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Chapter 1

Mathematics and Its
Philosophy

“A mathematician is a device for turning coffee into the-
orems” — Paul Erdős (1913–1996)

Mathematics occupies a unique and privileged position in human
inquiry. It is the most rigorous and certain of all of the sciences,
and it plays a key role in most, if not all, scientific work. It is for
such reasons that the great German mathematician Carl Friedrich
Gauss (1777–1855) pronounced mathematics to be the queen of the
sciences. But the subject matter of mathematics is unlike that of any
of the other branches of science. Mathematics seems to be the study
of mathematical entities—such as numbers, sets, and functions—and
the structural relationships between them. Mathematical entities, if
there are such things, are very peculiar. They are abstract: they do
not have spatio-temporal location and do not have causal powers.
Moreover, the methodology of mathematics is apparently unlike the
methodology of other sciences. Mathematics seems to proceed via
a priori means using deductive proof, as opposed to the a posteriori
methods of experimentation and induction found in the rest of sci-
ence. And, on the face of it at least, mathematics is not revisable in
the way that the rest of our science is. Once a mathematical theorem
is proven, it stands forever. Mathematics may well be the queen of
the sciences, but she would seem to be an eccentric and obstinate
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2 An Introduction to the Philosophy of Mathematics

queen.
The philosophy of mathematics is the branch of philosophy charged

with trying to understand this queen. We investigate the limits of
mathematics, the subject matter of mathematics, the relationship
between mathematics and the rest of science, the logic of mathe-
matical proofs, and the significance of the language of mathematics
to mathematical practice. These are all important topics and we
address each of them in this book. They are significant for both
philosophy and for mathematics. For example, understanding one
of the paradigmatic cases of secure, a priori knowledge is crucial to
the branch of philosophy concerned with knowledge and its acquisi-
tion: epistemology. The importance of philosophy of mathematics
to mathematics is also clear. Apart from anything else, philosophy
sheds light on what mathematics is about. No self-respecting branch
of science should be in the position of not knowing what its primary
object of study is. More importantly, it may well be that the very
methodology of mathematics hangs on the answers to some of the
philosophical questions that impose themselves upon us. A brief look
at the history of the relationship between mathematics and philoso-
phy of mathematics will help illustrate the importance of philosophy
of mathematics for both philosophy and mathematics.

1.1 Skipping Through the Big Isms

The first half of the 20th century was a golden age for philosophy of
mathematics. It started with a philosopher, Bertrand Russell (1872–
1970), proving that the foundational mathematical theory, set theory,
was inconsistent. This lead to a crisis in the foundations of mathe-
matics and an intense period of debate. The debate and subsequent
development of new set theories involved major philosophers of the
time, such as Frank P. Ramsey (1903–1930), Ludwig Wittgenstein
(1889–1951), Gottlob Frege (1848–1925), Edmund Husserl (1859–
1938), Charles Sanders Pierce (1839–1914), and of course Russell
and his collaborator Alfred North Whitehead (1861–1947). Leading
figures in mathematics were also involved. These included Bernard
Bolzano (1781–1848), Hermann Weyl (1885–1955) Henri Poincaré
(1854–1912), Kurt Gödel (1906–1978), David Hilbert (1962–1943),
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L. E. J. Brouwer (1881–1966), Ernst Zermelo (1871–1953), and Al-
fred Tarski (1901–1983).1 The participants in these debates are ma-
jor figures and household names (in my household, at least). There
is no doubt about it, these must have been heady times—times when
philosophy of mathematics really mattered, and everybody knew it.

Sadly, the excitement of these times didn’t last. The debates over
the foundations of mathematics bogged down. After a very produc-
tive 30 or 40 years, very little progress was made thereafter, and, by
and large, both philosophers and mathematicians became tired of the
philosophy of mathematics. At least, they became tired of the ma-
jor movements of the first half of the 20th century—“the big isms”
we’ll get to shortly—and purely foundational issues in mathematics.
Philosophy of mathematics kept going, of course—philosophy always
does—but it had lost its urgency and, to some extent, its raison
d’être.

It is very easy, as a student of philosopher of mathematics, to
spend one’s time looking back to the debates and developments of
the first half of the 20th century. But the philosophy of mathematics
has moved on and it is once again relevant and engaged with mathe-
matical practice. The aim of this book is to get beyond the first half
of the 20th century and explore the issues capturing the attention of
contemporary philosophers of mathematics. I will thus relegate most
of the historical material to this short section, where we look at three
of “the big isms”, and to the following chapter.2 In chapter 2 we con-
sider some of the important mathematical results about the limits of
mathematics. Although most of the results are from the first half of
the 20th century, they still loom large in contemporary philosophy
of mathematics and thus deserve a more extensive treatment. My
apologies to anyone who is disappointed by the relatively superficial

1The distinction between philosophers and mathematicians here is somewhat
arbitrary; many of these people should rightly be thought of as both philoso-
phers and mathematicians. And, of course, there were many other major figures
involved in these debates—too many to list here. The interested student is en-
couraged to read about the relevant history; it is a fascinating story, involving
many interesting characters.

2The fourth “ism”, Platonism, is still very prominent in the contemporary
literature so earns a chapter to itself: chapter 3.
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treatment of the early 20th century philosophy of mathematics. But
very good discussions of these topics abound, yet entry-level accounts
of contemporary philosophy of mathematics are rare.

Below I give the briefest outline of three of the major movements
in the philosophy of mathematics from the early 20th century. Each
of these have their charms; they each take one particular aspect of
mathematical methodology as central to understanding mathemat-
ics. I should add that the three positions outlined below are histori-
cally very important but they are not merely of historical interest—
there are modern defenders of versions of each of them. It’s just that
the discussions of these positions no longer take centre stage.

1.1.1 Formalism

This view takes mathematical notation and its manipulation to be
the core business of mathematics. In its purest form, formalism is
the view that mathematics is nothing more than the manipulation
of meaningless symbols. So-called game formalism is the view that
mathematics is much like chess. The pieces of a chess set do not
represent anything; they are just meaningless pieces of wood, metal,
or whatever, defined by the rules that govern the legal moves that
they can participate in. According to game formalism, mathematics
is like this. The mathematical symbols are nothing more than pieces
in a game and can be manipulated according to the rules. So, for ex-
ample, elementary calculus tells us that d(ax2 +bx+c)/dx = 2ax+b.
This is taken by formalism to mean that the right-hand side of the
equation can be reached by a series of legal mathematical “moves”
from the left-hand side. As a result of this, in future mathematical
“games” one is licensed to replace the symbols ‘d(ax2 + bx+ c)/dx’
with the symbols ‘2ax + b’. That too becomes a legal move in the
game of mathematics. There are more sophisticated versions of for-
malism, but that’s the basic idea. There is a question about whether
the “pieces” of the game are the actual mathematical symbol to-
kens, or whether it is the symbol types. That is, is this ‘π’ different
from, or the same as, this ‘π’? They are two different tokens of the
same type. Formalists need to decide where they stand on this and
other such issues. Different answers give rise to different versions of



Mathematics and Its Philosophy 5

formalism .
Formalism faces a number of difficulties, including accounting for

the usefulness of mathematics in applications. But for now we just
want to get a sense of what formalism is and why it was, at one
time, a serious contender as a philosophy of mathematics. For a
start, and as I’ve already mentioned, formalism takes notation seri-
ously.3 Indeed, it takes mathematics as being primarily about the
notation. In so doing, it avoids problems associated with other ac-
counts of mathematics, whereby the notation is taken to be standing
for mathematical objects.4 Formalism also places great importance
on stating what the legal manipulations of the symbols are and which
symbols are legitimate. This approach sits very well with a great deal
of mathematics, especially axiomatic theories such as set theory and
group theory.5 The axioms of these theories function as the speci-
fication of both the legal manipulations in question and the objects
of manipulation. And the formalist suggestion that there is nothing
more to these theories is not altogether mad. For example, in set
theory the membership relation ∈ really does seem to be a primitive
notion, defined implicitly by the theory in which it resides. Just as
the question of what a bishop in chess is, is answered in full by ex-
plaining the rules of chess and the role a bishop plays in the game.
There is nothing more to say in either case, or so goes the formalist
line of thought. As we shall see in the next chapter, it is generally
thought that the most sophisticated version of a theory along these
lines was put to rest by Gödel’s incompleteness theorems. In any
case, formalism has few supporters these days. But the other big
isms are in better shape and have modern descendants, at least.6

3See Chapter 8 for more on the importance of notation to mathematics.
4We will encounter the problems with such realist accounts of mathematics in

due course.
5See page 100 for the axioms of group theory.
6See Curry (1951) for a classic defence of formalism and Weir (2010) for an

interesting modern attempt to resuscitate the position.
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1.1.2 Logicism

This view of mathematics takes the a priori methodology of math-
ematics as central. According to logicism, mathematics is logic.
That’s the slogan, at least; spelling out what this slogan amounts
to is more difficult, but the basic idea is that mathematical truths
can, in some sense, be reduced to truths about logic. The position is
epistemologically motivated: logical knowledge is thought to be more
basic and less mysterious than mathematical knowledge. Given the
German mathematician Richard Dedekind’s (1831–1914) reduction
of real numbers to sequences of rational numbers7 and other known
reductions in mathematics, it was tempting to see basic arithmetic
as the foundation of mathematics. Moreover, if arithmetic were to
turn out to be derivable from logic, then we’d have a compelling ac-
count of the nature of mathematics. Logicism was first proposed and
developed in detail by Gottlob Frege. Unfortunately Frege system
was inconsistent. He included the now-infamous Basic Law V as one
of his logical axioms.8 This rather innocuous-looking axiom about
the extensions of predicates was shown by Bertrand Russell to lead
to a contradiction. But many thought that Frege was onto some-
thing. Indeed, Russell was one of them. He, in collaboration with
Whitehead, pushed the logicist program forward, but the further this
program was developed, the less the basic machinery looked like it
deserved to be called ‘logic’.

The allure of logicism and the considerable achievements of Frege
live on though. The contemporary descendent of this program is
neo-logicism. The neologicist program takes as its point of departure
the fact that Frege did not really need anything so strong as his
problematic Basic Law V in order to get most of what he wanted.
Basic Law V can be replaced with Hume’s principle: the number of
F s is equal to the number of Gs iff the F s and the Gs can be placed
in 1–1 correspondence. Strictly speaking, this principle is not a law
of logic, but it’s very, very close (hence the ‘neo’ in ‘neo-logicism’).

7Dedekind’s idea was to identify real numbers with the limits of sequences of
rational numbers—so-called Dedekind cuts.

8Basic Law V states that the value-ranges of two functions f and g are the
same iff ∀x(f(x) = g(x)).
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With Hume’s principe in hand and helping one’s self to second-order
logic9 the core of Frege’s project can be carried out.10

1.1.3 Intuitionsism

This view of mathematics takes proof in mathematics very seriously.
Indeed, according to intuitionism, proof and constructions are all
there is. (Intuitionism is sometimes called constructivism for this
reason.) Accordingly, mathematics is not taken to be about some
pre-existing realm of mathematical objects. Intuitionism has it that
mathematical objects need to be constructed before one can sensibly
speak about them. This has ramifications for both the style of proof
that is acceptable in mathematics and the domains of mathematical
objects one can work with. Unless there is a procedure for delivering
the mathematical objects in question, they are committed to the
flames. All but the smallest, most well-behaved infinities are rejected.
But most notable is that many proofs of classical mathematics are
not valid by intuitionistic lights.

To understand why, think about the theorem of classical logic
known as the law of excluded middle: for every proposition P , the
disjunction of P and its negation, (P ∨ ¬P ), is true.11 This law is
well motivated in cases where we may be ignorant of the facts of the
matter, but where there are facts of the matter. For example, the
exact depth of the Mariana Trench in the Pacific Ocean at its deepest
point at exactly 12.00 noon GMT on the 1st of January 2011 is,
unknown, I take it. But there is a fact of the matter about the depth
of this trench at this time. It was, for example, either greater than
11,000 metres or it was not. Contrast this with cases where there

9Second-order logic is logic that allows quantification over predicates as well
as over individuals. First-order logic is logic that quantifies only over individuals.
There is some debate over whether second-order logic really is logic or merely
disguised set theory.

10See, for example, Boolos (1987; 1998), Burgess (2005), (Hale and Wright
(2001), Wright (1983) and Zalta (1999; 2000) for modern neo-logicist approaches.
The classic original logicist treatises are Frege (1967; 1974) and Whitehead and
Russell (1910; 1912; 1913).

11Excluded middle should be carefully distinguished from its semantic counter-
part, bivalence: every proposition is either true or false.
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is plausibly no fact of the matter. Many philosophers think that
future contingent events are good examples of such indeterminacies.
Take, for example, the height of the tallest building in the world at
12.00 noon GMT on the 1st of January 2021. According to the line
of thought we’re considering here, the height of this building is not
merely unknown, the relevant facts about this building’s height are
not yet settled. The facts in question will be settled in 2031, but right
now there is no fact of the matter about the height of this building.
Accordingly, excluded middle is thought to fail here. It is not, for
example, true that either this building is taller than 850 metres or
not.

Now consider mathematics, as understood by the intuitionists.
For them, mathematics is all about the construction of mathemati-
cal objects and proofs concerning them. Let’s focus on the proofs.
Consider some mathematical statement S that is neither proven nor
proven to be false. If one does not recognise some objective, external
sense of truth, and instead takes proof to be all there is to it, ex-
cluded middle fails for S. In particular, excluded middle cannot be
used in the process of proving S. Double-negation elimination also
fails. After all, proving that there is no proof that there can’t be a
proof of S, is not the same thing as having a proof of S. The rejec-
tion of double-negation elimination undermines an important form
of proof in classical mathematics known as reductio ad absurdum.
This style of proof starts by assuming the negation of S, then pro-
ceeds to draw a contradiction from this assumption, thus concluding
simply S.12 In intuitionistic logic, this is all fine until the last step.
According to the intuitionist, all that has been shown is ¬¬S and
it is a further unjustified step to conclude S from this. Some other
classical forms of proof are intuitionistically invalid. These include
various existence proofs that show that some object must exist but
do not deliver a construction of the object in question (e.g., the proof
of the Tarski-Banach theorem in section 9.1.1 is not intuitionistically
valid). Intuitionism is thus a more radical philosophy of mathemat-
ics than the others we’ve seen so far, in that it demands a change in
mathematical practice. It requires a new logic, with many traditional

12See section 9.1.9 for an example of such a proof in mathematics.
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proofs of mathematical results no longer accepted.13

1.2 Charting a Course to Contemporary Top-
ics

The agenda for contemporary philosophy of mathematics was shaped
by Paul Benacerraf in a couple of land-mark papers. In the first of
the papers (Benacerraf 1983a, originally published in 1965), Bena-
cerraf outlines an underdetermination problem for the project of re-
ducing all of mathematics to set theory. Such underdetermination or
non-uniqueness problems had been around for some time, but Bena-
cerraf’s presentation was compelling and its relevance to a popular
position in philosophy of mathematics was firmly established. The
second and third problems (Benacerraf 1983b, originally published
in 1973) are presented as a challenge that any credible philosophy
of mathematics must meet: (i) allow for a semantics that is uni-
form across both mathematical and non-mathematical discourse and
(ii) provide a plausible epistemology for mathematics. As Benacerraf
went on to show, it is difficult to satisfy both parts of this challenge
simultaneously. Any philosophy of mathematics that meets one part
of the challenge typically has serious difficulties meeting the other
part.

There are two main camps in philosophy of mathematics and
each has a serious problem with one or other of these challenges.
Realist or Platonist philosophies of mathematics14 hold that at least
some mathematics is objectively true and is about a realm of ab-
stract mathematical entities. Mathematics is taken at face value and
the semantics here are the same as elsewhere. Mathematical real-
ism has no problem with the first of Benacerraf’s challenges but,
notoriously, has serious difficulties providing a plausible epistemol-
ogy. Anti-realist positions, on the other hand, hold that there are
no such abstract mathematical entities. The anti-realist thus has no
epistemic problems but these positions typically fall foul of the first

13For more on intuitionism see Heyting (1971; 1983), Dummett (1983), and
Brouwer (1983).

14I will use the terms “Platonism” and “mathematical realism” interchangeably.
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of Benacerraf’s challenges.
The three Benacerraf problems, along with a few others we’ll

encounter, are the rocks on which many philosophies of mathematics
falter. The challenge is to chart a course past these difficulties to
arrive at a credible philosophy of mathematics. So let’s get better
acquainted with the main obstacles.

1.2.1 Uniform Semantics

The requirements for a uniform semantics is just that one should
not give special semantic treatment to mathematical discourse. If
a mathematical statements such as ‘

√
2’ is irrational’ is taken to be

true, the semantics should be the same as for other true sentences
such as ‘Jupiter is a gas giant’. The latter is true by virtue of the
existence of Jupiter and it having the property of being a large planet
composed primarily of the gases hydrogen and helium. Under a uni-
form semantics, ‘

√
2 is irrational’ is true by virtue of the existence

of the number
√

2 and it having the property of not being express-
ible in the form a/b, where a and b are integers. The requirement
for providing a uniform semantics leads very naturally from truth of
mathematical statements to the existence of mathematical objects.
Mathematical realism, thus has a very natural answer to this chal-
lenge. It is anti-realism that has difficulties here. For example, if
your view is that what makes ‘

√
2 is irrational’ true is something

about a social agreement to assent to such claims or to the existence
of a proof of an appropriate kind, then the requirement for uniform
semantics requires that you do the same for the sentence above about
Jupiter. Either you give a deviant semantics across the board or you
use the usual semantics in mathematics as well. Of course you may
decide to treat the semantics of mathematics differently and violate
the requirement for uniform semantics, but then you at least owe
an explanation for why mathematics comes in for such special treat-
ment.

1.2.2 The Epistemic Problem

The epistemic problem is very simple: provide an account of how we
come by mathematical knowledge. The problem was originally cast
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in terms of the causal theory of knowledge. This theory holds that
for an agent A to know some proposition P , A must believe that P
and the fact that makes P true, must cause A’s belief that P . Thus
construed, the epistemic challenge was to show how mathematical
knowledge could be reconciled with the causal theory of knowledge.
For Platonist accounts of mathematics, this was nearly impossible,
for it would mean coming in causal contact with mathematical enti-
ties: the number 7, for instance, would need to cause my belief that
7 is prime. But surely numbers do not have causal powers. Indeed,
it would seem that numbers are just the wrong kind of thing to be
causing anything, let alone beliefs. This leads many to be wary of, if
not outright reject, Platonism.

But there are problems with the argument, thus construed. For
a start, why should we accept the causal theory of knowledge? After
all, this theory was formulated with empirical knowledge in mind and
was not intended to deal with mathematical knowledge. It just seems
question begging to require the Platonist to provide a causal account
of mathematical knowledge. If anything should be rejected here, it
should be the causal theory of knowledge. In any case, the causal
theory of knowledge did eventually fall from grace. The reasons
for this were various but its inability to account for mathematical
knowledge was chief among its deficiencies. Still, many seem to think
there’s something to Benacerraf’s challenge that survives the demise
of the causal theory of knowledge. W. D. Hart puts the point thus:

[I]t is a crime against the intellect to try to mask the
problem of naturalizing the epistemology of mathemat-
ics with philosophical razzle-dazzle. Superficial worries
about the intellectual hygiene of causal theories of knowl-
edge are irrelevant to and misleading from this problem,
for the problem is not so much about causality as about
the very possibility of natural knowledge of abstract ob-
jects. (Hart 1977, pp. 125–126)

What is the worry about abstract objects? What is it about ab-
stract objects that suggests that it’s impossible to have knowledge of
them? In my view, the most cogent post-causal-theory-of-knowledge
version of this argument is due to Hartry Field. He captures the
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essence of the Benacerraf argument when he puts the point in terms
of explaining the reliability of mathematical beliefs (emphasis in the
original):

Benacerraf’s challenge—or at least, the challenge which
his paper suggests to me—is to provide an account of
the mechanisms that explain how our beliefs about these
remote entities can so well reflect the facts about them.
The idea is that if it appears in principle impossible to
explain this, then that tends to undermine the belief in
mathematical entities, despite whatever reasons we might
have for believing in them. (Field 1989, p. 26)

Put slightly differently, the challenge is to account for the reliabil-
ity of the inference from ‘mathematicians believe that P ’ (where
P is some proposition about some mathematical object(s) to ‘P ’,
while making explicit the role that the mathematical entities play in
this reliable process. Mathematical entities don’t necessarily have to
cause the mathematicians’ beliefs, but mathematical entities need to
be part of the story. Coming up with any such plausible story has
proven to be the achilles heel of Platonism.

1.2.3 Underdetermination

The problem here is one of an embarrassment of riches. Many
philosophers and mathematicians are inclined to identify various
mathematical objects with some set-theoretic construction or other.
So, for example, we can construct a set-theoretic counterpart of the
natural numbers that does everything we want of the natural num-
bers. We then identify the natural numbers with this set-theoretic
construction. If we take this identification seriously, we then think
of the natural numbers as sets. (Or, equivalently, we claim that the
natural numbers have been reduced to sets.) It turns out that there’s
not much in mathematics you can’t construct out of sets. This leads
some to suggest that all you need is sets. This is a very seductive line
of thought, for it means that if we are stuck believing in mathemat-
ical objects, we at least only need one kind of mathematical object,
namely, sets. The rest come for free. This set-theoretic-reduction
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strategy is thus ontologically more parsimonious than some of the
alternatives and gives mathematics a rather appealing unity.15

The problem is, however, that there are just too many ways to
affect the set-theoretic constructions in question. Take the natural
numbers as our example. We have the set of finite von Neumann
ordinals:16 0 = ∅; 1 = {∅}; 2 = {∅, {∅}}; 3 = {∅, {∅}, {∅, {∅}}}
..., where the successor function S(x) = x ∪ {x}. We also have
the set of finite Zermelo ordinals:17 0 = ∅; 1 = {∅}; 2 = {{∅}};
3 = {{{∅}}} ..., where the successor function is S(x) = {x}. There
are many other set-theoretic models of the natural numbers, but
these two are enough to raise a problem. The problem is that if
the natural numbers are sets, we need to be able to say which sets
they are. Is 3 {∅, {∅}, {∅, {∅}}} or {{{∅}}}. Benacerraf makes the
point by telling a story of two children Ernie (for Ernst Zermelo)
and Johnny (for John von Neumann) learning basic arithmetic set
theoretically via the above constructions. Ernie learns that the von
Neumann ordinals are the natural numbers while Johnny learns that
the Zermelo ordinals are the natural numbers. Each child does well
with their arithmetic until they start asking questions such as: Is
1 ∈ 3? Ernie says “yes”, while Johnny says “no”. Benacerraf’s
point is that if the natural numbers are sets, at most one of Johnny
and Ernie is right (they might both be wrong—the natural numbers
might be some entirely different set-theoretic construction).

What is interesting is that if we confine ourselves to purely arith-
metic questions, Ernie and Johnny agree, so the fact that they are
using different natural numbers doesn’t matter for purposes of count-
ing and the like. But the two set-theoretic constructions are clearly

15Indeed, this is one reason why philosophers of mathematics tend to concen-
trate so much on set theory.

16Named for the Hungarian-born mathematician John von Neumann (1903–
1957). These are ordinal numbers, meaning they are numbers representing order
relations. These should be contrasted with cardinal numbers, which we will meet
in the next chapter. The latter represent the size of a set. An example of an
ordinal number is the three in “chapter three of this book”; it tells us about
the position of that chapter in the book’s running order. Contrast this with the
cardinal number three in “The Three Stooges”; it tells us how many stooges there
are.

17Named for the German mathematician Ernst Zermelo (1871–1953).



14 An Introduction to the Philosophy of Mathematics

different, and the difference can be brought out via perfectly good
mathematical questions. There is something odd about the questions
needed to bring out the differences—questions such as “Is 1 ∈ 3?”—
but for someone who sees the natural numbers as sets, such questions
are more natural than they may first appear.

The conclusion to be drawn from all this is that since we can’t
have more than one set of natural numbers, the natural numbers
can’t be sets at all. A very natural thought at this point is to fo-
cus on the structure in each case. Perhaps what is important is
not the objects themselves but, rather, the structural relations be-
tween them. Perhaps the natural numbers are anything that has the
right kind of structure—it could be the finite von Neumann ordi-
nals, the finite Zermelo ordinals, or anything else with the desired
structure—known as an ω-sequence.18 This move away from objects
to structures has a great deal to recommend it and we will return to
the idea in chapter 3. For now, we just note that if our philosophy
of mathematics has it that numbers are sets, we need an answer to
this Benacerraf underdetermination problem.

1.2.4 Other Issues

There are, as you might expect, several other obstacles around which
we must navigate on our way to a cogent philosophical account of
mathematics. Some of these will arise in later chapters. For in-
stance, many philosophers subscribe to some version of a doctrine
known as naturalism. In its most general form, naturalism is a rejec-
tion of “spooky”, unscientific, or other-worldly accounts of the way
the world is. One particularly influential way of spelling this out,
due to the philosopher W. V. Quine (1908–2000) is in terms of the
relationship between philosophy and science. According to Quine,
philosophy is not prior to science, nor does philosophy take prior-
ity over science. Rather, philosophy is continuous with the scientific
enterprise. He sees naturalism as the

abandonment of the goal of a first philosophy. It sees

18See section 9.4 for a little about ω, the first infinite ordinal number.
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natural science as an inquiry into reality, fallible and cor-
rigible but not answerable to any supra-scientific tribunal,
and not in need of any justification beyond observation
and the hypothetico-deductive method. (Quine 1981a,
p. 72)

This places constraints on the authority of philosophy. Philosophy
must take the relevant science seriously and, in general, philoso-
phy cannot overturn science on purely philosophical grounds. Quine
seemed only to acknowledge empirical science, but we might follow
Penelope Maddy (1997) here and extend this philosophical humil-
ity so that we also respect the methods and results of mathematics.
Whether or not you want to call this “naturalism”, it does seem right
that philosophers should not be too quick to criticise mathematical
methodology and results on philosophical grounds. This is not to
suggest that the philosophy has no role in understanding mathemat-
ics, or that philosophers should merely second the pronouncements
of mathematicians. Philosophy does have a role here, but it is a sub-
tle one, involving serious engagement with the relevant mathematics
and science. The issue of naturalism and respecting mathematical
methodology are recurring themes throughout the rest of this book.

Another constraint on a good philosophy of mathematics is that
it needs to provide an account of mathematics in applications. As
we saw earlier in this chapter, formalism had trouble accounting for
mathematics in applications. After all, if mathematics is a game akin
to chess, as the game formalists would have it, why is mathematics in
such high demand in the formulation and interrogation of scientific
theories? This line of thought has been developed into an argu-
ment for mathematical realism. In its modern guise, the argument is
due to W. V. Quine (1953) and Hilary Putnam (1971). This indis-
pensability argument will be considered in some detail in chapter 3
along with some anti-realist responses to it in chapter 4. But there
are other issues involved in providing a complete account of mathe-
matics in applications—mathematical realism isn’t the answer to all
philosophical problems concerning mathematics in applications. We
will consider some of these further issues in subsequent chapters. In
chapter 5 we consider the role mathematics plays in both mathe-
matical and scientific explanations and in chapter 6 we consider the
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question of whether there is something unreasonable and mysterious
about the applicability of mathematics.

Finally, a couple of topics that don’t usually see their way into the
mainstream philosophy of mathematics agenda: inconsistent math-
ematics and mathematical notation. Both of these topics have their
roots in earlier positions. Recall that Russell’s proof of an incon-
sistency in Frege’s logicist program prompted the search for both a
consistent set theory to replace the inconsistent näıve set theory and
a secure (consistent) foundation for mathematics. But the fact that
mathematics did not go “belly up” as soon as the contradiction was
found is intriguing and prompts a number of questions about the
success and limits of inconsistent mathematics. We pursue some of
these questions in chapter 7. The issues associated with mathemat-
ical notation also trace back to one of the big isms—this time, for-
malism. As we have already seen, and to its great credit, formalism
treated mathematical notation very seriously. But since formalism
lost support, the issues associated with notation and mathematical
representation, more generally, were sidelined. This strikes me as a
mistake, and chapter 8 is a plea to put mathematical notation back
on the agenda.

1.3 Planning for the Trip

1.3.1 For the Student

Philosophy of mathematics, when done right, should take you through
some fascinating mathematical territory. The philosophy of math-
ematics is also interesting in its own right and it connects up with
important issues elsewhere in philosophy. But what really sets it
apart is the mathematics. In the interests of keeping the mathe-
matics simple, and the topic accessible to a wide audience, many
treatments of the philosophy of mathematics focus on simple, pedes-
trian arithmetic statements such as 7 + 5 = 12, with perhaps a bit
of set theory thrown in. That’s a bit like trying to keep your trip to
Europe simple by only visiting Glasgow. As interesting as Glasgow
is, it is not representative of all of Europe. Travelling can be incon-
venient, tiring, and sometimes downright hard work, but the rewards
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are great. If you want to see and learn about Europe, you need to do
the work and venture beyond Glasgow. To hell with the pedestrian,
live adventurously!

I suggest the same policy for the philosophy of mathematics.
Mathematics is a rich and interesting field and, as a philosopher,
you just wouldn’t be doing it justice if you concentrated on pedes-
trian numerical statements and the basics of set theory. To venture
beyond these, into number theory, real and complex analysis, topol-
ogy, differential equations, and modern algebra, requires work, but
the payoff is a more rounded philosophy of mathematics and a much
richer experience. You’ll become acquainted with some extraordinary
mathematical results—some of which are among humanity’s greatest
achievements. It’s definitely worth the effort.

Of course, in a book such as this I cannot give a full and proper
treatment of all the mathematical topics I’d like to cover. I try to
outline the basics of some of the more philosophically interesting
mathematical results in terms a keen student of philosophy would
find accessible. But this is not a mathematics text, so occasion-
ally I will need to skate over details. In such cases I encourage
the student to pursue the details independently. Indeed, all the
mathematics covered in this book deserves deeper investigation than
I can offer here. In short, I try to steer a course through some
philosophically-interesting mathematics in such a way that doesn’t
presuppose too much prior knowledge from the reader, but also
doesn’t “dumb down” the mathematics too much. I assume that
anyone interested in philosophy of mathematics is acquainted with at
least high-school mathematics and perhaps has an introductory logic
course under their belt. But anyone with the aid of a good math-
ematics dictionary or resource book, should be able to follow the
mathematics in this text. Sometimes a little side trip into the math-
ematics will be required, but that is as you would expect. Indeed, I
hope this book prompts many such side trips into the mathematical
material in question.
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1.3.2 For the Instructor

There are, of course, topics in the philosophy of mathematics not
covered in this book, and others not much more than mentioned.
For a start, there is very little about the history of philosophy of
mathematics and the big movements of the first half of the 20th
century. This material is already covered in a number of readily-
accessible places. I don’t have anything to add to what has been said
(many times) elsewhere. My aim in this book is to bring students up
to date with the contemporary philosophy of mathematics scene, and
in a couple of instances introduce them to some relatively unexplored
topics. But even when limiting my attention to the contemporary
scene, I’ve had to make choices about what to cover. Unfortunately,
some topics have been relegated to mere passing mentions and some
omitted completely. This is not to suggest that topics given such
short shrift are unimportant. It’s just that I cannot do justice to all
the issues currently receiving attention in contemporary philosophy
of mathematics, so I picked some of my favourites and ran with those.
Occasionally students are invited to consider some of the neglected
topics via the discussion questions at the end of each chapter.

I’ve opted for relatively detailed treatments of the topics covered
so that the student gets their teeth into at least some of the issues
capturing the attention of contemporary philosophers of mathemat-
ics. An alternative would be to go for breadth, trying to say some-
thing about all the major topics. Such surveys can be found and
certainly have an important place in teaching. But for my money,
I’d rather get into the details of a topic rather than surveying a num-
ber of topics. This allows the student to do philosophy, rather than
merely learn about it. For instance, in the chapter on nominalism
(chapter 4) I focus on just three strategies: Hartry Field’s fictional-
ism, and the nominalist strategies suggested by Jody Azouni and by
Stephen Yablo. Although I think that these are three of the more
important nominalist strategies going around, there are several other
strategies deserving of attention. My thinking here is that if the stu-
dent becomes reasonably familiar with these three, they will have no
trouble following other nominalist strategies. Whereas, were we to
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take the superficial survey approach, I am not convinced that the stu-
dent would acquire the required skills and knowledge to really engage
with any of the positions in question. In any case, that’s the thinking
behind my choice of topics and decision to give some topics merely
cursory treatment. If any of my omissions are too much for you to
bear, it should be easy enough to present supplementary material at
the relevant points in the course. Indeed, some of the suggestions
for further reading at the end of each chapter are intended as such
points of departure.

I include an epilogue, which presents a number of mathematical
results, open questions and interesting numbers—all in list form.
Some of this material is covered elsewhere in the book but some is
not. In my view, budding philosophers of mathematics would do well
to be familiar with the mathematics touched on in the epilogue and
there I have briefly indicated why. This chapter could be read at
the end of a philosophy of mathematics course as a revision of the
philosophical material, while extending the range of mathematical
examples covered. It could also be integrated into a course, and, of
course, the instructor is free to cherry pick items from my lists and
add teir own, as they see fit. Some of the items in my lists might
be chosen to be covered in greater detail by fleshing out both the
relevant mathematics and the philosophical issues they give rise to.

Discussion Questions

1. What are the primary objects of study of mathematics?

2. Why might formalism have trouble accounting for mathematics
in applications?

3. What does it mean to say that mathematics is logic? Spell out
the similarities and differences you take to exist between logic
and mathematics.

4. Do you agree that the law of excluded middle fails for future
contingents?

5. According to intuitionists, a mathematical theorem is true just
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in case there is an intuitionistically-acceptable proof of the the-
orem in question. Does this mean that the truth of mathemat-
ical theorems can change with time? How plausible is this?

6. Why might the semantics of mathematics be different from the
semantics of the rest of language?

7. Can you think of any other examples, besides mathematics,
where we have knowledge of some proposition P , which is not
derived from causal contact with whatever it is that makes P
true?

8. Might we solve Benacerraf’s underdetermination problem by
insisting that one set-theoretic construction of the natural num-
bers is the correct one? Can you think of any good candidate
constructions?

Recommended Further Reading
For further reading on formailism see von Neumann (1983) and Weir
(2011). A couple of good overviews of the logicist and neologicist
programs see MacBride (2003) and Zalta (2010). For more on intu-
itionism, see Brouwer (1983), Dummett (1983), and Heyting (1983).
For a nice presentation of intuitionistic logic see Priest (2008). The
classic Benacerraf papers are (1983a) and (1983b). These two are
essential reading.
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Useful General Resources
Now to some useful general resources which will be good to have ac-
cess to for any course on the philosophy of mathematics. First, a few
good overviews of the philosophy of mathematics. Brown (2008) is
an excellent introduction to the subject, with a contemporary focus.
Bostock (2009) and George and Velleman (2002) are historically-
oriented introductions. Friend (2007) and Shapiro (2000) present
good mixes of historical and contemporary issues.

There are various collections of key papers on the philosophy
of mathematics. These will be useful in filling out the material in
this text with some of the primary sources. Benacerraf and Putnam
(1983) is a classic collection. It’s a bit out of date, but most of the pa-
pers are still core reading, especially for the traditional philosophy of
mathematics topics. Bueno and Linnebo (2009) is an interesting col-
lection of papers with more of a focus on recent and evolving research
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areas in philosophy of mathematics. Hart (1996) is a short afford-
able collection with many of the classic papers. Jacquette (2001) is
a collection of papers arranged around a mixture of traditional and
contemporary topics. Leng, Paseau, and Potter (2007) is a good col-
lection of essays on mathematical epistemology, by philosophers of
mathematics, mathematicians, and psychologists. Mancosu (2008) is
a good collection of papers on a topic of great contemporary inter-
est. Shapiro (2005) is a terrific collection of new papers summarising
the latest developments in most of the major areas of philosophy of
mathematics, past and present. Tymoczko (1998) is an interesting
collection of papers covering some less-commonly-explored topics.

Some students might be interested to pursue some of the history
of the mathematics we encounter. A few good sources here are:
Grattan-Guiness (2003; 2007) and Kline (1972). A good introduction
to mathematical methods is Courant and Robbins (1978). Finally, a
couple of good mathematical reference works. These can be useful for
filling in gaps in students’ mathematical background and for pursing
some of the mathematics in greater depth. Borowski and Borwein,
(2002) is a good general purpose mathematical dictionary. Gowers
(2008) is an excellent general reference work on mathematics.



Chapter 2

The Limits of
Mathematics

“One of the endlessly alluring aspects of mathematics is
that its thorniest paradoxes have a way of blooming into
beautiful theories” — Philip J. Davis (1923– )

Most mathematics is concerned with proving theorems, developing
new mathematical theories, and finding axioms for theories. But
there are vey important questions about the mathematical theories
themselves. For example, it would be nice to know whether a par-
ticular mathematical theory is consistent. That is, we’d like to be
able to prove that the mathematical theory in question will not de-
liver a contradiction, as näıve set theory did. We’d also like to know
whether a mathematical theory is capable of answering any question
thrown at it. That is, we’d like to be able to show that for any math-
ematical statement of the theory, either we can prove it or prove its
negation. This is called completeness. The study of such higher-level
questions about mathematics is known as metamathematics and can
be thought of as the mathematical study of mathematics. Not sur-
prising, this is an area of great interest for philosophers, especially in
light of a number of key results that place limitation on what mathe-
matics can do. These results are intriguing (and often surprising) in
their own right, but they are also supposed to have consequences for
philosophy of mathematics and beyond—to areas such as philosophy

23
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of mind and metaphysics. In this chapter we consider some of these
results and discuss their significance for philosophy.

2.1 The Löwenheim-Skolem Theorem

2.1.1 Background

The first limitative result we will look at is from set theory and
is known as the Löwenheim-Skolem theorem. To understand the
significance of this theorem we first need to look at the work of one
of the great 19th-century mathematicians, the Russian-born German
Georg Cantor (1845–1918). Cantor did pioneering work in set theory,
with his most celebrated result concerning the cardinality of sets.
When considering finite sets, the notion of cardinality is straight
forward: the cardinality of a set is the number of elements in the set,
and here we can just count off the elements. Two finite sets have the
same cardinality if and only if (iff) they have the same number of
elements, otherwise one is larger than the other. But when we get
to infinite sets, things get more interesting. Consider some of the
well-known infinite systems of numbers. Intuitively, there are more
integers than there are natural numbers; there are more rational
numbers than there are integers; there are more real numbers than
there are rational numbers and there are more complex numbers
than there are real numbers. But how do you count the numbers in
question, given that in all cases there are infinitely many of them?
How do we get a grip on the cardinality of infinite sets? Must we
admit that all infinite sets are the same size and give up on the above
intuitions?

Cantor gave us a very useful way forward: he proposed that two
sets have the same cardinality iff the members of one set can be
placed in one–one correspondence with the members of the other.
This is clearly right for finite sets, and even seems trivial. The idea
is that when we have an auditorium with no-one standing and no
spare seats, we can say that the number of people is the same as
the number of seats—we don’t do this by counting the people and
counting the seats and noting that they have the same cardinality.
Rather, we notice the one–one correspondence between chairs and
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people and we exploit that correspondence.1 So much for the finite
case. In the infinite case, Cantor’s definition of “same cardinality” is
anything but trivial.

It turns out that we can place the natural numbers and the in-
tegers in one–one correspondence by the following trick: count the
integers off as follows, 0, 1, -1, 2, -2, 3, -3, ... This mapping and Can-
tor’s definition establishes (surprisingly) that the cardinality of the
integers and the natural numbers is the same, despite the fact that
the natural numbers form a proper subset of the integers. Similar
tricks can be exploited to show that the rational numbers can also
be placed in one-one correspondence with the natural numbers. The
natural numbers, the integers and the rationals all have the same
cardinality, designated ℵ0 and are said to be countable.2 ℵ0 is the
smallest infinite cardinal number. We see that being a proper subset
does not entail lower cardinality—that is only guaranteed for finite
sets. This already leads to some puzzling results, such as Hilbert’s
Hotel. This is a hotel with infinitely many rooms and with each of
the rooms occupied. But when a new guest arrives, there’s no need
to turn her away, merely because the hotel is full. A simple reorgan-
isation of guests so the the guest in room 1 is moved to room 2, the
guest in room 2 is moved to room 3 and so on. This series of moves
accommodates all the existing guests and leaves room 1 vacant for
the new arrival. This is strange but not paradoxical. It’s just one
of the peculiarities of infinite sets—peculiarities that run counter to
our usual experiences and intuitions formed by consideration of finite

1Another related application of one–one correspondence is in the Pigeon-Hole
Principle or Dirichlet’s box principle. This principle tells us if we have m objects
and n boxes to place them in, if m > n then at least one box will contain more
than one object. It is named after the French mathematician J. P. G. L. Dirichlet
(1805–1859). Despite sounding trivial, this principle has a number of non-trivial
applications. But to give a trivial application, it tells us that if you have more
than seven friends, at least two of your friends were born on the same day of the
week.

2A set is said to be countable (or denumerable) if its cardinality is finite or ℵ0,
that is, the set in question can be placed in one–one correspondence with some
subset of the natural numbers. Obviously a countably infinite set has cardinality
ℵ0.
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cases.
Next we introduce the notion of the power set. The power set,

P(A), of a set A is the set of all subsets of A. For example, the
set B = {0, 1, 2} has the following subsets: ∅ (the empty set),
{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}. The power set is thus
P(B) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. Notice that
the cardinality of P(B) (denoted by |P(B)| is greater than the car-
dinality of B. The former, has 8 elements while the latter has 3
elements. This, it turns out, is very important. And notice that
|P(B)| = 2|B|. This is also important.

Now we get to Cantor’s celebrated theorem. This theorem tells
us that the cardinality of the power set of a set is strictly greater than
the cardinality of the original set. The proof is fairly straightforward
and it will be instructive to run through it.

Theorem 1 (Cantor). For any set A, |P(A)| > |A|.

Proof. If A = ∅ then its cardinality |A| = 0 and |P(A)| = 1. So
assume that A is nonempty. Since there are singleton sets {a} for
every a ∈ A, |P(A)| ≥ |A|. Now assume that |P(A)| = |A|. That is,
there is a 1–1 function f : A→ P(A). Let z = {a ∈ A : a /∈ f(a)} ∈
P(A). So since f is 1–1, there exists a w ∈ A such that f(w) = z.
But w ∈ f(w) iff w ∈ z iff w /∈ f(w), and we have a contradiction.
There is thus no such f and |P(A)| > |A|.

Note that there is nothing in the proof that presupposes anything
about the cardinality of A. In particular, when A is an infinite
set we find that the power set of A is a larger infinite set. So, for
example, the cardinality of the power set of the natural numbers is
larger than the cardinality of the natural numbers. Indeed, it can
be shown that the cardinality of a power set of some set A is 2|A|,
as the example in the previous paragraph illustrated. The upshot of
Cantor’s theorem is that there are uncountable (or non-denumerable)
sets. These are sets that cannot be placed in 1–1 correspondence with
the natural numbers. Such sets have cardinalities greater than ℵ0.
Indeed, by taking power sets of power sets of an initial infinite set, we
can generate infinitely many infinite sets, each with strictly greater
cardinality than its predecessor. Returning to our example of the
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various number systems, we find that although the natural numbers,
the integers and the rationals all have the same cardinality, the set of
real numbers has a cardinality larger than these. The real numbers
are uncountable and can be shown to have cardinality 2ℵ0 . The
complex numbers, too have this as their cardinality, as does Rn (an
n-dimensional real space) for any finite n.

Cantor’s theorem is a fascinating result in its own right, estab-
lishing that if there is one infinite set, there are larger and larger
infinities, and apparently no end to the size of these infinities. This
was disturbing news at the time in which Cantor was working. It
prompted some to eschew infinities all together. But let’s set aside
such a radical response to Cantor’s theorem. For present purposes,
what is important is that Cantor’s theorem establishes the existence
of non-denumerable sets. Indeed, it is a theorem of set theory that
there are such sets. This brings us to the Löwenheim-Skolem Theo-
rem and the associated paradox.

2.1.2 Skolem’s Paradox

In 1915 the German mathematician Leopold Löwenheim (1878–1957)
proved a remarkable result. He proved that if a first-order sentence
has a model at all, it has a countable model.3 In 1922 the Norwegian
mathematician Thoralf Skolem (1887–1963) generalised this result
to systems of first-order sentences.4 What is remarkable about these
results is that they appear to fly in the face of Cantor’s theorem.
The Löwenheim-Skolem theorem seems to be telling us that we do
not need to entertain infinities beyond the countable. In particular,

3A model of a set of sentences is an interpretation of the sentences in question,
according to which they are all true. The interpretation consists of a domain over
which the quantifiers range, and a function that assigns extensions to the names
and predicates in the sentences in question. A model can be thought of as a
set-theoretic construction of the theory or system of sentences in question and
the cardinality of the model is just the cardinality of the domain over which the
quantifiers range. A toy example is given below of models of the Dean Martin
sentence.

4This is the so-called downward Löwenheim-Skolem theorem. There is also
an upward Löwenheim-Skolem theorem that states that if a system of first-order
sentences has a model, it has models of higher cardinalities.
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it seems to be telling us that there are countable models of the real
numbers and of set theory itself. This apparent conflict between Can-
tor’s theorem and the Löwenheim-Skolem theorem became known as
Skolem’s Paradox .

The problem can be reposed in terms of non-uniqueness of the do-
mains in question. A set of axioms is said to be categorical if all mod-
els of the axioms in question are isomorphic. For example, take an ex-
ercise from elementary logic to find a model of the Dean Martin sen-
tence “Everybody loves somebody (or other)”: ∀x∃yLxy. This has
models of all finite cardinalities as well as a countable infinite model.
For example, a tragic love triangle model has a domain of three ob-
jects {1, 2, 3} and the extension of L = {(1, 2), (2, 3), (3, 1)}. That is,
we have 1 loving 2, 2 loving 3, and 3 loving 1. An infinite model has
a domain N, with the extension of L = {(1, 2), (2, 3), (3, 4), (4, 5), ...}.
Thus ∀x∃yLxy, if taken to be a single-axiom theory, is not categor-
ical: the model of cardinality 3 is not isomorphic with the model
of cardinality ℵ0. But, of course there is no issue here; there’s no
reason to expect such a single-axiom system to be categorical in the
first place.

The axioms for familiar mathematical structures, however, are
different; such axioms are supposed to be capturing all that is im-
portant about the mathematical structures in question. But what
the Löwenheim-Skolem theorem tells us is that any first-order for-
mulation of our mathematical structures will allow non-isomorphic
models, if they have models at all. Some of these models (e.g., a
countable model of the real numbers) are easily recognised to be un-
intended, but still they are (in some sense, legitimate) models of the
axioms in question. Which model is the intended model is not settled
by the mathematical formulation alone; our first-order formulations
are not categorical.

Despite the hint of paradox here, there is in fact no paradox.
The generally-agreed upon solution to the apparent paradox is that
although under some interpretations of the mathematical terms in
question (set membership, successor , subset and the like), there will
be uncountable models, under different interpretations of the terms
in question, there will be countable models. What is crucial is the
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failure of the theory to absolutely fix the reference of the mathemati-
cal terms. Axiomatic systems such as those under consideration give
rise to a kind of relativity. But with this relativity in place, we find
that the alleged paradox turns on an equivocation: we are supposed
to conclude that the mathematical theory in question has both count-
able and uncountable models under the very same interpretation of
the mathematical terms in question. But that is a mistake.

What we have is a surprising result that places limits on what we
can expect from our axiomatic mathematical theories. But some have
suggested that the kind of relativity one needs to embrace in order to
escape the apparent difficulties presented by the Löwenheim-Skolem
theorem has broader philosophical consequences. Hilary Putnam
(1926– ) argues that the Löwenheim-Skolem theorem undermines
common sense realism, not just about mathematics but elsewhere as
well (Putnam 1980). The idea, very roughly, is that if we were to for-
mulate our best scientific theories in a first-order language, we’d find
the same relativity. We find that there is no fact if the matter about
the reference of our theoretical terms. Moreover, the indeterminacy
in question undermines any confidence we have in the ontology of
our physical and even common-sense theories. This, in turn, in-
vites a turn to anti-realism. Not surprisingly, Putnam’s argument
has been very influential in metaphysics and threatens to undermine
common-sense realist positions about scientific theories.

2.2 Gödel’s Incompleteness Theorems

2.2.1 Gödel’s Results

Perhaps the most famous limitative results in mathematics are due to
the Austrian logician Kurt Gödel (1906–1978). Gödel proved a cou-
ple of groundbreaking incompleteness results in the 1930s. The first
of these, known as the Gödel’s first incompleteness theorem, says that
any consistent axiomatic system, rich enough to be of mathematical
interest, will have recognisably true sentences that are not provable
in the system in question. In order to prove this result, Gödel devel-
oped an ingenious encoding system so that he could assign a num-
ber to every well-formed sentence of the language in question—the
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sentence’s Gödel number—and with this resource we can formulate
within mathematics a sentence that says of itself that it is not prov-
able. This sentence is often referred to as the Gödel sentence of the
system in question. Consider the options here. If, despite what the
sentence says, it is provable, then we would have a derivation of a
false sentence. So assuming that the system in question is consistent,
we must not be able to prove the sentence in question. But since that
is what the sentence claims, we have an example of a true sentence
that is not provable in the mathematical system in question. There
are what we might think of as “blind spots” in mathematics:5 true
sentences that cannot be derived in the system (so long as the system
in question is consistent). Or to state this in slightly different terms,
we need to choose between consistency and completeness. Most take
this choice to be clear cut and choose consistency. But there is some-
thing to be said for inconsistent systems here. For a start, they can
be complete.6

Gödel’s second incompleteness theorem states that any consistent
system of sufficient complexity to be of mathematical interest cannot
prove its own consistency. The first incompleteness theorem reveals
a blind spot in any (consistent) mathematical system, a somewhat
artificial sentence that is recognisably true but not provable. The
second incompleteness theorem uses this blind spot to deliver a more
substantial blind spot. The sketch of the proof of the second incom-
pleteness result is as follows. Consider the true sentence: “if the
theory in question is consistent, then the Gödel sentence is not prov-
able”. This is equivalent to “if the theory in question is consistent
then the Gödel sentence”. So any proof of the consistency of the
theory in question could be used to prove the Gödel sentence. But
the first incompleteness theorem tells us that no consistent theory
can prove its own Gödel sentence. So no consistent theory can prove
its own consistency.

5I borrow the phrase “blindspot” in this context from Roy Sorensen (1988).
6We will return to the issue of inconsistent mathematics in chapter 7.
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2.2.2 Philosophical Significance of Gödel’s Incomplete-
ness Results

These results are philosophically interesting for a number of reasons.
They are interesting historically because they proved to be a major
stumbling block for (and perhaps even marked the end of) formalism
as a viable philosophy of mathematics. Recall that formalism is the
position in the philosophy of mathematics that regards mathematics
as being concerned with the manipulation of symbols on pieces of
paper, whiteboards, and the like, and nothing more. The most well-
developed version of this position is usually attributed to the German
mathematician David Hilbert (1862–1943).7 Hilbert had a sophisti-
cated philosophy of mathematics, which (according to the common
interpretation, at least) saw finite mathematics as being about the
symbols and the manipulation of these symbols. He called this fi-
nite fragment of mathematics “real”. This mathematics needed to
be axiomatised and thus put on a secure basis.

Infinite mathematics had a different status and was called “ideal”
by Hilbert; it was there to help simplify and round out the finite
mathematics but was not on the same footing as the finite math-
ematics. But although Hilbert treated infinite mathematics as a
second-class citizen in his mathematical society, he would not enter-
tain abandoning it in favour of finite methods, as others had sug-
gested. Famously, Hilbert defended Cantor’s vision of infinite math-
ematics: “No one shall drive us out of the paradise which Cantor has
created for us” (Hilbert 1983, p. 191). But in order to justify the
use of infinite mathematics, Hilbert required a proof of the consis-
tency of mathematics. Moreover, this proof needed to be completed
by the (by his lights) more-secure finitary methods. It is generally
thought that Gödel’s incompleteness results (especially the second
one) put an end to Hilbert’s program: Gödel showed that the con-
sistency proof Hilbert required was only possible if mathematics was
inconsistent.

Another interesting philosophical application of Gödel’s results is

7See Franks (2009), Hallett (1990), and Seig (1999) for more nuanced inter-
pretations of Hilbert’s philosophy of mathematics than I can provide here.
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due to the philosopher J. R. Lucas (1929–) and later taken up and
developed further by the physicist Roger Penrose (1931–). Lucas
starts by noting that the blind spots of mathematics, such as the
Gödel sentence are not blind spots for humans. After all, by mere
inspection we can see the truth of the Gödel sentence but, on pain
of inconsistency, mathematics cannot deliver the truth of the Gödel
sentence. This, Lucas suggests, marks an important difference be-
tween purely formal systems and the human mind. To put the point
in slogan form: the mind is not a machine. But this slogan mas-
sively overstates the case. For a start, there are machines other than
the classical mathematical deduction systems that Gödel’s theorem
is concerned with. Perhaps the human mind is not a machine like
this, but whoever thought that it was? Moreover, we should not for-
get the role consistency plays in Gödel’s results. After all, it is only
consistent systems that have the blind spots in question. Nothing
rules out the human mind being a kind of inconsistent machine.

It is worth noting that what Gödel’s first incompleteness theorem
tells us is that a consistent formal system of the kind in question (in-
cluding a suitably programmed computer) will have a blind spot—it’s
Gödel sentence. But this is not to say that another system or ma-
chine will not be able to derive the first system’s Gödel sentence. But
Gödel’s first incompleteness theorem then guarantees that the second
system will have a blind spot of its own—its own Gödel sentence—
and so on for as many systems/machines as you care to contemplate.
Can the human mind really recognise the truth of all these Gödel
sentences? If so, why can’t the human mind just be a kind of open-
ended machine, that can always switch to another program that does
not have the blind spot under consideration? There are many ques-
tions to be asked and responses to be made to the intriguing Lucas
and Penrose arguments. The accepted wisdom (with which I concur)
is that the Lucas-Penrose arguments fail. But putting your finger on
exactly why they fail is still interesting and has helped in advancing
our understanding of the relationship between minds and machines.

For me, however, the importance of Gödel’s results does not lay in
either of the applications just mentioned. The results, like any good
pieces of mathematics, are interesting in their own right. There is no
need for further philosophical theses to be defended on the back of
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Gödel’s results. The results were surprising at the time of their first
publication and even today they strike many as a little disturbing.
Gödel’s incompleteness theorems tell us something very profound
about formal systems and their limits. I’m not claiming that there
are no interesting applications of the incompleteness theorems out-
side of logic and mathematics, just that, no further applications are
required to make the theorems philosophically interesting. The ex-
istence of blind spots in consistent mathematical systems is surely
food enough for thought.

2.3 Independent Questions

2.3.1 The Continuum Hypothesis

An independent question of a theory is one which cannot be answered
either positively or negatively. This indeterminacy is not merely epis-
temic either. It’s not that we don’t currently know the answer to the
question under consideration. Rather, the question itself is left open
by the relevant mathematical theory. There are many such ques-
tions in mathematics but the most famous example is the question
of the size of the continuum: what is the cardinality of the set of real
numbers?

We have already seen that the cardinality of the real numbers
is infinite and is larger than the natural numbers. Moreover, it can
be shown that the cardinality of the real numbers is that of the car-
dinality of the power set of the natural numbers. So we know that
the cardinality in question is 2ℵ0 . So far, so good, but the prob-
lem arises when we ask where this cardinality lies in relation to the
other infinite cardinalities. If we denote the first non-denumerable
infinity ℵ1, the next ℵ2, and so on, we want to know which of these
cardinalities is 2ℵ0 . A very tempting answer is that 2ℵ0 = ℵ1; the
continuum is the smallest non-denumerable infinity. This is known
as the continuum hypothesis and has a proud history involving some
of the greatest mathematicians of modern times.

It was Cantor himself who suggested the continuum hypothesis
as the somewhat speculative answer to the question of the size of the
continuum. Then, in a very famous address delivered by the great



34 An Introduction to the Philosophy of Mathematics

German mathematician David Hilbert (1862–1943) to the Interna-
tional Congress of Mathematicians in Paris in 1900, the most press-
ing 10 open problems in mathematics were outlined.8 This list was
amazingly influential in shaping 20th century mathematics. Solving
the continuum hypothesis was number 1 on Hilbert’s list. In 1940
Gödel proved that the continuum hypothesis was consistent with
standard set theory (so-called Zermelo Fraenkel set theory with the
axiom of choice or ZFC). But being consistent with standard set the-
ory and being provable in standard set theory are obviously not the
same thing, and the continuum hypothesis resisted proof. Then, in
1963, the US mathematician Paul Cohen (1934–2007) showed why it
resisted proof. He proved that the negation of the continuum hypoth-
esis is also consistent with ZFC. With Gödel’s 1940 result in hand,
Cohen’s result implies that the continuum hypothesis is independent
of standard set theory.

Here we have an important and very natural question about
mathematics—what is the cardinality of the real numbers?—that
cannot be answered by our best theory. There are a couple of options
here. One is to suggest that the relevant theory needs to be enriched
in order to make it capable of delivering an answer to this ques-
tion. Another option is to accept that there are such open questions
in mathematics and give up the idea that all interesting questions
in mathematics are answerable. There is something to be said for
each of these options and we find ourselves embroiled in a realism–
antirealism debate about mathematics.

2.3.2 A Realist Response

One natural line of thought is to suggest that if a theory doesn’t tell
us all we want to know, we need a better theory. Take an exam-
ple from elsewhere in science. If our best theory of space and time
doesn’t tell us what happens in accelerated frames of reference (e.g.,

8A couple of years later, when published, the list was extended to 23 open
problems. These are known as “the Hilbert Problems” and there is great prestige
attached to solving any one of these problems.
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special relativity works only in unaccelerated frames), we need a bet-
ter theory (e.g., general relativity, which works for both accelerated
and unaccelerated frames). Special relativity’s silence on what goes
on in accelerated frames is not seen as anything particularly mys-
terious about accelerated frames; it’s just that special relativity is
at best only part of the story. There are facts of the matter about
the goings on in accelerated frames, and our full theory of space and
time will deliver those facts. Even before general relativity was de-
veloped it was clear that this was the right attitude to have towards
accelerated frames. From a certain realist perspective, at least, this
is a very natural thought whenever one encounters a theory that is
silent on an issue of interest. The silence is seen as a limitation of
the theory in question, and not an indeterminacy in nature.

Borrowing this train of thought and applying it to our indepen-
dent questions in set theory, we see the independence of the contin-
uum hypothesis from ZFC as an indication that ZFC is not the full
story; we need to enrich our set theory so that it will give us answers
to fundamental questions such as the cardinality of the real numbers.
After all, surely, 2ℵ0 = ℵ1 or 2ℵ0 6= ℵ1.9 Since ZFC cannot tell us
which, we should replace or supplement ZFC with further axioms so
that we do get an answer to the continuum hypothesis. A great deal
of work in modern set theory can be understood in the light of this
line of thinking: proposing new axioms that will settle some of the
more important independent questions in ZFC.10

2.3.3 An Anti-Realist Response

Another line of thought has it that the independent questions are
revealing something important about the mathematical realm itself,
rather than mere limitations of our mathematical theories. To mo-
tivate this line of thought, consider an open question in a work of
fiction. For example, in the 1960 movie of H. G. Wells’ The Time
Machine there is nothing more to the story than what is said and

9Always be suspicious when a philosopher says “surely”.
10See Penelope Maddy (1997) for a very accessible account of some of the new

axioms entertained by modern set theorists.
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what appears on the screen (and perhaps the logical and natural im-
plications of what is said and what appears). There is no fact of the
matter about details omitted from the story. So when the time trav-
eller sets off for the future to help a fledgling society, he takes with
him three books. What were the three books? Well that’s (quite
deliberately) not part of the story so it would seem that there’s no
fact of the matter about what the three books were. It is not the
case that either the time traveller took or did not take John Stuart
Mill’s Utilitarianism with him. The question of the titles of the three
books is indeterminate in the story, but we may choose to enrich the
story as we wish, but none of these enrichments should be thought
of as the correct story, for the simple reason that there is nothing
more to the correct story than what appears in the movie, and the
movie is silent on the issue at hand. It seems we might well explore
extensions of the story in which Mill’s Utilitarianism was taken by
the time traveller and extensions of the story where that particular
book was left on the shelf. The difference here is that while it might
be fun to explore such extensions, we should take a different attitude
towards these extensions. There is a sense in which any consistent
extension is allowable but none is the correct one. Although some
extensions might be more interesting than others.

Now apply this line of thought to our independent questions of
set theory. We might see these independent questions as genuinely
independent in the way that the titles of the three books in the
movie of The Time Machine are. Just as in fiction, we are free
to explore extensions—extending ZFC by, for example, adding new
axioms—but there is a lack of factualness about these extensions. In
some extensions the continuum hypothesis is true and in others it is
not, but the extensions themselves, at least according to the line of
thought I’m suggesting here, are all on a par. We might even take
a pluralist attitude towards the extensions and allow all consistent
extensions. But as in the fiction, this does not mean anything goes.
Some extensions will be more interesting than others, and these will
attract more attention.11 This pluralist attitude towards set theory

11For example, extensions of the story in which the time traveller takes im-
portant books available to him on political theory, such as John Locke’s Two
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also seems to sit well with the current mathematical practice, where
the attitude of those proposing new axioms may well be thought to
be in this pluralist spirit.12

Discussion Questions

1. Explain why Hilbert’s Hotel is not paradoxical. (Notice how
the set up of this puzzle relies on Cantor’s account of cardinal-
ity.)

2. Consider the set of all cardinal numbers. What is the cardi-
nality of this set? (This is a version of Cantor’s cardinality
paradox.) Does this puzzle raise problems for Cantor’s notion
of cardinality, as applied to infinite sets?

3. Spell out, in detail, the Putnam argument against common-
sense realism. Do you think that this argument works? How
would you defend realism against this line of attack?

4. If the mind is a kind of machine, do Gödel’s results at least
place restrictions on the kind of machine it is?

5. What is to be gained, if anything, by taking the less-travelled
path and embracing inconsistent but complete mathematical
systems?

6. Can you think of other arenas where it seems reasonable to
accept that there are no facts of the matter? Think about the
logic of such domains. Can an argument be made for the failure
of the law of excluded middle in such domains?

Treatises of Government , Thomas Hobbes’s Leviathan, and Mill’s Utilitarian-
ism, are interesting. Whereas extensions in which the time traveller takes a few
cheesy romance novels are much less interesting.

12Again, see Maddy (1997) for more on the debates in set theory over new
axiom candidates. She, in fact, argues that mathematical practice does not take
sides here and that there is no way of settling the realism–anti-realism question
in mathematics.
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7. Do you think that independent questions such as the ques-
tion of the size of the continuum undermine the plausibility of
mathematical realism?
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Chapter 3

Plato’s Heaven

“The laws of mathematics are not merely human inven-
tions or creations. They simply ‘are’; they exist quite
independently of the human intellect” — M. C. Escher
(1898–1972)

Mathematical realism or Platonism is the philosophical position that
mathematical statements such as “there are infinitely many prime
numbers” are true and that these statements are true by virtue of
the existence of mathematical objects—prime numbers, in this case.
That all seems fine until you think about the nature of the objects
being posited. Where are these numbers? What are they like? How
do we know about them? What about all the other mathematical
objects: sets, functions, Hilbert spaces, and the like? Do all these
exist as well? Are all mathematical objects made up of the same
basic ingredients—sets, perhaps—or are they each a distinct kind
of thing? Are these mathematical objects abstract or do they have
causal powers and space-time locations? In any case, what is their
relationship to the physical world? And most difficult of all: if math-
ematical knowledge is knowledge of these mathematical entities how
do we come by such knowledge? Negotiating a set of answers to these
questions, unsurprisingly, leads to a variety of different realist posi-
tions. In this chapter we will very briefly consider a few of the realist
positions on offer, before looking in more detail at a very influential
argument for mathematical realism.

41
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3.1 A Menagerie of Realisms

There are two realist theses worth distinguishing in relation to math-
ematics. The first is the objectivity of mathematics. This is the the-
sis that mathematical statements are objectively true. They are not
made true by sociological conventions or by the attitudes or beliefs of
mathematicians. They are not “true in a sense” or “true from a par-
ticular cultural perspective” or anything of the kind. Mathematical
statements are true and they are true independently of our beliefs
and attitudes towards them. That’s mathematical objectivity. Some
are of the view that this is all it takes to be a realist about math-
ematics. But notice that there’s nothing in this about there being
any mathematical objects. As Hilary Putnam put it:

The question of realism, as Kreisel long ago put it, is
the question of the objectivity of mathematics and not
the question of the existence of mathematical objects.
(Putnam 1979a, p. 70)

Others disagree, and take mathematical realism to be the thesis
that some mathematical statements are objectively true and that
they are made true by the existence of mathematical objects. For
example, take the statement “there is an even prime”. If this is taken
to be objectively true, how could it be unless there is an even prime.
It seems a very quick path from objective truth to objects. In any
case, here we have our first divide amongst realist: those who see
the realist thesis as being only about objectivity as opposed to those
who see it as involving mathematical objects. But that’s not the end
of the internal disputes.

The next point of disagreement concerns the nature of mathe-
matical objects. The traditional view, which comes down to us from
Plato (429–347 B.C.E.), is that mathematical entities exist but that
they are unlike physical objects. Mathematical objects are abstract
entities—objects without causal powers and lacking space-time loca-
tions. Driven by epistemological concerns about how we might get
in touch with such ghostly entities, we find mathematical realists of-
fering a variety of epistemic accounts of how access is secured. One
of the more radical such proposals is to reject the abstractness of
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mathematical entities. According to this line of thought, mathemat-
ical entities are physical. On some accounts it is even claimed that
we can see them. As Penelope Maddy (1990a), once argued, every
time you look in the refrigerator and see a dozen eggs you are seeing
the set of 12 eggs. You are thus face to face with a mathematical ob-
ject, namely a set.1 There are debates about whether mathematical
entities exist necessarily or only contingently, and whether they are
sets or something else. These are all debates which hold consider-
able interest but let me say just a little about a couple of particular
positions in the philosophy of mathematics that help bring out how
some of the disagreements above get their bite.

3.1.1 Full-blooded Platonism

For the sake of argument, let’s accept that there are some mathe-
matical entities. Now consider the question of which mathematical
objects there are. If you’re a realists of this bent you take it as clear
that there are numbers, sets functions and the like. But how far
do you go? Do you accept the reality of everything dreamt of by
mathematicians? Or do you prefer your realism a little less extrav-
agant and accept only those parts of mathematics needed for some
practical purpose? Is there some middle ground? Let’s consider the
extravagant option first.

According to full-blooded Platonism every consistent mathemat-
ical theory truly describes some part of the mathematical universe.
This view delivers a very rich ontology indeed: every mathematical
object that could exist, does exist. But this is not excess for the sake
of excess. There is good reason for subscribing to such an inflated
ontology. The idea is straight forward.

A defender of such a full-blooded or plentitudinous Platonism,
Mark Balaguer, points out that it would be utterly mysterious were
someone to have true beliefs about the day-to-day events in a remote
village in Nepal, without a reliable mechanism explaining the corre-
lation between the belief formation and the events in the village in

1John Bigelow (1988) also argues for a physicalist account of mathematics.
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question. But traditional Platonism finds itself in something very
much like this situation: we are suppose to have true beliefs about
an abstract realm of mathematical entities with which we can’t have
causal contact. Balaguer goes on to point out that:

[I]f all possible Nepalese villages existed, then I could have
knowledge of these villages, even without any access to
them. To attain such knowledge, I would merely have to
dream up a possible Nepalese village. For on the assump-
tion that all possible Nepalese villages exist, it would fol-
low that the village I have imagined exists and that my
beliefs about this village correspond to the facts about it.
(Balaguer 1998, p. 49)

This, of course, is hardly a tenable epistemology for Nepalese villages.
But Balaguer’s point is just that on the assumption that all possible
Nepalese villages exist, there is no mystery about how we can have
knowledge without causal contact.

Now return to the epistemic woes of Platonism. If every mathe-
matical object that could exist, does exist our mathematical beliefs
couldn’t miss—they would latch on to some part of the mathemati-
cal realm. In short, our beliefs about the mathematical objects of a
consistent theory constitute knowledge of those objects.

The core idea here is very clever: you can overcome an epistemic
access problem by inflating ontology to the limit. Moreover this view
has a ready reply to many underdetermination problems. The idea
is to embrace non-uniqueness. Full-blooded Platonism is not com-
mitted to the idea that our mathematical theories describe unique
collections of mathematical objects. The commitment is to the ex-
istence of all the mathematical objects that could possibly exist.
Thus the view is committed to all the mathematical objects in all
the models of the natural numbers, even non-intended models. Sim-
ilarly, full-blooded Platonism is committed to the existence of ZFC
sets, and various extensions of ZFC, as well as the objects in various
alternative set theories. The question of which are the real sets is
easily answered: they are all real. We might make exceptions for the
more familiar mathematical theories such as arithmetic, where we
might insist that such theories are about only the intended models.
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Again, there are details to be tidied up, but you get the basic idea.2

3.1.2 Structuralism

Structuralism in the philosophy of mathematics is the view that the
proper subject matter of mathematics is the relationships between
various kinds of mathematical entities, rather than the entities them-
selves. So, for instance, number theory is the study of ω-sequences,
not the study of any particular ω-sequence. Moreover, the nature
of the entities that constitute the ω-sequences is irrelevant—what
is important is the structure that is common to all such sequences.
There is something undeniably right about structuralism. Indeed the
structuralist slogans, “mathematical objects are places in structures”
or, Michael Resnik’s (1998) favourite, “mathematics is the science of
patterns”, seem to reveal important insights into the nature of math-
ematics and its subject matter.

The real significance of structuralism, though, is in its ability
to provide answers to some rather difficult problems in the philoso-
phy of mathematics. For example, structuralism is able to explain
why mathematicians are typically only interested in describing the
objects they study up to isomorphism—for that is all there is to de-
scribe. Structuralism is also able to explain why we’re inclined to
think that either all of the natural numbers exist or none of them
exist—the natural numbers, like other structures, come as a pack-
age. Most importantly, structuralism provides a neat and plausible
response to Benacerraf’s underdetermination problem. According to
structuralists, anything can play the role of the number two, so long
as the object in question has the appropriate relationships with other
entities, and together they make up an ω-sequence. Von Neumann’s

2Other plentitudinous positions in the philosophy of mathematics have been
advanced, for example, by Zalta (1983; 1988) and Priest (2005). Some of the
theories in question (at least on some readings) are Platonist, but others pursue
the Meinongian idea that we can refer to non-existent objects. The latter are, in
one sense, plentitudinous, but it’s not right to think of them as Platonist.
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{∅, {∅}}, Zermelo’s {{∅}}, or even the Roman Emperor Julius Cae-
sar can play the role of the number two (so long as Caesar has the
appropriate structural relations with enough other items of an ω-
sequence). According to the structuralist, however, neither Julius
Caesar nor {∅, {∅}} nor {{∅}} is the number two, for the number
two is no more and no less than a position in a structure.3

Think of positions in a sporting team. Anyone can play these
positions. Indeed, asking a question such as “what colour hair does
a baseball shortstop have” are misguided. A baseball shortstop is
nothing more than someone in a baseball fielding lineup who stands
between the second and third base. The details of the individual
are not part of the game. Just as in the mathematics case where
a variety of entities can play the role of two, anyone can play the
shortstop role. And also like the mathematical case no particular
person is the shortstop.

But as you might expect, there are factions here as well. We can
ask whether the structures in question need to be instantiated or not.
A Platonic position would not require there to be instantiations of
the structure in question. According to this view, it doesn’t matter
whether there are physical instantiations of ω-sequences. The natu-
ral number structure is not to be held hostage to the way the world
happens to be. Shapiro calls this position ante rem structuralism. A
more Aristotelian position (which Shapiro calls in re structuralism)
holds that only instantiated structures exist. There are costs and
benefits to be considered here. The in re position is more modest; it
does not posit anything other than the kinds of structures that are
in fact found on the world. It thus has the virtue of simplicity and
looks as though it is well placed to provide a workable epistemology
for mathematics. The problem though is that the world may not pro-
vide rich enough structures for the mathematics we know and love.

3Structuralism has had its fair share of supporters. These have included math-
ematicians of the calibre of Richard Dedekind (1831–1916), David Hilbert and
Henri Poincaré (1854–1912), and philosophers such as Quine and Paul Benacerraf
and (somewhat tentatively) Putnam. The most detailed philosophical treatment
of the position is to be found in the work of Michael Resnik (1997) and Stewart
Shapiro (1997).
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For example, think what it would mean for the real number structure
to be instantiated. For the instantiation to be in space, we’d require
space to be continuous and unbounded. It is far from clear that this
is the case. There may in fact be no instantiations of the real num-
bers. And there may even be problems finding enough objects for
an instantiation of the natural numbers. So without further work,
in re structuralism is too modest—it may not give us enough struc-
tures for even the most basic mathematics. The alternative, ante
rem structuralism has no such problems. It posits any structure in-
stantiated or not. Every consistent structure is real. So there’s no
modesty problems here. But then the familiar epistemic problems
are: how do we know about such uninstantiated structures?4

3.2 Indispensability Arguments

One of the most intriguing features of mathematics is its applicabil-
ity to empirical science. Every branch of science draws upon large
and often diverse portions of mathematics, from the use of Hilbert
spaces in quantum mechanics to the use of differential geometry in
general relativity. It’s not just the physical sciences that avail them-
selves of the services of mathematics either. Ecology, for instance,
makes extensive use of differential equations and statistics. The roles
mathematics plays in these theories is also varied. Not only does
mathematics help with empirical predictions, it allows elegant and
economical statement of many theories. Indeed, so important is the
language of mathematics to science, that it is hard to imagine how
theories such as quantum mechanics and general relativity could even
be stated without employing a substantial amount of mathematics.

From the rather remarkable but seemingly uncontroversial fact

4There are yet other versions of structuralism, according to which the struc-
tures in which mathematicians are interested are possible structures (Hellman,
1989). Whether such positions count as realist or not, depends on your position
on possibilia. There are both realist and anti-realist positions to be defended
here.
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that mathematics is indispensable to science, an argument with a se-
rious metaphysical conclusion can be made. In particular, W. V. Quine
(1976; 1953; 1981a; 1981b) and Hilary Putnam (1971; 1979a) have
argued that the indispensability of mathematics to empirical science
gives us good reason to believe in the existence of mathematical en-
tities. According to this line of argument, reference to (or quantifi-
cation over) mathematical entities such as sets, numbers, functions
and such is indispensable to our best scientific theories, and so we
ought to be committed to the existence of these mathematical en-
tities. To do otherwise is to be guilty of what Putnam has called
“intellectual dishonesty” (Putnam 1971, p. 347). Moreover, math-
ematical entities are seen to be on an epistemic par with the other
theoretical entities of science, since belief in the existence of the for-
mer is justified by the same evidence that confirms the theory as a
whole (and hence belief in the latter). This argument is known as the
Quine-Putnam indispensability argument for mathematical realism.
There are other indispensability arguments,5 but this one is by far
the most influential, and so in what follows I’ll concentrate on it.

The indispensability argument has attracted a great deal of atten-
tion, in part because many see it as the best argument for mathemat-
ical realism (or Platonism). Thus anti-realists about mathematical
entities (or nominalists) need to identify where the indispensability
argument goes wrong. Many Platonists, on the other hand, rely on
this argument to justify their belief in mathematical entities. The

5In general, an indispensability argument is an argument that purports to
establish the truth of some claim based on the indispensability of the claim in
question for certain purposes (to be specified by the particular argument). For
example, if explanation is specified as the purpose, then we have an explanatory
indispensability argument. Thus we see that inference to the best explanation is a
special case of an indispensability argument. See the introduction of Field (1989,
pp. 14–20) for a nice discussion of indispensability arguments and inference to the
best explanation. See also Maddy (1992) and Resnik (1995a) for variations on the
Quine-Putnam version of the argument. I should add that although the version
of the argument presented here is generally attributed to Quine and Putnam,
it differs in a number of ways from the arguments advanced by either Quine or
Putnam. Still, the version presented here is the one discussed in the contemporary
literature.
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argument places nominalists who wish to be realist about other theo-
retical entities of science (quarks, electrons, black holes and such) in
a particularly difficult position. For typically they accept something
quite like the indispensability argument as justification for realism
about quarks and black holes. Most scientific realists accept inference
to the best explanation. Indeed, inference to the best explanation is
arguably the cornerstone of scientific realism. But inference to the
best explanation may be seen as a kind of indispensability argument,
so any realist who accepts the former while rejecting the latter finds
them self in a very unstable position. They would seem to be holding
a double standard about ontology.

The indispensability argument can be stated in the following ex-
plicit form:

(P1) We ought to have ontological commitment to all
and only the entities that are indispensable to our cur-
rent best scientific theories.

(P2) Mathematical entities are indispensable to our best
scientific theories.

(C) We ought to have ontological commitment to math-
ematical entities.

Thus formulated, the argument is valid. This forces the focus
onto the two premises. In particular, a couple of important questions
naturally arise. The first concerns how we are to understand the
claim that mathematics is indispensable. Another question concerns
the first premise. This premise has a great deal packed into it and is
clearly requires some defence. We’ll consider each of these questions
in turn before turning to some of the more important objections to
the argument.

3.2.1 What is it to be Indispensable?

The question of how we should understand ‘indispensability’ is cru-
cial. Quine spells this out in terms of the entities quantified over in
the canonical first-order formulation of our best scientific theories.
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But we don’t have to follow him on this. After all, it is not clear
that all scientific theories can be put into this form. In any case, it
is useful to try to spell out the notion of ‘indispensability’ in more
intuitive terms.

The first thing to note is that ‘dispensability’ is not the same as
‘eliminability’, otherwise every entity would be dispensable (due to
Craig’s theorem).6 What we require for an entity to be ‘dispensable’
is for it to be eliminable and that the theory resulting from the en-
tity’s elimination be an attractive theory. (Perhaps, even stronger,
we require that the resulting theory be more attractive than the
original.) We will need to spell out what counts as an attractive
theory but for this we can appeal to the standard desiderata for
good scientific theories: empirical success; unificatory power; sim-
plicity; explanatory power; fertility and so on. Of course there will
be debate over what desiderata are appropriate and over their rel-
ative weightings, but such issues need to be addressed and resolved
independently of issues of indispensability (Burgess, 1983).

The question of how much mathematics is indispensable (and
hence how much mathematics carries ontological commitment) natu-
rally arises at this point. It seems that the indispensability argument
only justifies belief in enough mathematics to serve the needs of sci-
ence. Thus we find Putnam speaking of “the set theoretic ‘needs’ of
physics” (Putnam 1971, p. 346) and Quine claiming that the higher
reaches of set theory are “mathematical recreation ... without onto-
logical rights” (Quine 1986, p. 400) since these parts of set theory do
not find physical applications. One could take a less restrictive line
and claim that the higher reaches of set theory, although without
physical applications, do carry ontological commitment by virtue of

6This theorem states that relative to a partition of the vocabulary of an ax-
iomatizable theory T into two classes, t and o (theoretical and observational, say)
there exists an axiomatizable theory T ∗ in the language whose only non-logical
vocabulary is o, of all and only the consequences of T that are expressible in o
alone. If the vocabulary of the theory can be partitioned in the way that Craig’s
theorem requires, then the theory can be reaxiomatized so that apparent reference
to any given theoretical entity is eliminated. See Field (1980, p. 8) for further
details and for its relevance to the indispensability argument.
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the fact that they have applications in other parts of mathematics.
So long as the chain of applications eventually bottoms out in phys-
ical science, we could rightfully claim that the whole chain carries
ontological commitment. Quine himself justifies some transfinite set
theory along these lines, but he sees no reason to go beyond the
constructible sets (Quine 1986, p. 400). His reasons for this restric-
tion, however, have little to do with the indispensability argument,
so again we do not need to follow Quine on this issue.

3.2.2 Naturalism and Holism

Although both premises of the indispensability argument have been
questioned, it’s the first premise that is most obviously in need of
support. This support comes from the doctrines of naturalism and
holism.

Following Quine, naturalism is usually taken to be the philo-
sophical doctrine that there is no first philosophy and that the philo-
sophical enterprise is continuous with the scientific enterprise (Quine
1981b). By this Quine means that philosophy is neither prior to
nor privileged over science. What is more, science, thus construed is
taken to be the complete story of the world. Naturalism arises out
of a deep respect for scientific methodology and an acknowledgment
of the undeniable success of this methodology as a way of answering
fundamental questions about all nature of things. As Quine suggests,
its source lies in “unregenerate realism, the robust state of mind of
the natural scientist who has never felt any qualms beyond the ne-
gotiable uncertainties internal to science” (Quine 1981a, p. 72). For
the metaphysician this means looking to our best scientific theories
to determine what exists, or, perhaps more accurately, to determine
what we ought to believe to exist. In short, naturalism rules out un-
scientific ways of determining what exists. For example, naturalism
rules out believing in angels for mystical reasons. Naturalism would
not, however, rule out belief in angels if our best scientific theories
were to require them.

Naturalism, then, gives us a reason for believing in the entities in
our current best scientific theories and no other entities. Depending
on exactly how you conceive of naturalism, it may or may not tell you
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whether to believe in all the entities of your best scientific theories.
I take it that naturalism does give us some reason to believe in all
such entities, but that this is defeasible. This is where holism comes
in.

Confirmational holism is the view that theories are confirmed
or disconfirmed as wholes (Quine 1953, p. 41). So, if a theory is
confirmed by empirical findings, the whole theory is confirmed. In
particular, whatever mathematics is made use of in the theory is also
confirmed (Quine 1976, pp. 120–122). Furthermore, it is the same
evidence that is appealed to in justifying belief in the mathematical
components of the theory that is appealed to in justifying the empir-
ical portion of the theory (if indeed the empirical can be separated
from the mathematical at all). Naturalism and holism taken together
then justify P1. Roughly, naturalism gives us the “only” and holism
gives us the “all” in P1.

It is worth noting that in Quine’s writings there are at least two
holist themes. The first is the confirmational holism discussed above
(often called the Quine-Duhem thesis).7 The other is semantic holism
which is the view that the unit of meaning is not the single sentence,
but systems of sentences (and in some extreme cases the whole of lan-
guage). This latter holism is closely related to Quine’s well-known
denial of the analytic-synthetic distinction (Quine 1953) and his the-
sis of the indeterminacy of translation (Quine 1960). Although for
Quine, confirmational holism and semantic holism are closely related,
there is good reason to distinguish them, since the latter is generally
thought to be highly controversial, while the former is somewhat less
controversial. This is important to the present debate because Quine
explicitly invokes the controversial semantic holism in support of the
indispensability argument (Quine 1953, pp. 45–46). Most commen-
tators, however, are of the view that only confirmational holism is
required to make the indispensability argument fly (see, for example,
Field (1989, pp. 14–20), Resnik (1995a; 1997), and Maddy (1992)).
It should be kept in mind, however, that while the argument, thus

7See Duhem (1954)—originally published in 1906—for an early, classic pre-
sentation of confirmational holism.
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construed, is Quinean in flavour it is not, strictly speaking, Quine’s
argument.

3.3 Objections

There have been many objections to the indispensability argument,
including Charles Parsons’ (1980) complaint that the obviousness of
basic mathematical statements is left unaccounted for by the Quinean
picture and Philip Kitcher’s (1984, pp. 104–105) complaint that the
indispensability argument doesn’t explain why mathematics is in-
dispensable to science. The objections that have received the most
attention, however, are those due to Hartry Field, Penelope Maddy
and Elliott Sober. In particular, over the last 20–30 years, Field’s
nominalisation program has dominated discussions of the ontology
of mathematics.

We will consider Field’s (1980) positive proposal in more detail
in the next chapter, but for now let’s consider his objection to the
indispensability argument. In a nutshell, Field denies the second
premise of the Quine-Putnam argument. That is, he suggests that
despite appearances mathematics is not indispensable to science. But
of course he cannot simply deny this and be done; he must make a
case for the dispensability of mathematics. There are thus two parts
to Field’s project. The first is to attempt to demonstrate that our
best scientific theories can, indeed, survive without mathematics.8

That is, he attempts to show that we can do without quantification
over mathematical entities and that what we are left with is are
reasonably attractive theories. To this end he attempts to nominalise
a large fragment of Newtonian gravitational theory. Although this
is a far cry from showing that all our current best scientific theories
can be nominalised, it is certainly not trivial. The hope is that once
one sees how the elimination of reference to mathematical entities
can be achieved for a typical physical theory, it will seem plausible
that this could be extended to the rest of science.

8This is known as attempting to nominalise the science in question, since the
exercise is to rid science of the nominalistically dubious mathematical entities.
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The second part of Field’s project is to argue that mathemati-
cal theories don’t need to be true to be useful in applications—they
need merely be conservative. (This is, roughly, that if a mathematical
theory is added to a nominalist scientific theory, no nominalist con-
sequences follow that wouldn’t follow from the nominalist scientific
theory alone.) If, indeed, mathematics is conservative, that would
explain why mathematics can be used in science, but it would not
explain why it is used. The latter is due to the fact that mathematics
makes calculation and statement of various theories much simpler.
Thus, for Field, the utility of mathematics is merely pragmatic—
mathematics is not indispensable after all.

There has been a great deal of debate over the prospect for the
success of Field’s program but few have doubted its significance. As
I said, we will return to Field’s proposal in the next chapter. For
now, we simply note that Field’s program, amongst other things,
amounts to a very interesting line of objection to the indispensability
argument. He gives us reason for pause on what was once thought
to be the uncontroversial part of the indispensability argument: the
indispensability thesis itself.

Penelope Maddy, takes a different line of attack. She points out
that if P1 is false, Field’s project may turn out to be irrelevant to
the realism/anti-realism debate in mathematics. To this end, Maddy
presents a number of serious objections to the first premise of the in-
dispensability argument (Maddy 1992; 1995; 1997). In particular,
she suggests that we ought not have ontological commitment to all
the entities indispensable to our best scientific theories. Her objec-
tions draw attention to problems of reconciling naturalism with con-
firmational holism. In particular, she points out how a holistic view of
scientific theories has problems explaining the legitimacy of certain
aspects of scientific and mathematical practices—practices which,
presumably, ought to be legitimate given the high regard for scientific
practice that naturalism recommends. It is important to appreciate
that her objections, for the most part, are concerned with method-
ological consequences of accepting the Quinean doctrines of natural-
ism and holism—the doctrines used to support the first premise. The
first premise is thus called into question by undermining its support.

It is also worth commenting on the force of the argument style
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Maddy adopts. She argues for an internal inconsistency in the Quinean
background. She embraces the Quinean world view, for the sake of
argument, and shows that this leads to trouble. This is very differ-
ent, and much more compelling than, for example, arguing that from
the point of view of some other metaphysical position, the Quinean
world view is wrong. Maddy attempts to show that the Quinean, by
their own lights cannot accept both naturalism and holism. I’m not
suggesting that she succeeds in undermining the Quinean position—
I think there are responses the Quinean can make and ultimately I
stand on the side of Quine in this debate. I am just commenting
on the argumentative strategy Maddy adopts and drawing attention
to the strength of such a strategy. She is not begging questions
or merely attempting to push the burden of argumentative proof
around. She takes Quine on, on his own terms.

Maddy’s first objection to the indispensability argument is that
the attitudes of working scientists towards the components of well-
confirmed theories vary from belief, through tolerance, to outright
rejection (Maddy 1992, p. 280). She illustrates this with a case study
from the history of science. The example concerns the debate over
(modern) atomic theory from the early 19th century, to the early 20th
century. From about 1860 the atom became the fundamental unit of
chemistry, but the existence of atoms was not universally accepted
until early in the 20th century, when Albert Einstein’s (1879–1955)
theoretical work and Jean Baptiste Perrin’s (1870–1942) experimen-
tal work on Brownian motion sealed the deal and it was no longer
possible to deny the reality of atoms. But the Quinean picture of
science would, it seems, have it that atoms ought to have been ac-
cepted as real from about 1860, despite renowned scientists such as
Poincaré and Wilhelm (1853–1932) remaining sceptical of the reality
of atoms until as late as 1904. The point is that naturalism coun-
sels us to respect the methods of working scientists, and yet holism
is apparently telling us that working scientists ought not have such
differential support to the entities in their theories. Maddy suggests
that we should side with naturalism and not holism here. Thus we
should endorse the attitudes of working scientists who apparently do
not believe in all the entities posited by our best theories. We should
thus reject P1 of the indispensability argument.
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The next objection follows from the first. Once one rejects the
picture of scientific theories as homogeneous units, the question arises
whether the mathematical portions of theories fall within the true
elements of the confirmed theories or within the idealised elements.
Maddy suggests the latter. Her reason for this is that scientists
themselves do not seem to take the indispensable application of a
mathematical theory to be an indication of the truth of the math-
ematics in question. For example, the false assumption that water
is infinitely deep is often invoked in the analysis of water waves, or
the assumption that matter is continuous is commonly made in fluid
dynamics (Maddy 1992, pp. 281–282). Such examples indicate that
scientists will invoke whatever mathematics is required to get the
job done, without regard to the truth of the mathematical theory in
question (Maddy 1995, p. 255). Again it seems that confirmational
holism is in conflict with actual scientific practice, and hence with
naturalism. And again Maddy sides with naturalism. The point
here is that if naturalism counsels us to side with the attitudes of
working scientists on such matters, then it seems that we ought not
take the indispensability of some mathematical theory in a physical
application as an indication of the truth of the mathematical theory.
Furthermore, since we have no reason to believe that the mathemat-
ical theory in question is true, we have no reason to believe that the
entities posited by the (mathematical) theory are real. So once again
we ought to reject P1.

Maddy’s third objection is that, from a Quinean point of view,
it is hard to make sense of what working mathematicians are doing
when they try to settle independent questions. Recall that these are
questions that are independent of the standard axioms of set theory—
the ZFC axioms. As we saw in chapter 2, the question of the size
of the continuum—whether the continuum hypothesis is true—is one
such question. In order to settle some of these independent questions,
new axiom candidates have been proposed to supplement ZFC, and
arguments have been advanced in support of these candidates. The
problem is that the arguments advanced seem to have nothing to
do with applications in physical science: they are typically intra-
mathematical arguments. According to the thinking lying behind the
indispensability argument, the new axioms should be assessed on how
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well they cohere with our current best scientific theories. That is, set
theorists should be assessing the new axiom candidates with one eye
on the latest developments in physics. Given that set theorists do
not do this, confirmational holism seems to be advocating a revision
of standard mathematical practice, and this too, claims Maddy, is at
odds with naturalism (Maddy 1992, pp. 286–289).

Although Maddy does not formulate this last objection in a way
that directly conflicts with P1 it certainly illustrates a tension be-
tween naturalism and confirmational holism. And since both these
are required to support P1, the objection indirectly casts doubt on
P1. Maddy, however, endorses naturalism and so takes the objection
to demonstrate that confirmational holism is false.

Elliott Sober has similar concerns about the indispensability ar-
gument and arrives at a similar conclusion to Maddy. Sober (1993)
takes issue with the claim that mathematical theories share the em-
pirical support accrued by our best scientific theories. In essence,
he argues that mathematical theories are not being tested in the
same way as the clearly empirical theories of science. He points
out that hypotheses are confirmed relative to competing hypothe-
ses. Thus if mathematics is confirmed along with our best empirical
hypotheses (as the indispensability argument has it), there must be
mathematics-free competitors. But Sober points out that all scien-
tific theories employ a common mathematical core. Thus, since there
are no competing hypotheses, it is a mistake to think that mathe-
matics receives confirmational support from empirical evidence in
the way other scientific hypotheses do.

This in itself does not constitute an objection to P1 of the in-
dispensability argument, as Sober is quick to point out (Sober 1993,
p. 53), although it does constitute an objection to Quine’s overall
view that mathematics is part of empirical science. As with Maddy’s
third objection, it gives us a reason to reject confirmational holism.
The impact of these objections on P1 depends on how crucial you
think confirmational holism is to that premise. Certainly much of the
intuitive appeal of P1 is eroded if confirmational holism is rejected.
In any case, to subscribe to the conclusion of the indispensability
argument in the face of Sober’s or Maddy’s objections is to hold
the position that it’s permissible to have ontological commitment to
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entities that receive no empirical support. This, if not outright un-
tenable, is certainly not in the spirit of the original Quine-Putnam
argument.

It is not clear how damaging the above criticisms are to the in-
dispensability argument. Indeed, the debate is very much alive, with
many recent articles devoted to the topic. Closely related to this de-
bate is the question of whether there are any other cogent arguments
for Platonism. If, as some believe, the indispensability argument
is the only argument for Platonism worthy of consideration, then
if it fails, Platonism in the philosophy of mathematics is bankrupt.
Of relevance then is the status of other arguments for and against
mathematical realism. In any case, it is worth noting that the in-
dispensability argument is one of a small number of arguments that
have dominated discussions of the ontology of mathematics. It is
therefore important that this argument not be viewed in isolation.
It is also important to note that even if the indispensability argu-
ment is the only good argument for Platonism, the failure of this
argument does not necessarily authorise nominalism, for the latter
too may be without support. It does seem fair to say, however, that
if the objections to the indispensability argument are sustained then
one of the most important arguments for Platonism is undermined.
This would leave Platonism on rather shaky ground. We look at
some of the nominalist strategies in the philosophy of mathematics
in the next chapter.

Discussion Questions

1. According to structuralists, the numbers 2 is just a position in
a structure. But which structure? The natural number 2 is
part of the natural number structure, but it is also part of the
structure that is the integers. Moreover, the real number two
is part of the real number structure, and the complex number
2+0i is part of the complex number structure. Does this mean
that the structuralist is committed to a plurality of 2s? How
can they make sense of the idea that the natural numbers are
a subset of the real numbers, if each number depends on its
structure for its identity?
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2. Consider how a full-blooded Platonist might respond to an ob-
jection that with so many mathematical objects around, we can
no longer secure reference to the one’s we’re interested in. Re-
call that on the assumption that all Nepalese villages exist, my
beliefs about a particular Nepalese village can’t fail to be true
of one of the villages. But which one? What right do I have to
say “the Nepalese village I’m thinking of has a population of
370”. Do such plentitudinous theories solve the epistemological
access problem, but at the expense of a reference problem?

3. Really-full-blooded Platonists posit the existence of mathemat-
ical entities that inhabit inconsistent theories as well as those
that inhabit the consistent theories. So, they accept inconsis-
tent mathematical entities, such as the Russell set, along with
the usual sets of ZFC. Can you think of any motivation to take
this extra step? Can the full-blooded Platonist tell you which
theories are consistent?

4. How might an anti-realist about science resist the conclusion
of the indispensability argument?

5. How might a defender of the indispensability argument reply
to Maddy’s objections? Is it really a violation of naturalism
to criticise scientists—even scientists of the calibre of Poincaré
and Ostwald?

6. Is Sober right that scientific hypotheses are only ever confirmed
relative to competing hypotheses? What if there is only one
hypothesis and it exactly predicts all experimental results?

7. Think about the kind of mathematical realism delivered by the
indispensability argument. Can the argument be used by any
of the versions of mathematical realism we’ve seem so far? Can
the indispensability argument be used to support a mathemat-
ical realism that holds that mathematical truths are necessary
truths and that mathematical entities exist of necessity?
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Recommended Further Reading
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cus is Putnam’s short monograph Philosophy of Logic (included as
a chapter of the second edition of the third volume of his collected
papers (Putnam, 1971)). See also the introduction of Field (1989)
which has an excellent outline of the argument along with a good
accessible overview of his strategy for attacking the indispensability
argument. Colyvan (2001) is a sustained defence of the argument
and includes replies to the objections discussed in this chapter. For
an interesting pragmatic variant of the indispensability argument see
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tion of confirmational holism.
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Maddy (1992) and Sober (1993).
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Chapter 4

Fiction, Metaphor, and
Partial Truths

Mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true — Bertrand Russell (1872–1970)

In the last chapter we saw one of the main cases for Platonism,
namely, the indispensability argument. In this chapter we look at a
few anti-realist philosophies of mathematics. Each of these positions,
can be understood as a response to the indispensability argument.
They are also motivated by the Benacerraf epistemic challenge to
Platonism and the hope that it’s easier to be rid of troublesome
mathematical entities than it is to provide a Platonist epistemology.

4.1 Fictionalism

Fictionalism in the philosophy of mathematics is the view that math-
ematical statements, such as ‘7+5=12’ and ‘π is irrational’, are to be
interpreted at face value and, thus interpreted, are false. Fictionalists
are typically driven to reject the truth of such mathematical state-
ments because these statements imply the existence of mathematical
entities, and, according to fictionalists, there are no such entities.
Fictionalism is a nominalist (or anti-realist) account of mathematics
in that it denies the existence of a realm of abstract mathematical
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entities. It should be contrasted with mathematical realism (or Pla-
tonism) where mathematical statements are taken to be true, and,
moreover, are taken to be truths about mathematical entities. Fic-
tionalism should also be contrasted with other nominalist philosophi-
cal accounts of mathematics that propose a reinterpretation of math-
ematical statements, according to which the statements in question
are true but no longer about mathematical entities. Fictionalism is
thus an error theory of mathematical discourse: at face value mathe-
matical discourse commits us to mathematical entities and although
we normally take many of the statements of this discourse to be true,
in doing so we are in error.

Although fictionalism holds that mathematical statements im-
plying the existence of mathematical entities are strictly speaking
false, there is a sense in which these statements are true—they are
true in the story of mathematics. The idea here is borrowed from
literary fiction, where statements like ‘Bilbo Baggins is a hobbit’ is
strictly speaking false (because there are no hobbits). But such state-
ments are true in Tolkien’s fiction The Hobbit . Fictionalism about
mathematics shares the virtue of ontological parsimony with other
nominalist accounts of mathematics. It also lends itself to a very
straightforward epistemology: there is nothing to know beyond the
human-authored story of mathematics. And coming to know the
various fictional claims requires nothing more than knowledge of the
story in question. The most serious problem fictionalism faces is ac-
counting for the applicability of mathematics. Mathematics, unlike
Tolkien’s stories, is apparently indispensable to our best scientific
theories and, as we have seen, suggests that we ought to be realists
about mathematical entities.

4.1.1 Motivation for Fictionalism

As we have seen there are two competing pressures in finding an
adequate philosophy of mathematics (Benacerraf 1983). The first is
to provide a uniform semantics across mathematical discourse and
non-mathematical discourse. We want sentences such as ‘4 is larger
than 2’ to be treated semantically in the same way as sentences such
as ‘Sydney is larger than Amsterdam’, for at face value these two
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sentences seem to have the same structure and ought to have simi-
lar truth conditions. The second pressure is to provide an adequate
naturalistic epistemology for mathematics, one that does not make
a mystery of how we come by mathematical knowledge. And recall
that these are usually taken to be competing pressures because realist
philosophies of mathematics have little problem providing a uniform
semantics but typically have trouble providing a naturalistically ac-
ceptable epistemology. Nominalist philosophies of mathematics, on
the other hand, typically have difficulty providing a uniform seman-
tics, with many nominalist philosophies having to give up on this en-
tirely. But nominalist accounts fare much better with epistemology,
for according to these theories mathematical knowledge—whatever
it is—is not knowledge of abstract entities.

Fictionalist philosophies of mathematics can be seen to be pro-
viding an elegant way of dealing with these two competing pressures.
Fictionalism does employ a uniform semantics. ‘4 is larger than 2’ is
read at face value in the obvious way, just as ‘Sydney is larger than
Amsterdam’ is. The difference, according to fictionalism, is that the
latter sentence is true but the former is false. ‘4 is larger than 2’
is taken to be false because there are no referents for ‘4’ and ‘2’.
But the semantics in both cases are the same. As with other nom-
inalist theories of mathematics, epistemology does not present any
serious difficulties for fictionalism. According to fictionalism, there
is no mathematical knowledge apart from knowledge of the fiction
of mathematics itself. Knowing that in the story of mathematics
7+5=12 is no more problematic than knowing that in the Tolkien
story Bilbo Baggins is a hobbit. In both cases we know this by read-
ing the relevant stories, listening to others who are well versed in the
stories in question or, more adventurously, by exploring the logical
consequences of the respective stories.

The price of fictionalism, however, is that much of mathematics
is taken to be false.1 While at first it might seem unintuitive to claim

1I say ‘much of mathematics’ because fictionalism does preserve the truth val-
ues of negative existentials like ‘there is no largest prime number’. This statement
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that ‘7+5=12’ is false, but to claim otherwise is to commit oneself to
the existence of numbers. After all, it follows straightforwardly from
‘7+5 = 12’ that, for example, there exist numbers x, and y, such that
x+ y = 12. According to fictionalists, the existence of mathematical
objects is problematic enough to warrant denying the truth of such
statements.

It is also important to note that fictionalism in mathematics does
not mean that anything goes. Authors of mathematical theories, like
writers of good literary fiction, are not free to develop their fiction in
any way they please. For a start, consistency is usually thought to
be strongly desirable. Beyond that, there are also requirements not
to introduce unnecessary items. In good mathematics, as in good
literary fiction, posited entities contribute to the story. But perhaps
the greatest constraint on writing mathematical fiction is that the
latest instalment must square with all previous instalments. Previ-
ous generations of mathematicians introduced such “characters” as
sets, functions, natural numbers and so on. The current generation
of mathematicians must develop these “characters” in ways that are
consistent with what went before. It is as though current mathe-
maticians are all contributing to a multi-authored series of books.
Just as J. R. R Tolkien was heavily constrained in the last book in
The Lord of the Rings trilogy by what went before in The Hobbit
and the previous two books in the Lord of the Rings series, so too
modern mathematicians cannot develop the fiction of mathematics
in any way they please.

4.1.2 The Challenge for Fictionalism

The biggest problem facing fictionalism in mathematics is to explain
the central role mathematics plays in scientific inquiry. As we have
seen in the previous chapter, there is a very influential argument for
the existence of mathematical entities that needs to be confronted:

is true in standard mathematics, and therefore true in the story of mathemat-
ics, but according to fictionalism it is also true simpliciter, because there are no
numbers and a fortiori there is no largest prime.
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the indispensability argument.
Recall that this argument (outlined on page 49) is supposed to

resemble a style of argument endorsed by scientific realists. Accord-
ing to scientific realists, we are committed to electrons, black holes
and other unobservable theoretical entities because of the role those
entities play in our best scientific theories. The indispensability argu-
ment can be thought of as an attempt to push scientific realists a bit
further—to mathematical realism—but seen in this light it is likely
to have little bite on scientific anti-realists. As we have already seen,
there is an assumption of a naturalistic attitude, whereby we are
encouraged to look towards science for answers to questions about
ontology. This much is typically endorsed by scientific realists. But
Premise 1 of the argument says more: it also suggests that we ought
to believe in all the entities of our best scientific theories. This gives
voice to a kind of holism about scientific theories, whereby we cannot
pick and choose among the parts of our best scientific theories. Ac-
cording to the holism in question, we believe our best confirmed the-
ories in their entirety. The kind of holism involved is confirmational
holism, which has it that theories are confirmed or disconfirmed as
wholes, not one hypothesis at a time.

It is clear that fictionalists have two basic options: deny Premise 1
or deny Premise 2. The first option typically involves giving up
holism, although usually this is attempted while trying to maintain
a commitment to naturalism and scientific realism. The second op-
tion involves showing that, in the relevant respect, mathematics is
dispensable to science. This brings us back to Hartry Field’s (1980)
heroic attempt to do science without numbers.

4.1.3 The Hard Road to Nominalism: Hartry Field’s
Fictionalism

Field’s project is motivated by a commitment to providing a uniform
semantics and by epistemological concerns with Platonism. (The
particular approach Field adopts is also motivated by a couple of
other considerations: a commitment to providing intrinsic explana-
tions (i.e., explanations that do not rely on extraneous entities), and
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the elimination of arbitrariness from scientific theories (e.g., the elim-
ination of conventional co-ordinate frames and units of distance).
While these considerations provide the motivation for fictionalism,
according to Field, an adequate fictionalist philosophy of mathemat-
ics must explicitly address the indispensability argument. For the
latter he takes to be the only good argument for Platonism and,
as such, it presents a serious obstacle to any nominalist philosophy
of mathematics: undermine the indispensability argument and you
undermine Platonism. It is Field’s willingness to take the indispens-
ability argument head on that gives his account its distinctive flavour.
And it is for this reason that I refer to it as the “hard road” to nom-
inalism. Just how hard this road is will become apparent as we get
into the details of the Field program.

According to all varieties of mathematical fictionalism, most of
accepted mathematics is strictly-speaking false, but true in the fic-
tional story of mathematics. But Field recognises that the fictional-
ist account cannot stop there. After all, why should this particular
fiction—the fiction of standard mathematics—prove to be in such
demand in science? Field’s answer to this question is ingenious. He
simultaneously suggests how mathematics might be dispensed with
and how, despite its dispensability, it could be used so fruitfully in
its various applications throughout science.

The first part of Field’s project—showing the dispensability of
mathematics—begins by showing how a typical scientific theory such
as Newtonian gravitational theory might be constructed without
quantifying over mathematical items. The basic idea is to be a sub-
stantivalist about space-time points2 and then work directly with
space-time points/regions. Instead of talking of the gravitational
potential, for example, of some space-time point, Field compares
space-time points with respect to their gravitational potential. The

2Substantivialism about space-time points is committed to the reality of the
space-time manifold and, in particular, to the reality of space-time points. This
view should be contrasted with relational accounts of space-time, which have it
that space-time is just a way of organising events spatially and temporally—there
is no reason to posit space-time in addition to the events themselves.
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former, standard way, of talking (in terms of gravitational poten-
tial of space time points) involves a gravitational potential function
which is a map from the space-time manifold to real numbers and
this seems to commit one to realism about space, time, functions,
and the real numbers. But Field, following a suggestion of David
Hilbert, notices that one can do all one wants merely by comparing
space-time points with respect to their gravitational potential. This
relational approach does away with the nominalistically unaccept-
able mathematical machinery (functions and real numbers) in the
theory itself. But Field also proves a representation theorem (Field
1980, 55–91) that shows that in the meta-theory one can recover all
the relevant numerical claims. In particular, in the space-time the-
ory Field considers (a fragment of Newtonian gravitational theory),
there are no gravitational potential functions, mass-density functions
or spatio-temporal coordinate functions, but the representation the-
orem guarantees that these are recoverable in the meta-theory. So,
in a very important sense, nothing is lost.

Field, however, does not advocate doing science without math-
ematics; it is just that science can be done without mathematics.
And the latter is enough to suggest that mathematics is dispensable
to science. But now the question arises as to why invoking the fic-
tion of mathematics does not lead to trouble. After all, combining
a scientific theory with a work of fiction would generally lead to all
sorts of false and perhaps even contradictory results. What is so
special about mathematics and why is it acceptable to continue us-
ing the fiction of mathematics? This brings us to the second part of
Field’s program: demonstrating the conservativeness of mathemat-
ics. Recall, that the idea here is to show that a mathematical theory,
when combined with any nominalistic scientific theory, does not yield
nominalistic consequences that could not have been derived from the
nominalsitic theory alone. The mathematics allows for easier deriva-
tions and the like, but enlisting it in the services of science does not
yield anything new about the physical world. Put figuratively, the
falsity of the mathematics does not infect the science that employs
it. So if mathematics is conservative, we can continue using it and no
damage will be done. The conservativeness claim is thus crucial in
maintaining Field’s contention that his fictionalism does not result
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in any change to scientific practice.
Why believe that mathematics is conservative? Field provides

a couple of different proofs of this, but the intuitive argument in
support of the claim will suffice here. Field argues that good math-
ematics is conservative, and a discovery that a mathematical theory
was not conservative would be a reason to revise the mathematical
theory in question. After all, if a mathematical theory implied state-
ments about history or about how many biological species there are,
we would look on such mathematics with extreme suspicion, even if
the statements about history or biology were correct. It is also worth
noting that the relationship between conservativeness and some of its
neighbours. Necessary truth implies truth, but it also implies conser-
vativeness. And both the latter imply consistency. Conservativeness
is like necessary truth, without the truth. And according to Field,
good mathematics need not be true, but it does need to be conser-
vative.

Various objections are levelled at Fields programme, from claims
about the implausibility of extending it to curved space-times (Urquhart
1990) and non-space-time theories (e.g., quantum mechanics) (Mala-
ment 1982),3 through concerns about whether the nominalised sci-
ence Field constructs has the theoretical virtues of its mathematical
counterparts (Burgess 1983; Colyvan 2001), and whether a nominal-
ist is entitled to be a substantivalist about space-time (Resnik 1985),
to technical concerns over the logic Field relies on (first-order versus
second-order logic and the account of modality) (Burgess and Rosen
1997). Despite what might seem like an overwhelming weight of crit-
icism, it is important to recognise what Field’s programme achieves.
It outlines a very attractive and uncompromising fictional account
of mathematics, and one that does not shirk any of the major is-
sues. There may be problems and it may be incomplete as it stands,
but Field’s philosophy of mathematics is not alone in either of these

3David Malament (1982) argues that quantum mechanics, for one, is likely
to resist nominalisation because of the central role infinite-dimensional Hilbert
spaces play in the theory. Mark Balaguer (1996a; 1998), however, suggests a way
of nominalising the Hilbert spaces in question.
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respects.

4.2 An Easier Route to Nominalism?

While many philosophers are attracted to nominalism, the difficul-
ties facing Field’s approach lead them to explore other strategies.
Another approach involves rejecting the claim that we need to take
all the commitments of our best scientific theories seriously. In par-
ticular, this approach denies that mathematical entities are among
the entities we need to be ontologically committed to—despite their
indispensability to our best scientific theories. Several contemporary
philosophers have been exploring such accounts, although some of
these are not really nominalists (e.g., Balaguer 1998, Maddy 1997,
Yablo 2005) in that they deny that there is a fact of the matter
about whether mathematical entities exist. Still, there are a nom-
inalist strategy in the vicinity of each of the positions in question,
so I will treat them as nominalist strategies despite the defenders of
some of these views declining to sign up to nominalism.

This kind of “easy road” nominalism accepts the indispensability
of mathematics to science, but denies that this gives us any reason
to accept the existence of mathematical entities. The reasons for this
denial vary, but a common suggestion is that, in some sense, scien-
tific theories are about physical aspects of reality, and the positing
of mathematical entities is merely a tool for expressing what is re-
quired. Consider a mixed scientific statement, which invokes both
mathematical entities and physical entities: “There is a continuous
function that maps from the space-time manifold to the real numbers
such that certain conditions are satisfied.”

The nominalist takes this statement to be false (because there
are no functions) but accepts that what is said about the world is
true, namely, that the space-time manifold is as described. Note that
the nominalist in question does not try to provide a mathematics-free
translation of the mixed statement; that would involve a commitment
to something like Field’s programme. There are various ways to
try to motivate the non-commitment to mathematical entities. One
might argue, on independent grounds, that only causally active or
spatio-temporally active entities exist or, more plausibly, one might
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try to argue that scientific practice itself does not commit one to
the existence of mathematical entities (e.g., Maddy 1997). In the
next sections we’ll consider two such nominalist accounts: one due
to Jody Azzouni and one due to Stephen Yablo.

4.2.1 Nominalism Through Thick and Thin

Jody Azzouni has a very interesting and detailed nominalist strategy
for the philosophy of mathematics. Azzouni’s central idea is to dis-
tinguish between those scientific posits we ought to take to be real
and those to be treated instrumentally. Azzouni is a realist about un-
observable entities so he does not take the observable–unobservable
distinction to mark the relevant cleavage here. He does admit, how-
ever, that there is something special about direct observation. With
direct observation as the example of epistemic access, par excellence,
Azzouni then considers the important features of this kind of access.

He isolates four conditions direct observation satisfies (Azzouni
2004, pp. 129–136): robustness, refinement , monitoring , and ground-
ing. Epistemic access satisfies robustness when the access does not
depend on the expectations of the epistemic agent; for example, our
theory about genetics might prove to be incorrect or might other-
wise surprise us by outstripping our expectations. Epistemic access
satisfies refinement when there are ways of adjusting and refining
the epistemic access we have to the posit in question; for example,
we can use more powerful microscopes to get a better look at micro-
organisms. Epistemic access satisfies monitoring when we can track
the posits in question by either detecting their behaviour through
time or by exploring different aspects of the posits in question; for
example, we can follow a particle via its track in a cloud chamber
or we can walk around a mountain to view it from different aspects.
Epistemic access satisfies grounding when particular properties of
the entity in question can be invoked in order to explain how the
epistemic access we have enables the discovery of those and other
properties of the object; for example, we can identify the heart in
a chest x-ray because its relative density means that it appears as
a region of greater x-ray absorption and this, in turn, enables us to
determine other properties of the heart, such as its size. As should
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be clear from some of these examples, direct observation is not the
only kind of epistemic access to satisfy these conditions. These four
conditions can be thought of as generalisations of features of typical
direct observation. When we have access to unobservable particles
such as alpha particles via a cloud chamber, we find that such access
also satisfies these four conditions. Azzouni calls such access thick
epistemic access. And as a generalisation of direct access, it enjoys
the privileged epistemic status of the latter.

Now contrast thick epistemic access with the kind of access we
have via the role an entity plays in a scientific theory that enjoys the
usual aesthetic virtues of simplicity, familiarity, and so on. Let us
call such theoretically-motivated access thin epistemic access, and
contributing to the theoretical virtues of the theory in question.
(Azzouni suggests that the latter amounts to an entity “paying its
Quinean rent”.) Entities accessed thinly may play indispensable roles
in our best scientific theories, but intuitively they do not have the
same kind of privileged status as entities accessed thickly. In addi-
tion to paying their Quinean rent, entities accessed thinly must also
have a story in place explaining why they are not accessed thickly.
For example, we might not be able to have thick access to the black
hole at the centre of the Milky Way, but our very understanding of
what a black hole is delivers a story of why we fail to have thick
access (e.g., because black holes do not reflect or emit light). This
“excuse clause” turns out to do a lot of work for Azzouni.

The third kind of epistemic access Azzouni considers is ultra-
thin access.4 These we can think of as mere posits; they can be
posited by anyone at anytime without any regard for reality. The
posits of fiction are paradigmatic examples here. They need not play
indispensable roles in our best scientific theories and they do not
have excuse clauses for why they are not accessed thickly. Now we
are in a position to draw the line between what’s real and what’s not.

4It is the epistemic access to posits that is thick, thin, or ultra thin, although
often it is convenient to speak of the posits themselves as thick, thin, or ultra
thin.
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According to Azzouni, the thin–ultra-thin distinction is the crucial
one: posits accessed either thickly or thinly are to be thought of as
real. The ultra thin, unsurprisingly, are not taken to be real, since
they do not earn their keep. Azzouni explains how a thin posit can
be demoted to ultra-thin, and the difference in attitude towards the
two.

The difference between thin posits and ultra-thin posits
(which live free of charge) is striking. Should one of the
former fail to pay its Quinean rent when due, should an
alternative theory with different posits do better at sim-
plicity, familiarity, fecundity, and success under testing,
then we have a reason to deny that the thin posits, which
are wedded to the earlier theory, exist—thus, the evic-
tion of centaurs, caloric fluid, ether, and their ilk from
the universe. (Azzouni, 2004, p. 129)

It is important to note that if a thin posit fails to deliver its excuse for
why it is not thick—even if its Quinean rent is paid—it will also find
itself classified as ultra thin and thus evicted from Azzounis ontology.

What we end up with is a way of distinguishing those portions
of our scientific theories that are taken to be real, from those that
are to be treated instrumentally. Indeed, the cleavage produced is
very similar to the causal–acausal distinction. The thick posits are
typically entities with which we have causal contact, the thin are typ-
ically causal entities required by our best scientific theories but with
an excuse as to why we fail to have thick (causal) access to them, and
the altra-thin are typically acausal entities. This rough aligning of
the causal–acausal cleavage and the real–instrumental cleavage, pre-
sumably, is no accident. Earlier Azzouni (1997) toyed with the idea
of using the former as the means of distinguishing the real from the
instrumental. The problems associated with using a causal criteria,
however, are serious. Indeed, without independent motivation, such
an approach is simply question begging. The beauty of Azzouni’s
thick and thin epistemic access approach is that it does not seem to
beg the question against Platonism and yet, according to Azzouni,
it does rule against ontological commitment to abstract entities such
as numbers. If all this were to work, we would have a plausible easy
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road to nominalism.

4.2.2 Trouble in the Tar Pits

There are, however, some problems with this approach. First, note
that the thick, thin, and ultra-thin distinction is not sharp and yet
it needs to be in order to do the work required of it. The point is
that epistemic access can have the four crucial features—robustness,
refinement, monitoring and grounding—in degrees. Take refinement,
for example. Using a more powerful optical telescope makes a big
difference when looking at Saturn, it makes less difference when look-
ing at Alpha Centauri, and even the most powerful optical telescopes
make no difference at all when looking at a very distant star whose
presence is theoretically established (because, say, it is having an in-
fluence on the motion of an observable binary partner). So do we
say that epistemic access to Saturn satisfies the refinement condi-
tion, epistemic access to Alpha Centauri partially satisfies it, and
epistemic access to the distant star does not satisfy refinement at
all? That seems reasonable enough. But now notice that although
Azzouni will presumably accept all three posits as real, he will do
so for three quite different reasons. He will accept Saturn as real
because it is a thick posit. He will accept the star in the distant
galaxy as real because it is thin—the defeasibility condition kicks in
to explain why the access is not thick: the star in question is too far
away. But what of Alpha Centauri? According to Azzouni, it will
be a thick posit. But it won’t be as thick as Saturn (or so we are
supposing for the purpose of the example). Being less thick, it might
plausibly require a partial excuse for not being as thick as we’d like.
The excuse, of course, is that the star in question is a fair way a way
(but not too far away for refinement to be impossible). But now this
raises a serious question about the strength and nature of the defea-
sibility condition. It seems that some posits can be borderline thin?
And given the above suggestion that the excuse clauses might come
in varying strengths—some excuses are better than others—it may
well be that the crucial thin–ultra-thin border is not sharp either.
But perhaps that’s OK. The lack of sharpness here does not need to
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correspond with a lack of sharpness in reality. It’s not as though, ac-
cording to Azzouni, there are partially existing objects. Rather, the
vagueness in question corresponds to degrees of justification and just
means that there will be some objects which we should be agnostic
about—the case for their existence is not compelling but neither is
the case against their existence.

But worse still, there would seem to be clear cases of entities
that do not fall into Azzouni’s tripartite classification. Those I have
in mind enjoy the Quinean virtues but do not come equipped with
an excuse for their lack of thick epistemic access. Let’s call the
access to such entities very thin. It is worth drawing attention to the
importance of Azzouni’s excuse clause concerning the lack of thick
access. Recall that an entity is thin if we do not have thick access to
it, but the entity in question pays its Quinean rent and has an excuse
for its failure to support thick access. This excuse clause is important
in order to avoid obvious counterexamples such as stars and planets
outside our backward light cone. The latter are uncontroversially real
but we cannot have thick access to them. They pay their Quinean
rent and there is also a well-accepted story as to why we don’t have
thick access to such stars and planets: basically, they are too far
away. But what if the excuse were not forthcoming? What should
we say about very thin posits? Azzouni does not think that there
are any, so does not tell us whether to count such posits as real or
not. Such posits are thus confined to a kind of ontological purgatory:
neither real nor unreal.

Some examples of such posits may help. Consider a “gap” in the
fossil record. This is a creature posited in order to make sense of the
standard evolutionary story but with which we have no contact, let
alone thick epistemic access. The crucial question is whether there
is a story in place as to why we don’t have thick access with such
creatures. This is crucial because with a story, Azzouni is able to
deliver the intuitively-correct result that we are justified in taking
such creatures to be real; without a story, such creatures turn out
to be very thin and thereby sentenced to ontological purgatory. One
excuse might simply be that such creatures are now extinct and so
cannot be tracked. The fact that they existed in the past but are
now extinct might be all that’s required. But this seems too cheap.
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Surely we want a more substantial story about why such creatures
never fell into tar pits or the like. But I take it (or at least we can
suppose for the purpose of this example) that we don’t have such a
story. We are thus faced with two possibilities: (i) either these gaps
in the fossil record are accessed very thinly and Azzouni gives us no
advice about their ontological status, or (ii) they are accessed thinly
because they come equipped with a fairly trivial and obvious story
about why they are not accessed thickly.

Now to return to the case of interest: mathematical entities.
These are not accessed thickly, on that (almost) everyone agrees.
The question is whether they are accessed thinly, very-thinly or ultra-
thinly. Mathematical objects (at least prima facie) enjoy the Quinean
virtues, so they are (at least prima facie) not ultra thin. Whether
they are thin or very thin depends on what can count as an excuse
for not being accessed thickly. I suggest that mathematical objects,
being acausal, have such an excuse. But is this excuse acceptable?
Azzouni doesn’t give us any guidance; he offers no systematic story
about acceptable excuse clauses. Moreover, the excuse clauses play a
central role in Azzouni’s account, so independently of concerns about
mathematical entities, a well-motivated and detailed account of what
passes for an excuse is required.

It is an interesting feature of Azzouni’s account that many of our
scientific (and historical) posits do not enjoy thick epistemic access:
dinosaurs, Gondwanaland, the inflationary phases of the big bang,
and Plato, to name a few. (Posits from past times are not able to be
tracked and so cannot be accessed thickly.) It is, thus, clear that the
issue of what counts as a permissible excuse for lack of thick access
is crucial. If Azzouni is fairly liberal about such stories, then the
excuse that mathematical entities are abstract may be acceptable.
If he is too restrictive, Azzouni risks sliding into some form of sci-
entific antirealism—a kind of presentism, where only present objects
can be thought to be real. In any case, whether the account of per-
missible excuses is liberal or restrictive, it needs to be independently
motivated. After all, the ontological status of a large number of our
theoretical posits will depend on the excuse clause. And without an
independently-motivated account of what excuses are admissible, we
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have no reason to take mathematical entities as unreal.5

4.3 Mathematics as Metaphor

There’s another position that’s quite distinct from Platonism and
nominalism—a kind of metaphysical nihilism whereby there is no
fact of the matter about the existence of mathematical entities. In
a sense, metaphysical nihilists are the common enemy of Platon-
ists and nominalist alike. But they have one thing in common with
nominalism: they’re not Platonists. In any case, I include this po-
sition here in the chapter on nominalism because some of the ni-
hilist strategies against mathematical realism can be (and have been)
adapted by nominalists.6 Several philosophers have advanced posi-
tions along these lines (Maddy 1997, Balaguer 1998, and Yablo 1998,
2005, 2009). Here I’ll just very briefly sketch one such proposal due
to Stephen Yablo.

Yablo likens mathematics in science to metaphor. He begins by
noting that it would be a mistake to take metaphorical statements
(and figurative language, generally) to commit us to the objects ap-
parently quantified over in such language. Take, for example the
title of R. Dean Taylor’s 1967 Motown single ‘There’s a Ghost in
My House’.7 Clearly we should not take the title’s existential claim
seriously; there is no reason to entertain the existence of ghosts, even
if the title truly describes how it feels to live in a house after your
partner has left. The metaphor in question is supposed to conjure up

5In case t is not obvious, here is a place where I am unashamedly injecting
my own views. The debate over whether Azzouni’s nominalist account of mathe-
matics succeeds is very-much alive. The interested student will find a number of
articles in the current literature both defending and criticising Azzouni’s view’s—
his position is attracting a great deal of attention. Moreover, this attention is
well deserved. Azzouni’s position is a major new development in the philosophy
of mathematics.

6For example, Mary Leng (2010) uses the nihilist criticisms of Quinean realism
discussed in this section to mount a case for nominalism.

7Written by Brian Holland, Lamont Dozier, Edward Holland, and R. Dean
Taylor.
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a suite of images. And like all interesting metaphors, the possible in-
terpretations are never exhausted, and they require some interpretive
work on the part of the reader. As Donald Davidson (1978, p. 29)
once suggested “[m]etaphor is the dreamwork of language, and like
all dreamwork, its interpretation reflects as much on the interpreter
as on the originator”.

Next, we note that we can invoke metaphors (and other forms
of non-literal language) to truly describe actual situations. To use
one of Ken Walton’s examples, we can describe the Italian town of
Crotone as being located on the arch of the Italian boot. Here the
metaphor draws our attention to the similarity between the shape of
Italy and a boot. We then engage in the pretence that Italy is a boot
and this pretence allows us to give (more or less) accurate information
about the location of Crotone. Moreover, such figurative language is
present in our scientific discourse—average stars and so on—and such
uses are arguable ineliminable. Yablo then argues that there is no
clear boundary between the portions of scientific discourse intended
literally and those which are merely metaphorical. This leads to a
serious problem for the Quinean. Clearly we should only read off our
ontological commitments from literal parts of our scientific theories,
but if these theories are shot through with figurative language, we
need to be able to separate the literal from the figurative before we
can begin ontology. But here’s the kicker, according to Yablo, there
is no way of separating the literal from the figurative.

To determine our commitments, we need to be able to
ferret out all traces of non-literality in our assertions. If
there is no feasible project of doing that, then there is no
feasible project of Quinean ontology. (Yablo 1998, p. 233)

Yablo only considers descriptive uses of language in science—
language intended to describe the state of some system. He does
not consider uses of scientific language intended to explain why some
system is in a particular state. Does this make a difference? I think it
does. It may well be right that metaphorical language intended only
to describe, need not carry ontological commitment (or at least, it
need not carry the obvious, literal ontological commitments (“ghosts”
and the like), but it’s not clear that language intended to deliver
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explanations can be thought to be free of such commitments.
So let’s grant that metaphorical language (and figurative lan-

guage generally) can be used for purposes of true description, as
Walton and Yablo rather convincingly argue. The important ques-
tion for our purposes is whether figurative language can be explana-
tory. Take, for example, the sentence “The owner of the motel is un-
hinged”. This sentence invokes a metaphor to describes certain psy-
chological features of the motel owner, but it might also be thought to
explain why you might be reluctant to stay at the motel in question.
And as we’ve already seen, there is no need to take the ontologi-
cal commitments of the metaphorical language seriously—no need
to expect the motel owner to consist, in part, of broken hinges or to
make noises like a broken shutter. But wait! How can a metaphor,
invoking non-existent entities, explain? Answer: The explanation of
the metaphor stands proxy for some further real explanation. The
real explanation being that we are reluctant to stay at the motel in
question because we fear that the motel owner cannot be relied upon
to act appropriately (where this, in turn stands proxy for a more
complicated story about the motel owner’s cognitive states and ca-
pacities). The important point to note here is that, to the extent
that the metaphor is explanatory, any explanation delivered by the
metaphor is really just standing proxy for another more complicated
explanation. In any case, the ontological baggage of the metaphor-
ical explanation, the hinges, for example, do not play any essential
role in the explanation. That’s the thought, at least.

This raises the question of whether there are cases where fictional
entities, invoked by a metaphor, carry some of the explanatory load.
Yablo argues for a number of different ways in which metaphors are
essential, but one he doesn’t consider is metaphors essential for expla-
nation. Suppose you want to explain why someone is feeling anxious
and depressed after their partner has left, and you say that there’s
a ghost in their house. Clearly this won’t do. For the metaphor
to function as an explanation, either there must literally be a ghost
in their house, in which case it’s not a metaphor at all, or it’s not
an explanation because it relies on non-existent entities. It seems
that metaphors can carry explanations only when the metaphor in
question stands proxy for some non-metaphorical explanation. It is
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hard to see how there could be metaphors essential to explanation.
At least Yablo has not established that there are any such cases.

So my suggestion here is that when some piece of language is
delivering an explanation, either that piece of language must be in-
terpreted literally or the non-literal reading of the language in ques-
tion stands proxy for the real explanation. Moreover, in the latter
case, this real explanation must be understood to be conveyed by
the metaphor in question.8 If this is right, we have the makings of
an at least partial response to Yablo’s challenge to mark the bound-
ary between the literally true parts of our theory and the figurative:
whenever we have an explanation that is not simply a metaphor
standing proxy for some other real explanation, we ought to treat
the language in question as literal and thus as being ontologically
committing. It remains to show that there are cases in scientific dis-
course where mathematics features in explanations. If we can show
this, then anyone tempted by Yablo’s metaphysical nihilism will have
one of two options: (i) provide suitable and well-understood transla-
tions of the mathematical explanations in question or (ii) show why
the alleged explanations in question are not really explanations at
all. If neither of these is possible, we have good reason to accept the
explanations at face value and to take their ontological commitments
seriously.9

The issue of mathematical explanations has arisen several times
in the last couple of chapters. In the next chapter we turn to a more
thorough treatment of this topic.

8So rich metaphors, where the possible interpretations (and even intended
interpretations) are not exhausted by any convenient translation, do not seem
capable of delivering genuine explanation.

9Again I’m taking a stand on substantial issues here—issues that at the time
of writing—are considered to be wide open. I encourage you to think critically
about both my and Yablo’s positions here. Whether you agree with Yablo or not,
his position is interesting, novel, and an important development in the debate
over mathematical realism and nominalism.
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Discussion Questions

1. In line with our (rough) definition of conservativeness given in
this and the last chapter, the conservativeness of mathemat-
ics can be defined more formally as: A mathematical theory
M is said to be conservative if, for any body of nominalistic
assertions S and any particular nominalistic assertion C, then
C is not a consequence of M + S unless it is a consequence of
S. But even this is not quite right. Consider a case where S
contains the sentence that there are no mathematical entities.
This would render M + S inconsistent. How would this triv-
ialise the definition? How would you refine the definitions to
avoid such difficulties?

2. One of Field’s formal proofs of the conservativeness of mathe-
matics uses set theory. Is it legitimate for him to use mathemat-
ics in the process of showing that mathematics is dispensable?

3. As mentioned, one of Field’s motivations is to exclude extrinsic
entities and seek intrinsic explanations. Field says, “one wants
to be able to explain the behaviour of the physical system in
terms of the intrinsic features of that system, without invoking
extrinsic entities (whether non-mathematical or mathematical)
whose properties are irrelevant to the behaviour of the system
being explained” (Field 1984, p. 193). But Field also expresses
sympathy towards a unification account of explanation which
involves reducing the number of independent phenomena, of-
ten by making some surprising connections (Field 1993, p. 295).
(See section 5.1, page 87 for more on this account of explana-
tion.) Is there a tension here? Can explanation both unify and
be intrinsic?

4. Let’s suppose that fictionalists are right and the so-called truths
of mathematics are only true according to the story of math-
ematics. So that “7 is prime” is false, but it is true in the
story of mathematics. It is tempting to introduce an “in the
story of mathematics” operator into our language so that we
can recover truth simpliciter. “In the story of mathematics 7 is
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prime” is thus simply true. Now consider the sentence “Erdős
loved numbers”. Try to insert the “in the story of mathemat-
ics” operator in such a way that this sentence comes out true
simpliciter. Or harder still: “Erdős loved numbers more than
he loved anything else—real or fictional”.

5. How might Azzouni respond to the challenge of spelling out
what counts as a legitimate excuse for failing to provide thick
access? Do you think “being without causal powers” should
count as a legitimate excuse?

6. Does science really use figurative language in fully-developed
theories? Is the task of disentangling the literal from the fig-
urative elements of scientific discourse as hopeless as Yablo
suggests?

7. Can there be purely metaphorical explanations? That is, can
there be explanations that employ metaphorical language and
such explanations are not just standing proxy for the real ex-
planation?

Recommended Further Reading
Field (1980) provides a fairly technical account of the most influen-
tial fictionalist program in the philosophy of mathematics. Balaguer
(2009) presents and alternative fictionalist strategy. A good overview
of fictionalism in metaphysics can be found in Eklund (2007), Burgess
and Rosen (1997) provide a very good and critical overview of nomi-
nalist strategies, generally, and Burgess (1983) offers some criticisms
of nominalism. Azzouni’s “easy road” strategy can be found in his
book Azzouni (2004) and also in a number of papers such as (Az-
zouni 1997) and critically discussed in Colyvan (2005). A good place
for Yablo’s criticisms of the Quinean approach to metaphysics is his
(1998; 2005). Leng (2010) puts this to work in developing a nominal-
ist philosophy of mathematics. Another major “easy road” strategy
can be found in Melia (2000).
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Chapter 5

Mathematical Explanation

“In mathematics you don’t understand things. You just
get used to them” — John von Neumann (1903–1957)

Mathematical explanation is a hot topic in current work in the phi-
losophy of mathematics. We have already seen one reason for this:
the close connection between the indispensability argument for math-
ematical realism and the scientific realist’s reliance on inference to
the best explanation. This connection is even tighter if it can be
established that there are mathematical explanations of empirical
phenomena. As a result, a great deal of recent work on realism–
anti-realism issues in mathematics has focussed on mathematical ex-
planations in science. Irrespective of such issues, the question of
mathematical explanation is important in its own right and deserves
closer attention.

We start by making a distinction between two different senses
of mathematical explanation. The first, we call intra-mathematical
explanations. These are mathematical explanations of mathematical
facts. Such explanations can take the form of an explanatory proof—
a proof that tells us why the theorem in question is true—or perhaps
a recasting of the mathematical fact in question in terms of another
area of mathematics. There is also the issue of whether mathematics
can explain empirical facts. Call this extra-mathematical explana-
tion. A full account of mathematical explanation will provide both

85
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a philosophically satisfying account of intra-mathematical explana-
tion. and an account that coheres with our account of explanation
elsewhere in science.

5.1 Theories of Explanation

At the most basic level, an explanation is a story that makes some-
thing that is initially puzzling, less puzzling; an explanation reduces
mystery. Often explanations are offered as replies to “why” ques-
tions: “Why did the species become extinct?; “A very efficient preda-
tor was introduced”. “Why do pulsars spin so fast?”; “They collapse
under gravitational forces and as a result of the conservation of an-
gular momentum, there is an increase in angular velocity”.

There are a number of different philosophical theories of scientific
explanation. Most, however, are non-starters as accounts of mathe-
matical explanation. For example, according to one popular line, an
explanation involves identifying relevant causes of the explanandum
(that which is to be explained). So the explanation of the recent
eruptions of the Icelandic volcano Eyjafjallajökull would involve an
account of the build up of magma and gases and their eventual re-
lease, after sufficient pressure was reached. It is clear that what-
ever virtues such causal/mechanical accounts of explanation enjoy,
these accounts are of no use for mathematical explanations. One can
hardly appeal to causes to explain why the fundamental theorem of
algebra holds or why Pythagorus’s theorem holds.

Other accounts of explanation involve probability theory and sta-
tistical relevance. For example, according to one account, an expla-
nation of some event E is given in terms of another event C such
that P (E|C) > P (E). The intuitive idea here is that the event C
raises the probability of E, and as such, C may serve to (at least in
part) explain E. Think of a case where E is initially very unlikely,
but learning of some other event makes E rather likely. Again, such
statistical accounts of explanation clearly have something going for
them, but they are no use for mathematical explanation. The usual
understanding of mathematics is that it is a body of necessary truths.
That is, a mathematical statement is either necessarily true or neces-
sarily false. This, in turn, means that all the probabilities in question
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are either zero or one. So for the probabilistic account of explanation
just sketched to work here, mathematical explanations would need
to raise the probability of some mathematical explanandum from 0
to 1. But this is not possible, at least it’s not possible on standard
accounts of probability theory where if P (E) = 0, there is no C such
that P (E|C) > 0, let alone P (E|C) = 1.1 In any case, according
to a common-sense view of mathematics, mathematical statements
always have probability 1 or probability 0; the whole notion of prob-
ability raising seems to be on the wrong track.

Finally, an account of explanation that does seem to have some
legs when it comes to mathematics is the unification account.2 Ac-
cording to this account, explanation is the business of unifying a
collection of perhaps disparate facts under a single over-arching the-
ory. The classic examples of unification in science include Newton’s
theory of gravitation, which unifies such phenomena as the tides and
celestial mechanics. It also seems plausible that Newton’s theory—
via the unification in question—also explains the tides and various
details of celestial mechanics. One point worth noting about this ac-
count of explanation is that it does not require that the overarching
theory is epistemically more secure or more fundamental. Indeed, in
the case of Newtonian gravitational theory, the overarching theory
was rather contentious at the time, in that it invoked a notion of grav-
itation acting at a distance. But still gravitation could be invoked
to explain the tides, for example, because of the unification—not be-
cause gravitation is better understood than the tides. At least, that’s
how explanation is supposed to work on the unification account.

The unification account of explanation faces a number of chal-
lenges. These problems included some alleged counterexamples and
the problem of spelling out crucial notions, such as “unification”, in
anything other than metaphorical terms. Indeed, it’s fair to say that

1Oddly, if P (E) = 0, even P (E|E) 6= 1. P (E|E) is not defined.
2An older, now largely-abandoned account of explanation known as the

deductive-nomological (or D-N) account also has some credibility as an account
of mathematical explanation.
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the problems facing the unification account are considered serious
enough to make it something of an outsider in current discussions
of scientific explanation. Be that as it may, this account strikes me
as very well placed to make sense of mathematical explanation. I’ll
have more to say about this in the next section.

5.2 Intra-Mathematical Explanation

We need to take seriously mathematicians’ claims that there is ex-
planation in mathematics. For instance, Fields medalist3 Timothy
Gowers and Michael Neilson (2009, p. 879) point out that

[F]or mathematicians, proofs are more than guarantees of
truth: they are valued for their explanatory power, and
a new proof of a theorem can provide crucial insights.

Not all philosopher’s take such claims seriously. But those who would
dismiss mathematical explanation are on very shaky ground. Some,
for example, reject mathematical explanation because it is not ac-
commodated by their preferred philosophical account of explanta-
tion. To my way of thinking, that’s getting the order of things the
wrong way around. The job of philosophers of science and math-
ematics is to help make sense of, and contribute to, science and
mathematics as practiced . The role of philosophers is not to over-
rule the pronouncements of mathematics and science on philosophical
grounds—at least not the pronouncements on matters of mathemat-
ics and science. In any case, there does not seem to be a completely
satisfactory philosophical theory of scientific explanation, so to rule

3The Fields Medal is perhaps the highest honour in mathematics. It
is awarded every 4 years to a mathematician 40 or younger “to recog-
nize outstanding mathematical achievement for existing work and for the
promise of future achievement” (taken from the Fields medal website:
http://www.mathunion.org/general/prizes/fields/details/, accessed 26th Decem-
ber, 2010).
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out mathematical explanation on the grounds of an unsatisfactory
philosophical theory is simply poor methodology.

Instead, I propose we take mathematical explanation seriously,
since it is taken seriously by mathematicians. If mathematical ex-
planation does not sit well with some philosophical theory of explana-
tion, so much the worse for the philosophical theory of explanation.
It may be that mathematicians are mistaken when they suggest that
there is explanation in mathematics, but that needs to be argued for
on independent grounds. It cannot be taken as the starting point for
discussion on explanation. And if there is no mathematical expla-
nation, that cannot be taken as having been established by a failure
on the part of philosophy to deliver an account of explanation that
accommodates mathematical explanation. OK, that’s the end of the
sermon on methodology!

In order to make progress on the topic of mathematical explana-
tion, we first need to get a feel for what mathematicians have in mind
when they talk of explanations in mathematics. So let’s consider a
couple of ways explanations seem to arise in mathematics and some
examples of each.

5.2.1 Explanatory and Non-explanatory Proofs

Mathematicians value explanatory proofs and contrast these with
unexplanatory proofs. But it is difficult to find a great deal of agree-
ment in the mathematical literature on which proofs are explanatory
and which are not. This is not because such issues are irrelevant to
mathematical practice, it’s just that some things don’t find their way
into the final published articles. After all, to claim that one proof of
a particular theorem is more explanatory than some other proof of
the same theorem invites the question: on what basis is this claim
being made. Without a theory of mathematical explanation, it is
very difficult to answer such questions. It’s better to leave explana-
tory comparisons out of published work and let others decide for
themselves. But, still, one encounters talk of explanatory virtues of
theorems in the maths classroom and in other more informal settings.

One kind of proof that is generally thought to be unexplanatory
are reductio proofs. Recall that these are proofs that proceed by
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assuming the negation of the proposition to be proved and deriving
a contradiction from it. So for example, consider Euclid’s (ca. 300
BCE) proof that there are infinitely many prime numbers.4

Theorem 2 (Euclid). There are Infinitely Many Prime Numbers.

Proof. Assume that there is a largest prime. Call it p`. Now consider
the number one greater than the product of all the primes: n = 2×
3×5×...×p`+1. Either n is a product of primes or it is a prime larger
than p`. If the latter, we have a contradiction, since, by assumption
p` is the largest prime. So n must be a product of primes. But now
we show that at least one of the primes must be greater than p`. If n
is a product of primes and has no prime factors greater than p`, then
one of its factors, q, must be in the sequence 2, 3, 5, ..., p`. It therefore
divides the product 2 × 5 × ... × p`. However, since it is a factor of
n, it also divides n. But a number which divides two numbers also
divides their difference, so q must also divide n−(2×3×5×...×p`) =
(2 × 3 × 5 × ... × p` + 1) − (2 × 3 × 5 × ... × p`) = 1. However, no
prime divides 1 so q is not a prime in the sequence 2, 3, 5, ....p`. It
follows that if n is composite, it has at least one factor greater than
p`. This is a contradiction. There is thus no largest prime; there are
infinitely many primes.5

What this proof establishes is that there must be infinitely many
prime numbers because otherwise we’d get a contradiction. Ar-
guably, this does not help us see why there are infinitely many prime
numbers. However, I resist suggesting that all reductio proofs are un-
explanatory. Some reductio proofs are very closely related to other

4Recall that a natural number is prime if it is greater than 1 with no divisors
apart from itself and 1. (A natural number greater than 1 is composite otherwise.
1 is neither prime nor composite.)

5The famous English number theorist G. H. Hardy (1877–1947) said that
this proof is “as fresh and significant as when it was discovered” and that “two
thousand years have not written a wrinkle on [it]” (Hardy, 1967, p. 92).
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forms of proof and in such cases either both are explanatory or nei-
ther is. Indeed, the proof above is easily converted into a direct
proof. But also, it seems to me that reductio proofs can be explana-
tory. Consider a reductio proof of the fact that 2 is the only even
prime. We assume, for the purposes of the reductio, that there is
another even prime, p > 2. Since p is even, it can be divided by 2 so
it can be written as p = 2q for some integer q > 1. But this means
that p is composite, contradicting the original assumption that p is
prime. But this proof, I take it, is explanatory. It tells us why 2
is the only even prime: every other even number is divisible by 2
and hence cannot be prime. The explanation here is trivial, but still
it’s an explanation. So it seems that there is nothing about reductio
proofs in general that makes them unexplanatory. Rather, it de-
pends on the details of the proof in the particular case. The proof
may proceed via the explanatorily relevant concepts, in which case
it will be explanatory. But in many cases, reductio proofs do not
do this—they just crank out a contradiction by any means available,
and in such cases they are not explanatory.

Another style of proof often cited as unexplanatory are brute
force methods such as proof by cases (or proof by exhaustion). Here
the proof proceeds by recognising that there are a number of different
cases, which exhaust the possibilities. We then prove that the result
in question holds for each of the cases. An example will help. One
proof of Rolle’s theorem in calculus proceeds by cases.

Theorem 3 (Rolle’s). Let f be a function which is continuous on the
closed interval [a, b] and is differentiable on the open interval (a, b).
Suppose f(a) = f(b) = 0. Then there is a real number c such that
a < c < b and f ′(c) = 0.

Proof. We divide the situation into 3 cases, which are exhaustive:
(i) f is never positive or negative on the interval (a, b); (ii) f is posi-
tive somewhere on the interval (a, b); or (iii) f is negative somewhere
on the interval (a, b). Case (i): f(x) = 0, for all x, which means that
f ′(x) = 0 for all x ∈ (a, b). Case (ii): A continuous function on
a closed interval has a maximum in the interval in question. Since
f is positive somewhere in (a, b), the maximum value of f must be
positive. Since f(a) = f(b) = 0, f takes its maximum value at some
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point c in the open interval (a, b). Since a < c < b, f is differentiable
at c and since c is a maximum of f , f ′(c) = 0. Case (iii): A contin-
uous function on a closed interval has a minimum in the interval in
question. Since f is negative somewhere in (a, b), the minimum value
of f must be negative. Since f(a) = f(b) = 0, f takes its minimum
value at some point c in the open interval (a, b). Since a < c < b, f
is differentiable at c and since c is a minimum of f , f ′(c) = 0.

Proofs such as this lack unity. There are often different reasons
offered in the different cases and it looks like the theorem itself holds
merely by accident.6 What we would like is a proof that offers the
same reason in each case; that would provide an explanation of the
theorem in question. But then such a proof would not need to be
done by cases. This is at least part of the reason why mathematicians
find proof by cases less satisfying than other styles of proof.

Finally, a more controversial example: proof by mathematical in-
duction. Mathematical induction, although sharing some similarities
with scientific induction, should not be confused with it.7 Unlike sci-
entific induction, mathematical induction is a deductive inference.
Mathematical induction proofs have the following form: (i) show
that some statement holds for a base case (for a particular natural
number), (ii) show that if the statement holds for some arbitrary
number, then it holds for that number’s successor, then (iii) it can
then be concluded that the statement holds for all natural numbers
greater than or equal to the base case. As usual, an example will
help. Here we show that the sum of natural numbers up to n is
n(n+ 1)/2.

6See Baker (2009a) and Lange (2010) for more on mathematical accidents and
coincidences.

7Scientific induction is a non-deductive inference from a finite (or in some cases
infinite) number of observed instances are thus and so, to the general claim that
all cases are thus and so (or at least that some unobserved cases are thus and
so). For example, the inference from the sun has always risen in the past to the
conclusion that the sun will always rise in the future (or that it will at least rise
tomorrow), is a scientific inductive inference.
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Theorem 4 (Sum of Natural Numbers Formula).
∑n

i=0 i =
n(n+ 1)/2.

Proof. Note that 0 = 0 · (0 + 1)/2, so it holds for the base case
of n = 0. Next we assume that (1)

∑k
i=0 i = k(k + 1)/2 and we

need to show that (2)
∑k+1

i=0 i = (k + 1)(k + 2)/2. But
∑k+1

i=0 i =∑k
i=0 i+ (k+ 1) = k(k+ 1)/2 + (k+ 1) = k(k+ 1)/2 + (2k+ 2)/2 =

(k2 + 3k + 2)/2 = (k + 1)(k + 2)/2 (as required).8

It is hard to make much progress on the issue of the explanatori-
ness of mathematical induction proofs, precisely because there is such
disagreement about whether such proofs are explanatory. On the one
hand, proofs such as the one just presented seem unexplanatory be-
cause the proof feels mechanical, and the only way the content of the
theorem enters into our reckoning is via some rather trivial algebraic
manipulations. Indeed, all mathematical induction proofs have the
same structure (outlined above) and this structure does not depend
on the content of the theorem. On the other hand, mathematical
induction proofs such as this work because of the structure of the
natural numbers: each number has a unique successor, and all but
zero have a unique predecessor.9 Indeed, the fact that mathematical
induction holds of the natural numbers is in some ways a charac-
terising feature of them. So, it might be argued that any proof by
induction is in fact revealing the explanation of the theorem in ques-
tion, namely, that it holds by virtue of the structure of the natural
numbers. This is not the most satisfying explanation, but perhaps
that’s all there is to it and this explanation is faithfully delivered by
mathematical induction proofs.

But in line with what I was suggesting earlier, I’m reluctant to
attribute explanatoriness or lack thereof to styles of proof. Indeed,
it is important to remember that not all mathematical induction

8Note the crucial use of the inductive assumption (1) and how an opening was
made for its use by splitting

Pk+1
i=0 i into

Pk
i=0 i and (k + 1).

9Of course, in the integers, zero has −1 as its predecessor, but in the natural
numbers zero has no predecessor.
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proofs are concerned with simple summation facts about the natural
numbers, as in the classic example above. In any case, many math-
ematical proofs proceed by conditional proof. These are proofs that
take some assumptions, Aj , then from these show that some further
statement C holds. The conclusion is that the conditional holds: if
Aj then C. It would be very odd if simply being a conditional proof
were enough to make the proof in question either explanatory or not.
I suspect that the feel of unexplanatoriness about inductive proofs
comes from considering only simple examples. Although examples
such as the one I presented above are the best-known, mathemat-
ical induction proofs are much richer. One possibility is that, as I
just suggested, there is not much by way of explanation to be had
in these simple cases, but that’s not the fault of the style of proof.
Perhaps in more complex cases, there is more to do in establishing
the inductive clause and that work might deliver explanations. Of
course this is mere speculation, but before we make pronouncements
either way about the structure of mathematical induction proofs, we
should consider a wide variety of such proofs.10

More promising than making pronouncements about explanatori-
ness or lack thereof based on the structure of the proofs in question,
is to take the details of the proof more seriously and look there for
guidance. One way to do this is to look for relevance. Are the math-
ematical concepts invoked in the course of the proof relevant to the
content of the theorem being proven? Now, “relevance” sounds like
a rather subjective piece of jargon that is no better understood than
“explanation”, but this is not so. It turns out that a great deal of
work has been done on logics that attempt to capture the notion of
relevance—so-called relevant logics. Thanks to this work in logic,

10And these should include transfinite inductions. These are inductive proofs
that proceed as above but include an extra step to show that (iia) if the statement
holds for all cases less than some limit ordinal, the statement also holds for
the limit ordinal. Such proofs may give insights into what’s going on at limit
ordinals (or so it seems to me, at least). See Baker (2010) and Lange (2009)
for an interesting recent debate in the explanatoriness of proofs by mathematical
induction.
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the notion of relevance can be made rigorous and spelled out in a
systematic way.

To get a feel for the idea of relevance, consider the following
argument, which is valid in classical logic: from the assumption that
I’m alive, it follows that if I’m dead then I’m alive. Here we assume
that the conditional in question is the material conditional of classical
logic. There are many ways to object to this argument. One is to
protest that the material conditional of classical logic is a poor formal
counterpart of the English “if ... then ...” locution. Be that as it
may, we can do more to diagnose the problem here. According to
one line of thought the problem is that the material conditional does
not respect relevance. Note that the assumption of the proof is not
relevant to the conclusion. All that the conclusion requires is for
the antecedent of the conditional to be false. We can just as easily
prove that “if 2 + 2 = 5, then Fermat’s last theorem”, “if Australia
is uninhabited, then there are only finitely many prime numbers”,
and “if Elvis Presley is still alive, Oswald killed John F. Kennedy”.
In each case there is a disconnect between the antecedent of the
conditional and the consequent. Compare these conditionals with
ones such as “if my pulse is strong and I have brain activity, then I’m
alive” and “if the Warren report is correct, then Oswald killed John
F. Kennedy”. In these latter conditionals the antecedent is relevant
to the consequent. We need to be able to distinguish between such
cases. Relevant logics are logics designed to recognise and respect
such distinctions.

The central idea of relevant logic is to place a further condition
on proofs: as well as being classically valid, the premises must also be
relevant to the conclusion. (As I already said, the notion of relevance
is technical and can be rigorously spelled out, although we needn’t
bother with the details here.) I am not suggesting that mathematics
needs to abandon classical logic and replace it with relevant logic.
Rather, I am suggesting that perhaps the distinction between an
unexplanatory proof and an explanatory proof lies in the distinction
between a merely classically-valid proof and a relevantly-valid proof
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(respectively).11

It is also worth noting that the unification account of explana-
tion is well placed for making sense of explanatory and unexplana-
tory proofs in mathematics. Recall that the unification account of
explanation sees explanation as occurring when disparate phenom-
ena are unified under an overarching theory. For example, proof by
cases typically lack the unity required for explanation to be delivered.
In other proofs it will depend on the content, not in terms of rele-
vance, as suggested earlier, but in terms of illuminating connections
between different branches of mathematics, that in some cases are
yet to be unified. For example, a proof of a fact about the natural
numbers that proceeds via the complex numbers might be seen to
be forging a connection between the theory of the natural numbers
and the theory of the complex numbers. A case can be made, at
least, that on the unification account of explanation, such a proof
would be explanatory. After all, a derivation of the behaviour of the
ocean tides from the orbit of the moon in Newtonian mechanics is a
canonical example of an good explanation on the unification account.
In the tide case, we forge a link between two apparently disparate
phenomena—ocean tides and celestial mechanics—and thereby shed
light on both. Arguably, proofs in mathematics that invoke mathe-
matical results from elsewhere are also shedding light on both areas
and thus offering explanations.

Needless to say, the discussion here is rather speculative. Philoso-
phers of mathematics are yet to provide a workable account of expla-
nation for mathematical proofs, but both relevance and unification
seem promising places to start. To make progress here we first need
a clearer picture of which proofs mathematicians find explanatory
and which they do not find explanatory.

11See Mares (2009) for a very good introduction to relevant logics and Mares
(2004) for more detail, philosophical motivation, and interpretation of these logics.
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5.2.2 Explanatory Bridges

While most of the discussion of intra-mathematical explanation has
focussed on proofs. These are not the only loci of explanation. If the
unification account of explanation is right, we should also expect to
see explanation in reductions of one theory to another and in various
generalisations of a theory. Of course, I am not suggesting that we
should accept the unification account of explanation, but it does seem
to imply that explanation will be found in places other than proofs.
It is thus worth briefly looking at some examples to see if a case can
be made for explanation existing in reductions and generalisations.

Let’s start with a familiar example from set theory. Set theory has
long been thought to be a foundation for the rest of mathematics, in
the sense that it is the most abstract of the mathematical theories and
that all other mathematical theories can be modelled in set theory.12

For a start we’ve learned that we can model the natural numbers
with the von Neumann ordinals thus: 0 = ∅; 1 = {∅}; 2 = {∅, {∅}};
3 = {∅, {∅}, {∅, {∅}}} ..., where the successor relation S(x) is sim-
ply x ∪ {x}. We then note that ordered pairs of natural numbers
(a, b) can be modelled set theoretically thus: {{a}, {a, b}}. Since
rational numbers are just (equivalence classes of) ordered pairs of
natural numbers we can “build” them out of the above construction
for the natural numbers and our set-theoretic ordered-pair construc-
tion. Real numbers are technically a bit harder since they involve
identifying each real number with a sequence of rational numbers,
but this too can be modelled set theoretically. From there we get
complex numbers as ordered pairs of real numbers, real-valued func-
tions as sets of ordered pairs or real numbers and so on. The details
are non-trivial and I don’t mean to suggest that any of this is easy or
obvious. Nor am I suggesting that with these constructions in place,
all we need is set theory so we can dispense with real analysis, com-
plex analysis and the like. As even the first step should make clear,
the notation for even small natural numbers such as 7 is unwieldy.

12We set aside the even more general and abstract category theory.



98 An Introduction to the Philosophy of Mathematics

And just imagine what a simple real-valued function like a parabola
looks like set theoretically!

The point of such reductions is not to do away with everything
except set theory. What is the point then? We might invoke Occam’s
razor at this juncture and argue that the reduction in question shows
that all of mathematics is really just set theory. We might still permit
the usual non-set-theoretic notation for the sake of convenience. On
this view, we take the constructions in question to support a kind
of ontological reduction of mathematics to set theory. Quine, for
instance, held this view. But this is not forced upon us. Especially
with our present interests in explanation at the fore, we might think
that it is a very interesting fact about set theory that it can model
much of the rest of mathematics in this way. We might take the
construction in question to shed light on the relationship between set
theory and the rest of mathematics in much the same way a computer
model of a physical system is supposed to shed light on the target
physical system (and sometimes also sheds light on the computer
model itself). But it is not clear that such constructions do give us
a better understanding of the natural numbers, for example. On the
one hand, we understand pretty well what the number 3 is, right? In
any case, seeing it as {∅, {∅}, {∅, {∅}}} and the successor of {∅, {∅}}
doesn’t give us any further insights. Or does it? Perhaps seeing
the otherwise primitive successor function as just an application of
set-theoretic union helps in the sense that we now only have one
primitive instead of two. Seeing the complex numbers as ordered
pairs of real numbers and thinking of them geometrically represented
on the Argand plane,13 is a great help in coming to grips with the
complex numbers. Historically, such representations were important
in demystifying the complex numbers. I’m inclined to think that
there is explanation in such representations, but I admit that this is

13The Argand plane (named after Jean-Robert Argand (1768–1822)) is like the
Cartesian plane, but with the purely imaginary numbers ..., −2i, −i, 0, i, 2i, 3i,
... along the y-axis and the real numbers along the x axis. Any complex number
x+ yi can thus be represented as a unique point in the Argand plane.
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controversial.
Next consider generalisations in mathematics. There are at least

two different kinds of generalisation. The first is extending a system
to go beyond what it was originally set up for. The second involves
abstracting away from some details in order to capture similarities
between different systems. An example of extending a mathematical
system is the move from the natural numbers, to the integers (in-
troducing the negative numbers), then to the rationals, to the reals,
and the complex. It is important to note that each time such an
extension is made, decisions need to be made about how to extend
the familiar operations such as +,−,×, and exponentiation so that
they are extensionally equivalent on the old domain but give sensible
answers on the new domain. The extensions must also give sensible
answers on mixtures of the old and new domains. Even extending
+,− and × to the integers, rationals and reals is non-trivial, but
familiarity with the operations in the extended domains makes it
seem more straightforward than it is. But consider the less intuitive
exponentiation.

To start with in the natural numbers it is just a bit of cute no-
tation so that we can succinctly write a × a (b times) as ab, where
both a and b are natural numbers and b > 1. Let’s consider b = 1
and b = 0. a1 = a, for all a is an obvious way to deal with b = 1,
but what about a0? We define that to be 1, for all a. That’s not
obvious and is decided by how well that stipulation works in various
mathematical applications. For example, for all b > 2 and a 6= 0,
ab−1 = ab/a. It seems reasonable to let this hold for b = 2 and b = 1
as well, which gives us a1 = a and a0 = 1, respectively.

Now we extend the domain to the integers. Integers raised to
natural number powers can be defined in the natural way (but they
do need to be defined, for the original definition only applied to
natural numbers). But to make sense of an integer raised to the
power of a negative integer we need only consider the above argument
and let the equation ab−1 = ab/a hold for b = 0, which gives us a−1 =
1/a, and by extension a−b = 1/ab. As natural as these definitions
may seem, choices had to be made and these choices were justified by
the way the definitions in question cohere with various mathematical
considerations.
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Skip through another couple of non-trivial domain extensions
with the rationals (making sense, for example, of a1/2) and the re-
als (making sense of, for example, aπ) and now think about what it
means to raise a complex number to the power of another complex
number. This is where things get really interesting. It turns out that
complex exponentiation needs to be spelled out in terms of (complex)
trigonometric functions. I won’t go into all the details of the general
case here, but the case of raising the number e to a complex power
will illustrate the idea: ex+yi = ex(cos y + i sin y). This is Euler’s
formula and provides deep insights into complex analysis, trigonom-
etry, and exponentiation. Complex exponentiation is not merely an
arbitrary definition—none of those we have considered are. Com-
plex exponentiation is forced upon us by considerations elsewhere,
But complex exponentiation along with the trigonometric functions
(extended to the complex domain) provide deep insights into much
of the neighbouring mathematics. It does not seem too much of a
stretch to suggest we have explanations of some of the central math-
ematical ideas here (such as an explanation of what exponentiation
is really about).

The other kind of generalisation I mentioned is the kind that in-
volves abstracting away from detail to lay bare the crucial features of
a mathematical system in question. Perhaps the best-known example
here is that of group theory.

Definition 1 (Group). A group is a set, G, together with an opera-
tion · that takes any a and b in G as its arguments and maps them to
another element, a · b. This set and operation must satisfy the group
axioms:
1. For all a, b ∈ G, a · b is also in G (Closure Axiom)
2. For all a, b, c ∈ G, (a · b) · c = a · (b · c) (Associativity Axiom)
3. There exists an e ∈ G, such that for every a ∈ G, the e·a = a·e = a
(Identity-Element Axiom)
4. For all a ∈ G, there exists b ∈ G such that a · b = b · a = e
(Inverse-Element Axiom)

One example of a group is the integers under the operation +.
The identity element e is 0. Note that the group axioms only cap-
ture specific features of the integers. The group axioms ignore other
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operations such as multiplication and they do not require symmetry
of the group operation; a · b is not, in general, the same as b · a, but
addition on the integers is symmetric. There are also other features
of the integers that are ignored (or abstracted away from). For exam-
ple, integer multiplication is left out of the picture. Other examples
of groups are certain spatial rotations and card shuffles. What the
axioms allow one to do is study what is common to all such math-
ematical systems in purely structural terms—the subject matter is
not important. It is clear that we learn a great deal about such struc-
tures by studying them in this group-theoretic context. For a start,
we see connections between the integers and spatial rotations that
are not otherwise apparent. A case can be made that such insights
can be explanatory.14

Both these cases of generalisation—domain extensions and
abstraction—look like good testing grounds for the unification ac-
count of explanation. They both look to involve precisely the kind of
unification we would expect to deliver explanations. But we cannot
rely on our philosophical theory to give us the answers about whether
we have explanations here; we must look at mathematical practice
to see whether our philosophical theory of explanation does a good
job of accounting for the practice. Clearly a great deal more work
needs to be done. We need to get a clear idea of which proofs are
explanatory and which are not, and why. We need to know whether
explanations reside in domain extensions and in abstractions. If they
do, we need to see if the unification account of explanation does, in-
deed, do a good job of systematising the mathematical practice in
question. Alternative accounts of explanation (e.g., in terms of rel-
evance) also need to be explored. If that’s not already enough to
keep philosophers of mathematics busy for quite some time, we also

14This is similar to what we do in formal logic. Here we are interested in the
structure of arguments, not what the arguments are about. We find that we can
say something interesting about specific cases from this very abstract structural
perspective. We can say that a particular argument is a good one, for instance,
because it is an instance of a valid form.



102 An Introduction to the Philosophy of Mathematics

need to consider the question of whether mathematics can explain
physical phenomena. We turn to this issue in the next section.

5.3 Extra-Mathematical Explanation

So far we have been discussing intra-mathematical explanation. That
is, we have been looking at how one mathematical fact might explain
some other mathematical fact, or how mathematical proofs might
explain (or fail to explain, as the case may be) the theorems they
establish. But now we turn our attention to cases where mathemat-
ics might be thought to be explaining physical phenomena—extra-
mathematical explanations. To see how this might work, consider
an explanatory proof of some mathematical theorem. If that the-
orem has some physical application, then the proof of the theorem
might well explain what’s going on in the physical situation. Intra-
mathematical explanations can thus “spill over” into physical appli-
cations and become extra-mathematical explanations. For example,
consider the mean-value theorem of elementary calculus.

Theorem 5 (Mean Value). If f(x) is a real-valued function, con-
tinuous on the closed interval [a, b] and differentiable on the open
interval (a, b), then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Intuitively, this says that the average rate of change of a contin-
uous function over some interval is instantiated at some point in the
interval. There are many physical applications of this theorem. For
instance, it guarantees that a plane flying from Sydney to LA with
an average speed of 850 km/hr (including taxiing, take-off and land-
ing) at some point in the journey actually has a flying speed of 850
km/hr. This theorem, thus, explains why, at some point the plane
will be flying at its average speed.15

15See section 9.2.1 for another similar example of a mathematical theorem
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Another more scientifically-interesting example comes from ecol-
ogy and involves the life cycles of particular species of cicadas. Philoso-
pher Alan Baker (2005) considers why a particular species of North
American cicadas have life cycles which are prime numbers: 13 and 17
years. The explanation of this surprising ecological fact is (arguably)
provided by number theory: having a prime number life cycle is a
good strategy for avoiding predators. With a sufficiently large prime
cycle, any predators with similar life cycles will very rarely coincide
with the most vulnerable stage of the cicada life cycle. It is also
interesting to note that the two known cases of this phenomenon
yield consecutive prime numbers—13 and 17—as the life cycles in
question. This suggests that larger primes such as 19, 23, and so on,
are impractical for biological reasons. And the smaller primes of 5,
7, and 11 leave the cicadas open to predators with life cycles of 10
years (as well as to predators with life cycles of 15 and 20 years), 14
years, and 22 years respectively. Again it looks as though we have a
mathematical explanation on our hands.

In cases like these, it seems that mathematics is carrying the
bulk of the explanatory load. Of course we need to have in place
interpretations of the mathematics in question, but the explanation
of the prime cycles does seem to be mathematical. Examples such
as these are not anomalous either. Once you get a feel for this style
of explanation, you find it frequently in science. Let’s consider a few
more examples.

5.3.1 Honeycomb, Asteroids, and Contractions

Honeycomb: Consider the question of why hive-bee honeycomb
has a hexagonal structure. The answer, it turns out, is because of
the honeycomb theorem: a hexagonal grid represents the most ef-
ficient way to divide a surface into regions of equal area with the
least total perimeter of cells. (This ancient conjecture—the honey-
comb conjecture—was first proven and thus promoted to the rank

invoked to explain a physical fact.
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of theorem by the American mathematician Thomas Hales (1958– )
in 1999.) There are some biological and pragmatic assumptions re-
quired for this explanation to succeed. These include the assumption
that bees have a limited supply of wax and need to conserve it while
maximising honey storage space. They also need to do this while still
being able gain access to the hive from the outside.16 But with these
assumptions in place, the important part of the explanation seems to
be purely mathematical and is provided by the honeycomb theorem.
Any purely biological explanation will be too specific—the latter will
be stuck telling the story of how one particular group of bees built
one particular hive with a hexagonal structure—and will miss the
general point that all hives built under such constraints must have
a hexagonal structure. The hexagonal structure is a solution to a
biological optimisation problem and as such is not a mere accident
of any particular hive construction.

The Asteroid Belt: The Kirkwood gaps are localised regions in
the main asteroid belt between Mars and Jupiter where there are
relatively few asteroids. The gaps were first noticed by the US as-
tronomer Daniel Kirkwood (1814–1895) in 1857. The explanation
for the existence and location of these gaps is mathematical and is in
terms of the eigenvalues of the local region of the solar system (includ-
ing Jupiter). The basic idea is that the system has certain resonances
and as a consequence some orbits are unstable. Any object initially
heading into such an orbit will be dragged off to an orbit on one or
the other side of its initial orbit as a result of regular close encounters
with other bodies (most notably Jupiter). A mathematical analysis
delivers both the existence and location of these unstable orbits and
thus explains the gaps in question. It’s interesting to note that we
can seek out a non-mathematical, causal explanation for why each
particular asteroid fails to occupy one of the Kirkwood gaps. Each
asteroid, however, will have its own complicated, contingent story

16Hence the problem is a tiling problem and not a sphere-packing problem.
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about the gravitational forces and collisions that that particular as-
teroid in question has experienced. Such causal explanations are
thus piecemeal and do not tell the whole story. For example, such
explanations do not explain why no asteroid can maintain a stable
orbit in the Kirkwood gaps. The explanation of this important astro-
nomical fact is provided by the mathematics of eigenvalues (that is,
basic functional analysis). We thus have scientific statements involv-
ing mathematical entities (the eigenvalues of the system) explaining
physical phenomena (the relative absence of asteroids in the Kirk-
wood gaps).17

Lorentz Contractions: When a body is in motion relative to some
observer, the length of the body, as measured by the observer, is
seen to decrease in the direction of the motion. This is known as a
Lorentz length contraction. The length of the object as measured by
the observer is L′ = L

√
1− v2/c2, where L is the length of the object

as measured in its rest frame, c is the speed of light in a vacuum and
v is the relative velocity between the object and the observer. It
can be seen from this formula that the contraction—the difference
between L and L′—will be very small unless v is a sufficiently close
to c. For example, when v = c/2, L′ =

√
3c/2, L′ = L/2 when

v =
√

3c/2, and L′ approaches zero as v approaches c. The Lorentz
contraction is named after the Dutch physicist Hendrik A. Lorentz

17If you are unconvinced by this example, because you think that the absence
of asteroids does not count as a physical event, consider the case of the collapse of
the Tacoma Narrows Bridge in Washington in 1940. This wind-induced collapse is
generally thought to be explained by the natural frequencies of the bridge—again,
a mathematical explanation. As a result of this bridge collapse, eigenanalysis
now features prominently in modern engineering—especially the engineering of
suspension bridge construction. There are many other examples like this one.
For example, to explain why an electric guitar feeds back when connected to
and placed in front of an amplifier (on a suitably loud volume setting, of course)
requires an appeal to the natural resonances of the strings of the guitar, which
in turn involves mathematical eigenanalysis. Other examples involve the gaps in
the rings of Saturn, and shattering wine glasses with loud high-pitched sounds.
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(1853–1928).
Such Lorentz contractions have been observed and we might rea-

sonably ask for an explanation of them. The explanation comes
from special relativity and, in particular, from the Minkowski met-
ric. This is the metric on the space-time manifold of special relativ-
ity. The familiar 3-dimensional Euclidian metric, which measures the
distance between two points, (x1, y1, z1) and (x2, y2, z2) in Euclidean
3-space, is given by d =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. But

the Minkowski metric is not simply the four dimensional analogue
of this. When we consider the distance between two space-time
points (x1, y1, z1, t1) and (x2, y2, z2, t2), where the spatial coordi-
nates are, as before and t is the temporal coordinate, a minus
sign appears in the metric before the temporal component: d =√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − (t1 − t2)2.18 This metric, is
named after the German mathematician Hermann Minkowski (1864–
1909), as is the 4-dimensional space-time manifold of special relativ-
ity: Minkowski space-time, or simply Minkowski space.

The key to the explanation of the Lorentz length contraction
is that the quantity that is preserved in special relativity is the
Minkowski length, not the three dimensional length. Just as 3-
dimensional objects change their 2-dimensional length (their appar-
ent length in your visual field, for instance) when rotated in 3-space,
the 3-dimensional length of a 4-dimensional object in Minkowski
space can change. Indeed, having a relative velocity just is a rotation
in Minkowski space, so the analogy here is quite strong. In the end,
the explanation of the Lorentz contraction is mathematical—it’s a ge-
ometric explanation involving the structure of Minkowski space and,
especially, the Minkowski metric. Such a mathematical explanation
should be contrasted with a mechanical explanation which would
explain the contraction in terms of forces compressing the body in
question. Accepted wisdom has it that the geometric explanation

18Alternatively, we can keep the plus signs in the metric itself but measure time
in purely imaginary numbers—multiples of i =

√
−1.
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offered by Minkowski space-time is correct and that mechanical ex-
planations are incorrect (or at least, unnecessary).

5.3.2 What is at Issue?

There are a number of interesting issues raised by these examples
of mathematical explanations of physical phenomena. The first is
the one we noted at the end of section 5.2.2 about the relation-
ship between intra- and extra-mathematical explanation. We might
be tempted to treat these as different kinds of explanation but the
two are closely connected. What we find is that there can be a
kind of “spill-over”, where an intra-mathematical explanation can
be adapted to play a central role in a extra-mathematical explana-
tion. All we require is that there is an application of the piece of
mathematics in question, then explanations from within mathemat-
ics flow on to applications. This strongly suggests the need for a
unified account of mathematical explanation, in both mathematical
and non-mathematical contexts. For example, the explanation for
the Lorentz contraction in an abstract Minkowski metric space is
surely that geometric explanation offered above. But then it would
be very odd indeed to treat the application of the Minkowski metric
space to space-time in special relativity differently. If the details of
the metric are explanatory in a purely mathematical context, it is
hard to see why merely finding an application of the mathematics in
question should undermine such explanations. It does look as though
we need an account of mathematical explanation that has the poten-
tial to function smoothly across both intra- and extra-mathematical
contexts.

A related issue arising from extra-mathematical explanations is
their relationship to other forms of scientific explanation. Sometimes
the quest for a scientific explanation does invite a causal history—
what events caused the event we wish to understand. But extra-
mathematical explanations do not sit comfortably with such pat-
terns of explanation. Mathematical explanations do not seem to
involve causation at all. What are we to say about scientific expla-
nation, as a general category of explanation? Perhaps there is no
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unified category deserving of the title scientific explanation. Per-
haps scientific explanation is a hodge podge of different kinds of
explanation—mathematical, causal, and perhaps others. This would
suggest a more pluralist attitude towards explanation. Alternatively
we might try to develop a unified philosophical account of scientific
explanation that includes both causal explanation and mathemat-
ical explanation as special cases. Finally, we might try to argue
that extra-mathematical explanations don’t exist, or that they are
reducible in some sense to causal explanation. All of these are live
options, but some are more alive than others. (Personally, I don’t
hold out much hope for the latter, for example.) In any case, it’s
clear that any satisfying account of scientific explanation will need
to address mathematical explanations.

In light of these last issues, we see how mathematical explana-
tions are supposed to lend support to explanatory versions of the
indispensability argument for mathematical realism. If mathematics
is playing an explanatory role in our scientific theorising, there is
a good case to be made for treating the mathematics realistically.
After all, one can hardly appeal to electrons in order to explain how
an electro-magnet works but then deny that electrons exist—not if
you’re a scientific realist, at least. Similarly, if mathematics is ex-
plaining physical phenomena, it would seem that antirealism about
mathematics is untenable. So we find various anti-realists about
mathematics trying to diffuse the situation by arguing that mathe-
matics is not genuinely explanatory in the way I’ve been suggesting,
or at least that any alleged mathematical explanations can be recast
as physical explanations. On the other hand, I and at least some of
my mathematical realist colleagues are happy to embrace mathemat-
ical explanations of physical phenomena. Either way, mathematical
explanations (or the alleged mathematical explanations, if you pre-
fer) have helped breath life into the debate over the indispensability
argument for mathematical realism.

Discussion Questions:

1. Convert the reductio proof of the infinitude of the primes into
a direct proof. (Recall that I suggested that some, but not all,
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reductio proofs can be recast as direct proofs and that this was
one of them.)

2. Do you think that proofs by mathematical induction are ex-
planatory? Why?

3. Can you give a good, clear example of a mathematical proof
that is uncontroversially explanatory? Can you articulate why
it is explanatory?

4. Relevance considerations seem to require that explanations stay
on topic, while unification invites wider and diverse connec-
tions. These two proposals seem to be pulling in different di-
rections. Do you think that they are incompatible accounts of
mathematical explanation?

5. Explanations of physical facts are closely related to counterfac-
tuals: A explains B in so far as were A not to have obtained,
B would not have obtained. Is there an analogue of this in
the mathematical case? Think about what the counterfactuals
in question would involve if mathematical facts are necessary
truths? Can we make sense of counterfactuals such as: “if π
were rational, then we would be able to square the circle”?
(Those who have done some modal logic, think about what the
Stalnaker or Lewis semantics for such counterfactuals would
look like.)

6. Verify that having a life-cycle of 13 or 17 years minimises over-
lap with predators. What additional assumptions are required?

7. Do you find the (alleged) examples of mathematical explana-
tions of physical phenomena presented in this chapter convinc-
ing? Why or why not? Can you think of more convincing
examples?

8. If mathematics is genuinely explanatory, precisely how is that
supposed to bolster the case for mathematical realism?
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Chapter 6

The Applicability of
Mathematics

“It is applicability alone which elevates arithmetic from a
game to the rank of a science.” — Gottlob Frege (1848–
1925)

The applications of mathematics in the various branches of science
gives rise to an interesting philosophical problem: why should phys-
ical scientists find that they are unable to even state their theories
without the resources of abstract mathematical theories? Moreover,
the formulation of physical theories in the language of mathematics
often leads to new physical predictions, which were quite unexpected
on purely physical grounds. How can turning to the abstract repre-
sentations of mathematics—far from physical applications—so often
turn out to be just what is required in representing and understand-
ing physical systems? In this chapter we will consider the problem
of the applicability of mathematics and discuss the prospects for a
solution.

6.1 The Unreasonable Effectiveness of Math-
ematics

The Nobel-prize winning, Hungarian physicist Eugene Wigner (1902–
1995) remarked in a famous paper that

113
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[t]he miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is
a wonderful gift which we neither understand nor deserve.
(Wigner 1960, p. 14)

This much-cited passage, however, does not make it clear exactly
what the problem is. After all, in order for us to do science we
needed some language or other. Why shouldn’t mathematics be that
language? But what is worrying Wigner is something deeper than
this. He is concerned about a mismatch between the methodologies
of mathematics and physics—physics is driven by empirical evidence
and mathematics is in some sense disconnected from the world—yet
mathematics still turns out to be just what the physicist needs. Many
physicists have followed Wigner and wondered about the relationship
between physics and mathematics. For example, British-American
physicist Freeman Dyson (1923– ) emphasises the fact that mathe-
matics in not merely a calculational tool employed by scientists and
that, in some sense, physical theories arise out of the mathematics.

For a physicist mathematics is not just a tool by means
of which phenomena can be calculated; it is the main
source of concepts and principles by means of which new
theories can be created. (Dyson 1964, p. 129)

The German physicist Heinrich Hertz (1857–1894) takes this further,
suggesting that mathematics delivers more than what the scientist
formalises.

One cannot escape the feeling that these mathematical
formulae have an independent existence and intelligence
of their own, that they are wiser than we are, wiser even
than their discoverers, that we get more out of them than
was originally put into them. (Quoted in Dyson 1964,
p. 129).

Another Nobel laureate in physics, Steven Weinberg (1933– ) also
seems to be pushing in this direction when he suggests that the math-
ematician, whose work is disconnected from the physical realm, often
anticipates the mathematics needed in advanced physical theories.
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It is very strange that mathematicians are led by their
sense of mathematical beauty to develop formal struc-
tures that physicists only later find useful, even where the
mathematician had no such goal in mind. [ . . . ] Physi-
cists generally find the ability of mathematicians to antic-
ipate the mathematics needed in the theories of physics
quite uncanny. It is as if Neil Armstrong in 1969 when
he first set foot on the surface of the moon had found in
the lunar dust the footsteps of Jules Verne. (Weinberg
1993, p. 125)

Elsewhere Weinberg suggests that “[i]t is positively spooky how the
physicist finds the mathematician has been there before him or her”
(Weinberg 1986, p. 725).

It is not only physicists who’ve worried about the relationship
between mathematics and physics. Philosopher Mark Steiner also
believes that there is a problem worthy of attention here:

[H]ow does the mathematician—closer to the artist than
the explorer—by turning away from nature, arrive at its
most appropriate descriptions? (Steiner 1995, p. 154)

Here Steiner suggests that the core problem arises from the different
methodologies of mathematics and physics. Before we pursue the
problem, thus construed, let’s get clearer about what the target is
by setting aside a couple of other puzzles involving the applications
of mathematics.

Mark Steiner rightly points out that Wigner’s “puzzle” is in fact
a whole family of puzzles and these are not clearly distinguished by
Wigner; it all depends on what you mean by ‘applicability’ when
talking of the applications of mathematics. It is important to distin-
guish the different senses of ‘applicability’ because some of the asso-
ciated puzzles are easily solved while others are not. For example,
there is the problem of the (semantic) applicability of mathematical
theorems—the problem of explaining the validity of mathematical
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reasoning in both pure and applied contexts.1 Indeed, for every
way that mathematics is applicable to science, we potentially have a
Wigner-style problem. It might be an interesting exercise to try to
articulate all the ways in which mathematics is applicable to science
and see which of these leads to a Wigner-style puzzle. For present
purposes, however, we can set this task aside and cut straight to one
of the more serious applicability problems—one gestured towards in
several of the quotations above.

The core problem, it seems to me, is that of explaining the appro-
priateness of mathematical concepts—concepts developed by a priori
methods—for the description of the physical world. Of particular in-
terest here are cases where the mathematics seems to be playing
a crucial role in making predictions. Mark Steiner has argued for
his own version of Wigner’s thesis along these lines. According to
Steiner, the puzzle is not simply the extraordinary appropriateness
of mathematics for the formulation of physical theories, but concerns
the role mathematics plays in the very discovery of those theories. In
particular, we require an explanation of this puzzle that is in keeping
with the methodology of mathematics—a methodology that does not
seem to be guided at every turn by the needs of physics.

Thus construed, the problem is epistemic: why is mathematics,
which is developed primarily with broadly aesthetic considerations in
mind, so crucial in both the discovery and the statement of our best
physical theories? Put thus, the problem may seem like one manifes-
tation of a more general problem in the philosophy of science, namely
the problem of justifying the appeal to aesthetic considerations, such
as simplicity, elegance, and so on.

1To explain, for instance, why the truth of (i) there are 11 Lennon-McCartney
songs on The Beatles’ 1966 album Revolver, (ii) there are 3 non-Lennon-
McCartney songs on that same album, and (iii) 11 + 3 = 14, implies that there
are 14 songs on Revolver. (The problem is that in (i) and (ii) ‘11’ and ‘3’ seem
to act as names of predicates and yet in (iii) ‘11’ and ‘3’ apparently act as names
of objects. What we require is a constant interpretation of the mathematical
vocabulary across such contexts.
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Scientists and philosophers of science invoke aesthetic consider-
ations to help decide between two theories. For example, when two
theories are equally good in other respects, we generally prefer the
simpler theory. But aesthetics play a much more puzzling role in the
Wigner/Steiner problem. Here aesthetic considerations are largely
responsible for the development of mathematical theories. These, in
turn, (as we shall see shortly) play a crucial role in the discovery of
our best scientific theories. In particular, novel empirical phenomena
are discovered via mathematical analogy. In short, aesthetic consid-
erations are not just being invoked to decide between two theories;
they seem to be an integral part of the process of scientific discov-
ery. The role of aesthetics in the Wigner problem is quite different
from whatever puzzles there may be about the role of aesthetics in
scientific theory choice.

An example will help. James Clerk Maxwell (1831–1879) found
that the accepted laws for electromagnetic phenomena prior to about
1864, namely Gauss’s law for electricity, Gauss’s law for magnetism,
Faraday’s law, and Ampère’s law, jointly contravened the conser-
vation of electric charge. Maxwell thus modified Ampère’s law to
include a displacement current , which was not an electric current
in the usual sense (a so-called conduction current), but a rate of
change (with respect to time) of an electric field. This modification
was made on the basis of formal mathematical analogy, not on the
basis of empirical evidence. Indeed, there was very little (if any)
empirical evidence at the time for the displacement current. The
analogy was with Newtonian gravitational theory’s conservation of
mass principle. The modified Ampère law states that the curl2 of a
magnetic field is proportional to the sum of the conduction current

2The curl, ∇, is a differential operator on vectors. If F = [Fx, Fy, Fz] is a
vector in a 3-dimensional Euclidean space, with unit vectors i, j, and k, ∇×F =
(∂Fz/∂y − ∂Fy/∂z)i + (∂Fx/∂z − ∂Fz/∂x)j + (∂Fy/∂x− ∂Fx/∂y)k.
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and the displacement current:

∇×B =
4π
c

J +
1
c

∂

∂t
E. (6.1)

Here E and B are the electric and magnetic field vectors respectively,
J is the current density, and c is the speed of light in a vacuum.3

When this law (known as the Maxwell-Ampère law) replaces the
original Ampère law in the above set of equations, they are known as
Maxwell’s equations and they bring an elegant unity to the subject
of electromagnetism.

The interesting part of this story for the purposes of the present
discussion, though, is that Maxwell’s equations were formulated on
the assumption that the charges in question moved with a constant
velocity, and yet such was Maxwell’s faith in the equations, he as-
sumed that they would hold for any arbitrary system of electric fields,
currents, and magnetic fields. In particular, he assumed they would
hold for charges with accelerated motion and for systems with zero
conduction current. An unexpected consequence of Maxwell’s equa-
tions followed in this more general setting: a changing magnetic field
would produce a changing electric field and vice versa. Again from
the equations, Maxwell found that the result of the interactions be-
tween these changing fields on one another is a wave of electric and
magnetic fields that can propagate through a vacuum. He thus pre-
dicted the phenomenon of electromagnetic radiation. Furthermore,
he showed that the speed of propagation of this radiation is the speed
of light. This was the first evidence that light was an electromagnetic
phenomenon.

These predictions, confirmed experimentally by Heinrich Hertz
(1857–1894) in 1888, can be largely attributed to the mathematics.
The predictions in question were being made for circumstances be-
yond the assumptions of the equations’ formulation. Moreover, the

3The first term on the right of equation 6.1 is the conduction current and the
second on the right is the displacement current.
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formulation of the crucial equation (the Maxwell-Ampère law) for
these predictions was based on formal mathematical analogy. Cases
such as this seem puzzling, at least when presented a certain way.
The question is whether the puzzlement here is merely an artefact
of the presentation (perhaps because some particular philosophy of
mathematics is explicitly or implicitly invoked).

It is interesting to note that in Wigner’s article he seems to be
taking a distinctly anti-realist attitude towards mathematics. His
attempted definition of ‘mathematics’ illustrates this:

[M]athematics is the science of skillful operations with
concepts and rules invented just for that purpose. (Wigner
1960, p. 2)

(My italics.) Others, such as Reuben Hersh, also adopt anti-realist
language when stating the problem:4

There is no way to deny the obvious fact that arithmetic
was invented without any special regard for science, in-
cluding physics; and that it turned out (unexpectedly) to
be needed by every physicist. (Hersh 1990, p. 67)

(Again, my italics.) Some, such as Paul Davies (1992, pp. 140–
60) and Roger Penrose (1989, pp. 556–7), have suggested that the
unreasonable effectiveness of mathematics in the physical sciences is
evidence for realism about mathematics. That is, there is only a
puzzle here if you think we invent mathematics and then find that
this invention is needed to describe the physical world.

Given such comments we might well think that Wigner’s puz-
zle brings us back to the realism–anti-realism debate. Indeed, it is
tempting to argue that the unreasonable effectiveness of mathemat-
ics is only a problem for anti-realist philosophies of mathematics. For

4Recall also Weinberg’s reference to Jules Verne in the passage I quoted earlier
and Steiner’s remark (again quoted earlier) about the mathematician being more
like an artist than an explorer.
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what it’s worth, I think the Wigner puzzle cuts across the realist–
anti-realist divide in the philosophy of mathematics. After all, as I
suggested earlier, the central problem is that mathematics seems to
proceed via a priori means and yet finds applications in a posteriori
science. Thus stated, the problem has little, if anything, to do with
realism and anti-realism issues. It is an epistemic problem or, if your
prefer, a problem about the different methodologies of mathematics
and empirical science. In any case, both realists and anti-realists
need to provide an account of applied mathematics. We can thus set
the thorny realism–anti-realism issues aside and focus on coming to
a better understanding of mathematics in applications.

6.2 Towards a Philosophy of Applied Math-
ematics

In this section we consider some responses to the Wigner problem
and sketch an account of applied mathematics that might make the
effectiveness of mathematics seem less unreasonable.

6.2.1 Why so Unreasonable?

One line of response to Wigner is to deny that mathematics is all
that effective in physical science. Sure, mathematics is (sometimes)
effective, but is it unreasonably so? There are various ways to deny
the unreasonableness claim. One way is to stress the difficulties in-
volved in getting a mathematical model to work. Anyone who has
done any mathematical modelling knows how difficult it is to get
the mathematics and the world to see eye-to-eye. The unreasonable
effectiveness problem thus arises from overlooking such difficulties
and looking at the end product—the fully-developed mathematical
models and mathematised scientific theories—and forgetting, or not
appreciating, the painstaking work that went into developing the the-
ories and models in question. Such work often involves developing
new mathematics, deliberating ignoring particularly uncooperative
bits of the world, and occasionally riding roughshod over some of the
mathematics. Once we look at the details, so the suggestion goes,
we will be less impressed by how effective mathematics is.
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Another, related response is to suggest that we do not have a very
good grip on what would count as unreasonable. After all, if some-
one is unreasonably effective at predicting the outcomes of fair coin
tosses, say, they would be expected to correctly predict the outcome
more often than not. It won’t do to simply note that they get it right
sometimes and thus conclude that they are unreasonably effective at
predicting coin tosses. We need to do some statistics before we can
determine whether there is anything unreasonable here. So too with
the Wigner puzzle. All Wigner or anyone else has done is draw atten-
tion to some admittedly stunning success stories. But what about all
the failures? We need to determine what would count as an unrea-
sonable success rate and see if the statistics on the historical cases in
science bears out the unreasonableness. There are, of course, many
obstacles to such an investigation. For a start, typically only the
success stories get published. A paper pointing out that an attempt
to model some physical phenomenon with a particular piece of math-
ematics was a dismal failure is not likely to be published. But surely
there are many such attempts preceding the success stories we know
about. So there is a selection bias here: a non-representative sample
that is in effect selecting itself. The failures are invisible. To get the
failures we need access to the wastepaper baskets of scientists, past
and present. In any case, until we know more about the relationship
of success to failures, we simply do not know whether the success of
mathematics is unreasonable or not.5

Another response along these lines is to suggest that, in some
sense, you get what you look for. The best tools we have for mod-
elling the world are mathematical tools, such as differential equa-
tions, so we tend to shoehorn the world into this framework. Or

5There’s an old joke about a physicist approaching a funding agency for a
multi-million dollar piece of equipment. The director of the funding agency shakes
her head and says: “You physicists are always after money; why can’t you be
more like the mathematicians? All they need are pencils, paper, and wastepaper
baskets. Better still, why can’t you be like the philosophers? They just need
pencils and paper.”
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else, we only tackle the physical problems that are amenable to the
mathematical methods we have at our disposal. To the Pythagore-
ans, the world looked as though it was all natural numbers; these
days, it looks as though it’s all complex Hilbert spaces and differen-
tial equations. The English physicist Arthur Eddington (1882–1944)
once wrote:

Let us suppose that an ichthyologist is exploring the life
of the ocean. He casts a net into the water and brings
up a fishy assortment. Surveying his catch, he proceeds
in the usual manner of a scientist to systematise what it
reveals. He arrives at two generalisations:

(1) No sea-creature is less than two inches long.

(2) All sea-creatures have gills.

These are both true of his catch, and he assumes tenta-
tively that they will remain true however often he repeats
it. (Eddington 1939, pp 16)

Although Eddington goes on to make a different point in relation to
the analogy, it stands as a very nice illustration of how our observa-
tional and data collection methods can influence what we find. The
relevance to the present point is that if we look at the world through
mathematical lenses we tend to see a mathematical world. Or at
least the bits of the world that are amenable to mathematisation are
easier to see when wearing such lenses.6 Perhaps Wigner is making
such a mistake. Just like Eddington’s ichthyologist, with only a spe-
cific net available to him to investigate the contents of the ocean,
Wigner has only one tool available to him in the investigation of the
world—mathematics. And like the ichthyologist, Wigner misses in-
teresting phenomena because of the limitations of his investigative

6This is an example of theory-laden observation, where what you look for and
the interpretation of what you see is determined to some extent by the background
theory.
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tools. But the limitations should be recognised and overgeneralisa-
tions based on them avoided. Famously, the psychologist Abraham
Maslow (1908–1970) expressed the point this way: “It is tempting, if
the only tool you have is a hammer, to treat everything as if it were
a nail” (1966, p. 15).

These few brief and rather sketchy responses to Wigner’s puzzle
are at best only partial solutions.7 They mostly consist in suggest-
ing that the alleged unreasonableness is not all that unreasonable
after all, or at least, may not be so unreasonable once seen in the
full context. That is, they are attempts to defuse the puzzle. But
perhaps it would be better to tackle the issue of the applicability
of mathematics head on. Irrespective of how unreasonably effective
mathematics is in the physical sciences, it would be good to have a
better philosophical understanding of mathematics in applications.
In the next section I consider one attempt to develop an account of
applied mathematics—the mapping account. This account is in its
early stages of development, but it is worth considering, if only to
help us get a clearer picture of what the relevant issues are.

6.2.2 Maps and Mathematics

A satisfactory philosophical account of applied mathematics should
answer all questions about the application process. For one thing, it
should resolve the puzzle raised by Wigner, but perhaps we shouldn’t
make the Wigner puzzle the primary target. If we set out merely to
answer Wigner, we may end up with a philosophy of applied mathe-
matics that’s tailor made for one and only one task. A better strategy
might be to come to a better understanding of applied mathematics
generally—including an appreciation of the range of issues involved—
and try to advance a positive account that answers Wigner’s and
other challenges in passing.

7They are mostly derived from Hamming (1980), where other tentative sug-
gestions about how to answer Wigner can be found. See also Azzouni (2000) and
Wilson (2000).
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So what would a philosophical account of mathematics in appli-
cations look like? One popular starting point is to think of mathe-
matical models in the broader context of scientific and other models.
Models typically preserve certain structural features of the target sys-
tem. So, for example, the applicability of real analysis to flat space-
time is explained by the structural similarities between R4 (with the
Minkowski metric) and flat space-time. This is similar to the way a
map of London is useful because it preserves some salient features of
London, such as scaled distances and directions. Notice that maps do
not need to preserve all features of a city. For instance, city maps do
not usually represent every building and certainly do not represent
people’s locations. Some maps even give up on faithfully represent-
ing spatial relations. The standard London underground map is like
this.

Thinking of a mathematical model in these terms can be use-
ful. The mathematical model needs to represent some aspects of the
structure of the target system but need not, and probably should
not, faithfully represent all aspects of the target system. This is
an obvious enough point but some have insisted that mathematical
models work because they are isomorphic to the target system. This
is obviously a mistake. Models of any kind, whether they be maps of
cities or mathematical models of a damped pendulum, can be useful
without being isomorphic to the target system. Sometimes the tar-
get system has more structure that’s not represented in the model
and sometimes the mathematics has more structure. The former is
familiar enough, but the latter requires some elaboration.

Models are not always simplifications in the sense that they pre-
serve only some of the structure of the target system. For example,
when modelling a fluid flowing through a pipe, standard models,
familiar from undergraduate mathematics, employ differential equa-
tions, (such as the Navier–Stokes equation), which treat the fluid as
a continuous medium. But fluids consist of discrete molecules, so
the mathematical model has a much richer structure than the target
system. Oddly this extra structure is there for reasons of simplicity—
the relevant differential-equation model is easier to work with than a
corresponding discrete difference-equations model—but the simplic-
ity in question is clearly not the simplicity of less structure. Quite
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the opposite; it’s the simplicity afforded by a richer structure.
Often mathematical models will have richer structure in one part

but less structure in another. Again fluid-mechanics models serve us
well here. We’ve already seen how the model can have more struc-
ture than the target system (the former continuous while the latter is
discrete), but the model can simultaneously have less structure. For
instance, climate models are big fluid-mechanics models and they ig-
nore many features of the target system, such as local eddy currents,
people sneezing and butterflies flapping their wings. This makes it
very difficult to spell out, in any systematic way, what the nature
of the structural similarity between model and target system is. It
certainly isn’t isomorphism, and even weaker notions such as homo-
morphism, epimorphism, and monomorphisms are problematic.8

Apart from anything else, mathematics is a rich source of
structures—Rn, the ZFC hierarchy, Hausdorff topological spaces and
so on. These structures can be taken from the shelf, so to speak, in
order to model various target systems, or serve as the starting point
of a model of some target system. Mathematics is thus like a very
rich map repository, which can be called upon when a new city map
is required. Either the map repository will have the map of the
city in question or it will have a map that’s close enough and which
can be modified to do the job. This view of applied mathemat-
ics has mathematics serving as a source of structures for scientific
theorising, with mappings (in the mathematical sense) between the
mathematical model and the target systems. These mappings ensure
that crucial structural features of the target system are mirrored in

8A homomorphism is a mapping ϕ from one structure A to another structure
B, and ϕ preserves some class of structural relations on A. That is, a homo-
morphism maps not only the objects of one domain to another, it does so in a
way that preserves certain structural relations between the objects on question.
An epimorphism is a surjective homomorphism (i.e., every member of B is the
image under ϕ of at least one member of A); a monomorphism is a injective
homomorphism (i.e., different members of A are mapped to different members of
B).
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the mathematical model. This has become known as the mapping
account of applied mathematics.9

There is something undoubtedly right about the mapping ac-
count; it seems right as far as it goes, but it does not (yet) go very
far. There needs to be more work on the nature of the mappings in
question—what kind of structure preserving mapping are typically
involved between the mathematical model and the target system.
When the mathematical model has more structure than the target
system, how do we go about interpreting the extra structure in ques-
tion. Should it always be dismissed as mere artefact of the model?
This does not seem right; Wigner’s problem alerted us to the possi-
bility of novel predictions coming from the mathematics. Sometimes
these predictions come from initially uninterpreted parts of the model
and have no physical precedence (e.g., Maxwell’s prediction of elec-
tromagnetic waves propagated through a vacuum). How is it that
adding structure can simplify the model (as in using differential equa-
tions to model discrete phenomena)? And how can abstracting away
from causal detail, as so often happens in mathematical models, ad-
vance our understanding of concrete physical situations? These are
all questions that need answers. Thus far, no-one has an account
of applied mathematics that can provide satisfactory answers to all
these questions.

6.3 What’s Maths Got to Do with It?

Let’s not forget that physics is not the only consumer of mathemat-
ics. In many of the special sciences, mathematical models are used
to provide information about specified target systems. For instance,
population models are used in ecology to make predictions about

9See Leng (2002, 2010) and Pincock (2004, 2007) for defences of such an
account, and Bueno and Colyvan (2011) and Batterman (2010) for criticism of
the mapping account and for alternative accounts.
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the abundance of real populations of particular organisms. The sta-
tus of mathematical models in ecology, though, is unclear and their
use is hotly contested by some practitioners. A common objection
levelled against the use of these models is that they ignore all the
known, causally-relevant details of the often complex target systems.
Indeed, the objection continues, mathematical models, by their very
nature, abstract away from what matters and thus cannot be re-
lied upon to provide any useful information about the systems they
are supposed to represent. In this section we examine the role of
some typical mathematical models in population ecology. In a sense,
these models do ignore the causal details, but this move can not
only be justified, it is necessary. I will argue that idealising away
from complicating causal details often gives a clearer view of what
really matters. And often what really matters is not the push and
shove of base-level causal processes, but higher-level predictions and
(non-causal) explanations.

6.3.1 Case Study: Population Ecology

Population ecology is the study of population abundance and how
this changes over time. For present purposes, a population can be
thought of as a collection of individuals of the same species, inhab-
iting the same region. Population ecology is a high-level special sci-
ence, but relies heavily on mathematical models. (It is thus a soft
science in one sense—in the sense of being high level and quite re-
moved from physics—but in another sense it is a hard science—in the
sense that it is mathematically sophisticated.) There are a number
of issues associated with applying mathematics to population ecol-
ogy, but the focus here will be on an issue that is of significance for
working ecologists and has a direct bearing on the way they go about
their business.10

10See, for example, Levins (1966) and May (2004) for some discussion on this
and related issues by a couple of very prominent ecologists.
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It will be useful to present a couple of typical mathematical
models, of the kind we are interested in. First consider the logistic
equation. This is a model of a single population’s abundance, N—
exponential at first and then flattening out as it approaches carrying
capacity, K:

dN

dt
= rN(1− N

K
),

where r, is the population growth rate and t is time.
Another key example is the Lotka-Volterra model . This models

the population of a predator and its prey via a pair of coupled first-
order differential equations:

dV

dt
= rV − αV P

dP

dt
= βV P − qP

Here V is the population of the prey, P is the population of the
predator, r is the intrinsic rate of increase in prey population, q is
the per capita death rate of the predator population, and α and β
are parameters: the capture efficiency and the conversion efficiency,
respectively. These equations can give rise to complex dynamics,
where the dual, out-of-phases, population oscillations of predator
and prey are the best known.

Of course both these mathematical models are overly simple and
are rarely used beyond introductory texts in population ecology. For
example, the logistic equation treats the carrying capacity of the
environment as constant, and the Lotka-Volterra equations treats
the predators as specialists, incapable of eating anything other than
the prey in question. Both these assumptions are typically false.
These models do, however, serve as the basis for many of the more
realistic models used in population ecology. The more sophisticated
models add complications such as age structure, variable growth rates
and the like. These complications do not matter for our purposes,
though. Even in these more complicated models, biological detail is
deliberately omitted, yet the models are adequate for the purposes
for which they are intended. The issues we’re interested in are easier
to see in the simpler models, so let’s stick with those.
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6.3.2 Birth, Death, and Mathematics

We are now in a position to give voice to a philosophical problem
arising from the use of mathematical models in population ecology.
Population abundance is completely determined by biological facts
at the organism level—births, deaths, immigration and emigration—
but the (standard) mathematical models leave out all the biological
detail of which individuals are dying (and why), which are immigrat-
ing (and why), and so on. That is, the mathematical models ignore
the only things that matter, namely, the biological facts. The math-
ematical models here—the relevant differential equations—seem to
ignore the biology, and yet it is the biology that fully determines
population abundances. How can ignoring that which is most im-
portant ever be a good modelling strategy?

We might recast the problem in terms of explanation: the math-
ematical models ignore the causal detail and thus would seem to lack
explanatory power. The model may tell us that the abundance of
some population at time t is N , but without knowing anything about
the organism-level biology, we will not know why the population at
time t is N and will have little confidence in such predictions. A full
account of the relevant biology, on the other hand, would include all
the causal detail and would provide the required explanations. Let’s
focus on this explanatory version of the puzzle because I think it is
what underwrites the less-specific worries expressed in the previous
paragraph.

Now consider what makes these mathematical models in ecology
tick. There is no reason to suggest that these models are not explana-
tory. There are three different ways in which the models in question
could explain. First, note that the mathematical models do not ig-
nore the biological detail; at least sometimes the models in question
are offering biological explanations, albeit explanations couched in
mathematical terms. Second, understanding a system often involves
ignoring, or rather, abstracting away from, causal detail in order to
get the right perspective on it. Finally, we might encounter cases of
mathematical explanations of empirical phenomena (as discussed in
chapter 5).

Recall that we started out with the charge that mathematical



130 An Introduction to the Philosophy of Mathematics

models leave out all the relevant biological detail. But this is not
quite right. Often the mathematical model is just representing the bi-
ology in a mathematical form. For example, in the logistic equation,
all the information about births, deaths, immigration and emigration
is packed into r and all the information about the resources is packed
into the constant K. The information about the predators’ impact
on the per capita growth rate of the prey is summarised in the Lotka-
Volterra equation by α—the capture efficiency parameter—and the
information about the predators’ ability to turn prey into per capita
growth of the predator population is summarised by β—the conver-
sion efficiency parameter.

You might have misgivings about the representation of this infor-
mation. You might, for example, object that r and K are represented
in the logistic model as constants. But this is a different objection.
This is a concern about the simplicity of the model. As I mentioned
before, we can provide more complex models that relinquish some
of the more unrealistic idealisations. These more complex models
also have their idealisations, though. Indeed, it is part of the very
enterprise of modelling that some details are ignored. So the basic
concern about biological detail not being represented in the mathe-
matical models under consideration is misplaced. Of course not all
the biological detail is present in the model, but the fact remains that
many of the key terms of the mathematical models have natural bi-
ological interpretations, or at least are representing or summarising
the biological information in mathematical form. The mathematical
models have a lot more biology in them than you might at first think.

In cases where the biology is represented in mathematical form,
the model is indeed capable of offering perfectly legitimate biologi-
cal explanations. For instance, think of the standard story of how
population cycles arise as a result of predator–prey interactions. The
cycles in question are solutions to the coupled differential equations
in question but there is also a very natural biological explanation that
can be extracted from the mathematical model: when the predator
population is high the predators catch many of the prey so that the
latter’s population falls, but then there is less food for the predators,
so after a time the predator population also falls; but now there is
less pressure on the prey population, so it recovers and this, in turn,
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supports an increase in the predator population (after a similar time
lag). This cyclic behaviour falls out of the mathematics, but the ex-
planation, once suitably interpreted, is in fact a perfectly respectable
ecological explanation.

Next, notice that ignoring some detail can lead to insights via
analogy.11 Sometimes similarities between systems will not be ap-
parent until certain details are ignored. Mathematics is particu-
larly well suited to drawing out such similarities, because mathe-
matics allows one—indeed forces one—to abstract away from the
causal detail and notice abstract similarities. For example, Newton’s
law of cooling/heating is just the logistic equation with abundance
replaced with temperature of the body in question, and carrying
capacity replaced with ambient room temperature. Why are such
connections between systems important? One reason is that it saves
work: one can import results already at hand from work done else-
where. Once the connection between the logistic equation and the
cooling/heating equation are recognised, for example, results from ei-
ther area can be used by the other (suitably interpreted, of course).
Moreover, these rather abstract connections—often only apparent
via the mathematics—can lead to new developments and even help
with explanations.

We have already seen that mathematics can be the vehicle for de-
livering biological explanations, but often the mathematics can facili-
tate more transparent explanations. Mathematical models can some-
times do more than just represent the biology in mathematical form,
then deliver essentially biological explanations of biological facts (al-
beit in mathematical guise). Sometimes the mathematics delivers
explanations that would not be apparent otherwise. For example,
the explanation of the different kinds of complex behaviour a pop-
ulation can exhibit as it approaches its carrying capacity—damped
oscillations, asymptotic approach, overshooting and crashes—may be
best seen via the mathematics of the logistic equation.

11See Colyvan and Ginzburg (2010) for more on analogical reasoning in ecology.



132 An Introduction to the Philosophy of Mathematics

Finally, as we discussed in chapter 5, there are reasons to think
that there can be genuinely mathematical explanations of empirical
facts. The examples of the hexagonal structure of honeycomb and
the prime life cycles of the cicadas are arguably mathematical ex-
planations of biological facts. Another example of a mathematical
explanation in ecology will help and will also illustrate how analogical
reasoning can play an important role in delivering the mathemati-
cal explanation in question. As we saw earlier, populations cycles
are one of the more well-known solutions of the Lotka-Volterra equa-
tions, but there are other, more general models of population cycles.
The more general models invoke a second-order differential equation
(instead of the coupled first-order equations in the Lotka-Volterra
model) and allow for single-species population cycles (Ginzburg and
Colyvan 2004). This more general approach to population cycles is
mathematically very similar to periodic solutions to two-body prob-
lems in celestial mechanics. This interdisciplinary connection is in-
teresting in its own right but it is much more than a mere curiosity.
This analogy has the potential to drive a number of developments in
population ecology.

First, the similar mathematical treatment suggests that there
ought to be an ecological counterpart of inertia in physics, and this
has lead to investigations into “ecological inertia”.12 A second de-
velopment arising from the analogy in question is that there should
be stable and unstable orbits, as is the case with satellite orbits. In
the rings of Saturn, for instance, there are well-defined gaps marking
out the unstable orbits of this system. Similarly, in the asteroid belt
between Mars and Jupiter there are gaps—the Kirkwood gaps—and
these represent unstable orbits as a result of resonance effects with
other massive bodies (most notably Jupiter). One might well ex-
pect to see similar gaps in population cycles (Ginzburg and Colyvan
2004, pp. 52–57) and these gaps, if they exist, would be explained

12These are essentially cross-generational time lags in population responses to
changes in environment (Inchausti and Ginzburg 2009).
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mathematically, by appeal to very general structural features of the
systems in question. Not only would such explanations be math-
ematical, they would have been discovered by way of an analogy,
facilitated by the mathematics in question.

If this is right and such cases are indeed cases where mathemat-
ics is carrying the bulk of the explanatory load, there is still the
question of how mathematics can do this. There are several possi-
bilities: (i) Mathematics can demonstrate how something surprising
is possible (e.g., stable two-species population cycles); (ii) Mathe-
matics can show that under a broad range of conditions, something
initially surprising must occur (e.g., hexagonal structure in honey-
comb); (iii) Mathematics can demonstrate structural constraints on
the system, thus delivering impossibility results (e.g., certain popula-
tion abundance cycles are impossible); (iv) Mathematics can demon-
strate structural similarities between systems (e.g., missing popula-
tion periods and the gaps in the rings of Saturn).

In light of the preceding discussion, it is a mistake to assume that
because mathematical models ignore some of the biological detail
they are not capable of delivering explanations. Indeed, to deliver the
explanation in at least some of these cases might require that some
biological detail be ignored.13 Given the modal character of the three
kinds of explanation just mentioned (involving possibility, necessity,
and impossibility), it is hard to see how any causal explanation can
deliver such explanations.

Discussion Questions

1. Why do you think Wigner and others used anti-realist language
in articulating the problem of the unreasonable effectiveness of
mathematics? Is the problem more pressing for the anti-realist
or for the realist?

13See Batterman (2002; 2002a; 2010) for more on the role of abstraction in such
explanations.
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2. Is it correct to see the Wigner problem as cutting across the
realism–anti-realism debate? Is there any reason to expect a
realist account of Wigner’s problem to be substantially different
from an anti-realist one? Spell out a version of the problem for
each.

3. Consider an evolutionary response to the Wigner puzzle, ac-
cording to which the natural world selects for mathematical
ability. According to this line of thought, it would be no sur-
prise that we have the mathematical abilities we do and that we
use these abilities to model the world. Flesh out an argument
along these lines. How good is it?

4. Do the details included in, and excluded from, a model depend
on the purpose of the model? What purposes can models serve?

5. Make a case for treating extra mathematical structure in mod-
els as being mere artefact. Does this simplify the kinds of map-
pings we need to entertain between the model and the world?

6. Why don’t false assumptions (e.g., that populations of animals
are continuous) in a model invalidate the model? How can
known-to-be false models be trusted?

7. In chapter 4 I argued that metaphors can’t explain unless they
are standing proxy for a real explanation. But in section 6.3.2 I
suggested that abstract mathematical models can explain, even
if they are not merely standing proxy for a deeper biological
explanation. Is there a tension here?

Recommended Further Reading
The classic source for the problem of the unreasonable effectiveness
of mathematics is Wigner’s (1960) original paper. For a philosopher’s
perspective on the problem see Steiner (1989; 1995). See also Ham-
ming (1980), Grattan-Guiness (2008) and Wilson (2000) for more on
the unreasonable effectiveness of mathematics. See Pincock (2004),
and Leng (2002) for more on the mapping account of mathematics.
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See Batterman (2002a) for more on the role of abstraction in math-
ematical models. Mathematical models in ecology are discussed in
May (2004), Levins (1966) and Colyvan and Ginzburg (2010).
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Chapter 7

Who’s Afraid of
Inconsistent
Mathematics?

“In formal logic, a contradiction is the signal of a de-
feat: but in the evolution of real knowledge it marks the
first step in progress towards a victory” — Alfred North
Whitehead (1861–1947)

Contemporary mathematical theories are generally thought to be
consistent. But it hasn’t always been this way; there have been times
when the consistency of mathematics has been called into question.
Some theories, such as näıve set theory and (arguably) the early
calculus, were shown to be inconsistent. In this chapter we will
consider some of the philosophical issues associated with inconsistent
mathematical theories.

7.1 Introducing Inconsistency

7.1.1 A Five Line Proof of Fermat’s Last Theorem

Fermat’s Last Theorem states that there are no positive integers
x, y, and z, and integer n > 2, such that xn + yn = zn. This
theorem has a long and illustrious history but was finally proven in

137
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the 1990s by English mathematician Andrew Wiles (1953– ). Despite
the apparent simplicity of the theorem itself, the proof runs over a
hundred pages, invokes some very advanced mathematics (the theory
of elliptic curves, among other things), and is understandable to only
a handful of mathematicians.1 But consider the following proof of
this theorem.

Theorem 6 (Fermat’s Last Theorem (FLT)). There are no positive
integers x, y, and z, and integer n > 2, such that xn + yn = zn.

Proof. Let R stand for the Russell set, the set of all things that are
not members of themselves: R = {x : x /∈ x}. It is straight forward
to show that this set is both a member of itself and not a member of
itself: R ∈ R and R /∈ R. So since R ∈ R, it follows that R ∈ R or
FLT. But since R /∈ R, by disjunctive syllogism, FLT.

This proof is short, easily understood by anyone with just a bit of
high-school mathematics. Moreover, the proof was available to math-
ematicians well before Wiles’ groundbreaking research. Why wasn’t
the above proof ever advanced? One reason is that the proof invokes
an inconsistent mathematical theory, namely, näıve set theory. This
theory was shown to be inconsistent early in the 20th century. The
most famous inconsistency arising in it was Russell’s paradox, which
invoked the same problematic set as used in the above proof.2 As
we saw earlier, paradoxes such as Russell’s (and others such as the
Burali-Forti ordinal paradox and Cantor’s cardinality paradox) led
to a crisis in mathematics at the turn of the 20th Century. This,
in turn, led to many years of sustained work on the foundations
of mathematics. In particular, a huge effort was put into finding
a consistent (or at least not known-to-be-inconsistent) replacement

1See Singh (1997) for a popular account of Fermat’s Last Theorem.
2Recall that the paradox is that the Russell set both is and is not a member

of itself.
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for näıve set theory. The now, generally-agreed-upon replacement is
Zermelo-Fraenkel set theory with the axiom of choice (ZFC).3

But the inconsistency of näıve set theory cannot be the whole
story of why the above proof of Fermat’s Last Theorem was never
seriously advanced. After all, there was a period of some 30 odd years
between the discovery of Russell’s paradox and the development of
ZFC. Mathematicians did not shut up shop until the foundational
questions were settled. They continued working, using näıve set the-
ory, albeit rather cautiously. Moreover, it might be argued that many
mathematicians to this day still use näıve set theory, or something
very much like it. After all, so long as you are careful to skirt around
the known paradoxes, näıve set theory can be safely used in areas
such as analysis, topology, algebra and the like. Indeed, most math-
ematical proofs, outside of set theory, do not explicitly state the set
theory being employed. Moreover, typically they do not show how
the various set-theoretic constructions are legitimate according to
ZFC. This suggests, at least, that the background set theory is näıve,
where there are less restrictions on set-theoretic constructions.4 In
summary, we have a situation where mathematicians knew about
the paradoxes and they continued to use a known-to-be-inconsistent
mathematical theory in the development of other branches of math-
ematics and in applications beyond mathematics.

This raises a number of interesting philosophical questions about
inconsistent mathematics, its logic and its applications. We will pur-
sue some of these issues in this chapter. The first concerns the logic
used in mathematics. It is part of the accepted wisdom that in
mathematics, classical logic rules. Despite a serious challenge from
the intuitionists in the early part of the twentieth century, classical
logic is generally thought to have prevailed. But now we have a new

3See Giaquinto (2002) for an account of the history and Enderton (1977) for
details of ZFC set theory.

4See Enderton (1977) and Halmos (1974) for the details.
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challenge from logics more tolerant to inconsistency, so-called para-
consistent logics. In the next section I will give a brief outline of
paraconsistent logics and discuss their relevance for the question of
the appropriate logic for mathematics. Could it be that such “de-
viant” logics are appropriate for mathematics?

The second general topic we will explore concerns applications
of inconsistent mathematics, both within mathematics itself and in
empirical science. There are many questions here but I will focus
on two: how can an inconsistent theory apply to a presumably con-
sistent world?; and what do the applications of inconsistent math-
ematical theories tell us about what exists? But before we broach
such philosophical matters, I will first present a couple of examples
of inconsistent mathematical theories.

7.1.2 An Inconsistent Mathematical Theory

We have already seen Russell’s paradox, the paradox arising from
the set of all sets that are not members of themselves: R = {x :
x /∈ x}. The paradox arises because of an axiom of näıve set theory
known as unrestricted comprehension. This axiom says that for every
predicate, there is a corresponding set. So, for example, there is
the predicate “is a cat” and there is the set of all cats; there is
the predicate “natural number” and there is the set of all natural
numbers. So far, so good. The trouble starts when we consider
predicates such as “is a set” or “is a non-self-membered set”. If
there are sets corresponding to these two predicates, we get Cantor’s
cardinality paradox and Russell’s paradox, respectively. Cantor’s
cardinality paradox is derived by assuming that there is a set of all
sets, Ω, with cardinality ω. Now consider the power set of Ω: P(Ω).
We have seen how Cantor’s theorem can be invoked to show that the
cardinality of P(Ω) is strictly greater than ω. But Ω is the set of all
sets and so must have cardinality at least as large as any set of sets.
Since P(Ω) is a set of sets, we have a contradiction.

The näıve axiom of unrestricted comprehension was seen to be
the culprit in all the paradoxes, and mathematicians set about find-
ing ways to limit the scope of this powerful principle. One obvious
suggestion is to simply ban the problematic sets—the set of all sets,
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the Russell set, and the like. This, however, is clearly ad hoc. Slightly
better is to ban all sets that refer to themselves (either explicitly or
implicitly) in their own specification. The generally-agreed upon so-
lution achieves the latter by invoking axioms that insure that such
problematic sets (and others as well) cannot be formed. This is ZFC.
The basic idea is to have a hierarchy of sets, where sets can only be
formed from sets of a lower level—a set cannot have itself as a mem-
ber, for instance, because that would involve collecting sets from
the same level. Nor can there be a set of all sets—only a set of all
sets from lower down in the hierarchy. ZFC has not engendered any
paradoxes but it has the look and feel of a theory designed to avoid
disaster rather than a natural successor to näıve set theory. More on
this later.

Another important example of an inconsistent mathematical the-
ory is the early calculus. When the calculus was first developed in
the late 17th century by Newton and Leibniz, it was fairly straight-
forwardly inconsistent. It invoked strange mathematical items called
infinitesimals (or fluxions). These items were supposed to be chang-
ing mathematical entities that approach zero. The problem is that
in some places these entities behaved like real numbers close to
zero but in other places they behaved like zero. Take an exam-
ple from the early calculus: differentiating a polynomial such as
f(x) = ax2 + bx+ c.5

5The omission of the limit “limδ→0” from the right-hand side on the first
four lines of the following calculation is deliberate. Such limits are a modern
development. At the time of Newton and Leibniz, there was no rigorous theory
of limits; differentiating from first principles was along the lines presented here.
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f ′(x) =
f(x+ δ)− f(x)

δ
(7.1)

=
a(x+ δ)2 + b(x+ δ) + c− (ax2 + bx+ c)

δ
(7.2)

=
2axδ + δ2 + bδ

δ
(7.3)

= 2ax+ b+ δ (7.4)
= 2ax+ b (7.5)

Here we see that at lines 1–3 the infinitesimal δ is treated as non
zero, for otherwise we could not divide by it. But just one line later
we find that 2ax+b+δ = 2ax+b, which implies that δ = 0. The dual
nature of such infinitesimals can lead to trouble, at least if care is
not exercised. After all, if infinitesimals behave like zero in situations
like lines 4 and 5 above, why not allow:

2× δ = 3× δ

then divide by δ to yield
2 = 3?

This illustrates how easily trouble can arise and spread if 17th
and 18th century mathematicians weren’t careful. There were rules
about how these inconsistent mathematical objects, infinitesimals,
were to be used. And according to the rules in question, the first
calculation above is legitimate but the second is not. No surprises
there. But one can quite reasonably ask after the motivation for the
rules in question. Such rules about what is legitimate and what is
not require motivation beyond what does and what does not lead to
trouble.

The calculus was eventually, and gradually, made rigorous by
the work of Bernard Bolzano (1781–1848), Augustin-Louis Cauchy
(1789–1857), Karl Weierstrass (1815–1897), and others (Kline, 1972)
in the 19th century. This was achieved by a rigorous (ε-δ) definition
of limit. More recently there has been a revival of something like the
original infinitesimal idea by Abraham Robinson (1918–1974) and
John Conway (1937– ), and even an explicitly inconsistent theory of
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infinitesimals by Australian philosopher Chris Mortensen.6 So, to
be clear, I am not claiming that there are any ongoing consistency
problems for the calculus. The point is simply that for over a hundred
years mathematicians and physicists worked with what would seem
to be an inconsistent theory of calculus.7

7.2 Is the Appropriate Logic for Mathemat-
ics Paraconsistent?

Classical logic has it that an argument form known as ex contradic-
tione quodlibet or explosion is valid. The argument form was used in
my proof of Fermat’s Last Theorem at the beginning of this chapter.
According to explosion any arbitrary proposition follows from a con-
tradiction. The negation of Fermat’s Last Theorem, or anything else
can be proven just as easily, and with pretty much the same proof as
the one I opened with. Logics in which this argument form is valid
are said to be explosive.8 A paraconsistent logic is one that is not
explosive. That is, in a paraconsistent logic at least one proposition
does not follow from a contradiction. Ex contradictione quodlibet is
invalid according to such logics.

7.2.1 The Logic of Paradox

There are many paraconsistent logics in the market place but let me
sketch the details of one very straightforward such logic, just to make
the discussion concrete. The logic LP (for “the Logic of Paradox”),
is a three-valued logic with values 0, i, and 1 (here 1 is “true”, 0 is
“false” and i is a third truth value). So far nothing unusual—quite a

6See Robinson (1966), Conway (1976), and Mortenson (1995).
7There are also cases where explicitly inconsistent, but non-trivial, theories

have been developed. See Meyer (1976), Meyer and Mortensen (1984), Mortensen
(1985), Priest (1995; 2000).

8Intuitionistic logic is also explosive.
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few logics have three values—but the interesting feature of this logic
is that the crucial notion of validity is defined in terms of preservation
of two of the truth values: an argument is valid if whenever the truth
value of the premises are not 0, the truth value of the conclusion is
not 0. Alternatively, we can define validity in terms of designated
truth values: whenever the premises are designated, so too is the
conclusion. Here, a designated value is one we want to be preserved
in valid arguments. In a two-valued logic it is natural to designate
1 (or “true”). But in a 3-valued logic we can choose to designate
1 or we can designate both 1 and i. Designating both 1 and i,
as we do in LP , is thus a natural extension of the usual definition
of validity in classical logic: an argument is valid if whenever the
premises are true, the conclusion is also true. Designating everything
other than 0 does not matter in classical logic, since there are only
two truth values (non-falsity and truth are the same thing). But in
a three-valued logic, this makes all the difference. We also need to
define the operator tables for the logical connectives (i.e., define how
conjunctions, disjunctions, and negations get their truth values).9

The operator tables for the logical connectives negation, conjunction,
and disjunction (respectively) are as follows:10

9See Beall and van Fraassen (2003), Priest (2008) or Priest and Tanaka (2004)
for full details and further discussion. The operator tables are the same as for
the the Kleene strong logic K3, which will be familiar to logic students.

10These operator tables define negation (¬), conjunction (∧), and disjunction
(∨) respectively. They are read as follows: (i) in the first table, read the right-
hand column as giving the truth values of the unnegated proposition and the
left-hand column as giving the corresponding truth value for the negation; (ii) in
the second and third tables, read the top row and the left column (the ones
separated from the main table by horizontal and vertical lines, respectively) to
represent the truth values of the two conjuncts/disjuncts and the corresponding
entry of the main table gives the truth value of the conjunction/disjunction.
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¬
1 0
i i
0 1

∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

∨ 1 i 0
1 1 i 1
i i i i
0 1 i 0

From these we see that if some sentence P has the truth value i,
its negation, ¬P , also has the value i, and so does the conjunction
of the two: P ∧ ¬P . Now take some false sentence Q (i.e., whose
truth value is 0) and consider the argument from P ∧ ¬P to Q. In
LP this argument is invalid, since the premise P ∧¬P does not have
the truth value 0 and yet the conclusion Q does have the truth value
0. In this logic the “proof” of Fermat’s Last theorem that I gave
earlier is invalid. But also notice that if you restrict the truth values
to 0 and 1, you get the same results as classical logic (just strike out
the i columns and rows from the tables above and you recover the
classical tables). So this logic, is a conservative extension of classical
logic, and a very natural extension at that.

Think for a moment about the third truth value, i, in LP . How
should we interpret this truth value? For a start, i is designated,
so it behaves like truth. But the operator table for negation and
conjunction reveals that if A has truth value i, ¬A also has truth
value i. Since i is designated, this gives us that A∧¬A is designated,
whenever A takes truth value i. In light of this and related issues, a
very natural interpretation of i in LP is as “both true and false”.11

7.2.2 Reasons to be Paraconsistent

What’s the philosophical significance of all this? Well, it might just
be that, mathematicians were never tempted by the proof of Fermat’s

11Logic students, should compare this third truth value with the third truth
value in the logic K3. In the latter the third truth value is usually thought of as
“neither true nor false” because it is not designated.
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Last Theorem I gave earlier because the appropriate logic of math-
ematical proofs is a paraconsistent one. This sounds implausible,
though. Surely all we need to do is ask a mathematician which logic
they use and surely they’ll all answer “classical logic” (or perhaps
“intuitionistic logic”). For various reasons it might be interesting
to conduct such sociological research of mathematicians’ beliefs, but
doing so will not help us answer the question at hand about the logic
of mathematics. Our question is which logic do mathematicians ac-
tually use, and this is determined by mathematical practice, not by
what mathematicians claim they use. Indeed, few mathematicians
are experts in the differences between the various logics under con-
sideration.

Here’s another possibility. Perhaps, mathematician’s don’t use
a paraconsistent logic but, rather, just avoid proofs like the five-line
proof of Fermat’s last theorem given earlier. Indeed, they might steer
clear of contradictions generally. The latter is hard to do, though,
when you’re working in a known-to-be-inconsistent theory. But per-
haps part of what it takes to be a good mathematician is to recog-
nise not just valid proofs, but also sensible ones. On this suggestion
the proof I opened with might be formally valid but it’s not sensi-
ble, since it involves a contradiction (it takes a contradiction as a
premise). But this won’t do as a response. First, the contradiction
in question can be proven straightforwardly in a very rigorous way
from, what was at the time, the best available theory of sets; it’s
not some implausible proposition without any support. Second, not
all arguments involving contradictions (or taking contradictions as
premises) are defective. Take the argument from P ∧ ¬P therefore
¬P . Surely this is both valid and sensible.12 the Putting these issues
aside, the most serious problem with this line of response is that the
notion of a sensible proof is in need of clarification. The advocate of

12Why? This argument is simply an instance of simplification or conjunction
elimination: A ∧B therefore B.



Inconsistent Mathematics? 147

a paraconsistent logic has no such problems here; they have only the
one notion: (paraconsistent) validity and the proof in question fails
to be valid.

Even if mathematicians do use classical logic but exercise some
(ill-defined) caution about what proofs to accept above and beyond
the valid ones, perhaps the practice in question can be modelled us-
ing a paraconsistent logic. Or even stronger still, perhaps the best
practice is appropriately modelled with a paraconsistent logic. If
so, we might suggest that mathematicians ought to use a paracon-
sistent logic. As I’ve already suggested, one reason for embracing
paraconsistent logic is that it provides a very natural way to block
the undesirable proofs. But there are other reasons to entertain
a paraconsistent logic. There are many situations in mathematics
where the consistency of a theory is called into question but without
a demonstration of any inconsistency. Consider, for example, the
earliest uses of complex numbers, numbers of the form x+ yi, where
i =
√
−1 and x and y are real numbers. There was a great deal of

debate about whether it was inconsistent or just weird to entertain
the square root of negative numbers.13 Moreover, it was not just the
status of complex analysis that was at issue. If the theory of complex
analysis turned out to be inconsistent, everything that depended on
it, such as some important results in real analysis, would also be in
jeopardy. Adopting a paraconsistent logic is a kind of insurance pol-
icy: it stops the rot from spreading too swiftly and too far—whether
or not you know about the rot.

Perhaps the most interesting reason to entertain a paraconsis-
tent logic in mathematics is that with such a logic in hand, näıve set
theory and näıve infinitesimal calculus can be rescued (Mortensen
1995). There is no need to adopt their more mathematically sophis-
ticated replacements: ZFC and modern calculus. There are a couple
of pay-offs here. First, both näıve set theory and näıve infinitesimal

13See Kline (1972) for some of the relevant history of this debate.
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calculus are easier to teach and lean than their modern successors.
In näıve set theory there is no need to deal with complicated axioms
designed to block the paradoxes; the easily understood and intuitive
unrestricted comprehension is allowed to stand. With näıve calculus
there is no need to concern oneself with the subtle modern ε-δ defi-
nition of limit; infinitesimals are allowed back in the picture.14 The
second pay-off is related to the first and concerns the intuitiveness of
the theories in question. At least in the case of set theory, the näıve
theory is more intuitive. ZFC, for all its great power and wide-spread
acceptance, remains unintuitive and even ad hoc. There is no doubt
that näıve set theory is the more natural theory. Similar claims could
be advanced in relation to näıve infinitesimal calculus over modern
calculus, though admittedly the case is not as clear here.

7.3 Applying Inconsistent Mathematics

Let’s now turn to application of inconsistent mathematics. There
are many interesting issues here, and I’ll say just a little about a
few of these. The first issue is that inconsistent mathematics adds a
new twist to the “unreasonable effectiveness of mathematics”, which
we looked at in chapter 6. Recall that the puzzle is to explain how
an a priori discipline like mathematics can find applications in a
posteriori science.

One proposal for explaining away the apparent puzzle was the
mapping account of mathematical applications. According to this
account there is a mapping between the mathematical structure and
the physical system being modelled. This mapping tracks the struc-
tural similarities between the two and this is enough to explain why
mathematics is so useful. Mathematicians develop structures, often

14As they are in non-standard analysis, but non-standard analysis does this in
a different way (Robinson, 1966; Conway, 1976).
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motivated by, or at least inspired by, physical structures. The math-
ematician’s structures then (unsurprisingly) turn out to be similar
(or even isomorphic) to various physical structures. But the fact that
inconsistent mathematics, such as the early calculus, finds wide and
varied applications in empirical science, raises problems for this line
of thought. After all, assuming, as most of us do, that the world
is consistent, how can an inconsistent mathematical theory be sim-
ilar in structure to something that’s consistent? There is a serious
mismatch here. It certainly cannot be that the inconsistent mathe-
matics in question is isomorphic to the world, unless one is prepared
to countenance the possibility that the world itself is inconsistent.
I’m not suggesting that the above thought about how to dissolve
the puzzle of the unreasonable effectiveness of mathematics is com-
pletely off the mark, just that it cannot be the whole story (Bueno
and Colyvan 2011).

The second issue in relation to applying inconsistent mathematics
takes us back to metaphysics. Recall from chapter 3 that the indis-
pensability argument pushes for belief in the reality of mathematical
objects from the fact that mathematical theories are indispensable
to our best scientific theories. Again, applications of inconsistent
mathematics adds a new twist. There have been times when incon-
sistent mathematical theories (most notably the early calculus) have
been indispensable to a broad range of scientific theories. 17th and
18th century calculus was indispensable to mechanics, electromag-
netic theory, gravitational theory, heat conduction and the list goes
on. It seems that if one subscribes to the indispensability argument,
then there’s a rather unpalatable conclusion beckoning: sometimes
we ought to believe in the existence of inconsistent objects (Colyvan
2008, 2009). For example, the early calculus posited inconsistent ob-
jects: infinitesimals, which were taken to be both equal to zero and
not equal to zero.15

15In general, we can think of an inconsistent object, in the sense intended here,
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It is not clear what to make of this argument for the existence of
inconsistent objects. Is it a reductio of the original indispensability
argument? Does it tell us that consistency should be an overriding
constraint in such matters? If so, on what grounds? Perhaps it is not
as crazy as it sounds to believe in inconsistent mathematical objects.
It is fair to say that the jury is still out on these issues, with much
more work and detailed examination of case studies required before
a verdict will be delivered.

Finally, there has been some fascinating work on using in-
consistent mathematical theories—more specifically, inconsistent
geometry—to model inconsistent pictures such as those of M. C. Es-
cher (1898–1972) and Oscar Reutersvärd (1915–2002) (e.g., Escher’s
Belvedere and Reutersvärd’s Penrose triangle). Chris Mortensen
(1997) has argued convincingly that consistent mathematical the-
ories of such pictures do no do justice to the cognitive dissonance
associated with seeing such pictures as impossible. Arguably, the
dissonance arises from the perceiver of such a picture constructing
an inconsistent mental model of the situation—an impossible spa-
tial geometry. Any consistent mathematical representation of this
inconsistent cognitive model will fail to capture its most important
quality, namely its impossibility. Inconsistent mathematics, on the
other hand, can faithfully represent the inconsistent spatial geometry
being contemplated by the perceiver and thus serve as a useful tool
in exploring such phenomena further. These applications of incon-
sistent mathematics should hold interest beyond philosophy. Indeed
there are immediate applications in cognitive science and psychology.
But such work is very new and its full significance has not yet been
properly appreciated.

Inconsistent mathematics has received very little attention in
mainstream philosophy of mathematics and yet, as we have seen
here, there are several interesting philosophical issues raised by it.

as an object which is taken to have contradictory properties.
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Moreover, some of these issues—such as the ontological commit-
ments of inconsistent mathematical theories and the use of paracon-
sistent logic as the logic for mathematics—bear directly on contem-
porary debates in philosophy of mathematics. Other issues—such
as the application of inconsistent mathematics to model inconsistent
pictures—promise to take philosophy of mathematics in new and
fruitful directions. For my money, though, the biggest issue concerns
possible insights into the relationship between mathematics and the
world. This is a central problem for both philosophy of mathematics
and philosophy of science. I believe that there is a great deal to be
learned about the role of mathematical models—both consistent and
inconsistent—in scientific theories, by paying closer attention to the
use of inconsistent mathematics in applications. Perhaps focussing
our attention on the consistent mathematical theories has mislead
us to some extent. If this is right, we won’t have the complete pic-
ture of the mathematics–world relationship until we understand how
inconsistent mathematics can be so useful in scientific applications.

Discussion Questions

1. Was the early calculus inconsistent? Perhaps it was just un-
derdeveloped and perhaps ambiguous. If it was inconsistent,
but not recognised to be inconsistent, does that make its indis-
pensability any more acceptable?

2. Can it ever be rational to believe a contradiction? What if you
have good reason to believe P and good reason to believe Q,
where Q entails ¬P?

3. Can you think of other reasons for embracing a paraconsistent
logic in one’s reasoning?

4. Show that the following logical truths of classical logic are also
logical truths in LP (i.e., always take a designated value):

• P ∨ ¬P (excluded middle)

• ¬(P ∧ ¬P ) (law of non-contradiction).
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5. Let ‘⊃’ be the material conditional, where P ⊃ Q is defined as
¬P ∨Q. Construct an operator table for this connective. Show
that modus ponens is invalid for this connective in LP . Show
that pseudo modus ponens, (P ∧ (P ⊃ Q)) ⊃ Q, is a logical
truth though.

6. Is it possible to distinguish a consistent object posited by an
inconsistent theory from an inconsistent object posited by an
inconsistent theory? If so, might we be able to argue that al-
though the early calculus was inconsistent, the mathematical
entities—infinitesimals and the like—were nevertheless consis-
tent?

7. Suppose you’re using an inconsistent mathematical theory to
model some physical system. Can you simply deny that the
inconsistent parts of the mathematics represent anything real?
Perhaps the inconsistent parts of the theory can be viewed as
mere artefacts of the model. This would make inconsistent
mathematical models much like other scientific models with
false assumptions. But how do you isolate the false assump-
tions in the inconsistent mathematics? Is this going to be more
difficult if the logic employed is explosive?

8. Explain why one might prefer an inconsistent theory of the
geometry of Escher drawings.
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Chapter 8

A Rose by any Other
Name

“It is impossible to be a mathematician without also being
a poet in spirit. ... It seems to me that the poet must
see what others do not see, see more deeply than other
people. And the mathematician must do the same” —
Sophie Kowalevski (1850–1891)

One often hears the claim that mathematics is “the language of sci-
ence”. This is meant as a compliment to mathematics. But math-
ematics is not the language of science in the way the French is the
language of love. The latter is surely conventional, perhaps driven by
aesthetic preferences for “amour” over “love” and “belle” over “beau-
tiful” and the like. In any case, mathematics, if it is the language of
science, is not like this. It’s not as though science looks or sounds
sexier when it’s written mathematically (actually, perhaps it does,
but that’s by the by). The point, of the slogan is to emphasise that a
great deal of science—especially physics, but many other branches of
science as well—is typically highly mathematical. Moreover, a great
deal of science could not even be formulated without mathematics.

In this chapter I will argue that although there is undoubtedly
something right about the view of mathematics as the language of
science, it seriously undersells mathematics. To think of mathemat-
ics as merely the language of science fails to appreciate the variety of
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roles mathematics plays in many diverse branches of science. Think-
ing of mathematics as a language is useful in appreciating the sig-
nificance of, and the difficulties encountered in developing, a good
notational system. Good notation is far from trivial. So let’s start
by looking at some of the benefits of good notation. Along the way,
we will see the role good notation can play in prompting new ideas
and new developments in mathematics and science.

8.1 More than the Language of Science

8.1.1 The Natural Numbers

Mathematicians and historians of mathematics have long recognised
the importance of good notation in mathematics. But since the
demise of formalism as a philosophy of mathematics, mathematical
notation has received little philosophical attention.1

Let’s start with a couple of examples. First, consider the Arabic
notation for the natural numbers: 1, 2, 3, 4, 5, . . .. The familiarity of
this notation system makes it easy to overlook just how powerful
and extraordinary it is. James Robert Brown (2008, p. 85) notes
that one of the reasons this notation is so powerful is that the most
important feature of the natural numbers—their recursiveness—is
built into the notation.2 He suggest that “[t]his is the mathematical
equivalent of poetry’s onomatopoeia” (Brown 2008, p. 86). He goes
on to suggest that the recursive nature would need to be known in
advance of the invention of such notation. But this doesn’t seem
right. It is surely at least possible to conceive of a society without

1One notable exception is James Robert Brown (2008) who has a whole chapter
on the philosophical significance of mathematical notation.

2The notation also makes it easy to assess many inequalities. For example, it
is obvious that 373559 is greater than 4749; all one needs to do is note that the
first string is longer than the second. Notice that this is not the case in Roman
notation, where, for instance x > viii.
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the concepts of infinity or of recursion. Yet, they still might entertain
the idea of a large but finite numbers system—enough numbers to
make the Arabic notation worthwhile. One could even imagine a
member of such a society noting that their notation allows for the
representation of numbers larger than any they currently use. This,
in turn, might led to the discovery of the natural numbers in all their
recursive glory. In short, Brown is too quick to dismiss the idea that
the notation can help reveal hitherto unknown mathematical facts.
At least, there is nothing in Brown’s discussion to rule this out and
I suspect he would be friendly to the idea of such notation-driven
discovery.

Another important feature of good notation is that it can facili-
tate computation. The Arabic notation delivers all the standard al-
gorithms for addition, subtraction, multiplication, and division that
we learned in primary school. It does this, of course, by appreciating
how the recursive structure of the natural numbers is represented in
the Arabic notation. This is far from trivial. Try multiplying two
large numbers directly in Roman numerals and you will soon see the
superiority of Arabic notation.3 It is not always made clear that
such algorithms depend on the notation. This is something that
the formalists were well aware of: you can reduce a great deal of
mathematics to manipulations of particular symbols. Recall (from
chapter 1) that the formalists saw such computation via symbol ma-
nipulation as the primary activity of mathematics. Be that as it may,
there does seem to be calculational power in at least some notational
systems.4

3Brown (2008, pp. 86–93) gives other instructive examples of computational
power arising from notation. For example, he considers knot theory, where the
notation allows for the determination of whether two tangles are the same. See
especially the result invoking Conway notation and continued fractions.

4The arabic notation also enables some cool party tricks—well, they’re cool at
a certain kind of nerdy party! Think of a number between 1 and 9, multiply it by
3, subtract 2, add your age when you first tasted Chinese food, add 0 if you’ve
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8.1.2 Elementary Differential Calculus

Now consider the notation of elementary calculus. It is well known
that Leibniz and Newton had different notation for the derivatives
of functions. Leibniz used dy/dx for the first derivative and d2y/dx2

for the second derivative, whereas Newton used the dot (or prime)
notation: ḟ and f̈ (or f ′ and f ′′) respectively. Newton’s notation
is more economical but it does not generalise so well to higher di-
mensions, where one needs to be explicit about which independent
variable we are differentiating with respect to. Indeed, Newton was
mostly interested in differentiating with respect to time (and the dot
notation is still commonly used for time derivatives). Leibniz’s nota-
tion generalises very well to higher-order partial derivatives, because
even in the case of one independent variable, the notation is explicit
about differentiating with respect to the variable in question.

I am not claiming any victory for Leibniz over Newton here; it’s
just that this again looks like a case where good notation can facil-
itate new mathematics (in this case multi-variate calculus) by mak-
ing the transition to the general case seamless. This case is different
from the last in that here we see that notation might be good for
one purpose but not for another. Also note how once again good
notation might suggest new mathematics. In Leibniz notation, it is
very natural to consider the question of whether the mixed partial
derivatives ∂2u/∂x∂y is the same as the other mixed partial deriva-
tive ∂2u/∂y∂x.5 It turns out that these mixed partial derivatives are

never tasted Chinese food, add the number of siblings you have, multiply by 9,
than add the digits of the resulting number, repeatedly, if necessary until you
arrive at a number between 1 and 9. The result is 9, right? The crux of this trick
is that any multiple of nine has its digits sum to nine or else sum to a number
whose digits sum to nine, or whose digits sum to a number whose digits sum to
nine, and so on. This result falls out of modular arithmetic, but it involves the
notation in a non-trivial way.

5The former is the derivative taken with respect to x and then with respect



A Rose by any Other Name 159

equal at any point where the function u has continuous mixed partial
derivatives. For present purposes we simply note that questions such
as this (and the theorem that answers this question) naturally arise
from the notation itself. Good notation, it seems, prompts the user
to keep track of distinctions the inventor of the notation may not
have even noticed.

Next, consider the standard notation for the Laplace operator in
two dimensions:

∆f(x, y) =
∂2u

∂x2
+
∂2u

∂y2
. (8.1)

This notation is economical, allowing us to write Laplace’s equation
in two dimensions as: ∆u(x, y) = 0, and if the dimension is under-
stood, we need only write: ∆u = 0. The economy of this notation
is even more apparent when we go beyond two dimensions. The
generalised n-dimensional Laplace operator is defined as

∆u =
n∑
i=1

∂2u

∂x2
i

=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+ ...
∂2u

∂x2
n

. (8.2)

It is worth pointing out that the notation itself, insofar as it
ignores the dimension, might even be thought to suggest the gener-
alised n-dimensional version of the operator. Even if the generalisa-
tion were not already in play, the notation would remind one that
there is nothing special about two (or any other number of) dimen-
sions. We thus see that good notation can be economical as well
as lend itself to further mathematical developments. Since mathe-
matical developments are very often generalisations to more abstract
structures, we can restate this last virtue of good notation as that of
facilitating more abstract, generalised mathematical theories.6

to y, whereas the latter is in the other order.
6There is also the related issue of which concepts are the most fruitful ones to



160 An Introduction to the Philosophy of Mathematics

8.1.3 Topology

Next consider an example from topology. Topology is the study of
features of spatial structures preserved under continuous transfor-
mations, or as the slogan goes: topology is “rubber-sheet geometry”.
To get a feel for this fascinating area of mathematics, we can trans-
form a solid sphere into a solid cube without tearing or introducing
holes, or filling in holes. (Think of a solid sphere made of clay and
how it could be moulded into a solid cube.) From the point of view
of topology, a cube and a sphere are identical. But a torus (the
shape of a US doughnut) is not the same as either of these—the hole
makes all the difference here. It is the hole that prevents any con-
tinuous transformation of a sphere, say, into a torus. At some stage
a hole must be punched through the sphere (i.e., a discontinuity in
the transformation is necessary). A torus, however, is topologically
equivalent to a tea cup (because of the tea-cup handle).

There is a particularly powerful piece of diagramatic notation
that’s a kind of cardboard cut-out plan—except that the cardboard
is flexible and the construction sometimes cannot be completed in
the space we occupy. Let’s start with a couple of familiar ones to get
the idea. A cylinder is represented thus:

6 6

focus on. Lakatos’s (1922–1974) most significant contribution to the philosophy
of mathematics was to argue (convincingly) that mathematical concepts are very
often refined in the light of mathematical results and counterexamples (Lakatos
1976). So we might reasonably ask why the concept of the Laplacean operator is
so useful in both pure and applied mathematics. I set this interesting issue aside
and assume that we have already decided which mathematical concepts are useful
and we are concerned with the question of representing them in our mathematical
notation. We revisit the issue in section 8.3.
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The arrow facing upwards on the left side and the arrow pointing
upwards on the right indicates that these two edges are identified.
That is, a point on the right edge, for the purposes of present inter-
ests, is the same point as corresponding point on the left edge. The
fact that the two arrows are facing in the same direction means that
identification is made with the same orientation. That is, the top
left corner is identified with the top right corner, and the bottom left
corner is identified with the bottom right corner, and so on for all
the points along the edges. To give a more concrete interpretation
of the notation, we can see it as instructions for building a cylinder:
cut out the square of rubber or cardboard, or whatever, and glue the
left edge to the right edge with the same orientation.

The orientation needn’t be the same, of course. We might, in-
stead, identify the two edges with reverse orientation thus:

6
?

Here the left and right edges are identified so that the top right
is identified with the bottom left and the bottom right with the
top left. That is, before gluing our rubber sheet, we put a twist
in it so that we form a Möbius strip (named after its discoverer,
the German mathematician August Möbius (1790–1863)). These are
very interesting objects. They are two dimensional surfaces but we
need three dimensions to construct one of them. The twist needs to
run through the third dimension.

Now using this notation we represent a torus.

66

-

66

-

Here we identify the right edge with the left edge, with the same
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orientation, as we did with the cylinder, but now we also identify
the top edge with the bottom edge, again with the same orientation.
That is, cut out a square sheet of rubber and glue the right edge
to the left to form a cylinder, then glue the two circular ends of the
cylinder (what were the top and bottom edges of the original square)
together to form a torus. (It doesn’t matter whether we glue the sides
first and then the edges or vice versa.)

Finally we use this notation to represent a very strange object
indeed: the Klein bottle (named after its discoverer, German math-
ematician Felix Klein (1849–1925)).

66

-

??

-

This is the same as the torus except that the second identification is
performed with the reverse orientation. But think for a moment how
you would use this diagram as instructions for building a Klein bottle.
Glue the top and bottom edges as with the torus. So far so good. But
now you’re required to put in a twist to get the reverse orientation
for the second gluing. You cannot physically do this because you’ve
run out of dimensions. The twist needs to be in a fourth dimension.
Since we’re stuck with only three spatial dimensions, the Klein bottle
is not constructable. It is a three-dimensional object needing four
spatial dimensions for its construction. Perhaps its most interesting
feature, however, is that it has no inside or outside.

The Klein bottle is a lovely demonstration of the power of good
notation. The notation just developed makes it plain that there
are such things as three-dimensional objects that require more than
three spatial dimensions for their construction. The notation also
shows that there are three dimensional objects with no inside or out-
side. Before seeing and understanding the relevant notation, you’d
be sorely tempted to dismiss the idea of such objects as nonsense.
But even if you had not stumbled onto such things already, the no-
tation just developed leads you to them and we can even deduce the
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properties of objects like the Klein bottle by studying the details of
the notation. (For example, from the notation alone it can be seen
that the Klein bottle has no inside or outside.) Arguably, the nota-
tion also helps us see why we cannot build such objects: because we
are stuck in three spatial dimensions yet we need to engineer a twist
in a fourth dimension.

Another interesting issue raised by this particular piece of nota-
tion involves the difference between algebraic methods and geometric
methods. For a long time it has been the orthodoxy in mathematics
to see geometric intuitions as unreliable. Instead, we should trust
only purely algebraic methods. The latter are the epitome of rigour.
Pictures and geometric intuitions are at best pedagogical devices, or
so this line of thought goes. This view has been challenged recently
(Brown 2008) and some have even suggested that the distinction be-
tween algebraic methods and geometric ones is not as sharp as it
might first seem. This example lends support to the latter thesis.
This algebraic topology notation is something of a halfway house
between pure algebra and pure geometry. It is both notation and
a kind of blueprint for construction of the objects in question. The
first seems to belong to algebra, while the second is geometric. But
whichever way you look at it, we have a powerful piece of notation
here that does some genuine mathematical work for us.

8.1.4 The Point at Infinity

One final example of how clever notation can reveal something math-
ematically interesting. Here we show that one can add infinity to the
complex plane, to deliver the extended plane, without leading to
trouble. This is done by a cunning construction called the stere-
ographic projection. But this construction can also be considered
an alternative notation for the complex plane. Here’s how it goes.
Consider the complex plane laid out horizontally and with each point
represented with the usual Cartesian 2-coordinates (x, y). Now add a
third, vertical dimension, the z dimension, and with the usual Carte-
sian 3-coordinates (x, y, z). Consider a unit sphere with its centre at
the origin (0, 0, 0): x2 + y2 + z2 = 1. Now we consider the line gen-
erated by joining a point in the the x–y plane with the north pole
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of the hemisphere (0, 0, 1). In particular, we are interested in where
these lines intersect our unit sphere. For example, the line joining
the point (1, 0) in the x–y-plane and the north pole of our sphere
intersects the sphere at (1, 0, 0). The line joining the point (0, 0)
to the north pole, intersects the sphere at the south pole (0, 0,−1).
If we now identify each point of the Cartesian plane with the cor-
responding point of intersection of the sphere, we see that all the
points inside the unit circle x2 +y2 = 1 are mapped to unique points
on the part of the sphere below the x–y-plane, all the points on the
unit circle get mapped to their 3-dimensional counterpart (i.e., (x, y)
gets mapped to (x, y, 0)), and all the points outside the unit circle
get mapped to unique points on the portion of the sphere above the
x–y-plane. Moreover, the further from the origin the point is, the
closer its corresponding point of intersection is to the north pole of
the sphere. Via this construction—a conformal (or angle preserving)
mapping—we have created an alternate representation for each point
in the real plane.

What is useful about this apparently-cumbersome representation,
is that every point on the plane is represented by an ordered triple
(points on the surface of the sphere) and every point of the surface of
the sphere, except one—the north pole—has a corresponding point
on the x–y-plane. But now we just add the north pole and stipulate
that it is the point at infinity. The motivation for this should be plain
to see. It should also be plain to see that the north pole represents
infinity in all directions on the x–y-plane. Using this construction
(or alternative notation) we have shown that it is sensible to talk of
the extended real plane (i.e., the complex plane with a single point
at infinity added). That this can be done is not at all apparent in the
standard notation. Again, we have found an interesting extension of
our mathematics, and this extension was facilitated by the alternative
notation employed in the stereographic projection.

8.2 Shakespeare’s Mistake

So far we have seen that good notation can enjoy the virtues of econ-
omy, calculational power, and facilitating advances in mathematics.
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But let’s push things a little further. I want to pursue the sugges-
tion, hinted at in the topology example, that good notation can make
mathematical explanations more perspicuous.

Recall that in chapter 5 we looked at mathematical explanations,
both within mathematics and in empirical science. Here we focus
on the former, intra-mathematical explanations. Let’s take seriously
the idea that mathematical explanation can facilitate explanation,
as the Klein bottle example at least suggested.

8.2.1 Analytic Geometry

Chief among René Descartes’ (1596–1650) many contributions to phi-
losophy, mathematics, and science, is his combining geometry and
algebra in analytic geometry . The idea is so familiar now that it is
hard to fully appreciate just how brilliant this innovation was. The
idea is simply that we invoke a coordinate system for the plane, and
then geometric figures can be represented algebraically in terms of
these coordinates. In the other direction, we can represent algebraic
equations and inequalities geometrically. The convention is to call
the horizontal coordinate axis the x-axis and the vertical axis, the
y-axis. For example, the circle with its centre at the origin of the
coordinate system (the point (0, 0)) and with radius 1 unit is written
algebraically as x2 +y2 = 1. A parabola with its vertex at the origin,
with focus at (0, 1) is y = x2/4. This simple idea is very ingenious,
and extremely powerful. With this algebraic notation for geometric
figures, we are able to use geometry to help visualise otherwise ab-
stract algebraic problems, and to use the rigorous methods of algebra
to solve geometric problems.

For example, from the relevant geometry we can see why the
polynomial x2 − 1 has two real roots: because the corresponding
parabola y = x2 − 1 has its vertex below the x-axis. We can also
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see why the polynomial x2 + 1 has no real roots: because the cor-
responding parabola y = x2 + 1 sits entirely above the x-axis.7 It
is, of course, possible to understand why x2 + 1 has no real roots by
considering the algebra alone, but with the connection to geometry
in place, you can see why. This is just the tip of the iceberg. By
invoking the power of analytic geometry we can visualise differenti-
ation (as the function representing the slope of a tangent to a curve
at a given point), integration (as the function representing the area
under a curve) and much more besides. These and many other ap-
plications should be very familiar so we won’t dwell on them here.
It is worth reflecting for a moment, however, on the important role
the algebraic notation for geometric figures plays in all this.

The preceding examples highlight the power of geometry when
brought to bear on algebraic problems But, for present purposes,
we’re more interested in the other side of the coin: the power of alge-
braic notation when brought to bear on geometry. A good example
of this is the discovery of the Weierstrass function, named after the
German mathematician Karl Weierstrass (1815–1897). It is tempt-
ing to think that continuous functions can fail to be differentiable
at most at a countable number of points.8 That is, if a function is
continuous on an interval, it may have a countable number of points
at which it is not differentiable, but differentiable at the rest. For
example, the function

f(x) =
{
x+ 1, x < 0
−x+ 1, x ≥ 0

is continuous everywhere but is not differentiable at the point x = 0;
there is a cusp at x = 0. Weierstrass managed to show that there

7Although, of course, the fundamental theorem of algebra, guarantees that the
polynomial in question has two complex roots: ±i, where i =

√
−1.

8Recall from section 2.1 that a countable set is either finite or can be placed
in one–one correspondence with the natural numbers.
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are continuous functions that are nowhere differentiable—they have
cusps everywhere. The function Weierstrass originally produced was

f(x) =
∞∑
n=0

an cos(bnπx),

where 0 < a < 1, b is a positive odd integer and ab > 1 + 3π/2.
There are many other such functions. It is very hard to imagine
discovering such functions without algebraic notation in geometry.
After all, pure geometric intuitions, if anything, suggest that there
are no such functions. But more importantly, the algebraic notation
allows the explanation of why some continuous functions may fail to
be differentiable.

My suggestion in this and the following example is that the no-
tation helps us understand what’s going on, and in this sense, helps
engender (psychological) explanations. By this I don’t meant to sug-
gest that the notation is the reason for the phenomenon in question,
just that the notation helps make the explanation accessible to us.9

Next we consider an example where algebraic notation is used in a
more essential way, and the explanation in question seems to rely on
the algebraic representation of some geometry.

8.2.2 Squaring the Circle

There is an ancient problem—going back to the Greeks—of con-
structing a square of the same area as a given circle, using just a

9We can distinguish two senses of explanation: one an objective sense and the
other a psychological sense. For example, a scientific explanation might not be
understandable to someone not versed in the relevant science. That does not stop
it from being an explanation in the objective sense, but its failure to enlighten
the person in question prevents it from being a psychological explanation for that
person. It is the latter, psychological sense of explanation we’re concerned with
here.
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straightedge and compass.10 That is, using only these two instru-
ments we must construct a square of side r

√
π, where r is the radius

of the circle in question and π is the ratio of the circumference to
the diameter of a circle. After centuries of attempts, the impossi-
bility of this construction was finally proven in 1882 by Ferdinand
von Lindemann (1852–1939). The proof, however, comes from ab-
stract algebra, not geometry. A quick sketch of the connection here
is worthwhile, because the algebraic notation is crucial to the proof
in question.

First, we catalogue the legitimate, basic ruler and straightedge
constructions (drawing a line through two existing points, construct-
ing a circle with centre at one existing point and running through
another existing point, and so on). We then provide notation for the
basic geometric objects (lines, points and arcs of circle) and note that
we can represent these objects in the Cartesian plane, in the usual
way. We then show that the permissible geometric constructions give
rise to a small set of algebraic operations on line lengths: addition
subtraction, division, multiplication and taking the square root. The
idea here is that if two line segments of lengths a and b are given, we
can construct line segments of length ab, a + b, a − b, a/b and

√
a.

What is crucial is that these are the only algebraic operations the
geometric constructions licence.11

Note that what we have done is again forge a link between the
geometric constructions and algebra, and, in particular, we can now
employ algebraic methods. We have thus transformed the problem
from a geometric construction of a given length,

√
π, to a problem

in algebra of determining whether
√
π is obtainable from a given

10This is one of three famous ancient geometric construction problems, the
other two being trisecting an angle, and doubling the cube. The first is the
problem of trisecting and arbitrary angle, the second is that of creating a cube
with twice the volume of a given cube.

11The latter is not obvious and requires proof.
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number by successive applications of the algebraic operations just
listed. Thus stated, the problem reduces to whether

√
π can be the

root of a polynomial with rational coefficients and where the only
powers are 0, 1, or an even integer. Now this is where the Lindemann
result comes in. Lindemann proved that π (and therefore

√
π) is

transcendental. That is, π (and
√
π) is not the root of any polynomial

with rational coefficients. Squaring the circle is thus impossible.12

Although, historically and mathematically, the fact that π is tran-
scendental is the key to the impossibility result, it is important to
see how the problem needed to be set up as an algebraic problem.
This involved the clever introduction of algebraic notation for the
geometric objects and operations and noting that the geometric op-
erations give rise to some familiar algebraic systems. Again we see
good mathematical notation playing a key role in delivering a math-
ematical explanation. (For the explanation of the impossibility here
is the transcendentalness of /pi.)

We have seen that good notation can enjoy the virtues of econ-
omy, calculational power, and facilitating advances in mathematics.
More controversially, good notation may also contribute to mathe-
matical explanations (as in some of the topology examples). This
already takes us well beyond the standard view (insofar as there is
such a thing) of mathematical notation. The standard view I have in
mind here, suggests that its the mathematical objects that matter,
not the notation we use for them: as Shakespeare put it in Romeo
and Juliet

What’s in a name? that which we call a rose
By any other name would smell as sweet.

12Several other classic geometric construction problems—trisecting an angle
and doubling the cube—also turn out to be impossible. They are impossible for
different reasons: respectively, cos(π/9) is not the root of any of the polynomials
just described, nor is 3

√
2. In each case, the same notation outlined here is used

and is important in delivering the impossibility result in question.
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Following Shakespeare’s lead, it might be tempting to suggest
that a mathematical object by any other name would be just as use-
ful. But we have seen that this is not so. Sometimes the names
encode properties of the objects in question and in such cases other
names would be less revealing.13 Perhaps because of this encoding,
good notation can keep track of distinctions we may not have ini-
tially noticed, force us to investigate such distinctions and to see
possibilities for future research not previously anticipated. In short,
properties of the notation are important in mathematics. So Shake-
speare was wrong, at least about mathematical notation, but I’d
suggest he was wrong about natural language as well. A rose by
any other name may well smell as sweet, but still some names are
more revealing about that which they name. In any case, it is far
from clear that mathematics would be served equally well by alter-
native notations. Getting the notation right features prominently in
mathematical practice. And there is a good reason for this. Good no-
tation does serious work in mathematics. There is a great deal more
philosophical work to be done on understanding and appreciating
the role of notation in the various branches of mathematics. Espe-
cially important here is the development of an account of how good
notation can advance mathematics and contribute to mathematical
understanding.

8.3 Mathematical Definitions

Let’s return to the issue of the mathematical concepts behind the
notation. How do mathematician’s decide which mathematical con-
cepts to study and to feature in their theorems? They are free to
study whichever concepts they like, but some will turn out to be

13Interestingly, this is true of natural language as well: onomatopoeias reveal
something about the sounds they name, and other words such as “computer’ and
“amplifier” tell you something about the objects they name.
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more interesting and useful than others. Sometimes the definitions
need to be revised because they lead to trouble. The implicit def-
inition of “set” delivered by näıve set theory needed to be revised
in the light of the set theoretic paradoxes. In effect, the various set
theories we currently have at our disposal can be seen as offering
competing definitions of “set”—each a replacement for the defective
näıve conception. But what of less dramatic cases, where there are
no (known) contradictions involved? How do we decide on the right
definition to work with when there is more than one live option?

In his book Proofs and Refutations, the Hungarian-born philoso-
pher of science Imre Lakatos (1922–1974) argued that there is more
to mathematics than merely proving theorems. We need to decide
which mathematical statements to try to prove, we need to agree
upon the definitions of the concepts employed in the statements in
question, and we need to know how to deal with alleged counter-
examples.14 Lakatos presents his case via a very entertaining dia-
logue about the Euler characteristic for polynomials.

The Euler characteristic, named for the Swiss mathematician
Leonhard Euler (1707–1783), describes the shape of a given space.
However, the concept was originally applied to polyhedra—three di-
mensional geometric solids with a number of flat faces and edges.
The Euler characteristic χ is defined to be the number of vertices
(V ) of the polyhedra in question, minus the number of edges (E),
plus the number of faces (F ): χ = V −E + F . Consider a couple of
familiar polyhedra. A cube has 8 vertices, 12 edges, and 6 faces, so its
Euler characteristic is 2. An octahedron has 6 vertices, 12 edges, and
8 faces, so its Euler characteristic is also 2. After considering other
familiar examples, It is tempting to hypothesise that χ = 2 for all

14Lakatos first presented this work in his Cambridge PhD thesis in 1961 and
later in a series of articles in the early 1960s. It eventually appeared posthumously
in book form as Proofs and Refutations in 1976.
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polyhedra. This is known as Euler’s formula: χ = V −E+F = 2.15

One of the things that Lakatos brings out so nicely in Proofs
and Refutations is that we cannot prove or disprove Euler’ formula
for polyhedra without simultaneously negotiating the definition of
“a polyhedron”, and in some cases, the definitions of “edge”, “face”
and “vertex”. The reason for this is that there are counterexamples
to Euler’s formula, but the counterexamples are somewhat odd. In-
deed, so odd are some of the counterexamples that it is tempting to
decline to classify the objects in question as polyhedra, even though
they satisfy the tentative definition of “a polyhedra” we started out
with. For example, consider the solid body bounded by two nested
cubes (which do not touch at any point). This body apparently has
16 vertices (8 on the outside and 8 on the inside), 24 edges (12 on
the outside and 12 on the inside), and 12 faces (6 on the outside
and 6 on the inside), giving it a Euler characteristic of 4. Do we see
this as a counterexample to Euler’s formula or do we see it as a non-
polyhedron? It depends on how serious we are about wanting Euler’s
formula to hold. We can make the notion of polyhedron restrictive
so that Euler’s formula does hold, or we can be more liberal about
what we count as a polyhedron and then Euler’s formula has counter-
examples.16 It turns out that there is a class of three-dimensional
figures for which Euler’s formula holds, namely, convex polyhedra.
And other polyhedra can have χ 6= 2. But we might have just dug our
heals in and insisted that for all polynomials χ = 2, and explain away
the counterexamples as pathological cases (or “monster-barring”, as
Lakatos called the ad hoc dismissal of pathological cases).

15Not to be confused with another formula of complex analysis that also goes
by this name: eix = cosx+ i sinx.

16I’m just presenting the basic idea here. There are many interesting twists
and turns, not to mention controversial conclusions to be found in Lakatos’s very
rich book. I highly recommend reading it in its entirety.
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Whether Lakatos’s story about Euler’s formula is historically ac-
curate is debated, but as a logical point about the relationship be-
tween definitions of mathematical concepts and theorems involving
them, he is on solid ground. Indeed, we can construct other exam-
ples. We could “monster-bar” the Russell set and its like—refusing
to accept them as sets—thus saving näıve set theory. We encoun-
tered the Weierstrass function in section 8.2.1: the function that’s
continuous on an interval but not differentiable anywhere in the in-
terval. This function prompted debate over what the definition of
“mathematical function”. In particular, the definition needed to de-
termine whether the Weierstrass function and its kind were functions
or whether they were to be dismissed as a pathological case.17

Monster-barring sounds ad hoc and thus unreasonable, but this
is not always the case. In all the examples we’ve considered thus
far, the more general definition has won out and monster-barring,
although a live option, was not invoked. But consider the following
“monster”—the Dirac delta function δ : R→ R:

δ(x) = 0, ∀x 6= 0, and
∫ +∞

−∞
δ(x) dx = 1.

This “function” can be thought of as having an infinite spike at the
origin, with 1 unit of area under the spike.

To get the idea, consider a related family of functions fε : R→ R:

fε(x) =


0, x /∈ (−ε, ε)
x/ε2 + 1/ε, 0 > x > −ε
−x/ε2 + 1/ε, ε > x ≥ 0

These piece-meal functions are zero everywhere except in a small
region around the origin. Here they take the form of a straight

17See also the discussion of the Fundamental Theorem of Algebra in sec-
tion 9.2.9 for another related case.
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line up to the point (0, 1/ε) and back down to zero again. They
have spikes around the origin, and these spikes are precisely high
enough to ensure that the area under the curve in each case is 1 unit:∫ +∞
−∞ f(x) dx = 1. Obviously, the smaller ε is, the higher the spike.

Now consider the limit of this family of functions as ε approaches 0.
That’s the Dirac delta function! (It is named for the English physicist
Paul A. M. Dirac (1902–1984), who made fundamental contributions
to quantum mechanics.)

The Dirac delta function proved to be very useful in physics. In-
deed, Dirac’s original proposal of the delta function was motivated
by applications in quantum mechanics. But despite being useful in
applications there is something very fishy about it. It’s not exactly
inconsistent, but it feels dangerously close. We normally think that
in order for there to be area under a curve, there must be some (non-
trivial) interval of the domain where the function is non-zero. But
the Dirac Delta function has its area concentrated at a point—the
point where the spike is. The Dirac delta function was too weird to
live, and too useful to die.18 It was monster-barred as a function
(hence the scare quotes earlier) but was rehabilitated as a different
kind of mathematical object: a distribution. Distributions are gen-
eralisations of functions and the Dirac delta function prompted the
development of the theory of such objects.

So monster-barring, while apparently ad hoc in some cases, can
be justified and is sometimes employed as a strategy. At the very
least it is an option; Lakatos is right about that. And Lakatos is also
right that defining mathematical concepts and using those concepts
is a kind of juggling act. We start out with some intuitive mathe-
matical concepts, derive some results using these concepts, refine our
definitions in light of the results and revisit the derivations. Nether
definition nor derivation is logically or temporally prior to the other.

18This phrase is borrowed and adapted from the 1998 Terry Gilliam film of
Hunter S. Thompson’s Fear and Loathing in Las Vegas.
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This is in stark contrast to the received view of mathematics being a
deductive science, cranking out theorems by agreed upon rules and
using well-defined concepts given in advance.

Discussion Questions

1. Think of further examples where a good choice of mathematical
notation can be thought to facilitate new mathematics.

2. Make a Möbius strip and verify that it is non-orientable. Cut
along the midline of the strip. Do the same again. (Hint:
make the original strip wide enough to accommodate the two
cuts described here.)

3. Verify that a Klein bottle is a three dimensional object with no
inside or outside.

4. Verify that χ = 2 for a tetrahedron (4 faces) and dodecahedron
(12 faces).

5. Can you think of other counterexamples to Euler’s formula?

6. Explain how the Dirac delta function can be thought of as the
derivative of a discontinuous step function such as:

f(x) =
{

0, 0 > x
1, x ≥ 0.

7. In empirical science, Quine and Duhem have argued that there
is underdetermination of theory by evidence, so that no single
hypothesis is ever refuted by evidence. Rather, “our statements
about the external world face the tribunal of sense experience
not individually but only as a corporate body” (Quine 1953,
p. 41). So, according to Quine and Duhem (and Lakatos), in
the empirical realm we can save a favourite hypothesis that’s
seemingly in conflict with empirical evidence, by shifting the
blame to auxillary hypotheses. Now reflect on the methodol-
ogy of Proofs and Refutations, with its simultaneous defining
concepts and deriving results about the concepts in question.
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Explain how this might be thought of as the mathematical
equivalent of the Quine-Duhem-Lakatos view about confirma-
tion and disconfirmation in empirical science. When seen in
this light, Lakatos can be thought to be arguing for a kind
of fallibilism about mathematics. Spell out the fallibilist view
Lakatos is pushing for and note the points of contact with em-
pirical science.

8. Could the Lakatos thesis about revising and reformulating def-
initions in the light of counterexamples be taken a step fur-
ther, allowing logical notions like “proof”, “derivable”, “logical
consequence”, and “validity” to be also up for grabs when a
counterexample arises? Can you think of any examples where
revising the logic might be seen as rational response to a coun-
terexample or a problem case?

Recommended Further Reading
There is very little in the philosophical literature on mathematical
notation. Chapter 6 of Brown (2008) is essential reading in this re-
gard. De Cruz and De Smedt (forthcoming), Munstersbjorn (1999),
and Weber (forthcoming) are all relevant. There is quite a bit written
on the mathematical side. See, for example, Davis and Hersh (1981).
For the history of mathematical notation see Cajori (1993). Related
material can be found in discussions of visual/geometric methods
versus algebraic methods, such as in Brown (2008, chapter 3) and
Giaquinto (2007). For more on non-deductive methods in mathe-
matics see Baker (2009) and, of course, the classic Lakatos piece on
mathematical definitions is his (1976). Other than looking at these
few pieces, I’d recommend dipping into some of the relevant math-
ematics to get a feel for mathematical notation “in the wild”. For
example, Bold (1982), Massey (1989), and Spivak (2006) go into more
detail on some of the examples discussed in this chapter.

Baker, A. 2009. ‘Non-Deductive Methods in Mathematics’, in E. N. Zalta
(ed.), The Stanford Encyclopedia of Philosophy (Fall 2009 Edition).
URL = <http://plato.stanford.edu/archives/fall2009/entries/
mathematics-nondeductive/>.
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Chapter 9

Epilogue: Desert Island
Theorems

“Beauty is the first test: there is no permanent place in
the world for ugly mathematics” — G.H. Hardy (1877–
1947)

You know the old question about which 20 books, 20 albums, 20
movies, or whatever, you’d like to have with you if you were stranded
on a desert island? Well, in this chapter I’ll give you my top 20
mathematical theorems for desert-island-bound philosophers. We
look at a number mathematical results that have some philosophical
interest, or in some cases are just very cool pieces of mathematics.
(Alternatively, you might think of this chapter as 20 theorems you
should come to terms with before you die.) Of course, this is just my
top 20 theorems. If you don’t like my choices, feel free to construct
your own list. For good measure I throw in a few famous open
problems and interesting numbers to round out my desert island
survival kit.

9.1 Philosophers’ Favourites

The theorems in this section are well known by philosophers and
rightly get a great deal of attention in philosophical circles. These
are the obvious choices for desert island theorems, but in some cases
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you’d be disappointed to be stuck with just these. You wouldn’t
be disappointed because these are uninteresting or trivial; you’d be
disappointed because they are just a bit too obvious. Everybody
would have these!1 In any case, the theorems below are the classics—
the obvious ones that almost anyone would put high on their list.
(These are the Citizen Kanes and Vertigos of the maths world.)

9.1.1 The Tarski-Banach Theorem (1924)

The Tarski-Banach theorem is a theorem of topology named after
the Polish logician and mathematician Alfred Tarski (1901–1983)
and the Polish mathematician Stefan Banach (1892–1945) and was
first published in a paper appearing in 1924. The theorem states
that a solid sphere can be decomposed into a finite number of pieces,
the pieces moved around via rigid rotations and translations and
recombined into two spheres, each equal in volume to the first. The
theorem crucially depends on the axiom of choice, which allows for
the decomposition in question into non-measurable sets. It is deeply
counterintuitive, so much so that it is seen by some as a reductio of
the axiom of choice.

9.1.2 Löwenheim-Skolem Theorem (1922)

If a system of first-order sentences has a model at all, it has a count-
able model. This theorem was discussed at length in section 2.1.

1Just as if you went to the desert island with just the cinema classics,
Casablanca Citizen Kane, Vertigo, The Godfather, and the like, you’d even-
tually crave something a bit less familiar and perhaps a bit offbeat, such as The
Good, the Bad, and the Ugly, The Big Lebowski, Stranger than Paradise, or 12
Monkeys.
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9.1.3 Gödel’s Incompleteness Theorems (1931)

I know, I’m cheating here by including two theorems under one head-
ing, but these two are very closely related—they’re the mathematical
equivalent of a two-part movie (such as Kill Bill). Gödel’s first in-
completeness theorem states that any consistent system of axioms
of sufficient complexity to be of mathematical interest will have true
sentences that are not derivable within the system. Gödel’s second
incompleteness theorem states that any consistent system of axioms
of sufficient complexity to be of mathematical interest cannot prove
its own consistency. These theorems were discussed at length in sec-
tion 2.2.1.

9.1.4 Cantor’s Theorem (1891)

For any set A, |P(A)| > |A|. We discussed and proved this theorem
in section 2.1.1.

9.1.5 Independence of Continuum Hypothesis (1963)

The continuum hypothesis, 2ℵ0 = ℵ1, is independent of standard
Zermello-Frankel set theory with the axiom of choice (ZFC), in the
sense that the continuum hypothesis is consistent with ZFC but so is
the negation of the continuum hypothesis. This result was discussed
in further detail in section 2.3.1

9.1.6 Four-Colour Theorem (1976)

The Four-Colour Theorem was the first major mathematical result
to rely on computers for the proof. The theorem states that four
colours are all that are needed to colour a map in such a way that
each country is distinguishable by colour from those with which it
shares a border. After many years of attempts, the theorem was
finally proven in 1976 by Kenneth Appel (1932– ) and Wolfgang
Haken (1928– ). The philosophical interest of the theorem revolves
around the question of what counts as a mathematical proof. This
proof was computer assisted, in the sense that large portions of the
proof were carried out by a computer without any human mathe-
matician checking the proof in its entirety. The proof of the theorem
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raises questions about whether a “proof” that no-one understands
is a proof, and about the relative reliability of computer methods
compared to the methods of human mathematicians, to name but
a couple of such issues. Computer proofs are more common these
days and do not generate quite the controversy this one did. But
you would expect the first such proof to prompt healthy debate on
the nature of mathematical proof, and this one certainly did that.

9.1.7 Fermat’s Last Theorem (1995)

This theorem has a rich and colourful history, starting with a note
by the French mathematician Pierre de Fermat (1601–1665) in 1637
in his copy of the margin of the ancient Greek text Arithmetica by
Diophantus. Famously, Fermat wrote:

It is impossible for a cube to be the sum of two cubes, a
fourth power to be the sum of two fourth powers, or in
general for any number that is a power greater than the
second to be the sum of two like powers. I have discovered
a truly marvelous demonstration of this proposition that
this margin is too narrow to contain.

What Fermat claims here is that he has a proof of the theorem that
there are no non-zero solutions to the equation xn + yn = zn, where
x, y, z, and n are integers, for n > 2.

Part of the attraction of the theorem is that it so simple to state
and, according to Fermat, it has a “marvelous” and, presumably,
fairly elementary proof. It now seems that Fermat was mistaken
about having a proof. For over 350 years, attempts were made, hopes
raised, and flaws in alleged proofs found, until it was finally laid to
rest in 1995 by the English mathematician Andrew Wiles (1953– ),
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after initially putting forward an incomplete proof in 1993.2 The
proof ran at over 100 pages in length (much too long for the mar-
gin of Fermat’s copy of Arithmetica!) and employed mathematical
methods that went way beyond anything available at Fermat’s time.
Indeed, from a mathematical point of view, the value of the theorem
is more in the work it has spawned (such as Wiles’s and others’ work
on elliptic curves and modular forms), rather than in the theorem
itself. Still, with such a history, Fermat’s Last Theorem is one of the
few mathematical results to have captured the public imagination
and entered into popular culture. The philosophical interest in the
theorem has largely dried up since it was finally proven. Before that,
it was regularly used, along with Goldbach’s conjecture (see below),
as an example of a well known open mathematical question. Thanks
to Andrew Wiles, philosophers now have to look for other examples
of open mathematical questions and unproven conjectures. Fortu-
nately, there is no shortage of these, but few are as simply stated
and as easily understood as Fermat’s Last Theorem.

9.1.8 Bayes’ Theorem (1763)

Named in honour of the Reverend Thomas Bayes (1702–1761) this
theorem of probability theory is a candidate for the mathematical
theorem with the largest number of philosophical applications and
the greatest philosophical interest. It also serves as a nice illustration
of how rather elementary mathematics (as this is) can be philosoph-
ically very rich. On the face of it, the theorem simply tells us how
to calculate a conditional probability, P (A|B)—the probability of A,
given B.

2The gaps in the 1993 proof were finally closed late in 1994 by Wiles and
Richard Taylor, and published in 1995.
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In its simplest form this theorem states:

P (A|B) =
P (B|A)P (A)

P (B)

for P (B) 6= 0. (This form of the theorem is sometimes called “the
Inverse Probability Law”.) A somewhat more useful version of the
theorem is

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (Ac)P (B|Ac)

for P (B) 6= 0 and where Ac is the complement of A. The general
form of the theorem, for an arbitrary partition Ai of the event space
in question is:

P (Aj |B) =
P (B|Aj)P (Aj)∑
i P (B|Ai)P (Ai)

for P (B) 6= 0. The proof is straightforward. The simplest version
above follows almost immediately from the definitions of the relevant
conditional probabilities: P (A|B) = P (A∩B)/P (B) and P (B|A) =
P (A ∩ B)/P (A). The final version is an immediate consequence of
the Law of Total Probability P (B) =

∑
i P (B|Ai)P (Ai), with the

second version a special case of the final version.
One of the most significant applications of this theorem is in be-

lief updating. If we think of probabilities as measures of our degrees
of belief, Bayes’ Theorem tells us how to update those beliefs in
the light of new evidence. A particularly important example here is
the case of scientific hypothesis testing. Consider your initial belief
P (H) (or prior probability) in some scientific hypothesis, H. Bayes’
Theorem tells you how to revise that belief to form your posterior
probability P (H|E), once you learn about the evidence E. Despite
its intuitive appeal, this, application of the theorem is rather con-
troversial and lies at the heart of a major dispute in statistics and
philosophy of statistics. Some suggest that it does not make sense to
talk of probabilities prior to evidence, as the application just men-
tioned requires. Others see nothing wrong with this. The former
group typically understand probabilities as ratios of frequencies and
this prohibits them from using Bayes’ Theorem in cases where the
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prior probabilities lack an objective (frequentist) statistical basis.
Those who see nothing wrong with probabilities prior to evidence,
deny the frequentist interpretation of probability theory and opt for
a subjectivist account, according to which probabilities are degrees of
belief. This subjectivist camp find that they can use Bayes’ Theorem
in many cases where frequentists cannot, and this is the main rea-
son that the subjectivist camp are somewhat misleadingly referred
to as “Bayesians”. It’s a misleading name because Bayes’ Theorem
is accepted by all parties (it is, after all, a theorem). Nevertheless,
Bayes’ Theorem is at the centre of this major (and often heated) con-
troversy over the interpretation of probability theory and the correct
methodology in statistics.

9.1.9 The Irrationality of
√

2 (ca. 500 BCE)

The Pythagoreans were a group of philosophers (cum mystical reli-
gious cult) centred around the great Greek philosopher and mathe-
matician Pythagoras (ca. 570 – ca. 490 BC). Although Pythagorus is
most famous for the theorem named after him (“the sum of squares
of the sides of a right-angle triangle is equal to the square of the
hypotenuse”), it is unlikely that he in fact proved that particular
theorem. The Pythagorean world view revolved around mathemat-
ics to such an extent that it was believed that the world itself was
number. It’s not clear exactly what this was supposed to mean but
by “number” they meant integers and ratios of integers. So they
were committed to the view that the world was (or at least was de-
scribable in terms of) rational numbers. It thus came as a bombshell
when one of their own showed that irrational magnitudes, such as√

2, existed in nature. There is a suggestion that there was a great
scandal when the existence of irrational magnitudes was leaked be-
yond the Pythagoreans, with one version of the story suggesting that
when the source of the leak was found, the person in question was
drowned at sea as punishment.

So much for the myths and legends, let’s get back to the math-
ematics. One proof of the theorem that

√
2 is irrational provides a

nice example of a reductio ad absurdum proof and is worth rehearsing
here. Assume, by way of contradiction, that

√
2 is rational . We can
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thus write
√

2 = p/q where p and q are integers with no common
divisors. But this implies that 2q2 = p2. So p2 is even and hence p is
even. If p is even, we can write it as p = 2r for some integer r and we
thus have from above that q2 = 2r2 and hence q is also even. This
is a contradiction, since we assumed that p and q had no common
divisors. Therefore

√
2 is irrational.

9.1.10 The Infinitude of the Primes (ca. 300 BCE)

Euclid (ca. 300 BCE) proved that there are infinitely many prime
numbers. This theorem was proved and discussed in section 5.2.1.

9.2 The Under-Appreciated Classics

Now for some very important mathematical theorems that don’t get
as much attention in philosophical circles as perhaps they deserve.
Still, these theorems are ones that every philosopher of mathemat-
ics would be well-advised to be familiar with. (These are the Big
Lebowskis and Stranger than Paradises of the maths world.)

9.2.1 The Borsuk-Ulam Theorem (1933)

This theorem of algebraic topology is named in honour of the Polish-
US mathematician Stanis law Ulam (1909–1984) and the Polish math-
ematician Karol Borsuk (1905–1982). Let f : Sn → Rn be a con-
tinuous map, then there exists an x ∈ Sn such that f(x) = f(−x).
In the special case of this theorem where n = 2, we have f as a
map from the surface of a sphere to R2. The usual corollary used
to illustrate the theorem is that on the assumption that the Earth
is topologically equivalent to a sphere3 and that temperature and

3That is, we need to assume that the earth does not have any tunnels. Of
course, the Earth does have tunnels but we can avoid this assumption by taking
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atmospheric pressure vary continuously across the Earth’s surface,
there are two antipodal points on the Earth’s surface with precisely
the same temperature and atmospheric pressure.

What is philosophically interesting about this theorem is that it
is a piece of pure mathematics but it seems to tell us how things
must be in the physical world. Indeed, were we to find two such an-
tipodal points with the same temperature and atmospheric pressure,
and were puzzled by their existence, the theorem would offer some
explanation: algebraic topology guarantees that there must be two
such points. In a sense, the presence of two such points has noth-
ing to do with meteorology and everything to do with topology. I
have leaned on this theorem in order to argue for the existence of
mathematical explanations of physical phenomena.

This theorem is closely related to a number of other interest-
ing theorems, most notably Brouwer’s Fixed-Point theorem and the
Ham-Sandwich theorem (and its 2-dimensional counterpart, the Pan-
cake theorem). Brouwer’s Fixed-point theorem states that any con-
tinuous map from an n-ball to an n-ball has a fixed point (i.e., a point
mapped to itself). The Ham-sandwich theorem tells us that any n
finite measurable regions of Rn (e.g., in R3, we could have a piece of
ham and two pieces of bread), can be each cut in half (by volume)
by a single n − 1 hyperplane (in R3, we can cut each component of
the ham sandwich in half with a single cut with a plane).

9.2.2 Riemann Rearrangement Theorem (1854)

This theorem is named in honour of the German mathematician
Bernhard Riemann (1826–1866). A conditionally convergent series∑∞

j=1 aj , is one that is convergent, but the related series
∑∞

j=1 |aj |
is divergent. A series is absolutely convergent, if both of these series

a tunnelless surface a metre above the actual surface of the Earth.
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converge. The Riemann rearrangement theorem states that the terms
in a conditionally convergent series can be rearranged to converge to
any value or to diverge to plus or minus infinity. For example, the
series

∞∑
j=1

1
2j

(−1)j−1 2j

j
=
∞∑
j=1

(−1)j−1

j
, (9.1)

converges (to ln 2) but the related series (the harmonic series)
∞∑
j=1

∣∣∣∣(−1)j−1

j

∣∣∣∣
is divergent. This means that the terms in the first series can be
rearranged to yield any value as the value of the sum. That is, the
value of the sum ln 2 in equation 9.1 depends crucially on the order
of the terms. This is very counterintuitive. In finite cases, the value
of a sum does not depend on the order of the terms. The result
turns, in part on the way “summation” is defined in the infinite case
(in terms of the limit of partial sums) and in part on the oddity of
conditionally convergent series themselves. The latter are unstable,
temperamental creatures.

Apart from being an interesting mathematical result in its own
right, the Riemann Rearrangement Theorem has recently been put
to good philosophical use in generating a paradox in decision theory:
the Pasadena Paradox. The Pasadena game consists in a sequence of
tosses of a fair coin until the first head appears. At the appearance
of the first head, the game is over. The payoff schedule for the game
is given by:

If the first head appears on toss n, the payoff is given
by $(−1)n−12n/n, where a negative amount indicates the
punter pays the bookie and a positive amount indicate
that the bookie pays the punter.

What’s interesting about this game is that the expected utility cal-
culation involves a conditionally convergent series. Indeed, it involve
precisely the conditionally convergent series we considered in equa-
tion 9.1 above. The Riemann Rearrangement Theorem is then in-
voked to show that the resulting expected utility can be made to con-
verge to any finite value or diverge to positive or negative infinity—it
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all depends on the order of the terms in the series. But the terms
in the series do not come in any natural order, and therein lies the
problem. The value of the game crucially depends on something that
is neither specified by the game nor considered part of the usual spec-
ification for a well-posed decision problem. The natural conclusion is
that, despite looking like a well-posed problem of decision theory, it
is in some sense defective, in that it does not have an expectation.4

9.2.3 Gauss’s Theorema Egregium (1828)

This theorem of differential geometry is a candidate for my all-time
favourite mathematical theorem. This theorem was proven by Carl
Friedrich Gauss (1777–1855) and its name is latin for “remarkable
theorem”, so it seems that this theorem might also have made Gauss’s
desert-island list. The theorem states that the curvature of a man-
ifold can be specified locally: the curvature of a surface can be de-
termined entirely by measuring angles and distances on the surface.
It is natural to think of a curved surface as being curved in an-
other dimension. For example, we have the 2-dimensional surface
of the Earth curved in 3-dimensional space. But Gauss’s Theorem
Egregium tells us that there is no need to think of curvature from
this extrinsic point of view, with curvature through another dimen-
sion. We can make perfect sense of an n-dimensional surface being
intrinsically curved—without an n + 1-dimensional space in which
the surface in question resides. This result lies at the heart of dif-
ferential geometry and has important applications in field theories
in physics. It allows us, for example, to make sense of the curved
4-dimensional space-time manifold in general relativity without the
need for a fifth dimension in which the curvature occurs.

4See Nover and Hájek (2004) and Colyvan (2006) for more on the Pasadena
Paradox.
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9.2.4 Residue Theorem (1831)

This result is due to the French mathematician Augustin-Louis Cauchy
(1789–1857) is one of the jewels of complex analysis. The theorem
concerns integrals of holomorphic functions around closed contours
in the complex plane.5 The theorem states that the line integral of a
holomorphic function f(z) around a closed curve can be calculated
in terms of the residues of poles of the function:∮

γ
f(z)dz = 2πi

∑
a∈A

Resz=aif(z),

where A is the set of poles of the function enclosed within the (ori-
ented) contour γ and Resz=aif(z) is the residue of f(z) at z = ai.
The poles of a complex-valued function are singularities where f(z)
approaches infinity as z approaches the point in question. For exam-
ple, f(z) = 1/z has a single pole at z = 0. The residue of a complex
function at an isolated pole is a complex number and can be defined
in terms of the Laurent series expansion of the function around the
point in question (the details needn’t concern us here). The upshot
is that the contour integral of a complex function depends only on
what happens at a limited number of singularities inside the contour.
So although a line integral looks as though it is local (i.e., depends
on the behaviour of the function along the contour in question), in
fact it is determined by non-local features of the function (i.e., what
happens at singularities remote from the contour in question). This
is the mathematical equivalent of action at a distance.

The theorem is crucial in calculating many integrals, including
many real-valued ones. The later applications of this theorem are
philosophically interesting because they involve finding an answer to
a problem in real analysis via an essential excursion into complex

5Holomorphic functions are complex functions that are differentiable.
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analysis. This raises questions about intrinsic explanation in math-
ematics. You’d expect to be able to calculate real integrals via real
methods and, moreover, any mathematical explanations of why the
integrals take the values they do should be made in terms of real anal-
ysis. The Residue Theorem and its applications to real analysis raises
doubts about both these expectations. Sometimes the only means
we have of calculating real integrals is via the Residue Theorem and
the associated excursion into the complex domain. Moreover, it can
be argued that this excursion is more than just a useful calculational
trick: in at least some cases, the explanation of the answer is given by
the Residue Theorem (or so it seems to me). This, in turn suggests
that intrinsic explanations (in this case, real analysis explanations of
real analysis facts) are not always possible. Alternatively, we might
draw the conclusion that the explanations in question via the residue
theorem are, despite appearances, intrinsic; it’s just that real analy-
sis and complex analysis are more closely connected than we might
initially think. Such applications of the Residue Theorem to real
analysis thus raises interesting questions about the boundaries be-
tween the various branches of mathematics and forces us to ponder
intra-mathematical explanations.

9.2.5 Poincaré Conjecture (2002)

This theorem was originally conjectured by the French mathemati-
cian and physicist Henri Poincaré (1854–1912) but has since been
proven, and thus has been promoted to the status of theorem. It
is still known, however, by its old “conjecture” title. The theo-
rem states that any simply-connected, closed 3-dimensional man-
ifold is topologically equivalent to a 3-sphere. A 3-sphere is the
3-dimensional generalisation of the more familiar (2-dimensional)
sphere—it is a 3-dimensional surface consisting of the set of points
some specified distance from a designated point (the centre) in 4-
dimensional Euclidian space. A simply-connected manifold is one
that is path connected (i.e., there is a continuous path from any
point on the manifold to any other point in the manifold) and such
that every closed curve in the manifold can be continuously shrunk
to a point. The conjecture is thus about a space that is locally like
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3-dimensional space but is finite in volume, without boundary and
has the property that any closed curve can be continuously tightened
to a point. Any such space is topologically equivalent to a 3-sphere,
which means that either the space in question is a 3-sphere or it
can be continuously deformed into a 3-sphere. The conjecture thus
provides a topological characterisation of a 3-sphere.

The conjecture was one of the most outstanding problems in
mathematics before it was finally proven by Russian mathematician
Grigori Perelman (1966– ) in 2002. Perelman was awarded the Fields
Medal—the most prestigious prize in mathematics—for his proof but
he did not accept the medal. The Poincaré Conjecture was also one
of seven outstanding mathematics problems identified in 2000 by the
Clay Mathematics Institute. The seven problems in question are
known as the Millennium Problems and each attracts a prize of one
million US dollars for a correct solution. So far the Poincaré Conjec-
ture is the only one of the Millennium Problems to have been solved.
In 2010 the Clay Mathematics Institute determined that Perelman
had indeed proven the Poincaré Conjecture and had thus met the
conditions of the prize. Perelman, however, turned down the 1 mil-
lion dollar prize, claiming that his contribution towards the proof
was no more significant than the contributions of others who went
before him.

9.2.6 Prime Number Theorem (1849)

There are a lot of prime numbers in the lower reaches of the natural
numbers, but they seem to thin out as we proceed into the higher
reaches of the natural numbers. For example. between 1 and 20 there
are 8 primes: 2, 3, 5, 7, 11, 13, 17, and 19. Between 101 and 120 there
are only 5 of them: 101, 103, 107, 109, 113; between 1,001 and 1,020
there are only 3: 1,009, 1,013, 1,019; and between 10,001 and 10,020
there are 2: 10,007 and 10,009. This leads to a very interesting ques-
tion about the number of prime numbers π(n) less than some given
number, n. After conjectures about this prime-counting function
by Adrien-Marie Legendre (1752–1833) and a young (15-year old)
Gauss, the result known as the Prime Number Theorem was first
proposed by Gauss in 1849 and proven in 1896 independently by the
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French mathematician Jacques Hadamard (1865–1963) and the Bel-
gian mathematician Charles Jean de la Vallée Poussin (1866–1962).
The theorem states that π(n) ∼

∫ n
2 dx/ lnx. There are interesting

further questions about the distribution of the primes. The Riemann
zeta function and the Riemann Hypothesis about this function (are
closely tied to the distribution of the primes (see the open problems
below).

9.2.7 The Fundamental Theorems of Calculus (ca. 1675)

I know, I’m cheating again—sneaking two theorems in under one
heading, but again these two are very closely related. These two
are perhaps not so interesting philosophically—at least I can’t think
of any particular philosophical issued raised by them, but they are
such important results that they earn their place in this list for their
mathematical interest alone. The first theorem forges a link between
the algebraic indefinite integral and the geometric definite integral.
The theorem states that if f is continuous on a closed interval [a, b]
and F is the antiderivative of f on [a, b], then

∫ b
a f(x) dx = F (b) −

F (a).
The second theorem tells us that differentiation and integration

are two sides of the one coin. In advance, there’s no reason to expect
this. After all, differentiation arose from the problem of finding the
tangent to a curve at a given point, with physical application of mak-
ing sense of instantaneous velocities and accelerations. Integration
arose from finding the area under a curve, with physical applications
of calculating the work done on a body being moved with a vary-
ing force. The theorem tells us that if f is a real-valued function,
continuous on an open interval (a, b), with c any point in (a, b) and
F (x) =

∫ x
c f(t) dt, F ′(x) = f(x) (where F ′(x) is the derivative of

F (x).
These cornerstones of calculus are perhaps best thought of as

collaborative efforts by a number of mathematicians over a long pe-
riod of time. The first general statement and proof of the theo-
rems was by the English mathematician Isaac Barrow (1630–1677),
with the development of the associated mathematics by the English
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mathematician and physicist Isaac Newton (1643–1727) and the Ger-
man philosopher and mathematician Gottfried Leibniz (1646–1716).
Subsequent developments involving the rigourisation of the calculus
were made by many, most notably by Augustin-Louis Cauchy (1789–
1857).

9.2.8 Lindemann’s Theorem (1882)

As we saw in chapter 7, this theorem states that π is transcendental
and has as a corollary that it is impossible to square the circle with
straight-edge and compass. There’s an interesting aside on Linde-
mann’s theorem. There was a bizarre incident in Indiana in 1897
when an amateur mathematician was convinced that he had squared
the circle and tried to get a bill passed in the Indiana State Leg-
islature: “A Bill for an act introducing a new mathematical truth
and offered as a contribution to education to be used only by the
State of Indiana free of cost by paying any royalties whatever on the
same, provided it is accepted and adopted by the official action of
the Legislature of 1897”. The bill was almost passed but for a last
minute intervention from a Purdue University mathematics profes-
sor.6 There is also the famous line in the Bible (Kings 7:23) that
seems to imply that π = 3. So it might be argued that another
corollary of Lindemann’s theorem is that the Bible contains at least
one false claim.

9.2.9 Fundamental Theorem of Algebra (1816)

This theorem, usually attributed to Carl Friedrich Gauss (1777–
1855), but the originator of the geometric interpretation of complex
numbers, Jean-Robert Argand (1768–1822), also has a legitimate

6The Indiana construction seemed to imply two values for π: 3.2 and 4. Per-
haps they should also have considered repealing the law of non-contradiction!
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claim to it.7 The theorem is as follows: a polynomial of degree n
has n roots (with some of them possibly degenerate). The roots of
a polynomial are the values of the variable such that the value of
the polynomial is zero. For example, the second-degree polynomial,
x2 − 1 = (x − 1)(x + 1) has roots +1 and −1, and the third degree
polynomial x3 + x2 − 2x = x(x + 2)(x − 1) has three roots 0, −2,
and 1. Polynomials such as x2 − 2x + 1 = (x − 1)(x − 1), which
have only one root, are said to have two degenerate roots or, alter-
natively, that the two roots coincide. The motivation for the latter
claim comes from considering the factorisation of the polynomial in
question—there are two terms in the factorisation but each of these
terms is identical.

Next consider the polynomial x2 + 1. This appears to have no
roots. This is where things get interesting. x2 + 1 has no real roots
but it still has two roots; they are the complex roots +i and −i,
where i =

√
−1. Indeed, the complex numbers are needed to make

the Fundamental Theorem of Algebra hold, and the theorem thus
provides a kind of validation for the complex numbers.8 It’s a nice
example of justifying a piece of mathematics by its fruits. The fruit,
here, being particularly juicy, namely, the fundamental theorem of
algebra.

7Like many of the older theorems in this chapter, it is not straightforward to
say when and even who proved them. Many of the theorems had several proofs
advanced by a number of different mathematicians over many years. Many of
these proofs had gaps in them, at east by today’s standards. Sometimes the
theorem in question was attributed to the first person to provide a rigorous gapless
proof, other times the theorem is attributed to the first person to have a decent
stab at the proof. The fundamental theorem of algebra has quite an interesting
history, with quite a few prominent figures involved in the search for a rigorous
proof. In the end it comes down to Gauss and Argand as the main contenders
though.

8Historically, the theorem played an important role in the acceptance of the
complex numbers, as did the various applications of complex analysis.
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The proofs of this theorem are also interesting. There are a num-
ber of proofs, all of which rely on quite a bit of mathematics outside
of algebra. There are topological proofs, complex analysis proofs
(involving analytic functions), and the closest thing to an algebraic
proof uses some key result from calculus (such as the Mean-Value
Theorem). As we saw before in the discussion of the Residue Theo-
rem, if such detours into other branches of mathematics are essential,
this raises interesting philosophical questions about the boundaries
of the various branches of mathematics. Perhaps, there is no real dif-
ference between algebra and complex analysis. Perhaps the connec-
tions between seemingly-disparate branches of mathematics that are
forged by theorems such as this are what mathematics is all about,
or at least it is what the most significant mathematics is about.

9.2.10 Fundamental Theorem of Arithmetic (ca. 300
BCE)

The Fundamental Theorem of Arithmetic states that every natural
number greater than 1 is expressible in exactly one way (up to re-
arrangement) as the product of one or more primes. For example,
primes p are expressible as p = p× 1, and some of the smaller com-
posites are 4 = 22, 6 = 2× 3, 8 = 23, 9 = 32, 10 = 2× 5, 12 = 22× 3.
Note that although 12 can be factored two different ways—as 6× 2
or 3×4—its prime factorisation is unique. The theorem tells us that
in a very important sense, the prime numbers are the basic building
blocks of number theory—every natural number has a unique prime
factorisation or, if you prefer, has a unique prime signature or coding.
This theorem is due to Euclid (ca. 300 BCE).

The Fundamental Theorem of Arithmetic has many interesting
applications, one of which is in public-key cryptography. Cryptogra-
phy is about coding and decoding messages. The more familiar codes
allow one to freely encode and decode, when in possession of the key.
But in various important applications, we require many users to be
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able to encode but only few to decode.9 It turns out that codes can be
constructed in such a way that encoding relies on a large composite
number, but the decoding relies on this number’s unique prime fac-
torisation (guaranteed by the Fundamental Theorem of Arithmetic).
Such codes are easily constructed by multiplying together a string
of large prime numbers. The crucial points here are (i) the result of
such multiplications are unique composite numbers, (ii) multiplica-
tion is computationally easy, (iii) recovering prime factorisations for
a given (large) composite number is typically computationally hard.

As in any “desert island” list, there will be unlucky items left out,
despite having a very good case for inclusion. Some of those theo-
rems I couldn’t find room for are: the Classification of Finite Sim-
ple Groups, the Squeezing Theorem, Arrow’s Theorem, Brouwer’s
Fixed-Point Theorem, the Compactness Theorem, the Mean-value
Theorem, the Central Limit Theorem, L’Hôspital’s Rule, the Fan
Theorem, the Intermediate-Value Theorem, the Gauss-Bonnet The-
orem, Euler’s Equation, Euler’s Formula, the Unisolvence Theorem,
and quite a few others. The interested student may like to seek out
these theorems.10

9.3 Some Famous Open Problems

9.3.1 The Riemann Hypothesis

The Riemann Hypothesis is arguably the most outstanding unsolved
problem in mathematics. It was first articulated by Bernhard Rie-
mann in an address to the Berlin Academy in 1859. The address was

9Such applications arise, for example, in banking and finance.
10Thanks to Rachael Briggs, Alan Hájek, Chris Hitchcock, and Jack Justus

for their suggestions for this chapter and for sharing their desert island theorems
with me.
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called “On the Number of Prime Numbers Less Than a Given Quan-
tity” and among the many interesting results and methods contained
in that paper was Riemann’s famous hypothesis: all non-trivial zeros
of the zeta function, ζ(s) =

∑∞
n=1 n

−s, have real part 1/2. Although
the zeta function as stated and considered as a real-valued function
is defined only for s > 1, it can be suitably extended. It can, as a
matter of fact, be extended to have as its domain all the complex
numbers (numbers of the form x+yi, where x and y are real numbers
and i =

√
−1) with the exception of 1 + 0i (at which point the zeta

function is undefined). This extended zeta function takes the value
zero for infinitely many complex numbers. For instance, all the neg-
ative even integers are zeros of the zeta function. These, however,
are the trivial zeros. The Riemann Hypothesis is thus the conjecture
that all the other zeros (and there are also infinitely many of them)
have the form 1/2 + yi. This hypothesis is of crucial importance in
analytic number theory. The zeta function is very closely related to
the prime counting function π(n) (which is the number of prime num-
bers less than or equal to some natural number n). Indeed, the zeta
function “encodes” important information about the distribution of
primes, and the location of the non-trivial zeros of the zeta function
are crucial in all of this. Again we see complex analysis playing an
indispensable role in other branches of mathematics—this time it’s
number theory that requires complex analysis in apparently essential
ways.11

11The English mathematician G. H. Hardy (1877–1947), before embarking on
a particularly dangerous journey early in the 20th century, once sent a postcard
(falsely) claiming to have solved the Riemann hypothesis. He did this as a kind of
insurance. He figured that God wouldn’t allow him to die with such undeserved
glory attached to his name.
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9.3.2 The Twin Prime Conjecture

Apart from 2, all other prime numbers are odd and some pairs of
primes, such as (5, 7), (17, 19) and (101, 103) are consecutive odd
numbers. These are known as twin primes. More precisely, twin
primes are pairs of primes of the form (p, p + 2). The conjecture
that there are infinitely many such pairs is known as the twin prime
conjecture. The conjecture is thought to be true, although, to date,
there is no proof.

9.3.3 Goldbach’s Conjecture

This conjecture, named after the German mathematician Christian
Goldbach (1690–1764), is that every even integer greater than 2 can
be expressed as the sum of two primes. For example, we have 4 =
2+2, 6 = 3+3, 8 = 5+3, 10 = 7+3 (or 5+5). It was first articulated
in a letter from Goldbach to the great Swiss mathematician Leonard
Euler (1701–1783) in 1742.

9.3.4 Infinitude of the Mersenne Primes

A Mersenne prime is a prime number of the form 2p − 1, where p is
a positive integer. They are named after the French mathematician
Marin Mersenne (1588–1648). A few examples of Mersenne primes:
22 − 1 = 3 is a Mersenne prime, as is 23 − 1 = 7, 25 − 1 = 31, and
27 − 1 = 127. Notice that in all these cases, p is prime. This is
no coincidence. It is fairly straightforward to show that if 2p − 1 is
prime, then p is also prime. (The converse, however, is not true, and
it is this that makes searching for Mersenne primes difficult. One
open question associated with them is how many of them there are.
Only a small number of Mersenne primes are known—at the time of
writing, less than 50—but for all we know, there could be infinitely
many of them.

9.3.5 Is there an Odd Perfect Number?

A perfect number is a positive integer n that is the sum of its positive
divisors, excluding n itself. The first perfect number is 6 = 1 + 2 + 3.



200 An Introduction to the Philosophy of Mathematics

Others are 28, 496, and 8,128. Perfect numbers are closely tied to
Mersenne primes by the following theorem: n is an even perfect
number if and only if it has the form 2p−1(2p − 1), where p is prime
and 2p−1 is a Mersenne prime. All known perfect numbers are even
but it is a very old and famous open question as to whether there is
an odd perfect number.

9.4 Some Interesting Numbers

• 0: Zero is the additive identity. That is, for all numbers a,
a + 0 = a. It is the multiplicative annihilator. That is, for
all numbers a, 0 · a = 0. It is the cardinality of one of the
strangest sets of all: the empty set, ∅ = {x : x 6= x}. It is the
exponent such that for all a, a0 = 1. It is the only number
that does not have a multiplicative inverse: for all numbers
n, n/0 is undefined. Zero really is a special case of a natural
number. Familiarity makes it easy to forget just how strange
0 is. Consider the following proof that zero is not a number at
all. If I say to you that I have played a number of games of
first-grade Australian Rules Football for the Geelong Football
Club, when in fact (sadly) I have never played any such games,
then surely I’ve lied to you. Pointing out that the number of
games in question is zero, does not get me off the hook on the
charge of lying. (Early concerns about extending the number
system to include zero revolved around issues not too dissimilar
from this somewhat tongue-in-cheek proof.)

• 1: The first natural number (or the first after zero, if you want
to include zero as a natural number).12 It is the multiplicative

12It is not just 0 and 1 that are interesting; all the natural numbers are interest-
ing. Suppose, by way of contradiction, that there are some uninteresting natural



Desert Island Theorems 201

identity. That is, for all numbers a, a · 1 = a.

• The Golden Ratio ϕ = 1+
√

5
2 = 1.6180339...: This is the ratio

(typically of lengths) such that for a > b, a + b/a = a/b. In
some “new age” circles this number is thought to be the key
to the universe. It’s not that, but it is pretty cool and pops
up all over the place. It is closely related to the Fibonacci
sequence of numbers, named after Leonardo of Pisa (aka Fi-
bonacci) (ca. 1170 – ca. 1250): 1, 1, 2, 3, 5, 8, 13, 21, 34, ...,
where the first two are defined to be both 1, and thereafter the
nth Fibonacci number Fn is the sum of Fn−1 and Fn−2.13 The
Golden ratio ϕ is the limit of the ratio of Fibonacci numbers:
ϕ = limn→∞ Fn+1/Fn. Both the Golden Ratio and Fibonacci
sequence turn up in nature in many places, especially in various
kinds of growth.14

• 2: The only even prime.

• e: This transcendental number is the base of the natural loga-
rithm. It is the unique real number such that d/dx ex = ex =∫ x
−∞ e

t dt.

• π: This transcendental number is the ratio of the circumfer-
ence to the diameter of a circle (in Euclidean spaces). Like e,
π is ubiquitous in mathematics. Famously, π along with four
more of the most interesting numbers in mathematics are tied
together in the Swiss mathematician Leonhard Euler’s (1707–
1783) remarkable identity: eiπ + 1 = 0.

numbers. Now consider the smallest such number, b. The fact that b is the small-
est uninteresting number surely makes it exceptional and therefore interesting.
We thus have a contradiction, so all the natural numbers are interesting.

13Some presentations include 0 as the first Fibonacci number.
14The Fibonacci sequence is, after all, a particular growth series.
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• 6: The first perfect number.

• ℵ1: This is the first cardinal number greater than the cardi-
nality of the natural numbers (whose cardinality is ℵ0). It is
an independent question of ZFC set theory whether ℵ1 is the
cardinality of the real numbers (whose cardinality is 2ℵ0).

• ω: This is the least infinite ordinal number and, like its cardinal
counterpart, ℵ0, it is countable. Unlike its cardinal counter-
part, however, there are infinitely many countable infinite or-
dinals: ω, ω+1, ω+2, ..., ω ·2, ω ·2+1, ω ·2+2..., ω2, ω3, ..., ωω....
In ordinal arithmetic, ω is far from the end—it’s where things
begin to get interesting.

• i: The purely imaginary number i =
√
−1 is fascinating. The

Prussian-born German mathematician Leopold Kronecker (1823–
1891) once said “God made the integers; all else is the work of
man”. But I’m inclined to think that if there were a god and
if he or she were in the business of making anything, it would
have been i and the rest of the complex numbers at 7.00 am
on the first day.

Recommended Further Reading

Below are a few, mostly mathematical, works where the interested
student can pursue some of the material touched upon in this chapter.

Ahlfors, L. V. 1966. Complex Analysis: An Introduction to the Theory
of Analytic Functions of One Complex Variable. New York: McGraw-Hill.
[For more on the Residue Theorem and on complex analysis more generally.]

Bold, B. 1982. ‘The Problem of Squaring the Circle’, Chapter 6 in
Famous Problems of Geometry and How to Solve Them. New York: Dover,
pp. 39–48. [For more on Lindemann’s Theorem and the problem of squaring
the circle.]

Colyvan, M. 2006. ‘No Expectations’, Mind , 115(459), 695–702. [A
philosophical paper discussing an application of the Riemann Rearrange-
ment Theorem in decision theory.]

Devlin, K. 2002. The Millennium Problems: The Seven Greatest Un-
solved Mathematical Puzzles of Our Time, New York: Basic Books. [For
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more on the Poincaré Conjecture and the Riemann Hypothesis.]
Derbyshire, J. 2003. Prime Obsession: Bernhard Riemann and the

Greatest Unsolved Problem in Mathematics. Washington, D.C.: Joseph
Henry Press. [For more on the Riemann Hypothesis and the Prime Number
Theorem.]

Hájek, A. 2010. ‘Interpretations of the Probability Calculus’, in E.N.
Zalta (ed.), The Stanford Encyclopedia of Philosophy , (Spring 2010 Edi-
tion),
URL = <http://plato.stanford.edu/archives/sum2003/entries/
probability-interpret/>. [An introductory philosophical discussion of
the interpretations of probability theory.]

Hallerberg, A. E. 1977. ‘Indiana’s Squared Circle’, Mathematics Mag-
azine, 50: 136–140. [For more on the curious history of the Indiana legis-
lature incident involving π.]

Hardy, G. H. 1967. A Mathematician’s Apology . Cambridge: Cam-
bridge University Press, (first published in 1940). [A delightful and insight-
ful essay by a leading number theorist about mathematics.]

Joyce, J. 2008. ‘Bayes’ Theorem’, in E.N. Zalta (ed.), The Stanford
Encyclopedia of Philosophy (Fall 2008 Edition),
URL = <http://plato.stanford.edu/archives/fall2008/entries/
bayes-theorem/>. [An introductory philosophical discussion of Bayes’s
Theorem.]

Kosniowski, C. 1980. A First Course in Algebraic Topology . Cam-
bridge: Cambridge University Press. [A good introductory text on alge-
braic topology; for more on the Borsuk-Ulam Theorem and related topics
in topology.]

Millman, R. S. and Parker, G. D. 1977. Elements of Differential Geom-
etry , Englewood Cliff, NJ: Prentice-Hall. [For more on Gauss’s Theorema
Egregium.]

Nover, H. and Hájek, A. 2004. ‘Vexing Expectation’, Mind , 113(450),
237–249. [A philosophical paper discussing an application of the Riemann
Rearrangement Theorem in decision theory.]

Paulos, J. A. 1992. Beyond Numeracy: An Uncommon Dictionary of
Mathematics. London: Penguin. [A good popular book on mathematics
with some interesting mathematics odds and ends.]

Rosen, K. H. 2010. Elementary Number Theory and Its Applications.
6th edition, Upper Saddle River, NJ: Addison Wesley. [A good introductory
text on number theory; for more on the various number theory results
discussed in this epilogue.]

Singh, S. 1997. Fermat’s Last Theorem: The Story of a Riddle that
Confounded the World’s Greatest Minds for 358 Years. London: Fourth
Estate. [A popular book on Fermat’s Last Theorem.]
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Spivak, M. 2006. Calculus. 3rd edition, Cambridge: Cambridge Uni-
versity Press [A classic introductory calculus text; for more on the Riemann
Rearrangement Theorem, the Fundamental Theorem of Calculus, and oth-
ers.

Wilson, R. 2002. Four Colors Suffice. London: Penguin Books. [For
more on the Four-Colour Theorem.]
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