1)2, or 1. Now, as directed in Step 2, we add 1 to both sides of equation (1).
This yields

So x �1 is a square root of 5. Hence

We have now obtained the two solutions, 1 � and 1 � Let’s check that these
numbers are indeed solutions of x2 � 2x � 4 � 0. (We’ll show the work for
x � 1 � you should carry out the calculations for 1 � on your own.) We have

In the box that follows, we summarize the process of completing the square and
we indicate how it got its name.

 � 0  as required.
 � 6 � 2 � 4

 11 � 15 2 2 � 2 11 � 15 2 � 4 � 11 � 215 � 5 2 � 2 � 215 � 4

1515;

15.15

 x � 1 � 15

 x � 1 � �15

 (x � 1)2 � 5

 x2 � 2x � 1 � 4 � 1

The technique of completing the square can be used to derive the quadratic formula.
We start with the general quadratic equation and divide
both sides by a (so that the coefficient of x2 will be 1, as in the box above). This yields

Subtracting c�a from both sides yields

x2 �
b
a

 x � � 

c
a

x2 �
b
a

 x �
c
a

� 0

ax2 � bx � c � 0 (a � 0)

Algebraic Procedure for Geometric Interpretation 
Completing the Square of Completing the Square 
in the Expression x2 � bx for x2 � bx

Add the square of half of the The blue region in the figure represents
x-coefficient: the quantity x2 � bx, since the area is

By adding the red square to the blue re-
gion, we fill out or “complete” the larger
square. The area of the red region that
completes the square is 

b
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SOLUTION

Now, to complete the square, we add , or b2�4a2, to both sides. That gives us

This last equality follows from the fact that for any real number a � 0, the expres-
sions and �2a both represent the same two numbers. We now conclude that
the solutions are

For reference, we summarize our work in the box that follows.

x � � 

b

2a
�
2b2 � 4ac

2a
  and  x � � 

b

2a
�
2b2 � 4ac

2a

�2 0a 0

 � � 

2b2 � 4ac

2a

 x �
b

2a
� �
B

b2 � 4ac

4a2 � � 

2b2 � 4ac

2 0a 0

 a x �
b

2a
b 2

�
b2 � 4ac

4a2

 x2 �
b
a

 x �
b2

4a2 �
b2

4a2 �
c
a

3 12(b�a) 4 2

Comment: The quadratic formula yields the solutions of a quadratic equation in all
cases. However, when b2 � 4ac is negative, the solutions are not real numbers. See
page 88 for a discussion of the discriminant.

(a) Substituting x � 1900 in equation (2) yields

using a calculator and rounding 
to one decimal place

 � 75.6 million

 y � 0.006609(1900)2 � 23.771(1900) � 21,382

The solutions of the equation ax2 � bx � c � 0 (a � 0) are given by

x �
�b � 2b2 � 4ac

2a

The Quadratic Formula

EXAMPLE 1 Using the Quadratic Formula

For the years 1850 through 1990, the population of the United States can be closely
approximated using the equation

(2)

where y is the population in millions, and x is the year.
(a) To get a feeling for working with equation (2), use the equation to estimate the

U.S. population in 1900. (Round the answer to one decimal place.)
(b) Use equation (2) and the quadratic formula to estimate the year in which the U.S.

population reached 200 million.

y � 0.006609x2 � 23.771x � 21,382



Thus our estimate for the U.S. population in 1900 is 75.6 million. Remark: This
estimate is very good, for according to the U.S. Bureau of the Census, the popu-
lation in 1900 was approximately 76.2 million.

(b) Using equation (2), we want to find the year x in which the population y reached
200 million. Substituting y � 200 in equation (2) yields

This is a quadratic equation, and to put it in the form ax2 � bx � c � 0 (so that the
quadratic formula can be used), we subtract 200 from both sides to obtain

From this last equation we see that

and, consequently,

Using a calculator now and rounding to the nearest integer, we obtain the two val-
ues x � 1969 and x � 1628. We choose the value in the required range between
1850 and 1990. Thus our estimate is that 1969 was the year in which the U.S. pop-
ulation reached 200 million. Remark: This is a reasonable estimate, for
according to Census Bureau data, the 1960 population was approximately
179 million, whereas the 1970 population was approximately 203 million.

Comment: The range of validity of the approximation formula (2) covers the years
from 1850 through 1990. The year 1628 is so far outside this range that we do not
expect to get a reasonable approximation from equation (2), and we don’t.

 �
�(�23.771) � 2(�23.771)2 � 4(0.006609) (21,182)

2(0.006609)

 x �
�b � 2b2 � 4ac

2a

a � 0.006609  b � �23.771  c � 21,182

0.006609x2 � 23.771x � 21,182 � 0

0.006609x2 � 23.771x � 21,382 � 200
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EXAMPLE 2 Using the Quadratic Formula

Consider the quadratic equation x2 � 5 � 3x.

(a) Use the quadratic formula to find the roots of the equation.
(b) Compute the product of the roots.
(c) Compute the sum of the roots.

(a) Just as we did in the previous example, we first write the equation in the form
ax2 � bx � c � 0:

From this last equation we see that a � 1, b � 3, and c � �5. The quadratic
formula then yields

 �
�3 � 19 � 20

2
�

�3 � 129

2

 x �
�b � 2b2 � 4ac

2a
�

�3 � 232 � 4(1) (�5)

2(1)

x2 � 3x � 5 � 0

SOLUTION
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(b) Computing the product of the roots and noting that the product of the numerators
is a difference of squares, we have

So the product of the two roots is �5.
(c) For the sum of the roots we have

Therefore the sum of the roots is �3.

If you look over the results in Example 2, you’ll see that there appears to be
something of a coincidence. We found that the product of the roots of the equation
x2 � 3x � 5 � 0 is �5, which happens to be the “c” term in the equation. Further-
more, the sum of the roots is �3, which happens to be the negative of the “b” term in
the equation. In fact, however, these are not coincidences. Rather, they are examples
of the following general result.

 � 
�6

2
� �3

 
�3 � 129

2
�

�3 � 129

2
�

�3 � 129 � (�3) � 129

2

a�3 � 129

2
b a�3 � 129

2
b �

(�3)2 � 1129 22
4

�
9 � 29

4
�

�20

4
� �5

Theorem The Product and the Sum of the Roots of x 2 � bx � c � 0

Let r1 and r2 be the roots of the quadratic equation x2 � bx � c � 0. Then

In words: The product of the roots of x2 � bx � c � 0 is the constant term in the
equation, and the sum of the roots is the negative of the coefficient of the x-term.

r1r2 � c  and  r1 � r2 � �b

The proof of this theorem follows exactly the same steps that we used in Example 2.
For the equation x2 � bx � c � 0, we have a � 1, and therefore the quadratic
formula gives us

So the two roots are r1 � and r2 � Then, for 

the product of the roots we have

 �
b2 � (b2 � 4c)

4
�

4c

4
� c  as required.

 r1r2 �
�b � 2b2 � 4c

2
# �b � 2b2 � 4c

2

�b � 2b2 � 4c

2
.

�b � 2b2 � 4c

2

x �
�b � 2b2 � 4(1)c

2(1)
�

�b � 2b2 � 4c

2



For the sum of the roots we have

as we wished to show. The next two examples show how these results are applied.

 �
�b � 2b2 � 4c � (�b ) � 2b2 � 4c

2
�

�2b

2
� �b

 r1 � r2 �
�b � 2b2 � 4c

2
�

�b � 2b2 � 4c

2
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If r1 and r2 are the roots of the equation x2 � bx � c � 0, we have

and

With these values for b and c the quadratic equation is x2 � � 0. To obtain an
equation with integer coefficients (but still the same roots), we multiply both sides of
this last equation by 4 to obtain

4x2 � 2x � 1 � 0

1
2 x � 1

4

b � �(r1 � r2) � � a 1 � 15

4
�

1 � 15

4
b � � 

2

4
� � 

1

2

c � r1r2 �
1 � 15

4
�

1 � 15

4
�

1 � 5

16
� � 

1

4

SOLUTION

To apply the theorem on the product and sum of roots, the coefficient of x2 in the
equation must be 1. To arrange this, we divide both sides of the given equation by 2.
This yields the equivalent equation

In this equation we have b � 3 and c � �7�2. Therefore

and

That is, the product of the roots is �7�2 and the sum of the roots is �3.

r1 � r2 � �b � �3

r1r2 � c � � 

7

2

x2 � 3x �
7

2
� 0

SOLUTION

EXAMPLE 3 Finding the Product and Sum of the Roots of a Quadratic Equation

Find the product and the sum of the roots of the quadratic equation 2x2 � 6x � 7 � 0.

EXAMPLE 4 Finding a Quadratic Equation with Given Roots

Find a quadratic equation with roots

Write the equation in a form involving integer coefficients only.

r1 �
1 � 15

4
  and  r2 �

1 � 15

4
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EXAMPLE

This is the equation with the required roots and with integer coefficients.

Suggestion: For practice in using the quadratic formula, solve this last equation to
verify that the roots are indeed 11 � �4.                                                               

In Examples 1 and 2 we found that each quadratic equation had two real roots
(although in Example 1 we were interested only in one root). As the next example
indicates, however, it is also possible for quadratic equations to have only one real
root, or even no real roots.

5 Using the Quadratic Formula

Use the quadratic formula to solve each equation:

(a) 4x2 � 12x � 9 � 0; (b) x2 � x � 2 � 0.

15 2

(a) Here a � 4, b � �12, and c � 9, so

In this case our only solution is 3�2. We refer to 3�2 as a double root.
Note: We’ve used the quadratic formula here only for an illustration; in this case
we can solve the original equation more efficiently by factoring.

(b) Since a � 1, b � 1, and c � 2, we have

From this we conclude that the given equation has no real-number solutions
because the expression is undefined within the real-number system.
However, if we take a broader point of view and work within the complex num-
ber system, then there are indeed two solutions. Recall , an imagi-
nary number. Then

So the equation has two complex number solutions that are conjugates of one
another.*

The results in Example 5 can be interpreted in terms of graphs. For as we know
from Section 1.5, the x-intercepts of the graph of y � ax2 � bx � c are found by 
solving the equation ax2 � bx � c � 0. As indicated in Figure 1(a), the graph of
y � 4x2 � 12x � 9 has only one x-intercept, 3�2; this intercept is the root of the equa-
tion 4x2 � 12x � 9 � 0 that we solved in Example 5(a). Figure 1(b) shows that the

x �
�1 � i27

2

1�7 � i17

1�7

x �
�1 � 2(1)2 � 4(1) (2)

2(1)
�

�1 � 1�7

2

 � 
12 � 0

8
�

12

8
�

3

2

 x �
12 � 2(�12)2 � 4(4) (9)

2(4)
�

12 � 1144 � 144

8

SOLUTION

*To review complex numbers, see Appendix A.3.



EXAMPLE

graph of y � x2 � x � 2 has no x-intercepts; this reflects the fact that the equation
x2 � x � 2 � 0 has no real solutions. For completeness, we’ve also shown a graph
[Figure 1(c)] that has two x-intercepts. We computed these two x-intercepts in
Example 2(a) when we solved the equation x2 � 3x � 5 � 0, and found

The quantity b2 � 4ac that appears under the radical sign in the quadratic formula
is called the discriminant. (The term “discriminant” was coined by the nineteenth-
century British mathematician James Joseph Sylvester.) If you look back at Exam-
ple 2(a), you’ll see that the discriminant is positive and that this leads to two real
solutions. In Example 5(a), the discriminant is zero, which leads to only one real so-
lution. Finally, in Example 5(b), the discriminant is negative and, consequently, there
are no real solutions, but a pair of complex conjugate solutions. These observations
are generalized in the box that follows.

Consider the quadratic equation ax2 � bx � c � 0, where a, b, and c are real num-
bers and a � 0. The expression b2 � 4ac is called the discriminant.

1. If b2 � 4ac � 0, then the equation has two distinct real roots.
2. If b2 � 4ac � 0, then the equation has exactly one real root, referred to as a 

double root or a root of multiplicity two.
3. If b2 � 4ac � 0, then the equation has no real root, but it does have a pair of

complex conjugate roots.

6 Using the Discriminant

(a) Compute the discriminant to determine how many real solutions there are for the
equation x2 � x � 1 � 0.

(b) Find a value for k such that the quadratic equation x2 � � k � 0 has
exactly one real solution.

12 x

The Discriminant b2 � 4ac

x � 1�3 � 129 2�2.
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Graphical Perspective

(a) y=4x@ -12x+9

_1
_1

0

0

1 2 3

1

2

3

(b) y=x @+x+2

_4
_2

0

0

_2 2 4

2

4

6

(c) y=x @+3x-5

0

_6
_10

0

_8

_4

4

8

_4 _2 2 4

Figure 1
In Figure 1(a) the graph of
y � 4x2 � 12x � 9 has only 
one x-intercept; the equation
4x2 � 12x � 9 � 0 has only 
one root. In Figure 1(b) the 
graph of y � x2 � x � 2 has 
no x-intercepts; the equation
x2 � x � 2 � 0 has no real roots.
In Figure 1(c) the graph of
y � x2 � 3x � 5 has two 
x-intercepts; the equation
x2 � 3x � 5 � 0 has two real
roots.
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(a) Here a � 1, b � 1, and c � �1. Therefore,

Since the discriminant is positive, the equation has two distinct real solutions.
(b) For the equation to have exactly one real solution, the discriminant must be zero;

that is,

The required value for k is 1�2.

 k �
1

2

 2 � 4k � 0

1  12 2 2 � 4(1)(k) � 0
 b2 � 4ac � 0

b2 � 4ac � 12 � 4(1) (�1) � 5

SOLUTION

EXERCISE SET 2.1

A
In Exercises 1–18, solve the quadratic equations. If an equation
has no real roots, state this. In cases where the solutions
involve radicals, give both the radical form of the answer and 
a calculator approximation rounded to two decimal places.

1. x2 � 8x � 2 � 0 2. x2 � 6x � 2 � 0
3. x2 � 4x � 1 � 0 4. x2 � 12x � 18 � 0
5. 2y2 � 5y � 2 � 0 6. 3y2 � 3y � 4 � 0
7. 4y2 � 8y � 5 � 0 8. y2 � y � 1 � 0
9. 4s2 � 20s � 25 � 0 10. 16s2 � 8s � 1 � 0

11. x2 � 8x � 6 12. x2 � 8x � 9
13. �3x2 � x � �3 14. (x � 5)(x � 3) � 1
15. �y2 � 8y � 1 16. 5y(y � 2) � 2
17. t2 � �3t � 4 18. t2 � �3t � 4
19. (a) Use the formula given in Example 1 to estimate the

year that the U.S. population reached 100 million.
(b) Use the following U.S. Census Bureau data to say

whether your estimate in part (a) is reasonable.
In 1910 the population was approximately 
92.2 million; in 1920 it was approximately 
106.0 million.

20. (a) Use the formula given in Example 1 to estimate the
year that the U.S. population reached 225 million.

(b) According to the U.S. Census Bureau, the U.S. popula-
tion in 1980 was 226.5 million. Is your estimate in 
part (a) reasonable?

21. The chart that follows shows the world records for the
men’s 10,000 meter run in the years 1972 and 1998.

Time (minutes 
Year and seconds) Runner

1972 27:38.4 Lasse Viren (Finland)
1998 26:22.75 Haile Gebrselassie (Ethiopia)

For the years between 1972 and 1998, the world record can
be approximated by the equation

where y is the world-record time (in seconds) in the year t.
(a) Use the given equation, the quadratic formula, and your

calculator to estimate the year in which the record might
have been 27 minutes (� 1620 seconds). (You’ll get two
solutions for the quadratic; be sure to pick the appropriate
one.) Then say by how many years your prediction is off,
given the following information: On July 5, 1993, Richard
Chelimo of Kenya ran a record time of 27:07.91; five days
after that, Yobes Ondieki, also of Kenya, ran 26:58.38.

(b) Estimate the year in which the record might have been
26:30 (� 1590 seconds). Then say by how many years
your prediction is off, given the following information:
On July 4, 1997, Haile Gebrselassie ran a record time
of 27:07.91; eighteen days later, Paul Tergat of Kenya
ran 26:27.85.

(c) It is interesting to see how accurately (or inaccurately)
the quadratic approximating equation predicts record
times outside its specified domain. In August 2005,
Kenenisa Bekele of Ethiopia ran a record time of 
26 minutes 17.54 seconds. (This was still the record 
in 2008.) In what year does the equation predict this
time would be achieved? How many years off the
actual date is the prediction?

22. The chart below shows the world records for the women’s
10,000 meter run in the years 1970 and 1993.

Time (minutes 
Year and seconds) Runner

1970 35:30.5 Paola Pigni (Italy)
1993 29:31.78 Wang Junxia (China)

(1972 	 t 	 1998)
y � �0.09781t2 � 385.8336t � 378,850.4046
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For the years between 1970 and 1993, the world record can
be approximated by the equation

where y is the world-record time (in seconds) in the 
year t. Use the given equation, the quadratic formula, 
and your calculator to estimate the year in which the 
record might have been 32 minutes (� 1920 seconds). 
(As in Exercise 21, you’ll get two solutions for the quad-
ratic; pick the appropriate one.) Then say by how many
years your prediction is off, given the following informa-
tion: On September 19, 1981, Yekena Sipatova of the
former Soviet Union ran a record time of 32:17.2; in the
following year on July 16, Mary Decker of the United
States ran 31:35.3. (Note: Wang Jinxia’s 29:31.78 was still
the world record in 2008.)

In each of Exercises 23–28, you are given an equation of the
form y � ax2 � bx � c. (a) Use a graphing utility to graph the
equation and to estimate the x-intercepts. (Use a zoom-in
process to obtain the estimates; keep zooming in until the first
three decimal places of the estimate remain the same as you
progress to the next step.) (b) Determine the exact values of the
intercepts by using the quadratic formula. Then use a calculator
to evaluate the expressions that you obtain. Round off the
results to four decimal places. [Check to see that your results
are consistent with the estimates in part (a).]

23. y � x2 � 4x � 1 24. y � x2 � 10x � 15
25. y � 0.5x2 � 8x � 3 26. y � 2x2 � 2x � 1
27. y � 2x2 � 2 � 13 28. y � 3x2 � 12 � 36

In Exercises 29–32, find the sum and the product of the roots of
each quadratic equation.

29. x2 � 8x � 20 � 0 30. x2 � 3x � 12 � 0
31. 4y2 � 28y � 9 � 0 32. � 4y � 5

In Exercises 33–38, find a quadratic equation with the 
given roots r1 and r2. Write each answer in the form
ax2 � bx � c � 0, where a, b, and c are integers and a � 0.

33. r1 � 3 and r2 � 11
34. r1 � �4 and r2 � �9
35. r1 � 1 � and r2 � 1 �

36. r1 � 2 � and r2 � 2 �

37. r1 � 12 � and r2 � 12 �

38. r1 � 14 � and r2 � 14 �

In Exercises 39 and 40, solve the equations. Hint: Look 
before you leap.

39. x2 � x � � 0
40. x2 � 112 � 1 2x � 12

110112 � 15 2

15 21
3 15 21

3 

15 21
2 15 21

2 

1515
1212

1
2 y2

13 x126 x

(1970 	 t 	 1993)
y � 0.37553t2 � 1503.7154t � 1,507,042.699

41. A ball is thrown straight upward. Suppose that the height of
the ball at time t is given by the formula h � �16t2 � 96t,
where h is in feet and t is in seconds, with t � 0 correspond-
ing to the instant that the ball is first tossed.
(a) How long does it take before the ball lands?
(b) At what time is the height 80 ft? Why does this ques-

tion have two answers?
42. During a flu epidemic in a small town, a public health

official finds that the total number of people P who have
caught the flu after t days is closely approximated by the
formula P � �t2 � 26t � 106, where 1 	 t 	 13.
(a) How many have caught the flu after 10 days?
(b) After approximately how many days will 250 people

have caught the flu?

In Exercises 43–50, use the discriminant to determine how
many real roots each equation has.

43. x2 � 12x � 16 � 0 44. 2x2 � 6x � 5 � 0
45. 4x2 � 5x � � 0 46. 4x2 � 28x � 49 � 0
47. x2 � � � 0 48. � � 1 � 0

49. y2 � � �1 50. � 0

In each of Exercises 51–54, find the value(s) of k such that the
equation has exactly one real root.

51. x2 � 12x � k � 0 52. 3x2 � � 6 � 0
53. x2 � kx � 5 � 0 54. kx2 � kx � 1 � 0

In Exercises 55–58, find the complex roots of the given
equation.

55. y2 � y � 1 � 0 56. 4y2 � 8y � 5 � 0
57. t2 � � 3t � 4 58. x2 � 100 � 0

B
In Exercises 59–62, solve for the indicated letter.

59. 2pr2 � 2prh � 20p; for r

Hint: Rewrite the equation as (2p)r2 � (2ph)r � 20p � 0 and
use the quadratic formula with a � 2p, b � 2ph, and
c � �20p.
60. 2py2 � pyx � 12; for y
61. �16t2 � v 0t � 0; for t
62. � v 0t � h0 � 0; for t
63. (a) On the same set of axes, graph the equations

y � x2 � 8x � 16 and y � x2 � 8x � 16.
(b) Use the graphs to estimate the roots of the two equa-

tions x2 � 8x � 16 � 0 and x2 � 8x � 16 � 0. How
do the roots appear to be related?

� 
1
2 gt2

112k 2x

m2

4
�

4m

3
�

16

9
15 y

13 x12 x23
413 x

1
2



2.1 Quadratic Equations: Theory and Examples 91

(c) Solve the two equations in part (b) to determine the
exact values of the roots. Do your results support the
response you gave to the question at the end of part (b)?

64. (a) Figure 1(c) in the text shows a graph of the equation
y � x2 � 3x � 5. Use a graphing utility to reproduce
the graph. [Use the same viewing rectangle that is used
in Figure 1(c).]

(b) Add the graph of the equation y � x2 � 3x � 5 to the
picture that you obtained in part (a). (This new equa-
tion is the same as the one in part (a) except that the
sign of the coefficient of x has been reversed.) Note
that the x-intercepts of the two graphs appear to be
negatives of one another.

(c) Use the quadratic formula to determine exact expres-
sions for the roots of the two equations x2 � 3x � 5 � 0
and x2 � 3x � 5 � 0. You’ll find that the roots of one
equation are the opposites of the roots of the other
equation. [In general, the graphs of the two equations
y � ax2 � bx � c and y � ax2 � bx � c are symmetric
about the y-axis. Thus, the x-intercepts (when they
exist) will always be opposites of one another.]

65. (a) Use the quadratic formula to show that the roots of 
the equation x2 � 3x � 1 � 0 are 1�3 � .

(b) Show that 
Hint: Rationalize the denominator on the right-hand
side of the equation.

(c) The result in part (b) shows that the roots of the
equation x2 � 3x � 1 � 0 are reciprocals. Can you
find another, much simpler way to establish this 
fact?

66. If r1 and r2 are the roots of the quadratic equation
ax2 � bx � c � 0, show that r1 � r2 � �b�a and
r1r2 � c�a.

67. Show that the quadratic equation

has two distinct real roots.
68. Show that the quadratic equation

has two distinct real roots.

In Exercises 69 and 70, determine the value(s) of the constant k
for which the equation has equal roots (that is, only one 
distinct root).

69. x2 � 2x(3k � 1) � 7(2k � 3)
70. x2 � 2(k � 1)x � k2 � 0
71. Here is an outline for a slightly different derivation of the

quadratic formula. The advantage of this method is that frac-
tions are avoided until the very last step. Fill in the details.
(a) Beginning with ax2 � bx � �c, multiply both sides by

4a. Then add b2 to both sides.
(b) Now factor the resulting left-hand side and take square

roots.

(x � p ) (x � q ) � r2  (p � q )

ax2 � bx � a � 0  (a � 0)

1
2 1�3 � 15 2 � 1� 3 12 1�3 � 15 2 4 .

15 21
2 

72. In this section and in Section 1.3, we solved quadratic
equations by factoring and by using the quadratic formula.
This exercise shows how to solve a quadratic equation by
the method of substitution. As an example, we use the
equation

(1)
(a) In equation (1), make the substitution x � y � k. Show

that the resulting equation can be written

(2)
(b) Find a value for k so that the coefficient of y in equa-

tion (2) is 0. Then, using this value of k, show that
equation (2) becomes y2 � 5�4.

(c) Solve the equation y2 � 5�4. Then use the equation
x � y � k to obtain the solutions of equation (1).

73. Use the substitution method (explained in Exercise 72) to
solve the quadratic equation 2x2 � 3x � 1 � 0.

74. Assume that a and b are the roots of the equation
x2 � px � q � 0.
(a) Find the value of a2b � ab2 in terms of p and q.

Hint: Factor the expression a2b � ab2.
(b) Find the value of a3b � ab3 in terms of p and q.

Hint: Factor. Then use the fact that
a2 � b2 � (a � b)2 � 2ab.

75. In this exercise we investigate the effect of the constant c
upon the roots of the quadratic equation x2 � 6x � c � 0.
We do this by looking at the x-intercepts of the graphs of
the corresponding equations y � x2 � 6x � c.
(a) Set a viewing rectangle that extends from 0 to 5 in 

the x-direction and from �2 to 3 in the y-direction.
Then (on the same set of axes) graph the equations
y � x2 � 6x � c with c running from 8 to 10 at 
increments of 0.25. In other words, graph the 
equations y � x2 � 6x � 8, y � x2 � 6x � 8.25,
y � x2 � 6x � 8.50, and so on, up through
y � x2 � 6x � 10.

(b) Note from the graphs in part (a) that, initially, as c
increases, the x-intercepts draw closer and closer to-
gether. For which value of c do the two x-intercepts
seem to merge into one?

(c) Use algebra as follows to check your observation in
part (b). Using that value of c for which there appears
to be only one intercept, solve the quadratic equation
x2 � 6x � c � 0. How many roots do you obtain?

(d) Some of the graphs in part (a) have no x-intercepts.
What are the corresponding values of c in these cases?
Pick any one of these values of c and use the quadratic
formula to solve the equation x2 � 6x � c � 0. What
happens?

C
76. Find nonzero real numbers A and B so that the roots of the

equation x2 � Ax � B � 0 are A and B.

y2 � (2k � 1)y � 1 � k � k2

x2 � x � 1 � 0
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OTHER TYPES OF EQUATIONS
In this chapter we propose to consider some miscellaneous equations; it will be seen
that many of these can be solved by the ordinary rules for quadratic equations. . . .
—H. S. Hall and S. R. Knight, Higher Algebra [London: Macmillan and Co., 1946 (first edition

published in 1887)]

In Sections 1.3 and 2.1 we developed techniques for solving linear and quadratic equa-
tions. In this section we consider some other types of equations that can be solved by
applying those techniques. We are particularly interested in real number solutions.
(Complex number solutions are treated extensively in Section 10.8 and in Chapter 13.)
We begin with an example involving absolute values.

2.2

PROJECT Put the Quadratic Equation in Its Place!

This is easier as a group project (divide and conquer) but, of course, is
open to individuals too.

Despite the critical influence of science and mathematics in today’s culture,
many high school history books tell very little about the history of these fields.
In mathematics, for example, it’s easy to develop the false impression that
mathematics is strictly a “Western” achievement, developed rather exclusively
in Greece (Pythagoras and Euclid), France (René Descartes), and England
(Isaac Newton). A mere glance, however, at the following list of a few mathe-
maticians (from the period 0 to A.D. 1400) will tell you otherwise. (All right,
one Greek name does appear in the list!) The common element linking the
names is that, among other mathematical achievements, each person solved
quadratic equations. By checking math history books or encyclopedias in your
college library, locate these names on the time line that follows. The World
Wide Web is also a useful source here. Some hints: The listing here is in no
particular order. In some cases, you’ll find that only very approximate dates are
known. Also, be prepared to see numerous alternate spellings.

Omar Khayyam Abraham bar Hiyya (or Chiya)
Mahāvira Jia Xian
Bhāskara Muhammad al-Khwārizmi
Diophantus Āryabhata
Brahmagupta Joranus de Nemore
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1 Solving an Equation Where the Variable Is Inside Absolute Value Signs

Solve: (a) 2x � 1 � 7 (b) x � 1 � 3x � 30000
EXAMPLE

Here is an alternative solution for Example 1(a). For any real number x, 2x � 1 � 7
means 2x � 1 is a real number whose absolute value is 7. There are exactly two such
numbers, 7 and �7. So 2x � 1 � 7 or 2x � 1 � �7. Again we have two cases.
Solving each for x, we obtain x � 4 or �3, as before.
(b) Following the method described in our alternative solution to part (a), we have

the two cases x � 1 � 3x � 3 and x � 1 � �(3x � 3).

Solving Solving

You should check that 2 is a solution of x � 1 � 3x � 3 and 1�2 is not.
Therefore the only solution is .

The solutions in Example 1(a) can be checked graphically. One way to do this is first
to rewrite the given equation 2x � 1 � 7 in the equivalent form 2x � 1 � 7 � 0.
Then, as we saw in previous sections, the roots of this last equation are the 
x-intercepts of the graph of

As indicated in Figure 1(a), the x-intercepts of the graph appear to be �3 and 4,
which are indeed the two roots obtained in Example 1(a). A different way to check

y � 0 2x � 1 0 � 7

0000

x � 2
00

 x � 1/2
 4x � 2 x � 2

 x � 1 � �3x � 3 4 � 2x
 x � 1 � �(3x � 3) x � 1 � 3x � 3

00ALTERNATIVE SOLUTION

(a) There are two cases to consider

We’ve now obtained the values x � 4 and x � �3. You should check for your-
self that both of these numbers indeed satisfy the original equation.

If 2x � 1 
 0, the equation becomes    

2x � 1 � 7      
2x � 8      
x � 4      

 

 5     If 2x � 1 � 0, the equation becomes

�(2x � 1) � 7      
�2x � 1 � 7      

�2x � 6      
x � �3     

SOLUTION

Graphical Perspective

(a) y=|2x-1|-7
_4

0

_8
0_2 1 2 3 4 5

_6

_4

_2

2

4

(b) y=|2x-1| and y=7

_4
_2

0

0

_2 1 2 3 4 5

2

4

7

10
Figure 1
Two ways to check the solutions 
in Example 1(a). In Figure 1(a) 
the x-intercepts of the graph of 
y � 2x � 1 � 7 are the solutions
of the equation 2x � 1 � 7. In
Figure 1(b) the x-coordinates of the
intersection points of the two graphs
y � 2x � 1 and y � 7 are the
solutions of the equation 
2x � 1 � 7.00

00

00
00
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the solutions of the equation 2x �1 � 7 involves graphing the two equations 
y � 2x �1 and y � 7 on the same set of axes. As indicated in Figure 1(b), the
graphs intersect in two points. The x-coordinates of those two points appear to be �3
and 4, which again are the two roots determined in Example 1(a).

Caution: Some care needs to be taken in drawing conclusions from a graph, even a
graph obtained with a computer or graphing calculator. For instance, taken in isola-
tion, the graphs in Figure 1 do not prove that the roots we are looking for are �3 and
4. Indeed, the only honest conclusion from the graphs themselves is that the two roots
we are looking for must be very close to �3 and 4. A way to verify that �3 and 4 are
roots is to substitute each into the equation, but this would not show that there are no
other roots. The only way to determine that �3 and 4 are the only roots is to use an
algebraic method as in Example 1.

As another example, in Figure 2(a) we are looking at a portion of the curve
y � x2 � 2.2x and the line y � 0.8 in order to find a root of the equation
x2 � 2.2x � 0.8. On the basis of the evidence in Figure 2(a), it appears that x � 2.5
may be a root. But, if you replace x with 2.5 in the equation x2 � 2.2x � 0.8, you’ll
see that it does not check; 2.5 is not a root. Indeed, as is indicated in the magnified
view in Figure 2(b), the graphs of y � x2 � 2.2x and y � 0.8 do not intersect at
x � 2.5. That is, 2.5 is not a root. Note: Figure 2(b) does more than just tell us that
2.5 is not a root. It tells us that the root lies in the open interval (2.5, 2.55), so cer-
tainly the digit in the first decimal place of the root is a 5. More zooming in with a
graphing calculator or a computer would yield additional decimal places.

00 00

Graphical Perspective

(a) y=x@-2.2x and y=0.8

_2
0

0

1 2 3 4

_1

0.8

2

(b) Zoom-in view of y=x@-2.2x
and y=0.8

2.4
0.5

2.45 2.5 2.55 2.6

0.6

0.7

0.8

0.9

1.0

Figure 2
Looking for a root of the equation
x2 � 2.2x � 0.8.

When n is a natural number, equations of the form xn � a are solved simply by
rewriting the equation in terms of the appropriate nth root or roots. For example,
if x3 � 34, then x � If the exponent n is even, however, we have to remem-
ber that there are two real nth roots for each positive number. For instance, if
x4 � 81, then x � � �3. Note: If you feel that you need to review the
subject of nth roots from intermediate algebra, see online Appendix B.2.

�1
4 81

1
3 34.
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EXAMPLE

EXAMPLE

(a) First we factor the left-hand side

Now, by setting each factor equal to zero, we obtain the three values x � 0, x � 5,
and x � �1. As you can check, each of these numbers indeed satisfies the origi-
nal equation. So we have three solutions: 0, 5, and �1.

 3x(x � 5)(x � 1) � 0
 3x(x2 � 4x � 5) � 0

 3x3 � 12x2 � 15x � 0

SOLUTION

(a)

As you can check for yourself now, both of the values, 1 � and 1 �
satisfy the given equation.

Remark: We can estimate these values without a calculator. For instance, for
x � 1 � we have

Therefore, 1 � is a little less than 3. (In fact, a calculator shows that
1 � � 2.97.)

(b) For any real number x, the quantity x4 is nonnegative. Therefore, the left-hand
side of the equation is nonnegative, whereas the right-hand side is negative.
Consequently, there are no real numbers satisfying the given equation.

(c) Dividing both sides of the given equation by 3 yields x5 � �16, and therefore

Calculator note: To approximate � using a calculator, first recall that 
can be rewritten in the equivalent form 161�5. (See online Appendix B.3 if you
need a review of rational exponents.) We then have

In Example 3 we solve two equations by factoring. As with quadratic equations,
the factoring method is justified by the zero-product property of real numbers (from
Section 1.3).

3 Using Factoring to Solve Equations

Find the real-number solutions for each equation:

(a) 3x3 � 12x2 � 15x � 0; (b) x4 � x2 � 6 � 0.

using a calculator and rounding 
to two decimal places

x � �1
5 16 � �161�5 � �1.74

1
5 161

5 16

x � 1
5

�16  or, equivalently,  x � �1
5 16

1
4 15

1
4 15

1 � 1
4 15 � 1 � 1

4 16 � 1 � 2 � 3

1
4 15

1
4 15,1

4 15

 x � 1 � 1
4 15

 x � 1 � �1
4 15

 (x � 1)4 � 15SOLUTION

2 Solving Equations Using nth Roots

Solve:

(a) (x � 1)4 � 15; (b) 3x4 � �48; (c) 3x5 � �48.
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_3 _2 _1
x

y

Figure 3
y � x4 � 6x2 � 4

EXAMPLE

Note: If initially we had divided both sides of the given equation by 3x
to obtain x2 � 4x � 5 � 0, then the solution x � 0 would have been
overlooked.

(b) Again we factor the left-hand side

By setting the first factor equal to zero, we’ve obtained the two values
x � � As you can check, these values do satisfy the given equation. When
we set the second factor equal to zero, however, we obtained x2 � �3, which has
no real solutions (because the square of a real number must be nonnegative). We
conclude therefore that the given equation in this case has only two real solu-
tions, and �

The equation x4 � x2 � 6 � 0 that we considered in Example 3(b) is called an
equation of quadratic type. This means that with a suitable substitution, the result-
ing equation becomes quadratic. In particular here, suppose that we let

Then the equation x4 � x2 � 6 � 0 becomes t2 � t � 6 � 0, which is “quadratic in
t.” Solving for t, we obtain t � �3 or 2. Then substituting x2 for t, we obtain x2 � �3
or x2 � 2 as before. This idea is exploited in the next three examples.

4 Solving an Equation of Quadratic Type

As shown in Figure 3, the graph of y � x4 � 6x2 � 4 has four x-intercepts. Determine
these x-intercepts. Give two forms for each answer: an exact expression involving
radicals and a calculator approximation rounded to two decimal places.

x2 � t  and therefore  x4 � t2

12.12

12.

 

x2 � 2 � 0  
2 � x2 � 2   

22 � x � �12

 † 
x2 � 3 � 0

x2 � �3

 

 (x2 � 2)(x2 � 3) � 0
 x4 � x2 � 6 � 0
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As explained in Section 1.5, the x-intercepts are obtained by setting y equal to zero in
the given equation and then solving for x. So we need to solve the equation

(1)
This equation cannot readily be solved by factoring; however, it is of quadratic type.
We let x2 � t; then x4 � t2, and the equation becomes

The quadratic formula then yields

Consequently, we have (in view of the definition of t)

x2 � 3 � 15

 �
6 � 215

2
�

2 13 � 15 2
2

� 3 � 15

 t �
6 � 136 � 4(4)

2
�

6 � 120

2

t2 � 6t � 4 � 0

x4 � 6x2 � 4 � 0

SOLUTION
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EXAMPLE

and therefore

We’ve now found four values for x:

These are the required x-intercepts for the graph in Figure 3. [Exercise 87 asks you
to check that these values indeed satisfy equation (1).] Which is which, though?
Without using a calculator, but with a little thought, you should be able to list these
four quantities in order of increasing size and thereby assign them to the appropriate
locations in Figure 3. (Try it before reading on!) Using a calculator now, and refer-
ring to Figure 3, we obtain the following results.

the x-intercept between �3 and �2: � �2.29

the x-intercept between �1 and 0: � �0.87

the x-intercept between 0 and 1: � 0.87

the x-intercept between 2 and 3: � 2.29.

5 Solving an Equation of Quadratic Type

Solve: 6x�2 � x�1 � 2 � 0.

 23 � 15

 23 � 15

 �23 � 15

 �23 � 15

23 � 15  �23 � 15  23 � 15  �23 � 15

x � �23 � 15

We’ll show two methods. The first method depends on recognizing the equation as
one of quadratic type.

First Method Alternative Method

Let x�1 � t. Then x�2 � t2 and the Multiplying both sides of the given 
equation becomes equation by x2 (Note: ) yields

If t � 2�3, then x�1 � 2�3. Therefore

, and consequently, x � 3�2.  Thus we have x � 3�2 or x � �2, as 

On the other hand, if t � �1�2, then 
we obtained using the first method.

, and consequently, x � �2. 

In summary, the two solutions are 
3�2 and �2.

In the next example we first use a graphing utility to approximate the solutions of
an equation, then we use algebra to determine the solutions exactly. Note, however,
that even in the graphing utility portion of the problem, algebra is useful. It turns out
that the graph is symmetric about the y-axis, and that cuts the work in half.

1
x

� � 

1

2

1
x

�
2

3

 
3t � 2 � 0

t �
2

3

 † 
2t � 1 � 0�

t � �
1

2

 (3t � 2) (2t � 1) � 0
 6t2 � t � 2 � 0

x � 0

SOLUTION

 
2x � 3 � 0

x �
3

2

 † 
x � 2 � 0

x � �2

 (2x � 3)(x � 2) � 0
 2x2 � x � 6 � 0
 6 � x � 2x2 � 0



EXAMPLE 6 Solving an Equation with Fractional Exponents

Consider the equation 2x4�3 � x2�3 � 6 � 0.

(a) Use a graphing utility to approximate the roots to the nearest hundredth.
(b) Use algebra to determine the exact solutions. Then check that the answers are

consistent with the approximations obtained in part (a).

98 CHAPTER 2 Equations and Inequalities

(a) The roots of the given equation are the x-intercepts of the graph of 
y � 2x4�3 � x2�3 � 6. After experimenting with different viewing rectangles, we
find that the standard viewing rectangle in Figure 4(a) does show the essential
features of the graph.

SOLUTION

Graphical Perspective

_10 0 10
_10

0

10

2.852.80 2.81 2.82 2.83 2.84
_0.1

0

0.1

(a) [-10, 10, 2 ] by [-10, 10, 5 ] (b) [2.80, 2.85, 0.01 ] by [-0.1, 0.1, 0.1 ]
Figure 4
Two views of y � 2x4�3 � x2�3 � 6.

In looking at Figure 4(a), it appears that there are two roots: one between 2 and
4, the other between �2 and �4. It also appears that the graph may be symmet-
ric about the y-axis. If so, once we find the first root between 2 and 4, then we
know the second root will be the negative. To show that the graph is indeed sym-
metric about the y-axis, we can rewrite the equation y � 2x4�3 � x2�3 � 6 as y �
2(x4)1�3 � (x2)1�3 � 6. In this form, because of the even integer exponents on x,
replacing x with �x will make no difference. So, according to the first symme-
try test on page 62, the graph is symmetric about the y-axis. In Figure 4(b) we’ve
zoomed in on the positive root. Since we are supposed to approximate the root 
to the nearest hundredth, we’ve zoomed in far enough to allow us to mark off
the x-scale in units of 0.01. Figure 4(b) shows that the positive root is 2.83, to 
the nearest hundredth. By symmetry, the other root then is �2.83, also to the
nearest hundredth. (We note in passing that many graphing utilities also have
“solve” keys for approximating roots of equations. For details, consult your
user’s manual.)

(b) In the given equation 2x4�3 � x2�3 � 6 � 0, we let x2�3 � t. Then x4�3 � t2, and
the equation becomes

 
2t � 3 � 0�  

t � �
3

2

 † 
t � 2 � 0

t � 2

 (2t � 3)(t � 2) � 0
 2t 2 � t � 6 � 0
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We now have two cases to consider: t � �3�2 and t � 2. With t � �3�2, we
have (in view of the definition of t)

This last equation has no real-number solutions, because the square of a real
number is never negative. Turning our attention then to the other case where
t � 2, we have

As Exercise 88 asks you to verify, each of the values 2 and �2 satisfies the
original equation. These are the required roots. As you can check now by calcu-
lator, we have 2 2.828, which is indeed consistent with the approximations
in part (a).

Some equations can be solved by raising both sides to the same power. In fact, if
you review the solution given for Example 6, you’ll see that we’ve already made use
of this idea in cubing both sides of one of the equations there. As another example,
consider the equation

By squaring both sides of this equation we obtain x � 3 � 25 and, consequently,
x � 28. As you can easily check, the value x � 28 does satisfy the original equation.

There is a complication, however, that can arise in raising both sides of an equa-
tion to the same power. Consider, for example, the equation

By squaring both sides, we obtain

Therefore

x � 4 or x � 1

The value x � 4 checks in the original equation, but the value x � 1 does not. (Verify
this.) Therefore x � 1 is an extraneous solution, and the only solution of the given
equation is x � 4.

The extraneous solution in this case arises from the fact that if a2 � b2, then it
need not be true that a � b. For instance, (�3)2 � 32, but certainly �3 � 3. In the
box that follows, we summarize this remark about extraneous solutions. For refer-
ence, we also include the results from Section 1.3.

 (x � 4) (x � 1) � 0
 x2 � 5x � 4 � 0
 x2 � 4x � 4 � x

x � 2 � 1x

1x � 3 � 5

12 �

1212

 x � �18 � �212
 x2 � 8

Two real numbers are equal if 
and only if their cubes are equal.

 (x 2�3)3 � 23
 x2�3 � 2

x2�3 � � 
3

2
  or, equivalently,  (x1�3)2 � � 

3

2



EXAMPLE 

In the next example we solve equations involving radicals. In each case, notice
that before squaring, we first isolate one of the radicals on one side of the equation.
Otherwise things become more complicated, rather than less. For instance, in
Example 7(a) we’re given the equation 2 � � �x. If we square both sides
without first isolating the radical, we obtain

and, consequently,

As you can see, this last equation is indeed more complicated than the original.

4 � 4110 � x � 10 � x � x2  or  14 � 4110 � x � x � x2

12 � 110 � x 2 2 � (�x)2

110 � x

100 CHAPTER 2 Equations and Inequalities

PROPERTY SUMMARY Extraneous Solutions

1. Squaring both sides of an equation (or raising both sides to an even integral
power) may introduce extraneous solutions that do not check in the original
equation.

2. Multiplying both sides of an equation by an expression involving the variable
may introduce extraneous solutions.

Therefore it is always necessary to check any candidates for solutions that you
obtain in either of these ways.

(a) First isolate the radical by rewriting the given equation as 

� �x � 2

Squaring both sides now yields

Hence the only possible solutions are �6 and 1.

CHECK For x � �6, the left-hand side of the original equation becomes

The right-hand side of the original equation becomes �(�6) � 6.
Therefore x � �6 is a solution of the original equation.
With x � 1, the left-hand side of the original equation becomes

2 � 110 � (1) � 2 � 19 � 2 � 3 � 5

2 � 110 � (�6) � 2 � 116 � 2 � 4 � 6

 
x � 6 � 0

x � �6
 ` x � 1 � 0

x � 1

 0 � (x � 6)(x � 1)
 0 � x2 � 5x � 6

 10 � x � x2 � 4x � 4
 1110 � x 2 2 � (�x � 2)2

110 � x

SOLUTION

7 Solving Equations with Radicals

Find all real-number solutions of each equation.

(a) 2 � � �x (b) � 2 � 11x � 212x � 3110 � x
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The right-hand side of the original equation becomes �(1) � �1.
So x � 1 is not a solution of the original equation.
In summary, the given equation has but one root: x � �6.

(b) The given equation contains two radicals, so initially the best that we can do is
to isolate one of them before squaring. (It does not matter which.) Rewriting the
given equation as � 2 � 1 and then squaring yields

You should check now for yourself that if we combine like terms in this last
equation, then it can be rewritten as

Next, don’t square both sides quite yet! It won’t be wrong, but you can work
with smaller numbers if you first divide both sides by 2 to obtain 

�x � 5 � 2

Now square both sides:

From this last equation we conclude that x � 3 or x � 11.

CHECK With x � 3, the left-hand side of the original equation becomes

The right-hand side of the original equation is 1. So x � 3 is a solution of the
original equation.

Next, with x �11, the left-hand side of the original equation becomes

So the only solution of the given equation is x � 3. For a graphical perspective,
see Figure 5. 

 12(11) � 3 � 2111 � 2 � 125 � 219 � 5 � 6 � �1 � 1

 12(3) � 3 � 213 � 2 � 19 � 211 � 3 � 2 � 1

  (x � 3)(x � 11) � 0
 x2 � 14x � 33 � 0

 x2 � 10x � 25 � 22 11x � 2 2 2 � 4(x � 2) � 4x � 8

 (�x � 5)2 � 121x � 2 2 2
1x � 2

�2x � 10 � 41x � 2

 2x � 3 � 4(x � 2) � 41x � 2 � 1
 112x � 3 2 2 � 121x � 2 � 1 2 2

1x � 212x � 3

Graphical Perspective

1 2 3 4 5
_1

0

1

2

3

Figure 5
The curve y �
meets the horizontal line y � 1 
at x � 3. That is, x � 3 is a 
solution of the equation
12x � 3 � 21x � 2 � 1.

12x � 3 � 21x � 2

EXERCISE SET 2.2

A
In Exercises 1–6, solve each equation.
1. x � 5 � 1 2. x � 4 � 5 � 2

3. x � 6 � 1�2 4. x � 6 � 1�2 � 0
5. 6x � 5 � 25 6. 5 � 6x � 0

In Exercises 7–10, solve each equation by using the alternative
technique that is discussed following Example 1 in the text.

7. x � 3 � 2x � 2 8. 4 x � 2 � 3x � 4
9. 2x � 1 � 1 � 10. x � 1 � (3x � 2) � 0001

2 x00
0000

0000
0000
0000

11. (a) On the same set of axes, graph the equations
y � x2 � 2.2x and y � 0.8. Use the same viewing 
rectangle that is shown in Figure 2(a) in the text. Check
that your graphs are consistent with those drawn in
Figure 2(a). The graphs show that the line y � 0.8
intersects the curve y � x2 � 2.2x at a point with an 
x-coordinate very close to 2.5. In other words, one 
of the roots of the equation x2 � 2.2x � 0.8 is ap-
proximately 2.5.

(b) Take a closer look at the intersection point using the
same viewing rectangle that is shown in Figure 2(b) in
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the text. As is pointed out in the text, this view shows
that the root we are looking for is actually slightly
larger than 2.5; it lies in the open interval (2.5, 2.55).
Thus, the first decimal place of the root must indeed
be 5, and the second decimal place must be a digit
between 0 and 4, inclusive. Continue to zoom in on this
intersection point until you are sure of the first three
decimal places of the root.

(c) Use the quadratic formula to find an expression for the
exact value of the root in part (b). Then evaluate the
expression and round to four decimal places. Check
that your answer is consistent with the result obtained
graphically in part (b).

12. (a) Graph the equation y � 3x3 � 12x2 � 15x.
(b) On the basis of the graph, how many roots are there for

the equation 3x3 � 12x2 � 15x � 0? Use the graph to
estimate these roots. Then compare your estimates to
the actual values obtained in Example 3(a).

13. (a) Graph the equation y � x4 � x2 � 6.
(b) On the basis of the graph, how many roots are there 

for the equation x4 � x2 � 6 � 0? Use the graph to
estimate these roots. Zoom in until you are sure about
the first three decimal places of each root. Then com-
pare your estimates to the actual values obtained in
Example 3(b).

14. (a) Using a viewing rectangle that extends from �5 to 
5 in both the x- and y-directions, graph the equation
y � 6x�2 � x�1 � 2. Use the graph to estimate the
roots of the equation 6x�2 � x�1 � 2 � 0. How do your
estimates compare to the actual values determined in
Example 5?

(b) Using the viewing rectangle specified in part (a), graph
the equation y � 6x�2 � x�1 � 2. On the basis of the
graph, make a statement about the roots of the equation
6x�2 � x�1 � 2 � 0. Then solve the equation
algebraically to confirm your statement.

In Exercises 15–58, find all real solutions of each equation. 
For Exercises 31–36, give two forms for each answer: an exact
answer (involving a radical) and a calculator approximation
rounded to two decimal places.

15. 3x2 � 48x � 0 16. 3x3 � 48x � 0
17. t3 � 125 � 0 18. t � t3 � 0
19. 7x4 � 28x2 � 0 20. y4 � 81 � 0
21. t4 � 2t3 � 3t2 � 0 22. 2t5 � 5t4 � 12t3 � 0
23. 6x � 23x2 � 4x3 24. x5 � 36x
25. x4 � x2 � 6 26. x4 � 5x2 � �6
27. 4y2 � 5 � y4 28. 6y2 � �5 � y4

29. 3t2 � 2 � 9t4 30. 5t2 � 1 � 4t4

31. (x � 2)3 � 5 � 0 32. (x � 4)3 � 2 � 0
33. (x � 4)5 � 16 � 0 34. (1 � x)5 � 40 � 0
35. (a) (x � 3)4 � 30 � 0 36. (a) (x2 � 1)4 � 81 � 0

(b) (x � 3)4 � 30 � 0 (b) (x2 � 1)4 � 81 � 0

37. x6 � 10x4 � 24x2 � 0 38. 2x5 � 15x3 � 27x � 0
39. x4 � x2 � 1 � 0 40. x4 � x2 � 1 � 0
41. x4 � 3x2 � 2 � 0 42. 2x4 � x2 � 2 � 0
43. x6 � 7x3 � 8 44. x6 � 27 � �28x3

45. t�2 � 7t�1 � 12 � 0 46. 8t�2 � 17t�1 � 2 � 0
47. 12y�2 � 23y�1 � �5 48. y�2 � y�1 � 0
49. 4x�4 � 33x�2 � 27 � 0 50. x�4 � x�2 � 1 � 0
51. t2�3 � 9 52. t3�2 � 8
53. (y � 1)3 � 7 54. (2y � 3)4 � 5
55. (t � 1)5 � �243 56. (t � 3)4 � 625
57. 9x4�3 � 10x2�3 � 1 � 0 58. x4�3 � 3x2�3 � 28 � 0

In Exercises 59 and 60, find the x-intercepts of the graphs.
Round each answer to two decimal places. Check to see that
your answers are consistent with the graphs.

59.

60.

In Exercises 61–76, determine all of the real-number solutions
for each equation. (Remember to check your answers to
eliminate any extraneous solutions.)

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71.

72.

73. 13 � 2t � 1�1 � 4t � 1

1x � 5 � 1x � 4 � 1 � 0

11 � 2x � 1x � 5 � 4

1y � 2 � y � 42x4 � 13x2 � 37 � 1

17 � 3x � 6(x � 1) � 14x � 12x � 5 � 0

12 � x � 10 � xx � 13 � x � �3

x � 1x � 201x � 6 � x

2x2 � 5x � 2 � 211 � 3x � 2

y=1+2x#-xÍ
_2

_1
0

0

_1 1 2

1

2

3

y=x$-2x@ -1
_3

_3
0

0

_2 _1 1 2 3

_2

_1

1

2
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74.

75.

76. where b � a � 0

In Exercises 77–86, (a) use zoom-in techniques to estimate
the roots of each equation to the nearest hundredth, as in
Example 6; and (b) use algebraic techniques to determine an
exact expression for each root, then evaluate the expression and
round to four decimal places. Check to see that your answers
are consistent with the graphical results obtained in part (a).

77. (a) x4 � 5x2 � �6.2 78. (a) x4 � 5x2 � �25�4
(b) x4 � 5x2 � �6.3 (b) x4 � 5x2 � �13�2

79. x � 5 � �3 80. x�2 � 5x�1 � �3
81.

82.

83. 84.

85. x2�3 � x1�3 � 1 86. x�2�3 � x�1�3 � 1

1
4 x � 4

1
4 x � 3

�
1

2
� 0

1x � 4

1x � 3
�

1

2
� 0

12x � 1 � 1x � 2 � 1

12x � 1 � 1x � 2 � 2
1x

1a � x � 1b � x � 1a � b � 2x,

12y � 3 � 13y � 3 � 13y � 2 � 0

12t � 5 � 18t � 25 � 12t � 8 � 0 87. Verify that the four solutions obtained in Example 4 indeed
satisfy the original equation.

88. Verify that the values x � �2 obtained in Example 6(b)
satisfy the equation 2x4�3 � x2�3 � 6 � 0.

B
In Exercises 89–92, solve each equation.

89.

90.

Hint: Let t � x2 � x � 1.

91. where a � 0

Hint: Let t � then 

92. � � x � 1, where x � 4
Hint: Factor the expressions beneath the radicals. Then
note that is a factor of both sides of the equation.1x � 1

2x2 � 5x � 42x2 � 3x � 4

1

t
�

x

x � a
.

x � a

x
 ;

A

x � a

x
� 4
A

x

x � a
� 5,

2x2 � x � 1 �
2

2x2 � x � 1
� 1

21x � 1a � 21x � 1a � 221x � 21b

12

The Mini Project, Flying the Flag, and The Project: Specific or General? Whichever Works!, at 
http://www.cengage.com/math/cohen/precalc7e apply material from Section 2.2.

2.3 INEQUALITIES
If we replace the equal sign in an equation with any one of the four symbols �, 	, �,
or 
, we obtain an inequality. As with equations in one variable, a real number is a
solution of an inequality if we obtain a true statement when the variable is replaced
by the real number. For example, the value x � 5 is a solution of the inequality
2x � 3 � 8, because when x � 5 we have

which is true

We also say in this case that the value x � 5 satisfies the inequality. To solve an in-
equality means to find all of the solutions. The set of all solutions of an inequality is
called the solution set.

Recall that two equations are said to be equivalent if they have exactly the same
solution set. Similarly, two inequalities are equivalent if they have the same solu-
tion set. Most of the procedures used for solving inequalities are similar to those for
equalities. For example, adding or subtracting the same number on both sides of an
inequality produces an equivalent inequality. We need to be careful, however, in
multiplying or dividing both sides of an inequality by the same nonzero number. For
instance, suppose that we start with the inequality 2 � 3 and multiply both sides by
5. That yields 10 � 15, which is certainly true. But if we multiply both sides of the
inequality 2 � 3 by �5, we obtain �10 � �15, which is false. Multiplying both
sides of an inequality by the same positive number preserves the inequality, whereas

 7 � 8
 2(5) � 3 � 8

The fundamental results of mathematics
are often inequalities rather than
equalities. —E. Beckenbach and 
R. Bellman in An Introduction to
Inequalities (New York: Random House,
1961)

http://www.cengage.com/math/cohen/precalc7e


EXAMPLE

SOLUTION

multiplying by a negative number reverses the inequality. In the following box, we
list some of the principal properties of inequalities. In general, whenever we use
Property 1 or 2 in solving an inequality, we obtain an equivalent inequality. Also,
note that each property can be rewritten to reflect the fact that a � b is equivalent to
b � a. For example, Property 3 can just as well be written this way: If b � a and
c � b, then c � a.

104 CHAPTER 2 Equations and Inequalities

PROPERTY SUMMARY Properties of Inequalities

For real numbers a, b, and c:

Property Example

1. If a � b, then a � c � b � c and a � c � b � c. If x � 3 � 0, then (x � 3) � 3 � 0 � 3 and,
consequently, x � 3.

2. (a) If a � b and c is positive, then ac � bc and If � 4, then � 2(4) and, conse-

quently, x � 8.

(b) If a � b and c is negative, then ac � bc and If � 6, then (�5) � (�5)(6) and, 

consequently, x � �30.

3. The transitive property: If a � b and b � c, then a � c. If a � x and x � 2, then a � 2.

a
c

�
b
c
.

a� 

x

5
b� 

x

5

a
c

�
b
c

.

2a  

1

2
 x b1

2
 x

1 Solving Two Simple Inequalities

Solve each of the following inequalities, state the solution in interval notation, and
graph the solution set:

(a) 2x � 3 � 5; (b) 5t � 8 	 7(1 � t).

(a) Our work follows the same pattern that we would use to solve the equation
2x � 3 � 5. We have

adding 3 to both sides
dividing both sides by 2

The solution set is therefore (�q, 4); see Figure 1. 
(b) Again, we follow the pattern that we would use to solve the corresponding

equation.

subtracting 7t and 8 from both sides

dividing both sides by �2, which 
reverses the inequality

The solution set is therefore [1�2, q); see Figure 2.

 t 

1

2

 �2t 	 �1
 5t � 8 	 7 � 7t

 x � 4
 2x � 8

 2x � 3 � 5

2 3 4 5

x<4

Figure 1 

0 1 21
2

1
2t≥

Figure 2 



Similarly, for a geometric interpretation of the inequality in Example 1(b), we
graph the two lines y � 5t � 8 and y � 7(1 � t) in a t-y coordinate system. As indi-
cated in Figure 3(b), the line y � 5t � 8 is below the line y � 7(1 � t) provided that
t is to the right of 1�2. Furthermore, at t � 1�2, the lines intersect. That is, for
t � 1�2, the quantities 5t � 8 and 7(1 � t) are equal. Algebraically, we can restate
this information by saying

This confirms the result in Example 1(b).
In the next example, we solve the inequality

By definition, this is equivalent to the pair of inequalities

One way to proceed here would be first to determine the solution set for each inequal-
ity. Then the set of real numbers common to both solution sets would be the solution
set for the original inequality. However, when we are able to isolate the variable 

� 

1

2
�

3 � x

�4
  and  

3 � x

�4
�

1

2

� 

1

2
�

3 � x

�4
�

1

2

5t � 8 	 7(1 � t )  provided that  t 

1

2
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Figure 3
(b) The graph indicates that if t≥1/2

then 5t+8≤7(1+t).

5

0.5 1.0 1.5

10

15

t

y

y=5t+8

y=7(1+t)

(a) To the left of x=4, the line
y=2x-3 is below the line y=5.

2

2 3 4
x

y

4
6

5

y=2x-3

y=5

In Section 1.5 we saw that there is a close connection between solving equations
and graphing. (Example: The roots of the equation x2 � 4 � 0 are the x-intercepts of
the graph of y � x2 � 4.) It’s also true that solving inequalities and graphing are
closely related. Consider, for instance, the inequality 2x � 3 � 5 that we solved in
Example 1(a). To interpret this inequality geometrically, we graph the two equations
y � 2x � 3 and y � 5. Then, as indicated in Figure 3(a), the graph of y � 2x � 3 is
below the line y � 5 as long as x is to the left of 4. The previous sentence translates
algebraically into

This confirms the result in Example 1(a).

2x � 3 � 5  provided that  x � 4



EXAMPLE

SOLUTION

EXAMPLE

SOLUTION

“in the middle,” the method shown in Example 2 is more efficient. (Note: In Exercise
Set 2.3, Exercises 13 and 14 require the separate solution of two inequalities.)

2 Solving a Compound Inequality

Solve: � � �

We begin by multiplying through by �4. Remember that this will reverse the in-
equalities:

Next, with a view toward isolating x, we first subtract 3 to obtain

Finally, multiplying through by �1, we have

The solution set is therefore the open interval (1, 5).

The next example refers to the Celsius (C) and Fahrenheit (F) scales for measur-
ing temperature.* The formula relating the temperature readings on the two scales is

3 Converting a Fahrenheit Temperature Range into Celsius

Over the temperature range 32° 	 F 	 39.2° on the Fahrenheit scale, water contracts
(rather than expands) with increasing temperature. What is the corresponding tem-
perature range on the Celsius scale?

given

substituting for F

subtracting 32

multiplying by 

Thus a range of 32°F to 39.2°F on the Fahrenheit scale corresponds to 0°C to 4°C on
the Celsius scale.

In the next three examples we solve inequalities that involve absolute values. The
following theorem is very useful in this context.

 0 	 C 	 4

5
9 0 	 C 	

5

9
(7.2)

 0 	
9

5
 C 	 7.2

9
5 C � 32 32 	

9

5
 C � 32 	 39.2

 32 	 F 	 39.2

F �
9

5
 C � 32

1 � x � 5

�1 � �x � �5

2 � 3 � x � �2

1

2
.

3 � x

�4

1

2
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*The Celsius scale was devised in 1742 by the Swedish astronomer Anders Celsius. The
Fahrenheit scale was first used by the German physicist Gabriel Fahrenheit in 1724.
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Theorem Absolute Value and Inequalities

If a � 0, then

and

You can see why this theorem is valid if you think in terms of distance and posi-
tion on a number line. The condition �a � u � a means that u lies between �a and
a, as indicated in Figure 4. But this is the same as saying that the distance from u to
zero is less than a, which in turn can be written u � a. (The second part of the the-
orem can be justified in a similar manner.)

4 Solving Inequalities Containing Absolute Values

Solve:

(a) x � 1; (b) x 
 1.

(a) By the theorem we just discussed, the condition x � 1 is equivalent to

The solution set is therefore the open interval (�1, 1); see Figure 5(a).
(b) In view of the second part of the theorem, the inequality x 
 1 is satisfied when

x satisfies either of the inequalities

So the inequality is satisfied if x is in either of the intervals (�q, �1] or [1, q);
see Figure 5(b).

In Example 4(b) we found that the solution set consisted of two intervals on the
number line. We have a convenient notation for describing such sets. Given any two
sets A and B, we define the set A � B (read A union B) to be the set of all elements
that are in A or in B (or in both). For example, if A � {1, 2, 3} and B � {4, 5}, then
A � B � {1, 2, 3, 4, 5}. As another example, the union of the two closed intervals 
[3, 5] and [4, 7] is given by

because the numbers in the interval [3, 7] are precisely those numbers that are in
[3, 5] or [4, 7] (or in both). Using this notation, we can write the solution set for
Example 4(b) as

(�q, �1] � [1, q )

[3, 5] � [4, 7] � [3, 7]

x 	 �1  or  x 
 1

00

�1 � x � 1

00
0000

00

0u 0 � a  if and only if  u � �a or u � a

0u 0 � a  if and only if  �a � u � a
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Figure 4 

Figure 5 

0_a a

_a<u<a

0_1 1

| x |<1

0_1 1

(a)

(b)

| x |≥1
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EXAMPLE

We’ll show two methods. See Figure 6.

First Method Alternative Method

x � 3 is the distance from the 
number x � 3 to 0 on the number 
line. This distance is less than 1. So 
we know the number x � 3 must be in
the interval (�1, 1). Hence

or (by adding 3)

The solution set is therefore the
open interval (2, 4).

2 � x � 4

�1 � x � 3 � 1

The given inequality tells us that x
must be less than one unit away from 3
on the number line. Looking one unit
to either side of 3, then, we see that x
must lie strictly between 2 and 4. 

00

108 CHAPTER 2 Equations and Inequalities

The solution set is therefore (2, 4), as
obtained by the first method.

1 1

2 3 4

Figure 7

-8 12

-5 5

t is in here or there

is in here or there1-
t
2

Figure 6

x-3 is in here

x is in here

-1 0 1

2 3 4

SOLUTION

7 A Graphical Approach to Solving an Inequality

As is indicated in Figure 8, the graph of the equation y � 7x � 10 � 9 has two 
x-intercepts. Let a denote the x-intercept between 0 and 1, and let b denote the 
x-intercept between 2 and 3.
(a) Use the graph in Figure 8 to specify the general form of the solution set for the

inequality

Use interval notation. (You can assume that Figure 8 shows all of the essential
features of the graph.)

07x � 10 0 � 9 	 0

00

EXAMPLE 5 Two Different Methods for Solving an Inequality Containing Absolute Values

Solve: x � 3 � 1.00

6 Another Inequality with Absolute Values

Solve: � 5.

We are looking for all numbers t such that is more than 5 units from 0 on the

number line. So must be in the interval or in the interval .

See Figure 7 (upper number line). So

This tells us that the given inequality is satisfied when t is in either of the intervals
(12, q) or (�q, �8). Thus the solution set is (�q, �8) � (12, q). See Figure 7
(lower number line).

Earlier in this section we saw that there is a close connection between inequali-
ties and graphs. The next example emphasizes this point again.

 t � 12  t � �8

 � 

t

2
� �6  � 

t

2
� 4

 1 �
t

2
� �5  or   1 �

t

2
� 5

(5, q )(�q, �5)1 �  

t

2

1 �  

t

2

`1 �  

t

2
`



(b) Use a graphing utility and the ZOOM feature to estimate to the nearest hundredth
the x-intercepts a and b. Then state the corresponding estimate for the solution
set of the inequality 7x � 10 � 9 	 0.

(c) Use algebra to solve the inequality 7x � 10 � 9 	 0. Check that the solution is
consistent with the graphical results in parts (a) and (b).

(a) The graph has two x-intercepts, which we are calling a and b (with a � b). At
each of these x-intercepts, the quantity 7x � 10 � 9 is zero, while for x between
a and b, the quantity 7x � 10 � 9 is negative (because the graph is below the
x-axis). In other words, the inequality 7x � 10 � 9 	 0 is satisfied by all val-
ues of x in the closed interval [a, b]. Furthermore, the graph shows that these are
the only values of x satisfying the required inequality (because the graph is above
the x-axis when x is outside of this closed interval). In summary then, the solution
set for the inequality 7x � 10 � 9 	 0 has the form

(b) After some experimenting with viewing rectangles of various sizes, we obtain
the views displayed in Figure 9. Figure 9(a) shows that the smaller of the two in-
tercepts is between 0.14 and 0.15, closer to 0.14 than to 0.15, so a � 0.14 to the
nearest hundredth. Similarly, for the larger intercept b, Figure 9(b) indicates that
b � 2.71, to the nearest hundredth. Our corresponding estimate for the solution
set of the given inequality is then the closed interval [0.14, 2.71].

[a, b]  where a is between 0 and 1 and b is between 2 and 3.

00

0000 00

00
00
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Graphical Perspective

_20

0

20

_2 5

Figure 8
y � 7x � 10 � 9
[�2, 5, 1] by [�20, 20, 10].

00

_0.05

0

0.05

2.710 2.715 2.720

(b) [2.710, 2.720, 0.005 ] by
[-0.05, 0.05, 0.05 ]

_0.05

0

0.05

0.140 0.145 0.150

(a) [0.140, 0.150, 0.005 ] by
[-0.05, 0.05, 0.05 ]

Graphical Perspective

Figure 9
Zoom-in views of the x-intercepts for
y � 7x � 10 � 9.00

(c) So that we can apply the theorem on page 107, we first rewrite the given in-
equality in the equivalent form 7x � 10 	 9. Then we have

using the first part of the 
theorem on page 107
adding 10

dividing by 7

The solution set is therefore the closed interval The fact that it’s a closed
interval agrees with our graphical work in part (a). Furthermore, if you now use
a calculator, you’ll find that � 0.143 and � 2.714, values that are indeed con-
sistent with the estimates obtained in part (b).

19
7

1
7

3 17, 19
7 4 .

 
1

7
	 x 	

19

7

 1 	 7x 	 19

 �9 	 7x � 10 	 9

00

SOLUTION
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EXERCISE SET 2.3

A
In Exercises 1–30, solve the inequality and specify the answer
using interval notation.

1. 2x � 7 � 11 2. 6 � 4x 	 22
3. 4x � 6 � 3(x � 1) � x 4. 1 � 2(t � 3) � t 	 1 � 2t

5. � 1 6. 	 x

7. � x � 8. �3 	 2x � 1 	 5

9. �1 	 	 1 10. 	 	

11. 0.99 � � 0.999 12. � �

Hint: In Exercises 13 and 14 treat the compound inequality as
two separate inequalities.
13. x � 5 	 2x � 3 � 10 � 3x
14. x � 3 � 3x � 1 � 17 � x
15. (a) x 	 16. (a) x � 2

(b) x � (b) x 	 2
17. (a) x � 0 18. (a) t 
 0

(b) x � 0 (b) t 	 0
19. (a) x � 2 � 1 20. (a) x � 4 
 4

(b) x � 2 � 1 (b) x � 4 
 4
(c) x � 2 � 1 (c) x � 4 	 4

21. (a) 1 � x 	 5 22. (a) 3x � 5 � 17
(b) 1 � x 	 5 (b) 3x � 5 � 17
(c) 1 � x � 5 (c) 3x � 5 � 17

23. (a) a � x � c
(b) a � x � c
(c) a � x 
 c

24. (Assume b � c throughout this exercise.)
(a) x � a � b � c (c) x � a � b � c
(b) x � a � b � c

25. � 4 26. � 1

27. � 1 Hint: Combine the fractions.

28.

29. (a) (x � h)2 � x2 � 3h2, where h � 0
(b) (x � h)2 � x2 � 3h2, where h � 0

30. (a) 3(x � 2)2 � 3x2 �
(b) 3(x � 2)2 � 3x2 � e, where e� 0

For Exercises 31–34:
(a) Use a graph [as in Example 7(a)] to determine which of

the following general forms describes the solution set of the
given inequality:

[a, b ]  (�q, a ) � (b, q )  [a, q )  (a, q )

00
1
1000

00
00

` 3(x � 2)

4
�

4(x � 1)

3
` 	 2

` x � 1

2
�

x � 1

3
`

` 4 � 5x

2
`` x � 2

3
`
00

0000
00
00

0000
0000
0000
0000

0000
0000
001

200
001

200
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100

3x � 1

�2

9

10

x

2
� 1

3

4

5 � 3t

�2

2

3

1 � 4t

3

1

2

2x � 1

2
�

x � 1

3

x � 1

4
�

2x � 3

5

3x

5
�

x � 1

3

(b) Use a graphing utility [as in Example 7(b)] to estimate
to the nearest hundredth the value of a, and where
appropriate, b.

(c) Solve the inequality algebraically and write the solution
set using interval notation. Check that your answers
are consistent with the graphical results in parts (a)
and (b).

31. 7x � 2 
 0 32. 6 � 13x � 0
33. 8x � 3 � 2 	 0 34. 1 � 15x � 3 � 0
35. Data from the Apollo 11 moon mission in July 1969

showed temperature readings on the lunar surface varying
over the interval �183° 	 C 	 112° on the Celsius scale.
What is the corresponding interval on the Fahrenheit scale?
(Round the numbers you obtain to the nearest integers.)

36. The temperature of the variable star Delta Cephei varies
over the interval 5100° 	 C 	 6500° on the Celsius scale.
What is the corresponding range on the Fahrenheit scale?
(Round the numbers in your answer to the nearest 100°F.)

37. Data from the Mariner 10 spacecraft (launched Novem-
ber 3, 1973) indicate that the surface temperature on the
planet Mercury varies over the interval �170° 	 C 	 430°
on the Celsius scale. What is the corresponding interval on
the Fahrenheit scale? (Round the values that you obtain to
the nearest 10°F.)

B
38. Solve the inequality x � 1 � x � 2 � 3.

Hint: Begin by considering three cases: x � 1; 1 	 x � 2;
x 
 2.

39. Solve the inequality 6 � x � 3 � x � 2 � 0.
Hint: Adapt the hint in Exercise 38.

40. Given two positive numbers a and b, we define the geomet-
ric mean (G.M.) and the arithmetic mean (A.M.) as fol-
lows:

(a) Complete the table, using a calculator as necessary so
that the entries in the third and fourth columns are in
decimal form.

(a � b)�2 Which Is Larger,
a b (G.M.) (A.M.) G.M. or A.M.?

1 2
1 3
1 4
2 3
3 4
5 10
9 10

99 100
999 1000

1ab 

G.M. � 1ab  A.M. �
a � b

2

0000

0000

0000



(b) Prove that for all nonnegative numbers a and b we have

(1)

Hint: Use the following property of inequalities: 
If x and y are nonnegative, then the inequality x 	 y is
equivalent to x2 	 y2.

(c) Assuming that a � b (and that a and b are nonnega-
tive), show that inequality (1) becomes an equality.

(d) Assuming that a and b are nonnegative and that

� show that a � b.

Remark: Parts (b) through (d) can be summarized as
follows. For all nonnegative numbers a and b, we have

	 with equality holding if and only if a � b.

This result is known as the arithmetic-geometric mean in-
equality for two numbers. The mini project at the end of
this section shows an application of this result.

41. Use the result in Exercise 40(b) to prove each of the following
inequalities. Assume that p, q, r, and s all are nonnegative.
(a) 	 ( pq � r)�2 (b) 	 (pq � rs)�2

Exercises 42 and 43 concern the environmental problem known
as acid rain. The principal source contributing to acid rain is
sulfur dioxide, emitted into the atmosphere through the burning
of fossil fuels. Once in the clouds, the sulfur dioxide combines
with water vapor to form one of the nasty ingredients of acid
rain—sulfuric acid.

42. In the United States over the years 1980–2000, sulfur
dioxide emissions due to the burning of fossil fuels can be
approximated by the equation

where y represents the sulfur dioxide emissions (in millions
of tons) for the year t, with t � 0 corresponding to 1980.
Source: This equation (and the equation in Exercise 43)
were computed using data from the book Vital Signs 1999,
Lester Brown et al. (New York: W. W. Norton & Co., 1999).
(a) Use a graphing utility to graph the equation

y � �0.4743t � 24.086 in the viewing rectangle
[0, 25, 5] by [0, 30, 5]. According to the graph, sulfur
dioxide emissions are decreasing. What piece of in-
formation in the equation y � �0.4743t � 24.086
tells you this even before looking at the graph?

(b) Assuming this equation remains valid, estimate
the year in which sulfur dioxide emissions in 
the United States might fall below 10 million tons
per year. (You need to solve the inequality
�0.4743t � 24.086 	 10.)

43. In Asia over the years 1980–2000, sulfur dioxide emissions
due to the burning of fossil fuels can be approximated by
the equation

y � 1.84t � 14.8

y � �0.4743t � 24.086

1pqrs1pqr

a � b

2
,1ab

a � b

2
,1ab

1ab 	
a � b

2

where y represents the sulfur dioxide emissions (in millions
of tons) for the year t, with t � 0 corresponding to 1980.
(a) Use a graphing utility to graph the equation

y � 1.84t � 14.8 in the viewing rectangle [0, 25, 5] 
by [0, 60, 20]. According to the graph, sulfur dioxide
emissions are increasing. What piece of information in
the equation y � 1.84t � 14.8 tells you this even be-
fore looking at the graph?

(b) Assuming that this equation remains valid, estimate the
year in which sulfur dioxide emissions in Asia might
exceed 65 million tons per year. Note: Rapid growth
in Asian economies resulted in 75 million tons 
in 2000.

C
44. Let a, b, and c be nonnegative numbers. Follow steps (a)

through (e) to show that

with equality holding if and only if a � b � c.
This result is known as the arithmetic-geometric mean

inequality for three numbers. (Applications are developed in
the projects at the ends of Sections 4.6 and 4.7.)
(a) By multiplying out the right-hand side, show that the

following equation holds for all real numbers A, B, 
and C.

(1)

(b) Now assume for the remainder of this exercise that A,
B, and C are nonnegative numbers. Use equation (1) to
explain why

(2)

(c) Make the following substitutions in inequality (2):
A3 � a, B3 � b, and C3 � c. Show that the result can
be written

(3)

(d) Assuming that a � b � c, show that inequality (3) be-
comes an equality.

(e) Assuming � show that a � b � c. 

Hint: In terms of A, B, and C, the assumption becomes

ABC � Use this to substitute for ABC on

the left-hand side of equation (1). Then use the resulting
equation to deduce that A � B � C, and consequently
a � b � c.

A3 � B3 � C3

3
.

a � b � c

3
,1

3 abc

1
3 abc 	

a � b � c

3

3ABC 	 A3 � B3 � C3

 � � [ (A � B )2 � (B � C ) 2 � (C � A ) 2 ]

 3ABC � A3 � B3 � C3 �
1

2
 (A � B � C )

1
3 abc 	

a � b � c

3

2.3 Inequalities 111



MORE ON INEQUALITIES
The symbols of inequality � and � were introduced by [Thomas] Harriot
[1560–1621]. The signs 
 and 	 were first used about a century later by the Parisian
hydrographer Pierre Bouguer. —Florian Cajori in A History of Mathematics, 4th ed. (New

York: Chelsea Publishing Co., 1985)

It is rather surprising to think that the man who surveyed and mapped Virginia was one
of the founders of algebra as we know the subject today. Such however is the case, for
Thomas Harriot was sent by Sir Walter Raleigh to accompany Sir Richard Grenville
(1585) to the New World, where he made the survey of that portion of American terri-
tory. —David Eugene Smith in History of Mathematics, vol. I (New York: Ginn and Co., 1923)
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MINI PROJECT An Inequality for the Garden

Part of a landscape architect’s plans call for a rectangular garden with a
perimeter of 150 ft. The architect wants to find the width w and length l that
maximize the area A of the garden. Two preliminary sketches are shown in the
figure that follows. (In both cases, note that the perimeter is 150 ft, as re-
quired.) Of the two sketches, the one on the right yields the larger area. In this
project you’ll use the inequality given in Exercise 40(b) to find exactly which
combination of w and l yields the largest possible area.

(a) As background, first review or rework Exercise 40(b). If you are working
in a group, assign one person to do this and then present the result to the
others.

(b) Letting w denote the width of the rectangular garden, and assuming that
the perimeter is 150 ft, show or explain why the area A is given by
A � w(75 � w).

(c) Use the inequality in Exercise 40(b) to show that A 	 5625�4 � 1406.25.
In words: Given a perimeter of 150 ft, no matter how we pick w and l,
the area can never exceed 1406.25 ft 2. Hint: Apply the inequality to the
product w(75 � w).

(d) From part (c) we know that the area can’t exceed 1406.25 ft 2, so now
the job is to find a combination of w and l yielding that area. To accom-
plish this, take the equation obtained in part (b), replace A with 1406.25,
and then use a graphing utility to solve for w.

(e) As a check on the work with the graphing utility (and to stay in shape with
the algebra), use the quadratic formula to solve the same equation.

(f) Now that you know w, find l and describe the dimensions of the required
rectangle.

A=25 ft �50 ft=1250 ft@ A=30 ft � 45 ft=1350 ft@

25 ft

50 ft

30 ft

45 ft
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EXAMPLE

SOLUTION

The last example in Section 2.3 emphasized the connection between inequalities and
graphs. This is our starting point for the present section. We begin with an example
in which polynomial inequalities are solved by relying on a graph. Then we’ll use the
ideas there to explain a method for solving inequalities even when a graph is not
given.

1 A Graphical Approach to Solving Inequalities

Figure 1 shows the graph of the equation y � x2 � 4x � 3. Use the graph to solve
each of the following inequalities:

(a) x2 � 4x � 3 � 0; (b) x2 � 4x � 3 
 0.

(a) As indicated in Figure 1, the graph of y � x2 � 4x � 3 is below the x-axis when
(and only when) the x-values are in the open interval (1, 3). This is the same as
saying that the quantity x2 � 4x � 3 is negative when (and only when) the 
x-values are in the open interval (1, 3). Or, rewording once more, the solution set
for the inequality x2 � 4x � 3 � 0 is the open interval (1, 3).

(b) The graph in Figure 1 is above the x-axis when (and only when) the x-values are
in either of the two intervals (�q, 1) or (3, q). This is the same as saying that the
quantity x2 � 4x � 3 is positive when (and only when) the x-values are in the set
(�q, 1) � (3, q). Furthermore, the graph shows that the quantity x2 � 4x � 3
is equal to 0 when x � 1 and when x � 3. In summary, the solution set for the
inequality x2 � 4x � 3 
 0 is the set (�q, 1] � [3, q).

We can summarize the essential features of our work in Example 1 as follows.
The x-intercepts of the graph in Figure 1 divide the number line into three intervals:
(�q, 1), (1, 3), and (3, q). Within each of these intervals, the algebraic sign of
x2 � 4x � 3 stays the same. (For example, to the left of x � 1, that is, on the interval
(�q, 1), the quantity x2 � 4x � 3 is always positive.) More generally, it can be
shown (using calculus) that this same type of behavior, regarding persistence of sign,
occurs with all polynomials and, indeed, with quotients of polynomials as well. This
important fact, along with the definition of a key number, is presented in the box that
follows.
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y

x
1 3

Figure 1
y � x2 � 4x � 3

PROPERTY SUMMARY Key Numbers and Persistence of Sign

Let P and Q be polynomials with no common factors (other than, possibly, constants), and consider the following
four inequalities:

The key numbers for each of these inequalities are the real Examples
numbers for which P � 0 or Q � 0. (Geometrically speaking, 1. The key numbers for the inequality 
the key numbers are the x-intercepts for the graphs of the (x � 7)�(x � 8) 
 0 are 7 and 8.
equations y � P and y � Q.) It can be proved (using calculus) 2. The key numbers for the inequality 
that the algebraic sign of P�Q does not change within each of (x � 3)(x � 3) � 0 are �3. (In this case,
the intervals determined by the key numbers. the polynomial Q is the constant 1.)

P

Q
� 0  

P

Q
	 0  

P

Q
� 0  

P

Q

 0  



We’ll show how this result is applied by solving the polynomial inequality

First, using factoring techniques from basic algebra, we rewrite the inequality in the
equivalent form

(If you need a review of factoring, see online Appendix B.4.) The key numbers, then,
are the solutions of the equation x(x � 1)(x � 3) � 0. That is, the key numbers are
x � 0, x � �1, and x � 3. Next, we locate these numbers on a number line. As
indicated in Figure 2, this divides the number line into four distinct intervals.

x(x � 1)(x � 3) � 0

x3 � 2x2 � 3x � 0
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(_`, _1)

_1 0 3

(_1, 0) (3, `)(0, 3)

Figure 2 

Now, according to the result stated in the box just before this example, no
matter what x-value we choose in the interval (�q, �1), the resulting sign of
x3 � 2x2 � 3x [� x(x � 1)(x � 3)] will always be the same. Thus to see what that
sign is, we first choose any convenient test number in the interval (�q, �1), for
example, x � �2. Then, using x � �2, we determine the sign of x(x � 1)(x � 3) sim-
ply by considering the sign of each factor, as indicated in Table 1.

Looking at Table 1, we conclude that the values of x3 � 2x2 � 3x are negative
throughout the interval (�q, �1) and, consequently, no number in this interval
satisfies the given inequality. Next, we carry out similar analyses for the remaining
three intervals, as shown in Table 2. (You should verify for yourself that the entries
in the table are correct.)

TABLE 1

Interval Test Number x x � 1 x � 3 x(x � 1)(x � 3)

(�q, �1) �2 neg. neg. neg. neg.

On the interval (�q, �1), the sign of x3 � 2x2 � 3x [� x(x � 1)(x � 3)] is negative because it is the
product of three negative factors.

TABLE 2

Interval Test Number x x � 1 x � 3 x(x � 1)(x � 3)

(�1, 0) neg. pos. neg. pos.
(0, 3) 1 pos. pos. neg. neg.
(3, q) 4 pos. pos. pos. pos.

On the interval (�1, 0), the product x(x � 1)(x � 3) is positive because it has two negative factors and
one positive factor. On (0, 3), the product is negative because it has two positive factors and one negative
factor. And on (3, q), the product is positive because all the factors are positive.

� 
1
2



EXAMPLE

SOLUTION

We summarize the data from Tables 1 and 2 on the number line below.

Looking at the number line, we conclude that the sign of x(x � 1)(x � 3) is pos-
itive throughout both of the intervals (�1, 0) and (3, q) and, consequently, all the
numbers in these intervals satisfy the given inequality. Moreover, our work also
shows that the other two intervals that we considered are not part of the solution set.
You should check that the key numbers themselves do not satisfy the given inequal-
ity for this example. In summary, then the solutions for the inequality

x3 � 2x2 � 3x � 0 are all values of x in (�1, 0) � (3, q).

Furthermore, it is important to note that the work we carried out also provides us
with three additional pieces of information.

The solution set for x3 � 2x2 � 3x 
 0 is [�1, 0] � [3, q).
The solution set for x3 � 2x2 � 3x � 0 is (�q, �1) � (0, 3).
The solution set for x3 � 2x2 � 3x 	 0 is (�q, �1] � [0, 3].

In the box that follows, we summarize the steps for solving polynomial inequalities.

1. If necessary, rewrite the inequality so that the polynomial is on the left-hand
side and zero is on the right-hand side.

2. Find the key numbers for the inequality and locate them on a number line.
3. List the intervals determined by the key numbers.
4. From each interval, choose a convenient test number. Then use the test number

to determine the sign of the polynomial throughout the interval.
5. Summarize your results on the number line.
6. Use the information obtained in the previous step to specify the required solu-

tion set. [Don’t forget to take into account whether the original inequality is
strict (� or �) or nonstrict (	 or 
).]

2 Using Factoring and Key Numbers to Solve an Inequality

Solve: x4 	 14x3 � 48x2.

First we rewrite the inequality so that zero is on the right-hand side. Then we factor
the left-hand side as follows:

 x2(x � 6)(x � 8) 	 0
 x2(x2 � 14x � 48) 	 0
 x4 � 14x3 � 48x2 	 0

Steps for Solving Polynomial Inequalities

x (x+1)(x-3)

-1 0 3
x

(-)

(-) (-)

(-) (-)(-)

(-) (-)

(+)

(+) (+)

(+)

(+) (+)

(+)

(+)

x

x+1

x-3

2.4 More on Inequalities 115



EXAMPLE

SOLUTION

From this last line, we see that the key numbers are x � 0, 6, and 8. As indicated
in Figure 3, these numbers divide the number line into four distinct intervals.
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(_`, 0)

0 6

(0, 6) (6, 8) (8, `)

8Figure 3

We need to choose a test number from each interval and see whether the polynomial
is positive or negative on the interval. This work is carried out in the following table.

Interval Test Number x2 x � 6 x � 8 x 2(x � 6)(x � 8)

(�q, 0) �1 pos. neg. neg. pos.
(0, 6) 1 pos. neg. neg. pos.
(6, 8) 7 pos. pos. neg. neg.
(8, q) 9 pos. pos. pos. pos.

Summarizing the data on a number line, we have

x2 (x-6)(x-8)

(-)
(+) (+) (+) (+)

(+) (+)

(+) (+) (+)

(-)
(-)
(-) (-) (+)

(-)

0 6 8
x

x2

x-6

x-8

Our analysis shows that the quantity x2(x � 6)(x � 8) is negative only for 
x-values in the interval (6, 8). Also, as noted at the start, the quantity is equal to zero
when x � 0, 6, or 8. Thus the solution set consists of the numbers in the closed inter-
val [6, 8], along with the number 0. We can write this set

where {0} denotes the set that has zero as its only member.

3 An Inequality with no Key Numbers

Solve:

(a) x2 � 4x � 5 � 0; (b) x2 � 4x � 5 � 0.

(a) The equation x2 � 4x � 5 � 0 has no real solution (because the discriminant of
the quadratic is �4, which is negative), so there is no key number. Consequently,
the polynomial x2 � 4x � 5 never changes sign. To see what that sign is, choose
a convenient test number, for example, x � 0, and evaluate the polynomial:
02 � 4(0) � 5 � 0. So the polynomial is positive for every value of x, and the 
solution set is (�q, q), the set of all real numbers.

[6, 8] � 506



EXAMPLE

SOLUTION

(b) Our work in part (a) shows that no real number satisfies the inequality
x2 � 4x � 5 � 0. See Figure 4 for a graphical perspective on this and on the
result in part (a).

The technique used in the previous examples can also be used to solve inequali-
ties involving quotients of polynomials. For these cases recall that the definition of a
key number includes the x-values for which the denominator is zero. For example, 

the key numbers for the inequality 
 0 are �3 and 4.

4 An Inequality Involving a Quotient of Polynomials

Solve: 
 0.

The key numbers are �3 and 4. As indicated in Figure 5, these numbers divide the
number line into three intervals. In the table that follows, we’ve chosen a test num-
ber from each interval and determined the sign of the quotient (x � 3)�(x � 4) for
each interval.

Interval Test Number x � 3 x � 4

(�q, �3) �4 neg. neg. pos.
(�3, 4) 0 pos. neg. neg.
(4, q) 5 pos. pos. pos.

Summarizing the data on a number line we have

x � 3
x � 4

x � 3

x � 4

x � 3

x � 4
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Graphical Perspective

y=≈-4x+5

_1
_2

0

2

4

6

8

10

0 1 2 3 4 5

Figure 4
The graph of y � x2 � 4x � 5 
lies entirely above the x-axis.
Algebraically this means that the
quantity x2 � 4x � 5 is positive for
all values of x. Consequently, the
solution set for x2 � 4x � 5 � 0 
is the set of all real numbers.
Equivalently, there are no real
numbers satisfying x2 � 4x � 5 � 0.

(_`, _3)

_3 4

(_3, 4) (4, `)

Figure 5

(+) (+)

(+)

(+)

(+)(-)
-3 4

x(-)

(-)(-)

x+3

x-4

x+3
x-4

From these results, we conclude that the solution set for 
 0 contains the 

two intervals (�q, �3) and (4, q). However, we still need to consider the two end-points,

x � 3

x � 4



EXAMPLE

SOLUTION

�3 and 4. As you can easily check, the value x � �3 does satisfy the given inequality,
but x � 4 does not. In summary, then, the solution set is (�q, �3] � (4, q). See Figure 6
for a graphical interpretation of this result. [In Figure 6 the graph of the equation
y � (x � 3)�(x � 4) has two distinct pieces, or branches, separated by the vertical
line x � 4. The points on the vertical line itself are not a part of the graph of
y � (x � 3)�(x � 4). We’ll study graphs like this in Section 4.7, Rational Functions.]

5 Another Inequality Involving Quotients of Polynomials

Solve: � 1.

Our first inclination here might be to multiply through by (x � 1)(x � 3) to eliminate
fractions. This strategy is faulty, however, since we don’t know whether the quantity
(x � 1) (x � 3) is positive or negative. Thus, we begin by rewriting the inequality in
an equivalent form, with zero on the right-hand side and a single fraction on the left-
hand side.

(1)
Check the algebra!

The key numbers are those x-values for which the denominator or the numerator is
zero. By inspection, then, we see that these numbers are �1, 4, 1, and 3. As Figure 7
indicates, these numbers divide the number line into five distinct intervals.

 
(x � 1)(x � 4)

(x � 1)(x � 3)
� 0

 
x2 � 3x � 4

(x � 1)(x � 3)
� 0

 
(2x � 1)(x � 3) � 2(x � 1) � 1(x � 1)(x � 3)

(x � 1)(x � 3)
� 0

 
2x � 1

x � 1
�

2

x � 3
� 1 � 0

2x � 1

x � 1
�

2

x � 3
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Graphical Perspective

x
1

1

2 3 5_3

2
3

x=4

y

y=x+3
x-4

Figure 6
The graph of y � (x � 3)�(x � 4) 
is above the x-axis when x is to the
left of �3 and also when x is to the
right of 4. Furthermore, the graph
intersects the x-axis (where y � 0)
when x � �3. Consequently, the
solution set for the inequality 
(x � 3)�(x � 4) 
 0 is the set 
(�q, �3] � (4, q).

(_`, _1)

_1 1 3 4

(_1, 1) (1, 3) (3, 4) (4, `)

Figure 7 



Now, just as in the previous examples, we choose a test number from each inter-
val and determine the sign of the quotient for that interval. (You should check each
entry in the following table for yourself.)
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Test
Interval Number

(�q, �1) �2 neg. neg. neg. neg. pos.
(�1, 1) 0 pos. neg. neg. neg. neg.
(1, 3) 2 pos. neg. pos. neg. pos.
(3, 4) 7�2 pos. neg. pos. pos. neg.
(4, q) 5 pos. pos. pos. pos. pos.

(x � 1 ) (x � 4 )
(x � 1 ) (x � 3 )

x � 3x � 1x � 4x � 1

Summarizing the data on a number line, we have

(+)

(+) (+)

(-) (-) (+)

(+) (+)

(+) (+)

-1 1 3 4
x

(-)

(-)

(-) (-)

(+) (+)

(+)

(-)

(-) (-) (-) (+)

(-) (+)

(-)

x-4

x+1

x-3

x-1

(x+1)(x-4)
(x-1)(x-3)

From these results we can see that the quotient on the left-hand side of inequality (1)
is negative (as required) on the two intervals (�1, 1) and (3, 4). Now we need to
check the endpoints of these intervals. When x � �1 or x � 4, the quotient is zero,
and so, in view of the original inequality, we exclude these two x-values from the
solution set. Furthermore, the quotient is undefined when x � 1 or x � 3, so we must
also exclude those two values from the solution set. In summary, then, the solution
set is (�1, 1) � (3, 4).

EXERCISE SET 2.4

A
In Exercises 1–6, use the graph to solve each inequality.
(Assume that each figure shows all of the essential features of
the graph of the equation; that is, that there are no surprises
“out of camera range.”)

1. (a) x2 � 3x � 4 � 0
(b) x2 � 3x � 4 � 0

x
4

y

_1

y=≈-3x-4

2. (a) � � 5 � 0

(b) � � 5 � 01
2 x2 � 7

2 x

1
2 x2 � 7

2 x

_5 _2

y=_ ≈- x-5
1
2

7
2

x

y
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3. (a) x4 � 4x3 � 6x2 � 4x � 2 � 0
(b) x4 � 4x3 � 6x2 � 4x � 2 � 0

4. (a) �3(x � 3)2 	 0
(b) �3(x � 3)2 � 0

5. (a) x3 � 3x2 � x � 3 
 0
(b) x3 � 3x2 � x � 3 � 0

6. (a) �x3 � 6x2 � 12x � 9 � 0
(b) �x3 � 6x2 � 12x � 9 
 0

y=_x#+6≈-12x+9

x

y

3

_1

y=˛-3≈-x+3

x
1 3

y

_3

y=_3(x+3)@

x

y

x

y

y=x$-4˛+6≈-4x+2

7. In the text (pages 114–115) we solved the
inequality x3 � 2x2 � 3x � 0. Graph the equation
y � x3 � 2x2 � 3x and explain or describe (in complete
sentences) the relationship between the graph and the solu-
tion set of the given inequality.

8. In Example 2 in the text, we solved the inequality
x4 	 14x3 � 48x2. Graph the equation
y � x4 � 14x3 � 48x2 and explain or describe (in complete
sentences) the relationship between the graph and the solu-
tion set of the given inequality.

Solve the inequalities in Exercises 9–60. Suggestion: A calcula-
tor may be useful for approximating key numbers.

9. x2 � x � 6 � 0 10. x2 � 4x � 32 � 0

11. x2 � 11x � 18 � 0 12. 2x2 � 7x � 5 � 0

13. 9x � x2 	 20 14. 3x2 � x 	 4

15. x2 � 16 
 0 16. 24 � x2 
 0

17. 16x2 � 24x � �9 18. x4 � 16 � 0

19. x3 � 13x2 � 42x � 0 20. 2x3 � 9x2 � 4x 
 0

21. 2x2 � 1 
 0 22. 1 � x2 � 0

23. 12x3 � 17x2 � 6x � 0 24. 8x4 � x2 � 2x3

25. x2 � x � 1 � 0 26. 2x2 � 9x � 1 � 0

27. x2 � 8x � 2 	 0 28. 3x2 � x � 5 	 0

29. (x � 1)(x � 3)(x � 4) 
 0

30. x4(x � 2)(x � 16) 
 0

31. (x � 4)(x � 5)(x � 6) � 0

32. x � x � x � � 0

33. (x � 2)2(3x � 1)3(3x � 1) � 0

34. (2x � 1)3(2x � 3)5(2x � 5) � 0

35. (x � 3)2(x � 1)4(2x � 1)4(3x � 2) 	 0

36. x4 � 25x2 � 144 	 0

37. 20 
 x2(9 � x2)

38. x2(3x2 � 11) 
 4

39. 9(x � 4) � x2(x � 4) � 0

40. (x � 1)2 � 5(x � 1) � 14

41. 4(x2 � 9) � (x2 � 9)2 � �5

42. x(1 � x2)4 � (x � 3)(1 � x2)4 
 0

43. 	 0 44. 	 0

45. 
 0 46. 
 0

47. � 0 48. � 0

49. � 0 50. � 0

51. � 1 52. � 3
2x

x � 2

x

x � 1

x2 � x � 1

x2 � x � 1

2x3 � 5x2 � 7x

3x2 � 7x � 4

x2 � 3x � 1

1 � x

x2 � 8x � 9
x

x2 � 1

x2 � 8x � 15

2 � x

3 � 2x

x � 4

2x � 5

x � 1

x � 1

3
2 211

2 211
2 21
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53. 	 54. �

55. 
 56.

57. 58.

59. 60.

For Exercises 61–76:
(a) Use a graph to estimate the solution set for each

inequality. Zoom in far enough so that you can estimate the
relevant endpoints to the nearest thousandth.

(b) Exercises 61–70 can be solved algebraically using the
techniques presented in this section. Carry out the algebra
to obtain exact expressions for the endpoints that you esti-
mated in part (a). Then use a calculator to check that your
results are consistent with the previous estimates.

61. x2 � 5x � 3 	 0 62. x2 � x � 4 	 0

63. 0.25x2 � 6x � 2 � 0 64. 0.25x3 � 6x2 � 2x � 0

65. x4 � 2x2 � 1 � 0 66. x4 � 2x2 � 1 � 0

67. (x2 � 5)�(x2 � 1) 	 0 68. (x3 � 5)�(x2 � 1) 	 0

69. (x2 � 1)�(x2 � 5) 	 0 70. (x2 � 1)�(x3 � 5) 	 0

71. x3 � 2x 
 �1 72. x3 � 2x 
 �1

73. x4 � 2x � �1 74. x5 � 2x � �1

75. x � � � � 0 Note: For natural numbers n, the 

symbol n! (read n factorial) denotes the product of the first
n natural numbers. For instance, 3! � 1 � 2 � 3 � 6.

76. 1 � � 0

B
77. Suppose that after studying a corporation’s records, a

business analyst predicts that the corporation’s monthly
revenues R for the near future can be closely approximated
by the equation

 �57.703x � 159.955  (1 	 x 	 12)
 R � �0.0217x5 � 0.626x4 � 6.071x3 � 25.216x2

x2

2!
�

x4

4!
�

x6

6!
�

x8

8!

x7

7!
x5

5!
x3

3!

x2 � 3x

x2 � 8x � 15
� 0

x2 � x � 2

x2 � 3x � 2
� 0

x � 1

x � 2
�

x � 3

x � 4

1 � x

1 � x
�

1 � x

1 � x
� �1

2x

x � 5
�

x � 1

x � 5
�

1

5

1

6

1

x � 2
�

1

x � 1

x

2

2
x

1

x � 1

1
x

where R is the revenue (in thousands of dollars) for the
month x, with x � 1 denoting January, x � 2 denoting
February, and so on.
(a) According to this model, for which months will the

monthly revenue be no more than $80,000?
Hint: You need to solve the inequality R 	 80. Round
each key number to the nearest integer. (Why?)

(b) For which months, if any, will the monthly revenue be
at least $120,000?

78. (Continuation of Exercise 77)
(a) Solve the inequality R � 165 to determine the months,

if any, that the revenue will exceed $165,000.
(b) Are there any months when the revenue will fall below

$45,000?
79. For which values of b will the equation x2 � bx � 1 � 0

have real solutions?
80. The sum of the first n natural numbers is given by

For which values of n will the sum be less than 1225?
81. For which values of a is x � 1 a solution of the following

inequality?

� 1

82. Solve � 2 where a and b are positive

constants.
83. The two shorter sides in a right triangle have lengths x

and 1 � x, where x � 0. For which values of x will the
hypotenuse be less than 

84. A piece of wire 12 cm long is cut into two pieces. Denote
the lengths of the two pieces by x and 12 � x. Both pieces
are then bent into squares. For which values of x will the
combined areas of the squares exceed 5 cm2?

C
85. Find a nonzero value for c so that the solution set for the

inequality

is the open interval (�3c, c).
86. Solve (x � a)2 � (x � b)2 � (a � b)2�4, where a and b are

constants and a � b. 

x2 � 2cx � 6c � 0

117�5?

1ab,
ax � b

1x

2a � x

x � 2a

1 � 2 � 3 � p � n �
n(n � 1)

2

The Mini Project, Wind Power, at http://www.cengage.com/math/cohen/precalc7e uses material from Section 2.4.

http://www.cengage.com/math/cohen/precalc7e
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CHAPTER 2 Summary of Principal Terms and Formulas

Page
Terms or Notations Reference Comments

1. Quadratic equation 81 A quadratic equation is an equation that can be written in the form
ax2 � bx � c � 0, where a, b, and c are constants with a � 0.

2. Quadratic formula 83 This is the quadratic formula; it provides the solutions of the 
quadratic equation ax2 � bx � c � 0. The formula is derived on 

x � pages 82–83 by means of the useful technique of completing the 
square.

3. Product-and-sum-of-roots 85 The product and the sum of the roots of the quadratic equation 
theorem x2 � bx � c � 0 are c and �b, respectively.

4. Discriminant 88 The discriminant of the quadratic equation ax2 � bx � c � 0 is the
number b2 � 4ac. As indicated in the box on page 88, the discriminant
provides information about the roots of the equation.

5. Extraneous solution 100 In solving equations, certain processes (such as squaring both sides) 
(or extraneous root) can lead to answers that do not satisfy the original equation. These

numbers are called extraneous solutions (or extraneous roots).

6. Solution set of an inequality 103 This is the set of numbers that satisfy the inequality.

7. A � B 107 The set A � B consists of all elements that are in the set A or the set B
(or both).

8. Key numbers of an 113 Let P and Q denote polynomials, with no common factors (except 
inequality possibly constants), and consider the following four inequalities:

The key numbers for each of these inequalities are those real numbers for
which P � 0 or Q � 0. It can be proved that the algebraic sign of P�Q is
constant within each of the intervals determined by these key numbers.

P

Q
� 0  

P

Q
	 0  

P

Q
� 0  

P

Q

 0

�b � 2b2 � 4ac

2a

Writing Mathematics

1. More than 3000 years ago, the ancient Babylonian mathe-
maticians solved quadratic equations. A method they used
is demonstrated (using modern notation) in the following
example.

To find the positive root of x2 � 8x � 84:

Rewrite the equation as x(x � 8) � 84, and let
y � x � 8. Then the equation to be solved becomes
xy � 84. Now take half of the coefficient of x in the

original equation, which is 4, and define another
variable t by t � x � 4. Then we have x � t � 4 and
y � t � 4. Therefore

With t � 10 we get x � 10 � 4 � 6, the required
positive root.

 t � 10
 t2 � 100

 (t � 4)(t � 4) � 84

CHAPTER 2 Summary



century Persian mathematician and astronomer Muhammed
al-Khwārizmı̄. The following example demonstrates al-
Khwārizmı̄’s use of completing the square to solve the
equation x2 � 8x � 84:

To find the positive root of x2 � 8x � 84:

Begin with a square of side x, as in Figure A. Take half
of the coefficient of x: this is one-half of 8, or 4. Now
form two rectangles, each with dimensions 4 by x, and
adjoin them to the square, as indicated in Figure B.
Then, as in Figure C, draw the dashed lines to com-
plete the (outer) square.

On your own or with a group of classmates, work through
the previous example, filling in any missing details if
necessary. Then (strictly on your own), use the Babylonian
method to find the positive root of each of the following
equations. Write out your solutions in detail, as if you were
explaining the method to another student who had not seen
it before. This will involve a combination of English com-
position and algebra. Also, in part (b), check your answer
by using the quadratic formula.
(a) x2 � 14x � 72 (b) x2 � 2Ax � B, where B � 0

2. The ancient Greek mathematicians (2500 years ago) used
geometric methods to solve quadratic equations or, rather,
to construct line segments whose lengths were the roots of
the equations. According to historian Howard Eves in An
Introduction to the History of Mathematics, 6th ed.
(Philadelphia: Saunders College Publishing, 1990):

Imbued with the representation of a number by a
length and completely lacking any adequate algebraic
notation, the early Greeks devised ingenious geomet-
rical processes for carrying out algebraic operations.

One of the methods used by the ancient Greeks to solve a
quadratic equation is described in the following example
(using modern algebraic notation). 

To construct a line segment whose length is equal to
the (positive) root of the equation x2 � 8x � 84:

Begin with a line segment of length 8. At B, con-
struct a line segment such that the length of

is Next, let M be the midpoint of 
With M as center, draw a circular arc of radius 
intersecting (extended) at P. Then the length of

is the required root.

On your own or with a group of classmates, work through
the preceding construction. That is, sketch the appropriate
figure and verify that the construction indeed yields the pos-
itive root of the equation. Then, on your own, use the Greek
method to determine the positive root of each of the follow-
ing equations. Write out your work in detail, as if you were
explaining it to a student who had not seen it before. Be sure
to include the appropriate geometric figures and an expla-
nation of why the method works.
(a) x2 � 14x � 72 (b) x2 � 2cx � d (c, d � 0)

3. The example in Exercise 1 demonstrates a Babylonian
method for solving a quadratic equation. According to
Professor Victor J. Katz in A History of Mathematics (New
York: HarperCollins College Publishers, 1993), “whatever
the ultimate origin of this method, a close reading of the
wording of the [ancient clay] tablets seems to indicate that
the scribe had in mind a geometric procedure [completing-
the-square]. . . .”

One of the earliest explicit uses of the completing-the-
square technique to solve a quadratic is due to the ninth-

AP
AB

MC
AB.184.BC

BC  �  AB
AB
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x

x

Figure A

x

x

4 4

Figure B Figure C

In Figure B, the combined area of the square and
the two rectangles is x2 � 8x. But from the equation
we wish to solve, x2 � 8x is equal to 84. In Figure C
the area of the small square in the lower right-hand
corner is 16. Thus the area of the entire outer square
is 16 � 84, or 100. But the area of the outer square is
also (x � 4)2. Therefore

(x � 4)2 � 100 and, consequently, x � 4 � 10

The positive root we are looking for is therefore x � 6.

On your own or with a group of classmates, work through the
preceding example, filling in the missing details as necessary.
Then, on your own, use this completing-the-square process
to find the positive root of each of the following equations.
Write out your solutions in detail, as if you were explaining
the method to another student who had not seen it before. Be
sure to include the appropriate geometric figures.
(a) x2 � 14x � 72 (b) x2 � 2Ax � B, where B � 0
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CHAPTER 2 Review Exercises

In Exercises 1–12, answer TRUE if the statement is true
without exception. Otherwise, answer FALSE.

1. If x � 3, then x � 7 � 10.
2. If x � y, then x2 � y2.
3. If x 
 �4, then x 	 4.
4. If �x � y, then x � �y.
5. If x � 2, then �
6. x 	 x2

7. If � 3, then x � 1 � 9.
8. If 0 � x � 1, then � x.
9. If x � 2 and y � 3, then x � y.

10. If x � 2 and y � 3, then x � y.
11. If a � b 	 a2 � b2, then 1 	 a � b.
12. If 0 � a � b 	 a2 � b2, then 1 	 a � b.

In Exercises 13–32, find all of the real solutions of each
equation.

13. 12x 2 � 2x � 2 � 0 14. 4y2 � 21y � 18

15. � x � 12 � 0 16. x2 � � 10 � 0

17. �

18.

19. � 0

20. 4x2 � x � 2 � 0 21. t2 � t � � 0
22. x3 � 6x2 � 7x � 0 23. 1 � 14x�1 � 48x�2 � 0
24. x�2 � x�1 � 1 � 0 25. x1�2 � 13x1�4 � 36 � 0
26. y2�3 � 21y1�3 � 80 � 0

27. � � 1

28. 2 � � 0

29. � � � 0

30. � � 1 � 0

31. � � �

32. � 3

In Exercises 33–38, solve each equation for x in terms of the
other letters.

33. 4x2y2 � 4xy � �1, where y � 0

34. 4x4y4 � 2x2y2 � � 0, where y � 0

35. x � � � �
2

abx

2

a2x

1

b

1
a

1
4

1x � 4

1x � 18

1x � 21x � 11x � 21x � 7

1x2x � 11 � x

1

1x � 6

1

1x � 6

2

2x2 � 36

2312x � 1 � x

111 � 8x14x � 3

1
2

1

3x � 7
�

2

5x � 5
�

3

3x � 1

x2

(x � 1)(x � 1)
�

4

x � 1
�

4

(x � 1)(x � 1)

�2

11 � x

x

5 � x

13
2  x1

2 x2

1�x
1x � 1

1�2.1�x

36. � � � where a � �b

Suggestion: Before clearing fractions, carry out the indicated
additions on each side of the equation.

37. � � � where a � b � 0

38. � � � 0, where a � 0

Solve the inequalities in Exercises 39–55.

39. �1 � � 1

40. 3 � � 4 41. 	 1�2

42. 3 � � 2 43. 2x � 1 
 5
44. x2 � 21x � 108 	 0 45. x2 � 3x � 40 � 0
46. x2 
 15x 47. x2 � 6x � 1 � 0
48. (x � 12)(x � 1)(x � 8) � 0
49. x4 � 34x2 � 225 � 0

50. � 0 51. 
 0

52. 	 0

53. � 1 54. 	

55. x2 � � 3 Suggestion: Use a calculator to evaluate the

key numbers.

For Exercises 56 and 57, find the values of k for which the roots
of the equations are real numbers.

56. kx2 � 6x � 5 � 0
57. x2 � (k � 1)x � 2k � 0

In Exercises 58 and 59, find a quadratic equation that has
integer coefficients and the given values as roots.

58. r1 � 11 � �3, r2 � 11 � �3
59. r1 � �3, r2 � �4
60. Solve for x:

5

where b � 0.
Hint: Divide through by The resulting equation
can be solved by using the substitution 

t �
A

3 b � x

b � x
.

2
3 (b � x)2.

2
3 b2 � x2 � 2

3 (b � x)2 � 423 (b � x)2,

15 215 2

1

x2

1

2

1 � 2x

1 � 2x

3x � 1

x � 4

(x � 6)2(x � 8)(x � 3)

(x � 3)2

(x � 7)2

(x � 2)3

x � 12

x � 5

005x 00
0 x 0x � 1

�2

1 � 2(1 � x)

3

1

x � 3a

1
a � x

1
x

1

b
,

1
a

1
x

1

x � a � b

x � b

a
,

x � a

b

b

x � a

a

x � b



Make use of this formula in working Exercises 70–72.

70. A ball is thrown vertically upward from ground level with
an initial speed of 64 ft/sec.
(a) At what time will the height of the ball be 15 ft? (Two

answers.)
(b) For how long an interval of time will the height exceed

63 ft?
71. One ball is thrown vertically upward from a height of 50 ft

with an initial speed of 40 ft/sec. At the same instant,
another ball is thrown vertically upward from a height of
100 ft with an initial speed of 5 ft/sec. Which ball hits the
ground first?

72. An object is projected vertically upward. Suppose that its
height is H ft at t1 sec and again at t2 sec. Express the initial
speed in terms of t1 and t2.

Answer: 16(t1 � t2)
73. A rectangle is inscribed in a semicircle of radius 1 cm, as

shown. For which value of x is the area of the rectangle
1 cm2? Note: x is defined in the figure.

74. The height of an isosceles triangle is a � b units, where
a � b � 0, and the area does not exceed a2 � b2 square
units. What is the range of possible values for the base of
the triangle?

75. A circle is inscribed in a quadrant of a larger circle of radius
r (as shown in the figure). Find the radius of the inscribed
circle.

r

1

x

61. The sum of the cubes of two numbers is 2071, while the sum
of the two numbers themselves is 19. Find the two numbers.

62. The sum of the digits in a certain two-digit number is 11. If
the order of the digits is reversed, the number is increased
by 27. Find the original number.

63. The four corners of a square ABCD have been cut off to form
a regular octagon, as shown in the figure. If each side of the
square is 1 cm long, how long is each side of the octagon?

64. Determine p if the larger root of the equation
x2 � px � 2 � 0 is p.

65. A piece of wire x cm long is bent into a square. For which
values of x will the area be (numerically) greater than the
perimeter?

66. A piece of wire 6x cm long is bent into an equilateral trian-
gle. For which values of x will the area be (numerically) less
than the perimeter?

67. Find three consecutive positive integers such that the sum
of their squares is 1454.

68. The length of a rectangular piece of tin exceeds the width
by 8 cm. A 1 cm square is cut from each corner of the piece
of tin, and then the resulting flaps are turned up to form a
box with no top. What are the dimensions of the box if its
volume is 48 cm3?

69. The length and width of a rectangular flower garden are a and
b, respectively. The garden is bordered on all four sides by a
gravel path of uniform width. Find the width of the path,
given that the area of the garden equals the area of the path.

If an object is thrown vertically upward from a height of h0 ft
with an initial speed of v0 ft/sec, then its height h (in feet) after
t seconds is given by

h � �16t2 � v 0 t � h0

A B

D C

Test 125

CHAPTER 2 Test

In Problems 1–4, find all of the real solutions of each equation.

1. (a) x2 � 4x � 5

(b) x2 � 4x � 1

2. x2(x2 � 7) � 12 � 0

3. 1 � 12 � x � 15 � 2x � 0

4. 3x � 1 � 2
5. Find the sum of the roots of the equation 2x2 � 8x � 9 � 0.
6. Find a quadratic equation with integer coefficients and with

roots r1 � 2 � and r2 � 2 �
7. As indicated in the following figure, the graph of

y � x4 � 3x2 � 1 has two x-intercepts, one between 1.5 and

317.317

00



In Problems 9–13, solve the inequalities. Write the answers
using interval notation.

9. 4(1 � x) � 3(2x � 1) 
 1

10. � � 11. 3x � 8 	 1

12. (x � 4)2(x � 8)3 
 0

13.

14. Find the values of k for which the roots of the equation
x2 � 3x � k2 � 0 are real numbers.

15. The point (a, b) lies in the third quadrant on the graph of the

line y � 2x � 1. Find a and b given that the distance from

(a, b) to the origin is 

16. After solving the equation 1 � � x, give an ex-

ample of what is meant by an extraneous root, and explain

(in complete sentences) how, in this case, the extraneous

root was generated. 

13x � 7

165.

1
x

�
1

x � 1
�

1

x � 2

 0

004

5

3 � 2x

�4

3

5

2 and one between �1.5 and �2. Find exact expressions
(containing radicals) for these intercepts and also calculator
approximations rounded to three decimal places. Check that
your calculator values are consistent with the graph.

8. Consider the equation 2x4�3 � x2�3 � 6 � 0.
(a) Use a graphing utility to approximate the roots to the

nearest hundredth.
(b) Use algebra to determine the exact solutions. Then

check that the answers are consistent with the approxi-
mations obtained in part (a).

x

y

1

_1.0_2.0 1.0 2.0

2
3

y=x$-3x@ -1
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3.1 The Definition of a Function

3.2 The Graph of a Function

3.3 Shapes of Graphs. Average
Rate of Change

3.4 Techniques in Graphing

3.5 Methods of Combining
Functions. Iteration

3.6 Inverse Functions

To make a start out of particulars and make them
general . . . —William Carlos Williams (1883–1963) in

his poem Paterson

The concept of a function is one of the most useful and broad-ranging ideas in all of
mathematics. After introducing the definition of a function and function notation in
Section 3.1, we use graphs in the next three sections to understand and to analyze
functions. In Sections 3.5 and 3.6 we find ways to combine functions to produce
new functions. One of the ways of combining functions is known as composition of
functions. As you’ll see, this is an important unifying concept in Sections 3.5 and 3.6.
In this chapter we use functions to:

• Estimate how many units of a particular item a store can expect to sell at a given
price (Example 7 in Section 3.1)

• Compute the average rate of increase or decrease of a patient’s temperature over
given time periods (Example 3 in Section 3.3)

• Analyze and compare changing patterns of consumption of red meat in China and
in the United States (Exercises 19 and 20 in Section 3.3)

• Determine the rate of spread of an oil spill (Example 5 in Section 3.5)

CHAPTER

3 Functions

The word “function” was introduced
into mathematics by Leibniz, who used
the term primarily to refer to certain
kinds of mathematical formulas. It was
later realized that Leibniz’s idea of
function was much too limited in scope,
and the meaning of the word has since
undergone many steps of generalization.
—Tom M. Apostol in Calculus, 2nd ed.
(New York: John Wiley & Sons, 1967)

3.1 THE DEFINITION OF A FUNCTION
There are numerous instances in mathematics, business, and the sciences in which
one quantity corresponds to or depends on another according to some definite rule.
Consider, for example, the equation y � 2x � 1. Each time we select an x-value,
a corresponding unique y-value is determined, in this case according to the rule
“multiply by 2, then add 1.” In this sense, the equation y � 2x � 1 represents a func-
tion. It is a rule specifying a unique y-value corresponding to each x-value. It is useful
to think of the x-values as inputs and the corresponding y-values as outputs. The
function or rule then tells us what output results from a given input, as indicated
schematically in Figure 1.

In general, a function can be represented in one or more of the following forms:

• Algebraic, using an equation or formula (as in the previous paragraph)
• Verbal (also as in the previous paragraph)
• Tabular, using a two-column table
• Graphical, using a coordinate system and graph

After looking at some examples of these ways of representing functions, we’ll give
an “official” definition of the term function on page 130.

© B. O’Kane/Alamy



Algebraic. Many of the familiar formulas from geometry represent functions. The
area A of a circle depends on the radius r according to the formula A � pr2. For each
value of r, a corresponding value for A is determined by this formula or rule. The val-
ues for r are the inputs, and the corresponding values for A are the outputs. The field
of statistics provides another rich source of examples of functions. For instance, over
the years 1850–1900, the population of the United States can be closely approxi-
mated by using the equation

where y is the population in millions and x is the year. (We worked with this equation
in Example 1 in Section 2.1.) For this rule or function, the inputs are the numbers
1850, 1851, . . . 1900, and the corresponding outputs are the population estimates
(in millions).

Verbal. If you count the number of times that a cricket chirps in one minute, you
can estimate the air temperature (Fahrenheit) using the following rule or function:
Divide the number of chirps by 4, then add 40; the answer will be a good estimate for
the air temperature. (We’re assuming here that at a given temperature, all crickets
chirp at the same rate.) For instance, suppose that you count 80 chirps in one minute.
This is our input. Applying the rule, we divide 80 by 4, which is 20, and then add 40
to obtain 60. Our estimate for the air temperature is 60°F; that’s the output corre-
sponding to an input of 80 chirps/min.

The terminology of proportion and variation introduced in intermediate algebra
is sometimes used in the sciences to represent functions verbally. Here’s an example
from physics. If you drop a ball off the roof of a building, then before it hits the
ground (and neglecting air resistance), the distance the ball falls is directly propor-
tional to the square of the elapsed time. The equivalent algebraic representation for
this verbal rule or function is

where d is the distance that the ball falls in time t, and k is a constant. (If the distance
d is measured in feet and the time t in seconds, then the numerical value for k turns
out to be 16, and the algebraic form of the rule or function becomes d � 16t2.)

Tabular. In many applications a function is specified by means of a two-column
table. Unless stated otherwise, we usually think of the entries in the left-hand column
as the inputs and the entries in the right-hand column as the outputs. In Table 1, for
example, the input 1975 yields the output $2.00. The inputs and outputs for a function
needn’t always be numbers. Notice that in Table 2, the inputs aren’t numbers, but

d � kt2

y � 0.006609x2 � 23.771x � 21,382
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rather names of the planets in our solar system. In Table 3, neither the inputs nor the
outputs are numbers. Another item to note: As indicated in the last row of Table 3, it
is possible for an input and output to be the same item. For an algebraic example of
this, consider the rule defined by y � x2. For the input x � 1, the corresponding out-
put is y � 12 � 1. That is, the input and output are both 1.

Graphical. In newspapers, business, and the sciences, functions are often presented
graphically. Sometimes, but certainly not always, this is in conjunction with an ex-
plicit table of values or an equation. For example, consider the minimum wage in-
formation given in Table 1. Each row of the table gives us an ordered pair of numbers
that we can plot in a coordinate system. Looking at Table 1, we see that the first row
gives us the point with coordinates (1975, 2.00), the second row gives us the point
(1980, 3.10), and so on. The resulting graph is shown in Figure 2.
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TABLE 1 Federal Minimum
Wage

Year Minimum Wage (dollars)

1975 2.00
1980 3.10
1985 3.35
1990 3.80
1995 4.25
2000 5.15
2005 5.15
2010 7.25

Source: U.S. Bureau of Labor Statistics

TABLE 3 Original Names of Some Movie Stars

Movie Star Original Name

Kate Capshaw Kathleen Sue Nail
Tom Cruise Thomas Cruise Mapother, IV
Demi Moore Demetria Guynes
Kevin Spacey Kevin Fowler
Arnold Schwarzenegger Arnold Schwarzenegger

TABLE 2 Number of Moons Each Planet in the Solar
System Is Known to Have as of 2000

Planet Number of Moons

Mercury 0
Venus 0
Earth 1
Mars 2
Jupiter 16
Saturn 18
Uranus 18
Neptune 8

Year

D
ol

la
rs

1995
1.5

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

2.0

1990198519801975 2000 2005 2010

6.0
7.0
7.5

Figure 2
Federal minimum wage. A graphical
presentation of the input/output
pairs in Table 1.



In the first paragraph of this section we used the equation y � 2x � 1 as an
example of a function represented algebraically. A graphical representation of this
function is shown in Figure 3(a). (We’ve used the techniques of Section 1.6 to graph
the equation y � 2x � 1.) Given this graphical representation of the function (and
ignoring, for the moment, the fact that we have the equation y � 2x � 1), one way
to describe how to obtain the output y-value from a given input x-value is:

Given an input on the x-axis, for example x � 2 as in Figure 3(b), travel
vertically until you reach a point on the graph. The y-coordinate of this point
is the required output. According to Figure 3(b), the input x � 2 produces
the output y � 5.

A less dynamic but more succinct (and more general) way to describe the rela-
tionship between the graph of a function and the input-output point of view is:

Suppose we have a graph of a function in an x-y coordinate system. Then a
point (x, y) is on the graph if and only if the function assigns the output y to the
input x.

(Actually, when we take a more careful look at graphs of functions in Section 3.2,
we’ll adapt this last version for the very definition of the graph of a function.)

Now that we’ve looked at a few introductory examples, it’s time to state the
definition of the term function as it is used in mathematics. We need this definition
before we can answer the following two questions, which may have already occurred
to you:

Does every rule or table represent a function?
Does every graph represent a function?

As you’ll see later in this section, the answer to the first question is no. For the second
question, the answer is also negative, but we postpone that discussion until the next
section. The following definition of the term function is broad enough to encompass
all of the examples that we’ve looked at.
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Figure 3
The graph of y � 2x � 1 represents
a function.
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Starting from the input 2 on
the x-axis, travel vertically until
you reach a point on the graph.
The y-coordinate of this point, 5,
is the output produced by the
input 2.
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Definition Function

Let A and B be two nonempty sets. A function from A to B is a rule of correspondence
that assigns to each element in set A exactly one element in B.



The set A in the definition just given is called the domain of the function. Think
of the domain as the set of all inputs. For each input, the function gives us an output
(from the set B mentioned in the definition). The set of all outputs is called the range
of the function. For example, for the minimum wage function represented in Table 1
(on page 129), the domain is the set {1975, 1980, 1985, 1990, 1995, 2000, 2005,
2010}, and the range is {$2.00, $3.10, $3.35, $3.80, $4.25, $5.15, $7.25}.

In a moment we’ll talk more about domain and range, but first reread the defini-
tion of function in the previous box and note the use of the word “exactly.” The inclu-
sion of that word implies that some rules will not qualify as functions. For example,
the rule represented in Table 4(a) doesn’t qualify as a function; for the input year 1981
there are two outputs (namely, 18¢ and 20¢), whereas the definition of a function
requires exactly one output. Table 4(b) remedies this problem; the rule in Table 4(b)
does represent a function.
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TABLE 4(a) Price of U.S. First-Class Stamp and the Year the Price
Went into Effect

Year
(inputs) 1975 1978 1981 1981 1985 1988 1991 1995 1999

Price in cents
(outputs) 13 15 18 20 22 25 29 32 33

TABLE 4(b) Price of U.S. First-Class Stamp and the Date the Price Went into Effect

Date
(inputs) 12/31/75 5/29/78 3/22/81 11/1/81 2/17/85 4/3/88 2/3/91 1/1/95 1/10/99

Price in cents
(outputs) 13 15 18 20 22 25 29 32 33

TABLE 5(a) Not a Function

x Square Roots of x

4 2, �2
9 3, �3

16 4, �4

TABLE 5(b) A Function

x

4 2
9 3

16 4

1x

For an algebraic example of this same issue, consider square roots and the symbol
. (Note: The following discussion is intended to be self-contained. If after you read

it, however, things don’t seem clear, you should refer to the detailed review of roots
in online Appendix B.2 at http://www.cengage.com/math/cohen/precalc7e) Recall
from basic algebra that each positive number has two square roots. For instance, the
square roots of 16 are 4 and �4. Thus the rule in Table 5(a) does not represent a function
because for each input there are two outputs. To remedy this, the symbol is defined
in algebra to mean the positive square root only. Thus � 4, and if you are think-
ing of the other root, you write � � �4. Consequently, the correspondences in
Table 5(b) do represent a function; for each input there is exactly one output.

116
116

1 

1 

http://www.cengage.com/math/cohen/precalc7e


For functions defined by equations, we’ll agree on the following convention re-
garding the domain: Unless otherwise indicated, the domain is assumed to be the set
of all real numbers that lead to unique real-number outputs. (This is essentially the
domain convention described in Section 1.3.) Thus, the domain of the function
defined by y � 3x � 2 is the set of all real numbers, whereas the domain of the func-
tion defined by y � 1�(x � 5) is the set of all real numbers except 5 (since, 1�(x � 5)
is undefined when the denominator is zero, namely, when x � 5). In general, the let-
ter representing elements from the domain (that is, the inputs) is called the indepen-
dent variable. For example, in the equation y � 3x � 2, the independent variable is
x. The letter representing elements from the range (that is, the outputs) is called the
dependent variable. In the equation y � 3x � 2, the dependent variable is y; its
value depends on x. This is also expressed by saying that y is a function of x.
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EXAMPLE 1 Using the Definition of a Function

Let A � {b, g} and B � {s, t, u, z}. Which of the four correspondences in Figure 4 rep-
resent functions from A to B? For those correspondences that do represent functions,
specify the range in each case.

SOLUTION (a) This is not a function. The definition requires that each element in A be assigned
an element in B. The element g in this case has no assignment.

(b) This is not a function. The definition requires exactly one output for a given
input. In this case there are two outputs for the input g.

(c) and (d) Both of these rules qualify as functions from A to B. For each input there
is exactly one output. (Regarding the function in (d) in particular, notice that
nothing in the definition of a function prohibits two different inputs from pro-
ducing the same output.) For the function in (c), the outputs are s and z, and so
the range is the set {s, z}. For the function in (d), the only output is u; conse-
quently, the range is the set {u}.

EXAMPLE 2 Determining the Domain of a Function

Find the domain of the function defined by each equation:

(a) y � (b) .s � 1�(t2 � 6t � 7)12x � 6;

SOLUTION (a) The quantity under the radical sign must be nonnegative, so we have

The domain is therefore the interval [�3, q).

 x � �3
 2x � �6

 2x � 6 � 0



(b) Since division by zero is undefined, the domain of this function consists of all
real numbers t except those for which the denominator is zero. Thus to find out
which values of t to exclude, we solve the equation t2 � 6t � 7 � 0. We have

It follows now that the domain of the function defined by s � 1�(t2 � 6t � 7) is the
set of all real numbers except t � 7 and t � �1.

t � 1 � 0
t � �1

t � 7 � 0
t � 7

 (t � 7)(t � 1) � 0
 t2 � 6t � 7 � 0
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EXAMPLE

SOLUTION

4 Determining the Range of a Function

Find the range of the function defined by y �

Since the range of a function depends on the domain, we first find the domain. The
domain of the given function is the set of all real numbers except 3. The range of this
function is the set of all outputs y. One way to see what restrictions the given equation
imposes on y is to solve the equation for x as follows: y is in the range of this function
if there is an x in the domain such that

multiplying by x � 3 (for x � 3)

 x �
3y � 2

y � 1

 x(y � 1) � 3y � 2
 xy � x � 3y � 2

 xy � 3y � x � 2
 y(x � 3) � x � 2

 y �
x � 2

x � 3

x � 2

x � 3
.

EXAMPLE 3 Determining the Domain of a Function

Find the domain of the function defined by each equation:

(a) (b) y �
A

3 x � 3

x � 4
 .y �

A

x � 3

x � 4
 ;

SOLUTION (a) The quantity underneath the square root sign must be nonnegative, so we require

This inequality can be solved by using the techniques of Section 2.4. In fact,
we did solve exactly this inequality in Example 4 of Section 2.4. As you can
check (preferably on your own, without looking back), the solution set is
(�q, �3] � (4, q). This is the domain of the given function.

(b) In contrast to the situation with square roots, cube roots are defined for all real
numbers. Thus the only trouble spot for y � occurs when 
the denominator is zero, that is, when x is 4. Consequently, the domain of the
given function consists of all real numbers except x � 4. Using interval notation,
this set can be written (�q, 4) � (4, q).

2
3 (x � 3)�(x � 4)

x � 3

x � 4
� 0



From this last equation we see that given a value for y, there will be an x in the
domain provided that y is not equal to 1. (The denominator is zero when y � 1.) At
this point we know that all real numbers except 1 are in the range. 

To decide whether 1 is in the range consider that if it is, there is an x-value such

that , but this has no solutions since a solution would imply that x � 2 �

x � 3, which would imply that 2 � �3.
The range therefore consists of all real numbers except 1, Using interval notation,

this is the set (�q, 1) � (1, q).

Note: See Exercise 68 for an example of a function for which the algebraic method we
used to determine the range excludes a number that actually is in the range.

We often use single letters to name functions. If f is a function and x is an input for
the function, then the resulting output is denoted by f (x). This is read f of x or the value
of f at x. As an example of this notation, suppose that f is the function defined by

(1)

Then f (�2) denotes the output that results when the input is �2. To calculate this
output, replace x with �2 throughout equation (1). This yields

That is, f(�2) � 11. Figure 5 summarizes this result and the notation.

 � 4 � 6 � 1 � 11

 f (�2) � (�2)2 � 3(�2) � 1

f (x) � x2 � 3x � 1

x � 2

x � 3
� 1
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f(_2)=11

Figure 5

EXAMPLE

SOLUTION

5 Using Function Notation

Let g denote the minimum wage function defined by Table 1 (on page 129).

(a) Find g(1975).
(b) Find g(1990) � g(1980) and interpret the result.

(a) The notation g(1975) stands for the output corresponding to the input 1975.
According to Table 1, that output is $2.00, and so g(1975) � $2.00.

(b) We have

This represents the increase in the minimum wage from 1980 to 1990.

 � $0.70
 g(1990) � g(1980) � $3.80 � $3.10

EXAMPLE

SOLUTION

6 Using Function Notation

Let f(x) �

(a) Compute each of the following: f (2), f(t), and f(a2).
(b) Is 3 in the range of f?

(a) For f (2), replace each occurrence of x in the given equation by 2 to obtain

f (2) �
2

2 � 4
� �1

x

x � 4
.



Similarly, for f (t) and for f (a2) we have

(b) For 3 to be in the range of f, there must be an x in the domain of f such that
f (x) � 3. Then

Therefore f (6) � 3, and 3 is in the range of f.

CHECK Using the input x � 6, we have

as required.

As background for the next example (and for work in later sections), we intro-
duce the concept of a demand function from the field of economics. As you well
know, the price of an item that you’re interested in has a strong influence on whether
or not you actually buy that item. A function relating the selling price of an item to
the number of units sold at that price is called a demand function. Such a function
might be obtained after analyzing either a company’s sales records or the results of
a marketing survey. As a simple example, suppose that an auto manufacturer invites
12 people to participate in a focus group. At some point in the session, the manufac-
turer shows them pictures and specifications for a proposed new model. Then each of
the 12 people fills out a questionnaire asking whether he or she would purchase the
car at various price levels. The results, shown in Table 6, represent a demand func-
tion. Figure 6 provides a graphical representation of this same function.

The demand function represented in Table 6 and Figure 6 involves only six data
points, whereas an actual marketing survey might well produce 600 or even 6000 points.

f (6) �
6

6 � 4
� 3

 x � 6
 �2x � �12

 x � 3x � 12

multiplying both sides 
by the quantity x � 4 (for x � 4) x � 3(x � 4)

 
x

x � 4
� 3

f (t) �
t

t � 4
  and  f (a2) �

a2

a2 � 4
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TABLE 6 Tabular
Representation of a
Demand Function

Price Number of Cars
(1000s of dollars) That Can Be Sold

12 12
14 10
16 6
18 5
20 2
22 1

Figure 6
Graphical representation of the
demand function.
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To detect patterns in the data or to make predictions, it’s useful to have an equation
with a relatively simple graph that somehow “fits” or summarizes the data. In
Figure 7(a), for instance, you can see that the blue line does seem to fit the data
points from Figure 6 quite well.

Assuming that we are using x on the horizontal axis for price and y on the
vertical axis for the number of cars, the equation for the line in Figure 7(a) is
y � �1.143x � 25.43. The equation was obtained by using statistical techniques that
are built into many types of graphing utilities and spreadsheets. (More about that in
Section 4.1.) The line is known variously as a trend line, regression line, or least
squares line. We say in this case that the function defined by y � �1.143x � 25.43
is a mathematical model for the demand data displayed in Table 6 and in Figure 6.
More generally, any function used to describe or summarize a real-world situation is
called a mathematical model, and the process of creating or developing that func-
tion is called mathematical modeling. In Figures 7(b) and 7(c) we show two other
functions that can be used to model the demand data. We’ll study these and other
types of functions used in mathematical modeling in subsequent chapters.

For the demand function represented in Figure 6, prices are represented on the
horizontal axis, and the numbers of items sold are on the vertical axis. However, this is
not a standard convention. Economists sometimes put prices on the vertical axis and
numbers of items on the horizontal axis.
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(b) Quadratic model
y=0.04≈-2.51x+36.57
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(c) Power model
y=359684x -4.023
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(a) Linear model
y=-1.143x+25.43
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Figure 7
Three models for the demand data
in Table 6.

EXAMPLE

SOLUTION

7 Using a Demand Function and Function Notation

Suppose that an economist for a factory outlet store determines that the demand func-
tion p for a certain type of tee shirt is given by

where n is the number of tee shirts that can be sold per month at a price of p(n) dol-
lars per shirt. Solve the equation p(n) � 16 and interpret the result.

Substituting the given expression for p(n) into the equation p(n) � 16 yields

using a calculator n �
16 � 20.49

�0.012
� 374.166 . . .

 �0.012n � 16 � 20.49
 �0.012n � 20.49 � 16

p(n) � �0.012n � 20.49  (100 � n � 1500)



Now since n represents the number of tee shirts, we round to the nearest integer to
obtain n � 374. Interpretation: When the price is set at $16 per shirt, the store can
expect to sell 374 tee shirts per month.

Before going on to the next example, we offer a word of caution to help you
avoid a common error in using function notation.

Caution: It is not in general true that f (a � b) � f (a) � f (b).

As an example, suppose we take f to be the function defined by f (x) � x2 and use the
two inputs a � 1 and b � 2. Then we have

whereas

and, consequently,

In summary, we have f(1 � 2) � 9 and f (1) � f (2) � 5, so certainly,

f (1 � 2) � f (1) � f (2)

f (1) � f (2) � 1 � 4 � 5f (1) � 12 � 1, f (2) � 22 � 4

f (1 � 2) � (1 � 2)2 � 32 � 9
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EXAMPLE

SOLUTION

8 Using Function Notation

Compute g(x � 1) for the function g defined by g(x) � 1 � x � x2.

We’re given g(x). To find g(x � 1), we replace each occurrence of x with x � 1 in the
equation g(x) � 1 � x � x2. This yields

(Check the algebra.)

Here’s a slightly different perspective that we can apply in Example 8 and in sim-
ilar situations. Instead of writing g(x) � 1 � x � x2, we can write

(2)

with the understanding that whatever quantity goes into the parentheses on the left-
hand side of equation (2) must also be placed into each set of parentheses on the
right-hand side. In particular then, placing the quantity x � 1 into all three sets of
parentheses in equation (2) yields g(x � 1) � 1 � (x � 1) � (x � 1)2. From here on,
the algebra is the same as in Example 8.

g(  ) � 1 � (  ) � (  )2

 � �x2 � 3x � 1
 � 1 � x � 1 � (x2 � 2x � 1)

 g(x � 1) � 1 � (x � 1) � (x � 1)2

A
1. As in Example 5, let g denote the minimum wage function

represented in Table 1.
(a) Find g(1975).
(b) Find g(1995) � g(1975) and interpret the result.

2. Let f denote the function represented in Table 3.
(a) Find f (Kate Capshaw).
(b) For which input x are x and f (x) identical?

3. Let h denote the function represented in Table 2.

(a) Is it the domain or the range of h that consists of real
numbers?

(b) Find h(Mars).
(c) Which is larger: h(Neptune) or h(Earth)? Interpret the

result (using a complete sentence).
4. Again let h denote the function represented in Table 2.

(a) List those inputs x for which h(x) � 1.
(b) For which real number t will it be true that

h(Jupiter) � t � h(Saturn)?

EXERCISE SET 3.1



7.

8.

In Exercises 9–16, determine the domain of each function.

9. (a) y � �5x � 1 10. (a) s � 3t � 12
(b) y � 1�(�5x � 1) (b) s � 1�(3t � 12)
(c) y � (c) s �

(d) y � (d) s �
11. (a) f (x) � x2 � 9 12. (a) F(t) � t2 � 4t

(b) g(x) � 1�(x2 � 9) (b) G(t) � 1�(t2 � 4t)

(c) h(x) � (c) H(t) �

(d) k(x) � (d) K(t) �
13. (a) f (t) � t2 � 8t � 15

(b) g(t) � 1�(t2 � 8t � 15)

(c) h(t) �

(d) k(t) �
14. (a) F(x) � 2x2 � x � 6

(b) G(x) � 1�(2x2 � x � 6)

(c) H(x) �

(d) K(x) �
15. (a) f (x) � (x � 2)�(2x � 6)

(b) g(x) �

(c) h(x) �
16. (a) F(t) � (3t � 4)�(7 � 2t)

(b) G(t) �

(c) H(t) � 2
3 (3t � 4)�(7 � 2t)

2(3t � 4)�(7 � 2t)

2
3 (x � 2)�(2x � 6)

2(x � 2)�(2x � 6)

2
3 2x2 � x � 6

22x2 � x � 6

2
3 t2 � 8t � 15

2t2 � 8t � 15

2
3 t2 � 4t2

3 x2 � 9

2t2 � 4t2x2 � 9

1
3 3t � 121

3
�5x � 1

13t � 121�5x � 1
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For Exercises 5 and 6, two sets A and B are defined as follows:
A � {x, y, z}; B � {1, 2, 3}.

(a) Which of the rules displayed in the figures represent func-
tions from A to B?

(b) For each rule that does represent a function, specify the
range.

5.

6.

For Exercises 7 and 8, two sets D and C are defined as follows:
D � {a, b}; C � {i, j, k}.

(a) Which of the rules displayed in the figures represent func-
tions from D to C?

(b) For each rule that represents a function, specify the range.
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H
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35. Let g(x) � 2, for all x. Find each output.
(a) g(0) (b) g(5) (c) g(x � h)

36. Let g(t) � t � 4 . Find g(3). Find g(x � 4).
37. Let f(x) � x2 � 6x. In each case, find all real numbers x (if

any) that satisfy the given equation.
(a) f (x) � 16 (b) f (x) � �10 (c) f (x) � �9

38. Let g(t) � (4t � 6)�(t � 4). In each case, find all the real
number solutions (if any) for the given equation.
(a) g(t) � 14 (b) g(t) � 4 (c) g(t) � 0

For Exercises 39 and 40, refer to the demand function given in
Example 7. In each case, solve the indicated equation for n. Round
each answer to the nearest integer and interpret the result.

39. p(n) � 8 40. p(n) � 18

In Exercises 41 and 42, p refers to the demand function given in
Example 7. Now assume that a second economist proposes an
alternative model f for the demand function:

where n is the number of tee shirts that can be sold per month
at a price of f (n) dollars per shirt.

41. At a price level of $19 per shirt, compare the predictions
for monthly sales obtained using each model. Hint: You
need to solve each of the equations p(n) � 19 and f (n) � 19
and interpret the results.

42. Show that at a price level of $10 per shirt, the model p
predicts more than twice as many sales per month as does
the model f. Hint: Solve each of the equations p(n) � 10
and f (n) � 10, and interpret the results.

In Exercises 43 and 44, let T(x) � 2x2 � 3x. Find (and simplify)
each expression.

43. (a) T(x � 2) 44. (a) T(x � h)
(b) T(x � 2) (b) T(x � h)
(c) T(x � 2) � T(x � 2) (c) T(x � h) � T(x � h)

In Exercises 45–48, refer to the following table. The left-hand
column of the table lists four errors to avoid in working with
function notation. In each case, use the function f (x) � x2 � 1
and give a numerical example showing that the expressions on
each side of the equation are not equal.

Numerical Example
Showing That the Equation 

Errors to Avoid Is Not, in General, Valid

45. f (a � b) � f (a) � f (b)
46. f (ab) � f (a) � f (b)

47.

48.
f (a)

f (b)
�

a

b

f a 1
a
b �

1

f (a)

f (n) � 4 �
3000

n � 100
  (100 � n � 1500)

00
In Exercises 17–26, determine the domain and the range of
each function.

17. y � 4x � 5 18. y � 125 � 12x
19. y � 4x3 � 5 20. y � 125 � 12x3

21. g(x) � 22. f (x) �

23. (a) f (x) � 24. (a) g(x) �

(b) F(x) � (b) G(x) �

25. s � t2 � 4 26. s � 2t2 � 10
27. Each of the following rules defines a function with domain

the set of all real numbers. Express each rule in the form of
an equation.

Example: The rule For each real number, compute its square
can be written y � x2.

(a) For each real number, subtract 3 and then square the result.
(b) For each real number, compute its square and then subtract

3 from the result.
(c) For each real number, multiply it by 3 and then square the

result.
(d) For each real number, compute its square and then multiply

the result by 3.
28. Each of the following rules defines a function with domain

equal to the set of all real numbers. Express each rule in
words.
(a) y � 2x3 � 1 (c) y � (2x � 1)3

(b) y � 2(x � 1)3 (d) y � (2x)3 � 1
29. Let f(x) � x2 � 3x � 1. Compute the following.

(a) f (1) (e) f (z) (i)
(b) f (0) (f) f (x � 1) (j)
(c) f (�1) (g) f (a � 1) (k)
(d) f (3�2) (h) f (�x) (l)

30. Let H(x) � 1 � x � x2 � x3.
(a) Which number is larger, H(0) or H(1)?
(b) Find H . Does H � H � H(1)?

31. Let f(x) � 3x2. Find the following.
(a) f (2x) (c) f (x2) (e) f (x�2)
(b) 2f (x) (d) [ f (x)]2 (f) f (x)�2
For checking: No two answers are the same.

32. Let f(x) � 4 � 3x. Find the following.
(a) f (2) (f) 2f (x) (k) 1�f (x)
(b) f (�3) (g) f (x2) (l) f (�x)
(c) f (2) � f (�3) (h) f (1�x) (m)�f (x)
(d) f (2 � 3) (i) f [ f (x)] (n) �f (�x)
(e) f (2x) (j) x2f (x)

33. Let H(x) � 1 � 2x2. Find the following.
(a) H( ) (c) H(x � 1)
(b) H(5�6) (d) H(x � h)

34. (a) If f(x) � 2x � 1, does f (3 � 1) � f (3) � f (1)?
(b) If f(x) � 2x, does f(3 � 1) � f (3) � f (1)?
(c) If f(x) � does f (3 � 1) � f (3) � f (1)?1x,

12

1  12 21  12 21  12 2

01 � f (2) 0
f 11 � 12 2
f 113 2
0 f (1) 0

2x3 � 7

3x3 � 24

x3 � 3

x3 � 5

2x � 7

3x � 24

x � 3

x � 5

1 � x
x

4x � 20

3x � 18
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61. Consider the following two rules, F and G, where F is the
rule that assigns to each person his or her birth-mother and
G is the rule that assigns to each person his or her aunt.
Explain why F is a function but G is not.

In Exercises 62–64, use this definition: A prime number is a
positive whole number with no factors other than itself and 1.
For example, 2, 13, and 37 are primes, but 24 and 39 are not.
By convention 1 is not considered prime, so the list of the first
few primes is as follows:

62. Let G be the rule that assigns to each positive integer the
nearest prime. For example, G(8) � 7, since 7 is the prime
nearest 8. Explain why G is not a function. How could
you alter the definition of G to make it a function?
Note: There is more than one way to do this.

63. Let f be the function that assigns to each natural number x
the number of primes that are less than or equal to x. For
example, f(12) � 5 because, as you can easily check, five
primes are less than or equal to 12. Similarly, f (3) � 2,
because two primes are less than or equal to 3. Find f (8),
f (10), and f (50).

64. (a) If P(x) � x2 � x � 17, find P(1), P(2), P(3), and P(4).
Can you find a natural number x for which P(x) is not
prime?

(b) If Q(x) � x2 � x � 41, find Q(1), Q(2), Q(3), and Q(4).
Can you find a natural number x for which Q(x) is not
prime?

65. p � 3.141592653589793 . . . and so on!
For each natural number n, let G(n) be the digit in the nth
decimal place of p. For instance, according to the expres-
sion for p given above, we have G(1) � 1, G(2) � 4, and
G(5) � 9.
(a) Use the expression forp given above to evaluate G(10)

and G(14).
(b) Use the Internet to help you evaluate G(100), G(750),

and G(1000). Suggestions: Using any of the common
search engines on the World Wide Web, under the cate-
gories of mathematics or science, search for “pi.” Here,
for example, is a site that was available as recently as
June 2010 that contains the information you need. The
Pi-Search Page at http://www.angio.net/pi/piquery.

C
66. If f(x) � mx � b, show that 

67. Let f(x) � ax2 � bx � c, where a 	 0. Show that 

�

68. Find the range of the function defined by y �
x

x2 � 1
.

f a x1 � x2

2
b .

f (x1) � f (x2)

2

f (x1) � f (x2)

2
� f a x1 � x2

2
b .

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

B
49. Let f(x) � (x � a)�(x � a).

(a) Find f (a), f(2a), and f (3a). Is it true that 
f (3a) � f (a) � f (2a)?

(b) Show that f (5a) � 2f (2a).

50. Let k(x) � 5x3 � Show that k(x) � k(1�x).

51. Let f(x) � 2x � 3. Find values for a and b such that 
the equation f (ax � b) � x is true for all values of x. 
Hint: Use the fact that if two polynomials (in the
variable x) are equal for all values of x, then the
corresponding coefficients are equal.

52. Let f(t) � (t � x)�(t � y). Show that

53. Let f(z) � Find 

54. Let F(x) � Show that F � x, where

a2 � bc � 0.
55. If f(x) � �2x2 � 6x � k and f (0) � �1, find k.
56. If g(x) � x2 � 3xk � 4 and g(1) � �2, find k.
57. Let h(x) � x2 � 4x � c. Find a nonzero value for c such

that h(c) � c.
58. Let the function L be defined by the following rule: L(x) is

the exponent to which 2 must be raised to yield x. (For the
moment, we won’t concern ourselves with the domain and
range.) Then L(8) � 3, for example, since the exponent to
which 2 must be raised to yield 8 is 3 (that is, 8 � 23). Find
the following outputs.
(a) L(1) (e) L(1�2)
(b) L(2) (f) L(1�4)
(c) L(4) (g) L(1�64)
(d) L(64) (h) L
The function L is called the logarithmic function with base 2.
The usual notation for L(x) in this example is log2 x.
Logarithmic functions will be studied in Chapter 5.

59. Let q(x) � ax2 � bx � c. Evaluate

60. By definition, a fixed point for the function f is a number x0

such that f(x0) � x0. For instance, to find any fixed points for
the function f(x) � 3x � 2, we write 3x0 � 2 � x0. On solving
this last equation, we find that x0 � 1. Thus, 1 is a fixed point
for f. Calculate the fixed points (if any) for each function.
(a) f (x) � 6x � 10 (c) S(t) � t2

(b) g(x) � x2 � 2x � 4 (d) R(z) � (z � 1)�(z � 1)

q a�b � 2b2 � 4ac

2a
b

112 2

a ax � b
cx � a

bax � b
cx � a

.

f a 3z � 4

5z � 3
b .

3z � 4

5z � 3
.

f (x � y) � f (x � y) �
�2y2

x2 � 2xy

5

x3 � x �
1
x
.
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The Mini Project, A Prime Power Function, at http://www.cengage.com/math/cohen/precalc7e 
applies material from Section 3.1.

http://www.angio.net/pi/piquery
http://www.cengage.com/math/cohen/precalc7e


THE GRAPH OF A FUNCTION
In my own case, I got along fine without knowing the name of the distributive law until
my sophomore year in college; meanwhile I had drawn lots of graphs. —Professor

Donald E. Knuth (one of the world’s preeminent computer scientists) in Mathematical People

(Boston: Birkhäuser, 1985)

When the domain and range of a function are sets of real numbers, we can graph the
function in the same way that we graphed equations in Chapters 1 and 2. In graphing
functions, the usual practice is to reserve the horizontal axis for the independent vari-
able (the inputs) and the vertical axis for the dependent variable (the outputs). In terms
of the familiar x-y coordinate system, for each x-coordinate or input in the domain of
the function, the function or rule tells you the corresponding y-coordinate or output in
the range of the function. These ideas are summarized in the following definition.
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Definition Graph of a Function

The graph of a function f in the x-y plane consists of those points (x, y) such that x
is in the domain of f and y � f (x). See Figure 1.

y

x

Graph of f
{a, f(a)}

f(a)

a

EXAMPLE 1 Using the Definition of the Graph of a Function

In Figures 2(a) and 2(b), specify the y-coordinates of the points P and Q, respec-
tively. In each case, give an exact expression and also a calculator approximation
rounded to two decimal places. (We’ll look at the graphs of these two functions in
more detail later in this section.)

Figure 2
What are the y-coordinates of the
points P and Q? (a) ƒ=œx„ (b) ©=˛

P

2

ƒ=œ„x

x

y

©=˛

x

y

Q

_ œ2„

3.2

Figure 1



In Figure 2(a), which shows a graph of the function f defined by f (x) � the
x-coordinate of P is 2. The y-coordinate is therefore f(2) � Using a calculator,
we find � 1.41. In Figure 2(b), which shows a graph of the function g defined by
g(x) � x3, the x-coordinate of Q is � The y-coordinate is therefore

using a calculator

All of the graphs that we looked at in Section 3.1 are graphs of functions. So too
are most of the graphs in Chapter 1. However, it’s important to understand that not
every graph represents a function. Consider, for example, the graph in Figure 3 (the
red curve). Figure 3 shows a vertical line intersecting the graph in two distinct points.
The specific coordinates of the two points are unimportant. What the vertical line
helps us to see is that two different y-values (outputs) have been assigned to the
same x-value (an input), and therefore the graph does not represent a function of x.
These remarks are generalized in the box that follows.

A graph in the x-y plane represents a function of x provided that any vertical line
intersects the graph in at most one point.

Vertical Line Test

 � �2.82

 � 2 1�12 2 � �212

 g 1�12 2 � 1�12 2 3 � 1�12 2 2 1�12 2 1
12.

12
12.

1x,
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EXAMPLE 2 Applying the Vertical Line Test

The vertical line test implies that the graph in Figure 4(a) represents a function and
that the graph in Figure 4(b) does not.

x

y

(a)

x

y

(b)

Two y-values 
are assigned to 
one x-value. 
Thus this is not 
the graph of a 
function of x.

y

x

Figure 3

Figure 4

In Examples 2 through 4 in the previous section we used algebra to determine the
domain and range of functions. If the graph of a function is given, however, we can
read off that information directly. The next two examples show instances of this.

EXAMPLE

SOLUTION

3 Determining the Domain and Range of a Function from Its Graph

Specify the domain and the range of the function g graphed in Figure 5(a).

The domain of g is just that portion of the x-axis (the inputs) utilized in graphing g. As
Figure 5(b) indicates, this amounts to all real numbers x between 1 and 5, inclusive:

SOLUTION
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Figure 5

EXAMPLE

SOLUTION

4 Determining Domain, Range, and Function Values from a Graph

The graph of a function h is shown in Figure 6. The open circle in the figure is used
to indicate that the point (3, 3) does not belong to the graph of h.

(a) Specify the domain and the range of the function h.
(b) Determine each value: (i) h(�2); (ii) h(3); (iii) h(�4) .

(a) The domain of h is the interval [�4, 5]. The range is the set [�2, 3) � [4, 5].
(b) (i) The function notation h(�2) stands for the y-coordinate of that point on the

graph of h whose x-coordinate is �2. Since the point (�2, �1) is on the
graph of h, we conclude that h(�2) � �1.

(ii) We have h(3) � 4 because the point (3, 4) lies on the graph of h. Note that
h would not be considered a function if the point (3, 3) were also part of the
graph. (Why?)

(iii) Since the point (�4, �2) lies on the graph of h, we write h(�4) � �2. Thus
h(�4) � �2 � 2.0000

−2

2

−1

3

1

1 2 3 4 5

_2

_3_4
x

Graph of h

y

4
5

00

Figure 6
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(a)

2 3 4 5

1

3

4

y=©

x
1

y

2

(b)

5

4

y=©

Range
of g

Domain of g

1 � x � 5. In interval notation, this set of numbers is denoted by [1, 5]. To find the
range of g, we need to check which part of the y-axis is utilized in graphing g. As
Figure 5(b) indicates, this is the set of all real numbers y between 2 and 4, inclusive:
2 � y � 4. Interval notation for this set of numbers is [2, 4].



Given a function represented by an equation y � f (x), how do we obtain the
graph? From Chapter 1 (or from previous courses) we have these three options:

1. Set up a table, plot points, and then draw the line or curve that the points seem to
describe.

2. If the equation has the form y � mx � b, the graph is a line (as explained in
Section 1.6), and we can draw the graph using slope-intercept information.

3. Use a graphing utility.

As a practical matter, option 1 above has a drawback. How many points must we plot
before we’re sure about the essential features of the graph? In later sections of this text
you’ll see that there are a number of techniques and concepts that make it unnecessary
to plot a large number of points. For now, however, we point out that some functions
arise frequently enough to make it worth memorizing the basic shapes and features of
their graphs. True, you can always reach for a graphing calculator, but sometimes it
helps to be able to think on your feet, so to speak. Also, if you’ve memorized the graph
of a function, then you automatically know the domain and the range. Figure 7 displays
the graphs of six basic functions. Exercises 21 and 22 at the end of this section ask you
to set up tables and verify for yourself that the graphs in Figure 7 are indeed correct.
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(1, 0)(_1, 0)

(0, 1)
y=œ„1-≈

x

(f) The semicircle function
y=œ„1-≈

[_1, 1]
Range:    [0, 1]

y

(1, 1)

y=œ„x

y

x

(e) The square root function
y=œ„x
Domain: [0, `)

Range:   [0, `)

(d) The reciprocal function
y=1/x
Domain:  (_`, 0) � (0, `)

Range:    (_`, 0) � (0, `)

(_1, _1)

(1, 1)

y

y = 1/x

x

(_1, 1) (1, 1)

y=| x |

(a) The absolute value function
y=| x |
Domain:  (    _`, `)

Range: [0, `)

x

y

(_1, _1)

(1, 1)

y=˛

x

y

(c) The cubing function
y=˛
Domain:   (_`, `)

Range:    (_`, `)

(b) The squaring function
y=≈
Domain:   (_`, `)

Range: [0, `)

(_1, 1) (1, 1)

y=≈

y

x

Domain:

Figure 7
The graphs of six basic functions.
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EXAMPLE

SOLUTION

5 Graphing a Piecewise-Defined Function

A function g is defined by g(x) � .

(a) Find g(3�2), g(2), and g(3).
(b) Sketch the graph of the function g.

(a) To find g(3�2), which of the two equation do we use: g(x) � x2 or g(x) � 1�x?
According to the given inequalities, we should use g(x) � x2 whenever the x-values
are less than 2. So for x � 3�2 (which is surely less than 2), we have
g(3�2) � (3�2)2 � 9�4. On the other hand, the inequalities tell us to use the
equation g(x) � 1�x whenever the x-values are greater than or equal to 2. Thus
we have g(2) � 1�2 and g(3) � 1�3.

(b) For the graph, we look back at Figures 7(b) and (d) and choose the appropriate
portion of each. The result is displayed in Figure 8. The open circle in the figure
is used to indicate that the point (2, 4) does not belong to the graph. The filled-in
circle, on the other hand, is used to indicate that the point (2, 1�2) does belong to
the graph.

2
x

y

4

1
2

e x2

1�x
 

if x 	 2

if x � 2

Figure 8

A graph of g(x) � c x2, x 	 2
1
x

, x � 2

EXAMPLE

SOLUTION

6 Graphing Piecewise-Defined Functions

Sketch a graph of each function:

(a)

(b)

(a) We want to “paste together” portions of the graphs of y � x and y � The
appropriate portions of each graph are indicated in red in Figures 9(a) and 9(b).
Using Figures 9(a) and 9(b) as a guide, we sketch the required graph in Figure 9(c).

(b) Comparing the given equations and inequalities with those in part (a), we see
that there is only one difference: in part (b), the number 1 is excluded from the

1x.00

y � e 0 x 0
1x

if �1 � x 	 1

if 1 	 x � 4

y � e 0 x 0
1x

if �1 � x � 1

if 1 	 x � 4

From now on (with the exception of Exercises 21 and 22), if you need to sketch by
hand a graph of one of these basic six functions, you should do so from memory.

All the graphs in Figure 7 represent functions defined by rather simple equations.
In some instances, however, functions may be defined by different equations on dif-
ferent parts of the domain. This is illustrated in the next two examples, in which we
graph piecewise-defined functions.



domain of the variable x. To graph the equations in part (b), we need only take
the graph obtained in Figure 9(c) and delete the point that corresponds to x � 1.
That is, we delete the point (1, 1); see Figure 10.

It is useful to compare the graphs in Figures 8, 9(c), and 10. Each graph was ob-
tained by combining portions of the basic graphs in Figure 7. In Figures 8 and 10 the
graphs have a break or gap in them. We say that the graph (or more precisely, the func-
tion) in Figure 8 is discontinuous when x � 2. (The two pieces do not meet at x � 2.)
The function in Figure 10 is discontinuous when x � 1. (There is a gap or missing
point when x � 1.) In Figure 9(c), however, the two portions of the graph form a graph
with no break or gap. We say that the function in Figure 9(c) is continuous when
x � 1. A rigorous definition of continuity is properly a subject for calculus. However,
even at the intuitive level at which we’ve presented the idea here, you’ll find that the
concept is useful in helping you to organize your thoughts about graphs.

The graph of a piecewise-defined function can also be obtained using a graphing
utility. For details, consult the owner’s manual that accompanies your calculator or
software. We will, however, point out one problem to watch for. In Figure 11(a), we’ve
used a graphing utility to graph the function g from Example 5. Note the extraneous
vertical line segment that was generated, connecting what should be two disjoint
curves. Not all graphing utilities make this error; but if yours does, it can be corrected
by switching the curve-drawing mode from connected to dotted. See Figure 11(b).

We began this section with a definition of what is meant by the graph of a func-
tion. The next example uses one of the six basic functions along with the line y � x
to help you develop some additional insight into that definition.
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1_1 4

y

x

(b) Switching to dot mode eliminates
the extraneous segment.

_3 0 2 5
0

1

2

3

4

5

(a) Graphing utility produces an
extraneous vertical segment in
the graph of g.

_3 0 2 5
0

1

2

3

4

5

Figure 10

y � e 0 x 0 , if �1 � x 	 1

1x, if 1 	 x � 4

Figure 11

On a TI-83 graphing calculator, for
example, this function g can be
entered with the keystrokes
(x 	 2)(x2) � (x � 2)(x�1).

g(x) � e x2 if x 	 2

1�x if x � 2

Graphical Perspective

(a) y=| x |,  _1≤x≤1

y

x
1_1

(b) y=œ„x,  1≤x≤4

y

x
1 4

x

y

| x |  if  _1≤x≤1
œ„x   if   1≤x≤4

(c) y=

_1 4

Figure 9
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EXAMPLE

SOLUTION

7 Applying the Definition of the Graph of a Function

Figure 12 shows portions of the graphs of the functions f (x) � and y � x. What
are the coordinates of the points P, Q, and R in Figure 12? (Each dashed line is par-
allel to one of the coordinate axes.) For those coordinates involving radicals, also
supply a calculator approximation rounded to two decimal places.

In Figure 12 the point P lies on the graph of f (x) � Since the x-coordinate of
P is 6, the y-coordinate is f (6), which, according to the rule for f, is Thus the
coordinates of P are . Next, we want the coordinates of Q. Figure 12 shows
that the points P and Q have the same y-coordinate, so the y-coordinate of Q must
also be What about the x-coordinate of Q? Since Q lies on the graph of y � x,
the x-coordinate of Q must be the same as its y-coordinate, namely, Thus, the
coordinates of Q are .

Finally, let us determine the coordinates of the point R. According to Figure 12,
the x-coordinate of R is the same as that of Q, which we know to be The 
y-coordinate of R is then found by taking the square root of this x-coordinate, to
obtain (We’ve used the fact that R lies on the graph of f (x) � )

Summarizing now, the required coordinates are as follows. (You should check for
yourself that the calculator values given are correct.)

P: � (6, 2.45)

Q: � (2.45, 2.45)

R: � (2.45, 1.57)116, 216 2
116, 16 2
16, 16 2

1x.216.

16.

116, 16 2
16.

16.

16, 16 2
16.

1x.

x
6

y
y=x

ƒ=œ„xPQ

R

1x

Figure 12
What are the coordinates of P, Q,
and R?

A
In Exercises 1–4, specify the y-coordinate of the point P on the
graph of the given function. In each case, give an exact expres-
sion and a calculator approximation rounded to three decimal
places.

1.

x

y

3

P ƒ=œ„x

2.
©=˛

x

y

P

π
2_ _

EXERCISE SET 3.2



6.

In Exercises 7–14, the graph of a function is given. In each
case, specify the domain and the range of the function. (The
axes are marked off in one-unit intervals.)

7.

8. y

x

y

x

(c)

x

y

(d)

y

x

(a)

x

y

(b)

x

y3.

4.

In Exercises 5 and 6, use the vertical line test to determine
whether each graph represents a function of x.

5.

(c) (d)

x

y y

x

(a)

x

y

(b)

x

y

x

y

C(x)=œ„1-x@P

_ 1
2

x

y

œ„5

P

R(x)= (x>0)1
x
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13.

14.

In Exercises 15 and 16, refer to the graph of the function F in
the figure. (Assume that the axes are marked off in one-unit
intervals.)

15. (a) Find F(�5)
(b) Find F(2).
(c) Is F(1) positive?
(d) For which value of x is F(x) � �3?
(e) Find F(2) � F(�2).

16. (a) Find F(4).
(b) Find F(�1).
(c) Is F(�4) positive?
(d) For which value of x is F(x) � 5?
(e) Find F(5) � F(�3).

x

y

Graph of F

x

y

x

y9.

10.

11.

12. y

x

y

x

x

y

x

y
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(d) For which value(s) of x does g(x) � f (1)?
(e) Is the number 4 in the range of f or in the range of g?

20. (a) For the interval [0, 3], is the quantity g(x) � f (x)
positive or negative?

(b) For the interval (�3, �2), is the quantity g(x) � f (x)
positive or negative?

In Exercises 21 and 22, set up a table and graph each function.
[In Exercises 22(b) and 22(c), use a calculator to compute the
square roots.]

21. (a) y � 22. (a) y � 1�x
(b) y � x2 (b) y �

(c) y � x3 (c) y �

In Exercises 23–30, sketch the graphs, as in Examples 5 and 6.

23.

24.

25.

26.

27. (a)

(b)

28. (a)

(b) y � e 0 x 0
x3  

if x � 0

if x 
 0

y � e x3

0 x 0  
if x � 0

if x 
 0

y � e1x

1�x
 

if 0 � x 	 1

if 1 	 x 	 2

y � e1x

1�x
 

if 0 � x � 1

if 1 	 x 	 2

y � e 0 x 0
x2  

if x � 0

if x 
 0

C(x) � e x3

1x
 

if x 	 1

if x 
 1

B(x) � e21 � x2

1�x
 

if �1 � x 	 1

if x � 1

A(x) � e x3

x2 
if �2 � x � �1

if x 
 �1

21 � x2

1x
0 x 0

x

y

y=g(x)

y=ƒ

17. The following figure displays the graph of a function f.

(a) Is f(0) positive or negative?
(b) Find f (�2), f(1), f(2), and f (3).
(c) Which is larger, f(2) or f(4)?
(d) Find f (4) � f (1).
(e) Find f (4) � f (1) .
(f) Write the domain and range of f using the interval

notation [a, b].
18. The following figure shows the graph of a function h.

(a) Find h(a), h(b), h(c), and h(d).
(b) Is h(0) positive or negative?
(c) For which values of x does h(x) � 0?
(d) Which is larger, h(b) or h(0)?
(e) As x increases from c to d, do the corresponding values

of h(x) increase or decrease?
(f) As x increases from a to b, do the corresponding values

of h(x) increase or decrease?

In Exercises 19 and 20, refer to the graphs of the functions f 
and g in the figure. Assume that the domain of each function is
[�3, 3] and that the axes are marked off in one-unit intervals.

19. (a) Which is larger, f(�2) or g(�2)?
(b) Compute f(0) � g(0).
(c) Which among the following three quantities is the

smallest?

f (1) � g(1)  f (2) � g(2)  f (3) � g(3)

x

y

c dba

2
3

Graph of h

00

1 2_1_2

2

1
Graph of ƒ

y

x
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35.

36.

B
37. (a) Graph each of the following functions on the

same screen, using the viewing rectangle 
[0, 1, 0.2] � [0, 1, 0.2].

(b) Describe, in complete sentences, the pattern you see
in your results in part (a). On the basis of your results
in part (a), draw (by hand) a sketch of what you think
the graph of y � x100 must look like in this interval.
Then use a graphing utility to see how accurate your
sketch was.

38. (Although this is not a graphing utility exercise, the previ-
ous exercise, which does use a graphing utility, provides
some useful background here.)
(a) Suppose that the thickness of the line drawn by your

pencil or pen is 0.05 cm, and suppose that the common
unit of length marked off along both axes is 1 cm.
Under these drawing conditions, where is the graph of
y � x2 indistinguishable from the x-axis? That is, for
which x-values will the corresponding y-values be less
than 0.05?

(b) Follow part (a), using y � x4 instead of y � x2.

y � x  y � x2  y � x3  y � x4  y � x5

x

y

P

R

Q

œ„2
1+x@G(x)= x

2
y=

_2

ƒ=x#-3x

y=x

x

y

œ„2

R

Q P

29. (a)

(b)

30.

In Exercises 31 and 32, use a graphing utility to obtain the
graphs of the piecewise-defined functions. If there are cases in
which the graphing utility generates extraneous segments, use
the dot mode to correct the situation.

31. (a)

(b)

32. (a)

(b)

In Exercises 33–36, determine the coordinates of the points P,
Q, and R in each figure; give an exact expression and also a
calculator approximation rounded to three decimal places.
Assume that each dashed line is parallel to one of the coordi-
nate axes. (In Exercise 36, note that the line is y � x�2 rather
than y � x.)

33.

34.

R

Q P

y

x

y=x

g(x)=_œ„1-x@

2
5

x

y

4

PQ

R

y=x

ƒ=Œ„x  (x≥0)

k(x ) � e21 � x6

21 � (x � 2)6 � 3
 

if �1 � x 	 1

if 1 � x � 3

h(x) � e21 � x6

21 � (x � 2)6 
if �1 � x 	 1

if 1 � x � 3

g(x) � e x3 � x

x3 � x � 1
 

if �1 � x 	 0

if 0 � x � 1

f (x) � e x3 � x

x3 � x
 

if �1 � x 	 0

if 0 � x � 1

y � •
x3

1x

1�x

 
if �1 � x 	 0

if 0 � x 	 1

if 1 � x � 3

y � e21 � x2

x2  
if �1 � x 	 0

if 0 	 x � 2

y � e21 � x2

x2  
if �1 � x � 0

if 0 	 x � 2
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PROJECT Implicit Functions: Batteries Required?

From Chapter 1 we know that the graph of the equation x2 � y2 � 1 is a circle,
as shown in Figure A. From our work in this section, we know the graph does
not represent a function. However, certain pieces of the graph do represent

functions. In particular, solving the equation for y yields y � �

Figures B and C show the graphs of y � and y � �
respectively. Note that the graphs in Figures B and C indeed represent func-
tions. We say that the initial equation x2 � y2 � 1 defines these functions

implicitly, whereas each of the equations y � and y � �
defines a function explicitly.

Figure A Figure B Figure C
x2 � y2 � 1

Here’s another example of this terminology. One of the basic functions in
Section 3.2, Figure 7 is defined by the equation y � 1�x. In this form, the func-
tion is defined explicitly. If the equation is given in the equivalent form xy � 1,
then the function is defined implicitly.

The reason we ask “Batteries Required?” in the title of this project is that
a graphing calculator or a computer is often the option of choice in graphing
implicitly defined functions. In some cases, it’s the only option (assuming the
tools of calculus are not at our disposal). As examples, consider the two
equations graphed in Figures D and E. We’ll talk about how these graphs
were obtained.

Figure D Figure E
x2 � xy � y2 � 1 x2 � xy3 � y2 � 1
[�2, 2, 2] by [�2, 2, 2] [�3, 3, 3] by [�3, 3, 3]

_3 0 3

3

0

_3

2

0

_2
_2 0 2

y � �21 � x2y � 21 � x2

_1 1
x

y

_1 1
x

y

x

y

21 � x221 � x2

21 � x2,21 � x2

21 � x2.
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For Figure D we can rewrite the equation in the form y2 � xy � (x2 � 1) � 0.
In this form, the quadratic formula can be used to solve for y in terms of x. As you
should check for yourself (using a � 1, b � x, and c � x2 � 1), the result is

y � �x � . The graph of x2 � xy � y2 � 1 is now obtained by

using a graphing utility to graph the two explicit functions,

In Figure E the equation cannot be solved for y in terms of x by elementary
means. (Try it!) Furthermore, as of this writing, most graphing calculators
require that functions be entered in explicit rather than implicit form. The
graph in Figure E was obtained by using a computer with commercial software
that doesn’t necessarily require the function to be in explicit form. (Examples
of such software are Maple and Mathematica.)

Exercises

For Exercises 1–10, each equation defines one or more functions implicitly.
Solve the equation for y to determine explicit equations for the functions. Then
use a graphing calculator or a computer to obtain the graph of the original
equation.

For Exercises 11–14, if you have access to a computer with appropriate
software, graph the given equation. Otherwise, you can look up the general
form of the graph at the University of St. Andrews MacTutor website:

http://www-history.mcs.st-and.ac.uk/

(Actually, in Exercises 11–13, the equations can be solved for y explicitly, using
elementary means, and then a graphing calculator could be used. But we are
not asking for that here.)

1. xy � 0.1x3 � 2x2 � 3x � 4 (trident of Newton)

2. x4 � 10(x2 � y2) � 0 (figure eight curve)

3. x2y � 4y � 36x � 0 (serpentine)

4. 9x2 � 16y2 � 144 (ellipse)

5. y2(x2 � y2) � 9x2 (kappa curve)

6. 9y2 � x3(6 � x) (pear-shaped quartic)

7. 3y2 � x(x � 1)2 (Tschirnhaus’ cubic)

8. (x � 3)2(x2 � y2) � 8x2 (conchoid)

9. 4y2 � x(x2 � 2x � 10) (Newton’s diverging parabolas)

10. y2(7 � x) � x3 (cissoid of Diocles)

11. y2(1 � x2) � (x2 � 2y � 1)2 (bicorn)

12. (x2 � y2 � 2x)2 � x2 � y2 (limaçon of Pascal)

13. (x2 � y2)2 � 8x(x2 � 3y2) � 18(x2 � y2) � 27 (deltoid)

14. x3 � y3 � 3xy ( folium of Descartes)

y1 �
�x � 24 � 3x2

2
  and  y1 �

�x � 24 � 3x2

2

24 � 3x2 21
2 1

http://www-history.mcs.st-and.ac.uk/
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Figure 1
The graph of the function G is a
fever graph: G(t) is a patient’s
temperature t hours after midnight,
where 0 � t � 12.

Figure 2
There is no maximum value for the
function f defined by f(x) � x2,
assuming that the domain is 
(�q, q). The minimum value of
the function is 0, and it occurs at
x � 0.

x

y

f(x)=≈

t  (hours)

S

G(t) (°F )

0 2 4 6 8 10

98

100

102

101

103

99

P

Q

R

12

In the figure, each of the points, P, Q, and R is called a turning point. At a turning
point, a graph changes from rising to falling, or vice versa. In Figure 1, the point R,
with coordinates (5, 103), is the highest point on the graph of the function G. We say
that the maximum value of the function G is 103, and this maximum occurs at t � 5.
In terms of the temperature interpretation (described in the caption for Figure 1), the
patient’s temperature reaches a maximum of 103°F, and this maximum occurs
5 hours after midnight. More generally, we say that a number f (x0) is the maximum
value of a function f if the inequality f(x0) � f (x) holds for every x in the domain of
f. Minimum values are defined similarly: f(x0) is the minimum value for a function
f if the inequality f (x0) � f (x) holds for every x in the domain of f. Assuming that the
domain of the function in Figure 1 is [0, 12], the minimum value of the function G is
99 and it occurs at t � 12. (How would you express this in terms of the temperature
interpretation?) Caution: Not every function has a maximum or minimum value.
See Figure 2 for an example.

Returning to Figure 1, there are two time intervals when the patient’s temperature
is rising: from midnight to 1 A.M. and from 3 A.M. to 5 A.M. We say that the function
G is increasing on each of the intervals [0, 1] and [3, 5]. Similarly (again looking at
the graph), the patient’s temperature is falling from 1 A.M. to 3 A.M. and again from
5 A.M. to 12 noon. We say that the function G is decreasing on each of the intervals
[1, 3] and [5, 12]. For another example of this terminology, look at the graph of
f (x) � x2 in Figure 2. The function is decreasing on the interval (�q, 0] and in-
creasing on the interval [0, q). For analytical work involving functions, the terms
increasing and decreasing are defined in terms of inequalities. A function f is
increasing on an interval provided the following condition holds: For all pairs of
numbers a and b in the interval, if a 	 b, then f (a) 	 f (b). Similarly, a function f is
decreasing on an interval if the following condition holds: For all pairs of numbers
a and b in the interval, if a 	 b, then f (a) 
 f (b).

For an example of the use of the inequality definitions of increasing and
decreasing, again consider the squaring function f (x) � x2. To show that f is

SHAPES OF GRAPHS. AVERAGE RATE OF CHANGE
In many applications, one of the most basic questions regarding a function is this:
What are the highest and lowest points (if any) on the graph? We’ll use the graph of
the function G in Figure 1 to introduce some terminology that is useful here.

3.3
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EXAMPLE 1 Approximating the Coordinates of a Turning Point

In Figure 3 a graphing utility was used to generate a graph of the function f defined
by f (x) � x4 � 6x. Assume that the chosen viewing rectangle shows all the essential
features of the graph. Use a graphing utility to estimate to the nearest hundredth the
coordinates of the turning point. What are the corresponding estimates for the mini-
mum value of the function and the intervals where the function is increasing or
decreasing?

_2 0 3
_10

0

10

Graphical Perspective

Figure 3
f (x) � x4 � 6x
[�2, 3, 1] by [�10, 10, 5]

According to Figure 3, the turning point is located in quadrant IV, quite close to the
point (1, �5). Our goal is to obtain views that allow us to estimate the coordinates of
the turning point to the nearest hundredth. We’ll do this by repeatedly zooming in
and, when appropriate, fine-tuning the viewing rectangle. At the outset, we remark
that some trial and error is usually required here and that many different approaches
are possible.

The view obtained in Figure 4(a) (after some experimenting) shows that the
y-coordinate of the turning point is �5.15, to the nearest hundredth. The 

SOLUTION

increasing on the interval [0, q), let a and b be real numbers such that 0 � a 	 b.
Then we need to show that f (a) 	 f (b). This is equivalent to showing
f (b) � f (a) 
 0. (Why?) Now

f (b) � f (a) � b2 � a2 � (b � a)(b � a)

and (b � a)(b � a) 
 0 since 0 � a 	 b implies b � a 
 0 and b � a 
 0. Hence
the squaring function f is increasing on the interval [0, q). Exercise 49 at the end
of this section asks you to construct a similar argument to show that f is decreasing
on the interval (�q, 0].

In general, for functions defined by equations, the techniques of calculus are
required to compute exact coordinates for turning points, maximum or minimum val-
ues, and intervals where the function is increasing or decreasing. However, these
quantities can be easily approximated by using a graphing utility to zoom in on the
turning points. We do this in Example 1. Technology note: On a graphing calcula-
tor, the TRACE key can be used in conjunction with a ZOOM key to facilitate this process.
Alternatively, graphing calculators have MIN and MAX operations that produce very
accurate approximations for the minimum or maximum value of a function within any
interval that the user requests. For details refer to the owner’s manual that came with
your calculator. Algebra note: In Sections 4.2 and 4.5 you’ll see that in certain cases
we can use the methods of algebra to compute exact maximum and minimum values.



x-coordinate appears to be something between 1.14 and 1.15, but evidently we need
a closer look to say whether it’s nearer to 1.14 or 1.15. With that in mind, we try ad-
justing the x-specifications of the viewing rectangle so that x runs from 1.140 to 1.150.

As indicated in Figure 4(b), however, adjusting only the x-specifications isn’t
very helpful; much more magnification in the y-direction is required. [Are you sur-
prised by the seemingly horizontal line obtained in Figure 4(b)? We’ll say more about
it after this example.] In Figure 4(c), after more zooming and then fine-tuning of the
viewing rectangle, we finally are able to see that the x-coordinate of the turning point
is closer to 1.14 than to 1.15 (because it is to the left of 1.145).

In summary now, to the nearest hundredth, the coordinates of the turning point
are (1.14, �5.15). Thus our estimates for the minimum value and intervals of increase
or decrease are as follows:

Afterword on zooming for turning points: In the process of trying to estimate the co-
ordinates of the turning point in Example 1, we produced the view in Figure 4(b),
which seems to show a horizontal line segment rather than a curve. This is actually a
common occurrence when zooming in on turning points. There are two factors at
work here, one having to do with the actual shape of the graph, the other with the lim-
itations of the display screen and technology. For many types of functions, including
those defined by polynomial expressions (as in Example 1), the graph does very
closely resemble a horizontal line in the immediate vicinity of a turning point. We say
“resemble” here because the “true” graph, as opposed to the approximation displayed
on your calculator or computer screen, is slightly curved. Remember that the calcula-
tor display or the computer screen has only a finite number of dots or pixels with
which to display a graph. Thus, in general, the display on the screen must necessarily
be an approximation, because the true graph contains infinitely many points (one
point for each x-value in the domain). In Figure 4(b), the calculator display shows a
horizontal segment because, evidently, the actual curve differs from the horizontal
segment by less than one pixel.

We can use the temperature graph in Figure 1 in Section 3 to introduce another
important concept relating to functions. According to Figure 1, the patient’s temper-
ature is increasing from midnight to 1 A.M. and again from 3 A.M. to 5 A.M. During
which of these two time intervals is the temperature increasing faster? That is, how

 f is increasing on: [1.14, q)
 f is decreasing on: (�q, 1.14]

 minimum value of f: �5.15
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(c) [1.142, 1.148, 0.003] by
[_5.15125, _5.15115, 0.00005]

1.142 1.145 1.148
_5.15125

_5.15120

_5.15115

(a) [1.10, 1.20, 0.01] by
[_5.16, _5.12, 0.01]

1.10 1.12 1.14 1.16 1.18 1.20
_5.16

_5.15

_5.14

_5.13

_5.12

1.140 1.142 1.144 1.146 1.148 1.150
_5.16

_5.15

_5.14

_5.13

_5.12

(b) [1.140, 1.150, 0.002] by
[_5.16, _5.12, 0.01]

Figure 4
Three views of f (x) � x4 � 6x.

Graphical Perspective
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Definition The Average Rate of Change of a Function

Refer to Figure 5. The average
rate of change of a function f
on the interval [a, b] is the slope
of the line joining the two
points (a, f (a)) and (b, f (b)). If
y � f (x), the average rate of
change is denoted by ¢y�¢x or
¢f�¢x and we have

¢y

¢x
�

f (b) � f (a)

b � a

{a, f(a)}

{b, f(b)}

b-a

f(b)-f(a)

a b

y=f(x)f(b)

f(a)

x

y

Figure 5

EXAMPLE

SOLUTION

2 Computing and Comparing Average Rates of Change

Compute and compare the average rates of change for the function f (x) � x2 on the
following intervals:

(a) [�2, 0]; (b) [0, 1]; (c) [1, 2].

(a) On [�2, 0]:

(b) On [0, 1]:�

(c) On [1, 2]:�

(Refer to Figure 6.) On the interval [�2, 0] the function is decreasing, and the aver-
age rate of change is negative. On both of the intervals [0, 1] and [1, 2] the function
is increasing, and the average rates of change are positive. The graph rises more
steeply on the interval [1, 2] than on [0, 1], and correspondingly, the average rate of
change is greater for the interval [1, 2] than for [0, 1].

Caution: Like other types of averages occurring in arithmetic and statistics, the aver-
age rate of change can mask or hide some details. For instance, the fact that the average
rate of change is positive on an interval does not guarantee that the function is increas-
ing throughout that interval. For example, look back at Figure 5; for the function
shown there, the average rate of change on [a, b] is positive (because the slope of the
solid blue line is positive). The function, however, is increasing only on a portion of
[a, b], not throughout the entire interval.

 
¢f

¢x
�

f (2) � f (1)

2 � 1
�

22 � 12

1
� 3

 
¢f

¢x
�

f (1) � f (0)

1 � 0
�

12 � 02

1
� 1

 
¢f

¢x
�

f (0) � f (�2)

0 � (�2)
�

02 � (�2)2

2
� �2

Figure 6
f (x) � x2

2
x

1_1_2

f(x)

1

2

3

4

can we measure the rate at which the temperature is rising during a given time inter-
val? Similarly, how can we measure and thereby compare the rates at which the tem-
perature is falling during the time intervals from 1 A.M. to 3 A.M. and from 5 A.M. to
12 noon? One way to measure this is to use the average rate of change, which we
define in the box that follows. (In Example 3 we’ll answer the questions raised in this
paragraph regarding the temperature graph.)
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EXAMPLE

SOLUTION

3 Computing and Interpreting Average Rates of Change

Compute and compare the average rates of change for the patient’s temperature func-
tion G in Figure 1 (page 154) on each of the following pairs of intervals. Keep track
of the units in the computations.

(a) t � 0 to t � 1 hr and t � 3 to t � 5 hr
(b) t � 1 to t � 3 hr and t � 5 to t � 12 hr

(a) On the interval t � 0 to t � 1 hr:

reading the coordinates 
from the graph in Figure 1

Similarly, on the interval t � 3 to t � 5 hr, we have

The calculations we’ve just made show that, on average, the temperature is in-
creasing slightly faster from 3 A.M. to 5 A.M. than it is from midnight to 1 A.M.
This is consistent with the graph in Figure 1: The curve looks slightly steeper
from 3 A.M. to 5 A.M. than from midnight to 1 A.M.

(b) Before computing, let us note that both answers will be negative here because
the graph shows the function is decreasing throughout each of the given
intervals.

On the interval t � 1 to t � 3 hr:

On the interval t � 5 to t � 12 hr:

These answers tell us that, on average, the patient’s temperature is dropping
faster between 1 A.M. and 3 A.M. than it is between 5 A.M. and noon. Again, this
is consistent with what we see in Figure 1: The portion of the curve between
points P and Q appears to be steeper, in general, than that between R and S.

 �
99° � 103°

7 hr
�

�4°

7 hr
� � 

4

7
 degree/hr � �0.6°/hr

 
¢G

¢t
�

G(12) � G(5)

12 � 5

 �
100° � 102°

2 hr
�

�2°

2 hr
� �1° /hr

 
¢G

¢t
�

G(3) � G(1)

3 � 1

 �
103° � 100°

2 hr
�

3°

2 hr
� 1.5°/hr

 
¢G

¢t
�

G(5) � G(3)

5 � 3

 �
1°

1 hr
� 1°/hr

 �
102° � 101°

1 hr

 
¢G

¢t
�

G(1) � G(0)

1 � 0



For an example using the average rate of change in a different context, consider
the function s represented in Figure 7, with defining equation s(t) � 16t2, and t � 0.
This function relates the distance s(t) and the time t for an object falling in a vacuum.
Here t is measured in seconds, s(t) is in feet, and t � 0 corresponds to the instant that
the object begins to fall. For instance, after 1 sec, the object falls a distance of
s(1) � 16(1)2 � 16 ft. After 2 sec, the total distance will be s(2) � 16(2)2 � 64 ft.
Let’s calculate the average rate of change of this function from, say, t � 1 to t � 3 sec.
As in the temperature example, we’ll keep track of the units. We have

Notice that the units here have the form distance per unit time. So in this case ¢s�¢t
gives us the average velocity of the object. More generally, whenever we have a func-
tion expressing distance s(t) in terms of time t, the average velocity over an interval
is defined to be the average rate of change ¢s�¢t over that interval. We’ll return to
this idea in Example 6 at the end of this section.

Let’s talk for a moment about notation. We defined the average rate of change of
a function f on the interval [a, b] to be the quantity

(1)

If, instead of [a, b], we have the interval [a, x], then, by definition, the average rate of
change is

(2)

Finally, if the interval is [x, x � h] as displayed in Figure 8, then the average rate of

change is which simplifies to

(3)

Each of the algebraic expressions given in (1), (2), or (3) is known as a difference
quotient. (But whatever the name, remember, it represents an average rate of
change.) Our last three examples for this section show how difference quotients can
be simplified once a specific function is given. (This skill is required in calculus
when studying rates of change.)

f (x � h) � f (x)

h

f (x � h) � f (x)

(x � h) � x
,

f (x) � f (a)
x � a

f (b) � f (a)

b � a

 �
16(3)2 ft � 16(1)2 ft

2 sec
�

128 ft

2 sec
� 64 ft /sec

 
¢s

¢t
�

s(3) � s(1)

3 � 1
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16

32

48

64

80

96

112

128

144

2

s(t) (feet)

t (sec)
1 3

s(t)=16t@

Figure 7

EXAMPLE 4 Simplifying Difference Quotients of the Form 

(a) If f (x) � x2, find 

(b) If g(x) � x2 � 3x, find 
g(x ) � g(a )

x � a
.

f (x ) � f (5)

x � 5
.

f(x ) � f(a )

x � a

x x+h

h

Figure 8
The closed interval [x, x � h].



Preliminary note: The solutions that follow make use of factoring techniques from
intermediate algebra. If you find that you need a review of this topic, either now or in
working the exercises, refer to the online Appendix B.4.

(a)

using difference of squares factoring

reducing

(b) Since g(x) � x2 � 3x and g(a) � a2 � 3a, we have

rearranging

factoring by grouping

reducing � x � a � 3

 �
(x � a)[(x � a) � 3]

x � a

 �
(x � a)(x � a) � 3(x � a)

x � a

 �
x2 � a2 � 3x � 3a

x � a

 
g(x) � g(a)

x � a
�

(x2 � 3x) � (a2 � 3a)
x � a

�
x2 � 3x � a2 � 3a

x � a

 � x � 5

 �
(x � 5)(x � 5)

x � 5

 
f (x) � f (5)

x � 5
�

x2 � 52

x � 5
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EXAMPLE

SOLUTION

5 Simplifying a Difference Quotient of the Form 

Let f(x) � 2�x. Find 

We have � This last expression needs to be simplified 

because the numerator itself contains fractions. One way to simplify here is to

multiply by which equals 1. This yields

 �
�2

x(x � h )

 �
2x � 2x � 2h

xh(x � h )
�

�2h

xh(x � h )

 �
2x � 2(x � h )

xh(x � h )

 
f(x � h ) � f(x )

h
�

x(x � h )

x(x � h )
#

2

x � h
�

2
x

h

x(x � h)

x(x � h)
,

2

x � h
�

2

x

h
.

f (x � h) � f (x)

h

f (x � h ) � f (x )

h
.

f (x � h ) � f (x )

h

SOLUTION



(a) On the interval [1, 1 � h] we have

(b) From part (a) we have ¢s�¢t � 32 � 16h. Using this result, we complete the
required table as follows.

 �
16h(2 � h )

h
� 16(2 � h ) � 32 � 16h

 �
16 � 32h � 16h2 � 16

h
�

32h � 16h2

h

 
¢s

¢t
�

16(1 � h )2 � 16(1)2

(1 � h ) � 1
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EXAMPLE 6 Computing Average Velocity

Refer to the distance function s in Figure 7, s � 16t2.

(a) Find a general expression for the average velocity ¢s�¢t over the interval 
[1, 1 � h].

(b) Use the result in part (a) to complete the following table.

h Average Velocity �s��t on the Interval [1, 1 � h]
(sec) (ft/sec)

1.0 32 � 16(1) � 48
0.5 32 � 16(0.5) � 40
0.1 32 � 16(0.1) � 33.6

h Average Velocity �s/�t on the Interval [1, 1 � h]
(sec) (ft/sec)

1.0
0.5
0.1

Note: Exercise 36 asks you to carry out these calculations several steps further, using
shorter and shorter time intervals. In calculus, this procedure leads to the concept of
instantaneous (as opposed to average) velocity.

A
1. Using the functions in Figure 7 in Section 3.2 for example,

explain what is meant by each of the following. Your
answers should be in complete sentences.
(a) turning point
(b) maximum value

(c) minimum value
(d) f is increasing on an interval.
(e) f is decreasing on an interval.

2. What is the definition of the average rate of change of a
function g on an interval [c, d]? What does this have to do
with slope?

SOLUTION

EXERCISE SET 3.3



6.

7. Assume that the accompanying viewing rectangle shows
the essential features of the graph of f(x) � x3 � 4x � 2.
Use a graphing utility to estimate to the nearest hundredth
the coordinates of the turning points. What are the corre-
sponding estimates for the intervals where the function is
increasing or decreasing?

8. Assume that the accompanying viewing rectangle shows
the essential features of the graph of f(x) � �x4 � 3x � 5.
Use a graphing utility to estimate to the nearest hundredth
the coordinates of the turning point. What is the corre-
sponding estimate for the maximum value of the function?
Estimate the intervals where the function is increasing or
decreasing.

_10

0

10

_3 0 3

ƒ=_x$+3x+5
[_3, 3, 3] by [_10, 10, 5]

_4 0 4
_12

0

12

ƒ=˛-4x-2
[_4, 4, 2] by [_12, 12, 6]

_2

_1

1

2

y

x
1 2 3 4

In Exercises 3–6, you are given functions with domain [0, 4].
Specify:

(a) the range of each function;
(b) the maximum value of the function;
(c) the minimum value of the function;
(d) interval(s) where the function is increasing; and
(e) interval(s) where the function is decreasing.

3.

4.

5.

_2

_1

1

_3

y

x
1 2 3 4

1 2 3 4
x

y

_2

_1

1

2

1 2 3 4
_1

1

x

y
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(b) Find the average of the four answers in part (a).
(c) Compute ¢f�¢t over the interval from t � 0 to t � 32.

Is the answer the same as that obtained in part (b)?

For Exercises 17 and 18, let y � P(t) denote the percentage
of U.S. households in the year t with at least one VCR (video
cassette recorder). The following figure shows a graph of this
function P over the period 1978 � t � 2006.

Source of data used to create graph: A. C. Nielsen and Nielsen Media
Research

17. (a) According to the graph, is ¢P�¢t greater over the
period 1978–1984 or over the period 1984–1990? After
answering, use rough numerical values obtained from
the graph to calculate estimates for these two rates of
change. Include units with answers.

(b) Using the following data, compute ¢P�¢t for the peri-
ods mentioned in part (a). Round the answers to one
decimal place. P(1978) � 0.3%; P(1984) � 10.6%;
P(1990) � 68.6%.

18. (a) In the given graph (or in a photocopy), use a ruler
to draw two line segments, one connecting the two
points (1978, P(1978)) and (1988, P(1988)), the
other connecting the two points (1984, P(1984))
and (1997, P(1997)). You’ll find that the two
line segments appear to be parallel (or nearly so).
Now complete the following sentence
(concerning ¢P�¢t on the two intervals
1978 � t � 1988 and 1984 � t � 1997). Because
parallel lines have equal slopes, we can estimate
that _____________________________________.

(b) Using the following data, compute ¢P�¢t for each of
the two periods mentioned in part (a). Round the an-
swers to one decimal place. Do your answers support
the estimate you made in part (a)?

(c) Can you explain the downturn after 2000?

P(1984) � 10.6%;   P(1997) � 84.2%

P(1978) � 0.3%;   P(1988) � 58.0%; 
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In Exercises 9–14, compute the average rate of change of the
function on the given interval.

9. f (x) � x2 � 2x on [3, 5] 10. f (x) � on [4, 9]
11. g(x) � 2x2 � 4x on [�1, 3] 12. g(x) � x3 � x on [1, 2]
13. h(t) � 2t � 6 on [5, 12]
14. h(t) � 16 � 7t on [ ]
15. The following graph shows the temperature G(t) of a solu-

tion during the first 8 min of a chemistry experiment.

Compute the average rate of change of temperature,
¢G�¢t, over the following intervals. (Be sure to specify the
units as part of each answer.)
(a) t � 0 min to t � 3 min
(b) t � 3 min to t � 6 min
(c) t � 6 min to t � 8 min

16. Iodine-131 is a radioactive substance. The accompanying
graph shows how an initial 1-g sample decays over a
32-day period; f (t) represents the number of grams
present after t days.

(a) Compute ¢f�¢t over each of the following intervals:
t � 0 days to t � 8 days; t � 8 days to t � 16 days;
t � 16 days to t � 24 days; t � 24 days to t � 32 days.
(Be sure to specify the units with each answer.)

t (days)
8

1/16
1/8

1/4

1/2

1

f(t) (g)

16 24 32

22

1

23
24
25
26
27
28

2 3 4 5 6 7 8
t (minutes)

G(t) (°C)

�12, 212

1x
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22. Let f (x) � 4x2.

(a) Find (b) Find 

For Exercises 23 and 24, let f (x) � x 2. Find and simplify the
indicated difference quotient.

23. (a) 24. (a)

(b) (b)

In Exercises 25–32:

(a) Find the difference quotient for each
function, as in Example 4.

(b) Find the difference quotient for each
function, as in Example 5.

25. f (x) � 8x � 3 26. f (x) � �2x � 5
27. f (x) � x2 � 2x � 4 28. f (x) � 2x2 � x � 1
29. f (x) � 1�x 30. f (x) � �3�x2

31. f (x) � 2x3 32. f (x) � 1 � x3

Hint: For Exercises 31 and 32, you’ll need to use difference-of-
cubes factoring from intermediate algebra. See the inside back
cover for the relevant formula. For a more detailed review of
the topic, refer to the online Appendix B.4.

For Exercises 33–36, use the distance function s(t) � 16t2

discussed on page 159 and in Example 6. Recall that this
function relates the distance s(t) and the time t for a freely
falling object (neglecting air resistance). The time t is measured
in seconds, with t � 0 corresponding to the instant that the
object begins to fall; the distance s(t) is in feet.

33. Find the average velocity ¢s�¢t over the time interval
1 � t � 2.

34. (a) Find the average velocity over each of the following
time intervals: [2, 3], [3, 4], and [2, 4].

(b) Let a, b, and c denote the three average velocities that
you computed in part (a), in the order given. Is it true
that the arithmetical average of a and b is c?

35. (a) Follow the method of Example 6(a) to find a general
expression for the average velocity ¢s�¢t over the
interval [2, 2 � h].

(b) Complete a table similar to the one shown in the
solution of Example 6(b); for the h-values in the
left-hand column use 0.1, 0.01, 0.001, 0.0001, and
0.00001.

(c) Looking at your results in part (b), answer the follow-
ing question. As h approaches zero, what value does
the average velocity in the right-hand column seem
to be approaching? This target value or limit is the
instantaneous (as opposed to average) velocity of the
object when t � 2 sec.

f (x � h ) � f (x )

h

f (x ) � f (a )

x � a

f (t � h ) � f (t )

h

f (x � h ) � f (x )

h

f (1 � h ) � f (1)

h

f (2 � h ) � f (2)

h

f (x ) � f (a )

x � a
.

f (x ) � f (�2)

x � 2
.

For Exercises 19 and 20, refer to the following figure, which
shows consumption of red meat in the United States and in
China over the period 1980–1996. Let y � f (t) denote the con-
sumption function for the United States, and let y � g(t) denote
the consumption function for China.

Consumption of red meat in United States and 
in China, 1980–1996

Source of data used to create graph: World-watch
Institute

19. (a) Using values that you estimate from the graph, calcu-
late ¢f�¢t, the average rate of change of red meat
consumption in the United States over the period
1980–1996. Express the answer as a fraction and as a
decimal rounded to the nearest tenth.

(b) Use the data in the following table to obtain a more
accurate value for ¢f�¢t over the period 1980–1996.
Round the answer to two decimal places.

M
ill

io
n 

to
ns

 (
y)

14

18

22

26

30

34

38

42

46

1980 1984 1988 1992 1996
Year (t)

10

China

U.S.
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Year (t) 1980 1996

Consumption (y) in U.S. 
(million tons) 18.68 20.32

20. (a) Using values that you estimate from the graph, calcu-
late ¢g�¢t, the average rate of change of red meat con-
sumption in China over the period 1980–1996.

(b) Use the data in the following table to obtain a more
accurate value for ¢g�¢t over the period 1980–1996.
Round the answer to two decimal places.

Year (t) 1980 1996

Consumption (y) in China 
(million tons) 11.90 43.83

21. Let f (x) � 2x2.

(a) Find (b) Find 
f (x ) � f (a )

x � a
.

f (x ) � f (3)

x � 3
.



B
41. Let f(x) � 1�x. Find a number b so that the average rate of

change of f on the interval [1, b] is �1�5.
42. Let f(x) � Find a number b so that the average rate of

change of f on the interval [1, b] is 1�7.
43. Let f(x) � ax2 � bx � c. Show that 

� 2ax � ah � b.

44. Find a number a between 0 and 1 so that the average rate of
change of f (x) � x2 on the interval [a, 1�a] is 10a.

In Exercises 45 and 46 (as opposed to Exercises 7 and 8),
the viewing rectangles do not show all of the essential
features of the graphs. In each case, use a graphing utility
and experiment with different viewing rectangles to deter-
mine approximate x- and y-coordinates for all turning
points. What are the corresponding intervals of increase
and decrease for the function?

45.

46.

47. Let h(x) � Two functions f and g are defined in terms
of h as follows:

(a) Using a graphing utility, graph the two functions f
and g in the same viewing screen. What do you
observe?

f (x ) �
h(x ) � h(2)

x � 2
  g(x ) �

1

h(x ) � h(2)

1x.

_4 0 4
_10

0

10

©=x$+12˛+≈
[_4, 4, 2] by [_10, 10, 5]

_10

0

10

_4 0 4

ƒ=4x$+˛
[_4, 4, 2] by [_10, 10, 5]

f (x � h ) � f (x )

h

1x.

36. (a) After rereading Example 6, extend the results in part (b)
of the example by completing the following table.
Don’t round your answers.
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h (sec) 0.01 0.001 0.0001 0.00001

Average Velocity
�s��t on Interval 
[1, 1 � h] (ft/sec)

Interval [0, 0.1] [0, 0.01] [0, 0.001] [0, 0.0001]
�f��t

(c) In part (b), as the right-hand endpoint gets closer
and closer to 0, what value does ¢f�¢t seem to be
approaching? This target value tells us the rate at
which the temperature is changing at the instant the
experiment begins.

39. Complete the following table.

Function |x| x2 x3

Domain
Range
Turning point
Maximum value
Minimum value
Interval(s) where increasing
Interval(s) where decreasing

40. Set up and complete a table like the one in Exercise 39 for
the three functions 1�x, and 21 � x2.1x,

(b) As h approaches zero, what value does the average
velocity ¢s�¢t seem to be approaching? This target
value or limit is called the instantaneous velocity of
the object when t � 1 sec.

37. Suppose that the demand function for a certain item is 

given by p(x) � where x is the number of items 

that can be sold when the price of each item is p(x) dollars.
Compute ¢p�¢x over each of the intervals 0 � x � 100
and 300 � x � 400. Include units in your answers. Why
does it make sense (economically) that the answers are
negative?

38. Suppose that during the first few hours of a laboratory ex-
periment, the temperature of a certain substance is closely
approximated by the function f (t) � t3 � 6t2 � 9t, where t
is measured in hours, with t � 0 corresponding to the
instant the experiment begins, and f (t) is the temperature
(°F) of the substance after t hours.
(a) Find an expression for ¢f�¢t. What are the units for

¢f�¢t?
(b) Use the result in part (a) to complete the following

table. Round the answers to four decimal places.

24

2x�100
,



(c) Use a graphing utility to graph the function f. Then
use the ZOOM and/or TRACE features to find an output f(x)
that is less than the output you indicated in part (b).

(d) It can be shown using calculus that the input x yielding
the minimum value for the function f is Compute

Which value of f (x) in the table is closest to
To how many decimal places does your esti-

mate in part (c) agree with 

C
49. (a) Construct an argument similar to that on page 155

to show that the function f (x) � x2 is decreasing on the
interval (�q, 0].

(b) Use the y-axis symmetry of the graph of the function
f (x) � x2 and the result that the function is increasing
on the interval [0, q) to explain why it’s decreasing on
the interval (�q, 0].

f 114 2 2?
f 114 2 2?
f 114 2 2 .

1
4 2.

(b) Use algebra to explain the result in part (a). That is,
either derive or verify the identity f(x) � g(x). Are
there any positive values of x for which this equation
does not hold?

48. Consider the function f defined by

(a) Complete the table. (Round the results to four decimal
places.)

f (x) � x2 �
2

x2  (x 
 0)
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(x) 1 1.05 1.10 1.15 1.20 1.25

f (x)

(b) Which f(x)-value in the table is the smallest? What is
the corresponding input?

TECHNIQUES IN GRAPHING
The simple geometric concepts of reflection, translation, and scaling can be used to
great advantage in graphing. We discussed the idea of reflection in the the x-axis and
in the y-axis in Section 1.7 and we will review it below. By a translation of a graph,
we mean a shift in its location such that every point of the graph is moved the same
distance in the same direction. The size and shape of a graph are unchanged by a
translation. Scaling either horizontally or vertically stretches or compresses the
graph.

The graph of x2 � y2 � 4 is the circle of radius 2 with its center at the origin. If
we translate this circle to the right 2 units and down 3 units, we obtain the circle of
radius 2 with center (2, �3). An equation for this circle is (x � 2)2 � (y � 3)2 � 4.
See Figure 1. We could obtain the new equation from the old equation by replacing
x by x � 2 and y by y � 3. This observation suggests that replacing x by x � 2
in the original equation translates the original graph to the right 2 units and gives
a new equation (x � 2)2 � y2 � 4. Then replacing y by y � 3 in this new equa-
tion translates this circle down three units to obtain the desired circle with equation
(x � 2)2 � (y � 3)2 � 4.

Note the counterintuitive results: Replacing x by something smaller, x � 2,
shifts the graph to the right, and replacing y by something larger, y � 3, shifts the
graph down.

From a function point of view, we will discuss two basic types of problems.
Let f be a function.

1. If we start with the graph of y � f (x), then transform the graph by a sequence of
shifts, reflections, and scale changes, what is the equation of the resulting
graph?

3.4

(x _2)2+(y+3)2 =4 

x2+y2 =4 

_2

_3

_4

_5

2

_1

3

1

1 2 3 4 5_2 _1_3_4
x

y

4

(2, _3)

. . . geometrical figures are graphic
formulas. —David Hilbert (1862–1943)

Figure 1



2. Given an equation resulting from various transformations on the graph of
y � f (x), what were the transformations on the original graph?

In all of our general discussion, unless otherwise stated, c represents a positive
number.

Start with the graph of and consider the graph of . For each
real number x, the y-coordinate of the original graph is increased by 2 units. So the
graph of is just that of translated up two units. Note: The
equation can be obtained by replacing y by in the equation

. So replacing y by in the original equation shifts the original graph
up 2 units. Similarly, the graph of is that of shifted down
2 units. See Figure 2.

These observations are true in general.

y � 0 x 0y � 0 x 0 � 2
y � 2y � 0 x 0 y � 2y � 0 x 0 � 2

y � 0 x 0y � 0 x 0 � 2

y � 0 x 0 � 2y � 0 x 0
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To graph y=| x |+2, translate 
y=| x | up 2 units.
To graph y=| x |-2,
translate y=| x | down 2 units.

1 1
x

y

2_2

2

_2

y=| x |-2

y=| x |

y=| x |+2

_

Figure 2

Before discussing the horizontal translations of a graph, we note that vertical
translations can be obtained by replacing y by y � c or y � c in the given equation.
But which substitution corresponds to translation up and which to translation down?
We observed that the graph of y � f (x) � c is that of y � f (x) translated up c units. If
we rewrite the equation y � f (x) � c as y � c � f (x), then we see that replacing y by
y � c in the equation y � f (x) results in translating the graph of y � f (x) up c units.
Similarly, replacing y by y � c in the equation y � f (x) results in translating the graph
of y � f (x) down c units. These two rather counterintuitive results may help make the
next observations easier to believe.

This time, start with the graph of y � x2. If we want to translate the graph to the
right 5 units, then, based on our discussion about shifting a circle and our counter-
intuitive observation about vertical translation, we replace x by x � 5 in the equa-
tion to obtain y � (x � 5)2. The graph of this new equation will have exactly the
same size and shape as the graph of y � x2, but each point of the original graph will
move 5 units to the right to lie on the new graph. As a check, since (x � 5)2 is
always greater than or equal to zero, the lowest point on the graph of y � (x � 5)2

occurs where the y-coordinate (x � 5)2 � 0, or at x � 5. So the vertex is (5, 0),
precisely 5 units to the right of the vertex (0, 0) on the graph of y � x2. As another
check, the points (4, 1) and (6, 1) lie on the graph of y � (x � 5)2 and are five units
to the right of the corresponding points (�1, 1) and (1, 1) on the graph of y � x2.
See Figure 3.

Similarly, the graph of y � (x � 5)2 is that of y � x2 translated to the left five units.
The vertex (�5, 0) and the points (�6, 1) and (�4, 1) on the graph of y � (x � 5)2

are five units to the left of the corresponding points (0, 0), (�1, 1), and (1, 1) on the
graph of y � x2.

PROPERTY SUMMARY Vertical Translations

Let f be a function and c 
 0 be a constant. Replacing y by y � c in the equation
y � f(x) gives the new equation y � c � f(x) or y � f(x) � c, whose graph is that
of y � f(x) shifted up c units. Replacing y by y � c in the equation y � f(x) gives
the new equation y � c � f(x) or y � f(x) � c, whose graph is that of y � f(x)
shifted down c units. These transformations are called vertical translations or
vertical shifts.
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EXAMPLE

SOLUTION

1 Using Translations of y � x2

Use translations of the graph of y � x2 to graph y � (x � 2)2 � 1.

We can break this sequence of two shifts down step-by-step. Starting with the graph
of y � x2:

1. Replace x by x � 2 to shift the graph to the right 2 units and to obtain the new
equation y � (x � 2)2. See Figures 4(a) and (b).

2. Replace y by y � 1 to shift the graph up one unit and to obtain the new equation
y � 1 � (x � 2)2 or y � (x � 2)2 � 1. See Figure 4(c).

y

1

1
x

2

(2, 1)

(c)

y=(x-2)@+1
( or  y-1=(x-2)2 )

y

1
x

2

(b)

y=(x-2)@

y

(a)

y=≈

x

Figure 4

PROPERTY SUMMARY Horizontal Translations

Let f be a function and c 
 0 be a constant. Replacing x by x � c in the equation
y � f (x) gives the new equation y � f (x � c), whose graph is that of y � f (x)
shifted to the right c units. Replacing x by x � c in the equation y � f (x) gives the
new equation y � f (x � c), whose graph is that of y � f (x) shifted to the left c
units. These transformations are called horizontal translations or horizontal
shifts.

These observations are true in general.

y=x2

To graph y=(x-5)2, translate y=x2 to the right 5 units. To graph
y=(x+5)2, translate y=x2 to the left 5 units.

_1

1

1 32 4 5_1_2_3_4_5
x

y

2

(-4, 1) (-1, 1) (1, 1) (4, 1) (6, 1)(-6, 1)

y=(x-5)2y=(x+5)2

Figure 3
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EXAMPLE

SOLUTION

2 Applying Reflection and Translations to 

Use transformations of the graph of to graph the equation .

Start with the equation y � x and its graph. See Figure 6.
Replace x by x � 2 to shift the graph of to the left 2 units and obtain the

equation

y � 0 x � 2 0

y � 0 x 0

y � � 0 x � 2 0 � 3y � 0 x 0
y � � x �

Now let’s look at reflection of a graph in the x-axis. Consider the graph of
. Replace y by �y to obtain or . For each x � 0 the

graph of the new equation has a y-coordinate opposite in sign to that on the original
graph. See Figure 5(a). So the graph of can be obtained from the graph of

by reflecting the graph of in the x-axis.y � 1xy � 1x
y � �1x

y � �1x�y � 1xy � 1x

PROPERTY SUMMARY Reflections in the x- and y-axes

Let f be a function. Replacing y by �y in the equation y � f (x) gives the new
equation �y � f (x) or y � �f (x) whose graph is that of y � f (x) reflected in 
the x-axis. Similarly, replacing x by �x in the equation y � f (x) gives the new
equation y � f (�x) whose graph is that of y � f (x) reflected in the y-axis.

(a)

x

y

(1, 1)

(1, _1)

y=œ„x

y=_œ„x

(b) „

x

y

(1, 1)(_1, 1)

y=œ„xy=œ„_x

To graph y=_œ„x, reflect the graph of y=œ„x in the x-axis.
More generally, to graph y=_ƒ, reflect the graph of
y=ƒ in the x-axis.

To graph y=œ„_x, reflect the graph of y=œ„x in the y-axis.
More generally, to graph y=f(_x), reflect the graph of 
y=ƒ in the y-axis.

Figure 5

Consider the graph of , where x � 0. If we replace x by �x we get a new
equation , where �x � 0 or x � 0. This suggests that the y-coordinates
on the new graph are the same as those on the new graph except that the new
x-coordinates are opposite in sign to the old x-coordinates. See Figure 5(b). So the
graph of can be obtained from the graph of by reflection in the
y-axis.

Our discussion on reflecting the graph of the square root function in the x- and
y-axes applies to the graph of any function.

y � 1xy � 1�x

y � 1�x
y � 1x
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Replace y by �y to reflect the graph of in the x-axis and obtain the
equation

�y � x � 2 or y � � x � 2

Finally, replace y by y � 3 to shift the graph of up 3 units and obtain
the equation

Note: To get the x and y intercepts consider the following algebra. For the y-intercept:

x � 0 implies y � � 0 � 2 � 3 � �2 � 3 � 1 

For the x-intercept: 

y � 0 implies 0 � � x � 2 � 3 or x � 2 � 3
so x � 2 � 3 or �3 and x � 1 or �5

0000

00

y � 3 � � 0 x � 2 0   or  y � � 0 x � 2 0 � 3

y � � 0 x � 2 0
0000

y � 0 x � 2 0

EXAMPLE

SOLUTION

3 A Case Where the Translation Rule for 
Is Not Directly Applicable

Graph .

Our translation rule for y � f (x � c) is not directly applicable here because in the
generic equation y � f (x + c), the sign of the x-term is positive; the rule provides
no information about y � f (�x � c). Rather than introducing yet another rule, we’ll
explain how to proceed using what we’ve already learned.

Start with the graph of .
Replace x by x � 2 to shift the graph of to the left 2 units and obtain the

equation .
Replace x by �x to obtain the equation and reflect the graph of

in the y-axis. See Figure 7.
Equivalently, we could start with the graph of and use order of opera-

tions. Replace x by �x to reflect the graph in the y-axis and obtain the equation
. Then replace x by x � 2 to shift the graph of to the right 2 unitsy � 1�xy � 1�x

y � 1x
y � 1x � 2

y � 1�x � 2
y � 1x � 2

y � 1x
y � 1x

y � 1�x � 2

y � f (x � c )

Four steps to graph the equation y=_ | x+2|+3.

_2

2

_1

3

1

1 2_2 _1_3_4_5
x

y

4

y=| x|

_2

2

_1

3

1

1 2_2 _1_3_4_5
x

y

4

y=| x+2| y=_ | x+2|

_2

2

_1

3

1

1 2_2 _1_3_4_5
x

y

4

y=_ | x+2|+3

(-5, 0)

_2

2

_1

3

1

1 2_2 _1_3_4_5
x

y

4

(1, 0)

(0, 1)

(-2, 3)

Figure 6
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and obtain the equation or . You can check that the
resulting graph is the same as before even though the sequence of transformations
is not.

We now analyze scale changes of a graph via an example.
Consider the graph of y � 2x � x2, where 0 � x � 2. The graph is part of the

parabola with equation y � 2x � x2, x any real number, “truncated” at (0, 0) and
(2, 0). See Figure 8(a).

We make a vertical scale change by a factor of 2 by replacing y by 2y in the orig-
inal equation to obtain the new equation.

2y � 2x � x2, 0 � x � 2 or y � (2x � x2) 0 � x � 2

The graph is the original graph compressed vertically by a factor of . See Fig-
ure 8(b). So, making a vertical scale change by a factor of 2 compresses the graph
vertically by a factor of .

Now we make a vertical scale change by a factor of by replacing y by y in the
original equation to obtain the new equation

y � 2x � x2, 0 � x � 2 or y � 2(2x � x2) 0 � x � 2

The graph is the original graph stretched vertically by a factor of 2. See Figure 8(c).
So making a vertical scale change by a factor of stretches the graph vertically by a
factor of 2.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

y � 1�x � 2y � 1�(x � 2)

(a) Translate the graph of y=œ„x  to the left 2 units to

obtain the graph of y=œ„x+2 .

_2
x

y

y=œ„x
y=œ„x+2

(b) Reflect the graph of y=œ„x+2  in the y-axis to

obtain the graph of y=œ„_x+2.

x

y

_2 2

y=œ„x+2y=œ„_x+2

Figure 7

(a) y=2x-x2,
   0≤x≤2

1 2
x

y

1
(1, 1)

1

1 2
x

y

2
(1, 2)

(1,    )

1 2
x

y

1

2

1
2

1
2

(b) y=   (2x - x2)

(or 2y=2x-x2),
(c) y=2(2x-x2)

1
2

(or     y=2x-x2),
 0≤x≤2  0≤x≤2

Figure 8
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(a) y=2x - x2,

1 2
x

y

1
(1, 1)

1

1 2 3 4
x

y

2

(2, 1)

(b) y=4x(1-x)
[or y=2(2x) - (2x)2],

(   , 1)

1
x

y

1
1
2

(c) y=x(1-    x)
[or y=2(   x)-(   x)2],1

2
1
2

1
4

 0≤x≤2
 0≤x≤1  0≤x≤4Figure 9

Continue with the graph of y � 2x � x2, with 0 � x � 2. See Figure 9(a). We
make a horizontal scale change by a factor of 2 by replacing x by 2x in the original
equation to obtain the new equation

y � 2(2x) � (2x)2 for 0 � 2x � 2

or

y � 4x � 4x2 for 0 � x � 1

or

y � 4x(1 � x) for 0 � x � 1

The graph is the original graph compressed horizontally by a factor of . See Fig-
ure 9(b). So, making a horizontal scale change by a factor of 2 compresses the graph
horizontally by a factor of .

We make a horizontal scale change by a factor of by replacing x by x in the
original equation to obtain the new equation.

y � 2 � 2 for 0 � x � 2

or

y � x � x2 for 0 � x � 4

or

y � x for 0 � x � 4

The graph is the original graph stretched horizontally by a factor of 2. See Fig-
ure 9(c). So making a horizontal scale change by a factor of stretches the graph
horizontally by a factor of 2.

1
2

11 � 1
4 x 2

1
4

1
21 12 x 21 12 x 2

1
2

1
2

1
2

1
2

We generalize.

PROPERTY SUMMARY Vertical Scale Changes

Let f be a function and c 
 0 a constant. Replacing y by cy in the equation 

y � f (x) gives the new equation cy � f (x) or y � f (x), whose graph is that of 

y � f (x) compressed vertically by a factor of if c 
 1 and stretched vertically

by a factor of if 0 	 c 	 1. These transformations are called vertical 

compressions and vertical stretches, respectively.

1
c

1
c

1
c
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Below is a summary of the relationship between the graphing transformations
we’ve discussed and the corresponding equations. Note, the second column lists the
substitution for x or y that determines the given transformation of the graph.

PROPERTY SUMMARY Transforming y � f (x)

The point (a, b) is on the graph of . The letter c denotes a positive constant.

New Point on
Transformation Change New Equation Resulting Graph

1. Shift up c units y y � c y � c � f (x) or y � f (x) � c (a, b � c)

2. Shift down c units y y � c y � c � f (x) or y � f (x) � c (a, b � c)

3. Shift right c units x x � c y � f (x � c) (a � c, b)

4. Shift left c units x x � c y � f (x � c) (a � c, b)

5. Reflection in the x-axis y �y �y � f (x) or y � �f (x) (a, �b)

6. Reflection in the y-axis x �x y � f (�x) (�a, b)

7. Vertical scale change y cy cy � f (x) or y � aa, bb

8. Horizontal scale change x cx y � f (cx) a a, bb
a stretches the graph if 0 	 c 	 1

and compresses it if c 
 1
b

1
c

�

a stretches the graph if 0 	 c 	 1

and compresses it if c 
 1
b

1
c

1
c

 f (x)�

�

�

�

�

�

�

y � f (x)

EXAMPLE

SOLUTION

4 Using Transformations to Graph an Equation

Graph the equations: (a) y � 3(x � 2)2 � 1 (b) y � 3x2 � 12x � 11

(a) Start with y � x2

Replace y by y to vertically stretch the graph of y � x2 by a factor of 3, and
obtain the equation

y � x2 or y � 3x21
3

1
3

PROPERTY SUMMARY Horizontal Scale Changes

Let f be a function and c 
 0 a constant. Replacing x by cx in the equation 
y � f (x) gives the new equation y � f (cx), whose graph is that of y � f (x)

compressed horizontally by a factor of if c 
 1 and stretched horizontally if  

by a factor of if 0 	 c 	 1. These transformations are called horizontal 

compressions and horizontal stretches, respectively.

1
c

1
c

We again generalize.
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Replace x by x � 2 to shift the graph of y � 3x2 to the right 2 units and obtain the
equation

y � 3(x � 2)2

Finally, replace y by y � 1 to shift the graph down 1 unit and obtain the graph of
the equation

y � 1 � 3(x � 2)2 or y � 3(x � 2)2 � 1

See Figure 10. Alternatively, you could use order of operations by first shifting
to the right 2 units than proceeding. Try it.

(b) y=3x2

1

_1

1_1
x

y

2

(a) y=x2

1

_1

1_1
x

y

2

(c) y=3(x-2)2

1

1
x

y

2

_1

(d) y=3(x-2)2-1

1

1 2
x

y

2

_1

(2, 0)

(2, -1)

Figure 10

EXAMPLE

SOLUTION

5 A Comprehensive Example

The graph of a function f is a line segment joining the points (�3, 1) and (2, 4).
Graph each of the following functions:

(a) y � f (�x) (b) y � �f (x) (c) y � �f (�x)
(d) y � f (x � 1) (e) y � �f (x � 1) (f) y � f (1 � x)
(g) y � f (x) (h) y � f (2x) (i) y � �f (1 � 2x)

See Figure 11.

1
2

(b) Since y � 3(x � 2)2 � 1 � 3(x2 � 4x � 4) � 1 � 3x2 � 12x � 11, the graph for
part (b) is the same as that for part (a).

Note: In Section 4.2 we’ll discuss graphing the equation in part (b) by transforming
it into the equation in part (a).

Examples 5, 6, and 7 make use of all the graphing techniques presented in this
section. When you can work each part of these examples on your own, you will have
a good working knowledge of the techniques developed in this section.
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x

(_2, 4) (2, 4)

(_3, 1) (3, 1)

y=ƒ y=f(_x)

y

(a) Reflect the graph of y=ƒ in
 the y-axis to obtain the graph
 of y=f(_x).

x

y

(1, 4) (2, 4)

(_3, 1)
(_4, 1)

y=ƒ

y=f(x+1)

(d) Translate the graph of y=ƒ
 one unit to the left to obtain the
 graph of y=f(x+1).

y

x

(2, 4)

(2, 2)

(_3, 1)

y=f(x)

(_3,    )1
2

y=   f(x)1
2

1
2

Compress the graph of y=f(x) 
vertically to obtain the graph of
y=    f(x).

(g)

x

y

(_3, _1)

(2, _4)

(2, 4)

(_3, 1)
y=ƒ

y=_ƒ

(b) Reflect the graph of y=ƒ in
 the x-axis to obtain the graph
 of y=_ƒ.

y

x

(2, _4)

(1, _4)

(_4, _1) (_3, _1)

y=_f(x+1)

y=_ƒ

(e) Translate the graph of y=_ƒ one
 unit to the left to obtain the graph of  

y=_f(x+1). [Or reflect the graph
 of y=f(x+1) in the x-axis.]

y

x

(2, 4)
(1, 4)

(_3, 1)

y=f(2x)y=f(x)

(_     , 1)1
2

Compress the graph of y=f(x) 
horizontally to obtain the graph of
y=f(2x).

(h)

x

y

(_3, _1)

(_2, _4) (2, _4)

(3, _1)

y=_f(_x)y=_ƒ

(c) Reflect the graph of y=_ƒ in
 the y-axis to obtain the graph of

y=_f(_x). [Or reflect the graph  
 of y=f(_x) in the x-axis.]

y

x

(1, 4)(_1, 4)

(4, 1)(_4, 1)

y=f(x+1) y=f(1-x)

(f) Reflect the graph of y=f(x+1) in
 Figure 14(d) in the y-axis to obtain
 the graph of y=f(1-x). [Reason:
 Replacing x with _x in y=f(x+1)

yields y=f(1-x).]   

y

x(2, 1) (4, 1)

(_1, 4)

(2, _1)

y=f(1_2x)

y=_f(1 _2x)

y=f(1_x)

Compress the graph of y=f(1_ x) 
horizontally to obtain the graph of
y=f(1 _2x), then reflect the graph
of y=f(1 _ 2x) in the x-axis to 
obtain the graph of y=_f(1_2 x).

(i)

(_   , 4)1
2

(_    , _4)1
2

Figure 11
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In the next two problems we work with the graph of an arbitrary function
y � f (x). A sequence of several transformations is given in Example 6 and an
equation is given in Example 7. Although the work is algebraic, the thinking is
quite geometric.

EXAMPLE

SOLUTION

6 Finding the Equation of a Transformed Graph

Let f be a function. Starting with the graph of y � f (x). Consider performing the
following sequence of transformations on the graph in the given order. Make a hori-
zontal scale change by a factor of 2, shift to the left 3 units, reflect in the y-axis, make
a vertical scale change by a factor of 4, shift down 5 units, and finally reflect in the
x-axis.

(a) Find the equation of the final graph.
(b) If (a, b) is a point on the graph of y � f (x), what is the corresponding point on the

final graph?

(a) Starting with the equation y � f (x). To make a horizontal scale change by a factor
of 2, substitute 2x for x to get y � f (2x). So the graph is compressed hori-
zontally by a factor of . To shift to the left 3 units, substitute x � 3 for x to get
y � f (2(x � 3)) or y � f (2x � 6). To reflect in the y-axis, replace x by �x to get
y � f (2(�x) � 6) or y � f (�2x � 6). To make a vertical scale change by a factor
of 4, replace y by 4y to get 4y � f (�2x � 6) or y � f (�2x � 6). So the graph is
compressed vertically by a factor of . To shift down 5 units, substitute y � 5 for
y to get y � 5 � f (�2x � 6) or y � f (�2x � 6) � 5. To reflect in the x-axis,
replace y by �y to get �y � f(�2x � 6) � 5 or y � � f(�2x � 6) � 5. So the
equation of the final graph is y � � f (�2x � 6) � 5.

(b) The point (a, b) moves as follows: (a, b) a, b a � 3, b 3 � a, b
3 � a, b 3 � a, b � 5 3 � a, � b � 5 . So the corre-

sponding point on the final graph is 3 � a, � b � 5 . We can check this cal-
culation by seeing if the coordinates 3 � a, � b � 5 satisfy the equation
y � 5 � f (�2x � 6). The left-hand side of the equation, y, is � b � 5.
Substitute 3 � a for x on the right-hand side of the equation to get

� f �2 3 � a � 6 � 5 � � f(�6 � a � 6) � 5 � � f(a) � 5 � � b � 5

which is the same as the left-hand side. Note: The last equality above follows
since (a, b) is on the graph of y � f (x) if and only if b � f (a).

1
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1
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1
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EXAMPLE

SOLUTION

7 Finding Transformations from an Equation

(a) Explain how to obtain the graph of y � f � x � 4 � 5 by a sequence of trans-
formations on the graph of y � f (x).

(b) If (a, b) is a point on the graph of y � f (x), what is the corresponding point on the
graph of y � f � x � 4 � 5?

(a) Starting with the equation y � f(x), perform the following operations in order.
Substitute x for x to make a horizontal scale change by a factor of , stretching the
graph horizontally by a factor of 3. We get y � f x . Replace x by �x, reflecting
the graph in the y-axis to get y � f � x . Substitute x � 12 for x, translating the21

31
21

31
1
3

1
3

21
311

7

21
311

7
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graph 12 units to the right to get y � f � (x � 12) or y � f � x � 4 .
Substitute 7y for y, making a vertical scale change by a factor of 7, and com-
pressing the graph vertically by a factor of . We get 7y � f � x � 4 or y �
f � x � 4 . Substitute y � 5 for y to shift the graph up 5 units, getting y � 5 �
f � x � 4 or y � f � x � 4 � 5. The required sequence is now complete.

(Can you think of an alternative sequence that gives the same graph?)
(b) The point (a, b) moves as follows: (a, b) (3a, b) (�3a, b) (�3a � 12, b)

�3a � 12, b �3a + 12, b � 5 . You can verify that the final point lies
on the final graph by checking that its coordinates satisfy the given equation.

We conclude this section with a brief discussion of functions whose graphs have
certain symmetries. Let f be a nonconstant function and consider the graph of the
equation y � f (x). First note that the graph of y � f (x) cannot be symmetric with
respect to the x-axis. Why? For the graph to be symmetric to the x-axis, for each
value of x in the domain of f for which f (x) is not zero, there must be (at least) two
distinct y-values (of opposite signs), in other words two f (x)’s. This contradicts the
definition of a function. Now consider symmetry with respect to the y-axis. Let (x, y)
be an arbitrary point on the graph of y � f (x). Then, of course, y � f (x). If the graph
is symmetric to the y-axis, the point (�x, y) is also on the graph. Then y � f (�x). It
follows that f(�x) � f (x) for all x in the domain of f. Thus a function of x whose
graph is symmetric about the y-axis must satisfy the “functional equation” f (�x) �
f (x) for all x in its domain. Such a function is called an even function. Conversely, if
f is an even function, then the graph of y � f (x) is symmetric with respect to the
y-axis. Similarly, you can show that the graph of a function f is symmetric with
respect to the origin if and only if f(�x) � �f (x) for all x in its domain. A function
satisfying this last functional equation is called an odd function. We summarize these
definitions in the box below.
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Definition Even and Odd Functions

A function f is an even function if for each x in the domain of f, �x is also in the
domain, and f (�x) � f (x).

A function f is an odd function if for each x in the domain of f, �x is also in the
domain, and f (�x) � �f(x).

Comments:

1. For a function to be either an even function or an odd function, first the function
must have a domain that is symmetric about the origin, and second the function
must satisfy the appropriate functional equation.

2. Most functions are neither even nor odd.
3. A function that is both even and odd must be the zero function on its domain.

EXAMPLE 8 Determining Whether a Function Is Even or Odd

Determine whether the following functions are even, odd, or neither. Then graph the
function.

(a) f (x) � 5x � x3 (b) g(x) � 24 � x2
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(a) The domain of f (x) � 5x � x3 is the set of all real numbers, which on the num-
ber line is symmetric about zero. Also

f (�x) � 5(�x) � (�x)3 � �5x � x3 � �(5x � x3) � �f (x)

So f is an odd function. We can sketch the graph by first noting that the 
x-intercepts are found by solving 0 � 5x � x3 � x(5 � x2), which has solutions
x � 0, � . Plotting the intercepts, points for say, x � 1, 2, and 3, and then,
using origin symmetry, we obtain the graph shown in Figure 12(a).

(b) The domain of is the set of all real numbers x, such that
4 � x2 � 0, which by the methods of Section 2.4 has the solution set all x such
that �2 � x � 2, which is symmetric about zero on the number line. Also

So g is an even function. To sketch the graph, first note that y � im-
plies y2 � 4 � x2 or x2 � y2 � 4; so every point on the graph of y � g(x) lies on
the circle of radius 2 centered at the origin. Since the domain of g is the closed
interval [�2, 2] and g(x) � � 0 for all x in the domain, the graph of g
is the upper semicircle (including the endpoints), as shown in Figure 12(b).

2-2

1

2

y

x

(b) y=g(x)=œ4-x2

4
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x

(a) y=f(x)=5x _ x3

(-œ5, 0) (œ5, 0)

24 � x2

24 � x2

g(�x) � 24 � (�x2) � 24 � x2 � g(x)

g(x) � 24 � x2

25

SOLUTION

Figure 12

A
In Exercises 1 and 2, the right-hand column contains instruc-
tions for translating and/or reflecting the graph of y � f (x).
Match each equation in the left-hand column with an appropri-
ate set of instructions in the right-hand column.

1. (a) y � f (x � 1) (A) Translate left 1 unit.
(b) y � f (x) � 1 (B) Reflect in the x-axis, then

translate left 1 unit.
(c) y � f (x) � 1 (C) Translate right 1 unit.
(d) y � f (x � 1) (D) Reflect in the x-axis, then

translate up 1 unit.
(e) y � f (�x) � 1 (E) Reflect in the x-axis, then

translate down 1 unit.

(f) y � �f (x) � 1 (F) Translate down 1 unit.
(g) y � �f (x � 1) (G) Reflect in the x-axis, reflect in

the y-axis, then translate up 
1 unit.

(h) y � �f (x) � 1 (H) Translate left 1 unit, then
reflect in the y-axis, then
translate up 1 unit.

(i) y � f (1 � x) � 1 (I) Translate up 1 unit.
Hint: See Example 3.

(j) y � �f (�x) � 1 (J) Reflect in the y-axis, then 
translate up 1 unit.

(k) y � f (2x) � 1 (K) Compress horizontally by a 
factor of then translate up
1 unit.

1
2

EXERCISE SET 3.4
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41. f (x) � 3x � 2 42. f (x) � 4 � x2

(a) y � �3x � 2 (a) y � x2 � 4
(b) y � �6x � 4 (b) y � 4 � 4x2

43. f (x) � x2 � 4x � 2 44. f (x) � x3 � 3x2 � 4
(a) y � x2 � 4x � 2 (a) y � �x3 � 3x2 � 4
(b) y � x2 � 4x (b) y � �x3 � 3x2 � 1

45. f (x) � x4 � 3x � 3 46. f(x) � �x3 � 3x2 � 3x � 1
(a) y � x4 � 3x � 3 (a) y��x3�3x2�3x�1
(b) y � �x4 � 3x � 3 (b) y � x3 � 3x2 � 3x � 1
(c) y � �x4 � 3x (c) y � x3 � 3x2 � 3x � 1

47. (a) Complete the following table.

2. (a) y � f (x � 2) � 3 (A) Translate left 2 units, then
translate down 3 units.

(b) y � f (x � 3) � 2 (B) Translate left 3 units, then
translate up 2 units.

(c) y � f (x � 2) � 3 (C) Translate right 3 units,
then translate up 2 units.

(d) y � f (x � 2) � 3 (D) Translate left 3 units, then
translate down 2 units.

(e) y � f (x � 2) � 3 (E) Translate right 3 units and
down 2 units.

(f) y � f (x � 3) � 2 (F) Translate left 2 units, then
stretch vertically by a 
factor of 3.

(g) y � f (x � 3) � 2 (G) Reflect in the x-axis, then
translate right 2 units.

(h) y � f (x � 3) � 2 (H) Reflect in the x-axis, then
translate left 2 units.

(i) y � �f (x � 2) (I) Translate left 2 units, then
reflect in the y-axis.

(j) y � �f (x � 2) (J) Translate right 2 units,
then translate up 3 units.

(k) y � f (2 � x) (K) Translate left 2 units, then
translate up 3 units.

(l) y � 3f (x � 2) (L) Translate right 2 units and
down 3 units.

In Exercises 3–24, sketch the graph of the function. Hint: Start
with the basic graphs in Figure 7 in Section 3.2.

3. y � x3 � 3 4. y � x2 � 3
5. y � (x � 4)2 6. y � (x � 4)2 � 3
7. y � (x � 4)2 8. y � (x � 4)2 � 1
9. y � �x2 10. y � �x2 � 3

11. y � �(x � 3)2 12. y � �(x � 3)2 � 3
13. 14.
15. 16.

17. 18.

19. y � (x � 2)3 20. y � (x � 2)3 � 1
21. y � �x3 � 4 22. y � �(x � 1)3 � 4
23. (a) y � 2x 24. (a)

(b) y � x � 4 (b)
(c) y � � 4 � x � 1 (c)

In Exercises 25–40, sketch the graph of the function, given that
f, F, and g are defined as follows. (Hint: Start with the basic
graphs in Figure 7 in Section 3.2.)

25. y � f (x � 5) 26. y � �f (x � 5)
27. y � f (5 � x) 28. y � �f (5 � x)
29. y � 1 � f (x � 5) 30. y � f (�x)
31. y � F (x � 3) 32. y � F (x) � 3
33. y � �F (x � 3) 34. y � F (�x) � 3
35. y � g(x � 2) 36. y � �g(x � 2) 
37. y � 1 � g(x � 2) 38. y � g(�x)
39. y � g(2 � x) 40. y � �g(2 � x)

f (x) � 0 x 0  F(x) � 1�x  g(x) � 21 � x2

y � �12 � x00
y � 12 � x00
y � 21x � 200

y �
1

x � 3
� 1y �

1

x � 2
� 2

y � 1�x � 3 � 2y � 1�x � 3
y � 1x � 3 � 1y � 1x � 3

x x2 x2 � 1 x2 � 1

0
�1
�2
�3

(b) Using the results in the table, graph the functions
y � x2, y � x2 � 1, and y � x2 � 1 on the same set of
axes. How are the graphs related?

48. (a) Complete the table.

x x2 (x � 1)2 (x � 1)2

0
1
2
3

�1
�2
�3

(b) Using the results in the table, graph the functions
y � x2, y � (x � 1)2, and y � (x � 1)2 on the same set
of axes. How are the graphs related?

49. (a) Complete the following table. (Use a calculator when
necessary.)

x

0
1
2
3
4
5

�1x1x

(b) Using the results in the table, graph the functions
y � and y � � on the same set of axes. How
are the two graphs related?

1x1x

In Exercises 41–46, a function f is given. Say how the graph
of each of the related functions can be obtained from the graph
of f, and then use a graphing utility to verify your statement.
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55. Let P be a point with coordinates (a, b), and assume that c
and d are positive numbers. (The condition that c and d are
positive isn’t really necessary in this problem, but it will
help you to visualize things.)
(a) Translate the point P by c units in the x-direction to

obtain a point Q, then translate Q by d units in the 
y-direction to obtain a point R. What are the coordi-
nates of the point R?

(b) Translate the point P by d units in the y-direction to
obtain a point S, then translate S by c units in the 
x-direction to obtain a point T. What are the coordi-
nates of the point T?

(c) Compare your answers for parts (a) and (b). What have
you demonstrated? (Answer in complete sentences.)

56. Let P be a point with coordinates (a, b).
(a) Reflect P in the x-axis to obtain a point Q, then reflect

Q in the y-axis to obtain a point R. What are the coordi-
nates of the point R?

(b) Reflect P in the y-axis to obtain a point S, then reflect
S in the x-axis to obtain a point T. What are the coordi-
nates of the point T?

(c) Compare your answers for parts (a) and (b). What have
you demonstrated? (Answer in complete sentences.)

57. (a) Use a graphing utility to graph the function 
y � x�(x � 1).

(b) From the screen display, it appears that the graph may
be a translation of the basic y � 1�x graph. Prove that
this is indeed the case by using algebra to show that 

� 1. Hint: Combine the quantities 

on the right side of the equation.
(c) Beginning with the graph of y � 1�x, what are the

translations used to obtain the graph of y � x�(x � 1)?

For Exercises 58 and 59, assume that (a, b) is a point on the
graph of y � f (x), and specify the corresponding point on the
graph of each equation. [For example, the point that corre-
sponds to (a, b) on the graph of y � f (x � 1) is (a � 1, b).]

58. (a) y � f (x � 3) (e) y � f (�x)
(b) y � f (x) � 3 (f) y � �f (2x)
(c) y � f (x � 3) � 3 (g) y � f (3 � x)
(d) y � �f (x) (h) y � �f (3 � x) � 1

59. (a) y � f (�x) � 2 (d) y � 1 � f (x � 1)
(b) y � �f (�x) � 2 (e) y � 2 f (1 � x)
(c) y � �f (x � 3) (f) y � �f (1 � x) � 1

60. (a) Explain why the graph of an even function must be
symmetric about the y-axis.

(b) Show that each function is even by checking that the
domain is symmetric about 0, computing f (�x) and
then noting that f (�x) and f(x) are equal.

(i) f (x) � x2 (iii) f (x) � 3x6 � � 1
(ii) f (x) � 2x4 � 6

61. (a) Explain why the graph of an odd function must be
symmetric about the origin.

4

x2

x

x � 1
�

1

x � 1

(b) Using the tables, graph the functions y � and
y � on the same set of axes. How are the graphs
related?

In Exercises 51–53 you’ll use a graphing utility to provide
examples of the graphing techniques listed in the Property
Summary: Transforming y � f (x) on page 173.

51. (a) Graph the two functions f (x) � and

g(x) � � 3. Observe that the graph of g is

obtained by translating the graph of f up three units.

This illustrates Transformation 1.
(b) Graph the two functions f (x) � and

h(x) � � 3. Observe that the graph of h is 
obtained by translating the graph of f down three units.
This illustrates Transformation 2.

52. Using the viewing rectangle [�5, 3] by [0, 5], graph the
three functions

Observe that the graph of L is obtained by translating the
graph of F to the left 2 units. Also, the graph of R is ob-
tained by translating the graph of F to the right 2 units.
This illustrates Transformations 4 and 3.

53. For this exercise, use the viewing rectangle [�4, 4] by 
[�4, 4].
(a) On the same set of axes, graph the two functions

f (x) � 2x and g(x) � �2x. [Algebra reminder: �2x

means �(2x), not (�2)x]. Observe that the graph of g is
obtained by reflecting the graph of f in the x-axis. This
illustrates Transformation 6.

(b) On the same set of axes graph the two functions
f (x) � 2x and h(x) � 2�x. Observe that the graph of h is
obtained by reflecting the graph of f in the y-axis. This
illustrates Transformation 5.

B
54. Reflect the graph of y � in the y-axis and then translate

that two units to the left. What is the equation of the result-
ing graph? Hint: The answer is not y � 1�x � 2.

1x

 R(x) � 21 � (x � 2)3

 L(x) � 21 � (x � 2)3

 F(x) � 21 � x3

21 � x2
21 � x2

21 � x2

21 � x2

1�x
1x

50. (a) Complete the tables. (Use a calculator when
necessary.)

x 0 1 2 3 4 5

1x

x 0 �1 �2 �3 �4 �5

1�x
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METHODS OF COMBINING FUNCTIONS. ITERATION
Two given numbers a and b can be combined in various ways to produce a third num-
ber. For instance, we can form the sum a � b or the difference a � b or the product
ab. Also, if b � 0, we can form the quotient a�b. Similarly, two functions can be
combined in various ways to produce a third function. Suppose, for example, that we
start with the two functions y � x2 and y � x3. It seems natural to define their sum,
difference, product, and quotient as follows:

Indeed, this is the idea behind the formal definitions we now give.

 quotient: y �
x2

x3 �
1
x
  (if x � 0)

 product: y � x2x3 � x5

 difference: y � x2 � x3

 sum: y � x2 � x3

63. Start with the graph of y � f (x). Consider performing the
following sequence of transformations to the graph in the
given order. Make a horizontal scale change by a factor of
1�3, shift to the right 5 units, reflect in the y-axis, make a
vertical scale change by a factor of 2, reflect in the x-axis,
and finally shift up 5 units.
(a) Find the equation of the final graph.
(b) If (a, b) is a point on the original graph, what is the

corresponding point on the final graph?
64. (a) Explain how to obtain the graph of 

by a sequence of transformations on the graph of 
y � f (x).

(b) If (a, b) is a point on the graph of y � f (x), what is
the corresponding point on the graph of

?y � 2
3 f 12 � 1

4x 2 � 9

y � 2
3 f 12 � 1

4x 2 � 9

(b) Show that each function is odd by checking that the
domain is symmetric about 0, computing f (�x) and
then noting that f (�x) and �f(x) are equal.
(i) f (x) � x3 (iii)
(ii) f (x) � �2x5 � 4x3 � x

62. Is each function odd, even, or neither? 

(a) f (x) � (d)

(b) g(x) � (e)

(c) h(x) � (x2 � x)2 Suggestion for part (e):
Look at the graph.

G(x) � •
1 if x � 0

0 if x � 0

�1 if x � 0

x � x3

2x � x3

F(x) � x 0 x 0 �1 0 x 0 � 4
1 � x2

2 � x2

f (x) � 0 x 0�(x � x7)

The Mini Project, Correcting a Graphing Utility Display, at http://www.cengage.com/math/cohen/precalc7e, 
applies material from Section 3.4.

3.5

Definition Arithmetical Operations with Functions

Let f and g be two functions. Then the sum f � g, the difference f � g, the product
fg, and the quotient f�g are functions defined by the following equations:

(1)

(2)

(3)

provided that g(x) � 0 (4)

For the functions defined by equations (1), (2), and (3), the domain is the set of all
inputs x belonging to both the domain of f and the domain of g. For the quotient
function in equation (4), we impose the additional restriction that the domain exclude
all inputs x for which g(x) � 0.

 ( f�g)(x) � f (x)�g(x)

 ( fg)(x) � f (x) # g(x)

 ( f � g)(x) � f (x) � g(x)

 ( f � g)(x) � f (x) � g(x)

The notation fx to indicate a function of
x was introduced by . . . [John Bernoulli]
in 1718, . . . but the general adoption
of symbols like f, F, f, and c . . . to
represent functions, seems to be mainly
due to Euler and Lagrange. —W. W.
Rouse Ball in A Short Account of the
History of Mathematics (New York:
Dover Publications, 1960)

The composition of functions is basic
to the study of iteration and chaos. 
—Hartmut Jürgens et al., Fractals for the
Classroom: Strategic Activities, vol. 2
(New York: Springer-Verlag, 1992)

http://www.cengage.com/math/cohen/precalc7e
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EXAMPLE

SOLUTION

1 Combining Functions Arithmetically

Let f (x) � 3x � 1 and g(x) � x � 1. Find the domain of f � g, f � g, fg, and f�g, and
compute the following:

(a) ( f � g)(x); (b) ( f � g)(x); (c) ( fg)(x); (d) ( f�g)(x).

Both f and g have domain all real numbers. So f � g, f � g, and fg also have domain
all real numbers. For f�g we need to exclude all values of x for which g(x) � 0. So
f�g has domain all real numbers except 1.

(a) ( f � g)(x) � f (x) � g(x) � (3x � 1) � (x � 1) � 4x, for all real x
(b) ( f � g)(x) � f (x) � g(x) � (3x � 1) � (x � 1) � 2x � 2, for all real x
(c) ( fg)(x) � [ f (x)][g(x)] � (3x � 1)(x � 1) � 3x2 � 2x � 1, for all real x

(d) ( f�g)(x) � for all real x except x � 1
f (x)

g(x)
�

3x � 1

x � 1
,

For the remainder of this section, we are going to discuss a method of combining
functions known as composition of functions. As you will see, this method is based
on the familiar algebraic process of substitution. Suppose, for example, that f and g
are two functions defined by

Choose any number in the domain of g, for example, x � �2. We can compute
g(�2):

Now let’s use the output �5 that g has produced as an input for f. We obtain

Consequently,

So, beginning with the input �2, we’ve successively applied g and then f to
obtain the output 25. Similarly, we could carry out this same procedure for any
other number in the domain of g, provided that its output is in the domain of f. Here
is a summary of the procedure:

1. Start with an input x and calculate g(x).
2. Use g(x) as an input for f; that is, calculate f [g(x)].

We use the notation f � g to denote the function, or rule, that tells us to assign the out-
put f [g(x)] to the initial input x. In other words, f � g denotes the rule consisting of two
steps: First apply g; then apply f. We read the notation f � g as f circle g or f composed
with g. In Figure 1, we summarize these ideas.

When we write g(x), we assume that x is in the domain of the function g.
Likewise, for the notation f [g(x)] to make sense, the outputs g(x) must themselves be

f [g(�2)] � 25

f (�5) � (�5)2 � 25

g(�2) � 3(�2) � 1 � �5

f (x) � x2  g(x) � 3x � 1
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acceptable inputs for the function f. Our formal definition, then, for the composite
function f � g is as follows.

(a)

Input x Output © Intput © Output (f • g)(x)
g-machine f-machine

Input x Output (f • g)(x)f • g-machine

(b) Figure 1(b) indicates that, by incorporating the two steps in part (a), we can think of the
composite function as one machine.

Figure 1
Diagram for the function f � g.

Definition Composition of Functions: f � g

Given two functions f and g, the composition of f and g is the function f � g defined by

The domain of f � g consists of those inputs x in the domain of g for which g(x) is in
the domain of f.

( f � g)(x) � f [g(x)]

EXAMPLE

SOLUTION

2 Comparing f � g to g � f

Let f (x) � x2 and g(x) � 3x � 1. Compute ( f � g)(x) and (g � f )(x).

definition of f � g
definition of g
definition of f

definition of g � f
definition of f
definition of g

 � 3x2 � 1
 � 3(x2) � 1
 � g(x2)

 (g � f )(x) � g[ f (x)]

 � 9x2 � 6x � 1
 � (3x � 1)2

 � f (3x � 1)
 ( f � g)(x) � f [g(x)]

Notice that the two results obtained in Example 2 are not the same. This shows
that, in general, f � g and g � f represent different functions.

EXAMPLE 3 Two Ways to Compute a Composite Value

Let f and g be defined as in Example 2: f (x) � x2 and g(x) � 3x � 1. Compute
( f � g)(�2).
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SOLUTION We will show two methods.

In Examples 2 and 3 the domain of both f and g is the set of all real numbers.
And as you can easily check, the domain of both f � g and g � f is also the set of all
real numbers. In Example 4, however, some care needs to be taken in describing
the domain of the composite function.

EXAMPLE

SOLUTION

4 Finding the Domain of a Composite Function

Let f and g be defined as follows:

Compute ( f � g)(x). Find the domain of f � g and sketch its graph.

So we have ( f � g)(x) � x � 1. Now, what about the domain of f � g? Our first
inclination might be to say (incorrectly!) that the domain is the set of all real num-
bers, since any real number can be used as an input in the expression x � 1. However,
the definition of f � g on page 183 tells us that the inputs for f � g must first of all be
acceptable inputs for g. Given the definition of g, then, we must require that x
be nonnegative. Then, for any nonnegative input x, the number g(x) will be an
acceptable input for f. (Why?) In summary, then, the domain of f � g is the interval
[0, q). The graph of f � g is shown in Figure 2.

 � f 11x 2 � 11x 2 2 � 1 � x � 1

 ( f � g)(x) � f [g(x)]

f (x) � x2 � 1  g(x) � 1x

y

x
y=x+1, x≥01

Figure 2
The graph of the function f � g in
Example 4.

EXAMPLE 5 An Application of Composition of Functions

Suppose that an offshore oil rig is leaking and that the oil forms a circular region
whose radius r increases over the first 12 hours according to the function

.

where r is measured in miles, t is in hours, and t � 0 corresponds to the instant that
the leak begins.

(a) Using function notation, the area of a circle of radius r is given by A(r) � pr2.
Find (A � f )(t) and interpret the result.

(b) Compute the rate of change of the function A � f over the interval 0 � t � 6.

r � f (t) �
t

2t � 4
,  0 � t � 12

First Method
Using the formula for ( f � g)(x) 
developed in Example 2, we have

and, therefore,

Alternative Method
Working directly from the definition
of f � g, we have

 � 25

 � (�5)2

 � f (�5)
 � f [3(�2) � 1]

 ( f � g)(�2) � f [g(�2)]

 � 25

 � 36 � 12 � 1

 ( f � g)(�2) � 9(�2)2 � 6(�2) � 1

( f � g)(x) � 9x2 � 6x � 1
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(a)

After squaring the fraction in this last expression, we obtain

(1)

Since f (t) expresses the radius in terms of time, our result in equation (1) gives
the area of the oil spill in terms of time.

(b) By definition (from Section 3.3) the average rate of change of the function A � f
on the interval [0, 6] is given by

(2)

To evaluate the difference quotient on the right side of equation (2), we need to
find (A � f )(6) and (A � f )(0). Exercise 33 asks you to use equation (1) to check
that (A � f )(6) � 9p�64 and (A � f )(0) � 0. Assuming these results, equation (2)
becomes

Check the arithmetic.

That is, on average over the first 6 hours, the area of the oil spill is increasing at
approximately 0.07 (square miles)/hour. (Exercise 34 asks you to compute the
rate of change of the area over the next 6-hour period and to compare it to this
result for the first 6 hours.)

Afterword on the Solution to Example 5(b): A graphing utility can also be used for
the computations. For instance, with a TI-83 graphing calculator, in the screen,
one enters the three functions

Then, in the home screen, the required rate of change is obtained by evaluating the

expression or, more simply, since in this example Y3(0) � 0.

For other types of graphing utilities, consult your user’s manual.
One reason for studying the composition of functions is that it lets us express a

given function in terms of simpler functions. This procedure is often useful in calcu-
lus. Suppose, for example, that we wish to express the function C defined by

as a composition of simpler functions. That is, we want to find functions f and g with
the property that the domain of f � g is the domain of C, which is all real numbers, and

C(x) � (2x3 � 5)2

Y3(6)

6
,

Y3(6) � Y3(0)

6 � 0

Y1 �
x

2x � 4
  Y2 � px2  Y3 � Y1(Y2)

Y�

 � 0.07 (sq. miles)/hour
 � 3p�128

 
¢(A � f )

¢t
�

9p�64

6

¢(A � f )

¢t
�

(A � f )(6) � (A � f )(0)

6 � 0

(A � f )(t) �
pt2

4t2 � 16t � 16

 � p a t

2t � 4
b 2

 (A � f )(t) � A[ f (t)] � A a t

2t � 4
bSOLUTION
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the equation

holds for all x in this domain.
We begin by thinking what we would do to compute (2x3 � 5)2 for a given value

of x. First, we would compute the quantity 2x3 � 5, then we would square the result.
Therefore, recalling that the rule f � g tells us to do g first, we let g(x) � 2x3 � 5.
Then, since the next step is squaring, we let f (x) � x2. Now let’s see whether these
choices for f and g are correct. First, we check that the domain of f � g is the domain
of C, which is all real numbers. The domains of f and g are all real numbers. So the
domain of f � g, which is the set of all x in the domain of g such that g(x) is in the
domain of f, is the set of all real x such that 2x3 � 5 is a real number, which is all
real x. Hence the domain of f � g is the same as the domain of C. Second, we check
that the equation ( f � g)(x) � C(x) holds for all x in this domain.

This equation shows that our choices for f and g were indeed correct, and we have
expressed C as a composition of two simpler functions.*

Note that in expressing C as f � g, we chose g to be the “inner” function, that is,
the quantity inside the parentheses: g(x) � 2x3 � 5. This observation is used in
Example 6.

( f � g)(x) � f [g(x)] � f (2x3 � 5) � (2x3 � 5)2 � C(x)

( f � g)(x) � C(x)

*Other answers are possible, too. For instance, if F (x) � (x � 5)2 and G(x) � 2x3, then (as you
should verify for yourself) C(x) � F [G(x)].

EXAMPLE

SOLUTION

6 Expressing a Function in Terms of Two Simpler Functions

Let s(x) � Express the function s as a composition of two simpler
functions f and g.

Let g be the “inner” function; that is, let g(x) be the quantity inside the radical:

and let’s take f to be the fourth root function:

The domain of s is all real numbers for which 1 � x2 
 0. Solving this inequality
using the methods of Section 2.4, we find that �1 	 x 	 1. We need to verify that
the domain of f � g is also all real x such that �1 	 x 	 1. The domain of f is the
nonnegative numbers and the domain of g is all real numbers. So, the domain of f � g
is all real x such that g(x) is in the domain of f. Now g(x) � 1 � x2, which is non-
negative for all x such that �1 	 x 	 1. So the domain of f � g is all real x for which
�1 	 x 	 1, which is the same as the domain of s. Next we need to check that the
equation ( f � g)(x) � s(x) is true for all x in their common domain. We have

Thus ( f � g)(x) � s(x), as required.

( f � g)(x) � f [g(x)] � f (1 � x2) � 2
4 1 � x2 � s(x)

f (x) � 1
4 x

g(x) � 1 � x2

2
4 1 � x2.
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Now that we’ve seen how to combine functions by arithmetic and by composi-
tion, a question that naturally arises is: If two functions share a common property and
we combine them in some way, for example, by addition or composition, does the
resulting function share the same property? The next example is typical.

EXAMPLE

SOLUTION

7 Combining Even and Odd Functions

Let f be an even function and g be an odd function, both with domain all real numbers.

(a) Determine whether the product fg is an even function, an odd function, or neither.
(b) Determine whether the composition f � g is even, odd, or neither.
(c) Determine whether the quotient f�g is even, odd, or neither.

(a) The domain of fg is all real numbers. So, for any number x in the domain of
fg, �x is also in the domain of fg. Now

( fg)(�x) � [ f (�x)][g(�x)] � [ f (x)][�g(x)] since f is even and g is odd
� �[ f (x)][g(x)] � �( fg)(x)

So the domain of fg is symmetric about the origin and ( fg)(�x) � �( fg)(x).
Hence fg is an odd function.

(b) The domain of the composition f � g is the domain of g, which is all real numbers
and thus symmetric about zero. Also

( f � g)(�x) � f [g(�x)] � f [�g(x)] � f [g(x)] since g is odd and f is even
� ( f � g)(x)

Therefore f � g is an even function.
(c) Since the domains of f and g are all real numbers, the domain of the quotient f�g

is all real numbers a except those for which g(a) � 0. Now if g(a) � 0, then,
since g is an odd function, g(�a) is also zero since g(�a) � �g(a) � 0. So the
numbers for which g(x) � 0 come in pairs that are symmetric about zero. When
we eliminate these numbers, what’s left is a domain for f�g that is still symmet-
ric about zero. Then for any number x in the domain of f�g, �x is also in the
domain and

Therefore f�g is an odd function.

We conclude this section by describing the process of iteration for a function.
This simple process is of fundamental importance in modern mathematics and sci-
ence in the study of fractals and chaos.* The process of iteration is sequential; it pro-
ceeds step by step. We begin with a function f and an initial input x0. In the first step,
we compute the output f (x0). For the second step, we use the number f (x0) as an input
for f and compute f ( f (x0)). The process then continues in this way: At each step, we
use the output from the previous step as the new input.

a f

g
b (�x) �

f (�x)

g(�x)
�

f (x)

�g(x)
� �

f (x)

g(x)
� � a f

g
b (x)

*See, for example, pp. 314–363 in The Nature and Power of Mathematics by Donald M. Davis
(Princeton, N.J.: Princeton University Press, 1993). For a wider view, see Chaos: Making a
New Science by James Gleick (New York: Penguin Books, 1988).
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For example, suppose that we start with the function f (x) � x�2 and the input
x0 � 6. Then, for the first three steps in the iteration process, we have

After this a calculator becomes convenient. Check for yourself that the iterations
run as follows:

This list of numbers is called the orbit of 6 under the function f. In the list or orbit,
the number 3 is the first iterate of 6, the number 1.5 is the second iterate of 6, and so
on. In the box that follows, we summarize these ideas and introduce a useful notation
for the iterates.

6 S 3 S 1.5 S 0.75 S 0.375 S 0.1875 S 0.09375 S 0.046875 S p

 f (1.5) �
1.5

2
� 0.75

 f (3) �
3

2
� 1.5

 f (6) �
6

2
� 3

Definition Iterates

Given a function f and an input x0, the iterates of x0 are the numbers f (x0), f ( f (x0)),
f ( f ( f (x0))), and so on. The number f (x0) is called the first iterate, the number f ( f (x0))
is called the second iterate, and so on. Subscript notation is used to denote the
iterates as follows.

The orbit of x0 under the function f is the list of numbers x0, x1, x2, x3, . . . .

Notice that the subscripts in this notation tell you how many times to apply the func-
tion f. For example, x1 indicates that f is applied once to obtain f (x0), and x2 indicates
that the function is applied twice to obtain f ( f (x0)).

 o
 x3 � f ( f ( f (x0))) the third iterate
 x2 � f ( f (x0))  the second iterate
 x1 � f (x0)  the first iterate

EXAMPLE

SOLUTION

8 Computing Iterates

Compute the first four iterates in each case. Use a calculator as necessary. In part (b),
round the final answer to three decimal places.

(a) f (x) � x2, x0 � �2 (b) g(x) � x0 � 0.1

(a)

 x4 � (256)2 � 65,536
 x3 � (16)2 � 256
 x2 � (4)2 � 16
 x1 � (�2)2 � 4

1x,
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(b) We use the square root key (or keys) on the calculator repeatedly. As you should
check for yourself, this yields

rounding to three 
decimal places

The process of iterating a function can be visualized in an x-y coordinate sys-
tem. We sketch the function y � f (x) along with the line y � x, as in Figure 3. Then,
starting with the initial input x0 on the x-axis, we follow the horizontal and vertical
segments to determine points P, Q, and R on the graph of f. As the next paragraph
explains, the y-coordinates of the points P, Q, and R are the first, second, and third
iterates, respectively, of x0. Additional iterates are obtained by continuing this pat-
tern. In Figure 4 we show how this looks in a specific case. The y-coordinates of the
five points P, Q, R, S, and T are the first five iterates of x0 � 0.1 under the function
g(x) � �4x2 � 4x. Although Figure 4 at first appears more complicated than Fig-
ure 3, it is important to understand that the pattern is formed in exactly the same way.
We start with the initial input on the x-axis and travel vertically to determine the point
P on the curve. After that, each successive point on the curve is generated in the same
way: Go horizontally to the line y � x and then vertically to the curve.

As we’ve said, this paragraph explains why the y-coordinates of the three points
P, Q, and R in Figure 3 are, respectively, the first three iterates of x0 under the func-
tion f. In Figure 3 the x-coordinate of P is given to be x0. So (according to the defi-
nition of the graph of a function), the y-coordinate of P is f (x0). In other words, the
y-coordinate of P is the first iterate of x0. Next in Figure 3, we move horizontally from
the point P to the point A. Because the movement is horizontal, the y-coordinate
doesn’t change; it’s the y-coordinate of P, or f (x0). Now, what about the x-coordinate
of A? Since the point A lies on the line y � x, the x- and y-coordinates of A must
be identical. Consequently, the x-coordinate of A must be the number f (x0). Finally,
we move vertically in Figure 3 from A to Q. The point Q has the same x-coordinate

 x4 � 10.749989 . . . � 0.865964 . . . � 0.866

 x3 � 10.562341 . . . � 0.749894 . . .

 x2 � 10.316227 . . . � 0.562341 . . .

 x1 � 10.1 � 0.316227 . . .

R

Q

P
A

B

x¸

y=x
y=ƒ

y

x

0.2

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

R

T

Q

S

P

©=_4≈+4x

y=x

x

y

x¸=0.1

Figure 4
Graphical iteration of
g(x) � �4x2 � 4x with initial 
input x0 � 0.1. The y-coordinates
of the five points P, Q, R, S, and
T are, respectively, the first five
iterates of x0.

Figure 3
The y-coordinates of the points P,
Q, and R are, respectively, the 
first three iterates of x0 under the
function f.
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as the point A, namely, f (x0). Now, since Q lies on the graph of the function f, we
conclude that the y-coordinate of Q is f ( f (x0)). That is, the y-coordinate of Q is indeed
the second iterate of x0. The reasoning to show that the y-coordinate of R is the third
iterate of x0 is entirely similar, so we omit giving the details here.

EXERCISE SET 3.5

A
In Exercises 1–8, compute each expression, given that the
functions f, g, h, k, and m are defined as follows:

for all x

1. (a) ( f � g)(x) 2. (a) ( fh)(x) 3. (a) (m � f )(x)
(b) ( f � g)(x) (b) (h�f )(x) (b) ( f � m)(x)
(c) ( f � g)(0) (c) ( f�h)(1)

4. (a) ( fg)(x) 5. (a) ( fk)(x)
(b) ( fg)(1�2) (b) (kf )(x)

(c) ( fk)(1) � (kf )(2)
6. (a) (g � m)(x)

(b) (g � m)(x) � (g � m)(x)
7. (a) ( f�m)(x) � (m�f )(x)

(b) ( f�m)(0) � (m�f )(0)
8. (a) [h # ( f � m)](x) Note: h and ( f � m) are two funtions;

the notation h # ( f � m) denotes the product function.
(b) (hf )(x) � (hm)(x)

9. Let f(x) � 3x � 1 and g(x) � �2x � 5. Compute the
following.
(a) ( f � g)(x) (c) (g � f )(x)
(b) ( f � g)(10) (d) (g � f )(10)

10. Let f(x) � 1 � 2x2 and g(x) � x � 1. Compute the
following.
(a) ( f � g)(x) (d) (g � f )(�1)
(b) ( f � g)(�1) (e) ( f � f )(x)
(c) (g � f )(x) (f) (g � g)(�1)

11. Compute ( f � g)(x), ( f � g)(�2), (g � f )(x), and (g � f )(�2)
for each pair of functions.
(a) f (x) � x2 � 3x � 4; g(x) � 2 � 3x
(b) f (x) � 2x; g(x) � x2 � 1
(c) f (x) � x; g(x) � 3x5 � 4x2

(d) f (x) � 3x � 4; g(x) � (x � 4)�3
12. Let h(x) � 4x2 � 5x � 1, k(x) � x, and m(x) � 7 for all x.

Compute the following.
(a) h[k(x)] (c) h[m(x)] (e) k[m(x)]
(b) k[h(x)] (d) m[h(x)] (f) m[k(x)]

13. Let F(x) � and G(x) � Find the domains of

the compositions F � G and G � F. Then compute the
following:
(a) (F � G)(x) (c) (F � G)(2) (e) G[F (y)]
(b) F [G(t)] (d) (G � F )(x) (f) (G � F )(2)

x � 1

x � 1
.

3x � 4

3x � 3

 h(x) � x3   
 g(x) � x2 � 3x � 6   m(x) � x2 � 9
 f (x) � 2x � 1   k(x) � 2, 

14. Let f(x) � (1�x2) � 1 and g(x) � 1�(x � 1)
(a) Compute ( f � g)(x).
(b) What is the domain of f � g?
(c) Graph the function f � g.

15. Let M(x) � (2x � 1)�(x � 2).
(a) Compute M(7) and then M[M(7)].
(b) Compute (M � M)(x).
(c) Compute (M � M)(7), using the formula you obtained

in part (b). Check that your answer agrees with that
obtained in part (a).

16. Let F(x) � (x � 1)5, f (x) � x5, and g(x) � x � 1. Which of
the following is true for all x?

17. Refer to the graphs of the functions f, g, and h to compute
the required quantities. Assume that all the axes are marked
off in one-unit intervals

(a) f [g(3)] (d) (h � g)(2)
(b) g[ f (3)] (e) h{f [g(3)]}
(c) f [h(3)] (f) (g � f � h � f )(2)

x

y

y=h(x)

(c)

x

y

y=ƒ

(a)

x

y

y=©

(b)

( f � g)(x) � F(x)  or  (g � f )(x) � F(x)
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22. Let f(x) � and g(x) � x � 6.
(a) What is the relationship between the graphs of the two

functions f and f � g? (As in Exercise 21, the idea here
is to answer without looking at the graphs.)

(b) Use a graphing utility to check your answer in part (a).
23. Let g(x) � � 3 and f (x) � x � 1.

(a) Sketch a graph of g. Specify the domain and range.
(b) Sketch a graph of f. Specify the domain and range.
(c) Compute ( f � g)(x). Graph the function f � g and specify

its domain and range.
(d) Find a formula for g[ f (x)]. Which values of x are accept-

able inputs here? That is, what is the domain of g � f ?
(e) Use the results of part (d) to sketch a graph of the

function g � f.
24. Let F(x) � �x2 and G(x) � Determine the domains of

F � G and G � F.
25. Suppose that an oil spill in a lake covers a circular area

and that the radius of the circle is increasing according 
to the formula r � f (t) � 15 � t1.65, where t represents 
the number of hours since the spill was first observed and
the radius r is measured in meters. (Thus when the spill
was first discovered, t � 0 hr and the initial radius was
r � f (0) � 15 � 01.65 � 15 m.)
(a) Let A(r) � pr2, as in Example 5. Compute a table of

values for the composite function A � f with t running
from 0 to 5 in increments of 0.5. (Round each output to
the nearest integer.) Then use the table to answer the
questions that follow in parts (b) through (d).

(b) After 1 hr, what is the area of the spill (rounded to the
nearest 10 m2)?

(c) Initially, what was the area of the spill (when t � 0)?
Approximately how many hours does it take for this
area to double?

(d) Compute the average rate of change of the area of the
spill from t � 0 to t � 2.5 and from t � 2.5 to t � 5.
Over which of the two intervals is the area increasing
faster?

26. A spherical weather balloon is being inflated in such a way
that the radius is given by

Assume that r is in meters and t is in seconds, with t � 0
corresponding to the time that inflation begins. If the
volume of a sphere of radius r is given by

compute V[g(t)] and use this to find the time at which the
volume of the balloon is 36p m3.

27. Suppose that a manufacturer knows that the daily produc-
tion cost to build x bicycles is given by the function C,
where

C(x) � 100 � 90x � x2  (0 	 x 	 40)

V(r) �
4

3
pr3

r � g(t) �
1

2
t � 2

1x.

1x

2x3 � 2x � 17Note: The notation in part (f) means first do f, then h,
then f, then g.

18. (a) Let T(x) � 4x3 � 3x2 � 6x � 1 and I(x) � x. Find
(T � I )(x) and (I � T(x).

(b) Let G(x) � ax2 � bx � c and I(x) � x. Find (G � I )(x)
and (I � G)(x).

(c) What general conclusion do you arrive at from the
results of parts (a) and (b)?

19. The domain of a function f consists of the numbers �1, 0,
1, 2, and 3. The following table shows the output that f
assigns to each input.

x �1 0 1 2 3

f (x) 2 2 0 3 1

The domain of a function g consists of the numbers 0, 1,
2, 3, and 4. The following table shows the output that g
assigns to each input.

x 0 1 2 3 4

g(x) 3 2 0 4 �1

Use this information to complete the following tables for
f � g and g � f. Note: Two of the entries will be undefined.

x 0 1 2 3 4

( f � g)(x)

x �1 0 1 2 3 4

( g � f )(x)

20. The following two tables show certain pairs of inputs and
outputs for functions f and g.

x 0 p�6 p�4 p�3 p�2

f (x) 0 1�2 1

y 0 1�4 1�2 3�4 1

g(y) p�2 p 0 p�3 p�4 0 p�6 0

Use this information to complete the following table of
values for (g � f )(x).

x 0 p�6 p�4 p�3 p�2

( g � f )(x)

21. Let f(x) � x3 � 2x and g(x) � x � 4.
(a) What is the relationship between the graphs of the two

functions f and f � g? (The idea here is to answer without
looking at the graphs; use a concept from Section 3.4.)

(b) Use a graphing utility to check your answer in part (a).

13/212/212/4

13�212�2
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was the area of the oil leak increasing faster over 
the first six hours or the second six hours?

(b) Graph the average-rate-of-change function
y � (A � f)(t) in the viewing rectangle [0, 12] by [0, 0.8].
Then draw two line segments, one connecting the two
points on the graph corresponding to t � 0 and t � 6,
the other connecting the two points corresponding to
t � 6 and t � 12. (If your graphing utility does not
have a draw feature, use hard copy and draw using a
ruler.) Explain in complete sentences how the picture
supports your answer to the question in part (a).

In Exercises 35–40, use the given function and compute the first
six iterates of each initial input x0. In cases in which a calculator
answer contains four or more decimal places, round the final
answer to three decimal places. (However, during the calcula-
tions, work with all of the decimal places that your calculator
affords.)

35. f (x) � 2x 36. f (x) �
(a) x0 � 1 (a) x0 � 16
(b) x0 � 0 (b) x0 � 0
(c) x0 � �1 (c) x0 � �16

37. g(x) � 2x � 1 38. g(x) � � 3
(a) x0 � �2 (a) x0 � 3
(b) x0 � �1 (b) x0 � 4
(c) x0 � 1 (c) x0 � 5

39. F (x) � x2 40. G(x) � x2 � 0.25
(a) x0 � 0.9 (a) x0 � 0.4
(b) x0 � 1 (b) x0 � 0.5
(c) x0 � 1.1 (c) x0 � 0.6

41. The accompanying figure shows a portion of the iteration
process for f (x) � with initial input x0 � 0.1. Use the
figure to estimate (to within 0.05) the first four iterates of
x0 � 0.1. Then, use a calculator to compute the four iter-
ates. (Round to three decimal places, where appropriate.)
Check that your calculator results are consistent with the
estimates obtained from the graph.

0.5

0.5

1.0

1.0
x¸=0.1

y=x

y=œ„x

1x

1
4 x

1
4 x

That is, C(x) represents the cost in dollars of building x
bicycles. Furthermore, suppose that the number of bicycles
that can be built in t hr is given by the function f, where

(a) Compute (C � f )(t).
(b) Compute the production cost on a day that the factory

operates for t � 3 hr.
(c) If the factory runs for 6 hr instead of 3 hr, is the cost

twice as much?
28. Suppose that in a certain biology lab experiment, the num-

ber of bacteria is related to the temperature T of the envi-
ronment by the function

Here, N(T) represents the number of bacteria present when
the temperature is T ° F. Also, suppose that t hr after the
experiment begins, the temperature is given by

(a) Compute N[T(t)].
(b) How many bacteria are present when t � 0 hr? When

t � 2 hr? When t � 5 hr?
29. Express each function as a composition of two functions.

(a) F (x) � (c) H(x) � (ax � b)5

(b) G(x) � 2x � 3 (d) T(x) � 1�
30. Let a(x) � x2, b(x) � x , and c(x) � 3x � 1. Express each

of the following functions as a composition of two of the
given functions.
(a) f (x) � (3x � 1)2 (c) h(x) � 3x2 � 1
(b) g(x) � 3x � 1

31. Let a(x) � 1�x, b(x) � c(x) � 2x � 1, and d(x) � x2.
Express each of the following functions as a composition
of two of the given functions.
(a) f (x) � (d) K(x) � 2 � 1

(b) g(x) � 1�x2 (e) l(x) � � 1

(c) h(x) � 2x2 � 1 (f) m(x) �

32. Express n(x) � x2�3 as a composition of two of the func-
tions given at the begining of Exercise 31. (If you don’t
recall the definition for fractional exponents, see the online
Appendix B.3.)

33. For this exercise, refer to equation (1) in Example 5.
(a) Show that (A � f )(0) � 0 and that (A � f )(6) � 9p�64.
(b) Use a graphing utility to graph the average-rate-of-

change function y � (A � f )(t). Note that the graph
appears to pass through the point (0, 0), which supports
the first result in part (a).

(c) By zooming in, estimate the y-coordinate of the
point on the graph corresponding to t � 6. What does
this have to do with part (a) of this exercise?

34. Refer to Example 5(b).
(a) Compute the average rate of change of A � f over the

time interval from t � 6 to t � 12 hours. On average,

1

2x � 1

2
x

1
3 x1

3 2x � 1

1
3 x,

00

00
1x00

1
3 3x � 4

T(t) � 10t � 40  (0 	 t 	 5)

N(T ) � �2T2 � 240T � 5400  (40 	 T 	 90)

x � f (t) � 5t  (0 	 t 	 8)
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to answer the following questions. For which n does xn first
reach 1 if x0 � 100? If x0 � 1000? If x0 � 104? (The previ-
ous Web address was accessible at the time of this writing,
July 2010.)

45. Let g(x) � 4x � 1. Find f (x), given that the equation
(g � f )(x) � x � 5 is true for all values of x.

46. Let g(x) � 2x � 1. Find f(x), given that (g � f )(x) � 10x � 7.
47. Let f(x) � �2x � 1 and g(x) � ax � b. Find a and b so the

equation f [g(x)] � x holds for all values of x.
48. Let f(x) � (3x � 4)�(x � 3).

(a) Compute ( f � f )(x).
(b) Find f [ f (113�355)]. (Try not to do it the hard way.)

49. Let f(x) � x2 and g(x) � 2x � 1.

(a) Compute 

(b) Compute 

Exercises 50 and 51 indicate how iteration is used in finding
roots of numbers and roots of equations. (The functions that are
given in each exercise were determined using Newton’s method,
a process studied in calculus.)

50. Let f(x) � 0.5

(a) Compute the first ten iterates of x0 � 1 under the
function f. What do you observe?

(b) Use your calculator to evaluate and compare 
the answer to your results in part (a). What do you
observe?

(c) It can be shown that for any positive number x0, the
iterates of x0 under the function f (x) � 0.5(x � 3�x)
always approach the number Looking at your
results in parts (a) and (b), which is the first iterate 
that agrees with through the first three decimal
places? Through the first eight decimal places?

(d) Compute the first ten iterates of x0 � 50 under the
function f, then answer the questions presented in
part (c).

51. Let f(x) �

(a) Compute the first ten iterates of x0 � 1 under the
function f. What do you observe?

(b) Evaluate the expression and compare the answer
to your results in part (a). What do you observe?

(c) It can be shown that for any positive number x0, the 

iterates of x0 under the function f (x) �

always approach the number Looking at your re-
sults in parts (a) and (b), which is the first iterate that
agrees with through the first three decimal places?
Through the first eight decimal places?

1
3 7

1
3 7.

2x3 � 7

3x2

1
3 7

2x3 � 7

3x2 .

13

13.

13

a x �
3
x
b .

f [g(x)] � f [g(a)]

x � a
.

f [g(x)] � f [g(a)]

g(x) � g(a)
.

42. The following figure shows a portion of the iteration
process for f (x) � 3.6(x � x2) with initial input x0 � 0.3.
Use the figure to estimate (to within 0.1, or closer if it
seems appropriate) the first seven iterates of x0 � 0.3.
Then, use a calculator to compute the seven iterates.
(Round the final answers to three decimal places.) Check
that your calculator results are consistent with the estimates
obtained from the graph.

B
43. The 3x � 1 conjecture Define a function f, with domain

the positive integers, as follows:

(a) Compute f(1), f(2), f(3), f(4), f(5), and f(6).
(b) Compute the first three iterates of x0 � 1.
(c) Compute the iterates of x0 � 3 until you obtain the

value 1. [After this, the iterates will recycle through
the simple pattern obtained in part (b).]

(d) The 3x � 1 conjecture asserts that for any positive
integer x0, the iterates eventually return to the value 1.
Verify that this conjecture is valid for each of the
following values of x0: 2, 4, 5, 6, and 7.

Remark: At present, the 3x � 1 conjecture is indeed a
conjecture, not a theorem. No one yet has found a proof
that the assertion is valid for every positive integer.
Computer checks, however, have verified the conjecture on
a case-by-case basis for very large values of x0. As of
April 2000, the conjecture had been verified for all values
of x0 up to approximately 1.8 � 1016.

44. The 3x � 1 conjecture (continued from Exercise 43)
If you have access to the Internet, use Alfred Wassermann’s
3x � 1 on-line calculator located at

http://did.mat.uni-bayreuth.de/personen/wassermann/
fun/3np1_e.html

f (x) � e3x � 1

x�2
 

if x is odd

if x is even

0.5

1.0

0.5

1.0
x¸=0.3

y=x

y=3.6(x _ x@)

http://did.mat.uni-bayreuth.de/personen/wassermann/fun/3np1_e.html
http://did.mat.uni-bayreuth.de/personen/wassermann/fun/3np1_e.html
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is, what pattern emerges in the iterates? Answer in
complete sentences.

53. Let f and g be functions with domain all real numbers.
(a) Let f and g be even functions. Determine whether f � g

is an even function, odd function, or neither.
(b) Let f and g be odd functions. Determine whether the

product fg is even, odd, or neither.
(c) Let f be an even function and g an odd function.

Determine whether the sum f � g is even, odd, or
neither.

(d) Let f and g be even functions. Determine whether the
quotient f�g is even, odd, or neither. (Hint: You need
to show that the domain of f�g is symmetric about the
origin.)

(e) Let f be an odd function and g be an even function.
Determine whether the composition f � g is even, odd,
or neither.

C
52. Let f(x) � where c denotes a constant.

(a) If c � �1, show that f ( f (x)) � x.
(b) Use a graphing utility to support the result in part (a). 

That is, enter the function f(x) � and then 

have the machine graph the two functions y � x and
y � f ( f (x)) in the same picture.

(c) What does the result in part (a) tell you about the itera-
tion process for the function y � (x � 3)�(x � 1)? That
is, what pattern emerges in the iterates? Answer in
complete sentences.

(d) Now assume c � 1, instead of �1. Show that
f ( f ( f (x))) � x.

(e) Use a graphing utility to support the result in part (d).
(f) What does the result in part (d) tell you about the itera-

tion process for the function y � (x � 3)�(x � 1)? That

x � 3

x � 1
,

x � 3

x � c
,

MINI PROJECT A Graphical Approach to Composition of Functions

As we saw in this section, the iteration process can be carried out either alge-
braically or graphically. Composition of functions can also be represented
graphically. The accompanying figure shows the graphs of two functions f
and g, the line y � x, and an input a. Use the figure and the ideas of this section
to discover the coordinates of the four indicated points. In particular, explain
how to find the point {a, g[ f(a)]} on the graph of the composite function g � f.

x

y

a

y=x

y=ƒy=g(x)

3.6 INVERSE FUNCTIONS
If anybody ever told me why the graph of y � x1�2 is the reflection of the graph of
y � x2 in a 45° line, it didn’t sink in. To this day, there are textbooks that expect
students to think that it is so obvious as to need no explanation. This is a pity, if only
because [in calculus] it is such a common practice to define the natural logarithm first
and then define the exponential function as its inverse. —Professor Ralph P. Boas,

recalling his student days in the article “Inverse Functions” in The College Mathematics Journal,

vol. 16 (1985), p. 42.
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Definition One-to-One Functions

A function f is a one-to-one function if each element in the range of f comes from a
unique element in the domain of f.

Equivalently we can say a function is one-to-one if each element in the domain has
an exclusive range value.

Notation: f is 1-1.

We can sometimes use algebra to determine if a function is one-to-one. For a
function f, consider the equation f (a) � f (b) (an equation in the two variables a
and b). Clearly a � b is a solution of this equation. If there is any other solution, that
is, any identity relating a and b other than a � b, for which f (a) � f (b), then f is not
one-to-one. So we can say f is one-to-one if the equation f (a) � f (b) is satisfied only
when a � b.

EXAMPLE

SOLUTION

1 Using Algebra to Show a Function Is One-to-One

Show that the function f given by f(x) � 4x � 7, for all real numbers x, is one-to-one.

For the function f given by f (x) � 4x � 7, consider the equation f (a) � f (b). Then
4a � 7 � 4b � 7, which implies 4a � 4b, which implies a � b. So the only
solution to f (a) � f (b) is a � b. Thus f (x) � 4x � 7, for all real numbers x, is a
one-to-one function.

Consider the linear equation 2x � 1 � 15. Solving for x, we get 2x � 15 � 1, then
x � (15 � 1) � 7. There is nothing special about the number 15. In fact, for any real
number y, we can solve the equation 2x � 1 � y for x in exactly the same way. We get
2x � y � 1 then x � (y � 1). From this “general” equation we see that 2x � 1 � y
has a unique solution x � (y � 1) for any real number y.

From a function point of view, start with the function f that takes a real number
x, doubles it, then adds one. So f (x) � 2x � 1. For each real number x, there is a
unique real number y � f (x) � 2x + l. The domain of f is the set of all real numbers.
The range of f is also the set of all real numbers. Why? In the previous paragraph we
showed that x � (y � 1) has the property that for any real number y, f (y � 1) � y.
So any real number y is in the range of f. The fact that x � (y � 1) is the unique
solution to the equation y � 2x + l allows us to define x as a function of y. So the
equation y � 2x � l defines two functions: y as a function of x for all real numbers
x, and x as a function of y for all real numbers y.

In general, when does y as a function f of x also determine x as a function of y?
As our example indicates, x will be a function of y if each y in the range of f comes
from only one x in the domain of f. We give this property a name.

1
2

43 121
2

1
2

1
2

1
2

EXAMPLE 2 Using Algebra to Show a Function Is Not One-to-One

Show that the function g given by g(x) � x2 � 4x � 3, for all real numbers x, is not
one-to-one.
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Definition Inverse Function

Let f be a one-to-one function. We define a new function, f, called the inverse
function of f, with a domain equal to the range of f and

f(y) � the unique number x in the domain of f such that f (x) � y, 
for each number y in the range of f.

In short, if f is a one-to-one function, then its inverse, f, is defined by

f(y) � x if and only if y � f (x)

Notation: f is usually denoted by the symbol f �1.

A picture helps to summarize this connection between a one-to-one function and
its inverse function. See Figure 1.

x y = f (x)

f one-to-one

˙ (or f _1)
Range of ˙ Domain of ˙

Domain of f Range of f

Figure 1

SOLUTION To see this, consider the equation g(a) � g(b). Then

a2 � 4a � 3 � b2 � 4b � 3
a2 � b2 � 4a � 4b � 0

(a � b)(a � b) � 4(a � b) � 0
(a � b)(a � b � 4) � 0 
a � b or a � b � 4 

Then g(a) � g(b), provided a � b or a and b are chosen so that a � b � 4. In
particular, if we take a � 3 and b � 1, we have g(3) � 32 � 4(3) � 3 � 0 and
g(1) � 12 � 4(1) � 1 � 0. So zero in the range of g comes from two distinct domain
values, 3 and 1. Therefore g(x) � x2 � 4x � 3, for all real numbers x, is not a one-to
one function.

Comment: You should choose another pair of numbers a and b with a b such that
g(a) � g(b). Doing so, you will prove that g is not one-to-one by finding another
range value of g that comes from two distinct domain values.

When a function is one-to-one, each range value comes from a unique domain
value. The fact that the domain value is unique allows us to define a new function
related to the original function.

�

The definition of inverse function and a look at Figure 1 reveal the three most
fundamental properties of an inverse function: what it does, what its domain is, and
what its range is. For a one-to-one function f with inverse function f, the definition
tells us f(y) equals the unique x in the domain of f such that f(x) � y. Figure 1 shows
that the domain of f is the range of f and that the range of f is the domain of f.

Using the definition of inverse function, we can prove a pair of very important
identities.
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For f a one-to-one function and f its inverse function, y � f (x) and x � f(y),
we have

1. f [f(y)] � y for y in the domain of f
2. f[ f (x)] � x for x in the domain of f

To prove the first identity, first note that for y in the domain of f, f(y) is in the range
of f, which is also the domain of f. So f [f(y)] makes sense. Then

f [f(y)] � f [the unique x such that f (x) � y] � y

or

f [f(y)] � f (x) since by hypothesis f (y) � x
� y since y � f (x)

To prove the second identity, first note that for x in the domain of f, f (x) is in the range
of f, which is also the domain of f. So f[ f (x)] makes sense. Then

f[ f (x)] � f(y) since by hypothesis y � f (x)
� x since by hypothesis f is the inverse of f

The fundamental inverse function identities are restated in the following sum-
mary box.

PROPERTY SUMMARY Fundamental Inverse Function Identities

For f a one-to-one function and f �1 its inverse function. 

f [ f �1(y)] � y , for y in the domain of f �1 (1)

f �1[ f (x)] � x , for x in the domain of f (2)

Now, if f is the inverse of f, then f is the inverse of f. See Exercise 50. With this
fact, identities 1 and 2 say roughly that the image of an element under the composition
of a function and its inverse is the element itself. But be careful. Identities 1 and 2
require a condition involving the domains of the functions. See Examples 10 and 11.

Identities l and 2 can be written in the form f � f � I and f � f � I, where �
denotes composition and I is the identity function on the appropriate domain. (Note:
I(z) � z for all z in its domain.) These expressions suggest the notation f� f�1, read
“f inverse.” We’ll use the f �1 notation to emphasize the notion of inverse function.
With this notation, identities l and 2 become f � f �1 � I and f � f �1 � I, again, for
appropriate domains. Caution: f �1 1�f.�

EXAMPLE

SOLUTION

3 Using Identity 1

Given f (x) � 4x3 � 7, find f[ f �1(5)]. (Assume that f �1 exists and that 5 is in its
domain.)

By identity 1, f [ f �1(y)] � y for all numbers y in the domain of f �1, which is also the
range of f, which is all real numbers. So, replacing y with 5 in identity 1, we imme-
diately obtain

f [ f �1(5)] � 5

Note: We did not need to use the equation f (x) � 4x3 � 7, nor did we need to find a
formula for f �1(y).
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EXAMPLE

SOLUTION

4 An Equation to Solve That Involves Inverse Functions

Solve the following equation for x, given that the domain of both f and f �1 is
(�q, q) and that f (1) � �2:

applying f to both sides 

by identity 1

 x � 1 � f (1) � 1 � (�2) � �1

 x � 1 � f (1)

 f [ f �1(x � 1)] � f (1)

 f �1(x � 1) � 1

 3 � f �1(x � 1) � 4

3 � f �1(x � 1) � 4

EXAMPLE

SOLUTION

5 Using Algebra to Find a Formula for an Inverse Function

Given f (x) � 2x � 1 for all real numbers x, prove f is a one-to-one function, and find
a formula for its inverse function f �1.

To show f is one-to-one, as was done in Example 1, consider the equation f (a) � f (b).
Solving, we have 2a � 1 � 2b � 1, which implies a � b. So f is one-to-one, and
f � f �1 exists.

To find a formula for the inverse function, note that in the introductory discussion
in this section, we showed that the range of f is the set of all real numbers. Then the
domain of f, which is the range of f, is also all real numbers. Then by identity 1, for
each real number y, we have f [f(y)] � y. Solving this for f(y) gives

2f(y) � 1 � y
2f(y) � y � 1

Thus the inverse function is , where y is any real number.

Comment: As pointed out in the introductory discussion, the function f takes a real
number x, doubles it, then adds 1 to give the number y � f (x) � 2x � 1. To reverse,
or undo what f does, we reverse the order of operation, that is, start with the number
y � 2x � 1 in the range of f, then subtract 1, then divide by 2 to obtain the unique
x � (y � 1) in the domain of f, whose range value is y. This is precisely what the
function f �1 does to take a range value of f and give you back the unique domain
value of f that it came from.

We have been discussing the algebra of inverse functions. What about the geom-
etry? A function from the real numbers to the real numbers is one-to-one if and only
if horizontal lines cross the graph of y � f (x) in the x-y plane at most once. Can you
see why? Try drawing a picture. You should see that each y value in the range comes
from a unique x in the domain of f. The unique x value is the x-coordinate of the one
intersection of the graph with the horizontal line through the y-value.

1
2

f �1(y) �
y � 1

2

f(y) �
y � 1

2
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A function f is one-to-one if and only if each horizontal line intersects the graph of
y � f (x) in at most one point.

Figure 2 helps you to see why the horizontal line test is valid. Figure 2(a) shows
that each horizontal line intersects the graph of y � f (x) at exactly one point; so f
is one-to-one. Figure 2(b) shows a horizontal line intersecting the graph of y � g(x)
at two distinct points with x-coordinates a and b. From the graph, we see that
g(a) � g(b), even though a � b. Thus the function g represented in Figure 2(b) is not
one-to-one.

Horizontal Line Test

Figure 2

y

y=f(x)

(x, y)

x
x

(a)

y

y=g(x)

x
a b

(b)

EXAMPLE

SOLUTION

6 Using the Horizontal Line Test

Given f(x) � 2x � 1, for all real numbers x, show f is a one-to-one function.

The graph of y � f (x) is the line of slope 2 with y-intercept 1. See Figure 3(a).
The range of f is the set of all real numbers. For each number y in the range of f, the
horizontal line at y intersects the graph exactly once. (Hence each y in the range of
f corresponds to exactly one x in the domain of f.) So by the horizontal line test, f is
one-to-one.

(a)

x x

y

y (x, y)

y=f(x)=2x+1

(b)

x x

y

y (x, y)

x=f-1(y)

Figure 3

Figure 3(a) shows that y � f (x) � 2x � 1, with domain all real numbers, is a
one-to-one function. So f �1exists. What is the graph of f �1? It’s the same as the
graph of f! We must be careful how we label variables. To be precise, the graph of
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y � f (x) in Figure 3(a) is also the graph of x � f �1(y) in Figure 3(b). Why? The graph
of y � f (x) shows the y in the range of f corresponding to each x in the domain of f.
As f is one-to-one, each y in the range of f comes from a unique x in the domain 
of f. So the graph of y � f (x) also shows the unique x corresponding to each y. What
is the latter correspondence? It is precisely x � f �1(y), as shown in Figure 3(b).

We know from Example 5 that x � f �1(y) � (y � 1) for all real numbers y. Now
we normally graph functions with the independent variable along the horizontal axis
and the dependent variable along the vertical axis. So in Figure 4(a) we show the
graph of x � f �1(y) � (y � 1) in the y-x plane. f �1 is a linear function with slope 
and x-intercept � . Finally, we usually call the independent variable x and the de-
pendent variable y, so relabeling variables one last time, we get the graph of y �
f �1(x) � (x � 1), with domain all real x. See Figure 4(b). This is how we usually
present the graph of f �1.

1
2

1
2

1
2

1
2

1
2

(b)

x

y

(3, 1)

(1, 0)

1
2y=f-1(x)=   (x-1)

(a)

x

y
(3, 1)

(1, 0)

1
2x=f-1(y)=   (y-1)

(_   , 0)1
2 (_   , 0)1

2

Figure 4

(a)

y
y=f(x)=2x-1

x

(0, 1)
(1, 0)

y=f-1(x)=   (x-1)1
2

(3, 1)

(1, 3)

y

(b)

y=f(x)=2x-1

x

(0, 1)

y=x

y=f-1(x)=   (x-1)1
2

(1, 3)

(1, 0)
(3, 1)(_   , 0)1

2

(0, _   )1
2 (0, _   )1

2

(_   , 0)1
2

Figure 5

What is the relationship between the graphs of y � f (x) and y � f �1(x) for a
one-to-one function f? In Example 5 and from Figures 3 and 4, we can graph both
y � f (x) � 2x � 1, for all real x, and y � f �1(x) � (x � 1), for all real x, in the same
picture. See Figure 5.

Figure 5(a) shows three pairs of points labeled on the graphs of f and f �1.
The points � , 0 , (1, 0), and (1, 3) on the graph of y � f (x) match up with the points
0, � , (0, 1), and (3, 1), respectively, on the graph of y � f �1(x). In particular, each

of the pairs of points � , 0 and 0, � , (0, 1) and (1, 0), and (1, 3) and (3, 1) is
symmetric about the line with equation y � x. See Figure 5(b). As background for the
remainder of our work on inverse functions, we give a definition of symmetry about
the line y � x in the box that follows. (After reading the definition, note that the
ideas involved are similar to those for symmetry about the x- or y-axis presented in
Section 1.7.)

4212121
213

2121 21
21

1
2
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x

y=x

y

P

Q

Figure 6

EXAMPLE

SOLUTION

7 Showing Two Given Points Are Symmetric About y � x

Verify that the points P(1, 3) and Q(3, 1) are symmetric about the line y � x (see
Figure 7).

We have to show that the line y � x is the perpendicular bisector of the line segment
Now, the slope of is

We know that the slope of the line y � x is 1. Since these two slopes are negative rec-
iprocals, we conclude that the line y � x is perpendicular to Next, we must show
that the line y � x passes through the midpoint of However (as you should check
for yourself), the midpoint of is (2, 2) which does lie on the line y � x. (Why?)
In summary, then, we’ve shown that the line y � x passes through the midpoint of 
and is perpendicular to Thus P and Q are symmetric about the line y � x, as we
wished to show.

Similarly, you can show the pair of points � , 0 and 0, � and the pair (0, 1)
and (1, 0) are symmetric about the line y � x. In fact, each point on the graph of
y � f (x) corresponds to a point on the graph of y � f �1(x), with the two points
symmetric about the line y � x. To see this, let (a, b) be a point on the graph of
y � f (x) � 2x � 1. Then b � 2a � 1. Why? It follows that a � (b � 1); so the point
(b, a) lies on the graph of y � f �1(x) � (x � 1). Why? The points (a, b) and (b, a)
are symmetric about the line y � x. Exercise 48 at the end of this section asks you to
supply a proof of this fact. As in our discussion of symmetry in Section 1.7, since
pairs of points on the graphs of f and f �1 are symmetric about the line y � x, we say
that the graphs of f and f �1 are symmetric about the line y � x. Intuitively, if the page
were folded along the line y � x, and then held up to the light, the graphs of f and f �1

would coincide. To say it another way, the graphs of f and f �1 are mirror images of
one another about the mirror line y � x.

1
2

1
2

212121
21

PQ.
PQ

PQ
PQ.

PQ.

m �
3 � 1

1 � 3
� �1

PQPQ.

x

y

y=x
P(1, 3)

Q(3, 1)

(2, 2)

Figure 7

Definition Symmetry About the Line y � x

Refer to Figure 6. Two points, P and Q, are symmetric about the line y � x provided
that

1. is perpendicular to the line y � x; and 
2. the points P and Q are equidistant from the line y � x.

This definition says that P and Q are symmetric about the line y � x if y � x is the
perpendicular bisector of line segment In Figure 6, we say that the two points P
and Q are reflections of each other about the line y � x and that y � x is the axis of
symmetry. In addition, we say that two curves are symmetric about y � x if each
point on one curve is the reflection of a corresponding point on the other curve, and
vice versa (see Figure 6).

PQ.

PQ



202 CHAPTER 3 Functions

The symmetry to the line y � x developed in Figure 5 is true in general. That is,
if f is a one-to-one function from the real numbers to the real numbers, then the
graphs of y � f (x) and y � f �1(x) are symmetric about the line y � x. To see this, let
(a, b) be a point on the graph of y � f (x). Then b � f (a), which implies f �1(b) �
f �1[ f (a)], which implies f �1(b) � a (by identity 2). So the point (b, a) lies on the
graph of y � f �1(x).

PROPERTY SUMMARY The Graphs of f and f�1

If f is a one-to-one function from the real numbers to the real numbers, then the
graphs of y � f (x) and y � f �1(x) are symmetric about the line y � x.

y

x
(a, b)

y=ƒ

y=x

y=f-!(x)

(b, a)

EXAMPLE

SOLUTION

8 Finding an Inverse Function and Its Graph

Let g(x) � x3. Find g�1(x), and then, on the same set of axes, sketch the graphs of
g, g�1, and y � x.

g is one-to-one by the horizontal line test. Hence g�1 exists. The domain of g�1

equals the range of g, which is the set of all real numbers; the range of g�1 equals the
domain of g, which is also all real numbers, and for all y in the domain of g�1 we have

g[g�1(y)] � y by identity 1
[g�1(y)]3 � y by the definition of g

g�1(y) �

Or g�1(x) � for all real x.

The graph of y � g�1(x) � is obtained by reflecting the graph of y � g(x) � x3 in
the line y � x. See Figure 8.

Next we give a more elaborate example.

1
3 x

1
3 x

1
3 y

y

x

©=˛

g-!(x)=Œ„x

-1 1

y=x

Figure 8

EXAMPLE 9 Finding an Inverse Function and Its Graph

For the function , with domain all real x � 3, find a formula for

f �1(x). Then, on the same set of axes, sketch the graphs of f, f �1, and the line y � x.

f (x) �
1

x � 3
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First we observe that f has domain all real numbers except 3 and range all real
numbers except 0. Next we show that f is one-to-one. Algebraically, for a, b in
the domain of f (not equal to three), f(a) � f (b) implies , which implies
a � 3 � b � 3, which implies a � b. So f is one-to-one. Or geometrically, from the
graph of f (the graph of y � translated to the right 3 units), we see that f is one-to-
one by the horizontal line test. Since f is one-to-one, f �1 exists. Its domain is the
range of f, all real numbers except 0, and its range is the domain of f, all real numbers
except 3. The graph of f �1 is the graph of f reflected in the line y � x. See Figure 9.

1
x

1
a � 3 � 1

b � 3

SOLUTION

y

y=f-1(x)=Δ+3

x

y=x

x=3

y=3

(1, 4)

(4, 1)(-1, 2)

(2, _1) y=f(x)=
1

x-3

Figure 9

EXAMPLE

SOLUTION

10 Finding an Inverse Function and Its Graph

For the function f(x) � x2, find a formula for an inverse function, sketch its graph,
and verify that the inverse satisfies identity 2.

If we take the usual domain (all real numbers), for f, then, by the horizontal line test
(or just noting that f (2) � f (�2) � 4), f is not one-to-one. So it doesn’t have an
inverse. The range of f is the interval [0, q). See Figure 10(a).

We can restrict the domain of f to obtain a one-to-one version of f with the same
range as f. For example, consider the function F defined by F(x) � x2, with domain
[0, q) and range [0, q). F is one-to-one by the horizontal line test. See Figure 10(b).
So F has an inverse function F�1 with domain and range [0, q). Again see Fig-
ure 10(b). We obtain the graph of F�1 by reflecting the graph of F in the line y � x.
See Figure 10(c).

To find a formula for the inverse, we use identity 1 with the variable now x. For
x in the domain of f �1, which is the range of f, which is all real x except 0, we have

Solving for f �1(x), we have ; so

Note: The graph of is the graph of translated up 3 units. It

is indeed the reflection of the graph of across the y � x line.y � f (x) �
1

x � 3

y �
1
x

y � f �1(x) �
1
x

� 3

f �1(x) �
1
x

� 3, x � 0.f �1(x) � 3 �
1
x

x � f [ f �1(x)] �
1

f �1(x) � 3
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To find a formula for F�1, let be x in [0, q), the domain of F�1. Then

x � F[F�1(x)] � [F�1(x)]2

Solving for F�1(x), we have F�1(x) � or � .
We can’t use both roots since F�1 is a function. Which root must we take?

Algebraically, since the range of F�1 equals the domain of F, which is the interval
[0, q), we must take F�1(x) � . Or, thinking geometrically, since the graph of
y � F�1(x) is the reflection of the graph of y � F(x) in the line y � x, we must have
F�1(x) 
 0; so F�1(x) � . Again see Figure 10(c).

Finally, to verify identity 2, let x be in the domain of F, [0, q), then

The last equality follows since x 
 0.

Comment: Similar reasoning yields another one-to-one version of f, h(x) � x2 with
domain (�q, 0] and inverse with domain [0, q). There are in fact
infinitely many one-to-one versions of f, but only two of them have “nice smooth”
graphs and the same range as f.

The last example in this section requires substantially more effort than the previ-
ous ones.

h�1(x) � �1x

F�1[F(x)] � F�1(x2) � 2x2 � 0 x 0 � x

1x

1x

1x1x

x

y
y=f(x)=x2

(a)

x

y
y=F(x)=x2

(b)

x

y
y=F(x)=x2

y=F-1(x)=œx

y=x

(c)

(1, 1)

Figure 10

EXAMPLE

SOLUTION

11 Finding an Inverse Function and Its Graph 

For the function f(x) � x2 � 2x � 3, find a formula for an inverse function, sketch its
graph, and verify that the inverse satisfies identity 2.

Completing the square, we have f (x) � (x2 � 2x � 1) � 3 � 1 � (x � 1)2 � 4. So
the graph of y � f (x) is the graph of y � x2, translated 1 unit to the right and 4 units
down. See Figure 11(a). If we take all real numbers for the domain of f then the range
is the interval [�4, q), and, by the horizontal line test, f is not one-to-one. So f
doesn’t have an inverse.

We can restrict the domain of f to obtain a one-to-one version of f with the same
range as f. For example, consider the function F defined by F(x) � x2 � 2x � 3, with
domain (�q, 1]. F has a range of [�4, q) and is one-to-one by the horizontal line
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test. See Figure 11(b). So F has an inverse function F�1 with domain [�4, q) and
range (�q, 1].

We can immediately obtain the graph of y � F�1(x) by reflecting the graph of
y � F(x) in the line y � x. See Figure 11(c).

To get a formula for F�1(x), consider that for x in the domain of F�1, we have

x � F[F�1(x)] � [F�1(x)]2 � 2F�1(x) � 3

Rearranging this equation and using the quadratic formula to solve for F�1(x), we have

So or .
We can’t use both roots since F�1 is a function. Which root must we take?

The range of F�1 is the domain of F, (�q, 1], so the correct choice is
. Alternatively, we see from the graph in Figure 11(c) that the

range of F�1 must decrease from 1 to �q, so again .

Note: Check that the graph of y � F�1(x) in Figure 11(c) can also be obtained from
the graph of by translating to the left 4 units, then reflecting in the x-axis,
and then translating up 1 unit.

To verify identity 2, consider that for x in (�q, 1], the domain of F,

since x � 1 	 0 for x 	 1

Comment: Similar reasoning yields another 1-1 version of f, h(x) � x2 � 2x � 3 
with domain [1, q), and inverse with domain [�4, q). See
Exercise 37.

h�1(x) � 1 � 1x � 4

 � 1 � (x � 1) � 1 � x � 1 � x

 � 1 � [�(x � 1)]

 � 1 � 2x2 � 2x � 1 � 1 � 2(x � 1)2 � 1 � 0 x � 1 0
 F�1[F(x)] � F�1(x2 � 2x � 3) � 1 � 2(x2 � 2x � 3) � 4

y � 1x

F�1(x) � 1 � 1x � 4
F�1(x) � 1 � 1x � 4

1 � 1x � 4F�1(x) � 1 � 1x � 4

 �
2 � 221 � (3 � x)

2
�

2(1 � 24 � x)

2
� 1 � 14 � x

 F�1(x) �
� (�2) � 2(�2)2 � 4(1)[�(3 � x)]

2(1)
�

2 � 24 � 4(3 � x)

2

[F�1(x)]2 � 2F�1(x) � (3 � x) � 0

y

x
(-1, 0) (3, 0)

(2,-3)

(1,-4) (1,-4)

  =x2-2x-3   =x2-2x-3

(a) (b)

x

y

(-1, 0)

(0,-3) (0,-3)

y=F(x)

y=F(x)

y=F-1(x)

(c)

y

x

(0,-1)

(-3, 0)

(0, -3)

(1, -4)

(-4, 1)

y=x

y=f(x)

=1-œx+4

Figure 11
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EXERCISE SET 3.6

A
1. If h and k are a pair of inverse functions, then (fill in the

blanks).
(a) h[k(x)] � _____ for every x in the domain of ______.
(b) k[h(x)] � _____ for every x in the domain of ______.

2. Let f(x) � x2 and g(x) � 1�x. Compute f [g(x)] and g[ f (x)],
and note that the results are identical. Then say why f and g
do not qualify as a pair of inverse functions.

In Exercises 3 and 4, suppose that f and g are a pair of inverse
functions.

3. If f(7) � 12, what is g(12)? (If you need a hint, reread
Example 3.)

4. If g(�2) � 0, what is f (0)?

In Exercises 5 and 6, let f (x) � x3 � 2x � 1, and assume that
f �1 exists and has domain (�q, q). Simplify each expression
(as in Example 4).

5. (a) f [ f �1(4)] (c) ( f � f �1)( )
(b) f �1[ f (�1)] (d) f [ f �1(t � 1)]

6. (a) f (0)
(b) f �1(1) Hint: Use the result in part (a).
(c) f (�1) (d) f �1(�2)

7. Let g(x) � 2x � 5
(a) Show g�1 exists.
(b) Find g�1(x) and the domain and range of g�1.

(c) Calculate g�1(3) and . Are they the same?

(d) Graph y � g(x), y � g�1(x), and y � x on the same set
of axes. Label carefully.

8. Let f(x) � 3x � 1
(a) Show f�1 exists.
(b) Find f�1(x) and the domain and range of f�1.
(c) Verify f [ f�1(x)] � x and f�1[ f (x)] � x, each for x in

the appropriate domain.
(d) Graph y � f (x), y � f�1(x), and y � x on the same set

of axes. Label carefully.
9. Follow Exercise 8, but use f (x) � � 2.

10. Follow Exercise 8, but use f (x) � [The domain of
f �1 will be [0, q).]

11. Follow Exercise 8, but use f (x) � 1�x.

12. Let .

(a) Find the domain and range of g.
(b) Show g�1 exists.
(c) Find g�1(t) and its domain and range.

13. Let .

(a) Find the domain and range of h.
(b) Show h�1 exists and find its domain and range.

h(x) �
1

x � 5

g(t) �
1

t
� 1

1x � 1.

1
3 x

1

g(3)

12

(c) Graph y � h(x), y � h�1(x), and y � x on the same set
of axes. 

(d) Find h�1(x).
Note that the graph of h�1 from part (c) agrees with the
graph of h�1 found in part (d).

14. Let f(x) � (x � 2)�(x � 3).
(a) Find the domain and range of the function f.
(b) Show f �1 exists and find its domain and range.
(c) Find f �1(x).

15. Let f(x) � (2x � 3)�(x � 4).
(a) Find the domain and range of f.
(b) Show f �1 exists and find its domain and range.
(c) Find f �1(x).

16. (a) Use a graphing utility to graph the following three
functions on the same set of axes.

If necessary, adjust the picture so that it shows true
proportions.

(b) Which two graphs appear to be symmetric about the
line y � x? Use algebra to verify that the two functions
are indeed inverses.

17. (a) Use a graphing utility to graph both g(x) �
and y � x on the same set of axes.

(b) What kind of symmetry do you observe? What does
this tell you about the inverse for g? [If you are uncer-
tain how to answer this last question, try coming back
to it after working part (c).]

(c) Find the domain and range of g and g�1 then use alge-
bra to find an explicit formula for g�1(x). What do you
observe?

For Exercises 18 and 19, refer to the following figure, which
shows the graph of a function f. (The axes are marked off in
one-unit intervals.) In each case, graph the indicated function.

18. (a) y � f �1(x) (c) y � f �1(x) � 2
(b) y � f �1(x � 2) (d) y � f �1(x � 2) � 2

y=ƒ

y

x

2
3 2 � x3

h(x) � 2
3 (x � 1)3 � 3

g(x) � 2
3 x3 � 1 � 3  

f (x) � 2
3 x3 � 3 � 1  
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37. Let g(x) � (x � 1)2 � 4.
(a) Find the domain and range of g.
(b) Show g is not one-to-one both graphically and

algebraically.
(c) Restrict the domain of g to get the largest domain of

the form [a, q) on which a one-to-one version of g
exists. Call this function G, and show both graphically
and algebraically that G is one-to-one.

(d) Find the domain and range of G�1.
(e) On the same set of axes, sketch the graphs of G, 

G�1, and the line y � x.
(f) Find G�1(x).

38. (a) In the standard viewing rectangle, graph two
functions

and

(b) Use the zoom feature of your graphing utility to find
out whether either function is one-to-one.

39. Let f(x) �
(a) Find f �1(x). What is the domain of f �1? [The domain is

not (�q, q).]
(b) In each case, determine whether the given point lies on

the graph of f or f �1.
(i) (4, 2)
(ii) (2, 4)
(iii) (5, )
(iv) ( 5)
(v) (a, f (a)), where a 
 0
(vi) ( f (a), a)
(vii) (b, f �1(b)), where b 
 0
(viii) ( f �1(b), b)

40. In the following figure, determine the coordinates of the
points A, B, C, and D. Express your answers in terms of the
function f and the number a. (Each dashed line through A is
parallel to an axis.)

a
x

y

A B
C

D

y=x

y=f-!(x)

y=ƒ

15,
15

1x.

 g(x) � x3 � 1.74x2 � x � 2

 f (x) � x3 � 1.73x2 � x � 2

19. (a) y � f �1(�x) (c) y � �f �1(�x)
(b) y � �f �1(x) (d) y � �f �1(�x) � 1

In Exercises 20–23, assume that the domain of f and f �1 is
(�q, q). Solve the equation for x or for t (whichever is
appropriate) using the given information.

20. (a) 7 � f �1(x � 1) � 9; f (2) � 6
(b) 4 � f (x � 3) � �3; f �1(�7) � 0

21. (a) f �1(2x � 3) � 5; f (5) � 13
(b) f (1 � 2x) � �4; f �1(�4) � �5

22. f �1 � 12; f (12) � 13

23. f � 7; f �1(7) � �3

For Exercises 24–28, use the horizontal line test to determine
whether the function is one-to-one (and therefore has an
inverse). (You should be able to sketch the graph of each
function on your own, without using a graphing utility.)

24. f (x) � �x2 � 1
25. g(x) � 5 (for all x)

26.

27.

28. g(x) � x3 � 1
29. Which of the six basic functions graphed in Figure 7 in

Section 3.2 are one-to-one?

In Exercises 30–35, use a graphing utility to graph each
function and then apply the horizontal line test to see whether
the function is one-to-one.

30. y � x2 � 2x
31. y � x3 � 2x
32. y � 2x3 � x2 Suggestion: Begin with the standard view-

ing rectangle and then use a zoom-in view. (First looks can
be deceiving.)

33. y � 0.01x4 � 1
34. y � 2x5 � x � 1
35. (a) f (x) � x3 � x2 � x

(b) g(x) � x3 � x2 � x
(c) h(x) � x3 � x2 � x

B
36. Let f(x) � (x � 3)3 � 1.

(a) Find the domain and range of f.
(b) Show f �1 exists and find its domain and range.
(c) On the same set of axes, sketch the graphs of f, 

f �1, and the line y � x.
(d) Now find f �1(x).

g(x) � e x2

x2 � 1
 

if �1 	 x � 0

if x 
 0

f (x) � e x2

x2 � 1
 

if �1 	 x 	 0

if x � 0

a 1 � 2t

1 � 2t
b

a t � 1

t � 2
b
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(g) y � f�1(x) (G) (�a, �b)
(h) y � f�1(x) � 1 (H) (�b, 1�a)
(i) y � f � 1(x � 1) (I) (b, �a)
(j) y � f�1(�x) � 1 (J) (a, �b)
(k) y � �f �1(x) (K) (b � 1, a)
(l) y � �f �1(�x) � 1 (L) (a � 1, b � 1)
(m) y � 1 � f �1(x) (M) (b, a � 1)
(n) y � f (1 � x) (N) (b, 1 � a)

45. Let f(x) � Show that the function f � f is the 

inverse of f.

46. Let f(x) � .

(a) Find f [ f (x)].
(b) Use a graphing utility to graph y � f [ f (x)]. Display

the graph using true proportions. What type of symme-
try does the graph appear to have?

(c) The result in part (b) suggests that the inverse of the
function f � f is again f � f. Use algebra to show that this
is indeed correct.

47. In this exercise you’ll investigate the inverse of a composite
function. In parts (b) and (c), which involve graphing, be
sure to use the same size unit and scale on both axes so that
symmetry about the line y � x can be checked visually.
(a) Let f(x) � 2x � 1 and g(x) � � 3. Compute each of

the following:
(i) f (g(x)) (iv) g�1(x)
(ii) g( f (x)) (v)i f �1(g�1(x))
(iii) f �1(x) (vi) g�1( f �1(x))

(b) On the same set of axes, graph the two answers that
you obtained in (i) and (v) of part (a). Note that the
graphs are not symmetric about y � x. The conclusion
here is that the inverse function for f(g(x)) is not
f �1(g�1(x)).

(c) On the same set of axes, graph the two answers that
you obtained in (i) and (vi) of part (a); also put the line
y � x into the picture. Note that the two graphs are
symmetric about the line y � x. The conclusion here
is that the inverse function for f (g(x)) is g�1( f �1(x)).
In fact, it can be shown that this result is true in gen-
eral. For reference, then, we summarize this fact
about the inverse of a composite function in the box
that follows.

48. Use the method of Example 7 to show that the points (a, b)
and (b, a) are symmetric about the line y � x.

49. In this exercise you will show that if a linear function has 
an inverse, then the inverse function is also linear. Let 
f (x) � mx � b, where m and b are constants, with m � 0.

Inverse of Composition
( f � g)�1 � g�1 � f �1

1
4 x

� 

2x � 2
x

1

1 � x
.

41. In the following figure, determine the coordinates of the
points A, B, C, D, E, and F. Specify the answers in terms of
the functions f and f�1 and the number b.

42. Let f(x) � 3�(x � 1).
(a) Find the average rate of change of f on the interval 

[4, 9].
(b) Find f �1(x) and then compute the average rate of

change of f �1 on the interval [ f (4), f(9)]. What do you
observe?

43. The accompanying figure shows the graph of a function f on
the interval [a, b]. If the average rate of change of f on the in-
terval [a, b] is k, show that the average rate of change of the
function f �1 on the interval [ f(a), f(b)] is 1�k, where k � 0.

44. Suppose that (a, b) is a point on the graph of y � f (x).
Match the functions defined in the left-hand column with
the points in the right-hand column. For example, the
appropriate match for (a) in the left-hand column is deter-
mined as follows. The graph of y � f (x) � 1 is obtained 
by translating the graph of y � f (x) up one unit. Thus the
point (a, b) moves up to (a, b � 1), and consequently, (E)
is the appropriate match for (a).
(a) y � f (x) � 1 (A) (�a, b)
(b) y � f (x � 1) (B) (b, a)
(c) y � f (x � 1) � 1 (C) (a � 1, b)
(d) y � f (�x) (D) (�b, a � 1)
(e) y � �f (x) (E) (a, b � 1)
(f) y � �f (�x) (F) (1 � a, b)

x
a

y

f(b)

f(a)

b

y=ƒ

b

y

x

B

C

E
F

D

A

y=x

y=f-!(x)

y=ƒ
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51. Let f be an increasing function.
(a) Show f is one-to-one. Hint: We need to show that, 

if a and b are in the domain of f with a � b, then
f (a) � f (b). Note that if a � b, then either a � b or
a � b. For each case, explain why f (a) � f (b).

(b) Show f�1 is an increasing function. Hint: According
to part (a) f�1 exists. We need to show that, if a and b
are in the domain of f�1 with a � b, then f�1(a) �
f�1(b). Let A � f�1(a) and B � f�1(b). Then explain
why f (A) � f (B). Then explain why A � B. Finally
conclude that f�1 is an increasing function.

(a) Show f �1 exists. Hint: Show f is one-to-one.
(b) Find a formula for f �1(x).
(c) Explain why f �1 is linear. In particular, what are the

slope and y-intercept of the graph of y � f �1(x)?
(d) What happens when m � 0?

C
50. Let f be a one-to-one function with inverse f�1.

(a) Show f is one-to-one.
(b) Show ( f�1)�1 � f, that is, the inverse of f�1 is f.

The Mini Project, A Frequently Asked Question About Inverse Functions, at 
http://www.cengage.com/math/cohen/precalc7e, gives a counterexample for inverse functions.

CHAPTER 3 Summary of Principal Terms and Formulas

Page
Terms or Notation Reference Comments

1. Function 130 Given two nonempty sets A and B, a function from A to B is a rule of
correspondence that assigns to each element of A exactly one element
in B.

2. Domain 131 The domain of a function is the set of all inputs for that function. If f is a
function from A to B, then the domain is the set A.

3. Range 131 The range of a function from A to B is the set of all elements in B that are
actually used as outputs.

4. f (x) 134 Given a function f, the notation f (x) denotes the output that results from
the input x.

5. Graph of a function 141 The graph of a function f consists of those points (x, y) such that x is in
the domain of f and y � f (x).

6. Vertical line test 142 A graph in the x-y plane represents a function y � f (x) provided that any
vertical line intersects the graph in at most one point.

7. Turning point 154 A turning point on a graph is a point where the graph changes from
rising to falling, or vice versa. See, for example, Figure 1 on page 154.

8. Maximum value and 154 An output f(a) is a maximum value of the function f if f(a) 
 f (x) 
minimum value for every x in the domain of f. An output f (b) is a minimum value if

f (b) 	 f (x) for every x in the domain of f.

CHAPTER 3 Summary

http://www.cengage.com/math/cohen/precalc7e
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Page
Terms or Notation Reference Comments

9. Increasing function 154 A function f is increasing on an interval if the following condition
holds: If a and b are in the interval and a � b, then f (a) � f (b).
Geometrically, this means that the graph is rising as we move in the
positive x-direction.

10. Decreasing function 154 A function f is decreasing on an interval if the following condition
holds: If a and b are in the interval and a � b, then f (a) � f (b).
Geometrically, this means that the graph is falling as we move in the
positive x-direction.

11. Average rate of change 157 The average rate of change, ¢f�¢x, of a function f on an interval 
[a, b] is the slope of the line segment through the two points 
(a, f (a)) and (b, f(b)):

12. Techniques for graphing 173 The box on page 173 lists techniques involving translation, reflection, 
functions and scaling. For comprehensive examples, see Examples 5, 6, and 7.

13. Even and odd functions 177 A function f with domain symmetric about zero is called an even
function if f (�a) � f (a) for all a in the domain, and called an odd
function if f (�a) � �f (a) for all a in the domain.

14. f � g 183 The composition of two functions f and g: ( f � g)(x) � f [g(x)]

15. Iterates 188 Given a function f and an input x0, the iterates of x0 are the numbers
f (x0), f ( f (x0)), f ( f ( f (x0))), . . . . The number f (x0) is called the first iterate,
the number f ( f (x0)) is called the second iterate, and so on. The orbit of
x0 under the function f is the list of numbers 

16. One-to-one function 195 A function f is said to be one-to-one provided that each range value
comes from exactly one domain value. Geometrically, this means that
every horizontal line intersects the graph of y � f (x) in at most one point.
Algebraically, this means that f satisfies the following condition: If a and
b are in the domain of f, then f (a) � f (b) only if a � b.

17. Inverse functions 196 A one-to-one function, f, has an inverse function, f, such that for each y
in the range of f, 

f(y) is the unique x in the domain of f for which f (x) � y

18. f �1 196 f �1 denotes the inverse function for f. Note: In this context, f �1 does
not mean 1�f.

19. Fundamental inverse 197 For a one-to-one function f with inverse function f�1,
function identities f [ f �1(y)] � y, for y in the domain of f�1

f �1[ f (x)] � x, for x in the domain of f

x0, f (x0), f ( f (x0)), . . .

¢ f

¢x
�

f (b) � f (a)

b � a
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1. Section 3.6 on inverse functions begins with the following
quotation from Professor R. P. Boas:

If anybody ever told me why the graph of y � x1�2 is
the reflection of the graph of y � x2 [x 
 0] in a 45°
line, it didn’t sink in. To this day, there are textbooks
that expect students to think that it is so obvious as to
need no explanation.

Show your instructor that you are not in the dark about inverse
functions. Write out an explanation of why the graphs of
y � x1�2 and y � x2 (x 
 0) are indeed reflections of one

another in a 45° line. (As preparation for your writing, you’ll
probably need to look over Section 3.6 and make a few notes.)

2. Decide which of the following rules are functions. Write out
your reasons in complete sentences. (In each case, assume
that the domain is the set of students in your school.)
(a) F is the rule that assigns to each person his or her brother.
(b) G is the rule that assigns to each person his or her aunt.
(c) H is the rule that assigns to each person his or her birth-

mother.
(d) K is the rule that assigns to each person his or her mother

or father.

Writing Mathematics

CHAPTER 3 Review Exercises

1. (a) Find the domain of the function defined by
f (x) �

(b) Find the range of the function defined by
g(x) � (3 � x)�(2x � 5).

2. Let f (x) � 3x2 � 4x and g(x) � 2x � 1. Compute each of the
following:
(a) ( f � g)(x)
(b) ( f � g)(x)
(c) f [g(�1)]

3. A linear function is a function defined by an equation of the
form F (x) � ax � b, where a and b are real numbers.
Suppose f and g are linear functions. Is the function f � g a
linear function?

4. A quadratic function is a function defined by an equation
of the form F(x) � ax2 � bx � c, where a, b, and c are real
numbers and a � 0.
(a) Give an example of quadratic functions f and g for

which f � g is also a quadratic function.
(b) Give an example of quadratic functions f and g for

which f � g is not a quadratic function.
(c) Suppose f and g are quadratic functions. Is the function

f � g a quadratic function?

5. (a) Compute given that F (x) � 1�x.

(b) Compute for the function defined 

by g(x) � x � 2x2.
6. The y-intercept for the graph of y � f (x) is 4. What is the

y-intercept for the graph of y � �f (x) � 1?

7. (a) Find g�1(x) given that g(x) �

(b) The figure displays the graph of a function f. Sketch the
graph of f �1.

1 � 5x

3x
.

g(x � h) � g(x)

h

F(x) � F(a)

x � a

115 � 5x.

8. Refer to the function f in Exercise 7(b).
(a) Compute ¢f�¢x on [�2, 5].
(b) Find the average rate of change of f�1 on [2, 7].

9. Graph each function and specify the intercepts.

(a) y � x � 2 � 3 (b) y � � 1

10. Refer to the following graph of y � g(x). The domain of g
is [�5, 2].
(a) What are the coordinates of the turning point(s)?
(b) What is the maximum value of g?
(c) Which input yields a minimum value for g?
(d) On which interval(s) is g increasing?
(e) Compute ¢g�¢x for each of the following intervals:

[�5, �3]; [�3, �2]; [�5, 2].

x

y

y=g(x)

1

x � 2
00

y

x

(5, 7)

(4, 3)

(_2, 2)
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In Exercises 20–36, sketch the graph and specify any x- or 
y-intercepts.

20. y � � 1 21. f (x) �

22. y � � 1 23. y � x � 3

24. y � � 25. y �
26. y � 4 � 27. y �
28. f � g, where g(x) � x � 3 and f (x) � x2

29. f � g, where g(x) � and f (x) � �x2

30.

31.

32. (y � x � 1)(y � x � 1) � 0

33. f �1, where f(x) � (x � 1)

34. g�1, where g(x) �
35. f � f �1, where f(x) �
36. f �1 � f, where f(x) �

In Exercises 37–42, find the domain of the function.

37. y � 1�(x2 � 9) 38. y � x3 � x2

39. y � 40. y �

41. y � 42. y �

In Exercises 43–46, determine the range of the function.

43. y �

44. f � g, where f(x) � 1�x and g(x) � 3x � 4

45. g � f, where f(x) � and g(x) �

46. f �1, where f(x) �
x

3x � 6

x � 1

x � 4

x � 2

x � 1

x � 4

3x � 1

25 � x22x2 � 2x � 3

x

6x2 � 7x � 3
18 � 2x

1x � 2
1x � 2
1

3 x � 2

1
2 

0000
y � e1�x

1�(x � 1)
 

if 0 � x 	 1

if 1 � x 	 2

f (x) � e21 � x2

1x � 1
 

if �1 	 x 	 0

if x � 0

1x � 1

11x 2 21�x
21 � x21x � 4

001

x � 1

1

x � 1
1
x

1

y

x

y=xA

B
C

1
2y= x+2

11. Let f(x) � 3x2 � 2x.
(a) Find f (�1). (b) Find f (1 � ).

12. Graph the function G defined by

13. Express the slope of a line passing through the points (5, 25)
and (5 � h, (5 � h)2) as a function of h.

14. Graph the function y � 9 � x2 . Specify symmetry and
intercepts.

15. The following figure shows the graph of a function y � f (x).
Sketch the graph of y � f (�x).

16. Let f be a function and (a, b) be a point on the graph of 
y � f (x). Shift the graph to the left 3 units, then make a hor-
izontal scale change by a factor of 2, then reflect in the x-axis,
then shift it down 4 units, and then reflect in the y-axis.
(a) Find the equation of the final graph.
(b) Find the point on the final graph corresponding to (a, b)

from the original graph.
17. Let f be a function and (a, b) be a point on the graph of 

y � f (x). The graph of y � f (x) is transformed. The resulting
graph has equation .
(a) Explain what sequence of transformations were made

on the original graph.
(b) Find the point on the final graph corresponding to (a, b)

from the original graph.
18. Given that the domains of f and f �1 are both (�q, q)

and that f �1(1) � �4, solve the following equation for t:
2 � f (3t � 5) � 3.

19. Let f(x) � � 2.
(a) Compute the first three iterates of x0 � 1.
(b) Refer to the following figure. Explain why the 

y-coordinates of the points A, B, and C are the iterates
that you computed in part (a).

(c) Determine the y-coordinate of the point where the lines
y � x and y � � 2 intersect. If we continue the
pattern of dashed lines in the figure, it appears that 
the iterates approach 4. Verify this empirically by using
your calculator to compute the fourth through tenth iter-
ates. (round your final answers to three decimal places.)

1
2 x

1
2 x

y � 1
10 f (4 � 5x) � 7

y

x

(1, _1)

(_2, 1)

(_1, 4)

00

G(x) � e21 � x2

1x
 

if �1 	 x � 0

if x 
 0
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86. Which is larger, f(�5�2) or f(�1�2)?
87. Compute f(0) � f (8).
88. Compute f (0) � f (8) .
89. Specify the coordinates of the turning points.
90. What are the minimum and the maximum values of f ?
91. On which interval(s) is f decreasing?
92. For which x-values is it true that 1 	 f (x) 	 4?
93. What is the largest value of f (x) when x 	 2?
94. Is f a one-to-one function?
95. Does f possess an inverse function?
96. Compute f [ f (�4)].

For Exercises 97–112, refer to the graphs of the functions f
and g in the following figure. Assume that the domain of each
function is [0, 10].

97. For which x-value is f (x) � g(x)?
98. For which x-values is it true that g(x) 	 f (x)?
99. (a) For which x-value is f (x) � 0?

(b) For which x-value is g(x) � 0?
100. Compute f(0) � g(0).
101. Compute each of the following.

(a) ( f � g)(8) (c) ( fg)(8)
(b) ( f � g)(8) (d) ( f�g)(8)

102. Compute each of the following.
(a) g[ f (5)] (c) (g � f )(5)
(b) f [g(5)] (d) ( f � g)(5)

103. Which is larger, ( f � f )(10) or (g � g)(10)?
104. Compute g[ f (10)] � f [g(10)].
105. For which x-values is it true that f(x) 
 3?
106. For which x-values is it true that f (x) � 3 	 1?
107. What is the largest number in the range of g?
108. Specify the coordinates of the highest point on the graph of

each of the following equations.
(a) y � �g(x) (c) y � �f (x)
(b) y � g(x � 1)

109. On which intervals is the function g decreasing?
110. What are the coordinates of the turning points of g?
111. For which values of x in the interval (4, 7) is the 

quantity negative?
f (x) � f (5)

x � 5

00
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00

00
In Exercises 47–54, express the function as a composition of
two or more of the following functions:

47. a(x) � 48. b(x) �

49. c(x) � 50. d(x) �
51. A(x) � 52. B(x) � x � 2
53. C(x) � � 1 54. D(x) � 1�

For Exercises 55–82, compute the indicated quantity using the
functions f, g, and F defined as follows:

55. f (�3) 56. f (1 � )
57. F (3�4) 58. f (t)
59. f (�t) 60. g(2x)
61. f (x � 2) 62. g(x � h)
63. f (x2) 64. f (x)�x (x � 0)
65. [ f (x)][g(x)] 66. f [ f (x)]
67. f [g(x)] 68. g[ f (3)]
69. (g � f )(x) 70. (g � f )(x) � ( f � g)(x)

71. (F � g)(x) 72.

73. 74.

75. F�1(x) 76. F [F�1(x)]
77. (g � g�1)(x) 78. g�1(x)

79. g�1(�x) 80.

81. F�1[F (22�7)]
82. T�1(x), where T(x) � f (x)�x (x � 0)

In Exercises 83–96, refer to the graph of the function f in the
figure. (The axes are marked off in one-unit intervals.)

83. Is f(0) positive or negative?
84. Specify the domain and range of f.
85. Find f (�3).

y

x

y=ƒ

g�1(x � h) � g�1(x)

h

F(x) � F(a)

x � a

f (x � h) � f (x)

h

g(x � h) � g(x)

h
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f (x) � x2 � x  g(x) � 1 � 2x  F(x) �
x � 3

x � 4

1x � 31
4 x

0011�1x 2 � 1
1x � 11x � 1

1
x

� 1
1

x � 1

f (x) �
1
x
 g(x) � x � 1  F(x) � 0 x 0 G(x) � 1x



214 CHAPTER 3 Functions

(d) Find the domain and range of F and sketch the graph of
y � F(x).

(e) Find the domain and range of F�1 and sketch the graph
of y � F�1(x).

(f) Find F�1(x).

112. For which values of x in the interval (0, 5) is the  

quantity negative?

113. Given f(x) � 4 � (x � 2)2.
(a) Find the domain and range of f.
(b) Explain why f does not have an inverse.
(c) Find the largest interval of the form [a, q) on which f

has a one-to-one version F.

f (x) � f (2)

x � 2

CHAPTER 3 Test

1. Find the domain of the function defined by
f (x) �

2. Find the range of the function defined by 

g(x) �

3. Let f (x) � 2x2 � 3x and g(x) � 2 � x. Compute each of the
following:
(a) ( f � g)(x) (b) ( f � g)(x) (c) f [g(�4)]

4. Let f(t) � 2�t. Compute 

5. Let g(x) � 2x2 � 5x. Compute 

6. Find g�1(x) given that g(x) �

7. The graph of a function f is a line segment joining the two
points (�3, 1) and (5, 6). Determine the slope of the line seg-
ment that results from graphing the equation y � �f�1(x).

8. Graph each function and specify the intercepts:

(a) y � � x � 3 � 1 (b) y � � 2

9. The figure shows the graph of a function g with domain 
[�4, 2].

(a) Specify the range of g.
(b) What are the coordinates of the turning point?
(c) What is the minimum value of g?
(d) Which input yields a maximum value for g? What is that

maximum value?
(e) On which interval is g decreasing?
(f) Use the horizontal line test to say whether or not g is

one-to-one.

x

y

y=g(x)

1

x � 3
00

�4x

6x � 1
.

g(x � h) � g(x)

h
.

f (t) � f (a)

t � a
.

2x � 8

3x � 5
.

2x2 � 5x � 6.
10. Let f(x) � x2 � 3x � 1. Compute each of the following:

(a) f (�3�2) (b)
11. Graph the function F defined by

What is the domain of this function?
12. Let f be a function and (a, b) be a point on the graph of y �

f (x). Make a horizontal scale change in the graph by a factor
of 3, then shift to the right one unit.
(a) Find the equation of the final graph.
(b) Find the point on the final graph corresponding to (a, b)

from the original graph.
13. Let f be a function and (a, b) be a point on the graph of y �

f (x). The graph of y � f (x) is transformed so that the result-
ing graph has equation

y � �2 f (4x � 9) � 3

(a) Explain what sequence of transformation were made
on the original graph.

(b) Find the point on the final graph corresponding to (a, b)
from the original graph.

14. The graph of f is a line segment joining the points (1, 3) and
(5, �2). Sketch the graph of y � f (�x).

15. Given that the domains of f and f �1 are both (�q, q) and
that f�1(�3) � 1, solve the equation 5 � f(4t � 3) � 2 for t.

16. Let f(x) � 1�x. Find a value for b so that on the interval [1, b],
we have ¢f�¢x � �1�10.

17. During the first five hours of a lab experiment, the tempera-
ture of a solution is given by

where t is measured in hours, t � 0 corresponds to the time
that the experiment begins, and F (t) is the temperature
(in degrees Celsius) at time t.
(a) Find (and simplify) a formula for ¢F�¢t over the

interval [a, 5].
(b) Use the result in part (a) to compute the average rate of

change of temperature during the period from t � 4 hr 
to t � 5 hr. (Be sure to include the units as part of the
answer.)

F(t) � 0.16t2 � 1.6t � 35  (0 	 t 	 5)

F(x) � e 0 x � 1 0
�x2 � 1

 
if x � �1

if x � �1

f 113 � 2 2
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4.1 Linear Functions

4.2 Quadratic Functions

4.3 Using Iteration to Model
Population Growth
(Optional Section, Online)

4.4 Setting Up Equations That
Define Functions

4.5 Maximum and Minimum
Problems

4.6 Polynomial Functions

4.7 Rational Functions

POLYNOMIAL was used by François Viéta
(1540–1603). The term RATIONAL FUNCTION was
used by Joseph Louis Lagrange (1736–1813) in
“Réflexions sur la résolution algébrique des équa-
tions,” . . . —From Jeff Miller’s website Earliest Known Uses of Some of the Words

of Mathematics (http://members.aol.com/ jeff570/mathword.html)

In the previous chapter we studied some rather general rules for working with func-
tions and graphs. With that as background we are ready to focus our attention on a
few specific types of functions and their applications. Some contexts in which we’ll use
the functions and ideas introduced in this chapter are:

• Modeling data relating smoking and lung cancer
(Example 5 in Section 4.1)

• Summarizing global trends in airline passenger miles using a quadratic model
(Exercise 1 in Exercise Set 4.2)

• Modeling the spread of AIDS using linear and quadratic functions
(Example 1 in Section 4.2)

• Finding the minimum value of a quadratic function to gain insight into how least-
squares lines are defined and determined
(Project at end of Section 4.5)

• Determining long-term behavior in a population model by computing the hori-
zontal asymptote of a rational function
(Example 10 in Section 4.7)

CHAPTER

4
Polynomial and Rational
Functions. Applications
to Optimization

All decent functions are practically
linear. —Professor Andrew Gleason 

LINEAR FUNCTIONS
I had a moment of mixed joy and anguish, when my mind took over. It raced well ahead
of my body and drew my body compellingly forward. I felt that the moment of a lifetime
had come. —Dr. Roger Bannister, first person to run the mile in under four minutes, recalling the

last lap of his record-breaking run at the Ilffley Road Track, Oxford, England, May 6, 1954. The

quotation is from Roger Bannister, The Four Minute Mile (New York: Dodd, Mead & Co., 1955).

By a linear function we mean a function defined by an equation of the form

where A and B are constants. In this chapter the constants A and B will always be real
numbers. From our work in Chapter 1 we know that the graph of y � Ax � B is a
straight line.

f (x) � Ax � B

4.1

Image copyright IIja Masik, 2010. Used under license
from Shutterstock.com

http://members.aol.com/jeff570/mathword.html
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EXAMPLE

SOLUTION

1 Finding an Equation Defining a Linear Function

Suppose that f is a linear function. If f (1) � 0 and f (2) � 3, find an equation
defining f.

From the statement of the problem we know that the graph of f is a straight line
passing through the points (1, 0) and (2, 3). Thus the slope of the line is

Now we can use the point–slope formula using the point (1, 0) to find the required
equation. We have

This is the equation defining f. If we wish, we can rewrite it using function notation:
f (x) � 3x � 3.

One basic application of linear functions that occurs in business and economics is
linear or straight-line depreciation. In this situation we assume that the value V(t) of
an asset (such as a machine or an apartment building) decreases linearly over time t:

where t � 0 corresponds to the time when the asset is new (or when its value is first
assessed), and the slope m is negative.

V(t) � mt � b

 y � 3x � 3
 y � 0 � 3(x � 1)

 y � y1 � m(x � x1)

m �
y2 � y1

x2 � x1
�

3 � 0

2 � 1
� 3

EXAMPLE

SOLUTION

2 Using a Linear Model for Depreciation

A factory owner buys a new machine for $8000. After ten years, the machine has a
salvage value of $500.

(a) Assuming linear depreciation, find a formula for the value V(t) of the machine
after t years, where 0 � t � 10, and graph this function.

(b) Use the depreciation function determined in part (a) to find the value of the
machine after seven years.

(a) The machine’s value is a linear function, and the graph of a linear function is a
line. So we can write

V(t) � mt � b

where m is the slope of the line and b is the V-intercept of the line. To find m we
need two points on the line. From the given information, the points (0, 8000) and
(10, 500) lie on the graph of V. So the slope of the line is

So V(t) � �750t � b. Since the point (0, 8000) is on the graph of V, the 
V-intercept of the line is 8000, so b � 8000. Alternatively,

V(0) � 8000 � �750(0) � b � b

m �
8000 � 500

0 � 10
# $
yrs

� �750 

$
yr
 or �750 dollars per year



and the V-intercept is 8000 dollars. The required function is

The graph of V is shown in Figure 1.
(b) Substituting t � 7 in the equation V(t) � �750t � 8000 yields

Thus the value of the machine after seven years is $2750.

Comment: Units are very important in applications of mathematics. In Example 2 we
included a careful treatment of the units in the determining the slope of V. It is often
useful to use the equation with the units when trying to detect errors or simply to
clarify our understanding of the relation of the mathematics to the application.
In Example 2 the equation could be written with the units

Algebraic cancellation of the units shows that the units of V are dollars, as they
should be. The evaluation in part (b) is

The slope of a linear function is a rate of change. (We met this idea back in
Section 1.6.) In Example 2 the slope represents the rate of change of the value of the
machine. Notice that the calculation of the slope is exactly the calculation we used
in Chapter 3 to compute the average rate of change . In the important case of
linear functions, no matter which two points we choose on the graph, the slope will
always be the same, so we often suppress the word “average” and refer simply to the
rate of change for a linear function.

So we have the very important fact that a linear function has a constant rate of
change, which is the slope of the corresponding line. It turns out, conversely, that a
function with a constant average rate of change must be a linear function.

In mathematical terms, the properties of linear functions and rate of change are
summarized in the box below.

¢V�¢t

 � �5250 dollars � 8000 dollars � 2750 dollars

 V(7 yrs) � a�750 
dollars

 yr 
b (7  yrs ) � (8000 dollars)

V(t) � a�750 
dollars

yr
b (t yrs) � (8000 dollars)

V(7) � �750(7) � 8000 � �5250 � 8000 � 2750

V(t) � �750t � 8000  where 0 � t � 10
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   t

Years

V(t) (dollars)

(10, 500)

5

2000

4000

6000

8000

10

Figure 1

PROPERTY SUMMARY Linear Functions and Rate of Change

1. If f is a linear function then it has a constant rate of change equal to the slope
of its graph.

Conversely

2. If a function f has a constant rate of change, then it must be a linear function.

The converse, Property 2, is often used in situations where one quantity changes at
a constant rate with respect to another quantity. In Example 2, instead of “assuming
linear depreciation,” we could have said “the machine’s value decreases at a con-
stant rate.”



To prove Property 1, note that since f is linear, f(x) � mx � b for some constants
m and b. So, for any two distinct values, x1 and x2, the rate of change is

Hence the rate of change is the constant m.
To prove Property 2, let x1 be a fixed (constant) number, in the domain of f, x be

an arbitrary value in the domain of f, and m be the given constant rate of change.
Then for 

which implies m(x � x1) � f (x) � f (x1), which in turn implies f (x) � mx � ( f (x1) �
mx1) � mx � b, where b � f (x1) � mx1, a constant. To see that the linear function
also gives the correct value at x1, note that 

Hence there exist constants m and b such that f(x) � mx � b for all x in the domain
of f. So f is a linear function.

As a second example of slope as a rate of change, let us suppose that a small
manufacturer of handmade running shoes knows that her total cost in dollars, C(x),
for producing x pairs of shoes each business day is given by the linear function

Figure 2(a) displays a table and the graph for this function. Actually, since x represents
the daily number of pairs of shoes, x can assume only whole-number values. So tech-
nically, the graph that should be given is the one in Figure 2(b). However, the graph in
Figure 2(a) turns out to be useful in practice, and we shall follow this convention.

C(x) � 10x � 50

mx1 � b � mx1 � f (x1) � mx1 � f (x1)

m �
¢ f

¢x
�

f (x) � f (x1)
x � x1

x � x1,

¢ f

¢x
�

f (x2) � f (x1)
x2 � x1

�
(mx2 � b) � (mx1 � b)

x2 � x1
�

m(x2 � x1)
x2 � x1

� m
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(b)

2 3 4 5

20
30
40
50
60
70
80
90

C(x)

x

(1, 60)
(2, 70)

(3, 80)

1 6

10

(a)

20
30
40
50
60
70
80
90

2 3 4 5

C(x)=10x+50

C(x) (dollars)

x (pairs)
1 6

x 0 1 2 3
C(x) 50 60 70 80

Figure 2

The slope of the line C(x) � 10x � 50 in Figure 2(a) is 10, the coefficient of x. To
understand the units involved, let’s calculate the slope using two of the points in Fig-
ure 2(a). Using the points (0, 50) and (1, 60) and keeping track of the units, we have

m �
$60 � $50

1 pair � 0 pairs
�

$10

1 pair
� $10/pair



Again the slope is a rate. In this case the slope represents the rate of increase of cost;
each additional pair of shoes produced costs the manufacturer $10.

We define the marginal cost at an output of x units as the rate of change of the
cost function at x units. The marginal cost is used to approximate the cost of the next
unit produced. When the cost function is linear, the rate of change is constant and
equal to the slope of the corresponding line. Then the marginal cost is the slope of the
line and numerically equals the cost of the next unit. The italics are intended to
emphasize that, although the numbers are the same, the units are not. The rate of
change is in dollars per unit whereas the cost of the next unit is in dollars. Economists
tend to define marginal cost as the cost of the next unit but use the rate of change of
cost in their mathematics. Since, in practice, even for nonlinear cost functions, the
numerical difference between these two quantities is small compared to the actual
costs, the distinction between the rate of change of cost at x units and the cost of the
x � 1th unit is usually ignored.

In the preceding example the marginal cost is $10 per pair, and we see that the
slope of the line in Figure 2(a) is 10 (dollars per pair). So at any output level of shoes,
marginal cost is $10 per pair and the cost of an additional pair is $10.
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EXAMPLE

SOLUTION

3 A Cost Function That Is Linear

Suppose that the cost C(x) in dollars of producing x bicycles is given by the linear
function

(a) Find the cost of producing 10 bicycles.
(b) What is the marginal cost?
(c) Use the answers in parts (a) and (b) to find the cost of producing 11 bicycles.

Then check the answer by evaluating C(11).

(a) Using x � 10 in the cost equation, we have

Thus the cost of producing ten bicycles is $1075.
(b) Since C is a linear function, the marginal cost is the slope, and we have

marginal cost � $45 per bicycle

(c) According to the result in part (b), each additional bicycle costs $45. There-
fore we can compute the cost of 11 bicycles by adding $45 to the cost for
10 bicycles:

So the cost of producing 11 bicycles is $1120. We can check this result by using
the cost function C(x) � 625 � 45x to compute C(11) directly:

as obtained previously � $1120
 � 625 � 495

 C(11) � 625 � 45(11)

 � $1075 � (45 $�bike)(1 bike) � $1075 � $45 � $1120
 cost of 11 bikes � cost of 10 bikes � (marginal cost in $�bike)(1 bike)

C(10) � 625 � 45(10) � 1075

C(x) � 625 � 45x



Interpreting slope as a rate of change is not restricted to applications in business
or economics. Suppose, for example, that you are driving a car at a steady rate of
50 mph. Using the distance formula from elementary mathematics,

or

We have in this case d � 50t, where d represents the distance traveled (in miles) in
t hours. In Figure 3 we show a graph of the linear function d � 50t. The slope of this
line is 50, the coefficient of t. But 50 is also the given rate of speed, in miles per hour.
So again, slope is a rate of change. In this case, slope is the velocity, or rate of change
of distance with respect to time.

d � rt

distance � rate � time

Figure 3
The slope of the line is the rate of
change of distance with respect 
to time.
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1
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t (hours)

d (miles)

(1, 50)

(2, 100)

(3, 150)

(4, 200)

d=50t

We conclude this section by indicating one way that linear functions are used in
statistical applications. Tables 1 and 2 show the evolution of the world record for the

TABLE 1 Evolution of the Record
for the Mile Run, 1911–1954

x (year) y (time)

1911 4:15.4 (John Paul Jones, United States)
1913 4:14.6 (John Paul Jones, United States)
1915 4:12.6 (Norman Taber, United States)
1923 4:10.4 (Paavo Nurmi, Finland)
1931 4:09.2 (Jules Ladoumegue, France)
1933 4:07.6 (Jack Lovelock, New Zealand)
1934 4:06.8 (Glen Cunningham, United States)
1937 4:06.4 (Sidney Wooderson, Great Britain)
1942 4:06.2 (Gunder Haegg, Sweden)
1942 4:06.2 (Arne Andersson, Sweden)
1942 4:04.6 (Gunder Haegg, Sweden)
1943 4:02.6 (Arne Andersson, Sweden)
1944 4:01.6 (Arne Andersson, Sweden)
1945 4:01.4 (Gunder Haegg, Sweden)
1954 3:59.4 (Roger Bannister, Great Britain)
1954 3:58.0 (John Landy, Australia)

TABLE 2 Evolution of the Record
for the Mile Run, 1957–1993

x (year) y (time)

1957 3:57.2 (Derek Ibbotson, Great Britain)
1958 3:54.5 (Herb Elliott, Australia)
1962 3:54.4 (Peter Snell, New Zealand)
1964 3:54.1 (Peter Snell, New Zealand)
1965 3:53.6 (Michel Jazy, France)
1966 3:51.3 (Jim Ryun, United States)
1967 3:51.1 (Jim Ryun, United States)
1975 3:51.0 (Filbert Bayi, Tanzania)
1975 3:49.4 (John Walker, New Zealand)
1979 3:49.0 (Sebastian Coe, Great Britain)
1980 3:48.8 (Steve Ovett, Great Britain)
1981 3:48.53 (Sebastian Coe, Great Britain)
1981 3:48.40 (Steve Ovett, Great Britain)
1981 3:47.33 (Sebastian Coe, Great Britain)
1985 3:46.32 (Steve Cram, Great Britain)
1993 3:44.39 (Noureddine Morceli, Algeria)

Note: In 2009 the world record was 3:43.13 (223.13 seconds), set by Hicham El Guerrouj of Morocco in 1999.



one-mile run during the years 1911–1993. In case you’re wondering why Table 1
begins with 1911, John Paul Jones was the first twentieth-century runner to break the
previous century’s record of 4:15.6, set in 1895. Table 1 ends with the year 1954, the
first year in which the “four-minute barrier” was broken. (See the quote by Roger
Bannister at the beginning of this section.)

Let’s begin by looking at the data in Table 1 graphically. In Figure 4(a) we’ve
plotted the (x, y) pairs given in the table. The resulting plot is called a scatter
diagram or scatter plot.

A striking feature of the scatter diagram in Figure 4(a) is that the records do not
appear to be leveling off; rather, they seem to be decreasing in an approximately lin-
ear fashion. Using the least-squares technique from the field of statistics, it can be
shown that the linear function that best fits the data in Table 1 is

(1)

where the time f(x) is given in seconds. The graph of this line is shown in Figure 4(b).
The line itself is referred to as the regression line, or the least-squares line.

General formulas for determining the regression line are given in Exercise 45.
(The derivation, however, is not given, because that requires calculus.) Many
graphing utilities and spreadsheet applications have features for computing regres-
sion lines when two columns or lists of numbers are entered. We’ll cite but one ex-
ample here using the popular spreadsheet program Microsoft Excel™. For more
details or for other types of graphing utilities, see the user’s manual that came with
your graphing utility.

Suppose, for example, that we want to obtain a scatter plot and regression line for
the four data points

(0, 1) (1, 2) (3, 6) (6, 7)

As indicated in Figure 5(a), we enter the x-y pairs using adjacent columns of the
Excel spreadsheet. (In the figure, the x-values are in column A and the y-values in
column B.) Next, of the many chart types that Excel provides for displaying data

f (x) � �0.370x � 962.041
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Figure 4
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(b) Scatter plot and regression line for the data in Table 1.

1910

235

240

245

250

255

260

1920 1930 1940 1950 1960
x (year)

y (seconds)

(a) Scatter plot for the data in Table 1.



visually, we choose the “Scatter” option and obtain the result shown in Figure 5(b).
Finally, for the required regression line, we go to the “Add Trendline” menu and
choose “Linear” along with “Display equation on chart.” The final result is shown in
Figure 5(c).
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(c) Regression line

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8

y = 1.0476x + 1.381

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8

(b) Scatter plot

1
2
3
4

0 1
1 2
3 6
6 7

A B
1
2
3
4
5

(a) Data

Figure 5
Using a spreadsheet application to
obtain a regression line.

EXAMPLE

SOLUTION

4 Using a Regression Line

(a) The regression line given by equation (1) is based on records from 1911 through
1954. Use this regression line to estimate what the world record for the mile run
might have been in 1999.

(b) Check the prediction against the actual 1999 record 3:43.13, set by Hicham El
Guerrouj of Morocco. Compute the percentage error.

(a) Substituting the value x � 1999 in equation (1) yields

(b) The prediction obtained in part (a) is 3:42.41, and the actual record is 3:43.13.
Thus the actual record is slightly higher than the prediction, but the difference is
less than one second. For computing the percentage error, let’s first express the
actual record of 3:43.13 in seconds. [From part (a) we already know the pre-
dicted record expressed in seconds.] We have

Now we’re ready to compute the percentage error in the prediction:

The percentage error in the prediction is 0.32%.

Remark: The prediction in this example has turned out to be extremely good.
However, see part (c) in the next example for an important word of caution regard-
ing predictions such as this.

 �
0223.13 � 222.41 0

223.13
� 100 � 0.32%

 percentage error �
0 (actual value) � (predicted value) 0

actual value
� 100

 � 223.13 sec
 3 min and 43.13 sec � 3(60) sec � 43.13 sec

 � 3 min and 42.41 sec
 f (1999) � �0.370(1999) � 962.041 � 222.41 sec
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EXAMPLE 5 A Regression Line in a Medical Application

The data in Table 3 are extracted from a 1954 paper on smoking and lung cancer that
appeared in the journal Danish Medical Bulletin. In Table 3 the left-hand column of
numbers shows annual cigarette consumption in 1930 for four countries. The right-
hand column gives the mortality rates from lung cancer in those same countries
20 years later.

TABLE 3 Cigarette Consumption and Lung Cancer

Cigarette Lung Cancer Deaths
Consumption for 1930 in 1950

(per person) (per 100,000 males)

Sweden 320 11.1
Netherlands 444 28.3
Finland 1106 35.3
England-Wales 1200 53.0

Data extracted from “Bronchial Carcinoma—A Pandemic,” by A. Nielsen and J. Clemmennsen, Danish
Medical Bulletin, vol. 1 (1954), pp. 194–199. In some instances the indicated years 1930 and 1950 are
only approximate. For instance, for Sweden, the mortality rate pertains to 1951, rather than 1950.

(a) Use a graphing utility to create a scatter plot and to find and graph the regression
line. (Use the consumption data for the x-values and the mortality rates for the
corresponding y-values.)

(b) The regression line gives a functional relationship between per capita cigarette
consumption and lung cancer death rates. Use this relationship to obtain esti-
mates for the mortality rates in 1950 for Denmark and Norway, given that the
1930 cigarette consumption figures for Denmark and Norway were 373 and 257,
respectively.

(c) Compute the percentage error in each estimate, given that the actual death rates
(per 100,000) in Denmark and Norway were 18.4 and 9.2, respectively.

(a) See Figure 6 for the scatter plot and regression line.
(b) As indicated in Figure 6(b), the regression line is y � 0.0342x � 5.6697.

According to the calculations, the projected mortality rate for Denmark in 1950
is 18.4 deaths per 100,000; for Norway the projection is 14.5 per 100,000.

(c) For Denmark the projection is 18.4 and so is the actual death rate. So in this case
we happen to have 0% error. For Norway we have

 �
09.2 � 14.5 0

9.2
� 100 � 58%

 percentage error �
0 (actual value) � (projected value) 0

actual value
� 100

SOLUTION

For Denmark with x � 373:
y � 0.0342(373) � 5.6697

18.4

For Norway with x � 257:
y � 0.0342(257) � 5.6697

14.5��



In summary, for Denmark the projected death rate from lung cancer agrees with
the actual rate. For Norway, however, there is a relatively large discrepancy be-
tween the projection and actual value; the percentage error there is 58%. This
highlights one of the shortcomings in using a regression line. Without further
analysis and the use of more advanced statistical concepts (and perhaps more
data) it’s difficult or impossible to know ahead of time how much one should rely
on these projections.
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Smokescreen? The figure is from a 1948 magazine ad for
Camel cigarettes. A 1929 ad for Lucky Strike cigarettes
announced “Many prominent athletes smoke Luckies all
day long with no harmful effects to wind or physical
condition.” A 1953 ad by Liggett & Meyers said “It’s so
satisfying to know that a doctor reports no adverse effects
to the nose, throat and sinuses from smoking Chesterfield.”
Source: The University of Alabama Center for the Study of
Tobacco and Society (Alan Blum, M.D.)
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8. The x- and y-intercepts of the inverse function are 5 and
�1, respectively.

9. Let f(x) � 3x � 4 and g(x) � 1 � 2x. Determine whether
the function f � g is linear.

10. Explain why there is no linear function with a graph that
passes through all three of the points (�3, 2), (1, 1),
and (5, 2).

In Exercises 11, 12, and 13, assume linear depreciation.

11. A factory owner buys a new machine for $20,000. After
eight years, the machine has a salvage value of $1000. 
Find a formula for the value of the machine after 
t years, where 0 � t � 8.

A
In Exercises 1–8, find the linear functions satisfying the given
conditions.

1. f (�1) � 0 and f (5) � 4
2. f (3) � 2 and f (�3) � �4
3. g(0) � 0 and g(1) �
4. The graph passes through the points (2, 4) and (3, 9).
5. and the graph of f is a line parallel to the line

x � y � 1.
6. g(2) � 1 and the graph of g is perpendicular to the line

6x � 3y � 2.
7. The graph of the inverse function passes through the points

(�1, 2) and (0, 4).

f 1  12 2 � �3

12

EXERCISE SET 4.1
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12. A manufacturer buys a new machine costing $120,000. 
It is estimated that the machine has a useful lifetime of
ten years and a salvage value of $4000 at that time.
(a) Find a formula for the value of the machine after 

t years, where 0 � t � 10.
(b) Find the value of the machine after eight years.

13. A factory owner installs a new machine costing $60,000.
Its expected lifetime is five years, and at the end of that
time the machine has no salvage value.
(a) Find a formula for the value of the machine after

t years, where 0 � t � 5.
(b) Complete the following depreciation schedule.

End of Yearly Accumulated Value
Year Depreciation Depreciation V

0 0 0 60,000
1
2
3
4
5 60,000 0

14. Let x denote a temperature on the Celsius scale, and let y
denote the corresponding temperature on the Fahrenheit
scale.
(a) Find a linear function relating x and y; use the facts

that 32°F corresponds to 0°C and 212°F corresponds
to 100°C. Write the function in the form y � Ax � B.

(b) What Celsius temperature corresponds to 98.6°F?
(c) Find a number z for which z°F � z°C.

15. Suppose that the cost to a manufacturer of producing x units
of a certain motorcycle is given by C(x) � 220x � 4000,
where C(x) is in dollars.
(a) Find the marginal cost.
(b) Find the cost of producing 500 motorcycles.
(c) Use your answers in parts (a) and (b) to find the cost

of producing 501 motorcycles.
16. Suppose that the cost C(x), in dollars, of producing x com-

pact discs is given by C(x) � 0.5x � 500.
(a) Graph the given equation.
(b) Compute C(150).
(c) Compute the cost of the next compact disc.

17. Suppose that the cost C(x), in dollars, of producing x elec-
tric fans is given by C(x) � 450 � 8x.
(a) Find the cost to produce 10 fans.
(b) Find the cost to produce 11 fans.
(c) Use your answers in parts (a) and (b) to find the cost

of the eleventh electric fan.
(d) Use the marginal cost to approximate the cost of the

eleventh electric fan. How does your answer compare
with the answer in part (c)?

18. The following graphs each relate distance and time for a
moving object. Determine the velocity in each case.

19. Two points A and B move along the x-axis. After t sec, their
positions are given by the equations

(a) Which point is traveling faster, A or B?
(b) Which point is farther to the right when t � 0?
(c) At what time t do A and B have the same

x-coordinate?
20. A point moves along the x-axis, and its x-coordinate after

t sec is x � 4t � 10. (Assume that x is in centimeters.)
(a) What is the velocity?
(b) What is the x-coordinate when t � 2 sec?
(c) Use your answers in parts (a) and (b) to find the 

x-coordinate when t � 3 sec. Hint: What are the
units of the velocity in part (a)? Check your answer 
by letting t � 3 in the given equation.

21. The following table gives the population of California in
1995 and in 1997.

x (year) y (population)

1995 31,493,525
1997 32,217,708

(a) Find the equation of the linear function whose graph
passes through the two (x, y) points given in the table.

 B: x � 20t � 36
 A: x � 3t � 100

t (hr)

d (miles)

(2, 16)

(c)

(a)

(1, 4)

(6, 8)

t (sec)

d (ft) d (cm)

t (sec)

(2, 4) (5, 4)

(b)
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(a) Find the equation of the linear function whose graph
passes through the two (x, y) points given in the
table.

(b) Using a graphing utility to graph the line in part (a).
Then use a TRACE or ZOOM feature to estimate what
the rating percentage might have been for the year
2008.

(c) Compute the percentage error in the estimate in part (b),
given that the actual figure for 2008, according to
Nielsen Media Research, was 26.9.

In general, the growth of plants or animals does not follow
a linear pattern. For relatively short intervals of time,
however, a linear function may provide a reasonable
description of the growth. Exercises 25 and 26 provide
examples of this.

25. (a) In an experiment with sunflower plants, H. S. Reed and
R. H. Holland measured the height of the plants every
seven days for several months. [The experiment is
reported in Proceedings of the National Academy of
Sciences, vol. 5 (1919), p. 140.] The following data are
from this experiment.

x (number of days) 21 49

y [average height (cm)
of plants after x days] 67.76 205.50

Find the linear function whose graph passes through
the two points given in the table. (Round each number
in the answer to two decimal places.)

(b) Use the linear function determined in part (a) to
estimate the average height of the plants after 28 days.
(Round your answer to two decimal places.)

(c) In the experiment, Reed and Holland found that the
average height after 28 days was 98.10 cm. Is your
estimate in part (b) too high or too low? Compute the
percentage error in your estimate.

(d) Follow parts (b) and (c) using x � 14 days. For the
computation of percentage error, you need to know that
Reed and Holland found that the average height after
14 days was 36.36 cm.

(e) As you’ve seen in parts (c) and (d), your estimates
are quite close to the actual values obtained in the
experiment. This indicates that for a relatively short
interval, the growth function is nearly linear. Now
repeat parts (b) and (c) using x � 84 days, which is
a longer interval of time. You’ll find that the linear
function does a poor job in describing the growth
of the sunflower plants. To compute the percentage
error, you need to know that Reed and Holland

(b) Use the linear function determined in part (a) to make a
projection for the population of California in 2008.
(Round your answer to the nearest 1000.)

(c) The actual California population for 2008 was
36,756,666. Does the linear function yield a projection
that is too high or too low? Compute the percentage
error.

22. The following table gives the population of Florida in 1985
and 1990.

x (year) y (population)

1985 11,351,118
1990 13,018,365

Follow the steps in Exercise 21 to make a projection for
the population of Florida in 2008. For part (c) the actual
population of Florida was 18,328,340.

23. The following table indicates total motion picture receipts
(including video tape rentals) in the United States for the
years 1994 and 1995.

Motion Picture Receipts

y (receipts) 
x (year) (in millions of dollars)

1994 53,504
1995 57,184

Source: U.S. Census Bureau, Statistical Abstract of the United States: 1999

(a) Find the equation of the linear function whose graph
passes through the two (x, y) points given in the table.

(b) Use a graphing utility to graph the line in part (a).
Then use a TRACE or ZOOM feature to estimate what
motion picture receipts might have been for the year
1997.

(c) Compute the percentage error in the estimate in 
part (b), given that the actual figure for 1997 was
$63,010 millions.

24. During the 1990s the percentage of TV households viewing
cable and satellite TV programs increased while the per-
centage viewing network affiliate shows (ABC, CBS,
NBC, and FOX) generally decreased. The following table
shows the primetime ratings for the network affiliates in the
years 1993 and 1998. (In the table the rating percentage is
defined as the percentage of TV households viewing a TV
program in an average minute.)

Primetime Ratings for Network Affiliates

x (year) y (rating percentage)

1993 40.2
1998 31.4

Source: tvbythenumbers.com
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Graph this line along with the points given in part (a).
(In sketching the line, use the approximation
y � 0.5x � 1.1.)

29. The table in the following figure shows the population
of Los Angeles over the years 1930–1990. The
accompanying graph shows the corresponding scatter
plot and regression line. The equation of the regression
line is

(a) Use the regression line to compute an estimate for
what the population of Los Angeles might have
been in 2000. (Round the answer to the nearest
thousand.) Then compute the percentage error in
the estimate, given that the actual figure for 2000
is 3.823 million.

(b) Find f �1(x).
(c) Use your answer in part (b) to estimate the year in

which the population of Los Angeles might reach 
4 million. Hint: For the function f, the inputs
are years and the outputs are populations; for f �1, 
the inputs are populations and the outputs are years.

30. Perhaps foreshadowing the end of the Cold War in the
early 1990s, the number of nuclear warheads worldwide
began to decrease after the year 1986 (when the number
was at an all-time high). The following table indicates
the global number of nuclear warheads over the years
1986–1992. The graph shows the corresponding scatter
plot and regression line. The equation for the regression
line is

f (x) � �2810.96x � 5,653,063.25

Year

1930
1940
1950
1960
1970
1980
1990

Population of
Los Angeles

1,238,048
1,504,277
1,970,358
2,479,015
2,816,061
2,966,850
3,485,398

19
30

0

1 � 10Í

2 � 10Í

3 � 10Í

4 � 10Í

19
40

19
50

19
60

19
70

19
80

19
90

2000
x
(year)

y (population)

f (x) � 37,546.068x � 71,238,863.429

determined the average height after 84 days to be
254.50 cm.

26. (a) The biologist R. Pearl measured the population of a
colony of fruit flies (Drosophila melanogaster) over
a period of 39 days. [The experiment is discussed in
Pearl’s book, The Biology of Population Growth
(New York: Alfred Knopf, 1925).] Two of the
measurements made by Pearl are given in the
following table.

x (number of days) 12 18

y (population) 105 225

Find the linear function whose graph passes through
the two points given in the table.

(b) Use the linear function determined in part (a) to
estimate the population after 15 days. Then compute
the percentage error in your estimate, given that the
actual population after 15 days, as found by Pearl,
was 152.

(c) Use the linear function determined in part (a) to
estimate the population after 9 days. Then compute
the percentage error in your estimate, given that
after 9 days, Pearl found the actual population 
to be 39.

(d) As you’ve seen in parts (b) and (c), your estimates
are quite close to the actual values obtained in the
experiment. This indicates that for relatively short
intervals of time, the growth is nearly linear. Now
repeat part (b) using x � 39 days, which covers a
longer interval of time. You’ll find that the linear
function does a poor job in describing the population
growth. For the computation of percentage error, you
need to know that Pearl determined the population
after 39 days to be 938.

27. (a) On graph paper, plot the following points: (1, 0), (2, 3),
(3, 6), (4, 7).

(b) In your scatter diagram from part (a), sketch a line that
best seems to fit the data. Estimate the slope and the
y-intercept of the line.

(c) The actual regression line in this case is y � 2.4x � 2.
Add the graph of this line to your sketch from parts (a)
and (b).

28. (a) On graph paper, plot the following points: (1, 2), (3, 2),
(5, 4), (8, 5), (9, 6).

(b) In your scatter diagram from part (a), sketch a line that
best seems to fit the data.

(c) Using your sketch from part (b), estimate the 
y-intercept and the slope of the regression line.

(d) The actual regression line is y � 0.518x � 1.107.
Check to see whether your estimates in part (c) are 
consistent with the actual y-intercept and slope.



(b) Use the equation of the regression line to make a
projection for the world grain production in 1993.
Then compute the percentage error in your projection,
given that the actual grain production in 1993 was
1714 million tons. Remark: Your projection will turn
out to be higher than the actual figure. One (among
many) reasons for this: In 1993 there was a drop in
world grain production due largely to the effects of
poor weather on the U.S. corn crop.

(c) Use the equation of the regression line to make a
projection for the world grain production in 1998.
Then compute the percentage error in your projection,
given that the actual world grain production in 1998
was 1844 million tons. Remark: Again, your projec-
tion will turn out to be too optimistic. According to
Lester Brown’s Vital Signs: 1999, world grain produc-
tion dropped in 1998 “due largely to severe drought
and heat in Russia on top of an overall deterioration
of that country’s economy.”

32. The following table shows global natural gas production
for the years 1990–1996. The abbreviation “tcf” stands for
trillion cubic feet.

Year Natural Gas Production (tcf)

1990 71.905
1991 73.037
1992 73.219
1993 74.570
1994 75.190
1995 76.614
1996 80.045

Source: BP Amoco Statistical Review of World Energy (49th ed.)
http://www.bp.com/worldenergy

(a) Use a graphing utility or spreadsheet to determine
the equation of the regression line. For the x-y data
pairs, use x for the year and y for the natural gas
production. Create a graph showing both the scatter
plot and regression line.

(b) What are the units associated with the slope of the
regression line in part (a)?

(c) In your graph of the regression line, use a TRACE

or ZOOM feature to make an estimate for natural gas
production in the year 1999.

(d) The actual production figure for 1999 is 83.549 tcf. Is
your estimate high or low? Compute the percentage
error.

(e) The table above shows that global production of
natural gas increased over the period 1990–1996, and
in fact it still continues to increase each year. However,
for purposes of making a very conservative estimate,
let’s assume for the moment that natural gas produc-
tion levels off at its 1999 value of 83.549 tcf per year.

Year Number of Nuclear Warheads

1986 69,075
1987 67,302
1988 65,932
1989 63,645
1990 60,642
1991 57,017
1992 53,136

Source of data: R. S. Norris and W. M. Arkin, Bulletin of Atomic Scientists,
Nov./Dec. 1997

(a) Use the regression line to make a projection for the
number of nuclear warheads in 1997. Then compute
the percentage error, given that the actual number was
36,110.

(b) When might there be only (!) 10,000 nuclear warheads
worldwide? Round the answer to the nearest integer.
Also, if the trend were to continue, when would there
be no warheads remaining?

31. The following table shows world grain production for
selected years over the period 1950–1990.

Year World Grain Production (million tons)

1950 631
1960 824
1970 1079
1980 1430
1990 1769

Source: Lester R. Brown et al. in Vital Signs 1999 (New York: W. W. Norton
& Co, 1999)

(a) Use a graphing utility or spreadsheet to determine
the equation of the regression line. For the x-y data
pairs, use x for the year and y for the grain production.
Create a graph showing both the scatter plot and
regression line.

   x
(Year)

y (Number of warheads)

19
86

19
88

19
90

19
92

19
94

45,000

50,000

55,000

60,000

65,000

70,000

75,000
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technique can be used to derive the following regres-
sion line:

Use this equation to make a projection for the mile
time in the year 2026. Which projection is closer to
the value predicted in the Scientific American article,
this one or the one calculated in part (a)?

35. The data in Table 2 on page 220 covers the years 1957–
1993. The equation of the regression line for the data is

(a) Use this equation to estimate what the mile record might
have been for the year 1954. Then check Table 1 to see
the actual record for 1954, which was set by John Landy.
Is your estimate too high or too low? Compute the
percentage error in your estimate.

(b) Use the given equation to estimate what the mile
record might have been back in 1911. Check your
estimate against the actual record as shown in Table 1,
and compute the percentage error. How does the
percentage error here compare to that in part (a)?
Why is this to be expected?

B
36. Linear functions can be used to approximate more 

complicated functions. This is one of the meanings 
or implications of the quotation by Professor Gleason 
on page 215. This exercise illustrates that idea.
(a) Using calculus, it can be shown that the equation

of the line that is tangent to the curve y � x2 at the
point (1, 1) is y � 2x � 1. Verify this visually by
graphing the two functions y � x2 and y � 2x � 1
on the same set of axes. (Suggestion: Use a viewing
rectangle that extends from �2 to 3 in the x-direction
and from �3 to 4 in the y-direction.) Note that the
tangent line is virtually indistinguishable from the
curve in the immediate vicinity of the point (1, 1).

(b) For numerical rather than visual evidence of how
well the linear function y � 2x � 1 approximates the
function y � x2 in the immediate vicinity of (1, 1),
complete the following tables.

x 0.9 0.99 0.999

x2

2x � 1

x 1.1 1.01 1.001

x2

2x � 1

y � �0.318x � 858.955

f (x) � �0.400x � 1019.472

According to the BP Amoco Statistical Review of
World Energy, as of the end of 1999, proved world
reserves of natural gas were 5171.8 tcf. Carry out the
following calculation and interpret your answer.
Hint: Keep track of the units.

33. This exercise illustrates one of the pitfalls that can arise in
using a regression line: large discrepancies can occur when
the regression line is used to make long-term projections.
The table in the following figure shows the population of
California during the years 1860–1900. The graph displays
the scatter plot of the data; the equation of the regression
line is

As you can see from the scatter plot, the population growth
over this period is very nearly linear.
(a) Use the regression line to estimate the population of

California in 1990.
(b) According to the U.S. Bureau of the Census, the popu-

lation of California in 1990 was 29,839,250. Is your
estimate in part (a) close to this figure?

34. (a) The June 1976 issue of Scientific American magazine
contained an article entitled “Future Performance in
Footracing” by H. W. Ryder, H. J. Carr, and P. Herget.
According to the authors of this article, “It appears
likely that within 50 years the record [for the mile]
will be down to 3:30.” Use the regression line
defined in equation (1) on page 221 to make a
projection for the mile time in the year 2026 (which
will be 50 years after the article appeared). Is your
projection close to the one given in the Scientific
American article?

(b) The regression line defined in equation (1) is based
only on the data from Table 1. If we use all the data
from both Table 1 and Table 2, then the least-squares

x (year)

400,000

1860

y (population)

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1870 1880 1890 1900

Population

379,994
560,247
864,694

1,213,398
1,485,053

1860
1870
1880
1890
1900

Year

f (x) � 28,632.69x � 52,928,780

5171.8 tcf

83.549 tcf /yr
� p

4.1 Linear Functions 229



In the present example these equations become

Solve this pair of equations for m and b, and
check that your answers agree with the values in
Exercise 27(c).

In Exercises 46–49:

(a) Use the method described in Exercise 45 to find the equa-
tion of the regression line for the given data set.

(b) For Exercises 48 and 49, if your graphing utility has a
feature for computing regression lines, use it to check your
answer in part (a).

46.

47.

48.

49.

C
50. Suppose that f is a linear function satisfying the condition

f (kx) � kf (x) for all real numbers k. Prove that the graph
of f passes through the origin.

51. (a) Find all linear functions f satisfying the identity
f ( f (x)) � 2x � 1. (For your answer, rationalize any
denominators containing radicals.)

(b) Find all linear functions f satisfying the identity

(Rationalize any denominators containing 
radicals.) Hint: Try the factoring formula, x3 � y3 �
(x � y)(x2 � xy � y2) from Appendix B.4 online.

52. Let a and b be real numbers, and suppose that the in-
equality ax � b � 0 has no solutions. What can you say
about the linear function f (x) � ax � b? Answer in
complete sentences and justify what you say.

53. Are there any linear functions f satisfying the identity
f�1(x) � f ( f (x))? If so, list them; if not, explain why not.

54. Let f(x) � ax � b, where a and b are positive numbers, and
assume that the following equation holds for all values of
x: f( f (x)) � bx � a. Show that a � b � 1.

f( f( f(x))) � 2x � 1

x 520 740 560 610 650

y 81 98 83 88 95

x 1 2 3 4 5

y 16 13.1 10.5 7.5 2

x 1 2 3 4 5

y 2 3 9 9 11

x 2 4 8 10

y �7 �5 �2 �1

e 4b � 10m � 16

10b � 30m � 52

In Exercises 37–40, let f and g be the linear functions defined by

In each case, compute the average rate of change of the given
function on the interval [a, b].

37. (a) f 38. (a) f �1 39. (a) ( f � g)�1

(b) f � f (b) g�1 (b) (g � f )�1

(c) g � f
(d) f � g

40. (a) f �1 � g�1 (b) g�1 � f �1

41. Show that the linear function f (x) � mx satisfies the
following identities:
(a) f (a � b) � f (a) � f (b) (b) f (ax) � af (x)

42. Let f be a linear function such that

for all real numbers a and b. Show that the graph of f passes
through the origin. Hint: Let f(x) � Ax � B and show
that B � 0.

43. Find a linear function f (x) � mx � b such that m is positive
and ( f � f )(x) � 9x � 4.

44. (a) Let f be a linear function. Show that

(In words: The output of the average is the average of
the outputs.)

(b) Show (by using an example) that the equation in 
part (a) does not hold for the function f (x) � x2.

45. This exercise shows how to compute the slope and the 
y-intercept of the regression line. As an example, we’ll
work with the simple data set given in Exercise 27.

x 1 2 3 4

y 0 3 6 7

(a) Let �x denote the sum of the x-coordinates in the data
set, and let �y denote the sum of the y-coordinates.
Check that �x � 10 and �y � 16.

(b) Let �x2 denote the sum of the squares of the 
x-coordinates, and let �xy denote the sum of the 
products of the corresponding x- and y-coordinates.
Check that �x2 � 30 and �xy � 52.

(c) The slope m and the y-intercept b of the regression line
satisfy the following pair of simultaneous equations
[in the first equation, n denotes the number of 
points (x, y) in the data set]:

e nb � 1�x 2m � �yx

1�x 2b � 1�x2 2m � �xy

f a x1 � x2

2
b �

f (x1) � f (x2)

2

f (a � b) � f (a) � f (b)

f (x) � Ax � B (A � 0) and g(x) � Cx � D (C � 0)
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MINI PROJECT Who Are Better Runners, Men or Women?

An oversimplified answer here would be to say that men are better because in
any given event, the men’s world record time is less than the women’s. For
instance, as of the year 2000, the men’s and women’s world records for
the 100-m dash were 9.79 sec and 10.49 sec, respectively. This reasoning,
however, ignores the fact that, historically, women have been training and
competing on the world stage for far less time than men. Likewise, it’s only
relatively recently that women have been supported or sponsored to a degree
approaching that for men. Indeed, currently, women’s records are falling at a
faster rate than men’s. Complete the following research and calculations, then
discuss this issue.

The following table gives the names of athletes who set world records in
the 100-m dash over the years 1968–2009. (The table is restricted to times that
were recorded electronically, rather than manually; 1968 was the year in which
electric timing made its major debut (in the 1968 Olympics in Mexico City).

Selected Record-Setting Performances in 100-m Dash, 1968–2009*

Year Men Women

1968 James Hines, USA Wyomia Tyus, USA
(10/14/68) (10/15/68)

1972 Renate Stecher, DDR (East Germany) 
(9/2/72)

1976 Annegret Richter, FRG (West Germany)
(7/25/76)

1977 Marlies Oelsner (Göhr), DDR 
(7/1/77)

1983 Calvin Smith, USA Evelyn Ashford, USA
(7/3/83) (7/3/83)

1984 Evelyn Ashford, USA
(8/22/84)

1988 Carl Lewis, USA Florence Griffith-Joyner, USA
(9/24/88) (7/17/88)

1991 Carl Lewis, USA
(8/25/91)

1994 Leroy Burrell, USA
(7/6/94)

1996 Donovan Bailey, CAN 
(7/29/96)

1999 Maurice Greene, USA
(6/16/99)

2005 Asafa Powell, JAM
(6/14/05)

2006 Asafa Powell, JAM
(8/18/06)

(Continued)
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Figure 1
Daily number of shares of
Amazon.com stock traded in 
March 2000. x � 1 corresponds 
to March 1.

Year Men Women

2007 Asafa Powell, JAM
(6/9/07)

2008 Usain Bolt, JAM
(8/16/08)

2009 Usain Bolt, JAM
(8/16/09)

*In cases in which the record was broken more than once in a given year, only the fastest
performance is indicated.

(a) Using the library or the Internet, look up the 100-m times for each athlete
in the table.

(b) For the men’s records: Let x represent the year, with x � 0 corresponding
to 1960, and let y represent the record time in that year. Find the regression
line y � f (x).

(c) For the women’s records: Again, let x represent the year, with x � 0 cor-
responding to 1960, and let y represent the record time in that year. Find
the regression line y � g(x).

(d) Solve the equation f (x) � g(x) to compute a projection for the year in
which the men’s and women’s records might be equal. What would that
common record be?

4.2 QUADRATIC FUNCTIONS
In the text and exercises for the previous section we saw examples in which data sets
and their scatter plots were modeled using a linear function. Clearly, however, linear
functions with their straight line graphs cannot be appropriate models for every data
set. Consider, for instance, the scatter plot in Figure 1, which shows the daily trading
volumes for Amazon.com stock in a particular month. It appears that no line could
adequately summarize the situation. Next, in Figure 2, look at the data and scatter
plot relating to the spread of AIDS. Here it appears that some sort of curve, rather
than straight line, would be better for summarizing the trend in the data. As you’ll see
in a moment, one type of curve that does fit the data in Figure 2 quite well is obtained
by graphing a quadratic function.



x
years after 1980 4 5 6 7 8 9 10

y
AIDS Cases (millions) 0.2 0.4 0.7 1.1 1.6 2.3 3.2

After the linear functions, the next simplest functions are the quadratic functions,
which are defined by equations of the form

where a, b, and c are constants and a is not zero. (The word “quadratic” is derived
from the Latin word for a square, quadratus.) We will see that the graph of any qua-
dratic function is a curve called a parabola that is similar in shape to the basic y � x2

graph. Figure 3 displays the graphs of two typical quadratic functions. Subsequent
examples will demonstrate that the parabola opens upward when a � 0 and down-
ward when a 	 0. As Figure 3 indicates, the turning point on the parabola is called
the vertex. The axis of symmetry of the parabola y � ax2 � bx � c is the vertical
line passing through the vertex. (Mini Project 1 at the end of this section indicates
how to prove that the graph does indeed have this symmetry.)

f (x) � ax2 � bx � c  (a � 0)
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Estimated cumulative number of
AIDS cases worldwide, 1984–1990.
(Source: Joint United Nations
Programme on HIV/AIDS)
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We mentioned in Section 4.1 that many graphing utilities have features for de-
termining the regression line for a given set of data points. This is the line that best
fits the data points. (We are using the phrase “best fits” in an intuitive sense here;
the technical meaning is explained in a project at the end of Section 4.5.) In addi-
tion to fitting a linear function to a data set, many of these graphing utilities can
fit other types of functions as well, including quadratics. In Example 1 we find
and compare linear and quadratic models for the AIDS data in Figure 2. For details
on using a graphing calculator to determine a quadratic function that best
fits a data set, see the owner’s manual that came with your graphing utility. [On a
TI graphing calculator, go to the “STAT menu,” choose “CALC,” and then select
“QuadReg” (which stands for quadratic regression). In Microsoft Excel™, go to
the “Chart” menu, select “Add Trendline,” then choose “Polynomial,” and type in
“2” for the order.]
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(a) Linear model 
y=0.4893x-2.0679

Years x after 1980
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Figure 4
Linear and quadratic models for
AIDS data from Figure 2.

EXAMPLE 1 Using Linear and Quadratic Functions to Model AIDS Data

(a) Use a graphing utility to find and graph the linear and quadratic models for the
AIDS data in Figure 2 on page 233.

(b) Use each function to make projections for the years 1992 and 1997. Then use
the following information to see which model is more accurate in each case.
The cumulative numbers of AIDS cases in 1992 and 1997 were 5.5 million and
15.1 million, respectively.

SOLUTION (a) See Figure 4.

(b) The results of the calculations (rounded to one decimal place) are shown in
Table 1. As perspective in evaluating these models, keep in mind that they are
obtained using the data in Figure 2, which covers the years 1984–1990. So we
are using the models to project two years and seven years beyond the data, that
is, beyond 1990. For 1992 both projections fall short of the actual figure, but the
quadratic model is much closer. As you should compute for yourself, the per-
centage errors for the linear and quadratic projections for 1992 are approxi-
mately 31% and 5%, respectively. For 1997 both projections again fall short of
the actual figure. The linear model is even farther off this time; it predicts less
than half of the actual figure. The quadratic model is again closer to reality, but
as you can check, the percentage error in this case is a relatively large 15%. In
summary: The quadratic model works quite well in the short run (two years), but
it misses the mark considerably for the longer term (seven years). The linear
model misses badly in both cases. For a health professional or a United Nations

(b) Quadratic model
 y=0.0679x@-0.4607x+0.9857

Years x after 1980
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TABLE 1 Comparison of Linear and Quadratic Models for Cumulative Number of AIDS Cases
Worldwide in 1992 and 1997

Linear Model Quadratic Model Actual
y � 0.4893x � 2.0679 y � 0.0679x2 � 0.4607x � 0.9857 Figures

Year (millions) (millions) (millions)

1992 (x � 12) 3.8 5.2 5.5
1997 (x � 17) 6.3 12.8 15.1



administrator writing a budget proposal to deal with the AIDS epidemic in 1990,
evidently even the quadratic model didn’t grow fast enough and so might have
mislead the person into underfunding the project. (In later work we look at types
of functions that grow faster than any quadratic. See, for example, Exercise 64 in
Section 4.6, or see Section 5.1.)

In the next set of examples the main focus will be on graphing quadratic func-
tions by hand, rather than with a graphing utility. The goal is to understand why the
graphs look as they do and to see how they relate to the basic y � x2. The techniques
that we’ll use in analyzing quadratic functions have already been developed in pre-
vious chapters. In particular, the following two topics are prerequisites for under-
standing the examples in this section:

• Completing the square—for a review see either Section 1.7 or 2.1
• Transformations of graphs—for a review see Section 3.4
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EXAMPLE 2 Graphing a Quadratic Function Using Completing the Square and Translation

Graph the function y � x2 � 2x � 3.

SOLUTION The idea here is to use the technique of completing the square; this will enable us to
obtain the required graph simply by shifting the basic y � x2 graph. We begin by
writing the given equation

To complete the square for the x-terms we want to add 1. (Check this.) Of course, to
keep the equation in balance, we have to account for this by writing

adding zero to the right side

or

Now, as we know from Section 3.4, the graph of this last equation is obtained by
moving the parabola y � x2 one unit in the positive x-direction and two units in the
positive y-direction. This shifts the vertex from the origin to the point (1, 2). See
Figure 5.

y � (x � 1)2 � 2

y � (x2 � 2x � 1) � 3 � 1

y � x2 � 2x  � 3



Note: As a guide to sketching the graph, you’ll want to know the y-intercept. To find
the y-intercept, substitute x � 0 in the given equation to obtain y � 3. Then, given the
vertex (1, 2) and the point (0, 3), a reasonably accurate graph can be quickly
sketched. [Actually, once you find that (0, 3) is on the graph, you also know that the
reflection of this point about the axis of symmetry is on the graph. This is why the
point (2, 3) is shown in Figure 5.]

Now we want to compare the graphs of y � x2, y � 2x2, and y � From our
discussion on the transformation of graphs, the graph of y � 2x2 is that of y � x2

stretched vertically by a factor of 2, whereas the graph of y � is the graph of
y � x2 compressed vertically by a factor of 2. See Figure 6. Another way to describe
the relationship among these graphs is to observe that since , the graph
of is that of y � x2 scaled horizontally by a factor of or compressed
horizontally by a factor of . So it appears about 71% narrower than the
graph of y � x2. Similarly, the graph of is that of scaled
horizontally by a factor of or stretched horizontally by a factor of .
So it appears about 40% wider than the graph of y � x2.

12 � 1.41�12
y � x2y � 1

2x
2 � 1 1

12x 2 2
1
12 � 0.71

12y � 2x2
2x2 � 112x 2 2

1
2 x2

1
2 x2.
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y

1
x

2

y=2≈ y=≈

y= ≈1
2

1

2

Figure 6 

The observations that we’ve just made about the relative shapes of three
parabolas also apply to y � �x2, y � �2x2, and y � � except in these cases the
parabolas open downward rather than upward. In the box that follows we summarize
and generalize our observations up to this point.

1
2 x2,

PROPERTY SUMMARY The Graph of y � ax2

1. The graph of y � ax2 is a parabola with vertex at the origin. It is similar in
shape to y � x2.

2. The parabola y � ax2 opens upward if a � 0, downward if a 	 0.
3. The parabola y � ax2 is narrower than y � x2 if a � 1, wider than y � x2

if a 	 1.00 00

EXAMPLE

SOLUTION

3 Graphing Parabolas That Appear Narrower Than the Basic y � x2

Sketch the graphs of the following quadratic functions:

(a) y � 3(x � 1)2; (b) y � �3(x � 1)2.

(a) Because of the x � 1, we shift the basic parabola y � x2 one unit to the right. The
factor of 3 in the given equation tells us that we want to draw a parabola that is



narrower than y � x2 but that has the same vertex, (1, 0). To see exactly how
narrow to draw y � 3(x � 1)2, we need to know another point on the graph
other than the vertex, (1, 0). An easy point to obtain is the y-intercept. Setting
x � 0 in the equation yields y � 3(0 � 1)2 � 3. Now that we know the vertex,
(1, 0), and the y-intercept, 3, we can sketch a reasonably accurate graph; see
Figure 7(a).

(b) In part (a) we sketched the graph of y � 3(x � 1)2. By reflecting that graph in the
x-axis, we obtain the graph of y � �3(x � 1)2, as shown in Figure 7(b).
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(b)

x

(2, _3)

Vertex
(1, 0)

y=_3(x-1)@

y-intercept _3

y

(a)

(2, 3)

Vertex
(1, 0)

y-intercept 3

y=3(x-1)@

x

y

Figure 7 

EXAMPLE

SOLUTION

4 Analyzing a Quadratic Function

Graph the function f (x) � �2x2 � 4x � 6 and specify the vertex, axis of symmetry,
maximum or minimum value of f, and x- and y-intercepts.

The idea is to complete the square, as in Example 2. We have

(1)

From equation (1) we see that the required graph is obtained simply by shifting the
graph of y � �2x2 “right 1, up 8,” so that the vertex is (1, 8). As a guide to sketch-
ing the graph, we want to compute the intercepts. The y-intercept is 6. (Why?) For
the x-intercepts we replace y with 0 in equation (1) to obtain

Thus the x-intercepts are x � �1 and x � 3. Knowing these intercepts and the
vertex, we can sketch the graph as in Figure 8. You should check for yourself that
the information accompanying Figure 8 is correct.

 x � 1 
 2 � �1 or 3
 x � 1 � 
2

 (x � 1)2 � 4
 �2(x � 1)2 � �8

 � �2(x � 1)2 � 8

 � �2(x2 � 2x � 1) � 6 � 2
 � �2(x2 � 2x  ) � 6

 y � �2x2 � 4x  � 6

adding 0 � (�2)(1) � 2 to the
right-hand side
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(3, 0)
x

y

(1, 8)

ƒ=_2≈+4x+6
ƒ=_2(x-1)@+8

ƒ=_2≈+4x+6

Vertex:
Axis of symmetry:

Maximum value of f:
y-intercept:

x-intercepts:

(1, 8)
x=1
8
6
_1 and 3

(0, 6)

(_1, 0)

Figure 8 

PROPERTY SUMMARY The Graph of the Parabola y � ax2 � bx � c

By completing the square, the equation of the parabola y � ax2 � bx � c can
always be rewritten in the form

In this form, the vertex of the parabola is (h, k) and the axis of symmetry is the
line x � h. The parabola opens upward if a � 0 and downward if a 	 0.

y � a(x � h)2 � k

EXAMPLE

SOLUTION

5 Determining the Input at which a Quadratic Function Has a Minimum Value

The graph of the quadratic function g(x) � x2 � � 2 is a parabola that opens
upward because the coefficient of x2 is positive. Thus it makes sense to talk about a
minimum rather than maximum value for this function. Let x0 denote the input for
which g(x0) is minimum.

(a) Use a TRACE and/or ZOOM feature on a graphing utility to estimate x0 to the
nearest one-tenth. What is the corresponding estimate for g(x0)?

(b) Use algebra to determine the exact value of x0 and the minimum value of
the function. Check that the results are consistent with the visual evidence in
part (a).

(a) From the preliminary view obtained in Figure 9(a), we can see that the input x0

at which the function has a minimum is roughly 0.5, a bit less actually.
The zoom-in view in Figure 9(b) reveals that x0 is closer to 0.4 than to 0.5.
So we have x0 � 0.4, to the nearest tenth. Figure 9(b) shows that the output
g(x0) is between 1.81 and 1.82, so certainly to the nearest tenth we can say
that g(x0) � 1.8. Suggestion: Before working this example with your own
graphing utility, reread the comments on page 156 regarding zooming in on
turning points.

6
7 x

The next three examples involve maximum and minimum values of functions.
As background for this, we first summarize our basic technique for graphing
parabolas.



(b) By completing the square as in Example 4, we find that the given equation can
be rewritten as

(You should verify this for yourself, using Example 4 as a model.) This last
equation tells us that the vertex of the parabola is the point Thus the
minimum value of the function is and this minimum occurs at x0 � Using a
calculator now, you’ll find that � 0.429 and � 1.816. Both of these values
are consistent with the graphical estimates in part (a).

For the previous two examples, keep in mind that we were able to find the maxi-
mum or minimum easily only because the functions were quadratics. In contrast, you
cannot expect to find the minimum of y � x4 � 8x using the method of Examples 4 and
5 because it is not a quadratic function. In general, the techniques of calculus are re-
quired to find maxima and minima for functions other than quadratics. There are
some cases, however, in which our present method can be adapted to functions that
are closely related to quadratics. For instance, in the next example, we look for an
input that minimizes a function of the form y � where f is a quadratic func-
tion. As indicated in Figure 10, we need only find the input that minimizes the qua-
dratic function y � f (x), because this same input also minimizes y � More
generally, note that the cube root function is an increasing function; bigger numbers
have bigger cube roots. So the minimum value of should occur where f (x) is
minimum. 

(The outputs of the two functions are, of course, different, but the point here is
that the same input does the job for both functions.)

1
3 f (x),

1
3 f (x).

1
3 f (x),

89
49

3
7

3
7.

89
49

1  37, 89
49 2 .

g(x) � a x �
3

7
b 2

�
89

49
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Graphical Perspective

(a) [_1, 2, 0.5] by [1, 4, 0.5]

_1 0 1 2
1

2

3

4

1.81

1.84

0.30 0.40 0.50 0.60

(b) [0.30, 0.60, 0.05 ] by [1.81, 1.84, 0.01]

Figure 9
Zooming in on the turning point of
g(x) � x2 � � 2.6

7 x

x

y

x¸

y=ƒ

y=Œ„ƒ

EXAMPLE

SOLUTION

6 Finding the Minimum of a Function That’s Related to a Quadratic

Let f (x) � Which x-value yields the minimum value for the func-
tion f ? What is this minimum value?

According to the remarks just prior to this example, the x-value that minimizes the

function f (x) � will be the same x-value that minimizes the function2
3 x2 � x � 1

2
3 x2 � x � 1.

Figure 10
The minimum value occurs at x0 for
both of the functions y � and
y � f (x).

1
3 f(x)



y � x2 � x � 1. To find this x-value, we complete the square, just as we’ve done
previously in this section. We have

This shows that the vertex of the parabola y � x2 � x � 1 is (1�2, 3�4). Since this
parabola opens upward, we conclude that the input x � 1�2 will produce the minimum
value for y � x2 � x � 1 and also for f(x) � The minimum value of
the function f is

In summary: The minimum value of the function f occurs when x � 1�2. This
minimum value is which is approximately 0.91. See Figure 11 for a graphical
perspective.

2
3 3�4,

 � 23 3�4 � 0.91

 f (1�2) � 2
3 (1�2)2 � (1�2) � 1

2
3 x2 � x � 1.

 � a x �
1

2
b2

�
3

4

 � x2 � x �
1

4
� 1 �

1

4

 y � x2 � x     � 1
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Graphical Perspective

_0.5 0 1 1.5

0.7

0.9

1.1

1.3

0.5

1.5

0.5

EXAMPLE

SOLUTION

7 Finding Inputs That Maximize a Function Related to a Quadratic

As indicated in Figure 12, the maximum value of the function y � �t4 � 3t2 occurs
when t is between 1.0 and 1.5 and also when t is between �1.0 and �1.5. Determine
these t-values exactly, then obtain calculator approximations rounded to three decimal
places.

The substitution t2 � x will reduce this question to one about a quadratic function.
If t2 � x, then t4 � x2 and we have

 � � a x �
3

2
b 2

�
9

4

 � �x2 � 3x
 y � �t4 � 3t2

completing the square, as we’ve
done throughout this section
(Check the algebra!)

Figure 11
The dashed graph is y � x2 � x � 1;
the other is f (x) �
The minimum value for both func-
tions occurs when x � 0.5. The
minimum value of f is which
is approximately 0.9.

2
3 3�4,

2
3 x2 � x � 1.



The graph of this last equation is a parabola that opens downward, and the maximum
occurs when x is 3�2. So we have

and therefore

Note that these calculator values are consistent with Figure 12.

In many real-life applications in science and business, data are collected that can
be arranged in an x-y table of values. (We’ve seen examples in this and the previous
section.) We conclude this section with a useful theorem that tells how to determine
whether a given x-y table can be generated by a linear function or a quadratic func-
tion (or neither). As background for the theorem, we explain what is meant by first
differences and second differences. Suppose we have a list of numbers, say, 2, 7, 8,
4, 15. Then the list of first differences is a new list formed by subtracting adjacent
members of the given list as follows:

So, for this example, the list of first differences is 5, 1, �4, 11. The process can be
summarized conveniently as shown in Figure 13.

7 � 2 (�5),  8 � 7 (�1),  4 � 8 (��4),  15 � 4 � 11

t � 

B

3

2
� 


13

12
� 


16

2
� 
1.225

t2 � x �
3

2
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y=_t$+3t@

2

t
1.0 2.0_1.0_2.0

4

_2

_4

_6

y

Figure 12

2 157 8 4

5 1 _4 11

Original list

First differencesFigure 13

2 157 8 4

5 1 _4 11

_4 _5 15

Original list

First differences

Second differencesFigure 14

With the terminology we’ve now introduced, we are ready to state the theorem
for determining whether or not a given table of x-y values can be generated by a
linear or quadratic function. In the statement of the theorem, reference is made to
x values that are equally spaced. That means, for example, we could have x � 1, 2,
3, and so on, or x � 5, 10, 15, and so on, but not x � 1, 2, 4, . . . .

Theorem How to Determine Whether a Data Set Can Be Generated 
by a Linear or Quadratic Function

Suppose we have a table of x-y values and the x-values are equally spaced. Then:

(a) The data can be generated by a linear function if and only if the first differences
of the y-values are constant.

(b) The data can be generated by a quadratic function if and only if the second
differences of the y-values are constant.

Once we have the list of first differences, we can follow the same procedure to
form the list of second differences as shown in Figure 14. For the second differences
we are subtracting adjacent numbers in the list of first differences.
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EXAMPLE 8 Using First and Second Differences

The x-y values in Figure 15 are generated by a linear function because the first dif-
ferences of the y’s are constant. The x-y values in Figure 16 are generated by neither
a linear function nor a quadratic function because neither the first nor second differ-
ences are constant.

x
y

0
_1

2
5

4
11

6
17

8
23

6 6 6 6First differences

Figure 15

x
y

1
3

2
4

3
8

4
13

5
21

1 4 5 8First differences

3 1 3Second differences

Figure 16

EXERCISE SET 4.2

A
Exercises 1 and 2 require graphing utilities that can create
scatter plots and compute linear and quadratic regression
models.

1. The following table shows the number of air passenger
miles flown worldwide for selected years from 1950 to
1985.

Year x
(x � 0 
is 1950) 0 5 10 15 20 25 30 35

Passenger 
Miles y
(billions) 16.94 36.90 65.94 119.78 278.57 421.83 658.88 827.19

Source: Data computed from Vital Signs 1999, Lester R. Brown et al. (New York:
W. W. Norton & Co., 1999)

2. The following table shows the number of cellular phone
subscribers worldwide over the years 1990–1995.

Year x
(x � 0 is 1990) 0 1 2 3 4 5

Cell Phone 
Subscribers
(millions) 11 16 23 34 55 91

Source: Lester R. Brown et al., Vital Signs, 2000 (New York: W. W. Norton
& Co., 2000)

(a) Use a graphing utility to create a scatter plot for
the data. Then determine the quadratic model that 
fits the data as closely as possible. Add the graph of the
quadratic function to your scatter plot.

(b) Use the model to make projections for the number of
cell phone subscribers for 1996 and for 1998. Which
projection do you think might be more accurate? Now
compute the percentage error in each projection using
the following information. The number of cell phone
subscribers in 1996 and 1998 were 142 million and 
319 million, respectively.

For Exercises 3 and 4, refer to the following figures. Figure A
shows a scatter plot and quadratic model for the U.S. population
over the period 1790–1950. Figure B shows similar information
for the world population over the period 1750–1950. For both
figures, x represents the number of years after 1750. (Thus x � 0
corresponds to the year 1750, and x � 200 corresponds to 1950.)

The proof for part (a) of this theorem is outlined in Exercises 63 and 64. We omit the
proof of part (b) because of the lengthy algebra that is involved.

(a) Use a graphing utility to create a scatter plot for the
data. Then determine the linear model and the quadratic
model that fit the data as closely as possible. Add the
graph of each model to your scatter plot.

(b) Use each model to make projections for the number of
passenger miles for 1990 and for 1998.

(c) Use the following information to compute the per-
centage errors in the projections in part (b). For each
case, which model produces the smaller percentage
error? The number of passenger miles for 1990 and
1998 were 1145.94 billion and 1585.74 billion,
respectively.



Projected Actual 
World World Projection

Population Population Too High or %
(billions) (billions) Too Low? Error

1970 3.708
2000 6.080

Afterword on Exercises 3 and 4: For the time spans shown in
Figures A and B, quadratic models describe both the U.S. and
world populations quite well. That is, the graph of each quadratic
function comes very close to the data points in the scatter plot.
Exercise 3 shows that a quadratic model for the U.S. population
does a reasonably good job of projecting the population figures
20 and even 50 years beyond the base data. Exercise 4, on
the other hand, shows that the quadratic model is inappropriate
for similar projections of the world population, because the
quadratic model grows much too slowly. In Chapter 5 we study
exponential functions, which can be much more appropriate for
modeling very rapid growth.

In Exercises 5–20, graph the quadratic function. Specify the vertex,
axis of symmetry, maximum or minimum value, and intercepts.

5. y � (x � 2)2 6. y � �(x � 2)2

7. y � 2(x � 2)2 8. y � 2(x � 2)2 � 4
9. y � �2(x � 2)2 � 4 10. y � x2 � 6x � 1

11. f (x) � x2 � 4x 12. F (x) � x2 � 3x � 4
13. g(x) � 1 � x2 14. y � 2x2 �
15. y � x2 � 2x � 3 16. y � 2x2 � 3x � 2
17. y � �x2 � 6x � 2 18. y � �3x2 � 12x
19. s � 2 � 3t � 9t2 20. s � � t � 1

For Exercises 21–26, determine the input that produces the
largest or smallest output (whichever is appropriate). State
whether the output is largest or smallest.

21. y � 2x2 � 4x � 11 22. f (x) � 8x2 � x � 5
23. g(x) � �6x2 � 18x 24. s � �16t2 � 196t � 80
25. f (x) � x2 � 10 26. h(x) � x2 � 10x

In Exercises 27–30, find the maximum or minimum value for
each function (whichever is appropriate). State whether the
value is a maximum or minimum.

27. y � x2 � 8x � 3 28. y � � x � 1
29. y � �2x2 � 3x � 2 30. y � � 2x

In Exercises 31–34, you are given a quadratic function.

(a) By looking at the coefficient of the square term, state
whether the function has a maximum or a minimum value.

(b) Use a TRACE and/or ZOOM feature on a graphing utility
to estimate the input x0 for which the function obtains its
maximum or minimum value. (Estimate to the nearest
one-tenth, as in Example 5.) What is the corresponding
estimate for the maximum or minimum value?

� 
1
3 x2

1
2 x2

� 
1
4 t2

12 x

Figure A
Scatter plot and quadratic model for U.S. 
population, 1790–1950.

Figure B
Scatter plot and quadratic model for 
world population, 1750–1950.

3. Use the quadratic model in Figure A to complete the fol-
lowing table. Round each projection to two decimal places;
round the percentage error to the nearest integer.

Projected U.S. Actual U.S. Projection
Population Population Too High or %
(millions) (millions) Too Low? Error

1970 203.30
2000 275.60

4. Use the quadratic model in Figure B to complete the
following table. Round each projection to two decimal
places; round the percentage error to the nearest 
integer.
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(c) Use algebra to determine the exact value of x0 and the
corresponding maximum or minimum value of the function.
Check to see that the results are consistent with the graphi-
cal estimates obtained in part (b).

31. f (x) � 6x2 � x � 4 32. g(t) � 40t � 7t2

33. y � �9t2 � 40t � 1 34. y � � 4x � 3
35. How far from the origin is the vertex of the parabola

y � x2 � 6x � 13?
36. Find the distance between the vertices of the parabolas

y � � 4x and y � 2x2 � 8x � 1.

For Exercises 37–42, the functions f, g, and h are defined as
follows:

In each exercise, classify the function as linear, quadratic, or
neither.

37. f � g 38. g � f 39. g � h
40. h � g 41. f � f 42. h � h

In Exercises 43 and 44, determine the inputs that yield the minimum
values for each function. Compute the minimum value in each case.

43. (a) f (x) �

(b) g(x) �
(c) h(x) � x4 � 6x2 � 73

44. (a) F (x) � (4x2 � 4x � 109)1�2

(b) G(x) � (4x2 � 4x � 109)1�3

(c) H(x) � 4x4 � 4x2 � 109

For Exercises 45 and 46, first, use a graphing utility to esti-
mate to the nearest one-tenth the maximum value of the func-
tion. Then use algebra to determine the exact value, and check
that your answer is consistent with the graphical estimate.

45. (a) f (x) �

(b) g(x) �
(c) h(x) � �x4 � 4x2 � 12

46. (a) F (x) � (27x � x2)1�2

(b) G(x) � (27x � x2)1�3

(c) H(x) � 27x2 � x4

In Exercises 47–50, determine whether the x-y values are gen-
erated by a linear function, a quadratic function, or neither.

47. x �4 �2 0 2 4

y 25 3 �4 7 33

48. x 1 2 3 4 5

y �12 �8.5 �5 �1.5 2

49. x 0 1 2 3 4

y �21 �3 7 9 3

50. x 0.25 0.50 0.75 1.00 1.25

y �0.40 �0.16 0.08 0.32 0.62

2
3

�x2 � 4x � 12
2�x2 � 4x � 12

2
3 x2 � 6x � 73
2x2 � 6x � 73

f (x) � 2x � 3  g(x) � x2 � 4x � 1  h(x) � 1 � 2x2

� 
1
2 x2

12 x2

51. On the same set of axes, graph the four parabolas y � x2,
2x2, 3x2, and 8x2. Relative to your graphs, where do you
think the graph of y � 50x2 would fit in? After answering,
check by adding the graph of y � 50x2 to the picture.

52. Graph the four parabolas y � x2, 0.5x2, 0.25x2, and
0.125x2. Relative to your graphs, where do you think the
graph of y � 0.02x2 would fit in? After answering, check
by adding the graph of y � 0.02x2 to the picture.

B
53. Let f(x) � x2. Find the average rate of change ¢f�¢x on the

interval [a, x].
54. If f(x) � ax2 � bx � c, show that 

� 2ax � ah � b.

55. Find the x-coordinate of the vertex of the parabola
y � (x � a)(x � b). (Your answer will be in terms of the
constants a and b.) Hint: It’s easier here to rely on
symmetry than on completing the square.

56. (a) Graph the two functions y � x2 � 4x and y � x2 � 4x.
Howare the twographs related (in termsofsymmetry)?

(b) Follow part (a) using the two functions 
y � �2x2 � 3x � 4 and y � �2x2 � 3x � 4.

(c) Which one of the graphing techniques from Section 3.4
relates to what you have observed in parts (a) and (b)?

In Exercises 57–60, find quadratic functions satisfying the given
conditions.

57. The graph passes through the origin, and the vertex is
the point (2, 2). Hint: What do h and k stand for in the
general equation y � a(x � h)2 � k?

58. The graph is obtained by translating y � x2 four units 
in the negative x-direction and three units in the positive 
y-direction.

59. The vertex is (3, �1), and one x-intercept is 1.
60. The axis of symmetry is the line x � 1. The y-intercept is 1.

There is only one x-intercept.
61. Let g(x) � x2 � bx. Are there any values for b for which

the minimum value of this function is �1? If so, what are
they? If not, explain why.

62. For which value of c will the minimum value of the func-
tion f (x) � x2 � 2x � c be ?

63. This exercise shows that if we have a table generated by a
linear function and the x-values are equally spaced, then the
first differences of the y-values are constant.
(a) In the following data table, the three x-entries are equally

spaced by an amount . (We are assuming that h is
nonzero to guarantee that the three x values are distinct.)
Compute the three entrees in the f(x) row assuming that
f is a linear function given by f(x) � mx � b. (Don’t
worry that the answers contain the letters m, b, a, and h.)

x a a � h a � 2h

f(x)

h � 0

12

f (x � h) � f (x)

h
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(b) Compute the first differences for the three quantities
that you listed in the f (x) row in part (a). (The two first
differences that you obtain should turn out to be equal,
as required.)

64. Suppose we have a table of x-y values with the x-values
equally spaced. This exercise shows that if the first dif-
ferences of the y-values are constant, then the table can
be generated by a linear function. Note: To show that
the data points are generated by a linear function, it is
enough to show that the points all lie on one nonverti-
cal line.

Consider the following table with the x-values equally
spaced by an amount h � 0, as in Exercise 63.

x a a � h a � 2h

y y1 y2 y3

Assuming that the first differences of the y-values are con-
stant, we have y2 � y1 � y3 � y2 � k, where k is a constant.
(a) Check that the slope of the line joining the two data

points (a, y1) and (a � h, y2) is k�h.
(b) Likewise, check that the slope of the line joining the

two data points (a � h, y2) and (a � 2h, y3) is k�h.
From parts (a) and (b), we conclude that the three data
points lie on a nonvertical line, as required. (The slope k�h
is well defined because we assumed h � 0.)

65. The following table and scatter plot show global coal con-
sumption for the years 1990–1995.

Global Coal Consumption 1990–1995

Year x Coal Consumption y
x � 0 4 1990 (billion tons)

0 3.368
1 3.285
2 3.258
3 3.243
4 3.261
5 3.311

Source: World Resources Institute

Year x  (x = 0 is 1990)
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(a) Use a graphing utility to find a quadratic model for the
data. Then use the model to make estimates for global
coal consumption in 1989 and 1996.

(b) Use the following information to show that, in terms of
percentage error, the 1996 estimate is better than the
1989 estimate, but in both cases the percentage error is
less than 2%. The actual figures for coal consumption
in 1989 and 1996 are 3.408 and 3.428 billion tons, 
respectively.

(c) Use the model to project worldwide coal consumption
in 1998. Then show that the percentage error is more
than 9%, given that the actual 1998 consumption was
3.329 billion tons.

66. Driven by rising consumer demand and growing dissatis-
faction with conventional farming practices, the organic
agriculture industry is soaring.—Vital Signs 2000,
Lester R. Brown et al. (New York: W. W. Norton & 
Co., 2000)

The following table and scatter plot show the area devoted
to organic farming in the European Union over the period
1988–1998. (One hectare equals 2.471 acres or 10,000
square meters.)

Area y
Year x (million hectares)

1988 0.17
1990 0.34
1992 0.69
1994 1.15
1996 1.90
1998 3.17

Data from Vital Signs 2000

(a) In view of the scatter plot and the opening quotation,
a quadratic model might be useful here, at least in
making short-term predictions. Indeed, if you look at
the scatter plot without knowing that it was generated
from real-life data, in the context of this section you
might think that the points all lie exactly on the graph
of a parabola. Show that this is not the case: Compute
the second differences of the y-values in the given
table, and note that they are not equal. (In fact, no
two are equal.)
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MINI PROJECT 1
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(b) In the following table, fill in the missing entries so that
all six data points are generated by one quadratic function.
Hint: Work back from the second differences; you
want them all to be equal.

1988 0.17
1990 0.34
1992 0.69
1994 ?
1996 ?
1998 ?

C
67. By completing the square, show that the coordinates 

of the vertex of the parabola y � ax2 � bx � c are 
(�b�2a, �D�4a), where D � b2 � 4ac.

68. Compute the average of the two x-intercepts of the graph of
y � ax2 � bx � c. (Assume b2 � 4ac � 0.) How does your
answer relate to the result in Exercise 67?

69. Consider the quadratic function y � px2 � px � r, where
p � 0.
(a) Show that if the vertex lies on the x-axis, then p � 4r.
(b) Show that if p � 4r, then the vertex lies on the x-axis.

70. Let f(x) � ax2 � bx, where a � 0 and b � 0. Find a value
for b such that the equation f ( f (x)) � 0 has exactly three
real roots.

How Do You Know That the Graph of a Quadratic Function 
Is Always Symmetric About a Vertical Line?

(a) A short answer that sweeps everything under the rug: The graph of the
basic parabola y � x2 is symmetric about a vertical axis, and the graph
of f (x) � ax2 � bx � c inherits this type of symmetry. In a group, discuss
the reasons supporting this short answer. (The discussion won’t be com-
plete without taking into account the following concepts: completing the
square, translations, scalings, and reflections.) After the discussion, write
a paragraph or two answering, as carefully as you can, the question raised
in the title of this mini project.

(b) Here’s a completely different way to go about answering the question in the
title of this mini project. An advantage to this alternative approach is that, as
a by-product, it gives you the equation of the axis of symmetry without the
need for completing the square. We start with the definition of what it means
for the graph of y � f(x) to be symmetric about a vertical line, say, x � x0.

f(x¸-h) f(x¸+h)

y=ƒ

x=x¸

y

x
x¸+hx¸-h x¸

Now suppose we have a quadratic function

(1)f (x) � ax2 � bx � c    (a � 0)

Definition Symmetry About the Line x � x0

The graph of a function f is 
symmetric about the line 
x � x0 provided the follow-
ing condition holds. When-
ever x0 � h is in the domain 
of f, then so is x0 � h and

f (x0 � h) � f (x0 � h)
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USING ITERATION TO MODEL POPULATION 
GROWTH (Optional Section, Online)

Although I shall henceforth adopt the habit of referring to the variable X as “the
population,” there are countless situations outside population biology where . . .
[iteration of functions] applies. . . . Examples in economics include models for the
relationship between commodity quantity and price, for the theory of business cycles,
and for the temporal sequences generated by various other economic quantities.

. . . I would therefore urge that people be introduced to, say, [the iteration process
for f(x) � kx(1 � x)] early in their mathematical education. This equation can be stud-
ied phenomenologically by iterating it on a calculator, or even by hand. Its study does
not involve as much conceptual sophistication as does elementary calculus. Such study
would greatly enrich the student’s intuition about nonlinear systems. —Biologist Robert

M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261

(1976), pp. 459–467.

The size of a population or its genetic makeup may change from one generation to
the next. In the study of discrete dynamics we use functions and the iteration process
(from Section 3.5) to investigate and analyze changes such as these that occur over
discrete intervals of time . . . 

Because the domain is the set of all real numbers, we don’t have to worry
about the part of the definition regarding domain. Thus, to show that the graph
of the quadratic function is symmetric about a line x � x0 we need to find a
value for x0 so that the following equation holds for all values of h:

(2)

Now your job: Evaluate each side of equation (2) using the definition of f in
equation (1). Then solve the resulting equation for x0. You should obtain
x0 � �b�2a. This shows that the graph of the quadratic function is indeed
symmetric about a vertical line, namely, x � �b�2a.

f (x0 � h) � f (x0 � h)

The full text for (optional) Section 4.3 is available on the website at http://www.cengage.com/math/cohen/precalc7e.

4.3

The Mini Project, What’s Left in the Tank, at http://www.cengage.com/math/cohen/precalc7e, gives a data-oriented
application of the material from Section 4.2.

http://www.cengage.com/math/cohen/precalc7e
http://www.cengage.com/math/cohen/precalc7e


SETTING UP EQUATIONS THAT DEFINE FUNCTIONS
One of the first steps in problem solving often involves defining a function. The func-
tion then serves to describe or summarize a given situation in a way that is both con-
cise and (one hopes) revealing. In this section we practice setting up equations that
define such functions. In Section 4.5 we will use this skill in solving an important
class of applied problems involving quadratic functions.

For many of the examples in this section we’ll rely on the following four-step
procedure to set up the required equation. You may eventually want to modify this
procedure to fit your own style. The important point, however, is that it is possible
to approach these problems in a systematic manner. A word of advice: You’re ac-
customed to working mathematics problems in which the answers are numbers. In
this section, the answers are functions (or, more precisely, equations defining func-
tions); you may need to get used to this.

Step 1 Read the problem carefully and, if applicable, draw a picture that conveys
the given information

Step 2 State in your own words, as specifically as you can, what the problem is ask-
ing for. (This usually involves rereading the problem.) Typically, the problem
asks you to express a quantity as a function of one (or more) other quanti-
ties. Assign variables to all relevant quantities. If you are unable to find the
desired function then proceed to the next step.

Step 3 Note equations relating the quantities you identified in Step 2.
Step 4 Find an equation involving the key variable that you identified in Step 2.

Now, as necessary, substitute in this equation using the auxiliary equations
from Step 3 to obtain an equation involving only the desired variables.

Steps for Setting Up Equations

I hope that I shall shock a few people in
asserting that the most important single
task of mathematical instruction in the
secondary schools is to teach the setting
up of equations to solve word problems.
—George Polya (1887–1985)

Each problem that I solved became a
rule which afterwards served to solve
other problems. —René Descartes
(1596–1650)
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Perimeter=100 cm

x

L

Figure 1 

EXAMPLE 1 The Area of a Rectangle as a Function of Its Width

The perimeter of a rectangle is 100 cm. Express the area of the rectangle in terms of
the width.

SOLUTION Let’s follow our four-step procedure.

Step 1 Draw a rectangle showing a perimeter of 100 cm and a width x cm. See
Figure 1. (For the moment ignore the label L at the base of the rectangle; it
enters the picture at Step 3, but it’s not part of the given information.)

Step 2 We want to express the area of the rectangle in terms of x, the width. Let A
stand for the area of the rectangle.

Step 3 Call the length of the rectangle L, as indicated in Figure 1. Then, A � x � L
To express A in terms of x alone, we need to first express L in terms of x.
Since the perimeter is given as 100 cm, we have.

(1) L � 50 � x
 x � L � 50

 2x � 2L � 100



EXAMPLE

SOLUTION

Step 4 The area of a rectangle equals width times length:

substituting for L using equation (1)

(2)

This is the required equation expressing the area of the rectangle in terms of
the width x.

To emphasize this dependence of A on x, we can use function notation to rewrite
equation (2):

The domain of this area function is the open interval (0, 50). To see why this is so,
first note that x � 0 because x denotes a width. Furthermore, in view of equation (1),
we must have x 	 50; otherwise, the length L would be zero or negative.

Note: The function f defined by has domain all real numbers. The
function in Example 1, , has the open interval (0, 50) for its domain.
This domain is determined not by the algebra of the problem, but by the context of
the problem. It is typical in applications that the algebraic domain of the desired
function is restricted by the constraints of the problem. In Example 1, the geometry
of the problem dictates that x, L, P, and A are all positive quantities.

2 The Perimeter of a Rectangle as a Function of Its Width

A rectangle is inscribed in a circle of diameter 8 cm. Express the perimeter of the
rectangle as a function of its width.

We follow our four-step procedure.

Step 1 See Figure 2. Notice that the diagonal of the rectangle is a diameter of the
circle.

Step 2 The problem asks us to come up with a formula or a function that gives us
the perimeter of the rectangle in terms of x, the width. Let P denote the
perimeter.

Step 3 Let L denote the length of the rectangle, as shown in Figure 2. Then, the
perimeter of the rectangle is 

(3)

This equation expresses P in terms of x and L. However, the problem asks
for P in terms of just x.

Step 4 By the Pythagorean theorem, we have

Step 1 This equation relates the length L and the width x. Rather than leaving the
equation in this form, however, we’ll solve for L in terms of x (because the
instructions for the problem ask for the perimeter in terms of the width x):

(4) L � 264 � x2

 L2 � 64 � x2

L2 � x2 � 82 � 64

P � 2x � 2L

A(x) � 50x � x2
f (x) � 50x � x2

A(x) � 50x � x2

 � 50x � x2

 � x(50 � x)

 A � x # L
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Using equation (4) to substitute for L in equation (3), we have

Step (5)

Step 1 This is the required equation. It expresses the perimeter P as a function of
the width x, so if you know x, you can calculate P.

To emphasize this dependence of P on x, we can employ function notation to
rewrite equation (5):

(6)

Before leaving this example, we need to specify the domain of the perimeter function
in equation (6). An easy way to do this is to look again at Figure 2. Since x represents
a width, we certainly want x � 0. Furthermore, Figure 2 tells us that x 	 8, because
in any right triangle, a leg is always shorter than the hypotenuse. Putting these ob-
servations together, we conclude that the domain of the perimeter function in equa-
tion (6) is the open interval (0, 8).

Note: In the following example we introduce the notation P(x, y), which stands for
the phrase “a point P with coordinates (x, y).”

3 Expressing a Distance as a Function of One Variable

Let P(x, y) be a point on the curve y � Express the distance from P to the
point (1, 0) as a function of one variable.

Step 1 Sketch the graph of . See Figure 3.
Step 2 We want to express the length of the dashed line in Figure 3 in terms of x.

Call this length D.
Step 3 There are no other quantities in Figure 3 that need labeling. But don’t forget

that we are given

(7)

Step 4 By the distance formula we have

(8)

Step 4 Now we can use equation (7) to eliminate y in equation (8):

(9)

Step 4 Equation (9) expresses the distance as a function of x, as required. What
about the domain of this distance function? Since the x-coordinate of a point
on the curve y � can be any nonnegative number, the domain of the dis-
tance function is [0, q).

1x

 � 2x2 � x � 1

 � 2x2 � 2x � 1 � x

 D(x) � 2x2 � 2x � 1 � 11x 2 2

 � 2x2 � 2x � 1 � y2

 D � 2(x � 1)2 � (y � 0)2

y � 1x

y � 1x

1x.

P(x) � 2x � 2264 � x2

P � 2x � 2264 � x2
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EXAMPLE

SOLUTION

(1, 0)

P(x, y)

D

y=œ„x

x

y

Figure 3 



EXAMPLE

SOLUTION

4 Expressing the Area of a Triangle as a Function of One Variable

A point P(x, y) lies in the first quadrant on the parabola y � 16 � x2, as indicated in
Figure 4. Express the area of the triangular region in Figure 4 as a function of one
variable.

Step 1 See Figure 4.
Step 2 We want to express the area of the shaded triangle in terms of x. Let A

denote the area of this triangle.
Step 3 Since the coordinates of P are (x, y), the base of our triangle is x and the

height is y. Also, x and y are related by the given equation

(10)

Step 4 The area of a triangle equals (base)(height):

Step 4 so

substituting for y using equation (10)

Step 4 This last equation expresses the area of the triangle as a function of x, as
required. (Exercise 50 at the end of this section will ask you to specify the
domain of this area function.)

5 Expressing the Area of a Circle as a Function of the Circumference

A piece of wire x in. long is bent into the shape of a circle. Express the area of the
circle in terms of x.

Step 1 See Figure 5.
Step 2 We are supposed to express the area of the circle in terms of x, the circum-

ference. Let A denote the area. Then

(11)

where r is the radius of the circle. This expresses A in terms of r, but we
want A in terms of x. So we express r in terms of x.

Step 3 The general formula for circumference in terms of radius is C � 2pr. Since
in our case the circumference is given as x, our equation becomes

(12)

Step 4 Replace r in equation (11) by the expression in equation (12). This yields

Step 4 Thus we have

A(x) �
x2

4p

A(x) � p a x

2p
b 2

�
px2

4p2 �
x2

4p

x � 2pr    or    r �
x

2p

A � pr2

 � 8x �
1

2
 x3

 A(x) �
1

2
 (x)(16 � x2)

A �
1

2
 (x)(y)

1
2  

y � 16 � x2
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EXAMPLE

SOLUTION

y

x

y

x

P(x, y)

y=16-≈

Figure 4 

x in.

r

Circumference is x in.

Figure 5 



Step 4 This is the required equation. It expresses the area of the circle in terms of
the circumference x. In other words, if we know the length of the piece of
wire that is to be bent into a circle, we can use that length to calculate what
the area of the circle will be. Note: In this example a reasonable domain
for the function is 

6 Expressing the Surface Area of a Right Circular Cylinder of Given Volume 
as a Function of the Radius of the Base

Figure 6 displays a right circular cylinder, along with the formulas for its volume V
and total surface area S. Given that the volume is 10 cm3, express the surface area S
as a function of r, the radius of the base.

Step 1 See Figure 6.
Step 2 We are given a formula that expresses the surface area S in terms of both r

and h. We want to express S in terms of just r.
Step 3 We are given that V � 10 and also that V � pr2h. Thus

Step 3 and consequently, expressing h in terms of r,

(13)

Step 4 We take the given formula for S, namely,

Step 4 and replace h with the quantity given in equation (13). We obtain

Step 4 This is the required equation. It expresses the total surface area in terms of
the radius r. Since the only restriction on r is that it be positive, the domain
of the area function is (0, q).

We have followed the same four-step procedure in Examples 1 through 6. Of
course, no single method can cover all possible cases. As usual, common sense and
experience are often necessary. Also, you should not feel compelled to follow this
procedure at any cost. Keep this in mind as you study the last two examples in this
section.

7 Expressing a Certain Product as a Function of a Single Variable

Two numbers add up to 8. Express the product P of these two numbers in terms of a
single variable.

If we call the two numbers x and 8 � x, then their product P is given by

P(x) � x(8 � x) � 8x � x2

 � 2pr2 �
20
r

 S(r) � 2pr2 � 2pr a 10

pr2 b

S � 2pr2 � 2prh

h �
10

pr2

pr2h � 10

(0, q).A(x)
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EXAMPLE

SOLUTION

EXAMPLE

SOLUTION

V=πr@h
S=2πr@+2πrh

h
Volume=10 cm #

Figure 6 



That’s it. This last equation expresses the product as a function of the variable x.
Since there are no restrictions on x (other than its being a real number), the domain
of this function is (�q, q).

8 Expressing Revenue as a Function of One Variable

In economics, the revenue R generated by selling x units at a price of p dollars per
unit is given by

R � x # p

c c¬¬¬¬¬¬ price per unitƒ¬¬¬¬ number of units

In Figure 7, we are given a hypothetical function relating the selling price of a cer-
tain item to the number of units sold. Such a function is called a demand function.
Express the revenue as a function of x.
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EXAMPLE

SOLUTION

x+40 (0≤x≤117)p=_ 1
3

x

p

Number of units sold

Pr
ic

e 
pe

r 
un

it

117

40

More than anything else, this problem is an exercise in reading. After reading the
problem several times, we find that it comes down to this:

find: an equation expressing R in terms of x

In view of this, we write

Thus we have

This is the required function. It allows us to calculate the revenue when we know the
number of units sold. Note that this revenue function is a quadratic function.

Question for review and also preview: How would you find the maximum revenue
in this case?

R(x) � � 

1

3
x2 � 40x  (0 � x � 117)

R � x # p � x a� 

1

3
x � 40b

 given:  R � x # p  and  p � �
1

3
x � 40  (0 � x � 117)

Figure 7 



(b) Express the sum of the squares of the two numbers
in terms of a single variable.

(c) Express the difference of the cubes of the two num-
bers in terms of a single variable. (There are two
answers.)

(d) What happens when you try to express the average of
the two numbers in terms of one variable?

8. The product of two numbers is 16. Express the sum of 
the squares of the two numbers as a function of a single
variable.

9. Suppose we are given the following demand function 
relating the price p in dollars to the number of units x sold
of a certain commodity:

(a) Graph this demand function.
(b) How many units can be sold when the unit price is $3?

Locate the point on the graph of the demand function
that conveys this information.

(c) To sell 12 items, how should the unit price be set?
Locate the point on the graph of the demand function
that conveys this information.

(d) Find the revenue function corresponding to the given
demand function. (Use the formula R � x p.) Graph
the revenue function.

(e) Find the revenue when x � 2, when x � 8, and when
x � 14.

(f) According to your graph in part (d), which x-value
yields the greatest revenue? What is that revenue?
What is the corresponding unit price?

10. In Example 1 we considered a rectangle with perimeter 
100 cm. We found that the area of such a rectangle is 
given by A(x) � 50x � x2, where x is the width of the
rectangle. Compute the numbers A(1), A(10), A(20),
A(25), and A(35). Which width x seems to yield the largest
area A(x)?

11. In Example 2 we considered a rectangle inscribed in a
circle of diameter 8 cm. We found that the perimeter of
such a rectangle is given by

where x is the width of the rectangle.
(a) Use a calculator to complete the following table,

rounding each answer to two decimal places.

x 1 2 3 4 5 6 7

P(x)

P(x) � 2x � 2264 � x2

#

p � 5 �
x

4
   (p in dollars)

A
In each exercise in Exercise Set 4.4 you are asked to express
one variable as a function of another. Be sure to state a domain
for the function that reflects the constraints of the problem.

1. (a) The perimeter of a rectangle is 16 cm. Express the area
of the rectangle in terms of the width x. 
Suggestion: First reread Example 1.

(b) The area of a rectangle is 85 cm2. Express the 
perimeter as a function of the width x.

2. A rectangle is inscribed in a circle of diameter 12 in.
(a) Express the perimeter of the rectangle as a function of

its width x. Suggestion: First reread Example 2.
(b) Express the area of the rectangle as a function of its

width x.
3. A point P(x, y) is on the curve y � x2 � 1.

(a) Express the distance from P to the origin as a function
of x. Suggestion: First reread Example 3.

(b) In part (a), you expressed the length of a certain line
segment as a function of x. Now express the slope of
that line segment in terms of x.

4. A point P(x, y) lies on the curve y � as shown in the
figure.

(a) Express the area of the shaded triangle as a function of x.
Suggestion: First reread Example 4.

(b) Express the perimeter of the shaded triangle in terms 
of x.

5. A piece of wire py inches long is bent into a circle.
(a) Express the area of the circle as a function of y.

Suggestion: First reread Example 5.
(b) If the original piece of wire were bent into a square

instead of a circle, how would you express the area in
terms of y?

6. The volume of a right circular cylinder is 12p in.3.
(a) Express the height as a function of the radius.
(b) Express the total surface area as a function of the

radius.
7. Two numbers add to 16.

(a) Express the product of the two numbers in terms 
of a single variable. Suggestion: First reread 
Example 7.

y

x

P(x, y) y=œ„x

1x,
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(b) In your table, what is the largest value for P(x)? What
is the width x in this case?

(c) Using calculus, it can be shown that among all possible
widths x, the width x � 4 cm yields the largest
possible perimeter. Use a calculator to compute the
perimeter in this case, and check to see that the value
you obtain is indeed larger than all of the values
obtained in part (a).

12. Let 2s denote the length of the side of an equilateral
triangle.
(a) Express the height of the triangle as a function of s.
(b) Express the area of the triangle as a function of s.
(c) Use the function you found in part (a) to determine the

height of an equilateral triangle, each side of which is
8 cm long.

(d) Use the function you found in part (b) to determine
the area of an equilateral triangle, each side of which is
5 in. long.

13. If x denotes the length of a side of an equilateral triangle,
express the area of the triangle as a function of x.

14. The height of a right circular cylinder is twice the radius.
Express the volume as a function of the radius.

15. Using the information given in Exercise 14, express the
radius as a function of the volume.

16. The total surface area of a right circular cylinder is 14 in.2.
Express the volume as a function of the radius.

17. The volume V and the surface area S of a sphere of radius r
are given by the formulas V � pr3 and S � 4pr2. Express
V as a function of S.

18. The base of a rectangle lies on the x-axis, while the up-
per two vertices lie on the parabola y � 10 � x2. Suppose
that the coordinates of the upper right vertex of the rectan-
gle are (x, y). Express the area of the rectangle as a function
of x.

19. The hypotenuse of a right triangle is 20 cm. Express the
area of the triangle as a function of the length x of one of
the legs.

20. (a) Express the area of the shaded triangle in the figure
below as a function of x.

(b) Express the perimeter of the shaded triangle as a
function of x.

x

y

(x, y)

≈+¥=1

4
3 

12

21. For the following figure, express the length AB as a func-
tion of x. Hint: Note the similar triangles.

22. Five hundred feet of fencing is available to enclose a
rectangular pasture alongside a river, which serves as one
side of the rectangle (so only three sides require fencing—
see the figure). Express the area of the rectangular pasture
as a function of x.

For Exercises 23–30:

(a) Is this a quadratic function? Use a graphing utility to draw
the graph.

(b) How many turning points are there within the given
interval?

(c) On the given interval, does the function have a maximum
value? A minimum value?

23. A(x) � 50x � x2, 0 	 x 	 50 (This is the function that
we obtained in Example 1.)

24. P(x) � 2x � 2 0 	 x 	 8 (from Example 2)

25. D(x) � x � 0 (from Example 3)
26. A(x) � 8x � , 0 	 x 	 4 (from Example 4)

27. S(r) � 2pr2 � 20�r, r � 0 (from Example 6)
28. R(x) � x � � 40 , x � 0 (from Example 8)

29. (a) f (x) � x � x � 0 (b) g(x) � x � x � 0

30. (a) F (x) � (b) G(x) �

31. (a) Suppose that the product of two positive numbers is
Express the sum of the two numbers as a func-

tion of a single variable, and then use a graphing utility
to draw the graph. Based on the graph, does the sum
have a minimum value or maximum value?

(b) Suppose that the sum of two positive numbers is 
Express the product of the two numbers as a function
of a single variable. Without drawing a graph, explain
why the product has a maximum value.

111.

111.

1x �
1
x

1x �
1
x

 

1
x

,
1
x
,

21
3 x1

1
2 x3

2x2 � x � 1,

264 � x2,

x

B

A
x

5

4
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B
32. A piece of wire 4 m long is cut into two pieces, then each

piece is bent into a square. Express the combined area of
the two squares in terms of one variable.

33. A piece of wire 3 m long is cut into two pieces. Let x de-
note the length of the first piece and 3 � x the length of the
second. The first piece is bent into a square and the second
into a rectangle in which the width is half the length.
Express the combined area of the square and the rectangle
as a function of x. Is the resulting function a quadratic 
function?

In Exercises 34–37, refer to the following figure, which displays
a right circular cone along with the formulas for the volume V
and the lateral surface area S.

34. The volume of a right circular cone is 12p cm3.
(a) Express the height as a function of the radius.
(b) Express the radius as a function of the height.

35. Suppose that the height and radius of a right circular cone
are related by the equation h � r.
(a) Express the volume as a function of r.
(b) Express the lateral surface area as a function of r.

36. The volume of a right circular cone is 2 ft.3 Show that the
lateral surface area as a function of r is given by

37. In a certain right circular cone the volume is numerically
equal to the lateral surface area.
(a) Express the radius as a function of the height.
(b) Express the height as a function of the radius.

38. A line is drawn from the origin O to a point P(x, y) in the
first quadrant on the graph of y � 1�x. From point P, a line
is drawn perpendicular to the x-axis, meeting the x-axis at B.
(a) Draw a figure of the situation described.
(b) Express the perimeter of ^OPB as a function of x.
(c) Try to express the area of ^OPB as a function of x.

What happens?
39. A piece of wire 14 in. long is cut into two pieces. The first

piece is bent into a circle, the second into a square. Express
the combined total area of the circle and the square as a
function of x, where x denotes the length of the wire that is
used for the circle.

S �
2p2r6 � 36

r

13

S=πrœ„„„„„r@+h@
h

r

V= 1
3

πr@h

40. A wire of length L is cut into two pieces. The first piece is
bent into a square, the second into an equilateral triangle.
Express the combined total area of the square and the triangle
as a function of x, where x denotes the length of wire used for
the triangle. (Here, L is a constant, not another variable.)

41. An athletic field with a perimeter of mile consists of a
rectangle with a semicircle at each end, as shown in the
figure. Express the area of the field as a function of r, the
radius of the semicircle.

42. A square of side x is inscribed in a circle. Express the area
of the circle as a function of x.

43. An equilateral triangle of side x is inscribed in a circle.
Express the area of the circle as a function of x.

44. (a) Refer to the accompanying figure. An offshore oil rig is
located at point A, which is 10 miles out to sea. An oil
pipeline is to be constructed from A to a point C on the
shore and then to an oil refinery at point D, farther up
the coast. If it costs $8000 per mile to lay the pipeline
in the sea and $2000 per mile on land, express the cost
of laying the pipeline in terms of x, where x is the
distance from B to C.

(b) Use a calculator and your result in part (a) to complete
the following table, rounding the answers to the nearest
$100.

x (miles) 0 10 20 30 40 50

Cost (dollars)

(c) On the basis of the results in part (b), does it appear
that the cost function is increasing, decreasing, or 
neither on the interval 0 � x � 50? Which of the 
x-values in the table yields the lowest cost?

(d) Use a calculator and your result in part (a) to complete the
following table, rounding the answers to the nearest $100.

x (miles) 0 4 8 12 16 20

Cost (dollars)

B C D

A

10
miles

50 miles

1
4
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(e) Again, answer the questions in part (c), but now take
into account the results in part (d) also.

45. (a) An open-top box is constructed from a 6-by-8-inch 
rectangular sheet of tin by cutting out equal squares 
at each corner and then folding up the flaps, as shown
in the figure. Express the volume of the box as a func-
tion of x, the length of the side of each cutout square.

(b) Use a calculator and your result in part (a) to complete the
following table. Round the answers to the nearest 0.5 in.3.

x (in.) 0 0.5 1.0 1.5 2.0 2.5 3.0

Volume (in.3)

(c) On the basis of the results in part (b), which x-value
in the interval 0 � x � 3 appears to yield the largest
volume for the box?

(d) Use a calculator and your result in part (a) to complete
the following table. Round off the answers to the
nearest 0.1 in.3.

x (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Volume (in.3)

(e) Again, answer the questions in part (c), but now take
into account the results in part (d), too.

46. Follow Exercise 45(a), but assume that the original piece
of tin is a square, 12 in. on each side.

47. A Norman window is in the shape of a rectangle surmounted
by a semicircle, as shown in the figure. Assume that the
perimeter of the window is 32 ft.

x

8-2x 6-2x

6-2x 6 in.

8-2x

8 in.

x

x

x

x x

x

x

x

(a) Express the area of the window as a function of r, the
radius of the semicircle.

(b) The function you were asked to find in part (a) is a
quadratic function, so its graph is a parabola. Does the
parabola open upward or downward? Does it pass
through the origin? Show that the vertex of the
parabola is

48. Refer to the following figure. Express the lengths CB, CD,
BD, and AB in terms of x. Hint: Recall the theorem from
geometry stating that in a 30°-60°-90° right triangle, the
side opposite the 30° angle is half the hypotenuse.

49. Refer to the following figure; let s denote the ratio of y to z.
(a) Express y as a function of s.
(b) Express s as a function of y.
(c) Express z as a function of s.
(d) Express s as a function of z.

50. Refer to Example 4.
(a) What is the x-intercept of the curve y � 16 � x2 in

Figure 4?
(b) What is the domain of the area function in Example 4,

assuming that the point P does not lie on the x- or y-axis?
51. The following figure shows the parabola y � x2 and a line

segment drawn from the point A(0, �1) to the point
P(a, a2) on the parabola.

x

y

A(0, _1)

P{a, a@ }

y=≈

AP

z
y

3

45°

A

x

C

D

B

30°

45°

a 32

p � 4
 , 

512

p � 4
b
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(a) Express the slope of in terms of a.
(b) Show that the area of the shaded triangle in the figure is

given by

52. A rancher who wishes to fence off a rectangular area finds
that the fencing in the east-west direction will require extra
reinforcement due to strong prevailing winds. Fencing in
the east-west direction will therefore cost $12 per (linear)
yard, as opposed to a cost of $8 per yard for fencing in the
north-south direction. Given that the rancher wants to
spend $4800 on fencing, express the area of the rectangle
as a function of its width x. (Note: In this problem by width
we mean the measure in yards of a side running in the east-
west direction.) The required function is in fact a quadratic,
so its graph is a parabola. Does the parabola open upward
or downward? By considering this graph, find which
width x yields the rectangle of largest area. What is this
maximum area?

C
53. The following figure shows two concentric squares.

Express the area of the shaded triangle as a function 
of x.

54. The following figure shows two concentric circles of radii r
and R. Let A denote the area within the larger circle but

8

x

N

S

EW

area �
a5

2(a2 � 1)

AP outside the smaller one. Express A as a function of x (where
x is defined in the figure).

55. A straight line with slope m (m 	 0) passes through the
point (1, 2) and intersects the line y � 4x at a point in the
first quadrant. Let A denote the area of the triangle bounded
by y � 4x, the x-axis, and the given line of slope m.
Express A as a function of m.

56. A line with slope m (m 	 0) passes through the point
(a, b) in the first quadrant and intersects the line y � Mx
(M � 0) at another point in the first quadrant. Let A
denote the area of the triangle bounded by y � Mx, the 
x-axis, and the given line with slope m. Show that A can be
written as 

57. A line with slope m (m 	 0) passes through the point
(a, b) in the first quadrant. Express the area of the triangle
bounded by this line and the axes in terms of m.

58. One corner of a sheet of paper of width a is folded over and
just reaches the opposite side, as indicated in the figure.
Express L, the length of the crease, in terms of 
x and a.

x

L

a

A �
M(am � b)2

2m(m � M)

r

R

x

The Mini Project, Group Work on Functions of Time, at http://www.cengage.com/math/cohen/precalc7e, uses the
material from Section 4.4.

http://www.cengage.com/math/cohen/precalc7e


MAXIMUM AND MINIMUM PROBLEMS
. . . problems on maxima and minima, although new features in an English textbook,
stand so little in need of apology with the scientific public that I offer none. —G. Chrystal

in his preface to Textbook of Algebra (1886)

In daily life it is constantly necessary to choose the best possible (optimal) solution. A
tremendous number of such problems arise in economics and in technology. In such
cases it is frequently useful to resort to mathematics. —V. K. Tikhomirov in Stories about

Maxima and Minima (translated from the Russian by Abe Shenitzer) (Providence, R.I.: The

American Mathematical Society, 1990)

You have already seen several examples of maximum and minimum problems in
Section 4.2. Before reading further in the present section, you should first review
Examples 5 through 7 in Section 4.2.

Actually, we begin this section’s discussion of maximum and minimum problems
at a more intuitive level. Consider, for example, the following question: If two num-
bers add to 9, what is the largest possible value of their product? To gain some insight
here, we carry out a few preliminary calculations. See Table 1.

We have circled the 20 in the right-hand column of Table 1 because it appears to
be the largest product. We say “appears” because our table is incomplete. For in-
stance, what if we allowed x- and y-values that are not whole numbers? Might we get
a product exceeding 20? Table 2 shows the results of some additional calculations
along these lines.

As you can see from Table 2, there is a product exceeding 20, namely, 20.25.
Now the question is, if we further expand our tables, can we find an even larger prod-
uct, one exceeding 20.25? And here we have come about as far as we want to go
using this approach involving arithmetic and tables. For no matter what candidate we
come up with for the largest product, there will always be the question of whether we
might do still better using a larger table.

Nevertheless, this approach was useful, for it showed us what is really at the heart
of a typical maximum or minimum problem. Essentially, we are trying to sort
through an infinite number of possible cases and pick out the required extreme case.
In the example at hand, there are infinitely many pairs of numbers x and y adding to
9. We are asked to look at the products of all of these pairs and see which (if any!) is
the largest. Example 1 shows how to apply our knowledge of quadratic functions to
solve this problem in a definitive manner.
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4.5

TABLE 1

x y x � y xy

�2 11 9 �22
�1 10 9 �10

0 9 9 0
1 8 9 8
2 7 9 14
3 6 9 18
4 5 9 20

TABLE 2

x y x � y xy

1 8 9 8
1.5 7.5 9 11.25
2 7 9 14
2.5 6.5 9 16.25
3 6 9 18
3.5 5.5 9 19.25
4 5 9 20
4.5 4.5 9 20.25

EXAMPLE 1 Maximizing a Product

Two numbers add to 9. What is the largest possible value for their product?

SOLUTION Call the two numbers x and 9 � x. Then their product P is given by

The graph of this quadratic function is the parabola in Figure 1. Note the accompa-
nying calculations for the vertex. As Figure 1 and the accompanying calculations
show, the largest value of the product P is 20.25. This is the required solution. (Note
from the graph that there is no smallest value of P.)

P � x(9 � x) � 9x � x2



In the example just completed, we used the technique of completing the square to
determine the vertex of a parabola. Another way to determine the vertex, approxi-
mately at least, is to use a graphing utility, as in Example 5(a) in Section 4.2. There
is a third method and we shall make use of it for the remaining examples in this sec-
tion. This third method uses the vertex formula given in the box that follows. You
should check with your instructor to see which of the three methods he or she wants
you to use in a given context. We’re going to use the vertex formula in the exposition
here so that you can better focus on the problem-solving aspects of the examples.
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x
4.5

20.25

P=9x-≈

y

P=_(≈-9x)

Vertex calculation (by completing the square):

=_”≈-9x+
81
4 ’+81

4

=_”x- ’@+81
4

9
2

The vertex is ” 81
4

9
2 , ’

Figure 1 

The x-coordinate of the vertex of the 
parabola y � ax2 � bx � c (a � 0) is
given by

x �
�b

2a

EXAMPLE
For the parabola y � 2x2 � 12x � 5 the
x-coordinate of the vertex is

x �
�b

2a
�

�(�12)

2(2)
� 3

The vertex formula can be derived by completing the square (see Exercise 67
on p. 246) or by using the method outlined in the first mini project at the end of Sec-
tion 4.2. Here’s another way, perhaps the simplest. The parabola y � ax2 � bx � c
will have the same x-coordinate for its vertex as does y � ax2 � bx because the two
graphs are just vertical translates of one another by a distance c . But due to sym-
metry, it’s easy to find the x-coordinate of the vertex of y � ax2 � bx. As Figure 2
indicates, the x-coordinate of the vertex is midway between the two x-intercepts. To
find these x-intercepts, we have

Now we want the x-value that is halfway between x � 0 and x � �b�a, namely, 
(�b�a). Thus the x-coordinate of the vertex is �b�2a, as we wished to show.1

2 

x � 0

  
ax � b � 0

x � �
b
a

 x(ax � b) � 0
 ax2 � bx � 0

00

y=ax@+bx

x

y

x-intercepts

Vertex

Figure 2 

Theorem The Vertex Formula



Except for the fact that we completed the square rather than using the vertex for-
mula, Example 1 indicates the general strategy that we’re going to follow for solving
the maximum and minimum problems in this section.

1. Express the quantity to be maximized or minimized in terms of a single variable.
For instance, in Example 1 we found P � 9x � x2. In setting up such functions,
you’ll want to keep in mind the four-step procedure used in Section 4.4.

2. Assuming that the function you have determined is a quadratic, note whether 
its graph, a parabola, opens upward or downward. Check whether this is con-
sistent with the requirements of the problem. For instance, the parabola in
Figure 1 opens downward; so it makes sense to look for a largest, not a smallest,
value of P. Now use the vertex formula x � �b�2a to locate the x-coordinate 
of the vertex. (If the function is not a quadratic but is closely related to a
quadratic, these ideas may still apply. See, for instance, Examples 6 and 7 in 
Section 4.2.)

3. After you have determined the x-coordinate of the vertex, you must relate that
information to the original question. In Example 1, for instance, we were asked
for the product P, not for x.

Strategy for Solving the Maximum and Minimum Problems in This Section
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Figure 3 

EXAMPLE 2 Finding the Dimensions of the Rectangle with Maximum Area

Among all rectangles having a perimeter of 10 ft, find the dimensions (length and
width) of the one with the greatest area.

SOLUTION First we want to set up a function that expresses the area of the rectangle in terms of a
single variable. In doing this, we’ll be guided by the four-step procedure that we used
in Section 4.4. Figure 3(a) displays the given information. Our problem is to determine
the dimensions of the rectangle that has the greatest area. As Figure 3(b) indicates, we
can label the dimensions x and y. Since the perimeter is given as 10 ft, we have

(1)

Letting A denote the area of the rectangle, we can write

substituting for y using equation (1)
 � 5x � x2

 A(x) � x(5 � x)
 A � xy

 y � 5 � x
 x � y � 5

 2x � 2y � 10

Perimeter is 10 ft.

(a)

x

y

Perimeter is 10 ft.

(b)



This expresses the area of the rectangle in terms of the width x. Since the graph of
this quadratic function is a parabola that opens downward, it does make sense to talk
about the maximum. We calculate the x-coordinate of the vertex:

This is the width of the rectangle with the greatest area. Now, the problem asks for
the length and width of this rectangle, not its area. So we don’t want to calculate A(x);
rather, we want y. Using equation (1), we have

Thus among all rectangles having a perimeter of 10 ft, the one with the greatest area
is actually the square with dimensions of 2.5 ft by 2.5 ft. See Figure 4 for a graphical
view of this result.

y � 5 � x � 5 � 2.5 � 2.5 ft

 �
�5

2(�1)
� 2.5 ft

 x �
�b

2a
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Graphical Perspective

0
0

1.0 2.0 3.0 4.0 5.0
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6
7

Figure 4
The graph of the area function,
A(x) � 5x � x2, is a parabola that
opens downward. The maximum
area occurs when x � 2.5 ft.

Graphical Perspective

0
0

10
20
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40
50
60
70
80

1 2 3 4 5

Figure 5
The graph of the height function
h(t) � �16t2 � 64t � 6 is a
parabola that opens downward.
The maximum height is 70 ft, and
this occurs when t � 2 sec.

EXAMPLE 3 Finding the Maximum Height of a Baseball

Suppose that a baseball is tossed straight up and that its height as a function of time
is given by the function

where h(t) is measured in feet, t is in seconds, and t � 0 corresponds to the instant
that the ball is released. What is the maximum height of the ball?

h(t) � �16t2 � 64t � 6

SOLUTION The given function tells us how the height h(t) of the ball depends upon the time t.
We want to know the largest possible value for h(t). Since the graph of the given
height function is a parabola opening downward, we can determine the largest value
of h(t) just by finding the vertex of the parabola. We use the vertex formula
x � �b�2a, letting t play the role of x. This yields

Thus when t � 2 sec, the ball reaches its maximum height. To find that maximum
height (and the problem does ask for height, not time), we substitute the value t � 2
in the equation h(t) � �16t2 � 64t � 6 to obtain

(Check the arithmetic.)

The maximum height of the ball is 70 ft. See Figure 5 for a graphical perspective.
Caution: The path of the baseball is not the parabola. Why?

In the next example we look for an input to minimize a function of the form
y � where f is a quadratic function with values that are always nonnegative.
(There was an example similar to this in Section 4.2.) As indicated in Figure 6, we
need only find the input that minimizes the quadratic function y � f (x), because
this same input also minimizes y � (The outputs of the two functions are
different; but the same input serves to minimize both functions.) More generally,

1f (x).

1f (x),

 � 70 ft
 h(2) � �16(2)2 � 64(2) � 6

t �
�b

2a
�

�64

2(�16)
� 2



the square root function is an increasing function on the nonnegative real numbers.
So for a nonnegative function f, the minimum of is the square root of the
minimum of f (x).

1f (x)
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y=œ„ƒ
Figure 6
The same input x0 minimizes both
functions y � f (x) and y �
[provided f (x) is nonnegative for 
all x].

1f (x)

EXAMPLE 4 Working with a Function That Is Closely Related to a Quadratic

Which point on the curve y � is closest to the point (1, 0)?1x

SOLUTION In Figure 7 we let D denote the distance from a point (x, y) on the curve to the point
(1, 0). We are asked to find out exactly which point (x, y) will make the distance D as
small as possible. Using the distance formula, we have

(2)

This expresses D in terms of both x and y. To express D in terms of x alone, we use
the given equation y � to substitute for y in equation (2). This yields

Now, according to the remarks just prior to this example, the x-value that mini-

mizes the function D(x) � is the same x-value that minimizes 
y � x2 � x � 1. (Actually, to apply those remarks, we need to know that the expres-
sion x2 � x � 1 is nonnegative for all inputs x. See Exercise 43 for this.) Since the
graph of y � x2 � x � 1 is a parabola that opens upward, the required x-value is the
x-coordinate of the vertex, and we have

Now that we have the x-coordinate of the vertex, we want to calculate the 
y-coordinate. [We don’t want to calculate D(x) because this particular problem
asks us to specify a point, not a distance. Go back and reread the wording of
the question if you are not clear on this.] Substituting x � 1�2 in the equation
y � yields

Thus, among all points on the curve y � the point closest to (1, 0) is
(1�2, �2). Question: Why would it not have made sense to ask instead for the
point farthest from (1, 0)?

12
1x,

 y �
A

1

2
�
A

1

2
# 2

2
�
12

222
�
12

2

1x

x �
�b

2a
�

�(�1)

2(1)
�

1

2

2x2 � x � 1

 � 2x2 � x � 1

 D(x) � 2x2 � 2x � 1 � 11x 2 2
1x

 � 2x2 � 2x � 1 � y2

 D � 2(x � 1)2 � (y � 0)2
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EXAMPLE 5 Finding the Dimensions That Maximize an Area

Suppose that you have 600 m of fencing with which to build two adjacent rectangu-
lar corrals. The two corrals are to share a common fence on one side, as shown 
in Figure 8. Find the dimensions x and y so that the total enclosed area is as large
as possible.

SOLUTION You have 600 m of fencing to be set up as shown in Figure 8. The question is how to
choose x and y so that the total area is maximum. The area is A � xy. Since the total
length of fencing is 600 m, we can relate x and y by writing

(3)

Then

using equation (3) to substitute for y

This last equation expresses the area as a function of x. Note that the graph of this
function is a parabola opening downward, so it does make sense to talk about a max-
imum. The x-coordinate of the vertex is

Now that we have the x-value that maximizes the area A(x), the remaining dimension
y can be calculated by using equation (3):

Thus by choosing x to be 100 m and y to be 150 m, the total area in Figure 8 will be
as large as possible. Incidentally, note that the exact location of the fence dividing the
two corrals does not influence our work or the final answer.

In the next example a demand function is given, and we want to maximize the
revenue. As background, you should review Example 8 in Section 4.4.

y � 300 �
3

2
 x � 300 �

3

2
 (100) � 150

x �
�b

2a
�

�300

2(�3�2)
�

300

3
� 100

 � 300x �
3

2
 x2

 A(x) � x a300 �
3

2
 x b

 A � xy

 y � 300 �
3

2
 x

 2y � 600 � 3x
 3x � 2y � 600

 x � x � x � y � y � 600

EXAMPLE 6 A Maximization Problem Involving Revenue

Suppose that the following demand function relates the selling price, p, of an item to
the quantity sold, x:

For which value of x will the revenue be a maximum? Compute the corresponding
unit price and maximum revenue.

p � � 

1

3
 x � 40  (p in dollars)
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SOLUTION First, recall the formula for revenue given in Example 8 of Section 4.4.

Using this, we have

(4)

We want to know which value of x yields the largest revenue R(x). Since the graph
of the revenue function in equation (4) is a parabola opening downward, the required
x-value is the x-coordinate of the vertex of the parabola. We have

This tells us that to earn the maximum revenue, 60 items should be sold. We cal-
culate the corresponding unit price by substituting x � 60 in the given equation
p � � � 40. This yields

Thus setting the price at $20 per item will maximize the revenue. That maximum rev-
enue can be calculated by using x � 60 in equation (4). More simply, since we now
have both values x � 60 and p � 20, we can compute

The maximum revenue is $1200.

The next example, the last for this section, is similar to Example 4 in that we are
looking for the minimum value of a function that, although not a quadratic function,
is closely related to one. Also, in this example you’ll see a translation of the function
y � x4. Since we have not yet studied this function, for background we show its
graph along with that of the familiar y � x2 in Figure 9. In the next section we do
study functions of the form y � xn, where n is a positive integer.

R � x # p � 60 � 20 � 1200

 � �20 � 40 � 20

 p � � 

1

3
 (60) � 40

1
3 x

x �
�b

2a
�

�40

2(�1�3)
�

20

1�3
� 60

 R(x) � x a� 

1

3
x � 40 b � � 

1

3
x2 � 40x

 R � x # p

R � numbers of units � price per unit

EXAMPLE 7 Minimizing the Length of a Connecting Road

Figure 10 shows portions of two train routes. One route follows the curve
y � x4 � 10, and the other follows y � 4x2. Assume that distance along both axes is
measured in miles. The railroad wants to construct a north-south maintenance road

between the two routes, as indicated in the figure. Where should the road be
located so that it is as short as possible? What is the minimum length?
PQ

P

Q

y=x$+10

y=4≈

x

y

10

20

30

1 2

N

S

EW

Figure 10
Portions of two train routes and a
north-south maintenance road .PQ
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EXERCISE SET 4.5

A
1. Two numbers add to 5. What is the largest possible value of

their product?
2. Find two numbers adding to 20 such that the sum of their

squares is as small as possible.
3. The difference of two numbers is 1. What is the smallest

possible value for the sum of their squares?
4. For each quadratic function, state whether it would make

sense to look for a highest or a lowest point on the graph.
Then determine the coordinates of that point.

(a) y � 2x2 � 8x � 1
(b) y � �3x2 � 4x � 9
(c) h � �16t2 � 256t
(d) f (x) � 1 � (x � 1)2

(e) g(t) � t2 � 1
(f) f (x) � 1000x2 � x � 100

5. Among all rectangles having a perimeter of 25 m, find the
dimensions of the one with the largest area.

6. What is the largest possible area for a rectangle with a
perimeter of 80 cm?

SOLUTION We want to determine points P and Q on the curves y � x4 � 10 and y � 4x2,
respectively, so that the distance from P to Q is as small as possible. Since P and Q
lie on a north-south line, they have the same x-coordinate, and we can write the
coordinates of P and Q as

The vertical distance PQ between these two points is just the difference in the
y-coordinates:

So the function that we want to minimize is

(5)

The substitution x2 � t will transform this into a quadratic function. (You saw this
substitution technique before, in Example 7 of Section 4.2.) Note that if x2 � t, then
x4 � t2, and equation (5) becomes

(6)

Since the graph of equation (6) will be a parabola opening upward, the input t that
yields a minimum value for this function is

That gives us t, but what about x? Substituting the value t � 2 in the equation
x2 � t gives us x2 � 2 and consequently x � where we use the positive square
root because x is in the first quadrant. With this value for x, we can calculate the
y-coordinates of P and Q as follows:

Putting things together now, the road should connect the points P and Q given by

The length of the road is 14 � 8 � 6 mi.

P: 112, 14 2 � (1.41, 14)  and  Q: 112, 8 2 � (1.41, 8)

y-coordinate of P:

112 2 4 � 10 � 4 � 10 � 14
 ` y-coordinate of Q:

4 112 2 2 � 8

12.

t �
�b

2a
�

�(�4)

2(1)
� 2

y � t2 � 4t � 10

y � x4 � 4x2 � 10

PQ � (x4 � 10) � 4x2 � x4 � 4x2 � 10

P(x, x4 � 10)  and  Q(x, 4x2)



7. What is the largest possible area for a right triangle in
which the sum of the lengths of the two shorter sides is 
100 in.?

8. The perimeter of a rectangle is 12 m. Find the dimensions
for which the diagonal is as short as possible.

9. Two numbers add to 6.
(a) Let T denote the sum of the squares of the two num-

bers. What is the smallest possible value for T?
(b) Let S denote the sum of the first number and the

square of the second. What is the smallest possible
value for S?

(c) Let U denote the sum of the first number and twice
the square of the second number. What is the smallest
possible value for U?

(d) Let V denote the sum of the first number and the square
of twice the second number. What is the smallest
possible value for V?

10. Suppose that the height of an object shot straight up is
given by h � 512t � 16t2. (Here h is in feet and t is in
seconds.) Find the maximum height and the time at which
the object hits the ground.

11. A baseball is thrown straight up, and its height as a function
of time is given by the formula h � �16t2 � 32t (where h
is in feet and t is in seconds).
(a) Find the height of the ball when t � 1 sec and when

t � 3�2 sec.
(b) Find the maximum height of the ball and the time at

which that height is attained.
(c) At what times is the height 7 ft?

12. Find the point on the curve y � that is nearest to the
point (3, 0).

13. Which point on the curve y � � 1 is closest to the
point (4, 1)? What is this minimum distance?

14. Find the coordinates of the point on the line y � 3x � 1
closest to (4, 0).

15. (a) What number exceeds its square by the greatest
amount?

(b) What number exceeds twice its square by the greatest
amount?

16. Suppose that you have 1800 m of fencing with which to
build three adjacent rectangular corrals, as shown in the
figure. Find the dimensions so that the total enclosed area is
as large as possible.

17. Five hundred feet of fencing is available for a rectangular
pasture alongside a river, the river serving as one side of
the rectangle (so only three sides require fencing). Find the
dimensions yielding the greatest area.

1x � 2

1x

18. Let A � 3x2 � 4x � 5 and B � x2 � 4x � 1. Find the
minimum value of A � B.

19. Let R � 0.4x2 � 10x � 5 and C � 0.5x2 � 2x � 101. For
which value of x is R � C a maximum?

20. Suppose that the revenue generated by selling x units of a
certain commodity is given by R � � 200x. Assume
that R is in dollars. What is the maximum revenue possible
in this situation?

21. Suppose that the function p � � 30 relates the selling
price p of an item to the number of units x that are sold.
Assume that p is in dollars. For which value of x will the
corresponding revenue be a maximum? What is this
maximum revenue and what is the unit price?

22. The action of sunlight on automobile exhaust produces air
pollutants known as photochemical oxidants. In a study of
cross-country runners in Los Angeles, it was shown that
running performances can be adversely affected when the
oxidant level reaches 0.03 part per million. Suppose that
on a given day, the oxidant level L is approximated by the
formula

where t is measured in hours, with t � 0 corresponding to
12 noon, and L is in parts per million. At what time is the
oxidant level L a minimum? At this time, is the oxidant
level high enough to affect a runner’s performance?

23. (a) Find the smallest possible value of the quantity x2 � y2

under the restriction that 2x � 3y � 6.
(b) Find the radius of the circle whose center is at the

origin and that is tangent to the line 2x � 3y � 6.
How does this answer relate to your answer in part (a)?

24. (a) Find the coordinates of the vertex of the parabola
y � 2x2 � 4x � 7. Then, on the same set of axes, graph
this parabola along with y � x2.

(b) Rework Example 7 using the two curves in part (a)
rather than the two used in Example 7.

25. (a) Using a graphing utility, graph the two functions
y � x4 � 2 and y � x2 in the viewing rectangle 
[0, 4, 1] � [0, 16, 2]. If your graphing utility allows,
include the y-axis gridlines in the picture; they’ll be
helpful in part (b).

(b) Suppose that we use the two functions in part (a)
as the given functions in Example 7. On the basis of
the graph in part (a), make a rough estimate for the
minimum length of the road.

(c) Use the technique of Example 7 to find the exact value
for the minimum length.

B
26. Through a type of chemical reaction known as autocatalysis,

the human body produces the enzyme trypsin from the
enzyme trypsinogen. (Trypsin then breaks down proteins

L � 0.059t2 � 0.354t � 0.557  (0 � t � 7)

� 
1
4 x

� 
1
5 x2
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into amino acids, which the body needs for growth.) Let r
denote the rate of the chemical reaction in which trypsin is
formed from trypsinogen. It has been shown experimen-
tally that r � kx(a � x), where k is a positive constant, a is
the initial amount of trypsinogen, and x is the amount of
trypsin produced (so x increases as the reaction proceeds).
Show that the reaction rate r is a maximum when x � a�2.
In other words, the speed of the reaction is greatest when
the amount of trypsin formed is half the original amount
of trypsinogen.

27. (a) Let x � y � 15. Find the minimum value of the
quantity x2 � y2.

(b) Let C be a constant and x � y � C. Show that the
minimum value of x2 � y2 is C2�2. Then use this result
to check your answer in part (a).

28. Suppose that A, B, and C are positive constants and that
x � y � C. Show that the minimum value of Ax2 � By2

occurs when x � BC�(A � B) and y � AC�(A � B).
29. The following figure shows a square inscribed within

a unit square. For which value of x is the area of the
inner square a minimum? What is the minimum area?
Hint: Denote the lengths of the two segments that make
up the base of the unit square by t and 1 � t. Now use the
Pythagorean theorem and congruent triangles to express
x in terms of t.

30. (a) Show that the coordinates of the point on the line
y � mx � b that is closest to the origin are given by

(b) Show that the perpendicular distance from the origin
to the line y � mx � b is b �
Suggestion: Use the result in part (a).

(c) Use part (b) to show that the perpendicular distance
from the origin to the line Ax � By � C � 0 is 

31. The point P lies in the first quadrant on the graph of the
line y � 7 � 3x. From the point P, perpendiculars are
drawn to both the x-axis and the y-axis. What is the largest
possible area for the rectangle thus formed?

32. Show that the largest possible area for the shaded rectangle
shown in the figure is �b2�4m. Then use this to check your
answer to Exercise 31.

0 C 0�2A2 � B2.

21 � m2.00

a �mb

1 � m2  , 
b

1 � m2 b

1

x

33. Show that the maximum possible area for a rectangle
inscribed in a circle of radius R is 2R2. Hint: Maximize
the square of the area.

34. An athletic field with a perimeter of mile consists of a
rectangle with a semicircle at each end, as shown in the
figure. Find the dimensions x and r that yield the greatest
possible area for the rectangular region.

35. A rancher who wishes to fence off a rectangular area finds
that the fencing in the east-west direction will require extra
reinforcement due to strong prevailing winds. Because of
this, the cost of fencing in the east-west direction will be
$12 per (linear) yard, as opposed to a cost of $8 per yard
for fencing in the north-south direction. Find the dimen-
sions of the largest possible rectangular area that can be
fenced for $4800.

36. Let f(x) � (x � a)2 � (x � b)2 � (x � c)2, where a, b, and
c are constants. Show that f (x) will be a minimum when x
is the average of a, b, and c.

37. Let y � a1(x � x1)2 � a2(x � x2)2, where a1, a2, x1, and x2

are all constants. In addition, suppose that a1 and a2 are
both positive. Show that the minimum of this function
occurs when

38. Among all rectangles with a given perimeter P, find the
dimensions of the one with the shortest diagonal.

x �
a1x1 � a2x2

a1 � a2

N

S

EW

x

r

1
4

y

x

y=mx+b
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39. By analyzing sales figures, the economist for a stereo manu-
facturer knows that 150 units of a compact disc player can
be sold each month when the price is set at p � $200 per
unit. The figures also show that for each $10 hike in price,
five fewer units are sold each month.
(a) Let x denote the number of units sold per month and

let p denote the price per unit. Find a linear function
relating p and x. Hint: ¢p�¢x � 10�(�5) � �2

(b) The revenue R is given by R � xp. What is the maxi-
mum revenue? At what level should the price be set to
achieve this maximum revenue?

40. Let f(x) � x2 � px � q, and suppose that the minimum
value of this function is 0. Show that q � p2�4.

41. Among all possible inputs for the function
f (t) � �t4 � 6t2 � 6, which ones yield the largest output?

42. Let f(x) � x � 3 and g(x) � x2 � 4x � 1.
(a) Find the minimum value of g � f.
(b) Find the minimum value of f � g.
(c) Are the results in parts (a) and (b) the same?

43. This exercise completes a detail mentioned in Example 4.
In that example we used the result that the input minimiz-
ing the function D(x) � is the same input 
that minimizes the function y � x2 � x � 1. For this 
result to be applicable, we need to know that the quantity
x2 � x � 1 is nonnegative for all x. Parts (a) and (b) each
suggest a way to verify that this is indeed the case. 
[Actually, parts (a) and (b) both show that the quantity
x2 � x � 1 is positive for all x.]
(a) Use the fact that x2 � x � 1 can be written as 

x � 2 � to explain (in complete sentences) why
the quantity x2 � x � 1 is positive for all inputs x.

(b) Compute the discriminant of the quadratic x2 � x � 1
and explain why the graph of y � x2 � x � 1 has no 
x-intercepts. Then use this fact to explain why the
quantity x2 � x � 1 is always positive. Hint: Is the
graph of the parabola y � x2 � x � 1 U-shaped up or
U-shaped down?

44. Let f(x) � (x � 1)2 � 4.
(a) Sketch the graph of the function f and note that the

minimum value occurs when x is 1.
(b) Although the minimum value of the function f occurs

when x � 1, the minimum value of the function
y � does not occur when x � 1. Explain why
this does not contradict the statement in the caption to
Figure 6 on page 263.

(c) Find the value(s) of x that minimize the function
y � Hint: What is the domain of y � ?

45. A piece of wire 16 in. long is to be cut into two pieces. Let
x denote the length of the first piece and 16 � x the length
of the second. The first piece is to be bent into a circle and
the second piece into a square.
(a) Express the total combined area A of the circle and the

square as a function of x.

1f (x)1f (x).

1f (x)

3
4

1
2 21

2x2 � x � 1

(b) For which value of x is the area A a minimum?
(c) Using the x-value that you found in part (b), find the

ratio of the lengths of the shorter to the longer piece
of wire.

46. A 30-in. piece of string is to be cut into two pieces. The
first piece will be formed into the shape of an equilateral
triangle and the second piece into a square. Find the length
of the first piece if the combined area of the triangle and
the square is to be as small as possible.

Exercises 47–52 are maximum-minimum problems in which the
function that you set up will not turn out to be a quadratic, nor
will it be closely related to one. Thus the vertex formula will not
be applicable.

(a) Set up the appropriate function to be maximized or
minimized just as you have practiced in this section and
Section 4.4.

(b) Use a graphing utility to draw the graph of the function
and determine, as least approximately, the number or num-
bers that the problem asks for. (General techniques for
determining the exact values are developed in calculus.)

Exercises 47–52 are quoted from the following calculus
textbooks with the permission of the publishers.

EXERCISE TEXTS

47. Calculus: A New Horizon, 6th ed., Howard Anton
(New York: John Wiley & Sons, 1998)

48. Calculus,, 6th ed., Roland E. Larson et al. (Boston:
Houghton Mifflin, 1997)

49. Calculus and Analytic Geometry, 5th ed., Sherman K.
Stein and Anthony Barcellos (New York: McGraw-Hill,
1992)

50. Calculus with Analytic Geometry, 5th ed., C. H.
Edwards, Jr. and David E. Penney (Upper Saddle
River, N.J.: Prentice-Hall, 1997)

51. Calculus: One and Several Variables, 8th ed.,
Saturnino L. Salas and Garret J. Etgen (New York:
John Wiley & Sons, 1998)

52. Calculus, 5th ed., James Stewart (Pacific Grove, Calif.:
Brooks/Cole, 2003)

47. A cylindrical can, open at the top, is to hold 500 cm3 of liq-
uid. Find the height and radius that minimize the amount of
material needed to manufacture the can.

48. A power station is on one side of a river that is 1�2 mi. wide,
and a factory is 6 mi. downstream on the other side. It costs
$6 per foot to run power lines overland and $8 per foot to
run them underwater. Find the most economical path for
the transmission line from the power station to the factory.

49. What point on the parabola y � x2 is closest to the 
point (3, 0)?

50. A rectangle of fixed perimeter 36 is rotated about one of
its sides, thus sweeping out a figure in the shape of a right
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are equal to P�(p� 4). Show that this maximum area 
is �(p � 4).

57. A triangle is inscribed in a semicircle of diameter 2R, as
shown in the figure. Show that the smallest possible value
for the area of the shaded region is (p � 2)R2�2.

Hint: The area of the shaded region is a minimum when the
area of the triangle is a maximum. Find the value of x that
maximizes the square of the area of the triangle. This will be
the same x that maximizes the area of the triangle.
58. (a) Complete the following table. Which x-y pair in the

table yields the smallest sum x � y?

x 0.5 1 1.5 2 2.5 3 3.5
y

xy 12 12 12 12 12 12 12
x � y

(b) Find two positive numbers with a product of 12 and as
small a sum as possible. Hint: The quantity that you
need to minimize is x � (12�x), where x � 0. But

This last expression is minimized when the quantity
within parentheses is zero. Why?

(c) Use a calculator to verify that the two numbers
obtained in part (b) produce a sum that is smaller
than any of the sums obtained in part (a).

59. What is the smallest possible value for the sum of a posi-
tive number and its reciprocal? Hint: After setting up the
appropriate function, adapt the hint given in Exercise 58(b).

60. Suppose that a and b are positive numbers whose sum is 1.
(a) Find the maximum possible value of the product ab.

(b) Prove that 	 9.a1 �
1
a
b a1 �

1

b
b

x �
12
x

� a1x �
A

12
x
b 2

� 2112

x

2R

r

x

1
2 P2

circular cylinder. [Refer to the accompanying figure.] What
is the maximum possible volume of that cylinder?

51. Let ABC be a triangle with vertices A(�3, 0), B(0, 6), 
C(3, 0). Let P be a point on the line segment that joins B to
the origin. Find the position of P that minimizes the sum of
the distances between P and the vertices.

52. A fence 8 ft tall runs parallel to a tall building at a distance
of 4 ft from the building. What is the length of the shortest
ladder that will reach from the ground over the fence to the
wall of the building?

C
53. (a) Use a graphing utility to graph the parabolas

y � x2 � 2x, y � x2 � 2x, y � x2 � 3x, and
y � x2 � 3x. Check visually that, in each case, the ver-
tex of the parabola appears to lie on the curve y � �x2.

(b) Prove that for all real numbers k, the vertex of the
parabola y � x2 � kx lies on the curve y � �x2.

54. (a) Graph the four parabolas y � x2 � 2kx � 1 corre-
sponding to k � 2, 3, 0.75, 1.5. Among the four
parabolas, which one appears to have the vertex closest
to the origin?

(b) Let f(x) � x2 � 2kx � 1. Find a positive value for k
so that the distance from the origin to the vertex of
the parabola is as small as possible. Check that your
answer is consistent with your observations in part (a).

55. The figure shows a rectangle inscribed in a given triangle
of base b and height h. Find the ratio of the area of the
triangle to the area of the rectangle when the area of the
rectangle is maximum.

56. A Norman window is in the shape of a rectangle sur-
mounted by a semicircle, as shown in the figure. Assume
that the perimeter of the window is P, a constant. Show that
the area of the window is a maximum when both x and r

h

b

r

h
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Figure A

PROJECT The Least-Squares Line

The great advances in mathematical astronomy made during the early years of
the nineteenth century were due in no small part to the development of the
method of least squares. The same method is the foundation for the calculus of
errors of observation now occupying a place of great importance in the scientific
study of social, economic, biological, and psychological problems. —A Source

Book in Mathematics, by David Eugene Smith (New York: Dover Publications, 1959)

Of all the principles which can be proposed [for finding the line or curve that
best fits a data set], I think there is none more general, more exact, and more
easy of application than . . . rendering the sum of the squares of the errors a
minimum. —Adrien Marie Legendre (1752–1833) [Legendre and Carl Friedrich Gauss

(1777–1855) developed the least-squares method independently.]

When we worked with the least-squares (or regression) line in Section 4.1, we
said that this is the line that “best fits” the given set of data points. In this proj-
ect we explain the meaning of “best fits,” and we use quadratic functions to
gain some insight into how the least-squares line is calculated. Suggestion:
Two or three people could volunteer to study the text here and then present the
material to another group or to the class at large. The presentation will be
deemed successful if the audience can then work on their own the two exer-
cises at the end of this project.

Suppose that we have a data point (xi, yi) and a line y � f (x) � mx � b (not
necessarily the least-squares line). As indicated in Figure A, we define the
deviation ei of this line from the data point as

ei � yi � f (xi)

y

x

Data point {xi, yi}

ei=yi-f(xi)

{xi, f(xi)}

y=ƒ

In Figure A, where the data point is above the line, the deviation ei represents
the vertical distance between the data point and the line. If the data point were
below the line, then the deviation yi � f (x1) would be the negative of that dis-
tance. Think of ei as the error made if f (xi) were used as a prediction for the
value of yi.

Figure B and the accompanying calculations show two examples using this
definition. For the data point (x1, y1) � (4, 3), the result e1 � 2 does represent
the vertical distance between the data point and the line. For the data point 
(8, 2), the deviation is e2 � �1, and the absolute value of this gives the verti-
cal distance between the data point and the line.
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Now suppose we have a given data set and a line. One way to measure how
closely this line fits the data would be to simply add up all the deviations. The
problem with this, however, is that positive and negative deviations would tend
to cancel one another out. For this reason, we use the sum of the squares of the
deviations as the measure of how closely a line fits a data set. (The sum of the
absolute values of the deviations would be another alternative, but in calculus,
squares are easier to work with than absolute values.)

As an example, suppose we have the following data set:

1

2

3

4

2 4 6 8

Data point (4, 3)

Data point (8, 2)

 (4, 1)

 (8, 3)

y

x

ƒ=   x-11
2

e1=›- f                         (⁄)

For the data point {⁄, › }=(4, 3):

=3-” (4)-1’ =2
1
2

e2=fi-f (x2)

For the data point {¤, fi }=(8, 2):

(8) _ 1’ = _1
1
2

=2 _ ” 

Figure B

x 1 2 3

y 2 4 5
or equivalently

 (x3, y3) � (3, 5)
 (x2, y2) � (2, 4)
 (x1, y1) � (1, 2)

Definition Line of Best Fit

Suppose we have a set of n data points (x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn).
For any line, let E denote the sum of the squares of the deviations:

Then the line of best fit is that line for which E is as small as possible. (It can
be shown that there is only one such line.) The line of best fit is also known as
the least-squares line or the regression line.

Then, for any line y � mx � b we have

Now, by definition, for the least-squares line we want to find the values for m
and b so that the quantity is as small as possible. Using the
expressions we’ve just calculated for e1, e2, and e3, we have

(1)

Equation (1) expresses E as a function of two variables, m and b. In all the work
we’ve done previously on maximum-minimum problems, we were always

 � (2 � m � b)2 � (4 � 2m � b)2 � (5 � 3m � b)2

 E � e2
1 � e2

2 � e2
3

E � e2
1 � e2

2 � e2
3

 � 2 � m � b   � 4 � 2m � b   � 5 � 3m � b
 e1 � 2 � [m(1) � b]   e2 � 4 � [m(2) � b]   e3 � 5 � [m(3) � b]

E � e2
1 � e2

2 � e2
3 � p � e2

n
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able to express one variable in terms of the other, and then apply our knowl-
edge of quadratics. In this case, though, m and b are not related, so that strat-
egy doesn’t work here. In fact, in general, the methods of calculus are required
to handle a two-variable maximum-minimum problem. Therefore to make this
problem accessible within our context, we’ll assume the result (from calculus)
that in this problem b turns out to be 2�3. Go ahead now and make the substi-
tution b � 2�3 in equation (1). After simplifying, you’ll have a quadratic func-
tion, and you know how to find the value of m that minimizes the function.
Then, with both m and b known, you have determined the least-squares line
y � mx � b. As a visual check, graph the data set along with the least-squares
line. See whether things look reasonable. Finally, use a graphing utility to com-
pute the least-squares line and check your answer.

Exercises

In each case you are given a data set and the value for b in the least-squares
line y � mx � b. Find the equation of the least-squares line using the method
indicated above. Check your answer using an appropriate graphing utility.
Then graph the data set along with the least-squares line. In Exercise 2, in
reporting the final answer, round both b and m to two decimal places.

1. (Easy numbers) b � �3

2. (“Actual” numbers) The data in the following table are from a study relating
air pollution and incidence of respiratory disease. The data were collected
in five cities over the years 1955, 1957, and 1958. The subjects were women
working in RCA factories. In the table, x denotes the average concentration
of particulate sulfates (“sulfur dust”) in the air of the given city, measured
in micrograms per cubic meter (mg/m3). The variable y denotes the number
of absences due to respiratory disease per 1000 employees per year. (Only
absences lasting more than seven days were counted.)

y
x Number of

Concentration Respiratory Disease 
of Suspended Related Absences 

Particulate Sulfates per 1000 Employees 
City (mg/m3) Per Year

Cincinnati, Oh. 7.4 18.5
Indianapolis, Ind. 13.2 44.2
Woodbridge, N.J. 13.6 50.3
Camden, N.J. 17.1 58.3
Harrison, N.J. 19.8 85.7

Source: F. Curtis Dohan, “Air Pollutants and Incidence of Respiratory Disease,” Archives
of Environmental Health, 3(1961), pp. 387–395 

b � �20.8117

x 1 2 3

y 2 5 11



POLYNOMIAL FUNCTIONS
After a few hitches or twitches, the polynomial functions settle down to behavior in
which things simply get bigger or smaller. An example is f (x) � x2. Just once, as the
values of x approach 0, the graph of this function dips downward to alter its shape;
thereafter it ascends solemnly like a helium-filled balloon. —David Berlinski, A Tour of

the Calculus (New York: Vintage Books, 1995)

We can rephrase the definitions of linear and quadratic functions using the terminol-
ogy for polynomials that was reviewed in Section 1.3. A function f is linear if f (x) is
a polynomial of degree 1:

where a0 and a1 are constants (1)

A function f is quadratic if f(x) is a polynomial of degree 2:

where a0, a1 and a2 are constants, with a2 not zero (2)

In the box that follows, we give the general definition for a polynomial function of
degree n.

f (x) � a2x
2 � a1x � a0

f (x) � a1x � a0
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4.6

A nonzero constant function, for example, y � 7 for all x, is a polynomial function of
degree zero. (Think of the defining equation y � 7 as y � 7x0.) The one polynomial
function for which degree is not defined is the zero function: f(x) � 0 for all x. (What
does the graph of that function look like?)

A function of the form y � xn, where n is any real-number constant, is called a
power function. Power functions with nonnegative integer exponents are the simplest
polynomial functions. In a sense, they are the building blocks for all other polyno-
mial functions. Figure 1 shows examples of power functions with which we are
already familiar. Our focus here is on the power functions in Figures 1(c) and 1(d).

Comment: The detailed discussion using inequalities and symmetry to establish
the basic properties of f (x) � x2 and g(x) � x3 may be skimmed on first reading as
long as the correspondence between the graphs and the properties in the summary
boxes are clearly understood.

The graph of y � x2 in Figure 1(c) visually summarizes the following important
properties of the squaring function f (x) � x2, with domain all real numbers.

Definition Polynomial Function

EXAMPLES
f (x) � 2x3 � 3x2 � x � 4

(degree 3)

g(u) � 3u7 � u2 � p
(degree 7)

L(x) � 5x � 1 (degree 1)

13

A polynomial function is a function de-
fined by an equation of the form

where n is a nonnegative integer and the
ai’s are constants. If an � 0, the degree
of the polynomial function is n, the largest 
exponent on the input variable.

f (x) � anx
n � an�1x

n�1 � p � a1x � a0



We’ve already discussed Properties 1 through 4 in earlier sections. For example,
we showed f is an increasing function for x � 0 in Section 3.3, and we asked you
to show that f is a decreasing function for x 
 0 in Exercise 49 of Exercise Set 3.3.
Recall that Properties 1 and 2 imply Property 3. Property 4 tells us that the
point (0, 0) is a turning point on the graph of y � x2, that is, a point on the
graph at which the function changes from being increasing to being decreasing,
or vice versa.

Property 5 is a function description of the end behavior of f (x) � x2. From a func-
tion point of view, we know for x � 0 that f(x) � x2 is an increasing function; so it
gets larger (the graph rises) as x gets larger (we move from left to right along the
x-axis). In fact, the graph of y � x2 suggests that as x gets “larger and larger without
bound,” f (x) � x2 also gets “larger and larger without bound.” [See Figure 1(c) for
x � 0.] By “larger and larger without bound,” we intuitively mean larger than any
number you can imagine—and then larger still!

4.6 Polynomial Functions 275

x

y

x

y

1

2

1 2

y=x1/2

y=œ„x

y

x

1

2

1 2

y=x _1=1/x

x

y

1

2

1 2

y=x#

x

y

2

1 2

y=x"=1

x

y

1

2

1 2

y=≈
1

2

1 2

y=x

(b) n=1 (c) n=2

(d) n=3 (e) n=_1 (f ) n=1/2

(a) n=0

Figure 1
Some familiar power functions
y � xn, where n is a real number.

PROPERTY SUMMARY For the Function f(x) � x2

The function f (x) � x2 has the following properties:

1. f is an even function; its graph is symmetric about the y-axis.
2. f is an increasing function for .
3. f is a decreasing function for .
4. f has a minimum value at , that is, the minimum value of f is .
5. f(x) becomes unbounded positive as x becomes unbounded positive or negative.

f (0) � 0x � 0
x 
 0
x � 0
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EXAMPLE 1 Larger and Larger

How large must x � 0 be in order for f (x) � x2 to be larger than each of the follow-
ing values? Draw and label an appropriate graph.

(a) f (x) � 25 (b) f (x) � 144

SOLUTION (a) Consider the inequality f (x) � 25, that is, x2 � 25 for x � 0.

Using the methods of Section 2.4, the key numbers are �5 and 5. The solutions
to the inequality are all x in the intervals x 
 �5 and x � 5. The solutions with
x � 0 are all x for which x � 5.

Therefore x � 0 must be larger than 5 for f(x) � x2 to be larger than 25. See
Figure 2(a).

(b) Consider the inequality f (x) � 144, that is, x2 � 144 for x � 0.

As in part (a), the key numbers are �12 and 12. The solutions to the inequality
are all x in the intervals x 
 �12 and x � 12.

Therefore x � 0 must be larger than 12 for f (x) � x2 to be larger than 144.
See Figure 2(b).

From Example 1, we see that we can use algebra to determine where we must be
in the domain of f (x) � x2, for x � 0, to make the range value of f (x) � x2 larger than
a given (large) positive number. It seems that no matter how large we want to make
f (x) � x2, we can find a large enough x � 0 to achieve this. We ask you to show that
this statement is indeed true in Exercise 65 at the end of this section. This fact is the
mathematical meaning of the statement “f(x) � x2 becomes unbounded positive as x
becomes unbounded positive.”

What happens to f (x) � x2 as x becomes smaller and smaller negative without
bound? From Property 1, the graph of y � x2 is symmetric to the y-axis. So the end
behavior of f(x) � x2 for x 
 0 must be “symmetric” to that for x � 0, that is,
f (x) �x2 becomes unbounded positive as x becomes unbounded negative. The graph
of y � x2 rises as we go from right to left for x 
 0. See Figure 1(c) again.

Now let’s analyze the power function g(x) � x3, with domain all real numbers x.
The graph in Figure 1(d) visually summarizes the following properties of g.

 (x � 12)(x � 12) � 0
 x2 � 144 � 0

 x2 � 144

 (x � 5)(x � 5) � 0
 x2 � 25 � 0

 x2 � 25

(a)
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Figure 2

PROPERTY SUMMARY For the Function g(x) � x3

The function g(x) � x3 has the following properties: 

1�. g is an odd function; its graph is symmetric about the origin.
2�. g is an increasing function for all real numbers.
3�. g has no maximum or minimum.
4�. g(x) becomes unbounded positive as x becomes unbounded positive.
5�. g(x) becomes unbounded negative as x becomes unbounded negative.



Property 1� follows easily from the definition of odd function in Section 3.4. You
are asked to show that Property 2� holds in Exercise 66 at the end of this section.
Since g doesn’t change from increasing to decreasing, or vice versa, g cannot have a
maximum or minimum on the real numbers. We could show Property 4� by algebra
similar to that in our discussion of the end behavior of f (x) � x2 for x � 0. Instead
we’ll show both Properties 4� and 5� by comparing the function g(x) � x3 with 
f (x) � x2.

Figure 3 illustrates three important facts about the relationship between the
graphs of y � x2 and y � x3.

1. The graphs of y � x2 and y � x3 intersect at the points (0, 0) and (1, 1).
2. The graph of y � x3 lies above the graph of y � x2 for x � 1.
3. The graph of y � x3 lies below the graph of y � x2 for x 
 0 and for 0 
 x 
 1.
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Figure 3

_1

_2

1

1 2_1_2
x

y

2

(1,1)y=x2

y=x3

We can establish these facts using algebra.
At the points of intersection we know the y-coordinates must be the same. So to

find the points of intersection, we equate the y-values to get

x3 � x2

x3 � x2 � 0
x2(x � 1) � 0

The solutions are x � 0 or 1.

These are the x-coordinates of the points of intersection. Substituting these into either
equation, say y � x2, we get y � 02 � 0 and y � 12 � 1; so the points of intersection
are (0, 0) and (1, 1).

To determine the relative positions of the graphs of y � x2 and y � x3, a table of
values is instructive. In Table 1 it appears that x3 
 x2 for 0 
 x 
 1 and x3 � x2 for
x � 1. Of course, x3 
 x2 for x 
 0 since squares are always positive and cubes of
negative numbers are negative.

TABLE 1 Comparing Values of x3 and x2

x 0.2 0.4 0.6 0.8 1.2 3 10
x2 0.04 0.16 0.36 0.64 1.44 9 100
x3 0.008 0.064 0.216 0.512 1.728 27 1000

The numerical evidence in Table 1 supports Facts 2 and 3.



We’ll carefully verify these facts using algebra. To determine the relative positions
of the graphs of y � x2 and y � x3, we can compare the corresponding y-coordinates
for each x by considering the difference in the y-values, x3 � x2. We’ve already
shown that x3 � x2 � 0 only for x � 0 or 1. So for x � 0 or 1, x3 � x2 will be either
positive or negative. Where x3 � x2 is positive, x3 � x2 and the graph of y � x3

lies above the graph of y � x2. Where x3 � x2 is negative, x3 
 x2 and the graph of
y � x3 lie below the graph of y � x2. To determine the sign of x3 � x2 � x2(x � 1),
we note that x2 � 0 for all x � 0, so the sign of x3 � x2 is the sign of x �1. Now
x � 1 is positive for x � 1 and negative for x 
 1 with x � 0. Hence the graph of
y � x3 lies above the graph of y � x2 for x � 1 and below the graph of y � x2 for
x 
 1 with x � 0. (Again see Figure 3.)

What does this have to do with the end behavior of g(x) � x3? Since g(x) � x3 is
greater than f(x) � x2 for x � 1 and f (x) � x2 is unbounded positive for x unbounded
positive, it follows that g(x) � x3 becomes unbounded positive as x becomes
unbounded positive. Finally, since the graph of y � x3 is symmetric to the origin,
g(x) � x3 becomes unbounded negative as x becomes unbounded negative.

When n is an integer greater than 3, the graph of y � xn resembles the graph of
y � x2 or y � x3, depending on whether n is even or odd. Consider, for instance, the
graph of y � x4, shown in Figure 4 along with the graph of y � x2. Just as with
y � x2, the graph of y � x4 is a symmetric, U-shaped curve passing through the three
points (�1, 1), (0, 0), and (1, 1). However, in the interval �1 
 x 
 1, the graph of
y � x4 is flatter than that of y � x2. Similarly, the graph of y � x6 in this interval
would be flatter still. The data in Table 2 illustrate this behavior. Figure 5 displays the
graphs of y � x2, y � x4, and y � x6 for the interval 0 � x � 1.
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TABLE 2

x 0.2 0.4 0.6 0.8 1.0

x2 0.04 0.16 0.36 0.64 1.0
x4 0.0016 0.0256 0.1296 0.4096 1.0
x6 0.000064 0.004096 0.046656 0.262144 1.0



Incidentally, Figure 5 indicates one of the practical difficulties you may encounter
in trying to draw an accurate graph of y � xn. Suppose, for instance, that you want to
graph y � x6 and the lines you draw are 0.01 cm thick. Also suppose that you use the
same scale on both axes, taking the common unit to be 1 cm. Then, in the first quad-
rant, your graph of y � x6 will be indistinguishable from the x-axis when x6 
 0.01,
or x 
 � 0.46 cm (using a calculator). This explains why sections of the
graphs in Figure 5 appear horizontal.

For � 1, the graph of y � x4 rises more rapidly than that of y � x2. Similarly,
the graph of y � x6 rises still more rapidly. This is shown in Figures 6(a) and (b).
(Note the different scales used on the y-axes in the two figures.) Again, you can make
a table of values that illustrates this behavior.

0 x 0
1
6 0.01
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Of course, the relationship between y � x2 and y � x4 can be verified alge-
braically. We ask you to do this in Exercise 67 at the end of this section.

EXAMPLE 2 Comparing Average Rates of Change of Two Power Functions

Let f(x) � x4 and g(x) � x8.

(a) Use Figure 7 to estimate and compare the averages rates of change of f and g on
the interval [0, 0.8] and on the interval [0, 1.25].

Graphical Perspective

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 0.25 0.50 0.75 1.0 1.25
0

1

2

3

4

5

(b)

Figure 7
Two views of f (x) � x4 (red) and
g(x) � x8 (blue).



(b) Use the given equations for f and g to compute the rates of change mentioned in
part (a). Round the answers to three decimal places.

280 CHAPTER 4 Polynomial and Rational Functions. Applications to Optimization

SOLUTION (a) Refer to Figure 7(a). On the interval [0, 0.8] we have g(0) � 0, and from the
graph, g(0.8) is roughly 0.2. So on this interval we have

Also on the interval [0, 0.8], f (0) � 0 and f (0.8) � 0.4. Thus we have

In summary, on the interval [0, 0.8], the average rate of change of g is approxi-
mately 0.25, which is half of the value estimated for the average rate of change
of f.

Exercise 45 asks you to follow this same procedure for the interval [0, 1.25]
shown in Figure 7(b). The exercise asks you to show that the estimates for this
interval are ¢g�¢x � 4 and ¢f�¢x � 2. So, on this interval, it’s g rather than f
that has the larger average rate of change. The estimate for the average rate of
change of g is twice the value estimated for the average rate of change of f.

(b) For the interval [0, 0.8],

rounding to  (exactly)
three deci- 
mal places

Exercise 46(a) asks you to carry out similar calculations for the interval [0, 1.25]
to obtain the results ¢g�¢x � 4.768 and ¢f�¢x � 1.953.

As was mentioned earlier, when n is an odd integer greater than or equal to 3, the
graph of y � xn resembles that of y � x3. In Figure 8 we compare the graphs of y � x3

and y � x5. Notice that both curves pass through (0, 0), (1, 1), and (�1, �1). For rea-
sons similar to those explained for even n, the graph of y � x5 is flatter than that of
y � x3 in the interval �1 
 x 
 1, and the graph of y � x7 is flatter still. For � 1,
the graph of y � x5 is steeper than that of y � x3, and that of y � x7 is steeper still.
(See Exercise 68 at the end of this section.)

0 x 0

 � (0.8)3 � 0.512 � (0.8)7 � 0.210

 
¢f

¢x
�

f (0.8) � f (0)

0.8 � 0
�

(0.8)4 � 04

0.8
 
¢g

¢x
�

g(0.8) � g(0)

0.8 � 0
�

(0.8)8 � 08

0.8

¢f

¢x
�

f (0.8) � f (0)

0.8 � 0
�

0.4 � 0

0.8
� 0.5

¢g

¢x
�

g(0.8) � g(0)

0.8 � 0
�

0.2 � 0

0.8
� 0.25

EXAMPLE 3 Translating the Graph of a Power Function

Sketch the graph of y � (x � 2)5 and specify the y-intercept.

SOLUTION The graph of y � (x � 2)5 is obtained by moving the graph of y � x5 two units to the
left. As a guide to drawing the curve, we recall that y � x5 passes through the points
(0, 0), (1, 1), and (�1, �1). Thus y � (x � 2)5 must pass through (�2, 0), (�1, 1),
and (�3, �1), as shown in Figure 9.

x

y

(_1, _1)

(1, 1)

y=x%

y=˛

Figure 8
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x
_2

y

(1, 1)(_1, 1)

(_3, _1)

(_1, _1)

y=x%y=(x+2)%

Figure 9

Although the curve rises and falls very sharply, it is important to realize that it is
never really vertical. For instance, the curve eventually crosses the y-axis. To find the
y-intercept, we set x � 0 to obtain y � 25 � 32. Thus the y-intercept is 32.

In Section 4.2 we observed the effect of the constant a on the graph of y � ax2.
Those same comments apply to the graph of y � axn. For instance, the graph of
y � is wider than that of y � x4, whereas the graph of y � is obtained by
reflecting the graph of y � in the x-axis.1

2 x4
� 

1
2 x41

2 x4

EXAMPLE 4 Translating a Reflection of a Power Function

Graph the function y � �2(x � 3)4.

SOLUTION We begin with the graph of y � �2x4, in Figure 10(a). The points (1, �2) and
(�1, �2) are obtained by substituting x � 1 and x � �1, respectively, in the equa-
tion y � �2x4. Now if we replace x with x � 3 in the equation y � �2x4, we have
y � �2(x � 3)4, which we can graph by translating the graph in Figure 10(a) to the
right 3 units; see Figure 10(b).

x

y

(3, 0)

(4, _2)(2, _2)

(b) y=_2(x-3)$

y

(a) y=_2x$

x

(1, _2)(_1, _2)

Figure 10

In principle, we can obtain the graph of any polynomial function by setting up a
table and plotting a sufficient number of points. Indeed, this is just the way a graphing
calculator or computer operates. However, to understand why the graphs look as they
do, we want to discuss some additional methods for graphing polynomial functions.
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y

1
x

_1

P

Q

(a) y=˛-3x+1

y

x

(b) y=_(x+1)#+1Figure 11

y

x

Figure 12

y

x

There are three facts that we shall need. By way of example, look at the graphs of
the polynomial functions in Figure 11. First, notice that both graphs are unbroken,
smooth curves with no “corners.” As shown in calculus, this is true for the graph of
every polynomial function. In contrast, the graphs in Figures 12(a) and 12(b) cannot
represent polynomial functions. The graph in Figure 12(a) has a break in it, and the
graph in Figure 12(b) has what’s called a cusp.

(a)

Since the graph has a break, it cannot
represent a polynomial function.

(b)
Since the graph has a cusp, it cannot
represent a polynomial function.

Now look back at the graph in Figure 11(a). Recall (from Section 3.2) that points
such as P and Q are called turning points. These are points where the graph changes
from rising to falling or vice versa. It is a fact (proved in calculus) that the graph of a
polynomial function of degree n has at most n � 1 turning points. For instance, in
Figure 11(a) there are two turning points, and the degree of the polynomial is 3.
However, as Figure 11(b) indicates, we needn’t have any turning points at all.

A third property of polynomial functions concerns their behavior when x is very
large. We’ll illustrate this property using the function y � x3 � 3x � 1, graphed in
Figure 11(a). Now, in Figure 11(a), the x-values are relatively small; for instance, the
x-coordinates of P and Q are 1 and �1, respectively. In Figure 13, however, we show
the graph of this same function using units of 100 on the x-axis. On this scale, the
graph appears indistinguishable from that of y � x3. In particular, note that as x gets
very large, y grows very large.00 00

00



It’s easy to see why the function y � x3 � 3x � 1 resembles y � x3 when is
very large. First, let’s rewrite the equation y � x3 � 3x � 1 as

Now, when is very large, both 3�x2 and 1�x3 are close to zero. So we have

The same technique that we’ve just used in analyzing y � x3 � 3x � 1 can be
applied to any (nonconstant) polynomial function. The result is summarized in item 3
in the following box.

 � x3  when 0 x 0  is very large

 y � x3(1 � 0 � 0)

0 x 0
y � x3a1 �

3

x2 �
1

x3 b

0 x 0
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100

y

x
200

1 � 10^

2 � 10^

3 � 10^

4 � 10^
y=˛-3x+1

Figure 13
When is very large, the graph
of y � x3 � 3x � 1 appears
indistinguishable from that of
y � x3.

0 x 0 PROPERTY SUMMARY Graphs of Polynomial Functions

1. The graph of a polynomial function of degree 2 or greater is an unbroken
smooth curve. (For degrees 1 and 0, the graph is a line.)

2. The graph of a polynomial function of degree n has at most n � 1 turning
points.

3. For the graph of any polynomial function (other than a constant function), as
gets very large, grows very large. If

then

when is very large 0 x 0f (x) � anxn

f (x) � anx
n � an�1x

n�1 � p � a1x � a0  (an � 0)

0 y 00 x 0

EXAMPLE 5 Choosing a Plausible Graph for a Given Polynomial Function

A function f is defined by

Which of the graphs in Figure 14 might represent this function?

f(x) � �x3 � x2 � 9x � 9

x

(a)

y

x

y

(b)

x

y

(c)Figure 14
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EXAMPLE 6 Comparing Polynomials of the Same Degree

Consider the two polynomial functions f and g defined by

(a) With a graphing utility, find a viewing rectangle that highlights the differences
between these two functions.

(b) Find a sequence of viewing rectangles demonstrating that as x gets larger and
larger, the graph of g looks more and more like the graph of f.

f(x) � x4  g(x) � x4 � 3x3 � 5x � 4

SOLUTION (a) The view in Figure 15 indicates that the graph of g has three turning points, while
the graph of f has but one. The graph of f is symmetric about the y-axis; the graph
of g is not.

Graphical Perspective

_3 0 3
_3

0

3

6

9

12

Graphical Perspective

_100 0 100
0

5 � 10&

(c)  [_100, 100, 50] by [0, 5 � 10&, 10& ]

_10 0 10
0

5000

(b)  [_10, 10, 5] by [0, 5000, 1000]

_5 0 5
0

50

100

150

200

(a)  [_5, 5, 5] by [0, 200, 50 ]

Figure 16
In views (a) and (b), the blue graph is f (x) � x4 and the red is g(x) � x4 � 3x2 � 5x � 4. In view (c), both graphs are black; they are
indistinguishable from one another at this scale and size.

SOLUTION When is very large, f (x) � �x3. This rules out the graph in Figure 14(a). The
graph in Figure 14(c) can also be ruled out, but for a different reason. That graph has
four turning points, whereas the graph of the cubic function f can have at most two
turning points. The graph in Figure 14(b), on the other hand, does have two turning
points; furthermore, that graph does behave like y � �x3 when is very large. The
graph in Figure 14(b) might be (in fact, it is) the graph of the given function f.

0 x 0

0 x 0

Figure 15
f (x) � x4 (blue) and
g(x) � x4 � 3x3 � 5x � 4 (red) in
the viewing rectangle [�3, 3, 1] 
by [�3, 12, 3].

(b) See the three views in Figure 16. For the scale and size used in Figure 16(c), the
two graphs are virtually indistinguishable from one another.



We can use our work on solving inequalities (in Section 2.4) to help graph poly-
nomial functions that are in factored form. Consider, for example, the function

First of all, by inspection we see that f (x) � 0 when x � 0, x � �1, or x � 3. These
are the x-intercepts for the graph. Also, note that the y-intercept is 0. (Why?)
Next, we want to know what the graph looks like in the intervals between the
x-intercepts. To do this, we determine the sign of f (x) � x(x � 1)(x � 3) using the
technique in Section 2.4. Table 3 shows the results. (You should check these results
for yourself; if you need a review, the details of this example are worked out on
pages 114–115.)

Now we interpret the results in Table 3 graphically. When x is in either of the
intervals (�q, �1) or (0, 3), the graph lies below the x-axis (because f(x) 
 0); and
when x is in either of the intervals (�1, 0) or (3, q), the graph lies above the x-axis
(because f (x) � 0). This information is summarized in Figure 17(a). The three dots
in the figure indicate the x-intercepts of the graph. The shaded regions are the
excluded regions through which the graph cannot pass. The graph must pass only
through the unshaded regions (and through the three x-intercepts). In Figure 17(b) we
have drawn a rough sketch of a curve satisfying these conditions.

f(x) � x(x � 1)(x � 3)
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1

y

x
2 3 4_1_2

(a) The x-intercepts and the excluded
regions for the graph of
ƒ=x(x+1)(x-3)

1

y

x
2 3 4_1_2

(b) A rough graph of ƒ=x(x+1)(x-3)

Figure 17

TABLE 3

Interval x(x � 1)(x � 3)

(�q, �1) negative
(�1, 0) positive
(0, 3) negative
(3, q) positive

Notice that to draw a smooth curve satisfying the conditions of Figure 17(a), we
need at least two turning points: one between x � �1 and x � 0 and another between
x � 0 and x � 3. On the other hand, since the degree of f (x) is 3, there can be no more
than two turning points. Thus Figure 17(b) has exactly two turning points. As another
check on our rough sketch, we note that for large values of x , the graph indeed
resembles that of y � x3. (We are using the third property in the summary box on
page 276.)

Although the precise location of the turning points is a matter for calculus, we
can nevertheless improve upon the sketch in Figure 17(b) by computing f (x) for

00



some specific values of x. Some reasonable choices in this case are the inputs �2,
1, 2, and 4. As you can check, the resulting points on the graph are (�2, �10),

, (1, �4), (2, �6), and (4, 20). We can now sketch the graph, as shown in
Figure 18.

In the example just concluded, the polynomial f (x) � x(x � 1)(x � 3) has no
repeated factors. That is, none of the factors is squared, cubed, or raised to a higher
power. Now let us look at two examples in which there are repeated factors. The
observations we make will help us in determining the general shape of a graph
without the need for plotting a large number of individual points. In Figure 19(a),
we show the graph of g(x) � x(x � 1)(x � 3)2. Notice that in the immediate
vicinity of the intercept at x � 3, the graph has the same general shape as that
of y � A(x � 3)2.

1� 
1
2, 

7
8 2

� 
1
2,
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2

1
x

y

2 3_1_2

4

6

8

_2

_4

_6

_8

Figure 18
f (x) � x(x � 1)(x � 3).

2

10

1

20

x

y

3 4_2

30

_10

_1

(b) h(x)=x(x+1)(x-3)#
Near the x-intercept at 3, the graph
has the same general shape as that
of y=A(x-3)#.

10

1
x

y

20

30

_10

2 3 4_1_2

(a) ©=x(x+1)(x-3)@
Near the x-intercept at 3, the graph
has the same general shape as that
of y=A(x-3)@.Figure 19

Similarly, in Figure 19(b) we show the graph of h(x) � x(x � 1)(x � 3)3; notice
that in the immediate vicinity of x � 3, the graph has the same general shape as that
of y � A(x � 3)3. In the box that follows, we state the general principle underlying
these observations. (The principle can be justified using calculus.)

Let f (x) be a polynomial and suppose that (x � a)n is a factor of f (x). [Furthermore,
assume that none of the other factors of f (x) contains (x � a).] Then, in the immedi-
ate vicinity of the x-intercept at a, the graph of y � f (x) closely resembles that of
y � A(x � a)n, for some non-zero constant A.

The principle that we have just stated is easy to apply because we already know
how to graph functions of the form y � A(x � a)n. The next example shows how this
works.

The Behavior of a Polynomial Function Near an x-Intercept
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EXAMPLE 7 Determining the Shape of the Graph of a Polynomial Function Near 
an x-Intercept

Describe the behavior of each function in the immediate vicinity of the indicated 
x-intercept.

(a) f (x) � (x � 3)(x � 1)3; intercept: x � 1
(b) g(x) � (x � 1)(x � 4)(x � 3)2; intercept: x � �3

1
2 

SOLUTION (a) We make the following observation:

c
When x is close to 1, 

this factor is close 
to 1 � 3, or �2.

So if x is very close to 1, we have the approximation

Thus in the immediate vicinity of x � 1 the graph of f closely resembles 
y � �(x � 1)3. Notice the technique we used to obtain this result. We retained
the factor corresponding to the intercept x � 1, and we approximated the
remaining factor using the value x � 1. See Figure 20.

f(x) �
1

2
 (1 � 3)(x � 1)3 �

1

2
 (�2)(x � 1)3 � �(x � 1)3

⎧ ⎨ ⎩

f (x) �
1

2
 (x � 3)(x � 1)3

_0.5
1

x

y

_1.0

0.5

1.0
y=_(x-1)#

Figure 20
When x is close to 1, the graph of
f (x) � (x � 3)(x � 1)3 closely
resembles y � �(x � 1)3.

1
2 

(b) We use the approximation technique shown in part (a).

c c
When x is close to �3, —⎜ ⎜— When x is close to �3, 
this factor is close this factor is close 
to �3 � 1, or �2. to �3 � 4, or 1.

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

g(x) � (x � 1)(x � 4)(x � 3)2

0.5

1
x

y

1.0

_0.5

_1.0

ƒ= (x-3)(x-1)#1
2



Thus when x is close to �3, we have the approximation

This tells us that in the immediate vicinity of x � �3, the graph of g resembles
y � �2(x � 3)2. See Figure 21.

g(x) � (�3 � 1)(�3 � 4)(x � 3)2 � �2(x � 3)2
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Graphical Perspective

_2 0 2 4

ƒ=2(x+1)(x-2)#

y=6(x-2)#

_20

_10

0

10

20

Figure 22
f (x) � 2(x � 1)(x � 2)3

and y � 6(x � 2)3.

_1

1

_3

©=(x+1)(x+4)(x+3)@

y

x
_3

1

y

x

_1y=_2(x+3)@
Figure 21
When x is close to �3, the graph of
g(x) � (x � 1)(x � 4)(x � 3)2

closely resembles y � �2(x � 3)2.

Note: This behavior near the x-intercept also holds for nonrepeated factors (the case
n � 1). For example, in our discussion of the graph of y � x(x � 1)(x � 3), near the
x-intercept x � �1, we have y � (�1)(x � 1)(�1 � 3) � 4(x � 1). So the graph
closely resembles the graph of y � 4(x � 1) for x near �1. (See Figure 18 again.)

The technique introduced in Example 7, whereby we approximate the behavior
of the factored polynomial near each x-intercept, allows us to draw by hand a rea-
sonably accurate graph. (Of course, some judicious point plotting is necessary too, as
mentioned previously.) It’s interesting though, to use a graphing utility to confirm
visually just how well that simple approximation technique does work. As an exam-
ple, consider the polynomial function f defined by

Near the x-intercept x � 2, our approximation technique yields

near x � 2

In Figure 22 we’ve used a graphing utility to plot both the graph of f and the graph of
the approximating polynomial y � 6(x � 2)2. As you can see, in the immediate vicin-
ity of x � 2, the two graphs are remarkably close.

In Example 8 we use all of the ideas we’ve developed to determine the graph
of the polynomial function y � f (x) � (x2 � 2x)(x � 3)2. These ideas include
domain, symmetry, intercepts, extent (where the graph is above and below the
x-axis), approximate power function behavior near the x-intercepts, end behavior,
and range.

 f(x) � 6(x � 2)3

 f(x) � 2(2 � 1)(x � 2)3

f(x) � 2(x � 1)(x � 2)3



End behavior:

So y � x4 for x unbounded positive or negative.
Finally, the points (�1, �16), (1, 12), (2, 8), and (4, 24) satisfy the equation. So

we can sketch the graph in Figure 23.

Range: From the graph we see that the range is approximately the interval 
.[�16, q)

y � x(x � 2)(x � 3)2 � x c x a1 �
2
x
b d c x a1 �

3
x
b d 2 � x4 a1 �

2
x
b a1 �

3
x
b 2
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EXAMPLE 8 Graphing a Polynomial Function

Graph the function y � f (x) � (x2 � 2x)(x � 3)2.

SOLUTION Factoring we have y � (x2 � 2x)(x � 3)2 � x(x � 2)(x � 3)2.

Domain: all real numbers

Symmetry: none of the basic symmetries since y is a function of x and

Intercepts: x � 0 implies y � 0. So the y-intercept is 0.
y � 0 implies 0 � x(x � 2)(x � 3)2. So the x-intercepts are �2, 0, and 3.

Extent: Except at the x-intercepts the sign of y is the sign of x(x � 2). Using a table

So the graph lies above the x-axis on the intervals , (0, 3), and ; and
below the x-axis on the interval (�2, 0).

Near x-intercept behavior: Using the factored form y � x(x � 2)(x � 3)2 we have:

near x � �2, y � �2(x � 2) (�2 � 3)2 � �50(x � 2)
near x � 0, y � x(0 � 2) (0 � 3)2 � 18x
near x � 3, y � 3(3� 2)(x � 3)2 � 15(x � 3)2

See the dashed curves in Figure 23.

(3, q)(�q, �2)

f (�x) � 3 (�x)2 � 2(�x) 4 (�x � 3)2 � (x2 � 2x)(x � 3)2 � �f(x)

x(x � 2)

x

x � 2

� � � �

�2 0 3
� � � �

� � � �

– – –

– – –

– – –

– – –

– – –

– – –

1
x

y

8

y=15(x_3)2

y=18x

(_1, _16)

y=f(x)=(x2+2x)(x _3)2

y=_50(x_2)

Figure 23
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EXERCISE SET 4.6

A
1. Which of the functions in Figure 1 on page 275 are polyno-

mial functions?
2. (a) Give an example of a power function that is not a poly-

nomial function.
(b) Give an example of a polynomial function that is not a

power function.
3. Let f(x) � x2 and g(x) � x3.

(a) Either by hand or with a graphing utility, on the same set
of axes draw the graphs of f and g on the interval [0, 1].

(b) Compute and compare the average rates of change of f
and g on the interval [0, 1] and on the interval [0, 1�2].

4. Let f(t) � t4 and g(t) � t5.
(a) Using a graphing utility, draw the graphs of f and g on

the same set of axes.
(b) Which of the three types of symmetry discussed on

page 59 does the graph of each function possess?
(c) Compute the average rate of change of each function

on the interval [�2, 2].
(d) Explain why each answer in part (c) is predictable from

the symmetry of the graph.

In Exercises 5–16, sketch the graph of each function and specify
all x- and y-intercepts.

5. y � (x � 2)2 � 1 6. y � �3x4

7. y � �(x � 1)4 8. y � �(x � 2)3

9. y � (x � 4)3 � 2 10. y � �(x � 4)3 � 2
11. y � �2(x � 5)4 12. y � �2x4 � 5
13. y � (x � 1)5�2 14. y � � 1
15. y � �(x � 1)3 � 1 16. y � x8

In Exercises 17–20, give a reason (as in Example 4) why each
graph cannot represent a polynomial function of degree 3.

17. 18.

19. 20.

x

y

x

y

y

x

y

x

1
2 x5

In Exercises 21–24, give a reason why each graph cannot
represent a polynomial function that has the highest-degree
term 2x5.

21. 22.

23. 24.

For Exercises 25 and 26:

(a) With a graphing utility, find a viewing rectangle that high-
lights the differences between the two functions, as in
Example 5.

(b) Find a sequence of viewing rectangles demonstrating that
as x gets larger and larger, the graph of g looks more and
more like the graph of f.

25. f (x) � 2x2, g(x) � 2x2 � 12x � 5
26. f (x) � 4x3, g(x) � 4x3 � 72x2 � 420x � 805

In Exercises 27–34:

(a) Determine the x- and y-intercepts and the excluded regions
for the graph of the given function. Specify your results
using a sketch similar to Figure 17(a). In Exercises 31–34,
you will first need to factor the polynomial.

(b) Graph each function.

27. y � (x � 2)(x � 1)(x � 1)
28. y � (x � 3)(x � 2)(x � 1)
29. y � 2x(x � 2)(x � 1)
30. y � (x � 3)(x � 2)(x � 2)
31. y � x3 � 4x2 � 5x
32. y � x3 � 9x
33. y � x3 � 3x2 � 4x � 12
34. y � x3 � 5x2 � x � 5

y

x

y

x

y

x
x

y
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In Exercises 35–44:

(a) Determine the x- and y-intercepts and the excluded regions
for the graph of the given function. Specify your results
using a sketch similar to Figure 17(a).

(b) Describe the behavior of the function at each x-intercept
that corresponds to a repeated factor. Specify your
results using a sketch similar to the left-hand portion
of Figure 20.

(c) Graph each function.

35. y � x3(x � 2)
36. y � (x � 1)(x � 4)2

37. y � 2(x � 1)(x � 4)3

38. y � (x � 1)2(x � 4)2

39. y � (x � 1)2(x � 1)(x � 3)
40. y � x2(x � 4)(x � 2)
41. y � �x3(x � 4)(x � 2)
42. y � 4(x � 2)2(x � 2)3

43. y � �4x(x � 2)2(x � 2)3

44. y � �3x3(x � 1)4

45. This Exercise refers to Example 2(a) in the text. Use
Figure 7(b) to obtain the following estimates: on the
interval [0, 1.25], ¢g�¢x � 4, and ¢f�¢x � 2.

B
46. (a) This exercise refers to Example 2(b), in which f (x) � x4

and g(x) � x8. Show that on the interval [0, 1.25], we
have ¢g�¢x � 4.768 and ¢f�¢x � 1.953.

(b) Let f(x) � x4 and g(x) � x8, as in part (a). Find a
positive constant b so that on the interval [0, b], the
average rate of change of g is 100 times the average
rate of change of f. Give two forms for the answer:
an exact expression and a decimal approximation
rounded to three decimal places.

In Exercises 47–50, first use the graph to estimate the x-intercepts.
Then use algebra to determine each x-intercept. If an intercept
involves a radical, give that answer as well as a calculator
approximation rounded to three decimal places. Be sure to
check that your results are consistent with the initial graphical
estimates.

47.

0

0
_20

_3 _2 _1 1 2 3 4 5

_10

10
y=x3 _ 3x2 _ 5x

48.

49.

Hint: Factor by grouping.
50.

For Exercises 51 and 52:

(a) Use a graphing utility to draw a graph of each function.
(b) For each x-intercept, zoom in until you can estimate it

accurately to the nearest one-tenth.
(c) Use algebra to determine each x-intercept. If an intercept

involves a radical, give that answer as well as a calculator
approximation rounded to three decimal places. Check to
see that your results are consistent with the graphical esti-
mates obtained in part (b).

51. N(t) � t7 � 8t4 � 16t
52. W(u) � 2u4 � 17u2 � 35

In Exercises 53–58, six functions are defined as follows:

 F(x) � x4   G(x) � x5   H(x) � x6
 f (x) � x   g(x) � x2   h(x) � x3

_8
_2.5

_6

_4

_2

0

2

4

_1 0 1 2.5

y=x$-2≈-5

x3 � 6x2 � 3x � 18

_20
_7

_10

0

10

20

30

_5 _3 _1 0 1 3

y=x#+6≈-3x-18

_40
_3

_30

_20

_10

0

10

_2 _1 0 1 2 3

y=x$-36
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Refer also to the following figure.

53. The six graphs in the figure are the graphs of the six given
functions for the interval [0, 1], but the graphs are not
labeled. Which is which?

54. For which x-values in [0, 1] will the graph of g lie strictly
below the horizontal line y � 0.1? Use a calculator to evaluate
your answer. Round off the result to two significant figures.

55. Follow Exercise 54, using the function H instead of g.
56. Find a number t in [0, 1] such that the vertical distance

between f(t) and g(t) is 1�4.
57. Is there a number t in [0, 1] such that the vertical distance

between g(t) and F(t) is 0.26?
58. Find all numbers t in [0, 1] such that F (t) � G(t) � H(t).
59. The figure shows the graphs of y � 4x and y � x2�100 in a

standard viewing rectangle.
(a) Do the graphs intersect anywhere other than at the

origin?
(b) Use a graphing utility to support your answer in

part (a).

_10 0 10
_10

_5

0

5

10

y=4x and y=≈/ 100

[_10, 10, 5 ] by [_10, 10, 5 ]

x

y

1

1
(1, 1)

60. (a) Factor the expression 4x2 � x4. Then use the tech-
niques explained in this section to graph the function
defined by y � 4x2 � x4.

(b) Find the coordinates of the turning points. Hint: As in
previous sections, use the substitution x2 � t.

61. (a) Graph the function D(x) � x2 � x4.
(b) Find the turning points of the graph. (See the hint in

Exercise 60.)
(c) On the same set of axes, sketch the graphs of y � x2

and y � x4 for 0 � x � 1. What is the maximum verti-
cal distance between the graphs?

62. (a) An open-top box is to be constructed from a 6-by-8-in.
rectangular sheet of tin by cutting out equal squares at
each corner and then folding up the resulting flaps. Let
x denote the length of the side of each cutout square.
Show that the volume V(x) is

(b) What is the domain of the volume function in part (a)?
[The answer is not (�q, q).]

(c) Use a graphing utility to graph the volume function,
taking into account your answer in part (b).

(d) By zooming in on the turning point, estimate to the
nearest one-hundredth the maximum volume.

63. The point P is in the first quadrant on the graph of
y � 1 � x4. From P, perpendiculars are drawn to the 
x- and y-axes, thus forming a rectangle.
(a) Express the area of the rectangle as a function of a

single variable.
(b) Use a graphing utility to graph the area function.

Then, using the ZOOM feature, estimate to the near-
est hundredth the maximum possible area for the
rectangle.

64. In Example 1 in Section 4.2 we used a graphing utility to
determine linear and quadratic functions to model the
AIDS data in Figure 2 on page 233. We then used these
models to make projections for the years 1992 and 1997.
For both models and both years we found that the projec-
tions were too low. We also saw that the quadratic projec-
tions were more accurate than the linear ones, as measured
by percentage error.
(a) Use a graphing utility to find a polynomial of

degree 3 (a cubic model ) that best fits the data in
Figure 2 on page 233.

(b) Use the cubic model to make projections for the
cumulative number of AIDS cases in 1992 and 
1997.

(c) Are the projections higher or lower than the actual
figures given in Example 1 in Section 4.2? Compute
the percentage error for each projection. In each case,
which is the better predictor, the quadratic or the
cubic model?

V(x) � x(6 � 2x)(8 � 2x)



(b) Use algebra to show that the graph of y � x5 lies below
the graph of y � x3 for 0 
 x 
 1 and above the graph
of y � x3 for x � 1.

(c) Use part (b) and symmetry to show that the graph of 
y � x5 lies above the graph of y � x3 for �1 
 x 
 0
and below the graph of y � x3 for x 
 �1.

(d) Sketch the graphs of y � x3 and y � x5 on the same set
of axes, and label clearly.

69. (a) Show that for m and n positive integers with the
following inequalities hold:

and

(b) Using part (a), explain why for m and n positive even
integers, with , the graph of lies below
the graph of for while the graph of

lies above the graph of for 
(c) Using part (a), explain why for m and n positive odd

integers, with , the graph of lies above
the graph of for and and lies
below the graph of for and 0 
 x 
 1.x 
 �1y � xm

�1 
 x 
 0x � 1y � xm
y � xnm 
 n

0 x 0 � 1.y � xmy � xn
�1 
 x 
 1y � xm

y � xnm 
 n

if x � 1 then xm 
 xn

if 0 � x � 1 then 0 � xn � xm

m 
 n

C
65. Consider the function f (x) � x2 for x � 0. Show that for

any positive number N, f (x) � x2 can be made greater than
N by choosing a large enough x � 0. Hint: As in
Example 1, start with f (x) � N. Note: N � .

66. Prove that the function g(x) � x3 with domain all real
numbers is an increasing function as follows.
(a) First consider x � 0. Let 0 
 a 
 b and show 

g(a) 
 g(b). So g is increasing for x � 0. 
Hint: You may want to use the factoring identity 
b3 � a3 � (b � a)(b2 � ba � a2).

(b) Next use that g is an odd function to prove that g is
also increasing for x 
 0.

67. Consider the graphs of y � x2 and y � x4.
(a) Show that the graphs intersect only at ( �1, 1), (0, 0),

and (1, 1).
(b) Use algebra to show that the graph of y � x4 lies below

the graph of y � x2 for 0 
 x 
 1 and above the graph
of y � x2 for x � 1.

(c) Use part (b) and symmetry to show that the graph of 
y � x4 lies below the graph of y � x2 for �1 
 x 
 0
and above the graph of y � x2 for x 
 �1.

(d) Sketch the graphs of y � x2 and y � x4 on the same set
of axes, and label clearly.

68. Consider the graphs of y � x3 and y � x5.
(a) Show that the graphs intersect only at (�1, �1), (0, 0)

and (1, 1).
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PROJECT Finding Some Maximum Values Without Using Calculus

In Section 4.2 it was stated that, in general, the techniques of calculus are re-
quired to find maximum or minimum values for functions that are not quadratics.
Nevertheless, there are a number of cases involving polynomials or quotients of
polynomials where algebra, rather than calculus, will suffice. The following
theorem can be used to find maximum values in certain types of problems. (One
way to establish this theorem is indicated at the end of this project.)

Theorem

If the sum of three positive quantities s, t, and u is constant, then their prod-
uct stu is maximum if and only if s � t � u.

We’ll give three examples that show how to use this theorem; then you can
try your hand at the three problems that follow. First sample problem: The sum
of three positive numbers is 1. What is the maximum possible value for their
product? Letting s, t, and u denote the three numbers, we have s � t � u � 1.
According to the theorem, the product is maximum when the three numbers are
equal. So in that case, the equation s � t � u � 1 is equivalent to s � s � s � 1,
which implies s � 1�3. Therefore t and u are also equal to 1�3, and the maximum
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possible value for the product is stu � As a quick empirical
check, pick any three positive fractions or decimals that add to 1. Compute the
product, and check that it’s less than (assuming, of course, that you didn’t
pick all three numbers to be 1�3).

Second sample problem: Let f (x) � 2x(4 � x)2. By using the standard
graphing techniques discussed in Section 4.6, we find that the general shape
for the graph of f is as shown in Figure A. One turning point, (4, 0), is on the
x-axis; the second turning point is in the first quadrant, with an x-coordinate
between 0 and 4. Find the exact coordinates of this second turning point. First,
note that the three factors comprising f(x), namely, 2x, (4 � x), and (4 � x)
again, do have a constant sum: 2x � (4 � x) � (4 � x) � 8. Furthermore, on
the open interval 0 
 x 
 4, each of these factors is positive. Thus our theorem
in the box is applicable. The maximum value of the product f (x) � 2x(4 � x)2

on the open interval 0 
 x 
 4 occurs when the three factors are equal.
Setting 2x � 4 � x, we obtain 3x � 4, and consequently, x � 4�3. This is
the required x-coordinate of the turning point. For the y-coordinate we have
f As you can verify, that works out to In summary, the
coordinates of the turning point are 1  43, 512

27 2 .
512
27 .1  43 2 � 2 1  43 2 14 � 4

3 2 2.

1
27

1  13 2 1  13 2 1  13 2 � 1
27.

x

y

4
Figure A
f (x) � 2x(4 � x)2

Graphical Perspective

_1 0 1 2
_1

0

1

Figure B
g(x) � x2(1 � x)

Third sample problem: According to Figure B, the graph of the polynomial
function defined by g(x) � x2(1 � x) has a turning point in the first quadrant.
Find the x-coordinate of that turning point. First, note that on the open interval
0 
 x 
 1, each of the three factors x, x again, and 1 � x is positive. However,
as you can check, the sum of the three factors is not constant. We can work
around this by writing

(x)(x)(1 � x) � 4 c a  

x

2
b a  

x

2
b (1 � x) d
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Now notice that the three factors in brackets do have a constant sum. For a
maximum then, we require that � 1 � x. Solving this last equation yields
x � 2�3, the required x-coordinate.

Exercises

1. (a) First, sketch a graph of the function f(x) � x2(6 � 2x) using the stan-
dard techniques from Section 4.6. Then, use the ideas presented above
to find the exact coordinates of the turning point in the first quadrant.

(b) Follow part (a), but use g(x) � x2(6 � 3x).
2. An open-top box is to be constructed from a 16-inch square sheet of card-

board by cutting out congruent squares at each corner and then folding up the
flaps. See the following figure. Express the volume of the box as a function
of a single variable. Then find the maximum possible volume for the box.

3. When a person coughs, the radius r of the trachea (windpipe) decreases. In
a paper, “The Human Cough” (Lexington, Mass.: COMAP, Inc., 1979),
Philip Tuchinsky developed the following model for the average velocity
of air through the trachea during a cough:

In this formula the variable r represents the radius of the trachea; the con-
stant r0 is the normal radius when the person is not coughing; c is a posi-
tive constant (which, among other things, depends upon the length of the
person’s trachea); and v(r) is the average velocity of the air in the trachea.
Show that v(r) is a maximum when r � In other words, according to
this model, in coughing to clear the air passages, the most effective cough
occurs when the radius contracts to two-thirds its normal size.

Establishing the Theorem 

Exercise 44 in Section 2.3 outlines a proof of the following result, known as
the arithmetic-geometric mean inequality for three numbers:

If a, b, and c are nonnegative real numbers, then � (a � b � c)�3,
with equality holding if and only if a � b � c.

On your own or through a group discussion, determine why our theorem in
the box at the beginning of this project is a consequence of the arithmetic-
geometric mean inequality. Then, on your own, write a paragraph carefully
explaining this. (You are not being asked here to prove the arithmetic-geometric
mean inequality.)

1
3 abc

2
3 r0.

v(r) � c(r0 � r)r2  1  12 r0 � r � r0 2

x16 in.

16 in.

x

x

x
2
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We shall not attempt to explain the
numerous situations in life sciences
where the study of such graphs is
important nor the chemical reactions
which give rise to the rational functions
r(x). . . . Let it suffice to mention that, to
the experimental biochemist, theoretical
results concerning the shapes of rational
functions are of considerable interest.
—W. G. Bardsley and R. M. W. Wood
in “Critical Points and Sigmoidicity
of Positive Rational Functions,”
The American Mathematical Monthly,
vol. 92 (1985), pp. 37–42.

  y=_1x

_5 0 5
_5

0

5

Figure 1

A graph of .y �
1
x

PROPERTY SUMMARY For the Function f(x) � 1�x

The function f (x) � 1�x has the following properties:

1. f is an odd function; its graph is symmetric to the origin.
2. f is decreasing for x � 0 and for x � 0.
3. f has no maximum or minimum.
4. f (x) approaches zero from above as x becomes unbounded positive and from

below as x becomes unbounded negative.
5. f (x) becomes unbounded negative as x approaches zero from the left and

unbounded positive as x approaches zero from the right.

Graphical Perspective

You are asked to prove Property 1 in Exercise 54 at the end of this section. For
Property 2, consider the case for x � 0. To show that f is decreasing for x � 0, we
want to show that as positive domain values get larger [we go from left to right in the

4.7 RATIONAL FUNCTIONS
After the polynomial functions, the next simplest functions are the rational func-
tions. These are functions defined by equations of the form

where f (x) and g(x) are polynomials. In general, throughout this section, when we
write a function such as y � f (x)�g(x), we assume that f(x) and g(x) contain no com-
mon factors (other than constants). (Exercises 43 and 44 ask you to consider sev-
eral cases in which f(x) and g(x) do contain common factors.) Also, for each of the
examples that we discuss, the degree of the numerator f (x) is less than or equal to
the degree of the denominator g(x). Examples in which the degree of f(x) exceeds the
degree of g(x) are developed in Exercises 49 through 53 at the end of this section.
Figure 1 shows the familiar rational function y � 1�x that we graphed in Section 3.2.
The graph of y � 1�x differs from the graph of every polynomial function in two
important aspects. First the graph has a break in it: It is composed of two distinct
branches. (Recall from Section 4.6 that the graph of a polynomial function never has 
a break or gap in it.) In general, the graph of a rational function has one more branch
than the number of real values for which the denominator is zero.

The second way that the graph of y � 1�x differs from that of a polynomial function
is related to the asymptotes. A line is an asymptote for a curve if the distance between
the line and the curve approaches zero as we move out farther and farther along the line.
In Figure 1 the x-axis is a horizontal asymptote for the curve, and the y-axis is a vertical
asymptote. We now proceed to a more detailed discussion of branches and asymptotes
by examining the function y � 1�x, with domain all real numbers x � 0, and its graph.

Comment: The detailed discussion using inequalities and symmetry to establish
the basic properties of f (x) � 1�x and g(x) � 1�x2 may be skimmed on first reading
as long as the correspondence between the graphs and the properties in the summary
boxes are clearly understood.

The graph of y � 1�x has two branches because the domain of the function
f (x) � 1�x excludes x � 0. So the domain has two “pieces,” the open intervals
(�q, 0) and (0, q). As a result, the graph comes in two pieces called branches.
Figure 1 shows this. In fact, Figure 1 visually summarizes several important proper-
ties of the reciprocal function f (x) � 1�x, with domain all real x � 0.

y �
f (x)

g(x)
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x-axis interval (0, q)], function values get smaller (the graph falls). Analytically, let
a and b be positive numbers with 0 � a � b. Then we want to show that f (a) � f (b),
or equivalently, that f (a) � f (b) � 0. Now

since, for 0 � a � b, both b � a and ab are positive. Therefore 0 � a � b implies
that f (a) � f (b) � 0, or equivalently, that f (a) � f (b). Next for the case x � 0 we can
use a nearly identical argument to that used for x � 0. Alternatively, we note that
since the graph of y � 1�x is symmetric with respect to the origin, f(x) � 1�x must
also be decreasing for x � 0. Since f (x) is decreasing everywhere in its domain, f
can’t have a maximum or minimum. Hence Property 3 holds.

Properties 4 and 5 describe “end behavior” for f (x) � 1�x, that is, how f(x)
behaves at the “ends” of its domain. The domain is the union of the two open intervals
(�q, 0) and (0, q). There are four “ends” for this domain: unbounded negative, near
zero and negative, near zero and positive, and unbounded positive. We restrict our
attention to positive values of x first. So assume x � 0. Now we know f(x) � 1�x is
decreasing on (0, q). So the larger x becomes, the smaller (but positive) f(x) � 1�x
becomes. This is indicated in Table 1.

f (a) � f (b) �
1
a

�
1

b
�

b � a

ab
� 0

TABLE 1 Values of 1�x for x Becoming Large Positive

x 1 10 100 1000

1

1000
� 0.001

1

100
� 0.01

1

10
� 0.1

1

1
� 1f (x) �

1
x

EXAMPLE

SOLUTION

1 Finding a Domain Condition to Satisfy a Range Condition

How large positive must x be in order to make f (x) � 1�x smaller than 1�50? Draw
an appropriate picture.

First note that for x � 0, f (x) � 1�x is greater than zero. 
We want to find all x � 0 for which 0 � f (x) � that is 0 � � . Multiplying

both sides of this “range” inequality by 50x, which is positive since, by hypothesis,
x � 0 we have

if and only if

if and only if 0 � 50 � x or 50 � x

(We think of 50 � x as a “domain” inequality that ensures that the “range” inequal-
ity 0 � f (x) � is satisfied.)

So 0 � � provided that x � 50. See Figure 2.1
50

1
x

1
50

(50x)0 � 50x a 1
x
b � 50x a 1

50
b

0 �
1
x

�
1

50

1
50

1
x

1
50

How small positive can f (x) � 1�x become for x � 0? Figure 1 and Table 1 sug-
gest that, as x becomes unbounded positive, f (x) � 1�x is positive approaching zero.



298 CHAPTER 4 Polynomial and Rational Functions. Applications to Optimization

From Example 1 we see that we can use algebra to determine where x � 0 must
be in the domain of f(x) � 1�x to make the range value f(x) � 1�x smaller than a given
(small) positive number. No matter how small positive we want to make f(x) � 1�x,
we can find a large enough x � 0 in the domain to achieve this. We ask you to show
that this is true in Exercise 57 at the end of this section. This fact is the mathematical
meaning of the statement “f(x) � 1�x approaches zero through positive values as x
becomes unbounded positive.” This argument shows only part of Property 4; x can
also become unbounded negative. In this case, f(x) � 1�x will be negative but still
approach zero. To see this, note that the graph of y � 1�x is symmetric to the origin;
so from what we’ve shown, f(x) � 1�x must approach 0 through negative values as x
becomes unbounded negative. This is shown in Figure 3.

y

y=Δ

For f(x)=Δ
to be here x

50 x>0 must be here

1
50

Figure 2

y approaches zero
through negative
values as x becomes
unbounded negative.

y approaches zero
through positive
values as x becomes
unbounded positive.

origin symmetry

y

y=Δ

x

Figure 3

Restating Property 4 in the language of graphing, we say the x-axis (the line y � 0)
is a horizontal asymptote to the graph of y � 1�x. That is, the x-axis has the property
that the vertical distance between it and the curve approaches zero as we move
farther and farther from the origin along the axis. We see in Figure 3, as x becomes
unbounded positive, that the graph of y � 1�x falls from left to right toward y � 0
(the x-axis) from above. As x becomes unbounded negative, the graph of y � 1�x
rises from right to left toward y � 0 from below.
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For Property 5, we again consider x � 0. Based on Figure 1 (or 3), we want to
show that f (x) � 1�x becomes unbounded positive as x approaches zero from the
right, that is, through positive values. Table 2 indicates this is true.

TABLE 2 Values of 1�x for x Positive near Zero

x 1

1

1

1000

� 1000
1

1

100

� 100
1

1

10

� 10
1

1
� 1f (x) �

1
x

1

1000

1

100

1

10

EXAMPLE

SOLUTION

2 Finding a Domain Condition to Satisfy a Range Condition

How small positive must x be in order to make f (x) � 1�x larger than 50? Draw an
appropriate picture.

We want to find all x � 0 for which f (x) � 50, that is, 1�x � 50. Multiplying both
sides of this “range” inequality by x�50, which is positive since by hypothesis x � 0,
we have

if and only if

if and only if

(We think of 0 � x � 1�50 as a “domain” inequality that ensures that the “range”
inequality f (x) � 1�x � 50 is satisfied.)

So f (x) � 1�x � 50 provided that 0 � x � . See Figure 4.1
50

1

50
� x

x

50
a 1

x
b �

x

50
 (50)

1
x

� 50

y

y=Δ

x1
50

x>0 must be here

For f(x)=Δ
to be here

50

Figure 4

How large positive can f (x) � 1�x become for x � 0? Figure 3 and Table 2
suggest that as x approaches zero though positive values, f (x) � 1�x becomes un-
bounded positive.
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The algebra we used in Example 2 can be used to show the general case, that is,
for x � 0, f (x) � 1�x can be made larger than any positive number by taking x small
enough positive. We ask you to show this in Exercise 57 at the end of this section.
What happens if x is negative? As the graph of y � 1�x is symmetric about the origin,
it follows that f(x) � 1�x can be made smaller than any negative number by taking x
negative, but sufficiently close to zero. See Figure 5.

Restating Property 4 in the language of graphing, we say the y-axis (the line x � 0)
is a vertical asymptote to the graph of y � 1�x. That is, the y-axis has the property
that the horizontal distance between it and the curve approaches zero as we move
farther and farther from the origin along the y-axis. We see in Figure 5, as x moves
from right to left toward zero, y becomes unbounded positive, and as x moves from
left to right toward zero y becomes unbounded negative.

If k is a positive constant, the graph of y � k�x is a vertical scaling of the graph of
y � 1�x (a vertical stretch for k � 1, a vertical compression for 0 � k � 1). Figure 6
shows the graphs of y � 1�x and y � 4�x.

y becomes unbounded
negative as x approaches
zero through negative
values.

y becomes unbounded
positive as x approaches
zero through positive
values.

or
ig

in
 s

ym
m

et
ry

y

y=Δ

x

Figure 5

x

y

1
xy=

4
xy=

Figure 6
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Once we know about the graph of y � k�x, we can graph any rational function of the
form

The next two examples show how this is done using the translation, scaling, and
reflection techniques explained in Section 3.4.

y �
ax � b

cx � d

EXAMPLE

SOLUTION

3 Graphs Based on That of y � 1�x

Graph the following:

(a) (b)

(a) Starting with the graph of [Figure 7(a)], the graph of is that of

vertically stretched by a factor of 2 [Figure 7(b)], then shifted to the right

1 unit [Figure 7(c)].

y �
1
x

y �
2

x � 1
y �

1
x

y �
2

1 � x
y �

2

x � 1

y

x

(1, 1)

(_1, _1)

y=Δ

(a)

y

x

(1, 2)

(_1,_2)

y=
2
x

(b)

y

x

(2, 2)

(0, _2)

y=
2

x_1

Horizontal asymptote
y=0

Vertical asymptote
x=1

(c)

The horizontal asymptote of the graph of y � 1�x, that is, y � 0, is also the
horizontal asymptote of y � 2�x since neither vertically stretching by a factor
of 2 nor shifting to the right by 1 unit changes the end behavior as x becomes
unbounded positive or negative. The vertical asymptote, the line x � 0, is
left intact by the vertical stretch, then shifted to the right 1 unit with the
shifted graph. From Figure 7(c) we see that the graph of y � 2�(x � 1) has
horizontal asymptote y � 0 since y approaches 0 from above as x becomes un-
bounded positive, and from below as x becomes unbounded negative. The
graph also has vertical asymptote x � 1 since y becomes unbounded positive
as x approaches 1 from the right and unbounded negative as x approaches 1
from the left.

(b)

So the graph of is that of reflected in the x-axis. From

Figure 7(c) we obtain the graph in Figure 8.

y �
2

x � 1
y �

2

1 � x

y �
2

1 � x
�

2

�(x � 1)
� �

2

x � 1

Figure 7
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Notice that the reflection in the x-axis leaves the horizontal and vertical asymp-

totes unchanged. The graph of has y � 0 as a horizontal asymptote since

y approaches zero from below as x becomes unbounded positive and y approaches
zero from above as x becomes unbounded negative. Also the graph has a vertical
asymptote at x � 1 since y becomes unbounded negative as x approaches 1 from the
right and unbounded positive as x approaches 1 from the left.

y �
2

1 � x

Vertical asymptote

Horizontal asymptote
x

(-2,-2)

y

(0, 2)
y = 2

1-x

x=1

y=0

Figure 8

EXAMPLE

SOLUTION

4 Long Division as an Aid in Graphing

Graph: y �

First, as you can readily check, the x- and y-intercepts are 1�2 and 2, respectively.
Next, using long division, we find that

[If you need a review of (or reintroduction to) the long division process from basic
or intermediate algebra, see Section 13.2.] We conclude that the required graph can
be obtained by moving the graph of y � 2�(x � 1) up four units in the y-direction;
see Figure 9. Notice that the vertical asymptote is still x � 1, but the horizontal
asymptote is now moved up 4 units from y � 0 to y � 4. As x becomes unbounded
positive, y approaches 4 from above and as x becomes unbounded negative, 
y approaches 4 from below.

4x � 2

x � 1
� 4 �

2

x � 1

4x � 2

x � 1
.

Vertical asymptote: x=1

Horizontal asymptote: y=4

x

y

(0, 2)

1
2 , 0( )

Figure 9
The graph of .y �

4x � 2

x � 1

Using long division
4

x � 1�4x � 2

4x � 4

2
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Now let’s look at rational functions of the form y � l�xn, for positive integer n.
First we’ll consider y � l�x2. As with y � l�x, the domain consists of all real numbers ex-
cept x � 0. For x � 0 the quantity l�x2 is always positive. This means that the graph will
always lie above the x-axis. Furthermore, the graph will be symmetric about the y-axis.
We can obtain the graph of y � 1�x2 by comparison with the graph of y � 1�x. We again

begin by assuming x � 0 and considering the difference . This difference is

either positive, negative, or zero. If the difference is zero, then the graphs intersect.
If the difference is positive, then 1�x � 1�x2; so the graph of y � 1�x2 lies below that
of y � 1�x. If the difference is negative, then 1�x � 1�x2; so the graph of y � 1�x2

lies above that of y � 1�x. Now x2 is positive for x � 0, so the difference,

is zero for x � 1, positive for x � 1, and negative for 0 � x � 1.

Then the graphs intersect when x � 1 and y � 1�1 � 1, that is , at the point (1, 1);
the graph of y � 1�x2 lies below the graph of y � 1�x for x � 1; and the graph of
y � 1�x2 lies above the graph of y � 1�x for 0 � x � 1. See Figure 10.

Since 1�x2 � 0, we get y � 0 as a horizontal asymptote of y � 1�x2 because
the graph is sandwiched between the graphs of y � 0 and y � 1�x as x becomes
unbounded positive. Also, near x � 0, 1�x2 � 1�x, which becomes unbounded posi-
tive as x approaches zero through positive values, so x � 0 (the y-axis) is a vertical
asymptote of y � 1�x2. Since the graph of y � 1�x2 is symmetric about the y-axis,
we get the graph shown in Figure 11.

1
x

�
1

x2 �
x � 1

x2

1
x

�
1

x2

y = 1
x2

y

(1, 1)
y=Δ

x

Figure 10
A comparison of the graphs of

and for x � 0.y �
1

x2y �
1
x

y

y = 1

(1, 1)(-1, 1)

x

x2

Figure 11

The graph of .y �
1

x2

PROPERTY SUMMARY For the Function g(x) � 1�x2

The function g(x) � 1�x2 has the following properties:

1�. g is an even function; its graph is symmetric to the y-axis.
2�. g is increasing on (�q, 0 ) and decreasing on (0, q).
3�. g has no maximum or minimum.
4�. g(x) approaches zero from above as x becomes unbounded positive or

negative.
5�. g(x) becomes unbounded positive as x approaches zero from the left or right.

Figure 11 visually summarizes several important properties of the function
g(x) � 1�x2, with domain all real x � 0.
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Property 4� says the graph of y � 1�x2 has the line y � 0 (the x-axis) as a horizontal as-
ymptote, and Property 5� says it has x � 0 (the y-axis) as a vertical asymptote. Exercise
58, at the end of this section, asks for a verification of Properties 4� through 5�.

In general, when n is an even integer greater than 2. the graph of y � l�xn resem-
bles that of y � l�x2. When n is an odd integer greater than 1, the graph of y � l�xn

resembles that of y � 1�x. See Figures 12 and 13.

y

y = 1

x

xn

Figure 12

The graph of , for n an even

integer greater than or equal to 2.

y �
1

xn

EXAMPLE

SOLUTION

5 A Graph Based on That of y � 1�x2

Graph: y � �l�(x � 3)2.

Refer to Figure 14. Begin with the graph of y � l�x2. By moving the graph three units
to the left, we obtain the graph of y � l�(x � 3)2. Then by reflecting the graph of 

y � l�(x � 3)2 about the x-axis, we get the graph of . The horizontal

asymptote is y � 0 (the x-axis) since as x becomes unbounded positive or negative, 
�1�(x � 3)2 approaches 0 from below. x � �3 is the vertical asymptote since
�1�(x � 3)2 becomes unbounded negative as x approaches �3 from the left or right.

Question: What are the y-intercepts in Figures 14(b) and 14(c)?

y � �
1

(x � 3)2

_2
x

y

x=_3

(c) y= _1
(x+3)@

_4
x

y

_2 _1

(b) y= 1
(x+3)@

x

y

(a) y= 1
≈Figure 14

x

y

y = 1
xn

Figure 13

The graph of , for n an odd integer

greater than or equal to 1.

y �
1

xn
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EXAMPLE

SOLUTION

6 A Graph Based on That of y � 1�x3

Graph: y � 4�(x � 2)3.

Moving the graph of y � l�x3 two units to the right gives us the graph of the func-
tion y � l�(x � 2)3. The graph of y � 4�(x � 2)3 will have the same basic shape
and location. As a further guide to sketching the required graph, we can pick sev-
eral convenient x-values near the asymptote x � 2 and compute the corresponding
y-values. Using x � 0, x � 1, and x � 3, we find that the points 0, � , (1, �4),
and (3, 4) are on the graph. Also, the horizontal asymptote is y � 0 since the graph
approaches 0 from above as x becomes unbounded positive and from below as
x becomes unbounded negative. The vertical asymptote is x � 2 since 4�(x � 2)3

becomes unbounded positive as x approaches 2 from the right and unbounded
negative as x approaches 2 from the left. With this information, the graph can be
sketched as in Figure 15.

In Examples 3 through 6, we found horizontal and vertical asymptotes of
graphs that were shifts, vertical scale changes, or reflections in the x-axis of graphs
of equations of the form y � 1�xn for positive integer n. The asymptotes could
be obtained by seeing the effect of the transformations on the asymptotes of the
graph of y � 1�xn. What if the graph of the equation we have is not such a trans-
formation of the graph of y � 1�xn? How can we determine the asymptotes, if there
are any? To answer these questions, consider a rational function y � f (x)�g(x) with
the degree of f less than or equal to the degree of g and with f and g having no com-
mon factors other than constants. The horizontal asymptotes are found by deter-
mining the behavior of the function as x becomes unbounded. The vertical
asymptotes are found by finding out where y becomes unbounded. This happens
near x-values for which g(x) � 0.

Let’s reexamine Example 4, the graph of . This time we’ll determine 

the asymptotes directly, rather than by transforming the graph of y � 1�x. First
consider the horizontal asymptote. We need the end behavior of y as x becomes
unbounded. Since y is a ratio of polynomials, we want to find the relative end
behavior of the numerator and denominator as x becomes unbounded. We know for
polynomial functions that end behavior is approximately the end behavior of the
highest-degree term. We focus on these highest-degree terms by factoring out
the highest-degree power function in each of the numerator and denominator.

as becomes unbounded

The approximation follows because both 2�x and 1�x approach zero as becomes
unbounded. This work quickly gets us to the result that y � 4 is a horizontal asymptote
for the graph. To determine, in more detail, how the graph approaches this asymptote,
we need to do some additional work. Using long division, as in Example 4, we get

y �
4x � 2

x � 1
� 4 �

2

x � 1

0 x 0

0 x 0y �
4x � 2

x � 1
�

x a4 �
2
x
b

x a1 �
1
x
b

�

4 �
2
x

1 �
1
x

�
4

1
� 4

y �
4x � 2

x � 1

1
2 21

1

2
1

3
4
5

_1
_2
_3
_4
_5

2 3 4 5 6
x

y

Figure 15
The graph of y � 4�(x � 2)3.



306 CHAPTER 4 Polynomial and Rational Functions. Applications to Optimization

From Example 3(a), we know that 2�(x � 1) approaches zero through positive val-
ues as x becomes unbounded positive; so the graph of y � (4x � 2)�(x � 1) ap-
proaches y � 4 from above as x becomes unbounded positive. Similarly, 2�(x � 1)
approaches zero through negative values as x becomes unbounded negative. So the
graph of y � (4x � 2)�(x � 1) approaches y � 4 from below as x becomes un-
bounded negative.

The reasoning for vertical asymptotes is somewhat different. We use an approxi-
mation idea that we used for polynomial function behavior near an x-intercept. For

y � near x � 1, the numerator 4x � 2 is close to 2. So, for x near 1, we have

From Example 3(a), we know that 2�(x � 1) becomes unbounded positive as x ap-
proaches 1 from the right, and unbounded negative as x approaches 1 from the left.
The approximation above implies that x � 1 is a vertical asymptote for the graph of
y � (4x � 2)�(x � 1), and the graph becomes unbounded positive as x approaches 1
from the right and unbounded negative as x approaches 1 from the left.

For a given rational function y � f (x)�g(x), we can determine a horizontal
asymptote for the graph by finding the relative end behavior of the numerator. This
analysis is enhanced by using long division to express the rational function as
the sum of a constant and a fractional remainder, which, for large, behaves like
a transformed version of y � 1�xn for some n. Then we use our understanding of
the horizontal asymptotes of these functions. We can determine vertical asymp-
totes by finding where the denominator g(x) is zero [and the numerator f (x) is not
zero] and approximating the rational function near these x-values. Near these
x-values the rational function behaves like a transformed version of y � 1�xn,
and we use our knowledge of the vertical asymptotes of these functions. We finally
arrive at a fairly complete understanding of the asymptotes of the graph of rational
function and the function behavior near those asymptotes. The next example illus-
trates this approach.

0 x 0

y �
4x � 2

x � 1
�

4(1) � 2

x � 1
�

2

x � 1

4x � 2

x � 1

EXAMPLE

SOLUTION

7 Finding the Horizontal and Vertical Asymptotes of the Graph 
of a Rational Function

Determine all horizontal and vertical asymptotes of the graph of .
Also describe how the graph approaches each asymptote.

For the horizontal asymptote, consider

as becomes unbounded. So the graph has y � 3 for a horizontal asymptote. To
determine how the graph approaches this asymptote, use long division to write

y �
3x2 � x � 2

x2 � x � 6
� 3 �

�2x � 16

x2 � x � 6

0 x 0

y �
3x2 � x � 2

x2 � x � 6
�

x2a3 �
1
x

�
2

x2 b
x2a1 �

1
x

�
6

x2 b
�

3 �
1
x

�
2

x2

1 �
1
x

�
6

x2

�
3

1
� 3

y �
3x2 � x � 2

x2 � x � 6

Using long division

3

x2 � x � 6�3x2 � x � 2

3x2 � 3x � 18

�2x � 16
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Now

as becomes
unbounded

So as becomes unbounded, , which approaches 3

from below as x becomes unbounded positive and from above as x becomes un-
bounded negative.

For the vertical asymptotes, factor to get 

The denominator is zero for x � 2 and �3 (and no other values), and the numerator
is not zero at x � 2 or �3. The graph will have vertical asymptotes x � 2 and
x � �3. To understand the behavior of the graph near these asymptotes, note that
near x � 2

As x approaches 2 from the right, y becomes unbounded positive, and as x ap-
proaches 2 from the from the left, y becomes unbounded negative. Near 

As x approaches �3 from the from the right, 1�(x � 3) becomes unbounded positive.
Hence y � (�22�5)�(x � 3) becomes unbounded negative. For similar reasons, as x
approaches �3 from the from the left, y becomes unbounded positive. This concludes
our analysis of the asymptotes.

The next example concerns a rational function whose graph has no vertical
asymptote.

x � �3, y �
[3(�3) � 2](�3 � 1)

(�3 � 2)(x � 3)
� a�

22

5
b 1

x � 3

y �
(3x � 2)(x � 1)

(x � 2)(x � 3)
�

[3(2) � 2](2 � 1)

(x � 2)(2 � 3)
� a 12

5
b 1

x � 2

y �
3x2 � x � 2

x2 � x � 6
�

(3x � 2)(x � 1)

(x � 2)(x � 3)

y �
3x2 � x � 2

x2 � x � 6
� 3 �

2
x

0 x 0

0 x 0�2x � 16

x2 � x � 6
�

x a�2 �
16
x
b

x2 a1 �
1
x

�
6

x2 b
�

a�2 �
16
x
b

x a1 �
1
x

�
6

x2 b
�

�2
x

EXAMPLE

SOLUTION

8 A Rational Function Whose Graph Has No Vertical Asymptotes

Determine all horizontal and vertical asymptotes and graph the function .

Since 1 � x2 is unbounded positive as becomes unbounded, approaches 0

through positive values; so the graph approaches the horizontal asymptote y � 0
from above.

To find the vertical asymptotes we note that the numerator 1 is never zero and
that the ratio would become unbounded only near zeros of the denominator, but
1 � x2 is never zero; so there are no vertical asymptotes. The y-axis symmetry of
the graph and a table of values (or a graphing calculator) leads to the lovely graph
in Figure 16.

1

1 � x20 x 0
y �

1

1 � x2
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As we mentioned at the beginning of this section, every rational function we’ve
considered has the form y � f (x)�g(x) where f and g are polynomials functions with
no common factor, other than constant factors, and the degree of f is no greater than
the degree of g. The graph of any such function will have a horizontal asymptote:
either y � 0 if the degree of f is less than the degree of g (see Examples 3, 5, and 6)
or y equal to a nonzero constant when the degree of f equals the degree of g (See
Examples 4 and 7). If the degree of f is greater than the degree of g, then the graph
will still have an asymptote, which might be a nonhorizontal or nonvertical line or
the graph of a polynomial of degree 2 or more. For such examples, see Problems 49
through 53 at the end of this section.

In the next example we use all of our tools to graph a particular rational function.

EXAMPLE

SOLUTION

9 Graphing a Rational Function

For the function , determine the domain, intercepts, sym-

metry, and the behavior near each x-intercept, extent, asymptotes and the behavior
near each asymptote, and range. Then sketch a graph of the function including these
features.

Factoring we have .

Domain: All real x except �1 and 4 where the denominator would be zero.

Intercepts: x � 0 implies y � 0. So the y-intercept is 0.
y � 0 implies 0 � x(x � 2). So the x-intercepts are 0 and 2. 

Behavior near x-intercepts: Using the factored form we have:

near x � 0

near x � 2

See the dashed lines in Figure 17.

Symmetry: None of the basic symmetries since the x-intercepts are not symmetric
about the y-axis or the origin (These symmetries are the same for points on the
x-axis.) Of course, graphs of functions of x never have x-axis symmetry.

y �
2(x � 2)

(2 � 1)(2 � 4)
� �

1

3
(x � 2)

y �
x(0 � 2)

(0 � 1)(0 � 4)
�

1

2
x

y � f (x) �
x2 � 2x

x2 � 3x � 4
�

x(x � 2)

(x � 1)(x � 4)

y � f (x) �
x2 � 2x

x2 � 3x � 4

y

(0, 1)

x

y = 1
1+x2

Horizontal asymptote y=0Figure 16
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Using Long Division

1

x2 � 3x � 4�x2 � 2x

x2 � 3x � 4

x � 4

x � 1
x

x � 2
x � 4

x(x � 2)

(x � 1)(x � 4)
� � � � �

�1 0 2 4
� � � � �
� � � � �
� � � � �
� � � � �

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

y

y=1

x=4

x

x=-1

(-4, 1)

y =f(x)= x2-2x
x2-3x-4

Figure 17

Extent: Except at 0, 2, �1, and 4, the sign of y is the sign of . Using
a table we get

x(x � 2)

(x � 1)(x � 4)

So the graph lies above the x-axis on the intervals (�q, �1), (0, 2), and (4, q) and
below the x-axis on the intervals (�1, 0) and (2, 4).

Horizontal asymptote:

as becomes
unbounded

So y � 1 is the horizontal asymptote. 

Behavior as the graph approaches the horizontal asymptote: Use long division to write

Now

as becomes
unbounded
0 x 0x � 4

x2 � 3x � 4
�

x a1 �
4
x
b

x2 a1 �
3
x

�
4

x2 b
�

a1 �
4
x
b

x a1 �
3
x

�
4

x2 b
�

1
x

y � f (x) �
x2 � 2x

x2 � 3x � 4
� 1 �

x � 4

x2 � 3x � 4

0 x 0y �
x2 � 2x

x2 � 3x � 4
�

x2 a1 �
2
x
b

x2 a1 �
3
x

�
4

x2 b
�

1 �
2
x

1 �
3
x

�
4

x2

�
1

1
� 1
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So as becomes unbounded, 

which approaches 1 from below as x becomes unbounded negative and from above
as x becomes unbounded positive. See the dashed tails in Figure 17. To get a feel for
the rather slow approaches to the asymptote, see the last six points in Table 3.

Vertical asymptotes: Using the factored form 

we see the denominator is zero for x � �1 and 4 (and no other values), and the
numerator is not zero at �1 or 4. So the graph will have vertical asymptotes x � �1
and x � 4. 

Behavior near the vertical asymptotes: Near x � �1,

As x approaches �1 from the right, 1�(x � 1) becomes unbounded positive; so
becomes unbounded negative. As x approaches �1 from the

from the left, 1�(x � 1) becomes unbounded negative, so y (�3�5)�(x � 1)
becomes unbounded positive. Near x � 4,

As x approaches 4 from the right, y (8�5)�(x � 1) becomes unbounded positive,
and as x approaches 4 from the left, y becomes unbounded negative. See the dashed
tails in Figure 17. One last comment: The left-end behavior and the behavior near
the vertical asymptote x � �1 tell us that the graph crosses the horizontal asymptote 

to left of x � �1. To find the location, we solve the equation to get 

x � �4. So the graph crosses the horizontal asymptote at the point (�4, 1).

Range: Determining the range algebraically requires finding all real values of k for
which the equation,

has real number solutions for x. Exercise 60 at the end of this section provides sug-
gestions for doing this. For now we estimate the range from the graph, shown in
Figure 17, obtained with the aid of the analysis we’ve done together with the points
computed in Table 3. The range is the union of two infinite intervals, it is approximately
(�q, 0.167] [0.952, q). Note: The exact range is (�q, 14 � 4 �25] 

14 � 4 �25, q).

The last example in this section looks at an application that uses rational functions.

2 4163 1 �2161�

x2 � 2x

x2 � 3x � 4
� k

x2 � 2x

x2 � 3x � 4
� 1

�

y �
4[4 � 2]

(4 � 1)[x � 4]
� a 8

5
b 1

x � 4

�
y � (�3�5)�(x � 1)

y �
x(x � 2)

(x � 1)(x � 4)
�

(�1)[(�1) � 2]

(x � 1)[(�1) � 4]
� a�3

5
b 1

x � 1

y �
x2 � 2x

x2 � 3x � 4
�

x(x � 2)

(x � 1)(x � 4)

y �
x2 � 2x

x2 � 3x � 4
� 1 �

1
x

0 x 0TABLE 3 Some Points
on the Graph

x

�4 1.000000
�2 1.333333 . . .

1 0.166666 . . .
3 �0.750000 . . .
5 2.500000 . . .
6 1.714286 . . .
10 1.212121 . . .
100 1.010726 . . .
1000 1.001007 . . .

�10 0.952381 . . .
�100 0.990676 . . .
�1000 0.999007 . . .

y �
x2 � 2x

x2 � 3x � 4
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EXAMPLE 10 Using Rational Functions to Model Bacterial Growth

A group of agricultural scientists has been studying how the growth of a particular
type of bacteria is affected by the acidity level of the soil. One colony of the bac-
teria is placed in a soil that is slightly acidic. A second colony of the same size is
placed in a neutral soil. Suppose that after analyzing the data, the scientists deter-
mine that the size of each population over time can be modeled by the following
functions.

In both cases, y represents the population, in thousands, after t hours. Figure 18
shows the graphs of these two population functions over the first hour of the
experiment. (Note from both the graphs and the equations that each colony begins
with 1000 bacteria.) Find the horizontal asymptotes for each graph and thereby
determine the long-term behavior of each colony.

 colony in acidic soil: y � (4t � 3)�(t2 � 3) t 	 0

 colony in neutral soil: y � (2t � 1)�(t � 1) t 	 0

y (thousands)

t (hours)

y=(4t+3)/(t@+3)

y=(2t+1)/(t+1)

0.5

1.0

1.5

0.25 0.5 0.75 1.0

Figure 18
Population models for two 
colonies of bacteria.

Colony in neutral soil: Colony in acidic soil:

as t gets larger
and larger�

0 � 0

1 � 0
� 0

as t gets larger
and larger�

2 � 0

1 � 0
� 2

y �
4�t � 3�t2

1 � 3�t2y �
2 � 1�t

1 � 1�t

factoring out t2

from the top
and bottom

�
t2(4�t � 3�t2)

t2(1 � 3�t2)

factoring out t
from the top and
bottom

y �
t(2 � 1�t)

t(1 � 1�t)

y �
4t � 3

t2 � 3
y �

2t � 1

t � 1

For the colony in neutral soil, the horizontal asymptote for the growth function
is y � 2. So in the long run, this colony approaches a population of 2000. For
the colony in acidic soil, the horizontal asymptote is y � 0 and the population
approaches extinction (or becomes extinct, depending on the interpretation). See
Figure 19.

SOLUTION
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A
In Exercises 1–8:

(a) Find the domain, x- and y-intercepts, vertical asymptotes,
and horizontal asymptotes for each rational function.

(b) Use a graphing utility to graph the function. Check to see
that the graph is consistent with your results in part (a).

1. y � (3x � 15)�(4x � 12)
2. y � (x � 6)(x � 4)�(x � 1)2

3. y � (6x2 � 5x � 1)�(2x2)
4. y � x�(x2 � x � 1)
5. y � (x2 � 9)�(4x2 � 1)
6. y � (x2 � 9)�(4x2 � 1)
7. y � (3x2 � 2x � 8)�(2x3 � x2 � 3x)
8. y � (x3 � 27)�(x4 � 2x3 � 9x2 � 18x)

In Exercises 9–34, sketch the graph of each rational function.
Specify the intercepts and the asymptotes.

9. y � 1�(x � 4) 10. y � �1�(x � 4)
11. y � 3�(x � 2) 12. y � �3�(x � 2)
13. y � �2�(x � 3) 14. y � (x � 1)�(x � 1)
15. y � (x � 3)�(x � 1) 16. y � 2x�(x � 3)
17. y � (4x � 2)�(2x � 1) 18. y � (3x � 2)�(x � 3)
19. y � 1�(x � 2)2 20. y � �1�(x � 2)2

21. y � 3�(x � 1)2 22. y � �3�(x � 1)2

23. y � 1�(x � 2)3 24. y � �1�(x � 2)3

25. y � �4�(x � 5)3 26. y � x�[(x � 1)(x � 3)]
27. y � �x�[(x � 2)(x � 2)] 28. y � 2x�(x � 1)2

29. (a) y � 3x�[(x � 1)(x � 3)]
(b) y � 3x2�[(x � 1)(x � 3)]

30. (a) y � (4x2 � 1)�(x2 � 1)
(b) y � (4x2 � 1)�(x2 � 1)

31. y � (4x2 � x � 5)�(2x2 � 3x � 5)
32. y � (4x2 � x � 3)�(2x2 � 3x � 5)

33. (a) f (x) � (x � 2)(x � 4)�[x(x � 1)]
(b) g(x) � (x � 2)(x � 4)�[x(x � 3)]
[Compare the graphs you obtain in parts (a) and (b). Notice
how a change in only one constant can radically alter the
nature of the graph.]

34. (a) f (x) � (x � 1)(x � 2.75)�[(x � 1)(x � 3)]
(b) g(x) � (x � 1)(x � 3.25)�[(x � 1)(x � 3)]
[Compare the graphs you obtain in parts (a) and (b). Notice
how a relatively small change in one of the constants can
radically alter the graph.]

35. The population y of a colony of bacteria after t hr is 
given by

(a) Find the initial population (that is, the population when
t � 0 hr).

(b) Determine the long-term behavior of the population
(as in Example 10).

36. The population y (in thousands) of a colony of bacteria
after t hr is given by

(a) Find the initial population and the long-term popula-
tion. Which is larger?

(b) Use a graphing utility to graph the population func-
tion. Is the function increasing or decreasing? Check
that your response here is consistent with your answers
in part (a).

B
37. A desktop publisher designing a small rectangular poster

decides to make the area 500 in2. The margins on the top
and bottom of the poster are to be 3 in. and 4 in., respec-
tively. The left and right margins are each to be 1.5 in.

y � (6t � 12)�(2t � 1)  where t 	 0

y � (t � 12)�(0.0004t � 0.024)  where t 	 0

0

0.5

1.0

1.5

2.0

0 8 16 240 8
0

0.5

1.0

1.5

2.0

y=(2t+1)/(t+1) (colony in neutral soil)

y=(4t+3)/(t@+3) (colony in slightly acidic soil)

Figure 19
Snapshots of the population
functions after t � 8 hr and 
t � 24 hr. The vertical axis is the
population y, in thousands.

Graphical Perspective

EXERCISE SET 4.7
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39. y � 40. y �

41. y � 42. y �

In Exercises 43 and 44, graph the functions. Notice in each case
that the numerator and denominator contain at least one com-
mon factor. Thus you can simplify each quotient; but don’t lose
track of the domain of the function as it was initially defined.

43. (a) y � (b) y � (c) y �

44. (a) y � (b) y �

(c) y �

45. Let

Verify each of the following approximations.
(a) The vertical asymptotes are x � �1 and x � 2.
(b) The horizontal asymptote is  y � 1.
(c) The middle branch of the graph lies between the

vertical asymptotes and has a lowest point.
46. This exercise shows you how to determine the coordinates

of the lowest point on the middle branch of the curve in
Exercise 45. The basic idea is as follows. Suppose that the
required coordinates are (h, k). Then the horizontal line
y � k is the unique horizontal line intersecting the curve
in one and only one point. (Any other horizontal line
intersects the curve either in two points or not at all.)
In steps (a) through (c) that follow, we use these observa-
tions to determine the point (h, k).
(a) Given any horizontal line y � k, its intersection with

the curve in Exercise 45 is determined by solving the
following pair of simultaneous equations:

In the second equation of the system, replace y with k
and show that the resulting equation can be written

(1)

(b) If k is indeed the required y-coordinate, then equation (1)
must have exactly one real solution. Set the discrimi-
nant of the quadratic equation equal to zero to obtain

and deduce from this that k � 1 or k � 25�9. The
solution k � 1 can be discarded. (To see why, look at
your graph in Exercise 45.)

(k � 1)2 � 4(k � 1)(6 � 2k) � 0

(k � 1)x2 � (k � 1)x � (6 � 2k) � 0

•
y � k

y �
x2 � x � 6

x2 � x � 2

y �
(x � 3)(x � 2)

(x � 1)(x � 2)

(x � 1)(x � 2)(x � 3)

(x � 1)(x � 2)(x � 3)(x � 4)

x2 � 5x � 6

x2 � 2x � 3

x2 � 9

x � 3

x � 1

(x � 1)(x � 2)

x2 � 4

x � 2

x � 2

x � 2

2x2 � 3x � 2

x2 � 3x � 4

(x � 1)2

(x � 1)(x � 3)

(x � 1)(x � 3)

(x � 1)2

(x � 4)(x � 2)

(x � 1)(x � 3)

(a) Express the area of the printed portion of the poster as
a function of x, the width of the entire poster. (The gray
region in the figure represents the printed area.)

(b) Use a graphing utility to graph the area function that
you found in part (a).

(c) Use a ZOOM feature to estimate (to the nearest one-
tenth) the width x for which the printed area is a maxi-
mum. What is the corresponding length of the poster in
this case?

38. The accompanying figure gives formulas for the volume V
and total surface area S of a circular cylinder with radius r
and height h. For a cylinder of given volume we are
interested in finding the dimensions that minimize the
surface area.

(a) Assume that the volume of the cylinder is 1000 cm3.
Express the surface area as a function of the radius.
After combining terms in your answer, show that the
resulting function can be written

(b) Use a graphing utility to graph the surface area func-
tion obtained in part (a).

(c) Estimate, to the nearest one-hundredth, the radius r
that minimizes the surface area. What is the corre-
sponding value for h?

In Exercises 39–42, graph the functions. Note: In each case, the
graph crosses its horizontal asymptote once. To find the point
where the rational function y � f (x) crosses its horizontal
asymptote y � k, you’ll need to solve the equation f (x) � k.

S(r) �
2pr3 � 2000

r
  (r � 0)

r

h

V=πr@h

S=2πr@+2πrh

x
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(b) The result in part (a) shows that the line y � x � 4 is a
slant asymptote for the graph of the function F. Verify
this fact empirically by completing the following two
tables.

x x � 4

10
100

1000
�10

�100
�1000

(c) Determine the vertical asymptote and the x- and 
y-intercepts of the graph of F.

(d) Graph the function F. (Use the techniques in this
section along with the fact that y � x � 4 is a slant
asymptote.)

(e) Use the technique explained in Exercise 46 to find the
coordinates of the two turning points on the graph of F.

50. (a) Show that the line y � x � 2 is a slant asymptote for
the graph of F (x) � x2�(x � 2).

(b) Sketch the graph of F.
51. Show that the line y � �x is a slant asymptote for the graph

of y � (1 � x2)�x. Then sketch the graph of this function.
52. Let f(x) � (x3 � 2x2 � 1)�(x2 � 2x).

(a) Graph the function f using a viewing rectangle ex-
tending from �5 to 5 in both the x- and y-directions.

(b) Add the graph of the line y � x to your picture in
part (a). Note that to the right of the origin, as x in-
creases, the graph of f begins to look more and more
like the line y � x. This also occurs to the left of the
origin as x decreases.

(c) The results in part (b) suggest that the line y � x may
be an asymptote for the graph of f. Verify this visually
by changing the viewing rectangle so that it extends
from �20 to 20 in both the x- and the y-directions.
What do you observe?

(d) Using algebra, verify the identity

Then explain why, for large values of , the 
graph of f looks more and more like the line y � x.
Hint: Substitute some large numbers (such as 100 or
1000) into the expression 1�(x2 � 2x). What happens?

53. Let f(x) � (x5 � 1)�x2.
(a) Graph the function f using a viewing rectangle that

extends from �4 to 4 in the x-direction and from �8 to
8 in the y-direction.

(b) Add the graph of the curve y � x3 to your picture in
part (a). Note that as increases (that is, as x moves
away from the origin), the graph of f looks more and

0 x 0

0 x 0

x3 � 2x2 � 1

x2 � 2x
�

1

x2 � 2x
� x

x2 � x � 6
x � 3

(c) Using the value y � 25�9, show that the corresponding
x-coordinate is 1�2. Thus, the required point is 

47. Graph the function y � x�(x � 3)2. Use the technique
explained in Exercise 46 to find the coordinates of any
turning points on the graph.

48. Graph the function y � 2�(x � x2). Use the technique ex-
plained in Exercise 46 to find the coordinates of any turn-
ing points on the graph.

An asymptote that is neither horizontal nor vertical is called a
slant or oblique asymptote. For example, as indicated in the
following figure, the line y � x is a slant asymptote for the
graph of y � (x2 � 1)�x. To understand why the line y � x is
an asymptote, we carry out the indicated division and write the
function in the form

(2)

From equation (2) we see that if is very large then y � x � 0;
that is, y � x, as we wished to show. Equation (2) actually tells
us more than this. When is very close to zero, equation (2)
yields y � 0 � (1�x). In other words, as we approach the y-axis,
the curve looks more and more like the graph of y � 1�x. In
general, if we have a rational function f (x)�g(x) in which the
degree of f(x) is 1 greater than the degree of g(x), then the
graph has a slant asymptote that is obtained as follows. Divide
f (x) by g(x) to obtain an equation of the form

where the degree of h(x) is less than the degree of g(x). Then the
equation of the slant asymptote is y � mx � b. (For instance,
using the previous example, we have y � mx � b � x and
h(x)�g(x) � 1�x.) In Exercises 49–51, you are asked to graph
functions that have slant asymptotes.

49. Let y � F (x) �

(a) Use long division to show that

x2 � x � 6

x � 3
� (x � 4) �

6

x � 3

x2 � x � 6

x � 3
.

f (x)

g(x)
� (mx � b) �

h(x)

g(x)

0 x 0
0 x 0

x

y

y � x �
1
x

1  12, 25
9 2 .
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with an arbitrarily small positive number, say c � 0.
Then find a “domain” inequality that shows that for all
x large enough, f (x) � 1�x � c by solving the “range”
inequality 0 � 1�x � c for x in terms of c.

(b) Show f (x) � 1�x, for x � 0, becomes unbounded
positive as x approaches zero through positive values.
Draw and label an appropriate picture. Hint: Start
with an arbitrarily large positive number, say N � 0.
Then find a “domain” inequality that shows that for all
x � 0 sufficiently small, f (x) � 1�x � N, by solving
this “range” inequality for x in terms of N.

58. Given g(x) � 1�x2, with domain all real x � 0.
(a) Show that g is an even function. So the graph of 

y � 1�x2 is symmetric to the y-axis.
(b) Show that g is decreasing on (0, q). Hint: Assume 

0 � a � b and show g(a) � g(b).
(c) Explain why g is increasing on (�q, 0).
(d) Explain why g has no maximum or minimum.
(e) Show g(x) approaches zero from above as x becomes

unbounded positive. Hint: For any (small) positive
number c, find a large positive number N such that 
0 � g(x) � c whenever x � N.

(f) Explain why g(x) approaches zero from above as 
x becomes unbounded negative.

(g) Show g(x) becomes unbounded positive as x ap-
proaches zero from the right. Hint: For any (large)
positive number N, find a (small) positive number c
such that g(x) � N whenever 0 � x � c.

(h) Explain why g(x) becomes unbounded positive as 
x approaches zero from the left.

59. Let y � f (x)�g(x) be a rational function.
(a) Show that if the degree of f is less than the degree of g,

then y � 0 is a horizontal asymptote of the graph.
(b) Show that if the degree of f equals the degree of g,

then the graph has a horizontal asymptote y � c where
c is the ratio of the leading coefficients of f and g,
respectively.

60. Find the range of

Hint: Let k be a number in the range. So

for some x in the domain of the function. That is, the
equation (x2 � 2x)�(x2 � 3x � 4) � k has a solution 
x � �1, or 4. Of course, the solution x depends on k.
Find the condition that guarantees this equation has an
appropriate real number solution. You may want to look
at the discriminant of a certain quadratic equation with
coefficients that depend on k.

61. Explain why graphs of nonconstant polynomials don’t have
vertical or horizontal asymptotes.

x2 � 2x

x2 � 3x � 4
� k

y �
x2 � 2x

x2 � 3x � 4

more like the curve y � x3. For additional perspec-
tive, first change the viewing rectangle so that y extends
from �20 to 20. (Retain the x-settings for the moment.)
Describe what you see. Next, adjust the viewing rectan-
gle so that x extends from �10 to 10 and y extends
from �100 to 100. Summarize your observations.

(c) In the text we said that a line is an asymptote for a
curve if the distance between the line and the curve
approaches zero as we move further and further out
along the curve. The work in part (b) illustrates that a
curve can behave like an asymptote for another curve.
In particular, part (b) illustrates that the distance
between the curve y � x3 and the graph of the given
function f approaches zero as we move further and fur-
ther out along the graph of f. That is, the curve y � x3

is an “asymptote” for the graph of the given function f.
Complete the following two tables for a numerical per-
spective on this. In the tables, d denotes the vertical
distance between the curve y � x3 and the graph of f:

x 5 10 50 100 500

d

x �5 �10 �50 �100 �500

d

(d) Parts (b) and (c) have provided both a graphical and a
numerical perspective. For an algebraic perspective
that ties together the previous results, verify the follow-
ing identity, and then use it to explain why the results
in parts (b) and (c) were inevitable:

54. (a) Show that f (x) � 1�x, x � 0, is an odd function.
(b) Show that f (x) � 1�x4, x � 0, is an even function.

55. (a) How large positive must x be in order to make 
f (x) � 1�x � 27�5000?

(b) How small negative must x be in order to make 
f (x) � 1�x � �27�5000?

56. (a) How small positive must x be in order to make 
f (x) � 1�x � 9500�39?

(b) How large negative must x be in order to make 
f (x) � 1�x � �9500�39?

C
57. (a) Show f (x) � 1�x, for x � 0, approaches zero through

positive values as x becomes unbounded positive.
Draw and label an appropriate picture. Hint: Start

x5 � 1

x2 � x3 �
1

x2

d � ` x5 � 1

x2 � x3 `
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PROJECT Finding Some Minimum Values Without Using Calculus

In this project you’ll solve some minimum problems that involve rational
functions. The theorem that we’ll rely on is given in the box that follows.
Methods for establishing this theorem are indicated in Question 3 at the end
of this project. (This theorem can be stated in a more general form for n
positive quantities, rather than two or three, but we won’t need that for the
applications in this project.)

Theorem On Minimum Sums

(a) If the product of two positive quantities s and t is constant, then their sum
s � t is a minimum if and only if s � t.

(b) If the product of three positive quantities s, t, and u is constant, then
their sum s � t � u is a minimum if and only if s � t � u.

First, just to get a feeling for what part (a) of the theorem is saying, com-
plete the following two tables, and in each case note which pair of numbers a
and b yields the smallest sum.

a b ab a � b a b ab a � b

1 36 1 12
2 18 2 6
3 12 3 4
4 9
6 6

1. Use part (a) of the theorem to solve the following problems.
(a) Find the smallest possible value for the sum of a positive number and

its reciprocal.
(b) The accompanying figure shows a line with slope m (m � 0) passing

through the point (2, 1). Find the smallest possible area for the triangle
that is formed. Hint: First use the point–slope formula to write the
equation of a line with slope m that passes through the point (2, 1).
Next, find the x- and y-intercepts of the line in terms of m. Then express
the area of the triangle in terms of m and find a way to apply part (a) of
the theorem.

(2, 1)

x

y

Slope m

213213
3 

3
73 

1
2
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2. Use part (b) of the theorem to solve the following problems.
(a) After using a graphing utility to estimate the minimum value of the

function f (x) � x2 � for x � 0, find the exact value for this minimum. 

Hint: Write x2 � as x2 � �

(b) Use a graphing utility to estimate the minimum value of the function
g(x) � (2x3 � 3)�x for x � 0. Then find the exact minimum. (Adapt the
hint in the previous exercise.)

(c) A box with a square base and no top is to be constructed. The volume is
to be 27 ft3. Find the dimensions of the box so that the surface area is a
minimum.

(d) In Exercise 38 in Section 4.7, a graphing utility is used to estimate the
minimum possible surface area for a circular cylinder with a volume
1000 cm3. Find the exact value for this minimum. Also confirm the fol-
lowing fact: For the values of r and h that yield the minimum surface
area, we have 2r � h.

3. (a) Proof for part (a) of the theorem: Verify that the following simple
identity holds for all real numbers a and b.

Then use this identity to explain why part (a) of the theorem is valid.
Suggestion: First discuss the reasoning within a group; then, on your
own, write a paragraph carefully explaining the reasoning in your own
words.

(b) Proof for part (b) of the theorem: Use the result in Exercise 44 of
Section 2.3 to explain why part (b) of the theorem is valid.

(a � b)2 � 4ab � (a � b)2

1

2x
.

1

2x

1
x

1
x

CHAPTER 4 Summary

CHAPTER 4 Summary of Principal Terms and Formulas

Page
Terms Reference Comments

1. Linear function 215 A linear function is a function of the form f (x) � Ax � B, where A and
B are constants. The graph of a linear function is a straight line. An
important idea that arose in several of the examples is that the slope of
a line can be interpreted as a rate of change. Two instances of this are
marginal cost and velocity.

2. Quadratic function 232 A quadratic function is a function of the form f (x) � ax2 � bx � c,
where a, b, and c are constants and a is not zero. The graph of a
quadratic function is a parabola. See the Property Summaries on
pages 236 and 238.
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Page
Terms Reference Comments

3. Fixed point Section 4.3 A fixed point of a function f is an input x in the domain of f such that 
online f (x) � x. For example, x � 1 is a fixed point for f (x) � because

f (1) � � 1.

4. Vertex formula 260 The x-coordinate of the vertex of the parabola y � ax2 � bx � c is given
by x � �b�2a.

5. Polynomial function 274 A polynomial function is a function of the form

where n is a nonnegative integer and a0, a1, . . . , and an are constants.
Three basic properties of polynomial functions are summarized in the
box on page 283. If an � 0, the degree of the polynomial is n, the largest
exponent on the input variable.

6. Rational function 296 A rational function is a function of the form y � f (x)�g(x), where f(x)
and g(x) are polynomials.

7. Asymptote 296 A line is said to be an asymptote for a curve if the distance between the
line and the curve approaches zero as we move out farther and farther
along the line.

f (x) � anx
n � an�1x

n�1 � p � a1x � a0

11
1x

it to a classmate or to your instructor. Be sure to let the
reader know where you are headed and why each of the
main steps is necessary.

(b) After working out part (i) of Problem 2 for yourself, write
out the solution to part (i) in complete sentences.

(c) Explain why the methods of Section 4.5 are not applica-
ble for solving part (ii) of Problem 2.

(d) The following result is known as the arithmetic-geometric
mean inequality:

For all nonnegative real numbers a and b we
have a � b 	 2 with equality holding if
and only if a � b.

By working with classmates or your instructor, find a way
to apply this result in part (ii) of Problem 2. Then write
out your solution in complete sentences. How does your
final answer here compare with that in Problem 1?

1ab,

1. At the start of Section 4.6 is a quotation by David Berlinski
describingpolynomial functions.Reread thequotation, and then
write a paragraph or two explaining its contents using the ideas
and terminology from Section 4.6. With the aid of a graphing
utility, use examples as appropriate to illustrate your points.

2. Consider the following two problems.

PROBLEM 1
The perimeter of a rectangle is 2 m.
(i)i Express the area as a function of the width w.
(ii) Find the maximum possible area.

PROBLEM 2
The area of a rectangle is 2 m2.
(i) Express the perimeter as a function of the width w.
(ii) Find the minimum possible perimeter.

(a) After working out Problem 1 for yourself, write out the
solution in complete sentences, as if you were explaining

Writing Mathematics

CHAPTER 4 Review Exercises

1. Find G(0) if G is a linear function such that G(1) � �2 and
G(�2) � �11.

2. (a) Let f(x) � 3x2 � 6x � 10. For which input x is the value
of the function a minimum? What is that minimum value?

(b) Let g(t) � 6t2 � t4. For which input t is the value of the
function a maximum?

3. Suppose the function p � � 100 (0 
 x 
 800) relates
the selling price p of an item to the quantity x that is sold.

� 
1
8 x
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Assume that p is in dollars. What is the maximum revenue
possible in this situation?

4. Graph the function y � �1(x � 1)3.
5. Graph the function y � (x � 4)(x � 1)(x � 1).
6. Graph the function f(x) � x2 � 4x � 5. Specify the vertex,

the x- and y-intercepts, and the axis of symmetry.
7. A factory owner buys a new machine for $1000. After five

years, the machine has a salvage value of $100. Assuming
linear depreciation, find a formula for the value V of the
machine after t yr, where 0 
 t 
 5.

8. Graph the function y � 2(x � 3)4. Does the graph cross the
y-axis? If so, where?

9. Graph the function y � (3x � 5)�(x � 2). Specify all inter-
cepts and asymptotes.

10. What is the largest area possible for a right triangle in which
the sum of the lengths of the two shorter sides is 12 cm?

11. Graph the function y � x�[(x � 2)(x � 4)].
12. Let P(x, y) be a point [other than (�1, �1)] on the graph of

f (x) � x3. Express the slope of the line passing through the
points P and (�1, �1) as a function of x. Simplify your
answer as much as possible.

13. A rectangle is inscribed in a circle. The circumference of the
circle is 12 cm. Express the perimeter of the rectangle as a
function of its width w.

14. Give a reason why each of the following two graphs cannot
represent a polynomial function with highest-degree
term 

In Exercises 15–18, find equations for the linear functions satis-
fying the given conditions. Write each answer in the form
f (x) � mx � b.

15. f (4) � �1 and the graph of f is parallel to the line
3x � 8y � 16.

16. The graph passes through (6, 1) and the x-intercept is twice
the y-intercept.

17. f (�3) � 5, and the graph of the inverse function passes
through (2, 1).

18. The graph of f passes through the vertices of the two para-
bolas y � x2 � 4x � 1 and y � � 9x � 81

2 .1
2 x2

x

(a)

y

x

y

(b)

� 
1
3 x3.

In Exercises 19–22, graph the quadratic functions. In each
case, specify the vertex and the x- and y-intercepts.

19. y � x2 � 2x � 3 20. f (x) � x2 � 2x � 15
21. f (x) � 2x2 � 2x � 1 22. y � �3x2 � 12x
23. Find the distance between the vertices of the two parabolas

y � x2 � 4x � 6 and y � �x2 � 4x � 5.
24. Find the value of a, given that the maximum value of the

function f(x) � ax2 � 3x � 4 is 5.
25. Suppose that an object is thrown vertically upward (from

ground level) with an initial velocity of v0 ft/sec. It can be
shown that the height h (in feet) after t sec is given by the
formula h � v0t � 16t2.
(a) At what time does the object reach its maximum height?

What is that maximum height?
(b) At what time does the object strike the ground?

26. Let f(x) � 4x2 � x � 1 and g(x) � (x � 3)�2.
(a) For which input will the value of the function f � g be a

minimum?
(b) For which input will the value of g � f be a minimum?

27. Find all values of b such that the minimum distance from
the point (2, 0) to the line y � � b is 5. Hint: Use the
formula from Exercise 94 on page 79.

28. What number exceeds one-half its square by the greatest
amount?

29. Suppose that x � y � Find the minimum value of the

quantity x2 � y2.
30. For which numbers t will the value of 9t2 � t4 be as large as

possible?
31. Find the maximum area possible for a right triangle with a

hypotenuse of 15 cm. Hint: Let x denote the length of one
leg. Show that the area is A � �2. Now work
with A2.

32. For which point (x, y) on the curve y � 1 � x2 is the sum
x � y a maximum?

33. Let f (x) � x2 � (a2 � 2a)x � 2a3, where 0 � a � 2. For
which value of a will the distance between the x-intercepts
of the graph of y � f(x) be a maximum?

34. Suppose that the function p � 160 relates the selling
price p of an item to the quantity x that is sold. Assume that
p is in dollars. For which value of x will the revenue R be a
maximum? What is the selling price p in this case?

35. A piece of wire 16 cm long is cut into two pieces. Let x
denote the length of the first piece and 16 � x the length of
the second. The first piece is formed into a rectangle in
which the length is twice the width. The second piece of
wire is also formed into a rectangle, but with the length three
times the width. For which value of x is the total area of the
two rectangles a minimum?

36. Find all real numbers that are fixed points of the given
functions.
(a) f (x) � x2 � 8 (c) y � 4x � x3

(b) g(x) � x2 � 8 (d) y � 8x2 � x � 15

� 
1
5 x

x2225 � x2

12.

4
3 x



55. Let A denote the area of the right triangle in the first quad-
rant that is formed by the y-axis and the lines y � mx and
y � m. (Assume m � 0.) Express the area of the triangle as
a function of m.

56. (a) The figure shows the parabola y � x2 � 6x and a circle
that passes through the vertex and x-intercepts of the
parabola. Find the center and radius of the circle.

(b) Suppose that a circle passes through the vertex and 
x-intercepts of a parabola y � x2 � 2bx, where b � 0.
Show that the circumference of the circle as a function
of b is c � pb2 � p.

57. In the accompanying figure, the radius of the circle is
OC � 1. Express the area of ¢ABC as a function of x.

58. (a) Factor the expression x3 � 3x2 � 4.
Hint: Subtract and add 1, then factor by grouping.

(b) Use the factorization from part (a) to graph the function
y � x3 � 3x2 � 4. Check your result using a graphing
utility.

C

x

O

BA

x

y

y

O
x

A B

y=≈

37. In the following figure, PQRS is a square with sides parallel
to the coordinate axes. The coordinates of points A and B are
A(a, 0) and B(b, 0). Show that f(a) � b and f (b) � a.

38. Let f(x) � x2 � 2. Find two numbers a and b (a � b) such that
f(a) � b and f(b) � a. Hint: To simplify the algebra,
consider f(b) � f(a) � a � b.

In Exercises 39–50, graph each function and specify the x- and
y-intercepts and asymptotes, if any.

39. y � (x � 4)(x � 2) 40. y � (x � 4)(x � 2)2

41. y � �x2(x � 1) 42. y � �x3(x � 1)

43. y � x(x � 2)(x � 2) 44.

45. 46.

47. 48.

49. 50.

51. The range of the function y � x2 � 2x � k is the interval
[5, q). Find the value of k.

52. Find a value for b such that the range of the function
f (x) � x2 � bx � b is the interval [�15, q).

53. Find the range of the function y �

Hint: Solve the equation for x in terms of y using the qua-
dratic formula. If you’re careful with the algebra, you will
find that the expression under the resulting radical sign is
y2 � 8y � 4. The range of the given function can then be
found by solving the inequality y2 � 8y � 4 	 0.

54. In the following figure, triangle OAB is equilateral and is
parallel to the x-axis. Find the length of a side and the area
of the triangle OAB.

AB

(x � 1)(x � 3)

x � 4
.

y �
x(x � 2)

(x � 4)(x � 4)
y �

x2 � 2x � 1

x2 � 4x � 4

y �
x

(x � 2)(x � 4)
y �

x � 2

x � 3

y �
x � 1

x � 2
y �

�1

(x � 1)2

y �
1 � 2x

x

y

x
B A

R S

Q P

y=ƒ y=x
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CHAPTER 4 Test

1. A linear function L satisfies the conditions L(�2) � �4 and
L(5) � 1. Find L(0).

2. (a) Let F (x) � 4x � 2x2. What is the maximum value
for this function? On which interval is this function
increasing?

(b) Let G(t) � 9t4 � 6t2 � 2. For which value of t is this
function a minimum?

3. Let f(x) � (x � 3)(x � 4)2.
(a) Determine the intercepts and the excluded regions for

the graph of f.
(b) Determine the behavior of f when x is very close to �4.
(c) Sketch the graph of f.

4. Graph each function:
(a) y � �1�(x � 3)3 (b) y � �1�(x � 3)2

5. Graph the function y � �x2 � 7x � 6. Specify the inter-
cepts, the axis of symmetry, and the coordinates of the turn-
ing point.

6. Suppose that the function p � � 80 (0 
 x 
 400) re-
lates the selling price of an item to the quantity x that is sold.
Assume that p is in dollars. What is the maximum revenue
possible in this situation? Which price p generates this max-
imum revenue?

7. The price of a new machine is $14,000. After ten years, the
machine has a salvage value of $750. Assuming linear de-
preciation, find a formula for the value of the machine after
t yr, where 0 
 t 
 10.

8. Graph the function y � � (3 � x)3. Specify the intercepts.
Hint: First graph y � � (x � 3)3.

9. Graph the function y � (2x � 3)�(x � 1). Specify the inter-
cepts and asymptotes.

10. (a) Suppose that P(x, y) is a point on the line y � 3x � 1 and
Q is the point (�1, 3). Express the length PQ as a func-
tion of x.

(b) For which value of x is the length PQ a minimum?
11. Let f(x) � x(x � 2)�(x2 � 9).

(a) Find the vertical and the horizontal asymptotes.
(b) Use a sketch to show the behavior of f near the 

x-intercepts.
(c) Use a sketch to show the behavior of f near the 

asymptotes.
(d) Sketch the graph of f.

12. A rectangle is inscribed in a semicircle of diameter 8 cm.
(See the accompanying figure.) Express the area of the rec-
tangle as a function of the width w of the rectangle.

8 cm

1
2 

1
2 

� 
1
6 x

13. Explain why each of the following graphs cannot represent
a polynomial function with highest-degree term �x3.

14. The following table shows U.S. expenditures for national
defense for the years 1992–1995.

Federal Budget Outlays for 
National Defense, 1992–1995

Year t
(t � 0 is 1990) 2 3 4 5

Expenditures y
(billions of dollars) 298.4 291.1 281.6 272.1

Source: U.S. Office of Management and Budget

(a) Draw (by hand) a scatter plot of the data. (Show the por-
tion of the y-axis from 270 to 300, in increments of 5.)
You’ll see that the data points appear to fall roughly on
a straight line. Sketch in a line that seems to fit the data.
Estimate the slope of the line. (Include the units for the
slope.)

(b) Use a graphing utility to determine the equation of
the line that best fits the data. Is your slope estimate in
part (a) close to the slope obtained here?

(c) Use the least-squares equation obtained in part (b) to
make estimates for what the expenditures might have
been for 1996 and for 1999. Then compare the percent-
age errors in these two estimates, given that the actual
expenditures (in billions of dollars) for 1996 and 1999
were 265.8 and 276.7, respectively.

Problems 15 and 16, which follow, are based on the work in
Optional Section 4.3.

15. Find the real numbers (if any) that are fixed points of the
given functions.
(a) f (x) � 2x(1 � x)
(b) g(x) � (4x � 1)�(3x � 6)

y

x

(a)

y

x

(b)
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(a) Use the figure and your calculator to complete the fol-
lowing table. For your answers from the graph, try to
estimate to the nearest 0.02 (or 0.01). For the calculator
answers, round to three decimal places.

x1 x2 x3 x4 x5 x6

From Graph

From Calculator

(b) Compute the two fixed points of the function
f (x) � 0.6 � x2. Give two forms for each answer: an
exact expression involving a radical and a calculator
approximation rounded to four decimal places. Which
fixed point do the iterates in part (a) approach?

(c) Use your calculator to compute the first six iterates of
x0 � 1. Do the iterates seem to approach either of the
fixed points determined in part (b)?

16. The following figure shows the first six steps in the iteration
process for the function f (x) � 0.6 � x2 with initial input
x0 � 0.2.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

y=x

f(x)=0.6-x2
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5.1 Exponential Functions

5.2 The Exponential Function
y � ex

5.3 Logarithmic Functions

5.4 Properties of Logarithms

5.5 Equations and Inequalities
with Logs and Exponents

5.6 Compound Interest

5.7 Exponential Growth and
Decay

[I]n 1958 . . . C. D. Keeling of The Scripps Institution of
Oceanography . . . began a series of painstaking measure-
ments of CO2 concentration on a remote site at what is now
the Mauna Loa Observatory in Hawaii. His observations,
continued to the present, show an exponential growth of
atmospheric carbon dioxide. . . . Keeling’s observations have been duplicated at other
stations in various parts of the world over shorter periods of time. In all sets of observa-
tions, the exponential increase is clear. . . . —Gordon MacDonald in “Scientific Basis for the

Greenhouse Effect,” from The Challenge of Global Warming, Dean Edwin Abrahamson, ed.

(Washington, D.C.: Island Press, 1989)

In this chapter we study two major types of functions with widespread applications:
the exponential functions and their inverses, the logarithmic functions. Exponential
functions are functions of the form y � abcx where a, b, and c are constants (with
b positive and not equal to 1). As an introductory example, suppose that when you were
born your parents opened a savings account in your name. Assume that the initial
deposit was $100, with an annual interest rate of 8%, compounded twice a year. (If you
are unfamiliar with compound interest, the details are in Section 5.6; but you won’t
need that to understand the point of the present discussion.) Under these conditions
the dollar amount y in the account after x years is given by the exponential function
y � 100 � 1.042x. In Table 1 we show the amount in the account at five-year intervals
for the first 30 years. Figure 1(a) shows a graph of the function y � 100 � 1.042x and
the data points from Table 1. For comparison, Figure 1(b) shows the same scatter plot
along with a quadratic function fitted to the data (using the quadratic regression
option on a graphing utility). Over this relatively short interval of time, it appears that
there is not much of a difference between the two models. For longer time intervals,
however, the situation changes drastically.

Table 2 shows additional values for the exponential function y � 100 � 1.042x at
ten-year intervals. In Figure 2 we’ve plotted these data points along with the original
data set, and we show the exponential and quadratic models. As you can see, over
the longer time interval, the quadratic function is no longer a good model for the
amount of money in your account; the quadratic grows too slowly to keep pace with
the exponential. Indeed, this is one of the key features of exponential growth:
Eventually, it will outpace not only a quadratic, but any polynomial, no matter how
high the degree.

CHAPTER

5 Exponential and Logarithmic
Functions

DAJ/amana images/Jupiter Images



Some of the applications you will see in this chapter for logarithmic or exponen-
tial functions involve:

• Modeling the temperature of a cup of coffee (Project in Section 5.2)
• Using the Richter scale to quantify the size of an earthquake (Example 8 in

Section 5.3)
• Computing the annual yield (� effective rate) for money earning compound 

interest (Example 4 in Section 5.6)
• Analyzing world population growth (Examples 2–4 in Section 5.7)
• Describing the increasing levels of carbon dioxide in the atmosphere (Example 5

and Exercises 15 and 16 in Section 5.7)
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(a) Exponential function

y=100 � 1.04@®

(b) Quadratic function fitted to the data in Table 1.

y = 0.894x@ +1.395x +108.09

0

400

800

1,200

Figure 1
Initially, the exponential and
quadratic models appear quite
similar (but see Figure 2).

TABLE 1 $100 Invested at 8% per Year, Compounded Semiannually

x (years) 0 5 10 15 20 25 30

y (dollars) 100 148.02 219.11 324.34 480.10 710.67 1051.96

TABLE 2 Amount in the Account After 40, 50, and 60 Years

x (years) 40 50 60

y (dollars) 2304.98 5050.50 11066.26

0 20 40 60

4000

8000

12,000

0 x (years)

y (dollars)

Exponential model

Quadratic model
Figure 2
The exponential function eventually
grows much faster than the
quadratic.



EXPONENTIAL FUNCTIONS
We begin with an example. Suppose that your mathematics instructor, in an effort to
improve classroom attendance, offers to pay you each day for attending class!
Suppose you are to receive 2¢ on the first day you attend class, 4¢ the second day,
8¢ the third day, and so on, as shown in Table 1. How much money will you receive
for attending class on the 30th day?

As you can see by looking at Table 1, the amount y earned on day x is given by
the rule, or exponential function,

Thus on the 30th day (when x � 30) you will receive

If you use a calculator, you will find this amount to be well over 10 million dollars!
The point here is simply this: Although we begin with a small amount, y � 2¢, re-
peated doubling quickly leads to a very large amount. In other words, the exponen-
tial function grows very rapidly.

Before leaving this example, we mention a simple method for quickly estimating
numbers such as 230 (or any power of two) in terms of the more familiar powers of
ten. Begin by observing that

(a useful coincidence, worth remembering)

Now just cube both sides to obtain

or

Thus 230 is about one billion. To convert this number of cents to dollars, we divide by
100 or 102 to obtain

which is 10 million dollars, as mentioned before.

109

102 � 107
 dollars

230 � 109(210)3 � (103)3

210 � 103

y � 230 cents

y � 2x
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5.1

SOLUTION Take the basic approximation 210 � 103 and raise both sides to the fourth power.
This yields

or

as required240 � 1012

(210)4 � (103)4

TABLE 1

x y
(day (amount earned

number) that day)

1 2¢ (� 21)
2 4¢ (� 22)
3 8¢ (� 23)
4 16¢ (� 24)
5 32¢ (� 25)

x 2x

##
##
##

EXAMPLE 1 Estimating a Power of 2

Estimate 240 in terms of a power of 10.

EXAMPLE 2 Estimating an Exponent

Estimate the power to which 10 must be raised to yield 2.

SOLUTION We begin with our approximation

 103 � 210



Raising both sides to the power 1�10 yields

and, consequently,

Thus the power to which 10 must be raised to yield 2 is approximately 3�10.

In online Appendix B.3 we define the expression bx, where x is a rational number.
We also state that if x is irrational, then bx can be defined so that the usual properties
of exponents continue to hold. Although a rigorous definition of irrational exponents
requires concepts from calculus, we can nevertheless convey the basic idea by means
of an example. (We need to do this before we give the general definition for expo-
nential functions.)

How shall we assign a meaning to for example? The basic idea is to
evaluate the expression 2x successively by using rational numbers x that are closer
and closer to Table 2 displays the results of some calculations along these 
lines.

12.

212,

103�10 � 2

 (103)1�10 � (210)1�10
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The data in the table suggest that as x approaches the corresponding values
of 2x approach a unique real number, call it t, with a decimal expansion that begins
as 2.665. Furthermore, by continuing this process we can obtain (in theory, at least)
as many places in the decimal expansion of t as we wish. The value of the expression

is then defined to be this number t. The following results (stated here without
proof) summarize this discussion and also pave the way for the definition we will
give for exponential functions.

212

12,

TABLE 2 Values of 2x for Rational Numbers x
Approaching (� 1.41421356 . . .)

x 1.4 1.41 1.414 1.4142 1.41421 1.414213

2x 2.6 . . . 2.65 . . . 2.664 . . . 2.6651 . . . 2.66514 . . . 2.665143 . . .

12

PROPERTY SUMMARY Real Number Exponents

Let b denote an arbitrary positive real number. Then:

1. For each real number x, the quantity bx is a unique real number.
2. When x is irrational, we can approximate bx as closely as we wish by

evaluating br, where r is a rational number sufficiently close to the number x.
3. The properties of rational exponents continue to hold for irrational exponents.
4. If bx � by and b � 1, then x � y.
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EXAMPLE

SOLUTION

EXAMPLE

SOLUTION

3 Simplifying Expressions Containing Irrational Exponents

Use the properties of exponents to simplify each expression:

(a) (b) .1312 2 21312 212;

(a) � 32 � 9

(b) (Why?)

4 An Equation with the Unknown in the Exponent

Solve the equation 4x � 8.

� 912

 1312 2 2 � 132 212

 1312 212 � 312�12

First let’s estimate x, just to get a feeling for what kind of answer to expect. Since
41 � 4, which is less than 8, and 42 � 16, which is more than 8, we know that our
final answer should be a number between 1 and 2. To obtain this answer, we take
advantage of the fact that both 4 and 8 are powers of 2. Using this fact, we can write
the given equation as

using Property 4 on page 326

Note that the answer x � 3�2 is indeed between 1 and 2, as we estimated.

For the remainder of this section, b denotes an arbitrary positive constant other
than 1. In the box that follows, we define the exponential function with base b.

 x �
3

2

 2x � 3
 22x � 23

 (22)x � 23

Definition The Exponential Function with Base b (b > 0, b � 1)

Let b denote an arbitrary positive
constant other than 1. The exponen-
tial function with base b is defined  
by the equation

y � bx

Note: In many applications, func-
tions of the form y � abkx, where 
a, b, and k are constants, with ,
are also called exponential functions.

b � 1

EXAMPLES
1. The equations y � 2x and y � 3x

define the exponential functions
with bases 2 and 3, respectively.

2. The equation y � (1�2)x defines the
exponential functions with base 1�2.

3. The equations y � x2 and y � x3 do
not define exponential functions.

To help with our analysis of exponential functions, let’s set up a table and use it
to graph the exponential function y � 2x. This is done in Figure 1. In drawing a
smooth and unbroken curve, we are actually relying on the results in the Property



Summary box on page 326. The key features of the exponential function y � 2x and
its graph are:

1. The domain of y � 2x is the set of all real numbers. The range is the set of all
positive real numbers.

2. The y-intercept of the graph is 1. The graph has no x-intercept.
3. For x � 0, the function increases or grows very rapidly. For x � 0, the graph

rapidly approaches the x-axis; the x-axis is a horizontal asymptote for the graph.
In fact 2x approaches zero from above as x becomes unbounded negative.
(Recall from Section 4.7 that a line is an asymptote for a curve if the distance
between the curve and the line approaches zero as we move farther and farther
out along the line.)

4. 2x becomes unbounded positive as x becomes unbounded positive.
5. The function is one-to-one by Property 4 of real-number exponents.

You should memorize the basic shape and features of the graph of y � 2x so that
you can sketch it as needed without first setting up a table. The next example shows
why this is useful.
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Figure 1

EXAMPLE 5 Sketching Graphs Related to That of y � 2x

Graph each of the following functions. In each case specify the domain, the range,
the intercept(s), and the asymptote:

(a) y � �2x; (b) y � 2�x; (c) y � (1�2)x; (d) y � 2�x � 2.

SOLUTION (a) Recall that �2x means �(2x), not (�2)x. The graph of y � �2x is obtained by
reflecting the graph of y � 2x in the x-axis. See Figure 2(a).

(b) Similarly, the graph of y � 2�x is obtained from the graph of y � 2x by reflection
in the y-axis. See Figure 2(b).

(c) Next, regarding y � (1�2)x, observe that

a 1

2
b x

�
1x

2x �
1

2x � 2�x



In other words, y � is really the same function as y � 2�x, which we already
graphed in Figure 2(b).

(d) Finally, to graph y � 2�x � 2, take the graph of y � 2�x in Figure 2(b) and move
it down 2 units, as shown in Figure 2(c). Note that the asymptote and y-intercept
will also move down two units. To find the x-intercept, we set y � 0 in the given
equation to obtain

since y � 2x is one-to-one

Thus the x-intercept is �1.

In the next example we apply our knowledge about the graph of y � 2x to solve
an equation. In particular, we use the fact that the graph of y � 2x always lies above
the x-axis; for no value of x is 2x ever zero.

 x � �1
 �x � 1
 2�x � 21

 2�x � 2 � 0

1  12 2 x

5.1 Exponential Functions 329

(c)

Domain: (_`, `)
Range: (_2, `)

y-intercept:  _1
x-intercept: _1
Asymptote: y=_2

y=2–®-2

y

x

y=2–®

y=2–®-2

y=_2

(b)

Domain: (_`, `)
Range: (0, `)

y-intercept:  1
x-intercept:    none
Asymptote: x-axis

y=2–® {also y={ 1
2}® }

y

x

y=2®

y=2–®=” ’®1
2

Domain: (_`, `)
Range: (_`, 0)

y-intercept:  _1
x-intercept:    none
Asymptote: x-axis

y=_2®

(a)

y

x

(0, 1)
(0, 1) (0, 1)

(-1, 0)
(0, _1)

y=2®

y=_2®
(0, -1)

Figure 2

EXAMPLE 6 Using the Fact That 2x Is Always Positive to Solve an Equation

Consider the equation

(1)

The graph in Figure 3 indicates that equation (1) has a positive root between 0 and 2.
However, the viewing rectangle does not tell us whether equation (1) has other roots.
(For instance, perhaps there is a negative root somewhere to the left of �8). By

x32x � 3(2x) � 0



solving the equation, find out whether there are any roots other than the one between
0 and 2. For each root, give both an exact expression and a calculator approximation
rounded to two decimal places.
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SOLUTION (a) On the left-hand side of equation (1) the common term 2x can be factored out.
This yields

(2)

Now applying the zero-product property in equation (2), we have

The equation 2x � 0 has no solutions because 2x is positive for all values of x.
From the equation x3 � 3 � 0 we conclude that x3 � 3, and therefore x �
With a calculator we find that � 1.44. This is the root between 0 and 2 in
Figure 3. The algebra that we’ve carried out indicates that this is the only root of
the given equation.

Now what about exponential functions with bases other than 2? As Figure 4 in-
dicates, the graphs are similar to y � 2x. The graph of y � 4x rises more rapidly than
y � 2x when x is positive. For negative x-values, the graph of y � 4x is below that of
y � 2x. You can see why this happens by taking x � �1, for example, and compar-
ing the values of 4x and 2x. If x � �1, then

Therefore 4x � 2x when x � �1. In general for so 
or for Reflecting in the y-axis by replacing x by its negative, 
we obtain when Notice also in Figure 4 all three graphs have
the same y-intercept of 1. This follows from the fact that b0 � 1 for any positive
number b.

The exponential functions in Figure 4 all have bases larger than 1. To see exam-
ples in which the bases are in the interval 0 � b � 1, we need only reflect the graphs
in Figure 4 in the y-axis. For instance, since 

the graph of y � (1�4)x is that of y � 4x reflected in the y-axis. [See Figure 2(b) for a
similar example.]

a 1

4
b x

�
1x

4x �
1

4x � 4�x

x � 0.0 � 4x � 2x
x � 0.0 � 4�x � 2�x

0 � 1�4x � 1�2xx � 0,0 � 2x � 4x

2x � 2�1 �
1

2
  but  4x � 4�1 �

1

4

1
3 3

1
3 3.

2x � 0   or   x3 � 3 � 0

2x(x3 � 3) � 0

Graphical Perspective

_8 0 2
_5

0

5

10

Figure 3
y � x32x � 3(2x)
[�8, 2, 2] by [�5, 10, 5]

Graphical Perspective

_3 0 3
0

1

2

3

4

Figure 4
y � 1.5x y � 2x y � 4x

[�3, 3, 1] by [0, 4, 1]
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PROPERTY SUMMARY The Exponential Function y � bx, with Base b, (b > 0, b � 1)

For approaches zero from above as x becomes unbounded negative, and becomes unbounded positive as x
becomes unbounded positive. For becomes unbounded positive as x becomes unbounded negative and
approaches zero from above as x becomes unbounded positive. 

0 � b � 1, bx
b � 1, bx

y

x

y=b®

(0, 1)

0<b<1

x

y

(0, 1)

y=b®

b>1

Domain:   (_`, `)
Range:   (0, `)
y-intercept:   1
x-intercept:   none
Asymptote: y = 0, the x-axis 

EXAMPLE 7 A Horizontal Shift Equivalent to a Vertical Scaling

Graph . Then determine the domain, range, intercepts, symmetry, asymp-
totes, and other end behavior, and check that your graph of the function includes
these features.

y � 2x�3

SOLUTION The graph of is that of y � 2x shifted to the right 3 units. See Figure 5.
We’ve labeled the point (0, 1) on the graph of y � 2x and its corresponding shifted
point (3, 1) on the graph of . Because of the scales on the x- and y-axes, it
may be difficult to visualize each point on the graph of shifted 3 units to the
right, especially for points very far to the left of the y-axis. An alternative method
may make it easier to visualize the graph. First note ; so the
graph of is also that of compressed vertically by a factor of 1�8.y � 2xy � 2x�3

2x�3 � 2x2�3 � (1�8)2x

y � 2x
y � 2x�3

y � 2x�3

2

_1

3

1

1 2 3 4 5 6_2 _1_3_4_5
x

y

4

5

6

7

8
y=2x y=2x_3

(3, 8)

(0, 1) (3, 1)(0, 1/8)

Figure 5



Now notice that the points (0, 1) and (3, 8) on the graph of are rescaled to ob-
tain the points (0, 1�8) and (3, 1), respectively, on the graph of . Each point
on the graph of is 1�8 as high as the point with the same x-coordinate on
the graph of 

Next we take care of the details.

Domain: All real numbers, since for any real number x, is a real number, and
by Property 1 for real-number exponents, is a unique real number 

Range: All positive real numbers, the same as 

Intercepts: implies so the y-intercept is 1�8. There is
no x-intercept since implies which has no solution since is
always positive.

Symmetry: None of the basic symmetries 

Horizontal Asymptotes: 2x approaches zero from above as x becomes unbounded
negative. This limiting behavior is unchanged by either shifting the graph to the right
or by making a vertical scale change. (Think about this.) So y � 0 is a horizontal
asymptote for the graph.

Vertical Asymptotes: None

Other End Behavior: 2x becomes unbounded positive as x becomes unbounded positive.
Hence so does 2x�3, since x � 3 becomes unbounded positive as x becomes
unbounded positive.

2x�32x�3 � 0,y � 0
y � 20�3 � 23 � 1�8;x � 0

y � 2x

2x�3
x � 3

y � 2x.
y � 2x�3

y � 2x�3
y � 2x
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EXAMPLE 8 Reflecting and Translating the Graph of an Exponential Function

Graph the function y � �3�x � 3. Then determine the domain, range, intercepts,
symmetry, asymptotes, and other end behavior. Include these features in your graph.

SOLUTION The required graph is obtained by reflecting and translating the graph of y � 3x, as
shown in Figure 6.

Begin with y=3®.

x

(0, 1)

y=3®

y

Reflect y=3® in
the y-axis to obtain
y=3–®.

y

x
(0, 1)

y=3–®

Reflect y=3–® in
the x-axis to obtain
y=_3–®.

y y

x x

(0, _1)

y=_3–®

Translate y=_3–® up three units
to obtain y=_3–®+3.

y=3

(_1, 0)

(0, 2)

y=_3–®+3

Figure 6



Domain: All real numbers

Range: All real numbers less than 3

Intercepts: x � 0 implies y � �3�0 � 3 � �1 � 3 � 2; so the y-intercept is 2. 
y � 0 implies 0 � �3�x � 3, which implies 3�x � 3 � 31; hence �x � 1 and 
x � �1. So the x-intercept is �1.

Symmetry: None of the basic symmetries

Asymptote: 3x approaches zero from above as x becomes unbounded negative. By
reflection in the y-axis, y � 3�x approaches zero from above as x becomes unbounded
positive. Then, by reflection in the x-axis, approaches zero from below as x
becomes unbounded positive. Finally, approaches 3 from below as
x becomes unbounded positive. So is a horizontal asymptote.

Other End Behavior: becomes unbounded positive as x becomes unbounded
positive. Hence becomes unbounded positive as x becomes unbounded negative,
and becomes unbounded negative as x becomes unbounded negative. Finally,
shifting up 3 units doesn’t change this end behavior; so becomes
unbounded negative as x becomes unbounded negative.

y � �3�x � 3
�3�x

3�x
3x

y � 3
y � �3� x � 3

y � �3�x
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EXERCISE SET 5.1

A
In Exercises 1 and 2, estimate each quantity in terms of powers
of ten, as in Example 1.

1. (a) 230 2. (a) 290

(b) 250 (b) 450

In Exercises 3–10, use the properties of exponents to simplify
each expression. In Exercises 9 and 10, write the answers in the
form bn, where b and n are real numbers.

3. 4.
5. 41� 41� 6. 32� 32�

7. 8.

9. 10. 4

In Exercises 11 and 12, solve each equation, as in Example 4.

11. (a) 3x � 27 12. (a) 2x � 32
(b) 9t � 27 (b) 2t � 1�4
(c) 31�2y � (c) 23y�1 �

(d) 3z � 9 (d) 8z�1 � 32

In Exercises 13–16, specify the domain of the function.

13. y � 2x 14. y � 1�2x

15. y � 1�(2x�1) 16. y � 1�(2x � 1)

In Exercises 17–24, graph the pair of functions on the same set
of axes.

17. y � 2x; y � 2�x 18. y � 3x; y � 3�x

19. y � 3x; y � �3x 20. y � 4x; y � �4x

1213
1213

4113 2p311512 2 2
10p�2

10p�2

24�p

21�p

2151215121212121
11212 2121513 213

21. y � 2x; y � 3x 22. y � (1�3)x; y � 3x

23. y � (1�2)x; y � (1�3)x 24. y � (1�2)�x; y � (1�3)�x

For Exercises 25–32, graph the function and specify the
domain, range, intercept(s), and asymptote.

25. y � �2x � 1 26. y � �3x � 3
27. y � 3�x � 1 28. y � 3�x � 3
29. y � 2x�1 30. y � 2x�1 � 1
31. y � 32x�2 � 1 32. y � 1 � 32x�2

For Exercises 33–38:

(a) Use paper and pencil to determine the intercepts and as-
ymptotes for the graph of each function.

(b) Use a graphing utility to graph each function. Your results
in part (a) will be helpful in choosing an appropriate viewing
rectangle that shows the essential features of the graph.

33. y � �3x�2 34. y � �3x�2 � 1
35. y � 4�x � 4 36. y � 4 � (1�4)x

37. y � 10 x�1 38. y � �10 x�1 � 0.5

For Exercises 39–42, solve the equation, as in Example 6.

39. 3x(10x) � 10x � 0 40. 4x2(2x) � 9(2x) � 0
41. 3(3x) � 5x(3x) � 2x2(3x) � 0

42. � 2x(10 x)

B
Exercises 43 and 44 provide some simple examples of an im-
portant idea that was presented in the chapter introduction: 
Exponential growth eventually outpaces polynomial growth 

(x � 4)10x

x � 3



49. Hint: � 21�2 50.
51. 23�5 52. Hint: 81�5 � 2?

53. 54.
55. 53�10 56.

In Exercises 57–60, refer to the following graph of the exponen-
tial function y � 10x. Use the graph to estimate (to the nearest
tenth) the solution of each equation. (After we’ve studied loga-
rithmic functions later in the chapter, we will be able to obtain
exact solutions.)

57. 10x � 2 58. 10x � 4
59. 10x � 5 60. 10x � 8
61. If you add two quadratic functions, the result is again a

quadratic function (assuming that the x2-terms don’t add to
zero). For example, if f (x) � x2 � 2x and g(x) � 2x2 � 1,
then the sum is ( f � g)(x) � 3x2 � 2x � 1, another quadratic.
But this is not the case for exponential functions. To explore
a visual example, consider the function y � 2x � 2�x. This is
the sum of the two exponentials y � 2x and y � (1�2)x.
(a) Graph the function y � 2x � 2�x in the standard view-

ing rectangle. As you can see, the resulting graph is 
U-shaped.

(b) For comparison, add the graph of y � x2 to your pic-
ture. Note that (at this scale) the graphs are very similar
for � 2.

(c) Actually, the graph of y � 2x � 2�x rises much more
steeply than does y � x2. To demonstrate this, change
the viewing rectangle so that x extends from �100 to
100 and y extends from 0 to 100,000.

62. Follow the general procedure in Exercise 61, but use the
two functions y � 2x � 2�x and y � x3.

63. As background for this exercise, reread Example 2 in
the text. (The example shows how to estimate the value of
x for which 10x � 2.)
(a) In the same picture, graph the two functions y � 10x

and y � 2. Use a viewing rectangle in which x runs
from 0 to 1 and y runs from 0 to 10.

(b) Explain how your picture in part (a) supports the
answer 3�10 that was obtained in Example 2.

0 x 0

0.5

2

x

y

1

3
4
5
6
7
8
9

10

1.0

y=10®

1
4 5
1
3 313
1
5 8
1
5 21212(no matter how high the degree of the polynomial). In each case,

carry out the calculations needed to verify the given statement.

43. Let f(x) � 1.125x2 � 0.75x � 1 and g(x) � 2x.
(a) On the interval [0, 2], both functions have the same

average rate of change. This is also true for the
interval [2, 4].

(b) On the interval [4, 6], however, ¢g�¢x is more than
twice ¢f�¢x. And on the interval [6, 8], ¢g�¢x is more
than six times ¢f�¢x.

(c) On the interval [10, 12], the average rate of change
of the exponential function is 64 times that of the
quadratic function.

44. Let g(x) � x4 and h(x) � 3x.
(a) On the interval [0, 5], the average rate of change of g is

more than two and one-half times the average rate of
change of h. On the interval [5, 10], however, the aver-
age rate of change of h is more than six times that for g.

(b) On the interval [10, 15] the average rate of change of
the exponential function is more than 350 times that of
the polynomial function.

45. Let f(x) � 2x. Show that

46. Let f(t) � 1 � at. Show that � � 1.

47. Let f(x) � 2x and let g denote the function that is the
inverse of f.
(a) On the same set of axes, sketch the graphs of f, g, and

the line y � x.
(b) Using the graph you obtained in part (a), specify the do-

main, range, intercept, and asymptote for the function g.
48. Let S(x) � (2x � 2�x)�2 and C(x) � (2x � 2�x)�2.

Compute [C(x)]2 � [S(x)]2.

For Exercises 49–56, refer to the following figure, which shows
portions of the graphs of y � 2x, y � 3x, and y � 5x. In each
case: (a) use the figure to estimate the indicated quantity; and
(b) use a calculator to compute the indicated quantity, rounding
the result to two decimal places.

y=2.0

y=1.5

y=1.0

x=0 x=0.5 x=1.0

y=2®y=3®y=5®

1

f(�t)

1

f(t)

f (x � h) � f (x)

h
� 2x a 2h � 1

h
b
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(f) Find the entries corresponding to x � 6 and x � 9.
Hint: 6 � 3 � 2 and 9 � 32

Remark: This table is called a table of logarithms to the base
10. We say, for example, that the logarithm of 2 to the base 10
is (about) 0.3. We write this symbolically as log10 2 � 0.3.

Exponent to Which 
10 Must Be Raised

x to Yield x

1
2 � 0.3
3
4
5
6
7
8
9

10

C
64. This exercise serves as a preview for the work on loga-

rithms in Section 5.3. Follow Steps (a)–(f) to complete the
table. (Notice that one entry in the table is already filled in.
Reread Example 2 in the text to see how that entry was ob-
tained.)
(a) Fill in the entries in the right-hand column correspond-

ing to x � 1 and x � 10.
(b) Note that 4 and 8 are powers of 2. Use this information

along with the approximation 100.3 � 2 to find 
the entries in the table corresponding to x � 4 and
x � 8.

(c) Find the entry corresponding to x � 5. 
Hint: 5 � 10�2 � 10�100.3

(d) Find the entry corresponding to x � 7. 
Hint: 72 � 50 � 5 � 10; now make use of your
answer in part (c).

(e) Find the entry corresponding to x � 3. 
Hint: 34 � 80 � 8 � 10
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The Mini Project, Using Differences to Compare Exponential and Polynomial Growth, at 
http://www.cengage.com/math/cohen/precalc7e, applies material from Section 5.1.

5.2 THE EXPONENTIAL FUNCTION y � ex

Why did he [the Swiss mathematician
Leonhard Euler (1707–1783)] choose the
letter e? There is no general consensus.
According to one view, Euler chose it
because it is the first letter of the word
exponential. More likely, the choice
came to him naturally as the first
“unused” letter of the alphabet, since
the letters a, b, c, and d frequently
appear elsewhere in mathematics. It
seems unlikely that Euler chose the letter
because it is the initial of his own name,
as occasionally has been suggested: he
was an extremely modest man . . .
—Eli Maor, e: The Story of a Number
(Princeton, N.J.: Princeton University
Press, 1994) 

The shape of the Gateway Arch in St. Louis
is based on the catenary curve, which is
defined in terms of the exponential function
y � ex. For details see Exercises 55 and 56.

From the standpoint of calculus and scientific applications, one particular base for
exponential functions is by far the most useful. This base is a certain irrational

Scenics of America/PhotoLink/Photodisc/Getty Images

http://www.cengage.com/math/cohen/precalc7e


number that lies between 2 and 3 and is denoted by the letter e. To ten decimal places,
without rounding off, the value of e is

(1)

For most purposes of approximation and simple estimation, all you need to remem-
ber is that

At the precalculus level, it’s hard to escape the feeling that y � 2x or y � 10x is by far
more simple and more natural than y � ex. At the end of this section we’ll explain
why the function y � ex makes life simpler, not more complex.

There are several different (but equivalent) ways that the number e can be de-
fined. One way involves investigating the values of the function f (x) � [1 � (1�x)]x

as x becomes larger and larger. As indicated in Table 1, the values of this function get
closer and closer to e as x gets larger and larger. Indeed, in some calculus books, the
number e is defined as the target value or limit of the function f(x) � [1 � (1�x)]x as
x grows ever larger. Now admittedly, we have not defined here the meaning of the
terms target value or limit; that’s a topic for calculus. Nevertheless, Table 1 will give
you a reasonable, if intuitive, appreciation of the idea. In Figure 1 we give a graphi-
cal interpretation.

One more comment about Table 1 and the number e: In Section 5.6 you’ll see that
the data in Table 1 can be interpreted in terms of banking and compound interest. For
this reason the constant e is sometimes called “the banker’s constant.”

In calculus the number e is sometimes introduced in a way that involves slopes of
lines. You know that the graph of each exponential function y � bx passes through the
point (0, 1). Figure 2(a) shows the exponential function y � 2x along with a line that
is tangent to the curve at the point (0, 1). By carefully measuring rise and run, it can
be shown that the slope of this tangent line is about 0.7. Figure 2(b) shows a similar
situation with the curve y � 3x. Here the slope of the tangent line through (0, 1) is
approximately 1.1. Now, since the slope of the tangent to y � 2x is a bit less than 1
while that for y � 3x is a bit more than 1, it seems reasonable to suppose that there is

e � 2.7

e � 2.7182818284 . . .
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Graphical Perspective

ƒ=[1+(1/x)]® for x > 0

y=e

0

1

2

3

0 10 20 30

Figure 1
The line y � e is an asymptote for
the graph of f (x) � [1 � (1�x)]x. 
As x gets larger and larger, the
values of [1 � (1�x)]x approach the
number e.

y

x
1 2 3

2

1

3

4

(b)

y=3®

mÅ1.1

x
1

2

(a)

y

2 3

1

3

4

y=2®

mÅ0.7

Figure 2 

TABLE 1

x f(x) � (1 � )x

101 2.59374246
102 2.70481382
103 2.71692393
104 2.71814592
105 2.71826823
106 2.71828046
107 2.71828169

As x grows larger and larger, the values
of [1 � (1�x)]x approach the number e.
[Compare the digits in the right column
with those in the expression for e given
in equation (1).]

1
x



a number between 2 and 3, call it e, with the property that the slope of the tangent
through (0, 1) is exactly 1. See Figure 3 and the Property Summary box that follows
(see Figure 4).
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PROPERTY SUMMARY The Exponential Function y � ex

y

2

x

1

e 3

4

_1_2 1 2

y=e®

Domain:   (_`, `)
Range:   (0, `)
y-intercept:   1
Asymptote: y = 0,
      the x-axis 

Remark: It’s certainly not obvious that defining e to be the unique number with the
property that the slope of the tangent line to the graph of y � ex at the point (0, 1) is
exactly 1 is equivalent to the definition of e as the limit of the function 
f (x) � (1 � 1�x)x as x grows ever larger. The methods of calculus are required to
demonstrate that the definitions are indeed equivalent. (For an informal justification,
however, see Exercise 62.)

SOLUTION (a) We begin with the graph of y � ex (as in Figure 4). Moving the graph to the right
one unit yields the graph of y � ex�1, shown in Figure 5(a). The x-axis is still a
horizontal asymptote for this graph, since y � ex�1 approaches 0 from above as
x becomes unbounded negative, but the y-intercept will no longer be 1. To find
the y-intercept, we replace x with 0 in the given equation to obtain

using a calculator

(b) Reflecting the graph from part (a) in the x-axis yields the graph of y � �ex�1; see
Figure 5(b). Note that under this reflection, the y-intercept moves from 1�e to �1�e
and approaches zero from below as x becomes unbounded negative.

(c) Translating the graph in Figure 5(b) up one unit produces the graph of
y � �ex�1 � 1, shown in Figure 5(c). Under this translation, the asymptote

y � �ex�1

y � e�1 �
1
e

� 0.37

EXAMPLE 1 Sketching Graphs Related to That of y � ex

Graph each of the following functions, specifying the domain, range, intercept, and
asymptote:

(a) y � ex�1; (b) y � �ex�1; (c) y � �ex�1 � 1.

1

2

y

x

1

3

4

8

2 3

y=e®

m=1
(exactly)

Figure 3
The slope of the tangent to the curve
y � ex at the point (0, 1) is m � 1.

Figure 4



moves from y � 0 (the x-axis) to y � 1. Also, the y-intercept moves from �1�e
to (�1�e) � 1 � 0.63. The x-intercept in Figure 5(c) is obtained by setting y � 0
in the equation y � �ex�1 � 1. This yields

Near the beginning of this section we said that using e as the base for an expo-
nential function makes things simpler. To explain the context in which this is true, we
introduce the concept of the instantaneous rate of change of a function. We are going
to rely on examples and numerical calculations. A more rigorous development prop-
erly belongs to calculus. Our first two examples will involve simple polynomial
functions; then we’ll move on to the exponential function f (x) � ex. In Table 2(a)
we’ve calculated the average rates of change of the function f (x) � x2 on a sequence
of increasingly short intervals, each interval having 1 as the left endpoint. Table 2(b)

 x � 1
 x � 1 � 0 (Why?)

 ex�1 � e0
 ex�1 � 1

 0 � �ex�1 � 1

338 CHAPTER 5 Exponential and Logarithmic Functions

Domain: (_`, `)
Range: (0, `)

y-intercept:  1 /e
Asymptote:  x-axis

(a)

y

x

y=e ® – !
1

21
_1

21

Domain: (_`, `)
Range: (_`, 0)

y-intercept: _1/e
Asymptote:  x-axis

(b)

x

y=_e ® – !

y

21
_1

Domain: (_`, `)
Range: (_`, 1)

x-intercept:  1
y-intercept: (_1/e)+1
Asymptote:  y=1

(c)

y=_e ® – !+1

y=1

y

x
21

_1

Figure 5 

TABLE 2 The Average Rates of Change Approach 2

¢f�¢x ¢f�¢x
Interval for f (x) � x2 Interval for f (x) � x2

[1, 1.1] 2.1 [0.9, 1] 1.9
[1, 1.01] 2.01 [0.99, 1] 1.99
[1, 1.001] 2.001 [0.999, 1] 1.999
[1, 1.0001] 2.0001 [0.9999, 1] 1.9999
[1, 1.00001] 2.00001 [0.99999, 1] 1.99999

(a) (b)



shows similar calculations with intervals that have 1 as the right endpoint. From the
tables we make the following observation: As the lengths of the intervals get smaller
and smaller, the average rates of change get closer and closer to 2. We say in this case
that the instantaneous rate of change of the function f(x) � x2 at x � 1 is 2.

In Tables 3(a) and (b), we are looking for the instantaneous rate of change of the
function g(x) � x3 at x � 2. From the tables, it appears that as the lengths of the inter-
vals get smaller and smaller, the average rates of change get closer and closer to 12.
We say that the instantaneous rate of change of g(x) � x3 at x � 2 is 12.
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TABLE 3 The Average Rates of Change Approach 12

¢g�¢x ¢g�¢x
Interval for g (x) � x3 Interval for g (x) � x3

[2, 2.1] 12.61 [1.9, 2] 11.41
[2, 2.01] 12.0601 [1.99, 2] 11.9401
[2, 2.001] 12.006001 [1.999, 2] 11.994001
[2, 2.0001] 12.00060001 [1.9999, 2] 11.99940001
[2, 2.00001] 12.0000600001 [1.99999, 2] 11.9999400001

(a) (b)

For a more intuitive example of instantaneous rate of change, something closer
to your experience, suppose you are driving a car, and at a particular instant the
speedometer reads 45 mi/hr. At that instant the instantaneous rate of change of
distance with respect to time is 45 mi/hr. We say that the instantaneous velocity at that
instant is 45 mi/hr. (For a specific example relating average velocity and instantaneous
velocity, go back to Section 3.3 and see Example 6 and the related Exercise 36.)

Now we are prepared to say what is so special about the exponential function
f (x) � ex. For reference, we state this result in the box that follows. (Remember, we
are leaving the precise definitions and the proofs to calculus; we content ourselves
here with examples.)

Table 4 provides a numerical check on Example 2 in the box above. (Exercise 29
asks you to complete a similar table for intervals in which 2 is the right, rather than
left, endpoint.)

Theorem The Instantaneous Rate of Change of the Function f(x) � ex

Let a be any real number. Then the instantaneous
rate of change of the function f (x) � ex at x � a is
ea. In other words, at each point on the graph of
f (x) � ex, the instantaneous rate of change is just
the y-coordinate of the point. Furthermore, the
only functions with this property are the exponential
function f(x) � ex and constant multiples of this
function (that is, functions of the form y � cex,
where c is a constant).

EXAMPLES
1. At x � 1 the instanta-

neous rate of change of

2. At x � 2 the instantan-
eous rate of change of

f (x) � ex  is  e2

f (x) � ex  is  e1 � e
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EXAMPLE 2 Average and Instantaneous Rates of Change of a Population

In a biology experiment, let N(t) be the number of bacteria in a colony after t hr,
where t � 0 corresponds to the time the experiment begins. Suppose that during the
period from t � 4 hr to t � 8 hr the number of bacteria is modeled by the exponen-
tial function N(t) � e t. (See Figure 6.)

SOLUTION (a) On the interval from t � 5 to t � 7 hr, we have

using a calculator and rounding

Thus on average over this 2-hr time period, the population is increasing at a rate
of 474 bacteria/hr.

(b) Applying the theorem in the box on page 339, the instantaneous rate of change
of the function N(t) � e t at t � 7 is e7. Thus at the instant when t � 7 hr, the
population is changing at a rate of

e7 bacteria/hr
using a calculator and rounding� 1097 bacteria /hr

 � 474 bacteria /hr

 
¢N

¢t
�

e7 � e5

7 � 5
 bacteria /hr

TABLE 4 The Average Rates of Change Approach e2 � 7.3890560. . .

¢f�¢x for f (x) � ex

Interval (7 decimal places, no rounding)

[2, 2.1] 7.7711381
[2, 2.01] 7.4261248
[2, 2.001] 7.3927518
[2, 2.0001] 7.3894255
[2, 2.00001] 7.3890930
[2, 2.000001] 7.3890597

(a) Find the average rate of change of the population over the time period 5 	 t 	 7.
(b) What is the instantaneous rate of change of the population at the instant t � 7 hr?

Graphical Perspective

4 5 6 7 8
0

1000

2000

3000

Figure 6
N(t) � e t, 4 	 t 	 8
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EXERCISE SET 5.2

A
In Exercises 1–8, answer True or False. You do not need a

calculator for these exercises. Rather, use the fact that e is ap-
proximately 2.7.

1. e � 1�2 2. e � 5�2 3. � 1 4. e2 � 4
5. e2 � 9 6. e3 � 27 7. e�1 � 0 8. e0 � 1

For Exercises 9 and 10, you are given some simple rational
approximations for the irrational numbers p and e. In each
case, use a calculator to find out how many decimal places 
of the approximation agree with the irrational number.
Remark: Each of the approximations in Exercise 10 is the best
rational approximation using numerators and denominators
less than 1000.

9. (a) p � 22�7 10. (a) p � 355�113
(b) e � 19�7 (b) e � 878�323

In Exercises 11–20, graph the function and specify the domain,
range, intercept(s), and asymptote.

11. y � ex 12. y � e�x

13. y � �ex 14. y � �e�x

15. y � ex � 1 16. y � ex�1

17. y � ex�1 � 1 18. y � ex�1 � 1
19. y � e � ex 20. y � e�x � e

In Exercises 21 and 22, first tell what translations or reflec-
tions are required to obtain the graph of the given function from
that of y � ex. Then graph the given function along with y � ex

and check that the picture is consistent with what you’ve said.

21. (a) y � ex�2 22. (a) y � 1 � e�x

(b) y � e�x�2 (b) y � 1 � e�x�1

In Exercises 23 and 24, let f(x) � x2, g(x) � 2x, and h(x) � ex.
In each case, carry out the calculations needed to verify the
given statement.

23. On the interval [0, 1]: The average rate of change of h is
about 1.7 times that of g. The functions f and g have the
same average rate of change on the interval [0, 1].

24. On the interval [9, 10]: The average rate of change of g is
more than 25 times greater than that of f. The average rate
of change of h is approximately 733 times that of f.

25. In this exercise we compare three functions:

(a) Begin by graphing all three functions in the standard
viewing rectangle. The picture confirms three facts that

y � 2x  y � ex  y � 3x

1e

you know from the text: on the positive x-axis, the
functions increase very rapidly; on the negative x-axis,
the graphs approach the asymptote (which is the 
x-axis) as you move to the left; the y-intercept in each
case is 1.

(b) To compare the functions for positive values of x, use a
viewing rectangle in which x extends from 0 to 3 and y
extends from 0 to 10. Note that the graph of ex is
bounded between the graphs of 2x and 3x, just as the
number e is between 2 and 3. In particular, the picture
that you obtain demonstrates the following fact: For
positive values of x,

(c) To see the graphs more clearly when x is negative,
change the viewing rectangle so that x extends from
�3 to 0 and y extends from 0 to 1. Again, note that the
graph of ex is bounded between the graphs of 2x and 3x,
but now the graph of 3x is the bottom (rather than the
top) curve in the picture. This demonstrates the follow-
ing fact: For negative values of x,

(d) Explain how the result in part (c) follows from the
result in part (b).

26. This exercise introduces the approximation

provided that x is close to zero

This approximation has an important consequence when
we study population growth in Section 5.7. (The details are
in Exercise 61 in Section 5.7.)
(a) Use the information in Figure 3 to explain why the

equation of the line tangent to the curve y � ex at the
point (0, 1) is y � x � 1.

(b) Verify visually that the line y � x � 1 is tangent to
the curve y � ex at the point (0, 1) by using a graphing
utility to display the graphs of both functions in the
same standard viewing rectangle. Note that the curve
and the line are virtually indistinguishable in the imme-
diate vicinity of the point (0, 1).

(c) Zoom in on the point (0, 1); use a viewing rectangle
in which x extends from �0.05 to 0.05 and y extends
from 0.95 to 1.05. Again, note that the line and the
curve are virtually indistinguishable in the immediate
vicinity of the point (0, 1). For a numerical look at this,
complete the following table. In the columns for ex and
ex � (x � 1), round each entry to four decimal places.
When you are finished, observe that the closer x is to 0,
the closer the agreement between the two quantities
x � 1 and ex.

ex � x � 1

3x � ex � 2x

2x � ex � 3x



Exercises 31 and 32 refer to Example 2 in the text. Round all
answers to the nearest integer. (Don’t forget to include units
with your answers.)

31. (a) Find the average rate of change of the population over
the time period 5 	 t 	 6.

(b) What is the instantaneous rate of change of the popula-
tion at t � 5 hr? At t � 5.5 hr?

32. (a) Find the average rate of change of the population over
the time period 4 	 t 	 6.

(b) What is the instantaneous rate of change of the popula-
tion at t � 6 hr?

33. As is indicated in the accompanying figure, the three
points P, Q, and R lie on the graph of y � ex, and the 
x-coordinates of these points are �1, 0, and 0.5, respec-
tively. Use the theorem in the box on page 339 to specify
the instantaneous rate of change of the function y � ex at
each of these points. For one of the points, a numerical
answer can be obtained without a calculator. For the other
points, give two forms of each answer: an exact expression
involving e and a calculator approximation rounded to two
decimal places.

34. Suppose that during the first hour and 15 minutes of a
physics experiment, the surface temperature of a small iron
block is modeled by the exponential function f (t) � 15e t,
where f(t) is the Celsius temperature t hours after the ex-
periment begins.
(a) Use a graphing utility to graph the function

f (t) � 15e t over the interval 0 	 t 	 1.25.
(b) Compute the average rate of change of temperature

over the second half hour of the experiment (i.e., over
the interval 0.5 	 t 	 1). Round the answer to one 
decimal place.

(c) Use one of the facts in the box on page 339 to determine
the instantaneous rate of change of temperature: 30 min
after the start of the experiment; 1 hr after the start of the
experiment. Round each answer to one decimal place.

B
In Exercises 35–42, decide which of the following properties
apply to each function. (More than one property may apply to a
function.)

A. The function is increasing for �q � x � q.

y=e®

RQ

P

x

y

_1 _0.5 0.5

x x � 1 ex ex � (x � 1)

�0.04
�0.03
�0.02
�0.01

0.00
0.01
0.02
0.03
0.04

27. Complete the following two tables. On the basis of the re-
sults you obtain, what would you say is the instantaneous
rate of change of the function f (x) � x2 at x � 3?

¢f�¢x for ¢f�¢x for
Interval f(x) � x2 Interval f(x) � x2

[3, 3.1] [2.9, 3]
[3, 3.01] [2.99, 3]
[3, 3.001] [2.999, 3]
[3, 3.0001] [2.9999, 3]
[3, 3.00001] [2.99999, 3]

28. Tables 2(a) and 2(b) on page 338 were used to determine
the instantaneous rate of change of f (x) � x2 at x � 1. Set
up and complete similar tables to find the instantaneous
rate of change of g(x) � x3 at x � 1.

29. Let f(x) � ex. Complete the following table. In the right
column, give the average rates of change to six decimal
places without rounding. Note that the average rates of
change seem to approach e2 � 7.3890560. . . . This result
along with Table 4 in the text supports a statement in the
box on page 340: The instantaneous rate of change of
f (x) � ex at x � 2 is e2.

¢f�¢x for
Interval f (x) � ex

[1.9, 2]
[1.99, 2]
[1.999, 2]
[1.9999, 2]
[1.99999, 2]
[1.999999, 2]
[1.9999999, 2]

30. Complete a table similar to the one shown in Exercise 29,
but use the function h(x) � 3x, rather than f (x) � ex. Note
that the average rates of change do not approach 32 � 9.
What does this have to do with the statements in the box on
page 339? (Explain using complete sentences.)
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the natural logarithm function, is discussed in detail in
the next section.

52. Follow Exercise 51 using the equation ex � 0.6 (rather
than ex � 1.5).

53. Follow Exercise 51 using the equation ex � 1.8.
54. Follow Exercise 51 using the equation ex � 0.4.
55. The hyperbolic cosine function, denoted by cosh, is

defined by the equation

(a) Without a calculator, find cosh(0). Using a calculator,
find cosh(1) and cosh(�1), rounding the answers to
two decimal places.

(b) What is the domain of the function cosh? Hint: Visu-
alize the graphs of y � ex and y � e�x.

(c) Show that cosh(�x) � cosh(x). What does this say
about the graph of y � cosh(x)?

(d) Use a graphing utility to graph y � cosh(x). Check
that the picture is consistent with your answer in
part (c).

56. (Continuation of Exercise 55.) Suppose that a flexible
cable of uniform density is suspended between two sup-
ports, as indicated in Figure A. (Example: a telephone line
between two phone poles.) Using calculus and physics, it
can be shown that the curve formed is a portion of the
graph of y � a cosh(x�a), where a is a constant. See
Figure B. (The actual value for a depends on the tension in
the cable and the density of the cable.) The graph of an
equation of the form y � a cosh(x�a) is called a catenary
(from the Latin catena, meaning chain).

Figure A Figure B

(a) Use a graphing utility to graph the four catenaries
y � a cosh(x�a) corresponding to a � 0.2, 1, 3, and 5.
Describe (in complete sentences) how the shape and lo-
cation of the curve changes as the value of a increases.

(b) The Gateway Arch in St. Louis (shown on page 335)
is built in the form of an inverted catenary. The equa-
tion for the curve is given in Figure C. In this equation
both x and y are measured in feet. Find the height of
the Gateway Arch, then determine the width by using a
graphing utility to graph the equation given in Figure C.
Remark: The Gateway Arch is the tallest monument in
the U.S. National Park System. Designed by architect

y

x

y=acosh(x/a)

cosh(x) �
1

2
 (ex � e�x)

B. The function is decreasing for �q � x � q.
C. The function has a turning point.
D. The function is one-to-one.
E. The graph has an asymptote.
F. The function is a polynomial function.
G. The domain of the function is (�q, q).
H. The range of the function is (�q, q).
35. y � ex 36. y � e�x

37. y � �ex 38. y �
39. y � x � e 40. y � x2 � e
41. y � x�e 42. y � e�x

In Exercises 43–50, refer to the following graph of y � ex. In
each case, use the graph to estimate the indicated quantity to
the nearest tenth (or closer, if it seems appropriate). Also, use a
calculator to obtain a second estimate. Round the calculator
values to three decimal places.

43. e0.1 44. e�0.1 45. e�0.3

46. e0.4 47. e�1 48.
49. 1� Hint: Rewrite this expression using a rational

exponent, that is, 1� � e?.
50.
51. (a) Use the graph preceding Exercise 43 to estimate the

value of x for which ex � 1.5.
(b) One of the keys on your calculator will allow you to

solve the equation in part (a) for x; it is the “ln” key.
Use your calculator to compute ln(1.5). Round your
answer to three decimal places and check to see that it
is consistent with the value obtained graphically in
part (a). Remark: The “ln” function, which is called

1
5 e

1e
1e

1e

0.5

0

y

0.5_0.5_1.0

1.0

1.5

x

e 
0x 0

5.2 The Exponential Function y � ex 343



60. (a) Use your calculator to approximate the numbers ep
and e � p. Remark: It is not known whether these
numbers are rational or irrational.

(b) Use your calculator to approximate 
Remark: Contrary to the evidence on your calculator,
it is known that this number is irrational.

61. Let f(x) � ex. Let L denote the function that is the inverse of f.
(a) On the same set of axes, sketch the graphs of f and L.

Hint: You do not need the equation for L(x).
(b) Specify the domain, range, intercept, and asymptote for

the function L and its graph.
(c) Graph each of the following functions. Specify the in-

tercept and asymptote in each case.
(i) y � �L(x) (ii) y � L(�x) (iii) y � L(x � 1)

62. The text mentioned two ways to define the number e. One
involved the expression (1 � 1�x)x and the other involved a
tangent line. In this exercise you’ll see that these two ap-
proaches are, in fact, related. For convenience, we’ll write the
expression (1 � 1�x)x using the letter n rather than x (so that
we can use x for something else in a moment.) Thus, we have

as n becomes larger and (1)
larger without bound

Working from this approximation, we’ll obtain evidence
that the slope of the tangent to the curve y � ex at x � 0 
is 1. (A rigorous proof requires calculus.)
(a) Define x by the equation x � 1�n. As n becomes

larger and larger without bound, what happens to the cor-
responding values of x? Complete the following table.

n 10 2 10 3 10 6 10 9

x

(b) Substitute x � 1�n in approximation (1) to obtain

as x approaches 0(1 � x)1�x � e

(1 � 1�n)n � e

(ep1163)1�3.

2.6
20

21

22

23

24

25

2.7 2.8 3.2

y=ex

y=p x

Eero Saarinen and completed in 1965, the Gateway
Arch commemorates the Louisiana Purchase, and more
generally, the westward expansion of the United States
over the period 1803–1890.

Figure C
Gateway Arch design. Distance on axes is measured in feet.

57. The hyperbolic sine function, denoted by sinh, is defined
by the equation

Note: For speaking and reading purposes, sinh is
pronounced as “cinch.”
(a) Without a calculator, find sinh(0). Using a calculator,

find sinh(1) and sinh(�1), rounding the answers to two
decimal places.

(b) What is the domain of the function sinh?
(c) Show that sinh(�x) � �sinh(x). What does this say

about the graph of y � sinh(x)?
(d) Use a graphing utility to graph y � sinh(x). Check

that the picture is consistent with your answer in
part (c).

(e) How many points are there where the two curves
y � sinh(x) and y � x3 intersect?

58. For this exercise you need to know the definitions of the
functions cosh and sinh, which were given in Exercises 55
and 57, respectively.
(a) Use a graphing utility to graph the equation 

y � cosh(x) � sinh(x). What do you observe?
(b) Use algebra to show why the graph in part (a) looks as

it does. [That is, use the definitions of cosh(x) and
sinh(x) to simplify the quantity cosh(x) � sinh(x).]

59. The following figure shows portions of the graphs of the
exponential functions y � ex and y � p x.
(a) Use the figure (not your calculator) to determine which

number is larger, ep or p e.
(b) Use your calculator to check your answer in part (a).
Remark: The number ep is known to be irrational. This
was proven by the Russian mathematician A. O. Gelfond in
1929. It is still not known, however, whether pe is
irrational.

sinh(x) �
1

2
 (ex � e�x)

Height

Width

y

x

y=757.71-127.71 cosh(x /127.71)
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(a) One of the given equations is an identity, and the
other is not. Use a graphing utility to determine which
equation is not an identity. For that equation, make a
conjecture about the root(s). Then use the definitions of
cosh(x) and sinh(x) to verify algebraically that your
conjecture is valid.

(b) For the other equation, use the definitions of cosh(x)
and sinh(x) to prove that the equation is indeed an
identity.

64. Consider the following three equations:

(a) Only one of the three equations is not an identity.
Use a graphing utility to find out which. For that
equation, are there any values of x for which the equa-
tion becomes a true statement? If so, use the graphing
utility to estimate to the nearest hundredth each such
value.

(b) For each of the other two equations, use the definitions
of cosh(x) and sinh(x) to prove that the equation is
indeed an identity. 

[sinh(x)]2 �  1

2
 [sinh(2x)�1]

[cosh(x)]2 �  1

2
 [cosh(2x)�1]  [sinh(x)]2 �  

1

2
 [cosh(2x)�1]

Next, raise both sides to the power x to obtain

as x approaches 0 (2)

Approximation (2) says that the curve y � ex looks
more and more like the line y � 1 � x as x approaches 0.
For numerical perspective on this, complete the follow-
ing tables. These results suggest (but do not prove) that
the line y � 1 � x is tangent to the curve y � ex at
x � 0. Thus, the results suggest that the slope of the
tangent to y � ex at x � 0 is 1.

x 0.3 0.2 10�1 10�2 10�3 10�4

x � 1

ex

x �0.3 �0.2 �10�1 �10�2 �10�3 �10�4

x � 1

ex

C
For Exercises 63 and 64, you need to know the definitions of the
functions cosh and sinh given in Exercises 55 and 57, respectively.

63. Consider the following two equations:

[cosh(x)]2 � 2[sinh(x)]2 � 1  [cosh(x)]2 � [sinh(x)]2 � 1

(1 � x) � ex
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PROJECT Coffee Temperature 

Suppose that a cup of hot coffee at a temperature of T0 is set down to cool in a
room where the temperature is kept at T1. Then the temperature of the coffee as
it cools can be modeled by the function

(1)

Here, f (t) is the temperature of the coffee after t minutes; t � 0 corresponds to
the initial instant when the temperature of the hot coffee is T0; and k is a (neg-
ative) constant that depends, among other factors, on the dimensions of the cup
and the material from which it is constructed. [This model is derived in calcu-
lus. It is based on Newton’s law of cooling: The rate of change of temperature
of a cooling object is proportional to the difference between the temperature of
the object and the surrounding temperature. (Note: y is proportional to x means
y � kx for some constant k.)]

After studying the following example, solve Problem A below by applying
equation (1) and using the technique shown in the example. Then try your hand
at Problem B. You won’t be able to complete Problem B using the techniques
developed in this text up to now. In complete sentences, explain exactly at
which point you get stuck. What would you have to know how to do to com-
plete the solution? (In the next section we discuss logarithms, which will allow

f (t) � (T0 � T1)e
kt � T1
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us to complete Problem B.) For now, use a graphing utility to obtain an ap-
proximate answer for Problem B.

EXAMPLE Coffee Temperature Project

Given that the graph of the function y � aekx passes through the points (0, 2)
and (3, 5), find y when x � 7.

SOLUTION Substituting x � 0 and y � 2 in the given equation yields 2 � ae0, and there-
fore a � 2. Next, substituting x � 3 and y � 5 in the equation y � 2ekx yields
5 � 2ek(3), or e3k � 2.5. This last equation can be rewritten (ek)3 � 2.5. Taking
the cube root of both sides gives us

(2)

The original function can now be written as follows

using equation (2)

That is, y � 2(2.5x�3). In this form, we can calculate y when x is given. In par-
ticular then, when x � 7, we obtain

using a calculator � 16.97
 y � 2(2.57�3)

 � 2(2.51�3)x
 y � 2ekx � 2(ek)x

ek � 2.51�3

Problem A Problem B

Suppose that a cup of hot coffee at a Suppose that a cup of hot coffee at a 
temperature of 185°F is set down to temperature of 185°F is set down to 
cool in a room where the temperature cool in a room where the temperature 
is kept at 70°F. What is the temperature is kept at 70°F. How long will it take 
of the coffee 10 min later? for the coffee to cool to 140°F? 

LOGARITHMIC FUNCTIONS
But if logarithms have lost their role as the centerpiece of computational mathemat-
ics, the logarithmic function remains central to almost every branch of mathematics,
pure or applied. It shows up in a host of applications, ranging from physics and chem-
istry to biology, psychology, art, and music. —Eli Maor in e: The Story of a Number

(Princeton, N.J.: Princeton University Press, 1994)

[John Napier] hath set my head and hands a work with his new and admirable loga-
rithms. I hope to see him this summer, if it please God, for I never saw book that
pleased me better, or made me more wonder. —Henry Briggs, March 10, 1615

It has been thought that the earliest reference to the logarithmic curve was made by
the Italian Evangelista Torricelli in a letter on the year 1644, but Paul Tannery made
it practically certain that Descartes knew the curve in 1639. —Florian Cajori in A

History of Mathematics, 4th ed. (New York: Chelsea Publishing Co., 1985)

For the number whose logarithm is unity, let e be written, . . . —Leonhard Euler in a letter

written in 1727 or 1728

5.3



In the previous two sections we studied exponential functions. Now we consider
functions that are inverses of exponential functions. These inverse functions are
called logarithmic functions.

Having said this, let’s review briefly some of the basic ideas of inverse functions
(as discussed in Section 3.6). We start with a given function F, for example,

Both the domain and range of F are the set of all real numbers. F is one-
to-one since each output 3x comes from just one input x value. So F has an inverse
function with domain and range the set of all real numbers. To find a for-
mula for w, we use the fundamental inverse function identity for each x
in the domain of w, that is, for each real number x. Here we have 
which implies that is, for all real numbers x.

In the preceding paragraph we saw that a particular linear function had an in-
verse, and we found a formula for that inverse. Now let’s repeat that same reasoning,
beginning with an exponential function. First, we must make sure the exponential
function f defined by f(x) � bx is one-to-one. We can see this by applying the hori-
zontal line test, as indicated in Figure 1. Next, since f (x) � bx is one-to-one, it has an
inverse function. Let’s study this inverse.

The exponential function f(x) � bx, has domain all real numbers and range all pos-
itive real numbers. Let . Then the domain of w is the range of f , all positive
numbers, and the range of w is the domain of f , all real numbers. Using the funda-
mental inverse function identity for all positive numbers x, gives

(1)

The crucial step now is to express equation (1) in words:

w(x) is the exponent to which b must be raised to yield x. (2)

Statement (2) defines the function that is the inverse of f (x) � bx. Now we introduce
notation that will enable us to write this statement in a more compact form.

x � f [w(x)] � bw(x)

f [w(x)] � x

w � f �1

F�1(x) � 1
3xw(x) � 1

3x,
x � F[w(x)] � 3w(x),

F[w(x)] � x
w � F�1

F(x) � 3x.
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x

y

ƒ=b®  (0<b<1)

y

x

ƒ=b®  (b>1)

Figure 1
The exponential function y � bx is
one-to-one.

We define the expression logb x to
mean “the exponent to which b must
be raised to yield x.” (logb x is read
log base b of x or the logarithm of x
to the base b.) 

EXAMPLES
(a) log2 8 � 3, since 3 is the exponent to

which 2 must be raised to yield 8.
(b) log10(1�10) � �1, since �1 is the

exponent to which 10 must be raised 
to yield 1�10.

(c) log5 1 � 0, since 0 is the exponent to
which 5 must be raised to yield 1.

Definition Logb x

Using this notation, statement (2) becomes

Since (1) and (2) are equivalent, we have the following important relationship.

is equivalent to

Using algebra notation, let . Then

y � logb x   is equivalent to   x � by

y � w(x)

x � bw(x)w(x) � logb x

w(x) � logb x    for x � 0



We say that the equation y � logb x is in logarithmic form and that the equivalent
equation x � by is in exponential form. Table 1 displays some examples.

Let us now summarize our discussion up to this point.

1. According to the horizontal line test, the function f (x) � bx is one-to-one and
therefore possesses an inverse. This inverse function is written

and represents the power to which b must be raised to yield x.
2. In algebraic notation, logb a � c means that a � bc.

Recall from Section 3.5 that, with both as functions of x, the graph of a function
and its inverse function are reflections of one another in the line y � x. Thus to graph
y � logb x, we need only reflect the curve y � bx about the line y � x. This is shown
in Figure 2 for the case b � 1.

f �1(x) � logb x
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TABLE 1

Exponential Logarithmic
Form of Form of
Equation Equation

8 � 23 log2 8 � 3

� 3�2 log3 � �2

1 � e0 loge 1 � 0
a � bc logb a � c

1

9

1

9

(0, 1)

(1, 0)

y=b®  (b>1) y=x

y=logbx  (b>1)

x

y

Figure 2

Note: For the rest of this chapter we assume that the base b is greater than 1 when we
use the expression logb x.

With the aid of Figure 2 we can make the following observations about the
function y � logb x.

PROPERTY SUMMARY The Logarithmic Function y � logb x (b > 1)

Domain: all positive numbers

Range: all real numbers

y-intercept: none

x-intercept: 1

Asymptote: x � 0, the y-axis 

End behavior: 
y � logb x, for b � 1, becomes unbounded negative as x
approaches 0 from the right and logb x becomes 
unbounded positive as x becomes unbounded positive. 

x

y

(1, 0)

y=logb x

Figure 3



One aspect of the function y � logb x may not be immediately apparent to you from
Figures 2 and 3: The function grows or increases very slowly. Consider y � log2 x,
for example. Let’s ask how large x must be before the curve reaches the height y � 10
(see Figure 4).

To answer this question, we substitute y � 10 in the equation y � log2 x:

Writing this equation in exponential form yields

In other words, we must go out beyond 1000 on the x-axis before the curve y � log2 x
reaches a height of 10 units. Exercise 67 at the end of this section asks you to show
that the graph of y � log2 x doesn’t reach a height of 100 until x is greater than 1030.
(Numbers as large as 1030 rarely occur in any of the sciences. For instance, the dis-
tance in inches to the Andromeda galaxy is less than 1024.) The point we are empha-
sizing is this: The graph of y � log2 x (or logb x, for b �1) is always rising, but rising
very slowly for large values of x.

Before going on to consider some numerical examples, let’s pause for a moment
to think about the notation we’ve been using. In the expression “logb x” the name of
the function is logb and the input is x. To emphasize this, we might be better off writ-
ing logb x as logb(x), so that the similarity to the familiar f(x) notation is clear.
However, for historical reasons* the convention is to suppress the parentheses, and
we follow that convention here. In the box that follows, we indicate some errors that
can occur upon forgetting that logb is the name of a function, not a number.

x � 210 � 1024

10 � log2 x
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y

x
?

10

y=log™ x
(not drawn to scale)

Figure 4

*The notation log was introduced in 1624 by the astronomer Johannes Kepler (1571–1630). In
Leonhard Euler’s text Introduction to Analysis of the Infinite, first published in 1748, appears
the statement, “It has been customary to designate the logarithm of y by the symbol log y.”

Error Comment Correction

log2 16

16
�

4

16
�

1

4

This “equation” is nonsense. On the left-hand
side there is a quotient of two real numbers,
which is a real number. On the right-hand
side is the name of a function.

log2 16

16
� log2

log2 8

log2 4
�

3

2

log2 is the name of a function. It is not a 
factor that can be “cancelled” from the
numerator and denominator.

log2 8

log2 4
�

8

4

Errors to Avoid

We conclude this section with a set of examples involving logarithms and loga-
rithmic functions. In one way or another, every example makes use of the key fact
that the equation logb a � c is equivalent to bc � a.



350 CHAPTER 5 Exponential and Logarithmic Functions

EXAMPLE 1 Comparing Two Logarithms by Using the Definition

Which quantity is larger: log3 10 or log7 40?

SOLUTION First we estimate log3 10. This quantity represents the exponent to which 3 must be
raised to yield 10. Since 32 � 9 (less than 10), but 33 � 27 (more than 10), we con-
clude that the quantity log3 10 lies between 2 and 3. In a similar way we can estimate
log7 40; this quantity represents the exponent to which 7 must be raised to yield 40.
Since 71 � 7 (less than 40) while 72 � 49 (more than 40), we conclude that the
quantity log7 40 lies between 1 and 2. It now follows from these two estimates that
log3 10 is larger than log7 40.

EXAMPLE 2 Evaluating a Logarithmic Expression

Evaluate log4 32.

SOLUTION Let y � log4 32. The exponential form of this equation is 4y � 32. Now, since both 4
and 32 are powers of 2, we can rewrite the equation 4y � 32 using the same base on
both sides:

since the function f(x) � 2x is one-to-one

 y �
5

2

 2y � 5

 22y � 25

 (22)y � 25

EXAMPLE 3 Sketching the Graph of a Logarithmic Function and Its Reflection

Graph the following equations:

(a) y � log10 x; (b) y � �log10 x.

SOLUTION (a) The function y � log10 x is the inverse function for the exponential function
y � 10x. Thus we obtain the graph of y � log10 x by reflecting the graph of
y � 10x in the line y � x; see Figure 5(a). As for the details, the domain is the
positive real numbers, the range is all real numbers, there is no basic symmetry
since y is a function of x and the domain is not symmetric about zero, and there
is no y-intercept since zero is not in the domain.

Figure 5 (a)

x
1

y

1

y=xy=10®

y=log¡¸ x

(b)

y

x

y=log¡¸ x

y=_log¡¸ x
(1, 0)



For the x-intercept, y � 0 implies 0 � log10 x, which is equivalent to x � 100 � 1.
So the x-intercept is 1.

The vertical asymptote is x � 0 (the y-axis) since y � log10 x becomes unbounded
negative as x approaches zero from the right.

For other end behavior, y � log10 x becomes unbounded positive as x becomes
unbounded positive.

(b) To graph y � �log10 x, we reflect the graph of y � log10 x in the x-axis; see
Figure 5(b). The domain, range, symmetry and intercepts are the same as in part
(a). The vertical asymptote is still the y-axis, but this time the function y � �log10 x
becomes unbounded positive as x approaches zero from the right. Also 
y � �log10 x becomes unbounded negative as x becomes unbounded positive.
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EXAMPLE 4 Finding the Domain of a Function Defined by a Logarithm

Find the domain of the function f (x) � log2(12 � 4x).

SOLUTION As you can see by looking back at Figure 3 on page 348, the inputs for the log-
arithmic function must be positive. So, in the case at hand, we require that the quan-
tity 12 � 4x be positive. Consequently, we have

Therefore the domain of the function f (x) � log2(12 � 4x) is the interval (�q, 3).

The next example concerns the exponential function y � ex and its inverse func-
tion, y � loge x. Many books, as well as calculators, abbreviate the expression loge x
by ln x, read natural log of x.* For reference and emphasis we repeat this fact in the
following box. (Incidentally, on most calculators, “log” is an abbreviation for log10.)

 x � 3
 �4x � �12

 12 � 4x � 0

*According to the historian Florian Cajori, the notation ln x was used by (and perhaps first
introduced by) Irving Stringham in his text Uniplanar Algebra (San Francisco: University
Press, 1893).

Definition The “ln” Notation for Base e Logarithms

ln x means loge x EXAMPLE
1. ln e � 1 because ln e stands for loge e, which equals 1.
2. ln(e2) � 2 because ln(e2) stands for loge(e2), which

equals 2.
3. ln 1 � 0 because ln 1 stands for loge 1, which equals 0.

(The exponential form of the equation ln 1 � 0 is
e0 � 1.)
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EXAMPLE 5 Sketching the Graph of ln x and a Translation

Graph the following functions:

(a) y � ln x; (b) y � ln (x � 1) � 1.

SOLUTION (a) The function y � ln x (�loge x) is the inverse of y � ex. Thus its graph is
obtained by reflecting the graph of y � ex in the line y � x, as in Figure 6(a). As
for the details, the domain is all positive real numbers, the range is all real num-
bers, there is no basic symmetry since y is a function of x and the domain is not
symmetric about zero, and there is no y-intercept since zero is not in the domain. 

For the x-intercept, y � 0 implies 0 � ln x, which is equivalent to x � e0 � 1. So
the x-intercept is 1.

The vertical asymptote is x � 0 (the y-axis) since y � ln x becomes unbounded
negative as x approaches zero from the right.

For other end behavior, y � ln x becomes unbounded positive as x becomes
unbounded positive.

(b) To graph y � ln(x � 1) � 1, we take the graph of y � ln x and move it one unit
in the positive x-direction, then shift down 1 unit. See Figure 6(b). As for the
details, the domain is all real number greater than 1, the range is all real numbers,
there is no basic symmetry since y is a function of x and the domain is not
symmetric about zero, and there is no y-intercept since zero is not in the domain.

For the x-intercept, implies , which implies
, which is equivalent to the exponential form 1. So

the x-intercept is (about 3.72).e � 1
x � 1 � eln(x � 1) � 1

0 � ln(x � 1) � 1y � 0

(a)

y

x
(1, 0) 

(0, 1)

y=ln x

y=´ y=x

(b)

y

x

y=

x=1
Vertical asymptote

ln x
y=ln(x-1)

(e+1, 0)

y=ln(x-1)-1

(2, 0) 

Figure 6

The vertical asymptote is since becomes unbounded
negative as x approaches one from the right. This behavior is not changed by
shifting the graph down 1 unit.

For other end behavior, becomes unbounded positive as x
becomes unbounded positive. This behavior is not changed by shifting a
graph horizontally or vertically.

y � ln(x � 1) � 1

y � ln(x � 1) � 1x � 1
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EXAMPLE 6 Solving an Equation Involving an Exponential Function

Consider the equation 10 x�2 � 16.

(a) Use a graphing utility to show that the equation has exactly one root. Then estimate
the root to the nearest one-tenth (by finding an appropriate viewing rectangle).

(b) Solve the given equation algebraically by rewriting it in logarithmic form. Give
two forms for the answer: an exact expression and a calculator approximation
rounded to three decimal places. Check to see that the result is consistent with
the graphical estimate obtained in part (a).

SOLUTION (a) Figure 7(a) shows a viewing rectangle in which the graphs of y � 10 x�2 and
y � 16 intersect. The x-coordinate of this intersection point is a root of the given
equation. As you can check by zooming out from this view, there are no other in-
tersection points, and thus no other roots of the given equation.

From Figure 7(a) we know that the required root is between 2 and 3, a bit closer
to 2 than to 3. This suggests that we try a viewing rectangle with x running from 2
to 2.5, as indicated in Figure 7(b). This view shows that the root is closer to 2.4 than
to either 2.3 or 2.5. Thus to the nearest one-tenth the required root is x � 2.4.

Graphical Perspective

-1 0 1 2 3
0

10

20

2 2.1 2.2 2.3 2.4 2.5
15

16

17

y=10®/@ y=16 y=10®/@ y=16

(a) [_1, 3, 1] by [0, 20, 10 ] (b) [2, 2.5, 0.1] by [15, 17, 1 ]Figure 7

(b) Rewriting the equation 10 x�2 � 16 in the equivalent logarithmic form gives us
x�2 � log10 16, and consequently,

multiplying both sides by 2
using a calculator

Note that this value is consistent with the graphical estimate 2.4 that was ob-
tained in part (a).

 � 2.408
 x � 2 log10 16

EXAMPLE 7 Using the Natural Logarithm Function to Solve an Equation

Solve the equation e2t�5 � 5000. Give two forms for the answer: an exact expression
and a calculator approximation rounded to three decimal places.

SOLUTION Rewriting the equation in logarithmic form yields 2t � 5 � ln 5000. Consequently,
we have

dividing by 2
using a calculator � 6.759

 t � (5 � ln  5000)�2
 2t � 5 � ln  5000



The maximum amplitude of the shock wave provides a measure of the intensity
or strength of the particular earthquake. One of the problems faced by the American
geologist Charles F. Richter (1900–1985) in devising a meaningful scale for com-
paring the sizes of earthquakes had to do with the fact that the maximum amplitudes
for different earthquakes can vary greatly, by factors of thousands or more. For in-
stance, an earthquake so small that most people would not feel it might register a
maximum amplitude of 0.2 mm, whereas a destructive (yet not major) quake might
register a maximum amplitude of 1000 mm. But a comparison scale for rating
earthquakes that ranged from 0.2 to 1000, say, would not be especially useful; the
wide range of numbers would make it nonintuitive. For instance, you might ask a
friend to rate on a scale of 1 to 10 a movie he or she had seen, but you wouldn’t want
to use a scale of 1 to 1000. It would be nonintuitive and not especially informative in
most cases. On the other hand, if we introduce a logarithm function in this example,
we have log10 0.2 � �0.7 and log10 1000 � 3. So while the original amplitudes
range numerically from (approximately) 0 to 1000, the logs range from (approxi-
mately) �1 to 3, a much smaller, more manageable scale in this case. This is the
observation that Dr. Richter used in defining his scale for comparing earthquakes. In
his words:

. . . the range between the largest and smallest magnitudes seemed unman-
ageably large. Dr. Beno Gutenberg [1889–1960] then made the natural sug-
gestion to plot the amplitudes logarithmically. —Charles F. Richter in an
interview by Henry Spall of the U.S. Geological Survey, http://wwwneic.cr.usgs.gov/
neis/seismology/people/int_richter.html

In its simplest form, the Richter magnitude M of an earthquake is defined by the
equation

M � log10a A

A0
b
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Millimeters

{Maximum
amplitude

Seconds

Figure 8

Remark: This result says that, for the function y � e2t�5, a relatively small input of
about 6.8 produces a very large output of 5000. This is a reminder of the fact that ex-
ponential functions grow very rapidly (when the exponents are positive and the base
is greater than 1).

The next example indicates one of the many ways that logarithmic functions
occur in applications. Geologists record the vibrations from an earthquake on a de-
vice known as a seismograph. Figure 8 shows a (simplified) output from a seismo-
graph during an earthquake.

http://wwwneic.cr.usgs.gov/neis/seismology/people/int_richter.html
http://wwwneic.cr.usgs.gov/neis/seismology/people/int_richter.html


where A is the maximum amplitude recorded on a standard seismograph located
100 km from the epicenter of the earthquake, and the constant A0 is the maximum am-
plitude of a certain standard intensity earthquake. In Example 8 we use this definition
to compare the intensities of two earthquakes. Remark: Richter introduced this for-
mula for the magnitude of an earthquake in 1935. Beginning in 1936, he worked with
Gutenberg to modify the formula to account for different types of seismographs located
at arbitrary distances from the epicenter of the quake. For more information about
earthquakes and hands-on experience in computing the Richter magnitude of an earth-
quake, see the following VirtualEarthquake Web pages by Professor Gary Novak:

http://vcourseware.calstatela.edu/VirtualEarthquake/VQuakeIntro.html
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EXAMPLE 8 Using the Richter Magnitude Scale

The Richter magnitudes for two large earthquakes are given in Table 2. Use the for-
mula M � log10(A�A0) to determine how many times as strong was the earthquake in
India than the earthquake in California. Assume that A (the maximum amplitude on
the seismograph) is a measure of the strength of an earthquake.

SOLUTION We begin by solving the Richter magnitude equation M � log10(A�A0) for A. We
want to do this so that we can compare the values of A for the two quakes. Rewriting
the equation in its equivalent exponential form yields A�A0 � 10M, and therefore

Now, using this last equation and the values of M given in Table 2, we have

Computing the ratio of these two A-values gives us

using a calculator

In summary, the quake in India was more than 12 times stronger than the one in
California, even though the Richter magnitudes differ by only 1.1. Remark: The
Richter scale is an example of what we call a logarithmic scale. Applications of log-
arithmic scales are given in Exercises 47–56. In particular, Exercise 49 asks you to
show that if the Richter magnitudes of two quakes differ by an amount d, then the
larger quake is 10d (not just d) times stronger than the smaller quake.

 � 12.6

 
A-value for Gujarat

A-value for Northridge
�

A0107.9

A0106.8 � 107.9�6.8 � 101.1

For Northridge quake:

A � A0106.8  ` For Gujarat quake:

A � A0107.9

A � A010M

TABLE 2 Data for Two Earthquakes

Location of Richter
Earthquake Date Magnitude M

Northridge, California January 17, 1994 6.8
Gujarat Province, India January 26, 2001 7.9

http://vcourseware.calstatela.edu/VirtualEarthquake/VQuakeIntro.html
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EXERCISE SET 5.3

A
In Exercises 1–4, fill in the blanks.

1. If f and g are inverse functions, then:
(a) f [g(x)] � _____ for each x in the domain of g.
(b) g[ f (x)] � _____ for each x in the domain of _____.

2. Suppose that f and g are inverse functions, 5 is in the do-
main of f, and 3 is in the domain of g. Then f [g(3)] � _____,
and g[ f (5)] � _____.

3. (a) The functions f (x) � 2x and g(x) � _____ are inverse
functions.

(b) In view of part (a) we have � _____ for each
positive number x, and log2(2x) � _____ for all real
numbers x.

(c) So, for example, without calculating, I know that 
� _____ and also that log2(2�p) � _____.

4. (a) The functions f (x) � ex and g(x) � _____ are inverse
functions.

(b) In view of part (a) we have eln x � _____ for each
positive number x, and ln(ex) � _____ for all real
numbers x.

(c) So, for example, without calculating, I know that 
eln 99 � _____ and also that ln(e�p) � _____.

Exercises 5–8 provide additional review on the inverse 
function concept. The exercises do not explicitly involve
logarithmic functions (but may be helpful to you because 
we’ve defined logarithmic functions in terms of inverse 
functions).

5. Which of the following functions are one-to-one and there-
fore possess an inverse?
(a) y � x � 1
(b) y � (x � 1)2

(c) y � (x � 1)3

6. Let f(x) � 4x � 5.
(a) Find f �1(x).
(b) Find f [ f �1(x)].
(c) Find [ f (x)][ f �1(x)].
(d) Note that your answers for parts (b) and (c) are not 

the same (or at least they shouldn’t be). Of the two
expressions given in parts (b) and (c), which 
one is involved in the definition of an inverse 
function?

7. Let f(x) � x3 � 5x � 1. Given that f �1 exists and 6 is in
the domain of f �1, evaluate f [ f�1(6)].

8. The graph of y � f (x) is a line segment joining the two
points (3, �2) and (�1, 5). Specify the corresponding end-
points for the graph of: 
(a) y � f �1(x) (b) y � f �1(x � 1)

2log2 99

2log2 x

In Exercises 9 and 10, write each equation in logarithmic form.

9. (a) 9 � 32 10. (a) 1�125 � 5�3

(b) 1000 � 103 (b) e0 � 1
(c) 73 � 343 (c) 5x � 6
(d) � 21�2 (d) e3t � 8

In Exercises 11 and 12, write each equation in exponential
form.

11. (a) log2 32 � 5 12. (a) ln u � s
(b) log10 1 � 0 (b) loga b � c
(c) loge � 1�2
(d) ln(1�e) � �1

In Exercises 13 and 14, complete the tables.

13. x 1 10 102 103 10�1 10�2 10�3

log10 x

14. x 1 e e2 e3 e�1 e�2 e�3

ln x

In Exercises 15 and 16, rely on the definition of logb x (in the
box on page 347) to decide which of the two quantities is larger.

15. (a) log5 30 or log8 60 16. (a) log9 80 or ln(e2)
(b) ln 17 or log10 17 (b) log2 3 or log3 2

In Exercises 17 and 18, evaluate each expression.

17. (a) log9 27 18. (a) log25(1�625)
(b) log4(1�32) (b) log16(1�64)
(c) log5 (c) log10 10

(d) log2

In Exercises 19 and 20, solve each equation for x by converting
to exponential form. In Exercises 19(b) and 20, give two forms
for each answer: one involving e and the other a calculator
approximation rounded to two decimal places.

19. (a) log4 x � �2 20. (a) log5 x � e
(b) ln x � �2 (b) ln x � �e

In Exercises 21 and 22, find the domain of each function.

21. (a) y � log4 5x 22. (a) y � ln(2 � x � x2)
(b) y � log10(3 � 4x)
(c) y � ln(x2)
(d) y � (ln x)2

(e) y � ln(x2 � 25)

 812
 515

1e

12

(b) y � log10
2x � 3

x � 5



In Exercises 35 and 36, simplify each expression.

35. (a) ln e4 36. (a) ln e
(b) ln(1�e) (b) ln e�2

(c) ln (c) (ln e)�2

For Exercises 37–44:

(a) Use a graphing utility to estimate the root(s) of the
equation to the nearest one-tenth (as in Example 6).

(b) Solve the given equation algebraically by first rewriting it
in logarithmic form. Give two forms for each answer: an
exact expression and a calculator approximation rounded
to three decimal places. Check to see that each result is
consistent with the graphical estimate obtained in part (a).

37. 10 x � 25 38. 102x�1 � 145
39. � 40 40. (10 x)2 � 40
41. e2t�3 � 10 42. et�1 � 16
43. e1�4t � 12.405 44. � 112
45. Use graphs to help answer the following questions.

(a) For which x-values is ln x � log10 x?
(b) For which x-values is ln x � log10 x?
(c) For which x-values is ex � 10x?
(d) For which x-values is ex � 10x?

46. This exercise demonstrates the very slow growth of
the natural logarithm function y � ln x. We consider the
following question: How large must x be before the graph
of y � ln x reaches a height of 10?
(a) Graph the function y � ln x using a viewing rectangle

that extends from 0 to 10 in the x-direction and 0 to 12
in the y-direction. Note how slowly the graph rises.
Use the graphing utility to estimate the height of the
curve (the y-coordinate) when x � 10.

(b) Since we are trying to see when the graph of y � ln x
reaches a height of 10, add the horizontal line y � 10
to your picture. Next, adjust the viewing rectangle 
so that x extends from 0 to 100. Now use the graph-
ing utility to estimate the height of the curve when
x � 100. [As both the picture and the y-coordinate
indicate, we’re still not even halfway to 10. Go on to
part (c).]

(c) Change the viewing rectangle so that x extends to
1000, then estimate the y-coordinate corresponding to
x � 1000. (You’ll find that the height of the curve is
almost 7. We’re getting closer.)

(d) Repeat part (c) with x extending to 10,000. (You’ll find
that the height of the curve is over 9. We’re almost
there.)

(e) The last step: Change the viewing rectangle so that x
extends to 100,000, then use the graphing utility to es-
timate the x-value for which ln x � 10. As a check on
your estimate, rewrite the equation ln x � 10 in expo-
nential form, and evaluate the expression that you
obtain for x.

e3x2

10x2

1e

23. In the accompanying figure, what are the coordinates of the
four points A, B, C, and D?

24. In the accompanying figure, what are the coordinates of the
points A, B, C, and D?

In Exercises 25–30, graph each function and specify the do-
main, range, intercept(s), and asymptote.

25. (a) y � log2 x 26. (a) y � ln x
(b) y � �log2 x (b) y � �ln x
(c) y � log2(�x) (c) y � ln(�x)
(d) y � �log2(�x) (d) y � �ln(�x)

27. y � �log3(x � 2) � 1 28. y � �log10(x � 1)
29. y � ln(x � e) 30. y � ln(�x) � e
31. Let

(a) Find the domain and range of f .
(b) Show f is one-to-one.
(c) Find the domain and range of .

(d) Graph f and , both as functions of x, and the 
line on the same set of axes.

(e) Find a formula for .
32. Follow Exercise 31 for .
33. Follow Exercise 31 for .
34. Follow Exercise 31 for .f(x) � ln(1 � x)

h(x) � log2(x � 4)
g(x) � 9 � 3x

f �1(x)

y � xf �1
f �1

f(x) � 3�x

_1

y

x

D

C

A

B

y=´

y=x

y=ln x

4

y

x

A

B

C

D
y=log™ x

y=2® y=x
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where the constant I0 is the sound intensity of a barely au-
dible sound at the threshold of hearing. The units for the
sound level b are decibels, abbreviated dB.
(a) Solve the equation b� 10 log10(I�I0) for I by first

dividing by 10 and then converting to exponential form.
(b) The sound level for a power lawnmower is b� 100 db,

and that for a cat purring is b � 10 db. Use your result
in part (a) to determine how many times more intense
is the power mower sound than the cat’s purring.

52. A sound level of b � 120 db is at the threshold of pain.
(Some loud rock concerts reach this level.) The sound in-
tensity that corresponds to b � 120 db is 1 W/m2. Use this
information and the equation b � 10 log10(I�I0) to deter-
mine I0, the intensity of a barely audible sound at the thresh-
old of hearing. What is the decibel level, b, of a barely
audible sound?

In Exercises 53–56, use the following information on pH.
Chemists define pH by the formula pH � �log10[H�], where
[H�] is the hydrogen ion concentration measured in moles per
liter. For example, if [H�] � 10�5

, then pH � 5. Solutions with
a pH of 7 are said to be neutral; a pH below 7 indicates an
acid; and a pH above 7 indicates a base. (A calculator is help-
ful for Exercises 53 and 54.)

53. (a) For some fruit juices, [H�] � 3 � 10�4. Determine the
pH and classify these juices as acid or base.

(b) For sulfuric acid, [H�] � 1. Find the pH.
54. An unknown substance has a hydrogen ion concentration

of 3.5 � 10�9. Classify the substance as acid or base.
55. What is the hydrogen ion concentration for black coffee if

the pH is 5.9?
56. A chemist adds some acid to a solution changing the pH

from 6 to 4. By what factor does the hydrogen ion concen-
tration change? Note: Lower pH corresponds to higher
hydrogen ion concentration.

In Exercises 57–64, decide which of the following properties
apply to each function. (More than one property may apply to a
function.)

A. The function is increasing for �q � x � q.
B. The function is decreasing for �q � x � q.
C. The function has a turning point.
D. The function is one-to-one.
E. The graph has an asymptote.
F. The function is a polynomial function.

G. The domain of the function is (�q, q).
H. The range of the function is (�q, q).
57. y � ln x 58. y � ln(�x)
59. y � �ln x 60. y � ln
61. y � ln x � e 62. y � x � ln e
63. y � �ln(�x) 64. y � (ln x)2

65. Let f(x) � ex�1. Find f �1(x) and sketch its graph. Specify
any intercept or asymptote.

0 x 0

In Exercises 47 and 48, Richter magnitudes of earthquakes are
given. Follow the method of Example 8 to determine how many
times stronger one quake was than the other.

47.
Richter

Location of Magnitude
Earthquake Date M

Bombay, India September 29, 1993 6.4
San Salvador, February 13, 2001 6.6
El Salvador

48.
Richter

Location of Magnitude
Earthquake Date M

Napa, California September 3, 2000 5.2
Sumatra, Indonesia June 4, 2000 8.0

B
As background for Exercises 49 and 50, you need to have read
Example 8.

49. Suppose that an earthquake has a Richter magnitude of M0,
and a second earthquake has a magnitude of M0 � d
(where d � 0). Show that the second earthquake is 10d

times stronger than the first earthquake.
50. In 1956 the geologists Gutenberg and Richter developed

the following formula for estimating the amount of en-
ergy E released in an earthquake: log10 E � 4.4 � (1.5)M,
where E is the energy in joules and M is the Richter magni-
tude. Now refer to the following table, and let E1 denote
the energy of the quake in the Philippines and E2 the en-
ergy of the quake in Washington. Compute the ratio E1�E2

to compare the energies of the two quakes.

Richter
Location of Magnitude
Earthquake Date M

Mindanao, Philippines January 1, 2001 7.5
(northeast of) February 28, 2001 6.8
Olympia, Washington

51. The intensity of the sounds that the human ear can detect
varies over a very wide range of values. For instance, a
whisper from 1 meter away has an intensity of approxi-
mately 10�10 watts per square meter (W/m2), whereas,
from a distance of 50 meters, the intensity of a launch of
the Space Shuttle is approximately 108 W/m2. For a sound
with intensity I, the sound level b is defined by

b � 10 log10(I�I0)
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Remark: Equation (1) is approximately Kepler’s third law
of planetary motion. According to George F. Simmons
in Calculus Gems (New York: McGraw-Hill, Inc., 1992),
“Kepler had struggled for more than twenty years to find
this connection between a planet’s distance from the sun
and the time required to complete its orbit. He published
his discovery in 1619 in a work entitled Harmonices Mundi
(The Harmonies of the World).”

70. This exercise uses the natural logarithm and a regression
line to find a simple formula relating the following two
quantities.

x: the average distance of a planet from the sun
y: the average orbital velocity of the planet

(a) Complete the following table.

x y
Average Average
Distance Orbital 

from the Sun Velocity
Planet (millions of miles) (miles/sec) ln x ln y

Mercury 35.98 29.75
Venus 67.08 21.76
Earth 92.96 18.51
Mars 141.64 14.99

(b) Use a graphing utility to obtain a scatter plot and a regres-
sion equation Y � AX � B for the pairs of numbers (ln x,
ln y). You will find that A � �0.500 and B � 5.184. Thus
the quantities ln x and ln y are related as follows:

(c) Show that the equation obtained in part (b) can be
rewritten in the form

(2)

Hint: Convert from logarithmic to exponential form.
(d) Equation (2) was obtained using data for the first four

planets from the sun. Complete the following table to
see how well equation (2) fits the data for the remaining
planets. (Round the answers to two decimal places.)

y y Average
x Average Orbital 

Average Orbital Velocity
Distance Velocity (miles/sec)

from the Sun (miles/sec) (from
(millions [calculated astronomical

Planet of miles) from eqn. (2)] observations)

Jupiter 483.63 8.12
Saturn 888.22 5.99
Uranus 1786.55 4.23
Neptune 2799.06 3.38
Pluto 3700.75 2.95

y �
e5.184

1x

ln  y � �0.500 ln  x � 5.184

66. Let g(t) � ln(t � 1). Find g�1(t) and draw its graph.
Specify any intercept or asymptote.

67. Estimate a value for x such that log2 x � 100. Use the
approximation 103 � 210 to express your answer as a
power of 10. Answer: 1030

68. (a) How large must x be before the graph of y � ln x
reaches a height of y � 100?

(b) How large must x be before the graph of y � ex

reaches a height of (i) y � 100? (ii) y � 106?
69. This exercise uses the natural logarithm and a regression

line (that is, a linear function) to find a simple formula re-
lating the following two quantities:
x: the average distance of a planet from the sun
y: the period of a planet (that is, the time required for a

planet to make one complete revolution around the sun)
(a) Complete the following table. (In the table the abbre-

viation AU stands for astronomical unit, a unit of dis-
tance. By definition, one AU is the average distance
from the earth to the sun.

x y
Average Distance Period

Planet from the Sun (AU) (years) ln x ln y

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.202 11.820

(b) Use a graphing utility to obtain a scatter plot and a re-
gression equation Y � AX � B for the pairs of numbers
(ln x, ln y). After some rounding, you should obtain
A � 1.5 and B � 0. Thus the quantities ln x and ln y
are related as follows:

(c) Show that the equation obtained in part (b) can be sim-
plified to

(1)

(d) Equation (1) was obtained using data for the first five
planets from the sun. Complete the following table to
see how well equation (1) fits the data for the remain-
ing planets.

y (years)
y (years) (from

[calculated astronomical
Planet x (AU) from eqn. (1)] observations)

Saturn 9.555 29.46
Uranus 19.22 84.01
Neptune 30.11 164.79
Pluto 39.44 248.50

y � x1.5

ln  y � 1.5 ln  x
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number theorem was formally proved by the French
mathematician J. Hadamard and also by the Belgian
mathematician C. J. de la Vallée-Poussin.)

x P(x)

102 25
104 1229
106 78498
108 5761455
109 50847534
1010 455052512

(c) In 1808 A. M. Legendre found that he could improve
upon Gauss’s approximation for P(x) by using the
expression x�(ln x � 1.08366) rather than x�(ln x).
Complete the following table to see how well
Legendre’s expression approximates P(x). Round
your results to four decimal places.

x P(x)

102 25
104 1229
106 78498
108 5761455
109 50847534
1010 455052512

C
73. (a) Find the domain of the function f defined by 

f (x) � ln(ln x).
(b) Find f�1(x) for the function f in part (a).

74. Find the domain of the function g defined by 
g(x) � ln(ln(ln x)).

75. Let g(x) � ln(ln(ln x)).
(a) Using a graphing utility, display the graph of g, first

in the standard viewing rectangle, then in the viewing
rectangle [0, 100, 10] by [�5, 5, 1].

(b) Find the range of the function g. (See Example 4 in
Section 3.1 if you need a hint on how to begin.)

(c) Could you have guessed the answer in part (b) from the
graphs in part (a)?

76. Let be the hyperbolic sine 

function introduced in Section 5.2, Exercise 57.
(a) Find the domain and range of f .
(b) Show f is one-to-one.
(c) Find the domain and range of .f �1

f(x) � sinh x �
ex � e�x

2

P(x )
x�(In x � 1.08366)

x
In x � 1.08366

P(x )

x�In x
x

In x

71. Logarithmic regression: In Sections 4.1 and 4.2 we
looked at applications in which linear functions or qua-
dratic functions were used to model data sets. In each case
we used a graphing utility to obtain the equation of the lin-
ear function or quadratic function that “best fitted” the data.
In this exercise we use a function of the form y � a � b ln
x to model a given data set, and we compare a projection
made with this model to one based on a linear model.
(a) The following table gives the population of Los Angeles

County at ten-year intervals over the period 1950–1990.
Use a graphing utility to obtain a scatter plot for the data,
and then use the logarithmic regression option on the
graphing utility to find a function of the form y � a � b
ln x that best fits the data. (Let x � 50 correspond to
1950. The reason we don’t use the seemingly simpler
choice x � 0 for 1950 is that x � 0 is not in the domain
of the function y � a � b ln x.) Display the graph of the
function and the scatter plot on the same screen.

Population of Los Angeles County

Year 1950 1960 1970 1980 1990

Population
(millions) 4.152 6.040 7.032 7.478 8.863

Source: U.S. Bureau of the Census

(b) Follow part (a), but use a linear model. Display the
scatter plot and the graphs of the linear and logarithmic
models on the same screen.

(c) Use each model to make a projection for what the
population might have been in the year 2000.

(d) According to the U.S. Bureau of the Census, the popula-
tion of Los Angeles County in 2000 was 9.519 million.
Which answer in part (c) is closer to this? Compute the
percentage error for each projection.

72. This exercise indicates one of the ways the natural logarithm
function is used in the study of prime numbers. Recall that
a prime number is a natural number greater than 1 with no
factors other than itself and 1. For example, the first ten
prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.
(a) Let P(x) denote the number of prime numbers that do

not exceed x. For instance, P(6) � 3, since there are
three prime numbers (2, 3, and 5) that do not exceed 6.
Compute P(10), P(18), and P(19).

(b) According to the prime number theorem, P(x) can be
approximated by x�(ln x) when x is large and, in fact,

the ratio approaches 1 as x grows larger and

larger. Verify this empirically by completing the fol-
lowing table. Round your results to three decimal
places. (These facts were discovered by Carl Friedrich
Gauss in 1792, when he was 15 years old. It was not
until 1896, more than 100 years later, that the prime

P(x)

x�(ln  x)
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(b) Show h is not one-to-one.
(c) Restrict the domain of h to the largest interval of 

the form on which h is one-to-one. Call this 
restricted function H.

(d) Find the domain and range of .
(e) Graph H and , both as functions of x, and the 

line on the same set of axes.
(f) Find a formula for .

Answer: H�1(x) � ln 1x � 2x2 � 1 2, x 
 1. 43
H�1(x)

y � xH�1
H�1

[a, q)

(d) Graph f and , both as functions of x, and the 
line on the same set of axes.

(e) Find a formula for .

Answer: .
77. Follow Exercise 76 for the hyperbolic tangent function 

. [The answer for part (e) should 

be .

78. Let be the hyperbolic cosine

function introduced in Section 5.2, Exercise 55.

(a) Find the domain and range of h.

h(x) � cosh x �
ex � e�x

2

g�1(x) �
1

2
ln a 1 � x

1 � x
b d

g(x) � tanh x �
ex � e�x

ex � e�x

4f �1(x) � ln 1x � 2x2 � 1 23
f �1(x)

y � xf �1
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MINI PROJECT More Coffee

As a prerequisite for this mini project, someone in your group or in the class at
large needs to have completed the Section 5.2 project that dealt with the tem-
perature of a cooling cup of coffee. This is a continuation (a completion, actu-
ally) of Problem B in that project. As a start here, have that person present a
detailed summary of the questions, methods, and results from the Section 5.2
project. Then, for this mini project: Use the techniques from both Sections 5.2
and 5.3 to work out a complete solution to Problem B. Round the answer to the
nearest one second. Check that your result is consistent with the approximation
from the graphing utility obtained in the Section 5.2 project. 

5.4 PROPERTIES OF LOGARITHMS
A few basic properties of logarithms are used repeatedly. In this section we will state
these properties, discuss their proofs, and then look at examples.

1. (a) logb b � 1 (b) logb 1 � 0
2. logb PQ � logb P � logb Q

The log of a product is the sum of the logs of the factors.
3. logb(P�Q) � logb P � logb Q

The log of a quotient is the log of the numerator minus the log of the denominator.
As a useful particular case, we have logb(1�Q) � �logb Q.

4. logb Pr � r logb P, for all real numbers r.
5. � P
6. logb bx � x, for all real numbers x.

Note: P and Q are assumed to be positive in Properties 2–5.

blogbP

Properties of Logarithms

[John Napier] invented the word
“logarithms,” using two Greek words,
. . . arithmos, “number” and logos,
“ratio.” It is impossible to say exactly
what he had in mind when making up
this word. —Alfred Hooper in Makers of
Mathematics (New York: Random
House, Inc., 1948) 



All of these properties follow from the meaning of the logarithm and the proper-
ties of exponents. For example, in Property 1,

logb b � the power to which b must be raised to get b � 1 (since b1 � b) 

Similarly,

logb1 � the power to which b must be raised to get 1 � 0 (since b0 � 1)

To prove Property 2, we begin by letting x � logb P. The equivalent exponential
form of this equation is

(1)

Similarly, we let y � logb Q. The exponential form of this equation is

(2)

If we multiply equation (1) by equation (2), we get

and therefore

(3)

Next we write equation (3) in its equivalent logarithmic form. This yields

But using the definitions of x and y, this last equation is equivalent to

That completes the proof of Property 2.
The proof of Property 3 is quite similar to the proof given for Property 2.

Exercise 72(a) asks you to carry out the proof of Property 3.
We turn now to the proof of Property 4. We begin by letting x � logb P. In expo-

nential form, this last equation becomes

(4)

Now we raise both sides of equation (4) to the power n. This yields

The logarithmic form of this last equation is

or (from the definition of x)

The proof of Property 4 is now complete.
Properties 5 and 6 follow directly from the meaning of the logarithm. For

Property 5, is the power to which b must be raised to obtain P. So 
Similarly, for Property 6 since x is the power to which b must be raised
to obtain bx.

Now let’s see how these properties are used. To begin with, we display some sim-
ple numerical examples in the box that follows.

logb b
x � x

blogb P � P.logb P

logb P
n � n logb P

logb P
n � nx

(bx)n � bnx � Pn

bx � P

logb PQ � logb P � logb Q

logb PQ � x � y

PQ � bx�y

PQ � bxby

Q � by

P � bx
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The examples in the box showed how we can simplify or shorten certain expres-
sions involving logarithms. The next example is also of this type.
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PROPERTY SUMMARY Some Properties of Logarithms

Property Example

logb P � logb Q � logb PQ Simplify: log10 50 � log10 2
Solution:

logb P � logb Q � logb Simplify: log8 56 � log8 7

Solution:

logb Pr � rlogb P Simplify: log2

Solution:

� P Simplify:
Solution: 3log37 � 7

3log37blogbP

 �
1

5
  log2  16 �

4

5

 log21
5 16 � log2(161�5)

1
5 16

 � log8 8 � 1

 log8  56 � log8  7 � log8 
56

7

P

Q

 � 2
 � log10  100

 log10  50 � log10  2 � log10(50 � 2)

EXAMPLE 1 Using Log Properties to Shorten Expressions

Express as a single logarithm with a coefficient of 1:

1

2
 logb x � logb(1 � x2), for x � 0

SOLUTION using Property 4 on page 361

using Property 3

This last expression is the required answer.

Property 2 says that the logarithm of a product of two factors is equal to the sum
of the logarithms of the two factors. This can be generalized to any number of fac-
tors. For instance, with three factors we have

using Property 2
using Property 2 again

The next example makes use of this idea.

 � logb A � logb B � logb C
 � logb A � logb BC

 logb(ABC) � logb[A(BC)]

 � logb 

x1�2

1 � x2

 
1

2
 logb x � logb(1 � x2) � logb x1�2 � logb(1 � x2)
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EXAMPLE 2 Using Log Properties to Shorten Expressions

Express as a single logarithm with a coefficient of 1:

ln(x2 � 9) � 2 ln  
1

x � 3
� 4 ln  x  (x � 3)

SOLUTION

This last expression can be simplified still further by factoring the quantity x2 � 9 as
(x � 3)(x � 3). Then a factor of x � 3 can be divided out of the numerator and
denominator of the fraction. The result is

Note: In Example 2 we assumed x � 3 so that all the logarithms exist and the
properties of logarithms apply.

In the examples we have considered so far, we’ve used the properties of loga-
rithms to shorten given expressions. We can also use these properties to expand an
expression. (This is useful in calculus.)

 � ln  
x5 � 3x4

x � 3

 ln(x2 � 9) � 2 ln  
1

x � 3
� 4 ln  x � ln  

(x � 3)x4

x � 3

 � ln  
(x2 � 9)x4

(x � 3)2

 � ln c (x2 � 9) # 1

(x � 3)2
# x4 d

 � ln(x2 � 9) � ln  
1

(x � 3)2 � ln  x4

 ln(x2 � 9) � 2 ln  
1

x � 3
� 4 ln  x � ln (x2 � 9) � ln c a 1

x � 3
b 2 d � ln  x4

EXAMPLE 3 Using Log Properties to Expand Expressions

Write each of the following quantities as sums, differences, and constant multiples
of simpler logarithmic expressions. Express each answer in such a way that no loga-
rithm of products, quotients, or powers appears.

(a) log10 (b) log10 (c) ln 
x212x � 1

(2x � 1)3�2A

3 2x

3x2 � 1
 13x

SOLUTION (a)

(b)

 � 1
3 [log10  2 � log10  x � log10(3x2 � 1)]

 � 1
3 [log10  2x � log10(3x2 � 1)]

 � 1
3 log10 

2x

3x2 � 1

 log10 

B

3 2x

3x2 � 1
� log10 c a 2x

3x2 � 1
b 1�3 d

 � 1
2 (log10  3 � log10  x)

 log1013x � log10(3x)1�2 � 1
2 log10(3x)



(c)

Note: In Example 3, unlike Example 2, no condition is explicitly given for x. So,
with our usual function convention, the domain for each function is implicitly as-
sumed to be the largest possible set of real numbers x for which the given expressions
make sense. You can show that the domain for (a) and (b) is all positive numbers, and
the domain for (c) is all numbers greater than 1�2.

 � 2 ln  x � 1
2 ln (2x � 1) � 3

2 ln (2x � 1)
 � ln  x2 � ln (2x � 1)1�2 � ln (2x � 1)3�2

 ln  
x212x � 1

(2x � 1)3�2
� ln  

x2(2x � 1)1�2

(2x � 1)3�2
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EXAMPLE 4 Practice Applying the Log Properties

Given that logb 2 � A and logb 6 � B, express each of the following in terms of A
and/or B.

(a) logb 8 (c) logb 12 (e) log 2
(b) logb (d) logb 3 (f) logb(b�36)16

1b

SOLUTION (a) logb 8 � logb 23 � 3 logb 2 � 3A
(b) logb � logb 61�2 � �

(c) logb 12 � logb(2 � 6) � logb 2 � logb 6 � A � B
(d) logb 3 � logb(6�2) � logb 6 � logb 2 � B � A
(e) log 2 � the power to which must be raised to obtain 2. Let x represent this

unknown power. We have � 2, and therefore

Now we rewrite this last equation in logarithmic form to obtain logb 2 � x�2, and
therefore

(f)
 � 1 � logb  6

2 � 1 � 2 logb  6 � 1 � 2B

 logb(b�36) � logb  b � logb  36

x � 2 logb  2 � 2A

 bx�2 � 2
 (b1�2)x � 2

11b 2 x
1b1b 

1
2 B1

2 logb  616

EXAMPLE 5 Using the Property Logb Pr � r Logb P to Find an x-intercept

Figure 1 shows the graph of y � 2x � 3. (The axes are marked off in one-unit inter-
vals.) As indicated in the figure, the x-intercept of the curve is between 1 and 2.
Determine both an exact expression for this x-intercept and a calculator approxima-
tion rounded to two decimal places.
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EXAMPLE 6 Using a Logarithm to Solve an Equation

Solve for x: 45x�2 � 70. Use a calculator to evaluate the final answer; round to three
decimal places.

SOLUTION The fact that the unknown appears in the exponent suggests that Property 4 (the property
that “brings down” the exponent) may be useful. To put Property 4 into play, we’ll take
the logarithm of both sides of the given equation. Either base 10 or base e logarithms can
be used here (because they’re both on the calculator). Since we used base e logarithms
in the previous example, let’s use base 10 here just for the sake of variety. (You can check
for yourself at the end that base e logarithms will yield the same numerical answer.)

Taking the base 10 logarithm of both sides of the given equation, we have

using Property 4

The required solution is approximately 0.213. Figure 2 shows a graphical interpreta-
tion of this result.

It is sometimes necessary to convert logarithms in one base to logarithms in an-
other base. After the next example, we will state a formula for this. However, as the
next example indicates, it is easy to work this type of problem from the basics, with-
out relying on a formula.

 x � 0.213

 x �
[(log10 70)�(log10 4)] � 2

5

 5x � 2 � (log10 70)�(log10 4)
 (5x � 2)log10 4 � log10 70

 log10 4
5x�2 � log10 70

Graphical Perspective

0
_0.4

20

40

60

80

_0.2 0 0.2 0.4

Figure 2
The curve y � 45x�2 intersects 
the line y � 70 at a point whose 
x-coordinate is slightly greater 
than 0.2. Example 6 shows that 
this x-coordinate is 0.213 (rounded
to three decimal places).

SOLUTION Setting y equal to zero in the given equation yields 2x � 3 � 0, or 2x � 3. Notice that
the unknown, x, appears in the exponent. To solve for x, we take the logarithm of both
sides of the equation. (Base e logarithms are used in the following computations;
Exercise 71 asks you to check that the use of base 10 logarithms produces an equiv-
alent answer.) We have

using Property 4 on page 361

Caution:

Alternatively, we could express 2x � 3 in logarithmic form to obtain the solution
x � log2 3 and then use the change of base formula on page 367 to obtain a decimal
approximation.

ln  3

ln  2
� ln  3 � ln  2 x �

ln 3

ln 2
� 1.58

 x ln  2 � ln  3
 ln  2x � ln  3

x

y

y=2®-3

Figure 1 
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EXAMPLE 8 Changing Bases to Simplify an Expression

Simplify the product (log2 10)(log10 2).

SOLUTION We’ll use the change-of-base formula so that both factors in the given product
involve logarithms with the same base. Expressing the first factor, log210, in terms
of base 10 logarithms, we have

and therefore

So the given product is equal to 1. [Using the same method, one can show that, in
general, (loga b)(logb a) � 1.]

Examples 1–8 have dealt with applications of the properties of logarithms. How-
ever, you also need to understand what the properties don’t say. For instance,

(log2  10)(log10  2) �
1

log10  2
 (log10  2) � 1

log2  10 �
log10  10

log10  2
�

1

log10  2

EXAMPLE 7 Changing Bases

Express log2 5 in terms of base 10 logarithms.

SOLUTION Let z � log2 5. The exponential form of this equation is

We now take the base 10 logarithm of each side of this equation to obtain

using Property 4 on page 361

Given our definition of z, this last equation can be written

This is the required answer.

The method shown in Example 7 can be used to convert between any two bases.
Exercise 72(b) at the end of this section asks you to follow this method, using letters
rather than numbers, to arrive at the following general formula.

log2  5 �
log10  5

log10  2

 z �
log10  5

log10  2

 z log10  2 � log10  5
 log10  2

z � log10  5

2z � 5

PROPERTY SUMMARY Change of Base for Logarithms

Formula Examples

log10  e �
ln  e

ln  10
�

1

ln  10
log2  3 �

log10  3

log10  2
�

ln  3

ln  2
loga  x �

logb  x

logb  a



Property 3 does not apply to an expression such as [Property 3 would apply

if the expression were log10(5�2).] In the box that follows, we list some errors to
avoid in working with logarithms. 

log10  5

log10  2
.
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Error Correction Comment

logb(x � y) � logb x � logb y logb(xy) � logb x � logb y In general, there is no simple identity involving
logb(x � y). This is similar to the situation for

(which is not equal to � ).

� logb x � logb y logb � logb x � logb y In general, there is no simple identity involving 
the quotient (logb x)�(logb y).

(ln x)3 � 3 ln x (ln x)3 � (ln x)(ln x)(ln x) (ln x)3 is not the same as ln(x3). Regarding the lat-
ter, we do have ln(x3) � 3 ln x, where x � 0.

� � ln x � ln 2 for x � 0 The confusion between and is sometimes

due simply to careless handwriting.
and

� ln x � for x � 0ln  1x
1
2

ln  x
2

ln  x
2

ln  
x
2

ln  
x
2

ln  x
2

ln  
x
2

a x
y
blogb  x

logb  y

1y1x1x � y

Errors to Avoid

In Exercises 20–26, write the quantity using sums, differences,
and constant multiples of simpler logarithmic expressions.
Express the answer so that logarithms of products, quotients,
and powers do not appear.

20. (a) log10

(b)

21. (a) log10 22. (a) logb

(b) (b)

23. (a) log10 24. (a) logb

(b) (b)

25. (a) logb

(b)

26. (a) logb (b) ln a e � 1

e � 1
b 3�2

 
B

3 (x � 1)2(x � 2)

(x � 2)2(x � 1)

2 ln  2(1 � x2)(1 � x4)(1 � x6)

2x�b

ln  
1

2x2 � x � 1
ln  

24 � x2

(x � 1)(x � 1)3�2

B

3 x � 3
x

29 � x2

ln  
x23 4x � 1

22x � 1
ln  

x2

21 � x2

21 � x2

x
 

x2

1 � x2

ln  
A

(x � 1)(x � 2)
(x � 1)(x � 2)

1(x � 1)(x � 2)

A
In Exercises 1–10, simplify the expression by using the defini-
tion and properties of logarithms.

1. log10 70 � log10 7 2. log10 40 � log10(5�2)
3. log7 4. log9 25 � log9 75
5. log3 108 � log3(3�4) 6. ln e3 � ln e
7. � � ln 8. eln 3 � eln 2 � eln e

9. � 3 log5 10. logb bb

In Exercises 11–19, write the expression as a single logarithm
with a coefficient of 1.

11. log10 30 � log10 2 12. 2 log10 x � 3 log10 y
13. log5 6 � log5(1�3) � log5 10
14. p logb A � q logb B � r logb C
15. (a) ln 3 � 2 ln 4 � ln 32

(b) ln 3 � 2(ln 4 � ln 32)
16. (a) log10(x2 � 16) � 3 log10(x � 4) � 2 log10 x

(b) log10(x2 � 16) � 3[log10(x � 4) � 2 log10 x]
17. logb 4 � 3[logb(1 � x) � logb(1 � x)]
18. ln(x3 � 1) � ln(x2 � x � 1)
19. 4 log10 3 � 6 log10(x2 � 1) � [log10(x � 1) � 2 log10 3]1

2 

1
2 

1
3 52log2 5

1e1
2

 17

EXERCISE SET 5.4



In Exercises 49 and 50, solve the equations. Give two forms for
each answer: one involving base 10 logarithms and the other a
calculator approximation rounded to three decimal places.

49. 50.

In Exercises 51–56, express the quantity in terms of base 10
logarithms.

51. log2 5 52. log5 10 53. ln 3
54. ln 10 55. logb 2 56. log2 b

In Exercises 57–61, express the quantity in terms of natural
logarithms.

57. log10 6 58. log2 10 59. log10 e
60. logb 2, where b � e2 61. log10(log10 x)
62. Give specific examples showing that each statement is

false.
(a) log(x � y) � log x � log y
(b) (log x)�(log y) � log x � log y
(c) (log x)(log y) � log x � log y
(d) (log x)k � k log x

63. True or false?
(a) log10 A � log10 B � log10 C � log10 AB�
(b) loge � 1�2
(c) ln � 1�2
(d) ln x3 � ln 3x
(e) ln x3 � 3 ln x
(f) ln 2x3 � 3 ln 2x
(g) loga c � b means ab � c.
(h) log5 24 is between 51 and 52.
(i) log5 24 is between 1 and 2.
(j) log5 24 is closer to 1 than to 2.
(k) The domain of g(x) � ln x is the set of all real numbers.
(l) The range of g(x) � ln x is the set of all real numbers.
(m) The function g(x) � ln x is one-to-one.

Use a calculator for Exercises 64–66.

64. (a) Check Property 2 using the values b � 10, P � p, 
and Q � .

(b) Let P � 3 and Q � 4. Show that ln(P � Q) � ln P � ln Q.
(c) Check Property 3 using the values b � 10, P � 2, 

and Q � 3.
(d) If P � 10 and Q � 20, show that ln(PQ) � (ln P)(ln Q).
(e) Check Property 3 using natural logarithms and the

values P � 17 and Q � 76.
(f ) Show that (log10 17)�(log10 76) � log10 17 � log10 76.

65. (a) Check Property 4 using the values b � 10, P � p, and
r � 7.

(b) Using the values given for b, P, and r in part (a), show
that logb Pr � (logb P)r.

(c) Verify Property 5 using the values b � 10 and P � 1776.
(d) Verify that ln 2 � ln 3 � ln 4 � ln 24.

12

1e
 1e

1C 211
2 

29�x2

� 430.53893x2�1 � 12

In Exercises 27–36, suppose b is a positive constant greater
than 1, and let A, B, and C be defined as follows:

In each case, use the properties of logarithms to evaluate the
given expression in terms of A, B, and/or C. (In Exercises
31–36, use the change-of-base formula.)

27. (a) logb 6 28. (a) logb 10
(b) logb(1�6) (b) logb 100
(c) logb 27 (c) logb 0.01
(d) logb(1�27) (d) logb 0.3

29. (a) logb(5�3) 30. (a) logb

(b) logb 0.6 (b) logb

(c) logb(5�9) (c) logb

(d) logb(5�16) (d) logb

31. (a) log3 b 32. (a)
(b) log3(10b) (b) log 2

33. (a) log3b 2 34. (a) log5b 1.2
(b) log3b 15 (b) log5b 2.5

35. (a) (logb 5)(log5 b) 36. (a) log2b 6 � log2b(1�6)
(b) (logb 6)(log6 b) (b) log18(1�b)

In Exercises 37 and 38, suppose that log10 A � a, log10 B � b,
and log10 C � c. Express the following logarithms in terms of 
a, b, and c.

37. (a) log10 AB2C3 38. (a) log10 A � 2 log10(1�A)
(b) log10 10 (b) log10(A�10)

(c) log10 (c) log10

(d) log10(10A� ) (d) log10

In Exercises 39 and 40, suppose that ln x � t and ln y � u.
Write each expression in terms of t and u.

39. (a) ln(ex) 40. (a) ln(eln x)
(b) ln xy � ln(x2) (b) eln(ln xy)

(c) ln � ln(x�e) (c) ln � ln

(d) ln(e2x ) (d)

In Exercises 41 and 42, graph the equations and determine the
x-intercepts (as in Example 5).

41. (a) y � 2x � 5 42. (a) y � 3x�1 � 2
(b) y � 2x�2 � 5 (b) y � 31�x � 4

In Exercises 43–48, solve the equations. Express the answers in
terms of natural logarithms.

43. 5 � 2e2x�1 Suggestion: First divide by 2.
44. 3e1�t � 2 45. 2x � 13 46. 53x�1 � 27
47. 10 x � e 48. 102x�3 � 280

(ln  x)3 � ln (x4)

a ln  
x

e2 b ln (xe2)

1y

a y

ex
ba ex

y
b1xy

 

(AB)5

C
1BC

 
100 A2

B41
3 C

110ABC

1A

1b

logb2  5
1

4 60
1

3 0.4
115
15

logb  2 � A  logb  3 � B  logb  5 � C
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(a) Since the point (8, 80) lies on the graph, the pair of values
x � 8 and y � 80 satisfies the equation y � aebx; that is,

(1)

Similarly, since the point (2, 10) lies on the graph, we
have

(2)

Now use equations (1) and (2) to show that b � (ln 8)�6.
(b) In equation (2), substitute for b using the expression

obtained in part (a). Show that the resulting equation
can be written 10 � a(eln 8)1�3.

(c) Use one of the properties of logarithms to simplify the
right-hand side of the equation in part (b), then solve
for a. (You should obtain a � 5.)

In Exercises 69 and 70, you are given the coordinates of two
points on the graph of the curve y � aebx. In each case, deter-
mine the values of a and b. Hint: Use the method explained in
Exercise 68.

69. (�2, 324) and (1�2, 4�3) 70. (1, 2) and (4, 8)
71. (a) Use base 10 logarithms to solve the equation

2x � 3 � 0.
(b) Use your calculator to evaluate the answer in part (a).

Also use the calculator to evaluate (ln 3)�(ln 2).
(c) Prove that (log10 3)�(log10 2) � (ln 3)�(ln 2).

72. (a) Prove that logb(P�Q) � logb P � logb Q.
Hint: Study the proof of Property 2 in the text.

(b) Prove the change-of-base formula:

Hint: Use the method of Example 7 in the text.

73. Show that logb � 2 logb

74. (a) Show that logb(P�Q) � logb(Q�P) � 0.
(b) Simplify: loga x � log1�a x.

75. Simplify: 
76. Is there a constant k such that the equation ex � 2kx holds

for all values of x?
77. Prove that logb a � 1�(loga b).
78. Simplify: (log2 3)(log3 4)(log4 5).

79. (a) Without using your calculator, show that

� 2.

(b) Without using your calculator, show that 

logp 2 � � 2

Hint: First explain, in complete sentences, how you
know that the quantity logp 2 is positive. Then apply
the inequality given in Exercise 40(b) in Section 2.3.

1

logp  2

Hint: Convert to base p
logarithms.

1

log2  p
�

1

log5  p

b3logb x

113 � 12 2 .13 � 12

13 � 12

loga  x �
logb  x

logb  a

10 � ae2b

80 � ae8b

(e) Verify that

using the values A � 11, B � 12, and C � 13.
(f) Let f(x) � ex and g(x) � ln x. Compute f [g(2345.6)].
(g) Let f(x) � 10 x and g(x) � log10 x. Compute

g[ f (0.123456)].
66. Evaluate (6403203 � 744) 2. Remark: Contrary to

the empirical evidence from your calculator, it is known
that this number is irrational.

B
67. The approximation ln(1 � x) � x: As indicated in the ac-

companying graph, the values of ln(1 � x) and x are very
close to one another for small positive values of x.

Using your calculator, complete the table to obtain numeri-
cal evidence of this. For your answers, report the first six
decimal places of the calculator display (don’t round off).

x 0.1 0.05 0.005 0.0005

ln(1 � x)

68. As indicated in the figure, the graph of y � aebx passes
through the two points (2, 10) and (8, 80). Follow steps (a)
through (c) to determine the values of the constants a and b.

y

x
(2, 10)

(8, 80)

y=aebx

0.1
x

0.1

y

0.4

0.4 y=x

y=ln(1+x)

43 1p ln 

log10  A � log10  B � log10  C � log10(ABC)
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EXAMPLE 1 Reviewing Some Possibilities for Roots

Consider the following two equations:

(1)
(2)

(a) Is either one of the values x � 1 or x � 2 a root of equation (1)?
(b) Is either one of the values x � 1 or x � 2 a root of equation (2)?

 ln(x2) � 2 ln  x
 (ln  x)2 � 2 ln  x

SOLUTION (a) To see whether the value x � 1 satisfies equation (1), we have

 02 � 2(0)  True
 (ln  1)2 � 2 ln  1

5.5 Equations and Inequalities with Logs and Exponents 371

5.5 EQUATIONS AND INEQUALITIES WITH 
LOGS AND EXPONENTS
In Examples 2 through 9 in this section we illustrate some of the more common ap-
proaches for solving equations and inequalities involving exponential and logarith-
mic expressions. Although there is no single technique that can be used to solve
every equation or inequality of this type, the methods in this section do have much in
common: they all rely on the definition and the basic properties of logarithms.

Actually, in the previous two sections we’ve already solved some equations in-
volving exponential expressions. So as background for the work to follow, you might
want to review the following four examples. Study suggestion: Try solving for
yourself the following four equations before you turn back to the text’s solution.

Example Equation

Example 6 in Section 5.3 10 x/2 � 16

Example 7 in Section 5.3 e2t�5 � 5000

Example 5 in Section 5.4 2x � 3 � 0

Example 6 in Section 5.4 45x�2 � 70

Initially, [John] Napier [1550–1617]
called logarithms “artificial numbers”
but later coined the term logarithm,
meaning “number of the ratio.” 
—Ronald Calinger, ed., Classics of
Mathematics (Englewood Cliffs, N.J.:
Prentice Hall, 1995)

[W]e would like to give a value for z,
such that az � y. This value of z, insofar
as it is viewed as a function of y, it is
called the LOGARITHM of y. —Leonhard
Euler (1707–1783), Introductio in
analysin infinitorum (Lausanne: 1748)
[This classic text has been translated by
John D. Blanton (Berlin: Springer-
Verlag, 1988).] 

(c) Use the change-of-base formula to find out which of
the two quantities is larger: 

� or logp 2 �

80. A function f with domain (1, q) is defined by the equation
f (x) � logx 2.
(a) Find a value for x such that f (x) � 2.
(b) Is the number that you found in part (a) a fixed point of

the function f ?

C
81. Prove that (loga x)�(logab x) � 1 � loga b.
82. Simplify ax when x � logb(logb a)�logb a.

1

logp  2

1

log5  p

1

log2  p

83. If a2 � b2 � 7ab, where a and b are positive, show that

no matter which base is used for the logarithms (but it is
understood that the same base is used throughout).

84. Let f(x) � ln

(a) Use the properties of logarithms (and some algebra) to
show that

(b) Use a calculator to check the result in part (a). 

f(2) � f(3) � f(4) � ln  

5

8

a1 �
1

x2 b .

log c 1
3

 (a � b) d �
1

2
 (log a � log b)



Thus x � 1 is a root of equation (1). To see whether x � 2 is a root, we write

dividing through by ln 2 (�0)

This last equation is not valid. You can see this by using a calculator or, more
directly, by rewriting the equation in exponential form to obtain e2 � 2, which
is clearly false. (Why?) Consequently, the value x � 2 is not a solution of
equation (1).

(b) You’ve seen equation (2) before, or at least one very much like it. It’s an exam-
ple of one of the basic properties of logarithms that we studied in the previous
section. That is, we know from the previous section that the equation ln(x2) � 2
ln x holds for every value of x in the domain of the function y � ln x. In particular,
then, since both x � 1 and x � 2 are in the domain of the function y � ln x, we
can conclude immediately, without any work required, that both of the values 1
and 2 satisfy equation (2).

The example that we have just completed serves to remind us of the difference
between a conditional equation and an identity. An identity is true for all values of
the variable in its domain. For example, the equation ln(x2) � 2 ln x is an identity; it
is true for every positive real number x. In contrast to this, a conditional equation is
true only for some (or perhaps even none) of the values of the variable. Equation (1)
in Example 1 is a conditional equation; we saw that it is true when x � 1 and false
when x � 2. The equation 2x � �1 is an example of a conditional equation that has
no real-number root. (Why?) Most of the equations that we solve in this section are
conditional equations, but watch for a few identities to pop up in the examples and
exercises. It can make your work much easier.

 ln  2 � 2
 (ln  2)2 � 2 ln  2
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EXAMPLE 2 An Equation Where the Unknown Appears in an Exponent

Find all real-number roots of the equation 4x � 32x�1.

SOLUTION Taking the natural logarithm of both sides of the given equation, we have

and therefore

Using a calculator now, we find that x is approximately �1.355. In Figure 1 we show
a graphical check of this solution. Exercise 88 asks you to check the solution
algebraically.

 x �
ln  3

ln  4 � 2  ln  3

 x(ln  4 � 2 ln  3) � ln  3
 x ln  4 � 2x ln  3 � ln  3
 x ln  4 � (2x � 1)ln  3

ln (4x) � ln (32x�1)
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EXAMPLE 4 Equations Involving Base 10 Logarithms

Find all real-number roots of the following equations:

(a) log10(x2 � 2) � 3; (b) log10(x2 � 2x) � 3.

SOLUTION (a) For convenience we let t stand for ln x. Then the given equation becomes

Rewriting this equation in exponential form, we have

or, in view of the definition of t,

Now we rewrite this last equation in exponential form to obtain

using a calculator

As Exercise 85 asks you to verify, the value x � indeed checks in the original
equation.

(b) Think for a moment about the graph of the basic exponential function y � ex.
The graph is always above the x-axis. This tells us that e raised to any exponent
is never negative. Consequently, the equation eln x � �2 has no real-number
solution.

(c) From Section 5.2 (as well as Section 5.3) we know that eln x � x for all positive
numbers x, so the given equation eln x � 2 becomes simply x � 2, and we are
done.

In the next example we solve equations involving logarithms by converting them
to exponential form. For part (b) of the example you need to recall the quadratic
formula.

ee2

 � 1618.2
 x � ee2

ln  x � e2

t � e2

ln  t � 2

EXAMPLE 3 Some Equations Involving the Natural Logarithm

Find all real-number roots of the following equations:

(a) ln(ln x) � 2; (b) eln x � �2; (c) eln x � 2.

Graphical Perspective

0.05

_2.0

0.10

0.15

0.20

0.25

0.30

0
_1.8 _1.6 _1.4 _1.2 _1.0

Figure 1
The curves y � 4x and y � 32x�1

intersect at a point whose x-
coordinate is between �1.4 and
�1.3. In Example 2 we found this
x-value to be �1.355 (rounded to
three decimal places). (Question:
Which of the two graphs in the
figure represents y � 4x?)
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SOLUTION (a) Converting to exponential form, we have

and therefore

or

As Exercise 86(a) asks you to check, both of the values � satisfy the
given equation.

(b) Again we begin by converting to exponential form. This yields

and therefore

Now we apply the quadratic formula:

As Exercise 86(b) asks you to verify, both of the numbers 1 � and
1 � satisfy the given equation. Using a calculator, we find that these two
values are approximately 32.6 and �30.6, respectively. In Figure 2 we show a
graphical check of the solutions that we’ve determined in this example.

11001
11001

 �
2 � 211001

2
� 1 � 11001

 �
2 � 14004

2
�

2 � 14(1001)

2

 x �
�b � 2b2 � 4ac

2a
�

2 � 2(�2)2 � 4(1)(�1000)

2

x2 � 2x � 1000 � 0

x2 � 2x � 1000

11002

 x � �11002 � �31.65

 x2 � 1002

 x2 � 2 � 103

Graphical Perspective

_50

(a) y=log¡¸(≈-2)

_2
_1
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1
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(b) y=log¡¸(≈-2x)

Figure 2
In (a) the figure shows that the curve y � log10(x2 � 2) intersects the horizontal line y � 3
at two points whose x-coordinates are approximately 30 and �30. In part (a) of Example 4
we found these two numbers to be 31.65 and �31.65, respectively (rounded to two decimal
places). Similarly, in (b) the figure shows that the curve y � log10(x2 � 2x) intersects the
horizontal line y � 3 at two points, one with an x-coordinate slightly greater than 30, the
other with an x-coordinate very close to �30. In part (b) of the example we found these
two x-coordinates to be 32.6 and �30.6, respectively (rounded to one decimal place).
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EXAMPLE 5 An Equation in Quadratic Form That Involves Exponentials

As indicated in Figure 3, the graph of the function y � 2(32x) � 3x � 3 has an x-
intercept between 0.25 and 0.50. Find the exact value of this intercept and also a
calculator approximation rounded to three decimal places.

SOLUTION We need to solve the equation 2(32x) � 3x � 3 � 0. The observation that helps here
is that 32x can be written as (3x)2. This lets us rewrite the equation as

Now, for convenience, we let t � 3x so that the equation becomes

or

Check the factoring.

Using the value t � 3�2 in the equation t � 3x gives us

We can solve this last equation by taking the logarithm of both sides. Using base e
logarithms, we have

and therefore

x ln  3 � ln  1.5

ln (3x) � ln  1.5

3x �
3

2

 
2t � 3 � 0

t �
3

2

  3  t � 1 � 0

t � �1

 (2t � 3)(t � 1) � 0

2t2 � t � 3 � 0

2(3x)2 � 3x � 3 � 0

If you look over both parts of the example just completed, you’ll see that we used
the same general procedure in both cases: Convert from logarithmic to exponential
form, then solve the resulting quadratic equation. The next example works in the
other direction: First we solve a quadratic equation, then we isolate the variable by
converting from exponential to logarithmic form.

x
_0.25

2

_1
0.50 0.75

0.25

y

1

3

_2

_3

y=2{3@®}-3®-3

Figure 3



Dividing both sides of this last equation by the quantity ln 3, we obtain 
x � (ln 1.5)�(ln 3). As Exercise 87 asks you to verify, this value for x indeed checks
in the original equation.

Now, what about the other value for t that we found? With t � �1 we have
3x � �1, but that is impossible. (Why?) Consequently, there is only one root of the
given equation, namely, x � (ln 1.5)�(ln 3). This is the required x-intercept for
the graph shown in Figure 3. Using a calculator, we find that ln (1.5)�(ln 3) � 0.369.
Note that this value is consistent with Figure 3, in which the x-intercept appears to be
roughly halfway between 0.25 and 0.50.

When we solved equations in earlier chapters of this text, we learned that some
techniques, such as squaring both sides of an equation, may introduce extraneous
roots. The next example shows another type of situation in which an extraneous root
may be introduced. We’ll return to this point after the example.
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EXAMPLE 6 Solving and Then Checking for Extraneous Roots

Solve for x: log3 x � log3(x � 2) � 1.

SOLUTION Using Property 2 (on page 361), we can write the given equation as

Writing this last equation in exponential form yields

Thus we have

and, consequently,

Now let’s check these values in the original equation to see whether they are indeed
solutions.

If x � �3, the left-hand side of the If x � 1, the left-hand side of the
equation becomes equation becomes

which is undefined since negative which equals the right-hand side.
numbers are not in the domain of 
the logarithm function.

Thus the value x � 1 is a solution of the original equation, but x � �3 is not.

In the example we just concluded, an extraneous solution (x � �3) was generated
along with the correct solution, x � 1. How did this happen? It happened because in
the second line of the solution, we used the property logb PQ � logb P � logb Q,
which is valid only when both P and Q are positive. In the box that follows, we gen-
eralize this remark about extraneous solutions.

 log3  1 � log3  3 � 0 � 1 � 1log3(�3) � log3(�1)

x � �3  or  x � 1

 x � 3 � 0   or   x � 1 � 0

 (x � 3)(x � 1) � 0
 x2 � 2x � 3 � 0

 x2 � 2x � 31

log3[x(x � 2)] � 1  or  log3(x
2 � 2x) � 1
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PROPERTY SUMMARY Extraneous Solutions for Logarithmic
Equations

Using the properties of logarithms to solve logarithmic equations may introduce
extraneous solutions that do not check in the original equation. (This occurs
because the logarithm function requires positive inputs, but in solving an equation,
we may not know ahead of time the sign of an input involving a variable.)
Therefore it is always necessary to check any candidates for solutions that are
obtained in this manner. 

Earlier in this book, in Sections 2.3 and 2.4, we learned how to solve inequalities
involving polynomials. Those same techniques, along with the properties of loga-
rithms, are often useful in solving inequalities involving logarithmic and exponential
expressions. In the box that follows, we list some additional facts that are helpful in
solving these types of inequalities.

PROPERTY SUMMARY Inequalities Involving Exponential and Logarithmic Functions

For each of the following, assume that b is a positive constant greater than 1.

1. (Refer to Figure 4.) 2. (Refer to Figure 5.) Assume that p and q are positive.
(a) If p � q then bp � bq. (a) If p � q then logb p � logb q.
(b) Conversely, if bp � bq then p � q. (b) Conversely, if logb p � logb q then p � q.

y � bx is an increasing function for all real x. y � logb x is an increasing function for all x � 0.

Figure 4 Figure 5

y

p
x

q

logb p

logb q
y=logb x  (b>1)

y

x
qp

y=b®  (b>1)

bp

bq

EXAMPLE 7 An Inequality Involving an Exponential Function

Solve the inequality 2(1 � 0.4x) � 5.

SOLUTION Dividing both sides by 2, we have

using Property 2(a) above
 x  ln(0.4) � ln(3�2)
 ln(0.4x) � ln(3�2)

 0.4x � 3�2
 1 � 0.4x � 5�2
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EXAMPLE 8 Inequalities with Logarithmic and Exponential Functions

Solve each of the following inequalities:

(a) ln(2 � 3x) 	 1; (b) e2�3x 	 1.

SOLUTION (a) As a preliminary but necessary first step, we need to determine the domain of the
function y � ln(2 � 3x). Since the inputs for the natural logarithm function must
be positive, we require 2 � 3x � 0, and therefore

Now we turn to the given inequality ln(2 � 3x) 	 1. Applying Property 1(a) on
the previous page to this inequality, we can write

and, consequently,

Putting things together now, we want x to be greater than or equal to (2 � e)�3

but less than 2�3. Thus the solution set is the interval c 2 � e

3
, 

2

3
b .

 x 

e � 2

�3
�

2 � e

3

 �3x 	 e � 2
 2 � 3x 	 e

eln(2�3x) 	 e1

�3x � �2  or  x �
2

3

Graphical Perspective

0_1.0
0

1

2

3

4

5

6

1.0 2.0 3.0

Figure 6
The graph of the equation
y � 2(1 � 0.4x) indicates that the
solution set of the inequality
2(1 � 0.4x) � 5 is an interval of
the form (a, q), where a is 
approximately �0.5. In Example 7
we found that this value of a is
(ln 1.5)�(ln 0.4) � �0.443 (rounded
to three decimal places).

Now, to isolate x, we want to divide both sides of this last inequality by the quantity
ln(0.4), which is negative. (Without relying on a calculator, how do you know that
this quantity is negative?) Since dividing both sides by a negative quantity reverses
the inequality, we obtain

So the solution set consists of all real numbers greater than 

Using a calculator to evaluate this last expression, we find that it is approximately
�0.443. With this approximation, we can use interval notation to write the solution set
as (�0.443, q). See Figure 6 for a graphical view of this solution.

ln(3�2)

ln(0.4)
.

x �
ln (3�2)

ln (0.4)



Note: For this interval notation to make sense, the fraction (2 � e)�3 must be smaller
than 2�3. Although you can verify this using a calculator, you can also explain it
without relying on a calculator. Exercise 89 asks you to do this.

(b) Since the domain of the exponential function is the set of all real numbers, there
is no preliminary restriction on x, as there was in part (a). Taking the natural
logarithm of both sides of the given inequality [as in Property 2(a) on page 377],
we obtain

and therefore

The solution set of the given inequality is the interval [2�3, q).

 x 

2

3

 �3x 	 �2
 2 � 3x 	 0

ln (e2�3x) 	 ln(1)
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EXAMPLE 9 Taking Domain into Account in Determining the Solution Set

(a) Determine the domain of the function f (x) � log10 x � log10(x � 2).
(b) Solve the inequality log10 x � log10(x � 2) 	 log10 24.

SOLUTION (a) As you know, the logarithm function requires positive inputs. So for the ex-
pression log10 x we require x � 0, whereas for the expression log10(x � 2) we
require

In summary, then, we want x to be greater than zero, and at the same time, we
need to have x greater than 2. Notice now that if x is greater than 2, it’s automat-
ically true that x is greater than zero. Thus the domain of the given function f con-
sists of all real numbers greater than 2.

(b) On the left-hand side of the given inequality, we can use one of the basic prop-
erties of logarithms to write

With this result the given inequality becomes

and therefore

using Property 2(b) on page 377

or

(1)

Inequality (1) is one of the types of inequalities that you learned to solve earlier
in this text (in Section 2.4). As Exercise 90 at the end of this section asks you to

x2 � 2x � 24 	 0

x2 � 2x 	 24

log10(x
2 � 2x) 	 log10  24

log10  x � log10(x � 2) � log10[x(x � 2)] � log10(x
2 � 2x)

x � 2 � 0  and therefore  x � 2



show, the solution set for inequality (1) is the closed interval [�4, 6]. This closed
interval, however, is not the solution set for the original inequality; we need to
take into account the result in part (a). Putting things together, then, we want only
those numbers in the interval [�4, 6] that are greater than 2. Consequently, the
solution set for the given inequality is the interval (2, 6]. Figure 7 shows a graph-
ical view of this result.
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2
0

_1

y

4 6 8 10

1

x

y=log¡¸ 24

y=log¡¸ x+log¡¸(x-2)
Figure 7
The curve y � log10 x � log10(x � 2)
is below the horizontal line
y � log10 24 when 2 � x � 6. 
At x � 6 the curve and the 
line intersect. Thus the solu-
tion set of the inequality 
log10 x � log10(x � 2) 	 log10 24 
is the interval (2, 6].

15. � 2x 16. � 7
17. log2(log3 x) � �1 18. ln[ln(ln x)] � 1
19. ln 4 � ln x � (ln 4)�(ln x)
20. log5 x � log5 10 � log5(x�10)
21. ln(3x2) � 2 ln(3x) 22. ln(3x2) � 2 ln 

23. log16 24. log � 4

25. (a) e2x � 2ex � 1 � 0 26. (a) 4e6x � 12e3x � 9 � 0
(b) e2x � 2ex � 1 � 0 (b) 4e6x � 12e3x � 9 � 0
(c) e2x � 2ex � 3 � 0 (c) 4e6x � 16e3x � 9 � 0
(d) e2x � 2ex � 4 � 0 (d) e6x � 12e3x � 9 � 0

27. ex � e�x � 1 Hint: Multiply both sides by ex.
28. ex � e�x � 2 29. 25x � 3x(5x�3)
30. e3x � 102x(21�x)
31. log6 x � log6(x � 1) � 1
32. log6 x � log6(x � 1) � 0
33. log9(x � 1) � � log9 x
34. log2(x � 4) � 2 � log2(x � 1)
35. log10(2x � 4) � log10(x � 2) � 1
36. ln x � ln(x � 1) � ln 12
37. log10(x � 3) � log10(x � 2) � 2
38. ln(x � 1) � 2 � ln(x � 1)
39. log10(x � 1) � 2 log10(x � 1)
40. log2(2x2 � 4) � 5
41. log10(x � 6) � log10(x � 3) � 1
42. Solve for x in terms of a:

log2(x � a) � log2(x � a) � 1.

1
2

1 � 4x

1 � 4x12

x � 3

x � 1
�

1

2

113x 2

7log7 2x7log7 2xA
To help you get started, Exercises 1–10 correlate directly with
Examples 2–5 as shown in the chart. (Thus, if you need help in
any of Exercises 1–10, first consult the indicated example.)

Exercise 1, 2 3, 4 5, 6 7, 8 9, 10

Based on Example No. 2 3(a) 4(a) 4(b) 5

In Exercises 1–41, find all the real-number roots of each equa-
tion. In each case, give an exact expression for the root and
also (where appropriate) a calculator approximation rounded
to three decimal places.

1. 5x � 32x�1 2. 7�4x � 21�3x

3. ln(ln x) � 1.5 4. log3[log3(2x)] � �2
5. log10(x2 � 36) � 2 6. log2(2x2 � 4) � 5
7. log10(2x2 � 3x) � 2 8. log9(x2 � x) � 0.5
9. 102x � 3(10x) � 10 � 0 10. 3(22x) � 11(2x) � 4 � 0

11. (a) ln(x3) � 3 ln x
(b) (ln x)3 � 3 ln x

12. (a) (log10 x)2 � 2 log10 x
(b) log10(x2) � 2 log10 x

13. (a) log3 6x � log3 6 � log3 x
(b) log3 6x � 6 log3 x

14. (a) ln x � (log10 x)�(log10 e)
(b) ln x � (log10 e)�(log10 x)

EXERCISE SET 5.5



74. (a) Graph the two functions f (x) � (ln x)�(ln 3) and
g(x) � ln x � ln 3. (Use a viewing rectangle in 
which x extends from 0 to 10 and y extends from 
�5 to 5.) Why aren’t the two graphs identical? That 
is, doesn’t one of the basic log identities say that 
(ln a)�(ln b) � ln a � ln b?

(b) Your picture in part (a) indicates that

Find a viewing rectangle in which 
(ln x)�(ln 3) 	 ln x � ln 3.

(c) Use the picture that you obtain in part (b) to 
estimate the value of x for which (ln x)�(ln 3) �
ln x � ln 3.

(d) Solve the equation (ln x)�(ln 3) � ln x � ln 3 
algebraically and use the result to check your estimate in
part (c).

In Exercises 75–84, solve each equation. In Exercises 79–84,
solve for x in terms of the other letters.

75. 3(ln x)2 � ln(x2) � 8 � 0 76. � 4x2

77. log6 x � 78. � 2

79. a ln x � ln b � 0 80. 3 ln x � a � 3 ln b
81. y � Aekx 82. b � 10 log10(x�x0)
83. y � a�(1 � be�kx) 84. T � T1 � (T0 � T1)e�kx

In Exercises 85–88, you are given an equation and a root that
was obtained in an example in the text. In each case: (a) ver-
ify (algebraically) that the root indeed satisfies the equation;
and (b) use a calculator to check that the root satisfies the
equation.

85. [From Example 3(a)] ln(ln x) � 2; x �
86. (a) [From Example 4(a)] log10(x2 � 2) � 3;

x � �
(b) [From Example 4(b)] log10(x2 � 2x) � 3;

x � 1�
87. (From Example 5) 2(32x) � 3x � 3 � 0; x � log31.5 

Hint: Use the change of base formula on page 367 to
express (ln 1.5)�ln 3 as a logarithm base 3.

88. (From Example 2) 4x � 32x�1; x � (ln 3)�(ln 4 � 2 ln 3)
Hint: First show that 4ln 3 � 3ln 4 and then use it to write
the left-hand side as a power of 3.

89. [From Example 8(a)] Explain, in one or two complete
sentences, how you know (without using a calculator) that
the fraction (2 � e)�3 is less than 2�3.

90. [From Example 9(b)] Solve the inequality
x2 � 2x � 24 	 0. You should find that the solution set is
the closed interval [�4, 6].

11001

11002

ee2

ln 11x � 4 � 2 2
ln  1x

1

1

log2  x
�

1

log3  x

x1�logx16

ln  x

ln  3
� ln  x � ln  3 (0 � x 	 10)

43. Solve for x in terms of y:
(a) log10 x � y � log10(3x � 1);
(b) log10(x � y) � log10(3x � 1).

44. Solve for x in terms of b: logb(1 � 3x) � 3 � logb x.

In Exercises 45–50, you are given an equation of the form 
ln x � f (x). In each case the equation cannot be solved using
the algebraic techniques of this section.

(a) Without using a graphing utility, determine how many roots
the equation has by sketching the graphs of y � ln x and
y � f (x) in the same coordinate system.

(b) Use a graphing utility to draw the graphs on the same
screen. Then, by zooming in on each point where the
graphs intersect, estimate to the nearest hundredth each
root of the equation ln x � f (x).

45. ln x � �x 46. ln x � (x � 2)2

47. ln x � 1�(x � 1) 48. ln x � e�x

49. ln x � x � 2 50. ln x � � x � 2

In Exercises 51–66, solve the inequalities. Where appropriate,
give an exact answer as well as a decimal approximation.

51. 3(2 � 0.6x) 	 1 52. 6(5 � 1.6x) 
 13
53. 4(10 � ex) 	 �3 54. (1 � e�x) 	 �3
55. ln(2 � 5x) � 2 56. 3 log10(4x � 3) � 1
57. e2�x 
 100 58. 45�x � 15
59. 2x � 0 60. log2 x 
 0

61. log2 � 0 62. ln � ln 4

63. 
 e5 64. 	 10�12

65. e(1�x)�1 � 1 66. e1�(x�1) � 1
67. (a) Specify the domain of the function y � ln x � ln(x � 4).

(b) Solve the inequality ln x � ln(x � 4) 	 ln 21.
68. (a) Specify the domain of the function y � ln x � ln(x � 2).

(b) Solve the inequality ln x � ln(x � 2) 	 ln 35.
69. Solve the inequality

log2 x � log2(x � 1) � log2(2x � 6) � 0.
70. Solve the inequality log10(x2 � 6x � 6) � 0.

B
71. Find all roots of the equation log2 x � log x 2, or explain

why there are none.
72. Solve the equation log2 x � log x 3. For each root, give an

exact expression and a calculator approximation rounded to
two decimal places.

73. Use a graphing utility to graph the two functions
y � ln(x2) and y � 2 ln x, first separately, then in the same
viewing rectangle. What do you observe? What does this
have to do with the statements made in the text in the
solution of Example 1(b)?

10�x2

ex2�4x

3x � 2

4x � 1

2x � 1

x � 2

2
3 

0000
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95. Solve for x (assuming that a � b � 0):

Answer: x �

96. Let f (x) � ln x � . Find f �1(x).

97. Suppose that log10 2 � a and log10 3 � b. Solve for x in
terms of a and b:

6x �
10

3
� 6�x

2x2 � 1 21

ln (a � b)

ln (a � b)

(a4 � 2a2b2 � b4)x�1 � (a � b)2x(a � b)�2

C
In Exercises 91 and 92, solve the inequalities.

91. logp[log4(x2 � 5)] � 0 Hint: In the expression logb y, 
y must be positive.

92. (for x � 1)

In Exercises 93 and 94, solve the equations.

93. � (xx)x Hint: There are two solutions.
94. (px) � (ex)log10 elog10 p

x(xx)

1

log2  x
�

1

log3  x
�

1

log4  x
� 2
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5.6 COMPOUND INTEREST
We begin this section by considering how money accumulates in a savings account.
Eventually, this will lead us back to the number e and to functions of the form
y � aebx.

The following idea from arithmetic is a prerequisite for our discussion. To in-
crease a given quantity by, say, 15%, we multiply the quantity by 1.15. For instance,
suppose that we want to increase $100 by 15%. The calculations can be written as

Similarly, to increase a quantity by 30%, we would multiply by 1.30, and so on. The
next example displays some calculations involving percentage increase. The results
might surprise you unless you’re already familiar with this topic.

100 � 0.15(100) � 100(1 � 0.15) � 100(1.15)

S � Pert. This result is remarkable
both because of its simplicity and the
occurrence of e. (Who would expect that
number to pop up in finance theory?)
—Philip Gillett in Calculus and Analytic
Geometry, 3rd ed. (Lexington, Mass.:
D.C. Heath, 1988) 

EXAMPLE 1 Computing Percentage Increase

An amount of $100 is increased by 15%, and then the new amount is increased by
15%. Is this the same as an overall increase of 30%?

SOLUTION To increase $100 by 15%, we multiply by 1.15 to obtain $100(1.15). Now to increase
this new amount by 15%, we multiply it by 1.15 to obtain

Alternatively, if we increase the original $100 by 30%, we obtain

Comparing, we see that the result of two successive 15% increases is greater than the
result of a single 30% increase.

Now let’s look at another example and use it to introduce some terminology.
Suppose that you place $1000 in a savings account at 10% interest compounded annu-
ally. This means that at the end of each year, the bank contributes to your account 10%
of the amount that is in the account at that time. Interest compounded in this manner is
called compound interest. The original deposit of $1000 is called the principal,
denoted P. The annual interest rate, expressed as a decimal, is denoted by r. Thus,

$100(1.30) � $130

[($100)(1.15)](1.15) � $100(1.15)2 � $132.25



r � 0.10 in this example. The variable A is used to denote the amount in the account
at any given time. The calculations displayed in Table 1 show how the account grows.

We can learn several things from Table 1. First, consider how much interest is
paid each year.

Interest paid for first year: $1100 � $1000 � $100
Interest paid for second year: $1210 � $1100 � $110
Interest paid for third year: $1331 � $1210 � $121

Thus the interest earned each year is not a constant; it increases each year.
If you look at the algebra in Table 1, you can see what the general formula should

be for the amount after t years.
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EXAMPLE 2 Interest Compounded Annually

Suppose that $2000 is invested at % interest compounded annually. How many
years will it take for the money to double?

 71
2 

SOLUTION In the formula A � P(1 � r)t, we use the given values P � $2000 and r � 0.075. We
want to find how long it will take for the money to double; that is, we want to find t
when A � $4000. Making these substitutions in the formula, we obtain

and therefore

dividing by 2000

We can solve this exponential equation by taking the logarithm of both sides. We use
base e logarithms. (Base 10 would also be convenient here.) This yields

ln  2 � ln  1.075t

2 � 1.075t

4000 � 2000(1 � 0.075)t

TABLE 1

Time Period Algebra Arithmetic

After 1 year A � P(l � r)

After 2 years

After 3 years
� $1331� P(1 � r)3

A � 1210(1.10)A � [P(1 � r)2](1 � r)

� $1210� P(1 � r)2
A � 1100(1.10)A � [P(1 � r)](1 � r)

� $1100
A � 1000(1.10)

Suppose that a principal of P dollars is invested at an annual rate r that is com-
pounded annually. Then the amount A after t years is given by

A � P(1 � r ) t

Compound Interest Formula (interest compounded annually)



and, consequently,

(Why?)

To isolate t, we divide both sides of this last equation by ln 1.075. This yields

Now, assuming that the bank computes the compound interest only at the end of
the year, we must round the preliminary answer of 9.6 years and say that when
t � 10 years, the initial $2000 will have more than doubled. Table 2 adds some per-
spective to this. The table shows that after 9 years, something less than $4000 is in
the account; whereas after 10 years, the amount exceeds $4000.

In Example 2 the interest was compounded annually. In practice, though, the in-
terest is usually computed more often. For instance, a bank may advertise a rate of
8% per year compounded semiannually. This means that after half a year, the inter-
est is compounded at 4%, and then after another half year, the interest is again com-
pounded at 4%. (If you review Example 1, you’ll see that two compoundings, each
at a rate of r�2, is not the same as one compounding at the rate r. The former scheme
yields more money overall than the latter.) In the case of a rate of 8% per year com-
pounded semiannually, we say that the periodic interest rate is 4%. Similarly, if the
interest rate of 8% per year were compounded four times per year, then the periodic
interest rate would be 2 (� 8�4) percent. In Table 3 we show examples of this termi-
nology, assuming an annual rate of r%. Note that, in general, the periodic interest
rate is equal to r�n, where r is the annual interest rate and n is the number of times
per year that the interest is compounded.

t �
ln  2

ln  1.075
� 9.6 years

ln  2 � t ln  1.075
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TABLE 2 A � 2000(1.075)t

t (years) A (dollars)

9 3834.48
10 4122.06

TABLE 3 Periodic Interest Rates, Assuming an Annual Rate of r%*

n
(number of times Periodic 

per year that interest Interest 
is compounded) Rate (%)

Annually 1 r
Semiannually 2 r�2
Quarterly 4 r�4
Monthly 12 r�12
Daily (assuming 360-day year) 360 r�360
Daily (assuming 365-day year) 365 r�365

*Regarding the last two rows of the table: Some banks base their calculations on a 360-day rather than
365-day year.

The compound interest formula

(1)

that we worked with in Example 2 can be generalized to cover the cases that we’ve
just been discussing, in which the interest is compounded more than once per year.
The general formula is given in the box that follows.

A � P(1 � r)t



Suppose that a principal of P dollars is invested at an annual rate r that is com-
pounded n times per year. Then the amount A after t years is given by

(2)

Note that the quantity r�n is the interest rate per period (periodic interest rate), and 

the exponent is the total number of

compound periods.

nt c an 
periods

year
b a t years b � nt periods d

A � P a 1 �
r
n
b nt

Compound Interest Formula (interest compounded n times per year)
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EXAMPLE 3 Comparing Annual to Quarterly Compounding

Suppose that $1000 is placed in a savings account at 10% per annum. How much is
in the account at the end of 1 year if the interest is: (a) compounded once each year
(n � 1); and (b) compounded quarterly (n � 4)?

SOLUTION We use the formula A � P[1 � (r�n)]nt.

(a) For n � 1 we obtain (b) For n � 4 we obtain

using a calculator

Notice that compounding the interest quarterly rather than annually yields the greater
amount. This is in agreement with our observations in Example 1.

The results in Example 3 will serve to illustrate some additional terminology
used by financial institutions. In that example, the interest for the year under quar-
terly compounding was

Now, $103.81 is 10.381% of $1000. We say in this case that the effective rate of in-
terest is 10.381%. The given rate of 10% per annum compounded once a year is
called the nominal rate. (The nominal rate and the effective rate are also referred to
as the annual rate and the annual yield, respectively.) The next example further
illustrates these ideas.

$1103.81 � $1000 � $103.81

� $1103.81� $1100
� 1000(1.025)4� 1000(1.1)

A � 1000a1 �
0.10

4
b 4(1)

A � 1000a1 �
0.10

1
b (1)(1)

Although we won’t derive equation (2) from scratch, note that it is obtained from
equation (1) as follows: In equation (1), replace the annual interest rate r by the peri-
odic interest rate r�n; in equation (1), replace t (which not only represents time, but
also the number of compoundings) with the quantity nt, which also represents the
total number of compoundings. 
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SOLUTION Let P denote the principal, which earns 6% (r � 0.06) compounded monthly
(n � 12). Then with t � 1, our formula yields

using a calculator

This shows that the effective interest rate is about 6.17%.

There are two rather natural questions to ask on first encountering compound
interest calculations:

Question 1 For a fixed period of time (say, one year), does more and more frequent
compounding of interest continue to yield greater and greater
amounts?

Question 2 Is there a limit on how much money can accumulate in a year when 
interest is compounded more and more frequently?

The answer to both of these questions is yes. If you look back over Example 1, you’ll
see evidence for the affirmative answer to Question 1. For additional evidence, and
for the answer to Question 2, let’s do some calculations. To keep things as simple as
possible, suppose a principal of $1 is invested for 1 year at the nominal rate of 100%
per annum. (More realistic figures could be used here, but the algebra becomes more
cluttered.) With these data our formula becomes

or

Now, as we know from Section 5.2, the expression approaches the value
e as n grows larger and larger; see Table 4.

a1 �
1
n
b n

A � a1 �
1
n
b n

A � 1a1 �
1
n
b n(1)

A � P a1 �
0.06

12
b12(1)

� P(1.0617)

EXAMPLE 4 Computing the Effective Rate

A bank offers a nominal interest rate of 6% per annum for certain accounts. Compute
the effective rate if interest is compounded monthly.

TABLE 4 Results of Compounding Interest More 
and More Frequently

Number of Compoundings, n Amount, 

n � 1 (annually) [1 � (1�1)]1 � 2

n � 2 (semiannually) [1 � (1�2)]2 � 2.25

n � 4 (quarterly) [1 � (1�4)]4 � 2.44

n � 12 (monthly) [1 � (1�12)]12 � 2.61

n � 365 (daily) [1 � (1�365)]365 � 2.7146

n � 8760 (hourly) [1 � (1�8760)]8760 � 2.7181

n � 525,600 (each minute) [1 � (1�525,600)]525,600 � 2.71827

n � 31,536,000 (each second) [1 � (1�31,536,000)]31,536,000 � 2.71828

a 1 �
1
n
b n



Table 4 shows that the amount does increase with the number of compoundings.
But assuming that the bank rounds to the nearest penny, Table 4 also shows that there
is no difference between compounding hourly, compounding each minute, and com-
pounding each second. In each case, the rounded amount is $2.72.

Some banks advertise interest compounded not monthly, daily, or even hourly,
but continuously, that is, at each instant. The formula (derived in calculus) for the
amount earned under continuous compounding of interest is as follows.
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EXAMPLE 5 Continuous Compounding of Interest

A principal of $1600 is placed in a savings account at 5% per annum compounded
continuously. Assuming no subsequent withdrawals or deposits, when will the bal-
ance reach $2400?

SOLUTION Substitute the values A � 2400, P � 1600, and r � 0.05 in the formula A � Pert to
obtain 2400 � 1600e0.05t. To isolate the time t in this last equation, first divide both
sides by 1600. This yields

and therefore

converting from exponential to logarithmic form

Using a calculator now to evaluate this last expression, we find t � 8.1 years. In sum-
mary, it will take slightly longer that 8 years 1 month for the balance to reach $2400.
Suggestion: You can use a graphing utility to check this result. Graph the function
A � 1600e0.05t along with the horizontal line A � 2400 in an appropriate viewing rec-
tangle. Is it then the first or second coordinate of the intersection point that you want
to estimate?

In the next example we compare the results of continuous compounding and an-
nual compounding of interest.

 t �
ln 1.5

0.05

 0.05t � ln  1.5

1.5 � e0.05t

Suppose that a principal of P dollars is invested at an annual rate r that is com-
pounded continuously. Then the amount A after t years is given by

A � Pert

Compound Interest Formula (interest compounded continuously)

EXAMPLE 6 Comparing Continuous to Annual Compounding

A principal of $100 is deposited in Account 1 at 6% per annum, compounded con-
tinuously. At the same time, another principal of $100 is deposited in Account 2 at
6% per annum, compounded only once a year. Use a graphing utility to determine
how long it will take until the amount in Account 1 exceeds that in Account 2 by
(at least) $10.
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SOLUTION The amount in Account 1 after t years is given by A � 100e0.06t; for Account 2 the
amount is A � 100(1 � 0.06)t � 100(1.06)t. Define f(t) to be the difference between
the amounts in each account at time t:

We want to know when the difference f (t) exceeds $10. Using a graphing utility as in
Figure 1, we find that when t � 15, the difference is less than 10, whereas when
t � 20, the difference is more than 10.

At this point, we can either zoom in on the portion of the graph corresponding to
15 	 t 	 20, or we can use the TABLE feature of the graphing utility. For this example
we’ll use the TABLE feature to evaluate the amount in each account and the difference
f(t) corresponding to the years t � 15 to t � 20. The results are shown in Table 5. You
should verify these results for yourself. (For help on the TABLE feature, consult the
owner’s manual for your graphing utility.)

f(t) � 100e0.06t � 100(1.06)t

0

5

10

15

20

0 5 10 15 20 25

Figure 1
f (t) � 100e0.06t � 100(1.06t) 
[0, 25, 5] by [0, 20, 5] 

Graphical Perspective

EXAMPLE 7 Nominal and Effective Rates Under Continuous Compounding

(a) Given a nominal rate of 8% per annum compounded continuously, compute the
effective interest rate.

(b) Given an effective rate of 8% per annum, compute the nominal rate compounded
continuously.

SOLUTION (a) With the values r � 0.08 and t � 1, the formula A � Pert yields

using a calculator

This shows that the effective interest rate is approximately 8.33% per year.
(b) We now wish to compute the nominal rate r, given an effective rate of 8% per

year. An effective rate of 8% means that the initial principal P grows to P(1.08)
by the end of the year. Thus in the formula A � Pert we make the substitutions
A � P(1.08) and t � 1. This yields

P(1.08) � Per (1)

 A � P(1.08329)
 A � Pe0.08(1)

TABLE 5

Account #1 Account #2 Difference
t A � 100e0.06t A � 100(1.06)t 100e0.06t � 100(1.06t)

15 245.96 239.66 6.30
16 261.17 254.04 7.13
17 277.32 269.28 8.04
18 294.47 285.43 9.03
19 312.68 302.56 10.12
20 332.01 320.71 11.30

As Table 5 indicates, after 18 years, the accounts differ by less than $10, but after 
19 years the difference is more than $10. In summary, it takes 19 years (to the nearest
year) before the accounts differ by at least $10. Remark:An algebraic solution for this
example would involve solving the inequality 100e0.06t � 100(1.06t) 
 10. This can’t
be done, however, using any of the algebraic techniques of this chapter. (Try it!)

In the next example we compare the nominal rate with the effective rate under
continuous compounding of interest.



Dividing both sides of this last equation by P, we have

To solve this equation for r, we rewrite it in its equivalent logarithmic form:

using a calculator

Thus, a nominal rate of about 7.70% per annum compounded continuously
yields an effective rate of 8%. Table 6 summarizes these results.

 r � 0.07696
 r � ln(1.08)

1.08 � er
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TABLE 6 Comparison of Nominal and Effective Rates in Example 7

Nominal Rate (% per annum) Effective Rate (% per per annum)

8 8.33
7.70 8

EXAMPLE 8 Computing the Doubling Time

Compute the doubling time T2 when a sum is invested at an interest rate of 4% per
annum compounded continuously.

SOLUTION
T2 � � � 17.3 years using a calculator

ln  2

0.04

ln  2
r

Now we come to one of the remarkable and characteristic features of compound in-
terest and of growth governed by the formula A � Pert. By the doubling time we
mean, as the name implies, the amount of time required for a given principal to double.
The surprising fact here is that the doubling time does not depend on the principal P.
To see why this is so in the continuous compounding case, we begin with the formula

We are interested in the time t at which A � 2P. Replacing A by 2P in the formula yields

Denoting the doubling time by T2, we have the following formula.

As you can see, the formula for the doubling time T2 does not involve P, but only r.
Thus at a given rate under continuous compounding, $2 and $2000 would both take
the same amount of time to double. (This idea takes some getting used to.) Note: For
compound interest other than continuous compounding, the doubling time is also
independent of the principal, but the formula is a little more complicated.

Doubling time � T2 �
ln  2

r

Doubling Time Under Continuous Compounding

 t �
ln 2

r

 rt � ln  2
 2 � ert

 2P � Pert

A � Pert
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There is a convenient approximation that allows us to estimate doubling times
easily. As you can check with a calculator, we have ln 2 � 0.7. Using this approxi-
mation in the doubling time formula, we have

where r (as usual) is the annual interest rate expressed as a decimal. Now let R be the
annual interest rate expressed as a percentage, so that R � 100r. Then we can write

That is,

where R is the annual rate expressed as a percentage

This is the so-called rule of 70 for estimating doubling times. For instance, for an an-
nual percentage rate of 10%, we estimate the doubling time as T2 � 70�10 � 7 years.
As another example, let’s use this rule of 70 to rework Example 8, in which the an-
nual interest rate is 4%. We have

This is quite close to the actual doubling time of 17.3 years computed in Example 8.
Remark: A slightly less accurate approximation that’s often used in business is the
rule of 72, T2 � 72�R. The number 72 is used instead of 70 simply because there are
more numbers that divide into 72 evenly than into 70.

The rule of 70 for estimating doubling times is useful when you want to sketch a
graph of the function A � Pert without relying on a graphing utility. As an example,
suppose that a principal of $1000 is invested at 10% per annum compounded contin-
uously. Then the function that we wish to graph is

Approximating the doubling time using the rule of 70 gives us

Now we just set up a table showing the results of doubling $1000 every 7 years, plot
the points, and then join them with a smooth curve. See Figure 2. 

T2 �
70

R
�

70

10
� 7 years

A � 1000e0.1t

T2 �
70

4
�

35

2
� 17.5 years

T2 �
70

R

T2 �
0.7
r

�
0.7
r

�
100

100
�

70

100r
�

70

R

T2 �
0.7
r

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 7 14 21 28

A=1000e0.! t

A (dollars)

t (years)
Figure 2
Applying the rule of 70 to sketch a
graph.

t A

0 1000
7 2000

14 4000
21 8000
28 16,000
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want a balance of $4000 � $1000 � $5000.) (Adapt
the suggestion at the end of Example 5.)

(b) Use algebra, rather than a graphing utility, to solve the
problem in part (a).

15. A principal of $3500 is deposited in Account 1 at 7% per
annum, compounded continuously. At the same time, an-
other principal of $3500 is deposited in Account 2 at 7%
per annum, compounded semiannually. Use a graphing util-
ity to determine how long it will take until the amount in
Account 1 exceeds that in Account 2 by (at least) $200.
(Follow the method of Example 6).

16. A principal of $1000 is deposited in Account 1 at 8%
per annum, compounded continuously. At the same time, a
principal of $1200 is deposited in Account 2 at 6% per
annum, compounded once per year. Use a graphing utility
to determine how long it will take until the amount in
Account 1 exceeds that in Account 2. Give your answer to
the nearest whole number of years, rounded upward.

17. A bank offers an interest rate of per annum com-
pounded continuously. What principal will grow to $5000
in 10 years under these conditions?

18. Given a nominal rate of 6% per annum, compute the effec-
tive rate under continuous compounding of interest.

19. Suppose that under continuous compounding of interest,
the effective rate is 6% per annum. Compute the nominal
rate.

20. You have two savings accounts, each with an initial princi-
pal of $1000. The nominal rate on both accounts is 
per annum. In the first account, interest is compounded
semiannually. In the second account, interest is com-
pounded continuously. How much more is in the second
account after 12 years?

21. You want to invest $10,000 for 5 years, and you have a
choice between two accounts. The first pays 6% per annum
compounded annually. The second pays 5% per annum
compounded continuously. Which is the better investment?

22. Suppose that a certain principal is invested at 6% per
annum compounded continuously.
(a) Use the rule of 70, T2 � 70�R, to estimate the doubling

time.
(b) Compute the doubling time using the formula 

T2 � (ln 2)�r.
(c) Do your answers in (a) and (b) differ by more than 

2 months?
23. A sum of $1500 is invested at 5% per annum compounded

continuously.
(a) Estimate the doubling time.
(b) Compute the actual doubling time.
(c) Let d1 and d2 denote the actual and estimated doubling

times, respectively. Define d by . What
percentage is d of the actual doubling time?

d � 0 d1 � d2 0

5 
1
4%

6 
1
2%

A
1. You invest $800 at 6% interest compounded annually. How

much is in the account after 4 years, assuming that you
make no subsequent withdrawal or deposit?

2. A sum of $1000 is invested at an interest rate of com-
pounded annually. How many years will it take until the
sum exceeds $2500? (First find out when the amount equals
$2500; then round off as in Example 2.)

3. At what interest rate (compounded annually) will a sum of
$4000 grow to $6000 in 5 years?

4. A bank pays 7% interest compounded annually. What prin-
cipal will grow to $10,000 in 10 years?

5. You place $500 in a savings account at 5% compounded
annually. After 4 years you withdraw all your money and
take it to a different bank, which advertises a rate of 6%
compounded annually. What is the balance in this new
account after 4 more years? (As usual, assume that no
subsequent withdrawal or deposit is made.)

6. A sum of $3000 is placed in a savings account at 6% per
annum. How much is in the account after 1 year if the
interest is compounded (a) annually? (b) semiannually?
(c) daily?

7. A sum of $1000 is placed in a savings account at 7% per
annum. How much is in the account after 20 years if the
interest is compounded (a) annually? (b) quarterly?

8. Your friend invests $2000 at per annum compounded
semiannually. You invest an equal amount at the same
yearly rate, but compounded daily. How much larger is
your account than your friend’s after 8 years?

9. You invest $100 at 6% per annum compounded quarterly.
How long will it take for your balance to exceed $120?
(Round your answer up to the next quarter.)

10. A bank offers an interest rate of 7% per annum com-
pounded daily. What is the effective rate?

11. What principal should you deposit at per annum com-
pounded semiannually so as to have $6000 after 10 years?

12. You place a sum of $800 in a savings account at 6% per
annum compounded continuously. Assuming that you make
no subsequent withdrawal or deposit, how much is in the
account after 1 year? When will the balance reach $1000?

13. A principal of $600 dollars is placed in a savings account at
6.5% per annum compounded continuously.
(a) Use a graphing utility to estimate how long it will

take for the balance to reach $800. (Adapt the sugges-
tion at the end of Example 5.)

(b) Use algebra (as in Example 5) to determine how long it
will take for the balance to reach $800.

14. A principal of $4000 dollars is invested at 8% per annum
compounded continuously.
(a) Use a graphing utility to estimate how long it will

take for the balance to increase by 25%. (That is, you

5 
1
2%

5 
1
4%

5 
1
2%

EXERCISE SET 5.6 



27. A principal of $7000 is invested at 5% per annum com-
pounded continuously.
(a) Estimate the doubling time.
(b) Sketch a graph showing how the amount increases with

time.
28. In one savings account, a principal of $1000 is deposited at

5% per annum. In a second account, a principal of $500 is
deposited at 10% per annum. Both accounts compound
interest continuously.
(a) Estimate the doubling time for each account.
(b) On the same set of axes, sketch graphs showing the

amount of money in each account over time. Give the
(approximate) coordinates of the point where the two
curves meet. In financial terms, what is the significance
of this point? (In working this problem, assume that the
initial deposits in each account were made at the same
time.)

(c) During what period of time does the first account have
the larger balance?

24. A sum of $5000 is invested at 10% per annum compounded
continuously.
(a) Estimate the doubling time.
(b) Estimate the time required for the $5000 to grow to

$40,000.
25. After carrying out the calculations in this problem, you’ll

see one of the reasons why some governments impose in-
heritance taxes and why laws are passed to prohibit savings
accounts from being passed from generation to generation
without restriction. Suppose that a family invests $1000 at
8% per annum compounded continuously. If this account
were to remain intact, being passed from generation to gen-
eration, for 300 years, how much would be in the account
at the end of those 300 years?

26. A principal of $500 is invested at 7% per annum com-
pounded continuously.
(a) Estimate the doubling time.
(b) Sketch a graph similar to the one in Figure 2, showing

how the amount increases with time.
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The Project, Loan Payments, at http://www.cengage.com/math/cohen/precalc7e, uses material from Section 5.6.

5.7 EXPONENTIAL GROWTH AND DECAY
In newspapers and in everyday speech, the term “exponential growth” is used rather
loosely to describe any situation involving rapid growth. In the sciences, however,
exponential growth refers specifically to growth governed by functions of the form
y � aebx, where a and b are positive constants. For example, since the function
A � Pert (discussed in the previous section) has this general form, we say that money
grows exponentially under continuous compounding of interest. Similarly, in the sci-
ences, exponential decay refers specifically to decrease or decay governed by func-
tions of the form y � aebx, where a is positive and b is negative. As examples in this
section, we shall consider population growth, global warming, and radioactive decay.

Under ideal conditions involving unlimited food and space, the size of a popula-
tion of bacteria is modeled by a function of the form

In this growth law,N(t) is the population at time t, and k is a positive constant related
to (but not equal to) the growth rate of the population. The constant k is referred to as
the growth constant. The number N0 is also a constant; it represents the size of the
population at time t � 0. You can see that this is the case by substituting t � 0 in the
equation N(t) �N0ekt. This yields

N(0) �N0  e
0 �N0

# 1 �N0

N(t) �N0  ekt

Drawing by Professor Ann Jones,
University of Colorado, Boulder.
From the cover of The Physics
Teacher, vol. 14, no. 7 (October
1976).

http://www.cengage.com/math/cohen/precalc7e


That is, N(0) � N0, which says that the population at time t � 0 is indeed N0.
Figure 1 shows three examples. In each case the initial population size is N0 � 200,
and we’ve graphed the growth laws using three different values for the growth
constant k.

A remark about notation: In science texts the growth law is often written as

rather than (1)

In both cases the quantity on the left-hand side of the equation represents the popula-
tion at time t. For ease in writing, we follow this convention too, in Examples 5 and
7. (For the record: The difference between the use of N in the two equations is this.
On the left-hand side of the equation N(t) �N0 ekt, N is the name of the function.
On the left-hand side of the equation N�N0 ekt, N serves as a dependent variable,
just like the “y” in y � x2.)

N(t) �N0  e
kt

N �N0  e
kt
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k=0.25

k=0.5
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t

(t) k=1.5�

Figure 1
The graph of N(t) � 200ekt for
k � 0.25, k � 0.5, and k � 1.5.

EXAMPLE 1 Modeling Bacterial Growth

Suppose that at the start of an experiment in a biology lab, 1200 bacteria are present
in a colony. Two hours later, the size of the population is found to be 1440. Assume
that the population size grows exponentially.

(a) Determine the growth constant k and the growth law for this population.
(b) How many bacteria were there 1.5 hours after the experiment began? Round the

answer to the nearest 5 (that is, nearest multiple of 5).
(c) When will the population size reach 4800?

SOLUTION (a) The initial population sizeN0 is 1200, so the equationN(t) �N0 ekt becomes

We are also told that after 2 hours, the size of the population is 1440. Using this
information in equation (1) gives us

and therefore

To isolate k, we rewrite this last equation in logarithmic form (or take the natural
logarithm of both sides) to obtain 2k � ln(1440�1200), and consequently,

(2)

The growth law for the population is therefore

(3)

where k is given by equation (2).

N(t) � 1200ekt

 � 0.09116  using a calculator and rounding to five decimal places

 k �
ln(6�5)

2

e2k �
1440

1200
�

6

5

 1440 � 1200e2k

 N(2) � 1200ek (2)

 N(t) � 1200ekt



Notice that in our statement of the growth law we referenced the exact expres-
sion for k rather than the calculator approximation. In parts (b) and (c) of this
problem we don’t round during the intermediate steps. This is standard procedure
in scientific calculations because rounding errors can, in general, build up and
adversely effect the accuracy of the final result.

(b) Substituting t � 1.5 in the growth law [that’s equation (3)] yields

where 

With a calculator now, you should verify that N(1.5) � 1375.8. In our context,
N(1.5) must be a whole number because it represents the number of bacteria.
Furthermore, the problem asks us to round to the nearest 5. In summary then,
after 1.5 hours the population is 1375.

(c) We want to find out when the population reaches 4800. Replacing N(t) with
4800 in equation (3), we have 4800 � 1200ekt, and therefore 4 � ekt. Rewriting
this last equation in logarithmic form gives us

using the expression for k
in equation (2) and a calculator

Thus it takes approximately 15.2 hours for the size of the population to reach
4800. As you can check with arithmetic, this is 15 hours 12 minutes. See Figure 2
for a graphical solution to this part of the example.

 t �
ln 4

k
� 15.207

 kt � ln  4

k �
ln (6�5)

2
N(1.5) � 1200ek (1.5)
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Graphical Perspective

(a) [0, 20, 4 ] by [0, 6000, 2000] (b) [15.0, 15.5, 0.1 ] by [4600, 5000, 100]

4600

4800

5000

15.0 15.1 15.2 15.3 15.4 15.50 4 8 12 16 20
0

2000

4000

6000

Figure 2
In both viewing rectangles the red
graph is the population growth
function determined in part (a) of
Example 1. The blue graph is the
horizontal line N(t) � 4800. The
viewing rectangle in Figure 2(a)
shows that the population reaches
4800 at a time that is roughly 
halfway between t � 14 and
t � 16 hours. The zoom-in view in
Figure 2(b) shows the time to be
15.2 hours, to the nearest tenth of
an hour.

In Example 2 and in exercises we are going to use the function N(t) �N0 ekt as
a model for the size of human populations. But in order to do that in a reasonably
honest way (short of bringing in calculus), first we need to introduce the concept of
a relative growth rate. Suppose that in a biology lab you obtain the following popu-
lation figures in successive hours for a colony of bacteria:

3 P.M.: 12,000 bacteria 4 P.M.: 15,000 bacteria



Let us compute the percentage increase in the population over this 1-hour interval.
We have

We say in this case that the average relative growth rate of the population is
25%/hour. In this section and in the exercises we will shorten the phrase average rel-
ative growth rate to simply relative growth rate. Just as the interest rate in banking
is sometimes expressed as a percentage and sometimes as a decimal, so too with the
relative growth rate. In the example we are using, then, the decimal form of the rela-
tive growth rate is 0.25/hour. Whether expressed as a percentage or a decimal, the rel-
ative growth rate over a unit of time is a measure of how the population increases (or
decreases) compared to its starting value.

There is a relationship between the growth constant k in the equation N(t) �N0 ekt

and the relative growth rate. To demonstrate this, we’ll use the growth function obtained
in Example 1. In Table 1, we’ve computed the relative growth rates (in decimal form)
for this function over successive 1-hour time intervals.

We make two observations about the results in Table 1.

• The relative growth rates all are equal.
• The relative growth rate (0.095) is approximately equal to the growth constant

k (0.091).

 �
15,000 � 12,000

12,000
� 100 �

1

4
� 100 � 25%

 percentage increase �
change in population

initial population
� 100
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TABLE 1 Relative Growth Rates for the Function in Example 1 over
Successive 1-Hour Intervals*

Relative Growth Rate Calculator Value
t on Interval [t, t � 1] (rounded to 3 places)

0 0.095

1 0.095

2 0.095

3 0.095

*The function is given by N(t) � 1200ekt, where k � 0.09116 . . .
ln(1440�1200)

2
�

N(4) �N(3)

N(3)

N(3) �N(2)

N(2)

N(2) �N(1)

N(1)

N(1) �N(0)

N(0)

The observation that the relative growth rates all turn out to be the same seems sur-
prising at first. This is, however, one of the characteristic features of exponential



growth and not only a coincidence. To see why, we compute [N(t � 1) �N(t)]�N(t)
for the function N(t) �N0ekt. We have

since ek(t�1) � ekt�k � ektek (4)

This shows that the relative growth rate over every interval [t, t � 1] is the constant
ek � 1; the value does not depend upon t.

The second of the two observations we made was that the relative growth rate was
nearly the same as the growth constant k. It turns out that this is true for every expo-
nential growth function provided k is close to zero. (Exercise 61 will help you to see
why this is so.) For this reason, in using the exponential growth lawN(t) �N0ekt to
model human populations, we’ll simply use the relative growth rate for the value of
k. This is convenient to do, since most of the available data report growth in terms of
a relative growth rate. Furthermore, since the census figures themselves are, in gen-
eral, not precise, it wouldn’t be particularly meaningful to quibble over a fraction of
a percent in this context. See Table 2.

 � ek � 1

 �
N0 ekt(ek � 1)

N0 ekt

 
N(t � 1) �N(t)

N(t)
�
N0 e

k (t�1) �N0  ekt

N0 e
kt
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TABLE 2 Comparison of Relative Growth Rate ek � 1 [from
Equation (4)] to Growth Constant k (computed assuming
exponential growth)* 

Relative Growth Rate 
for Year 2000

Country as Percentage as Decimal k

Liberia 3.2 0.032 0.03149. . .
United States 0.6 0.006 0.00598. . .
Sweden �0.1 �0.001 �0.00099. . .

*When the numbers are close to zero, the relative growth rate (in decimal form) is a good approximation
for k.
Source for relative growth rates: Population Reference Bureau, www.prb.org 

EXAMPLE 2 Using an Exponential Growth Model for World Population Growth

The Population Reference Bureau, www.prb.org, estimates that in the year 1900 the
size of the world’s population was 1.628 billion, with a relative growth rate of about
0.7%/year.

(a) Use the exponential growth model to make population projections for the years
1925 and 2000.

(b) Use the data in Table 3 to compute the percentage errors in the projections, and
summarize the results.

SOLUTION (a) Let t � 0 correspond to 1900. The initial population is N0 � 1.628, in units of
one billion. For the value of k, we convert the given relative growth rate

TABLE 3

Year World Population

1925 1.963
2000 6.067

Source: Population Reference Bureau

www.prb.org
www.prb.org


0.7%/year into its decimal form, which is 0.007/year. With these values, the
growth law becomes N(t) � 1.628e0.007t. Now we’re ready to compute.

The exponential model projects a world population of 1.939 billion in 1925 and
3.278 billion in 2000.

(b) For 1925 the projection is 1.939 billion, whereas the figure from Table 3 is
1.963 billion. The percentage error in the projection is then

using a calculator

As you should check now for yourself using the year 2000 figures, the percent-
age error in the projection for 2000 is 46.0%. Remark: In both cases the expo-
nential projection is too low. However, the projection for 1925 is quite close,
with a percentage error of only about 1%. In the case of the year 2000 projection,
the model is way off; the percentage error is 46%.

 � 1.2%

 �
01.963 billion � 1.939 billion 0

1.963 billion
� 100

 percentage error �
0 actual value � estimate 0

actual value
� 100

For 1925, t � 25

N(25) � 1.628e0.007(25)

        � 1.939 using a calculator

 3  For 2000, t � 100

N(100) � 1.628e0.007(100)

         � 3.278 using a calculator
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EXAMPLE 3 More on World Population Growth

In the previous example we found that from 1900 to 2000, the world popula-
tion grew faster than what was predicted by an exponential growth model with a rela-
tive growth rate of 0.7%/year. Actually, as you might well expect, the relative growth
rate was not constant over the course of the entire century. But, assuming that it had
been, find the value of the growth constant k that would yield an accurate projection
for the year 2000. (The year 2000 population is given in Table 3.)

SOLUTION Again we let t � 0 correspond to 1900, and we have N0 � 1.628, in units of one bil-
lion. Our exponential growth law is N(t) � 1.628ekt. We want to find k so that the
population in the year 2000 is 6.067 billion (according to Table 3). The year 2000
corresponds to t � 100, so we have

Writing this last equation in logarithmic form gives us

and therefore

using a calculatork �

ln  
6.067

1.628

100
� 0.0131 . . .

100 k � ln  
6.067

1.628

 
6.067

1.628
� e100k

 6.067 � 1.628e100k
 N(100) � 1.628ek (100)



Thus rounding to three decimal places, the required value of k is approximately
0.013. The corresponding relative growth rate in percent form is then 1.3%/year.
Note: If you try checking this result using the approximation k � 0.013, you’ll find
that the population projection falls short of the required 6.067 billion. Don’t round
until the end. A good way to do this with your calculator is to first evaluate
k � �100, then store the result, and use the stored value in computing
1.628ek(100). (If necessary, see your calculator owner’s manual on how to store 
and then recall a constant.)

In the next example we compute the doubling time for a population that is grow-
ing exponentially. As the name indicates, the doubling time for a population is the
amount of time required for the size of the population to double. Now, in the previous
section we developed a formula for the doubling time T2 of an amount of money under
continuous compounding of interest. That formula is T2 � (ln 2)�r, where r is annual
interest rate. The same formula is applicable now, because in both cases the underly-
ing assumption is that of exponential growth. In the current context, the growth con-
stant k plays the role of the annual interest rate r. Thus for a population that grows
exponentially, the doubling time is T2 � (ln 2)�k. Note that the doubling time depends
only upon the growth constant k and not upon the initial population sizeN0. For ref-
erence we state the formula for doubling time in the box that follows.

(ln  6.067
1.628 )
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Suppose that a population grows exponentially. Then the doubling time T2 is given by

where k is the growth constant.

T2 �
ln 2

k

Doubling Time Formula

EXAMPLE 4 Computing a Doubling Time

According to the Global Data Files of the U.S. Bureau of the Census, the size of the
world population in 1950 was approximately 2.555 billion, with an annual growth
rate of 1.47%/year. Estimate the doubling time, assuming exponential growth at
1.47%/year.

SOLUTION Converting 1.47% to a decimal, we have k � 0.0147. The doubling time is therefore

using a calculator and rounding to the nearest year

The exponential model predicts a doubling time of approximately 47 years. That
would be the year 1950 � 47 � 1997. Note the fact that the 1950 population size was
not needed in this computation. Remark: It’s interesting to check this model
against the actual data. The model predicts that the size of the population in 1997 is
2 � 2.555 billion � 5.110 billion. The actual figure from the U.S. census is 5.847 bil-
lion. So the model projects too low a population for 1997. To put it another way, it

 � 47 years

 T2 �
ln  2

k
�

ln  2

0.0147



actually took less than 47 years for the 1950 population to double in size. Indeed, a
further check of the census data shows that the size of the population reached (our
projected) 5.110 billion back in 1988.

In the next example we use the exponential growth model to describe the con-
centration of the so-called greenhouse gas carbon dioxide in the earth’s atmosphere.
As background, we quote from an article on the front page of the New York Times,
June 7, 2001. The headline under which the article appears is “Panel Tells Bush
Global Warming Getting Worse.”

A panel of top American scientists declared today that global warming was a
real problem, and was getting worse. . . . In a much anticipated report from the
National Academy of Sciences, 11 leading atmospheric scientists, including
previous skeptics about global warming, reaffirmed the mainstream scientific
view that the earth’s atmosphere was getting warmer and that human activity
was largely responsible. “Greenhouse gases are accumulating in the earth’s at-
mosphere as a result of human activities, causing surface air temperatures and
subsurface ocean temperature to rise,” the report said.

New York Times article by Katharine Q. Seelye with Andrew C. Revkin,
June 7, 2001
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EXAMPLE 5 Using an Exponential Model for Carbon Dioxide Levels in the Atmosphere

The following statements about the increasing levels of carbon dioxide in the atmos-
phere appear in the book The Challenge of Global Warming, edited by Dean Edwin
Abrahamson (Washington, D.C.: Island Press, 1989).

Carbon dioxide, the single most important greenhouse gas, accounts for about
half of the warming that has been experienced as a result of past emissions*
and also for half of the projected future warming. The present [1988] concen-
tration is now about 350 parts per million (ppm) and is increasing about
0.4% . . . per year. . . .

Assuming that the concentration of carbon dioxide in the atmosphere continues to in-
crease exponentially at 0.4% per year, estimate when the concentration might reach
600 ppm. (This would be roughly twice the level estimated to exist prior to the
Industrial Revolution.)

SOLUTION Let t � 0 correspond to the year 1988. In the formula N �N0 ekt, we want to de-
termine the time t when N � 600. Using the values N0 � 350, N � 600, and
k � 0.004, we have

600 � 350 e0.004t or e0.004t �
600

350
�

12

7

*The two principal sources of these emissions are the burning of fossil fuels and the burning
of vegetation in the tropics. 



and, consequently,

using a calculator and rounding 
to the nearest whole number

Now, 135 years beyond the base year of 1988 is 2123. Rounding once more, we sum-
marize our result this way: If the carbon dioxide levels continue to increase expo-
nentially at 0.4% per year, then the concentration will reach 600 ppm by
approximately 2125. (Note: We round our result to the nearest five years because of
the uncertainty in both the initial concentration of 350 ppm and the 0.4% rate of
increase.)

In Examples 1 through 4 we used the functionN(t) �N0 ekt to describe popula-
tion growth. In Example 5 we used the function to model the increasing levels of
carbon dioxide in the atmosphere. And in the previous section a function of this form
was used to describe how a sum of money grows under continuous compounding of
interest. It is a remarkable fact that the same basic function, but now with k � 0, de-
scribes radioactive decay. How do scientists know that this is the appropriate model
for radioactive decay? We mention two reasons: one empirical, one theoretical. As
early as 1900–1903, the physicist Ernest Rutherford (Nobel prize, 1908) and the
chemist Frederick Soddy (Nobel prize, 1921) carried out experiments measuring
radioactive decay. They found that an equation of the formN�N0 ekt, with k � 0,
indeed aptly described their data. Alternatively, on theoretical grounds, it can be ar-
gued that the decay rate at time t must be proportional to the amount N(t) of the
radioactive substance present. Under this condition, calculus can be used to show
that a law of exponential decay applies. (Exercise 63 demonstrates the converse:
Assuming that the law of exponential decay applies, then the rate of decay must be
proportional to the amount of the substance present.)

In discussing radioactive decay, it is convenient to introduce the term half-life. As
you’ll see, this is analogous to the concept of doubling time for exponential growth.

 t �
ln(12�7)

0.004
� 135

 ln (12�7) � 0.004t
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The half-life of a radioactive substance is
the time required for half of a given sample
to disintegrate. The half-life is an intrinsic
property of the substance; it does not
depend on the given sample size. 

EXAMPLE
Iodine-131 is a radioactive sub-
stance with a half-life of 8 days. 
Suppose that 2 g are present 
initially. Then:

at t � 0, 2 g are present;

at t � 8 days, 1 g is left;

at t � 16 days, g is left;

at t � 24 days, g is left;

at t � 32 days, g is left; 1
8

1
4

1
2

Definition Half-life 

Just as we used the idea of doubling time to graph an exponential growth func-
tion in the previous section, we can use the half-life to graph an exponential decay



function. Consider, for example, the radioactive substance iodine-131, which has a
half-life of 8 days. Table 4 shows what fraction of an initial amount remains at 8-day
intervals. Using the data in this table, we can draw the graph of the decay function
N(t) �N0 ekt for iodine-131 (see Figure 3). Notice that we are able to construct this
graph without specifically evaluating the decay constant k. (The next example shows
how to determine k.)
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Figure 3
The exponential decay function for
iodine-131.

TABLE 4

t (days) NN(t) (amount)

0 N0

8 N0�2
16 N0�4
24 N0�8
32 N0�16

EXAMPLE 6 Using the Exponential Decay Formula

Hospitals utilize the radioactive substance iodine-131 in the diagnosis of the thyroid
gland. The half-life of iodine-131 is 8 days.

(a) Determine the decay constant k for iodine-131.
(b) If a hospital acquires 2 g of iodine-131, how much of this sample will remain

after 20 days?
(c) How long will it be until only 0.01 g remains?

SOLUTION (a) We use the half-life information to find the value of the decay constant k.
Substituting t � 8 in the decay law N(t) �N0 ekt yields

A half-life of 8 days means that 

dividing both sides by N0

In logarithmic form, this last equation becomes

rounding to five places � �0.08664

 8k � ln  
1

2
   and therefore   k �

ln 12
8

�
�ln 2

8

 
1

2
� e8k

N(8) � 1
2 N0. 

1

2
 N0 �N0 e

8k

 N(8) �N0 e
k (8)



(b) We are given N0 � 2 g and we want to find N(20), the amount remaining after
20 days. First, before using algebra and a calculator, let’s estimate the answer to
get a feeling for the situation. The half-life is 8 days. This means that after
8 days, 1 g remains; after 16 days, 0.5 g remains; and after 24 days, 0.25 g remains.
Since 20 is between 16 and 24, it follows that after 20 days, the amount remaining
will be between 0.5 g and 0.25 g. Now for the actual calculations: Substitute the
values N0 � 2 and t � 20 in the decay law N(t) �N0 ekt to obtain

Thus after 20 days, approximately 0.35 g of the iodine-131 remains. Note that
this amount is indeed between 0.5 g and 0.25 g as we first estimated.

(c) We want to find the time t for which N(t) � 0.01 g. Substituting 0.01 for N(t)
in the decay law gives us

The logarithmic form of this last equation is kt � ln(0.005), from which we con-
clude that

In Example 6(a) we found that the decay constant for iodine-131 is given by
k � �(ln 2)�8. Notice that the denominator in this expression is the half-life of iodine-
131. By following the same reasoning used in Example 6(a), we find that the decay
constant for any radioactive substance is always �ln 2 divided by the half-life. For
reference, this useful fact is restated in the box that follows. 

 � 61.2 days  using a calculator

 t �
ln(0.005)

k
   where k �

�ln 2

8
 

0.01 � 2ekt  and therefore  0.005 � ekt

 � 0.354 g using a calculator

 N(20) � 2ek (20)  where k �  
�ln 2

8
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PROPERTY SUMMARY A Formula for the Decay Constant k

Formula Example

The half-life of strontium-90 is 28 years, 
and therefore k � �(ln 2)�28. k �

�ln  2

half-life

EXAMPLE 7 Calculations and Estimates for Radioactivity

An article on nuclear energy appeared in the January 1976 issue of Scientific
American. The author of the article was Hans Bethe (1906–2005), a Nobel prize win-
ner in physics. At one point in the article, Professor Bethe discussed the disposal
(through burial) of radioactive waste material from a nuclear reactor. The particular
waste product under discussion was plutonium-239.



. . . Plutonium-239 has a half-life of nearly 25,000 years, and 10 half-lives are
required to cut the radioactivity by a factor of 1000. Thus, the buried wastes
must be kept out of the biosphere for 250,000 years.

(a) Supply the detailed calculations to support the statement that 10 half-lives are
required before the radioactivity is reduced by a factor of 1000.

(b) Show how the figure of 10 half-lives can be obtained by estimation, as opposed
to detailed calculation.
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SOLUTION (a) Let N0 denote the initial amount of plutonium-239 at time t � 0. Then the
amount N present at time t is given by N � N0 ekt. We wish to determine
t when N � N0. First, since the half-life is 25,000 years, we have 
k � �(ln 2)�25,000. Now, substituting N0 for N in the decay law gives us

Using a calculator, we obtain the value 249,144.6 years; however, given the time
scale involved, it would be ludicrous to announce the answer in this form.
Instead, we round off the answer to the nearest thousand years and say that after
249,000 years, the radioactivity will have decreased by a factor of 1000. Notice
that this result is consistent with Professor Bethe’s ballpark estimate of 10 half-
lives, or 250,000 years

(b)

Following this pattern, we see that after 10 half-lives we should have

However, as we noted in the first section of this chapter, 210 is approximately
1000. Therefore we have

This is in agreement with Professor Bethe’s statement. 

N �
N0

1000
  after 10 half-lives

N�
N0

210

 After 3 half-lives:  N�
1

2
aN0

22 b �
N0

23

 After 2 half-lives:  N�
1

2
aN0

2
b �

N0

22

 After 1 half-life:  N�
N0

2

 t �
�ln 1000

k
�

�ln 1000

�ln 2

25,000

�
25,000 ln 1000

ln 2

 kt � ln 
1

1000
   converting from exponential to logarithmic form

 
1

1000
� ekt

 
1

1000
N0 �N0  e

kt  where k is �(ln 2)�25,000

1
1000 

1
1000 
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4. Suppose that you are helping a friend with his homework
on the growth law, N(t) �N0 ekt, and on his paper you
see the equation ek � �0.75. How do you know at this
point that your friend must have made an error?

In Exercises 5 and 6: (a) Complete the table; and (b) use the in-
formation that is given to compute the percentage errors in the
population projections in part (a). Round each answer to one
decimal place. [The populations projections are in the second
column from the right in Tables A and B.] The data in Exercises 5
and 6 are from The Population Reference Bureau, www.prb.org.

5. (a) See Table A.
(b) Year 2000 population in billions: world, 6.067; more

developed, 1.184; less developed 4.883
6. (a) See Table B.

(b) Year 2000 population in millions: United States, 275.6;
People’s Republic of China, 1264.5; Mexico, 99.6

7. As of the year 2000, the African nation of Chad had one of
the highest population growth rates in the world, 3.3%/year.
At the other extreme in 2000, the United Kingdom had one
of the lowest (positive) growth rates, 0.1%/year. (There are
countries with zero or with negative growth rates.)
(a) In 2000 the sizes of the populations of Chad and the

United Kingdom were 8.0 million and 59.8 million, re-
spectively. Write the exponential growth law for each
country, letting t � 0 correspond to 2000.

(b) Assuming exponential growth, when would the two
countries have populations of the same size? Round the
answer to the nearest five years. Hint: Equate the two
expressions for N(t) obtained in part (a).

A
In Exercises 1 and 2, assume that the populations grow expo-
nentially, that is, according to the law N(t) �N0 ekt.

1. At the start of an experiment, 2000 bacteria are present in a
colony. Two hours later, the population is 3800.
(a) Determine the growth constant k.
(b) Determine the population five hours after the start of

the experiment.
(c) When will the population reach 10,000?

2. At the start of an experiment, 2 � 104 bacteria are present
in a colony. Eight hours later, the population is 3 � 104.
(a) Determine the growth constant k.
(b) What was the population two hours after the start of

the experiment?
(c) How long will it take for the population to triple?

3. The figure shows the graph of an exponential growth func-
tion N(t) �N0 ekt. Determine the values of N0 and k.

3

(t)

2000

3400

�

t

EXERCISE SET 5.7

TABLE A

Percentage
1995 Percentage of Relative Year 2000 of World 

Population Population Growth Rate Population Population
Region (billions) in 1995 (%/year) (billions) in 2000

World 5.702 100 1.5 ? ?
More developed regions 1.169 ? 0.2 ? ?
Less developed regions 4.533 ? 1.9 ? ?

TABLE B

1995 Relative Year 2000 Percentage 
Population Growth Rate Population Increase

Country (millions) (%/year) (millions) in Population

United States 263.2 0.7 ? ?
People’s Republic of China 1218.8 1.1 ? ?
Mexico 93.7 2.2 ? ?

www.prb.org


(c) Cambodia: 2.6%/year
(d) Palestinian Territory: 3.7%/year

14. Refer to the following table, which gives global popula-
tions and relative growth rates for the year 2000. Assume
an exponential growth model.

2000 Relative 
Population Growth Rate

(billions) (%/year)

World 6.067 1.4
More developed regions 1.184 0.1
Less developed regions 4.883 1.7

Source: Population Reference Bureau

(a) Compute the doubling time for the world population,
and give the year in which that population would be
reached. (Round each answer to the nearest year.)

(b) Follow part (a) for the more developed regions.
(c) Follow part (a) for the less developed regions.

15. In Example 5 in the text we modeled the concentration of
carbon dioxide in the atmosphere using an exponential
growth model with k � 0.4%/year and N0 � 350 ppm,
where t � 0 corresponds to 1988.
(a) A more precise value for N0 is 351.31 ppm. Using this

value in the exponential growth model, complete the
following table of projected values for the atmospheric
carbon dioxide concentrations. Round the answers to
one decimal place.

Year 1998 (t � 10) 2000 (t � 12)

Atmospheric Con-
centration of Car-
bon Dioxide (ppm)

Source for data: C. D. Keeling and T. P. Whorf, Scripps Institution of
Oceanography

(b) The actual values for 1998 and 2000 were 366.7 ppm and
368.4 ppm, respectively. For each of these two years, say
whether the exponential model projects too high or two
low a value, and compute the percentage error.

16. For this exercise refer to the following table, which gives
the atmospheric concentrations of carbon dioxide (CO2) for
selected years over the latter half of the 20th century.

Year 1960 1985 1990 1995 1999

Atmospheric Con-
centration of Car-
bon Dioxide (ppm) 316.75 345.73 354.04 360.91 368.37

Source: C. D. Keeling and T. P. Whorf, Scripps Institution of Oceanography

(a) Let t � 0 correspond to 1960, and assume an exponen-
tial growth model N� 316.75ekt. Use the information
for 1999 in the table to find the growth constant k.

8. In 2000 the nations of Mali and Cuba had similar size
populations: Mali 11.2 million, Cuba 11.1 million.
However, the relative growth rate for Mali was 3.1%/year,
whereas that for Cuba was 0.7%/year.
(a) Assuming exponential growth at the given rates, make

projections for each population in the year 2015.
(b) When might the population of Mali reach 20 million?

What would the population of Cuba be at that time?
9. In 2000 the nations of Niger and Portugal had similar size

populations: Niger 10.1 million, Portugal 10.0 million.
However, the relative growth rate for Niger was 3.0%/year,
whereas that for Portugal was only 0.1%/year.
(a) Assuming exponential growth at the given rates, make

projections for each population in the year 2015.
(b) When might the population of Niger reach 15 mil-

lion? What would the population of Portugal be at
that time?

10. The population of Guatemala in 2000 was 12.7 million.
(a) Assuming exponential growth, what value for k would

lead to a population of 20 million one quarter of a cen-
tury later (that is, in 2025)? Remark: The answer you
obtain is, in fact, less than the actual year 2000 growth
rate, which was about 2.9%/year.

(b) Again, assuming a population of 12.7 million in 2000,
what value for k would lead to a population of 20 mil-
lion, one century later (that is, in 2100)?

As background for Exercises 11 and 12, here’s a reminder of
what we found in Example 2. Starting with data for the year
1900, we saw two cases where the world population had grown
faster than what was predicted by an exponential model. In
Exercises 11 and 12, you’ll work with more recent data for the
base year and find that now the population is, in fact, growing
slower than the exponential model predicts.

11. According to the U.S. Bureau of the Census, the world
population in 1975 was 4.088 billion, with a relative
growth rate of 1.75%/year.
(a) Use an exponential growth model to predict the year

2000 population.
(b) According to Table 3 in the text, the world population

in 2000 was 6.067 billion. Is your projection in part (a)
higher or lower than this? Compute the percentage
error in the projection and round the answer to the
nearest one percent.

12. Follow Exercise 11, but start from the following data. In
1990, the world population was 5.284 billion, with a rela-
tive growth rate of 1.56%/year.

13. In each case, you are given the relative growth rate of a
country or region in the year 2000. Compute the doubling
time for the population (assuming an exponential growth
model). Round the answer to the nearest whole number
of years.
(a) United States: 0.6%/year
(b) Tajikistan: 1.6%/year
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Projected
Relative 2025

1990 Growth Projected
Population Rate Population

Region (millions) (%/year) (millions)

North America 275.2 0.7 ?
(Former) Soviet

Union 291.3 0.7 ?
Europe 499.5 0.2 ?
Nigeria 113.3 3.1 ?

(a) Complete the table, assuming that the populations
grow exponentially and that the indicated growth rates
are valid over the period 1990–2025.

(b) According to the projections in part (a), what will be
the net increase in Nigeria’s population over the period
1990–2025?

(c) According to the projections in part (a), what will be
the net increase in the combined populations of North
America, the (former) Soviet Union, and Europe over
the period 1990–2025?

(d) Compare your answers in parts (b) and (c). Do your re-
sults support or contradict Lester Brown’s projection?

20. The 2000 World Population Data Sheet (published by the
Population Reference Bureau, Washington, D.C.) lists ten
nations with populations exceeding 100 million. (See
Exercise 21 regarding a possible eleventh nation.) The
populations, in order of decreasing size, along with relative
growth rates, are listed in the accompanying table. Over a
decade ago, in 1987, the U.S. Bureau of the Census made
the following statement in its analysis of world population
data: “The latest projections suggest that India’s population
may surpass China’s in less than 60 years, or before today’s
youngsters in both countries reach old age.” Using the data
in the table, and assuming exponential growth, make projec-
tions for the populations of India and China in the year 2050
(which would be roughly 60 years after that statement by
the Bureau of the Census). Do your results for China and
India support the projection by the Bureau of the Census?

2000 Relative
Population Growth Rate

Country (millions) (%/year)

1. China 1264.5 0.9
2. India 1002.1 1.8
3. United States 275.6 0.6
4. Indonesia 212.2 1.6
5. Brazil 170.1 1.5
6. Pakistan 150.6 2.8
7. Russia 145.2 �0.6
8. Bangladesh 128.1 1.8
9. Japan 126.9 0.2

10. Nigeria 123.3 2.8

Source: Population Reference Bureau, www.prb.org

(b) Use the growth law determined in part (a) to make a
projection for the CO2 concentration in 1985. Then,
referring to the table, say whether the exponential
model predicts too high or low a figure, and compute
the percentage error.

(c) Follow part (b) for the year 1990 and 1995.
(d) Why do you think that the year 1999 was not included

in part (c)?
17. According to figures from the U.S. Bureau of the Census,

in 2000, the size of the population of the state of New York
was more than three times larger than that of Arizona.
However, New York had one of the lower growth rates in
the nation, and Arizona had the second highest.
(a) Use the data in the following table to specify an

exponential growth model for each state. (Let t � 0
correspond to the year 2000.)

Population Relative 
in 2000 Growth Rate

State (millions) (%/year)

New York 18.976 0.6
Arizona 5.131 4.0

(b) Assuming continued exponential growth, when would
the two states have populations of the same size? Round
the answer to the nearest five years. Hint: Equate the
two expressions for N(t) obtained in part (a).

18. The following table gives the population size and relative
growth rates in 2000 for three states. Use exponential mod-
els to project the population of each state in the year 2010,
listing the results from largest to smallest. Does the order
remain the same as it was in 2000?

Population Relative 
in 2000 Growth Rate

State (millions) (%/year)

Iowa 2.926 0.54
Arkansas 2.673 1.37
Nevada 1.998 6.63

19. Lester R. Brown, in his book State of the World 1985 (New
York: W. W. Norton and Co., 1985), makes the following
statement:

The projected [population] growth for North America,
all of Europe, and the Soviet Union is less than the
additions expected in either Bangladesh or Nigeria.

In this exercise, you are asked to carry out the type of
calculations that could be used to support Lester Brown’s
projection for the period 1990–2025. The source of the
data in the following table is the Population Division of the
United Nations.
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29. (a) The half-life of radium-226 is 1620 years. Sketch a
graph of the decay function for radium-226, similar to
that shown in Figure 3.

(b) The half-life of radium-A is 3 min. Sketch a graph of
the decay function for radium-A.

30. (a) The half-life of thorium-232 is 1.4 � 1010 years.
Sketch a graph of the decay function.

(b) The half-life of thorium-A is 0.16 sec. Sketch a graph
of the decay function.

31. The half-life of plutonium-241 is 13 years.
(a) How much of an initial 2-g sample remains after 5 years?
(b) Find the time required for 90% of the 2-g sample to

decay. Hint: If 90% has decayed, then 10% remains.
32. The half-life of radium-226 is 1620 years.

(a) How much of a 2-g sample remains after 100 years?
(b) Find the time required for 80% of the 2-g sample to

decay.
33. The half-life of thorium-229 is 7340 years.

(a) Compute the time required for a given sample to be
reduced by a factor of 1000. Show detailed calcula-
tions, as in Example 7(a).

(b) Express your answer in part (a) in terms of half-lives.
(c) As in Example 7(b), estimate the time required for a

given sample for thorium-229 to be reduced by a factor of
1000. Compare your answer with that obtained in part (b).

34. The Chernobyl nuclear explosion (in the former Soviet
Union, on April 26, 1986) released large amounts of radio-
active substances into the atmosphere. These substances
included cesium-137, iodine-131, and strontium-90.
Although the radioactive material covered many countries,
the actual amount and intensity of the fallout varied greatly
from country to country, due to vagaries of the weather and
the winds. One area that was particularly hard hit was
Lapland, where heavy rainfall occurred just when the
Chernobyl cloud was overhead.
(a) Many of the pastures in Lapland were contaminated

with cesium-137, a radioactive substance with a half-
life of 33 years. If the amount of cesium-137 was found
to be ten times the normal level, how long would it
take until the level returned to normal? Hint: Let N0

be the amount that is ten times the normal level. Then
you want to find the time when N(t) �N0�10.

(b) Follow part (a), but assume that the amount of 
cesium-137 was 100 times the normal level.
Remark: Several days after the explosion, it was re-
ported that the level of cesium-137 in the air over
Sweden was 10,000 times the normal level. Fortunately
there was little or no rainfall.

35. Strontium-90, with a half-life of 28 years, is a radioactive
waste product from nuclear fission reactors. One of the rea-
sons great care is taken in the storage and disposal of this
substance stems from the fact that strontium-90 is, in some
chemical respects, similar to ordinary calcium. Thus
strontium-90 in the biosphere, entering the food chain via

21. The population figures in Exercise 20 are actually for 
mid-2000. As of that time, the population of Mexico was
99.6 million, with a relative growth rate of 2.0%/year. Let
t � 0 correspond to June 2000 and use the exponential
growth modelN(t) � 99.6e0.02t to verify that
N(0.5) � 100. Interpret the result.

22. In 2000 the Philippines and Germany had similar size
populations, but very different growth rates. The population
of the Philippines was 80.3 million, with a relative growth
rate of 2.0%/year. The population of Germany was 
82.1 million, with a relative “growth” rate of �0.1%/year.
Using exponential models, make a projection for the popula-
tion of Germany in the year when the Philippine population
has doubled.

In Exercises 23 and 24, use the half-life information to com-
plete each table. (The formula N �N0 ekt is not required.)

23. (a) Uranium-228: half-life � 550 sec

t (sec) 0 550 1100 1650 2200

NN (g) 8

(b) Uranium-238: half-life � 4.9 � 109 years

t (yr) 0

NN ( g) 10 5 2.5 1.25 0.625

24. (a) Polonium-210: half-life � 138.4 days

t (days) 0 138.4 276.8 415.2

NN (g) 0.4 0.025

(b) Polonium-214: half-life � 1.63 � 10�4 second

t (sec) 0 6.52 � 10�4

NN (g) 0.1 0.05 0.025 0.0125

25. The half-life of iodine-131 is 8 days. How much of a one-
gram sample will remain after 7 days?

26. The half-life of strontium-90 is 28 years. How much of a 
10-g sample will remain after (a) 1 year? (b) 10 years?

27. The radioactive isotope sodium-24 is used as a tracer to
measure the rate of flow in an artery or vein. The half-life
of sodium-24 is 14.9 hours. Suppose that a hospital buys a
40-g sample of sodium-24.
(a) How much of the sample will remain after 48 hours?
(b) How long will it be until only 1 gram remains?

28. The radioactive isotope carbon-14 is used as a tracer
in medical and biological research. Compute the 
half-life of carbon-14 given that the decay constant k is
�1.2097 � 10�4. (The units for k here are such that your
half-life answer will be in years.)
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(b) Repeat the calculations in part (a) using the following
more recent data: In 2000 the world population was
about 6.0 billion, with a relative growth rate of 1.4%
per year. How does your answer compare with that in
part (a)?

39. The following extract is from an article by Kim Murphy that
appeared in the Los Angeles Times on September 14, 1994.

CAIRO—Over a chorus of reservations from Latin
America and Islamic countries still troubled about
abortion and family issues, nearly 180 nations adopted a
wide-ranging plan Tuesday on global population, the first
in history to obtain partial endorsement from the Vatican.

The plan, approved on the final day of the U.N. pop-
ulation conference here, for the first time tries to limit the
growth of the world’s population by preventing it from
exceeding 7.2 billion people over the next two decades.

(a) In 1995 the world population was 5.7 billion, with a
relative growth rate of 1.6%/year. Assuming continued
exponential growth at this rate, make a projection for
the world population in the year 2020. Round off the
answer to one decimal place. How does your answer
compare to the target value of 7.2 billion mentioned in
the article?

(b) As in part (a), assume that in 1995 the world popula-
tion was 5.7 billion. Determine a value for the growth
constant k so that exponential growth throughout the
years 1995–2020 leads to a world population of 7.2 bil-
lion in the year 2020.

40. Economists define the gross domestic product (GDP)
as the total market value of a nation’s goods and services
produced (within the borders of the nation) over a specified
period of time. The GDP is one of the key measures of a
nation’s economic health. Table A gives the annual GDP
for the United States for the period 1950–1990, at 10-year
intervals. In Figures A and B we show scatter plots for the
data along with regression functions that model the data.
Figure A uses a linear model, Figure B an exponential
model. In each case, the years are on the horizontal axis,
with t � 0 corresponding to 1900. In this exercise you’ll
use a graphing utility to obtain the specific equations for
these models and for two other models as well. You’ll also
compare projections using the various models.

plants or animals, would eventually be absorbed into our
bones.
(a) Compute the decay constant k for strontium-90.
(b) Compute the time required if a given quantity of

strontium-90 is to be stored until the radioactivity is
reduced by a factor of 1000.

(c) Using half-lives, estimate the time required for a given
sample to be reduced by a factor of 1000. Compare
your answer with that obtained in (b).

36. (a) Suppose that a certain country violates the ban against
above-ground nuclear testing and, as a result, an island
is contaminated with debris containing the radioactive
substance iodine-131. A team of scientists from the
United Nations wants to visit the island to look for clues
in determining which country was involved. However,
the level of radioactivity from the iodine-131 is esti-
mated to be 30,000 times the safe level. Approximately
how long must the team wait before it is safe to visit the
island? The half-life of iodine-131 is 8 days.

(b) Rework part (a), assuming instead that the radioactive
substance is strontium-90 rather than iodine-131. The
half-life of strontium-90 is 28 years. Assume, as before,
that the initial level of radioactivity is 30,000 times the
safe level. (This exercise underscores the difference be-
tween a half-life of 8 days and one of 28 years.)

37. An article that appeared in the August 13, 1994, New York
Times reported

German authorities have discovered . . . a tiny sample
of weapons-grade nuclear material believed to have
been smuggled out of Russia to interest foreign govern-
ments or terrorist groups that might want to build
atomic bombs. . . . [the police] said they had seized the
material, .028 ounces of highly enriched uranium-235,
in June in . . . Bavaria . . . and have since arrested . . .
[six] suspects. . . .

Suppose that the suspects, in an attempt to avoid arrest, had
thrown the 0.028 ounces of uranium-235 into the Danube
River, where it would sink to the bottom. How many ounces
of the uranium-235 would still be in the river after 1000
years? The half-life of uranium-235 is 7.1 � 108 years.

38. In 1969 the United States National Academy of Sciences
issued a report entitled Resources and Man. One conclu-
sion in the report is that a world population of 10 billion
“is close to (if not above) the maximum that an intensively
managed world might hope to support with some degree of
comfort and individual choice.” (The figure “10 billion” is
sometimes referred to as the carrying capacity of the
Earth.)
(a) When the report was issued in 1969, the world popula-

tion was about 3.6 billion, with a relative growth rate of
2% per year. Assuming continued exponential growth
at this rate, estimate the year in which the Earth’s car-
rying capacity of 10 billion might be reached.
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TABLE A Gross Domestic Product (GDP) in
Constant 1996 Dollars

Year t
(t � 0 4 1900) 50 60 70 80 90

GDP (billions 
of dollars) 1686.6 2376.7 3578.0 4900.9 6707.9

Source: U.S. Bureau of Economic Analysis, http://www.bea.go

http://www.bea.go


projects for the gross domestic product in the indicated
year. (Round each projection to one decimal place.)
Then, in each row, circle the projection that is closest
to the actual value given at the end of that row. Finally,
compute the percentage error for each projection that
you circled.

B
41. Depletion of Nonrenewable Resources: Suppose that the

world population grows exponentially. Then, as a first ap-
proximation, it is reasonable to assume that the use of
nonrenewable resources, such as petroleum and coal, also
grows exponentially. Under these conditions, the following
formula can be derived (using calculus):

where A is the amount of the resource consumed from time
t � 0 to t � T, the quantity A0 is the amount of the resource
consumed during the year t � 0, and k is the relative growth
rate of annual consumption.
(a) Show that solving the formula for T yields

This formula gives the “life expectancy” T for a given
resource. In the formula, A0 and k are as previously
defined, and A represents the total amount of the re-
source available.

(b) Over the years 1965–1972, world oil consumption
grew exponentially. In this part of the exercise, you’ll
compute the life expectancy of oil, assuming continued
exponential growth. Let t � 0 correspond to 1972. In
that year, worldwide consumption of oil was approxi-
mately 18.7 billion barrels, with a relative growth rate
of 7%/year. The global reserves of oil at that time were
estimated to be 700 billion barrels. Compute the life
expectancy T of oil under this exponential growth
scenario and specify the depletion year (� 1972 � T ).
If the relative growth had been only 1%/year, what
would the depletion year be?

(c) Beginning with the first Arab oil embargo of 1973–
1974, worldwide oil consumption ceased to grow
exponentially. In fact, oil consumption actually de-
creased over the years 1973–1975, and it decreased
again for 1979–1983, following the second Arab oil
embargo. More recently, as indicated by the following
data, scatter plot, and regression line, worldwide oil
consumption has been increasing in a linear fashion.
Use a graphing utility and the data in the table to
determine the equation y � mt � b for the regression
line.

T �
ln [(Ak�A0) � 1]

k

A �
A0

k
 (ekT � 1)

Figure A
Linear model y � at � b.

Figure B
Exponential model y � abt

or y � AeBt.

(a) Use a graphing utility to create your own scatter plot of
the data in Table A. Then, use the regression or trend
line options of the graphing utility to obtain the specific
equations for the linear model in Figure A and the expo-
nential model in Figure B. (For the exponential model,
you can report your answer in either one of the two
forms indicated in the caption for Figure B, depending
on what your graphing utility provides.) For compari-
son, graph both models in the same viewing rectangle.

(b) Use the regression or trend line options of the graphing
utility to obtain the equation for a quadratic model
y � at2 � bt � c. Show the graph of the quadratic
model with the scatter plot. Now repeat this process for
a power model y � atb.

(c) Use the functions that you determined in parts (a) and
(b) to complete Table B, showing what each model
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TABLE B Gross Domestic Product (GDP)
Projections Using Various Models

GDP GDP GDP GDP
(billion $) (billion $) (billion $) (billion $) GDP

Linear Exponential Quadratic Power (billion $)
Year Model Model Model Model Actual

1995 7543.8
1999 8875.8
2001 9333.8



42. (a) Suppose that the consumption of aluminum were grow-
ing exponentially. Use the formula for T in Exercise 41
to compute the life expectancy of aluminum and the
depletion year.

(b) What if the world reserves for aluminum were actually
twice that listed in the table, and the relative growth
rate were half that in the table? Compute the depletion
year under this scenario.

(c) Suppose that from 1999 onward, consumption of alu-
minum stopped increasing exponentially and stabilized
at the 1999 level of 23.1 million metric tons per year.
How many years would it take to deplete the world
reserves of 34,000 million metric tons?

43. Follow Exercise 42, using copper instead of aluminum.
44. The following table and scatter plots display data for

the number of fixed-line phone connections worldwide
and the number of cell phone subscribers over the years
1985–1998. As indicated by the scatter plots, the number of
cell phone subscribers is far less than the number of phone
lines, but it is increasing at a faster rate.
(a) Use the regression option on a graphing utility or

spreadsheet to find a quadratic model y � at2 � bt � c
describing the number of phone lines over the period
1985–1998 (t � 0 to t � 13). Similarly, find an expo-
nential model of the form y � abt or y � AeBt describ-
ing the number of cell phone subscribers. Then use the
graphing utility to display the scatter plots and the two
models in the same viewing rectangle.

(b) By finding an appropriate viewing rectangle, make a
projection for the year in which there would be as
many cell phone subscribers as phone lines.

Cell Phone
Year t Phone Lines Subscribers

t (t � 0 4 1985) (millions) (millions)

0 407 1
1 426 1
2 446 2
3 469 4
4 493 7
5 520 11
6 546 16
7 574 23
8 606 34
9 645 55

10 691 91
11 738 142
12 788 215
13 844 319

Source: International Telecommunications Union data as reported in
Lester Brown et al., Vital Signs 2000 (New York: W. W. Norton & 
Co., 2000)

Year t (t � 0 4 1993) 0 1 2 3
Global Oil Consumption y
(billion barrels) 23.997 24.506 24.893 25.450

Year t (t � 0 4 1993) 4 5 6
Global Oil Consumption y
(billion barrels) 26.123 26.251 26.723
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(d) If yearly consumption of a nonrenewable resource is
given by a linear function y � mt � b, then it can be
shown that the life expectancy T of the resource is given
by the following formula,

where A represents the total amount of the resource avail-
able (that is, the world reserves) in the year correspond-
ing to t � 0. (The derivation does not require calculus,
but we shall omit giving it here.) In 1993, world reserves
of oil were estimated to be 1007 billion barrels. Using
this value for A and the values of m and b determined in
part (c), estimate the life expectancy for oil and the deple-
tion date (�1993 � T). (Aside: The figure we’ve given
here for the estimated world reserves in 1993 is greater
than the one we gave for 1972. This reflects improved
technology in locating oil fields and in extracting the oil.)

For Exercises 42 and 43, refer to the following table. (Data
compiled from United States Geological Survey, World
Resources Institute, and the World Almanac, 2000.)

1999 World 1999 World Relative
Consumption Reserves Growth 

(million (million Rate
Resource metric tons) metric tons) (%/year)

Aluminum 
(in bauxite) 23.1 34,000 3.0

Copper 12.6 650 2.4

T �
�b � 2b2 � 2mA
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47. (Continuation of Exercise 45) Analysis of the so-called
genesis rock sample taken on the Apollo 15 mission re-
vealed a strontium–rubidium ratio of 0.0636. Estimate the
age of this rock.

48. Radiocarbon dating: Because rubidium-87 decays so slowly,
the technique of rubidium–strontium dating is generally
considered effective only for objects older than 10 million
years. In contrast, archeologists and geologists rely on the
radiocarbon dating method in assigning ages ranging from
500 to 50,000 years.

Two types of carbon occur naturally in our environ-
ment: carbon-12, which is nonradioactive, and carbon-14,
which has a half-life of 5730 years. All living plant and an-
imal tissue contains both types of carbon, always in the
same ratio. (The ratio is one part carbon-14 to 1012 parts
carbon-12.) As long as the plant or animal is living, this
ratio is maintained. When the organism dies, however, no
new carbon-14 is absorbed, and the amount of carbon-14
begins to decrease exponentially. Since the amount of
carbon-14 decreases exponentially, it follows that the level
of radioactivity also must decrease exponentially. The
formula describing this situation is

where T is the age of the sample, N is the present level of
radioactivity (in units of disintegrations per hour per gram
of carbon), and N0 is the level of radioactivity T years ago,
when the organism was alive. Given that the half-life of
carbon-14 is 5730 years and that N0 � 920 disintegrations
per hour per gram, show that the age T of a sample is
given by

In Exercises 49–54, use the formula derived in Exercise 48 to
estimate the age of each sample. Note: Some technical com-
plications arise in interpreting such results. Studies have shown
that the ratio of carbon-12 to carbon-14 in the air (and there-
fore in living matter) has not in fact been constant over time.
For instance, air pollution from factory smokestacks tends to
increase the level of carbon-12. In the other direction, nuclear
bomb testing increases the level of carbon-14.

49. Prehistoric cave paintings were discovered in the Lascaux
cave in France. Charcoal from the site was analyzed and
the level of radioactivity was found to be N � 141
disintegrations per hour per gram. Estimate the age of
the paintings.

50. Before radiocarbon dating was used, historians estimated
that the tomb of Vizier Hemaka, in Egypt, was constructed
about 4900 years ago. After radiocarbon dating became
available, wood samples from the tomb were analyzed, and

T �
5730 ln (N�920)

ln (1�2)

N �N0 e
kT

45. The age of some rocks can be estimated by measuring the
ratio of the amounts of certain chemical elements within the
rock. The method known as the rubidium–strontium method
will be discussed here. This method has been used in dating
the moon rocks brought back on the Apollo missions.

Rubidium-87 is a radioactive substance with a half-life
of 4.7 � 1010 years. Rubidium-87 decays into the substance
strontium-87, which is stable (nonradioactive). We are
going to derive the following formula for the age of a rock:

where T is the age of the rock, k is the decay constant for
rubidium-87, Ns is the number of atoms of strontium-87
now present in the rock, and Nr is the number of atoms of
rubidium-87 now present in the rock.
(a) Assume that initially, when the rock was formed, 

there were N0 atoms of rubidium-87 and none of
strontium-87. Then, as time goes by, some of the rubid-
ium atoms decay into strontium atoms, but the total
number of atoms must still be N0. Thus, after T years,
we have N0 �Nr �Ns or, equivalently,

(1)

However, according to the law of exponential decay for
the rubidium-87, we must have Nr �N0 ekT. Solve this
equation for N0 and then use the result to eliminate N0

from equation (1). Show that the result can be written

(2)

(b) Solve equation (2) for T to obtain the formula given at
the beginning of this exercise.

46. (Continuation of Exercise 45)
(a) The half-life of rubidium-87 is 4.7 � 1010 years.

Compute the decay constant k.
(b) Analysis of lunar rock samples taken on the Apollo 11

mission showed the strontium–rubidium ratio to be

Estimate the age of these lunar rocks.

Ns

Nr

� 0.0588

Ns �Nr  e
�kT �Nr

Ns �N0 �Nr

T �
ln[(Ns �Nr) � 1]
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Sea. (The discovery occurred by accident when an Arab
herdsman of the Taamireh tribe was searching for a stray
goat.) When the linen wrappings on the scrolls were ana-
lyzed, the carbon-14 radioactivity level was found to be 723
disintegrations per hour per gram. Estimate the age of the
scrolls using this information. Historical evidence suggests
that some of the scrolls date back somewhere between 
150 B.C. and A.D. 40. How do these dates compare with 
the estimate derived using radiocarbon dating?

54. (a) According to Exercise 48, the formula for the age T
of a sample in terms of the radioactivity level N is 

T � . Solve this equation for N and 

show that the result can be written N � 920(2�T�5730).
(b) The famous prehistoric stone monument Stonehenge is

located 8 miles north of Salisbury, England. Excavations
and radiocarbon dating have led anthropologists and
archeologists to distinguish three periods in the build-
ing of Stonehenge: period I, 2800 years ago; period II,
2100 years ago; and period III, 2000 years ago. Use the
formula in part (a) to compute the carbon-14 radioac-
tivity levels that would have led the scientists to assign
these ages.

Exercises 55–60 introduce a model for population growth that
takes into account limitations on food and the environment.
This is the logistic growth model, named and studied by the
nineteenth century Belgian mathematician and sociologist
Pierre Verhulst. (The word “logistic” has Latin and Greek
origins meaning “calculation” and “skilled in calculation,”
respectively. However, that is not why Verhulst named the
curve as he did. See Exercise 56 for more about this.)

In the logistic model that we’ll study, the initial population
growth resembles exponential growth. But then, at some point,
owing perhaps to food or space limitations, the growth slows
down and eventually levels off, and the population approaches
an equilibrium level. The basic equation that we’ll use for
logistic growth is

where N is the population at time t, P is the equilibrium popu-
lation (or the upper limit for population), and a and b are posi-
tive constants.

55. The following figure shows the graph of the logistic func-
tion N(t) � 4�(1 � 8e�t). Note that in this equation the
equilibrium population P is 4 and that this corresponds to
the asymptote N � 4 in the graph.

N�
P

1 � ae�bt

5730 ln (N�920)

ln (1�2)

it was determined that the radioactivity level was 510 dis-
integrations per hour per gram. Estimate the age of the
tomb on the basis of this reading and compare your answer
to the figure already mentioned.

51. Before radiocarbon dating, scholars believed that agricul-
ture (farming, as opposed to the hunter-gatherer existence)
in the Middle East began about 6500 years ago. However,
when radiocarbon dating was used to study an ancient
farming settlement at Jericho, the radioactivity level was
found to be in the range N � 348 disintegrations per
hour per gram of carbon. On the basis of this evidence,
estimate the age of the site, and compare your answer to
the figure mentioned at the beginning of this exercise.
Round your answer to the nearest 100 years. (Similar
analyses in Iraq, Turkey, and other countries have since
shown that agriculture was firmly established at least
9000 years ago.)

52. (a) Analyses of some ancient campsites in the Western
Hemisphere reveal a carbon-14 radioactivity level of
N � 226 disintegrations per hour per gram of carbon.
Show that this implies an age of 11,500 years, to the
nearest 500 years. Remark: An age of 11,500 years
corresponds to the last Ice Age, when the sea level was
significantly lower than it is today. According to the
Clovis hypothesis, this was the time humans first en-
tered the Western Hemisphere, across what would have
been a land bridge extending over what is now the
Bering Strait. (The name “Clovis” refers to Clovis,
New Mexico. In 1933 a spearpoint and bones were
discovered there that were subsequently found to be
about 11,500 years old.)

(b) In the article “Coming to America” (Time Magazine,
May 3, 1993), Michael D. Lemonick describes some of
the evidence indicating that the Clovis hypothesis is
not valid:

A team led by University of Kentucky archeologist
Tom Dillehay discovered indisputable traces . . .
[in Monte Verde, in southern Chile] of a human settle-
ment that was inhabited between 12,800 and 12,300
years ago. Usually all scientists can find from that far
back are stones and bones. In this case, thanks to a
peat layer that formed during the late Pleistocene era,
organic matter [to which radiocarbon dating can be
applied] was mummified and preserved as well.

What range for the carbon-14 radioactivity level N
corresponds to the ages mentioned in this article?
(That is, compute the values of N corresponding to
T � 12,800 and T � 12,300.)

53. The Dead Sea Scrolls are a collection of ancient manu-
scripts discovered in caves along the west bank of the Dead
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appears log-like, or logistique, as Verhulst actually named
it in French. (For details, both historical and mathemati-
cal, see the paper by Professor Shulman cited previously.)

57. The following figure shows the graph of a logistic function
N(t) � P�(1 � ae�bt). As indicated in the figure, the graph
passes through the two points (0, 1) and (1, 2), and the as-
ymptote is N � 5. In this exercise we determine the values
of the constants P, a, and b.

(a) As indicated in the figure, the logistic curve approaches
an equilibrium population of 5. By definition, this is
the value of the constant P, so the equation becomes

Now use the fact that the graph passes through the
point (0, 1) to obtain an equation that you can solve
for a. Solve the equation; you should obtain a � 4.

(b) With P � 5 and a � 4, the logistic equation becomes
N(t) � 5�(1 � 4e�bt). Use the fact that the graph of
this equation passes through the point (1, 2) to show
that b � ln(8�3) � 0.9808.

58. Biologist H. G. Thornton carried out an experiment in the
1920s to measure the growth of a colony of bacteria in a
closed environment. As is common in the biology lab,
Thornton measured the area of the colony, rather than
count the number of individuals. (The reasoning is that the
actual population size is directly proportional to the area,
and the area is much easier to measure.) The following
table and scatter plot summarize Thornton’s measurements.
Notice that the data points in the scatter plot suggest a
logistic growth curve.

Days 0 1 2 3 4 5

Area of
Colony (cm2) 0.24 2.78 13.53 36.30 47.50 49.40

Source: H. G. Thornton, Annals of Applied Biology, 1922, p. 265

N(t) � 5�(1 � ae�bt)

2

3

4

5

(0, 1)

(1, 2)

(t)=
P

1+ae_bt

�

�

t

(a) Use the graph and your calculator to complete the
following table. For the values that you read from the
graph, estimate to the nearest 0.25. For the calculator
values, round to three decimal places.

NN(�1) NN(0) NN(1) NN(4) NN(5)

From Graph

From Calculator

(b) As indicated in the graph, the line N � 4 appears to be
an asymptote for the curve. Confirm this empirically by
computing N(10), N(15), and N(20). Round each an-
swer to eight decimal places.

(c) Use the graph to estimate, to the nearest integer, the
value of t for which N(t) � 3.

(d) Find the exact value of t for which N(t) � 3. Evalu-
ate the answer using a calculator, and check that it
is consistent with the result in part (c).

56. Continuation of Exercise 55: The author’s ideas for
this exercise are based on Professor Bonnie Shulman’s article
“Math-Alive! Using Original Sources to Teach Mathematics
in Social Context,” Primus, vol. VIII (March 1998).
(a) The function N in Exercise 55 expresses population

as a function of time. But as pointed out by Professor
Shulman, in Verhulst’s original work it was the other
way around; he expressed time as a function of popula-
tion. In terms of our notation, we would say that he was
studying the functionN�1. GivenN(t) � 4�(1 � 8e�t),
find N�1(t).

(b) Use a graphing utility to draw the graphs of N, N�1,
and the line y � x in the viewing rectangle [�3, 8, 2]
by [�3, 8, 2]. Use true portions. (Why?)

(c) In the viewing rectangle [0, 5, 1] by [�3, 2, 1], draw the
graphs of y �N�1(t) and y � ln t. Note that the two
graphs have the same general shape and characteristics.
In other words, Verhulst’s logistic function (our N�1)
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level P. Use this fact to determine when the population
in this experiment is growing fastest. Give your answer
in the form d days, h hours, with the number of hours
rounded to the nearest half-hour.

60. This exercise requires a graphing utility with a logistic
regression feature. (This feature is included on the Texas
Instruments TI-83 Plus, for example.)
(a) Use a graphing utility to create a scatter plot for the

data in Exercise 59. Next, use the logistic regression
option to find the equation of the logistic model that
best fits the data.

(b) On the basis of the model that you determined in
part (a), what is the equilibrium population P?
(Remember that P has to be an integer.) Add the
graph of the horizontal line N� P to the picture
obtained in part (a).

(c) In the initial stages of logistic growth (when the popu-
lation is small compared to the equilibrium level P),
the growth resembles exponential growth. Demonstrate
this as follows. Use a graphing utility to find an expo-
nential growth model fitting only the first three data
pairs in the table in Exercise 59. Add the graph of this
exponential model to the picture that you obtained in
part (b). Also include the graph of the horizontal line
N � P�2. Now (in complete sentences), summarize
what you see.

61. (a) Let N(t) �N0 ekt. Show that [N(t � 1) �N(t)]�
N(t) � ek � 1. (This is actually done in detail in the
text. So, ideally, you should look back only if you get
stuck or want to check your answer.)

(b) Assume as given the following approximation, which
was introduced in Exercise 26 of Section 5.2.

provided x is close to zero

Use this approximation to explain why ek � 1 � k,
provided that k is close to zero. Remark: Combin-
ing this result with that in part (a), we conclude that the
relative growth rate for the function N(t) �N0 ekt is
approximately equal to the growth constant k. As ex-
plained in the text, this is one of the reasons why in ap-
plications we’ve not distinguished between the relative
growth rate and the decay constant k.

62. In the text we showed that the relative growth rate for
the function N(t) �N0 ekt is constant for all time
intervals of unit length, [t, t � 1]. Recall that we did this
by computing the relative change [N(t � 1) �N(t)]�N(t)
and noting that the result was a constant, independent 
of t. (If you’ve completed the previous exercise, you’ve
done this calculation for yourself.) Now consider a time 
interval of arbitrary length, [t, t � d]. The relative change
in the function N(t) �N0 ekt over this time interval is 
[N(t � d) �N(t)]�N(t). Show that this quantity is a
constant, independent of t. (The expression that you

ex � x � 1

(a) Use the technique shown in Exercise 57 to determine a
logistic function N(t) � P�(1 � ae�bt) with a graph
that passes through Thornton’s two points (0, 0.24) and
(2, 13.53). Assume that the equilibrium population is
P � 50. Round the final values of a and b to two deci-
mal places.

(b) Use the logistic function that you determined in part
(a) to estimate the area of the colony after 1, 3, 4, and
5 days. Round your estimates to one decimal place. If
you compare your estimates to the results that Thornton
obtained in the laboratory, you’ll see there is good
agreement.

(c) Use the logistic function that you determined in part (a)
to estimate the time at which the area of the colony was
10 cm2. Express your answer in terms of days and hours,
and round to the nearest half-hour.

59. The following data on the growth of Lupinus albus, a plant
in the pea family, are taken from an experiment that was
summarized in the classic text by Sir D’Arcy Wentworth
Thompson, On Growth and Form (New York: Dover
Publications, Inc., 1992).

Day 4 6 8 10 12
Length (mm) 10.5 23.3 42.2 77.9 107.4

Day 14 16 18 20 21
Length (mm) 132.3 149.7 158.1 161.4 161.6

(a) Follow Exercise 57 to determine an equation for a
logistic function that models these data. Assume
P � 162, N(0) � 1, and N(10) � 77.9.

(b) Using the model that you determined in part (a),
compute N(4), N(8), N(12), and N(16). Round 
the answers to one decimal place. In each case, say
whether your answer is higher or lower than the
actual value.

(c) For the logistic model in general, it can be shown
(using calculus) that the population is growing fastest
at the instant when it reaches half the equilibrium

� [area of colony (cm@ )]

t (days)

10

20

30

40

50

1 2 3 4 5
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Summary of Principal Terms and Formulas 415

The Project, A Variable Growth Constant, at http://www.cengage.com/math/cohen/precalc7e, generalizes and
applies material from Section 5.7.

CHAPTER 5 Summary

CHAPTER 5 Summary of Principal Terms and Formulas

Term, Notation, Page
or Formula Reference Comments

1. Exponential function 327 The exponential function with base b is defined by the equation 
with base b y � bx. It is understood here that the base b is a positive number other

than 1. More generally, functions of the form y � abcx are also referred
to as exponential functions.

2. The number e 336 The irrational number e is one of the basic constants in mathematics,
as is the irrational number p. To five decimal places, the value of e is
2.71828. In calculus e is the base most commonly used for exponential
functions. The graph of the exponential function y � ex is shown in the
box on page 337.

3. Instantaneous rate of 339 The concept of the instantaneous rate of change of a function is 
change of the function introduced on pages 338–339. One of the distinguishing charac-
y � ex teristics of the function y � ex is that the instantaneous rate of change

at any point on the graph is just the y-coordinate of that point. See the
examples in the box on page 339.

4. logb x 347 The expression logb x denotes the exponent to which b must be raised to
yield x. The equation logb x � y is equivalent to by � x.

5. ln x 351 The expression ln x means loge x. Logarithms to the base e are known
as natural logarithms. For the graph of y � ln x, see Figure 6(a) in
Section 5.3.

6. loga x � 367 This is the change-of-base formula for converting logarithms from one
base to another.

logb x

logb  a

obtain for the constant will contain e and d, but not t. 
As a check on your work, replace d by 1 in the expres-
sion you obtain and make sure the result is the same as
that in the text where we worked with intervals of length
d � 1.)

63. Let N�N0 ekt. In this exercise we show that if ¢t is 
very small, then ¢N�¢t � kN. In other words, over very
small intervals of time, the average rate of change of N is
proportional to N itself.

(a) Show that the average rate of change of the function
N �N0 ekt on the interval [t, t � ¢t] is given by

(b) In Exercise 26 of Section 5.2 we saw that ex � x � 1
when x is close to zero. Thus, if ¢t is sufficiently small,
we have ek¢t � k ¢t � 1. Use this approximation and
the result in part (a) to show that ¢N�¢t � kN when
¢t is sufficiently close to zero. 

¢N
¢t

�
N0  e

kt(ek¢t � 1)

¢t
�
N(ek¢t � 1)

¢t

http://www.cengage.com/math/cohen/precalc7e


Term, Notation, Page
or Formula Reference Comments

7. A � P 385 This formula gives the amount A that accumulates after t years when a
principal of P dollars is invested at an annual rate r that is compounded
n times per year.

8. A � Pert 387 This formula gives the amount A that accumulates after t years when a
principal of P dollars is invested at an annual rate r that is compounded
continuously.

9. Doubling time; rule of 70 389–390 For money earning compound interest, the doubling time T2 is the length
of time required for an amount to double. As can be seen from the
formula T2 � (ln 2)�r, the doubling time does not depend on the initial
amount, but only on the interest rate r. (In the formula, the interest rate is
expressed as a decimal.) The rule of 70 gives an approximate value for
the doubling time: T2 � 70�R, where R is the interest rate expressed as a
percentage.

10. N �N0 ekt (k � 0) 392 This is the exponential growth model, where N0 is the size of the
population at time t � 0, and k is a constant called the growth constant. In
the applications we studied, we used the value of the relative growth rate
for k. (As is explained in the text, the two quantities are approximately
equal when their values are near zero.)

11. N �N0 ekt (k � 0) 400 In this exponential decay model for radioactive substances, N0 is the
amount of the substance present at t � 0, and k is the decay constant.

12. Half-life 400 The half-life of a radioactive substance is the time required until only
half of the initial amount remains. For a given radioactive substance the
half-life is independent of the amount initially present, as evidenced by
the formula half-life � �(ln 2)�k. 

a1 �
r

n
b nt
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Writing Mathematics

1. In Section 5.3 we defined logarithmic functions in terms of
inverse functions.
(a) Explain in general what is meant by a pair of inverse

functions.
(b) Assuming a knowledge of the function f (x) � 2x, ex-

plain how to define and then graph the function
g(x) � log2 x.

2. A student who was trying to simplify the expression 
wrote

(a) What is the error here? What do you think is the most
probable reason for making this error?

(b) Give the correct solution.

ln(e3)

ln(e2)
� ln(e3) � ln(e2) � 3 � 2 � 1

ln(e3)

ln(e2)

3. A student who wanted to simplify the expression 
wrote

Explain why this is nonsense, and then indicate the correct
solution.

4. Look over the following method for solving the equation ln
x2 � 6:

As you can check, e3 is a root of the given equation. The
value �e3, however, is also a root. Why is it that the demon-
strated method fails to produce this root? Find a method that
does produce both roots. 

 x � e3
 ln  x � 3

 2 ln  x � 6

100

log10 100
�

100
1

log10 100
1

�
1

log10

100

log10 100



Review Exercises 417

CHAPTER 5 Review Exercises

1. Which is larger, log5 126 or log10 999?
2. Graph the function y � 3�x � 3. Specify the domain, range,

intercept(s), and asymptote.
3. Suppose that the population of a colony of bacteria

increases exponentially. If the population at the start of an
experiment is 8000, and 4 hours later it is 10,000, how
long (from the start of the experiment) will it take for the
population to reach 12,000? (Express the answer in terms of 
base e logarithms.)

4. Express log10 2 in terms of base e logarithms.
5. Let f be the function defined by

Sketch the graph of f and then use the horizontal line test to
determine whether f is one-to-one.

6. Estimate 260 in terms of an integral power of 10.
7. Solve for x: ln(x � 1) � 1 � ln(x � 1).
8. Suppose that $5000 is invested at 8% interest compounded

annually. How many years will it take for the money to dou-
ble? Make use of the approximations ln 2 � 0.7 and 
ln 1.08 � 0.08 to obtain a numerical answer.

9. On the same set of axes, sketch the graphs of y � ex and
y � ln x. Specify the domain and range for each function.

10. Solve for x: xex � 2ex � 0.
11. Simplify: log9(1�27).
12. Given that ln A � a, ln B � b, and ln C � c, express 

ln A2 �C3 in terms of a, b, and c.
13. The half-life of plutonium-241 is 13 years. What is the

decay constant? Use the approximation ln(1�2) � �0.7 to
obtain a numerical answer.

14. Express as a single logarithm with a coefficient of 1: 
3 log10 x � log10(1 � x).

15. Solve for x, leaving your answer in terms of base e
logarithms: 5e2�x � 12.

16. Let f (x) � ex�1. Find a formula for f�1(x) and specify the
domain of f �1.

17. Suppose that in 1995 the population of a certain country was
2 million and increasing with a relative growth rate of
2%/year. Estimate the year in which the population will
reach 3 million.

18. Simplify: ln e � ln � ln 1 � ln eln 10.
19. A principal of $1000 is deposited at 10% per annum, com-

pounded continuously. Estimate the doubling time and then
sketch a graph that shows how the amount increases with time.

20. Simplify: ln(log8 56 � log8 7).

In Exercises 21–32, graph the function and specify the
asymptote(s) and intercepts(s).

21. y � ex 22. y � �e�x

23. y � ln x 24. y � ln(x � 2)

1e

41B23 1

f(x) � e2�x if x � 0

x2 if x 
 0

25. y � 2x�1 � 1 26. y � log10(�x)
27. y � (1�e)x 28. y � (1�2)�x

29. y � ex�1 � 1 30. y � �log2(x � 1)
31. y � ln(ex) 32. y � eln x

In Exercises 33–49, solve the equation for x. (When logarithms
appear in your answer, leave the answer in that form, rather
than using a calculator.)

33. log4 x � log4(x � 3) � 1
34. log3 x � log3(2x � 5) � 1

35. ln x � ln(x � 2) � ln 15 36. log6 � 1

37. log2 x � log2(3x � 10) � 3 � 0
38. 2 ln x � 1 � 0 39. 3 log9 x � 1�2
40. e2x � 6 41. e1�5x � 3
42. 2x � 100
43. log10 x � 2 � log10(x � 2)
44. log10(x2 � x � 10) � 1
45. ln(x � 2) � ln x � ln 2
46. ln(2x) � ln 2 � ln x 47. ln x4 � 4 ln x
48. (ln x)4 � 4 ln x 49. log10 x � ln x
50. Solve for x: (ln x)�(ln 3) � ln x � ln 3. Use a calculator to

evaluate your result and round to the nearest integer.
Answer: 206,765

In Exercises 51–66, simplify the expression without using a
calculator.

51. log10 52. log7 1

53. 54. log3 54 � log3 2
55. log10 p � log10 10p 56. log2 2
57. 10t, where t � log10 16 58. eln5

59. ln(e4) 60. log10

61. log12 2 � log12 18 � log12 4
62. (log10 8)�(log10 2) 63. (ln 100)�(ln 10)

64. log5 2 � log1�5 2 65. log2

66. log1�8 (1�16) � log5 0.02

In Exercises 67–70, express the quantity in terms of a, b, and c,
where a � log10 A, b � log10 B, and c � log10 C.

67. log10 A2B3 68. log10

69. 16 log10 70. 6 log10 B1�3 A

In Exercises 71–76, find consecutive integers n and n � 1 such
that the given expression lies between n and n � 1. Do not use
a calculator.

71. log10 209 72. ln 2 73. log6 100
74. log10 (1�12) 75. log10 0.003 76. log3 244
77. (a) On the same set of axes, graph the curves y � ln(x � 2)

and y � ln(�x) � 1. According to your graph, in which
quadrant do the two curves intersect?

(b) Find the x-coordinate of the intersection point.

1C2 4� 131A 1
4 B

2
3 AC�B2C

3
7 1623 212

11012 2

ln  15 e

110

1e

x � 4

x � 1



95. 96. log10

97. Suppose that A dollars are invested at R% compounded an-
nually. How many years will it take for the money to double?

98. A sum of $2800 is placed in a savings account at 9% per
annum. How much is in the account after 2 years if the in-
terest is compounded quarterly?

99. A bank offers an interest rate of 9.5% per annum, com-
pounded monthly. Compute the effective interest rate.

100. A sum of D dollars is placed in an account at R% per
annum, compounded continuously. When will the balance
reach E dollars?

101. Compute the doubling time for a sum of D dollars invested
at R% per annum, compounded continuously.

102. Your friend invests D dollars at R% per annum, com-
pounded semiannually. You invest an equal amount at the
same yearly rate, but compounded daily. How much larger
is your account than your friend’s after T years?

103. (a) You invest $660 at 5.5% per annum, compounded
quarterly. How long will it take for your balance to
reach $1000? Round off your answer to the next quar-
ter of a year.

(b) You invest D dollars at R% per annum, compounded
quarterly. How long will it take for your balance to
reach nD dollars? (Assume that n � 1.)

In Exercises 104–107, find the domain of each function.

104. (a) y � ln x 105. (a) y � log10

(b) y � ex (b) y �
106. (a) f � g, where f(x) � ln x and g(x) � ex

(b) g � f, where f and g are as in part (a)

107. y �

108. Find the range of the function defined by 

y �
ex � 1

ex � 1
.

2 � ln  x

2 � ln  x

1log10 x

1x

3
3 x21 � y2lna 1 � 2e

1 � 2e
b 378. The curve y � aebt passes through the point (3, 4) and has a

y-intercept of 2. Find a and b.
79. A certain radioactive substance has a half-life of T years.

Find the decay constant (in terms of T ).
80. Find the half-life of a certain radioactive substance if it takes

T years for one-third of a given sample to disintegrate. (Your
answer will be in terms of T.)

81. A radioactive substance has a half-life of M minutes. What
percentage of a given sample will remain after 4M minutes?

82. At the start of an experiment, a colony of bacteria has initial
population a. After b hours, there are c bacteria present.
Determine the population d hours after the start of the
experiment.

83. The half-life of a radioactive substance is d days. If you
begin with a sample weighing b grams, how long will it be
until c grams remain?

84. Find the half-life of a radioactive substance if it takes D days
for P percent of a given sample to disintegrate.

In Exercises 85–90, write the expression as a single logarithm
with a coefficient of 1.

85. log10 8 � log10 3 � log10 12
86. 4 log10 x � 2 log10 y
87. ln 5 � 3 ln 2 � ln 16
88. ln(x4 � 1) � ln(x2 � 1)
89. a ln x � b ln y
90. ln(x3 � 8) � ln(x � 2) � 2 ln(x2 � 2x � 4)

In Exercises 91–98, write the quantity using sums and differ-
ences of simpler logarithmic expressions. Express the answer
so that logarithms of products, quotients, and powers do not
appear.

91. ln 92. log10

93. log10 94. ln 
x222x � 1

2x � 1

x3

21 � x

x2 � 4

x � 3
2(x � 3)(x � 4)
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CHAPTER 5 Test

1. Graph the function y � 2�x � 3. Specify the domain, range,
intercepts, and asymptote.

2. Suppose that the population of a colony of bacteria increases
exponentially. At the start of an experiment there are 6000
bacteria, and 1 hour later the population is 6200. How long
(from the start of the experiment) will it take for the popula-
tion to reach 10,000? Give two forms for the answer: one in
terms of base e logarithms and the other a calculator ap-
proximation rounded to the nearest hour.

3. Which is larger, log2 17 or log3 80? Explain the reasons for
your answer.

4. Express log2 15 in terms of base e logarithms.
5. Estimate 240 in terms of an integral power of 10.
6. Suppose that $9500 is invested at 6% interest, compounded

annually. How long will it take for the amount in the account
to reach $12,000?

7. (a) For which values of x is the identity eln x � x valid?
(b) On the same set of axes, graph y � ex and y � ln x.



16. (a) For which values of x is it true that 
ln(x2) � 2 ln x?

(b) For which values of x is it true that 
(ln x)2 � 2 ln x?

17. Let f(x) � ex.
(a) Compute the average rate of change of the function f

over the interval [ln 3, ln 4]. Give two forms for the an-
swer: an expression simplified as much as possible and
a calculator approximation rounded to two decimal
places.

(b) Specify the instantaneous rate of change of the function
f at the point on the graph where x � ln 4.

18. Solve for x: � log16(x � 3) � log16 x.
19. Solve for x: 6e2x � 5ex � 6.
20. Solve each inequality:

(a) 5(4 � 0.3x) � 12
(b) ln x � ln(x � 3) 	 ln 4 

1
2

8. Given that log10 A � a and log10 B � b, express 
log10 A3� in terms of a and b.

9. Simplify each expression:

(a)
(b) ln e2 � ln 1 � eln 3

10. Solve for x: x3ex � 4xex � 0.
11. The half-life of a radioactive substance is 4 days.

(a) Find the decay constant.
(b) How much of an initial 2-g sample will remain after

10 days?
12. Express as a single logarithm with a coefficient of 1: 

2 ln x � ln
13. Solve for x, leaving your answer in terms of base e

logarithms: �2e3x�1 � 9.
14. Let g(x) � log10(x � 1). Find a formula for g�1(x) and spec-

ify the range of g�1.
15. A principal of $12,000 is deposited at 6% per annum, com-

pounded continuously.
(a) Use the rule of 70 to estimate the doubling time.
(b) Sketch a graph showing how the amount increases with

time. 

2
3 x2 � 1.

log5 11�15 2
1B 21
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6.1 Trigonometric Functions
of Acute Angles

6.2 Right-Triangle Applications

6.3 Trigonometric Functions
of Angles

6.4 Trigonometric Identities

The origins of trigonometry are obscure. There are
some problems in the Rhind papyrus [ca. 1650 B.C.]
that involve the cotangent of the dihedral angles at
the base of a pyramid, and . . . the Babylonian cuneiform tablet Plimpton 322 essen-
tially contains a remarkable table of secants. It may be that modern investigations
into the mathematics of ancient Mesopotamia will reveal an appreciable development
of practical trigonometry. —Howard Eves in An Introduction to the History of Mathematics,

6th ed. (Philadelphia: Saunders College Publishing, 1990)

In general, there are two approaches to trigonometry at the precalculus level. One ap-
proach centers on the study of triangles. Indeed, the word “trigonometry” is derived
from two Greek words, trigonon, meaning “triangle,” and metria, meaning “measure-
ment.” It is with this triangle approach that we begin the chapter. The second ap-
proach, which is in a sense a generalization of the first, we will take up in Chapters 7
and 8. Before getting down to specifics, we offer the following bird’s-eye view of
Chapters 6, 7, and 8 in terms of functions. As you’ll see in subsequent chapters, a real
familiarity with both approaches to trigonometry is necessary.

CHAPTER

6
An Introduction 
to Trigonometry 
via Right Triangles

It is certain that the division of the
ecliptic into 360 degrees . . . [was]
adopted by the Greeks from Babylon. . . .
[But] It was Hipparchus [ca. 180– 
ca. 125 B.C.] who first divided the circle
in general into 360 parts or degrees,
and the introduction of this division
coincides with his invention of
trigonometry. —Sir Thomas Heath in
A History of Greek Mathematics, vol. II
(London: Oxford University Press, 1921) Inputs for the

Functions Outputs Emphasis

Chapter 6 angles real numbers The trigonometric functions
are used to study triangles.

Chapters 7, real numbers real numbers The objects of study are the
8, and 9 trigonometric functions 

themselves.

6.1 TRIGONOMETRIC FUNCTIONS OF ACUTE ANGLES
In elementary geometry an angle is a figure formed by two rays with a common end-
point. As is indicated in Figure 1, the common endpoint is called the vertex of the
angle. There are several conventions used in naming angles; Figure 2 indicates some
of these. In Figure 2, the symbol u is the lowercase Greek letter theta. Greek letters

© Columbia University

Readers who would like to begin with the more general approach may skip this
chapter and proceed directly to Chapter 7. Right-triangle trigonometry will be treated as
a special case of this more general approach in Section 7.5 with applications developed
more extensively in Sections 10.1 and 10.2.
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are often used to name angles. For reference, the Greek alphabet is given in the end-
papers at the back of this book. The � symbol that you see in Figure 2 stands for the
word “angle.” In particular, when three letters are used in naming an angle, as with
�ABC in Figure 2, the middle letter always indicates the vertex of the angle.

There are several ways to indicate the size of (that is, the amount of rotation in)
an angle. In this chapter we use the familiar units of degrees. Recall that 360 degrees
is the measure of an angle obtained by rotating a ray through one complete circle.
The symbol for degrees is °. For comparison, Figure 3 displays angles of various
degrees. In this section we will not make any distinction whether the rotation
generating an angle is clockwise or counterclockwise; in a subsequent section this
distinction will be important. The angles in Figures 3(a) and 3(b) are acute angles;
these are angles with degree measure u satisfying 0° � u � 90°. The 90o angle in
Figure 3(c) is called a right angle. The angle in Figure 3(d) is an obtuse angle, that
is, an angle with degree measure u satisfying 90° � u � 180°.

The degree is subdivided into two smaller units: the minute, which is 1�60 of a
degree; and the second, which is 1�60 of a minute. The abbreviations for minutes
and seconds are � and �, respectively. Thus we have

1° � 60� There are 60 minutes in one degree.

and

1� � 60� There are 60 seconds in one minute.

. . . [the English clergyman and
mathematician] William Oughtred
[1574–1660] introduced a vast array
of characters into mathematics. . . . In
the Trigonometria (1657), he employed
� for angle. . . . —Florian Cajori in A
History of Mathematical Notations,
vol. I (La Salle, Ill.: The Open Court
Publishing Co., 1928)

Vertex

B
C

A

¨

Notations for the angle at B:
¨, ∠¨, ∠B, ∠ABC, ∠CBA 

Figure 1

Figure 2

(a)

30°

(b)

60°

(c)

(f)(e)(d)

90°

270°

180°150°

Figure 3

Until modern handheld calculators became commonplace (in the 1970s and
1980s), these subdivisions of the degree were widely used. Nowadays, however,
the convention in most scientific applications is to use ordinary decimal notation
for the fractional parts of a degree, and this is the convention we follow in this text.
(We mention in passing that minutes and seconds are still widely used in some por-
tions of astronomy and in navigation.)

One more convention: Suppose, for example, that the measure of angle u is 70°.
We can write this as

measure �u� 70° or just m �u � 70°



For ease of notation and speech, however, we will usually write

�u � 70° or simply u � 70°

as shorthand for “u is an angle whose measure is 70°.”
We are going to define the six trigonometric functions. As indicated by the title of

this section, the inputs for these functions will be acute angles. The outputs will be real
numbers. In a later section we’ll make a transition so that angles of any size can serve as
inputs, and in Chapter 7 we’ll make another transition, this time to real-number inputs.

For reasons that are more historical* than mathematical, the trigonometric func-
tions have names that are words rather than single letters such as f. Using words rather
than single letters for naming functions is by no means peculiar to trigonometry. For
example, logb x denotes the logarithmic function with base b. The names of the six
trigonometric functions, along with their abbreviations, are as follows.

Name of Function Abbreviation

cosine cos
sine sin
tangent tan
secant sec
cosecant csc
cotangent cot

Now an acute angle can always be placed in a right triangle as shown in Figure 4.
The six trigonometric functions are defined in the box that follows.

422 CHAPTER 6 An Introduction to Trigonometry via Right Triangles

Definitions Trigonometric Functions of an Acute Angle

Let u be an acute angle placed in a right triangle (as shown in Figure 4); then

 cot u �
length of side adjacent to angle u

length of side opposite to angle u

 csc u �
length of hypotenuse

length of side opposite to angle u

 sec u �
length of hypotenuse

length of side adjacent to angle u

 tan u �
length of side opposite to angle u

length of side adjacent to angle u

 sin u �
length of side opposite to angle u

length of hypotenuse

 cos u �
length of side adjacent to angle u

length of hypotenuse

Side adjacent
to angle ¨

Side
opposite

to angle ¨

Hypotenuse

¨

Figure 4

*For a discussion of the names of the trigonometric functions, see Howard Eves, An Intro-
duction to the History of Mathematics, 6th ed. (Philadelphia: Saunders College Publishing,
1990), pp. 236–237.
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The definitions that we have just given are often called the right triangle defi-
nitions of the trigonometric functions. Our work for the next several sections
will be devoted to exploring these definitions and their consequences. Here are
four preliminary observations that will help you to understand and memorize the
definitions.

1. An expression such as cos u really means cos(u), where cos or cosine is the name
of the function and u is an input. It is for historical rather than mathematical rea-
sons that the parentheses are suppressed.

2. For convenience and ease of memorization the phrases in the definition that de-
scribe the sides of the triangle are often shortened to one word. For example, the
expression for the cosine would be written

3. There are three pairs of reciprocal functions in the definitions: cos and sec, sin
and csc, and tan and cot. To be more explicit, we have

Similarly,

and

4. For acute angles the values of the trigonometric functions are always positive
since they are ratios of lengths.

The definitions that we have just given for the trigonometric functions involve
ratios of sides in a right triangle. The fact that ratios are involved is important. We’ll
use two examples to explain and emphasize this. Figure 5 shows two right triangles;
both contain the same angle u. From Figure 5(a) we have

Now the question is: Will Figure 5(b) give us the same value for tan u? [It had better,
otherwise tan will not qualify as a function. (Why?)] Indeed, Figure 5(b) does give
us the same value for tan u. Elementary geometry* tells us that ^ABC is similar to
^A�B�C�. Then, because corresponding sides of similar triangles are proportional,
we have

(1)
BC

AC
�

B¿C¿
A¿C¿

tan u �
opposite

adjacent
�

BC

AC

cot u �
1

tan u
csc u �

1

sin u

sec u �
hypotenuse

adjacent
�

1
adjacent

hypotenuse

�
1

cos u

cos u �
adjacent

hypotenuse

*If two angles of one triangle are congruent to two corresponding angles of another triangle,
then the triangles are similar.

(a)

A C

B

¨

(b)

Aª Cª

Bª

¨

Figure 5



Now look at the ratio on the right-hand side of equation (1); it represents tan u as
we would calculate it in Figure 5(b). The left-hand side of the equation, as we’ve
already seen from Figure 5(a), represents tan u. In summary, similar triangles and
equation (1) tell us that we obtain the same value for tan u whether we use
Figure 5(a) or Figure 5(b).

The point of the example we’ve just concluded is this: For a given acute angle u,
the values of the trigonometric functions depend on the ratios of the lengths of the
sides but not on the size of the particular right triangle in which u resides. For
emphasis the next example makes this same point.
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EXAMPLE 1 Comparing Trigonometric Ratios for Similar Triangles

Figure 6 shows two right triangles. The first right triangle has sides 5, 12, and 13. The
second right triangle is similar to the first (the angles are the same), but each side is
10 times longer than the corresponding side in the first triangle. Calculate and com-
pare the values of sin u, cos u, and tan u for both triangles.

SOLUTION Small Triangle Large Triangle

We observe that the corresponding values for sin u, cos u, and tan u are the same for
both triangles.

 tan u �
opposite

adjacent
�

50

120
�

5

12
 tan u �

opposite

adjacent
�

5

12

 cos u �
adjacent

hypotenuse
�

120

130
�

12

13
 cos u �

adjacent

hypotenuse
�

12

13

 sin u �
opposite

hypotenuse
�

50

130
�

5

13
 sin u �

opposite

hypotenuse
�

5

13

12012

13
5

130
50

¨¨

Figure 6
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In the next example we use a calculator to evaluate the trigonometric functions
for a particular acute-angle input. All scientific calculators allow for two common
units of angle measurement: the degree and the radian. Radian measure is discussed
in Chapter 7; for the present chapter, though, we are using degree measure exclu-
sively. So before working through the next example on your own, you need to check
that your calculator is set in the “degree mode” rather than the “radian mode.” If nec-
essary, consult the user’s manual for your calculator on this point.

One more calculator-related detail: For most calculators, when you want to eval-
uate a function, first you enter the name of the function then you enter the input. On
these calculators, the keystrokes for evaluating sin 40° are as follows:

40 name of function before inputENTERsin

EXAMPLE 2 Calculating Trigonometric Functions of an Acute Angle

Let u be the acute angle indicated in Figure 7. Determine the six quantities cos u,
sin u, tan u, sec u, csc u, and cot u.

SOLUTION We use the definitions:

Note the pairs of answers that are reciprocals. (As was mentioned before, this helps
in memorizing the definitions.)

 cot u �
adjacent

opposite
�

4

3
 tan u �

opposite

adjacent
�

3

4

 csc u �
hypotenuse

opposite
�

5

3
 sin u �

opposite

hypotenuse
�

3

5

 sec u �
hypotenuse

adjacent
�

5

4
 cos u �

adjacent

hypotenuse
�

4

5

4

3
5

¨

Figure 7

EXAMPLE 3 Calculating Sine and Cosine

Let b be the acute angle indicated in Figure 8. Find sin b and cos b.

SOLUTION In view of the definitions we need to know the length of the hypotenuse in Figure 8.
If we call this length h, then by the Pythagorean theorem we have

Therefore

and

cos b �
adjacent

hypotenuse
�

1

110
�
110

10

sin b �
opposite

hypotenuse
�

3

110
�

3110

10

 h � 110
 h2 � 32 � 12 � 10

3

1

∫

Figure 8



If your calculator is set in degree mode it should display a value that begins
0.6427. . . . (If it does not display such a value, you will need to consult the user’s
manual to find out how to evaluate the trigonometric functions.)
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EXAMPLE 4 Calculating Approximate Values of Trigonometric Functions

Use a calculator to evaluate cos 40°, sin 40°, and tan 40°. Round the results to three
decimal places.

SOLUTION With the calculator set in the degree mode, the sequence of keystrokes and the results
(rounded to three decimal places) are as follows. You should verify each of these
results for yourself.

Expression Keystrokes Output

cos 40° 40 0.766

sin 40° 40 0.643

tan 40° 40 0.839

So, for example, cos 40° � 0.766, or, to three decimal places, cos 40° � 0.766.

ENTERtan

ENTERsin

ENTERcos

In the next example we use a calculator to evaluate the three functions secant,
cosecant, and cotangent for a particular input. Recall that

So, for example, although most calculators do not have a key labeled “sec,” we can
nevertheless evaluate the secant function by using the cosine key and then the
reciprocal key or .x –11/x

cos

sec u �
1

cos u
  csc u �

1

sin u
  cot u �

1

tan u

EXAMPLE 5 Calculating Approximate Values of the Reciprocal Functions

Use a calculator to evaluate sec 10°, csc 10°, and cot 10°. Round the results to three
decimal places.

SOLUTION As in the previous example, we first check that the calculator is in the degree mode.
Then the sequence of keystrokes and the results are as follows (again, you should
verify each of these results for yourself):

Expression Keystrokes Output

sec 10° 10 1.015

csc 10° 10 5.759

cot 10° 10 5.671

So, for example, sec 10° � 1.015, or, to three decimal places, sec 10° � 1.015.

ENTERx –1)tan(

ENTERx –1)sin(

ENTERx –1)cos(

There are certain angles for which we can evaluate the trigonometric functions
without using a calculator. Three such angles are 30°, 45°, and 60°. We focus on
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these particular angles for now, not because they are somehow more fundamental
than others, but because a ready knowledge of their trigonometric values will provide
a useful source of examples in our subsequent work.

To obtain the trigonometric values for angles of 30° and 60°, we rely on the fol-
lowing theorem from geometry. (For a proof of this theorem, see Exercise 55.)

Theorem The 30°–60° Right Triangle

In a 30°–60° right triangle the length of the side opposite the 30° angle is half the
length of the hypotenuse. (See Figure 9.)

If we let y denote the length of the unmarked side in Figure 9, then (according to the
Pythagorean theorem) we have y2 � x2 � (2x)2 and, consequently,

Our 30°–60° right triangle can now be labeled as in Figure 10. From this figure the
required trigonometric values can be written down by inspection. We will list only
the values of the cosine, sine, and tangent, since the remaining three values are just
the reciprocals of these.

There are two observations to be made here. First, the final answers do 
not involve x. Once again this shows that for a given angle, it is the ratios of the
sides that determine the trigonometric values, not the size of the triangle. Second,
notice that

It is easy to see that this is no coincidence. The terms “opposite” and “adjacent” are
relative ones. As a glance at Figure 10 shows, the side opposite to one acute angle in
a right triangle is automatically adjacent to the other acute angle. We’ll return to this
point again in the next section.

Another angle for which we can compute the trigonometric values without the
aid of a calculator is 45°. Figure 11 shows a 45°–45° right triangle. Since the base an-
gles of this triangle are equal, it follows from a theorem of geometry that the sides
opposite those angles are equal so the triangle is isosceles. The two equal sides are
indicated by the use of the letter x twice in Figure 11. If we now use y to denote the
length of the unmarked side in Figure 11, we have

Our 45°–45° right triangle can now be labeled as in Figure 12, and the trigono-
metric values can then be obtained by inspection. As before, we list only the values

y2 � x2 � x2 � 2x2  and, consequently,  y � 12x

sin 30° � cos 60°  and  sin 60° � cos 30°

 tan 60° �
x13

x
� 13 tan 30° �

x

x13
�

1

13
�
13

3

 sin 60° �
x13

2x
�
13

2
 sin 30° �

x

2x
�

1

2

 cos 60° �
x

2x
�

1

2
 cos 30° �

x13

2x
�
13

2

 y � 13x

 y2 � 4x2 � x2 � 3x2

30°

60°
2x

x

Figure 9

30°

60°
2x

3xœ„

x

Figure 10

45° 45°

xx

Figure 11

2xœ„

45°

xx

Figure 12



for cosine, sine, and tangent, since the remaining three are just the reciprocals of
these.

Table 1 summarizes the results we’ve now obtained for angles of 30, 45, and 60 de-
grees. These results should be memorized.

In our last example, we show how to find the values of other trigonometric func-
tions when we are given the value of one trigonometric function.

 tan 45° �
x
x

� 1

 sin 45° �
x

x12
�

1

12
�
12

2

 cos 45° �
x

x12
�

1

12
�
12

2

Albert Girard (1595–1632), who seems
to have lived chiefly in Holland, . . .
interested himself in spherical
trigonometry and trigonometry. In 1626,
he published a treatise on trigonometry
that contains the earliest use of our
abbreviations sin, tan, and sec for sine,
tangent, and secant. —Howard Eves in
An Introduction to the History of
Mathematics, 6th ed. (Philadelphia:
Saunders College Publishing, 1990)
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TABLE 1

U sin U cos U tan U

30°

45° 1

60° 13
1

2

13

2

12

2

12

2

13

3

13

2

1

2

EXAMPLE 6 Finding the Value of a Trigonometric Function

Suppose that B is an acute angle and cos B � Find sin B and tan B.2
5 .

SOLUTION Since cos B � � we can work with a right triangle labeled as in

Figure 13. Using the Pythagorean theorem, we have 22 � x2 � 52, from which it
follows that x � Consequently,

and

In Section 6.4 we will look at an alternative solution for Example 6 using
trigonometric identities.

We conclude this section with a summary of some notational conventions com-
monly used with the trigonometric functions.

1. An expression such as sin u really means sin(u), where sin or sine is the name of
the function and u is an input. An exception to this, however, occurs in expres-
sions such as sin(A � B), where the parentheses are necessary.

2. Parentheses are often omitted in multiplication. For example, the product
(sin u)(cos u) is usually written sin u cos u. Similarly, 2(sin u) is written 2 sin u.

3. The quantity (sin u)n is usually written sinn u. For example, (sin u)2 is written sin2 u.
The same convention also applies to the other five trigonometric functions.*

Notational Conventions

tan B �
opposite

adjacent
�

x

2
�
121

2

sin B �
opposite

hypotenuse
�

x

5
�
121

5

121.

adjacent

hypotenuse
,

2

5
 

*A single exception to this convention occurs when n � �1. The meaning of the expression
sin�1 x will be explained in Section 4 in Chapter 9.

5

2B

x

Figure 13
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In Exercises 13–18, use a calculator to compute cos u, sin u,
and tan u for the given value of u. Round each result to three
decimal places.

13. u � 65° 14. u � 21° 15. u � 38.5°
16. u � 12.4° 17. u � 80.06° 18. u � 0.99°

In Exercises 19–24, use a calculator to compute sec u, csc u,
and cot u (as in Example 5) for the given value of u. Round
each result to three decimal places.

19. u � 20° 20. u � 40° 21. u � 17.5°
22. u � 18.5° 23. u � 1° 24. u � 89.9°

In Exercises 25–36, use the given information to determine the
values of the remaining five trigonometric functions. (Assume
that all of the angles are acute.) When radicals appear in a
denominator, rationalize the denominator. 

25. sin u � 3�4 26. sin u � 2�5
27. cos b � 28. cos b �
29. sin A � 5�13 30. cos A � 8�17
31. tan B � 4�3 32. tan B � 5
33. sec C � 3�2 34. csc C �
35. cot a � 36. cot a �

In Exercises 37–48, verify that each equation is correct by
evaluating each side. Do not use a calculator. The purpose 
of Exercises 37–48 is twofold. First, doing the problems 
will help you to review the values in Table 1 of this section.
Second, the exercises serve as an algebra review.

37. cos 60° � cos2 30° � sin2 30°
38. cos 60° � 1 � 2 sin2 30°
39. sin2 30° � sin2 45° � sin2 60° � 3�2
40. sin 30° cos 60° � cos 30° sin 60° � 1
41. 2 sin 30° cos 30° � sin 60°
42. 2 sin 45° cos 45° � 1
43. sin 30° �

44. cos 30° �

45. tan 30° � 46. tan 30° �

47. 1 � tan2 45° � sec2 45° 48. 1 � cot2 60° � csc2 60°
49. (a) Use a calculator to evaluate cos 30° and cos 45°. Give

your answers to as many decimal places as your
calculator allows.

(b) In Table 1 there are expressions for cos 30° and cos 45°.
Use your calculator to evaluate these expressions, and
check to see that the results agree with those in part (a).

50. (a) Use a calculator to evaluate tan 30° and tan 60°. Give
your answers to as many decimal places as your
calculator allows.

(b) In Table 1 there are expressions for tan 30° and tan 60°.
Use your calculator to evaluate these expressions, and
check to see that the results agree with those in part (a).

1 � cos 60°

sin 60°

sin 60°

1 � cos 60°

2(1 � cos 60°)�2

2(1 � cos 60°)�2

13�213�3
15�2

17�313�5

A
In Exercises 1–4, use the definitions (as in Example 2) to eval-
uate the six trigonometric functions of (a) u and (b) b. In cases
in which a radical occurs in a denominator, rationalize the
denominator.

1. 2.

3. 4.

In Exercises 5–12, suppose that ^ABC is a right triangle with
�C � 90°.

5. If AC � 3 and BC � 2, find the following quantities.
(a) cos A, sin A, tan A
(b) sec B, csc B, cot B

6. If AC � 6 and BC � 2, find the following quantities.
(a) cos A, sin A, tan A
(b) sec B, csc B, cot B

7. If AB � 13 and BC � 5, compute the values of the six
trigonometric functions of angle B.

8. If AB � 3 and AC � l, compute the values of the six
trigonometric functions of angle A.

9. If AC � 1 and BC � 3�4, compute each quantity.
(a) sin B, cos A
(b) sin A, cos B
(c) (tan A)(tan B)

10. If AC � BC � 4, compute the following.
(a) sec A, csc A, cot A
(b) sec B, csc B, cot B
(c) (cot A)(cot B)

11. If AB � 25 and AC � 24, compute each of the required
quantities.
(a) cos A, sin A, tan A
(b) cos B, sin B, tan B
(c) (tan A)(tan B)

12. If AB � 1 and BC � compute the following.
(a) cos A, sin B
(b) tan A, cot B
(c) sec A, csc B

13�2,

3

3 6œ„ œ„

∫¨

53œ„

63

∫ ¨

21
29

20

¨

∫

8

15
17

¨

∫

A C

B
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56. This exercise shows how to obtain radical expressions 
for sin 15° and cos 15°. In the figure, assume that 
AB � BD � 2.

(a) In the right triangle BCD, note that DC � 1 because
is opposite the 30° angle and BD � 2. Use the

Pythagorean theorem to show that BC �

(b) Use the Pythagorean theorem to show that 
AD �

(c) Show that the expression for AD in part (b) is equal to
� Hint: Two nonnegative quantities are

equal if and only if their squares are equal.
(d) Explain why �BAD � �BDA.
(e) According to a theorem from geometry, an exterior

angle of a triangle is equal to the sum of the two 
nonadjacent interior angles. Apply this to ^ABD
with exterior angle DBC � 30°, and show that 
�BAD � 15°.

(f) Using the figure and the values that you have obtained
for the lengths, conclude that

(g) Rationalize the denominators in part (f) to obtain

(h) Use your calculator to check the results in part (g).
57. If an angle u is an integral multiple of 3°, then the real

number sin u is either rational or expressible in terms of
radicals. You’ve already seen examples of this with the
angles 30°, 45°, and 60°. The accompanying table gives the
values of sin u for some multiples of 3°. Use your calcula-
tor to check the entries in the table. Remark: If u is an
integral number of degrees but not a multiple of 3°, then
the real number sin u cannot be expressed in terms of
radicals within the real-number system.

sin 15° �
16 � 12

4
  cos 15° �

16 � 12

4

sin 15° �
1

16 � 12
  cos 15° �

2 � 13

16 � 12

12.16

222 � 13.

13.
DC

30°
CA B

D

60°

30°

C

ABD

B
In Exercises 51 and 52, refer to the following figure. In the fig-
ure, the arc is a portion of a circle with center O and radius r.

51. (a) Use the figure and the right-triangle definition 
of sine to explain (in complete sentences) why 
sin 20° � sin 40° � sin 60°.

(b) Use a calculator to verify that 
sin 20° � sin 40° � sin 60°.

52. (a) Use the figure and the right-triangle definition 
of cosine to explain (in complete sentences) why 
cos 20° � cos 40° � cos 60°.

(b) Use a calculator to verify that 
cos 20° � cos 40° � cos 60°.

For Exercises 53 and 54, refer to the following figure. In each
case, say which of the two given quantities is larger. If the
quantities are equal, say so. In either case, be able to support
your conclusion.

53. (a) cos u, cos b 54. (a) tan u, tan b
(b) sec u, sec b (b) cot u, cot b

55. The following figure shows a 30°–60° right triangle,
^ABC. Prove that AC � 2AB. Suggestion: Construct
^DBC as shown, congruent to ^ABC. Then note that
^ADC is equilateral. Note: This exercise provides a
proof of the theorem on page 427.

B

∫

¨

D

C

A

20°
20°
20°

P

Q

R

CBAO

r
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58. (a) Use the expression for sin 18° given in Exercise 57 to
show that the number sin 18° is a root of the quadratic
equation 4x2 � 2x � 1 � 0.

(b) Use the expression for sin 15° given in Exercise 57 to
show that the number sin 15° is a root of the equation
16x4 � 16x2 � l � 0.

U sin U

3° 3 4
6°

9°

12°

15°

18° 1
4 115 � 1 2
1
4 116 � 12 2
1
8 1210 � 215 � 115 � 13 2
1
8 1110 � 12 � 225 � 15 2
1
8 1230 � 615 � 15 � 1 2
116 �12 2 115 � 1 2 � 2 113 � 1 225 � 151

16

PROJECT Transits of Venus and the Scale of the Solar System

Almost every High School child knows that the Sun is 93 million miles (or
150 million Kilometres) away from the Earth. Despite the incredible immensity
of this figure in comparison with everyday scales—or perhaps even because it
is so hard to grasp—astronomical data of this kind is accepted on trust by most
educated people. Very few pause to consider how it could be possible to mea-
sure such a distance . . . and few are aware of the heroic efforts which attended
early attempts at measuring it. —David Sellers, The Transit of Venus & the Quest for

the Solar Parallax (Maga Velda Press, 2001)

A transit of Venus occurs when the planet Venus crosses a line of sight from
Earth to the Sun. For over four hundred years, transits of Venus have caused
excitement among astronomers, explorers, and the interested public. From the
seventeenth through the twenty-first century transits occurred in 1631, 1639,
1761, 1769, 1874, 1882, and 2004. The next transit, in 2012, will be the last of
the current century and will be visible from the western United States. Inspired
by a paper presented by Edmond Halley (1656–1742) to the Royal Society in
1716, expeditions set out to distant locations all over the Earth to observe the
transits of 1761 and 1769. Among famous explorers and mapmakers of the
eighteenth century, Charles Mason and Jeremiah Dixon observed the 1761
transit from South Africa, and Captain James Cook observed the 1769 transit
from Tahiti. When the data from the observations was processed, the value of
the solar parallax was determined to be between 8.5 and 8.9 seconds of arc.
The modern value is 8.794148 arc seconds.

Halley’s method used complicated tools from spherical trigonometry. In
this project, we will see how observations of a transit of Venus and some basic
plane trigonometry can be used to estimate the solar parallax and the distance
from Earth to the Sun. This project can be done as an individual or group
activity but may be more fun with a group.

Figure A shows the geometric relationship between the solar parallax,
angle a, the distance re, from Earth to the Sun, and the radius R of the Earth.
The notation re comes from thinking of the distance from Earth to the Sun as
the radius of the Earth’s orbit. Figure A is not drawn to scale. It greatly exag-
gerates angle a, and re is really about 25,000 times larger than R.



Exercise 1 Use the right triangle definition of the sine function to derive the
formula

(i)

for the distance from Earth to the Sun in terms of the solar parallax and the
radius of Earth.

More than 2000 years ago Eratosthenes calculated that the circumference
of Earth was about 250,000 stades. While the precise length of a stade is not
known, an estimate of about 160 meters gives a circumference of 40,000 kilo-
meters. (For a short, very readable account of Eratosthenes’ life and work, see
pp. 13–21 of Kitty Ferguson’s book quoted in the margin.)

Exercise 2 Assuming a circumference of 40,000 kilometers, show that
the radius R of the Earth is about 6400 kilometers. (The modern value is
6371 kilometers.)

Exercise 3 After the data from the expeditions of 1761 and 1769 were ana-
lyzed, the best estimate for the solar parallax was about 8.7 arc seconds.
Assuming a is 8.7 arc seconds, use formula (i) to find the distance from Earth
to the Sun. (Don’t forget to convert 8.7 arc seconds to degrees.) How does it
compare with a modern value of 149,600,000 km?

A transit of Venus occurs when Earth, Venus, and the Sun lie along a
straight line. This happens because the orbits of both planets lie in planes con-
taining the Sun, but it happens only rarely because the orbital plane of Venus
is tilted about 3.4 degrees to the plane of Earth’s orbit. See Figure B. A transit
occurs when the three bodies line up along the line of nodes as illustrated in
Figure B and Figure C. Transits occur in pairs, about eight years apart, about
once per century. Although the orbits of Earth and Venus are not quite circular,
in our discussion we’ll assume that they are circles centered at the center of the
Sun; a top view would resemble Figure C.

Figure D, like Figure A, is greatly exaggerated. It shows the geometric sit-
uation during a transit of Venus as seen by two symmetrically placed observers
on Earth. The observer at point A sees Venus as a dark spot on the Sun at
point A�, and the observer at B sees Venus at the point B�.

re �
R

sin a

What modern school-children learn
about Erastosthenes is that he invented
“the sieve of Eratosthenes”—a method
for sifting through all the numbers to
find which are prime numbers—and 
that he discovered a way to measure 
the circumference of the earth with
astounding accuracy. —Kitty Ferguson,
Measuring the Universe: Our Historic
Quest to Chart the Horizons of Space
and Time (New York: Walker and
Company, 1999)
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Observer B would see Venus transit the Sun, that is, move across the face
of the Sun, along the path indicated by the upper dashed line in Figure E.
Similarly, observer A would see Venus transit the Sun along the lower dashed
line. In principle, the ratio d�D can be measured from a careful drawing.
The eighteenth-century observers recorded the time of the first contact of
Venus with the solar disk, the time that Venus separated from the solar disk,
and their geographical position (latitude and longitude). This data was used to
calculate d�D.

Exercise 4 The value of the ratio d�D calculated as a result of the eighteenth-
century measurements was about 0.0260. To an observer on Earth the full
diameter of the Sun subtends an angle of about 31.5 minutes of arc. Use this
information to show that angle u is about 24.6 arc seconds (0.00683 degrees).
Hint: Use a proportion.

Node
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Sun

Line
of

nodes

Orbit
of

Venus

Venus

Orbit
of

Earth

Earth
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Since the radii of both the Earth and the Sun are very small compared to the
distance between their centers we can capture the geometric information
needed to estimate the radius of Earth’s orbit in the simplified triangle diagram
in Figure F, where the points have the same meaning as in Figure D. The sim-
plification involves positioning the centers of the Earth and Sun at the mid-
points of their corresponding chords rather than at the centers of the bodies.
The errors introduced are negligible.

Exercise 5 Use the right triangle definition of the tangent function to show
that the distance a from Earth to Venus is given by

Assume that the distance from observer A to observer B is 10,000 km and use
the result from Exercise 4 and this formula for a to show that, during a transit,
the distance from Earth to Venus is about 42,000,000 km.

It is clear from Figure F and the result of Exercise 5 that with our
simplifications

(ii)

where rv � the distance from Venus to the Sun.
To get another equation we move from geometry to physics. We use

Kepler’s third law, first published in 1616 as an empirical result, and later de-
rived from Newton’s laws of motion and gravity. In the case of circular orbits,
for two planets in orbit around the Sun, Kepler’s third law states that the cube
of the ratio of the orbital radii equals the square of the ratio of the orbital
periods. For Earth and Venus this implies

(iii)

where Te and Tv are the orbital periods of Earth and Venus, respectively.

Exercise 6 Use Te � 365 (Earth) days for the orbital period of Earth and 
Tv � 225 (Earth) days for the orbital period of Venus in equation (iii) to show

(iv)re � 1.381rv

a re

rv
b 3

� a Te

Tv

b 2

re � rv � a � 42,000,000

a �
length of AE

tan u
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Exercise 7 Solve the system of equations (ii) and (iv) and compare your result
for the radius of Earth’s orbit with your result from Exercise 3.

This completes our work on using the observations of a transit of Venus to
determine the radii of the orbits of Earth and Venus. You might want to review
your work on this project shortly before the next transit of Venus on June 6,
2012.

We conclude with a historical note. From centuries of observations the
orbital periods of the six innermost planets were known by Kepler’s time. It
follows from the derivation of equation (ii) and Kepler’s third law that if we
can find a value for the distance between any two planets in the solar system,
then we can find values for all of the orbital radii. The first measurement of
an interplanetary distance, from Earth to Mars (not to Venus), was made al-
most 100 years before the transits of Venus discussed in this project. Based
on a 1672 measurement of the “parallax of Mars” (the angle with vertex at
the center of Mars and rays to two widely separated observers on Earth) by
Cassini in Paris and Rocher in what is now French Guiana, Cassini deter-
mined a value of 140,000,000 km for the distance from Earth to the Sun. One
hundred years later the expeditions for the transits of Venus significantly
improved this value.

6.2 RIGHT-TRIANGLE APPLICATIONS
In Section 6.1 we defined the six trigonometric functions of an acute angle and
learned how to evaluate them for a given acute angle u. Now we are ready to apply
these ideas in solving some basic problems involving right triangles.

EXAMPLE 1 Using Trigonometric Functions to Find a Side in a Right Triangle

Use one of the trigonometric functions to find x in Figure 1.

SOLUTION Relative to the given 30° angle, x is the adjacent side. The length of the hypotenuse
is 100 cm. Since the adjacent side and the hypotenuse are involved, we use the cosine
function here:

Consequently,

This is the result we are looking for.

We used the cosine function in Example 1 because the adjacent side and the
hypotenuse were involved. We could instead use the secant. In that case, again with

x � 100 cos 30° � (100) # 113�2 2 � 5013 cm

cos 30° �
adjacent

hypotenuse
�

x

100

30°

100 cm

y

x

Figure 1



reference to Figure 1, the calculations look like this:

as was obtained previously.

 x �
10013

2
� 5013 cm

 2x � 10013

 
2

13
�

100
x

 sec 30° �
hypotenuse

adjacent
�

100
x
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EXAMPLE 2 Using Trigonometric Functions to Find a Side in a Right Triangle

Find y in Figure 1.

SOLUTION As you can see from Figure 1, the side of length y is opposite the 30° angle.
Furthermore, we are given the length of the hypotenuse. Since the opposite side and
the hypotenuse are involved, we use the sine function. This yields

and therefore

This is the required answer. Actually, we could have obtained this particular result
much faster by recalling that in the 30°–60° right triangle, the side opposite the
30° angle, namely, y, is half of the hypotenuse. That is y � 100�2 � 50 cm, as was
obtained previously.

y � 100 sin 30° � (100) # (1�2) � 50 cm

sin 30° �
opposite

hypotenuse
�

y

100

EXAMPLE 3 A Right-Triangle Application

A ladder that is leaning against the side of a building forms an angle of 50° with the
ground. If the foot of the ladder is 12 ft from the base of the building, how far up the
side of the building does the ladder reach? See Figure 2.

SOLUTION In Figure 2 we have used y to denote the required distance. Notice that y is opposite
the 50° angle, while the given side is adjacent to that angle. Since the opposite and
adjacent sides are involved, we’ll use the tangent function. (The cotangent function
could also be used.) We have

Without the use of a calculator or tables, this is our final answer. On the other hand,
using a calculator, we find that y � 14 ft, to the nearest foot.

In the next example we derive a useful formula for the area of a triangle. The formula
can be used when we are given two sides and the included angle but not the height.

tan 50° �
y

12
  and therefore  y � 12 tan 50°

50°

12 ft

y

Figure 2
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EXAMPLE 4 A Trigonometric Formula for the Area of a Triangle

Show that the area of the triangle in Figure 3 is given by

A �
1

2
 ab sin u

SOLUTION In Figure 3, if h denotes the length of the altitude, then we have

This value for h can now be used in the usual formula for the area of a triangle:

The formula that we just derived in Example 4 is worth remembering. In words,
the formula states that the area of a triangle is equal to half the product of the lengths
of two of the sides times the sine of the included acute angle. In Section 6.3 we will
see that the formula remains valid even when the included angle is not an acute
angle.

A �
1

2
 bh �

1

2
 b(a sin u) �

1

2
 ab sin u

sin u �
h
a
  and therefore  h � a sin u

h

b

¨

a

Figure 3

EXAMPLE 5 Using the Trigonometric Formula to Find the Area of a Triangle

Find the area of the triangle in Figure 4.

SOLUTION From Example 4 the area is given by the formula A � Here we let
a � 3 cm, b � 12 cm, and u � 60°. Then

This is the required area.

 � 913 cm2

 A �
1

2
 (3)(12) sin 60° � (18) 

13

2

1
2 ab sin u.

60°
3 cm

12 cm

Figure 4

EXAMPLE 6 The Area of a Regular Pentagon

Figure 5 shows a regular pentagon inscribed in a circle of radius 2 in. (Regular
means that all of the sides are equal and all of the angles are equal.) Find the area of
the pentagon.

SOLUTION The idea here is first to find the area of triangle BOA by using the area formula from
Example 4. Then, since the pentagon is composed of five such identical triangles, the
area of the pentagon will be five times the area of triangle BOA. We will make use of
the result from geometry that, in a regular n-sided polygon, the central angle is
360°�n. In our case we therefore have

�BOA �
360°

5
� 72°



We can now find the area of triangle BOA:

The area of the pentagon is five times this, or 10 sin 72° in.2. (Using a calculator, this
is about 9.51 in.2.)

Most of the applications covered in this section are repeated in Sections 7.5 and
10.1. Other traditional applications will be taken up in Sections 10.1 and 10.2.

 �
1

2
 (2)(2)sin 72° � 2 sin 72° in.2

 area �
1

2
 ab sin u
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2 in
.

2 in.

B

A

O

Figure 5

the actual distance of Mercury from the Sun varies from
about 28 million miles to 43 million miles.)

9. Determine the distance AB across the lake shown in
the figure, using the following data: AC � 400 m, 
�C � 90°, and �CAB � 40°. Round the answer to
the nearest meter.

10. A building contractor wants to put a fence around the
perimeter of a flat lot that has the shape of a right triangle.
One angle of the triangle is 41.4°, and the length of the
hypotenuse is 58.5 m. Find the length of fencing required.
Round the answer to one decimal place.

11. Suppose that the contractor in Exercise 10 reviews his
notes and finds that it is not the hypotenuse that is 58.5 m
but rather the side opposite the 41.4° angle. Find the length
of fencing required in this case. Again, round the answer to
one decimal place.

AB

C

M (Mercury)

S (Sun)E (Earth)

A
For Exercises 1–6, refer to the following figure. (However, each
problem is independent of the others.)

1. If �A � 30° and AB � 60 cm, find AC and BC.
2. If �A � 60° and AB � 12 cm, find AC and BC.
3. If �B � 60° and AC � 16 cm, find BC and AB.
4. If �B � 45° and AC � 9 cm, find BC and AB.
5. If �B � 50° and AB � 15 cm, find BC and AC. (Round

your answers to one decimal place.)
6. If �A� 25° and AC � 100 cm, find BC and AB. (Round

your answers to one decimal place.)
7. A ladder 18 ft long leans against a building. The ladder

forms an angle of 60° with the ground.
(a) How high up the side of the building does the ladder

reach? [Here and in part (b), give two forms for your
answers: one with radicals and one (using a calculator)
with decimals, rounded to two places.]

(b) Find the horizontal distance from the foot of the ladder
to the base of the building.

8. Refer to the following figure. At certain times, the planets
Earth and Mercury line up in such a way that �EMS is a
right angle. At such times, �SEM is found to be 21.16°.
Use this information to estimate the distance MS of Mercury
from the Sun. Assume that the distance from the Earth to the
Sun is 93 million miles. (Round your answer to the nearest
million miles. Because Mercury’s orbit is not really circular,

AC

B

EXERCISE SET 6.2
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18. 19.

20. 21.

22. Show that the perimeter of the pentagon in Example 6 is
20 sin 36°. Hint: In Figure 5, draw a perpendicular from
O to 

23. In triangle OAB, lengths OA � OB � 6 in. and �AOB � 72°.
Find AB. Hint: Draw a perpendicular from O to AB.
Round the answer to one decimal place.

24. The radius of the circle in the following figure is 1 unit.
Express the lengths OA, AB, and DC in terms of a.

25. In the following figure, suppose that AD � 1. Find the
length of each of the other line segments in the figure.
When radicals appear in an answer, leave the answer in
that form rather than using a calculator.

30°
A D

E

C

B

45°

60°

A C

D

B

O

å

y

x

AB.

For Exercises 12 and 13, refer to the following diagram for the
roof of a house. In the figure, x is the length of a rafter mea-
sured from the top of a wall to the top of the roof; u is the acute
angle between a rafter and the horizontal; and h is the vertical
distance from the top of the wall to the top of the roof.

12. Suppose that u � 39.4° and x � 43.0 ft.
(a) Determine h. Round the answer to one decimal place.
(b) The gable is the triangular region bounded by the

rafters and the attic floor. Find the area of the gable.
Round the final answer to one decimal place.

13. Suppose that u � 34° and h � 36.5 ft.
(a) Determine x. Round the answer to one decimal place.
(b) Find the area of the gable. Round the final answer

to one decimal place. [See Exercise 12(b) for the
definition of gable.]

In Exercises 14 and 15, find the area of the triangle. In
Exercise 15, use a calculator and round the final answer to
two decimal places.

14. 15.

In Exercises 16–21, determine the area of the shaded region,
given that the radius of the circle is 1 unit and the inscribed
polygon is a regular polygon. Give two forms for each answer:
an expression involving radicals or the trigonometric
functions; a calculator approximation rounded to three
decimal places.

16. 17.

70°

6 cm

4 cm

30°

2 in.

3 in.

h
x

¨ ¨

x



(b) Use a calculator and the following data to estimate the
distance MP from the earth to the moon: u� 89.05°
and OT � OP � 4000 miles. Round your answer to the
nearest thousand miles. (Because the moon’s orbit is
not really circular, the actual distance varies from about
216,400 miles to 247,000 miles.)

30. Refer to the figure below. Let r denote the radius of
the moon.

(a) Show that 

(b) Use a calculator and the following data to estimate 
the radius r of the moon: PS � 238,857 miles and 
u� 0.257°. Round your answer to the nearest
10 miles.

31. (a) Using right triangles, show that the area of a regular 
n-gon inscribed in a circle of radius 1 unit is given by

(b) Using the area formula from Example 4, again show
that the area of a regular n-gon inscribed in a circle of
radius 1 unit is given by

Comment: The results in (a) and (b) imply an inter-
esting “double-angle formula” that we will discuss in
Section 9.2.

(c) Use the formula in part (b) and a calculator to complete
the following table.

n 5 10 50 100 1000 5000 10,000

An

An �
n

2
 sin 

360°
n

An � n sin 
180°

n
 cos 

180°
n

Moon

P S M

T

r
Earth ¨

r � a sin u

1 � sin u
bPS.

P

M (Moon)

O

T

Earth

¨

B
26. Refer to the figure. Express each of the following lengths

as a function of u.
(a) BC (b) AB (c) AC

27. In the following figure, AB � 8 in. Express x as a function
of u. Hint: First work Exercise 26.

28. In the figure, line segment is tangent to the unit circle
at A. Also, is tangent to the circle at F. Express the
following lengths in terms of u.
(a) DE (c) CF (e) AB
(b) OE (d) OC (f) OB

29. At point P on Earth’s surface, the moon is observed to be
directly overhead, while at the same time at point T, the
moon is just visible. See the following figure.

(a) Show that MP �
OT

cos u
� OP.

O

B

D

C

A

E F

¨

x2+y2=1

y

x

CF
BA

B

x

4

¨

A

B

C
¨

A

4

5
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C
33. In the accompanying figure, the smaller circle is tangent to

the larger circle. Ray PQ is a common tangent and ray PR
passes through the centers of both circles. If the radius of
the smaller circle is a and the radius of the larger circle is b,
show that sin u � (b � a)�(a � b). Then, using the identity
sin2 u � cos2 u � 1, show that cos u � �(a � b).

P R

Q

¨

21ab

(d) Explain why the successive values of An in your table
get closer and closer to p.

32. The figure shows a regular pentagon and a regular hexa-
gon, with a common side of length 2 cm. Compute the area
within the hexagon but outside of the pentagon. Round the
answer to two decimal places.

2 cm

The Projects, Constructing a Regular Polygon, at the end of Section 7.5, and Snell’s Law and an Ancient
Experiment, at the end of Section 10.1, both apply material from Section 6.2.

6.3 TRIGONOMETRIC FUNCTIONS OF ANGLES
Be clear about the signs of the functions. Your calculator will show them to you
correctly, but you still need to be able to figure them out for yourself, quadrant by
quadrant. —David Halliday and Robert Resnick in Fundamentals of Physics, 3rd ed. (New

York: John Wiley and Sons, 1988)

Recall that the definitions of the trigonometric functions given in Section 6.1 apply
only to acute angles; that is, as defined, the domains of trigonometric functions con-
sist of all angles u such that 0° � u � 90°. In this section we want to expand our
definitions of the trigonometric functions to include angles of any size. To do this,
we will need to be more explicit than we have been about angles and their size
or measure.

For analytical purposes we think of the two rays that form an angle as having
been originally coincident; then while one ray is held fixed, the other is rotated to cre-
ate the given angle. As Figure 1 indicates, the fixed ray is called the initial side of the
angle, and the rotated ray is called the terminal side. By convention we take the
measure of an angle to be positive if the rotation is counterclockwise (as in Figure 1)
and negative if the rotation is clockwise. For example, the measure of the angle in
Figure 2(a) is positive 30 degrees because the rotation is counterclockwise, whereas
the measure of the angle in Figure 2(b) is negative 30 degrees because the rotation is
clockwise. Figure 2(c) shows an angle of 390°.

In our development of trigonometry it will be convenient to have a standard po-
sition for angles. In a rectangular coordinate system an angle is in standard position

Vertex
Initial side

Te
rm

in
al

 si
de

Figure 1



if the vertex is located at (0, 0) and the initial side of the angle lies along the positive
horizontal axis. Figure 3 shows examples of angles in standard position.

Now we are ready to extend our definitions of the trigonometric functions to
accommodate angles of any size. We begin by placing the angle u in standard
position and drawing in the unit circle x2 � y2 � 1, as shown in Figure 4. (Recall
from Chapter 1 that the equation x2 � y2 � 1 represents the circle of radius 1, with
center at the origin.) Notice the notation P(x, y) in Figure 4; this stands for the
point P, with coordinates (x, y), where the terminal side of angle u intersects the
unit circle. With this notation, we define the six trigonometric functions of u as
follows.
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Figure 2
Angles generated by a counter-
clockwise rotation have positive
measure. Angles generated by a
clockwise rotation have negative
measure.
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Examples of angles in standard
position.

x2+y2=1

y

x

P(x,  y)
¨

Figure 4
P(x, y) denotes the point where the
terminal side of angle u intersects
the unit circle.

Definition Trigonometric Functions of Angles

Let u be an angle in standard position and let P(x, y)
be the point where the terminal side of u intersects
the unit circle. Then the six trigonometric functions
of u are defined as follows.

Even before turning to some examples, we make three initial observations con-
cerning our new definitions. The first two observations will help you to memorize the

 cot u �
x
y
 (y 	 0) tan u �

y
x
 (x 	 0)

 csc u �
1
y
 (y 	 0) sin u � y

 sec u �
1
x
 (x 	 0) cos u � x

Unit circle
x2+y2=1

y

x

P(x,  y)

¨
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definitions. The third observation will help you to see why these new definitions are
consistent with our previous work on right-triangle trigonometry.

1. cos u is the first coordinate of the point where the terminal side of angle u inter-
sects the unit circle; sin u is the second coordinate. (You can remember this by
noting that, alphabetically, cosine comes before sine.)

2. Just as with the right-triangle definitions, we have the same three pairs of recipro-
cals: cos u and sec u, sin u and csc u, and tan u and cot u.

3. For the cases in which the angle u is acute, these definitions are really equivalent
to the original right-triangle definitions. Consider, for instance, the acute angle u
in Figure 5. According to our “new” definition of sine, we have

sin u � y

On the other hand, applying the original right-triangle definition to Figure 5 yields

Thus in both cases we obtain the same result. Using Figure 5, you should check
for yourself that the same agreement also occurs for the other trigonometric
functions.

sin u �
opposite

hypotenuse
�

y

1
� y

1

x

y

x2+y2=1

y

x

P(x,  y)

¨

Figure 5

EXAMPLE 1 Using the Unit Circle to Calculate Trigonometric Functions of 90°

Compute cos 90°, sin 90°, tan 90°, sec 90°, csc 90°, and cot 90°.

SOLUTION We place the angle u � 90° in standard position. Then, as Figure 6 indicates, the
terminal side of the angle meets the unit circle at the point (0, 1). Now we apply
the definitions:

(0, 1)
By definition, cos 90° __↑ ↑__ By definition, sin 90°
is this number. is this number.

Thus

cos 90° � 0 and sin 90° � 1

For the remaining trigonometric functions of 90° we have

These are the required results.

 cot 90° �
x
y

�
0

1
� 0

 csc 90° �
1
y

�
1

1
� 1

 sec 90° �
1
x

�
1

0
  undefined

 tan 90° �
y
x

�
1

0
  undefined

90°

(0, 1)

x2+y2=1

y

x

Figure 6
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EXAMPLE 2 Using the Unit Circle to Calculate Trigonometric Functions of �180°

Evaluate the trigonometric functions of �180°.

SOLUTION The results can be read off from Figure 7.

In the two examples we have just concluded, we evaluated the trigonometric
functions for u � 90° and u � �180°. In the same manner the trigonometric func-
tions can be evaluated just as easily for any angle that is an integral multiple of 90°.
Table 1 shows the results of such calculations. Exercise 14 at the end of this section
asks you to make these calculations for yourself.

 cot(�180°) �
x
y

�
�1

0
 undefined tan(�180°) �

y

x
�

0

�1
� 0

 csc(�180°) �
1
y

�
1

0
 undefined sin(�180°) � y � 0

 sec(�180°) �
1
x

�
1

�1
� �1 cos(�180°) � x � �1

TABLE 1

U cos U sin U tan U sec U csc U cot U

0° 1 0 0 1 undefined undefined
90° 0 1 undefined undefined 1 0

180° �1 0 0 �1 undefined undefined
270° 0 �1 undefined undefined �1 0
360° 1 0 0 1 undefined undefined

-180°

(-1, 0)
x2+y2=1

y

x

Figure 7

EXAMPLE 3 Using the Unit Circle to Approximate Cosine and Sine

Use Figure 8 to approximate the following trigonometric values to within successive
tenths. Then use a calculator to check your answers. Round the calculator values to
two decimal places.

(a) cos 160° and sin 160° (b) cos(�40°) and sin(�40°)

SOLUTION (a) Figure 8 shows that (the terminal side of) an angle of 160° in standard position
meets the unit circle at a point in Quadrant II. Letting (x, y) denote the coordi-
nates of that point, we have (from Figure 8)

�1.0 � x � �0.9 and 0.3 � y � 0.4

But by definition, cos 160° � x and sin 160° � y, and, consequently,

�1.0 � cos 160° � �0.9 and 0.3 � sin 160° � 0.4

The corresponding calculator results are cos 160° � �0.94 and sin 160° �
0.34. Note that the estimations we obtained from Figure 8 are consistent with
these calculator values. (When you check these calculator values for yourself, be
sure that your calculator is set in the degree mode.)
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(b) As you can verify using Figure 8, the terminal side of an angle of �40° intersects
the unit circle at the same point as does the terminal side of an angle of 320°.
Letting (x, y) denote the coordinates of that point, we have (from Figure 8)

0.7 � x � 0.8 and �0.7 � y � �0.6

and, consequently,

0.7 � cos(�40°) � 0.8 and �0.7 � sin(�40°) � �0.6

The corresponding calculator values here are cos(�40°) � 0.77 and
sin(�40°) � �0.64. Again, note that the estimations we obtain from Figure 8 are
consistent with these calculator values.

y
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140°
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320°
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340°
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10°

20°
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80°

x

x2+y2=1

Figure 8
Degree measure on the unit circle
for angles in standard position.

EXAMPLE 4 Using the Unit Circle to Visually Estimate Cosine and Sine

In each case, use Figure 8 to determine which quantity is larger. Then use a calcula-
tor to check the answer.

(a) sin 80° or cos 80° (b) sin 110° or sin 290° (c) cos 20° or cos 40°
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SOLUTION (a) In Figure 8, look at the point on the unit circle corresponding to 80°. The 
y-coordinate (which is sin 80°) is nearly 1, but the x-coordinate (cos 80°) is less
than 0.2. So sin 80° � cos 80°. Indeed, a calculator shows that sin 80° � 0.98
and cos 80° � 0.17.

(b) In Figure 8, look at the points on the unit circle corresponding to 110° and 290°.
The y-coordinate for 110° is positive, while the y-coordinate for 290° is negative.
In other words, sin 110° is positive, and sin 290° is negative. So (without even
worrying about the decimal places) we have sin 110° � sin 290°. A calculator
check shows that sin 110° � �0.94 and sin 290° � �0.94.

(c) Look at the points on the unit circle corresponding to 20° and 40°. The
x-coordinate for 20° is larger than the x-coordinate for 40°. Therefore cos 20° �
cos 40°. A calculator check confirms this: cos 20° � 0.94 and cos 40° � 0.77.

In evaluating the trigonometric functions, we’d like to take advantage, as much
as possible, of the symmetry in Figure 8. To do this, we introduce the concept of a
reference angle. (Even when we are using a calculator with the trigonometric func-
tions, there are times, nevertheless, when we will need the reference angle concept.
For instance, see Example 2(c) in Section 8.2.)

Definition The Reference Angle

Let u be an angle in standard position, and suppose that u is not an integer multiple
of 90°. The reference angle associated with u is the acute angle (with positive mea-
sure) formed by the x-axis and the terminal side of the angle u.

In Figure 9 angles are indicated by dashed arcs, and their respective reference an-
gles are indicated by solid arcs. The first part of Figure 9 shows how to find the ref-
erence angle for u � 135°. First we place the angle u � 135° in standard position.
Then we find the acute angle between the x-axis and the terminal side of u. As you
can see, in this case this acute angle is 45°. So the reference angle associated with
u� 135° is 45°. In the same way you should work through the remaining three parts
of Figure 9.

45° 135°

The reference angle for 135°
is 45° [180°-135°=45°].

60°

300°

The reference angle for 300°
is 60° [360°-300°=60°].

30°

210°

The reference angle for 210°
is 30° [210°-180°=30°].

-45°

45°

The reference angle
for -45° is 45°.

y

x

y

x

y

x

y

x

Figure 9
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Now let’s look at an example to see how reference angles are used in evaluat-
ing the trigonometric functions. Suppose that we want to evaluate cos 150°. In
Figure 10(a) we’ve placed the angle u� 150° in standard position. As you can see,
the reference angle for 150° is 30°.

By definition the value of cos 150° is the x-coordinate of the point P in Figure 10(a).
To find this x-coordinate, we reflect the line segment in the y-axis; the reflected line
segment is the segment in Figure 10(b). Since �P�OA � 30°, the x-coordinate of
the point P� is by definition cos 30°, or The x-coordinate of P is then, by sym-
metry to the y-axis, the negative of this value, that is, the x-coordinate of P is
It follows now, again by the definition of cosine, that cos 150° �

The same method that we have just used to evaluate cos 150° can be used to
evaluate any of the trigonometric functions when the angles are not multiples of 90°.
The following four steps summarize this method.

Step 1 Draw (or refer to) a sketch of the angle in standard position.
Step 2 Determine the reference angle associated with the given angle.
Step 3 Evaluate the given trigonometric function of the reference angle.
Step 4 Affix the appropriate sign determined by the quadrant of the terminal side

of the angle in standard position.

The next two examples illustrate this procedure.

�13�2.
�13�2.

13�2.
OP¿

OP

O

P

30° 150°

(a)

O

P Pª

A

30°

(b)

x2+y2=1 x2+y2=1

y

x

y

x

Figure 10

EXAMPLE 5 Using the Four-Step Procedure

Evaluate the following quantities:

(a) sin 135°; (b) cos 135°; (c) tan 135°.

SOLUTION As Figure 11 indicates, the reference angle associated with 135° is 45°.

(a) Step 1 See Figure 11.
Step 2 The reference angle is 45°.
Step 3 sin 45° �
Step 4 The terminal side of u� 135° lies in Quadrant II, where the y-coordinate

is positive, so sin 135° is positive. We therefore have

sin 135° � sin 45° �
12

2

12�2



(b) Step 1 See Figure 11.
Step 2 The reference angle is 45°.
Step 3 cos 45° �
Step 4 The terminal side of u� 135° lies in Quadrant II, where the 

x-coordinate is negative, so cos 135° is negative. We therefore have

(c) Step 1 See Figure 11.
Step 2 The reference angle is 45°.
Step 3 tan 45° � 1
Step 4 By definition, tan u � y�x. The terminal side of u � 135° lies in

Quadrant II, where the y-coordinate is positive and the x-coordinate is
negative, so tan 135° is negative. We therefore have

tan 135° � �tan 45° � �1

We give an alternate solution for parts (a) and (c) of Example 5 using a right
triangle picture rather than a unit circle picture. We again use the four-step procedure.

(a) Step 1 See Figure 12.
Step 2 The reference angle is 45°.

Step 3

Step 4 The terminal side of u� 135° lies in Quadrant II, where the y-coordinate
is positive, so sin 135° is positive. We therefore have

(c) Step 1 See Figure 12.
Step 2 The reference angle is 45°.

Step 3

Step 4 The terminal side of u � 135° lies in Quadrant II, where the x-
coordinates are negative and y-coordinates are positive, so tan 135° is
negative. We therefore have

tan 135° � �tan 45° � �1

Note: Remember in a right triangle each side has positive length and each nonright
angle is acute. In Figure 12, u �135° is not an acute angle of the right triangle, but
the reference angle, 45°, is an acute angle of the triangle. Also we labeled the length
of the horizontal side with a positive number, since lengths are positive.

tan 45° �
opposite

adjacent
�

1�12

1�12
� 1

sin 135° � sin 45° �
12

2

sin 45° �
opposite

hypotenuse
�

1�12

1
�
12

2

cos 135° � �cos 45° � � 

12

2

12�2
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EXAMPLE 6 Finding the Values of Trigonometric Functions 
of an Angle with Negative Measure

Evaluate the following quantities:

(a) cos(�120°); (b) cot(�120°); (c) sec(�120°).
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SOLUTION As Figure 13 shows, the reference angle for �120° is 60°.

(a) Step 1 See Figure 13.
Step 2 The reference angle for �120° is 60°.
Step 3 cos 60° � 1�2
Step 4 The terminal side of u� �120° lies in Quadrant III, where the x-

coordinate is negative, so cos(�120°) is negative. We therefore have

cos(�120°) � �cos(60°) �

(b) Step 1 See Figure 13.
Step 2 The reference angle for �120° is 60°.
Step 3 cot 60° �
Step 4 By definition, cot u� x�y. Now, the terminal side of u� �120° lies in

Quadrant III, where the x-coordinate is negative and the y-coordinate is
negative. Thus cot(�120°) is positive. We therefore have

(c) We could follow our four-step procedure here, but in this case there is a faster
method. In part (a) of this example we found that cos(�120°) � �1�2. Therefore,
since sec u is the reciprocal of cos u, we have

In this section we have used the unit circle to generalize our definitions of the
trigonometric functions to accommodate angles of any size. We conclude this section
with an application that relies on both the unit circle definitions (page 442) and the
acute angle or right-triangle definitions (page 422). Recall that in the previous sec-
tion we found that the area of a triangle is given by the formula A � where
a and b are the lengths of two sides and u is the angle included between those two
sides. When we derived this result in the previous section, we were assuming that u
was an acute angle. In fact, however, the formula is still valid when u is an obtuse
angle (an angle between 90° and 180°). To establish this result, we’ll need to rely on
the following identity:

sin(180° � u) � sin u

We will use Figure 14 to establish this identity for the case in which u is an ob-
tuse angle. (Exercise 61 shows you how to prove this identity when u is an acute
angle, and Section 9.1 discusses identities such as this from a more general point of
view.) Figure 14 shows an obtuse angle u in standard position. Let us apply our four-
step procedure to determine sin u. (As you’ll see, the end result will be the required
identity.)

Step 1 Refer to Figure 14.
Step 2 The reference angle for u is 180° � u.
Step 3 The sine of the reference angle is sin(180° � u).

1
2 ab sin u,

sec(�120°) �
1

cos(�120°)
�

1

(�1�2)
� �2

cot(�120°) � cot(60°) �
13

3

13�3

� 

1

2
60°

-120°

x2+y2=1

y

x

Figure 13

P

180°-¨ ¨

x2+y2=1

y

x

Figure 14



Step 4 sin u is positive because the terminal side of u lies in Quadrant II. Therefore
we have

sin u � sin(180° � u) as required

We are now prepared to show that the area A of the (red) triangle in Figure 15 is
given by A � The area of any triangle is given by A � (base)(height).
Thus, referring to Figure 15, we have

(1)A �
1

2
 bh

1
2 

1
2 ab sin u.
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180°-¨ ¨

b

ah

Figure 15

Also from Figure 15 we have

using the identity sin(180° � u) � sin u (2)

Now we can use equation (2) to substitute for h in equation (1). This yields

The formula that we’ve just derived is a useful one. We will use it in later work
to prove the law of sines. For reference, we summarize the result in the box that
follows.

If a and b are lengths of two sides of a triangle and u is the
angle included between those two sides, then the area of
the triangle is given by

In words: The area of a triangle equals one-half the product
of the lengths of two sides times the sine of the included
angle.

area �
1
2

 ab sin u

Formula for the Area of a Triangle

A �
1

2
 b(a sin u) �

1

2
 ab sin u

 h � a sin u
 h � a sin(180° � u)

 sin(180° � u) �
opposite

hypotenuse
�

h
a

¨

b

a
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37. sin 80° or sin 110° 38. sin 230° or sin 320°
39. sin(�80°) or cos(�l 10°) 40. sin(�230°) or cos(�230°)

In Exercises 41–50, evaluate each expression using the method
shown in Examples 5 and 6.

41. (a) cos 315° (c) sin 315°
(b) cos(�315°) (d) sin(�315°)

42. (a) cos 240° (c) sin 240°
(b) cos(�240°) (d) sin(�240°)

43. (a) cos 300° (c) sin 300°
(b) cos(�300°) (d) sin(�300°)

44. (a) cos 150° (c) sin 150°
(b) cos(�150°) (d) sin(�150°)

45. (a) cos 210° (c) sin 210°
(b) cos(�210°) (d) sin(�210°)

46. (a) cos 585° (c) sin 585°
(b) cos(�585°) (d) sin(�585°)

47. (a) cos 390° (c) sin 390°
(b) cos(�390°) (d) sin(�390°)

48. (a) cos 405° (c) sin 405°
(b) cos(�405°) (d) sin(�405°)

49. (a) sec 600° (c) tan 600°
(b) csc(�600°) (d) cot(�600°)

50. (a) sec 330° (c) tan 330°
(b) csc(�330°) (d) cot(�330°)

In Exercises 51 and 52, complete the tables.

51. U sin U cos U tan U

0°
30°
45°
60°
90°

120°
135°
150°
180°

52. U sin U cos U tan U

180°
210°
225°
240°
270°
300°
315°
330°
360°

A
In Exercises 1–8, sketch each angle in standard position and
specify the reference angle.

1. (a) 110° 2. (a) 160° 3. (a) 200°
(b) �110° (b) �160° (b) �200°

4. (a) 225° 5. (a) 300° 6. (a) 325°
(b) �225° (b) �300° (b) �325°

7. (a) 60° 8. (a) 460°
(b) �60° (b) �460°

In Exercises 9–13, use the definitions (not a calculator) to
evaluate the six trigonometric functions of the angle. If a value
is undefined, state this.

9. 270° 10. 450° 11. �270°
12. �720° 13. 540°
14. Use the definitions of the trigonometric functions to com-

plete the table. (When you are finished, check your results
against the values shown in Table 1 on page 444.)

U cos U sin U tan U sec U csc U cot U

0°
90°

180°
270°
360°

In Exercises 15–28, use Figure 8 in this section to approxi-
mate within successive tenths the given trigonometric values.
Then use a calculator to approximate the values to the nearest
hundredth.

15. sin 10° and sin(�10°) 16. cos 10° and cos(�10°)
17. cos 80° and cos(�80°) 18. sin 80° and sin(�80°)
19. sin 120° and sin(�120°) 20. cos 120° and cos(�120°)
21. sin 150° and sin(�150°) 22. cos 150° and cos(�150°)
23. cos 220° and cos(�220°) 24. sin 220° and sin(�220°)
25. cos 310° and cos(�310°) 26. sin 310° and sin(�310°)
27. sin(40° � 360°) 28. cos(40° � 360°)

In Exercises 29–40, use Figure 8 in this section to determine
which quantity is larger. Then use a calculator to check the
answer. For the calculator values, round to two decimal
places.

29. sin 70° or cos 70° 30. sin 60° or sin 70°
31. cos 170° or cos l60° 32. sin 190° or cos 190°
33. cos 280° or cos 290° 34. sin 160° or sin 170°
35. sin 10° or sin(�10°) 36. sin 190° or sin(�190°)

EXERCISE SET 6.3



(b) The mnemonic (memory device) ASTC (all students
take calculus) is sometimes used to recall the signs of
the trigonometric values in each quadrant:

A All are positive in Quadrant I.
S Sine is positive in Quadrant II.
T Tangent is positive in Quadrant III.
C Cosine is positive in Quadrant IV.

Check the validity of this mnemonic against your chart
in part (a).

60. The value of tan u is undefined when u � 90°. Use a cal-
culator to complete the following tables to investigate the
behavior of tan u as u approaches 90°. Round each value to
the nearest integer.
(a) U 89° 89.9° 89.99° 89.999°

tan U

(b) U 91° 90.1° 90.01° 90.001°

tan U

61. In the text we derived the identity sin(180° � u) � sin u in
the case when u is an obtuse angle, and used it to show that
the same formula for the area of a triangle that was derived
in Section 6.2 for acute angles also works for obtuse angles.
Note: If u is an acute angle, then 180° � u is an obtuse
angle.
(a) Sketch a figure showing the obtuse angle 180° � u

in standard position. Note that the terminal side of
the angle 180° � u lies in the second quadrant.

(b) What is the reference angle for the angle 180° � u?
(c) Use Steps (a) and (b) to conclude that 

sin(180° � u) � sin u.
62. Check that the identity sin(180° � u) � sin u is valid in the

three cases u � 0°, u � 90°, and u � 180°.
Note: This exercise completes the verification of the iden-
tity sin(180° � u) � sin u for all u from 0° to 180°.

For Exercises 63 and 64, refer to the following figure.

P

A B
¨

x2+y2=1

y

x

Exercises 53–56, use the given information to determine the
area of each triangle.

53. Two of the sides are 5 cm and 7 cm, and the angle between
those sides is 120°.

54. Two of the sides are 3 m and 6 m, and the included angle
is 150°.

55. Two of the sides are 21.4 cm and 28.6 cm, and the included
angle is 98.5°. (Round the final answer to one decimal place.)

56. Two of the sides are 5.98 cm and 8.05 cm, and the included
angle is 107.1°. (Round the answer to one decimal place.)

57. The following figure shows an equilateral triangle inscribed
in a circle of radius 12 cm. Use the method of Example 6
in Section 6.2 to compute the area of the triangle. Give two
forms for your answer: one with a square root and the other
a calculator approximation rounded to two decimal places.

58. An equilateral triangle is inscribed in a circle of radius
8 cm. Compute the area of the shaded region in each of
the following figures. Round your final answers to three
decimal places.

B
59. (a) Complete the following table, using the words

“positive” or “negative” as appropriate.

Terminal side of angle U lies in

Quadrant Quadrant Quadrant Quadrant
I II III IV

cos U and 
sec U positive negative

sin U and 
csc U

tan U and 
cot U

(a) (b)

452 CHAPTER 6 An Introduction to Trigonometry via Right Triangles
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71. Formula for sin(a � b) In the following figure, 
and AD � 1.

(a) Show that AC � sec a and AD � sec b.
(b) Show that

(c) The sum of the areas of the two smaller triangles in
part (b) equals the area of ^ABC. Use this fact and the
expressions given in part (b) to show that

sin(a � b) � sin a cos b � cos a sin b

(d) Use the formula in part (c) to compute sin 75°.
Hint: 75° � 30° � 45°

(e) Show that sin 75° Z sin 30° � sin 45°.
(f) Compute sin 105° and then check that 

sin 105° Z sin 45° � sin 60°.

C
72. Use the figure to prove the following theorem: The 

area of a quadrilateral is equal to one-half of the product
of the diagonals times the sine of the included angle.
Hint: Find the areas of each of the four triangles that make
up the quadrilateral. Show that the sum of those areas is 
(sin u)[qs � rq � rp � ps]. Then factor the quantity

within the brackets.

BD

p

A

q

C

r s¨

1
2 

 area ^ABC �
1

2
 sec a sec b sin(a � b)

 area ^ADB �
1

2
 sec b sin b

 area ^ADC �
1

2
 sec a sin a

A B

D

C

∫

å

AD � BC
63. Express the area of ^ABP as a function of u.
64. (a) Express the slope of as a function of u.

(b) Express the slope of as a function of u.
(c) Using the expressions obtained in parts (a) and (b),

compute the product of the two slopes.
(d) What can you conclude from your answer in part (c)?

As background for Exercises 65–70, you need to have studied
logarithms in Sections 5.3 and 5.4.

65. (a) Choose (at random) an angle u such that 0° � u � 90°.
Then with this value of u, use your calculator to verify
that log10(sin2 u) � 2 log10(sin u).

(b) For which values of u in the interval 0° 
 u 
 180° is
the equation in part (a) valid?

66. (a) Choose (at random) an angle u such that 0° � u � 90°.
Then with this value of u, use your calculator to verify
that log10(cos2 u) � 2 log10(cos u).

(b) For which values of u in the interval 0° 
 u 
 180° is
the equation in part (a) valid?

For Exercises 67 and 68, let

67. What is the domain of the function (L � S)(u)?
68. What is the domain of the function (L � C)(u)?
69. (a) Choose (at random) an angle u such that 0° � u � 90°.

Then with this value of u, use your calculator to
verify that

(b) Use the properties of logarithms to prove that if 
0° � u � 90°, then

(c) For which values of u in the interval 0° 
 u 
 360° is
the equation in part (b) valid?

70. (a) Choose (at random) an angle u such that 0° � u � 90°.
Then with this value of u, use your calculator to ver-
ify that

(b) Use the properties of logarithms to prove that the
equation in part (a) holds for all acute angles 
(0° � u � 90°).

(c) Does the equation in part (a) hold if u � 90°? If 
u � 0°?

(d) For which values of u in the interval 0° 
 u 
 360° is
the equation in part (a) valid?

ln11 � sin u � ln11 � sin u � ln(cos u)

ln11 � cos u � ln11 � cos u � ln(sin u)

ln11 � cos u � ln11 � cos u � ln(sin u)

L(x) � ln x

 S(u) � sin u

C(u) � cos u
r 0° 
 u 
 360°

PA
PB



The second and the third identities in the box are immediate consequences of the
unit-circle definitions of the trigonometric functions. To see why the first identity in the
box is valid, consider Figure 1. Since the point P(x, y) lies on the unit circle, we have

x2 � y2 � 1

But by definition, x � cos u and y � sin u. Therefore we have

cos2 u � sin2 u � 1

which is essentially what we wished to show. Incidentally, you should also become
familiar with the equivalent forms of this identity:

cos2 u � 1 � sin2 u and sin2 u � 1 � cos2 u
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6.4 TRIGONOMETRIC IDENTITIES
A special name for the function which we call the sine is first found in the works of
Āryabhata (ca. 510). . . .

It is further probable, from the efforts made to develop simple tables, that the
Hindus were acquainted with the principles which we represent by the . . . [formula]
sin2 f� cos2 f� 1. . . . —David Eugene Smith in History of Mathematics, vol. II (New York:

Ginn and Company, 1925)

There are numerous identities involving the trigonometric functions. Recall that
an identity is an equation that is satisfied by all relevant values of the variables con-
cerned. Two examples of identities are (x � y)(x � y) � x2 � y2 and x3 � x4�x. The
first of these is true no matter what real numbers are used for x and y; the second is
true for all real numbers except x � 0. For now, in the context of right-triangle
trigonometry we’ll consider only a few of the most basic identities.

PROPERTY SUMMARY Basic Trigonometric Identities

For all appropriate values of u:

1. sin2 u � cos2 u � 1

2.

3. sec u �
1

cos u
; csc u �

1

sin u
; cot u �

1

tan u

sin u

cos u
� tan u

x2+y2=1

y

x

P(x,  y)

¨

Figure 1

EXAMPLE 1 Finding the Value of a Trigonometric Function

Suppose that B is an acute angle and cos B � Find sin B and tan B.2
5 .

SOLUTION Replace cos B with in the identity sin2 B � cos2 B � 1. This yields

 sin B �
B

21

25
�
121

5
  or  sin B � �

121

5

 sin2 B � 1 �
4

25
�

21

25

 sin2 B � a 2

5
b 2

� 1

2
5 
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Since the sine of an acute angle is positive, we choose the positive solution. It follows
that

Then using Identity 2,

Compare this example with Example 6 from Section 6.1

tan B �
sin B

cos B
�

221

5

2

5

�
121

2

sin B �
121

5

EXAMPLE 2 Using Identities to Calculate Trigonometric Function Values

Given sin u � 2�3 and 90° � u � 180°, find cos u and tan u.

SOLUTION Substituting sin u � 2�3 into the identity sin2 u � cos2 u � 1 yields

(Note that we could have started with cos2 u � 1 � sin2 u.)
To decide whether to choose the positive or the negative value, note that the

given inequality 90° � u� 180° tells us that the terminal side of u lies in the second
quadrant. Since x-coordinates are negative in Quadrant II, cos u is negative, and we
chose the negative value for the square root. Thus

For tan u we have

 � � 

2

15
� �

215

5

 tan u �
y

x
�

sin u

cos u
�

2�3

�15�3

cos u �
�15

3

 cos u � �
B

5

9
�

�15

3

 cos2 u � 1 � a 2

3
b 2

�
5

9

 a 2

3
b 2

� cos2 u � 1

EXAMPLE 3 Using Identities to Calculate Trigonometric Functions

Suppose that

cos u �

where 270° � u� 360°. Express the other five trigonometric values as functions of t.
Note that for 270° � u� 360°, t must be positive. Why? In fact, 0 � t � 2. Why?

t

2
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SOLUTION Replacing cos u with the quantity t�2 in the identity sin2 u � 1 � cos2 u yields

and, consequently,

To decide whether to choose the positive or the negative value here, note that the
given inequality 270° � u� 360° tells us that the terminal side of u lies in the fourth
quadrant. Since y-coordinates are negative in Quadrant IV, we choose the negative
value here. Thus

To obtain tan u, we use the identity tan u � (sin u)�(cos u). This yields

We can now find the remaining three values simply by taking reciprocals:

rationalizing the denominator

rationalizing the denominator

We give an alternative solution for Example 3 based on a right-triangle picture
rather than identities. We draw an angle u between 270° and 360° in standard posi-
tion and complete a right triangle as shown in Figure 2. Let denote the reference
angle. For convenience, since the trigonometric functions are ratios, we can use a
length of 2 units for the hypotenuse. Since u is in Quadrant IV, cos u � t�2 is posi-
tive, so t is positive; also cos u� cos So we label the length of the adjacent side t,
and we have

From the right triangle,

So

The rest follows as in the previous solution.

 tan u � �tan u
~

� � 

opposite

adjacent
� � 

24 � t2

t

 sin u � �sin u
~

� � 

opposite

hypotenuse
� � 

24 � t2

2

opposite � 222 � t2 � 24 � t2

cos u � cos u
~

�
t

2

u
~

.

u
~

 cot u �
1

tan u
� � 

t

24 � t2
� � 

t24 � t2

4 � t2

 csc u �
1

sin u
� � 

2

24 � t2
� � 

224 � t2

4 � t2

 sec u �
1

cos u
�

2

t

tan u �
�24 � t2�2

t�2
� � 

24 � t2

t

sin u � � 

24 � t2

2

sin u � � 

24 � t2

2

sin2 u � 1 � a t

2
b 2

� 1 �
t2

4
�

4 � t2

4

2
opposite

~

y

x
¨

t

¨

Figure 2
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In the next five examples we are asked to show that certain trigonometric equa-
tions are, in fact, identities. The identities in these examples should not be memo-
rized; they are too specialized. Instead, concentrate on the proofs themselves, noting
where the fundamental identities (such as sin2 u � cos2 u � 1) come into play.
Remember that the identities are true only for values of the variable for which all
expressions are defined.

EXAMPLE 4 Proving an Identity by Expressing All Trigonometric Functions 
in Terms of Sine and Cosine

Prove that the equation csc A tan A cos A � 1 is an identity.

SOLUTION We begin with the left-hand side and express each factor in terms of sines or
cosines:

 � 1  as required

 csc A tan A cos A �
1

 sin A
1

#  sin A
1

 cos A
1

#  cos A
1

EXAMPLE 5 Proving an Identity by Expressing All Trigonometric Functions 
in Terms of Sine and Cosine

Prove that 1 �
cot2 u

csc2 u
� sin2 u.

SOLUTION We’ll work with the left-hand side, expressing everything in terms of sines and
cosines and then simplifying.

Since tan u � (sin u)�(cos u), it follows
that tan2 u � (sin2 u)�(cos2 u) and,
consequently, cot2 u � (cos2 u)�(sin2 u).

multiplying both numerator and
denominator of the fraction by sin2 u

 � 1 � cos2 u � sin2 u

 � 1 �
cos2 u

1

 1 �
cot2 u

csc2 u
� 1 �

(cos2 u)�(sin2 u)

1�sin2 u

EXAMPLE 6 Proving an Identity by Expressing All Trigonometric Functions 
in Terms of Sine and Cosine

Prove that cos2 B � sin2 B �
1 � tan2 B

1 � tan2 B
.

SOLUTION We begin with the right-hand side this time; it is the more complicated expression,
and it is easier to express tan2 B in terms of sin B and cos B than it is to express sin2 B



and cos2 B in terms of tan B. As in previous examples we write everything in terms
of sines and cosines.

 �
cos2 B � sin2 B

cos2 B � sin2 B
�

cos2 B � sin2 B

1
� cos2 B � sin2 B

 
1 � tan2 B

1 � tan2 B
�

1 �
sin2 B

cos2 B

1 �
sin2 B

cos2 B

�

cos2 Ba1 �
sin2 B

cos2 B
b

cos2 Ba1 �
sin2 B

cos2 B
b
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EXAMPLE 7 An Algebraic Technique for Creating a Difference of Squares

Prove that 
cos u

1 � sin u
�

1 � sin u

cos u
.

SOLUTION The suggestions given in the previous examples are not applicable here. Everything
is already in terms of sines and cosines. Furthermore, neither side appears more com-
plicated than the other. A technique that does work here is to begin with the left-hand
side and “rationalize” the denominator to obtain a difference of squares which, by
Identity 1, is a perfect square. We do this by multiplying numerator and denominator
by the same quantity, namely, 1 � sin u. Doing so gives us

This identity could also be proven by starting on the right-hand side and rationalizing
the numerator.

The general strategy for each of the proofs in Examples 4 through 7 was the
same. In each case we worked with one side of the given equation, and we trans-
formed it into equivalent expressions until it was identical to the other side of the
equation. This is not the only strategy that can be used.

Before we describe an alternative strategy, a warning is in order. Establishing an
identity is not like solving an equation. When solving an equation, we begin with an
assumption that there is a value for the variable that makes the left-hand and right-
hand sides equal. Then, using operations such as adding the same quantity to both
sides or multiplying both sides by the same nonzero quantity, we derive a series of
equivalent equations until the original equation is solved.

On the other hand, an identity is an assertion that two functions are equal, that is,
their function values are equal for all values of the variable in their common domain.
To prove an identity, we cannot assume that the left-hand and right-hand sides are
equal, since that is precisely what we are trying to prove; so we cannot use the same
techniques that we use to solve an equation.

 �
(cos u)(1 � sin u)

cos2 u
�

1 � sin u

cos u

 �
(cos u)(1 � sin u)

1 � sin2 u

 
cos u

1 � sin u
�

cos u

1 � sin u
# 1 � sin u

1 � sin u
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In proving an identity, it is important to separately transform the left-hand side
into the right-hand side or the right-hand side into the left-hand side, as in
Examples 4 through 7. Another strategy that can be used in establishing identities
is to separately transform each side to a common expression. We use this strategy
in the next example.

EXAMPLE 8 Proving an Identity by Showing That Both Sides Equal the Same Expression

Prove that 
1

1 � cos b
�

1

1 � cos b
� 2 � 2 cot2 b.

SOLUTION

 �
2

1 � cos2 b

 �
2(sin2 b � cos2 b)

1 � cos2 b

 �
2 sin2 b � 2 cos2 b

sin2 b
 �

2

1 � cos2 b

 Right-hand side � 2 �
2 cos2 b

sin2 b
 Left-hand side �

1(1 � cos b) � 1(1 � cos b)

(1 � cos b)(1 � cos b)

We’ve now established the required identity by showing that both sides are equal to
the same expression.

11. sin u � �3u, 180° � u � 270°
12. sin u � �u3, 270° � u � 360°
13. cos u � u� 0° � u � 90°
14. sin u � 2u� 0° � u � 90°

In Exercises 15–36, prove that the equations are identities.

15. sin u cos u sec u csc u � 1
16. tan2 A � 1 � sec2 A
17. (sin u sec u)�(tan u) � 1
18. tan b sin b � sec b � cos b
19. (1 � 5 sin x)�cos x � sec x � 5 tan x

20. � sin u � cot u cos u

21. (cos A)(sec A � cos A) � sin2 A

22.

23. (1 � sin u)(sec u � tan u) � cos u
24. (cos u � sin u)2 � 2 sin u cos u � 1

25. (sec a � tan a)2 �

26.

27. sin A � cos A �
sin A

1 � cot A
�

cos A

tan A � 1

sin B

1 � cos B
�

1 � cos B

sin B
� 2 csc B

1 � sin a

1 � sin a

sin u
csc u

�
cos u

sec u
� 1

1

sin u

17,
13,

A
In Exercises 1–8, use the given information to determine the re-
maining five trigonometric values. Rationalize any denomina-
tors that contain radicals.

1. (a) sin u � 1�5, 90° � u � 180°
(b) sin u � �1�5, 180° � u � 270°

2. (a) cos u � �3�4, 90° � u � 180°
(b) cos u � 3�4, 270° � u � 360°

3. (a) cos u � 5�13, 0° � u � 90°
(b) cos u � �5�13, 180° � u � 270°

4. (a) sin u � �6, 0° � u � 90°
(b) sin u � � �6, 270° � u � 360°

5. csc A � �3, 270° � A � 360° Hint: First find sin A.
6. csc A � 6�5, 90° � A � 180°
7. sec B � �3�2, 180° � B � 270°
8. sec B � 25�24, 270° � B � 360°

In Exercises 9–14, use the given information to express the re-
maining five trigonometric values as functions of t or u. Assume
that t and u are positive. Rationalize any denominators that
contain radicals.

9. cos u � t�3, 270° � u � 360°
10. cos u � �2t�5, 90° � u � l80°

13
13

EXERCISE SET 6.4



46. Prove the following identities. (These two identities, along
with sin2 u � cos2 u � 1, are known as the Pythagorean
identities. They will be discussed in the next chapter.)
(a) tan2 u � sec2 u � 1 (b) cot2 u � csc2 u � 1

47. If tan a tan b � 1 and a and b are acute angles, show
that sec a � csc b. Hint: Make use of the identities in
Exercise 46.

48. Refer to the figure. Express the slope m of the line as a func-
tion of u. Hint: What are the coordinates of the point P?

49. Suppose that sin u� (p � q)�(p � q), where p and q are pos-
itive and 90° � u� 180°. (Note that p � q. Why?) Show that

50. In this exercise you will use the unit-circle definitions of
sine and cosine, along with the identity sin2 u � cos2 u � 1
to prove a surprising geometric result. In the figure, we
show an equilateral triangle inscribed in the unit circle 
x2 � y2 � 1. The vertices of the equilateral triangle are

B(1, 0), and Prove that 

for any point P on the unit circle, the sum of the squares of
the distances from P to the three vertices is 6.
Hint: Let the coordinates of P be (cos u, sin u).

y

x

C P

B

A

C a� 

1

2
 , 
13

2
 b .A a� 

1

2
 , �
13

2
 b ,

tan u �
q � p

21qp

y=mx

x2+y2=1

y

x

P

¨

28. (1 � cos C)(1 � sec C) � tan C sin C
29. csc2 u � sec2 u � csc2 u sec2 u

30. cos2 u � sin2 u � 1 � 2 sin2 u

31. sin A tan A �

32.

33. cot2 A � csc2 A � �cot4 A � csc4 A

34. � 2 cos2 A � 1

35. � 2 � sec A csc A

36. tan A tan B �

B
37. Only one of the following two equations is an identity.

Decide which equation this is, and give a proof to show that
it is, indeed, an identity. For the other equation, give an ex-
ample showing that it is not an identity. (For example, to
show that the equation sin u � cos u � 1 is not an identity,
let u � 30°. Then the equation becomes 1�2 � � 1,
which is false.)

(a)

(b) (sec2 a � 1)(csc2 a � 1) � 1
38. Follow the directions given in Exercise 37.

(a) (csc b � cot b)2 �

(b) cot b � � csc b

39. Prove the identity � in two ways.

(a) Adapt the method of Example 7.
(b) Begin with the left-hand side, and multiply numerator

and denominator by sin u.

In Exercises 40–44, prove that the equations are identities.

40. � 2 sin b � 2 sin b cos b

Hint: Write sin3 b as (sin b)(sin2 b).

41.

42. 1 � � sin u cos u

43. (sin2 u)(1 � n cot2 u) � (cos2 u)(n � tan2 u)
44. (r sin u cos f)2 � (r sin u sin f)2 � (r cos u)2 � r2

45. (a) Factor the expression cos3 u � sin3 u.
(b) Prove the identity

cos f cot f � sin f tan f

csc f � sec f
� 1 � sin f cos f

sin2 u

1 � cot u
�

cos2 u

1 � tan u

sec u � csc u

sec u � csc u
�

tan u � 1

tan u � 1

2 sin3 b

1 � cos b

1 � cos u

sin u

sin u

1 � cos u

sin b

1 � cos b

1 � cos b

1 � cos b

csc2 a � 1

csc2 a
� cos a

13�2

tan A � tan B

cot A � cot B

sin A � cos A

sin A
�

cos A � sin A

cos A

cot2 A � tan2 A

(cot A � tan A)2

cot A � 1

cot A � 1
�

1 � tan A

1 � tan A

1 � cos2 A

cos A
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CHAPTER 6 Summary of Principal Terms and Formulas

Page
Terms or Formulas Reference Comments

1. cos u 422 When u is an acute angle in a right triangle, the six trigonometric 
sin u functions of u are defined as follows. (In these definitions, the word 
tan u “adjacent” means “the length of the side adjacent to angle u.” The same 
sec u conventions apply to the words “opposite” and “hypotenuse.”)
csc u
cot u

2. sinn u 428 sinn u means (sin u)n. The same convention also applies to the other five
trigonometric functions.

3. A � sin u 437, 450 The area of a triangle equals one-half of the product of the lengths of two
sides times the sine of the included angle.

4. Initial side of an angle 441 We think of the two rays that form an angle as having been originally 
Terminal side of an angle coincident; then, while one ray is held fixed, the other is rotated to create

the given angle. The fixed ray is the initial side of the angle, and the
rotated ray is the terminal side. (See Figure 1 on page 441.) The measure
of an angle is positive if the rotation is counterclockwise and negative if
the rotation is clockwise. (See Figure 2 on page 442.)

5. Standard position 441–442 In a rectangular coordinate system an angle is in standard position if the
vertex is located at (0, 0) and the initial side of the angle lies along the
positive horizontal axis. For examples, see Figure 3 on page 442.

6. cos u 442 If u is an angle in standard position and P(x, y) is the point where the 
sin u terminal side of the angle meets the unit circle, then the six trigonometric 
tan u functions of u are defined as follows.
sec u
csc u
cot u

7. Reference angle 446 Let u be an angle in standard position in an x-y coordinate system, and
suppose that u is not an integer multiple of 90°. The reference angle
associated with u is the acute angle (with positive measure) formed by
the x–axis and the terminal side of the angle u.

 cot u �
x

y
 (y 	 0) tan u �

y

x
 (x 	 0)

 csc u �
1
y
 (y 	 0) sin u � y

 sec u �
1
x
 (x 	 0) cos u � x

1
2 ab

 cot u �
adjacent

opposite
 tan u �

opposite

adjacent

 csc u �
hypotenuse

opposite
 sin u �

opposite

hypotenuse

 sec u �
hypotenuse

adjacent
 cos u �

adjacent

hypotenuse
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Terms or Formulas Reference Comments

8. The four-step procedure 447 The following four-step procedure can be used to evaluate the 
for evaluating the trigono- trigonometric functions of angles that are not integer multiples of 90°.
metric functions

Step 1 Draw the angle in standard position.
Step 2 Determine the reference angle associated with the given angle.
Step 3 Evaluate the given trigonometric function using the reference

angle for the input.
Step 4 Affix the appropriate sign to the number found in Step 2. (See

Examples 5 and 6 on pages 447–449.)

For the right-triangle version of the four-step procedure, remember that
each side has positive length and each non-right angle is acute.

9. sin2 u � cos2 u � 1 454 These are some of the most fundamental trigonometric identities. We’ll 
tan u � sin u�cos u see many more in the following chapters.
sec u � 1�cos u
csc u � 1�sin u
cot u � 1�tan u
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1. A student who wanted to simplify the expression 
wrote

Explain why this is nonsense, and then indicate the correct
solution.

2. Determine whether each of the following statements is TRUE
or FALSE. In each case, write out your reason or reasons in
complete sentences. If you draw a diagram to accompany
your writing, be sure that you clearly label any parts of the
diagram to which you refer in the writing.
(a) If u is an angle in standard position and 180° � u� 270°,

then tan u� sin u.
(b) If u is an acute angle in a right triangle, then sin u� 1.
(c) If u is an acute angle in a right triangle, then tan u� 1.
(d) For all angles u, we have sin u �
(e) For all acute angles u, we have sin u �
(f) The formula for the area of a triangle, A � is

not valid when u is a right angle.
(g) Every angle u satisfying 0° � u � 180° is an allowable

input for the sine function.
(h) Every angle u satisfying 0° � u � 180° is an allowable

input for the tangent function.
3. A student who was asked to simplify the expression

sin2 33° � sin2 57° wrote sin2 33° � sin2 57° � sin2(33° �
57°) � sin2 90° � 12 � 1.

1
2 ab sin u,

21 � cos2 u.
21 � cos2 u.

30°

sin 30°
�

30°

sin  30°
�

1

sin

30°

sin 30°
(a) Where is the error?
(b) What is the correct answer?

4. (a) Use a calculator to evaluate the quantity 4 sin 18° cos 36°.
(b) The following very short article, with the accompanying

figure, appeared in The Mathematical Gazette, Vol. XXIII
(1939), p. 211. On your own or with a classmate, study
the article and fill in the missing details. Then, strictly on
your own, rewrite the article in a paragraph (or two at the
most). Write as if you were explaining to a friend or
classmate why 4 sin 18° cos 36° � 1.

To prove that 4 sin 18° cos 36° � 1.
In the figure, sin 18° �
Multiply.

a

a

a

a a

bb

1
2 a�b, cos 36° � 1

2 b�a.

Writing Mathematics
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CHAPTER 6 Review Exercises

For Exercises 1–16, evaluate each expression. (Don’t use a
calculator.)

1. sin 135° 2. cos(�60°) 3. tan(�240°)
4. sin 450° 5. csc 210° 6. sec 225°
7. sin 270° 8. cot(�330°) 9. cos(�315°)

10. cos 180° 11. cos 1800° 12. sec 120°
13. csc 240° 14. csc(�45°) 15. sec 780°
16. sin2 33° � sin2 57°
17. Simplify: ln(sin2 17° � cos2 17°) � cos(ln ep).
18. If u� 45°, find each of the following.

(a) cos u (d) cos 3u (g) cos(�u)
(b) cos3 u (e) cos(2u�3) (h) cos3 5u
(c) cos 2u (f) (cos 3u)�3

In Exercises 19–31, the lengths of the three sides of a triangle
are denoted a, b, and c; the angles opposite these sides are A,
B, and C, respectively. In each exercise, use the given informa-
tion to find the required quantities.

Given Find
19. B � 90°, A � 30°, a and c

b � 1
20. B � 90°, A � 60°, c and b

a � 1
21. B � 90°, sin A � 2�5, b

a � 7
22. B � 90°, sec C � 4, b

c �
23. B � 90°, cos A � 3�8 sin A and cot A
24. B � 90°, b � 1, a

tan C �
25. b � 4, c � 5, area of ^ABC

A � 150°
26. A � 120°, b � 8 c

area ^ABC �
27. c � 4, a � 2, B � 90° sin2 A � cos2 B
28. B � 90°, 2a � b A
29. A � 30°, B � 120°, a

b � 16
30. a � 7, b � 8, area of ^ABC

sin C � 1�4
31. a � b � 5, c and area of ^ABC

32. For the following figure, show that

y � x[tan(a � b) � tan b]

y

x

∫å

sin 1 12 C 2 � 9�10

1213

15

12

33. For the following figure, show that

34. For the following figure, show that

35. Suppose that u is an acute angle in a right triangle and 

sin u � Find cos u and tan u.

36. This problem is adapted from the text An Elementary Treatise
on Plane Trigonometry, by R. D. Beasley, first published
in 1884.
(a) Prove the following identity, which will be used in

part (b): 1 � tan2 a � sec2 a.
(b) Suppose that a and u are acute angles and 

tan u � Express sin u and cos u in terms

of a. Hint: Draw a right triangle, label one of the
angles u, and let the lengths of the sides opposite and
adjacent to u be 1 � tan a and 1 � tan a, respectively.

Answer:

In Exercises 37–46, convert each expression into one involving
only sines and cosines and then simplify. (Leave your answers
in terms of sines and/or cosines.)

37. 38.

39. 40. cos A � tan A sin A
sin A sec A

tan A � cot A

csc A sec A

sec2 A � csc2 A

sin A � cos A

sec A � csc A

 cos u � (cos a � sin a)�12
 sin u � (cos a � sin a)�12

1 � tan a

1 � tan a
.

2p2q2

p4 � q4.

a

b

¨ å

cot u �
a

b
� cot a

y

x

∫

å

y �
x

cot a � cot b



In Exercises 51–60, use the given information to find the
required quantities.

Given Find
51. cos u � 3�5, sin u and tan u

0° � u � 90°
52. sin u � �12�13, cos u

180° � u � 270°
53. sec u � 25�7, tan u

270° � u � 360°
54. cot u � 4�3, sin u

0° � u � 90°
55. csc u � 13�12, cot u

0° � u � 90°
56. sin u � 1�5, cos(90° � u)

0° � u � 90°
57. cos u � 5t, tan(90° � u)

0° � u � 90°
58. sin u � sec u

90° � u � 270°

59. sin u

0° � u � 90°

60. tan u

0° � u � 90°
61. Suppose u is an acute angle and tan u� cot u� 2. Show that

sin u � cos u �
62. In an isosceles triangle, the two base angles are each 35°,

and the length of the base is 120 cm. Find the area of the
triangle.

63. Find the perimeter and the area of a regular pentagon
inscribed in a circle of radius 9 cm.

64. In triangle ABC, let a be the length of the side opposite angle
A, and let h denote the length of the altitude from A to
Show that h � a�(cot B � cot C).

65. The length of each side of an equilateral triangle is 2a. Show
that the radius of the inscribed circle is and the radius
of the circumscribed circle is 

66. In triangle ABC, angle C is a right angle. If a, b, and c denote
the lengths of the sides opposite angles A, B, and C, respec-
tively, show that

In Exercises 67–76, show that each equation is an identity.

67. cos A cot A � csc A � sin A
68. sec A � 1 � (sec A)(1 � cos A)

69.

70.
sin A

csc A � cot A
� 1 � cos A

cot A � 1

cot A � 1
�

cos A � sin A

cos A � sin A

sin A � sin B

sin A � sin B
�

a � b

a � b

2a�13.
a�13

BC.

12.

cos u �
2u

u2 � 1
,

tan u �
12 � 1

12 � 1
,

�15u,

41.

42.

43. (sec A � csc A)�1[(sec A)�1 � (csc A)�1]

44.

45.

46.

In Exercises 47–50, refer to the figure below. This figure shows
a highly magnified view of the point P, where the terminal
side of an angle of 10° (in standard position) meets the unit
circle.

47. Using the figure, estimate the value of cos 10° to four deci-
mal places. (Then use a calculator to check your estimate.)

48. Use your estimate in Exercise 47 to evaluate each of the
following.
(a) cos 170° (b) cos 190° (c) cos 350°

49. Using the figure, estimate the value of sin 10° to four deci-
mal places. (Then use a calculator to check your estimate.)

50. Use your estimate in Exercise 49 to evaluate each of the
following.
(a) sin(�10°) (b) sin(�190°) (c) sin(�370°)

x=0.984

y=0.173

y=0.174

x=0.985

P

sin A tan A � cos A cot A

sec A � csc A

sin A � cos A

sin A � cos A
�

sin A � cos A

sin A � cos A

sin A � cos A

sin A � cos A
�

sin A � cos A

sin A � cos A

tan2 A � 1

tan3 A � tan A
tan A � 1

tan2 A � 1

1

sec A � 1
�

1

sec A � 1

cos A

1 � tan A
�

sin A

1 � cot A
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respectively. Use the right-triangle definitions of sine and
cosine to prove that

80. The following figure shows a semicircle with radius AO � 1.

(a) Use the figure to derive the formula

Hint: Show that CD � sin u and OD � cos u. Then look
at right triangle ADC to find tan(u�2).

(b) Use the formula developed in part (a) to show that

(i)i tan 15° �

(ii) tan 22.5° �
81. This exercise outlines geometric derivations of formulas

sin 2u � 2 sin u cos u cos 2u � 2 cos2 u � 1

Refer to the figure, which shows a semicircle with diameter
and radius UV � 1. In each case, supply the reasons for

the given statement.
(a) TU � cos 2u
(b) TV � 1 � cos 2u
(c) WT � sin 2u
(d) WV � 2 cos u Hint: Use right triangle SWV.
(e) SW � 2 sin u

(f) sin u �

Hint: Use ^WTV and the results in parts (c) and (d).
(g) sin 2u � 2 sin u cos u

(h) cos u � Hint: Use ^WTV.

(i) cos 2u � 2 cos2 u � 1

U

W

S T V

2̈ ¨

1 � cos 2u

2 cos u

sin 2u

2 cos u

SV

12 � 1.

1

2 � 13
� 2 � 13;

tan 
u

2
�

sin u

1 � cos u

O D

C

A B

¨¨/2

a2 cos2 B � b2 cos2 A

a2 � b2 � 1

71.

72.

73. � � � � 2

74.

75.

76. The radius of the circle in the following figure is one unit.
The line segment is tangent to the circle at P, and is
perpendicular to Express each of the following lengths
in terms of u.
(a) PN (c) PT (e) NA
(b) ON (d) OT (f) NT

77. Refer to the figure accompanying Exercise 76.
(a) Show that the ratio of the area of triangle ONP to the

area of triangle NPT is cot2 u.
(b) Show that the ratio of the area of triangle NPT to the

area of triangle OPT is sin2 u.
78. Refer to the following figure. From a point R, two tangent

lines are drawn to a circle of radius 1. These tangents meet
the circle at the points P and Q. At the midpoint of the cir-
cular arc a third tangent line is drawn, meeting the
other two tangents at T and U, as shown. Express the area
of triangle RTU as a function of u (where u is defined in
the figure).

79. Suppose that in ̂ ABC, angle C is a right angle. Let a, b, and
c denote the lengths of the sides opposite angles A, B, and C,

Q

P

T

R

U
1

2̈

PQ̂,

O N A
T

P

¨

OT.
PNPT

1 � sin u cos u

cos u1sec u � csc u 2 #
sin2 u � cos2 u

sin3 u � cos3 u
� sin u

sec A � tan A

sec A � tan A
� a cos A

1 � sin A
b 2

1

1 � csc2 A

1

1 � sec2 A

1

1 � cos2 A

1

1 � sin2 A

1

csc A � cot A
�

1

csc A � cot A
� 2 cot A

1

1 � cos A
�

1

1 � cos A
� 2 � 2 cot2 A
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CHAPTER 6 Test

1. Specify a value for each of the following expressions. (Exact
values are required, not calculator approximations.)
(a) tan 30° (c) sin2 25° � cos2 25°
(b) sec 45° (d) sin 53° � cos 37°

2. Suppose that angle u is in standard position and the terminal
side of the angle is in the third quadrant. Which of the fol-
lowing are positive?
(a) sec u (b) csc u (c) cot u

3. Evaluate each of the following:
(a) sin(�270°) (b) cos 180° (c) tan 720°

4. Factor: 2 cot2 u � 11 cot u � 12.
5. Find the area of a triangle in which the lengths of two sides

are 8 cm and 9 cm and the angle included between those two
sides is 150°.

6. Evaluate each of the following (exact values required, not
calculator approximations):
(a) sin(�225°) (b) tan 330° (c) sec 120°

7. If sin u � and 180° � u � 270°, find cos u and
tan u.

8. If sin u � �u�3 and 270° � u � 360°, express cos u and
cot u as functions of u.

9. Simplify: 

10. A regular nine-sided polygon is inscribed in a circle of
radius 3 m. Find the area of the polygon. Give two forms
of the answer: one in terms of a trigonometric function and
the other a calculator approximation rounded to three deci-
mal places.

11. Express each term using sines and cosines and simplify as
much as possible:

cot2 u

csc2 u
�

tan2 u

sec2 u

cos u � 1

cos u
� 1

cos u � 1

cos u
� 1

.

�15�5

12. In the figure, �DAB � 25°, �CAB � 55°, and AB � 50 cm.
Find CD. Leave your answer in terms of the trigonometric
functions (rather than using a calculator).

13. Without using a calculator, determine in each case which of
the two trigonometric values is the larger. State your reasons.
Hint: Sketch each pair of angles in standard position.
(a) sin 5° or sin 85°
(b) sin 5° or cos 5°
(c) tan 175° or tan 185°

14. In ^ABC (shown in the figure), �A � 20°, AB � 3.25 cm,
and AC � 2.75 cm. Complete steps (a) and (b) to determine
the length CB.
(a) Find AD, DB, and CD. Leave your answers in terms of

the trigonometric functions.
(b) Find CB by applying the Pythagorean theorem in

^CDB. For your final answer, use a calculator and
round to two decimal places.

DA

20°

C

B

B D C

A
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7.1 Radian Measure

7.2 Trigonometric Functions
of Angles

7.3 Evaluating the
Trigonometric Functions

7.4 Algebra and the
Trigonometric Functions

7.5 Right Triangle Trigonometry

Trigonometric functions were originally introduced
and tabulated in calculations in astronomy and
navigation and were used extensively in surveying.
What is more important [now], they describe a periodic process, like the vibration of
a string, the tides, planetary motion, alternating currents, or the emission of light by
atoms. —From The Mathematical Sciences, edited by the Committee on Support of Research in

the Mathematical Sciences with the collaboration of George Boehm (Cambridge, Mass.: The

M.I.T. Press, 1969)

Chapters 7 through 10 form a unit on trigonometry. In general, there are two ap-
proaches to trigonometry at the precalculus level. In a sense, these two approaches
correspond to the two historical roots of the subject mentioned in Alfred Hooper’s
opening quotation. One approach centers on the study of triangles. Indeed, the word
“trigonometry” is derived from two Greek words, trigonon, meaning triangle, and
metria, meaning measurement. Although you may have already been introduced to
this triangle approach in high school geometry or algebra (or in Chapter 6), we’ll post-
pone its discussion until Section 7.5, where it follows in a natural way from the more
modern unit-circle approach that we introduce in Section 7.2.

CHAPTER

7 The Trigonometric 
Functions 

Trigonometry, as we know the subject
today, is a branch of mathematics that is
linked to algebra. As such it dates back
only to the eighteenth century.

When treated purely as a development
of geometry, however, it goes back to the
time of the great Greek mathematician-
astronomers. . . . —Alfred Hooper in
Makers of Modern Mathematics
(New York: Random House, Inc., 1948)

We use radian measure routinely in
calculus for the sake of simplicity, in
order to avoid the repeated occurence of
the nuisance factor p�180. —George F.
Simmons in his text Calculus with
Analytic Geometry, 2nd ed. (New York:
McGraw-Hill Book Co., 1996)

7.1 RADIAN MEASURE
Degree measure, traditionally used to measure the angles of a geometric figure, has
one serious drawback. It is artificial. There is no intrinsic connection between a
degree and the geometry of a circle. Why 360 degrees for one revolution? Why not
400? or 100? —Calculus, One and Several Variables, 7th ed., by S. L. Salas and Einar Hille,

revised by Garret J. Etgen (New York: John Wiley and Sons, Inc., 1995)

In elementary geometry an angle is a figure formed by two rays with a common end-
point. As is indicated in Figure 1, the common endpoint is called the vertex of the
angle. There are several conventions used in naming angles; Figure 2 indicates some
of these. In Figure 2 the symbol u is the lowercase Greek letter theta. Greek letters
are often used to name angles. For reference, the Greek alphabet is given in the end-
papers at the back of this book. The � symbol that you see in Figure 2 stands for the
word “angle.” When three letters are used in naming an angle, as with �ABC in
Figure 2, the middle letter always indicates the vertex of the angle.

There are two principal systems used to indicate the size of (that is, the amount
of rotation in) an angle: degree measure, which you used in high school geometry,

T.Fyle/JPL-caltech/NASA



and radian measure, which we’ll introduce in a moment. Recall that 360 degrees
(abbreviated 360°) is the measure of an angle obtained by rotating a ray through one
complete circle. For comparison, Figure 3 shows angles of various degrees. In this
section, we will not make any distinction whether the rotation generating an angle is
clockwise or conterclockwise; however, in the next section this distinction will be
important. The angles in Figures 3(a) and 3(b) are acute angles; these are angles with
degree measure u satisfying The 90° angle in Figure 3(c) is called a
right angle. The angle in Figure 3(d) is an obtuse angle, that is, an angle with degree
measure u satisfying 90° � u � 180°.

0° � u � 90°.

468 CHAPTER 7 The Trigonometric Functions

Vertex

Figure 1

B
C

A

¨

Notations for the angle at B:
¨, ∠¨, ∠B, ∠ABC, ∠CBA 

Figure 2

(a)

30°

(b)

60°

(c)

(f)(e)(d)

90°

270°

180°150°

Figure 3

One more convention: Suppose, for example, that the measure of angle u is 70°.
We can write this as

measure �u� 70° or just m �u � 70°

For ease of notation and speech, however, we will usually write

�u � 70° or simply u � 70°

as shorthand for “u is an angle whose measure is 70°.”
For the portion of trigonometry dealing with angles and geometric figures, the

units of degrees are quite suitable for measuring angles. However, for the more
analytical portions of trigonometry and for calculus, radian measure is most often
used. The radian measure of an angle is defined as follows.
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Definition The Radian Measure of an Angle

Place the vertex of the angle at the center of a circle of radius r. Let s denote the
length of the arc intercepted by the angle, as indicated in Figure 4. The radian
measure u of the angle is the ratio of the arc length s to the radius r. 

In symbols,

(1)

In this definition it is assumed that s and r have the same linear units.

u �
s
r

r

s¨

Figure 4
The radian measure u is defined
by the equation u � s�r.

EXAMPLE 1 Calculating the Radian Measure of an Angle

Determine the radian measure for each angle in Figure 5.

SOLUTION In Figure 5(a) we have r � 6 cm, s � 15 cm, and therefore

So for the angle in Figure 5(a) we obtain u � 5�2 radians. In the calculations just
completed, notice that although both s and r have the dimensions of length, the
resulting radian measure s�r is simply a real number with no dimensions. (The
dimensions “cancel out.” Note: When we write u � 5�2 radians, we do not think
of radians as a dimension, but we are indicating that we are interpreting the ratio 5�2
as the measure of an angle.)

Before carrying out the calculations for the radian measure in Figure 5(b), we
have to arrange matters so that the same unit of length is used for the radius and the
arc length. Converting the arc length s to centimeters, we have s � 12 cm, and, con-
sequently,

Thus in Figure 5(b) we have u� 6�5 radians. Again, note that the radian measure s�r
is dimensionless. (Check for yourself that the same answer is obtained if we use
meters rather than centimeters for the common unit of measurement.)

u �
s
r

�
12 cm

10 cm
�

6

5

u �
s
r

�
15 cm

6 cm
�

5

2

6 cm

15 cm

¨

10 cm

(b)(a)

0.12 m

¨

Figure 5



At first it might appear to you that the radian measure depends on the radius
of the particular circle that we use. But as you will see, this is not the case. To
gain some experience in working with the definition of radian measure, let’s calcu-
late the radian measure of the right angle in Figure 6. We begin with the formula
u � s�r. Now, since u is a right angle, the arc length s is one-quarter of the entire
circumference. Thus

(2)

Using equation (2) to substitute for s in equation (1), we get

We commonly write

(3)

So the right angle u in Figure 6 has degree measure 90� and radian measure p�2
radians. (Notice that the radius r does not appear in our answer.)

For practical reasons we would like to be able to convert rapidly between degree
and radian measure. Multiplying both sides of equation (3) by 2 yields

180° � p radians (4)

Equation (4) is useful and should be memorized. For instance, dividing both sides of
equation (4) by 6 yields

or

Similarly, dividing both sides of equation (4) by 4 and 3, respectively, yields

And multiplying both sides of equation (4) by 2 gives us

360� � 2p radians

Figure 7 summarizes some of these results.

45° �
p

4
 radians  and  60° �

p

3
 radians

30° �
p

6
 radians

180°

6
�
p

6
 radians

90° �
p

2
 radians

u �
pr�2

r
�
pr

2
�

1
r

�
p

2

s �
1

4
 (2pr) �

pr

2
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r

s

¨

Figure 6

4
π

2
π π 2π

y

x

y

x

y

x

y

x

Figure 7
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EXAMPLE 2 An Important Observation

(a) Express 1� in radian measure.
(b) Express 1 radian in terms of degrees.

SOLUTION (a) We can solve equation (4) for 1 degree by dividing both sides by 180 to yield

(b) Similarly, we can solve equation (4) for 1 radian by dividing both sides by p
to yield

In other words, 1 radian is approximately 180��3.14, or 57.3�.

The results from Example 2 can be restated as follows: There are 180�p degrees
per radian, and there are p�180 radians per degree. Hence we have the following
rules for converting between radians and degrees.

To convert from degrees to radians, multiply by p�180 radians per degree. To
convert from radians to degrees, multiply by 180�p degrees per radian.

1 radian �
180°
p

1° �
p

180
 radian  (�0.017 radian)

EXAMPLE 3 Converting from Degrees to Radians

Convert 150° to radians.

SOLUTION

Thus

150° �
5p

6
 radians

150° � (150  degrees) a p
180

 
radians

 degrees
b �

 150
5
p

 180
6

 radians �
5p

6
 radians

EXAMPLE 4 Converting from Radians to Degrees

Convert 11p�6 radians to degrees.

SOLUTION

So 11p�6 radians � 330�.

We saw in Example 2(b) that 1 radian is approximately 57�. It is also important
to be able to visualize an angle of 1 radian without thinking in terms of degree
measure. This is done as follows. In the equation u � s�r, we let u � 1. This yields 

11p

6
  rad � a 11p

6
 rad b a 180

p
 
deg

rad
b �

(11)(180)
30

6
1

 deg � 330 deg



1 � s�r, and, consequently, r � s. In other words, in any circle, 1 radian is the mea-
sure of the central angle that intercepts an arc equal in length to the radius of the
circle. In the box that follows we summarize this result. Figure 8 displays angles of
1, 2, and 3 radians.
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(a) (b)1 radian 2 radians (c) 3 radiansFigure 8

From now on, when we specify the measure of an angle, we will assume that the
units are radians unless the degree symbol is explicitly used. (This convention is also
used in calculus.) For instance, the equation u � 2 means that u is 2 radians. 

One of the advantages in using radian measure in precalculus and calculus is that
many formulas then take on especially simple forms. The two basic formulas in the
box that follows are examples of this.

PROPERTY SUMMARY Radian Measure

In a circle, 1 radian is the measure of the central angle that intercepts an arc equal
in length to the radius of the circle.

r

s=r

1 radian

PROPERTY SUMMARY Formulas for Arc Length and Sector Area

1. Arc Length Formula
(Refer to Figure 9.) In a circle of radius r, the arc length s determined by a central
angle of radian measure u is given by

s � ru

In this formula it is assumed that s and r have the same linear units.

s

r

r

¨

Figure 9



The arc length formula is a direct consequence of the definition of radian mea-
sure. Recall that the defining equation for radian measure is u � s�r. Multiplying
both sides of this equation by r yields ur � s; that is, s � ru, which is the arc length
formula.

To derive the sector area formula, we’ll rely on the following two facts from ele-
mentary geometry. First, the area of a circle of radius r is pr2. Second, the area A of
a sector is directly proportional to the measure u of its central angle. (For example, if
you double the angle, the area of the sector is doubled.) The statement that the area A
is directly proportional to the angle u is expressed algebraically as

A � ku (5)

To determine the value of the constant k, we use the fact that when u � 2p, the sec-
tor is actually a full circle with area pr2. Substituting the values u� 2p and A � pr2

in equation (5) yields

pr2 � k(2p)

and therefore

Using this last value for k in equation (5), we obtain as required. The next
three examples indicate how the arc length formula and the sector area formula are
used in calculations.

A � 1
2 r2u,

k �
1

2
 r2
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EXAMPLE 5 Calculating Arc Length

Compute the indicated arc lengths in Figures 11(a) and 11(b). Express the answers
both in terms of p and as decimal approximations rounded to two decimal places.

SOLUTION (a) We use the formula s � ru with r � 3 m and u � 4p�5. This yields

Using a calculator, we find that this is approximately 7.54 m.

s � (3 m) a 4p

5
b �

12p

5
 m

2. Sector Area Formula
(Refer to Figure 10, in which the shaded region is a sector.) In a circle of radius r, 
the area A of a sector with central angle of radian measure u is given by

A �
1

2
 r2u

r

r

¨

Figure 10



(b) To apply the formula s � ru, the angle measure u must first be expressed in
radians (because the formula is just a restatement of the definition of radian mea-
sure). We’ve seen previously that 30� � p�6 radians. So we have

Before picking up the calculator, note that we can obtain a quick approximation
here: Since p� 3, we have s � 5(3�3) � 5 cm. With a calculator now, we obtain
s � 5p

3  cm � 5.24 cm.

s � ru � (10 cm) ap
6
b �

5p

3
 cm
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120°

5 cm

Figure 12

EXAMPLE 6 Calculating the Area of a Sector

Compute the area of the sector in Figure 12.

SOLUTION We first convert 120� to radians:

We then have

The next example indicates how radian measure is used in the study of rotating
objects. As a prerequisite for this example, we first define the terms angular speed
and linear speed.

 �
1

2
 (5 cm)2 a 2p

3
b �

25p

3
 cm2  (� 26.18 cm2)

 A �
1

2
 r2u

120° a p
180°

b �
2p

3
 radians

5
4π

s

s

30°

(a)

3 m 10
 cm

(b)Figure 11



2. Refer to Figure 13(b). If a point P on the rotating wheel travels a distance d in
time t, then the linear speed of P, denoted by v, is defined to be

linear speed � v �
d

t
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A radial line turns through
an angle ¨ in time t.

(a) The point P travels a distance
d in time t.

(b)

¨

d

P

Figure 13

EXAMPLE 7 Calculating Angular and Linear Speed

A circular gear in a motor rotates at the rate of 100 rpm (revolutions per minute).

(a) What is the angular speed of the gear in radians per minute?
(b) Find the linear speed of a point on the gear 4 cm from the center.

SOLUTION (a) Each revolution of the gear is 2p radians. So in 100 revolutions there are

u � 100(2p) � 200p radians

Consequently, we have

(b) We can use the formula s � ru to find the distance traveled by the point in
1 minute. Using r � 4 cm and u� 200p, we obtain

s � ru � 4(200p) � 800p cm

The linear speed is therefore

 � 800p cm/min  (� 2513 cm/min)

 v �
d

t
�

800p cm

1 min

v �
u

t
�

200p radians

1 min
� 200p radians/min

Definition Angular Speed and Linear Speed

Suppose that a wheel rotates about its axis at a constant rate.

1. Refer to Figure 13(a). If a radial line turns through an angle u in time t, then the
angular speed of the wheel [denoted by the Greek letter v (omega)] is defined
to be

angular speed � v �
u

t



There is a simple equation relating linear speed and angular speed. [Actually, as
you’ll see, the explanation we are about to give is just a repetition of the reasoning
used in Example 7(b).] We refer back to Figure 13, in which the radial line turns
through an angle u in time t. Now we make two additional assumptions. First, we
assume that the angle u is measured in radians (so that we can apply the formula
s � ru). Second, we assume that the point P is a distance r from the center of the
circle. That is, the radius of the circular path is r. Then, according to our arc length
formula, the distance d in Figure 13(b) is given by d � ru. So we have

We have now shown that v � rv. For reference we record this result in the box that
follows.

Suppose that an object travels at a constant rate along a circular path of radius r.
Then the linear speed v and the angular speed v are related by the equation

v � rv

In this equation the angular speed v must be expressed in radians per unit time.

We can use the formula v � rv to rework Example 7(b) in a more concise fash-
ion. Recall that we wanted to find the linear speed v of a point 4 cm from the center.
To do this, we need only substitute the values r � 4 cm and v � 200p radians/min
[from part (a) of the example] in the formula v � rv. This yields

(6)
(7)

Notice how the units work in equations (6) and (7). Although radians appear in equa-
tion (6), they do not appear in the final answer in equation (7); the units for the linear
speed are simply cm/min. We drop the radians from the final result because, as was
pointed out earlier, radian measure is unitless.*

 � 800p cm/min  (as obtained previously)

 � (4 cm)(200p radians/min)

 v � rv

Linear Speed and Angular Speed

 � rv  using the definition of v

 v �
d

t
�

ru

t
� r �

u

t
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*Many physics texts gloss over this point in the calculations. One text that does provide
sufficient emphasis here is Physics, 7th ed., by John D. Cutnell and Kenneth W. Johnson
(New York: John Wiley & Sons, Inc., 1995). In that text, the authors state, “In calculations,
therefore, the radian is treated as a unitless number and has no effect on other units that it
multiplies or divides.”
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For Exercises 17 and 18, refer to the following figure, which
shows all of the angles from 0� to 360� that are multiples of
30� or 45�.

17. In the figure, relabel the angles in Quadrants I and II using
radian measure.

18. In the figure, relabel the angles in Quadrants III and IV
using radian measure.

In Exercises 19–22, find the arc length s in each case.

19. 20.

21. 22.

In Exercises 23 and 24, find the area of the sector determined
by the given radius r and central angle u. Express the answer
both in terms of p and as a decimal approximation rounded to
two decimal places.

23. (a) r � 6 cm; u� 2p�3 (c) r � 24 m; u � p�20
(b) r � 5 m; u � 80� (d) r � 1.8 cm; u � 144�

24. (a) r � 4 cm; u� p�10 (c) r � 21 ft; u� 11p�6
(b) r � 16 m; u � 5� (d) r � 4.2 in.; u � 170�

150°

s

1 in.

45°
s

2 cm

5
π

12 cm

s

3
4π

3 ft

s

90°

0° or 360°

330°

300°240°

270°

225°

210°

180°

150°

120° 60°

30°

45°135°

315°

y

x

A
In Exercises 1–4, use the definition u � s�r to determine the
radian measure of each angle.

1. 2.

3.

4.

In Exercises 5–8, convert to radian measure. Express your
answers both in terms of p and as decimal approximations
rounded to two decimal places.

5. (a) 45� (b) 90� (c) 135�
6. (a) 30� (b) 150� (c) 300�
7. (a) 0� (b) 360� (c) 450�
8. (a) 36� (b) 35� (c) 720�

In Exercises 9–12, convert the radian measures to degrees.

9. (a) p�12 (b) p�6 (c) p�4
10. (a) 3p (b) 3p�2 (c) 2p
11. (a) p�3 (b) 5p�3 (c) 4p
12. (a) 5p�6 (b) 11p�6 (c) 0

In Exercises 13 and 14, convert the radian measures to degrees.
Round the answers to two decimal places.

13. (a) 2 (b) 3 (c) p2

14. (a) 1.32 (b) 0.96 (c) 1�p
15. Suppose that the radian measure of an angle is 3�2. Without

using a calculator or tables, determine if this angle is larger
or smaller than a right angle. Hint: What is the radian
measure of a right angle?

16. Two angles in a triangle have radian measure p�5 and p�6.
What is the radian measure of the third angle?

0.0367 m
¨

r=1.0013 cm

r

1 m

200 cm¨

3 cm

2 cm
¨

2 cm

5 cm

¨

EXERCISE SET 7.1



Figure A Figure B

38. (a) When a clock reads 4:00, what is the radian measure of
the (smaller) angle between the hour hand and the
minute hand?

(b) When a clock reads 5:30, what is the radian measure of
the (smaller) angle between the hour hand and the
minute hand?

39. Are there any real numbers x with the property that x degrees
equals x radians? If so, find them; if not, explain why not.

40. Are there any real numbers x with the property that x degrees
equals 2x radians? If so, find them; if not, explain why not.

In Exercises 41 and 42, suppose that a belt drives two wheels of
radii r and R, as indicated in the figure.

41. If r � 6 cm, R � 10 cm, and the angular speed of the larger
wheel is 100 rpm, determine each of the following:
(a) the angular speed of the larger wheel in radians per

minute;
(b) the linear speed of a point on the circumference of the

larger wheel;
(c) the angular speed of the smaller wheel in radians per

minute. Hint: Because of the belt, the linear speed
of a point on the circumference of the larger wheel is
equal to the linear speed of a point on the circumfer-
ence of the smaller wheel.

(d) The angular speed of the smaller wheel in rpm.
42. Follow Exercise 41, assuming that r � 5 cm, R � 15 cm,

and the angular speed of the larger wheel is 1800 rpm.

The latitude of a point P on the surface of the Earth is specified
by means of the angle in the figure. For instance, the latitude
of Paris, France, is 48°52� N. The letter N is used here to

u

Rr

25. In a circle of radius 1 cm, the area of a certain sector is 
p�5 cm2. Find the radian measure of the central angle.
Express the answer in terms of p rather than as a decimal
approximation.

26. In a circle of radius 3 m, the area of a certain sector is
20 m2. Find the degree measure of the central angle. Round
the answer to two decimal places.

In Exercises 27 and 28, find (a) the perimeter of the sector; and
(b) the area of the sector. In each case, use a calculator to eval-
uate the answer and round to two decimal places.

27.

In Exercises 29–34, you are given the rate of rotation of a
wheel as well as its radius. In each case, determine the follow-
ing: (a) the angular speed, in units of radians/sec; (b) the linear
speed, in units of cm/sec, of a point on the circumference of the
wheel; and (c) the linear speed, in cm/sec, of a point halfway
between the center of the wheel and the circumference.

29. 6 revolutions/sec; r � 12 cm
30. 15 revolutions/sec; r � 20 cm
31. 1080°/sec; r � 25 cm
32. 2160°/sec; r � 60 cm
33. 500 rpm; r � 45 cm
34. 1250 rpm; r � 10 cm
35. For this problem, assume that the earth is a sphere with a

radius of 3960 miles and a rotation rate of 1 revolution
per 24 hours.
(a) Find the angular speed. Express your answer in units of

radians/sec, and round to two significant digits.
(b) Find the linear speed of a point on the equator. Express

the answer in units of miles per hour, and round to the
nearest 10 mph.

36. A wheel 3 ft in diameter makes x revolutions. Find x, given
that the distance traveled by a point on the circumference
of the wheel is 22619 ft. (Round your answer to the nearest
whole number.)

B
37. Suppose that you have two sticks and a piece of wire, each

of length 1 ft, fastened at the ends to form an equilateral
triangle; see Figure A. If side is bent out to form an arcBC

3 m

135°

5 in.

30°
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60°

C

B

C

B

A A

Stick

Hinge

Stick

Wire

of a circle with center A, then the angle at A will decrease
from 60� to something less. See Figure B. What is the mea-
sure of this new angle at A in both radians and degrees?

28.



show that the area of the shaded segment in the figure is
given by

51. Many of the window designs used in gothic architecture
involve circles, sectors, and segments of circles. The equi-
lateral arch in Figure A is an example of this. Figure B
shows how the arch is designed. Starting with the equilat-
eral triangle ABC, circular arc is drawn with center B
and radius AB. Similarly, circular arc is drawn with
center A and radius AB.

Figure A Figure B

(a) Let s denote the length of a side of the equilateral trian-
gle in Figure B. Express the perimeter of the equilat-
eral arch in terms of s.

(b) Express the area of the equilateral arch in terms of s.
52. Closely related to the equilateral arch in Exercise 51 is the

equilateral curved triangle shown in Figure C. Just as

C

A B

BC�
AC�

A B

C

s

s2 a 2p � 313

12
b

indicate that the location is north of, rather than south of, the
equator. (Recall that the notation 52� indicates 52�60 of one
degree.) In Exercises 43–48, use the arc length formula (and
your calculator) to determine the distance from the given
location P to the equator. Assume that the Earth is a sphere
with radius OP � OE � 3960 miles. Round each answer to the
nearest 10 miles.

43. Point Barrow, Alaska: 71�23� N
44. Singapore: 1�17� N
45. Honolulu: 21�19� N
46. Lagos: 6�27� N
47. Washington, D.C.: 38�54� N
48. Fairbanks, Alaska: 64�51� N

Exercises 49 and 50 provide geometric results that you will 
need in working Exercises 51–54. For Exercise 50, you need 
to know that a segment of a circle is the region bounded by an
arc of the circle and its chord. In the accompanying figure, the
red region is a segment. (The white region also is a segment.)

49. Show that the area of an equilateral triangle of side s is
given by

Hint: Draw an altitude and use the Pythagorean theorem.
(This exercise does not require any knowledge of radian
measure.)

50. In the accompanying figure, is equilateral and s de-
notes the length of each side. The arc in the figure is a por-
tion of a circle with center A and radius Use the
result in Exercise 49 and a formula from this section to

AB � s.

^ABC

13

4
 s2

P

O

E

¨

Equator

North pole

PE�
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C

A B

Figure C



Figure E

54. Figure F shows a gothic window design from the cathe-
dral at Reims, France. (The cathedral was constructed
during the years 1211–1311.) Figure G indicates how the
design is formed. Triangle ABC is equilateral and arch
ABC is the corresponding equilateral arch. Equilateral
triangle GID, congruent to triangle ABC, is constructed
such that D is the midpoint of and is parallel to

The points E and F are the midpoints of segments 
and , respectively. The two small arches at the

bottom of the figure are equilateral arches corresponding
DIDG

AB.
GIAB,

CF

D E

B

A

with the equilateral arch in Exercise 51, the design begins
with the equilateral triangle ABC. Circular arcs are then
constructed on each side of the triangle, following the
method explained in Exercise 51.
(a) In Figure C, let s denote the length of a side of the

equilateral triangle ABC. Express the perimeter 
and the area of the equilateral curved triangle in terms
of s.

(b) Show that the area of the equilateral triangle ABC
is approximately 61% of the area of the equilateral
curved triangle ABC.

53. Figure D shows one of the gothic window designs used
in Wells Cathedral in England. (The cathedral was con-
structed in the mid-thirteenth century.) Figure E indicates
how the design is formed. We start with the equilateral

and construct the equilateral arch ABC. Next, the
midpoints of the three sides of ^ABC are joined to create
four smaller equilateral triangles. The two equilateral
triangles ADF and FEC are then used to construct the two
smaller equilateral arches shown in Figure E. And finally,
the equilateral triangle DBE is used to construct the equilat-
eral curved triangle within the top half of the figure.
(a) Let s denote the length of a side of the equilateral tri-

angle ABC. Express the area of each of the equilateral
arches ABC and ADF in terms of s. Also, find the ratio
of the area of arch ADF to arch ABC.

(b) Express the area of the equilateral curved triangle DBE
in terms of s.

(c) Express the area of the curved figure DEF in terms
of s. (By “the curved figure DEF” we mean the region
bounded by the circular arcs , , and .)

(d) Express the area of the curved figure BEC in terms
of s.

Figure D

FD�EF�DE�

^ABC
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Figure F
A window design
in the cathedral at
Reims, France. 



55. The accompanying figure shows a circular sector with
radius r cm and central angle u (radian measure). The
perimeter of the sector is 12 cm.

(a) Express r as a function of u.
(b) Express the area A of the sector as a function of u. Is

this a quadratic function?
(c) Express u as a function of r.
(d) Express the area A of the sector as a function of r. Is

this a quadratic function?
(e) For which value of r is the area A a maximum? What is

the corresponding value of u in this case?
56. The following figure shows a semicircle of radius 1 unit

and two adjacent sectors, AOC and COB.
(a) Show that the product P of the areas of the two sectors

is given by

Is this a quadratic function?
(b) For what value of u is P a maximum?

¨

A O B

C

P �
pu

4
�
u2

4

¨

r

r

to the equilateral triangles GHE and HIF. For the circle in
the figure, the center is D and the radius is AD(� ED � FD).
(a) Let s denote the length of a side in each of the two

equilateral triangles ABC and GID. Find the area
and the perimeter (in terms of s) of the curved figure
AJBCA. Hint: For the area, subtract the area of
the semicircle AJB from the area of the equilateral
arch ABC.

(b) Express (in terms of s) the area and the perimeter of
equilateral arch GHE.

(c) Show that the area of the curved figure EHF is

(d) Express (in terms of s) the perimeter and the area of the
curved figure FBI.

Figure G

G
H

I

FE

D

J

C

BA

s2
 1213 � p 2�8.
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7.2 TRIGONOMETRIC FUNCTIONS OF ANGLES
[M]any natural phenomena are repetitive or cyclical—for example, the motion of the
planets in our solar system, earthquake vibrations, and the natural rhythm of the heart.
Thus, the [sine and cosine] functions introduced in this chapter add considerably to our
capacity to describe physical processes. —Professor Larry J. Goldstein in his text Calculus

and Its Applications, 7th ed. (Upper Saddle River, New Jersey: Prentice Hall, 1996)

We began the previous section by saying that an angle is a figure formed by two rays
with a common endpoint, the vertex. Now, for analytical purposes, it is useful to
think of the two rays that form the angle as having been originally coincident; then,
while one ray is held fixed, the other is rotated to create the given angle. As Figure 1
indicates, the fixed ray is called the initial side of the angle, and the rotated ray is the
terminal side. By convention, we take the measure of an angle to be positive if
the rotation is counterclockwise (as in Figure 1) and negative if the rotation is

Vertex
Initial side

Te
rm

in
al

 si
de

Figure 1



clockwise. For example, the measure of the angle in Figure 2(a) is positive p�6 ra-
dian (or 30°), whereas the measure of the angle in Figure 2(b) is negative p�6 radian
(or �30°).

In our development of trigonometry it will be convenient to have a standard po-
sition for angles. In a rectangular coordinate system an angle is in standard position
if the vertex is located at (0, 0) and the initial side of the angle lies along the positive
horizontal axis. Figure 3 shows examples of angles in standard position. Question
for review: What is the degree measure of each angle shown in Figure 3?
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Initial side

Initial side

Terminal side

(b)(a)

or _30°or 30°
13    (=2π+    )
    radians or 390°

Te
rm

in
al 

sid
e

Initial side

Terminal si
de

(c)

_    radiansradians 6
π

6
π

6
π

6
πFigure 2

Angles generated by a counter-
clockwise rotation have positive
measure. Angles generated by a
clockwise rotation have negative
measure.

We are going to define the six trigonometric functions. As indicated by the title
of this section, the inputs for these functions will be angles. The outputs will be real
numbers. In Chapter 8 we’ll make an important transition to real-number inputs. But
for now, as we’ve said, the inputs will be angles.

For reasons that are more historical* than mathematical, the trigonometric func-
tions have names that are words rather than single letters such as f. Using words
rather than single letters for naming functions is by no means peculiar to trigonome-
try. For example, logb x denotes the logarithmic function with base b. The names of
the six trigonometric functions, along with their abbreviations, are as follows.

*For a discussion of the names of the trigonometric functions, see either of the following ref-
erences: Howard Eves, An Introduction to the History of Mathematics, 6th ed. (Philadelphia:
Saunders College Publishing, 1990), pp. 236–237; D. E. Smith, History of Mathematics,
Vol. II (New York: Dover Publications, Inc., 1953), pp. 614–622.

y

x

y

x

y

x

radians

_    radians _π radians

π radians
3

2π

3
2π

Figure 3
Examples of angles in standard
position.

Name of Function Abbreviation

cosine cos
sine sin
tangent tan
secant sec
cosecant csc
cotangent cot



To define the trigonometric functions, we begin by placing the angle u in standard
position and drawing in the unit circle x2 � y2 � 1, as shown in Figure 4. (Recall from
Chapter 1 that the equation x2 � y2 � 1 represents the circle of radius 1, with center
at the origin.) Notice the notation P(x, y) in Figure 4; this stands for the point P, with
coordinates (x, y), where the terminal side of angle u intersects the unit circle. With
this notation, we define the six trigonometric functions of u as follows.

7.2 Trigonometric Functions of Angles 483

x2+y2=1

y

x

P(x,  y)
¨

Figure 4
P(x, y) denotes the point where the
terminal side of angle u intersects
the unit circle.

Definition Trigonometric Functions of Angles

Much of our subsequent work in trigonometry will be devoted to exploring the
consequences of these definitions. Two initial observations that will help you in
memorizing the definitions are these:

1. cos u is the first coordinate of the point where the terminal side of angle u inter-
sects the unit circle; sin u is the second coordinate. (You can remember this by
noting that, alphabetically, cosine comes before sine.)

2. There are three pairs of reciprocal functions in the definitions: cos and sec, sin
and csc, and tan and cot.

 cot u �
x
y
 (y 	 0) tan u �

y
x
 (x 	 0)

 csc u �
1
y
 (y 	 0) sin u � y

 sec u �
1
x
 (x 	 0) cos u � x

Unit circle
x2+y2=1

y

x

P(x,  y)

¨

EXAMPLE 1 Using the Unit Circle to Calculate Trigonometric Functions of p�2 Radians

(a) Evaluate the trigonometric functions of p�2 radians. That is, determine cos(p�2),
sin(p�2), tan(p�2), sec(p�2), csc(p�2), and cot(p�2).

(b) Evaluate cos 90° and sin 90°.

SOLUTION (a) We place the angle in standard position. Then, as indicated in Figure 5,
the terminal side of the angle meets the unit circle at the point (0, 1). Now we
apply the definitions.

(0, 1)
By definition, cos(p�2) __↑ ↑__ By definition, sin(p�2)
is this number. is this number.

Thus,

cos 

p

2
� 0  and  sin 

p

2
� 1

u � p�2



For the remaining trigonometric functions of p�2, we have

(b) Because radians, we’ve already found the required values in part (a).
That is,

As preparation for the next example take a look at Figure 6. The figure shows the
point on the unit circle. How do we know for certain that this point really lies
on the unit circle (aside from the fact that the picture is drawn that way)? Although this
may seem to you a frivolous question, it focuses on the fundamental connection be-
tween graphs and equations in the xy-plane: A point is on the graph of an equation if
and only if the coordinates of the point satisfy that equation. Thus, to verify that the point

in Figure 6 actually lies on the unit circle, we need to check that the pair of co-
ordinates and satisfies the equation Substituting
these coordinates for x and y in the equation yields

So the given point indeed lies on the unit circle.1�2
3, 
15
3 2
a�2

3
b 2

� a15

3
b 2

�
4

9
�

5

9
� 1

x2 � y2 � 1.y �15�3x � �2�3
1�2

3, 
15
3 2

1�2
3, 
15
3 2

cos 90° � cos(p�2) � 0  and  sin 90° � sin(p�2) � 1

90° � p�2

 cot  

p

2
�

x
y

�
0

1
� 0

 csc  

p

2
�

1
y

�
1

1
� 1

 sec  

p

2
�

1
x

�
1

0
  undefined

 tan  

p

2
�

y

x
�

1

0
  undefined
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(0, 1)

x2+y2=1

2
π

y

x

Figure 5

x@+y@=1_   ,    ’( 2
3

œ„5
3

¨

∫

y

x

Figure 6

EXAMPLE 2 Using the Unit Circle to Calculate Trigonometric Functions of an Angle

Refer to Figure 6.

(a) Find cos u, sin u, and tan u.
(b) Find cos b, sin b, and tan b.

SOLUTION (a) This is another exercise in using the definitions of the trigonometric functions.
Since the point lies on the unit circle, we have

and

(b) Again, using the definitions, we have

cos b � �
2

3
  sin b �

15

3

tan u �
y

x
�
15�3

�2�3
� �

15

2

cos u � x � �
2

3
  sin u � y �

15

3

1�2
3, 
15
3 2



and

Note that these values are identical to the corresponding values obtained in
part (a). This is because the angles u and b have the same terminal side, and the
values of the trigonometric functions depend only upon where the terminal side
of the angle intersects the unit circle.

Together, the two angles u and b in Figure 6 are an example of a pair of co-
terminal angles, that is, angles with a common terminal side. As indicated in
Example 2, the corresponding trigonometric values are always identical for a pair of
coterminal angles. The next example uses this observation.

tan b �
15�3

�2�3
� �

15

2
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EXAMPLE 3 Calculating Trigonometric Functions of Coterminal Angles

Evaluate the trigonometric functions of:

(a) �p; (b) p.

SOLUTION (a) As indicated in Figure 7, the terminal side of �p radians meets the unit circle at
the point (�1, 0). Applying the definitions, then, we have

(b) Because the angles p and �p are coterminal, their corresponding trigonometric
values are identical and we have [using the results in part (a)]

Note: Instead of relying on part (a), we could have obtained the answers for part (b)
directly by referring to Figure 7 and applying the unit-circle definitions to the angle
of p radians. However, the point here was simply to make use of the idea of coter-
minal angles.

Using the method shown in Examples 1 and 3, we can easily evaluate the trigono-
metric functions for any angle that is an integral multiple of p�2 (90°). Table 1 shows
the results of such calculations. Exercise 25 asks you to make these calculations for
yourself. Question for review: What is the corresponding degree measure for each
entry in the first column of Table 1?

You can use a calculator to verify the results in Examples 1 and 3. Better yet, you
can use those results to make sure you know how to operate your calculator with re-
spect to the trigonometric functions. For the moment, set your calculator to radian
mode. (If necessary, consult the user’s manual on this point.) Now suppose, for ex-
ample, that you want to use the calculator to evaluate cos p. For most calculators you

 tan p � tan(�p) � 0   cot p undefined
 sin p � sin(�p) � 0   csc p undefined
 cos p � cos(�p) � �1   sec p � sec(�p) � �1

 cot(�p) �
x
y

�
�1

0
 undefined tan(�p) �

y
x

�
0

�1
� 0

 csc(�p) �
1
y

�
1

0
 undefined sin(�p) � y � 0

 sec(�p) �
1
x

�
1

�1
� �1 cos(�p) � x � �1

y

x

x@+y@=1

(_1, 0)

_π

π

Figure 7



enter the name of the function before the input. On these calculators, the usual key-
strokes for evaluating cos p are as follows:

p name of function before input

Use your calculator now to compute cos p. As you know from Example 3(b), the an-
swer should be �1. (If you don’t get this result, it may be that your calculator was not
set to the radian mode.)

No matter which type of calculator you have, you’ll find that the keystrokes for
parentheses can be crucial. Suppose, for instance that you want to use the calculator
to compute sin(p�2). The usual keystrokes are

p 2

Use your own calculator now to evaluate sin(p�2). As you know from Example 1,
the answer should be 1. If you do not use the parentheses in this case, the calculator will
misinterpret your intentions and evaluate something other than sin(p�2). (Exercise 91
provides details.) As a rule of thumb, when in doubt use parentheses. Note: If your
calculator does not give the correct answers with the keystrokes described in the pre-
vious discussion, you should consult the section in the user’s manual on evaluating
trigonometric functions.

ENTER)÷(sin

ENTERcos
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TABLE 1

U cos U sin U tan U sec U csc U cot U

0 1 0 0 1 undefined undefined
P�2 0 1 undefined undefined 1 0
P �1 0 0 �1 undefined undefined
3P�2 0 �1 undefined undefined �1 0
2P 1 0 0 1 undefined undefined

EXAMPLE 4 Determining the Sign of a Value of a Trigonometric Function

First, without using a calculator, determine whether the given value is positive or
negative. Then use a calculator to verify the answer.

(a) cos 3 (b) sin 1 (c) tan 6

SOLUTION (a) Since p radians is 180°, we estimate that 3 radians is slightly less than 180°
(because 3 is slightly less than p). Thus, in standard position, the terminal side
of an angle of 3 radians lies in the second quadrant. Therefore, cos 3 is negative.
Indeed, a calculator check shows that 

(b) One radian is approximately 57° (as we saw in Example 2 in the previous sec-
tion). So, in standard position, the terminal side of an angle lies in Quadrant I.
Thus, sin 1 is positive. A calculator check shows that 

(c) 6 radians is slightly less than 2p radians. [Reason: ] Now,
2p radians is one complete revolution, or 360°, and therefore 6 radians is slightly
less than 360°. Consequently, in standard position, the terminal side of an angle
of 6 radians lies in Quadrant IV. But in the fourth quadrant, x is positive, y is neg-
ative, and therefore tan 6 � y�x must be negative. A check of the calculator
shows that tan 6 � �0.29.

2p � 2(3.14) � 6.28.
sin 1 � 0.84.

cos 3 � �0.99.



In the next example we evaluate the sine and cosine functions using both the unit-
circle definitions and a calculator. In the example, degree measure is used for the an-
gles. In verifying for yourself the results obtained there, be sure that your calculator
is set to degree mode.
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EXAMPLE 5 Using the Unit Circle to Visually Estimate Values of Cosine and Sine*

Use Figure 8 to approximate the following trigonometric values to within successive
tenths. Then use a calculator to check your answers. Round the calculator values to
two decimal places.

(a) cos 160° and sin 160° (b) cos(�40°) and sin(�40°)

SOLUTION (a) Figure 8 shows that (the terminal side of) an angle of 160° in standard position
meets the unit circle at a point in Quadrant II. Letting (x, y) denote the coordi-
nates of that point, we have (from Figure 8)

�1.0 � x � �0.9 and 0.3 � y � 0.4

y

(1, 0)

100°
110°

120°

130°

140°

150°

160°

170°

190°

200°

210°

220°

230°

240°
250°

260° 280°
290°

300°

310°

320°

330°

340°

350°

10°

20°

30°

40°

50°

60°
70°

80°

x

x2+y2=1

6

5

4

3

2
1

Figure 8
Radian measure and degree measure
on the unit circle for angles in
standard position.

*For those who read Chapter 6, Example 5 corresponds to Example 3 of Section 6.3, and
Example 8 of this section corresponds to Example 5 of Section 6.1.



But by definition, cos 160° � x and sin 160° � y, and, consequently,

�1.0 � cos 160° � �0.9 and 0.3 � sin 160° � 0.4

The corresponding calculator results are cos 160° � �0.94 and sin 160° � 0.34.
Note that the estimations we obtained from Figure 8 are consistent with these
calculator values.

(b) As you can verify using Figure 8, the terminal side of an angle of �40° inter-
sects the unit circle at the same point as does the terminal side of an angle
of 320°. Letting (x, y) denote the coordinates of that point, we have (from 
Figure 8)

0.7 � x � 0.8 and �0.7 � y � �0.6

and, consequently,

0.7 � cos(�40°) � 0.8 and �0.7 � sin(�40°) � �0.6

The corresponding calculator values here are cos(�40°) � 0.77 and
sin(�40°) � �0.64. Again, note that the estimations we obtain from Figure 8 are
consistent with these calculator values.
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EXAMPLE 6 Using the Unit Circle to Visually Estimate Values of Cosine and Sine

Use Figure 8 to approximate to within successive tenths the following trigonometric
values. Then use a calculator to check your answers. Round off the calculator values
to two decimal places:

(a) cos 3 and sin 3; (b) cos(�3) and sin(�3).

SOLUTION (a) Figure 8 shows that (the terminal side of) an angle of 3 radians in standard position
meets the unit circle at a point in the second quadrant. Letting (x, y) denote the co-
ordinates of that point, we have (using the grid in Figure 8)

�1.0 � x � �0.9 and 0.1 � y � 0.2

But by definition, cos 3 � x and sin 3 � y, so, consequently,

�1.0 � cos 3 � �0.9 and 0.1 � sin 3 � 0.2

The corresponding calculator values here are

cos 3 � �0.99 and sin 3 � 0.14

Note that the estimates we obtained from Figure 8 are consistent with these cal-
culator values. (When you verify these calculator values for yourself, be sure
that the calculator is set in radian mode.)

(b) In Figure 8 we want to know where the terminal side of an angle of �3 radians
intersects the unit circle. There is no marker for this point in Figure 8. We can,
nevertheless, locate the point by using symmetry. Let (x, y) denote the point
corresponding to 3 radians, determined in part (a). By reflecting the point in
the x-axis, we obtain the point corresponding to �3 radians. This means that the



required point will have the same x-coordinate as the point in part (a), while the
y-coordinate will be the negative of that in part (a). So, given that

�1.0 � cos 3 � �0.9 and 0.1 � sin 3 � 0.2

we conclude that

�1.0 � cos(�3) � �0.9 and �0.2 � sin(�3) � �0.1

For the corresponding calculator values here, we obtain

cos(�3) � �0.99 and sin(�3) � �0.14

Again, note that the estimates from Figure 8 are consistent with these calculator
values. When you verify these calculator values for yourself, remember that the
calculator should be in radian mode.
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EXAMPLE 7 Evaluating Trigonometric Functions

In Figure 9 the x-coordinate of the point P is 2�5. Evaluate the trigonometric func-
tions of u.

SOLUTION In order to evaluate the trigonometric functions of u, we need to know the
coordinates of the point P in Figure 9. The x-coordinate of P is given to be 
2�5. Because P lies on the unit circle, the y-coordinate of P satisfies the equation

Consequently,

Now that we know the coordinates of P, we can evaluate the trigonometric functions
as follows.

In our final example for this section, we fill in some calculator-related details
for the three functions secant, cosecant, and cotangent. These three functions are
referred to as the reciprocal functions. This is because, from the definitions on
page 483, it follows that

sec u �
1

cos u
  csc u �

1

sin u
  cot u �

1

tan u

 tan u �
y
x

� �
121�5

2�5
� �
121

2
    cot u �

x
y

�
2�5

�121�5
� �

2

121

 sin u � y � �
121

5
  csc u �

1
y

�
1

�121�5
� �

5

121

 cos u � x �
2

5
  sec u �

1
x

�
5

2

choosing the negative root because 
P is in the fourth quadrant y � �

121

5

 y2 � 1 �
4

25
�

21

25

(2�5)2 � y2 � 1.

y

x

x@+y@=1

¨

P

Figure 9
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EXAMPLE 8 Using a Calculator to Evaluate Reciprocal Functions

Use a calculator to evaluate sec 10°, csc 10°, and cot 10°. Round the results to three
decimal places.

SOLUTION As in the previous example, we first check that the calculator is in the degree mode. Then
the sequence of keystrokes and the results are as follows (again, you should verify each
of these results for yourself):

Expression Keystrokes Output

sec 10° 10 1.015

csc 10° 10 5.759

cot 10° 10 5.671

So, for example, sec10° � 1.015, or, to three decimal places, sec10° � 1.015.

ENTERx –1)tan(

ENTERx –1)sin(

ENTERx –1)cos(

23.

24. y

x

x@+y@ =1

∫

”_    , _    ’5
1 3

12
13

y

x
¨

x@+y@=1”_   , ’3
5

4
5

A
In Exercises 1–8, sketch each angle in standard position.

1. (a) p�4 (b) �p�4 (c) 3p�4
2. (a) p�6 (b) �p�6 (c) �5p�6
3. (a) p�3 (b) �5p�3 (c) �7p�3
4. (a) 3p�2 (b) �3p�2 (c) �5p�2
5. (a) 210° (b) �210° (c) �570°
6. (a) 45° (b) �225° (c) 315°
7. (a) 120° (b) �120° (c) 300°
8. (a) 450° (b) �180° (c) 270°

In Exercises 9–22, use the definitions (not a calculator) to eval-
uate the six trigonometric functions of each angle. If a value is
undefined, state this.

9. p 10. �p�2 11. �2p
12. 3p�2 13. �3p�2 14. �3p
15. 0 16. 4p 17. 90°
18. 450° 19. �270° 20. �630°
21. 180° 22. �540°

For Exercises 23 and 24: (a) Verify algebraically that the given
point in the figure indeed lies on the unit circle (Hint: See the
discussion preceding Example 2); (b) Evaluate the six trigono-
metric functions for the indicated angle.

EXERCISE SET 7.2

So, for example, although most calculators do not have a key labeled “sec,” we can
nevertheless evaluate the secant function by using the cosine key and then the
reciprocal key or .x –11/x

cos



37. cos 1 and sin 1 38. cos 2 and sin 2
39. cos(�1) and sin(�1) 40. cos(�2) and sin(�2)
41. cos 4 and sin 4 42. cos 5 and sin 5
43. cos(�4) and sin(�4) 44. cos(�5) and sin(�5)
45. sin 10° and sin(�10°) 46. cos 10° and cos(�10°)
47. cos 80° and cos(�80°) 48. sin 80° and sin(�80°)
49. sin 120° and sin(�120°) 50. cos 120° and cos(�120°)
51. sin 150° and sin(�150°) 52. cos 150° and cos(�150°)
53. cos 220° and cos(�220°) 54. sin 220° and sin(�220°)
55. cos 310° and cos(�310°) 56. sin 310° and sin(�310°)
57. sin(1 � 2p) 58. sin(2 � 2p)

In Exercises 59–74, let P(x, y) denote the point where the termi-
nal side of angle u (in standard position) meets the unit circle 
(as in Figure 4). Use the given information to evaluate the six
trigonometric functions of u.

59. P is in Quadrant I and x � 1�3.
60. P is in Quadrant IV and x � 1�3.
61. P is in Quadrant III and x � �3�5.
62. P is in Quadrant I and x � 3�5.
63. P is in Quadrant II and y � 5�13.
64. P is in Quadrant III and y � �5�13.
65. P is in Quadrant III and y � �3�4.
66. P is in Quadrant II and y � 3�4.
67.
68.
69.
70.
71.
72.
73.
74.

In Exercises 75–89, use a calculator to evaluate sec u, csc u,
and cot u for the given value of u. Round the answers to two 
decimal places.

75. 2.06 76. 5.23 77. 9
78. �9 79. �0.55 80. 0.55
81. p�6 82. �6p�5 83. 1400
84. 1400 � 2p 85. 33° 86. 393°
87. �125° 88. �179° 89. 225°
90. (a) Complete the following table, using the words

“positive” or “negative” as appropriate.

Terminal Side of Angle U Lies in

Quadrant Quadrant Quadrant Quadrant
I II III IV

cos U and 
sec U positive negative

sin U and 
csc U

tan U and 
cot U

x � �1�2 and 90° � u � 180°
x � 1�2 and 0° � u � 90°
x � �7�25 and 180° � u � 270°
x � 7�25 and 270° � u � 360°
y � 2�9 and 0 � u � p�2
y � �2�9 and 3p�2 � u � 2p
x � �8�15 and p � u � 3p�2
x � �8�15 and p�2 � u � p

In Exercises 25 and 26, use the definitions of the trigonometric
functions (as in Example 1) to complete the tables. (For Exer-
cise 25, when you are finished check your answer against the
values shown in Table 1 on page 486.)

25.
U cos U sin U tan U sec U csc U cot U

0
P�2
P

3P�2
2P

26.
U cos U sin U tan U sec U csc U cot U

0
�P�2
�P
�3P�2
�2P

In Exercises 27–36, refer to the following figure, which indi-
cates radian measure on the unit circle for angles in standard
position. For Exercises 27–30, use the figure (and the unit
circle definitions) to determine whether the given quantity is
positive or negative. For Exercises 31–36, use the figure to
determine which of the given quantities is the larger.

27. (a) sin 2 (b) cos 2 (c) tan 2
28. (a) sin 4 (b) cos 4 (c) tan 4
29. (a) cos 1 � cos 6 (b) cos 1 � cos 6
30. (a) sin 1 � sin 6 (b) sin 1 � sin 6
31. sin 2 or sin 3 32. sin 5 or sin 6
33. cos 2 or cos 3 34. cos 3 or cos 4
35. tan 2 or tan 4
36. (tan 4)(tan 5) or (tan 5)(tan 6)

In Exercises 37–58, use Figure 8 on page 487 to approximate
the given trigonometric values to within successive tenths (as in
Example 5). Then use a calculator to compute the values to the
nearest hundredth.

y

x

12

3

4
5

6

x@+y@ =1
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(b) Set the calculator to the radian mode and enter the
following sequence of keystrokes.

p 2

Some calculators will show an output of 0, which, as
you know, is not the value of sin(p�2). This is because,
in the absence of parentheses, the calculator interprets
the sequence of keystrokes p 2 as
follows: First compute sin p, then divide the result
by 2. That is, the calculator computes 0 � 2, which,
of course, results in the 0 output. Conclusion: If you
want to make sure the calculator computes sin(p�2),
you should use parentheses and enter the sequence 
of keystrokes

p 2 ENTER)÷(sin

÷sin

ENTER÷sin

(b) The mnemonic (memory device) ASTC (all students
take calculus) is sometimes used to recall the signs of
the trigonometric values in each quadrant:

A All are positive in Quadrant I.
S Sine is positive in Quadrant II.
T Tangent is positive in Quadrant III.
C Cosine is positive in Quadrant IV.

Check the validity of this mnemonic against your chart
in part (a).

91. This exercise completes the discussion in the text con-
cerning the use of parentheses in calculator work.
(a) Use the unit circle definitions to briefly explain 

(in complete sentences) why sin(p�2) � 1 and 
sin p � 0.

492 CHAPTER 7 The Trigonometric Functions

7.3 EVALUATING THE TRIGONOMETRIC FUNCTIONS
[W]hen we know the sines and cosines of angles less than half a right angle, then we
also have sines and cosines of greater angles. —Leonhard Euler in Introductio in Analysin

Infinitorum (Lausanne: 1748)

In the previous section we pointed out that for angles that are multiples of p�2 radi-
ans or 90°, the trigonometric functions can be evaluated without a calculator. In this
section we explain how to obtain the trigonometric values without a calculator for
angles that are multiples of either p�4 radians (�45°) or p�6 radians (�30°). We
focus on these particular angles for now, not because they are somehow more funda-
mental than others, but because a ready knowledge of their trigonometric values will
provide a useful source for examples in trigonometry and calculus. Also, in the
course of obtaining these trigonometric values, we will introduce the concept of a
reference angle or reference number, which is useful in other portions of trigonome-
try as well.

We can use Figure 1 to obtain the trigonometric values for Note that the
terminal side of the 45° angle in Figure 1 coincides with the line so the coor-
dinates of the point P can be labeled (x, x). Substituting these coordinates in the equa-
tion of the unit circle, we have

choosing the positive root because P is in Quadrant I

The coordinates of P are therefore and consequently we have
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x � y � 1�12,
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 2x2 � 1

 x2 � x2 � 1

y � x;
u � p�4.
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Figure 1
An angle of p�4 radians (�45°) in
standard position.

Be clear about the signs of the functions.
Your calculator will show them to you
correctly, but you still need to be able to
figure them out for yourself, quadrant by
quadrant. —David Halliday and Robert
Resnick, in Fundamentals of Physics,
3rd ed. (New York: John Wiley and
Sons, Inc., 1988)



Next, let us consider an angle of p�6 radians in standard position, as shown in
Figure 2(a). A simple way to compute the coordinates of the point P is first to reflect
P in the x-axis, as indicated in Figure 2(b). Then is equilateral (why?) and
therefore

Now, is a radius, so Also, for the vertical distance PQ, we have
Using these values in equation (1), we have

Thus, the y-coordinate of P is 1�2. To find the corresponding x-coordinate, we sub-
stitute the value in the equation of the unit circle to obtain

choosing the positive root because P is in the first quadrant

We have now found that the coordinates of P are and so the trigonometric
functions of p�6 are evaluated as follows.

113
2 , 12 2 ,

 x �
13

2

 x2 �
3

4

 x2 � a 1

2
b 2

� 1

y � 1�2

2y � 1  or  y �
1

2

PQ � y � (�y) � 2y.
OP � 1.OP

PQ � OP

^OPQ

7.3 Evaluating the Trigonometric Functions 493

y

x

P(x, y)

O

x@+y@=1 x@+y@=1

(a)

y

x

P(x, y)

O

(b)

Q(x, _y)

6
π

6
π

Figure 2

 �
1

13
�
13

3

 tan 
p

6
�

y
x

�
1�2

13�2

 sin 
p

6
� y �

1

2

 cos 
p

6
� x �

13

2

 �13

 cot 
p

6
�

x
y

�
13�2

1�2

 csc 
p

6
�

1
y

�
1

1�2
� 2

 �
2

13
�

213

3

 sec 
p

6
�

1
x

�
1

13�2

We can use the concept of symmetry to evaluate the trigonometric functions
of Figure 3(a) displays angles of p�3 and p�6 radians in standard position.u � p�3.



In the figure, note that the coordinates of P are as obtained in the previous
paragraph.

Now, as Figure 3(b) indicates (and Exercise 32 shows you how to prove), the
points P and Q are symmetric about the line Therefore (according to our
discussion of symmetry in Section 3.6), the coordinates of Q are and the
trigonometric functions of p�3 can be evaluated as follows.

(1
2, 
13
2 ),

y � x.

(13
2 , 12),
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The points P and Q are
symmetric about the line y=x.
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In Table 1 we summarize the results we have now obtained for angles ofp�6,p�4,
and p�3 radians. In the table we list only the values for cosine, sine, and tangent,
because the remaining three values are just reciprocals of these. Check with your
instructor whether she or he wants you to memorize the results in Table 1.

To evaluate the trigonometric functions for angles that are not multiples of 90° or
p�2 radians, we introduce the concept of a reference angle or reference number.

TABLE 1

U cos U sin U tan U

P�6
radians
or 30°

P�4
1radians

or 45°

P�3
radians
or 60°

13
13

2

1

2

12

2

12

2

13

3

1

2

13

2

Definition The Reference Angle or Reference Number

Let u be an angle in standard position and suppose that u is not an integer multiple of
90° or p�2 radians. The reference angle associated with u is the acute angle (with
positive measure) formed by the x-axis and the terminal side of the angle u. When
radian measure is used, the reference angle is sometimes referred to as the reference
number [because a radian angle measure (such as p�4 or 3) is a real number].



In Figure 4 we show four examples of angles and their respective reference angles.
The first part of Figure 4 shows how to find the reference angle for u � 135°. First
we place the angle u � 135° in standard position. Then we find the acute angle
between the x-axis and the terminal side of u. As you can see, in this case the acute
angle is 45°. So the reference angle associated with u� 135° is 45°. In the same way
you should work through the three remaining parts of Figure 4.

Now let’s look at an example to see how reference angles are used in evaluat-
ing the trigonometric functions. Suppose that we want to evaluate cos 150°. In
Figure 5(a) we’ve placed the angle u � 150° in standard position. As you can see,
the reference angle for 150° is 30°.
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By definition the value of cos 150° is the x-coordinate of the point P in Figure 5(a).
To find this x-coordinate, we reflect the line segment in the y-axis; the reflected
line segment is the segment in Figure 5(b). Since �P�OA � 30°, the 
x-coordinate of the point P� is by definition cos 30°, or The x-coordinate of P
is then, by symmetry to the y-axis, the negative of this value; that is, the x-coordinate of
P is It follows now, again by definition of cosine, that cos 150°

The same method that we have just used to evaluate cos 150° can be used to
evaluate any of the trigonometric functions when the angles are not integer multiples
of 90°. The following four steps summarize this method.

� �13�2.�13�2.

13�2.
OP¿

OP

O

P

30° 150°

(a)

O

P Pª

A

30°

(b)

x2+y2=1 x2+y2=1

y

x

y

x

Figure 5



Step 1 Draw (or refer to) a sketch of the angle in standard position.
Step 2 Determine the reference angle associated with the given angle.
Step 3 Evaluate the given trigonometric function of the reference angle.
Step 4 Affix the appropriate sign determined by the quadrant of the terminal side

of the angle in standard position.

The next four examples illustrate this procedure.*

496 CHAPTER 7 The Trigonometric Functions

*For those who read Chapter 6, Examples 1 and 2 correspond to Examples 5 and 6 of
Section 6.3.

EXAMPLE 1 Using the Four-Step Procedure

Evaluate the following quantities:

(a) sin 135°; (b) cos 135°; (c) tan 135°.

SOLUTION As Figure 6 indicates, the reference angle associated with 135° is 45°.

(a) Step 1 See Figure 6.
Step 2 The reference angle is 45°.
Step 3 sin 45° �
Step 4 The terminal side of u� 135° lies in Quadrant II, where the 

y-coordinate is positive, so sin 135° is positive. We therefore have

(b) Step 1 See Figure 6.
Step 2 The reference angle is 45°.
Step 3 cos 45° �
Step 4 The terminal side of u� 135° lies in Quadrant II, where the 

x-coordinate is negative, so cos 135° is negative. We therefore have

(c) Step 1 See Figure 6.
Step 2 The reference angle is 45°.
Step 3 tan 45° � 1
Step 4 By definition, tan u � y�x. The terminal side of u � 135° lies in

Quadrant II, where the y-coordinate is positive and the x-coordinate is
negative, so tan 135° is negative. We therefore have

tan 135° � �tan 45° � �1

cos 135° � �cos 45° � � 

12

2

12�2

sin 135° � sin 45° �
12

2

12�2

45° 135°

x2+y2=1

y

x

Figure 6

EXAMPLE 2 Finding the Values of Trigonometric Functions of an Angle 
with Negative Measure

Evaluate the following quantities:

(a) cos(�120°); (b) cot(�120°); (c) sec(�120°).
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SOLUTION As Figure 7 shows, the reference angle for �120° is 60°.

(a) Step 1 See Figure 7.
Step 2 The reference angle for �120° is 60°.
Step 3 cos 60° � 1�2
Step 4 The terminal side of u� �120° lies in Quadrant III, where the 

x-coordinate is negative, so cos(�120°) is negative. We therefore have

cos(�120°) � �cos(60°) �

(b) Step 1 See Figure 7.
Step 2 The reference angle for �120° is 60°.
Step 3 cot 60° �
Step 4 By definition, cot u� x�y. Now, the terminal side of u� �120° lies in

Quadrant III, where the x-coordinate is negative and the y-coordinate is
negative. Thus cot(�120°) is positive. We therefore have

(c) We could follow our four-step procedure here, but in this case there is a faster
method. In part (a) of this example we found that cos(�120°) � �1�2.
Therefore, since sec u is the reciprocal of cos u, we have

sec(�120°) �
1

cos(�120°)
�

1

(�1�2)
� �2

cot(�120°) � cot(60°) �
13

3

13�3

� 

1

2

60°
-120°

x2+y2=1

y

x

Figure 7

EXAMPLE 3 Using the Reference Angle to Evaluate Trigonometric Functions

Evaluate the following expressions:

(a) sin(11p�6); (b) cos(11p�6); (c) tan(11p�6).

SOLUTION As Figure 8 shows, the reference angle for 11p�6 is p�6.

(a) Step 1 See Figure 8.
Step 2 The reference angle for 11p�6 is p�6.
Step 3
Step 4 By definition, sin u is the y-coordinate. The terminal side of 11p�6 lies

in Quadrant IV, where the y-coordinate is negative, so sin(11p�6) is
negative. Hence we have

(b) Step 1 See Figure 8.
Step 2 The reference angle for 11p�6 is p�6.

Step 3
Step 4 By definition, cos u is the x-coordinate. The terminal side of 11p�6 lies

in Quadrant IV, where the x-coordinate is positive, so cos(11p�6) is
positive. We therefore have

cos 
11p

6
� cos 

p

6
�
13

2

cos(p�6) � 13�2

sin 
11p

6
� �sin 

p

6
� �

1

2

sin(p�6) � 1�2

y

x

x@+y@=1

11π
6

6
π

Figure 8



(c) Step 1 See Figure 8.
Step 2 The reference angle for 11p�6 is p�6.
Step 3
Step 4 By definition, The terminal side of 11p�6 lies in

Quadrant IV, where the x-coordinate is positive and the y-coordinate is
negative, so tan(11p�6) is negative. Therefore

tan 
11p

6
� �tan 

p

6
� �

13

3

tan u � y�x.
tan(p�6) � 13�3
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EXAMPLE 4 Using the Reference Angle to Calculate Values of Trigonometric Functions

Evaluate the following expressions:

(a) sec(�7p�4); (b) csc(�7p�4); (c) cot(�7p�4).

SOLUTION As Figure 9 indicates, the reference angle for �7p�4 is p�4.

(a) Step 1 See Figure 9.
Step 2 The reference angle for �7p�4 is p�4.

Step 3

Step 4 By definition, The terminal side of �7p�4 lies in
Quadrant I, where the x-coordinate is positive, so 1�x is positive. We
therefore have

(b) Step 1 See Figure 9.
Step 2 The reference angle for �7p�4 is p�4.

Step 3

Step 4 By definition, The terminal side of �7p�4 lies in
Quadrant I, where the y-coordinate is positive, so 1�y is positive, and
we have

(c) Step 1 See Figure 9.
Step 2 The reference angle for �7p�4 is p�4.

Step 3

Step 4 By definition, The terminal side of �7p�4 lies in
Quadrant I, where both the x- and y-coordinates are positive, so x�y is
positive. Thus we have

cot a�7p

4
b � cot 

p

4
� 1

cot u � x�y.

cot ap
4
b �

1

tan(p�4)
�

1

1
� 1

csc a�
7p

4
b � csc 

p

4
� 12

csc u � 1�y.

csc ap
4
b �

1

sin(p�4)
�

1

1�12
� 12

sec a�7p

4
b � sec 

p

4
� 12

sec u � 1�x.

sec ap
4
b �

1

cos(p�4)
�

1

1�12
� 12

y

x

x@+y@=1

_    
4

7π

4
π

Figure 9
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19. (a) sec(4p�3) (c) tan(4p�3)
(b) csc(�4p�3) (d) cot(�4p�3)

20. (a) sec(7p�4) (c) tan(7p�4)
(b) csc(�7p�4) (d) cot(�7p�4)

21. (a) sec(17p�6) (c) tan(17p�6)
(b) csc(�17p�6) (d) cot(�17p�6)

22. (a) sec(3p�4) (c) tan(3p�4)
(b) csc(�3p�4) (d) cot(�3p�4)

23. List three angles (in radian measure) that have a cosine
of �1�2.

24. List three angles (in radian measure) that have a sine
of �1�2.

25. List three angles (in degree measure) that have a cosine
of

26. List three angles (in degree measure) that have a cosine
of

B
In Exercises 27 and 28 refer to the following figure, in which
the x-coordinate of P is 3�4 and the y-coordinate of Q is 1�5.

27. (a) Evaluate cos u.
(b) Evaluate sin u and tan u.
(c) Which is larger: 

Hint: Sketch both angles in standard position.
28. (a) Evaluate sin b.

(b) Evaluate cos b and cot b.
(c) Which is larger: 

Hint: Sketch both angles in standard position.

In Exercises 29 and 30, evaluate each expression given that.

 h(x) � tan x   k(x) � 2x
 f (x) � sin x   g(x) � cos x

cos(b � p) or sin(u � p)?

cos 1b � p
2 2  or cos 1u � p

2 2?

y

x¨

P

O

∫
Q

x@+y@ =1

�12�2.

13�2.

A
In Exercises 1–4, sketch each angle in standard position and
specify the reference angle or reference number.

1. (a) 110° (b) 240° (c) 60° (d) �60°
2. (a) 300° (b) 1000° (c) �15° (d) 15°
3. (a) 3p�4 (b) �5p�6 (c) 5p�3 (d) 7p�6
4. (a) 5p�6 (b) �p�3 (c) 2p�3 (d) 5p�4

In Exercises 5 and 6, match an appropriate value from the right-
hand column with each expression in the left-hand column.

5. (a) cos(p�3) (A)
(b) sin(p�3) (B) 1�2
(c) tan(p�3) (C)
(d) cos(p�6) (D)
(e) sin(p�6) (E)
(f) tan(p�6) (F)

6. (a) sec 45° (A)
(b) csc 45° (B)
(c) csc 30° (C)
(d) sec 30° (D)

(E) 2
(F) 1�2

In Exercises 7–22, evaluate the expression using the method
shown in Examples 1–4.

7. (a) cos 300° (c) sin 300°
(b) cos(�300°) (d) sin(�300°)

8. (a) cos 150° (c) sin 150°
(b) cos(�150°) (d) sin(�150°)

9. (a) cos 210° (c) sin 210°
(b) cos(�210°) (d) sin(�210°)

10. (a) cos 585° (c) sin 585°
(b) cos(�585°) (d) sin(�585°)

11. (a) cos 390° (c) sin 390°
(b) cos(�390°) (d) sin(�390°)

12. (a) cos 405° (c) sin 405°
(b) cos(�405°) (d) sin(�405°)

13. (a) sec 600° (c) tan 600°
(b) csc(�600°) (d) cot(�600°)

14. (a) sec 330° (c) tan 330°
(b) csc(�330°) (d) cot(�330°)

15. (a) cos(4p�3) (c) sin(4p�3)
(b) cos(�4p�3) (d) sin(�4p�3)

16. (a) cos(2p�3) (c) sin(2p�3)
(b) cos(�2p�3) (d) sin(�2p�3)

17. (a) cos(5p�4) (c) sin(5p�4)
(b) cos(�5p�4) (d) sin(�5p�4)

18. (a) cos(17p�6) (c) sin(17p�6)
(b) cos(�17p�6) (d) sin(�17p�6)

12�2
2�13
12
13
12�2
12
13
13�3

13�2

EXERCISE SET 7.3



32. For this exercise, refer to Figure 3(b) on page 494. We want
to prove that the points P and Q are symmetric about the
line 
(a) In Figure 3(b), label the origin O, and draw the 

line segment Also, let R denote the point 
where meets the line Explain why

(b) Show that is congruent to 
(c) Use the result in part (b) to show that

(i) iangles ORQ and ORP are right angles;
(ii)
This shows that the line is the perpendicular
bisector of and, consequently, that P and Q are
symmetric about the line 

33. This exercise requires no trigonometry. (The result will 
be needed in Exercise 34.) We are going to show that 
the coordinates of the point Q in the following figure
are (�b, a).

(a) Show that the equation of the line through the 
points O and Q in the given figure is 
Hint: What is the slope of line segment OP?

(b) As indicated in the figure, Q is the point in the second
quadrant where the line segment OQ intersects the unit
circle. Determine the coordinates of Q by solving the
simultaneous equations

(c) First [without reference to parts (a) or (b)], explain why
Then use the result in part (b) to conclude

that the coordinates of Q are (�b, a), as required.
34. This exercise explains why knowing the sines and cosines

of acute angles is sufficient to find the sines and cosines of
nonacute angles.

a2 � b2 � 1.

Answer: a �b

2a2 � b2
 , 

a

2a2 � b2
b

e y � (�a�b)x

x2 � y2 � 1

y � (�a�b)x.

y

x

P (a, b)

O

x@+y@=1

Q 90°

y � x.
PQ

y � x
QR � PR.

^POR.^QOR
�QOR � �POR.

y � x.PQ
PQ.

y � x.

In Exercise 29, exact values or expressions are required, not
calculator approximations. In Exercise 30, use a calculator and
round the final answers to one decimal place.

29. (a) (e)

(b) (f)

(c) (g)

(d) (h)

30. (a) (e)

(b) (f)

(c) (g)

(d) (h)

31. (a) Use a calculator to complete the following table. (Set
your calculator in radian mode.)

U sin U Which Is Larger, U or sin U? 

0.1
0.2
0.3
0.4
0.5

(b) From the following figure, explain why 
Hint: What is the length of the arc

(c) Use the result in part (b) to show that if 
then

sin u � u

0 � u � p�2,

y

x
¨

O

1

RQ

P

x@+y@ =1

PR?̂
PQ � PR � u.

¢h

¢x
 on 3p4 , 1.58 4(k ° h) 1p5 2

¢h

¢x
 on 3p4 , 1.57 4(h ° k) 1p5 2

¢h

¢x
 on 3p4 , 1.5 4h(1 � 2)

¢h

¢x
 on 3p4 , 1 4h(1) � h(2)

¢g

¢x
 on 3 5p6 , 7p6 4k 3g 1 3p4 2 4

¢f

¢x
 on 3 5p6 , 7p6 4g 3k 1 3p4 2 4

¢g

¢x
 on 3p4 , p2 4f 1 5p6 2 � f 1p6 2

¢f

¢x
 on 3p4 , p2 4f 1 5p6 � p

6 2
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(b) Use your answer in part (a) and the result in Exercise 33
to show (or explain) why

Remark: These two formulas show that if you know
the cosine and the sine for a first-quadrant angle u,
then you know the cosine and the sine for the second-
quadrant angle u � p�2. (In fact, these formulas are
valid when u is in any quadrant. Although the figures
we used in Exercises 33 and 34 show a first-quadrant
angle, the method of proof used applies equally well to
the other quadrants.)

(c) As examples for the formulas in part (b), use your
calculator to verify each of the following equations.
(i)
(ii)
(iii)
(iv) sin(17° � 90°) � cos 17°

cos(17° � 90°) � �sin 17°
sin(1 � p

2) � cos 1
cos(1 � p

2) � �sin 1

cos(u � p
2) � �sin u  and  sin(u � p

2) � cos u

(a) Refer to the following figure. According to the unit cir-
cle definitions, what are the coordinates (in terms of u)
of the point P?

y

x

P

O

¨
Q

x@+y@ =1

2
π
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Note: The Project, A Linear Approximation for the Sine Function, at http://www.cengage.com/math/cohen/precalc7e,
applies material from Section 7.3.

7.4 ALGEBRA AND THE TRIGONOMETRIC FUNCTIONS
Albert Girard (1595–1632), who seems to have lived chiefly in Holland, . . . interested
himself in spherical trigonometry and trigonometry. In 1626, he published a treatise
on trigonometry that contains the earliest use of our abbreviations sin, tan, and sec for
sine, tangent, and secant. —Howard Eves in An Introduction to the History of Mathematics,

6th ed. (Philadelphia: Saunders College Publishing, 1990)

In this section we are going to practice the algebra involved in working with the
trigonometric functions. This will help to pave the way for the more analytical parts
of trigonometry in the next chapter. We begin by listing some common notational
conventions.

It was Robert of Chester’s translation
from the Arabic that resulted in our word
“sine.” The Hindus had given the name
jiva to the half chord in trigonometry,
and the Arabs had taken this over as
jiba. In the Arabic language there is also
a word jaib meaning “bay” or “inlet.”
When Robert of Chester came to
translate the technical word jiba, he
seems to have confused this with the
word jaib (perhaps because vowels are
omitted); hence he used the word sinus,
the Latin word for “bay” or “inlet.” 
—Carl B. Boyer in A History of
Mathematics, 2nd ed., revised by Uta C.
Merzback (New York: John Wiley and
Sons, 1991)

Sin2f is odious to me, even though
Laplace made use of it . . . —Carl
Freidrich Gauss (1777–1855) in a letter
to astronomer Heinrich Christian
Schumacher (1780–1850)

1. An expression such as sin u really means sin(u), where sin or sine is the name of
the function and u is an input. It is for historical rather than mathematical rea-
sons that the parentheses are suppressed. An exception to this, however, occurs
in expressions such as sin(A � B), where the parentheses are necessary.

2. Parentheses are often omitted in multiplication. For example, the product
(sin u )(cos u ) is usually written sin u cos u. Similarly, 2(sin u ) is written 2 sin u.

3. The quantity (sin u)n is usually written sinn u. For example, (sin u)2 is written
sin2 u. The same convention also applies to the other five trigonometric
functions.*

Notational Conventions

*A single exception to this convention occurs when n � �1. The meaning of the expression
sin�1 x will be explained in Section 4 in Chapter 9.

http://www.cengage.com/math/cohen/precalc7e
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EXAMPLE 1 Algebraic Simplification of Trigonometric Expressions

(a) Combine like terms: 3 sin2 u cos u � 5 sin2 u cos u.
(b) Carry out the multiplication: (2 sin u � 3 cos u)2.

SOLUTION

SOLUTION

EXAMPLE 2 Factoring Trigonometric Expressions

Factor: tan2 A � 5 tan A � 6.

Preliminary Solution To help us focus on the algebra that is actually involved, let’s
replace each occurrence of the quantity tan A by the letter T. Then

T2 � 5T � 6 � (T � 3)(T � 2)

Actual Solution

tan2 A � 5 tan A � 6 � (tan A � 3)(tan A � 2)

Note: After you are accustomed to working with trigonometric expressions, you
should be able to eliminate the preliminary step. 

(a) We do this in the same way we would simplify the algebraic expression 
3S2C � 5S2C. Since

3S2C � 5S2C � �2S2C

we have

3 sin2 u cos u � 5 sin2 u cos u � �2 sin2 u cos u

(b) We do this in the same way that we would expand (2S � 3C)2. Since

(2S � 3C)2 � 4S2 � 12SC � 9C2

we have
(2 sin u� 3 cos u)2 � 4 sin2 u � 12 sin u cos u �9 cos2 u

EXAMPLE 3 Simplifying Trigonometric Expressions

Add: sin u�
1

cos u
.

SOLUTION Preliminary Solution

Actual Solution

 �
sin u cos u

cos u
�

1
cos u

�
sin u cos u � 1

cos u

 sin u �
1

cos u
�

sin u
1

�
1

cos u
�

sin u
1

# cos u
cos u

�
1

cos u

 �
SC

C
�

1

C
�

SC � 1

C

 S �
1

C
�

S

1
�

1

C
�

S

1
# C

C
�

1

C



One of the most useful techniques for simplifying a trigonometric expression is
first to rewrite it in terms of sines and cosines and then to carry out the usual alge-
braic simplifications. The next example shows how this works.
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EXAMPLE 4 Simplifying Trigonometric Expressions

Simplify the expression 
sec A � 1

sin A � tan A
 .

SOLUTION

1

1

 �
1 � cos A

cos A sin A � sin A
�

1 � cos A

sin A(cos A � 1)
�

1

sin A
� csc A

multiplying numerator and
denominator by cos A

 �

cos A a 1

cos A
� 1 b

cos A a sin A �
sin A

cos A
b

 
sec A

sin A � tan A
�

1

cos A
� 1

sin A �
sin A

cos A

EXAMPLE 5 Determining When an Equation Is Not an Identity

Show that the statement is not true in general.cos A � cos B � cos(A � B)

SOLUTION Consider a related question. How would you convince a beginning algebra student
that the statement is not true in general? One way is simply to
pick specific values for x and y and then show that the equation fails for these values.
For instance, for and 

while

So is not an identity.
We can do the same thing in this example. Let and Then

we have

while

We conclude that the statement is not true in general.
It follows from the discussion below that the equation is not an identity.

Recall that an identity is an equation that is satisfied for all relevant values of the
variables involved. Two examples of identities are (x � y)(x � y) � x2 � y2 and 
x3 � x4�x. The first of these is true no matter what real numbers are used for x and y;

cos A � cos B � cos(A � B)

cos (30° � 60°) � cos 90° � 0

cos A � cos B � cos 30° � cos 60° �
13

2
�

1

2
�
13 � 1

2

B � 60°.A � 30°
(x � y)2 � x2 � y2

x2 � y2 � 12 � 12 � 1 � 1 � 2

(x � y)2 � (1 � 1)2 � 22 � 4

y � 1x � 1

(x � y)2 � x2 � y2



the second is true for all real numbers except x � 0. For now, we consider only the
most basic trigonometric identities.
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PROPERTY SUMMARY Basic Trigonometric Identities

Identity Examples

1. sin2 u � cos2 u � 1 1. sin2 30° � cos2 30° � 1
sin2 19° � cos2 19° � 1

2. 2.

3. 3.

Important note: Each of these identities is valid only for values of for which all of the expressions in the identity are
defined.

u

sec 2 �
1

cos 2
;   csc 45° �

1

sin 45°
;   cot(�3) �

1

tan(�3)
sec u �

1

cos u
;   csc u �

1

sin u
;   cot u �

1

tan u

sin 60°

cos 60°
� tan 60°

sin u

cos u
� tan u

To see why the first identity in the box is valid, consider Figure 1. Since the
angle u in standard position determines the point P(x, y) on the unit circle, we have

x2 � y2 � 1

But by definition, x � cos u and y � sin u. Therefore we have

(cos u)2 � (sin u)2 � 1 or, equivalently, sin2 u � cos2 u � 1

which is essentially what we wished to show. Incidentally, you should also become
familiar with the equivalent forms of this identity:

cos2 u � 1 � sin2 u and sin2 u � 1 � cos2 u

The second and the third identities in the box are immediate consequences of the
unit-circle definitions of the trigonometric functions. For example,

tan u � � assuming or, equivalently, cos u 	 0x 	 0
sin u

cos u
,

y

x

x2+y2=1

y

x

P(x,  y)

¨

Figure 1

EXAMPLE 6 Using Identities to Calculate Trigonometric Functions*

Given sin u � 2�3 and p�2 � u � p, find cos u and tan u.

SOLUTION Substituting sin u � 2�3 into the identity sin2 u � cos2 u � 1 yields

(Note that we could have started with cos2 u � 1 � sin2 u.)

 cos u � �
B

5

9
�

�15

3

 cos2 u � 1 � a 2

3
b 2

�
5

9

 a 2

3
b 2

� cos2 u � 1

* For those who read Chapter 6, Examples 6, 8, 9, 10, and 11 correspond to Examples 2, 4,
6, 7, and 8, respectively, of Section 6.4.



To decide whether to choose the positive or the negative value, note that the
given inequality p�2 � u � p tells us that the terminal side of u lies in the second
quadrant. Since x-coordinates are negative in Quadrant II, cos u is negative, and we
choose the negative value. Thus

For tan u we have

The next example on simplifying a trigonometric expression is similar to
Examples 1 through 4. This time, as we work the problem, we come across the ex-
pression which is then replaced by 1.sin2 u � cos2 u,

 � �
2

15
� �

215

5

 tan u �
y

x
�

sin u

cos u
�

2�3

�15�3

cos u �
�15

3
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EXAMPLE 7 Using Identities to Simplify Trigonometric Expressions

Combine and simplify: 
sin A

cos A
�

cos A

sin A
.

SOLUTION The common denominator is cos A sin A. Therefore we have

This is the required result. If we wish, we can write this answer in an alternative form
that doesn’t involve fractions:

In the next four examples, we are asked to show that certain trigonometric equa-
tions are, in fact, identities. The identities in these examples should not be memo-
rized; they are too specialized. Instead, concentrate on the proofs themselves, noting
where the fundamental identities (such as sin2 u � cos2 u � 1) come into play.
Remember that the identities are true only for values of the variable for which all
expressions are defined.

1

cos A sin A
�

1

cos A
�

1

sin A
� sec A csc A

 �
1

cos A sin A

 �
sin2 A � cos2 A

cos A sin A

 �
sin2 A

cos A sin A
�

cos2 A

sin A cos A

 
sin A

cos A
�

cos A

sin A
�

sin A

cos A
�

sin A

sin A
�

cos A

sin A
�

cos A

cos A
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EXAMPLE 8 Proving an Identity by Expressing All Trigonometric Functions 
in Terms of Sine and Cosine

Prove that the following equation is an identity:

csc A tan A cos A � 1

SOLUTION We begin with the left-hand side and express each factor in terms of sines or cosines:

 � 1  as required

 csc A tan A cos A �
1

sin A
1

# sin A
1

cos A
1

# cos A
1

EXAMPLE 9 Proving an Identity by Expressing All Trigonometric Functions 
in Terms of Sine and Cosine

Prove that cos2 B � sin2 B �
1 � tan2 B

1 � tan2 B
.

SOLUTION We begin with the right-hand side this time; it is the more complicated expression,
and it is easier to express tan2 B in terms of sin B and cos B than it is to express 
sin2 B and cos2 B in terms of tan B. As in previous examples we write everything in
terms of sines and cosines.

 �
cos2 B � sin2 B

cos2 B � sin2 B
�

cos2 B � sin2 B

1
� cos2 B � sin2 B

 
1 � tan2 B

1 � tan2 B
�

1 �
sin2 B

cos2 B

1 �
sin2 B

cos2 B

�

cos2 B a1 �
sin2 B

cos2 B
b

cos2 B a1 �
sin2 B

cos2 B
b

EXAMPLE 10 An Algebraic Technique for Creating a Difference of Squares

Prove that 
cos u

1 � sin u
�

1 � sin u

cos u
.

SOLUTION The suggestions given in the previous examples are not applicable here. Everything
is already in terms of sines and cosines. Furthermore, neither side appears more com-
plicated than the other. A technique that does work here is to begin with the left-hand
side and “rationalize” the denominator to obtain a difference of squares which, by
Identity 1, is a perfect square. We do this by multiplying numerator and denominator
by the same quantity, namely, 1 � sin u. Doing so gives us

This identity could also be proven by starting on the right-hand side and rationaliz-
ing the numerator.

 �
(cos u)(1 � sin u)

cos2 u
�

1 � sin u

cos u

 
cos u

1 � sin u
�

cos u

1 � sin u
�

1 � sin u

1 � sin u
�

(cos u)(1 � sin u)

1 � sin2 u



The general strategy for each of the proofs in Examples 8 through 10 was the
same. In each case we worked with one side of the given equation, and we trans-
formed it into equivalent expressions until it was identical to the other side of the
equation. This is not the only strategy that can be used.

Before we describe an alternative strategy, a warning is in order. Establishing an
identity is not like solving an equation. When solving an equation, we begin with an
assumption that there is a value for the variable that makes the left-hand and right-
hand sides equal. Then, using operations such as adding the same quantity to both
sides or multiplying both sides by the same nonzero quantity, we derive a sequence
of equivalent equations until the original equation is solved.*

On the other hand, an identity is an assertion that two functions are equal, that is,
their function values are equal for all values of the variable in their common domain.
To prove an identity, we cannot assume that the left-hand and right-hand sides are
equal, since that is precisely what we are trying to prove; so we cannot use the same
techniques that we use to solve an equation.

In proving an identity, it is important to separately transform the left-hand side into
the right-hand side or the right-hand side into the left-hand side, as in Examples 8
through 10. Another strategy that can be used in establishing identities is to separately
transform each side to a common expression. We use this strategy in the next example.
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EXAMPLE 11 Proving an Identity by Showing That Both Sides Equal the Same Expression

Prove that 
1

1 � cos b
�

1

1 � cos b
� 2 � 2 cot2 b.

�
2

1 � cos2 b

�
2(sin2 b � cos2 b)

1 � cos2 b

�
2 sin2 b � 2 cos2 b

sin2 b
�

2

1 � cos2 b

 Right-hand side � 2 �
2 cos2 b

sin2 b
 Left-hand side �

1(1 � cos b) � 1(1 � cos b)

(1 � cos b)(1 � cos b)

*Recall that two equations are equivalent when they have the same solutions.

3. (a) 4C3S � 12C3S
(b) 4 cos3 u sin u � 12 cos3 u sin u

4. (a) �C2S2 � (2SC)2

(b) �cos2 u sin2 u � (2 sin u cos u)2

5. (a) (1 � T )2 6. (a) (3 � 2T )2

(b) (1 � tan u)2 (b) (3 � 2 tan u)2

A
In Exercises 1–12, carry out the indicated operations.

1. (a) �SC � 12SC
(b) �sin u cos u � 12 sin u cos u

2. (a) 10SC � 4SC � 16SC
(b) 10 sin u cos u � 4 sin u cos u � 16 sin u cos u

EXERCISE SET 7.4

We’ve now established the required identity by showing that both sides are equal to
the same expression.

SOLUTION



34. If compute sin u and
cot u.

35. If compute tan t.
36. If compute tan u.
37. If compute csc b and

cot b.
38. If compute cos a and

sin a.

In Exercises 39–44, use the given information to determine the
remaining five trigonometric values.

39.
40.
41.
42.
43.
44.

In Exercises 45–66, prove that the equations are identities.

45. sin u cos u sec u csc u � 1
46. tan2 A � 1 � sec2 A
47. (sin u sec u)�(tan u) � 1
48. tan b sin b � sec b � cos b
49. (1 � 5 sin x)�cos x � sec x � 5 tan x

50. � sin u � cot u cos u

51. (cos A)(sec A � cos A) � sin2 A

52.

53. (1 � sin u)(sec u � tan u) � cos u
54. (cos u � sin u)2 � 2 sin u cos u � 1

55. (sec a � tan a)2 �

56.

57. sin A � cos A �

58. (1 � cos C)(1 � sec C) � tan C sin C
59. csc2 u � sec2 u � csc2 u sec2 u

60. cos2 u � sin2 u � 1 � 2 sin2 u

61. sin A tan A �

62.

63. cot2 A � csc2 A � �cot4 A � csc4 A

64. � 2 cos2 A � 1

65. � 2 � sec A csc A

66. tan A tan B �
tan A � tan B

cot A � cot B

sin A � cos A

sin A
�

cos A � sin A

cos A

cot2 A � tan2 A

(cot A � tan A)2

cot A � 1

cot A � 1
�

1 � tan A

1 � tan A

1 � cos2 A

cos A

sin A

1 � cot A
�

cos A

tan A � 1

sin B

1 � cos B
�

1 � cos B

sin B
� 2 csc B

1 � sin a

1 � sin a

sin u

csc u
�

cos u

sec u
� 1

1

sin u

csc b � �15, 270° � b � 360°
sec b � 3, 0° � b � 90°
cos u � 1�4, 270° � u � 360°
cos u � �3�5, 180° � u � 270°
sin u � �24�25, 180° � u � 270°
sin u � 1�5, 90° � u � 180°

csc a � 13 and 2p � a � 5p�2,

sec b � �17�15 and p�2 � b � p,
sec u � �113�2 and sin u � 0,
sin t � 13�4 and p�2 � t � p,

cos u� 5�13 and 3p�2 �u� 2p,7. (a) (T � 3)(T � 2)
(b) (tan u� 3)(tan u� 2)

8. (a) (S2 � 3)(S2 � 3)
(b) (sec2 u � 3)(sec2 u � 3)

9. (a) 10. (a)

(b) (b)

11. (a) 12. (a)

(b) (b)

In Exercises 13–18, factor each expression.

13. (a) T2 � 8T � 9 14. (a) 3S2 � 2S � 8
(b) tan2 b � 8 tan b � 9 (b) 3 sec2 b� 2 sec b� 8

15. (a) 4C2 � 1 16. (a) 16S3 � 9S2

(b) 4 cos2 B � 1 (b) 16 sin3 B � 9 sin2 B
17. (a) 9S2T3 � 6ST2

(b) 9 sec2 B tan3 B � 6 sec B tan2 B
18. (a) 5C2c2 � 15Cc.

(b) 5 csc2 B cot2 B � 15 csc B cot B

In Exercises 19–32, write in terms of sine and cosine and sim-
plify each expression.

19. Hint: Factor the numerator.

20.

21. sin2 u cos u csc3 u sec u
22. sin u csc u tan u
23. cot B sin2 B cot B

24.

25.

26.

27.

28.

29. sec A csc A � tan A � cot A
30. (sec A � tan A)(sec A � tan A)

31.

32.

33. If compute cos u and
tan u.

sin u� �3�5 and p�u� 3p�2,

tan u � tan u sin u � cos u sin u

sin u tan u

cot2 u

csc2 u
�

tan2 u

sec2 u

cot u �
1 � 2 cos2 u

sin u cos u

tan u

sec u � 1
�

tan u

sec u � 1

cos A � 2 sin A cos A

cos2 A � sin2 A � sin A � 1

cos2 A � cos A � 12

cos A � 3

3 sin u � 6

sin2 u � 4

sin4 A � cos4 A

cos A � sin A

sin2 A � cos2 A

sin A � cos A

1

sin A
�

3

cos A
cos A �

2

sin A

1

S
�

3

C
C �

2

S

5 � 2 tan u

2 tan u � 5

sin u � cos u

cos u � sin u

5 � 2T

2T � 5

S � C

C � S
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70. (a) Let P be a point on the unit circle. As indicated in the
following figure, rotating the point P about the origin
through an angle of p radians yields a point P� (on
the unit circle) that is the reflection of P through the
origin. Use this observation and the definition of
symmetry about the origin (on page 59) to explain in
complete sentences why

(b) Use the results in part (a) to show that

(c) As examples of the results in parts (a) and (b), use a
calculator to verify each of the following statements:

71. Only one of the following two equations is an identity.
Decide which equation this is, and give a proof to show
that it is, indeed, an identity. For the other equation, give an
example showing that it is not an identity. (For example, to
show that the equation is not an identity,
let Then the equation becomes 
which is false.)

(a)

(b)
72. Follow the directions given in Exercise 71.

(a)

(b)

73. Prove the identity in two ways.

(a) Adapt the method of Example 10.
(b) Begin with the left-hand side and multiply numerator

and denominator by sin u.

sin u

1 � cos u
�

1 � cos u

sin u

cot b �
sin b

1 � cos b
� csc b

(csc b � cot b)2 �
1 � cos b

1 � cos b

(sec2 a � 1)(csc2 a � 1) � 1

csc2 a � 1

csc2 a
� cos a

1�2 � 13�2 � 1,u � 30°.
sin u � cos u � 1

 tan(2 � p) � tan 2
 cos(2 � p) � �cos 2
 sin(2 � p) � �sin 2

tan(u � p) � tan u.

y

x

P
x@+y@=1

Pª

π

¨

sin(u � p) � �sin u  and  cos(u � p) � �cos u

B
In Exercises 67 and 68, refer to the following figure.

67. Express the area of ^ABP as a function of u.
68. (a) Express the slope of as a function of u.

(b) Express the slope of as a function of u.
(c) Using the expressions obtained in parts (a) and (b),

compute the product of the two slopes.
(d) What can you conclude from your answer in part (c)?

69. (a) Refer to the figure. Express the slope m of the line as a
function of u. Hint: What are the coordinates of the
point P?

(b) Use your result from part (a) to specify the slope of
each of the following lines. For line (ii), use a calcula-
tor and round the answer to one decimal place.

120°

y

x

1 radian

y

x

(i) (ii)

¨

y

x

P

x@+y@=1

y=mx

PA
PB

x@+y@=1

A B

P

¨ x

y
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87. What is the domain of the function 
88. What is the domain of the function 
89. (a) Choose (at random) an angle u such that 

Then with this value of u, use your calculator to verify
that

(b) Use the properties of logarithms to prove that if
then

(c) For which values of u in the interval is
the equation in part (b) valid?

90. (a) Choose (at random) an angle u such that 
Then with this value of u, use your calculator to verify
that

(b) Use the properties of logarithms to prove that the
equation in part (a) holds for all acute angles

(c) Does the equation in part (a) hold if 
If 

(d) For which values of u in the interval is
the equation in part (a) valid?

C
91. In this exercise, you’ll use the unit circle definitions of sine

and cosine, along with the identity to
prove a surprising geometric result. In the figure below,
we show an equilateral triangle inscribed in the unit circle

Prove that for any point P on the unit circle,
the sum of the squares of the distances from P to the three
vertices is 6. Hint: Let the coordinates of P be (cos u, sin u).

92. Prove the identity 
tan u � sec u � 1

tan u � sec u � 1
�

1 � sin u

cos u
.

y

x

P

B (cos 120°, sin 120°)

C (cos 240°, sin 240°)

A (1, 0)

x2 � y2 � 1.

sin2 u � cos2 u � 1

0°  u  360°
u � 0°?

u � 90°?
(0° � u � 90°).

ln 11 � sin u � ln 11 � sin u � ln(cos u)

0° � u � 90°.

0°  u  360°

ln 11 � cos u � ln 11 � cos u � ln(sin u)

0° � u � 90°,

ln 11 � cos u � ln 11 � cos u � ln(sin u)

0° � u � 90°.
(L ° C)(u)?
(L ° S)(u)?In Exercises 74–78, prove that the equations are identities.

74.

Hint: Write 

75.

76.

77.
78.
79. (a) Factor the expression 

(b) Prove the identity

80. Prove the following identities. (These two identities, along
with are known as the Pythagorean
identities. They will be discussed in Chapter 8.)
(a) (b)

81. If and a and b are acute angles, show
that Hint: Make use of the identities in
Exercise 80.

82. Suppose that

Show that Hint: Solve the first equation for A,
the second for B, and then compute AB.

83. If and show that

84. If show that

As background for Exercises 85–90, you need to have studied
logarithms in Sections 5.3 and 5.4.

85. (a) Choose (at random) an angle u such that 
Then with this value of u, use your calculator to verify
that 

(b) For which values of u in the interval is
the equation in part (a) valid?

86. (a) Choose (at random) an angle u such that 
Then with this value of u, use your calculator to verify
that 

(b) For which values of u in the interval is
the equation in part (a) valid?

For Exercises 87 and 88, let

0°  u  360°

 L(x) � ln x
 C(u) � cos u
 S(u) � sin u

0°  u  180°
log10(cos2 u) � 2 log10(cos u).

0° � u � 90°.

0°  u  180°
log10(sin2 u) � 2 log10(sin u).

0° � u � 90°.

sin2 u �
1 � b

a � b
  and  tan2 u �

b � 1

1 � a

a sin2 u � b cos2 u � 1,

tan a �
a � b

a � b

sin a � cos a � b,sin a � cos a � a

AB � 1.

A sin u � cos u � 1  and  B sin u � cos u � 1

sec a � csc b.
tan a tan b � 1

cot2 u � csc2 u � 1tan2 u � sec2 u � 1

sin2 u � cos2 u � 1,

cos f cot f � sin f tan f

csc f � sec f
� 1 � sin f cos f

cos3 u � sin3 u.
(r sin u cos f)2 � (r sin u sin f)2 � (r cos u)2 � r2
(sin2 u)(1 � n cot2 u) � (cos2 u)(n � tan2 u)

1 �
sin2 u

1 � cot u
�

cos2 u

1 � tan u
� sin u cos u

sec u � csc u

sec u � csc u
�

tan u � 1

tan u � 1

sin3 b as (sin b)(sin2 b).

2 sin3 b

1 � cos b
� 2 sin b � 2 sin b cos b
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Identities and Graphs

An identity is an assertion that two functions are equal for every value in their
common domain. In this mini project you will use your graphing utility to
visualize identities.

Exercise

Graph each pair of equations. If a pair of graphs suggests an identity, then state
the identity clearly with a carefully stated domain. If a pair does not suggest an
identity then exhibit a counterexample, that is, a value of the domain variable
at which the function values are not the same. For trigonometric functions
the variables represent angles in radians. So, in parts (e) through (j), make
sure you are working in radian mode and try starting with a window of

by [�1, 1, 0.25] and then vary the size.

(a) y � x2 � 2x � 1 and y � (x � 1)2

(b) y � and y � t � 3

(c) y � and y � x � 3

(d) y � and y �

(e) y � cos2 u � sin2 u and y � 1
(f) y � sec2 a � 1 and y � tan2 a

(g) y � sin 2u and y � 2 sin u
(h) y � cos 2b and y � cos2 b � sin2 b

(i) y � cos(a � ( )) and y � cos a � cos ( )
(j) y � cos 3u � sin 3u and y � 2 cos(3u � ( )) p�313

p�3p�3

b�1, if p � 1

1, if p � 1

0 p � 1 0
p � 1

2x2 � 9

t2 � 9

t � 3

[�2p, 2p, p�6]

7.5 RIGHT TRIANGLE TRIGONOMETRY*
A special name for the function which we call the sine is first found in the works of
Āryabhata (c. 510). . . . It is further probable from the efforts made to develop simple
tables that the Hindus were acquainted with the principles which we represent by 
the . . . [formula] . . . . —David Eugene Smith in History of

Mathematics, vol. II (New York: Ginn and Company, 1925)

Trigonometry was developed into an independent branch of mathematics by Islamic
writers, notably by Nasir ed-dı̄n at-Tūsı̄ (or Nasir Eddin, 1201–1274). The first publi-
cation in Latin Europe to achieve the same goal was Regiomontanus’ De triangulis
omnimodis (On triangles of all kinds); Nuremburg, 1533. —A Source Book in

Mathematics, 1200–1800, edited by D. J. Struik (Princeton: Princeton University Press, 1986)

sin2 f � cos2 f � 1

*For those who read Chapter 6, the material here closely follows the development in Section 6.1.
Examples 1, 2, 3, and 4, correspond to Examples 1, 2, 3, and 6 of Section 6.1. Note that
Example 6 corresponds to Example 3 of Section 6.4.

MINI PROJECT



The definitions that we have just given are often called the right triangle defi-
nitions of the trigonometric functions. Our work in this section and in Section 10.1
will be devoted to exploring these definitions and their consequences. Here are
four preliminary observations that will help you to understand and memorize the
definitions.

1. An expression such as cos u really means cos(u), where cos or cosine is the name
of the function and u is an input. It is for historical rather than mathematical rea-
sons that the parentheses are suppressed.

2. For convenience and ease of memorization the phrases in the definition that de-
scribe the sides of the triangle are often shortened to one word. For example, the
expression for the cosine would be written

3. There are three pairs of reciprocals in the definitions: cos and sec, sin and csc, and
tan and cot. To be more explicit, we have

Similarly,

and cot u �
1

tan u
csc u �

1

sin u

sec u �
hypotenuse

adjacent
�

1
adjacent

hypotenuse

�
1

cos u

cos u �
adjacent

hypotenuse
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Definitions Trigonometric Functions of an Acute Angle

Let be an acute angle placed in a right triangle (as shown in Figure 1); then

 cot u �
length of side adjacent to angle u

length of side opposite to angle u

 csc u �
length of hypotenuse

length of side opposite to angle u

 sec u �
length of hypotenuse

length of side adjacent to angle u

 tan u �
length of side opposite to angle u

length of side adjacent to angle u

 sin u �
length of side opposite to angle u

length of hypotenuse

 cos u �
length of side adjacent to angle u

length of hypotenuse

uSide adjacent to angle ¨

Side
opposite

to angle ¨
Hypoten

use

¨

Figure 1

An acute angle can always be placed in a right triangle, as shown in Figure 1. The
six trigonometric functions are defined in the box that follows.



4. For acute angles the values of the trigonometric functions are always positive
since they are ratios of lengths.

Even before looking at some simple numerical examples, we need to check that
these definitions are consistent with the unit-circle definitions in Section 7.2. In
Figure 2(a) we show an acute angle u in right triangle ABC. Figure 2(b) displays the
same right triangle, but with an x-y coordinate system and the unit circle super-
imposed. On the one hand, applying the right triangle definition of sin u in
Figure 2(a), we have

sin u �
opposite

hypotenuse
�

BC

AC
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y

xBA

C

¨

(a)

BA

C

¨

P(x, y)

Q

x@+y@=1

(b)Figure 2

On the other hand, using the unit circle definition in Figure 2(b), we have

So, to show that the two definitions agree (for sin u, at least), we must show that
BC�AC � QP. Now, in Figure 2(b), the right triangles ABC and AQP are similar.
(Why?) So we have

That is,

as we wished to show.
In the same manner, it can be shown that the definitions are consistent for the

remaining five trigonometric functions.

BC

AC
� QP

BC

AC
�

QP

AP
�

QP

1
  In Figure 2(b), AP � 1.

sin u � y � QP

EXAMPLE 1 Comparing Trigonometric Ratios for Similar Triangles

Figure 3 shows two right triangles. The first right triangle has sides 5, 12, and 13. The
second right triangle is similar to the first (the angles are the same), but each side is
10 times longer than the corresponding side in the first triangle. Calculate and com-
pare the values of sin u, cos u, and tan u for both triangles.
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SOLUTION Small Triangle Large Triangle

We observe that the corresponding values for sin u, cos u and tan u are the same for
both triangles.

 tan u �
opposite

adjacent
�

50

120
�

5

12
 tan u �

opposite

adjacent
�

5

12

 cos u �
adjacent

hypotenuse
�

120

130
�

12

13
 cos u �

adjacent

hypotenuse
�

12

13

 sin u �
opposite

hypotenuse
�

50

130
�

5

13
 sin u �

opposite

hypotenuse
�

5

13

12012

13
5

130
50

¨¨

Figure 3

EXAMPLE 2 Calculating Trigonometric Functions of an Acute Angle

Let u be the acute angle indicated in Figure 4. Determine the six quantities cos u, 
sin u, tan u, sec u, csc u, and cot u.

SOLUTION We use the definitions:

Note the pairs of answers that are reciprocals. (As was mentioned before, this helps
in memorizing the definitions.)

 cot u �
adjacent

opposite
�

4

3
 tan u �

opposite

adjacent
�

3

4

 csc u �
hypotenuse

opposite
�

5

3
 sin u �

opposite

hypotenuse
�

3

5

 sec u �
hypotenuse

adjacent
�

5

4
 cos u �

adjacent

hypotenuse
�

4

5

4

3
5

¨

Figure 4

EXAMPLE 3 Calculating Sine and Cosine

Let b be the acute angle indicated in Figure 5. Find sin b and cos b.

SOLUTION In view of the definitions we need to know the length of the hypotenuse in Figure 5.
If we call this length h, then by the Pythagorean theorem we have

 h � 110
 h2 � 32 � 12 � 10



Therefore

and

As we mentioned in the previous section, there are numerous identities involving
the trigonometric functions. In the box that follows, we list some of these that are the
most useful for right triangle trigonometry.

cos b �
adjacent

hypotenuse
�

1

110
�
110

10

sin b �
opposite

hypotenuse
�

3

110
�

3110

10
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Figure 5

Figure 6

3

1

∫

Although we’ve already seen identities 1 and 2 in the previous section, we
are going to prove them again now. This will serve to review and reinforce the
right triangle definitions. All three of these identities can be proved by referring to
Figure 6. where u is an acute angle in a right triangle.

Proof That sin2 U� cos2 U� 1. Looking at Figure 6, we have sin u� a�c and
cos u � b�c. Thus

using a2 � b2 � c2, the Pythagorean theorem

Proof That (sin U)�(cos U) � tan U. Again with reference to Figure 6, we have,
by definition, sin u � a�c, cos u � b�c and tan u � a�b. Therefore

Proof That sin(90° � U) � cos U. First of all, since the sum of the angles in any
triangle is 180°, we have

 b � 90° � u

 u � b � 90° � 180°

 �
a

b
� tan u  as required

 
sin u

cos u
�

a�c

b�c
�

a
c

# c

b

 � 1    as required

 �
c2

c2

 sin2 u � cos2 u � a a
c
b 2

� a b
c
b 2

�
a2

c2 �
b2

c2 �
a2 � b2

c2

a
c

b

∫

¨

PROPERTY SUMMARY Basic Right Triangle Identities for Sine and Cosine

Identity Examples

1. sin2 u � cos2 u � 1 1. sin2(10°) � cos2(10°) � 1
sin2(p�5) � cos2(p�5) � 1

2. 2.

3. sin(90° � u) � cos u or 3. sin 70° � cos 20°
cos(90° � u) � sin u or cos(3p�10) � sin(p�5)cos(p2 � u) � sin u

sin(p2 � u) � cos u

sin 45°

cos 45°
� tan 45°

sin u

cos u
� tan u



Then sin(90° � u) � sin b � b�c. But also (by definition) cos u � b�c. Thus

sin(90° � u) � cos u

since both expressions equal b�c. This is what we wanted to prove.
The proof that cos(90° � u) � sin u is entirely similar, so we omit it. We can con-

veniently summarize these last two results by recalling the notion of complementary
angles. Two acute angles are said to be complementary provided that their sum is
90°. Thus the two angles u and 90° � u are complementary. In view of this, we can
restate the last two results as follows:

If two acute angles are complementary, then the sine of (either) one equals the
cosine of the other.

Incidentally, this result gives us an insight into the origin of the term “cosine”: it is a
shortened form of the phrase “complement’s sine.”
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EXAMPLE 4 Using the Value of One Trigonometric Function to Find 
the Value of Other Trigonometric Functions

Suppose that B is an acute angle and cos B � Find sin B and tan B.2
5 .

SOLUTION We’ll show two methods. The first uses the identities sin2 B � cos2 B � 1 and 
(sin B)�(cos B) � tan B. The second makes direct use of the Pythagorean theorem.

First Method (using identities). Replace cos B with in the identity 
sin2 B � cos2 B � 1. This yields

Notice that we’ve chosen the positive square root here. This is because the values of
the trigonometric functions of an acute angle are by definition positive.

For tan B we have

Second Method (using the Pythagorean theorem). Since cos B � �

we can work with a right triangle labeled as in Figure 7. Using the

Pythagorean theorem, we have 22 � x2 � 52, from which it follows that x �

Consequently,

sin B �
opposite

hypotenuse
�

x

5
�
121

5

121.

adjacent

hypotenuse
,

2

5
 

tan B �
sin B

cos B
�
121�5

2�5
�
121

2

 sin B �
B

21

25
�
121

5

 sin2 B � 1 �
4

25
�

21

25

 sin2 B � a 2

5
b 2

� 1

2
5 

5

2B

x

Figure 7



and

as obtained previously.

tan B �
opposite

adjacent
�

x

2
�
121

2
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EXAMPLE 5 Using the Value of One Trigonometric Function to Find 
the Value of Other Trigonometric Functions

If u is an acute angle and sin u � t, express the other five trigonometric values as
functions of t. (Note that in the context of right triangle trigonometry, t, which is

and the other five trigonometric functions must all be positive.)sin u,

SOLUTION We can use either of the methods shown in the previous example. We’ll demonstrate
the second method here. The right-triangle in Figure 8 conveys the given information, 
sin u � t�1 � t. Using the Pythagorean theorem, the length of the side adjacent

to u is So we have

and

The values of csc u, sec u, and cot u are, by definition, the reciprocals of sin u, cos u,
and tan u, respectively. Thus we have

Question: Why are the positive roots appropriate here?

csc u �
1

t
  sec u �

1

21 � t2
  cot u �

21 � t2

t

tan u �
opposite

adjacent
�

t

21 � t 2

cos u �
adjacent

hypotenuse
�
21 � t2

1
� 21 � t2

21 � t2.
t

1

¨

Figure 8

EXAMPLE 6 Using the Value of One Trigonometric Function to Find 
the Value of Other Trigonometric Functions

Suppose that

cos u �

where 270° � u � 360°. Express the other five trigonometric values as func-
tions of t. Note that for 270° � u� 360°, t must be positive. Why? In fact, 0 � t � 2.
Why?

t

2

SOLUTION Replacing cos u with the quantity t�2 in the identity sin2 u � 1 � cos2 u yields

sin2 u � 1 � a t

2
b2

� 1 �
t 2

4
�

4 � t 2

4



and, consequently,

To decide whether to choose the positive or the negative value here, note that the
given inequality 270° � u� 360° tells us that the terminal side of u lies in the fourth
quadrant. Since y-coordinates are negative in Quadrant IV, we choose the negative
value here. Thus

To obtain tan u, we use the identity tan u � (sin u)�(cos u). This yields

We can now find the remaining three values simply by taking reciprocals:

rationalizing the denominator

rationalizing the denominator

We give an alternative solution for Example 2 based on a right triangle picture
rather than identities. We draw an angle u between 270° and 360° in standard posi-
tion and complete a right triangle as shown in Figure 9. Let denote the reference
angle. For convenience, since the trigonometric functions are ratios, we can use a
length of 2 units for the hypotenuse. Since the terminal side of u is in Quadrant IV,
cos u� t�2 is positive, so t is positive; also cos u� cos So we label the length of
the adjacent side t, and we have

From the right triangle,

So

The rest follows as in the previous solution.

 tan u � �tan u
~

� � 

opposite

adjacent
� � 

24 � t 2

t

 sin u � �sin u
~

� � 

opposite

hypotenuse
� � 

24 � t 2

2

opposite � 222 � t2 � 24 � t2

cos u � cos u
~

�
t

2

u
~

.

u
~

 cot u �
1

tan u
� � 

t

24 � t2
� � 

t24 � t2

4 � t2

 csc u �
1

sin u
� � 

2

24 � t2
� � 

224 � t2

4 � t2

 sec u �
1

cos u
�

2

t

tan u �
�24 � t 2�2

t�2
� � 

24 � t 2

t

sin u � � 

24 � t2

2

sin u � � 

24 � t2

2
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2
Opposite

~

y

x
¨

t

¨

Figure 9
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12. If AB � 1 and BC � compute the following.
(a) cos A, sin B
(b) tan A, cot B
(c) sec A, csc B

In Exercises 13–24, verify that each equation is correct by
evaluating each side. Do not use a calculator. The purpose of
Exercises 13–24 is twofold. First, doing the problems will help
you to review the values in Table 1 of Section 7.3. Second, the
exercises serve as an algebra review.

13. cos 60° � cos2 30° � sin2 30°
14. cos 60° � 1 � 2 sin2 30°
15. sin2 30° � sin2 45° � sin2 60° � 3�2
16. sin 30° cos 60° � cos 30° sin 60° � 1
17. 2 sin 30° cos 30° � sin 60°
18. 2 sin 45° cos 45° � 1
19. sin 30° �

20. cos 30° �

21. tan 30° � 22. tan 30° �

23. 1 � tan2 45° � sec2 45° 24. 1 � cot2 60° � csc2 60°

For Exercises 25–28, refer to the following figures. In each
case, express the indicated trigonometric values as functions 
of x. Rationalize any denominators containing radicals.

25. (a) sin u, cos u, tan u
(b) sin2 u, cos2 u, tan2 u

(c) sin(90° � u), cos(90° � u), tan(90° � u)
26. (a) csc a, sec a, cot a

(b) sin2 a � cos2 a � tan2 a

27. (a) sin b, cos b, tan b
(b) csc b, sec b, cot b
(c) sin(90° � b), cos(90° � b), tan(90° � b)

28. (a) sin f, cos f, tan f
(b) (csc f)(sec f)(cot f)
(c) sin(90° � f), cos(90° � f), tan(90° � f)

x@+1
x@-1

˙

3

4x

∫3

2x

¨

å

1 � cos 60°

sin 60°

sin 60°

1 � cos 60°

2(1 � cos 60°)�2

2(1 � cos 60°)�2

13�2,A
In Exercises 1–4, use the definitions (as in Example 2) to eval-
uate the six trigonometric functions of (a) u and (b) b. In cases
in which a radical occurs in a denominator, rationalize the
denominator.

1. 2.

3. 4.

In Exercises 5–12, suppose that ^ABC is a right triangle with
�C � 90°.

5. If AC � 3 and BC � 2, find the following quantities.
(a) cos A, sin A, tan A
(b) sec B, csc B, cot B

6. If AC � 6 and BC � 2, find the following quantities.
(a) cos A, sin A, tan A
(b) sec B, csc B, cot B

7. If AB � 13 and BC � 5, compute the values of the six
trigonometric functions of angle B.

8. If AB � 3 and AC � l, compute the values of the six
trigonometric functions of angle A.

9. If AC � 1 and BC � 3�4, compute each quantity.
(a) sin B, cos A
(b) sin A, cos B
(c) (tan A)(tan B)

10. If AC � BC � 4, compute the following.
(a) sec A, csc A, cot A
(b) sec B, csc B, cot B
(c) (cot A)(cot B)

11. If AB � 25 and AC � 24, compute each of the required
quantities.
(a) cos A, sin A, tan A
(b) cos B, sin B, tan B
(c) (tan A)(tan B)

3

3 6œ„ œ„

∫¨

53œ„

63

∫ ¨

21
29

20

¨

∫

8

15
17

¨

∫

A C

B

EXERCISE SET 7.5



47. (a) Use the figure and the right triangle definition 
of sine to explain (in complete sentences) why 
sin 20° � sin 40° � sin 60°.

(b) Use a calculator to verify that 
sin 20° � sin 40° � sin 60°.

48. (a) Use the figure and the right triangle definition 
of cosine to explain (in complete sentences) why 
cos 20° � cos 40° � cos 60°.

(b) Use a calculator to verify that 
cos 20° � cos 40° � cos 60°.

49. In the accompanying figure, each of the line seg-
ments and is perpendicular to 
is perpendicular to and the 
arc is a portion of a circle with center O. 
Use the right triangle definitions of the 
trigonometric functions to show 
that each of the equations accom-
panying the figure is correct.
(a) OA � cos u
(b) AC � sin u
(c) BF � tan u
(d) ED � cot u
(e) OF � sec u
(f) OD � csc u

50. Refer to the following figure. Show that

51. Suppose that tan u � p�q, where p and q are positive and
0° � u � 90°. Show that

52. This exercise shows how to obtain radical expressions 
for sin 15° and cos 15°. In the figure, assume that 
AB � BD � 2.

(a) In the right triangle BCD, note that DC � 1 
because is opposite the 30° angle and BD � 2. 
Use the Pythagorean theorem to show that 
BC �13.

DC

30°
CA B

D

p sin u � q cos u

p sin u � q cos u
�

p2 � q2

p2 � q2

bC
A

a
c

B

sin2 A

sin2 B
�

cos2 A

cos2 B
�

a4 � b4

a2b2

OB � OE � 1;OE;
DEOB;BFAC,OE,

In Exercises 29–34, use the given information to determine
the values of the remaining five trigonometric functions. (The
angles are assumed to be acute angles.)

29. cos B � 4�7 30. cos B � 3�8
31. 32.

33. 34.

In Exercises 35–38, use the given information to express the
remaining five trigonometric values of the angle u in terms of x.
(Rationalize any denominators containing radicals.)

35. sin u � x�2 36. sin u � 3x�5
(a) if 0° � u � 90° (a) if 0° � u � 90°
(b) if 180° � u � 270° (b) if 180° � u � 270°

37. cos u � x2 38. cos u � (x � 1)�(x � 1)
(a) if 0° � u � 90° (a) if 0° � u � 90°
(b) if 270° � u � 360° (b) if 270° � u � 360°

B
For Exercises 39–46, four functions S, C, T, and D are defined 
as follows:

In each case, use the values in Table 1 (in Section 7.3) to decide
if the statement is true or false. A calculator is not required.

39. 2[S(30°)] � S(60°) 40. T(45°) � (C ° D)(30°) � 0
41. (T ° D)(30°) � 1 42. T(60°) � 2[T(30°)]
43. S(45°) � C(45°) � 0 44. S(45°) � C(45°) � 0°
45. (C ° D)(30°) � S(30°) 46. (T ° D)(15°) � C(30°) � 0

In Exercises 47 and 48, refer to the following figure. In the figure,
the arc is a portion of a circle with center O and radius r.

20°
20°
20°

P

Q

R

CBAO

r

S(u) � sin u

C(u) � cos u

T(u) � tan u

D(u) � 2 u

 t 0° � u � 90°

tan A �
2 � 13

2 � 13
tan A �

12 � 1

12 � 1

sin u � 7�25sin u � 213�5
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O A B

E D

C

F

¨



54. This exercise shows how to obtain radical expressions for
sin 18° and cos 18°, using the following figure.

(a) Find �B, �BDC, and �ADC.
(b) Why does AC � BC � BD?
For the rest of this problem, assume that AD � 1.
(c) Why does CD � 1?
(d) Let x denote the common lengths AC, BC, and BD. Use

similar triangles to deduce that x�(1 � x) � 1�x. Then
show that 

(e) In ^BDC, draw an altitude from B to meeting 
at F. Use right triangle BFC to conclude that 
sin 18° �

(f) Rationalize the denominator in part (e) to obtain 
sin 18° �

(g) Use the identity sin2 u� cos2 u� 1, along with part (f),
to show that

(h) Use your calculator to check the results in parts (f)
and (g).

Note: In the project at the end of this section the result
in part (f) is used as the basis for a compass and straight-
edge construction of a regular pentagon.

55. (a) Use the expression for sin 18° given in Exercise 54(f)
to show that the number sin 18° is a root of the qua-
dratic equation 

(b) Use the expression for sin 15° given in Exercise 52(g)
to show that the number sin 15° is a root of the equa-
tion 

56. Formula for sin(a � b) In the following figure,
and AD � 1.

A B

D

C

∫

å

AD � BC

16x4 � 16x2 � 1 � 0.

4x2 � 2x � 1 � 0.

cos 18° �
1

4
 210 � 215

1
4 115 � 1 2 .
1� 11 � 15 2 .

DCDC,
x � 11 � 15 2�2.

72°
36°

36°
B D A

C

(b) Use the Pythagorean theorem to show that 

AD �

(c) Show that the expression for AD in part (b) is equal 
to � Hint: Two nonnegative quantities are
equal if and only if their squares are equal.

(d) Explain why �BAD � �BDA.
(e) According to a theorem from geometry, an exterior

angle of a triangle is equal to the sum of the two 
nonadjacent interior angles. Apply this to ^ABD
with exterior angle DBC � 30°, and show that 
�BAD � 15°.

(f) Using the figure and the values that you have obtained
for the lengths, conclude that

(g) Rationalize the denominators in part (f) to obtain

(h) Use your calculator to check the results in part (g).
53. The following figure shows a regular eleven-sided polygon

inscribed in a circle of radius r.

(a) Show that the length of a side of the polygon is 
Hint: Draw a perpen-

dicular from O to 
(b) The Renaissance artist Albrecht Dürer (1471–1528)

gave the following geometric construction for approxi-
mating the length of a side of a regular 11-sided poly-
gon inscribed in a circle: “To construct an 11-sided
figure by means of a compass, I take a quarter of a cir-
cle’s diameter, extend it by one eighth of its length, and
use this for construction [that is, for the side] of the 
11-sided figure.” Show that this recipe yields a side of
length 0.5625r.

(c) Show, by computing the percentage error, that Dürer’s
approximation is very good. Percentage error is 
defined as

` actual value � approximate value

actual value
` � 100

AB.
2r sin(360°�22) � 0.5635r.

A

B

r

O

sin 15° �
16 � 12

4
  cos 15° �

16 � 12

4

sin 15° �
1

16 � 12
  cos 15° �

2 � 13

16 � 12

12.16

222 � 13.
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58. This exercise is adapted from a problem that appears in 
the classic text A Treatise on Plane and Advanced Trig-
onometry, 7th ed., by E. W. Hobson (New York: Dover
Publications, 1928). (The first edition of the book was
published by Cambridge University Press in 1891.)

Given: A, B, and C are acute angles such that

cos A � tan B cos B � tan C cos C � tan A

Prove: sin A � sin B � sin C � 2 sin 18°

Follow steps (a) through (e) to obtain this result.
(a) In each of the three given equations, use the identity

so that the equations contain
only sines and cosines.

(b) In each of the three equations obtained in 
part (a), square both sides. Then use the identity

so that each equation contains 
only the cosine function.

(c) For ease in writing, replace cos2 A, cos2 B, and cos2 C
by a, b, and c, respectively. Now you have a system of
three equations in the three unknowns a, b, and c.
Solve for a, b, and c.

(d) Using the results in part (c), show that

(e) From Exercise 54(f) we know that sin 18°�
Show that the expression obtained in part (d) is equal
to twice this expression for sin 18°. This completes the
proof. (Use the fact that two nonnegative quantities are
equal if and only if their squares are equal.)

115 � 1 2�4.

sin A � sin B � sin C �
B

3 � 15

2

sin2 u � 1 � cos2 u

tan u � (sin u)�(cos u)

(a) Show that AC � sec a and AB � sec b.
(b) Show that

(c) The sum of the areas of the two smaller triangles in
part (b) equals the area of ^ABC. Use this fact and 
the expressions given in part (b) to show that

sin(a � b) � sin a cos b � cos a sin b

(d) Use the formula in part (c) to compute sin 75°.
Hint: 75° � 30° � 45°

(e) Show that sin 75° Z sin 30° � sin 45°.
(f) Compute sin 105° and then check that 

sin 105° Z sin 45° � sin 60°.
(g) Use the formula in part (c) and the values for 

sin 18° and cos 18° in Exercise 54 to show that
Then use a calculator to

verify this last equation. Hint: The resulting alge-
bra turns out to be much easier if you first find sin2 36°,
simplify, and then take the square root.

C
57. Given that and express tan a and

tan b in terms of p and q. (Assume that a and b are acute
angles.)

cos a

cos b
� q,

sin a

sin b
� p

sin 36° � 210 � 215�4.

 area ^ABC �
1

2
 sec a sec b sin(a � b)

 area ^ADB �
1

2
 sec b sin b

 area ^ADC �
1

2
 sec a sin a
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PROJECT Constructing a Regular Pentagon

This is intended as a group project to create a poster explaining a compass and
straightedge construction of a regular pentagon. (Recall that regular means
that all of the sides are equal and all of the angles are equal.) In the first part
you are going to construct a regular pentagon by first constructing a regular
decagon and then connecting every other vertex. The second part asks you to
write a short paper explaining why the construction is valid. Although the con-
struction given here is somewhat awkward, its justification is fairly straight-
forward. In the Writing Mathematics section at the end of Chapter 8 a shorter
and more elegant construction is described. The third part provides some his-
tory of the construction of regular n-gons.

(a) As background you should review the ruler and compass construction for
the perpendicular bisector of a line segment. The construction proceeds as
follows.

Draw a line segment, and label the endpoints A and D. Construct the
perpendicular bisector, and denote the midpoint of AD by C. Set your
compass to the length of AC, which is 1 unit for this construction,
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and mark a point two units from C along the perpendicular bisector.
Label this point B, and draw the line segment AB. With your compass
still set to the length of AC, draw a unit circle somewhere away from
triangle ABC. Set the needle tip of your compass at B, and let E de-
note the point on AB that is 1 unit from B. Bisect the line segment AE,
and label the midpoint F. The length of AF will be one side of a reg-
ular decagon inscribed in the unit circle. Mark ten consecutive points
around the unit circle spaced this distance apart. These are the ver-
tices of a regular decagon. Connecting every other vertex completes
this construction of a regular pentagon.

(b) As background for this part you should review parts (a) though (f) of
Exercise 54 in Section 7.5. To complete this part of the project, write a
careful justification for the construction described in part (a). You should
use a mixture of English sentences, equations, and figures similar to the ex-
position in this textbook. A brief sketch of the beginning of a justification
follows:

It is straightforward to show that the line segment AF described in
part (a) has length From Exercise 54(f) in Section 7.5, 
sin 18° � This implies, in a few steps, that an isosceles
triangle with two sides of length 1 and the third side of length

has a vertex angle of 36°.

(c) Carl Friedrich Gauss (1777–1855) was one of the greatest mathematicians
in history. In the last section of his great work on number theory,
Disquisitiones Arithmeticae, published in 1801, he discusses the problem
of constructing regular n-gons. He first deals with regular polygons with a
prime number, p, of sides and proves that if p is of the form p � � 1,
where k is a nonnegative integer, then a regular p-gon is constructible, that
is, can be constructed using a compass and straightedge. Then he gives an
explicit construction for a regular 17-gon. In the quotation to the left
Gauss warns the reader that a regular p-gon is not constructible if p is not
a prime of the form p � � 1 but that the limits of the book do not allow
him to present the proof. The first published proof was by Pierre L.
Wantzel in 1837. The numbers Fk � � 1 are called Fermat numbers
after Pierre de Fermat (1601–1665). F0 through F4 are prime, but it re-
mains an open problem as to whether or not there are any other prime
Fermat numbers. Gauss also notes that constructions for regular polygons
with 3, 4, 5, and 15 sides and those that are easily constructed from these,
with 2m 3, 2m 4, 2m 5, or 2m 15 sides, for m a positive integer, were
known since Euclid’s time but that no new constructible polygons had
been found for 2000 years (until his discoveries of 1796).

Assuming a regular n-gon is constructible, explain why a regular
polygon of 2m n sides, where m is a positive integer, is constructible.

Gauss’s Disquisitiones Arithmeticae consists of 366 numbered articles sep-
arated into seven sections. In the last article he makes a statement equivalent to
the assertion that a regular polygon of n sides is constructible if and only if

n � 2kp1p2
p pl

�

����

22k

22k

22k

115 � 1 2�2

115 � 1 2�4.
115 � 1 2�2.

WE CAN SHOW WITH 
ALL RIGOR THAT THESE HIGHER-
DEGREE EQUATIONS CANNOT BE
AVOIDED IN ANY WAY NOR CAN
THEY BE REDUCED TO LOWER-
DEGREE EQUATIONS. The limits of
the present work exclude this
demonstration here, but we issue this
warning lest anyone attempt to achieve
geometric constructions for sections
other than the one suggested by our
theory (e.g. sections into 7, 11, 13, 19, etc.
parts) and so spend his time uselessly.
—Carl Friedrich Gauss in Disquisitions
Arithmeticae, 1801 [translation by
Arthur A. Clarke, S. J. (New Haven and
London: Yale University Press, 1966)]
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where are distinct (no two are equal) prime Fermat numbers and
k is a nonnegative integer. He finishes the article with a list of the 37 con-
structible regular polygons with 300 or fewer sides.

List the 12 constructible regular polygons with 25 or fewer sides. When
you finish, you might try to find the 25 remaining constructible regular
polygons with 300 or fewer sides, thus completing Gauss’s list. 

p1, p2, p , pl

CHAPTER 7 Summary 

CHAPTER 7 Summary of Principal Formulas and Terms

Page
Terms or Formulas Reference Comments

1. 469 This equation defines the radian measure u of an angle. We assume here
that the vertex of the angle is placed at the center of a circle of radius r
and that s is the length of the intercepted arc. See Figure 4 in Section 7.1.

2. s � ru 472 This formula expresses the arc length s on a circle in terms of the radius
r and the radian measure u of the central angle subtended by the arc.

3. 473 This formula expresses the area of a sector of a circle in terms of the
radius r and the radian measure u of the central angle.

4. 475–476 Suppose that a wheel rotates about its axis at a constant rate. If a radial 
line on the wheel turns through an angle of measure u in time t, then 
the angular speed v of the wheel is defined by v � u�t. If a point 
on the rotating wheel travels a distance d in time t, then the linear 

v � r speed v of the point is defined by v � d�t. If the angular speed v is
expressed in radians per unit time, then the linear and angular speeds are
related by v � rv.

5. Initial side of an angle 481 For analytical purposes, we think of the two rays that form an 
Terminal side of an angle angle as originally coincident. Then, while one ray is held fixed, the

other is rotated to create the given angle. As is indicated in Figure 1 in
Section 7.2, the fixed ray is called the initial side of the angle and the
rotated ray is called the terminal side. The measure of an angle is
positive if the rotation is counterclockwise and negative if the rotation is
clockwise.

6. Standard position 482 In a rectangular coordinate system, an angle is in standard position if the
vertex is located at (0, 0) and the initial side of the angle lies along the
positive horizontal axis. For examples, see Figure 3 in Section 7.2.

v

v �
d

t

v �
u

t

A �
1

2
 r2u

u �
s

r

Note: Students interested in an application of right triangle trigonometry to astronomy might try the project,
Transits of Venus and the Scale of the Solar System, at the end of Section 6.1 (also available at the website at
http://www.cengage.com/math/cohen/precalc7e). 

http://www.cengage.com/math/cohen/precalc7e
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Page
Terms or Formulas Reference Comments

7. cos u 483 If u is an angle in standard position and P(x, y) is the point where 
sin u the terminal side of the angle meets the unit circle, then the six 
tan u trigonometric functions of u are defined as follows.
sec u
csc u
cot u

8. Reference angle or 494 Let u be an angle in standard position in an x-y coordinate system, and 
reference number suppose that u is not an integer multiple of 90° or p�2 radians. The

reference angle associated with u is the acute angle (with positive measure)
formed by the x-axis and the terminal side of the angle u. In work with
radians, the reference angle is sometimes referred to as the reference number
[because a radian angle measure (such as p�4 or 2) is a real number].

9. The four-step procedure 495–496 The following four-step procedure can be used to evaluate the trigonometric
for evaluating the trigono- functions of angles that are not integer multiples of 90° or p�2 radians.
metric functions Step 1 Draw or refer to a sketch of the angle in standard position.

Step 2 Determine the reference angle associated with the given angle.
Step 3 Evaluate the given trigonometric function using the reference

angle for the input.
Step 4 Affix the appropriate sign to the number found in Step 2. (See

Examples 1 through 4 on pages 496–498.)

For the right triangle version of the four-step procedure, remember that
each side has positive length and each non-right angle is acute.

10. sin2 u � cos2 u � 1 504 These are some of the most basic trigonometric identities. The proofs 
of the first two identities are given on page 504 (The other identities 
in this list are immediate consequences of the definitions of the 
trigonometric functions.)

11. Right triangle definitions of 512 When u is an acute angle in a right triangle, the six trigonometric 
the trigonometric functions functions of u can be defined as follows:

12. sin(90° � u) � cos u 515–516 If two acute angles are complementary, then the sine of either one equals 

cos(90° � u) � sin u the cosine of the other. 

 tan u �
opposite

adjacent
   cot u �

adjacent

opposite

 sin u �
opposite

hypotenuse
   csc u �

hypotenuse

opposite

 cos u �
adjacent

hypotenuse
   sec u �

hypotenuse

adjacent

 cot u �
x

y
 (y 	 0) tan u �

y

x
 (x 	 0)

 csc u �
1
y
 (y 	 0) sin u � y

 sec u �
1
x
 (x 	 0) cos u � x

 cot u �
1

tan u

 sec u �
1

cos u
;  csc u �

1

sin u

 
sin u

cos u
� tan u
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Writing Mathematics

1. A student who wanted to simplify the expression 
wrote

Explain why this is nonsense and then indicate the correct
solution.

2. A student who was asked to simplify the expression
sin2(p�5) � sin2(3p�10) wrote

(a) Where is the error?
(b) What is the correct answer?

3. Determine if each statement is TRUE or FALSE. In each
case, write out your reason or reasons in complete sentences.
If you draw a diagram to accompany your writing, be sure
that you clearly label any parts of the diagram to which you
refer in the writing.
(a) If u is an angle in standard position and 180° � u �

270°, then tan u � sin u.
(b) If u� p, then sin u is positive.

(c) For all angles u, we have 
(d) If u is an acute angle in a right triangle, then 

sin u � 1.
(e) If u is an acute angle in a right triangle, then 

tan u � 1.

sin u � 21 � cos2 u.

� sin2(p�2) � 12 � 1

sin2(p�5) � sin2(3p�10) � sin2 ap
5

�
3p

10
b

p�6

sin(p�6)
�

p�6

sin(p�6)
�

1

sin

p�6

sin(p�6)

4. (a) Use a calculator to evaluate the quantity 4 sin 18°
cos 36°.

(b) The following very short article, with the accompanying
figure, appeared in The Mathematical Gazette, Vol. XXIII
(1939), p. 211. On your own or with a classmate, study
the article and fill in the missing details. Then, strictly
on your own, rewrite the article in a paragraph (or two at
the most). Write as if you were explaining to a friend or
classmate why 4 sin 18° cos 36° � 1.

To prove that 4 sin 18° cos 36° � 1.
In the figure, 
sin 18° �
Multiply.

a

a

a

a a

bb

1
2 a�b, cos 36° � 1

2 b�a.

CHAPTER 7 Review Exercises

In Exercises 1 and 2, complete the tables.

1.
cos sin tan sec csc cot

0

p

5p�6
3p�4
2p�3
p�2
p�3
p�4
p�6

uuuuuuu

2.
cos sin tan sec csc cot

11p�6
7p�4
5p�3
3p�2
4p�3
5p�4
7p�6
p

uuuuuuu
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In Exercises 3–8, the lengths of the three sides of a triangle are
denoted a, b, and c; the angles opposite these sides are A, B,
and C, respectively. In each exercise, use the given information
to find the required quantities.

Given Find
3. B � 90°, A � 30°, a and c

b � 1
4. B � 90°, A � 60°, c and b

a � 1
5. B � 90°, sin A � 2�5, b

a � 7
6. B � 90°, sec C � 4, b

c �
7. B � 90°, cos A � 3�8 sin A and cot A
8. B � 90°, b � 1, a

tan C �
9. For the following figure, show that

y � x[tan(a � b) � tan b]

10. For the following figure, show that

11. For the following figure, show that

a

b

¨ å

cot u �
a

b
� cot a

y

x

∫

å

y �
x

cot a � cot b

y

x

∫å

15

12

12. Suppose that u is an acute angle in a right triangle and 

sin u � Find cos u and tan u.

13. This problem is adapted from the text An Elementary
Treatise on Plane Trigonometry, by R. D. Beasley, first
published in 1884.
(a) Prove the following identity, which will be used in

part (b): 1 � tan2 a � sec2 a.
(b) Suppose that a and u are acute angles and 

tan u � Express sin u and cos u in

terms of a. Hint: Draw a right triangle, label one of the
angles u, and let the lengths of the sides opposite and ad-
jacent to u be 1 � tan a and 1 � tan a, respectively.

Answer:

14. If u � p�4, evaluate each of the following. Exact answers
are required, not calculator approximations.
(a) cos u (d) cos 3u (g) cos(�u)
(b) cos3 u (e) cos(2u�3) (h) cos3(5u)
(c) cos 2u (f) (cos 3u)�3

In Exercises 15–22, convert each expression into one involving
only sines and cosines and then simplify. (Leave your answers
in terms of sines and/or cosines.)

15. 16.

17. 18. cos A � tan A sin A

19. 20.

21. (sec A � csc A)�1[(sec A)�1 � (csc A)�1]

22.

In Exercises 23–34, use Figure 8 in Section 7.2 to approximate
to within successive tenths the given trigonometric values. Then
use a calculator to compute the values to the nearest hundredth.

23. (a) cos 6 (b) cos(�6)
24. (a) sin 6 (b) sin(�6)
25. (a) cos 140° (b) cos(�140°)
26. (a) sin 140° (b) sin(�140°)
27. (a) sin(p�4) (b) sin(�p�4)
28. (a) cos(p�4) (b) cos(�p�4)
29. (a) sin 250° (b) sin(�250°)
30. (a) cos 250° (b) cos(�250°)
31. (a) cos 4 (b) cos(�4)
32. (a) sin 4 (b) sin(�4)
33. (a) cos(4 � 2p) (b) cos(�4 � 2p)
34. (a) sin(4 � 2p) (b) sin(�4 � 2p)

tan2 A � 1

tan3 A � tan A
tan A � 1

tan2 A � 1

1

sec A � 1



1

sec A � 1

cos A

1 � tan A
�

sin A

1 � cot A

sin A sec A

tan A � cot A

csc A sec A

sec2 A � csc2 A

sin A � cos A

sec A � csc A

 cos u � (cos a � sin a)�12
 sin u � (cos a � sin a)�12

1 � tan a

1 � tan a
.

2p2q2

p4 � q4.
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67. r � s � 1 cm A
68. r � s � u

69. s � 4 cm; u� 36° r and A
70. u � p�10; A � 200p cm2 r
71. s � 12 cm; u� r � 1 r and u
72. u � 50°; A � 20p cm2 s
73. Two angles in a triangle are 40° and 70°. What is the radian

measure of the third angle?
74. The radian measures of two angles in a triangle are 1�6 and

5�12. What is the radian measure of the third angle?

In Exercises 75–82, P(x, y) denotes the point where the terminal
side of angle u in standard position meets the unit circle. 
Use the given information to evaluate the six trigonometric
functions of u.

75. P is in the second quadrant and y � 2�5
76. P is in the third quadrant and x � �7�9
77. P is in the third quadrant and x � �5�7
78. P is in the second quadrant and 
79. x � �15�17 and p�2 � u � p
80. x � �8�9 and p � u � 3p�2
81. y � �7�25 and 3p/2 � u � 2p
82. y � 0.6 and 0 � u � p/2
83. List three angles (in radian measure) for which the cosine of

each is 
84. List three angles (in radian measure) for which the cosine of

each is 
85. List four angles (in degree measure) for which the sine of

each is �1.
86. List four angles (in degree measure) for which the sine of

each is 1.
87. If cos u� �5�13 and p � u � 3p/2, find sin u and tan u.
88. If sec u� 25�7 and sin u is negative, find sin u and tan u.

In Exercises 89–92, refer to the following figure, which shows a
highly magnified view of the point P, where the terminal side of
an angle of 10° (in standard position) meets the unit circle.

x=0.984

y=0.173

y=0.174

x=0.985

P

13�2.

�13�2.

y � 13�4

13 cm

In Exercises 35–44, evaluate each expression in terms of a,
where a � cos 20°.

35. sin 20° 36. tan 20°
37. cos 70° 38. sin 70°
39. cos 160° 40. cos 340°
41. cos(�160°) 42. cos 200°
43. sin 200° 44. cot 200°

45. Simplify: 

46. Simplify: 

In Exercises 47–64, show that each equation is an identity.

47.

48. sec A � 1 � (sec A)(1 � cos A)

49.

50.

51. cos2 u � sin2 u � 2 cos2 u � 1
52. cos2 u � sin2 u � 1 � 2 sin2 u

53.

54.

55.

56.

57.

58.

59.

60.

61.

62. sin6A � cos6A � 1 � 3 sin2A cos2A

63.

64.

In Exercises 65–72, use the arc length formula s � ru and the
sector area formula A � to find the required quantities.

Given Find
65. u � p�8; r � 16 cm, s and A
66. u � 120°; r � 12 cm s and A

1
2 r2u

2 tan A

1 � tan2A
�

1

cos2A � sin2A
�

cos A � sin A

cos A � sin A

sin A cos A �
tan A

1 � tan2A

sec A � csc A

sec A � csc A
�

sin A � cos A

sin A � cos A

sin3A

cos A � cos3A
� tan A

1

csc A � cot A
�

1

csc A � cot A
� 2 cot A

1

1 � cos A
�

1

1 � cos A
� 2 � 2 cot2A

tan A �
sec A sin3A

1 � cos A
� sin A

sin A

1 � cos A
�

1 � cos A

sin A
� 2 csc A

tan A tan B �
tan A � tan B

cot A � cot B

cot A � 1

cot A � 1
�

1 � tan A

1 � tan A

sin A tan A �
1 � cos2A

cos A

sin A

csc A � cot A
� 1 � cos A

cot A � 1

cot A � 1
�

cos A � sin A

cos A � sin A

1 � sin u cos u

(cos u)(sec u � csc u)
�

sin2 u � cos2 u

sin3 u � cos3 u
� sin u

1 � sin u � sin2 u

1 � sin3 u
.

sin4 u � cos4 u

sin2 u � cos2 u



1 � sin u cos u

sin3 u � cos3 u
.
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91. Using the figure, estimate the value of sin 10° to four deci-
mal places. (Then use a calculator to check your estimate.)

92. Use your estimate in Exercise 91 to evaluate each of the
following.
(a) sin(�10°)
(b) sin(�190°)
(c) sin(�370°)

89. Using the figure, estimate the value of cos 10° to four deci-
mal places. (Then use a calculator to check your estimate.)

90. Use your estimate in Exercise 89 to evaluate each of the
following.
(a) cos 170°
(b) cos 190°
(c) cos 350°

CHAPTER 7 Test

1. Evaluate each expression.
(a) sin(�p�2)
(b) cos 540°
(c) cot 450°

2. Specify the value for each expression.
(a) cos(p�6)
(b) sin 45°
(c) sin2(7°) � cos2(7°)

In Exercises 3 and 4, use the given information to determine the
other five trigonometric values.

3. sin u � �1�5 and 3p�2 � u � 2p
4. cos u � and 90° � u � 180°

In Exercises 5–8, evaluate each expression.

5. sin(5p�3)
6. cot(�5p�4)
7. cos 300°
8. csc(�135°)
9. Without using a calculator, determine which of the expres-

sions, sin 2 or cos 2, is larger. Explain your reasoning (using
complete sentences).

10. (a) Convert 165° to radian measure.
(b) Convert 3 radians to degree measure.

In Exercises 11 and 12, the two points B and C are on a circle of
radius 5 cm. The center of the circle is A and angle BAC is 75°.

11. Find the length of the (shorter) arc of the circle from B to C.
12. Find the area of the (smaller) sector determined by

angle BAC.

13. Simplify: 

14. Prove that the following equation is an identity:

cos u � 1

csc u � cot u
� sin u

1 �
tan u � 1

tan u

�1 �
tan u � 1

tan u

.

�15�6

15. Suppose that a belt drives two wheels of radii 15 cm and
25 cm, as shown in the figure.

Determine each of the following quantities, given that the
angular speed of the smaller wheel is 600 rpm.
(a) The angular speed of the smaller wheel in radians

per minute
(b) The linear speed of a point on the circumference of the

smaller wheel
(c) The angular speed of the larger wheel in radians per

minute
Hint: Because of the belt, the linear speed of a point on the
circumference of the smaller wheel is equal to the linear
speed of a point on the circumference of the larger wheel.

(d) The angular speed of the larger wheel in rpm
16. If u is an acute angle in a right triangle and tan u� t, express

the other five trigonometric values in terms of t.
17. In ̂ ABC, AB � BC � and �B � 90°.

Find cos A.
18. Refer to the following figure. In each case, decide which of

the two given quantities is larger. Explain your reasons in
complete sentences.

(a) tan(�DAB); tan(�CAB)
(b) cos(�DAB); cos(�CAB) 

A B

D

C

117 � 1,117 � 1,

15 cm

25 cm
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Yet another spiral [i.e., curve] can be made from a proper circle. It is used by stonemasons and
is commonly referred to as a “screw-line.” But whatever it is called, it is a useful line, and I

want to explain how to construct it. Whoever
explores its possibilities will find that it has
many applications. First, draw a circle with
center point a. Then divide it with a vertical
line through center a into two equal parts,
and again [i.e., now] mark the point at the
upper periphery 12, and the bottom 6. Then
extend this line upward as far as you wish
and mark the topmost point a. Draw a hori-
zontal line near the periphery of the circle
and mark it cd. The point at which it crosses
the vertical line is point b. Then divide the
circular ground plan into twelve equal parts,
numbering each point, next to point 12, 1,
2, 3, etc., until you again reach 12. But there-
after the numbers must continue, as far as
needed in the projection, i.e., 13 above 1, 14
above 2, etc. Accordingly, one can use the
ground plan numbers three, four, or five
times, or as many times as one desires to
extend the projection. Now that the ground
plan has been prepared, mark off the vertical
line ab into as many points as you wish,
beginning to number them from point b up-
ward, 1, 2, 3, 4, etc. Then draw a vertical line
upward from point 1 on the circle and a hori-
zontal line from point 1 on the vertical line
ab. Where these two meet, mark the corner of
the rectangle 1. Then proceed likewise with
all the points on the circle and all points of
the vertical line ab, even where the numbers
on the ground plan are used repeatedly. Once
the points of the spiral have been established
throughout, draw in the line by hand, as I
have done in the diagram below. —Albrecht

Dürer (1471–1528)

CHAPTER

8 Graphs of the Trigonometric 
Functions

8.1 Trigonometric Functions 
of Real Numbers

8.2 Graphs of the Sine and
Cosine Functions

8.3 Graphs of
y � A sin(Bx � C ) and 
y � A cos(Bx � C )

8.4 Simple Harmonic Motion

8.5 Graphs of the Tangent and
the Reciprocal Functions

One hundred years before
the development of coordinate geometry
by Fermat and Descartes, and well over
two hundred years before Euler
standardized the unit circle definitions of
the sine and cosine, the Renaissance
artist Albrect Dürer constructed what we
would now call a sine curve by
projecting points from a circle. The
figure and text explaining the
construction are from Dürer’s book,
Underweysung Der Messung
(Nuremburg: 1525). The translation here
is from The Painter’s Manual, a
translation with commentary by Walter
L. Strauss (New York: Abaris Books,
Inc., 1977).
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The trigonometric functions play an important role in many of the modern applica-
tions of mathematics. In these applications, the inputs for these functions are real
numbers, rather than angles as in the previous chapter. In Section 8.1 of this chapter,
we use radian measure to restate the definitions of the trigonometric functions in
such a way that the domains are indeed sets of real numbers. Among other advan-
tages, this allows us to analyze the trigonometric functions using the graphing
techniques that we developed in Chapter 3.

8.1 TRIGONOMETRIC FUNCTIONS OF REAL NUMBERS
The sine and cosine functions may now be observed bursting buoyantly from their
chrysalis to take up a new identity as circular trigonometric functions. The angles of old
are represented by arcs or arc lengths. Those right triangles in which the trigonometric
functions were imprisoned may like dry-husks be allowed to disappear along with their
degrees. . . . —David Berlinski, A Tour of the Calculus (New York: Pantheon Books, 1995)

We always assume that the radius of the circle is 1 and let z be an arc of this circle. 
We are especially interested in the sine and cosine of this arc z. —Leonhard Euler

(1707–1783) in Introductio in Analysin Infinitorum (Lausanne, 1748)

In calculus and in the sciences many of the applications of the trigonometric func-
tions require that the inputs be real numbers, rather than angles. By making a small
but crucial change in our viewpoint, we can define the trigonometric functions in
such a way that the inputs are real numbers. As background for our discussion, recall
that radian measure is defined by the equation u � s�r. In this definition, s and r are
assumed to have the same linear units (for example, centimeters) and therefore the
ratio s�r is a real number with no units. For example, in Figure 1 the radius is 3 cm,
the arc length is 6 cm, and so the radian measure u is given by

In the previous chapter (Section 7.2) the definitions of the trigonometric func-
tions were based on the unit circle, so let’s look at radian measure in that context. In
the equation u � s�r, we set r � 1. This yields

Thus, in the unit circle, the radian measure of the angle is equal to the measure of the
intercepted arc. For reference we summarize this important observation in Figure 2.
(We’ve used the letter t, rather than our usual u, to emphasize the fact that both the
radian measure of the angle and the measure of the intercepted arc are given by
the same real number.)

The conventions regarding the measurement of arc length on the unit circle are
the same as those introduced in the previous chapter for angles. As Figure 3 (on the
next page) indicates, we measure from the point (1, 0), and we assume that the posi-
tive direction is counterclockwise.

u �
s

1
� s  (just as before, a real number)

u �
6 cm
3 cm

� 2  1a real number 2

r=3 cm

s=6 cm

¨

Figure 1

1

(1, 0)

t

t

≈+¥=1

y

x

Figure 2
In the unit circle, the radian measure
of an angle equals the measure of
the intercepted arc.



In the definitions that follow, you may think of t as either the measure of an arc
or the radian measure of an angle. But in both cases, and this is the point, t denotes a
real number.
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≈+¥=1

(1, 0)

(a) (b)t is positive

t

t

≈+¥=1

(1, 0)

t is negative

t

t

y

x

y

x

Figure 3
The positive direction is
counterclockwise.

The unit circle
≈+¥=1

(1, 0)

P(x, y)

t

t

y

x

Figure 4

Definition Trigonometric Functions of Real Numbers

(Refer to Figure 4.) Let P(x, y) denote the point on the unit circle that has arc length
measure t from (1, 0). (Note that in Figure 4, 0 � t � p�2.) Let P (x, y) denote the
point where the terminal side of the angle with radian measure t intersects the unit cir-
cle. Then the six trigonometric functions of the real number t are defined as follows.

Note that there is nothing essentially new here as far as evaluating the trigono-
metric functions. For instance, sin(p�2) is still equal to 1. What is different now is
that the inputs are real numbers:

name of function ⎯↑
input (a real number) ⎯ ⎯ output (a real number)

As was explained in Section 7.3, the four-step procedure for evaluating the
trigonometric functions is valid whether we are working in degrees or radians. When
radian measure is used, the reference angle is sometimes referred to as the reference
number to emphasize the fact that a radian angle measure (such as p�4 or 3) is
indeed a real number. In the next example we evaluate trigonometric functions with
real number inputs. As you’ll see, however, there are no new techniques for you to

sin 
p

2
� 1

 tan t �
y

x
 (x � 0)   cot t �

x
y
 (y � 0)

 sin t � y  csc t �
1
y
 (y � 0)

 cos t � x  sec t �
1
x
 (x � 0)

↑ ↑



8.1 Trigonometric Functions of Real Numbers 533

learn in this context. As we’ve said, the new definition amounts to a change in view-
point more than anything else.

EXAMPLE 1 Calculating Trigonometric Functions of Real Numbers

Evaluate each of the following expressions:

(a) (b) sec  
2p
3

.cos  
2p
3

 ;

SOLUTION (a) The cosine of the real number 2p�3 is, by definition, the cosine of 2p�3 radians,
which we can evaluate by means of our four-step procedure.
Step 1 See Figure 5.
Step 2 The reference angle for 2p�3 is p�3.
Step 3 cos(p�3) � 1�2
Step 4 cos t is the x-coordinate, and in Quadrant II, x-coordinates are negative.

Thus, the terminal side of t � 2p�3 is in Quadrant II, cos(2p�3) is
negative, and we have

(b) We could use the four-step procedure to evaluate sec(2p�3) but in this case it is
much more direct simply to note that sec(2p�3) is the reciprocal of cos(2p�3),
which we evaluated in part (a). Thus we have

For the remainder of this section we discuss some of the more fundamental
identities for the trigonometric functions of real numbers. As we said in Section 7.4,
an identity is an equation that is satisfied by all values of the variable in its domain.
As a demonstration of what this definition really means, consider the equation

As we’ll prove in a moment (and as you should already expect from the previous
chapter), this equation is an identity. The domain of the variable t in this case is the
set of all real numbers. So if we pick a real number at random, say, t � 17, then it fol-
lows that the equation

is true. You should take a minute now to confirm this empirically with your calcula-
tor. That is, actually compute the left-hand side of the preceding equation and check
that the result is indeed 1. The point is, no matter what real number we choose for t,
the resulting equation will be true.

As an example of an equation that is not an identity, consider the conditional
equation

(1)2 sin t � 1

sin2 17 � cos2 17 � 1

sin2 t � cos2 t � 1

sec  
2p

3
� �2

cos  

2p
3

� �cos  

p

3
� � 

1
2

≈+¥=1

y

x

3
2π

3
π

Figure 5



As you can check (without a calculator), this equation is true when t � p�6 but false
when t � p�3. Thus equation (1) is not satisfied by all values of the variable in its
domain. In other words, equation (1) is not an identity. In a later section, we’ll work
with conditional equations such as equation (1). When we do that, we will be trying
to solve these equations; that is, we’ll want to find just which values of the variable
(if any) do satisfy the equation.

Question for review and preview: Can you find some real numbers other than p�6
that also satisfy equation (1)?

There are five identities that are immediate consequences of the unit-circle
definitions of the trigonometric functions. For example, using the unit-circle defini-
tions, we have

definition of tan t

definitions of sin t and cos t

Thus we have tan t � (sin t)�(cos t). This identity and four others are listed in the box
that follows.

The next identities that we consider are the three Pythagorean identities. The
term “Pythagorean” is used here because, as you’ll see, the proofs of the identities
rely on the unit-circle definitions of the trigonometric functions; and the equation of
the unit circle essentially is derived from the Pythagorean theorem.

To establish the identity sin2 t � cos2 t � 1, we think of the real number t, for the
moment, as the radian measure of an angle in standard position, as indicated in
Figure 6. Now we proceed exactly as in the previous chapter, when we proved this
identity in the context of angles. Since the point (x, y) in Figure 6 lies on the unit
circle, we have

x2 � y2 � 1

 cot2 t � 1 � csc2 t

 tan2 t � 1 � sec2 t

 sin2 t � cos2 t � 1

The Pythagorean Identities

 tan t �
sin t
cos t

   cot t �
cos t
sin t

 sec t �
1

cos t
   csc t �

1
sin t

  cot t �
1

tan t

Consequences of the Definitions

 �
sin t
cos t

 tan t �
y

x
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≈+¥=1

(x, y)

t

y

x

Figure 6
A real number t interpreted as the
radian measure of an angle in
standard position.
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Now, replacing x by cos t and y by sin t gives us

which is what we wished to show. You should also be familiar with two other ways
of writing this identity:

and

To prove the second of the Pythagorean identities, we begin with the identity 
sin2 t � cos2 t � 1 and divide both sides by the quantity cos2 t to obtain

assuming that cos t Z 0

and, consequently,

as required.
Since the proof of the third Pythagorean identity is similar, we omit it here.

tan2 t � 1 � sec2 t

sin2 t
cos2 t

�
cos2 t
cos2 t

�
1

cos2 t

sin2 t � 1 � cos2 tcos2 t � 1 � sin2 t

cos2 t � sin2 t � 1

EXAMPLE 2 Finding Values of Trigonometric Functions

If sin t � 2�3 and p�2 � t � p, compute cos t and tan t.

SOLUTION using the first Pythagorean identity

substituting

Consequently,

Now, since p�2 � t � p, it follows that cos t is negative. (Why?) Thus

as required.
To compute tan t, we use the identity tan t � (sin t)�(cos t) to obtain

If required, we can rationalize the denominator 1by multiplying by to
obtain

tan t � �
215

5

15�15 2
tan t �

2�3

�15�3
�

2

3
# 3

�15
� � 

2

15

cos t � �
15

3

cos t �
15

3
  or  cos t � �

15

3

 � 1 �
4
9

�
5
9

 � 1 � a 2
3
b 2

 cos2 t � 1 � sin2 t
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EXAMPLE 3 Finding Values of Trigonometric Functions

If sec t ��5�3 and p� t � 3p�2, compute cos t and tan t.

SOLUTION Since cos t is the reciprocal of sec t, we have cos t � �3�5. We can compute tan t
using the second Pythagorean identity as follows:

Therefore

Since t is between p and 3p�2, tan t is positive. (Why?) Thus

Example 4 shows how certain radical expressions can be simplified with an
appropriate trigonometric substitution. (This technique is often useful in calculus.)

tan t �
4

3

tan t �
4

3
  or  tan t � � 

4

3

 � a� 

5

3
b 2

� 1 �
16

9

 tan2 t � sec2 t � 1

EXAMPLE 4 Using a Trigonometric Substitution to Rationalize a Square Root

In the expression , make the substitution u � sec u and show that the
resulting expression is equal to csc u. (Assume that 0 � u � p�2.)

u�2u2 � 1

SOLUTION Replacing u by sec u in the given expression yields

using the second Pythagorean identity

since 0 � u � p�2

As we saw in Chapter 7, one technique for simplifying trigonometric expressions
involves first writing everything in terms of sines and cosines. However, this is not
necessarily the most efficient method. As the next example indicates, the second and
third Pythagorean identities can be quite useful in this context.

 �
1�cos  u 

sin  u�cos  u
�

1

sin u
� csc  u

 �
sec u

0 tan u 0 �
sec u

tan u

 �
sec u

2 tan2 u

 
u

2 u2 � 1
�

sec u

2 sec2 u � 1
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SOLUTION factoring out the common factor in the
numerator and applying the second
Pythagorean identity in the denominator

applying the third Pythagorean 
identity

As background for the next set of identities, we recall the terms “even function”
and “odd function.” A function f is said to be an even function provided

f (�t) � f (t) for every value of t in the domain of f

The function defined by f (t) � t2 serves as a simple example of an even function.
Whether we use t or �t for the input, the output is the same. For instance,

and also

The graph of an even function is symmetric about the y-axis. (This follows directly
from the symmetry tests in Chapter 1 on page 62.) For example, in Figure 7 we show
the graph of the even function f (t) � t2.

A function f is said to be an odd function provided

f (�t) � �f (t) for every value of t in the domain of f

The function defined by g(t) � t 3 is an odd function. For instance, if you compute
g(5) and g(�5), you’ll find that the outputs are the negatives of one another. (Check
this.) The graph of an odd function is symmetric about the origin. (Again, this follows
from the symmetry tests in Chapter 1.) In Figure 8 we display the graph of the odd
function g(t) � t 3.

Note: The domains of both even and odd functions must have the property that if
t is in the domain then �t is also in the domain. In more geometric language, the
domains must be symmetric about zero on the number line.

Now, returning to our development of trigonometric identities, the three identi-
ties in the box that follows can be interpreted using the terminology we’ve just been
discussing.

 tan(�t ) � �tan t
 sin(�t ) � �sin t
 cos(�t ) � cos t

The Opposite-Angle Identities

f(�5) � (�5)2 � 25f (5) � 52 � 25

 � csc3 t

 � (csc t)(csc2 t)

 
csc t � csc t cot2 t

sec2 t � tan2 t
�

(csc t)(1 � cot2 t)

1

EXAMPLE 5 Using Trigonometric Identities to Simplify Trigonometric Expressions

Simplify the expression 
csc t � csc t cot2 t

sec2 t � tan2 t

f(t)=t 2

y

t

Figure 7
The graph of an even function is
symmetric about the y-axis.

g(t)=t 3

y

t

Figure 8
The graph of an odd function is
symmetric about the origin.



To see why the first two of these identities are true, consider Figure 9. We’ll as-
sume that 0 � t �p�2, so Figure 9 shows an arc of length t terminating in Quadrant I.
By definition the coordinates of the points P and Q in Figure 9 are as follows:

However, as you can see by looking at Figure 9, the x-coordinates of P and Q are the
same, while the y-coordinates are negatives of each other. Thus,

and

as we wished to show

Now we can establish the third identity, involving tan(�t), as follows:

Although we assumed that the arc terminated in Quadrant I the argument we used
will work no matter where the arc terminates. To check this, you should try the last
argument with a t such that P is not in Quadrant I.

The domain of the cosine and sine functions is all real numbers, which is symmet-
ric about zero on the number line. In conjunction with the opposite-angle identities for
cosine and sine, we have that cosine is an even function and sine is an odd function.

The tangent function, the ratio of coordinates y�x on the unit circle, is defined only
for . Now for So the domain of the tangent func-
tion is all real numbers t except , where n is an integer. This domain is sym-
metric about zero on the number line. This property of the domain, together with the
opposite-angle identity for the tangent function, tells us that tangent is an odd function.

p
2 � np

t � �p2 , �3p
2 , �5p

2 , . . . .x � 0x � 0

 �
�sin t

cos t
� � 

sin t

cos t
� �tan t

 tan (�t) �
sin (�t)

cos (�t)

sin (�t) � �sin t

cos (�t) � cos t

Q: (cos (�t), sin (�t))

P: (cos t, sin t)
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EXAMPLE 6 Using the Opposite-Angle Identities

(a) If sin t � �0.76, find sin(�t).
(b) If cos s � �0.29, find cos(�s).
(c) If sin u � 0.54, find sin2(�u) � cos2(�u).

SOLUTION (a)

(b)
(c) The opposite-angle identities are unnecessary here, and so too is the given value

of sin u, for, according to the first Pythagorean identity, we have

sin2(�u) � cos2(�u) � 1

The final identities that we are going to discuss in this section are simply conse-
quences of the fact that the circumference C of the unit circle is 2p. (Substituting r � 1
in the formula C � 2pr gives us C � 2p.) Thus if we begin at any point P on the unit
circle and travel a distance of 2p units along the perimeter, we return to the same point P.

cos (�s) � cos s � �0.29
 � �(�0.76) � 0.76

 sin (�t) � �sin t

P
≈+¥=1

t

-t

Q

O

y

x

Figure 9
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In other words, arc lengths of t and t � 2p [measured from (1, 0), as usual] yield the
same terminal point on the unit circle. Since the trigonometric functions are defined in
terms of the coordinates of that point P, we obtain the following identities.

These two identities are true for all real numbers t. As you’ll see in the next section,
they provide important information about the graphs of the sine and cosine functions;
the graphs of both functions repeat themselves at intervals of 2p. Similar identities
hold for the other trigonometric functions in their respective domains:

 sec (t � 2p) � sec t cot (t � 2p) � cot t
 csc (t � 2p) � csc t tan (t � 2p) � tan t

 cos(t � 2p ) � cos t
 sin(t � 2p ) � sin t

Periodicity of Sine and Cosine

EXAMPLE 7 Using Periodicity to Find a Value of Sine

Evaluate: .sin 
5p

2

SOLUTION First, simply as a matter of arithmetic, we observe that . Thus in
view of our earlier remarks we have

The preceding set of identities can be generalized as follows. If we start at a point
P on the unit circle and make two complete counterclockwise revolutions, the arc
length we travel is 2p � 2p � 4p. Similarly, for three complete revolutions the
arc length traversed is 3(2p) � 6p. And, in general, if k is any integer, the arc length
for k complete revolutions is 2 k p. (When k is positive, the revolutions are counter-
clockwise; when k is negative, the revolutions are clockwise.) Consequently, we have
the following identities.

For any real number t and any integer k, the following identities hold:

sin(t � 2kp) � sin t and cos(t � 2kp) � cos t

00

sin 
5p

2
� sin 

p

2
� 1

5p�2 � p�2 � 2p

EXAMPLE 8 Using Periodicity to Find a Value of Cosine

Evaluate: cos(�17p).

SOLUTION cos (�17p) � cos (p � 18p) � cos p � �1
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21. sin(t � 2p) � sin t 22. cos(t � 2p) � cos t
(a) t � 5p�3 (a) t � �5p�3
(b) t � �3p�2 (b) t � p

(c) (c)

In Exercises 23 and 24, show that the equation is not an identity
by evaluating both sides using the given value of t and noting
that the results are unequal.

23. cos 2t � 2 cos t; t � p�6 24. sin 2t � 2 sin t; t � p�2
25. If sin t � �3�5 and , compute cos t and tan t.
26. If cos t � 5�13 and , compute sin t and cot t.
27. If and , compute tan t.
28. If and sin s � 0, compute tan s.
29. If tan a� 12�5 and cos a � 0, compute sec a, cos a, and

sin a.
30. If and cos u � 0, compute csc u and sin u.

31. In the expression , make the substitution
, where , and show that the result is 

3 cos u.
32. Make the substitution u � 2 cos u in the expression 

, and simplify the result. (Assume that 
0 � u � p.)

33. In the expression 1�(u2 � 25)3�2, make the substitution
, and show that the result is

(cot3 u)�125.

34. In the expression 1�(x2 � 5)2, replace x by and
show that the result is (cos4 u)�25.

35. In the expression let where 
, and simplify the result.

36. In the expression , let 
, and simplify the result.

37. (a) If sin t � 2�3, find sin(�t).
(b) If sin f� �1�4, find sin(�f).
(c) If cos a� 1�5, find cos(�a).
(d) If cos s � �1�5, find cos(�s).

38. (a) If sin t � 0.35, find sin(�t).
(b) If sin f� �0.47, find sin(�f).
(c) If cos a� 0.21, find cos(�a).
(d) If cos s � �0.56, find cos(�s).

39. If cos t � �1�3, and , compute the following:
(a) sin(�t) � cos(�t) (b) sin2(�t) � cos2(�t)

40. If , compute:
(a) sin s (c) cos s
(b) cos(�s) (d) tan s � tan(�s)

In Exercises 41 and 42, use one of the identities cos(t � 2pk) �
cos t or sin(t � 2p k) � sin t to evaluate each expression.

41. (a) (c)
(b) sin 1p3 � 2p 2

sin 1p2 � 6p 2cos 1p4 � 2p 2

sin (�s) � 3�5, and  3p2 � s � 2p

p
2 � t � p

x � a sec u, where 0 � u � p
2

2x2 � a2�x (a � 0)

0 � u � p�2
 u �17 tan u,1�2u2 � 7,

15 tan u

u � 5 sec u, where 0 � u � p
2

1�24 � u2

0 � u � p
2x � 3 sin u

29 � x2

cot u � �1�13

sec s � �113�2
p�2 � t � psin t �13�4

3p�2 � t � 2p
p � t � 3p�2

t � �13t �119

A
In Exercises 1–8, evaluate each expression (as in Example 1).

1. (a) cos(11p�6) (c) sin(11p�6)
(b) cos(�11p�6) (d) sin(�11p�6)

2. (a) cos(2p�3) (c) sin(2p�3)
(b) cos(�2p�3) (d) sin(�2p�3)

3. (a) cos(p�6) (c) sin(p�6)
(b) cos(�p�6) (d) sin(�p�6)

4. (a) cos(13p�4) (c) sin(13p�4)
(b) cos(�13p�4) (d) sin(�13p�4)

5. (a) cos(5p�4) (c) sin(5p�4)
(b) cos(�5p�4) (d) sin(�5p�4)

6. (a) cos(9p�4) (c) sin(9p�4)
(b) cos(�9p�4) (d) sin(�9p�4)

7. (a) sec(5p�3) (c) tan(5p�3)
(b) csc(�5p�3) (d) cot(�5p�3)

8. (a) sec(7p�4) (c) tan(7p�4)
(b) csc(�7p�4) (d) cot(�7p�4)

9. (a) List four positive real-number values of t for which 
cos t � 0.

(b) List four negative real-number values of t for which
cos t � 0.

10. (a) List four positive real numbers t such that sin t � 1�2.
(b) List four positive real numbers t such that sin t � �1�2.
(c) List four negative real numbers t such that sin t � 1�2.
(d) List four negative real numbers t such that sin t � �1�2.

In Exercises 11–14, use a calculator to evaluate the six trigono-
metric functions using the given real-number input. (Round the
results to two decimal places.)

11. (a) 2.06 (b) �2.06
12. (a) 0.55 (b) �0.55
13. (a) p�6 (b)
14. (a) 1000 (b) 1000 � 2p

In Exercises 15–22, check that both sides of the identity are 
indeed equal for the given values of the variable t. For part (c)
of each problem, use your calculator.

15. sin2 t � cos2 t � 1 16. tan2 t � 1 � sec2 t
(a) t � p�3 (a) t � 3p�4
(b) t � 5p�4 (b) t � �2p�3
(c) t � �53 (c)

17. cot2 t � 1 � csc2 t 18. cos(�t) � cos t
(a) t � �p�6 (a) t � p�6
(b) t � 7p�4 (b) t � �5p�3
(c) t � 0.12 (c) t � �4

19. sin(�t) � �sin t 20. tan(�t) � �tan t
(a) t � 3p�2 (a) t � �4p�3
(b) t � �5p�6 (b) t � p�4
(c) t � 13.24 (c) t � 1000

t �15

p�6 � 2p

EXERCISE SET 8.1
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(i) sin(t � p) � �sin t (iii) cos(t � p) � �cos t
(ii) sin(t � p) � �sin t (iv) cos(t � p) � �cos t

58. Use two of the results in Exercise 57 to verify the iden-
tity tan(t � p) � tan t. (You’ll see the graphical aspect
of this identity in Section 8.5.)

59. In the equation x4 � 6x2y2 � y4 � 32, make the
substitutions

and

and show that the result simplifies to X 4 � Y 4 � 16.
(Hint: Evaluate the trigonometric functions, simplify the
expressions for x and y, take out the common factor, and
then substitute.)

60. Suppose that tan u � 2 and 0 � u � p�2.
(a) Compute sin u and cos u.
(b) Using the values obtained in part (a), make the

substitutions

and

in the expression 7x2 � 8xy � y2, and simplify the
result.

61. In this exercise, we are going to find the minimum value of
the function

(a) Set your calculator in the radian mode and complete
the table. Round the values you obtain to two decimal
places.

t 0.2 0.4 0.6 0.8 1.0 1.2 1.4

f (t)

(b) Of the seven outputs you calculated in part (a), 
which is the smallest? What is the corresponding 
input?

(c) Prove that tan2 t � 9 cot2 t � (tan t � 3 cot t)2 � 6.
(d) Use the identity in part (c) to explain why 

tan2 t � 9 cot2 t 	 6.
(e) The inequality in part (d) tells us that f (t) is never less

than 6. Furthermore, in view of part (c), f (t) will equal
6 when tan t � 3 cot t � 0. From this last equation,
show that tan2 t � 3, and conclude that t � p�3. In
summary, the minimum value of f is 6, and this occurs
when t � p�3. How do these values compare with
your answers in part (b)?

62. Let .
(a) Set your calculator in the radian mode and complete

the table. Round the results to two decimal places.

0 

f( )u

P
2

2P
5

3P
10

P
4

P
5

P
10u

f (u) � sin u cos u 10 
 u 
 p
2 2

0 � t �
p

2
f (t) � tan2 t � 9 cot2 t

y � X sin u � Y cos ux � X cos u � Y sin u

y � X sin 
p

4
� Y cos 

p

4
x � X cos 

p

4
� Y sin 

p

4

42. (a) sin(17p�4) (e) tan(�7p�4)
(b) sin(�17p�4) (f) cos(7p�4)
(c) cos 11p (g)
(d) cos(53p�4) (h)

In Exercises 43–46, use the Pythagorean identities to simplify
the given expressions.

43. 44.

45. 46.

In Exercises 47–54, prove that the equations are identities.

47. csc t � sin t � cot t cos t

48.

49.

50.

51.

52. (tan u)(1 � cot2 u) � (cot u)(1 � tan2 u) � 0
53. (cos a cos b � sin a sin b)(cos a cos b � sin a sin b) �

cos2 a � sin2 b

54.

55. If , evaluate

56. If sec t � (b2 � 1)�(2b) and , find tan t and 
sin t. (Note: b is negative. Why?) You should assume that
b � �1.

B
57. Use the accompanying figure to explain why the follow-

ing four identities are valid. (The identities can be used to
provide an algebraic foundation for the reference-angle
technique that we’ve used to evaluate the trigonometric
functions.)

(-x, -y)

(x, y)

t x

y

p � t � 3p�2

2 sin t � 3 cos t

4 sin t � 9 cos t

sec t � 13�5 and 3p�2 � t � 2p

cot u � tan u � 1 �
cot u

1 � tan u
�

tan u

1 � cot u

sec s � cot s csc s

cos s
� csc2 s sec2 s

1 � tan s

1 � tan s
�

sec2 s � 2 tan s

2 � sec2 s

1

1 � sec s
�

1

1 � sec s
� �2 cot2 s

sin2 t � cos2 t �
1 � cot2 t

1 � cot2 t

csc4 u � cot4 u

csc2 u � cot2 u

sec2 u � tan2 u

1 � cot2 u

sec2 t � 1

tan2 t

sin2 t � cos2 t

tan2 t � 1

csc 12p � p
3 2

sec 1 11p
6 � 2p 2



(b) On the same set of axes, graph the functions 
and sin t. Use a window extending from �p to p in
the x-direction and �1 to 1 in the y-direction. What do
you observe?

67. (a)

x tan x

0.1
0.2
0.3
0.4
0.5

(b) On the same set of axes, graph the functions ,
, and tan x. Use a window extending

from �p to p in the x-direction and �10 to 10 in the
y-direction. What do you observe?

68. (a)

x x2 � x ex sin x

0.1
0.2
0.3
0.4
0.5

(b) On the same set of axes, graph the functions x2 � x,
, and ex sin x. Use a window extending

from �p to p in the x-direction and �10 to 10 in the
y-direction. What do you observe?

69. Figure A on the following page shows two x-y coordinate
systems. (The same unit of length is used on all four axes.)
In the coordinate system on the left, the curve is a portion
of the unit circle

x2 � y2 � 1

and A is the point (1, 0). The points B, C, D, E, and F are
located on the circle according to the information in the
following table.

Arc

Length

Determine the y-coordinates of the points P, Q, R, S, and T.
Give an exact expression for each answer and, where
appropriate, a calculator approximation rounded to three
decimal places. 

5p
12

p
3

p
4

p
6

p
12

AF�AE�AD�AC�AB�

1
3 x3 � x2 � x

1
3 x3 � x2 � x

5
12 x5 � 1

3 x3 � x

1
3 x3 � x

2
15 x5 � 1

3 x3 � x1
3 x3 � x

t � 1
6 t3(b) What is the largest value of f(u) in your table in part (a)?

(c) Show that sin u cos u 
 1�2 for all real numbers u in
the interval . Hint: Use the inequality

[given in Exercise 40(b) in
Section 2.3], with a � sin u and b � cos u.

(d) Does the inequality sin u cos u 
 hold for all real
numbers u?

63. Consider the equation

2 sin2 t � sin t � 2 sin t cos t � cos t

(a) Evaluate each side of the equation when t � p�6.
(b) Evaluate each side of the equation when t � p�4.
(c) Is the given equation an identity?

64. Suppose that

f (t) � (sin t cos t)(2 sin t � 1)(2 cos t � 1)(tan t � 1)

(a) Compute each of the following: f (0), f(p�6), f(p�4),
f (p�3), and f(p�2).

(b) Is the equation f(t) � 0 an identity?

In Section 7.1 we pointed out that one of the advantages in using
radian measure is that many formulas then take on particularly
simple forms. Another reason for using radian measure is that
the trigonometric functions can be closely approximated by very
simple polynomial functions. To see examples of this, complete
the tables in Exercises 65–68. Round (or, for exact values, sim-
ply report) the answers to six decimal places. In Exercises 67
and 68, note that the higher-degree polynomial provides the bet-
ter approximation. Note: The approximating polynomials in
Exercises 65–68 are known as Taylor polynomials, after the
English mathematician Brook Taylor (1685–1731). The theory
of Taylor polynomials is developed in calculus.

65. (a)
t cos t

0.02
0.05
0.1
0.2
0.3

(b) On the same set of axes, graph the functions 
and cos t. Use a window extending from �p to p in
the x-direction and �1 to 1 in the y-direction. What do
you observe?

66. (a)
t sin t

0.02
0.05
0.1
0.2
0.3

t � 1
6 t3

1 � 1
2 t2

1 � 1
2 t 2

1
2

1ab 
 (a � b)�2
0 
 u 
 p�2
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P

Q

R

S
T

A

B

C

D

E
F

12
5π

12
π

3
π

4
π

6
π

y y

xx

8.2 GRAPHS OF THE SINE AND COSINE FUNCTIONS
Our focus in this section is on the sine and cosine functions. As preparation for the
discussion, we want to understand what is meant by the term “periodic function.” By
way of example both of the functions in Figure 1 are periodic. That is, their graphs
display patterns that repeat themselves at regular intervals.

In Figure 1(a) the graph of the function f repeats itself every six units. We say that
the period of f is 6. Similarly, the period of g in Figure 1(b) is 2p. In both cases, no-
tice that the period represents the minimum number of units that we must travel along
the horizontal axis before the graph begins to repeat itself. With these examples in
mind, we can state the definition of a periodic function.

(a) The graph of f

-6 6

6
4
2

12

(b) The graph of g

-π
-4

-2π

π

4

2π

y

x

y

x

Figure 1

Definition A Periodic Function and Its Period

A nonconstant function f is said to be periodic if there is a number p � 0 such that

f(x � p) � f(x)

for all x in the domain of f. The smallest such number p is called the period of f.

We also want to define the term “amplitude” as it applies to periodic functions.
For a function such as g in Figure 1(b), in which the graph is centered about the hor-
izontal axis, the amplitude is simply the maximum height of the graph above the
horizontal axis. Thus the amplitude of g is 4. More generally, we define the amplitude
of any periodic function.

Definition Amplitude

Let f be a periodic function and let m and M denote, respectively, the minimum and
maximum values of the function. Then the amplitude of f is the number

M � m

2

Figure A



For the function g in Figure 1(b) this definition tells us that the amplitude is

which agrees with our previous value. Check for yourself now that

the amplitude of the function in Figure 1(a) is 1.
Periodic functions are used throughout the sciences to analyze or describe a

variety of phenomena ranging from the vibrations of an electron to the variations
in the size of an animal population as it interacts with its environment. Figures 2
through 4 display some examples of periodic functions.

Let us now graph the sine function f (u) � sin u. We are assuming that u is a real
number, so the domain of the sine function is the set of all real numbers. Even before
making any calculations, we can gain strong intuitive insight into how the graph
must look by carrying out the following experiment. After drawing the unit circle, 
x2 � y2 � 1, place your fingertip at the point (1, 0) and then move your finger
counterclockwise around the circle. As you do this, keep track of what happens to the 
y-coordinate of your fingertip. (The y-coordinate is sin u.) If we think of u as the
radian measure of an angle, the y-coordinate of your fingertip is sin u.

4 � (�4)

2
� 4,
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6800 K

5400 K

5.367 days

Temp.

Time
x

Figure 2
The surface temperature of the 
star Delta Cephei is a periodic
function of time. The period
is 5.367 days. The amplitude is 
(6800 � 5400)�2 � 700 degrees
Kelvin.
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Figure 3
Electrical activity of the heart
and blood pressure as periodic
functions of time. The figure
shows (a) a typical ECG
(electrocardiogram) and (b) the
corresponding graph of arterial blood
pressure. [Adapted from Physics for
the Health Sciences by C. R. Nave
and B. C. Nave (Philadelphia:
W. B. Saunders Co., 1975)]
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Figure 5 tells us a great deal about the sine function: where the function is in-
creasing and decreasing, where the graph crosses the x-axis, and where the high and
low points of the graph occur. Furthermore, since at u � 2p we’ve returned to our
starting point (1, 0), additional counterclockwise trips around the unit circle will just

(a) The sound wave generated by a tuning fork vibrating at 440 vibrations per second
(On the piano, this note corresponds to the first A above middle C.)

(b) The sound wave generated by a tuning fork vibrating at 880 vibrations per second
[This note is an A one octave above that in part (a).]

(c) The sound wave generated by simultaneously striking the tuning forks in
parts (a) and (b)

Figure 4
Sound waves.

The sound wave generated by a note
played on the bamboo flute is a
periodic function. The sound wave
is recorded on an oscilloscope.
(Photograph by Professor Vern
Ostdiek)



result in repetitions of the pattern established in Figure 5. This insight can be used to
prove that the period of the function y � sin u is indeed 2p. (In Exercise 64, at the
end of this section, we ask you to complete the explanation that the cosine function
has period .)

As informative as Figure 5 is, however, there is not enough information there to
tell us the precise shape of the required graph. For instance, all three of the curves in
Figure 6 fit the specifications described in Figure 5.

2p

546 CHAPTER 8 Graphs of the Trigonometric Functions

sin ¨

¨

(a) As ¨ increases from 0 to π/2,
the y-coordinate (sin ¨)
increases from 0 to 1.

1

sin ¨

¨

(b) As ¨ increases from π/2 to π,
the y-coordinate decreases
from 1 back down to 0.

1

sin ¨

¨

(c) As ¨ increases from π to
3π/2, the y-coordinate
decreases from 0 to -1.

-1 -1

sin ¨

¨

(d) As ¨ increases from 3π/2 to 2π,
the y-coordinate increases from
-1 back up to 0.

2
π

2
π π

2
π π

2
3π

2
3π

2
π π 2π

Figure 5

y

¨

1

-1

y

¨

1

-1

y

¨

1

-1
2
π π

2
3π 2π

2
π π

2
3π 2π

2
π π

2
3π

2π

Figure 6

Now let’s set up a table so that we can accurately sketch the graph of y � sin u.
Since the sine function is periodic (as we’ve just observed) with period 2p, our table
need contain only values of u between 0 and 2p, as shown in Table 1. This will es-
tablish the basic pattern for the graph.
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In plotting the points obtained from Table 1, we use the approximation
Rather than approximating p, however, we mark off units on the hori-

zontal axis in terms of p. The resulting graph is shown in Figure 7. By continuing
this same pattern to the left and right, we obtain the complete graph of f (u) � sin u,
as indicated in Figure 8.

13�2 � 0.87.

TABLE 1

U 0 p 2p

sin U 0 1 0 �1 0� 

1

2
� 

13

2
� 

13

2
� 

1

2

1

2

13

2

13

2

1

2

11p

6

5p

3

3p

2

4p

3

7p

6

5p

6

2p

3

p

2

p

3

p

6

f(¨)

¨

1

1 period
2π

Amplitude
of 1

f(¨)=sin ¨, 0≤¨≤2π

0

-1

6
π π

3
π

2
π

2
3π 2π

Figure 7

Before going on to analyze the sine function or to study the graphs of the other
trigonometric functions, we’re going to make a slight change in the notation we’ve
been using. To conform with common usage, we will use x instead of u on the hori-
zontal axis, and we will use y for the vertical axis. The sine function is then written
simply as y � sin x, where the real number x denotes the radian measure of an angle
or, equivalently, the length of the corresponding arc on the unit circle. For reference
we redraw Figures 7 and 8 using this familiar x-y notation, as shown in Figure 9.

You should memorize the graph of the sine curve in Figure 9(b) so that you can
sketch it without first setting up a table. Of course, once you know the shape and
the location of the basic cycle shown in Figure 9(a), you automatically know the
graph of the full sine curve in Figure 9(b).

Note: The graph of y � sin x on an interval of length 2p, the period of the sine
function, is called a cycle of the graph of y � sin x.

f(¨)

¨

1
-2π

-1

1 period
2π

f(¨)=sin ¨

4π2π

Figure 8



We can use the graphs in Figure 9 to help us list some of the key properties of the
sine function.
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y

x

1

-1

y

x

1

-12

y=sin x, 0≤x≤2π

(a) The basic cycle of y=sin x

π π
2

3π 2π

Amplitude
of 1

Period
2π

(b) The period of y=sin x is 2π

π 2π-2π

Figure 9

PROPERTY SUMMARY The Sine Function: y � sin x

1. The domain of the sine function is the set of all real numbers. The range of the
sine function is the closed interval [�1, 1], and we have

�1 
 sin x 
 1, for all x

2. The sine function is an odd periodic function with period 2p. The amplitude
is 1.

3. The graph of y � sin x consists of repetitions, over the entire domain, of the
basic sine wave shown in Figure 10. The basic sine wave crosses the x-axis at
the beginning, middle, and end of the basic cycle. The curve reaches its highest
point one-quarter of the way through the basic cycle and its lowest point three-
quarters of the way through the basic cycle.

4. Sine is an odd function; so the graph of y � sin x is symmetric about the origin.

y

x

1

-1

y=sin x, 0≤x≤2π

π π 2π
2

3π
2

1
4 period

1
2 period

3
4 period

1 period

Figure 10
The basic sine wave.
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EXAMPLE 1 Finding Coordinates of Turning Points and Intercepts of the Graph of y � sin x

Figure 11 shows a portion of the graph of y � sin x.

(a) What are the coordinates of the three turning points A, B, and C? Here, and in
part (b), report the answers both in terms of p and as calculator approximations
rounded to three decimal places.

(b) What are the x-intercepts at D and E?

y

C A B

D

E
x

Figure 11

SOLUTION (a) From Figure 10 (which you should also memorize) we know that the coordinates
of the point A are (p�2, 1). Therefore since the period of the sine function is 2p,
the coordinates of B and C are as follows:

As you should now check for yourself, the calculator approximations
here are

A(1.571, 1) B(7.854, 1) C(�4.712, 1)

(b) From Figure 10 we also know the x-coordinate at D; it is p. Since the point E is
2p units to the right of D, the x-coordinate of E is p� 2p� 3p. Using a calcu-
lator, we have

x-intercept at D: 3.142
x-intercept at E: 9.425

We could obtain the graph of the cosine function by setting up a table, just as we
did with the sine function. A more interesting and informative way to proceed, how-
ever, is to use the identity

(1)

(Exercise 63 at the end of this section outlines a geometric proof of this identity.
Also, after studying Section 9.1, you’ll see a simple way to prove this identity alge-
braically.) From our work on graphing functions in Chapter 3, we can interpret equa-
tion (1) geometrically. Equation (1) tells us that the graph of y � cos x is obtained by
translating the sine curve p�2 units to the left. The result is shown in Figure 12(a).
Figure 12(b) displays two complete cycles of the cosine curve.

As with the sine function, you should memorize the graph and the basic features
of the cosine function, which are summarized in the box that follows.

cos x � sin ax �
p

2
b

 Coordinates of C: ap
2

� 2p, 1 b  or  a� 

3p

2
, 1 b

 Coordinates of B: ap
2

� 2p, 1 b  or  a 5p

2
, 1 b



In the next example we use a graph to estimate roots of equations involving the
cosine function. We also use a calculator to obtain more accurate results. As you’ll
see, the calculator portion of the work involves more than just button pushing. You’ll
need to use the reference-angle concept, and you’ll need to apply the following prop-
erty of inverse functions (from Section 3.6).

f �1( f (x)) � x, for every x in the domain of f

550 CHAPTER 8 Graphs of the Trigonometric Functions

y

x

-1

y

x

-1

)(

Period 2π

Amplitude
of 1

y=sin x
y=sin =cos xx+

4π2π

(a)

(b)

(0, 1)

y=cos x, -2π≤x≤2π

π π-π 2π-2π
2

3π
2

π
2

1

-2π

Figure 12

PROPERTY SUMMARY The Cosine Function: y � cos x

1. The domain of the cosine function is the set of all real numbers.
The range of the cosine function is the closed interval [�1, 1],
and we have

�1 
 cos x 
 1, for all x

2. The cosine function is an even periodic function with period
2p. The amplitude is 1.

3. The graph of y � cos x consists of repetitions, over the entire
domain, of the basic cosine wave shown in Figure 13. The basic
cosine wave crosses the x-axis one-quarter of the way and again
three-quarters of the way through the basic cycle. The curve
reaches its highest point at the beginning and end of the basic
cycle and reaches its lowest point half-way through the basic
cycle.

4. Cosine is an even function; so the graph of y � cos x is symmetric
about the y-axis.

y

x

1

-1

y=cos x, 0≤x≤2π

π π 2π
2

3π
2

1
4

period
1
2 period

3
4 period

1 period

Figure 13
The basic cosine wave.
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EXAMPLE 2 Finding Approximate Solutions of cos x � �0.8 Visually and with a Calculator

(a) Use the graph in Figure 14 to estimate a root of the equation

cos x � 0.8

in the interval 0 
 x 
 p�2.
(b) Use a calculator to obtain a more accurate value for the root in part (a). Round

the answer to three decimal places.
(c) Use the reference-angle concept to find all solutions to the equation cos x � 0.8

in the interval 0 
 x 
 2p. Round the answer to three decimal places.
(d) Use the reference-angle concept and a calculator to find all solutions of the equa-

tion cos x � �0.8 within the interval 0 
 x 
 2p. Again, round the answer to
three decimal places.

SOLUTION (a) In Figure 14, look at the point where the horizontal line y � 0.8 intersects the
curve y � cos x. The x-coordinate of this point, call it x1 , is the root we are look-
ing for. (Why?) Using Figure 14, we estimate that x1 is approximately halfway
between x � 0.6 and x � 0.7. So our estimate for the root is x1 � 0.65.

(b) We can determine the root x1 by using the inverse cosine function. We will
discuss the inverse cosine function in detail in Chapter 9. Just as the notation f �1

denotes the inverse of a function f, so the notation cos�1 is often used to denote
the inverse cosine function. Starting with the equation cos x1 � 0.8, we apply the
inverse cosine to both sides to obtain

cos�1(cos x1) � cos�1(0.8)

and therefore

x1 � cos�1(0.8)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.51.41.31.21.11.00.90.80.70.60.50.40.30.20.1
π
2

y

xFigure 14
y � cos x, 0 
 x 
 p�2



We use a calculator, set in the radian mode, to evaluate the expression cos�1(0.8).
The keystrokes are as follows. (If these keystrokes don’t work on your calcula-
tor, be sure to check the user’s manual.)

Expression Keystrokes Output

cos�1(0.8) 0.8 0.644

Note that the value 0.644 is consistent with the estimate x1 � 0.65 that was
obtained graphically in part (a).

(c) To find another root of the equation, we use the fact that the cosine is positive in
Quadrant IV as well as in Quadrant 1. The root x1 � 0.644 is the radian measure
of a first-quadrant angle (because 0.644 � p�2). As is indicated in Figure 15, we
let x2 denote the radian measure of the fourth-quadrant angle that has x1 for its
reference angle. Then we have cos x2 � cos x1 � 0.8. That is, x2 is also a solution
of the equation cos x � 0.8. The calculations for x2 now run as follows:

using a calculator (radian mode) and rounding 
to three decimal places

We have now determined two roots of the equation cos x � 0.8 in the interval
0 
 x 
 2p. There are no other roots in this interval because the cosine is nega-
tive in Quadrants II and III.

(d) In part (b) we determined a first-quadrant angle x1 satisfying the equation 
cos x � 0.8. Now we want solutions for the equation cos x � �0.8. Since the
cosine is negative in Quadrants II and III, we therefore want angles in Quadrants II
and III that have x1 for the reference angle. As is indicated in Figure 16, these
angles are p � x1 and p � x1 . Computing, we have

p � x1 � p � cos�1(0.8) � 2.498

and

p � x1 � p � cos�1(0.8) � 3.785

 � 5.640
 � 2p � cos�1

 (0.8)
 x2 � 2p � x1

ENTERcos2nd
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cos x™=cos x¡

x™=2π-x¡
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Figure 15
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(a)
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π+x¡

≈+¥=1

(b)

y

x

y

x

Figure 16
The reference angle for both 
p � x1 and p � x1 is x1.

In summary, the equation cos x � �0.8 has two roots in the closed inter-
val [0, 2p]. These roots are approximately 2.498 and 3.785. In Figure 17,



8.2 Graphs of the Sine and Cosine Functions 553

which summarizes this example, these two roots are denoted by x3 and x4 ,
respectively.

In part (b) of the example just concluded, we used a calculator to find a number
x such that cos x � 0.8. As was indicated in the example, the function that outputs
such a number is called the inverse cosine function. There are two standard abbrevi-
ations for the names of this function, and arccos (read arc cos). In the next
chapter we will analyze the inverse cosine function in some detail. But for our pre-
sent purposes, you need only know the following definition:

cos�1(x) denotes the unique number in the interval [0, p] whose cosine is x.

As examples of this notation, we have

because cos and 

because although the number 
is not in the required interval [0, p]

because cos and 

as we saw in Example 2

In Example 2, Figure 17 tells us that the number x1 is in the interval [0, p] 
but x2 is not. That is why the keystrokes on page 552 gave us the value for x1

rather than x2 . (We then used the reference-angle or reference-number concept to 
obtain x2 .)

For some of the exercises in this section you will need to use the inverse sine
function, rather than the inverse cosine function that we have just been discussing.
For reference, we define both functions in the box that follows. (These functions are
discussed at greater length in the next chapter.)

 cos�1
 (0.8) � 0.644

0 � 2p
3 � p,2p

3 � � 
1
2 cos�1

 a�
1

2
b �

2p

3

5p
3cos 5p3 � 1

2, cos�1
 a 1

2
b �

5p

3

0 � p
3 � pp

3 � 1
2 cos�1

 a 1

2
b �

p

3

cos�1 u

y

x

1
y=cos x, 0≤x≤2π

0

-1
-0.8

0.8

π
2
π

2
3π 2πx™x¡

x¢x£

Figure 17
Summary of Example 2.
The roots of the equation 
cos x � 0.8 in the interval [0, 2p]
are x1 � 0.644 and x2 � 5.640. The
roots of the equation cos x � �0.8
in the interval [0, 2p] are x3 � 2.498
and x4 � 3.785.
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Definition Inverse Cosine Function and Inverse Sine Function

Name of
Function Abbreviation Definition

Inverse cosine cos� 1 cos� 1(x) is the (unique) number in the
interval [0, p] whose cosine is x.

Inverse sine sin�1 sin�1(x) is the (unique) number in the
interval 3 4 whose sine is x.�p2, p2

4.

5.

6. y

x
5 10 15 20
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In Exercises 1–8, specify the period and amplitude for each
function.
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EXERCISE SET 8.2
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23. J 24. H
25. A 26. G
27. E 28. D
29. I 30. F
31. B 32. C

In Exercises 33–36, state whether the function y � cos x is
increasing or decreasing on the given interval.

33. 0 � x � p 34. 6p � x � 7p
35. 36.

In Exercises 37–39, use a graphing utility to obtain several
different views of y � sin x and y � cos x. If you are using a
graphics calculator, make sure it is set for the radian mode
(rather than the degree mode).

37. (a) Graph y � sin x using a viewing rectangle that
extends from �7 to 7 in the x-direction and from �3
to 3 in the y-direction. Note that there is an x-intercept
between 3 and 4. Using your knowledge of the sine
function (and not the graphing utility), what is the
exact value for this x-intercept?

(b) Refer to the graph that you obtained in part (a). How
many turning points do you see? Note that one of the
turning points occurs when x is between 1 and 2. What
is the exact x-coordinate for this turning point?

(c) Add the graph of y � cos x to your picture. How many
turning points do you see for y � cos x? Note that
one of the turning points occurs between x � 6 and
x � 7. What is the exact x-coordinate for this turning
point?

(d) Your picture in part (c) indicates that the graphs of 
y � sin x and y � cos x are just translates of one an-
other. By what distance would we have to shift the
graph of y � sin x to the left for it to coincide with
the graph of y � cos x?

(e) Most graphing utilities have an option that will let 
you mark off the units on the x-axis in terms of p.
Check your instruction manual if necessary, and then,
for the picture that you obtained in part (c), change the
x-axis units to multiples of p�2. Use the resulting
picture to confirm your answers to the questions in
parts (a) through (c) regarding x-intercepts and 
turning points.

38. This exercise presents an interesting fact about the graph
of y � sin x that is useful in numerical work.

� 5p�2 � x � �2p� p�2 � x � 0

y

x

C H

GED

I

JB
F

A

7.

8.

In Exercises 9–18, refer to the graph of y � sin x in the follow-
ing figure. Specify the coordinates of the indicated points. Give
the x-coordinates both in terms of p and as calculator approxi-
mations rounded to three decimal places.

9. C 10. F
11. G 12. A
13. B 14. J
15. D 16. H
17. E 18. I

In Exercises 19–22, state whether the function y � sin x is
increasing or decreasing on the given interval. (The terms
increasing and decreasing are explained in Section 3.3.)

19.
20.
21.
22.

In Exercises 23–32, refer to the graph of y � cos x in the fol-
lowing figure. Specify the coordinates of the indicated points.
Give the x-coordinates both in terms of p and as calculator
approximations rounded to three decimal places.

� 5p�2 � x � �2p
5p�2 � x � 7p�2
� p�2 � x � p�2
3p�2 � x � 2p
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In Exercises 40–45 you are given an equation of the form

cos x � k where k 	 0

(a) Use the graph in Figure 14 (on page 551) to estimate (to
the nearest 0.05) a root of the equation within the interval
0 
 x 
 p�2.

(b) Use a calculator to obtain a more accurate value for the
root in part (a). Round the answer to four decimal 
places.

(c) Use the reference-angle concept and a calculator to find
another root of the equation (within the interval
0 
 x 
 2p).

(d) Use the reference-angle concept and a calculator to find all
solutions of the equation cos x � �k within the interval
0 
 x 
 2p. Again, round the answers to four decimal
places.

40. cos x � 0.7 41. cos x � 0.9
42. cos x � 0.4 43. cos x � 0.3
44. cos x � 0.6 45. cos x � 0.55

In Exercises 46–51 you are given an equation of the form

sin x � k where k � 0

(a) Use the graph in Figure A on the next page to estimate (to
the nearest 0.05) a root of the equation within the interval
0 
 x 
 p�2.

(b) Use a calculator (with the inverse sine function) to obtain 
a more accurate value for the root in part (a). Round the 
answer to four decimal places.

(c) Use the reference-angle concept and a calculator to
find another root of the equation (within the interval
0 
 x 
 2p). Round the answer to four decimal places.

(d) Use the reference-angle concept and a calculator to find
all solutions of the equation sin x � �k within the interval
0 
 x 
 2p. Round the answer to four decimal places.

46. sin x � 0.1 47. sin x � 0.6
48. sin x � 0.4 49. sin x � 0.2
50. sin x � 0.85 51. sin x � 0.7
52. In Example 2 of this section we determined two roots

x1 and x2 of the equation cos x � 0.8 in the interval 
0 
 x 
 2p. The values were x1 � 0.644 and x2 � 5.640.
Check these results graphically as follows. Using a
viewing rectangle extending from x � 0 to x � 2p, graph
the curve y � cos x along with the horizontal line y � 0.8.
Then use the graphing utility (with repeated zooms) to
estimate the x-coordinates of the two points where the
curve y � cos x intersects the line y � 0.8. What do you
observe?

53. In Example 2(d) we determined two roots x3 and x4

of the equation cos x � �0.8 in the interval 0 
 x 
 2p.
The values were x3 � 2.498 and x4 � 3.785. Use the 
procedure indicated in Exercise 52 to check these results
graphically.

(a) In the standard viewing rectangle, graph the function 
y � sin x along with the line y � x. Notice that the two
graphs appear to be virtually identical in the vicinity of
the origin. Actually, the only point that the two graphs
have in common is (0, 0), but very near the origin, the
distance between the two graphs is less than the thick-
ness of the lines or dots that your graphing utility
draws. To underscore this fact, zoom in on the origin
several times. What do you observe?

(b) The work in part (a) can be summarized as follows.
(Recall that the symbol � means “is approximately
equal to.”)

To see numerical evidence that supports this result,
complete the following tables.

x 0.253 0.0253 0.00253 0.000253

sin x

x � sin x

x �0.253 �0.0253 �0.00253 �0.000253

sin x

x � sin x

(c) The numerical evidence in part (b) suggests that for x
positive and close to 0, sin x � x. State the correspond-
ing result for x negative and close to 0. Now on the
same set of axes draw, without a calculator, the graphs
of y � x and y �sin x.

39. (a) Graph the function y � cos x in the standard viewing
rectangle, and look at the arch-shaped portion of the
curve between �p�2 and p�2. This portion of the
cosine curve has the general shape of a parabola. Could
it actually be a portion of a parabola? Go on to part (b).

(b) Calculus shows that the answer to the question raised
in part (a) is “no.” But calculus also shows that there is
a parabola, y � 1 � 0.5x2, that closely resembles the
cosine curve in the vicinity of x � 0. To see this, graph
the parabola y � 1 � 0.5x2 and the curve y � cos x in
the standard viewing rectangle. Describe, in a complete
sentence or two, what you observe.

(c) Complete the following table to see numerical evidence
that strongly supports your observations in part (b).

x 1 0.5 0.1 0.01 0.001

cos x

1 � 0.5x2

sin x � x when 0 x 0 is close to 0
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(b) For which x-values in the interval 0 
 x 
 2p is 
sin x � cos x?

59. Specify an open interval in which both the sine and cosine
functions are decreasing.

60. Specify an open interval in which the sine function is 
decreasing but the cosine function is increasing.

As a prerequisite for Exercises 61 and 62, you need to have stud-
ied Section 4.3 on iteration and population growth. In particu-
lar, you should be familiar with Example 2 in online Section 4.3.

61. As in Example 2 in Section 4.3, suppose a farmer has a
fishpond with a maximum population size of 500, and sup-
pose that initially the pond is stocked with 50 fish. Unlike
Example 2, however, assume that the growth equation is

f (x) � cos x (0 
 x 
 1)

Finally, as in Example 2, assume that the time intervals are
breeding seasons.
(a) Use the iteration diagram on the next page and your

calculator to complete the following table. For the values
obtained from the graph, estimate to the nearest 0.05
(or closer, if it seems appropriate). For the calculator 
values, round the final answers to five decimal places. 
As usual, check to see that the calculator results are 
consistent with the estimates obtained from the graph.

x1 x2 x3 x4 x5 x6 x7

From Graph

From Calculator

In Exercises 54 and 55, use graphs (as in Example 2) to esti-
mate the roots of each equation for 0 
 x 
 2p. Zoom in close
enough on the intersection points until you are sure about the
first two decimal places in each root. Then use a calculator, as
in Example 2, to determine more accurate values for the roots.
Round the calculator values to four decimal places.

54. (a) cos x � 0.351 55. (a) sin x � 0.687
(b) cos x � �0.351 (b) sin x � �0.687

B
In Exercises 56–60 refer to the following figure, which shows the
graphs of y � sin x and y � cos x on the closed interval [0, 2p].

56. (a) When the value of sin x is a maximum, what is the
corresponding value of cos x?

(b) When the value of cos x is a maximum, what is the
corresponding value of sin x?

57. Follow Exercise 56, but replace the word “maximum” with
“minimum.”

58. (a) For which x-values in the interval 0 
 x 
 2p is 
sin x � cos x?

1

0

-1

2
π π

2
3π 2π

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.51.41.31.21.11.00.90.80.70.60.50.40.30.20.1
π
2

Figure A
y � sin x, 0 
 x 
 p�2



(b) What do you think would be the long-term behavior of
this population? Hint: Think graphically. Is there a
fixed point for the function g(x) � sin x?

63. In the text we used the identity cos u � sin(u� p�2) in
obtaining the graph of y � cos x from that of y � sin x.
In this exercise you’ll derive this identity. Refer to the
figure below. (Although the figure shows the angle of
radian measure u in the first quadrant, the proof can be
easily carried over for the other quadrants as well.)
(a) What are the coordinates of C?
(b) Show that ^ AOB and ^COD are congruent.
(c) Use the results in parts (a) and (b) to show that the

coordinates of A are (�sin u, cos u).
(d) Since the radian measure of DOA is , 

the coordinates of A (by definition) are
Now explain why

and 

64. It is clear from the definition of the cosine function that 2
is a period. Show that it’s the period by showing that no
smaller positive number is a period. Hint: Let p be a pos-
itive number and consider the equation cos(t � p) � cos t.
Let t � 0 and explain why p � 2 is the smallest positive
solution of the resulting equation. 

p

p

Angle AOC=

¨

≈+¥=1

¨+

A

C

O D

B

2
π

2
π

y

x

�sin u � cos 1u � p
2 2 .cos u � sin 1u � p

2 2
1cos 1u � p

2 2 , sin 1u � p
2 2 2 .

u � p�2�

(b) Use the calculator results in part (a) to complete the
following table.

n 0 1 2 3 4 5 6 7

Number of Fish After 50
n Breeding Seasons

(c) As indicated in the figure accompanying part (a), the
iteration process is spiraling in on a fixed point between
0.7 and 0.8. Using calculus (or simply a calculator), it
can be shown that this fixed point is 0.7391 (rounded to
four decimal places). What is the corresponding equi-
librium population?

62. Suppose that in Exercise 61, instead of f (x) � cos x, we use
g(x) � sin x (0 
 x 
 1) for the growth function.
(a) Complete a table similar to the one in Exercise 61(b)

(assuming x0 � 50).
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PROJECT Making Waves

The cosine function is the prototypical example of a function that is both even
and periodic with domain all real numbers. Similarly, the sine function is the
prototypical example of a function that is both odd and periodic with domain all
real numbers. In many applications, especially in physics and engineering, even
and odd periodic phenomena are often represented by more basic waves. In this
project we examine square waves, sawtooth waves, and triangular waves.

We begin with a square wave. Consider the function f defined by f(x) � 1,
for 0 � x � 1, graphed in Figure A. We want to extend this function to be an
odd and periodic function with domain all real numbers. First we extend this
function to be an odd function. We get

f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

y

x

1

1

Figure A
A graph of f (x) � 1
for 0 � x � 1.
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This extended version of f is an odd function, since its domain, (�1, 0) � (0, 1),
is symmetric about zero and for each x in its domain f (�x) � �f (x). For ex-
ample, if , then and . Notice the graph of
this extended version of f, shown in Figure B, is symmetric about the origin as
is true for any odd function.

Next, we extend again to obtain a periodic version of this odd function.
We have

and f (x � 2) � f (x)

for all noninteger real numbers x. Note that f is still an odd function and is also
a periodic function with period 2. Its graph is shown in Figure C.

To complete our task, we define f (x) � 0 for all integers x. So we obtain

f(x � 2) � f(x), for noninteger real number x,

and f (x) � 0 for integer x.
This final version of f is an odd periodic function of period 2 with domain

all real numbers. Its graph, shown in Figure D, is called a square wave.

f (x) � b 1, 0 � x � 1

�1, �1 � x � 0
,

f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

f 1�1
2 2 � �1 � �f 1 12 2f 1 12 2 � 1x � 1

2

y

x

1

1-1

-1

Figure B
A graph of 

.f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

y

x

1

1 2 3 4-1-2-3-4

-1

Figure C
A graph of 

and f (x � 2) � f (x) for noninteger real numbers x.f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

y

x

1

1 2 3 4-1-2-3-4

-1

Figure D
A graph of

, f (x) � 0 for integer x, and f(x � 2) � f (x).f (x) � b 1, 0 � x � 1

�1, �1 � x � 0
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The next two problems guide you through the construction of a sawtooth wave
and a triangular wave.

1. Sawtooth wave: Consider the function g defined by g(x) � x for 0 
 x � 1.
(a) Graph y � g(x).
(b) Extend g to be an odd function for �1 � x � 1. Graph this odd ver-

sion of g.
(c) Extend the odd version of g to be a periodic function with period 2.

Graph this odd and periodic version of g.
(d) Finally extend the odd and periodic version of g to have domain all

real numbers. Graph this odd and periodic version of g with domain all
real numbers. This graph is called a sawtooth wave.

2. Triangular wave: Consider the function h defined by h(x) � x for 0 
 x 
 1.
(a) Graph y � h(x).
(b) Extend h to be an even function for �1 
 x 
 1. Graph this even

version of h.
(c) Extend the even version of h to be a periodic function with period 2.

Notice the domain is all real numbers. Graph this even and periodic
version of h with domain all real numbers. This graph is called a
triangular wave. 

8.3 GRAPHS OF y � A sin(Bx � C) AND y � A cos(Bx � C)
The graphs of y � sin x and y � cos x are the building blocks we need for graphing
functions of the form

y � A sin(Bx � C ) and y � A cos(Bx � C )

As a first example, the graph of y � 2 sin x is that of y � sin x stretched vertically by
a factor of 2. As is indicated in Figure 1, this changes the amplitude from 1 to 2, but
it does not affect the period, which remains 2p. As a second example, Figure 2 shows

y

x

y=sin x
1

y=2 sin x

π

2

-1

-2

2
π

2
3π

2π

Figure 1
The amplitude of y � 2 sin x is 2.
Both y � sin x and y � 2 sin x have
a period of 2p.

y

x

1 y=cos x

y= cos x
π

-1

-
2
π

2
1

2
1

2
1

2
3π 2π

Figure 2
The amplitude of is 
Both y � cos x and have
a period of 2p.

y � 1
2 cos x

1
2 .y � 1

2 cos x
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EXAMPLE 1 Graphing a Function of the Form y � A sin x

Graph the function y � �2 sin x over one period. On which interval(s) is the func-
tion decreasing?

the graphs of y � cos x and Note that the amplitude of is and
the period is, again, 2p. More generally, graphs of functions of the form y � A sin x
and y � A cos x always have an amplitude of and a period of 2p.

Note: The complete graph of y � 2 sin x is obtained by repeating, over the entire
domain, the basic cycle shown in Figure 1. The complete graph for is ob-
tained similarly.

y � 1
2 cos x

0 A 0
1
2y � 1

2 cos xy � 1
2 cos x.

EXAMPLE 2 Graphing a Function of the Form y � cos Bx

Graph the function y � cos 3x over one period.

SOLUTION We know that the cosine curve y � cos x begins its basic pattern when x � 0 and
completes that pattern when x � 2p. Thus y � cos 3x will begin its basic pattern
when 3x � 0, and it will complete that pattern when 3x � 2p. From the equation
3x � 0 we conclude that x � 0, and from the equation 3x � 2p we conclude that 
x � 2p�3. Thus the graph of y � cos 3x begins its basic pattern at x � 0 and
completes the pattern at x � 2p�3. This tells us that the period is 2p�3. Alternatively,
the graph of y � cos 3x is that of y � cos x compressed horizontally by a factor of .
Next, in preparation for drawing the graph, we divide the period into quarters, as
shown in Figure 4(a). In Figure 4(b) we’ve plotted the points with x-coordinates

1
3

y=-2 sin x

y=2 sin x

π

y

x

1

2

-2

-1
2
π

2
3π 2π

Figure 3

y

x

1 y=cos 3x

(c)(b)(a) The period of y=cos 3x
is 2π/3; the amplitude is 1.
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π

2
π

6
π

3
2π

Figure 4

SOLUTION In Section 3.4 we saw that the graph of y � �f (x) is obtained from that of 
y � f(x) by reflection about the x-axis. Thus we need only take the graph of y � 2 sin x
from Figure 1 and reflect it about the x-axis; see Figure 3. Note that both functions
have an amplitude of 2 and a period of 2p. From the graph in Figure 3, we can see
that the function y � �2 sin x is decreasing on the intervals and 

We have just seen that functions of the form y � A sin x and y � A cos x have an
amplitude of and a period of 2p. The next two examples show how to analyze
functions of the form y � A sin Bx and y � A cos Bx (B � 0). As you’ll see, these
functions have an amplitude of and a period of 2p�B.0A 0

0A 0

1 3p2 , 2p 2 .10, p2 2
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EXAMPLE 3 Graphing Functions of the Form y � A cos Bx

Graph each function over one period:

(a) (b) (c) y �
1

2
 cos (�3x)y � �

1

2
 cos 3x;y �

1

2
 cos 3x;

SOLUTION (a) In Example 2 we graphed y � cos 3x. To obtain the graph of from
that of y � cos 3x, we multiply each y-coordinate on the graph of y � cos 3x
by 1�2. As is indicated in Figure 5(a), this changes the amplitude from 1 to 1�2,
but it does not affect the period, which remains 2p�3.

(b) The graph of is obtained by reflecting the graph of 
about the x-axis, as is indicated in Figure 5(b). Both functions have a period of
2p�3 and an amplitude of 1�2.

(c) First note that has the form y � A cos Bx where B � 0. Using
the opposite-angle identity for cosine, we have . So
the graph of is the same as that of in Figure 5(a).y � 1

2 cos 3xy � 1
2 cos (�3x)

y � 1
2 cos (�3x) � 1

2 cos 3x
y � 1

2 cos (�3x)

y � 1
2 cos 3xy � �1

2 cos 3x

y � 1
2 cos 3x

shown in Figure 4(a). (We’ve also plotted the point on the curve corresponding to
x � 0, where the basic pattern is to begin.) From Figure 4(b) we can see that the am-
plitude is going to be 1. Now, with the points in Figure 4(b) as a guide, we can sketch
one cycle of y � cos 3x, as shown in Figure 4(c).
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1 y=cos 3x

y= cos 3x

(a)

-1

y

x

1

y= cos 3x

y=- cos 3x

cos 3x is 2π/3;(b) The period of y=-
the amplitude is 1/2.

-1

-

Figure 5

Before looking at more examples, let’s take a moment to summarize where we
are. Our work in Examples 2 and 3(a) shows how to graph The same
technique that we used in those examples can be applied to any function of the form
y � A cos Bx or y � A sin Bx. where B � 0. If B � 0, we first use an opposite-angle
identity as in Example 3(c) to transform the given equation to one with a positive
coefficient for x. As indicated in the box that follows, for both functions the ampli-
tude is and the period is 2p�B. (Exercise 56 asks you to use the method of
Example 2 to show that the period is indeed 2p�B.)

0A 0

y � 1
2 cos 3x.
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y

x

(9,-4)

Figure 6

EXAMPLE 4 Using a Graph of y � A sin Bx to Determine A and B

In Figure 6 a function of the form y � A sin Bx (B � 0) is graphed for one period.
Determine the values of A and B.

SOLUTION From the figure we see that the amplitude is 4. Also from the figure we know that
three-fourths of the period is 9, so

In summary, we have A � 4 and B � p�6; the equation of the curve is 
y � 4 sin(px�6).

 B �
p

6

 
p

2B
� 3

 
3

4
 a 2p

B
b � 9

PROPERTY SUMMARY The Graphs of (a) y � A sin Bx and (b) y � A cos Bx (B � 0)

B
2π

B
2π

y=A cos Bx (B>0)

y

x

Amplitude | A|

Period

(b)

B
2π

B
2π

y

x

y=A sin Bx (B>0)

Amplitude | A|

Period

(a)



Now note that equation (1) is obtained from y � 4 sin 2x by replacing x with
Thus the graph of equation (1) is obtained by translating the graph 

of y � 4 sin 2x a distance of p�3 units to the right. Figure 7(a) shows the graph of 
y � 4 sin 2x over one period. By translating this graph p�3 units to the right, we
obtain the required graph, as shown in Figure 7(b). Note that the translated graph has
the same amplitude and period as the original graph. Also, as a matter of arithmetic,
you should check for yourself that each of the x-coordinates shown in Figure 7(b) is
obtained simply by adding p�3 to a corresponding x-coordinate in Figure 7(a). For
example, in Figure 7(a) the cycle ends at x � p; in Figure 7(b) the cycle ends at
p � p�3 � 4p�3.

x � p�3.
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EXAMPLE 5 Graphing a Function of the Form y � A sin(Bx � C )

Graph the function over one period.y � 4 sin a2x �
2p

3
b

SOLUTION The technique here is to factor the quantity within parentheses so that the coefficient
of x is 1. We’ll then be able to graph the function using a simple translation, as in
Chapter 3. We have

(1) � 4 sin c2 ax �
p

3
b d

 y � 4 sin a2x �
2p

3
b

Note: In Figure 7(b) the labeled x-coordinates can be found by using a common
denominator of 12 and then reducing.

In Example 5 we used translation to graph the function In
particular, we translated the graph of y � 4 sin 2x so that the starting point of the
basic cycle was shifted from x � 0 to x � p�3. The number p�3 in this case is called
the phase shift of the function. In the box that follows, we define phase shift, and we
generalize the results of the graphing technique used in Example 5. 

y � 4 sin 12x � 2p
3 2 .
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(a) y=4 sin 2x
      Period:   2π/B=π
Amplitude:   | A|=4

(b) y=4 sin (2x-
The graph is obtained by translating the
graph of y=4 sin 2x a distance of π/3
units to the right. The period and
amplitude are still π and 4, respectively.
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PROPERTY SUMMARY y � A sin(Bx � C) and y � A cos(Bx � C) (B � 0)

The graphs of y � A sin(Bx � C ) and y � A cos(Bx � C ) are obtained by horizontally translating the graphs of 
y � A sin Bx and y � A cos Bx, respectively, so that the starting point of the basic cycle is shifted from x � 0 
to x � C�B. The number C�B is called the phase shift for each of the functions y � A sin(Bx � C ) and 
y � A cos(Bx � C ). The amplitude and the period for these functions are and 2p�B, respectively.

Note: When C � 0, these graphs are just the graphs of y � A sin Bx and y � A cos Bx.

B
2π

B
C

y=A cos(Bx-C)

y

x

Amplitude | A|

Period

B
C

B
2π

Amplitude | A|

y

x

y=A sin(Bx-C)

Period

0 A 0

EXAMPLE 6 Finding Amplitude, Period, and Phase Shift

Specify the amplitude, period, and phase shift for each function:

(a) f (x) � 3 cos(4x � 5); (b) g(x) � �2 cos apx �
2p

3
b .

SOLUTION (a) By comparing the given equation with y � A cos(Bx � C ), we see that A � 3, 
B � 4, and C � 5. Consequently, we have

For purposes of review, let’s also calculate the phase shift without explicitly re-
lying on the expression C�B. In the equation f (x) � 3 cos(4x � 5), we can factor
a 4 out of the parentheses to obtain

This last equation tells us that we can obtain the graph of f by translating the graph
of y � 3 cos 4x. In particular, the translation shifts the starting point of the basic cycle
from x � 0 to x � 5�4. The number 5�4 is the phase shift, as obtained previously.

f (x) � 3 cos c4 ax �
5

4
b d

 phase shift �
C

B
�

5

4

 period �
2p

B
�

2p

4
�
p

2

 amplitude � 0A 0 � 3



(b) We have A � �2, B � p, and C � �2p�3, and therefore

 phase shift �
C

B
�

�2p�3
p

� � 

2

3

 period �
2p

B
�

2p
p

� 2

 amplitude � 0A 0 � 2

566 CHAPTER 8 Graphs of the Trigonometric Functions

EXAMPLE 7 Graphing a Function of the Form y � A cos (Bx � C )

Graph the following function over one period:

g(x) � �2 cos apx �
2p

3
b

SOLUTION Our strategy is first to obtain the graph of The graph of g can
then be obtained by a reflection about the x-axis. We have

y � 2 cos apx �
2p

3
b � 2 cos cp a x �

2

3
b d

y � 2 cos 1px � 2p
3 2 .
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y=2 cos πx

(a) y=2 cos πx
Amplitude:
      Period: 2π/B=2

| A|=2
    

y=2 cos(πx+ )

)(b) y=2 cos(πx+
Amplitude:   2
       Period:   2
Phase shift:  -2/3

--

y=2 cos(πx+ )

y=-2 cos(πx+ )
)

yyy

xxx

(c) y=-2 cos(πx+
Amplitude:   2
       Period:   2
Phase shift:  -2/3
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2

-2

-

Figure 8

Now the graph of this last equation is obtained by translating the graph of 
y � 2 cos px a distance of 2�3 unit to the left. Figures 8(a) and 8(b) show the graphs
of y � 2 cos px and By reflecting the graph of this last equa-
tion about the x-axis, we obtain the graph of g. See the red graph in 8(c).

In previous chapters we’ve used several types of functions to model real-life data
sets: Linear and quadratic functions were used in Chapter 4; exponential and log
functions were used in Chapter 5. The functions that we’ve graphed in this section
are often used in modeling data where a variable repeats itself at regular or near-
regular intervals. In the next example, we use a trigonometric function of the form 
y � A sin(Bt � C) � D to approximate average monthly temperatures.

y � 2 cos 3p 1x � 2
3 2 4 .
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EXAMPLE 8 Modeling Data Using a Trigonometric Function

Table 1 shows the average monthly temperatures for Minneapolis–St. Paul, and
Figure 9 shows a scatter plot based on these data. The numbers on the horizontal
t-axis indicate months: January is t � 1, February is t � 2, and so on; the next
January is t � 13. Find a periodic function of the form y � A sin(Bt � C) � D whose
values approximate the monthly temperatures in Table 1.

TABLE 1 Average Monthly Temperatures for Minneapolis–St. Paul 
(The monthly averages were computed using daily maximum temperatures.)

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Temperature (�F) 20.7 26.6 39.2 56.5 69.4 78.8 84.0 80.7 70.7 58.8 41.0 25.5

Source: Robert B. Thomas, The Old Farmers’Almanac, 1996 (Dublin, NH: Yankee Publishing, Inc., 1995)
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Figure 9

SOLUTION We need to compute the four constants A, B, C, and D in the equation 
y � A sin(Bt � C) � D. We’ll do this in four steps, one step for each required
constant.

Step 1 Computing A For the amplitude A, we’ll use the equation A � (M � m)�2
(from Section 8.2). According to Table 1, the maximum average tempera-
ture is M � 84.0� and the minimum is m � 20.7�. Therefore

Step 2 Computing B We know from our work in this section that the period is
given by 2p�B. So, assuming that the period of the average temperature
function is 12 months, we have 2p�B � 12, and therefore

12B � 2p or B �

Step 3 Computing C Now that we know B, we can compute C by considering
the phase shift C�B. If there were no phase shift, a maximum for the sine
wave would occur one-quarter of the way through the period at 
which is 3. As you can see in Figure 9, however, a maximum occurs when

t � 1
4 (12),

p

6

A �
M � m

2
�

84.0 � 20.7

2
� 31.65



t � 7, four units to the right of t � 3. Thus, the phase shift here is 4 and
we have

� 4 or C � 4B

Step 3 Substituting B � p�6 in this last equation then yields

Step 4 Computing D Substituting the values we’ve found for A, B, and C in the
equation y � A sin(Bt � C) � D yields

(2)

Step 4 One way to determine a value for D is to use the data pair t � 1, y � 20.7
from Table 1 and substitute in equation (2). This yields

using sin(�p�2) � �1

Step 4 and consequently, D � 20.7 � 31.65 � 52.35.

In summary now, our function that approximates the average monthly tempera-
tures is

Figure 10(a) shows the graph of this equation along with the scatter plot from Figure 9.
As you can see, the curve does a fairly good job in approximating the values from the
scatter plot. Remark: More advanced techniques from the field of statistics yield a
slightly different sine wave that does an even better job in modeling the temperature
data. See Figure 10(b). 

y � 31.65 sinap
6

 t �
2p

3
b � 52.35

 � �31.65 � D

 � 31.65 sina� 

p

2
b � D

 20.7 � 31.65 sinap
6

�
2p

3
b � D

y � 31.65 sinap
6

 t �
2p

3
b � D

C � 4a  

p

6
b �

2p

3

C

B
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Figure 10(a)
The scatter plot for average monthly temperatures along with the graph of the function obtained in Example 8,

.y � 31.65 sin 1p6  t � 2p
3 2 � 52.35
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Figure 10(b)
The scatter plot for average monthly temperatures along with the graph of the function 
y � 31.139 sin(0.521t � 2.086) � 54.157. This function was obtained using the SinReg 
(sine regression) algorithm on the Texas Instruments TI-83 Graphing Calculator.

In Exercises 16–31, determine the amplitude, period, and phase
shift for the given function. Graph the function over one period.
Indicate the x-intercepts and the coordinates of the highest and
lowest points on the graph.

16. 17.
18. 19. G(x) � �sin(x � 2)
20. 21.
22. y � cos(2x � p) 23.
24. 25. y � �2 sin(px � p)
26. 27. y � cos(x � 1)
28. 29.
30. 31.

For Exercises 32–39:

(a) Using pencil and paper, not a graphing utility, determine
the amplitude, period, and (where appropriate) phase shift
for each function.

(b) Use a graphing utility to graph each function for two com-
plete cycles. [In choosing an appropriate viewing rectangle,
you will need to use the information obtained in part (a).]

(c) Use the graphing utility to estimate the coordinates of the
highest and the lowest points on the graph.

(d) Use the information obtained in part (a) to specify the exact
values for the coordinates that you estimated in part (c).

32. y � �2.5 cos(3x � 4)
33. y � �2.5 cos(3px � 4)
34.
35.
36. y � sin(0.5x � 0.75)
37. y � sin(0.5x � 0.75)
38. y � 0.02 cos(100px � 4p)
39. y � 0.02 cos(0.01px � 4p)

y � �2.5 cos (1
3 px � 4)

y � �2.5 cos 1 13 x � 4 2

y � 3 cos 1 2x
3 � p

6 2y � 1 � cos 12x � p
3 2

y � cos 12x � p
3 2 � 1y � 1

2 sin 1px
2 � p2 2

y � 4 cos 13x � p
4 2

y � 3 sin 1 12x � p
6 2

y � cos 1x � p
2 2

y � sin 13x � p
2 2y � sin 12x � p

2 2
F(x) � �cos 1x � p

4 2
g(x) � cos 1x � p

3 2f (x) � sin 1x � p
6 2

A
In Exercises 1–8, graph the functions for one period. In each
case, specify the amplitude, period, x-intercepts, and interval(s)
on which the function is increasing.

1. (a) y � 2 sin x 2. (a) y � 3 sin x
(b) y � �sin 2x (b) y � sin 3x

3. (a) y � cos 2x 4. (a) y � cos (x�2)
(b) y � 2 cos 2x (b)

5. (a) y � 3 sin(px�2) 6. (a) y � 2 sin px
(b) y � �3 sin(px�2) (b) y � �2 sin px

7. (a) y � cos 2 px 8. (a) y � �2 cos(x�4)
(b) y � �4 cos 2 px (b) y � �2 cos(px�4)

9. Set the viewing rectangle so that it extends from 0 to 2p
in the x-direction and from �4 to 4 in the y-direction. On
the same set of axes, graph the four functions y � sin x,
y � 2 sin x, y � 3 sin x, and y � 4 sin x. What is the ampli-
tude in each case? What is the period?

10. (a) Without using a graphing utility, specify the amplitude
and the period for each of the following four functions:
y � cos x, y � 2 cos x, y � 3 cos x, and y � 4 cos x.

(b) Check your answers in part (a) by graphing the four func-
tions. (Use the viewing rectangle specified in Exercise 1.)

11. (a) Without using a graphing utility, specify the amplitude
and the period for y � 2 sin px and for y � sin 2px.

(b) Check your answers in part (a) by graphing the two func-
tions. (Use a viewing rectangle that extends from 0 to 2
in the x-direction and from � 2 to 2 in the y-direction.)

In Exercises 12–15, graph the function for one period. Specify
the amplitude, period, x-intercepts, and interval(s) on which the
function is increasing.

12. y � 1 � sin 2x 13. y � sin(x�2) � 2
14. y � 1 � cos(px�3) 15. y � �2 � 2 cos 3px

y � �1
2 cos (x�2)

EXERCISE SET 8.3



45.

In each of Exercises 46–50, you are given a table of average
monthly temperatures and a scatter plot based on the data. Use
the methods of Example 8 to find a periodic function of the form 
y � A sin(Bt � C) � D whose values approximate the monthly
temperatures. The data in these exercises, as well as in Exer-
cise 51, are from the Global Historical Climatology Network, 
and can be accessed on the Internet through the following web-
site created by Robert Hoare: http://www.worldclimate.com/.

46.

Average Monthly Temperatures for Phoenix, 
Arizona (based on daily maximums)

Month Temperature (�F)

Jan. 65.5
Feb. 70.2
Mar. 75.2
Apr. 84.6
May 93.2
June 102.7
July 105.1
Aug. 103.1
Sept. 98.6
Oct. 88.2
Nov. 74.7
Dec. 66.4
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y

x

(4,-π)

In Exercises 40–45, determine whether the equation for the
graph has the form y � A sin Bx or y � A cos Bx (with B � 0)
and then find the values of A and B.

40.

41.

42.

43.

44. y

x

(5π, 4)

y

x

(5, 1)

y

x

(1, 0)

3

3
π

y

x

( , 1.5)

y

x

(3π,-2)
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49.

Average Monthly Temperatures 
for Beira, Mozambique

Month Temperature (�F)

Jan. 81.3
Feb. 81.3
Mar. 80.1
Apr. 77.5
May 73.0
June 69.4
July 68.7
Aug. 70.2
Sept. 73.4
Oct. 76.6
Nov. 79.0
Dec. 80.4

Hint: In Step 3 of the solution, since both Jan. (t � 1) and
Feb. (t � 2) yield the same maximum temperature, use 
t � 1.5 for the corresponding input.

50. The following two scatter plots and table display average
temperature data for two locations with very different 
climates: Dar es Salaam is south of the Equator, in
Tanzania, on the Indian Ocean; Tiksi is in Russia, far 
north of the Arctic Circle, on the Arctic Ocean.
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47.

Average Monthly Temperatures for Bangor, Maine

Month Temperature (�F)

Jan. 18.0
Feb. 20.8
Mar. 30.7
Apr. 42.6
May 54.1
June 62.8
July 68.5
Aug. 67.3
Sept. 58.1
Oct. 47.1
Nov. 36.9
Dec. 23.7

48.

Average Monthly Temperatures for Cape Town, South Africa

Month Temperature (�F)

Jan. 69.8
Feb. 70.0
Mar. 67.8
Apr. 63.1
May 58.8
June 55.6
July 54.3
Aug. 55.4
Sept. 57.7
Oct. 61.2
Nov. 64.8
Dec. 67.8
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B
52. In Section 9.2 you’ll see the identity 

Use this identity to graph the function y � sin2 x for one
period.

53. In Section 9.2 you’ll see the identity 
Use this identity to graph the function y � cos2 x for one
period.

54. In Section 9.2 we derive the identity sin 2x � 2 sin x cos x.
Use this to graph y � sin x cos x for one period.

55. In Section 9.2 we derive the identity 
cos 2x � cos2 x � sin2 x. Use this to graph 
y � cos2 x � sin2 x for one period.

56. In Example 2 we showed that the period of y � cos 3x is
2p�3. Use the same method to show that the period of 
y � A cos Bx, with , is 2p�B.

57. Adapt the method of Example 6 to determine the amplitude,
period, and phase shift for the given function. Graph the
function over one period indicating the x-intercepts and the
coordinates of the highest and lowest points on the graph.
(a) y � 3cos(p � 2x) (b)

58. Let F(x) � sin x, G(x) � x2, and H(x) � x3. Which, if
any, of the following four composite functions have graphs
that do not go below the x-axis? First, try to answer without
using a graphing utility, then use the graphing utility to
check yourself. (You will learn more this way than if you
were to draw the graphs immediately.)

y � G(F(x)) y � F(G(x))

y � F(H(x)) y � H(F(x))

59. (a) Graph the two functions y � sin x and y � sin(sin x)
in the standard viewing rectangle. Then for a closer
look, switch to a viewing rectangle extending from 
0 to 2p in the x-direction and from �1 to 1 in the 
y-direction. Compare the two graphs; write out your
observations in complete sentences.

(b) Use the graphing utility to estimate the amplitude of
the function y � sin(sin x).

(c) Using your knowledge of the sine function, explain
why the amplitude of the function y � sin(sin x) is the
number sin 1. Then evaluate sin 1 and use the result to
check your approximation in part (b).

60. Let 
(a) Graph the function f using a viewing rectangle that 

extends from �5 to 5 in both the x- and the 
y-directions. Note that the resulting graph resembles 
a sine curve.

(b) Change the viewing rectangle so that x extends from
0 to 50 and y extends from �10 to 10. Describe what
you see. Is the function periodic?

(c) Add the graphs of the two functions and
to your picture in part (b). Describe what

you see.
61. For this exercise, use the standard viewing rectangle.

(a) Graph the function y � ln(sin2 x).
(b) Graph the function y � ln(1 � cos x) � ln(1 � cos x).
(c) Explain why the two graphs are identical. 

y � �ex�20
y � ex�20

f (x) � ex�20
 (sin x).

y � 5
2 sin (�4px � p)

B � 0

cos2 x � 1
2 � 1

2 cos 2x.

sin2 x � 1
2 � 1

2 cos 2x.

Average Monthly Temperatures for Dar es Salaam, 
Tanzania, and Tiksi, Russia

Temperature (�F) Temperature (�F)
Month Dar es Salaam Tiksi

Jan. 81.3 �24.2
Feb. 81.7 �18.7
Mar. 80.8 �13.4
Apr. 79.0 �1.4
May 77.2 �19.9
June 75.0 �37.8
July 73.9 �43.9
Aug. 74.3 �43.9
Sept. 75.2 �34.2
Oct. 77.0 �11.8
Nov. 79.2 �10.4
Dec. 81.1 �18.5

(a) Use the methods of Example 8 to find a periodic function
of the form y � A sin(Bt � C) � D whose values ap-
proximate the monthly temperatures for Dar es Salaam.

(b) Follow part (a) for Tiksi.
(c) By looking at the scatter plot for temperatures in Dar

es Salaam, say if the average rate of change of temper-
ature over the interval from January through July is
positive or negative.

(d) Use the table of values to compute the average rate of
change of temperature in Dar es Salaam over the inter-
val from January through July. Be sure to include units
as part of your answer, and check that the sign is con-
sistent with your response in part (c).

(e) By looking at the scatter plot for temperatures in Tiksi,
say if the average rate of change of temperature over the
interval from January through July is positive or negative.

(f) Use the table of values to compute the average rate of
change of temperature in Tiksi over the interval from
January through July. As before, be sure to include
units as part of your answer, and check that the sign is
consistent with your response in part (e).

51. The following scatter plot displays average monthly
temperatures for Death Valley, California. (The averages
were obtained using daily maximums.) Use the methods
of Example 8 to find a periodic function of the form 
y � A sin(Bt � C) � D whose values approximate the
monthly temperatures. (No table is given; you will need to
rely on the scatter plot and make estimates.)
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PROJECT Fourier Series

In the project at the end of Section 8.2 we discussed square waves, sawtooth
waves, and triangular waves. In this project we use the idea of superposition of
waves to find a “trigonometric” way to describe a square wave.

We start with the square wave given by y � f (x) where

f (x) � 0 for all integers x and f (x � 2) � f (x)

This square wave is shown in Figure A.

f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

y

x

1

1 2 3 4-1-2-3-4

-1

Figure A

A graph of , f (x) � 0 for integer x, and f(x � 2) � f (x).f (x) � b 1, 0 � x � 1

�1, �1 � x � 0

Now, f is an odd function, periodic with period 2, and has domain all real
numbers. That f is periodic suggests it might be related to more familiar peri-
odic waves, for example, sine waves and cosine waves. Since f is an odd func-
tion we might be able to describe f by using only sine waves. And since the
domain of f is all real numbers, our description of f using sine waves should
coincide with f for most, if not all, real numbers.

It turns out that f can be expressed by adding together infinitely many sine
waves. In fact, using methods from calculus, it can be shown that

(*)

for all real numbers x. The symbol “p” means there are infinitely many more
terms that in this case follow the given pattern. So we are expressing f (x) as an
infinite series, a sum of infinitely many terms. (While we will study some
infinite series of numbers in Chapter 14, it should be noted that the right-hand
side of equation (*) is an infinite series of functions.) The particular infinite
series on the right-hand side of equation (*) is called the Fourier series for the
function f. Notice that the Fourier series for f consists of sine waves of differ-
ent periods, but that 2, the period of the given square wave, is an integer mul-
tiple of each period. When we superimpose or add up the waves, we obtain the
function f of period 2.

Figure B shows the graphs of the first three partial sums of the Fourier se-
ries for f on the closed interval [�3, 3] along with the graph of the square wave.

Notice that as we add more and more terms of the Fourier series, we appear
to obtain better approximations to f.

f (x) �
4
p

 sin px �
4

3p
 sin 3px �

4

5p
 sin 5px �

4

7p
 sin 7px � p
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It turns out that equation (*) is valid for all real numbers x, that is, for each
real number x, the Fourier series for f yields the function value f (x). This fact
leads us to a famous formula for p discovered by Gottfried Wilhelm Leibniz
(ca. 1700), who along with Isaac Newton is credited with the invention of cal-
culus. Using equation (*), let x � 1�2. Then for the square wave f (1�2) � 1.
And the Fourier series with x � 1�2 becomes

So

or

Multiplying each side of this last equation by p�4, we obtain Leibniz’s for-
mula for p,

(It should be noted that Leibniz’s formula is an inefficient way to calculate p.
Also Leibniz derived his formula by a much different method than the one just
presented.)

For many years Fourier series were commonly used by mathematicians,
chiefly Daniel Bernoulli and Leonhard Euler, to analyze wave phenomena,
among other things. But, it was not until the publication of Joseph Fourier’s clas-
sic treatise, Théorie Analytique de la Chlaleur (“The Analytic Theory of Heat”) in
1822 that the series that now bear his name were used in a systematic way to solve
problems in the theory and application of heat conduction. Much of the develop-
ment of mathematics in the nineteenth and well into the twentieth century was dri-
ven by the desire to place Fourier’s methods on a rigorous foundation.

Fourier’s idea that almost all important functions that arise in mathemati-
cal models of real-world phenomena can be represented as a superposition of
sine and cosine functions has been of central importance in many physical the-
ories and engineering applications. Modern optics, information theory, com-
munication technology, celestial mechanics (and yes, rocket science), geophysics,
meteorology, analysis of structures, and sound systems all rely on Fourier’s
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idea. Terms such as “frequency response” and “bandwidth” from the mathe-
matical theory of Fourier analysis have entered into common usage. The “bass”
and “treble” controls on your sound system directly adjust the amplitudes of
terms in a Fourier series.

Exercises

1. (a) Look at equation (*) on page 573. What are the next three terms of the
Fourier series for f ?

(b) On the same set of axes, for 0 
 x 
 1, graph carefully by hand the
equations

and compare with Figure B.
(c) Using a graphing utility, graph each of the first seven partial sums.

(Figure B shows graphs of the first three.) For each graph, use the
zoom facility to estimate the slope near the origin and the deviation of
the bump at x � 1�2 from the square wave value, one. As the number
of terms of the partial sums increase, what happens to the slopes near
the origin and to the deviation of the bump?

(d) Compare your graph of the seventh partial sum with the graphs in
Figure B. What do you notice?

2. Consider the triangular wave defined by

and g(x � 2) � g(x) for all real numbers x

(a) Graph y � g(x).
(b) Is g an even function, an odd function, or neither even nor odd? Is g a pe-

riodic function? If yes what is the period of g? What is the domain of g?
(c) The Fourier series of g should consist only of cosine waves. Why?

What is true about the periods of all of the cosine waves?
(d) It can be shown that

for all real numbers x. Graph the fourth partial sum of the Fourier
series for g, and compare your graph with the triangular wave. The fit
of the fourth partial sum of this series to the triangular wave should be
comparable to the fit of the third partial sum in Figure B to the square
wave. Which do you think gives a better fit? Why?

(e) In the series in part (d), let x � 1 and obtain a well-known formula
due to Daniel Bernoulli (among others).
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3. In this exercise we sketch a (nonrigorous) derivation of one of the most
celebrated formulas of eighteenth-century mathematics, discovered by
Euler in 1736.
(a) Start with the series

and regroup it into a sum of two series, one, S1 , with odd denomina-
tors and the other, S2 , with even denominators. So S � S1 � S2 .

(b) Note that S1 � p2�8 by Exercise 2(e). Also note that S2 � (1�4)S. So 
S � (p2�8) � (1�4)S.

(c) Solve the last equation for S to obtain S � p2�6, that is,

which is Euler’s formula for the sum of the squares of the reciprocals
of the positive integers. 

p2

6
� 1 �

1

22 �
1

32 �
1

42 �
1

52 �
1

62 � p

S � 1 �
1

22 �
1

32 �
1

42 �
1

52 �
1

62 � p

8.4 SIMPLE HARMONIC MOTION
Amongst the most important classes of motions which we have to consider in Natural
Philosophy, there is one, namely, Harmonic Motion, which is of such immense use, not
only in ordinary kinetics, but in the theories of sound, light, heat, etc., that we make
no apology for entering here into considerable detail regarding it. —Sir William

Thomson (Lord Kelvin) and Peter Tait in Treatise on Natural Philosophy (Cambridge University

Press, 1879)

Figure 1 shows a mass attached to a spring hung from the ceiling. If we pull the mass
down a bit and then release it, the resulting up-and-down oscillations are referred to
as simple harmonic motion. (We are neglecting the effects of friction and air resis-
tance here.) Other examples of simple harmonic motion (or combinations of simple
harmonic motions) include the vibration of a string or of a column of air in a musical
instrument and the vibration of an atom in a solid. Furthermore, the mathematics used
in describing or analyzing these mechanical oscillations is the same as that used in
studying electromagnetic oscillations (such as radio waves, microwaves, or the alter-
nating electrical current in your house).

To analyze the motion of a mass attached to a spring, we set up a coordinate sys-
tem as shown in Figure 1, in which the equilibrium position of the mass (the position
before we pull it down) corresponds to s � 0. Now suppose that we pull the mass
down to s � �2 and release it. If we take a sequence of “snapshots” at one-second
time intervals, we will obtain the type of result shown in Figure 2.

The curve in Figure 2 shows how the coordinate s of the mass changes over
time. As you can see, the curve resembles the graphs of y � A sin(Bx � C ) and 
y � A cos(Bx � C ) that we considered in the previous section. Indeed, using calcu-
lus, it can be shown that simple harmonic motion is characterized by either one of
these types of equations. For example, for the simple harmonic motion depicted in

s-axis

-3

-2

-1

0

1

2

3

Figure 1
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Figure 2, it can be shown that an appropriate equation relating the position s and the
time t is

(1)

Using equation (1) and Figure 2, we can give a physical interpretation to the term
period. From Figure 2 we see that it takes 6 seconds for the mass to return to its start-
ing position at s � �2. Then in the next 6 seconds, the same motion is repeated, and
so on. We say that the period of the motion is 6 seconds. That is, it takes 6 seconds for
the motion to go through one complete cycle. Notice that this agrees numerically with
the period we calculate using equation (1) and the expression 2p�B from Section 8.3:

In simple harmonic motion the frequency f is the number of complete cycles
per unit time, and it is given by

For instance, for the motion in Figure 2 we have

cycles per second

We mention in passing that 1 cycle per second (cps) is known as a hertz, abbrevi-
ated Hz. This unit is named after the German physicist Heinrich Hertz (1857–1894),
who was the first person to produce and study radio waves.* Although you might not
have realized it, you have probably heard this unit mentioned (implicitly, at least)
many times on the radio. For example, when a radio station advertises itself as “98.1
on the FM dial,” this refers to radio waves with a frequency of 98.1 million hertz.

From Figure 2 we can see that the mass moves back and forth between s � �2 and
s � 2. In other words, the maximum displacement of the mass from its equilibrium
position (at s � 0) is two units. We say that the amplitude of the motion is two units.
Notice that this agrees with the amplitude we would calculate using equation (1).

f �
1

period
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1
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Figure 2
Snapshots of a mass–
spring system taken at 
1-sec intervals.

*For background and details, see the interesting article “Heinrich Hertz” by Philip and Emily
Morrison in the December 1957 issue of Scientific American.
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EXAMPLE 1 A Spring–Mass System

A mass on a smooth tabletop is attached to a spring, as shown in Figure 3. The coordi-
nate system has been chosen so that the equilibrium position of the mass corresponds
to s � 0. Assume that the mass moves in simple harmonic motion described by

where s is in centimeters and t is in seconds.

s � 5 cos 
pt

4

SOLUTION (a) Using the techniques developed in Section 8.3, we obtain the graph shown in
Figure 4. From the graph (or from the given equation) we have

 frequency �
1

8
 cycles/sec

 period � 8 sec
 amplitude � 5 cm

(a) Graph the function s � 5 cos(pt�4) over the interval 0 
 t 
 16. Specify the am-
plitude, the period, and the frequency of the motion.

(b) Use the graph to determine the times in this interval at which the mass is farthest
from the origin.

(c) When during this interval of time is the mass passing through the equilibrium
position?

s-axis
-1 0 1 2 3 4 5

Figure 3

s (cm)

t (sec)
2 4 6 8 10 12 14 16

5

-5

Figure 4
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(b) The distance of the mass from the origin is given by . According to Figure 4,
the maximum value of is 5, and this occurs when t � 0 sec, 4 sec, 8 sec, 12 sec,
and 16 sec.

(c) We are given that the equilibrium position of the mass is s � 0. From Figure 4
we see that s is zero when t � 2 sec, 6 sec, 10 sec, and 14 sec.

0 s 0 0 s 0

(e) When during the interval of time 0 
 t 
 24 is the
mass moving to the left? Hint: The mass is moving
to the left when the s-coordinate is decreasing. Use the
graph to see when s is decreasing.

In Exercises 3 and 4, suppose that we have a spring–mass
system, as shown in Figure 1 on page 576.

3. Assume that the simple harmonic motion is described by
the equation s � �3 cos(pt�3), where s is in feet, t is in
seconds, and the equilibrium position of the mass is s � 0.
(a) Specify the amplitude, period, and frequency for this

simple harmonic motion, and sketch the graph of the
function s � �3 cos(pt�3) over the interval 0 
 t 
 12.

(b) When during the interval of time 0 
 t 
 12 is the
mass moving upward? Hint: The mass is moving
upward when the s-coordinate is increasing. Use the
graph to see when s is increasing.

(c) When during the interval of time 0 
 t 
 12 is the
mass moving downward? Hint: The mass is moving
downward when the s-coordinate is decreasing. Use
the graph to see when s is decreasing.

(d) For this harmonic motion it can be shown (using calcu-
lus) that the velocity v of the mass is given by

v � p sin 

where t is in seconds and v is in feet per second. Graph
this velocity function over the interval 0 
 t 
 12.

(e) Use your graph of the velocity function from part (d) to
find the times during this interval when the velocity is
zero. At these times, where is the mass? (That is, what
are the s-coordinates?)

(f) Use your graph of the velocity function to find the
times when the velocity is maximum. Where is the
mass at these times?

(g) Use your graph of the velocity function to find the
times when the velocity is minimum. Where is the
mass at these times?

(h) On the same set of axes, graph the velocity function
v � p sin(pt�3) and the position function 
s � �3 cos(pt�3) for 0 
 t 
 12.

pt

3

A
For Exercises 1 and 2, suppose that we have a spring–mass
system as shown in Figure 3 on page 578.

1. Assume that the simple harmonic motion is described by
the equation s � 4 cos(pt�2), where s is in centimeters and
t is in seconds.
(a) Specify the s-coordinate of the mass at each of the

following times: t � 0 sec, 0.5 sec, 1 sec, and 2 sec.
(One of these coordinates will involve a radical sign;
for this case, use a calculator and round the final
answer to two decimal places.)

(b) Find the amplitude, the period, and the frequency of
this motion. Sketch the graph of s � 4 cos(pt�2) over
the interval 0 
 t 
 8.

(c) Use your graph to determine the times in this interval
at which the mass is farthest from the origin.

(d) When during the interval of time 0 
 t 
 8 is the mass
passing through the origin?

(e) When during the interval of time 0 
 t 
 8 is the mass
moving to the right? Hint: The mass is moving to the
right when the s-coordinate is increasing. Use the
graph to see when s is increasing.

2. Assume that the simple harmonic motion is described by
the equation s � �6 cos(pt�6), where s is in centimeters
and t is in seconds.
(a) Complete the table. (For coordinates that involve radi-

cal signs, use a calculator and round the result to two
decimal places.)

t (sec) 1 2 3 4 5 6 7 8 9 10 11 12

s (cm)

(b) Find the amplitude, period, and frequency of this
motion. Sketch the graph of s � �6 cos(pt�6) over
the interval 0 
 t 
 24.

(c) Use your graph to determine the times in this interval at
which the mass is farthest from the equilibrium position.

(d) When during the interval of time 0 
 t 
 24 is the
mass passing through the origin?

EXERCISE SET 8.4



where L is the length of the pendulum, g is a constant
(the acceleration due to gravity), and t is the time in
seconds.

Figure A

(a) What are the amplitude, the period, and the fre-
quency for the motion defined by the equation

Assume that t is in seconds, 
L is in meters, and g is in m/sec2.

(b) Use your results in part (a) to answer these two 
questions. Does the period of the pendulum depend 
on the amplitude? Does the period depend on the 
length L?

(c) Graph the function for two com-
plete cycles beginning at t � 0 and using the following
values for the constants:

u0 � 0.1 radian L � 1 m g � 9.8 m/sec2

(d) For which values of t during these two cycles is the
weight moving to the right? Hint: The weight is
moving to the right when u is increasing; use your
graph in part (c) to see when this occurs.

(e) The velocity V of the weight as it oscillates back and
forth is given by

where V is in m/sec. Graph this function for two com-
plete cycles using the values of the constants given in
part (c).

(f) At which times during these two cycles is the velocity
maximum? What is the corresponding value of u in
each case?

(g) At which times during these two cycles is the velocity
minimum? What is the corresponding value of u in
each case?

(h) At which times during these two cycles is the velocity
zero? What is the corresponding value of u in each
case?

7. Refer to Figure B. Suppose that the point P travels counter-
clockwise around the unit circle at a constant angular speed
of p�3 radians/sec. Assume that at time t � 0 sec, the loca-
tion of P is (1, 0).

V � �u02g�L sin 1 t2g�L 2

u � u0 cos 1 t2g�L 2

u � u0 cos 1 t2g�L 2?

¨
L

4. Assume that the simple harmonic motion is described by
the equation s � 4 cos(2t�3), where s is in feet, t is in sec-
onds, and the equilibrium position of the mass is s � 0.
(a) Specify the amplitude, period, and frequency for this

simple harmonic motion, and sketch the graph of the
function s � 4 cos(2t�3) over the interval 0 
 t 
 6p.

(b) When during the interval of time 0 
 t 
 6p is the
mass moving upward? Hint: The mass is moving
upward when the s-coordinate is increasing. Use the
graph to see when s is increasing.

(c) When during the interval of time 0 
 t 
 6p is the
mass moving downward? Hint: The mass is moving
downward when the s-coordinate is decreasing. Use
the graph to see when s is decreasing.

(d) For this harmonic motion, it can be shown (using
calculus) that the velocity v of the mass is given by

where t is in seconds and v is in
ft/sec. Graph this velocity function over the interval
0 
 t 
 6p.

(e) Use your graph of the velocity function from part (d) to
find the times during this interval when the velocity is
zero. At these times, where is the mass? (That is, what
are the s-coordinates?)

(f) Use your graph of the velocity function to find the
times when the velocity is maximum. Where is the
mass at these times?

(g) Use your graph of the velocity function to find the
times when the velocity is minimum. Where is the
mass at these times?

5. The voltage in a household electrical outlet is given by

V � 170 cos(120pt)

where V is measured in volts and t in seconds.
(a) Specify the amplitude and the frequency for this

oscillation.
(b) Graph the function V � 170 cos(120pt) for two

complete cycles beginning at t � 0.
(c) For which values of t in part (b) is the voltage maximum?

B
6. Figure A shows a simple pendulum consisting of a string

with a weight attached at one end and the other end sus-
pended from a fixed point. As indicated in the figure, the
angle between the vertical and the pendulum is denoted by
u (where u is in radians). Suppose that we pull the pendu-
lum out from the equilibrium position (where u � 0) to a
position u� u0 . Now we release the pendulum so that it
swings back and forth. Then (neglecting friction and as-
suming that u0 is a small angle), it can be shown that the
angle u at time t is very closely approximated by

u � u0 cos 1 t2g�L 2

v � �8
3 sin (2t�3),

580 CHAPTER 8 Graphs of the Trigonometric Functions
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(e) The x-coordinate of Q is always equal to cos u. Why?
(f) If you look back at your table in part (a), you’ll see

that the relation between u and t is u � pt�3. Thus
the x-coordinate of Q at time t is given by

x � cos 

This tells us that as the point P moves around the circle
at a constant angular speed, the point Q oscillates in
simple harmonic motion along the x-axis. Graph this
function for two complete cycles, beginning at t � 0.
Specify the amplitude, the period, and the frequency
for the motion.

(g) Using calculus, it can be shown that the velocity of the
point Q at time t is given by

Graph this function for two complete cycles, beginning
at t � 0.

(h) Use the graph in part (g) to determine the times (during
the first two cycles) when the velocity of the point Q is
zero. What are the corresponding x-coordinates of Q in
each case?

(i) Use the graph in part (g) to determine the times (during
the first two cycles) when the velocity of the point Q is
maximum. Where is Q located at these times?

(j) Use the graph in part (g) to determine the times (during
the first two cycles) when the velocity of the point Q is
minimum. Where is Q located at these times?

V � � 

p

3
 sin 
pt

3

pt

3

Figure B Figure C

(a) Complete the table.

t (sec) 0 1 2 3 4 5 6 7

(radians)

(b) Now (for each position of the point P) suppose that we
draw a perpendicular from P to the x-axis, meeting the
x-axis at Q, as indicated in Figure C. The point Q is
called the projection of the point P on the x-axis. As
the point P moves around the circle, the point Q will
move back and forth along the diameter of the circle.
What is the x-coordinate of the point Q at each of the
times listed in the table for part (a)?

(c) Draw a sketch showing the location of the points P and
Q when t � 1 sec.

(d) Draw sketches as in part (c) for t � 2, 3, and 4 sec.
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PROJECT The Motion of a Piston

To see the way a machine works, you can take the covers off and look inside.
But to understand what goes on, you need to get to know the principles
that govern its actions. —David Macaulay, The Way Things Work (Boston: Houghton

Mifflin Company, 1988)

In this project we examine a simple linkage that exhibits an oscillatory motion
that is somewhat more complicated than simple harmonic motion. The tools that
we’ve developed in the last two chapters will enable us to derive a function
describing this motion. This function provides a very good mathematical
model for the motion of a piston in a conventional internal combustion car
engine. Although you won’t need to be familiar with car engines to follow the
mathematics, your appreciation of its applicability would be greatly enhanced
if someone in your group could explain how a crankshaft piston and cylinder
move in a car engine. The Internet or a reference such as the one quoted above
might be useful.
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Figure A shows a line segment OC of length R rotating counterclockwise
about the fixed origin O and another line segment CP of length L, with L
greater than R. The line segments are thought of as being linked together at
point C as if they were flat rods with a pin through them so that they can rotate
freely about C, their common endpoint. The point P is constrained to move
along the x-axis. As the line segment OC rotates about the origin, the point P
moves back and forth along the x-axis. The two figures illustrate the configu-
ration at two different rotation positions. In the language of car engines the ori-
gin would be the center of a cross-section of the crankshaft, the segment OC
would be a crank arm, the segment CP would be a piston rod, and point P
would be the center of a cross-section of a wrist pin.

Exercise 1 Let f (u) equal the x-coordinate of the point P when the line seg-
ment OC is at an angle u (measured in radians) from the positive x-axis. What
are the maximum and minimum values of f and at what values of u do they
occur?

Exercise 2 Figure B can be used to derive a formula for f (u). Express the
lengths of OA and CA in terms of R and u. Now use the Pythagorean theorem

y y

P

C

LR

¨
x

O

(i)

P

C

L
R

¨

x
O

(ii)

Figure A

y

P

C

A

LR

¨
x

O
Figure B

to express the length of AP in terms of R, L, and u. Since, in Figure B, f (u)
equals the length of line segment OP we have

How do the maximum and minimum value for f compare with your answers
from Exercise 1? Explain why this derivation would work when point C is in
the second quadrant.

f (u) � R cos u � 2L2 � R2 sin2 u
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Exercise 3 For given values of L and R, graph the indicated functions, for
0 
 u 
 4p, on the same set of axes and zoom in near the maximum, mini-
mum, and any other interesting points. Write short notes of your observations.
f (u) is the function derived in the previous exercise.
(a) Let L � 20 cm and R � 4 cm. Graph y � L, y � L � R cos u, and y � f (u).
(b) Let L � 20 cm and R � 10 cm. Graph y � L, y � L � R cos u, and y � f(u).
(c) Let L � 20 cm and R � 10 cm. Graph y � 1.868 R � R cos u, and y � f(u).
(d) Let L � 20 cm and R � 10 cm. Graph y � 1.868 R � R cos u�

0.1339 R cos 2u, and y � f (u).

In parts (c) and (d) the functions graphed with f are the second and third partial
sums of the Fourier series for f. If you did the project on Fourier series at the
end of Section 8.3, note how much better the third partial sum of the Fourier
series is as an approximation to f here than in Figure B of that project.

Finally, let’s apply the result of Exercise 2 to a typical automotive situation.

Exercise 4 Given that segment OC is rotating at 3000 revolutions per minute
(rpm) let g(t) be the x-coordinate of the point P at time t seconds and find a
formula for g(t). Hint: Find u in terms of t and substitute into the formula 
for f(u). What would the formula be for k revolutions per minute? 

8.5 GRAPHS OF THE TANGENT AND THE 
RECIPROCAL FUNCTIONS

A third . . . function, the tangent of , or tan , is of secondary importance, in that it is
not associated with wave phenomena. Nevertheless, it enters into the body of analysis
so prominently that we cannot ignore it. —Samuel E. Urner and William B. Orange in

Elements of Mathematical Analysis (Boston: Ginn and Co., 1950)

We have seen in the previous sections that the sine and cosine functions are periodic.
The remaining four trigonometric functions are also periodic, but their graphs differ
significantly from those of sine and cosine. In particular, the graphs of y � tan x,
cot x, csc x, and sec x all possess vertical asymptotes.

We’ll obtain the graph of the tangent function by a combination of both point-
plotting and symmetry considerations. Table 1 displays a list of values for y � tan x
using x-values in the interval [0, p�2).

uu

TABLE 1

x 0

tan x 0 1 3.73 11.43 57.29 undefined13 � 1.73
13

3
� 0.58

p

2

89p

180
  (� 89°)

17p

36
  (� 85°)

5p

12
  (� 75°)

p

3

p

4

p

6



Note: As x increases from 0 to p�2, the values of tan x increase slowly at first
then more and more rapidly.

As is indicated in Table 1, tan x is undefined when x � p�2. This follows from
the identity

(1)

When x � p�2, the denominator in this identity is zero. Indeed, when x is equal to
any odd integral multiple of p�2 (for example, �3p�2, �5p�2), the denominator in
equation (1) will be zero, and, consequently, tan x will be undefined.

Because tan x is undefined when x � p�2, we want to see how the graph be-
haves as x gets closer and closer to p�2. This is why the x-values 5p�12, 17p�36,
and 89p�180 are used in Table 1. In Figure 1 we’ve used the data in Table 1 to draw
the graph of y � tan x for 0 
 x � p�2. As the figure indicates, the vertical line 
x � p�2 is an asymptote for the graph.

For an analytic argument that the line x � p�2 is a vertical asymptote for the tan-
gent function consider equation (1). As x approaches p�2 from the left, the numera-
tor sin x approaches 1 while the denominator cos x approaches 0 through positive
values. Hence the tangent function becomes unbounded positive as x approaches
p�2 from the left and therefore has a vertical asymptote at p�2. We now basically
understand the graph of y � tan x on the interval 0 
 x � p�2.

By using symmetry and periodicity, the graph of y � tan x can now be completed
without further need for tables or a calculator. First, the identity tan(�x) � �tan x
(from Section 8.1) tells us that the tangent is an odd function so the graph of y � tan x
is symmetric about the origin. After reflecting the graph in Figure 1 about the origin,
we can draw the graph of y � tan x on the interval as shown in Figure 2. Note
that tan x becomes unbounded negative as x approaches �p�2 from the right. So, the
line x � �p�2 is another vertical asymptote for the graph.

Now, to complete the graph of y � tan x, we use the identity

tan(s � p) � tan s (2)

1� 
p
2 , p2 2 ,

tan x �
sin x
cos x
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4

Figure 1
y � tan x, 0 
 x � p�2

2
π

2
π

4
π

4
π

y

x

1

-1

2

-2

3

-3

-

-

4

Figure 2
y � tan x, 
The graph is symmetric about the
origin. The lines x � �p�2 are
asymptotes.

� p�2 � x � p�2
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Looking at Figure 3, we can see why this identity is valid. By definition, the coor-
dinates of P and Q are

P(cos s, sin s) and Q(cos(s � p), sin(s � p))

On the other hand, the points P and Q are symmetric about the origin, so the
coordinates of Q are just the negatives of the coordinates of P. That is,

cos(s � p) � �cos s and sin(s � p) � �sin s

Consequently, we have

as required.
[Although Figure 3 shows the angle with radian measure s terminating in

Quadrant I, our proof is valid for the other quadrants as well. (Draw a figure for your-
self and verify this.)]

Identity (2) tells us that the graph of y � tan x must repeat itself at intervals of
length p. As Figure 2 suggests, p is in fact the period of the tangent function. A way
to prove this is suggested in Exercise 60 at the end of this section. A more complete
graph of y � tan x is shown in the Property Summary box below. Note, because the
tangent function has no maximum or minimum values, the amplitude is undefined.

 �
sin s
cos s

� tan s

 tan (s � p) �
sin (s � p)

cos (s � p)
�

�sin s
�cos s

PROPERTY SUMMARY The Tangent Function: y � tan x

Domain: The set of all real numbers other than

Range: (�q, q)

Period: p

Asymptotes:

x-intercepts: 0, �p, �2p, �3p

Amplitude: undefined

Note: The x-intercepts occur midway between consecutive vertical
asymptotes. Tangent is an odd function; so its graph is symmetric
about the origin.

, p

x � � 

p

2
, � 

3p

2
, � 

5p

2
, p

� 

p

2
, � 

3p

2
, � 

5p

2
, p

EXAMPLE 1 Finding Periods, Asymptotes, and Intercepts

Graph the following functions for one period. In each case, specify the period, the
asymptotes, and the intercepts:

(a) (b) y � �tan a x �
p

4
b .y � tan a x �

p

4
b ;

2
3π

2
3π

2
π

2
π-π π

y

y=tan x

x

- -

≈+¥=1

s+π
s

P

Q

y

x

Figure 3
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SOLUTION We begin with the graph of one period of y � tan x, as shown in Figure 4(a). By trans-
lating this graph p�4 units to the right, we obtain the graph of y � in 
Figure 4(b). With this translation, note that the left asymptote shifts from x � �p�2
to the right asymptote shifts from x � p�2 to

and the x-intercept shifts from 0 to p�4.
For the y-intercept of we replace x with 0 in the equation. This

yields

Finally, for the graph of we need only reflect the graph in Fig-
ure 4(b) about the x-axis; see Figure 4(c).

y � �tan 1x � p
4 2

y � tan a0 �
p

4
b � tan a� 

p

4
b � �tan 

p

4
� �1

y � tan 1x � p
4 2

x � p�2 � p�4 � 3p�4;
x � � p�2 � p�4 � � p�4;

tan 1x � p
4 2 ,

2
π

4
π

2
π

4
π

4
3π

4
3π

4
π

4
π

4
π

4
π

4
π

y

x

1

-

y

x

-1
-

y

x

1

-

(c))(b) y=tan(x-
        Period:   π
Asymptotes:   x=-π/4
                       x=3π/4
  x-intercept:   π/4
  y-intercept:  -1

)y=-tan(x-
         Period:  π
Asymptotes:   x=-π/4
                       x=3π/4
  x-intercept:   π/4
  y-intercept:   1

(a) y=tan x
         Period:   π
Asymptotes:   x=±π/2
  x-intercept:   0
  y-intercept:   0

Figure 4

EXAMPLE 2 Graphing a Function of the Form y � tan Bx

Graph the function y � tan(x�2) for one period.

SOLUTION The graph of y � tan(x�2) is that of y � tan x stretched horizontally by a factor of 2.
So the graph of y � tan(x�2) is that of y � tan x, but twice as wide. From the
trigonometry point of view, refer back to Figure 2, which shows the basic pattern for
one period of y � tan x. In this basic pattern the asymptotes occur when x
equals �p�2 or p�2. Consequently, for y � tan(x�2), the asymptotes occur when
x�2 � �p�2, or x � �p, and when x�2 � p�2, or x � p. Thus the asymptotes for
y � tan(x�2) are x � �p and x �p. The distance between these asymptotes, namely,
2p, is the period of y � tan(x�2). This is twice the period of y � tan x, so basically,
we want to draw a curve with the same general shape as y � tan x but twice as wide;
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see Figure 5. Note that the graph in Figure 5 passes through the origin, since when
x � 0, we have

The graph of the cotangent function can be obtained from that of the tangent
function by means of the cofunction identity

(3)

(Exercise 57 shows how to derive this identity.) According to identity (3), the graph
of y � cot x can be obtained by first translating the graph of y � tan x to the right 
p�2 units and then reflecting the translated graph about the x-axis. When this is done,
we obtain the graph shown in the box that follows. As with the tangent function the
amplitude is undefined.

cot x � �tan a x �
p

2
b

y � tan 
0

2
� tan 0 � 0

2
π

2
x

π-π

y=tan

y

x

1

Figure 5

EXAMPLE 3 Graphing Functions of the Form y � A cot Bx

Graph each of the following functions for one period:

(a) y � cot px; (b) (c) y � � 

1

2
 cot px.y �

1

2
 cot px;

SOLUTION (a) Looking at the graph of y � cot x in the Property Summary above, we see that
one complete pattern or cycle of the graph occurs between the asymptotes x � 0
and x � p. Now, for the function we are given, x has been replaced by px. Thus
the corresponding asymptotes occur when px � 0 and when px � p, in other
words, when x � 0 and when x � 1; see Figure 6(a). 

(b) The graph of will have the same general shape as that of y � cot px,
but each y-coordinate on will be one-half of the corresponding co-
ordinate on y � cot px; see Figure 6(b).

(c) The graph of is obtained by reflecting the graph of 
about the x-axis; see Figure 6(c).

y � 1
2 cot pxy � � 

1
2 cot px

y � 1
2 cot px

y � 1
2 cot px

PROPERTY SUMMARY The Cotangent Function: y � cot x

2
3π 2π

y=cot x

π-π
2
π

2
π

y

x

-

Domain: The set of all real numbers other than 0, �p, �2p

Range: (�q, q)

Period: p

Asymptotes: x � 0, �p, �2p, �3p

x-intercepts:

Amplitude: undefined

Note: The x-intercepts occur midway between consecutive vertical
asymptotes. Cotangent is an odd function; so its graph is symmetric
about the origin. 
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p

2
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Period
1
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1

1

2

y=cot πx

y= cot πx

Period
1

(b)

2
1

y=- cot πx2
1

2
1
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2
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1

(c)

y

x

y

x

y
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Figure 6

As Figure 7(a) indicates, the vertical line x � p is an asymptote for the graph.
Analytically, sin x approaches zero through positive values as x approaches p from
the left. So csc x � 1�sin x becomes unbounded positive as x approaches p from the
left. Thus the line x � p is a vertical asymptote of the graph of y � csc x. The graph
in Figure 7(a) can be extended to the interval (0, p) by means of the identity

(Exercise 59 shows you how to verify this identity.) This identity tells us that, start-
ing at x � p�2, whether we travel a distance s to the right or a distance s to the left,

csc ap
2

� s b � csc ap
2

� s b

y=csc x,(a) ≤x<π

2
π

x csc x

1

Å1.2

Å3.9

2

π

1

2

3

2
π

π/2
2π/3
5π/6

11π/12

y=csc x, 0<x<π(b)

2
π π

1

2

A
xi

s 
of
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m
et

ry
3

y

x

y

x

Figure 7

We conclude this section with a discussion of the graphs of y � csc x and
y � sec x. We will obtain these graphs in a series of easy steps, relying on the ideas
of symmetry and translation. First consider the function y � csc x. In Figure 7(a)
we’ve set up a table and used it to sketch the graph of y � csc x on the interval 

. Note that csc x is undefined when x � p. (Why?)3p2 , p 2
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the value of y � csc x is the same. In other words, the graph of y � csc x is symmetric
about the line x � p�2. In view of this symmetry we can sketch the graph of y � csc x
on the interval (0, p), as shown in Figure 7(b).

The next step in obtaining the graph of y � csc x is to use the fact that the graph is
symmetric about the origin. To verify this, we need to check that csc(�x) � �csc x.
We have

as required.
Now, taking into account this symmetry about the origin and the portion of the

graph that we’ve already obtained in Figure 7(b), we can sketch the graph of y � csc x
over the interval (�p, p), as shown in Figure 8.

To complete the graph of y � csc x, we observe that the values of csc x must re-
peat themselves at intervals of 2p. This is because csc x � 1�(sin x), and the sine
function has a period of 2p. In view of this we can draw the graph of y � csc x as
shown in the box that follows. The amplitude is undefined. (Why?)

csc (�x) �
1

sin (�x)
�

1

�sin x
� �csc x2

π

-2
π

π-π

1

-1
0

y

x

Figure 8
y � csc x, �p� x �p
The graph is symmetric about the
origin.

PROPERTY SUMMARY The Cosecant Function: y � csc x

EXAMPLE 4 Graphing a Function of the Form y � csc Bx

Graph the function y � csc(x�3) for one period.

SOLUTION Since csc(x�3) � 1�sin(x�3), it will be helpful first to graph one period of 
y � sin(x�3). This is done in Figure 9(a) using the techniques of Section 8.3. Note that
the period of y � sin(x�3) is 6p. This is also the period of y � csc(x�3), because
csc(x�3) and sin(x�3) are just reciprocals. The asymptotes for y � csc(x�3) occur when
sin(x�3) � 0. From Figure 9(a) we see that sin(x�3) � 0 when x � 0, when x � 3p,
and when x � 6p. These asymptotes are sketched in Figure 9(b). The colored points in
Figure 9(b) indicate where the value of sin(x�3) is 1 or �1; the graph of y � csc(x�3)
must pass through these points. (Why?) Finally, using the points and the asymptotes in
Figure 9(b), we can sketch the graph of y � csc(x�3), as shown in Figure 9(c).

y=csc x

2
π π 2π-π

-
-2π

- 1

-1

0

2
3π

2
3π

2
π

y

x

Domain: All real numbers other than 
0, �p, �2p

Range: (�q, �1] � [1, q)

Period: 2p

Asymptotes: x � 0, �p, �2p, �3p

Intercepts: none

Amplitude: undefined

Note: The cosecant is an odd function; so its graph
is symmetric about the origin.

, p

, p
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3π 6π
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y=csc(b) The asymptotes for
y=csc(x/3) occur
when sin(x/3)=0.
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PROPERTY SUMMARY The Secant Function: y � sec x

y=sec x

2
π π 2π-π

-
-2π

-

1

-1

0
2

3π
2

3π
2
π

y

x

In Section 8.2 we used the identity

(4)

to graph the cosine function. This identity tells us that the graph of y � cos x can be
obtained by translating the graph of y � sin x to the left by p�2 units. Now, from
identity (4) it follows that

This last identity tells us that the graph of y � sec x can be obtained by translating the
graph of y � csc x a distance of p�2 units to the left, to obtain the graph shown in the
box that follows. The amplitude is undefined. (Why?)

sec x � csc ax �
p

2
b

cos x � sin ax �
p

2
b

Domain: All real numbers other than

Range: (�q, �1] � [1, q)

Period: 2p

Asymptotes:

Amplitude: undefined

y-intercept: 1

x-intercepts: none

Note: The secant is an even function; so its graph
is symmetric about the y-axis.
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Hint: Which two numbers are their own reciprocals?
There are no points where cos x � �sec x. Why?

In Exercises 35–38, graph each function for two periods.
Specify the intercepts and the asymptotes.

35. (a)
(b)

36. (a)
(b)

37. (a)
(b)

38. (a)
(b)

In Exercises 39–42, graph each pair of functions on the same
set of axes. Adjust the viewing rectangle as necessary so that
the graphs are shown for at least two periods.

39. Y1 � 0.6 sin (x�2) 40. Y1 � �1.2 sin (px�3)
Y2 � 0.6 csc (x�2) Y2 � �1.2 csc (px�3)

41. 42.

B
For Exercises 43–46, six functions are defined as follows:

f (x) � sin x g(x) � csc x

F(x) � cos x G(x) � sec x

In each case, graph the indicated function for one period.

43. (a) f � h 44. (a) F � H
(b) g � h (b) G � H

45. (a) f � H 46. (a) F � h
(b) g � H (b) G � h

For Exercises 47–50, four functions are defined as follows:

f (x) � csc x T(x) � tan x
g(x) � sec x A(x) �

In each case, graph the indicated function over the interval
[� , ].

47. A � T 48. A � g
49. A � f 50. f � A
51. In this exercise we compare the graphs of f (x) � tan x

and g(x) � x3 on the open interval �p�2 � x � p�2. 
On the same set of axes, graph these two functions for
�p�2 � x � p�2. Then answer the following questions.
(a) Which of the two graphs appears to be horizontal as

it passes through the origin?

2p2p

0 x 0

 H(x) � px �
p

4

 h(x) � px �
p

6

Y2 � �1.5 sec 1px � p
6 2Y2 � 3 sec 12x � p

6 2
Y1 � �1.5 cos 1px � p

6 2Y1 � 3 cos 12x � p
6 2

y � sec 13x � p
3 2

y � cos 13x � p
3 2

y � �3 sec 12px � p
4 2

y � �3 cos 12px � p
4 2

y � �1
2 csc 1px � p

3 2
y � �1

2 sin 1px � p
3 2

y � 2 csc 13px � p
6 2

y � 2 sin 13px � p
6 2

A
In Exercises 1–12, graph each function for one period, and
show (or specify) the intercepts and asymptotes.

1. (a) 2. (a)
(b) (b)

3. (a) y � tan (x�3) 4. (a) y � 2 tan px
(b) y � �tan (x�3) (b) y � �2 tan px

5. 6.

7. y � cot (px�2) 8. y � cot 2px
9. 10.

11. 12.
13. Graph the function y � tan x. Use a viewing rectangle

that extends from �5 to 5 in both the x- and the y-directions.
What are the exact values for the x-intercepts shown in
your graph?

14. In graphing the tangent function in the text, we used the
identity tan(x � p) � tan x. Check this identity by graph-
ing the two equations y � tan x and y � tan(x � p) and
noting that the graphs indeed appear to be identical.

In Exercises 15–20, graph each function. Adjust the viewing
rectangle as necessary so that the graph is shown for at least
two periods.

15. (a) y � tan (x�4) 16. (a) y � cot (2x)
(b) y � tan (4x) (b) y � cot (x�2)

17. (a) y � 0.5 tan px 18. (a) y � 0.25 cot x
(b) (b)
(c) y � 0.5 tan (px � 1) (c)

19. (a) y � 0.4 tan (x�2) 20. (a) y � 0.2 cot (3x)
(b) y � 0.4 tan (x�3) (b) y � �0.2 cot (4x)
(c) y � 0.4 tan (x�5) (c) y � �0.2 cot (12x)

In Exercises 21–32, graph each function for one period, and
show (or specify) the intercepts and asymptotes.

21. 22.
23. y � �csc (x�2) 24. y � 2 csc x
25. 26.
27. y � �sec x 28. y � �2 sec x
29. y � sec (x � p) 30. y � sec (x � 1)
31. y � 3 sec (px�2) 32. y � �2 sec (px�3)
33. Graph the functions y � sin x and y � csc x in the

standard viewing rectangle. [For csc x, use 1 � (sin x).]
Observe that sin x 
 1, while csc x 	 1. At which
points in the picture do we have sin x � csc x? Why?
(Hint: Which two numbers are their own reciprocals?)
There are no points where sin x � �csc x. Why?

34. Graph the functions y � cos x and y � sec x in the 
standard viewing rectangle. [For sec x, use 1 � (cos x).]
Observe that cos x 
 1, while sec x 	 1. At which
points in the picture do we have cos x � sec x? Why? 

0000

0000

y � �1
2 csc 2pxy � 1

3 csc px

y � csc 1x � p
6 2y � csc 1x � p

4 2

y � �0.25 cot 1x � p
4 2

y � 0.25 cot 1x � p
4 2y � 0.5 tan 1px � p

3 2

y � �1
2 cot (x�2)y � 1

2 cot 2x
y � cot 1x � p

6 2y � �cot 1x �  
p
4 2

y � �1
2 tan 2pxy � 1

2 tan (px�2)

y � �tan 1x � p
3 2y � �tan 1x � p

4 2
y � tan 1x � p

3 2y � tan 1x � p
4 2

EXERCISE SET 8.5



(c) Use the graphing utility to determine the root more 
accurately, say, through the first four decimal places.

(d) Let r denote the root that you determined in part (c). Is
the number r � p also a root of the equation tan x � 2?

56. (a) Graph the equations y � tan x and y � x in the stan-
dard viewing rectangle. Use the graph to give a rough
estimate for the smallest positive root of the equation
tan x � x.

Answer: Something between 4 and 5, call it 4.5
(b) Use the graphing utility to determine the root more 

accurately, say, through the first four decimal places.
(c) Let r denote the root that you determined in part (b). Is

the number r � p also a root of the equation tan x � x?
57. Instead of the cofunction identity, we could have used the

identity

to obtain the graph of y � cot x from that of y � tan x.
The following steps show one way to derive this identity.
(Although the accompanying figure shows the angle with
radian measure s terminating in the first quadrant, the 
proof is valid no matter where the angle terminates.) 
In the figure, .

(a) Why are the coordinates of P and Q as follows?

(b) Using congruent triangles [and without reference
to part (a)], explain why the y-coordinate of Q
is the negative of the x-coordinate of P, and the 
x-coordinate of Q equals the y-coordinate of P.

(c) Use the results in parts (a) and (b) to conclude that

(d) Use the result in part (c) to show that

(e) Explain how to use the result in part (d) to obtain the
graph of y � cot x from the graph of y � tan x.

cot s � �tan as �
p

2
b

sin as �
p

2
b � �cos s  and  cos as �

p

2
b � sin s

P (cos s, sin s)  and  Q acos as �
p

2
b , sin as �

p

2
bb

2
π

≈+¥=1

y

x
s-

Q

A
P

O
s

PO � QO

cot s � �tan as �
p

2
b

(b) When x is in the open interval , which quantity is
larger, tan x or x3? Why is your choice reasonable?
Hint: x3 is finite at x � p�2.

(c) When x is in the open interval , which quantity
is larger, tan x or x3? Why is your choice reasonable?

52. Graph the two functions y � tan2 x and y � sec2 x � 1.
What do you observe? What does this demonstrate?

53. Graph the two functions y � cot2 x and y � csc2 x � 1.
What do you observe? What does this demonstrate?

54. (a) Graph the two functions y � tan x and y � x in the
standard viewing rectangle. Observe that tan x and x
are very close to one another when x is close to zero. 
In fact, the approximation tan x � x is often used in 
applications when it is known that x is close to zero.

(b) To obtain a better view of y � tan x and y � x near the
origin, adjust the viewing rectangle so that x extends
from �p�2 to p�2 and y extends from �2 to 2. Again,
note that when x is close to zero, the values of tan x are
indeed close to x. To see numerical evidence of this,
complete the following table.

x 0.000123 0.01 0.05 0.1 0.2 0.3 0.4 0.5

tan x

x �0.000123 �0.01 �0.05 �0.1 �0.2 �0.3 �0.4 �0.5

tan x

(c) The numerical evidence in part (b) suggests that for
x positive and close to 0, tan x � x. State the corre-
sponding result for x negative and close to 0. Then on
the same set of axes, draw, without a calculator, the
graphs of y � x and y � tan x.

(d) If you study Taylor polynomials in calculus, you’ll see
that an even better approximation to tan x is

, when x is close to 0

Add the graph of to the picture that you
obtained in part (b). Describe what you see.

(e) To see numerical evidence of how well tan x is approx-
imated by add a third row to the table you
worked out in part (b); in this third row, show the val-
ues for When you’ve completed the table,
note that the new values are much closer to tan x than
were the values of x.

55. (a) Graph the equations y � tan x and y � 2 in the stan-
dard viewing rectangle.

(b) Use the graph to give a rough estimate for the smallest
positive root of the equation tan x � 2.

Answer: x � 1

x � 1
3 x3.

x � 1
3 x3,

y � x � 1
3 x3

tan x � x �
1

3
 x3

1�p
2 , 0 2

10, p2 2
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60. Equation (2) on page 584 tells us that is a period of the
tangent function. Show that it’s the period by showing that
no smaller positive number is a period. Hint: Let p be a
positive number and consider the equation tan (t � p) � tan t.
Let t � 0 and explain why p � is the smallest positive
solution of the resulting equation.

C
61. Explain why is the range of the cose-

cant function.
62. Explain why is the range of the secant

function.
(�q, �1] � [1, q)

(�q, �1] � [1, q)

p

p

y

x

≈+¥=1

A

E

B

C

DO

ss

58. In the text we obtained the graph of the cotangent
function from that of the tangent by means of the 
identity . Verify this identity 
graphically by graphing the two functions y � cot x and

and noting that the graphs indeed 
appear to be identical.

59. In this exercise we verify the identity
Refer to the figure at the 

right, in which radians. [Although
the figure shows s in the interval a 
similar proof will work for other intervals as well. 
(A proof that does not depend upon a picture can be 
given using the formula for sin(s � t), which is developed
in Section 9.1.)]
(a) Show that the triangles AOE and COD are congruent

and, consequently, that AE � CD.
(b) Explain why the y-coordinates of the points C

and A are and , 
respectively.

(c) Use parts (a) and (b) to conclude that
. It follows from this 

that , as required.csc 1p2 � s 2 � csc 1p2 � s 2
sin 1p2 � s 2 � sin 1p2 � s 2

sin 1p2 � s 2sin 1p2 � s 2

0 � s � p�2,
�AOB � �BOC � s

csc 1p2 � s 2 � csc 1p2 � s 2 .

y � �tan 1x � p
2 2

cot x � �tan 1x � p
2 2

CHAPTER 8 Summary of Principal Formulas and Terms

Page
Terms or Formulas Reference Comments

1. cos t 532 Let P(x, y) denote the point on the unit circle such that the arc length 
sin t from (1, 0) is t. Or equivalently, let P(x, y) denote the point where 
tan t the terminal side of the angle with radian measure t intersects the 
sec t unit circle. Then the six trigonometric functions of the real number t
csc t are defined as follows:
cot t

cos t � x

sin t � y

2. 534 These five identities are direct consequences of the definitions of the 
trigonometric functions.

cot t �
cos t

sin t

tan  t �
sin t

cos t
cot  t �

1

tan t

csc t �
1

sin t
sec t �

1

cos t

cot t �
x

y
 (y � 0)tan t �

y

x
 (x � 0)

csc t �
1
y
 (y � 0)

sec  t �
1
x
 (x � 0)

CHAPTER 8 Summary
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Page
Terms or Formulas Reference Comments

3. sin2 t � cos2t � 1 534 These are the three Pythagorean identities.

tan2 t � 1 � sec2 t

cot2 t � 1 � csc2 t

4. Even function, 537 A function is an even function if f(�t) � f (t) for every value of t in the 
odd function domain of f.

A function is an odd function if f(�t) � �f (t) for every value of t in the
domain of f.

5. cos(�t) � cos t 537 These three identities are sometimes referred to as the opposite-angle 
sin(�t) � �sin t identities. In each case, a trigonometric function of �t is expressed 
tan(�t) � �tan t in terms of that same function of t. Cosine is an even function; sine

and tangent are odd functions.

6. Periodic function 543 A nonconstant function f is periodic if there is a positive number p such
that the equation f(x � p) � f (x) holds for all x in the domain of f. The
smallest such number p is called the period of f. Important examples:
The period of y � sin x is 2p; the period of y � cos x is 2p, the period
of y � tan x is p.

7. Amplitude 543 Let m and M denote the smallest and the largest values, respectively, 
of the periodic function f. Then the amplitude of f is defined to be the
number Important examples: The amplitude for both y � sin x
and y � cos x is 1; amplitude is not defined for the four functions  
y � tan x, cot x, sec x, and csc x.

8. Period � 565 This formula gives the period for the functions y � A sin(Bx � C ) and 
y � A cos(Bx � C ).

9. 565 The phase shift serves as a guide in graphing functions of the form y � A
sin(Bx � C ) or y � A cos(Bx � C ). For instance, to graph one complete
cycle of y � A sin(Bx � C), first sketch one complete cycle of y � A sin Bx,
beginning at x � 0. Then draw a curve with exactly the same shape, but
beginning at x � C�B rather than x � 0. This will represent one cycle of
y � A sin(Bx � C ).

10. Simple harmonic motion 576 Oscillation described by an equation of the form y � A sin(Bx � C ) 
or y � A cos(Bx � C ) is referred to as simple harmonic motion. The
standard example for simple harmonic motion is the motion of a mass on
the end of a spring (neglecting friction), as depicted in Figures 1 and 3 in
Section 8.4.

11. Period, frequency, and 577 The amplitude for simple harmonic motion is the maximum displacement
amplitude for simple from the equilibrium position. The period is the time required for one 
harmonic motion complete cycle of the motion. The frequency f, measured in cycles per

second, is computed from the equation f � 1�period.

Phase shift �
C

B

2p

B

1
2 (M � m).
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Writing Mathematics

1. Say whether the statement is TRUE or FALSE. Write out
your reason or reasons in complete sentences. If you draw a
diagram to accompany your writing, be sure that you clearly
label any parts of the diagram to which you refer.
(a) If t is a real number less than p, then cos t is 

positive.
(b) The equation 1 � tan2 t � sec2 t is true for every real

number t.
(c) If t is a positive real number, then cos2 t is a positive real

number.
(d) Between any two consecutive turning points, the graph

of y � sin x is decreasing.
(e) If a and b are real numbers and ln(sin a) � ln(sin b),

then sin a � sin b.
(f) If a and b are real numbers and ln(sin a) � ln(sin b),

then a � b.
(g) If a and b are real numbers and sin(ln a) � sin(ln b), then

ln a � ln b.
2. Let f (x) � x � sin x. This function has an interesting pro-

perty: The iterates can be used to obtain better and better
approximations to the number p. The following table, for
instance, shows the first five iterates of x0 � 0.8. As you can
see, the fifth iterate is indeed an excellent approximation
to p. In fact, the fifth iterate, x5 , agrees with p through the
first 15 decimal places. [As you’ll see in part (a), this behav-
ior is not peculiar to x0 � 0.8. Any value for x0 between 0 
and p will produce similar results.]

x1 1.5173560908 . . .
x2 2.5159285012 . . .
x3 3.1015642481 . . .
x4 3.1415819650 . . .
x5 3.1415926535 . . .

Iterates of x0 � 0.8 for the function f (x) � x � sin x

(a) Use your calculator to set up three tables of iterates,
similar to the given table, using x0 � 0.9, x0 � 1.5, and
x0 � 2. Describe the results.

(b) Use the figure below to explain why the successive
iterates approach the number p. 

y

x

f(x)=x+sin x

y=x

A

B

C

P

x0

CHAPTER 8 Review Exercises

1. Evaluate the following.
(a) sin(5p�3) (b) cot(11p�6)

2. Graph the function y �3 cos 3px over the interval
. Specify the x-intercepts and the coordinates of

the highest point on the graph.
3. Simplify the following expression:

cos t � cos(�t) � sin t � sin(�t)

4. In the expression , make the substitution 
t � 2 cos x and simplify the result. Assume that 0 � x � p.

5. Graph the equation y � sec(2px � 3) for one complete cycle.
6. If sec t � �5�3 and , compute cot t.
7. Graph the function y � �sin(2x � p) for one complete

period. Specify the amplitude, period, and phase shift.
8. Graph tan(px�3) over one period.y � �1

2

p � t � 3p�2

1�24 � t 2

� 
1
3 
 x 
 1

3

In Exercises 9–20, evaluate each expression without using a
calculator or tables.

9. cos p
10. sin(�3p�2)
11. csc(2p�3)
12. tan(p�3)
13. tan(11p�6)
14. cos 0
15. sin(p�6)
16. sec(3p�4)
17. cot(5p�4)
18. tan(�7p�4)
19. csc(�5p�6)
20. sin2(p�7) � cos2(p�7)



596 CHAPTER 8 Graphs of the Trigonometric Functions

41. In the following figure, ABCD is a square, each side of
which is 1 cm. The two arcs are portions of circles with radii
of 1 cm and with centers A and C. Find the area of the
shaded region. Hint: Draw and use your result from
Exercise 40.

In Exercises 42–46, a function of the form y � A sin Bx or 
y � A cos Bx is graphed for one period. Determine the equation
in each case. (Assume that B � 0.)

42.

43.

44. y

x

(3π, -6)

y

x

(π, 0)

4

y

x

(6,-3)

C

B

D

A

BD

Exercises 21–30 are calculator exercises. (Set your calculator
to the radian mode.) In Exercises 21–26, where numerical an-
swers are required, round your results to three decimal places.

21. Evaluate sin 1.
22. Evaluate cos 2.
23. Evaluate sin(3p�2).
24. Evaluate sin(0.78).
25. Evaluate sin(sin 0.0123).
26. Evaluate sin[sin(sin 0.0123)].
27. Verify that sin2 1776 � cos2 1776 � 1.
28. Verify that sin 14 � 2 sin 7 cos 7.
29. Verify that cos(0.5) � cos2(0.25) � sin2(0.25).
30. Verify that cos(0.3) �

31. In the expression , make the substitution 
x � 5 sin u, where , and simplify the result.

32. In the expression (49 � x2)1�2, make the substitution 
x � 7 tan u, where , and simplify the result.

33. In the expression (x2 � 100)1�2, make the substitution
x � 10 sec u, where , and simplify the result.

34. In the expression (x2 � 4)�3�2, make the substitution 
x � 2 sec u, where , and simplify the result.

35. In the expression (x2 � 5)�1�2, make the substitution 
x � tan u, where , and simplify the result.

36. If sin u� �5�13 and compute cos u.
37. If cos u� 8�17 and sin u is negative, compute tan u.
38. If sec u� �25�7 and compute cot u.
39. In the accompanying figure, P is the center of the circle,

which has radius units. If the radian measure of angle
BPA is u, express the area of the shaded region in terms of u.
Simplify your answer as much as possible.

40. Express the area of the shaded region in the accompanying 
figure in terms of r and u. (Assume that u is in radians.)

12

p � u � 3p�2,

p � u � 3p�2,
0 � u � p

215

0 � u � p
2

0 � u � p
2

0 � u � p
2

0 � u � p
2

225 � x2

3 12 11 � cos 0.6 2 4 1�2.

B C

A

P

r

¨
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(a) Graph two complete cycles of the function s � �2.5
cos(pt�8) beginning at t � 0. Specify the amplitude,
period, and frequency of the motion.

(b) Use the graph to determine the times in this interval
at which the mass is farthest from the equilibrium
position.

(c) When during this interval of time is the mass passing
through the equilibrium position?

58. In the following figure, the arc is a portion of a circle with
center O and radius 1. Use the figure to prove the following
result: If a and b are acute angles (radian measure) with
b� a, then sin b� sin a� b� a. Hint: The area of the
segment of the circle determined by chord is less than
the area of the segment determined by chord 

59. In the following figure, the arc is a portion of a circle with
center O and radius 1, and Use the figure to
prove the following result: If a and b are acute angles
(radian measure) with b � a, then tan b � tan a � b � a.
Hint: The area of region ABDA is less than the area of region
ABCEDA.

A

B

C

D E

O

∫

å

�OAE � p�2.

A

B

C

∫

O

å

AC.
AB

45.

46.

In Exercises 47–52, sketch the graph of each function for one
complete cycle. In each case, specify the x-intercepts and the
coordinates of the highest and lowest points on the graph.

47. y � �3 cos 4x 48. y � 2 sin(3px�4)
49. 50. y � �sin(x � 1)
51. 52. y � �2 cos(x � p)

In Exercises 53–56, sketch the graph of each function for one
period.

53. (a) y � tan(px�4) 54. (a) y � 2 cot 2x
(b) y � cot(px�4) (b) y � 2 tan 2x

55. (a) y � 3 sec(x�4) 56. (a) y � sec px
(b) y � 3 csc(x�4) (b) y � csc px

57. A mass on a tabletop is attached to a spring, as shown in the
figure. The coordinate system has been chosen so that the
equilibrium position of the mass corresponds to s � 0.
Assume that the mass moves in simple harmonic motion de-
scribed by the equation s � �2.5 cos(pt�8), where s is in
centimeters and t is in seconds.

s-axis
-1 0 1 2 3 4

y � 3 cos 1px
3 � p

3 2
y � 2 sin 1px

2 � p
4 2

y

x

(2π, -3)

( ,-2)

y

x

2
π



598 CHAPTER 8 Graphs of the Trigonometric Functions

10

14

L
en

gt
h 

y 
of

 d
ay

 (
ho

ur
s)

Day t of year

0
8

12

60 120 180 240 300 360

16

Figure A

TABLE 1 Length of Day for Boston in 1996

Day t 15 46 75 106 136 167 197 228 259 289 320 350

Length y of Day (hours) 9.42 10.57 11.92 13.38 14.62 15.27 14.97 13.88 12.48 11.08 9.78 9.08

Source: Robert B. Thomas, The Old Farmers’Almanac, 1996 (Dublin, NH: Yankee Publishing, Inc., 1995).

CHAPTER 8 Test

1. Evaluate each expression without using a calculator or tables.
(a) cos(4p�3) (c) sin2(3p�4) � cos2(3p�4)
(b) csc(�5p�6)

2. In the expression make the substitution 
t � 4 sin u and simplify the result. Assume that

3. Graph the function y � 0.5 sec(4px � 1) for one complete
cycle.

4. Graph the function for one complete
cycle. Specify the amplitude, period, and phase shift.

5. Graph the function y � 3 tan(px�4) on the interval 0 
 x 
 4.
6. A wheel rotates about its axis with an angular speed of 

25 revolutions per second.
(a) Find the angular speed of the wheel in radians per second.
(b) Find the linear speed of a point on the wheel that is

5 cm from the center.
7. Prove that the following equation is an identity:

8. A point moves in simple harmonic motion along the 
x-axis. The x-coordinate of the point at time t is given by 
x � 10 cos(pt�3), where t is in seconds and x is in centimeters.
(a) Graph this function for two complete cycles, beginning

at t � 0.
(b) At what times during these two cycles is the point pass-

ing through the origin? At what times is the point far-
thest from the origin?

9. Evaluate each expression. (Show your work or supply rea-
sons; don’t use a calculator.)
(a) sin2 13 � cos2 13 (c) tan 1 � tan(�1 � 2p)
(b) sin 5 � sin(�5)

10. The following figure shows the graph of y � sin x for 
0 
 x 
 1.6.

1.0

0.8

0.6

0.4

0.2

1.61.41.21.00.80.60.40.20

cot u

1 � tan (�u)
�

tan u

1 � cot (�u)
� cot u � tan u � 1

y � �sin 13x � p
4 2

0 � u �p�2.
1�216 � t2,

(a) Use the graph to estimate, to the nearest tenth, a root of
the equation sin x � 0.9.

(b) Use a calculator to obtain a more accurate value for the
root in part (a). Round the answer to four decimal
places.

(c) Use the reference-angle concept and a calculator to
find another root of the equation sin x � 0.9 in the
interval 0 
 x 
 2p. Round the answer to four decimal
places.

11. Table 1 shows length-of-day statistics for Boston over the
year 1996. (“Length of day” refers to the number of hours
that the sun is above the horizon.) Figure A shows a scatter
plot based on this data. The numbers on the horizontal t-axis
indicate days of the year: January 1 is t � 1, January 2 is 
t � 2, January 31 is t � 31, February 1 is t � 32, and so on.
(The numbers in the top row of Table 1 are not as arbitrary
as they might first appear; they correspond to the fifteenth
day of the month.) Find a periodic function of the form

whose values approximate the
length-of-day values in Table 1. (Assume that the period of
the function is 366 days; 1996 was a leap year.) 

y � A sin(Bt � C) � D
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9.1 The Addition Formulas

9.2 The Double-Angle Formulas

9.3 The Product-to-Sum and
Sum-to-Product Formulas

9.4 Trigonometric Equations

9.5 The Inverse Trigonometric
Functions

. . . through the improvements in algebraic sym-
bolism . . . trigonometry became, in the 17th century,
largely an analytic science, and as such it entered the
field of higher mathematics. —David Eugene Smith in

History of Mathematics (New York: Ginn and Company, 1925)

This chapter is devoted to some of the more algebraic (as opposed to geometric)
portions of trigonometry. In Section 9.1 we develop six basic identities known as the
addition formulas. Then, in the next two sections, we consider a number of identities
that follow directly from these addition formulas. In Section 9.4 we return to a topic
that was introduced briefly in the previous chapter: solving trigonometric equations.
In solving many of these equations, we’ll use the identities developed in the previous
sections. We also make use of the inverse trigonometric functions that were intro-
duced in the previous chapter (in Section 8.2). In the last section of this chapter,
Section 9.5, we take a more careful look at the inverse trigonometric functions and
their properties.

CHAPTER

9 Analytical 
Trigonometry

It has long been recognized that the
addition formulas are the heart of
trigonometry. Indeed, Professor
Rademacher and others have shown that
the entire body of trigonometry can be
derived from the assumption that there
exist functions S and C such that

1. S(x � y) � S(x)C(y) � C(x)S(y)
2. C(x � y) � C(x)C(y) � S(x)S(y)

3.

—Professor Frederick H. Young, “The
Addition Formulas,” The Mathematics
Teacher, vol. L (1957), pp. 45–48.

lim
xS0�

 
S(x)

x
� 1

9.1 THE ADDITION FORMULAS
For any real numbers r, s, and t it is always true that r (s � t) � rs � rt. This is the
so-called distributive law for real numbers. If f is a function, however, it is not true
in general that f (s � t) � f (s) � f (t). For example, consider the cosine function. It
is not true in general that cos(s � t) � cos s � cos t. For instance, with s � p�6 and
t � p�3 we have

while

So

In this section we will see just what cos(s � t) does equal. The correct formula for
cos(s � t) is one of a group of important trigonometric identities called the addition
formulas. We begin with the four addition formulas for sine and cosine.

cos ap
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b � cos 
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Image copyright Andreas Guskos, 2010. Used under
license from Shutterstock.com



sin(s � t) � sin s cos t � cos s sin t
sin(s � t) � sin s cos t � cos s sin t
cos(s � t) � cos s cos t � sin s sin t
cos(s � t) � cos s cos t � sin s sin t

Our strategy for deriving these formulas will be as follows. First we’ll prove the
fourth formula, which takes some effort. The other three formulas are then rela-
tively easy to derive from the fourth one. As background for our discussion, you will
need to recall that the distance d between two points (x1, y1) and (x2, y2) is given
by 

To prove the fourth formula in the box, we use Figure 1. The idea behind the
proof is as follows.* We begin in Figure 1(a) with the unit circle and the angles s, t,
and s � t. Then we rotate ^OPQ about the origin until the point P coincides with the
point (1, 0), as indicated in Figure 1(b). Although this rotation changes the
coordinates for the points P and Q, it certainly has no effect upon the length of
the line segment . Thus whether we calculate PQ using the coordinates in
Figure 1(a) or those in Figure 1(b), the results must be the same. As you’ll see, by
equating the two expressions for PQ, we will obtain the required formula.

PQ

d � 2(x2 � x1)
2 � (y2 � y1)

2.

The Addition Formulas for Sine and Cosine
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Figure 1 (a)

≈+¥=1

P(cos t, sin t)

Q(cos s, sin s)

O

s
s-t

t

(b)

≈+¥=1

P(1, 0)

Q(cos(s-t), sin(s-t))

O

s-t

y

x

y

x

Applying the distance formula in Figure 1(a), we have

(1) � 22 � 2 cos s cos t � 2 sin s sin t (Why?)

 � 2cos2 s � 2 cos s cos t � cos2 t � sin2 s � 2 sin s sin t � sin2 t

 PQ � 2(cos s � cos t)2 � (sin s � sin t)2

*This idea for the proof can be traced back to the great French mathematician Augustin-Louis
Cauchy (1789–1857).



Next, applying the distance formula in Figure 1(b), we have

The right-hand side of this last equation can be simplified by using the fact that
cos2(s � t) � sin2(s � t) � 1. We then have

(2)

From equations (1) and (2) we conclude that

This completes the proof of the fourth addition formula. Before deriving the other
three addition formulas, let’s look at some applications of this result.

 cos(s � t) � cos s cos t � sin s sin t
 �2 cos(s � t) � �2 cos s cos t � 2 sin s sin t

 2 � 2 cos(s � t) � 2 � 2 cos s cos t � 2 sin s sin t

PQ � 12 � 2 cos(s � t)

 � 2cos2(s � t) � 2 cos(s � t) � 1 � sin2(s � t)

 PQ � 2[cos(s � t) � 1]2 � [sin(s � t) � 0]2
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EXAMPLE 1 Using an Addition Formula: The Cosine of a Difference

Simplify the expression cos 2u cos u � sin 2u sin u.

SOLUTION According to the identity that we just proved, we have

cos 2u cos u � sin 2u sin u � cos(2u � u) � cos u

Thus the given expression is equal to cos u.

EXAMPLE 2 The Cosine of a Difference

Simplify cos(u� p).

SOLUTION We use the formula for cos(s � t) with s and t replaced by u and p, respectively. This
yields

D D

Thus the required simplification is cos(u� p) � �cos u.

In Example 2 we found that cos(u � p) � �cos u. This type of identity is often
referred to as a reduction formula. The next example develops two basic reduction
formulas that we will need to use later in this section.

  � (cos u)(�1) � (sin u)(0) � �cos u

 cos(u � p) � cos u cos p � sin u sin p

 cos(s �   t)  � cos s cos t � sin s sin t
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SOLUTION (a)

This proves the identity.
(b) Since the identity cos � sin a holds for all values of a, we can simply

replace a by the quantity to obtain

This proves the identity.

The two identities in Example 3 are worth memorizing. For simplicity we replace
both a and b by the single u to get the following formulas.

In the formulas in the preceding box, the arguments on the left-hand side and
right-hand side, p�2 � u, and u, respectively, add up to p�2; so the angles or numbers
are complementary. This is a generalization of the idea of complementary acute an-
gles, which was discussed in Section 7.5. In these terms the boxed formulas express
the idea that the cosine and sine are cofunctions: The value of one function at a given
number is equal to the cofunction’s value at the complementary number. Similar
formulas hold for tangent and cotangent as well as for secant and cosecant.

In Examples 2 and 3, radian measure was used. However, if you look back at
Figure 1 and the derivation of the formula for cos(s � t), you will see that the
derivation makes no reference, implicit or explicit, to a specific system of angle mea-
surement. (For instance, the derivation does not involve the formula s � ru, which
does require radian measure.) Thus the formula for cos(s � t) is also valid when
angles are measured in degrees. For instance, in Example 3(a), if you use degree mea-
sure instead of radian measure, the identity states that cos(90° � a) � sin a, as we saw
in Section 7.5. In the next example we apply the formula again, in just such a case.

cos ap
2

� u b � sin u  and  sin ap
2

� u b � cos u

Cofunction Identities

 cos b � sin ap
2

� bb

 cos ap
2

�
p

2
� bb � sin ap

2
� bb

 cos cp
2

� ap
2

� bb d � sin ap
2

� bb

p
2 � b

1p2 � a2
 � (0)cos a � (1)sin a � sin a

 cos ap
2

� ab � cos 
p

2
 cos a � sin 

p

2
 sin a

EXAMPLE 3 Cofunction Identities

Prove the following identities:

(a) (b) .sin ap
2

� bb � cos bcos ap
2

� ab � sin a;
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EXAMPLE 4 Using the Cosine of a Difference

Use the formula for cos(s � t) to determine the exact value of cos 15�.

SOLUTION First observe that 15� � 45� � 30�. Then we have

Thus the exact value of cos 15� is .

Now let’s return to our derivations of the addition formulas. Using the fourth
addition formula, we can easily derive the third formula as follows. In the formula

cos(s � t) � cos s cos t � sin s sin t

we replace t by the quantity �t. This is permissible because the formula holds for all
real numbers. We obtain

cos[s � (�t)] � cos s cos(�t) � sin s sin(�t)

On the right-hand side of this equation, using the facts cosine is an even function and
sine is an odd function yields

cos(s � t) � (cos s)(cos t) � (sin s)(�sin t)

which is equivalent to

cos(s � t) � cos s cos t � sin s sin t

This is the third addition formula, as we wished to prove.
Next we derive the formula for sin(s � t). We have

This proves the first addition formula.
Finally, we can use the first addition formula to prove the second one as follows:

This completes the proofs of the four addition formulas for sine and cosine.

 � sin s cos t � cos s sin t
 � (sin s)(cos t) � (cos s)(�sin t)
 � sin s cos(�t) � cos s sin(�t)

 sin(s � t) � sin[s � (�t)]

 � sin s cos t � cos s sin t (Why?)

 � cos ap
2

� s b  cos t � sin ap
2

� s b  sin t (Why?)

 � cos c ap
2

� s b � t d
 sin(s � t) � cos cp

2
� (s � t) d

116 � 12 2�4

 �
16

4
�
12

4
�
16 � 12

4

 � a12

2
b a13

2
b � a12

2
b a 1

2
b

using the formula for cos(s � t)
with s � 45� and t � 30�

 � cos 45° cos 30° � sin 45° sin 30°

 cos 15° � cos(45° � 30°)

replacing u by s � t in the identity
sin u � cos 1p2 � u 2
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EXAMPLE 5 Using an Addition Formula to Calculate a Value of a Trigonometric Function

If sin s � 3�5, where , and sin , where compute
sin(s � t).

p � t � 3p
2 ,t � �13�40 � s � p

2

SOLUTION sin(s � t) � sin s cos t � cos s sin t (3)

c c
given as 3�5 given as 

In view of equation (3) we need to find only cos t and cos s. These can be determined
by using the Pythagorean identity cos2 u � 1 � sin2 u. We have

Therefore

We choose the negative value here for cosine, since it is given that p � t � 3p�2.
Thus

Similarly, to find cos s, we have

Therefore

cos s � Why the positive square root?

Finally, we substitute the values we’ve obtained for cos t and cos s, along with the
given data, back into equation (3). This yields

In the box that follows, we list the two addition formulas for the tangent function.
As you’ll see, these two formulas follow directly from the addition formulas for sine
and cosine.

 tan(s � t ) �
tan s � tan t

1 � tan s tan t

 tan(s � t ) �
tan s � tan t

1 � tan s tan t

Addition Formulas for Tangent

 �
�3113

20
�

413

20
�

�3113 � 413

20

 sin(s � t) � a 3

5
b a�113

4
b � a 4

5
b a�13

4
b

4

5

cos2 s � 1 � sin2 s � 1 � a 3

5
b 2

�
16

25

cos t � �
113

4

cos t �
113

4
  or  cos t � � 

113

4

 � 1 � a�13

4
b 2

� 1 �
3

16
�

13

16

 cos2 t � 1 � sin2 t

�13�4

ff



Note: These formulas are valid only for values of s and t that are in the domain
of the tangent function and for which all the expressions make sense, in particular
those for which the denominators are nonzero.

To prove the formula for tan(s � t), we begin with

(4)

Now we divide both numerator and denominator on the right-hand side of equa-
tion (4) by the quantity cos s cos t. This yields

This proves the formula for tan(s � t). The formula for tan(s � t) can be deduced from
this with the aid of the identity tan(�t) � �tan t, (tangent is an odd function). We have

 �
tan s � tan t

1 � tan s tan t
  as required

 �
tan s � tan(�t)

1 � tan s tan(�t)
�

tan s � (�tan t)

1 � (tan s)(�tan t)

 tan(s � t) � tan[s � (�t)]

tan(s � t) �

sin s cos t

cos s cos t
�

cos s sin t

cos s cos t

cos s cos t

cos s cos t
�

sin s sin t

cos s cos t

�
tan s � tan t

1 � tan s tan t

 �
sin s cos t � cos s sin t

cos s cos t � sin s sin t

 tan(s � t) �
sin(s � t)

cos(s � t)
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EXAMPLE 6 Using an Addition Formula for Tangent

Simplify the expression .
tan p9 � tan 2p9

1 � tan p9  tan 2p9

SOLUTION using the formula for tan(s � t)

 � tan 
3p

9
� tan 

p

3
� 13

 
tan p9 � tan 2p9

1 � tan p9  tan 2p9
� tan ap

9
�

2p

9
b

EXAMPLE 7 Using an Addition Formula for Tangent

Compute tan using the fact that p12 � p
3 � p

4.p
12,

SOLUTION

using the formula for tan(s � t) 
with s � p�3 and t � p�4

So tan We can write this answer in a more compact form by ratio-

nalizing the denominator. As you can check, the result is tan 
p

12
� 2 � 13.

p

12
�
13 � 1

13 � 1
.

 �
13 � 1

1 � 13(1)

 �
tan p3 � tan p4

1 � tan p3 tan p4

 tan 
p

12
� tanap

3
�
p

4
b
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31. Given tan where and csc b� 2,
where find sin(u � b) and cos(b � u).

32. Given sec where sin s � 0, and cot t ��1, where
find sin(s � t) and cos (s � t).

In Exercises 33–36, prove that each equation is an identity.

33.
34.
35.

36.

In Exercises 37–40, use the given information to compute 
tan(s � t) and tan(s � t).

37. tan s � 2 and tan t � 3
38. tan and tan 
39. and tan t � �4
40. and tan t � �2

In Exercises 41–46, use the addition formulas for tangent to
simplify each expression.

41. 42.

43. 44.

45.

46. [tan(u � p)][tan(u � p)] � 1
47. Compute tan and rationalize the answer.

Hint:
48. Compute tan 15� using the fact that 15� � 45� � 30�. Then

check that your answer is consistent with the result in
Example 7.

B
In Exercises 49–58, prove that each equation is an identity.

49. 50.

51. cos(A � B) � cos(A � B) � 2 sin A sin B
52. sin(A � B) � sin(A � B) � 2 sin A cos B
53. cos(A � B) cos(A � B) � cos2 A � sin2 B
54. sin(A � B) sin(A � B) � cos2 B � cos2 A
55. cos(a � b) cos b� sin(a � b) sin b� cos a
56.

57.

58.
Hint: Use the addition formulas for tangent and the result
in Exercise 57.

tan 1p4 � u 2 � tan 1p4 � u 2 � 2 tan 2u

tan 2u �
2 tan u

1 � tan2 u

cos 1u � p
4 2 � sin 1u � p

4 2 � 0

cos(s � t)

cos s sin t
� cot t � tan s

sin(s � t)

cos s cos t
� tan s � tan t

p
3 � p

4
7p
12  �

7p
12

tan(x � y) � tan y

1 � tan(x � y) tan y

2 tan p12

1 � tan2 p12

tan 70° � tan 10°

1 � tan 70° tan 10°

tan p5 � tan p30

1 � tan p5  tan p30

tan t � tan 2t

1 � tan t tan 2t

s � 7p�4
s � 3p�4

t � 1�3s � 1�2

sec(a � b) �
sec a sec b

1 � tan a tan b

sin 1 t � p
4 2 � cos 1 t � p

4 2 � 12 cos t
cos 1 t � p

4 2 � (cos t � sin t)�12
sin 1 t � p

4 2 � (sin t � cos t)�12

p�2 � t � p,
s � 5�4,

0 � b � p�2,
p�2 � u � p,u � � 2�3,A

In Exercises 1–10, use the addition formulas for sine and cosine
to simplify the expression.

1. sin u cos 2u � cos u sin 2u
2.
3. sin 3u cos u � cos 3u sin u
4. sin 110� cos 20� � cos 110� sin 20�
5. cos 2u cos 3u � sin 2u sin 3u
6. cos 2u cos 3u � sin 2u sin 3u
7.
8.
9. sin(A � B) cos A � cos(A � B) sin A

10. cos(s � t) cos t � sin(s � t) sin t

In Exercises 11–14, simplify each expression (as in Example 2).

11. 12.
13. cos(u � p) 14. sin(u� p)
15. Expand sin(t � 2p) using the appropriate addition formula,

and check to see that your answer agrees with the fact that
sin has period 2p.

16. Follow the directions in Exercise 15, but use cos(t � 2p).
17. Use the formula for cos(s � t) to compute the exact value

of cos 75�.
18. Use the formula for sin(s � t) to compute the exact value

of 
19. Use the formula for sin(s � t) to find 
20. Determine the exact value of (a) sin 105� and (b) cos 105�.

In Exercises 21–24, use the addition formulas for sine and
cosine to simplify each expression.

21. 22.
23. 24.

In Exercises 25–28, compute the indicated quantity using the
following data.

25. (a) sin(a � b) 26. (a) sin(a � b)
(b) cos(a � b) (b) cos(a � b)

27. (a) sin(u� b) 28. (a) cos(a � u)
(b) sin(u� b) (b) cos(a � u)

29. Suppose that sin u � 1�5 and 
(a) Compute cos u.
(b) Compute sin 2u. Hint: sin 2u � sin(u� u)

30. Suppose that cos and 
(a) Compute sin u.
(b) Compute cos 2u. Hint: cos 2u � cos(u � u)

3p�2 � u � 2p.u � 12�13

0 � u � p�2.

 cos u �
7

25
  where �2p � u � � 

3p

2

 cos b � � 

3

5
  where p � b �

3p

2

 sin a �
12

13
  where 

p

2
� a � p

cos 1u � p
4 2 � cos 1u � p

4 2cos 1p3 � u 2 � cos 1p3 � u 2
sin 1 t � p

6 2 � sin 1 t � p
6 2sin 1p4 � s 2 � sin 1p4 � s 2

sin 7p12 .
sin p12.

cos 1 3p2 � u 2sin 1u � 3p
2 2

cos 3p10  cos p5 � sin 3p10  sin p5

cos 2p9  cos p18 � sin 2p9  sin p18

sin p6  cos p3 � cos p6  sin p3

EXERCISE SET 9.1



67. Suppose that A, B, and C are the angles of a triangle, so
that A � B � C � p. Show that

cos2A � cos2 B � cos2 C � 2 cos A cos B cos C � 1

68. Prove that

69. Suppose that a2 � b2 � 1 and c2 � d2 � 1. Prove that 
�ac � bd � � 1. Hint: Let a � cos u, b � sin u, c � cos f,
and d � sin f.

In Exercises 70–72, simplify the expression.

70.
Hint: If your solution relies on four separate addition
formulas, then you are doing this the hard way.

71.

72.

73. If show that (1 � tan a)(1 � tan b) � 2.

Exercises 74 and 75 outline simple geometric derivations of the
formulas for sin(a � b) and cos(a � b) in the case in which 
a and b are acute angles, with a � b � 90�. The exercises rely
on the accompanying figures, which are constructed as follows.
Begin, in Figure A, with GAD, HAG, and AH � 1.
Then, from H, draw perpendiculars to and to , as shown
in Figure B. Finally, draw and 

Figure A Figure B

74. Formula for sin(a � b). Supply the reasons or steps
behind each statement.
(a) BH � sin(a � b)
(b) FH � sin b (c)
(d) EH � cos a sin b Hint: Use ^EFH and the result in

part (b).
(e) AF � cos b (f) CF � sin a cos b
(g) sin(a � b) � sin a cos b � cos a sin b

Hint: sin(a � b) � BH � EH � CF
75. Formula for cos(a � b). Supply the reasons or steps

behind each statement.
(a) cos(a � b) � AB
(b) AC � cos a cos b

Hint: Use ^ACF and the result in Exercise 74(e).

�BHF � a

H H

E F

G G

1 1

∫

å

∫

å

A D A DCB

FC � AD.FE � BH
AGAD

b � �a � �

a � b � p�4,

tan(A � 2B) � tan(A � 2B)

1 � tan(A � 2B) tan(A � 2B)

sin 1p3 � t 2  cos 1p3 � t 2 � cos 1p3 � t 2  sin 1p3 � t 2

cos 1p6 � t 2  cos 1p6 � t 2 � sin 1p6 � t 2  sin 1p6 � t 2

sin(a � b)

cos a cos b
�

sin(b � g)

cos b cos g
�

sin(g � a)

cos g cos a
� 0

In Exercises 59–61, you are asked to derive expressions for the
average rates of change of the functions sin x, cos x, and tan x.
In each case, assume that the interval is [x, x � h]. (The results
are used in calculus in the study of derivatives.)

59. Let f(x) � sin x. Show that

60. Let g(x) � cos x. Show that

61. Let T(x) � tan x. Show that

62. Let u be the acute angle defined by the following figure.

Use an addition formula and the figure to show that 
5 sin(x � u) � 4 sin x � 3 cos x.

63. Let a and b be positive constants, and let u be the acute
angle (in radian measure) defined by the following figure.

(a) Use an addition formula and the figure to show that 
sin(x � u) � a sin x � b cos x.

(b) Use the result in part (a) to specify the maximum value
of the function f(x) � a sin x � b cos x.

64. (a) Use an addition formula to show that 

(b) Use the result in part (a) to graph the function
sin x for one period.

65. (a) Use an addition formula to show that
cos x � sin x.

(b) Use the result in part (a) to graph the function 
f (x) � cos x � sin x for one period.

66. Let A, B, and C be the angles of a triangle, so that 
A � B � C � p.
(a) Show that sin(A � B) � sin C.
(b) Show that cos(A � B) � �cos C.
(c) Show that tan(A � B) � �tan C.

12 cos 1x � p
4 2  �

f (x) � cos x � 13

cos x � 13 sin x.2 sin 1x � p
6 2  �

2a2 � b2

a

b

¨

3
5

4

¨

¢T

¢x
�

tan h

h
# sec2 x

1 � tan h tan x

¢g

¢x
� (cos x) a cos h � 1

h
b � (sin x) a sin h

h
b

¢f

¢x
� (sin x) a cos h � 1

h
b � (cos x) a sin h

h
b
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81. Let f(t) � cos2 t � cos2 � cos2

(a) Complete the table. (Use a calculator.)

t 1 2 3 4

f (t)

(b) On the basis of your results in part (a), make a conjec-
ture about the function f. Prove that your conjecture is
correct.

C
82. (a) Use your calculator to check that 

tan 50� � tan 40� � 2 tan 10�.
(b) Part (a) is a specific example of a more general

identity. State the identity and prove it.

83. If , show that 

tan(A � B) � (1 � n)tan A.
84. If triangle ABC is not a right triangle, and 

cos A � cos B cos C, show that tan B tan C � 2.
85. (a) The angles of a triangle are A � 20�, B � 50�, and 

C � 110�. Use your calculator to compute the sum 
tan A � tan B � tan C and then the product 
tan A tan B tan C. What do you observe?

(b) The angles of a triangle are a� p�10, b � 3p�10, 
and g � 3p�5. Use your calculator to compute 
tan a � tan b� tan g and tan a tan b tan g.

(c) If triangle ABC is not a right triangle, prove that 
tan A � tan B � tan C � tan A tan B tan C.

tan B �
n sin A cos A

1 � n sin2 A

1 t � 2p
3 2 .1 t � 2p

3 2(c) EF � sin a sin b
(d) cos(a � b) � cos a cos b � sin a sin b

Hint: AB � AC � BC
76. Let S and C be two functions. Assume that the domain for

both S and C is the set of all real numbers and that S and C
satisfy the following two identities.

S(x � y) � S(x)C(y) � C(x)S(y) (1)
C(x � y) � C(x)C(y) � S(x)S(y) (2)

Also, suppose that the function S is not identically zero.
That is,

S(x) � 0 for at least one real number x (3)

(a) Show that S(0) � 0. Hint: In identity (1), let x � y.
(b) Show that C(0) � 1. Hint: In identity (1), let y � 0.
(c) Explain (in complete sentences) why it was necessary

to use condition (3) in the work for part (b).
(d) Prove the identity [C(x)]2 � [S(x)]2 � 1.

Hint: In identity (2), let y � x.
(e) Show that C is an even function and S is an odd func-

tion. That is, prove the identities C(�x) � C(x) and
S(�x) � �S(x).
Hint: Write �x as 0 � x.

In Exercises 77–80, prove the identities.

77.

78.

79.

80. cot(A � B) �
cot A cot B � 1

cot B � cot A

cot(A � B) �
cot A cot B � 1

cot A � cot B

cos(A � B)

cos(A � B)
�

1 � tan A tan B

1 � tan A tan B

sin(A � B)

sin(A � B)
�

tan A � tan B

tan A � tan B
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PROJECT The Design of a Fresnel Lens

Before the invention of the Fresnel lens, lighthouse beacons were visible from
a distance of only four or five miles out at sea. To form a beam of light visible
from significantly further than five miles required construction of a lens sys-
tem, based on the then conventional design, that would be unfeasibly large and
heavy—not to mention expensive—and was beyond the manufacturing capa-
bilities of the time. In 1822 Augustin Fresnel revolutionized the design and
construction of lighthouse beacons by inventing a lens that was both thin and
lightweight, which could form a beam of light that could be seen from twenty
or more miles away. Today Fresnel lenses are used in traffic lights, overhead
projectors, and on the rear windows of buses and motor homes.

In this group project we use trigonometric identities and Snell’s law to
design a Fresnel lens. As background, you will need to read the discussion of
geometric optics and Snell’s law in the project at the end of Section 10.1.
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Figure A shows cross-sectional views of a positive or converging Fresnel
lens on the left and a negative or diverging lens on the right. The cross-sections
are taken along a diameter of the lens. The front view (ii) would be the same
for both. A groove is the annular region between two consecutive concentric
circles seen when looking at the front of a Fresnel lens. In Figure A(ii) groove
number 1 lies between the center dot and the smallest circle, groove number 2
lies between the smallest circle and the next one out, and so on.

The lenses commonly seen on the the rear windows of vehicles are diverg-
ing lenses, but most uses of Fresnel lenses, as in traffic lights and overhead pro-
jectors, require a converging lens. The optical situation is a little simpler for
converging lenses, so that’s what we’ll study in this project. However, the
groove angle formula we derive applies to both converging and diverging
Fresnel lenses.

(i) (ii)

s™s¡

r

B

∫

A

Figure B

(i) (ii) (iii)

1
2 . . . 

Figure A

Figure B shows the basic design problem. We are given two points lying
along an axis through the center of the lens and perpendicular to the flat surface
of the lens. Point A is at a distance s1 to the left of the lens and point B is at a
distance s2 to the right of the lens. The lens is made of a material of index of re-
fraction n. The design goal is to ensure that light rays emerging from point A
go through point B after refraction by the lens. Figure B(i) shows a ray from A
striking the flat surface of the lens at a distance r from the center of the lens
and, after refraction at that surface, striking the slanted groove surface where it
is again refracted. The groove angle b is measured from the vertical as is



shown in an enlarged view in Figure B(ii). Given s1, s2, and n, we need to show
how, for each value of r, we can find a groove angle b such that after refraction
the ray passes through point B.

Figure C(i) shows a simplified version of Figure B, in which we ignore the
thickness of the lens since it is usually negligible compared to s1 and s2. We also
introduce the angles u1 and u2, and (using what theorem from geometry?) show
them, measured from the horizontal, in Figure C(ii). As in Figure B, Figure C(ii)
is an enlarged view of the region in which the ray indicated in Figure C(i) passes
through the lens.
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(i) (ii)

s™

¨™

¨™¨¡
¨¡

s¡

r

B

∫

A

Figure C

¨™ª¡

¨¡

Index of
refraction: 1

Index of
refraction: n

Index of
refraction: 1

∫

ϕ

¡ϕ

™ϕª™ϕ

Figure D

We are now ready to derive a formula for b. Figure D shows the path of the
ray through the lens with all the relevant angles labeled. Angles w1 and 
denote the angles of incidence and refraction at the first surface, and angles 
and w2 denote the angles of incidence and refraction at the second surface.

wœ
2

wœ
1

Exercise 1

(a) Given r, s1, and s2, explain how to use a calculator to find u1 and u2.
(b) Explain why w1 � u1, w2 � b � u2, and 
(c) Using Snell’s law and part (b) show that

(1)
(2)
(3)

and conclude that

(4)n sin(b � wœ
1) � sin(b � u2)

 n sin wœ
2 � n sin(b � wœ

1)

 n sin wœ
2 � sin(b � u2)

 sin u1 � n sin wœ
1

wœ
1 � wœ

2 � b.



(d) Use an addition formula for sine and a Pythagorean identity to show that

(5)

Use equation (1) to obtain

(6)

Then use equations (4) and (6) and an addition formula for sine to obtain

(7)

(e) It is surprising that equation (7) can be be solved for b in a few steps.
Divide both sides by cos b and solve for tan b to derive the Fresnel lens
groove angle formula

(8)

Exercise 2 An optical designer must design a Fresnel lens 80 millimeters in
diameter to gather light from a lamp 100 mm from the lens and cause it to pass
through a small opening 400 mm from the lens on the side opposite the lamp.
The index of refraction of the lens material is 1.50. She lets s1 � 100 mm and
s2 � 400 mm, decides to make the width of each groove 0.4 mm, and calcu-
lates that there will be 100 grooves. (How?)

She writes a computer program to generate a file containing the 100 groove
angles, in degrees, which will be the input to another computer program that will
generate commands for a computer-controlled machine (a lathe in this case) that
will produce the lens. Before trying to make the lens, she decides to calculate the
groove angle for grooves numbered 1, 25, 50, and 100, and use the calculated
values to check the output of her program. She makes a table with column head-
ings r in mm and u1, u2, and b in degrees. Her first r-value is 0.200 mm and her
second is 9.800 mm, and she calculates u1, u2, and b to four decimal places. Your
job as her assistant is to produce your own version of the table as another check
of her work. Use the results of Exercise 1 parts (a) and (e) to produce the table.

tan b �
sin u1 � sin u2

2n2 � sin2 u1 � cos u2

(sin b) 2n2 � sin2 u1 � cos b sin u1 � sin b cos u2 � cos b sin u2

n sin(b � wœ
1) � (sin b) 2n2 � sin2 u1 � cos b sin u1

n sin(b � wœ
1) � (sin b) 1n21 � sin2 wœ

1 2 � (cos b)(n sin wœ
1)
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9.2 THE DOUBLE-ANGLE FORMULAS
Ptolemy (ca. 150) knew substantially the sine of half an angle . . . and it is probable
that Hipparchus (ca. 140 B.C.) and certain that Varahamihira (ca. 505) knew the rela-
tion that we express as —David Eugene Smith in History of

Mathematics (New York: Ginn and Company, 1925)

A number of basic identities follow from the addition formulas. We begin with the
double-angle formulas.

1. sin 2u� 2 sin u cos u
2. cos 2u� cos2 u� sin2 u

3. tan 2u �
2 tan u

1 � tan2 u

The Double-Angle Formulas

sin f2 � 1(1 � cos f)�2.



The identities for sin 2u, cos 2u, and tan 2u are all derived in the same way: We
replace 2u by (u � u) and use the appropriate addition formula. For instance, for
sin 2u we have

This establishes the formula for sin 2u. (Exercise 33 asks you to carry out the corre-
sponding derivations for cos 2u and tan 2u.)

 � 2 sin u cos u
 sin 2u � sin(u � u) � sin u cos u � cos u sin u
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EXAMPLE 1 Using Double-Angle Formulas

If sin u� 4�5 and p�2 � u � p, find the quantities cos u, sin 2u, and cos 2u.

SOLUTION We have

Consequently, cos u � 3�5 or cos u � �3�5. We want the negative value for the
cosine here, since p�2 � u � p. Thus

Now that we know the values of cos u and sin u, the double-angle formulas can be
used to determine sin 2u and cos 2u. We have

and

The required quantities are therefore cos u � �3�5, sin 2u � �24�25, and 
cos 2u � �7�25.

 � a� 

3

5
b 2

� a 4

5
b 2

�
9

25
�

16

25
� � 

7

25

 cos 2u � cos2 u � sin2 u

sin 2u � 2 sin u cos u � 2a 4

5
b a� 

3

5
b � � 

24

25

cos u � � 

3

5

cos2 u � 1 � sin2 u � 1 � a 4

5
b 2

�
9

25

EXAMPLE 2 Using a Double-Angle Formula

If x � 4 sin u, 0 � u � p�2, express sin 2u in terms of x.

SOLUTION The given equation is equivalent to sin u � x�4, so we have

At the start of this section we listed formulas for cos 2u and for sin 2u. There are
also formulas for cos 3u and for sin 3u:

cos 3u � 4 cos3 u � 3 cos u sin 3u � 3 sin u � 4 sin3 u

 �
x

2
 
B

1 �
x2

16
�

x

2
 
B

16 � x2

16
�

x216 � x2

8

 �
x

2
21 � sin2 u  (Why is the positive root appropriate?)

 sin 2u � 2 sin u cos u � 2 a x

4
b cos u



In the next example we derive the formula for cos 3u, and Exercise 40 asks you to
derive the formula for sin 3u. Although these formulas needn’t be memorized, they are
useful. For instance, Exercise 102 in Section 9.4 shows how the formula for cos 3u
can be used to solve certain types of cubic equations. Historical note: The identi-
ties for cos 3u and sin 3u are usually attributed to the French mathematician François
Viète (1540–1603). Recent research, however, has shown that a geometric version of
the formula for sin 3u was developed much earlier by the Persian mathematican and
astronomer Jashmid al-Kāshi (d. 1429). [For background and details, see the article by
Professor Farhad Riahi, “An Early Iterative Method for the Determination of sin 1�,”
The College Mathematics Journal (vol. 26, January 1995, pp. 16–21).]
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EXAMPLE 3 Using Double-Angle Formulas to Prove an Identity

Prove the following identity:

cos 3u � 4 cos3 u � 3 cos u

SOLUTION

Q a
(cos2 u � sin2 u) (2 sin u cos u)

Collecting like terms now gives us

cos 3u � cos3 u � 3 sin2 u cos u

Finally, we replace sin2 u by the quantity 1 � cos2 u. This yields

as required.

In the box that follows, we list several alternative ways of writing the formula for
cos 2u. Formulas (3) and (4) are quite useful in calculus.

1. cos 2u� 2 cos2 u� 1 3.

2. cos 2u� 1 � 2 sin2 u 4.

One way to prove identity (1) is as follows:

as required.
In this last equation, if we add 1 to both sides and then divide by 2, the result is

identity (3). (Verify this.) The proofs for (2) and (4) are similar; see Exercise 34.

 � 2 cos2 u � 1
 � cos2 u � 1 � cos2 u
 � cos2 u � (1 � cos2 u)

 cos 2u � cos2 u � sin2 u

sin2 u �
1 � cos 2u

2

cos2 u �
1 � cos 2u

2

Equivalent Forms of the Formula cos 2U � cos2 U � sin2 U

 � 4 cos3 u � 3 cos u
 � cos3 u � 3 cos u � 3 cos3 u

 cos 3u � cos3 u � 3(1 � cos2 u)cos u

 � cos3 u � sin2 u cos u � 2 sin2 u cos u
 � (cos2 u � sin2 u)cos u � (2 sin u cos u)sin u

ff � cos 2u cos u � sin 2u sin u
 cos 3u � cos(2u � u)
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EXAMPLE 4 Expressing a Power of Cosine in Terms of Cosines of Multiple Angles

Express cos4 t in a form that does not involve powers of the trigonometric functions.

SOLUTION using the formula for cos2 u

using the formula for cos2 u with u � 2t

An easy way to simplify this last expression is to multiply both the numerator and the
denominator by 2. As you should check for yourself, the final result is

The last three formulas we are going to prove in this section are the half-angle
formulas, which follow.

1.

2.

3.

Note: In the half-angle formulas the 	 symbol is intended to mean either positive
or negative, but not both; the sign before the radical is determined by the quadrant in
which the angle (or arc) s�2 terminates.

To derive the formula for cos(s�2), we begin with one of the alternative forms of
the cosine double-angle formula:

Since this identity holds for all values of u, we may replace u by s�2 to obtain

This is the required formula for cos(s�2). To derive the formula for sin(s�2), we 
follow exactly the same procedure, except that we begin with the identity 
sin2 . [Exercise 34(c) asks you to complete the proof.] In both for-
mulas the sign before the radical is determined by the quadrant in which the angle or
arc s�2 terminates.

u � 1
2 (1 � cos 2u)

cos 
s

2
� 	
B

1 � cos 2(s�2)

2
� 	
B

1 � cos s

2

cos2 u �
1 � cos 2u

2
  or  cos u � 	

B

1 � cos 2u

2

tan 
s
2

�
sin s

1 � cos s

cos 
s
2

� 	
B

1 � cos s
2

sin 
s
2

� 	
B

1 � cos s
2

The Half-Angle Formulas

cos4 t �
3 � 4 cos 2t � cos 4t

8

 �
1 � 2 cos 2t � 1

2 (1 � cos 4t)

4

 �
1 � 2 cos 2t � cos2 2t

4

 cos4 t � (cos2 t)2 � a 1 � cos 2t

2
b 2
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EXAMPLE 5 Using a Half-Angle Formula

Evaluate cos 105� using a half-angle formula.

SOLUTION

So

(Which one?)

We choose the negative value here, since the terminal side of 105� lies in Quadrant II.
Thus we finally obtain

Our last task is to establish a formula for tan(s�2). To do this, we first prove the

equivalent identity, .

Proof that 

If we now replace u by s�2 in the identity the result is

This is the half-angle formula for the tangent.
We conclude this section with a summary of the principal trigonometric identities

developed in this section and in Chapter 8. For completeness the list also includes
two sets of trigonometric identities that we did not discuss in this section. These are
the so-called product-to-sum formulas and sum-to-product formulas. Proofs and
applications of these formulas are discussed in the next section.

tan 
s

2
�

sin s

1 � cos s

tan u �
sin 2u

1 � cos 2u
,

 �
sin u

cos u
� tan u

using the identity cos 2u � 2 cos2 u � 1 
in the denominator 

sin 2u

1 � cos 2u
�

2 sin u cos u

2 cos2 u

tan U �
sin 2U

1 � cos 2U

tan u �
sin 2u

1 � cos 2u

cos 105° �
�22 � 13

2

cos u �
22 � 13

2
  or  

�22 � 13

2

 �
	22 � 13

2

 � 	
B

1 � 113�2 2
2

# 2

2
� 	
B

2 � 13

4

 � 	
B

1 � 1�13�2 2
2

using the formula for
cos(s�2) with s � 210� cos 105° � cos 

210°

2
� 	
B

1 � cos 210°

2
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PROPERTY SUMMARY Principal Trigonometric Identities

1. Consequences of the definitions

(a) (b) (c)

(d) (e)

2. The Pythagorean identities
(a) sin2 u � cos2 u � 1 (b) tan2 u � 1 � sec2 u (c) cot2 u � 1 � csc2 u

3. The opposite-angle formulas
(a) sin(�u) � �sin u (b) cos(�u) � cos u (c) tan(�u) � �tan u

4. The reduction formulas
(a) sin(u � 2pk) � sin u (b) cos(u � 2pk) � cos u (c)
(d)

5. The addition formulas
(a) sin(s � t) � sin s cos t � cos s sin t (b) sin(s � t) � sin s cos t � cos s sin t
(c) cos(s � t) � cos s cos t � sin s sin t (d) cos(s � t) � cos s cos t � sin s sin t

(e) (f)

6. The double-angle formulas
(a) sin 2u � 2 sin u cos u (b) cos 2u� cos2 u � sin2 u (c)

7. The half-angle formulas

(a) (b) (c)

8. The product-to-sum formulas
(a) (b)

(c)

9. The sum-to-product formulas

(a) (b)

(c) (d) cos a � cos b � �2 sin 
a � b

2
 sin 
a � b

2
cos a � cos b � 2 cos 

a � b

2
 cos 
a � b

2

sin a � sin b � 2 cos 
a � b

2
 sin 
a � b

2
sin a � sin b � 2 sin 

a � b

2
 cos 
a � b

2

cos A cos B � 1
2 [cos(A � B) � cos(A � B)]

sin A cos B � 1
2 [sin(A � B) � sin(A � B)]sin A sin B � 1

2 [cos(A � B) � cos(A � B)]

tan 
u

2
�

sin u

1 � cos u
cos 
u

2
� 	
A

1 � cos u

2
sin 
u

2
� 	
A

1 � cos u

2

tan 2u �
2 tan u

1 � tan2 u

tan(s � t) �
tan s � tan t

1 � tan s tan t
tan(s � t) �

tan s � tan t

1 � tan s tan t

cos 1p2 � u 2 � sin u
sin 1p2 � u 2 � cos u

cot u �
cos u

sin u
tan u �

sin u

cos u

cot u �
1

tan u
sec u �

1

cos u
csc u �

1

sin u

3.
(a) sin 2u (b) cos 2u (c) tan 2u

4.
(a) sin 2s (b) cos 2s (c) tan 2s

5.
(a) sin(a�2) (b) cos(a�2) (c) tan(a�2)
sin a �13�2 with 0° � a � 90°

cot s � 2 with p � s � 3p
2

tan u � �4 with 3p
2 � u � 2p

A
In Exercises 1–8, use the given information to evaluate each
expression.

1.
(a) sin 2w (b) cos 2w (c) tan 2w

2.
(a) sin 2w (b) cos 2w (c) tan 2w
cos w � 3�5 with 0° � w � 90°

cos w � 7�25 with 0° � w � 90°

EXERCISE SET 9.2



29. sin4 u 30. cos6 u

31. sin4(u�2) 32. sin6(u�4)
33. Prove each of the following double-angle formulas.

Hint: As in the text, replace 2u with u � u, and use an
appropriate addition formula.
(a) cos 2u � cos2 u � sin2 u

(b)

34. (a) Beginning with the identity cos 2u � cos2 u � sin2 u,
prove that cos 2u � 1 � 2 sin2 u.

(b) Using the result in part (a), prove that 
sin2 u � (1 � cos 2u)�2.

(c) Derive the formula for sin(s�2) as follows: using the
identity in part (b), replace u with s�2, and then take
square roots.

B
In Exercises 35–50, prove that the given equations are identities.

35. 36. 1 � cos 2t � cot t sin 2t

37. cos u � 2 cos2(u�2) � 1

38.

39.

40. sin 3u � 3 sin u � 4 sin3 u

41. 42.

43. sin 2u � 2 sin3 u cos u � 2 sin u cos3 u

44.

45.

46. tan u � cot u � 2 csc 2u
47. 2 sin2(45� � u) � 1 � sin 2u
48. (sin u� cos u)2 � 1 � sin 2u
49. 1 � tan u tan 2u � tan 2u cot u � 1
50.
51. If and tan find a � b, given 

that and Hint: Compute 
tan(a� b).

52. Let z � tan u for . Show that

(a) and

(b) Explain why these formulas give the correct signs for
cos 2u and sin 2u.

53. (a) Use a calculator to verify that the value x � cos 20� is
a root of the cubic equation 8x3 � 6x � 1 � 0.

(b) Use the identity cos 3u � 4 cos3 u � 3 cos u (from
Example 3 in Section 9.2) to prove that cos 20� is a 
root of the cubic equation 8x3 � 6x � 1 � 0.
Hint: In the given identity, substitute u � 20�.

sin 2u �
2z

1 � z2cos 2u �
1 � z2

1 � z2

� p�2 � u � p�2

0 � b � p�2.0 � a � p�2
b � 5�6,tan a � 1�11

tan1p4 � u 2 � tan1p4 � u 2 � 2 tan 2u

1 � tan(u�2)

1 � tan(u�2)
� tan u � sec u

cot u �
1 � cos 2u

sin 2u

2 csc 2u �
csc2 u

cot u
sin 2u �

2 tan u

1 � tan2 u

sin4 u �
3 � 4 cos 2u � cos 4u

8

sin 2u

sin u
�

cos 2u

cos u
� sec u

cos 2s �
1 � tan2 s

1 � tan2 s

tan 2u �
2 tan u

1 � tan2 u

6.
(a) sin(b�2) (b) cos(b�2) (c) tan(b�2)

7.
(a) sin(u�2) (b) cos(u�2) (c) tan(u�2)

8.
(a) sin(u�2) (b) cos(u�2) (c) tan(u�2)

In Exercises 9–12, use the given information to compute each
of the following:

(a) sin 2u (c) sin(u�2)
(b) cos 2u (d) cos(u�2)

9.
10.
11.
12.

In Exercises 13–16, use an appropriate half-angle formula
to evaluate each quantity.

13. (a) sin(p�12) 14. (a) sin(p�8)
(b) cos(p�12) (b) cos(p�8)
(c) tan(p�12) (c) tan(p�8)

15. (a) sin 105� 16. (a) sin 165�
(b) cos 105� (b) cos 165�
(c) tan 105� (c) tan 165�

In Exercises 17–24, refer to the two triangles and compute the
quantities indicated.

17. (a) sin 2u (b) cos 2u (c) tan 2u
18. (a) sin 2t (b) cos 2t (c) tan 2t
19. (a) sin 2b (b) cos 2b (c) tan 2b
20. (a) sin 2s (b) cos 2s (c) tan 2s
21. (a) sin(u�2) (b) cos(u�2) (c) tan(u�2)
22. (a) sin(s�2) (b) cos(s�2) (c) tan(s�2)
23. (a) sin(b�2) (b) cos(b�2) (c) tan(b�2)
24. (a) sin(t�2) (b) cos(t�2) (c) tan(t�2)

In Exercises 25–28, use the given information to express sin 2u
and cos 2u in terms of x.

25.
26.
27.
28.

In Exercises 29–32, express each quantity in a form that 
does not involve powers of the trigonometric functions
(as in Example 4).

x � 1 � 3 sin u with p2 � u � p
x � 1 � 2 sin u with 0 � u � p

2

x � 12 cos u with 0 � u � p
2

x � 5 sin u with 0 � u � p
2

4 24

t

s
7

5
3

∫

¨

sin u � �1�10 and 270° � u � 360°
cos u � �1�3 and 180° � u � 270°
cos u � 2�5 and 3p�2 � u � 2p
sin u � 3�4 and p�2 � u � p

cos u � 12�13 with 3p
2 � u � 2p

cos u � �7�9 with p2 � u � p

cos b � �1�8 with 180° � b � 270°
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Finally, from D a perpendicular is drawn to the diameter,
as shown.

Supply the reason or reasons that justify each of the fol-
lowing statements.
(a)
(b) Hint: is an exterior angle to

^ AOC.
(c) (d)
(e) From O, draw a perpendicular to meeting at F.

From A, draw a perpendicular to meeting at G.
Then GC � OG � cos u and FA � DF � cos 2u.

(f) Hint: Use ^CFO.

(g) cos 2u � 2 cos2 u � 1 Hint: In the equation in
part (f), solve for cos 2u.

(h) OF � sin 2u
(i) sin 2u � 2 sin u cos u Hint: Find sin u in ^CFO, and

then solve the resulting equation for sin 2u.
(j) DC � 1 � 2 cos 2u and EO � cos 3u

(k) Hint: Compute cos u in

^CDE, and then use part (j).

(l) cos 3u � 4 cos3 u � 3 cos u Hint: Use the results in
parts (k) and (g).

(m) DE � sin 3u
(n) sin 3u � 3 sin u � 4 sin3 u Hint: Compute sin u in

^CDE.
57. Prove the following identities involving products of

cosines. Suggestion: In each case, begin with the right-
hand side and use the double-angle formula for the sine.

(a)

(b)

(c)

58. (a) Use your calculator to evaluate the expression 
cos 72� cos 144�. Then follow steps (b) through (d)
to prove that cos 72� cos 144� � �1�4.

(b) Multiply the expression cos 72� cos 144� by the quan-
tity (sin 72�)�(sin 72�), which equals 1. Show that the
result can be written

(c) Explain why the expression obtained in part (b) is
equal to

(d) Use the reference-angle concept to explain why the
expression in part (c) is equal to �1�4, as required.

1
4 sin 288°

sin 72°

1
2 sin 144° cos 144°

sin 72°

cos u cos 2u cos 4u cos 8u �
sin 16u

16 sin u

cos u cos 2u cos 4u �
sin 8u

8 sin u

cos u cos 2u �
sin 4u

4 sin u

cos u �
2 cos u � cos 3u

1 � 2 cos 2u

cos u �
1 � cos 2u

2 cos u

OCOC,
CDCD,

�DOE � 3u�ODA � 2u

�DAO�DAO � 2u
�ACO � u

54. (a) Use a calculator to verify that the value is a
root of the cubic equation 8x3 � 6x � 1 � 0.

(b) Use the identity sin 3u � 3 sin u � 4 sin3 u (from
Exercise 40) to prove that is a root of the
equation 8x3 � 6x � 1 � 0. Hint: In the identity,
substitute u � 5p�18.

55. The following figure shows a semicircle with radius
AO � 1.

(a) Use the figure to derive the formula

Hint: Show that CD � sin u and OD � cos u. Then
look at right triangle ADC to find tan(u�2).

(b) Use the formula developed in part (a) to show that

(i)i

(ii)
56. In this exercise we’ll use the accompanying figure to prove

the following identities:

cos 2u � 2 cos2 u � 1
sin 2u � 2 sin u cos u
cos 3u � 4 cos3 u � 3 cos u
sin 3u � 3 sin u � 4 sin3 u

[The figure and the technique in this exercise are adapted
from the article by Wayne Dancer, “Geometric Proofs of
Multiple Angle Formulas,” American Mathematical
Monthly, vol. 44 (1937), pp. 366–367.] The figure is con-
structed as follows. We start with in standard
position in the unit circle, as shown. The point C is chosen
on the extended diameter such that CA � 1. Then is
extended to meet the circle at D, and radius is drawn.DO

CA

�AOB � u

D

A

BO C

1 1

E

¨

tan(p�8) � 12 � 1

tan 15° �
1

2 � 13
� 2 � 13

tan 
u

2
�

sin u

1 � cos u
, for 0 � u �

p

2

D

C

BOA

¨/2 ¨

sin 5p18

x � sin 5p18
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Figure A Figure B

61. For Figure A, show that (PA1)(PA2)(PA3) � 1 � x3.
62. For Figure B, show that

(PA1)(PA2)(PA3)(PA4)(PA5) � 1 � x5

Hints: First find the coordinates of A2 and A3 in terms of
sines and cosines. Next, show that

(PA1)(PA2)(PA3)(PA4)(PA5)
� (1 � x)[(1 � 2x cos 72� � x2)(1 � 2x cos 144� � x2)]

Then expand the expression within the brackets and 
simplify using the equations in Exercises 58(a) and 59(a).
Remark: The results in Exercises 61 and 62 are particular
cases of the following theorem of Roger Cotes: Suppose
that a regular n-gon A1A2A3 . . . An is inscribed in the unit
circle. Suppose that A1 is the point (1, 0) and that P is a
point with coordinates (x, 0), where 0 � x � 1. Then the
product (PA1)(PA2)(PA3) . . . (PAn) is equal to 1 � xn.

In Exercises 63 and 64, the results and the techniques are taken
from the article by Zalman Usiskin, “Products of Sines,” 
The Two-Year College Mathematics Journal, vol. 10 (1979), 
pp. 334–340.

63. (a) Use your calculator to check that

sin 18� sin 54� � 1�4

(b) Supply reasons for each of the following steps to prove
that the equation in part (a) is indeed correct.
(i) sin 72� � 2 sin 36� cos 36� � 2 sin 36� sin 54�
(ii)

(iii) 1�4 � sin 18� sin 54�
64. (a) Use your calculator to check that

sin 10� sin 50� sin 70� � 1�8

(b) Prove that the equation in part (a) is indeed correct.
Hint: Use the technique in Exercise 63; begin with the
equation sin 80� � 2 sin 40� cos 40�.

65. (a) Use two of the addition formulas from the previous
section to show that

cos(60� � u) cos(60� � u) � (4 cos2 u � 3)�4

(b) Show that

cos u cos(60� � u) cos(60� � u) � (cos 3u)�4

 � 4 sin 18° sin 72° sin 54°
 sin 72° � 4 sin 18° cos 18° sin 54°

≈+¥=1

A3

A2

A1

P

≈+¥=1
A3

A2

A1

A5

A4

P

y

x

y

x

59. (a) Use your calculator to evaluate the expression 
cos 72� � cos 144�. Then follow steps (b) through (d)
to prove that cos 72� � cos 144� � �1�2.

(b) Use the observation

cos 72� � cos 144� � cos(108� � 36�) � cos(108� � 36�)

and the addition formulas for cosine to show that

cos 72� � cos 144� � 2 cos 108� cos 36�

(c) Use the reference-angle concept to explain why 
cos 108� cos 36� � cos 72� cos 144�.

(d) Use parts (b) and (c) and the identity in Exercise 58(a)
to conclude that cos 72� � cos 144� � �1�2, as
required.

60. In the figure below, the points A1, A2, A3, A4, and A5 are the
vertices of a regular pentagon. Follow steps (a) through (c)
to show that

(A1A2)(A1A3)(A1A4)(A1A5) � 5

[This is a particular case of a general result due to 
Roger Cotes (1682–1716): Suppose that a regular 
n-gon is inscribed in the unit circle. Let the vertices 
of the n-gon be A1, A2, A3, . . . , An. Then the product
(A1A2)(A1A3) . . . (A1An) is equal to n, the number of
sides of the polygon.]
(a) What are the coordinates of the points A2, A3, A4, and

A5? (Give your answers in terms of sines and cosines.)
(b) Show that

(A1A2)(A1A3)(A1A4)(A1A5)
� (2 � 2 cos 72�)(2 � 2 cos 144�)

(c) Show that the expression on the right-hand side of
the equation in part (b) is equal to 5. Hint: Use the
equations given in Exercises 58(a) and 59(a).

For Exercises 61 and 62, refer to the following figures. Figure A
shows an equilateral triangle inscribed in the unit circle.
Figure B shows a regular pentagon inscribed in the unit circle.
In both figures, the coordinates of the point P are (x, 0).

≈+¥=1

A5

A4

A3

A2

A1

y

x
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(b) Let u� 2p�7. Use the reference-angle concept [not the
formulas in part (a)] to explain why cos 3u � cos 4u.

(c) Now use the formulas in part (a) to show that if 
u � 2p�7, then

8 cos4 u � 4 cos3 u � 8 cos2 u � 3 cos u � 1 � 0

(d) Show that the equation in part (c) can be written

(cos u � 1)(8 cos3 u � 4 cos2 u � 4 cos u � 1) � 0

Conclude that the value satisfies the 
equation 8x3 � 4x2 � 4x � 1 � 0.

(e) Use your calculator (in the radian mode) to check that
satisfies the cubic equation 8x3 � 4x2 �

4x � 1 � 0. Remark: An interesting fact about the
real number is that it cannot be expressed in
terms of radicals within the real-number system.

68. Calculation of sin 18�, cos 18�, and sin 3�.
(a) Prove that cos 3u � 4 cos3 u � 3 cos u.
(b) Supply a reason for each statement.

(i) sin 36� � cos 54�
(ii) 2 sin 18� cos 18� � 4 cos3 18� � 3 cos 18�
(iii) 2 sin 18� � 4 cos2 18� � 3

(c) In equation (iii), replace cos2 18� by 1 � sin2 18� and
then solve the resulting equation for sin 18�. Thus show
that 

(d) Show that 
(e) Show that sin 3� is equal to

Hint: 3� � 18� � 15�
(f) Use your calculator to check the results in parts (c), (d),

and (e).

1

16
 3 115 � 1 2 116 � 12 2 � 2 113 � 1 225 � 15 4

cos 18° � 1
4 210 � 215.

sin 18° � 1
4 115 � 1 2 .

cos 2p7

x � cos 2p7

x � cos 2p7

Hint: Use the result in part (a) and the identity for
cos 3u that was derived in Example 3 in Section 9.2.

(c) Use the result in part (b) to show that

cos 20� cos 40� cos 80� � 1�8

(d) Use a calculator to check that

cos 20� cos 40� cos 80� � 1�8

66. (a) Use two of the addition formulas from the previous
section to show that

sin(60� � u) sin(60� � u) �

(b) Show that

sin u sin(60� � u) sin(60� � u) �

Hint: Use the result in part (a) and the identity for
sin 3u in Exercise 40.

(c) Use the result in part (b) to show that 
sin 20� sin 40� sin 80� �

(d) Use a calculator to check that 
sin 20� sin 40� sin 80� �

C
67. In this exercise we show that the irrational number is

a root of the cubic equation

8x3 � 4x2 � 4x � 1 � 0

(a) Prove the following two identities:

cos 3u � 4 cos3 u � 3 cos u
cos 4u � 8 cos4 u � 8 cos2 u � 1

cos 2p7

13�8.

13�8.

sin 3u

4

3 � 4 sin2 u

4
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9.3 THE PRODUCT-TO-SUM AND 
SUM-TO-PRODUCT FORMULAS
The addition formulas for sine and cosine from Section 9.1 can be used to establish
identities concerning sums and products of sines and cosines. These identities are
useful at times for simplifying expressions in trigonometry and in calculus. We begin
with the three product-to-sum formulas.

 cos A cos B �
1
2

 3cos(A � B) � cos(A � B) 4
 sin A cos B �

1
2

 3sin(A � B) � sin(A � B) 4
 sin A sin B �

1
2

 3cos(A � B) � cos(A � B) 4
The Product-to-Sum Formulas

In the summer of 1580, [the Polish mathe-
matician Paul Wittich] went for a short time
to Uraniborg to work with Tycho Brache.
He soon showed himself to be a skillful math-
ematician, for with Tycho he discovered—or,
more precisely, rediscovered—the method of
prosthaphaeresis, by which the products and
quotients of trigonometric functions . . . can
be replaced by simpler sums and differences.

The method of prosthaphaeresis origi-
nated with Johann Werner [a German
astronomer, mathematician, and geogra-
pher (1468–1522)], who developed it in
conjunction with the law of cosines for
sides of a spherical triangle. —Charles
C. Gillipsie (ed.), Dictionary of Scientific
Biography, vol. XIV (New York: Charles
Scribner’s Sons, 1976)



To derive the first identity in the box, we write down the addition formulas for
cos(A � B) and for cos(A � B):

(1)

(2)

If we subtract equation (2) from equation (1), we have

Now, dividing both sides of this last equation by 2, we obtain the required identity:

The derivations of the remaining two product-to-sum formulas are entirely similar.
(See Exercise 42.)

sin A sin B �
1

2
 [cos(A � B) � cos(A � B)]

2 sin A sin B � cos(A � B) � cos(A � B)

cos A cos B � sin A sin B � cos(A � B)

cos A cos B � sin A sin B � cos(A � B)
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EXAMPLE 1 Changing a Product of Sines to a Difference of Cosines

Use the formula for sin A sin B to simplify the expression sin 15� sin 75�.

SOLUTION In the identity for sin A sin B we substitute the values A � 15� and B � 75�. This
yields

 �
1

2
 a 1

2
� 0 b �

1

4

 �
1

2
 [cos(�60°) � cos(90°)]

 sin 15° sin 75° �
1

2
 [cos(15° � 75°) � cos(15° � 75°)]

EXAMPLE 2 Changing a Product of a Sine and a Cosine to a Sum of Sines

Convert the product sin 4x cos 3x to a sum.

SOLUTION Using the formula for sin A cos B with A � 4x and B � 3x, we have

Note: This result is not equal to sin(x�2) � sin(7x�2).

 �
1

2
 sin x �

1

2
 sin 7x

 �
1

2
 [sin x � sin 7x]

 sin 4x cos 3x �
1

2
 [sin(4x � 3x) � sin(4x � 3x)]

EXAMPLE 3 Changing a Product of Cosines to a Sum of Cosines

Simplify the following expression.

cos a s �
p

4
b  cos a s �

p

4
b
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SOLUTION In the formula

we will let and Notice that with these values for A and
B, we have

Consequently,

As we saw in Examples 1 and 3, converting a product into a sum can produce in
some instances a much simpler form of a given expression. Of course, there are times
when it may be more useful to proceed in the other direction. That is, there are times
when we want to convert a sum (or a difference) into a product. The following sum-to-
product formulas are useful here.

Each of these formulas can be derived from one of the product-to-sum formulas
that are listed on page 620. For instance, to derive the formula for cos a� cos b, we
begin with

(3)

If we let

(4)

and

(5)A � B � b

A � B � a

sin A sin B �
1

2
 [cos(A � B) � cos(A � B)]

 cos a � cos b � �2 sin 
a � b

2
 sin 
a � b

2

 cos a � cos b � 2 cos 
a � b

2
 cos 
a � b

2

 sin a � sin b � 2 cos 
a � b

2
 sin 
a � b

2

 sin a � sin b � 2 sin 
a � b

2
 cos 
a � b

2

The Sum-to-Product Formulas

 �
1

2
 (0 � cos 2s) �

1

2
 cos 2s

 cos a s �
p

4
b  cos a s �

p

4
b �

1

2
 a cos 

p

2
� cos 2s b

A � B �
p

2
  and  A � B � 2s

B � s � p�4.A � s � p�4

cos A cos B �
1

2
 [cos(A � B) � cos(A � B)]



then we have

adding equations (4) and (5) and then dividing by 2

and

subtracting equation (5) from equation (4) and then dividing by 2

Now we use these last two equations and also equations (4) and (5) to substitute in
equation (3). The result is

or, after multiplying by 2,

This last equation is equivalent to

This is the fourth sum-to-product formula, as required. (For the derivation of the
remaining three sum-to-product formulas, see Exercises 43–45.)

cos a � cos b � �2 sin 
a � b

2
 sin 
a � b

2

2 sin 
a � b

2
 sin 
a � b

2
� cos b � cos a

sin 
a � b

2
 sin 
a � b

2
�

1

2
 (cos b � cos a)

B �
a � b

2

A �
a � b

2
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EXAMPLE 4 Using the Sum-to-Product Formulas

Convert each expression to a product and simplify where possible:

(a) sin 50� � sin 70�; (b) cos u � cos 5u.

SOLUTION (a) In the formula

we set a� 50� and b � 70�. Then we have

using the identity cos(�u) � cos u

(b) Using the formula

we have

using the identity sin(�t) � �sin t � 2 sin 3u sin 2u
 � �2 sin 3u sin(�2u)

 cos u � cos 5u � �2 sin 
u � 5u

2
 sin 
u � 5u

2

cos a � cos b � �2 sin 
a � b

2
 sin 
a � b

2

 � 13 cos 10°

 � 2 sin 60° cos(�10°)

 sin 50° � sin 70° � 2 sin 
50° � 70°

2
 cos 

50° � 70°

2

sin a � sin b � 2 sin 
a � b

2
 cos 
a � b

2
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EXAMPLE 5 Expressing a Sum of a Sine and a Cosine as a Scaled 
and Shifted Cosine Function

(a) Use a sum-to-product formula to show that

(b) Use the identity in part (a) to graph the function y � sin x � cos x.

sin x � cos x � 12 cos a x �
p

4
b

SOLUTION (a) Using the identity cos we have

Check the algebra.

Actually, there is an easier way to obtain this identity. Expand cos
using an addition formula, then multiply the result by the result will be 
cos x � sin x. We use the sum-to-product formula in this example because we
want to begin with cos x � sin x and work toward a form that can be graphed
using the techniques of the previous chapter.

(b) In view of the identity established in part (a), we need to graph only the function
This is a function of the form y � A cos(Bx � C), which we

studied in Section 8.3. In Figure 1 we show the graph of 
You should verify for yourself (using the techniques of Section 8.3) that the
amplitude, period, and phase shift indicated in Figure 1 are indeed correct.

y � 12 cos 1x � p
4 2 .

y � 12 cos 1x � p
4 2 .

12;
(x � p�4)

 � 12 cos a x �
p

4
b

 � 2 sin 
p

4
 cos a x �

p

4
b

 � 2 sin 
x � 1p2 � x 2

2
 cos 

x � 1p2 � x 2
2

 sin x � cos x � sin x � sin ap
2

� x b

x � sin 1p2 � x 2 ,

y

x

(0, 1)

y=sin x+cos x
  =œ„2 cos[x-(π/4)]

4
π

4
π2

π

+2π

Figure 1
The graph of y � sin x � cos x or

Amplitude:
Period: 2p

Phase shift: p�4.

12

y � 12 cos(x � p�4)

Note: In the project, Superposition, we discuss a generalization of the identity in
Example 5(a). In particular, we show that a cos Bx � b sin Bx � A cos(Bx � C), 

where and tan C � �b�a.A � 2a2 � b2
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B
42. (a) Derive the product-to-sum formula for cos A cos B.

Hint: Add equations (1) and (2) in the text on 
page 621.

(b) Derive the product-to-sum formula for sin A cos B.
Hint: Start by writing down the two addition formulas
for sin(A � B) and sin(A � B), then add the two
equations.

43. Derive the sum-to-product formula for cos a � cos b.
Hint: Follow the method used in the text to derive 
the formula for cos a � cos b, but rather than 
beginning with equation (3), begin instead with

44. Derive the sum-to-product formula for sin a � sin b.
Hint: Follow the method used in the text to derive 
the formula for cos a � cos b, but rather than 
beginning with equation (3), begin instead with

45. Derive the sum-to-product formula for sin a � sin b.
Hint: In the formula for sin a � sin b (which we derived
in Exercise 44), replace each occurrence of b with �b.

46. For this exercise, follow steps (a) through (c) to show that

(a) Start with the expression on the left side of the given
equation and multiply both the numerator and the
denominator by the quantity Show that the
resulting expression can be written as

(b) Explain why the expression obtained in part (a) is
equal to

(c) Now use a product-to-sum formula to simplify the
numerator of the expression in part (b). Then conclude
that the original expression is indeed equal to 1�8, as
we wished to show.

47. The following problem appears in Problems in Elementary
Mathematics by V. Lidsky et al. (Moscow: MIR Publishers,
1973).

Simplify the following expression:

1

2 sin 10°
� 2 sin 70°

1
4 sin 4p7  cos 3p7

sin p7

1
2 sin 2p7  cos 2p7  cos 3p7

sin p7

sin p7 .

cos 
p

7
 cos 

2p

7
 cos 

3p

7
�

1

8

sin A cos B � 12 [sin(A � B) � sin (A � B)].

cos A cos B � 12 [cos(A � B) � cos (A � B)].

A
In Exercises 1–22, use a product-to-sum formula to convert each
expression to a sum or difference. Simplify where possible.

1. cos 70� cos 20� 2. cos 50� cos 40�
3. sin 5� sin 85� 4. sin 130� sin 10�
5. sin 20� cos 10� 6. cos 18� sin 72�
7. 8.
9. 10.

11. 12.
13. sin 3x sin 4x 14. cos 5x cos 2x
15. sin 6u cos 5u 16.
17. 18.
19. sin(2x � y) sin(2x � y) 20.
21. sin 2t cos(s � t) 22. cos(a � 2b) sin(2a� b)

In Exercises 23–34, convert each expression into a product and
simplify where possible.

23. cos 35� � cos 55� 24. cos 50� � cos 10�
25. 26.
27. cos 5u � cos 3u 28.
29. sin 35� � cos 65� Hint: Use the identity 

cos u � sin(90� � u).
30. Hint: Use the identity 
31.
32.

33. 34.

In Exercises 35–38, prove that the equations are identities.

35.

36.

37.

38. sin(u� f) sin(u� f) � sin2 u � sin2 f

In Exercises 39 and 40, convert each sum to a product.
39. cos 7u � cos 5u � cos 3u � cos u

Hint: The given expression can be written 
(cos 7u � cos 5u) � (cos 3u � cos u). After converting 
the quantities in parentheses to products, look for a 
common term to factor out.

40. sin 2u � sin 4u � sin 6u � sin 8u
41. (a) Express the quantity [sin(x�2) � cos(x�2)] in the

form 
(b) Use your result in part (a) to graph the function 

f (x) � [sin(x�2) � cos(x�2)] for two complete
cycles. Specify the amplitude, period, and phase shift.

12

A cos(Bx � C).
12

sin 2x � sin 2y

cos 2x � cos 2y
� tan(x � y)

cos[(n � 2)u] � cos nu

sin[(n � 2)u] � sin nu
� tan u

sin s � sin t

cos s � cos t
� tan a s � t

2
b

sin 47° � cos 17°

cos 47° � sin 17°

cos 5p12 � sin 5p12

cos p12 � sin p12

cos 1 5p12 � u 2 � cos 1 p12 � u 2
sin 1p3 � 2u 2 � sin 1p3 � 2u 2

cos u � sin 1p2 � u 2 .cos 3p8 � sin p8

sin 5u2 � sin u2

sin p12 � sin 11p
12sin p5 � sin 3p10

cos 1u � p
6 2  cos 1u � p

6 2
cos t

4 cos 3t
4cos u2 sin 3u2

sin 2u3  sin 5u3

cos 7p8  sin p8sin 7p12  cos p12

sin 3p8  sin p8sin 2p7  sin 5p7

cos 5p12  cos p12cos p5  cos 4p5

EXERCISE SET 9.3



(b) What is the sum of the cosines of the three angles 
in an equilateral triangle?

(c) Let A, B, and C denote the three angles of a triangle,
so that A � B � C � 180�. The following sequence
of steps proves the inequality cos A � cos B �
cos C � 3�2. Supply the reasons or calculations that
support each step. [The proof, by W. O. J. Moser,
appeared in The American Mathematical Monthly,
vol. 67 (1960), p. 695.]
(i) cos A � cos B � cos C

� 2 cos[(A � B)�2] cos[(A � B)�2] � cos C
(ii) � 2 cos[(A � B)�2] � cos C
(iii) � 2 cos[(180� � C)�2] � cos C
(iv) � 2 cos[90� � (C�2)] � cos C
(v) � 2 sin(C�2) � [1 � 2 sin2(C�2)]
(vi) � (3�2) � 2[sin(C�2) � (1�2)]2

(vii) � 3�2

C
In Exercises 48–50, assume that A � B � C � 180�. Prove that
each equation is an identity.

48. sin 2A � sin 2B � sin 2C � 4 sin A sin B sin C
49. cos A � cos B � cos C � 1 � 4 sin(A�2) sin(B�2) sin(C�2)
50. sin A � sin B � sin C � 4 cos(A�2) cos(B�2) cos(C�2)
51. (a) The accompanying figure shows three triangles. For

each triangle, use a calculator to verify that the sum of
the cosines of the angles of the triangle is less than 3�2.

55° 55°

70°

115°

40°70°30°

80°

25°

626 CHAPTER 9 Analytical Trigonometry

PROJECT Superposition

In Example 5 of Section 9.3 we saw how to use a sum-to-product formula to
combine a cosine wave and a sine wave with the same amplitude, the same pe-
riod, and no phase shift into a single cosine wave with the same period but a
bigger amplitude and a phase shift. By using exactly the same argument, you
can show that

What happens if the original waves have different amplitudes? The previ-
ous approach does not apply because to use a sum-to-product formula requires
that the original waves have the same amplitude. It is not hard to imagine that
we should obtain a single wave with a bigger amplitude and the same period.
It turns out that the new cosine wave will exhibit a phase shift.

Let’s assume that there is a way to combine the waves as desired and see
what that requires. So suppose that

a cos Bx � b sin Bx � A cos(Bx � C) (1)

Here we assume that a, b, and B are constants with B positive and a and b non-
zero. We want to express A and C in terms of a and b. Using the cosine addi-
tion formula to expand cos(Bx � C), we have

cos(Bx � C) � cos Bx cos C � sin Bx sin C

Substituting this into the right-hand side of equation (1) and rearranging, we
obtain

a cos Bx � b sin Bx � (A cos C) cos Bx � (�A sin C) sin Bx (2)

a cos Bx � a sin Bx � 12a cos aBx �
p

4
b
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We want to choose A and C so that equation (2) is true for all real numbers, that
is, equation (2) is an identity. Comparing the numerical coefficients of cos Bx
and sin Bx on both sides of equation (2), we choose A and C such that

A cos C � a and �A sin C � b (3)

For equation (2) to be an identity, it can be shown that these are in fact the only
possible choices for A and C. (We will use a similar argument in our discussion
of partial fractions in Chapter 13.) Equations (3) imply that

Let’s take Equations (3) also imply that

Let’s take C in the open interval between �p�2 and p�2 so that tan C � �b�a.
These conditions allow us to find a unique number for C. (See Section 9.5 on
inverse trigonometric functions for a discussion of the inverse tangent func-
tion.) The notation C � tan�1 (�b�a) means “C is the unique number in the
interval such that tan C � �b�a.” C can be numerically approximated
using the inverse tangent function on your calculator. We summarize

a cos Bx � b sin Bx � A cos(Bx � C)

where

and C � tan�1 (4)

The process of adding wave functions is called superposition and (4) is an
example of a superposition formula. Superposition is an essential feature
of many physical phenomena involving waves, including acoustics (sound
waves), optics (electromagnetic waves), radio (also electromagnetic waves),
and surface waves (water waves). The following exercises use and extend the
concepts developed on superposition.

Exercises

1. Use the method of Example 5 in Section 9.3 to show

2. Use formula (4) to redo problem 1.
3. (a) Use formula (4) to show that 

(b) Use a graphing utility to graph the left-hand side of the identity in
part (a), and estimate the amplitude and phase shift. How do your
estimates compare with the exact values?

4. (a) Use formula (4) to show 2 cos 3x � 5 sin 3x � cos(3x � C), where
C is in the interval and tan C � �5�2.1� 

p
2 , p2 2

129

3 cos 4x �13 sin 4x � 213 cos 14x � p
6 2.

a cos Bx � a sin Bx � 12a cos aBx �
p

4
b

a� 

b
a
bA � 2a2 � b2

p
2 21� 

p
2 ,

b
a

�
�A sin C

A cos C
� �tan C

A � 2a2 � b2.

 � A2

 � A2 (cos2 C � sin2 C)

 � A2 cos2 C � A2 sin2 C

 a2 � b2 � (A cos C)2 � (�A sin C)2
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(b) Use a calculator to find C correct to two decimal places.
(c) Use a graphing utility to graph the left-hand side of the identity

in part (a) and estimate the amplitude and phase shift. How do your
estimates compare with the values from (a) and (b)?

5. What happens if the waves have different phase shifts? Use the method of
derivation of formula (4) to show that

a cos(Bx � D) � b sin(Bx � E) � A cos(Bx � C)

where

and

tan C � � 

b cos E � a sin D

a cos D � b sin E
  with C in 1� 

p
2 , p2 2

A � 2a2 � b2 � 2ab sin(E � D)

9.4 TRIGONOMETRIC EQUATIONS
In this section we consider some techniques for solving equations involving the
trigonometric functions. As usual, by a solution or root of an equation we mean a
value of the variable for which the equation becomes a true statement.

EXAMPLE 1 Determining Whether a Given Number Is a Solution 
of a Trigonometric Equation

Consider the trigonometric equation sin x � cos x � 1. Is x � p�4 a solution? Is
x � p�2 a solution?

SOLUTION To see whether the value x � p�4 satisfies the given equation, we substitute into the
left-hand side of the equations and compute

Thus x � p�4 is not a solution. In a similar fashion we can check to see whether
x � p�2 is a solution:

Thus x � p�2 is a solution.

The example that we’ve just concluded serves to remind us of the difference
between a conditional equation and an identity. An identity is true for all values of
the variable in its domain. For example, the equation sin2 t � cos2 t � 1 is an iden-
tity; it is true for every real number t. In contrast to this, a conditional equation
is true only for some (or perhaps even none) of the values of the variable. The equa-
tion in Example 1 is a conditional equation; we saw that it is false when x � p�4

sin 
p

2
� cos 

p

2
� 1 � 0 � 1

sin 
p

4
� cos 

p

4
�
12

2
�
12

2
�12 � 1



and true when x � p�2. The equation sin t � 2 is an example of a conditional equa-
tion that has no solution. (Why?) The equations that we are going to solve in this
section are conditional equations that involve the trigonometric functions. In gen-
eral, there is no single technique that can be used to solve every trigonometric equa-
tion. In the examples that follow, we illustrate some of the more common
approaches to solving trigonometric equations. As background for Example 2, you
should review Example 2 in Section 8.2. (In that example we obtained solutions for
the trigonometric equation cos x � 0.8.)
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EXAMPLE 2 Solving a Trigonometric Equation

Consider the equation

(1)

(a) Use your knowledge of the sine function (and not a calculator) to find all solu-
tions of equation (1) in the open interval (0, 2p).

(b) Use a calculator to find all solutions of equation (1) in the open interval (0, 2p).
Check that the answers are consistent with those in part (a).

(c) Find all real-number solutions of equation (1).

sin x �
1

2

SOLUTION (a) First of all, we know from earlier work that sin(p�6) � 1�2. So one solution of
equation (1) is certainly x1 � p�6. To find another solution, we note that in
Quadrant II, as well as in Quadrant I, sin x is positive. In Quadrant II the angle
with a reference angle of p�6 is 5p�6; see Figure 1. Thus sin(5p�6) � 1�2, and
we conclude that x2 � 5p�6 is also a solution of equation (1). Since sin x is neg-
ative in Quadrants III and IV, we needn’t look there for solutions. In summary,
then, the solutions of the equation sin x � 1�2 in the open interval (0, 2p) are
x1 � p�6 and x2 � 5p�6.

(b) We can determine a root of equation (1) by using a calculator and the inverse sine
function, denoted by sin�1. Applying the inverse sine function to both sides of
equation (1) yields

and therefore

Now we use a calculator, set in the radian mode, to evaluate the expression
sin�1(1�2). (If these keystrokes don’t work on your calculator, be sure to check
the instruction manual.)

Expression Keystrokes Output

sin�1(0.5) 0.5 0.52359 . . .

This gives us a root 0.52359 . . . for equation (1). Indeed, this is the decimal ap-
proximation for the root x1 � p�6 that we determined in part (a). Take a moment
to confirm this fact; that is, use your calculator to verify that p�6 � 0.52359. . . .

ENTERsin2nd

x � sin�1 a 1

2
b

sin�1(sin x) � sin�1 a 1

2
b

x

y

≈+¥=1

”     ,    ’
œ„3
2

1
2

”_     ,    ’
œ„3
2

1
2

π
6

5π
6

π
6

Figure 1

sin 
p

6
� sin 

5p

6
�

1

2



As explained in part (a), there is another root, one in Quadrant II. Taking the
calculator value 0.52359 . . . for our reference angle, the second-quadrant root
then is

p � 0.52359 � 2.61799

This is the decimal approximation for the root x2 � 5p�6 that we determined in
part (a). (Use your calculator to verify that 5p�6 2.61799.)

(c) We can use the results in part (a), along with the fact that the sine function is
periodic, to specify all real number solutions for the given equation. Since the
period of the sine function is 2p, we have

sin(x � 2kp) � sin x for every integer k

Consequently, since we know that is also equal to 1�2.
In other words, for every integer k the quantity p�6 � 2kp is a solution of
the given equation. Following the same reasoning, the quantity 5p�6 � 2kp is
also a solution of the given equation for every integer k. In summary, there
are infinitely many real-number solutions of the equation sin x � 1�2. These
solutions are given by the expressions

where k is an integer

Figure 2 shows some of these solutions; they are the x-coordinates of the points
where the sine curve intersects the line y � 1�2.

p

6
� 2kp  and  

5p

6
� 2kp

sin 1p6 � 2kp 2sin p6 � 1
2 ,

�
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π
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13π
6

17π
6

_1.0
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_0.5

0

0.5

1.0

7π
6

_

y=1/2

Figure 2
A view of the curve y � sin x for
�1.5p � x � 3.5p
The x-coordinates of the points
where the curve y � sin x intersects
the line y � 1�2 are solutions of the
equation sin x � 1�2. This view
shows five of the solutions: 
�7p�6, p�6, 5p�6, 13p�6, and
17p�6.

In part (b) of the example just concluded, we indicated how the inverse sine
function can be used to solve a simple trigonometric equation. In the next section
the inverse sine function is analyzed in detail. But for our present work with this
function, you need to know only the following definition:

sin�1(x) denotes the unique number in the interval whose sine is x.

As examples of this definition, we have

since p�3 is the unique number in the 
interval whose sine is

Although sin(2p�3) � , the number 
2p�3 is not in the required interval .

For some of the exercises in this section, you’ll need to use the inverse cosine
function (which we worked with in Section 8.2) or the inverse tangent function,
as well as the inverse sine function. For reference, we define three inverse functions
in the box that follows. (All three functions are discussed at greater length in the next
section.)

3� 
p
2  , p2  413�2

 sin�1a13

2
b �

2p

3

13�23� 
p
2  , p2  4 sin�1a13

2
b �

p

3

3� 
p
2  , p2  4

Graphical Perspective
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Definition Inverse Trigonometric Functions

Name of
Function Abbreviation Definition

Inverse cosine cos�1 cos�1(x) is the unique number in the
interval [0, p] whose cosine is x.

Inverse sine sin�1 sin�1(x) is the unique number in the
interval whose sine is x.

Inverse tangent tan�1 tan�1(x) is the unique number in the
interval whose tangent is x.

The next two examples show how factoring can be used to solve a trigonometric
equation.

1� 
p
2, p2 2

3� 
p
2, p2 4

EXAMPLE 3 Solving a Trigonometric Equation by Factoring

Find all real-number solutions of the equation

cos2 x � cos x � 2 � 0

SOLUTION By factoring the expression on the left-hand side, we obtain

(cos x � 2)(cos x � 1) � 0

Therefore

cos x � �2 or cos x � 1

We discard the result cos x � �2 because the value of cos x is never less than �1.
From the equation cos x � 1 we conclude that x � 0 is the only solution in the
interval [0, 2p). Since the cosine function has period 2p, all solutions are given by
x � 0 � 2pk � 2pk, where k is an integer.

EXAMPLE 4 Solving a Trigonometric Equation by Factoring

Find all solutions of the equation tan2 u � tan u � 6 � 0 in the interval [0, 2p].
Round the final answers to three decimal places.

SOLUTION By factoring, we have

(tan u� 2)(tan u� 3) � 0

and therefore

tan u � 2 or tan u� �3

Applying the inverse tangent function to both sides of the equation tan u � 2 gives us

tan�1(tan u) � tan�1(2)

and, consequently,

using a calculator set in radian mode � 1.107
 u � tan�1(2)



Now, since the period of the tangent function is p, we can find another root of the
equation tan u � 2 just by adding p to the root tan�1(2). This gives us

tan�1(2) � p � 4.249 using a calculator set in radian mode

Note that this root is also in the required interval [0, 2p]. However, adding p again
to this value will take us out of the interval [0, 2p]. So let’s turn to the other equation
that we obtained through factoring: tan u � �3. Applying the inverse tangent func-
tion to both sides of the equation tan u � �3 gives us

tan�1(tan u) � tan�1(�3)

and therefore

using a calculator

Although this last value is a root of the equation tan u� �3, it is not in the required
interval [0, 2p]. To generate a root that does belong to this interval, we add p (the
period of the tangent function) to the quantity tan�1(�3) to obtain

tan�1(�3) � p � 1.893 using a calculator

Still another root can be obtained by again adding p.

tan�1(�3) � 2p � 5.034

Adding p again would take us out of the interval [0, 2p], so we stop here. Let’s
summarize our results. In the interval [0, 2p] there are four roots of the equation
tan2 u � tan u � 6 � 0. They are

For a graphical check of these results, see Figure 3, which shows the graph of the
equation y � tan2 u � tan u � 6. The u-intercepts of the graph are the roots of the
equation tan2 u � tan u � 6 � 0. In the figure, note that each intercept is consistent
with one of the roots that we have determined. For instance, the largest intercept in
Figure 3 is approximately 5.0. This corresponds to the root tan�1(�3) � 2p� 5.034.

 tan�1(�3) � 2p � 5.034
 tan�1(�3) � p � 1.893

 tan�1(2) � p � 4.249
 tan�1(2) � 1.107

 � �1.2490457 . . .
 u � tan�1(�3)
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Figure 3
A view of y � tan2 u � tan u � 6 
for 0 � u � 2p.



In some equations more than one trigonometric function is present. A common
approach here is to express the various functions in terms of a single function. The
next example demonstrates this technique.
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EXAMPLE 5 Using a Trigonometric Identity to Solve an Equation

Find all real-number solutions of the equation

3 tan2 x � sec2 x � 5 � 0

SOLUTION We use the Pythagorean identity tan2 x � 1 � sec2 x to substitute for sec2 x in the
given equation. This gives us

Since the period of the tangent function is p, we need to find only those values of x
between 0 and p that satisfy tan The other solutions will then be obtained
by adding multiples of p to these solutions. Now, in Quadrant I the tangent is posi-
tive, and we know that when x � p�3. In Quadrant II tan x is negative,
and we know that tan since the reference angle for 2p�3 is p�3. Thus
the solutions between 0 and p are x � p�3 and x � 2p�3. It follows that all of the
solutions to the equation 3 tan2 x � sec2 x � 5 � 0 are given by

and where k is an integer

The technique used in Example 5, that is, expressing the various functions in
terms of a single function, is most useful when it does not involve introducing a
radical expression. For instance, consider the equation sin s � cos s � 1. Although
we could begin by replacing cos s by the expression it turns out to be
easier in this situation to begin by squaring both sides of the given equation. This is
done in the next example.

	21 � sin2 s,

x �
2p

3
� pkx �

p

3
� pk

2p�3 � �13,
tan x �13

x � 	13.

 tan x � 	13
 tan2 x � 3

 2 tan2 x � 6
 2 tan2 x � 6 � 0

 3 tan2 x � (tan2 x � 1) � 5 � 0

EXAMPLE 6 Squaring Both Sides to Solve a Trigonometric Equation

Find all solutions of the equation sin s � cos s � 1 satisfying 0� � s � 360�.

SOLUTION Squaring both sides of the equation yields

c These add to 1. c

Consequently, we have

2 sin s cos s � 0

From this last equation we conclude that sin s � 0 or cos s � 0. When sin s � 0, we
know that s � 0� or s � 180�. And when cos s � 0, we know that s � 90� or s � 270�.

 sin2 s � 2 sin s cos s � cos2 s � 1
 (sin s � cos s)2 � 12



Now we must go back and check which (if any) of these values is a solution to the
original equation. This must be done because squaring both sides in the process of
solving an equation may introduce extraneous roots.

s � 0� yes

s � 90� yes

s � 180�
no

s � 270�
no

We conclude that the only solutions of the equation sin s � cos s � 1 on the interval
0� � s � 360� are s � 0� and s � 90�.

Note: An alternative solution of the equation 2 sin s cos s � 0 with 0� � s � 360�
is to note that any solution is also a solution of sin 2s � 0 with 0� � s � 720�, which
has solutions 2s � 0� or 180� or 360� so that s � 0� or 90� or 180�, but only 0� and
90� are solutions to the original equation.

In the example that follows, we consider an equation that involves a multiple of
the unknown angle.

� �1 � 1
 sin 270° � cos 270° � (�1) � 0

� �1 � 1
 sin 180° � cos 180° � 0 � (�1)

 sin 90° � cos 90° � 1 � 0 � 1

 sin 0° � cos 0° � 0 � 1 � 1
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EXAMPLE 7 Solving a Trigonometric Equation That Involves a Multiple of an Angle

Solve the equation sin 3x � 1 on the interval 0 � x � 2p.

SOLUTION We know that sin(p�2) � 1. Thus one solution can be found by writing 3x � p�2,
from which we conclude that x � p�6. We can look for other solutions in the
required interval by writing, more generally,

and therefore

Thus when k � 1, we obtain

With k � 2 we have

x �
p � 4p(2)

6
�

9p

6
�

3p

2

x �
p � 4p(1)

6
�

5p

6

 x �
p � 4pk

6

 �
p � 4pk

2

 3x �
p

2
� 2pk



And with k � 3 we have

which is greater than 2p

We conclude that the solutions of sin 3x � 1 on the interval 0 � x � 2p are
p�6, 5p�6, and 3p�2.

In Example 7, notice that we did not need to make use of a formula for sin 3x,
even though the expression sin 3x did appear in the given equation. In the next
example, however, we do make use of the identity sin 2x � 2 sin x cos x.

x �
p � 4p(3)

6
�

13p

6
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EXAMPLE 8 Transforming an Equation in Order to Use a Trigonometric Identity

Solve the equation sin x cos x � 1.

SOLUTION We could begin by squaring both sides. (See Exercise 83.) However, with the double-
angle formula for sine in mind, we can proceed as follows. We multiply both sides of
the given equation by 2. This yields

2 sin x cos x � 2

and, consequently,

sin 2x � 2 using the double-angle formula

This last equation has no solution, since the value of the sine function never ex-
ceeds 1. Thus the equation sin x cos x � 1 has no solution.

For the last example in this section we look at another case in which a calculator
is required.

EXAMPLE 9 Transforming an Equation in Both Sine and Cosine 
to an Equation in Only the Tangent Function

Find all angles u in the interval 0� � u � 360� that satisfy the following equation: 
2 sin u � cos u.

SOLUTION We first want to rewrite the given equation using a single function, rather than both
sine and cosine. The easiest way to do this is to divide both sides by cos u. Nothing
is lost here in assuming cos u � 0. (If cos u were zero, then u would be 90� or 270�;
but neither of those angles is a solution of the given equation.) Dividing both sides of
the given equation by cos u, we have

 tan u � 0.5
 2 tan u � 1

 
2 sin u

cos u
�

cos u

cos u



From experience we know that none of the angles with which we are familiar
(the multiples of 30� and 45�) has a value of 0.5 for the tangent. Therefore, as in
Example 4, we use the inverse tangent function and a calculator. First, applying the
inverse tangent function to both sides of the equation tan u � 0.5, we have

tan�1(tan u) � tan�1(0.5)

and therefore

u � tan�1(0.5)

Now, according to the statement of the problem, our answers are to be in degrees,
not radians. So before using the calculator to evaluate the expression tan�1(0.5), we
first set the calculator in the degree mode. Then, as you should check for yourself,
we obtain

u � tan�1(0.5) � 26.6� using a calculator set in the degree mode

To find another angle u satisfying the equation tan u � 0.5, we use the fact that the
period of the tangent is p radians, which is 180�. Thus a second solution (rounded to
one decimal place) is

26.6� � 180� � 206.6�

Adding another 180� to this last value will take us out of the specified interval
0� � u � 360�, so we stop here. In summary, there are two angles between 0� and
360� satisfying the given equation 2 sin u � cos u. They are approximately, to one
decimal place, 26.6� and 206.6�. For a graphical check of these results, see Figure 4,
which shows the graphs of the equations y � 2 sin u and y � cos u for 0� � u� 360�.
(In Figure 4 we are viewing the horizontal axis as the u-axis, where u is measured in
degrees.) The graphs intersect at two points. The u-coordinates of these points are
solutions of the equation 2 sin u � cos u. The figure shows that at one of the inter-
section points, u is slightly less than 30�, while at the other intersection point, u is
slightly less than 210�. These observations are consistent with the numerical values
that we have obtained for the roots.
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Graphs of y � 2 sin u and 
y � cos u for 0� � u� 360�.
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In Exercises 39–44, find all solutions in the interval 
0� � u � 360�. Where necessary, use a calculator and round 
to one decimal place.

39. sin u � 1�4 40. cos u � �4�5
41. 9 tan2 u � 16 � 0
42. 5 sin2 u � 13 sin u � 6 � 0
43. cos2 u � cos u � 1 � 0 Hint: You’ll need to use the

quadratic formula.
44. tan2 u � tan u � 1 � 0

In Exercises 45–52, determine all of the solutions in the interval
0� � u � 360�.

45. cos 3u � 1 46. tan 2u � �1
47. 48.
49. sin 2u � �2 cos u 50. 2 sin2 u � cos 2u � 0
51. cos 2u Hint: Divide by cos 2u.
52. sin u � cos(u�2). Hint: sin u � 2 sin(u�2) cos(u�2)

In Exercises 53–74, solve the equations on the interval
[0, 2p] as follows. Graph the expression on each side of the
equation and then zoom in on the intersection points until you
are certain of the first three decimal places in each answer.
For instance, for Exercise 53, when you graph the two equa-
tions y � cos x and y � 0.623 on the interval [0, 2p], you’ll
see that there are two intersection points. The x-coordinates of
these points are roots of the equation cos x � 0.623.

53. cos x � 0.623 54. sin x � �0.438
55. cos x � tan x 56. cos x � tan 2x
57. cos2 x � 2 sin x 58. cos3 x � 2 sin x
59. cos 2x � 1 � cos(2x � 1)
60. cos 2x � 0.9 � cos(2x � 1)
61. cos(x�2) � cos(x2�2)
62. cos(x�2) � cos(x2�12)
63. 2 sin x � 3 cos x � tan(x�4)
64. 2 sin x � 3 cos x � tan(x�4)
65. 66. x2 � tan x
67. sin(cos x) � sin x 68. cos(sin x) � sin x
69. tan x � x 70. cos x � x
71. sin3 x � cos3 x � 0.5 72. sin3 x � cos3 x � 0.5
73. 1 � tan2 x � 2 sin(x�5) 74. 1 � tan2 x � 2 sin(x�6)

B
75. Find all solutions of the equation tan 3x � tan x � 0 in the

interval 0 � x � 2p. Hint: Write tan 3x � tan(2x � x)
and use the addition formula for tangent.

76. Find all solutions of the equation 2 sin x � 1 � cos x in
the interval 0� � x � 360�. Use a calculator and round the
answer(s) to one decimal place.

1x � tan x

sin 2u � 13

sin(u�2) � 1�2sin 3u � �12�2

A
1. Is u � p�2 a solution of 2 cos2 u � 3 cos u � 0?
2. Is x � 15� a solution of cos 2x � sin 2x � 1?
3. Is x � 3p�4 a solution of tan2 x � 3 tan x � 2 � 0?
4. Is t � 2p�3 a solution of 2 sin t � 2 cos 

In Exercises 5–22, determine all solutions of the given equa-
tions. Express your answers using radian measure.

5. 6.
7. sin u � �1�2 8.
9. cos u � �1 10. cos u � 1�2

11. 12.
13. tan x � 0 14. 2 sin2 x � 3 sin x � 1 � 0
15. 2 cos2 u � cos u � 0 16. sin2 x � sin x � 6 � 0
17. cos2 t sin t � sin t � 0 18. cos u � 2 sec u � �3
19. 2 cos2 x � sin x � 1 � 0 20. 2 cot2 x � csc2 x � 2 � 0
21.
22.
23. (a) Graph the equation y � cos2 x � cos x � 2. Use 

a viewing rectangle extending from 0 to 10 in the 
x-direction and from �3 to 3 in the y-direction.

(b) The picture obtained in part (a) indicates that the graph
has an x-intercept between 6 and 7. By zooming in on
this x-intercept, or by using a solve key, obtain the first
two decimal places of this intercept.

(c) According to Example 3, what is the exact value of
the x-intercept that you approximated in part (b)?

24. (a) Graph the equation y � tan2 x � tan x � 6 for 
0 � x � 2p.

(b) By zooming in on each x-intercept of the graph
in part (a), estimate the roots of the equation 
tan2 x � tan x � 6 � 0. Then check that your estimates
are consistent with the values obtained in Example 4.

In Exercises 25–38, use a calculator to find all solutions in the
interval (0, 2p). Round the answers to two decimal places.

25. cos x � 0.184 26. cos t � �0.567
27. 28. sin t � �0.301
29. tan x � 6 30. tan t � �5.25
31. sin t � 5 cos t 32. sin x cos x � 0.035
33. sec t � 2.24 Hint: The equation is equivalent to 

cos t � 1�(2.24).
34. cot x � �3.27
35. tan2 x � tan x � 12 � 0
36. 15 sin2 x � 26 sin x � 8 � 0
37. 16 sin3 x � 12 sin2 x � 36 sin x � 27 � 0 Hint: Factor 

by grouping.
38. 3 cos3 x � 9 cos2 x � cos x � 3 � 0 Hint: Factor by

grouping.

sin x � 1�15

sec a � tan a � 13
13 sin t � 21 � sin2 t � 0

tan u � 113�3 2 � 0tan u � 13

sin u � 112�2 2 � 0
sin u � 12�2sin u � 13�2

t � 13 � 1?

113�3 2

EXERCISE SET 9.4



85. (a) Find the smallest solution of cos x � 0.412 in the
interval (1000, q). (Round the answer to three decimal
places.) Hint: Use a calculator to approximate a solu-
tion of cos x � 0.412. Use this solution to approximate
the other solution in the interval [0, 2p]. Use these
solutions to finish the problem. (Don’t round off your
intermediate results.)

(b) Find the smallest solution of cos x � �0.412 in the
interval (1000, q).

86. (a) Graph the function y � sin(px�180) in the viewing
rectangle [�10, 10] by [�1, 1]. Describe what you see.

(b) Change the viewing rectangle so that x extends from
0 to 360. The graph that you obtain is the graph of 
y � sin x, where x is now measured in degrees.

(c) According to Example 6, there are two solutions of the
equation sin s � cos s � 1 in the interval 0� � s � 360�.
Confirm this by graphing the two equations

and

y � 1 for 0 � x � 360

and noting that there are two intersection points.
(In Example 6 the intersection point at x � 360 is
excluded.)

(d) In Example 6 we saw that 90� is a solution of the equa-
tion sin s � cos s � 1 in the interval 0� � s � 360�.
Confirm this by zooming in on the appropriate intersec-
tion point in part (c) and checking the x-coordinate.

87. The accompanying figure shows a graph of the function
f (x) � x � 0.4 sin(2px) on the interval 0 � x � 1.5.
(Functions of this form occur in mathematical biology
in the study of rhythmic behaviors, such as heartbeat.) Using
calculus, it can be shown that the x-coordinates of the turn-
ing points of this function are found by solving the equation

1 � 0.8p cos(2px) � 0

Use this fact to find the x-coordinates of the turning points
P, Q, and R in the figure. Round the answers to three
decimal places.

x

y

P

Q

R

0.5 1.0 1.5

0.5

1.0

1.5

ƒ=x+0.4 sin(2πx)

y � sin 
px

180
� cos 

px

180

77. Find all solutions of the equation cos (x�2) � 1 � cos x in
the interval 0 � x � 2p.

78. Find all solutions of the equation

sin 3x cos x � cos 3x sin x �

in the interval 0 � x � 2p.
79. Find all real numbers u for which

sec 4u � 2 sin 4u � 0

80. Consider the equation sin2 x � cos2 x � 7�25.
(a) Solve the equation for cos x.
(b) Find all of the solutions of the equation satisfying 

0 � x � p.
(c) Solve the original equation by means of a double-angle

formula and use the result to check your answers in
part (b).

81. Find a solution of the equation 4 sin u � 3 cos u � 2 in the
interval 0� � u� 90�. Hint: Add 3 cos u to both sides,
then square.

82. Find all solutions of the equation

sin3 u cos u � sin u cos3 u �

in the interval 0 � u � p. Hint: Factor the left-hand side,
then use the double-angle formulas.

83. Consider the equation sin x cos x � 1.
(a) Square both sides and then replace cos2 x by 1 � sin2 x.

Show that the resulting equation can be written 
sin4 x � sin2 x � 1 � 0.

(b) Show that the equation sin4 x � sin2 x � 1 � 0 has no
solutions. Conclude from this that the original equation
has no real-number solutions.

84. The accompanying figure shows a portion of the graph of
the periodic function

f (x) � sin(1 � sin x)

Find the x-coordinates of the turning points P, Q, and R.
Round the answers to three decimal places. Hint: You
may use the fact that the x-coordinate of Q is halfway
between the x-coordinates of P and R.

� 

1

4

13

2
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x

y

P

Q

R
ƒ=sin(1+sin x)



(c) Prove the following trigonometric identity [which will
be needed in part (d)]:

(d) In part (b) you found an angle that yields a range of
100 ft, given an initial velocity of 80 ft/sec. Now use
the result in part (c) to specify another angle that yields
the same range (still assuming an initial velocity of
80 ft/sec).

(e) Again, assume an initial velocity of 80 ft/sec. Find all
values for a that yield a range of 200 ft. Express the
answer(s) in degrees, rounded to one decimal place.

90. As background for this exercise, you need to have 
worked Exercise 89. Assume that the initial velocity is
25 m/sec. Find the two angles that yield a range of 60 m.
Express the answers in degrees, rounded to one 
decimal place.

91. (a) Suppose that the initial velocity is 40 m/sec. Find an
angle a for which the maximum height is the same as
the range. Express the answer in degrees rounded to
one decimal place.

(b) Follow part (a), but assume that the initial velocity is
88 ft/sec.

(c) After looking over your answers and your work 
in parts (a) and (b), what conclusion can you 
draw?

92. (a) Solve the equation for a in
terms of the other letters.

(b) Use the result in part (a) to find an angle that yields
a maximum height of 55 ft if the initial velocity is
70 ft/sec. Express the answer in radians rounded to
two decimal places.

In Exercises 93–98, each exercise results in an equation
that you will need to solve using a graphing utility, as in
Exercises 53–74.

93. As indicated in the accompanying figure, is a
point on the graph of and the 
distance from P to the origin is 2 units. Find the 
coordinates of P. Round your answers to two decimal
places.

y

x

y=sin x

P (x, y)

2

y � sin x for 0 � x � p
P(x, y)

hmax � 1v0
2 sin2 a 2�(2g)

sin 2a � sin 32 1p2 � a 2 4

88. (As background for this exercise, you need to know the
definitions of fixed point and iterate from Section 4.3 online.) 
The figure shows a view of the function 
f (x) � x � 0.4 sin(2px) along with the line y � x.

(a) From the figure it appears that the value x � 0.5 is
a fixed point for the function f. Confirm this alge-
braically by solving the equation f (x) � x on the
interval 0 � x � 1.

(b) Compute the first ten iterates of x0 � 0.25 under the
function f. Round the answers to four decimal places.
Describe any patterns that you detect. Are the iterates
approaching the fixed point x � 0.5?

(c) Follow part (b) using x0 � 0.45.

For Exercises 89–92, refer to the following figure and formulas.
The figure shows the trajectory of an object projected upward
from ground level at an angle a. Neglecting air resistance, the
trajectory is approximately a parabola. The maximum height
hmax and the range r are given by the formulas adjacent to the
figure. In the formulas, v0 is the initial velocity; the constant g is
the acceleration due to gravity at the earth’s surface. If distance
is measured in feet, the value for g is 32 ft/sec2; if distance is
measured in meters, the value for g is 9.8 m/sec2.

89. (a) Solve the range formula r � ( sin 2a)�g for a in
terms of the other letters.

(b) Assuming an initial velocity of 80 ft/sec, use the result
in part (a) to find an angle that yields a range of 100 ft.
Express the answer both in radians, rounded to two
decimal places, and in degrees, rounded to one decimal
place.

v2
0

hmax

å

hmax=
v@̧ sin@ å

2g

r=
v@̧ sin 2å

g

r

0.5 1.0

0.5

1.0

0
0
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(a) Express the cost C of laying the pipeline in terms of the
angle u. (The angle u is defined in the figure.)

(b) Find the values of u for which C � $5400. Express the
answers in radians, rounded to three decimal places.
(If you are using a zooming technique, you will need to
zoom in until you are certain of the first four decimal
places; then you can round to three places.)

(c) Express the answers in part (b) using degree measure;
round to one place.

(d) Can the job be done for C � $5300? If so, specify the
value(s) of u; if not, explain why.

97. The figure shows a right circular cone with a slant height
of 1 m.

(a) Express the volume of the cone as a function of u.
(b) Graph the volume function obtained in part (a).
(c) Find u so that the volume of the cone is 0.4 m3. (There

are two answers.)
(d) Demonstrate by means of a graph that the volume of

the cone cannot be 0.41 m3.

C
98. Let for 

(a) Find all values of x in the given interval such that
Round the answer(s) to two decimal places.

(b) Find all values of x in the given interval such that
Round the answer(s) to two decimal 

places.
(c) If you graph the given function f on the interval

you can see that the maximum value 
of the function appears to be 4. Use the methods of
Section 4.5 (rather than a graphing utility) to prove
that the maximum value is indeed 4. What is the corre-
sponding x-value here? Give both an exact expression
and a calculator approximation rounded to two decimal
places. Check that your answer is consistent with the
result in part (b).

Hint: In the expression make the

substitution t � (1�sin3 x).

4

sin3 x
�

1

sin6 x
,

0 � x � p�2,

f (x) � 4.

f (x) � 3.5.

0 � x � p�2.f (x) �
4

sin3 x
�

1

sin6 x

r

h

¨

1 m

94. The point is on the graph of y � cos x for 0 � x � p.
From P, perpendiculars are drawn to the x-axis and the 
y-axis to form a rectangle, as indicated in the figure.

(a) Express the area of the rectangle as a function of x.
(b) Find a value for x so that the area of the rectangle is

0.5 square units.
(c) Can you find a value for x so that the area of the rectan-

gle is 0.6 square units?
95. The accompanying figure shows an isosceles triangle

ABC inscribed in the unit circle. Legs and are the
congruent legs.

(a) Express the area of ^ABC as a function of u.
(b) Find a value for u so that the area of ^ABC is 40% of

the area of the unit circle. Give the answer in degrees,
rounded to two decimal places.

(c) Can you find a value for u so that the area of ^ABC
is 42% of the area of the unit circle? If so, round the
result to two decimal places. If not, explain why.

96. Refer to the accompanying figure. An offshore oil rig is
located at point P, which is 1.5 miles out to sea. An oil pipeline
is to be constructed from P to a point R on the shore and then
to an oil refinery at point S, farther up the coast. It costs 
$1000 /mile to lay the pipeline in the sea and $500/mile on land.

¨

8 mi

1.5 mi Ocean

Land

P

Q R S

y

x

B

≈+¥=1

C

A ¨

ACAB

x

y

y=cos x

P (x, y)

P(x, y)
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Then use a
product-to-sum identity and show that the formula
becomes

(1)

(b) As you know, the maximum value for the sine func-
tion is 1, and this value is obtained when the input is
p�2. Use this observation to conclude that the maxi-
mum value for r in equation (1) is given by

and that the corresponding input is 
which is about 52.5°.

(c) Loose ends. Evaluate the expression for rmax ob-
tained in part (b). Check: Your answer should be
less than 10 ft (because in Exercise 100 we found that
a range of 10 ft is unobtainable under the given condi-
tions). Also check that the input is half-
way between This is an instance
of the following general fact: For maximum range
up an inclined plane of angle b, the launch angle a
should be halfway between b and the vertical.

102. In this exercise you will see how certain cubic equations
can be solved by using the following identity (which we
proved in Example 3 in Section 9.2):

4 cos3 u � 3 cos u � cos 3u (1)

For example, suppose that we wish to solve the equation

8x3 � 6x � 1 � 0 (2)

To transform this equation into a form in which the stated
identity is useful, we make the substitution x � a cos u,
where a is a constant to be determined. With this substitu-
tion, equation (2) can be written

8a3 cos3 u � 6a cos u � 1 (3)

In equation (3) the coefficient of cos3 u is 8a3. Since we
want this coefficient to be 4 [as it is in equation (1)], we
divide both sides of equation (3) by 2a3 to obtain

(4)

Next, a comparison of equations (4) and (1) leads us to
require that 3�a2 � 3. Thus a � 	1. For convenience we
choose a � 1; equation (4) then becomes

4 cos3 u � 3 cos u � (5)

Comparing equation (5) with the identity in (1) leads us to
the equation

cos 3u �
1

2

1

2

4 cos3 u �
3

a2 cos u �
1

2a3

b � p�12 and p�2.
a � 7p�24

a � 7p�24,

rmax �
400[1 � sin(p�12)]

g cos2(p�12)

r �
400 3sin 12a � p

12 2 � sin p12 4
g cos2 1 p12 2

r � [2v0
2 sin(a � b)cos a]�(g cos2 b).For Exercises 99–101, refer to the following figure and formula.

The figure shows the trajectory of an object projected upward
from a point P at the base of an inclined plane. The inclined
plane makes an angle b with the horizontal; the initial direction
of the object is at an angle a with the horizontal; and the initial
velocity is v0. The object lands at point Q, and denotes
the range of the object along the inclined plane.

r (�PQ)
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r=
2v@̧ sin (å-∫) cos å

g cos@ ∫
å

∫

r

P

Q

99. (a) Solve the range equation.

for a in terms of the other letters. Hint: Use a
product-to-sum identity from Section 9.3.

Answer:

(b) Suppose that the angle of the inclined plane is
and that the initial velocity is 20 ft/sec.

Use the result in part (a) to find an angle that yields
a range of r � 6 ft. Express the answer both in radi-
ans, rounded to two decimal places, and in degrees,
rounded to one decimal place.

(c) Let Prove the following
trignometric identity [which will be needed in 
part (d)]: 

(d) In part (b) you found an angle that yields a range
of 6 ft, assuming an initial velocity of 20 ft/sec. Now
use the result in part (c) to specify another angle that
yields the same range (still assuming the same initial
velocity and the same angle for the inclined plane).
Express the answer in degrees, rounded to one
decimal place.

100. As in Exercise 99, assume that the angle of the inclined
plane is and that the initial velocity is

Show that there is no value for a that 
produces a range of 10 ft. Hint: Substitute the given
values in the formula obtained in Exercise 99(a); what
happens?

101. As in the previous two exercises, assume that 
and In this exercise you’ll determine the
maximum range under these conditions, as well as the
angle a that produces that range.
(a) Substitute the given values and

in the range formulav0 � 20 ft /sec
b � p�12

v0 � 20 ft /sec.
b � p�12

v0 � 20 ft /sec.
b � p�12

f (a) � f 3b � 1p2 � a 2 4 .
f (a) � sin(a � b)cos a.

b � p�12

a �
1

2
cb � sin�1 a gr cos2 b

v0
2 � sin b b d

r �
2v0

2 sin(a � b)cos a

g cos2 b



x � cos 140�, and x � cos 260�. Note: If you choose 
a � �1, your solutions will be equivalent to those we
found with a � 1.

Use the method just described to solve the following
equations.
(a) x3 � 3x � 1 � 0

Answers: 2 cos 40�, �2 cos 20�, 2 cos 80�
(b) x3 � 36x � 72 � 0
(c) x3 � 6x � 4 � 0 Answers: 2, �1 	
(d) x3 � 7x � 7 � 0 (Round your answers to three

decimal places.)

13

As you can check, the solutions here are of the form

u � 20� � 120k� and u � 100� � 120k�

Thus

x � cos(20� � 120k�) and x � cos(100� � 120k�)

Now, however, as you can again check, only three of the
angles yield distinct values for cos u, namely, u � 20�, 
u � 140�, and u � 260�. Thus the solutions of the 
equation 8x3 � 6x � 1 � 0 are given by x � cos 20�, 
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The Mini Project, Astigmatism and Eyeglass Lenses, at http://www.cengage.com/math/cohen/precalc7e, 
looks at an application to the manufacture of spectacle lenses.

9.5 THE INVERSE TRIGONOMETRIC FUNCTIONS
In previous sections we introduced the three inverse trigonometric functions 
y � sin�1 x, y � cos�1 x, and y � tan�1 x. Because we were using these functions as
tools to solve equations, our emphasis there was more computational than theoreti-
cal. Now we want to take a second look at these functions, this time from a more
conceptual point of view. As background for this work, you should be familiar with
the material on inverse functions in Section 3.6.

As is indicated in Figure 1(a), the sine function in not one-to-one. Therefore there
is no inverse function. However, let us now consider the restricted sine function:

The restricted sine function has domain and range [�1, 1]. And, as is indi-
cated in Figure 1(b), the restricted sine function is one-to-one, and therefore the
inverse function does exist in this case. We refer to the inverse of the restricted sine
function as the inverse sine function.

3�p2  , p2  4
y � sin x, with � 

p

2
� x �

p

2

The notation cos�1 u must not be
understood to signify 1�cos u. —John
Herschel in Philosophical Transactions
of London, 1813

x

y

π
2

π
2

1

_1

π
2_

π
2_

(b) By restricting the domain of the sine 
function to the closed interval �      ,     �,   
we obtain the restricted sine function. The 
horizontal line test shows that the restricted 
sine function is one-to-one. 

π
2

π
2

x

y

π
2

1

_1

π
2_

(a) The horizontal line test shows that the sine function is not one-to-one.

y=sin x
y=sin x, _   ≤x≤

Figure 1

http://www.cengage.com/math/cohen/precalc7e


Two notations are commonly used to denote the inverse sine function:

y � sin�1 x and y � arcsin x

Initially, at least, we will use the notation y � sin�1 x. Basic facts about inverse func-
tions tell us that:

the domain of sin�1 x � the range of the restricted sine function � [�1, 1], and

the range of sin�1 x � the domain of the restricted sine function �

The graph of y � sin�1 x is easily obtained by using the fact that the graphs of a func-
tion and its inverse are reflections of one another about the line y � x. Figure 2(a)
shows the graph of the restricted sine function and its inverse, y � sin�1 x.
Figure 2(b) shows the graph of y � sin�1 x alone. From Figure 2(b) we see that the
domain of y � sin�1 x is the interval [�1, 1], while the range is .3�p2  , p2  4

3�p2  , p2  4
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(a) The graphs of a function and its inverse are mirror 
images of one another about the line y=x.

(b) The inverse sine function.

x

y

π
2

1_1

π
2_

x

y

π
2

1

_1

π
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”   , 1’
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”1,    ’
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”_   , _1’
π
2

”_1, _   ’
π
2

π
2

π
2

y=sin x, _   ≤x≤

y=sin–! x

y=x

y=sin–! x

y=x

What exactly is sin�1 x? Recall, if f and f �1 are any pair of inverse functions, we
have the following pair of fundamental identities:

f 3 f�1(x)4� x for every x in the domain of f�1

and

f�13 f (x)4 � x for every x in the domain of f

Applying these facts to the restricted sine function y � sin x, with , and its
inverse y � sin�1 x, with �1� y � 1, we obtain the following two basic identities.

�p2 � x � p
2

Figure 2

sin�1 x is the unique number in the interval whose sine is x.3�p2  , p2 4

sin(sin�1 x) � x for every x in the interval [�1, 1]

sin�1(sin x) � x for every x in the interval 3�p2  , p2 4

The first identity tells us that y � sin�1 x, is the unique number in the interval 
whose sine is x. So the values of sin�1 x are computed according to the following
rule.

3�p2  , p2 4



You should convince yourself in words that the two basic identities are true. For
example, if x is in the domain of the inverse sine, the interval [�1, 1], then
sin(sin�1x) � the sine of (the number in the interval whose sine is x) � x.
Now try to verify the second identity in words.

3�p2  , p2 4
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EXAMPLE 1 Finding Some Exact Values of the Inverse Sine

Evaluate:

(a) (b) sin�1 a� 

1

2
b .sin�1 a 1

2
b ;

SOLUTION (a) sin�1(1�2) is the unique number in the interval whose sine is 1�2. Since
p�6 is in and sin(p�6) � 1�2, we conclude that sin�1(1�2) � p�6.

(b) Since sin(�p�6) � �1�2 and �p�6 is in the interval , we conclude that
sin�1(�1�2) � �p�6.

Note: sin(5p�6) � 1�2, but 5p�6 is not in the interval , so sin�1(1�2) �
5p�6. Similarly, sin(7p�6) � �1�2, but sin�1(�1�2) � 7p�6. (Why?)

We can use the result in Example 1(a) to see why the notation arcsin is used for
the inverse sine function. With the arcsin notation the result in Example 1(a) can be
written

As Figure 3 indicates, the length of the arc on the unit circle whose sine is 1�2 is π�6.
This is the idea behind the arcsin notation.

arcsin 
1

2
�
p

6

3�p2  , p2 4
3�p2  , p2 4

3�p2  , p2 4
3�p2  , p2 4

EXAMPLE 2 Finding Approximate Values of the Inverse Sine

Evaluate arcsin(3�4). Round the answer to three decimal places.

SOLUTION The quantity arcsin(3�4) is that number (or arc length, or angle in radians) in the in-
terval whose sine is 3�4. Since we’re not familiar with an angle with a sine
of 3�4, we use a calculator. As in previous sections, we show keystrokes for the most
common type of calculator. Make sure your calculator is in radian mode. (If these
keystrokes don’t work on your calculator, be sure to check the user’s manual.)

Expression Keystrokes Output

arcsin(0.75) 0.75 0.84806 . . .

Now, rounding to three decimal places, our result is

arcsin � 0.848
3

4

ENTERsin2nd

3�p2  , p2 4

x

y

≈+¥=1

π
6

sin     =π
6

1
2

π
6

1
2

Figure 3
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EXAMPLE 3 A Common Notational Confusion

Show that the following expressions are not equal:

sin�1 0 and
1

sin 0

SOLUTION The quantity sin�1 0 is the unique number in the interval whose sine is 0.
Since 0 is in the interval and sin 0 � 0, we conclude that

sin�1 0 � 0

On the other hand, since sin 0 � 0, the expression 1�(sin 0) is not even defined. Thus
the two given expressions certainly are not equal.

The following example indicates that the domain restrictions accompanying
these two identities cannot be ignored.

3�p2  , p2 4
3�p2  , p2 4

EXAMPLE 4 Calculations Involving the Inverse Sine

Compute each quantity that is defined.

(a) (b) sin�1(sin 2)

(c) sin(sin�1 2) (d) sin 3sin�1 1�1�15 2 4
sin�1 a sin 

p

4
b

SOLUTION (a) Since p�4 lies in the domain of the restricted sine function, the identity 
sin�1(sin x) � x is applicable here. Thus

CHECK

Therefore

(b) The number 2 is not in the domain of the restricted sine function, so the identity
sin�1(sin x) � x does not apply in this case. However, p � 2 is in the first
quadrant (see Figure 4), so it is in the domain of the restricted sine function and
sin 2 � sin(p� 2), so

sin�1(sin 2) � sin�1[sin(p � 2)] � p � 2

Thus sin�1(sin 2) is equal to p � 2, not 2.
(c) The number 2 is not in the domain of the inverse sine function. Thus the expres-

sion sin(sin�1 2) is undefined.
(d) The identity sin(sin�1 x) � x is applicable here. (Why?) Thus

sin c sin�1 a� 

1

15
b d � � 

1

15

sin�1 a sin 
p

4
b � sin�1 a 12

2
b �

p

4

sin p4 � 12�2.

sin�1 a sin 
p

4
b �

p

4

π-2

2

y

x

Figure 4
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EXAMPLE 5 From a Trigonometric to an Algebraic Expression

If sin u� x�3 and express the quantity u � sin 2u as a function of x.0 � u � p�2,

SOLUTION The given conditions tell us that u � sin�1(x�3). That expresses u in terms of x.
To express sin 2u in terms of x, we have

since 
(Why?)

Now, combining the results, we have

We turn now to the inverse cosine function. Following the same general procedure
that we used to define the inverse sine, we begin by defining the restricted cosine
function:

y � cos x (0 � x � p) with domain [0, p] and range [�1, 1]

As is indicated by the horizontal line test in Figure 5, the restricted cosine func-
tion is one-to-one, and therefore the inverse function exists. We denote the inverse
cosine function by

y � cos�1 x or y � arccos x

Then the domain of cos�1 x � the range of the restricted cosine function � [�1, 1],
and the range of cos�1 x � the domain of the restricted cosine function � [0, p].

The graph of y � cos�1 x is obtained by reflecting the graph of the restricted
cosine function about the line y � x. Figure 6(a) displays the graph of the restricted
cosine function along with y � cos�1 x. Figure 6(b) shows the graph of y � cos�1 x
alone. From Figure 6(b) we see that the domain of y � cos�1 x is the interval 
[�1, 1], while the range is [0, p].

u � sin 2u � sin�1 a x

3
b �

2x29 � x2

9

 �
2x29 � x2

9

 � 2 a x

3
b
B

1 �
x2

9
�

2x

3B

9 � x2

9

cos u � �21 � sin2 u sin 2u � 2 sin u cos u � 2(sin u)21 � sin2 u

x

y

1

_1

π

(π, _1)

y=cos x, 0≤x≤π

Figure 5
The restricted cosine function is
one-to-one.

x

y

1

π

_1
x

y

(1, 0)

(0, 1)

(_1, π)

(a)

y=x

(π, _1)

y=cos-1 x

y=cos-1 x
y=cos x, 0≤x≤π

(b) The inverse cosine functionFigure 6
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Again you should convince yourself in words that these two identities are true.
Since cos�1 x has range [0, p], the first identity tells us that

EXAMPLE 6 Calculations Involving the Inverse Cosine

Compute each of the following:

(a) cos�1(0); (b) (c) arccos(cos 4).cos a arccos 
2

3
b ;

SOLUTION (a) cos�1(0) is the unique number in the interval [0, p] whose cosine is 0. Since p�2
is in [0, p] and cos(p�2) � 0, we have

cos�1(0) �

(b) Since the number 2�3 is in the domain of the inverse cosine function, the iden-
tity cos(arccos x) � x is applicable. Thus,

(c) The number 4 is not in the domain of the restricted cosine function, so the iden-
tity cos�1(cos x) � x does not apply in this case. However, since 2p� 4 is in the
second quadrant (see Figure 7), it is in the domain of the restricted cosine func-
tion and cos 4 � cos(2p � 4), so

cos�1(cos 4) � cos�13cos(2p� 4)4 � 2p � 4

Thus cos�1(cos 4) is equal to 2p � 4, not 4.

cos a arccos 
2

3
b �

2

3

p

2

EXAMPLE 7 An Identity Involving the Inverse Cosine

Show that for �1 � x � 1.sin(cos�1 x) � 21 � x2

SOLUTION We use the identity which is valid for 0 � y � p. Substituting
cos�1 x for y in this identity, we obtain

Before leaving this example, we point out an alternative method of solution that
is useful when the restriction on x is 0 � x � 1. In this case we let u� cos�1 x. Then
u is the radian measure of the acute angle whose cosine is x, and we can sketch u as

 � 21 � x2  as required

 sin(cos�1x) � 21 � [cos(cos�1 x)]2

sin y � 21 � cos2 y,

2π-4

4

y

x

Figure 7

cos�1 x is the unique number in the interval [0, p] whose cosine is x.

cos(cos�1 x) � x for every x in the interval [�1, 1]

cos�1(cos x) � x for every x in the interval [0, p]

What is cos�1 x? Using the fundamental identities for inverse functions, we have

This answers the question, “What is cos�1 x?”



shown in Figure 8. The sides of the right triangle in Figure 8 have been labeled so
that

Then, by the Pythagorean theorem we find that the third side of the triangle is 

We therefore have

Just as there is a basic identity connecting sin x and cos x, sin2 x � cos2 x � 1,
there is also an identity connecting sin�1 x and cos�1 x.

sin(cos�1 x) � sin u �
opposite

hypotenuse
�
21 � x2

1
� 21 � x2

21 � x2.

cos u �
adjacent

hypotenuse
�

x

1
� x
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1

x

¨

Figure 8

1

x

¨

∫

Figure 9

x

y

π
2

π
2_

π
2

π
2

y=tan x, _   <x<

Figure 10
The restricted tangent function.

for every x in the closed interval [�1, 1]sin�1 x � cos�1 x �
p

2

tan�1 x is the unique number in the interval whose tangent is x.

tan(tan�1 x) � x for every real number x

tan�1(tan x) � x for every x in the open interval 1� 
p
2 , p2 2

1� 
p
2 , p2 2

We can use Figure 9 to see why this identity is valid when 0 � x � 1. (Exercise 61
shows you how to establish this identity for all values of x from �1 to 1.) In Figure 9,
assume that u and b are the radian measures of the indicated acute angles. Then
we have

and

and therefore

u � sin�1 x and b � cos�1 x

But from Figure 9 we know that u� b�p�2. So, we have sin�1 x � cos�1 x �p�2,
as required.

Now let us turn to the definition of the inverse tangent function. We begin by
defining the restricted tangent function:

It has domain and range R.*

Figure 10 shows the graph of the restricted tangent function. As you can check by
applying the horizontal line test, the restricted tangent function is one-to-one. This
tells us that the inverse function exists. The two common notations for this inverse
tangent function are

y � tan�1 x or y � arctan x

The domain of tan�1 x � R, and the range of tan�1 x � the interval Why?
Furthermore, if we follow the same line of reasoning used previously for the inverse
sine and the inverse cosine, we obtain the following properties of the inverse tangent
function.

1� 
p
2 , p2 2 .

21� 
p
2 , p2 21y � tan x,  with � 

p

2
� x �

p

2
.

cos b �
x

1
� xsin u �

x

1
� x

*R is the set of all real numbers.



The graph of y � tan�1 x is obtained in the same way that we obtained the graphs of
the inverse sine and the inverse cosine. That is, we use the fact that the graphs of a
function and its inverse are mirror images of one another about the line y � x. In
Figure 11(a) we’ve reflected the graph of the restricted tangent function about the
line y � x to obtain the graph of y � tan�1 x. In Figure 11(b) we show the graph of 
y � tan�1 x alone.
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x

y

π
2

π
2_

π
2

π
2_

y=x

(a)

y=tan x

y=tan–! x

x

y

π
2

π
2_

y=tan–! x

(b) The inverse tangent functionFigure 11

From the graph in Figure 11(b) we can see that the domain of the inverse tan-
gent function is the set of all real numbers, and the range is the open interval1� 

p
2 , p2 2 .

EXAMPLE 8 Calculations Involving the Inverse Tangent

Evaluate:

(a) tan�1(�1); (b) tan 1 tan�115 2 .
SOLUTION (a) The quantity tan�1(�1) is the unique number in the interval whose

tangent is �1. Since �p�4 is in and tan(�p�4) � �1, we have
tan�1(�1) � �p�4.

(b) The identity tan(tan�1 x) � x holds for all real numbers x. We therefore have
tan 1 tan�1 15 2 � 15.

1� 
p
2 , p2 2

1� 
p
2 , p2 2

EXAMPLE 9 Transforming a Trigonometric Expression to an Algebraic Expression

If tan u� x�3 and express the quantity u � tan 2u as a function of x.0 � u� p�2,

SOLUTION The given equation tells us that u � tan�1(x�3). That expresses u in terms of x. To
express tan 2u in terms of x, we have

multiplying numerator 
and denominator by 9

 �
2x�3

1 � (x2�9)
�

6x

9 � x2

 tan 2u �
2 tan u

1 � tan2 u
�

2(x�3)

1 � (x�3)2



Now, combining the results, we have

u � tan 2u � tan�1 
x

3
�

6x

9 � x2
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EXAMPLE 10 Composing a Trigonometric Function with an Inverse 
Trigonometric Function

Simplify the quantity sec(tan�1 x), where x 
 0.

EXAMPLE 11 An Example Using Inverse Trigonometric Functions

Simplify the quantity cos .1p6 � arctan 12 2
SOLUTION Let u � arctan . Then

To calculate cos u and sin u, we can use a Pythagorean identity:
u � arctan , so with tan u � . Then

Since sec u is positive for , we choose the positive square root and

Then cos u � 1�sec u � and sin u � tan u cos u � . Therefore

.

Alternatively, rather than using a Pythagorean identity to calculate cos u and sin u, 

we use a right-triangle. See Figure 13. The hypotenuse is . So

Again we have cos 1p6 � arctan 12 2 � 13
2 cos u � 1

2 sin u � 13
2  215

5 � 1
2 
15
5 � 2115 � 15

10 .

cos u �
adjacent

hypotenuse
�

2

15
�

215

5
  and  sin u �

opposite

hypotenuse
�

1

15
�
15

5

212 � 22 � 25

cos 1p6 � arctan 12 2 � 13
2 cos u � 1

2 sin u � 13
2  215

5 � 1
2 
15
5 � 2115 � 15

10

1
2 

215
5 � 15

5
2
15 � 215

5

sec u �
B

5

4
�
15

2

0 � u � p
2

sec2 u � tan2 u � 1 � a 1

2
b 2

� 1 �
1

4
� 1 �

5

4

1
20 � u � p

2
1
2

cos 1p6 � arctan 12 2 � cos 1p6 � u 2 � cos p6 cos u � sin p6 sin u � 23
2 cos u � 1

2 sin u

1
2

x

1

¨

Figure 12
u � tan�1 x (x 
 0) or tan u � x.

1

2
¨

Figure 13
u � arctan , with 0 � u � or 
tan u � .1

2

p
2

1
2

SOLUTION We let u � tan�1 x or, equivalently, tan u � x. Then 0 � u � p�2. Why? Now, as is
shown in Figure 12, we sketch a right triangle with an acute angle u (in radians)
whose tangent is x. The Pythagorean theorem tells us that the length of the 

hypotenuse in this triangle is Consequently, we have

sec(tan�1 x) � sec u �
hypotenuse

adjacent
�
21 � x2

1
� 21 � x2

21 � x2.



Note: In both Examples 7 and 10, we found that a trigonometric function with an
inverse trigonometric function for its input could be expressed in terms of quadratic
and square root functions. This is explored further in Exercises 38 through 41 at the
end of this section.

When suitable restrictions are placed on the domains of the secant, cosecant, and
cotangent, corresponding inverse functions can be defined. However, with the ex-
ception of the inverse secant, these are rarely, if ever, encountered in calculus.
Therefore we omit a discussion of these functions here. (For the inverse secant func-
tion, see the project Inverse Secant Functions.)

Let’s take a moment now to review our work in this section. The sine, cosine, and
tangent functions are not one-to-one functions. However, with suitable restrictions
on the domains, we do obtain one-to-one functions. The graphs of these restricted
versions of the sine, cosine, and tangent functions are shown in Figures 1(b), 5, and
10, respectively. It is the inverses of these restricted functions that are the focus in
this section. In the three boxes that follow, we summarize the key properties of the
inverse sine, the inverse cosine, and the inverse tangent.

9.5 The Inverse Trigonometric Functions 651

PROPERTY SUMMARY Inverse Sine Function: y � sin�1 x or y � arcsin x

1. Domain, range, and graph: The domain of the inverse sine function is the closed interval [�1, 1]. The range is
the closed interval [ ].

2. Defining equations: The function y � sin�1 x is the inverse of the restricted sine function. (The restricted sine
function is defined by the equation y � sin x along with the restriction �p�2 � x � p�2.) Since the restricted sine
function and the function y � sin�1 x are inverses of each other, we have

sin(sin�1x) � x for every x in the interval [�1, 1]

and

sin�1(sin x) � x for every x in the interval [ ]

3. Computing sin�1 x: sin�1 x is the unique number in the interval whose sine is x.

4. The inverse sine function is an odd function, so the graph of y � sin�1 x is symmetric about the origin.

3�  
p
2 , p2 4

� 
p
2 , p2

x

y

π
2

1_1

π
2_

y=sin–! x

� 
p
2 , p2
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PROPERTY SUMMARY Inverse Cosine Function y � cos�1 x or y � arccos x

1. Domain, range, and graph: The domain of the inverse cosine function is the closed interval [�1, 1]. The range
is the closed interval [0, p].

2. Defining equations: The function y � cos�1 x is the inverse of the restricted cosine function. (The restricted
cosine function is defined by the equation y � cos x along with the restriction 0 � x � p.) Since the restricted
cosine function and the function y � cos�1 x are inverses of each other, we have

cos(cos�1 x) � x for every x in the interval [�1, 1]

and

cos�1(cos x) � x for every x in the interval [0, p]

3. Computing cos�1 x: cos�1 x is the unique number in the interval [0, p] whose cosine is x.

1_1
x

y

π

y=cos-1 x

PROPERTY SUMMARY Inverse Tangent Function: y � tan�1 x or y � arctan x

1. Domain, range, and graph: The domain of the inverse tangent function is the set of all real numbers, (�q, q).
The range is the open interval 

2. Defining equations: The function y � tan�1 x is the inverse of the restricted tangent function. (The restricted
tangent function is defined by the equation y � tan x along with the restriction �p�2 � x � p�2.) Since the
restricted tangent function and the function y � tan�1 x are inverses of each other, we have

tan(tan�1 x) � x for every real number x

and

tan�1(tan x) � x for every x in the interval 

3. Computing tan�1 x: tan�1 x is the unique number in the interval whose tangent is x.

4. The inverse tangent function is an odd function, so the graph of y � tan�1 x is symmetric about the origin.

5. The graph of y � tan�1 x has horizontal asymptotes: y � and y � � .p2
p
2

1� 
p
2 , p2 2

1� 
p
2 , p2 2

x

y

y=

y=

y=tan–! x

π
2

π
2_

1� 
p
2 , p2 2 .
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In Exercises 35–37, evaluate the given expressions without
using a calculator or tables.

35.
36.
37.
38. In Example 7 we proved the identity

for �1 � x � 1. Demonstrate 
this identity visually by graphing the two functions 
y � sin(cos�1 x) and and noting that the 
graphs appear to be identical.

39. In Example 10 we found that for
x 
 0. Actually, this identity is valid for all real numbers.
Demonstrate this visually by graphing the two functions 
y � sec(tan�1 x) and 

40. Show that for �1 � x � 1.
Suggestion: Use the method of Example 7 in the text.

41. Demonstrate the identity for 
�1 � x � 1 by graphing the two functions y � cos(sin�1 x)
and and noting that the graphs appear to be 
identical.

42. If sin u� 2x and express u � cos 2u as a
function of x.

43. If sin u� 3x�2 and express as a
function of x.

44. If cos u� x � 1 and express 2u � cos 2u as
a function of x.

45. If and express u � cos u as
a function of x.

46. If and express 2u � tan 2u
as a function of x.

B
In Exercises 47–56, use the graphing techniques from
Section 3.4 to sketch the graph of each function.

47. (a) y � �sin�1 x 48. (a) y � �cos�1 x
(b) y � sin�1(�x) (b) y � cos�1(�x)
(c) y � �sin�1(�x) (c) y � �cos�1(�x)

49. (a) f (x) � arccos(x � 1) 50. (a) F(x) � arcsin(x � 1)
(b) (b)

51. (a)
(b)

52. (a) y � cos�1(1 � x)
(b) y � �cos�1(1 � x) � p

53. (a) y � �tan�1 x
(b) y � tan�1(�x)
(c) y � �tan�1(�x)

54. (a) y � arctan(x � 3)
(b)
(c) y � �arctan(�x) � p�2

y � arctan x � p�2

y � �arcsin(2 � x) � p
2

y � arcsin(2 � x) � p
2

G(x) � arcsin x � p
4g(x) � arccos x � p

2

0 � u � p�2,tan u � 1
3 (x � 1)

0 � u � p�2,tan u � 1
2 (x � 1)

0 � u � p�2,

1
4 u � sin 2u0 � u � p�2,

0 � u � p�2,

y � 21 � x2

cos(sin�1 x) � 21 � x2

cos(sin�1 x) � 21 � x2

y � 21 � x2.

sec(tan�1 x) � 21 � x2

y � 21 � x2

sin(cos�1 x) � 21 � x2

cot[cos�1(�1�2) � cos�1(0) � tan�1 11�13 2 ]
sec[cos�1 112�2 2 � sin�1(�1)]
csc[sin�1 1 12 2 � cos�1 1 12 2 4

A
In Exercises 1–20, evaluate each of the quantities that is 
defined, but do not use a calculator or tables. If a quantity is
undefined, say so.

1. 2. cos�1(�1)
3. 4.
5. 6. arcsin(�1)
7. tan�1 1 8. sin�1 0
9. cos�1 2p 10. arctan 0

11. 12.
13. 14. tan(arctan 3p)
15. 16. sin(arcsin 2)
17. 18.
19. arccos(cos 2p) 20.
21. (a) Graph the function y � arcsin x using a viewing

rectangle that extends from �2 to 2 in both the x- and
the y-directions. Then use the graphing utility to
estimate the maximum and the minimum values of
the function.

(b) What are the exact maximum and minimum values of
the function y � arcsin x? (If you need help answering
this, refer to the graph in the box on page 651.) Check
that your estimates in part (a) are consistent with these
results.

22. Using the viewing rectangle specified in Exercise 21,
graph the function f (x) � sin(arcsin x). What do you ob-
serve? What identity does this demonstrate?

23. (a) In the standard viewing rectangle, graph the
function y � arctan x.

(b) According to the text, the graph in part (a) has two
horizontal asymptotes. What are the equations for 
these two asymptotes? Add the graphs of the two 
asymptotes to the picture obtained in part (a). Finally,
to emphasize the fact that the two lines are indeed
asymptotes, change the viewing rectangle so 
that x extends from �50 to 50. What do you 
observe?

In Exercises 24–33, evaluate the given quantities without using
a calculator or tables.

24. 25.
26. sin(tan�1 1) 27. sin[tan�1(�1)]
28. 29.
30. 31.
32. 33.
34. Use a calculator to evaluate each of the following quanti-

ties. Express your answers to two decimal places.
(a) (c) tan�1 p

(b) (d) tan�1 (tan�1 p)cos�1 1 23 2
sin�1 1 34 2

tan 1arcsin 20
29 2sin 3arccos 1� 

1
3 2 4

sin 3cos�1 1 13 2 4cos 1arctan 13 2
cos 3sin�1 1 23 2 4tan 1arccos 5

13 2
cos 1arcsin 27 2tan 3sin�1 1 45 2 4

sin�1 1sin 3p2 2
arccos 1cos p8 2arcsin 1sin p2 2

arctan 3tan 1� 
p
7 2 4

cos 3cos�1 1 34 2 4
cos 3cos�1 1 43 2 4sin 3sin�1 1 14 2 4

arctan 1�1�13 2
arccos 1�12�2 2tan�1 13

sin�1 113�2 2

EXERCISE SET 9.5



(c) Use the result in part (b) along with your calculator to
specify the coordinates of the intersection point.

In Exercises 70–85, use graphs to determine whether there
are solutions for each equation in the interval [0, 1]. If there are
solutions, use the graphing utility to find them accurately to two
decimal places.

70. cos�1 x � tan�1 x
71. x � arccos x
72. cos�1 x � x2

73. (a)

(b)
74. tan�1 x � sin 3x
75. (a) arccos x � 2 sin 3x

(b) arccos x � 2 sin 4x
76. (a) sin(2.3x) � arctan x

(b) sin(2.2x) � arctan x
77. (a) 1�(tan�1 x � sin�1 x) � sin 2x

(b) 1�(tan�1 x � sin�1 x) � sin 3x
78. (a) 1�(sin�1 x � cos�1 x) � 4x3

(b) 1�(sin�1 x � cos�1 x) � 5x3

79. sin�1 x � cos�1 x
80. sin�1 x � sin�1(sin�1 x)
81. cos�1 x � cos�1(cos�1 x)
82. cos�1(sin�1 x) � sin�1(cos�1 x)
83. 1�(sin x) � sin�1 x
84. 1�(cos x) � cos�1 x
85. 1�(tan x) � tan�1 x
86. Let denote a point on the curve As

indicated in the accompanying figure, a line is drawn pass-
ing through P and the point (�1, 0), and u is the acute
angle between this line and the x-axis.

y � 1x.P(x, y)

1.4 1x � 1
2 2 2 � cos�1x

1.3 1x � 1
2 2 2 � cos�1x

55.
56.
57. Evaluate sin(2 tan�1 4). Hint: sin 2u � 2 sin u cos u
58. Evaluate 
59. Evaluate . Suggestion: Use the

formula for sin(x � y).
60. Show that 
61. In the text we showed that sin�1 x � cos�1 x � p�2 for x

in the open interval (0, 1). Follow steps (a) and (b) to show
that this identity actually holds for every x in the closed
interval [�1, 1].
(a) Let a � sin�1 x and b � cos�1 x. Explain why

Hint: What are the
ranges of the inverse sine and the inverse cosine
functions?

(b) Use the addition formula for sine to show that 
sin(a � b) � 1. Conclude [with the help of part (a)]
that a � b � p�2, as required.

62. Using the viewing rectangle specified in Exercise 21,
graph the function g(x) � sin�1 x � cos�1 x. What do you
observe? What is the exact value for the y-intercept of the
graph? What identity does this demonstrate?

In Exercises 63 and 64, solve the given equations.

63. cos�1 t � sin�1 t Hint: Compute the cosine of both sides.
64. sin�1(3t � 2) � sin�1 t � cos�1 t

65. Show that when x and 

y are positive and xy � 1.
66. Use the identity in Exercise 65 to show that the following

equations are correct.
(a)
(b)
(c)

Hint:
(d)

In Exercises 67 and 68, solve the given equations.

67. Hint: Compute the tangent 
of both sides.

68.

69. Consider the equation cos�1 x � tan�1 x.
(a) Explain why x cannot be negative or zero.
(b) As you can see in the accompanying figure, the graphs

of y � cos�1 x and y � tan�1 x intersect at a point in
Quadrant I. By solving the equation cos�1 x � tan�1 x,
show that the x-coordinate of this intersection point is
given by

x �
B

15 � 1

2

2 tan�12t � t2 � tan�1 t � tan�1(1 � t)

2 tan�1 x � tan�1 
1

4x

arctan 12 � arctan 15 � arctan 18 � p
4

2 arctan 13 � arctan 13 � arctan 13

2 arctan 13 � arctan 17 � p
4  

arctan 14 � arctan 35 � p
4

arctan 12 � arctan 13 � p
4

arctan x � arctan y � arctan 
x � y

1 � xy

�p�2 � a � b � 3p�2.

sin[sin�1 1 13 2 � sin�1 1 14 2 4 � 1115 � 212 2�12.

sin 1arccos 35 � arctan 7
13 2

cos 32 sin�1 1 5
13 2 4 .

y � tan�1(2 � x) � p�4
f(x) � �arctan(1 � x) � p�2

654 CHAPTER 9 Analytical Trigonometry

x

y

1

3

_1 2

2

1

_1

y=cos-1 x
y=tan-1 x



(a) Show that Hint: Compute the slopes
of and (Assume that the grid lines are marked
off at one-unit intervals.)

(b) Show that AB � BC and conclude that 
(c) Now explain why , and

89. In this exercise we use the accompanying figure to show
that tan�1 1 � tan�1 2 � tan�1 3 � p.

(a) By computing slopes, show that and
(Assume that the grid lines are at one-

unit intervals.)
(b) Determine the following lengths: DE, CE, BE, AB, 

and BD.
(c) Show that tan a � 1, tan b � 2, and tan g� 3. Then

explain why tan�1 1 � tan�1 2 � tan�1 3 � p.

Note: It’s possible to do part (c) without first doing part (b).
Try it.

90. In the following figure, ^ABC is a right triangle and 
the four lengths AB, BP, PQ, and QC are all equal. 
Use the result in Exercise 89 to show that

91. Show that sin�1 is an odd function.
92. Show that tan�1 is an odd function.
93. Explain why the graph of has horizontal 

asymptotes and .y � �p2y � p
2

y � tan�1 x

A

C
B QP

�BAP � �BAQ � �BAC � 180°.

AB � BD.
DE � BC

A C

B

åç
E

D

∫

tan�1 1 23 2 � tan�1 1 15 2 � p
4  .

a � tan�1 1 23 2 , b � tan�1 1 15 2
�BAC � p�4.

BC.AB
�ABC � p�2.

A

C

B

å

∫

(a) Express u as a function of x. (Use the inverse tangent
function.)

(b) Use a graphing utility to obtain a graph of the function in
part (a).

(c) Zoom in on the turning point of the graph in part (b) until
you know the first three decimal places in the maximum
possible value for u. What is the corresponding x input?

(d) Using the x-value determined in part (c), find the equation
of the line passing through (�1, 0) and Then graph
this line along with the curve What do you
observe?

87. Refer to the accompanying diagrams. Figure A shows an
observer looking at a picture on the wall. The base of the
picture is 3 ft above the level of the person’s eyes, the pic-
ture itself is 2 feet high, and the person is x ft from the
wall. Figure B isolates the geometry of the situation.

Figure A Figure B

(a) Show that 
Hint: In Figure B, the angle 

(b) Graph the equation in part (a). Then use the graph to
explain why, in viewing the picture, the observer
should stand about 4 ft away from the wall.

In Exercises 88 and 89 we make use of some simple geometric
figures to evaluate sums involving the inverse tangent function.
The idea here is taken from the note by Professor Edward M.
Harris entitled Behold! Sums of Arctan (The College
Mathematics Journal, vol. 18 no. 2, p. 141).

88. In this exercise we use the following figure to show that
tan�1 1 23 2 � tan�1 1 15 2 � p

4  .

u � �ADC � �BDC.
u � tan�1(5�x) � tan�1(3�x).

¨

x

3

2

D

A

B

C

¨

x

3

2

y � 1x.
P(x, y).
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y

x

y=œ„x

(_1, 0)

¨
P (x, y)



656 CHAPTER 9 Analytical Trigonometry

(e) Show that the maximum value of u is 1�2 radian or
about 29 degrees.

C
95. An art gallery problem. In this problem we sketch an

analytic solution for Exercise 87. A painting 2 ft high and 
8 ft above the floor is observed on the wall of an art gallery.
The eye of the observer is 5 ft above the ground. At what
distance from the wall should the observer stand to maxi-
mize his or her viewing angle?
(a) Draw and label a diagram with viewing angle u and

distance from the wall x. Hint: See Exercise 87.

(b) Show .

(c) Show , so for 

(d) Explain why u is maximum when is maximum.

(e) Show that the maximum value of is .

Hint: Find the range of the function 

with , by finding all values of y for which the 
equation can be solved for x with .

(f) Show that the maximum viewing angle occurs when
the observer is ft from the wall.215

x 
 02x
x2 � 15 � y

x 
 0

f (x) � 2x
x2 � 15

1
215

2x
x2 � 15

2x
x2 � 15

x 
 0.u � tan�1
 

2x
x2 � 15tan u � 2x

x2 � 15

u � tan�1
  5x � tan�1  3x, for x 
 0

94. In this problem we sketch an analytic solution for Exercise 86.
P(x, y) is a point on the curve . A line is drawn
passing through P and the point (�1, 0), and u is the acute
angle between this line and the x-axis.
(a) Draw and label an appropriate diagram. Hint: See

Exercise 86.

(b) Show .

(c) Show .

Now, here’s the interesting part. Arctan is an increasing

function so u is a maximum when is a maximum.

We know that the squaring function is an increasing 

function on the interval . So is maximum on 

when it’s square is 
maximum on .

(d) Find the range of the function on 

to show the maximum of f (x) is 1�4.
Hint: Find the range by finding all values of y for 

which the equation can be solved 
with .x 
 0

x

(x � 1)2 � y

(0, q)

f (x) �
x

(x � 1)2

(0, q)
f (x) � a 1x

x � 1
b 2

�
x

(x � 1)2(�1, q)

1x

x � 1
(0, q)

1x

x � 1

u � tan�1 1x

x � 1
, for x 
 �1

tan u �
1x

x � 1
, for x 
 �1

y � 1x

CHAPTER 9 Summary of Principal Terms and Formulas

Page
Terms or Formulas Reference Comments

1. sin(s � t) 600 These identities are referred to as the addition formulas for sine  
� sin s cos t � cos s sin t and cosine.

sin(s � t)
� sin s cos t � cos s sin t

cos(s � t) 
� cos s cos t � sin s sin t

cos(s � t) 
� cos s cos t � sin s sin t

2. 602 These two identities, called cofunction identities, hold for all real 
numbers u. In terms of angles, the identities state that the sine of an
angle is equal to the cosine of its complement.

sin 1p2 � u 2 � cos u
cos 1p2 � u 2 � sin u

CHAPTER 9 Summary

The project, Inverse Secant Functions, at http://www.cengage.com/math/cohen/precalc7e, develops the two 
inverse secant functions most commonly used in calculus.

http://www.cengage.com/math/cohen/precalc7e
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Page
Terms or Formulas Reference Comments

3. 604 These are the addition formulas for tangent.

4. sin 2u � 2 sin u cos u 611 These are the double-angle formulas. There are four other forms 

cos 2u � cos2 u � sin2 u of the double-angle formula for cosine. They appear in the box 
on page 613.

5. 614 These three identities are referred to as the half-angle formulas.
In the case of the half-angle formulas for sine and cosine, the sign 
before the radical is determined by the quadrant in which the 
angle or arc s�2 terminates.

6. sin A sin B 616 These product-to-sum identities are derived from the addition
formulas for sine and cosine.

sin A cos B

cos A cos B

7. 616 These are the sum-to-product identities.

8. The restricted sine function 642 The domain of the function y � sin x is the set of all real numbers. By
allowing inputs only from the closed interval , we obtain the
restricted sine function. (See Figure 1(b) on page 642.) The motivation
for restricting the domain is that the restricted sine function is one-to-
one, and therefore the inverse function exists.

9. sin�1 x or arcsin x 643 sin�1 x is the unique number in the interval whose sine is x. 
The basic properties of the inverse sine function are summarized in the
box on page 651.

3� 
p
2  , p2  4

3� 
p
2  , p2  4

� �2 sin 
a � b

2
 sin 
a � b

2

cos a � cos b

� 2 cos 
a � b

2
 cos 
a � b

2

cos a � cos b

� 2 cos 
a � b

2
 sin 
a � b

2

sin a � sin b

� 2 sin 
a � b

2
 cos 
a � b

2

sin a � sin b

� 12 [cos(A � B) � cos(A � B)]

� 12 [sin(A � B) � sin(A � B)]

� 12 [cos(A � B) � cos(A � B)]

tan 
s

2
�

sin s

1 � cos s

cos 
s

2
� 	
B

1 � cos s

2

sin 
s

2
� 	
B

1 � cos s

2

tan 2u �
2 tan u

1 � tan2 u

tan(s � t) �
tan s � tan t

1 � tan s tan t

tan(s � t) �
tan s � tan t

1 � tan s tan t
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your instructor. Then on your own, write a summary of what
you have learned. Include an example (like the ones in this
precalculus text) explaining how the formula is applied in a
specific case.

3. This exercise consists of two parts. In the first part you are
going to follow some simple instructions to construct a regu-
lar pentagon. In the second part, you’ll write a paper explain-
ing why the construction is valid.
(a) Use the following instructions to make a poster showing

a regular pentagon inscribed in the unit circle. The poster
should also show the steps used in the construction.

Draw a unit circle. Label the origin O; let B and C�
denote the points (1, 0) and (0, 1), respectively; let C
be the midpoint of OC�; and let A denote the point
where the bisector of meets the x-axis. From
A, draw a line segment straight up to the unit circle,
meeting the unit circle at a point P. Then the line
segment joining B and P will be one side of a regu-
lar pentagon inscribed in the unit circle.

Remark: This is perhaps the simplest geometric con-
struction known for the regular pentagon. The ancient
Greek mathematicians had a more complicated method.
The construction given here was discovered (only) a
century ago by H. W. Richmond [Quarterly Journal of
Mathematics, vol. 26 (1893), pp. 296–297].

�OCB

1. Say whether the statement is True or False. Write out your
reason or reasons in complete sentences. If you draw a dia-
gram to accompany your writing, be sure that you clearly
label any parts of the diagram to which you refer.
(a) The equation tan2 t � 1 � sec2 t is true for every real

number t.
(b) There is no real number x satisfying the equation

(c) There is no real number x satisfying the equation

(d) For every number x in the closed interval [�1, 1], we
have sin�1 x � 1�sin x.

(e) There is no real number x for which sin�1 x � 1�sin x.
Hint: Draw a careful sketch of the graphs of the inverse
sine function and the cosecant function on the interval
0 � x � 1.

(f) The equation sin(x � y) � sin x cos y � cos x sin y holds
for all real numbers x and y.

(g) The equation holds for all

real numbers x and y.
2. There is a formula for calculating the angle between two

given lines in the x–y plane. The derivation of this formula re-
lies on the identity for tan(s � t). Find a book on analytic
geometry in the library. Look up this formula; find out how it
is derived and how to use it. You can work with a classmate or

tan(x � y) �
tan x � tan y

1 � tan x tan y

cos 1p4 � x 2 � cos x.

cos 1p4 � x 2 � 2.

Writing Mathematics

Page
Terms or Formulas Reference Comments

10. The restricted cosine 646 The domain of the function y � cos x is the set of all real numbers.
function By allowing inputs only from the closed interval [0, p], we obtain the

restricted cosine function. (See Figure 5 on page 646.) The motivation
for restricting the domain is that the restricted cosine function is one-to-
one, and therefore the inverse function exists.

11. cos�1 x or arccos x 646 cos�1 x is the unique number in the interval [0, p] whose cosine is x. 
The basic properties of the inverse cosine function are summarized in a
box on page 652.

12. The restricted tangent 648 The tangent function, y � tan x, is not one-to-one. However, by 
function allowing inputs only from the open interval we obtain the

restricted tangent function, which is one-to-one. (See Figure 10 on 
page 648.) Since the restricted tangent function is one-to-one, the inverse
function exists.

13. tan�1 x or arctan x 648 tan�1 x is the unique number in the interval whose tangent is x.
The basic properties of the inverse tangent function are summarized 
in a box on page 652.

1� 
p
2  , p2  2

1� 
p
2  , p2  2
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CHAPTER 9 Review Exercises

In Exercises 1–32, prove that the equations are identities.

1.

2.

3.

4. sin2 x � sin2 y � sin(x � y) sin(x � y)

5.

6. 2 csc 2x � sec x csc x
7. (sin x)3tan(x�2) � cot(x�2)4 � 2
8.
9.

10.

11.

12.

13.

14.

15.

16.

17. where t � tan u

18.

� cos 1 t � 2
3 p 2  sin 1 t � 2

3 p 2
sin 2t � sin 1 t � 2

3 p 2  cos 1 t � 2
3 p 2

tan 3u �
3t � t3

1 � 3t2,

(1 � tan u) 31 � tan 1 14 p � u 2 4 � 2

tan(a � b) � tan b

1 � tan(a � b) tan b
� tan a

tan 1 14 p � 1
2 t 2 � tan t � sec t

1 � tan 1 14 p � t 2
1 � tan 1 14 p � t 2 � tan t

tan(x � y) � tan y

1 � tan(x � y) tan y
� tan x

2 sin ap
4

�
x

2
b  cos ap

4
�

x

2
b � cos x

cot x � 1

cot x � 1
�

1 � sin 2x

cos 2x

tan 1p4 � x 2 � tan 1p4 � x 2 � 2 tan 2x
tan 1x � p

4 2 � (1 � tan x)�(1 � tan x)

tan2 x � tan2 y �
sin(x � y) sin(x � y)

cos2 x cos2 y

sin 2x �
2 tan x

1 � tan2 x

cos 2x �
1 � tan2 x

1 � tan2 x

cot(x � y) �
cot x cot y � 1

cot x � cot y

19.

20. cos4 x � sin4 x � cos 2x

21.

22. 1 � tan x tan(x�2) � sec x

23.

24.

25. sin(x � y) cos y � cos(x � y) sin y � sin x

26.

27.

28. 4 sin(x�4) cos(x�4) cos(x�2) � sin x
29. sin 4x � 4 sin x cos x � 8 sin3 x cos x
30. cos 4x � 8 cos4 x � 8 cos2 x � 1
31. sin 5x � 16 sin5 x � 20 sin3 x � 5 sin x
32. cos 5x � 16 cos5 x � 20 cos3 x � 5 cos x

In Exercises 33–41, establish the identities by applying the
sum-to-product formulas.

33. sin 80� � sin 20� � cos 50�

34.

35.

36.

37.
38. cos 10° � sin 10° � 12 sin 35°

sin(5p�12) � sin(p�12) � 16�2

sin 3° � sin 33°

cos 3° � cos 33°
� tan 18°

cos x � cos 3x

sin x � sin 3x
� tan x

sin 65° � sin 25° � 12 cos 20°

1 � tan2(x�2)

1 � tan2(x�2)
� cos x

sin x � sin 2x

cos x � cos 2x
� cot 

x

2

sin 3x

sin x
�

cos 3x

cos x
� 2

tan 
x

2
�

1 � cos x � sin x

1 � cos x � sin x

2 sin x � sin 2x �
2 sin3 x

1 � cos x

tan 2x � sec 2x �
cos x � sin x

cos x � sin x

(b) With a group of classmates or your instructor, work out
the details in the following terse justification for the con-
struction in part (a). Then, on your own, carefully write
out the justification in full detail. This will involve a mix-
ture of English sentences and equations, much like the
exposition in this textbook. At each of the main steps, be
sure to tell the reader where you are going and what that
step will accomplish.

We want to show that Let
From right triangle OCB we get

and Using thesecos u � 15�5.sin u � 215/5
�OCB � u.

�POB � 72°.

values in the half-angle formula for tangent then
yields (after simplifying)
Next, from right triangle OCA we have

From these last two equations
we conclude that However,
according to Exercise 68(c) in Section 9.2,

It now follows that 
OA � cos 72�, and therefore 

(In working out the details, you can assume the result from
Exercise 68(c) in Section 9.2.) 

�POB � 72°.
sin 18° � 115 � 1 2�4.

OA � 115 � 1 2�4.
OA � 1

2 tan(u�2).

tan(u�2) � 115 � 1 2�2.



and the line x � a is given by sin�1 a. Use this fact to carry
out the following calculations.
(a) Find the area of the first-quadrant region under this

curve from x � 0 to Give both the exact
form of the answer and a calculator approximation
rounded to three decimal places.

(b) Find a value of a so that the area of the first-quadrant re-
gion under the curve from x � 0 to x � a is 1.5. Round
your answer to three decimal places.

In Exercises 45–61, find all solutions of each equation in the 
interval [0, 2p). In cases in which a calculator is necessary,
round the answers to two decimal places.

45. tan x � 4.26 46. tan x � �4.26
47. csc x � 2.24 48. sin(sin x) � p�6
49. tan2 x � 3 � 0 50. cot2 x � cot x � 0
51. 1 � sin x � cos x 52.
53. sin x � cos 2x � 1 � 0 54. sin x � sin 2x � 0
55. 3 csc x � 4 sin x � 0
56. 2 sin2 x � sin x � 1 � 0
57. 2 sin4 x � 3 sin2 x � 1 � 0
58. sec2 x � sec x � 2 � 0
59. sin4 x � cos4 x � 5�8
60. 4 sin2 2x � cos 2x � 2 cos2 x � 2 � 0
61. cot x � csc x � sec x � tan x Suggestion: If you use 

sines and cosines, the given equation becomes 
cos2 x � sin2 x � cos x � sin x � 0, which can be factored.

62. If A and B both are solutions of the equation 
a cos x � b sin x � c, show that

Hint: The given information yields two equations. After
subtracting one of those equations from the other and 

rearranging, you will have . Now use 

the sum-to-product formulas.
63. Evaluate 

In Exercises 64–87, evaluate each expression (without using a
calculator or tables).

64. 65.

66. sin�1 0 67.

68. 69.

70. tan�1(�1) 71.

72. sin(sin�1 1) 73.

74. 75. cos�1(cos 5)

76. sin�1(sin 2) 77. sin 3tan�1(�1)4
78. 79. sec 3cos�1 112�3 2 4sin 3arccos 1� 

1
2 2 4

sin�1 1sin p7 2
cos 3cos�1 1 27 2 4
cos�1 1� 

1
2 2

cos�1 1 12 2arctan 13

arcsin 12

arctan 113�3 2cos�1 1�12�2 2

cos tan�1 sin tan�1 112�2 2 .

cos A � cos B

sin A � sin B
� � 

b

a

tan c 1
2

 (A � B) d �
b

a

2 sin 3x � 13 � 0

x � 12�2.

39.

40.

41.

42. Suppose that a and b are in the open interval (0, p�2)  and 
a � b. If sin a � sin b � cos a � cos b, show that a � b �p�2.
Hint: Begin with the sum-to-product formulas.

43. Refer to the figure. Using calculus, it can be shown that
the area of the first-quadrant region under the curve 
y � 1�(1 � x2) from x � 0 to x � a is given by the expres-
sion tan�1 a. Use this fact to carry out the calculations in 
parts (a) and (b).

(a) Find the area of the first-quadrant region under the curve
y � 1�(1 � x2) from x � 0 to x � 1.

(b) Find a value of a so that the area of the first-quadrant re-
gion under the curve from x � 0 to x � a is: (i) 1.5; 
(ii) 1.56; (iii) 1.57. In each case, round your answer to
the nearest integer.

44. The figure below shows the graph of the curve

for 0 � x � 1. 

Using calculus it can be shown that the area of the first-
quadrant region bounded by this curve, the coordinate axes,

x

y

2

1

œ„„„„
1

1-≈
(0≤x<1)y=

a

1

y � 1�21 � x2

x

y

a

1
1

1+≈
(x≥0)y=

sin 40° � sin 20°

cos 20° � cos 40°
�

sin 10° � sin 50°

cos 50° � cos 10°

sin 10° � sin 50°

cos 50° � cos 10°
� 13

cos 3y � cos(2x � 3y)

sin 3y � sin(2x � 3y)
� cot x
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90. cos(2 cos�1 x) � 2x2 � 1

91.

In Exercises 92–94, without using a calculator, show that each
statement is true.

92.
93.
94.
95. (a) Use a calculator to compute the quantity cos 20� cos 40�

cos 60� cos 80�. Give your answer to as many decimal
places as is shown on your calculator.

(b) Now use a product-to-sum formula to prove that the
display on your calculator is the exact value of the given
expression, not an approximation.

96. In this exercise we will use the accompanying fig-
ure to derive the half-angle formula for sine:

Our derivation will make use of the formula for the distance
between two points and the identity sin2 t � cos2 t � 1.
However, we will not rely on an addition formula for sine, as
we did in Section 9.2.
(a) Explain why the coordinates of P and Q are

and Q(cos u, sin u).
(b) Use the distance formula to show that

and

(c) Explain why ^POR is congruent to ^QOP.
(d) From part (c), it follows that (PQ)2 � (PR)2. By equat-

ing the expressions for (PQ)2 and (PR)2 [obtained in
part (b)], show that

sin 
u

2
 sin u � a cos 

u

2
b (1 � cos u)

(PR)2 � 2 � 2 cos 
u

2

(PQ)2 � 2 � 2 cos 
u

2
 cos u � 2 sin 

u

2
 sin u

P 1cos u2, sin u2 2

¨/2
x

y

≈+¥=1

P

Q

O

R

¨/2

sin 
u

2
� 	21

2 (1 � cos u)

tan 3sin�1 1 13 2 � cos�1 1 12 2 4 � 1
5 1812 � 913 2

arcsin 14141�41 2 � arcsin 1182�82 2 � p�4

tan�1 1 13 2 � tan�1 1 15 2 � tan�1 1 47 2

sin 3 12 sin�1 1x2 2 4 � 21
2 � 1

2 11 � x4

80. 81.

82. 83. tan(2 tan�1 2)

84. 85.
86. In this exercise we investigate the relationship between the

variables x and u in the accompanying figure. (Assume that
u is in radians.)

(a) Refer to the figure. Show that

u � tan�1 � tan�1

(b) Use your calculator to complete the following table.
(Round the results to two decimal places.) Which x-value
in the table yields the largest value for u?

x 0.1 1 2 3 10 100

U

(c) As indicated in the following graph, the value of x that
makes u as large as possible is a number between 5 and
10, closer to 5 than to 10. 

Using calculus, it can be shown that this value of x is, in
fact, Use your calculator to evaluate check
that the result is consistent with the given graph. What is
the corresponding value of u in this case? Also, give the
coordinates of the highest point on the accompanying
graph. Round both coordinates to two decimal places.

(d) What is the degree measure for the angle u obtained in
part (c)? Round the answer to one decimal place.

In Exercises 87–91, show that each equation is an identity.

87. tan(tan�1 x � tan�1 y) � (x � y)�(1 � xy)

88.
89. sin(2 arctan x) � 2x�(1 � x2)

tan�1(x�21 � x2) � sin�1 x

2110;2110.

x

y

0.1

0.2

0.3

0.4

0.5

10 20 30 40

4
x

10
x

-tan–!¨=tan–!

5

a 4
x
ba 10

x
b

4

6

x

¨

cos 3 12 cos�1 1 45 2 4sin 32 sin�1 1 45 2 4
sin 1 3p2 � arccos 35 2

tan 3p4 � sin�1 1 5
13 2 4cot 3cos�1 1 12 2 4
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CHAPTER 9 Test

1. Use an appropriate addition formula to simplify the expres-
sion 

2. Compute cos 2t given that and

3. Compute tan(u�2) given that cos u � �5�13 and

4. Use a calculator to find all solutions of the equation 
sin x � 3 cos x in the interval (0, 2p).

5. Find all solutions of the equation

2 sin2 x � 7 sin x � 3 � 0

on the interval 0 � x � 2p.
6. If and 4�5

compute sin(b � a).
7. Find all solutions of the equation sin x

on the interval 0� � x � 90�.
8. If csc u� �3 and compute sin(u�2).
9. On the same set of axes, sketch the graphs of the restricted

sine function and the function y � sin�1 x. Specify the 
domain and the range for each function.

p � u � 3p�2,

13sin(x � 30°) �
1p2 � b � p 2 ,

sin b �1 3p2 � a � 2p 2cos a � 2�15

p � u � 3p�2.

3p�2 � t � 2p.
sin t � �215�5

sin 1u � 3p
2 2 .

10. Compute each of the following quantities:
(a) sin�1[sin(p�10)] (b) sin�1(sin 2p)

11. Compute 
12. Prove that the following equation is an identity:

13. Use a product-to-sum formula to simplify the expression
sin(7p�24) cos(p�24).

14. Use the sum-to-product formulas to simplify the expression

15. Simplify the following expression: 

sec . (Assume that x 
 1.)
16. Sketch a graph of the function y � tan�1 x, and specify the

domain and the range. 

1arctan 2x2 � 1 2

sin 3u � sin 5u

cos 3u � cos 5u

tan ap
4

�
u

2
b �

1 � cos u � sin u

1 � cos u � sin u

cos 1arcsin 34 2 .

(e) Square both sides of the equation obtained in part (d);
then replace cos2(u�2) by 1 � sin2(u�2) and show that
the resulting equation can be written

3sin2(u�2)4(2 � 2 cos u) � (1 � cos u)2

(f) Solve the equation in part (e) for the quantity You
should obtain

as required

In Exercises 97–99, prove that the equations are identities.
(These identities appear in Trigonometry and Double Algebra,
by August DeMorgan, published in 1849.)

97. sin 2u � 2�(cot u� tan u)

98.

99. cos 2u � 1�(1 � tan 2u tan u)
100. Prove the following two identities. These identities were

given by the Swiss mathematician Leonhard Euler in 1748.

(a)

(b) cot 2u �
cot u � tan u

2

tan 2u �
2 tan u

1 � tan2 u

sin 2u �
tan(45° � u) � tan(45° � u)

tan(45° � u) � tan(45° � u)

sin 
u

2
� 	21

2(1 � cos u)

sin u2.

101. Prove the following two identities. These identities were
given by the Swiss mathematician Johann Heinrich
Lambert in 1765.

(a)

(b)

102. Prove the following identity, which was essentially given
by the German mathematician Johann Müller (known as
“Regiomontanus”) around 1464.

103. Prove the following identity, given by the Austrian mathe-
matician George Joachim Rhaeticus in 1569.

cos nu � cos 3(n � 2)u4 � 2 sin u sin 3(n � 1)u4
104. Suppose that 

(a) Show that 

(b) Show that x3 �
1

x3 � 2 cos 3u.

x2 �
1

x2 � 2 cos 2u.

x �
1
x

� 2 cos u.

sin A � sin B

sin A � sin B
�

tan 3 12 (A � B) 4
tan 3 12 (A � B) 4

cos 2u �
1 � tan2 u

1 � tan2 u

sin 2u �
2 tan u

1 � tan2 u
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10.1 Right-Triangle Applications

10.2 The Law of Sines and the
Law of Cosines

10.3 Vectors in the Plane: 
A Geometric Approach

10.4 Vectors in the Plane: 
An Algebraic Approach

10.5 Parametric Equations

10.6 Introduction to Polar
Coordinates

10.7 Curves in Polar
Coordinates

10.8 DeMoivre’s Theorem

The subject of trigonometry is an excellent example of
a branch of mathematics . . . which was motivated by
both practical and intellectual interests—surveying,
map-making, and navigation on the one hand, and
curiosity about the size of the universe on the other. With it the Alexandrian mathe-
maticians triangulated the universe and rendered precise their knowledge about the
Earth and the heavens. —Morris Klein in Mathematics in Western Culture (New York:

Oxford University Press, 1953)

This is our fifth and final chapter on trigonometry. Some of the subject matter here
takes us back to the historical roots of the subject: the study of the relationships
between the sides and angles of a triangle. In Section 10.1 we look at some applica-
tions of right-triangle trigonometry that we didn’t do in Chapters 6 and 7. Section 10.2
presents the law of sines and the law of cosines. These relate the angles and lengths
of the sides of arbitrary triangles. In Sections 10.3 and 10.4 we introduce the impor-
tant topic of vectors, first from a geometric standpoint and then from an algebraic
standpoint. In Sections 10.5 through 10.7 we expand upon some of the ideas in
Chapters 1 and 3 on graphs, and equations, as we look at parametric equations and
polar coordinates. Section 10.8 uses trigonometric identities and polar coordinates
to present DeMoivre’s theorem, which we use to find the n distinct nth roots of a
complex number.

CHAPTER

10 Additional Topics 
in Trigonometry

10.1 RIGHT-TRIANGLE APPLICATIONS*
We continue the work we began in Section 7.5 on right-triangle trigonometry. As pre-
requisites for this section, you’ll need to have memorized the definitions of the
trigonometric functions, given in the box on page 512, and the table of trigonometric
values for 30°, 45°, and 60° on page 494.

*For those who read Chapter 6, the early material in Section 10.1 is identical to Section 6.1,
but the important applications covered in Examples 7, 9, 10, and 11 of this section are new.

Image copyright Triff, 2010. Used under license from
Shutterstock.com
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EXAMPLE 2 Using Trigonometric Functions to Find a Side in a Right Triangle

Find y in Figure 1.

SOLUTION As you can see from Figure 1, the side of length y is opposite the 30° angle.
Furthermore, we are given the length of the hypotenuse. Since the opposite side and
the hypotenuse are involved, we use the sine function. This yields

and therefore

This is the required answer. Actually, we could have obtained this particular result
much faster by recalling that in the 30°–60° right triangle, the side opposite the 
30° angle, namely, y, is half of the hypotenuse. That is y � 100�2 � 50 cm, as was
obtained previously.

y � 100 sin 30° � (100) # (1�2) � 50 cm

sin 30° �
opposite

hypotenuse
�

y

100

EXAMPLE 3 A Right-Triangle Application

A ladder that is leaning against the side of a building forms an angle of 50° with the
ground. If the foot of the ladder is 12 ft from the base of the building, how far up the
side of the building does the ladder reach? See Figure 2.50°

12 ft

y

Figure 2
SOLUTION In Figure 2 we have used y to denote the required distance. Notice that y is opposite

the 50° angle, while the given side is adjacent to that angle. Since the opposite and

SOLUTION Relative to the given 30° angle, x is the adjacent side. The length of the hypotenuse
is 100 cm. Since the adjacent side and the hypotenuse are involved, we use the cosine
function here:

Consequently,

This is the result we are looking for.

We used the cosine function in Example 1 because the adjacent side and the
hypotenuse were involved. We could instead use the secant. In that case, again with
reference to Figure 1, the calculations look like this:

as was obtained previously.

 x �
10013

2
� 5013 cm

 2x � 10013

 
2

13
�

100
x

 sec 30° �
hypotenuse

adjacent
�

100
x

x � 100 cos 30° � (100) # 113�2 2 � 5013 cm

cos 30° �
adjacent

hypotenuse
�

x

100

30°

100 cm

y

x

Figure 1

EXAMPLE 1 Using Trigonometric Functions to Find a Side in a Right Triangle

Use one of the trigonometric functions to find x in Figure 1.



adjacent sides are involved, we’ll use the tangent function. (The cotangent function
could also be used.) We have

Without the use of a calculator or tables, this is our final answer. On the other hand,
using a calculator, we find that y � 14 ft, to the nearest foot.

tan 50° �
y

12
  and therefore  y � 12 tan 50°
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EXAMPLE 4 Finding an Angle Given the Sides of a Right Triangle

Figure 3 shows a 3-4-5 right triangle. Compute sin u and u. For u, express the answer
both in radians, rounded to two decimal places, and in degrees, rounded to one
decimal place.

SOLUTION Applying the definition sin u � opposite�hypotenuse in Figure 3, we have

(1)

Next, to isolate u, we take the inverse sine of both sides of equation (1) to obtain

Now, as you should verify for yourself with a calculator set in the radian mode, we find
radians; and in the degree mode, u � .

In the example just completed, we used the inverse sine function to determine the
angle u in Figure 3. It’s worth noting, however, that the other inverse trig functions
could be used equally well. For instance, from Figure 3 we have tan u � 3�4 and,
consequently,

or

If you use a calculator now to evalute this last expression, you’ll find that the answer
indeed agrees with the results in Example 4.

u � tan�1 a 3

4
b

tan�1(tan u) � tan�1 a 3

4
b

sin�1(3�5) � 36.9°u � sin�1(3�5) � 0.64

 u � sin�1
 a 3

5
b

 sin�1(sin u) � sin�1
 a 3

5
b

sin u �
3

5

3

4

5

¨

Figure 3

EXAMPLE 5 A Trigonometric Formula for the Area of a Triangle

Show that the area of the triangle in Figure 4 is given by

A �
1

2
 ab sin u



If a and b are lengths of two sides of a triangle and u is the
angle included between those two sides, then the area of the
triangle is given by

In Words: The area of a triangle equals one-half the product
of the lengths of two sides times the sine of the included
angle.

area �
1
2

 ab sin u

Formula for the Area of a Triangle
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SOLUTION In Figure 4, if h denotes the length of the altitude, then we have

This value for h can now be used in the usual formula for the area of a triangle:

Our derivation in the example just completed relies on Figure 4, in which u is an
acute angle. The formula that we obtained, however, is valid even if u is not an acute
angle. (See Exercise 36 for the proof.) In the box that follows we summarize this
useful result.

A �
1

2
 bh �

1

2
 b(a sin u) �

1

2
 ab sin u

sin u �
h
a
  and therefore  h � a sin u

h

b

¨

a

Figure 4

¨

a

b

EXAMPLE 6 Using the Trigonometric Formula to Find the Area of a Triangle

Find the area of the triangle in Figure 5.

SOLUTION From Example 5 the area is given by the formula A � Here we let a � 3 cm,
b � 12 cm, and u � 60°. Then

This is the required area.

 � 913 cm2

 A �
1

2
 (3)(12) sin 60° � (18) 

13

2

1
2 ab sin u.

60°
3 cm

12 cm

Figure 5

EXAMPLE 7 Finding the Area of a Segment of a Circle

A segment of a circle is a region bounded by an arc of the circle and its chord.
Compute the area of the segment (the shaded region) in Figure 6. Give two forms for
the answer: an exact expression involving p and a calculator approximation rounded
to two decimal places.

SOLUTION Although we have not developed an explicit formula for the area of a segment, no-
tice in Figure 6 that ^OPQ and the shaded segment, taken together, form a sector of
the circle. So we have

area of segment � (area of sector OPQ) � (area of ^OPQ)



For the area of the sector, we compute

For the area of the triangle, we use the formula A �

Putting things together now, we obtain

 � 1.87 cm2

 area of segment � a 6p

5
� 2 sin 

3p

5
bcm2

area of ^OPQ �
1

2
 (2)(2)sin 

3p

5
� 2 sin 

3p

5
 cm2

1
2 ab sin u:

 �
6p

5
 cm2

 area of sector OPQ �
1

2
 r 2u �

1

2
 (22) a 3p

5
b
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O

QP

2 cm2 cm 3π
5

Figure 6

EXAMPLE 8 The Area of a Regular Pentagon

Figure 7 shows a regular pentagon inscribed in a circle of radius 2 in. (Regular means
that all of the sides are equal and all of the angles are equal.) Find the area of the
pentagon.

SOLUTION The idea here is first to find the area of triangle BOA by using the area formula from
Example 5. Then, since the pentagon is composed of five such identical triangles, the
area of the pentagon will be five times the area of triangle BOA. We will make use of
the result from geometry that, in a regular n-sided polygon, the central angle is
360°�n. In our case we therefore have

We can now find the area of triangle BOA:

The area of the pentagon is five times this, or 10 sin 72° in.2. (Using a calculator, this
is about 9.51 in.2. )

Now we introduce some terminology that will be used in the next two examples.
Suppose that a surveyor sights an object at a point above the horizontal, as indicated
in Figure 8(a). Then the angle between the line of sight and the horizontal is called
the angle of elevation. The angle of depression is similarly defined for an object
below the horizontal, as shown in Figure 8(b).

 �
1

2
 (2)(2)sin 72° � 2 sin 72° in.2

 area �
1

2
 ab sin u

�BOA �
360°

5
� 72°

2 in
.

2 in.

B

A

O

Figure 7
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(a)

Line of sight

Object

Object

Angle of elevation

Angle of depression

Line of sight

Horizontal

Horizontal

(b)Figure 8

EXAMPLE 9 Using the Angle of Depression to Find a Distance

A helicopter hovers 800 ft directly above a small island that is off the California
coast. From the helicopter the pilot takes a sighting to a point P directly ashore on the
mainland, at the water’s edge. If the angle of depression is 35°, how far off the coast
is the island? See Figure 9.

800 ft

Helicopter

35°¨

x

P
Island

Figure 9

SOLUTION Let x denote the distance from the island to the mainland. Then, as you can see from
Figure 9, we have u � 35° � 90°, from which it follows that u � 55°. Now we can
write

or

using a calculator and rounding to the nearest 50 ftx � 800 tan 55° � 1150 ft

tan 55° �
x

800

EXAMPLE 10 Finding the Altitude of a Satellite

Two satellite-tracking stations, located at points A and B in California’s Mojave
Desert, are 200 miles apart. At a prearranged time, both stations measure the angle of
elevation of a satellite as it crosses the vertical plane containing A and B. This means



that A, B, and S lie in a plane perpendicular to the ground. (See Figure 10.) If the an-
gles of elevation from A and from B are a and b, respectively, express the altitude h
of the satellite in terms of a and b.
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SOLUTION We want to express the length h � SC in Figure 10 in terms of the angles a and b.
Note that is a side of both of the right triangles SCA and SCB. Working first in the
right triangle SCB, we have

or

(2)

We can eliminate CA from equation (2) as follows. Looking at right triangle SCA, we
have

Using this last equation to substitute for CA in equation (2), we obtain

 h �
200

cot b � cot a
 miles  as required

 h(cot b � cot a) � 200
 h cot b � h cot a � 200

 h cot b � h cot a � 200

cot a �
CA

h
  and thus  CA � h cot a

h cot b � CA � 200

cot b �
CA � 200

h

SC

A

h

B
å ∫

C

S

200 milesFigure 10

EXAMPLE 11 Expressing Lengths and Area Using Trigonometric Functions

The arc shown in Figure 11 is a portion of the unit circle, x2 � y2 � 1. Express the
following quantities in terms of u :

(a) OA; (b) AB; (c) OC; (d) The area of ^OAC.

SOLUTION (a) In right triangle OAB,

 OA � cos u

 cos u �
OA

OB
�

OA

1



(b) In right triangle OAB,

(c) In right triangle OAC, we have cos u � OC�OA, and therefore

(d) using the formula area � sin u

using the results from parts (a) and (c)

 � 1
2 cos3 u sin u

 � 1
2 (cos u)(cos2 u)(sin u)

1
2 ab area ^OAC � 1

2 (OA)(OC)(sin u)

OC � OA cos u � (cos u)(cos u) � cos2 u

 AB � sin u

 sin u �
AB

OB
�

AB

1

670 CHAPTER 10 Additional Topics in Trigonometry

A

B

C

O
¨

y

x

Figure 11

9. Refer to the following figure.

(a) Use the inverse sine function, as in Example 4, to
find u. Express the answer in degrees, rounded to
one decimal place.

(b) Follow part (a), but use the inverse cosine function.
Check that your answer agrees with the result in 
part (a).

(c) Follow part (a), but use the inverse tangent function.
Again, check that your answer agrees with the result in
part (a).

10. In isosceles triangle ABC, the sides are of length 
AC � BC � 8 and AB � 4. Find the angles of the triangle.
Express the answers both in radians, rounded to two deci-
mal places, and in degrees, rounded to one decimal place.
Hints: To find �A, start by drawing an altitude from C
to side Then for �C, use the fact that the sum of the
angles in a triangle is p radians or 180°.

11. Refer to the following figure. At certain times, the planets
Earth and Mercury line up in such a way that �EMS is a
right angle. At such times, �SEM is found to be 21.16°.
Use this information to estimate the distance MS of
Mercury from the Sun. Assume that the distance from the
Earth to the Sun is 93 million miles. (Round your answer
to the nearest million miles. Because Mercury’s orbit is not

AB.

5

12

13

¨

A
For Exercises 1–6, refer to the following figure. (However, each
problem is independent of the others.)

1. If �A � 30° and AB � 60 cm, find AC and BC.
2. If �A � 60° and AB � 12 cm, find AC and BC.
3. If �B � 60° and AC � 16 cm, find BC and AB.
4. If �B � 45° and AC � 9 cm, find BC and AB.
5. If �B � 50° and AB � 15 cm, find BC and AC. (Round

your answers to one decimal place.)
6. If �A � 25° and AC � 100 cm, find BC and AB. (Round

your answers to one decimal place.)
7. A ladder 18 ft long leans against a building. The ladder

forms an angle of 60° with the ground.
(a) How high up the side of the building does the ladder

reach? [Give two forms for your answer: one with 
radicals and one (using a calculator) with decimals,
rounded to two places.]

(b) Find the horizontal distance from the foot of the ladder
to the base of the building.

8. From a point level with and 1000 ft away from the base of
the Washington Monument, the angle of elevation to the
top of the monument is 29.05°. Determine the height of the
monument to the nearest half foot.

AC

B

EXERCISE SET 10.1



16. Suppose that u � 34° and h � 36.5 ft.
(a) Determine x. Round the answer to one decimal place.
(b) Find the area of the gable. Round the final answer to

one decimal place. [See Exercise 15(b) for the defini-
tion of gable.]

In Exercises 17 and 18, find the area of the triangle. In
Exercise 18, use a calculator and round the final answer to
two decimal places.

17. 18.

In Exercises 19–24, determine the area of the shaded region,
given that the radius of the circle is 1 unit and the inscribed
polygon is a regular polygon. Give two forms for each
answer: an expression involving radicals or the trigonometric
functions; a calculator approximation rounded to three
decimal places.

19. 20.

21. 22.

23. 24.

70°

6 cm

4 cm

30°

2 in.

3 in.

really circular, the actual distance of Mercury from the Sun
varies from about 28 million miles to 43 million miles.)

12. Determine the distance AB across the lake shown in the
figure, using the following data: AC � 400 m, �C � 90°,
and �CAB � 40°. Round the answer to the nearest meter.

13. A building contractor wants to put a fence around the
perimeter of a flat lot that has the shape of a right triangle.
One angle of the triangle is 41.4°, and the length of the
hypotenuse is 58.5 m. Find the length of fencing required.
Round the answer to one decimal place.

14. Suppose that the contractor in Exercise 13 reviews his
notes and finds that it is not the hypotenuse that is 58.5 m
but rather the side opposite the 41.4° angle. Find the length
of fencing required in this case. Again, round the answer to
one decimal place.

For Exercises 15 and 16, refer to the following diagram for the
roof of a house. In the figure, x is the length of a rafter mea-
sured from the top of a wall to the top of the roof; u is the acute
angle between a rafter and the horizontal; and h is the vertical
distance from the top of the wall to the top of the roof.

15. Suppose that u � 39.4° and x � 43.0 ft.
(a) Determine h. Round the answer to one decimal place.
(b) The gable is the triangular region bounded by the

rafters and the attic floor. Find the area of the gable.
Round the final answer to one decimal place.

h
x

¨ ¨

x

AB

C

M (Mercury)

S (Sun)E (Earth)
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find BD. Express the answer in terms of a radical (rather
than using a calculator).

34. The radius of the circle in the following figure is 1 unit.
Express the lengths OA, AB, and DC in terms of a.

35. The arc in the next figure is a portion of the unit circle, 
x2 � y2 � 1.
(a) Express the following angles in terms of u: �BOA,

�OAB, �BAP, �BPA. (Assume that u is in degrees.)
(b) Express the following lengths in terms of sin u and

cos u : AO, AP, OB, BP.

36. The following figure shows ^ABC, in which �BCA � u is
an obtuse angle. Complete Steps (a)–(c) to show that the
area of the triangle is 

(a) Show that 
(b) Use one of the addition formulas to verify that

(c) Use the results in parts (a) and (b) to show that the area
of ^ABC is given by 12ab sin u.

sin(180° � u) � sin u.

h � a sin(180° � u).

180°-¨ ¨

b
A

C

B

h a

1
2ab sin u.

PA

B

O
¨

y

x

A C

D

B

O

å

y

x

In Exercises 25 and 26, compute the area of the shaded segment
of the circle, as in Example 7. Give two forms for each answer:
an exact expression and a calculator approximation rounded to
two decimal places.

25. 26.

27. Show that the perimeter of the pentagon in Example 8 
is 20 sin 36°. Hint: In Figure 7, draw a perpendicular
from O to 

28. In triangle OAB, lengths OA � OB � 6 in. and 
�AOB � 72°. Find AB. Hint: Draw a perpendicular 
from O to AB. Round the answer to one decimal place.

29. The accompanying figure shows two ships at points P and
Q, which are in the same vertical plane as an airplane at
point R. When the height of the airplane is 3500 ft, the
angle of depression to P is 48°, and that to Q is 25°. Find
the distance between the two ships. Round the answer to
the nearest 10 feet.

30. An observer in a lighthouse is 66 ft above the surface of
the water. The observer sees a ship and finds the angle
of depression to be 0.7°. Estimate the distance of the ship
from the base of the lighthouse. Round the answer to the
nearest 5 feet.

31. From a point on ground level, you measure the angle of
elevation to the top of a mountain to be 38°. Then you
walk 200 m farther away from the mountain and find that
the angle of elevation is now 20°. Find the height of the
mountain. Round the answer to the nearest meter.

32. A surveyor stands 30 yd from the base of a building. On
top of the building is a vertical radio antenna. Let a denote
the angle of elevation when the surveyor sights to the top
of the building. Let b denote the angle of elevation when
the surveyor sights to the top of the antenna. Express the
length of the antenna in terms of the angles a and b.

33. In ^ACD, you are given �C � 90°, �A � 60°, and 
AC � 18 cm. If B is a point on and �BAC � 45°, CD

R

Q

48° 25°

3500 ft

P

AB.

120°
3 m

1.4 6 cm
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(a) Show that 

(b) Use a calculator and the following data to estimate the
distance MP from the earth to the moon: u� 89.05°
and OT � OP � 4000 miles. Round your answer to the
nearest thousand miles. (Because the moon’s orbit is
not really circular, the actual distance varies from about
216,400 miles to 247,000 miles.)

41. Refer to the figure below. Let r denote the radius of
the moon.

(a) Show that 

(b) Use a calculator and the following data to estimate 
the radius r of the moon: PS � 238,857 miles and 
u� 0.257°. Round your answer to the nearest 10 miles.

42. Figure A shows a regular hexagon inscribed in a circle of
radius 1. Figure B shows a regular heptagon (seven-sided
polygon) inscribed in a circle of radius 1. In Figure A,
a line segment drawn from the center of the circle
perpendicular to one of the sides is called an apothem
of the polygon.

Figure A Figure B

1 1

Moon

P S M

T

r
Earth ¨

r � a sin u

1 � sin u
bPS.

P

M (Moon)

O

T

Earth

¨

MP �
OT

cos u
� OP.B

37. Refer to the figure. Express each of the following lengths
as a function of u.
(a) BC (b) AB (c) AC

38. In the following figure, AB � 8 in. Express x as a function
of u. Hint: First work Exercise 37.

39. In the figure, line segment is tangent to the unit circle
at A. Also, is tangent to the circle at F. Express the
following lengths in terms of u.
(a) DE (c) CF (e) AB
(b) OE (d) OC (f) OB

40. At point P on Earth’s surface, the moon is observed to be
directly overhead, while at the same time at point T, the
moon is just visible. See the figure on the next column.

O

B

D

C

A

E F

¨

x2+y2=1

y

x

CF
BA

B

x

4

¨

A

B

C
¨

A

4

5
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(b) In the following figure, the arc is a semicircle with
diameter AOB, where radius OB � 1. Use the formula
in part (a) to show that the sum of the areas of the two
shaded segments is p�2 � sin u, while the difference
(larger minus smaller) is p�2 � u.

45. In the following figure, arc ABC is a portion of a circle with
center D(0, �l) and radius The shaded crescent-shaped
region is called a lune. Verify the following result, which
was discovered (and proved) by the Greek mathematician
Hippocrates of Chios approximately 2500 years ago: The
area of the lune is equal to the area of the square OCED.
Hint: In computing the area of the lune, make use of the
formula given in Exercise 44(a) for the area of a segment
of a circle.

46. In this exercise, you’ll verify another result about lunes
that was discovered by Hippocrates of Chios. The figure
shows a regular hexagon inscribed in a circle of radius 1.
Outward from each side of the hexagon, (congruent) 
semicircles are constructed with the sides of the hexagon
as diameters. Follow steps (a) through (f) to show that
the area of the hexagon is equal to the sum of the areas
of the six (congruent) lunes plus twice the area of one of
the semicircles.

≈+¥=1

y

x
A C

ED
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B
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0<¨< 2
π
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(a) Show that the length of the apothem in Figure A is

(b) Show that the length of one side of the heptagon in
Figure B is 2 sin(180°�7).

(c) Use a calculator to evaluate the expressions in parts (a)
and (b). Round each answer to four decimal places,
and note how close the two values are. Approximately
two thousand years ago, Heron of Alexandria made
use of this coincidence when he used the length of the
apothem of the hexagon to approximate the length of
the side of the heptagon. (The apothem of the hexagon
can be constructed with ruler and compass; the side of
the regular heptagon cannot.)

43. The following figure shows a regular seven-sided polygon
inscribed in a circle of radius 1.
(a) Explain why the area of ^AOB is sin(2p�7). 

Hint: Use the area formula from Example 5.
(b) Explain why the area of the entire polygon is 

sin(2p�7).

(c) Let an denote the area of a regular n-sided polygon
inscribed in a circle of radius 1. Use the ideas from
parts (a) and (b) to show that an � n sin(2p�n).

(d) Use the formula from part (c) and a calculator to
complete the following table. Round each result to
eight decimal places.

n 5 10 50 100 103 104 105

an

(e) Explain (in complete sentences) why the values of an

in your table get closer and closer to p. (The value of
p, correct to ten decimal places, is 3.1415926535.)

44. (a) The following figure shows a segment with central
angle a in a circle of radius r. (Assume a is in 
radians.) Show that the area A of the segment is
given by

A �
1

2
 r 2(a � sin a).

1
2

O

A

B

1

7
2

1
2

13�2.
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(b) Use the formula for the distance between two points to
show that d �

48. This exercise provides practice in using the chord-length
formula developed in Exercise 47.
(a) Use the formula from Exercise 47 to compute the

length d in the following figure. Round the answer to
one decimal place.

(b) In the following figure, AB � 1.2. Use the formula de-
veloped in Exercise 47 to compute the angle u. Express
the answer in radians, rounded to one decimal place.

y

xB

≈+¥=1

A

¨

y

x

≈+¥=1

d

80°

12 � 2 cos u.

¨

d

A

B

≈+¥=1

x

y

(a) What is the radian measure of �AOB?
(b) Show that the area of the hexagon is 
(c) Show that the area of the shaded segment is 

.
(d) Show that the area of semicircle ACB is p�8.
(e) Use the results in parts (c) and (d) to show that the 

(f) Use the results in parts (d) and (e) to verify 
Hippocrates’ result:

area of hexagon � 6 � (area of lune ACB)
� 2 � (area of semicircle ACB)

47. In the following figure, is a chord in a circle of radius l.
The length of is d, and subtends an angle u at the
center of the circle, as shown.

In this exercise we derive the following formula for the
length d of the chord in terms of the angle u:

(The derivation of this formula does not require any new
material from this section. It is developed here for use in
subsequent exercises.)
(a) We place the figure in an x-y coordinate system and

orient it so that the angle u is in standard position 
and the point B is located at (1, 0). (See the following
figure.) What are the coordinates of the point A (in
terms of u)?

d � 12 � 2 cos u

¨
1

1

d

A

B

ABAB
AB

area of lune ACB is 
613 � p

24
.

12p � 313 2�12

313�2.

A

C

BO

1
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(a) Draw a perpendicular from D to meeting at E.
Express the two lengths DE and OE in terms of u.

(b) Show that tan b � (sin u)�(2 � cos u).
(c) From part (b) it follows that

b � tan�1[(sin u)�(2 � cos u)] 

Use this formula to complete the following table. As
you will see by completing the table, b � u�3. In the
table, express b in degrees, rounded to four decimal
places. For the percentage error in the approximation
b � u�3, use the formula

Round the percentage error to two decimal places.

Percentage Error in Approximation
U U�3 B B � U�3

30°
15°
9°
6°
3°

51. In this exercise we prove the following trigonometric 
identity:

sin 3u � sin u � 2 sin u cos 2u

[This identity is valid for all angles u, but in this exercise
we use right-triangle trigonometry and the resulting proof
is valid only when 0° � 3u � 90°. The idea for the proof 
is due to Professors J. Chris Fisher and E. L. Koh in
Mathematics Magazine, vol. 65 no. 2 (April 1992).]
(a) In the following figure, O is the center of the circle and

the radius is 1. Show that AB � 2 sin u. Hint: Draw 
a perpendicular from O to 

A

B

O

1
2¨1

AB.

percentage error �
u�3 � b

u�3
� 100

ACAC,

A C
B O

1

D

¨∫

49. In the following figure, arc ABC is a semicircle with diame-
ter and arc CDE is a semicircle with diameter 

(a) Show that the area of semicircle CDE isp(1 � cos u)�4.
Hint: Use the chord-length formula in Exercise 47.

(b) Express the area of lune CDE in terms of u. 
Hint: Use the result in part (a) along with the formula
in Exercise 44(a) for the area of a segment.

(c) Express the area of lune ABC in terms of u.
(d) Express the area of ^ACE in terms of u.
(e) Use the results in parts (b), (c), and (d) to verify that

the area of ^ACE is equal to the sum of the areas of
the two lunes CDE and ABC.

Remark: As with the results in Exercises 45 and 46, this result
about lunes was discovered and proved by the ancient Greek
mathematician Hippocrates of Chios. According to Professor
George F. Simmons in his book Calculus Gems (New York:
McGraw-Hill Book Co., 1992), these results appear “to be the
earliest precise determination of the area of a region bounded
by curves.”
50. Using the ruler-and-compass constructions of elementary

geometry, there is a well known method for bisecting any
angle. (Do you remember this from a geometry class?)
However, there is no similar method for trisecting an angle.
This exercise demonstrates a geometric method for the ap-
proximate trisection of small acute angles. [The origins of
the method can be traced back to the German cleric
Nicolaus Cusanus (1401–1464) and the Dutch physicist
Willebrord Snell (1580–1626).]

In the following figure, O is the center of unit circle and
�DOC � u is the angle to be trisected. Radius is
extended to a point A so that AB � OB � 1. Then line
segment is drawn, creating �DAC � b.AD

OB

¨

E

≈+¥=1

x

y

C

D

A

B

CE.AC,
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53. A vertical tower of height h stands on level ground. From
a point P at ground level and due south of the tower, the
angle of elevation to the top of the tower is u. From a 
point Q at ground level and due west of the tower, the
angle of elevation to the top of the tower is b. If d is the
distance between P and Q, show that

54. The following problem is taken from An Elementary
Treatise on Plane Trigonometry, 8th ed., by R. D. Beasley
(London: Macmillan and Co.; first published in 1884): 

The [angle of] elevation of a tower standing on a horizontal
plane is observed; a feet nearer it is found to be 45°; 
b feet nearer still it is the complement of what it was 
at the first station; show that the height of the tower 
is ab�(a � b) feet.

55. (a) The following problem is taken from Plane
Trigonometry, 5th ed., by Isaac Todhunter (London:
Macmillan and Co., 1874).

is the diameter of a circle, C its centre; a straight
line is drawn dividing the [area of the] semicircle
into two equal parts; u is the circular [radian] measure
of the complement of �PCB: shew that cos u � u.
Hint: Use the figure below. Let r denote the radius of
the circle and note that �PCB � � u.

(b) Use Figure 14 in Section 8.2 to estimate, to the nearest
0.05, the value for u for which cos u � u.

(c) Use a graphing calculator to show that the actual
value for the root in part (b), rounded to three decimal
places, is u � 0.739. Use this result to compute 
the percentage error for the estimate in part (b). Also,
use the value u � 0.739 to compute �PCB. Express
that answer in degrees, rounded to the nearest one
degree.

C

P

BA

p
2  

AP
AB

h �
d

2cot2 u � cot2 b

P R

Q

¨

(b) For the remainder of this exercise refer to the following
figure in which the arc is a portion of the unit circle,
lines and are parallel to the y-axis, and is
parallel to the x-axis. Why does AB � sin u? Why does
CB � 2 sin u?

(c) Use the fact that ^OBC is isosceles to show that
�OBC � 90° � u.

(d) From elementary geometry we know that alter-
nate interior angles are equal. Consequently 
�DBO � �BOA � u. Use this observation and the re-
sult in part (c) to show that �DBC � 90° � 2u.

(e) By referring to ^CDB and using two of the previous
results, show that CD � 2 sin u cos 2u.

(f) From the figure, you can see that the y-coordinate of
point C is equal to AB � CD. But independent of that
fact, why is the y-coordinate of point C also equal to
sin 3u? After you’ve answered this, use these observa-
tions to conclude that sin 3u � sin u � 2 sin u cos 2u,
as required.

(g) Substituting u � 10° in the identity sin 3u � sin u �
2 sin u cos 2u yields the statement � sin 10° �
2 sin 10° cos 20°. Use a calculator to check this last
equation.

(h) Substituting u � p�9 in the identity sin 3u � sin u �
2 sin u cos 2u yields the statement

Use a calculator to check this last equation.

C
52. In the accompanying figure, the smaller circle is tangent

to the larger circle. Ray PQ is a common tangent and
ray PR passes through the centers of both circles. If the
radius of the smaller circle is a and the radius of the
larger circle is b, show that sin u � (b � a)�(a � b).
Then, using the identity sin2 u � cos2 u � 1, show that 
cos u � �(a � b).21ab

13

2
� sin 

p

9
� 2 sin 

p

9
 cos 

2p

9

1
2 

x

y

¨
2¨

D
B

C

AO

DBDCAB
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PROJECT Snell’s Law and an Ancient Experiment

The “lifting” effect produced by refraction is the basis for one of the earliest
recorded experiments in optics, one which was known to the ancient Greeks. A
coin is placed in the bottom of an empty vessel and the eye of an observer is
placed in such a position that the coin is hidden below the edge of the vessel.
If water is poured into the vessel the coin appears to rise and come into view.
—Francis Weston Sears in Optics (Reading, Mass.: Addison-Wesley Publishing

Company, Inc., 1958)

In this group project you will learn some of the basic ideas of geometrical
optics, a subject first studied by the ancient Greeks, advanced by artists and
mathematicians of the Renaissance, and further developed by mathematicians
and physicists from the seventeenth through the twentieth and into the twenty-
first century. Major contributors include Archimedes, Descartes, Fermat,
Huygens, Newton, Gauss, Hamilton, Fresnel, Einstein, and Born.

We now discuss some of the basic principles. The first one is the notion of
a light ray. When traveling through a uniform transparent medium (such as a
vacuum, water, plastic, or glass) light travels along straight line paths called
light rays.

The second principle is that light rays bend when passing from one
medium to another, for example, when passing from air to water. The amount
of bending is determined by the Law of Refraction, usually referred to as
Snell’s Law after its discoverer, Willebrod Snell (1580–1626). When a light
ray traveling in a transparent medium intersects the boundary with another
transparent medium, its direction changes as indicated in Figure A.

˙ª

˙
Angle of incidence

Angle of refraction

Refracted ray

Point of incidence

Normal line
Incident ray

Boundary

First medium: index of refraction n

Second medium: index of refraction nª

Using the terminology introduced in Figure A we can state Snell’s Law in
two parts:

I. The incident ray, the refracted ray and the line normal (or perpendicular) to
the boundary at the point of incidence all lie in the same plane.

II. The angle of incidence and the angle of refraction are related by the
equation

The index of refraction of a vacuum is defined to be 1. For other materi-
als it may be determined empirically by precise measurement of angles. Air has

n sin f � n¿ sin f¿

Figure A



an index of refraction very close to 1, for water it’s about 4�3, and for many
glasses and plastics it’s about 3�2.

Note: Although it is often left out of statements of Snell’s Law, part I is
essential because light rays travel in three-dimensional space where three lines
can intersect at a point, but not lie in the same plane. (You should think of an
example.)

The third principle concerns vision. The eye can see a light source if and
only if light rays pass from the source into the pupil of the eye. In Figure B, the
eye labeled E can see the light source S because rays pass from the source to
the eye through the gap in the blackened surrounding sphere. However, the eye
labeled F can’t see S because light traveling along the line of sight SF is
blocked before reaching the eye.
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Figure C

Our fourth principle is that an object appears to be located in the direction
determined by the rays entering the eye from the object. This is illustrated in
Figure C(i), where one ray from the fish’s mouth at A appears to come from the
direction of A�.

While the single ray in Figure C(i) suffices to give the apparent direction to
the fish’s mouth, it is not sufficient to determine the distance to A�. To determine
this distance we must consider several rays coming from point A. Figure C(ii)
shows several such rays which, after bending at the water’s surface, all appear
to come from point A�. The fact that all of the rays entering the eye from
point A appear to come from a single point after refraction is quite surprising.
We will examine this in more detail below.

Although the principles we’ve stated do not completely define geometric
optics, they are sufficient to allow us to analyze the experiment discussed in
the opening quotation. Figure D shows a greatly exaggerated eye looking



vertically downward to the point at the center of a coin lying at the bottom of a
cup of water. The solid red rays emerge from this point and enter the eye after
bending at the water’s surface. The ray emerging from the center of the coin to
the center of the eye is called the chief ray. On the right side of the figure, one
ray emerging from the center of the coin is shown refracted at the surface of the
water and entering the pupil of the eye. The dashed line extends the part of this
ray in air back through the water intersecting the chief ray. We could perform
this same construction for any other non-chief ray in Figure D. Our goal is to
show that all the dashed extensions would intersect the chief ray at approxi-
mately the same point.

In Figure E we lay out the geometry for a typical ray in great detail.
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Figure D
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Figure E

Exercise 1

(a) Show that a ray emerging from the coin making an angle f with the verti-
cal intersects the air-water boundary with angle of incidence f. Then show
that angle BPI is equal to the angle of refraction f�.

(b) Show that the length of line segment IB is sin f�, which by Snell’s law is

n sin f, then show that the length of PB is Caution: Pay
attention to the direction of the rays in Figure E.

(c) Show that the length of line segment OI is y tan f.
(d) Show that triangles IOA and IBP are similar.

(e) Use parts (a) through (d) to show that and

simplify to show

The last formula allows us to compute the point at which the center of the
coin would appear to be located if we just consider the chief ray and a particu-
lar ray emerging from the center point at an angle f to the vertical. To complete

y¿ �
21 � n2 sin2 f

cos f
 
1
n

 y

y tan f21 � n2 sin2 f

n sin f
y¿ �

21 � n2 sin2 f.



your investigation, you need to see if other rays entering the eye from the cen-
ter of the coin appear to be coming from the same (or nearly the same) point.

Exercise 2 Letting n equal 4�3 compute, to four decimal places, the value of

for f� 0.25, 0.5, 1, and 2 degrees. Based on these values,

is it reasonable to conclude that the center of a coin in a cup filled with water
to a depth of y cm would appear to be at a depth of y� � (3�4)y cm? If the water
is 10 cm deep how far above the table will the coin appear to rise? What do you
think would happen if instead of water we use an oil with an index of refrac-
tion of 3�2?

The situation of the ancient Greek experiment is illustrated in Figure F. An
observer looking into the empty cup cannot see the coin, but looking into the
full cup will see the coin. Although the observer is not looking straight down,
it turns out that the refraction at the water’s surface will still cause the coin to
appear to rise from the bottom of the cup to a position about three-fourths of
the actual depth below the surface.

21 � n2 sin2 f

cos f
 
1
n
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Empty cup Full cupFigure F

Exercise 3 Do the experiment. Get an empty cup. Place a coin in the bottom
of the cup (a little gum or honey to keep it from moving might be helpful).
Have an observer stand where he or she can see the coin and then move back
until the coin is just barely hidden by the rim of the cup. Have another member
of your group pour water into the cup, stopping frequently to allow the ob-
server to describe what he or she sees. Have yet another member write down
these observations.

10.2 THE LAW OF SINES AND THE LAW OF COSINES
The ratio of the sides of a triangle to each other is the same as the ratio of the sines of
the opposite angles. —Bartholomaus Pitiscus (1561–1613) in his text, Trigonometriae sive de

dimensione triangulorum libri quinque. This text was first published in Frankfort, Germany, in

1595, and according to several historians of mathematics, it was the first satisfactory textbook on

trigonometry.

In this section we discuss two formulas relating the sides and the angles in any
triangle: the law of sines and the law of cosines. These formulas can be used to
determine an unknown side or angle using given information about the triangle.



As you will see, which formula to apply in a particular case depends on what data are
initially given.

We will usually follow the convention of denoting the angles of a triangle by
A, B, and C and the lengths of the corresponding opposite sides by a, b, and c; see
Figure 1. With this notation we are ready to state the law of sines.

In any triangle the ratio of the sine of an angle to the length of its opposite side is
constant:

Equivalently,

Note: The numerical value of the constant ratio a�sin A is not used directly in
typical applications of the law of sines. However, the geometric meaning of this
constant is derived in Exercise 47 at the end of this section.

The proof of the law of sines is easy. We use the following result from
Section 10.1: The area of any triangle is equal to half the product of two sides times
the sine of the included angle. Thus with reference to Figure 1 we have

since each of these three expressions equals the area of triangle ABC. Now we just
multiply through by the quantity 2�abc to obtain

which completes the proof.
Note: To use the law of sines effectively, we must know one angle and the length

of its opposite side plus one additional angle or side. Why?

sin A
a

�
sin B

b
�

sin C
c

1

2
 bc sin A �

1

2
 ac sin B �

1

2
 ab sin C

a
sin A

�
b

sin B
�

c
sin C

sin A
a

�
sin B

b
�

sin C
c

The Law of Sines
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Figure 1

EXAMPLE 1 Using the Law of Sines to Find a Length

Find the length x in Figure 2.

SOLUTION We have an angle, 30°; the length of its opposite side, 20 cm; and one more angle,
135°. So the law of sines applies. We have

length of side opposite V c c U length of side opposite
the 30° angle the 135° angle

x sin 30° � 20 sin 135°

x �
20 sin 135°

sin 30°
�

20 112�2 2
1�2

� 2012 cm

sin 30°

20
�

sin 135°
x

20 cm

x

135°

30°

Figure 2
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EXAMPLE 2 Using the Law of Sines to Find a Length

Find the length y in Figure 3.

SOLUTION We have an angle, 75°; the length of its opposite side, 10.2 in.; and one more angle,
62°. So the law of sines applies. To find y, we need to determine the angle u in
Figure 3. Since the sum of the angles in any triangle is 180°, we have

u � 180° � (75° � 62°) � 43°

Now, using the law of sines, we obtain

This is the exact answer. For an approximation a calculator yields

y � 7.2 in.

Using given measurements in a triangle to find the remaining measurements is
called solving the triangle. This is what we are asked to do in the next example.

 y �
10.2 sin 43°

sin 75°

 
y

sin 43°
�

10.2

sin 75°

EXAMPLE 3 Using the Law of Sines to Solve a Triangle

In ^ABC we are given � 45°, b � 4 and c � 8 ft. Solve the triangle;
that is, determine the remaining side and angles.

12 ft,�C

SOLUTION First let’s draw a preliminary sketch conveying the given data; see Figure 4. (The
sketch must be considered tentative. At the outset we don’t know whether the other
angles are acute or even whether the given data are compatible.) To solve this trian-
gle, we need to find angles A and B, and side a. We have an angle, 45°, and the length
of its opposite side, 8 ft. Since we have b, we can use the law of sines to find B. Thus

Then

So

From our previous work we know that one possibility for B is 30°, since 
sin 30° � 1�2. However, there is another possibility. Since the reference angle for
150° is 30°, we know that sin 150° is also equal to 1�2. Which angle do we want? For
the problem at hand this is easy to answer. Since angle C is given as 45°, angle B
cannot equal 150°, for the sum of 45° and 150° exceeds 180°. We conclude that

�B � 30°

sin B �
1

2

sin B �
412 sin 45°

8
�

412 112�2 2
8

�
1

2

sin B

412
�

sin 45°

8

62°

75° ¨

10.2 in. 
y

Figure 3

8 ft

A C

B

a

45°

4œ„2 ft

Figure 4



Next, since and we have

Finally, we use the law of sines to find a. From the equation a�sin A � c�sin C
we have

In the preceding example, two possibilities arose for the angle B: both 30° and
150°. However, it turned out that the value 150° was incompatible with the given
information in the problem. In Exercise 13 at the end of this section you will see
a case in which both of two possibilities are compatible with the given data. This
results in two distinct solutions to the problem. In contrast to this, Exercise 11(a)
shows a case in which there is no triangle fulfilling the given conditions. For these
reasons the case in which we are given two sides and an angle opposite one of them
is sometimes referred to as the ambiguous case.

Now we turn to the law of cosines.

 � 812 sin 105° ft � 10.9 ft

 a �
c sin A

sin C
�

8 sin 105°

sin 45°
�

8 sin 105°

1�12

�A � 180° � (30° � 45°) � 105°

�C � 45°,�B � 30°
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In any triangle the square of the length of any side equals the sum of the squares of
the lengths of the other two sides minus twice the product of the lengths of those
other two sides times the cosine of their included angle.

a2 � b2 � c2 � 2bc cos A

b2 � c2 � a2 � 2ca cos B

c2 � a2 � b2 � 2ab cos C

The Law of Cosines

Before looking at a proof of this law, we make two preliminary comments. First,
it is important to understand that the three equations in the box all follow the same
pattern. For example, look at the first equation:

side and opposite angle

S d
c c cc c

ƒ ƒ
sides that include this angle

Now check for yourself that the other two equations also follow this pattern. It is the
pattern that is important here; after all, not every triangle is labeled ABC.

a2 � b2 � c2 � 2bc cos A



The second observation is that the law of cosines is a generalization of the
Pythagorean theorem. In fact, look what happens to the equation

a2 � b2 � c2 � 2bc cos A

when angle A is a right angle:

0
a2 � b2 � c2 which is the Pythagorean theorem

Now let us prove the law of cosines:

a2 � b2 � c2 � 2bc cos A

(The other two equations can be proved in the same way. Indeed, just relabeling the
figure would suffice.) The proof that we give uses coordinate geometry in a very nice
way to complement the trigonometry. We begin by placing angle A in standard posi-
tion, as indicated in Figure 5. (So in the figure, angle A is then identified with angle
CAB.) Then if u and v denote the lengths indicated in Figure 5, the coordinates of C
are (u, v), and we have

and therefore u � b cos A

Similarly, we have

and therefore v � b sin A

Thus the coordinates of C are

(b cos A, b sin A)

(Exercise 44 at the end of this section asks you to check that these represent the
coordinates of C even when angle A is not acute.)

Now we use the distance formula,

or, equivalently,

to compute the square of the distance a between the points C (b cos A, b sin A) and 
B (c, 0). We have

1

completing our proof of the law of cosines.

 � b2 � c2 � 2bc cos A

∂ � b2 (cos2 A � sin2 A) � 2bc cos A � c2

 � b2 cos2 A � 2bc cos A � c2 � b2 sin2 A

 a2 � (b cos A � c)2 � (b sin A � 0)2

 d2 � (x2 � x1)
2 � (y2 � y1)

2

 d � 2(x2 � x1)
2 � (y2 � y1)

2

sin A �
opposite

hypotenuse
�

v

b

cos A �
adjacent

hypotenuse
�

u

b

va2 � b2 � c2 � 2bc cos 90°
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EXAMPLE 4 Using the Law of Cosines to Find a Length

Compute the length x in Figure 6.

SOLUTION Note the law of sines does not apply. Why? The law of cosines is directly applicable.
We have

The law of cosines can be used effectively if we know the lengths of the sides of a
triangle. For example, if the equation a2 � b2 � c2 � 2bc cos A is solved for cos A,
the result is

This expresses the cosine of an angle in a triangle in terms of the lengths of the sides.
In a similar fashion we obtain the corresponding formulas

and

These alternative forms for the law of cosines are used in the next example.

cos C �
a2 � b2 � c2

2ab
cos B �

c2 � a2 � b2

2ca

cos A �
b2 � c2 � a2

2bc

 x � 1169 � 13 cm

 � 49 � 64 � 112 a�
1

2
b � 169

 x2 � 72 � 82 � 2(7)(8) cos 120°

120°

x

7 cm

8 cm

Figure 6

c=7
a=3

b=5
AC

B

Figure 7

EXAMPLE 5 Using the Law of Cosines to Find Angles

In triangle ABC the sides are a � 3 units, b � 5 units, and c � 7 units. Find the
angles. (Use degree measure.)

SOLUTION Figure 7 summarizes the given data. We have

Now that we know cos A � 13�14, we can find by using a calculator to compute
cos�1(13�14). Since we are required to give the answer in degree measure, we first
set the calculator to the degree mode. Then we obtain

cos�1(13�14) � 21.7867893 using a calculator set in the degree mode

and therefore

� 21.8° rounding to one decimal place

Why is there no second possible angle In a similar manner we have

So cos B � 11�14, and a calculator then yields � 38.2132107° � 38.2°.�B

cos B �
c2 � a2 � b2

2ca
�

72 � 32 � 52

2(7)(3)
�

33

42
�

11

14

�A?

�A

�A

cos A �
b2 � c2 � a2

2bc
�

52 � 72 � 32

2(5)(7)
�

65

70
�

13

14



At this point we can find in either of two ways. Each has its advantage. The
first way is to begin by computing cos C in the same way that we found 
cos A and cos B. As you can check, the result is cos C � �1�2. A calculator is not
needed in this case. We know from previous work that must be 120°. The second
method that can be used relies on the fact that the sum of the angles in a triangle is
180°. Thus we have

This way is quicker than the first method. The disadvantage, however, is that we
know that is only approximately 120°. The first method (using the cosine law) is
longer, but it tells us that is exactly 120°. In summary, then, the three required
angles are

Alternatively, after finding angle we could have used the law of sines to find a
second angle, say, In this example, given the lengths of all three sides, there will
be no ambiguity in Why? Finally, we could find using the law of sines, the
law of cosines, or the fact that the sum of the angles in a triangle is 180°.

We conclude this section with an example indicating how the law of sines and the
law of cosines are used in navigation. In this example you’ll see the term bearing
used in specifying the location of one point relative to another. To explain this term,
we refer to Figure 8.

�C�B.
�B.

�A,

�C � 120°�B � 38.2°�A � 21.8°

�C
�C

 � 120.0°
 � 180° � 21.7867893° � 38.2132107°

 �C � 180° � �A � �B

�C

�C
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45°

O

P

EastWest

South

North

(a) The bearing of P from O is N45°E.

North

South

EastWest

P

45°

(b) The bearing of P from O is N45°W.

O

Figure 8

In Figure 8(a) the bearing of P from O is N45°E (read “north, 45° east”). This
bearing tells us the acute angle between line segment and the north–south line
through O. In Figure 8(b) the bearing of P from O is N45°W (read “north, 45°
west”). Again, note that the bearing gives us the acute angle between line segment

and the north–south line through O. Figure 9 provides additional examples of
this terminology.
OP

OP
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The bearing of P from O is N40°E.

The bearing of Q from O is S55°E.

The bearing of R from O is S20°W.

The bearing of S from O is N30°W.

South

North

EastWest

30°
40°

20°

55°

S
P

R

Q

O

Figure 9
The bearing is specified by means
of the acute angle measured from
the north–south line.

EXAMPLE 6 Using the Law of Sines and the Law of Cosines in Navigation

A small fire is sighted from ranger stations A and B. The bearing of the fire from
station A is N35°E, and the bearing of the fire from station B is N49°W. Station A is
1.3 miles due west of station B.

(a) How far is the fire from each ranger station?
(b) At fire station C, which is 1.5 miles from A, there is a helicopter that can be used

to drop water on the fire. If the bearing of C from A is S42°E, find the distance
from C to the fire, and find the bearing of the fire from C.

SOLUTION (a) In Figure 10 we have sketched the situation involving ranger stations A and B
and the fire (denoted by F ).

We compute the angles of ^ABF as follows.

We can now use the law of sines in ^ABF to compute AF and BF.

and therefore and therefore

or or

We use a calculator to evaluate these expressions for AF and BF. As
you should check for yourself, the results (rounded to the nearest tenth of a
mile) are

AF � 0.9 miles and BF � 1.1 miles

BF �
(1.3)sin 55°

sin 84°
AF �

(1.3)sin 41°

sin 84°

BF �
AB sin �FAB

sin �F
AF �

AB sin �FBA

sin �F

BF

sin �FAB
�

AB

sin �F

AF

sin �FBA
�

AB

sin �F

�F � 180° � (55° � 41°) � 84°

�FBA � 90° � 49° � 41°�FAB � 90° � 35° � 55°West East

North

South

A B

F

35°
49°

1.3 miles

Figure 10



(b) We draw a sketch of the situation, as shown in Figure 11. In Figure 11 we can
compute CF, the distance from the helicopter to the fire, using the law of cosines
in ^CAF. First, note that � 48° � 55° � 103°. So we have

using a calculator and rounding to one decimal place

To find the bearing of the fire at F from the fire station at C, we need to determine
the angle a in Figure 11. First we find the angle b. Using the law of sines in
^CAF, we have

and therefore

Before using the inverse sine function and a calculator to compute b, we note
from Figure 11 that b is an acute angle (because b is an angle in ^CAF, and in
that triangle, is greater than 90°). So in this particular application of the
law of sines there is no ambiguity. We have then

Now, on the right-hand side of this last equation we substitute the expressions we
obtained previously for AF and CF; then, using a calculator set in the degree
mode, we obtain

b � 26° rounding to the nearest degree

(You should verify this calculator value for yourself.) Now that we know b, we
can determine the bearing of the fire from station C. From Figure 11 we have

a � b � 42° (Why?)

and therefore

a � 42° � b � 42° � 26° � 16° to the nearest degree

In summary now, fire station C is approximately 1.9 miles from the fire, and the
bearing of the fire from station C is N16°W.

b � sin�1 a AF # sin 103°

CF
b

�CAF

sin b �
AF # sin 103°

CF

sin b

AF
�

sin 103°

CF

 � 1.9 miles

 �
B

1.52 � a 1.3 sin 41°

sin 84°
b 2

� 2(1.5) a 1.3 sin 41°

sin 84°
b  cos 103°

 CF � 2AC2 � AF 2 � 2 # AC # AF # cos 103°

�CAF
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A B

F

C

∫

å1.5
miles

35°

55°
48°

42°

49°

Figure 11

In Exercises 5–8, use a calculator and round your final answers
to one decimal place.

1. If � 60°, � 45°, and BC � 12 cm, find AC.
2. If � 30°, � 135°, and BC � 4 cm, find AC.
3. If � 100°, � 30°, and AB � 10 cm, find BC.�C�B

�B�A
�B�A

A
In Exercises 1–8, assume that the vertices and the lengths of
the sides of a triangle are labeled as in Figure 1 on page 682.
For Exercises 1–4, leave your answers in terms of radicals
or the trigonometric functions; that is, don’t use a calculator.

EXERCISE SET 10.2



15. Find the lengths a, b, c, and d in the following figure.

Leave your answers in terms of trigonometric functions
(rather than using a calculator).

16. In the following figure, is a straight line segment.
Find the distance PR. Round your final answer to two
decimal places.

17. Two points P and Q are on opposite sides of a river (see the
sketch). From P to another point R on the same side is
300 ft. Angles PRQ and RPQ are found to be 20° and 120°,
respectively. Compute the distance from P to Q, across the
river. (Round your answer to the nearest foot.)

18. Determine the angle u in the accompanying figure. Round
your answer to two decimal places.

In Exercises 19–22, use the law of cosines to determine 
the length x in each figure. For Exercises 19 and 20, leave 
your answers in terms of radicals. In Exercises 21 and 22, 

2¨ ¨

3
2

R P

Q

48°24°
1

2

Q

24°

P R

PQR

50° 110° 95°

a b c

2 cm d

4. If � � 35°, and AB � 16 cm, find AC and BC.
5. If � 36°, � 50°, and b � 12.61 cm, find a and c.
6. If � 81°, � 55°, and b � 6.24 cm, find c and a.
7. If a � 29.45 cm, b � 30.12 cm, and � 66°, find the

remaining side and angles of the triangle.
8. If a � 52.15 cm, c � 42.90 cm, and � 125°, find the

remaining side and angles of the triangle.

In Exercises 9 and 10, use degree measure for your answers.
In parts (c) and (d), use a calculator and round the results to
one decimal place.

9. (a) In ^ABC, sin B � �2. What are the possible values
for 

(b) In ^DEF, cos E � �2. What are the possible values
for 

(c) In ^GHI, sin H � 1�4. What are the possible values
for 

(d) In ^JKL, cos K � �2�3. What are the possible values
for 

10. (a) In ^ABC, sin B � �2. What are the possible values
for 

(b) In ^DEF, cos E � � �2. What are the possible
values for 

(c) In ^GHI, sin H � 2�9. What are the possible values
for 

(d) In ^JKL, cos K � 2�3. What are the possible values
for 

11. (a) Show that there is no triangle satisfying the conditions
a � 2.0 ft, b � 6.0 ft, and � 23.1°
Hint: Try computing sin B using the law of sines.

(b) If a � 2.0 ft, b � 3.0 ft, � 23.1°, and is
obtuse, show that c � 1.1 ft.

12. (a) Show that there is no triangle with a � 2, b � 3, and
� 42°.

(b) Is there any triangle in which a � 2, b � 3, and 
� 41°?

13. Let b � 1, a � and � 30°.
(a) Use the law of sines to show that sin A � �2.

Conclude that � 45° or � 135°.
(b) Assuming that � 45°, determine the remaining

parts of ^ABC.
(c) Assuming that � 135°, determine the remaining

parts of ^ABC.
(d) Find the areas of the two triangles.

14. Let a � 30, b � 36, and � 20°.
(a) Show that � 24.23° or � 155.77° (rounding to

two decimal places).
(b) Determine the remaining parts for each of the two pos-

sible triangles. Round your final results to two decimal
places. [However, in your calculations, do not work
with rounded values. (Why?)]

(c) Find the areas of the two triangles.

�B�B
�A

�A

�A
�A�A

12
�B12,

�A

�A

�B�A

�A

�K?

�H?

�E?
13

�B?
13

�K?

�H?

�E?
12

�B?
12

�A

�B
�C�B
�B�A

�B�A
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In Exercises 23 and 24, refer to the following figure.

23. In applying the law of cosines to the figure, a student incor-
rectly writes x2 � 32 � 62 � 2(3)(6)cos 130°. Why is this
incorrect? What is the correct equation?

24. In applying the law of cosines to the figure, a student writes
62 � 32 � x2 � 6x cos 50°. Why is this correct?

In Exercises 25 and 26, use the given information to find the
cosine of each angle in ^ABC.

25. a � 6 cm, b � 7 cm, c � 10 cm
26. a � 17 cm, b � 8 cm, c � 15 cm (For this particular trian-

gle, you can check your answers because there is an alter-
native method of solution that does not require the law of
cosines.)

In Exercises 27–30, compute each angle of the given triangle.
Where necessary, use a calculator and round to one decimal
place.

27. a � 7, b � 8, c � 13 28. a � 33, b � 7, c � 37
29. a � b � c � 2 30. a � 36, b � 77, c � 85

In Exercises 31–34, round each answer to one decimal place.

31. A regular pentagon is inscribed in a circle of radius 1 unit.
Find the perimeter of the pentagon. Hint: First find the
length of a side using the law of cosines.

32. Find the perimeter of a regular nine-sided polygon inscribed
in a circle of radius 4 cm. (See the hint for Exercise 31.)

33. In ^ABC, � 40°, b � 6.1 cm, and c � 3.2 cm.
(a) Find a using the law of cosines.
(b) Find using the law of sines.
(c) Find 

34. In parallelogram ABCD you are given AB � 6 in., 
AD � 4 in., and � 40°. Find the length of each
diagonal.

35. Town B is 26 miles from town A at a bearing of S15°W.
Town C is 54 miles from town A at a bearing of S7°E.
Compute the distance from town B to town C. Round your
final answer to the nearest mile.

36. Town C is 5 miles due east of town D. Town E is 12 miles
from town C at a bearing (from C) of N52°E.
(a) How far apart are towns D and E? (Round to the

nearest one-half mile.)
(b) Find the bearing of town E from town D. (Round the

angle to the nearest degree.)

�A

�B.
�C

�A

2�13,

3

6
x

130°

use a calculator and round the answers to one 
decimal place.

19. (a)

(b)

20. (a)

(b)

21. (a)

(b)

22. (a)

(b)

108°

x

1.2 m

1.2 m

72°

x

1.2 m

1.2 m

140°

7.3 cm

x

11.5 cm 

40°

7.3 cm

x

11.5 cm 

150°

4 cm

x

10 cm 

30°

4 cm x

10 cm 

120°
5 cm

8 cm

x

60°

x5 cm

8 cm
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42. If the lengths of two adjacent sides of a parallelogram are
a and b, and if the acute angle formed by these two sides 
is u, show that the product of the lengths of the two diago-
nals is given by the expression

43. Two trains leave the railroad station at noon. The first train
travels along a straight track at 90 mph. The second train
travels at 75 mph along another straight track that makes an
angle of 130° with the first track. At what time are the
trains 400 miles apart? Round your answer to the nearest
minute.

44. In this exercise you will complete a detail mentioned in 
the text in the proof of the law of cosines. Let the positive
numbers u and v denote the lengths indicated in the 
figure, so that the coordinates of C are (�u, v). Show that 
u � �b cos A and v � b sin A. Conclude from this that the
coordinates of C are

(b cos A, b sin A)

Hint: Use the right-triangle definitions for cosine and sine
along with the addition formulas for cos(180° � u) and
sin(180° � u).

45. In the following figure, ABCD is a square, AB � 1, and
� � 15°. Show that ^CDE is equilateral.

Hint: First use the law of sines to find AE. Then use the
law of cosines to find DE.

46. Use steps (a) through (c) to show that the area of any trian-
gle ABC is given by the following expression:

a2 � b2

2
# sin A sin B

sin(A � B)

BA

D C

E

�EBA�EAB

x

y

A180°-A

B

C

v

b

u

2(a2 � b2)2 � 4a2b2 cos2 u

37. An airplane crashes in a lake and is spotted by observers
at lighthouses A and B along the coast. Lighthouse B is
1.50 miles due east of lighthouse A. The bearing of the
airplane from lighthouse A is S20°E; the bearing of the
plane from lighthouse B is S42°W. Find the distance from
each lighthouse to the crash site. (Round your final answers
to two decimal places.)

38. (Continuation of Exercise 37) A rescue boat is in the lake,
three-fourths of a mile from lighthouse B and at a bearing
of S35°E from lighthouse B.
(a) Find the distance from the rescue boat to the airplane.

Express your answer using miles and feet, with the
portion in feet rounded to the nearest 10 feet.

(b) Find the bearing of the plane from the rescue boat.
(Your answer should have the form of Su°W. Round u
to two decimal places.)

39. (Refer to the following figure.) When the Sun is viewed from
Earth, it subtends an angle of u � 32� (� 32�60 degree).
Assuming that the distance d from Earth to the Sun
is 92,690,000 miles, use the law of cosines to compute the
diameter D of the Sun. Round the answer to the nearest
ten thousand miles.

40. Compute the lengths CD and CE in the accompanying
figure. Round the final answers to two decimal places.

B
41. (a) Let m and n be positive numbers, with m � n.

Furthermore, suppose that in triangle ABC the lengths
a, b, and c are given by

a � 2mn � n2 b � m2 � n2

c � m2 � n2 � mn

Show that cos C � �1�2, and conclude that 
� 120°.

(b) Give an example of a triangle in which the lengths of
the sides are whole numbers and one of the angles is
120°. (Specify the three sides; you needn’t find the
other angles.)

�C

A B

C

D
E

75

34 27

43

52

¨

d

Earth

Sun

D
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In this exercise you will derive the formulas for the radius
� of the circumscribed circle for ^ABC:

(a) According to a theorem from geometry, the measure of
is twice the measure of What theorem is

this? (State the theorem using complete sentences.)
(b) Draw a perpendicular from O to meeting at T.

Explain why AT � TC � b�2. (As usual, b denotes the
length of the side opposite angle B.)
Hint: Result (i) or (ii) above may be useful.

(c) Explain why ^ATO is congruent to ^CTO.
(d) Use the results in parts (a) and (c) to show that

(e) Use the result in part (d) to show that � � b�(2 sin B).
From this we can conclude (by the law of sines) that

as required

(f) In the figure that we used for parts (a) through (e), the
center of the circle falls within ^ABC. Draw a figure in
which the center lies outside of ^ABC and prove that
the equation � � b�(2 sin B) is true in this case, too.

(g) Two triangles have the same numerical value for the
ratio that appears in the law of sines (the length of a
side to the sine of its opposite angle). What geometric
property do the two triangles have in common?

48. Let a denote the area of ^ABC. Show that the radius r of
the circumscribed circle is given by

Hint: From Exercise 47 we have r� a�(2 sin A). Multiply
the right-hand side of this equation by bc�bc.

49. Let r denote the radius of the inscribed circle for ^ABC
and (as in the previous exercise) let a denote the area of
^ABC. Follow parts (a) through (c) to show that

(a) In the following figure, the inscribed circle (with
center I) is tangent to side at the point D.
According to a theorem from geometry, is perpen-
dicular to What theorem is this? (State the theorem
in complete sentences.) Then explain why the area of
^AIC is 

I

CA

B

r

D

1
2 rb.

AC.
ID

AC

r �
2a

a � b � c

r �
abc

4a

r �
a

2 sin A
�

b

2 sin B
�

c

2 sin C

�COT � �B.

ACAC,

�B.�AOC

r �
a

2 sin A
�

b

2 sin B
�

c

2 sin C

(a) Use the law of sines to show that
(a2 � b2)sin A sin B � ab(sin2 A � sin2 B).

(b) Prove the trigonometric identity
sin(A � B)sin(A � B) � sin2 A � sin2 B.

(c) Use the results in parts (a) and (b) to show that

ab sin C, which is the area

of ^ABC, as required.

As background for Exercises 47 and 48, refer to the figure
below. The smaller circle in the figure is the inscribed circle for
^ABC. Each side of ^ABC is tangent to the inscribed circle.
The larger circle is the circumscribed circle for ^ABC. The
circumscribed circle is the circle passing through the three 
vertices of the triangle.

In Exercises  47–49 you will derive expressions for the
radii of the circumscribed circle and the inscribed circle for
^ABC. In these exercises, assume as given the following two
results from geometry:

i. The three angle bisectors of the angles of a triangle
meet in a point. This point (labeled I in the figure) is the
center of the inscribed circle.

ii. The perpendicular bisectors of the sides of a triangle
meet in a point. This point (labeled O in the figure) is
the center of the circumscribed circle.

47. The following figure shows the circumscribed circle for
^ABC. The point O is the center of the circle, and � is the
radius.

O

CA

B

�

I O

CA

B

a2 � b2

2
# sin A sin B

sin(A � B)
�

1

2
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(c) Use the results in part (b) to show that

Hint: From the figure we have b � AD � DC. (As
usual, the letter b denotes the length AC in ^ABC.)

(d) Show that

Hint: Begin with the expression for r in part (c), and
convert to sines and cosines. Then simplify and use an
addition formula.

(e) Show that

Hint: Begin with the expression for r in part (d), and
use the fact that A � B � C � 180°.

(f) From Exercise 47 we have b � 2r sin B. Use this to
substitute for b in part (e). Show that the resulting
equation can be written

as required

53. The following figure shows a quadrilateral with sides a, b,
c, and d inscribed in a circle.

If l denotes the length of the diagonal indicated in the
figure, prove that

This result is known as Brahmagupta’s theorem. It
is named after its discoverer, a seventh-century Hindu
mathematician. Hint: Assume as given the theorem from
geometry stating that when a quadrilateral is inscribed in
a circle, the opposite angles are supplementary. Apply
the law of cosines in both of the triangles in the figure to
obtain expressions for l2. Then eliminate cos u from one
equation.

l2 �
(ab � cd)(ac � bd)

bc � ad

a

b

c

d

¨

¬

180°-¨

r � 4r sin 
A

2
 sin 

B

2
 sin 

C

2

r �
b sin(A�2) sin(C�2)

cos(B�2)

r �
b sin(A�2) sin(C�2)

sin[(A � C)�2]

r �
b

cot(A�2) � cot(C�2)

(b) In the figure accompanying part (a), draw line
segments and and then explain why

(c) Solve the equation in part (b) for r. You should obtain
r � 2a�(a � b � c), as required.

50. The following figure shows the inscribed and the circum-
scribed circles for ^ABC with A � 90°, C � 30°, and
a � 2.

(a) Find b, c, and the area a of the triangle.
(b) Use the formula for r in Exercise 48 to find the radius

of the circumscribed circle. Then check your answer by
recomputing r using a formula from Exercise 47.

(c) Use the formula for r in Exercise 49 to find the radius
of the inscribed circle.

(d) Use the values obtained in this exercise to check that
rr � abc�[2(a � b � c)]. (In the next exercise, you’ll
prove that this result holds in general.)

51. Use the formulas for r and r from Exercises 48 and 49,
respectively, to show that rr � abc�[2(a � b � c)].

52. In this exercise you will show that the radius r of the
inscribed circle for ^ABC is given by

In the figure below, the inscribed circle (with center I ) is
tangent to side at the point D.

(a) According to a theorem from geometry, is perpen-
dicular to What theorem is this? (State the theorem
using complete sentences.)

(b) Show that AD � r cot(A�2) and DC � r cot(C�2).
Hint: Result (i) or (ii) on page 693 may be useful.

AC.
ID

I

CA

B

r

D

AC

r � 4r sin 
A

2
 sin 

B

2
 sin 

C

2

CA

B

a � 1
2rb � 1

2rc � 1
2ra.

IC,IB,IA,
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Figure A Figure B

(a) Apply the law of cosines in ^ABE to show that 
AE �

(b) Apply the law of sines in ^ABE to show that
sin( ) � .

(c) Apply the law of sines in ^CFB to show that
sin( ) � . Hint: ^AEB is
congruent to ^BFC, so BF � AE.

(d) Apply the law of sines in ^QEB to show that 
QE �

(e) Apply the law of sines in ^QEB to show that 
QB �

(f) Show that PQ � 3
Hint: PQ � AE � (QE � AP), and by symmetry, 
AP � QB.

(g) Use the result in part (f) to find the area of equilateral
triangle PQR.

59. This exercise is adapted from a problem proposed by
Professor Norman Schaumberger in the May 1990 issue
of The College Mathematics Journal. In the accompanying
figure, radius OA � 1 and � 60°. Follow steps (a)
through (f) to prove that

(a) Let � a; show that AD � 2 cos a.
Hint: In isosceles triangle AOD, drop a perpendicular
from O to side 

(b) Let � b; show that AE � 2 cos b.
(c) Explain why � 60° � a and � 120° � b.�C�B

�CAF

C

A

B

D

O

E

F

AD.

�BAF

AD # AB � AE # AC � BC

�AFC

17�7.
3�17.

1�17.

� 1217 2113 2�FBC

�1217 21313 2�AEB

17.

A D B

C

E

F

P
Q

R

1 2

2

1
2

1

54. Prove the following identity for ^ABC:

Suggestion: Use the law of cosines to substitute for a2,
for b2, and for c2 in the numerator of the expression on the
right-hand side.

55. In ^ABC, suppose that a4 � b4 � c4 � 2(a2 � b2)c2. Find
(There are two answers.) Hint: Solve the given

equation for c2.
56. In this section we have seen that the cosines of the angles

in a triangle can be expressed in terms of the lengths of
the sides. For instance, for cos A in ^ABC, we obtained
cos A � (b2 � c2 � a2)�2bc. This exercise shows how
to derive corresponding expressions for the sines of the
angles. For ease of notation in this exercise, let us agree
to use the letter T to denote the following quantity:

T � 2(a2b2 � b2c2 � c2a2) � (a4 � b4 � c4)

Then the sines of the angles in ^ABC are given by

In the steps that follow, we’ll derive the first of these three
formulas, the derivations for the other two being entirely
similar.
(a) In ^ABC, why is the positive root always appropriate 

in the formula sin A �
(b) In the formula in part (a), replace cos A by 

(b2 � c2 � a2)�2bc and show that the result can be
written

(c) On the right-hand side of the equation in part (b), carry
out the indicated multiplication. After combining like
terms, you should obtain sin A � �2bc, as required.

57. In the two easy steps that follow, we derive the law of sines
by using the formulas obtained in Exercise 56. (Since the
formulas in Exercise 56 were obtained using the law of
cosines, we are, in essence, showing how to derive the law
of sines from the law of cosines.)
(a) Use the formulas in Exercise 56 to check that each of

the three fractions (sin A)�a, (sin B)�b, and (sin C)�c is
equal to �2abc.

(b) Conclude from part (a) that 

(sin A)�a � (sin B)�b � (sin C)�c

58. In this exercise you are going to use the law of cosines and
the law of sines to determine the area of the shaded equilat-
eral triangle in Figure A. Begin by labeling points, as
shown in Figure B.

1T

1T

sin A �
24b2c2 � (b2 � c2 � a2)2

2bc

21 � cos2 A?

sin A �
1T

2bc
  sin B �

1T

2ac
  sin C �

1T

2ab

�C.

cos A
a

�
cos B

b
�

cos C
c

�
a2 � b2 � c2

2abc
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61. In this exercise you will derive a formula for the length of
an angle bisector in a triangle. (The formula will be needed
in Exercise 62.) Let f denote the length of the bisector of
angle C in ^ABC, as shown in the following figure.

(a) Explain why

Hint: Use areas.
(b) Show that

(c) By the law of cosines, cos C � (a2 � b2 � c2)�2ab.
Use this to show that

(d) Show that the length of the angle bisector in terms of
the sides is given by

62. In triangle XYZ (in the accompanying figure), bisects
angle ZXY and bisects angle ZYX. In this exercise you
are going to prove the following theorem, known as the
Steiner–Lehmus theorem: If the lengths of the angle
bisectors and are equal, then ^XYZ is isosceles
(with XZ � YZ).

(a) Let x, y, and z denote the lengths of the sides 
and respectively. Use the formula in Exercise 61(d)
to show that the equation TY � SX is equivalent to

(1)�
2yz

y � z
 2(y � z � x)(y � z � x)

2xz

x � z
 2(x � z � y)(x � z � y)

XY,
XZ,YZ,

S

Z

YX

T

TYSX

TY
SX

f �
2ab

a � b
 2(a � b � c)(a � b � c)

cos 
C

2
�

1

2B

(a � b � c)(a � b � c)

ab

f �
2ab cos(C�2)

a � b

1

2
 af sin 

C

2
�

1

2
 bf sin 

C

2
�

1

2
 ab sin C

C
2

C
2

AB

C

a b

f

(d) Using the law of sines, show that

and

(e) Using the results in parts (a), (b), and (d), verify that

(f) To complete the proof, you need to show that the quan-
tity in brackets in part (e) is equal to 1. In other words,
you want to show that

2 cos a sin(120° � b) � 2 cos b sin(60° � a)
� sin(a � b)

Use the addition formulas for sine to prove that this
last equation is indeed an identity.

C
60. Heron’s formula: Approximately 2000 years ago, Heron

of Alexandria derived a formula for the area of a triangle in
terms of the lengths of the sides. A more modern derivation
of Heron’s formula is indicated in the steps that follow.
(a) Use the expression for sin A in Exercise 56(b) to 

show that

Hint: Use difference-of-squares factoring repeatedly.
(b) Let s denote one-half of the perimeter of ^ABC. That

is, let s � (a � b � c). Using this notation (which is
due to Euler), verify that
(i) a � b � c � 2s
(ii) �a � b � c � 2(s � a)
(iii) a � b � c � 2(s � b)
(iv) a � b � c � 2(s � c)
Then, using this notation and the result in part (a),
show that

Note: Since sin A is positive (Why?), the positive root
is appropriate here.

(c) Use the result in part (b) and the formula area 
^ABC � sin A to conclude that

This is Heron’s formula. For historical background and
a purely geometric proof, see An Introduction to the
History of Mathematics, 6th ed., by Howard Eves
(Philadelphia: Saunders College Publishing, 1990),
pp. 178 and 194.

area ^ABC � 2s(s � a)(s � b)(s � c)

1
2 bc

sin A �
22s(s � a)(s � b)(s � c)

bc

1
2

sin2 A �
(a � b � c)(a � b � c)(b � c � a)(b � c � a)

4b2c2

� BC # c 2 cos a sin(120° � b) � 2 cos b sin(60° � a)

sin(a � b)
d

AD # AB � AE # AC

AC �
BC sin(60° � a)

sin(a � b)

AB �
BC sin(120° � b)

sin(a � b)
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Remark: This theorem has a fascinating history, beginning
in 1840 when C. L. Lehmus first proposed the theorem to
the great Swiss geometer Jacob Steiner (1796–1863). For
background (and much shorter proofs!), see either of the
following references: Scientific American, vol. 204 (1961),
pp. 166–168; American Mathematical Monthly, vol. 70
(1963), pp. 79–80.

63. Show that

64. For any triangle ABC, show that

sin(A � B)

sin(A � B)
�

a2 � b2

c2

area ^ABC �
a2 sin 2B � b2 sin 2A

4

(b) What common factors do you see on both sides of
equation (1)? Divide both sides of equation (1) by
those common factors. You should obtain

(2)

(c) Clear equation (2) of fractions, and then square both
sides. After combining like terms and then grouping,
the equation can be written

(3)

(d) Show that equation (3) can be written

(x � y)[3xyz � xy(x � y) � x2(x � y) � z3] � 0

Now notice that the quantity in brackets in this last
equation must be positive. (Why?) Consequently, 
x � y � 0, and so x � y, as required.

� (x2z2 � y2z2) � (xz3 � yz3) � 0
(3x2yz � 3xy2z) � (x3y � xy3)

1x

x � z
2x � z � y �

1y

y � z
 2y � z � x
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10.3 VECTORS IN THE PLANE: A GEOMETRIC APPROACH
The idea of a parallelogram of velocities may be found in various ancient Greek
authors, and the concept of a parallelogram of forces was not uncommon in the
sixteenth and seventeenth centuries. —Michael J. Crowe in A History of Vector Analysis

(Notre Dame, Ind.: University of Notre Dame Press, 1967)

Certain quantities, such as temperature, length, and mass, can be specified by means
of a single number (assuming that a system of units has been agreed on). We call
these quantities scalars. On the other hand, quantities such as force and velocity are
characterized by both a magnitude (a positive number) and a direction. We call these
quantities vectors.

Geometrically, a vector is a directed line segment or arrow. The vector in
Figure 1, for instance, represents a wind velocity of 5 mph from the west. The length
of this vector represents the magnitude of the wind velocity, while the direction of
the vector indicates the direction of the wind velocity. As another example, the vec-
tor in Figure 2 represents a force acting on an object: The magnitude of the force is
3 pounds, and the force acts at an angle of 135° with the horizontal.

N

S

EW

0 5 10

Scale (mph)

135°
1 lb

2 lb

3 lb

Figure 1
A vector representing a wind
velocity of 5 mph from the west.

Figure 2
A vector representing a force of
3 lb acting at an angle of 135° with
the horizontal.

Vector notation is compact. If we can
express a law of physics in vector form
we usually find it easier to understand
and to manipulate mathematically. 
—David Halliday and Robert Resnick in
Fundamentals of Physics, 3rd ed. (New
York: John Wiley and Sons, Inc., 1988)



In a moment we are going to discuss the important concept of vector addition,
but first let us agree on some matters of notation. Suppose that we have a vector
drawn from a point P to a point Q, as shown in Figure 3. The point P in Figure 3 is
called the initial point of the vector, and Q is the terminal point. We can denote this
vector by the notation

We sometimes think of the vector as the directed line segment from P to Q.
The length or magnitude of the vector is denoted by On the printed

page, vectors are often indicated by boldface letters, such as a, A, and v.
A word about notation. As has perhaps already occurred to you, the same vertical

bars that we are using to denote the length of a vector are also used to denote the
absolute value of a real number. It will be clear from the context which meaning is
intended. Some books avoid this situation by using double bars to indicate the length
of a vector: �v �. In this text we use the notation v simply because that is the one
found in most calculus books.

If two vectors a and b have the same length and the same direction, we say that
they are equal, and we write a � b; see Figure 4. Notice that our definition for vec-
tor equality involves magnitude and direction but not location. Thus when it is con-
venient to do so, we are free to move a given vector to another location, provided that
we do not alter the magnitude or the direction.

00

0PQu 0 .PQu
PQu

PQu
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P

Q

(a) a=b

a
b

(b) c≠d
The magnitudes are the same
but the directions are not.

c
d u

v

(c) u≠v
The directions are the same
but the magnitudes are not.

(d) p≠q
Neither the magnitudes nor
the directions are the same.

p

q

Figure 3

Figure 4

QR

PR
PQ

P

RQ

Figure 5

As motivation for the definition of vector addition, let’s suppose that an object
moves from a point P to a point Q. Then we can represent this displacement by the
vector (Indeed, the word “vector” is derived from the Latin vectus, meaning
“carried.”) Now suppose that after moving from P to Q, the object moves from Q to R.
We represent this displacement by the vector Then, as you can see in Figure 5, the
net effect is a displacement from P to R. We say in this case that the vector is the
sum or resultant of the vectors and , and we write

These ideas are formalized in the definition that follows.

PQu � QRu
� PRu

QRuPQu
PRu

QRu .

PQu .

Definition Vector Addition

Let u and v be two vectors. Position v (without changing its magnitude or direction)
so that its initial point coincides with the terminal point of u, as in Figure 6(a). Then,
as is indicated in Figure 6(b), the vector u � v is the directed line segment from
the initial point of u to the terminal point of v. The vector u � v is called the sum or
resultant of u and v.



(b)

u

v

u+v

(a)

u

v
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Figure 6

EXAMPLE 1 Adding Two Vectors Geometrically

Refer to Figure 7.

(a) Determine the initial and terminal points of u � v. (b) Compute u � v .00

SOLUTION (a) According to the definition, we first need to move v (without changing its
length or direction) so that its initial point coincides with the terminal point of u.
From Figure 7 we see that this can be accomplished by moving each point of v
three units in the negative x-direction and two units in the positive y-direction.
Figure 8(a) shows the new location of v, and Figure 8(b) indicates the sum u � v.
From Figure 8(b) we see that the initial and terminal points of u � v are (1, 2)
and (7, 5), respectively.

u v

1 2 3 4 5 6 7 8 9 10
x

y

1

2

3

4

5

6

7

Figure 7

u

v

1

y

1

2 3 4 5 6 7

2

3

4

5

6

7

x

(a)

u

v

1

y

1

2 3 4 5 6 7

2

3

4

5

6

7

x

(b)

u+v

Figure 8



(b) We can use the distance formula to determine u � v . Using the points (1, 2)
and (7, 5) that were obtained in part (a), we have

One important consequence of our definition for vector addition is that this oper-
ation is commutative. That is, for any two vectors u and v we have

u � v � v � u

Figure 9 indicates why this is so. Vector addition can also be carried out by using the
parallelogram law. In Figure 9, to determine u � v, position u and v so that their ini-
tial points coincide. Then, as is indicated in Figure 10, the vector u � v is the directed
diagonal of the parallelogram determined by u and v.

0u � v 0 � 2(7 � 1)2 � (5 � 2)2 � 245 � 29 # 5 � 315

00
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P

Q

u u

v

v

u+
v

v+
u

Figure 9
The upper triangle shows the sum
u � v, while the lower triangle
shows the sum v � u. Since in both
cases the resultant is , it follows
that u � v � v � u.

PQu

u
u+v

v

Figure 10
The parallelogram law for vector
addition.

It is a fact, verified experimentally, that if two forces F and G act on an object, the
net effect is the same as if just the resultant F � G acted on the object. In Example 2
we use the parallelogram law to compute the resultant of two forces. Note that the
units of force used in this example are newtons (N), where 1 N � 0.2248 lb.

EXAMPLE 2 The Resultant of Two Perpendicular Forces

Two forces F and G act on an object. As is indicated in Figure 11, the force G acts
horizontally to the right with a magnitude of 12 N, while F acts vertically upward
with a magnitude of 16 N. Determine the magnitude and the direction of the resultant
force.

SOLUTION We complete the parallelogram, as shown in Figure 12. Now we need to calculate the
length of F � G and the angle u. Applying the Pythagorean theorem in Figure 12, we
have

Also from Figure 12 we have

tan u �
16

12
�

4

3

0F � G 0 � 2122 � 162 � 1144 � 256 � 1400 � 20



Consequently,

using a calculator set in degree mode

Summarizing our results, the magnitude of F � G is 20 N, and the angle u between
F � G and the horizontal is (approximately) 53.1°.

In Example 2 we determined the resultant for two perpendicular forces. The next
example shows how to compute the resultant when the forces are not perpendicular.
Our calculations will make use of both the law of sines and the law of cosines.

u � tan�1 
4

3
� 53.1°
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12 N

16 N

F

G

Figure 11

F+
G

¨

12

16

F

G

12

16

Figure 12

EXAMPLE 3 The Resultant of Two Forces

Determine the resultant of the two forces in Figure 13. (Round the answers to one
decimal place.)

SOLUTION As in the previous example, we complete the parallelogram. In Figure 14 the angle
in the lower right-hand corner of the parallelogram is 140°. This is because the sum
of two adjacent angles in any parallelogram is always 180°. Letting d denote the
length of the diagonal in Figure 14, we can use the law of cosines to write

(Why?)

using a calculator

So the magnitude of the resultant is 19.1 N (to one decimal place). To specify the
direction of the resultant, we need to determine the angle u in Figure 14. Using the
law of sines, we have

sin u

5
�

sin 140°

d

 � 19.1

 � 125(10 � 6 cos 40°) � 5110 � 6 cos 40°

 d � 1250 � 150 cos 140° � 1250 � 150 cos 40°

 d2 � 152 � 52 � 2(15)(5) cos 140°

15 N

5 N

40°

Figure 13

¨

5

15

d
5140°

Figure 14



and, consequently,

Using a calculator now, we obtain

In summary, the magnitude of the resultant force is about 19.1 N, and the angle u
between the resultant and the 15 N force is approximately 9.7°.

As background for the next example we introduce the notion of components of
a vector. (You will see this concept again in the next section in a more algebraic
context.) Suppose that the initial point of a vector v is located at the origin of a rec-
tangular coordinate system, as shown in Figure 15. Now suppose we draw perpen-
diculars from the terminal point of v to the axes, as indicated by the blue dashed
lines in Figure 15. Then the coordinates vx and vy are called the components of the
vector v in the x- and y-directions, respectively. For an example involving compo-
nents, refer to Figure 12. The horizontal component of the vector F � G is 12 N,
and the vertical component is 16 N.

u � sin�1 a sin 40°

110 � 6 cos 40°
b � 9.7°

 �
5 sin 40°

5110 � 6 cos 40°
�

sin 40°

110 � 6 cos 40°

 sin u �
5 sin 40°

d
 (Why?)
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x

y

v

vx

vy

Figure 15

x

y

30°

v
 (70

 cm/se
c)

vx

vy

Figure 16

EXAMPLE 4 Finding Vertical and Horizontal Components

Determine the horizontal and vertical components of the velocity vector v in
Figure 16.

SOLUTION From Figure 16 we can write

and, consequently,

to two significant digits

Similarly, we have

and therefore

So the x-component of the velocity is about and the y-component is
35 cm/sec.

61 cm/sec,

vy � (sin 30°)(70) � 1 12 2 (70) � 35 cm/sec

sin 30° �
vy

70

 � 3513 � 61 cm/sec

 vx � (cos 30°)(70) � a13

2
 b  (70)

cos 30° �
adjacent

hypotenuse
�

vx

70



Our last example in this section will indicate how vectors are used in naviga-
tion. First, however, let’s introduce some terminology. Suppose that an airplane has
a heading of due east. This means that the airplane is pointed directly east, and if
there were no wind effects, the plane would indeed travel due east with respect to the
ground. The air speed is the speed of the airplane relative to the air, whereas the
ground speed is the plane’s speed relative to the ground. Again, if there were no
wind effects, then the air speed and the ground speed would be equal. Now suppose
that the heading and air speed of an airplane are represented by the velocity vector V
in Figure 17. (The direction of V is the heading; the magnitude of V is the air speed.)
Also suppose that the wind velocity is represented by the vector W in Figure 17.
Then the vector sum V � W represents the actual velocity of the plane with respect
to the ground. The direction of V � W is called the course; it is the direction in
which the airplane is moving with respect to the ground. The magnitude of V � W
is the ground speed (which was defined previously). The angle u in Figure 17, from
the heading to the course, is called the drift angle.

In navigation, directions are given in terms of the angle measured clockwise from
true north. For example, the direction of the velocity vector v in Figure 18 is 120°.
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¨

V

W
V+W

Figure 17

120°

North

v

Figure 18

EXAMPLE 5 Using Vectors in Navigation

Refer to Figure 19(a). The heading and air speed of an airplane are 60° and 250 mph,
respectively. If the wind is 40 mph from 150°, find the ground speed, the drift angle,
and the course.

SOLUTION In Figure 19(a) the vector represents the air speed of 250 mph and the heading of
60°. The vector represents a wind of 40 mph from 150°. Also, angle WOA � 90°.
(Why?) In Figure 19(b) we have completed the parallelogram to obtain the vector
sum The length of represents the ground speed, and u is the
drift angle. Because triangle BOA is a right triangle, we have

tan u �
40

250
�

4

25

tan u � 9.1°
  

3
  

0OBu 0 � 22502 � 402

� 253.2

OBuOAu
� OWu � OBu .

OWu
OAu

North

60°

W

A

O

250 mph

40 m
ph

150°

(a)

O

W
A

¨
å40

250

40

B

60°

(b)Figure 19



From these calculations we conclude that the ground speed is approximately
253.2 mph and the drift angle is about 9.1°. We still need to compute the course (that
is, the direction of vector ). From Figure 19(b) we have

a � 60° � u � 60° � 9.1° � 50.9°

Thus the course is 50.9°, to one decimal place. (We are using the convention, men-
tioned previously, that directions are given in terms of the angle measured clockwise
from true north.)

OBu

704 CHAPTER 10 Additional Topics in Trigonometry

In Exercises 33–38 the vectors F and G represent two forces
acting on an object, as indicated in the following figure. In each
case, use the given information to compute (to two decimal
places) the magnitude and direction of the resultant. (Give the
direction of the resultant by specifying the angle u between F
and the resultant.)

33. F � 5 N, G � 4 N, a � 80°

34. F � 8 N, G � 10 N, a � 60°

35. F � 16 N, G � 25 N, a � 35°

36. F � 4.24 N, G � 9.01 N, a � 45°

37. F � 50 N, G � 25 N, a � 130°

38. F � 1.26 N, G � 2.31 N, a � 160°

In Exercises 39–46 the initial point for each vector is the
origin, and u denotes the angle (measured counterclockwise)
from the x-axis to the vector. In each case, compute the
horizontal and vertical components of the given vector.
(Round your answers to two decimal places.)

39. The magnitude of V is 16 and u � 30°.
40. The magnitude of V is 40 and u � 60°.
41. The magnitude of F is 14 N, and u � 75°.
42. The magnitude of F is 23.12 N, and u � 52°.
43. The magnitude of V is 1 and u � 135°.
44. The magnitude of V is 12 and u � 120°.
45. The magnitude of F is 1.25 N, and u � 145°.
46. The magnitude of F is 6.34 N, and u � 175°.

cm/sec,
cm/sec,

cm/sec,
cm/sec,

0000
0000
0000
0000
0000
0000

¨

å

F

G

A
In Exercises 1–26, assume that the coordinates of the points P,
Q, R, S, and O are as follows:

P(�1, 3) Q(4, 6) R(4, 3) S(5, 9) O(0, 0)

For each exercise, draw the indicated vector (using graph
paper) and compute its magnitude. In Exercises 7–20,
compute the sums using the definition given on page 698.
In Exercises 21–26, use the parallelogram law to compute
the sums.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–32 the vectors F and G denote two forces that
act on an object: G acts horizontally to the right, and F acts
vertically upward. In each case, use the information that is
given to compute F � G and u, where u is the angle 
between G and the resultant.

27. F � 4 N, G � 5 	
28. F � 15 N, G � 6 N
29. F � G � 9 N
30. F � 28 N, G � 1 N
31. F � 3.22 N, G � 7.21 N
32. F � 4.06 N, G � 26.83 N0000

0000
0000

0000
0000
0000

00

SQu � SRuSOu � SQu
QPu

� QRuRPu � RSu
OPu

� OQuOPu
� ORu

SQu � ORuSQu � ROu
OPu

� QRuOPu
� RQu

OSu
� QOuSRu � POu

QSu
� POuOPu

� QSu
(OSu

� SPu) � PRu(OSu
� SQu) � QPu

OSu
� SQuOPu

� PQu
SQu � QPuPQu � QSu
POuOPu
QSuSQu
QPuPQu

EXERCISE SET 10.3



In Exercises 52 and 53 you are given the weight of a block on
an inclined plane, along with the angle u that the inclined 
plane makes with the horizontal. In each case, determine the
components of the weight perpendicular to and parallel to 
the plane. (Round your answers to two decimal places where
necessary.)

52. 15 lb; u � 30°
53. 12 lb; u � 10°
54. A block rests on an inclined plane that makes an angle

of 20° with the horizontal. The component of the weight
parallel to the plane is 34.2 lb.
(a) Determine the weight of the block. (Round your

answer to one decimal place.)
(b) Determine the component of the weight perpendicular

to the plane. (Round your answer to one decimal
place.)

55. In Section 10.4 we will see that vector addition is associa-
tive. That is, for any three vectors A, B, and C, we have 
(A � B) � C � A � (B � C). In this exercise you are
going to check that this property holds in a particular case.
Let A, B, and C be the vectors with initial and terminal
points as follows:

Vector Initial Point Terminal Point

A (�1, 2) (2, 4)
B (1, 2) (3, 0)
C (6, 2) (4, �3)

(a) Use the definition of vector addition on page 698 
to determine the initial and terminal points of 
(A � B) � C. Suggestion: Use graph paper.

(b) Use the definition of vector addition to determine 
the initial and terminal points of A � (B � C). [Your
answers should agree with those in part (a).]

In Exercises 47–50, use the given flight data to compute the
ground speed, the drift angle, and the course. (Round your
answers to two decimal places.)

47. The heading and air speed are 30° and 300 mph, respec-
tively; the wind is 25 mph from 120°.

48. The heading and air speed are 45° and 275 mph, respec-
tively; the wind is 50 mph from 135°.

49. The heading and air speed are 100° and 290 mph, respec-
tively; the wind is 45 mph from 190°.

50. The heading and air speed are 90° and 220 mph, respec-
tively; the wind is 80 mph from (a) 180°; (b) 90°.

B
51. A block weighing 12 lb rests on an inclined plane, as

indicated in Figure A. Determine the components of the
weight perpendicular to and parallel to the plane. Round
your answers to two decimal places.
Hint: In Figure B the component of the weight perpendic-
ular to the plane is the component parallel to the 
plane is Why does angle QOR equal 35°? (Observing 
that angle POR is a right angle, that line segment PO is
parallel to AC, and that OQ is perpendicular to AB may
be helpful.)

Figure A

Figure B

O

35°

BA

C

R

Q

P

12

35°

O

12 lb

0OPu 0 .
0ORu 0 ;
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Readers might want to try the project, Vector Algebra Using Vector Geometry, at http://www.cengage.com/math/
cohen/precalc7e, for a variation on the approach taken in the next section.

http://www.cengage.com/math/cohen/precalc7e
http://www.cengage.com/math/cohen/precalc7e
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10.4 VECTORS IN THE PLANE: AN ALGEBRAIC APPROACH
A great many of the mathematical ideas that apply to physics and engineering are
collected in the concept of vector spaces. This branch of mathematics has applica-
tions in such practical problems as calculating the vibrations of bridges and air-
plane wings. Logical extensions to spaces of infinitely many dimensions are widely
used in modern theoretical physics as well as in many branches of mathematics
itself. —From The Mathematical Sciences, edited by the Committee on Support of Research

in the Mathematical Sciences with the collaboration of George Boehm (Cambridge, Mass.:

The M.I.T. Press, 1969)

The geometric concept of a vector in the plane can be recast in an algebraic setting.
This is useful both for computational purposes and (as our opening quotation im-
plies) for more advanced work.

Consider an x-y coordinate system and a vector with initial point the origin, as
shown in Figure 1. We call the position vector of the point P. Most of our work
in this section will involve such position vectors. There is no loss of generality in
focusing on these types of vectors, for, as is indicated in Figure 2, each vector v in the
plane is equal to a unique position vector .OPu

OPu
OPu

x

y
P

O

Figure 1

x

y

a

b
P

O

=�a, b�OP

Figure 3
The vector is denoted by 
The coordinates a and b are the
components of the vector.

8a, b9.OPu

x

y

O

P

v

Figure 2

If the coordinates of the point P are (a, b), we call a and b the components of the

vector and we use the notation

to denote this vector (see Figure 3). The number a is the horizontal component or
x-component of the vector; b is the vertical component or y-component.

In the previous section we said that two vectors are equal provided that they
have the same length and the same direction. For vectors and this im-
plies that

if any only if a � c and b � d

(If you’ve studied complex numbers in a previous course, notice the similarity here.
Two complex numbers are equal provided that their corresponding real and imagi-
nary parts are equal; two vectors are equal provided that their corresponding compo-
nents are equal.)

8a, b9 � 8c, d 9
8c, d98a, b9

8a, b9
OPu ,



It’s easy to calculate the length of a vector v when its components are given.
Suppose that v � Applying the Pythagorean theorem to the position vector in
Figure 4, we have

and consequently,

Although Figure 4 shows the point (v1, v2) in Quadrant I, you can check for yourself
that the same formula results when (v1, v2) is located in any of the other three quad-
rants. We therefore have the following general formula.

If v � then 0v 0 � 2v 2
1 � v 2

2

8v1, v29,
The Length of a Vector

0v 0 � 2v2
1 � v2

2

0v 0 2 � v2
1 � v2

2

8v1, v29.
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x
O

y

v¡

v™

v

(v¡, v™)

Figure 4

EXAMPLE 1 Finding the Length of a Vector

Compute the length of the vector v � 82, �49.
SOLUTION

If the coordinates of the points P and Q are P(x1, y1) and Q(x2, y2), then

To derive this formula, we first construct the right triangle shown in Figure 5(a). 
Now we let R denote the point (x2 � x1, y2 � y1) and draw the position vector 
shown in Figure 5(b). Since the right triangles in Figures 5(a) and 5(b) are congruent
(Why?) and have corresponding legs that are parallel, we have

PQu � ORu
� 8x2 � x1, y2 � y19

ORu

PQu � 8x2 � x1, y2 � y19

0v 0 � 2v2
1 � v2

2 � 222 � (�4)2 � 120 � 215

x

y

¤-⁄

fi-›

Q(¤, fi)

P(⁄, ›)

(a)

y

x
¤-⁄

fi-›

O

R

(b)Figure 5



as required. We can summarize this result as follows. For any vector v we have

x-component of v:
(x-coordinate of terminal point) � (x-coordinate of initial point)

y-component of v:
(y-coordinate of terminal point) � (y-coordinate of initial point)

708 CHAPTER 10 Additional Topics in Trigonometry

EXAMPLE 2 Finding the Components of a Vector

Let P and Q be the points P(3, 1) and Q(7, 4). Sketch find the components of 
and sketch the position vector for PQu .

PQu ,PQu ,

SOLUTION Plot the points P and Q and draw the vector as shown in Figure 6.

Consequently, The position vector for is shown in Figure 6.

Vector addition is particularly simple to carry out when the vectors are in compo-
nent form. Indeed, we can use the parallelogram law to verify the following result.

PQuPQu � 84, 39.
 � 4 � 1 � 3

 y-component of PQu � y-coordinate of Q � y-coordinate of P

 � 7 � 3 � 4
 x-component of PQu � x-coordinate of Q � x-coordinate of P

PQu

xO

y

PQ

P (3, 1)

Q (7, 4)(4, 3)

PQPosition vector for

Figure 6

Theorem Vector Addition

If u � and v � then u � v �

This theorem tells us that vector addition can be carried out componentwise; in other
words, to add two vectors, just add the corresponding components. For example,

To see why this theorem is valid, consider Figure 7, where we have completed
the parallelogram. (Caution: In reading the derivation that follows, don’t confuse
notation such as OA with recall that OA denotes the length of the line segment

) Since the x-component of u is u1, we have

OB � u1

Also,

BC � OA � v1

Therefore,

OC � OB � BC � u1 � v1

But OC is the x-component of the vector and by the parallelogram law,
� u � v. In other words, the x-component of u � v is u1 � v1, as we wished

to show. The fact that the y-component of u � v is u2 � v2 is proved in a similar
fashion.

OPu
OPu ,

OA.
OAu ;

81, 29 � 83, 79 � 84, 99

8u1 � v1, u2 � v29.8v1, v29,8u1, u29

x

y

u=�u¡, u™�
v=�v¡, v™�

O A B C

P

u

v

Figure 7



The vector is called the zero vector, and it is denoted by 0. Notice that for
any vector v � we have

v � 0 � v because

and

0 � v � v because

Thus the sum of a given vector and the zero vector is the given vector. In other words,
adding the zero vector to a given vector leaves the given vector unchanged. So for the
operation of vector addition the zero vector plays the same role as does the real num-
ber zero in addition of real numbers. There are, in fact, several other ways in which
vector addition resembles ordinary addition of real numbers. We’ll return to this
point again near the end of this section.

In the box that follows, we define an operation called scalar multiplication, in
which a vector is “multiplied” by a real number (a scalar) to obtain another vector.

80, 09 � 8v1, v29 � 8v1, v29

8v1, v29 � 80, 09 � 8v1, v29
8v1, v29
80, 09
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For each real number k and each vector 
v � we define a vector kv by the
equation

kv � k8x, y9 � 8kx, ky9
8x, y9, EXAMPLES

If v � then

 �1v � 8�2, �19
 0v � 80, 09 � 0

 2v � 84, 29  3v � 86, 39
82, 19,

Definition Scalar Multiplication

In geometric terms, the length of kv is k times the length of v. (See Exercise 60 at
the end of this section.) The vectors v and kv have the same direction if k � 0 and
opposite directions if k � 0. For example, let v � In Figure 8(a) we show the
vectors v and 3v, while in Figure 8(b) we show v and �2v.

82, 19.
00

v=�2, 1�

_2v=�_4, _2�

(b) The vectors v and _2v have
opposite directions. The length
of _2v is twice that of v.

y

y

x

x

v=�2, 1�
3v=�6, 3�

(a) The vectors v and 3v have
the same direction. The length
of 3v is three times that of v.

Figure 8

EXAMPLE 3 Vector Algebra

Let v � and w � Compute each of the following:

(a) v � w; (b) �2v � 3w; (c) �2v � 3w .00
8�1, 29.83, 49

SOLUTION (a) v � w � � � �
(b)

(c)

For each vector v we define a vector �v, called the negative or opposite of v, by
the equation

�v � �1v

Thus if v � then �v � As is indicated in Figure 9, the vectors v and
�v have the same length but opposite directions.

8�a, �b9.8a, b9,

0�2v � 3w 0 � 0 8�9, �29 0 � 2(�9)2 � (�2)2 � 285

 � 8�9, �29 �2v � 3w � �283, 49 � 38�1, 29 � 8�6, �89 � 8�3, 6982, 6983 � 1, 4 � 298�1, 2983, 49

v=�a, b�

x

y

_v=�_a, _b�

b

a_a

_b

Figure 9



We can use the ideas in the preceding paragraph to define vector subtraction.
Given two vectors u and v, we define a vector u � v by the equation

u � v � u � (�v) (1)

First let’s see what equation (1) is saying in terms of components; then we will indi-
cate a simple geometric interpretation of vector subtraction.

If u � and v � then equation (1) tells us that

That is,

(2)

In other words, to subtract one vector from another, just subtract the corresponding
components.

Vector subtraction can be interpreted geometrically. According to the highlighted
formula in the box on page 707, the right-hand side of equation (2) represents a 
vector drawn from the terminal point of v to the terminal point of u. Figure 10 
summarizes this fact, and Figure 11 provides a geometric comparison of vector 
addition and vector subtraction.

Figure 10 also indicates the algebraic significance of the difference u � v as the
vector we need to add to what is subtracted, v, to get back what we started with, u.

u � v � 8u1 � v1, u2 � v29

 � 8u1 � (�v1), u2 � (�v2)9 � 8u1 � v1, u2 � v29
 u � v � u � (�v) � 8u1, u29 � 8�v1, �v29

8v1, v29,8u1, u29
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y

x

v

u

u-v

Figure 10

y

x

C

B

A

O

v

u

Figure 11
u � v and u � v are the directed
diagonals of parallelogram OABC: 
u � v � and u � v � ACu .OBu

EXAMPLE 4 Vector Subtraction

Let u � and v � Compute 3u � v.8�1, 29.85, 39
SOLUTION

Any vector of unit length is called a unit vector. The following two unit vectors
are particularly useful.

These are shown in Figure 12.
Any vector v � can be uniquely expressed in terms of the unit vectors i and

j as follows:

(3)

To verify equation (3), we have

 � 8x, 09 � 80, y9 � 8x, y9 xi � yj � x81, 09 � y80, 19

8x, y9 � xi � yj

8x, y9
i � 81, 09  and  j � 80, 19

 � 815, 99 � 8�1, 29 � 815 � (�1), 9 � 29 � 816, 79 3u � v � 385, 39 � 8�1, 29
y

x
1

1

i

j

Figure 12
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EXAMPLE 5 Unit Vectors and Components

(a) Express the vector in terms of the unit vectors i and j.
(b) Express the vector v � �4i � 5j in component form.

83, �79

SOLUTION (a) Using equation (3), we can write

Note: In the last step we used the fact that (�7)j � �7j and the definition of vector
subtraction.
(b)

Thus the component form of v is 8�4, 59.
 � 8�4, 09 � 80, 59 � 8�4, 59 v � �4i � 5j � �481, 09 � 580, 19

83, �79 � 3i � (�7)j � 3i � 7j

EXAMPLE 6 Finding a Unit Vector

Find a unit vector u that has the same direction as the vector v � 83, 49.
SOLUTION First, let’s determine the length of v:

So we want a vector whose length is one-fifth that of v and whose direction is the
same as that of v. Such a vector is

(You should check for yourself now that the length of this vector is 1.) Note:
�u � is a unit vector that has the opposite direction v. (You should check
this for yourself as well.)

� 
4
598� 

3
5,

u �
1

5
 v �

1

5
 83, 49 � h 3

5
, 

4

5
i

0v 0 � 232 � 42 � 225 � 5

EXAMPLE 7 Finding a Unit Vector Given a Direction

The angle from the positive x-axis to the unit vector u is p�3, as indicated in
Figure 13. Determine the components of u.

SOLUTION Let P denote the terminal point of u. Since u is a unit vector P lies on the unit circle;
so the coordinates of P are, by definition, Hence

It was mentioned earlier that there are several ways in which vector addition
resembles ordinary addition of real numbers. In the previous section, for example,
we saw that vector addition is commutative. That is, for any two vectors u and v,

u � v � v � u

u � h 1

2
, 
13

2
i

sin p3  2 � 1 12, 13
2 2 .1cos p3  ,

x

y

u
π
3

Figure 13



By using components, we can easily verify that this property holds. (In the previous
section we used a geometric argument to establish this property.) We begin by letting
u � and v � Then we have

Addition of real numbers is commutative.

which is what we wanted to show.
There are a number of other properties of vector addition and scalar multiplica-

tion that can be proved in a similar fashion. In the following box we list a particular
collection of these properties, known as the vector space properties. (Exer-
cises 55–58 ask that you verify these properties by using components, just as we did
for the commutative property.)

For all vectors u, v, and w, and for all scalars (real numbers) a and b, the following
properties hold.

1. u � (v � w) � (u � v) � w 5. a(u � v) � au � av
2. 0 � v � v � 0 � v 6. (a � b)v � av � bv
3. v � (�v) � 0 7. (ab)v � a(bv)
4. u � v � v � u 8. 1v � v

Properties of Vector Addition and Scalar Multiplication

 � v � u
 � 8v1, v29 � 8u1, u29
 � 8v1 � u1, v2 � u29
 � 8u1 � v1, u2 � v29

 u � v � 8u1, u29 � 8v1, v29
8v1, v29.8u1, u29
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Compute each of the indicated quantities.

13. a � b 14. c � d
15. 2a � 4b 16. �2c � 2d
17. b � c 18. 5b � 5c
19. a � c � a � c 20. 1� d
21. a � (b � c) 22. (a � b) � c
23. 3a � 4a 24. 4b � 5b
25. a � b 26. b � c

27. 3b � 4d 28.

29. a � (b � c) 30. (a � b) � c
31. c � d 2 � c � d 2

32. a � b 2 � a � b 2 � 2 a 2 � 2 b 2

In Exercises 33–38, express each vector in terms of the unit
vectors i and j.

33. 34.
35. 36.
37.
38. 0 812, 59 0 83, 49 � 0 83, 49 0 812, 59

385, 39 � 282, 79
8�9, 098�8, �69
84, �2983, 89

00000000
0000

1

0 3b � 4d 0  (3b � 4a)

00
00000000
0000

A
In Exercises 1–6, sketch each vector in an x-y coordinate
system, and compute the length of the vector.

1. 2. 3.
4. 5. 6.

In Exercises 7–12 the coordinates of two points P and Q are
given. In each case, determine the components of the vector

Write your answers in the form 

7. P(2, 3) and Q(3, 7)
8. P(5, 1) and Q(4, 9)
9. P(�2, �3) and Q(�3, �2)

10. P(0, �4) and Q(0, �8)
11. P(�5, 1) and Q(3, �4)
12. P(1, 0) and Q(0, 1)

In Exercises 13–32, assume that the vectors a, b, c, and d are
defined as follows:

a � b � c � d � 8�2, 0986, �1985, 4982, 39

8a, b9.PQu .

8�3, 09834, � 
1
298�6, �69

8�4, 2985, 12984, 39

EXERCISE SET 10.4



63. (a) Compute v v and v 2.
(b) Compute w w and w 2.

64. Show that for any vector A we always have 
A 2 � A A. That is, the square of the length of 

a vector is equal to the dot product of the vector 
with itself. Hint: Let A �

Let u (where 0 
 u 
 p) denote the angle between the two
nonzero vectors A and B. Then it can be shown that the cosine
of u is given by the formula

(See Exercise 77 for the derivation of this result.) In 
Exercises 65–70, sketch each pair of vectors as position
vectors, then use this formula to find the cosine of the angle
between the given pair of vectors. Also, in each case, use
a calculator to compute the angle. Express the angle using
degrees and using radians. Round the values to two decimal
places.

65. A � and B �
66. A � and B �
67. A � and B �
68. A � and B �
69. (a) A � and B �

(b) A � and B �
70. (a) A � and B �

(b) A � and B �
71. (a) Compute the cosine of the angle between the vectors

and 
(b) What can you conclude from your answer in part (a)?
(c) Draw a sketch to check your conclusion in part (b).

72. Follow Exercise 71, but use the vectors and

73. Let A and B be nonzero vectors.
(a) If A B � 0, explain why A and B are perpendicular.
(b) If A and B are perpendicular, explain why A B � 0.
(a) and (b) together show that two nonzero vectors are
perpendicular if and only if their dot product is zero.

74. Find a value for t such that the vectors and 
are perpendicular.

75. Find a unit vector that is perpendicular to the vector
(There are two answers.)

C
76. Suppose that A and B be nonzero vectors.

(a) Show that A � B 2 � A 2 � 2A B � B 2

Hint: By Exercises 64, A � B 2 � (A � B) (A � B).
Now use Exercises 62(d) and 61(c). Alternatively, let 
A � and B � Then separately compute
each side of the equation in part (a).

8x2, y29.8x1, y19
#00
00#0000

8�12, 59.

8�4, t9815, �39

#
#

8�4, �39.
86, �89

8�5, 29.82, 59
8�1, �2987, 129
81, 2987, 129
8�1, 398�8, 29
81, �398�8, 29

81, 4983, 09
8�3, �7985, 69
8�2, 5983, �19
82, 6984, 19

cos u �
A # B
0A 0 0B 0

8x, y9.
#00

00#
00#In Exercises 39–42, express each vector in the form 

39. i � j 40. i � 2j

41. 5i � 4j 42.

In Exercises 43–48, find a unit vector having the same direction
as the given vector.

43. 44.
45. 46.
47. 8i � 9j 48. � i � j

In Exercises 49–54, you are given an angle u measured
counterclockwise from the positive x-axis to a unit vector

In each case, determine the components u1 and u2.

49. u � p�6 50. u � p�4
51. u � 2p�3 52. u � 3p�4
53. u � 5p�6 54. u � 3p�2

B
In Exercises 55–58, let u � v � and w �
Refer to the box on page 712.

55. Verify Properties 1 and 2.
56. Verify Properties 3 and 4.
57. Verify Properties 5 and 6.
58. Verify Properties 7 and 8.
59. Verify that v � (u � v) � u.
60. Show that kv � k v for any real number k.

In Exercises 61–77 we study the dot product of two vectors.
Given two vectors A � and B � we define the
dot product A B as follows:

A B � x1x2 � y1y2

For example, if A � and B � then
A B � (3)(�2) � (4)(5) � 14. Notice that the dot product
of two vectors is a real number. For this reason, the dot product
is also known as the scalar product. For Exercises 61–63 the
vectors u, v, and w are defined as follows:

61. (a) Compute u v and v u.
(b) Compute v w and w v.
(c) Show that for any two vectors A and B, we have 

A B � B A. That is, show that the dot product 
is commutative. Hint: Let A � and let 
B �

62. (a) Compute v � w.
(b) Compute u (v � w).
(c) Compute u v � u w.
(d) Show that for any three vectors A, B, and C we have

A (B � C) � A B � A C.###
##

#
8x2, y29.

8x1, y19,
##

##
##

u � 8�4, 59  v � 83, 49  w � 82, �59

# 59,8�2,83, 49
#

# 8x2, y29,8x1, y19

000000

w29.8w1,v29,8v1,8u1, u29,

u � 8u1, u29.

87, 39
8�12, 5986, �39
8�3, 3984, 89

1

0 i � j 0  (i � j)

8a, b9.
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(a) Let A and B be nonzero vectors, and let C � A � B.
Show that

C 2 � A 2 � B 2 � 2A B

Hint: Use the result or method of Exercise 76(a).
(b) According to the law of cosines, we have

C 2 � A 2 � B 2 � 2 A B cos u

Set this expression for C 2 equal to the expression ob-
tained in part (a), and then solve for cos u to obtain the
required formula.

Note: The formula that we just derived can be written in
the form

A B � A B cos u

This expresses the dot product in purely geometric terms:
The dot product of two vectors is the product of the
lengths of the two vectors and the cosine of their
included angle. So the easy-to-compute algebraic expres-
sion in the components of A and B that is used to define
the dot product on page 713 has important geometric
applications. In particular, dot products can be used to
compute lengths and angles and to determine whether
two vectors are mutually perpendicular.

0000#

00
0000000000

#000000
(b) Show that A � B 2 � A 2 � B 2 if and only if A

and B are perpendicular. Draw a sketch with A and B
joined “head to tail.” This is a vector statement of the
Pythagorean theorem.

77. Refer to the below figure. In this exercise we are going to
derive the following formula for the cosine of the angle u
between two nonzero vectors A and B:

y

x
O

¨

A
C

B

cos u �
A # B
0A 0 0B 0

000000
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The Project, Lines, Circles, and Ray Tracing, at http://www.cengage.com/math/cohen/precalc7e, uses vector
algebra to develop a basic tool for analyzing optical systems.

10.5 PARAMETRIC EQUATIONS
We will introduce the idea of parametric equations through a simple example.
Suppose that we have a point P(x, y) that moves in the x-y plane and that the x- and
y-coordinates of P at time t (in seconds) are given by the following pair of equations:

x � 2t and y � (t � 0)

This pair of parametric equations tells us the location of the point P at any time t.
For instance, when t � 1, we have

x � 2t � 2(1) � 2 and

In other words, after 1 second, the coordinates of P are Let’s see where P is
after 2 seconds. We have

x � 2t � 2(2) � 4 and

So, after 2 seconds, the location of the point P is (4, 2). In Table 1 we have computed
the values of x and y (and hence the location of P) for integral values of t running
from 0 to 5. Figure 1(a) shows the points that are determined. (To avoid cluttering

y �
1

2
 t 2 �

1

2
 (2)2 � 2

12, 12 2 .
y �

1

2
 t 2 �

1

2
 (1)2 �

1

2

1

2
 t 2

TABLE 1

t x y

0 0 0
1 2
2 4 2
3 6
4 8 8
5 10 25

2

9
2

1
2

http://www.cengage.com/math/cohen/precalc7e


the figure, we have labeled only the points for t � 2, . . . , 5.) In Figure 1(b) we have
joined the points with a smooth curve. [If we were not certain of the pattern emerg-
ing in Figure 1(a), we could have computed additional points.

The curve in Figure 1(b) appears to be a portion of a parabola. We can confirm
this as follows. From the equation x � 2t we obtain t � x�2. Now we use this result
to substitute for t in the equation This yields

We conclude from this that the curve in Figure 1(b) is a portion of the parabola
The equations x � 2t and (with the restriction t � 0) are para-

metric equations for the curve. The variable t is called the parameter. In our initial
example the parameter t represented time. In other cases the parameter might have
other interpretations, for example, as the slope of a certain line, as an angle, or as the
length of a curve. See the project at the end of this section. In still other cases there
may be no immediate interpretation for the parameter.

Before looking at additional examples, we point out two advantages in using
parametric equations to describe curves. First, by restricting the values of the
parameter (as we did in our initial example), we can focus on specific portions of a
curve. Second, parametric equations let us think of a curve as a path traced out by
a moving point; as the parameter t increases, a definite direction of motion, called
the orientation of the curve, is established.

In physics parametric equations are often used to describe the motion of an object.
Suppose, for example, that a ball is thrown from a height of 6 feet, with an initial
speed of and at an angle of 35° with the horizontal, as shown in Figure 2.
Then (neglecting air resistance and spin), it can be shown that the parametric equa-
tions for the path of the ball are

(1)

(2)

In these equations x and y are measured in feet and t is in seconds, with t � 0 corre-
sponding to the instant the ball is thrown.

 y � 6 � (88 sin 35°) t � 16t2

 x � (88 cos 35°) t

88 ft/sec

y � 1
2 t 2y � 1

8 x 2.

y �
1

2
 a x

2
b 2

�
1

8
 x 2

y � 1
2 t 2.
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Figure 1
x � 2t, (t � 0).y � 1

2 t2



With equations (1) and (2) we can calculate the location of the ball at any time t.
For instance, to determine the location when t � 1 second, we substitute t � 1 in the
equations to obtain

x � (88 cos 35°)(1) � 72.1 ft

and

y � 6 � (88 sin 35°)(1) � 16(1)2 � 40.5 ft

So after 1 second the ball has traveled a horizontal distance of approximately 72.1 ft,
and the height of the ball is approximately 40.5 ft. In Figure 3 we display this infor-
mation along with the results for similar calculations corresponding to t � 2 and t �
3 seconds. [You should use equations (1) and (2) and your calculator to check the
results in Figure 3 for yourself.]
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20 40 60 80 100 200
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y (feet)

x (feet)

Figure 2
The path of a ball thrown from a
height of 6 ft, with an initial speed
of 88 ft/s, at an angle of 35° with
the horizontal.
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y (feet)

x (feet)

t =1 sec
x=72.1 ft
y=40.5 ft

t =3 sec
x=216.3 ft
y=13.4 ft

t =2 sec
x=144.2 ft
y=42.9 ft

Figure 3
The location of the ball after 1, 2,
and 3 seconds.

From Figure 3 we can see that the total horizontal distance traveled by the ball in
flight is something between 220 ft and 240 ft. Using the parametric equations for the
path of the ball, we can determine this distance exactly. We can also find out how
long the ball is in the air. When the ball does hit the ground, its y-coordinate is zero.
Replacing y by zero in equation (2), we have

0 � 6 � (88 sin 35°)t � 16 t2

This is a quadratic equation in the variable t. To solve for t, we use the quadratic
formula

with the following values for a, b, and c:

a � �16 b � 88 sin 35° c � 6

As Exercise 19 asks you to check, the results are t � 3.27 and t � �0.11. We discard
the negative root here because in equations (1) and (2) and in Figure 3, t represents

t �
�b � 2b2 � 4ac

2a



time, with t � 0 corresponding to the instant that the ball is thrown. Now, using 
t � 3.27, we can compute x:

x � (88 cos 35°)t � (88 cos 35°)(3.27) � 235.7 ft

In summary, the ball is in the air for about 3.3 seconds, and the total horizontal dis-
tance is approximately 236 feet.

Just as in Figure 1, the curve in Figures 2 and 3 is a parabola. Exercise 22 asks
you to verify this by solving equation (1) for t in terms of x and then substituting
the result in equation (2). This process of obtaining an explicit equation relating
x and y from the parametric equations is referred to as eliminating the parameter.
The next example shows a technique that is often useful in this context. As back-
ground for this example, we point out that the graph of an equation of the form

is an ellipse, as is indicated in Figure 4. (We will study this curve in de-

tail in Chapter 12.)

x2

a2 �
y2

b2 � 1
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x

y
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+    =1
x@

a@

y@

b@

Figure 4
The ellipse (x2�a2) � (y2�b2) � 1 is
symmetric about both coordinate
axes. The intercepts of the ellipse
are x � �a and y � �b.

EXAMPLE 1 Parametric Equations for an Ellipse

The parametric equations of an ellipse are

x � 6 cos t and y � 3 sin t (0 � t � 2p)

(a) Eliminate the parameter t to obtain an x-y equation for the curve.
(b) Graph the ellipse and indicate the points corresponding to t � 0, p�2, p, 3p�2,

and 2p. As t increases, what is the direction of travel along the curve?

SOLUTION (a) So that we can apply the identity cos2 t � sin2 t � 1, we divide the first equation
by 6 and the second by 3. This gives us

Squaring and then adding these two equations yields

or

This is the x-y equation for the ellipse.
(b) Figure 5 shows the graph of the ellipse (x2�62) � (y2�32) � 1. When t � 0, the

parametric equations yield

x � 6 cos 0 � 6 and y � 3 sin 0 � 0

Thus with t � 0 we obtain the point (6, 0) on the ellipse, as is indicated
in Figure 5. The points corresponding to t � p�2, p, 3p�2, and 2p are
obtained similarly. Note that as t increases, the direction of travel around the
ellipse is counterclockwise and that when t � 2p, we are back to the starting
point, (6, 0).

x2

62 �
y2

32 � 1

 a x

6
b 2

� a y

3
b 2

� cos2 t � sin2 t � 1

x

6
� cos t  and  

y

3
� sin t



The parametric equations x � 6 cos t and y � 3 sin t that we graphed in Fig-
ure 5 are by no means the only parametric equations yielding that ellipse. Indeed,
there are numerous parametric equations that give rise to the same ellipse. One such
pair is

x � 6 sin t and y � 3 cos t (0 � t � 2p)

As you can check for yourself, these equations lead to the same x-y equation as be-
fore, namely, (x2�62) � (y2�32) � 1. The difference now is that in tracing out the
curve from the parametric equations, we start (when t � 0) and end (when t � 2p)
with the point (0, 3) on the ellipse and we travel clockwise rather than counterclock-
wise. Similarly, the equations

x � 6 sin 2t and y � 3 cos 2t (0 � t � 2p)

also produce the ellipse. In this case, as you can check for yourself, as t runs from 0 to
2p, we make two complete trips clockwise around the ellipse. If we think of t as
time, then the parametric equations x � 6 sin 2t and y � 3 cos 2t describe a point
traveling around the ellipse (x2�62) � (y2�32) � 1 twice as fast as would be the case
with the equations x � 6 sin t and y � 3 cos t.

In Example 1 we saw that the parametric equations x � 6 cos t and y � 3 sin t
represent an ellipse. The same method that we used in Example 1 can be used to
establish the following general results.

Let a and b be positive constants. Then the parametric equations

x � a cos t and y � b sin t (0 � t � 2p)

represent the ellipse shown in Figure 6. As t increases, we move around the ellipse in
a counterclockwise direction. The parametric equations

x � a sin t and y � b cos t (0 � t � 2p)

also represent the ellipse in Figure 6. Here, the direction of motion is clockwise.

Parametric Equations for the Ellipse

718 CHAPTER 10 Additional Topics in Trigonometry
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t =0
x=6
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t =3π/2
x=0
y=_3

t =2π
x=6
y=0
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x=_6
y=0

t =π/2
x=0
y=3

Figure 5
Parametric equations for this 
ellipse are x � 6 cos t and 
y � 3 sin t. The x-y equation 
is (x2�62) � (y2�32) � 1.

y

x
a

b

Figure 6
x � a cos t and y � b sin t
or
x � a sin t and y � b cos t, 
both for 0 � t � 2p.



There is a particular case involving the parametric equations x � a cos t and
y � b sin t that deserves mention. When a and b are equal, we have x � a cos t and
y � a sin t, from which we deduce that

Thus with a � b the parametric equations describe a circle of radius a. And special-
izing further still, if a � b � 1, we obtain x � cos t and y � sin t, for 0 � t � 2p, as
parametric equations for the unit circle. This agrees with our unit circle definitions
for sine and cosine back in Section 8.1.

 � a2
 (cos2 t � sin2 t) � a2

 x2 � y2 � a2 cos2 t � a2 sin2 t
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EXAMPLE 2 Finding an x-y Equation Given Parametric Equations

The position of a point P(x, y) at time t is given by the parametric equations

x � 1 � 2t and y � 2 � 4t (t � 0)

Find an x-y equation for the path traced out by the point P.

SOLUTION From the parametric equation for x we obtain t � (x � 1)�2. Using this to substitute
for t in the second parametric equation, we have

This tells us that the point P moves along the line y � 2x. However, the entire line
is not traced out, but only a portion of it. This is because of the original restriction
t � 0. To see which portion of the line is described by the equations, we can succes-
sively let t � 0, 1, and 2 in the parametric equations. As you can check, the points
obtained are (1, 2), (3, 6), and (5, 10). So as t increases, we move to the right along
the line y � 2x, starting from the point (1, 2); see Figure 7.

y � 2 � 4 a x � 1

2
b � 2 � 2(x � 1) � 2x

y

x

y=2x

t=2
(5, 10)

t=1
(3, 6)

t=0
(1, 2)

Figure 7
The parametric equations 
x � 1 � 2t and y � 2 � 4t, with the
restriction t � 0, describe the por-
tion of the line y � 2x to the right
of and including the point (1, 2).
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One of the recurrent techniques that we have used for analyzing parametric equa-
tions in this section has been that of eliminating the parameter. It is important to note,
however, that it is not always a simple matter to eliminate the parameter. Indeed, in
most cases it is not even possible. When this occurs, we have several techniques
available. For example, we can set up a table with t, x, and y and plot points; we can
use the techniques of calculus; or we can use a graphing utility to obtain the graph.
Even when we use a graphing utility, however, the techniques of calculus are helpful
in understanding why the graph looks as it does.

(b) Use the graphing utility to estimate the x-intercept of
the graph. Check that your answer is consistent with
the value determined in the text.

19. In the text we said that the solutions of the quadratic
equation 0 � 6 � (88 sin 35°)t � 16t2 are t � 3.27 and 
t � �0.11. Use the quadratic formula and your calculator
to verify these results.

20. The following figure shows the parametric equations and
the path for a ball thrown from a height of 5 ft, with an
initial speed of and at an angle of 70° with the
horizontal.

(a) Compute the x- and y-coordinates of the ball when 
t � 1, 2, and 3 seconds. (Round the answers to one
decimal place.)

(b) How long is the ball in flight? (Round the answer to
two decimal places.) What is the total horizontal dis-
tance traveled by the ball before it lands? (Round to
the nearest foot.) Check that your answer is consistent
with the figure.

21. The figure shows the parametric equations and the path
for a ball thrown from a height of 5 ft, with an initial
speed of 100 ft/s and at an angle of 45° with the horizontal.
(So except for the initial angle, the data are the same as in
Exercise 20.)
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x=(100 cos 70°
00 sin

)t
y=5+(1 70°)t-16t@

100 ft/sec

A
In Exercises 1–6 you are given the parametric equations of a
curve and a value for the parameter t. Find the coordinates of
the point on the curve corresponding to the given value of t.

1. x � 2 � 4t, y � 3 � 5t; t � 0
2. x � 3 � t2, y � 4 � t3; t � �1
3. x � 5 cos t, y � 2 sin t; t � p�6
4. x � 4 cos 2t, y � 6 sin 2t; t � p�3
5. x � 3 sin3 t, y � 3 cos3 t; t � p�4
6. x � sin t � sin 2t, y � cos t � cos 2t; t � 2p�3
7. Use the standard viewing rectangle for this exercise.

(a) Graph the parametric equations x � 2t, y � 0.5t2 with
t-values running from 0 to 1; from 0 to 3; from 0 to 4.
Compare the results (in a complete sentence or two).

(b) Graph the parametric equations given in part (a) using
t-values running from �5 to 5. Compare your picture
to the graph shown in Figure 1(b) on page 715. What
are the restrictions on t in Figure 1(b)?

In Exercises 8–17, graph the parametric equations after elimi-
nating the parameter t. Specify the direction on the curve corre-
sponding to increasing values of t. For Exercises 8–11, t can be
any real number; for Exercises 12–17, 0 � t � 2p.

8. x � t � 1, y � t2

9. x � 2t � 1, y � t2 � 1
10. x � t2 � 1, y � t � 1
11. x � t � 4, y � t
12. x � 5 cos t, y � 2 sin t
13. x � 2 sin t, y � 3 cos t
14. x � 4 cos 2t, y � 6 sin 2t
15. x � 2 cos(t�2), y � sin(t�2)
16. (a) x � 2 cos t, y � 2 sin t

(b) x � 4 cos t, y � 2 sin t
17. (a) x � 3 sin t, y � 3 cos t

(b) x � 5 sin t, y � 3 cos t
18. (a) Graph the parametric equations x � (88 cos 35°)t, 

y � 6 � (88 sin 35°)t � 16t2. Use settings that will 
give you a picture similar to Figure 3 on page 716.

00

EXERCISE SET 10.5



x-y equation for the curve. Hint: In each equation,
raise both sides to the two-thirds power.

(b) Graph the curve in part (a) for 0 � t � 2p to
reproduce the figure above. [The hypocycloid of four
cusps was first studied by the Danish astronomer Olaf
Roemer (1644–1710) and by the Swiss mathematician
Jacob Bernoulli (1654–1705).]

29. x � 2 cos t � cos 2t, y � 2 sin t � sin 2t, 0 � t � 2p
[This curve is the deltoid. It was first studied by the Swiss
mathematician Leonhard Euler (1707–1783).]

30. 0 � t � 2p

[This curve is the lemniscate of Bernoulli. The Swiss math-
ematician Jacob Bernoulli (1654–1705) studied the curve
and took the name lemniscate from the Greek lemniskos,
meaning “ribbon.”]

31. x � 2 tan t, y � 2 cos2 t, 0 � t � 2p Remark: If you
eliminate the parameter t, you’ll find that the Cartesian
form of the curve is y � 8�(x2 � 4). (Verify this last state-
ment, first algebraically, then graphically.) The curve is
known as the witch of Agnesi, named after the Italian mathe-
matician and scientist Maria Gaetana Agnesi (1718–1799).
The word “witch” in the name of the curve is the result of
a mistranslation from Italian to English. In Agnesi’s time,
the curve was known as la versiera, an Italian name with
a Latin root meaning “to turn.” In translation, the word
versiera was confused with another Italian word avversiera,
which means “wife of the devil” or “witch.”

32. �q � t � q

Hint: Use �10 � t � 10. [This curve is the folium of
Descartes. The word folium means “leaf.” When Descartes
drew the curve in 1638, he did not use negative values
for coordinates. Thus he obtained only the first-quadrant
portion of the curve, which resembles a leaf or loop. The
complete graph of the curve was first given by the Dutch
mathematician and scientist Christian Huygens in 1692.
Huygens’s graph is reproduced on page 108 in John
Stillwell’s Mathematics and Its History, Second Edition
(New York: Springer Verlag, 2002).]

y �
3t2

1 � t3 ,x �
3t

1 � t3 ,

y �
sin t cos t 

1 � sin2 t
,x �

cos t

1 � sin2 t
,

y

x

x=cos
y=sin

# t
# t

(a) Compute the x- and y-coordinates of the ball when 
t � 1, 2, and 3 seconds. (Round the answers to one
decimal place.)

(b) How long is the ball in flight? (Round the answer to
two decimal places.) What is the total horizontal dis-
tance traveled by the ball before it lands? (Round to the
nearest foot.)

22. Refer to parametric equations (1) and (2) in the text. 
By eliminating the parameter t, show that the equations
describe a parabola. (That is, show that the resulting 
x-y equation has the form y � ax2 � bx � c.)

In Exercises 23–39, graph the parametric equations using the
given range for the parameter t. In each case, begin with the
standard viewing rectangle and then make adjustments, as
necessary, so that the graph utilizes as much of the viewing
screen as possible. For example, in graphing the circle given
by x � cos t and y � sin t, it would be natural to choose a
viewing rectangle extending from �1 to 1 in both the x- and
y-directions.

23. (a) x � 3t � 2, y � 3t � 2, (�2 � t � 2)
(b) x � 3t � 2, y � 3t � 2, (�3 � t � 3)

24. x � ln(3t � 2), y � ln(3t � 2) using:
(a) 2�3 � t � 1
(b) 2�3 � t � 10
(c) 2�3 � t � 100
(d) 2�3 � t � 1000

25. x � 4 cos t, y � 3 sin t, 0 � t � 2p (ellipse)
26. x � 4 cos t, y � �3 sin t, 0 � t � 2p (the same as

the ellipse in Exercise 25 but traced out in the opposite
direction)

27. x � 4 cos t, y � 3 sin t, 0 � t � p�2 (one-quarter of an
ellipse)

B
28. (a) The curve in the accompanying figure is called an

astroid (or a hypocycloid of four cusps). A pair of
parametric equations for the curve is x � cos3 t, 
y � sin3 t. By eliminating the parameter t, find the 

100 200 300

20

40

60

80

y (feet)

x (feet)

x=”50 œ„2’t

y=5+”50œ„2’t-16t@
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39. x � sin(0.8t � p), y � sin t, 0 � t � 10p
(Bowditch curve)

Note: Historical background and information about many of the
curves mentioned in Exercises 28 through 39 (and throughout
Section 10.7) are available on the Internet through the World
Wide Web. The address is http://www-groups.dcs.st-and.ac.uk/
~history/Curves/. Another excellent source for information on
these curves, and many others, is J. Dennis Lawrence’s 
A Catalogue of Special Plane Curves (Dover Publications, 
1972).

33. x � 3t2, y � 2t3, �2 � t � 2 (semicubical parabola)
34. x � sec t, y � 2 tan t, 0 � t � 2p (hyperbola)
35. x � 3(t2 � 3), y � t (t2 � 3), �3 � t � 3 

(Tschirnhausen’s cubic)
36. x � 8 cos t � 2 cos 4t, y � 8 sin t � 2 sin 4t,

0 � t � 2p (hypocycloid with five cusps)
37. x � 8 cos t � cos 8t, y � 8 sin t � sin 8t, 0 � t � 2p

(hypocycloid with nine cusps)
38. x � cos t � t sin t, y � sin t � t cos t (involute of a 

circle)
(a) �p � t � p (c) �4p � t � 4p
(b) �2p � t � 2p
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The Project, Parameterizations of Lines and Circles, at http://www.cengage.com/math/cohen/precalc7e, develops
useful and interesting parameterizations of lines and circles.

10.6 INTRODUCTION TO POLAR COORDINATES
Up until now, we have always specified the location of a point in the plane by means
of a rectangular coordinate system. In this section we introduce another coordinate
system that can be used to locate points in the plane. This is the system of polar
coordinates. We begin by drawing a half-line or ray emanating from a fixed point O.
The fixed point O is called the pole or origin, and the half-line is called the polar
axis. The polar axis is usually depicted as being horizontal and extending to the right,
as indicated in Figure 1(a). Now let P be any point in the plane. As is indicated in
Figure 1(b), we initially let r denote the distance from O to P, and we let u denote the
angle measured from the polar axis to (Just as in our earlier work with angles in
standard position, we take the measure of u to be positive if the rotation is counter-
clockwise and negative if it is clockwise.) Then the ordered pair (r, u) serves to locate
the point P with respect to the pole and the polar axis. We refer to r and u as polar
coordinates of P, and we write P(r, u) to indicate that P is the point with polar coor-
dinates (r, u).

OP.

[Jacob Bernoulli (1654–1705)] was one
of the first to use polar coordinates in a
general manner, and not simply for
spiral shaped curves. —Florian Cajori
in A History of Mathematics, 4th ed.
(New York: Chelsea Publishing
Company, 1985)

O Polar axis

Pole

(a)

O Polar axis

(b)

¨

P(r, ¨)

r

Figure 1

Plotting points in polar coordinates is facilitated by the use of polar coordi-
nate graph paper, such as that shown in Figure 2(a). Figure 2(b) shows the points
with polar coordinates and C(4, 0).B 13, 2p3  2 ,A 12, p6  2 ,

http://www-groups.dcs.st-and.ac.uk/~history/Curves/
http://www-groups.dcs.st-and.ac.uk/~history/Curves/
http://www.cengage.com/math/cohen/precalc7e


There is a minor complication that arises in using polar rather than rectangular
coordinates. Consider, for example, the point C(4, 0) in Figure 2(b). This point
could just as well have been labeled with the coordinates (4, 2p) or (4, 2kp) for any
integral value of k. Similarly, the coordinates (r, u) and (r, u � 2kp) represent the
same point for all integral values of k. This is in marked contrast to the situation
with rectangular coordinates, where the coordinate representation of each point
is unique. Also, what polar coordinates should we assign to the origin? For if r � 0
in Figure 1(b), we cannot really define an angle u. To cover this case we agree on the
convention that the coordinates (0, u) denote the origin for all values of u. Finally, we
point out that in working with polar coordinates, it is sometimes useful to let r take
on negative values. For example, consider the point in Figure 3. The coor-
dinates indicate that to reach P from the origin, we go two units in the direc-
tion 5p�4. Alternatively, we can describe this as �2 units in the p�4 direction.
(Refer again to Figure 3.) For reasons such as this we will adhere to the convention
that the polar coordinates (r, u) and (�r, u � p) represent the same point. (Since r
can now, in fact, be positive, negative, or zero, r is referred to as a directed distance.)

It is often useful to consider both rectangular and polar coordinates simultane-
ously. To do this, we draw the two coordinate systems so that the origins coincide and
the positive x-axis coincides with the polar axis; see Figure 4. Suppose now that a
point P, other than the origin, has rectangular coordinates (x, y) and polar coordinates
(r, u), as indicated in Figure 4. We wish to find equations relating the two sets of
coordinates. From Figure 4 we see that

 tan u �
y
x

 x2 � y2 � r2

 sin u �
y
r
  so   y � r sin u

 cos u �
x
r
  so   x � r cos u

12, 5p4  2 P 12, 5p4  2
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Although Figure 4 displays the point P in the first quadrant, it can be shown that
these same equations hold when P is in any quadrant. For reference we summarize
these equations as follows.
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x � r cos u
y � r sin u
x2 � y2 � r2

tan u �
y
x

Relations Between Polar and Rectangular Coordinates

x

y

r

¨

P

EXAMPLE 1 Changing from Polar to Rectangular Coordinates

The polar coordinates of a point are Find the rectangular coordinates.15, p6  2 .
SOLUTION We are given that r � 5 and u � p�6. Thus

and

The rectangular coordinates are therefore See Figure 5.

The definition of the graph of an equation in polar coordinates is similar to the
corresponding definition for rectangular coordinates. The graph of an equation in
polar coordinates is the set of all points (r, u) with coordinates that satisfy the given
equation. It is often the case that the equation of a curve is simpler in one coordinate
system than in another. The next two examples show instances of this.

1 52 13, 52 2 .
y � r sin u � 5 sin 

p

6
� 5 a 1

2
b �

5

2

x � r cos u � 5 cos 
p

6
� 5 a13

2
b �

513

2

x

y

5

5

œ„3
2

5œ„3
2

5
25

2

,( )
π
6

¨=

Figure 5

EXAMPLE 2 Converting a Polar Equation to Rectangular Form

Convert each polar equation to rectangular form:

(a) r � cos u � 2 sin u; (b) r2 � sin 2u.

SOLUTION (a) In view of the transformation equations x � r cos u and y � r sin u, we multiply
both sides of the given equation by r, for r 	 0, to obtain

r2 � r cos u � 2r sin u

and therefore

x2 � y2 � x � 2y or x2 � x � y2 � 2y � 0



Before concluding that we have a rectangular form of the original equation, we
need to check what happens when r � 0. This means checking that the origin is
on (or not on) the graph of both the original and the transformed equation. Since
r � 0 for u � arctan (�1�2), the origin is on the graph of the original equation.
The origin is also on the graph of the equation x2 � x � y2 � 2y � 0, so it is a
rectangular form of the given equation.

Question for review: What is the graph of this last equation?
(b) Using the double-angle formula for sin 2u, we have

r2 � 2 sin u cos u

Now, to obtain the expressions r sin u and r cos u on the right-hand side of the
equation, we multiply both sides by r2, for . This yields

r4 � 2(r sin u)(r cos u)

and, consequently,

(x2 � y2)2 � 2yx

or

x4 � 2x2y2 � y4 � 2xy � 0

Since the origin lies on the graph of both the given equation and the last equa-
tion, this is a rectangular form of the given equation. Notice how much simpler
the equation is in its polar coordinate form.

r 	 0
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EXAMPLE 3 Converting a Rectangular Equation to Polar Form

Convert the rectangular equation x2 � y2 � ax � to polar form, express-
ing r as a function of u. Assume that a is a constant.

a2x2 � y2

SOLUTION Using the relations x2 � y2 � r2 and x � r cos u, we obtain

r2 � ar cos u � ar

Notice that this equation is satisfied by r � 0. In other words, the graph of this equa-
tion will pass through the origin. This is consistent with the fact that the original equa-
tion is satisfied when x and y are both zero. Now assume for the moment that r 	 0.
Then we can divide both sides of the last equation by r to obtain

r � a cos u � a or r � a � a cos u

This expresses r as a function of u, as required. Note that when u � 0, we obtain

r � a � a(1) � 0

That is, nothing has been lost in dividing through by r; the graph will still pass
through the origin. Again, notice how much simpler the equation is in polar form.

¨™-¨¡

O

d

r¡

r™

(r™, ¨™)

(r¡, ¨¡)

x-axis
or

¨=0

Figure 6

When we work in an x-y coordinate system, one of the basic tools is the formula

for the distance between two points: There is a cor-
responding distance formula for use with polar coordinates. In Figure 6 we let d
denote the distance between the points with polar coordinates (r1, u1) and (r2, u2).
Then, applying the law of cosines, we have d2 � � 2r1r2 cos(u2 � u1). This
is the distance formula in polar coordinates. For ease of reference we repeat this
result in the box that follows.

r 2
1 � r 2

2

d � 2(x2 � x1)
2 � (y2 � y1)

2.
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PROPERTY SUMMARY Distance Formula for Polar Coordinates

Let d denote the distance between two points with polar coordinates (r1, u1) and
(r2, u2). Then

d2 � � 2r1r2 cos (u2 � u1)r2
1 � r2

2

EXAMPLE 4 Finding the Distance Between Points in Polar Coordinates

Compute the distance between the points with polar coordinates and 14, p6  2 .12, 5p6  2
SOLUTION We use the distance formula, taking the points (r1, u1) and (r2, u2) to be and

respectively (see Figure 7). This yields

You should check for yourself that the same result is obtained if we choose (r1, u1)
and (r2, u2) to be and respectively. This is because, in general,
cos(u2 � u1) � cos(u1 � u2). (Why?)

12, 5p6  2 ,14, p6  2
 d � 128 � 217

 � 20 � 16 cos a� 

2p

3
b � 20 � 16 a� 

1

2
b � 28

 � 22 � 42 � 2(2)(4)cos ap
6

�
5p

6
b

 d2 � r2
1 � r2

2 � 2r1r2 cos(u2 � u1)

14, p6  2 ,
12, 5p6  2

Figure 7 ¨=0

5π2, 6
2π
3

5π
6

π
6

( )
π4, 6( )

O

d

2
4

The distance formula can be used to find an equation for a circle. Suppose that the
radius of the circle is a and that the polar coordinates of the center are (r0, u0). As is in-
dicated in Figure 8, we let (r, u) denote an arbitrary point on the circle. Then, since the
distance between the points (r, u) and (r0, u0) is a, the radius of the circle, we have

r2 � � 2rr0 cos(u � u0) � a2 (1)

This is the required equation. There is a special case of this equation that is worth
noting. If the center of the circle is located at the origin, then r0 � 0, and equation (1)
becomes simply r2 � a2. Therefore

r � a or r � �a

The graph of each of these equations is a circle of radius a, with center at the origin.

r 0
2a

(r¸, ¨¸)

(r, ¨)

Figure 8 PROPERTY SUMMARY Polar Equations for Circles

A polar equation for a circle of radius a with center at (r0, u0) is

The usual polar equation for a circle of radius a with center at the origin is

r � a

r 2 � r 2
0 � 2rr0 cos(u � u0) � a2
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EXAMPLE 5 Finding a Polar Equation for a Circle

Determine a polar equation for the circle satisfying the given conditions.

(a) The radius is 2, and the polar coordinates of the center are 
(b) The radius is 5, and the center is the origin.

14, p5  2 .

SOLUTION (a) Using equation (1), we have

and therefore

(b) A polar equation for a circle of radius a and with center at the origin is r � a. So
if the radius is 5, the required equation is r � 5. (The equation r � �5 would
yield the same graph.)

We conclude this section by discussing equations of lines in polar coordinates.
There are two cases to consider: lines that pass through the origin and lines that do
not pass through the origin. First, consider a line through the origin, and suppose that
the line makes an angle u0 with the positive x-axis; see Figure 9. The polar equation
of this line is simply

u � u0

Notice that this equation poses no restrictions on r. In other words, for every real
number r, the point with polar coordinates (r, u0) lies on this line.

r 2 � 8r cos a u �
p

5
b � �12

r 2 � 42 � 2r (4)cos a u �
p

5
b � 22

x-axis
or

¨=0

¨¸

y-axis
or

¨=
π
2

Figure 9

1 2 3

( )1, 

¨=

¨=0

π
3

π
3

( )2, 
π
3

( )_1, 
π
3

EXAMPLE 6 Graphing a Line Through the Pole

Graph the line with polar equation and locate the points on this line for
which r � 1, 2, and �1.

u � p�3 ,

SOLUTION See Figure 10.

Figure 10



Now let us determine the polar equation for a line l that does not pass through
the origin. As is indicated in Figure 11, we assume that the perpendicular distance
from the origin to l is d and that (d, a) are the polar coordinates of point N, the foot
of the perpendicular. The point P(r, u) in Figure 11 denotes an arbitrary point on
line l. We want to find an equation relating r and u.
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Figure 11

å

¨
dr

O

N(d, å)

P(r, ¨)

�
x-axis

or
¨=0

In right triangle ONP, note that �PON � u � a, and therefore

This is the polar equation of the line l. (Note: Since cosine is an even function the
equation is correct when the point P is to “the right” of the point N.) For reference,
we summarize our results about lines in the box that follows.

cos(u � a) �
d
r
  or  r cos(u � a) � d

PROPERTY SUMMARY Polar Equations for Lines

1. Line through the origin: Suppose that a line passes through the origin and makes
an angle u0 with the positive x-axis (as indicated in Figure 9 on page 727). 
Then an equation for the line is u � u0.

2. Line not passing through the origin: Suppose that the perpendicular distance
from the origin to the line is d and that the point (d, a) is the foot of the
perpendicular from the origin to the line (as indicated in Figure 11). Then a 
polar equation for the line is r cos(u� a) � d.

EXAMPLE 7 Finding a Polar Equation for a Tangent Line to a Circle

Figure 12 shows a line tangent to the unit circle at the point P. The x-y coordinates of
P are 

(a) What are the polar coordinates of the point P?
(b) Find a polar equation for the tangent line.
(c) Use the polar equation to find the x- and y-intercepts of the tangent line.
(d) Find a rectangular equation for the line.

113
2  , 12 2 .

SOLUTION (a) Using the unit-circle definition for cosine, we have cos a � and, conse-
quently, a � p�6. The polar coordinates of P are therefore 

(b) In the general equation r cos(u � a) � d we use the values a � p�6 and d � 1
to obtain

(2)

This is a polar equation for the tangent line.

r cosa u �
p

6
b � 1

11, p6  2 .13�2
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x-axis
or

¨=0

å

≈+¥=1

P ” ,
œ„3
2 ’

1
2

x-y coordinates

y-axis
or

¨=
π
2

Figure 12

(c) The x-axis corresponds to u � 0. Substituting u � 0 in equation (2) gives us 

, and therefore

This tells us that the tangent line meets the x-axis at the point with polar coor-
dinates So the x-intercept of the line is 2 �3. For the y-intercept we set
u � p�2 in equation (2). As you should check for yourself, this yields r � 2.
Thus the y-intercept of the tangent line is 2.

(d) From part (b),

It is also instructive to find a rectangular equation for the line by using the point-
slope formula for a line. We have a point on the line. The slope of the line
is tan . (Why?) Then the slope is

So the line has equation

which is equivalent to

Finally, you can find the same equation by using the x- and y-intercepts from
part (c).

13x � y � 2

y �
1

2
� �13 a x �

13

2
b

m � tan a 2p

3
b � �13

1p6 � p
2 2

113
2 , 12 2

 
13

2
 x �

1

2
 y � 1  or  13x � y � 2

 
13

2
 r cos u �

1

2
 r sin u � 1

 ra cos u cos 
p

6
� sin u sin 

p

6
b � 1

 r cosa u �
p

6
b � 1

131 213
3  , 0 2 .

r �
1

13�2
�

2

13
�

213

3

r cos 
p

6
� 1 (Why?)

r cosa0 �
p

6
b � 1

In Exercises 4–6, convert the given rectangular coordinates to
polar coordinates. Express your answers in such a way that r is
nonnegative and 0 � u � 2p.

4. 5. (�1, �1) 6. (0, �2)

In Exercises 7–16, convert to rectangular form.

7. r � 2 cos u 8. 2 sin u � 3 cos u � r
9. r � tan u 10. r � 4

13, 13 2

A
In Exercises 1–3, graph each point in a polar coordinate sys-
tem then convert the given polar coordinates to rectangular
coordinates.

1. (a) (b) (c)
2. (a) (b) (c)
3. (a) (b) (c) 1�1, p8  211, 5p2  211, p2  2

1�5, �p4  21�5, p4  215, p4  2
14, �p6  214, 11p

6  213, 2p3  2

EXERCISE SET 10.6
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11. r � 3 cos 2u 12. r � 4 sin 2u
13. r2 � 8�(2 � sin2 u) 14. r2 � 1�(3 � cos2 u)

15. 16.

In Exercises 17–24, convert to polar form.

17. 3x � 4y � 2 18. x2 � y2 � 25
19. y2 � x3 20. y � x2

21. 2xy � 1 22. x2 � 4x � y2 � 4y � 0
23. 9x2 � y2 � 9 24. x2(x2 � y2) � y2

In Exercises 25–30 you are given a polar equation and its
graph. Use the equation to determine polar coordinates of the
points labeled with capital letters. (For the r-values, where 
necessary, use a calculator and round to two decimal places.)

25.

26.

2π
3

π
3

π
2

π
6

5π
6

A x-axis
or

¨=0

B

C

D

y-axis
or

¨=

r �
2

cos a u �
p

3
b

2π
3

π
3

π
2

π
6

5π
6

AB

C

D

x-axis
or

¨=0

y-axis
or

¨=

r �
4

1 � sin u

r sin a u �
p

4
b � 6r cos a u �

p

6
b � 2

27. r � 2 cos 2u

28. r � �1 � sin u

29. r � eu�6

π
4

π
2

3π
4

x-axis
or

¨=0A

BC

D

E
F

G

H

I

J

K

y-axis
or

¨=

π
4

π
2

3π
4

x-axis
or

¨=0

A

B

C

D

y-axis
or

¨=

2π
3

π
3

π
2

π
6

5π
6

A

x-axis
or

¨=0

B

C

D

y-axis
or

¨=



Notice that the rectangular form of the polar equation r cos u� a
is x � a. Thus the graph of the polar equation r cos u � a is a
vertical line with an x-intercept of a. Similarly, the graph of the
polar equation r sin u � b is a horizontal line with a y-intercept
of b. In Exercises 45 and 46, use these observations to graph
the polar equations.

45. (a) r cos u � 3 46. (a) r cos u � �2
(b) r sin u � 3 (b) r sin u � 4

B
47. The accompanying figure shows the graph of a line l.

(a) According to the text, what is the polar equation 
for l?

(b) By converting the equation in part (a) to rectan-
gular form, show that the x-y equation for l is 
x cos a � y sin a � d. (This equation is called the
normal form for a line.) Hint: First use one of
the addition formulas for cosine.

48. By converting the polar equation

r � a cos u � b sin u

to rectangular form, show that the graph is a circle, and find
the center and the radius.

49. Show that the rectangular form of the equation r � a sin 3u
is (x2 � y2)2 � ay (3x2 � y2).

50. Show that the rectangular form of the equation

(a � 1)

is (1 � a2)x2 � y2 � 2a2bx � a2b2 � 0.
51. Show that the polar form of the equation 

� 1 is

52. Show that a polar equation for the line passing 
through the two points A(r1, u1) and B(r2, u2) is 
rr1 sin(u� u1) � rr2 sin(u� u2) � r1r2 sin(u1 � u2) � 0.

r 2 �
a2b2

b2 cos2 u � a2 sin2 u

(y2�b2) �(x2�a2)

r �
ab

(1 � a cos u)

x-axis
or

¨=0

�
d

å

y-axis
or

¨=
π
2

30. r2 � cos 2u

In Exercises 31–34, compute the distance between the given
points. (The coordinates are polar coordinates.)

31. and 32. (4, p) and 
33. and (1, 0) 34. and 

In Exercises 35–38, determine a polar equation for the circle
satisfying the given conditions.

35. The radius is 2, and the polar coordinates for the center are:
(a) (4, 0) (b) (c) (0, 0)

36. The radius is and the polar coordinates of the center
are: (a) (2, p) (b) (c) (0, 0)

37. The radius is 1, and the polar coordinates of the center are:
(a) (b)

38. The radius is 6, and the polar coordinates of the center are:
(a) (b)

In Exercises 39–42 the polar equation of a line is given. In
each case: (a) specify the perpendicular distance from the
origin to the line; (b) determine the polar coordinates of the
points on the line corresponding to u � 0 and u � p�2;
(c) specify the polar coordinates of the foot of the perpendicu-
lar from the origin to the line; (d) use the results in parts (a),
(b), and (c) to sketch the line; and (e) find a rectangular form
for the equation of the line.

39. 40.
41. 42.
43. A line is tangent to the circle x2 � y2 � 4 at a point P with

x-y coordinates .
(a) What are the polar coordinates of P?
(b) Find a polar equation for the tangent line.
(c) Use the polar equation to determine the x- and 

y-intercepts of the line.
(d) Find a rectangular equation for the line.

44. Follow Exercise 43 using the circle x2 � y2 � 36 and the
point P with x-y coordinates .1�3, �313 2

1�13, 1 2
r cos 1u � p

2 2 � 12r cos 1u � 2p
3 2 � 4

r cos 1u � p
4 2 � 1r cos 1u � p

6 2 � 2

1�2, p4 21�3, 5p4 2
11, p4 211, 3p2 2

12, 3p4 2
16,

14, 2p3 2

15, 5p3 213, 5p6 214, 4p3 2
13, 7p4 214, p6 212, 2p3 2

x-axis
or

¨=0A

2π
3

π
3

π
2

π
6

5π
6

D

E F

C B

y-axis
or

¨=
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(b) In the figure, P denotes an arbitrary point between the
origin and A on the x-axis. Let the polar coordinates of
P be (r, 0). Use the distance formula for polar coordi-
nates to show that

(PA)(PB)(PC ) � 1 � r3

[This result is due to the English mathematician Roger
Cotes (1682–1716).]

54. The following figure shows an equilateral triangle inscribed
in the unit circle.

The point Q lies on the bisector of AOC, and the distance
from O to Q is r. Use the distance formula for polar coordi-
nates to show that

(QA)(QB)(QC ) � 1 � r3

(This result also is due to Roger Cotes.)

�

y

x

≈+¥=1

A

B

C

Q

O

Hint: Use the following figure and the observation that

area ^OAB � (area ^OBP) � (area ^OPA)

53. The following figure shows an equilateral triangle inscribed
in the unit circle.

(a) Specify polar coordinates for the points A, B, and C.

y

x

≈+¥=1

A

B

C

P

O

A(r¡, ¨¡)

P(r, ¨)
B(r™, ¨™)

¨=0

¨=
π
2
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10.7 CURVES IN POLAR COORDINATES
In principle, the graph of any polar equation r � f (u) can be obtained by setting
up a table and plotting a sufficient number of points. Indeed, this is just the 
way a graphing calculator or a computer operates. Figure 1, for example, shows

Figure 1
(a) A polar coordinate graph
discovered by Henri Berger, a
student in one of the author’s
mathematics classes at UCLA in
Spring of 1988; (b) a polar
coordinate graph discovered by
Oscar Ramirez, a precalculus
student at UCLA in Fall of 1991.



computer-generated graphs of the polar equations and 
r � cos2 5u� sin 3u� 0.3. In this section we’ll concentrate on a few basic types of
polar equations and their graphs. With the exception of Example 1, the polar equa-
tions that we consider involve trigonometric functions. To understand why the
graphs look as they do, we will often use symmetry and the basic properties of the
sine and cosine functions.

r � (sin 4u)4 � cos 3u
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EXAMPLE 1 Graphing the Spiral of Archimedes

Graph the polar equation r � u�p for u � 0.

SOLUTION The equation shows that as u increases, so does r. Geometrically, this means that as
we plot points, moving counterclockwise with increasing u, the points will be farther
and farther from the origin. In Table 1 we have computed values for r corresponding
to some convenient values of u. In Figure 2 we have plotted the points in the table
and connected them with a smooth curve. The curve is known as the spiral of
Archimedes.

TABLE 1

U 0 p 2p 3p 4p

r 0 1 2 3 45
2

7
4

3
2

5
4

3
4

1
2

1
4

5p
2

7p
4

3p
2

5p
4

3p
4

p
2

p
4

π
4

π
2

¨=

7π
4¨=3π

2
¨=

5π
4

¨=

3π
4

¨=

¨=π
x-axis

or
¨=0

y-axis
or

¨=

Figure 2

r � (u � 0)
u

p
 



We saw in Chapters 1 and 3 that symmetry considerations can often be used
to reduce the amount of work involved in graphing equations. This is also true for
polar equations. In the box that follows, we list four tests for symmetry in polar
coordinates.

1. If substituting �u for u yields an equivalent equation, then the graph is symmet-
ric about the polar axis u� 0 (the x-axis).

2. If substituting �u for u and �r for r yields an equivalent equation, then the
graph is symmetric about the line u� p�2 (the y-axis).

3. If substituting p � u for u yields an equivalent equation, then the graph is sym-
metric about the line u� p�2 (the y-axis).

4. If substituting �r for r yields an equivalent equation, then the graph is symmet-
ric about the pole r � 0 (the origin).

Caution: As opposed to the case with the x-y symmetry tests (in Chapter 1), if a polar
equation fails a symmetry test, then it is still possible for the graph to possess the in-
dicated symmetry. This is a consequence of the fact that the polar coordinates of a
point are not unique. (For an example, see Example 3.)

The validity of the first test follows from the fact that the points (r, u) and
(r, �u) are reflections of each other about the polar axis (the x-axis); see Figure 3.
The validity of test 2 follows from the fact that the points (r, u) and (�r, �u) are
reflections of each other about the line u � p�2 (the y-axis), as indicated in
Figure 3. The other tests can be justified in a similar manner.

Symmetry Tests in Polar Coordinates
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EXAMPLE 2 Graphing a Cardioid

Graph the polar equation r � 1 � cos u.

SOLUTION We know (from Section 8.1) that the cosine function satisfies the identity
cos(�u) � cos u. So according to symmetry test 1, the graph of r � 1 � cos u will
be symmetric about the line u � 0. In Figure 4(a) we have set up a table (using a



calculator as necessary) with some convenient values of u running from 0 to p.
Plotting the points in the table leads to the curve shown in Figure 4(a). Reflecting this
curve in the line u� 0, we obtain the graph in Figure 4(b). The fact that the period of
the cosine function is 2p implies that we need not consider values of u beyond 2p.
(Why?) Thus the curve in Figure 4(b) is the required graph of r � 1 � cos u. The
curve is a cardioid.

In graphing polar equations, just as in graphing Cartesian x-y equations, there is
always the question of whether we have plotted a sufficient number of points to re-
veal the essential features of the graph. As a check on our work in Figure 4(a) we can
graph the equation r � 1 � cos u in a rectangular u-r coordinate system, as shown
in Figure 5. (This is easy to do using reflection and translation.) From the graph in
Figure 5 we see that as u increases from 0 to p, the values of r increase from 0 to 2.
Now, recall that in polar coordinates, r represents the directed distance from the ori-
gin. So on the polar graph, as we go from u� 0 to p, the points that we obtain should
be farther and farther from the origin, starting with r � 0 and ending with r � 2. The
polar graph in Figure 4(a) is consistent with these observations.
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EXAMPLE 3 Graphing a Limaçon

Graph the polar curve r � 1 � 2 sin u.

¨

r

1

2

π
2

3π
2

π 2π

Figure 5
The graph of r � 1 � cos u in a
rectangular u-r coordinate system.

SOLUTION Using symmetry test 3, we replace u by p � u in the given equation:

because sin p � 0 and cos p� �1

This shows that the graph is symmetric about the line u� p�2. (Note that symmetry
test 2 fails for this equation, yet the graph is symmetric about the y-axis.)

Next, to see what to expect in polar coordinates, we first sketch the graph of
the given equation in a rectangular u-r coordinate system; see Figure 6. In Figure 6,

 � 1 � 2 sin u
 r � 1 � 2 sin(p � u) � 1 � 2 (sin p cos u � cos p sin u)



notice that the maximum value of r is 3. This implies that the required polar graph
is contained within a circle of radius 3 about the origin. (We’ll refer to this sketch
several more times in the course of the solution.)

In Figure 7(a) we have set up a table and graphed the given polar equation
for u running from 0 to p�2. Note that as u increases from 0 to p�2, the r-values
increase from 1 to 3 (in agreement with Figure 6). By reflecting the curve in Fig-
ure 7(a) in the line u� p�2, we obtain the graph of r � 1 � 2 sin u for 0 � u� p;
see Figure 7(b).

00
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The graph of r � 1 � 2 sin u in a
rectangular u-r coordinate system.
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Next, let’s consider the values of r as u increases from p to 3p�2. Figure 6 tells
us what to expect on this interval:

As u increases from p to 7p�6, the r-values decrease from 1 to 0; as u
increases from 7p�6 to 3p�2, the r-values decrease from 0 to �1. However
(in view of the convention regarding negative r-values), this will mean that
the points on the polar graph are, in fact, moving farther and farther from the
origin as u increases from 7p�6 to 3p�2.



In Figure 8(a) we have set up a table for p� u� and added the corresponding
points from Figure 7(b). Finally, again taking into account the symmetry to the line
u� p�2, we sketch the graph for 0 � u� 2p, as indicated in Figure 8(b). The curve
in Figure 8(b) is a limaçon. (Not all limaçons have inner loops. See, for example,
Exercises 27 and 28.)

3p/2
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EXAMPLE 4 Graphing a Lemniscate

Graph the polar equation r2 � 4 cos 2u.

SOLUTION As a guide for graphing the given polar equation, we first sketch the curve
y � 4 cos 2u in a rectangular u-y coordinate system. As is indicated in Figure 9, the
period of 4 cos 2u is p. So in graphing the given polar equation, it suffices to con-
sider only the values of u from 0 to p. Figure 9 also shows that 4 cos 2u is negative
on the interval � u � The value of r2, however, cannot be negative.
Consequently, we do not need to consider values of u in the open interval from p�4
to 3p�4. Finally, Figure 9 shows that the absolute value of 4 cos 2u is always less
than or equal to 4. Consequently, for the polar graph we have

r2 � 4 and therefore r � 2

This tells us that the polar graph will be contained within a circle of radius 2 about
the origin.

For the polar graph we begin by computing a table of values with u running from
0 to p�4; see Table 2. Plotting the points in Table 2 and joining them with a smooth
curve leads to the graph shown in Figure 10(a). Then, rather than setting up another
table with u running from 3p�4 to p, we rely on symmetry to complete the graph.
According to the first two symmetry tests, the curve is symmetric about both the line
u � 0 and the line u � p�2. Thus we obtain the graph shown in Figure 10(b). The
curve is called a lemniscate of Bernoulli.
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TABLE 2

U

0 �2
�1.86

�1.68
�1.41

0
p
4

p
6

p
8

p
12

r � �21cos 2U

π
2

21

1

0

(b) r@=4 cos 2¨

π
2

π
4

2

π
6 π

8
π
12

1

1

0

(a)

Figure 10

17. r � 2 � 4 cos u 18. r � 2 � 4 sin u
19. r2 � 4 sin 2u 20. r2 � 9 cos 2u
21. r2 � cos 4u 22. r2 � 3 sin 4u
23. r � cos 2u ( four-leafed rose)
24. r � 2 sin 2u ( four-leafed rose)
25. r � sin 3u (three-leafed rose)
26. r � 2 cos 5u (five-leafed rose)
27. r � 4 � 2 sin u (limaçon with no inner loop)
28. r � 1.5 � cos u (limaçon with no inner loop)
29. r � 8 tan u (kappa curve)
30. r � csc u � 2 (conchoid of Nicomedes)
31. (a) Use one of the polar symmetry tests to show that the

graph of r � cos2 u � 2 cos u is symmetric about the 
x-axis.

(b) Graph the equation given in part (a) and note that
the curve is indeed symmetric about the x-axis.

32. As background for this exercise, read the caution note at
the bottom of the box on page 734.
(a) Graph the polar equation r � sin2 u � 2 sin u. What

type of symmetry do you observe?
(b) Check (algebraically) that the equation 

r � sin2 u � 2 sin u satisfies symmetry test 3 on 
page 734, but not symmetry test 2.

In Exercises 33–35, graph the polar equations.

33. r � cos 3u (three-leafed rose)
34. r � sin 5u
35. (a) r � cos 4u (eight-leafed rose)

(b) r � sin 4u

In Exercises 36 and 37, match one of the graphs with each
equation. Hint: Compute the values of r when u� 0, p�2, p,
and 3p�2.

A
1. In the same picture, graph the four polar equations r � 2,

r � 4, r � 6, and r � 8. Describe the graphs.
2. In the same picture, graph the polar equations r � 1 and

r cos[u � (p�6)] � 1. What do you observe? Check that
your result is consistent with Figure 12 in Section 10.6.
Hint: Write the equation

In Exercises 3–30, graph the polar equations.

3. r � u�(2p), for u � 0 4. r � u�p, for �4p� u� 0
5. r � ln u, for 1 � u � 3p
6. (a) r � eu�2p, for 0 � u � 2p

(b) r � e�u�2p, for 0 � u � 2p
7. r � u (spiral of Archimedes) Suggestion: Use a view-

ing rectangle extending from �30 to 30 in both the x- and 
y-directions. Let u run from 0 to 2p, then from 0 to 4p, and
finally from 0 to 8p.

8. r � 1�u (hyperbolic spiral) Suggestion: Use a viewing
rectangle extending from �1 to 1 in both the x- and 
y-directions. Let u run from 0 to 2p, then from 0 to 4p, and
finally from 0 to 8p.

9. r � (spiral of Cotes, or lituus) Suggestion: Use
the guidelines in Exercise 8.

10. r � (spiral of Fermat) Suggestion: Use a viewing
rectangle extending from �5 to 5 in both the x- and 
y-directions. Let u run from u to 2p, then from 0 to 4p, 
and finally from 0 to 8p.

11. r � 1 � cos u 12. r � 1 � sin u
13. r � 2 � 2 sin u 14. r � 3 � 3 cos u
15. r � 1 � 2 sin u 16. r � 1 � 2 cos u

1u

1�1u

r cos[u � (p�6)] � 1  as  r �
1

cos[u � (p�6)]

EXERCISE SET 10.7



38. The limaçon of Pascal is defined by the equation 
r � a cos u � b. [The curve is named after Étienne 
Pascal (1588–1640), the father of Blaise Pascal. According 
to mathematics historian Howard Eves, however, the 
curve is misnamed; it appears earlier, in the writings of 
Albrecht Dürer (1471–1528).] When a � b, the curve is a
cardioid; when a � 0 the curve is a circle. Graph the fol-
lowing limaçons.
(a) r � 2 cos u � 1 (d) r � cos u � 2
(b) r � 2 cos u � 1 (e) r � 2 cos u � 2
(c) r � cos u � 2 (f) r � cos u

B
39. The figure shows a graph of the logarithmic spiral

ln r � au for 0 � u � 2p. (In this equation, a denotes a
positive constant.)

(a) Find the polar coordinates of the points A, B, C, and D,
and then show that

(b) Show that and are right angles.
Hint: Use rectangular coordinates to compute slopes.

40. (a) Graph the polar curves r � 2 cos u � 1 and 
r � 2 cos u � 1. What do you observe?

(b) Part (a) shows that algebraically nonequivalent polar
equations may have identical graphs. (This is another
consequence of the fact that the polar coordinates of a
point are not unique.) Show that both equations in 
part (a) can be written (x2 � 2x � y2)2 � x2 � y2 � 0.

41. (a) Graph the polar curves r � cos(u�2) and r � sin(u�2).
What do you observe?

(b) Part (a) shows that algebraically nonequivalent polar
equations may have identical graphs. (See Exercise 40
for another example.) Show that both polar equations
can be written in the rectangular form

(x2 � y2)[2(x2 � y2) � 1]2 � x2 � 0
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36. (a) r � 3 � 3 sin u (c) r � 3 � 3 cos u
(b) r � 3 � 3 sin u (d) r � 3 � 3 cos u

Graph A Graph B

Graph C Graph D

37. (a) r � 3 � 2 cos u (c) r � 2 � 3 cos u
(b) r � 2 � 3 cos u (d) r � 3 � 2 cos u
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pp. 109–127 (Philadelphia: Saunders College Publishing,
1990).]

45. The polar curve r � cos4 (u�4) has a property that is
difficult to detect without the aid of a graphing utility.
Graph the equation in the standard viewing rectangle. Note
that the curve appears to have a simple inner loop to the
left of the origin. Now zoom in on the origin. What do you
observe?

In Exercises 46–48, graph the polar curves.

46. (a) r � 2 sin u sin u (b) r � 2 sin u sin(u�2)

47. r � (sin u)�u, 0 � u � 4p
48. Graph the polar curve

Use a viewing rectangle extending from �2 to 2 in both the
x- and y-directions. Let u run from 0 to 34p.

r � 1.5 sin a 30u

17
�
p

30
b � 0.5

0000

42. Let k denote a positive constant, and let F1 and F2 de-
note the points with rectangular coordinates (�k, 0) and
(k, 0), respectively. A curve known as the lemniscate of
Bernoulli is defined as the set of points P(x, y) such that 
(F1P) 
 (F2P) � k2.
(a) Show that the rectangular equation of the curve is

(x2 � y2)2 � 2k2(x2 � y2).
(b) Show that the polar equation is r2 � 2k2 cos 2u.
(c) Graph the equation r2 � 2k2 cos 2u.

43. Graph the lemniscate of Bernoulli with polar equation 
r2 � 4 cos 2u. Hint: The equation is equivalent to the
two equations r � �2 You’ll find, however, that
you need to consider only one of these.

44. Graph the cissoid of Diocles, r � 10 sin u tan u. [The
Greek mathematician Diocles (ca. 180 B.C.) used the
geometric properties of this curve to solve the problem
of duplicating the cube. For an explanation of the problem
and historical background, see the text by Howard Eves,
An Introduction to the History of Mathematics, 6th ed.,

1cos 2u.
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10.8 DEMOIVRE’S THEOREM*
In this section we explore one of the many important connections between trigo-
nometry and the complex number system. We begin with an observation that was
first made in the year 1797 by the Norwegian surveyor and mathematician Caspar
Wessel. He realized, essentially, that the complex numbers can be visualized as
points in the x-y plane by identifying the complex number a � bi with the point
(a, b). In this context we often refer to the x-y plane as the complex plane, and
we refer to the complex numbers as points in this plane. In the complex plane the
x-axis is also called the real axis, and the y-axis is also called the imaginary axis.

EXAMPLE 1 Graphing a Complex Number

Plot the point 2 � 3i in the complex plane.

SOLUTION The complex number 2 � 3i is identified with the point (2, 3). See Figure 1.

x

y

1 2

1

2

3 2+3i

Figure 1

Go to Mr. DeMoivre; he knows these
things better than I do. —Isaac Newton
[according to Boyer’s A History of
Mathematics (New York: John Wiley
and Sons, Inc., 1968)]

*Before reading this section it may be helpful to read the review of complex numbers in
Appendix A.3.



As Figure 2 indicates, the distance from the origin to the point a � bi is denoted
by r. We call the distance r the modulus of the complex number a � bi. The angle u
in Figure 2 (measured counterclockwise from the positive x-axis) is referred to as the
argument of the complex number a � bi. (Using the terminology of Section 10.6,
r and u are the polar coordinates of the point a � bi.) In this context r is always
positive.

From Figure 2 we have the following three equations relating the quantities a, b,
r, and u. (Although Figure 2 shows a � bi in the first quadrant, the equations remain
valid for the other quadrants as well.)

(1)
(2)
(3)

If we have a complex number z � a � bi, we can use equations (2) and (3) to write

z � (r cos u) � (r sin u)i � r (cos u � i sin u)

That is,

(4)

The expression that appears on the right-hand side of equation (4) is called the
trigonometric (or polar) form of the complex number z. In contrast, the expression
a � bi is referred to as the rectangular form of the complex number z. Note: Since
cosine and sine are periodic with period 2p, the trigonometric form of a complex
number is not unique. See the discussion immediately following Example 3.

z � r(cos u � i sin u)

 b � r sin u
 a � r cos u
 r � 2a2 � b2

10.8 DeMoivre’s Theorem 741

¨

y

x
a

r
b

a+bi

Figure 2

EXAMPLE 2 Changing a Complex Number from Trigonometric Form to Rectangular Form

Express the complex number in rectangular form.z � 3 1cos 
p
3 � i sin 

p
3 2

SOLUTION

The rectangular form is therefore See Figure 3.3
2 � 313

2  i.

 � 3 a 1

2
�
13

2
 i b �

3

2
 �

313

2
 i

 z � 3 a cos 
p

3
 � i sin 

p

3
b

EXAMPLE 3 Changing a Complex Number from Rectangular Form to Trigonometric Form

Find the trigonometric form for the complex number z � �12 � i12.

SOLUTION We are asked to write the given number in the form r (cos u� i sin u), so we need to
find r and u. Using equation (1) and the values a � b � we have

Now that we know r, we can use equations (2) and (3) to determine u. From equa-
tion (2) we obtain

(5)cos u �
a
r

�
�12

2

r � 2 1�12 2 2 � 112 2 2 � 12 � 2 � 14 � 2

12,�12,

x

y

3

π
3

3
2= i

3œ
2
3

+

z=3(cos    +i sin   )  π
3

π
3

Figure 3



Similarly, equation (3) gives us

(6)

One angle that satisfies both of equations (5) and (6) is u � 3p�4. (There are other
angles, and we’ll return to this point in a moment.) In summary, then, we have r � 2
and u � 3p�4, so the required trigonometric form is

In Example 3 we noted that u � 3p�4 was only one angle satisfying the condi-
tions cos u� and sin u� Another such angle is � 2p. Indeed, any
angle of the form � 2pk, where k is an integer, would do just as well. The
significance of this is that u, the argument of a complex number, is not uniquely de-
termined. In Example 3 we followed a common convention in converting to trigono-
metric form: We picked u in the interval 0 � u� 2p. Furthermore, although it won’t
cause us any difficulties in this section, you might also note that the argument u is
undefined for the complex number 0 � 0i. (Why?)

We are now ready to derive a formula that will make it easy to multiply two com-
plex numbers in trigonometric form. Suppose that the two complex numbers are

Then their product is

using the addition formulas from Section 9.1

Notice that the modulus of the product is rR, which is the product of the two original
moduli. Also, the argument is a� b, which is the sum of the two original arguments.
So, to multiply two complex numbers, just multiply the moduli and add the argu-
ments. There is a similar rule for obtaining the quotient of two complex numbers:
Divide their moduli and subtract the arguments. These two rules are stated more pre-
cisely in the box that follows. (For a proof of the division rule, see Exercise 75 at the
end of this section.)

Let z � r(cos a� i sin a) and w � R(cos b� i sin b); then

(See Figure 5.)

Also, if R Z 0, then

z
w

�
r
R

 3cos(a � b ) � i sin(a � b ) 4

zw � rR 3cos(a � b ) � i sin(a � b ) 4

Formulas for Multiplication and Division of Complex Numbers 
in Trigonometric Form

  � rR[cos(a � b) � i sin(a � b)]
  � rR[(cos a cos b � sin a sin b) � i(sin a cos b � cos a sin b)]
rR[(cos a � i sin a)(cos b � i sin b)]

r (cos a � i sin a)  and  R(cos b � i sin b)

3p
4  

3p
4  12�2.�12�2

z � 2 a cos 
3p

4
 � i sin 

3p

4
 b See Figure 4.

sin u �
b
r

�
12

2
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EXAMPLE 4 Multiplication and Division of Complex Numbers in Trigonometric Form

Let and . Compute (a) zw and
(b) z�w. Express each answer in both trigonometric and rectangular form.

w � 4 1cos  
2p
3  � i sin  

2p
3 2z � 8 1cos  

5p
3  � i sin  

5p
3 2

SOLUTION (a)

trigonometric form

rectangular form

(b)

trigonometric form

rectangular form � 2(�1 � i # 0) � �2

 � 2(cos p � i sin p)

 
z
w

�
8

4
 3cos 1  5p3  � 2p

3  2 � i sin 1  5p3  � 2p
3  2 4

 � 32 1  12 � 1
2 13i 2 � 16 � 1613i

 � 32 1cos 7p3  � i sin 7p3  2 � 32 1cos p3  � i sin p3  2
 zw � (8)(4) 3cos 1  5p3  � 2p

3  2 � i sin 1  5p3  � 2p
3  2 4

EXAMPLE 5 Squaring a Complex Number

Compute z2, where z � r(cos u� i sin u).

SOLUTION

The result in Example 5 is a particular case of an important theorem attributed
to Abraham DeMoivre (1667–1754). In the box that follows, we state DeMoivre’s
theorem. (The theorem can be proved by using mathematical induction, which we
discuss in Section 14.1.)

 � r2(cos 2u � i sin 2u)

 � r2[cos(u � u) � i sin(u � u)]

 z2 � [r (cos u � i sin u)][r (cos u � i sin u)]

Theorem DeMoivre’s Theorem

Let n be a natural number. Then

[r(cos u� i sin u)]n � rn(cos nu � i sin nu)

EXAMPLE 6 Using DeMoivre’s Theorem

Use DeMoivre’s theorem to compute . Express your answer in
rectangular form.

1�12 � i12 2 5

SOLUTION In Example 3 we saw that the trigonometric form of is given by

Therefore

 � 1612 � 1612i

 � 32 c  

12

2
� i a� 

12

2
 b d

 1�12 � i12 2 5 � 25 a cos 
15p

4
 � i sin 

15p

4
 b

�12 � i12 � 2 a cos 
3p

4
 � i sin 

3p

4
 b

�12 � i12



The next two examples show how DeMoivre’s theorem is used in computing
roots. If n is a natural number and zn � w, then we say that z is an nth root
of w. The work in the examples also relies on the following observation about equal-
ity between nonzero complex numbers in trigonometric form: If r(cos u� i sin u) �
R(cos A � i sin A), then r � R and u � A � 2pk, where k is an integer.
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EXAMPLE 7 Finding Cube Roots of a Complex Number

Find the cube roots of 8i.

SOLUTION To find the cube roots of 8i we want to find all (complex) numbers z such that

z3 � 8i

First we express 8i in trigonometric form. As can be seen from Figure 6,

Now we let z � r(cos u � i sin u) denote a cube root of 8i. Then the equation 
z3 � 8i becomes

(7)

From equation (7) we conclude that r3 � 8 and, consequently, that r � 2. Also from
equation (7) we have

or

dividing by 3 (8)

If we let k � 0, equation (8) yields u � p�6. Thus one of the cube roots of 8i is

Next we let k � 1 in equation (8). As you can check, this yields u� 5p�6. So another
cube root of 8i is

Similarly, using k � 2 in equation (8) yields u � 3p�2. (Verify this.) Consequently,
a third cube root is

We have now found three distinct cube roots of 8i. If we were to continue the
process, using k � 3, for example, we would find that no additional roots are
obtained in this manner. We therefore conclude that there are exactly three cube roots
of 8i. We have plotted these cube roots in Figure 7. Notice that the points lie equally
spaced on a circle of radius 2 centered at the origin of the complex plane.

2a cos 
3p

2
� i sin 

3p

2
b � 2[0 � i(�1)] � �2i

2 a cos 
5p

6
� i sin 

5p

6
b � 2 a�13

2
� i

1

2
b � �13 � i

2 a cos 
p

6
� i sin 

p

6
b � 2 a13

2
� i

1

2
b � 13 � i

u �
p

6
�

2pk

3

3u �
p

2
� 2pk

r3(cos 3u � i sin 3u) � 8a cos 
p

2
� i sin 

p

2
b

8i � 8a cos 
p

2
� i sin 

p

2
b

x

y

8i

π
2

Figure 6

x

y

1 2

_2i

œ„3+i_œ„3+i

Figure 7



When we used DeMoivre’s theorem in Example 7, we found that the number 8i
had three distinct cube roots. It is true in general that any nonzero number a � bi
possesses exactly n distinct nth roots, equally spaced on a circle centered at the ori-
gin of the complex plane. This is true even if b � 0. In the next example we compute
the five fifth roots of 2.
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EXAMPLE 8 Finding Fifth Roots of a Complex Number

Compute the five fifth roots of 2.

SOLUTION To find the fifth roots of 2, we want to find all (complex ) numbers z such that

z5 � 2

We will follow the procedure we used in Example 7. In trigonometric form, the num-
ber 2 becomes 2(cos 0 � i sin 0). Now we let z � r (cos u� i sin u) denote a fifth root
of 2. Then the equation z5 � 2 becomes

r5(cos 5u � i sin 5u) � 2(cos 0 � i sin 0) (9)

From equation (9) we see that r5 � 2, and consequently, r � 21�5. Also from equa-
tion (9) we have

Using the values k � 0, 1, 2, 3, and 4 in succession, we obtain the following results:

k 0 1 2 3 4

U 0 2p�5 4p�5 6p�5 8p�5

The five fifth roots of 2 are therefore

We have plotted these five fifth roots in Figure 8. Notice that the points are equally
spaced on a circle of radius 21�5 centered at the origin of the complex plane. 

z3 � 21�5a cos 
4p

5
� i sin 

4p

5
b

z5 � 21�5a cos 
8p

5
� i sin 

8p

5
bz2 � 21�5a cos 

2p

5
� i sin 

2p

5
b

z4 � 21�5a cos 
6p

5
� i sin 

6p

5
bz1 � 21�5(cos 0 � i sin 0) � 21�5

5u � 0 � 2pk  or  u �
2pk

5

In Exercises 9–18, convert each complex number to rectangu-
lar form.

9. 10.

11. 12.

13. (cos 225° � i sin 225°) 14. (cos 240° � i sin 240°)1
2 12

3 1cos 32 p � i sin 32 p 24 1cos 56 p � i sin 56 p 2
6 1cos 53 p � i sin 53 p 22 1cos 14 p � i sin 14 p 2

A
In Exercises 1–8, plot each point in the complex plane.

1. 4 � 2i 2. 4 � 2i 3. �5 � i
4. �3 � 5i 5. 1 � 4i 6. i
7. �i 8. 1(� 1 � 0i)

EXERCISE SET 10.8

x

y

z¡=2!/%

z™

z£

z¢

z∞

Figure 8



59. Cube roots of 64
60. Square roots of 
61. Sixth roots of 729

Use a calculator to complete Exercises 62–65.

62. Compute (9 � 9i)6. 63. Compute (7 � 7i)8.
64. Compute the cube roots of 1 � 2i. Express your answers

in rectangular form, with the real and imaginary parts
rounded to two decimal places.

65. Compute the fifth roots of i. Express your answers in rec-
tangular form, with the real and imaginary parts rounded to
two decimal places.

B
In Exercises 66–68, find the indicated roots. Express the results
in rectangular form.

66. Find the fourth roots of i. Hint: Use the half-angle
formulas from Section 9.2.

67. Find the fourth roots of 8 � 8 i. Hint: Use the addition
formulas or the half-angle formulas.

68. Find the square roots of 7 � 24i. Hint: You’ll need to use
the half-angle formulas from Section 9.2.

69. (a) Compute the three cube roots of 1.
(b) Let z1, z2, and z3 denote the three cube roots 

of 1. Verify that z1 � z2 � z3 � 0 and also that 
z1z2 � z2z3 � z3z1 � 0.

70. (a) Compute the four fourth roots of 1.
(b) Verify that the sum of these four fourth roots is 0.

71. Evaluate Hint: Use
DeMoivre’s theorem.

72. Show that � 2.
73. Compute (cos u � i sin u)(cos u � i sin u).
74. In the identity (cos u � i sin u)2 � cos 2u � i sin 2u, carry

out the multiplication on the left-hand side of the equation.
Then equate the corresponding real parts and imaginary
parts from each side of the equation that results. What do
you obtain?

75. Let z � r(cos a� i sin a) and w � R(cos b� i sin b),
with R 	 0. Show that 

Suggestion: Start with 

and multiply the right-hand side by 

76. Show that

1 � cos u � i sin u � 2 cos a u
2
b c cos a u

2
b � i sin a u

2
b d

cos b � i sin b

cos b � i sin b

z

w
�

r (cos a � i sin a)

R(cos b � i sin b)

z

w
�

r

R
 [cos(a � b) � i sin(a � b)]

1� 
1
2 � 1

2 13i 2 6 � 1� 
1
2 � 1

2 13i 2 6
1� 

1
2 � 1

2 13i 2 5 � 1� 
1
2 � 1

2 13i 2 5.

13

� 
1
2 � 1

2 13i
15. 16. 5(cos p � i sin p)
17. 4(cos 75° � i sin 75°) Hint: Use the addition formulas

from Section 9.1 to evaluate cos 75° and sin 75°.
18. Hint: Use the half-angle formulas

from Section 9.2 to evaluate cos(p�8) and sin(p�8).

In Exercises 19–28, convert from rectangular to trigonometric
form. (In each case, choose an argument u such that 
0 � u � 2p.)

19. 20.
21. 22. �4
23. 24.
25. �6i 26.
27. 28. 16

In Exercises 29–54, carry out the indicated operations. Express
your results in rectangular form for those cases in which the
trigonometric functions are readily evaluated without tables or
a calculator.

29. 2(cos 22° � i sin 22°) 
 3(cos 38° � i sin 38°)
30. 4(cos 5° � i sin 5°) 
 6(cos 130° � i sin 130°)
31.

32.

33.

34.
35. 6(cos 50° � i sin 50°) � 2(cos 5° � i sin 5°)
36. (cos 140° � i sin 140°) � 3(cos 5° � i sin 5°)
37.

38.

39.

40.

41.

42.

43.

44.
45. [21�5(cos 63° � i sin 63°)]10

46.
47.

48.

49. Hint: Convert to trigonometric form.
50. (1 � i)3 51. (�2 � 2i)5

52. 53.
54. (1 � i)16

In Exercises 55–61, use DeMoivre’s theorem to find the indi-
cated roots. Express the results in rectangular form.

55. Cube roots of �27i 56. Cube roots of 2
57. Eighth roots of 1 58. Square roots of i

1�213 � 2i 2 41� 
1
2 � 1

2 13i 2 6
3 12 11 � 13i 2 4 5
c cos(p�8) � i sin(p�8)

cos(�p�8) � i sin(�p�8)
d 5

 
 1
2 (cos 5° � i sin 5°)

 2(cos 200° � i sin 200°) 
 12(cos 20° � i sin 20°)
32 1cos 15 p � i sin 15 p 2 4 3
[13(cos 70° � i sin 70°)]3

3 12 1cos 1
24 p � i sin 1

24 p 2 4 6
312 1cos 56 p � i sin 56 p 2 4 4
33 1cos 13 p � i sin 13 p 2 4 5
1cos 25 p � i sin 25 p 2 � 1cos 1

10 p � i sin 1
10 p 2

1cos 25 p � i sin 25 p 2 � 1cos 25 p � i sin 25 p 2
16 1cos 16

9  p � i sin 16
9  p 2 � 12 1cos 19 p � i sin 19 p 2

24�3 1cos 5
12 p � i sin 5

12 p 2 � 21�3 1cos 14 p � i sin 14 p 2
13

13(cos 3° � i sin 3°) 
 13(cos 38° � i sin 38°)

3 1cos 17 p � i sin 17 p 2 
 12 1cos 17 p � i sin 17 p 2
1cos 15 p � i sin 15 p 2 
 1cos 1

20 p � i sin 1
20 p 2

12 1cos 13 p � i sin 13 p 2 
 12 1cos 43 p � i sin 43 p 2

1
4 13 � 1

4 i
�4 � 413i
�312 � 312i�213 � 2i

�1 � 13i
12 � 12i1

2 13 � 1
2 i

2 1cos 18 p � i sin 18 p 2

13 1cos 12 p � i sin 12 p 2
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79. Find (1 � i)�10 in trigonometric and rectangular form.

80. Show that � sin u � i cos u.

Assume that u Z � 2pk, where k is an integer.
Hint: Work with the left-hand side; first “rationalize” the
denominator by multiplying by the quantity

81. If w � � 2 cos u, show that w � cos u � i sin u.

Hint: Use the quadratic formula to solve the given
equation for w.

82. If w � � 2 cos u, show that wn � � 2 cos nu.

Hint: Use the results in Exercises 81 and 77.

1

wn

1
w

1
w

(1 � sin u) � i cos u

(1 � sin u) � i cos u

3
2 p

1 � sin u � i cos u

1 � sin u � i cos u

77. If z � r(cos u� i sin u) and z is not zero, show that

Hint: 1�z � [1(cos 0 � i sin 0)]�[r(cos u� i sin u)]
78. (a) If z � r(cos u� i sin u), z is not zero, and n is 

a positive integer, use the result of Exercise 77 
and DeMoivre’s theorem to show that 
z�n � r�n[cos(�nu) � i sin(�nu)].

(b) If z � r(cos u� i sin u)and z is not zero, we define 
z0 to be 1. Show that z0 � r0(cos 0 � i sin 0).

(c) Finally, for any nonzero complex number 
z � r(cos u� i sin u) and any integer n, obtain the 
following generalization of DeMoivre’s theorem:

zn � rn[cos(nu) � i sin(nu)]

1
z

�
1
r

 (cos u � i sin u)
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CHAPTER 10 Summary of Principal Terms and Formulas

Page
Terms or Formulas Reference Comments

1. 666 The area of a triangle equals half the product of the lengths of two
sides times the sine of the included angle.

2. 682 This is the law of sines. In words, it states that in any triangle the 
ratio of the sine of an angle to the length of its opposite side is  

or constant. We use it when we know one angle and its opposite side 
and one other side or angle.

3. 684 This is the law of cosines. We can use it to calculate the third side 
of a triangle when we are given two sides and the included angle. 
The formula can also be used to calculate the angles of a triangle 
when we know the three sides, as in Example 5 on page 686.

4. Vector 697, 706 Geometrically, a vector in the plane is a directed line segment. 
Vectors can be used to represent quantities that have both
magnitude and direction, such as force and velocity. For examples,
see Figures 1 and 2 in Section 10.3. Algebraically, a vector in the
plane is an ordered pair of real numbers, denoted by see
Figure 3 in Section 10.4. The numbers a and b are called the
components of the vector 

5. Vector equality 698, 706 Geometrically, two vectors are said to be equal provided that 
they have the same length and the same direction. In terms of
components, this means that two vectors are equal if and only if
their corresponding components are equal.

8a, b9.
8a, b9;

 c2 � a2 � b2 � 2ab cos C

 b2 � a2 � c2 � 2ac cos B

 a2 � b2 � c2 � 2bc cos A

a

sin A
�

b

sin B
�

c

sin C

sin A
a

�
sin B

b
�

sin C
c

A � 1
2  
ab sin u



Page
Terms or Formulas Reference Comments

6. Vector addition 698–699, Geometrically, two vectors can be added by using the parallelo-
708 gram law, as in Figure 10 in Section 10.3. Algebraically, this is

equivalent to the following componentwise formula for vector
addition:

7. 698, 707 The expression on the left-hand side of the equation denotes the 
length or magnitude of the vector v. The expression on the right-
hand side of the equation tells us how to compute the length of v in
terms of its respective x- and y-components v1 and v2.

8. 707 This formula gives the components of the vector where P and
Q are the points P(x1, y1) and Q(x2, y2); see Figure 5 in Section 10.4
for a derivation of this formula.

9. The zero vector 709 The zero vector, denoted by 0, is the vector The zero vector
plays the same role in vector addition as does the real number zero
in addition of real numbers. For any vector v we have

0 � v � v � 0 � v

10. Scalar multiplication 709 For each real number k and each vector v � the vector kv is
defined by the equation

kv �

Geometrically, the length of kv is times the length of v. The
operation that forms the vector kv from the scalar k and the 
vector v is called scalar multiplication.

11. The opposite of a vector 709 The opposite or negative of a vector v, denoted �v, is the vector
defined by the equation

�v � (�1)v

12. Vector subtraction 710 The difference of two vectors u and v, denoted u � v, is the vector
defined by the equation

u � v � u � (�v)

13. i � 710 These two equations define the unit vectors i and j; see Figure 12 
j � in Section 10.4. Any vector can be expressed in terms of the

unit vectors i and j as follows:

� xi � yj

14. Parametric equations 715, 718 Suppose the x- and y-coordinates of the points on a curve are 
expressed as functions of another variable t:

x � f (t) and y � g(t)

These equations are parametric equations of the curve, and t is
called a parameter. An example: A pair of parametric equations for
the ellipse (x2�a2) � (y2�b2) � 1 is 

x � a cos t and y � b sin t, with 0 � t � 2p

8x, y9
8x, y980, 19

81, 09

0 k 0
8kx, ky9

8x, y9

80, 09.

PQu ,PQu � 8x2 � x1, y2 � y19

0v 0 � 2v2
1 � v2

2

8u1, u29 � 8v1, v29 � 8u1 � v1, u2 � v29
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Page
Terms or Formulas Reference Comments

15. x � r cos u 724 These formulas relate the rectangular coordinates of a point (x, y) 
y � r sin u to its polar coordinates (r, u). See the boxed figure on page 724.
x2 � y2 � r2

tan u � y�x

16. d2 726 This is the formula for the (square of the) distance d between the 
� � � 2r1r2 cos(u2 � u1) points with polar coordinates (r1, u1) and (r2, u2).

17. r2 � � 2rr0 cos(u� u0) � a2 726 This is a polar equation for the circle with center (r0, u0) and 
radius a.

18. r cos(u � a) � d 728 This is a polar equation for a line not passing through the origin. 
In the equation, d and a are constants; d is the perpendicular
distance from the origin to the line, and the (polar) point (d, a) is
the foot of the perpendicular from the origin to the line.

19. 742 These are the formulas for multiplication and division of complex 
numbers in trigonometric form and 

20. DeMoivre’s theorem 743 Let n be a natural number and let Then
DeMoivre’s theorem states that

For applications of this theorem, see Examples 6, 7, and 8 in
Section 10.8.

zn � rn(cos nu � i sin nu)

z � r(cos u � i sin u).

w � R(cos b � i sin b).
z

w
�

r

R
[cos(a � b) � i sin(a � b)]

z � r (cos a � i sin a)
zw � rR[cos(a � b) � i sin(a � b)]

r2
0

r2
2r2

1
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1. A regular feature in Mathematics Magazine is the “Proof
Without Words” section. The idea is to present a proof of a
well-known theorem in such a way that the entire proof is
“obvious” from a well-chosen picture and at most several
equations. Of course, what is obvious to a mathematician
might not be so obvious to her or his students (as you well
know).

The following clever proof without words for the law
of cosines was developed by Professor Sidney H. Kung of
Jacksonville University. (It was published in Mathematics
Magazine, vol. 63, no. 5, December 1990.) Study the proof
(or discuss it with friends) until you see how it works. Then,
in a paragraph or two, write out the details of the proof as if
you were explaining it to a classmate. (To facilitate your ex-
planation, you will probably need to label some of the points
in the given figure.)

¨
a a

a

c
b

a-
c

(2a cos ¨-b)b=(a-c)(a+c)
c@=a@+b@-2ab cos ¨

2a cos ¨-b

Proof without words for the
law of cosines, u � 90° (by
Professor Sidney H. Kung)

2. Trisecting an angle using the spiral of Archimedes, r � au.
Using only the ruler-and-compass constructions of elemen-
tary geometry, there is a well known method for bisecting an
angle but no similar method for trisecting an angle.



Let �AOB be the angle to be trisected; place it in standard
position, as shown. Let P be the point where the terminal
side of �AOB meets the spiral r � au. Trisect the line seg-
ment let C and D be the trisection points. Now draw cir-
cular arcs with center O and radii OD and OC, as indicated
in the figure. These arcs determine points F and E on the spi-
ral, and it can be shown that �AOE � �EOF � �FOB.
This is the required trisection.

OP;

However, if we are given an accurate graph of the spiral of
Archimedes, then the ruler and compass can indeed be used
to trisect an angle. The method is described in the following
paragraph. With a group of classmates, or on your own,
study and analyze the method until you can show or explain
why it is valid. (You’ll need to think about what polar
coordinates mean.) Then, strictly on your own, write a
paragraph showing why the method works, that is, why
�AOE � �EOF � �FOB.

B
F

E

P

Ar=a¨
Spiral of Archimedes

C

D

O
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CHAPTER 10 Review Exercises

1. Suppose u is an acute angle and tan u� cot u� 2. Show that
sin u � cos u �

2. A 100-ft vertical antenna is on the roof of a building. From a
point on the ground, the angles of elevation to the top and
the bottom of the antenna are 51° and 37°, respectively. Find
the height of the building.

3. In an isosceles triangle, the two base angles are each 35°,
and the length of the base is 120 cm. Find the area of the
triangle.

4. Find the perimeter and the area of a regular pentagon
inscribed in a circle of radius 9 cm.

5. In triangle ABC, let h denote the length of the altitude from
A to Show that h � a�(cot B � cot C).

6. The length of each side of an equilateral triangle is 2a. Show
that the radius of the inscribed circle is a� and the radius
of the circumscribed circle is 2a�

7. From a helicopter h ft above the sea, the angle of depression 

to the pilot’s horizon is u. Show that cot u� R�
where R is the radius of the Earth.

22Rh � h2,

13.
13

BC.

12.

In Exercises 8–14, the lengths of the three sides of a triangle
are denoted a, b, and c; the angles opposite these sides are A,
B, and C, respectively. In each exercise, use the given informa-
tion to find the required quantities.

Given Find
8. b � 4, c � 5, area of ^ABC

A � 150°
9. A � 120°, b � 8, c

area ^ABC �
10. c � 4, a � 2, B � 90° sin2A � cos2B
11. B � 90°, 2a � b A
12. A � 30°, B � 120°, a

b � 16
13. a � 7, b � 8, area of ^ABC

sin C � 1�4
14. a � b � 5, c and area of ^ABC

sin(C�2) � 9�10

1213



In Exercises 35 and 36, refer to the following figure, in which
AD � DC.

35. If AB � 12 cm, BC � 26 cm, and AD � DC � 17 cm,
find BD.

36. If AB � 16 cm, BC � 22 cm, and AD � DC � 17 cm,
find BD.

37. In ^ABC, a � 4, b � 5, and c � 6.
(a) Find cos A and cos C.
(b) Using the results in part (a), show that angle C is twice

angle A.
38. In ^ABC, suppose that angle C is twice angle A. Show that

ab � c2 � a2.

In Exercises 39–44, refer to the framework shown in the accom-
panying figure. (Assume that the figure is drawn to scale.) In
the figure, is parallel to and BE � BD. In each case,
compute the indicated quantity. Round the final answers to two
decimal places.

39. 40.
41. 42.
43. BE 44. DE
45. In this exercise you will verify some of the properties of the

pentagram star shown in Figure A. Figure B shows how the
pentagram is constructed. We start with a regular pentagon
ABCDE inscribed in a circle with center O. Drawing the
diagonals of the pentagon then yields the pentagram star. As
indicated in Figure B, the five intersection points (S, T, U, V,
and W) of the diagonals form the vertices of a second,
smaller regular pentagon. In this exercise you can assume
the following facts (which can be established using elemen-
tary geometry):

• Each of the five triangles AUV, BVW, CWS, DST, and
ETU is isosceles, with angles of 72°, 72°, and 36°.

�BAE�AEB
�ABE�BED

E D

CA B16 m 16 m

11 m11 m

108°

EDAC

B

A C
D

In Exercises 15–22 the lengths of the three sides of a triangle
are denoted by a, b, and c; the angles opposite these sides are
A, B, and C, respectively. In each exercise, use the given data to
find the remaining sides and angles. Use a calculator, and
round the final answers to one decimal place.

15. � 40°, � 85°, c � 16 cm
16. � 84°, � 16°, a � 9 cm
17. (a) a � 8 cm, b � 9 cm, � 52°, � 90°

(b) Use the data in part (a), but assume that � 90°.
18. (a) a � 6.25 cm, b � 9.44 cm, � 12°, � 90°

(b) Use the data in part (a), but assume that � 90°.
19. a � 18 cm, b � 14 cm, � 24°
20. a � 32.16 cm, b � 50.12 cm, � 156°
21. a � 4 cm, b � 7 cm, c � 9 cm
22. a � 12.61 cm, b � 19.01 cm, c � 14.14 cm

In Exercises 23–32, refer to the following figure. In each case,
determine the indicated quantity. Use a calculator and round
your result to two decimal places.

23. BE 24. BC
25. area of ^BCE 26. BD
27. area of ^ABD 28. DE
29. CD 30. AD
31. AC 32. area of ^DEC

In Exercises 33 and 34, refer to the following figure, in which
bisects

33. If AB � 24 cm, BC � 40 cm, and AC � 56 cm, find the
length of the angle bisector 

34. If AB � 105 cm, BC � 120 cm, and AC � 195 cm, find the
length of the angle bisector BD.

BD.

B

A C
D

�ABC.BD

25°

50°

44°
36°

B

A C

D

E

12 cm 

�C
�C

�B
�B�A
�B

�B�A
�B�C
�B�A
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ratio, as it is sometimes called), see any of the following
books:

Pedoe, Dan, Geometry and the Visual Arts (New York:
Dover Publications, Inc., 1976); Huntley, H. E., The
Divine Proportion (New York: Dover Publications,
Inc., 1970); Livio, Mario, The Golden Ratio: The Story
of Phi, the Most Astonishing Number, (New York:
Broadway Books, 2003)

46. A pilot on a training flight is supposed to leave the airport
and fly for 100 miles in the direction N40°E. Then he is sup-
posed to turn around and fly directly back to the airport. By
error, however, he makes the 100-mile return trip in the di-
rection S25°W. How far is he now from the airport, and in
what direction must he fly to get there? (Round the answers
to one decimal place.)

47. The following figures show the same circle of diameter D
inscribed first in an equilateral triangle and then in a regular
hexagon. Let a denote the length of a side of the triangle,
and let b denote the length of a side of the hexagon. Show
that ab � D2.

48. Suppose that ^ABC is a right triangle with the right angle at
C. Use the law of cosines to prove the following statements.
(a) The square of the distance from C to the midpoint of the

hypotenuse is equal to one-fourth the square of the
hypotenuse.

(b) The sum of the squares of the distances from C to the
two points that trisect the hypotenuse is equal to five-
ninths the square of the hypotenuse.

(c) Let P, Q, and R be points on the hypotenuse such that
AP � PQ � QR � RB. Derive a result similar to your
results in parts (a) and (b) for the sum of the squares of
the distances from C to P, Q, and R.

49. The perimeter and the area of the triangle in the figure are 
20 cm and 10 cm2, respectively. Find a and b. (Assume
that a � b.)

60°

a

b

13

• In a regular pentagon, each interior angle is 108°. (For
example, in the large regular pentagon, � AED � 108°,
and in the small pentagon, �VUT � 108°.)

Figure A Pentagram Star. Figure B

(a) Assume (throughout this exercise) that the radius of the
circle in Figure B is 1 unit. Show that AB � 2 sin 36°.
Hints: Why is � AOB � 72°? After answering, draw a
perpendicular from O to 

(b) Show that AD � 2 sin 72°. Hint: Draw a perpendicu-
lar from O to and draw a radius from O to D. Then
use the right triangle that is formed.

(c) Show AV � tan 36°. Hint: Draw a perpendicular from
V to [Recall that you found AB in part (a).]

(d) Show VW � 2 tan 36° cos 72°. Hint: From Figure B,
note that VW � AC � 2(AV). After substituting for AC and
AV in this last expression, use the double-angle formulas.

(e) Show AW � (tan 36°)(1 � 2 cos 72°). Hint: AW �
AV � VW

(f) Use results from previous parts of this exercise to verify
that (AD�AB) � 2 cos 36°.

(g) For this last part of the exercise, assume as given the
following two trigonometric values:

(The value for sin 18° was obtained in Exercise 68 in
Section 9.2; the value for cos 36° can be derived from
this by using the identity cos 2u � 1 � 2 sin2u.) Verify
each of the following statements by using results from
previous parts of this exercise along with the values for
sin 18° and cos 36°.

(i)

(ii)

(iii)

Remark: The quantity 2 cos 36° � � 12�2 occurs with
sufficient frequency in mathematics and its applications that
a particular symbol is commonly used for it: f (the Greek
letter phi). For a thorough discussion of f (or the golden

115

AC

AW
� 2 cos 36°

AW

AV
� 2 cos 36°

AV

VW
� 2 cos 36°

sin 18° � 115 � 1 2�4  cos 36° � 115 � 1 2�4

AB.

AD

AB.

A C

B

DE

T

U S

O

V W

752 CHAPTER 10 Additional Topics in Trigonometry



In Exercises 59–70, compute each of the indicated quantities,
given that the vectors a, b, c, and d are defined as 
follows:

a � b � c � d �

59. a � b
60. b � d
61. 3c � 2a
62. a
63. b � d 2 � b � d 2

64. a � (b � c)
65. (a � b) � c
66. a � (b � c)
67. (a � b) � c
68. a � b 2 � a � b 2 � 2 a 2 � 2 b 2

69. 4c � 2a � 3b
70. 4c � 2a � 3b
71. Express the vector in terms of the unit vectors i

and j.
72. Express the vector 4i � 6j in the form 
73. Find a unit vector having the same direction as 
74. Find two unit vectors that are perpendicular to 

Simplify the components as much as possible.

In Exercises 75 and 76, compute the distance between the
points with the given polar coordinates. Use a calculator and
round the final answers to two decimal places.

75. and 
76. (1, 1) and (3, 2)

In Exercises 77 and 78, determine a polar equation for the 
circle satisfying the given conditions.

77. The radius is 3 and the polar coordinates of the center are

78. The radius is 1 and the polar coordinates of the center are

In Exercises 79 and 80, the polar equation of a line is given. 
In each case: (a) specify the perpendicular distance from the
origin to the line; (b) determine the polar coordinates of the
points on the line corresponding to u � 0 and u � p�2; 
(c) specify the polar coordinates of the foot of the perpendicu-
lar from the origin to the line; (d) sketch the line; and
(e) find a rectangular form for the equation of the line.

79.
80.

In Exercises 81–88, graph the polar equations.

81. (a) r � 2 � 2 cos u (b) r � 2 � 2 sin u
82. (a) r2 � 4 cos 2u (b) r2 � 4 sin 2u
83. (a) r � 2 cos u � 1 (b) r � 2 sin u � 1
84. (a) r � 2 cos u (b) r � 2 cos u � 1

r cos(u � 1) � 15
r cos 1u � p

3 2 � 3

1�3, p4 2 .
15, p6 2 .

12, 17p
18 213, p12 2

8cos u, sin u9.
86, 49.

8a, b9.
87, �69

00
00000000

0000
00

80, 3982, �1987, 4983, 59

50. In ^ABC, suppose that 
(a) Show that c2 � (b2 � a2)2�(a2 � b2). Hint: Let P be

the point on such that � 90° and
Show that CP � (a2 � b2)�2b.

(b) Show that 

51. Two forces F and G act on an object, G, horizontally to the
right with a magnitude of 15 N, and F vertically upward
with a magnitude of 20 N. Determine the magnitude and
direction of the resultant force. (Use a calculator to deter-
mine the angle between the horizontal and the resultant;
round the result to one decimal place.)

52. Determine the resultant of the two forces in the accompany-
ing figure. (Use a calculator, and round the values you obtain
for the magnitude and direction to one decimal place.)

53. Determine the horizontal and vertical components of the
velocity vector v in the following figure. (Use a calculator,
and round your answers to one decimal place.)

54. The heading and air speed of an airplane are 50° and
220 mph, respectively. If the wind is 60 mph from 140°, find
the ground speed, the drift angle, and the course. (Use a
calculator, and round your answers to one decimal place.)

55. A block rests on an inclined plane that makes an angle of 24°
with the horizontal. The component of the weight parallel to
the plane is 14.8 lb. Determine the weight of the block and
the component of the weight perpendicular to the plane.
(Use a calculator, and round your answers to one decimal
place.)

56. Find the length of the vector 
57. For which values of b will the vectors and 

have the same length?
58. Given the points A(2, 6) and B(�7, 4), find the components

of the following vectors. Write your answers in the form

(a) (c)

(b) (d)
1

0ABu 0  ABuBAu

3ABuABu
8x, y9.

8�5, b982, 69
820, 999.

35°
x

y

v (5
0 cm

/se
c)

50°

4 N

2 N

2

c2 �
1

(b � a)2 �
1

(b � a)2.

�PBA � �A.
�CBPAC

�B � �A � 90°.
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96. In this exercise you will use the following figure to derive
the Mollweide formula:

The figure is constructed as follows. Starting with ^ABC,
extend side so that CP � b, as shown. Then draw line
segment 
(a) Show that 
(b) Show that Hint: Start

with the fact that 
(c) Use the law of sines now in ^ABP to show that

(d) Use the result in part (c) to obtain the required identity.
97. In this exercise we use the law of sines to deduce the law of

tangents for ^ABC:

This law was given by the Danish physician and mathemati-
cian Thomas Fink in his text Geometria Rotundi, published
in Basel in 1583. (Our use of the terms “tangent” and
“secant” is also due to Fink.)
(a) Suppose that a, b, x, and y are real numbers such that 

Verify that 

(b) Use the law of sines and the result in part (a) to show that

(c) Use the result in part (a) and the sum-to-product formu-
las from Section 9.3 to complete the derivation of the
law of tangents.

98. The following figure shows a sector of the unit circle 
x2 � y2 � 1. The central angle for the sector is a (a con-
stant). The point P(cos u, sin u) denotes an arbitrary point on
the arc of the sector. From P, perpendiculars are drawn to the

a � b

a � b
�

sin A � sin B

sin A � sin B

a � b

a � b
�

x � y

x � y
.

a

b
�

x

y
.

a � b

a � b
�

tan 12 (A � B)

tan 12 (A � B)

sin[90° � 1
2 (A � B)]

a � b
�

sin 12 C

c

�BAP � A � 1
2 C.

�BAP � 90° � 1
2 (A � B).

�APC � �PAC � 1
2 C.

AP.
BC

A

B P
Ca

b
c

b

a � b

c
�

cos 12 (A � B)

sin 12 C

85. (a) r � 4 sin 2u (b) r � 4 cos 2u
86. (a) r � 4 sin 3u (b) r � 4 cos 3u
87. (a) r � 1 � 2 sin(u�2) (b) r � 1 � 2 cos(u�2)
88. (a) r � (1.5)u (u � 0) (b) r � (1.5)u (u � 0)

In Exercises 89–94, graph the curve (or line) determined by the
parametric equations. Indicate the direction of travel along 
the curve as t increases. You may do this by plotting points or
by eliminating the parameter (or both). Unless indicated, 
the domain is all real numbers.

89. x � 3 � 5t, y � 1 � t
90. x � t � 1, y � 3t
91. x � 3 sin t, y � 6 cos t
92. x � 2 cos t, y � 2 sin t
93. x � 4 sec t, y � 3 tan t for 0 � t � 2p, except 

t � p�2 and t � 3p�2
94. x � 1 � 3 cos t, y � 2 � 4 sin t
95. In the accompanying figure, P and Q are two 

points on the polar curve r � (sin u)�u such that 
Follow steps (a) through (f) to prove that 

(a) Let a � What are the polar coordi-
nates of P and Q in terms of a?

(b) What are the rectangular coordinates of P and Q in
terms of a?

(c) Using the coordinates determined in part (b), show that
the slope of is tan 2a.

(d) Using the coordinates determined in part (b), show that
the slope of is

(e) Show that the expression in part (d) can be simplified to
�cot 2a. Hint: In the numerator, replace sin2 2a by 

1 � cos2 2a and sin2 a by 

(f) Use the results in parts (c) and (e) to explain why
PQ�OQ.

1 � cos 2a

2
.

sin2 2a � 2 sin2 a

sin 2a cos 2a � 2 sin a cos a

PQ

OQ

�POQ.�AOP �

O

P

Q

A

x-axis
or

¨=0

π
2

¨=

y-axis
or

r=
sin ¨ 

¨

PQ�OQ.�POQ.
�AOP �
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In Exercises 107–114, carry out the indicated operations.
Express your results in rectangular form for those cases in
which the trigonometric functions are readily evaluated without
tables or a calculator.

107.

108.

109.

110.

111.

112.

113.

114.

In Exercises 115–118, use DeMoivre’s theorem to find the indi-
cated roots. Express your results in rectangular form.

115. Sixth roots of 1
116. Cube roots of �64i
117. Square roots of 
118. Fourth roots of 
119. Find the five fifth roots of 1 � i. Use a calculator to

express the roots in rectangular form. (Round each deci-
mal to two places in the final answer.)

1 � 13i
12 � 12i

112 � 12i 2 15

113 � i 2 10

32 1cos 2
15 p � i sin 2

15 p 2 4 5
331�4 1cos 1

36 p � i sin 1
36 p 2 4 12

4(cos 32° � i sin 32°) � 21�2(cos 2° � i sin 2°)

8 1cos 1
12 p � i sin 1

12 p 2 � 4 1cos 13 p � i sin 13 p 2
4 1cos 1

12 p � i sin 1
12 p 2 
 3 1cos 1

12 p � i sin 1
12 p 2

5 1cos 17 p � i sin 17 p 2 
 2 1cos 3
28 p � i sin 3

28 p 2

sides of the sector, meeting the sides at Q and R, as shown.
Show that the distance from Q to R does not depend on u.

In Exercises 99–102, convert each complex number to rectan-
gular form.

99. 100.

101.

102.

In Exercises 103–106, express the complex numbers in trigono-
metric form.

103. 104. 3i

105. 106. 213 � 2i�312 � 312i

1
2 11 � 13i 2

5 3cos 1�1
4 p 2 � i sin 1�1

4 p 2 4
21�4 1cos 74 p � i sin 74 p 2

cos 16 p � i sin 16 p3 1cos 13 p � i sin 13 p 2

x-axis
Q

R

å

P(cos¨, sin¨ )
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CHAPTER 10 Test

1. In triangle ABC, let A � 120°, b � 5 cm, and c � 3 cm. 
Find a.

2. The sides of a triangle are 2 cm, 3 cm, and 4 cm. Determine
the cosine of the angle opposite the longest side. On the
basis of your answer, explain whether or not the angle oppo-
site the longest side is an acute angle.

3. Two of the angles in a triangle are 30° and 45°. If the side
opposite the 45° angle is 20 cm, find the side opposite the
30° angle.

4. A 10-ft ladder that is leaning against the side of a building
makes an angle of 60° with the ground, as shown in the fol-
lowing figure. How far up the building does the ladder reach?

60°

10 ft

12

5. In ^ABC, B � 90°, c � 2, and a � 5. Find A; express the
answer in degrees rounded to one decimal place.

6. Refer to the following figure. Express the area of ^ABC as
a function of u.

7. Each side of the square STUV is 8 cm long. The point P lies
on diagonal such that SP � 2 cm. Find the distance from
P to V.

8. In ^ABC, b � 5.8 cm, c � 3.2 cm, and A � 27°. Find the
remaining sides and angles of the triangle.

SU

y

x

B

≈+¥=1

C

A
¨



16. Given the parametric equations x � 4 sin t and y � 2 cos t,
eliminate the parameter t and sketch the graph.

17. Compute the distance between the two points with polar
coordinates and 

18. Find a polar equation for the circle with center (in polar
coordinates) 15, and with radius 2. Does the (polar) point
12, lie on this circle?

19. Refer to the accompanying figure.
(a) Determine a polar equation for the line l in the figure.
(b) Use an addition formula to show that the polar equation

of the line can be written cos u� r sin u� 8 � 0.

20. Find the rectangular form for the complex number

21. Find the trigonometric form for the complex number

22. Let and 
Compute the product zw, and express your answer in rectan-
gular form.

23. Compute the cube roots of 64i.

w � 5 1cos p9 � i sin p9 2 .z � 3 1cos 2p9 � i sin 2p9 2
12 � 12i.

z � 2 a cos 
2

3
 p � i sin 

2

3
 p b

�

¨=0

Polar coordinates

¨= π
2

4, ( ’5π
6

�r13

p
6  2

p
2  2

11, p7  2 .14, 10p
21  2

9. Two forces F and G act on an object. The force G acts
horizontally with a magnitude of 2 N, and F acts vertically
upward with a magnitude of 4 N.
(a) Find the magnitude of the resultant.
(b) Find tan u, where u is the angle between G and the

resultant.
10. Two forces act on an object, as shown in the following

figure.
(a) Find the magnitude of the resultant. (Leave your answer

in terms of radicals and the trigonometric functions.)
(b) Find sin u, where u is the angle between the 12 N force

and the resultant.

11. The heading and air speed of an airplane are 40° and 300 mph,
respectively. If the wind is 50 mph from 130°, find the
ground speed and the tangent of the drift angle. (Leave your
answer in terms of radicals and the trigonometric functions.)

12. Let A � B � and C �
(a) Find 2A � 3B.
(b) Find 2A � 3B .
(c) Express C � B in terms of i and j.

13. Let P and Q be the points (4, 5) and (�7, 2), respectively.
Find a unit vector having the same direction as 

14. Convert the polar equation r2 � cos 2u to rectangular form.
15. Graph the equation r � 2(1 � cos u).

PQu .

00
84, �49.83, �19,82, 49,

70°

12 N

8 N
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11.1 Systems of Two Linear
Equations in Two
Unknowns

11.2 Gaussian Elimination

11.3 Matrices

11.4 The Inverse of a Square
Matrix

11.5 Determinants and
Cramer’s Rule

11.6 Nonlinear Systems
of Equations

11.7 Systems of Inequalities 

In this chapter we consider systems of equations. Roughly
speaking, a system of equations is just a collection of equations
with a common set of unknowns. In solving such systems, we
try to find values for the unknowns that simultaneously satisfy
each equation in the system. Matrices are introduced as a tool
for solving systems of equations. In this chapter you’ll see systems of equations and/or
matrices used to:

• Determine conditions for market equilibrium (Example 6 in Section 11.1)
• Solve an airline scheduling problem (Example 6 in Section 11.2)
• Determine production requirements in various sectors of an economy using input-

output analysis (projects following Sections 11.2 and 11.4)
• Analyze a communications network (project following Section 11.3)
• Encode and decode messages (Examples 4 and 5 in Section 11.4).

CHAPTER

11

11.1 SYSTEMS OF TWO LINEAR EQUATIONS 
IN TWO UNKNOWNS
Both in theory and in applications it is often necessary to solve two equations in two
unknowns. You may have been introduced to the idea of simultaneous equations in a
previous course in algebra; however, to put matters on a firm foundation, we begin
here with the basic definitions. By a linear equation in two variables we mean an
equation of the form

where a, b, and c are constants with a and b not both zero. The two variables needn’t
always be denoted by the letters x and y, of course; it is the form of the equation that
matters. Table 1 (on the next page) displays some examples.

An ordered pair of numbers (x0, y0) is said to be a solution of the linear equa-
tion ax � by � c, provided that we obtain a true statement when we replace x and y
in the equation by x0 and y0, respectively. For example, the ordered pair (3, 2) is a so-
lution of the equation x � y � 1, since 3 � 2 � 1. On the other hand, (2, 3) is not a
solution of x � y � 1, since 2 � 3 � 1.

Now consider a system of two linear equations in two unknowns:

 eax � by � c

dx � ey � f

ax � by � c

Many problems in a variety of
disciplines give rise to . . . [linear]
systems. For example, in physics, in
order to find the currents in an electrical
circuit, . . . a system of linear equations
must be solved. In chemistry, the
balancing of chemical equations
requires the solution of a system of
linear equations. And in economics, the
Leontief input-output model reduces
problems concerning the production and
consumption of goods to systems of
linear equations. —Leslie Hogben in
Elementary Linear Algebra (Pacific
Grove, Calif.: Brooks/Cole, 1999)

© By Ian Miles-Flashpoint Pictures/Alamy
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An ordered pair that is a solution to both equations is called a solution of the system.
Sometimes, to emphasize the fact that a solution must satisfy both equations, we
refer to the system as a pair of simultaneous equations. A system that has at least
one solution is said to be consistent. If there are no solutions, the system is
inconsistent.
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EXAMPLE 1 Recognizing a Solution of a System of Equations

Consider the system

(a) Is (1, 1) a solution of the system?
(b) Is (3, �1) a solution of the system?

e x �  y � 2

2x � 3y � 9

SOLUTION (a) Although (1, 1) is a solution of the first equation, it is not a solution of the sys-
tem because it does not satisfy the second equation. (Check this for yourself.)

(b) (3, �1) satisfies the first equation since

(3, �1) satisfies the second equation since

Since (3, �1) satisfies both equations, it is a solution of the system.

We can gain an important perspective on systems of linear equations by looking
at Example 1 in graphical terms. Table 2 shows how each of the statements in that
example can be rephrased by using the geometric ideas with which we are already
familiar.

In Example 1 we verified that (3, �1) is a solution of the system

Are there any other solutions of this particular system? No: Figure 1 shows us that
there are no other solutions, since (3, �1) is clearly the only point common to both

e x �  y � 2

2x � 3y � 9

 2(3) � 3(�1) � 6 � 3 � 9

 3 � (�1) � 3 � 1 � 2

TABLE 1

Equations in
Is It linear?

Two Variables Yes No

3x � 8y � 12 ✓
�s � 4t � 0 ✓
2x � 3y2 � 1 ✓
y � 4 � 2x ✓

✓
4
u

�
5
v

� 3

TABLE 2

Algebraic Idea Corresponding Geometric Idea

1. The ordered pair (1, 1) is a solu- 1. The point (1, 1) lies on the line 
tion of the equation x � y � 2. x � y � 2. See Figure 1.

2. The ordered pair (1, 1) is not 2. The point (1, 1) does not lie on 
a solution of the equation the line 2x � 3y � 9. See Figure 1.
2x � 3y � 9. 3. The point (3, �1) lies on both

3. The ordered pair (3, �1) is a of the lines x � y � 2 and 
solution of the system 2x � 3y � 9. See Figure 1.

e x �  y � 2

2x � 3y � 9

y

x

(3, _1)

(1, 1)

x+y=2

2x-3y=9

Figure 1 



lines. In a moment we’ll look at two important methods for solving systems of linear
equations in two unknowns. But even before we consider these methods, we can say
something about the solutions of linear systems.

11.1 Systems of Two Linear Equations in Two Unknowns 759

We are going to review two methods from intermediate algebra for solving sys-
tems of two linear equations in two unknowns. These methods are the substitution
method and the addition–subtraction method. We’ll begin by demonstrating the
substitution method. Consider the system

We first choose one of the two equations and then use it to express one of the vari-
ables in terms of the other. In the case at hand, neither equation appears simpler than
the other, so let’s just start with the first equation and solve for x in terms of y. We
have

(3)

Now we use equation (3) to substitute for x in the equation that we have not yet used,
namely, equation (2). This yields

multiplying by 3

 y � 4

 �23y � �92

 4(17 � 2y) � 15y � �24

 4 c 1
3

 (17 � 2y) d � 5y � �8

 x �
1

3
 (17 � 2y)

 3x � 17 � 2y

(1)
(2)

e3x � 2y � 17

4x � 5y � �8

PROPERTY SUMMARY Possibilities for Solutions of Linear Systems

Given a system of two linear equations in two unknowns, exactly one of the following cases must occur.

CASE 1 The graphs of the two linear equations intersect in exactly one point. Thus there is exactly one solution to
the system. See Figure 2.

CASE 2 The graphs of the two linear equations are parallel lines. Therefore the lines do not intersect, and the system
has no solution. See Figure 3.

CASE 3 The two equations actually represent the same line. Thus, there are infinitely many points of intersection
and correspondingly infinitely many solutions. See Figure 4.

Figure 2 Figure 3 Figure 4
A consistent system with exactly An inconsistent system has no A consistent system with infinitely 
one solution. solution. many solutions.

y

x

y

x

y

x



The value y � 4 that we have just obtained can now be used in equation (3) to find x.
Replacing y with 4 in equation (3) yields

We have now found that x � 3 and y � 4. According to our work on linear equations,
each step that we used in the substitution method results in an equivalent system,
that is, a system with the same solution set. So the original system of equations is
equivalent to the system

As you can easily check, this pair of values indeed satisfies both of the origi-
nal equations. We write our solution as the ordered pair (3, 4). Figure 5 summa-
rizes the situation. It shows that the system is consistent and that (3, 4) is the only
solution.

Generally speaking, it is not necessary to graph the equations in a given system
in order to decide whether the system is consistent. Rather, this information will
emerge as you attempt to follow an algebraic method of solution. Examples 2 and 3
will illustrate this.

e x � 3

y � 4

x �
1

3
 [17 � 2(4)] �

1

3
 (9) � 3
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3x+2y=17

(3, 4)

4x-5y=_8

y

x

Figure 5 

EXAMPLE 2 Using the Substitution Method

Solve the system

 
•

3

2
 x � 3y � �9

 x � 2y � 4

SOLUTION We use the substitution method. Since it is easy to solve the second equation for x,
we begin there:

Now we substitute this result in the first equation of our system to obtain

Since the substitution process results in equivalent systems and, in this case, leads to
an obviously false statement, we conclude that the given system has no solution; that
is, the system is inconsistent.

Question: What can you say about the graphs of the two given equations?

 6 � �9  False

 6 � 3y � 3y � �9

 
3

2
 (4 � 2y) � 3y � �9

 x � 4 � 2y

 x � 2y � 4
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EXAMPLE 3 Another Substitution Example

Solve the system

•
3x � 4y � 12

2y � 6 �
3

2
 x

SOLUTION We use the method of substitution. Since it is easy to solve the second equation for y,
we begin there:

Now we use this result to substitute for y in the first equation of the original system.
The result is

which is always true.
This last identity imposes no restrictions on x. Graphically speaking, this says

that our two lines intersect for every value of x. In other words, the two lines coin-
cide. We could have foreseen this initially had we solved both equations for y. As you
can verify, the result in both cases is

Every point on this line yields a solution to our system of equations. In summary, then,
our system is consistent and the solutions to the system have the form x, � 3 ,
where x can be any real number. For instance, when x � 0, we obtain the solution
(0, 3). When x � 1, we obtain the solution 1, . The idea here is that for each value
of x we obtain a solution; thus there are infinitely many solutions.

Now let’s turn to the addition–subtraction method of solving systems of equa-
tions. By way of example, consider the system

Notice that if we add these two equations, the result is an equation involving only the
unknown x:

There are now several ways in which the corresponding value of y can be obtained.
As you can easily check, substituting the value x � 2�3 in either of the original equa-
tions leads to the result y � 11�9.

 x �
4

6
�

2

3

 6x � 4

e2x � 3y � 5

4x � 3y � �1

2941
2� 

3
4 x1

y � � 

3

4
 x � 3

 0 � 0

 3x � 3x � 12 � 12
 3x � 12 � 3x � 12

 3x � 4 a3 �
3

4
 x b � 12

2y � 6 �
3

2
 x  and therefore  y � 3 �

3

4
 x



Another way to find y is by multiplying both sides of the first equation by �2. 
We display the work this way:

Adding the last two equations then gives us �9y � �11, and therefore y � 11�9. As
with the substitution method, the addition–subtraction method results in an equiva-
lent system. The required solution is then (2�3, 11�9).

In the previous example we were able to find x directly by adding the two equa-
tions. As the next example shows, it may be necessary first to multiply both sides of
each equation by an appropriate constant.

4x � 3y � �1    —————! No change
      4x � 3y � �1

2x � 3y � 5     —————————————! Multiply by �2
   �4x � 6y � �10
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EXAMPLE 4 Using the Addition–Subtraction Method

Solve the system

e5x � 3y � 4

2x � 4y � 1

SOLUTION To eliminate x, we could multiply the second equation by 5�2 and then subtract the
resulting equation from the first equation. However, to avoid working with fractions,
we proceed as follows:

(4)

(5)

Subtracting equation (5) from equation (4) then yields

To find x, we return to the original system and work in a similar manner:

Upon adding the last two equations, we obtain

The solution of the given system of equations is therefore (19�26, �3�26).
Alternatively, after solving for y, we can use the substitution method to solve

for x.

We conclude this section with some problems that can be solved by using simul-
taneous equations.

 x �
19

26

 26x � 19

 2x � 4y � 1    —————!Multiply by 3
     6x � 12y � 3 

 5x � 3y � 4    —————!Multiply by 4
    20x � 12y � 16

 y � �
3

26

 �26y � 3

 2x � 4y � 1    —————!Multiply by 5
    10x � 20y � 5

 5x � 3y � 4     —————!Multiply by 2
    10x �  6y � 8
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EXAMPLE 5 Finding the Equation of a Parabola Through Given Points

Determine the constants b and c so that the parabola y � x2 � bx � c passes through
the points (�3, 1) and (1, �2).

SOLUTION Since the point (�3, 1) lies on the curve y � x2 � bx � c, the coordinates must satisfy
the equation. Thus we have

(6)

This gives us one equation in two unknowns. We need another equation involving b
and c. Since the point (1, �2) also lies on the graph of y � x2 � bx � c, we must
have

(7)

Rewriting equations (6) and (7), we have the system

Subtracting equation (9) from (8) then yields

One way to obtain the corresponding value of c is to replace b by 5�4 in equation (9).
This yields

The required values of b and c are therefore

(Exercise 39(b) at the end of this section asks you to check that the parabola with
equation indeed passes through the given points.)

The next example involves an application in the economics of supply and
demand. Figure 6 shows supply and demand models for a certain commodity. In the

y � x2 � 5
4x � 17

4

b �
5

4
  c � � 

17

4

 c � �3 �
5

4
� � 

17

4

 
5

4
� c � �3

�4b � �5  and therefore  b �
5

4

(8)
(9)

e�3b � c � �8

b � c � �3

 �3 � b � c
 �2 � 12 � b(1) � c

 �8 � �3b � c
 1 � (�3)2 � b(�3) � c

q=30p+100

q=_40p+12700

10020 ? 200

5,000

10,000

p (price in $)

q (quantity)

Figure 6
Supply function: 
q � 30p � 100 (p � 20)

Demand function: 
q � �40p � 12,700 (p � 20)



figure, the supply function q � 30p � 100 (p � 20) tells us the quantity q that the
manufacturer will produce and supply (to the stores) when the selling price is p dollars
per item. Note that this supply function is increasing: The higher the selling price, the
more items the manufacturer will produce. The demand function in Figure 6,
q � �40p � 12,700 (p � 20), gives us the quantity q that consumers would buy
when the selling price is p dollars per item. Note that the demand function is
decreasing: The higher the price, the fewer people there are who want to buy, so the
smaller the quantity demanded.

To see how these functions work, suppose that the selling price is p � $100. Then
we have

Supply: q � 30p � 100 � 30(100) � 100 � 3100 items

Demand: q � �40p � 12,700 � �40(100) � 12,700 � 8700 items

Thus, setting the market price at $100 per item will create a shortage; customers will
want to buy 8700 items at this price, but only 3100 items are available. We can see
this qualitatively in Figure 6. For p � $100, the graph of the (blue) demand function
is above that of the (red) supply function. In other words, demand exceeds supply in
this case. Figure 6 also shows that if the price is set at $200, rather than $100, then
the demand is less than the supply. So there is a surplus in this case. The point
where the graph of the supply function intersects the graph of the demand function is
called the market equilibrium point for the given commodity. The values of p and q
at this point are called the equilibrium price and the equilibrium quantity, respec-
tively. At the equilibrium point, supply equals demand, so there is neither a surplus
nor a shortage. In Figure 6 the equilibrium price is indicated with a question mark.
We determine this price in Example 6.
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EXAMPLE 6 Using Supply and Demand Functions

Assume that the supply and demand functions for a commodity are as given in
Figure 6.

(As in Figure 6, we are assuming that p is in dollars and p � 20.) Find the equilib-
rium price and the corresponding equilibrium quantity.

e q � 30p � 100

q � �40p � 12,700

SOLUTION Use the first equation to substitute for q in the second equation. This yields

The equilibrium price is therefore $180. Notice that this is consistent with Figure 6,
where the equilibrium price is between $100 and $200, closer to the latter than
the former. For the equilibrium quantity we can substitute p � 180 in either equation
of the given system. Using the first equation, we obtain q � 30(180) � 100 � 5500.
The equilibrium quantity is 5500. This too is consistent with Figure 6. (Why?)

 p �
12,600

70
�

1260

7
� 180

 70p � 12,600
 30p � 100 � �40p � 12,700



In the next example we solve a mixture problem using a system of two linear
equations.
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EXAMPLE 7 Solving a Mixture Problem

Suppose that a chemistry student can obtain two acid solutions from the stockroom.
The first solution is 20% acid, and the second solution is 45% acid. (The percentages
are by volume.) How many milliliters of each solution should the student mix 
together to obtain 100 ml of a 30% acid solution?

SOLUTION We begin by assigning letters to denote the required quantities.

Let x denote the number of milliliters of the 20% solution to be used.

Let y denote the number of milliliters of the 45% solution to be used.

We summarize the data in Table 3. Since the final mixture must total 100 ml, we have
the equation

(10)

This gives us one equation in two unknowns. However, we need a second equation.

x � y � 100

TABLE 3

Number Percent Total Acid 
Type of Solution of ml of Acid (ml)

First solution (20% acid) x 20 (0.20)x
Second solution (45% acid) y 45 (0.45)y
Mixture x � y 30 (0.30)(x � y)

Looking at the data in the right-hand column of Table 3, we can write

0.20x � 0.45y � (0.30)(x � y)

amount of acid amount of acid amount of acid in
in x ml of the in y ml of the the final mixture
20% solution 45% solution

Thus

(11)

Equations (10) and (11) can be solved by either the substitution method or the
addition method. As Exercise 40 at the end of this section asks you to show, the
results are

So we need to mix 60 milliliters of the 20% solution with 40 milliliters of the 45%
solution.

x � 60 ml  and  y � 40 ml

 �2x � 3y � 0
 4x � 9y � 6(x � y) � 6x � 6y

 20x � 45y � 30(x � y)
 0.20x � 0.45y � 0.30(x � y)

⎧ ⎪ ⎨ ⎪ ⎩⎧ ⎨ ⎩⎧ ⎨ ⎩
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(b) Use the substitution method to determine the solution.
Check that your answer is consistent with the graphical
estimate in part (a).

19. 20.

In Exercises 21–28, use the addition–subtraction method to find
all solutions of each system of equations.

21. 22.

23. 24.

25.

26. 27.

28.

29. Find b and c, given that the parabola y � x2 � bx � c
passes through (0, 4) and (2, 14).

30. Determine the constants a and b, given that the parabola
y � ax2 � bx � 1 passes through (�1, 11) and (3, 1).

31. Determine the constants A and B, given that the line
Ax � By � 2 passes through the points (�4, 5) and (7, �9).

32. (a) Determine constants a and b so that the graph of
y � ax3 � b passes through the two points (2, 1) and
(�2, �7).

. (b) Using the values for a and b determined in part (a),
graph the equation y � ax3 � b and see that it appears
to pass through the two given points.

As background for Exercises 33 and 34, you need to have read
the discussion on supply and demand preceding Example 6, as
well as Example 6 itself. In each exercise, assume that the price
p is in dollars.

33. Assume that the supply and demand functions for a com-
modity are as follows.
Supply: q � 200p; Demand: q � 9600 � 400p; for p � 0.
(a) If the price is set at $6, will there be a shortage or a

surplus of the commodity? What if the price is
doubled?

(b) If the price is $20, will there be a shortage or a surplus?
(c) Find the equilibrium price and the corresponding equi-

librium quantity.
34. Assume that the supply and demand functions for a com-

modity are as follows.
Supply: q � 15p; Demand: q � 12,493 � 50p; for p � 0.

e16x � 13y � 312 � 13

12x � 15y �  16 � 15

e8x � 16y � 5

2x �  5y � 5
4

e2.1x � 3.5y � 1.2

1.4x � 2.6y � 1.1

Hint for Exercise 25: First clear both
equations of fractions.e 1

4 x � 1
3 y � 4

2
7 x � 1

7 y � 1
10

e16x �  3y � 100

16x � 10y � 10
e4x � 13y � �5

2x � 54y � �1

e�8x �  y � �2

4x � 3y � 1
e5x � 6y � 4

2x � 3y � �3

e12x � 13y � 13

13x � 18y � 12
e0.02x � 0.03y � 1.06

0.75x � 0.50y � �0.01

A
1. Which of the following are linear equations in two variables?

(a) 3x � 3y � 10 (c) u � v � 1
(b) 2x � 4xy � 3y � 1 (d) x � 2y � 6

2. Which of the following are linear equations in two
variables?

(a) y � x (c) � �1

(b) y � x2 (d) 2w � 8z � �4w � 3
3. Is (5, 1) a solution of the following system?

4. Is (14, �2) a solution of the following system?

5. Is (0, �4) a solution of the following system?

6. Is (12, �8) a solution of the system in Exercise 5?

In Exercises 7–10 you are given a system of two linear equa-
tions. By graphing the pair of equations, determine which one of
the three cases described in Figures 2 through 4 (in this section)
applies. (You’re not being asked to solve the system.)

7. 8.

9. 10.

In Exercises 11–18, use the substitution method to find all solu-
tions of each system.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19 and 20:
(a) Graph the pair of equations, and by zooming in on the

intersection point, estimate the solution of the system (each
value to the nearest one-tenth).

e� 
2
5 x � 1

4 y � 3
1
4 x � 2

5 y � �3
e 4x � 6y � 3

�6x � 9y � � 
9
2

e  13x � 8y � �3

�7x � 2y � 0
e 3

2 x � 5y � 1

 x � 3
4 y � �1

e 4x � 2y � 3

10x � 4y � 1
e6x � 2y � �3

5x � 3y � 4

e3x � 2y � �19

 x � 4y � �4
e 4x �  y � 7

�2x � 3y � 9

 e2y � x � 18

 y � 0.4x � 1
e  5y � 10.5x � 25.5

21x � 50 � 10y

e y � 13(1 � 3x)�3

13y � 3x � 1 � 0
e3x � 7y � 10

6x � 3y � 1

e 1
6 x � 1

2 y � �2
2
3 x � 3

4 y � 2

e x � y � 12

x � y � 4

e2x � 8y � 2

3x � 7y � 22

4
x

�
3
y

EXERCISE SET 11.1



42. (a) Sketch the triangular region in the first quadrant
bounded by the lines y � 5x, y � �3x � 6, and the 
x-axis. One vertex of this triangle is the origin. Find the
coordinates of the other two vertices. Then use your
answers to compute the area of the triangle.

(b) More generally now, express the area of the shaded
triangle in the following figure in terms of m, M, and b.
Then use your result to check the answer you obtained
in part (a) for that area.

43. Find x and y in terms of a and b:

Does your solution impose any conditions on a and b?
44. Solve the following system for x and y in terms of a and b,

where a � b:

45. Solve the following system for x and y in terms of a and b,
where a � b:

Does your solution impose any additional conditions on a
and b?

46. Solve the following system for s and t:

Hint: Make the substitutions 1�s � x and 1�t � y in order
to obtain a system of two linear equations.

μ
3
s

�
4

t
� 2

5
s

�
1

t
� �3

eax � a2y � 1

bx � b2y � 1

e ax � by � 1�a

b2x � a2y � 1

μ
x

a
�

y

b
� 1

x

b
�

y

a
� 1

y=mx

y=Mx+b

y

x

(a) If the price is set at $50, will there be a shortage or 
a surplus of the commodity? What if the price is tripled?

(b) Show that if the price is $200, there will be a surplus.
How many items will be left unsold?

(c) Find the equilibrium price and the corresponding equi-
librium quantity.

35. A student in a chemistry laboratory has access to two acid
solutions. The first solution is 10% acid and the second is
35% acid. (The percentages are by volume.) How many
cubic centimeters of each should she mix together to obtain
200 cm3 of a 25% acid solution?

36. One salt solution is 15% salt, and another is 20% salt. How
many cubic centimeters of each solution must be mixed to
obtain 50 cm3 of a 16% salt solution?

37. A shopkeeper has two types of coffee beans on hand. One
type sells for $5.20/lb, the other for $5.80/lb. How many
pounds of each type must be mixed to produce 16 lb of a
blend that sells for $5.50/lb?

38. A certain alloy contains 10% tin and 30% copper. (The per-
centages are by weight.) How many pounds of tin and how
many pounds of copper must be melted with 1000 lb of the
given alloy to yield a new alloy containing 20% tin and
35% copper? Hint: Introduce variables for the weights of
tin and copper to be added to the given alloy. Express the
total weight of the new alloy in terms of these variables.
The total weight of tin in the new alloy can be computed
two ways, giving one equation. Computing the total weight
of copper similarly gives a second equation.

39. In this exercise you’ll check the result of Example 5, first
visually, then algebraically.
(a) Graph the parabola y � x2 � � in an appropri-

ate viewing rectangle to see that it appears to pass
through the two points (�3, 1) and (1, �2).

(b) Verify algebraically that the two points (�3, 1) and 
(1, �2) indeed lie on the parabola y � x2 � �

40. Consider the following system from Example 7:

(a) Solve this system using the method of substitution. (As
was stated in Example 7, you should obtain x � 60,
y � 40.)

(b) Solve the system using the addition–subtraction method.

B
41. Find constants a and b so that (8, �7) is the solution of the

system

e ax � by � 10

bx � ay � �5

e x �  y � 100

�2x � 3y � 0

17
4  .5

4 x

17
4

5
4 x
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58. You have two brands of dietary supplements on your 
shelf. Among other ingredients, both contain protein 
and carbohydrates. The amounts of protein and carbohy-
drates in one unit of each supplement are given in the fol-
lowing table as percentages of the recommended daily
amount (RDA). How many units of each supplement do
you need in a day to obtain the RDA for both protein and
carbohydrates?

Protein Carbohydrates
(% of RDA (% of RDA 

in one unit) in one unit)

Supplement #1 8 12
Supplement #2 16 4

59. Solve the following system for x and y in terms of a and b,
where a and b are nonzero and a � b.

60. Solve for x and y in terms of a, b, c, d, e, and f:

(Assume that ae � bd � 0.)

C
61. (a) Given that the lines 7x � 5y � 4, x � ky � 3, and

5x � y � k � 0 are concurrent (pass through a com-
mon point), what are the possible values for k?

(b) Check that your answers are reasonable: For each
value of k that you find, use a graphing utility to draw
the three lines. Do they appear to be concurrent?

62. Solve the following system for x and y in terms of a and b,
where ab � �1:

Answer: x � (a � 1)�(ab � 1)
y � a(b � 1)�(ab � 1)

μ
x � y � 1

x � y � 1
� a

y � x � 1

x � y � 1
� ab

e ax � by � c

dx � ey � f

μ
a

bx
�

b

ay
� a � b

b

x
�  

a

y
� a2 � b2

47. Solve the following system for s and t:

(Use the hint in Exercise 46.)

48. Consider the following system: 

(a) Assuming k � 109, solve the system. Hint: The
substitutions u � x2 and v � y2 will give you a linear
system.

(b) Follow part (a) using: k � 110; k � 111.
(c) Use a graphing utility to shed light on why the num-

ber of solutions is different for each of the values of k
considered in parts (a) and (b).

In Exercises 49–55, find all solutions of the given systems. For
Exercises 51–55, use a calculator to round the final answers to
two decimal places.

49.

50. � � 1

51. 52.

Hint: Let u � ln x and v � ln y.

53. 54.

Hint: Let u � ex and v � ey.

55.

Hint: Let u � and v �
56. The sum of two numbers is 64. Twice the larger number

plus five times the smaller number is 20. Find the two num-
bers. (Let x denote the larger number and let y denote the
smaller number.)

57. In a two-digit number, the sum of the digits is 14. Twice
the tens digit exceeds the units digit by one. Find the
number.

2y2 � 6y.2x2 � 3x

e 42x2 � 3x � 32y2 � 6y � �4
1
2 12x2 � 3x � 2y2 � 6y 2 � 3

e  ex � 2ey � 4
1
2 ex �  ey � 0

e  ex � 3ey � 2

3ex �  ey � 16

e3 ln  x �   ln  y � 3

4 ln  x � 6 ln  y � �7
e2 ln  x � 5 ln  y � 11

ln x �   ln y � �5

x � y

3

x � y

2

μ
2w � 1

3
�

z � 2

4
� 4

w � 3

2
�

w � z

3
� 3

e2x2 � 2y2 � 55

4x2 � 8y2 � k

μ
1

2s
�

1

2t
� �10

2
s

�
3

t
� 5
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Readers might want to try the project, Geometry Workbooks on the Euler Line and the Nine-Point Circle,
at http://www.cengage.com/math/cohen/precalc7e, which applies the material in Section 11.1 to obtain two
beautiful geometric results.

http://www.cengage.com/math/cohen/precalc7e


GAUSSIAN ELIMINATION
In the previous section we solved systems of linear equations in two unknowns. In
this section we introduce the technique known as Gaussian elimination for solving
systems of linear equations in which there are more than two unknowns.*

As a first example, consider the following system of three linear equations in the
three unknowns x, y, and z:

This system is easy to solve by using the process of back-substitution. Dividing both
sides of the third equation by 5 yields z � 4. Then, substituting z � 4 back into the
second equation gives us

Finally, substituting the values z � 4 and y � 2 back into the first equation yields

We have now found that x � �1, y � 2, and z � 4. If you go back and check, you will
find that these values indeed satisfy all three equations in the given system. Further-
more, the algebra we’ve just carried out shows that these are the only possible values
for x, y, and z satisfying all three equations. We summarize by saying that the
ordered triple (�1, 2, 4) is the solution of the given system.

The system that we just considered was easy to solve (using back-substitution) be-
cause of the special form in which it was written. This form is called upper-triangular
form. Although the following definition of upper-triangular form refers to systems
with three unknowns, the same type of definition can be given for systems with any
number of unknowns. Table 1 displays examples of systems in upper-triangular form.

A system of linear equations in x, y, and z is said to be in upper-triangular form pro-
vided that x appears in no equation after the first and y appears in no equation after
the second. (It is possible that y may not even appear in the second equation.)

Upper-Triangular Form (three variables)

 x � �1

 3x � �3

 3x � 2(2) � 4 � �3

 y � 2

 5y � 10

 5y � 2(4) � 2

•
3x � 2y �  z � �3

5y � 2z � 2

5z � 20

A method of solution is perfect if we can
foresee from the start, and even prove,
that following that method we shall
obtain our aim. —Gottfried Wilhelm von
Leibniz (1646–1716)

. . . the first electronic computer, the
ABC, named after its designers
Atanasoff and Berry, was built spe-
cifically to solve systems of 29 equations
in 29 unknowns, a formidable task
without the aid of a computer. —Angela
B. Shiflet in Discrete Mathematics for
Computer Science (St. Paul: West
Publishing Co., 1987)
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*The technique is named after Carl Friedrich Gauss (1777–1855). Early in the nineteenth
century, Gauss used this technique (and introduced the method of least squares for minimizing
errors) in analyzing the orbit of the asteroid Pallas. However, the essentials of Gaussian elim-
ination were in existence long before Gauss’s time. Indeed, a version of the method appears in
the Chinese text Chui-Chang Suan-Shu (“Nine Chapters on the Mathematical Art”), written
approximately two thousand years ago.



When we were solving linear systems of two equations with two unknowns in the
previous section, we observed that there were three possibilities for the solution set:
a unique solution, infinitely many solutions, and no solution. As the next three ex-
amples indicate, the situation is similar when dealing with larger systems.
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TABLE 1 Examples of Systems in Upper-Triangular Form

2 Unknowns: x, y 3 Unknowns: x, y, z 4 Unknowns: x, y, z, t

e 8x � 3y � z �  t � 2

2y � z � 4t � 1

•
2x � y � 2z �  t � �3

4z � 3t � 1

5t � 6

e 15x � 2y � z � 1

3z � �8

μ
x � y �  z � 4t � 1

3y � 2z �  t � �1

3z � 5t � 4

6t � 7

•
4x � 3y � 2z � �5

7y �  z � 9

� 4z � 3

e3x � 5y � 7

8y � 5

EXAMPLE

SOLUTION

1 Using Back-Substitution to Solve a System

Find all solutions of the system

The system is in upper-triangular form, so we can use back-substitution. Dividing the
third equation by 6 yields z � 1�2. Substituting this value for z back into the second
equation then yields

Now, substituting the values z � 1�2 and y � �1 back into the first equation, we
obtain

As you can easily check, the values x � 2, y � �1, and z � 1�2 indeed satisfy all
three equations. Furthermore, the algebra we’ve just carried out shows that these are
the only possible values for x, y, and z satisfying all three equations. We summarize 
by saying that the unique solution to our system is the ordered triple .12, � 1, 12 2

 x � 2

 x � (�1) � 2 a 1

2
b � 2

 y � �1
 3y � �3

 3y � 4 a 1

2
b � �5

•
x �  y � 2z � 2

3y � 4z � �5

6z � 3



2 A System with Infinitely Many Solutions

Find all solutions of the system

Again, the system is in upper-triangular form, and we use back-substitution. Solving
the second equation for z yields z � 5. Then replacing z by 5 in the first equation
gives us

At this point, we’ve made use of both equations in the given system. There is no third
equation to provide additional restrictions on x, y, or z. We know from the previous
section that the equation y � 2x � 9 has infinitely many solutions, all of the form

It follows, then, that there are infinitely many solutions to the given system and they
may be written

For instance, choosing in succession x � 0, x � 1, and x � 2 yields the solutions 
(0, �9, 5), (1, �7, 5), and (2, �5, 5). (We remark in passing that any linear system in
upper-triangular form in which the number of unknowns exceeds the number of
equations will always have infinitely many solutions.)

3 A System with No Solutions

Find all solutions of the system

(Note that the system is not in upper-triangular form.)

Look at the left-hand sides of the first and third equations: They are identical. Thus, if
there were values for x, y, and z that satisfied both equations, it would follow that 1 � 6,
which is clearly impossible. We conclude that the given system has no solutions.

As Examples 1 and 2 have demonstrated, systems in upper-triangular form can be
readily solved. In view of this, it would be useful to have a technique for converting a
given system into an equivalent system in upper-triangular form. (Recall that an equiv-
alent system means a system with exactly the same set of solutions as the original sys-
tem.) Gaussian elimination is one such technique. We will demonstrate this technique
in Examples 4, 5, 7, and 8. In using Gaussian elimination, we will rely on what are
called the three elementary operations, listed in the box that follows. These are oper-
ations that, when performed on equations in a system, produce an equivalent system.

•
4x � 7y � 3z � 1

3x �  y � 2z � 4

4x � 7y � 3z � 6

(x, 2x � 9, 5)  where x is a real number

(x, 2x � 9)   where x is a real number

 y � 2x � 9
 �2x � y � �9

 �2x � y � 3(5) � 6

e�2x � y � 3z � 6

2z � 10
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1. Multiply both sides of an equation by a nonzero constant.
2. Interchange the order in which two equations of a system are listed.
3. To one equation add a multiple of another equation in the system.

4 Using Gaussian Elimination to Solve a System

Find all solutions of the system

First we want to eliminate x from the second and third equations. To eliminate x from
the second equation, we add to it �2 times the first equation. The result is the equiv-
alent system

To eliminate x from the third equation, we add to it �1 times the first equation. The
result is the equivalent system

Now to bring the system into upper-triangular form, we need to eliminate y from the
third equation. We could do this by adding �1�3 times the second equation to the third
equation. However, to avoid working with fractions as long as possible, we proceed in-
stead to interchange the second and third equations to obtain the equivalent system

Now we add �3 times the second equation to the last equation to obtain the equiva-
lent system

The system is now in upper-triangular form, and back-substitution yields, in turn,
z � 2, y � �4, and x � 9. (Check this for yourself.) The required solution is there-
fore (9, �4, 2).

In Table 2 we list some convenient abbreviations used in describing the elemen-
tary operations. Plan on using these abbreviations yourself; they’ll make it simpler

•
x � 2y �  z � 3

�y �  z � 6

�4z � �8

•
x � 2y � z � 3

�y � z � 6

�3y � z � 10

•
x � 2y � z � 3

�3y � z � 10

�y � z � 6

•
x � 2y �  z � 3

�3y �  z � 10

x �  y � 2z � 9

•
x � 2y �  z � 3

2x �  y �  z � 16

x �  y � 2z � 9

The Elementary Operations
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for you (and your instructor) to check your work. In Table 2 the notation Ei stands for
the ith equation in a system. For instance, for the initial system in Example 4 the
symbol E1 denotes the first equation: x � 2y � z � 3.
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EXAMPLE

SOLUTION

TABLE 2 Abbreviations for the Elementary Operations

Abbreviation Explanation

1. cEi Multiply both sides of the ith equation by c, for c � 0.
2. Ei Ej Interchange the ith and jth equations.
3. cEi � Ej Add c times the ith equation to the jth equation.

(The jth equation is replaced by the indicated sum.)

4

5 Specifying the Elementary Operations in Using Gaussian Elimination

Solve the system

The system is now in upper-triangular form. Solving the third equation, we obtain
z � 3. Substituting this value back into the second equation yields y � 2. (Check
this for yourself.) Finally, substituting z � 3 and y � 2 back into the first equation
yields x � 10. (Again, check this for yourself.) The solution to the system is there-
fore (10, 2, 3).

  —————! 
�50E2 � E3 •

�x � 12y �  9z � �7  

�y �   z � �5   

 89z � 267

  —————!  
(�1)E3�E2 •

�x � 12y �  9z � �7

�y �  z � �5

�50y � 39z � 17  

  —————!  
1
2  E3 •

�x � 12y �  9z � �7

�51y � 38z � 12  

�50y � 39z � 17  

  —————!  
5E1�E2

9E1�E3

•
�x � 12y �  9z � �7

�51y � 38z � 12  

�100y � 78z � 34  

adding �1
times the
second
equation to the
first equation

 •
4x � 3y � 2z � 40

5x � 9y � 7z � 47

9x � 8y � 3z � 97

 —————!(�1)E2�E1     •
�x � 12y � 9z � �7

5x �  9y � 7z � 47  

9x �  8y � 3z � 97  

 •
4x � 3y � 2z � 40

5x � 9y � 7z � 47

9x � 8y � 3z � 97

to allow working
with smaller but
integral
coefficients



6 Using Gaussian Elimination to Solve a Scheduling Problem

A charter tour company specializing in Hawaiian vacations has a total of 1328 reser-
vations for an August departure from Los Angeles to Honolulu. The company has
three different kinds of jets available, each with three classes of seats: economy,
economy-upgrade, and first class. The available seating on each type of jet is given
in the following table.

Jet Type I Jet Type II Jet Type III

Economy 120 80 60
Economy-upgrade 60 35 26
First class 20 45 16

Of the 1328 reservations, 760 are in economy class, 354 are in economy-upgrade,
and the remaining 214 are in first class. How many jets of each type are needed to
accommodate these passengers, given that the tour company would like to have all
seats occupied on each plane? Or is that not possible?

Let x be the required number of type I jets, y the number of type II jets, and z the
number of type III jets. We start by considering economy class. According to the
table, on each type I jet there are 120 economy seats available. Thus with x type I
jets we have 120x economy seats available. Similarly, for type II jets there are 80y
economy seats, and for type III jets there are 60z economy seats. Therefore we
require that

120x � 80y � 60z � 760

c
the number of economy the number of economy
seats available seats reserved

That gives us one equation involving the three unknowns x, y, and z. In a
similar fashion, working with economy-upgrade and then working with first class,
we obtain the two additional equations 60x � 35y � 26z � 354 and 20x � 45y �
16z � 214. (Verify this for yourself.) In summary then, we have the following system
of three linear equations:

(1)

This system can be solved using Gaussian elimination, just as in Example 5 (al-
though the arithmetic is a bit messier). Exercise 30(a) asks you to solve the system.
The result turns out to be x � 3, y � 2, and z � 4. This tells us that the tour company
should use 3 type I jets, 2 type II jets, and 4 type III jets in order to accommodate all
of the passengers while filling all of the seats on each plane. If at least one of the val-
ues for x, y, or z in the solution had not been a whole number, then we would have
needed to round up to the next whole number (why?), which would mean that at least
one plane would be flying with one or more empty seats.

•
120x � 80y � 60z � 760

60x � 35y � 26z � 354

20x � 45y � 16z � 214

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
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Each linear system that we considered in Examples 4–6 had exactly one solution.
As the next two examples indicate, the method of Gaussian elimination also works in
cases where the system has infinitely many solutions or no solution. Indeed, it’s not
necessary to know how many solutions there are (if any) at the start; rather, this in-
formation is revealed by the Gaussian elimination process.

7 A System with Infinitely Many Solutions

Solve the system

This system is similar to the one in Example 2 in that there are fewer equations than
there are unknowns. By subtracting the first equation from the second, we readily ob-
tain an equivalent system in upper-triangular form:

Although the system is now in upper-triangular form, notice that the second equation
does not determine y or z uniquely; that is, there are infinitely many number pairs (y, z)
satisfying the second equation. We can solve the second equation for y in terms of z; the
result is y � �5z. Now we replace y with �5z in the first equation to obtain

At this point we’ve used both of the equations in the system to express x and y in
terms of z. Furthermore, there is no third equation in the system to provide additional
restrictions on x, y, or z. We therefore conclude that the given system has infinitely
many solutions. These solutions have the form

8 A System with No Solutions

Solve the system

From the third equation in this last system, we conclude that this system, and consequently
the original system, has no solution. (Reason: If there were values for x, y, and z satisfy-
ing the original system, then it would follow that 0 � 1, which is clearly impossible.)

  —————!�2E2 � E3

  •
x � 4y �  z � 3

17y � 5z � �10

0 � 1

 •
 x � 4y �  z � 3

3x � 5y � 2z � �1

7x � 6y � 3z � 2

   —————!�3E1�E2

�7E1�E3

  •
x � 4y �   z � 3

17y �  5z � �10

34y � 10z � �19

•
x � 4y �  z � 3

3x � 5y � 2z � �1

7x � 6y � 3z � 2

(6z, �5z, z)  where z is any real number

x � 2(�5z) � 4z � 0  or  x � 6z

e x � 2y � 4z � 0

y � 5z � 0

e x � 2y � 4z � 0

x � 3y � 9z � 0

11.2 Gaussian Elimination 775

EXAMPLE

SOLUTION

EXAMPLE

SOLUTION



In the examples in this section we’ve seen the three possibilities regarding solu-
tions of linear systems with more than two unknowns: a unique solution (as in
Examples 1, 4, 5, and 6); infinitely many solutions (as in Examples 2 and 7); and no
solution (as in Examples 3 and 8). Just as in the previous section, there are graphs to
explain each case. But now, instead of lines in a two-dimensional coordinate system,
the graphs involve planes in a three-dimensional coordinate system. We’ll describe
this in general, without going into detail.

In the familiar x-y coordinate system an equation of the form ax � by � c repre-
sents a line. And, as you know, a solution (x0, y0) of a linear system with two un-
knowns is a point that lies on both of the given lines. Similarly, in three dimensions,
an equation of the form ax � by � cz � d represents a plane. A solution (x0, y0, z0)
of a linear system involving three unknowns can be interpreted as a point that lies on
all of the given planes. Thus where we talked about intersecting lines in two dimen-
sions, now we are talking about intersecting planes in three dimensions. Figure 1, for
instance, shows a geometric interpretation for Example 7, in which there were two
equations in three unknowns. Each equation describes a plane. As is indicated in
Figure 1, these two planes intersect in a line. Each point on the line corresponds to a
solution of the linear system. In Figure 2 we show some of the possibilities when
there are three equations and three unknowns.
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Figure 1
Geometric interpretation for
Example 7.

(d) Two parallel planes cut a third plane.
There is no point common to all three
planes. The corresponding system of
three linear equations in three unknowns
has no solution.

(c) There is exactly one point common
to 
system of three linear equations
in three unknowns has exactly
one solution.

all three planes. The corresponding

(a) The three planes intersect in a line.
The corresponding system of three
linear equations in three unknowns
has infinitely many solutions.

(b) Although each pair of planes intersects
in a line, the three planes have no point
in common.  The corresponding system
of three linear equations in three unknowns
has no solution.

Figure 2
Some of the ways in which three
planes can intersect (or fail to
intersect).
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EXERCISE SET 11.2

A
In Exercises 1–10, the systems of linear equations are in upper-
triangular form. Find all solutions of each system.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

In Exercises 11–29, find all solutions of each system.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. •
�2x � 2y � z � 0

3x � 4y � z � 1

5x � 8y � z � 4

•
2x �  y �  z � �1

x � 3y � 2z � 2

�5x � 6y � 5z � 5

•
7x � 5y � 7z � �10

2x �  y �  z � 7

x �  y � 3z � �8

•
x �  y �  z � 1

�2x �  y �  z � �2

3x � 6y � 6z � 5

•
2x � 5y � 3z � 4

4x � 3y � 2z � 9

5x � 6y � 2z � 18

•
3x � 3y � 2z � 13

6x � 2y � 5z � 13

7x � 5y � 3z � 26

•
x   �  2z � 5

   y � 30z � �16

x � 2y �  4z � 8

•
2x � 3y � 2z � 4

4x � 2y � 3z � 7

5x � 4y � 2z � 7

•
A �  B �  C � �1

3A �  B � 2C � 9

5A � 3B � 3C � 1

•
x �  y � z � 12

2x �  y � z � �1

3x � 2y � z � 22

•
7x � y �  z �  w � 3

2y � 3z � 4w � �2

3w � 6

μ
2x � 3y �  z �  w � �6

y � 3z � 4w � 23

6z � 5w � 31

� 2w � 10

μ
�x �  y �  z �   w � 9

2y �  z �   w � 9

3z �  2w � 1

11w � 22

e�x � 8y � 3z � 0

2z � 0

e3x � 2y � z � 4

3z � 9
•

�4x � 5y    � 0

3y � 2z � 1

3z � �1

•
2x  � 7z � �4

5y � 3z � 6

6z � 18

•
8x � 5y � 3z � 1

3y � 4z � 2

5z � 3

•
�3x � 7y � 2z � �19

y �  z � 1

� 2z � �2

•
2x �  y �  z � �9

3y � 2z � �4

8z � �8

21. 22.

23.

24.

25.

26.

27.

28.

29.

30. This exercise concerns Example 6 in the text.
(a) Solve system (1) on page 774. As stated in the text, you

should obtain x � 3, y � 2, and z � 4.
(b) There are websites on the Internet that will solve a

system of linear equations for you. They can be located
by using any search engine to look for equation
solvers. For instance, at the time of this writing, one
such site is http://www.quickmath.com. Use one of
these websites to solve system (1) on page 774.

31. Rework Example 6 in the text using the following new
data. The number of reservations in economy, in economy-
upgrade, and in first class are 830, 735, and 592, respec-
tively. The seating capacity on each type of jet is as
follows.

Jet Type I Jet Type II Jet Type III

Economy 40 80 70
Economy-upgrade 35 75 60
First class 30 44 56

32. In Exercise 31, suppose that the company had made an
error in counting the number of economy reservations, and

e4x � 2y � 3z � �2

6y � 4z � 6

•
2x �  y �  z �  w � 1

x � 3y � 3z � 3w � 0

�3x � 4y � 2z � 2w � �1

•
x � 2y � 2z � 2w � �10

3x � 4y �  z � 3w � 11

�4x � 3y � 3z � 8w � �21

e4x �  y � 3z � 2

6x � 5y �  z � 0

e2x � 3y � 2z � 5

x � 4y � 3z � 1

μ
x �  y � 3z � 2w � 0

�2x � 2y � 6z �  w � �5

�x � 3y � 3z � 3w � �5

2x �  y � 3z �  w � 4

μ
x �  y �  z �  w � 4

x � 2y �  z �  w � 3

2x �  y �  z �  w � 2

x �  y � 2z � 2w � �7

•
3x �  y �  z � 10

8x �  y � 6z � �3

5x � 2y � 5z � 1

•
2x �  y �  z � 4

x � 3y � 2z � �1

7x   � 5z � 11

http://www.quickmath.com


these antioxidants in each supplement are indicated in the
following table. How many ounces of each supplement
should you combine to obtain the RDI’s for vitamin C,
vitamin E, and zinc?

Vitamin C Vitamin E Zinc
(mg/oz.) (mg/oz.) (mg/oz.)

Supplement I 12 4 1
Supplement II 5 1.25 2.5
Supplement III 2 3 0.5

B
37. After reviewing records from previous years, the owner of

a small company notices some trends in the data. One of
the trends is that monthly revenues from July through
February, although different from year to year, seem to
rise and fall in a pattern similar to the following. The
(mathematically inclined) owner observes that a portion
of a parabola may be a good model here.

(a) This fiscal year, the monthly revenues for July, August,
and September are as follows:

Month

July Aug. Sept.

Revenue
(units of $100,000) 1 3.7 5.8

Let t � 0 correspond to July, t � 1 to August, and so on.
Let R(t) be the revenue (in units of $100,000) for the
month t. Find the quadratic function R(t) � at2 � bt � c
whose graph passes through the three given data points
(0, 1), (1, 3.7), and (2, 5.8).

(b) Use the vertex formula from Section 4.5 to determine
the month for which the revenue is a maximum. Is your
answer consistent with the bar graph shown at the start
of this exercise? What is the corresponding maximum
revenue?

38. Suppose that the height of an object as a function of time is
given by f(t) � at2 � bt � c, where t is time in seconds,
f (t) is the height in feet at time t, and a, b, and c are certain
constants. If, after 1, 2, and 3 seconds, the corresponding
heights are 184 ft, 136 ft, and 56 ft, respectively, find the
time at which the object is at ground level (height � 0 ft).

July Aug Sept Oct Nov Dec Jan Feb

R
ev

en
ue

that it should be 825 rather than 830. Solve the resulting
system and interpret the result.

33. A parabola y � ax2 � bx � c passes through the three
points (1, �2), (�1, 0), and (2, 3).
(a) Write down a system of three linear equations that

must be satisfied by a, b, and c.
(b) Solve the system in part (a).
(c) With the values for a, b, and c that you found in 

part (b), use a graphing utility to draw the parabola
y � ax2 � bx � c. Find a viewing rectangle that seems
to confirm that the parabola indeed passes through the
three given points.

(d) Another way to check your result in part (b): Apply
the quadratic regression option on a graphing utility after
entering the three given data points (1, �2), (�1, 0), and
(2, 3). (This is a valid check because, in general, three
noncollinear points determine a unique parabola.)

34. A curve y � x3 � Ax2 � Bx � C passes through the three
points (1, �2), (2, 3), and (3, 20).
(a) Write down a system of three linear equations satisfied

by A, B, and C.
(b) Solve the system in part (a).
(c) With the values for A, B, and C that you found in 

part (b), use a graphing utility to draw the curve
y � x3 � Ax2 � Bx � C, checking to see that it appears
to pass through the three given points.

35. A manufacturer of office chairs makes three models:
Utility, Secretarial, and Managerial. Three materials com-
mon to the manufacturing process for all of the models are
cloth, steel, and plastic. The amounts of these materials re-
quired for one chair in each category are specified in the
following table. The company wants to use up its inventory
of these materials because of upcoming design changes.
How many of each model should the manufacturer build to
deplete its current inventory consisting of 476 units of
cloth, 440 units of steel, and 826 units of plastic?

Utility Secretarial Managerial

Cloth 3 4 2
Steel 2 5 8
Plastic 6 4 1

36. The U.S. Food and Drug Administration lists the following
RDI’s (reference daily intakes) for the antioxidants 
vitamin C, vitamin E, and zinc.

Remark on terminology: The Food and Drug Adminis-
tration defines RDI as a weighted average of the recom-
mended daily allowances for all segments of the U.S.
population.

Suppose that you have three brands of dietary supple-
ments on your shelf. Among other ingredients, all three
contain the antioxidants mentioned above. The amounts of

Vitamin C: 60 mg  Vitamin E: 30 mg  Zinc: 15 mg

778 CHAPTER 11 Systems of Equations



11.2 Gaussian Elimination 779

42. The following figure displays three circles that are mutu-
ally tangent. The line segments joining the centers have
lengths a, b, and c, as shown. Let r1, r2, and r3 denote the
radii of the circles, as indicated in the figure. Show that

C
The following exercise appears in Algebra for Colleges and
Schools by H. S. Hall and S. R. Knight, revised by F. L.
Sevenoak (New York: The Macmillan Co., 1906).

43. A, B, and C are three towns forming a triangle. A man has
to walk from one to the next, ride thence to the next, and
drive thence to his starting point. He can walk, ride, and
drive a mile in a, b, and c minutes, respectively. If he starts
from B he takes a � c � b hours, if he starts from C he
takes b � a � c hours, and if he starts from A he takes
c � b � a hours. Find the length of the circuit. [Assume
that the circuit from A to B to C is counterclockwise.]

c

a

r£
r£

r™

r™
r¡ r¡

b

r1 �
a � c � b

2
  r2 �

a � b � c

2
  r3 �

b � c � a

2

39. Solve the following system for x, y, and z:

(Assume that a � 0.) Hint: Let A � ex, B � ey, and
C � ez. Solve the resulting linear system for A, B, and C.

40. Solve the following system for a, b, and g.

41. The following figure shows a rectangular metal plate. The
temperature at each red point on the boundary is main-
tained at the constant value shown (in Fahrenheit degrees).
The temperature is not regulated at the interior points (indi-
cated by the blue dots). Under these conditions, over time,
it can be shown that the temperature at each interior point
is the average of the temperatures of the four surrounding
points (that is, the points directly above, below, left, and
right). For example, the temperature T1 in the figure
satisfies the condition T1 � (40 � 44 � T2 � 41)�4. Write
down similar equations for T2 and for T3. Then solve the 
resulting system to determine the temperatures T1, T2,
and T3. Remark: Actually, the average-temperature
condition that we’ve described is an approximation, and it
holds only if the distances involved are sufficiently small.

40˚

41˚ 42˚ 32˚

44˚ 48˚ 50˚

T¡ T™ T£ 35˚

•
ln  a �   ln  b �   ln  g � 2

3 ln  a � 5 ln  b � 2 ln  g � 1

2 ln  a � 4 ln  b �   ln  g � 2

•
ex �  ey � 2ez � 2a

ex � 2ey � 4ez � 3a
1
2 ex � 3ey �  ez � �5a

PROJECT The Leontief Input-Output Model

Extract of press release from the Royal Swedish Academy of Sciences, Octo-
ber 18, 1973: The Royal Swedish Academy of Sciences has awarded the 1973
year’s Prize in Economic Science in Memory of Alfred Nobel to Professor
Wassily Leontief for the development of the input-output method and for its
application to important economic problems. Professor Leontief is the sole and
unchallenged creator of the input-output technique. This important innovation
has given to economic sciences an empirically-useful method to highlight the
general interdependence in the production system of a society. In particular, the
method provides tools for a systematic analysis of the complicated inter-
industry transactions in an economy.
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PART I: Explanation and Practice

Professor Wassily W. Leontief (1906–1999) won the Nobel prize in economics
for his input-output model. In this project we explain the model in a simple
case. As you’ll see, the model yields a system of linear equations that we need
to solve. Leontief began his work on the input-output model in the 1930s and
often applied the model to the economy of the United States. You can see a
readily available example of this at your local or college library in Leontief’s
article “The Structure of the U.S. Economy,” which appears in the April 1965
issue of the magazine Scientific American (vol. 212, no. 4, pp. 25–35).

In the Scientific American article Leontief divided the American economy
into 81 different industries or sectors. (For instance, 5 of the 81 sectors were
coal mining, glass and glass products, primary iron and steel manufacturing,
apparel, and aircraft and parts.) To keep things simple, let’s suppose now that
we have an economy with only three sectors: steel, coal, and electricity. Further,
suppose that the sectors are interrelated, as given by the following input-output
table, Table 1. We’ll explain how to interpret the table in the next paragraph.

The idea behind Table 1 is that each sector in the economy requires for its
production process inputs from one or more of the other sectors. In the table,
the first column of figures (beneath the output heading Steel) is interpreted as
follows: The production of one unit of steel requires

0.04 unit of steel

0.15 unit of coal

0.14 unit of electricity

(While it’s clear that coal and electricity would be required in the production of
steel, you may be wondering why steel itself appears as one of the inputs.
Think of the steel as being utilized in the building of equipment or factories for
use by the steel industry.) The second and third columns of figures in the table
are interpreted similarly. In particular, the second column of figures in Table 1
indicates that the production of 1 unit of coal requires 0.02 unit of steel, no
units of coal, and 0.10 unit of electricity. The third column indicates that the

TABLE 1 An Input-Output Table for a Hypothetical 
Three-Sector Economy

Outputs

Steel Coal Electricity

Inputs
Steel 0.04 0.02 0.16
Coal 0.15 0 0.25
Electricity 0.14 0.10 0.04
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production of 1 unit of electricity requires 0.16 unit of steel, 0.25 unit of coal,
and 0.04 unit of electricity.

Table 1 can also be interpreted by reading across the rows, rather than
down the columns. The first row of figures tells how much steel is required to
produce 1 unit of output from each industry. In particular, to produce 1 unit of
steel, 1 unit of coal, or 1 unit of electricity requires 0.04 unit of steel, 0.02 unit
of steel, or 0.16 unit of steel, respectively. The second and third rows of figures
are interpreted similarly.

Table 1 shows the demands that the three sectors place on one another for
production. Now, outside of these three sectors, in other industries or in gov-
ernment, for example, there are, of course, additional demands for steel, coal,
and electricity. These additional demands, from sources outside of the three
given sectors, are referred to as external demands. By way of contrast, the
demands in Table 1 are called internal demands. Let us suppose that the 
external demands are as given in Table 2. The problem to be solved then is as
follows.

How many units should each of the three given sectors produce to satisfy both
the internal and external demands on the economy?

To solve this input-output problem, let

We’ll use the information in Tables 1 and 2 to generate a system of three linear
equations involving x, y, and z. First, since x represents the total number of
units of steel to be produced, we have

using (1)
Table 2

Regarding the internal demands for steel in equation (1), we’ll make use of
the first row of figures in Table 1 along with the following proportionality
assumption. (For clarity, we state this for the case of steel output, but it’s
assumed for coal and electricity as well.) If the output of one unit of steel
requires n units of a particular resource, then the output of x units steel requires
n � x units of that resource. Now we use this proportionality assumption, the
first row of figures in Table 1, and the definitions of x, y, and z, to write

Using this last equation to substitute in equation (1), we obtain

(2) �0.96x � 0.02y � 0.16z � �308

 0.04x � 0.02y � 0.16z � 308 � x

(internal demands for steel) � 0.04x � 0.02y � 0.16z

(internal demands for steel) � 308 � x
(internal demands for steel) � (external demands for steel) � x

 z � the number of units of electricity to be produced

 y � the number of units of coal to be produced

 x � the number of units of steel to be produced

An Input-Output Problem

TABLE 2

External Demands*

Steel 308 units
Coal 275 units
Electricity 830 units

*These are the demands for steel, coal,
and electricity exclusive of the pro-
duction requirements listed in Table 1.
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Equation (2) is our first of three equations in three unknowns. A second equa-
tion can be generated in the same manner, but using coal, rather than steel,
as the output under consideration. Again, similarly, a third equation can be
obtained by starting with electricity rather than steel.

Working in groups or individually, obtain the remaining two equations and
then solve the resulting system. As a check, the required answers are x � 500
units of steel, y � 600 units of coal, and z � 1000 units of electricity.
Suggestion: Work on this in groups. Then after your group has obtained the
correct answers and you are clear on the details, work individually on the next
problem.

PART II: A Problem to Do and Then to Write Up on Your Own

Consider a three-sector economy: plastics, energy, and transportation. The pro-
duction of 1 unit of plastics requires 0.02 of unit plastics, 0.04 unit of energy, and
0.05 unit of transportation. The production of 1 unit of energy requires 0.03 unit
of plastics, 0.08 unit of energy, and 0.01 unit of transportation. The production
of 1 unit of transportation requires 0.01 unit of plastics, 0.02 unit of energy, and
0.06 unit of transportation. The external demands for plastics, energy, and trans-
portation are 22.76 units, 36.68 units, and 43.45 units, respectively.
(a) Display the given data using tables similar to Tables 1 and 2.
(b) How many units should each sector produce in order to satisfy both the

internal and external demands on the economy? Hint for checking: The
final answers turn out to be integers.

11.3
Recall that in Gaussian Elimination, 
row operations are used to change the
coefficient matrix to an upper triangular
matrix. The solution is then found by
back substitution, starting from the last
equation in the reduced system. 
—Steven C. Althoen and Renate
McLaughlin in “Gauss–Jordan
Reduction: A Brief History,” American
Mathematical Monthly, vol. 94 (1987),
pp. 130–142

MATRICES
Arthur Cayley (1821–1895) and James Joseph Sylvester (1814–1897), two English
mathematicians, invented the matrix . . . in the 1850s. . . . The operations of addition
and multiplication of matrices were later defined and the algebra of matrices was then
developed. In 1925, Werner Heisenberg, a German physicist, used matrices in devel-
oping his theory of quantum mechanics, extending the role of matrices from algebra
to the area of applied mathematics. —John K. Luedeman and Stanley M. Lukawecki in

Elementary Linear Algebra (St. Paul: West Publishing Co., 1986)

As you saw in the previous section, there can be a good deal of bookkeeping in-
volved in using Gaussian elimination to solve systems of equations. We can organize
our work efficiently by using a matrix (pl.: matrices), which is simply a rectangular
array of numbers enclosed in parentheses or brackets. Here are three examples:

The particular numbers constituting a matrix are called its entries or elements. For

instance, the entries in the matrix are the four numbers 2, 3, �5, and 4. In thisa 2 3

�5 4
b

a 2 3

�5 4
b  a�6 0 1 1

4
2
3 1 5 8

b  ±
p 0 0

0 1 9

�1 �2 3

�4 8 6

≤



section the entries will always be real numbers. However, it is also possible to consider
matrices in which some or all of the entries are nonreal complex numbers.

It is convenient to agree on a standard system for labeling the rows and columns
of a matrix. The rows are numbered from top to bottom and the columns from left to
right, as indicated in the following example:

column 1 column 2
T T

We express the size, or dimension, of a matrix by specifying the number of rows fol-
lowed by the number of columns. For instance, we would say that the matrix

with three rows and two columns, is a 3 � 2 (read “3 by 2”) matrix, not 2 � 3. The fol-
lowing example will help fix in your mind the terminology that we have introduced.

°
5 �3

0 2

�1 16

¢

row 1 S
row 2 S
row 3 S

  °
5 �3

0 2

�1 16

¢
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EXAMPLE

SOLUTION

1 Matrix Terminology

Consider the matrix

(a) List the entries.
(b) What is the size of the matrix?
(c) Which element is in the second row, third column?

(a) The entries are 1, 3, 5, 7, 9, and 11.
(b) Since there are two rows and three columns, this is a 2 � 3 matrix.
(c) To locate the element in the second row, third column, we imagine lines through

the second row and the third column and see where they intersect:

Thus the entry in row 2, column 3 is 11.

There is a natural way to use matrices to describe and solve systems of linear
equations. Consider, for example, the following system of linear equations in stan-
dard form (with the x-, y-, and z-terms lined up on the left-hand side and the constant
terms on the right-hand side of each equation):

•
x � 2y � 3z � 4

3x   �  z � 5

�x � 3y � 4z � 0

a1 3 5

7 9 11
b

a1 3 5

7 9 11
b



The coefficient matrix of this system is the matrix

As the name implies, the coefficient matrix of the system is the matrix whose entries
are the coefficients of x, y, and z, written in the same relative positions as they appear
in the system. Notice that a zero appears in the second row, second column of the
matrix because the coefficient of y in the second equation is in fact zero. The
augmented matrix of the system of equations considered here is

As you can see, the augmented matrix is formed by augmenting the coefficient
matrix with the column of constant terms taken from the right-hand side of the given
system of equations. The dashed line in the augmented matrix is used to visually
separate the coefficient matrix and the right-hand sides of the equations of the linear
system in standard form.

°
1 2 �3 4

3 0 1 5

�1 �3 4 0

¢

°
1 2 �3

3 0 1

�1 �3 4

¢
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EXAMPLE

SOLUTION

2 Specifying the Coefficient Matrix and Augmented Matrix

Write the coefficient matrix and the augmented matrix for the system

First we write the system in standard form, with the x-, y-, and z-terms lined up and
the constant terms on the right. This yields

The coefficient matrix is then

and the augmented matrix is

°
8 �2 1 1

3 1 �4 2

0 12 �3 6

¢

°
8 �2 1
3 1 �4
0 12 �3

¢

•
8x �  2y �  z � 1

3x �   y � 4z � 2

12y � 3z � 6

•
8x � 2y � z � 1

3x � 4z � y � 2

12y � 3z � 6 � 0



In the previous section we used the three elementary operations in solving sys-
tems of linear equations. In Table 1 we express these operations in the language of
matrices. The matrix operations are called the elementary row operations.
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TABLE 1

Elementary Operations for a Corresponding Elementary
System of Linear Equations Row Operations for a Matrix

1. Multiply both sides of an equation 1.	 Multiply each entry in a given row by
by a nonzero constant. a nonzero constant.

2. Interchange two equations. 2.	 Interchange two rows.
3. To one equation, add a multiple 3.	 To one row, add a multiple of another

of another equation. row.

TABLE 2

Examples of the Elementary Row Operations Comments

Interchange rows 2 and 3.

To each entry in row 2,
add �4 times the
corresponding entry 
in row 1.

°
1 2 3

0 �3 �6

7 8 9

¢—————!�4R1�R2°
1 2 3

4 5 6

7 8 9

¢

°
1 2 3

7 8 9

4 5 6

¢—————!R2 4 R3°
1 2 3

4 5 6

7 8 9

¢

Multiply each entry in
row 1 by 10.

°
10 20 30

4 5 6

7 8 9

¢—————!10 R1°
1 2 3

4 5 6

7 8 9

¢

Table 2 displays an example of each elementary row operation. In the table,
notice that the notation for describing these operations is essentially the same as that
introduced in the previous section. For example, in the previous section, 10E1 indi-
cated that the first equation in a system was multiplied by 10. Now, 10R1 indicates
that each entry in the first row of a matrix is multiplied by 10.

We are now ready to use matrices to solve systems of equations. In the example
that follows, we’ll use the same system of equations used in Example 5 of the previ-
ous section. Suggestion: After reading the next example, carefully compare each
step with the corresponding one taken in Example 5 of the previous section.

3 Using the Elementary Row Operations to Solve a System

Solve the system

•
4x � 3y � 2z � 40

5x � 9y � 7z � 47

9x � 8y � 3z � 97

EXAMPLE



This last augmented matrix represents a system of equations in upper-triangular
form:

As you should now check for yourself, this yields the values z � 3, then y � 2, then
x � 10. The solution of the original system is therefore (10, 2, 3).

For the remainder of this section (and in part of the next), we will study matrices
without referring to systems of equations. As motivation for this, we point out that
matrices are essential tools in many fields of study. For example, a knowledge of
matrices and their properties is needed for work in computer graphics. To begin, we
need to say what it means for two matrices to be equal.

•
�x � 12y �  9z � �7

�y �   z � �5

89z � 267

  —————!�50R2�R3

 °
�1 �12 9 �7

0 �1 �1 �5

0 0 89 267

¢

  —————!(�1)R3�R2

 °
�1 �12 9 �7

0 �1 �1 �5

0 �50 39 17

¢

  —————!
1
2  R3

 °
�1 �12 9 �7

0 �51 38 12

0 �50 39 17

¢

  —————!5R1�R2

9R1�R3

 °
�1 �12 9 �7

0 �51 38 12

0 �100 78 34

¢

 °
4 �3 2 40

5 9 �7 47

9 8 �3 97

¢  —————!(�1)R2�R1

 °
�1 �12 9 �7

5 9 �7 47

9 8 �3 97

¢
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SOLUTION

Two matrices are equal provided that 
they have the same size (same number 
of rows, same number of columns)
and the corresponding entries are equal.

EXAMPLES

 a2 3

4 5
b � a2 3

5 4
b

 a2 3 0

4 5 0
b � a2 3

4 5
b

 a2 3

4 5
b � a2 3

4 5
b

Definition Equality of Matrices

Now we can define matrix addition and subtraction. These operations are defined
only between matrices of the same size.



Many properties analogous to those of the real numbers are also valid for matri-
ces. For instance, matrix addition is commutative:

where A and B are matrices of the same size

Matrix addition is also associative:

where A, B, and C are matrices of the same size

In the next example we verify these properties in two specific instances.

A � (B � C) � (A � B) � C

A � B � B � A
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To add (or subtract) two matrices of the same size, add (or subtract) the correspond-
ing entries.

EXAMPLES

 °
2 3

�1 4

9 10

¢ � °
6 1

0 �4

3 2

¢ � °
2 � 6 3 � 1

�1 � 0 4 � (�4)

9 � 3 10 � 2

¢ � °
�4 2

�1 8

6 8

¢

 a 2 3

�1 4
b � a6 1

0 �4
b � a 2 � 6 3 � 1

�1 � 0 4 � (�4)
b � a 8 4

�1 0
b

Definition Matrix Addition

EXAMPLE 4 Adding Matrices

Let A � B � and C �

(a) Show that A � C � C � A.
(b) Show that A � (B � C) � (A � B) � C.

(a)

This shows that A � C � C � A, since both A � C and C � A represent the 

matrix 

(b) First we compute A � (B � C):

 � a 7 4

19 12
b

 � a1 2

3 4
b  � a 6 2

16 8
b

 A � (B � C) � a1 2

3 4
b  � c a0 �5

8 �1
b � a6 7

8 9
b d

a 7 9

11 13
b .

 C � A � a6 7

8 9
b � a1 2

3 4
b � a 7 9

11 13
b

 A � C � a1 2

3 4
b � a6 7

8 9
b � a 7 9

11 13
b

a6 7

8 9
b .a0 �5

8 �1
b ,a1 2

3 4
b ,

SOLUTION



Next we compute (A � B) � C:

We conclude from these calculations that A � (B � C) � (A � B) � C, since both 

sides of that equation represent the matrix 

We will now define an operation on matrices called scalar multiplication. First,
the word scalar here just means real number, so we are talking about multiplying a
matrix by a real number. (In more advanced work, nonreal complex scalars are also
considered.)

a 7 4
19 12

b .

 � a 7 4

19 12
b

 � a 1 �3

11 3
b � a6 7

8 9
b

 (A � B) � C � c a 1 2

3 4
b � a0 �5

8 �1
b d � a6 7

8 9
b
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To multiply a matrix by a scalar, multiply each entry in the matrix by that scalar.

EXAMPLES

 1 a1 2

3 4
b � a1 2

3 4
b

 2 a 5 9 0

�1 2 3
b � a 2 # 5 2 # 9 2 # 0

2 # (�1) 2 # 2 2 # 3
b � a 10 18 0

�2 4 6
b

Definition Scalar Multiplication

There are two simple but useful properties of scalar multiplication that are worth
noting at this point. We’ll omit the proofs of these two properties; however, Example 5
does ask us to verify them for a particular case.

PROPERTY SUMMARY Properties of Scalar Multiplication

1. c(kM) � (ck)M, for all scalars c and k and any matrix M.
2. c(M � N) � cM � cN, where c is any scalar and M and N are any matrices 

of the same size.

5 Demonstrating Properties of Scalar Multiplication

Let c � 2, k � 3, M � and N �

(a) Show that c(kM) � (ck)M.
(b) Show that c(M � N) � cM � cN.

a5 6

7 8
b .a1 2

3 4
b ,

EXAMPLE



(a)

Thus c(kM) � (ck)M, since in both cases the result is 

(b)

Thus c(M � N) � cM � cN, since both sides equal

A matrix with zeros for all of its entries plays the same role in matrix addition as
does the number zero in ordinary addition of real numbers. For instance, in the case
of 2 � 2 matrices, we have

and

for all real numbers a, b, c, and d. The zero matrix is called the additive 

identity for 2 � 2 matrices. Similarly, any zero matrix is the additive identity for ma-
trices of that size. It is sometimes convenient to denote an additive identity matrix by
a boldface zero: 0. With this notation, we can write

for any matrix A

For this matrix equation it is understood that the size of the matrix 0 is the same as
the size of A. With this notation we also have

for any matrix A

Our last topic in this section is matrix multiplication. We will begin with the sim-
plest case and then work up to the more general situation. By convention, a matrix
with only one row is called a row vector. Examples of row vectors are

(2 13),  (�1 4 3),  and  (0 0 0 1)

A � A � 0

A � 0 � 0 � A � A

a0 0

0 0
b

a0 0

0 0
b  + aa b

c d
b � aa b

c d
baa b

c d
b  + a0 0

0 0
b � aa b

c d
b

a12 16

20 24
b .

 � a2 4

6 8
b � a10 12

14 16
b � a12 16

20 24
b

 cM � cN � 2 a1 2

3 4
b � 2 a5 6

7 8
b

 � 2 a 6 8

10 12
b � a12 16

20 24
b

 c(M � N) � 2 c a 1 2

3 4
b � a5 6

7 8
b d

a 6 12

18 24
b .

 � 6 a1 2

3 4
b � a 6 12

18 24
b

 (ck)M � (2 # 3) a1 2

3 4
b

 � 2 a3 6

9 12
b � a 6 12

18 24
b

 c(kM) � 2 c3 a1 2

3 4
b dSOLUTION
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Similarly, a matrix with only one column is called a column vector. Examples are

The following definition tells us how to multiply a row vector and a column
vector when they have the same number of entries.

a 2

13
b ,  °

�1

4

3

¢ ,  and  ±
0

0

0

1

≤
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Let A be a row vector and B a 
column vector, and assume that
the number of columns in A is the
same as the number of rows 
in B. Then the inner product
A # B is defined to be the num-
ber obtained by multiplying the 
corresponding entries and then 
adding the products.

EXAMPLES

(1 2 3) # � 1 # 4 � 2 # 5 � 3 # 6 � 32

(1 2) # is not defined

(1 2 3) # is not defineda4
5
b

°
4
5
6
¢

°
4
5
6
¢

Definition The Inner Product of a Row Vector and a Column Vector

Let A and B be two matrices, and assume that the number of columns in A is the same
as the number of rows in B. Then the product matrix AB is computed according to
the following rule:

The entry in the ith row and the jth column of AB is the inner product of the 
ith row of A with the jth column of B.

The matrix AB will have as many rows as A and as many columns as B.

Definition The Product of Two Matrices

An important observation here is that the end result of taking the inner product
is always just a number. The definition of matrix product that we now give depends
on this observation.

As an example of matrix multiplication, we will compute the product AB, 

where A � and B � In other words, we will compute 

Before we attempt to carry out the calculations of any matrix

multiplication, however, we should check on two points.

1. Is the product defined? That is, does the number of columns in A equal the num-
ber of rows in B? In this case, yes; the common number is 2.

2. What is the size of the product? According to the definition, the product AB will
have as many rows as A and as many columns as B. Thus the size of AB will be
2 � 3.

a5 6 0

7 8 1
b .a1 2

3 4
b

a5 6 0

7 8 1
b .a1 2

3 4
b



Schematically, then, the situation looks like this:

We have six positions to fill. The computations are presented in Table 3. Reading
from the table, we see that our result is

AB � a1 2

3 4
b a5 6 0

7 8 1
b � a19 22 2

43 50 4
b

a1 2

3 4
b a5 6 0

7 8 1
b � a? ? ?

? ? ?
b
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TABLE 3

Position How to Compute Computation

row 1, column 1 inner product of row 1 and column 1 1 # 5 � 2 # 7 � 19

row 1, column 2 inner product of row 1 and column 2 1 # 6 � 2 # 8 � 22

row 1, column 3 inner product of row 1 and column 3 1 # 0 � 2 # 1 � 2

row 2, column 1 inner product of row 2 and column 1 3 # 5 � 4 # 7 � 43

row 2, column 2 inner product of row 2 and column 2 3 # 6 � 4 # 8 � 50

row 2, column 3 inner product of row 2 and column 3 3 # 0 � 4 # 1 � 4

a 5 6 0

7 8 1
ba1 2

3 4
b

a5 6 0

7 8 1
ba1 2

3 4
b

a5 6 0

7 8 1
ba1 2

3 4
b

a5 6 0

7 8 1
ba1 2

3 4
b

a5 6 0

7 8 1
ba1 2

3 4
b

a5 6 0

7 8 1
ba1 2

3 4
b

6 Computing Matrix Products

Let A � and B � By computing AB and then BA, show that

AB � BA. This shows that, in general, matrix multiplication is not commutative.

Comparing the two matrices AB and BA, we conclude that AB � BA.

 BA � a5 6

7 8
b a1 2

3 4
b � a5 # 1 � 6 # 3 5 # 2 � 6 # 4

7 # 1 � 8 # 3 7 # 2 � 8 # 4
b � a23 34

31 46
b

 AB � a1 2

3 4
b a5 6

7 8
b � a1 # 5 � 2 # 7 1 # 6 � 2 # 8

3 # 5 � 4 # 7 3 # 6 � 4 # 8
b � a19 22

43 50
b

a5 6

7 8
b .a1 2

3 4
b

EXAMPLE

SOLUTION



Most graphing utilities perform matrix multiplication. This can be useful when
the matrices are large or contain decimal entries. We’ll briefly outline two examples
here using the simple two-by-two matrices from Example 6. (For the details on these
and for other types of graphing utilities, see your user’s manual. Figure 1 shows the
computation of the matrix product AB on a Texas Instruments TI-83� graphing cal-
culator. After specifying the dimensions of the two matrices and their elements in the
matrix-edit menu, the matrices can be displayed as in Figure 1(a). The next screen,
Figure 1(b), shows the matrix product AB.

Figure 2 shows the resulting calculation as carried out in a Microsoft Excel
spreadsheet. The elements of the matrix A are typed into cells B1 through C2.
Likewise, matrix B is entered in cells B4 through C5. The product matrix is then 
obtained by means of the function MMULT, which stands for “matrix multiplication.”
Some additional details are given in the figure caption.
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[A]

[B]

[[1 2]
 [3 4]]

[[5 6]
 [7 8]]

[A][B]
[[19 22]
 [43 50]]

(a) (b)

Figure 1
Computing the matrix product AB
using a Texas Instruments TI-83�
graphing calculator.

8
6
7 AB= 19 22
8 43 50
9

A B C
1 A= 1 2
2 3 4
3
4 B= 5 6

85 7

Figure 2
Computing the matrix product AB
using Microsoft Excel. After typing
in the entries of the two matrices A
and B, the so-called array formula
{=MMULT(B1:C2,B4:C5)} is
used to compute and display AB.
(See the documentation or help
menu that came with Excel.)

EXERCISE SET 11.3

A
In Exercises 1–4, specify the size of each matrix.

1. (a) 2. (a)

(b) (b)

3. 4. (�3 1 6 0)•1 a b c

a 1 0 a

b 0 1 b

c a b 1

0 0 0 1

μ
±

1

6

8

1

≤°
7 1

4 �3

0 0

¢

a1 0

0 �1
ba�4 0 5

2 8 �1
b

In Exercises 5–8, write the coefficient matrix and the aug-
mented matrix for each system.

5. 6.

7. 8. e8x � 8y  � 5

 x �  y � z � 1
μ

x �   z �  w � �1

x � y �    2w � 0

y �  z �  w � 1

2x � y �  z    � 2

•
5x �  y �  z � 0

4y � 2z � 1

3x �  y �  z � �1

•
2x � 3y �  4z � 10

5x � 6y �  7z � 9

8x � 9y � 10z � 8
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In Exercises 9–22, use matrices to solve each system of
equations.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

In Exercises 23–50, the matrices A, B, C, D, E, F, and G are
defined as follows:

F � °
5 �1

�4 0

2 3

¢   G � °
0 0

0 0

0 0

¢

D � a�1 2 3

4 0 5
b   E � °

2 1

8 �1

6 5

¢

 A � a 2 3

�1 4
b  B � a1 �1

3 0
b  C � a1 0

0 1
b

e A �  B �  C �  D �  E � �1

3A � 2B � 2C � 3D � 2E � 13

3C � 4D � 4E � 7

5A � 4B      �  E � 30

C     � 2E � 3

•
15A � 14B � 26C � 1

18A � 17B � 32C � �1

21A � 20B � 38C � 0

μ
x � 2y �  z � 2w � 5

2x �  y � 2z �  w � �7

�2x �  y � 3z � 2w � 10

z �  w � �3

μ
x � y � z � w � 6

x � y � z � w � 4

x � y � z � w � �2

�x � y � z � w � 0

•
6x �  y �  z � �1

�3x � 2y � 2z � 2

5y � 3z � 1

•
4x � 3y � 3z � 2

5x �  y � 4z � 1

9x � 2y �  z � 3

•
3A � 3B �  C � 4

6A � 9B � 3C � �7

A � 2B � 2C � �3

•
3x �  2y �  6z � 0

x �  3y � 20z � 15

10x � 11y � 10z � �9

•
2x � 3y � 4z � 7

x �  y �  z � � 
3
2

6x � 5y � 2z � �7

•
x �  y �  z � �4

2x � 3y �  z � �1

4x � 2y � 3z � 33

•
5x �  y � 10z � 23

4x �  2y � 10z � 76

3x �  4y � 18

•
x   � z � �2

�3x � 2y  � 17

x �  y �  z � �9

•
2x � 3y � 4z � 14

3x � 2y � 2z � 12

4x � 5y � 5z � 16

•
x �  y � 2z � 7

3x � 2y �  z � �10

�x � 3y �  z � �2

In each exercise, carry out the indicated matrix operations if
they are defined. If an operation is not defined, say so.

23. A � B 24. A � B 25. 2A � 2B
26. 2(A � B) 27. AB 28. BA
29. AC 30. CA 31. 3D � E
32. E � F 33. 2F � 3G 34. DE
35. ED 36. DF 37. FD
38. A � D 39. G � A 40. DG
41. GD 42. (A � B) � C 43. A � (B � C)
44. CD 45. DC 46. 5E � 3F
47. A2 ( � AA) 48. A2A 49. AA2

50. C2

51. Let

(a) Compute A(B � C). (c) Compute (AB)C.
(b) Compute AB � AC. (d) Compute A(BC).

Note: Parts (c) and (d) illustrate a specific example of the
general property that matrix multiplication is associative.

In Exercises 52–55, use a graphing utility to compute the 
matrix products.

52.

53.

54.

55.

B
56. Let A � and B � Let A2 and B2 denote 

the matrix products AA and BB, respectively. Compute
each of the following.
(a) (A � B)(A � B) (c) A2 � AB � BA � B2

(b) A2 � 2AB � B2

57. Let A � and B � Compute each of the 

following.
(a) A2 � B2 (c) (A � B)(A � B)
(b) (A � B)(A � B) (d) A2 � AB � BA � B2

a2 4

6 8
b .a3 5

7 9
b

a5 6

7 8
b .a1 2

3 4
b

±
0.5 1 1.5 2

1 2 3.5 5.5

1.5 3.5 7 12.5

2 5.5 12.5 25

≤±
�6 9 �5 1

9 �1 �5 2

�5 �5 9 �3

1 2 �3 1

≤

°
�11 31 6

0 1 �14

41 12 �17

¢°
12 �10 13

5 7 25

�8 9 28

¢

a83 �19

13 41
ba�32 14

27 9
b

a2.33 4.17

0 �1.24
ba 1.03 2.1

�0.45 3.09
b

C � °
4 6 1

2 1 3

�1 �1 2

¢

A � °
�1 3 4

3 2 �3

9 1 6

¢  B � °
7 0 1

0 0 3

�1 2 4

¢
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58. Let

Complete the following multiplication table.

A B C D

A
B D
C
D

Hint: In the second row, third column, D is the proper
entry because (as you can check) BC � D.

59. In this exercise, let’s agree to write the coordinates (x, y)

of a point in the plane as the 2 � 1 matrix 

(a) Let A � and Z � Compute the ma-

trix AZ. After computing AZ, observe that it represents

the point obtained by reflecting about the x-axis.

(b) Let B � and Z � Compute the 

matrix BZ.After computing BZ, observe that it

represents the point obtained by reflecting about 

the y-axis.

(c) Let A, B, and Z represent the matrices defined in 
parts (a) and (b). Compute the matrix (AB)Z, and then
interpret it in terms of reflection about the axes.

60. In this exercise, we continue to explore some of the con-
nections between matrices and geometry. As in
Exercise 59, we will use 2 � 1 matrices to specify the
coordinates of points in the plane. Let P, S, and T be the
matrices defined as follows:

Notice that the point P lies on the unit circle.

T � a cos b

sin b
 

�sin b

cos b
b

P � a cos x

sin x
b  S � a cos u

sin u
 

�sin u

cos u
b

a x

y
b

a x

y
b .a�1 0

0 1
b

a x

y
b

a x

y
b .a 1 0

0 �1
b

a x

y
b .

 D � a�1 0

0 �1
b C � a�1 0

0 1
b

 B � a1 0

0 �1
b A � a1 0

0 1
b

(a) Compute the matrix SP. After computing SP, observe
that it represents the point on the unit circle obtained
by rotating P (about the origin) through an angle u.

(b) Show that

(c) Compose (ST)P? What is the angle through which P is
rotated?

61. A function f is defined as follows. The domain of f is the

set of all 2 � 2 matrices (with real entries). If A �
then f (A) � ad � bc.

(a) Let A � and B � Compute 

f (A), f(B), and f(AB). Is it true, in this case, that 
f (A) · f (B) � f (AB)?

(b) Let A � and B � Show that 

f (A) · f (B) � f (AB).

62. The trace of a 2 � 2 matrix is defined by

(a) If A � and B � verify that 

tr(A � B) � tr A � tr B.

(b) If A � and B � show that 

tr(A � B) � tr A � tr B.

63. Let A � The transpose of A is the matrix denoted

by AT and defined by AT � In other words, AT is

obtained by switching the columns and rows of A. Show 
that the following equations hold for all 2 � 2 matrices 
A and B.
(a) (A � B)T � AT � BT (c) (AB)T � BTAT

(b) (AT)T � A
64. Find an example of two 2 � 2 matrices A and B for which

AB � 0 but neither A nor B is 0.

aa c

b d
b .

aa b

c d
b .

a e f

g h
b ,aa b

c d
b

a5 6

7 8
b ,a1 2

3 4
b

tr aa b

c d
b � a � d

aa b

c d
b

a e

g
 

f

h
b .aa

c
 

b

d
b

a3

5
 

�1

8
b .a1

3
 

2

4
b ,

a a

c
 

b

d
b ,

ST � TS � a cos(u � b)

sin(u � b)
 

�sin(u � b)

cos(u � b)
b

The Project, Communications and Matrices, at http://www.cengage.com/math/cohen/precalc7e, applies material
from Section 11.3 to a communication model.

http://www.cengage.com/math/cohen/precalc7e


THE INVERSE OF A SQUARE MATRIX
A matrix that has the same number of rows and columns is called a square matrix.
So, two examples of square matrices are

The matrix A is said to be a square matrix of order two (or, more simply, a 2 � 2
matrix); B is a square matrix of order three (that is, a 3 � 3 matrix). We will first
present the concepts and techniques of this section in terms of square matrices of
order two. After that, we’ll show how the ideas carry over to larger square matrices.

We begin by defining a special matrix I2:

The matrix I2 plays the same role in the multiplication of 2 � 2 matrices as does the
number 1 in the multiplication of real numbers. Specifically, I2 has the following

property: For every 2 � 2 matrix A � we have (as you can easily verify)

In other words,

The matrix I2 is called the multiplicative identity or, more simply, the identity
matrix for square matrices of order two.

If we have two real numbers a and b such that ab � 1, then we say that a and b
are (multiplicative) inverses. In the box that follows, we apply this terminology to
matrices. Note that in the case of inverse matrices, the multiplication is commutative.
That is, AB and BA yield the same result (namely, I2).

AI2 � A  and  I2A � A

aa b

c d
b a1 0

0 1
b � aa b

c d
b  and  a1 0

0 1
b aa b

c d
b � aa b

c d
b

aa b

c d
b

I2 � a1 0

0 1
b

A � a1 2

3 4
b  and  B � °

�5 6 7
1
2 0 1

8 4 �3

¢

. . . when the chips are down we
close the office door and compute with
matrices like fury. —Paul Halmos
(quoted here out of context), Celebrating
50 Years of Mathematics, J. H. Ewing
et al. (ed.) (New York: Springer-Verlag,
1995)

We have noted Cayley’s work in analytic
geometry, especially in connection with
the use of determinants; but [Arthur]
Cayley [1821–1895] also was one of the
first men to study matrices, another
instance of the British concern for form
and structure in algebra. —Carl B.
Boyer in A History of Mathematics,
2nd ed., revised by Uta C. Merzback
(New York: John Wiley and Sons, 1991)
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11.4

Given a 2 � 2 matrix A, if there is a 2 � 2 matrix B such that

then we say that A is invertible and B is an inverse of A.

A noninvertible matrix is also called a singular matrix, and an invertible matrix is
also called a nonsingular matrix A. It can be shown that if a  2 � 2 matrix A is invert-
ible then its inverse is unique. So we can talk about the inverse of A, denoted by A�1.

1 Finding a Matrix Inverse from First Principles

Find the inverse of A � a1 2

3 4
b .

AB � I2  and   BA � I2

Definition The Inverse of a 2 � 2 Matrix

EXAMPLE



We need to find numbers a, b, c, and d such that the following two matrix equations
are valid:

(1)

(2)

From equation (1) we have

For this last equation to be valid, the corresponding entries in the two matrices must
be equal. (Why?) Consequently, we obtain four equations, two involving a and c and
two involving b and d:

(3)

The first system in (3) can be solved by using elementary row operations to trans-
form the augmented matrix

in which case a � �2 and c � 3�2.
Similarly, the second system in (3) can be solved by using exactly the same ele-

mentary row operations to transform the augmented matrix

in which case b � 1 and d � �1�2. Exercise 42(a) asks you to verify these claims.
Furthermore (as you can check), these same values are obtained for a, b, c and d if
we begin with matrix equation (2) rather than (1). Thus the required inverse matrix is

Exercise 42(b) at the end of this section asks you to carry out the matrix multiplica-
tion to confirm that we indeed have

The work in Example 1 can be done more efficiently by augmenting the identity
matrix I2 to A to get

and using elementary row operations to transform this augmented matrix to

a1 0  
0 1  

�2 1
3
2 �1

2

b

a1 2  
3 4  

1 0
0 1

b

 � a1 0

0 1
b

 a1 2

3 4
b a�2 1

3
2 � 

1
2

b � a�2 1
3
2 � 

1
2

b a1 2

3 4
b

a�2 1
3
2 � 

1
2

b

a1 2 0

3 4 1
b  to  a1 0 1

0 1 �1
2

b

a1 2 1

3 4 0
b  to  a1 0 �2

0 1 3
2

b

e b � 2d � 0

3b � 4d � 1
e a � 2c � 1

3a � 4c � 0

a a � 2c b � 2d

3a � 4c 3b � 4d
b � a1 0

0 1
b

 a a b

c d
b a 1 2

3 4
b � a1 0

0 1
b

 a1 2

3 4
b aa b

c d
b � a1 0

0 1
b

SOLUTION
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In general, we use elementary row operations to transform

(A I2) to (I2 B)

If this is possible then A is invertible and B � A�1. If this is not possible, then A is
not invertible.

Let’s apply this method to determine the inverse, if it exists, of the matrix

The calculations run as follows:

The inverse matrix can now be read off:

(You should verify for yourself that we indeed have AA�1 � I2 and A�1A � I2.)
Inverse matrices can be used to solve certain systems of equations in which the

number of unknowns is the same as the number of equations. Before explaining how
this works, we describe how a system of equations can be written in matrix form.
Consider the system

(4)

As defined in the previous section, the coefficient matrix A for this system is

Now we define two matrices X, the matrix of unknowns, and B, the matrix of right-
hand sides:

Then system (4) can be written as a single matrix equation:

(5)

To see why this is so, we expand equation (5) to obtain

using the definitions of A, X, and B

carrying out the matrix multiplication a  x � 2y

3x � 4y
b � a 8

6
b

 a1 2

3 4
b a x

y
b � a8

6
b

AX � B

X � a x

y
b  B � a8

6
b

A � a1 2

3 4
b

e x � 2y � 8

3x � 4y � 6

A�1 � a�2 1
13
2 �3

b

  —————!
1
2  R2

 a1 0  
0 1  

�2 1
13
2 �3

b

  —————!�6R1�R2

 a1 0  
0 2  

�2 1

13 �6
b

  —————!R1 4 R2

 a1 0  
6 2  

�2 1

1 0
b

 a  6 2  
13 4  

1 0

0 1
b  —————!�2R1�R2

 a6 2  
1 0  

1 0

�2 1
b

A � a 6 2

13 4
b

11.4 The Inverse of a Square Matrix 797



By equating the corresponding entries of the matrices in this last equation, we obtain
x � 2y � 8 and 3x � 4y � 6, as given initially in system (4).

2 Using Matrix Algebra to Solve a System

Use an inverse matrix to solve the system

As was explained just prior to this example, the matrix form for this system is

(6)

where

From Example 1 we know that

Now we multiply both sides of equation (6) by A�1 to obtain

Matrix multiplication is associative. (See p. 793, Ex. 51.)

Substituting the actual matrices into this last equation, we have

Therefore x � �10 and y � 9, as required.

All of the ideas we have discussed for square matrices of order two can be carried
over directly to larger square matrices. It is easy to check that the following
matrices, I3 and I4, are the multiplicative identities for 3 � 3 and 4 � 4 matrices,
respectively:

These identity matrices are described by saying that they have ones down the
main diagonal and zeros everywhere else. (Larger identity matrices can be
defined by following this same pattern.) Sometimes, when it is clear from 
the context or as a matter of convenience, we’ll omit the subscript and denote the
appropriately sized identity matrix simply by I. (This is done in the box that
follows.)

I3 � °
1 0 0

0 1 0

0 0 1

¢  I4 � ±
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

≤

a x

y
b � a�2 1

3
2 � 

1
2

b a 8

6
b � a�10

9
b

 X � A�1B Since I2 is the multiplicative identity

 I2X � A�1B

 (A�1A)X � A�1B

 A�1(AX) � A�1B

A�1 � a�2 1
3
2 � 

1
2

b

A � a1 2

3 4
b  X � a x

y
b  B � a8

6
b

AX � B

e x � 2y � 8

3x � 4y � 6
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EXAMPLE

SOLUTION
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PROPERTY SUMMARY The Inverse of a Square Matrix

1. Suppose that A and B are square matrices of the same size, and let I denote
the identity matrix of that size. Then A and B are said to be inverses of one
another provided

2. It can be shown that every square matrix has at most one inverse.
3. A square matrix that has an inverse is said to be invertible (or nonsingular). A

square matrix that does not have an inverse is called noninvertible (or singular).
4. If the matrix A is invertible, then the inverse of A is denoted by A�1. In this

case, we have

AA�1 � I  and  A�1A � I

AB � I  and  BA � I

EXAMPLE 3 Using Elementary Row Operations to Compute a Matrix Inverse

Let

Use the elementary row operations to compute A�1, if it exists.

A � °
5 0 2

2 2 1

�3 1 �1

¢

SOLUTION Following the method that we described for the 2 � 2 case, we first write down the
augmented matrix :

Now we carry out the elementary row operations, trying to obtain I3 to the left of the
dashed line. We have

°
5 0 2 1 0 0

2 2 1 0 1 0

�3 1 �1 0 0 1

¢

(A�I3)

  —————!(�1)R3

  °
1 0 0 �3 2 �4

0 1 0 �1 1 �1

0 0 1 8 �5 10

¢

  —————!4R2�R1

11R2�R3

  °
1 0 0 �3 2 �4

0 1 0 �1 1 �1

0 0 �1 �8 5 �10

¢  —————!  
(�1)R2

  °
1 �4 0 1 �2 0

0 1 0 �1 1 �1

0 �11 �1 3 �6 1

¢

  —————!1R3�R2

  °
1 �4 0  1 �2 0

0 �1 0  1 �1 1

0 �11 �1 3 �6 1

¢  —————!�2R1�R2

3R1�R3

  °
1 �4 0 1 �2 0

0 10 1 �2 5 0

0 �11 �1 3 �6 1

¢

  —————!�2R2�R1

  °
1 �4 0 1 �2 0

2 2 1 0 1 0

�3 1 �1 0 0 1

¢ °
5 0 2 1 0 0

2 2 1 0 1 0

�3 1 �1 0 0 1

¢



So A�1 exists and is given by

Graphing utilities can be used for matrix multiplication (as we saw in the previ-
ous section), they can also be used to compute matrix inverses. As in Section 11.3,
we will briefly cite two examples, leaving the details for your user’s manual. We’ll
use the matrix A given in Example 3. Figure 1 shows the two stages in computing
the inverse on a Texas Instruments 83� graphing calculator. After specifying the
dimension and elements of the matrix A, it can be displayed as in Figure 1(a).
Figure 1(b) then shows the result of computing A�1. As you can see, it indeed agrees
with the result in Example 3.

A�1 � °
�3 2 �4

�1 1 �1

8 �5 10

¢
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[A]
[[5 0 2]
 [2 2 1]
 [-3 1 -1]]

[[5 0 2]
 [2 2 1]
 [-3 1 -1]]

[A]

[[-3 2 -4]
 [-1 1 -1]
 [8 -5 10]]

–1

(a) (b)

Figure 1
Computing the inverse of the 
matrix A (from Example 3) on a 
Texas Instruments TI-83� graphing
calculator.

0

6
7

5
A–1 =

8
9

A B C D
1
2
3
4

5
2

–3

–1
8

–3

2
1

1
–5

2

2
1

–1

–1
10

–4

A=Figure 2
Computing the inverse of the matrix
A (from Example 3) using Microsoft
Excel. After typing in the entries for
A in cells B1 through D3, the array
formula {=MINVERSE(B1:D3)}
is used to compute and display the
inverse in cells B5 through D7.

We conclude this section with a description of how matrices can be used in send-
ing and receiving coded messages. Any square matrix that has an inverse can be used 

to encode the message. Let’s suppose that the encoding matrix is and that 

the message to be encoded is HIDE IT. We begin by letting the letters of the alphabet
correspond to the integers 1 through 26 in the natural way shown in Table 1. Additionally,
as indicated in the table, the integer 0 is used either to indicate a space between words
or as a placeholder at the end of the message.

a3 8

4 11
b

Figure 2 shows the resulting calculation as carried in a Microsoft Excel spread-
sheet. The elements of the matrix A have been entered in cells B1 through D3. The
inverse matrix is obtained by means of the function MINVERSE.



Using the correspondences in Table 1, we have

At this point, the message has been converted to a list of seven integers: 8, 9, 4, 5, 0,
9, 20. From this list, we will create some 2 � 1 matrices. (If the encoding matrix had
been a square matrix of order three, rather than order two, then we would create
3 � 1 matrices; you’ll see this in Example 4.) To create the 2 � 1 matrices, we first
pair up the integers in our list:

The 0 at the end is inserted as a placeholder, because there was nothing to pair with
20. The four pairs are now written as one-column matrices:

The last step is to multiply each 2 � 1 matrix by the encoding matrix. As you should
check for yourself, we obtain

The encoded message then consists of the eight integers that we have just calculated:

(7)

If you were to receive message (7) and you knew that the encoding matrix was

you could decode the message by undoing the previous steps as follows.

Express message (7) as the four matrices

(8)a 96

131
b  a52

71
b  a72

99
b  a60

80
b

a3 8

4 11
b ,

96, 131, 52, 71, 72, 99, 60, 80

 a3 8

4 11
b a 20

0
b � a60

80
b

 a3 8

4 11
b a 0

9
b � a72

99
b

 a3 8

4 11
b a 4

5
b � a52

71
b

 a3 8

4 11
b a 8

9
b � a 96

131
b

a8

9
b  a4

5
b  a0

9
b  a20

0
b

8, 9    4, 5    0, 9    20, 0

H I D E  I T

8 9 4 5 0 9 20
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TABLE 1

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Conventions regarding zero: The integer 0 is used either to indicate a space
between words or as a placeholder at the end of the message.



Next, compute As you can check, this turns out to be 

Now multiply each of the matrices in (8) by This yields

This produces the list of eight integers 8, 9, 4, 5, 0, 9, 20, 0. Table 1 allows us to trans-
late this list. As you can check, the result is the original message HIDE IT.

a 11 �8

�4 3
b a60

80
b  � a20

0
b

a 11 �8

�4 3
b a72

99
b  � a0

9
b

a 11 �8

�4 3
b a52

71
b  � a4

5
b

Use a calculator or graphing
utility to check these results.

a 11 �8

�4 3
b a 96

131
b � a8

9
b

a 11 �8

�4 3
b .

a 11 �8

�4 3
b .a3 8

4 11
b�1

.
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EXAMPLE 4 Encoding a Message by Means of a Matrix

Encode the message GO LATER assuming that the encoding matrix is 

°
5 0 2

2 2 1

�3 1 �1

¢

SOLUTION Step 1 Convert the message to a list of integers. Using Table 1 and the convention
regarding zero, the message GO LATER corresponds to the list 7, 15, 0, 12,
1, 20, 5, 18.

Step 2 Put the integers into one-column matrices. For a 3 � 3 encoding matrix we
take the integers three at a time to obtain

The zero in the matrix on the right is inserted as a placeholder.
Step 3 Multiply each matrix in Step 2 by the encoding matrix:

Step 3 The encoded message is therefore 35, 44, �6, 100, 46, �55, 25, 46, 3.

 °
5 0 2

2 2 1

�3 1 �1

¢ °
5

18

0

¢ � °
25

46

3

¢

 °
5 0 2

2 2 1

�3 1 �1

¢ °
12

1

20

¢ � °
100

46

�55

¢

 °
5 0 2

2 2 1

�3 1 �1

¢ °
7

15

0

¢ � °
35

44

�6

¢

°
7

15

0

¢  °
12

1

20

¢  °
5

18

0

¢



°
�3 2 �4

�1 1 �1

8 �5 10

¢ °
25

46

3

¢ � °
5

18

0

¢ °
�3 2 �4

�1 1 �1

8 �5 10

¢ °
100

46

�55

¢ � °
12

1

20

¢°
�3 2 �4

�1 1 �1

8 �5 10

¢ °
35

44

�6

¢ � °
7

15

0

¢
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EXAMPLE 5 Decoding a Message Using a Matrix Inverse

Check the result in Example 4 by decoding the message

(9)

The encoding matrix is °
5 0 2

2 2 1

�3 1 �1

¢ .

35, 44, �6, 100, 46, �55, 25, 46, 3

SOLUTION Step 1 Put the integers in (9) into one-column matrices. Since the encoding matrix
is 3 � 3, each one-column matrix will have three rows. This produces

Step 2 Compute the inverse matrix for the encoding matrix 

As we saw in Example 3, the inverse of this matrix is given by

Step 3 Multiply each one-column matrix in Step 1 by the inverse matrix obtained
in Step 2.

°
5 0 2

2 2 1

�3 1 �1

¢
�1

� °
�3 2 �4

�1 1 �1

8 �5 10

¢

°
5 0 2

2 2 1

�3 1 �1

¢ .

°
35

44

�6

¢  °
100

46

�55

¢  °
25

46

3

¢

This gives us the list of nine integers

7, 15, 0, 12, 1, 20, 5, 18, 0

Table 1 can now be used to translate this list. As you can verify, the result is
GO LATER.

3. Compute CI3 and I3C to verify that CI3 � I3C � C.
4. Compute DI3 and I3D to verify that DI3 � I3D � D.

In Exercises 5–12, compute A�1, if it exists, using the method of
Example 1.

5. 6.

7. 8. A � a�4 0

9 3
bA � a�3 1

5 6
b

A � a 3 �8

2 �5
bA � a7 9

4 5
b

A
In Exercises 1–4 the matrices A, B, C, and D are defined as follows.

1. Compute AI2 and I2A to verify that AI2 � I2A � A.
2. Compute BI2 and I2B to verify that BI2 � I2B � B.

 C � °
3 0 �2

0 5 6

1 4 �7

¢   D � °
1 2 3

4 5 6

7 8 9

¢

 A � a 4 �1

�5 2
b   B � a 1

2 5

3 1
b

EXERCISE SET 11.4



34. If A � then A�1 � Use this fact and

the method of Example 2 to solve the following systems.

(a) (b)

35. The inverse of the matrix

is

Use this fact to solve the following system.

36. The inverse of the matrix

is

Use this fact to solve the following system.

In Exercises 37–41:
(a) Compute the inverse of the coefficient matrix for the system.
(b) Use the inverse matrix to solve the system. In cases in

which the final answer involves decimals, round to three
decimal places.

37.

38.

39.

40.

41.

42. (a) Solve the following two systems, and then check to see
that your results agree with those given in Example 1.

e a � 2c � 1

3a � 4c � 0
  e b � 2d � 0

3b � 4d � 1

μ
2x � 3y �  z �  w � 3

6x � 6y � 5z � 2w � 15

 x �  y �  z � 1
6 w � �3

4x � 9y � 3z � 2w � �3

•
5x � 2y � 2z � 15

3x �  y � 4

 x �  y �  z � �4

•
 x � 2y � 2z � 3

3x �  y � �1

 x �  y �  z � 12

e8x � 5y � �13

3x � 4y � 48

e x � 4y � 7 
2x � 7y � 12

•
x �  y �  z � 5

2x � 3y � 2z � �15

�4x � 6y �  z � 25

A�1 � °
3 � 

7
5 � 

1
5

2 �1 0

0 2
5

1
5

¢A � °
1 �1 1

2 �3 2

�4 6 1

¢

•
3x � 2y � 6z � 28

x �  y � 2z � 9

2x � 2y � 5z � 22

A�1 � °
1 2 �2

�1 3 0

0 �2 1

¢A � °
3 2 6

1 1 2

2 2 5

¢

e3x � 7y � �45

4x � 9y � �71
e3x � 7y � 30

4x � 9y � 39

a�9 7

�4 3
b .a3 �7

4 �9
b ,9. 10.

11. 12.

In Exercises 13–26, compute the inverse matrix, if it exists,
using elementary row operations (as shown in Example 3).

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

For Exercises 27–32 the matrices A, B, C, D, and E are
defined as follows. In each exercise, use a graphing utility to
carry out the indicated matrix operations. If an operation is
undefined, state this.

27. A�1 28. B�1 29. D�1

30. (CD)�1 31. (DE)�1

32. (BC)�1 � C�1B�1 Hint: The order for carrying out the
matrix operations is similar to that for real numbers. Thus
the subtraction in this exercise is the last step.

33. If A � then A�1 � Use this fact

and the method of Example 2 to solve the following systems.

(a) (b) e3x �  8y � �12

4x � 11y � 0
e 3x �  8y � 5

4x � 11y � 7

a 11 �8

�4 3
b .a3 8

4 11
b ,

D � °
�2 0

3 1

5 2

¢  E � a3 �2 �1

7 �4 0
b

A � a2 3

4 5
b  B � °

3 2 6

1 1 2

2 2 5

¢  C � °
9 4 4

2 2 1

�3 1 �1

¢

°
2 1 3

4 5 �7

2 1 3

¢°
1 2 3

4 5 6

7 8 9

¢

°
2 �1 �1

1 0 �1

�2 1 2

¢°
�7 5 3

3 �2 �2

3 �2 �1

¢

°
1 �4 �8

1 2 5

1 1 3

¢°
1 2 �1

0 3 0

�4 0 5

¢

°
1 0 �2

�3 �1 6

2 1 �5

¢°
�5 4 �3

10 �7 6

8 �6 5

¢

a� 
2
5

1
3

�6 5
ba 2

3 � 
1
4

�8 3
b

a�2 13

�4 25
ba0 �11

1 6
b

a�6 5

18 �15
ba2 1

3 2
b

A � a�3 7

12 �28
bA � a 1

3
1
3

� 
1
9

2
9

b
A � a 5

3 �2

� 
2
3 1

bA � a�2 3

�4 6
b

804 CHAPTER 11 Systems of Equations



B
53. Use the elementary row operations (as in Example 3) to

find the inverse of the following matrix.

54. Let A �

(a) Compute the matrix product AA. What do you observe?
(b) Use the result in part (a) to solve the following system.

55. Let A � and B �

(a) Compute A�1, B�1, and B�1A�1.
(b) Compute (AB)�1. What do you observe?

C
56. Let A � Compute A�1. (Assume that ad � bc � 0.)

57. (a) Use the result in Exercise 56 to find the inverse of the

matrix What do you observe about

the result?

(b) What’s the inverse of the matrix ? Of 

the matrix ?ap � 1 p � 2

�p �1 � p
b
a 11 12

�10 �11
b

a x 1 � x

1 � x �x
b .

aa b

c d
b.

a7 8

6 7
b .a2 3

4 5
b

•
 x �  6y � 3z � 19�2

2x �  7y � 3z � 11

4x � 12y � 5z � 19

°
1 �6 3

2 �7 3

4 �12 5

¢ .

±
1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

≤

(b) At the end of Example 1, it is asserted that

Carry out the indicated matrix multiplications to verify
that these equations are valid.

43. Consider the matrix .

(a) Use the technique in Example 1 to show that the matrix
does not have an inverse.

(b) Use the technique in Example 3 to show that the matrix
does not have an inverse.

44. Follow Exercise 43 using 

In Exercises 45 and 46, encode each message using the matrix 

For Exercises 47 and 48, encode using the matrix 

45. TRY IT 46. DROP OFF
47. TURN NOW 48. WAIT

In Exercises 49 and 50, decode each message, assuming that

the encoding matrix was For Exercises 51 and 52,

decode, assuming the encoding matrix was 

49. 463, �39, 60, �5, 825, �70, 60, �5
50. 1038, �88, 274, �23, 379, �32, 156, �13
51. �3, 24, 22, �17, 17, 21
52. �7, 27, 21, �27, 52, 27, �4, 5, 4, 36, �36, �18

°
2 �1 �1

�2 1 2

�1 1 1

¢ .

a 12 47

�1 �4
b .

°
1 1 0

0 �1 2

1 0 1

¢ .

a9 8

8 7
b .

a�5 2

20 �8
b .

a2 5

6 15
b

 � a1 0

0 1
b

 a 1 2

3 4
b a�2 1

3
2 � 

1
2

b � a�2 1
3
2 � 

1
2

b a 1 2

3 4
b
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PROJECT The Leontief Model Revisited

As background here, you need to be familiar with the project at the end of
Section 11.2 on the Leontief input-output model. Additionally, you need to have
studied Example 2 in the present section, where matrix methods are applied
to solve a system of equations. If necessary, one or two groups can be assigned
to work through or to review that material and then present it to the class at
large. In this project, you’ll use matrix methods to shorten the work in solving an
input-output problem.
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Part I: How to Solve the Matrix Equation AX � D � X

In Example 2 of Section 11.4, we solved the matrix equation AX � B. Along
the same lines, now we want to solve the matrix equation

(1)

(We assume that A is a square matrix with an inverse and that each matrix has
the appropriate numbers of rows and columns for the calculations to make
sense.) We start by subtracting X from both sides of equation (1) to obtain

Recall from Section 11.3 that 0
denotes the zero matrix, in which 
every entry is the number 0.

subtracting D from both sides and 
using the property 0 � D � �D

I denotes the identity matrix. We’ve 
used the fact that the distributive 
property is valid in matrix algebra 
just as it is in ordinary algebra.

To isolate X, assuming A � I is invertible, multiply both sides of this last equa-
tion by (A � I )�1. This yields

using IX � X (2)

Equation (2) is the required solution. To see how this works in a simple case, 

suppose we want to solve equation (1), given that A � D �

and X � That is, the equation to be solved is

(3)

Using equation (2), the solution is

carrying out the matrix subtraction

computing the inverse

carrying out the matrix multiplication � a 70

�30
b

 � a 3 �5

�1 2
b a�10

�20
b

 � a2 5

1 3
b�1 a�10

�20
b

 � c a 3 5

1 4
b � a1 0

0 1
b d�1 a�10

�20
b

 X � (A � I)�1(�D)

a3 5

1 4
b a x

y
b � a10

20
b � a x

y
b

a x

y
b .

a10

20
b ,a3 5

1 4
b ,

 X � (A � I)�1(�D)
 IX � (A � I)�1(�D)

 (A � I)�1(A � I)X � (A � I)�1(�D)

 (A � I)X � �D

 AX � X � �D

 AX � D � X � 0

AX � D � X
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Thus the solution of equation (3) is X � and the values of the unknowns
x and y are 70 and �30, respectively.

Practice Problems for Part I

1. Solve AX � D � X, given that A � D � and X �

2. Solve AX � D � X, given that A � D �

X �

Part II: The Matrix Equation AX � D � X Applied to 
an Input-Output Problem

As our example, we’ll use the same problem discussed in Part I of the project
at the end of Section 11.2. For ease of reference, we restate the problem here.
Given the input-output data in Table 1 and the external demands in Table 2,
determine an appropriate production level for each sector so that both the
internal and external demands on the economy are satisfied.

As in the solution in Section 11.2, we start by using x, y, and z to represent
the required number of units of steel, coal, and electricity, respectively. Next,
define three matrices, A, D, and X as follows:

(4)

the input-output matrix, the demand the matrix
based on Table 1 matrix based of unknowns

on Table 2

X � °
x

y

z

¢D � °
10

12

15

¢A � °
0.04 0.02 0.16

0.12 0 0.30

0.16 0.10 0.04

¢

°
x

y

z

¢ .

°
20

50

70

¢ ,°
1 �3 2

�2 7 �7

1 �6 12

¢ ,

a x

y
b .a25

15
b ,a11 9

6 5
b ,

a 70

�30
b ,

TABLE 1 Input-Output Table (Internal Demands)

Outputs

Steel Coal Electricity

Inputs
Steel 0.04 0.02 0.16
Coal 0.12 0 0.30
Electricity 0.16 0.10 0.04

TABLE 2 External Demands

External Demands

Steel 10 units
Coal 12 units
Electricity 15 units
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Your tasks now are to work through the following steps to solve this input-
output problem using matrix methods.

1. Check that the matrix product AD is defined. What will be the dimension of
the product AD?

2. Explain why the matrix equation AX � D � X holds. Hint: In the project
for Section 11.2 look at the equation immediately preceding equation (2).

3. Use equation (2) from part I of this project to solve the equation AX � D � X.
Make use of a graphing utility in carrying out the matrix operations, and
round the answers for x, y, and z to two decimal places.

Part III: A Seven-Sector Model of the U.S. Economy

The input-output examples above (and in the project for Section 11.2) involve
two- or three-sector economies. By way of contrast, input-output tables for the
U.S. economy (published by the U.S. Bureau of Economic Analysis) involve as
many as 486 sectors. Table 3, which follows, is an aggregated version of one
of those tables, in which the 486 sectors have been grouped into only 7 general
categories or sectors. The names of the 7 sectors, abbreviated in Table 3, are
spelled out in Table 4, which contains the external demands. Use a graphing
utility to solve the input-output problem for this seven-sector economy. Round
the final answers to the nearest integer. Then, given that each unit represents
one million dollars, express the answers in dollars.

TABLE 3 Seven-Sector Input-Output Table for the 1967 U.S. Economy*

Outputs

Ag Min Con Mfg T & T Serv Oth

Inputs
Ag 0.2939 0.0000 0.0025 0.0516 0.0009 0.0081 0.0203
Min 0.0022 0.0504 0.0090 0.0284 0.0002 0.0099 0.0075
Con 0.0096 0.0229 0.0003 0.0042 0.0085 0.0277 0.0916
Mfg 0.1376 0.0940 0.3637 0.3815 0.0634 0.0896 0.1003
T & T 0.0657 0.0296 0.1049 0.0509 0.0530 0.0404 0.0775
Serv 0.0878 0.1708 0.0765 0.0734 0.1546 0.1676 0.1382
Oth 0.0001 0.0054 0.0008 0.0055 0.0183 0.0250 0.0012

*Derived from more detailed tables published by the U.S. Bureau of Economic Analysis. Source for
Tables 3 and 4: Input-Output Analysis: Foundations and Extensions, by Ronald E. Miller and Peter D.
Blair (Englewood Cliffs, N.J.: Prentice Hall, 1985)

TABLE 4 External 
Demands for
1967 U.S.
Economy

External Demands

Agriculture 9300
Mining 1454
Construction 85,583
Manufacturing 278,797
Trade &
transportation 141,468
Services 211,937
Others 2453



DETERMINANTS AND CRAMER’S RULE
The idea of the determinant . . . dates back essentially to Leibniz (1693), the Swiss
mathematician Gabriel Cramer (1750), and Lagrange (1773); the name is due to
Cauchy (1812). Y. Mikami has pointed out that the Japanese mathematician Seki
Kōwa had the idea of a determinant sometime before 1683. —Dirk J. Struik in A Concise

History of Mathematics, 4th ed. (New York: Dover Publications, 1987)

As you saw in the previous section, square matrices and their inverses can be used to
solve certain systems of equations. In this section we will associate a number with
each square matrix. This number is called the determinant of the matrix. As you’ll
see, this too has an application in solving systems of equations.

The determinant of a matrix A is denoted by det A or simply by replacing the
parentheses of matrix notation with vertical lines. Thus, three examples of determi-
nants are

or

A determinant with n rows and n columns is said to be an nth-order determinant.
Therefore, the determinants we’ve just written are, respectively, second-, third-, and
fourth-order determinants. As with matrices, we speak of the numbers in a determi-
nant as its entries. We also number the rows and the columns of a determinant as we
do with matrices. However, unlike matrices, each determinant has a numerical value.
The value of a second-order determinant is defined as follows.

4 3 7 8 9

5 6 4 3

�9 9 0 1

1 3 �2 1

43 1 2 3

4 5 6

7 8 9

3 ,2 1 2

3 4
2 ,det a1 2

3 4
b
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TABLE 1

Determinant Value of Determinant

� 3(10) � 7(5) � 30 � 35 � �5

� 3(10) � (�7)(5) � 30 � 35 � 65

� a(a2) � a3(1) � a3 � a3 � 02 a a3

1 a2 22 a a3

1 a2 2
2 3 �7

5 10
22 3 �7

5 10
2 2 3 7

5 10
22 3 7

5 10
2

11.5

Table 1 illustrates how this definition is used to evaluate, or expand, a second-order
determinant.

2 a b

c d
2 � ad � bc

Definition 2 � 2 Determinant



In general, the value of an nth-order determinant (n � 2) is defined in terms of
certain determinants of order n � 1. For instance, the value of a third-order determi-
nant is defined in terms of second-order determinants. We’ll use the following exam-
ple to introduce the necessary terminology here:

Pick a given entry—for example, the entry 8 in the first row and first column—and
imagine crossing out all entries occupying the same row and the same column as 8.

Now we are left with the second-order determinant This second-order 

determinant is called the minor of the entry 8. Similarly, to find the minor of the entry 6
in the original determinant, imagine crossing out all entries that occupy the same row and
the same column as 6.

We are left with the second-order determinant which by definition is the 

minor of the entry 6. In the same manner, the minor of any element is the determinant
obtained by crossing out the entries occupying the same row and column as the given
element.

Closely related to the minor of an entry in a determinant is the cofactor of that
entry. The cofactor of an entry is defined as the minor multiplied by �1 or �1, ac-
cording to the scheme displayed in Figure 1.

After looking at an example, we’ll give a more formal rule for computing cofac-
tors, one that will not rely on a figure and that will also apply to larger determinants.

1 Computing a Minor and a Cofactor

Consider the determinant

Compute the minor and the cofactor of the entry 4.

By definition, we have

minor of 4 � 2 2 3

8 9
2 � 18 � 24 � �6

3 1 2 3

4 5 6

7 8 9

3

2 8 3

9 1
2 ,

3 8 3 5

2 4 6

9 1 7

3

2 4 6

1 7
2 .

3 8 3 5

2 4 6

9 1 7

3

3 8 3 5

2 4 6

9 1 7

3
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Figure 1 

3 � � �

� � �

� � �

3
EXAMPLE

SOLUTION



Thus the minor of the entry 4 is �6. To compute the cofactor of 4, we first notice that
4 is located in the second row and first column of the given determinant. On check-
ing the corresponding position in Figure 1, we see a negative sign. Therefore we
have, by definition,

The cofactor of 4 is therefore 6.

The following rule tells us how cofactors can be computed without relying on
Figure 1. For reference we also restate the definition of a minor. (You should verify
for yourself that this rule yields results that are consistent with Figure 1.)

 � (�1)(�6) � 6

 cofactor of 4 � (�1)(minor of 4)

11.5 Determinants and Cramer’s Rule 811

The minor of an entry b in a determinant is the determinant formed by suppressing
the entries in the row and in the column in which b appears.

Suppose that the entry b is in the ith row and the jth column. Then the cofactor
of b is given by the expression

(�1)i�j(minor of b)

Definition Minors and Cofactors

Multiply each entry in the first row of the determinant by its cofactor and then add
the results. The value of the determinant is defined to be this sum.

Definition The Value of a Determinant

We are now prepared to state the definition that tells us how to evaluate a third-
order determinant. Actually, as you’ll see later, the definition is quite general and
may be applied to determinants of any size.

To see how this definition is used, let’s evaluate the determinant

The definition tells us to multiply each entry in the first row by its cofactor and then
add the results. Carrying out this procedure, we have

So the value of this particular determinant is zero. The procedure that we’ve used
here is referred to as expanding the determinant along its first row. The following
theorem (stated here without proof) tells us that the value of a determinant can be
obtained by expanding along any row or column; the result is the same in all cases.

 � 0 (Check the arithmetic!)

 � 1(45 � 48) � 2(36 � 42) � 3(32 � 35)

 3 1 2 3

4 5 6

7 8 9

3 � 1 2 5 6

8 9
2 � 2 2 4 6

7 9
2 � 3 2 4 5

7 8
2

3 1 2 3

4 5 6

7 8 9

3
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Select any row or any column in a determinant and multiply each element in that row
or column by its cofactor. Then add the results. The number obtained will be the
value of the determinant. (In other words, the number that is obtained will be 
the same as that obtained by expanding the determinant along its first row.)

According to this theorem, we could have evaluated the determinant

by expanding it along any row or any column. Let’s expand it along the second column
and check to see that the result agrees with the value we obtained earlier. Expanding
along the second column, we have

as obtained previously.
We would have obtained the same result had we chosen to begin with any other

row or column. (Exercise 13 at the end of this section asks you to verify this.)
There are three basic rules that make it easier to evaluate determinants. These are

summarized in the box that follows. (Suggestions for proving these can be found in the
exercises.)

 � 12 � 60 � 48 � 0

 � �2(�6) � 5(�12) � 8(�6)

 � �2(36 � 42) � 5(9 � 21) � 8(6 � 12)

 3 1 2 3

4 5 6

7 8 9

3 � �2 2 4 6

7 9
2 � 5  2 1 3

7 9
2 �8  2 1 3

4 6
2

3 1 2 3

4 5 6

7 8 9

3

Theorem

PROPERTY SUMMARY Rules for Manipulating Determinants

EXAMPLES

1. If each entry in a given row is multiplied by the constant k, 
then the value of the determinant is multiplied by k. 
This is also true for columns.

2. If a multiple of one row is added to another row, the value of the 
determinant is not changed. This also applies to columns. �

3. If two rows are interchanged, then the value of the determinant
is multiplied by �1. This also applies to columns. � � 3 4 5 6

1 2 3

a b c

33 1 2 3

4 5 6

a b c

3
3 a b c

d � ka e � kb f � kc

g h i

33 a b c

d e f

g h i

3
  k 3 a b c

d e f

g h i

3 � 3 a kb c

d ke f

g kh i

3
10 3 1 3 4

1 2 3

4 5 6

3 � 3 10 30 40

1 2 3

4 5 6

3



2 Evaluating a Determinant

Evaluate the determinant 

The value of the given determinant is therefore 12. Notice the general strategy. We
used Rules 1 and 2 until one column (or one row) contained two zeros. At that point, it
is a simple matter to expand the determinant along that column (or row).

 � 6(36 � 34) � 12

using Rule 2 to subtract the 
first row from the second row

 � 6 2 12 34

1 3
2

expanding the determinant 
along the second column � 6 c� a�1 2 12 34

13 37
2 b d

using Rule 2 to add the third row 
to the first and second rows

 � 6 3 12 0 34

13 0 37

7 �1 21

3
using Rule 2 to subtract the third
column from the second column

 � 6 3 5 1 13

6 1 16

7 �1 21

3
using Rule 1 to factor 3 from the 
first column and 2 from the third 
column

 3 15 14 26

18 17 32

21 20 42

3 � (3 � 2) 3 5 14 13

6 17 16

7 20 21

3
3 15 14 26

18 17 32

21 20 42

3 .
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EXAMPLE

SOLUTION

EXAMPLE

SOLUTION

3 Applying the Rules for Manipulating a Determinant

Show that

 � 3 1 0 0

a b � a c � a

a2 (b � a)(b � a) (c � a)(c � a)

3
using Rule 2 to subtract
the first column from
the second and third
columns

 3 1 1 1

a b c

a2 b2 c2

3 � 3 1 0 0

a b � a c � a

a2 b2 � a2 c2 � a2

3
3 1 1 1

a b c

a2 b2 c2

3 � (b � a)(c � a)(c � b)



Note: The determinant in Example 3 is the Vandermonde determinant of order
three. Vandermonde determinants and variations of Vandermonde determinants are
very useful in many applications. (See Exercises 32 and 34 at the end of this section.)

 � (b � a)(c � a)(c � b)

expanding along first
row

 � (b � a)(c � a)[(c � a) � (b � a)]

using Rule 1 to factor
b � a from the second
column and c � a from
the third column

 � (b � a)(c � a) 3 1 0 0

a 1 1

a2 b � a c � a

3
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EXAMPLE

SOLUTION

4 Two Cases in Which the Value of a Determinant Is Zero

Evaluate each determinant:

(a) (b)

(a) Notice that the first and third rows are identical. Thus we have

subtracting row 1 from row 3

expanding along the third row

(b) Notice that the third row is a multiple of the first row. (A more precise, but less
convenient, way to state this is: Each entry in the third row is a constant multi-
ple of the corresponding entry in the first row.) So we have

The reasoning that we used in Example 4 can be generalized as indicated in the
box that follows.

1. If two rows are identical, the value of the determinant is zero. This also holds for
two columns.

2. If one row is a multiple of another row, the value of the determinant is zero. This
also holds for two columns.

Caution: The value of a determinant can still turn out to be zero even if neither of
these conditions apply. See, for instance, the example on page 811.

Two Instances When the Value of a Determinant Is Zero

 � 0

 3 2 7 3

15 40 79

20 70 30

3 � 10 3 2 7 3

15 40 79

2 7 3

3 � 10 � 0 (Why?)

 � 0

 3 9 4 �3

13 17 5

9 4 �3

3 � 3 9 4 �3

13 17 5

0 0 0

3
3 2 7 3

15 40 79

20 70 30

33 9 4 �3

13 17 5

9 4 �3

3



The definition that we gave (on page 811) for third-order determinants can be ex-
tended to apply to fourth-order (or larger) determinants. Consider, for example, the
fourth-order determinant given by

By definition, we can evaluate this determinant by selecting the first row, multiply-
ing each entry by its cofactor, and then adding the results. This yields

The problem is now reduced to evaluating four third-order determinants. As Exer-
cise 31(a) asks you to check, the determinant is 174. If we had expanded along the
second row rather than the first, then there would be one less third-order determinant
to evaluate because of the zero in the second row. (In doing this, we would be rely-
ing on the theorem on page 812, which is valid for all determinants, not only 3 � 3
determinants.) Exercise 31(b) asks you to expand along the second row and again
verify that the determinant is 174.

Alternatively, we can use the properties on page 812 to transform the determinant
to an equivalent determinant containing more zero entries. Then, expanding by a row
or column with many zeros requires less arithmetic.

As with matrix products and inverses, a graphing calculator can be used in com-
puting determinants. We display two examples here using the 4 � 4 determinant
given above. (For the details on these and for other types of graphing utilities, see
your user’s manual. Figure 2 shows the end results of the two steps in computing the
determinant using a Texas Instruments TI-83+ graphing calculator. After the 4 � 4
matrix A corresponding to the determinant has been entered, the matrix can be
displayed as in Figure 2(a). Figure 2(b) shows the viewing screen that then results

 � 2 3 0 3 6

5 1 3

2 �6 1

3 � 7 3 4 3 6

�8 1 3

11 �6 1

3 � (�1) 3 4 0 6

�8 5 3

11 2 1

3 � 9 3 4 0 3

�8 5 1

11 2 �6

3
 4 2 7 �1 9

4 0 3 6

�8 5 1 3

11 2 �6 1

4

4 2 7 �1 9

4 0 3 6

�8 5 1 3

11 2 �6 1

4
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[A]
[[2 7 -1 9]
 [4 0 3 6]
 [-8 5 1 3]
 [11 2 -6 1]]

[A]
[[2 7 -1 9]
 [4 0 3 6]
 [-8 5 1 3]
 [11 2 -6 1]]

det([A])
174

(a) (b)

Figure 2
Evaluating a 4 � 4 determinant
using a Texas Instruments 
TI-83� graphing calculator (For
details, see your user’s manual.).



after executing the command det([A]). In Figure 3 we’ve used Microsoft Excel to
evaluate the determinant.

Determinants can be used to solve certain systems of linear equations in which
there are as many unknowns as there are equations. In the box that follows, we state
Cramer’s rule for solving a system of three linear equations in three unknowns.*
A more general but entirely similar version of Cramer’s rule holds for n equations in
n unknowns.

Consider the system

Let the four determinants D, Dx, Dy, and Dz be defined as follows:

Then if D � 0, the system has a unique solution for x, y, and z given by

[If D � 0, the solutions (if any) can be found using Gaussian elimination.]

Notice that the determinant D in Cramer’s rule is just the determinant of the
coefficient matrix of the given system. If you replace the first column of D with the
column of numbers on the right side of the given system, you obtain Dx. The deter-
minants Dy and Dz are obtained similarly.

Before actually proving Cramer’s rule, let’s take a look at how it’s applied.

x �
Dx

D
  y �

Dy

D
  z �

Dz

D

 Dy � 3 a1 d1 c1

a2 d2 c2

a3 d3 c3

3   Dz � 3 a1 b1 d1

a2 b2 d2

a3 b3 d3

3
 D � 3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3   Dx � 3 d1 b1 c1

d2 b2 c2

d3 b3 c3

3
•

a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

Cramer’s Rule
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8

A B C D EA

A =

det(A) =

1
2
3
4
5
6
7

2 7 –1 9
4 0 3 6

–8 5 1 3
11 2 –6 1

174

Figure 3
Computing a determinant using
Microsoft Excel. After typing in the
entries in cells B2 through E5, the
formula =MDETERM(B2:E5) is
used to compute the determinant.
(See your user’s manual.)

*The rule is named after one of its discoverers, the Swiss mathematician Gabriel Cramer
(1704–1752).



5 Using Cramer’s Rule to Solve a System

Use Cramer’s rule to find all solutions of the following system of equations:

First we list the determinants D, Dx, Dy, and Dz:

The calculations for evaluating D begin as follows:

Subtract twice the second row from the first.
Subtract 4 times the second row from the third.

Since we now have two zeros in the first column, it is an easy matter to expand D
along that column to obtain

The value of D is therefore �55. (Since this value is nonzero, Cramer’s rule does
apply.) As Exercise 37 at the end of this section asks you to verify, the values of the
other three determinants are

By Cramer’s rule, then, the unique values of x, y, and z that satisfy the system are

One way we can prove Cramer’s rule is to use Gaussian elimination to solve the
system

(1)

A much shorter and simpler proof, however, has been found by D. E. Whitford and
M. S. Klamkin.* This is the proof we give here; it makes effective use of the rules
employed in this section for manipulating determinants.

•
a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

x �
Dx

D
�

144

�55
� � 

144

55
  y �

Dy

D
�

61

�55
� � 

61

55
  z �

Dz

D
�

�230

�55
�

46

11

Dx � 144  Dy � 61  Dz � �230

 � �1[�20 � (�75)] � �1(55) � �55

 D � �1 2 10 �5

15 �2
2

D � 3 2  2 �3

1 �4  1

4 �1  2

3  �
c
3 0 10 �5

1 �4   1

0 15 �2

3
 Dy � 3 2 �20 �3

1 6 1

4 �1 2

3   Dz � 3 2 2 �20

1 �4 6

4 �1 �1

3
 D � 3 2 2 �3

1 �4 1

4 �1 2

3   Dx � 3 �20 2 �3

6 �4 1

�1 �1 2

3
•

2x � 2y � 3z � �20

x � 4y �  z � 6

4x �  y � 2z � �1

11.5 Determinants and Cramer’s Rule 817

EXAMPLE

SOLUTION

*The proof was published in the American Mathematical Monthly, vol. 60 (1953), pp. 186–187.



Consider the system of equations (1) and assume that D � 0. We will show that
if x, y, and z satisfy the system, then in fact x � Dx�D, with similar equations giving
y and z. (Exercise 68 at the end of this section then shows how to check that these values
indeed satisfy the given system.) We have

by definition

using the equations
in (1) to substitute for 
d1, d2, and d3

subtracting y times the second 
column as well as z times the 
third column from the first 
column

factoring x out of the first 
column

by definition

We now have Dx � xD, which is equivalent to x � Dx�D, as required. The formulas
for y and z are obtained similarly.

 � xD

 � x 3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3
 � 3 a1x b1 c1

a2x b2 c2

a3x b3 c3

3
 � 3 (a1x � b1y � c1z) b1 c1

(a2x � b2y � c2z) b2 c2

(a3x � b3y � c3z) b3 c3

3
 Dx � 3 d1 b1 c1

d2 b2 c2

d3 b3 c3

3
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A
In Exercises 1–6, evaluate the determinants.

1. (a) 2. (a)

(b) (b)

3. (a) 4. (a)

(b) (b)

5. 6.

In Exercises 7–12, refer to the following determinant:

7. Evaluate the minor of the entry 3.

3�6 3 8

5 �4 1

10 9 �10

3
213 �12 1 �15

1 �15 13 �12
2212 � 1 12

12 12 � 1
2

2�3 �8

�5 4
22 5 500

7 700
2

2�8 �3

4 �5
22 5 7

500 700
2

2 0 1

0 1
22 1 6

2 �17
2

2 1 0

0 1
22 2 �17

1 6
2

8. Evaluate the cofactor of the entry 3.
9. Evaluate the minor of �10.

10. Evaluate the cofactor of �10.
11. (a) Multiply each entry in the first row by its minor and

find the sum of the results.
(b) Multiply each entry in the first row by its cofactor and

find the sum of the results.
(c) Which gives you the value of the determinant, part (a)

or part (b)?
12. (a) Multiply each entry in the first column by its cofactor,

and find the sum of the results.
(b) Follow the same instructions as in part (a), but use the

second column.
(c) Follow the same instructions as in part (a), but use the

third column.

13. Evaluate by expanding it along

(a) the second row; (b) the third row; (c) the first column;
(d) the third column.

3 1 2 3

4 5 6

7 8 9

3 

EXERCISE SET 11.5



31. This exercise refers to the 4 � 4 determinant on page 815.
(a) Evaluate the determinant by expanding along the first

row. As stated in the text, you should obtain 174 as the
value of the determinant.

(b) Evaluate the determinant by expanding along the
second row.

32. Use the method illustrated in Example 3 to show that

33. Use the method shown in Example 3 to express the deter-

minant as a product.

34. Show that

35. Simplify the determinant .

36. Use the method shown in Example 3 to express the follow-
ing determinant as a product of three factors:

37. Verify the following statements (from Example 5).

(a) � 144

(b) � 61

(c) � �230

38. Consider the following system:

(a) Without doing any calculations, find one obvious solu-
tion of this system.

(b) Calculate the determinant D.
(c) List all solutions of this system.

•
x �  y � 3z � 0

x � 2y � 5z � 0

x � 4y � 8z � 0

3 2 2 �20

1 �4 6

4 �1 �1

3
3 2 �20 �3

1 6 1

4 �1 2

3
3�20 2 �3

6 �4 1

�1 �1 2

3
3 1 1 1

a b c

bc ca ab

3
3 1 1 1

1 1 � x 1

1 1 1 � y

3 � (b � a)(c � a)(c � b)(bc � ac � ab)

 3 1 1 1

a2 b2 c2

a3 b3 c3

3 � (b � a)(c � a)(bc2 � b2c � ac2 � ab2)

3 1 x x2

1 y y2

1 z z2

3
 � (b � a)(c � a)(c � b)(a � b � c)

 3 1 1 1

a b c

a3 b3 c3

3 � (b � a)(c � a)(c2 � b2 � ac � ab)

In Exercises 14–24, evaluate the determinants.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24.

In Exercises 25 and 26, use a graphing utility to evaluate the
determinants. For Exercise 25, check your answer by referring
to Example 2.

25. 26.

27. Consider the two determinants

(a) According to Item 1 in the Property Summary box 
on page 812, how are the values of these determinants
related?

(b) Evaluate each determinant to verify your answer in
part (a).

28. Consider the two determinants

(a) According to Item 3 in the Property Summary box 
on page 812, how are the values of these determinants
related?

(b) Evaluate each determinant to verify your answer in
part (a).

In Exercises 29 and 30:

(a) Evaluate the determinant as in Example 2.
(b) Use a graphing utility to evaluate the determinant.

29. 30. 4 3 �2 3 4

1 4 �3 2

6 3 �6 �3

�1 0 1 5

44 1 �1 0 2

0 1 �1 0

2 1 0 �1

�2 2 1 1

4

312 15 17

�6 10 0

8 �1 �6

3  and  3 �6 10 0

12 15 17

8 �1 �6

3

3 1 2 3

�7 �4 5

9 2 6

3  and  3 10 20 30

�7 �4 5

9 2 6

3
4 25 40 5 10

9 0 3 6

�2 3 11 �17

�3 4 7 2

43 15 14 26

18 17 32

21 20 42

3

3 16 0 �64

�8 15 �12

30 �20 10

33 23 0 47

�37 0 18

14 0 25

3
3�6 �8 18

25 12 15

�9 4 13

33 3 0 0

0 19 0

0 0 10

33 12 21 �4

0 0 0

73 82 14

3
3 8 7 800

3 4 300

5 2 500

33 9 9 12

4 4 6

7 7 5

33 1 2 �3

4 5 �9

0 0 1

3
3 8 4 2

3 9 3

�2 8 6

33 5 10 15

1 2 3

�9 11 7

33 1 2 �1

2 �1 1

4 0 2

3
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53. Show that

54. Show that

55. By expanding each determinant along a row or column,
show that

56. Solve for x in terms of a, b, and c:

57. Show that

58. Show that

59. Show that

60. Evaluate the determinant

61. Show that

4 1 a a a

1 b a a

1 a b a

1 a a b

4 � (b � a)3

3 a b c

a a � b a � b � c

a 2a � b 3a � 2b � c

3
3 1 bc b � c

1 ca c � a

1 ab a � b

3 � (b � c)(c � a)(a � b)

3 1 a a2

a2 1 a

a a2 1

3 � (a3 � 1)2

abcd a 1
a

�
1

b
�

1
c

�
1

d
� 1b4 1 � a 1 1 1

1 1 � b 1 1

1 1 1 � c 1

1 1 1 1 � d

4 �
3 a a x

c c c

b x b

3 � 0  (c � 0)

3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3 � �3 a2 b2 c2

a1 b1 c1

a3 b3 c3

3

3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3 � 3 a1 � kb1 b1 c1

a2 � kb2 b2 c2

a3 � kb3 b3 c3

3
3 a1 � A1 b1 c1

a2 � A2 b2 c2

a3 � A3 b3 c3

3 � 3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3 � 3 A1 b1 c1

A2 b2 c2

A3 b3 c3

3
In Exercises 39–46, use Cramer’s rule to solve those systems
for which D � 0. In cases where D � 0, use Gaussian elimina-
tion or matrix methods.

39. 40.

41. 42.

43. 44.

45. 46.

In Exercises 47 and 48, use Cramer’s rule along with a
graphing utility to solve the systems.

47.

48.

B
49. Find all values of x for which

50. Find all values of x for which

51. By expanding the determinant down the first 

column, show that its value is zero.

52. By expanding the determinant along its first 

row, show that it is equal to k .3 a b c

d e f

g h i

3
3 ka kb kc

d e f

g h i

3
3 a b c

a b c

d e f

3
3 1 x x2

1 1 1

4 5 0

3 � 0

3 x � 4 0 0

0 x � 4 0

0 0 x � 1

3 � 0

μ
2A �  B � 3C � 2D � �2

A � 2B �  C � 3D � 4

3A � 4B � 2C � 4D � 12

2A � 3B �  C � 2D � �4

μ
x �  y �  z �  w � �7

x �  y �  z �  w � �11

2x � 2y � 3z � 3w � 26

3x � 2y �  z �  w � �9

•
3x � 4y � 2z � 1

4x � 6y � 2z � 7

2x � 3y �  z � 11

•
12x   � 11z � 13

6x � 6y �  4z � 26

6x � 2y �  5z � 13

•
4u � 3v � 2w � 14

 u � 2v � 3w � 6

2u �  v � 4w � 2

•
2x � 5y � 2z � 0

3x �  y � 4z � 0

x � 2y � 3z � 0

•
5x � 3y �  z � 16

2x �  y � 3z � 5

3x � 2y � 2z � 5

•
3x � 2y �  z � �6

2x � 3y � 4z � �11

x �  y �  z � 5

•
3A �  B � 4C � 3

A � 2B � 3C � 9

2A �  B � 2C � �8

•
3x � 4y �  z � 5

x � 3y � 2z � 2

5x   � 6z � �7
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Figure A Figure B

68. This exercise completes the derivation of Cramer’s rule
given in the text. Using the same notation, and assuming
D � 0, we need to show that the values x � Dx�D,
y � Dy�D, and z � Dz�D satisfy the equations in (1) on
page 817. We will show that these values satisfy the first
equation in (1), the verification for the other equations
being entirely similar.
(a) Check that substituting the values x � Dx�D,

y � Dy�D, and z � Dz�D in the first equation of (1)
yields an equation equivalent to

(b) Show that the equation in part (a) can be written

(c) Show that the equation in part (b) can be written

(d) Now explain why the equation in (c) indeed holds.

69. Let D denote the determinant of the matrix 

(a) Show that the inverse of this matrix is 
Assume that ad � bc � 0.

(b) Use the result in part (a) to find the inverse of the 

matrix 

70. Let A � and B � Is it true that 

det (AB) � (det(A))(det(B))?

a e f

g h
b .aa b

c d
b

a�6 7

1 9
b .

a d �b

�c a
b .

1

D

a a b

c d
b .

4 a1 b1 c1 d1

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

4 � 0

   � c1 3 a1 b1 d1

a2 b2 d2

a3 b3 d3

3 � d1 3 a1 b1 c1

a2 b2 c2

a3 b3 c3

3 � 0

 a1 3 b1 c1 d1

b2 c2 d2

b3 c3 d3

3 � b1 3 a1 c1 d1

a2 c2 d2

a3 c3 d3

3 
a1Dx � b1Dy � c1Dz � d1D � 0

y

xx

y

(c, d)

(a, b)

62. Show that

63. Solve the following system for x, y, and z:

(Assume that the values of a, b, and c are all distinct and
all nonzero.)

64. Show that the equation

represents a line that has slope m and passes through the
point (x1, y1).

For Exercise 65, use the fact that the equation of a line passing
through (x1, y1) and (x2, y2) can be written

65. Find the equation of the line passing through (�3, �1) and
(2, 9). Write the answer in the form y � mx � b.

For Exercise 66, use the fact that the equation of a circle pass-
ing through (x1, y1), (x2, y2), and (x3, y3) can be written

66. Find the equation of the circle passing through (7, 0), 
(5, �6), and (�1, �4). Write the answer in the form
(x � h)2 � (y � k)2 � r2.

C
67. Show that the area of the triangle in Figure A is 

Hint: Figure B indicates how the required area can be 
found by using a rectangle and three right triangles.

1
2  2 a b

c d
2 .

4 x2 � y2 x y 1

x2
1 � y2

1 x1 y1 1

x2
2 � y2

2 x2 y2 1

x2
3 � y2

3 x3 y3 1

4 � 0

3 x y 1

x1 y1 1

x2 y2 1

3 � 0

3 x y 1

x1 y1 1

1 m 0

3 � 0

•
ax � by � cz � k

a2x � b2y � c2z � k2

a3x � b3y � c3z � k3

4 a 1 1 1

1 a 1 1

1 1 a 1

1 1 1 a

4 � (a � 1)3(a � 3)
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11.6 NONLINEAR SYSTEMS OF EQUATIONS
In the previous sections of this chapter, we looked at several techniques for solving
systems of linear equations. In the present section we consider nonlinear systems of
equations, that is, systems in which at least one of the equations is not linear. There
is no single technique that serves to solve all nonlinear systems. However, simple
substitution will often suffice. The work in this section focuses on examples showing
some of the more common approaches. In all of the examples and in the exercises,
we will be concerned exclusively with solutions (x, y) in which both x and y are real
numbers. In Example 1 the system consists of one linear equation and one quadratic
equation. Such a system can always be solved by substitution.

EXAMPLE 1 Solving a Simple Nonlinear System by Substitution

Find all solutions (x, y) of the following system, where x and y are real numbers:

e2x � y � 1

y � 4 � x2

SOLUTION We use the second equation to substitute for y in the first equation. This will yield an
equation with only one unknown:

The values x � 3 and x � �1 can now be substituted back into either of the original
equations. Substituting x � 3 in the equation y � 4 � x2 yields y � �5. Similarly,
substituting x � �1 in the equation y � 4 � x2 gives us y � 3. We have now obtained
two ordered pairs, (3, �5) and (�1, 3). As you can easily check, both of these are
solutions of the given system. Figure 1 displays the graphical interpretation of this
result. The line 2x � y � 1 intersects the parabola y � 4 � x2 at the points (�1, 3)
and (3, �5).

 
x � 3 � 0

x � 3
 ` x � 1 � 0

x � �1

 (x � 3)(x � 1) � 0
 x2 � 2x � 3 � 0

 �x2 � 2x � 3 � 0
 2x � (4 � x2) � 1y

x

2x+y=1

y=4-≈

(3, _5)

(_1, 3)

Figure 1 

SOLUTION The system that we wish to solve is

(1)
(2)

In view of equation (1) we can replace the x2-term of equation (2) by y. Doing this
yields

y � y2 � 1

e y � x2

x2 � y2 � 1

EXAMPLE 2 Determining Where Two Graphs Intersect

Where do the graphs of the parabola y � x2 and the circle x2 � y2 � 1 intersect? See
Figure 2.
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or

This last equation can be solved by using the quadratic formula with a � 1, b � 1,
and c � �1. As you can check, the results are

However, from Figure 2 it is clear that the y-coordinate at each intersection point is
positive. Therefore we discard the negative number y � � from further
consideration in this context. Substituting the positive number y � �
back in the equation y � x2 then gives us

Therefore

By choosing the positive square root, we obtain the x-coordinate for the intersection
point in the first quadrant. That point is therefore

using a calculator

Similarly, the negative square root yields the x-coordinate for the intersection point
in the second quadrant. That point is

using a calculator

We have now found the two intersection points, as required.

1�2 1�1 � 15 2�2, 1�1 � 15 2�2 2 � (�0.79, 0.62)

12 1�1 � 15 2�2, 1�1 � 15 2�2 2 � (0.79, 0.62)

x � �2 1�1 � 15 2�2

x2 � 1�1 � 15 2�2

15 21
2 1�1

15 21
2 1�1

y �
�1 � 15

2
  and  y �

�1 � 15

2

y2 � y � 1 � 0

y

x

≈+¥=1

y=≈

Figure 2 

SOLUTION Since these equations are easy to graph by hand, we do so, because that will tell us
something about the required solutions. As Figure 3 indicates, there are two intersec-
tion points, one in the first quadrant, the other in the third quadrant. One way to begin
now would be to solve equation (3) for one unknown in terms of the other. However,
to avoid introducing fractions at the outset, let’s use equation (4) to substitute for y in
equation (3). This yields

or

This last equation can be solved by using the quadratic formula. As you should verify,
the solutions are

x � 1�1 � 113 2�6  and  x � 1�1 � 113 2�6

 3x2 � x � 1 � 0

 x(3x � 1) � 1

EXAMPLE 3 Using Substitution and the Quadratic Formula to Solve a System

Find all solutions (x, y) of the following system, where x and y are real numbers:

(3)
(4)

e xy � 1

y � 3x � 1



The corresponding y-values can now be obtained by substituting for x in either of the
given equations. We will substitute in equation (4). (Exercise 35 at the end of this
section asks you to substitute in equation (3) as well and then to show that the very
different-looking answers obtained in that way are in fact equal to those found here.)
Substituting x � � �6 into the equation y � 3x � 1 gives us

Thus one of the intersection points is

Notice that this must be the first-quadrant point of intersection, since both coor-
dinates are positive. The intersection point in the third quadrant is obtained in exactly
the same manner. As you can check, substituting x � � � in the equation
y � 3x � 1 yields y � � Thus the other intersection point is

As Figure 3 indicates, there are no other solutions.

1� 11 � 113 2�6, 11 � 113 2�2 2
113 2 .1

2 11 113 21
6 11

1 1�1 � 113 2�16 2 , 11 � 113 2�2 2

 �
�1 � 113

2
�

2

2
�

1 � 113

2

 y � 3 a�1 � 113

6
b � 1

113 21�1
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x

y=3x+1

xy=1

y

Figure 3 

SOLUTION We use the first equation to substitute for y in the second equation. This yields

Using the quadratic formula to solve this last equation, we have

The two values of x are thus

However, notice that both of these quantities are negative. (The second is obviously
negative; without using a calculator, can you explain why the first is negative?) Thus
neither of these quantities is an appropriate x-input in the equation y � since we
are looking for y-values that are real numbers. We conclude from this that there are
no pairs of real numbers x and y satisfying the given system. In geometric terms this
means that the two graphs do not intersect; see Figure 4.

1x ,

�5 � 113

2
  and  

�5 � 113

2

x �
�5 � 252 � 4(1)(3)

2(1)
�

�5 � 113

2

 x2 � 5x � 3 � 0
 x2 � 4x � 4 � x � 1

 (x � 2)2 � 11x 2 2 � 1

EXAMPLE 4 A System with No Solution

Find all real numbers x and y that satisfy the system of equations

e y � 1x

(x � 2)2 � y2 � 1



In the next example we look at a system that can be reduced to a linear system
through appropriate substitutions.
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x

y

(x+2)@+y@=1
y=œ„x

Figure 4 

SOLUTION Let u � 1�x2 and v � 1�y2, so that the system becomes

This is now a linear system. As you can verify using the methods of Section 11.1, the
solution of this linear system is u � 9, v � 8. In view of the definitions of u and v,
then, we have

This gives us four possible solutions for the original system:

As you can check, all four of these pairs satisfy the given system.

a 1

3
, 
12

4
b  a 1

3
, � 

12

4
b  a� 

1

3
, 
12

4
b  a� 

1

3
, � 

12

4
b

 

1

x2 � 9

x2 � 1�9
2x � �1�3

  
∞
 

1

y2 � 8

y2 � 1�8
2y � �1�18 � �1�(212) � �12�4

e 2u � 3v � �6

3u � 4v � 59

EXAMPLE 5 Introducing a Linear System to Solve a Nonlinear System

Solve the system

μ
2

x2 �
3

y2 � �6

3

x2 �
4

y2 � 59

EXAMPLE 6 A System Involving Exponential Functions

Determine all solutions (x, y) of the following system, where x and y are real
numbers:

(5)
(6)

e y � 3x

y � 32x � 2
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SOLUTION We’ll use the substitution method. First we rewrite equation (6) as

(7)

Now, in view of equation (5), we can replace 3x with y in equation (7) to obtain

From this last equation we see that y � �1 or y � 2. With y � �1, equation (5) be-
comes �1 � 3x, contrary to the fact that 3x is positive for all real numbers x. Thus we
discard the case in which y � �1. On the other hand, if y � 2, equation (5) becomes

Rewriting in logarithmic form, we obtain x � log3 2. Using the change of base formula
(page 367), we can express x in terms of natural logarithms as

Alternatively, we can solve this exponential equation by taking the logarithm of both
sides. Using natural logarithms, we have

and, consequently,

We’ve now found that x � (ln 2)�(ln 3) and y � 2. Figure 5 displays a graphical in-
terpretation of this result. (Using a calculator for the x-coordinate, we find that x � 0.6,
which is consistent with Figure 5.)

x �
ln  2

ln  3
  Caution: 

ln  2

ln  3
� ln  2 � ln  3

ln  2 � ln  3x � x ln  3

x �
ln 2

ln 3

2 � 3x

 0 � (y � 1)(y � 2)
 0 � y2 � y � 2
 y � y2 � 2

y � (3x)2 � 2

x

y

y=3@®-2

y=3®

1 2

y=_2

2

4

6

” , 2’
ln 2
ln 3

Figure 5 

EXAMPLE 7 Using a Graphing Utility to Approximate the Solution of a Nonlinear System

Use a graphing utility to approximate, to the nearest tenth, the solution(s) of the
system

e y � 2 � x2

y � ln  x
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SOLUTION From work in previous chapters, we know how to quickly sketch by hand the graphs
of these two equations. If you do that, either on paper or in your head, you’ll see that
the given system has exactly one solution. As indicated by the viewing rectangle in
Figure 6(a), the required value of x is between 1 and 2, and y is between 0 and 1. After
some experimenting, we obtain the viewing rectangle shown in Figure 6(b), which
indicates that, to the nearest tenth, the solution of the given system is (1.3, 0.3).

Graphical Perspective

_2 _1 0 1 2 3
_2

_1

0

1

2

3

1.2 1.3 1.4 1.5
0.20

0.25

0.30

0.35

0.40

(a) [_2, 3, 1] by [_2, 3, 1]

y=2-x@ y=ln x

(b) [1.2, 1.5, 0.1] by [0.20, 0.40, 0.05 ]

y=2-x@ y=ln x

Figure 6 

17. 18.

19.

20. 21.

22.

Hint: Use the substitutions ax � t and ay � u.

In Exercises 23–34:
(a) Use a graphing utility to approximate the solutions (x, y)

of each system. Zoom in on the relevant intersection points
until you are sure of the first two decimal places of each
coordinate.

(b) In Exercises 23–28 only, also use an algebraic method of
solution. Round the answers to three decimal places and
check to see that your results are consistent with the graph-
ical estimates obtained in part (a).

23. 24.

25. 26. e y � 1x

y � 2x3e y � 1x � 1 � 1

3x � 4y � 12

e y � x2 � 1

y � �2x4 � 3
e y � x � 5

y � �x2 � 2

ea2x � a2y � 10

ax�y � 4
 (a � 0)

e 2x # 3y � 4

x � y � 5
e y � log2(x � 1)

y � 5 � log2(x � 3)

e2(log10 x)2 �  (log10 y)2 � �1

4(log10 x)2 � 3(log10 y)2 � �11

e y � e4x

y � e2x � 6
e y � 2x

y � 22x � 12
A
In Exercises 1–22, find all solutions (x, y) of the given systems,
where x and y are real numbers.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. e y � �1x � 6

(x � 3)2 � y2 � 4
e y � �1x � 1

(x � 3)2 � y2 � 4

e y � �1x

(x � 3)2 � y2 � 4
μ

1

x2 �
3

y2 � 14

2

x2 �
1

y2 � 35

μ
2

x2 �
5

y2 � 3

3

x2 �
2

y2 � 1

e xy � 4

y � 4x � 1

e xy � 4

y � 4x
e y � 1 � x2

y � x2 � 1

e x � 2y � 1

y2 � x2 � 3
e 2x2 �  y2 � 17

x2 � 2y2 � 22

e x � 2y � 0

xy � �2
e xy � 1

y � �x2

e3x � 4y � 12

x2 � y � 1 � 0
e x2 � y2 � 25

24y � x2

e y � x � 3

y � 9 � x2e y � 3x

y � x2

EXERCISE SET 11.6



42. Solve for x and y in terms of p, q, a, and b:

(Assume all constants and variables are positive.)
43. The accompanying figure shows the graph of a function

N � N0 ekt. In each case, determine the constants N0 and k
so that the graph passes through
(a) (2, 3) and (8, 24); (b) and (4, 10).

44. [As background for this exercise, first work Exercise 43(a).]
Measurements (begun in 1958, by Charles D. Keeling of the
Scripps Institution of Oceanography) show that the concen-
tration of carbon dioxide in the atmosphere has increased
exponentially over the years 1958–2000. In 1958, the aver-
age carbon dioxide concentration was N � 315 ppm (parts
per million), and in 2000 it was N � 369 ppm.
(a) Use the data to determine the constants k and N0 in the

growth law N � N0 ekt. Hint: The curve N � N0 ekt

passes through the two points (1958, 315) and (2000,
369). Use this to obtain a system of two equations in
two unknowns.

(b) Stephen H. Schneider in his article “The Changing
Climate” [Scientific American, vol. 261 (1989), 
pp. 70–79] estimates that, under certain circumstances,
the concentration of carbon dioxide in the atmosphere
could reach 600 ppm by the year 2080. Use your results
in part (a) to make a projection for the year 2080. Is
your projection higher or lower than Dr. Schneider’s?

45. Solve the following system for x, y, and z in terms of p, q,
and r.

(Assume that p, q, and r are nonzero.) Hint: Denote
x � y � z by w; then add the three equations.

46. (a) Find the points where the line y � �2x � 2 intersects
the parabola y �

(b) On the same set of axes, sketch the line y � �2x � 2
and the parabola y � Be certain that your sketch is
consistent with the results obtained in part (a).

47. If a right triangle has area 180 cm2 and hypotenuse 41 cm,
find the lengths of the two legs.

48. The sum of two numbers is 8, while their product is �128.
What are the two numbers?

1
2 x2.

1
2 x2.

•
x (x � y � z) � p2

y (x � y � z) � q2

z (x � y � z) � r2

t

N=N ¸ekt

N

1 12, 1 2

eq 
ln  x � p 

ln  y

(px)ln  a � (qy)ln  b

27. 28.

29. 30.

31. 32.

Hint: There are two Hint: There are two
solutions. solutions.

33. 34.

Hint: There are two Hint: There are five solu-
solutions. tions; use symmetry to

reduce the amount of work.
35. (a) Let x � � �6. Using this x-value, show that the

equations y � 3x � 1 and y � 1�x yield the same y-value.
(This completes a detail mentioned in Example 3.)

(b) Solve the following system. (You should obtain u � 9
and v � 8, as stated in Example 5.)

36. A sketch shows that the line y � 100x intersects the
parabola y � x2 at the origin. Are there any other inter-
section points? If so, find them. If not, explain why not.

B
37. Solve the following system for x and y:

(Assume that neither a nor b is zero.)
38. Let a, b, and c be constants (with a � 0), and consider the

system

For which value of k (in terms of a, b, and c) will the system
have exactly one solution? What is that solution? What is
the relationship between the solution you’ve found and the
graph of y � ax2 � bx � c?

39. Find all solutions of the system

40. Solve the following system for x, y, and z:

(Assume that p, q, and r are positive constants.)
41. If the diagonal of a rectangle has length d and the perimeter

of the rectangle is 2p, express the lengths of the sides in
terms of d and p.

•
yz � p2

zx � q2

xy � r2

e x3 � y3 � 3473

x � y � 2323

e y � ax2 � bx � c

y � k

eax � by � 2

abxy � 1

e 2u � 3v � �6

3u � 4v � 59

113 21�1

e y � x3

y � (ex � e�x)�2
e y � x3

y � (ex � e�x)�2

e y � 1
3 x

y � ln  x
e y � 1x � 1

y � ln  x

e x2 � 2x � y � 0

y � 3x3 � x2 � 10x
e y � ex�2

y � x2

e y � ln  x

y � 1 � ln (x � 5)
e y � 42x

y � 4x � 3
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54. Solve the following system using the substitution method:

(Begin by solving the first equation for y.)
55. Here is an alternative approach for solving the system in

Exercise 54. Let y � mx, where m is a constant to be deter-
mined. Replace y with mx in both equations of the system
to obtain the following pair of equations:

(1)
(2)

Now divide equation (2) by equation (1). After clearing
fractions and simplifying, you can write the resulting equa-
tion as 2m2 � 7m � 6 � 0. Solve this last equation by fac-
toring. The values of m can then be used in equation (1) 
to determine values for x. In each case the corresponding 
y-values are determined by the equation y � mx.

C
56. Solve the following system for x and y:

(Assume that a and b are positive.)
57. Solve the following system for x and y:

•
x4 � y6

ln  
x

y
�

ln  x

ln  y

μ
1

x2 �
1
xy

�
1

a2

1

y2 �
1
xy

�
1

b2

 x2(�5 � 3m2) � 7
 x2(3m � 4) � 2

e 3xy � 4x2 � 2

�5x2 � 3y2 � 7

49. If a rectangle has perimeter 46 cm and area 60 cm2, find the
length and the width.

50. Find all right triangles for which the perimeter is 24 units
and the area is 24 square units.

51. Solve the following system for x and y using the substitution
method:

(1)
(2)

52. The substitution method in Exercise 51 leads to a quadratic
equation. Here is an alternative approach to solving that
system; this approach leads to linear equations. Multiply
equation (2) by 2 and add the resulting equation to equa-
tion (1). Now take square roots to conclude that x � y � �3.
Next, multiply equation (2) by 2, and subtract the resulting
equation from equation (1). Take square roots to conclude
that x � y � �1. You now have the following four linear
systems, each of which can be solved (with almost no
work) by the addition–subtraction method.

Solve these systems and compare your results with those
obtained in Exercise 51.

53. Solve the following system using the method explained in
Exercise 52.

e x2 � y2 � 7

xy � 3

 e x � y � �3

x � y � 1
  e x � y � �3

x � y � �1

 e x � y � 3

x � y � 1
  e x � y � 3

x � y � �1

e x2 � y2 � 5

xy � 2
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SYSTEMS OF INEQUALITIES
In the first section of this chapter, we solved systems of equations in two unknowns.
Now we will consider systems of inequalities in two unknowns. The techniques we
develop are used in calculus when discussing functions of two variables and in busi-
ness and economics in the study of linear programming.

Let a, b, and c denote real numbers, and assume that a and b are not both zero.
Then all of the following are called linear inequalities:

An ordered pair of numbers (x0, y0) is said to be a solution of a given inequality
(linear or not) provided that we obtain a true statement on substituting x0 and
y0 for x and y, respectively. For instance, (�1, 1) is a solution of the inequality
2x � 3y � 6 � 0, since substitution yields

Like a linear equation in two unknowns, a linear inequality has infinitely many
solutions. For this reason, we often represent the solutions graphically. When we do
this, we say that we are graphing the inequality.

2(�1) � 3(1) � 6 � �5 � 0

 ax � by � c 	 0   ax � by � c 
 0
 ax � by � c � 0   ax � by � c � 0

11.7



For example, let’s graph the inequality y � 2x. First we observe that the coordi-
nates of the points on the line y � 2x do not, by definition, satisfy this inequality. So
it remains to consider points above the line and points below the line. We will in fact
show that the required graph consists of all points that lie below the line. Take any
point P(x0, y0) not on the line y � 2x. Let Q(x0, 2x0) be the point on y � 2x with the
same first coordinate as P. Then, as is indicated in Figure 1, the point P lies below the
line if and only if the y-coordinate of P is less than the y-coordinate of Q. In other
words, (x0, y0) lies below the line if and only if y0 � 2x0. This last statement is equiv-
alent to saying that (x0, y0) satisfies the inequality y � 2x. This shows that the graph
of y � 2x consists of all points below the line y � 2x (see Figure 2). The broken line
in Figure 2 indicates that the points on y � 2x are not part of the required graph. If
the original inequality had been y 	 2x, then we would use a solid line rather than a
broken one, indicating that the line is included in the graph. And if the original 
inequality had been y � 2x, the graph would be the region above the line.

Just as the graph of y � 2x is the region below the line y � 2x, it is true in gen-
eral that the graph of y � f (x) is the region below the graph of the function f. For ex-
ample, Figures 3 and 4 display the graphs of y � x2 and y 
 x2.
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x

y

Figure 4
y 
 x2

x

y

Q(x¸, 2x¸)

P(x¸, y¸)

y=2x

x¸

Figure 1 

x

y

y=2x

Figure 2
The graph of y � 2x.

x

y

Figure 3
y � x2

Example 1 summarizes the technique developed so far for graphing an inequal-
ity. Following this example, we will point out a useful alternative method.

EXAMPLE 1 Graphing an Inequality

Graph the inequality 4x � 3y 	 12.

SOLUTION The graph will include the line 4x � 3y � 12 and either the region above the line or
the region below it. To decide which region, we solve the inequality for y:

Multiplying or dividing by a negative 

number reverses an inequality.

This last inequality tells us that we want the region above the line, as well as the line
itself. Figure 5 displays the required graph.

 y 

4

3
 x � 4

 �3y 	 �4x � 12
 4x � 3y 	 12

3

_4

x

y

Figure 5
The graph of 4x � 3y 	 12.
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There is another method that we can use in Example 1 to determine which side
of the line we want. This method involves a test point. We pick any convenient point
that is not on the line 4x � 3y � 12. Then we test to see whether this point satisfies
the given inequality. For example, let’s pick the point (0, 0) then

So the point (0, 0) satisfies the given inequality.
We conclude from this that the required side of the line includes the point (0, 0).

In agreement with Figure 5, we see this is the region above the line.
Next we discuss systems of inequalities in two unknowns. As with systems of

equations, a solution of a system of inequalities is an ordered pair (x0, y0) that
satisfies all of the inequalities in the system. As a first example, let’s graph the points
that satisfy the following nonlinear system.

By writing the first inequality as y 
 x2, we see that it describes the set of points on
or above the parabola y � x2. For the second inequality we must decide whether it
describes the points inside or outside the circle x2 � y2 � 1. One way to do this is to
choose (0, 0) as a test point. Substituting the values x � 0 and y � 0 in the inequal-
ity x2 � y2 � 1 yields the true statement 02 � 02 � 1. Since (0, 0) lies within the cir-
cle and satisfies the inequality, we conclude that the inequality x2 � y2 � 1 describes
the set of all points within the circle. Now we put our information together. We wish
to graph the points that lie on or above the parabola y � x2 but within the circle
x2 � y2 � 1. This is the shaded region shown in Figure 6.

e y � x2 
 0

x2 � y2 � 1

4x � 3y � 4(0) � 3(0) � 0 	 12

x

y

y=≈

≈+¥=1

Figure 6 

EXAMPLE 2 Graphing a System of Inequalities

Graph the system

μ
�x � 3y 	 12

x � y 	 8 
x 
 0 
y 
 0 

SOLUTION Solving the first inequality for y, we have

Thus the first inequality is satisfied by the points on or below the line �x � 3y � 12.
Similarly, by solving the second inequality for y, we see that it describes the set of
points on or below the line x � y � 8. The third inequality, x 
 0, describes the points
on or to the right of the y-axis. Similarly, the fourth inequality, y 
 0, describes the
points on or above the x-axis. We summarize these statements in Figure 7(a). The
arrows indicate which side of each line we wish to consider.

Finally, Figure 7(b) shows the graph of the given system. The coordinates of each
point in the shaded region, including its boundary, satisfy all four of the given

 y 	
1

3
 x � 4

 3y 	 x � 12
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x

y

(a)

_x+3y=12

x+
y=

8

x

y

(b)

(0, 0)

(0, 4)

(3, 5)

(8, 0)

Figure 7 

Convex set

(a)

Not a convex set

(b)

Figure 8 

x

y

The first quadrant region
between the curve y=1/x
and the axes is not bounded.

Figure 9 

inequalities. The coordinates (3, 5) in Figure 7(b) were found by solving the system
of linear equations �x � 3y � 12 and x � y � 8. (You’ll need to carry out this work
as part of Exercise 25.)

We can use Figure 7(b) to introduce some terminology that is useful in describ-
ing sets of points in the plane. A vertex of a region is a corner, or point, where two
adjacent bounding sides meet. Thus the vertices of the shaded region in Figure 7(b)
are the four points (0, 0), (8, 0), (3, 5), and (0, 4). The shaded region in Figure 7(b) is
convex. This means that, given any two points in that region, the straight line seg-
ment joining these two points lies wholly within the region. Figure 8(a) displays
another example of a convex set, while Figure 8(b) shows a set that is not convex.
The shaded region in Figure 8(b) is also an example of a bounded region. By this we
mean that the region can be wholly contained within some (sufficiently large) circle.
Perhaps the simplest example of a region that is not bounded is the entire x-y plane
itself. Figure 9 shows another example of an unbounded region.

In Exercises 3–16, graph the given inequalities.

3. 2x � 3y � 6 4. 2x � 3y � 6
5. 2x � 3y 
 6 6. 2x � 3y 	 6
7. x � y � 0 8.
9. x 
 1 10. y � 0

11. x � 0 12. y 	 1x

y 	 1
2 x � 1

A
In Exercises 1 and 2, decide whether or not the ordered pairs
are solutions of the given inequality.

1. 4x � 6y � 3 
 0 2. 5x � 2y � 1
(a) (1, 2) (a) (�1, 3)
(b) (b) (0, 0)10, 12 2

EXERCISE SET 11.7



B
35. Graph the following system of inequalities and specify the

vertices.

A formula such as

(1)

defines a function of two variables. The inputs for such a func-
tion are ordered pairs (x, y) of real numbers. For example, us-
ing the ordered pair (3, 5) as an input, we have

So the input (3, 5) yields an output of We define the domain
for this function just as we did in Chapter 3: The domain is the
set of all inputs that yield real-number outputs. For instance, the
ordered pair (1, 4) is not in the domain of the function we have
been discussing, because (as you should check for yourself)
f(1, 4) � which is not a real number. We can determine
the domain of the function in equation (1) by requiring that
the quantity under the radical sign be nonnegative. Thus we
require that 2x � y � 1 
 0 and, consequently, y 	 2x � 1.
(Check this.) The following figure shows the graph of this in-
equality; the domain of our function is the set of ordered pairs
making up the graph. In Exercises 36–41, follow a similar
procedure and sketch the domain of the given function.

36. f (x, y) �

37. f (x, y) �

38. g(x, y) �

39. g(x, y) � ln(x2 � y)
40. h(x, y) � ln(xy)

41. h(x, y) � 1x � 1y

225 � x2 � y2

2x2 � y2 � 1

1x � y � 2

y

2

1

1 2

y=2x+1

Domain of

x

f(x, y ) 2x-y+1œ„„„„„„„„=

1�1 ,

12 .

f(3, 5) � 12(3) � 5 � 1 � 12

f(x, y) � 12x � y � 1

•
x 
 0

y 
 ex

y 	 e�x � 1

13. y � x3 � 1 14. y 	 x � 2
15. x2 � y2 
 25 16. y 
 ex � 1

In Exercises 17–22, graph the systems of inequalities.

17. 18.

19. 20.

21. 22.

In Exercises 23–34, graph the systems of linear inequalities.
In each case specify the vertices. Is the region convex? Is the
region bounded?

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. g 

x 
 0

y 
 0

3x � y � 1 
 0

0 	 x � y � 3

y 	 5

x 	 1
3 (17 � y)

x 	 1
2 (y � 8)

f 

x 
 0

y 
 0

20 � x 
 0

30 � y 
 0

x � y 	 40

x � y 
 35

e2x � 3y 
 6 
2x � 3y 	 12

•
5x � 6y � 30

x � 0

y � 0

e 5x � 6y � 30

x � 0 
e 5x � 6y � 30

y � 0

e 

0 	 2x � y � 3

x � 3y 	 23

5x � y 	 45

x 
 0

y 
 0

•
0 	 2x � y � 3

x � 3y 	 23

5x � y 	 45

e y 
 2x

y 
 �x � 6
μ

�x � 3y 	 12

x � y 	 8

x 
 0

y 
 0

μ
y 
 x � 5

y 
 �2x � 14

x 
 0

y 
 0

μ
y 	 x � 5

y 	 �2x � 14

x 
 0

y 
 0

e y � 2x

y � 1
2 x

•
x 
 0

y 
 0

y 	 1 � x2

μ
x 
 0

y 
 0

y � 1x

x 	 4

e y 
 1

y 	 0 x 0

e y � x

x2 � y2 � 1
e y 	 x2

x2 � y2 	 1

00
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CHAPTER 11 Summary of Principal Terms

Page
Terms Reference Comments

1. Linear equation in two 757 A linear equation in two variables is an equation of the form  ax � by � c, where
variables a, b, and c are constants, with both a and b not both zero, and x and y are variables

or unknowns. Similarly, a linear equation in three variables is an equation of the
form ax � by � cz � d, with a, b, and c not all zero

2. Solution of a linear 757 A solution of the linear equation ax � by � c is an ordered pair of numbers
equation (x0, y0) such that ax0 � by0 � c. Similarly, a solution of the linear equation

ax � by � cz � d is an ordered triple of numbers (x0, y0, z0) such that
ax0 � by0 � cz0 � d.

3. Consistent system; 758 A system of equations is consistent if it has at least one solution; otherwise,
inconsistent system the system is inconsistent. See Figures 2, 3, and 4 in Section 11.1 for a 

geometric interpretation of these terms.

4. Equivalent systems 760 Two systems of equations are equivalent if they have the same solution set.

5. Upper-triangular form 769 A system of linear equations in x, y, and z is said to be in upper-triangular
(three variables) form if x appears in no equation after the first and y appears in no equation

after the second. This definition can be extended to include linear systems
with any number of unknowns. See Table 1 in Section 11.2 for examples 
of systems that are in upper-triangular form. When a system is in upper-
triangular form, it is a simple matter to obtain the solutions; see, for instance,
Examples 1 and 2 in Section 11.2.

6. Gaussian elimination 771–772, This is a technique for converting a system of equations or its augmented 
785–786 matrix to upper-triangular form. See Examples 4 and 5 in Section 11.2 and

Example 3 in Section 11.3.

7. Elementary operations, 771–773, These are operations that can be performed on an equation in a system 
elementary row operations 785 without altering the solution set. See the boxes on pages 772, 773, 

and 785 for a list of these operations and notations.

8. Matrix 782 A matrix is a rectangular array of numbers, enclosed in parentheses or brackets.
The numbers constituting the rectangular array are called the entries or the
elements in the matrix. The size or dimension of a matrix is expressed by
specifying the number of rows and the number of columns, in that order. For
examples of this terminology, see Example 1 in Section 11.3.

9. Matrix equality 786 Two matrices are said to be equal provided that they are the same size and
their corresponding entries are equal.

10. Matrix addition and 787–788 To add two matrices of the same size, add the corresponding entries.
scalar multiplication To multiply a matrix by a scalar, multiply each entry by that scalar.

11. Matrix multiplication 790 Let A and B be two matrices. The matrix product AB is defined only when the
number of columns in A is the same as the number of rows in B. In this case the
matrix AB will have as many rows as A and as many columns as B. The entry in
the ith row and jth column of AB is the number formed as follows: Multiply the
corresponding entries in the ith row of A and the jth column of B, then add the
results.

CHAPTER 11 Summary



12. Square matrix 795 A matrix that has the same number of rows and columns is called a
square matrix. An n � n square matrix is said to be an nth-order square
matrix.

13. Multiplicative identity 795, 798 For the set of n � n matrices the multiplicative identity matrix In is 
matrix the n � n matrix with ones down the main diagonal (upper left corner to

bottom right corner) and zeros everywhere else. For example,

For every n � n matrix A we have AIn � A and InA � A.

14. Inverse matrix 795, 799 Given an n � n matrix A, the inverse matrix (if it exists) is denoted by
A�1. The defining equations for A�1 are AA�1 � I and A�1A � I. Here, 
I stands for the multiplicative identity matrix that is the same size as A. 
If a square matrix has an inverse, it is said to be invertible; if there is no
inverse, then the matrix is noninvertible.

15. Minor 810, 811 The minor of an entry b in a determinant is the determinant formed by
suppressing the entries in the row and column in which b appears.

16. Cofactor 810, 811 If an entry b appears in the ith row and the jth column of a determinant,
then the cofactor of b is computed by multiplying the minor of b by the
number (�1)i�j.

17. Determinant 809, 811 The value of the 2 � 2 determinant is defined to be ad � bc.

For larger determinants the value can be found as follows. Select any
row or column and multiply each entry in that row or column by its
cofactor, then add the results. The resulting sum is the value of the
determinant. It can be shown that this value is independent of the
particular row or column that is chosen.

18. Cramer’s rule 816 This rule yields the solutions of certain systems of linear equations
in terms of determinants. For a statement of the rule, see page 816.
Example 5 on page 817 shows how the rule is applied. The proof of
Cramer’s rule begins on page 817.

19. Linear inequality in two 829 A linear inequality in two variables is any one of the four types 
variables of inequalities that result when the equal sign in the equation

ax � by � c is replaced by one of the four symbols �, 	, �, 
. For any
of these linear inequalities a solution is an ordered pair of numbers 
(x0, y0) with the property that a true statement is obtained when x and y
(in the inequality) are replaced by x0 and y0, respectively.

20. Vertex 832 A vertex of a region in the x-y plane is a corner or point where two
adjacent bounding sides meet.

21. Convex region 832 A region in the x-y plane is convex if, given any two points in the region,
the line segment joining those points lies wholly within the region.

22. Bounded region 832 A region in the x-y plane is bounded if it can be completely contained
within some (sufficiently large) circle.

2 a b

c d
2

I2 � a1 0

0 1
b  and  I3 � °

1 0 0

0 1 0

0 0 1

¢
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On your own or with a group of classmates, complete the fol-
lowing exercise. Then (strictly on your own) write out a detailed
solution. This will involve a combination of English composition
and algebra (much like the exposition in this textbook). At each
stage, be sure to tell the reader (in complete sentences) where
you are headed and why each of the main steps is necessary.

Three integers are said to form a Pythagorean triple if the
square of the largest is equal to the sum of the squares of the
other two. For example, 3, 4, and 5 form a Pythagorean triple

because 32 � 42 � 52. Do you know any other Pythagorean triples?
This exercise shows how to develop expressions for generating
an infinite number of Pythagorean triples.

(a) Refer to the figure at left. Suppose that the coordinates of
the point P are (a�c, b�c), where a, b, and c are integers.
Explain why a, b, and c form a Pythagorean triple.

(b) Let m denote the slope of the line passing through P and 
(0, �1). Using the methods of Section 11.2, show that the
coordinates of the point P are

(c) Use the results in parts (a) and (b) to explain why the three
numbers 2m, m2 � 1, and m2 � 1 form a Pythagorean triple.
Then complete the following table to obtain examples of
Pythagorean triples.

m 2m m2 � 1 m2 � 1

2
4
6
8

a 2m

m2 � 1
, 

m2 � 1

m2 � 1
b

Writing Mathematics

x

y

≈+¥=1

P

CHAPTER 11 Review Exercises

In Exercises 1–31, solve each system of equations. If there are
no solutions in a particular case, say so. In cases in which there
are literal (rather than numerical) coefficients, specify any re-
strictions that your solutions impose on those coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. e9x � 15y � 1 � 0

6x � 10y � 1 � 0
e3x �  5y � 1 � 0

9x � 10y � 8 � 0

e 3x � 14y � 1 � 0

�6x � 28y � 3 � 0
d 

2x �
y

2
� �8

x

3
�

y

8
� �1

d 

x

2
�

y

3
� 9

x

5
�

y

2
� �4

e7x � 2y � 9

4x � 5y � 63

e3x � 2y � 6

5x � 4y � 4
e2x �  y � 2

x � 2y � 7

e x � y � 1

x � y � 5
e x � y � �2

x � y � 8

11. 12.

13. 14.

15.

16.

17.

18. e3ax � 2by � 3a2 � ab � 2b2

3bx � 2ay � 2a2 � 5ab � 3b2

e2x � y � 3a2 � 1

2y � x � 2 � a2

e ax � by � 1 � 0

(a � 1)x � by � 2 � 0

eax � (1 � a)y � 1

(1 � a)x � y � 0

d 

2
x

�
15
y

� �9

1
x

�
10
y

� �2

d 

1
x

�
1
y

� �1

2
x

�
5
y

� �14

e 0.1x � 0.2y � �5

�0.2x � 0.5y � 13
d 

2

3
 x � � 

1

2
 y � 12

  

x

2
� y � 2



39. Determine constants a and b so that the parabola
y � ax2 � bx � 1 passes through the points (�2, 5) and (2, 9).

40. Find two numbers whose sum and difference are 52 and 10,
respectively.

41. This exercise appears in Plane and Solid Analytic Geometry,
by W. F. Osgood and W. G. Graustein (New York:
Macmillan, 1920): Let P be any point (a, a) of the line
x � y � 0, other than the origin. Through P draw two lines,
of arbitrary slopes m1 and m2, intersecting the x-axis in A1

and A2, and the y-axis in B1 and B2, respectively. Prove that
the lines and will, in general, meet on the line
x � y � 0.

42. Determine constants h, k, and r so that the circle
(x � h)2 � (y � k)2 � r2 passes through the three points 
(0, 0), (0, 1) and (1, 0).

43. The vertices of a triangle are the points of intersection of the
lines y � x � 1, y � �x � 2, and y � 2x � 3. Find the equation
of the circle passing through these three intersection points.

44. The vertices of triangle ABC are A(0, 0), B(3, 0), and C(0, 4).
(a) Find the center and the radius of the circle that passes

though A, B, and C. This circle is called the circumcircle
for triangle ABC.

(b) The figure below shows the inscribed circle for triangle
ABC; this is the circle that is tangent to all three sides of
the triangle. Find the center and the radius of this circle
using the following two facts.
(i) The center of the inscribed circle is the common in-

tersection point of the three angle bisectors of the
triangle.

(ii) The line that bisects angle B has slope �1�2.

(c) Verify the following statement for triangle ABC. (The
statement actually holds for any triangle; the result is
known as Euler’s theorem.) Let R and r denote the radii
of the circles in parts (a) and (b), respectively. Then the
distance d between the centers of the circles satisfies the
equation

(d) Verify the following statement for triangle ABC (which
in fact holds for any triangle): The area of triangle ABC
is equal to one-half the product of the perimeter and the
radius of the inscribed circle.

d2 � R2 � 2rR

x

y

C(0, 4)

B(3, 0)A

A2B1A1B2

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31.

In Exercises 32–36, evaluate each of the determinants.

32. 33.

34. 35.

36.

37. Show that � 3abc � a3 � b3 � c3.

38. Show that � x3.3 1 1 1

1 1 � x 1

1 1 1 � x2

3
3 a b c

b c a

c a b

3
4 1 a b c

0 2 d e

0 0 3 f

0 0 0 4

4
4 1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

44 0 2 4 0

4 0 6 2

0 0 1 1

14 7 1 0

4
3 2 6 4

6 18 24

15 5 �10

32 16 1

2 12
2

μ
x �  y �  z �  w � 8

3x � 3y �  z �  w � 20

4x �  y �  z � 2w � 18

2x � 5y � 5z � 5w � 8

•
ax � by � 2az � 4ab � 2b2

x �  y �  z � 4a � 2b

bx � ay � 4az � 5a2 � b2

•
9x �  y �  z � 0

�3x �  y �  z � 0

3x � 5y � 3z � 0

e3x � 2y � 17z � 1

x � 2y �  3z � 3
e 4x � 2y � 3z � 15

2x �  y � 3z � 3

•
x �  8y �  z � 1

5x � 16y � 3z � 3

4x �  4y � 4z � �4

•
4x � 4y �  z � 4

2x � 3y � 3z � �8

x �  y �  z � �3

•
x � 4y � 2z � 9

2x �  y �  z � 3

3x � 2y � 3z � �18

•
x � y �  z � 9

x � y �  z � �5

2x � y � 2z � �1

cx � y �
a � b

a � b

x � y � 1
e px � qy � q2

qx � py � p2

d 

2b

x
�

3
y

� 7ab

4a

x
�

5a

by
� 3a2

e 5x �  y � 4a2 � 6b2

2x � 3y � 5a2 � b2
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solve the systems in which D 0. If D � 0, solve the system
using Gaussian elimination or matrix methods.

67. 68.

69. 70.

71.

72.

73.

74.

In Exercises 75–86, find all solutions (x, y) for each system,
where x and y are real numbers.

75. 76.

77. 78.

79. 80.

81. 82.

83.

84.

85.

Hint: Let u � x � 3 and v � y � 1.

e 2(x � 3)2 �  (y � 1)2 � �1

�3(x � 3)2 � 2(y � 1)2 � 6

μ
x2

a2 �
y2

b2 � 1

x2

b2 �
y2

a2 � 1  (a � b � 0)

e x2 � 2xy � 3y2 � 68

3x2 �  xy �  y2 � 18

d 

x

11
�

y

12
� 2

xy

132
� 1

e x2 � y2 � 1

y � 1x

e2x � 3y � 6

y � 1x � 1
e x2 � y2 � 9

x2 � y2 � 16

e x3 � y � 0

xy � 16 � 0
e y � 9 � x2

y � x2 � 9

e y � 4x

y � x3e y � 6x

y � x2

μ
x � y � z � (a � b)2

bx

a
�

ay

b
� z � 0   

x � y � z � (a � b)2

μ
2x �  y �  z � 3w � 15

x � 2y   � 2w � 12

3y � 3z � 4w � 12

�4x �  y � 4z    � �11

μ
x �  y �  z �  w � 5

x �  y �  z �  w � 3

2x � 3y � 3z � 2w � 21

  4z � 3w � �7

•
3x � 2y � 2z � 1

2x � 3y �  z � �2

8x � 7y � 5z � 0

•
3x � 2y � 2z � 0

2x � 3y �  z � 0

8x � 7y � 5z � 0

•
x � 2y � 3z � �1

4x � 5y � 6z � 2

7x � 8y � 9z � �3

•
 x � 2y �  z ��1

2x � 3y � 3z � 3

2x � 3y �  z � 1

•
2x �  y �  z � 1

3x � 2y � 2z � 0

x � 5y � 3z � �2

�(e) Verify the following statement for triangle ABC (which
in fact holds for any triangle): The sum of the recipro-
cals of the lengths of the altitudes is equal to the recip-
rocal of the radius of the inscribed circle.

In Exercises 45–61, the matrices A, B, C, and D are defined as
follows:

In each exercise, carry out the indicated matrix operations if
they are defined. If an operation is not defined, say so.

45. 2A � 2B 46. 2(A � B) 47. 4B
48. B � 4 49. AB 50. BA
51. AB � BA 52. B � D 53. B � C
54. A(B � C) 55. AB � AC 56. (B � C)A
57. BA � CA 58. (A � B) � C 59. A � (B � C)
60. (AB)C 61. A(BC)
62. For a square matrix A, the notation A2 means AA. 

Similarly, A3 means AAA. If A � verify that

63. Let A be the matrix Compute A2 and A3.

For Exercises 64 and 65, in each case compute the inverse of
the matrix in part (a), and then use that inverse to solve the sys-
tem of equations in part (b).

64. (a) (b)

65. (a)

(b)

66. Find the inverse of the matrix .

In Exercises 67–74, compute D, Dx, Dy, Dz (and Dw where ap-
propriate) for each system of equations. Use Cramer’s rule to

±
1 �1 0 �3

5 �2 3 �11

2 3 2 �3

4 5 5 �5

≤

•
x � 2y �  3z � �2

2x � 5y � 10z � �3

�x � 2y �  2z � 6

°
1 �2 3

2 �5 10

�1 2 �2

¢

e 5x �  4y � 2

14x � 11y � 5
a 5 �4

14 �11
b

°
0 0 0

a 0 0

b c 0

¢ .

A2 � a1 2

0 1
b  and  A3 � a1 3

0 1
b

a1 1

0 1
b ,

 C � a�1 0

0 �1
b   D � °

3 �1

4 1

�5 9

¢

 A � a3 �2

1 5
b   B � a2 1

1 8
b



of the first, one-fifth of the second, and one-sixth of the
third, equal to 38.

Answer: 24, 60, 120

90. Required two numbers, whose product may be 105, and
whose squares [when added] may together make 274.

91. Required two numbers, whose product may be m, and the
sum of the squares n (n 
 2m).

92. Required two numbers such that their sum, their product,
and the difference of their squares may all be equal.

In Exercises 93–96, graph each system of inequalities and 
specify whether the region is convex or bounded.

93. 94.

95. 96. d 

y � 0 x 0 	 0

x � 1 
 0

x � 1 	 0

y � 1 
 0

μ
y � 1x 	 0

y 
 0

x 
 1

x � 4 	 0

•
x2 � y2 	 1

x 
 0

y 
 0

e 

x2 � y2 
 1

y � 4x 	 0

y � x 
 0

x 
 0

y 
 0

86.

Exercises 87–92 appear (in German) in an algebra text by
Leonhard Euler, first published in 1770. The English versions
given here are taken from the translated version, Elements of
Algebra, 5th ed., by Leonhard Euler (London: Longman, Orme,
and Co., 1840). [This, in turn, has been reprinted by Springer-
Verlag (New York, 1984).]

87. Required two numbers, whose sum may be s, and their pro-
portion as a to b.

Answer: and 

88. The sum 2a, and the sum of the squares 2b, of two numbers
being given; to find the numbers.

Answer: a � and a �

89. To find three numbers, so that [the sum of] one-half of the
first, one-third of the second, and one-quarter of the third,
shall be equal to 62; one-third of the first, one-quarter of the
second, and one-fifth of the third, equal to 47; and one-quarter

2b � a22b � a2

bs

a � b

as

a � b

e x4 � y � 1

y � 3x2 � 1 � 0

Test 839

CHAPTER 11 Test

1. Determine all solutions of the system

2. Find all solutions of the system

3. (a) Find all solutions of the following system using
Gaussian elimination:

(b) Compute D, Dx, Dy, and Dz for the system in part (a).
Then check your answer in part (a) using Cramer’s rule.

4. Suppose that the matrices A and B are defined as follows:

(a) Compute 2A � B. (b) Compute BA.
5. Assume that the supply and the demand functions for a com-

modity are given by q � 24p � 180 and q � �30p � 1314,
respectively, where p is in dollars. Find the equilibrium price
and the corresponding equilibrium quantity.

A � a 1 �3

2 �1
b   B � a0 4

1 3
b

•
x � 4y �  z � 0

3x �  y �  z � �1

4x � 4y � 5z � �7

e x � 2y � 13

3x � 5y � �16

e3x � 4y � 12

y � x2 � 2x � 3

6. Find all solutions of the system

7. Specify the coefficient matrix for the system

Also specify the augmented matrix for this system.
8. Use matrix methods to find all solutions of the system dis-

played in the previous problem.
9. A student is taking four courses, Math, English, Chemistry,

and Economics, and spends 40 hours per week studying.
The following facts are known about how the student allo-
cates study time each week. The combined amount of study
time for English and Chemistry is the same as that for Math
and Economics. The amount of time spent on Math is one-
quarter of the amount spent on the other three courses com-
bined. Finally, the combined amount of time for English and
Economics is two-thirds as much as that for Math and
Chemistry.

•
x �  y �  z � �1

2x �  y � 2z � 11

x � 2y �  z � 10

μ
1

2x
�

1

3y
� 10

� 

5
x

�  
4
y

� �4 
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(a) Let w, x, y, and z denote the number of hours per week
that the student studies Math, English, Chemistry, and
Economics, respectively. Specify a system of four linear
equations involving these four unknowns. Write the sys-
tem in standard form.

(b) Write the coefficient matrix of the system in part (a).
(c) Use a graphing utility to find the inverse of the

coefficient matrix. Use matrix methods to solve the sys-
tem and thereby determine how many hours per week
the student studies each subject.

10. Consider the determinant

(a) What is the minor of the entry in the third row, second
column?

(b) What is the cofactor of the entry in the third row, second
column?

11. Evaluate the determinant

12. Find all solutions of the system

13. Find the solutions of the system

e A � 2B � 3C � 1

2A �  B �  C � 2

e x2 � y2 � 15

xy � 5

3 4 �5 0

�8 10 7

16 20 14

3

3 2 3 �1

0 1 4

5 �2 6

3

14. (a) Determine the inverse of the following matrix:

(b) Use the inverse matrix determined in part (a) to solve
the following system:

15. Graph the inequality 5x � 6y 
 30.
16. Determine constants P and Q so that the parabola

y � Px2 � Qx � 5 passes through the two points (�2, �1)
and (�1, �2).

17. Graph the inequality (x � 2)2 � y2 � 1. Is the solution set
bounded? Is it convex?

18. Graph the following system of inequalities and specify the
vertices:

19. Given that the inverse of the matrix 

is the matrix

solve the following system of equations:

•
5 ln  x     � 2 ln  z � 3

2 ln  x � 2 ln  y �  ln  z � �1

�3 ln  x �   ln  y �  ln  z � 2

°
�3 2 �4

�1 1 �1

8 �5 10

¢ ,°
5 0 2

2 2 1

�3 1 �1

¢

e 

x 
 0

y 
 0

2y � x 	 14

x � 3y 	 36

9x � y 	 99

•
10u � 2v � 5w � �1

6u �  v � 4w � �2

u   �  w � 3

°
10 �2 5

6 �1 4

1 0 1

¢
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12.1 The Basic Equations

12.2 The Parabola

12.3 Tangents to Parabolas
(Optional Section)

12.4 The Ellipse

12.5 The Hyperbola

12.6 The Focus–Directrix
Property of Conics

12.7 The Conics in Polar
Coordinates

12.8 Rotation of Axes

The Greeks knew the properties of the curves given by
cutting a cone with a plane—the ellipse, the parabola
and hyperbola. Kepler discovered by analysis of
astronomical observations, and Newton proved math-
ematically . . . that the planets move in ellipses. The geometry of Ancient Greece thus
became the cornerstone of modern astronomy. —John Lighton Synge (1897–1987)

In this chapter we study analytic geometry, with an emphasis on the conic sections.
The conic sections (or conics) are the curves formed when planes intersect the surface
of a right circular cone. As is indicated in the accompanying figure, these curves are
the circle, the ellipse, the hyperbola, and the parabola. Although this is the context in
which these curves were first identified by the ancient Greeks, in this chapter we’ll
follow a more algebraic approach involving the familiar x-y coordinate system. It
can be shown that the two approaches are equivalent. If, after studying this chapter,
you want to see the details, do a search on the World Wide Web for “Dandelin spheres.”
(Germinal Dandelin was a nineteenth-century Belgian/French mathematician who
found a relatively simple way to see the equivalence of the two approaches.)

If not the first, certainly one of the first to discover and study the conics was the
Greek mathematician Menaechmus (ca. 380–320 B.C.), who was a tutor of Alexander
the Great. However, until the seventeenth century the conic sections were studied only
as a portion of pure (as opposed to applied) mathematics. Then, in the seventeenth
century, it was discovered that the conic sections were crucial in expressing some of
the most important laws of nature. This is essentially the observation made in the
opening quotation by the physicist J. L. Synge.

In this chapter you’ll see examples where conics are used in:

• The design of a radio telescope (Example 6 in Section 12.2)
• The design of an arch (Exercise 41 in Section 12.2)
• Analyzing the orbit of a comet or planet (Example 7 in Section 12.4)
• Determining a location on earth without recourse to a global positioning system

(online Project for Section 12.5)

CHAPTER

12 The Conic Sections

12.1 THE BASIC EQUATIONS
As background for the work in this chapter, you need to be familiar with the follow-
ing results from Chapter 1.

1. The distance formula:
2. The equation for a circle: (x � h)2 � (y � k)2 � r2

d � 2(x2 � x1)
2 � (y2 � y1)

2

Circle

Ellipse

Parabola

Hyperbola

Circle

Line L

Image Copyright Jonathan Larsen, 2010. Used under 
license from Shutterstock.com



3. The slope of a line:

4. The point–slope formula: y � y1 � m(x � x1)
5. The slope–intercept formula: y � mx � b
6. The condition for two nonvertical lines to be parallel: m1 � m2

7. The condition for two nonvertical lines to be perpendicular: m1m2 � �1

8. The midpoint formula:

In this section we are going to develop two additional results to supplement those
we just listed. The first of these results concerns the slope of a line. We begin by 
defining the angle of inclination (or simply the inclination) of a line to be the
angle u measured counterclockwise from the positive side of the x-axis to the line;
see Figure 1. If u denotes the angle of inclination, we always have 0� � u � 180� if
u is measured in degrees and 0 � u � p if u is in radians. (Notice that when u � 0�,
the line is horizontal.)

As you might suspect, there is a simple relationship between the angle of incli-
nation and the slope of a line. We state this relationship in the following box.

(x0, y0) � a x1 � x2

2
, 

y1 � y2

2
b

m �
y2 � y1

x2 � x1

842 CHAPTER 12 The Conic Sections

PROPERTY SUMMARY Slope and the Angle of Inclination

A line’s slope m and angle of inclination u are related by the equation

m � tan u

The formula m � tan u provides a useful connection between elementary coordi-
nate geometry and trigonometry. To derive this formula, we can work with the
line y � mx rather than y � mx � b (because these lines are parallel and therefore
have equal angles of inclination). As is indicated in Figure 2, we let P denote
the point where the line y � mx intersects the unit circle. Then the coordinates of P
are (cos u, sin u), and we can compute the slope m using the point P and the origin:

as required.
Note: cos u � 0. Why?

m �
y2 � y1

x2 � x1
�

sin u � 0

cos u � 0
�

sin u

cos u
� tan u

EXAMPLE 1 Calculating an Angle of Inclination

Determine the acute angle u between the x-axis and the line y � 2x � 1; see Figure 3.
Express the answer in degrees, rounded to one decimal place.

SOLUTION From the equation y � 2x � 1 we read directly that m � 2. Then, since tan u� m, we
conclude that

and therefore

using a calculator set in the degree mode u � 63.4°
 u � tan�1 2

tan u � 2

y

x
¨

Figure 1
The angle of inclination.

x

y

P
¨

y=mx

≈+¥=1

Figure 2



x
¨

y=2x-1

y

Figure 3

In Section 1.4 we reviewed the formula for the distance between two points. Now
we consider the distance d from a point to a line. As is indicated in Figure 4, distance
in this context means the shortest distance, which is the perpendicular distance. In the
box that follows, we show two equivalent forms for this formula. Although the second
form is more widely known, the first is just as useful and somewhat simpler to derive.

12.1 The Basic Equations 843

PROPERTY SUMMARY Distance from a Point to a Line

1. The distance d from the point (x0, y0) to the line y � mx � b is given by

2. The distance d from the point (x0, y0) to the line Ax � By � C � 0 is given by

d �
0Ax0 � By0 � C 0
2A2 � B2

d �
0mx0 � b � y0 0
21 � m2

x

y

A(x¸ , y¸)

C

DB

d

E F

G

m

1

y=mx+b

Figure 5

x

d

(x¸, y¸)

y=mx+b
or

Ax+By+C=0

y

Figure 4

We will derive the first formula in the box with the aid of Figure 5. (Each dashed
line in the figure is parallel to the x- or y-axis.)

In Figure 5, ^ABD is similar to ^EGF. (Exercise 44 asks you to verify this.) So
we have

corresponding sides of similar triangles are proportional
AB

EG
�

AD

EF



x

y=_2x+7

y

(_3, 1)

Figure 6

and therefore

using the Pythagorean theorem and the fact that EF � 1

or

(1)

Next, from Figure 5 we have

Substituting into equation (1) yields

For the general case (in which the point and line may not be situated as in Figure 5)
we need to use the absolute value of the quantity in the numerator, to assure that AB
and d are nonnegative. Why? We then have

as required.

d �
0 y0 � (mx0 � b) 0
21 � m2

�
0mx0 � b � y0 0
21 � m2

d �
y0 � (mx0 � b)

21 � m2

 � y0 � (mx0 � b)
 AB � AC � BC

d �
AB

21 � m2

AB

21 � m2
�

d

1
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EXAMPLE 2 The Distance from a Point to a Line

(a) Find the distance from the point (�3, 1) to the line y � �2x � 7; see Figure 6.
(b) Find the equation of the circle that has center (�3, 1) and that is tangent to the

line y � �2x � 7.

SOLUTION (a) To find the distance from the point (�3, 1) to the line y � �2x � 7, we use the
formula d � mx0 � b � y0 � with x0 � �3, y0 � 1, m � �2, and 
b � 7. This yields

(b) The equation of a circle with center (h, k) and radius of length r is 
(x � h)2 � (y � k)2 � r2. We are given here that (h, k) is (�3, 1). Furthermore,
the distance determined in part (a) is the length of the radius. (A theorem from
geometry tells us that the radius drawn to the point of tangency is perpendicular
to the tangent.) Thus the equation of the required circle is

or

(x � 3)2 � (y � 1)2 �
144

5

[x � (�3)]2 � (y � 1)2 � a 1215

5
b 2

d �
0 (�2)(�3) � 7 � 1 0
21 � (�2)2

�
12

15
�

1215

5
 units

21 � m200



x

y

A(2, 0)

C(1, 8)

B(8, 6)
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EXAMPLE 3 Finding the Area of a Triangle Using the Formula for the Distance 
from a Point to a Line

Find the area of triangle ABC in Figure 7.

SOLUTION The area of any triangle is one-half the product of the base and the height. Let’s view
as the base. Then, using the formula for the distance between two points, we have

With as the base, the height of the triangle is the perpendicular distance from C
to To compute that distance, we first need the equation of the line through A and
B. The slope of the line is

Then, using the point (2, 0) and the slope m � 1, we have

and therefore

We can now compute the height of the triangle by finding the perpendicular distance
from C(1, 8) to y � x � 2:

Now we’re ready to compute the area of the triangle, since we know the base and the
height. We have

 � 27 square units

 area �
1

2
 1612 2  9

12

 �
01(1) � (�2) � 8 0
21 � 12

�
0�9 0
12

�
9

12
 units

 height �
0mx0 � b � y0 0
21 � m2

y � x � 2

 y � 0 � 1(x � 2)
 y � y1 � m(x � x1)

m �
y2 � y1

x2 � x1
�

6 � 0

8 � 2
�

6

6
� 1

AB.
AB

 � 136 � 36 � 12 	 36 � 612 units
 � 2(8 � 2)2 � (6 � 0)2

 AB � 2(x2 � x1)
2 � (y2 � y1)

2

AB

Figure 7
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SOLUTION This is a problem in which the direct approach is not the simplest. The direct approach
would be first to determine the coordinates of the point of tangency. Then, using those co-
ordinates along with (8, 1), the required slope could be computed. As it turns out, how-
ever, the coordinates of the point of tangency are not very easy to determine. In fact, one
of the advantages of the following method is that those coordinates need not be found.

In Figure 8, let m denote the slope of the tangent line. Because the tangent line
passes through (8, 1), we can write its equation

Now, since the distance from the origin to the tangent line is units (the radius of
the circle), we have

using x0 � 0 � y0 and b � �8m � 1

To solve this equation for m, we square both sides to obtain

or

From this we see that the two roots of the equation are 19�22 and �1�2. Because
the slope of the tangent line specified in Figure 8 is negative, we choose the value 
m � �1�2; this is the required slope.

The last formula that we consider in this section is

As we pointed out earlier, this formula gives the distance from the point (x0, y0) to
the line Ax � By � C � 0. To derive the formula, first note that the slope and the 
y-intercept of the line Ax � By � C � 0 are

So we have

d �
0mx0 � b � y0 0
21 � m2

�
0 (�A�B)x0 � (�C�B) � y0 0

21 � (�A�B)2

m � � 

A

B
  and  b � � 

C

B

d �
0Ax0 � By0 � C 0
2A2 � B2

 0 � (22m � 19)(2m � 1)
 0 � 44m2 � 16m � 19

 20(1 � m2) � 64m2 � 16m � 1

20 �
64m2 � 16m � 1

1 � m2

 �
0�8m � 1 0
21 � m2

 �
0m(0) � 8m � 1 � 0 0

21 � m2

 120 �
0mx0 � b � y0 0
21 � m2

120

 y � 1 � m(x � 8)  or  y � mx � 8m � 1
 y � y1 � m(x � x1)

EXAMPLE 4 The Tangent Line to a Circle

From the point (8, 1) a line is drawn tangent to the circle x2 � y2 � 20, as shown in
Figure 8. Find the slope of this tangent line.

x

y

(8, 1)

≈+¥=20

Figure 8



Now, to complete the derivation, we need to show that when this last expression is
simplified, the result is Ax0 � By0 � C � Exercise 43 asks you to carry
out the details.

2A2 � B2.00
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EXAMPLE 5 The Distance from a Point to a Line

Use the formula d � Ax0 � By0 � to compute the distance from the
point (�3, 1) to the line y � �2x � 7.

Note: In Example 2 we computed this quantity using the distance formula, 

d � mx0 � b � y0 �21 � m2.00

C 0 �2A2 � B20

SOLUTION First, we write the given equation y � �2x � 7 in the form Ax � By � C � 0:

From this we see that A � 2, B � 1, and C � �7. Thus we have

The required distance is therefore units, as we obtained previously in
Example 2(a).

1215�5

 �
0 2(�3) � 1(1) � (�7) 0

222 � 12
�

12

15
�

1215

5

 d �
0Ax0 � By0 � C 0
2A2 � B2

2x � y � 7 � 0

9. Suppose that the coordinates of A, B, and C are A(1, 2),
B(6, 1), and C(7, 8). Find an equation of the line
passing through C and through the midpoint of the 
line segment Write your answer in the form 
ax � by � c � 0.

10. Find an equation of the line passing through the point 
(�4, 0) and through the point of intersection of the lines 
2x � y � 1 � 0 and 3x � y � 16 � 0. Write your answer
in the form y � mx � b.

11. Find the perimeter of ^ABC in the following figure.

+ =1
x
7

y
5

x

y

A C

B

AB.

A
Exercises 1–12 are review exercises. To solve these problems,
you will need to utilize the formulas listed at the beginning of
this section.

1. Find the distance between the points (�5, �6) and (3, �1).
2. Find an equation of the line that passes through (2, �4) and

is parallel to the line 3x � y � 1. Write your answer in the
form y � mx � b.

3. Find an equation of a line that is perpendicular to the
line 4x � 5y � 20 � 0 and has the same y-intercept as
the line x � y � 1 � 0. Write your answer in the form
Ax � By � C � 0.

4. Find an equation of the line passing through the points
(6, 3) and (1, 0). Write your answer in the form y � mx � b.

5. Find an equation of the line that is the perpendicular bisec-
tor of the line segment joining the points (2, 1) and (6, 7).
Write your answer in the form Ax � By � C � 0.

6. Find the area of the circle 
7. Find the x- and y-intercepts of the circle with center (1, 0)

and radius 5.
8. Find an equation of the line that has a positive slope and 

is tangent to the circle (x � 1)2 � (y � 1)2 � 4 at one of its
y-intercepts. Write your answer in the form y � mx � b.

1y � 15 2 2 � 49.(x � 12)2 �

EXERCISE SET 12.1



32. Find the center and the radius of the circle that passes
through the points (�2, 7), (0, 1), and (2, �1).

33. (a) Find the center and the radius of the circle
passing through the points A(�12, 1), B(2, 1) and 
C(0, 7).

(b) Let R denote the radius of the circle in part (a). In
^ABC, let a, b, and c be the lengths of the sides 
opposite angles A, B, and C, respectively. Show that
the area of ^ABC is equal to abc�4R.

34. (Continuation of Exercise 33.)
(a) Let H denote the point where the altitudes of ^ABC

intersect. Find the coordinates of H.
(b) Let d denote the distance from H to the center of the

circle in Exercise 33(a). Show that

35. Suppose the line x � 7y � 44 � 0 intersects the circle 
x2 � 4x � y2 � 6y � 12 at points P and Q. Find the length
of the chord 

36. The point (1, �2) is the midpoint of a chord of the circle 
x2 � 4x � y2 � 2y � 15. Find the length of the chord.

37. Show that the product of the distances from the point (0, c)
to the lines ax � y � 0 and x � by � 0 is

38. Suppose that the point (x0, y0) lies on the circle x2 � y2 � a2.
Show that the equation of the line tangent to the circle at
(x0, y0) is x0x � y0y � a2.

39. The vertices of ^ABC are A(0, 0), B(8, 0), and C(8, 6).
(a) Find the equations of the three lines that bisect the 

angles in ^ABC. Hint: Make use of the identity
tan(u�2) � (sin u)�(1 � cos u).

(b) Find the points where each pair of angle bisectors
intersect. What do you observe?

40. Show that the equations of the lines with slope m that are
tangent to the circle x2 � y2 � a2 are

and y � mx � a21 � m2y � mx � a21 � m2

0bc2 0
2a2 � a2b2 � b2 � 1

PQ.

d2 � 9R2 � (a2 � b2 � c2)

x

y

Angle bisector

x-y+1=0

x+7y-49=0

12. Find the sum of the x- and y-intercepts of the line

(Assume that a is a constant.)

In Exercises 13–16, determine the angle of inclination of each
line. Express the answer in both radians and degrees. In cases
in which a calculator is necessary, round the answer to two
decimal places.

13. y � � 4 14. x � � 2 � 0
15. (a) y � 5x � 1 16. (a) 3x � y � 3 � 0

(b) y � �5x � 1 (b) 3x � y � 3 � 0

In Exercises 17–20, find the distance from the point to the line
using: (a) the formula d � mx0 � b � y0 ; and

(b) the formula d � Ax0 � By0 � C

17. (1, 4); y � x � 2 18. (�2, �3); y � �4x � 1
19. (�3, 5); 4x � 5y � 6 � 0 20. (0, �3); 3x � 2y � 1
21. (a) Find the equation of the circle that has center 

(�2, �3) and is tangent to the line 2x � 3y � 6.
(b) Find the radius of the circle that has center (1, 3) and is

tangent to the line y �
22. Find the area of the triangle with vertices (3, 1), (�2, 7),

and (6, 2). Hint: Use the method shown in Example 3.
23. Find the area of the quadrilateral ABCD with vertices 

A(0, 0), B(8, 2), C(4, 7), and D(1, 6). Suggestion: Draw 
a diagonal, and use the method shown in Example 3 for the
two resulting triangles.

24. From the point (7, �1), tangent lines are drawn to the cir-
cle (x � 4)2 � (y � 3)2 � 4. Find the slopes of these lines.

25. From the point (0, �5), tangent lines are drawn to the
circle (x � 3)2 � y2 � 4. Find the slope of each tangent.

26. Find the distance between the two parallel lines y � 2x � 1
and y � 2x � 4. Hint: Draw a sketch; then find the dis-
tance from the origin to each line.

27. Find the distance between the two parallel lines 
3x � 4y � 12 and 3x � 4y � 24.

28. Find an equation of the line that passes through (3, 2)
and whose x- and y-intercepts are equal. (There are two
answers.)

29. Find an equation of the line that passes through the point
(2, 6) in such a way that the segment of the line cut off be-
tween the axes is bisected by the point (2, 6).

30. Find an equation of the line whose angle of inclination
is 60� and whose distance from the origin is four units.
(There are two answers.)

B
31. Find an equation of the angle bisector in the accompanying

figure. Hint: Let (x, y) be a point on the angle bisector.
Then (x, y) is equidistant from the two given lines. Or use
angles of inclination.

1
2 x � 5.

�2A2 � B2.00
�21 � m200

13y13x

(csc2 a)x � (sec2 a)y � 1
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Figure B and the accompanying caption indicate the
property that we will establish.
(a) Suppose that the slope of the line segment is t. 

By solving the system of equations

show that the coordinates of the point Q are 
x � 6t�(1 � t3) and y � 6t2�(1 � t3).

(b) Show that the slope of the line joining the points P and
Q is (t2 � t � 1)�(t2 � t � 1).

(c) Suppose that the slope of the line segment is u. 
By repeating the procedure used in parts (a) and (b),
you’ll find that the slope of the line joining the points P
and R is (u2 � u � 1)�(u2 � u � 1). Now, since the
points P, Q, and R are collinear (lie on the same line),
it must be the case that

Working from this equation, show that tu � �1. This
shows that �ROQ is a right angle, as required.

t2 � t � 1

t2 � t � 1
�

u2 � u � 1

u2 � u � 1

OR

b 

y � tx

x3 � y3 � 6xy

OQ

41. The point (x, y) is equidistant from the point (0, 1�4) and the
line y � �1�4. Show that x and y satisfy the equation y � x2.

42. The point (x0, y0) is equidistant from the line x � 2y � 0
and the point (3, 1). Find (and simplify) an equation relat-
ing x0 and y0.

43. (a) Find the slope m and the y-intercept b of the line 
Ax � By � C � 0

(b) Use the formula d � mx0 � b � y0 � to
show that the distance from the point (x0, y0) to the line
Ax � By � C � 0 is given by

44. Refer to Figure 5 in this section. Show that ^ABD is 
similar to ^EGF.

C
45. Show that the distance of the point (x1, y1) from the line

passing through the two points (x2, y2) and (x3, y3) is given
by where

46. Let (a1, b1), (a2, b2), and (a3, b3) be three noncollinear
points. Show that an equation of the circle passing through
these three points is

47. Find an equation of the circle that passes through the
points (6, 3) and (�4, �3) and that has its center on the
line y � 2x � 7.

48. Let a be a positive number and suppose that the coor-
dinates of points P and Q are P (a cos u, a sin u) and 
Q (a cos b, a sin b). Show that the distance from the origin
to the line passing through P and Q is

49. Find an equation of a circle that has radius 5 and is tangent
to the line 2x � 3y � 26 at the point (4, 6). Write your 
answer in standard form. (There are two answers.)

50. Find an equation of the circle passing through (2, �1) and
tangent to the line y � 2x � 1 at (1, 3). Write your answer
in standard form.

51. For the last exercise in this section you will prove an inter-
esting property of the curve x3 � y3 � 6xy. This curve,
known as the folium of Descartes, is shown in Figure A.

a ` cos ¢u � b

2
≤ `

∞  
x2 � y2 x y 1

a2
1 � b2

1 a1 b1 1

a2
2 � b2

2 a2 b2 1

a2
3 � b2

3 a3 b3 1

∞ � 0

D � †  
x1 y1 1

x2 y2 1

x3 y3 1

†

d � 0D 0 �2(x2 � x3)
2 � (y2 � y3)

2,

d �
0Ax0 � By0 � C 0
2A2 � B2

21 � m200

12.1 The Basic Equations 849

Figure A

Figure B

y

x

A property of the folium: Suppose that a line
through the point P(3, 3) meets the folium
again at points Q and R. Then ∠ROQ is
a right angle.

O

P(3, 3)Q

R

y

x

The folium of Descartes: ˛+Á=6xy
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12.2 THE PARABOLA
In Section 4.2 we saw that the graph of a quadratic function y � ax2 � bx � c is a sym-
metric U-shaped curve called a parabola. In this section we give a more general defini-
tion of the parabola, a definition that emphasizes the geometric properties of the curve.

Definition The Parabola

A parabola is the set of all points in the plane equally distant from a fixed line and a
fixed point not on the line. The fixed line is called the directrix; the fixed point is
called the focus.

Let us initially suppose that the focus of the parabola is the point (0, p) and the
directrix is the line y � �p. We will assume throughout this section that p is positive.
To understand the geometric context of the definition of the parabola, the special
graph paper displayed in Figure 1(a) is useful. The common center of the concentric
circles in Figure 1(a) is the focus (0, p). Thus all the points on a given circle are at a
fixed distance from the focus. The radii of the circles increase in increments of 
p units. Similarly, the dashed horizontal lines in the figure are drawn at intervals that
are multiples of p units from the directrix y � �p. By considering the points where
the circles intersect the horizontal lines, we can find a number of points that are
equally distant from the focus (0, p) and the directrix y � �p; see Figure 1(b).

Figure 1(b) shows that the points on the parabola are symmetric about a line, in
this case the y-axis. Also, by studying the figure, you should be able to convince
yourself that in this case there can be no points below the x-axis that satisfy the stated
condition. However, to describe the required set of points completely and to show
that our new definition is consistent with the old one, Figure 1(b) is inadequate. We
need to bring algebraic methods to bear on the problem. Thus let d1 denote the dis-
tance from the point P(x, y) to the focus (0, p), and let d2 denote the distance from
P(x, y) to the directrix y � �p, as shown in Figure 2. The distance d1 is then

d1 � 2(x � 0)2 � (y � p)2 � 2x2 � y2 � 2py � p2

x

y

(a)

y=_p

(0, p)
x

y

(b)

y=_p

(0, p)

Figure 1 



The distance d2 in Figure 2 is just the vertical distance between the points P and Q.
Thus,

(Absolute value signs are unnecessary here because, as was noted earlier, P cannot
lie below the x-axis.) The condition that P be equally distant from the focus (0, p) and
the directrix y � �p can be expressed by the equation

By using the expressions we’ve found for d1 and d2, this last equation becomes

We can obtain a simpler but equivalent equation by squaring both sides. (Two non-
negative quantities are equal if and only if their squares are equal.) Thus

After like terms are combined, this equation becomes

(1)

Conversely, it can be shown that if the pair of numbers x and y satisfy the pre-
ceding equation, then the point (x, y) is equidistant from the point (0, p) and the line
y � �p, that is, the point (x, y) lies on this parabola. So we call equation (1) the
standard form for the equation of the parabola with focus (0, p) and directrix y � �p.
In the box that follows, we summarize the properties of the parabola x2 � 4py. 
As Figure 3(b) indicates, the terminology we’ve introduced applies equally well to
an arbitrary parabola for which the axis of symmetry is not necessarily parallel to one
of the coordinate axes and the vertex is not necessarily the origin.

x2 � 4py

x2 � y2 � 2py � p2 � y2 � 2py � p2

2x2 � y2 � 2py � p2 � y � p

d1 � d2

 � y � (�p) � y � p
 d2 � (y-coordinate of P) � (y-coordinate of Q)
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x

y=_p

P(x, y )

y

d¡

Q

d™(0, p)

Figure 2

PROPERTY SUMMARY The Parabola

1. The parabola is the set of points equidistant from a fixed line called the directrix and a fixed point, not on the line,
called the focus.

2. The axis of a parabola is the line drawn through the focus and perpendicular to the directrix.
3. The vertex of a parabola is the point where the parabola intersects its axis. The vertex is located halfway between the

focus and the directrix. See Figure 3.

x

y=_p

(0, p)

y

≈=4py
Axis

Vertex

Focus

(a)

Directrix
x

y

Focus

Vertex

A
xi

s

Directrix

(b)Figure 3
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SOLUTION (a) We know that for the basic parabola x2 � 4py, the focus is the point (0, p) and the
directrix is the line y � �p. Comparing the given equation x2 � 16y with
x2 � 4py, we see that 4p � 16 and therefore p � 4. Thus the focus of the parabola
x2 � 16y is (0, 4) and the directrix is y � �4.

(b) We are given that the x-coordinate of Q is �12. Substituting x � �12 in the
given equation x2 � 16y yields (�12)2 � 16y. Therefore y � 144�16 � 9, and
the coordinates of Q are (�12, 9).

(c) In part (b) we found that the y-coordinate of Q is 9. From part (a) we know that
the equation of the directrix is y � �4. Thus the vertical distance from Q
down to the directrix is 9 � (�4) � 13. Next, to calculate the distance from
Q(�12, 9) to the focus (0, 4), the distance formula yields

Thus Q is indeed equidistant from the focus and the directrix of the parabola.

 � 2(�12 � 0)2 � (9 � 4)2 � 1144 � 25 � 1169 � 13

 d � 2(x2 � x1)
2 � (y2 � y1)

2

EXAMPLE 1 Analyzing a Parabola

(a) Refer to Figure 4. Determine the focus and the directrix of the parabola x2 � 16y.
(b) As is indicated in Figure 4, the point Q is on the parabola x2 � 16y, and the 

x-coordinate of Q is �12. Find the y-coordinate of Q.
(c) Verify that the point Q is equidistant from the focus and the directrix of the parabola.

x

y

≈=16yFocus

Directrix

_12

Q

Figure 4 

EXAMPLE 2 Finding the Equation of a Parabola

Determine the equation of the parabola in Figure 5, given that the curve passes
through the point (3, 5). Specify the focus and the directrix.

SOLUTION The general equation for a parabola in this position is x2 � 4py. Since the point (3, 5)
lies on the curve, its coordinates must satisfy the equation x2 � 4py. Thus

9

20
 � p

 9 � 20p

 32 � 4p(5)
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With p � 9�20 the equation x2 � 4py becomes

or

as required.
Furthermore, since p � 9�20, the focus is (0, 9�20), and the directrix is

y � �9�20.

We have seen that the equation of a parabola with focus (0, p) and directrix
y � �p is x2 � 4py. By following the same method, we can obtain general equations
for parabolas with other orientations. The basic results are summarized in the fol-
lowing box (see Figure 6).

 x2 � a 9

5
by

 x2 � 4a 9

20
by

PROPERTY SUMMARY Basic Equations for the Parabola

y y

x=p

(_p, 0)

¥=_4px

Directrix

Focus

(d) ¥=_4px

x

x=_p

( p, 0)

¥=4px

Directrix

Focus

(c) ¥=4px

x

x

y=_p

(0, p)

y

≈=4py

Directrix

Focus

(a) ≈=4py

x
y=p

(0, _p)

y

≈=_4py

Directrix

Focus

(b) ≈=_4py

Figure 6

x

y

(3, 5)

Figure 5 

A chord of a parabola is a straight line segment joining any two points on the
curve. If the chord passes through the focus, it is called a focal chord. For purposes
of graphing, it is useful to know the length of the focal chord perpendicular to the axis
of the parabola. This is the length of the horizontal line segment in Figure 7 and
the vertical line segment in Figure 8. We will call this length the focal width.A¿B¿

AB



In Figure 7 the distance from A to F is the same as the distance from A to the 
line y � �p. (Why?) But the distance from A to the line y � �p is 2p. Therefore,
AF � 2p and AB is twice this, or 4p. We have shown that the focal width of the
parabola is 4p. In other words, given a parabola x2 � 4py, the focal width is 4p,
the coefficient of y. In the same way, the length of the focal chord in Figure 8
is also 4p, the coefficient of x in that case. In general, for the parabolas in 
Figure 6 the focal width, 4p, is the absolute value of the coefficient of the x or y
term.

A¿B¿
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EXAMPLE 3 Determining the Focus and Directrix of a Parabola

Find the focus and the directrix of the parabola y2 � �4x, and sketch the graph.

SOLUTION Comparing the basic equation y2 � �4px [in Figure 6(d)] with the equation at hand,
we see that 4p � 4 and thus p � 1. The focus is therefore (�1, 0), and the directrix
is x � 1. The basic form of the graph will be as in Figure 6(d). For purposes of graph-
ing, we note that the focal width is 4 (the absolute value of the coefficient of x). This,
along with the fact that the vertex is (0, 0), gives us enough information to draw the
graph; see Figure 9.

y

x=1

¥=_4x

Directrix

x

(_1, 0)
Focus

2

2

Figure 9 

In Examples 1 through 3 and in Figure 6 the vertex of each parabola is lo-
cated at the origin. Now we want to consider parabolas that are translated
(shifted) from this standard position. As background for this, we review and gen-
eralize the results about translation in Section 3.4. Consider, as an example, the
two equations

As we saw in Section 3.4, the graphs of these two equations can each be obtained by
translating the graph of y � x2. To graph y � (x � 1)2, we translate the graph of
y � x2 to the right 1 unit; to graph y � x2 � 1, we translate y � x2 up 1 unit.

y � (x � 1)2  and  y � x2 � 1

x

y=_p

F(0, p)

y

B A

≈=4py

Figure 7
Focal width � AB � 4p.

y

F(p, 0)

¥=4px

x

Aª

Bª

Figure 8
Focal width � A¿B¿ � 4p.



To see the underlying pattern here, let’s rewrite the equation y � x2 � 1 as
y � 1 � x2. Then the situation is as follows:

Equation How Graph Is Obtained

translation in positive x-direction

translation in positive y-direction

Observation: In the equation y � x2, the effect of replacing x with x � 1 is to trans-
late the graph one unit in the positive x-direction. Similarly, replacing y with y � 1
translates the graph one unit in the positive y-direction.

As a second example before we generalize, consider the equations

The first equation involves a translation in the negative x-direction; the second involves
a translation in the negative y-direction. As before, to see the underlying pattern, we
rewrite the second equation as y � 1 � x2. Now we have the following situation:

Equation How Graph Is Obtained

translation in negative x-direction

translation in negative y-direction

Observation: In the equation y � x2 the effect of replacing x with x � 1 is to trans-
late the graph one unit in the negative x-direction. Similarly, replacing y with y � 1
translates the graph one unit in the negative y-direction.

Both of the examples that we have just considered are specific instances of the
following basic result. (The result is valid whether or not the given equation and
graph represent a function.)

 y � 1 � x2

 y � (x � 1)2

y � (x � 1)2  and  y � x2 � 1

 y � 1 � x2

 y � (x � 1)2
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PROPERTY SUMMARY Translation and Coordinates

Suppose we have an equation that determines a graph in the x-y plane, and let h and
k denote positive numbers. Then, replacing x with x � h or x � h, or replacing y
with y � k or y � k has the following effects on the graph of the original equation.

Replacement Resulting Translation

1. x replaced with x � h h units in the positive x-direction
2. y replaced with y � k k units in the positive y-direction
3. x replaced with x � h h units in the negative x-direction
4. y replaced with y � k k units in the negative y-direction

EXAMPLE 4 A Parabola with a Vertex Other Than the Origin

Graph the parabola (y � 1)2 � �4(x � 2). Specify the vertex, the focus, the direc-
trix, and the axis of symmetry.

SOLUTION The given equation is obtained from y2 � �4x (which we graphed in the previous
example) by replacing x and y with x � 2 and y � 1, respectively. So the required
graph is obtained by translating the parabola in Figure 9 to the right two units and
down one unit. In particular, this means that the vertex moves from (0, 0) to (2, �1);



the focus moves from (�1, 0) to (1, �1); the directrix moves from x � 1 to x � 3;
and the axis of symmetry moves from y � 0 (which is the x-axis) to y � �1. The 
required graph is shown in Figure 10.
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y

(y+1)@=_4(x-2)

x

(1,-1)
Focus

(2,-1)
Vertex

Axis of symmetry
y=_1

x=3
Directrix

Figure 10

EXAMPLE 5 Completing the Square to Analyze a Parabola

Graph the parabola 2y2 � 4y � x � 5 � 0, and specify each of the following: vertex,
focus, directrix, axis of symmetry, and focal width.

SOLUTION Just as we did in Section 4.2, we use the technique of completing the square:

adding 2 to both sides

The graph of this last equation is obtained by translating the graph of y2 � “right 3,
up 1.” This moves the vertex from (0, 0) to (3, 1). Now, for y2 � the focus and 
directrix are determined by setting 4p � 1�2. Therefore p � 1�8, and consequently,
the focus and directrix of y2 � are (1�8, 0) and x � �1�8, respectively. Thus the
focus of the translated curve is ( 1), and the directrix is x � Figure 11(a) shows
the graph of y2 � and Figure 11(b) shows the translated graph. (You should check
for yourself that the information accompanying Figure 11(b) is correct.)

1
2 x,

2 
7
8.3 

1
8,

1
2 x

1
2 x

1
2 x

 (y � 1)2 �
1

2
 (x � 3)

 2(y2 � 2y � 1)  � x � 5 � 2
 2(y2 � 2y)  � x � 5

(a)

x

y

¥=    x
1
2

Vertex:   (3, 1)
Focus:   (25/8, 1)
Directrix:   x=23/8
Axis of symmetry:   y=1
Focal width:   1/2

(b)

x

y

2¥-4y-x+5=0

(y-1)@=    (x-3)
1
2

Focus:   (1/8, 0)
Directrix:   x=_1/8
Focal width:   1/2

Figure 11



There are numerous applications of the parabola in the sciences. Many of these
involve parabolic reflectors. Figure 12 shows a cross section of a parabolic mirror in
a telescope. As is indicated in Figure 12, light rays coming in parallel to the axis of
the parabola are reflected through the focus. Indeed, the word focus comes from a
Latin word meaning “fireplace.” [The mathematics (but not the physics) behind this
focusing property is developed in Exercise 19 in Optional Section 12.3.] In addition
to telescopes and radio telescopes, parabolic reflectors are used in communication
systems such as satellite dishes for television, in surveillance systems, and in auto-
mobile headlights. To diagram the parabolic mirror of an automobile headlight, con-
sider the light source to be at the focus and reverse the directions of the arrows on the
light rays in Figure 12.

Geometrically, parabolic reflectors are described and designed as follows. We
begin with a portion of a parabola and its axis of symmetry, as shown in Figure 13(a).
By rotating the parabola about its axis, we obtain the bowl-shaped surface in
Figure 13(b), known as a paraboloid of revolution. This is the surface used in a
parabolic reflector.
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Parabolic mirror

Focus

Incoming light rays

Figure 12

(a) Parabola and axis of symmetry (b) Paraboloid

Figure 13
Rotating a parabola about its axis 
of symmetry yields a bowl-shaped
surface called a paraboloid of
revolution.

As preparation for the next example, we define two terms that are used in 
describing optical systems: focal length and focal ratio. (Although we’ll refer to a
parabolic reflector in the definitions, the terms are often applied to other types of
reflectors and lenses as well.)

Definitions Focal Length and Focal Ratio

Consider a parabolic reflector with diameter d and vertex-to-focus distance p.

The focal length of the reflector is the distance p from the vertex to the focus.
The focal ratio is the ratio of the focal length to the diameter; that is,

focal ratio �
p

d

p

d

Focus

Thus, for example, if a parabolic reflector has a diameter of 2 ft and a focal length of
7 ft, then the focal ratio is p�d � 7 ft�2 ft � 3.5. Remark: In photography the focal
ratio is referred to as the f-stop or f-number, and a focal ratio of 3.5 is often written
as f�3.5.



In the next example we determine the focal length and focal ratio of a parabolic
reflector in a particular radio telescope. The following quote provides some general
background about the field of radio astronomy.

Since its earliest beginnings in 1932 radio astronomy has developed into one
of the most important means of investigating the universe. An impressive con-
firmation of this statement is given in the fact that all observing astronomers
who received a Nobel prize in physics were working in the field of radio 
astronomy. This happened in 1974, in 1978, and for the last time in 1993.

Max Planck Institute for Radio Astronomy, Bonn, Germany. Web page
http://www.mpifr-bonn.mpg.de/index_e.html, accessed August 2004.
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EXAMPLE 6 Finding the Focal Length and Focal Ratio of a Parabolic Reflector

Figure 14(a) shows the parabolic reflector dish of the radio telescope at Parkes
Observatory, which is located approximately 220 miles west of Sydney, Australia.
Figure 14(b) gives the specifications for the parabolic cross section of the dish.

(a) Find the focal length of the dish. Round the answer to two decimal places.
(b) Find the focal ratio. Round the answer to two decimal places.

SOLUTION (a) According to Figure 14(b), the point (32, 9.846) lies on the parabola x2 � 4py.
Thus we have 322 � 4p(9.846), and therefore

using a calculator

Rounded to two decimal places, the focal length is 26.00 meters.

 � 26.00 m

 p �
322

4(9.846)

(a) Radio telescope at Parkes Observatory
(Photo copyright © Albert White/Alamy)

_32 32

9.846
≈=4py

y (meters)

x (meters)

(b) Dimensions of parabolic cross section

Figure 14
Photograph and specifications for
the radio telescope dish at Parkes
Observatory.

http://www.mpifr-bonn.mpg.de/index_e.html


(b) From Figure 14(b) the diameter of the dish is 64 m (� 32 � 32). Using this
value for the diameter and the expression for the focal length p obtained in part (a),
we have

using a calculator

Rounded to two decimal places, the focal ratio is 0.41.

 � 0.41

 focal ratio �
p

d
�

322�(4 	 9.846)

64
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25. The figure shows the specifications for a parabolic arch.
(The blue curve is a portion of a parabola.)
(a) Introduce a horizontal x-axis, passing through the

vertex of the parabola, with the vertex corresponding to
x � 0. Find an equation for the parabola of the form
x2 � �4py.

(b) Use the equation determined in part (a) to compute the
height of the arch 5 feet away from the center (that is,
at x � 5 and x � �5).

26. The figure shows a diagram for the main section of a
suspension bridge. The shape of the curved cable can be
closely approximated by a parabola. As shown in the fig-
ure, there are 17 vertical support wires. These, along with
the two 10.6-m end posts, are equally spaced at 5-m inter-
vals. At the center of the bridge, the vertical support wire
(from the vertex of the parabola to the roadway) has a
length of 0.6 m.
(a) In the figure, let the road correspond to the x-axis in an

x-y coordinate system, with the vertex of the parabolic
cable located at (0, 0.6). Find an equation of the form
x2 � 4p(y � k) for the parabola.

(b) Find the lengths of the eight support wires on each side
of the 0.6-m center wire.

CableRoad

10.6 m

90 m

15 ft

40 ft

A
In Exercises 1–22, graph the parabolas. In each case, specify
the focus, the directrix, and the focal width. For Exercises 13–22,
also specify the vertex.

1. x2 � 4y 2. x2 � 16y
3. y2 � �8x 4. y2 � 12x
5. x2 � �20y 6. x2 � y � 0
7. y2 � 28x � 0 8. 4y2 � x � 0
9. x2 � 6y 10. y2 � �10x

11. 4x2 � 7y 12. 3y2 � 4x
13. y2 � 6y � 4x � 17 � 0 14. y2 � 2y � 8x � 17 � 0
15. x2 � 8x � y � 18 � 0 16. x2 � 6y � 18 � 0
17. y2 � 2y � x � 1 � 0 18. 2y2 � x � 1 � 0
19. 2x2 � 12x � y � 18 � 0 20. y � �
21. 2x2 � 16x � y � 33 � 0 22. � y � x � 1 � 0
23. The accompanying figure shows the specifications for a

cross section of the parabolic reflector dish for the Lovell
radio telescope, located at the Jodrell Bank Observatory in
England.
(a) Find the focal length of the dish. Round the answer to

one decimal place.
(b) Find the focal ratio. Round the answer to one decimal

place.

24. One of the largest radio telescopes in the world is the
Effelsberg radio telescope, located 25 miles southwest of
Bonn, Germany. Determine the diameter d of its parabolic
reflector, given the specifications in the accompanying
figure. (Assume that the units for x and y are meters.)

d
¥=120x

Focal ratio: 0.3

_38.1 38.1

15.847
≈=4py

y (meters)

x (meters)

1
4 y2

1x � 212 2 212
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(a) Find the equation of the line through A and B¿.
(b) Find the equation of the line through B and A¿.
(c) Show that the two lines you have found intersect at a

point on the directrix.
36. Let be the horizontal focal chord of the parabola x2 � 8y.

Let R denote the point where the directrix of the parabola
meets the y-axis. Show that is perpendicular to

37. Suppose is a focal chord of the parabola y � x2 and that
the coordinates of P are (2, 4).
(a) Find the coordinates of Q.
(b) Find the coordinates of M, the midpoint of 
(c) A perpendicular is drawn from M to the y-axis, meeting

the y-axis at S. Also, a line perpendicular to the focal
chord is drawn through M, meeting the y-axis at T.
Find ST, and verify that it is equal to one-half the focal
width of the parabola.

38. Let F be the focus of the parabola x2 � 8y, and let P denote
the point on the parabola with coordinates (8, 8). Let 
be a focal chord. If V denotes the vertex of the parabola,
verify that

39. In the following figure, ^OAB is equilateral, and is
parallel to the x-axis. Find the length of a side and the 
area of triangle OAB.

40. In designing an arch, architects and engineers sometimes
use a parabolic arch rather than a semicircular arch. (One
reason for this is that, in general, the parabolic arch can
support more weight at the top than can the semicircular
arch.) In the following figure, the blue arch is a semicircle
of radius 1, centered at the origin. The red arch is a portion
of a parabola. As is indicated in the figure, the two arches
have the same base and the same height. Assume that the
unit of distance for each axis is the meter.

(a) Find the equation of the parabola in the figure.

y

x

y

A

≈=4py

B

O
x

AB

PF # FQ � VF # PQ

PQ

PQ.

PQ
QR.PR

PQ

B
For Exercises 27 and 28, refer to Figure A.

Figure A
27. Make a photocopy of Figure A. On your copy of Figure A,

indicate (by drawing dots) 11 points that are equidistant
from the point (�1, 1) and the line x � 1. What is the
equation of the line of symmetry for the set of dots?

28. The 11 dots that you located in Exercise 27 are part of a
parabola. Find the equation of that parabola and sketch its
graph. Specify the vertex, the focus and directrix, and the
focal width.

For Exercises 29–33, find the equation of the parabola satisfy-
ing the given conditions. In each case, assume that the vertex is
at the origin.

29. The focus is (0, 3).
30. The directrix is y � 8 � 0.
31. The directrix is x � 32 � 0.
32. The focus lies on the y-axis, and the parabola passes

through the point (7, �10).
33. The parabola is symmetric about the x-axis, the x-coordinate

of the focus is negative, and the length of the focal chord
perpendicular to the x-axis is 9.

34. Let P denote the point (8, 8) on the parabola x2 � 8y, and
let be a focal chord.
(a) Find the equation of the line through the point (8, 8)

and the focus.
(b) Find the coordinates of Q.
(c) Find the length of 
(d) Find the equation of the circle with this focal chord as

a diameter.
(e) Show that the circle determined in part (d) intersects

the directrix of the parabola in only one point. Conclude
from this that the directrix is tangent to the circle.
Draw a sketch of the situation.

35. The segments and are focal chords of the parabola
x2 � 2y. The coordinates of A and B are (4, 8) and (�2, 2),
respectively.

BB¿AA¿

PQ.

PQ

y

x
y=1

x=1
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43. If is a focal chord of the parabola y2 � 4px and the
coordinates of P are (x0, y0), show that the coordinates 
of Q are

44. Let F and V denote the focus and the vertex, respectively,
of the parabola x2 � 4py. If is a focal chord of the
parabola, show that

45. Let be a focal chord of the parabola y2 � 4px, and let
M be the midpoint of A perpendicular is drawn from M
to the x-axis, meeting the x-axis at S. Also from M, a line
segment is drawn that is perpendicular to and that meets
the x-axis at T. Show that the length of is one-half the
focal width of the parabola.

46. Let be a chord (not necessarily a focal chord) of the
parabola y2 � 4px, and suppose that subtends a right
angle at the vertex. (In other words, where
O is the origin in this case.) Find the x-intercept of the 
segment What is surprising about this result? 
Hint: Begin by writing the coordinates of A and B as
A(a2�4p, a) and B(b2�4p, b).

47. Let be a focal chord of the parabola x2 � 4py. Complete
the following steps to prove that the circle with as a
diameter is tangent to the directrix of the parabola. Let the
coordinates of P be (x0, y0).
(a) Show that the coordinates of Q are

(b) Show that the midpoint of is

(c) Show that the length of is (y0 � p)2�y0.
Suggestion: This can be done using the formula for 
the distance between two points, but the following
is simpler. Let F be the focus. Then PQ � PF � FQ.
Now, both PF and FQ can be determined by using
the definition of the parabola rather than the distance
formula.

(d) Show that the distance from the center of the circle 
to the directrix equals the radius of the circle. How
does this complete the proof?

48. P and Q are two points on the parabola y2 � 4px, the coor-
dinates of P are (a, b), and the slope of is m. Find the 
y-coordinate of the midpoint of Hint for checking:
The final answer is independent of both a and b.

PQ.
PQ

PQ

a x2
0 � 4p2

2x0
, 

y2
0 � p2

2y0
b

PQ

a�4p2

x0
, 

p2

y0
b

PQ
PQ

AB.

�AOB � 90°,
AB

AB

ST
PQ

PQ.
PQ

PF # FQ � VF # PQ

PQ

a p2

x0
, 

�4p2

y0
b

PQ(b) Using calculus, it can be shown that the area under this
parabolic arch is Assuming this fact, show that the
area beneath the parabolic arch is approximately 85%
of the area beneath the semicircular arch.

(c) Using calculus, it can be shown that the length of this
parabolic arch is � ln 12 � meters. Assuming
this fact, show that the length of the parabolic arch is ap-
proximately 94% of the length of the semicircular arch.

41. (a) The span of the parabolic arch in Figure B is 8 m. At a
distance of 2 m from the center, the vertical clearance
is 4.5 m. Find the height of the arch. Hint: Choose a
convenient coordinate system in which the equation of
the parabola will have the form x2 � �4p(y � k).

Figure B
(b) Figure C shows the same parabolic arch as in Figure B.

Suppose that from a point P on the base of the arch, a
laser beam is projected vertically upward. As indicated
in the figure, the beam hits the arch at a point Q and is
then reflected. Let R denote the point where the beam
crosses the axis of the parabola. How far is it from R to
the base of the arch? (That is, what is the perpendicular
distance from R to the base?)

Figure C

C
42. If is a focal chord of the parabola x2 � 4py and the

coordinates of P are (x0, y0), show that the coordinates 
of Q are

a�4p2

x0
, 

p2

y0
b

PQ

P

Q

R

Height

2 m

4.
5 

m

Span=8 m

15 21
2 15

4
3 m

2.
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The Mini Projects, A Bridge with a Parabolic Arch and Constructing a Parabola, at
http://www.cengage.com/math/cohen/precalc7e, discuss applications of the material in Section 12.2. 

http://www.cengage.com/math/cohen/precalc7e
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12.3 TANGENTS TO PARABOLAS (OPTIONAL SECTION)
And I dare say that this [the problem of finding tangents and normals to curves] is not
only the most useful and most general problem in geometry that I know, but even that
I have ever desired to know. —René Descartes, La Géométrie (1637).

Many of the more important properties of the parabola relate to the tangent to the
curve. For instance, there is a close connection between the optical property illustrated
in Section 12.2, Figure 12, and the tangents to the parabola. (See Exercise 19 at the
end of this section for details.) In general, the techniques of calculus are required to
deal with tangents to curves. However, for curves with equations and graphs as sim-
ple as the parabola, the methods of algebra are often adequate. The following discus-
sion shows how we can determine the tangent to a parabola without using calculus.

To begin with, we need a definition for the tangent to a parabola. As motivation,
recall from geometry that a tangent line to a circle is defined to be a line that inter-
sects the circle in exactly one point (see Figure 1). However, this definition is not
quite adequate for the parabola. For instance, the y-axis intersects the parabola y � x2

in exactly one point, but surely it is not tangent to the curve. With this in mind, we
adopt the definition in the following box for the tangent to a parabola. Along with this
definition we make the assumption that through each point P on a parabola, there is
only one tangent line that can be drawn.

Tangent
Not a tangent

Figure 1 

Definition Tangent to a Parabola

Let P be a point on a parabola. Then a line through P is said to be tangent to the
parabola at P provided that the line intersects the parabola only at P and the line is
not parallel to the axis of the parabola.

Tangent Not a tangent

P P

We’ll demonstrate how to find tangents to parabolas by means of an example.
The method used here can be used for any parabola. Suppose that we want to find the
equation of the tangent to the parabola x2 � 4y at the point (2, 1) on the curve (see
Figure 2). Let m denote the slope of the tangent line. Since the line must pass through
the point (2, 1), its equation is

This is the tangent line, so it intersects the parabola in only one point, namely, 
(2, 1). Algebraically, this means that the ordered pair (2, 1) is the only solution of the
following system of equations:

(1)

(2)
ey � 1 � m(x � 2)

x2 � 4y

y � 1 � m(x � 2)
x

y

(2, 1)

Tangent line
m=?

≈=4y

Figure 2



The strategy now is to solve this system of equations in terms of m. Then we’ll rec-
oncile the results with the fact that (2, 1) is known to be the unique solution. This will
allow us to determine m. From equation (2) we have y � x2�4. Then, substituting for
y in equation (1), we obtain

multiplying both sides by 4
factoring
subtracting 4m(x � 2) 
from both sides

factoring out x � 2

The first value, x � 2, yields no new information, since we knew from the start that
this was the x-coordinate of the intersection point. However, the second value,
x � 4m � 2, must also equal 2, since the system has but one solution. Thus we have

Therefore the slope of the tangent line is 1. Substituting this value of m in equa-
tion (1) yields

or

as required.

y � x � 1

y � 1 � 1(x � 2)

 m � 1
 4m � 4

 4m � 2 � 2

 
x � 2 � 0

x � 2 ` x � 2 � 4m � 0
x � 4m � 2

 (x � 2)[(x � 2) � 4m] � 0

 (x � 2)(x � 2) � 4m(x � 2) � 0
 (x � 2)(x � 2) � 4m(x � 2)

 x2 � 4 � 4m(x � 2)

 
x2

4
� 1 � m(x � 2)
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12. Consider the parabola x2 � 4y, and let (x0, y0) denote a
point on the parabola in the first quadrant.
(a) Find the y-intercept of the line tangent to the parabola

at the point on the parabola where y0 � 1.
(b) Repeat part (a) using y0 � 2.
(c) Repeat part (a) using y0 � 3.
(d) On the basis of your results in parts (a)–(c), make a

conjecture about the y-intercept of the line that is tan-
gent to the parabola at the point (x0, y0) on the curve.
Verify your conjecture by computing this y-intercept.

C
13. Let (x0, y0) be a point on the parabola x2 � 4py. Using the

method explained in the text, show that the equation of the
line tangent to the parabola at (x0, y0) is

y �
x0

2p
x � y0

A
In Exercises 1–8, use the method shown in the text to find the
equation of the tangent to the parabola at the given point. In
each case, include a sketch with your answer.

1. x2 � y; (2, 4) 2. x2 � �2y; (2, �2)
3. x2 � 8y; (4, 2) 4. x2 � 12y; (6, 3)
5. x2 � �y; (�3, �9) 6. x2 � �6y; 
7. y2 � 4x; (1, 2) 8. y2 � �8x; (�8, �8)

B
In Exercises 9–11, find the slope of the tangent to the curve 
at the indicated point. (Use the method shown in the text for
parabolas.)

9. y � (4, 2)
Hint: x � 4 �

10. y � 1�x; (3, 1�3) 11. y � x3; (2, 8)
11x � 2 211x � 2 21x;

116, �12
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18. Let be a chord (not necessarily a focal chord) of the
parabola x2 � 4py. Let M be the midpoint of the chord and
let C be the point where the tangents at A and B intersect.
(a) Show that is parallel to the axis of the parabola.
(b) If D is the point where the parabola meets show

that CD � DM.
19. In this exercise we prove the reflection property of para-

bolas. The following figure shows a line tangent to the 
parabola y2 � 4px at P(x0, y0). The dashed line through H
and P is parallel to the axis of the parabola. We wish
to prove that a� b. This is the reflection property of
parabolas.

(a) Show that FA � x0 � p � FP. Hint: Regarding FP,
it is easier to rely on the definition of a parabola than
on the distance formula.

(b) Why does a � g? Why does g � b?
(c) Conclude that a � b, as required.

20. The segment is a focal chord of the parabola y2 � 4x
and the coordinates of A are (4, 4). Normals drawn through
A and B meet the parabola again at A¿ and B¿, respectively.
Prove that is three times as long as AB.A¿B¿

AB

y

A

¥=4px

H
å

∫

ç

F(p, 0)
x

P(x¸, y¸)

MC,
MC

ABThus the y-intercept of the line tangent to x2 � 4py at 
(x0, y0) is just �y0.

14. Let (x0, y0) be a point on the parabola y2 � 4px. Show that
the equation of the line tangent to the parabola at (x0, y0) is

Show that the x-intercept of this line is �x0.

Exercises 15–20 contain results about tangents to parabolas. In
working these problems, you’ll find it convenient to use the
facts developed in Exercises 13 and 14. Also assume, as given,
the results about focal chords in Exercises 42 and 43 of
Exercise Set 12.2. In some of the problems, reference is made to
the normal line. The normal line or normal to a parabola at
the point (x0, y0) on the parabola is defined as the line through
(x0, y0) that is perpendicular to the tangent at (x0, y0).

15. Let be a focal chord of the parabola x2 � 4py.
(a) Show that the tangents to the parabola at P and Q are

perpendicular to each other.
(b) Show that the tangents to the parabola at P and Q inter-

sect at a point on the directrix.
(c) Let D be the intersection point of the tangents at P and

Q. Show that the line segment from D to the focus is
perpendicular to 

16. Let P(x0, y0) be a point [other than (0, 0)] on the parabola
y2 � 4px. Let A be the point where the normal line to the
parabola at P meets the axis of the parabola. Let B be the
point where the line drawn from P perpendicular to the axis
of the parabola meets the axis. Show that AB � 2p.

17. Let P (x0, y0) be a point on the parabola y2 � 4px. Let A be
the point where the normal line to the parabola at P meets
the axis of the parabola. Let F be the focus of the parabola.
If a line is drawn from A perpendicular to meeting 
at Z, show that ZP � 2p.

FPFP,

PQ.

PQ

y �
2p

y0
x �

y0

2
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12.4 THE ELLIPSE
We have here apparently [in the work of Anthemius of Tralles (a sixth-century Greek
architect and mathematician)] the first mention of the construction of an ellipse by
means of a string stretched tight round the foci. —Sir Thomas Heath in A History of Greek

Mathematics, Vol. II (Oxford: The Clarendon Press, 1921)

The heavenly motions are nothing but a continuous song for several voices, to be per-
ceived by the intellect, not by the ear. —Johannes Kepler (1571–1630)

In this section we discuss the symmetric, oval-shaped curve known as the ellipse. As
Kepler discovered and Newton later proved, this is the curve described by the plan-
ets in their motions around the sun.

The true orbit of Mars was even less of a
circle than the Earth’s. It took almost
two years for Kepler to realize that its
orbital shape is that of an ellipse. An
ellipse is the shape of a circle when
viewed at an angle. —Phillip Flower in
Understanding the Universe (St. Paul:
West Publishing Co., 1990)



Subsequently, we will derive an equation describing the ellipse just as we found an
equation for the parabola in Section 12.2. But first let’s consider some rather immedi-
ate consequences of the definition. In fact, we can learn a great deal about the ellipse
even before we derive its equation.

There is a simple mechanical method for constructing an ellipse that arises di-
rectly from the definition of the curve. Mark the given foci—say, F1 and F2—on a
drawing board and insert thumbtacks at those points. Now take a piece of string that
is longer than the distance from F1 to F2, and tie the ends of the string to the tacks.
Next, pull the string taut with a pencil point, and touch the pencil point to the draw-
ing board. Then if you move the pencil while keeping the string taut, the curve traced
out will be an ellipse, as indicated in Figure 1. The reason the curve is an ellipse is
that for each point on the curve, the sum of the distances from the foci is constant, the
constant being the length of the string. By actually carrying out this construction for
yourself several times, each time varying the distance between the foci or the length
of the string, you can learn a great deal about the ellipse. For instance, when the dis-
tance between the foci is small in comparison to the length of the string, the ellipse
begins to resemble a circle, as in Figure 2. On the other hand, when the distance be-
tween the foci is nearly equal to the length of the string, the ellipse becomes rela-
tively flat, as in Figure 3.

We now derive one of the standard forms for the equation of an ellipse. As is in-
dicated in Figure 4, we assume that the foci are F1(�c, 0) and F2(c, 0) and that the
sum of the distances from the foci to a point P(x, y) on the ellipse is 2a. Since the
point P lies on the ellipse, we have

F1P � F2P � 2a

12.4 The Ellipse 865

F¡
F™

Figure 1 

F¡ F™

Figure 2
When the distance between the foci
is small in comparison to the length
of the string, the ellipse resembles
a circle.

F¡ F™

Figure 3
When the distance between the foci
is nearly equal to the length of the
string, the ellipse is relatively flat.

Definition The Ellipse

An ellipse is the set of all points in the plane, the sum of whose distances from two
fixed points is constant. Each fixed point is called a focus (plural: foci).

P(x, y)

F¡(_c, 0) F™(c, 0)

y

x

Figure 4
F1P � F2P � 2a

and therefore

or

(1)2(x � c)2 � y2 � 2a � 2(x � c)2 � y2

2(x � c)2 � (y � 0)2 � 2(x � c)2 � (y � 0)2 � 2a



Now, by following a straightforward but lengthy process of squaring and simplifying
(as outlined in detail in Exercise 44), we find that equation (1) becomes

(2)

To write equation (2) in a more symmetric form, we define the positive number b by
the equation

(3)

Note: For this definition to make sense, we need to know that the right-hand side of
equation (3) is positive. (See Exercise 45 at the end of this section for details.)

Finally, using equation (3) to substitute for a2 � c2 in equation (2), we obtain

which can be written

(4)

We have now shown that the coordinates of each point on the ellipse satisfy equation (4).
Conversely, it can be shown that if x and y satisfy equation (4), then the sum of the dis-
tances from the point (x, y) to the points (c, 0) and (�c, 0) is 2a; that is, the point (x, y)
indeed lies on this ellipse (see Exercise 60). We refer to equation (4) as the standard
form for the equation of an ellipse with foci (�c, 0) and (c, 0). For an ellipse in this
form, it will always be the case that a is greater than b; this follows from equation (3).

For purposes of graphing, we want to know the intercepts of the ellipse. To find
the x-intercepts, we set y � 0 in equation (4) to obtain

The x-intercepts are therefore a and �a. In a similar fashion you can check that the
y-intercepts are b and �b. Also (according to the symmetry tests in Section 1.7), note
that the graph of equation (4) must be symmetric about both coordinate axes. Fig-
ure 5 shows the graph of the ellipse (x2�a2) � (y2�b2) � 1. (Calculator exercises at
the end of this section will help to convince you that the general shape of the curve
in Figure 5 is correct.)

In the box that follows, we define several terms that are useful in describing and
analyzing the ellipse.

 x2 � a2  or  x � 
a

 
x2

a2 � 1

x2

a2 �
y2

b2 � 1  (a � b)

b2x2 � a2y2 � a2b2

b2 � a2 � c2

(a2 � c2)x2 � a2y2 � a2(a2 � c2)
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x

y

a

b

+ =1
x@

a@

y@

b@

Figure 5
The intercepts of the ellipse
(x2�a2) � (y2�b2) � 1 are x � 
a
and y � 
b.

Definition Terminology for the Ellipse

1. The focal axis is the line passing through the foci of the ellipse.
2. The center is the point midway between the foci. This is the point C in Figure 6.
3. The vertices (singular: vertex) are the two points where the focal axis meets the

ellipse. These are the points V1 and V2 in Figure 6.
4. The major axis is the line segment joining the vertices. This is the line seg-

ment in Figure 6. Each of the (congruent) line segments and is
referred to as a semimajor axis. The minor axis is the line segment through
the center of the ellipse, perpendicular to the major axis, and with endpoints on
the ellipse. In Figure 6 this is the line segment Each of the (congruent) line
segments and is referred to as a semiminor axis.

5. The eccentricity is the ratio 
c
a

�
2a2 � b2

a
.

CACB
AB.

CV2CV1V1V2

F¡ F™

A

B

V¡ V™

C

Figure 6



The eccentricity (as defined in the previous box) provides a numerical measure of
how much the ellipse deviates from being a circle. First note the eccentricity is
strictly between 0 and 1. As Figure 7 indicates, the closer the eccentricity is to zero, the
more the ellipse resembles a circle. At the other extreme, as the eccentricity increases
to 1, the ellipse becomes increasingly flat.

In the next box, we summarize our discussion up to this point. (We use the letter
e to denote the eccentricity; this is the conventional choice, even though the same let-
ter is used with a very different meaning in connection with exponential functions and
logarithms.)
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Eccentricity=0.4 Eccentricity=0.8 Eccentricity=0.967

Figure 7
Eccentricity is a number between 0
and 1 that describes the shape of an
ellipse. The narrowest, that is, the
least circular, ellipse in this figure
has the same proportions as the orbit
of Halley’s comet. By way of
contrast, the eccentricity of the
Earth’s orbit is 0.0017; if an ellipse
with this eccentricity were included
in this figure, it would appear
indistinguishable from a circle.

PROPERTY SUMMARY
The Ellipse � 1 (a > b)

Foci: (
c, 0), where c2 � a2 � b2

Center: (0, 0)
Vertices: (
a, 0)
Length of major axis: 2a
Length of semimajor axis: a
Length of minor axis: 2b
Length of semiminor axis: b

Eccentricity: e �
c
a

�
2a2 � b2

a

x2

a2 �
y2

b2

SOLUTION To convert the equation 9x2 � 16y2 � 144 to standard form, we divide both sides 
by 144. This yields

 
x2

42 �
y2

32 � 1

 
x2

16
�

y2

9
� 1

 
9x2

144
�

16y2

144
�

144

144

EXAMPLE 1 Analyzing an Ellipse

Find the lengths of the major and minor axes of the ellipse 9x2 � 16y2 � 144.
Specify the coordinates of the foci and the eccentricity. Graph the ellipse.

    +     =1  (a >b)
x@
a@

y@
b@

 (c, 0)

a

b

 (_c, 0)

y

x



This is the standard form. Comparing this equation with (x2�a2) � (y2�b2) � 1, we see
that a � 4 and b � 3. Thus the major and minor axes are eight and six units, respec-
tively. Next, to determine the foci, we use the equation c2 � a2 � b2. We have

(We choose the positive square root because c � 0.) It follows that the coordinates of
the foci are 1� 02 and 1 02. We now calculate the eccentricity using the
formula e � c�a. This yields e � �4. Figure 8 shows the graph along with the
required information.

17
17,17,

c2 � 42 � 32 � 7  and therefore  c � 17
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SOLUTION Since the foci are (
1, 0), we have c � 1. Using the equation e � c�a with e � 1�3
and c � 1, we obtain

Recall now that b2 is defined by the equation b2 � a2 � c2. In view of this we have

The equation of the ellipse in standard form is therefore

Furthermore, since a � 3 and b � 2 the lengths of the major and minor axes are
6 and 4 units, respectively.12

12,

x2

32 �
y2

1212 2 2 � 1

 b � 18 � 212
 b2 � 32 � 12 � 8

1

3
�

1
a
  and therefore  a � 3

EXAMPLE 2 Finding the Equation of an Ellipse

The foci of an ellipse are (�1, 0) and (1, 0), and the eccentricity is 1�3. Find the
equation of the ellipse (in standard form), and specify the lengths of the major and
minor axes.

Major axis:  8
Minor axis:  6
Foci:  (
œ„7, 0)

Eccentricity:        �0.66œ„7
4

x

y

4

3 {œ„7, 0}

{_œ„7, 0}

+     =1
¥
3@

≈
4@

9≈+16¥=144
or

Figure 8
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SOLUTION We are required to find the distance between the foci F1 and F2. By definition, this is
the quantity 2c. Since the sum of the distances from a point on the ellipse to the foci
is 10 units, we have

by definition of 2a

Now we substitute the values a � 5 and e � 4�5 in the formula e � c�a:

It now follows that the required distance 2c is 8 units.

4

5
�

c

5
  and therefore  c � 4

 a � 5
 2a � 10

EXAMPLE 3 Finding the Distance Between the Foci of an Ellipse

The eccentricity of an ellipse is 4�5, and the sum of the distances from a point P on
the ellipse to the foci is 10 units. Compute the distance between the foci F1 and F2.
See Figure 9.

F¡P+F™P=10

e=4/5

F¡ F™

P

Figure 9

y

x

ab

(h, k)

Figure 10

EXAMPLE 4 Completing the Square to Analyze an Ellipse

Determine the center, foci, and eccentricity of the ellipse

Graph the ellipse.

4x2 � 9y2 � 8x � 54y � 49 � 0

Suppose now that we translate the graph of (x2�a2) � (y2�b2) � 1 by h units in
the x-direction and k units in the y-direction. Figure 10 shows the situation for h and
k positive. Then the equation of the translated ellipse is

(5)

Equation (5) is another standard form for the equation of an ellipse. As is indicated
in Figure 10, the center of this ellipse is the point (h, k). In the next example we use the
technique of completing the square to convert an equation for an ellipse to standard
form. Once the equation is in standard form, the graph is readily obtained.

(x � h)2

a2 �
(y � k)2

b2 � 1

SOLUTION We will convert the given equation to standard form by using the technique of com-
pleting the square. We have

 4(x � 1)2 � 9(y � 3)2 � 36

 4(x2 � 2x � 1) � 9(y2 � 6y � 9) � �49 � 4(1) � 9(9)

 4(x2 � 2x) � 9(y2 � 6y) � �49

 4x2 � 8x � 9y2 � 54y � �49
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y

x

(1, 3)

b=2

a=3

4≈+9¥-8x-54y+49=0
or

(x-1)@

3@

(y-3)@

2@
=1+

Figure 11

PROPERTY SUMMARY
The Ellipse � 1 (a > b)

Foci: (0, 
c), where c2 � a2 � b2

Center: (0, 0)
Vertices: (0, 
a)
Length of major axis: 2a
Length of minor axis: 2b

Eccentricity: e �
c
a

�
2a2 � b2

a

x2

b2 �
y2

a2

y

x

a

b

(0, c)

(0, _c)

x@

b@

y@

a@
+ =1  (a>b)

Dividing this last equation by 36, we obtain

This last equation represents an ellipse with center at (1, 3) and with a � 3 and b � 2.
We can calculate c using the formula c2 � a2 � b2:

Since the center of this ellipse is (1, 3), the foci are therefore 11 � 32 and
. Finally, the eccentricity is c�a � �3. Figure 11 shows the graph of

this ellipse.

In developing the equation (x2�a2) � (y2�b2) � 1, we assumed that the foci of the
ellipse were located on the x-axis at the points (�c, 0) and (c, 0). If instead the foci
are located on the y-axis at the points (0, c) and (0, �c), then the same method we
used in the previous case will show the equation of the ellipse to be

where we still assume that 2a represents the sum of the distances from a point on the
ellipse to the foci. In the box that follows, we summarize the situation for the ellipse
with foci (0, c) and (0, �c) and constant sum of distances 2a.

x2

b2 �
y2

a2 � 1  (a � b)

1511 � 15, 3 2 15,

c2 � 32 � 22 � 5  and therefore  c � 15

(x � 1)2

9
�

(y � 3)2

4
� 1  or  

(x � 1)2

32 �
(y � 3)2

22 � 1

We now have two standard forms for the ellipse centered at the origin:

 Foci on the y-axis at (0, 
c): 
x2

b2 �
y2

a2 � 1  (a � b)

 Foci on the x-axis at (
c, 0): 
x2

a2 �
y2

b2 � 1  (a � b)



Because a is greater than b in both standard forms, it is always easy to determine
by inspection whether the foci lie on the x-axis or the y-axis. Consider, for instance,
the equation (x2�52) � (y2�62) � 1. In this case, since 6 � 5, we have a � 6. And
since 62 appears under y2, we conclude that the foci lie on the y-axis.
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SOLUTION Since the vertices are 10, 
2 2, the standard form for the equation in this case is
(x2�b2) � (y2�a2) � 1. Furthermore, in view of the coordinates of the vertices, we
have a � 2 Therefore,

Now, since the point (5, 3) lies on the ellipse, its coordinates must satisfy this last
equation. We thus have

From this last equation we see that b2 � 28, and therefore

Now that we’ve determined a and b, we can write the equation of the ellipse in stan-
dard form. It is

As you should verify for yourself, this equation can also be written in the equivalent
form

As with the parabola, many of the interesting properties of the ellipse are related
to tangent lines. We define a tangent to an ellipse as a line that intersects the ellipse
in exactly one point. Figure 12 shows a line tangent to an ellipse at an arbitrary point
P on the curve. Line segments and are drawn from the foci to the point of
tangency. These two segments are called focal radii. One of the most basic proper-
ties of the ellipse is the reflection property, which says that the focal radii drawn to
the point of tangency make equal angles with the tangent.

F2PF1P

3x2 � y2 � 84

x2

1217 2 2 �
y2

12121 2 2 � 1

b � 128 � 217

 
25

b2 �
25

28

 
25

b2 �
3

28
� 1

 
52

b2 �
32

84
� 1

x2

b2 �
y2

84
� 1

121.

121

EXAMPLE 5 An Ellipse with Vertices on the y-axis

The point (5, 3) lies on an ellipse with vertices 10, 
2 2. Find the equa-
tion of the ellipse. Write the answer both in standard form and in the form
Ax2 � By2 � C.

121

F¡ F™

P Tangent

Reflection property
of the ellipse:
å=∫

å

∫

Figure 12



If P(x1, y1) is a point on the ellipse (x2�a2) � (y2�b2) � 1, then the equation of the
line tangent to the ellipse at P(x1, y1) is

This equation is easy to remember because it so closely resembles the equation of the
ellipse itself. However, notice that the equation (x1x�a2) � (y1y�b2) � 1 is indeed
linear, since x1, y1, a, and b all denote constants. This equation for the tangent to an
ellipse can be derived by using the same technique we employed with the parabola in
the previous section. (See Exercise 61 at the end of this section for the details.)
Example 6 shows how this equation is used.

x1x

a2 �
y1y

b2 � 1
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SOLUTION We know that the equation of the line tangent to the ellipse at the point (x1, y1) is
(x1x�a2) � (y1y�b2) � 1. We are given that x1 � 3 and y1 � 4. Thus we need to de-
termine a2 and b2. To do that, we convert the equation x2 � 3y2 � 57 to standard form
by dividing through by 57, which yields

It follows that a2 � 57 and b2 � 19. The equation of the tangent line then becomes

Solving for y, we obtain

y � �
1

4
 x �

19

4

 x � 4y � 19

 
x

19
�

4y

19
� 1

3x

57
�

4y

19
� 1

x2

57
�

y2

19
� 1

EXAMPLE 6 Determining the Tangent to an Ellipse

Find the equation of the line that is tangent to the ellipse x2 � 3y2 � 57 at the point
(3, 4) on the ellipse; see Figure 13. Write the answer in the form y � mx � b.

(3, 4) Tangent

≈+3¥=57

y

x

Figure 13



We conclude this section by mentioning a few applications of the ellipse. Some
gears in machines are elliptical rather than circular. (In certain brands of racing bikes
this is true of one of the gears in front.) As with the parabola, the reflection property
of the ellipse has applications in optics and acoustics. As indicated in Figure 14, a light
ray or sound emitted from one focus of an ellipse is always reflected through the other
focus. This property is used in the design of “whispering galleries.” In these rooms
(with elliptical cross sections) a person standing at focus F2 can hear a whisper from
focus F1 while others closer to F1 might hear nothing. Statuary Hall in the Capitol
building in Washington, D.C., is a whispering gallery. This idea is used in a modern
medical device known as the lithotripter, in which high-energy sound waves are used
to break up kidney stones. The patient is positioned with the kidney stone at one focus
in an elliptical water bath while sound waves are emitted from the other focus.

An important application of the ellipse occurs in astronomy: For a planet or comet
revolving around the Sun, the orbit is an ellipse with the Sun at one focus. (This fact was
discovered empirically by Johannes Kepler in the early 1600s, and it was proved math-
ematically by Isaac Newton in the 1680s.) In this context, the vertices of the ellipse
(that is, the endpoints of the major axis) have a special significance. We’ll use Figure 15
to explain this. In Figure 15(a) the ellipse represents the orbit of a planet revolving
about the Sun located at focus F. The red circle in the figure is drawn with center F and
radius FV2, where V2 is the vertex closer to F. The figure demonstrates that the planet
comes closest to the Sun (F) when it reaches the point V2 in its orbit. (Why: Each point
on the ellipse other than V2 lies outside of the red circle and therefore is farther from F
than is V2.) The vertex V2 in Figure 15(a) is referred to as the perihelion of the orbit. A
similar argument, using Figure 15(b), shows that at the other vertex V1, the planet
reaches its farthest point from the Sun. This point is the aphelion of the orbit. For ease
of reference we repeat this terminology in the box following Figure 15.
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F¡ F™

Figure 14
A consequence of the reflection
property of the ellipse. A light ray 
or sound emitted from one focus is
reflected through the other focus.

V™F V¡ F

(b)(a)

Portion of circle with
center F and radius FV¡

Figure 15

Definition Perihelion and Aphelion

In the figure, the perihelion is the point of the orbit at which a planet (or comet) is
closest to the sun. The aphelion is the point farthest from the Sun.

Sun

PerihelionAphelion



As is indicated in Figure 16, at perihelion, the distance from a planet or comet to
the Sun is given by the expression a � c, while at aphelion the distance is a � c. We
use these expressions along with data for Halley’s comet in Example 7.
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PerihelionAphelion

a-c

c

a

a+c

a c

F
Figure 16
The distances from a planet or
comet to the sun at perihelion 
and aphelion are a � c and a � c,
respectively.

EXAMPLE 7 Determining the Distances to the Sun at Perihelion and Aphelion

Halley’s comet follows an elliptical orbit around the Sun, reappearing in the skies
above Earth once every 76.6 years. The semimajor axis of the ellipse is a � 17.8 as-
tronomical units (AU). (One AU is 92,956,495 miles, the average distance of the
Earth from the Sun.) The eccentricity of the ellipse is e � 0.967. Find the distance of
the comet from the Sun at perihelion and at aphelion. That is, find the minimum and
maximum distances of Halley’s comet from the Sun.

SOLUTION According to Figure 16, the distances of the comet from the Sun at perihelion and at
aphelion are a � c and a � c, respectively. Since we are given that a � 17.8 AU, we
need to compute c. From the equation e � c�a we have

using the values given for a for e
using a calculator and rounding to one decimal place

Using this value for c, we compute

and

In summary: At perihelion the distance from Halley’s comet to the Sun is approxi-
mately 0.6 AU. This is the closest the comet ever gets to the Sun. At aphelion the dis-
tance from the comet to the Sun is approximately 35.0 AU. This is the farthest that the
comet ever gets from the Sun.

a � c � 17.8 AU � 17.2 AU � 35.0 AU

a � c � 17.8 AU � 17.2 AU � 0.6 AU

 � 17.2 AU
 � (17.8)(0.967)

 c � ae

1. 4x2 � 9y2 � 36 2. 4x2 � 25y2 � 100
3. x2 � 16y2 � 16 4. 9x2 � 25y2 � 225
5. x2 � 2y2 � 2 6. 2x2 � 3y2 � 3
7. 16x2 � 9y2 � 144 8. 25x2 � y2 � 25

A
In Exercises 1–24, graph the ellipses. In each case, specify the
lengths of the major and minor axes, the foci, and the eccentric-
ity. For Exercises 13–24, also specify the center of the ellipse.

EXERCISE SET 12.4



answers to two decimal places; for Mars, round to three
decimal places.

37. Pluto: e � 0.2484; a � 39.44 AU
38. Mars: e � 0.0934; a � 1.5237 AU
39. As is the case for most asteroids in our solar system, the

orbit of the asteroid Gaspra is located between the orbits of
Mars and Jupiter. Given that its distances from the Sun at
perihelion and aphelion are 2.132 AU and 2.288 AU,
respectively, compute the length of the semimajor axis of the
orbit and the eccentricity. Round both answers to two deci-
mal places. Remark: Within the past decade the Galileo
spacecraft (on a mission to Jupiter) took images of Gaspra,
which can be viewed on the World Wide Web. For instance,
at the time of this writing, one NASA website containing
these images is http://www.jpl.nasa.gov/galileo. From this
web page, use the search feature there to find “Gaspra.”

40. The small asteroid Icarus was first observed in 1949 at
Palomar Observatory in California. Given that the distance
from Icarus to the Sun at aphelion is 1.969 AU and the 
eccentricity of the orbit is 0.8269, compute the semimajor
axis of the orbit and the distance from Icarus to the Sun at
perihelion. Round the answers to two decimal places.
Remark: One reason for interest in the orbit of Icarus is
that it crosses Earth’s orbit. On June 14, 1968, there was a
“close” approach in which Icarus came within approxi-
mately 4 million miles of Earth. According to the Jet
Propulsion Laboratory, the next close approach will
be June 16, 2015, at which time Icarus will come within
approximately 5 million miles of the Earth.

B
41. Consider the equation (x2�32) � (y2�22) � 1.

(a) Use the symmetry tests from Section 1.7 to explain
why the graph of this equation must be symmetric
about both the x-axis and the y-axis.

(b) Show that solving the equation for y yields 
y � 


(c) Let y � Use the techniques of Section 2.4
to find the domain of this function. (You need to solve
the inequality 36 � 4x2 � 0.) You should find that the
domain is the closed interval [�3, 3].

(d) Use a calculator to complete the following table. Then
plot the resulting points and connect them with a
smooth curve. This gives you a sketch of the first quad-
rant portion of the graph of (x2�32) � (y2�22) � 1.

x 0 0.5 1 1.5 2 2.5 3

y � 2 0

(e) Use your graph in part (d) along with the symmetry
results in part (a) to sketch a complete graph of
(x2�32) � (y2�22) � 1.

1
3236 � 4x2

1
3236 � 4x2.

1
3236 � 4x2.

9. 15x2 � 3y2 � 5 10. 9x2 � y2 � 4
11. 2x2 � y2 � 4 12. 36x2 � 25y2 � 400

13. � 1 14. � 1

15. � 1 16. � 1

17. � 1 18. � 1

19. 3x2 � 4y2 � 6x � 16y � 7 � 0
20. 16x2 � 64x � 9y2 � 54y � 1 � 0
21. 5x2 � 3y2 � 40x � 36y � 188 � 0
22. x2 � 16y2 � 160y � 384 � 0
23. 16x2 � 25y2 � 64x � 100y � 564 � 0
24. 4x2 � 4y2 � 32x � 32y � 127 � 0

In Exercises 25–32, find the equation of the ellipse satisfying
the given conditions. Write the answer both in standard form
and in the form Ax2 � By2 � C.

25. Foci (
3, 0); vertices (
5, 0)
26. Foci (0, 
1); vertices (0, 
4)
27. Vertices (
4, 0); eccentricity 1�4
28. Foci (0, 
2); endpoints of the minor axis (
5, 0)
29. Foci (0, 
2); endpoints of the major axis (0, 
5)
30. Endpoints of the major axis (
10, 0); endpoints of the

minor axes (0, 
4)
31. Center at the origin; vertices on the x-axis; length of major axis

is twice the length of minor axis; 11, 2 lies on the ellipse
32. Eccentricity 3�5; one endpoint of the minor axis (�8, 0);

center at the origin
33. Find the equation of the tangent to the ellipse x2 � 3y2 � 76

at each of the given points. Write your answers in the form
y � mx � b.
(a) (8, 2) (b) (�7, 3) (c) (1, �5)

34. (a) Find the equation of the line tangent to the ellipse
x2 � 3y2 � 84 at the point (3, 5) on the ellipse. Write
your answer in the form y � mx � b.

(b) Repeat part (a), but at the point (�3, �5) on the ellipse.
(c) Are the lines determined in (a) and (b) parallel?

35. A line is drawn tangent to the ellipse x2 � 3y2 � 52 at the
point (2, 4) on the ellipse.
(a) Find the equation of this tangent line.
(b) Find the area of the first-quadrant triangle bounded by

the axes and this tangent line.
36. Tangent lines are drawn to the ellipse x2 � 3y2 � 12 at the

points (3, �1) and (�3, �1) on the ellipse.
(a) Find the equation of each tangent line. Write your an-

swers in the form y � mx � b.
(b) Find the point where the tangent lines intersect.

In Exercises 37 and 38, you are given the eccentricity e and the
length a of the semimajor axis for the orbits of Pluto and Mars.
Compute the distance of each from the Sun at perihelion and
at aphelion (as in Example 7). For Pluto, round the final

12

(x � 2)2

22 �
(y � 2)2

22

(x � 3)2

32 �
y2

12

x2

42 �
(y � 3)2

22

(x � 1)2

12 �
(y � 2)2

22

(x � 1)2

22 �
(y � 4)2

32

(x � 5)2

52 �
(y � 1)2

32
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(b) Square both sides of the equation in part (a). Show that
the result can be written

(c) Verify that the equation in part (b) is equivalent to

(d) Using the equation in part (c), replace the quantity
a2 � c2 with b2. Then show that the resulting 
equation can be rewritten (x2�a2) � (y2�b2) � 1, 
as required.

45. In the text we defined the positive number b2 by the equation
b2 � a2 � c2. For this definition to make sense, we need to
show that the quantity a2 � c2 is positive. This can be done
as follows. First, recall that in any triangle, the sum of the
lengths of two sides is always greater than the length of the
third side. Now apply this fact to triangle F1PF2 in Figure 4
to show that 2a � 2c. Conclude from this that a2 � c2 � 0,
as required.

46. A line is drawn tangent to the ellipse (x2�a2) � (y2�b2) � 1
at the point (x1, y1) on the ellipse. Let P and Q denote the
points where the tangent meets the y- and x-axes, respec-
tively. Show that the midpoint of PQ is (a2�2x1, b

2�2y1).
47. A normal to an ellipse is a line drawn perpendicular to the

tangent at the point of tangency. Show that the equation of
the normal to the ellipse (x2�a2) � (y2�b2) � 1 at the point
(x1, y1) can be written

48. Let (x1, y1) be any point on the ellipse (x2�a2) � (y2�b2) �
1 (a � b) other than one of the endpoints of the major or
minor axis. Show that the normal at (x1, y1) does not pass
through the origin. Hint: Find the y-intercept of the normal.

49. Find the points of intersection of the ellipses

Include a sketch with your answer.
50. Let F1 and F2 denote the foci of the ellipse

(x2�a2) � (y2�b2) � 1 (a � b). Suppose that P is one of the
endpoints of the minor axis and angle F1PF2 is a right
angle. Compute the eccentricity of the ellipse.

51. Let P(x1, y1) be a point on the ellipse (x2�a2) � (y2�b2) � 1.
Let N be the point where the normal through P meets 
the x-axis, and let F be the focus (�c, 0). Show that
FN�FP � e, where e denotes the eccentricity.

52. Let P(x1, y1) be a point on the ellipse b2x2 � a2y2 � a2b2.
Suppose that the tangent to the ellipse at P meets the y-axis
at A and the x-axis at B. If AP � PB, what are x1 and y1 (in
terms of a and b)?

53. (a) Verify that the points A(5, 1), B(4, �2), and C(�1, 3)
all lie on the ellipse x2 � 3y2 � 28.

(b) Find a point D on the ellipse such that is parallel 

to AB.

CD

x2

a2 �
y2

b2 � 1  and  
x2

b2 �
y2

a2 � 1 (a � b)

a2y1x � b2x1y � (a2 � b2)x1y1

(a2 � c2)x2 � a2y2 � a2(a2 � c2)

a2x2 � x2c2 � a2y2 � a4 � a2c2

42. In this exercise we consider how the eccentricity e
influences the graph of an ellipse (x2�a2) � (y2�b2) � 1.
(a) For simplicity, we suppose that a � 1 so that the equa-

tion of the ellipse is x2 � (y2�b2) � 1. Solve this equa-
tion for y to obtain

(1)

(b) Assuming that a � 1, show that b and e are related by 
the equation b2 � 1 � e2, from which it follows that
b � 
 The positive root is appropriate here
because b � 0. Thus, we have

(2)

(c) Using equation (2) to substitute for b in equation (1)
yields

(3)

This pair of equations represents an ellipse with semimajor
axis 1 and eccentricity e. Using the value e � 0.3, graph
equations (3) in the viewing rectangle [�1, 1] by [�1, 1].
Use true proportions and, for comparison, add to your pic-
ture the circle with radius 1 and center (0, 0). Note that the
ellipse is nearly circular.
(d) Follow part (c) using e � 0.017. This is approxi-

mately the eccentricity for Earth’s orbit around the 
Sun. How does the ellipse compare to the circle in 
this case?

0. (e) Follow part (c) using, in turn, e � 0.4, e � 0.6, e � 0.8,
e � 0.9, e � 0.99, and e � 0.999. Then, in complete
sentences, summarize what you’ve observed.

43. In the accompanying figure, the center of the circle and 
one focus of the ellipse coincide with the focus of the
parabola y2 � 4x. All three curves are symmetric about the
x-axis and pass through the origin. The eccentricity of 
the ellipse is 3�4. Find the equations of the circle and 
the ellipse.

44. This exercise outlines the steps needed to complete the
derivation of the equation (x2�a2) � (y2�b2) � 1.
(a) Square both sides of equation (1) on page 865. After

simplifying, you should obtain

a2(x � c)2 � y2 � a2 � xc

y@=4x

y

x

y � 21 � e221 � x2  or  y � �21 � e221 � x2

b �21 � e2

21 � e2.

y � 
b21 � x2
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(c) In a similar fashion, show that b2x2h � a2y2k � a2b2,
where (x2, y2) is the other point of tangency.

(d) The equation b2hx � a2ky � a2b2 represents a line.
Explain why this line must pass through the points 
(x1, y1) and (x2, y2).

58. (a) The auxiliary circle of an ellipse is defined to be the
circle with diameter the same as the major axis of the
ellipse. Determine the equation of the auxiliary circle
for the ellipse 9x2 � 25y2 � 225.

(b) Graph the ellipse 9x2 � 25y2 � 225 along with its
auxiliary circle. (Use true proportions.)

59. As background for this exercise, you need to have worked
Exercise 58. This exercise illustrates an interesting geo-
metric result concerning an ellipse and its auxiliary circle.
(a) Graph the ellipse x2 � 3y2 � 12 for y � 0.
(b) Find the values of a, b, and c for this ellipse.
(c) Find the equation of the auxiliary circle for this

ellipse. Add the graph of the top half of this circle to
your picture from part (a).

(d) Verify (algebraically) that the point P(3, 1) lies on the
ellipse. Then find the equation of the tangent line to the
ellipse at P.

(e) Add the graph of the tangent from part (d) to the
picture that you obtained in part (c).

(f) In part (b) you determined the value of c. Find the
equation of the line passing through (�c, 0) and 
perpendicular to the tangent in part (d). Then add the
graph of this line to your picture. If you’ve done things
correctly, you should obtain a figure similar to the
following one. This figure provides an example of this
general result: The line through the focus and perpen-
dicular to the tangent meets the tangent at a point on
the auxiliary circle.

C
60. Complete the derivation of equation (4), the standard form

for an equation of an ellipse with foci F1(�c, 0) and F2(c, 0).
Hint: Let b2 � a2 � c2. Show that if x and y satisfy equa-
tion (4), then the sum of the distances from the point (x, y)
to the foci (�c, 0) and (c, 0) is

` a2 � cx
a

` � ` a2 � cx
a

`

y

x

1

3

1 2 3 4

(c) If O denotes the center of the ellipse, show that 
the triangles OAC and OBD have equal areas.
Suggestion: In computing the areas, the formula 
given at the end of Exercise 34 in Section 1.4 is useful.

54. Find the points of intersection of the parabola y � x2

and the ellipse b2x2 � a2y2 � a2b2.
55. Recall that the two line segments joining a point on the 

ellipse to the foci are called focal radii. These are the
segments and in the following figure.

(a) Show that F1P � a � ex. Hint: If you try to do 
this from scratch, it can involve a rather lengthy 
calculation. Begin instead with the equation 

a � a2 � xc [from Exercise 44 (a)],
and divide both sides by a.

(b) Show that F2P � a � ex. Hint: Make use of 
the result in part (a), together with the fact that
F1P � F2P � 2a, by definition.

56. Find the coordinates of a point P in the first quadrant on the
ellipse 9x2 � 25y2 � 225 such that is a right angle.

57. The accompanying figure shows the two tangent lines
drawn from the point (h, k) to the ellipse b2x2 � a2y2 � a2b2.
Follow steps (a) through (d) to show that the equation of
the line passing through the two points of tangency is
b2hx � a2ky � a2b2.

(a) Let (x1, y1) be one of the points of tangency. Check that
the equation of the tangent line through this point is
b2x1x � a2y1y � a2b2.

(b) Using the result in part (a), explain why
b2x1h � a2y1k � a2b2.

y

x
(h, k)

b@x@+a@y@=a@b@

�F2PF1

2(x � c)2 � y2

x@

a@

y@

b@
+ =1

P(x, y)

F¡(_c, 0) F™(c, 0)

y

x

F2PF1P
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(d) Solve equation (5) for y, and then substitute for y in
equation (4) to obtain

(6)

(e) Show that equation (6) can be written

(7)

(f) Equation (7) is a quadratic equation in x, but as was
pointed out earlier, x � x1 must be the only solution.
(That is, x � x1 is a double root.) Thus the factor in
brackets must equal zero when x is replaced by x1. Use
this observation to show that

This represents the slope of the line tangent to the ellipse 
at (x1, y1).
(g) Using this value for m, show that equation (5) becomes

(8)

(h) Now use equation (2) to show that equation (8) can be
written

which is what we set out to show.

x1x

a2 �
y1y

b2 � 1

b2x1x � a2y1y � b2x2
1 � a2y2

1

m � �
b2x1

a2y1

(x � x1)[b
2(x � x1) � a2m2(x � x1) � 2a2my1] � 0

b2(x2 � x2
1) � a2m2(x � x1)

2 � 2a2my1(x � x1) � 0

(4)
(5)

eb2(x2 � x2
1) � a2(y2 � y2

1) � 0

y � y1 � m(x � x1)
Simplify carefully using the fact �a � x � a to show this
sum is 2a.

61. This exercise outlines the steps required to show that the
equation of the tangent to the ellipse (x2�a2) � (y2�b2) � 1
at the point (x1, y1) on the ellipse is (x1x�a2) � (y1y�b2) � 1.
(a) Show that the equation (x2�a2) � (y2�b2) � 1 is equiv-

alent to

(1)

Conclude that (x1, y1) lies on the ellipse if and only if

(2)

(b) Subtract equation (2) from equation (1) to show that

(3)

Equation (3) is equivalent to equation (1) provided
only that (x1, y1) lies on the ellipse. In the following
steps, we will find the algebra much simpler if we use
equation (3) to represent the ellipse, rather than the
equivalent and perhaps more familiar equation (1).

(c) Let the equation of the line tangent to the ellipse at 
(x1, y1) be

Explain why the following system of equations must
have exactly one solution, namely, (x1, y1):

y � y1 � m(x � x1)

b2(x2 � x2
1) � a2(y2 � y2

1) � 0

b2x2
1 � a2y2

1 � a2b2

b2x2 � a2y2 � a2b2
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MINI PROJECT The Circumference of an Ellipse

As you know, there is a simple expression for the circumference of a circle of
radius a, namely, 2pa. However, there is no similar type of elementary expres-
sion for the circumference of an ellipse. (The circumference of an ellipse can
be computed to as many decimal places as required using the methods of cal-
culus.) Nevertheless, there are some interesting elementary formulas that allow
us to approximate the circumference of an ellipse quite closely. Four such for-
mulas follow, along with the names of their discoverers and approximate dates
of discovery. Each formula yields an approximate value for the circumference
of the ellipse (x2�a2) � (y2�b2) � 1.

Discoverer Date Formula

Giuseppe Peano 1887

Scrinivasa Ramanujan 1914

Roger A. Johnson 1930

Roger Maertens 2000 C4 � 4(ay � by)1�y, where y �
ln  2

ln(p�2)

C3 �
p

2
[a � b � 22(a2 � b2)]

C2 � p[3(a � b) � 1(a � 3b)(3a � b)]

C1 � p ca � b �
1

2
 11a � 1b 2 2 d
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(a) In the figure on the left, the red ellipse has an eccentricity of 0.9, and the
blue ellipse an eccentricity of 0.5. The outer circle has a radius of 10,
which is equal to the semimajor axis of each ellipse. As preparation for
parts (b) and (c), determine the equation of each ellipse.

(b) For the red ellipse, use the approximation formulas given above to com-
plete the table at left. Round the values of C1, C2, C3, and C4 to six decimal
places. Round the percentage errors to two significant digits. In computing
the percentage errors, use the fact that the actual circumference, rounded to
six decimal places, is 23.433941. Which of the four approximations for the
circumference of this ellipse is the best? Which is worst? How does the cir-
cumference of this ellipse compare to that of the black circle in the figure?
That is, using the given six-place value for circumference, compute the
ratio of the circumference of the ellipse to the circumference of the circle.

(c) Follow part (b) for the blue ellipse. The actual circumference here,
rounded to six decimal places, is 29.349244. Compare your results for per-
centage errors to those in part (b), and summarize your observations
(using complete sentences).

(d) What is the circumference of the circle in the given figure? What value
does each approximation formula yield for the circumference of the circle?

x

y

Approxi-
mation 

to Percentage
Circumference Error

C1

C2

C3

C4

12.5 THE HYPERBOLA
The ellipse is the general shape of any closed orbit. . . . It is also possible to have 
orbits that are not closed. . . . Even if the two bodies are not bound together by their
mutual gravitational attraction, their gravitational attraction for each other still 
affects their relative motion. Then the general shape of their orbit is a hyperbola. 
—Theodore P. Snow in The Dynamic Universe: An Introduction to Astronomy, 4th ed. (St. Paul,

Minn.: West Publishing Co., 1990)

In the previous section we defined an ellipse as the set of points P such that the sum
of the distances from P to two fixed points is constant. By considering the difference
instead of the sum, we are led to the definition of the hyperbola.

Definition The Hyperbola

A hyperbola is the set of all points in the plane, the absolute value of the difference
of whose distances from two fixed points is a positive constant. Each fixed point is
called a focus.

As with the ellipse, we label the foci F1 and F2. Before obtaining an equation for
the hyperbola, we can see the general features of the curve by using two sets of con-
centric circles, with centers F1 and F2, to locate points satisfying the definition of a
hyperbola. In Figure 1 we’ve plotted a number of points P such that either
F1P � F2P � 3 or F2P � F1P � 3. By joining these points, we obtain the graph of the
hyperbola shown in Figure 1.



Unlike the parabola or the ellipse, the hyperbola is composed of two distinct
parts, or branches. As you can check, the left branch in Figure 1 corresponds to the
equation F2P � F1P � 3, while the right branch corresponds to the equation
F1P � F2P � 3. Figure 1 also reveals that the hyperbola possesses two types of
symmetry. First, it is symmetric about the line passing through the two foci F1 and
F2; this line is referred to as the focal axis of the hyperbola. Second, the hyperbola is
symmetric about the line that is the perpendicular bisector of the segment 

To derive an equation for the hyperbola, let us initially assume that the foci are
located at the points with foci F1(�c, 0) and F2(c, 0), as indicated in Figure 2. We
will use 2a to denote the positive constant absolute value of the difference of dis-
tances referred to in the definition of the hyperbola. By definition, then, P(x, y) lies
on the hyperbola if and only if

or, equivalently,

If we use the formula for the distance between two points, this last equation becomes

or

We can simplify this equation by carrying out the same procedure that we used for
the ellipse in the previous section. As Exercise 46 asks you to verify, the resulting
equation is

(1)(c2 � a2)x2 � a2y2 � a2(c2 � a2)

2(x � c)2 � y2 � 2(x � c)2 � y2 � �2a

2(x � c)2 � (y � 0)2 � 2(x � c)2 � (y � 0)2 � �2a

F1P � F2P � �2a

0F1P � F2P 0 � 2a

F1F2.
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F¡ F™

Figure 1

x

y

P(x, y)

F¡(_c, 0) F™(c, 0)

Figure 2 



Before further simplifying equation (1), we point out that the quantity c2 � a2 [which
appears twice in equation (1)] is positive. To see why this is so, refer back to Figure 2.
In triangle F1F2P (as in any triangle) the length of any side is less than the sum of the
lengths of the other two sides. Thus

and therefore

These last two equations tell us that

Therefore in view of the definitions of 2a and 2c, we have

This last inequality tells us that c2 � a2 is positive, as we wished to show.
Now, since c2 � a2 is positive, we can define the positive number b by the equation

With this notation equation (1) becomes

Dividing by a2b2, we obtain

(2)

We have now shown that the coordinates of every point on the hyperbola satisfy equa-
tion (2). Conversely, it can be shown that if the coordinates of a point satisfy 
equation (2), then the point satisfies the original definition of the hyperbola (see
Exercise 55). Equation (2) is the standard form for the equation of a hyperbola with
foci F1(�c, 0) and F2(c, 0).

The intercepts of the hyperbola are readily obtained from equation (2). To find
the x-intercepts, we set y equal to zero to obtain

Thus the hyperbola crosses the x-axis at the points (�a, 0) and (a, 0). On the other
hand, the curve does not cross the y-axis, for if we set x equal to zero in equation (2),
we obtain �y2�b2 � 1, or

Since the square of any real number y is nonnegative, this last equation has no solu-
tion. Therefore the graph does not cross the y-axis. Finally, let us note that (accord-
ing to the symmetry tests in Section 1.7) the graph of equation (2) must be symmetric
about both coordinate axes.

y2 � �b2  (b � 0)

 x2 � a2  or  x � �a

 
x2

a2 � 1

x2

a2 �
y2

b2 � 1

b2x2 � a2y2 � a2b2

b2 � c2 � a2

0 � 2a � 2c  or  0 � a � c

0F1P � F2P 0 � F1F2

F1P � F2P � F1F2  and  F2P � F1P � F1F2

F1P � F1F2 � F2P  and  F2P � F1F2 � F1P
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Before graphing the hyperbola (x2�a2) � (y2�b2) � 1, we point out the important
fact that the two lines y � (b�a)x and y � �(b�a)x are asymptotes for the curve. We
can see why as follows. First we solve equation (2) for y:

multiplying both sides by a2b2

(3)

Now, as x grows arbitrarily large, the value of the quantity becomes closer
and closer to x itself. Table 1 provides some empirical evidence for this statement in
the case when a � 5. (A formal proof uses results from calculus.) In summary, then,

we have the approximation � x as x grows arbitrarily large. So, in view of
equation (3), we have

In other words, the two lines y � �(b�a)x are asymptotes for the hyperbola. A care-
ful argument that these are the asymptotes for a particular hyperbola is given in
Section 14.6, Example 5.

A simple way to sketch the two asymptotes and then graph the hyperbola is as
follows. First draw the reference rectangle with vertices (a, b), (�a, b), (�a, �b), and
(a, �b), as indicated in Figure 3(a). The slopes of the diagonals in this rectangle are b�a
and �b�a. Thus by extending these diagonals as in Figure 3(b), we obtain the two
asymptotes y � �(b�a)x. Now, since the x-intercepts of the hyperbola are a and �a, we
can sketch the curve as shown in Figure 3(c). Also, note that c is the length of the seg-
ment from the origin to any corner of the box, for example, (a, b). Again, see Figure 3(c).

y � �
b
a
2x2 � a2 � �

b
a

 x  as x grows arbitrarily large

2x2 � a2

2x2 � a2

 y � �
b
a
2x2 � a2

 y2 �
b2x2 � a2b2

a2 �
b2(x2 � a2)

a2

 �a2y2 � a2b2 � b2x2

 b2x2 � a2y2 � a2b2

 
x2

a2 �
y2

b2 � 1
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(a, _b)

y

x

(_a, _b)

(_a, b) (a, b)

(a)

y

x

c

(c)

(_a, 0) (a, 0)

x@

a@

y@

b@
-     =1

x@

a@

y@

b@
-     =1

y

x

(b)

y=    x
b
a

y=_    x
b
a

Figure 3
Steps in graphing the hyperbola
(x2�a2) � (y2�b2) � 1 and its
asymptotes.

For the hyperbola in Figure 3(c) the two points (�a, 0), where the curve meets the
x-axis, are referred to as vertices. The midpoint of the line segment joining the two
vertices is called the center of the hyperbola. (Equivalently, we can define the center
as the point of intersection of the two asymptotes.) For the hyperbola in Figure 3(c)
the center coincides with the origin. The line segment joining the vertices of a hyper-
bola is the transverse axis of the hyperbola. For reference, in the box that follows, we
summarize our work on the hyperbola up to this point. Several new terms describing
the hyperbola are also given in the box.

TABLE 1

x

100 99.875
1000 999.987

10,000 9999.999

2x2 � 52



y

x

4
5

3

16≈-9¥=144    or
x@

3@
=1-

y@

4@

Figure 5

In general, if A, B, and C are positive numbers, then the graph of an equation of
the form

will be a hyperbola of the type shown in Figure 4. Example 1 shows why this is so.

Ax2 � By2 � C
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PROPERTY SUMMARY
The Hyperbola � 1

1. The foci are the points F1(�c, 0) and F2(c, 0). The hyperbola
is the set of points P such that F1P � F2P � 2a. Given a and c,
b2 � c2 � a2.

2. The focal axis is the line passing through the foci.
3. The vertices are the points at which the hyperbola intersects 

its focal axis. In Figure 4 these are the two points V1(�a, 0) 
and V2(a, 0).

4. The center is the point on the focal axis midway between the
foci. The center of the hyperbola in Figure 4 is the origin.

5. The transverse axis is the line segment joining the two vertices.
In Figure 4 the length of the transverse axis is 2a.

6. The conjugate axis is the line segment perpendicular to the
transverse axis, passing through the center and extending a
distance b on either side of the center. In Figure 4 this is the
segment 

7. The eccentricity e is defined by e � c�a, where c2 � a2 � b2.
8. The asymptotes are the lines .y � �b

a x

AB.

V1V2

00

x2

a2 �
y2

b2

 F™(c, 0)

A

B

y

x

 V™(a, 0)

y=-   x

    -     =1
x@

a@

y@

b@

 F¡(_c, 0)

 V¡(_a, 0)

y=    x
b
a

    -     =1
x@

a@

y@

b@

b
a

Figure 4

SOLUTION First we convert the given equation to standard form by dividing both sides by 144.
This yields

By comparing this with the equation (x2�a2) � (y2�b2) � 1, we see that a � 3 and
b � 4. Draw the reference rectangle. The value of c can be determined by using the
equation c2 � a2 � b2. We have

Now that we know the values of a, b, and c, we can list the required information:

Vertices: (�3, 0) Length of transverse axis (� 2a): 6
Foci: (�5, 0) Length of conjugate axis (� 2b): 8

Eccentricity: Asymptotes:

The graph of the hyperbola is shown in Figure 5.

y � �
b
a

x � �
4

3
xe �

c
a

�
5

3

c2 � 32 � 42 � 25  and therefore  c � 5

x2

9
�

y2

16
� 1  or  

x2

32 �
y2

42 � 1

EXAMPLE 1 Analyzing a Hyperbola

Graph the hyperbola 16x2 � 9y2 � 144 after determining the following: vertices,
foci, eccentricity, lengths of the transverse and conjugate axes, and asymptotes.



We can use the same method that we used to derive the equation for the hyper-
bola with foci (�c, 0) when the foci are instead located on the y-axis at the points 
(0, �c). The equation of the hyperbola in this case is

We summarize the basic properties of this hyperbola in the following box.

y2

a2 �
x2

b2 � 1
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SOLUTION factoring
completing 
the squares

dividing by 225

Now, the graph of this last equation is obtained by translating the graph of the equation

(4)

to the right four units and up three units. First we analyze the graph of equation (4).
The general form of the graph is shown in the figure in the preceding Property
Summary box. In this case we have a � 5, b � 3, and

c � 2a2 � b2 � 252 � 32 � 134 (� 5.8)

y2

52 �
x2

32 � 1

 
(y � 3)2

52 �
(x � 4)2

32 � 1

 9(y � 3)2 � 25(x � 4)2 � 225

 9(y2 � 6y � 9) � 25(x2 � 8x � 16) � 544 � 81 � 400
 9(y2 � 6y � 9) � 25(x2 � 8x � 16) � 544

EXAMPLE 2 Completing the Square to Analyze and Graph a Hyperbola

Use the technique of completing the square to show that the graph of the following
equation is a hyperbola:

Graph the hyperbola, and specify the center, the vertices, the foci, the length of the
transverse axis, and the equations of the asymptotes.

9y2 � 54y � 25x2 � 200x � 544 � 0

PROPERTY SUMMARY
The Hyperbola � 1

Foci: (0, �c), where c2 � a2 � b2 

Vertices: (0, �a)
Asymptotes: y � �(a�b)x
Length of transverse axis: 2a
Length of conjugate axis: 2b
Eccentricity: e � c�a 

y2

a2 �
x2

b2

y=-   x
a
b

(0, _a)(0, _c)

a
c

 b  x

(0, a)(0, c)  y

    -      =1
y@

a@

x @

b@

y=    x
a
b



Consequently, the vertices [for equation (4)] are (0, �5), the foci are and
the asymptotes are y � Figure 6 shows the graph of this hyperbola. Finally, by
translating the graph in Figure 6 to the right four units and up three units, we obtain
the graph of the original equation, as shown in Figure 7. You should verify for your-
self that the information accompanying Figure 7 is correct.

� 
5
3 x.

10, �134 2 ,
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Center:   (4, 3)

Vertices:   (4, 8), (4, _2)

Foci:   (4, 3�œ34)„„

Length of transverse axis:   10

Asymptotes: y=    x-    ; y=_    x+5
3

11
3

5
3

29
3

(7, 8)

(1, _2)
(7, _2)

(4, _2)

(1, 8)

y

(4, 8)

(4, 3)

x

{4, 3+œ„„34}

9¥-54y-25≈+200x-544=0
or

{4, 3-œ„„34}

y-3=    (x-4)
5
3

y-3=_    (x-4)
5
3

(y-3)@

5@

(x-4)@

3@
-

=1

=1

Figure 7 

y

x

(3, 5)(_3, 5)

(_3, _5) (3, _5)

(0, _5)

(0, 5)

Vertices: (0, �5)

Foci: (0, �œ„„34)

(0, �œ„„34)

(0, œ„„34)

Length of transverse axis: 10

Asymptotes: y=�    x

y@

5@

x@

3@
-     =1

y=    x
5
3

y=_    x
5
3

5
3

Figure 6 

If you reread the example we have just completed, you’ll see that it was not nec-
essary to know in advance that the given equation represented a hyperbola. Rather,
this fact emerged naturally after we completed the square. Indeed, completing the
square is a useful technique for identifying the graph of any equation of the form

Ax2 � Cy2 � Dx � Ey � F � 0

SOLUTION As before, we complete the squares:

 4(x � 4)2 � (y � 1)2 � 0
 4(x2 � 8x � 16) � (y2 � 2y � 1) � �63 � 64 � 1

 4(x2 � 8x) � (y2 � 2y) � �63

EXAMPLE 3 Completing the Square to Identify a Graph

Identify the graph of the equation

4x2 � 32x � y2 � 2y � 63 � 0



Since the right-hand side of this last equation is zero, dividing both sides by 4 will
not bring the equation into one of the standard forms. Indeed, if we factor the left-
hand side of the equation as a difference of two squares, we obtain

Thus the given equation is equivalent to the two linear equations y � 2x � 7 and
y � �2x � 9. These two lines together constitute the graph. See Figure 8.

The two lines that we graphed in Figure 8 are actually the asymptotes for the hy-
perbola 4(x � 4)2 � (y � 1)2 � 1. (Verify this for yourself.) For that reason the graph
in Figure 8 is referred to as a degenerate hyperbola. There are other cases similar to
this that can arise in graphing equations of the form Ax2 � Cy2 � Dx � Ey � F � 0.
For instance, as you can check for yourself by completing the squares, the graph of
the equation

consists of the single point (1, 2). We refer to the graph in this case as a degener-
ate ellipse. Similarly, as you can check by completing the squares, the equation
x2 � 2x � 4y2 � 16y � 18 � 0 has no graph; there are no points with coordinates
that satisfy the equation.

We can obtain the equation of a tangent line to a hyperbola using the same ideas
that were employed for the parabola and the ellipse in the previous sections. The 
result is this: The equation of the tangent to the hyperbola (x2�a2) � (y2�b2) � 1 at
the point (x1, y1) on the curve is

(See Exercise 56 at the end of this section for an outline of the derivation.) As with
the parabola and the ellipse, many interesting properties of the hyperbola are related
to the tangent lines. For instance, the hyperbola has a reflection property that is sim-
ilar to the reflection properties of the parabola and the ellipse. To state this property,
we first define a focal radius of a hyperbola as a line segment drawn from a focus to
a point on the hyperbola. Then the reflection property of the hyperbola is that the
tangent line bisects the angle formed by the focal radii drawn to the point of tan-
gency, as indicated in Figure 9.

We conclude this section by listing several applications of the hyperbola. Some
comets have hyperbolic orbits. Unlike Halley’s comet, which has an elliptical orbit,
these comets pass through the solar system once and never return. The Cassegrain tele-
scope (invented by the Frenchman Sieur Cassegrain in 1672) uses both a hyperbolic
mirror and a parabolic mirror. The Hubble Space Telescope, launched into orbit in 
April 1990, utilizes a Cassegrain telescope. The hyperbola is also used in some navi-
gation systems. In the LORAN (LOng RAnge Navigation) system an airplane or a ship
at a point P receives radio signals that are transmitted simultaneously from two loca-
tions, F1 and F2. The time difference between the two signals is converted to a difference

x1x

a2 �
y1y

b2 � 1

x2 � 2x � 4y2 � 16y � 17 � 0

 
2x � y � 7 � 0�2x �

�y � �2x � 7
y � 2x � 7

 † 2x � y � 9 � 0 2x �
y � �2x � 9

 

 (2x � y � 7)(2x � y � 9) � 0
 [2(x � 4) � (y � 1)][2(x � 4) � (y � 1)] � 0
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y

x

y=2x-7

y=_2x+9

4≈-32x-¥+2y+63=0
or

(2x-y-7)(2x+y-9)=0

Figure 8 

P

å

∫

F¡ F™

Figure 9
Reflection property of the
hyperbola: The tangent at P bisects
the angle formed by the focal radii
drawn to P, so a� b.



in distances: F1P � F2P. This locates the ship along one branch of a hyperbola. Then,
using data from a second set of signals, the ship is located along a second hyperbola.
The intersection of the two hyperbolas then determines the location of the airplane or
ship. The project at the end of this section presents a problem of this type.
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29. Asymptotes y � vertices (�2, 0)
30. Asymptotes y � �x; foci (0, �1)
31. Asymptotes foci 
32. Length of the transverse axis 6; eccentricity 4�3; center 

(0, 0); focal axis horizontal
33. Vertices (0, �7); graph passes through the point (1, 9)
34. Eccentricity 2; foci (�1, 0)
35. Length of the transverse axis 6; length of the conjugate 

axis 2; foci on the y-axis; center at the origin
36. Asymptotes y � �2x; graph passes through 11, 
37. Show that the two asymptotes of the hyperbola

x2 � y2 � 16 are perpendicular to each other.
38. (a) Verify that the point P 16, lies on the hyperbola

16x2 � 9y2 � 144.
(b) In Example 1, we found that the foci of this hyperbola

were F1(�5, 0) and F2(5, 0). Compute the lengths F1P
and F2P, where P is the point 16, 4 .

(c) Verify that F1P � F2P � 2a.
39. (a) Verify that the point P(5, 6) lies on the hyperbola

5y2 � 4x2 � 80.
(b) Find the foci.
(c) Compute the lengths of the line segments and 

where P is the point (5, 6).
(d) Verify that F1P � F2P � 2a.

40. In this exercise you will look at the graph of the 
hyperbola 16x2 � 9y2 � 144 from two perspectives.
(a) Solve the given equation for y, then graph the two

resulting functions in the standard viewing rectangle.
(b) Determine the equations of the asymptotes. Add

the graphs of the asymptotes to your picture from
part (a).

(c) Looking at your picture from part (b), you can see that
the hyperbola seems to be moving closer and closer to
its asymptotes as gets large. To see more dramatic
evidence of this, change the viewing rectangle so that
both x and y extend from �100 to 100. At this scale,
the hyperbola is virtually indistinguishable from its
asymptotes.

41. In this exercise we graph the hyperbola 

(a) Solve the equation for y to obtain 

y � 3 � 521 � (x � 4)2�9

(y � 3)2

52 �
(x � 4)2

32 � 1

0 x 0

00
F2P,F1P

00
13 2

413 2

13 2

1�17, 0 2y � �110 x�5;

�1
2 x;A

For Exercises 1–24, graph the hyperbolas. In each case in
which the hyperbola is nondegenerate, specify the following:
vertices, foci, lengths of transverse and conjugate axes, eccen-
tricity, and equations of the asymptotes. In Exercises 11–24,
also specify the centers.

1. x2 � 4y2 � 4 2. y2 � x2 � 1
3. y2 � 4x2 � 4 4. 25x2 � 9y2 � 225
5. 16x2 � 25y2 � 400 6. 9x2 � y2 � 36
7. 2y2 � 3x2 � 1 8. x2 � y2 � 9
9. 4y2 � 25x2 � 100 10. x2 � 3y2 � 3

11. 12.

13. 14.

15. 16.

17. x2 � y2 � 2y � 5 � 0
18. 16x2 � 32x � 9y2 � 90y � 353 � 0
19. x2 � y2 � 4x � 2y � 6 � 0
20. x2 � 8x � y2 � 8y � 25 � 0
21. y2 � 25x2 � 8y � 9 � 0
22. 9y2 � 18y � 4x2 � 16x � 43 � 0
23. x2 � 7x � y2 � y � 12 � 0
24. 9x2 � 9x � 16y2 � 4y � 2 � 0
25. Let P(x, y) be a point in the first quadrant on the hyperbola

(x2�22) � (y2�12) � 1. Let Q be the point in the first quad-
rant with the same x-coordinate as P and lying on an asymp-

tote to the hyperbola. Show that PQ �
26. The distance PQ in Exercise 25 represents the vertical dis-

tance between the hyperbola and the asymptote. Complete
the following table to see numerical evidence that this
separation distance approaches zero as x gets larger and
larger. (Round each entry to one significant digit.)

x 10 50 100 500 1000 10,000

PQ

In Exercises 27–36, determine the equation of the hyperbola
satisfying the given conditions. Write each answer in the form
Ax2 � By2 � C or in the form Ay2 � Bx2 � C.

27. Foci (�4, 0); vertices (�1, 0)
28. Foci (0, �5); vertices (0, �3)

1x � 2x2 � 4 2�2.

(x � 1)2

52 �
(y � 2)2

32 � 1
(x � 3)2

42 �
(y � 4)2

42 � 1

(y � 3)2

22 �
x2

12 � 1
(y � 2)2

22 �
(x � 1)2

12 � 1

(x � 5)2

32 �
(y � 1)2

52 � 1
(x � 5)2

52 �
(y � 1)2

32 � 1
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(c) Divide both sides of the preceding equation by a to
show that xe � a � F2P, as required.

48. Let P(x, y) be a point on the right-hand branch of the
hyperbola x2�a2 � y2�b2 � 1. As usual, let F1 denote 
the focus located at (�c, 0). Show that F1P � xe � a.
Hint: Use the result in Exercise 47 along with the fact 
that the right-hand branch is defined by the equation
F1P � F2P � 2a.

49. Let P be a point on the right-hand branch of the hyperbola
x2 � y2 � k2. If d denotes the distance from P to the center
of the hyperbola, show that

50. Let P(x, y) be a point on the right-hand branch of the
hyperbola x2�a2 � y2�b2 � 1. From P, a line segment is
drawn perpendicular to the line x � a�e, meeting this line at D.
If F2 denotes (as usual) the focus located at (c, 0), show that

The line x � a�e is called the directrix of the hyperbola
corresponding to the focus F2. Hint: Use the expression
for F2P developed in Exercise 47.

51. By solving the system

show that the line and the hyperbola intersect in exactly
one point. Draw a sketch of the situation. This demon-
strates that a line that intersects a hyperbola in exactly one
point does not have to be a tangent line.

In Exercises 52–54, find the equation of the line that is tangent
to the hyperbola at the given point. Write your answer in the
form y � mx � b.

52. x2 � 4y2 � 16; (5, 3�2) 53. 3x2 � y2 � 12; (4, 6)
54. 16x2 � 25y2 � 400; 110, 4
55. Complete the derivation of equation (2), the standard form

for an equation of a hyperbola with foci F1(�c, 0) and
F2(c, 0). Hint: Let b2 � c2 � a2· Show that if x and y
satisfy equation (2), then the difference of distances from
the point (x, y) to the foci (�c, 0) and (c, 0) is

Simplify carefully in the cases x � a and x 	 �a to show
this difference is 2a or �2a, respectively. Thus the absolute
value of the difference of distances is 2a.

� ` a2 � cx

a
` � ` a2 � cx

a
`

2(x � c)2 � y2 � 2(x � c)2 � y2

13 2

e y � 4
3x � 1

16x2 � 9y2 � 144

F2P

PD
� e

d2 � (F1P)(F2P)

(b) In the standard viewing rectangle, graph the two equa-
tions that you obtained in part (a). Then, for a better
view, adjust the viewing rectangle so that both x and y
extend from �20 to 20.

42. In this exercise we graph a hyperbola in which the axes
of the curve are not parallel to the coordinate axes. The
equation is 
(a) Use the quadratic formula to solve the equation for y

in terms of x. Show that the result can be written

(b) Graph the two equations obtained in part (a). Use the
standard viewing rectangle.

(c) It can be shown that the equations of the asymptotes
are Add the graphs of these
asymptotes to the picture that you obtained in 
part (b).

(d) Change the viewing rectangle so that both x and y
extend from �50 to 50. What do you observe?

43. Use the technique indicated in Exercise 42 to graph the
hyperbola Use a viewing rectangle that
extends from �20 to 20 in both the x- and y-directions.

B
44. (a) Let e1 denote the eccentricity of the hyperbola

x2�42 � y2�32 � 1, and let e2 denote the eccentric-
ity of the hyperbola x2�32 � y2�42 � 1. Verify that

(b) Let e1 and e2 denote the eccentricities of the two hyper-
bolas x2�A2 � y2�B2 � 1 and y2�B2 � x2�A2 � 1,
respectively. Verify that 

45. (a) If the hyperbola x2�a2 � y2�b2 � 1 has perpendicular
asymptotes, show that a � b. What is the eccentricity
in this case?

(b) Show that the asymptotes of the hyperbola
x2�a2 � y2�a2 � 1 are perpendicular. What is the
eccentricity of this hyperbola?

46. Derive equation (1) on page 880 from the equation that
precedes it.

47. Let P(x, y) be a point on the right-hand branch of the
hyperbola x2�a2 � y2�b2 � 1. As usual, let F2 denote the
focus located at (c, 0). The following steps outline a proof
of the fact that the length of the line segment in this
case is given by F2P � xe � a.
(a) Explain why

(b) In the preceding equation, add the quantity 
to both sides, and then square both

sides. Show that the result can be written as

or xc � a2 � a(F2P)

xc � a2 � a2(x � c)2 � y2

2(x � c)2 � y2

2(x � c)2 � y2 � 2(x � c)2 � y2 � 2a

F2P

e2
1e

2
2 � e2

1 � e2
2.

e2
1e

2
2 � e2

1 � e2
2.

x2 � xy � 2y2 � 1.

y � 11 � 0.516 2x.

y � x � 1
2 26x2 � 12.

x2 � 4xy � 2y2 � 6.
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57. The normal line to a hyperbola at a point P on the hyper-
bola is the line through P that is perpendicular to the tan-
gent at P. If the coordinates of P are (x1, y1), show that the
equation of the normal line is

58. Suppose the point P(x1, y1) is on the hyperbola
x2�a2 � y2�b2 � 1. A tangent is drawn at P, meeting the 
x-axis at A and the y-axis at B. Also, perpendicular lines are
drawn from P to the x- and y-axes, meeting these axes at 
C and D, respectively. If O denotes the origin, show that
(a) OA # OC � a2; and (b) OB # OD � b2.

59. At the point P on the hyperbola x2�a2 � y2�b2 � 1, a tan-
gent line is drawn that meets the lines x � a and x � �a at
S and T, respectively. Show that the circle with as a 
diameter passes through the two foci of the hyperbola. 

ST

a2y1x � b2x1y � x1y1(a
2 � b2)

C
56. We define a tangent line to a hyperbola as a line that is not

parallel to an asymptote and that intersects the hyperbola
in exactly one point. Show that the equation of the line
tangent to the hyperbola x2�a2 � y2�b2 � 1 at the point 
(x1, y1) on the curve is

Hint: Allow for signs, but follow exactly the same steps as
were supplied in Exercise 61 of Exercise Set 12.4, where
we found the tangent to the ellipse. You should find that the
slope in the present case is m � (b2x1�a2y1). Explain why
this slope cannot equal the slope of an asymptote as long as
(x1, y1) is on the hyperbola.

x1x

a2 �
y1y

b2 � 1
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The Project, Using Hyperbolas to Determine a Location, at http://www.cengage.com/math/cohen/precalc7e,
discusses an application of hyperbolas in navigation. 

12.6 THE FOCUS–DIRECTRIX PROPERTY OF CONICS
Here then [in the Conics, written by Appollonius of Perga (ca. 262–ca. 190 B.C.)] we
have the properties of the three curves expressed in the precise language of the
Pythagorean application of areas, and the curves are named accordingly: parabola
(parabolh) where the rectangle is exactly applied [equal], hyperbola (nperbolh)
where it exceeds, and ellipse (elleiciz) where it falls short. —Sir Thomas Heath in A

History of Greek Mathematics, Vol. II (Oxford: The Clarendon Press, 1921)

The most important contribution which Pappus [ca. 300] made to our knowledge of
the conics was his publication of the focus, directrix, eccentricity theorem. —Julian

Lowell Coolidge in A History of the Conic Sections and Quadric Surfaces (London: Oxford

University Press, 1946)

We begin by recalling the focus–directrix property that we used in defining the
parabola. A point P is on a parabola if and only if the distance from P to the focus is
equal to the distance from P to the directrix. For the parabola in Figure 1 this means
that for each point P on the parabola, we have FP � PD or, equivalently,

The ellipse and the hyperbola also can be characterized by focus–directrix prop-
erties. We’ll begin with the ellipse. To help us in subsequent computations, we need
to know the lengths of the line segments and in Figure 2.F2PF1P

FP

PD
� 1

F

Directrix

Parabola

Focus

P
D

Figure 1

http://www.cengage.com/math/cohen/precalc7e


x

y

P(_1, 3)

F¡ F™

≈+3¥=28

Figure 3
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x

y

F¡ F™

P (x , y )

x@

a@

y@

b@
+     =1

Figure 2
The segments drawn from a point
on the ellipse to the foci are called
focal radii. Here, and are
the focal radii.

F2PF1P

These line segments joining a point on the ellipse to the foci are called focal radii. In
the box that follows, we give a formula for the length of each focal radius. In the
formulas, e (� c�a) denotes the eccentricity of the ellipse. (For the derivation of
these formulas, see Exercise 15 at the end of this section.)

The Focal Radii of the Ellipse � 1

As is indicated in Figure 2, let P(x, y) be a point on the ellipse. Then the lengths of the
focal radii are

F1P � a � ex  and  F2P � a � ex

x2

a2
�

y2

b2

SOLUTION To apply the formulas in the box, we need to know the values of a and e for
the given ellipse. (We already know that x � �1; that is given.) As you should 
verify for yourself using the techniques of Section 12.4, we have a �2 and 
e � �3. Therefore

and

 � 217 � a16

3
b (�1) �

617 � 16

3

 F2P � a � ex

 � 217 � a16

3
b (�1) �

617 � 16

3

 F1P � a � ex

16
17

EXAMPLE 1 Computing the Lengths of the Focal Radii of an Ellipse

Figure 3 shows the ellipse x2 � 3y2 � 28. Compute the lengths of the focal radii
drawn to the point P(�1, 3).
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x

y

P(x, y)

F™(c, 0)

D

x=
a
e

+     =1
y@

b@

x@

a@

Figure 4

x

y

P(x, y)

F¡ F™

DE

x=_
a
e x=

a
e

+     =1
y@

b@

x@

a@
Figure 5
For every point P on the ellipse, we
have F1P�PE � e and F2P�PD � e.

In Figure 4 we show the ellipse (x2�a2) � (y2�b2) � 1 and the vertical line
x � a�e. The line x � a�e is a directrix of the ellipse. In Figure 4, F2P is the distance
from the focus F2 to a point P on the ellipse, and PD is the distance from P to the di-
rectrix x � a�e. We will prove the following remarkable focus–directrix property of
the ellipse: For any point P(x, y) on the ellipse, the ratio of F2P to PD is equal to e,
the eccentricity of the ellipse. To prove this, we proceed as follows:

using our formula for F2P

using Figure 4

multiplying both numerator and denominator by e

So F2P�PD � e, as we wished to show.
The directrix x � a�e is associated with the focus F2(c, 0). What about the focus

F2(�c, 0)? From the symmetry of the ellipse, it follows that the line x � �a�e is the
directrix associated with this focus. More specifically, referring to Figure 5, not only
do we have F2P�PD � e, we also have F1P�PE � e.

 � e

 �
e(a � ex)

a � ex

 �
a � ex

a
e

� x

 
F2P

PD
�

a � ex

PD



In Figure 6 the distance from E to D is 2a�e. Therefore

and, consequently,

using equations (1) and (2) 
to substitute for PE and PD

or

multiplying both sides by e

Thus, by definition, P lies on the ellipse (x2�a2) � (y2�b2) � 1, as we wished to show.
In the box that follows, we summarize the focus–directrix properties of the 

ellipse (x2�a2) � (y2�b2) � 1. For reference we also include the original defining
property of the ellipse from Section 12.4.

F1P � F2P � 2a

F1P

e
�

F2P

e
�

2a
e

PE � PD �
2a
e
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y

P(x, y)

F¡ F™

DE

x

x=_
a
e x=

a
eFigure 6

*The short proof given here was communicated to David Cohen by Professor Ray Redheffer.
For a proof using equation (2) but not equation (1), see Exercise 16. 

We have seen that each point P on the ellipse in Figure 5 satisfies the following
two equations:

(1)

(2)

Now, conversely, suppose that the point P(x, y) in Figure 6 satisfies equations (1) and (2).
We will show that P(x, y) must, in fact, lie on the ellipse (x2�a2) � (y2�b2) � 1.*

 
F2P

PD
� e

 
F1P

PE
� e
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SOLUTION Using the given data (and referring to Figure 7), we have

From the first equation we obtain e � 3�a. Substituting this value of e in the second
equation yields

Now we can calculate b2 by using the relation b2 � a2 � c2 and the given informa-
tion c � 3:

Substituting the values that we’ve obtained for a2 and b2 in the equation
(x2�a2) � (y2�b2) � 1 yields

or

multiplying both sides by 302x2 � 5y2 � 30

x2

15
�

y2

6
� 1

b2 � a2 � c2 � 15 � 9 � 6

a

3�a
� 5  and therefore  a2 � 15

ae � 3  and  
a
e

� 5

EXAMPLE 2 Using Focus–Directrix Information to Find the Equation of an Ellipse

The foci of an ellipse are (�3, 0), and the directrix corresponding to the focus 
(3, 0) is x � 5. Find the equation of the ellipse. Write the answer in the form
Ax2 � By2 � C.

Focus and Focus–Directrix Properties of the Ellipse 

Refer to Figure 7.

1. A point P is on the ellipse if and only if the sum of the distances from P to the
foci F1(�c, 0) and F2(c, 0) is 2a, where 

2. A point P is on the ellipse if and only if

where F2P is the distance from P to the focus F2, PD is the distance from P to the
directrix x � a�e, and e (� c�a) is the eccentricity of the ellipse.

3. A point P is on the ellipse if and only if

where F1P is the distance from P to the focus F1 and PE is the distance from P to
the directrix x � �a�e.

F1P

PE
� e

F2P

PD
� e

c 2 � a2 � b2.

x2

a2 �
y2

b2 � 1

y

x

P

F¡ F™

DE

a

ae

x=
a
ex=_

a
e

a
e

Figure 7
The ellipse (x2�a2) � (y2�b2) � 1
with foci F1(�c, 0) and F2(c, 0) and
directrices x � �a�e.



Focus and Focus–Directrix Properties of the Hyperbola � 1

Refer to Figure 8.

1. A point P is on the hyperbola if and only if the absolute value of the difference of
the distances from P to the foci F1(�c, 0) and F2(c, 0) is 2a, where

2. A point P is on the hyperbola if and only if

where F2P is the distance from P to the focus F2, PD is the distance from P to the
directrix x � a�e, and e (� c�a) is the eccentricity of the hyperbola.

3. A point P is on the hyperbola if and only if

where F1P is the distance from P to the focus F1 and PE is the distance from P to
the directrix x � �a�e.

F1P

PE
� e

F2P

PD
� e

c2 � a2 � b2.

x2

a2
�

y2

b2
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y

x
F¡

D P

F™

(a)   F™P�PD=e

x=
a
e x=_

a
e

(b)   F¡P�PE=e

y

x

E P

F¡ F™Figure 8
The hyperbola
(x2�a2) � (y2�b2) � 1 has two
directrices. The directrix x � a�e
corresponds to the focus F2(c, 0).
The directrix x � �a�e corresponds
to the focus F1(�c, 0).

The focus–directrix property can be developed for the hyperbola in the same way
that we have proceeded for the ellipse. In fact, the algebra is so similar that 
we shall omit the details here and simply summarize the results. The hyperbola
(x2�a2) � (y2�b2) � 1 has two directrices: the vertical lines x � a�e in Figure 8(a)
and x � �a�e in Figure 8(b). Notice that these equations are identical to those for the
directrices of the ellipse. In the box following Figure 8, we summarize the focus and
the focus–directrix properties of the hyperbola.
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SOLUTION (a) To convert the given equation to standard form, we divide both sides by 144.
This yields

So we have a � 4, b � 3, and

The foci are therefore (�5, 0), and the eccentricity is

The directrices are

(b) Substituting the values x � �5 and y � 9�4 in the equation of the hyperbola
yields

or

Since this last equation is correct, we conclude that the point P(�5, 9�4) indeed
lies on the hyperbola. (See Figure 9.)

225 � 81 � 144

9(�5)2 � 16 a 9

4
b 2

� 144

x � �
a
e

� �
4

5�4
� �

16

5

e �
c
a

�
5

4

c � 2a2 � b2 � 242 � 32 � 5

x2

42 �
y2

32 � 1

EXAMPLE 3 An Eccentricity Computation

(a) Determine the foci, the eccentricity, and the directrices for the hyperbola
9x2 � 16y2 � 144.

(b) Verify that the point P(�5, 9�4) lies on this hyperbola.
(c) Compute F2D and PD, and verify that

F2P

PD
� e

y

x

D

F™

D
ir

ec
tr

ix

P ”_5,    ’
9
4

-    =1
x@

4@

y@

3@

Figure 9 



(c) From part (a) we know that the coordinates of the focus F2 are (5, 0). So, using
the distance formula, we have

Next, we use the fact from part (a) that the equation of the directrix in Figure 9
is x � 16�5. Thus in Figure 9,

Finally, we compute the ratio F2P�PD:

This is the same number that we obtained for the eccentricity in part (a). So
we have verified in this case that the ratio of F2P to PD is equal to the
eccentricity.

The focus–directrix property provides a unified approach to the parabola, the
ellipse, and the hyperbola. For both the ellipse and the hyperbola we’ve seen that for
any point P on the curve, we have

(3)

where e is a positive constant, the eccentricity of the curve. For the ellipse we have
0 � e � 1, and for the hyperbola we have e � 1. With e � 1, equation (3) tells us that
the distance from P to the focus equals the distance from P to the directrix, which is
the defining condition for the parabola. So equation (3) also holds for the parabola.
The following theorem summarizes these remarks.

distance from P to a focus

distance from P to the corresponding directrix
� e

F2P

PD
�

41�4

41�5
�

5

4

PD �
16

5
� (�5) �

41

4

 �
A

100 �
81

16
�
A

1681

16
�

41

4

 F2P �
B

(5 � (�5))2 � a0 �
9

4
b 2
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Theorem The Focus–Directrix Property of Conics

Refer to Figure 10. Let � be a fixed line, F a fixed point, and e a positive constant.
Consider the set of points P satisfying the condition FP�PD � e. (The point D is
defined in the figure.) Then

(a) If e � 1, the set of points is a parabola with focus F and directrix �.
(b) If 0 � e � 1, the set of points is an ellipse with focus F, corresponding directrix

�, and eccentricity e.
(c) If e � 1, the set of points is a hyperbola with focus F, corresponding directrix �,

and eccentricity e.

D

F

P

�

Figure 10

Note: In our development in this section, we’ve always considered cases in which
the directrix is vertical, for simplicity. However, the preceding theorem is valid for
any orientation of the directrix �.
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(b) Use the two equations in part (a) to show that 
� 4cx.

(c) Explain why d1 � d2 � 2a.
(d) Factor the left-hand side of the equation in part (b) and

substitute for one of the factors using the equation in
part (c). Show that the result can be written
d1 � d2 � 2cx�a.

(e) Add the equations in parts (c) and (d). Show that the
resulting equation can be written d1 � a � ex, as
required.

(f) Use the equation in part (c) and the result in part (e) to
show that d2 � a � ex.

16. In this exercise we show that if the point P(x, y) in the
accompanying figure satisfies the condition

then, in fact, the point P(x, y) lies on the ellipse
x2�a2 � y2�b2 � 1.

(a) From the given equation we have (F2P)2 � e2(PD)2.
Use the distance formula and the figure to deduce from
this equation that

(b) In the equation in part (a), replace e with c�a. After
carrying out the indicated operations and simplifying,
show that the equation can be written

(c) The equation in part (b) is equivalent to
(a2 � c2)x2 � a2y2 � a2(a2 � c2). Now replace the
quantity a2 � c2 by b2 and show that the resulting
equation can be written x2�a2 � y2�b2 � 1; thus P lies
on the ellipse, as we wished to show.

(d) If then let to show that the conic
section is the hyperbola with equation

x2

a2 �
y2

b2 � 1

b2 � c2 � a2e � 1,

a2x2 � c2x2 � a2y2 � a4 � a2c2

(x � c)2 � y2 � e2 a a

e
� x b 2

x

y

P(x, y)

F™(c, 0)

D

a
ex=

F2P

PD
� e  where 0 � e � 1

d2
1 � d2

2

A
In Exercises 1–4 you are given an ellipse and a point P on the
ellipse. Find F1P and F2P, the lengths of the focal radii.

1. x2 � 3y2 � 76; P(�8, 2)
2. x2 � 3y2 � 57; P(3, �4)
3. (x2�152) � (y2�52) � 1; P(9, 4)
4. 2x2 � 3y2 � 14; P(�1, �2)

In Exercises 5–10, determine the foci, the eccentricity, and the
directrices for each ellipse and hyperbola.

5. (a) (x2�42) � (y2�32) � 1 6. (a) x2 � 4y2 � 1
(b) (x2�42) � (y2�32) � 1 (b) x2 � 4y2 � 1

7. (a) 12x2 � 13y2 � 156 8. (a) x2 � 2y2 � 2
(b) 12x2 � 13y2 � 156 (b) x2 � 2y2 � 2

9. (a) 25x2 � 36y2 � 900 10. (a) 4x2 � 25y2 � 100
(b) 25x2 � 36y2 � 900 (b) 4x2 � 25y2 � 100

In Exercises 11 and 12, use the given information to find
the equation of the ellipse. Write the answer in the form
Ax2 � By2 � C.

11. The foci are (�1, 0) and the directrices are x � �4.
12. The foci are 1� 02 and the eccentricity is 2�3.

In Exercises 13 and 14, use the given information to find the
equation of the hyperbola. Write the answer in the form
Ax2 � By2 � C.

13. The foci are (�2, 0), and the directrices are x � �1.
14. The foci are (�3, 0), and the eccentricity is 2.

B
15. In this exercise we show that the focal radii of the ellipse

x2�a2 � y2�b2 � 1 are F1P � a � ex and F2P � a � ex.
The method used here, which avoids the use of radicals,
appears in the eighteenth-century text Traité analytique 
des sections coniques (Paris: 1707) by the Marquis de
l’Hôpital (1661–1704). (For another method, one that 
does use radicals, see Exercise 55 in Section 12.4.) For
convenience, let d1 � F1P and d2 � F2P, as indicated in 
the accompanying figure.

(a) Using the distance formula, verify that

d2
1 � (x � c)2 � y2  and  d2

2 � (x � c)2 � y2

y

x

d™
d¡

F¡(_c, 0) F™(c, 0)

P(x, y)

13,

EXERCISE SET 12.6
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12.7 THE CONICS IN POLAR COORDINATES
The use of polar coordinates permits a unified treatment of the conic sections, and it is
the polar coordinate equations for these curves that are used in celestial mechanics.
—Professor Bernice Kastner in her text Space Mathematics, published in 1985 by NASA

(National Aeronautics and Space Administration)

As is indicated in the opening quotation, the polar coordinate equations of the
parabola, ellipse, and hyperbola are useful in applications. We will develop these
equations by using the focus–directrix property of the conics that we discussed in
Section 12.6. Suppose that we have a conic with focus F, directrix �, and eccentricity e.
Then, as shown in Figure 1, we can set up a polar coordinate system in which the
focus of the conic is the origin or pole and the directrix is perpendicular to the polar
axis. In Figure 1 we’ve used d to denote the distance from the focus to the directrix.

Using the focus–directrix property for the conic in Figure 1, we have

and therefore

In this last equation we can replace FB by d and FA by r cos u. (Why?) This yields

Now, as Exercise 22 at the end of this section asks you to verify, when we solve this
equation for r, we obtain

This is the polar form for the equation of the conic in Figure 1, in which the directrix
is vertical and to the right of the focus. By the same technique we can obtain similar
equations when the directrix is to the left of the focus and when the directrix is hori-
zontal. We summarize the results in the following box. See Figures 2–5.

r �
ed

1 � e cos u

r

d � r cos u
� e

r

FB � FA
� e

FP

PD
� e

Directrix �

Polar axis
Pole A B

F

D
P(r, ̈ )

d

Figure 1
A conic with focus F and directrix �.

Polar Equations of the Conics

y

x

x=d

Figure 2

Polar equation:

Focus: (0, 0)
Directrix: x � d

r �
ed

1 � e cos u

y

x

x=_d

Figure 3

Polar equation:

Focus: (0, 0)
Directrix: x � �d

r �
ed

1 � e cos u



Note: For each of the preceding illustrations we have given an equation of a
conic in polar coordinates, while the graph, the coordinates of the focus, and the
equation of the directrix are in a rectangular coordinate system. In giving a coordi-
nate ordered pair for a point in a mixed representation of this kind, it is important to
be clear about whether the coordinates are polar coordinates, (r, u), or rectangular
coordinates, (x, y).

For the example that follows and for the exercises at the end of this section it will
be convenient to have formulas that express b in terms of e and a for the ellipse and
the hyperbola. For the ellipse we have

and therefore

for the ellipse (1)

Similarly, for the hyperbola we have

and therefore

for the hyperbola (2)b � a2e2 � 1

b2 � c2 � a2 � (ae)2 � a2 � a2(e2 � 1)

b � a21 � e2

b2 � a2 � c2 � a2 � (ae)2 � a2(1 � e2)
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y

x

y=d

Figure 4

Polar equation:

Focus: (0, 0)
Directrix: y � d

r �
ed

1 � e sin u

y

x

y=_d

Figure 5

Polar equation:

Focus: (0, 0)
Directrix: y � �d

r �
ed

1 � e sin u

SOLUTION When we compare the given equation with the four basic types shown in the
box, we see that the appropriate standard equation is the one associated with
Figure 3:

(3)r �
ed

1 � e cos u

EXAMPLE 1 Graphing an Ellipse in Polar Coordinates

Sketch the graph of the conic r � 8�(4 � 3 cos u).



To write the given equation in this form (in which the first term in the denominator
is 1), we divide both numerator and denominator on the right-hand side by 4. This
yields

(4)

Comparing equations (3) and (4), we see that

and

Therefore

The eccentricity e is 3�4, which is less than 1, so the conic is an ellipse. From the
result d � 8�3 (and the graph in Figure 3), we conclude that the directrix corre-
sponding to the focus (0, 0) is the vertical line x � �8�3. (Actually, as you’ll see, we
won’t need this information about the directrix in drawing the graph.) Also from
Figure 3 we know that the major axis of the ellipse lies along the polar or x-axis.
Perhaps the simplest way to proceed now is to compute the value of r when u � 0,
p�2, p, and 3p�2. In Figure 6 we show the results of these computations and the
four points that are determined.

d �
2
e

�
2

3�4
�

8

3

ed � 2e �
3

4

r �
2

1 � 3
4 cos u
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Since the major axis of this ellipse lies along the polar axis, the length of the
major axis is

and therefore

For the x-coordinate of the center of the ellipse we want the number (on the 
x-axis) that is halfway between �8�7 and 8. As you can check (by averaging the two
numbers), this x-coordinate is 24�7.

The last piece of information that we need for drawing an accurate sketch is the
value of b for this ellipse. Using equation (1), we have

With a calculator we find that b � 3.02. We can now draw the graph, as shown in
Figure 7.

 �
32

7 B
1 � ¢3

4
≤2

�
32

7 B

7

16
�

8

7
17

 b � a21 � e2

a �
32

7
2a � 8 �

8

7
�

64

7

(8, 0)

Polar or x-axisπ/2

2

π

8/7

3π/2

2

”2, ’
π
2

, π” ”
8
7

”2, ’
3π

2

r=
8

4-3 cos ̈

¨

r

0

8
Figure 6
Four points on the ellipse 
r � 8�(4 � 3 cos u).



y

x

Parabola

Focus

Directrix
9
4

y=_

Figure 8
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SOLUTION The parabola in Figure 8 is a conic of the type shown in Figure 5, so the required
equation must be of the form

For a parabola the eccentricity e is 1. From Figure 8 we see that the distance d from
the focus to the directrix is 9�4. Using these values for e and d, the equation becomes

or

multiplying both numerator and denominator by 4r �
9

4 � 4 sin u

r �
1(9�4)

1 � (1) sin u
�

9�4

1 � sin u

r �
ed

1 � e sin u

EXAMPLE 2 A Polar Equation for a Parabola

Find the polar equation for the parabola in Figure 8. The focus of the parabola is
(0, 0), and the (rectangular) equation of the directrix is y � �9�4.

”2, ’
π
2

” , π’
8
7

”2, ’
3π
2

(8, 0)

64
7

16œ„7
7

r=
8

4-3 cos ̈

Figure 7

SOLUTION To put this equation in standard form, we divide both the numerator and the deno-
minator of the fraction by 4. This yields

Comparing this with the standard form

we see that the eccentricity e is 5�4, which is greater than 1, so the conic is a hyper-
bola. Figure 2 on page 898 shows us the general form for one branch of this
hyperbola. From Figure 2 we see that the transverse axis of the hyperbola must lie

r �
ed

1 � e cos u

r �
9�4

1 � (5�4) cos u

EXAMPLE 3 Graphing a Hyperbola in Polar Coordinates

Graph the conic r � 9�(4 � 5 cos u).



along the polar or x-axis. Now, just as we did in Example 1, we compute the values
of r corresponding to u� 0, p�2, p, and 3p�2. Figure 9(a) shows the four points that
are obtained. The two points (1, 0) and (�9, p) both lie on the transverse axis of the
hyperbola, so they must be the vertices. This allows us to draw the rough sketch in
Figure 9(b).
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x

y

(1, 3) (9, 3)

(9, 0)(1, 0)

(1, _3) (9, _3)

(5, 0)

Figure 10
The hyperbola r � 9�(4 � 5 cos u):
The left-hand focus is located at the
origin and the coordinates shown
are x-y coordinates.

(1, 0) (_9, π) Polar or x-axis

(a) The four points on the hyperbola corresponding
to ¨=0, π/ 2, π, and 3π/2

9
4

π
2” ’,

9
4” ’,

3π
2

x=1
Polar or x-axis

(b) A rough sketch of the hyperbola
r=9/(4+5 cos¨)

x=9

Figure 9

For a more accurate drawing of the hyperbola we need to determine the values of
a and b. Using Figure 9(b),

and therefore

The center of the hyperbola lies on the x-axis, halfway between the points with rec-
tangular coordinates (1, 0) and (9, 0). Thus the center is (5, 0), and consequently, 
c � 5. (We are using the fact that the origin is a focus.) Now that we know the values
of a and c, we can calculate b:

and therefore

(Another way to calculate b is to use the formula on page 899: 2. In
summary, then, we have the following information to use in drawing the hyperbola in
the x-y coordinate system: The rectangular coordinates of the vertices are (1, 0) and
(9, 0); the foci are (0, 0) and (10, 0); the center is (5, 0); and the values of a and b are
4 and 3, respectively, so the asymptotes are y � � (x � 5). This allows us to draw
the graph as shown in Figure 10.

3
4

b � a2e2 � 1

b � 3b2 � c2 � a2 � 52 � 42 � 9

a � 42a � 9 � 1 � 8
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15. 16.

17. 18.

B
For Exercises 19–21, refer to the following figure. The line seg-
ment is called a focal chord of the conic.

19. Show that What is remarkable about this

result? Hint: Denote the polar coordinates of P by (r, u),
where r � ed�(1 � e cos u). Now, what are the polar coor-
dinates of Q?

20. If the coordinates of P are (r, u), show that

Hint: PQ � FP � FQ
21. In the figure preceding Exercise 19, suppose that we draw 

a focal chord that is perpendicular to Show that 

the sum is a constant.

22. Solve the equation r�(d � r cos u) � e for r. [As stated in
the text, you should obtain r � ed�(1 � e cos u).]

1

PQ
�

1

AB

PQ.AB

PQ �
2ed

1 � e2 cos2 u

1

FP
�

1

FQ
�

2

ed
.

P

Q

F

Origin
Polar axis

r=
ed

1-e cos¨

PQ

r �
2

12 � 12 sin u
r �

9

1 � 2 cos u

r �
14

7 � 8 cos u
r �

4

5 � 5 sin u
A
In Exercises 1 and 2, graph each ellipse. Specify the eccentricity,
the center, and the endpoints of the major and minor axes.

1. (a) 2. (a)

(b) (b)

In Exercises 3 and 4, graph each parabola. Specify the (rectan-
gular) coordinates of the vertex and the equation of the directrix.

3. (a) 4. (a)

(b) (b)

In Exercises 5 and 6, graph each hyperbola. Specify the eccen-
tricity, the center, and the values of a, b, and c.

5. (a) 6. (a)

(b) (b)

In Exercises 7–18, graph each conic section. If the conic is a
parabola, specify (using rectangular coordinates) the vertex
and the directrix. If the conic is an ellipse, specify the center, the
eccentricity, and the lengths of the major and minor axes. If 
the conic is a hyperbola, specify the center, the eccentricity, and
the lengths of the transverse and conjugate axes.

7. 8.

9. 10.

11. 12.

13. 14. r �
5

3 � 3 cos u
r �

12

7 � 5 cos u

r �
5

3 � 2 sin u
r �

12

5 � 5 sin u

r �
9

1 � 2 cos u
r �

8

5 � 3 sin u

r �
16

10 � 5 sin u
r �

24

2 � 3 cos u

r �
3

3 � 4 sin u
r �

3

2 � 4 cos u

r �
3

3 � 4 sin u
r �

3

2 � 4 cos u

r �
2

1 � sin u
r �

5

2 � 2 cos u

r �
2

1 � sin u
r �

5

2 � 2 cos u

r �
12

5 � 3 sin u
r �

6

3 � 2 cos u

r �
12

5 � 3 sin u
r �

6

3 � 2 cos u
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12.8 ROTATION OF AXES
In Section 12.5 we saw that the equation

can represent, in general, one of three curves: a parabola, an ellipse (or circle), or a
hyperbola. (We use the phrase “in general” here to allow for the so-called degenerate
cases.) In the present section we will find that the second-degree equation

(1)Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Ax2 � Cy2 � Dx � Ey � F � 0



also represents, in general, one of these three curves. The difference now is that due
to the xy-term in equation (1), the axes of the curves will no longer be parallel or
perpendicular to the x- and y-axes. To study the curves defined by equation (1), it is
useful first to introduce the technique known as rotation of axes.

Suppose that the x- and y-axes are rotated through a positive angle u to yield a
new x
-y
 coordinate system, as shown in Figure 1. This procedure is referred to as a
rotation of axes. We wish to obtain formulas relating the old and new coordinates.
Let P be a given point with coordinates (x, y) in the original coordinate system and
(x
, y
) in the new coordinate system. In Figure 2, let r denote the distance OP and a
the angle measured from the positive x-axis to From Figure 2 we have

and

Thus

and (2)

Again from Figure 2 we have

and

Thus

and

or

and

With the aid of equations (2), this last pair of equations can be rewritten as

and

These two equations tell us how to express the new coordinates (x
, y
) in terms
of the original coordinates (x, y) and the angle of rotation u. On the other hand,
it is also useful to express x and y in terms of x
, y
, and u. This can be accom-
plished by treating the two equations we’ve just derived as a system of two equa-
tions in the unknowns x and y. As Exercise 43 at the end of this section asks you to
verify, the results of solving this system for x and y are x � x
 cos u � y
 sin u and
y � x
 sin u � y
 cos u.

y¿ � �x sin u � y cos ux¿ � x cos u � y sin u

y¿ � r sin a cos u � r cos a sin u

x¿ � r cos a cos u � r sin a sin u

y¿ � r sin (a � u)x¿ � r cos (a � u)

sin (a � u) �
y¿
r

cos (a � u) �
x¿
r

y � r sin ax � r cos a

sin a �
opposite

hypotenuse
�

y

r
cos a �

adjacent

hypotenuse
�

x
r

OP.
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b 

x¿ � x cos u � y sin u
y¿ � �x sin u � y cos u

b 

x � x¿ cos u � y¿ sin u
y � x¿ sin u � y¿ cos u

Formulas for the Rotation of Axes

EXAMPLE 1 Finding x-y Coordinates from x�-y � Coordinates

Suppose that the angle of rotation from the x-axis to the x
-axis is 45�. If the coordi-
nates of a point P are (2, 0) with respect to the x
-y
 coordinate system, what are the
coordinates of P with respect to the x-y system?

x

y
yª

xª

¨

O

Figure 1

yª

y

x¨
å

r

xª

O

(0, yª )

(0, y)

(xª, 0)

(x, 0)

P(x, y) 
or

P(xª, yª )

Figure 2



y

P

x

xª

yª

45°

(2, 0) in xª-yª
coordinates

or

coordinates
”œ„2, œ„2 in x-y’

œ„2

œ„2

2
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SOLUTION Substitute the values x
 � 2, y
 � 0, and u � 45� in the formulas

This yields

Thus the coordinates of P in the x-y system are See Figure 3.(12, 12).

x � 2 cos 45° � 0 sin 45°

 � 2 a12

2
b � 12

  3  
y � 2 sin 45° � 0 cos 45°

 � 2 a12

2
b � 12

b 

x � x¿ cos u � y¿ sin u

y � x¿ sin u � y¿ cos u

Figure 3

SOLUTION With u � 45� the rotation formulas for x and y become

Thus we have

and

If we now substitute these expressions for x and y in the equation xy � 1, we obtain

 
(x¿)2

112 2 2 �
(y¿)2

112 2 2 � 1

 
1

2
 [(x¿)2 � (y¿)2] � 1

 B12

2
 (x¿ � y¿)R B12

2
 (x¿ � y¿)R � 1

y � x¿  ¢12

2
≤ � y¿  ¢12

2
≤ �
12

2
 (x¿ � y¿)

x � x¿  ¢12

2
≤ � y¿  ¢12

2
≤ �
12

2
 (x¿ � y¿)

b 

x � x¿ cos 45° � y¿ sin 45°

y � x¿ sin 45° � y¿ cos 45°

EXAMPLE 2 Transforming an x-y Equation to x�-y� Coordinates

Suppose that the angle of rotation from the x-axis to the x
-axis is 45�. Write the
equation xy � 1 in terms of the x
-y
 coordinate system, and then sketch the graph of
this equation.



This last equation represents a hyperbola in the x
-y
 coordinate system. With respect
to this x
-y
 system, the hyperbola can be analyzed using the techniques developed in
Section 12.5. The results (as you should verify) are as follows:

As noted, the preceding specifications are in terms of the x
-y
 coordinate system.
However, since the original equation, xy � 1, is given in terms of the x-y system, we
would like to express these specifications in terms of the same x-y coordinate system.
This can be done by the method shown in Example 1. For the x-y equations of the
focal axis and the asymptotes, use the second pair of equations on page 904. The
results are as follows:

Figure 4 displays the graph of this hyperbola.

These specifi-
cations are in
terms of the
x-y coordinate
system.

eFocal axis: y � x

Center: origin

Vertices: (1, 1) and (�1, �1)

Foci: 112, 12 2  and 1�12, �12 2
Asymptotes: x- and y-axes

uxy � 1

or
(x¿)2

112 2 2 �
(y¿)2

112 2 2 � 1

These specifications are
in terms of the x
-y

coordinate system.

e 

Focal axis: x¿-axis

Center: origin

Vertices: 1�12, 0 2
Foci: (�2, 0)

Asymptotes: y¿ � �x¿

uxy � 1

or
(x¿)2

112 2 2 �
(y¿)2

112 2 2 � 1

906 CHAPTER 12 The Conic Sections

45°

y=xy=_x

Focus ”_œ„2, _œ„2 ’

Focus ”œ„2, œ„2 ’

Vertex (_1, _1)

Vertex (1, 1) 

y

x

Figure 4
xy � 1

In Example 2 we saw that a rotation of 45� reduced the given equation to one of
the standard forms with which we are already familiar. Now let us consider the situ-
ation in greater generality. We begin with the second-degree equation 

(3)(B � 0)Ax2 � Bxy � Cy2 � Dx � Ey � F � 0



If we rotate the axes through an angle u, equation (3) will, after some simplification,
take on the form 

(4)

for certain constants A
, B
, C
, D
, E
, and F
. We wish to determine an angle of
rotation u for which B
 � 0. The reason we want to do this is that if B
 � 0, we will
be able to analyze equation (4) using the techniques of the previous sections. We
begin with the rotation formulas:

Substituting these expressions for x and y in equation (3) yields

We can simplify this equation by performing the indicated operations and then col-
lecting like terms. As Exercise 45 asks you to verify, the resulting equation is

(5)

where

Thus B
 will be zero provided that

By using the double-angle formulas, we can write this last equation as

or

Now, dividing both sides by B sin 2u, we obtain

or

We have now shown that if u satisfies the condition cot 2u� (A � C)�B, then equa-
tion (5) will contain no x
y
-term. It can be shown that there is always a value of u in

cot 2u �
A � C

B

cos 2u

sin 2u
�

A � C

B

B cos 2u � (A � C) sin 2u

(C � A) sin 2u � B cos 2u � 0

2(C � A) sin u cos u � B(cos2 u � sin2 u) � 0

 F¿ � F
 E¿ � E cos u � D sin u
 D¿ � D cos u � E sin u
 C¿ � A sin2 u � B sin u cos u � C cos2 u
 B¿ � 2(C � A) sin u cos u � B(cos2 u � sin2 u)
 A¿ � A cos2 u � B sin u cos u � C sin2 u

A¿(x¿)2 � B¿x¿y¿ � C¿(y¿)2 � D¿x¿ � E¿y¿ � F¿ � 0

 � E(x¿ sin u � y¿ cos u) � F � 0
 � C(x¿ sin u � y¿ cos u)2 � D(x¿ cos u � y¿ sin u)

 A(x¿ cos u � y¿ sin u)2 � B(x¿ cos u � y¿ sin u)(x¿ sin u � y¿ cos u)

 y � x¿ sin u � y¿ cos u
 x � x¿ cos u � y¿ sin u

A¿ 1x¿ 22 � B¿x¿y¿ � C¿ 1y¿ 2 2 � D¿x¿ � E¿y¿ � F¿ � 0
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the range 0� � u � 90� for which cot 2u � (A � C )�B. (See Exercise 41.) In subse-
quent examples we will always choose u in this range.
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SOLUTION We first rotate the axes through an angle u so that the new equation will contain no
x
y
-term. We have A � 2, B � and C � 1. To choose an appropriate value of u,
we require that

Thus cot 2u � 1� from which we conclude that 2u � 60�, or u � 30�. With this
value of u the rotation formulas become

and

Now we use these formulas to substitute for x and y in the given equation. This yields

After simplification this last equation becomes

or

We recognize this as the equation of an ellipse in the x
-y
 coordinate system. The
focal axis is the y
-axis. The values of a and b are 2 and respectively. The
ellipse can now be sketched as in Figure 5.

In Example 3 we were able to determine the angle u directly, since we recognized
the quantity as the value of cot 60�. However, this is the exception rather than
the rule. In most problems the value of (A � C)�B is not so easily identified as the
cotangent of one of the more familiar angles. The next examples demonstrate a tech-
nique that can be used in such cases. The technique relies on the following three
trigonometric identities:

1. sec2 b � 1 � tan2 b

2.
The positive square roots are appropriate, 
since 0� � u � 90�.

3.

t
The key step is to calculate cos 2u.

cos u �
B

1 � cos 2u

2

sin u �
B

1 � cos 2u

2

1�13

2�15,

(y¿)2

22 �
(x¿)2

12�15 2 2 � 1

(y¿)2 � 5(x¿)2 � 4

¢x¿
2

�
y¿13

2
≤� ¢x¿

2
�

y¿13

2
≤2

� 2.2 ¢x¿13

2
�

y¿
2
≤2

�13 ¢x¿13

2
�

y¿
2
≤

y � x¿  ¢1
2
≤ � y¿  ¢13

2
≤x � x¿  ¢13

2
≤ � y¿  ¢1

2
≤

13,

cot 2u �
A � C

B
�

2 � 1

13
�

1

13

13,

EXAMPLE 3 Using Rotation of Axes to Graph a Quadratic Equation with an xy-Term

Graph the equation 2x2 � � y2 � 2.13xy

Figure 5

y

x
30°

xª

yª

2≈+œ„3xy+¥=2
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SOLUTION We have A � 1, B � 4, and C � �2. Therefore

Since cot 2u � 3�4, it follows that tan 2u � 4�3. Therefore

Thus

At this point, we need to decide whether the positive or negative sign is appropriate.
Since we are assuming that 0� � u � 90�, the angle 2u must lie in either Quadrant I
or Quadrant II. To decide which, we note that the value determined for cot 2u was
positive. That rules out the possibility that 2u might lie in Quadrant II. We conclude
that in this case, 0� � 2u � 90�. Therefore the sign of sec 2u must be positive, and
we have

so

(Note: We could have found cos 2u by using right triangles rather than identities.)
The values of sin u and cos u can now be obtained as follows:

after simplifying after simplifying

With these values for sin u and cos u the rotation formulas become

and

We now substitute these expressions for x and y in the original equation, 
x2 � 4xy � 2y2 � 6. This yields¢2x¿ � y¿

15
≤2

� 4 ¢2x¿ � y¿
15

≤ ¢x¿ � 2y¿
15

≤ � 2 ¢x¿ � 2y¿
15

≤2

� 6

y � x¿  ¢ 1

15
≤ � y¿  ¢ 2

15
≤ �

1

15
 (x¿ � 2y¿)

x � x¿  ¢ 2

15
≤ � y¿  ¢ 1

15
≤ �

1

15
 (2x¿ � y¿)

 �
2

15
 �

1

15

 �
B

1 � 3
5

2
 �
B

1 � 3
5

2

 cos u �
B

1 � cos 2u

2
 sin u �

B

1 � cos 2u

2

cos 2u �
3

5
sec 2u �

5

3

sec 2u � �
5

3

 �
9

9
�

16

9
�

25

9

 sec2 2u � 1 � ¢4
3
≤2

 (Why?)

cot 2u �
A � C

B
�

1 � (�2)

4
�

3

4

EXAMPLE 4 Using Rotation of Axes to Graph a Quadratic Equation with an xy-Term

Graph the equation x2 � 4xy � 2y2 � 6.



y

x

xª

yª

¨=sin_! Å27°1
œ„5

Figure 6
x2 � 4xy � 2y2 � 6

As Exercise 42 asks you to verify, this equation can be simplified to

or

This last equation represents a hyperbola with center at the origin of the x
-y
 coor-
dinate system and with a focal axis that coincides with the x
-axis. We can sketch the
hyperbola using the methods of Section 12.5, but it is first necessary to know the
angle u between the x- and x
-axes. We have

using a calculator set in the degree mode

Figure 6 shows the required graph.

 u � 27°

 u � sin�1a 1

15
b

 sin u �
1

15

(x¿)2

113 2 2 �
(y¿)2

112 2 2 � 1

2(x¿)2 � 3(y¿)2 � 6
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In Examples 3 and 4 we graphed equations of the form

The technique used in those examples is equally effective in graphing equations of
the form Ax2 � Bxy � Cy2 � Dx � Ey � F � 0, in which the x- and y-terms are pre-
sent. This is demonstrated in Example 5. Since the general technique employed in
Example 5 is the same as in the previous examples, we will merely outline the pro-
cedure and the results in the solution, leaving the detailed calculations to Exercise 44
at the end of this section.

Ax2 � Bxy � Cy2 � F � 0

OUTLINE OF SOLUTION A � 16, B � �24, and C � 9, so

cot 2u �
A � C

B
� � 

7

24

EXAMPLE 5 Graphing a Quadratic Equation with xy and Linear Terms

Graph the equation 16x2 � 24xy � 9y2 � 110x � 20y � 100 � 0.
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y

x

xª

yª

Axis of parabola
_4x+3y=10

¨=sin Å53°_!
4
5

”_ ’
8
5,

6
5

Vertex

Figure 7
16x2 � 24xy � 9y2 � 110x

� 20y � 100 � 0

15. Suppose that the angle of rotation is 45�. Write the equation
2xy � 9 in terms of the x
-y
 coordinate system and then
graph the equation.

16. Suppose that the angle of rotation is 45�. Write the equation
5x2 � 6xy � 5y2 � 16 � 0 in terms of the x
-y
 system.

In Exercises 17–40, graph the equations.

17. 7x2 � 8xy � y2 � 1 � 0
18. 2x2 � xy � y2 � 20 � 0
19. x2 � 4xy � 4y2 � 1
20. x2 � 4xy � 4y2 � 0
21. 9x2 � 24xy � 16y2 � 400x � 300y � 0
22. 8x2 � 12xy � 13y2 � 34
23. 4xy � 3y2 � 4x � 6y � 1
24. x2 � 2xy � y2 � x � y � 0
25. 3x2 � 2xy � 3y2 � 6 x � 2 y � 4 � 0
26. x2 � 3xy � y2 � 1
27. (x � y)2 � 8(y � 6)
28. 4x2 � 4xy � y2 � 4x � 2y � 1 � 0
29. 3x2 � 4xy � 6y2 � 7
30. x2 � 2 xy � 3y2 � 12 x � 12y � 24 � 0
31. 17x2 � 12xy � 8y2 � 80 � 0
32. 7x2 � 2 xy � 5y2 � 32
33. 3xy � 4y2 � 18 � 0
34. x2 � y2 � 2xy � 4x � 4y � 8
35. (x � y)2 � 4 (x � y) � 012

13

1313

1212

13

A
In Exercises 1–3 an angle of rotation is specified, followed by
the coordinates of a point in the x
-y
 system. Find the coordi-
nates of each point with respect to the x-y system.

1. u � 30�; (x
, y
) � , 22
2. u � 60�; (x
, y
) � (�1, 1)
3. u � 45�; (x
, y
) �

In Exercises 4–6 an angle of rotation is specified, followed by
the coordinates of a point in the x-y system. Find the coordi-
nates of each point with respect to the x
-y
 system.

4. u � 45�; (x, y) � (0, �2)
5. u � sin�1 ; (x, y) � (�3, 1)
6. u � 15�; (x, y) � (1, 0)

In Exercises 7–14, find sin u and cos u, where u is the (acute)
angle of rotation that eliminates the x
y
-term. Note: You are
not asked to graph the equation.

7. 25x2 � 24xy � 18y2 � 1 � 0
8. x2 � 24xy � 8y2 � 8 � 0
9. x2 � 24xy � 8y2 � 8 � 0

10. 220x2 � 119xy � 100y2 � 0
11. x2 � 2 xy � y2 � 3
12. 5x2 � 12xy � 4 � 0
13. 161xy � 240y2 � 1 � 0
14. 4x2 � 5xy � 4y2 � 2 � 0

13

1  5
13 2

112, �12 2
113

EXERCISE SET 12.8

Now, proceeding as in the last example, we find that cos 2u � �7�25, cos u � 3�5,
and sin u � 4�5. Thus the rotation formulas become

and

Next we substitute for x and y in the given equation. After straightforward but
lengthy computations we obtain

We graphed equations of this form in Section 12.2 by completing the square. Using
that technique here, we have

This is the equation of a parabola. With respect to the x
-y
 system the vertex is (0, 2),
and the axis of the parabola is the line y
 � 2. In terms of the x-y system the vertex is

and the axis of the parabola is the line �4x � 3y � 10. Finally, the angle of
rotation is u� sin�1 � 53�. The required graph is shown in Figure 7.                 1  45 21� 

8
5, 

6
5 2 ,

 (y¿ � 2)2 � �2x¿
 (y¿)2 � 4y¿ � 4 � �2x¿ � 4 � 4

 (y¿)2 � 4y¿ � �2x¿ � 4

(y¿)2 � 2x¿ � 4y¿ � 4 � 0

y � x¿  ¢4
5
≤ � y¿  ¢3

5
≤ �

1

5
 (4x¿ � 3y¿)

x � x¿  ¢3
5
≤ � y¿  ¢4

5
≤ �

1

5
 (3x¿ � 4y¿)



45. Make the substitutions x � x
 cos u � y
 sin u and 
y � x
 sin u � y
 cos u in the equation 
Ax2 � Bxy � Cy2 � Dx � Ey � F � 0 and show 
that the result is

where

46. (Refer to Exercise 45.) Show that A � C � A
 � C
.
47. Complete the following steps to derive the equation 

(B
)2 � 4A
C
 � B2 � 4AC.
(a) Show that A
 � C
 � (A � C)cos 2u � B sin 2u.
(b) Show that B
 � B cos 2u � (A � C)sin 2u.
(c) Square the equations in parts (a) and (b), then 

add the two resulting equations to show that 
(A
 � C
)2 � (B
)2 � (A � C)2 � B2.

(d) Square the equation given in Exercise 46, then subtract
the result from the equation in part (c). The result can
be written (B
)2 � 4A
C
 � B2 � 4AC, as required.

48. Use Exercise 47 to prove the following theorem: The graph
of Ax2 � Bxy � Cy2 � Dx � Ey � F � 0 is

 a hyperbola  if  B2 � 4AC � 0
 a parabola  if  B2 � 4AC � 0
 an ellipse  if  B2 � 4AC � 0

 F¿ � F
 E¿ � E cos u � D sin u
 D¿ � D cos u � E sin u
 C¿ � A sin2 u � B sin u cos u � C cos2 u
 B¿ � 2(C � A) sin u cos u � B(cos2 u � sin2 u)
 A¿ � A cos2 u � B sin u cos u � C sin2 u

A¿(x¿)2 � B¿x¿y¿ � C¿(y¿)2 � D¿x¿ � E¿y¿ � F¿ � 0

36. 41x2 � 24xy � 9y2 � 45
37. 3x2 � xy � 2y2 � 3
38. 3x2 � 10xy � 3y2 � 2 x � 2 y � 10 � 0
39. 3x2 � 2xy � 3y2 � 2 � 0
40. (x � y)(x � y � 1) � 2

B
41. In transforming an equation of the form

to an x
-y
 equation without an x
y
 term using rotation of
axes, explain why there is always a value of u in the inter-

val 0� � u� 90� for which 

42. Simplify the equation:

Answer: 2(x
)2 � 3(y
)2 � 6

43. Solve for x and y:

Answer: x � x
 cos u � y
 sin u
y � x
 sin u � y
 cos u

44. Refer to Example 5 in the text.
(a) Show that cos 2u � �7�25.
(b) Show that cos u � 3�5 and sin u � 4�5.
(c) Make the substitutions x � (3x
 � 4y
) and 

y � (4x
 � 3y
) in the given equation 
16x2 � 24xy � 9y2 � 110x � 20y � 100 � 0 and 
show that the resulting equation simplifies to 
(y
)2 � 2x
 � 4y
 � 4 � 0.

1
5

1
5

b 

(cos u)x � (sin u)y � x¿
(�sin u)x � (cos u)y � y¿

2 ¢x¿ � 2y¿
15

≤2

� 64 ¢2x¿ � y¿
15

≤ ¢x¿ � 2y¿
15

≤ �¢2x¿ � y¿
15

≤2

 �

cot 2u �
A � C

B
.

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

1212
115
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CHAPTER 12 Summary of Principal Terms and Formulas

Page
Terms or Formulas Reference Comments

1. Conic sections 841 These are the curves that are formed when a plane intersects the surface
of a right circular cone. As is indicated in the figure at the beginning of
the chapter, these curves are the circle, the ellipse, the hyperbola, and the
parabola.

2. Angle of inclination 842 The angle of inclination of a line is the angle between the x-axis and the
line, measured counterclockwise from the positive side or positive
direction of the x-axis to the line.

3. m � tan u 842 The slope of a line is equal to the tangent of the angle of inclination.

CHAPTER 12 Summary
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Page
Terms or Formulas Reference Comments

4. 843 This is a formula for the (perpendicular) distance d from the point (x0, y0)
to the line y � mx � b.

5. 843, 846 This is a formula for the (perpendicular) distance d from the point (x0, y0)
to the line Ax � By � C � 0.

6. Parabola 850 A parabola is the set of all points in the plane equally distant from a 
fixed line and a fixed point not on the line. The fixed line is called the
directrix, and the fixed point is called the focus.

7. Axis (of a parabola) 851 This is the line that is drawn through the focus of the parabola,
perpendicular to the directrix.

8. Vertex (of a parabola) 851 This is the point at which the parabola intersects its axis.

9. Focal chord (of a parabola) 853 A focal chord of a parabola is a line segment that passes through the
focus and has endpoints on the parabola.

10. Focal width (of a parabola) 853 The focal width of a parabola is the length of the focal chord that is
perpendicular to the axis of the parabola. For a given (positive) value 
of p the four parabolas x2 � 4py, x2 � �4py, y2 � 4px, and y2 � �4px
have the same focal width of 4p.

11. Tangent line (to a parabola) 862 A line that is not parallel to the axis of a parabola is tangent to the
parabola provided that it intersects the parabola in exactly one point.

12. Ellipse 865 An ellipse is the set of all points in the plane, the sum of whose distances
from two fixed points is constant. Each fixed point is called a focus of
the ellipse.

13. Eccentricity (of an ellipse) 866 The eccentricity is a number that measures how much the ellipse
deviates from being a circle. See Figure 7 in Section 12.4. The
eccentricity e is defined by the formula e � c�a, where c and a are
defined by the following conventions. The distance between the foci is
denoted by 2c. The sum of the distances from a point on the ellipse to the
two foci is denoted by 2a.

14. Focal axis (of an ellipse) 866 This is the line passing through the two foci.

15. Center (of an ellipse) 866 This is the midpoint of the line segment joining the foci.

16. Vertices (of an ellipse) 866 The two points at which an ellipse meets its focal axis are called the
vertices of the ellipse.

17. Major axis (of an ellipse) 866 This is the line segment joining the two vertices of the ellipse.

18. Minor axis (of an ellipse) 866 This is the line segment through the center of the ellipse, perpendicular
to the major axis, and with endpoints on the ellipse.

19. (a � b) 867 This is the standard form for the equation of an ellipse with foci (�c, 0).

(a � b) 870 This is the standard form for the equation of an ellipse with foci (0, �c).
x2

b2 �
y2

a2 � 1

x2

a2 �
y2

b2 � 1

d �
0Ax0 � By0 � C 0
2A2 � B2

d �
0mx0 � b � y0 0
21 � m2
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20. Tangent line to an ellipse 871 A tangent to an ellipse is a line that intersects the ellipse in exactly one
point. See Figure 12 in Section 12.4.

21. 872 This is an equation of the tangent line to the ellipse (x2�a2) � (y2�b2) � 1
at the point (x1, y1) on the ellipse.

22. Hyperbola 879 A hyperbola is the set of all points in the plane, the absolute value of 
the difference of whose distances from two fixed points is a positive
constant. The two fixed points are the foci, and the line passing through
the foci is the focal axis.

23. 881, 883 This is the standard form for the equation of a hyperbola with foci (�c, 0).

884 This is the standard form for the equation of a hyperbola with 
foci (0, �c).

24. Asymptote 882, 884 A line is said to be an asymptote for a curve if the distance between the
line and the curve approaches zero as we move farther and farther out
along the line. The asymptotes for the hyperbola (x2�a2) � (y2�b2) � 1
are the two lines y � �(b�a)x. For the hyperbola (y2�a2) � (x2�b2) � 1,
the asymptotes are y � �(a�b)x.

25. Focal axis (of a hyperbola) 880 This is the line passing through the foci.

26. Vertices (of a hyperbola) 882 The two points at which the hyperbola intersects its focal axis are called
vertices.

27. Center (of a hyperbola) 882 This is the midpoint of the line segment joining the foci.

28. Transverse axis 882 This is the line segment joining the two vertices of a hyperbola.

29. Conjugate axis 883 This is the line segment perpendicular to the transverse axis of the
hyperbola, passing through the center and extending a distance 

on either side of the center.

30. Eccentricity 883 For both of the standard forms for the hyperbola the eccentricity e is 
(of a hyperbola) defined by e � c�a.

31. 886 This is an equation of the tangent line to the hyperbola 
(x2�a2) � (y2�b2) � 1 at the point (x1, y1) on the curve.

32. Focus–directrix property 896 Refer to Figure 10 on page 896. Let � be a fixed line, F a fixed 
of conics point, and e a positive constant. Consider the set of points P satisfying

the condition FP�PD � e, where D is defined by Figure 10. Then:
(a) If e � 1 the set of points is a parabola with focus F and 

directrix �;
(b) If 0 � e � 1, the set of points is an ellipse with focus F,

corresponding directrix � and eccentricity e;
(c) If e � 1, the set of points is a hyperbola with focus F, corresponding

directrix �, and eccentricity e.

x1x

a2 �
y1y

b2 � 1

b 1�2c2 � a2 2

y2

a2 �
x2

b2 � 1

x2

a2 �
y2

b2 � 1

x1x

a2 �
y1y

b2 � 1
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33. 898, 899 These are polar equations of conics with the focus at the pole or origin,
as indicated in Figures 2–5 of Section 12.7. The eccentricity is e, and d is
the distance from the focus to the directrix.

34. 904 These formulas relate the coordinates of a point in the x-y system to 
the coordinates in the rotated x
-y
 system. See Figures 1 and 2 in
Section 12.8.

35. 907 This formula determines an angle of rotation u so that when the equation

(B � 0)

is written in the rotated x
-y
 system, the resulting equation does not
contain an x
y
-term. The graph can then be analyzed by means of the
technique of completing the square.

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

cot 2u �
A � C

B

b 

x¿ � x cos u � y sin u

y¿ � �x sin u � y cos u

b 

x � x¿ cos u � y¿ sin u

y � x¿ sin u � y¿ cos u

r �
ed

1 � e sin u

r �
ed

1 � e cos u

Writing Mathematics

Write out your answers to Questions 1 and 2 in complete sen-
tences. If you draw a diagram to accompany your writing or if
you use equations, be sure that you clearly label any elements
to which you refer.

1. Refer to Figure 1 on page 865. If the thumbtacks are 3 in.
apart, what length of string should be used to produce an
ellipse with eccentricity 2�3?

2. Refer to Figure 1 on page 865 to explain each of the
following.
(a) When the eccentricity of an ellipse is close to 1, the

ellipse is very flat.
(b) When the eccentricity of an ellipse is close to 0, the

ellipse resembles a circle.
3. Investigate the geometric significance of the eccentricity of

a hyperbola by completing the three steps that follow. Then

write a report telling what you have done, what patterns
you have observed, and what relationship you have found
between the eccentricity and the shape of the hyperbola.
(a) Use the definition of the eccentricity e to show, for the 

hyperbola (x2�a2) � (y2�b2) � 1, that
(This shows that the eccentricity is always greater than 1.)

(b) Compute the eccentricity for each of the following
hyperbolas. (Use a calculator.)
(i) (0.0201)x2 � y2 � 0.0201
(ii) 3x2 � y2 � 3
(iii) 8x2 � y2 � 8
(iv) 15x2 � y2 � 15
(v) 99x2 � y2 � 99

(c) On the same set of axes, sketch the Quadrant I portion of
each of the hyperbolas in part (b).

e � 21 � (b�a)2.

CHAPTER 12 Review Exercises

In Exercises 1–15, refer to the following figure and show that
the given statements are correct.

x

y

A(6a, 0)B(6b, 0)

C(0, 6)

1. The equations of the lines forming the sides of ^ABC are 
x � by � 6b, x � ay � 6a, and y � 0.

2. The equations of the lines forming the medians of ^ABC
are 2x � (a � b)y � 6(a � b), x � (a � 2b)y � 6b, and 
x � (b � 2a)y � 6a. (A median is a line segment drawn
from a vertex of a triangle to the midpoint of the opposite
side.)

3. Each pair of medians of ^ABC intersect at the point 
G(2a � 2b, 2). (The point G is called the centroid of
^ABC.)
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4. The equations of the lines forming the altitudes of ^ABC
are y � ax � 6ab, y � bx � 6ab, and x � 0. (An altitude is
a line segment drawn from a vertex to the opposite side,
perpendicular to that side.)

5. Each pair of altitudes intersect at the point H(0, �6ab). 
(The point H is the orthocenter of ^ABC.)

6. The equations of the perpendicular bisectors of the sides
of ^ABC are x � 3a � 3b, bx � y � 3b2 � 3, and ax � y �
3a2 � 3.

7. Each pair of perpendicular bisectors intersect at the point
O(3a � 3b, 3ab � 3). (The point O is called the circum-
center of ^ABC.)

8. The distance from the circumcenter O to each vertex is
(This distance, denoted by R, is the

circumradius of ^ABC. Note that the circle with center O
and radius R passes through the points A, B, and C.)

9. In ^ABC, let p, q, and r denote the lengths BC, AC, and AB,
respectively. Then the area of ^ABC is pqr�4R.

10. AH 2 � BC2 � 4(OA)2

11. OH 2 � 9R2 � (p2 � q2 � r2) Hint: See Exercise 9.
12. GH 2 � 4R2 � (p2 � q2 � r2)
13. HA2 � HB2 � HC2 � 12R2 � (p2 � q2 � r2)
14. The points H, G, and O are collinear. (The line through these

three points is the Euler line of ^ABC.)
15. GH � 2(GO)

In Exercises 16–18, find the angle of inclination for each line.
Use a calculator to express your answers in degrees. (Round to
one decimal place.)

16. y � 4x � 3 17. 2x � 3y � 6 18. y � 2x
19. Find the distance from the point (�1, �3) to the line 5x �

6y � 30.
20. Find the distance from the point (2, 1) to the line y � x � 4.
21. The vertices of an equilateral triangle are (�6, 0) and 

. Verify that the sum of the three distances from the
point (1, 2) to the sides of the triangle is equal to the height
of the triangle. (It can be shown that, for any point inside an
equilateral triangle, the sum of the distances to the sides is
equal to the height of the triangle. This is Viviani’s theorem.)

22. A tangent line is drawn from the point (�12, �1) to the 
circle x2 � y2 � 20. Find the slope of this line, given that its
y-intercept is positive.

In Exercises 23–26, find the equation of the parabola satisfying
the given conditions. In each case, assume the vertex is (0, 0).

23. (a) The focus is (4, 0). (b) The focus is (0, 4).
24. The focus lies on the x-axis, and the curve passes through

the point (3, 1).
25. The parabola is symmetric about the y-axis, the y-coordinate

of the focus is positive, and the length of the focal chord
perpendicular to the y-axis is 12.

26. The focus of the parabola is the center of the circle 
x2 � 8x � y2 � 15 � 0.

10, 613 2
1
2

4
9

32(a2 � 1)(b2 � 1).

In Exercises 27–29, find the equation of the ellipse satisfying the
given conditions. Write your answers in the form Ax2 � By2 � C.

27. Foci (�2, 0); endpoints of the major axis (�8, 0)
28. Foci (0, �1); endpoints of the minor axis (�4, 0)
29. Eccentricity 4�5; one end of the minor axis at (�6, 0);

center at the origin
30. For any point P on a certain ellipse, the sum of the distances

from (1, 2) and (�1, �2) is 12. Find the equation of the
ellipse. Hint: Use the distance formula and the definition
of an ellipse.

31. Find an equation for the ellipse with foci (�2, 0) and direc-
trices x � �5.

In Exercises 32–35, find the equation of the hyperbola satisfy-
ing the given conditions. Write each answer in the form 
Ax2 � By2 � C or in the form Ay2 � Bx2 � C.

32. Foci (�6, 0); vertices (�2, 0)
33. Asymptotes y � �2x; foci (0, �3)
34. Eccentricity 4; foci (�3, 0)
35. Length of the transverse axis 3; eccentricity 5�4; center (0, 0);

focal axis horizontal
36. Verify that the point P(4, �2) lies on the hyperbola 

3x2 � 5y2 � 28, and compute the lengths F1P and F2P of the
focal radii.

In Exercises 37–41, graph the parabolas, and in each case
specify the vertex, the focus, the directrix, and the focal width.

37. x2 � 10y 38. x2 � 5y
39. x2 � �12(y � 3) 40. x2 � �8(y � 1)
41. (y � 1)2 � �4(x � 1)

In Exercises 42–47, graph the ellipses, and in each case specify
the center, the foci, the lengths of the major and minor axes,
and the eccentricity.

42. x2 � 2y2 � 4 43. 4x2 � 9y2 � 144
44. 49x2 � 9y2 � 441 45. 9x2 � y2 � 9

46.

47.

In Exercises 48–53, graph the hyperbolas. In each case specify
the center, the vertices, the foci, the equations of the asymp-
totes, and the eccentricity.

48. x2 � 2y2 � 4 49. 4x2 � 9y2 � 144
50. 49y2 � 9x2 � 441 51. 9y2 � x2 � 9

52.

53.
(y � 3)2

32 �
x2

32 � 1

(x � 1)2

52 �
(y � 2)2

32 � 1

(x � 3)2

32 �
y2

32 � 1

(x � 1)2

52 �
(y � 2)2

32 � 1



72. The following figure shows an ellipse and a parabola. As 
is indicated in the figure, the curves are symmetric about the
x-axis, and they both have an x-intercept of 5.

Find the equation of the ellipse and the parabola, given that
the point (3, 0) is a focus for both curves.

73. Show that the equation of a line tangent to the circle 
(x � h)2 � (y � k)2 � r2 at the point (a, b) on the circle is

74. The area A of an ellipse (x2�a2) � (y2�b2) � 1 is given by the
formula A � pab. Use this formula to compute the area of
the ellipse 5x2 � 6y2 � 60.

75. In the following figure, V is the vertex of the parabola 
y � ax2 � bx � c.

If r1 and r2 are the roots of the equation ax2 � bx � c � 0,
show that

VO2 � VA2 � r1r2

y

x
A

V

O

y=a≈+bx+c

(a � h)(x � h) � (b � k)(y � k) � r2

x

y

(5, 0)(3, 0)

In Exercises 54–67, use the technique of completing the square
to graph the given equation. If the graph is a parabola, specify
the vertex, axis, focus, and directrix. If the graph is an ellipse,
specify the center, foci, and lengths of the major and minor
axes. If the graph is a hyperbola, specify the center, vertices,
foci, and equations of the asymptotes. Finally, if the equation
has no graph, say so.

54. 3x2 � 4y2 � 6x � 16y � 7 � 0
55. y2 � 16x � 8y � 80 � 0
56. y2 � 4x � 2y � 15 � 0
57. 16x2 � 64x � 9y2 � 54y � 1 � 0
58. 16x2 � 32x � 9y2 � 90y � 353 � 0
59. x2 � 6x � 12y � 33 � 0
60. 5x2 � 3y2 � 40x � 36y � 188 � 0
61. x2 � y2 � 4x � 2y � 6 � 0
62. 9x2 � 90x � 16y2 � 32y � 209 � 0
63. x2 � 2y � 12 � 0
64. y2 � 25x2 � 8y � 9 � 0
65. x2 � 16y2 � 160y � 384 � 0
66. 16x2 � 25y2 � 64x � 100y � 564 � 0
67. 16x2 � 25y2 � 64x � 100y � 36 � 0
68. Let F1 and F2 denote the foci of the hyperbola 

5x2 � 4y2 � 80.
(a) Verify that the point P with coordinates (6, 5) lies on the

hyperbola.
(b) Compute the quantity (F1P � F2P)2.

69. Show that the coordinates of the vertex of the parabola 
Ax2 � Dx � Ey � F � 0 are given by

and

70. If the equation Ax2 � Cy2 � Dx � Ey � F � 0 represents an
ellipse or a hyperbola, show that the center is the point
(�D�2A, �E�2C).

71. The figure shows the parabola x2 � 4py and a circle with
center at the origin and diameter 3p. If V and F denote the
vertex and focus of the parabola, respectively, show that
the common chord of the circle and parabola bisects the line
segment 

x

y

VF.

y �
D2 � 4AF

4AE
x � � 

D

2A

Review Exercises 917
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CHAPTER 12 Test

1. Find the focus and the directrix of the parabola y2 � �12x,
and sketch the graph.

2. Graph the hyperbola x2 � 4y2 � 4. Specify the foci and the
asymptotes.

3. The distances from the planet Saturn to the Sun at aphelion
and at perihelion are 9.5447 AU and 9.5329 AU, respec-
tively. Compute the eccentricity of the orbit and the length
of the semimajor axis. Round each answer to three decimal
places.

4. (a) Determine an angle of rotation u so that there is no 
x
y
-term present when the equation

is transformed to the x
-y
 coordinate system.
(b) Graph the equation

5. Determine the angle of inclination for the line y �

6. The foci of an ellipse are (0, �2), and the eccentricity is 1�2.
Determine the equation of the ellipse. Write your answer in
standard form.

7. Tangents are drawn from the point (�4, 0) to the circle 
x2 � y2 � 1. Find the slopes of the tangents.

8. The x-intercept of a line is 2, and its angle of inclination 
is 60�. Find the equation of the line. Write your answer in the
form Ax � By � C � 0.

9. Determine the equation of the hyperbola with foci (�2, 0)
and with asymptotes y � Write your answer in
standard form.

10. Let F1 and F2 denote the foci of the hyperbola 5x2 � 4y2 � 80.
(a) Verify that the point P(6, 5) lies on the hyperbola.
(b) Compute the quantity (F1P � F2P)2.

� 11�13 2 x.

11�13 2x � 4.

x2 � 213xy � 3y2 � 1213x � 12y � 0

x2 � 213xy � 3y2 � 1213x � 12y � 0

11. Graph the ellipse 4x2 � 25y2 � 100. Specify the foci and the
lengths of the major and minor axes.

12. Compute the distance from the point (�1, 0) to the line 
2x � y � 1 � 0.

13. Graph the equation 16x2 � y2 � 64x � 2y � 65 � 0.

14. Graph the equation 

15. Graph the equation r � 9�(5 � 4 cos u). Which type of
conic is this?

16. Graph the parabola (x � 1)2 � 8(y � 2). Specify the focal
width and the vertex.

17. Consider the ellipse (x2�62) � (y2�52) � 1.
(a) What are the equations of the directrices?
(b) If P is a point on the ellipse in Quadrant I such that the

x-coordinate of P is 3, compute F1P and F2P the lengths
of the focal radii.

18. Determine the equation of the line that is tangent to the 
ellipse x2 � 3y2 � 52 at the point (�2, 4). Write your 
answer in the form y � mx � b.

19. Find the equation of the line that is tangent to the parabola 
x2 � 2y at the point (4, 8). Write your answer in the form 
y � mx � b.

20. The following figure shows the specifications for a cross
section of a parabolic reflector. Determine the focal length
and the focal ratio of the reflector.

5

y (meters)

x (meters)
16

(x � 4)2

32 �
(y � 4)2

12 � 1.
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CHAPTER

13 Roots of Polynomial
Equations*

13.1 Division of Polynomials

13.2 The Remainder Theorem
and the Factor Theorem

13.3 The Fundamental
Theorem of Algebra

13.4 Rational and Irrational
Roots

13.5 Conjugate Roots
and Descartes’ Rule
of Signs

13.6 Introduction to Partial
Fractions

13.7 More About Partial
Fractions

It is necessary that I make some general statements concern-
ing the nature of equations. —René Descartes (1596–1650) in

La Géométrie (1637)

The polynomial can be derived using Hückel’s molecular or-
bital theory. The roots of the polynomial represent the al-
lowed energy levels of the pi electrons. —Professor Junichi

Aihara in his article “Why Aromatic Compounds Are Stable,”

Scientific American, vol. 266 (March 1992), p. 65

A number of problems in computer graphics reduce to finding approximate real roots of
quartic and cubic equations in one unknown. —Professor Don Herbison-Evans in his article

“Solving Quartics and Cubics for Graphics,” http://linus.socs.uts.edu.au/~don/pubs/solving.html

As is indicated by the opening quotations, solving polynomial equations is an old sub-
ject with contemporary applications at the cutting edge of technology and science.
This chapter continues the work we began in Sections 1.3 and 2.1 on solving polyno-
mial equations. Here are some of the questions you should be able to answer after
studying this chapter. See whether you can answer any of them now, on the basis of
your previous algebra courses. Come back to this list again when you have finished the
chapter, as a way of evaluating your reading.

• What is synthetic division, and how is it used to evaluate a polynomial and test for a root?
• In view of the quadratic formula, we know that every quadratic equation has two

roots (although the two roots might be equal). In a similar way, does every cubic
equation have three roots, and does every fourth-degree equation have four roots?

• Does every equation have a root?
• What does the fundamental theorem of algebra assert?
• The quadratic formula gives us the roots of a quadratic equation in terms of the

coefficients. Is there a similar formula for cubic equations? What about a general
formula for a polynomial equation of degree n?

• How can we determine whether an equation has rational roots?
• How can the table feature on a graphing utility be used to locate irrational roots?

How can the ideas about iteration from Section 3.5 be used to locate irrational roots?
• Without a graphing utility and without solving the equation, can we tell whether

the roots will be positive, negative, or complex?
• Is it always possible to factor a polynomial?

*The material on complex numbers in Appendix A.3 will be used throughout this chapter.

t

1

10

1-3t2+2t3

t2(3-2t)

t(1-t)2

t2(1-t)

 

Blending functions for the Hermite class
of cubic curves
Source: From Lengyel, Mathematics for
3D Game Programming and Computer
Graphics, 2E. © 2004 Delmar Learning,
a part of Cengage Learning, Inc.
Reproduced by permission.
www.cengage.com/permissions.

www.cengage.com/permissions
http://linus.socs.uts.edu.au/~don/pubs/solving.html
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13.1 DIVISION OF POLYNOMIALS
Although the process of long division for polynomials is often taught in elementary
algebra courses, it usually does not receive sufficient emphasis there. As with ordi-
nary long division for numbers, the process is best learned by first watching someone
do examples and then practicing on your own. The terms “quotient,” “remainder,”
“divisor,” and “dividend” will be used here in the same way they are used in ordinary
division of numbers. For instance, when 7 is divided by 2, the quotient is 3 and the
remainder is 1. We write this

3 quotient
divisor dividend

1 remainder
or

7 � 2 � 3 � 1 or
dividend —c c c c— remainder

divisor ————ƒ ƒ
quotient —–—————ƒ

The process of long division for polynomials follows the same four-step cycle
that is used in ordinary long division of numbers: Divide, multiply, subtract, bring
down. As a first example, we divide 2x2 � 7x � 8 by x � 2. Notice that in setting up
the division, we write both the dividend and the divisor in decreasing powers of x.

1. Divide the first term of the dividend by the first

term of the divisor: � 2x.The result becomes the first term 

of the quotient, as shown.
2. Multiply the divisor x � 2 by the term 2x obtained in the

previous step. This yields the quantity 2x2 � 4x, which is
written below the dividend, as shown. 

3. From the quantity 2x2 � 7x in the dividend, subtract the
quantity 2x2 � 4x. This yields �3x.

4. Bring down the �8 in the dividend, as shown. The
resulting quantity, �3x � 8, is now treated as the divi-
dend and the entire process is repeated.

We’ve now found that when 2x2 � 7x � 8 is divided by x � 2, the quotient is 2x � 3
and the remainder is 2. This is summarized by writing either

(1)

or, after multiplying through by x � 2,

(2)

dividend divisor quotient remainder

There are two observations to be made here. First, notice that equation (2) is valid
for all real numbers x, whereas equation (1) carries the implicit restriction that x may

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩ {

2x2 � 7x � 8 � 1x � 2 2 12x � 3 2 �    2

2x2 � 7x � 8

x � 2
� 2x � 3 �

2

x � 2

2x2

x

7

2
� 3 �

1

2

6
2 | 7

2x � 3

 2x2 � 3x � 2

 2x2 � 3x � 6
 2x2 � 3x � 8

 2x2 � 4x
 x � 2 �  2x2 � 7x � 8



not equal 2. For this reason we often prefer to write our results in the form of equa-
tion (2). Second, notice that the degree of the remainder is less than the degree of the
divisor. This is very similar to the situation with ordinary division of positive inte-
gers, in which the remainder is always less than the divisor.

As another example of the long division process, we divide 3x4 � 2x3 � 2 by
x2 � 1. Notice in what follows that we have inserted the terms in the divisor and divi-
dend that have coefficients of zero. These terms act as place holders.

We can write this result as

or, multiplying through by x2 � 1,

dividend divisor quotient remainder

Notice that this last equation holds for all values of x, whereas the previous equation
carries the restrictions that x may be neither 1 nor �1. Also, as in our previous ex-
ample, observe that the degree of the remainder is less than that of the divisor.

There is a theorem, commonly referred to as the division algorithm, that sum-
marizes rather nicely the key results of the long division process. We state the theo-
rem here without proof.

Let p(x) and d(x) be polynomials, and assume that d(x) is not the zero polynomial.
Then there are unique polynomials q(x) and R(x) such that

where either R(x) is the zero polynomial or the degree of R(x) is less than the degree
of d(x).

The polynomials p(x), d(x), q(x), and R(x) are referred to as the dividend, divisor,
quotient, and remainder, respectively. When R(x) � 0, we have p(x) � d(x) # q(x), and
we say that d(x) and q(x) are factors of p(x). Also, since d(x) is not the zero polyno-
mial, notice that the equation p(x) � d(x) # q(x) � R(x) implies that the degree of q(x)
is less than or equal to the degree of p(x). (Why?)

p(x ) � d(x ) # q(x ) � R(x )

The Division Algorithm

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩

3x4 � 2x3 � 2 � 1x2 � 1 2 13x2 � 2x � 3 2 � 1�2x � 5 2

3x4 � 2x3 � 2
x2 � 1

� 3x2 � 2x � 3 �
�2x � 5

x2 � 1

� 2x � 5

3x2 � 0x � 3
3x2 � 2x � 2

� 2x3 � 0x2 � 2x
� 2x3 � 3x2 � 0x

 3x4 � 0x3 � 3x2
 x2 � 0x � 1 � 3x4 � 2x3 � 0x2 � 0x � 2

3x2 � 2x3 � 3

13.1 Division of Polynomials 921
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EXAMPLE 1 Using Long Division to Find a Quotient and Remainder

Let p(x) � x3 � 2x2 � 4 and d(x) � x � 3. Use the long division process to find the
polynomials q(x) and R(x) such that

where either R(x) � 0 or the degree of R(x) is less than the degree of d(x).

p(x) � d(x) # q(x) � R(x)

SOLUTION After inserting the term 0x in the dividend p(x), we use long division to divide p(x)
by d(x):

We now have

p(x) d(x) q(x) R(x)

Thus q(x) � x2 � 5x � 15 and R(x) � 41. Notice that the degree of R(x) is less than
the degree of d(x).

The long division procedure for polynomials can be streamlined when the divi-
sor is of the form x � r. This shortened version, known as synthetic division, will be
useful in subsequent sections when we are solving polynomial equations.

We can explain the idea behind synthetic division by using the long division car-
ried out in Example 1. The basic idea is that in the long division process, it is the
coefficients of the various polynomials that carry all the necessary information. In
our example, for instance, the quotient and remainder can be abbreviated by writing
down a sequence of four numbers:

By studying the long division process, you will find that these numbers are obtained
through the following four steps:

Step 1 Write down the first coefficient of the dividend. This will be the first coeffi-
cient of the quotient. Result

Step 2 Multiply the 1 obtained in the previous step by the �3 in the divisor. Then
subtract the result from the second coefficient of the dividend:

�3 � 1 � �3 2 � (�3) � 5 Result

Step 3 Multiply the 5 obtained in the previous step by the �3 in the divisor. Then
subtract the result from the third coefficient of the dividend:

�3 � 5 � �15 0 � (�15) � 15 Result    15   

    5   

   1   

1  5  15  41

⎧ ⎨ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩ {⎧ ⎪ ⎨ ⎪ ⎩
x3 � 2x2 � 4 � (x � 3)(x2 � 5x � 15) � 41

 x3 � 5x2 � 15x � 41
 x2 � 5x2 � 15x � 45
 x3 � 5x2 � 15x �  4
 x3 � 5x2 � 15x
 x3 � 5x2 �  0x
 x3 � 3x2

 x � 3 �  x3 � 2x2 �  0x �  4
 x2 � 5x2 � 15



Step 4 Multiply the 15 obtained in the previous step by the �3 in the divisor. Then
subtract the result from the fourth coefficient of the dividend:

�3 � 15 � �45 � 4 � (�45) � 41 Result

A convenient format for setting up this process involves writing the constant term of the
divisor and the coefficients of the dividend as follows:

Now, using this format, let’s again go through the four steps we have just described:

Step 1 Bring down the 1.

Step 2
Step 2

Step 3
Step 3

Step 4
Step 4

We have now obtained the required sequence of coefficients, 1 5 15 41, but
there is one further significant simplification that can be made. In Steps 2 through 4,
if we use 3 instead of �3 in the initial format, we can add instead of subtract (why?),
ideally minimizing arithmetic errors. (You will see the motivation for this in the next
section when we discuss the remainder theorem.) We illustrate our simplified version
of synthetic division in the following box. The method is applicable for any polyno-
mial division in which the divisor has the form x � r.

�4 � (�45) � 41

  �3  � 1  2   0   �4

 1  �3  �15  �45

 1  5  15  41
 �3 � 15 � �45

0 � (�15) � 15

  �3  � 1  2   0  �4

 1  �3  �15  �4

 1  5  15
 �3 � 5 � �15

2 � (�3) � 5

  �3  � 1  2  0  �4

 1  �3  0  �4

 1  5

 �3 � 1 � �3

  �3  � 1  2  0  �4

 1  2  0  �4

 1

  �3  � 1  2  0  �4

 1  2  0  �4

   41   
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Comments

Format Since the divisor is x � 3, the format begins with 3. The coeffi-
cients from the dividend are written in the order corresponding 
to decreasing powers of x. A zero coefficient is inserted as a
place holder.

Procedure Step 1 Bring down the 1.
Step 2 3 � 1 � 3; 2 � 3 � 5
Step 3 3 � 5 � 15; 0 � 15 � 15
Step 4 3 � 15 � 45; �4 � 45 � 41

Answer Quotient: x2 � 5x � 15 The degree of the first term in the quotient is one less than the 
Remainder: 41 degree of the first term of the dividend.

  3  � 1  2   0   �4

    3  15  45

 1  5  15  41

  3  � 1  2  0  �4

           

To Divide x3 � 2x2 � 4 by x � 3 Using the Simplified Version of Synthetic Division



xn � an � (x � a)(xn�1 � axn�2 � a2xn�3 � p � an�1)

Factorization of xn � an
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EXAMPLE 2 Synthetic Division

Use synthetic division to divide x3 � 6x � 4 by x � 2.

SOLUTION

Looking at the third row of numbers in the synthetic division we’ve carried out, we
see that the quotient is x2 � 2x � 2 and the remainder is 0. In other words, both x � 2
and x2 � 2x � 2 are factors of x3 � 6x � 4, and we have

x3 � 6x � 4 � (x � 2)(x2 � 2x � 2)

  2  � 1  0  �6  4

 1  2  4  �4

 1  2  �2  0

EXAMPLE 3 Another Example of Synthetic Division

Use synthetic division to divide x5 � a5 by x � a.

SOLUTION

As before, we read off the quotient and remainder from the third row of numbers.
The quotient is

and the remainder is zero, so we have

dividend divisor quotient remainder

or

The last equation in Example 3 tells us how to factor x5 � a5. One factor is x � a.
Notice the pattern in the second factor, x4 � ax3 � a2x2 � a3x � a4.

In the same way that we’ve found a factorization for x5 � a5, we can find a fac-
torization for xn � an for any positive integer n � 2. In each case, the first factor is
x � a, while the second factor follows the same pattern just described for x5 � a5.
We state the general result in the box that follows. The result can be proved by using
mathematical induction (discussed in Chapter 14) or by using the remainder theorem
(discussed in the next section).

 fifth term: a4x5�5

 fourth term: a3x5�4

 third term: a2x5�3

 second term: a1x5�2

 first term: a0x5�1

x5 � a5 � 1x � a 2 1x4 � ax3 � a2x2 � a3x � a4 2 .

⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ {x5 � a5 � (x � a)(x4 � ax3 � a2x2 � a3x � a4)  � 0

x4 � ax3 � a2x2 � a3x � a4

  a  � 1  0  02  03  04  �a5

 1  a  a2  a3  a4  a5

 1  a  a2  a3  a4  0
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EXAMPLE 4 Synthetic Division When the Divisor Has the Form x � r

Use synthetic division to divide x4 � 2x3 � 5x2 � 4x � 3 by x � 1.

SOLUTION We first need to write the divisor x � 1 in the form x � r. We have

In other words, r is �1, and this is the value we use to set up the synthetic division
format. The format then is

Now we carry out the synthetic division procedure:

The quotient is therefore x3 � 3x2 � 8x � 12, and the remainder is 15. We can sum-
marize this result by writing

(Notice that the degree of the remainder is less than the degree of the divisor, in
agreement with the division algorithm.)

x4 � 2x3 � 5x2 � 4x � 3 � (x � 1)(x3 � 3x2 � 8x � 12) � 15

  �1  � 1  �2  5   �4   3

 1  �1  3   �8  12

 1  �3  8  �12  15

  �1  � 1  �2  5  �4  3

 1  2  5  �4  3

x � 1 � x � (�1)

15. 16.

17. 18.

19. 20.

In Exercises 21–40, use synthetic division to find the quotients
and remainders. Also, in each case, write the result of the divi-
sion in the form p(x) � d(x) # q(x) � R(x), as in equation (2) in
the text.

21. 22.

23. 24.

25. 26.
x4 � 4x3 � 6x2 � 4x � 1

x � 1

6x3 � 5x2 � 2x � 1

x � 4

x2 � 1

x � 2

4x2 � x � 5

x � 1

3x2 � 4x � 1

x � 1

x2 � 6x � 2

x � 5

ax3 � bx2 � cx � d

x � r

ax2 � bx � c

x � r

1 � z � z2 � z3

1 � z � z2

z5 � 1

z � 1

2t5 � 6t4 � t2 � 2t � 3

t3 � 2

t4 � 4t3 � 4t2 � 16

t2 � 2t � 4
A
In Exercises 1–20, use long division to find the quotients 
and the remainders. Also, write each answer in the form
p(x) � d(x) # q(x) � R(x), as in equation (2) in the text.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
4y4 � y3 � 2y � 1

2y2 � 3y � 4

3y3 � 4y2 � 3

y2 � 5y � 2

8x6 � 36x4 � 54x2 � 27

2x2 � 3

5x4 � 3x2 � 2

x2 � 3x � 5

x6 � 64

x � 2

x6 � 64

x � 2

4x3 � x2 � 8x � 1

x2 � x � 1

x5 � 2

x � 3

x4 � 4x3 � 6x2 � 4x � 1

x � 1

6x3 � 2x � 3

2x � 1

3x2 � 4x � 1

x � 1

x2 � 6x � 2

x � 5

x3 � 4x2 � x � 2

x � 5

x2 � 8x � 4

x � 3

EXERCISE SET 13.1

In our development of synthetic division, we assumed that the form of the divisor
was x � r. The next example shows what to do when the form of the divisor is x � r.



49. When x3 � kx � 1 is divided by x � 1, the remainder is
�4. Find k.

50. (a) Show that when x3 � kx � 6 is divided by x � 3, the
remainder is �21 � 3k.

(b) Determine a value of k such that x � 3 will be a factor
of x3 � kx � 6.

51. When x2 � 2px � 3q2 is divided by x � p, the remainder is
zero. Show that p2 � q2.

52. Given that x � 3 is a factor of x3 � 2x2 � 4x � 3, solve the
equation x3 � 2x2 � 4x � 3 � 0.

The process of synthetic division applies equally well when
some or all of the coefficients are nonreal complex numbers. 
In Exercises 53–56, use synthetic division to determine the
quotient q(x) and the remainder R(x) in each case.

53. 54.

55. 56.

57. Given that the identity f (x) � d(x) q(x) � R(x) holds 
for the following polynomials, evaluate f .
Hint (of sorts): There’s an easy way and a tedious way.

58. Given that the identity f (t) � d(t) # q(t) � R(t) holds for the
following polynomials, evaluate f (4).

59. Find the remainder when t5 � 5a4t � 4a5 is divided by
t � a.

60. When f (x) is divided by (x � a)(x � b), the remainder is
Ax � B. Apply the division algorithm to show that

A �
f (a) � f (b)

a � b
  and  B �

bf (a) � af (b)

b � a

 q(t) � t4 � t3 � 6t2 � 19t � 82   R(t) � 321
 f (t) � t5 � 3t4 � 2t3 � 5t2 � 6t � 7   d(t) � t � 4

 q(x) � 2x3 � 5x2 � 2x � 22   R(x) � �6x � 57
 f (x) � 2x5 � 5x4 � 8x3 � 7x2 � 9   d(x) � x2 � 3

113 2
#

x3 � x2 � 4x � 4

x � 2i
x2 � 2x � 2

x � (1 � i)

x3 � 2x2 � 4

x � 3i

x2 � 4x � 1

x � i

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37. 38.

39.

40. (a) (b)

In Exercises 41–44, each expression has the form xn � an.
Write each expression as a product of two factors (as in the box
on page 924).

41. x5 � 32 42. y6 � 1
43. z4 � 81 44. x7 � y7

B
In Exercises 45–48, use synthetic division to determine the
quotient q(x) and the remainder R(x) in each case.

45. Hint: Divide both numerator and denomi-

nator by 3. (Why?)

46. 47.

48.
5x3 � 3x2 � 1

3x � 1

6x3 � 1

2x � 1

4x3 � 6x2 � 6x � 5

2x � 3

6x2 � 8x � 1

3x � 4

x4 � 16

x � 2

x4 � 16

x � 2

x4 � 3x2 � 12

x � 3

14 � 27x � 27x2 � 54x3

x � 2
3

14 � 27x � 27x2 � 54x3

x � 2
3

5x4 � 4x3 � 3x2 � 2x � 1

x � 1
2

x3 � x2

x � 5

1 � 3x � 3x2 � x3

x � 1

x3 � 4x2 � 3x � 6

x � 10

3x3 � 2x2 � x � 1

x � 1
2

x4 � 6x3 � 2

x � 4

x3 � 8x2 � 1

x � 3

x5 � 1

x � 2

x3 � 8

x � 2

x3 � 1

x � 2
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13.2 THE REMAINDER THEOREM AND THE FACTOR THEOREM
The techniques for solving polynomial equations of degree 2 were discussed in
Sections 1.3 and 2.1. Now we want to extend those ideas. Our focus in this section
and in the remainder of the chapter is on solving polynomial equations of any degree,
that is, equations of the form

(1)

Here, as in Chapter 1, a root or solution of equation (1) is a number r that when sub-
stituted for x leads to a true statement. Thus r is a root of equation (1) provided
f (r) � 0. For this reason we also refer to the number r in this case as a zero of the
function f.

f (x) � anx
n � an�1x

n�1 � p � a1x � a0 � 0

Descartes recommended [in his La
Géométrie of 1637] that all terms [of an
equation] should be taken to one side and
equated with zero. Though he was not the
first to suggest this, he was the earliest
writer to realize the advantage to be
gained. He pointed out that a polynomial
f (x) was divisible by (x � a) if and only if
a was a root of f (x). —David M. Burton
in The History of Mathematics, An
Introduction, 2d ed. (Dubuque, Iowa:
Wm. C. Brown Publishers, 1991)
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EXAMPLE 1 Checking for a Zero or a Root

(a) Is �3 a zero of the function f defined by f(x) � x4 � x2 � 6?
(b) Is a root of the equation x4 � x2 � 6 � 0?12

SOLUTION (a) By definition, �3 will be a zero of f if f(�3) � 0. We have

Thus �3 is not a zero of the function f. 
(b) To check whether is a root of the given equation, we have

Thus is a root of the equation x4 � x2 � 6 � 0.

There are cases in which a root of an equation is what we call a repeated root.
Consider, for instance, the equation x(x � 1)(x � 1) � 0. We have

The roots of the equation are therefore 0, 1, and 1. The repeated root here is x � 1. We
say in this case that 1 is a double root or, equivalently, that 1 is a root of multiplicity 2.
More generally, if a root is repeated k times, we call it a root of multiplicity k.

x � 0

 
 ` x � 1 � 0

x � 1
 ` x � 1 � 0

x � 1

x(x � 1)(x � 1) � 0

12

 112 2 4 � 112 2 2 � 6 � 4 � 2 � 6 � 0

12

f 1�3 2 � 1�3 24 � 1�3 22 � 6 � 81 � 9 � 6 � 84 � 0

EXAMPLE 2 Specifying the Multiplicity of a Root

State the multiplicity of each root of the equation

(x � 4)2(x � 5)3 � 0

SOLUTION We have (x � 4)(x � 4)(x � 5)(x � 5)(x � 5) � 0. By setting each factor equal to
zero, we obtain the roots 4, 4, 5, 5, and 5. From this we see that the root 4 has multi-
plicity 2, while the root 5 has multiplicity 3. It is not really necessary to write out all
the factors as we did here; the exponents of the factors in the original equation give
us the required multiplicities.

There is a connection between repeated roots and graphs. If a polynomial
equation f (x) � 0 has a repeated root r, then the graph of the function f is tangent
to the x-axis at x � r. We saw examples demonstrating this in Section 4.6,
although we had not defined the term multiple root at that stage. Figure 1 shows
two examples of this connection. (For the examples in Section 4.6, see Figures 19
through 23.)

There are two simple but important theorems that will form the basis for much
of our subsequent work with polynomials: the remainder theorem and the factor
theorem. We begin with a statement of the remainder theorem.
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Graphical Perspective

(a) g(x)=(x+1)(x-2)@

[_2, 4, 2] by [_3, 6, 3]

(b)  h(x)=(x+1)#(x-2)

[_2, 3, 1] by [_9, 3, 3

]

_3

0

3

6

_2 0 2 4
_9

_6

_3

0

3

_2 _1 0 1 2 3

] 

Figure 1
At a multiple root, the graph is
tangent to the x-axis. In contrast, 
at a simple root [such as x � 2 in
Figure 1(b)], the graph crosses the
x-axis.

Theorem The Remainder Theorem

When a polynomial f (x) is divided by x � r, the remainder is f(r).

Before turning to a proof of the remainder theorem, let’s see what the theorem is
saying in two particular cases. First, suppose that we divide the polynomial
f (x) � 2x2 � 3x � 4 by x � 1. Then according to the remainder theorem, the re-
mainder in this case should be the number f (1). Let’s check:

The remainder is 3,

.

As the calculations show, the remainder is indeed equal to f (1). As a second example,
let us divide the polynomial g(x) � ax2 � bx � c by x � r. According to the remain-
der theorem, the remainder should be g(r). Again, let us check:

The calculations show that the remainder is equal to g(r), as we wished to 
check. Thus the remainder theorem holds for any quadratic polynomial g(x) �
ax2 � bx � c. 

A general proof of the remainder theorem can easily be given along these same
lines. The only drawback is that it becomes slightly cumbersome to carry out the syn-
thetic division process when the dividend is

Instead, we base the proof of the remainder theorem on the division algorithm.
To prove the remainder theorem, we must show that when the polynomial f (x) is

divided by x � r, the remainder is f (r). Now, according to the division algorithm, we
can write

(2)f(x) � (x � r) # q(x) � R(x)

anx
n � an�1x

n�1 � p � a1x � a0

  r  � a

 a  
 a

b

ar � b  
ar � b

c

ar2 � br � c 
ar2 � br � c

  The remainder is ar2 � br � c, 
 and g(r) �   ar2 � br � c .

and f (1) � 2(1)2 � 3(1) � 4 �     3

  1  � 2  �3  4

 2  2  �1

 2  �1        3



for unique polynomials q(x) and R(x). In this identity, either R(x) is the zero polyno-
mial or the degree of R(x) is less than that of x � r. Since the degree of x � r is 1, the
degree of R(x) must be zero. Thus in either case the remainder R(x) is a constant.
Denoting this constant by c, we can rewrite equation (2) as

If we set x � r in this identity, we obtain

We have now shown that f (r) � c. But by definition, c is the remainder R(x). Thus
f (r) is the remainder. This proves the remainder theorem.

f(r) � (r � r) # q(r) � c � c

f(x) � (x � r) # q(x) � c
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EXAMPLE 3 Using the Remainder Theorem to Evaluate a Function and Check for a Factor

Let f(x) � 2x3 � 5x2 � x � 6.

(a) Use the remainder theorem to evaluate f(3).
(b) Is x � 3 a factor of f(x) � 2x3 � 5x2 � x � 6?

SOLUTION (a) According to the remainder theorem, f (3) is the remainder when f (x) is divided
by x � 3. Using synthetic division, we have

The remainder is 6, and therefore f (3) � 6.
(b) By definition, x � 3 is a factor of f (x) if we obtain a zero remainder when f(x) is

divided by x � 3. But from our work in part (a) we know that the remainder is 6,
not 0, so x � 3 is not a factor of f (x).

  3  � 2  �5  1  �6

 2  6  3  ¿12

 2  1  4  6

EXAMPLE 4 Using the Remainder Theorem to Check for a Factor

In the previous section it was stated, but not proved, that x � a is a factor of
f (x) � xn � an. Use the remainder theorem to prove this fact.

SOLUTION We need to show that when f (x) � xn � an is divided by x � a, the remainder is zero.
By the remainder theorem the remainder is equal to f (a), which is easy to find:

Thus the remainder is zero, and x � a is a factor of xn � an, as required.

From our experience with quadratic equations we know that there is a close con-
nection between factoring a quadratic polynomial f(x) and solving the polynomial
equation f (x) � 0. The factor theorem states this relationship between roots and fac-
tors in a precise form. Furthermore, the factor theorem tells us that this relationship
holds for polynomials of all degrees, not just quadratics.

f (a) � an � an � 0

Theorem The Factor Theorem

Let f (x) be a polynomial. If f (r) � 0, then x � r is a factor of f(x). Conversely, if x � r
is a factor of f(x), then f(r) � 0.



In terms of roots, we can summarize the factor theorem by saying that r is a root
of the equation f (x) � 0 if and only if x � r is a factor of f(x). To prove the factor
theorem, let us begin by assuming that f (r) � 0. We want to show that x � r is a
factor of f(x). Now, according to the remainder theorem, if f(x) is divided by x � r,
the remainder is f(r). So we can write

But since f (r) is zero, this equation becomes

This last equation tells us that x � r is a factor of f(x), as we wished to prove.
Now, conversely, let us assume that x � r is a factor of f(x). We want to show that

f (r) � 0. Since x � r is a factor of f(x), we can write

If we now let x � r in this last equation, we obtain

as we wished to show.
The example that follows indicates how the factor theorem can be used to solve

equations.

f (r) � (r � r) # q(r) � 0

f (x) � (x � r) # q(x)  for some polynomial q(x)

f(x) � (x � r) # q(x)

f (x) � (x � r) # q(x) � f (r)  for some polynomial q(x)
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EXAMPLE 5 Applying the Factor Theorem in Solving an Equation 

Refer to Figure 2, which shows a graph of the function y � x3 � 5x � 2. As is
indicated by the graph, the equation

(3)

has (as least) three roots, one of which either is equal to 2 or is very close to 2.
Confirm that x � 2 is indeed a root of equation (3), and then solve the equation.

x3 � 5x � 2 � 0

SOLUTION Replacing x by 2 in equation (3) yields 23 � 5(2) � 2 � 0. Thus 2 is a root of the
given equation. Now, since x � 2 is a root, the factor theorem tells us that x � 2 is a
factor of x3 � 5x � 2. In other words,

for some polynomial q(x) (4)x3 � 5x � 2 � (x � 2) # q(x)

Graphical Perspective

_4 _3 _2 _1 0 1 2 3 4
_30

0

30

y=˛-5x+2

[_4, 4, 1] by [_30, 30, 15 ]Figure 2
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EXAMPLE 6 Determining a Polynomial Equation with Prescribed Roots

Solve the equation x4 � 2x3 � 7x2 � 20x � 12 � 0, given that x � 3 and x � �2 
are roots.

To isolate q(x), we divide x3 � 5x � 2 by x � 2. Using synthetic division, we have

The quotient is with zero remainder. Thus equation (4) becomes

With this identity the original equation becomes

At this point, the problem is reduced to solving the linear equation x � 2 � 0 and the
quadratic equation x2 � 2x � 1 � 0. The linear equation yields x � 2, but we already
know that 2 is a root. So if we are to find any additional roots, they must come from
the quadratic equation x2 � 2x � 1 � 0. As you should now verify for yourself, the
quadratic formula yields x � �1 � Thus we have three roots of the given cubic
equation: 2, �1 � and �1 � As you’ll see in the next section, a cubic
equation can have at most three roots. So in this case we’ve determined all the roots;
that is, we have solved the equation. As you can check, the calculator approximations
for the two roots containing radicals are �1 � � 0.41 and �1 � � �2.41.
Note that these values are consistent with the graph shown in Figure 2.

Before going on to other examples, let’s take a moment to summarize the tech-
nique we used in Example 5. We want to solve a polynomial equation f (x) � 0, given
that one root is x � r. Since r is a root, the factor theorem tells us that x � r is a fac-
tor of f(x). Then, with the aid of synthetic division, we obtain a factorization

for some polynomial q(x)

This gives rise to the two equations x � r � 0 and q(x) � 0. Since the first of these
only reasserts that r is a root, we try to solve the second equation, q(x) � 0. We refer
to the equation q(x) � 0 as the reduced equation. Example 5 showed you the idea
behind this terminology: The degree of q(x) is one less than that of f (x), so we obtain
a lower degree polynomial equation to solve. If, as in Example 5, the reduced equation
happens to be a quadratic equation, then we can always determine the remaining roots
by factoring or by the quadratic formula. In subsequent sections we will look at tech-
niques that are helpful in cases in which q(x) is not quadratic.

f (x) � (x � r) # q(x)

1212

12.12,
12.

(x � 2)(x2 � 2x � 1) � 0

x3 � 5x � 2 � (x � 2)(x2 � 2x � 1)

x2 � 2x � 1

  2  � 1  0  �5  2

 2  2  4  �2

 1  2  �1  0

SOLUTION We can check that x � 3 is a root as well as find the reduced equation by using
synthetic division. We have

  3  � 1  2  �7  �20  �12

 1  3  ¿15  24  12

 1  5  8   4   0
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Thus our original equation is equivalent to

Now, x � �2 is also a root of this equation. But x � �2 surely is not a root
of the equation x � 3 � 0, so it must be a root of the reduced equation

x3 � 5x2 � 8x � 4 � 0

Again, the factor theorem is applicable. Since x � �2 is a root of the reduced
equation, x � 2 must be a factor of x3 � 5x2 � 8x � 4. Using synthetic division
again, we have

Thus our reduced equation can be written

This gives rise to a second reduced equation:

In this case the roots are readily obtained by factoring. We have

Now, of the two roots we’ve just found, �2 happens to be one of the roots that we
were initially given in the statement of the problem. On the other hand, �1 is a dis-
tinct additional root. In summary, then, we have three distinct roots: 3, �2, and �1,
where the root �2 has multiplicity 2. As you will see in the next section, a fourth-
degree equation can have at most four (not necessarily distinct) roots. So we have
found all the roots of the given equation.

 
x � 2 � 0

x � �2
 ` x � 1 � 0

x � �1

 (x � 2)(x � 1) � 0
 x2 � 3x � 2 � 0

x2 � 3x � 2 � 0

(x � 2)(x2 � 3x � 2) � 0

  �2  � 1  5  8  4

 1  �2  �6  �4

 1  3  2  0

(x � 3)(x3 � 5x2 � 8x � 4) � 0

EXAMPLE 7 Finding Polynomial Equations Satisfying Given Conditions

In each case, find a polynomial equation f (x) � 0 satisfying the given conditions. If
there is no such equation, say so.

(a) The numbers �1, 4, and 5 are roots.
(b) A factor of f (x) is x � 3, and �4 is a root of multiplicity 2.
(c) The degree of f is 4, the number �5 is a root of multiplicity 3, and 6 is a root of

multiplicity 2.

SOLUTION (a) If f (x) is any polynomial containing the factors x � 1, x � 4, and x � 5, then the
equation f (x) � 0 will certainly be satisfied with x � �1, x � 4, or x � 5. The
simplest polynomial equation in this case is therefore

This is a polynomial equation with the required roots. If required, we can carry
out the multiplication on the left-hand side of the equation. As you can check,
this yields x3 � 8x2 � 11x � 20 � 0.

(x � 1)(x � 4)(x � 5) � 0



(b) According to the factor theorem, since �4 is a root, x � 4 must be a factor of
f (x). In fact, since �4 is a root of multiplicity 2, the quantity (x � 4)2 must be a
factor of f (x). The following equation therefore satisfies the given conditions:

(c) We are given two roots: one with multiplicity 3, the other with multiplicity 2.
Thus the degree of f(x) must be at least 3 � 2 � 5. (Why?) But this then contra-
dicts the given condition that the degree of f should be 4. Consequently, there is
no polynomial equation that satisfies the given conditions.

(x � 3)(x � 4)2 � 0
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In Exercises 19–24, use the remainder theorem (as in Example 3)
to evaluate f(x) for the given value of x.

19. f (x) � 4x3 � 6x2 � x � 5; x � �3
20. f (x) � 2x3 � x � 4; x � 4
21. f (x) � 6x4 � 5x3 � 8x2 � 10x � 3; x � 1�2
22. f (x) � x5 � x4 � x3 � x2 � x � 1; x � �2
23. f (x) � x2 � 3x � 4; x � �
24. f (x) � x7 � 7x6 � 5x4 � 1; x � �3
25. The graph in the accompanying figure indicates that 

the equation 2x3 � x � 1 � 0 has a root at or very near
x � �1. Confirm that x � �1 is indeed a root, and then
solve the equation, as in Example 5.

26. The graph in the accompanying figure indicates that the
equation x3 � 14x � 8 � 0 has a root at or very near
x � 4. Confirm that x � 4 is indeed a root of the equation,
and then solve the equation, as in Example 5.

y=˛-14x-8

_40

0

40

_6 _4 _2 0 2 4 6

y=2˛-x+1

_10

0

10

_2 _1 0 1 2

12

A
In Exercises 1–6, determine whether the given value for the
variable is a root of the equation.

1. 12x � 8 � 112; x � 10
2. 12x2 � x � 20 � 0; x � 5�4
3. x2 � 2x � 4 � 0; x � 1 �
4. 1 � x � x2 � x3 � 0; x � �1
5. 2x2 � 3x � 1 � 0; x � 1�2
6. (x � 1)(x � 2)(x � 3) � 0; x � 4

In Exercises 7–14, determine whether the given value is a zero
of the function.

7. f (x) � 3x � 2; x � 2�3
8. g(x) � 1 � x2; x � �1
9. h(x) � 5x3 � x2 � 2x � 8; x � �1

10. F (x) � �2x5 � 3x4 � 8x3; x � 0
11. f (t) � 1 � 2t � t3 � t5; t � 2
12. f (t) � 1 � 2t � t3 � t5; t �
13. f (x) � 2x3 � 3x � 1:

(a) x � � 1 �2 (b) x � � 1 �2
14. g(x) � x4 � 8x3 � 9x2 � 8x � 10:

(a) x � 1 (b) x � � 4 (c) x � � 4

In Exercises 15 and 16, list the distinct roots of each equation.
In the case of a repeated root, specify its multiplicity.

15. (x � 1)(x � 2)3(x � 3) � 0
16. x(x � 5)4 � 0

In Exercises 17 and 18 you are given a polynomial equation
f (x) � 0. Specify the multiplicity of each repeated root. Then
use a graphing utility to visually verify that the graph of
y � f (x) is tangent to the x-axis at each repeated root.

17. (a) (x � 1)2(x � 2) � 0
(b) (x � 1)(x � 2)3 � 0
(c) (x � 1)2(x � 2)3 � 0

18. (a) x(x � 1)2(x � 1) � 0
(b) x2(x � 1)2(x � 1) � 0
(c) x3(x � 1)2(x � 1) � 0

1616

21312131
12

15
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B
For Exercises 45 and 46, refer to the following tables for the
functions f and g.

f (t) � t3 � 4t � 3 g(t) � t5 � 2t 4 � t 3 � 2t 2 � t � 2

t f (t) t g(t)

0.500 1.125000 �3.00 �89.0
0.750 0.421875 �2.50 �22.15625
1.000 0.000000 �2.25 �7.4228515625
1.250 �0.046875 �2.00 0.0
1.500 0.375000 �1.75 2.8603515625

45. (a) What is the remainder when f(t) is divided by t � 1�2?
Hint: Don’t calculate; use the remainder theorem.

(b) What is the remainder when f (t) is divided by t � 1.25?
(c) Specify a linear factor of f(t).
(d) Solve the equation f (t) � 0.

46. (a) What is the remainder when g(t) is divided by t � 3?
(b) What is the remainder when g(t) is divided by t � 5�2?
(c) Specify a linear factor of g(t).
(d) Solve the equation g(t) � 0.

In Exercises 47–52, find a polynomial equation f(x) � 0
satisfying the given conditions. If no such equation is possible, 
state this.

47. Degree 3; the coefficient of x3 is 1; three roots are 3, �4,
and 5

48. Degree 3; the coefficient are integers; 1�2, 2�5, and �3�4
are roots

49. Degree 3; �1 is a root of multiplicity two; x � 6 is a factor
of f (x)

50. Degree 3; 4 is a root of multiplicity two; �1 is a root of
multiplicity two

51. Degree 4; 1�2 is a root of multiplicity three; x2 � 3x � 4 is
a factor of f(x)

52. Degree 4; the coefficients are integers; 1�2 is a root of mul-
tiplicity two; 2x2 � 4x � 1 is a factor of f(x)

53. In this exercise we verify that the remainder theorem is
valid for the cubic polynomial .
(a) Compute g(r).
(b) Using synthetic division, divide g(x) by x � r. Check

that the remainder you obtain is the same as the answer
in part (a).

54. (a) In the standard viewing rectangle, graph the four
equations .

(b) Switch to a viewing rectangle that extends from �5 to 5
in the x-direction and from �40 to 20 in the y-direction.
Name one property that is shared by all four graphs.

(c) How does your answer in part (b) relate to the result in
Example 4 of this section?

y � xn � 2n, (n � 2, 3, 4, 5)

g(x) � ax3 � bx2 � cx � d

In Exercises 27–38 you are given a polynomial equation and
one or more roots. Check that the given numbers really are
roots, then solve each equation using the method shown in
Examples 5 and 6. To help you decide whether you have
found all the roots in each case, you may rely on the following
theorem, discussed in the next section: A polynomial
equation of degree n has at most n (not necessarily distinct)
roots.

27. x3 � 4x2 � 9x � 36 � 0; �3 is a root.
28. x3 � 7x2 � 11x � 5 � 0; �1 is a root.
29. x3 � x2 � 7x � 5 � 0; 1 is a root.
30. x3 � 8x2 � 3x � 24 � 0; �8 is a root.
31. 3x3 � 5x2 � 16x � 12 � 0; �2 is a root.
32. 2x3 � 5x2 � 46x � 24 � 0; 6 is a root.
33. 2x3 � x2 � 5x � 3 � 0; �3�2 is a root.
34. 6x4 � 19x3 � 25x2 � 18x � 8 � 0; 4 and �1�3 are roots.
35. x4 � 15x3 � 75x2 � 125x � 0; 5 is a root.
36. 2x3 � 5x2 � 8x � 20 � 0; 2 is a root.
37. x4 � 2x3 � 23x2 � 24x � 144 � 0; �4 and 3 are roots.
38. 6x5 � 5x4 � 29x3 � 25x2 � 5x � 0; and �1�3 are

roots.

In Exercises 39–42, each polynomial equation f (x) � 0
has a root r that is a rational number. Use a graphing utility
to zoom in on the x-intercepts of the graph of y � f (x) until
you think you know what r is. Then check algebraically that r
is indeed a root. [You can check either by direct substitution
or by using the remainder theorem and synthetic division to
compute f (r).] After you know the rational root, follow the
procedure shown in Example 5 to determine the remaining
roots. For roots that contain radicals, give both the exact
expression for the answer and a calculator approximation
rounded to two decimal places. Finally, check to see that the
decimal values are consistent with the x-intercepts that you
looked at initially.

39. x3 � x2 � 18x � 10 � 0
40. �2x3 � 7x2 � 2x � 6 � 0
41. 6x3 � 28x2 � 19x � 2 � 0
42. 5x5 � x4 � 15x3 � 3x2 � 15x � 3 � 0

In Exercises 43 and 44, each polynomial equation f (x) � 0
has at least two rational roots. Use a graphing utility to zoom
in on the x-intercepts of the graph of y � f (x) to see what the
rational roots might be. For each suspected rational root, find
out whether it is actually a root (either by using direct substitu-
tion or by using the remainder theorem and synthetic division).
After you have determined the rational roots in this way, solve
the equation as in Example 6.

43. 4x5 � 15x4 � 8x3 � 19x2 � 12x � 4 � 0
44. x4 � 10x3 � 3.1x2 � 28.9x � 21 � 0

15
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59. One root of the equation x2 � bx � 1 � 0 is twice the
other; find b. (There are two answers.)

60. Determine a value for a such that one root of the equation
ax2 � x � 1 � 0 is five times the other.

C
61. Solve the equation x3 � 12x � 16 � 0, given that one of

the roots has multiplicity two.

In Exercises 55 and 56, determine whether the given value is a
zero of the function.

55. Q(x) � ax2 � bx � c; x �

Hint: Look before you leap!
56. f (x) � x3 � 3x2 � 3x � 3:

(a) x � � 1 (b) x � � 1
57. Determine values for a and b such that x � 1 is a factor of

both x3 � x2 � ax � b and x3 � x2 � ax � b.
58. Determine a quadratic equation with the given roots:

(a) a�b, �b�a (b) �a � 2 �a � 212b12b,

1
3 21

3 2

�b � 2b2 � 4ac

2a
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THE FUNDAMENTAL THEOREM OF ALGEBRA
One of the most intriguing problems was the question of the number of roots of an
equation, which brought in negative and imaginary quantities, and led to the conclu-
sion, in the work of Girard and Descartes, that an equation of degree n can have no
more than n roots. The more precise statement, that an equation of degree n always
has one root, and hence always has n roots (allowing for multiple roots), became
known as the fundamental theorem of algebra. After several attempts by D’Alembert,
Euler, and others, the proof was finally given by Gauss in 1799. —From A Source Book

in Mathematics, 1200–1800, D. J. Struik, ed. (Princeton, N.J.: Princeton University Press, 1986)

Does every polynomial equation (of degree at least 1) have a root? Or, to put the
question another way, is it possible to write a polynomial equation that has no solu-
tion? Certainly, if we consider only real roots, that is, roots that are real numbers,
then it is easy to specify an equation with no real roots:

This equation has no real roots because the square of a real number is never negative.
On the other hand, if we allow complex-number roots, then x2 � �1 does indeed
have a root. In fact, both i and �i are roots in this case.

It turns out that the situation just described for the equation x2 � �1 holds quite
generally. That is, within the complex-number system, every polynomial equation of
degree at least 1 has at least one root. This is the substance of a remarkable theorem
that was first proved by the great mathematician Carl Friedrich Gauss in 1799.
(Gauss was only 22 years old at the time.) Although there are many fundamental the-
orems in algebra, Gauss’s result has come to be known as the fundamental theorem
of algebra.

x2 � �1

13.3

Every equation of algebra has as many
solutions as the exponent of the highest
term indicates. —Albert Girard, 1629, as
quoted by David M. Burton in The
History of Mathematics, An Introduction,
2d ed. (Dubuque, Iowa: Wm. C. Brown
Publishers, 1991)

. . . We arrive from all the investigations
explained above at the rigorous proof of
the theorem that every integral rational
algebraic function of one variable can
be decomposed into real factors of the
first and second degree. —Carl Friedrich
Gauss in his doctoral dissertation (1799)

Theorem The Fundamental Theorem of Algebra

Every polynomial equation of the form

has at least one root within the complex number system. (This root may be a real
number.)

anx
n � an�1x

n�1 � p � a1x � a0 � 0  (n � 1, an � 0)



Although most of this section deals with polynomials with real coefficients,
Gauss’s theorem still applies in cases in which some or all of the coefficients are non-
real complex numbers. The proof of Gauss’s theorem is usually given in the post-
calculus course called complex variables.

The fundamental theorem of algebra asserts that every polynomial equation of
degree at least 1 has a root. There are two initial observations to be made here. First,
notice that the theorem says nothing about actually finding the root. Second, notice
that the theorem deals only with polynomial equations. Indeed, it is easy to specify a
non-polynomial equation that does not have a root. Such an equation is 1�x � 0. The
expression on the left-hand side of this equation can never be zero because the
numerator is 1.

936 CHAPTER 13 Roots of Polynomial Equations

EXAMPLE 1 Understanding What the Fundamental Theorem Says

Which of the following equations has at least one root?

(a) x3 � 17x2 � 6x � 1 � 0 (c) x2 � 2ix � (3 � i) � 0
(b) � px25 � � 01312x47

SOLUTION All three equations are polynomial equations, so according to the fundamental theo-
rem of algebra, each equation has at least one root.

In Section 1.3 we used factoring as a tool for solving quadratic equations. The
next theorem, a consequence of the fundamental theorem of algebra, tells us that (in
principle, at least) any polynomial of degree n can be factored into a product of n lin-
ear factors. In proving the linear factors theorem, we will need to use the factor the-
orem. If you reread the proof of that theorem in the previous section, you will see that
it makes no difference whether the number r appearing in the factor x � r is a real
number or a nonreal complex number. Thus the factor theorem is valid in either case.

Theorem The Linear Factors Theorem

Let f (x) � a1x � a0, where n � 1 and an � 0. Then f (x) can
be expressed as a product of n linear factors:

(The complex numbers rk that appear in these factors are not necessarily all distinct,
and some or all of the rk may be real numbers.)

Proof of the Linear Factors Theorem. According to the fundamental theorem of
algebra, the equation f(x) � 0 has a root; let’s call this root r1. By the factor theorem,
x � r1 is a factor of f(x), and we can write

for some polynomial Q1(x) that has degree n � 1 and leading coefficient an. If the
degree of Q1(x) happens to be zero, we’re done. On the other hand, if the degree of
Q1(x) is at least 1, another application of the fundamental theorem of algebra fol-
lowed by the factor theorem gives us

Q1(x) � (x � r2) # Q2(x)

f (x) � (x � r1) # Q1(x)

f (x) � an(x � r1)(x � r2) p (x � rn)

anx
n � an�1x

n�1 � p �



where the degree of Q2(x) is n � 2 and the leading coefficient of Q2(x) is an. We
now have

We continue this process until the quotient is Qn(x) � an. As a result, we obtain

as we wished to show.
The linear factors theorem tells us that any polynomial can be expressed as a

product of linear factors. The theorem gives us no information, however, as to how
those factors can actually be obtained. The next example demonstrates a case in
which the factors are readily obtainable; this is always the case with quadratic
polynomials.

 � an(x � r1)(x � r2) p (x � rn)
 f (x) � (x � r1)(x � r2) p (x � rn)an

f (x) � (x � r1)(x � r2) # Q2(x)
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EXAMPLE 2 Writing Quadratics as the Products of Linear Factors

Express the following second-degree polynomials in the form an(x � r1)(x � r2):

(a) 3x2 � 5x � 2; (b) x2 � 4x � 5.

SOLUTION (a) A factorization for 3x2 � 5x � 2 can be found by simple trial and error. We have

We now write the factor 3x � 1 as This, in turn, can be written
The final factorization is then

(b) From the factor theorem, or from our more elementary work with quadratic
equations, we know that if r1 and r2 are the roots of the equation x2 � 4x � 5 � 0,
then x � r1 and x � r2 are the factors of x2 � 4x � 5. That is,
x2 � 4x � 5 � (x � r1)(x � r2). The values for r1 and r2 in this case are readily
obtained by using the quadratic formula. As you can check, the results are

The required factorization is therefore

Using the linear factors theorem, we can show that every polynomial equation of
degree n � 1 has exactly n roots. To help you follow the reasoning, we make two
preliminary comments. First, we agree that a root of multiplicity k will be counted as
k roots. For example, although the third-degree equation (x � 1)(x � 4)2 � 0 has
only two distinct roots, 1 and 4, it has three roots if we agree to count the repeated
root 4 two times. The second preliminary comment concerns the zero-product
property, which states that pq � 0 if and only if p � 0 or q � 0. When we stated this
in Section 1.3, we were working within the real-number system. However, the prop-
erty is also valid within the complex-number system. (See Exercises 79 and 80 in
Appendix A.3.) Now let’s state and prove our theorem.

x2 � 4x � 5 � [x � (2 � i)][x � (2 � i)]

r1 � 2 � i  and  r2 � 2 � i

3x2 � 5x � 2 � 3 c x � a� 

1

3
b d (x � 2)

3 3x � 1�1
3 24 .

3 1x � 1
3 2 .

3x2 � 5x � 2 � (3x � 1)(x � 2)
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Theorem A Corollary to the Fundamental Theorem of Algebra

Every polynomial equation of degree n � 1 has exactly n roots, where a root of
multiplicity k is counted k times.

Proof of the Theorem. Using the linear factors theorem, we can write the nth-
degree polynomial equation f (x) � anx

n � an�1x
n�1 � p � a1x � a0 � 0 as

(1)

By the factor theorem, each of the numbers r1, r2, . . . , rn is a root. Some of these
numbers may in fact be equal; in other words, we may have repeated roots in this list.
In any case, if we agree to count a root of multiplicity k as k roots, then we obtain ex-
actly n roots from the list r1, r2, . . . , rn. Furthermore, the equation f (x) � 0 can have
no other roots, as we now show. Suppose that r is any number distinct from all the
numbers r1, r2, . . . , rn. Replacing x with r in equation (1) yields

But the expression on the right-hand side of this last equation cannot be zero, because
none of the factors is zero. Thus f (r) is not zero, and so r is not a root. This completes
the proof of the theorem.

f (r) � an(r � r1)(r � r2) p (r � rn)

f (x) � an(x � r1)(x � r2) p (x � rn) � 0  (an � 0)

EXAMPLE 3 Finding f (x) Given the Roots and Multiplicities of f (x) � 0

Find a polynomial f(x) with leading coefficient 1 such that the equation f (x) � 0 has
only those roots specified in Table 1. What is the degree of this polynomial?

SOLUTION The expressions (x � 3)2, x � 2, and (x � 0)2 all must appear as factors of f (x), and
furthermore, no other linear factor can appear. The form of f (x) is therefore

Since the leading coefficient an is to be 1, we can rewrite this last equation as

This is the required polynomial. The degree here is 5. This can be seen either by mul-
tiplying out the factors or by simply adding the multiplicities of the roots in Table 1.
Figure 1 provides a graphical perspective on this example.

f (x) � x2(x � 3)2(x � 2)

f (x) � an(x � 3)2(x � 2)(x � 0)2TABLE 1

Root Multiplicity

3 2
�2 1

0 2

Graphical Perspective

ƒ=≈(x-3)@(x+2)

[_3, 4, 1] by [_40, 40, 20 ]

_40

0

40

_3 _2 _1 0 1 2 3 4

Figure 1
The roots of the equation
f(x) � x2(x � 3)2(x � 2) � 0 are
�2, 0, and 3. The roots 0 and 3 
each have multiplicity 2, and
correspondingly, the graph of f is
tangent to the x-axis at those x-
intercepts. The root �2 is a simple
root, and the graph of f is not tangent
to the x-axis at the intercept x � �2.
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EXAMPLE 4 Using the Linear Factors Theorem in Determining a Quadratic Function

Find a quadratic function f that has zeros of 3 and 5 and a graph that passes through
the point (2, �9).

SOLUTION The general form of a quadratic function with 3 and 5 as zeros is
f (x) � an(x � 3)(x � 5). Since the graph passes through (2, �9), we have

The required function is therefore f(x) � �3(x � 3)(x � 5). If we wish, we can carry
out the multiplication and rewrite this as

Figure 2 summarizes this result.

f (x) � �3x2 � 24x � 45

 �3 � an

 �9 � an(2 � 3)(2 � 5) � an(3)

Graphical Perspective

ƒ=_3≈+24x-45

[1, 7, 1 ] by [_12, 6, 3]

_12

_9

_6

_3

0

3

6

1 2 3 4 5 6 7

Figure 2
In Example 4 we determined that the
function f(x) � �3x2 � 24x � 45 has
zeros of 3 and 5 and that the graph
passes through the point (2, �9).

The next example shows how we can use the factored form of a polynomial f (x)
to determine the relationships between the coefficients of the polynomial and the
roots of the equation f (x) � 0.

EXAMPLE 5 Applying the Linear Factors Theorem to Relate Roots and Coefficients

Let r1 and r2 be the roots of the equation x2 � bx � c � 0. Show that

Remark: We actually established these two results previously, in Section 2.1. If you look
back, you’ll see we did this by means of the quadratic formula. The advantage to the fol-
lowing technique is that it does not require a formula for the roots; thus it can be applied
to polynomial equations of any degree. (We’ll return to this idea after the example.)

r1r2 � c  and  r1 � r2 � �b

SOLUTION Since r1 and r2 are the roots of the equation x2 � bx � c � 0, we have the identity

After multiplying out the right-hand side, we can rewrite this identity as

By equating coefficients, we readily obtain r1r2 � c and r1 � r2 � �b, as required.

x2 � bx � c � x2 � (r1 � r2)x � r1r2

x2 � bx � c � (x � r1)(x � r2)



The technique used in Example 5 can be used to obtain similar relationships be-
tween the roots and the coefficients of polynomial equations of any given degree. In
Table 2, for instance, we show the relationships obtained in Example 5, along with
the corresponding relationships that can be derived for a cubic equation. (Exercise 47
at the end of this section asks you to verify the results for the cubic equation.)

940 CHAPTER 13 Roots of Polynomial Equations

TABLE 2

Relationships Between
Equation Roots Roots and Coefficients

x2 � bx � c � 0 r1, r2 r1 � r2 � �b
r1r2 � c

x3 � bx2 � cx � d � 0 r1, r2, r3 r1 � r2 � r3 � �b
r1r2 � r2r3 � r3r1 � c
r1r2r3 � �d

We conclude this section with some remarks concerning the solving of polyno-
mial equations by formulas. You know that the roots of the quadratic equation
ax2 � bx � c � 0 are given by the formula

Are there similar formulas for the solutions of higher-degree equations? By “similar”
we mean a formula involving the coefficients and radicals. To answer this question,
we look at a bit of history. As early as 1700 B.C., Babylonian mathematicians were
able to solve quadratic equations. This is clear from the study of the clay tablets with
cuneiform numerals that archeologists have found. The ancient Greeks also were
able to solve quadratic equations. Like the Babylonians, the Greeks worked without
the aid of algebra as we know it. The mathematicians of ancient Greece used geo-
metric constructions to solve equations. Of course, since all quantities were inter-
preted geometrically, negative roots were never considered.

The general quadratic formula was known to Islamic mathematicians sometime
before A.D. 1000. For the next 500 years, mathematicians searched for, but did not
discover, a formula to solve the general cubic equation. Indeed, in 1494, Luca Pacioli
stated in his text Summa di Arithmetica that the general cubic equation could not be
solved by the algebraic techniques then available. All of this was to change, however,
within the next several decades.

Around 1515 the Italian mathematician Scipione del Ferro solved the cubic
equation x3 � px � q � 0 using algebraic techniques. This essentially constituted a
solution of the seemingly more general equation x3 � bx2 � cx � d � 0. The reason
for this is that if we make the substitution x � y � b�3 in the latter equation,
the result is a cubic equation with no y2-term. By 1540 the Italian mathematician
Ludovico Ferrari had solved the general fourth-degree equation. Actually, at that
time in Renaissance Italy there was considerable controversy as to exactly who dis-
covered the various formulas first. Details of the dispute can be found in any text on

x �
�b � 2b2 � 4ac

2a



the history of mathematics. But for our purposes here, the point is simply that by the
middle of the sixteenth century, all polynomial equations of degree 4 or less could
be solved by the formulas that had been discovered. The common feature of these
formulas was that they involved the coefficients, the four basic operations of arith-
metic, and various radicals. For example, a formula for a solution of the equation
x3 � px � q � 0 is as follows:

To get some idea of the practical difficulties inherent in computing with this formula,
try using it to show that x � �2 is a root of the cubic equation x3 � 4x � 16 � 0.

For more than 200 years after the cubic and quartic (fourth-degree) equations had
been solved, mathematicians continued to search for a formula that would yield the so-
lutions of the general fifth-degree equation. The first breakthrough, if it can be called
that, occurred in 1770, when the French mathematician Joseph Louis Lagrange found
a technique that served to unify and summarize all of the previous methods used for
the equations of degrees 2, 3, and 4. However, Lagrange then showed that his tech-
nique could not work in the case of the general fifth-degree equation. Although we
will not describe the details of Lagrange’s work here, it is worth pointing out that he
relied on the types of relationships between roots and coefficients that we just looked
at in Table 2.

Finally, in 1826 the Norwegian mathematician Niels Henrik Abel proved that for
the general polynomial equation of degree 5 or higher, there could be no formula
yielding the solutions in terms of the coefficients and radicals. This is not to say that
such equations do not possess solutions. In fact they must, as we saw earlier in this
section. It is just that we cannot in every case express the solutions in terms of
the coefficients and radicals. For example, it can be shown that the equation
x5 � 6x � 3 � 0 has a real root between 0 and 1, but this number cannot be expressed
in terms of the coefficients and radicals. (We can, however, compute the root to as
many decimal places as we wish, as you will see in the next section.) In 1831 
the French mathematician Evariste Galois completed matters by giving conditions
for determining exactly which polynomial equations can be solved in terms of
coefficients and radicals.

Note: Historical background on polynomial equations and the fundamental theorem
of algebra is available at the History of Mathematics website maintained by the
University of St. Andrews, in Scotland. The home page is http://www-groups.dcs.st-
and.ac.uk/~history. Another website is http://alephO.clarku.edu:80/~djoyce/mathhis/
subjects.html. Choose “History Topics Index.” Also, there are a number of math history
textbooks that discuss this material. To cite but three:

1. Victor. J. Katz, A History of Mathematics: An Introduction, 2nd ed. (Boston:
Addison-Wesley, 1998)

2. David M. Burton, History of Mathematics: An Introduction, 3rd ed. (New York:
McGraw Hill, 1997)

3. John Stillwell, Mathematics and Its History, 2nd ed. (New York: Springer-Verlag,
2001)

x �
C

3 �q

2
�
B

q2

4
�

p3

27
�
C
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2
�
B

q2

4
�

p3

27
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22.

23. Root � 4i �4i

Multiplicity 2 2 1 1

24.

For Exercises 25–30:
(a) Find a polynomial f (x) with leading coefficient 1 such that

the equation f (x) � 0 has the given roots and no others. If
the degree of f (x) is more than 4, leave f (x) in factored form
rather than multiplying it out.

(b) Use a graphing utility to check the following fact, men-
tioned in this section: If x � r is a multiple root of f(x) � 0,
then the graph of the function f is tangent to the x-axis at
x � r.

25.

26.

27.

28.

29.

30.

In Exercises 31–34, express the polynomial f (x) in the form
anxn � an�1x

n�1 � p � a1x � a0.

31. Find a quadratic function that has zeros �4 and 9 and a
graph that passes through the point (3, 5).

Root 0 1 3

Multiplicity 3 2 1

Root 0 1 3

Multiplicity 2 1 3

Root 0 1 3

Multiplicity 2 1 2

Root 0 1 3

Multiplicity 1 2 2

Root 0 1 3

Multiplicity 1 2 1

Root 0 1 3

Multiplicity 2 1 1

Root 5 1 1 � i 1 � i

Multiplicity 2 3 1 1

1313

Root 2 � i 2 � i

Multiplicity 1 1

A
According to the fundamental theorem of algebra, which of the
equations in Exercises 1 and 2 have at least one root?

1. (a) x5 � 14x4 � 8x � 53 � 0
(b) 4.17x3 � 2.06x2 � 0.01x � 1.23 � 0
(c) ix2 � (2 � 3i)x � 17 � 0
(d) x2.1 � 3x0.3 � 1 � 0

2. (a) x17 � x13 � � 0
(b) � � � 0
(c) 1�(x2 � 1) � 0
(d) 23x � 2x � 1 � 0

In each of Exercises 3–10 you are given a polynomial equa-
tion f (x) � 0. According to the fundamental theorem of algebra,
each of these equations has at least one root. However, the fun-
damental theorem does not tell you whether the equation has
any real-number roots. Use a graph to determine whether the
equation has at least one real root. Note: You are not being
asked to solve the equation.

3. x2 � 3x � 2.26 � 0 4. x2 � 2x � 290 � 0
5. x3 � 3x2 � 3 � 0 6. x4 � 3x2 � 3 � 0
7. x4 � x3 � x2 � x � 1 � 0
8. x5 � x3 � x2 � x � 1 � 0
9. 0.2x3 � 4.4x2 � 109x � 1 � 0

10. x4 � � 2.79p � 0

In Exercises 11–18, express each polynomial in the form
an(x � r1)(x � r2) p (x � rn).

11. x2 � 2x � 3 12. x3 � 2x2 � 3x
13. 4x2 � 23x � 6 14. 6x2 � x � 12
15. x2 � 5 16. x2 � 5
17. x5 � 7x3 � 18x 18. x3 � 2x2 � 3x � 6

In Exercises 19–24, find a polynomial f(x) with leading
coefficient 1 such that the equation f(x) � 0 has the given roots
and no others. If the degree of f (x) is 7 or more, express f (x)
in factored form; otherwise, express f (x) in the form
anxn � an�1x

n�1 � p � a1x � a0.

19.

20.

21.
Root 2 �2 2i �2i

Multiplicity 1 1 1 1

Root 0 4

Multiplicity 2 1

Root 1 �3

Multiplicity 2 1

135x2

1513x1217x13
151213

EXERCISE SET 13.3



(a) Rewrite the equation in the form x3 � 15x � 4, and
apply Cardano’s formula (given in the previous
exercise). Show that this yields

(b) Using paper and pencil (or a computer algebra system),
show that

(c) Use the results in part (b) to simplify the root given in
part (a). You should obtain x � 4.

(d) Use a graph to check visually that x � 4 is a 
root of x3 � 15x � 4. (That is, graph the function
y � x3 � 15x � 4 and note that x � 4 appears to be
one of the x-intercepts.) Also, check, algebraically that
the value x � 4 satisfies the equation.

(e) Given that x � 4 is a root of the equation x3 � 15x � 4,
use the techniques from Section 13.2 to determine the 
remaining two roots. Check your answers by using a
graphing utility to determine the x-intercepts of the
graph in part (d).

45. Express the polynomial x4 � 64 as a product of four linear
factors. Hint: Write
then use the difference-of-squares factoring formula.

46. Suppose that p and q are positive integers with p 	 q.
Find a quadratic equation with integer coefficients and
roots � � .

47. Let r1, r2, and r3 be the roots of the equation
x3 � bx2 � cx � d � 0. Use the method shown in 
Example 5 to verify the following relationships:

48. Let r1, r2, r3, and r4 be the roots of the equation
x4 � bx3 � cx2 � dx � e � 0. Use the method shown in
Example 5 to prove the following facts:

49. Solve the equation x3 � 75x � 250 � 0, given that two of
the roots are equal. Suggestion: Use Table 2.

50. For this exercise, assume as given the following trigono-
metric identity:

tan 3u �
tan3 u � 3 tan u

3 tan2 u � 1

 r1r2r3r4 � e
 r1r2r3 � r2r3r4 � r3r4r1 � r4r1r2 � �d
 r1r2 � r2r3 � r3r4 � r4r1 � r2r4 � r3r1 � c
 r1 � r2 � r3 � r4 � �b

 r1r2r3 � �d
 r1r2 � r2r3 � r3r1 � c
 r1 � r2 � r3 � �b

21p � q1p11p

x4 � 64 � (x4 � 16x2 � 64) � 16x2,

(2 � i)3 � 2 � 11i  and  (�2 � i)3 � �2 � 11i

x � 1
3 2 � 11i � 1

3
�2 � 11i

32. (a) Find a quadratic function that has a maximum value of
2 and that has �2 and 4 as zeros.

(b) Use a graphing utility to check that your answer in
part (a) appears to be correct.

33. (a) Find a third-degree polynomial function that has 
zeros �5, 2, and 3 and a graph that passes through the
point (0, 1).

(b) Use a graphing utility to check that your answer in
part (a) appears to be correct.

34. Find a fourth-degree polynomial function that has zeros
� 1, and �1 and a graph that passes through (2, �20).

In Exercises 35–42, find a quadratic equation with the given
roots. Write your answers in the form Ax2 � Bx � C � 0.
Suggestion: Make use of Table 2.

35. r1 � �i, r2 � �
36. r1 � 1 � i , r2 � 1 � i
37. r1 � 9, r2 � �6
38. r1 � 5, r2 � 3�4
39. r1 � 1 � , r2 � 1 �
40. r1 � 6 � 5i, r2 � 6 � 5i
41. r1 � a � , r2 � a � (b 	 0)
42. r1 � a � bi, r2 � a � bi

B
43. Scipio Ferro of Bologna well-nigh thirty years ago discov-

ered this rule and handed it on to Antonio Maria Fior of
Venice, whose contest with Niccolò Tartaglia of Brescia
gave Niccolò occasion to discover it. He [Tartaglia] gave it
to me in response to my entreaties, though withholding the
demonstration. Armed with this assistance, I sought out its
demonstration in [various] forms. —Girolamo Cardano,
Ars Magna (Nuremberg, 1545) 

The quotation is from the translation of Ars Magna by
T. Richard Witmer (New York: Dover Publications, 1993).

In his book Ars Magna (The Great Art) the Renaissance
mathematician Girolamo Cardano (1501–1576) gave the
following formula for a root of the equation x3 � ax � b:

(a) Use this formula and your calculator to compute a root
of the cubic equation x3 � 3x � 76.

(b) Use a graph to check the answer in part (a). That is,
graph the function y � x3 � 3x � 76, and note the x-
intercept. Also check the answer simply by substituting
it in the equation x3 � 3x � 76.

44. Consider the cubic equation x3 � 15x � 4, which was
solved by Rafael Bombelli in his text L’Algebra parte
maggiore del arithmetica (Bologna: 1572). Bombelli was
among the first to use complex numbers to obtain real-
number solutions.

x �
C

3 b
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�
B

b2

4
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a3

27
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C

3 �b
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�
B

b2

4
�

a3

27

1b1b

1515

1313
13

12,
12,
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(c) Use Table 2 to explain why

(cos 20°)(cos 100°)(cos 140°) �

(d) Use the result in part (c) and the reference angle con-
cept to show that

(cos 20°)(cos 40°)(cos 80°) �

(e) Use a calculator to check the result in part (d).

C
53. (a) Let r1, r2, r3, and r4 be four real roots of the equation 

x4 � ax2 � bx � c � 0. Show that

r1 � r2 � r3 � r4 � 0

Hint: Use the first formula in Exercise 48.
(b) Suppose a circle intersects the parabola y � x2 in the

points (x1, y1), . . . , (x4, y4). Show that

x1 � x2 � x3 � x4 � 0

Hint: Use the results in part (a).
54. (a) Let r1, r2, and r3 be three distinct numbers that are

roots of the equation f (x) � Ax2 � Bx � C � 0. Show
that f(x) � 0 for all values of x. Hint: You need to
show that A � B � C � 0. First show that both A and
B are zero as follows. If either A or B were nonzero,
then the equation f (x) � 0 would be a polynomial
equation of degree at most 2 with three distinct roots.
Why is that impossible?

(b) Use the result in part (a) to prove the following identity:

Hint: Let f(x) denote the quadratic expression on the
left-hand side of the equation. Compute f (a), f(b), and
f (c).

55. Prove that the following equation is an identity:

Hint: Use the result in Exercises 54(a).

 �
(x � c)(x � a)b2

(b � c)(b � a)
� x2 � 0

(x � a)(x � b)c2

(c � a)(c � b)
 �

(x � b)(x � c)a2

(a � b)(a � c)

 �
c2 � x2

(c � a)(c � b)
� 1 � 0

a2 � x2

(a � b)(a � c)
 �

b2 � x2

(b � c)(b � a)

1

8
 

1

8
 

(a) Use the given identity to show that the number tan 15°
is a root of the cubic equation

(1)

(b) Use a calculator to check that tan 15° indeed appears to
be a root of equation (1).

(c) Factor (by grouping) the left-hand side of equation (1).
Conclude that tan 15° is a root of the reduced equation

(2)

(d) The work in parts (a) and (c) shows that the number 
tan 15° is a root of equation (2). By following the same
technique, show that the number tan 75° is also a root
of equation (2).

(e) Use Table 2 to evaluate each of the following 
quantities. Then use a calculator to check your 
answers.
(i) tan 15° � tan 75° (ii) tan 15° tan 75°

(f) Use the quadratic formula to solve equation (2). Which
root is tan 15° and which is tan 75°?

51. For this exercise, assume as given the following two results
which were derived in Exercises 58 and 59 of Exercise 
Set 9.2:

(cos 72°)(cos 144°) �

and

cos 72° � cos 144° �

(a) Find a quadratic equation, with integer coefficients,
whose roots are the numbers cos 72° and cos 144°.
Hint: Use the result in Example 5 or Table 2.

(b) Use the quadratic formula to solve the equation in 
part (a). Conclude that

cos 72° � �1 �

and

cos 144° � �1 �

(c) Use a calculator to check the results in part (b).
52. (a) In the trigonometric identity 

cos 3u � 4 cos3 u � 3 cos u, make the substitution 
u � 20° and conclude that the number cos 20° is 
a root of the equation 8x3 � 6x � 1 � 0.

(b) Follow the method in part (a) to show that each 
of the numbers cos 100° and cos 140° is a root of 
8x3 � 6x � 1 � 0.

21511
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21511

4
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2
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1

4
 

x2 � 4x � 1 � 0

x3 � 3x2 � 3x � 1 � 0
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MINI PROJECT A Geometric Interpretation of Complex Roots

As you know, if a quadratic equation f (x) � x2 � Bx � C � 0 has two real
roots, there is a geometric interpretation: The roots are the x-intercepts for the
graph of f. Less well known is the fact that there is a geometric interpretation
when the quadratic equation has nonreal complex roots. If these roots are
a � bi, where a and b are real numbers, then the coordinates of the vertex of
the graph of f are (a, b2).

(a) Check that this is true in the case of the quadratic equation 
f (x) � x2 � 6x � 25 � 0.

(b) Show that the result holds in general. That is, assume that the roots of 
f (x) � x2 � Bx � C � 0 are a � bi, where a and b are real numbers with
b � 0. Show that the vertex of the graph of f is (a, b2). Hint: Use
relationships on products and sums of roots to write A and B in terms of
a and b.

The Project, Two Methods for Solving Certain Cubic Equations, at http://www.cengage.com/math/cohen/
precalc7e, discusses a cubic equation of historical interest.

13.4 RATIONAL AND IRRATIONAL ROOTS
As we saw in the previous section, not every polynomial equation has a real root.
Furthermore, even if a polynomial equation does possess a real root, that root isn’t
necessarily a rational number. (The equation x2 � 2 provides a simple example.) If a
polynomial equation with integer coefficients does have a rational root, however, we
can find that root by applying the rational roots theorem, which we now state.

Theorem The Rational Roots Theorem

Consider the polynomial equation

and suppose that all the coefficients are integers. Let p�q be a rational number, where
p and q have no common factors other than �1. If p�q is a root of the equation, then
p is a factor of a0 and q is a factor of an.

A proof of the rational roots theorem is outlined in Exercise 41 at the end of this
section. For the moment, though, let’s just see why the theorem is plausible. Suppose
that the two rational numbers a�b and c�d are the roots of a certain quadratic equa-
tion. Then, from our experience with quadratics (or by the linear factors theorem) we
know that the equation can be written in the form

(1)kax �
a

b
b ax �

c

d
b � 0

anx
n � an�1x

n�1 � p � a1x � a 0 � 0  (n � 1, an � 0)

Jacques Peletier (1517–1582), a French
man of letters, poet, and mathematician,
had observed as early as 1558, that the
root of an equation is a divisor of the
last term. —Florian Cajori in A History
of Mathematics, 4th ed. (New York:
Chelsea Publishing Co., 1985)

http://www.cengage.com/math/cohen/precalc7e
http://www.cengage.com/math/cohen/precalc7e


where k is a constant. Now, as Exercise 30 will ask you to check, if we carry out the
multiplication and clear of fractions, equation (1) becomes

(2)

Observe that a and c (the numerators of the two roots) are factors of the constant term
kac in equation (2), just as the rational roots theorem asserts. Furthermore, b and d
(the denominators of the roots) are factors of the coefficient of the x2-term in equa-
tion (2), again as the theorem asserts.

The following example shows how the rational roots theorem can be used to
solve a polynomial equation.

(kbd)x2 � (kad � kbc)x � kac � 0
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EXAMPLE 1 Applying the Rational Roots Theorem

Find the rational roots (if any) of the equation 2x3 � x2 � 9x � 4 � 0. Then solve
the equation.

SOLUTION First we list the factors of a0, the factors of an, and the possibilities for rational roots:

factors of a0 � �4: p � �1, �2, �4
factors of a3 � 2: q � �1, �2

possible rational roots:

Now we can use synthetic division to test whether or not any of these possibilities is
a root. (A zero remainder will tell us that we have a root.) As you can check, the first
three possibilities (1, �1, and 1�2) are not roots. However, using �1�2, we have

Thus x � �1�2 is a root. We could now continue to check the remaining possibili-
ties in this same manner. At this point, however, it is simpler to consider the reduced
equation 2x2 � 2x � 8 � 0, or x2 � x � 4 � 0. Since this is a quadratic equation, it
can be solved directly. We have

We have now determined three distinct roots. Since the degree of the original equa-
tion is 3, there can be no other roots. We conclude that x � �1�2 is the only rational
root. The three roots of the equation are �1�2 and 11 �

As Example 1 indicates, the number of possibilities for rational roots can be rel-
atively large, even for rather simple equations. The next theorem that we develop
allows us to reduce the number of possibilities. We say that a real number B is an
upper bound for the roots of an equation if every real root is less than or equal to B.
Similarly, a real number b is a lower bound for the roots of an equation if every real
root is greater than or equal to b. The following theorem tells us how synthetic divi-
sion can be used in determining upper and lower bounds for roots.

117 2�2.

x �
�(�1) � 2(�1)2 � 4(1)(�4)

2(1)
�

1 � 117

2

  �1�2  � 2  �1  �9  �4

 2  �1  1  4

 2  �2  �8  0

p

q
� � 

1

1
, � 

1

2
, � 

2

1
, � 

4

1
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Theorem The Upper and Lower Bound Theorem for Real Roots

Consider the polynomial equation

where all of the coefficients are real numbers and an is positive.

1. If we use synthetic division to divide f (x) by x � B, where B � 0, and we obtain
a third row containing no negative numbers, then B is an upper bound for the real
roots of f(x) � 0.

2. If we use synthetic division to divide f (x) by x � b, where b � 0, and we obtain a
third row in which the numbers are alternately positive and negative, then b is a
lower bound for the real roots of f (x) � 0. (In determining whether the signs
alternate in the third row, zeros are counted as either positive or negative.)

Caution: A number may fail the lower bound test but still be a lower bound. For an
example, see Exercise 60.

We will prove the first part of this theorem. A proof of the second part can be de-
veloped along similar lines. To prove the first part of the theorem, we use the division
algorithm to write

(3)

The remainder R here is a constant that may be zero. To show that B is an upper
bound, we must show that any number greater than B is not a root. Toward this end,
let p be a number that is greater than B. Note that p must be positive, since B is posi-
tive. Then with x � p, equation (3) becomes

(4)

We will now show that the right-hand side of equation (4) is positive. This will tell
us that p is not a root. First, look at the factor (p � B). This is positive, since p is
greater than B. Next consider Q(p). By hypothesis the coefficients of Q(x) are all
nonnegative. Furthermore, the leading coefficient of Q(x) is an, which is positive.
Since p is also positive, it follows that Q(p) must be positive. Finally, the number R
is nonnegative because, in the synthetic division of f (x) by x � B, all the numbers in
the third row are nonnegative. It now follows that the right-hand side of equation (4)
is positive. Consequently, f (p) is not zero, and p is not a root of the equation f (x) � 0.
This is what we wished to show.

f (p) � (p � B) # Q(p) � R

f (x) � (x � B) # Q(x) � R

f (x) � anx
n � an�1x

n�1 � p � a1x � a 0 � 0

EXAMPLE 2 Solving an Equation Using the Rational Roots Theorem and the Upper
and Lower Bound Theorem

Determine the rational roots, or show that none exist, for the equation

1

4
x4 �

3

4
x3 �

17

4
x2 � 4x � 5 � 0
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SOLUTION We will use the rational roots theorem along with the upper and lower bound theo-
rem. First of all, if we are to apply the rational roots theorem, then our equation must
have integer coefficients. In view of this, we multiply both sides of the given equa-
tion by 4 to obtain

As in the previous example, we list the factors of a0, the factors of an, and the possi-
bilities for rational roots:

factors of a0 � 20: p � �1, �2, �4, �5, �10, �20
factors of a4 � 1: q � �1

possible rational roots: �1, �2, �4, �5, �10, �20

Our strategy here will be to first check for positive roots, beginning with 1 and work-
ing upward. The checks for x � 1, x � 2, and x � 4 are as follows:

As you can see, none of the remainders here is zero. However, notice that in the
division corresponding to x � 4, all the numbers that appear in the third row are 
nonnegative. It therefore follows that 4 is an upper bound for the roots of the given
equation. In view of this, we needn’t bother to check the remaining values x � 5,
x � 10, and x � 20, since none of those can be roots. At this point we can conclude
that the given equation has no positive rational roots.

Next we check for negative rational roots, beginning with �1 and working
downward (if necessary). Checking x � �1, we have

Two conclusions can be drawn from this synthetic division. First, x � �1 is not a
root of the equation. Second, �1 is a lower bound for the roots because the signs in
the third row of the synthetic division alternate. This means that we needn’t bother
to check any of the numbers �2, �4, �5, �15, and �20; none of them can be roots,
since they are all less than �1.

Let’s summarize our results. We have shown that the given equation has no
positive rational roots and no negative rational roots. Furthermore, by inspection we
see that zero is not a root of the equation. Thus the given equation possesses no
rational roots.

  �1  � 1  �3  17  16  20

 1  �1   4  �21   5

 1  �4  21   �5  25

  4  � 1  �3   17   16   20

 1  4    4   84  400

 1  1   21  100  420

  2  � 1  �3  ¿17   16   20

 1  2  �2   30   92

 1  �1  ¿15   46  112

  1  � 1  �3  ¿17   16   20

 1  1  �2   15   31

 1  �2  ¿15   31   51

p

q
�

x4 � 3x3 � 17x2 � 16x � 20 � 0



We conclude this section by demonstrating a method for approximating irrational
roots. The method depends on the location theorem.
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Theorem The Location Theorem

Let f (x) be a polynomial, all of whose coefficients are real numbers. If a and b are
real numbers such that f(a) and f (b) have opposite signs, then the equation f (x) � 0
has at least one real root between a and b.

Figure 1 indicates why this theorem is plausible. If the point (a, f (a)) lies below
the x-axis and (b, f (b)) lies above the x-axis, then it certainly seems that the graph of
f must cross the x-axis at some point x0 between a and b. At this intercept we have
f (x0) � 0; that is, x0 is a root of the equation f (x) � 0. (The location theorem is a
special case of the intermediate value theorem, which is usually discussed in calculus
courses.)

Our technique for approximating (or “locating”) irrational roots uses the method
of successive approximations. We will demonstrate this method in Example 3.

x

y

(b, f(b))

(a, f(a))

a b

Figure 1 

EXAMPLE 3 Using the Method of Successive Approximations to Locate a Root

As is indicated by both Table 1 and Figure 2, the equation 

f (x) � x5 � 3x2 � 4x � 2 � 0 

has a real root between �1 and 0. Use the method of successive approximations to
locate this root between successive hundredths.

Graphical Perspective

ƒ=x%-3≈+4x+2

[_2, 2, 1] by [_15, 15, 15]

_2 _1 0 1 2
_15

0

15

Figure 2

SOLUTION The table or the graph gives us the location of the root between the successive
integers �1 and 0. The strategy now is to locate the root between successive tenths,
and then between successive hundredths. In Table 2 we’ve used a graphing utility to
generate values of f(x) for inputs x running from �1 up to 0 in increments of 0.1. (For
details on using a graphing utility to create a table of function values, refer to the
user’s manual for your graphing utility.) If a graphing utility is not available, the cal-
culations can be carried out by using synthetic division, the remainder theorem, and
an ordinary calculator.

TABLE 1 f (x) � x5 � 3x2 � 4x � 2

x �3 �2 �1 0 1 2

f (x) �280 �50 �6 2 4 30
sign change*

*The sign change is a signal that the equation x5 � 3x2 � 4x � 2 � 0 has a
real root between �1 and 0.



As is indicated in Table 2, there is a change in the sign of f (x) as we go from
x � �0.4 to x � �0.3. Thus, according to the location theorem, the equation f (x) � 0
has a root in the open interval (�0.4, �0.3).

Next, we follow a similar procedure to locate the root between successive hun-
dredths. This time, the inputs begin with x � �0.40 and they increase in increments
of 0.01. See Table 3.
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TABLE 2 Decimal Values for f (x) Rounded to Two Places

x �1.0 �0.9 �0.8 �0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1 0.0

f (x) �6 �4.62 �3.45 �2.44 �1.56 �0.78 �0.09 0.53
sign change*

*Once a sign change is detected, it is not necessary to look at the remaining entries in the table (unless one is looking for a possible second root).

TABLE 3 Decimal Values for f (x) Rounded to Two Places

x �0.40 �0.39 �0.38 �0.37 �0.36 �0.35 �0.34 �0.33 �0.32 �0.31 �0.30

f (x) �0.09 �0.03 0.04
sign change*

*The sign change indicates the presence of a root in the open interval (�0.39, �0.38).

In view of the location theorem, the sign change in Table 3 tells us that the given
equation has a root between x � �0.39 and x � �0.38. So, we’ve located the root
between successive hundredths, as required.

Remark: An alternative procedure for this example would be to begin immediately
with a table of values with the inputs running from x � �1 to 0, in increments of
0.01. Which method uses fewer calculations?

(c) With a graphing utility, graph y � x5 � 14x � 5; use
a viewing rectangle that shows that 2 is not a root of
the equation x5 � 14x � 5 � 0.

y=x%-14x-5

[_4, 4, 2] by [_100, 100, 100]

_4 _2 0 2 4
_100

0

100A
1. (a) State the rational roots theorem.

(b) List the possibilities for the rational roots of the
equation x7 � 144x2 � 8x � 11 � 0.

2. Use the rational roots theorem to list the possibilities for
the rational roots of each equation.
(a) x4 � 32x3 � 40x2 � 12x � 3 � 0
(b) 3x4 � 32x3 � 40x2 � 12x � 1 � 0

3. (a) Use the rational roots theorem to explain why the equa-
tion x5 � 14x � 5 � 0 cannot have a rational root that
is larger than 5. Is 5 a root?

(b) The graph in the following figure indicates that 2 may
be a root of the equation x5 � 14x � 5 � 0. Use the
rational roots theorem to explain why 2 cannot be a
root. Also, show directly that 2 is not a root by substi-
tuting 2 in the given equation.

EXERCISE SET 13.4



In Exercises 28 and 29, determine integral upper and lower
bounds for the real roots of the equations. (Follow the method
used within the solution of Example 2.)

28. (a) x3 � 2x2 � 5x � 20 � 0
(b) x5 � 3x2 � 100 � 0

29. (a) 5x4 � 10x � 12 � 0
(b) 3x4 � 4x3 � 5x2 � 2x � 4 � 0
(c) 2x4 � 7x3 � 5x2 � 28x � 12 � 0

30. Referring to equation (1) in this section, multiply out the
left-hand side, then clear the equation of fractions. Check
that your result agrees with equation (2).

In Exercises 31–36, each equation has exactly one positive
root. In each case, locate the root between successive hun-
dredths. For Exercises 31 and 32, you are given the successive
integer bounds for the root. For the other exercises, determine
the successive integer bounds by computing f (0), f(1), f(2), and
so on, until you find a sign change.

31. x3 � x � 1 � 0; root between 0 and 1
32. x3 � 2x � 5 � 0; root between 2 and 3
33. x5 � 200 � 0
34. x3 � 3x2 � 3x � 26 � 0
35. x3 � 8x2 � 21x � 22 � 0
36. 2x4 � x3 � 12x2 � 16x � 8 � 0

In Exercises 37–40, each polynomial equation has exactly
one negative root.
(a) Use a graphing utility to determine successive integer

bounds for the root.
(b) Use the method of successive approximations to locate the

root between successive thousandths. (Make use of the
graphing utility to generate the required tables.)

37. x3 � x2 � 2x � 1 � 0

38.

39. x3 � 2x2 � 2x � 101 � 0
40. x4 � 4x3 � 6x2 � 8x � 3 � 0

B
41. This exercise outlines a proof of the rational roots theorem.

At one point in the proof, we will need to rely on the fol-
lowing fact, which is proved in courses on number theory.

Fact from number theory: Suppose that A, B, and C are
integers and that A is a factor of the number BC. If A has no
factor in common with C (other than �1), then A must be a
factor of B.
(a) Let A � 2, B � 8, and C � 5. Verify that the fact from

number theory is correct here.
(b) Let A � 20, B � 8, and C � 5. Note that A is a factor

of BC, but A is not a factor of B. Why doesn’t this con-
tradict the fact from number theory?

x5

10,000
�

x3

50
�

x

1250
�

1

2000
� 0

4. (a) The graph in the following figure indicates 
that 4 may be a root of the equation
x6 � 4x5 � 8x2 � 3x � 101 � 0. Use the rational 
roots theorem to explain why 4 cannot be a root.

(b) With a graphing utility, graph
y � x6 � 4x5 � 8x2 � 3x � 101; use a viewing rectan-
gle that shows that 4 is not a root of the equation
x6 � 4x5 � 8x2 � 3x � 101 � 0.

In Exercises 5–10, list the possibilities for rational roots.

5. 4x3 � 9x2 � 15x � 3 � 0 6. x4 � x3 � 10x2 � 24 � 0
7. 8x5 � x2 � 9 � 0 8. 18x4 � 10x3 � x2 � 4 � 0
9. � x2 � 5x � 2 � 0

10.

In Exercises 11–16, show that each equation has no rational
roots.

11. x3 � 3x � 1 � 0
12. x3 � 8x2 � 1 � 0
13. x3 � x2 � x � 1 � 0
14. x4 � 4x3 � 4x2 � 16 � 0
15. 12x4 � x2 � 6 � 0
16. 4x5 � x4 � x3 � x2 � x � 8 � 0

For Exercises 17–27, find the rational roots of each equation,
and then solve the equation. (Use the rational roots theorem
and the upper and lower bound theorem, as in Example 2.)

17. x3 � 3x2 � x � 3 � 0
18. 2x3 � 5x2 � 3x � 9 � 0
19. 4x3 � x2 � 20x � 5 � 0
20. 3x3 � 16x2 � 17x � 4 � 0
21. 9x3 � 18x2 � 11x � 2 � 0
22. 4x3 � 10x2 � 25x � 4 � 0
23. x4 � x3 � 25x2 � x � 24 � 0
24. 10x4 � 107x3 � 301x2 � 171x � 23 � 0
25. x4 � 4x3 � 6x2 � 4x � 1 � 0
26.
27. x3 � 17

3  x2 � 10
3  x � 8 � 0

x3 � 5
2 x2 � 23x � 12 � 0

1
2 x4 � 5x3 � 4

3 x2 � 8x � 1
3 � 0

2
3 x3

y=x^-4x%+8≈-3x-101

[_8, 8, 4] by [_400, 2000, 400]

_400

0

400

2000

_8 _4 0 4 8
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whether 4�3 is a root of 6x4 � 10x3 � 2x2 � 9x � 8 � 0.
The first few steps of the synthetic division are as follows.

Since the noninteger �8�3 has been generated in the syn-
thetic division process, the process can be stopped; 4�3
is not a root of the polynomial. Use this idea to shorten
your work in testing to see whether the numbers 3�4, 1�8,
and �3�2 are roots of the equation

49. In a note that appeared in The College Mathematics
Journal [vol. 20 (1989), pp. 139–141], Professor Don
Redmond proved the following interesting result.

Consider the polynomial equation 
f (x) � anxn � an�1xn�1 � � a1x � a0 � 0, and sup-
pose that the degree of f (x) is at least 2 and that all of
the coefficients are integers. If the three numbers a0, an,
and f (1) are all odd, then the given equation has no
rational roots.

Use this result to show that the following equations have
no rational roots.
(a) 9x5 � 8x4 � 3x2 � 2x � 27 � 0
(b) 5x5 � 5x4 � 11x2 � 3x � 25 � 0

50. The following result is a particular case of a theorem
proved by Professor David C. Kurtz in The American
Mathematical Monthly [vol. 99 (1992), pp. 259–263].

Suppose we have a cubic equation
a3x3 � a2x2 � a1x � a0 � 0 in which all of the
coefficients are positive real numbers. Furthermore,
suppose that the following two inequalities hold.

Then the cubic equation has three distinct real roots.

(a) Check that these inequalities are valid in the case of the
equation 2x3 � 8x2 � 7x � 1 � 0. This implies that
the equation has three distinct real roots. Use a graph-
ing utility to verify this and to estimate each root to the
nearest one hundredth.

(b) Follow part (a) for the equation
3x3 � 40x2 � 100x � 30 � 0.

(c) Use a graphing utility to demonstrate that the graph of
y � 6x3 � 15x2 � 11x � 2 has three distinct x-intercepts.
Thus, the equation 6x3 � 15x2 � 11x � 2 � 0 has
three distinct real roots. Now check that the condition

� 4a1a3 fails to hold in this case. Explain why this
does not contradict the result from Professor Kurtz
stated above.

a 
2
2

a 
2
1 � 4a 0 a2  and  a 

2
2 � 4a1a3

p

8x5 � 5x4 � 3x2 � 2x � 6 � 0

  4�3  � 6  �10  8� 2  �9  8

 6   8  � 8�3            

 6   �2

(c) Now we’re ready to prove the rational roots theorem.
We begin with a polynomial equation with integer
coefficients:

We assume that the rational number p�q is a root of the
equation and that p and q have no common factors
other than 1. Why is the following equation now true?

(d) Show that the last equation in part (c) can be written

Since p is a factor of the left-hand side of this last
equation, p must also be a factor of the right-hand side.
That is, p must be a factor of a0qn. But since p and q
have no common factors, neither do p and qn. Our fact
from number theory now tells us that p must be a factor
of a0, as we wished to show. (The proof that q is a fac-
tor of an is carried out in a similar manner.)

42. The location theorem asserts that the polynomial equation
f (x) � 0 has a root in the open interval (a, b) whenever f (a)
and f (b) have unlike signs. If f (a) and f(b) have the same
sign, can the equation f (x) � 0 have a root between 
a and b? Hint: Look at the graph of f (x) � x2 � 2x � 1
with a � 0 and b � 2.

In Exercises 43–47, first graph the two functions. Then use the
method of successive approximations to locate, between succes-
sive thousandths, the x-coordinate of the point where the graphs
intersect. In Exercises 43 and 44, draw the graphs by hand. In
Exercises 45–47, use a graphing utility to draw the graphs as
well as to check your final answer. Finally, in Exercise 47, also
check your answer by using an algebraic method to obtain the
exact solution (as in Section 11.6).

43. y � x3 � 5; y � 2x � 3 44. y � x3; y � 4 � x2

45. y � e�x; y � ln x Remark: The method of successive
approximations is not restricted to polynomial functions.

46. y � 20x2 � 25x � 9; y � x3

47. y � x5 � 100; y � x5 �
48. In a note that appeared in The Two-Year College

Mathematics Journal [vol. 12 (1981), pp. 334–336],
Professors Warren Page and Leo Chosid explain how the
process of testing for rational roots can be shortened. In
essence, their result is as follows. Suppose that we have a
polynomial with integer coefficients and we are testing for
a possible root p�q. Then, if a noninteger is generated at any
point in the synthetic division process, p�q cannot be a root
of the polynomial. For example, suppose we want to know

1
2 x3

p(anp
n�1 � an�1qpn�2 � p � a1q

n�1) � �a 0 qn

an a p

q
b n

� an�1 a p

q
b n�1

  � p �  a1 a p

q
ba 0 � 0

anx
n � an�1x

n�1 � p � a1x � a 0 � 0  (n � 1, an 	 0)
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to show that there is only one rational root. Check that
the reduced equation in this case is

8x3 � 4x2 � 4x � 1 � 0 (2)

(d) The work in parts (a) through (c) shows that the num-
ber cos(2p�7) is a root of equation (2). By following
the same technique, it can be shown that the numbers
cos(4p�7) and cos(6p�7) also are roots of equation (2).
Use this fact, along with Table 2 in Section 13.3, to
evaluate each of the following quantities. Then use a
calculator to check your answers.
(i)i

(ii)

C
In Exercises 54–58 you need to know that a prime number is a
positive integer greater than 1 with no factors other than itself
and 1. Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13,
and 17.

54. Find all prime numbers p for which the equation 
x2 � x � p � 0 has a rational root.

55. Find all prime numbers p for which the equation 
x3 � x2 � x � p � 0 has at least one rational root. For 
each value of p that you find, find the corresponding real
roots of the equation.

56. Consider the equation x2 � x � pq � 0, where p and q are
prime numbers. If this equation has rational roots, show
that these roots must be �3 and 2. Suggestion: The pos-
sible rational roots are �1, �p, �q, and �pq. In each case,
assume that the given number is a root, and see where that
leads.

57. Consider the equation x3 � px � q � 0, where p and q are
prime numbers. Observe that there are only four possible
rational roots here: 1, �1, q, and �q.
(a) Show that if x � 1 is a root, then we must have q � 3

and p � 2. What are the remaining roots in this case?
(b) Show that none of the numbers �1, q, and �q can be a

root of the equation. Hint: For each case, assume the
contrary, and deduce a contradiction.

58. If p and q are prime numbers, show that the equation 
x3 � px � pq � 0 has no rational roots.

59. Find all integral values of b for which the equation 
x3 � b2x2 � 3bx � 4 � 0 has a rational root.

60. Let f(x) � x3 � 3x2 � x � 3.
(a) Factor f(x) by using the basic factoring techniques in

online Appendix B.4.
(b) Sketch the graph of f (x) � x3 � 3x2 � x � 3. Note 

that �3 is a lower bound for the roots.
(c) Show that the number �3 fails the lower bound test.

This shows that a number may fail the lower bound test
and yet be a lower bound. (We say that the lower
bound test provides a sufficient but not a necessary
condition for a lower bound.)

cos 2p7 � cos 4p7  � cos 6p7  

cos 2p7   cos 4p7   cos 6p7  

51. (a) Use a calculator to verify that the number tan 9°
appears to be a root of the following equation:

x4 � 4x3 � 14x2 � 4x � 1 � 0 (1)

In parts (b) through (d) of this exercise, you will
prove that tan 9° is indeed a root and that tan 9° is
irrational.

(b) Use the trigonometric identity

to show that the number x = tan 9° is a root of the fifth-
degree equation

x5 � 5x4 � 10x3 � 10x2 � 5x � 1 � 0 (2)

Hint: In the given trigonometric identity, substitute 
u � 9°.

(c) List the possibilities for the rational roots of equation (2).
Then use synthetic division and the remainder theorem
to show that there is only one rational root. What is the
reduced equation in this case?

(d) Use your work in parts (b) and (c) to explain (in com-
plete sentences) why the number tan 9° is an irrational
root of equation (1).

52. As background for this exercise you need to have worked
Exercise 51.
(a) Follow exactly the same method used in parts (b)

through (d) of Exercise 51 to show that the number
�tan 27° is an irrational root of equation (1) in
Exercise 51.

(b) From Exercise 51 and part (a) of this exercise, we know
that both of the numbers tan 9° and �tan 27° are roots
of equation (1) in Exercise 51. By following the same
method, it can also be shown that the numbers �tan 63°
and tan 81° are roots of equation (1). Assuming this fact,
along with the results in Exercise 48 in Section 13.3,
evaluate each of the following quantities, then use a
calculator to check your results.
(i)i tan 9° tan 27° tan 63° tan 81°
(ii) tan 9° � tan 27° � tan 63° � tan 81°

53. (a) Let u � 2p�7. Use the reference angle concept to
explain why cos 3u � cos 4u, then use your calculator
to confirm the result.

(b) For this portion of the exercise, assume as given the
following two trigonometric identities:

cos 3u � 4 cos3 u � 3 cos u
cos 4u � 8 cos4 u � 8 cos2 u � 1

Use these identities and the result in part (a) to show
that cos(2p�7) is a root of the equation

8x4 � 4x3 � 8x2 � 3x � 1 � 0 (1)

(c) List the prossibilities for the rational roots of equation (1).
Then use synthetic division and the remainder theorem

tan 5u �
tan5 u � 10 tan3 u � 5 tan u

5 tan4 u � 10 tan2 u � 1
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We now proceed to investigate a
remarkable theorem, implicit in the work
of [Thomas] Harriot [1560–1621] but
first used explicitly by Descartes (1637),
which limits the number of positive or
negative roots of an equation. . . .

Remarkable as the Harriot-
Descartes’ Rule of Signs is, it still leaves
uncertainty as to the exact number of
real roots in an equation: it only gives
an upper limit to them. The problem of
finding an exact test . . . was finally
solved in 1829 by [Jacques Charles
François] Sturm. —H. W. Turnbull in
Theory of Equations (Edinburgh: Oliver
and Boyd, 1939)
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CONJUGATE ROOTS AND DESCARTES’ RULE OF SIGNS
An equation can have as many true [positive] roots as it contains changes of sign,
from plus to minus or from minus to plus; and as many false [negative] roots as the
number of times two plus signs or two minus signs are found in succession. —René

Descartes (1637)

As you know from earlier work involving quadratic equations with real coefficients,
when nonreal complex roots occur, they occur in conjugate pairs. For instance,
as you can check by means of the quadratic formula, the roots of the equation
x2 � 2x � 5 � 0 are 1 � 2i and 1 � 2i. The conjugate roots theorem tells us that
the situation is the same for all polynomial equations with real coefficients.

13.5

Theorem The Conjugate Roots Theorem

Let f (x) be a polynomial, all of whose coefficients are real numbers. Suppose that
a � bi is a root of the equation f (x) � 0, where a and b are real and b 	 0. Then
a � bi is also a root of the equation.

To prove the conjugate roots theorem, we use four of the properties of complex
conjugates listed in Appendix A.3:

Property 1: �

Property 2: �

Property 3: � r for every real number r

Property 4: � �

To prove the theorem, we begin with a polynomial with real coefficients:

We must show that if z � a � bi is a root of f (x) � 0, then � a � bi is also a root.
We have

Properties 3 and 2

Property 1

Property 4

We have now shown that given that f (z) � 0. Thus is a root, as we wished
to show.

Although the conjugate roots theorem concerns nonreal complex roots, it can
nevertheless be used to obtain information about real roots, as the next two examples
demonstrate.

zf (z) � 0,

 � 0   Property 3

 � f (z) � 0  f (z) � 0, since z is a root

 � anzn � an�1zn�1 � p � a1z � a 0

 � anzn � an�1zn�1 � p � a1z � a0

 � an zn � an�1 zn�1 � p � a1 z � a0

 f (z) � an(z)n � an�1(z)n�1 � p � a1z � a 0

z

f (x) � anx
n � an�1x

n�1 � p � a1x � a 0

z1 � z2z2z1

r

zm(z)m

z1z2z2z1
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EXAMPLE 1 Using the Conjugate Roots Theorem in Solving an Equation

Solve the equation f (x) � 2x4 � 3x3 � 12x2 � 22x � 60 � 0, given that one root is
1 � 3i.

SOLUTION Since all of the coefficients of f (x) are real numbers, we know that the conjugate of
1 � 3i must also be a root. Thus 1 � 3i and 1 � 3i are roots, from which it follows
that [x � (1 � 3i)] and [x � (1 � 3i)] are factors of f(x). As you can check, the prod-
uct of these two factors is x2 � 2x � 10. Thus we must have

for some polynomial Q(x). We compute Q(x) using long division:

Thus Q(x) � 2x2 � x � 6, and the original equation becomes

We can now find any additional roots by solving the equation 2x2 � x � 6 � 0.
We have

We now have four distinct roots of the original equation: 1 � 3i, 1 � 3i, 3�2, and �2.
Since the degree of the equation is 4, there can be no other roots.

 
2x � 3 � 0

x �
3

2

 † 
x � 2 � 0

x � �2

 (2x � 3)(x � 2) � 0
 2x2 � x � 6 � 0

f (x) � (x2 � 2x � 10)(2x2 � x � 6) � 0

 0

    �6x2 � 12x � 60
  �6x2 � 12x � 60

  x3 �  2x2 � 10x
  x3 �  8x2 � 22x

 2x4 � 4x3 � 20x2
 x2 � 2x � 10 �  2x4 � 3x3 � 12x2 � 22x � 60

 2x2 �  x �  6

f (x) � (x2 � 2x � 10) # Q(x)

EXAMPLE 2 An Analysis Requiring the Rational Roots Theorem 
and the Conjugate Roots Theorem

Show that the equation x3 � 2x2 � x � 1 � 0 has at least one irrational root.

SOLUTION We know that the equation has three roots. (Why?) The conjugate roots theorem tells
us that complex roots of the equation come in conjugate pairs, so there are either zero
or two complex roots. So there must be at least one real root. The rational root theo-
rem tells us the only possible rational roots are x � 1 or �1, but neither 1 nor �1 is
a root. (Check this.) So any real number root must be irrational. Thus the equation
has at least one irrational root.

There is a theorem, similar to the conjugate roots theorem, that tells us about
irrational roots of the form a � b As background for this theorem, let’s look at1c.



two preliminary examples. First, we consider the equation x2 � 2x � 5 � 0. As you
can check, the roots in this case are 1 � and 1 � However, it is not true in
general that irrational roots such as these always occur in pairs. Consider as a second
example the quadratic equation

or

Here, one of the roots is yet � is not a root. This type of behavior can occur
in polynomial equations in which not all of the coefficients are rational. On the other
hand, when the coefficients are all rational, we do have the following theorem. (See
Exercise 45 at the end of this section for a proof.)

1313,

x2 � 12 � 13 2x � 213 � 0

(x � 2) 1x � 13 2 � 0

16.16
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Theorem

Let f (x) be a polynomial in which all the coefficients are rational. Suppose that
a � b is a root of the equation f(x) � 0, where a, b, and c are rational and is
irrational. Then a � b is also a root of the equation.1c

1c1c

EXAMPLE 3 Finding a Quadratic Equation Given One Irrational Root

Find a quadratic equation with rational coefficients and a leading coefficient of 1
such that one of the roots is r1 � 4 � 513.

SOLUTION If one root is r1 � 4 � 5 then the other is r2 � 4 � 5 We denote the required
equation by x2 � bx � c � 0. Thus according to Table 2 in Section 13.3, we have

and

The required equation is therefore x2 � 8x � 59 � 0. This answer can also be
obtained without using the table. Since the roots are 4 � 5 we can write the
required equation as 3x � 14 � 5 3x � 14 � 5 � 0. As you can now check
by multiplying out the two factors, this equation is equivalent to x2 � 8x � 59 � 0, as
obtained previously.

We conclude this section with a discussion of Descartes’ rule of signs. This
rule, published by Descartes in 1637, provides us with information about the
types of roots an equation can have, even before we attempt to solve the equation.
To state Descartes’ rule of signs, we first explain what is meant by a variation in
sign in a polynomial with real coefficients. Suppose that f (x) is a polynomial with
real coefficients, written in descending (or ascending) powers of x. For example,
let f (x) � 2x3 � 4x2 � 3x � 1. Then we say that there is a variation in sign if two
successive coefficients have opposite signs. In the case of f (x) � 2x3 � 4x2 � 3x � 1,
there are two variations in sign, the first occurring as we go from 2 to �4 and the sec-
ond occurring as we go from �3 to 1. In looking for variations in sign, we ignore

13 2 413 2 4 13,

c � r1r2 � 14 � 513 2 14 � 513 2 � 16 � 75 � �59

b � �(r1 � r2) � � 3 14 � 513 2 � 14 � 513 2 4 � �8

13.13,



terms with zero coefficients. (Contrast this with the Upper and Lower Bounds
Theorem on real roots.) Table 1 shows a few more examples of how we count varia-
tions in sign.

We now state Descartes’rule of signs and look at some examples. The proof of this
theorem is rather lengthy, so we omit it.

Let f (x) be a polynomial, all of whose coefficients are real numbers, and consider the
equation f (x) � 0. Then:

(a) The number of positive roots either is equal to the number of variations in sign
of f (x) or is less than that by an even integer.

(b) The number of negative roots either is equal to the number of variations in sign
of f (�x) or is less than that by an even integer.

Descartes’ Rule of Signs

13.5 Conjugate Roots and Descartes’ Rule of Signs 957

TABLE 1

Number of
Variations

Polynomial in Sign

x2 � 4x 0
�3x5 � x2 � 1 1

x3 � 3x2 � x � 6 2

EXAMPLE 4 Using Descartes’ Rule

Use Descartes’ rule of signs to obtain information regarding the roots of the equation
x3 � 8x � 5 � 0.

SOLUTION Let f (x) � x3 � 8x � 5. Then, since there are no variations in sign for f (x), we see
from part (a) of Descartes’ rule that the given equation has no positive roots. Next we
compute f (�x) to learn about the possibilities for negative roots: we have
f (�x) � �x3 � 8x � 5. So f(�x) has one sign change, and consequently [by part (b)
of Descartes’ rule], the original equation has one negative root. Furthermore, notice
that zero is not a root of the equation. Thus the equation has only one real root, a
negative root. Since the equation has a total of three roots, we can conclude that we
have one negative root and two nonreal complex roots. The two nonreal roots will be
complex conjugates.

EXAMPLE 5 Another Analysis Using Descartes’ Rule

Use Descartes’ rule to obtain information regarding the roots of the equation
x4 � 3x2 � 7x � 5 � 0.

SOLUTION Let f (x) � x4 � 3x2 � 7x � 5. Then f (x) has one variation in sign, so according to
part (a) of Descartes’ rule, the equation has one positive root. That leaves three roots
still to be accounted for, since the degree of the equation is 4. We have
f (�x) � x4 � 3x2 � 7x � 5. Since f (�x) has one sign change, we know from 
part (b) of Descartes’ rule that the equation has one negative root. Noting now that
zero is not a root, we conclude that the two remaining roots must be nonreal complex
roots. In summary, then, the equation has one positive root, one negative root, and
two nonreal complex (conjugate) roots.
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SOLUTION Since f (x) has two variations in sign, the given equation has either two positive roots
or no positive roots. To see how many negative roots are possible, we compute

Since f(�x) has one variation in sign, we conclude from part (b) of Descartes’ rule that
the equation has exactly one negative root. In summary, then, there are two possibilities:

By using Descartes’ rule in Examples 4 and 5, we were able to determine the
exact numbers of positive and negative roots for the given equations. As Example 6
indicates, however, there are cases in which a direct application of Descartes’ rule
provides several distinct possibilities for the types of roots, rather than a single
definitive result. (Exercises 55 and 56 in the Review Exercises for this chapter
illustrate a technique that is sometimes useful in gaining additional information
from Descartes’ rule. In particular, Exercise 56 will show you that the equation in
Example 6 has no positive roots.)

 or: one negative root and two nonreal complex roots
 either: one negative root and two positive roots

 � �x3 � x2 � 3x � 2

 f (�x) � (�x)3 � (�x)2 � 3(�x) � 2

In Exercises 17–20, find a quadratic equation with rational
coefficients, one of whose roots is the given number. Write
your answer so that the coefficient of x2 is 1. Use either of the
methods shown in Example 3.

17. r1 � 1 � 18. r1 � 2 �
19. r1 � 12 � 20. r1 � �
21. Let f(x) � 2x4 � 3x3 � 12x2 � 22x � 60.

(a) Use Descartes’ rule to verify that the equation f(x) � 0
has one negative root.

(b) Use Descartes’ rule to verify that the equation f(x) � 0
has either one or three positive roots.

(c) Graph the equation y � f (x). Use the graph to say
which of the two cases in part (b) actually holds.

(d) Use the graph to estimate the real roots of the equa-
tion f (x) � 0. Check that your answers are consistent
with the values obtained in Example 1.

22. Let f(x) � x3 � 2x2 � x � 1.
(a) Without using a graphing utility, explain in complete

sentences why the equation f (x) � 0 must have either
three real roots or only one real root. (If you get stuck,
see Example 2 in the text.)

(b) Use the graph of to demonstrate that the
equation f(x) � 0 has, in fact, only one real root.

y � f (x)

151
4

1
2110 2�3
1316

A
In Exercises 1–16, an equation is given, followed by one or
more roots of the equation. In each case, determine the remain-
ing roots.

1. x2 � 14x � 53 � 0; x � 7 � 2i
2. x2 � x � � 0; x � �

3. x3 � 13x2 � 59x � 87 � 0; x � 5 � 2i
4. x4 � 10x3 � 30x2 � 10x � 51 � 0; x � 4 � i
5. x4 � 10x3 � 38x2 � 66x � 45 � 0; x � �2 � i
6. 2x3 � 11x2 � 30x � 18 � 0; x � �3 � 3i
7. 4x3 � 47x2 � 232x � 61 � 0; x � 6 � 5i
8. 9x4 � 18x3 � 20x2 � 32x � 64 � 0; x � �1 � i
9. 4x4 � 32x3 � 81x2 � 72x � 162 � 0; x � 4 � i

10. 2x4 � 17x3 � 137x2 � 57x � 65 � 0; x � 4 � 7i
11. x4 � 22x3 � 140x2 � 128x � 416 � 0; x � 10 � 2i
12. 4x4 � 8x3 � 24x2 � 20x � 25 � 0; x � (1 � 3i)�2
13. 15x3 � 16x2 � 9x � 2 � 0; x � 11 �

14. x5 � 5x4 � 30x3 � 18x2 � 92x � 136 � 0; 
x � �1 � x � 3 � 5i

15. x7 � 3x6 � 4x5 � 30x4 � 27x3 � 13x2 � 64x � 26 � 0;
x � 3 � 2i, x � �1 � i, x � 1

16. x6 � 2x5 � 2x4 � 2x3 � 2x � 1 � 0; x � 1 �12

i13,

12i 2�3

12
13

8161
2

1535
4

EXERCISE SET 13.5

EXAMPLE 6 A Case in Which Descartes’ Rule Doesn’t Completely Determine the Nature
of the Roots

Use Descartes’ rule to obtain information regarding the roots of the equation
f (x) � x3 � x2 � 3x � 2 � 0.



43. (a) Find the polynomial f (x) of lowest degree, with integer
coefficients and with leading coefficient 1, such that

� 2i is a root of the equation f (x) � 0.
(b) Find the other roots of the equation.

44. (a) Find a cubic polynomial f (x) with integer coefficients
and leading coefficient 1 such that 1 � is a root of
the equation f (x) � 0.

(b) Use a graphing utility to find out whether 1 � is
a root of the equation.

C
45. Let f(x) be a polynomial, with rational coefficients.

Suppose that a � b is a root of f (x) � 0, where a, b, and
c are rational and is irrational. Complete the following
steps to prove that a � b is also a root of the equation
f (x) � 0.
(a) If b � 0, we’re done. Why?
(b) (From now on we’ll assume that b 	 0.) Let

d(x) � [x � a � b 3x � a � b . Explain 
why d a � b � 0.

(c) Verify that d(x) � (x � a)2 � b2c. Thus d(x) is a
quadratic polynomial with rational coefficients.

(d) Now suppose that we use the long division process to
divide the polynomial f (x) by the quadratic polynomial
d(x). We’ll obtain a quotient Q(x) and a remainder.
Since the degree of d(x) is 2, our remainder will be of
degree 1 or less. In other words, the general form of
this remainder will be Cx � D. Furthermore, C and D
will have to be rational, because all of the coefficients
in f (x) and in d(x) are rational. In summary, we have
the identity

Now make the substitution x � a � b in this iden-
tity, and conclude that C � D � 0. Hint: The sum
of a rational number and an irrational number is not a
rational number.

(e) Using the result in part (d), we have

Let x � a � b in this last identity and conclude that
a � b is a root of f (x) � 0, as required.

46. (a) Find the polynomial f (x) of lowest degree with integer
coefficients and with leading coefficient 1, such that

is a root of the equation f (x) � 0.
(b) Use a graphing utility to find out whether any of the

following three numbers seem to be a root of the equa-
tion that you determined in part (a):

(c) For each number in part (b) that seems to be a root,
carry out the necessary algebra to prove or disprove
that it is a root.

�1
3 2 � 12  13 2 � 12  �1

3 2 � 12

1
3 2 � 12

1c
1c

f (x) � 3x � 1a � b1c 2 4 3x � 1a � b1c 2 4 # Q(x)

1c

f (x) � d(x) # Q(x) � (Cx � D)

1c 21
1c 2 411c 2 41

1c
1c
1c

1
3 2

1
3 2

13

(c) According to Example 2, the root (or x-intercept)
that you observed in part (b) is an irrational number.
Use the graphing utility to obtain an approximation for
this root.

23. Let f(x) � x3 � 8x � 5.
(a) Use Descartes’ rule to explain in complete sentences

why the equation f (x) � 0 has no positive roots and 
exactly one negative root. (If you need help, see
Example 4 in the text.)

(b) Use a graph to confirm the results in part (a). That is,
graph y � f (x) and note that there is but one x-intercept
and it is negative.

(c) Use a graphing utility to compute the root of
x3 � 8x � 5 � 0. (Do this either by repeatedly zoom-
ing in on the x-intercept of the graph or by using a
SOLVE key.)

(d) Use the general formula given on page 941 to compute
the root of x3 � 8x � 5 � 0. Check that the answer
agrees with the value you obtained in part (c).

24. Let f(x) � x3 � x2 � 3x � 2.
(a) Use Descartes’ rule to explain in complete sentences

why the equation f (x) � 0 has

either: one negative root and two positive roots
or: one negative root and two nonreal complex roots

(If you need help, review Example 6 on page 958.)
(b) Use a graph to determine which of the two possibili-

ties in part (a) is actually the case.
(c) Use a graphing utility to compute the real root(s) of

the equation f (x) � 0.

In Exercises 25–40, use Descartes’ rule of signs to obtain 
information regarding the roots of the equations.

25. x3 � 5 � 0 26. x4 � x2 � 1 � 0
27. 2x5 � 3x � 4 � 0 28. x3 � 8x � 3 � 0
29. 5x4 � 2x � 7 � 0 30. x3 � 4x2 � x � 1 � 0
31. x3 � 4x2 � x � 1 � 0
32. x8 � 4x6 � 3x4 � 2x2 � 5 � 0
33. 3x8 � x6 � 2x2 � 4 � 0
34. 12x4 � 5x3 � 7x2 � 4 � 0
35. x9 � 2 � 0 36. x9 � 2 � 0
37. x8 � 2 � 0 38. x8 � 2 � 0
39. x6 � x2 � x � 1 � 0 40. x7 � x2 � x � 1 � 0

B
41. Consider the equation x4 � cx2 � dx � e � 0, where c, d,

and e are positive. Show that the equation has one positive
root, one negative root, and two nonreal complex roots.

42. Consider the equation xn � 1 � 0.
(a) Show that the equation has n � 2 nonreal complex

roots when n is even.
(b) How many nonreal complex roots are there when n

is odd?
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In elementary Algebra, a group of
fractions connected by the signs of
addition and subtraction is reduced to a
more simple form by being collected into
one single fraction whose denominator
is the lowest common denominator of the
given fractions. But the converse process
of separating a fraction into a group of
simpler, or partial, fractions is often
required. —H. S. Hall and S. R. Knight,
in Higher Algebra (London: Macmillan
and Co., 1946). (This classic text was
first published in 1887.)

INTRODUCTION TO PARTIAL FRACTIONS
In calculus there are times when it is helpful to express a given function in terms of
simpler functions. In Section 3.5 we learned that composition of functions provided
one way to do this. For example, if R(x) � 1�(x2 � 1), then, as you can easily check,
R(x) can be expressed as a composition of two simpler functions as follows:

In this section we introduce another way that certain types of functions can be broken
down into simpler functions. Instead of using composition of functions, now we use
the sum and difference of functions. We can again use the example R(x) � 1�(x2 � 1).
This time R(x) can be expressed as a difference of two simpler expressions as follows:

You can check this result for yourself by using the least common denominator to
combine the two fractions on the right-hand side of the equation.

Our basic goal in this and the next section is to be able to write a given fractional
expression as a sum or difference of two or more simpler fractions. For instance, in

Example 1 we will be given the fraction and we will be asked to find
constants A and B so that

(1)

When A and B are determined, the right-hand side of equation (1) is called the partial
fraction decomposition of the given fraction. The adjective partial is used because
each denominator on the right-hand side of equation (1) is a part of the denominator
on the other side of the equation.

One of the basic tools that can be used in finding partial fractions is supplied by
the following theorem, which we state here without proof.

2x � 3

(x � 1)(x � 1)
�

A

x � 1
�

B

x � 1

2x � 3

(x � 1)(x � 1)
,

1

x2 � 1
�

1

2(x � 1)
�

1

2(x � 1)

R(x) � f (g(x))  where g(x) � x2 � 1 and f (x) �
1
x

13.6

Theorem Equating-the-Coefficients Theorem

Suppose that P(x) and Q(x) are polynomials such that P(x) � Q(x) for all x. Then the
corresponding coefficients of the two polynomials are equal.

The next two statements supply examples of what this theorem is saying.

1. If ax � b � 5x � 11 for all x, then a � 5 and b � �11.
2. If px3 � qx2 � rx � s � x2 � 2 for all x, then p � 0, q � 1, r � 0, and s � 2.

In Example 1 we apply the theorem to obtain a partial fraction decomposition.

EXAMPLE 1 A Basic Partial Fractions Example

Determine constants A and B so that the following equation is an identity:

(2)
2x � 3

(x � 1)(x � 1)
�

A

x � 1
�

B

x � 1
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SOLUTION First, to clear equation (2) of fractions, we multiply both sides by the least common
denominator (x � 1)(x � 1). This yields

So we have

Now, since this last equation is supposed to be an identity, we can use our equating-
the-coefficients theorem to obtain the two equations

Adding these two equations gives us 2A � �1, and therefore A � �1�2. Subtracting
the two equations yields 2B � 5, and consequently, B � 5�2. We’ve now found that
A � �1�2 and B � 5�2, as required. The partial fraction decomposition is therefore

You should check for yourself that combining the two fractions on the right-hand side

of this last equation indeed yields  

In Example 1 we found the partial fraction decomposition by solving a system of
two linear equations. There is a shortcut that is often useful in such problems. As be-
fore, we start by multiplying both sides of equation (2) by the common denominator
(x � 1)(x � 1) to obtain

(3)

Now, equation (3) is an identity; in particular, it must hold when x � 1. (You’re
about to see why we’ve singled out x � 1.) Substituting x � 1 in equation (3) gives us

or

and consequently,

as was obtained previously.
The value for B is obtained similarly. Go back to equation (3), and this time let

x � �1. This gives us

2(�1) � 3 � A(�1 � 1) � B(�1 � 1)

A � �
1

2

�1 � 2A

2(1) � 3 � A(1 � 1) � B(1 � 1)

2x � 3 � A(x � 1) � B(x � 1)

2x � 3

(x � 1)(x � 1)
.

 �
�1

2(x � 1)
�

5

2(x � 1)

 
2x � 3

(x � 1)(x � 1)
�

�1�2

x � 1
�

5�2

x � 1

eA � B � 2

A � B � �3

2x � 3 � (A � B)x � (A � B)

 � (A � B)x � (A � B)
 � Ax � A � Bx � B

 2x � 3 � A(x � 1) � B(x � 1)



or

Again, this agrees with the result obtained previously.
A graphing calculator can be used to provide a quick check on the result obtained

in a partial fractions problem. For instance, to check Example 1, graph the two
functions

in an appropriate viewing rectangle. If the graphs appear to be identical (as is the case
in Figure 1), then it’s unlikely that there is an error. (See, however, Exercise 29 and
the mini project at the end of this section for cautionary examples.) On the other
hand, if the graphs are not identical, there must be at least one algebraic error to find
and correct in the partial fractions work.

y �
2x � 3

(x � 1)(x � 1)
  and  y �

�1

2(x � 1)
�

5

2(x � 1)

�5 � �2B  and therefore  B �
5

2
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Graphical Perspective

_6

_3

0

3

6

_6 _3 0 3 6

Figure 1

y � and 

y �

[�6, 6, 3] by [�6, 6, 3]. The graphs
appear to be identical.

�1

2(x � 1)
�

5

2(x � 1)
;

2x � 3

(x � 1)(x � 1)

EXAMPLE 2 Finding a Partial Fraction Decomposition in Two Ways

Determine constants A and B so that the following equation is an identity:

x

(x � 4)2 �
A

x � 4
�

B

(x � 4)2

SOLUTION We’ll show two methods: first, the method that we used in Example 1, where we
equated the coefficients; and second, the shortcut method explained after Example 1.
For ease of reference we’ll call this shortcut method the convenient-values method.

First method (equating coefficients): As in Example 1, we start by multiplying both
sides of the given identity by the least common denominator. Here, the least common
denominator is (x � 4)2, and we obtain

That is,

Now, by equating coefficients, we obtain the system of equations

e A � 1

4A � B � 0

x � Ax � (4A � B)

x � A(x � 4) � B � Ax � 4A � B



The first of these two equations gives us the value of A directly. Substituting A � 1
in the second equation then yields 4(1) � B � 0, and therefore B � �4. In summary,
A � 1, B � �4, and the partial fraction decomposition is

You should check for yourself that combining the two fractions on the right-hand
side of this last equation indeed produces the fraction on the left-hand side of the
equation.

Second method (convenient values): As before, we start by multiplying both sides
of the given identity by (x � 4)2 to obtain

(4)

Letting x � �4 in identity (4) gives us

or

as was obtained previously.
With the value B � �4, identity (4) reads

(5)

At this point, substituting any value for x (other than �4, which we’ve already
exploited) will produce the required value for A. For example, using x � 0 in equa-
tion (5) yields

and therefore

as was obtained previously.

In the examples up to this point, the convenient-values method appears to be some-
what more efficient (that is, shorter) than equating the coefficients. (In Example 2,
perhaps it’s a toss-up.) In the next example we again show our two methods of solution.
You can decide for yourself which method you prefer. In the convenient-values method
you’ll see that one of the values we choose to substitute in the identity is a complex
number. For purposes of completeness we mention in passing the following theorem
from post-calculus mathematics that justifies this technique.

If p and q are polynomial functions such that p(x) � q(x) for all real numbers x,
then p(z) � q(z) for all complex numbers z.

As we’ve just said, we’re stating this result only for the purposes of completeness;
you certainly don’t need to memorize this theorem or know any more about it to
work the exercises.

A � 1

0 � A(0 � 4) � 4  or  �4A � �4

x � A(x � 4) � 4

B � �4

�4 � A(�4 � 4) � B

x � A(x � 4) � B

x

(x � 4)2 �
1

x � 4
�

4

(x � 4)2
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EXAMPLE 3 Another Demonstration of the Two Methods

Determine real numbers A, B, and C so that the following equation is an identity:

7x2 � 9x � 29

(x � 2)(x2 � 9)
�

A

x � 2
�

Bx � C

x2 � 9
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SOLUTION First method (equating coefficients): Multiplying both sides of the given identity by
the least common denominator (x � 2)(x2 � 9) yields

Equating coefficients now gives us a system of three equations in three unknowns:

Exercise 25(a) at the end of this section asks you to solve this system to obtain A � 3,
B � 4, and C � �1. The partial fraction decomposition is therefore

Second method (convenient values): Going back to the original identity and multi-
plying both sides by the least common denominator yields (as in the first method)

(6)

Because of the factor x � 2 on the right-hand side of identity (6), we choose the con-
venient value x � 2. Substituting x � 2 in equation (6) gives us

or

Next, we want to choose another value for x that will make the factor x2 � 9 zero. For
example, we choose x � 3i. (The other root of the equation x2 � 9 � 0, namely,
x � �3i, would also be a suitable choice here.) Making the substitution x � 3i (along
with x2 � �9) in identity (6) yields

Equating the real parts and equating the imaginary parts from both sides of this last
equation gives the equations

(7)

and

or

dividing by 3 (8)

As Exercise 25(b) asks you to check, the solution to the system consisting of equa-
tions (7) and (8) is B � 4 and C � �1. In summary, then, we have A � 3, B � 4, and
C � �1, as was obtained previously.

 �2B � C � �9 

 �6B � 3C � �27

 �9B � 2C � �34

 � (�9B � 2C) � (�6B � 3C)i
 �34 � 27i � �9B � 6Bi � 3Ci � 2C

 7(�9) � 9(3i) � 29 � A(�9 � 9) � [B(3i) � C](3i � 2)

39 � 13A  and therefore  A � 3

7(22) � 9(2) � 29 � A(22 � 9) � 0

7x2 � 9x � 29 � A(x2 � 9) � (Bx � C)(x � 2)

7x2 � 9x � 29

(x � 2)(x2 � 9)
�

3

x � 2
�

4x � 1

x2 � 9

•
A � B � 7

�2B � C � �9

9A � 2C � 29

 � (A � B)x2 � (�2B � C)x � (9A � 2C)
 � Ax2 � 9A � Bx2 � 2Bx � Cx � 2C

 7x2 � 9x � 29 � A(x2 � 9) � (Bx � C)(x � 2)
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20.

21.

22.

23. (a) Find an appropriate viewing rectangle to demon-
strate that the following purported partial fraction 
decomposition is incorrect: 

�

(b) Follow part (a) using 

0. (c) Determine the correct partial fraction decomposition,
given that it has the general form 

�

24. (a) Find an appropriate viewing rectangle to demon-
strate that the following purported partial fraction de-
composition is incorrect:

�

(b) Follow part (a) using 

�

(c) Determine the correct partial fraction decomposition,
given that it has the general form 

25. (a) Solve the following system of equations. (As 
indicated in Example 3, you should obtain A � 3,
B � 4, and C � �1.)

(b) Solve the following system of equations. (As 
indicated in the text, you should obtain B � 4 and
C � �1.)

e�9B � 2C � �34

�2B � C � �9

•
A � B � 7

�2B � C � �9

9A � 2C � 29

4

x2(x � 5)
�

A

x
�

B

x2 �
C

x � 5

�3�25

x
�

�2�5

x2 �
6�25

x � 5

4

x2(x � 5)

�4�5

x2 �
4�25

x � 5

4

x2(x � 5)

A

x � 4
�

B

x � 3

2x � 5

(x � 4)(x � 3)

2x � 5

(x � 4)(x � 3)
�

13�7

x � 4
�

1�7

x � 3

13�7

x � 4
�

2�7

x � 3

2x � 5

(x � 4)(x � 3)

x3 � 2x2

(x2 � 3)2 �
Ax � B

x2 � 3
�

Cx � D

(x2 � 3)2

x2 � 2

(x2 � 2)2 �
Ax � B

x2 � 2
�

Cx � D

(x2 � 2)2

x2 � 2x

(x � 1)3 �
A

x � 1
�

B

(x � 1)2 �
C

(x � 1)3
A
In Exercises 1–22, determine the constants (denoted by capital
letters) so that each equation is an identity. For Exercises 1–6, do
each problem in two ways: (a) use the equating-the-coefficients
theorem, as in Example 1; and (b) use the convenient-values
method that was explained after Example 1. For the remainder
of the exercises, use either method (or a combination).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
4x2 � 47x � 133

(x � 6)3 �
A

x � 6
�

B

(x � 6)2 �
C

(x � 6)3

1

(x � 1)(x � 2)(x � 3)
�

A

x � 1
�

B

x � 2
�

C

x � 3

3x2 � 2

(x � 2)(x � 1)(x � 1)
�

A

x � 2
�

B

x � 1
�

C

x � 1

2x2 � 11x � 6

(x � 2)(x2 � 2x � 4)
�

A

x � 2
�

Bx � C

x2 � 2x � 4

1

x(x2 � x � 1)
�

A

x
�

Bx � C

x2 � x � 1

x � 7

x(x2 � 2)
�

A

x
�

Bx � C

x2 � 2

x2 � 1

(x � 1)(x2 � 4)
�

A

x � 1
�

Bx � C

x2 � 4

15x2 � 35x � 77

(2x � 5)(x2 � 3)
�

A

2x � 5
�

Bx � C

x2 � 3

3x2 � 7x � 2

(x � 1)(x2 � 1)
�

A

x � 1
�

Bx � C

x2 � 1

30x � 17

(6x � 1)2 �
A

6x � 1
�

B

(6x � 1)2

6 � x

(5x � 4)2 �
A

5x � 4
�

B

(5x � 4)2

7x

(x � 5)2 �
A

x � 5
�

B

(x � 5)2

8x � 3

(x � 3)2 �
A

x � 3
�

B

(x � 3)2

1 � x

(4x � 3)(2x � 1)
�

A

4x � 3
�

B

2x � 1

1

(x � 1)(3x � 1)
�

A

x � 1
�

B

3x � 1

x

(4x � 3)(4x � 3)
�

A

4x � 3
�

B

4x � 3

6x � 25

(2x � 5)(2x � 5)
�

A

2x � 5
�

B

2x � 5

5x � 27

(x � 3)(x � 3)
�

A

x � 3
�

B

x � 3

7x � 6

(x � 2)(x � 2)
�

A

x � 2
�

B

x � 2

EXERCISE SET 13.6



(b) Use the rational roots theorem to show that the equa-
tion f (x) � 0 had no rational roots. Why does this
imply that the two real roots in part (a) must be
irrational?

(c) Use the equating-the-coefficients theorem 
to find a factorization for f(x) of the form

.
(d) Use the factorization determined in part (c) to find the

four roots of the equation f (x) � 0. For the two real
roots, give both exact expressions and calculator ap-
proximations rounded to two decimal places. Check to
see that these calculator values are consistent with the
graph in part (a).

Exercise 29 provides an example in which an error in a partial
fraction decomposition is not easily detected with a graphical
approach. Indeed, this may be an example of a case in which,
to check your partial fractions work, it’s easier to repeat the
algebra than to experiment with numerous viewing rectangles.
Decide for yourself after completing the problem.

29. There is an error in the following partial fraction
decomposition:

(a) Let f and g denote the two functions defined by
the expressions on the left side and the right side,
respectively, in the above equation. Use a graphing
utility to graph f and g, first in the standard viewing
rectangle and then in the rectangle [�15, 15, 5] by 
[�0.02, 0.04, 0.02]. In this latter rectangle, note that
the graphs do appear to be identical. (People using a
software graphing application and looking at the curves
on a computer monitor may have a little advantage
here over those drawing the graphs on a relatively
small graphing calculator screen.)

(b) Find a viewing rectangle clearly demonstrating that
the graphs of f and g are not identical.

(c) Find the correct partial fraction decomposition, given
that the form is

1

(x � 2)(x � 5)(x � 14)
�

A

x � 2
�

B

x � 5
�

C

x � 14

1

(x � 2)(x � 5)(x � 14)
�

�1�48

x � 2
�

1�57

x � 5
�

1�305

x � 14

(x2 � ax � b)(x2 � ax � b)

Exercise 26 provides practice using the convenient-values
method with complex numbers. As background, you should
review Example 3.

26. In this exercise you’ll use the convenient-values method to
determine real numbers A, B, and C such that the following
equation is an identity:

(a) Multiplying both sides of the given identity by the least
common denominator yields

(1)

Determine A by substituting x � 0 in identity (1).
(b) In identity (1), substitute x � 2i and show that the 

resulting equation can be written

(2)

(c) Determine B and C by equating real and imaginary
parts in equation (2).

B
In Exercises 27 and 28, the equating-the-coefficients theorem is
used as a tool to factor polynomials and thereby solve equations.

27. Consider the polynomial equation
f (x) � x4 � x3 � x2 � x � 1 � 0.
(a) Make use of the rational roots theorem in explaining

why the equation has no rational roots.
(b) Use a graphing utility to graph the function

y � f (x), and conclude that the given polynomial
equation has no real roots.

(c) Use the equating-the-coefficients theorem to find a
factorization of f(x) of the form

(d) Solve the equation x4 � x3 � x2 � x � 1 � 0.
28. Let f (x) � x4 � 2x3 � x2 � 9.

(a) Use a graphing utility to graph the function f. The
graph indicates that the polynomial equation f (x) � 0
has two real roots. In this case, according to Section 13.3,
how many complex roots must there be?

x4 � x3 � x2 � x � 1 � (x2 � bx � 1)(x2 � cx � 1)

2i � 1 � �4B � 2iC

x � 1 � A(x2 � 4) � (Bx � C)x

x � 1

x(x2 � 4)
�

A
x

�
Bx � C

x2 � 4
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The Mini Project, Checking a Partial Fraction Decomposition, at http://www.cengage.com/math/cohen/precalc7e,
suggests ways to check that a given partial fraction expansion is correct.

http://www.cengage.com/math/cohen/precalc7e
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13.7 MORE ABOUT PARTIAL FRACTIONS
In the examples and exercises in the previous section you were told what the general
form for each partial fraction should look like, and then the required constants were
computed. In calculus, however, when a partial fraction decomposition is needed,
you’re usually not specifically told what the general form for the partial fractions
should be. Rather, you’re expected to know this. In this section we list the necessary
guidelines. First, however, consider the following example indicating why these
guidelines are needed.

Suppose, for instance, that we want to find the partial fraction decomposition for
1�[x(x2 � 1)], and we guess that the general form is

(1)

Multiplying both sides of this last equation by the least common denominator
gives us

Equating coefficients now, as we did in the previous section, yields A � 0, B � 0, and
A � 1. The two equations A � 0 and A � 1 are contradictory. The only way out is
to conclude that there is no partial fraction decomposition of the form shown in
equation (1). This example demonstrates the need for guidelines for setting up partial
fraction decompositions.

We begin with a few definitions. Suppose that we have two polynomials p(x) and
q(x). Following the terminology in Section 4.7, we call an expression of the form
p(x)�q(x) a rational expression. A rational expression is said to be proper if the
degree of the numerator is less than the degree of the denominator. So each of the
following is a proper rational expression:

An improper rational expression is one in which the degree of the numerator is
greater than or equal to the degree of the denominator. Examples of improper ratio-
nal expressions are (x2 � 1)�(x � 1) and (x3 � 4)�(x3 � 2x2 � 1). All of the partial
fraction guidelines that we are about to discuss pertain to proper rational expressions.
(Near the end of this section we’ll explain what to do for an improper rational
expression.)

The final term that we need to define is irreducible quadratic polynomial. The
definition is given in the box that follows.

4x � 5

2x2 � 3x � 1
  

x 3 � 2x � 5

x5 � 9x3 � 4
  

x2 � 5

(x � 1)(x � 2)(x � 3)

 � Ax2 � Bx � A
 � Ax2 � A � Bx

 1 � A(x2 � 1) � Bx

1

x(x2 � 1)
�

A
x

�
B

x2 � 1

If the denominator of a rational function
has two relatively prime factors, then
this rational function can be expressed
as the sum of two fractions whose
denominators are equal to the two
factors. —Leonhard Euler (1707–1783)
in Introductio in analysis infinitorum
(1748)

Definition Irreducible Quadratic Polynomial

Let f (x) be a quadratic polynomial, all of whose coefficients are real. Then 
f (x) is said to be irreducible provided that the equation f (x) � 0 has no real roots.
This is equivalent to saying that f (x) cannot be factored into the form
(ax � b)(cx � d), where a, b, c, and d are real numbers.



Note: It follows that a quadratic polynomial with real coefficients is
irreducible if and only if its discriminant is negative. As examples, note 
that x2 � 5 is irreducible, but x2 � 5 is not irreducible.

The first step in determining a partial fraction decomposition is to factor the de-
nominator. In the previous section the denominators were already factored for you. If
you glance back at the previous section, you’ll see that the denominators contained
one or more of the following types of factors and no others:

ax � b

(ax � b)n, integer n � 2

ax2 � bx � c

(ax2 � bx � c)n, integer n � 2

A remarkable theorem tells us that, in fact, every polynomial with real coeffi-
cients can be factored (over the real numbers) using only the types of factors we’ve
just listed. We state this theorem in the box that follows.

 Powers of irreducible quadratic factors:

 Irreducible quadratic factors:

 Powers of linear factors:

 Linear factors:

b2 � 4ac
ax2 � bx � c
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Theorem Linear and Quadratic Factors Theorem

Let f (x) be a polynomial, all of whose coefficients are real numbers. Then f(x) can 
be factored (over the real numbers) into a product of linear and/or irreducible 
quadratic factors.

At the end of this section we show how the linear and quadratic factors theorem
follows from our earlier work in this chapter.

To see a familiar example, consider the cubic polynomial x3 � 1. We know
that

So in this case there is one linear factor and one irreducible quadratic factor. (You
should check for yourself, using the discriminant, that the quadratic factor is indeed
irreducible.) However, not every polynomial, of course, is so easily factored. For in-
stance, although the theorem tells us that the polynomial x3 � x � 1 can be factored
into linear and/or irreducible quadratic factors, it doesn’t tell us how to find those fac-
tors. Indeed, that can be a very difficult job, quite beyond this course. For the exam-
ples and exercises in this section, you’ll be able to find the factors using factoring
techniques from this chapter.

For all of the guidelines that we give, we assume that we’re starting with a proper
rational expression p(x)�q(x) and that q(x) has been factored into linear and/or irre-
ducible quadratic factors. We also assume that p(x) and q(x) have no common fac-
tors; that is, the fraction p(x)�q(x) has been reduced to lowest terms. The first two
guidelines tell us what to do when q(x) contains a linear factor ax � b or a power of
this factor.

x3 � 1 � (x � 1)(x2 � x � 1)
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(a) If the denominator contains a linear factor ax � b and no higher power of this
factor, then the partial fraction setup must contain a term A1�(ax � b), where A1

is a constant to be determined.
(b) [This encompasses part (a).] More generally, for each factor in the denominator

of the form (ax � b)n, for positive integer n, the partial fraction setup must con-
tain the following sum of n fractions:

where A1, A2, . . . , An are constants to be determined.

A1

ax � b
�

A2

(ax � b ) 2 � p � 
An

(ax � b )n

Guidelines for the Partial Fractions Setup: Linear Factors

SOLUTION (a) The denominator can be factored as a difference of squares:

Thus the denominator contains two distinct linear factors. According to the first
guideline in the box preceding this example, the form of the partial fraction 
decomposition is

(b) The denominator can be factored by grouping (as in online Appendix B.4):

(2)

We’re not finished with the factoring yet! If this were a factoring problem, equa-
tion (2) would indeed be our final result. That’s because in online Appendix B.4 we
are restricted to factors with integer (or possibly rational) coefficients. But here 
the restriction is removed, and we can factor x2 � 5 as a difference of squares:

Combining this last result with equation (2), our final factorization is

Thus the denominator contains three distinct linear factors, and the form of the
partial fraction decomposition is

x2

x3 � 2x2 � 5x � 10
�

A1

x � 15
�

A2

x � 15
�

A3

x � 2

x3 � 2x2 � 5x � 10 � 1x � 15 2 1x � 15 2 (x � 2)

x2 � 5 � 1x � 15 2 1x � 15 2

 � (x2 � 5)(x � 2)
 � x(x2 � 5) � 2(x2 � 5)

 x3 � 2x2 � 5x � 10 � (x3 � 5x) � (2x2 � 10)

5x � 1

4x2 � 9
�

A1

2x � 3
�

A2

2x � 3

4x2 � 9 � (2x � 3)(2x � 3)

EXAMPLE 1 Specifying the Setup for a Decomposition

Determine the form of the partial fraction decomposition:

(a) (b)
x2

x3 � 2x2 � 5x � 10
.

5x � 1

4x2 � 9
;
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SOLUTION In Example 1(b) we factored a denominator that was quite similar to this one by
grouping the terms. As you can check, however, that won’t work here. The next strat-
egy then is to apply the rational roots theorem to the polynomial equation

(3)

As Exercise 35 at the end of this section asks you to show, this leads to three rational
roots: �1, 2, and �3. Consequently, we have a factorization into three distinct linear
factors:

The form of the partial fraction decomposition must therefore be

In Examples 1 and 2 none of the linear factors in the denominators are repeated.
The next example shows cases in which there are repeated linear factors.

6x � 1

x3 � 2x2 � 5x � 6
�

A1

x � 1
�

A2

x � 2
�

A3

x � 3

x3 � 2x2 � 5x � 6 � (x � 1)(x � 2)(x � 3)

x3 � 2x2 � 5x � 6 � 0

EXAMPLE 2 Another Setup with Distinct Linear Factors in the Denominator

Determine the form of the partial fraction decomposition for the following 
expression:

6x � 1

x3 � 2x2 � 5x � 6

SOLUTION (a) The denominator is a perfect square of a linear factor:

So according to the second guideline in the box preceding Example 1, the form
of the partial fraction decomposition is

(b) The first step in factoring is to look for a common factor. In this case there is one:
It is x2, and we have

Now what? Regarding the second factor on the right-hand side of this last equa-
tion, we could try to factor it by grouping. As you can check, that does work. It’s

x5 � 3x4 � 3x3 � x2 � x2(x3 � 3x2 � 3x � 1)

5x � 1

x2 � 6x � 9
�

A1

x � 3
�

A2

(x � 3)2

x2 � 6x � 9 � (x � 3)2

EXAMPLE 3 A Setup with Repeated Linear Factors in the Denominator

Determine the form of the partial fraction decomposition for each of the following
expressions:

(a) (b)
2x4 � x � 1

x5 � 3x4 � 3x3 � x2.
5x � 1

x2 � 6x � 9
;



more direct, however, to observe that this factor is actually a perfect cube:
x3 � 3x2 � 3x � 1 � (x � 1)3. Putting things together then, we have the final
factorization

In summary, there are two repeated linear factors: The factor x occurs twice, and
the factor x � 1 occurs three times. The form of the partial fraction decomposi-
tion is therefore

The next two guidelines apply in cases in which the denominator contains one or
more irreducible quadratic factors. After you read these guidelines, compare them to
those that we listed previously for linear factors. You’ll see that almost everything
is the same. The only difference, in fact, is this: For the quadratic factors, the form of
the numerator is Ax � B rather than just A.

2x4 � x � 1

x5 � 3x4 � 3x3 � x2 �
A1

x
�

A2

x2 �
B1

x � 1
�

B2

(x � 1)2 �
B3

(x � 1)3

x5 � 3x4 � 3x3 � x2 � x2(x � 1)3
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(a) If the denominator contains an irreducible quadratic factor ax2 � bx � c and
no higher power of this factor, then the partial fractions setup must contain a 

term where A1 and B1 are constants to be determined.

(b) [This encompasses part (a).] More generally, for each factor in the denominator of
the form (ax2 � bx � c)n, for positive integer n, where ax2 � bx � c is irreducible,
the partial fractions setup must contain the following sum of n fractions:

where the Ai and Bi are constants to be determined.

A1x � B1

ax2 � bx � c
�

A2x � B2

(ax2 � bx � c )2 � p �
Anx � Bn

(ax2 � bx � c )n

A1x � B1

ax2 � bx � c
,

Guidelines for the Partial Fractions Setup: Irreducible Quadratic Factors

SOLUTION Our first job is to factor the denominator. Using difference-of-squares factoring, 
we have

So there are two linear factors and one irreducible quadratic factor, none of which is
repeated. The form of the partial fraction decomposition is therefore

x3 � 4x2 � 1

(x � 2)(x � 2)(x2 � 4)
�

A

x � 2
�

B

x � 2
�

Cx � D

x2 � 4

 � (x � 2)(x � 2)(x2 � 4)
 x4 � 16 � (x2 � 4)(x2 � 4)

EXAMPLE 4 A Denominator with Linear and Irreducible Quadratic Factors

Determine the partial fraction decomposition for the following expression:

x3 � 4x2 � 1

x4 � 16



(For ease of reading and writing, we are denoting the constants by A, B, C, and D in-
stead of, say, A1, A2, B1, and C1, respectively.) Multiplying both sides of this equation
by the common denominator gives
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Substituting x � 2 in identity (4) yields

Similarly, letting x � �2 in identity (4) gives us

At this point, we’ve found A and B, but we still need C and D. If we substitute the
values we’ve just found for A and B in equation (4), we have

 B � �
9

32

 9 � �32B
 (�2)3 � 4(�2)2 � 1 � 0 � B(�4)(8) � 0

 A �
25

32

 25 � 32A
 23 � 4(2)2 � 1 � A(2 � 2)(22 � 4) � 0 � 0

(4)x3 � 4x2 � 1 � A(x � 2)(x2 � 4) � B(x � 2)(x2 � 4) � (Cx � D)(x � 2)(x � 2)

Observe now that in identity (5), letting x � 0 will yield an equation involving D
alone. Exercise 36(a) at the end of this section asks you to follow through with the
arithmetic and algebra to obtain D � 15�8. Finally, in identity (5), we replace D by
15�8 and make the substitution x � 1. As Exercise 36(b) asks you to verify, the end
result is C � 1�2. If we put everything together now, the required partial fraction de-
composition is

 �
25

32(x � 2)
�

9

32(x � 2)
�

4x � 15

8(x2 � 4)

 
x3 � 4x2 � 1

x4 � 16
�

25
32

x � 2
�

� 
9
32

x � 2
�

1
2x � 15

8

x2 � 4

(5)x3 � 4x2 � 1 �
25

32
(x � 2)(x2 � 4) �

9

32
(x � 2)(x2 � 4) � (Cx � D)(x � 2)(x � 2)

SOLUTION The denominator factors as a perfect square:

Since the repeated factor x2 � 3 is irreducible, our guidelines tell us that the form of
the partial fraction decomposition is

3x3 � x2 � 7x � 3

(x2 � 3)2 �
Ax � B

x2 � 3
�

Cx � D

(x2 � 3)2

x4 � 6x2 � 9 � (x2 � 3)2

EXAMPLE 5 A Denominator with a Repeated Irreducible Quadratic Factor

Determine the partial fraction decomposition for the following expression:

3x3 � x2 � 7x � 3

x4 � 6x2 � 9



Multiplying both sides of this identity by (x2 � 3)2 gives us

(6)

At this point we can use either of the two techniques discussed in Section 13.6: the
equating-the-coefficients technique or the convenient-values technique. As Exercise 37
at the end of this section asks you to show, the results are A � 3, B � �1, C � �2,
and D � 0. The partial fraction decomposition then is 

Each of the examples we’ve considered in this and the previous section involved
proper rational expressions. For improper rational expressions we can first use long 
division to express the improper fraction in the general form

Then the techniques that we’ve developed can be applied to the second term in
this sum. For instance, suppose we’re given the improper rational expression
(2x3 � 4x2 � 15x � 36)�(x2 � 9). As you can check for yourself by using long 
division, we obtain

polynomial proper rational 
expression

At this stage, a partial fraction decomposition can be worked out for the proper ra-
tional expression 3x�(x2 � 9). As Exercise 38(b) at the end of this section asks you
to check, the result is

So our final decomposition of the given improper rational fraction is

Optional note: The linear and quadratic factors theorem that we’ve discussed in this
section is a direct consequence of two theorems that appeared earlier in the chapter:
the linear factors theorem and the conjugate roots theorem. Here’s why: If we start
with a polynomial f (x), the linear factors theorem says that we can decompose f(x)
into linear factors:

(7)

Now, it’s possible that some, or even all, of these ci may be nonreal complex num-
bers. For instance, suppose that c1 is a nonreal complex number, with c1 � a � bi.
Then, assuming that all of the coefficients of f (x) are real numbers, the conjugate
roots theorem tells us that in one of the other factors, call it x � c2 for simplicity, we

f (x) � an(x � c1)(x � c2) p (x � cn)

2x3 � 4x2 � 15x � 36

x2 � 9
� 2x � 4 �

3

2(x � 3)
�

3

2(x � 3)

3x

x2 � 9
�

3

2(x � 3)
�

3

2(x � 3)

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

2x3 � 4x2 � 15x � 36

x2 � 9
� 2x � 4   �    

3x

x2 � 9

(polynomial) � (proper rational expression)

3x3 � x2 � 7x � 3

x4 � 6x2 � 9
�

3x � 1

x2 � 3
�

2x

(x2 � 3)2

3x3 � x2 � 7x � 3 � (Ax � B)(x2 � 3) � (Cx � D)

13.7 More About Partial Fractions 973



must have c2 � a � bi. Now look what happens when we compute the product of
these two factors:

As Exercise 45 asks you to check, this last quadratic polynomial is irreducible; that
is, it has no real roots. In summary, the two linear factors x � c1 and x � c2 that con-
tain nonreal complex numbers give rise to one irreducible quadratic factor with real
coefficients. So, similarly, after pairing up any other linear factors in equation (7) that
contain nonreal complex numbers, what are we left with? The right-hand side of
equation (7) will contain only linear factors and/or irreducible quadratic factors, all
with real coefficients, just as the linear and quadratic factors theorem asserts.

 � x2 � 2ax � (a2 � b2)
 � x2 � (a � bi)x � (a � bi)x � (a � bi)(a � bi)

 (x � c1)(x � c2) � [x � (a � bi)][x � (a � bi)]
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In Exercises 17–34, determine the partial fraction decomposi-
tion for each of the given rational expressions. Hint: In
Exercises 17, 18, and 26, use the rational roots theorem to 
factor the denominator.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Hint: Review the factor-
ing in Exercise 29.

31. 32.

33. Hint: To factor the denominator,

replace 2x2 with x2 � x2 and group as follows: 
(x4 � x3 � x2) � (x2 � x � 1).

34. Hint: To factor the denominator, add

and subtract the term 16x2.

x3 � 4x2 � 16x

x4 � 64

1

x4 � x3 � 2x2 � x � 1

x � 1

x4 � 16

x3 � 5

x4 � 81

4x � 5

x4 � 2x3 � x2 � 1

7x3 � 11x2 � x � 2

x4 � 2x3 � x2

x

x3 � 8

1

x3 � 1

4x2

2x3 � 5x2 � 4x � 3

x3 � x � 3

x4 � 15x3 � 75x2 � 125x

x3 � 2

x4 � 8x2 � 16

x3 � 2

x4 � 8x2 � 16

2x � 1

x3 � 5x

2x � 1

x3 � 5x

2x

32x2 � 12x � 1

5 � x

6x2 � 19x � 15

1

x3 � x2 � 10x � 8

x2 � 2

x3 � 3x2 � 16x � 12

A
In Exercises 1–4, determine whether the given quadratic poly-
nomial is irreducible. [Recall from the text that a quadratic
polynomial f (x) is irreducible if the equation f(x) � 0 has no
real roots.]

1. (a) x2 � 16 2. (a) x2 � 17
(b) x2 � 16 (b) x2 � 17

3. (a) x2 � 3x � 4 4. (a) 24x2 � x � 3
(b) x2 � 3x � 4 (b) x2 � 24x � 144

In Exercises 5–16: (a) factor the denominator of the given ra-
tional expression; (b) determine the form of the partial fraction
decomposition for the given rational expression; and (c) deter-
mine the values of the constants in the partial fraction decom-
position that you gave in part (b). To help you in spotting
errors, use the fact that in part (c), each of the required con-
stants turns out to be an integer.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.
11x3 � 35x � 7

x4 � 6x2 � 9

2x3 � 5x � 4

x4 � 2x2 � 1

x2 � 3x � 1

x3 � x2 � 2x � 2

5x2 � 2x � 5

x3 � x2 � x

16x2 � 9x � 2

3x3 � x2 � 2x

3x2 � 17x � 38

x3 � 3x2 � 4x � 12

19x � 15

4x2 � 5x

7x � 39

x2 � x � 6

2111

x2 � 11

8x � 215

x2 � 5

x � 18

x2 � 36

11x � 30

x2 � 100
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40.

41.

42.

43.

44.

Hint: After the long division you can factor the denomina-
tor by writing it as x2(x2 � 2x � 1) � 12 and then using the
difference-of-squares technique.

45. This exercise completes a detail mentioned in the text in
the derivation of the linear and quadratic factors theorem.
Let a and b be real numbers with b 	 0. Show that the qua-
dratic polynomial x2 � 2ax � a2 � b2 is irreducible.

B
In Exercises 46–52, determine the partial fraction decomposi-
tion for each of the given expressions.

46. (a 	 b) 47. (a 	 b)

48. (a 	 0) 49. (a 	 0)

50. (Assume that a, b, and c are all

unequal.)

51. (Assume that a, b, and c all

are nonzero and all unequal.)

52. (a) (b)

C
53. Find the partial fraction decomposition: 

Hint: To factor the denominator, add and subtract a term.
54. (a) Determine the general form for the partial fraction 

decomposition of 1�(x4 � x3 � x2 � x � 1). (Note
that you are not required to find the numerical 
values for each constant.) Hint: See Exercise 27 in
Section 13.6.

(b) Determine the general form for the partial fraction de-
composition of 1�(x5 � 1). 

1

x4 � 1
.

x5 � 1

(x2 � 1)3

x2 � 1

(x2 � 1)3

1

(1 � ax)(1 � bx)(1 � cx)

x2 � px � q

(x � a)(x � b)(x � c)

px � q

(x � a)(x � a)

1

(x � a)(x � a)

px � q

(x � a)(x � b)

1

(x � a)(x � b)

2x7 � 3x6 � 2x4 � 4x3 � 2

x4 � 2x3 � x2 � 1

x6 � 2x5 � 5x4 � x2 � 2x � 4

x4 � 1

x6 � 3x5 � 9x3 � 26x2 � 3x � 8

x3 � 8

x5 � 10x4 � 36x3 � 55x2 � 32x � 1

x4 � 6x3 � 12x2 � 8x

2x5 � 11x4 � 4x3 � 53x2 � 24x � 5

2x3 � x2 � 10x � 5

35. Use the rational roots theorem and the remainder 
theorem to determine the roots of the equation
x3 � 2x2 � 5x � 6 � 0. (This is to verify a statement 
made in Example 2.)

36. This exercise completes two details mentioned in 
Example 4.
(a) In identity (5) in the text, let x � 0 to obtain an equa-

tion involving D alone, then solve the equation. You
should obtain D � 15�8.

(b) In identity (5) we replaced D by 15�8 and made the
substitution x � 1. Check that this leads to the result
C � 1�2.

37. This exercise completes calculations mentioned in
Example 5.
(a) Show that identity (6) in the text leads to the following

system of equations:

(b) From the system in part (a) we have A � 3 and B � �1,
which agrees with the values given in Example 5. Now
determine C and D, and check that your answers agree
with the values given in Example 5.

38. This exercise completes the discussion of improper rational
expressions in this section.
(a) Use long division to obtain the following result:

(b) Find constants A and B such that
3x�(x2 � 9) � A�(x � 3) � B�(x � 3). (According to
the text, you should obtain A � B � 3�2.)

In Exercises 39–44, you are given an improper rational expres-
sion. First, use long division to rewrite the expression in the
form

Next, obtain the partial fraction decomposition for the proper
rational expression. Finally, rewrite the given improper ratio-
nal expression in the form

39.
6x3 � 16x2 � 13x � 25

x2 � 4x � 3

( polynomial) � ( partial fractions)

( polynomial) � ( proper rational expression)

2x3 � 4x2 � 15x � 36

x2 � 9
� (2x � 4) �

3x

x2 � 9

μ
A � 3

B � �1

3A � C � 7

3B � D � �3
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MINI PROJECT An Unusual Partial Fractions Problem

As background for this mini project, you need to have worked Exercise 27(c) 
in Exercise Set 13.6. That exercise indicates how the equating-the-coefficients
theorem can be used to factor certain polynomials.

The guidelines in this section for setting up a partial fraction decomposi-
tion for a rational expression require us to first factor the denominator into lin-
ear and/or irreducible quadratic factors. Two students each used this approach
in determining a partial fractions decomposition for

Student 1 used the equating-the-coefficients theorem to find a factorization of
x4 � 7x2 � 1 of the form

After obtaining the factorization (and checking to see that each factor was 
irreducible), the student followed the methods of Sections 13.6 and 13.7 to 
obtain a partial fraction decomposition. Student 2 worked along these lines
also but looked for a factorization of x4 � 7x2 � 1 having the form

(a) Retrace each student’s work to see what results were obtained. Do the two
students end up with the same partial fraction decomposition? If not, who
is correct (either, both, or neither)?

(b) Factoring has also been a key element in previous sections in which we
solved polynomial equations. Consider the equation x4 � 7x2 � 1 � 0.
Use a graphing utility to see that this equation has four distinct real roots.
Then use the rational roots theorem to explain why none of the roots is a
rational number.

(c) Solve the equation x4 � 7x2 � 1 � 0 using the factorization obtained by
student 1. Leave the roots in radical form rather than obtaining calculator
approximations. Next, solve the equation again, but this time use the fac-
torization obtained by student 2. Do you obtain the same four roots?

(d) Using the values for b and B that you determined in part (a), graph the fol-
lowing four quadratic functions in the viewing rectangle [�4, 4] by [�3, 3].
What do you observe regarding the x-intercepts, and what does this have
to do with the last question in part (c)?

y4 � x2 � Bx � 1

y3 � x2 � Bx � 1

y2 � x2 � bx � 1

y1 � x2 � bx � 1

x4 � 7x2 � 1 � (x2 � Bx � 1)(x2 � Bx � 1)

x4 � 7x2 � 1 � (x2 � bx � 1)(x2 � bx � 1)

x

x4 � 7x2 � 1



Summary of Principal Terms and Notation 977

CHAPTER 13 Summary of Principal Terms and Notation

Page
Terms or Formulas Reference Comments

1. The division algorithm 921 This is a theorem that summarizes the results of the long division process
for polynomials. Suppose that p(x) and d(x) are polynomials and d(x) is
not the zero polynomial. Then according to the division algorithm, there
are unique polynomials q(x) and R(x) such that

where either R(x) is the zero polynomial or the degree of R(x) is less than
the degree of d(x).

2. Root, solution, zero 926 A root, or solution, of a polynomial equation f (x) � 0 is a number r such
that f(r) � 0. The root r is also called a zero of the function f.

3. The remainder theorem 928 The remainder theorem asserts that when a polynomial f(x) is divided
by x � r, the remainder is f(r). Example 3 in Section 13.2 shows how
this theorem can be used with synthetic division to evaluate a
polynomial.

4. The factor theorem 929 The factor theorem makes two statements about a polynomial f (x). First,
if f(r) � 0, then x � r is a factor of f(x). Second, if x � r is a factor of
f (x), then f(r) � 0.

5. The fundamental theorem 935 Let f(x) be a polynomial of degree 1 or greater. The fundamental 
of algebra theorem of algebra asserts that the equation f(x) � 0 has at least one root

among the complex numbers. (See Example 1 in Section 13.3.)

6. The linear factors theorem 936 Let f(x) � where n � 1 and an � 0.
Then this theorem asserts that f (x) can be expressed as a product of n
linear factors:

(The complex numbers r1, r2, . . . , rn are not necessarily all distinct,
and some or all of them may be real numbers.) On page 938 the linear
factors theorem is used to prove that every polynomial equation of
degree n � 1 has exactly n roots, where a root of multiplicity k is
counted k times.

7. The rational roots theorem 945 Given a polynomial equation, this theorem tells us which rational numbers
are candidates for roots of the equation. For a statement of the theorem,
see page 945. A proof of the theorem is outlined in Exercise 41, Exercise
Set 13.4. For an example of how the theorem is applied, see Example 1
in Section 13.4.

8. Upper bound for roots; 947 A real number B is an upper bound for the roots of an equation if 
lower bound for roots every real root is less than or equal to B. Similarly, a real number b is a

lower bound for the roots if every real root is greater than or equal to b.

f (x) � an(x � r1)(x � r2) p (x � rn)

a1x � a 0,an�1x
n�1 � p �anx

n �

p(x) � d(x) # q(x) � R(x)

CHAPTER 13 Summary
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Page
Terms or Formulas Reference Comments

9. The upper and lower 947 This theorem tells how synthetic division can be used in determining
bound theorem for real upper and lower bounds for roots of equations. For the statement 
roots and proof of the theorem, see page 947. For a demonstration of how the

theorem is applied, see Example 2 in Section 13.4.

10. The location theorem 949 Let f (x) be a polynomial with real coefficients. If a and b are real
numbers such that f(a) and f(b) have opposite signs, then the equation
f (x) � 0 has at least one root between a and b.

11. The conjugate roots 954 Let f (x) be a polynomial with real coefficients, and suppose that 
theorem a � bi is a root of the equation f (x) � 0, where a and b are real numbers

and b 	 0. Then this theorem asserts that a � bi is also a root of the
equation. (In other words, for polynomial equations in which all of the
coefficients are real numbers, when complex nonreal roots occur, they
occur in conjugate pairs.) For illustrations of how this theorem is applied,
see Examples 1 and 2 in Section 13.5.

12. Variation in sign 956 Suppose that f (x) is a polynomial with real coefficients, written in
descending or ascending powers of x. Then a variation in sign occurs
whenever two successive coefficients have opposite signs. For examples,
see Table 1 in Section 13.5.

13. Descartes’ rule of signs 957 Let f(x) be a polynomial, all of whose coefficients are real numbers, and
consider the equation f (x) � 0. Then, according to Descartes’ rule:
(a) The number of positive roots either is equal to the number of

variations in sign of f (x) or is less than that by an even integer.
(b) The number of negative roots either is equal to the number 

of variations in sign of f (�x) or is less than that by an even 
integer.

Examples 4–6 in Section 13.5 show how Descartes’ rule is applied.

14. Proper rational expression 967 Let p(x) and q(x) be polynomials such that the degree of p(x) is less than
the degree of q(x). Then the fraction p(x)�q(x) is called a proper rational
expression.

15. Irreducible quadratic 967 Let ax2 � bx � c be a quadratic polynomial, all of whose coefficients 
polynomial are real numbers. The polynomial is irreducible provided the equation

ax2 � bx � c � 0 has no real-number roots.

16. The linear and quadratic 968 Let f(x) be a polynomial, all of whose coefficients are real numbers. 
factors theorem Then f(x) can be factored (over the real numbers) into a product of linear

and/or irreducible quadratic factors.

17. Partial fraction 960, 969, A proper rational expression p(x)�q(x) can be decomposed into a 
decomposition 971 sum of simpler partial fractions. The denominators of the partial

fractions are built from the linear and/or irreducible quadratic factors of
the original denominator q(x). For details, see the boxes on pages 969
and 971. 
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Writing Mathematics

Discuss each of the following statements with a classmate, and
decide whether it is true or false. Then (on your own), write out
the reason (or reasons) for each decision.

1. Every equation has a root.
2. Every polynomial equation of degree 4 has four distinct

roots.
3. No cubic equation can have a root of multiplicity 4.
4. The degree of the polynomial x(x � 1)(x � 2)(x � 3) is 3.
5. The degree of the polynomial 6(x � 1)2(x � 5)4 is 6.
6. Every polynomial of degree n, where n � 1, can be written

in the form (x � r1)(x � r2) (x � rn).
7. The sum of the roots of the polynomial equation

x2 � px � q � 0 is p.
8. The product of the roots of the polynomial equation

2x3 � x2 � 3x � 1 � 0 is 1.
9. Although a polynomial equation of degree n may have n

distinct roots, the fundamental theorem of algebra tells us
how to find only one of the roots.

10. Every polynomial equation of degree n � 1 has at least one
real root.

p

11. If all of the coefficients in a polynomial equation are real,
then at least one of the roots must be real.

12. Every cubic equation with roots and can be
written in the form

13. Every polynomial equation of degree �1 has at least one root.
14. According to the rational roots theorem, there are four 

possibilities for the rational roots of the equation
x5 � 6x2 � 2 � 0.

15. According to the rational roots theorem, there are only 
two possibilities for the rational roots of the equation 
x3 � 5x � 1 � 0.

16. The sum of the roots of the equation x2 � 12x � 16 � 0
is �12.

17. According to the location theorem, if f (x) is a polynomial
and f (a) and f(b) have the same sign, then the equation
f (x) � 0 has at least one root between a and b.

18. According to Descartes’ rule, the equation x7 � 4x � 3 � 0
has two positive roots. 

1
3

a3 1x � 15 2 1x � 16 2 1x � 17 2 � 0

1716,15,
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In Exercises 1 and 2 you are given polynomials p(x) and d(x).
In each case, use synthetic division to determine polynomials
q(x) and R(x) such that

where either R(x) � 0 or the degree of R(x) is less than the
degree of d(x).

1. p(x) � x4 � 3x3 � x2 � 5x � 1; d(x) � x � 2
2. p(x) � 4x4 � 2x � 1; d(x) � x � 2

In Exercises 3–8, use synthetic division to find the quotients and
the remainders.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, use synthetic division and the remainder the-
orem to find the indicated function values. Use a calculator for
Exercises 15 and 16.

9. f (x) � x5 � 10x � 4; f (10)
10. f (x) � x4 � 2x3 � x; f(�2)

x3 � 3a2x2 � 4a4x � 9a6

x � a2

5x2 � 19x � 4

x � 0.2

x2 � x � 312

x � 12

2x3 � 5x2 � 6x � 3

x � 4

x3 � 1

x � 2

x4 � 2x2 � 8

x � 3

p(x) � d(x) # q(x) � R(x)

11. f (x) � x3 � 10x2 � x � 1; f (1�10)
12. f (x) � x4 � 2a2x2 � 3a3x � a4; f (�a)
13. f (x) � x3 � 3x2 � 3x � 1; f (a � 1)
14. f (x) � x3 � 1; f (1.1)
15. f (x) � x4 � 4x3 � 6x2 � 8x � 2;

(a) f (�0.3) (Round the result to two decimal places.)
(b) f (�0.39) (Round the result to three decimal places.)
(c) f (�0.394) (Round the result to five decimal places.)

16. f (�4.907378), where f is the function in Exercise 15.
(Round the result to three decimal places.)

17. Find a value for a such that 3 is a root of the equation
x3 � 4x2 � ax � 6 � 0.

18. For which values of b will �1 be a root of the equation
x3 � 2b2x2 � x � 48 � 0?

19. For which values of a will x � 1 be a factor of the polyno-
mial a2x3 � 3ax2 � 2?

20. Use synthetic division to verify that is a root of the

equation x6 � 14x3 � 1 � 0.
21. Let f (x) � ax3 � bx2 � cx � d and suppose that r is a root

of the equation f (x) � 0.
(a) Show that r � h is a root of f (x � h) � 0.
(b) Show that �r is a root of the equation f (�x) � 0.
(c) Show that kr is a root of the equation f (x�k) � 0.

22. Suppose that r is a root of the equation a2x2 � a1x � a0 � 0.
Show that mr is a root of the quadratic equation 
a2x2 � ma1x � m2a0 � 0.

12 � 1



53. x4 � 10 � 0
54. x4 � 5x2 � x � 2 � 0
55. Consider the equation x3 � x2 � x � 1 � 0.

(a) Use Descartes’ rule to show that the equation has either
one or three negative roots.

(b) Now show that the equation cannot have three negative
roots. Hint: Multiply both sides of the equation by
x � 1. Then simplify the left-hand side and reapply
Descartes’ rule to the new equation.

(c) Actually, the original equation can be solved using 
the basic factoring techniques discussed in online
Appendix B.4. Solve the equation in this manner.

56. Use Descartes’ rule to show that the equation
x3 � x2 � 3x � 2 � 0 has no positive roots. Hint:
Multiply both sides of the equation by x � 1 and apply
Descartes’ rule to the resulting equation.

57. Let P be the point in the first quadrant where the curve
y � x3 intersects the circle x2 � y2 � 1. Locate the x-coordinate
of P within successive hundredths.

58. Let P be the point in the first quadrant where the parabola
y � 4 � x2 intersects the curve y � x3. Locate the x-coordinate
of P within successive hundredths.

59. Consider the equation x3 � 36x � 84 � 0.
(a) Use Descartes’ rule to check that this equation has ex-

actly one positive root.
(b) Use the upper and lower bound theorem to show that 7 is

an upper bound for the positive root.
(c) Using a calculator, locate the positive root within suc-

cessive hundredths.
60. Consider the equation x3 � 3x � 1 � 0.

(a) Use Descartes’ rule to check that this equation has ex-
actly one negative root.

(b) Use the upper and lower bound theorem to show that �2
is a lower bound for the negative root.

(c) Using a calculator, locate the negative root within suc-
cessive hundredths.

In Exercises 61–64, find polynomial equations that have integer
coefficients and the given values as roots.

61.
62. a � b and a � b, where a and b are integers
63. 6 � 2i and

64. Hint: First rationalize the expression.

65. Find a fourth-degree polynomial equation with integer
coefficients, such that x � 1 � is a root.
Hint: Begin by writing the given relationship as
x � 1 � then square both sides.

66. Find a cubic equation with integer coefficients, such that
x � 1 � is a root. Is 1 � also a root of the 
equation?

1
3 21

3 2

12 � 13;

12 � 13

5 � 16

5 � 16

15

4 � 15

In Exercises 23–28, list the possibilities for the rational roots of
the equations.

23. x5 � 12x3 � x � 18 � 0
24. x5 � 12x3 � x � 17 � 0
25. 2x4 � 125x3 � 3x2 � 8 � 0

26.
27. x3 � x � p � 0, where p is a prime number
28. x3 � x � pq � 0, where both p and q are prime numbers

In Exercises 29–36, each equation has at least one rational
root. Solve the equations. Suggestion: Use the upper and
lower bound theorem to eliminate some of the possibilities for
rational roots.

29. 2x3 � x2 � 7x � 6 � 0
30. x3 � 6x2 � 8x � 7 � 0
31. 2x3 � x2 � 14x � 10 � 0
32. 2x3 � 12x2 � 13x � 15 � 0
33.
34. x4 � 2x3 � 13x2 � 38x � 24 � 0
35. x5 � x4 � 14x3 � 14x2 � 49x � 49 � 0
36. 8x5 � 12x4 � 14x3 � 13x2 � 6x � 1 � 0
37. Solve the equation x3 � 9x2 � 24x � 20 � 0, using the fact

that one of the roots has multiplicity 2.
38. One root of the equation x2 � kx � 2k � 0 (k 	 0) is twice

the other. Find k and find the roots of the equation.
39. State each of the following theorems.

(a) The division algorithm
(b) The remainder theorem
(c) The factor theorem
(d) The fundamental theorem of algebra

40. Find a quadratic equation with roots a � and

a � where a � 1.

In Exercises 41–44, write each polynomial in the form

41. 6x2 � 7x � 20 42. x2 � x � 1
43. x4 � 4x3 � 5x � 20 44. x4 � 4x2 � 5

Each of Exercises 45–48 gives an equation, followed by one or
more roots. Solve the equation.

45. x3 � 7x2 � 25x � 39 � 0; x � 2 � 3i
46. x3 � 6x2 � 24x � 160 � 0; x � 2 � 2i
47. x4 � 2x3 � 4x2 � 14x � 21 � 0; x � 1 � i
48. x5 � x4 � x3 � x2 � x � 1 � 0; x � 11 �

x � 1�1 �

In Exercises 49–54, use Descartes’ rule of signs to obtain 
information regarding the roots of the equations.

49. x3 � 8x � 7 � 0 50. 3x4 � x2 � 4x � 2 � 0
51. x3 � 3x � 1 � 0 52. 2x6 � 3x2 � 6 � 0

15 2�2
i13 2�2,
12

13

an(x � r1)(x � r2) p (x � rn)

2a2 � 1,

2a2 � 1

3
2 x3 � 1

2 x2 � 1
2 x � 1 � 0

3
5 x3 � 8x2 � 1

2 x � 3
2 � 0

980 CHAPTER 13 Roots of Polynomial Equations



In Exercises 82–86, verify that the formulas are correct by car-
rying out the operations indicated on the left-hand side of the
equations. (This list of formulas appears in A Treatise on
Algebra, by George Peacock, published in 1845.)

82.

83.

84.

85.

86.

In Exercises 87–92, determine the partial fraction decomposi-
tion for each expression.

87. 88.

89. 90.

91.

92.

93. (a) Let f (x) � x4 � 2x3 � x2 � 1. Use the equating-the-
coefficients theorem to find a factorization for f (x) of the
form 

f (x) � (x2 � bx � 1)(x2 � cx � 1)

(b) Find the partial fraction decomposition for
x3�(x4 � 2x3 � x2 � 1).

94. (a) Compute the product (x2 � rx � c)(x2 � rx � c). [This
can be useful in part (b).]

(b) If r is a root of the equation x2 � bx � c � 0, show that
r2 is a root of x2 � (2c � b2)x � c2 � 0. 

4x3 � 3x2 � 24x � 15

x4 � 11x2 � 30

x3 � 2

x4 � 6x2 � 9

1

x4 � x2

1

x3 � 2x2 � x

x

x2 � 20

2x � 1

100 � x2

a � bi

c � di
�

a � bi

c � di
�

2(ac � bd)

c2 � d2

a � bi

a � bi
�

a � bi

a � bi
�

4abi

a2 � b2

a � bi

a � bi
�

a � bi

a � bi
�

2(a2 � b2)

a2 � b2

1

a � bi
�

1

a � bi
�

2bi

a2 � b2

1

a � bi
�

1

a � bi
�

2a

a2 � b2

In Exercises 67–70, first determine the zeros of each function;
then sketch the graph.

67. y � x3 � 2x2 � 3x
68. y � x4 � 3x3 � 3x2 � x
69. y � x4 � 4x2

70. y � x3 � 6x2 � 5x � 12

For Exercises 71–78, carry out the indicated operations, 
and express your answer in the standard form a � bi.
(Note: See Appendix A.3 for a review of complex numbers.)

71. (3 � 2i)(3 � 2i) � (1 � 3i)2

72. 2i(1 � i)2

73.
74. (2 � 3i)�(1 � i)
75.

76.

77.

78.

79. The real part of a complex number z is denoted by Re(z).
For instance, Re(2 � 5i) � 2. Show that for any complex
number z, we have Re(z) � (z � ). Hint: Let z � a � bi.

80. The imaginary part of a complex number z is denoted by
Im(z). For instance, Im(2 � 5i) � 5. Show that for any com-
plex number z, we have 

Im(z) � (z � )

81. The absolute value of the complex number a � bi is

defined by a � bi �
(a) Compute 6 � 2i and 6 � 2i .
(b) As you know, the absolute value of the real number �3

is 3. Now write �3 in the form �3 � 0i and compute its
absolute value using the new definition. (The point here
is to observe that the two results agree.)

(c) Let z � a � bi. Show that � z 2.00zz

0000
2a2 � b2.00

z
1

2i

z1
2

1�4 � 1�31�3

1�100

�1�21�9 � 1�8 � 1�72

1 � i

1 � i
�

1 � i

1 � i

13 � i13 2� 13 � i13 2
11 � i12 2 11 � i12 2 � 112 � i 2 112 � i 2
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1. Let f (x) � 6x4 � 5x3 � 7x2 � 2x � 2. Use the remainder
theorem and synthetic division to compute f (1�2).

2. Solve the equation x3 � x2 � 11x � 15 � 0, given that one
of the roots is �3.

3. List the possibilities for the rational roots of the equation
2x5 � 4x3 � x � 6 � 0.

4. Find a quadratic function with zeros 1 and �8 and with a 
y-intercept of �24.

5. Use synthetic division to divide 4x3 � x2 � 8x � 3 by x � 1.

6. (a) State the factor theorem.
(b) State the fundamental theorem of algebra.
(c) State the linear and quadratic factors theorem.

7. (a) The equation x3 � 2x2 � 1 � 0 has just one positive
root. Use the upper and lower bound theorem to deter-
mine the smallest integer that is an upper bound for the
root.

(b) Locate the root between successive tenths. (Use a
calculator.)
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15. Find a polynomial f (x) with leading coefficient 1, such that
the equation f (x) � 0 has the following roots and no other:

Root Multiplicity

2 1
3i 3

1 � 2

Write your answer in the form 
an(x � r1)(x � r2) (x � rn).

16. Simplify the expression (3 � 2i)(5 � 3i) � .

17. Write the expression in the form a � bi.

In Exercises 18–20, determine the partial fraction decomposi-
tion for each expression.

18. 19.

20.
4x2 � 15x � 20

x3 � 4x2 � 4x

1

x3 � x2 � 3x � 3

3x � 1

x3 � 16x

3 � i

1 � 4i

1�3

p

12

8. Solve the equation 
x5 � 6x4 � 11x3 � 16x2 � 50x � 52 � 0, given that two of
the roots are 1 � i and 3 � 2i.

9. Let p(x) � x4 � 2x3 � x � 6 and d(x) � x2 � 1. Find poly-
nomials q(x) and R(x) such that p(x) � d(x) # q(x) � R(x).

10. Express the polynomial 2x2 � 6x � 5 in the factored form
a2(x � r1)(x � r2).

11. Consider the equation x4 � x3 � 24 � 0.
(a) List the possibilities for rational roots.
(b) Use the upper and lower bound theorem to show that 2

is an upper bound for the roots.
(c) In view of parts (a) and (b), what possibilities now re-

main for positive rational roots?
(d) Which (if any) of the possibilities in part (c) are actually

roots?
12. (a) Find the rational roots of the cubic equation

2x3 � x2 � x � 3 � 0.
(b) Find all solutions of the equation in part (a).

13. Use Descartes’ rule of signs to obtain information
regarding the roots of the following equation:
3x4 � x2 � 5x � 1 � 0.

14. Find a cubic polynomial f (x) with integer coefficients, such
that 1 � 3i and �2 are roots of the equation f(x) � 0.
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14.1 Mathematical Induction

14.2 The Binomial Theorem

14.3 Introduction to Sequences
and Series

14.4 Arithmetic Sequences and
Series

14.5 Geometric Sequences and
Series

14.6 An Introduction to Limits

A strong background in algebra is an important prerequisite for
courses in calculus and in probability and statistics. In this final
chapter we develop several additional topics that help to provide
a foundation in those areas of study. We begin in Section 14.1
with the principle of mathematical induction. This gives us a framework for proving
statements about the natural numbers. In Section 14.2 we discuss the binomial theo-
rem, which is used to analyze and expand expressions of the form (a � b)n. As you’ll
see, the proof of the binomial theorem uses mathematical induction. Section 14.3
introduces the related (but distinct) concepts of sequences and series. Then in the next
two sections (Sections 14.4 and 14.5), we study arithmetic and geometric sequences
and series. The topic introduced in Section 14.5 concerns finding sums of infinite
geometric series. This is closely related to the idea of a limit, which is the starting point
for calculus. In Section 14.6 we introduce limit notation, and we review, restate, and
prove results on the “end behavior” of functions. This provides a preview of calculus.

CHAPTER

14

14.1 MATHEMATICAL INDUCTION
Is mathematics an experimental science? The answer to this question is both yes and
no, as the following example illustrates. Consider the problem of determining a for-
mula for the sum of the first n odd natural numbers:

We begin by doing some calculations in the hope that this may shed some light on the
problem. Table 1 shows the results of calculating the sum of the first n odd natural
numbers for values of n ranging from 1 to 5. Upon inspecting the table, we observe
that each sum in the right-hand column is the square of the corresponding entry in the
left-hand column. For instance, for n � 5 we see that

five terms

Now let’s try the next case, in which n � 6, and see whether the pattern persists. That
is, we want to know whether it is true that

six terms

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

1 � 3 � 5 � 7 � 9 � 11 � 62

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 � 3 � 5 � 7 � 9 � 52

1 � 3 � 5 � p � (2n � 1)

TABLE 1

n 1 � 3 � 5 � p � (2n � 1)

1 1 � 1
2 1 � 3 � 4
3 1 � 3 � 5 � 9
4 1 � 3 � 5 � 7 � 16
5 1 � 3 � 5 � 7 � 9 � 25

Additional Topics 
in Algebra



As you can easily check, this last equation is true. Thus on the basis of the experi-
mental (or empirical) evidence, we are led to the following conjecture:

Conjecture. The sum of the first n odd natural numbers is n2. That is,
1 � 3 � 5 � p � (2n � 1) � n2, for each natural number n.

At this point, the “law” we’ve discovered is indeed really only a conjecture. After
all, we’ve checked it only for values of n ranging from 1 to 6. It is conceivable at this
point (although we may feel it is unlikely) that the conjecture is false for certain val-
ues of n. For the conjecture to be useful, we must be able to prove that it holds with-
out exception for all natural numbers n. In fact, we will subsequently prove that this
conjecture is valid. But before explaining the method of proof to be used, let’s look
at one more example.

Again, let n denote a natural number. Then consider the following question:
Which quantity is the larger, 2n or (n � 1)2? As before, we begin by doing some cal-
culations. This is the experimental stage of our work. According to Table 2, the quan-
tity (n � 1)2 is larger than 2n for each value of n up through n � 5. Thus we make the
following conjecture:

Conjecture. (n � 1)2 � 2n for all natural numbers n.

Again, we note that this is only a conjecture at this point. Indeed, if we try the
case in which n � 6, we find that the pattern does not persist. That is, when n � 6,
we find that 2n is 64, while (n � 1)2 is only 49. So in this example the conjecture is
not true in general; we have found a value of n for which it fails.

The preceding examples show that experimentation does have a place in mathe-
matics, but we must be careful with the results. When experimentation leads to a con-
jecture, proof is required before the conjecture can be viewed as a valid law. For the
remainder of this section we shall discuss one such method of proof: mathematical
induction.

To state the principle of mathematical induction, we first introduce some nota-
tion. Suppose that for each natural number n we have a statement Pn to be proved.
Consider, for instance, our first conjecture:

Denoting this statement by Pn, we have that

P1 is the statement that 1 � 12

P2 is the statement that 1 � 3 � 22

P3 is the statement that 1 � 3 � 5 � 32

With this notation we can now state the principle of mathematical induction.

Suppose that for each natural number n, we have a statement Pn for which the fol-
lowing two conditions hold:

1. P1 is true.
2. For each natural number k, if Pk is true, then Pk�1 is true.

Then all of the statements are true; that is, Pn is true for all natural numbers n.

The Principle of Mathematical Induction

1 � 3 � 5 � p � (2n � 1) � n2
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TABLE 2

n 2n (n � 1)2

1 2 4
2 4 9
3 8 16
4 16 25
5 32 36

Mathematical induction is not a method
of discovery but a technique of proving
rigorously what has already been
discovered. —David M. Burton in The
History of Mathematics, an Introduction
(Boston: Allyn and Bacon, 1985)



The idea behind mathematical induction is a simple one. Think of each state-
ment Pn as the rung of a ladder to be climbed. Then we make the analogy shown in
Table 3.

According to the principle of mathematical induction, we can prove that a state-
ment or formula Pn is true for all n if we carry out the following two steps:

Step 1 Show that P1 is true.
Step 2 Assume that Pk is true, and on the basis of this assumption, show that Pk�1

is true.

In Step 2 the assumption that Pk is true is referred to as the induction hypothesis.
(In computer science, Step 1 is sometimes referred to as the initialization step.)
Now let’s turn to some examples of proof by mathematical induction.

14.1 Mathematical Induction 985

TABLE 3

Mathematical Induction Ladder Analogy

1. P1 is true. 1¿. You can reach the first
rung.

Hypotheses 2. If Pk is true, Hypotheses 2¿. If you are on the kth 
then Pk�1 is rung, you can reach the 
true, for any k. (k � 1)st rung, for any k.

Conclusion
3. Pn is true for

Conclusion
3¿. You can climb the entire

all n. ladder.
⎧
⎨
⎩

⎧
⎨
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

EXAMPLE 1 A Basic Induction Proof

Use mathematical induction to prove that

for all natural numbers n.

1 � 3 � 5 � p � (2n � 1) � n2

SOLUTION Let Pn denote the statement that 1 � 3 � 5 � � (2n � 1) � n2. Then we want to
show that Pn is true for all natural numbers n.

Step 1 We must check that P1 is true. But P1 is just the statement that 1 � 12, which
is true.

Step 2 Assuming that Pk is true, we must show that Pk�1 is true. Thus we assume
that

(1)

That is the induction hypothesis. We must now show that

(2)

To derive equation (2) from equation (1), we add the quantity [2(k � 1) � 1]
to both sides of equation (1). (The motivation for this stems from the

1 � 3 � 5 � p � (2k � 1) � [2(k � 1) � 1] � (k � 1)2

1 � 3 � 5 � p � (2k � 1) � k2

p



observation that the left-hand sides of equations (1) and (2) differ only by
the quantity [2(k � 1) � 1].) We obtain

That is, So Pk�1

is true.

Having now carried out Steps 1 and 2, we conclude by the principle of mathe-
matical induction that Pn is true for all natural numbers n.

1 � 3 � 5 � p � (2k � 1) � [2(k � 1) � 1] � (k � 1)2.

 � (k � 1)2
 � k2 � 2k � 1

 1 � 3 � 5 � p � (2k � 1) � [2(k � 1) � 1] � k2 � [2(k � 1) � 1]
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EXAMPLE 2 An Induction Proof Requiring More Algebra in Step 2

Use mathematical induction to prove that

for all natural numbers n.

23 � 43 � 63 � p � (2n)3 � 2n2(n � 1)2

SOLUTION Let Pn denote the statement that

Then we want to show that Pn is true for all natural numbers n.

Step 1 We must check that P1 is true, where P1 is the statement that

Thus P1 is true.
Step 2 Assuming that Pk is true, we must show that Pk�1 is true. Thus we assume

that

(3)

We must now show that

(4)

Adding [2(k � 1)]3 to both sides of equation (3) yields

We have now derived equation (4) from equation (3), as we wished to do. Having
carried out Steps 1 and 2, we conclude by the principle of mathematical induction
that Pn is true for all natural numbers n.

 � 2(k � 1)2(k � 2)2
 � 2(k � 1)2(k2 � 4k � 4)
 � 2(k � 1)2[k2 � 4(k � 1)]
 � 2k2(k � 1)2 � 8(k � 1)3

 23 � 43 � 63 � p � (2k)3 � [2(k � 1)]3 � 2k2(k � 1)2 � [2(k � 1)]3

23 � 43 � 63 � p � (2k)3 � [2(k � 1)]3 � 2(k � 1)2(k � 2)2

23 � 43 � 63 � p � (2k)3 � 2k2(k � 1)2

23 � 2(12)(1 � 1)2  or  8 � 8

23 � 43 � 63 � p � (2n)3 � 2n2(n � 1)2

EXAMPLE 3 A Case in Which the Statement to Be Proved Is Not a Formula

As is indicated in Table 4, the number 3 is a factor of 22n � 1 when n � 1, 2, 3,
and 4. Use mathematical induction to show that 3 is a factor of 22n � 1 for all
natural numbers n.
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SOLUTION Let Pn denote the statement that 3 is a factor of 22n � 1. We want to show that Pn is
true for all natural numbers n.

Step 1 We must check that P1 is true. P1 in this case is the statement that 3 is a fac-
tor of 22(1) � 1, that is, 3 is a factor of 3, which is surely true.

Step 2 Assuming that Pk is true, we must show that Pk�1 is true. Thus we assume
that

(5)

and we must show that

The strategy here will be to rewrite the expression 22(k � 1) � 1 in such a way
that the induction hypothesis, statement (5), can be applied. We have

(6)

Now look at the right-hand side of equation (6). By the induction hypo-
thesis, 3 is a factor of 22k � 1. Thus 3 is a factor of 4(22k � 1), from which
it certainly follows that 3 is a factor of 4(22k � 1) � 3. In summary, then, 3
is a factor of the right-hand side of equation (6). Consequently, 3 must be a
factor of the left-hand side of equation (6), which is what we wished to
show.

Having now completed Steps 1 and 2, we conclude by the principle of mathe-
matical induction that Pn is true for all natural numbers n. In other words, 3 is a fac-
tor of 22n � 1 for all natural numbers n.

There are instances in which a given statement Pn is false for certain initial val-
ues of n but true thereafter. An example of this is provided by the statement

As you can easily check, this statement is false for n � 1, 2, 3, 4, and 5. But, as
Example 4 shows, the statement is true for n � 6. In Example 4 we adapt the principle
of mathematical induction by beginning in Step 1 with a consideration of P6 rather
than P1.

2n � (n � 1)2

 22(k�1) � 1 � 4(22k � 1) � 3
 � 4 # 22k � 4 � 3
 � 22 # 22k � 1

 22(k�1) � 1 � 22k�2 � 1

3 is a factor of 22(k�1) � 1

3 is a factor of 22k � 1

EXAMPLE 4 A Case in Which the Statement to Be Proved Is an Inequality

Use mathematical induction to prove that

2n � (n � 1)2  for all natural numbers n � 6

SOLUTION Step 1 We must first check that P6 is true. But P6 is simply the assertion that

Thus P6 is true.

26 � (6 � 1)2  or  64 � 49

TABLE 4

n 22n � 1

1 3 (� 3 1)
2 15 (� 3 5)
3 63 (� 3 21)
4 255 (� 3 85)#

#
#
#



Step 2 Assuming that Pk is true, where k � 6, we must show that Pk�1 is true. Thus
we assume that

(7)

We must show that

Multiplying both sides of inequality (7) by 2 gives us

This can be rewritten

However, since k � 6, it is certainly true that

We therefore have

as we wished to show.

Having now completed Steps 1 and 2, we conclude that Pn is true for all natural
numbers n � 6.

2k�1 � k2 � 4k � 4  or  2k�1 � (k � 2)2

k2 � 2 � 4

2k�1 � k2 � 4k � (k2 � 2)

2(2k) � 2(k � 1)2 � 2k2 � 4k � 2

2k�1 � (k � 2)2

2k � (k � 1)2  where k � 6
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17.

18. 1 � 2 2 � 3 22 � 4 23 � p � n 2n�1 � (n � 1)2n � 1
19. Show that n � 2n�1 for all natural numbers n.
20. Show that 3 is a factor of n3 � 2n for all natural numbers n.
21. Show that n2 � 4 � (n � 1)2 for all natural numbers n � 2.
22. Show that n3 � (n � 1)2 for all natural numbers n � 3.

In Exercises 23–26, prove that the statement is true for all
natural numbers in the specified range. Use a calculator to
carry out Step 1.

23. (1.5)n � 2n; n � 7
24. (1.25)n � n; n � 11
25. (1.1)n � n; n � 39
26. (1.1)n � 5n; n � 60

B
27. Let f(n) �

(a) Complete the following table.

n 1 2 3 4 5

f(n)

1

1 # 2
�

1

2 # 3
�

1

3 # 4
� p �

1

n(n � 1)
.

####
1 �

3

2
�

5

22 �
7

23 � p �
2n � 1

2n�1 � 6 �
2n � 3

2n�1
A
In Exercises 1–18, use the principle of mathematical induction
to show that the statements are true for all natural numbers.

1. 1 � 2 � 3 � � n � n(n � 1)�2
2. 2 � 4 � 6 � � 2n � n(n � 1)
3. 1 � 4 � 7 � � (3n � 2) � n(3n � 1)�2
4. 5 � 9 � 13 � � (4n � 1) � n(2n � 3)
5. 12 � 22 � 32 � � n2 � n(n � 1)(2n � 1)�6
6. 22 � 42 � 62 � � (2n)2 � 2n(n � 1)(2n � 1)�3
7. 12 � 32 � 52 � � (2n � 1)2 � n(2n � 1)(2n � 1)�3
8. 2 � 22 � 23 � � 2n � 2n�1 � 2
9. 3 � 32 � 33 � � 3n � (3n�1 � 3)�2

10. ex � e2x � e3x � � enx � (x 	 0)

11. 13 � 23 � 33 � � n3 � [n(n � 1)�2]2

12. 23 � 43 � 63 � � (2n)3 � 2n2(n � 1)2

13. 13 � 33 � 53 � � (2n � 1)3 � n2(2n2 � 1)
14. 1 2 � 3 4 � 5 6 � � (2n � 1)(2n)

� n(n � 1)(4n � 1)�3
15. 1 3 � 3 5 � 5 7 � � (2n � 1)(2n � 1)

� n(4n2 � 6n � 1)�3

16.

�
n(3n � 5)

4(n � 1)(n � 2)

1

1 
 3
�

1

2 
 4
�

1

3 
 5
� p �

1

n(n � 2)

p###
p###

p
p
p

e(n�1)x � ex

ex � 1
p

p
p
p
p
p

p
p
p
p

EXERCISE SET 14.1



31. A prime number is a natural number that has no factors
other than itself and 1. For technical reasons, 1 is not con-
sidered a prime. Thus, the list of the first seven primes
looks like this: 2, 3, 5, 7, 11, 13, 17. Let Pn be the statement
that n2 � n � 11 is prime. Check that Pn is true for all val-
ues of n less than 10. Check that P10 is false.

32. Prove that if x 	 1,

for all natural numbers n.
33. If r 	 1, show that

1 � r � r2 � p � rn�1 �

for all natural numbers n.
34. Use mathematical induction to show that

for all natural numbers n.
35. Prove that 5 is a factor of n5 � n for all natural numbers

n � 2.
36. Prove that 4 is a factor of 5n � 3 for all natural numbers n.
37. Prove that 5 is a factor of 22n�1 � 32n�1 for all nonnegative

integers n.
38. Prove that 8 is a factor of 32n � 1 for all natural numbers n.
39. Prove that 3 is a factor of 2n � 1 � (�1)n for all nonnega-

tive integers n.
40. Prove that 6 is a factor of n3 � 3n2 � 2n for all natural

numbers n.
41. Use mathematical induction to show that x � y is a factor

of xn � yn for all natural numbers n. Suggestion for 
Step 2: Verify and then use the fact that 

xk�1 � yk�1 � xk(x � y) � (xk � yk)y

In Exercises 42 and 43, use mathematical induction to prove
that the formulas hold for all natural numbers n.

42. log10(a1a2 . . . an) � log10 a1 � log10 a2 � p � log10 an

43. (1 � p)n � 1 � np, where p � �1

xn � 1 � (x � 1)(1 � x � x2 � p � xn�1)

r n � 1

r � 1

1 � 2x � 3x2 � p � nxn�1 �
1 � xn

(1 � x)2 �
nxn

1 � x

(b) On the basis of the results in the table, what would you
guess to be the value of f (6)? Compute f (6) to see
whether this is correct.

(c) Make a conjecture about the value of f (n), and prove it
using mathematical induction.

28. Let 

(a) Complete the following table.

n 1 2 3 4

f(n)

(b) On the basis of the results in the table, what would you
guess to be the value of f (5)? Compute f (5) to see
whether your guess is correct.

(c) Make a conjecture about the value of f (n), and prove it
using mathematical induction.

29. Suppose that a function f satisfies the following conditions:

(a) Complete the table.

n 1 2 3 4 5

f(n)

(b) On the basis of the results in the table, what would you
guess to be the value of f (6)? Compute f (6) to see
whether your guess is correct.

(c) Make a conjecture about the value of f (n) when n is a
natural number, and prove the conjecture using mathe-
matical induction.

30. This exercise demonstrates the necessity of carrying out
both Step 1 and Step 2 before considering an induction
proof valid.
(a) Let Pn denote the statement that n2 � 1 is even. Check

that P1 is true. Then give an example showing that Pn

is not true for all n.
(b) Let Qn denote the statement that n2 � n is odd. Show

that Step 2 of an induction proof can be completed in
this case, but not Step 1.

 f (n) � f (n � 1) � 21f (n � 1) � 1 (n � 2)
 f (1) � 1

f (n) �
1

1 # 3
�

1

3 # 5
�

1

5 # 7
� p �

1

(2n � 1)(2n � 1)
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14.2 THE BINOMIAL THEOREM
A mathematician, like a painter or a poet, is a maker of patterns. —G. H. Hardy

(1877–1947)

Recall from basic algebra that an expression that is the sum or difference of two terms
is referred to as a binomial expression. Three examples of binomial expressions are

Our goal in this section is to develop a general formula, known as the binomial
theorem, for expanding any product of the form (a � b)n, where n is a natural number.

u � v,  2x2 � y3,  and  4m3n � 5x3y4

[Blaise Pascal] made numerous 
discoveries relating to this array and 
set them forth in his Traité du triangle
arithmétique, published posthumously
in 1665, and among these was essentially
our present Binomial Theorem for
positive integral exponents. —David
Eugene Smith in History of Mathematics,
vol. II (New York: Ginn and Co., 1925)



We begin by looking for patterns in the expansion of (a � b)n. To do this, let’s list
the expansions of (a � b)n for n � 1, 2, 3, 4, and 5. (Exercises 1 and 2 at the end of
this section ask you to verify these results simply by repeated multiplication.)

After surveying these results, we note the following patterns.

 (a � b)5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5
 (a � b)4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4
 (a � b)3 � a3 � 3a2b � 3ab2 � b3
 (a � b)2 � a2 � 2ab � b2
 (a � b)1 � a � b
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PROPERTY SUMMARY Patterns Observed in (a � b)n for n � 1, 2, 3, 4, 5

General Statement Example

There are n � 1 terms. There are 4 (� 3 � 1) terms in the expansion of (a � b)3.

The expansion begins with an and ends with bn. (a � b)3 begins with a3 and ends with b3.

The sum of the exponents in each term is n. The sum of the exponents in each term of (a � b)3 is 3.

The exponents of a decrease by 1 from term to
term.

The exponents of b increase by 1 from term to 
term.

When n is even, the coefficients are symmetric The sequence of coefficients for (a � b)4 is 1, 4, 6, 4, 1.
about the middle term.

When n is odd, the coefficients are symmetric The sequence of coefficients for (a � b)5 is 1, 5, 10, 10, 5, 1.
about the two middle terms.

(a � b)3 � a3b 
�0 � 3a2b 

�1 � 3ab 
�2 � b 

�3

(a � b)3 � a 
�3 � 3a 

�2 b � 3a 
�1 b2 � a 

�0 b3

The patterns we have just observed for (a � b)n persist for all natural numbers n.
This follows from the binomial theorem, which we prove at the end of this section.
Thus, for example, the form of (a � b)6 must be as follows. (Each question mark
denotes a coefficient to be determined.)

The problem now is to find the proper coefficient for each term. To do this, we need
to discover additional patterns in the expansion of (a � b)n.

We have already written out the expansions of (a � b)n for values of n ranging
from 1 to 5. Let us now write only the coefficients appearing in those expansions.
The resulting triangular array of numbers is known as Pascal’s triangle.* For rea-
sons of symmetry we begin with (a � b)0 rather than (a � b)1.

(a � b)6 � a6 � ?a5b � ?a4b2 � ?a3b3 � ?a2b4 � ?ab5 � b6

Figure 1
“Pascal’s” triangle, by Chu-Shi-Kie,
A.D. 1303.

*The array is named after Blaise Pascal, a seventeenth-century French mathematician and
philosopher. However, as Figure 1 indicates, the Pascal triangle was known to Chinese math-
ematicians centuries earlier.



The key observation regarding Pascal’s triangle is this: Each entry in the array (other
than the 1’s along the sides) is the sum of the two numbers diagonally above it. For
instance, the 6 that appears in the fifth row is the sum of the two 3’s diagonally above
it. Using this observation, we can form as many additional rows as we please. The
coefficients for (a � b)n will then appear in the (n � 1)st row of the array.* For in-
stance, to obtain the row corresponding to (a � b)6, we have

sixth row, (a � b)5: 1 ≈T√ 5 ≈T√ 10 ≈T√ 10 ≈T√ 5 ≈T√ 1

seventh row, (a � b)6: 1 6 15 20 15 6 1

Thus the sequence of coefficients for (a � b)6 is 1, 6, 15, 20, 15, 6, 1. This answers
the question raised earlier about the expansion of (a � b)6. We have

For analytical work or for larger values of the exponent n, it is inefficient to rely
on Pascal’s triangle. For this reason we point out another pattern in the expansions of
(a � b)n.

In the expansion of (a � b)n the coefficient of any term after the first can be
generated as follows: From the previous term, multiply the coefficient by the
exponent of a and then divide by the number of that previous term.

To see how this method is used, let’s compute the second, third, and fourth
coefficients in the expansion of (a � b)6. To compute the coefficient of the second
term, we go back to the first term, which is a6. We have

ƒ
———— coefficient of first term

———– exponent of a in first termT T

c———— number of first term

Thus the second term is 6a5b, and consequently, we have

ƒ———— coefficient of second term
———— exponent of a in second termT T

c———— number of second term

coefficient of third term �
6 # 5

2
� 15

coefficient of second term �
1 # 6

1
� 6

(a � b)6 � a6 � 6a5b � 15a4b2 � 20a3b3 � 15a2b4 � 6ab5 � b6

 (a � b)5  ............... 1  5  10  10   5     1

 (a � b)4  .................... 1  4   6   4     1

 (a � b)3  ......................... 1    3   3     1

 (a � b)2  .............................. 1   2   1

 (a � b)1  ...................................  1   1

 (a � b)0  ........................................  1
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*That these numbers actually are the appropriate coefficients follows from the binomial theo-
rem, which is proved at the end of this section.



The second notation that we introduce in preparation for the binomial theorem 

is . This notation is read “n choose k,” because it can be shown that is

equal to the number of different subsets of k elements from a set with n elements.

an
k
ban

k
b

Continuing now with this method, you should check for yourself that the coefficient
of the fourth term in the expansion of (a � b)6 is 20.

Note: We now know that the first four coefficients are 1, 6, 15, and 20. By symmetry
it follows that the complete sequence of coefficients for this expansion is 1, 6, 15, 20,
15, 6, 1. No additional calculation of coefficients is necessary.
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EXAMPLE 1 Expanding a Binomial

Expand (2x � y2)7.

SOLUTION First we write the expression of (a � b)7 using the method explained just prior
to this example, or using Pascal’s triangle. As you should check for yourself, the
expansion is

Now we make the substitutions a � 2x and b � �y2. This yields

This is the required expansion. Notice how the signs alternate in the final answer; this
is characteristic of expressions of the form (a � b)n.

In preparation for the binomial theorem we introduce two notations that are used
not only in connection with the binomial theorem, but also in many other areas of
mathematics. The first of these notations is n! (read “n factorial”).

  � 84x2y10 � 14xy12 � y14
 � 128x7 � 448x6y2 � 672x5y4 � 560x4y6 � 280x3y8

  � 21(2x)2(�y2)5 � 7(2x)(�y2)6 � (�y2)7
  � 35(2x)4(�y2)3 � 35(2x)3(�y2)4

 (2x � y2)7 � [2x � (�y2)]7 � (2x)7  � 7(2x)6(�y2) � 21(2x)5(�y2)2

(a � b)7 � a7 � 7a6b � 21a5b2 � 35a4b3 � 35a3b4 � 21a2b5 � 7ab6 � b7

EXAMPLE 2 Practice with the Factorial Notation

Simplify the expression 
(n � 1)!
(n � 1)!

.

SOLUTION
(n � 1)!
(n � 1)!

�
(n � 1) # n # (n � 1)!

(n � 1)!
� (n � 1) # n � n2 � n

Definition The Factorial Symbol

where n is a natural number EXAMPLES

     � 6 # 5 � 30

6!
4!

�
6 # 5 # 4 # 3 # 2 # 1

4 # 3 # 2 # 1

3! � 1 # 2 # 3 � 60! � 1
n! � 1 # 2 # 3 p n
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The Binomial Coefficient 

Let n and k be nonnegative integers, with k � n. EXAMPLE

Then the binomial coefficient  is defined by

�
5 # 4
2 # 1

� 10

�
5 # 4 # 3 # 2 # 1

(2 # 1)(3 # 2 # 1)
an

k
b �

n!
k!(n � k)!

a5

2
b �

5!
2!(5 � 2)!

�
5!

2!3!
an

k
b

an
k
b

The binomial coefficients are so named because they are indeed the coefficients
in the expansion of (a � b)n. More precisely, the relationship is this: The coefficients in
the expansion of (a � b)n are the n � 1 numbers

Subsequently, we will see why this statement is true. For now, however, let’s look

at an example. Consider the binomial coefficients and 

According to our statement, these four quantities should be the coefficients in the
expansion of (a � b)3. Let’s check:

The values of and are thus 1, 3, 3, and 1, respectively. But

these last four numbers are indeed the coefficients in the expression of (a � b)3, as
we wished to check.

We are now in a position to state the binomial theorem, after which we will look
at several applications. Finally, at the end of this section we will use mathematical
induction to prove the theorem. In the statement of the theorem that follows, we are
assuming that the exponent n is a natural number.

a3
3
ba3

0
b , a3

1
b , a3

2
b ,

 a3
3
b �

3!
3!(3 � 3)!

�
3!

3!0!
� 1

 a3
2
b �

3!
2!(3 � 2)!

�
3 # 2 # 1

(2 # 1)1
� 3

 a3
1
b �

3!
1!(3 � 1)!

�
3 # 2 # 1

1(2 # 1)
� 3

 a3
0
b �

3!
0!(3 � 0)!

�
3!

1(3!)
� 1

a3
3
b .a3

0
b , a3

1
b , a3

2
b ,

an
0
b , an

1
b , an

2
b , . . . , an

n b

Theorem The Binomial Theorem

(a � b)n � an
0
ban � an

1
ban�1b � an

2
ban�2b2 � p � a n

n � 1
babn�1 � an

n
bbn

Definition



One of the uses of the binomial theorem is in identifying specific terms in an ex-
pansion without computing the entire expansion. This is particularly helpful when
the exponent n is relatively large. Looking back at the statement of the binomial
theorem, there are three observations we can make. First, the coefficient of the rth 

term is For instance, the coefficient of the third term is 

The second observation is that the exponent for a in the rth term is n � (r � 1). For
instance, the exponent for a in the third term is n � (3 � 1) � n � 2. Finally, we
observe that the exponent for b in the rth term is r � 1, the same quantity that appears
in the lower position of the corresponding binomial coefficient. For instance, the
exponent for b in the third term is r � 1 � 3 � 1 � 2. We summarize these three
observations with the following statement.

The rth term in the expansion of (a � b)n is

a n
r � 1

ban�r�1br�1

a n
3 � 1

b � an
2
b .a n

r � 1
b .
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EXAMPLE 3 Finding a Term in a Binomial Expansion

Find the 15th term in the expansion of ax2 �
1
x
b 18

.

SOLUTION Using the values r � 15, n � 18, a � x2, and b � �1�x, we have

as required
 � 3060x�6

 �
18 # 17 # 16 # 15

4 # 3 # 2 # 1
x�6

 �
18 # 17 # 16 # 15 # (14!)

14!(4 # 3 # 2 # 1)
x�6

 � a18
14
b x8 # 1

x14

 a n
r � 1

ban�r�1br�1 � a 18
15 � 1

b (x2)18�15�1 a�1
x
b 15�1

EXAMPLE 4 Finding a Coefficient in a Binomial Expansion

Find the coefficient of the term containing x4 in the expansion of (x � y2)30.

SOLUTION Again we use the fact that the rth term in the expansion of (a � b)n is

an�r�1br�1. In this case, n is 30, and x plays the role of a. The exponent 

for x is then n � r � 1 or 30 � r � 1. To see when this exponent is 4, we write

30 � r � 1 � 4  and therefore  r � 27

a n
r � 1

b



The required coefficient is therefore We then have

After carrying out the indicated arithmetic, we find that This is the

required coefficient.

a30
26
b � 27,405.

a30
26
b �

30!
26!(30 � 26)!

�
30 # 29 # 28 # 27

4 # 3 # 2 # 1

a 30
27 � 1

b .
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EXAMPLE 5 Finding a Coefficient in a Binomial Expansion

Find the coefficient of the term containing a9 in the expansion of .1a � 21a 210

SOLUTION The rth term in this expansion is

We can rewrite this as

or

From this we see that the general form of the coefficient that we wish to find is

2r�1 We now need to determine r when the exponent of a is 9. Thus we

require that

multiplying both sides by 2

The required coefficient is now obtained by substituting r � 3 in the expression

2r�1 Thus the required coefficient is

Alternatively, we can write

Then the term containing a4 is the term with So we want the coefficient 

of the term that is, 22a10
2
b � 180.a5a10

2
b 11a 2 8 # 22,

11a 2 8.
1a � 21a 2 10 � 11a 2 10 11a � 2 2 10 � a5 11a � 2 2 10

22a10
2
b �

4 # 10!
2!(10 � 2)!

� 2 # 10 # 9 � 180

a 10
r � 1

b .

 r � 3
 �2r � r � 1 � �4

 �r �
r � 1

2
� �2

 10 � r � 1 �
r � 1

2
� 9

a 10
r � 1

b .

2r�1a 10
r � 1

ba10�r�1�(r�1)�2

a 10
r � 1

ba10�r�1(2r�1)(a1�2)r�1

a 10
r � 1

ba10�r�1 121a 2 r�1



There are three simple identities involving the binomial coefficients that will
simplify our proof of the binomial theorem:

Identity 1 for all nonnegative integers r

Identity 2 for all nonnegative integers r

Identity 3

All three of these identities can be proved directly from the definitions of the bino-
mial coefficients, without the need for mathematical induction. The proofs of
the first two are straightforward, and we omit them. Here is the proof of the third
identity:

The common denominator on the right-hand side of the last equation is 
r(r � 1)!(k � r � 1)(k � r)! Thus we have

as required

Taken together, the three identities show why the (n � 1)st row of Pascal’s tri-

angle consists of the numbers Identities 1 and 2 tell us

that this row of numbers begins and ends with 1. Identity 3 is just a statement of the
fact that each entry in the row, other than the initial and final 1, is generated by adding
the two entries diagonally above it. For example, using Pascal’s triangle for (a � b)4

and (a � b)5, we have

1 4 6 4 1

1 5 10 10 5 1

6 � 4 � 10

  or  

Identity

a4
2
b � a4

3
b � a5

3
b

6 � 4 � 10

an
nb .an

2
b , . . . ,an

1
b ,an

0
b ,

 � a k � 1
r b

 �
(k � 1)!

r![(k � 1) � r]!

 �
k!(k � r � 1 � r)

r(r � 1)!(k � r � 1)(k � r)!
�

k!(k � 1)

r!(k � r � 1)!

 �
k!(k � r � 1) � k!r

r(r � 1)!(k � r � 1)(k � r)!

 a k
r b � a k

r � 1
b �

k!(k � r � 1)

r(r � 1)!(k � r � 1)(k � r)!
�

k!r
r(r � 1)!(k � r � 1)(k � r)!

 �
k!

r(r � 1)!(k � r)!
�

k!
(r � 1)!(k � r � 1)(k � r)!

 a k
r b � a k

r � 1
b �

k!
r!(k � r)!

�
k!

(r � 1)!(k � r � 1)!

for all natural numbers
k and r with r � k

a k
r b � a k

r � 1
b � a k � 1

r b
a r

rb � 1

a r
0
b � 1
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We conclude this section by using mathematical induction to prove the binomial
theorem. The statement Pn that we wish to prove for all natural numbers n is this:

First, we check that P1 is true. The statement P1 asserts that

However, in view of Identities 1 and 2, this last equation becomes

which is surely true. Now let’s assume that Pk is true and, on the basis of this as-
sumption, show that Pk�1 is true. The statement Pk is

Multiplying both sides of this equation by the quantity (a � b) yields

(a � b)k � a k
0
bak � a k

1
bak�1b � p � a k

k � 1
babk�1 � a k

k
b bk

(a � b)1 � 1 # a � 1 # b

(a � b)1 � a1
0
ba1 � a1

1
bb

(a � b)n � an
0
ban � an

1
ban�1b � p � a n

n � 1
babn�1 � an

nbbn

 � a k
0
bak�1 � c a k

1
b � a k

0
b d akb � p � c a k

k
b � a k

k � 1
b d abk � a k

k
bbk�1

 � � a k
0
bakb � a k

1
bak�1b2 � p � a k

k � 1
babk � a k

k
bbk�1

 � a k
0
bak�1 � a k

1
bakb � p � a k

k � 1
ba2bk�1 � a k

k
babk

 � � b c a k
0
bak � a k

1
bak�1b � p � a k

k � 1
babk�1 � a k

k
bbk d

 � a c a k
0
bak � a k

1
bak�1b � p � a k

k � 1
babk�1 � a k

k
bbk d

 (a � b)k�1 � (a � b) c a k
0
bak � a k

1
bak�1b � p � a k

k � 1
babk�1 � a k

k
b bk d
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We can now make some substitutions on the right-hand side of this last equation.

The initial binomial coefficient can be replaced by because both 

are equal to 1, according to Identity 1. Similarly, the binomial coefficient ap-

pearing in the last term on the right-hand side of the equation can be replaced by

since both are equal to 1 according to Identity 2. Finally, we can use

Identity 3 to simplify each of the sums in the brackets. We obtain

This last equation is just the statement Pk�1; that is, we have derived Pk�1 from Pk,
as we wished to do. The induction proof is now complete.

(a � b)k�1 � a k � 1
0
bak�1 � a k � 1

1
bakb � p � a k � 1

k
babk � a k � 1

k � 1
bbk�1

a k � 1
k � 1

b ,

a k
k
b

a k � 1
0
b ,a k

0
b
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48. Find the coefficient of the term containing a8 in the 
expansion of .

49. Find the term that does not contain A in the expansion 
of [(1�A) � 3A2]12.

50. Find the coefficient of B�10 in the expansion of 
[(B2�2) � (3�B3)]10.

B
51. Show that the coefficient of xn in the expansion of (1 � x)2n

is (2n)!�(n!)2.
52. Find n so that the coefficients of the 11th and 13th terms in

(1 � x)n are the same.
53. (a) Complete the following table.

k 0 1 2 3 4 5 6 7 8

(b) Use the results in part (a) to verify that 

(c) By taking a � b � 1 in the expansion of (a � b)n, show
that

C
54. Two real numbers A and B are defined by and

Which number is larger, A or B?
Hint: Compare A9900 and B9900.

55. This exercise outlines a proof of the identity

(a) Verify that

(1)

(This requires only basic algebra, not the binomial
theorem.)

(b) Show that the coefficient of the term independent 

of x on the right side of equation (1) is 

(c) Use the binomial theorem to expand (1 � x)n. Then
show that the coefficient of the term independent of 
x on the left side of equation (1) is

an
0
b 2

� an
1
b 2

� p � an
n b

2

a2n
n b .

(1 � x)n a1 �
1
x
b n

�
(1 � x)2n

xn

an
0
b 2

� an
1
b 2

� an
2
b 2

� p � an
n b

2

� a2n
n b

B �
100
1100!.

A �
99
199!

an
n b � 2nan

0
b � an

1
b � an

2
b � p �

a8
0
b � a8

1
b � a8

2
b � p � a8

8
b � 28

a8
k
b

3a � 12�1a 2 4 14
A
In Exercises 1 and 2, verify each statement directly, without
using the techniques developed in this section.

1. (a) (a � b)2 � a2 � 2ab � b2

(b) (a � b)3 � a3 � 3a2b � 3ab2 � b3

Hint: (a � b)3 � (a � b)(a � b)2

2. (a) (a � b)4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4

Hint: Use the result in Exercise 1(b) and the fact that
(a � b)4 � (a � b)(a � b)3.

(b) (a � b)5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

In Exercises 3–12, evaluate or simplify each expression.

3. 5! 4. (a) 3! � 2! 5.
(b) (3 � 2)!

6. 7. (a) 8. (a)

(b) (b)

9. 10.

11. 12. (3!)! � (3!)2

In Exercises 13–38, carry out the indicated expansions.

13. (a � b)9 14. (a � b)9 15. (2A � B)3

16. (1 � 2x)6 17. (1 � 2x)6 18. (3x2 � y)5

19. 20. 21. (x2 � y2)5

22. (5A � B2)3 23. [1 � (1�x)]6 24. (3x � y2)4

25. (x�2 � y�3)3 26. (1 � z2)7 27. (ab2 � c)7

28. [x � (1�x)]8 29. 30.
31. 32. 33.
34. 35. �
36. (x � y � 1)4

Suggestion: Rewrite the expression as [(x � y) � 1]4.
37. (x2 � 2x � 1)5

Suggestion: Rewrite the expression as [x2 � (2x � 1)]5.
38. [x2 � 2x � (1�x)]6

39. Find the 15th term in the expansion of (a � b)16.
40. Find the third term in the expansion of (a � b)30.
41. Find the 100th term in the expansion of (1 � x)100.
42. Find the 23rd term in the expansion of [x � (1�x2)]25.
43. Find the coefficient of the term containing a4 in the 

expansion of 
44. Find the coefficient of the term containing a4 in the 

expansion of (3a � 5x)12.
45. Find the coefficient of the term containing y8 in the 

expansion of [(x�2) � 4y]9.
46. Find the coefficient of the term containing x6 in the 

expansion of [x2 � (1�x)]12.
47. Find the coefficient of the term containing x3 in the 

expansion of .11 � 1x 2 8

11a � 1x 2 10.

1
3 4 2 31213 21 12 � 2a 2 6

112 � 13 2 511 � 15 2 4112 � 1 2 3
14A � 1

2 2 51x � 12 2 8

11x � 1y 2 411x � 1y 2 4

a6
4
b � a6

3
b � a 7

4
b

n[(n � 2)!]
(n � 1)!

(n � 2)!
n!

a7
0
ba5

4
b

a7
7
ba5

3
b20!

18!

a7
3
b a3

2
b

EXERCISE SET 14.2



Students of calculus do not always
understand that infinite series are
primarily tools for the study of functions.
—George F. Simmons in Calculus with
Analytic Geometry (New York:
McGraw-Hill, 1985)
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14.3 INTRODUCTION TO SEQUENCES AND SERIES
This section and the next two sections in this chapter deal with numerical sequences.
We will begin with a somewhat informal definition of this concept. Then, after look-
ing at some examples and terminology, we’ll point out how the function concept is
involved in defining a sequence. A numerical sequence is an ordered list of num-
bers. Here are four examples:

Example A: 1, 10 Example C: 1, 
Example B: 2, 4, 6, 8, . . . Example D: 1, 1, 1, 1, . . .

The individual entries in a numerical sequence are called the terms of the sequence.
In this chapter the terms in each sequence will always be real numbers, so for conve-
nience we will drop the adjective “numerical” and refer simply to sequences. (It is
worth pointing out, however, that in more advanced courses, sequences are studied
in which the individual terms are functions.) Any sequence that has only a finite num-
ber of terms is called a finite sequence. Thus the sequence in Example A is a finite
sequence. On the other hand, Examples B, C, and D are examples of what we call
infinite sequences; each contains infinitely many terms. As Example D indicates, it
is not necessary that all the terms in a sequence be distinct. In this chapter, all the
sequences we discuss will be infinite sequences.

In Examples B, C, and D the three dots are read “and so on.” In using this no-
tation, we are assuming that it is clear what the subsequent terms of the sequence
are. Toward this end, we often specify a formula for the nth term in a sequence.
Example B in this case would appear this way:

A letter with subscripts is often used to denote the various terms in a sequence. For
instance, if we denote the sequence in Example B by a1, a2, a3, . . . , then we have
a1 � 2, a2 � 4, a3 � 6, and, in general, an � 2n. Of course, there is nothing special
about the letter a in this context; any other letter would do just as well.

2, 4, 6, 8, . . . , 2n, . . .

1
2, 

1
4, 

1
8, . . .12,

EXAMPLE 1 Computing Terms in a Sequence

Consider the sequence a1, a2, a3, . . . , in which the nth term an is given by

Compute the first three terms of the sequence, as well as the 1000th term.

an �
n

n � 1

SOLUTION To obtain the first term, we replace n by 1 in the given formula. This yields

The other terms are similarly obtained. We have

 a1000 �
1000

1000 � 1
�

1000

1001

 a3 �
3

3 � 1
�

3

4

 a2 �
2

2 � 1
�

2

3

a1 �
1

1 � 1
�

1

2



A word about notation: In Example 1 we denoted the sequence by a1, a2, a3, . . . .
In this case the subscripts begin with 1 and run through the natural numbers. The next
example shows a case in which the subscripts start with 0 rather than 1. (There is no
new concept here; as we’ve said, it’s just a matter of notation.)

1000 CHAPTER 14 Additional Topics in Algebra

EXAMPLE 2 Computing a Sum of Terms in a Sequence

Consider the sequence b0, b1, b2, . . . , in which the general term is given by

Compute the sum of the first three terms of this sequence.

bn � (�10)n  for n � 0

SOLUTION We are asked to compute the sum b0 � b1 � b2. Using the given formula for bn,
we have

Therefore b0 � b1 � b2 � 1 � (�10) � 100 � 91.

In Examples 1 and 2 we were given a formula for the general term in each se-
quence. The next example shows a different way of specifying a sequence: Each term
after the first (or after the first several) is defined in terms of preceding terms. This is
an example of a recursive definition. Recursive definitions are particularly useful in
computer programming.

 b2 � (�10)2 � 100
 b1 � (�10)1 � �10
 b0 � (�10)0 � 1

EXAMPLE 3 Computing Terms in a Sequence That Is Defined Recursively

Compute the first three terms of the sequence b1, b2, b3, . . . , which is defined recur-
sively by

 bn � 2(bn�1 � 1)  for n � 2
 b1 � 4

SOLUTION We are given the first term: b1 � 4. To find b2, we replace n by 2 in the formula
bn � 2(bn�1 � 1) to obtain

Thus b2 � 6. Next we use this value of b2 in the formula bn � 2(bn�1 � 1) to obtain
b3. Replacing n by 3 in this formula yields

We have now found the first three terms of the sequence: b1 � 4, b2 � 6, and
b3 � 10.

If you think about the central idea behind the concept of a sequence, you can see
that a function is involved: For each input n, we have an output an. As the previous
examples indicated, the inputs n may be the natural numbers 1, 2, 3, . . . , or they may
be the nonnegative integers 0, 1, 2, 3, . . . . For these reasons the formal definition of
a sequence is stated as follows.

b3 � 2(b2 � 1) � 2(6 � 1) � 10

b2 � 2(b1 � 1) � 2(4 � 1) � 6
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Definition Sequence

A sequence is a function whose domain is either the set of natural numbers or the set
of nonnegative integers.

If we denote the function by f for the moment, then f(1) denotes what we have been call-
ing a1. Similarly, f(2) � a2, f(3) � a3, and, in general, f(n) � an. So the sequence nota-
tion with subscripts is just another kind of function notation. Furthermore, since a
sequence is a function, we can draw a graph, as indicated in the next example.

EXAMPLE 4 Graphing a Sequence

Consider the sequence defined by

Graph this sequence for n � 0, 1, 2, and 3.

xn �
1

2n  for n � 0

SOLUTION First we compute the required values of xn, as shown in Table 1. Then, locating the
inputs n on the horizontal axis and the outputs xn on the vertical axis, we obtain the
graph shown in Figure 1.

xn

n
1 2 3

1/8

1/4

1/2

1

Figure 1
Graph of the sequence for
n � 0, 1, 2, and 3.

xn �
1

2n

TABLE 1

n 0 1 2 3
xn 1 1�2 1�4 1�8

EXAMPLE 5 Using a Recursive Sequence to Model Population Growth

Suppose that the following recursive sequence is a model for the size Pt of a popula-
tion of rabbits on an island at the end of t years.

 Pt � Pt�1 � 0.0003Pt�1(3000 � Pt�1)  for t � 1
 P0 � 16

In part (b) of the next example we use a graphing utility to compute the terms of
a recursive sequence and to obtain the graph. For details on using a graphing utility
in this fashion, consult the user’s manual for the graphing utility.



(a) Find P0, P1, . . . , P5. After all the computations are complete, round each answer
to the nearest integer (because the projected numbers of rabbits must be inte-
gers). Then use the rounded values to sketch the graph of the population se-
quence for t � 0, 1, . . . , 5. On the basis of the graph, give a general description
of the population trend over this period.

(b) Use a graphing utility to graph the population sequence through the end of the
15th year and describe the population trend.
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SOLUTION (a) We are given that P0 � 16. This is the initial population. For P1, we substitute
t � 1 in the equation

(1)

This yields

Similarly, for P2, we substitute t � 2 in equation (1) to obtain

The remaining calculations are carried out in the same way. The results are dis-
played in Table 2. The third row of the table shows the values rounded to the
nearest integers. We interpret these rounded values as the population values
predicted by the given recursive model. In Figure 2 we’ve drawn a scatter 
plot showing the size of the rabbit population at the end of years t � 0 
through t � 5.

 � 57.33823106 as displayed on calculator
 � 30.3232 � 0.0003(30.3232)(3000 � 30.3232)

 P2 � P1 � 0.0003P1(3000 � P1)

 � 30.3232 using a calculator
 � 16 � 0.0003(16)(3000 � 16)   using P0 � 16

 P1 � P0 � 0.0003P0(3000 � P0)

Pt � Pt�1 � 0.0003Pt�1(3000 � Pt�1)

100

200

300

400

1 2 3 4 5

Pt

t

(1, 30) (2,57)

(3, 108)

(4,202)

(5, 371)

(0, 16) 0

TABLE 2

t 0 1 2 3 4 5

Pt 16 30.3232 57.33823106 107.9563372 201.6206695 370.8840037

Pt (to nearest 
integer) 16 30 57 108 202 371

Figure 2
The size Pt of the rabbit population
at the end of t years, t � 0, 1, . . . , 5.



In Figure 2, it appears that the size of the population increases slowly at first and
then faster and faster. The picture suggests exponential growth; however, as you’ll
see in part (b), that model is inappropriate in the long run.

(b) Starting with the (unrounded) value of P5 from Table 2 and applying equation (1),
we use a graphing utility to compute P6 through P15. After rounding as in part (a),
we obtain the population results displayed in Table 3. In Figure 3 we’ve used the
graphing utility to draw a scatter plot using the data from both Tables 2 and 3.

In Figure 2 we observed that the size of the population increases slowly at
first and then faster and faster (as in exponential growth). Now, with Figure 3, we
see that the rapid growth continues only until the end of the ninth (or perhaps
eighth) year. After the end of the ninth year, the size of the population begins to
level off and approach 3000. Indeed, as both Table 3 and Figure 3 indicated, the
size of the population reaches and remains at 3000 from t � 13 onward. The pop-
ulation size of 3000 is referred to as the equilibrium population. Actually, up to
this point, we have shown that the size of the population is 3000 only for t � 13,
14, and 15. We can use algebra to prove that once the population size reaches
3000, the recursive model projects that it will remain at that level for all subse-
quent years. In equation (1), assume that Pt�1 � 3000. We then have

This shows that if the size of the rabbit population is 3000 at the end of any year,
then it will again be 3000 at the end of the next year.

We will often be interested in the sum of certain terms of a sequence. Consider,
for example, the sequence

10, 20, 30, 40, . . .

 � 3000 � 0.0003(3000)(0) � 3000
 Pt � 3000 � 0.0003(3000)(3000 � 3000)
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TABLE 3 The Size of the Rabbit Population 
at the End of Years t � 6 through t � 15

t 6 7 8 9 10 11 12 13 14 15

Pt (to
nearest 
integer) 663 1128 1762 2416 2839 2976 2997 3000 3000 3000

3000

0

2000

1000

0 3 6 9 12 15

Graphical Perspective

Figure 3
The size Pt of the rabbit population at
the end of t years, t � 0, 1, . . . , 15.



in which the nth term is 10n. The sum of the first four terms in this sequence is

More generally, the sum of the first n terms in this sequence is indicated by

This expression is an example of a finite series, which simply means a sum of a finite
number of terms.

We can indicate the sum of the first n terms of the sequence a1, a2, a3, . . . by

Another way to indicate this sum uses what is called sigma notation, which we now
introduce. The capital Greek letter sigma is written �. We define the notation

by the equation

For example, stands for the sum a1 � a2 � a3, the idea in this case being to 

replace the subscript k successively by 1, 2, and 3 and then add the results.

For a more concrete example, let’s evaluate We have

There is nothing special about the choice of the letter k in the expression For
instance, we could equally well write

The letter k below the sigma in the expression is called the index of summa-

tion. Similarly, the letter j appearing below the sigma in is the index of sum- 

mation in that case. As we have seen, the choice of the letter used for the index of
summation has no effect on the value of the indicated sum. For this reason the index
of summation is referred to as a dummy variable. The next two examples provide
further practice with sigma notation.

a
4

j�1
j2

a
4

k�1
k2

a
4

j�1
j2 � 12 � 22 � 32 � 42 � 30

a
4

k�1
k2.

 � 1 � 4 � 9 � 16 � 30

 a
4

k�1
k2 � 12 � 22 � 33 � 42

a
4

k�1
k2.

a
3

k�1
ak

a
n

k�1
ak � a1 � a2 � a3 � p � an

a
n

k�1
ak

a1 � a2 � a3 � p � an

10 � 20 � 30 � p � 10n

10 � 20 � 30 � 40 � 100
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EXAMPLE 6 Understanding Sigma Notation

Express each of the following sums without sigma notation.

(a) (b) (c) a
5

j�1
(aj�1 � aj)a

4

i�1
ixi�1

a
3

k�1
(3k � 2)2
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SOLUTION (a) The notation directs us to replace k successively by 1, 2, and 3 in

the expression (3k � 2)2 and then to add the results. We thus obtain

(b) The notation directs us to replace i successively by 1, 2, 3, and 4 in the

expression ixi�1 and then to add the results. We have

(c) To expand we replace j successively by 1, 2, 3, 4, and 5 in the

expression aj�1 � aj and then add. We obtain

Combining like terms, we have

Sums such as are known as collapsing or telescoping sums.a
5

j�1
(aj�1 � aj)

a
5

j�1
(aj�1 � aj) � a6 � a1

 � a2 � a1 � a3 � a2 � a4 � a3 � a5 � a4 � a6 � a5

 a
5

j�1
(aj�1 � aj) � (a2 � a1) � (a3 � a2) � (a4 � a3) � (a5 � a4) � (a6 � a5)

a
5

j�1
(aj�1 � aj),

 � 1 � 2x � 3x2 � 4x3

 a
4

i�1
ixi�1 � 1x0 � 2x1 � 3x2 � 4x3

a
4

i�1
ixi�1

a
3

k�1
(3k � 2)2 � 12 � 42 � 72 � 66

a
3

k�1
(3k � 2)2

EXAMPLE 7 Using Sigma Notation

Use sigma notation to rewrite each sum.

(a) (b)
x

2!
�

x2

3!
�

x3

4!
� p �

xn

(n � 1)!
x

1!
�

x2

2!
�

x3

3!
� p �

x12

12!

SOLUTION (a) Since the exponents on x run from 1 to 12, we choose a dummy variable, say k,
running from 1 to 12. Also, we notice that if xk is the numerator of a given term
in the sum, then k! is the corresponding denominator. Consequently, the sum can
be written

(b) Since the exponents on x run from 1 to n, we choose a dummy variable, say k,
running from 1 to n. (Note that both of the letters n and x would be inappropriate

x

1!
�

x2

2!
�

x3

3!
� p �

x12

12!
� a

12

k�1

xk

k!



here as dummy variables.) Also, we notice that if the numerator of a given term
in the sum is xk, then the corresponding denominator is (k � 1)!. Thus the given
sum can be written

x

2!
�

x2

3!
�

x3

4!
� p �

xn

(n � 1)!
� a

n

k�1

xk

(k � 1)!
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In Exercises 33–38, find the sum of the first five terms of the 
sequence. (In Exercises 33–37, assume that the sequences are
defined for n � 1.)

33. an � 2n 34. bn � 2�n

35. an � n2 � n 36. bn � (n � 1)!
37. an � (�1)n�n!

38. a1 � 1; an � � n � 2

39. Find the sum of the first five terms of the sequence that is
defined recursively by a1 � 1; a2 � 2; an �
n � 3.

40. Find the sum of the first six terms of the sequence defined
recursively by a1 � 1; a2 � 2; an�1 � anan�1, n � 2.

In Exercises 41–52, express each of the sums without using
sigma notation. Simplify your answers where possible.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

In Exercises 53–62, rewrite the sums using sigma notation.

53. 5 � 52 � 53 � 54 54. 5 � 52 � 53 � p � 5n

55. x � x2 � x3 � x4 � x5 � x6

56. x � 2x2 � 3x3 � 4x4 � 5x5 � 6x6

57. 58.
59. 2 � 22 � 23 � 24 � 25

60.

61. 1 � 2 � 3 � 4 � 5
62. 1

2 � 1
4 � 1

8 � 1
16 � 1

32 � 1
64 � 1

128

a10
3
b � a10

4
b � a10

5
b � p � a10

10
b

1
1 � 1

2 � 1
3 � p � 1

n
1
1 � 1

2 � 1
3 � p � 1

12

a
5

j�1
(xj�1 � xj)a

6

j�1
a 1

j
�

1

j � 1
b

a
5

j�2
log10  ja

9

j�1
log10 a j

j � 1
b

a
4

n�0
3n

a
4

n�1

1
n

a
3

n�1
(n � 1)xn�2

a
3

n�1
xn

a
6

k�2
(1 � 2k)a

5

k�4
k2

a
5

k�1
ka

3

k�1
(k � 1)

a2
n�1 � a2

n�2,

1

n � 1
,

1

n � 1

A
In Exercises 1–14, compute the first four terms in each se-
quence. For Exercises 1–10, assume that each sequence is
defined for n � 1; in Exercises 11–14, assume that each 
sequence is defined for n � 0.

1. an � n�(n � 1) 2. an � 1�n2

3. bn � (�1)n 4. bn � (n � 1)2

5. cn � 2�n 6. cn � (�1)n(2n)
7. xn � 3n 8. xn � (n � 1)n�1

9. yn � [1 � (1�n)]n 10. yn � [(�1)n]
11. an � (n � 1)�(n � 1) 12. an � (�1)n�(n � 2)
13. bn � (�2)n�1�(n � 1)2 14. bn � (n � 2)�n

In Exercises 15–22, the sequences are defined recursively.
Compute the first five terms in each sequence.

15. a1 � 1; an � (1 � an�1)2, n � 2

16. a1 � 2; an � n � 2
17. a1 � 2; a2 � 2; an � an�1an�2, n � 3
18. F1 � 1; F2 � 1; Fn � Fn�1 � Fn�2, n � 3
19. a1 � 1; an�1 � nan, n � 1
20. a1 � 1; a2 � 2; an � an�1�an�2, n � 3
21. a1 � 0; an � n � 2
22. a1 � 0; a2 � 1; an � (an�1 � an�2)�2, n � 3

In Exercises 23–32, sketch a graph showing the first five terms
of the sequence. (A graphing utility is optional.)

23. an � � 1, n � 0

24. bn � 16 � n2, n � 0
25. cn � 5�n, n � 1
26. dn � (n � 1)!, n � 1
27. a1 � 1; an � (an�1)2 � an�1, n � 2
28. a0 � 3; an � (an�1 � 1)�(an�1 � 2), n � 1
29. b0 � 2; bn � (bn�1)2 � 2bn�1 � 1, n � 1
30. b1 � 0; bn � bn�1 � n � 6, n � 2

31. A0 � 0; An � n � 1

32. B1 � 1; Bn � n � 2
2Bn�1 � 2

�Bn�1
,

An�1 � 3

An�1 � 1
,

n

2

2an�1,

2a2
n�1 � 1,

1n
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Does the population seem to be approaching an equi-
librium level?

(b) Using a graphing utility, compute the sizes of the
population in part (a) through the end of the year 
t � 20, and draw the corresponding scatter plot.
Note that the population seems to be approaching an
equilibrium level of 1609 (or 1610).

(c) Determine the equilibrium population algebraically
by solving the following equation for Pt�1. For the
final answer, use a calculator and round to the nearest
integer.

Hint: Divide both sides of the equation by Pt�1, and
then use the techniques of Chapter 5.

66. (The Ricker model continued) Suppose that the initial
size of a population is P0 � 300 and that the size of the
population at the end of year t is given by

(a) Use a graphing utility to compute the population sizes
through the end of year t � 5. (As in Example 5, round
the final answers to the nearest integers.) Then use the
graphing utility to draw the population scatter plot for
t � 0, 1, . . . , 5. Give a general description (in com-
plete sentences) of how the size of the population
changes over this period.

(b) Use a graphing utility to compute the population sizes
through the end of year t � 20, and draw the scatter
plot. To help you see the pattern, use the option on
your graphing utility that connects adjacent dots in a
scatter plot with line segments. Describe the population
trend that emerges over the period t � 15 to t � 20.

(c) For a clearer view of the long-term population behav-
ior, use a graphing utility to compute the population
sizes for the period t � 25 to t � 35, and draw the scat-
ter plot. As in part (b), use the option on your graphing
utility that connects adjacent dots with line segments.
Summarize (in complete sentences) what you observe.

Exercises 67–76 involve the Fibonacci sequence, which is
defined recursively as follows:

This sequence was first studied by the Italian mathematician
and merchant Leonardo of Pisa (ca. 1170–1240), better known
as Fibonacci (“son of Bonaccio”).

67. (a) Complete the following table for the first ten terms of
the Fibonacci sequence.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 1

F1 � 1;  F2 � 1;  Fn�2 � Fn � Fn�1 for n � 1

Pt � 10Pt�1e
�Pt�1�1000  (t � 1)

Pt�1 � 5Pt�1e
�Pt�1�1000

B
63. A sequence is defined recursively as follows: s1 � 0.7 and

sn � (sn�1)2 for n � 2.
(a) Compute the first six terms of this sequence. (Use 

a calculator; for the answers, round to five decimal
places.) What do you observe about the answers?

(b) Use a calculator to compute s10. (Report the answer 
as shown on your calculator screen.)

(c) In view of your work in parts (a) and (b), what num-
ber do you think would be a very close approximation
to s100?

64. A sequence is defined recursively as follows:

(a) Complete the following table:

n 1 2 3 4

xn

(b) On the basis of the results in the table, make a guess
about the value of x5, then compute x5 to see if your
guess is correct.

(c) The sequence given at the start of this exercise is
defined recursively. Make a conjecture about a simpler
way to define this sequence, then use mathematical
induction to prove that your conjecture is correct.

65. An important model that is used in population biology and
ecology is the Ricker model. The Canadian biologist
William E. Ricker introduced this model in his paper Stock
and Recruitment (Journal of the Fisheries Research Board
of Canada, 11 (1954) 559–623). For information on Ricker
himself, see the Web page

http://www.science.ca/scientists/scientistprofile.php?pID=17

The general form of the Ricker model that we will use here
is defined by a recursive sequence of the form

are positive constants

(a) Suppose that the initial size of a population is
P0 � 300 and that the size of the population at the end
of year t is given by

Use a graphing utility to compute the population sizes
through the end of year t � 5. (As in Example 5, round
the final answers to the nearest integers.) Then use the
graphing utility to draw the population scatter plot for
t � 0, 1, . . . , 5. Describe in complete sentences how
the size of the population changes over this period.

Pt � 5Pt�1e
�Pt�1�1000  (t � 1)

 Pt � rPt�1e
�kPt�1  for t � 1, and where r and k 

 P0 � initial population at time t � 0

x1 � 1  and  xn �
xn�1

1 � xn�1
 for n � 1
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74. (This result will be used in Exercise 75.) Suppose that x is a
real number such that x2 � x � 1. Use mathematical induc-
tion to prove that

Hint: You can carry out the induction proof without solv-
ing the given quadratic equation.

75. In this exercise we use the result in Exercise 74 to derive
the following formula for the nth Fibonacci number:

(1)

The clever method used here was discovered by
Erwin Just; it appeared in Mathematics Magazine,
vol. 44 (1971), p. 199.

Let a and b denote the roots of the quadratic equation
x2 � x � 1. Then, according to Exercise 74, for n � 2 we
have

(2)

and

(3)

(a) Subtract equation (3) from equation (2) to show that

(4)

(b) Use the quadratic formula to show that the roots of the
equation x2 � x � 1 are given by a � 11 � and
b � 11 �

(c) In equation (4), substitute for a and b using the val-
ues obtained in part (b). Show that this leads to
equation (1).

(d) The work in parts (a) through (c) shows that equa-
tion (1) holds for n � 2. Now complete the derivation
by checking that equation (1) also holds for n � 1.

76. This exercise requires a knowledge of matrix multiplica-
tion. Use mathematical induction to show that

a1 1

1 0
b n

� aFn�1 Fn

Fn Fn�1
b  for n � 2

15 2�2.
15 2�2

Fn �
an � bn

a � b
  for n � 2

bn � Fnb � Fn�1

an � Fna � Fn�1

Fn �
11 � 15 2 n � 11 � 15 2 n

2n15

xn � Fnx � Fn�1  for n � 2

(b) Given that F20 � 6765 and F21 � 10946, compute F22

and F19.
(c) Given that F29 � 514229 and F31 � 1346269, com-

pute F30.
68. (a) Use the table in Exercise 67(a) to verify that 

F8 � F9 � F10 � 2(F8 � F9).
(b) Show that F100 � F101 � F102 � 2(F100 � F101).
(c) Show that Fn � Fn�1 � Fn�2 � 2(Fn � Fn�1) for all

natural numbers n � 3. Hint: Mathematical induc-
tion is not needed.

(d) Does the identity in part (c) hold for either of the
values n � 1 or n � 2?

In Exercises 69–71: (a) Verify that the given equation holds for
n � 1, n � 2, and n � 3; and (b) use mathematical induction to
show that the equation holds for all natural numbers.

69. F1 � F2 � F3 � p � Fn � Fn�2 � 1
70.
71. Hint for part (b): Add Fk�1Fk�2

to both sides of the equation in the induction hypothesis.
Then factor Fk�1 from the left-hand side and factor Fk�2

from the first two terms on the right-hand side.
72. Use mathematical induction to prove that Fn � n for all

natural numbers n � 5.
73. We’ve seen that the Fibonacci sequence is defined recur-

sively; each term after the second is the sum of the previ-
ous two terms. There is, in fact, an explicit formula for the
nth term of the Fibonacci sequence:

This formula was discovered by the French-English mathe-
matician Abraham deMoivre more than 500 years after
Fibonacci first introduced the sequence in 1202 in his book
Liber Abaci. (For a proof of this formula, see Exercises 74
and 75.)
(a) Using algebra (and not your calculator), check that this

formula gives the right answers for F1 and F2.
(b) Use this formula and your calculator to computer F24

and F25.
(c) Use the formula and your calculator to compute F26.

Then check your answer by using the results in 
part (b).

Fn �
11 � 15 2 n � 11 � 15 2 n

2n15

F2
n�1 � FnFn�2 � (�1)n

F2
1 � F2

2 � F2
3 � p � F2

n � FnFn�1
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The Mini Project, Perspective and Alternative Solutions for Population Growth Models, at http://www.cengage.com/
math/cohen/precalc7e, further explores the use of recursive sequences to model population growth.

http://www.cengage.com/math/cohen/precalc7e
http://www.cengage.com/math/cohen/precalc7e
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14.4 ARITHMETIC SEQUENCES AND SERIES
One of the most natural ways to generate a sequence is to begin with a fixed number
a and then repeatedly add a fixed constant d. This yields the sequence

(1)

Such a sequence is called an arithmetic sequence or arithmetic progression.
Notice that the difference between any two consecutive terms is the constant d. We
call d the common difference. Here are several examples of arithmetic sequences:

Example A: 1, 2, 3, . . .
Example B: 3, 7, 11, 15, . . .
Example C: 10, 5, 0, �5, . . .

In Example A the first term is a � 1, and the common difference is d � 1. For
Example B we have a � 3. The value of d in this example is found by subtracting
any term from the next term; thus d � 4. Finally, in Example C we have a � 10
and d � �5. Notice that when the common difference is negative, the terms of the
sequence decrease.

There is a simple formula for the nth term in an arithmetic sequence. In arith-
metic sequence (1), notice that

Following this pattern, it appears that the formula for an should be given by 
an � a � (n � 1)d. Indeed, this is the correct formula, and Exercise 32 at the end of
this section asks you to verify it using mathematical induction.

The nth term of an arithmetic sequence a, a � d, a � 2d, . . . is given by

an � a � (n � 1 )d

The nth Term of an Arithmetic Sequence

 a4 � a � 3d
 a3 � a � 2d
 a2 � a � 1d
 a1 � a � 0d

a, a � d, a � 2d, a � 3d, . . .

EXAMPLE 1 Finding a Term in an Arithmetic Sequence

Determine the 100th term of the arithmetic sequence

7, 10, 13, 16, . . .

SOLUTION The first term is a � 7, and the common difference is d � 3. Substituting these values
in the formula an � a � (n � 1)d yields

To find the 100th term, we replace n by 100 in this last equation to obtain

as required

a100 � 3(100) � 4 � 304

an � 7 � (n � 1)3 � 3n � 4
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EXAMPLE 2 Determining an Arithmetic Sequence from Given Data

Determine the arithmetic sequence in which the second term is �2 and the eighth
term is 40.

SOLUTION We are given that the second term is �2. Using this information in the formula
an � a � (n � 1)d, we have

This gives us one equation in two unknowns. We are also given that the eighth term
is 40. Therefore

We now have a system of two equations in two unknowns:

Subtracting the first equation from the second gives us

To find a, we replace d by 7 in the first equation of the system. This yields

We have now determined the sequence, since we know that the first term is �9
and the common difference is 7. So the sequence is given by ,
for . The first four terms of the sequence are �9, �2, 5, and 12.

Next we would like to derive a formula for the sum of the first n terms of an arith-
metic sequence. Such a sum is referred to as an arithmetic series. If we use Sn to
denote the required sum, we have

(2)

Of course, we must obtain the same sum if we add the terms from right to left rather
than left to right. That is, we must have

(3)

Let’s now add equations (2) and (3). Adding the left-hand sides is easy; we obtain
2Sn. Now we add the corresponding terms on the right-hand sides. For the first term
we have

c
first term first term

in equation (2) in equation (3)

Next we add the second terms:

c
second term second term

in equation (2) in equation (3)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

(a � d) �  [a � (n � 2)d] � 2a � d � (n � 2)d � 2a � (n � 1)d

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

a  �   [a � (n � 1)d] � 2a � (n � 1)d

Sn � [a � (n � 1)d] � [a � (n � 2)d] � p � (a � d) � a

Sn � a � (a � d) � p � [a � (n � 2)d] � [a � (n � 1)d]

n � 1
an � �9 � 7(n � 1)

�2 � a � 7  or  a � �9

42 � 6d  or  d � 7

e�2 � a �  d

40 � a � 7d

40 � a � (8 � 1)d � a � 7d

�2 � a � (2 � 1)d � a � d



Notice that the sum of the second terms is again 2a � (n � 1)d, the same quantity we
arrived at with the first terms. As you can check, this pattern continues all the way
through to the last terms. For instance,

c
last term last term

in equation (2) in equation (3)

We conclude from these observations that by adding the right-hand sides of equa-
tions (2) and (3), the quantity 2a � (n � 1)d is added a total of n times. Therefore

This gives us the desired formula for the sum of the first n terms in an arithmetic se-
quence. There is an alternative form of this formula, which now follows rather quickly:

This is consistent with our observation above in adding equations (2) and (3) term by
term, namely, that 2Sn equals n times the sum of each “pair” of terms, for example,
the first and last terms. So

This last equation is easy to remember. It says that the sum of an arithmetic series is
obtained by averaging the first and last terms and then multiplying this average by n,
the number of terms. For reference we summarize both formulas in the following box.

 Sn � na a � an

2
b

 Sn �
n
2

 32a � (n � 1 )d 4
Formulas for the Sum of an Arithmetic Series

2Sn � n(a � an)  or  Sn � n a a � an

2
b

 �
n

2
 (a � an) � n a a � an

2
b

 �
n

2
 5a � [a � (n � 1)d]6

 Sn �
n

2
 [2a � (n � 1)d]

 Sn �
n

2
 [2a � (n � 1)d]

 2Sn � n[2a � (n � 1)d]

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

[a � (n � 1)d]  �   a  � 2a � (n � 1)d
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EXAMPLE 3 Finding a Sum of Terms in an Arithmetic Sequence

Find the sum of the first 30 terms of the arithmetic sequence 2, 6, 10, 14, . . . .

SOLUTION We have a � 2, d � 4, and n � 30. Substituting these values in the formula 
Sn � (n�2)[2a � (n � 1)d] then yields

 � 1800
 � 15[4 � 29(4)]

 S30 �
30

2
 [2(2) � (30 � 1)4]
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EXAMPLE 4 Finding a Sum of Terms and the Common Difference 
of an Arithmetic Sequence

In a certain arithmetic sequence, the first term is 6, and the 40th term is 71. Find the
sum of the first 40 terms and also the common difference for the sequence.

SOLUTION We have a � 6 and a40 � 71. Using these values in the formula Sn � n(a � an)�2
yields

The sum of the first 40 terms is thus 1540. The value of d can now be found by using
the formula an � a � (n � 1)d. We have a40 � a � (40 � 1)d, and therefore

The required value of d is 5�3.

 d �
65

39
�

5

3

 39d � 65
 71 � 6 � 39d

S40 �
40

2
 (6 � 71) � 20(77) � 1540

EXAMPLE 5 An Arithmetic Series Defined Using Sigma Notation

Show that (3k � 2) represents an arithmetic series, and compute the sum.a
50

k�1

SOLUTION There are two different ways to see that (3k � 2) is an arithmetic series. One way

is simply to write out the first few terms and look at the pattern. We have

From this it is clear that we are indeed summing the terms in an arithmetic sequence
in which d � 3 and a � 1.

A more formal way to show that (3k � 2) represents an arithmetic series is to 

prove that the difference between successive terms in the indicated sum is a constant.
Now, the form of a typical term in this sum is 3k � 2. Thus the form of the next term
must be [3(k � 1) � 2]. The difference between these terms is then

The difference therefore is constant, as we wished to show.

To evaluate (3k � 2), we can use either of our two formulas for the sum of an 

arithmetic series. Using the formula Sn � (n�2)[2a � (n � 1)d], we obtain

S50 �
50

2
 [2(1) � 49(3)] � 25(149) � 3725

a
50

k�1

[3(k � 1) � 2] � (3k � 2) � 3k � 3 � 2 � 3k � 2 � 3

a
50

k�1

a
50

k�1
(3k � 2) � 1 � 4 � 7 � 10 � p � 148

a
50

k�1



Thus the required sum is 3725. You should check for yourself that the same value is
obtained by using the formula Sn � n(a � an)�2.

Note: There is another important way to compute this sum. See the project fol-
lowing Exercise Set 14.4.
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22. The fifth and 50th terms of an arithmetic sequence are 3
and 30, respectively. Find the sum of the first 10 terms.

23. The eighth term in an arithmetic sequence is 5, and the sum
of the first 10 terms is 20. Find the common difference and
the first term of the sequence.

In Exercises 24–26, find each sum.

24.

25. (4k � 3) 26. (2n � 1)

27. The sum of three consecutive terms in an arithmetic
sequence is 30, and their product is 360. Find the three
terms. Suggestion: Let x denote the middle term and d
the common difference.

28. The sum of three consecutive terms in an arithmetic 
sequence is 21, and the sum of their squares is 197. Find
the three terms.

29. The sum of three consecutive terms in an arithmetic 
sequence is 6, and the sum of their cubes is 132. Find 
the three terms.

30. In a certain arithmetic sequence, a � �4 and d � 6. If
Sn � 570, find n.

31. Let a1 � 1� 1 � , a2 � �1, and a3 � 1� 1 � .
(a) Show that a2 � a1 � a3 � a2.
(b) Find the sum of the first six terms in the arithmetic

sequence

32. Using mathematical induction, prove that the nth term of
the sequence a, a � d, a � 2d, . . . is given by

B
33. Let b denote a positive constant. Find the sum of the first

n terms in the sequence

34. The sum of the first n terms in a certain arithmetic se-
quence is given by Sn � 3n2 � n. Show that the rth term is
given by ar � 6r � 4.

1

1 � 1b
  , 

1

1 � b
  , 

1

1 � 1b
  , . . .

an � a � (n � 1)d

1

1 � 12
  , �1, 

1

1 � 12
  , . . .

12 2112 21

a
100

n�5
a
20

k�1

a
10

i�1
 (2i � 1) � 1 � 3 � 5 � p � 19

A
1. Find the common difference d for each of the following

arithmetic sequences.
(a) 1, 3, 5, 7, . . .
(b) 10, 6, 2, �2, . . .
(c) 2�3, 1, 4�3, 5�3, . . .
(d) 1, 1 � 1 � 2 1 � 3 . . .

2. Which of the following are arithmetic sequences?
(a) 2, 4, 8, 16, . . . (d) �1, �1, �1, �1, . . .
(b) 5, 9, 13, 17, . . . (e) �1, 1, �1, 1, . . .
(c) 3, 11�5, 7�5, 3�5, . . .

In Exercises 3–8, find the indicated term in each sequence.

3. 10, 21, 32, 43, . . . ; a12 4. 7, 2, �3, �8, . . . ; a20

5. 6, 11, 16, 21, . . . ; a100 6. 2�5, 4�5, 6�5, 8�5, . . . ; a30

7. �1, 0, 1, 2, . . . ; a1000 8. 42, 1, �40, �81, . . . ; a15

9. The fourth term in an arithmetic sequence is �6, and the
10th term is 5. Find the common difference and the first
term.

10. The fifth term in an arithmetic sequence is 1�2, and the
20th term is 7�8. Find the first three terms of the sequence.

11. The 60th term in an arithmetic sequence is 105, and the
common difference is 5. Find the first term.

12. Find the common difference in an arithmetic sequence in
which a10 � a20 � 70.

13. Find the common difference in an arithmetic sequence in
which a15 � a7 � �1.

14. Find the sum of the first 16 terms in the sequence 
2, 11, 20, 29, . . . .

15. Find the sum of the first 1000 terms in the sequence 
1, 2, 3, 4, . . . .

16. Find the sum of the first 50 terms in an arithmetic series
that has first term �8 and 50th term 139.

17. Find the sum: 

18. Find the sum: 

19. Determine the first term of an arithmetic sequence in 
which the common difference is 5 and the sum of the first
38 terms is 3534.

20. The sum of the first 12 terms in an arithmetic sequence is
156. What is the sum of the first and 12th terms?

21. In a certain arithmetic sequence, the first term is 4, and the
16th term is �100. Find the sum of the first 16 terms and
also the common difference for the sequence.

1
e

�
3
e

�
5
e

� p �
21
e

.

p

3
�

2p

3
� p �

4p

3
� p �

13p

3
.

12,12,12,
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37. The lengths of the sides of a right triangle form three con-
secutive terms in an arithmetic sequence. Show that the
triangle is similar to the 3-4-5 right triangle.

38. Suppose that 1�a, 1�b, and 1�c are three consecutive terms
in an arithmetic sequence. Show that

(a) (b)

39. Suppose that a, b, and c are three positive numbers with
a � c � 2b. If 1�a, 1�b, and 1�c are consecutive terms in
an arithmetic sequence, show that

ln(a � c) � ln(a � 2b � c) � 2  ln(a � c)

b �
2ac

a � c

a

c
�

a � b

b � c

35. Let a1, a2, a3, . . . be an arithmetic sequence, and let Sk

denote the sum of the first k terms. If Sn�Sm � n2�m2, 
show that

36. If the common difference in an arithmetic sequence is
twice the first term, show that

Sn

Sm

�
n2

m2

an

am
�

2n � 1

2m � 1
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The Project, More on Sums, at http://www.cengage.com/math/cohen/precalc7e, describes some important 
techniques for simplifying sums.

14.5 GEOMETRIC SEQUENCES AND SERIES
A geometric sequence or geometric progression is a sequence of the form

As you can see, each term after the first in a geometric sequence is obtained by multi-
plying the previous term by r. The number r is called the common ratio because the
ratio of any term to the previous one is always r. For instance, the ratio of the fourth
term to the third is ar3�ar2 � r. Here are two examples of geometric sequences:

In the first example we have a � 1 and r � 1�2; in the second example we have
a � 10 and r � �10.

10, �100, 1000, �10,000, . . .

1, 
1

2
, 

1

4
, 

1

8
, . . .

a, ar, ar2, ar3, . . .  where a and r are nonzero constants

EXAMPLE 1 Finding a Term in a Geometric Sequence from Given Data

In a certain geometric sequence, the first term is 2, the third term is 3, and the com-
mon ratio is negative. Find the second term.

SOLUTION Let x denote the second term, so that the sequence begins

By definition the ratios 3�x and x�2 must be equal. Thus we have

Now, the second term must be negative, because the first term is positive and the
common ratio is negative. Thus the second term is x � �16.

 x � �16
 x2 � 6

 
3
x

�
x

2

2, x, 3, . . .

http://www.cengage.com/math/cohen/precalc7e


The formula for the nth term of a geometric sequence is easily deduced by con-
sidering Table 1. The table indicates that the exponent on r is 1 less than the value of
n in each case. On the basis of this observation it appears that the nth term must be
given by an � arn�1. Indeed, it can be shown by mathematical induction that this for-
mula does hold for all natural numbers n. (Exercise 30 at the end of this section asks
you to carry out the proof.) We summarize this result as follows:

The nth term of the geometric sequence, a, ar, ar2, . . . is given by

an � arn�1

nth Term of a Geometric Sequence

14.5 Geometric Sequences and Series 1015

TABLE 1

n an

1 ar0

2 ar1

3 ar2

4 ar3

oo

EXAMPLE 2 Finding a Term in a Given Geometric Sequence

Find the seventh term in the geometric sequence 2, 6, 18, . . . .

SOLUTION We can find the common ratio r by dividing the second term by the first. Thus r � 3.
Now, using a � 2, r � 3, and n � 7 in the formula an � arn�1, we have

The seventh term of the sequence is therefore 1458.

Suppose that we begin with a geometric sequence a, ar, ar2, . . . , in which r � 1.
If we add the first n terms and denote the sum by Sn, we have

(1)

This sum is called a finite geometric series. We would like to find a formula for Sn.
To do this, we multiply equation (1) by r to obtain

(2)

We now subtract equation (2) from equation (1). This yields (after combining like
terms)

This is the formula for the sum of a finite geometric series. We summarize this result
in the box that follows.

Let Sn denote the sum a � ar � ar2 � p � arn�1, and assume that r � 1. Then

Sn �
a(1 � rn )

1 � r

Formula for the Sum of a Geometric Series

 Sn �
a(1 � rn)

1 � r
  for r � 1

 Sn(1 � r) � a(1 � rn)
 Sn � rSn � a � arn

rSn � ar � ar 2 � ar 3 � p � arn�1 � arn

Sn � a � ar � ar2 � p � arn�2 � arn�1

a7 � 2(3)6 � 2(729) � 1458
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EXAMPLE 3 Computing the Sum of a Finite Geometric Series

Evaluate the sum 

1

21 �
1

22 �
1

23 � p �
1

210 �
1

2
�

1

2
a 1

2
b �

1

2
a 1

2
b 2

� p �
1

2
a 1

2
b 9

SOLUTION This is a finite geometric series with a � 1�2, r � 1�2, and n � 10. Using these
values in the formula for Sn yields

We would now like to give a meaning to certain expressions of the form

Such an expression is called an infinite geometric series. The three dots indicate
(intuitively at least) that the additions are to be carried out indefinitely, without end.
To see how to proceed here, let’s start by looking at some examples involving finite
geometric series. In particular, we’ll consider the series

for increasing values of n. The idea is to look for a pattern as n grows ever larger. Let

S1 � S2 � S3 � and, in general,

Then we can compute Sn for any given value of n by means of the formula for the
sum of a finite geometric series. From Table 2, which displays the results of these
calculations, it seems clear that as n grows larger and larger, the value of Sn grows
ever closer to 1. More precisely (but leaving the details for calculus), it can be
shown that the value of Sn can be made as close to 1 as we please, provided only that
n is sufficiently large. For this reason we say that the sum of the infinite geometric

series is 1. That is,

� 1

We can arrive at this last result another way. First we compute the sum of the

finite geometric series As you can check, the result is

Now, as n grows larger and larger, the value of (1�2)n gets closer and closer to zero.
Thus as n grows ever larger, the value of Sn will get closer and closer to 1 � 0, or 1.

Sn � 1 � a 1

2
b n

1

21 �
1

22 � p �
1

2n  .

1

21 �
1

22 �
1

23 � p

1

21 �
1

22 �
1

23 � p

Sn �
1

21 �
1

22 � p �
1

2n

1

21 �
1

22 �
1

23  ,
1

21 �
1

22  ,
1

2
 ,

1

21 �
1

22 �
1

23 � p �
1

2n

a � ar � ar2 � p

S10 �

1
2 31 � 1  12 2 10 4

1 � 1
2

�

1
2 31 � 1

1024 4
1
2

� 1 �
1

1024
�

1023

1024

TABLE 2

n Sn � �

1 0.5
2 0.75
5 0.96875

10 0.999023437 . . .
15 0.999969482 . . .
20 0.999999046 . . .
25 0.999999970 . . .

� � �
1
2n

1
2

�
1
22



Now let’s repeat our reasoning to obtain a formula for the sum of the infinite
geometric series

First we consider the finite geometric series

The sum Sn in this case is

We want to know how Sn behaves as n grows ever larger. This is where the assump-
tion r 	 1 is crucial. Just as (1�2)n approaches zero as n grows larger and larger, so
will rn approach zero as n grows larger and larger. Thus as n grows ever larger, the
sum Sn will more and more resemble

For this reason we say that the sum of the infinite geometric series is a�(1 � r). We
will make free use of this result in the subsequent examples. A more rigorous devel-
opment of infinite series properly belongs to calculus.

Suppose that Then the sum S of the infinite geometric series a � ar � ar2 � p
is given by

S �
a

1 � r

0 r 0 	 1.

Formula for the Sum of an Infinite Geometric Series

a(1 � 0)

1 � r
�

a

1 � r

00

Sn �
a(1 � rn)

1 � r

a � ar � ar2 � p � arn�1

a � ar � ar2 � p  where 0 r 0 	 1
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EXAMPLE 4 Computing the Sum of an Infinite Geometric Series

Find the sum of the infinite geometric series 1 �
2

3
�

4

9
� p

 .

SOLUTION In this case we have a � 1 and r � 2�3. Thus

The sum of the series is 3.

S �
a

1 � r
�

1

1 � 2
3

�
1
1
3

� 3

EXAMPLE 5 Expressing a Repeating Decimal as a Fraction

Find a fraction equivalent to the repeating decimal 0.235.

SOLUTION Let S � 0.2 Then we have

 �
2

10
�

35

1000
�

35

100,000
�

35

10,000,000
� p

 S � 0.2353535 . . .

35.



Now, the expression following 2�10 on the right-hand side of this last equation is an
infinite geometric series in which a � 35�1000 and r � 1�100. Thus

The given decimal is therefore equivalent to 233�990.

 �
2

10
�

35
1000

1 � 1
100

�
233

990

 S �
2

10
�

a

1 � r
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In Exercises 23–27, express each repeating decimal as a
fraction.

23. 0.555 . . . 24. 25.
26. 0.050505 . . . 27.

B
28. The lengths of the sides in a right triangle form three con-

secutive terms of a geometric sequence. Find the common
ratio of the sequence. (There are two distinct answers.)

29. The product of three consecutive terms in a geometric
sequence is �1000, and their sum is 15. Find the common
ratio. (There are two answers.) Suggestion: Denote the
terms by a�r, a, and ar.

30. Use mathematical induction to prove that the nth term of
the geometric sequence a, ar, ar2, . . . is arn�1.

31. Show that the sum of the following infinite geometric
series is 3�2:

32. Let A1 denote the area of an equilateral triangle, each 
side of which is one unit long. A second equilateral
triangle is formed by joining the midpoints of the sides
of the first triangle. Let A2 denote the area of this second
triangle. This process is then repeated to form a third
triangle with area A3, and so on. Find the sum of the areas:
A1 � A2 � A3 � p .

33. Let a1, a2, a3, . . . be a geometric sequence such that 
r � 1. Let S � a1 � a2 � a3 � p � an, and let 

T � Show that � a1an.

34. Suppose that a, b, and c are three consecutive terms in a 

geometric sequence. Show that and are 

three consecutive terms in an arithmetic sequence.
35. A ball is dropped from a height of 6 ft. Assuming that on

each bounce, the ball rebounds to one-third of its previous
height, find the total distance traveled by the ball.

1

c � b

1

a � b
, 

1

2b
,

S

T

1
a1

�
1
a2

� p �
1
an

.

13

13 � 1
�

13

13 � 3
� p

0.432
0.1230.47

A
1. Find the second term in a geometric sequence in which the

first term is 9, the third term is 4, and the common ratio is
positive.

2. Find the fifth term in a geometric sequence in which the
fourth term is 4, the sixth term is 6, and the common ratio
is negative.

3. The product of the first three terms in a geometric sequence
is 8000. If the first term is 4, find the second and third terms.

In Exercises 4–8, find the indicated term of the given geometric
sequence.

4. 9, 81, 729, . . . ; a7 5. �1, 1, �1, 1, . . . ; a100

6. 1�2, 1�4, 1�8, . . . ; a9 7. 2�3, 4�9, 8�27, . . . ; a8

8. 1, 2, . . . ; a6

9. Find the common ratio in a geometric sequence in which
the first term is 1 and the seventh term is 4096.

10. Find the first term in a geometric sequence in which the
common ratio is 4�3 and the tenth term is 16�9.

11. Find the sum of the first ten terms of the sequence 
7, 14, 28, . . . .

12. Find the sum of the first five terms of the sequence 
�1�2, 3�10, �9�50, . . . .

13. Find the sum: 1 � � 2 � p � 32.
14. Find the sum of the first 12 terms in the sequence 

�4, �2, �1, . . . .

In Exercises 15–17, evaluate each sum.

15. 16. 17.

In Exercises 18–22, determine the sum of each infinite geo-
metric series.

18. 19.

20. 21.

22. �1 �  
1

12
�

1

2
� p

1 �
1

1.01
�

1

(1.01)2 � p9

10
�

9

100
�

9

1000
� p

2

3
�

4

9
�

8

27
� p1

4
�

1

42 �
1

43 � p

a
6

k�2
a 1

10
b k

a
6

k�1
a 2

3
b k�1

a
6

k�1
a 3

2
b k

12

�12,
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14.6 AN INTRODUCTION TO LIMITS
A primary topic in the study of calculus is change of a function. In particular, how do
the range values of the function change as the domain values change in a specified
way. In our earlier work with functions, we have seen this situation many times. For
example, we studied end behavior or asymptotic behavior of a function in our dis-
cussion of polynomial, rational, exponential, logarithmic, and trigonometric func-
tions. A common theme of these discussions has been the idea of limiting behavior,
or simply limits.

Our first encounter with limiting behavior of a function was the end behavior of
f (x) � x2, discussed in Section 4.6. There we used algebra to show that f (x) � x2

becomes unbounded positive as x becomes unbounded positive. Later in this section
we’ll revisit this algebra, but for now we want to introduce a symbolic notation for
this result called limit notation. It looks like this:

(1)

It is read “the limit as x approaches infinity of x2 is infinity.”

The notation “lim” is an abbreviation of the word “limit,” and lim x2 indicates the
limiting behavior of the function f(x) � x2.

The infinity symbol, q, on the right-hand side of (1) indicates that f(x) � x2 can
be made to stay larger than any given positive number.

The symbol, x S q, below lim on the left-hand side of (1) is read “as x
approaches infinity.” It indicates that we are considering the limiting behavior of
the function as the domain variable x becomes unbounded positive.

Our next encounter with limiting behavior in Section 4.6 was the result that
f (x) � x2 becomes unbounded positive as x becomes unbounded negative. This can
be expressed in limit notation as

(2)

This is read “the limit as x approaches negative infinity of x2 is (plus) infinity.”
Similarly, other results developed in our earlier work on polynomials can also be

expressed in limit notation. For example,

and (3)

See Figure 1 for a graphical reminder of the limits in (1), (2), and (3). More
generally, we had that for any positive integer n,

(4)

if n is even (5)

and

if n is odd (6)lim
xS�q 

xn � �q

lim
xS�q 

xn � q

lim
xSq 

xn � q

lim
xS�q 

x3 � �qlim
xSq 

x3 � q

lim
xS�q 

x2 � q

lim
xSq 

x2 � q

3y x=

2y x=

y

x

(1, 1)

2lim
x

x
→∞

= ∞

3lim
x

x
→∞

= ∞
2lim

x
x

→ −∞
= ∞

3lim
x

x
→ −∞

= ∞

Figure 1



In limit notation, these results become

and (7)

and

and (8)

These generalize for positive integer n to

and (9)

In more geometric language, we say that the line y � c is a horizontal asymptote
for graph of y � f (x) if and only if

or

Geometrically, (9) becomes the statement that for positive integer n, the line y � 0 is
a horizontal asymptote for graph of y � f (x) � 1�xn.

In the examples that follow, we evaluate limits and find asymptotes by manipu-
lating expressions algebraically until we can clearly see what the limiting value must
be. In a calculus course, theorems that constitute an algebra of limits for nice func-
tions are developed. These theorems provide a formal mathematical structure justi-
fying the informal approach we take in this section.

lim
xS�q  

f (x) � clim
xSq  

f (x) � c

lim
xS�q 

 

1

xn � 0lim
xSq 

 

1

xn � 0

lim
xS�q 

 

1

x2 � 0lim
xSq 

 

1

x2 � 0

lim
xS�q 

 

1
x

� 0lim
xSq 

 

1
x

� 0
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x

1y x=

y

x

y

2

1
y

x
=

(a) (b)

1lim 0
x x→ ∞

=

1lim 0
x x→ −∞

=

1lim 0
x x→ ∞

=
1lim 0

x x→ −∞
=

Figure 2

EXAMPLE 1 Evaluating Some Limits

Find the following limits.

(a) (b) lim
xSq 

 

2x2 � x � 7

x2 � 2x � 15
lim
xSq 

(2x3 � 3x2 � 3x � 7)

In Section 4.7 on rational functions, we argued that f (x) � 1�x approaches zero
as x becomes unbounded positive and as x becomes unbounded negative. See
Figure 2(a). We also argued that g(x) � 1�x2 also approaches zero as x becomes un-
bounded positive or negative. See Figure 2(b).
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SOLUTION Factoring out the highest degree term in a polynomial expression is often helpful in
evaluating the limits of polynomial and rational functions as x becomes unbounded.

(a)

since 

since 

(b)

In Example 2 we use the fact that the line y � c is a horizontal asymptote for the
graph of y � f (x) if and only if

or lim
xS�q  

f (x) � clim
xSq  

f (x) � c

 � lim
xSq

2x2

x2 � lim
xSq

2 � 2

 lim
xSq

2x2 � x � 7

x2 � 2x � 15
� lim

xSq

2x2 a1 �
1

2x
�

7

2x2 b
x2 a1 �

2
x

�
15

x2 b
� lim

xSq

2x2(1 � 0 � 0)

x2(1 � 0 � 0)

lim
xSq 

xn � q � lim
xSq 

2x3 � q

lim
xSq 

 

1

xn � 0 � lim
xSq 

2x3(1 � 0 � 0 � 0)

 lim
xSq 

(2x3 � 3x2 � 3x � 7) � lim
xSq 

2x3 a1 �
3

2x
�

3x

2x2 �
7

2x3 b

EXAMPLE 2 Finding Horizontal Asymptotes

Find the horizontal asymptotes for the graph of .g(x) � 2 �
x2 � 1

x2 � 1

SOLUTION

So the line y � 3 is a horizontal asymptote for the graph of .
Similarly

So the line y � 3 is the only a horizontal asymptote for the graph of y � g(x).

Note: It can be shown that the graph of a rational function cannot have more than
one horizontal asymptote. This is not necessarily true for graphs of other kinds of
functions.

lim
xS�q

a2 �
x2 � 1

x2 � 1
b � lim

xS�q
c2 �

x2(1 � 0)

x2(1 � 0)
d � lim

xS�q
[2 � 1] � 3

y � g(x) � 2 �
x2 � 1

x2 � 1

 � lim
xSq
c2 �

x2(1 � 0)

x2(1 � 0)
d � lim

xSq
[2 � 1] � 3

 lim
xSq
a2 �

x2 � 1

x2 � 1
b � lim

xSq
≥ 2 �

x2 a1 �
1

x2 b
x2 a1 �

1

x2 b
¥
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EXAMPLE 3 A Rational Function with No Horizontal Asymptote

Show that the graph of has no horizontal asymptote.g(x) �
x2 � 3x � 4

x � 2

SOLUTION We need to show that neither nor is a real
number. First,

Similarly, .

So the graph of y � g(x) has no horizontal asymptote.

Although the graph in Example 3 does not have a horizontal asymptote, it does
have a linear asymptote that is neither vertical nor horizontal. To see this, we first use
long division to rewrite g(x) as follows:

Since the remainder approaches zero as x becomes unbounded, the graph of

y � g(x) is very close to the line y � x � 1 as x becomes unbounded. In fact, the dif-
ference in the y-values between the graphs of y � g(x) and y � x � 1 approaches zero
as x becomes unbounded. Using limit notation we have

{[y-value on the graph of g(x)] � [y-value on the graph of y � x � 1]} � 0

This is what we mean by the statement that the line y � x � 1 is an oblique asymp-
tote for the curve y � g(x).

A formal definition is this: A line with equation y � mx � b is an oblique
asymptote to the graph of an equation y � g(x) if either

or lim
xS�q

[ f (x) � (mx � b)] � 0lim
xSq

[ f (x) � (mx � b)] � 0

lim
xSq

2

x � 2

g(x) �
x2 � 3x � 4

x � 2
� x � 1 �

2

x � 2

lim
xS�q

g(x) � lim
xS�q

x � �q

 � lim
xSq

x(1 � 0 � 0)

(1 � 0)
� lim

xSq
x � q

 lim
xSq

g(x) � lim
xSq

x2 � 3x � 4

x � 2
� lim

xSq

x2 a1 �
3
x

�
4

x2 b
x a1 �

2
x
b

lim
xS�q

�
x2 � 3x � 4

x � 2
lim
xSq

�
x2 � 3x � 4

x � 2

x � 1

x � 2�x2 � 3x � 4

x2 � 2x

�x � 4

�x � 2

2

EXAMPLE 4 Finding Oblique Asymptotes for a Rational Function

Find the oblique asymptotes for the graph of .y � g(x) �
x2 � 3x � 4

x � 2

SOLUTION Following our work above, using long division

g(x) �
x2 � 3x � 4

x � 2
� x � 1 �

2

x � 2



and observing that suggest that the line y � x � 1 is an oblique

asymptote for y � g(x). We verify that this is indeed the case by computing two
limits. 

First,

This confirms that the line y � x � 1 is an oblique asymptote for the curve y � g(x).

Then, similarly, . 

Hence the line y � x � 1 is the (only) oblique asymptote for the curve y � g(x).

Note: It can also be shown that the graph of a rational function cannot have more
than one oblique asymptote. This is not necessarily true for graphs of other types of
functions

With similar reasoning and a bit more algebra, we can verify asymptotes for
hyperbolas in standard position.

lim
xS�q

[g(x) � (x � 1)] � lim
xS�q

 

2

x � 2
� 0

 � lim
xSq
a 2

x � 2
b � 0

 � lim
xSq
c (x � 1) �

2

x � 2
� (x � 1) d

 � lim
xSq
c a x � 1 �

2

x � 2
b � (x � 1) d

 lim
xSq

[g(x) � (x � 1)] � lim
xSq
c x2 � 3x � 4

x � 2
� (x � 1) d

lim
xSq 

 

2

x � 2
� 0
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EXAMPLE 5 Using Limits to Determine the Asymptotes of a Hyperbola

Find the asymptotes of the hyperbola .
x2

16
�

y2

9
� 1

SOLUTION Extending some algebra that we did in Section 12.6 when studying the hyperbola, we
first solve for y2. We have

Then

so

y � �
3

4
0 x 0
B

1 �
16

x2

y2 � 9 a x2

16
� 1 b �

9

16
 (x2 � 16) �

9

16
 x2 a1 �

16

x2 b

y2

9
�

x2

16
� 1



Since , it seems likely that the lines are oblique asymptotes.

To use limits to verify that these lines are the asymptotes for the hyperbola, we note

that in the first quadrant the equation of the hyperbola is and the

likely asymptote is . We need to show that .

Using algebra similar to that used to find likely asymptotes, we have

So, in the first quadrant, the hyperbola approaches the line .

Since the graph of the equation of our hyperbola has x-axis and y-axis symmetry,

the asymptote in quadrants I and III is , while the asymptote in quadrants II

and IV is . See Figure 3.

Remark: The symmetry of the hyperbola in the last example allowed us to find all
of the asymptotes without actually using algebra to evaluate three more limits.
Exercises 37–39 at the end of the section give you the opportunity to evaluate these
limits.

We can also use limit notation to express the behavior of the exponential and log-
arithmic functions ex and ln x as x becomes unbounded. (See Figure 4.)

and (10)

(11)lim
xSq

 ln x � q

lim
xS�q

 ex � 0lim
xSq

 ex � q

y � �
3

4
 x

y �
3

4
 x

y �
3

4
 x

 � lim
xSq

 

�12

2x2 � 16 � x
� 0

 � lim
xSq

 

3

4
 

x2 � 16 � x2

2x2 � 16 � x
� lim

xSq
 

3

4
 

�16

2x2 � 16 � x

 lim
xSq
a  

3

4
2x2 � 16 �

3

4
 x b � lim

xSq
 

3

4
 12x2 � 16 � x 22x2 � 16 � x

2x2 � 16 � x

lim
xSq
c  

3

4
2x2 � 16 �

3

4
 x d � 0y �

3

4
 x

y �
3

4
2x2 � 16

y � �
3

4
 xlim

xS�q
 

16

x2 � 0
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3
4

y x=

3
4

y x= −

y

x

23
4 16y x=         −

Figure 3

lny x=

xy e=

y

x
1

1

lim x

x
e

→ ∞
= ∞

x
lim ln x

→ ∞
= ∞lim 0x

x
e

→ −∞
=

Figure 4

EXAMPLE 6 Evaluating Some Exponential Limits

Find the following limits.

(a) (b) lim
xSq

 

2ex � e�x

ex � e�xlim
xSq

 (1 � e�x)

SOLUTION (a) since 

 � lim
xSq

 1 � 1

lim
xSq

 ex � q lim
xSq

 (1 � e�x) � lim
xSq
a1 �

1

ex b � lim
xSq

 (1 � 0)



(b) Using a strategy similar to that used in Example 1, in this case factoring out ex

we have

Although the trigonometric functions do not exhibit nice limiting behavior as the
domain variable becomes unbounded, we can still evaluate some limits involving
trigonometric functions.

 � lim
xSq

 

2 � a 1

ex b
2

1 � a 1

ex b
2 � lim

xSq
 

2 � 02

1 � 02 � 2

 lim
xSq

 

2ex � e�x

ex � e�x � lim
xSq

 

ex

ex a 2 � e�2x

1 � e�2x b � lim
xSq

 

2 � e�2x

1 � e�2x
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EXAMPLE 7 Evaluating Some Trigonometric Limits

Find the following limits.

(a) (b) lim
xSq

 

1
x

  cos xlim
xSq

 sin a x � 1
x
b

SOLUTION (a)

(b) The algebra that we use to evaluate this limit involves inequalities. From the
definition (or the graph) of the cosine function we know that

�1 
 cos x 
 1

Since we are evaluating a limit as x goes to infinity, we can take x � 0. Then mul-
tiplying by 1�x we have

Now and . Since is “sandwiched” between

and , must exist and equal 0 too. Hence .

We would like to conclude our introduction to limits by proving two basic limit
results:

and

To do this, we need precise algebraic definitions of each of these types of limits. For
each type, we give an informal definition followed by a precise definition in more
algebraic language.

lim
xSq

 

1
x

� 0lim
xSq

 x2 � q

lim
xSq

 

1
x

 cos x � 0lim
xSq

 

1
x

 cos x
1
x

�
1
x

1
x

 cos xlim
xSq

 

1
x

� 0lim
xSq
a�

1
x
b � 0

�
1
x



1
x

 cos x 

1
x

 � lim
xSq

 sin 1 � sin 1 � 0.8415

 lim
xSq

 sin a x � 1
x
b � lim

xSq
 sin a1 �

1
x
b � lim

xSq
 sin(1 � 0)



Informally, (the limit as x goes to infinity of f (x) is positive infin-

ity) means that f(x) can be made arbitrarily large positive once and for all by taking
x sufficiently large positive.

lim
xSq

  f (x) � q
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Definition 1

Let f be a function defined on an interval (a, q), for some real number a. Then the
notation means that, given an arbitrarily large positive number N,

there is a sufficiently large positive number M such that f (x) � N whenever x � M.

To apply this definition we need to show that, given an inequality

f (x) � N

involving values in the range of f (a range inequality), we can find an inequality of
the form

x � M

involving values in the domain of f (a domain inequality) that guarantees the range
inequality is satisfied. Note that the value of M will depend on the value of N.

The logical structure of this definition is fairly complicated. Indeed, it was well
over a hundred years after the development of calculus before good definitions of
limits were formulated. For a graphical illustration of the concept of the limit as x
goes to infinity of the squaring function, see Figure 5.

lim
xSq

  f (x) � q

lim
xS�

  f (x) ��

2

2

y x=

x

y

N

Fo
r x

to

x must
be here.

be
 h

er
e,

M

Figure 5

EXAMPLE 8 Using a Limit Definition

Prove that .lim
xSq

  x2 � q

SOLUTION We use the definition of with f (x) � x2.

First, let N be an arbitrarily large positive real number. The range inequality that
we need to guarantee is

x2 � N

Since we are finding the limit as x goes to infinity, we can assume that x is positive.
Now one way to find a domain inequality that will guarantee the range inequality is
to solve

For x positive, is positive; so whenever
, or equivalently, whenever .

Hence, by choosing , we have that (the range inequality) x2 � N holds
whenever . Therefore we have proven that .

Our second limit definition concerns functions that approach a finite value as x
becomes unbounded.

lim
xSq

  x2 � qx � M � 1N
M � 1N

x � 1Nx � 1N � 0
1x � 1N 2 1x � 1N 2 � 0x � 1N

1x � 1N 2 1x � 1N 2 � 0
x2 � N � 0

x2 � N

lim
xSq

  f (x) � q



Informally, for real number L, means that f (x) can be made arbitrarily

close to L once and for all by taking x sufficiently large positive.

lim
xSq

  f (x) � L
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Definition 2

Let f be a function defined on an interval (a, q), for some real number a. Then the
notation , where L is a real number, means that, given an arbitrarily 

small positive number e, there is a sufficiently large positive number M such that
f (x) � L � e whenever x � M.

To apply Definition 2, we need to show that given a range inequality

f (x) � L � e

we can find a domain inequality of the form x � M that guarantees that the range
inequality is satisfied. Note that the value of M will depend on the value of e.

Note: The graphical interpretation of the range and domain inequalities is that the
graph of f eventually lies in a horizontal band of width 2e centered about the line y � L.

For a graphical illustration of this limit concept for the reciprocal function, see
Figure 6. In this case, the limit L is zero and M is 1�e.

00

00
lim
xSq

  f (x) � L

lim
xS�

  f (x)  �  L

1y x=

x

y

ε
For f (x) =    , for x > 0,1

x

1

to be here,

ε−
M ε=  must be here.xFigure 6

EXAMPLE 9 Using a Limit Definition

Prove that .lim
xSq

 

1
x

� 0

SOLUTION We use the definition of with f (x) � 1�x and L � 0.

First, let e be an arbitrary small positive real number. Since we are finding the
limit as x goes to infinity, we can assume that x is positive. The range inequality that
we need to guarantee is

or or (since x � 0) 0 � � e
1
x

` 1
x
` � e` 1

x
� 0 ` � e

lim
xSq

  f (x) � L



Then, multiplying by the positive number (x�e) we have

or or, equivalently

Hence, by choosing M � 1�e, we have (the range inequality) 0 	 	 e holds 

whenever . Therefore we have proven that .

The limit definitions are also useful for showing that certain limits do not exist.

lim
xSq

 

1
x

� 0x � M �
1
e

1
x

x �
1
e

1
e

	 xa x
e
b 1

x
	

x
e

 e
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EXAMPLE 10 Showing That a Limit Does Not Exist

Show that does not exist.lim
xSq

 sin x

SOLUTION We first show that using Definition 1; then, using Definition 2, we

show that, for any real number L, .

First, let N be one. The range inequality that we need to guarantee for Definition 1
is sin x � 1, but this has no solutions since �1 
 sin x 
 1. Therefore there is no M
such that x � M guarantees that sin x � 1. Hence . A similar argument
shows that .

Next, using Definition 2, we show that is not equal to any finite real

number. Note that sin x takes on the value 1 and �1 on every x-interval of length 2p.
So a horizontal band that contains the graph of y � sin x would have to be at least
2 units wide. This implies that if we choose , then the inequality ,
which describes a horizontal band of width 2e � 1 centered about the line y � L,
can’t contain the graph of y � sin x for any value of L. (See Figure 7.) Algebraically,
we can conclude that for there does not exist a real number M such that x � M
guarantees that sin x � L 	 e. Therefore for any real number L.
Note: Since Definition 2 requires that the range inequality can be satisfied for every
value of e, to show that the limit doesn’t exist, we only need to find one value of e for
which we can’t satisfy the inequality. We chose 1�2 just because it was small enough
and easy to work with. We could have used any value less than 1.

Since and for any real number L, we conclude

that does not exist.lim
xSq

 sin x

lim
xSq

 sin x � Llim
xSq

 sin x � �q

lim
xSq

 sin x � L00 e � 1
2

0 y � L 0 	 ee � 1
2

lim
xSq

 sin x

lim
xSq

 sin x � �q
lim
xSq

 sin x � q

lim
xSq

 sin x � L

lim
xSq

 sin x � �q

1−

1

y

x

y L=

siny x=

1
2y L Lε= + = +

1
2y L Lε= − = −

Figure 7



This concludes our introduction to limits. We have restricted the discussion to
limits as the domain variable becomes unbounded. A first course in calculus will
introduce the idea of the limit of a function as the domain variable approaches a
particular real number. The limits of certain ratios and sums will also appear. Later
courses will develop other variations on the limit concept, including limits of
sequences and infinite series. Algebra, graphs, and intuition are the main tools for
evaluating limits, as we showed in Examples 1–7 of this section. Precise definitions
are needed at certain points, but real facility with these definitions is usually acquired
in a junior-level real analysis course.
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In Exercises 33–36 use limits to determine any horizontal
asymptotes for the graph of the given function.

33. f (x) � 1 � e�2x 34.

35. 36.

B
Exercises 37–39 provide a way to complete Example 5 in
the quadrants II, III, and IV without using a symmetry 
argument.

37. Show 

38. Show 

39. Show 

40. Find the asymptotes of the hyperbola .

Verify your result using an appropriate limit argument.

41. Find the asymptotes of the hyperbola .

Verify your result using an appropriate limit argument.
42. Find the asymptotes of the graph of 2y2 � x2 � 2.

Verify your result using an appropriate limit argument.
43. In this problem we use a graphing utility and calculator

to determine the limit as x goes to infinity of the function

(a) Use your graphing utility to compare the graphs of

and for large values of x.

(b) Part (a) suggests that for large values of x

. So x what?ln a1 �
1
x
b � x a 1

x
b �ln a1 �

1
x
b �

1
x

y �
1
x

y � ln a1 �
1
x
b

f (x) � x ln a1 �
1
x
b

y2 �
x2

4
� 1

y2

4
�

x2

9
� 1

lim
xSq
c�3

4
2x2 � 16 � a�

3

4
 x b d � 0.

lim
xS�q

c�3

4
2x2 � 16 � a 3

4
 x b d � 0.

lim
xS�q

c 3
4
2x2 � 16 � a�

3

4
 x b d � 0.

f (x) �
sin x

x
g(x) �

cos x
x

g(x) �
ex � 3e�x

ex � 3e�x

A
In Exercises 1–20, evaluate the indicated limits.

1. 2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–26, use limits to determine any horizontal
asymptotes for the graph of the given function.

21. 22.

23. 24.

25. 26.

In Exercises 27–32, evaluate the indicated limits.

27. 28.

29. 30.

31. 32. lim
xS�q

 cos a 1 � px

x
blim

xSq
 cos a 1 � px

x
b

lim
xSq

 

ex � e�x

2ex � e�xlim
xS�q

 

ex � e�x

2ex � e�x

lim
xS�q

(ex � 3)lim
xSq

(ex � 3)

g(x) � 5 �
1 � 2x2

2 � x2h(x) � 3 �
x2 � 1

x2 � 1

f (x) �
x2 � 2x

x2 � 3x � 4
g(x) �

x2 � x � 2

x2 � x � 6

h(x) �
2

x � 6
f (x) �

3

x � 5

lim
xSq

 

x4 � 5x

x2 � 2x � 3
lim

xS�q
 

x4 � 5x

x2 � 2x � 3

lim
xS�q

 

x2 � 10x � 4

x � 2
lim
xSq

 

x2 � 10x � 4

x � 2

lim
xSq

 

5x2 � 3x � 2

10x4 � x2 � 1
lim

xS�q
 

5x2 � 3x � 2

10x4 � x2 � 1

lim
xS�q

 

10x � 100

x2 � 10
lim
xSq

 

10x � 100

x2 � 10

lim
xSq

 

4 � 2x � 3x2

5x2 � 5x � 10
lim

xS�q
 

4 � 2x � 3x2

5x2 � 5x � 10

lim
xS�q

 

x2 � 2x � 10

x2 � 5x � 100
lim
xSq

 

x2 � 2x � 10

x2 � 5x � 100

lim
 xSq

(2 � x3)lim
 xS�q

(1 � 5x7)

lim
 xS�q

(x5 � 7x � 11)lim
 xS�q

(x3 � 5x � 10)

lim
 xSq

(1 � 3x � 3x2 � 4x3)

lim
 xSq

(7 � 3x � 3x2 � 2x3)

lim
 xSq

(x2 � 7x � 12)lim
 xSq

(x2 � 2x � 10)

EXERCISE SET 14.6



46. This exercise leads to a proof that . In parts (a) 

and (b), use algebra to determine the appropriate domain
inequality to guarantee the given range inequality for 
f (x) � ln x. Draw and label appropriate pictures for part (a)
and for part (b).
(a) How large positive must x be so that ln x � 2?
(b) How large positive must x be so that ln x � 100?
(c) Explain the meaning of .

(d) Prove . Hints: You may need to use the

fact that ln x is an increasing function.

47. This exercise leads to a proof that . In parts (a) 

and (b), use algebra to determine the appropriate domain
inequality to guarantee the given range inequality for 
f (x) � 1�x. Draw and label appropriate pictures for part (a)
and for part (b).

(a) How large positive must x be so that ?

(b) How large positive must x be so that ?

(c) Explain the meaning of .

(d) Prove . Hint: You may need to use the

fact that the (positive) square root function is an 
increasing function on the positive real numbers.

48. This exercise leads to a proof that . In parts (a) 
and (b), use algebra to determine the appropriate domain
inequality to guarantee the given range inequality for 
f (x) � e�x. Draw and label appropriate pictures for part (a)
and for part (b).

(a) How large positive must x be so that ?

(b) How large positive must x be so that ?

(c) Explain the meaning of .

(d) Prove . Hint: You may need to use the 

fact that ln x is an increasing function.

C
49. Use the fact that 

(see Exercise 43) to evaluate .

Hint: You may need to review the definition and basic
properties of logarithms (Chapter 5).

50. Prove that .

Hint: See Exercise 46.

lim
xSq

 ln (ln x) � q

lim
xSq
a1 �

1
x
b x

lim
xSq

 x ln a1 �
1
x
b � 1

lim
xSq

 e�x � 0

lim
xSq

 e�x � 0

e�x �
1

ex 	
1

100

e�x �
1

ex 	
1

2

lim
xSq

 e�x � 0

lim
xSq

 

1

x2 � 0

lim
xSq

 

1

x2 � 0

1

x2 	
1

1000

1

x2 	
1

4

lim
xSq

 

1

x2 � 0

lim
xSq

 ln x � q
lim
xSq

 ln x � q

lim
xSq

 ln x � q(c) Part (b) suggests that for large values of x the graph of
y � f (x) approaches a horizontal asymptote. Use 

your graphing utility to graph and to 

visually confirm the behavior of the graph for large x.
(d) What is the horizontal asymptote? Equivalently, what

is the value of ?

(e) Numerically confirm the results from parts (a) through (c)

by computing a table of values of , 

for x � 1, 5, 10, 100, 1000, and 

10,000.

44. In this problem we use a graphing utility and calculator
to determine the limit as x goes to infinity of the function

(a) Use your graphing utility to compare the graphs of

and for large values of x.

(b) Part (a) suggests that for large values of x

and what?

(c) Part (b) suggests that, for large values of x, the graph of
y � g(x) approaches a horizontal asymptote. Use your

graphing utility to graph and to confirm 

the behavior of the graph for large x.
(d) What is the horizontal asymptote? Equivalently, what 

is the value of ?

(e) Numerically confirm the results from parts (a)–(c) by 

computing a table of values of and

for x � 1, 5, 10, 100, 1000, and 10,000.

45. This exercise leads to a proof that . In parts (a) 

and (b), use algebra to determine the appropriate domain
inequality to guarantee the given range inequality for 
f (x) � x3. Draw and label appropriate pictures for part (a)
and for part (b).
(a) How large positive must x be so that x3 � 64?
(b) How large positive must x be so that x3 � 10,000?
(c) Explain the meaning of .

(d) Prove . Hints: Adapt the solution in

Example 8. Here you may need the formula for the 
difference of cubes

p3 � q3 � (p � q)(p2 � pq � q2)

lim
xSq

 x3 � q
lim
xSq

 x3 � q

lim
xSq

 x3 � q

x sin a 1
x
b

x, a 1
x
b , sin a 1

x
b ,

lim
xSq

 x sin a 1
x
b

y � x sin a 1
x
b

x sin a 1
x
b � x a 1

x
b �sin a 1

x
b �

1
x

y �
1
x

y � sin a 1
x
b

g(x) � x sin a 1
x
b

and x ln a1 �
1
x
b

ln a1 �
1
x
b ,x, a 1

x
b

lim
xSq

 x ln a1 �
1
x
b

y � ln a1 �
1
x
b
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Summary of Principal Terms and Formulas 1031

CHAPTER 14 Summary

CHAPTER 14 Summary of Principal Terms and Formulas

Page
Terms or Formulas Reference Comments

1. The principle of 984 This principle can be stated as follows. Suppose that for each 
mathematical induction natural number n we have a statement Pn. Suppose P1 is true. Also

suppose that Pk�1 is true whenever Pk is true. Then according to the
principle of mathematical induction, all of the statements are true; that 
is, Pn is true for all natural numbers n. The principle of mathematical
induction has the status of an axiom; that is, we accept its validity 
without proof.

2. Pascal’s triangle 990–991 Pascal’s triangle refers to the triangular array of numbers displayed on
page 991. Additional rows can be added to the triangle according to the
following rule: Each entry in the array (other than the 1’s along the sides)
is the sum of the two numbers diagonally above it. The numbers in the nth
row of Pascal’s triangle are the coefficients of the terms in the expansion
of (a � b)n�1.

3. n! (read: n factorial) 992 This denotes the product of the first n natural numbers. For example,
4! � (4)(3)(2)(1) � 24.

4. (read: n choose k) 993 Let n and k be nonnegative integers with k � n. Then the binomial 

coefficient is defined by

5. The binomial theorem 993 The binomial theorem is a formula that allows us to analyze and expand
expressions of the form (a � b)n. If we use sigma notation, then the
statement of the binomial theorem that appears on page 993 can be
abbreviated to read

6. Sequence 999, 1001 In the context of the present chapter, a sequence is an ordered list of real
numbers: a1, a2, a3, . . . . The numbers ak are called the terms of the
sequence. A sequence can also be defined as a function whose domain is
the set of natural numbers or the set of nonnegative integers.

7. 1004 This expression stands for the sum a1 � a2 � a3 � p � an. The letter k in
the expression is referred to as the index of summation.

8. Arithmetic sequence 1009 A sequence in which the successive terms differ by a constant is called an
arithmetic sequence. The general form of an arithmetic sequence is

In this sequence, d is referred to as the common difference.

a, a � d, a � 2d, a � 3d, . . . 

a
n

k�1
ak

(a � b)n � a
n

k�0
an

k
ban�kbk

an
k
b �

n!
k!(n � k)!

an
k
b

a n
k
b



Page
Terms or Notation Reference Comments

9. an � a � (n � 1)d 1009 This is the formula for the nth term of an arithmetic sequence.

10. Sn � [2a � (n � 1)d] 1011 These are the formulas for the sum of the first n terms of an arithmetic
sequence.

Sn � n

11. Geometric sequence 1014 A sequence in which the ratio of successive terms is constant is called a
geometric sequence. The general form of a geometric sequence is

The number r is referred to as the common ratio.

12. an � arn�1 1015 This is the formula for the nth term of a geometric sequence.

13. Sn � 1015 This is the formula for the sum of the first n terms of a geometric
sequence.

14. S � 1017 This is the formula for the sum of the infinite geometric series
a � ar � ar2 � p , where r 	 1.

15. 1019, 1026 The limit, as x goes to infinity of f (x), is positive infinity. Informally, 
this means that f(x) can be made arbitrarily large positive once and for 
all by taking x sufficiently large positive.

16. 1027 The limit, as x goes to infinity of f (x), is L. Informally, this means that 
f (x) can be made arbitrarily close to the real number L once and for all by
taking x sufficiently large positive.

17. Horizontal asymptote 1020 In terms of limits, the line is a horizontal asymptote for the graph 
of if and only if or .

18. Oblique asymptote 1022 In terms of limits, the line (with ) is an oblique
asymptote for the graph of if and only if

or .lim
xS�q

[ f (x) � (mx � b)] � 0lim
xSq

[ f (x) � (mx � b)] � 0
y � f (x)

m � 0y � mx � b

lim
xS�q

f (x) � clim
xSq

f (x) � cy � f (x)
y � c

lim
xSq

f (x) � L

lim
xSq

f (x) � q

00
a

1 � r

a(1 � rn)

1 � r

a, ar, ar2, . . .

a a � an

2
b

n

2
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1. A sequence is defined recursively as follows: a0 � p; 

an�1 � for n � 0. Compute a0, a1, and a2. Describe 

(in a complete sentence or two) what pattern you observe.
Make a conjecture about a general formula for an. Then use
mathematical induction to prove that the formula is valid. (As
in the examples in the text, use complete sentences in writing
and explaining the proof.)

an

an � 1

2. A sequence is defined recursively as follows.

Use mathematical induction to show that 1 	 an 	 2 for all
natural numbers n.

3. Study the procedure that was used on page 1015 to obtain
the formula for the sum of a finite geometric series. Work

 an�1 � a2
n � 2an � 2  for n � 1

 a1 � 3�2

Writing Mathematics



Step 2 Assume that Pk is true. We must show that Pk�1

is true. That is, given a set of k � 1 numbers
a1, a2, a3, . . . , ak�1, we must show that
a1 � a2 � a3 � p � ak�1. By the inductive 
hypothesis, however, we have a1 � a2 �
a3 � p � ak and also a2 � a3 � a4 � p � ak�1.
These last two sets of equations imply that
a1 � a2 � a3 � p � ak � ak�1, as we wished to
show. Having now completed Steps 1 and 2, we
conclude that Pn is true for every n.

with classmates or your instructor to adapt the procedure to
find the sum 1 � 2 sin u� 3 sin2 u� p � n sinn�1 u. Finally,
on your own, write a complete summary of what you have
done.

4. Study the following purported “proof” by mathematical
induction, and explain the fallacy.

Let Pn denote the following statement: In any set of n
numbers, the numbers are all equal.

Step 1 P1 is clearly true.

Review Exercises 1033

CHAPTER 14 Review Exercises

In Exercises 1–10, use the principle of mathematical induction
to show that the statements are true for all natural numbers.

1. 5 � 10 � 15 � � 5n � (n � 1)
2. 10 � 102 � 103 � � 10n � (10n � 1)
3. 1 2 � 2 3 � 3 4 � � n(n � 1) � (n � 1)(n � 2)

4.

5.

6.

7.

8. 9 is a factor of n3 � (n � 1)3 � (n � 2)3.
9. 3 is a factor of 7n � 1.

10. 8 is a factor of 9n � 1.

In Exercises 11–20, expand the given expressions.

11. (3a � b2)4 12. (5a � 2b)3

13. 14.

15. (x2 � 2y2)5 16.

17. 18.

19. 20. (x�2 � y5�2)8

21. Find the fifth term in the expansion of (3x � y2)5.
22. Find the eighth term in the expansion of (2x � y)9.
23. Find the coefficient of the term containing a5 in the expan-

sion of (a � 2b)7.
24. Find the coefficient of the term containing b8 in the expansion 

of a 2a �
b

3
b 10

.

1a1b � b1a 2 4
a x3 �

1

x2 b
6a 1 �

1
x
b 5

a 1
a

�
2

b
b 3

11 � 13 2 61x � 1x 2 4

� (n2 � 2n � 3)2n � 3
1 � 22 # 2 � 32 # 22 � 42 # 23 � p � n2 # 2n�1

�
1

(3n � 2)(3n � 1)
�

n

3n � 1

1

1 # 4
�

1

4 # 7
�

1

7 # 10
� p

� (2n � 1) # 2n�1 � 3 � (2n � 3) # 2n
1 � 3 # 2 � 5 # 22 � 7 # 23 � p

1

2
�

2

22 �
3

23 � p �
n

2n � 2 �
2 � n

2n

1
3 np###

10
9  

p
5
2 np

25. Find the coefficient of the term containing x3 in the expansion 
of .

26. Expand . Suggestion: Rewrite the expres-
sion as .

In Exercises 27–32, verify each assertion by computing the 
indicated binomial coefficients.

27.

28.

29.

30.

31.

32.

In Exercises 33–38, compute the first four terms in each
sequence. Also, in Exercises 33–35, graph the sequences for
n � 1, 2, 3, and 4.

33. 34.

35. an � (�1)n

36. a0 � 4; an � 2an�1, n � 1
37. a0 � �3; an � 4an�1, n � 1
38. a0 � 1; a1 � 2; an � 3an�1 � 2an�2, n � 2

a1 �
1

n � 1
b

an �
3n � 2

3n � 2
an �

2n

n � 1

a4
0
b � a4

1
b � a4

2
b � a4

3
b � a4

4
b � 24

a3
0
b � a3

1
b � a3

2
b � a3

3
b � 23

a2
0
b � a2

1
b � a2

2
b � 22

a4
0
b 2

� a4
1
b 2

� a4
2
b 2

� a4
3
b 2

� a 4
4
b 2

� a 8
4
b

a3
0
b 2

� a3
1
b 2

� a3
2
b 2

� a3
3
b 2

� a 6
3
b

a2
0
b 2

� a2
1
b 2

� a2
2
b 2

� a4
2
b

3 11 � 1x 2 � x 4 6
11 � 1x � x 2 6

11 � 1x 2 8



(The formulas given in Exercises 59–62 appear in Elements of
Algebra by Leonhard Euler, first published in 1770.)

59. 1 � 2 � 3 � p � n � n � n(n � 1)�2
60. 1 � 3 � 5 � p (to n terms) � n � 2n(n � 1)�2
61. 1 � 4 � 7 � p (to n terms) � n � 3n(n � 1)�2
62. 1 � 5 � 9 � p (to n terms) � n � 4n(n � 1)�2
63. In this exercise you will use the following (remarkably

simple) formula for approximating sums of powers of
integers:

(1)

[This formula appears in the article “Sums of Powers of
Integers” by B. L. Burrows and R. F. Talbot, published in the
American Mathematical Monthly, vol. 91 (1984), p. 394.]
(a) Use formula (1) to estimate the sum 

12 � 22 � 32 � p � 502. Round your answer to the
nearest integer.

(b) Compute the exact value of the sum in part (a) using the 

formula � (n � 1)(2n � 1). (This formula can 

be proved using mathematical induction.) Then com-
pute the percentage error for the approximation obtained
in part (a). The percentage error is given by

(c) Use formula (1) to estimate the sum
14 � 24 � 34 � � 2004. Round your answer to six
significant digits.

(d) The following formula for the sum 14 � 24 � � n4

can be proved by using mathematical induction:

Use this formula to compute the sum in part (c). Round
your answer to six significant digits. Then use this result
to compute the percentage error for the approximation
in part (c).

64. According to Stirling’s formula [named after James Stirling
(1692–1770)], the quantity n! can be approximated as
follows:

In this formula, e is the constant 2.718 . . . (discussed in
Section 5.2). Use a calculator to complete the following
table. Round your answers to five significant digits. As you
will see, the numbers in the right-hand column approach 1 as
n increases. This shows that in a certain sense the approxi-
mation improves as n increases.

n! � 12pn a n

e
b n

a
n

k�1
k4 �

n(n � 1)(2n � 1)(3n2 � 3n � 1)

30

p

p

0 actual value � approximate value 0
actual value

� 100

1

6
 na

n

k�1
k2

1k � 2k � 3k � p � nk �
(n � 1

2 )k�1

k � 1

In Exercises 39 and 40, evaluate each sum.

39. (a) (�1)k(2k � 1) (b)

40. (a) (b)

In Exercises 41 and 42, rewrite each sum using sigma notation.

41.

42.

In Exercises 43–46, find the indicated term in each sequence.

43. 5, 9, 13, 17, . . . ; a18

44. 5, 9�2, 4, 7�2, . . . ; a20

45. 10, 5, 5�2, 5�4, . . . ; a12

46. � 1, 1, � 1, 3 � 2 , . . . ; a10

47. Determine the sum of the first 12 terms of an arithmetic 
sequence in which the first term is 8 and the 12th term 
is 43�2.

48. Find the sum of the first 45 terms in the sequence 10, 29�3,
28�3, 9, . . . .

49. Find the sum of the first 10 terms in the sequence 7, 70,
700, . . . .

50. Find the sum of the first 12 terms in the sequence 1�3,
�2�9, 4�27, �8�81, . . . .

51. In a certain geometric sequence, the third term is 4, and the
fifth term is 10. Find the sixth term, given that the common
ratio is negative.

52. For a certain infinite geometric series, the first term is 2, and
the sum is 18�11. Find the common ratio r.

In Exercises 53–56, find the sum of each infinite geometric
series.

53. 54.

55.

56.

57. Find a fraction equivalent of 
58. Find a fraction equivalent to 

In Exercises 59–62, verify each equation using the formula for
the sum of an arithmetic series:

Sn �
n

2
 [2a � (n � 1)d]

0.213.
0.45.

1 �
1

1 � 12
�

1

11 � 12 2 2 � p

1

9
�

1

81
�

1

729
� p

7

10
�

7

100
�

7

1000
� p3

5
�

3

25
�

3

125
� p

121212

1

2
�

2

22 �
3

23 �
4

24 �
5

25 �
6

26

5

3
�

5

32 �
5

33 �
5

34 �
5

35

a
5

n�1
a 1

n
�

1

n � 1
ba

4

j�1

(�1)j

j

a
8

k�0
a 1

k � 1
�

1

k � 2
ba

3

k�1
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71. If ln(A � C) � ln(A � C � 2B) � 2 ln(A � C), show that
1�A, 1�B, and 1�C are consecutive terms in an arithmetic
sequence.

72. Let be an arithmetic sequence with common
difference d, and let be a real number. In this exercise
we develop a formula for the sum of the series

The method that we use here is essentially the same as
the method that was used in the text to derive the formula
for the sum of a finite geometric series. So as background
for this exercise, you should review the derivation on
page 1015 for the sum of a geometric series.
(a) Let S denote the required sum. Show that

(b) Show that 

73. Use your calculator and the formula in Exercise 72(b) to find
the sum of each of the following series.
(a)
(b)

(c)

74. Evaluate .

75. By evaluating the appropriate limits, find the horizontal
asymptotes of the graph of the equation , where
tanh x denotes the hyperbolic tangent function, defined by

tanh x �
ex � e�x

ex � e�x

y � tanh x

lim
xSq

4 � 2x � 3x2

5x2 � 5x � 10

3 �
1

2
# 5 �

1

22
# 7 �

1

23
# 9 � p � (to 10 terms)

2 � 4 # 5 � 42 # 8 � 43 # 11 � p � 46 # 20
1 � 2 # 2 � 22 # 3 � 23 # 4 � p � 213 # 14

S �
a1 � rnan

1 � r
�

d(r � rn)

(1 � r)2 .

 � a1 �
d(r � rn)

1 � r
� rnan

 S � rS � a1 � rd � r2d � p � rn�1d � rnan

a1 � ra2 � r2a3 � p � rn�1an

r(� 1)
a1, a2, a3, . . .

n n! (n�e)n

10
20
30
40
50
60
65

65. The sum of three consecutive terms in a geometric sequence
is 13, and the sum of the reciprocals is 13�9. What are
the possible values for the common ratio? (There are four
answers.)

66. The nonzero numbers a, b, and c are consecutive terms in a
geometric sequence, and a � b � c � 70. Furthermore, 4a,
5b, and 4c are consecutive terms in an arithmetic sequence.
Find a, b, and c.

67. The nonzero numbers a, b, and c are consecutive terms in a
geometric sequence, and a, 2b, and c are consecutive terms
in an arithmetic sequence. Show that the common ratio in
the geometric sequence must be either 2 � or 2 �

68. If the numbers and are consecutive

terms in an arithmetic sequence, show that a2, b2, and c2 are
also consecutive terms in an arithmetic sequence.

69. If a, b, and c are consecutive terms in a geometric sequence, 

prove that and are consecutive terms in an

arithmetic sequence.
70. (a) Find a value for x such that 3 � x, 4 � x, and 5 � x are

consecutive terms in a geometric sequence.
(b) Given three numbers a, b, and c, find a value for x (in

terms of a, b, and c) such that a � x, b � x, and c � x
are consecutive terms in a geometric sequence.

1

c � b

1

a � b
, 

1

2b
,

1

a � b

1

b � c
, 

1

c � a
,

13.13

n!
12Pn (n /e)n

12pn

Test 1035

CHAPTER 14 Test

1. Use the principle of mathematical induction to show that the
following formula is valid for all natural numbers n:

2. Express each of the following sums without using sigma
notation, and then evaluate each sum.

(a) (b) a
3

k�1
(�1)kk2

a
2

k�0
(10k � 1)

12 � 22 � 32 � p � n2 �
n(n � 1)(2n � 1)

6

3. (a) Write the formula for the sum Sn of a finite geometric
series.

(b) Evaluate the sum 

4. (a) Determine the coefficient of the term containing a3 in
the expansion of (a � 2b3)11.

(b) Find the fifth term of the expansion in part (a).

3

2
�

32

22 �
33

23 � p �
310

210.
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5. Expand the expression (3x2 � y3)5.
6. Determine the sum of the first 20 terms of an arithmetic

sequence in which the first term is 8 and the 20th term
is 43�2.

7. Find the sum of the following infinite geometric series:

8. A sequence is defined recursively as follows: a1 � 1; a2 � 1;
and an � (an�1)2 � an�2 for n � 3. Determine the fourth and
fifth terms in this sequence.

7

10
�

7

100
�

7

1000
� p

 

9. In a certain geometric sequence the third term is 4, and the
fifth term is 10. Find the eighth term, given that the common
ratio is negative.

10. What is the 20th term in the arithmetic sequence �61, �46,
�31, . . . ?

11. Graph the first four terms of each sequence.
(a) an � (n2 � n), n � 0
(b) b1 � 1; bn � (bn�1)2 � nbn�1, n � 2

12. Evaluate .lim
xSq

 
100 � 12x � 3x2

4x2 � 5x � 7

1
2 
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APPENDIX

A
A.1 Significant Digits

A.2 Is Irrational

A.3 The Complex Number
System

12
A.1 SIGNIFICANT DIGITS

Many of the numbers that we use in scientific work and in daily life are approxima-
tions. In some cases the approximations arise because the numbers are obtained
through measurements or experiments. Consider, for example, the following state-
ment from an astronomy textbook:

The diameter of the Moon is 3476 km.

We interpret this statement as meaning that the actual diameter D is closer to
3476 km than it is to either 3475 km or 3477 km. In other words,

The interval [3475.5, 3476.5] in this example provides information about the accu-
racy of the measurement. Another way to indicate accuracy in an approximation is by
specifying the number of significant digits it contains. The measurement 3476 km
has four significant digits. In general, the number of significant digits in a given num-
ber is found as follows.

3475.5 km � D � 3476.5 km

EXAMPLES
Number of

Number Significant Digits

1.43 3
0.52 2
0.05 1

4837 4
4837.0 5

The number of significant digits in 
a given number is determined by 
counting the digits from left to right, 
beginning with the leftmost nonzero 
digit.

Significant Digits

Numbers obtained through measurements are not the only source of approxima-
tions in scientific work. For example, to five significant digits we have the following
approximation for the irrational number p:

This statement tells us that p is closer to 3.1416 than it is to either 3.1415 or 3.1417.
In other words,

3.14155 � p � 3.14165

p � 3.1416



TABLE 2

Number of
Measurement Significant Digits Range of Measurement

Mass of the Earth:
6 � 1027 g 1 [5.5 � 1027 g, 6.5 � 1027 g]

6.0 � 1027 g 2 [5.95 � 1027 g, 6.05 � 1027 g]
5.974 � 1027 g 4 [5.9735 � 1027 g, 5.9745 � 1027 g]

Mass of a proton:
1.67 � 10�24 g 3 [1.665 � 10�24 g, 1.675 � 10�24 g]

Table 1 provides some additional examples of the ideas we’ve introduced.

A-2 Appendix A

There is an ambiguity involving zero that can arise in counting significant digits.
Suppose that someone measures the width w of a rectangle and reports the result as
30 cm. How many significant digits are there? If the value 30 cm was obtained by
measuring to the nearest 10 cm, then only the digit 3 is significant, and we can con-
clude only that the width w lies in the range 25 cm � w � 35 cm. On the other hand,
if the 30 cm was obtained by measuring to the nearest 1 cm, then both the digits 3 and
0 are significant, and we have 29.5 cm � w � 30.5 cm.

By using scientific notation, we can avoid the type of ambiguity discussed in the
previous paragraph. A number written in the form

is said to be expressed in scientific notation. For the example in the previous para-
graph, then, we would write

and

As the figures in Table 2 indicate, for a number b � 10n in scientific notation the
number of significant digits is just the number of digits in b. (This is one of the ad-
vantages in using scientific notation; the number of significant digits, and hence the
accuracy of the measurement, is readily apparent.)

w � 3.0 � 101 cm  if the measurement is to the nearest 1 cm

w � 3 � 101 cm  if the measurement is to the nearest 10  cm

b � 10n  where 1 � b � 10 and n is an integer

TABLE 1

Number of Range of
Number Significant Digits Measurement

37 2 [36.5, 37.5]
37.0 3 [36.95, 37.05]

268.1 4 [268.05, 268.15]
1.036 4 [1.0355, 1.0365]
0.036 2 [0.0355, 0.0365]



A.1 Significant Digits A-3

Many of the numerical exercises in the text ask that you round the answers to a
specified number of decimal places. Our rules for rounding are as follows.

1. If the digit in the (n � 1)st decimal place is greater than 5, increase the digit in
the nth place by 1. If the digit in the (n � 1)st place is less than 5, leave the nth
digit unchanged.

2. If the digit in the (n � 1)st decimal place is 5 and there is at least one nonzero
digit to the right of this 5, increase the digit in the nth decimal place by 1.

3. If the digit in the (n � 1)st decimal place is 5 and there are no nonzero digits to
the right of this 5, then increase the digit in the nth decimal place by 1 only if this
results in an even digit.

The examples in Table 3 illustrate the use of these rules.

Rules for Rounding a Number (with more 
than n Decimal Places) to n Decimal Places

TABLE 3

Rounded to Rounded to
Number One Decimal Place Three Decimal Places

4.3742 4.4 4.374
2.0515 2.1 2.052
2.9925 3.0 2.992

These same rules can be adapted for rounding a result to a specified number of
significant digits. As examples of this, we have

In calculator exercises that ask you to round your answers, it’s important that
you postpone rounding until the final calculation is carried out. For example, sup-
pose that you are required to determine the hypotenuse x of the right triangle in
Figure 1 to two significant digits. Using the Pythagorean theorem, we have

using a calculator and rounding the 
final result to two significant digits

On the other hand, if we first round each of the given lengths to two significant dig-
its, we obtain

This last result is inappropriate, and we can see why as follows. As Table 4 shows,
the maximum possible values for the sides are 1.365 and 2.465, respectively.

 � 2.9   to two significant digits
 x � 2(1.4)2 � (2.5)2

 � 2.8
 x � 2(1.36)2 � (2.46)2

 0.985  rounded to two significant digits is 0.98 � 9.8 � 10�1

 975  rounded to two significant digits is 980 � 9.8 � 102

 2347  rounded to three significant digits is 2350 � 2.35 � 103

 2347  rounded to two significant digits is 2300 � 2.3 � 103

TABLE 4

Range of
Number Measurement

1.36 [1.355, 1.365]
2.46 [2.455, 2.465]

2.46

1.36
x

Figure 1



The proof is by reductio ad absurdum,
and reductio ad absurdum, which
Euclid loved so much, is one of a
mathematician’s finest weapons. 
—G. H. Hardy (1877–1947)

Thus the maximum possible value for the hypotenuse must be

This shows that the value 2.9 is indeed inappropriate, as we stated previously.
An error that is often made by people working with calculators and approxima-

tions is to report a final answer with a greater degree of accuracy than the data war-
rant. Consider, for example, the right triangle in Figure 2. Using the Pythagorean
theorem and a calculator with an eight-digit display, we obtain

This value for h is inappropriate, because common sense tells us that the answer
should be no more accurate than the data used to obtain that answer. In particular,
since the given sides of the triangle apparently were measured only to the nearest
tenth of a centimeter, we certainly should not expect any improvement in accuracy
for the resulting value of the hypotenuse. An appropriate form for the value of h here
would be h � 3.6 cm. In general, for calculator exercises in this text that do not spec-
ify a required number of decimal places or significant digits in the final results, you
should use the following guidelines.

1. For adding and subtracting: Round the final result so that it contains only as
many decimal places as there are in the data with the fewest decimal places.

2. For multiplying and dividing: Round the final result so that it contains only
as many significant digits as there are in the data with the fewest significant
digits.

3. For powers and roots: In computing a power or a root of a real number b, round
the result so that it contains as many significant digits as there are in b.

Guidelines for Computing with Approximations

h � 3.6055513  cm

 � 2.8   to two significant digits
 2(1.365)2 � (2.465)2 � 2.817 . . . calculator display

A-4 Appendix A

3.0 cmh

2.0 cm

Figure 2

IS IRRATIONAL
We will use an indirect proof to show that the square root of 2 is an irrational num-
ber. The strategy is as follows:

1. We suppose that is a rational number.
2. Using (1) and the usual rules of logic and algebra, we derive a contradiction.
3. On the basis of the contradiction in (2), we conclude that the supposition in (1) is

untenable; that is, we conclude that is irrational.

In carrying out the proof, we’ll assume that the following three statements are
known:

• If x is an even natural number, then x � 2k for some natural number k.
• Any rational number can be written in the form a�b, where the integers a and b

have no common integral factors other than �1. (In other words, any fraction can
be reduced to lowest terms.)

• If x is a natural number and x2 is even, then x is even.

12

12

12A.2
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Our indirect proof now proceeds as follows. Suppose that is a rational num-
ber. Then we can write

where a and b are natural numbers with (1)
no common factor other than 1

Square both sides of equation (1) to obtain the equation

or

(2)

Since the left-hand side of equation (2) is an even number, the right-hand side must
also be even. But if a2 is even, then a is even, and so

Using this last equation to substitute for a in equation (2), we have

or

Hence (reasoning as before) b2 is even, and therefore b is even. But then we have
that both b and a are even, contrary to our hypothesis that b and a have no common
factor other than 1. We conclude from this that equation (1) cannot hold; that is,
there is no rational number a�b such that � a�b. Thus is irrational, as we
wished to prove.

1212

b2 � 2k2

2b2 � (2k)2 � 4k2

a � 2k   for some natural number k

2b2 � a2

2 �
a2

b2

 12 �
a

b

12

THE COMPLEX NUMBER SYSTEM
In elementary algebra, complex numbers appear as expressions a � bi, where a and b
are ordinary real numbers and i2 � �1. . . . Complex numbers are manipulated by the
usual rules of algebra, with the convention that i2 is to be replaced by �1 whenever it
occurs. —Ralph Boas in Invitation to Complex Analysis (New York: Random House, 1987)

The preceding quotation from Professor Boas summarizes the basic approach we
will follow in this section. Near the end of the section, after you’ve become accus-
tomed to working with complex numbers, we’ll present a formal list of some of the
basic definitions and properties that can be used to develop the subject more rigor-
ously, as is required in more advanced courses.

When we solve equations in this appendix, you’ll see instances in which the real-
number system proves to be inadequate. In particular, since the square of a real num-
ber is never negative, there is no real number x such that x2 � �1. To overcome this
inconvenience, mathematicians extend the real numbers to include solutions to this
equation.* We denote one solution to this equation by the symbol i, so

i2 � �1

A.3
In the following I shall denote the
expression by the letter i so that
ii � �1. —Leonhard Euler in a paper
presented to the Saint Petersburg
Academy in 1777.

1�1

*Extending the real numbers to include a solution to the equation x2 � �1 is analogous to
extending the integers to include a solution to the equation 2x � 1.



EXAMPLE 1 Equality of Complex Numbers

Determine the real numbers c and d such that 10 � 4i � 2c � di.

SOLUTION Equating the real parts of the two complex numbers gives us 2c � 10, and therefore
c � 5. Similarly, equating the imaginary parts yields d � 4. These are the required
values for c and d.

As the next example indicates, addition, subtraction, and multiplication of complex
numbers are carried out by using the usual rules of algebra, with the understanding
(as was mentioned before) that i2 is always to be replaced with �1. (We’ll discuss
division of complex numbers subsequently.)

EXAMPLE 2 Operations with Complex Numbers

Let z � 2 � 5i and w � 3 � 4i. Compute each of the following:

(a) w � z; (b) 3z; (c) w � 3z; (d) zw; (e) wz.

SOLUTION (a) w � z � (3 � 4i) � (2 � 5i) � (3 � 2) � (�4i � 5i) � 5 � i
(b) 3z � 3(2 � 5i) � 6 � 15i
(c) w � 3z � (3 � 4i) � (6 � 15i) � (3 � 6) � (�4i � 15i) � �3 � 19i

A-6 Appendix A

For reasons that are more historical than mathematical, i is referred to as the imagi-
nary unit. This name is unfortunate in a sense, because to an engineer or a mathe-
matician, i is neither less “real” nor less tangible than any real number. Having said
this, however, we do have to admit that i does not belong to the real-number system.

An expression of the form a � bi, where a and b are real numbers, is called a
complex number.* Four examples of complex numbers are:

2 � 3i
4 � (�5)i (usually written 4 � 5i)
1 � i 1also written 1 � i

�

Given a complex number a � bi, we say that a is the real part of a � bi and b is the
imaginary part of a � bi. For example, the real part of 3 � 4i is 3, and the imagi-
nary part is �4. Observe that both the real part and the imaginary part of a complex
number are themselves real numbers.

We define the notion of equality for complex numbers in terms of their real and
imaginary parts. Two complex numbers are said to be equal if their correspond-
ing real and imaginary parts are equal. We can write this definition symbolically as
follows:

a � bi � c � di if and only if a � c and b � d

a also written 
1 � 3i

2
b3

2
 i

1

2

12 212

*The term “complex number” is attributed to Carl Friedrich Gauss (1777–1885). The term
“imaginary number” originated with René Descartes (1596–1650).
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*The term “conjugates” (conjuguées) was introduced by the nineteenth-century French mathemati-
cian A. L. Cauchy in his text Cours d’Analyse Algébrique (Paris: 1821).

Let z � a � bi. The complex conjugate
of z, denoted by is defined by

z � a � bi

z,
EXAMPLES
If z � 3 � 4i, then � 3 � 4i.
If w � 9 � 2i, then � 9 � 2i.w

z

Definition Complex Conjugate

EXAMPLE 3 Computations Involving Conjugates

(a) If z � 6 � 3i, compute z (b) If w � a � bi, compute ww.z.

SOLUTION (a) (b)

Note: The result in part (b) shows that the product of a complex number and its
conjugate is always a nonnegative real number.

Quotients of complex numbers are usually computed by using conjugates.
Suppose, for example, that we wish to compute the quotient

and express the quotient in the form where a and b are real numbers.
To do this, we take the conjugate of the denominator, namely, 3 � 4i, and then 

a � bi,

5 � 2i

3 � 4i

ww � a2 � b2zz � 36 � 9 � 45
ww � a2 � abi � abi � b2i2zz � 36 � 18i � 18i � 9i2
ww � (a � bi)(a � bi)zz � (6 � 3i)(6 � 3i)

(d)

(e)

If you look over the result of part (a) in Example 2, you can see that the sum is
obtained simply by adding the corresponding real and imaginary parts of the given
numbers. Likewise, in part (c) the difference is obtained by subtracting the corre-
sponding real and imaginary parts. In part (d), however, notice that the product is not
obtained in a similar fashion. (Exercise 68 at the end of this section provides some
perspective on this.) Finally, notice that the results in parts (d) and (e) are identical. In
fact, it can be shown that for any two complex numbers z and w, we always have
zw � wz. In other words, just as with real numbers, multiplication of complex num-
bers is commutative. Furthermore, along the same lines, it can be shown that all of the
properties of real numbers listed in Appendix B.6 online continue to hold for complex
numbers. We’ll return to this point at the end of this section and in the exercises.

As background for the discussion of division of complex numbers, we introduce
the notion of a complex conjugate, or simply a conjugate.*

� 6 � 7i � 20(�1) � 26 � 7i
 wz � (3 � 4i)(2 � 5i) � 6 � 15i � 8i � 20i2

� 6 � 7i � 20(�1) � 26 � 7i
 zw � (2 � 5i)(3 � 4i) � 6 � 8i � 15i � 20i2



EXAMPLE 4 Using Conjugates to Carry Out Division

Let z � 3 � 4i and w � 1 � 2i. Compute each of the following quotients, and express
your answer in the form where a and b are real numbers.

(a) (b)
z
w

1
z

a � bi,

SOLUTION (a) (b)

�
5(�1 � 2i)

5
� �1 � 2i�

3

25
�

4

25
 i

�
3 � 10i � 8i2

1 � 4i2
�

�5 � 10i

5
�

3 � 4i

9 � 16i2
�

3 � 4i

25

z
w

�
z
w

# w

w
�

3 � 4i

1 � 2i
# 1 � 2i

1 � 2i

1
z

�
1
z
# z

z
�

1

3 � 4i
# 3 � 4i

3 � 4i
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multiply the given fraction by which equals 1. This yields

since 8i2 � �8 and �16i2 � 16

In the box that follows, we summarize our procedure for computing quotients. The
condition w � 0 means that w is any complex number other than 0 � 0i.

Let z and w be two complex numbers with w � 0. Then z�w is computed as follows:

Note: For any nonzero complex number w, is a nonzero real number. So multi-

plying by and “grouping” as gives us a real-number denominator.
zw

ww

w

w

z
w

ww

z
w

�
z
w

# w
w

Procedure for Computing Quotients

 �
7

25
�

26

25
 i  as required

 �
7 � 26i

25

 �
15 � 26i � 8

9 � 16

 
5 � 2i

3 � 4i
�

5 � 2i

3 � 4i
# 3 � 4i

3 � 4i
�

15 � 26i � 8i2

9 � 16i2

3 � 4i

3 � 4i
,

We began this section by denoting a root of the equation x2 � �1 by x � i. So we
have i2 � �1. It follows that

(�i)2 � [(�1)i]2 � (�1)2i2 � 1(�1) � �1

So x � �i is also a root of the equation x2 � �1. We call the first of these two roots
the principal square root of �1 and denote it by . The second root is denoted by

. So we write

i � 1�1  and  �i � �1�1

�1�1
1�1
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EXAMPLE 5 Calculations Involving the Imaginary Unit i

Simplify:

(a) i4; (b) i101; (c) ; (d) .1�9 1�41�12 � 1�27

SOLUTION (a) We make use of the basic property for i, which is i2 � �1. Thus we have

(The result, i4 � 1, is worth remembering.)
(b) i101 � i100i � (i4)25i � 125i � i

(c)

(d) � (3i)(2i) � 6i2 � �6

Note: 	 (Why?)1361�41�9

1�41�9

 � 213i � 313i � 513i

 � 1413i � 1913i

 1�12 � 1�27 � 1121�1 � 1271�1

i 4 � (i2)2 � (�1)2 � 1

We agree to certain conventions regarding principal square roots and negative
numbers. In dealing with the principal square root of a negative real number, say,

, we write

In other words, we are allowing the use of the rule � when a is �1 and
b is a positive real number. However, the rule � cannot be used when
both a and b are negative. If that were allowed, we could write

and then

� � � (i)(i)

Consequently,

which is a contradiction. Again, the point here is that the rule � cannot
be applied when both a and b are negative.

1b1a1ab

1 � i2  and therefore  1 � �1

1�11�11(�1)(�1)11

1 � (�1)(�1)

1b1a1ab
1b1a1ab

1�5 � 1(�1)(5) � 1�115 � i15

1�5

We have developed the complex-number system in this section for the same
reason that complex numbers were developed historically: They’re needed to solve
polynomial equations. Consider, for example, the quadratic equation

where a, b, and c are real numbers and a 	 0. In Section 2.1 we noted that if the dis-
criminant b2 � 4ac is negative, then the equation has no real roots. As the next ex-
ample indicates, such equations do have two complex-number roots. Furthermore
(assuming that the coefficients a, b, and c in the equation are real numbers), these
roots always turn out to be complex conjugates.

ax2 � bx � c � 0



Definition
Addition, Subtraction, Multiplication, 
and Division for Complex Numbers

Let z � a � bi and w � c � di. Then z � w, z � w, and zw are defined as follows:

1. z � w � (a � bi) � (c � di) � (a � c) � (b � d)i
2. z � w � (a � bi) � (c � di) � (a � c) � (b � d)i
3. zw � (a � bi)(c � di) � (ac � bd) � (ad � bc)i

Furthermore, if w 	 0, then z�w is defined as follows:

4.
z
w

�
a � bi

c � di
# c � di

c � di
� a ac � bd

c2 � d2 b � a bc � ad

c2 � d2 b i

PROPERTY SUMMARY Properties of Complex Conjugates

If z � a � bi, the complex conjugate, � a � bi, has the following properties.

1. � z
2. z � if and only if z is a real number
3. � � � �

4. � � , the latter for w 	 0

5. � for each natural number nzn(z)n

a z
w
bz

w
w;zzw

wzz � ww;zz � w
z

z

z
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EXAMPLE 6 A Quadratic Equation with Complex Roots

Solve the quadratic equation x2 � 4x � 6 � 0.

SOLUTION We use the quadratic formula with a � 1, b � �4, and c � 6:

In summary, the two roots of the quadratic equation are the complex numbers
2 � and 2 � These numbers are complex conjugates.

Note: When you write answers such as these on paper, be sure you make it clear that
the symbol i is outside (not inside) the radical sign. To emphasize this distinction,
sometimes it’s helpful to write the roots in the form 2 � i and 2 � i .

Near the beginning of this section we mentioned that we would eventually pre-
sent a formal list of some of the basic definitions and properties that can be used to
develop the subject more rigorously. These are given in the two boxes that follow. As
you’ll see in some of the exercises, these definitions and properties are indeed con-
sistent with our work in this section and with the properties of real numbers listed in
Appendix B.6 online.

1212

12i.12i

 � 2 � 12i

 �
4 � 1�8

2
�

4 � 1212 2 i
2

�
2(2 � 12i)

2

 x �
�b � 2b2 � 4ac

2a
�

4 � 116 � 4(1)(6)

2(1)
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22. zw � zw1 23. z2 � w2 24. (z � w)(z � w)
25. (zw)2 26. z2w2 27. z3

28. z4 29. z�w 30. w�z

31. 32. 33.
34. �z 35. (w � )�(2i) 36. (w � )�2

For Exercises 37–40, compute each quotient.

37. 38. 39. 40.

In Exercises 41–44, use the fact that i4 � 1 to simplify each
expression [as in Example 5(b)].

41. i17 42. i36 43. i26 44. i83

In Exercises 45–52, simplify each expression.

45. � �
46. � i
47. � 3 �
48.
49. 1 � 50. i �
51. 3 � 4 52. 64 �

In Exercises 53–60:

(a) Compute the discriminant of the quadratic and note that it
is negative (and therefore the equation has no real-number
roots).

(b) Use the quadratic formula to obtain the two complex-
conjugate roots of each equation.

53. x2 � x � 1 � 0 54. x2 � 6x � 12 � 0
55. 5z2 � 2z � 2 � 0 56. �10z2 � 4z � 2 � 0
57. 2z2 � 3z � 4 � 0 58. 3z2 � 7z � 5 � 0
59. � � 1 � 0 60. � 2z � � 0
61. (a) Evaluate the expression x2 � 4x � 6 when

x � 2 � i
(b) How does your result in part (a) relate to Example 6 in

this section?
62. (a) Find the roots of the quadratic equation x2 � 2x � 5 � 0.

(b) Compute the product of the two roots that you obtained
in part (a).

(c) Check your answer in part (b) by applying the theorem
in the box on page 85 in Chapter 2.

63. Let z � a � bi and w � c � di. Compute each of the fol-
lowing quantities, and then check that your results agree
with the definitions in the first box on page A.10.
(a) z � w (b) z � w (c) zw (d)

z

w

12.

9
4

1
2 z21

4 z1
6 z2

1�641�641�181�128
1�1001�361�36

1�41�4
1�801�451�20

1�25
1�41�91�49

i � i2

i3 � i4
1

i

1 � i13

1 � i13

i

5 � i

wwz
z�z(z�w)z�w

A
In any computation involving complex numbers, express your
answer in the form where a and b are real numbers.
If a, or b, or both are zero, then simplify further.

1. Complete the table.

i2 i3 i4 i5 i6 i7 i8

�1

2. Simplify the following expression, and write the answer in
the form a � bi.

For Exercises 3 and 4, specify the real and imaginary parts of
each complex number.

3. (a) 4 � 5i 4. (a) �2 � i
(b) 4 � 5i (b) 1 � 51�3i
(c) � i (c) �3i
(d) 16i (d) 0

5. Determine the real numbers c and d such that

6. Determine the real numbers a and b such that

7. Simplify each of the following.
(a) (5 � 6i) � (9 � 2i) (b) (5 � 6i) � (9 � 2i)

8. If z � 1 � 4i, compute z � 10i.
9. Compute each of the following.

(a) (3 � 4i)(5 � i) (c)

(b) (5 � i)(3 � 4i) (d)

10. Compute each of the following.

(a) (2 � 7i)(2 � 7i) (c)

(b) (d)

In Exercises 11–36, evaluate each expression using the values
z � 2 � 3i, w � 9 � 4i, and w1 � �7 � i.

11. (a) z � w 12. (a) �
(b) � w (b)
(c) z � (c) w �

13. (z � w) � w1 14. z � (w � w1) 15. zw
16. wz 17. z 18. w
19. z(ww1) 20. (zw)w1 21. z(w � w1)

wz

wz
(z � w)z

wz

1

2 � 7i
# (�1 � 3i)

�1 � 3i

2 � 7i

1

2 � 7i

5 � i

3 � 4i

3 � 4i

5 � i

27 � 64i � a3 � b3i

8 � 3i � 2c � di

1
2

17

1 � 3i � 5i2 � 4 � 2i � i3

a � bi,

EXERCISE SET A.3



70. Let z � a � bi.
(a) Show that � (b) Show that �

In Exercises 71–74, find all roots of each equation. Hints: First,
factor by grouping. In Exercises 71 and 72 each equation has
three roots; in Exercise 73 the equation has six roots; in
Exercise 74 there are five roots.

71. x3 � 3x2 � 4x � 12 � 0
72. 2x3 � 4x2 � 3x � 6 � 0
73. x6 � 9x4 � 16x2 � 144 � 0
74. x5 � 4x3 � 8x2 � 32 � 0

C
75. Let a and b be real numbers. Find the real and imaginary

parts of the quantity

76. Find the real and imaginary parts of the quantity

77. Find the real part of �

78. (a) Let a �

and let b�

Show that the square of the complex number a � bi is
a � bi.

(b) Use the result in part (a) to find a complex number z
such that z2 � i.

(c) Use the result in part (a) to find a complex number z
such that z2 � �7 � 24i.

One of the basic properties of real numbers is that if a product
is equal to zero, then at least one of the factors is zero.
Exercises 79 and 80 show that this property also holds for com-
plex numbers. For Exercises 79 and 80, assume that zw � 0,
where z � a � bi and w � c � di.

79. If a 	 0, prove that w � 0. (That is, prove that c � d � 0.)
80. If b 	 0, prove that w � 0. (That is, prove that c � d � 0.)

a2a2 � b2 � a

2
b 1�2

.

a2a2 � b2 � a

2
b 1�2

(a � bi)2

a � bi
.

(a � bi)2

a � bi

a a � bi

a � bi
b 2

� a a � bi

a � bi
b 2

a � bi

a � bi
�

a � bi

a � bi

z3.(z)3z2.(z)2
B
64. Show that � � �1.

65. Let z � and w � Verify the follow-

ing statements.
(a) z3 � 1 and w3 � 1
(b) zw � 1
(c) z � w2 and w � z2

(d) (1 � z � z2)(1 � z � z2) � 4
66. Let z � a � bi and w � c � di.

(a) Show that � z.
(b) Show that � �

67. Show that the complex number 0 (�0 � 0i) has the follow-
ing properties.
(a) 0 � z � z and z � 0 � z, for all complex numbers z.

Hint: Let z � a � bi.
(b) 0 � z � 0 and z � 0 � 0, for all complex numbers z.

68. This exercise indicates one of the reasons why multipli-
cation of complex numbers is not carried out simply by
multiplying the corresponding real and imaginary parts 
of the numbers. (Recall that addition and subtraction are
carried out in this manner.) Suppose for the moment that
we were to define multiplication in this seemingly less
complicated way:

(*)

(a) Compute (2 � 3i)(5 � 4i), assuming that multiplica-
tion is defined by (*).

(b) Still assuming that multiplication is defined by (*), find
two complex numbers z and w such that z 	 0, w 	 0,
but zw � 0 (where 0 denotes the complex number
0 � 0i).

Now notice that the result in part (b) is contrary to our ex-
pectation or desire that the product of two nonzero numbers
be nonzero, as is the case for real numbers. On the other
hand, it can be shown that when multiplication is carried
out as described in the text, then the product of two com-
plex numbers is nonzero if and only if both factors are
nonzero.

69. (a) Show that addition of complex numbers is commuta-
tive. That is, show that z � w � w � z for all com-
plex numbers z and w. Hint: Let z � a � bi and
w � c � di.

(b) Show that multiplication of complex numbers is com-
mutative. That is, show that zw � wz for all complex
numbers z and w.

(a � bi)(c � di) � ac � (bd)i

w.z(z � w)
z

�1 � i13

2
.

�1 � i13

2

a�1 � i13

2
b 2a�1 � i13

2
b 2
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25.

27.

29.

31. False 33. True 35. False
37. False 39. True
41. 2 � x � 5

43. 1 � x � 4

45. 0 � x � 3

47. �3 � x � q

49. �1 � x � q

51. �q � x � 1

53. �q � x � p

]
π

(
1

[
–1

(
–3

)[
0 3

][
1 4

)(
2 5

π0 3π2π

2π+1

π
3

0 3π2ππ

0_π 2ππ

_1

55. (a) one decimal place (b) two
decimal places (c) six decimal places
(d) nine decimal places
57. (a) a � , b �

(b) a � , b �

59. (a) 21�2 � (b) 1 22 � 2

Exercise Set 1.2
1. 3 3. 6 5. 2 7. 0 9. 0
11. 17 13. 1 15. 0 17. 25
19. �1 21. 0 23. 3 25. � 2
27. x � 3 29. t2 � 1 31. � 4
33. �2x � 7 35. 1 37. 3x � 11
39. x � 1 � 41. x � 1 �

43. y � 4 � 1 45. y � 3

47. x2 � a2 � M
49.

51.

53.

55.

57.

59.

61. (a)

)(
1 3

] [
3 7

)(
_11

6
7
6

][
–1 7

)(
2 8
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–4 4
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CHAPTER 1
Exercise Set 1.1
1. (a) integer, rational number
(b) rational number 3. (a) natural
number, integer, rational number
(b) rational number 5. (a) rational
number (b) rational number
7. irrational number 9. irrational
number
11.

13.

15.

17.

19.

21.

23.

π0 3π2π

π
6

π0 3π2π

π
2

3210 4 5 6

1 +
2

2

3210 4

2 + 

5 6

3

3210 4 5 6

2 − 1

3210 4 5 6

1 + 2

0 1 2 3 4 5 6
11
4

A-13
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A-14 Answers to Selected Exercises

3. (a)

(b) 6 square units
5. (a) 5 (b) 13 7. (a) 10 (b) 9
9. 4 11. (a) 14, 2 is farther from the
origin (b) (�6, 7) is farther from the
origin 13. (a) is a right triangle
(b) is a right triangle (c) not a right
triangle 15. area � 0; the three points
are collinear 17. (a) (6, 5) (b) 1 2
(c) (1, �4) 19. (a) (1, 1) (b)
21. (a)

(b) $0.99 billion (c) 10% error
23. (a)

300 million host
computers
(b)

15 thousand host 
computers
(c) 2005: 6% error; 1986: 
195% error

t 1985 1987
n 2 28

t 2003 2007
n 17 44

D

t

1

0.5

0

1.5

2

2.5

3

3.5

0

19
92

19
88

19
96

20
00

20
04

20
08

D
ol

la
r 

co
st

 o
f 

T
V

 b
ro

ad
ca

st
ri

gh
ts

 (
bi

lli
on

s)

Year

134

1
2, �

3
2

1
2

1 3 5

1

3

5

y

x
P Q

R

25. (a)

(b) both are 1 2 (c) The diagonals of
a parallelogram bisect each other.
27. a � ; b � ; 
c � � 2; d � ; e � ; 
f � ; g � � 2

29. (b) both are 

Exercise Set 1.5
1. does not lie on the graph
3. does not lie on the graph 5. lies on
the graph 7. (a) y � x � 1;

(b)

9. x-intercept: 4; y-intercept: 3

1 3

_2

2

y

x

3x+4y=12

_6 _2 2 4 6

_6

_4

_2

2

4

6 2x-3y=_3

y

x

x �6 �3 0 3 6
y �3 �1 1 3 5

2
3

a a � b

2
, 

c

2
b

121817
161514

1312

0, 72

–3 3 7

–4

8

y

x

C(7, 8)

B(4, 3)

A(–7, –1)

D(–4, 4)

(b)

(c) The interval in part (b) does not
include 2.

Exercise Set 1.3
1. is a solution 3. not a solution
5. is a solution 7. x � �1
9. m � 4 11. t � 14 13. y � �15
15. x � 3 17. x � 8 19. no solution
21. x � 23. (a) x �
(b) x � (c) no solution
25. x � 3 or x � 2 27. t � or 
t � �1 29. x � �8 or x � 5
31. x � or x � 8 33. x �

35. x � � �1.17, 1.92

37. x � � �2.39, �0.28

39. x � � 0.32, 3.15
41. x � or x � 43. y � �5

45. x � � 47. (a) x � �89 or 
x � �67 (b) y � or y �

49. 51. x � 1

53. 55.

57. x � 1 or x � �1

59.

61. x � b 63.

65. 67.

69. x � or x � �4 71. x � or 

x � 73. no solution

Exercise Set 1.4
1.

–6 3 6

–6

–3

3

6

y

x

(5, 2)

(–4, 5)

(–4, 0)

(–1, –1)

(5,–2)

1
2

1
3

5
2

r �
d

1 � dt
h �

S � 2pr2

2pr

x �
a � b

2

x �
a2 � ab � b2

a � b

x �
2ab

b � a
x �

1

a � b

x �
b � 1

a

13
24�1

6

1
4 5

�1
3�5

8

13 � 12

�4 � 110

3

3 � 3117

8

�15�1
3

�4
3

� 2
11

� 5
11�16

9

))((
1 32



27. (a)

(b) �1.6, 0, 1.6

(c) 0, � � �1.6
29. (a)

(b) �1.7 (c) � �1.7
31. x-intercepts: �1.879, 0.347, 1.532

– 3 – 1 3

– 3

3

y

x

y = x3 − 3x + 1

1
3

�5

_6 _4 _2 2 4 6

_6

_4

_2

2

4

6

2xy-x3-5=0
y

x

25�2

_4 2 4

_6

_4

_2

4

6

y = 2x3 - 5x
y

x

33. x-intercepts: �0.815, 0.875, 5.998

35. (a) The x-intercept is between 
�1 and 0.

(b) [0, 10] (c) Start with a large 
viewing rectangle then zoom in near the
x-intercepts. 37. (a) �20	; this is the
C-intercept of the graph.
(b) C � �17 ; this is the F-intercept of
the graph. 39. (a) � 1.4
(b) � 1.7 (c) � 2.4
41. (a) 500 bacteria (b) 1.5 hours
(c) t � 3.5 hours (d) between t � 3
and t � 4 43. A: x � � 0.894; 
B: x � � �1.095�1

5130

2
515

1613
12

7
9

_10 _5 5 10

_5

5

10

y=x3 +10x+2

y

x

– 1 1
– 1

2

4

y

x

y = x5 − 6x4 + 3

–2 2 4

– 600

– 400

– 200

y

x

y = x5 − 6 x4 + 3

11. x-intercept: 2; y-intercept: �4

13. x-intercept: 1; y-intercept: 1

15. (a) Xmin � �3, Xmax � 3, 
Xscl � 1 and Ymin � �200, 
Ymax � 200, Yscl � 100; 
[�3, 3, 1] by [�200, 200, 100]
(b) Xmin � �1, Xmax � 1.25, 
Xscl � 0.25 and Ymin � �0.2, 
Ymax � 0.1, Yscl � 0.1; 
[�1, 1.25, 0.25] by [�0.2, 0.1, 0.1]
17. (a) x-intercepts: �2, �1; 
y-intercept: 2 (b) no x-intercepts; 
y-intercept: 3

19. (a) x-intercepts: ; 

y-intercept: �1 (b) no x-intercepts; 
y-intercept: 1 21. x-intercepts: 
�1 � 2 � �4.46, 2.46; y-intercept: 0
23. x-intercept: ; y-intercepts: 

�1.46
25. (a)

(b) �0.7, 2.7 (c) 1 � � �0.7, 2.713

_6 _4 _2 4 6

_6

_4

_2

4

6

y=x2-2x-2
y

x

2 � 213 � 5.46,

�8
3

13

�1 � 15

2

– 1 1 3

– 2

2

y

x

x y+ =1

– 2 2 4

– 3

1

y

x

y x= −2 4
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A-16 Answers to Selected Exercises

25. (a) y � 4x � 11

(b)

(c) y �

(d)

(e) y � 4x � 2

–3 3

– 4

2

y

x

y = 4 x − 2

–2 2

–2

2

4

y

x

y = 3
4

3
2

+x

y � 3
4 x � 3

2

1 3 5

3

7

y

x

y = − +x5
6

5

�5
6 x � 5

–2 2 4

–4

2

y

x

y x= −1
2

5
4

y � 1
2 x � 5

4

– 6 3

6

12

y

x

y x= +4 11

27. y � 4 � 0

29. (a) x-intercept: 5; y-intercept: 3;
area � ; perimeter � 8 �
(b) x-intercept: 5; y-intercept: �3;
area � ; perimeter � 8 �
31. (a) neither (b) parallel
(c) perpendicular (d) perpendicular
33. y � ; 2x � 5y � 12 � 0

35. ; 4x � 3y � 16 � 0
37. They appear parallel for each view-
ing rectangle.

39. (a)
(b)

41. (a) y � � 410 (b) 208 units
(c) $183 47. 44.1 square units
49. (a)

8 12

– 8

– 4

4

y

x

P(1, 3)

y x= 1
2

5−

�2
3 P

_8 _4 4 8

_8

_4

8

3x+4y=12

y= x4
3

y

x

y � 4
3x

_8

4 8

_8

_4

4

8

y=_ 0.5x

y-3=_ 0.5 (x+2)

y+4=_0.5 (x-2)

y

x

y � �4
3 x � 16

3

2
5 x � 12

5

13415
2

13415
2

–3 3

2

6

y

x

y = 4

Exercise Set 1.6
1. (a) �2 (b) 3 (c) (d) 3
3. (a) slope � 1

(b) slope � 0

5. (a) ¢x � 5 sec; ¢y � 15 ft; 

� 3 ft/sec (b) ¢x � 15 sec; 

¢y � 45 ft; � 3 ft/sec

(c) ¢x � 25 sec; ¢y � 75 ft; 

� 3 ft/sec 7. (a) ¢x � 10 years; 

¢y � 25,000,000 people
(b) ¢x � 20 years; 
¢y � 50,000,000 people
(c) ¢x � 10 years; 
¢y � 25,000,000 people
9. ¢t � 3 years; 
¢N � �0.119 trillion cigarettes
11. m3 � m2 � m4 � m1

13. not collinear
15. (a) y � �5x � 9
(b) y � 17. (a) y � 2x
(b) y � �2x � 4 (c) y �
19. (a) x � �3 (b) y � 4
21. y-axis 23. (a) y � �4x � 7
(b) y � 2x � 3

2

1
7 x � 11

7

1
3 x � 4

3

¢y

¢x

¢y

¢x

¢y

¢x

– 8 – 4

4

8

y

x

(0, 5)(– 8, 5)
Δ x

– 1
1

– 1

1

y

x

(1, 1)

(–1, –1)   
Δ x

Δ y

�7
3



(c)

3. (a)

(b)

(c)

5. (a)

1

– 1
1 2

AB
___

Reflection of AB
___

y

x

3

– 2

2

– 3

AB
___

Reflection of AB
___

y

x

– 1

– 2 2

– 3
AB
___

Reflection of AB
___

y

x

3

– 2

– 3

AB
___

Reflection of AB
___

y

x

2

4

– 2

– 3

3

AB
___

Reflection of AB
___

y

x

(b)

(c)

7. (a)

(b)

(c)

y

x

y

x

y

x

1 3

– 3 – 1
AB
___

Reflection of AB
___

y

x

1 3– 3 – 1

AB
___

Reflection of AB
___

y

x

(b) y � �2x � 5 (c) (4, �3)
(d) 3
51. (a)

(b) point: (�1, 2)

(c) y � ; y � ; 1 , 22
Exercise Set 1.7
1. (a)

(b)

1

3

1 3– 1– 3

AB
___

Ref
le

ct
io

n 
of

 A
B__

_

y

x

2

4

– 2

– 4

2

AB
___

Reflection of AB
___

y

x

�2
3�3

4 x � 3
2

3
5x � 12

5

A(– 4, 0) B(2, 0)

C (0, 6)

(– 2, 3) (1, 3)

(–1, 0)

y

x

A (– 4, 0) B (2, 0)

C (0, 6)

y

x

15
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A-18 Answers to Selected Exercises

19. x- and y-intercepts: 1; no symmetry

21. x-intercept: 2; no y-intercept; 
symmetric about the x-axis

23. x-intercepts: � �1.69, 

1.19; y-intercept: �4; no symmetry

25. (a) x- and y-intercepts: 2; 
no symmetry

(b) x-intercepts: �2; y-intercept: 2; 
symmetric about the y-axis

 _2

|x|+y=2

2

2

y

x

–2 2

2

4

y

x

x y+ = 2

– 3 2

– 5

3

y

x

y x x= + −2 42

�1 � 133

4

64

– 3

– 1

1

3

y

x

y x2 2 4= −

–1 1 3

2

4

y

x

y x x= − +2 2 1

27. (a)

(b) no symmetry
(c)

(d) no symmetry
29. (a)

(b) no symmetry
(c)

(d) no symmetry
31. (a)

 
_10 10

 _10

10

y

x

x@-x
1

x=1

y=

–3 –1 1 3

2

4

6

8

y

x

y x= 2

– 10 10

– 10

10

y

x

y x= 2

– 2 3 5
– 4

4

8

y

x

y x x= −2 3

– 10 10

10

– 10

y

x

y x x= −2 3

9. x-intercepts: 2 and �2; 
y-intercept: 4; symmetric about 
the y-axis

11. no x- or y-intercepts; symmetric
about the origins

13. x- and y-intercepts: 0; 
symmetric about the y-axis

15. no x- or y-intercepts; 
symmetric about the origin

17. x- and y-intercepts: 0; symmetric
about the y-axis

–3 –1 1 3

3

y

x

y x= 2

– 4 4

– 4

4

y

x

y
x

= − 1
3

– 2 2

– 4

– 2

y

x

y x= − 2

– 4

4

– 4

4

y

x

y
x

= − 1

– 3 3

– 4

– 2

2

y

x

y x= −4 2



(c)

(d) y-axis symmetry
37. (a)

(b) origin symmetry
(c)

(d) origin symmetry
39. (a)

(b) y-axis symmetry

– 10 10

– 10

10

y

x

y x x x= − +4 2 1
4

10

– 2 2

– 4

– 2

2

4

y

x

y x x x x= − − +2 3 5 7

– 10 10

– 10

10

y

x

y x x x x= − − +2 3 5 7

 _3  _1 1 3

2

y

x

y=œ„„|x|

(c)

(d) no symmetry 41. center: (1, 5);
radius: 13; (6, �7) lies on the circle
43. center: (�8, 5); radius: ; 
(�5, 2) does not lie on the circle
45. center: (0, 0); radius: ; 
y-intercepts: 47. center: (�4, 3);
radius: 1; no y-intercepts 49. center:
1�3, 2; radius: ; no y-intercepts
51. (a) center: 1 2; radius: 
(b) x-intercepts: �0.88 and 4.88

(c) x � � �0.88, 4.88

53.

– 30 30

– 30

30

y

x

y
x

= − 4

– 5 5

–5

5

y

x

y
x

= − 4

8 � 1133

4

_2 2 4 6

_6

_4

_2

2
y+(x-2)2+( )=3

2
169
16

2
y

x

13
42, �3

2

121
3

�1
4 2

1
4 2

113

– 4 4

– 30

y

x

y x x x= − +4 2 1
4

10

(b) no symmetry
(c)

(d) no symmetry
33. (a)

(b) y-axis symmetry
(c)

(d) no symmetry
35. (a)

(b) y-axis symmetry

 
_10 10

 _10

10

y

x

y=œ„„|x|

– 6 – 2

2 6

– 16

– 8

– 4

y

x

y x x= − −2 0 2 15.

– 10 10

– 10

10

y

x

y x x= − −2 0 2 15.

– 2 2

– 10

10

y

x

y
x x

=
−

1
2

x = 1
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A-20 Answers to Selected Exercises

17. �1 � x

19.

21.

23. (a)

(b)

25. 27.

29. 31. y � 8

33. 35. x � �6, 4

37. x � 10, �1 39.

41. y � �2x � 6
43. y � 45. y � 2x � 8
47. y � �2 49. y � x � 1
51. 9x � 4y � 14 � 0
53. 2x � y � 0 55. 3x � 4y � 0
57. x � y � 1 � 0 and x � 2y � 4 � 0
59. y-axis symmetry 61. y-axis 
symmetry 63. x-axis symmetry
65. x-axis, y-axis, and origin symmetry
67. x-axis symmetry
69.

71.

_4 _3 1 432

1

_1

_2

_3

y=1-|x|

y

x

3 9

– 5

5

y

x

x y= −9 2

1
4 x � 5

2

t �
�1 � 13

2

x � 1
3, �

1
2

t � �11
3

t � �37
11x � 1

3

( )
– 1 9

( ( ))
– 1 94

[]
– 2 0

( )
3 9

– 1

[

73.

75. (a)

(b) intersect at (�3, 0) and (3, 0)

77. (a)

– 6 6

– 6

6

y

x

x y2 2 9− =

– 3 3

– 3

3

y

x

x y2 22 9+ =

x y2 2 9+ =

– 2 2

– 3

3

y

x

x y2 22 9+ =

– 2 2

– 4

4

y

x

y x= − +4 4

y x= +4 4

55. (x � 3)2 � (y � 2)2 � 169
57. (x � 3)2 � (y � 5)2 � 9
59. y � 2 � 61. (a) x-intercepts
for each graph: ; y-intercept for 
y � � 2: �2; y-intercept for 

y � � 2 : 2 (b) on the 

interval , q) (c) The graph of 

y � � 2 can be obtained by

reflecting y � � 2 about the x-axis
for the interval 1�q, . For the interval

, q2, no reflection is necessary.
63. (b)

(c)

Chapter 1 Review Exercises
1. x � 6 � 2 3. a � b � 3
5. x 
 10 7. � 2

9. x4 � x2 � 1
11. (a) �2x � 5 (b) 1 (c) 2x � 5
13. 3 � x � 5

15. �5 � x � 0

– 5 0

)[

( )
3 5

1600
0000

_15.01 _14.99_15.005 _14.995

_0.1

0.1

0.2
x=y2-0.1y-15

_15

y

x

_20 _15 _5 5

_10

_5

5

10

x=y2-0.1y-15

y

x

3 83
8
3 2

3
4 x

00 34x

3 83
00 34 x

3
4x

8
3

119



(c)

83. MA � MB � MC � ; 

all the same 85. (a) (b)
(c) 1 2 87. square units

89. (a) 1 2; they all intersect at the 

same point. (b) ;

they all intersect at the same point.
93. (a)

(b)

(c)

95. 97.
99. (a) (x � 1)2 � (y � 1)2 � 1

(b) : ; : y � � 1; 

: y � �3x � 3 (c) 1 2; 
They intersect in the same point.

8
11, 

9
11CS

�1
4 xBUy � 9

8 xAT

17113�131315�5

1

2– 2

AB
___

Reflection of AB
___

y

x

2

2

– 2

AB
___

Reflection of AB
___

y

x

2

_2

2
 

_2

AB
___

Reflection of AB
___

y

x

a 2a

3
�

2b

3
, 

2c

3
b

5
3, 

11
3

49
6

7
2, �

1
2

�11
31130

2c2 � b2

– 3

– 3

3

3

y

x

x y8 8 9+ =

Chapter 1 Test
1. 1 2. (a) (b) [2, q)

3. x � 5 4. , �1

5. (a) x � �5, 1 (b) x � �2 �

6. 7. (a) ¢N � 777

(b) � 194 stations per year

(c) 11,759 stations
8. (a)

(b) 42.8 cm (c) 18% error
9. y � �8x � 6 10.
11. (3, 9) 12. (a) origin symmetry
(b) y-axis symmetry
(c) x-axis symmetry
13. x-intercept: 5; y-intercept: �3

14. x-intercepts: 1 � ; 
y-intercepts: �2 � 2

15. (a)

y=x#-2x@-9x

62_4_4

_12

_20

8

y

x

– 2 2 4

– 5

– 3

1

y

x

(1, – 2)

( ) ( )x y− + + =1 2 92 2

12
15

3x-5y=15

2 6

_2

y

x

y � 6
5 x � 17

5

7 14 21

10

20

30

40

50

60

70

h (cm)

t (days)

¢N

¢t

x �
de � b

a � ce

15

x � 14
11

1 39
10, 

41
10 2

(b)

(c) no intersection points

79.

81. (a, b)

– 3

– 3

3

3

y

x

x y4 4 9+ =
x y6 6 9+ =

6

– 6

6

y

x

x y3 2 9− =

– 6 6

– 6

6

y

x

x y2 2 9− =

x y2 2 0− =

– 6 6

– 6

6

y

x

x y2 2 0− =
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A-22 Answers to Selected Exercises

25. (a) x-intercepts: �16.367 and 0.367

(b) x � �8 � � �16.3666,
0.3666 27. (a) x-intercept: �2.550

(b) x � � �2.5495
29. sum: �8; product: �20
31. sum: 7; product: 
33. x2 � 14x � 33 � 0
35. x2 � 2x � 1 � 0
37. 4x2 � 8x � 1 � 0
39. and 41. (a) 6 seconds
(b) 1 second (rising) 5 seconds (falling)
43. two real roots 45. two real roots
47. one real root 49. two real roots
51. k � 36 53. k � �2

55. 57.

59.

61. t � 0 or t �

63. (a)

(b) �4 and 4; they are opposites
(c) x � �4, 4 69. k � or k � 2
73. x � 1 or x � 1

2

�10
9

–8 –4 0 4 8

8

12

16

y

x

y x x= + +2 8 16 y x x= − +2 8 16

v0

16

r �
�h � 2h2 � 40

2

�3 � i17

2

�1 � i13

2

15

1512

9
4

�126�2

– 5 – 3 – 1 1

2

4

6

y

x

y x x= + +2 2 26 132

170

– 18 – 10 – 2 2

– 35

– 25

– 15

5

y

x

y x x= + −0 5 8 32.

75. (a)

(b) c � 9 (c) one root: x � 3
(d) c 
 9

Exercise Set 2.2
1. x � 4, 6 3.

5. x � , 5 7. x � 5 9. x � 0, 
11. (a)

(b) x � 2.518

(c) x � � 2.5177

13. (a)

(b) x � �1.414 15. x � 0, 16

– 2 2

– 8

–4

2

y

x

y x x= + −4 2 6

2.2 � 18.04

2

2.4 2.5 2.6

0.6

0.7

0.8

0.9

y

x

y x x= −2 2 2.

y = 0 8.

2

– 2

2

y

x

y x x= −2 2 2.

y = 0 8.

4

4
5�10

3

x � �11
2 , �13

2

1 2 4 5

_2

_1

1

2

3

y

x

c=9c=8

c=10

(b) x-intercepts: �2.2, 0, 4.2
(c) x-intercepts: 0, 
1 � � �2.2, 4.2 16. yes
17. (a)

(b)

(c)

18. square units

CHAPTER 2
Exercise Set 2.1
1. x � �4 � 3 � �8.24, 0.24
3. x � �2 � � �3.73, �0.27

5. y � � �0.35, 2.85

7. no real roots 9. s �
11. x � 4 � � 0.84, 7.16

13. x � � �0.85, 1.18

15. y � �4 � � �7.87, �0.13
17. no real roots 19. (a) year 1917
(b) it is reasonable 21. (a) year 1990;
3 years off (b) year 1997; 0 years off
(c) year 2000; 5 years off
23. (a) x-intercepts: 0.268 and 3.732

(b) x � 2 � � 0.2679, 3.732113

y=x@-4x+1

531_1

_3

3

1

y

x

115

1 � 137

6

110

5
2

5 � 141

4

13
12

121
5

1

2

– 2

– 2

AB
___

Reflection of AB
___

y

x

2– 2 – 1

AB
___

Reflection of AB
___

y

x

1

2– 1

y

x

AB
___

Reflection of AB
___

110



(b) (a) no real roots

(b) no real roots
79. (a) x � 0.49 and 18.51

(b) x � � 0.4861, 18.5139

81. (a) x � 19.94

(b) x � 11 � 4 � 19.9443
83. (a) x � 2.78

(b) x � 25
9

2 4

–1

1

y

x

y
x

x
= −

+
+4

3

1

2

15

4 12 20

– 2

2

y

x

y x x= − − − −2 1 2 2

19 � 5113

2

10 20

– 5

5

y

x

y x x= − +5 3

y=x$-5x@+6.3

3210

1

2

3

_2 _1_3

y

x

85. (a) x � �0.24 and 4.24

(b) x � � �0.2361, 

4.2361 89. x � a � b 91.

Exercise Set 2.3
1. (�q, 9) 3. 1�q,
5. 1�q, 7. (1, q) 9. , 14
11. (3.98, 3.998) 13. 3�8, 

15. (a) (b) 1�q, � , q2
17. (a) (�q, 0) � (0, q)
(b) no solution 19. (a) (�q, 3)
(b) (1, 3) (c) (�q, 1) � (3, q)
21. (a) [�4, q) (b) [�4, 6]
(c) (�q, �4) � (6, q)
23. (a) (a � c, q) (b) (a � c, a � c)
(c) (�q, a � c] � [a � c, q)
25. (�10, 14) 27. (�11, 1)
29. (a) (�2h, h) (b) (h, �2h)
31. (a) [a, q) (b) a � 0.29

(c) , q2
33. (a) [a, b] (b) a � 0.13, b � 0.63

_2 _1 1 2

_4

8

12
y =|8x-3|- 2

y

x

3 27

_2 _1 1 2

_2

2

4

y =7x-2

y

x

1 12�1
2 23�1

2, 
1
2 4

7
5 2
3�1

2
5
2 2

�9
2 2

x � �
a

15

a 1 � 15

2
b 3

1 3 5

– 2

– 1

1

y

x

y x x= − −2 3 1 3 1/ /

17. t � 5 19. x � 0, 2, �2
21. t � 0, �3, 1 23. x � 0, , �6

25. x � 27. y � �1, 1

29. t �

31. x � 2 � � 3.71

33. x � �4 � � �5.74

35. (a) x � 3 � � 5.34, 0.66
(b) no solution 37. x � 0, , �2

39. x � �

41. x � �

43. x � �2, 1 45.

47. y � , 4 49.
51. t � �27 53. y � 1 �
55. t � �4 57. x � , �1

59. x � � �1.55
61. x � �1 63. x � 9 65. x � �1
67. 69. x � �2, �3

71. x � �4, 73. no solutions
75. y � 2
77. (a) (a) x � �1.65, �1.51, 1.51, 1.65

(b) x � � �1.5088,

� 1.5088,

� �1.6503,

� 1.6503
C

5 � 20.2

2

�
C

5 � 20.2

2

C

5 � 20.2

2

�
C

5 � 20.2

2

y=x$-5x@+6.2

321
_1

1

3

7

_2 _1_3

y

x

�20
9

x � �1
2

�31 � 22

� 1
27

1
3 7

x � �1
3

3
5

t � 1
3, 

1
4

B

�3 � 117

2

B

�1 � 15

2

�16
1

4 30

1
5 16

1
3 5

�16�3

�13

1
4
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A-24 Answers to Selected Exercises

33. 1�q, � , 22 � (2, q)

35. 1�q, � 53, 6
37. 1�q, � [�2, 2] � , q2
39. (�3, 3) � (4, q)
41. , �2 � 12
43. (�1, 1] 45. 1�q, � [2, q)
47. (�q, �1) � (0, 9)
49. � (�1, 0) � (1, q)
51. (�q, �1) 53. (�1, 0)
55. [�1, 1) � (2, 4]
57. 1�1, 2 � � 11, 2 �
59. (�q, �1) � (1, 2) � (2, q)
61. (a) [0.697, 4.303]

(b) x � � 0.697, 4.303

63. (a) (�0.329, 24.329)

(b) x � 12 � 2 � �0.329, 24.329
65. (a) (�q, �1.554) � (1.554, q)

(b) x � � �1.554�21 � 12

– 2 2

– 2

2

y

x

y x x= − −4 22 1

138

10 20 30

– 40

– 20

10

y

x

y x x= − −0 25 6 22.

5 � 113

2

y=x@-5x+3

4

_1

_4

y

3 5

x

15 215 2

1�7
2, �

4
3 2

3
2 2
12, 114 212 21�114

315�15 4
�1

2�2
3 4

1 13�1
3 2 67. (a) [�2.236, 2.236]

(b) x � � �2.236
69. (a) (�2.236, 2.236)

(b) x � � �2.236
71. [�0.453, q)

73. (�q, 0.544) � (1, q)

– 2 2

1

3

y

x

y x x= − +4 2 1

–2 2

1

3

y

x

y x x= + +3 2 1

�15

–
 

5 5

–5

5

y

x

y
x

x
= +

−

2

2

1

5

�15

– 3 3

– 5

1

y

x

y
x

x
= −

+

2

2

5

1

(c) 35. [�297	, 234	]

37. [�270	, 810	]
39. 1�q, � , q2
43. (a) The positive slope tells us 
that the sulfur dioxide emissions are 
increasing.

(b) year 2008

Exercise Set 2.4
1. (a) (�q, �1] � [4, q) (b) [�1, 4]
3. (a) no solution (b) (�q, q)
5. (a) [�1, 1] � [3, q)
(b) (�q, �1) � (1, 3)
7. The curve is positive on the set 
(�1, 0) � (3, q), which represents the
solution set for the inequality.

9. (�3, 2) 11. (�q, 2) � (9, q)
13. (�q, 4] � [5, q)
15. (�q, �4] � [4, q)
17. no solution 19. (�7, �6) � (0, q)
21. (�q, q)
23. �

25.

27. 34 � , 4 �
29. [�4, �3] � [1, q)
31. (�q, �6) � (�5, �4)

114 4114

a�1 � 15

2
, q b

a�q, 
�1 � 15

2
b �

1�2
3, 0 21�q, �3

4 2

– 2 2 4

– 8

– 4

2

y

x

y x x x= − −3 22 3

y=1.84t+14.8

5 10 15 20 25

20

40

60

0

y

t

1 52�7
2 2

3 18, 58 4



Chapter 2 Test
1. (a) x � �5, 1 (b) x � �2 �

2. x � �2, 3. x � �2, 2

4. x � , 1 5. �4

6. x2 � 4x � 59 � 0

7. x � � �1.817

8. (a) x � �2.83, 2.83

(b) x � �2 � �2.83 9. (�q, 3]

10. 11. , 34 12. [�8, q)

13.

(0, q)

14. 15. (�4, �7) 16. x � 6
is a solution to the original equation.
However, x � �1 results in the statement

� �2, which is false. Thus 
x � �1 is an extraneous solution of 
the original equation, even though it is a
solution to the subsequent equation 
x2 � 5x � 6 � 0.

CHAPTER 3
Exercise Set 3.1
1. (a) g(1975) � $2.00
(b) g(1995) � g(1975) � $2.25; 
The minimum wage increased $2.25
from 1975 to 1995. 3. (a) range
(b) h(Mars) � 2 (c) h(Neptune);
Neptune has more moons than does
Earth. 5. (a) f and g (b) range of f:
{1, 2, 3}; range of g: {2, 3} 7. (a) g
(b) range of g: {i, j} 9. (a) (�q, q)
(b) 1�q, 2 � 1 , q2 (c) 1�q, 4
(d) (�q,  q) 11. (a) (�q, q)
(b) (�q, �3) � (�3, 3) � (3, q)
(c) (�q, �3] � [3, q) (d) (�q, q)

1
5

1
5

1
5

14

3�3
2, 

3
2 4

a�1, 
�3 � 13

3
d �

a�2, 
�3 � 13

3
d �

3 731 27
10, 

31
10 2
12

_6 _4 2 4 6

_6

_2

2

4

6

y=2x4/3-x2/3-6
y

x

�
B

3 � 113

2

�1
3

�13

15
13. (a) (�q, q)
(b) (�q, 3) � (3, 5) � (5, q)
(c) (�q, 3] � [5, q) (d) (�q, q)
15. (a) (�q, �3) � (�3, q)
(b) (�q, �3) � [2, q)
(c) (�q, �3) � (�3, q)
17. domain: (�q, q); range: (�q, q)
19. domain: (�q, q); range: (�q, q)
21. domain: (�q, 6) � (6, q); 
range: 1�q, 2 � 1 , q2
23. (a) domain: (�q, 5) � (5, q);
range: (�q, 1) � (1, q)
(b) domain: 1�q, 2 � 1 , q2;
range: (�q, 1) � (1, q)
25. domain: (�q, q); range: [4, q)
27. (a) y � (x � 3)2 (b) y � x2 � 3
(c) y � (3x)2 (d) y � 3x2

29. (a) �1 (b) 1 (c) 5 (d)
(e) z2 � 3z � 1 (f) x2 � x � 1
(g) a2 � a � 1 (h) x2 � 3x � 1
(i) 1 (j) 4 � 3 (k) 1 �
(l) 2 31. (a) 12x2 (b) 6x2

(c) 3x4 (d) 9x4 (e) (f)

33. (a) �3 (b)
(c) �2x2 � 4x � 1
(d) 1 � 2x2 � 4xh � 2h2

35. (a) 2 (b) 2 (c) 2
37. (a) x � �2, 8 (b) no real 
solutions (c) x � 3
39. 1041 tee shirts per month
41. first model: 124 sales; second
model: 100 sales 43. (a) 2x2 � 5x � 2
(b) 2x2 � 11x � 14 (c) 16x � 12
45. a � 1 and b � 2 47. a � 2
49. (a) f(a) � 0, f(2a) � , 

f(3a) � : no 51. a � and b �
53. z 55. k � �1 57. c � 6 59. 0
61. F is a function, since each person
has exactly one birth mother. G is not a
function, since a person can have more
than one aunt or no aunt.
63. f (8) � 4; f (10) � 4; f (50) � 15
65. (a) G(10) � 5; G(14) � 9
(b) G(100) � 9; G(750) � 0;
G(1000) � 9

Exercise Set 3.2
1. y � � 1.732
3. y � � 0.447 5. (a) yes
(b) no (c) no (d) yes
7. domain: [�4, 2]; range: [�3, 3]
9. domain: [�3, 4]; range: [�2, 2]
11. domain: [�4, �1) � (�1, 4]; 

15�5
13

�3
2

1
2

1
2

1
3

� 7
18

3
2x

23
4x

2

1213

�5
4

1
3 51

3 5

4
3

4
3

75. (�3.079, 0) � (3.079, q)

77. (a) April through September
(b) January, October, November, 
December 79. (�q, �2] � [2, q)
81. (�q, 0) � , q2 83.
85. c � 2

Chapter 2 Review Exercises
1. True 3. False 5. False
7. True 9. False 11. False
13. 15. x � �6, 4
17. x � �1, 10 19. x � , 3

21. 23. x � �6, �8

25. x � 256, 6561 27.

29. x � 10 31. x � 2 33.

35. 37. x � �a

or x � �b 39. (�2, 1) 41.
43. (�q, �2] � [3, q) 45. (�8, 5)
47. 13 � , 3 �
49. (�5, �3) � (3, 5)
51. (�2, q) 53. , 42
55. �

�

�

57. 1�q, 3 � 2 � 33 � 2 , q2
59. x2 � 7x � 12 � 0 61. 7 and 12
63. �1 � cm 65. (16 cm, q)
67. 21, 22, 23

69.

71. The ball thrown from 100 ft.

73. x � 75.
r

1 � 12
12�2

�(a � b) � 2a2 � 6ab � b2

4

12

1212 4
a
B

3 � 15

2
, q ba0, 

B

3 � 15

2
b

a�
B

3 � 15

2
, 0 b

a�q, �
B

3 � 15

2
b

1�5
2

110 2110

3�1
2, 

1
2 4

x �
a � b

ab
, �

2
a

x �
1

2y

x � 1
4

t �
�1 � 13

2

2
3

x � 1
3, �

1
2

1 15, 45 21 12

– 4

4

– 4

4

y

x

y x
x x x= − + −

3 5 7

3 5 7! ! !
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A-26 Answers to Selected Exercises

25.

27. (a)

(b)

29. (a)

(b)

_1 0 1 2

2

3

4

y

x

_1 0 1 2

2

3

4

y

x

1 2

0

1

y

x

1 2

0

1

y

x

–2                                        4

– 4

2

y

x

C x( )

31. (a)

(b)

33. P14, � P(4, 1.587), 
� Q(1.587, 1.587),
� R(1.587, 1.167)

35. � P(1.414, �1.414),
� Q(�1.414, �1.414),

� R(�1.414, 1.414)

37. (a)

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y=x

4
y=x

3

y=x

5

y=x

2

y=x

y

x

R 1�12, 12 2
Q 1�12, �12 2

P 112, �12 2
R 113 4, 19 4 2
Q 113 4, 13 4 2

1
3 4 2

_1 1

1

2

3

g(x)

y

x

_1 1

1

2

f(x)

y

x

range: [�2, 3) 13. domain: [�4, 3];
range: {2} 15. (a) 1 (b) �3 (c) no
(d) x � 2 (e) �1 17. (a) positive
(b) f(�2) � 4; f(1) � 1; f(2) � 2;
f(3) � 0 (c) f(2) (d) �3 (e) 3
(f) domain: [�2, 4]; range: [�2, 4]
19. (a) g(�2) (b) 5 (c) f (2) � g(2)
(d) x � �2 or x � 3 (e) range of f
21. (a)

(b)

(c)

23.

–2 2

– 8

– 4

4

y

x

A(x)

y=x#

42_2_4

_4

4

2

y

x

y=x@

42_2_4

5

7

3

y

x

y=|x |

42_2_4

4

2

y

x



5. (a) [�3, 0] (b) 0 (occurring at 
x � 0 and x � 4)
(c) �3 (occurring at x � 2) (d) [2, 4]
(e) [0, 2] 7. turning points: 
(�1.15, 1.08) and (1.15, �5.08); 
increasing: (�q, �1.15] � [1.15, q);
decreasing: [�1.15, 1.15] 9. 10
11. 0 13. 2 15. (a) 	C/min
(b) 	C/min (c) 	C/min
17. (a) 1984–1990; 1978–1984:
1.8%/year; 1984–1990: 9.7%/year
(b) 1978–1984: 1.7%/year; 
1984–1990: 9.7%/year
19. (a) � 0.1 million tons/year
(b) 0.10 million tons/year
21. (a) 2x � 6 (b) 2x � 2a
23. (a) 4 � h (b) 2x � h
25. (a) 8 (b) 8
27. (a) x � a � 2 (b) 2x � h � 2

29. (a) (b)

31. (a) 2x2 � 2ax � 2a2

(b) 6x2 � 6hx � 2h2 33. 48 ft/sec
35. (a) (64 � 16h) ft/sec
(b)

h(sec) 0.1 0.01 0.001 0.0001 0.00001

Average velocity

on interval 65.6 64.16 64.016 64.0016 64.00016

[2, 2 � h]

(c) 64 ft/sec
37. 0 � x � 100: dollars/item; 

300 � x � 400: dollars/item. 
As more items are produced, the price
should decrease.
39.

Function x2 x3

Domain (�q, q) (�q, q) (�q, q)
Range [0, q) [0, q) (�q, q)
Turning 

point (0, 0) (0, 0) none
Maximum 

value none none none
Minimum 

value 0 0 none
Interval(s) 

where 
increasing (0, q) (0, q) (�q, q)

Interval(s)
where 
decreasing (�q, 0) (�q, 0) none

41. b � 5

0 x 0

� 3
200

� 3
25

¢s

¢t

�
1

x(x � h)
�

1
ax

1
16

1
2

4
3

1
3

45. turning point: (�0.1875, �0.0016);
increase: [�0.1875, q); decrease: 
(�q, �0.1875]

47. (a) They have the same graph.

(b) x � 2 is not in the domain of f (x)
but is in the domain of g(x), so the
equation doesn’t hold for x � 2.

Exercise Set 3.4
1. (a) C (b) F (c) I (d) A
(e) J (f) D (g) B (h) E (i) H
(j) G (k) K
3.

_2 _1 1 2

_6

_4

_2

2

y=x

3

-3

y

x

2 4 6

0

0.2

0.4

0.6

0.8

1

1

f (x)=g(x)=

œ„ 2x+œ„

y

x

_0.3 _0.2 0.1

_0.002

_0.001

0.001

0.002

f (x)=4x

4

+x

3

y

x

(b) As the power on x increases, the
curve “hugs” the x-axis closer, before
rising to the point (1, 1).

Exercise Set 3.3
1. (a) A turning point is a point where
the function changes from increasing
to decreasing or from decreasing to 
increasing. For example, , y � x2, 
and all have turning 
points at x � 0. (b) A maximum value
is a y-value corresponding to the highest
point on the graph. For example, 
is a maximum value for the function

occurring at x � 0.
(c) A minimum value is a 
y-value corresponding to the lowest
point on the graph. For example, y � 0
is a minimum value for the functions 

and . (d) A function 
f is increasing on an interval if 
f(x1) � f(x2) whenever x1 � x2 on the
interval. For example, and 
y � x2 are increasing on [0, q), y � x3 is
increasing on (�q, q), is 
increasing on [0, q), and y �
is increasing on [�1, 0].
(e) A function f is decreasing on an 
interval if f(x1) 
 f(x2) whenever 
x1 � x2 on the interval. For example, 

and y � x2 are decreasing on
(�q, 0], y � 1�x is decreasing on 
either (�q, 0) or (0, q), and 
y � is decreasing on [0, 1].
3. (a) [�1, 1] (b) 1 (occurring at 
x � 1) (c) �1 (occurring at x � 3)
(d) [0, 1] and [3, 4] (e) [1, 3]

21 � x2

y � 0 x 0

21 � x2

y � 1x

y � 0 x 0

y � x2y � 0 x 0

y � 21 � x2

y � 1

y � 21 � x2

y � 0 x 0

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y=x

4

y=x

5

y =x

2

y=x

y=x

3

y=x

100

y

x
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13.

15.

17.

19.

2 4

_4

_2

0

2

4

y=(x-2)

3

y

x

_6 _4 2

_2

4

6

x=_2

y=2

y=

x+2

+2

1

y

x

_3 _1 1 3

_3

_1

1

3

y=œ„„„„„„-x+3

y

x

2 4 6 8
0

1

2

3

y=œ„„„„x-3

y

x

21.

23. (a)

(b)

(c)

25.

2 4 6 8 10

0

2

4

6

y=|x-5|

y

x

4 6 8

_3

_1

1
y=_|4-x|+1

y

x

2 4 6 8

0

2

4

y=|x-4|

y

x

y

_1_2 1

1

2

3

2

y=|2x|

x

_2 0 2

2

6

8

y=_x

3

+4

y

x

5.

7.

9.

11.

2 4 6

_6

_4

_2

0

y=_(x-3)

2

y

x

_2 _1 1 2

_4

_2

y=-x

2

y

x

2 4 6 8

2

4

6

8
y=(x-4)

2

y

x

_8 _6 _4 _2

2

4

6

8
y=(x +4)

2

y

x



37.

39.

41. (a) f (x) reflected across the y-axis

(b) f (x) reflected across the x-axis and
stretched vertically by a factor of 2

_6 _4 _2 2 4 6

_2

2

6

y=_6x+4

f(x)=3x-2

y

x

_6 _4 _2 2 4 6

_2

2

4

6

y=_3x-2
f(x)=3x-2

y

x

1 2 3

0

1
y=œ„„„„„„„„„1-(2-x)

2

y

x

1 2 3
0

1
y=1-œ„„„„„„„„„1-(x-2)

2

y

x

43. (a) f (x) reflected across the y-axis

(b) f (x) displaced down 2 units

45. (a) f (x) reflected across the y-axis

(b) f (x) reflected across the x-axis

_2 _1 2

_6

_2

2

6

f(x)=x

4

-3x+3

y=_x

4

+3x-3

y

x

_2 _1 1 2

_6

_4

_2

6

f(x)=x

4

-3x+3
y=x

4

+3x+3

y

x

_6 _2 2 4 6

_6

_4

2

4

6

 f (x)=x

2

+4x+2

y=x

2

+4x

y

x

_6 _4 _2 2 4 6

_6

_4

_2

2

4

f(x)=x

2

+4x+2 y=x

2

-4x+2

y

x

27.

29.

31.

33.

35.

1 2 3

0

1
y=œ„„„„„„„„„1-(x-2)

2

y

x

_8 _6 _4 2

_5

_3

1

3

5

x=_3

y=_

x+3

1

y

x

_8 _6 _2 2

_5

_3

1

3

5

x=_3

y=

x+3

1

y

x

2 4 6 8 10

_5

_3

_1

1

y=1-|x-5|

y

x

2 4 6 8 10

0

2

4

6

y=|5-x|

y

x
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(b) y � is a reflection of y �
across the x-axis.

51. (a)

(b)

53. (a)

(b)

–
 
4 4

– 4

4

y

x

f x x( ) = 2h x x( ) = −2

–
 
4 4

– 4

4

y

x

f x x( ) = 2

g x x( ) = −2

_4 4

_4

2

4

g(x)=œ„„„„„1+x

2

-3

f(x)=œ„„„„„1+x

2

y

x

_4 _2 0 2 4

2

6

8

f(x)=œ„„„„„

g(x)=œ„„„„„
1+x@+3

1+x

2 

y

x

y=œ„x

y=_œ„x

42

_2

2

y

x

1x�1x 55. (a) R(a � c, b � d)
(b) T(a � c, b � d) (c) The order of
translations do not affect the final point.
57. (a)

(c) Translate to the right 1 unit and 
1 unit up.
59. (a) (�a, b � 2)
(b) (�a, �b � 2) (c) (a � 3, �b)
(d) (a � 1, 1 � b) (e) (�a � 1, 2b)
(f) (�a � 1, �b � 1)

63. (a)

(b)

Exercise Set 3.5
1. (a) x2 � x � 7 (b) �x2 � 5x � 5
(c) 5 3. (a) x2 � 2x � 8
(b) �x2 � 2x � 8 5. (a) 4x � 2
(b) 4x � 2 (c) �4

7. (a)

(b) 9. (a) �6x � 14 (b) �74
(c) �6x � 7 (d) �67
11. (a) ( f � g)(x) � 9x2 � 3x � 6, 
( f � g)(�2) � 36, 
(g � f )(x) � �3x2 � 9x � 14, 
(g � f )(�2) � �16
(b) ( f � g)(x) � , 
( f � g)(�2) � 32, (g � f )(x) � 22x � 1, 
(g � f )(�2) �
(c) ( f � g)(x) � 3x5 � 4x2, 
( f � g)(�2) � �112, 
(g � f )(x) � 3x5 � 4x2, 
(g � f )(�2) � �112
(d) ( f � g)(x) � x, ( f � g)(�2) � �2, 
(g � f )(x) � x, (g � f )(�2) � �2

13. (a) , domain:

(�q, 0) � (0, 1) � (1, q)

�x � 7

6x

17
16

2x2�1

�80
9

�x4 � 22x2 � 4x � 80

2x3 � x2 � 18x � 9

a�3a � 5, �
1

2
b � 5b

y � �
1

2
f a�1

3
x �

5

3
b � 5

_4 _2 2 4 6

_4

_2

2

4

6

y=

x-1

x

y

x

(c) f (x) reflected across the x-axis, then
displaced up 3 units

47. (a)

(b) y � x2 � 1 is a vertical 
displacement down 1 unit from 
y � x2, while y � x2 � 1 is a vertical
displacement up 1 unit (from y � x2).

49. (a)

x

0 0.0 0.0
1 1.0 �1.0
2 1.4 �1.4
3 1.7 �1.7
4 2.0 �2.0
5 2.2 �2.2

�1x1x

–
 

2                                          2

3

5

y

x

y x= −2 1

y x= 2

y x= +2 1

x x2 x2 � 1 x2 � 1

�0 0 �1 1
�1 1 0 2
�2 4 3 5
�3 9 8 10

_2 _1 1

_6

_4

_2

2

6

y=_x

4

+3x

2

f(x)=x

4

-3x+3

y

x



(c) ( f � g)(x) � � 4; domain: 
[0, q); range: [�4, q)

(d) g[ f (x)] � � 3; 
domain: [1, q)
(e)

25. (a)

(b) 800 m2 (c) initially: 707 m2; 
after three hours this area has 
doubled (d) 0 to 2.5: 196.8 m2/hr; 
2.5 to 5: 594.4 m2/hr; faster over 
the interval from t � 2.5 to t � 5
27. (a) (C � f )(t) � 100 � 450t � 25t2

(b) $1225 (c) $1900; no
29. (a) f(x) � , g(x) � 3x � 4; 
F(x) � (f � g)(x) (b) f(x) � , 
g(x) � 2x � 3; G(x) � (f � g)(x)
(c) f(x) � x5, g(x) � ax � b; 
H(x) � ( f � g)(x) (d) f(x) � , 
g(x) � ; T(x) � ( f � g)(x)
31. (a) f(x) � (b � c)(x)
(b) g(x) � (a � d)(x)
(c) h(x) � (c � d)(x)
(d) K(x) � (c � b)(x)
(e) l(x) � (c � a)(x)
(f) m(x) � (a � c)(x)

1x

1
x

0 x 0
1

3 x

t A t A

0 707 3 1402
0.5 737 3.5 1648
1 804 4 1940
1.5 903 4.5 2284
2 1034 5 2685
2.5 1199

84 12

– 3

1

y

x

( )( )g f x x° = − −1 3

1x � 1

10 20

– 3

1

y

x

( )( )f g x x° = − 4

1x 33. (b)

(c) 0.44; (A � f )(6) � � 0.44

35. (a) x1 � 2, x2 � 4, x3 � 8, 
x4 � 16, x5 � 32, x6 � 64
(b) All six iterates are 0. (c) x1 � �2,
x2 � �4, x3 � �8, x4 � �16, x5 � �32,
x6 � �64 37. (a) x1 � �3, 
x2 � �5, x3 � �9, x4 � �17, x5 � �33,
x6 � �65 (b) All six iterates are �1.
(c) x1 � 3, x2 � 7, x3 � 15, x4 � 31, 
x5 � 63, x6 � 127
39. (a) x1 � 0.81, x2 � 0.656, 
x3 � 0.430, x4 � 0.185, x5 � 0.034, 
x6 � 0.001 (b) All six iterates are 1.
(c) x1 � 1.21, x2 � 1.464, x3 � 2.144, 
x4 � 4.595, x5 � 21.114, x6 � 445.792
41. x1 � 0.316, x2 � 0.562, 
x3 � 0.750, x4 � 0.866
43. (a) f(1) � 4, f(2) � 1, f(3) � 10,
f (4) � 2, f(5) � 16, f(6) � 3
(b) f(1) � 4, f(4) � 2, f(2) � 1
(c) f(3) � 10, f(10) � 5, f(5) � 16, 
f (16) � 8, f(8) � 4, f(4) � 2, f(2) � 1
(d) x0 � 2: 2, 1 x0 � 4: 4, 2, 1
x0 � 5: 16, 8, 4, 2, 1 x0 � 6: 6, 3, 10,
5, 16, 8, 4, 2, 1 x0 � 7: 22, 11, 34, 17,
52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

45.

47. a � and b �
49. (a) 2x � 2a � 2 (b) 4x � 4a � 4
51. (a) x1 � 3, x2 � 2.259259259, 
x3 � 1.963308018, x4 � 1.914212754, 
x5 � 1.912932041, x6 � � x10 �
1.912931183; the iterates converge to
1.912931183. (b) � 1.912931183;
they are the same. (c) fifth iterate;
sixth iterate
53. (a) even

(b) even
(c) neither
(d) even
(e) even

1
3 7

p

1
2�1

2

f (x) �
x � 6

4

9p

64

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

(6, 0.44)

y=(A • f )(t)

y

t

(b) (c) (d) ,

domain: 

(e) (f)

15. (a) M(7) � , M[M(7)] � 7
(b) (M � M)(x) � x
(c) (M � M)(7) � 7
17. (a) f [g(3)] � 1 (b) g[ f (3)] � �3
(c) f [h(3)] � �1 (d) (h � g)(2) � 2
(e) h{ f [g(3)]} � 2
(f) (g � f � h � f )(2) � �3

19.

21. (a) f � g is the graph of f displaced
4 units to the left.
(b)

23. (a) domain: [0, q); range: [�3, q)

(b) domain: (�q, q); range: (�q, q)

– 2

– 3

3

y

x

f x x( ) = −1

4

4 8 12

– 3

1

y

x

g x x( ) = − 3

_8 _4 2 4

_6

_4

_2

2f • g

4

6

f

y

x

x �1 0 1 2 3 4
( g � f )( x) 0 0 3 4 2 undef.

x 0 1 2 3 4
( f � g)( x) 1 3 2 undef. 2

13
5

�11
7

1 � 6y

7

(�q, � 1) � (�1, q)

1 � 6x

7
5

12

�t � 7

6t
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13. (a) domain: (�q, �5) � (�5, q);
range: (�q, 0) � (0, q)
(c)

15. (a) domain: (�q, �4) � (�4, q);
range: (�q, 2) � (2, q)
(b) domain: (�q, 2) � (2, q); range:
(�q, �4) � (�4, q)

(c) f �1(x) �

17. (a)

(b) symmetric about y � x; g must
be its own inverse.
(c) g�1(x) � ; g�1(x) � g(x)
19. (a)

2
3 2 � x3

4x � 3

2 � x

–10

5 10

–10

y = –5

5

10

y

x

y = x

y = h–1(x)

y = h(x)

(b)

(c)

(d)

21. (a) (b)
23. 25. not one-to-one
27. not one-to-one

29. , , 

31. is one-to-one

y � 1xy �
1
x

y � x3

t � �1
x � 3x � 5

Exercise Set 3.6
1. (a) h[k(x)] � x for every x in the
domain of k. (b) k[h(x)] � x for
every x in the domain of h.
3. 7 5. (a) 4 (b) �1
(c) (d) t � 1

7. (b) g�1(x) � ; all real numbers

(c) g�1(3) � �1, 

(d)

9. (b) f �1(x) � 3x � 6; both domain
and range are all real numbers.
(d)

11. (b) ; 

(d)

(�q, 0) � (0, q)f �1(x) �
1
x

–6 –4 4 6 8

–6

–4

6

8

y

x

y = x

g(x)

g–1(x)

1

g(3)
�

1

11

x � 5

2

12



(e) 

(f)
39. (a) f �1(x) � x2; domain: [0, q)
(b) (i) f (ii) (iii) f (iv) 
(v) f (vi) (vii) (viii) f
41. A: (b, f �1(b)); B: ( f �1(b), f �1(b)); 
C: ( f �1(b), b); D: ( f (b), b); E: (b, f(b)); 
F: ( f ( f (b)), f (b)) 47. (a) (i) 
(ii) (iii) f �1(x) �
(iv) g�1(x) � 4x � 12 (v)
(vi)
(b)

(c)

49. (b)
(c)
(d) f �1 does not exist

slope � 1
m; y-intercept � �b

m

y � 1
mx � b

m

2x � 10
2x � 11

2

1
2x � 1

2
1
2x � 11

4

1
2x � 5

f�1f�1
f�1f�1

G�1(x) � 2x � 4 � 1

–6 –4 4 6

–6

–4

2

4

6

y

x

G(x) = (x – 1)2 – 4

G–1(x) = √x + 4 + 1

Chapter 3 Review Exercises
1. (a) (�q, 3] (b) (�q, ) � ( , q)

3. yes 5. (a) (b) 1 � 4x � 2h

7. (a) g�1(x) �

(b)

9. (a) x-intercepts: �5 and 1; 
y-intercept: �1

(b) x-intercept: �1; y-intercept: 

11. (a) 5 (b) 7 � 4
13. m(h) � 10 � h
15.

21

4

2

y

x

(_1, _1)

(2, 1)

(1, 4)

y=f(_x)

12

_5

_6

3

y

2

x

x=_2

y= -1

1

x+2

y=_1

�1
2

_4

2

y

2_2_6

x

y=|x+2|-3

7531
_2

3

1

5

y

x

(3, 4)

(7, 5)

(2, _2)

y=f

_1

(x)

1

3x � 5

�
1
ax

1
2

1
2

33. not one-to-one

35. (a) is one-to-one

(b) is one-to-one

(c) not one-to-one

37. (a) domain: (�q, q); 
range: [�4, q). (c) domain: [1, q)
(d) domain: [�4, q); range: [1, q).
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29. x-intercept: 1; no y-intercept

31. no x- or y-intercepts

33. x-intercept: ; y-intercept: �1

35. x-intercept: 0; y-intercept: 0

37. (�q, �3) � (�3, 3) � (3, q)
39. (�q, 4] 41. (�q, �1] � [3, q)
43. (�q, ) � ( , q)

45. (�q, ) � ( , q)
47. a(x) � ( f � g)(x)
49. c(x) � (G � g)(x)
51. A(x) � (g � f � G)(x)
53. C(x) � (g � G � G)(x)

2
5

2
5

1
3

1
3

2 4

2

4

y

x

f f x x° −( ) =1 ( )

– 1 1 3

– 2

1

3

y

x

f x x− = −1 2 1( )

1
2

2

2

4

y

x

x = 1

1 3 5

– 4

– 2

y

x

( )( )f g x x° = − ( )−1
2

55. 12 57. 59. t2 � t
61. x2 � 5x � 6 63. x4 � x2

65. �2x3 � 3x2 � x 67. 4x2 � 2x

69. �2x2 � 2x � 1 71.

73. 2x � h � 1 75. F�1(x) �

77. x 79. 81.

83. negative 85. �1 87. �1
89. (0, �2) and (5, 1)
91. [�6, 0] and [5, 8] 93. 0 at x � 2
95. no 97. x � 4 99. (a) x � 10
(b) x � 0 101. (a) 5 (b) �3 (c) 4
(d) 103. ( f � f )(10) 105. [0, 4]
107. 5 109. (1, 3) � (6, 10)
111. (4, 7) 113. (a) Domain is the set
of all real numbers, range: (�q, 4].
(b) Any range value less than 4 comes
from two domain values. (c) [2, q)
(d) F has domain [2, q) and range 
(�q, 4]

(e) F�1 has domain (�q, 4] and 
range [2, q)

(f) , for x � 4F �1(x) � 2 � 14 � x

–6 –4 4 6

–6

–4

2

4

6

y

x

F(x) = 4 – (x – 2)2

F–1(x) = √4 – x + 2

(4, 2)

(2, 4)

(0, 4)

–6 –4 4 6

–6

–4

2

4

6

y

x

F(x) = 4 – (x – 2)2

(2, 4)

(4, 0)

1
4

22
7

1 � x

2

4x � 3

1 � x

2x � 2

2x � 5

� 9
19

17. (a) Make horizontal scale change by
a factor of 5, reflect in y-axis, shift to the
right units, make a vertical scale
change by a factor of 10, shift up 7 units.

(b)

19. (a) 2.5, 3.25, 3.625
(b) A: f (1) � 2.5; B: f (2.5) � 3.25; 
C: f (3.25) � 3.625 (c) y � 4;
3.813, 3.906, 3.953, 3.977, 3.988, 
3.994, 3.997
21. no x-intercepts; y-intercept: 1

23. x-intercept: �3; y-intercept: 3

25. x-intercepts: �1; y-intercept: 1

27. x-intercept: 0; y-intercept: 0
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units, reflection x-axis, make a vertical

scale change by a factor of , shift up

3 units.

(b)

14.

15. t � 1 16. b � 10

17. (a) � 0.16a � 0.8

(b) �0.16 	C/hr

CHAPTER 4
Exercise Set 4.1
1. f (x) �
3. g(x) �
5. f (x) � x �
7. f (x) � � 2
9. yes
11. V(t) � �2375t � 20000
13. (a) V(t) � �12000t � 60000
(b)

15. (a) $220/unit
(b) $114,000 (c) $114,220
17. (a) $530 (b) $538 (c) $8
(d) $8; they are the same.
19. (a) B is traveling faster
(b) A is farther to the right
(c) t � 8 sec
21. (a) y � 362091.5x � 690,879,017.5
(b) 36,201,000 (c) too low; 1.5%
error 23. (a) y � 3680x � 7,284,416

End of Yearly Accumulated Value
Year Depreciation Depreciation V

0 0 0 60,000
1 12,000 12,000 48,000
2 12,000 24,000 36,000
3 12,000 36,000 24,000
4 12,000 48,000 12,000
5 12,000 60,000 0

1
2 x

7
2

12x

2
3 x � 2

3

¢F

¢t

3

1

y

(_1, 3)

(_5, _2)

_5 _3

_2

x

a 1

4
a �

9

4
, �2b � 3b

1
2

9
4

(b) $64,544 million

(c) 2.4% error
25. (a) y � 4.92x � 35.55
(b) 102.21 cm (c) too high; 
4.2% error (d) 33.33 cm; too low;
8.3% error (e) 377.73 cm; too high;
48.4% error
27. (a)

(b) slope: 2.5; y-intercept: �2
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y=3680x-7284416

y

x

Chapter 3 Test
1. (�q, �1] � [6, q) 2. �

3. (a) 2x2 � 2x � 2

(b) 2x2 � 5x � 2 (c) 54 4.

5. 4x � 2h � 5 6. g�1(x) �

7. 8. (a) x-intercepts: 4 and 2; 
y-intercept: �2

(b) x-intercept: ; y-intercept: 

9. (a) [�3, 1] (b) (�2, 1)
(c) �3 at x � 2 (d) 1 at x � �2
(e) [�2, 2] (f) no 10. (a)
(b) 12 � 7 11. domain: 
(�q, �1) � (�1, q)

12. (a)

(b)

13. (a) Make horizontal scale change 

by a factor of 4, shift to the right 

a 1

3
a � 1, bb
y � f(3x � 3)

y=F(x) 3

y

x

_4

_3

2

13

23
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y

1
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1 23, q 2
1�q, 23 2

Answers to Selected Exercises A-35



A-36 Answers to Selected Exercises

Exercise Set 4.2
1. (a)

(b) 1990: linear � 839.40 billion; 
quadratic � 1120.62 billion 
1998: linear � 1030.03 billion; 
quadratic � 1629.21 billion
(c) 1990: linear � 26.8% error; 
quadratic � 2.2% error.
1998: linear � 35.0% error; 
quadratic � 2.7% error.
The quadratic model produces the
smaller percent error.
3.

5. vertex: (�2, 0); axis of symmetry: 
x � �2; minimum value: 0; 
x-intercept: �2; y-intercept: 4

4

–5 –3 –1 1

6

y

x

y x= +( )2 2

Projected Actual Projection
U.S. U.S. Too High

Population Population or Too %
(millions) (millions) Low? Error

1970 191.12 203.30 too low 6%
2000 258.35 275.60 too low 6%

5 10 15 20 25 30 35
_200

0

200

400

600

800

1000

y=0.7499x2-2.4181x+17.4838

y=23.8288x-113.7508

y

x

7. vertex: (�2, 0); axis of symmetry: 
x � �2; minimum value: 0; 
x-intercept: �2; y-intercept: 8

9. vertex: (�2, 4); axis of symmetry: 
x � �2; maximum value: 4; 
x-intercepts: �2 � ; y-intercept: �4

11. vertex: (2, �4); axis of symmetry: 
x � 2; minimum value: �4; 
x-intercepts: 0 and 4; y-intercept: 0

13. vertex: (0, 1); axis of symmetry: 
x � 0; maximum value: 1; 
x-intercepts: �1; y-intercept: 1

–3

–5

–3

y

x

g x x( ) = −1 2

3

1 3 5

– 4

– 2

2

y

x

f x x x( ) = −2 4

– 6

– 4

4

y

x

y x= − + +2 2 42( )

–5 –3 –1 1

12

6

8

10

y

x

y x= +2 2 2( )

–5 –3 –1 1

(c)

29. (a) 3,853,000; 0.8% error

(b) f �1(x) �

(c) year 2004
31. (a)

(b) 1809 million tons; 5.5% error
(c) 1954 million tons; 6.0% error
33. (a) 4,050,273 (b) no
35. (a) 3:57.6; too low; 0.17% error
(b) 4:11.3; too low; 1.61% error; 
This percent error is much larger, 
since 1911 is not in the data range.
37. (a) A (b) A2 (c) AC

(d) AC 39. (a) (b)

43. f (x) � 3x � 1 45. y � 2.4x � 2
47. y � 2.4x � 0.4
49. y � 0.084x � 37.241
51. (a) f (x) � � 1�1 � and
f(x) � x � 1�1 �

(b) f (x) � � 1�1 �
53. f(x) � x

1
3 2 21

3 2x

12 2�12
12 212x
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x � 71,238,863.429

37,546.068
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27. minimum value: �13

29. maximum value: 
31. (a) minimum value
(b) minimum value: �4.0; x0 � 0.2
(c) minimum value: ; x0 �

33. (a) maximum value
(b) maximum value: 45.4; t0 � 2.2
(c) maximum value: ; t0 �
35. 5 units 37. quadratic
39. neither 41. linear
43. (a) minimum value � 8 at x � 3
(b) minimum value � 4 at x � 3
(c) minimum value � 64 at x �
45. (a) maximum value � 4
(b) maximum value � 2 � 2.5
(c) maximum value � 16

47. neither 49. quadratic

51. The graph of y � 50x2

should be “narrower.”

53. x � a 55.

57. y � (x � 2)2 � 2

59. y � (x � 3)2 � 1 61. b � �21
4

�1
2

x �
a � b

2

y=x@

y=2x@

y=3x@

y=50x@

_3 _1 31

y

x

y=8x@

y=x@

y=2x@

y=3x@

y=8x@

_3 3

8

y

x

1
3 2

�13

20
9

409
9

1
12�97

24

25
8

63. (a)

(b) mh 65. (a) y � 0.015089x2 �
0.086075x � 3.364536; 1989: 3.466 bil-
lion tons; 1996: 3.391 billion tons
(b) 1989: 1.70% error; 1996: 
1.08% error (c) 3.642 billion tons;
9.40% error

Exercise Set 4.3
(Section 4.3 is online at
http://cengage.com/math/
cohen/precalculus7e.)
1. x � 1 3. no fixed points
5. x � �1 and x � 5 7. t � 1
9. t � �3 and t � 4
11. x � 0 and x �

13. u � �2 and u � 1
15. x � 10
17. (a) one fixed point

(b) x � �0.771
19. (a) three fixed points

(b) x � �1.206, �1.103, 2.309

h(x)=x#-3x-3.07

y=x

_3

_6

4

y

3

x

f(x)=x#+3x+2

y=x

_2

_2

2

y

2

x

4
9

x a a � h a � 2h

f(x) ma � b ma � mh � b ma � 2mh � b

15. vertex: (1, �4); axis of symmetry: 
x � 1; minimum value: �4; 
x-intercepts: 3 and �1; y-intercept: �3

17. vertex: (3, 11); axis of symmetry: 
x � 3; maximum value: 11; 
x-intercepts: 3 � ; y-intercept: 2

19. vertex: ; axis of symmetry: 
t � ; maximum value: ; 
t-intercepts: and ; s-intercept: 2

21. x � 1; minimum output
23. x � ; maximum output
25. x � 0; minimum output
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s t t= + −2 3 9 2
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A-38 Answers to Selected Exercises

31. (a)

(b) x � � 0.6774
(c) a � 0.7646, b � 0.5580
(d) 382 fish, 279 fish
33. (a) x0 � c: x1 � d, x2 � c, x3 � d, 
x4 � c, x5 � d, x6 � c; x0 � d: x1 � c, 
x2 � d, x3 � c, x4 � d, x5 � c, x6 � d;
With an initial input of either c or d, 
the sequence of iterates alternates 
between c and d. (b) 0.8, 0.4, 0.8, 0.4,
0.8, 0.4 (c) {0.4, 0.8} (d) x1 � 0.8,
x2 � 0.4

37. (a) a � , b � (b) P , 

Q , R , S

Exercise Set 4.4
1. (a) A(x) � 8x � x2; Dom A � (0, 8)

(b) P(x) � 2x � ; Dom P � (0, q)

3. (a) D(x) � ; 
Dom D � (�q, q)

(b) m(x) � ; 

Dom m � (�q, 0) � (0, q)

5. (a) A(y) � ; Dom A � (0, q)
py2

4

x2 � 1
x

2x4 � 3x2 � 1

170
x

1 67, 37 21 67, 67 21 37, 67 2
1 37, 37 23

7
6
7

21
31

Number of Fish 
after n Breeding 

n xn Seasons

21 0.7633 382
22 0.5601 280
23 0.7638 382
24 0.5592 280
25 0.7641 382
26 0.5587 279

Number of Fish 
after n Breeding 

n xn Seasons

0 0.1 50
1 0.279 140
2 0.6236 312
3 0.7276 364
4 0.6143 307
5 0.7345 367
6 0.6046 302
7 0.7411 371
8 0.5948 297
9 0.7471 374

10 0.5857 293

(b) A(y) � ; Dom A � (0, q)

7. (a) P(x) � 16x � x2; 
Dom P � (�q, q)
(b) S(x) � 2x2 � 32x � 256; 
Dom S � (�q, q)
(c) D(x) � x3 � (16 � x)3 or 
D(x) � (16 � x)3 � x3; 
Dom D � (�q, q)
(d) A(x) � 8; the average does not
depend on what the two numbers are.
9. (a) Dom P � [0, 20]

(b) 8 units; (8, 3) (c) $2; (12, 2)

(d) R(x) � 5x � ; Dom R � [0, 20]

(e) R(2) � $9; R(8) � $24; R(14) � $21
(f) x � 10; $25; p � $2.50
11. (a)

x 1 2 3 4 5 6 7

P(x) 17.87 19.49 20.83 21.86 22.49 22.58 21.75

(b) largest value: 22.58; x � 6

(c) 22.63 13. A(x) � ; 

Dom A � [0, q) 15. R(V) � ; 

Dom R � [0, q) 17. V(S) � ; 
Dom V � [0, q)

19. A(x) � ; 

Dom A � (0, 20)

21. AB(x) � ; 

Dom AB � (0, q)

(x � 4)2x2 � 25

x

1
2 x2400 � x2

S1Sp

6p

1
3 V�2p

13

4
 x2

(10, 25)

5 10 15 20

5

10

15

20

25

R

x

x2

4

p=5-

(12, 2)

(8, 3)

x
4

2 4 6 8 2010 12

1

2

3

4

5

p

x

p2y2

16

21. (a) two fixed points

(b) x � �1.495, 0.798
23. (b) fourth iterate
(c) twelfth iterate
25. (a)

(b) x � � 1.176 (c) eighth iterate
27.

29. (a) x21 � 0.6632, x22 � 0.6477, 
x23 � 0.6617, x24 � 0.6492, x25 � 0.6605
(b)

(c) x1 � 0.0675, x2 � 0.04721, 
x3 � 0.03373, x4 � 0.02445, 
x5 � 0.01789. The iterates are 
approaching 0, which is a fixed point.

n 20 21 22 23 24 25

Number of Fish
after n Breeding 323 332 324 331 325 330
Seasons

From From 
Graph Calculator

x1 0.36 0.36
x2 0.92 0.922
x3 0.29 0.289
x4 0.82 0.822
x5 0.58 0.585
x6 0.97 0.971
x7 0.11 0.113
x8 0.40 0.402
x9 0.96 0.962

20
7

From From 
Graph Calculator

x1 1.7 1.72
x2 0.8 0.796
x3 1.4 1.443
x4 1.0 0.990
x5 1.3 1.307
x6 1.1 1.085
x7 1.2 1.240
x8 1.1 1.132

y=t
s(t)=t$+3t-2

_3

_2

2

_4

31

y

t



(b) one turning point (c) no 
maximum value; minimum value � 2
(b) (a) no

(b) no turning points (c) no 
maximum or minimum values

31. (a) S(x) � x � ; 

Dom S � (0, q) 
minimum value � 3.642

(b) P(x) � �x2 � x; 
Dom P � 10, . The maximum
value � 2.75 since the coefficient 
of x2 is negative and the vertex of the
parabola is 

33. A(x) � ; 

Dom A � (0, 3); yes

35. (a) V(r) � pr3; 

Dom V � (0, q)
(b) S(r) � 2pr2; Dom S � (0, q)

37. (a) r(h) � ; 

Dom r � (3, q)

(b) h(r) � ; Dom h � (3, q)

39. A(x) � ; 

Dom A � (0, 14)

41. A(r) � ; Dom A � 10, 21
4p

r(1 � 4pr)

4

4x2 � p(14 � x)2

16p

3r

2r2 � 9

3h

2h2 � 9

13

3

17
144 x2 � 1

3 x � 1
2

1111�2, 11�4 2 .

111 2
111

S(x)=x+ œ„„11
x

2 4 6

4

2

6

y

x

111
x

321

2

_2

1

_1

0

y

x

g(x)=x- 1
x

43. A(x) � ; Dom A � (0, q)
45. (a) V(x) � 4x3 � 28x2 � 48x; 
Dom V � (0, 3)
(b)

x (in.) 0 0.5 1.0 1.5 2.0 2.5 3.0
Volume
(in.3) 0 17.5 24 22.5 16 7.5 0

(c) x � 1.0
(d)

x (in.) 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Volume
(in.3) 22.5 23.4 24 24.2 24.2 23.9 23.3

(e) x � 1.1

47. (a) A(r) � 32r � 2r2 � ; 

Dom A �

(b) downward; yes

49. (a) y(s) � ; 

Dom y � (0, 1)

(b) s(y) � ; Dom s � (0, q)

(c) z(s) � ; Dom z � (0, 1)

(d) s(z) � ; Dom s � (3, q)

51. (a) m(a) � ; 

Dom m � (�q, 0) � (0, q)

53. A(x) � ; Dom A � (0, 8)

55. A(m) � ; 

Dom m � (�q, 0)

57. ; Dom A � (�q, 0)

Exercise Set 4.5
1. 3. 5. m by m

7. 1250 in.2 9. (a) 18 (b)
(c) (d) 11. (a) 16 ft; 12 ft
(b) 16 ft; 1 sec (c) t � sec or 

t � sec 13. ; 

distance � 15. (a) (b)
17. 125 ft by 250 ft 19. x � 40
21. x � 60; maximum revenue � $900;
p � $15 23. (a) (b) ;
this is the square root.

6113�1336
13

1
4

1
217�2

1 72, 2 � 16
2 21

4

7
4

95
16

47
8

23
4

25
4

25
4

1
2

25
4

A �
(ma � b)2

�2m

2m2 � 8m � 8

m2 � 4m

8x � x2

4

a2 � 1
a

2z2 � 9
z

3

21 � s2

y

2y2 � 9

3s

21 � s2

a0, 
32

p � 2
b

pr2

2

p
3  x223. (a) yes

(b) one turning point
(c) maximum value � 625; 
no minimum value
25. (a) no

(b) one turning point
(c) no maximum value; 
minimum value � 0.87
27. (a) no

(b) one turning point (c) no 
maximum value; minimum 
value � 25.69
29. (a) (a) no
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(b) (1, 1)

51. (a) S � 2 � 6 � y
(b) P(0, 1.73)

53. (a)

55. 2 59. 2

Exercise Set 4.6
1. (a) through (d)
3. (a)

10
0

1

f(x)=x2

g(x)=x3

y

x

–6 –4 2 4 6

–4

4

6

8

y

x

k = –2k = 2

k 
= 

–1k = 1

y = − x2

S(y)=2œ„„„„„9+y@+6-y

4321

15

10

5

S

y

29 � y2

1 2 3

2

4

6

d

x

d x x x x( ) = + − +4 2 6 9

(b) [0, 1]: � 1, � 1; 

30, 4: 
5. no x-intercepts; y-intercept: 5

7. x-intercept: 1; y-intercept: �1

9. x-intercept: 4 � ; 
y-intercept: �66

11. x-intercept: �5; y-intercept: �1250

y=_2(x+5)$

_7 _3
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y=(x-4)#-2
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_2

_1 31

_4

_6

y

x

y=(x-2)@+1

531_1

6

4

2

y

x

¢f

¢x
� 1

2, 
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� 1

4
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2

¢g

¢x

¢f

¢x

25. (a)

(b) 1.5 miles (c) miles
27. (a) 29. ; area �

31. 35. 100 yd by 150 yd
39. (a) p(x) � �2x � 500
(b) maximum revenue � $31,250; 
price � $250 41. t � or 
t � 43. (a) 1x � 22 � 0, 
thus (b) Since
D � �3 � 0, there are no x-intercepts.
Since the graph is a parabola opening up,
and there are no x-intercepts, the y-values
must be positive for all values of x.

45. (a) A(x) � � 2x � 16; 

Dom A � (0, 16) (b)

(c) 47. (a) A � pr2 �

(b) height � 5.42 cm, radius � 5.42 cm

49. (a) d � 2x4 � x2 � 6x � 9

1000
rA(r)=πr@+

4 82 6 10

100

200

300

400

500

A

r

1000
r

p

4

x �
16p

4 � p

4 � p

16p
 x2

1x � 1
2 2 2 � 3

4 � 3
4 
 0

1
2�13
13

49
12

1
2x � 12�2225

2

7
4

y=x@

y=x$+2

20 41 3

2

4

6

8

10

12

14

16

0

y

x



(b)

27. (a) x-intercepts: 2, 1, �1; 
y-intercept: 2

(b)

29. (a) x-intercepts: 0, 2, 1; 
y-intercept: 0

(b)

–1 1
 

3

1

2

y

x

y x x x= − −2 2 1( )( )

1
 

_1 3

y

x

–2 2

– 6

6

y

x

y x x x= − − +( )( )( )2 1 1

2 _2

y

x

–100 100

–500

500

1000

y

x

g(x)f (x)

31. (a) x-intercepts: 0, 5, �1; 
y-intercept: 0

(b)

33. (a) x-intercepts: �3, �2, 2; 
y-intercept: �12

(b)

35. (a) x-intercepts: 0 and �2; 
y-intercept: 0

(b)

–1 1

– 1

1

y

x

y x= 2 3

– 1 1–3

y

x

–4 –
 

2 3

–15

5

y

x

y x x x= + − −3 23 4 12

1 3_1_3

y

x

2 6

10

30

y

x

y x x x= − −3 24 5

2 4_2

y

x

13. x-intercept: �1; y-intercept:

15. x- and y-intercepts: 0

17. A polynomial function of degree 3
can have at most two turning points.
19. As gets very large, our function
should be similar to f(x) � a3x3.
21. As gets very large with x
negative, then the graph should 
resemble 2x5. 23. This graph has a
corner.
25. (a)

–6 12

–24

–12

24

y

x

g(x)f (x)

0 x 0
0 x 0

y=_(x-1)#-1

_2

_4

2

y

_1 2

x

y= (x+1)%1
2

_1 1_3

_2

_4

2

4

y

x

1
2
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(b)

(c)

41. (a) x-intercepts: 0, 4, �2; 
y-intercept: 0

(b)

(c)

–3 1 3

40

80

120

y

x

y x x x= − − +3 4 2( )( )

–1

– 1

1

y

x

y x= 8 3

1

1 3 5–1–3

y

x

2

– 8

– 4

4

y

x

y x x x= + − −( ) ( )(        )1 1 32

– 2 – 1

– 1

1

y

x

y x= +8 1 2( )

43. (a) x-intercepts: 0, 2, �2; 
y-intercept: 0

(b)

(c)

47. x � 0, � �1.193, 4.193

49. x � �6, � �1.732
51. (a)

_2 _1 1

_10

5

N(t)=t7+8t4+16t

y

t

�13

3 � 129

2

–
 

3 1 3

– 120

– 80

– 40

40

y

x

y x x x= − − +4 2 22 3( ) ( )

– 2

– 1

1

y

x

y x= +128 2 3( )

2 3

– 1

1

y

x

y x= − −512 2 2( )

1–3 –1 3

y

x

(c)

37. (a) x-intercepts: 1, 4; 
y-intercept: 128

(b)

(c)

39. (a) x-intercepts: �1, 1, 3; 
y-intercept: 3

2 4–2

y

x

2 4

– 15

– 5

5

y

x

y x x= − −2 1 4 3( )( )

4 5

– 1

1

y

x

y x= −6 4 3( )

2 4

y

x

– 3 1

2

4

6

y

x

y x x= +3 2( )



63. (a) A(x) � x(1 � x4) � x � x5

(b) maximum area: 0.53 square units

67. (d)

69. (b) From part (a), if � 1, then 
xn � xm, so the graph of y � xn lies 
below the graph of y � xm. If 
 1,
then xn 
 xm, so the graph of y � xn lies
above the graph of y � xm. These are
valid, since m and n are even, thus 
ensuring that xm � 0 and xn � 0.
(c) If m and n are positive odd 
integers, from part (a) the graph of 
y � xm lies above the graph of y � xn

for 0 � x � 1, and it lies below the
graph of y � xn for x 
 1. 
If �1 � x � 0, however, xn 
 xm

(since x is negative), and so the 
graph of y � xn lies above the graph 
of y � xm.
If x � 1, then xn � xm, so 
the graph of y � xn lies below the graph
of y � xm.

Exercise Set 4.7
1. (a) domain: (�q, 3) � (3, q); 
x-intercept: �5; y-intercept: ; 
vertical asymptote: x � 3; 
horizontal asymptote: y � 3

4

�5
4

0 x 0
0 x 0

–3 –2 –1 1 2 3

1

2

3

4

5

6

y = x2

y = x4y

x

0.50 1

0

0.5

1

A(x)=x-x5

y

x

(b)

3. (a) domain: (�q, 0) � (0, q); 
x-intercepts: ; no y-intercept; 
vertical asymptote: x � 0; 
horizontal asymptote: y � 3
(b)

5. (a) domain: 
1�q, � � , q2; 
x-intercepts: �3; y-intercept: 9; 
vertical asymptotes: x � and 
x � ; horizontal asymptote: y �
(b)

_6 _3 3 6

4

8

12

y=
x@-9
x@-14

y

x

1
4�1

2

1
2

1 121�1
2, 

1
2 2�1

2 2

_4 _2 2 4

_2

2

4

6

y=
6x@-5x+1

2x@

y

x

1
3, 

1
2

_12 _8 _4 4 8 12

_12

_8

_4

4

8

12

y=
3x+15
4x-12

y

x

(b) t-intercepts: 0.0, �1.6 (c) t � 0,
� �1.587 53. From left to

right: f(x) � x, g(x) � x2, h(x) � x3, 
F(x) � x4, G(x) � x5, H(x) � x6

55. [0, 0.68) 57. no such value
59. (a) (400, 1600)
(b)

61. (a)

(b) , (0, 0)
(c) maximum vertical distance: 

1

1

y

x

y x= 2

y x= 4

1
4

1�12
2 , 14 2

–2 2

–5

–3

1

y

x

D x x x( ) = −2 4

100 200 300 400 500

400

800

1200

1600

2000

y=
x@

100

y=4x

y

x

�1
3 4
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13. no x-intercept; y-intercept: ; 
horizontal asymptote: y � 0; 
vertical asymptote: x � 3

15. x-intercept: 3; y-intercept: 3; 
horizontal asymptote: y � 1; 
vertical asymptote: x � 1

17. x-intercept: ; y-intercept: �2; 
horizontal asymptote: y � 2; 
vertical asymptote: x �

19. no x-intercept; y-intercept: ; 
horizontal asymptote: y � 0; 
vertical asymptote: x � 2

4

8

y

x

y
x

=
−
1

2 2( )

x = 2–2 6

1
4

–4 4
–2

6

y

x

y
x

x
= −

+
4 2

2 1

y = 2

x = − 1
2

�1
2

1
2

–2

–3

3

5

y

x

y
x

x
= −

−
3

1

x = 1

y = 1

6

–4

4

y

x

y
x

= −
−
2

3

x = 3

2
3

21. no x-intercept; y-intercept: 3; 
horizontal asymptote: y � 0; 
vertical asymptote: x � �1

23. no x-intercept; y-intercept: ; 
horizontal asymptote: y � 0; 
vertical asymptote: x � �2

25. no x-intercept; y-intercept: ;
horizontal asymptote: y � 0; 
vertical asymptote: x � �5

27. x- and y-intercepts: 0; 
horizontal asymptote: y � 0; 
vertical asymptotes: x � �2, x � 2

– 4 4

4

y

x

y
x

x x
= −

+ −( )( )2 2

x = −2 x = 2

– 8 –
 
2

– 4

4

y

x

y
x

= −
+
4

5 3( )

x = −5

� 4
125

– 6

2

– 4

4

y

x

y
x

=
+
1

2 3( )

x = −2

1
8

4

8

y

x

y
x

=
+
3

1 2( )

x = −1–4 2

7. (a) domain: 1�q, � , 02 �
(0, 1) � (1, q); x-intercepts: , 2; 
no y-intercept; vertical asymptotes: 
x � , x � 0, x � 1; horizontal 
asymptote: y � 0
(b)

9. no x-intercept; y-intercept: ; 
horizontal asymptote: y � 0; 
vertical asymptote: x � �4

11. no x-intercept; y-intercept: ; 
horizontal asymptote: y � 0; 
vertical asymptote: x � �2

–4

2

–4

4

y

x

y
x

=
+
3

2

x = −2

3
2

– 8

– 2

– 4

4

y

x

y
x

=
+
1

4

x = −4

1
4

_6 3 6

6

y=
3x@-2x-8
2x#+x@-3x

y

x

�3
2

�4
3

1�3
2�3

2 2



33. (a) x-intercepts: 2, 4; no y-intercept;
horizontal asymptote: y � 1; 
vertical asymptotes: x � 0, x � 1

(b) x-intercepts: 2, 4; no y-intercept;
horizontal asymptote: y � 1; 
vertical asymptotes: x � 0, x � 3

35. (a) 500 bacteria (b) 2500 bacteria

37. (a) A(x) � 521 � � 7x
(b)

10 20 30 40

0

100

200

300

400

A(x)=521- -7xx
1500

A

x

1500
x

– 5

–4 6

5

y

x

g x
x x

x x
( )

( )( )

( )
= − −

−
2 4

3

y = 1

x = 3

3 5

– 1

y

x

f x
x x

x x
( )

( )( )

( )
= − −

−
2 4

1

y = 1

x = 1

–5 –3 3 5

– 30

– 20

y

x

f x
x x

x x
( )

( )( )

( )
= − −

−
2 4

1

y = 1

x = 1

(c) width � 14.6 inches, 
length � 34.2 inches
39. crosses at , 12

41. crosses at , 12

43. (a)

(b)

(c)

 –5 5 10

– 10

5

y

x

y
x

x x
= +

− −
( )

( )( )

1

1 3

2

y = 1

x = 3x = 1

1 13

–  2 2 6

– 5

5

10

y

x

y
x x

x x
= − +

− −
( )( )

( )( )

4 2

1 3

y = 1

x = 1 x = 3

1 11
2

29. (a) x-intercept: 0; y-intercept: 0;
horizontal asymptote: y � 0; 
vertical asymptotes: x � 1, x � �3

(b) x-intercept: 0; y-intercept: 0; 
horizontal asymptote: y � 3; 
vertical asymptotes: x � 1, x � �3

31. x-intercepts: , 1; y-intercept: 1;
horizontal asymptote: y � 2; 
vertical asymptotes: x � , x � �1

_6 _4 _2 2 4 6

_6

_4

4

6

y=
4x@+x-5

2x@-3x-5
y

x

5
2

�5
4

–8 4

4

8

y

x

x = 1x = −3

y
x

x x
=

− +
3

1 3

2

( )( )

y = 3

– 5

3

– 4

4

y

x

x = 1x = −3

y
x

x x
=

− +
3

1 3( )( )
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53. (a)

(b)

– 5 5

– 100

100

y

x

f x
x

x
( ) = +5

2

1

y x= 3

_4 4

_8

8

f(x)=
≈

x%+1

y=˛

y

x

f x
x

x
( ) = +5

2

1

–4 4

– 20

20

y

x
y x= 3

–2 2 4

– 8

8

y

x

f x
x

x
( ) = +5

2

1

Note that as increases, the curve f(x)
approaches the curve y � x3.

(c)

x 5 10 50 100 500
d 0.04 0.01 0.0004 0.0001 0.000004

x �5 �10 �50 �100 �500
d 0.04 0.01 0.0004 0.0001 0.000004

(d) As increases, the quantity 1�x2

approaches 0, and thus f(x) � x3 when
gets very large.

55. (a) x � 185.2
(b) x � �185.2

Chapter 4 Review Exercises
1. G(0) � �5 3. $20,000
5.

7. V(t) � �180t � 1000

_2

_9

3

3

6

5

y=(x-4)(x-1)(x+1)
y

x

0 x 0
0 x 0

– 5 5

– 100

100

y

x

f x
x

x
( ) = +5

2

1

y x= 3

0 x 047. low point: 1�3, 

49. (b)

x x � 4

10 14 14.8571
100 104 104.0619
1000 1004 1004.0060

�10 �6 �6.4615
�100 �96 �96.0583
�1000 �996 �996.0600

(c) vertical asymptote: x � 3; 
x-intercepts: �3, 2; y-intercept: 2
(d)

(e) 13 � , 7 � 2 , 
13 � , 7 � 2
51.

– 4 4

– 4

4

y

x

y
x

x
= − +2 1

y x= −

16 216
16 216

– 4 8

10

20

y

x

y
x x

x
= + −

−

2 6

3

y x= + 4

x = 3

x 2 � x � 6
x � 3

– 4 8

– 1

1

2

y

x

y
x

x
=

−( )3 2

x = 3

� 1
12 2



21. vertex: ; no x-intercept; 
y-intercept: 1

23. 5

25. (a) maximum height: ft; 

time: t � sec (b) t � sec

27. b � , �11 29. 1 31. cm2

33. a � 1 35. x � cm � 7.32 cm
39. x-intercepts: �4, 2; y-intercept: �8

41. x-intercepts: �1, 0; y-intercept: 0

2

y=_≈(x+1)

_2

_2 2

y

x

y=(x+4)(x-2)

_5

_6

_10

3

2

y

x

432
59

225
4

17
3

v0

16

v0

32

v2
0

32

f(x)=2≈-2x+1

_2 _1 3210

y

x

8

6

4

2

1 12, 12 2 43. x-intercepts: 0, 2, �2; y-intercept: 0

45. no x-intercept; y-intercept: �1; 
horizontal asymptote: y � 0; 
vertical asymptote: x � 1

47. x-intercept: 2; y-intercept: ; 
horizontal asymptote: y � 1; 
vertical asymptote: x � 3

49. x-intercept: 1; y-intercept: ; 
horizontal asymptote: y � 1; 
vertical asymptote: x � 2

_2

2

6

4

6

y

x

y=
(x-2)@

(x-1)@

x=2

y=1

1
4

4 6

– 4

4

y

x

y
x

x
= −

−
2

3

x = 3

y = 1

2
3

– 2 4

– 5

– 3

y

x

y
x

= −
−
1

1 2( )

x = 1

4

y=x(x-2)(x+2)

_4

_3 3

y

x

9. x-intercept: ; y-intercept: ; 
horizontal asymptote: y � 3; 
vertical asymptote: x � �2

11.

13. P(w) � 2w �

15. f(x) �

17. f(x) �
19. vertex: (�1, �4); 
x-intercepts: 1, �3; y-intercept: �3

2

y=≈+2x-3

_2

_4 2

y

x

�3
4 x � 11

4

3
8 x � 5

2

22144 � p2w2

p

_5

_6

6

7

y=
(x+2)(x-4)

x

x=_2 x=4

y

x

_4_6 2

1

5

7

y=
x+2

3x+5

x=_2

y=3

y

x

5
2�5

3
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(b)

5. turning point: ; 

x-intercepts: ; y-intercept: 6; 

axis of symmetry: x �

6. maximum revenue � $9600; 
price � $240�unit
7. V(t) � �1325t � 14,000
8. x-intercept: 3; y-intercept: 

9. x-intercept: ; y-intercept: �3; 
vertical asymptote: x � �1; 
horizontal asymptote: y � 2

– 4

3

5

y

x

y
x

x
= −

+
2 3

1

x = −1

y = 2

3
2

42

3

y

x

6

(3-x)#

_3

y=_ 1
2

�27
2

2 6

10

20

y

x

y x x= − + +2 7 6

7
2

7 � 173

2

1 72, 73
4 2

642

–3

3

y

x

y
x

= −
−

1

3 2( )

x = 3

10. (a) PQ(x) �
(b) x � 1.1 11. (a) vertical 
asymptotes: x � 3, x � �3; horizontal 
asymptote: y � 1
(b)

(c)

(d)

12. A(w) �
13. (a) As increases in size for x
positive, �x3 increases in the negative
direction, which the pictured function
does not. (b) This graph has four 
turning points, and a polynominal 
function with highest degree term �x3

can have at most two turning points.
14. (a) slope � �9 billion dollars/year

10 2 3 4 5
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0 x 0
1
2 w264 � w2

– 

2

6 6
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y

x

f x
x x

x
( )

( )= −
−

2

92

y = 1

x = −3 x = 3

24 4–2– 

y

x

x = 3x = −3

0.5 1.5 2.5

– 0.2

0.2

y

x

y x= 2
9

y x= − −2
5

2( )

210x2 � 22x � 1751. k � 6 53. �

55. A(m) �

57. A(x) � (1 � x)

Chapter 4 Test
1. L(0) � 2. (a) maximum 
value: 2; increasing: (�q, 1)
(b) t � 0 3. (a) x-intercepts: 3, �4; 
y-intercept: �48

(b)

(c)

4. (a)

2 6

– 3

3

y

x

y
x

= −
−

1

3 3( )

x = 3

– 6 4

– 60

20

y

x

f x x x( ) ( )( )= − +3 4 2

– 4

– 1

1

y

x

y x= − +7 4 2( )

– 4– 4 2 2

y

x

�18
7

21 � x2

m

2
34 � 213, q 2

3�q, 4 � 213 4



21.

23.

25. domain: (�q, q); range: (�q, 1);
x- and y-intercepts: 0; asymptote: y � 1

27. domain: (�q, q); range: (1, q);
no x-intercept; y-intercept: 2; 
asymptote: y � 1

29. domain: (�q, q); range: (0, q);
no x-intercept; y-intercept: ; 
asymptote: y � 0

– 2 2 4

4

8

y

x

y x= −2 1

1
2

– 2 2

6

10

y

x

y x= +−3 1

y = 1

– 3 3

– 7

– 3

y

x

y x= − +2 1

y = 1

– 2 2

4

8

y

x

y x= −3

y x= −2

–2 2

4

8

y

x

y x= 3

y x= 2

31. domain: (�q, q); range: (1, q);
no x-intercept; y-intercept: 4; 
asymptote: y � 1

33. (a) no x-intercept; y-intercept: ;
asymptote: y � 0
(b)

35. (a) x-intercept: �1; y-intercept: �3;
asymptote: y � �4
(b)

37. (a) no x-intercept; y-intercept: ;
asymptote: y � 0
(b)

– 1 1 3

2

4

6

y

x

y x= −10 1

1
10

– 2 2

– 3

4

y

x

y x= −−4 4

y = −4

4

– 8

– 4

y

x

y x= − −3 2

�1
9

–3 –1 1

6

10

y

x

y x= ++3 11

y = 1

(b) y � �8.84x � 316.74; slope is
close (c) 1996: 263.7 billion dollars;
1999: 237.18 billion dollars; 1996: 0.8%
error: 1999: 14.3% error
15. (a) x � 0, (b) no fixed points
16. (a)

(b) x � � �1.4220, 

x � � 0.4220; 

The iterates are approaching 0.4220.
(c) x1 � �0.4, x2 � 0.44, x3 � 0.4064,
x4 � 0.4348, x5 � 0.4109, x6 � 0.4311.
Yes, they are approaching the fixed point
0.4220.

CHAPTER 5
Exercise Set 5.1
1. (a) 109 (b) 1015 3. 125 5. 16
7. 8 9. 11. (a) x � 3
(b) t � (c) y � (d) z �
13. (�q, q) 15. (�q, q)
17.

19.

– 2 2

– 8

8

y

x

y x= 3

y x= −3

– 3 3

4

8

y

x

y x= 2y x= −2

5
2

1
4

3
2

512

�5 � 185

10

�5 � 185

10

x1 x2 x3 x4 x5 x6

From
Graph 0.56 0.28 0.52 0.33 0.49 0.36

From
Calculator 0.56 0.286 0.518 0.332 0.490 0.360

1
2
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(c)

63. (a)

(b) (0.3, 2) is the point of intersection.

Exercise Set 5.2
1. False 3. False 5. True 7. False
9. (a) two (b) two 11. domain:
(�q, q); range: (0, q); no x-intercept;
y-intercept: 1; asymptote: y � 0

13. domain: (�q, q); range: (�q, 0);
no x-intercept; y-intercept: �1; 
asymptote: y � 0

– 2 2

– 8

– 4

y

x

y ex= −

– 2 2

4

8

y

x

y ex=

1

2

6

10

y

x

y x= 10

y = 2

– 100 100

50,000

100,000

y

x

y x x= + −2 2

y x= 2

15. domain: (�q, q); range: (1, q);
no x-intercept; y-intercept: 2; 
asymptote: y � 1

17. domain: (�q, q); range: (1, q);
no x-intercept; y-intercept: e � 1; 
asymptote: y � 1

19. domain: (�q, q); range: (�q, e);
x-intercept: 1; y-intercept: e � 1; 
asymptote: y � e

21. (a) y � ex displaced to the left 
two units

–6 –4 –2 2

2

y

x

y ex=y ex= + 2

– 2 2

– 4

4

y

x

y e ex= −

y e=

–3 –1 1

4

8

y

x

y ex= ++1 1

y = 1

–2 2

4

8

y

x

y ex= + 1

y = 1

39. x � 41. x � , 1

43. (a) [0, 2]: � 1.5, � 1.5; 

[2, 4]: � 6, � 6

(b) [4, 6]: � 10.5, � 24; 

[6, 8]: � 15, � 96

(c) � 24, � 1536

47. (a)

(b) domain: (0, q); range: (�q, q); 
x-intercept: 1; no y-intercept; 
asymptote: x � 0 49. (a) 1.4
(b) 1.41 51. (a) 1.5 (b) 1.52
53. (a) 1.7 (b) 1.73 55. (a) 1.6
(b) 1.62 57. x � 0.3 59. x � 0.7
61. (a)

(b)

– 4 4

6

10

y

x

y x x= + −2 2

y x= 2

–4 4

6

10

y

x

y x x= + −2 2

4 8

4

8
y = x

f (x)

g (x)

y

x

¢g

¢x

¢f

¢x

¢g

¢x

¢f

¢x

¢g

¢x

¢f

¢x

¢g

¢x

¢f

¢x

¢g

¢x

¢f

¢x

3
2�1

3



27. instantaneous rate of change � 6

29.

31. (a) 255 bacteria/hr (b) t � 5 hours:
148 bacteria/hr; t � 5.5 hours: 
245 bacteria/hr 33. P: e�1 � 0.37; 
Q: 1; R: e0.5 � 1.65 35. A, D, E, G
37. B, D, E, G 39. A, D, F, G, H
41. A, D, F, G, H 43. graph: 
e0.1 � 1.1; calculator: e0.1 � 1.105
45. graph: e�0.3 � 0.75; calculator: 
e�0.3 � 0.741 47. graph: e�1 � 0.35; 
calculator: e�1 � 0.368

49. graph: � e�0.5 � 0.6; 

calculator: � e�0.5 � 0.607

51. (a) x � 0.4 (b) ln 1.5 � 0.405
53. (a) x � 0.6 (b) ln 1.8 � 0.588
55. (a) cosh(0) � 1, cosh(1) � 1.54,
cosh(�1) � 1.54 (b) (�q, q)
(c) The graph is symmetric about the
y-axis.

1

1e

1

1e

Interval ¢f�¢x for f(x) � ex

[1.9, 2] 7.031617
[1.99, 2] 7.352234
[1.999, 2] 7.385363
[1.9999, 2] 7.388687
[1.99999, 2] 7.389019
[1.999999, 2] 7.389053
[1.9999999, 2] 7.389056

Interval ¢f�¢x for f(x) � x2

[3, 3.1] 6.1
[3, 3.01] 6.01
[3, 3.001] 6.001
[3, 3.0001] 6.0001
[3, 3.00001] 6.00001

[2.9, 3] 5.9
[2.99, 3] 5.99
[2.999, 3] 5.999
[2.9999, 3] 5.9999
[2.99999, 3] 5.99999

(d)

57. (a) sinh(0) � 0, sinh(1) � 1.18,
sinh(�1) � �1.18 (b) (�q, q)
(c) The graph is symmetric about the
origin.
(d)

(e) three points

59. (a) ep is larger (b) ep is larger

_4 _2 2 4

_4

_2

2

4

y

y=x#

y=sinh(x)

x

_4 _2 2 4

_4

_2

2

4

y=sinh(x)

y

x

_4 _2 0 2 4

4

8

12

y=cosh(x)

y

x

(b) y � ex displaced to the left two
units, then reflected across the y-axis

23. � 1, � 1, � 1.7

25. (a)

(b)

(c)

(d) For x � 0, 2�x � e�x � 3�x by (b),
so 2x 
 ex 
 3x by taking reciprocals.

– 3 – 2 – 1

1

y

x

y x= 2
y x= 3

y ex=

1 2 3

5

10

y

x

y x= 2

y x= 3

y ex=

– 10 10

– 10

10

y

x

y x= 2

y x= 3

y ex=

¢h

¢x

¢g

¢x

¢f

¢x

–4 –2 2 4

2

4

y

x

y e−x + 2=
y ex=
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7. f [ f�1(6)] � 6 9. (a) log3 9 � 2
(b) log10 1000 � 3 (c) log7 343 � 3
(d) log2 11. (a) 25 � 32

(b) 100 � 1 (c) e1�2 �

(d) e�1 �

13.

15. (a) log5 30 is larger. (b) ln 17 is
larger. 17. (a) (b) (c)
19. (a) (b) x � e�2 � 0.14
21. (a) (0, q) (b) 1�q, 2
(c) (�q, 0) � (0, q) (d) (0, q)
(e) (�q, �5) � (5, q) 23. A: (0, 1);
B: (1, 0); C: (4, 2); D: (2, 4)
25. (a) domain: (0, q); range: (�q, q);
x-intercept: 1; no y-intercept; asymptote:
x � 0

(b) domain: (0, q); range: (�q, q); 
x-intercept: 1; no y-intercept; 
asymptote: x � 0

(c) domain: (�q, 0); range: (�q, q);
x-intercept: �1; no y-intercept; 
asymptote: x � 0

– 8 – 4

–3

3

y

x

y = log2 (−x)

4 8

– 3

3

y

x

y = − log2 x

4 8

– 3

3

y

x

y = log2 x

3
4

x � 1
16

3
2�5

2
3
2

x 1 10 102 103 10�1 10�2 10�3

log10 x 0 1 2 3 �1 �2 �3

1
e

1e

12 � 1
2

(d) domain: (�q, 0); range: (�q, q);
x-intercept: �1; no y-intercept; 
asymptote: x � 0

27. domain: (2, q); range: (�q, q); 
x-intercept: 5; no y-intercept; 
asymptote: x � 2

29. domain: (�e, q); range: (�q, q);
x-intercept: �e � 1; y-intercept: 1; 
asymptote: x � �e

31. (a) domain: (�q, q), 
range: (0, q) (c) domain: (0, q),
range: (�q, q)
(d)

–3 –1 1 3

–3

–1

1

3

y

x

f(x) = 3–x

y = x

f –1(x) = –log
3
x

4 8

– 3

3

y

x

y = ln (x + e)

x = − e

4

– 2

2

y

x

x = 2

y = − log3 (x − 2) + 1

 –8 –4

– 3

3

y

x

y = − log2 (−x)

61. (a)

(b) domain: (0, q); range: (�q, q); 
x-intercept: 1; asymptote: x � 0
(c) (i) x-intercept: 1; asymptote: x � 0

(ii) x-intercept: �1; asymptote: x � 0

(iii) x-intercept: 2; asymptote: x � 1

63. (a) [cosh(x)]2 � 2[sinh(x)]2 � 1 is
not an identity; solution: x � 0

Exercise Set 5.3
1. (a) f [g(x)] � x (b) g[ f (x)] � x; f

3. (a) g(x) � log2 x (b) ;

log2(2x) � x (c) ; 
log2(2�p) � �p 5. (a) is one-to-one
(b) not one-to-one (c) is one-to-one

2log299 � 99

2log2x � x

4 8

– 3

3

y

x

y L x= −( )1

x = 1

– 8 – 4

– 3

3

y

x

y L x= −( )

4 8

– 3

3

y

x

y L x= − ( )

4 8

4

8
y = x

f (x)

L (x)

y

x



(c) (0, q)

(d) (�q, 0)

47. The San Salvador quake was 
1.6 times stronger. 49. The second
quake is 10d times stronger.
51. (a) I � 10b�10I0 (b) The power
mower is 109 times more intense.
53. (a) pH � 3.5; acid (b) pH � 0
55. [H�] � 10�5.9 57. D, E, H
59. D, E, H 61. D, E, H 63. D, E, H
65. f�1(x) � �1 � ln x; 
x-intercept: e; asymptote: x � 0

67. x � 1030

69. (a)

Planet x y ln x ln y

Mercury 0.387 0.241 �0.95 �1.42
Venus 0.723 0.615 �0.32 �0.49
Earth 1.000 1.000 0.00 0.00
Mars 1.523 1.881 0.42 0.63
Jupiter 5.202 11.820 1.65 2.47

4 8

– 3

– 1

1

y

x

f x x− = − +1 1( ) ln

_2 _1.5 _1 _0.5

0.2

0.4

0.6

0.8

1

y=10x

y=ex

y

x

1 2

10

20

30

40

50

y=10x

y=ex

y

x

(b) ln y � 1.50 ln x
(d)

y y

Planet x (Calculated) (Observed)

Saturn 009.555 29.54 29.46

Uranus 19.22 84.26 84.01

Neptune 30.11 165.22 164.79

Pluto 39.44 247.69 248.50

71. (a) y � �24.795459 � 7.453496 ln x

(b) y � 0.1086x � 0.8890
(c) logarithmic: 9.529 million; 
linear: 9.971 million (d) logarithmic
model is closer; logarithmic: 0.11% 
error; linear: 4.75% error
73. (a) (1, q) (b) f�1(x) �
75. (a)

(b) (�q, q) (c) no
77. (a) domain: (�q, q), 
range: (�1, 1) (c) domain: (�1, 1),
range: (�q, q)

20 40 60 80 100

_5

_3

_1

1

3

5

g(x)=ln(ln(ln x))

y

x

eex

6050 70 80 90
4

6

8

10

y=_24.795459+7.453496 ln x

y=0.1086x-0.8890

y

x

(e) f �1(x) � �log3x 33. (a) domain:
(�4, q), range: (�q, q) (c) domain: 
(�q, q), range: (�4, q)
(d)

(e) h�1(x) � 2x � 4
35. (a) 4 (b) �1 (c)
37. (a) x � 1.4 (b) x � 1.398
39. (a) x � �1.3 (b) x � �1.266
41. (a) t � �0.3 (b) t � �0.349
43. (a) t � �0.4 (b) t � �0.380
45. (a) (0, 1)

(b) (1, q)

2 4 6 8 10

1

2

3

y=log10 x

y=ln x

y

x

0.2 0.4

y=log10 x

y=ln x

0.6 0.8 1

_5

_4

_3

_2

_1

1

y

x

1
2

–6 –2 4 8 12

–6

4

8

y

x

y = –4

y = x

x = –4

h–1(x) =  2x – 4

h(x) = log
2
(x + 4)
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41. (a) x-intercept: x � 2.32

(b) x-intercept: x � 4.64

43.

45. 47.

49. � �1.806

51. 53. 55.

57. 59.

61.

63. (a) true (b) true (c) true
(d) false (e) true (f) false
(g) true (h) false (i) true
(j) false (k) false (l) true
(m) true 65. (f) 2345.6
(g) 0.123456
67.

x 0.1 0.05 0.005 0.0005

ln(1 � x) 0.095310 0.048790 0.004987 0.000499

69. a � 4, b �

71. (a)

(b) � 1.585, � 1.585

75. x3

79. (c) logp 2 � is larger
1

logp 2

ln 3

ln 2

log10 3

log10 2

x �
log10 3

log10 2

�
ln 243

2.5

ln(ln x) � ln(ln 10)

ln 10

1

ln 10

ln 6

ln 10

log10 2

log10 b

log10 3

log10 e

log10 5

log10 2

x � �
B

1 �
log10 12

log10 3

x �
1

ln 10
x �

ln 13

ln 2

x �
ln 5 � ln 2 � 1

2

– 6 6– 3

3

y

x

y = −5

y x= −2 52/

– 3 3

– 3

3

y

x

y x= −2 5

y = −5

Exercise Set 5.5

1. x � � 1.869

3. x � � 88.384 5. x � �8

7. x � � �6.361, 

x � � 7.861

9. x � log10 2 � 0.301 11. (a) true for
all x 
 0 (b) x � � 0.177, 
x � � 5.652, x � 1 13. (a) true
for all x 
 0 (b) x � 61�5 � 1.431
15. true for all x 
 0
17. x � � 1.732 19. no real 
solutions 21. no real solutions
23. 25. (a) no real solutions
(b) x � 0 (c) x � ln 3 � 1.099
(d) x � ln(1 � ) � 1.174

27. x � ln � 0.481

29. x � � 6.372

31. x � 2 33. 35. x � 3

37. 39. x � 3 41. x � 7

43. (a)

(b) , for 

45. (a) one solution (b) x � 0.57

47. (a) one solution (b) x � 1.49

_10 _5 5 10

_10

10

y=
x+1

1
y=ln x

y

x

_10 _5 5 10

_10

_5

5

10

y=ln x

y=_x

y

x

y �
1

3
x �

1 � y

2

x �
10y

3(10y) � 1

x � 203
99

x � 1
2

3 ln 5

5 ln 2 � ln 3 � ln 5

a 1 � 15

2
b

15

x � 7
3

13

e13
e�13

3 � 1809

4

3 � 1809

4

ee1.5

ln 3

2 ln 3 � ln 5

(d)

(e) g�1(x) �

Exercise Set 5.4
1. 1 3. 5. 4 7. 0 9. 4
11. log10 60 13. log5 20

15. (a) ln 6 (b) ln 

17.

19.

21. (a) 2 log10 x � log10(1 � x2)

(b) 2 ln x � ln(1 � x2)

23. (a) log10(3 � x) � log10(3 � x)

(b) ln(2 � x) � ln(2 � x) �

ln(x � 1) � ln(x � 1)

25. (a) logb x � (b) ln(1 � x2) �

ln(1 � x4) � ln(1 � x6) 27. (a) A � B
(b) �A � B (c) 3B (d) �3B
29. (a) C � B (b) B � C
(c) C � 2B (d) C � 4A

31. (a) (b)

33. (a) (b)

35. (a) 1 (b) 1 37. (a) a � 2b � 3c
(b) 1 � (c) (1 � a � b � c)

(d) 1 � a �

39. (a) 1 � t (b) u � t

(c) (d) 2 � t � 1
2 u3

2 t � 1
2 u � 1

1
2 b � 1

2 c

1
2

1
2 a

B � C

B � 1

A

B � 1

A � C � 1

B

1

B

1
2

1
2

3
2

1
2

1
2

1
2

1
2

1
2

log10 c 271x � 1

(x2 � 1)6 d

logb c 4(1 � x)3

(1 � x)3�2
d
1 3

16384 2

1
2

1

2
ln a 1 � x

1 � x
b

–6 –4 –2

2 4 6

–6

–4

–2

2

4

6

y

x

y = x

g(x)

g–1(x)



Exercise Set 5.6
1. $1009.98 3. 8.45% 5. $767.27
7. (a) $3869.68 (b) $4006.39
9. 13 quarters 11. $3487.50
13. (a) 4.4 years (b) 4.43 years
15. 16 years 17. $2610.23
19. 5.83% 21. 6% investment
23. (a) 14 years (b) 13.86 years
(c) 1.01% 25. $26.5 trillion
27. (a) 14 years
(b)

Exercise Set 5.7
1. (a) k � 0.3209 (b) 9951 bacteria
(c) 5.0 hours 3. N0 � 2000; 
k � 0.1769
5. (a)

World More Less 
Region dev. dev.

1995 population 
(billions) 5.702 1.169 4.533

Percentage of 
population 
in 1995 100 20.5 79.5

Relative growth
rate (% per 
year) 1.5 0.2 1.9

Year 2000 
population 
(billions) 6.146 1.181 4.985

Percent of world 
population 
in 2000 100 19.22 81.11

(b) world: 1.3% error; more 
developed: 0.3% error; less 
developed: 2.1% error 7. (a) Chad: 
N(t) � 8.0e0.033t; United Kingdom: 
N(t) � 59.8e0.001t (b) 60 years
9. (a) Niger: 15.8 million; Portugal:
10.2 million (b) 13 years; Portugal:
10.1 million 11. (a) 6.332 billion
(b) higher; 4% error 13. (a) 116 years

14 28 42

28,000

56,000

A (dollars)

t (yr)

A(t)=7000e0.05t

(b) 43 years (c) 27 years
(d) 19 years
15. (a)

Year 1998 2000
(t � 10) (t � 12)

Concentration of 
Carbon dioxide 
(ppm) 365.6 368.6

(b) 1998: too low, 0.3% error; 2000: too
high, 0.1% error 17. (a) New York:
N(t) � 18.976e0.006t; Arizona: 
N(t) � 5.131e0.04t (b) year 2040
19. (a)

1990 Growth
Population Rate 2025

Region (Millions) (%) Population

North America 275.2 0.7 351.6
Soviet Union 291.3 0.7 372.2
Europe 499.5 0.2 535.7
Nigeria 113.3 3.1 335.3

(b) 222.0 million (c) North 
America: 76.4 million; Soviet Union: 
80.9 million; Europe: 36.2 million; 
combined: 193.5 million (d) Our 
results support this projection.
21. By the end of the year 2000 the
population of Mexico exceeded 
100 million people.
23. (a)

t (sec) 0 550 1100 1650 2200
N (g) 8 4 2 1 0.5

(b)

25. 0.55 gram 27. (a) 4.29 grams
(b) 79 hours
29. (a)

3240 6480 9720
Time (yr)

�0

�0 / 2

�0 / 4
�0 / 8

�

t

t (yr) 0 4.9 � 109 9.8 � 109 14.7 � 109 19.6 � 109

N (g) 10 5 2.5 1.25 0.625

49. (a) two solutions
(b) x � 1.56, x � 3.15

51. x � �1 53. x � ln � 2.375

55. x � � �1.078

57. x � ln 100 � 2 � 2.605
59. all real numbers 61. �1 � x �
63. x � �1 or x � 5 65. 0 � x � 1
67. (a) (4, q) (b) 4 � x � 7
69. 0 � x � 3 71. x � , 2
73. The graphs are identical.

75. x � e2 or x � e�4�3

77. (0, 1) � (1, q) 79. x � b�1�a

81.

83.

85. (a) x � (b) x � 1618.178

87. (a) (b) x � 0.369

89. Since e 
 0, 2 � e � 2, 

thus .

91. �

93. x � 1, x � 2 95.

97. x �
�b

a � b

x �
ln(a � b)

ln(a � b)

116, 3 21�3, �16 2
2 � e

3
�

2

3

x �
ln 1.5

ln 3

ee2

x � �
1

k
  lna a � y

by
b

x �
1

k
  ln  

y

A

4 8 102

3

5

1

y

x

6

_3

_1

_5

y=ln ≈ =2 ln x)(

1
2

1
2

2 � e2

5

43
4

_10 _5 5 10

_5

5

10 y=|x-2|

y=ln x

y

x
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Chapter 5 Review Exercises

1. log5 126 3. hours

5. f is not one-to-one.

7.

9. y � ex: domain: (�q, q), 
range: (0, q); y � ln x: domain: 
(0, q), range: (�q, q)

11. 13. k � �0.05
15. x � 2 � ln 17. year 2015
19. doubling time: 7 years

21. horizontal asymptote: 
y � 0; no vertical asymptote; 
no x-intercept; y-intercept: 1

– 2 2

4

8

y

x

y ex=

7 14 21

4000

8000

A

t

A t e t( ) .= 1000 0 1

12
5

�3
2

– 2 3

– 2

3

y

x

y ex=

y x= ln

x �
e � 1

e � 1

–3 3

4

6

y

x

y f x= ( )

4 ln 1.5

ln 1.25

23. no horizontal asymptote; vertical 
asymptote: x � 0; x-intercept: 1; 
no y-intercept

25. horizontal asymptote: y � 1; 
no vertical asymptote; no x-intercept; 
y-intercept: 3

27. horizontal asymptote: y � 0; 
no vertical asymptote; no x-intercept; 
y-intercept: 1

29. horizontal asymptote: y � 1; 
no vertical asymptote; no x-intercept; 
y-intercept: e � 1

– 3 – 1 1

4

8

y

x

y ex= ++1 1

y = 1

–2 2

4

8

y

x

y
e

x
= ( )1

–3 3

6

10

y

x

y x= ++2 11

y = 1

4 8

– 3

3

y

x

y = ln x

(b)

31. (a) 1.53 grams (b) 43 years
33. (a) 73,000 years (b) 10 half-lives
(c) 10 half-lives 35. (a) k � �0.0248
(b) 279 years (c) 280 years
37. 0.02799997 ounces
39. (a) 8.5 billion; it is greater
(b) 0.934% per year
41. (b) T � 18 years; year 1990 
T � 32 years; year 2004
(c) y � 0.4606x � 24.0385
(d) T � 32 years; year 2025
43. (a) T � 34 years; year 2033
(b) T � 67 years; year 2066
(c) T � 52 years; year 2051
47. 4.181 billion years old
49. 15,505 years old
51. 8,000 years old; the site is older
53. years 10–5 B.C., which fit in the 
historical range
55. (a)

N(�1) N(0) N(1) N(4) N(5)

From 
graph 0.25 0.5 1.0 3.5 3.75

From 
calculator 0.176 0.444 1.014 3.489 3.795

(b) N(10) � 3.99854773, 
N(15) � 3.99999021, 
N(20) � 3.99999993
(c) t � 3 (d) t � ln 24 � 3.178
57. (a) a � 4 (b) b � ln � 0.9808

59. (a) N(t) �

(b) N(4) � 7.1, N(8) � 41.0, 
N(12) � 115.8, N(16) � 153.7; 
N(4) and N(8) are lower; N(12) and N(16)
(c) 10 days 4 hours
61. (b) If k is close to 0, then 
ek � 1 � (k � 1) � 1 � k.

162

1 � 161e�0.50t

8
3

6 12 18
Time (min)

�0

�0 / 2

�0 / 4
�0 / 8

�

t



Chapter 5 Test
1. domain: (�q, q); range: (�3, q); 

x-intercept: ; y-intercept: �2; 

asymptote: y � �3

2. � 16 hours 3. log2 17

4. 5. 1012 6. 4 years

7. (a) (0, q)
(b)

8. 3a � 9. (a) (b) �1
10. x � 0, �2, 2 11. (a) k � �0.1733

(b) 0.35 gram 12.

13. no solution
14. g�1(x) � 10x � 1; range: (1, q)
15. (a) 12 years
(b)

16. (a) (0, q) (b) x � 1, e2

17. (a) � 3.48 (b) 4

18. x � 4 19. x � ln � 0.405

20. (a) x 
 � �0.39

(b) (3, 4]

ln 1.6

ln 0.3

3
2

1

ln 43

20 40

100,000

200,000

A

t

A e t= 12000 0 06.

ln 
x2

(x2 � 1)1�3

�1
2

1
2 b

– 2 2 4

– 2

3

y

x

y ex=

y x=

y x= ln

ln 15

ln 2

ln  
5
3

ln 1.033

– 3 3

3

5

y

x

y x= −−2 3

y = −3

�
ln 3

ln 2

CHAPTER 6
Exercise Set 6.1
1. (a) sin u � , cos u � , tan u � ,
cot u � , sec u � , csc u �

(b) sin b � , cos b � , tan b � ,
cot b � , sec b � , csc b �

3. (a) sin u � �5, cos u � 2 �5,
tan u � , cot u � 2, sec u � �2, 
csc u � (b) sin b � 2 �5, 
cos b � �5, tan b � 2, cot b � , 
sec b � , csc b � �2
5. (a) cos A � 3 �13, 
sin A � 2 �13, tan A �

(b) sec B � �2, csc B � �3,

cot B � 7. sin B � , cos B � ,

tan B � , cot B � , sec B � , 

csc B � 9. (a) sin B � , cos A �

(b) sin A � , cos B �
(c) (tan A)(tan B) � 1
11. (a) cos A � , sin A � , 
tan A � (b) cos B � , sin B � , 

tan B � (c) (tan A) (tan B) � 1
13. sin u � 0.906, cos u � 0.423, 
tan u � 2.145 15. sin u � 0.623, 
cos u � 0.783, tan u � 0.795
17. sin u � 0.985, cos u � 0.173, 
tan u � 5.706 19. sec u � 1.064, 
csc u � 2.924, cot u � 2.747
21. sec u � 1.049, csc u � 3.326, 
cot u � 3.172 23. sec u � 1.000, 
csc u � 57.299, cot u � 57.290
25. cos u � �4, tan u � 3 �7, 
cot u� �3, sec u� 4 �7, csc u�

27. sin b � �5, tan b � �3, 
cot b � �22, sec b� 5 �3, 
csc b � 5 �22 29. cos A � , 

tan A � , cot A � , sec A � , 

csc A � 31. sin B � , cos B � ,
cot B � , sec B � , csc B �

33. sin C � �3, cos C � , 
tan C � �2, cot C � 2 �5, 
csc C � 3 �5 35. sin a � �2, 
cos a � , tan a � , sec a � 2, 
csc a � 2 �3 49. (a) cos 30	 �
0.8660254038, cos 45	 � 0.7071067812
(b) cos 30	 � 0.8660254038, 
cos 45	 � 0.7071067812
51. (a) Since RC � QB � PA, 
we have sin 20	 � sin 40	 � sin 60	.

13
131

2

1315
1515

2
315

5
4

5
3

3
4

3
5

4
5

13
5

13
12

12
5

5
12

12
13122

13166

166122

4
31717

1717

24
7

24
25

7
25

7
24

7
25

24
25

3
5

3
5

4
5

4
5

13
12

13
5

5
12

12
5

5
13

12
13

2
3

113113

2
3113

113
1515

1
215

1515
151

2

1515

17
8

17
15

15
8

8
15

15
17

8
17

17
15

17
8

8
15

15
8

8
17

15
17

31. no asymptotes; x- and 
y-intercepts: 0

33. x � 4 35. x � 3 37.

39. 41.

43. 45. x � 2
47. all real numbers x 
 0
49. x � 1 51. 53. 55. �1
57. 16 59. 4 61. 2 63. 2 65.
67. 2a � 3b � 69. 8a � 4b
71. between 2 and 3
73. between 2 and 3 75. �3 and �2
77. (a) third quadrant

(b) x � � �1.46 79.

81. 6.25% remaining 83. days

85. log10 2 87. ln 10 89. ln xayb

91. ln(x � 3) � ln(x � 4)
93. 3 log10 x � log10(1 � x)
95. 3 ln(1 � 2e) � 3 ln(1 � 2e)

97. years 99. 9.92%

101. years 103. (a) years

(b) years 105. (a) (0, q)

(b) [1, q) 107. (0, e2) � (e2, q)

ln n

ln 11 � R
400 2

7 
3
4

100 ln 2

R

ln 2

ln(1 � R
100)

1
2

1
2

1
2

d ln  
 c
b

ln  
 1
2

k �
ln  

 1
2

T

�2e

e � 1

– 4 2

– 3

2

y

x

y x= +ln( )2

y x= − −ln( ) 1

x = −2

c
2

9
14

1
5

1
2

x � 200
99

x �
1 � 2 ln 3

10
x � 1

3 3

x � 2
3

– 4 4

– 4

4

y

x

y ex= ln
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A-58 Answers to Selected Exercises

(b) reference angle: 70	

3. (a) reference angle: 20	

(b) reference angle: 20	

5. (a) reference angle: 60	

(b) reference angle: 60	

x

y

_300°

x

y

300°

x

y

_200°

x

y

200°

x

y

_110°

7. (a) reference angle: 60	

(b) reference angle: 60	

9. cos 270	 � 0, sec 270	 is undefined,
sin 270	 � �1, csc 270	 � �1, 
tan 270	 is undefined, cot 270	 � 0
11. cos(�270	) � 0, sec(�270	) is
undefined, sin(�270	) � 1, 
csc(�270	) � 1, tan(�270	) is 
undefined, cot(�270	) � 0
13. cos 540	 � �1, sin 540	 � 0, 
tan 540	 � 0, sec 540	 � �1, csc 540	 is
undefined, cot 540	 is undefined
15. sin 10	 � 0.2, sin(�10	) � �0.2;
sin 10	 � 0.17, sin(�10	) � �0.17
17. cos 80	 � 0.2, cos(�80	) � 0.2; 
cos 80	 � 0.17, cos(�80	) � 0.17
19. sin 120	 � 0.9, sin(�120	) � �0.9;
sin 120	 � 0.87, sin(�120	) � �0.87
21. sin 150	 � 0.5, sin(�150	) � �0.5;
sin 150	 � 0.5, sin(�150	) � �0.5
23. cos 220	 � �0.8, cos(�220	) � �0.8;
cos 220	 � �0.77, cos(�220	) � �0.77
25. cos 310	 � 0.6, cos(�310	) � 0.6;
cos 310	 � 0.64, cos(�310	) � 0.64
27. sin(40	 � 360	) � 0.6; 
sin(40	 � 360	) � 0.64
29. sin 70	 is larger; sin 70	 � 0.94, 
cos 70	 � 0.34 31. cos 160	 is larger;
cos 170	 � �0.98, cos 160	 � �0.94

x

y

_60°

x

y

60°

(b) sin 20	 � 0.3420, sin 40	 � 0.6428, 
sin 60	 � 0.8660 53. (a) cos u
(b) sec b 57. sin 3	 � 0.0523359562, 
sin 6	 � 0.1045284633, 
sin 9	 � 0.1564344650, 
sin 12	 � 0.2079116908, 
sin 15	 � 0.2588190451, 
sin 18	 � 0.3090169944

Exercise Set 6.2
1. BC � 30 cm, AC � 30 cm

3. AB � cm, BC � cm

5. AC � 11.5 cm, BC � 9.6 cm
7. (a) 15.59 ft (b) 9 ft 9. 522 m
11. 213.4 m 13. (a) x � 65.3 ft
(b) 1975.1 ft2 15. 11.28 cm2

17. sin 40	 � 2.893 square units

19. � 1.414 square units
21. � 0.866 square units
23. AB � 12 sin 36	 � 7.1 in.
25. DE � , AE � , 
AB � , BE � ,
CE � , BC �
27. x � 8 cos u � 4 cot u
29. (b) 237,000 miles
31. (c)

n 5 10 50 100
An 2.38 2.94 3.1333 3.1395

n 1,000 5,000 10,000
An 3.141572 3.1415918 3.1415924

(d) As n gets larger, An approaches the
area of the circle, which is p.

Exercise Set 6.3
1. (a) reference angle: 70	

x

110°

y

12�3212�3
16�316�3

213�313�3

13�2
12

9
2

1613

3

3213

3

13



61. (a)

(b) u (c) Because 180	 � u lies 
in the second quadrant, where 
all y-coordinates are positive, 
sin(180	 � u) � sin u. 63. A(u) � sin u
65. (b) 0	 � u � 180	
67. (0	, 180	) 69. (c) (0	, 180	)

71. (d) sin 75	 �

Exercise Set 6.4
1. (a) cos u � �2 �5, 
tan u � �12, cot u � �2 , 
sec u � �5 �12, csc u � 5
(b) cos u � �2 �5, tan u � �12, 
cot u � 2 , sec u� �5 �12, 
csc u � �5 3. (a) sin u � , 

tan u � , cot u � , sec u � , 

csc u � (b) sin u � , 

tan u � , cot u � , sec u � , 

csc u � 5. sin A � , 

cos A � 2 �3, tan A � �4, 

cot A � �2 , sec A � 3 �4

7. cos B � , sin B � �3, 

tan B � �2, cot B � 2 �5, 

csc B � �3 �5

9. sin u � , 

tan u � , 

cot u � , sec u �

csc u �

11. cos u � , 

tan u � , 

cot u � , 

sec u � , csc u � �
1

3u
�
21 � 9u2

1 � 9u2

21 � 9u2

3u

3u21 � 9u2

1 � 9u2

�21 � 9u2

�
329 � t2

9 � t2

3

t
,�

t29 � t2

9 � t2

�
29 � t2

t

�
29 � t2

3

15

1515

�15�2
3

1212

�1212

�1
3�13

12

�13
5

5
12

12
5

�12
13

13
12

13
5

5
12

12
5

12
13

1616
1616

16
16�16

16

12 � 16

4

y

x
180°-¨

¨

13. sin u �

tan u � cot u � ,

sec u � csc u �

37. (a) not an identity (b) identity
45. (a) (cos u � sin u)(1 � cos u sin u)

Chapter 6 Review Exercises
1. �2 3. 5. �2 7. �1
9. �2 11. 1 13. �2 �3
15. 2 17. 1 19. , c � �2
21. 23. sin A � �8 and 

cot 25. 5 square units
27. sin2 A � cos2 B �

29. a � 16 �3 31. c � 9; 
area � 9 �4

35. cos u � , tan u �

37. sin A cos A 39. sin2 A
41. cos A � sin A 43. sin A cos A
45. 2 sin A cos A 47. cos 10	 � 0.9848
49. sin 10	 � 0.1736
51. sin u � , tan u �

53. tan u� 55. cot u�

57. tan(90	 � u) �

59. sin u �

63. perimeter: 52.90 cm; 
area: 192.59 cm2

Chapter 6 Test
1. (a) �3 (b) (c) 1 (d) 0
2. (a) negative (b) negative
(c) positive 3. (a) 1 (b) �1 (c) 0
4. (2 cot u� 3)(cot u� 4) 5. 18 cm2

6. (a) �2 (b) �3 (c) �2
7. cos u � �2 �5, tan u �

8. cos u � , 

cot u � 9. �2 cos u � 1

10. sin 40	 � 26.033 m2 11. 1
12. CD � 50(tan 55	 � tan 25	)
13. (a) sin 85	 is larger. (b) cos 5	 is
larger. (c) tan 185	 is larger.

81
2

�
29 � u2

u

29 � u2

3

1
215

�1312

1213

213 � 16

6

5t21 � 25t2

1 � 25t2

5
12�24

7

4
3

4
5

2p2q2

p4 � q4

p4 � q4

p4 � q4

119
13

1
5

A � 3155�55

155b � 35
2

13a � 1
2

1312
�1312

29 � 3u2

3 � u2

13

u
,

u23 � u2

3 � u2

23 � u2

u
,

29 � 3u2

3
,

33. cos 290	 is larger; cos 280	 � 0.17,
cos 290	 � 0.34 35. sin 10	 is larger;
sin 10	 � 0.17, sin(�10	) � �0.17
37. sin 80	 is larger; sin 80	 � 0.98, 
sin 110	 � 0.94 39. cos(�110	) is
larger; sin(�80	) � �0.98, 
cos(�110	) � �0.34
41. (a) cos 315	 � �2
(b) cos(�315	) � �2
(c) sin 315	 � �2
(d) sin(�315	) � �2

43. (a) cos 300	 �

(b) cos(�300	) �
(c) sin 300	 � �2
(d) sin(�300	) � �2
45. (a) cos 210	 � �2
(b) cos(�210	) � �2
(c) sin 210	 �

(d) sin(�210	) �
47. (a) cos 390	 � �2
(b) cos(�390	) � �2

(c) sin 390	 �

(d) sin(�390	) �

49. (a) sec 600	 � �2
(b) csc(�600	) � 2 �3
(c) tan 600	 �
(d) cot(�600	) � �3
51.

u sin u cos u tan u

0	 0 1 0

30	 �2 �3

45	 �2 �2 1

60	 �2
90	 1 0 undefined

120	 �2

135	 �2 �2 �1

150	 �2 �3
180	 0 �1 0

53. cm2

55. 302.7 cm2

57. 108 � 187.06 cm2

59. (a)

Terminal side of angle u lies in

Quadrant Quadrant Quadrant Quadrant 

I II III IV

cos U positive negative negative positive

sin U positive positive negative negative

tan U positive negative positive negative

13

35 13

4

�13�131
2

�1212

�13�1
213

131
213

1212

13131
2

�13
13
13

�1
2

1
2

13
13

1
2

�1
2

�13
�13
13

�13

1
2

1
2

12
�12
12
12
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(c)

(d)

55. (a) r(u) �

(b) A(u) � ; no

(c) u(r) � � 2 (d) A(r) � 6r � r2; 

yes (e) maximum � 9 cm2 when 
r � 3 cm, u � 2 radians

Exercise Set 7.2
1. (a)

(b)

(c)

3. (a)

π
3

x

y

3π
4

y

x

x
_

y

π
4

π
4

x

y

12
r

72u

(2 � u)2

12

2 � u

ABEC � a p
12

�
13

8
b s2

ADEF � a 13

4
�
p

8
b s2

(b)

(c)

5. (a)

(b)

(c)

7. (a)

x

y

120°

_570°

y

x

_210°

y

x

x

y

210°

7π
3_

y

x

5π
3

x

_

y

14. (a) AD � 2.75 cos 20	, 
CD � 2.75 sin 20	, 
DB � 3.25 � 2.75 cos 20	
(b) CB � 1.15 cm

CHAPTER 7
Exercise Set 7.1
1. u � 2.5 radians 3. u � 2 radians
5. (a) p�4 � 0.79 radians
(b) p�2 � 1.57 radians
(c) 3p�4 � 2.36 radians
7. (a) 0 radians (b) 2p� 6.28 radians
(c) 5p�2 � 7.85 radians
9. (a) 15	 (b) 30	 (c) 45	
11. (a) 60	 (b) 300	 (c) 720	
13. (a) 114.59	 (b) 171.89	
(c) 565.49	 15. smaller
17. 30	 � p�6 radians; 45	 � p�4 
radians; 60	 � p�3 radians; 
120	 � 2p�3 radians; 135	 � 3p�4 
radians; 150	 � 5p�6 radians
19. s � 4p ft 21. s � p�2 cm
23. (a) A � 12p cm2 � 37.70 cm2

(b) A � 50p�9 m2 � 17.45 m2

(c) A � 72p�5 m2 � 45.24 m2

(d) A � 1.296p cm2 � 4.07 cm2

25. 2p�5 radians

27. (a) in. � 12.62 in.

(b) 25p�12 in.2 � 6.54 in.2

29. (a) 12p radians/sec
(b) 144p cm/sec (c) 72p cm/sec
31. (a) 6p radians/sec
(b) 150p cm/sec (c) 75p cm/sec
33. (a) 50p/3 radians/sec
(b) 750p cm/sec (c) 375p cm/sec
35. (a) 0.000073 radians/sec
(b) 1040 mph 37. 1 radian � 57.30	
39. x � 0 41. (a) 200p radians/min
(b) 2000p cm/min
(c) p radians/min (d) rpm
43. 4930 mi 45. 1470 mi

47. 2690 mi 51. (a)

(b)

53. (a) ;

; 

(b) ADBE � ap
8

�
13

8
b s2

AADF

AABC

�
1

4
AADF � a p

12
�
13

16
b s2

AABC � ap
3

�
13

4
b s2

A � ap
3

�
13

4
b s2

P � a 2p

3
� 1 b s

500
3

1000
3

a10 �
5p

6
b



U sec U csc U cot U

0 1 undefined undefined

p�2 undefined 1 0

p �1 undefined undefined

3p�2 undefined �1 0

2p 1 undefined undefined

27. (a) positive (b) negative
(c) negative 29. (a) positive
(b) negative 31. sin 2 is larger
33. cos 2 is larger 35. tan 4 is larger
37. 0.5 � cos 1 � 0.6, 0.8 � sin 1 � 0.9;
cos 1 � 0.54, sin 1 � 0.84
39. 0.5 � cos(�1) � 0.6, 
�0.9 � sin(�1) � �0.8; 
cos(�1) � 0.54, sin(�1) � �0.84
41. �0.7 � cos 4 � �0.6, 
�0.8 � sin 4 � �0.7; cos 4 � �0.65,
sin 4 � �0.76 43. �0.7 � cos(�4) �
�0.6, 0.7 � sin(�4) � 0.8; 
cos(�4) � �0.65, sin(�4) � 0.76
45. sin 10	 � 0.2, sin(�10	) � �0.2;
sin 10	 � 0.17, sin(�10	) � �0.17
47. cos 80	 � 0.2, cos(�80	) � 0.2; cos
80	 � 0.17, cos(�80	) � 0.17
49. sin 120	 � 0.9, sin(�120	) � �0.9;
sin 120	 � 0.87, sin(�120	) � �0.87
51. sin 150	 � 0.5, sin(�150	) � �0.5;
sin 150	 � 0.5, sin(�150	) � �0.5
53. cos 220	 � �0.8, 
cos(�220	) � �0.8; cos 220	 � �0.77,
cos(�220	) � �0.77
55. cos 310	 � 0.6, cos(�310	) � 0.6;
cos 310	 � 0.64, cos(�310	) � 0.64
57. 0.8 � sin(1 � 2p) � 0.9; 
sin(1 � 2p) � 0.84
59. sin u� cos u �

tan u � sec u � 3, 
csc u � cot u �

61. sin u � cos u �

tan u � sec u � csc u �

cot u � 63. sin u � cos u �

tan u� sec u � csc u �

cot u � 65. sin u �

cos u � tan u �

sec u � csc u �

cot u � 67. sin u �

cos u � tan u �

sec u � csc u �

cot u � �81161�161

151161�161,� 
15
8 ,

�1161�8,� 
8

15,

1161�15,17�3

� 
4
3 ,�417�7,

317�7,�17�4,

� 
3
4 ,� 

12
5

13
5  ,� 

13
12 ,� 

5
12 ,

� 
12
13 ,5

13 ,3
4

� 
5
4 ,� 

5
3 , 

4
3 ,

� 
3
5 ,� 

4
5 ,

12�4312�4,
212,

1
3 ,212�3,

69. sin u � cos u �

tan u � sec u �

csc u � cot u �

71. sin u � cos u �

tan u � sec u � csc u �

cot u � 73. sin u �

cos u � tan u � sec u � 2, 
csc u � cot u �
75. sec 2.06 � �2.13, 
csc 2.06 � 1.13, cot 2.06 � �0.53
77. sec 9 � �1.10, csc 9 � 2.43, 
cot 9 � �2.21 79. sec(�0.55) � 1.17, 
csc(�0.55) � �1.91, 
cot(�0.55) � �1.63
81.

83. sec 1400 � 2.45, 
csc 1400 � �1.10, cot 1400 � �0.45
85. sec 33	 � 1.19, csc 33	 � 1.84, 
cot 33	 � 1.54
87. sec(�125	) � �1.74, 
csc(�125	) � �1.22, cot(�125	) � 0.70
89. sec 225	 � �1.41,
csc 225	 � �1.41, cot 225	 � 1
91. (a) Since results in the point (0, 1)
on the unit circle, Since p
results in the point (�1, 0) on the unit
circle, sin p � 0.

(b)

Exercise Set 7.3
1. (a) reference angle: 70°

(b) reference angle: 60°

x

y

240°

x

y

110°

sin p

2
� 0sin 

p

2
� 1,

sin p2  � 1.

p
2  

cot p6  � 1.73
csc p6  � 2,sec p6  � 1.15,

13�3213�3,
13,1

2 ,
13�2,� 

7
24

� 
25
24 ,25

7  ,� 
24
7  ,

7
25 ,� 

24
25 ,

�177�2�9
2 ,

9177�77,�2177�77,
177�9,� 

2
9 ,(b)

(c)

9. sin p � 0, cos p � �1, tan p � 0,
sec p � �1, csc p is undefined, cot p
is undefined 11. sin(�2p) � 0,
cos(�2p) � 1, tan(�2p) � 0,
sec(�2p) � 1, csc(�2p) is undefined,
cot(�2p) is undefined
13. sin(�3p�2) � 1, cos(�3p�2) � 0,
tan(�3p�2) is undefined, sec(�3p�2) 
is undefined, csc(�3p�2) � 1,
cot(�3p�2) � 0 15. sin 0 � 0, 
cos 0 � 1, tan 0 � 0, sec 0 � 1, csc 0 is
undefined, cot 0 is undefined
17. sin 90	 � 1, cos 90	 � 0, tan 90	
is undefined, sec 90	 is undefined,
csc 90	 � 1, cot 90	 � 0
19. sin(�270	) � 1, cos(�270	) � 0,
tan(�270	) is undefined, sec(�270	) is
undefined, csc(�270	) � 1, 
cot(�270	)  � 0 21. sin 180	 � 0, cos
180	 � �1, tan 180	 � 0, 
sec 180	 � �1, csc 180	 is undefined,
cot 180	 is undefined 23. (b) sin u�

cos u � tan u � sec u �

csc u � cot u �

25.

U cos U sin U tan U

0 1 0 0

p�2 0 1 undefined

p �1 0 0

3p�2 0 �1 undefined

2p 1 0 0

� 
3
4

5
4 ,

� 
5
3 ,� 

4
3 ,� 

3
5 ,

4
5 ,

x

y

300°

x

y

_120°
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A-62 Answers to Selected Exercises

(d) reference number: 

5. (a) B (b) A (c) D (d) A
(e) B (f) C 7. (a) (b)

(c) (d)

9. (a) (b)

(c) (d) 11. (a)

(b) (c) (d)

13. (a) �2 (b) (c)

(d) 15. (a) (b)

(c) (d)

17. (a) (b)

(c) (d)

19. (a) �2 (b) (c)

(d) 21. (a)

(b) �2 (c) (d)

23. (Other answers are
possible.) 25. �30	, 30	, 330	
(Other answers are possible.)
27. (a) cos u � (b) sin u �
tan u � (c) is
larger 29. (a) 0 (b) 1 (c) 0

(d) (e)

(f) (g) (h) 0
31. (a)

U sin U larger?

0.1 0.0998 u

0.2 0.1987 u

0.3 0.2955 u

0.4 0.3894 u

0.5 0.4794 u

(b) In right �PQR the hypotenuse 
is while is a leg, and thus 
PQ � PR. Assuming that the shortest
path from point P to point R is a straight
line, then PR � u. (Recall that u is the
arc length.) Thus PQ � PR � u.

33. (b)

(c) P(a, b) lies on the unit circle 
x2 � y2 � 1.

Q a �b

2b2 � a2
, 

a

2b2 � a2
b

PQPR

� 
3
p �212�p

4 � 212
p

�12

cos(b � p
2  )17�3
17�4,3

4 

4p
3 

2p
3  ,� 

2p
3  ,

13�13�3

�213�3�13�3

13213�3

12�2�12�2

�12�2�12�2

13�2�13�2

� 
1
2 � 

1
2 �13�3

13213�3

� 
1
2 

1
2 13�2

13�21
2 � 

1
2 

�13�2�13�2

13�2�13�2

1
2 

1
2 

x

y

7π
6

p
6 Exercise Set 7.4

1. (a) 11SC (b) 11 sin u cos u
3. (a) �8C3S (b) �8 cos3 u sin u
5. (a) 1 � 2T � T2

(b) 1 � 2 tan u � tan2 u

7. (a) T2 � T � 6
(b) tan2 u � tan u � 6
9. (a) �1 (b) �1 11. (a)

(b)

13. (a) (T � 1)(T � 9)
(b) (tan b� 1)(tan b� 9)
15. (a) (2C � 1)(2C � 1)
(b) (2 cos B � 1)(2 cos B � 1)
17. (a) 3ST2(3ST � 2)
(b) 3 sec B tan2 B(3 sec B tan B � 2)
19. sin A � cos A 21. csc u
23. cos2B 25. cos A � 4 27. 2 csc u
29. 0 31. 1 33.

35.

37.

39.

41.

43.

67. area � sin u
69. (a) m(u) � tan u (b) (i)
(ii) tan 1 � 1.6 71. (a) not an identity
(a � 30	) (b) identity
79. (a) (cos u � sin u)(1 � cos u sin u)
85. (a) log10(sin2 20	) �
2 log10(sin 20	) � �0.9319
(b) 0	 � u � 180	 87. (0	, 180	)
89. (a) �

� ln(sin 20	) �
�1.0729 (c) (0	, 180	)

Exercise Set 7.5
1. (a) sin u � , cos u � , tan u � ,
cot u � , sec u � , csc u �
(b) sin b � , cos b � , tan b � ,
cot b � , sec b � , csc b �
3. (a) sin u � �5, cos u � 2 �5,
tan u � , cot u � 2, sec u � �2, 
csc u � (b) sin b � 2 �5, 
cos b � �5, tan b � 2, cot b � , 
sec b � , csc b � �2
5. (a) cos A � 3 �13, 
sin A � 2 �13, tan A � 2

3113
113

1515

1
215

1515
151

2

1515

17
8

17
15

15
8

8
15

15
17

8
17

17
15

17
8

8
15

15
8

8
17

15
17

ln11 � cos 20°
ln11 � cos 20°

�13
cot b � 12�4

csc b � 312�4,tan b � 212,
cos b � 1

3 ,sin b � 212�3,
cot u � 3

4csc u � � 
5
4 ,

sec u � � 
5
3 ,tan u � 4

3 ,sin u � � 
4
5 ,

cot u � �216csc u � 5,
sec u � �516�12,tan u � �16�12,

cos u � �216�5,

cot b � � 
15
8csc b � 17

8  ,

tan t � �139�13tan u � 3
4

cos u � � 
4
5 ,

cos A sin A � 2

sin A

CS � 2

S

(c) reference angle: 60°

(d) reference angle: 60°

3. (a) reference number: 

(b) reference number: 

(c) reference number: 

x

y

5π
3

p
3

x

y

5π
6_

p
6

x

y

3π
4

p
4

x

y

_60°

x

y

60°



33. sin A �

cos A �

sec A �

csc A � cot A �

35. (a)

(b) Same as (a) except for change of
sign for cos u, sec u, sin u, and csc u.
37. (a)

(b) Same as (a) except for change of
sign for sin u, csc u, tan u, and cot u.
39. false 41. true 43. true
45. true 47. (a) Since RC � QB � PA, 
sin 20	 � sin 40	 � sin 60	.
(b) sin 20	 � 0.3420, sin 40	 � 0.6428,
sin 60	 � 0.8660

57.

Chapter 7 Review Exercises
1.

U cos U sin U tan U

0 1 0 0

p�6 1�2

p�4 1

p�3 1�2

p�2 0 1 undefined

2p�3 �1�2

3p�4 �1

5p�6 1�2

p �1 0 0

�13/3�13/2

12/2�12/2

�1313/2

1313/2

12/212/2

13/313/2

tan b �
B

1 � q2

p2 � 1

tan a �
p

qB

1 � q2

p2 � 1
,

cot u �
x221 � x4

1 � x4csc u �
21 � x4

1 � x4 ,

sec u �
1

x2,tan u �
21 � x4

x2 ,

sin u � 21 � x4,

cot u �
24 � x2

x
csc u �

2
x

,

sec u�
224 � x2

4 � x2 ,tan u�
x24 � x2

4 � x2 ,

cos u �
24 � x2

2
,

3 � 212213 � 16,

213 � 16,

213 � 16

6
,

213 � 16

6
, U sec U csc U cot U

0 1 undefined undefined

p�6 2

p�4 1

p�3 2

p�2 undefined 1 0

2p�3 �2

3p�4 �1

5p�6 2

p �1 undefined undefined

3. a � c � 5. b �

7. sin A �

cot A �

13. (b) sin u �

cos u � 15. sin A cos A

17. sin2 A 19. cos A � sin A
21. sin A cos A
23. (a) 0.9 � cos 6 � 1.0; cos 6 � 0.96
(b) 0.9 � cos(�6) � 1.0; 
cos(�6) � 0.96
25. (a) �0.8 � cos 140	 � �0.7; 
cos 140	 � �0.77
(b) �0.8 � cos(�140	) � �0.7;
cos(�140	) � �0.77
27. (a) 0.7 � sin � 0.8; sin � 0.71
(b) �0.8 � sin(�p�4) � �0.7;
sin(�p�4) � �0.71
29. (a) �1.0 � sin 250	 � �0.9; 
sin 250	 � �0.94
(b) 0.9 � sin(�250	) � 1.0; 
sin(�250	) � 0.94
31. (a) �0.7 � cos 4 � �0.6; 
cos 4 � �0.65
(b) �0.7 � cos(�4) � �0.6; 
cos(�4) � �0.65
33. (a) �0.7 � cos(4 � 2p) � �0.6,
cos(4 � 2p) � �0.65
(b) �0.7 � cos(�4 � 2p) � �0.6,
cos(�4 � 2p) � �0.65

35. 37. 39. �a

41. �a 43.
45. sin u � cos u 65. s � 2p cm, 
A � 16p cm2 67. A � cm2

69. radians, A � cm2

71. r � 3 cm, u � 4 radians
73. 7p

18   radians

40
p  r � 20

p  

1
2 

�21 � a2

21 � a221 � a2

p
4  

p
4  

cos a � sin a

12

cos a � sin a

12
,

3155�55
155�8,

35
2  13�21

2 ,

�13�213/3

12�12

�13/3213/3

13/3213/3

1212

13213/3

(b) sec B � �2, csc B � �3,
cot B � 7. sin B � , cos B � , 

tan B � , cot B � , sec B � , 

csc B � 9. (a) sin B � , 

cos A � (b) sin A � , cos B �
(c) (tan A)(tan B) � 1
11. (a) cos A � , sin A � , 
tan A � (b) cos B � , sin B � , 

tan B � (c) (tan A) (tan B) � 1

25. (a)

(b)

(c)

27. (a)

(b)

(c)

29. sin B � tan B �

sec B � csc B �

cot B �

31. cos u � tan u �

sec u � csc u �

cot u � 139�6

513�6,5113�13,
2139�13,113�5,

4133�33
7133�33,7

4 ,
133�4,133�7,

tan(90° � b) �
3216x2 � 9

16x2 � 9

cos(90° � b) �
216x2 � 9

4x
,

sin(90° � b) �
3

4x
,

cot b �
3216x2 � 9

16x2 � 9
sec b �

4x

3
,

csc b �
4x216x2 � 9

16x2 � 9
,

tan b �
216x2 � 9

3
cos b �

3

4x
,

sin b �
216x2 � 9

4x
,

tan(90° � u) �
3

2x

cos(90° � u) �
2x24x2 � 9

4x2 � 9
,

sin(90° � u) �
324x2 � 9

4x2 � 9
,

tan2 u �
4x2

9

cos2 u �
9

4x2 � 9
,sin2 u �

4x2

4x2 � 9
,

tan u �
2x

3
cos u �

324x2 � 9

4x2 � 9
,

sin u �
2x24x2 � 9

4x2 � 9
,

24
7

24
25

7
25

7
24

7
25

24
25

3
5

3
5

4
5

4
5

13
12

13
5

5
12

12
5

5
13

12
13

2
3

113113
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A-64 Answers to Selected Exercises

CHAPTER 8
Exercise Set 8.1
1. (a) �2 (b) �2 (c)
(d) 3. (a) �2 (b) �2
(c) (d) 5. (a) �2
(b) �2 (c) �2 (d) �2
7. (a) 2 (b) 2 �3 (c)
(d) �3 9. (a) t � p�2, 3p�2,
5p�2, and 7p�2 (Other answers are 
possible.) (b) t � �p�2, �3p�2,
�5p�2, and �7p�2 (Other answers 
are possible.) 11. (a) sin 2.06 � 0.88,
cos 2.06 � �0.47, tan 2.06 � �1.88, 
sec 2.06 � �2.13, csc 2.06 � 1.13, 
cot 2.06 � �0.53
(b) sin(�2.06) � �0.88, 
cos(�2.06) � �0.47, 
tan(�2.06) � 1.88, 
sec(�2.06) � �2.13, 
csc(�2.06) � �1.13, cot(�2.06) � 0.53
13. (a) sin(p�6) � 0.50, 
cos(p�6) � 0.87, tan(p�6) � 0.58,
sec(p�6) � 1.15, csc(p�6) � 2.00,
cot(p�6) � 1.73
(b) , 

, 
, 
, 
,

25. cos t � ; tan t �

27. tan t �

29. sec a � ; cos a � ; sin a �

35. 37. (a) (b)

(c) (d)

39. (a) (b) 1

41. (a) (b) (c) 1

43. cos2 t 45. sin2 u 55.
57. Assuming that the radius of the 
circle is 1, the coordinates of the point
labeled (x, y) are (cos t, sin t), and the
coordinates of the point labeled 
(�x, �y) are (cos(t � p), sin(t � p)).
So y � sin t and �y � sin(t � p), 
from which it follows that 
sin(t � p) � �sin t. Similarly, 
�x � cos(t � p) and x � cos t, 
from which it follows that 
cos(t � p) � �cos t. Since t � p
results in the same intersection point

13
31

13�212�2

�
1 � 212

3

�1
5

1
5

1
4�2

3

17 cos u

7

12
13

5
13

13
5

�139�13

3
4�4

5

cot 1p6 � 2p 2 � 1.73
csc 1p6 � 2p 2 � 2.00
sec 1p6 � 2p 2 � 1.15
tan 1p6 � 2p 2 � 0.58
cos 1p6 � 2p 2 � 0.87

sin 1p6  � 2p 2 � 0.50

13
�1313

12�12�12
�12�1

2
1
2

13131
2

�1
21313

with the unit circle as t � p, identities
(ii) and (iv) follow in a similar manner.
61. (a)

(b) The smallest output is 6.14, 
which occurs at t � 1.0.
(d) tan2 t � 9 cot2 t �
(tan t � 3 cot t)2 � 6 � 0 � 6 � 6
(e) The answer from part (b) is 
consistent with this result.
63. (a) Each side is 0. (b) Each side is

�2. (c) no
65. (a)

t 1 � cos u

0.02 0.998 0.999800
0.05 0.99875 0.998750
0.1 0.995 0.995004
0.2 0.980 0.980067
0.3 0.955 0.955336

(b)

67. (a)

x tan x

0.1 0.100333 0.100335 0.100335

0.2 0.202667 0.202709 0.202710

0.3 0.309000 0.309324 0.309336

0.4 0.421333 0.422699 0.422793

0.5 0.541667 0.545833 0.546302

2
15 x5 � 1

3 x3 � x1
3 x3 � x

– 1

1

y

x

y=cos t

y=1- t@

_π π

1

2

1
2t2

12 � 12 2

t 1.0 1.2 1.4
f(t) 6.14 7.98 33.88

t 0.2 0.4 0.6 0.8
f(t) 219.07 50.53 19.70 9.55

75.

77.

79.

81.

83. (Other answers are 
possible.) 85. �450	, �90	, 270	,
630	 (Other answers are possible.)
87.
89. 0.9848 91. 0.1736

Chapter 7 Test
1. (a) �1 (b) �1 (c) 0

2. (a) (b) (c) 1

3. cos u � tan u �

cot u � sec u �
csc u � �5
4. sin u � tan u �

cot u � sec u �

csc u �

5. 6. �1 7.

8.
9. sin 2 is larger
10. (a)

(b) 11.

12.
13. �2 tan u � 1
15. (a) 1200p radians/min
(b) 18000p cm/min
(c) 720p radians/min (d) 360 rpm

16. sin u �

cos u � sec u �

csc u � cot u �

17.

18. (a) tan(�CAB) is larger
(b) cos(�DAB) is larger

117 � 1

6

1

t

21 � t2

t
,

21 � t2,
21 � t2

1 � t2 ,

t21 � t2

1 � t2 ,

125p
24   cm2

25p
12   cm540°

p  

11p
12   radians

�12

1
2 �

13

2

6131�31

�615�5,�1155�31,

�1155�5,131�6,

516�12,�216,

�16�12,216�5,

12

2

13

2

tan u � 12
5sin u � � 

12
13 ,

7p
6

5p
6  ,� 

5p
6  ,

csc u � � 
25
7sec u � 25

24 ,

cot u � � 
24
7  ,tan u � � 

7
24 ,

cos u � 24
25 ,sin u � � 

7
25 ,

csc u � 17
8sec u � � 

17
15 ,

cot u � � 
15
8  ,tan u � � 

8
15 ,

cos u � � 
15
17 ,sin u � 8

17 ,
csc u � �716�12sec u � � 

7
5 ,

cot u � 516�12,tan u � 216�5,

cos u � � 
5
7 ,sin u � �216�7,

csc u � 5
2sec u � �5121�21,

cot u � �121�2,tan u � �2121�21,

cos u � �121�5,sin u � 2
5 ,



(d) units to the left
(e)

39. (a)

(b) In the vicinity of x � 0 the graphs of
y � cos x and y � 1 � 0.5x2 are very
similar.

(c)

41. (a) 0.45 (b) 0.4510 (c) 5.8322
(d) 2.6906 and 3.5926
43. (a) 1.25 (b) 1.2661 (c) 5.0171
(d) 1.8755 and 4.4077
45. (a) 1.0 (b) 0.9884 (c) 5.2948
(d) 2.1532 and 4.1300 47. (a) 0.65
(b) 0.6435 (c) 2.4981
(d) 3.7851 and 5.6397

x 0.01 0.001
cos x 0.99995 0.9999995
1 � 0.5x2 0.99995 0.9999995

x 1 0.5 0.1
cos x 0.54 0.8776 0.9950
1 � 0.5x2 0.50 0.8750 0.9950

– 10 10

– 2

2

y

x

y=1-0.5x2

y=cos x

_10 10

_2

2

y

x

y=cos x

– 3

3

_2π 2π

y

x

y=sin x

y=cos x

p
2 49. (a) 0.2 (b) 0.2014 (c) 2.9402

(d) 3.3430 and 6.0818 51. (a) 0.8
(b) 0.7754 (c) 2.3662 (d) 3.9170
and 5.5078 53. intersection points: 
x � 2.498 and x � 3.785

55. (a) x � 0.7574; x � 2.3842

(b) x � 3.8989; x � 5.5258

57. (a) 0 (b) 0 59. , p2
61. (a)

x4 x5 x6 x7

From 
graph 0.65 0.80 0.70 0.75

From 
calculator 0.65593 0.79248 0.70208 0.76350

x1 x2 x3

From 
graph 1.0 0.55 0.85

From 
calculator 0.99500 0.54450 0.85539

1p2
– 1

1

y

x

y=_0.687

π
2

y=sin x

3π
2

– 1

1

y

x

y=sin x

y=0.687

3π
2

π
2

– 1

1

y

x

y=cos x

y=_0.8

π 2π

(b)

69. P: sin(p�12) � 0.259; Q: � 0.5; 
R: � 0.707; S: � 0.866;
T: sin(5p�12) � 0.966

Exercise Set 8.2
1. period: 2; amplitude: 1 3. period: 4;
amplitude: 6 5. period: 4; 
amplitude: 2 7. period: 6; amplitude: 
9. , 12 � (�10.996, 1)
11. , 12 � (7.854, 1)
13. (�4p, 0) � (�12.566, 0)
15. (�3p, 0) � (�9.425, 0)
17. (�p, 0) � (�3.142, 0)
19. increasing 21. decreasing
23. , 02 � (14.137, 0)
25. (�4p, 1) � (�12.566, 1)
27. , 02 � (1.571, 0)
29. (4p, 1) � (12.566, 1)
31. 1� , 02 � (�7.854, 0)
33. decreasing 35. increasing
37. (a) x-intercept: p

(b) four turning points; x-coordinate: 
(c) five turning points: x-coordinate: 2p

– 5 7

– 3

3

y

x

y=sin x

y=cos x

p
2

– 5 3 7

– 3

3

y

x

y=sin x

5p
2

1p2
1 9p2

1 5p2
1�7p

2

3
2

13/212/2

1
2

– 10

10

y

x

y=

y=tan x

x#+x

_π π

1
3

y= x%+ x#+x2
15

1
3
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(b) amplitude: 2; period: p; 
x-intercepts: ; increasing: 

5. (a) amplitude: 3; period: 4; 
x-intercepts: 0, 2, 4; increasing: (0, 1)
and (3, 4)

(b) amplitude: 3; period: 4; 
x-intercepts: 0, 2, 4; increasing: (1, 3)

7. (a) amplitude: 1; period: 1; 
x-intercepts: ; increasing: 

1

–1

1

y

x

y=cos 2πx

1
2

1 12, 1 21
4, 34

2 4

– 3

3

y

x

y=_3 sin
πx
2

– 3

3

1 3

y

x

y=3 sin πx
2

– 2

2

y

x

y=2 cos 2x

π
2

π

1p2 , p 2p
4 , 3p4

(b) amplitude: 4; period: 1; 
x-intercepts: ; increasing: 

9. y � sin x: amplitude � 1, 
period � 2p; y � 2 sin x: 
amplitude � 2, period � 2p; 
y � 3 sin x: amplitude � 3, 
period � 2p; y � 4 sin x: 
amplitude � 4, period � 2p

11. (a) y � 2 sin px: amplitude � 2, 
period � 2; y � sin 2px: 
amplitude � 1, period � 1
(b)

13. amplitude � 1; period � 4p; 
no x-intercepts; increasing on (0, p)
and (3p, 4p)

_1

_2

_3

_4

y

x

y=sin(x/2)-2

4π2π

1 2

_2

_1

1

2

y

x

y=2 sin πx

y=sin 2πx

– 4

– 2

2

4

y

x

y=4 sin x
y=3 sin x

y=2 sin x

y=sin x

3π
2

π
2

1

–4

4

y

x

y=_4 cos 2πx

1
2

10, 12 21
4, 34

(b)

(c) 370 fish 63. (a) C(cos u, sin u)

Exercise Set 8.3
1. (a) amplitude: 2; period: 2p; 
x-intercepts: 0, p, 2p; increasing: 10, 
and , 2p2

(b) amplitude: 1; period: p; 
x-intercepts: 0, , p; increasing: 

3. (a) amplitude: 1; period: p; 
x-intercepts: ; increasing: 

– 1

1

y

x

y=cos 2x

π π
2

1p2 , p 2p
4 , 3p4

– 1

1

y

x

y=_sin 2x

3π
4

π
4

1p4 , 3p4 2p
2

– 2

2

y

x

y=2 sin x

3π
2

π
2

1  3p2
p
2 2

n 4 5 6 7

Number of 
fish after 

328 396 351 382
n breeding 
seasons

n 0 1 2 3

Number of 
fish after 

50 498 272 428
n breeding 
seasons



21. amplitude � 1; period � ; 
phase shift � ; 
x-intercepts � ; 
high point � (0, 1); 
low point � , �12

23. amplitude � 1; period � 2p; 
phase shift � ; x-intercepts � p, 2p; 
high points � , 12, , 12
low point � , �12

25. amplitude � 2; period � 2; phase
shift � �1; x-intercepts � �1, 0, 1; high
point � , 22; low point � , �22

y=_2 sin(πx+π)
2

1

_1

_2

y

x

_1 _0.5 0.5 1

1�1
21 12

5π

2

π

2

y=cos(x-π/2)
1

_1

y

x

1 3p2
1 5p21p2

p
2

π

6

π

3

1

_1

_

y

x

y=sin(3x+π/2)

1p3
�p6 , p6 , p2

�p6

2p
3 27. amplitude � 1; period � 2p; phase 

shift � �1; x-intercepts � � 1, � 1;
high points � (�1, 1), (2p � 1, 1); 
low point � (p � 1, �1)

29. amplitude � 1; period � p; 
phase shift � ; x-intercept � ; 
high points � , 22, , 22
low point � , 02

31. amplitude � 3; period � 3p; 
phase shift � ; x-intercepts � , 2p;
high points � , 32, , 32; 
low point � , �32

33. (a) amplitude: 2.5; period: ; 
phase shift: 
(b)

0.5 1.0– 0.5

– 3

3

y

x

y=_2.5 cos(3πx+4)

� 4
3p

2
3

π

4
11π

4
_

y=3 cos(2x/3+π/6)

_2

_3

2

1

y

x

1 5p4
1 11p

41�p4
p
2�p4

7π

6

π

6

y=cos(2x-π/3)+12

1

y

x

1 2p3
1 7p61p6

2p
3

p
6

1

_1

y

x

y=cos(x+1)

_1+2π_1

3p
2

p
2

15. amplitude � 2; period � ; 
x-intercept � ; increasing on 

17. amplitude � 1; period � 2p; 
phase shift � ; x-intercepts � ; 

high points , ; 

low point 

19. amplitude � 1; period � 2p; phase
shift � �2; x-intercepts � �2, p � 2,
2p � 2; high point � , 12; low
point � , �12

1

_1

y

x

G(x)=_sin(x+2)

_2+2π_2

1p2 � 2
1 3p2 � 2

5π

3
2π

3
π

3

1

_1

_

y

x

g(x)=cos(x+π/3)

� 1 2p3 , �1 2
1 5p3 , 1 2� 1�p3 , 1 2

p
6 , 7p6�p3

1
3

2
3

_1

_2

_3

_4

y

x

y=_2-2 cos 3πx

10, 13 21
3

2
3

Answers to Selected Exercises A-67



A-68 Answers to Selected Exercises

(c) high points: (400, 0.02), (600, 0.02),
(800, 0.02); low points: (500, �0.02),
(700, �0.02) (d) high points: 
(400, 0.02), (600, 0.02), (800, 0.02); 
low points: (500, �0.02), (700, �0.02)
41. y � 1.5 sin 43. y � cos 

45. y � p cos 

47. y � 25.25 sin � 43.25

49. y � 6.3 sin � 75.2
51. y � 25 sin � 90
53.

55.

57. (a) amplitude � 3, period � p,
phase shift � , x-intercepts � , , 
highest points � , , 
lowest point � (p, �3)

– 3

3

y

x

y=3 cos(π_2x)

π 3π/2π/2

1 3p2 , 3 21p2 , 3 2
5p
4

3p
4

p
2

y=cos@ x-sin@ x

π π
2

1

_1

y

x

π π
2

y=cos@ x

1

y

x

1p6 t � 2p
3 2

1p6  t � p
4 2

1p6 t � 2p
3 2

p
4  x

2p
5  x3

2 x

(b) amplitude � , 
period � , phase shift � , 
x-intercepts � , 0, , 

highest point � , 

lowest point �

59. (a) Although the two graphs have
the same period, the second graph 
appears to have a smaller amplitude.

(b) 0.84 (c) sin � sin 1
61. (a)

y=ln(sin2 x)_10

_10 10

10

y

x

1sin 
p
2 2

y=sin x

y=sin(sin x)

10_10

_1

1

y

x

y=sin(sin x)
y=sin x

_10

_10 10

10

y

x

y=_ sin(_4πx _ π)
5/2

5
2

_5/2

y

x

_1/4 _1/8 1/8 1/4

1�1
8, 

�5
2 2

1 18, 52 2
1
4�1

4

�1
4

1
2

5
2(c) high points: (�0.09, 2.5), 

(0.58, 2.5); low points: (�0.42, �2.5), 
(0.24, �2.5), (0.91, �2.5)
(d) high points: , 2.52, 

� 1, 2.52; low points: , �2.52, 
, �2.52, , �2.52

35. (a) amplitude: 2.5; period: 6; 
phase shift: 
(b)

(c) high points: (�0.82, 2.5), 
(5.18, 2.5); low points: (�3.82, �2.5),
(2.18, �2.5), (8.18, �2.5)
(d) high points: � 3, 2.52, 

� 9, 2.52; low points: , �2.52, 
� 6, �2.52, � 12, �2.52

37. (a) amplitude: 1; period: 4p; 
phase shift: �1.5
(b)

(c) high points: (1.64, 1), (14.21, 1);
low points: (7.92, �1), (20.49, �1)
(d) high points: (�1.5 � p, 1), 
(�1.5 � 5p, 1); low points: 
(�1.5 � 3p, �1), (�1.5 � 7p, �1)
39. (a) amplitude: 0.02; period: 200;
phase shift: 400
(b)

400 800
– 0.02

0.02

y

x

y=0.02 cos(0.01πx-4π)

4 8 12 16 20

– 1

1

y

x

y=sin(0.5x+0.75)

1�12
p1�12

p

1�12
p1�12

p

1�12
p

– 4 4 8

– 3

3

y

x

y=_2.5 cos )( πx+41
3

�12
p

1� 4
3p � 4

31� 4
3p � 2

3

1� 4
3p1� 4

3p

1� 4
3p � 1

3



(d)

(e) t � 0, t � 3, t � 6, t � 9, and 
t � 12 sec; the mass (s-coordinate) is 
at �3, 3, �3, 3, and �3 ft, respectively.
(f) t � 1.5 and t � 7.5 sec; the mass is
at 0 ft. (g) t � 4.5 and t � 10.5 sec;
the mass is at 0 ft.
(h)

5. (a) amplitude: 170 volts; 
frequency: 60 cps
(b)

(c) t � sec and t � sec
7. (a)

(b) 1, , �1, , 1, and 12�1
2, 

1
2

1
2, �

1
2

t (sec) 4 5 6 7
u (radians) 4p�3 5p�3 2p 7p�3

t (sec) 0 1 2 3
u (radians) 0 p�3 2p�3 p

1
30

1
60

– 150

150

v

t

v=170 cos(120πt)

1

60
1

30

4 8 12

– 3

3

s, v

t

v=π sin
πt

3

s=_3 cos
πt

3

6 12

– 3

3

v

t

v=π sin
πt

3

(c)

(d) t � 2 sec

t � 3 sec

t � 4 sec

(e) The x-coordinate of Q is the same as
the x-coordinate of P, which is cos u.

P

Q

y

x

x@+y@=1

4π

3

P, Q

y

x

x@+y@=1

π

P

Q

y

x

x@+y@=1

2π
3

1
2

P

Q

y

x

x@+y@=1

π
3

1
2

(b)

(c) ln(1 � cos x) � ln(1 � cos x) �
ln(sin2 x)

Exercise Set 8.4
1. (a) t � 0: s � 4 cm; t � 0.5: 
s � 2.83 cm; t � 1: s � 0 cm; 
t � 2: s � �4 cm (b) amplitude: 
4 cm; period: 4 sec; frequency: cps

(c) t � 0, t � 2, t � 4, t � 6, and 
t � 8 sec (d) t � 1, t � 3, t � 5, and 
t � 7 sec (e) 2 � t � 4 and 6 � t � 8
3. (a) amplitude: 3 ft; 
period: 6 sec; frequency: cps

(b) 0 � t � 3 and 6 � t � 9
(c) 3 � t � 6 and 9 � t � 12

6 12

– 3

3

s

t

s=_3 cos
πt

3

1
6

4 8

– 4

4

s

t

s=4 cos
πt
2

1
4

y=ln(1 _ cos x)+ln(1+cos x)

10

10_10

_10

y

x
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3. (a) x- and y-intercepts: 0; 
asymptotes: x � and x �

(b) x- and y-intercepts: 0; asymptotes: 
x � and x �

5. x- and y-intercepts: 0; asymptotes: 
x � �1 and x � 1

7. x-intercept: 1; no y-intercept; 
asymptotes: x � 0 and x � 2

1

– 4

4

y

x

y=cot

x=2

πx
2

– 4

4

y

x

x=_1

x=1

y= tan
1
2

πx
2

_4

4

y

x

x=-
3π
2

x=
3π
2

y=_tan
x
3

3p
2�3p

2

– 4

4

y

x

x=_
3π
2

x=
3π
2

y=tan
x
3

3p
2�3p

2

9. x-intercept: ; y-intercept: 1; 
asymptotes: x � and x �

11. x-intercept: ; no y-intercept; 
asymptotes: x � 0 and x �

13. x-intercepts: �p, 0, p

15. (a)

– 3

3

y

x

y=tan

x=_2π x=2π x=6π

x
4

– 5 5

y=tan x

– 5

5

y

x

– 4

4

y

x

y= cot 2x

x=
π
2

1
2

π
4

p
2

p
4

– 4

4

y

x

y=_cot x-( )

x=π
4

x=

3π
4

5π
4

π
4

5p
4

p
4

3p
4(f) amplitude: 1; period: 6; frequency: 

(g)

(h) t � 0, 3, 6, 9 and 12 sec; 
x-coordinates: 1, �1, 1, �1 and 1, 
respectively (i) t � 4.5 sec and 
t � 10.5 sec; Q is located at the origin.
(j) t � 1.5 sec and t � 7.5 sec; 
Q is located at the origin.

Exercise Set 8.5
1. (a) x-intercept: ; y-intercept: 1; 

asymptotes: x � and x �

(b) x-intercept: ; y-intercept: �1; 

asymptotes: x � and x �

– 4

4

y

x

x=_

_

y=_tan x+( )

3π
4

x=π
4

π
4

π

4

p
4�3p

4

�p4

– 4

4

y

x

x=_

_

y=tan x+( )

3π
4

x=
π
4

π
4

π

4

p
4�3p

4

�p4

6 12

v

t

v=_ sin

-

π
3

πt
3π

3

π
3

6 12

– 1

1

x

t

x=cos
πt
3

1
6



19. (a)

(b)

(c)

21. no x-intercept; y-intercept: ;
asymptotes: x � , x � , and x �

– 4

4

y

x

x=_

y=csc x-( )π
4

3π
4

3π
4

5π
4

x=
π
4

x=

5p
4

p
4�3p

4

�12

3

y

x

y=0.4 tan

x=_
5π
2

x=
5π
2

x=
15π

2

x

5

3

y

x

y=0.4 tan
x
3

x=_
3π
2

x=
3π
2

x=
9π
2

3

y

x

x=_π x=π x=3π

y=0.4 tan
x
2

23. no x- or y-intercepts; asymptotes: 
x � �2p, x � 0, and x � 2p

25. no x- or y-intercepts; asymptotes: 
x � �1, x � 0, and x � 1

27. no x-intercept; y-intercept: �1; 
asymptotes: x � , x � , and x �

29. no x-intercept; y-intercept: �1; 
asymptotes: x � , x � , and x �

– 4

4

y

x

y=sec(x-π)

x=
π
2

x=
3π

2π

π

2
x=

5π
2

5p
2

3p
2

p
2

4

y

x

x=_

y=_sec x

π

π

2
x=

π
2

x=
3π
2

3p
2

p
2�p2

– 

– 4

4

1
2

1
2

y

x

x=1

x=_1

y= csc πx1
3

– 4

4

y

x

x=_2π

_π

π

x=2π

y=_csc
x
2

(b)

17. (a)

(b)

(c)

– 3

3

y

x

x=_ _

y=0.5 tan(πx+1)

1
2

1
π x= _

1
2

1
π x= _

3
2

1
π

– 3

3

y

x

x=_

y=0.5 tan πx+( )π
3

5
6

x=
1
6

x=
7
6

– 3

3

y

x

y=0.5 tan πx

x=-
1
2 x=

1
2 x=

3
2

– 3

3

y

x

x=_

y=tan 4x

π
8

x=π
8

x=3π
8

Answers to Selected Exercises A-71



A-72 Answers to Selected Exercises

37. (a) x-intercepts: , and ; 
y-intercept: �3 �2 � �2.12; no 
asymptotes

(b) no x-intercepts; y-intercept: 
�3 ; asymptotes: x � , x � , 
x � , and x �

39.

41.

– 6

6

y

x

y=3 sec

x=_

2x-( )π

6

y=3 cos 2x-( )π

6

π
6 x=

5π
6 x=11π

6

– 2

2

y

x

x=
_

4
π

y=0.6 csc

x=
4

π

x=_2π x=2π

x
2

y=0.6 sin
x
2

– 6

6

y

x

y=_3 sec

x=_

2πx-( )π
4

1
8

x=_

x=7
8

3
8

5
8 x=

7
8

3
8

�1
8�5

812

– 6

–

6

y

x

y=_3 cos 2πx-( )π
4

3

8
5

8

– 7

8
9

8

12

7
8�5

8, �
1
8, 

3
8

43. (a)

(b)

45. (a)

(b)

– 4

4

y

x

y=csc πx+( )π
4

1

4

5

4

x=_
1

4
x=

3

4
x=

7

4

– 1

1

y

x

y=sin πx+( )π
4

1

4
5

4

– 4

4

y

x

y=csc πx-( )π
6

2

3

5

3

x=
1
6

x=
7
6

x=
13
6

– 1

1

y

x

y=sin πx-( )π
6

2

3
5

3

31. no x-intercept; y-intercept: 3; 
asymptotes: x � �1, x � 1, and x � 3

33. sin x � csc x at odd multiples of ,
such as , , , and ; there are no
points at which sin x � �csc x.

35. (a) x-intercepts: , , , and
; y-intercept: �1; no asymptotes

(b) no x-intercepts; y-intercept: �4;
asymptotes: x � , x � , x � , 
x � , and x �

– 4

4

y

x

x=_
11
18

x=
1

18
x=

13
18

y=2 csc 3πx-( )π
6

13
18

7
18

1
18� 5

18�11
18

– 4

4

y

x

_

y=2 sin 3πx-( )π
6

11

18

13

18

13
18

7
18

1
18� 5

18�11
18

– 10 10

– 10

10

y

x

y=csc x

y=sin x

3p
2

p
2�p2�3p

2

p
2

2

– 6

y

x

x=_1 x=1 x=3

y=3 sec
πx
2



55. (a)

(b) x � 1 (c) x � 1.1071 (d) yes
57. (a) Since P and Q are both points
on the unit circle, the coordinates are
P(cos s, sin s) and Q(cos1s � , 
sin1s � . (b) Since is
congruent to (labeling the 
third vertex B), OA � OB and AP � BQ.
Because the y-coordinate at Q is 
negative, we have concluded what was
required. 59. (b) � , and 

�

Chapter 8 Review Exercises
1. (a) (b)
3. 2 sin t
5.

7. amplitude: 1; period: p; 
phase shift: 

– 1

1

y

x
π

4

3π

4

5π

4

y=_sin(2x-π)

p
2

– 4

4

y

x

x=_ +
1
4

3
2π

x= +
1
4

3
2π

x=

y=sec(2πx-3)

+
3
4

3
2π

�13�13�2

p
2 � s�AOD

p
2 � s�COD

^OBQ
^OAPp

2 2 2
p
2 2

– 10 10

y

x

y=2

y=tan x

9. �1 11. 13.
15. 17. 1 19. �2 21. 0.841
23. �1 25. 0.0123 31. 5 cos u
33. 10 tan u 35. cos u
37. 39. A(u) � p � u � sin u

41. (p � 2) cm2 43. y � 4 sin x
45. y � �2 cos 4x 47. x-intercepts: 
and ; high point: , 3); 
low points: (0, �3) and , �32

49. x-intercepts: , and ; high point: 
, 22; low point: , �22

51. x-intercepts: and ; high points:
(1, 3), (7, 3); low point: (4, �3)

53. (a)

– 1

1

– 4

4

y

x

πx
4

x=tan

x=_2 x=2

1 4 7

– 3

3

y

x

y=3 cos -( )π
3

πx
3

11
2

5
2

– 2

2

y

x

πx
2

π
4

3

2

7

2

y=2 sin _( )

1 721 32
9
2

1
2, 

5
2

– 3

3

y

x
π

4
π

2

y=_3 cos 4x

1p2
1p43p

8

p
8

1
2 

�15
8

115�5 2
1
2

�13�3213�347.

49.

51.

(a) y � x3 (b) y � tan x (c) y � x3

53. cot2 x � csc2 x � 1 is an identity.

y

x

y=cot@ x=csc@ x-1

x=_2π x=_π

1

2

3

x=π x=2π

g(x)=x#

f(x)=tan x

π

2
_1

_2

_3

3

2

1

y

π

2_

x

4

y

x

y=|csc x |

x=
_

2
π

x=
2

π

x=
_

π

x=
π

y

x

y=| tan x |

x=
_

3
π

/2

x=
3

π
/2

x=
_

π
/2

x=
π

/2
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3.

4. amplitude: 1; period: ; 
phase shift: 

5.

6. (a) 50p radians/sec
(b) 250p cm/sec
8. (a)

(b) passing through the origin: t � 1.5, 
t � 4.5, t � 7.5, and t � 10.5 sec; 
farthest from the origin: t � 0, t � 3, 
t � 6, t � 9, and t � 12 sec
9. (a) 1 (b) 0 (c) 0
10. (a) 1.1 (b) 1.1198 (c) 2.0218
11. y � 3.095 sin( t � 1.296) � 12.087p

183

6 12

– 10

10

x

t

x=10 cos
πt

3

1 3

– 4

4

y

x

y=3 tan

x=2

πx

4

– 1

1

y

x

y=_sin 3x-
π
4

π

4
7π

12

( )

p
12

2p
3

– 2

2

y

x

y=0.5 sec(4πx-1)

x=_ +
1
8

1
4π

x= +
1
8

1
4π

x= +
3
8

1
4π

CHAPTER 9
Exercise Set 9.1
1. sin 3u 3. sin 2u 5. cos 5u
7. �2 9. sin B 11. cos u
13. �cos u 15. sin t

17. 19.

21. sin s 23. sin u

25. (a) (b) 27. (a)

(b) 29. (a) (b)

31. sin(u� b) � ; 

cos(b� u) �

37. tan(s � t) � �1; tan(s � t) �
39. tan(s � t) � ; tan(s � t) �

41. tan 3t 43. 45. tan x

47. �2 � 63. (b)
65. (b)

71. 75. (a) Using , 
cos(a� b) � AB�1, so cos(a� b) � AB.
(b) Using , cos a � AC�AF �
AC�cos b, so AC � cos a cos b.
(c) Using , sin( ) � EF�HF.
But �EHF � a, and HF � sin b, 
so sin a � EF�sin b, and thus 
EF � sin a sin b. (d) From part (a), 
cos(a � b) � AB � AC � BC. But 
AC � cos a cos b from part (b), and 
BC � EF � sin a sin b from part (c), so
cos(a � b) � cos a cos b � sin a sin b.
81. (a)

(b) f(t) � 1.5.
85. (a) The two values are equal: 
tan A � tan B � tan C � �1.1918; 
tan A tan B tan C � �1.1918.
(b) tan a � tan b � tan g � �1.3764;
tan a tan b tan g � �1.3764

t 1 2 3 4
f(t) 1.5 1.5 1.5 1.5

�EHF^EFH

^ACF

^ABH13�2

– 2

2

y

x

f(x)=œ„2 cos x-( )π
4

9π

4

π

4

2a2 � b213

13

3
5

5
3

�1
7

2113 � 3139

26

2139 � 3113

26

416�25216�5�4
5

� 44
125

63
65�16

65

1312

16 � 12

4

16 � 12

4

13

(b)

55. (a)

(b)

57. (a) amplitude: 2.5 cm; period: 
16 sec; frequency: cps

(b) t � 0, t � 8, t � 16, t � 24, and 
t � 32 sec (c) t � 4, t � 12, t � 20,
and t � 28 sec

Chapter 8 Test
1. (a) (b) �2 (c) 1
2. sec u1

4

�1
2

8 24

– 3

3

s

t

πt

8
s=_2.5 cos

1
16

– 6

6

y

x

x
4

y=3 csc

x=_4π

_2π 2π

x=4π

– 6

y

x

x=6πx=2π

4π

x=_2π

y=3 sec
x

4

2

– 4

4

y

x

x=4

y=cot πx
4



Answers to Selected Exercises A-75

13.

15.

17.

19.

21. sin(3t � s) � sin(t � s)

23. cos 10� 25. sin(p�20)
27. �2 sin 4u sin u 29. cos 5�
31. sin 2u 33.
39. 4 cos u cos 4u cos 2u
41. (a) 2 cos (b) amplitude: 2;
period: 4p; phase shift: 

47. 1
51. (a) cos 30� � cos 70� � cos 80� � 1.38;
cos 40� � cos 25� � cos 115� � 1.25;
cos 55� � cos 55� � cos 70� � 1.49
(b) (c) (i) This is the sum-to-
product formula for cos A � cos B.
(ii) This is true because 
cos[(A � B)�2] � 1. (iii) This is true
because A � B � 180� � C. (iv) This
is just division by 2. (v) The identities
used are cos(90� � u) � sin u and 
cos u � 1 � 2 sin2(u�2).
(vi) Multiplying this expression out
shows they are equal. (vii) Since
2[sin(C�2) � , the expression is
at most 3�2.

Exercise Set 9.4
1. yes 3. no 5. u � (p�3) � 2pk
or u � (2p�3) � 2pk, where k is any 
integer 7. u � (7p�6) � 2pk or 
u � (11p�6) � 2pk, where k is any 
integer 9. u � p � 2pk, where k is
any integer 11. u � (p�3) � pk, 
where k is any integer
13. x � pk, where k is any integer
15. u� (p�2) � pk, u� (2p�3) � 2pk
or u � (4p�3) � 2pk, where k is any 
integer 17. t � pk, where k is any 
integer 19. x � (p�6) � 2pk, 
x � (5p�6) � 2pk or x � (3p�2) � 2pk,
where k is any integer

1
2 4 2 � 0

3
2

– 2

– 1

1

2

y

x

f(x)=œ„2 sin +cos( )x
2

x
2

17π

2
9π

2

p
2

1 x2 � p
4 2
13

�1212

1
2

1
2

1
2 cos 2y � 1

2 cos 4x

1
2 sin u � 1

2 sin 2u

1
2 sin u � 1

2 sin 11u

1
2 cos x � 1

2 cos 7x 21. t � (p�4) � 2pk or 
t � (3p�4) � 2pk, where k is any integer
23. (a)

(b) x � 6.28 (c) x � 2p
25. x � 1.39, 4.90 27. x � 0.46, 2.68
29. x � 1.41, 4.55 31. t � 1.37, 4.51
33. t � 1.11, 5.18 35. x � 1.25, 1.82,
4.39, 4.96 37. x � 0.85, 2.29
39. u � 14.5�, 165.5�
41. u � 53.1�, 126.9�, 233.1�, 306.9�
43. u � 128.2�, 231.8� 45. u � 0�,
120�, 240� 47. u� 75�, 105�, 195�,
225�, 315�, 345�
49. u � 90�, 270� 51. u � 30�, 120�,
210�, 300� 53. x � 0.898, 5.385

55. x � 0.666, 2.475

1

_1

y

2π

x

y=cos x
y=tan x

1

_1

y

2π

x

π

y=cos x

y=0.623

2 6 10

– 3

3

y

x

y=cos@ x + cos x -2

Exercise Set 9.2
1. (a) (b) (c)

3. (a) (b) (c)

5. (a) (b) (c)

7. (a) (b) (c)

9. (a) (b)

(c) (d)

11. (a) (b) (c)

(d) 13. (a)

(b) (c)

15. (a) (b)

(c)

17. (a) (b) (c) 19. (a)

(b) (c) 21. (a)

(b) (c) 23. (a)

(b) (c)

25. sin 2u � ,

cos 2u �

27. sin 2u � ,

cos 2u �

29. sin4 u �

31. sin4(u�2) �

51. a � b � p�4 59. (a) �0.5
(c) cos 108� cos 36� � (�cos 72�) �
(�cos 144�) � cos 72� cos 144�
63. (b) (i) This is true because of the
double-angle formula for sine and the
fact that cos 36� � sin 54�. (ii) This 
is true because of the double-angle 
formula for sine and the fact that 
cos 18� � sin 72�. (iii) Dividing each 
side by 4 sin 72� produces this result.

Exercise Set 9.3
1. 3.

5. 7. cos(3p�5) �

9. cos(3p�7) � 11.
1

2
�
13

4
1
2

1
2

1
2

1
2

1
2 sin 10° � 1

4

1
2 cos 80°1

2 cos 50°

3 � 4 cos u � cos 2u

8

3 � 4 cos 2u � cos 4u

8

1 � 2x � x2

2

(x � 1)23 � 2x � x2

2

25 � 2x2

25

2x225 � x2

25

1
2215�5

15�51
33110�10

110�10�24
7� 7

25

24
25

24
7

7
25

24
25

�2 � 13

�
32 � 23

2

32 � 23

2

2 � 13
32 � 23

2

32 � 23

2
�13�3

16�3�7
9412�9

38 � 227

4

38 � 227

4

�1
8�317�8

2121
3212�3

13�313�21
2

8
15�15

17� 8
17

�336
527�527

625
336
625
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65. x � 0, x � 0.695, 4.261

67. x � 0.739, 3.881

69. x � 0, x � 4.493

71. x � 2.108, 5.746

_2

2ππ

y=0.5

y=sin# x+cos# x

x

2

y

y=tan x y=x

6

3

_3

y

2π

x

x

y=sin x
y=sin(cos x)1

_1

y

2π

4

2

y

y=tan x

y=œ„x

x

2ππ

73. x � 0.703

75. x � 0 or x � p
77. x � 2p�3 or x � p
79. u � (3p�16) � kp�4, where k is
any integer 81. u � 60.45�
85. (a) x � 1000.173 (b) x � 1001.022
87. P: 0.315; Q: 0.685; 

R: 1.315 89. (a)

(b) � 15� � 0.26 radians

(d) � 75� � 1.31 radians

(e) � 45� 91. (a) a � 76.0�

(b) a � 76.0� 93. (1.74, 0.99)
95. (a) A(u) � sin u(1 � cos u)
(b) u � 49.78� (c) No, the 
maximum area is 1.30 	 0.42p.
97. (a) V(u) � sin2 u cos u
(b)

(c) x � 0.905 � 51.8�, x � 1.005 � 57.6�
(d) The maximum is 0.403, so the 
volume of the cone cannot equal 0.41 m3.
99. (b) a � 30.0� � 0.52 radians
(d) a � 75.0� 101. (c) rmax � 9.93 ft

Exercise Set 9.5
1. p�3 3. p�3 5. �p�6 7. p�4
9. undefined 11. 13.
15. �p�7 17. p�2 19. 0

3
4

1
4

0 ¨

V(¨)= sin@ ¨ cos ¨0.5

1

V

π
4

π
2

π
3

1
3 p

a � p
4

a � 5p
12

a � p
12

a �
1

2
 sin�1 a rg

v2
0

b

y=2 sin(x/5)

y=1-tan@ x

2ππ

_1

1

x

2

y

57. x � 0.427, 2.715

59. no solution

61. x � 0, 1, x � 3.080, 4.080, 4.538,
5.538, 5.660

63. x � 1.058, 3.739

4

2

_2

_4

y

2ππ

x

y=tan(x/4)

y=2 sin x-3 cos x

y=cos(x@/2)

y=cos(x/2)

1

_1

y

2π

x

x

2

1

_1

y

y=cos 2x+1

y=cos(2x+1)

2ππ

2

_2

y

3π

2

π

2

y=2 sin x

y=cos@ x

x



39.

41.

43. � sin 2u �

45. u � cos u �

tan�1

47. (a)

– 1 1

y

x

_
π

2

π

2

y=_sin–! x

a x � 1

2
b �

2

25 � 2x � x2

1

4
  sin�1 a 3x

2
b �

3x24 � 9x2

2

u

4

y=cos(sin_1 x)=œ„„„„„1-x@

1_1

x

1

_1

y

y=sec(tan_1 x)

y=œ„„„„„1+x@

642

x

6

4

2

y

(b)

(c)

49. (a)

(b)

– 1 1

y

x

π

π

2 π

2

3π

2

g(x)=arccos x+

– 1– 2

y

x

π

π

2

f(x)=arccos(x+1)

– 1 1

y

x

_
π

2

π

2

y=_sin–!(_x)

– 1 1

y

x

_
π

2

π

2

y=sin–!(_x)

21. (a) maximum value: 1.57 
(when x � 1); minimum value: �1.57
(when x � �1)

(b) maximum value: (when x � 1);
minimum value: (when x � �1)
23. (a)

(b) y � �p�2, y � p�2

25. 27. 29.

31. 33. 35. �2

37. 13�3

20
21212�3

15�3�12�2315�7

y=arctan x

y=_
π
2

5025_25_50

x

2

1

_1

y=
π
2

_2

y

y=arctan x

105_5

x

10

5

_5

_10

y

�p2

p
2

y=arcsin x

1_1

x

2

1

_2

_1

y

Answers to Selected Exercises A-77
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55.

57. 59.
61. (a) � a � and 0 � b � p, 

so � a � b � 63. t �

67. x � 
 69. (a) x � 0 is not a so-
lution, so cos�1 x � 0. tan �1 x � 0 only
for x � 0. (c) (0.786, 0.666)
Note: For exercises 70–85 on 
equations of the form f(x) � g(x),
the odd-numbered answers show the 
intersection of two graphs, whereas the
even-numbered show the zeros of the
graph of y � f (x) � g(x).
71. x � 0.74

73. (a) x � 0.96

(b) x � 0.96

1

1

2

y

x

y=cos–! x

y=1.4 x-( )1

2
2

1

1

2

y

x

y=cos–! x

y=1.3 x-( )1
2

2

1

1

2

y

x

y=arccos x

y=x

1
3

12�23p
2�p2

p
2�p2

311218�10908
17

– 2 2 4

y

x

f(x)=_arctan(1-x)-

y=_π

π

2 π

2

_

75. (a) x � 0.24

(b) x � 0.19 and x � 0.68

77. (a) x � 0.56

(b) x � 0.51 and x � 0.84

1

1

2

y

x

tan–! x+sin–! x
y=

y=sin 3x

( )1

1

1

2

y

x

tan–! x+sin–! x
y=

y=sin 2x

( )1

1

1

2

y

x

y=2 sin 4x

y=arccos x

1

1

2

y

x

y=2 sin 3x

y=arccos x

51. (a)

(b)

53. (a)

(b)

(c)

– 3 3

y

x

y=_tan–!(_x)

π
2

y=_

π
2

y=

– 3 3

y

x

y=tan–!(_x)

π
2

y=_

π
2

y=

– 3 3

y

x

y=_tan–! x

π
2

y=_

π
2

y=

1 2 3

y

x

π

π

2

π
2

y=_arcsin(2-x)+

1 2 3

y

x

π

π

2

π
2

y=arcsin(2-x)+



87. (b) The maximum value occurs
when x � 4.

89. (b)
and

Chapter 9 Review Exercises
43. (a) p�4 (b) (i) a � 14
(ii) a � 93 (iii) a � 1256
45. x � 1.34 or 4.48
47. x � 0.46 or 2.68 49. x � p�3,
2p�3, 4p�3, or 5p�3
51. x � 0 or 3p�2 53. x � 0, p,
7p�6, or 11p�6 55. x � p�3, 2p�3,
4p�3, or 5p�3 57. x � p�4, p�2,
3p�4, or 5p�4, 3p�2, or 7p�4
59. x � p�6, p�3, 2p�3, 5p�6, 
7p�6, 4p�3, 5p�3, or 11p�6
61. x � 3p�4 or 7p�4 63.
65. p�6 67. p�6 69. p�3
71. 2p�3 73. 75. 2p � 5
77. 79. 81.

83. 85.
95. (a) 0.0625

Chapter 9 Test
1. �cos u 2. 3.
4. x � 1.25, 4.39
5. x � 7p�6, 11p�6 6.

7. x � 30� 8.
318 � 1222

6

15�5

�3
2�3

5

3110�10�4
3

17
7312�2�12�2

2
7

13�2

BD � 110
AB � 3110,BE � 212,

CE � 12,DE � 12,

2 4

¨(x)=tan _!

¨

-tan _!” ’5
x

6 8

0

0.5

x

” ’3
x

9. restricted sine function: domain �
, range � [�1, 1]; y � sin�1 x:

domain � [�1, 1], range �

10. (a) p�10 (b) 0 11.

13. 14. tan 4u 15. x

16. domain: (�q, q); range: 

CHAPTER 10
Exercise Set 10.1
1. BC � 30 cm, AC �

3. AB � BC �

5. AC � 11.5 cm, BC � 9.6 cm
7. (a) � 15.59 ft (b) 9 ft
9. (a) 22.6� (b) 22.6� (c) 22.6�
11. 34 million miles 13. 141.1 m
15. (a) h � 27.3 ft (b) 906.9 ft2

17. 1.5 in.2 19. sin(360��7) �
2.736 square units
21. p � � 0.313 square units
23. � 1.732 square units
25. 25.2 � 18 sin 1.4 � 7.46 cm2

29. 10,660 ft 31. 136 m
33. BD � 18 cm
35. (a) �BOA � 90� � u, �OAB � u,
�BAP � 90� � u, �BPA � u
(b) AO � sin u, AP � cos u, 
OB � sin2 u, BP � cos2 u

113 � 1 2

13
212

7
2 

913

1613

3
 cm

3213

3
 cm,

3013 cm

_6 _2 2 6

y

x

y=
π
2

y=-

y=tan–! x

π
2

1�p2 , p2 2
13 � 12

4

17�4

– 2

– 1

1

2

y

x

-
π

2
π

2

y=sin–! x

y=sin x

3�p2 , p2 4
3�p2 , p2 4

79. x � 0.71

81. x � 0.74

83. x � 0.94

85. x � 0.93

1

1

2

y

x

tan x
y=

y=tan–! x

1

1

1

2

y

x

sin x
y=

y=sin–! x

1

1

1

2

y

x

y=cos–!(cos–! x)
y=cos–! x

1

1

2

y

x

y=cos–! x
y=sin–! x
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35. approximately 31 miles
37. lighthouse A: 1.26 miles; 
lighthouse B: 1.60 miles
39. D � 860,000 miles
41. (b) a � 5, b � 3, c � 7 
(using m � 2 and n � 1) 43. 2:40 P.M.
47. (f )

(g) Their circumscribed circles have 
the same radii. 55. C � 45� or 135°

Exercise Set 10.3

1.

3.

5.

P

O

2

– 2

4

y

x

0OPu 0 � 110

S

Q

4

1

5

9

8

y

x

0SQu 0 � 110

P

Q

4

6

y

x

0PQu 0 � 134

B

A

R

R
O

C

7.

9.

11.

13.

P

Q

OP+QS

QS

S

O

9

5

y

x

0OPu
� QSu 0 � 6

P

Q

S

O

9

5

y

x

OS+SQ

0OSu
� SQu � QPu 0 � 110

P

Q

O

6

42

y

x

OP+PQ

0OPu
� PQu 0 � 2113

P

Q

S

5

9

51

y

x

PQ+QS

0PQu � QSu 0 � 61237. (a) BC � (b) AB �

(c) AC � 4 sec u � 5 csc u
39. (a) DE � sin u (b) OE � cos u
(c) CF � tan u (d) OC � sec u
(e) AB � cot u (f ) OB � csc u
41. (b) 1080 miles
43. (d)

n 103 104 105

an 3.14157198 3.14159245 3.14159265

47. (a) (cos u, sin u)
49. (b) (1 � cos u) � (u � sin u)
(c) (1 � cos u) � (p � u � sin u)
(d) sin u
55. (b) u � 0.75
(c) percentage error � 1.5%, 
�PCB � 48�

Exercise Set 10.2
1. 3. 20 sin 50� cm
5. a � 9.7 cm; c � 16.4 cm
7. A � 63.3�; C � 50.7�; c � 25.5 cm
9. (a) 45� or 135� (b) 45�
(c) 14.5� or 165.5� (d) 131.8�
11. (a) sin B � 1.18 � 1
13. (b) �C � 105�; c � 1.93
(c) �C � 15�; c � 0.52
(d) A1 � 0.68; A2 � 0.18

15.

17. 160 ft 19. (a) x � 7 cm
(b) x � 21. (a) x � 7.5 cm
(b) x � 17.7 cm 23. x is not the 
side opposite the 130� angle; 
62 � x2 � 32 � 2(x)(3)cos 130�
25. cos A � ; cos B � ; cos C �
27. A � 27.8�; B � 32.2�; C � 120�
29. A � 30�; B � 30�; C � 120�
31. 5.9 units 33. (a) a � 4.2 cm
(b) C � 29.3� (c) B � 110.7�

� 5
28

29
40

113
140

1129 cm

d �
2 sin 50° sin 15°

sin 20° sin 95°
 cm

c �
2 sin 50° sin 70°

sin 20° sin 95°
 cm;

b �
2 sin 50°

sin 20°
 cm;

a �
2 sin 110°

sin 20°
 cm;

416 cm

1
2 

p
4  

1
2 

p
4  

n 5 10 50 100

an 2.37764129 2.93892626 3.13333084 3.13952598

4

cos u

5

sin u



25.

27. F � G � N; u � 38.7�
29. N; u � 45�
31. N; u � 24.1�
33. F � G � 6.92 N; u � 34.67�
35. � 39.20 N; u � 21.46�
37. � 38.96 N; u � 29.44�
39. Vx � 13.86 cm/sec; Vy � 8 cm/sec
41. Fx � 3.62 N; Fy � 13.52 N
43. Vx � �0.71 cm/sec; 
Vy � 0.71 cm/sec 45. Fx � �1.02 N;
Fy � 0.72 N 47. ground speed: 
301.04 mph; drift angle: 4.76�; 
course: 25.24° 49. ground speed:
293.47 mph; drift angle: 8.82�; 
course: 91.18� 51. perpendicular: 
9.83 lb; parallel: 6.88 lb
53. perpendicular: 11.82 lb; 
parallel: 2.08 lb 55. (a) initial point:
(�1, 2); terminal point: (2, �3)
(b) initial point: (�1, 2); 
terminal point: (2, �3)

Exercise Set 10.4
1. length � 5

3. length �
y

x

_2_4

2_4, 2< >

215

y

x

2

3

4

4, 3< >

0F � G 0
0F � G 0

00
0F � G 0 � 7.90
0F � G 0 � 912

14100

O

S

Q
5

5

9

y

x

SO+SQ

0SOu � SQu 0 � 615 5. length �

7. 81, 49 9. 8�1, 19 11. 88, �59
13. 87, 79 15. 824, 229 17.
19. 21. 813, 69
23. 814, 219 25. 8�3, �19 27. 823, 129
29. 8�9, 09 31. �48 33. 3i � 8j
35. �8i � 6j 37. 19i � 23j
39. 81, 19 41. 85, �49 43. H I
45. H I
47. i � j

49. u1 � ; u2 � 51. u1 � ; 

u2 � 53. u1 � ; u2 �

61. (a) u � v � 8; v � u � 8
(b) v � w � �14; w � v � �14
63. (a) v � v � 25; � 25

(b) w � w � 29; � 29
65. cos u � 7� ; u � 57.53�
or u � 1.00 radian

67. cos u � �57� ; u � 163.39�
or u � 2.85 radians

x

y

B

A

13538

x

y

B

A

1170

0w 0 2
0 v 0 2

1
2�13�213�2

�1
2

1
213�2

191145�145 2181145�145 2
215

5 , �15
5

15
5 , 215

5

2117 � 113 � 137
1130

1

, _3
4

_1

y

x

1
2< >

113�415.

17.

19.

21.

23.

P

S

R

5

9

y

x

RP+RS

0RPu
� RSu 0 � 2113

P R

O

6

5

y

x

OP+OR

0OPu
� ORu 0 � 315

Q

R

S

O
5

5

9

y

x

SQ+RO

RO

0SQu � ROu 0 � 161

P
R

Q

O

7

5

y

x

OP+RQRQ

0OPu
� RQu 0 � 137

P R

S

O
5

5

9

y

x

SR+PO

PO

0SRu � POu 0 � 9

Answers to Selected Exercises A-81



A-82 Answers to Selected Exercises

0 � t � 3

0 � t � 4

As the interval for t gets larger, the 
curve resembles a parabola.
(b) �5 � t � 5

The restrictions on t in Figure 1(b) are 
0 � t � 5.
9.

5

1

2

3

4

y

4

x

2_4_6

4(y+1)=(x+1)@

– 10 10

– 10

10

y

x

x=2t
y=0.5t@

5 10

5

10

y

x

x=2t
y=0.5t@

5 10

5

10

y

x

x=2t
y=0.5t@

11.

13.

15.

17. (a)

(b)

2

_2

y

x

_2_6 2 6

+ =1
x@
25

y@
9

1

2

_1

_2

y

x

_1 1_2 2

x2+y2=9

1

_1

y

x

_1_2 1 2

x@ y@
+ =14 1

2

1

_1

_2

y

x

_1 1

+ =1
x@
4

y@
9

4

2

y

x

_4_8

y=|x+4|

69. (a) cos u � �7� ; u � 122.47�
or u � 2.14 radians

(b) cos u � 7� ; u � 57.53�
or u � 1.00 radian

71. (a) cos u � 0
(b) The vectors are perpendicular.
(c)

73. (a) A � B � 0 implies cos u � 0,
also and thus u � p�2. 
So the vectors are perpendicular.
(b) If A and B are perpendicular, then
cos u � 0, so A � B � 0.
75. H I and H I
Exercise Set 10.5
1. (2, 3) 3. , 12 5.
7. (a) 0 � t � 1

5 10

5

10

y

x

x=2t
y=0.5t@

1 312
4 , 312

4 21 513
2

� 5
13, �

12
13

5
13, 

12
13

0 � u � p,

y

x

2

2, 5
_5, 2

3

5

_ 2_4

< >< >

x

y

B

A

1170

x

y

B

A

1170



29.

31.

33.

35.

x=3(t@-3)
y=t(t@-3)

189_9

x

18

_18

9

_9

y

x=3t@
y=2t#

1296

x

8

4

_4

_8

y

x=2 tan t
y=2 cos@ t

3

_4 4

y

x

x=2 cos t+cos 2t
y=2 sin t-sin 2t

3

_3

_2 3

y

x

37.

39.

Exercise Set 10.6
1. (a) (b) , �22

(c) 12 , �22 3. (a) (0, 1)
(b) (0, 1)

π
2

π
8

Polar or
x-axis

(a) (b)

(c)

y-axis or ¨=

1

13

π
2

1
Polar or
x-axis

(b)
(c)

(a)

y-axis or ¨=

,-

2π
3

π
6

11π
6

12131�3
2,  

313
2 2

x=sin(0.8t+π)
y=sin t

_1

1_1

x

1

y

x=8 cos t+cos 8t
y=8 sin t-sin 8t

_9

9_9

x

9

y
21. (a) t � 1: x � 70.7, y � 59.7
t � 2: x � 141.4, y � 82.4
t � 3: x � 212.1, y � 73.1
(b) 4.49 sec; 317 ft
23. (a)

(b)

25.

27.

x=4 cos t
y=3 sin t4

2

2 4

y

x

0≤ t ≤ )( π
2

x=4 cos t
y=3 sin t

0≤t≤

2

4

_2

_4

y

x

_3 _1 31

)( π

2

7

3

y

x

_7 _3

_11

117

x=3t+2
y=3t-2
(_3≤t≤3)

4

y

x

_4

_4

_8

4 8

x=3t+2
y=3t-2
(_2≤t≤2)
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45. (a)

(b)

47. (a) r cos(u � a) � d
53. (a) A(1, 0), B11, 2, C11, 2
Exercise Set 10.7
1. The graphs are four concentric circles
with centers at the origin and radii 2, 4,
6, and 8.

3.

4 4

4

4

2πr=

¨=0

¨

¨=π
2

– 8 8

– 8

8

r=2

r=6r=8
r=4

¨=π
2

¨=0

4p
3

2p
3

– 4 4

– 4

4

y

x

y=3

– 4 4

– 4

4

y

x

x=3

5.

7.

9.

11.

13.

3 3

3

5

1

r=2-2 sin ¨

¨=0

¨=
π

2

1 1

2

2

r=1+cos ¨

¨=0

¨=
π

2

11

1

1

1

0

π

2

      œ„̈
r=

30 30

30

30

0

π

2

r=¨

3 3

3

3

¨=0

r=ln ¨

¨=π
2(c)

5. 1 2 7. (x � 1)2 � y2 � 1
9. x4 � x2y2 � y2 � 0
11. (x2 � y2)3 � 9(x2 � y2)2

13. 15. y �

17. r �

19. r � tan2 u sec u 21. r2 � csc 2u

23. r2 �

25. A1 2, B1 2, C(4, p), D18, 2
27. A11, 2, B11, 2, C11, 2, D1�2, 2
29. A(1, 0), B11.14, 2, C11.48, 2, 
D(1.69, p), E11.92, 2, F 12.19, 2, 
G12.50, 2, H(2.85, 2p), 

I13.25, 2 J14.22, 2, K15.48, 2
31. 33.
35. (a) r2 � 8r cos u � �12
(b) r2 � 8r cos1u � 2 � �12
(c) r � 2 37. (a) r � 2 cos1u � 2
(b) r � 2 cos1u � 2 39. (a) 2
(b) , 02 and 14, 2 (c) 12, 2
(d)

(e) x � y � 4
41. (a) 4 (b) (�8, 0) and 
(c) 14, 
(d)

(e) �x � y � 8 43. (a) 12, 2
(b) r cos1u � 2 � 2

(c) x-intercept: ; y-intercept: 4
(d) x � y � 4�13

�413
3

5p
6

5p
613

8 4

8

2

r cos(¨+2π/3)=4

¨=π
2

¨=0

�2p
3 2

1�8
3 13, p2 2

13

2 6

6

4
r cos(¨-π/6)=2

¨=0

¨=π
2

p
6

p
21 413

3

p
4

3p
2

2p
3

121215

13p
4

11p
4

9p
4

7p
4

3p
2

5p
4

3p
4

p
4

p
2

7p
6

5p
6

p
6

7p
6

8
3, 

5p
6

8
3, 
p
6

9

9 cos2 u � sin2 u

2

3 cos u � 4 sin u

�13x � 4
x2

4
�

y2

8
� 1

12, 5p4

a�32 � 22

2
, �
32 � 22

2
b



25.

27.

29.

31. (b)

33.

_1 1

_1

1

r=cos 3¨

¨=0

¨=
π

2

_4 _2

_2

2
r=cos@ ¨-2 cos ¨

¨=0

¨=
π

2

_4 4

_4

4

r=8 tan ¨

¨=0

¨=
π

2

– 5 5
–3

7
r=4+2 sin ¨

¨=0

¨=
π

2

_1 1

_1

1

r=sin 3¨

¨=0

¨=
π

2

35. (a)

(b)

37. (a) C (b) D (c) B (d) A
39. (a) A(1, 0); B1eap�2, ; C(eap, p);
D1e3ap�2, 
41. (a) The curves are identical.

43.

_2 2

_ 2

2

0

π

2

r@=4 cos 2¨

1 1

1

1
r=cos(¨/2)
r=sin(¨/2)

¨=0

¨=
π

2

3p
2 2

p
2 2

– 1 1

– 1

1 r=sin 4¨

0

π

2

– 1 1

– 1

1
r=cos 4¨

0

π

2

15.

17.

19.

21.

23.

_1 1

1

_1

r=cos2¨

¨=0

¨=
π

2

_1 1

_1

1

r@=cos 4¨

¨=0

¨=
π
2

_2 2

_2

2 r@=4 sin 2¨

¨=0

¨=
π

2

2 4

4

4 r=2+4 cos ¨

¨=0

¨=
π

2

2 2

2

1

r=1-2 sin ¨

¨=0

¨=
π

2
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7.

9. 11. �2 � 2i
13. �1 � i 15.
17. � i
19. cos(p�6) � i sin(p�6)
21. 2[cos(2p�3) � i sin(2p�3)]
23. 4[cos(7p�6) � i sin(7p�6)]
25. 6[cos(3p�2) � i sin(3p�2)]
27. [cos(11p�6) � i sin(11p�6)]
29. 3 � 3 i 31. 1 � i
33. 3 cos(2p�7) � 33 sin(2p�7)4i
35. 37.

39. 1 41.

43. 45. �4i

47. �1 � i 49.

51. 128 � 128i 53. �128 � 128 i
55. 3i, 

57. 1, , 

i, , , 

�i, 

59. 4, �2 � 2 , �2 � 2

61. 3, �3,

, 
63. 92,236,816 65. 0.95 � 0.31i, 
i, �0.95 � 0.31i, �0.59 � 0.81i, 
0.59 � 0.81i
67.

, and 

69. (a)
71. �1 73. 1 79.

Chapter 10 Review Exercises
3. 2521 cm2 9. c � 6 11. A � 30°
13. 7 square units 15. �C � 55�,
a � 12.6 cm, b � 19.5 cm
17. (a) �B � 62.4�, �C � 65.6�, 
c � 9.2 cm (b) �B � 117.6�, 
�C � 10.4�, c � 1.8 cm

�1
32  i

1, �1
2 � 1

2 13i, �1
2 � 1

2 13i

1
2 112 � 16 2 � 1

2 112 � 16 2 i
1
2 112 � 16 2 � 1

2 112 � 16 2 i
�1

2 116 � 12 2 � 1
2 116 � 12 2 i,

1
2 116 � 12 2 � 1

2 116 � 12 2 i,

3
2 � 3

2 13i�3
2 � 3

2 13i

3
2 � 3

2 13i, �3
2 � 3

2 13i,

13i13i

1
2 12 � 1

2 12i

�1
2 12 � 1

2 12i�1
2 12 � 1

2 12i, �1

1
2 12 � 1

2 12i

�3
2 13 � 3

2 i, 32 13 � 3
2 i

13

1

2
�
13

2
 i

12

128
�
12

128
 i

243

2
�

24313

2
 i

13 � i
312

2
�

312

2
 i

1212
1313

1
2

116 � 12 2116 � 12 2
13i

1312 � 12i

x

y

i

19. c � 7.7 cm, �A � 108.5�, 
�B � 47.5� 21. �C � 106.6�, 
�B � 48.2�, �A � 25.2� 23. 9.21 cm
25. 32.48 cm2 27. 55.23 cm2

29. 7.89 cm 31. 15.43 cm 33. 15 cm
35. 11 cm 37. (a) cos A � , 
cos C � 39. 36� 41. 58.76�
43. 18.65 m 49. a � 5, b � 8
51. � 25 N, u � 53.1�
53. vx � 41.0 cm/sec, vy � 28.7 cm/sec

55. � 36.4 lb, � 33.2 lb

57. b � 59.
61. 63. 48 65.

67. 69. 71. 7i � 6j
73. 75. 4.89
77. r2 � 10r cos1u � � �16
79. (a) 3 (b) (6, 0), , 
(c) 13, 
(d)

(e)
81. (a)

(b)

_3 3

_3

1 r=2 -2 sin ¨

¨=0

¨=
π

2

3 1

3

3r=2-2 cos ¨

¨=0

¨=
π

2

x � 13y � 6

4 6
4

6

r cos(¨-π/3)=3

¨=0

¨=
π

2

p
3 2

p
2 21213

p
6 2

83113�13, 2113�139
8�7, �698�6, 29

812, 89812, 79
810, 99
115

0Wp 00W 0
0R 0

1
8

3
4

45. The inner loop near the origin is not
simple but rather a cardioid-type shape
that passes through both the first and
fourth quadrants.

47.

Exercise Set 10.8
1.

3.

5.

x

y

1 � 4i

x

y

�5 � i

x

y

4 � 2i

_1 1

_ 1

1 sin ¨
¨

r=

¨=0

¨=
π

2

r=cos$(¨/4)

_0.01 0.01

_0.03

0.03

0

π
2π

2

1

_1

_1

1 r=cos$(¨/4)

0



(b)

89.

91.

93.

95. (a)

(b) , 

(f) The product of the slopes of 

and is �1. 99.
3

2
�

313

2
 iOQ

PQ

Q asin 2a cos 2a

2a
, 

sin2 2a

2a
b

P asin a cos a
a

, 
sin2 a
a
b

P asin a
a

, ab , Q asin 2a

2a
, 2ab

– 6 6

– 4

4

y

x

- =1
x@

16

y@

9

– 2 2

– 4

4

y

x

+ =1
x@

9

y@

36

4 8

1

3
2

y

x

x+5y=8

1
2

2 2

3

3
r=1-2 cos

¨=0

¨=
π

2

¨
2

101. 2�1�4 � 2�1�4 i
103. 13cos(p�3) � i sin(p�3)4
105. 6[cos(5p�4) � i sin(5p�4)]
107. 5 � 5 109.

111.

113. 512 � 512 i 115. , 

, , 

117.

�

119. 1.06 � 0.17i, 0.17 � 1.06i, 
� 0.95 � 0.49i, �0.76 � 0.76i, 
0.49 � 0.95i

Chapter 10 Test
1. a � 7 cm 2. If u is the angle 
opposite the 4 cm side, then 
cos u � 	 0, so u must be obtuse
(not acute). 3. 20 cm
4. 5. A � 68.2°
6.

7. 8. a � 3.3 cm, 
C � 26.2�, B � 126.8�
9. (a) (b) tan u � 2

10. (a)

(b)

11. ground speed � mph, 
tan u � 12. (a) (b)

(c) i � 3j 13.

14. (x2 � y2)2 � x2 � y2

15.

3 1

3

3r=2(1 _ cos ¨)

¨=0

¨=
π

2

8�111130
130 , �31130

130 9
1194813, 591

6

50137

sin u �
2 sin 110°

213 � 12 cos 110°

4213 � 12 cos 110° N

215 N

2317 � 422 cm

A(u) � sin u(1 � cos u)
513 ft

�1
4

34 � 222

2
 i

34 � 222

2

�
34 � 222

2
�
34 � 222

2
 i,

1

2
�
13

2
 i�1, �

1

2
 �
13

2
 i�

1

2
�
13

2
 i

1, 
1

2
�
13

2
 i13

27

2
�

2713

2
 i

12 � 12i12i12

83. (a)

(b)

85. (a)

(b)

87. (a)

2 2

3

3

r=1+2 sin

¨=0

¨=
π

2

¨
2

_4 4

4

_4

r=4 cos 2¨

¨=0

¨=
π

2

3 3

3

3
r=4 sin 2¨

¨=0

¨=
π

2

2 21

2

r=2 sin ¨-1

¨=0

¨=
π

2

_1 2

_2

2 r=2 cos ¨-1

¨=0

¨=
π

2
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A-88 Answers to Selected Exercises

19. (a) (16.3, �24.5)

(b) � (16.30, �24.47)

21. 23.

25. 27.

29. y � x2 � 3x � 4
31. A � �28, B � �22
33. (a) p � $6: shortage of 6000 items;
p � $12: shortage of 2400 items
(b) surplus of 2400 items
(c) equilibrium price: $16; equilibrium
quantity: 3200 items 35. 80 cc of 10%
solution, 120 cc of 35% solution
37. 8 lb of $5.20 coffee, 
8 lb of $5.80 coffee
39. (a)

41. a � 3, b � 2

43. ; a � 
b

45. ; a � 0 and b � 0

47. 49. (5, 2)

51. (e�2, e�3) � (0.14, 0.05)

53. (ln 5, 0) � (1.61, 0)

55. (4, �8), (4, 2), (�1, �8), (�1, 2)

57. 59 59. a 1

b
, 

1
a
b

1� 1
11, 

1
9 2

a a � b

ab
, 

�1

ab
b

a ab

a � b
, 

ab

a � b
b

_4 _2 2

_5

_3

_1

1

3

xy=x

2

+ -

5

4

17

4

4

y

x

1 58, 0 21�226
25 , �939

50 2
1�283

242, �
3

121 21�2
9, 

23
27 2

1 5297
325 , �7952

325 2

–10 10 20 30 40

–30

–20

–10

0.02 x-0.03 y=1.06

0.75x + 0.50 y=_0.01

y

x

61. (a) k � and 2

(b) k � :

k � 2:

Exercise Set 11.2
1. (�3, �2, �1) 3.
5.
7. 1x, , 02, x � any real number
9. (�1, 0, 1, �5) 11.
13. (1, 0, 1) 15. (2, 3, 1)
17. inconsistent (no solution)

19. , 

z � any real number

21. , 

z � any real number 23. (4, 1, �3, 2)

25. , 

z � any real number

27.

, w � any real number
61w � 159

55
, w b

a 12 � 10w

11
, 

146 � 19w

55
,

a 17 � 17z

5
, 

8z � 3

5
, z b

a 11 � 5z

7
, 

�3z � 6

7
, z b

a z � 1

�7
, 

5(z � 1)

7
, z b

1 11
3 , 83, 

17
3 2

x
8

1 25
36, 

5
9, �

1
3 2

1� 1
60, �

2
15, 

3
5 2

_6 _4 _2 2

_6

_4

_2

4

6

4

y

x

_6 _4 4

_6

_4

_2

4

6

6

y

x

�29
7

�29
7

16.

17.
18. r2 � 10r cos 1u � � �21; no
19. (a) r cos 1u � � 4
20. �1 � i
21. 2[cos(7p�4) � i sin(7p�4)]
22. 23. 2 � 2i, 
�2 � 2i, and �4i

CHAPTER 11
Exercise Set 11.1
1. (a) yes (b) no (c) yes (d) yes
3. yes 5. no
7. consistent (one solution)

9. inconsistent (no solution)

11. (3, 5) 13.

15. 17. 1x, , 
x � any real number

3 � 4x
6 21�34

49, �
20
49 2
1� 1

28, 
39
28 2

2

– 2

2

y

x

21x=50+10y

5y=10.5x-25.5

3

– 5

– 5

5

y

x

3 7 10x y+ =

6 3 1x y− =

5

13
1315

2 � 15
213i

13

5p
6 2

p
2 2

113

– 4 4

– 2

2

y

x

+ =1
x@

16

y@

4



augmented matrix:

9. (�1, �2, 3) 11. (�5, 1, 3)
13. (3, 0, �7) 15. (8, 9, �1)

17. , 

z � any real number 19. (2, �1, 0, 3)
21. inconsistent (no solution)

23. 25.

27. 29.

31. not defined 33.

35.

37.

39. not defined 41.

43. 45. not defined

47. 49.

51. (a)

(b)

(c)

(d)

53. a�2474 1182

2358 �144
b

°
�52 �82 61

87 141 0

216 318 165

¢

°
�52 �82 61

87 141 0

216 318 165

¢

°
�13 1 40

43 17 0

89 61 60

¢

°
�13 1 40

43 17 0

89 61 60

¢

a�16 75

�25 34
ba 1 18

�6 13
b

a4 2

2 5
b

°
0 0 0

0 0 0

0 0 0

¢

°
�9 10 10

4 �8 �12

10 4 21

¢

°
2 4 11

�12 16 19

14 12 43

¢

°
10 �2

�8 0

4 6

¢

a 2 3

�1 4
ba11 �2

11 1
b

a6 4

4 8
ba3 2

2 4
b

a 9z � 5

19
, 

31z � 6

19
, z b

±
1 0 1 1 �1

1 1 0 2 0

0 1 1 1 1

2 �1 �1 0 2

≤
55.

57. (a) (b)

(c) (d)

59. (a) (b)

(c) ; this would represent a

reflection about the origin.
61. (a)

yes

Exercise Set 11.4

5. 7.

9. no A�1 exists 11.

13. 15.

17. does not exist

19.

21.

23. 25. does not exist

27. A�1 �

29. D�1 does not exist
31. (DE)�1 does not exist
33. (a) x � �1 and y � 1
(b) x � �132 and y � 48
35. x � 2, y � �1, z � 4

37. (a) (b) (�1, 2)

39. (a)

(b) (21, �64, 55)

°
�1 0 2

3 1 �6

�2 �1 5

¢

a�7 4

2 �1
b

a�2.5 1.5

2 �1
b

°
2 1 4

3 2 5

0 �1 1

¢

°
5 �10

3 1

0 1
3 0

4 �8
3 1

¢

°
�1 2 �3

2 1 0

4 �2 5

¢

a 6
11 1

� 1
11 0

ba 2 �1

�3 2
b

a 2 �3

1 3
b

a� 6
23

1
23

5
23

3
23

ba�5 9

4 �7
b

f (AB) � �58,f (B) � 29,
f (A) � �2,

a�x

�y
b

a�x

y
ba x

�y
b

a 18 26

18 26
ba14 14

30 30
b

a 18 26

18 26
ba16 20

24 28
b

±
0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5

≤
29. , z � any real 

number 31. 6 Type I jets, 
3 Type II jets, 5 Type III jets
33. (a) a � b � c � �2

a � b � c � 0
4a � 2b � c � 3

(b) a � 2, b � �1, c � �3
(c)

(d) y � 2x2 � x � 3
35. 120 utility chairs, 24 secretarial
chairs, 10 managerial chairs
37. (a) R(t) � �0.3t2 � 3t � 1
(b) December; $850,000
39. x � ln a, y � ln 2a, z � ln 
41. T1 � 42, T2 � 43, T3 � 40
43. 60 miles

Exercise Set 11.3
1. (a) two by three (2 � 3)
(b) three by two (3 � 2)
3. five by four (5 � 4)
5. coefficient matrix is

; 

augmented matrix: 

7. coefficient matrix:

;±
1 0 1 1

1 1 0 2

0 1 1 1

2 �1 �1 0

≤

°
2 3 4 10

5 6 7 9

8 9 10 8

¢

°
2 3 4

5 6 7

8 9 10

¢

a
2

_4 _2 2

_4

2

4

4

y

x

y=2≈-x-3

a�
5z

12
, 

2z � 3

3
, z b
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A-90 Answers to Selected Exercises

65. y � 2x � 5 69. (b)

Exercise Set 11.6
1. (0, 0), (3, 9)
3. , 
5. (�1, �1) 7. (2, 3), (2, �3), (�2, 3),
(�2, �3) 9. (1, 0), (�1, 0)

11. , 

13. , , , 

15. (1, 0), 14, 

17. (2, 4) 19. (100, 1000), 1100, , 

, 10002, , 

21.

23. (a) (2.19, �2.81), (�3.19, �8.19)

(b) �

(2.193, �2.807),

�

(�3.193, �8.193)
25. (a) (0.85, 2.36)

(b) �

(0.852, 2.361)

a 32 � 4137

9
, 

1 � 137

3
b

–1 1

1

3

y

x

y x= + +1 1

3 4 12x y+ =

3

a�1 � 129

2
, 

�11 � 129

2
b

a�1 � 129

2
, 

�11 � 129

2
b

– 10 10

5

y

x

y x= − 5

y x= − +2 2

a 2 ln 2 � 5 ln 3

ln 2 � ln 3
, 

3 ln 2

ln 2 � ln 3
b

1
1000 21 1

1001 1
100

1
1000 2

�13 21�117
17 , �1 2

1�117
17 , 1 21117

17 , �1 21117
17 , 1 2

a�1 � 165

8
, 

1 � 165

2
b

a�1 � 165

8
, 

1 � 165

2
b

1�216, 1 21216, 1 2

a� 9
61

7
61

1
61

6
61

b 27. (a) (0.60, 5.30)

(b) �

(0.602, 5.303)
29. (�0.82, 0.67), (1.43, 2.04)

31. (1, 0), (12.34, 2.51)

33. (1.23, 1.86), (6.14, 230.95)

35. (b) u � 9, v � 8 37.

39. (9, 14), (14, 9)

41. by

p � 22d2 � p2

2

p � 22d2 � p2

2

a 1
a

, 
1

b
b

y=

y=x#

(ex+e_x)1
2

x

84

y

200

400

y=ln x

x-1y=œ„

x

20124

y

3

1

_2

y

x

y=ex/2

y=x@

3

5

_3 3

a ln[(1 � 113)�2]

ln 4
, 

7 � 113

2
b

1 2

4

8

y

x

y x= 42

y x= +4 3

41. (a)

(b)
45. 324, 286, 225, 200, 241, 212
47. 41, 15, 38, 14, 28, 28, 38, �23, 15
49. SEE JOE
51. STUDY

53.

55. (a)

(b)

1AB 2�1 � B�1A�1

57. (a) ; 

The inverse is the same as the original

matrix. (b) ; 

Exercise Set 11.5
1. (a) 29 (b) �29 3. (a) 0 (b) 0
5. �1 7. �60 9. 9 11. (a) 314
(b) 674 (c) part (b) 13. (a) 0
(b) 0 (c) 0 (d) 0 15. 0 17. �3
19. 0 21. 570 23. 0 25. 12
27. (a) The right-hand determinant
should be 10 times the left-hand 
determinant. (b) det A � 206 and det 
B � 2060 29. (a) 20 (b) 20
31. (a) 174 (b) 174
33. (y � x)(z � x)(z � y) 35. xy
39. (1, 1, 2) 41. (2, �3, 6)

43. (0, 0, 0) 45. (13 � , y, 

13 � 4y), y � any real number
47. (1, 0, �10, 2) 49. x � 4, �4, �1

63. ,

k(k � a)(k � c)

b(b � a)(b � c)
, 

k(k � a)(k � b)

c(c � a)(c � b)
b

a k(k � b)(k � c)

a(a � b)(a � c)

11
3  y

ap � 1 p � 2

�p �1 � p
b

a 11 12

�10 �11
b

a x 1 � x

1 � x �x
b

(AB)�1 � a�67
2

37
2

29 �16
b ,

B�1A�1 � a�67
2

37
2

29 �16
b

B�1 � a 7 �8

�6 7
b

A�1 � a�5
2

3
2

2 �1
b

±
4 �6 4 �1

�6 14 �11 3

4 �11 10 �3

�1 3 �3 1

≤

1 10
9 , �22

27, �
59
9 , 88

9 2

±
31

108
2
27

7
18 � 11

108

� 53
162

1
81 � 5

27
31
162

�55
54 � 1

27
5
9

23
54

131
54 � 4

27 �7
9 �43

54

≤



9.

11.

13.

15.
y

x

x y2 2 25+ =

–
 

2                                    2

– 6

6

y

x

y x= +3 1

2

4

– 2

– 4

–1 3

y

x

x = 0

2

4

– 2

– 4

– 1

y

x

x = 1

3

17.

19.

21.

23. convex and bounded; vertices: 
(0, 0), (7, 0), (3, 8), (0, 5)

25. convex and bounded; vertices: 
(0, 0), (0, 4), (3, 5), (8, 0)

2 4 6

1

3

5 (3, 5)

(0, 4)

(0, 0)
(8, 0)

y

x

− + =x y3 12

x y+ = 8

1 3 5

2

8 (3, 8)

(0, 5)

(0, 0)
(7, 0)

y

x

y x= + 5

y x= − +2 14

1

1

y

x

y x= −1 2

–3 3

3

y

x

y x=

y = 1

– 1 1

– 1

1

y

x

x y2 2 1+ =

y x= 2

43. (a) N0 � , k �

(b) N0 � 10�1�7, k �

45. and 

, where 

A �
47. 9 cm and 40 cm
49. 3 cm by 20 cm
51. (1, 2), (�1, �2), (2, 1), (�2, �1)

53. , 

, 

, 

55. (2, 3), (�2, �3), (1, 2), (�1, �2)
57. (e9�2, e3)

Exercise Set 11.7
1. (a) no (b) yes
3.

5.

7.

1            3

– 3

y

x

x y− = 0

–2 4

– 2

1

y

x

2 3 6x y− =

–2 4

–2

1

y

x

2 3 6x y− =

a�1 � 113

2
, 

1 � 113

2
b

a 1 � 113

2
, 

�1 � 113

2
b

a�1 � 113

2
, 

1 � 113

2
b

a 1 � 113

2
, 

�1 � 113

2
b

2p2 � q2 � r2

a�p2

A
, 

�q2

A
, 

�r2

A
b

a p2

A
, 

q2

A
, 

r2

A
b

2
7  ln 10

ln 8

6
3
2
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35. vertices: (0, 1), (0, 2),

37.

39.

41.

4

3

2

1

1 2 3 4

y

x

8

6

4

2

y

x

y=x@

2

y

2_2

_2

x

x@+y@=1

210

3

2

1

y

x

y=e_x+1

y=ex

a ln 
1 � 15

2
, 

1 � 15

2
b

Chapter 11 Review Exercises
1. (3, �5) 3. (�1, 4) 5. (�3, 15)
7. 9.

11. (�12, �8) 13.

15. ; 

a � 19. (a2 � b2, a2 � b2)

21. ; p and q

not both zero 23. (2, 3, 4)
25. (�1, �2, 0) 27. (x, 6 � 2x, �1), 
x � any real number 29. ,
z � any real number 31. (4, 3, �1, 2)
33. 960 35. 24 39. a � 2 and b � 1

43.

45. 47.

49. 51.

53. 55.

57. 59.

61.

63. A2 � ;

A3 �

65. (a) (b) (16, 15, 4)

67.
69. inconsistent (no solution)
71. (�5 � 4y, y, �8 � 5y), y � any
real number 73. (4, 1, �1, 3)
75. (0, 0) and (6, 36)
77. (3, 0) and (�3, 0)

79. , , , 

81.

83. , , 

, 
85. (5, 2), (5, �4), (1, 2), (1, �4)

1�7122
33 , �31122

33 21 7122
33 , 31122

33 2
1�12, �312 2112, 312 2

a�1 � 15

2
, 
3�2 � 225

2
b

1�512
2 , �114

2 2
1 512

2 , �114
2 21�512

2 , 114
2 21 512

2 , 114
2 2

1�3
5, �

13
20, 

31
20 2

°
10 �2 5

6 �1 4

1   0 1

¢

°
0 0 0

0 0 0

0 0 0

¢

°
0 0 0

0 0 0

ac 0 0

¢

a�4 13

�7 �41
b

a4 �1

2 12
ba  4  3

10 33
b

a1 �11

6 36
ba1 1

1 7
b

a�3 �14

�4 3
ba4 �13

7 41
b

a8 4

4 32
ba10 �2

4 26
b

a x �
17

6
b 2

� a y �
8

3
b 2

�
245

36

1�1
6 z, 12 z, z 2

a pq(p � q)

p2 � q2 , 
p3 � q3

p2 � q2 b

3 
 15

2

a �1

a2 � 3a � 1
, 

1 � a

a2 � 3a � 1
b

1 13, �1
4 2

1 23, �1
5 21�18

5 , 85 2
27. convex but not bounded; vertices:
(2, 7), (8, 5)

29. convex but not bounded; 
vertex: (6, 0)

31. convex and bounded; vertices: 
(0, 0), (0, 5), (6, 0)

33. convex and bounded; vertices: 
(5, 30), (10, 30), (20, 15), (20, 20)

12 20

10

20

30

4

(5, 30)

(10, 30)

(20, 20)

(20, 15)

y

x

x y+ = 40

x y+ = 35

2 4

2

4

(0, 5)

(0, 0) (6, 0)

y

x

5 6 30x y+ =

–2 2

6

(6, 0)

y

x

5 6 30x y+ =

10

– 4

6

(2, 7)

(8, 5)

y

x

2 3 0x y− + = 5 45x y+ =

x y+ =3 23



(b)

(c) inverse matrix:

8 hours on math, 4 hours on English, 
16 hours on chemistry, 12 hours on 
economics 10. (a) 8
(b) �8 11. �1120

12. , 

, 

, 

13. , C � any real
number

14. (a)

(b) (12, 38, �9)
15.

16. P � �1 and Q � �4
17. neither bounded nor convex

2

–2

y

x

( )x y− + =2 12 2

2 4

– 5

– 3

– 1

y

x

5 6 30x y− =

°
1 �2 3

2 �5 10

�1 2 �2

¢

11 � 1
5 C, �7

5 C, C 2
a�5 � 15

2
, 

�5 � 15

2
b

a�5 � 15

2
, 

�5 � 15

2
b

a 5 � 15

2
, 

5 � 15

2
b

a 5 � 15

2
, 

5 � 15

2
b

±
0.2 0 0.2 0

0.1 0.5 0.2 0.2

0.4 0 �0.2 �0.2

0.3 �0.5 �0.2 0

≤

±
1 1 1 1

�1 1 1 �1

4 �1 �1 �1

�2 3 �2 3

≤
18. vertices: (0, 0), (0, 7), (6, 10),

, (11, 0)

19. (e�19, e�6, e49)

CHAPTER 12
Exercise Set 12.1
1. 3. 5x � 4y � 4 � 0
5. 2x � 3y � 20 � 0
7. x-intercepts: 6, �4; y-intercepts:

9. 13x � 7y � 35 � 0
11. 12 � 13. u � p�3 or 60�
15. (a) u � 1.37 or 78.69�

(b) u � 1.77 or 101.31� 17. (a)

(b) 19. (a) (b)

21. (a) (x � 2)2 � (y � 3)2 �

(b) 23. 25.

27. 29. y � �3x � 12
31. 33. (a) center: (�5, 2);
radius: 35. PQ �
39. (a) A: y � ; B: y � �x � 8; 
C: y � 2x � 10 (b) (6, 2)

43. (a) slope: ; y-intercept: 

47.

49.

;

a y � 6 �
15113

13
b 2

� 25

a x � 4 �
10113

13
b 2

�

a y � 6 �
15113

13
b 2

� 25

a x � 4 �
10113

13
b 2

�

a x �
26

11
b2

� a y �
25

11
b2

�
4964

121

�
C

B
�

A

B

1
3 x

512512
y � 1

3 x � 9
2

12
5

15 
 2130

5
65
215

361
13

19141

41

19141

41

512

2

512

2

174

216

189

4 8

4

12

(0, 7)

(0, 0)
(11, 0)

(6, 10)

y

x

261
26

225
26

,( )
9 99x y+ =

2 14y x− = x y+ =3 36

1 261
26 , 225

26 287. and 89. 24, 60, 120

91. and

,

, and 

93. neither convex nor bounded

95. convex and bounded

Chapter 11 Test
1. (0, 3) and 2. (3, �5)
3. (a) (1, �1, �3) (b) (1, �1, �3)

4. (a) (b)

5. equilibrium price � $21; 
equilibrium quantity � 684 units
6.
7. coefficient matrix:

; 

augmented matrix: 

8. (3, �3, 1)
9. (a)

 �2w � 3x � 2y � 3z � 0
 4w � x � y � z � 0

 �w � x � y � z � 0
 w � x � y � z � 40

°
1 1 �1 �1

2 �1 2 11

1 �2 1 10

¢

°
1 1 �1

2 �1 2

1 �2 1

¢

1 1
116, � 1

144 2

a8 �4

7 �6
ba2 �10

3  �5
b

1�11
4 , 81

16 2

1 3 5

1

2

3

y

x

y x=

4

2

4

y

x

y x= 4 y x=

x y2 2 1+ =

�1n � 2m � 1n � 2m

2

1n � 2m � 1n � 2m

2

1n � 2m � 1n � 2m

2

1n � 2m � 1n � 2m

2

bs

a � b

as

a � b

Answers to Selected Exercises A-93



A-94 Answers to Selected Exercises

9. focus: 0, ; directrix: y � ; 
focal width: 6

11. focus: 0, ; directrix: y � ; 
focal width: 

13. vertex: (2, 3); focus: (3, 3); 
directrix: x � 1; focal width: 4

15. vertex: (4, 2); focus: 4, ; 
directrix: y � ; focal width: 1

2 4 6

2

6

10

y

x

( )x y− = −4 2 2

7
4

2941
2 4

8

– 2

4

8

y

x

( ) ( )y − = −3 4 22 x

– 4 4

6

10

14

y

y

x

4        72x =

7
4

� 7
1627

161
–4 4

2

4

y

x

x y2 6=

�3
22321 17. vertex: (0, �1); focus: , �1 ; 

directrix: x � ; focal width: 1

19. vertex: (3, 0); focus: 3, ; 
directrix: y � ; focal width: 

21. vertex: (4, 1); focus: 4, ; 
directrix: y � ; focal width: 

23. (a) 22.9 meters (b) 0.3
25. (a) x2 � (b)
27. line of symmetry: y � 1

29. x2 � 12y 31. y2 � 128x
33. y2 � �9x 35. (a) y �
(b) (c) intersect at 

37. (a) (b) 1 15
16, 

257
128 21�1

8, 
1

64 21 29, �1
2 2

y � �9
8 x � 1

4

9
4 x � 1

y

x
y = 1

14  
1

16 feet�80
3  y

1 3 5 7

5

10

15

y

x

( ) ( )x y− = −4 12 1
2

1
2

7
8

2981
2 4 6

5

10

15

y

x

( )x y− =3 2 1
2

1
2�1

8

2181

4 8

– 3

– 1

1

y

x

( )y x+ =1 2

�1
4

21
41Exercise Set 12.2

1. focus: (0, 1); directrix: y � �1; 
focal width: 4

3. focus: (�2, 0); directrix: x � 2; 
focal width: 8

5. focus: (0, �5); directrix: y � 5; 
focal width: 20

7. focus: (�7, 0); directrix: x � 7; 
focal width: 28

– 5 –  3

– 10

10

y

x

xy2 28= −

– 10 10

– 5

– 3

y

x

x y2 20= −

– 5 –  3

– 6

6

y

x

y x2 8= −

–4 4

2

4

6

y

x

x y2 4=



Exercise Set 12.4
1. length of major axis: 6; length 
of minor axis: 4; foci: , 0 ; 
eccentricity: 

3. length of major axis: 8; length of 
minor axis: 2; foci: ( , 0); 
eccentricity: 

5. length of major axis: ; length 
of minor axis: 2; foci: (
1, 0); 
eccentricity: 

7. length of major axis: 8; length 
of minor axis: 6; foci: 0, ; 
eccentricity: 

– 2 2

– 2

2

y

x

x y2 2

9 16
1+ =

17�4
2
171

– 2 2

y

x

x y2 2

2 1
1+ =

12�2

212

4– 4

y

x

x y2 2

16 1
1+ =

115�4

115

–
 

2 2–
 

1

1

y

x

x y2 2

9 4
1+ =

15�3
)1
15

9. length of major axis: ; length
of minor axis: ; foci: ;
eccentricity: 

11. length of major axis: 4; length of
minor axis: ; foci: ; 
eccentricity: 

13. center: (5, �1); length of major
axis: 10; length of minor axis: 6; foci:
(9, �1) and (1, �1); eccentricity: 

15. center: (1, 2); length of major 
axis: 4; length of minor axis: 2; foci: 
1, 2 
 ; eccentricity: 

1 2

2

4

y

x

( ) ( )x y− + − =1

1

2

4
1

2 2

13�213 21

4 8

 _4

 _2

2

y

x

(y+1)@(x-5)@

+ =1

25 9

4
5

– 1

1

2– 2

y

x

x y2 2

2 4
1+ =

12�2
10, 
12 2212

 _1 1

y

x

+ =1
1/3 5/3

≈ ¥

215�5
10, 
213

3 2213�3
2115�3(c) 39. side � p units,

area � p2 square units

41. (a) 6 m (b)

Exercise Set 12.3
1. y � 4x � 4

3. y � x � 2

5. y � 6x � 9

7. y � x � 1

9. m � 11. m � 121
4

2 4

– 4

– 2

2

4

y

x

(1, 2)

y x2 4=

y x= + 1

– 4 4

– 16

– 12

– 8

y

x

(– 3, – 9)

x y2 = −

y x= +6 9

2 4 6

2

4

6

y

x

(4, 2)

x y2 8=
y x= − 2

– 3 3

3

6

9

y

x

(2, 4)

y x= 2

y x= −4 4

51
3 m

4813
813ST � 1

2
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(e)

43. circle: (x � 1)2 � y2 � 1; 

ellipse: 

49. intersection points: , 

, , 

, where A �

53. (b)
59. (a)

(b) a � , b � 2, c �
(c) auxiliary circle: x2 � y2 � 12

(d) x � y � 4
(e)

– 3 3

4

y

x

x y2 2 12+ =

x y2 23 12+ =
x y+ = 4

– 3 3

4

y

x

x y2 23 12+ =

x y2 2 12+ =

212213

– 3 3

3

y

x

x y2 23 12+ =

(�20
7 , �18

7 )

a

a

– a

– a

y

x

2a2 � b2a�
ab

A
, �

ab

A
b
a�

ab

A
, 

ab

A
ba ab

A
, �

ab

A
b

a ab

A
, 

ab

A
b

(x � 4)2

16
�

y2

7
� 1

_1_2 1 2
_1

1

y

x

9

x@
=1+

4

y@

(f) y � x �

Exercise Set 12.5
1. vertices: (
2, 0); length of 
transverse axis: 4; length of conjugate
axis: 2; asymptotes: y � ;
foci: ( , 0); eccentricity: 

3. vertices: (0, 
2); length of 
transverse axis: 4; length of conjugate
axis: 2; asymptotes: y � 
2x; 
foci: (0, ); eccentricity: 

5. vertices: (
5, 0); length of 
transverse axis: 10; length of conjugate
axis: 8; asymptotes: y � ; 
foci: ( , 0); eccentricity: 

–
 
8 8

– 8

8

y

x

x y2 2

25 16
1− =

141�5
141

4

5 x

–
 
4 4

– 6

6

y

x

y x2 2

4 1
1− =

15�2
15

–
 
4 4

– 3

3

y

x

x y2 2

4 1
1− =

15�2
15

1

2 x

– 3 3

1

y

x

x y+ = 4 y x= + 2 2

x y2 2 12+ =
x y2 23 12+ =

21217. center: (�3, 0); length of major
axis: 6; length of minor axis: 2; foci: 
�3 
 , 0 ; eccentricity: 

19. center: (1, �2); length of major
axis: 4; length of minor axis: ; foci:
(2, �2) and (0, �2); eccentricity: 

21. center: (4, 6); degenerate ellipse

23. no graph

25. or 16x2 � 25y2 � 400

27. or 15x2 � 16y2 � 240

29. or 25x2 � 21y2 � 525

31. or x2 � 4y2 � 9

33. (a)

(b) (c)

35. (a) (b)
37. perihelion: 
29.64 AU; aphelion: 49.24 AU
39. semimajor axis: 
2.21 AU; eccentricity: 0.04
41. (c) [�3, 3]
(d)

x 0 0.5 1.0 1.5 2.0 2.5 3.0

y 
2 
1.97 
1.89 
1.73 
1.49 
1.11 0

169
3y � �1

6x � 13
3

y � 1
15 x � 76

15y � 7
9 x � 76

9

y � �4
3 x � 38

3

x2

9
�

y2

9�4
� 1

x2

21
�

y2

25
� 1

x2

16
�

y2

15
� 1

x2

25
�

y2

16
� 1

2

2

4

6

4

y

x

(4, 6) 

–1 3

– 2

– 4

y

x

( ) ( )x y− + + =1

4

2

3
1

2 2

1
2

213

– 3
– 1

1

– 6

y

x

( )x y+ + =3

9 1
1

2 2

212�322121



13. center: (1, 2); vertices: (1, 4) and 
(1, 0); length of transverse axis: 4;
length of conjugate axis: 2; asymptotes:
y � 2x and y � �2x � 4; foci: 
(1, 2 
 ); eccentricity: 

15. center: (�3, 4); vertices: (1, 4) and
(�7, 4); length of transverse axis: 8;
length of conjugate axis: 8; asymptotes:
y � x � 7 and y � �x � 1; foci: 
(�3 
 , 4); eccentricity: 

17. center: (0, 1); vertices: (2, 1) and
(�2, 1); length of transverse axis: 4; 
length of conjugate axis: 4; 
asymptotes: y � x � 1 and y � �x � 1;
foci: ( , 1); eccentricity: 

 _4

 _4

6

y

x

≈

4

(y-1)2

4
- = 1

12
212

 _6  _2

10

y

x

(x+3)2

16

(y-4)2

16
- = 1

12412

 _2 4

 _4

8

y

x

(y-2)2

4

(x-1)2

1
- = 1

15�215

19. center: (2, 1); vertices: (5, 1) and
(�1, 1); length of transverse axis: 6;
length of conjugate axis: 6; asymptotes:
y � x � 1 and y � �x � 3; 
foci: ( , 1); eccentricity: 

21. center: (0, �4); vertices: (0, 1) 
and (0, �9); length of transverse 
axis: 10; length of conjugate axis: 2; 
asymptotes: y � 5x � 4 and 
y � �5x � 4; foci: (0, ); 
eccentricity: 

23. degenerate hyperbola

27. 15x2 � y2 � 15 29. x2 � 4y2 � 4
31. 2x2 � 5y2 � 10 33. y2 � 32x2 � 49
35. y2 � 9x2 � 9 39. (b) (0, 
6)
(c) F1P � 5, F2P � 13

– 8 2

– 6

4

y

x

y x= + 3

y x= − − 4

– 2 2

– 12

4

y

x

( )y x+ − =4

25 1
1

2 2

126�5
�4 
 126

– 4 8

– 6

6

y

x

( ) ( )x y− − − =2

9

1

9
1

2 2

122 
 312

7. vertices: (0, ); length of 
transverse axis: ; length of 

conjugate axis: ; asymptotes: 

y � ; foci: (0, ); 

eccentricity: 

9. vertices: (0, 
5); length of 
transverse axis: 10; length of conjugate 
axis: 4; asymptotes: y � ; foci: 
(0, ); eccentricity: 

11. center: (5, �1); vertices: (10, �1)
and (0, �1); length of transverse axis: 
10; length of conjugate axis: 6; 
asymptotes: y � and 
y � � 2; foci: (5 
 , �1); 
eccentricity: 

– 5 15

– 6

4

y

x

( ) ( )x y− − + =5

25

1

9
1

2 2

134�5
134�3

5 x

3
5 x � 4

– 4 4

– 8

8

y

x

y x2 2

25 4
1− =

129�5
129

5

2 x

 _4 4

 _4

4

y

x

- =1
1/2 1/3

¥ ≈

115�3


130
6
16

2  x

213
3

12

12

2
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51. intersection point: 

53. y � 2x � 2

Exercise Set 12.6

1. F1P � , 

F2P �

3. F1P � 15 � , F2P � 15 �
5. (a) foci: ( , 0); eccentricity:

; directrices: x �

(b) foci: (
5, 0); eccentricity: ; 
directrices: x �

7. (a) foci: (
1, 0); eccentricity:
; directrices: x � 
13

(b) foci: (
5, 0); eccentricity: ; 
directrices: x � 9. (a) foci:
( , 0); eccentricity: ; 
directrices: x �

(b) foci: ( , 0); eccentricity: 
; directrices: x �

11. 3x2 � 4y2 � 12 13. x2 � y2 � 2

Exercise Set 12.7
1. (a) eccentricity: ; center: ( , 0); 
endpoints of major axis: ( , 0) and 
(�6, 0); endpoints of minor axis: 

– 6 – 3

– 3

3

y

x

3+2 cos ¨
6

r=

(�12
5 , 
615

5 )

6
5

�12
5

2
3


36161�61161�6

161


36111�11
111�6
111


13
5

5113�13
113�13


16
5

5
4


1617�717�4

17

612612

6119 � 816

3

6119 � 816

3

 
_12 12

 _12

12

y

x

3
4

x-1

8
51

2
15,

y=

( )

16≈-9¥=144

1 51
8 , 15

2 2 (b) eccentricity: ; center: ( , 0); 
endpoints of major axis: (6, 0) and 
( , 0); endpoints of minor axis: 

3. (a) vertex: ( , 0); directrix: x �

(b) vertex: ( , 0); directrix: x �

5. (a) eccentricity: 2; center: (1, 0); 
a � ; b � ; c � 1

– 1 1 2 3
– 1

1

y

x

2+4 cos ¨
3

r=

1
2 131

2

– 2 2

– 4

4

y

x

2-2 cos ¨
5

r=

�5
2�5

4

– 2 2

– 4

4

y

x

2+2 cos ¨
5

r=

5
2

5
4

2 4

– 3

3

y

x

3-2 cos ¨
6

r=

(12
5 , 
615

5 )

�6
5

12
5

2
3

41. (b)

(c) asymptotes: y �

43.

– 20 20

– 20

20

y

x

y= x ± 9x@-8œ„„„„„„1
4

1
4

_20 _10 10 20

_20

_15

_10

5

10

y

x

(y-3)2

25

(x-4)2

9
- = 1


5
3 (x � 4) � 3

_20 _10 10 20

_20

_15

_10

5

10

y

x

(y-3)2

25

(x-4)2

9
- = 1

_10 10

_5

5

10

y

x

25

(y-3)@
=1-

9

(x-4)@



13. center: ( , 0); eccentricity: ;
length of major axis: 7; length of minor
axis: 

15. vertex: (0, ); directrix: y �

17. center: (�6, 0); eccentricity: 2;
length of transverse axis: 6; length of
conjugate axis: 

Exercise Set 12.8
1. 3. (2, 0) 5.

7. sin u � , cos u �

9. sin u � , cos u �

11. sin u � , cos u �

13. sin u � , cos u � 23
34 127

34 12

1
2

13
2

4
5

3
5

3
5

4
5

(�31
13, 

27
13)(1

2, 
313

2 )

– 12 – 8 – 4

– 8

– 4

4

8

y

x

9
1-2 cos ¨

r=

613

– 2 2

– 3

1

y

x

4
5+5 sin ¨

r=

4
5

2
5

_4 _2

_ 3

3

y

x

12
7+5 cos ¨

r=

216

5
7�5

2 15. (x)2 � (y)2 � 9

17.

19.

21.

x

y

(yª)@=20xª

36.9°

xª

yª

– 4

4

– 4

4

y

x

y=-

1

2

x-

1

2

y=-

1

2

x+

1

2

x

y

(xª)@

26.6°

xª

yª

1/9
- =1

(yª)@
1

x

y

(xª)@-(yª)@=9

45°

xªyª

(b) eccentricity: 2; center: (�1, 0); 
a � ; b � ; c � 1

7. center: ( , 0); eccentricity: ;
length of traverse axis: ; length 
of conjugate axis: 

9. center: (0, ); eccentricity: ; 
length of major axis: 5; length of 
minor axis: 4

11. vertex: (0, ); directrix: y �

– 4 4
– 2

3

y

x

5-5 sin ¨
12

r=

�12
5�6

5

– 2 2

– 2

y

x

5+3 sin ¨
8

r=

3
5�3

2

– 20 – 10

– 10

10

y

x

2-3 cos ¨
24

r=

48
5  15

96
5

3
2�72

5

– 3 – 1 1

– 2

2

y

x

2-4 cos ¨
3

r=

1
2 131

2
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33.

35.

37.

39. no graph
41. For 
which gives a full period of cot and
Range cot
43. x � x cos u � y sin u; 
y � x sin u � y cos u

Chapter 12 Review Exercises
17. 146.3� 19.
23. (a) y2 � 16x (b) x2 � 16y
25. x2 � 12y 27. 15x2 � 16y2 � 960
29. 25x2 � 9y2 � 900
31. 3x2 � 5y2 � 30
33. 5y2 � 20x2 � 36
35. 36x2 � 64y2 � 81
37. vertex: (0, 0); focus: (0, ); 
directrix: y � ; focal width: 10

 _6  _2 62

1

2

3

y

x

≈=10y

�5
2

5
2

53161�61

� (�q, q).

0° 	 u 	 90°, 0° 	 2u 	 180°,

x52.2°

(xª)@

6

(yª)@

yª

xª

2/3
+ =1

y

x

y

45°

(xª)@=4yª

yª
xª

x

y

18.4°

(yª)@

4

(xª)@
yª

xª

36
- =1

39. vertex: (0, 3); focus: (0, 0); 
directrix: y � 6; focal width: 12

41. vertex: (1, 1); focus: (0, 1); 
directrix: x � 2; focal width: 4

43. center: (0, 0); length of major axis: 12;
length of minor axis: 8; foci: ( , 0);
eccentricity: 

45. center: (0, 0); length of major 
axis: 6; length of minor axis: 2; foci: 
(0, ); eccentricity: 

 _1 1

 _1

1

y

x

1 9
=1+

≈ ¥

212�3
212

 _4 4
 _2

2

y

x

36 16

≈ ¥
+ =1

15�3

215

_2_4 1

2

4

y

x

(y-1)@=_4(x-1)

 _4 4

 _1

1

2

y

x

≈=_12(y-3)

23.

25.

27.

29.

31.

x

y

63.4°

(xª)@ (yª )@
16 4

+ =1

xª

yª

x

y

(xª)@

xª

yª
(yª)@

1

63.4°

7/2
+ =1

x

y
(yª-œ„2)@=2œ„2(xª-11œ„2/2)

45°

yª

xª

x

y

(xª-1)@ (yª+1)@
1

45°

xª

yª

1/2
+ =1

x

y

(xª+2œ„5/5)@
1

- =1

63.4°

xªyª

(yª+œ„5/5)@
4



55. parabola: vertex: (4, 4); axis 
of symmetry: y � 4; focus: (8, 4); 
directrix: x � 0

57. ellipse: center: (�2, 3); length 
of major axis: 8; length of minor 
axis: 6; foci: (�2, 3 
 )

59. parabola: vertex: (�3, 2); axis 
of symmetry: x � �3; focus: (�3, 5); 
directrix: y � �1

61. hyperbola: center: (2, 1); 
vertices: (5, 1) and (�1, 1); 
asymptotes: y � x � 1 and y � �x � 3; 
foci: (2 
 , 1)

 _4 8

 _4

6

y

x

-
9 9

=1
(x-2)@ (y-1)@

312

_8 _4 2

1

3

5

y

x

(x+3)@=12(y-2)

 _5 1

3

5

y

x

9 16
=1+

(x+2)@ (y-3)@

17

4
 _2

2

6

10

y

x

(y-4)@=16(x-4)

63. parabola: vertex: (0, 6); axis 
of symmetry: x � 0; focus: (0, ); 
directrix: y �

65. ellipse: center: (0, 5); length of 
major axis: 8; length of minor axis: 2;
foci: ( , 5)

67. two lines: 4x � 5y � �2 
and 4x � 5y � 18

Chapter 12 Test
1. focus: (�3, 0); directrix: x � 3

_ 4 _2

 _6

_2

2

6

y

x

¥=_12x

2 4

1

3

5

y

x

4x-5y=_2

4x+5y=18

2_2_4 4

1

3

5

y

x

16 1
=1+

≈ (y-5)@


115

 
_4 4

 _2

2

4

y

x

≈=_2(y-6)

13
2

11
2

47. center: (�3, 0); lengths of major
and minor axes: 6; focus: (�3, 0); 
eccentricity: 0

49. center: (0, 0); vertices: (
6, 0); 
asymptotes: y � ; foci: 
( , 0); eccentricity: 

51. center: (0, 0); vertices: (0, 
1); 
asymptotes: y � ; foci: (0, );
eccentricity: 

53. center: (0, �3); vertices: (0, 0) and
(0, �6); asymptotes: y � x � 3 and 
y � �x � 3; foci: (0, �3 
 ); 
eccentricity: 

 _4 4

 _8

2

y

x

9 9
=1-

(y+3)@ ≈

12
312

 _6 6

 _3
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y

x

1 9
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¥ ≈

110
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3 x
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 _3
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14.

15. ellipse

16. focal width: 8; vertex: (1, 2)

17. (a) x �

(b) F1P � ; 

F2P �

18. 19. y � 4x � 8
20. focal length � 12.8 m; 
focal ratio � 0.4

CHAPTER 13
Exercise Set 13.1
1. quotient: x � 5; remainder: �11; 
x2 � 8x � 4 � (x � 3)(x � 5) � 11
3. quotient: x � 11; remainder: 53; 
x2 � 6x � 2 � (x � 5)(x � 11) � 53
5. quotient: 3x2 � ; 
remainder: ; 6x3 � 2x � 3 �
(2x � 1)(3x2 � ) �

7. quotient: x4 � 3x3 � 9x2 �
27x � 81; remainder: �241; x5 � 2 �
(x � 3)(x4 � 3x3 � 9x2 � 27x � 81) �
241 9. quotient: x5 � 2x4 � 4x3 �
8x2 � 16x � 32; remainder: 0; 
x6 � 64 � (x � 2)
(x5 � 2x4 � 4x3 � 8x2 � 16x � 32) � 0

13
4

3
2 x � 1

4

13
4

3
2 x � 1

4

y � 1
6 x � 13

3

12 � 111

2

12 � 111

2


36111�11

_2 2 4

4

y

x

(x-1)@=8(y-2)

2 6

9
5-4 cos ¨

r=

_3

3

y

x

_12 _4 4

2

6

y

x

(x+4)@

9

(y-4)@

1
- =1

11. quotient: 5x2 � 15x � 17; 
remainder: �24x � 83; 
5x4 � 3x2 � 2 � (x2 � 3x � 5) �
(5x2 � 15x � 17) � (�24x � 83)
13. quotient: 3y � 19; remainder: 
89y � 35; 3y3 � 4y2 � 3 �
(y2 � 5y � 2) � (3y � 19) � (89y � 35)
15. quotient: t2 � 2t � 4; 
remainder: 0; t4 � 4t3 � 4t2 � 16 �
(t2 � 2t � 4) � (t2 � 2t � 4) � 0
17. quotient: z4 � z3 � z2 � z � 1; 
remainder: 0; z5 � 1 � (z � 1) �
(z4 � z3 � z2 � z � 1) � 0
19. quotient: ax � (b � ar); 
remainder: c � r(b � ar) �
ar2 � br � c; ax2 � bx � c � (x � r) �
(ax � (b � ar)) � (ar2 � br � c)
21. quotient: x � 1; remainder: �7; 
x2 � 6x � 2 � (x � 5)(x � 1) � 7
23. quotient: 4x � 5; remainder: 0; 
4x2 � x � 5 � (x � 1)(4x � 5) � 0
25. quotient: 6x2 � 19x � 78; 
remainder: 313; 6x3 � 5x2 � 2x � 1 �
(x � 4)(6x2 � 19x � 78) � 313
27. quotient: x2 � 2x � 4; 
remainder: 7; x3 � 1 � (x � 2) �
(x2 � 2x � 4) � 7
29. quotient: x4 � 2x3 � 4x2 � 8x � 16;
remainder: �33; x5 � 1 � (x � 2) �
(x4 � 2x3 � 4x2 � 8x � 16) � 33
31. quotient: x3 � 10x2 � 40x � 160;
remainder: 642; x4 � 6x3 � 2 �
(x � 4)(x3 � 10x2 � 40x � 160) � 642
33. quotient: x2 � 6x � 57; 
remainder: 576; x3 � 4x2 � 3x � 6 �
(x � 10) � (x2 � 6x � 57) � 576
35. quotient: x2 � 6x � 30; 
remainder: �150; x3 � x2 �
(x � 5)(x2 � 6x � 30) � 150
37. quotient: 54x2 � 9x � 21; 
remainder: 0; 54x3 � 27x2 � 27x �
14 � x � (54x2 � 9x � 21) � 0
39. quotient: x3 � 3x2 � 12x � 36; 
remainder: 120; x4 � 3x2 � 12 �
(x � 3)(x3 � 3x2 � 12x � 36) � 120
41. (x � 2)(x4 � 2x3 � 4x2 � 8x � 16)
43. (z � 3)(z3 � 3z2 � 9z � 27)
45. quotient: 2x; remainder: 1
47. quotient: 3x2 � ; 

remainder: 49. k � 4 53. quotient: 
x � (�4 � i); remainder: �4i
55. quotient: x � (�1 � i); remainder: 0
57. �6 � 57 59. 013

1
4

3
2 x � 3

4

22
31

2. asymptotes: y � ; 
foci: 1 , 02

3. e � 0.001; 19.078 AU
4. (a) u � 60�
(b)

5. 30� 6.

7.
8.

9. 10. (b) 64

11. length of major axis: 10; 
length of minor axis: 4; foci: , 02

12.
13.

y

x

(2, _1)
  

315�5

 

_3 3

 

_3

3

y

x

x@

25

y@

4

+ =1

1
121

x2

3
�

y2

1
� 1

13x � y � 213 � 0
m � 
115�15

x2

12
�

y2

16
� 1

x
60°

(xª)@=_6yª

xª

yª

y

 _6 6

 _6

6

y

x

1
2y= x

1
2y=- x

≈-4y@=4


15

1

2 x



37. x � �4, 3 39. x � �5, 2 � �
0.59, 2 � � 3.41

41. x � � 0.13, 

� 3.87

43. x � 1, �1, , 2

45. (a) 1.125 (b) �0.046875

(c) t � 1 (d) t � 1, 

47. x3 � 4x2 � 17x � 60 � 0
49. x3 � 8x2 � 13x � 6 � 0
51. No such polynomial exists.
53. (a) g(r) � ar3 � br2 � cr � d
(b) remainder: ar3 � br2 � cr � d
55. is a zero 57. a � �1, b � �1
59. b �
61. x � 2 (multiplicity 2), �4


312�2

�1 
 113

2

_4 _2 2 4

_6

8

y=4x%-15x$+8x#+19x@-12x-4

y

x

�1
4

_2 2 6

_20

_10

10

y

x

y=6x#-28x@+19x-2

4 � 114

2

4 � 114

2
2
3,

_6 _4 _2 2 4 6

_20

40

60

y

x

y=˛+≈-18x+10

12
12 Exercise Set 13.3

1. (a) yes (b) yes (c) yes (d) no
3. no real roots

5. three real roots

7. no real roots

9. one real root

11. [x � (�1)](x � 3)
13. 4 x � [x � (�6)]
15. x � x �
17. (x � 0)(x � (�3))(x � 3) �
x � x �

19. f (x) � x3 � x2 � 5x � 3
21. f (x) � x4 � 16
23. f (x) � x6 � 10x4 � 87x2 � 144
25. (a) f (x) � x4 � 4x3 � 3x2

212i122�12i11
215142�1513

2141

 –4 4

 –80

80

y

x

f (x) = 0.2x3 + 4.4x2 − 109x − 1

 –2 2

2

4

y

x

f (x) = x4 + x3 + x2 + x + 1

3

1

–1 1

3

y

x

f (x) = x3 − 3x2 + 3

3

1

–1 1

2

3

y

x

f (x) = x2 − 3x + 2.26

Exercise Set 13.2
1. yes 3. yes 5. yes 7. is a zero
9. is a zero 11. not a zero
13. (a) is a zero (b) not a zero
15. 1, 2 (multiplicity 3), 3
17. (a) multiplicity at �1: 2

(b) multiplicity at �2: 3

(c) multiplicity at �1: 2; multiplicity 
at �2: 3

19. f (�3) � �170 21. f � �9
23. f � � 2

25. x � �1, 27. x � 
3, 4

29. x � 1, �1 
 31. x � �2, , 3

33. x � 35. x � 0, 5�3
2, 

1 
 15

2

2
316

1 
 i

2

�3122�121
1 12 2

_3 _2 _1

_1

1

y=(x+1)@(x+2)#

y

x

_3 _2 _1 1

_2

_1

1

y

x

y=(x+1)(x+2)#

_3 _2 _1 1

_2

_1

2

y=(x+1)@ (x+2)

y

x

Answers to Selected Exercises A-103



A-104 Answers to Selected Exercises

35. x2 � i � x � i � 0
37. x2 � 3x � 54 � 0
39. x2 � 2x � 4 � 0
41. x2 � 2ax � a2 � b � 0
43. (a) x � 4
(b)

45. (x � 2 � 2i)(x � 2 � 2i) �
(x � 2 � 2i)(x � 2 � 2i)
49. x � 5 (multiplicity 2), �10
51. (a) 4x2 � 2x � 1� 0

Exercise Set 13.4
1. (a) see text (b) 
1, 
11
3. (a) The possible rational roots are

1, 
5, so there cannot be a rational
root larger than 5. No, 5 is not a root.
(b) The possible rational roots are 

1, 
5, so 2 cannot be a root.
(c)

5. 
1, , 
3, 

7. 
1, , 
3, ,


9, 
9. 
1, , 
2, 
3, , 
6
17. x � 1, �1, �3
19. x �

21. x � �1, 

23. x � 1, �1, 

25. x � 1 (multiplicity 4)

�1 
 197

2

�2
3, �

1
3

�1
4, 
15


3
2
1

2


9
2, 


9
4, 


9
8


3
2, 


3
4, 


3
8
1

2, 

1
4, 


1
8


3
2, 


3
4
1

2, 

1
4

1.9 2 2.1 2.2

_1

0

1

y=x

5

-14x-5

x

y

–10 10

–200

200

y

x

y = x3 + 3x − 76

132131 27. x � 1, , 6 29. (a) 2 is an upper
bound, �1 is a lower bound (b) 2 is an
upper bound, �1 is a lower bound
(c) 6 is an upper bound, �2 is a lower
bound 31. between 0.68 and 0.69
33. between 2.88 and 2.89
35. between 4.31 and 4.32
37. (a) between �3 and �2
(b) between �2.148 and �2.147
39. (a) between �6 and �5
(b) between �5.265 and �5.264
41. (b) A and C have a common
factor of 5, so the result does not
apply. (c) x � p�q is a root of the
equation.
43. x � 1.769

45. x � 1.310

47. x � � 5.848

_10 5 10

2000

4000

6000

8000

10000

y=x

5

+100

y=x

5

+   x

3
1

2

x

y

1
3 200

_10 _5 5 10

_10

_5

5

10

y=e

_x

y=ln x

x

y

_10 _5 5 10

_10

5

10

y=2x-3

y=x

3

-5

x

y

�4
3

(b)

27. (a) f (x) � x(x � 1)2(x � 3)2

(b)

29. (a) f (x) � x2(x � 1)(x � 3)3

(b)

31. f (x) �
33. (a) f (x) �
(b)

_ 6 _4 _2 2 4 6

_4

_2

2

4

f(x)= (x

3

-19x+30)

1

30

x

y

1
30 x3 � 19

30 x � 1
� 5

42 x2 � 25
42 x � 30

7

_4 _2 2 4

_6

_4

_2

2

4

f(x)=x

2 

(x-1)(x-3)

3

x

y

_4 _2 2 4

_4

_2

2

4

6

f(x)=x (x-1)

2 

(x-3)

2

x

y

_4 _2 2 4

_6

_4

_2

2

4

6

y

x

f(x)=≈(x-1)(x-3)



35. 1 positive real root and 8 complex
roots 37. 1 positive real root, 
1 negative real root, and 6 complex roots
39. 1 positive real root, 1 negative 
real root, and 4 complex roots
41. 1 positive real root, 1 negative real
root, and 2 nonreal complex roots
43. (a) f (x) � x4 � 2x2 � 49
(b) 
 2i, � 2i

Exercise Set 13.6
1. (a) A � 2, B � 5 (b) A � 2, 
B � 5 3. (a) A � 4, B � �1
(b) A � 4, B � �1 5. (a) A � , 

B � (b) A � , B � 7. A � 8, 

B � �21 9. A � , B �

11. A � 4, B � �1, C � 613. A � , 
B � , C � 15. A � 1, B � �1, 

C � 1 17. A � , B � , C �
19. A � 4, B � 1, C � �5
21. A � 0, B � 1, C � 0, D � �4
23. (a)

(b)

_4 2 4

_4

_2

2

4

x

y

_2 4

_4

_2

2

4

x

y

�1
2

1
6

10
3

�3
5

3
5

2
5

34
5�1

5

3
4�1

4
3
4

�1
4

13�13

(c)

25. (a) A � 3, B � 4, C � �1
(b) B � 4, C � �1 27. (a) The
possible rational roots are �1 and 1,
neither of which are roots.
(b)

(c)

(d)

29. (a)

(b)

(c)
�1�48

x � 2
�

1�57

x � 5
�

1�304

x � 14

_14.005 _14

_0.000331

_0.000330

_15 _10 _5 5 10 15

_0.02

0.02

0.04

x

y

1 � 15 
 i310 � 225

4

x �
1 � 15 
 i310 � 225

4
,

a x2 �
�1 � 15

2
 x � 1 b

a x2 �
�1 � 15

2
 x � 1 b �

_6 _4 _2 2 4 6

_6

_4

_2

2

f(x)=x

4

-x

3

+x

2

-x+1

x

y

2x � 5

(x � 4)(x � 3)
�

13�7

x � 4
�

1�7

x � 3
55. p � 3, x � 1

57. (a) x � 59. b � 2

Exercise Set 13.5
1. 7 � 2i 3. 5 � 2i, 3
5. �2 � i, �3 (multiplicity 2)
7. 6 � 5i, 9. 4 �

11. 10 � 2i, 1 
 13.

15. 3 � 2i, �1 � i, �1 

17. x2 � 2x � 5 � 0
19.
21. (c) one positive real root

(d) �2, 23. (a) Since the 
polynomial has no variation in sign, 
the equation has no positive root; 
since f (�x) has 1 variation in sign, 
the equation has 1 negative root.
(b) one negative real root

(c) �0.5982

(d)

� �0.5982
25. 2 complex roots and 1 negative 
real root 27. 4 complex roots and 
1 negative real root 29. 2 complex
roots, 1 positive real root, and 1 negative
real root 31. either 1 positive real root
and 2 negative real roots, or 1 positive
real root and 2 complex roots
33. 1 positive real root, 1 negative 
real root, and 6 complex roots

3
3 2.5 � 22723

108

x � 3
3

�2.5 � 22723
108 �

–2 21

 –5

5

10

y

x

f (x) = x3 + 8x + 5

3
2

–3 –1 2

–80

–40

20

y

x

f (x) = 2x4 − 3x3 + 12x2 + 22x − 60

x2 � 4
3 x � 2

3 � 0

12

1 � i12
3 , 2515

12i, 
3i
2�1

4

�1 
 i111

2
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A-106 Answers to Selected Exercises

29.

31.

33.

35. x � �3, �1, 2
37. (b) C � �2, D � 0

39.

41. x � 4 �

43. x2 � 2x � 5 �

47.

49.

51.

53.

Chapter 13 Review Exercises
1. q(x) � x3 � x2 � 3x � 1, R(x) � �1
3. quotient: x3 � 3x2 � 7x � 21; 
remainder: 71 5. quotient: 
2x2 � 13x � 46; remainder: �187
7. quotient: 5x � 20; remainder: 0

9. f (10) � 99,904 11. f �

13. f (a � 1) � a3

15. (a) f (�0.3) � �0.24
(b) f (�0.39) � �0.007
(c) f (�0.394) � 0.00003
17. a � �5 19. a � �1, �2
23. 
1, 
2, 
3, 
6, 
9, 
18
25. 
1, , 
2, 
4, 
8 27. 
p, 
1

29. 2, , �1 31. , �1 
135
2�3

2


1
2

� 999
100021

101

12

4
 x �

1

2

x2 � 12x � 1
�

�
12

4
 x �

1

2

x2 � 12x � 1

c2

(c � a)(c � b)

1 � cx

a2

(a � b)(a � c)

1 � ax
�

b2

(b � a)(b � c)

1 � bx
�

(pa � q)�2a

x � a
�

(pa � q)�2a

x � a

(pb � q)�(b � a)

x � b

(pa � q)�(a � b)

x � a
�

1
4

x � 1
�

�1
2

x2 � 1

�1
4

x � 1
�

3
4

(x � 2)2 �
5
2

(x � 2)3

�1
8

x
�

1
8

x � 2
�

6x � 8 �
2

x � 3
�

�1

x � 1

�x

x2 � 1
�

x � 1

x2 � x � 1

8
27

x � 3
�

11
54

x � 3
�

1
2 x � 5

18

x2 � 9

3
x

�
�2

x2 �
4

x � 1
�

3

(x � 1)2 33.

35. �1, (multiplicity 2), 
(multiplicity 2)

37. 2 (multiplicity 2), 5 39. see text
41. 6 x � � x �

43. (x � 4)(x � �

�

45. 2 
 3i, 3 47. 1 
 i , 
49. 1 positive real root and 2 complex
roots 51. 1 negative real root and 2
complex roots 53. 1 positive real root,
1 negative real root, and 2 complex roots
55. (c) �1, 
i 57. between 0.82 and
0.83 59. (c) between 6.93 and 6.94
61. x2 � 8x � 11 � 0
63. x4 � 12x3 � 35x2 � 60x � 200 � 0
65. x4 � 4x3 � 4x2 � 16x � 8 � 0
67. zeros: 0, 3, �1

69. zeros: 0, �2, 2

71. 5 � 6i 73. 6 75.

77. 3 � 4 81. (a) 6 � 2i �

2 , 6 � 2i � 2 (b) �3 � 3

87.

89.
1
x

�
�1

x � 1
�

�1

(x � 1)2

�21
20

10 � x
�

19
20

10 � x

0011000110

0012i12

1

2
�
13

2
 i

 –3 3

 –4

2

y

x

y = x4 − 4x2

 –2 2 4

– 7

– 5

y

x

y = x3 − 2x2 − 3x


1712

a x �
1

3 5 � i3323 25

2
b

a x �
1

3 5 � i3323 25

2
b
22�1

3 51
42�5

21324
31

17
�17

2
3, 

�1 
 i13

2

Exercise Set 13.7
1. (a) no (b) yes 3. (a) no (b) yes
5. (a) (x � 10)(x � 10)

(b)

(c)

7. (a) (x � )(x � )

(b)

(c)

9. (a) (x � 3)(x � 2)

(b)

(c)

11. (a) (x � 3)(x � 2)(x � 2)

(b)

(c)

13. (a) x(x2 � x � 1)

(b)

(c)

15. (a) (x2 � 1)2

(b)

(c)

17.

19.

21.

23.

25.

27.
1
3

x � 1
�

�1
3 x � 2

3

x2 � x � 1

127
5

(x � 5)3

253
25

(x � 5)2 �

3
125

x
�

122
125

x � 5
�

x

x2 � 4
�

�4x � 2

(x2 � 4)2

11 � 215 2�10

x � 15

�1�5

x
�
11 � 215 2�10

x � 15
�

10

3x � 5
�

�7

2x � 3

19
28

x � 6
�

�3
7

x � 1
�

3
4

x � 2

2x

x2 � 1
�

3x � 4

(x2 � 1)2

Ax � B

x2 � 1
�

Cx � D

(x2 � 1)2

5
x

�
�3

x2 � x � 1

A

x
�

Bx � C

x2 � x � 1

8

x � 3
�

�2

x � 2
�

�3

x � 2

A

x � 3
�

B

x � 2
�

C

x � 2

�5

x � 2
�

12

x � 3

A

x � 2
�

B

x � 3

5

x � 15
�

3

x � 15

A

x � 15
�

B

x � 15

1515

4

x � 10
�

7

x � 10

A

x � 10
�

B

x � 10



Exercise Set 14.2
3. 120 5. 105 7. (a) 10 (b) 5
9. n2 � 3n � 2 11. 0
13. a9 � 9a8b � 36a7b2 � 84a6b3 �
126a5b4 � 126a4b5 � 84a3b6 �
36a2b7 � 9ab8 � b9

15. 8A3 � 12A2B � 6AB2 � B3

17. 1 � 12x � 60x2 � 160x3 �
240x4 � 192x5 � 64x6

19. x2 � 4x � 6xy � 4y � y2

21. x10 � 5x8y2 � 10x6y4 � 10x4y6 �
5x2y8 � y10

23.

25.

27. a7b14 � 7a6b12c � 21a5b10c2 �
35a4b8c3 � 35a3b6c4 � 21a2b4c5 �
7ab2c6 � c7

29. x8 � 8 x7 � 56x6 �
112 x5 � 280x4 � 224 x3 �
224x2 � 64 x � 16
31. 5 � 7 33. 89 � 109
35. 12 � 24
37. x10 � 10x9 � 35x8 � 40x7 �
30x6 � 68x5 � 30x4 � 40x3 �
35x2 � 10x � 1 39. 120a2b14

41. 100x99 43. 45 45. 294912
47. 28 49. 40095
53. (a)

k 0 1 2 3 4 5 6 7 8

1 8 28 56 70 56 28 8 1

Exercise Set 14.3
1. 3. �1, 1, �1, 1

5. 7. 3, 6, 9, 12

9. 2, 11. �1, 0, 

13. �2, 1, , 1
15. 1, 4, 25, 676, 458329
17. 2, 2, 4, 8, 32 19. 1, 1, 2, 6, 24
21. 0, 1, 2, 4, 16
23.

n

an

an=
n
2

+1

�8
9

1
3, 

1
2

9
4, 

64
27, 

625
256

1
2, 

1
4, 

1
8, 

1
16

1
2, 

2
3, 

3
4, 

4
5

a8
k
b

1
3 2 � 1213 4

121312
12

1212
12

x3

8
�

x2y

4
�

xy2

6
�

y3

27

1 �
6
x

�
15

x2 �
20

x3 �
15

x4 �
6

x5 �
1

x6

1xy1xy

25.

27.

29.

31.

33. 62 35. 40 37. 39. 903
41. 3 43. 41 45. x � x2 � x3

47. 49. �1 51.

53. 55. 57. a
12

k�1

1

ka
6

j�1
x j

a
4

j�1
5 j

6
7

25
12

�19
30

n

An

A0=0; An=
An-1-3

An-1+1

bn

n

b0=2; bn=(bn-1)
2-2bn-1-1

n

an

a1=1 ;  an=(an-1)
2-an-1

n

cn

cn=
5
n

91.

93. (a) (x2 � x � 1)(x2 � x � 1)

(b)

Chapter 13 Test

1. f � 2. �3, 1 


3. 
1, , 
2, 
3, , 
6
4. f (x) � 3x2 � 21x � 24
5. quotient: 4x2 � 3x � 5; 
remainder: 8 6. See text
7. (a) 3 is an upper bound
(b) between 2.2 and 2.3 8. 1 
 i, 
3 
 2i, �2 9. q(x) � x2 � 2x � 1, 
R(x) � �3x � 7

10. 2 x � x �
11. (a) 
1, 
2, 
3, 
4, 
6, 
8, 

12, 
24 (c) x � 1 (d) none

12. (a) (b)

13. 1 positive real root, 1 negative real
root, and 2 complex roots
14. x3 � 6x � 20 � 0
15. f (x) � (x � 2)(x � 3i)3 �
3x � 11 �

16. 21 � 11 � 17.

18.

19.

20.

CHAPTER 14
Exercise Set 14.1
27. (a)

n 1 2 3 4 5

f (n)

(b) (c)

29. (a)

n 1 2 3 4 5

f (n) 1 4 9 16 25

(b) 36 (c) f (n) � n2

1

2 � 3
� p �

1

n(n � 1)
�

n

n � 1

f(n) �
1

1 � 2
�6

7

5
6

4
5

3
4

2
3

1
2

5
x

�
�1

x � 2
�

3

(x � 2)2

1
4

x � 1
�

�1
4 x � 1

4

x2 � 3

1
16

x
�

�13
32

x � 4
�

11
32

x � 4

� 1
17 � 13

17 i13 2 i
12 2 4 2

3
2, 

�1 
 i13

2
3
2

423
2 � 1

2 i13423
2 � 1

2 i13


3
2
1

2

16�3
21 12 2

1
2

x2 � x � 1
�

x � 1
2

x2 � x � 1

x

x2 � 3
�

�3x � 2

(x2 � 3)2
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A-108 Answers to Selected Exercises

(c) Pt�1 � 1609
67. (a)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 1 2 3 5 8 13 21 34 55

(b) F22 � 17,711; F19 � 4181
(c) F30 � 832,040 73. (a) F1 � 1; 
F2 � 1 (b) F24 � 46,368; 
F25 � 75,025 (c) F26 � 121,393

Exercise Set 14.4
1. (a) 2 (b) �4 (c) (d)
3. a12 � 131 5. a100 � 501
7. a1000 � 998 9.

11. a � �190 13.

15. S1000 � 500,500 17. S13 �

19. 21. S16 � �768; d �

23. ; a � 25. 900
27. 2, 10, 18 or 18, 10, 2 29. �1, 2, 5
or 5, 2, �1 31. (b) S6 � �6 � 9

33. Sn � [2 � (n � 3) ]

Exercise Set 14.5
1. 6 3. 20; 100 5. a100 � 1
7. 9. r � 
4 11. 7161

13. 63 � 31 15.
17. � 0.011111 19.

21. 101 23. 25. 27.

29. r � , �2 35. 12 ft

Exercise Set 14.6
1. 3. 5. 7.
9. 1 11. 13. 0 15. 0 17.
19. 21. 23.
25. 27. 29. 1 31.

33. 35. 41.

43. (b) 1
(c) is a horizontal asymptote.

(d) , lim
xSq x  ln a1 �

1
x
b � 1y � 1

2 4 6

–2

–1

1

2

0

y

x

y = x ln (1 + 1/x)
y = 1

y � 1

y � 

1

2
xy � 0y � 1

�1qy � 2
y � 1y � 0q

q�3
5

q�q�qq

�1
2

16
37

61
495

5
9

2
5

11,111
1,000,000

1995
6412

a8 � 256
6561

1b
n

2(1 � b)

12

�17
5d � 6

5

�104
15a � 1

2

91p

3

d � �1
8

d � 11
6 ; a � �23

2

121
3

(e)

x 1 5 10 100 1000 10000

1 0.2 0.1 0.01 0.001 0.0001

In 0.6931 0.1823 0.0953 0.0100 0.0010 0.0001

x In 0.6931 0.9116 0.9531 0.9950 0.9995 1.0000

45. (a) (b)
(c) As x increases without bound, the
value of x3 also  increases without bound.
47. (a) (b)
(c) As x increases without 

bound, the value of gets arbitrarily 

close to 0. 49. e

Chapter 14 Review Exercises
11. 81a4 � 108a3b2 �
54a2b4 � 12ab6 � b8

13. x4 � 4x3 � 6x3 � 4x2 � x2

15. x10 � 10x8y2 �
40x6y4 � 80x4y6 � 80x2y8 � 32y10

17. 1 �

19. a4b2 � 4a3b2 � 6a3b3 �

4a2b3 � a2b4

21. 15xy8 23. 84 25. 28
27. Each side is 6. 29. Each side is
70. 31. Each side is 8. 33. 1, 

35.

37. �3, �12, �48, �192
39. (a) �5 (b) 41.

43. a18 � 73 45. a12 �
47. S12 � 177

5
1024

a
5

k�1

5

3k
9

10

1

– 1

2 3 4

an

n

�1
2, 

2
3, �

3
4, 

4
5

1 2 3 4

2

1

an

n

4
3, 

3
2, 

8
5

1ab
1ab

5
x

�
10

x2 �
10

x3 �
5

x4 �
1

x5

1x1x

1

x2

x � 11000x � 2

x � 1
3 10,000x � 4

a1 �
1
x
b

a1 �
1
x
b

1
x

59. (�1) j�12j 61. (�1) j�1j

63. (a) 0.7, 0.49, 0.2401, 0.05765,
0.00332, 0.00001; they approach 0.
(b) (c) 0

65. (a)

t 0 1 2 3 4 5

Pt 300 1111 1829 1468 1691 1559

The population seems to be oscillating
closer to a value near 1600.
(b)

t Pt t Pt

0 300 11 1607
1 1111 12 1611
2 1829 13 1608
3 1468 14 1610
4 1691 15 1609
5 1559 16 1610
6 1640 17 1609
7 1591 18 1610
8 1621 19 1609
9 1602 20 1610

10 1614

t

Pt

600

1200

1800

2010

t

Pt

600

1200

1800

s10 � 4.90 � 10�80

a
5

j�1
a

5

j�1



(c) real part: ; imaginary part: �1
(d) real part: 0; imaginary part: 16
5. c � 4, d � �3 7. (a) 14 � 4i
(b) �4 � 8i 9. (a) 19 � 17i
(b) 19 � 17i (c)
(d) 11. (a) 11 � i
(b) 11 � 7i (c) 4 13. 4 � 2i
15. 30 � 19i 17. 13
19. �191 � 163i 21. 19 � 4i
23. �70 � 84i 25. 539 � 1140i
27. �46 � 9i 29.

31. 33.

35. �4 37. 39. �i
41. i 43. �1 45. 12i 47. �3
49. �35 51. 12 53. (a) �3

(b) x � 55. (a) �36

(b) z � 57. (a) �23

(b) z � 59. (a)

(b) z � 61. (a) 0

(b) This verifies the solution.
63. (a) z � w � (a � c) � (b � d)i
(b) z � w � (a � c) � (b � d)i
(c) zw � (ac � bd) � (bc � ad)i

(d)

71. x � 3, 
2i 73. x � 
3, 

75. real part: ; imaginary 

part: 0 77. real part: 0

APPENDIX B (online)*
Exercise Set B.1
1. �10 3. 5. (a) a15

(b) (a � 1)15 (c) (a � 1)15

7. (a) y11 (b) (y � 1)11 (c) (y � 1)18

9. (a) x2 � 3 (b) (c) 12

11. (a) t6 (b) (c) (t2 � 3)6

13. (a) (b) (c)
y10

x8

y5

x4

x4

y5

1

t6

1

x2 � 3

2
3

2a2 � 2b2

a2 � b2

�12 
 12i12 
 12i,

z

w
�

ac � bd

c2 � d2 �
bc � ad

c2 � d2  i

3

4


187

4
 i

�29
48�

3

4


123

4
 i

�1
5 
 3

5 i

1

2


13

2
 i

12i
15i

1
26 � 5

26 i

� 5
13 � 12

13 i6
97 � 35

97 i

6
97 � 35

97 i

11
25 � 23

25 i

11
26 � 23

26 i

1
2 15. (a) 4x6 (b) 16x6 (c) 4

17. (a) 1 (b) 1 (c) 1
19. (a) (b) (c) 1000

21. 7 23. (a) (b)

25. 27. 29.

31. 33. y6 35. b

37. x2p 39. 576 41. 12
43. 9.29 � 107 miles
45. 6.68 � 104 mph
47. 2.5 � 1019 miles
49. (a) 1.0 � 10�9 seconds
(b) 1.0 � 10�18 seconds
(c) 1.0 � 10�24 seconds

Exercise Set B.2
1. false 3. true 5. true 7. true
9. (a) �4 (b) not a real number
11. (a) (b) 13. (a) not a real
number (b) not a real number
15. (a) (b) 17. (a) �2 (b) 2

19. (a) 3 (b) 3
21. (a) (b) 23. (a)

(b) 25. (a) 3 (b) 3

27. (a) �4 (b) 5
29. (a) 0.3 (b) 0.2 31. �14
33. 2 35. (a) 6x (b) �6y

37. (a) ab (b) a2b2

39. 6ab2c2 41. 2ab

43. 45. 47.

49. 51. �2 �

53. 55. 57.

59. 61. (a)

(b) 63. (a)

(b)

65. (a)

(b)

67.
�2 11x � h � 1x 2

h

x � 21ax � a

x � a

x � 212x � 2

x � 2

x 11x � y 2
x � y2

x 11x � 2 2
x � 4

13 � 1

13 � 1
315 2ab

2ab2

1
4 27

1
3 5

5

6115

5

13
15 � 1

4

12

4

417

7

2a41
3 2b2

c3

1
4 b12ac

1ab

12
16

1
4 212

1
3 2122

5

5
2�215 2712

1
3 212

�3
5

4
3

�2
5

2
5

y20

x6z16

y12

x6z12

a4b2

c6

1

a6b3

1
225

1
20

100
11

11
100

49. S10 � 7,777,777,777
51. a6 � �5 53. 55.

57. 63. (a) 42,929 (b) 42,925; 
percent error: 0.00932%
(c) 6.48040 � 1010

(d) 6.48027 � 1010; percent error; 

2 � 10�3% 65. r � , 3, 

73. (a) 212,993 (b) 103,766 (c)
75. y � 1, y ��1

Chapter 14 Test
2. (a) 27 (b) �6

3. (a) (b)

4. (a) 42,240 (b) 5280a7b12

5. 243x10 � 405x8y3 � 270x6y6 �
90x4y9 � 15x2y12 � y15

6. 295 7. 8. 5 and 27

9. a8 � � 10. 224
11. (a)

(b)

12.

APPENDIX A
Exercise Set A.3
1.

i2 i3 i4 i5 i6 i7 i8

�1 �i 1 i �1 �i 1

3. (a) real part: 4; imaginary part: 5
(b) real part: 4; imaginary part: �5

� 3
4

n

bn

b1=1; bn=(bn-1)
2-nbn-1

n

(n2-n)an= 2
1

an

11025
2

7
9

174,075
1024Sn �

a(1 � rn)

1 � r

789
512

�8 
 155

3
1
3

5
11

1
10

3
4110

Answers to Selected Exercises A-109

*The full text for (online) Appendix B is
available on the website at http://www
.cengage.com/math/cohen/precalc7e.
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A-110 Answers to Selected Exercises

5. (a) (x � 1)(x2 � x � 1)
(b) (x � 6)(x2 � 6x � 36)
(c) 8(5 � x2)(25 � 5x2 � x4)
(d) (4ax � 5)(16a2x2 � 20ax � 25)
7. (a) (12 � x)(12 � x)
(b) irreducible (c) (9 � y)(15 � y)
9. (a) h3(1 � h)(1 � h)
(b) h3(10 � h)(10 � h)
(c) (h � 1)3(11 � h)(9 � h)
11. (a) (x � 8)(x � 5) (b) irreducible
13. (a) (x � 9)(x � 4)
(b) (x � 9)(x � 4)
15. (a) (3x � 2)(x � 8) (b) irreducible
17. (a) (3x � 1)(2x � 5)
(b) (6x � 5)(x � 1) 19. (a) (t2 � 1)2

(b) (t � 1)2(t � 1)2 (c) irreducible
21. (a) x(4x2 � 20x � 25)
(b) x(2x � 5)2 23. (a) (a � c)(b � a)
(b) (u � v � y)(x � u � v)
25. (xz � t)(xz � y) 27. (a2 � 2b2c2)2

29. irreducible
31. (x � 4)(x2 � 4x � 16)
33. x(x2 � 3xy � 3y2)
35. (x � y)(x2 � xy � y2 � 1)
37. (a) (p2 � 1)(p � 1)(p � 1)
(b) (p4 � 1)(p2 � 1)(p � 1)(p � 1)
39. (x � 1)3 41. irreducible
43.

45.

47.

49.
51. (x � a)(8x � 8a � 1) �
(8x � 8a � 1)
53. (x � y � a)(x � y � a)
55. x(7x � 3)(3x � 13)
57. (5 � 2x � 3y)(5 � 2x � 3y)
59. (ax � b)(x � 1) 61. �x(x � 1)1�2

1 12 x � y 2 2
a 5

mn
� 1 b a 25

m2n2 �
5

mn
� 1 b

1z2 � 9
4 2 1z � 3

2 2 1z � 3
2 2

1 54 � c 2 1 54 � c 2

63. x(x � 1)�3�2 65. (2x � 3)1�2

67. (a) 199 (b) 296 (c) 1999
69. (A � B)3

71. x(a2 � x2)�3�2(2a2 � x2)
73. (y2 � pq)(y � p)(y � q)

Exercise Set B.5

1. x � 3 3.

5. 7. 9.

11. 13. 2

15.

17. 19.

21. 23.

25.

27. 29.

31. 33.

35.

37. 39. 41. a � 1

43. 45.

47. 49. 51.

53. 55. a a

b
b a�ba2 � b2

2

x2 � y2

x2 � y2

1

a � a2

x

1 � 2x

a � x

a2x2�
1

4 � 2h

�
1
ax

1 � x

1 � x

�p2 � pq � q2

p(2p � q)(p � 5q)

�9

(x � 5)(x � 4)2

2a

a � b

8

x � 5

6ax2 � 4ax � a

(x � 1)3

3x2 � 6x � 6

(x � 2)(x � 2)

4x � 11

(x � 3)(x � 2)

36 � a2

6a

4x � 2

x2

x2 � xy � y2

(x � y)(x � y)

x2 � x

(x � 4)(x � 2)

x2 � xy � y2

(x � y)2

a2 � 1

a � 1

3b

2a

1

x � 2

1

(x � 2)(x2 � 4)

�2
3 x

69. 71.

73.

75. 77. a � 9, b � 16

79. u � 1, v � 8 81. (a) 1.645751

Exercise Set B.3
1. 3 3. 1 22
5.

7. 1 2xy 9. p2�3

11. (1 � u)4�7 13. (a2 � b2)3�p

15. 4 17. 19. not a real number
21. 5 23. 2 25. 4 27. �2
29. �10 31. 33. not a real 

number 35. 37. 25 39. �1

41. 43. 45. 6a7�12

47. 23�2 a1�12 49. x2 � 1
51. (a) 21�3 35�6 (b)

53. (a) 27�12 31�3 (b)

55. (a) x2�3 y4�5 (b)

57. (a) x(a�b)�3 (b)
59. (x � 1)2�3 61. (x � y)2�5

63. 2x1�6 65. x1�6 y1�8 67. 910�9

69. a � 9, b � 16 71. u � 1, v � 8
73. x � 4, m � 2

Exercise Set B.4
1. (a) (x � 8)(x � 8) (b) 7x2(x2 � 2)
(c) z(11 � z)(11 � z)
(d) (ab � c)(ab � c)
3. (a) (x � 3)(x � 1)
(b) (x � 3)(x � 1) (c) irreducible
(d) (�x � 3)(x � 1) or �(x � 3)(x � 1)

2
3 xa�b

 

15
2x10y12

12
210368

1
6 972

�28976
243

255
16

1
216

1
7

1
6

2
3 22

3 2xy �

2
4 (x2 � 1)3 � 124 x2 � 1 2 3

2
3 52

3 52 �125 a 22
5 a3 �

1

1x � h � 1x

1

12 � h � 12

1

1x � 15

2
3 a2 � 1

3 a � 1

a � 1



for one-to-one functions, 195–196
sequences and series in, 999–1006
trigonometric functions and,

501–507
vector algebra, 709–710, 

C-75–C-77
Algebraic functions, 128
Algebraic notation, B-1–B-3
Althoen, Steven C., 782
Altitude (of triangles), 55
Amplitude

definition of, 543–544
finding, 565–566
in simple harmonic motion, 577

Analytical geometry, of conic
sections, 841

Analytical trigonometry
addition formulas, 599–605
double-angle formulas, 611–615
inverse trigonometric functions,

642–652
product-to-sum and sum-to-product

formulas, 620–624
trigonometric equations, 628–636

Angle of depression, 667, 668
Angle of elevation, 667–669
Angle of inclination, 842–844
Angles, 420–422

degrees and radian measures for,
467–468

radian measures of, 469–471
reference angle, 446
trigonometric functions of,

441–450, 481–490
Angular speed, 475–476
Annual rates of interest, 385, 387–388
Anthemius of Tralles, 864
Aphelion (of elliptical orbits),

873–874

Apostol, Tom M., 127
Apothems, 673
Appollonius of Perga, 889
Approximations

method of successive
approximations, 949–950

significant digits, A-4
Archimedes, 5

spiral of, 733–734
Arcs

calculating length of, 473–474
formula for length of, 472–473

Area
of circles, as function of

circumference, 251–252
of cylinders, surface area, 252
expressed using trigonometric

functions, 669–670
of rectangles, as function of width,

248–249
of rectangles, maximum area,

261–262
of regular pentagons, 437–438, 667
of sectors, 472–474
of segments of circles, 666–667
of triangles, formula for, 450
of triangles, as function of one

variable, 251
of triangles, trigonometric formula

for, 437, 665–666
of triangles, using distance from

point to line formula, 845
Arguments (of complex 

numbers), 741
Arithmetical operations, with

functions, 181–184
Arithmetic-geometric mean inequality,

111, C-33
Arithmetic progression, 1009

A
Abel, Niels Henrik, 941
Abscissas (x-coordinates), 20
Absolute values, 6–8

definition of, 6
equations with variables within,

93–94
in inequalities, 107–108

Acute angles, 468
definition of, 421
trigonometric functions of,

420–428, 512, 514
Addition

of matrices, 787–788
vector addition, 698–704, 708–709

Addition formulas
for sine and cosine, 599–604
for tangent, 604–605

Addition-substraction method, for
solving simultaneous equations,
759, 762–765

Additive identity, 789
Agnesi, Maria Gaetana, 721
Aihara, Junichi, 919
Algebra, 10

arithmetic sequences and series in,
1009–1013

binomial theorem in, 989–997
for difference of squares, 458–459
for formula for inverse 

functions, 198
fundamental theorem of, 935–941
geometric sequences and series in,

1014–1018
limits in, 1019–1029
mathematical induction in,

984–988
matrix algebra, 798–799

I-1
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I-2 Index

Berger, Henri, 732
Berlinski, David, 274, 531
Bernoulli, Daniel, C-58
Bernoulli, Jacob, 721, 722
Bernoulli, John, 181, 574
Bethe, Hans, 402–403
Bhāskara, 30
Binomial coefficients, 993
Binomial expansions, 992, 

994–997
Binomial expressions, 989

expansion of, 992, 994–997
Binomial theorem, 989–997
Boas, Ralph P., 194, 211, A-5
Boethius, 5
Bombelli, Rafael, 943
Bouguer, Pierre, 112
Bounded regions, 832
Boyer, Carl B., 81, 795
Brahmagupta’s theorem, 694
Branches, of hyperbolas, 880
Briggs, Henry, 346
Brookhart, Clint, C-9
Brown, Lester R., 228, 406
Burton, David M., 19, 984

C
Cajori, Florian

on absolute values symbol, 6
on Bernoulli, 722
on Descartes, B-14
on logarithmic curves, 346
on logarithm notation, 351n
on notation for angles, 421
on notation for inequalities, 112
on roots of polynomial 

equations, 945
Calculators

degrees and radians on, 425–426
for estimating turning points, 156
to evaluate reciprocal functions, in

radians, 490
for exponential growth 

problems, 398
for graphing implicit functions, 152
for maximum and minimum

values, 155

natural logarithm on, 343
for quadratic functions, 233
scientific notation on, B-5
for solving trigonometric

equations, 629–630
for trigonometric functions in

radians, 485–486
see also Graphing utilities

Calculus, limits in, 1019–1029
Calinger, Ronald, 371
Carbon dioxide levels, 399–400
Cardano, Girolamo, 943
Carlyle, Thomas, 76
Cartesian coordinate system, 20
Cartoids, 734–735
Cassegrain, Sieur, 886
Cassini, Giovanni 

Domenico, 435
Catenary curve, 335, 343–344
Cauchy, Augustin-Louis, 

600n, 809
Cayley, Arthur, 782, 795
Celsius, Anders, 106n
Celsius scale, 33–35, 106
Centers

of ellipses, 866
of hyperbolas, 882, 883

Centroids (of triangles), 55
Chaos theory, 4.3.8–4.3.9
Chords, of parabolas, 853
Chosid, Leo, 952
Chou Pei Suan Ching, 30
Chrystal, George, 259, B-23
Chu-Shi-Kie, 990
Circles

area of, as function of
circumference, 251–252

as conic section, 841
distance formula for finding radius

of, 22–23
graphing, 69–70
inscribed and circumscribed,

693, 837
lines tangent to, 846–847
parameterization for, 

C-83–C-87
in polar coordinates, 726–727
segments of, 479
segments of, area of, 666–667

Arithmetic sequences and series,
1009–1013

Āryabhata, 454, 511
Asteroids, 875
Astigmatism, C-66
Astronomy, 841

applications of hyperbolas in, 886
applications of parabolas in, 857
elliptical orbits in, 864, 873, 875
transits of Venus, 431–435, 

C-43–C-46
Asymptotes, 66

of exponential functions, 328
horizontal, 1020–1022
of hyperbolas, 883, 1023–1024
oblique, 1022–1023
of rational functions, 296, 306–308
slant (oblique), 314

Atmospheric carbon dioxide levels,
399–400

Attracting fixed points, 4.3.3
Augmented matrix, 784–785
Average velocity, 159, 161
Axes

of conic sections, rotation of,
903–911

in rectangular coordinates, 19
Axis of symmetry, 233

B
Back-substitution method, for solving

simultaneous equations, 760
Bacterial growth, 392–396
Ball, W. W. Rouse, 181
Bannister, Roger, 215
Bardsley, W. G., 296
Bases, B-1

changing, 367–368
Base 10 logarithms

definition of, 347
equations with, 373–375

Batschelet, Edward, 81
Beasley, R. D., 677
Beckenbach, E., 103
Beckmann, Petr, 5
Bekele, Kennenisa, 29
Bellman, R., 103



Conditional equations, 12, 372
identities versus, 628–629

Conic sections, 841
basic equations for, 841–847
ellipses, 864–874
focus-directrix property of, 889–896
hyperbolas, 879–887
parabolas, 850–859
in polar coordinates, 898–902
rotation of axes of, 903–911
tangents to parabolas, 862–863

Conjugate axis (of hyperbolas), 883
Conjugate roots theorem, 954–958

linear and quadratic factors
theorem and, 973

Conjugates, A-7–A-10
used to rationalize denominators,

B-13
Constants, 10
Cook, James, 431, C-43
Cooling, Newton’s law of, 345
Coordinates

converting between polar and
rectangular, 724–725

rectangular, 19–26
see also Polar coordinates;

Rectangular coordinates
Cosecant (csc)

definition of, 442, 512, 532
finding, 456
graphs of, 589–590
in radians, 483

Cosine (cos), 425–426, 435–436, 443,
C-53–C-54

addition formulas for, 600–604
calculating, 514–515
definition of, 442, 512, 532
double-angle formula for, 613
expressing all trigonometric

functions in terms of, 506
finding, 455–456
graphs of, 543–554, 560–569
half-angle formulas for, 614–615
inverse cosine function, 646–648
law of, 684–689
periodicity of, 539
product-to-sum formulas for,

620–622
in radians, 483

sum-to-product formulas for,
622–624

unit circle to approximate,
444–447, 487–489

Cost functions, linear, 219–222
Cotangent (cot)

definition of, 442, 512, 532
finding, 456
graphs of, 587–589
in radians, 483

Coterminal angles, 485–486
Cotes, Roger, 619
Cramer, Gabriel, 809, 816n
Cramer’s rule, 809, 816–818
Crowe, Michael J., 697
Cryptography, C-14
Cube roots

of complex numbers, 744
conjugates used to rationalize

denominators involving, 
B-13

Cubic equations, C-105–C-107
Curves

orientation of, 715
in polar coordinates, 732–738

Cusanus, Nicolaus, 676
Cusps, 282
Cylinders, surface area of, 252

D
Dandelin, Germinal, 841
Dead Sea Scrolls, 412
Decay

radioactive decay, 400–402
radioactivity, 402–403
radiocarbon dating, 411–412

Decay constant, 401, 402
Decomposition of partial fractions,

960, 962–963, 967, 969–970, 
C-108

Degenerate ellipses, 886
Degenerate hyperbolas, 886
Degrees (exponents)

of polynomial equations, 17
of polynomial functions, 274,

284–286
of rational functions, 296

standard equation of, 66–69
trigonometric functions for,

443–448
unit circle, 442

Circumference, of ellipses, 878–879,
C-102

Circumscribed circles, 693, 837
Closed intervals, 2
Clovis hypothesis, 412
Coefficient matrix, 784–785
Coefficients

binomial coefficients, 993–997
equating-the-coefficients 

theorem, 960
linear factors theorem on, 939–941
in synthetic division, 922–923

Cofactors, 810–811
Cofunction identities, 602
Cofunctions, 602
Collapsing (telescoping) sums, 1005
Collinear points, 53
Column vectors, 790
Common ratio, 1014
Completing the square, 69–70

to analyze ellipses, 869–871
to analyze hyperbolas, 884–887
to analyze parabolas, 856–858
for graphing quadratic functions,

235–236
for quadratic equations, 82–83

Complex conjugates, A-7–A-10
Complex numbers, 706, A-5–A-10

DeMoivre’s theorem and, 
740–745

as roots of polynomial equations,
935, 945, 954

Complex plane, 740
Complex roots, 945

geometric interpretation of, 
C-104

Components of vectors, 702–703, 
706, 708

unit vectors and, 711
Composite values, 183–184
Composition of functions, 182–183

application of, 184–186
graphical approach to, 194

Compound fractions, B-26–B-27
Compound interest, 382–390

Index I-3



I-4 Index

as function of one variable, 250
from point to line, 843–844, 847
in polar coordinates, 726
Pythagorean Theorem for, 

20–21
Distance formula, 21–25
Distributive law, 599
Dividends, 920
Division

of complex numbers, 742–743, 
A-8–A-9

of polynomials, 920–925
remainder theorem for, 926–929
used with rational functions,

302–304
Division algorithm, 921
Divisors, 920
Dixon, Jeremiah, 431, C-43
Domains

of composite functions, 184
of functions, 131–133
of functions, in graphs, 142–145
of logarithmic functions, 351,

379–380
for rational functions, 297–301
symmetry and, 65–66
of variables, 10–11

Dot products, 713
Double-angle formulas, 611–615
Double roots, 927
Doubling time

for compound interest, 389–390
for exponential growth, 398

Drobot, Stefan, 1
Dummy variables, 1004–1006
Dunn, Seth, C-12
Dürer, Albrecht, 530, 739

E
e (natural logarithm), 343

in compound interest, 382–390
definition of, 336
equations with, 353–355, 373
Euler’s use of, 335, 346
in exponential function y � ex,

335–340
graphs of, 352

notation for, 351
in prime number theorem, 360

Earthquakes, 354–355
Eccentricity

of ellipses, 866–867
of hyperbolas, 883, 895–896

Effective rates of interest, 385–387
nominal compared with, 

388–389
Einstein, Albert, 10
Elementary operations, 771–773
Elementary row operations, 785–786,

799–802
Elements (entries, in matrices), 782
Ellipses, 864–874

circumference of, 878–879, 
C-102

as conic section, 841
focal radii and lengths of, 

890–893
focus-directrix property of, 889,

893–894
parametric equations for, 

717–719
in polar coordinates, 899–901

Entries (elements, in matrices), 782
Equality

of complex numbers, A-6
of matrices, 786

Equating-the-coefficients theorem, 960
Equations

with base 10 logarithms, 373–375
for circles, 66–69
for conic sections, 841–847
converting between polar and

rectangular form, 724–725
to define functions, 248–253
for ellipses, 865–866, 868,

893–894
extraneous solutions to, 100,

376–378
fundamental theorem of algebra on,

935–941
graphs of, 31–39
graphs of, transformations of,

173–177
graphs of, in polar coordinates,

732–733
for horizontal and vertical lines, 48

Degrees (unit of angles), 421,
425–426, 467–468

converting from radians to,
471–473

converting to radians from, 471
origin of, 420

del Ferro, Scipione, 940, C-105
Delta ( ) notation, 43–44
Deltoid curve, 721
Demand functions, 135–136, 253

function notation and, 136–137
DeMoivre, Abraham, 740, 743
DeMoivre’s theorem, 740–745
Denominators

least common, B-24–B-25
rationalizing, B-10–B-13
unknowns in, solving equations

with, 14–15
Dependent variables, 132
Depreciation, linear functions for,

216–219
Descartes, Renè, 248, B-14

Cartesian coordinate system of,
19, 20

on complex numbers, A-6n
on equations, 919, 926
folium of, 721
on logarithmic curve, 346
rule of signs of, 954, 956–958
on tangents, 862

Descartes’ rule of signs, 954, 956–958
Determinants, 809–818
Devlin, Keith, C-14
Difference-of-squares technique, B-19
Difference quotients, 159–160
Differences, to compare exponential

and polynomial growth, C-36
Dillehay, Tom, 412
Directrix

focus-directrix property of conic
sections, 889–896

of parabolas, 850, 851, 854–855
Discrete dynamics, 247, 4.3.1
Discriminant (in quadratic formula),

88–89
Distance

absolute values for, 6–8
distance formula for, 21–25
between foci of ellipse, 869

¢



Exponential form of equations, 348
quadratic, 375

Exponential functions, 323–333
equations with, 353
graphs of, 328–333
logarithmic functions as inverse

of, 347
systems of equations with,

825–826
y � ex, 335–340

Exponential growth and decay,
392–403

atmospheric carbon dioxide levels,
399–400

bacterial growth, 392–396
logistic growth model, 412–413
radioactivity, 402–403
radiocarbon dating, 411–412
using differences to compare, 

C-36
world population growth, 

396–398
Exponential limits, 1024–1025
Exponents

equations and inequalities with,
371–380

estimating, 325–326
fractional, equations with, 

98–100
integers as, B-1–B-5
negative, B-26
rational, B-14–B-17
variables in, B-4
zero as, B-2

Extraneous roots (solutions), 14,
376–378

Extraneous solutions to 
equations, 100

F
Factorials (!), 992–993
Factoring, B-18–B-21

linear factoring theorem on,
936–941

polynomials, 924–925
prime numbers, C-14
quadratic equations, 15–16, 81

to simplify fractional expressions,
B-23–B-25

to solve equations, 95–96
to solve inequalities, 115–116
to solve trigonometric equations,

631–633
trigonometric expressions, 502

Factors, B-18
irreducible quadratic factors,

971–974
linear and quadratic factors

theorem on, 968
remainder theorem for, 929

Factor theorem, 929–933
Fahrenheit, Gabriel, 106n
Fahrenheit scale, 33–35, 106
Ferguson, Kitty, 432, C-44
Fermat, Pierre de, 42
Ferrari, Ludovico, 940
Ferro, Scipio, 943
Feynman, Richard, 10
Fibonacci sequences, 1007
Financial applications, compound

interest, 382–390
Finite geometric series, 1015, 1016
Finite sequences, 999
Finite series, 1004
Fink, Thomas, 754
Fior, Antonio Maria, 943, C-105
First and second differences, 

241–242
First-degree equations, See Linear

equations
First iterates, 188
Fisher, J. Chris, 676
Fixed points, of functions, 

4.3.1–4.3.5
Flavin, Christopher, C-12
Flower, Phillip, 864
Focal axis

of ellipses, 866
of hyperbolas, 880, 883

Focal chords (of parabolas), 853
Focal length, 857–859
Focal radii

of ellipses, 871, 890–893
of hyperbolas, 886

Focal ratio, 857–859
Focal width (of parabolas), 853

for hyperbolas, 880–883
inequalities, 103–109
of lines, 42–52
for lines through two points, 47–48
logarithmic and exponential forms

of, 348
logarithms used to solve, 366
with logs and exponents, 371–380
nonlinear systems of, 822–827
other types of, 92–101
for parabolas, 852–854
parametric, 714–720, 

C-83–C-87
polar, for conic sections, 898–899
polynomial, 16–17, 919
quadratic, 81–89
with radicals, solving, 100–101
solving, 10–14
trigonometric, 628–636
see also Systems of equations

Equilateral arches, 479
Equilateral curved triangles, 

479–480
Equilibrium points, 764
Equilibrium population, 1003
Equivalent equations, 12
Equivalent systems, for simultaneous

equations, 760, 771
Eratosthenes, 432, C-44
Euler, Leonhard, 839, 967

on deltoid curves, 721
on e, 335, 346, 349n
Fourier series used by, 574, C-56
on i ( ), A-5
on logarithms, 371
on sines and cosines, 492, 531

Euler line, C-88–C-90
Euler’s theorem, 837
Even functions, 177–178

combining, 187–188
cosine as, 558–559

Eves, Howard, 123, 420, 501, 739
Excel (spreadsheet program)

for quadratic functions, 233
for regression lines, 221–222

Experimentation, 984
Explicit functions, C-16
Exponential decay formula, 

401–402

1�1
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I-6 Index

polynomial, 274–289
quadratic, 232–242
range of, 133–134
rational, 296–312
shapes of graphs of, 154–159
of time, C-26
of two variables, 833
types of, 128–130
See also Trigonometric functions

Fundamental theorem of algebra,
935–941

G
Galois, Evariste, 941
Gardner, Martin, B-28
Garfield, James A., 79
Gateway Arch (St. Louis), 335,

343–344
Gauss, Carl Friedrich, 501

on complex numbers, A-6n
on constructing regular polygons,

C-51–C-52
fundamental theorem of algebra by,

935–936
Gaussian elimination by, 769n
prime number theorem by, 360
on regular polygons, 523

Gaussian elimination, 769–776
Gebreselasie, Haile, 29
Gelfond, A. O., 344
Geometrical optics, 678–681
Geometric progressions, 1014
Geometric sequences and series,

1014–1018
Gergonne, Joseph Diaz, 79
Gergonne points, 79
Gillett, Philip, 382
Gillipsie, Charles C., 620
Girard, Albert, 501, 935
Global warming, 25, 399–400
Golden ratio (f), 752
Goldstein, Larry J., 481
Graphical functions, 129–130
Graphing techniques

for functions, 166–178
for quadratic functions, 

235–236

Graphing utilities, 31–39
to approximate solution to

nonlinear systems, 826–827
correcting, C-18
parametric mode for, 73
true proportions command for,

51–52, 68
Graphs

cautions regarding, 94
of complex numbers, 740–741
of cosecants, 589–590
of cotangents, 587–589
definition of, 31
of equations, 31–39
of exponential functions, 

328–333
of functions, 128–130, 141–147
of functions, shapes of, 

154–159
of hyperbolas, 884–887
identities and, 511, C-50
of implicit functions, 152–153
for inequalities, 108–109, 

113–115
of inequalities, 829–832
of inverse functions, 202–205
of logarithmic functions, 

347–355
of piecewise-defined functions,

145–146
in polar coordinates, 724, 

732–733
of polynomial functions, 

274–289
of quadratic functions, 246–247, 

C-23
of rational functions, 296–312
related to y � ex, 336–339
scatter diagrams, 221
of secants, 590
of sequences, 1001
of sines and cosines, 543–554,

560–569
symmetry in, 56–57
symmetry and domains as aids in,

65–66
symmetry and intercepts as aids in,

64–65
of tangents, 583–587

Foci
of ellipses, 865, 869
focus-directrix property of conic

sections, 889–896
of hyperbolas, 879, 883
of parabolas, 850, 851, 854–855

Focus-directrix property of conic
sections, 889–896

Folium of Descartes, 721
Fourier, Joseph, 574–575, 

C-56–C-57
Fourier series, 573–576, 

C-55–C-58
Four-step procedure, 447–448, 496
Fractional exponents, 

B-14–B-17
equations with, 98–100

Fractional expressions, 
B-23–B-27

Fractions
partial, 960–964, 967–974,

C-109
repeating decimals as, 1017–1018

Frederick H., Young, 599
Frequency, in simple harmonic

motion, 577
Fresnel, Augustin, 608, C-61
Fresnel lens, 608–611, 

C-61–C-63
f-stops (photography), 857
Functions, 127–137

combining, 181–190
composition of, C-19
definition of, 127, 130, 132
domains of, 132–133
equations to define, 248–253
even and odd, 177–178
exponential, 325–333, 335–340
fixed points of, 4.3.1–4.3.5
graphing techniques for, 166–178
graphs of, 141–147
implicit, 152–153, C-16–C-17
inverse, 194–205, C-20
iteration of, 187–190
limits for, 1019–1029
linear, 215–224
logarithmic, 346–355
notation for, 134–136
partial fractions and, 960–964



Hyperbolas, 879–887
asymptotes for, 1023–1024
as conic section, 841
to determine locations, C-103
focus-directrix property of, 889,

894–896
in polar coordinates, 901–902

Hyperbolic sine function (sinh), 344

I
i ( ); imaginary unit ), A-6

calculations involving, A-9
Identities, 12, 372

for basic right triangle, 515
for binomial coefficients, 

996–997
cofunction identities, 602
conditional equations versus,

628–629
double-angle formulas to 

prove, 613
of functions, 197
graphs and, 511, C-50
opposite-angle identities, 

538–539
Pythagorean identities, 460, 

534–537
trigonometric identities, 454–459,

503–504, 533
Identity matrices, 795
Imaginary axis (in complex 

plane), 740
Imaginary numbers, see Complex

numbers
Imaginary unit (i), A-6
Implicit functions, 152–153, 

C-16–C-17
Improper rational expressions, 967
Inclination, angle of, 842–844
Independent variables, 132
Index (in nth root), B-7
Index of refraction, 678–679, 

C-71–C-74
Index of summation, 1004
Indirect proofs, A-4–A-5
Induction, mathematical, 983–988
Induction hypotheses, 985

1�1

Inequalities, 2, 103–109, 112–119, 
C-11

with absolute values, 107–108
graphical approach to, 108–109
inductive proofs of, 987–988
lacking key numbers, 116–117
with logs and exponents, 371–380
polynomial, 115
properties of, 104
with quotient of polynomials,

117–119
solving, 104–106
systems of, 829–832

Infinite geometric series, 1016–1017
Infinite sequences, 999
Infinity, 3
Initial points (of vectors), 698
Initial sides (of angles), 441, 481
Input-output model (Leontief 

input-output model), 779–782,
805–808, C-91–C-93, 
C-97–C-99

Inscribed circles, 693, 837
Instantaneous rates of change,

338–340
Instantaneous velocity, 339
Integers, 2

as exponents, B-1–B-5
Intercepts

computing, 36–38
slope-intercept formula for, 48–49
symmetry and, 64–65

Interest, compound, 382–390
Intermediate value theorem, 949
Intervals, 2–3
Inverse cosine function, 553–554,

646–648, 652
Inverse functions, 194–205, C-20

definition of, 196
finding, 202–205
inverse trigonometric functions,

631, 642–652
logarithmic functions as, 347
sines and cosines, 553–554
in solutions to trigonometric

equations, 630
Inverse of square matrices, 795–803
Inverse secant functions, 

C-67–C-70

Gross domestic product 
(GDP), 408

Grouping, factoring using, B-20
Growth

exponential and polynomial, using
differences to compare, C-36

variable growth constants, C-42
see also Exponential growth and

decay; Population growth
Growth constant, 392
Growth law, 392–393
Gutenberg, Beno, 354, 355, 358

H
Hadamard, J., 360
Half-angle formulas, 614–615
Half-life, 400–401, 403
Hall, H. S., 92, 960
Halley, Edmond, 431, C-43
Halliday, David, 441, 492, 697
Halmos, Paul, 795
Hardy. G. H., 989, A-4
Harmonic motion, 576–579
Harriot, Thomas, 112, 954
Heath, Sir Thomas, 420, 864, 889
Heisenberg, Werner, 782
Herbison-Evans, Don, 919
Heron of Alexandria, 696
Heron’s formula, 696
Herschel, John, 642
Hilbert, David, 166
Hipparchus, 420, 611
Hippocrates of Chios, 674, 676
Hogben, Leslie, 757
Hollingdale, Stuart, 10, 81
Hooper, Alfred, 361, 467
H pital, Marquis de l’, 897
Horizontal asymptotes, 1020–1022
Horizontal component (x-component)

of vectors, 706
Horizontal lines, 46

equations for, 48
Horizontal line test, 199–200
Horizontal translations, of 

graphs, 168
horizontal scale changes, 173

Huygens, Christian, 721

ô
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I-8 Index

Klein, Morris, 663
Knight, S. R., 92, 960
Knuth, Donald E., 141
Koh, E. L., 676
Kōwa, Seki, 809
Kung, Sidney H., 749
Kurtz, David C., 952

L
Lagrange, Joseph Louis, 215, 809, 941
Lambert, J. H., 2
Lawrence, J. Dennis, 722
Laws

distributive law, 599
growth law, 392–393
Newton’s law of cooling, 345
parallelogram law, 700–701
of sines and cosines, 681–689
Snell’s law, 608, 678–681, 

C-71–C-74
of tangents, 754

Least common denominators, 
B-24–B-25

Least-squares lines (regression lines),
221–222, 271–273, 
C-27–C-30

medical application of, 223–224
Least-squares technique, 221
Legendre, Adrien Marie, 271, 360
Lehmus, C. L., 697
Leibniz, Gottfried Wilhelm von, 769

on determinants, 809
formula for by, 574
on functions, 127
on notation for multiplication, B-28
on rectangular coordinates, 19

Lemniscates, 737–738
of Bernoulli, 737

Lemonick, Michael D., 412
Lengths

of arcs, 472–474
expressed using trigonometric

functions, 669–670
of focal radii of ellipses, 890–893
law of cosines to find, 686–688
law of sines to find, 682–683
of vectors, 707–708

p

Leonardo of Pisa, 1007
Leontief, Wassily W., 779, 780, 

C-91
Leontief input-output model,

779–782, 805–808, C-91–C-93,
C-97–C-99

Light rays, 678
Limaçons, 735–737

of Pascal, 739
Limit definitions, 1026–1028
Limits, 1019–1029

exponential, 1024–1025
trigonometric, 1025–1026

Linear and quadratic factors theorem,
968, 973

Linear equations
Gaussian elimination for, 

769–776
graphs of, 49
in one variable, 11–12
systems of two, in two unknowns,

757–765
Linear factoring theorem, 936–941

linear and quadratic factors
theorem and, 973

Linear factors
denominator with irreducible

quadratic factors and, 
971–972

guidelines for partial fractions
with, 969

linear and quadratic factors
theorem on, 968

repeated in denominator, 
970–971

Linear functions, 211, 215–224
definition of, 215
used with quadratic functions,

234–235
Linear inequalities, 829
Linear speed, 475–476
Line of best fit, 272–273
Lines

distance from point to, 
843–844, 847

equations of, 42–52
horizontal and vertical, 46
parallel and perpendicular, 50–52
parameterization for, C-83–C-87

Inverse sine function, 553–554,
642–645, 651

finding approximate values for, 644
Inverse tangent function, 630,

648–649, 652
Inverse trigonometric functions, 631,

642–652
Invertible (nonsingular) matrices,

795, 799
Irrational numbers, 2

e as, 335–336
as exponents, 327
as roots of polynomial 

equations, 956
square root of 2 ( ) as, 

A-4–A-5
Irreducible expressions, B-20
Irreducible quadratic factors, 971–974
Irreducible quadratic polynomials,

967–968
Iterates, 188
Iteration of functions, 187–190

graphical approach to, 194
to model population growth, 247,

4.3.1–4.3.9

J
Jacquard, Albert, 81
Jashmid al-Kāshi, 613
Jones, John Paul, 221
Jügens, Hartmut, 181

K
Kastner, Bernice, 898
Katz, Victor J., 123
Keeling, C. D., 323
Kelvin, Lord (Sir William 

Thomson), 576
Kepler, Johannes

on logarithms, 349n
on orbits of planets, 359, 841,

864, 873
third law of, 434, 435

Key numbers, 113
inequalities lacking, 116–117
to solve inequalities, 115–116

12



Cramer’s rule for, 816–818
determinants for, 809–816
square, determinants for, 809
square, inverse of, 795–803

Matrix algebra, 798–799
Maximum values, 154, 259–266, 

C-31–C-33
finding, for polynomial functions,

293–295
May, Robert M., 247, 4.3.1
McLaughlin, Renate, 782
Medians (of triangles), 55
Menaechmus, 841
Method of successive approximations,

949–950
Microsoft Excel, See Excel
Midpoint formula, 24–26
Mikami, Y., 809
Miller, Jeff, 215
Minimum values, 154, 259–266, 

C-34–C-35
for quadratic functions, 

238–240
for rational functions, 

316–317
Minor axis (of ellipses), 866
Minors (determinants), 810–811
Minutes (unit of angles), 421
Modeling

iteration for, 247, 4.3.1–4.3.9
using trigonometric functions,

567–569
Modolus (of complex numbers), 741
Multiplication

of complex numbers, 742–743, 
A-7–A-8

scalar multiplication, 709, C-76
scalar multiplication, of matrices,

788–791
Multiplicity, 927–928
Murphy, Kim, 408

N
Napier, John, 346, 361, 371
Nasir ed-dı̄n at-Tūsı̄ (Nasir Eddin), 511
Natural logarithm, See e
Natural numbers, 2

Navigation
law of sines and law of cosines in,

688–689
vectors used in, 703–704

Negative numbers
as exponents, B-26
fractions and, B-23

Newton, Isaac, 345
calculus invented by, 574
on DeMoivre, 740
on planetary movements, 

841, 873
Newton’s law of cooling, 345
Nine-point circles, C-88–C-90
Nominal rates of interest, 385,

388–389
Noninvertible (singular) 

matrices, 799
Nonlinear systems of equations,

822–827
Nonsingular (invertible) matrices,

795, 799
Normal form, for equations in polar

coordinates, 731
Normal line (to parabolas), 864
Notation

algebraic, B-1–B-3
for angles, 420–422, 468
delta ( ) notation, 43–44
for demand functions, 136–137
factorial (!), 992–993
for functions, 134–136, 181
for graphs, 34–35
for inequalities, 112
for intervals, 3, 4
for limits, 1019
for logarithmic functions, 

347, 349n
for natural logarithm, 351
scientific, B-5
sigma ( ) notation, 1004–1006
for square roots, 131
for vectors, 697, 698

Novak, Gary, 355
nth-order determinants, 809
nth roots, B-7–B-13

solving equations with, 95
Number line, 1–2

absolute values on, 6–8

©

¢

in polar coordinates, 727–728
through two points, equations 

for, 47–48
vectors equations for, 

C-78–C-79
Lithotripters, 873
ln notation (natural logarithm), 

343, 351
Loan payments, C-40–C-41
Location theorem, 949–950
Logarithmic curve, 346
Logarithmic equations, 348

extraneous solutions for, 377
Logarithmic functions, 323–324,

346–355
y � logb x, 348–351

Logarithmic regression, 360
Logarithmic scales, 355
Logarithms

comparing two, 350
equations and inequalities with,

371–380
errors in use of, 368
natural logarithm, 343
properties of, 361–368

Logistic growth model, 412–413
Lowell, Julian, 889
Luedeman, John K., 782
Lukawecki, Stanley M., 782
Lunes, 674

M
Macaulay, David, 581, C-59
Macay, Alan L., 56
MacDonald, Gordon, 323
Magnitude (of vectors), 698
Main diagonals (of matrices), 798
Major axis (of ellipses), 866
Maor, Eli, 335, 346
Marginal costs, 219
Mason, Charles, 431, C-43
Mathematical induction, 983–988
Mathematical modeling, 136
Mathematical models, 136
Matrices, 782–792

communications and, 
C-94–C-96
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I-10 Index

Orthocenters (of triangles), 55
Oughtred, William, 421

P
Page, Warren, 952
Pappus, 889
Parabolas, 233, 850–859

as conic section, 841
constructing, C-101
finding equations for, 763–764
focus-directrix property of, 889
graphing, 238
narrow, 236–237
polar equation for, 901
tangents to, 862–863
used in bridge arches, C-100
vertex formula for, 260

Paraboloid of revolution, 857
Parallel lines, 50–52
Parallelogram law, 700–701
Parameterization, C-83–C-87
Parameters, 715
Parametric equations, 714–720, 

C-83–C-87
Parametric mode for graphing 

utilities, 73
Partial fractional decomposition, 960,

962–963, 967, 969–970, C-108
Partial fractions, 960–964, 967–974,

C-109
Pascal, Blaise, 989

binomial triangle of, 990–992
Pascal, Étienne, 739
Pascal’s triangle, 990–992
Paul, Wittich, 620
Peletier, Jacques, 945
Pentagons

area of, 437–438
regular, area of, 667
regular, constructing, 522–524,

658, C-51–C-52
Percentage error, 397
Perihelion (of elliptical orbits),

873–874
Period

finding, 565–566
in simple harmonic motion, 577

Periodic functions, sines and cosines
as, 543–554, 558

Periodic interest rates, 384
Periodicity of sine and 

cosine, 539
Perpendicular lines, 50–52
Persistence of sign, 113
Phase shifts, finding, 565–566
Pi ( ), 5, A-1

Leibniz’s formula for, 574
Piecewise-defined functions, 

145–146
Pitiscus, Bartholomaus, 681
Plato, 29
Points, distance from line to, 

843–844, 847
Point-slope formula, 46–47
Polar axis, 722
Polar coordinates, 722–729

of complex numbers, 741
conic sections in, 898–902
curves in, 732–738

Polar equations
converting to rectangular form,

724–725
for lines, 728–729

Pole (origin; in polar coordinates), 722
graphing lines through, 

727–728
Polya, George, 248
Polynomial functions, 274–289

definition of, 274
finding maximum values for,

293–295
of same degree, comparing,

284–286
x-intercepts for, 286–288

Polynomial growth, C-36
Polynomial inequalities, 115, 

117–119
Polynomials and polynomial

equations, 16–17, 215
conjugate roots theorem on,

954–958
definition of, 17
division of, 920–925
equating-the-coefficients theorem

on, 960
factor theorem for, 929–933

p

Numbers
absolute values of, 6–8
complex number system, 

A-5–A-10
real numbers, 1–4
in scientific notation, B-5
significant digits, A-1–A-4

Numerators, rationalizing, B-12
Numerical sequences, 999

O
Oblique asymptotes, 1022–1023
Oblique asymptotes (slant

asymptotes), 314
Obtuse angles, 421, 468
Odd functions, 177–178

combining, 187–188
sine as, 558–559

One-to-one functions, 
195–197

Open intervals, 2
Opposite-angle identities, 

538–539
Optics, 678–681

applications of ellipses in, 873
applications of hyperbolas 

in, 886
applications of parabolas in, 857
of astigmatism and eyeglass

lenses, C-66
of Fresnel lens, 608–611, 

C-61–C-63
of Snell’s law, 678–681, 

C-71–C-74
Orange, William B., 583
Orbits (lists of numbers), 188
Ordered pairs, 20
Ordered triples, 769
Ordinates (y-coordinates), 20
Oresme, Nicole, B-14
Orientation (of curves), 715
Origin

in polar coordinates, 722
in rectangular coordinates, 19
symmetry about, 59
symmetry about, test of, 

63–64



maximizing, 259–261
of two matrices, 790–791

Product-to-sum formulas, 620–622
Proper rational expressions, 967
Prosthaphaeresis, 620
Ptolemy, 611
Pythagorean identities, 460, 534–537
Pythagorean Theorem, 20–21,

685, 714
converse of, 22
to find value of trigonometric

functions, 516–517
Garfield’s proof of, 79
proofs of, 30

Pythagorean triples, 836

Q
Quadrants, 19
Quadratic equations, 81–89, C-8

with complex roots, A-10
complex roots of, geometric

interpretation of, C-104
with exponentials, 345–376
factoring, 15–16
geometric method for solving, 76
history of, 940–941
in history of mathematics, 122–123
with irrational roots, 956
irreducible quadratic polynomials,

967–968
as products of linear factors, 937
quadratic formula to solve, 16–17
quadratic type equations and,

96–97
rotation of axes for, 908–911

Quadratic factors
irreducible, 971–974
linear and quadratic factors

theorem on, 968
Quadratic formula, 16–17, 81, 

83–89
for solving nonlinear systems of

equations, 823–824
for x-intercepts, 37

Quadratic functions, 211, 232–242
analyzing, 237–238
definition of, 233

graphing, using completing the
square and translation, 
235–236

minimum value of, 238–240
symmetry in graphs of, 246–247,

C-23
used with linear functions,

234–235
Quadratic polynomials

irreducible, 967–968
see also Polynomials and

polynomial equations
Quadratic type equations, 96–97
Quarterly interest rates, 384
Quotients, 920, 922–923

R
Rademacher, 599
Radian measures, 425, 467–476

calculating, 469–471
converting from degrees to, 471
converting to degrees from,

471–473
definition of, 469
evaluating trigonometric functions

in, 492–498
trigonometric functions of,

531–539
trigonometric functions of angles

in, 481–490
Radians, 425
Radicals

simplifying, B-9
solving equations with, 100–101

Radical sign ( ), B-7
Radicand, B-7
Radioactive decay, 400–402

radiocarbon dating, 411–412
Radioactivity, 402–403
Radiocarbon dating, 411–412
Radius, distance formula for, 

22–23
Ramanujan, Scrinivasa, 5
Ramirez, Oscar, 732
Range, of functions, 133–134

in graphs, 142–145
for rational functions, 299–301

1 

fundamental theorem of algebra on,
935–941

inequalities involving, 117–119
irreducible quadratic polynomials,

967–968
linear and quadratic factors

theorem on, 968
location theorem for, 949–950
with prescribed roots, 931–932
rational and irrational roots of,

945–950
remainder theorem for, 926–929
roots of, 919
satisfying given conditions,

932–933
Population growth

bacterial, 392–396
global, 396–398
iteration to model, 247, 

4.3.1–4.3.9
logistic model of, 412–413
perspective and alternative

scenarios for, C-110
recursive sequences to model,

1001–1004
Populations

average and instantaneous rates of
change of, 340

iteration to model, 247
Position vectors, 706
Power functions, 274

translating graphs of, 280–281
translating reflections of, 

281–283
Preston, Richard, 5
Prime numbers, 140, 

C-14–C-15
sieve of Eratosthenes for, 432,

C-44
Prime number theorem, 360
Principal, 382

nth roots, B-7
Principle of mathematical induction,

984–985
Probability, binomial theorem in,

989–997
Products

as function of single variable,
252–253
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I-12 Index

Recursive definitions, 1000–1001
Recursive sequences, 1001–1004
Redmond, Don, 952
Reduced equations, 931
Reduction formulas, 601
Reference angle, 446

definition of, 494
to evaluate trigonometric functions,

497–498
to evaluate values of trigonometric

functions, 498
Reference numbers, 494, 532
Reflection property

of ellipses, 871, 873
of hyperbolas, 886

Reflections
of graphs, 169–170
of graphs of exponential functions,

332–333
of lines, 59–60
of power functions, 281–283

Refraction
index of, 678–679
law of (Snell’s law), 608, 678–681,

C-71–C-74
Regression lines (least-squares lines),

221–222, 271–273, C-27–C-30
medical application of, 223–224

Regular polygons, 522, 523
Gauss on constructing, 

C-51–C-52
see also Pentagons

Relative growth rates, 394–396
Remainders, 920, 922–923
Remainder theorem, 926–929
Repeating decimals, 1017–1018
Repelling fixed points, 4.3.4
Resnick, Robert, 441, 492, 697
Restricted cosine function, 646
Restricted sine function, 642–644
Restricted tangent function, 648
Revenues

a function of one variable, 253
maximization problem involving,

264–265
Revkin, Andrew C., 399
Richards, Stephan P., 1
Richmond, H. W., 658
Richter, Charles F., 354–355, 358

Ricker, William E., 1007
Ricker model, 1007
Right angles, 468

definition of, 421
Right triangles

30 –60 , 427
45 –45 , 427–428
definitions of trigonometric

functions for, 423
trigonometric functions applied to,

435–438
trigonometric identities for, 515
trigonometry of, 511–518, 663–670

Robert of Chester, 501
Rocher, 435
Roemer, Olaf, 721
Roots

of complex numbers, 744–745
complex numbers as, 945, A-10
complex roots, geometric

interpretation of, C-104
conjugate roots theorem on,

954–957
Descartes’ rule of signs on, 954,

957–958
extraneous, 14, 376–378
factor theorem for, 929–933
fundamental theorem of algebra on,

935–941
for linear equations, 11–12
nth roots, 95, B-7–B-13
rational and irrational, 945–950

Roots of multiplicity, 927
Rotation of axes of conic sections,

903–911
Rounding numbers, A-3
Row vectors, 789–790
Rule of signs, 954, 956–958
Rutherford, Ernest, 400

S
Saarinen, Eero, 344
Sawtooth waves, 560
Scalar multiplication, 709, C-76

of matrices, 788–791
properties of, 712

Scalar products, 713

°°
°°

Rates of change, 44
comparing two, 279–280
computing and comparing,

157–159
instantaneous, 338–340
linear functions for, 217–219

Rational exponents, B-14–B-17
factoring with, B-21

Rational expressions, 967
Rational functions, 215, 296–312

definition of, 296
finding minimum values for,

316–317
oblique asymptotes for, 1022–1023

Rationalizing the denominator, 
B-10–B-11

Rational numbers, 2
as roots of polynomial equations,

945–948
Rational roots theorem, 945–948,

955–956
Real axis (in complex plane), 740
Real numbers, 1–4

absolute values of, 6–8
definition of, 1
distributive law for, 599
as exponents, 326
properties of, B-28–B-30
trigonometric functions of,

531–539
zero-product property of, 15–16

Reciprocal functions, 423, 
426–428, 443

calculators to evaluate, 490
graphs of cosecants, 589–590
graphs of cotangents, 587–589
graphs of secants, 590
in radians, 483

Rectangles
area of, as function of width,

248–249
maximum area of, 261–262
perimeter of, as function of width,

249–250
Rectangular coordinates, 19–26

converting between polar
coordinates and, 724–725

Rectangular form of complex
numbers, 741–742



on infinite series, 999
on Kepler’s third law, 359
on radian measures, 467

Simple harmonic motion, 576–579
Simultaneous equations, 758
Sine (sin), 425–426, 436, 443, 

C-53–C-54
addition formulas for, 600–604
calculating, 514–515
definition of, 442, 512, 532
double-angle formula for, 

611–613
Dürer’s drawing of, 530
expressing all trigonometric

functions in terms of, 506
finding, 454–455
graphs of, 543–554, 560–569
half-angle formulas for, 614–615
law of, 681–684, 688–689
linear approximation of, 

C-47–C-49
origins of word, 501, 511
periodicity of, 539
product-to-sum formulas for,

620–622
in radians, 483
restricted sine function, 642–644
sum-to-product formulas for,

622–624
unit circle to approximate,

444–447, 487–489
Singular matrices, 795
Singular (noninvertible) matrices, 799
Size (dimensions), of matrices, 783
Slant asymptotes (oblique

asymptotes), 314
Slope, C-5

angle of inclination and, 
842–844

comparing, 44–46
definition of, 43
delta notation for, 43–44
of parallel and perpendicular 

lines, 50
point-slope formula for, 46–47
as rates of change, 217–219
slope-intercept formula for, 48–49
velocity as, 220

Slope-intercept formula, 48–49

Smith, David Eugene, 112
on least-squares method, 271
on sine, 454, 511, 611
on trigonometry, 599

Snell, Willebrord, 676, 678, C-71
Snell’s law (law of refraction),

678–681, C-71–C-74
for Fresnel lens, 608

Snow, Theodore P., 879
Soddy, Frederick, 400
Solar parallax, 431–432, C-43
Solutions

extraneous, 14
for linear equations, 11–12

Solution sets, 103
Speed, angular and linear, 

475–476
Spiral of Archimedes, 733–734
Square matrices, 795

determinants for, 809
inverse of, 795–803

Square root of 2 ( ), A-4–A-5
Square roots, 131, B-7

as denominators, rationalizing, 
B-11

simplifying, B-8
Square waves, 559, 573
Squaring, of complex numbers, 743
Standard form of equations

for ellipses, 866–868
for hyperbolas, 881
for matrices, 783

Standard position of angles,
441–442, 482

Steiner, Jacob, 697
Steiner–Lehmus theorem, 

696–697
Stevin, Simon, B-14
Straight-line depreciation, 216
Stringhlam, Irving, 351n
Struik, Dirk J., 809
Sturm, Jacques Charles François, 954
Substitution method

quadratic formula used with,
823–824

for solving nonlinear systems of
equations, 822

for solving simultaneous equations,
759–762

12

Scalars, 697
Scaling of graphs, 166

of exponential functions, 331–332
horizontal scale changes, 173
logarithmic scales, 355
vertical scale changes, 172

Scatter diagrams (scatter plots), 221
Schaumberger, Norman, 695
Scientific notation, B-5
Sears, Francis Weston, 678, C-71
Secant (sec), 435–436

definition of, 442, 512, 532
finding, 456
graphs of, 590
inverse secant functions, 

C-67–C-70
in radians, 483

Second differences, 241–242
Second-order determinants, 809–810
Seconds (unit of angles), 421
Sectors

calculating area of, 474
formula for area of, 472–473

Seelye, Katharine Q., 399
Segments (of circles), 479

area of, 666–667
Sellers, David, 431, C-43
Semimajor axis (of ellipses), 866
Semiminor axis (of ellipses), 866
Sensitivity to initial conditions, 4.3.11
Sequences, 999–1006

arithmetic, 1009–1013
geometric, 1014–1018

Series, 999–1006
arithmetic, 1009–1013
Fourier series, C-55–C-58
geometric, 1014–1018

Shiflet, Angela B., 769
Shulman, Bonnie, 413
Sigma ( ) notation, 1004–1006

for arithmetic series, 1012–1013
Significant digits, A-1–A-4
Similar triangles

comparing trigonometric ratios for,
513–514

trigonometric ratios for, 424
Simmons, George F.

on Fermat, 42
on Hippocrates of Chios, 676

g
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I-14 Index

to circle, 846–847
definition of, 442, 512, 532
to ellipses, 871–873
finding, 455–456
graphs of, 583–587
half-angle formulas for, 

614–615
to hyperbolas, 886
inverse tangent function, 

648–649
law of, 754
to parabolas, 862–863
in polar coordinates, 728–729
in radians, 483
transforming sine and cosine

equations into, 635–636
Tannery, Paul, 346
Tartaglia, Niccolò, 943, C-105
Taylor, Brook, 542
Taylor polynomials, 542
Telescoping (collapsing) 

sums, 1005
Temperature scales, 33–35, 106
Terminal points (of vectors), 698
Terminal side (of angles), 441, 481
Terms

in arithmetic sequences, 1009
in geometric sequences,

1014–1015
in numerical sequences, 999–1000

Test points, 831
Theodorus of Cyrene, 29
Theta ( ), 420–421, 467
Thomson, Sir William 

(Lord Kelvin), 576
Thornton, H. G., 413
Tikhomirov, V. K., 259
Todhunter, Isaac, 677
Torricelli, Evangelista, 346
Transformations

of conic sections in polar
coordinates, 905–908

of graphs of equations, 173–177
Transits of Venus, 431–435, 

C-43–C-46
Translations, of graphs, 166–173

of exponential functions, 332–333
horizontal, 168
of parabolas, 855

u

of power functions, 280–281
of quadratic functions, 235–236
reflections, 169
of reflections of power functions,

281–283
vertical, 167

Transpose matrices, 794
Transverse axis (of hyperbolas),

882, 883
Triangles

area of, formula for, 450
area of, as function of one

variable, 251
area of, trigonometric formula

for, 437
area of, using distance from point

to line formula, 845
definitions for, 55
Gergonne points of, 79
law of sines to solve, 683–684
Pythagorean Theorem for, 20–21
right, trigonometric functions

applied to, 435–438
similar, trigonometric ratios

for, 424
trigonometric formula for area of,

665–666
Triangular waves, 560
Trigonometric equations, 628–636
Trigonometric form of complex

numbers, 741–743
Trigonometric functions

of acute angles, 420–428, 512
addition formula to calculate value

of, 604
algebra and, 501–507
of angles, 441–450, 481–490
evaluating, 492–498
finding one from another, 

516–518
graphs of cosecants, 

589–590
graphs of cotangents, 

587–589
graphs of secants, 590
graphs of sines and cosines,

543–554, 560–569
graphs of tangents, 583–587
identities for, 454–459

Subtraction, vector subtraction, 710
Sums

of arithmetic sequences,
1011–1012

of geometric sequences,
1015–1017

of infinite geometric series, 1017
simplifying, C-111–C-115

Sum-to-product formulas, 622–624
Superposition, 626–628, 

C-64–C-65
Supply and demand models, 763–765
Sylvester, James Joseph, 88, 782
Symmetric equations, C-84
Symmetry, C-6–C-7

axis of symmetry, 233
basic, 60–62
definition of, 56
domain and, 65–66
in graphs, 56–57
of graphs in polar coordinates, 734
in graphs of quadratic functions,

246–247, C-23
intercepts and, 64–65
plotting points symmetric to given

point, 57–58
of points around lines, 201–202
tests of, 62–64
types of, 59

Synge, John Lighton, 841
Synthetic division, 922–925
Systems of equations, 757

Cramer’s rule for, 816–818
determinants for, 809–816
Gaussian elimination for, 

769–776
of inequalities, 829–832
matrices, 782–792
nonlinear, 822–827
of two linear equations in two

unknowns, 757–765

T
Tabular functions, 128–129
Tait, Peter, 576
Tangent (tan), 436

addition formulas for, 604–605



U
Umer, Samuel, 583
Unbounded intervals, 3
Unions (in inequalities), 107
Unit circle, 442

trigonometric functions for,
443–448

trigonometric functions for, in
radians, 483–486, 531–539

Unit vectors, 710–712
Upper and lower bound theorem for

real roots, 947–948
Upper-triangular form, 769

V
Vallée-Poussin, C. J. de la, 360
Values

maximums, 154, 259–266,
293–295, C-31–C-33

minimums, 154, 238–240,
259–266, 316–317, 
C-34–C-35

Varahamihira, 611
Variables, 10–11

within absolute value signs, 
93–94

in exponents, B-4
independent and dependent

variables, 132
for linear equations, 11–12
simplifying nth roots containing,

B-9–B-10
in systems of two linear

equations, in two unknowns,
757–765

Vector addition, 698–704, 
708–709

properties of, 712
Vector algebra, 709–710, 

C-75–C-77
Vector geometry, C-75–C-77
Vectors, C-78–C-82

addition of, 698–704, 708–709
definition of, 697
in plane, algebraic approach to,

706–712

in plane, geometric approach to,
697–704

subtraction of, 710
Vector space properties, 712
Vector subtraction, 710
Velocity, 44

average, 159, 161
definition of, 220
instantaneous, 339

Venus (planet), 431–435, 
C-43–C-46

Verbal functions, 128
Verhulst, Pierre, 412
Vertex, see Vertices
Vertex formula, 260
Vertical component (y-component) of

vectors, 706
Vertical lines, 46

equations for, 48
Vertical line test, 142
Vertical translations, of graphs, 167

vertical scale changes, 172
Vertices, 233

of angles, 420, 467, 481
of ellipses, 866
of graphs of inequalities, 832
of hyperbolas, 882, 883
of parabolas, 851

Viète, François, 215, 613
Viewing rectangles, 32–33

for graphing utilities, 35–36

W
Wave functions

sawtooth waves, 560
sin and cosine, C-53–C-54
square waves, 559, 573
superposition of, 627
triangular waves, 560

Wells, David, 5, B-7
Werner, Johann, 620
Wessel, Caspar, 740
Whispering galleries, 873
Williams, William Carlos, 127
Wood, R. M. W., 296
World population growth, 

396–398

inverse secant functions, 
C-67–C-70

inverse trigonometric functions,
631, 642–652

lengths and areas expressed using,
669–670

names of, 482
radian measures for, 467–476
of real numbers, 531–539
right triangle applications of,

435–438, 664–670
simple harmonic motion, 

576–579
sines and cosines, 425–426
trigonometric identities to

calculate, 504–505
Trigonometric identities, 454–459,

503–504
for basic right triangle, 515
calculating trigonometric functions

from, 504–505
Pythagorean identities, 460
to solve trigonometric 

equations, 633
transforming equations for, 635
used to simplify trigonometric

expressions, 505
Trigonometric limits, 1025–1026
Trigonometric ratios, 424
Trigonometry

DeMoivre’s theorem, 740–745
law of sines and cosines, 

681–689
origins of, 420, 467
parametric equations, 714–720
polar coordinates for, 722–729
of right triangles, 511–518,

663–670
of vectors, 697–704
see also Analytical trigonometry

True proportions command for
graphing utilities, 51–52, 68

Turk, ’Abd-al-Hamid ibn-, 81
Turning points, 154

approximating coordinates of,
155–157

for polynomial functions, 
275, 282

Tycho, Brache, 620
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Y
y-axis, 19

symmetry about, 59
symmetry about, test of, 

62–63
y-coordinates (ordinates), 20
y-intercepts, 36, 49

for quadratic functions, 236

Z
Zero, 1

as exponent, B-2
of functions, 926–928
as value of determinants, 814

Zero matrix, 789
Zero-product property, 15–16
Zero vector, 709
Zu Chong-Zhi, 5

X
x-axis, 19

symmetry about, 59
symmetry about, test of, 62–63

x-coordinates (abscissas), 20
x-intercepts, 36–38

for completing the square, 69–70
for logarithms, 365–366
for polynomial functions, 286–288



RESULTS FROM GEOMETRY

• The sum of the angles in a triangle is 180°.

• Two sides of a triangle are equal if and only if the

angles opposite those sides are equal.

• In a 30°-60° right triangle, the length of the side

opposite the 30° angle is half the length of the

hypotenuse.

THE PYTHAGOREAN THEOREM: In a right triangle,

the square of the length of the hypotenuse equals the sum

of the squares of the lengths of the other two sides.

HERON’S FORMULA: If a, b, and c are the lengths of the

sides of a triangle, then the area of the triangle is

where

THEOREMS FOR PROVING THAT 
TWO TRIANGLES ARE CONGRUENT:

1. If two sides and the included angle of one triangle are

equal respectively to two sides and the included angle

of another triangle, then the triangles are congruent.

2. If two angles and the included side of one triangle are

equal respectively to two angles and the included side

of another triangle, then the triangles are congruent.

3. If the three sides of one triangle are equal respectively

to the three sides of another triangle, then the triangles

are congruent.

THEOREMS FOR PROVING THAT 
TWO TRIANGLES ARE SIMILAR:

1. If two angles of one triangle are equal respectively to

two angles of another triangle, then the triangles are

similar.

2. If the corresponding sides of two triangles are propor-

tional, then the triangles are similar.

s � 1
2 1a � b � c 2

1s1s � a 2 1s � b 2 1s � c 2

Rectangular Box
   Volume � lwh

    Surface area � 2wh � 2lh � 2wl

r

Circle
    Area � πr2

    Circumference � 2πr

Triangle
    Area � 1

2
bh

Right Circular Cylinder
     Volume � πr2h

     Lateral surface area � 2πrh

    Volume � 4
3πr3

    Surface area � 4πr2

Sphere

Parallelogram
    Area � bh

h

r

w

lh

h

r

    Volume � 13 πr2h

    Lateral surface area � πr œ„„„„„„r2 � h2

Right Circular Cone

r

h

b

h

a

b

h

b

(a � b)
Trapezoid
     Area � h

2



GRAPHS
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a2
y2

b2

y-y1=m(x-x1)

x

y

slope m
(x 1, y1)

y=|x|

y

x

y=œ„x

y

x
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x

y y=ex

y=ln x
(0, 1)

(1, 0)
x

y

a

b
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x
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y
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y

x

y= 1
x

y

x
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x
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r

y

-     =1x2

a2
y2

b2

y

(_a, 0) (a, 0)

(0, b)

(0, _b)
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GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

y � sin x y � cos x y � tan x
Period: 2p Period: 2p Period: p

Amplitude: 1 Amplitude: 1

y � csc x y � sec x y � cot x
Period: 2p Period: 2p Period: p

y � sin�1 x y � cos�1 x y � tan�1 x

y

x

π
2

_
π
2

y

x
_1 1

π

y

x
_1 1

π
2

_
π
2
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x
ππ

2
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_1
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2

π π
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π 2π
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2
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FACTORING TECHNIQUES

TECHNIQUE EXAMPLE OR FORMULA

Common factor

Difference of squares

Trial and error

Difference of cubes

Sum of cubes

Grouping

FORMULAS FROM COORDINATE GEOMETRY

1. The distance formula:

2. The equation for a circle:

3. The definition of slope:

4. The point–slope formula:

5. The slope–intercept formula:

6. The condition for two nonvertical lines to be parallel:

7. The condition for two nonvertical lines to be perpendicular:

8. The midpoint formula:

PROPERTIES OF LOGARITHMS

In the following properties, b, P, and Q are positive and .

1. (a) (b)

2.

3.

4.

5.

6. logbbx � x

blogb P � P

logb P
n � n logb P

logb 1P/Q 2 � logb P � logb Q

logb PQ � logb P � logb Q

logb 1 � 0logb b � 1

b � 1

a x1 � x2

2
, 

y1 � y2

2
b

m1m2 �  �1

m1 � m2

y � mx � b

y � y1 � m1x � x1 2
m �

y2 � y1

x2 � x1

1x � h 2 2 � 1y � k 2 2 � r2

d � 2 1x2 � x1 2 2 � 1y2 � y1 2 2

  � 1x � 1 2 1x2 � 1 2
  � x21x � 1 2 � 1x � 1 2

 x3 � x2 � x � 1 � 1x3 � x2 2 � 1x � 1 2
x3 � a3 � 1x � a 2 1x2 � ax � a2 2
x3 � a3 � 1x � a 2 1x2 � ax � a2 2
x2 � 2x � 3 � 1x � 3 2 1x � 1 2
x2 � a2 � 1x � a 2 1x � a 2
41x2 � 1 2 � x1x2 � 1 2 � 1x2 � 1 2 14 � x 2
3x4 � 6x3 � 12x2 � 3x21x2 � 2x � 4 2

THE GREEK ALPHABET

A a Alpha H h Eta

B b Beta ® u Theta

≠ g Gamma I i Iota

¢ d Delta K k Kappa

E e Epsilon ¶ l Lambda

Z z Zeta M m Mu

N n Nu T t Tau

� j Xi Y y Upsilon

O o Omicron £ f, w Phi

P r Rho X x Chi

ß p Pi ° c Psi

© s Sigma Æ v Omega



PRINCIPAL TRIGONOMETRIC IDENTITIES

1. CONSEQUENCES OF THE DEFINITIONS

(a) (b) (c) (d) (e)

2. THE PYTHAGOREAN IDENTITIES

(a) sin2 u � cos2 u � 1 (b) tan2 u � 1 � sec2 u (c) cot2 u � 1 � csc2 u

3. THE OPPOSITE-ANGLE FORMULAS

(a) sin(�u) � �sin u (b) cos(�u) � cos u (c) tan(�u) � �tan u

4. THE REDUCTION FORMULAS

(a) sin(u � 2pk) � sin u (b) cos(u � 2pk) � cos u (c) sin � cos u

(d) cos � sin u

5. THE ADDITION FORMULAS

(a) sin(s � t) � sin s cos t � cos s sin t (b) sin(s � t) � sin s cos t � cos s sin t

(c) cos(s � t) � cos s cos t � sin s sin t (d) cos(s � t) � cos s cos t � sin s sin t

(e) tan(s � t) (f) tan(s � t) �

6. THE DOUBLE-ANGLE FORMULAS

(a) sin 2u � 2 sin u cos u (b) cos 2u � cos2 u � sin2 u (c) tan 2u �

7. THE HALF-ANGLE FORMULAS

(a) (b) (c)

8. THE PRODUCT-TO-SUM FORMULAS

(a) sin A sin B � [cos(A � B) � cos(A � B)] (b) sin A cos B � [sin(A � B) � sin(A � B)]

(c) cos A cos B � [cos(A � B) � cos(A � B)]

9. THE SUM-TO-PRODUCT FORMULAS

(a) sin a � sin b � (b) sin a � sin b �

(c) cos a � cos b � (d) cos a � cos b � �2 sin 
a � b

2
  sin  
a � b

2
2 cos  

a � b

2
  cos  

a � b

2

2 cos  
a � b

2
  sin  
a � b

2
2 sin  

a � b

2
  cos  

a � b

2

1
2

1
2

1
2

tan  
u

2
�

sin u

1 � cos u
cos  
u

2
� �B

1 � cos u

2
sin  
u

2
� �B

1 � cos u

2

2 tan u

1 � tan2 u

tan s � tan t

1 � tan s tan t
�

tan s � tan t

1 � tan s tan t

ap
2

� u b
ap

2
� u b

cot u �
cos u

sin u
tan u �

sin u

cos u
cot u �

1

tan u
sec u �

1

cos u
csc u �

1

sin u
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