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Preface

I have a principled argument for why this book should exist. I have no such

argument for why it contains just what it contains. The principles are these:

• You cannot understand philosophy of mathematics without understanding

mathematics.

• You cannot understand mathematics without doing mathematics.

The main point of this book, with its 298 exercises, is to give students

opportunities to recreate some mathematics that will illuminate important readings

in philosophy of mathematics. As for the particular mathematical materials I have

chosen: they are the unforced fruits of lengthy experience. I have taught under-

graduates for three decades. In the 14 times I taught philosophy of mathematics,

I discovered again and again that some important text was opaque to my students

largely because they lacked some particular bit of mathematical background. Most

of the missing bits came from a handful of subject areas: Primitive Recursive

Arithmetic, Peano Arithmetic, Gödel’s theorems (completeness, compactness, and

incompleteness), interpretability, the hierarchy of sets (especially the landscape of

Vðxþ xÞ), Frege Arithmetic, and intuitionist sentential logic. This book offers

exercises in these areas supported by explanatory materials and just a dash of

philosophy. I have made no attempt to impose a grand unifying narrative. There is

no central thesis. Some students of philosophy of mathematics have found it

helpful to work their way into these subject areas. Other readers may enjoy the

same experience.

I cannot think of any undergraduate course in which this book would be an

appropriate stand-alone text. I offer it as a supplement to primary texts chosen by

instructors or automaths. For the benefit of the latter, the book offers some guid-

ance about what those primary texts might be. Professors will, of course, make

their own choices, both about primary texts and about assignments within this

book. I would be amazed if any instructor assigned every section and every

exercise. I do not see how there could be time for it. I would expect instructors to

let their own interests guide them as they pick and choose. Not every choice will

make sense. Chapter 2, for example, would be inscrutable without Chap. 1. Parts

of Chap. 6 presuppose parts of Chap. 2. Chapters 4 and 5 build on Chap. 3. On the

other hand, a leap-frog journey consisting of Chaps. 1, 3, and 7 would make
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sense—as would many other paths over and around sections instructors might

choose to skip. That is one respect in which the book’s somewhat motley character

is a virtue.

The readers most likely to benefit from this book are exactly those most likely

to benefit from a philosophy of mathematics course. Those readers will have some

background in formal logic, they will find mathematics engaging and non-

threatening, they will understand basic properties of the natural and real numbers,

and they will see the point of asking ‘‘why’’ and ‘‘how’’ questions that emerge

from mathematical experience, but cannot be answered by just producing more

mathematics. I would describe this last trait as ‘‘philosophical inclination’’—and it

is the inclination, rather than any particular philosophical training, that is likely to

be most important here. (Once, in a philosophy of social science course, a student

of mine interrupted a discussion of deductive-nomological explanation by asking,

‘‘Why would anyone want to understand what explanation is?’’ There, I suspect,

was a student who had never felt a philosophical impulse in his life. I would not

recommend this book to him.)

I shared the joys and frustrations of a work-in-progress with my students. Some

responded by dropping my course. Others stuck it out and helped make the book

better. I like to think that, in return, they learned what it is like to do mathematics

and philosophy. In any case, they have my thanks. Thanks, too, to Florence Emily

Pollard for her careful reading of the penultimate draft.

Kirksville, MO, USA, January 2014 Stephen Pollard
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Chapter 1

Recursion, Induction

1.1 Numerals, Types, Tokens

The mathematician David Hilbert (1862–1943) had the odd but, as it turned out,
fertile idea that we can generate all sorts of interesting mathematics if we reflect
on the language of mathematics—if we talk about mathematical talk. This is the
magic of mathematics: start with a dry, unpromising little seed; nourish it with logic,
imagination, and obsessive energy; if the mathematics gods smile, you find yourself
wandering in a whole forest of beautiful ideas. Hilbert’s little seed was a mathematical
theory about the languages in which we express mathematical theories.

When we talk about what Hilbert did, we will be talking about talk about math-
ematical talk: we will be discussing a theory about the way mathematicians express
themselves. We will do some of that in this chapter, talking about what Hilbert did.
But, mainly, we will do, or re-do, what Hilbert did: we will experience a bit of
Hilbert’s project from the inside. This may require some patience on your part. We
will be investigating an especially primitive bit of mathematical language in an espe-
cially meticulous way, working hard to prove elementary claims that you might have
been perfectly happy to assume. The pay-off will be an insider’s view of one of the
most fundamental, most secure, and most deeply understood areas of mathematical
activity: an area known as primitive recursive arithmetic or PRA. We begin
our development of PRA by considering an archaic way of naming positive integers.

One way to answer a “How many?” question is to provide an example of how
many. When the nice lady asks the little boy how old he is, the child holds up two
fingers to show he is that many years old. When asked how old I am, I could, at the
risk of appearing quite mad, display a piece of paper marked up like this:

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |.

I could say, “Look: one mark for each year!” On each birthday, I could add a new
tally mark. A year from now, my piece of paper would be marked up like this:
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2 1 Recursion, Induction

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |.

I would then be employing a very simple system of numeration, a very simple
system for representing numbers with numerals.

Numerals are names of numbers. Numbers are the things named by numerals. The
Roman numeral ‘X’ and the binary numeral ‘1010’ are different numerals, but they
name the same number. In my simple system, the numeral ‘|’ names the number one,
the numeral ‘| |’ names the number two, and so on. Each of my numerals exemplifies

the number it names: a numeral consisting of n tally marks names the number n.
We now consider a distinction that is old hat to philosophers, but may not be so

familiar to mathematicians. Suppose I hold up a piece of paper with pencil markings
like this

| | | |

and you hold up a piece of paper with pencil markings like this

| | | |.

Then we are each displaying the same numeral: the one numeral in my simple sys-
tem that names the number four; the one numeral consisting of four tally marks.
There are two pieces of paper each bearing its own graphite inscriptions; but each
graphite inscription is a particular instance of one and the same numeral. Now sup-
pose you burn your piece of paper. Have you destroyed the numeral ‘| | | |’? I would
be inclined to say that you have destroyed a numeral without destroying the numeral.
Philosophers have some terminology that is useful here. They distinguish between
the numeral-type that survives the incineration of your paper and the numeral-token

that goes up in flames. The type is one thing that has many instances or tokens. You
can write one numeral a hundred times on a chalkboard. A hundred instances of the
numeral will then appear on the board. Each of those instances is a token of the one
type. You can destroy the hundred tokens by erasing the board. It is not so clear that
you can do anything to destroy the one type.

For the rest of this chapter, when I refer to “numeral-tokens” and “numeral-types”
I will mean tokens and types of numerals in our simple system of numeration. We now
consider some properties of these tokens and types. Note, first, that each numeral-
token is an instance of some numeral-type. To be a token is to be an instance of a
type. To be a token is to “instantiate” a type. The very meaning of the word ‘token’
guarantees that there are no typeless tokens. The meaning does not guarantee that
there are tokens or types. That would be an astounding thing for a meaning to do.
The meaning only guarantees that if there were a token, there would be a type it
instantiates. To take a more everyday example, the meanings of the terms ‘wife’ and
‘spouse’ do not guarantee that there are wives or spouses. They do guarantee that if
there were a wife, she would have a spouse.

Each numeral-token is an instance of at least one numeral-type. Indeed, each
numeral-token is an instance of exactly one numeral-type. The type of a numeral-
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token is determined by how many tally marks it includes. The graphite inscriptions
on our two pieces of paper are tokens of the type: “numeral consisting of four tally
marks.” Neither inscription is a numeral consisting of three tally marks (though each
has parts consisting of three tally marks). Neither inscription is a numeral consisting
of five tally marks. In fact, each is an instance only of the type indicated. Since each
numeral-token has a unique numeral-type, we can introduce some useful terminology.

Definition 1.1 If x is a numeral-token, we let τ(x) be x’s numeral-type.

We can use our new symbol ‘τ ’ (the Greek letter tau) to state an important propo-
sition.

Proposition 1.1 If x and y are numeral-tokens, then τ(x) = τ(y) if and only if

there are exactly as many tally marks in x as in y.

Remember this proposition. It will very soon prove useful. It is known, in the
technical language of philosophy, as an identity criterion for numeral-types. It
supplies necessary and sufficient conditions for numeral-types (such as τ(x) and
τ(y)) to be identical to one another (τ(x) = τ(y)). At least, it does so for numeral-
types that have tokens. We know that x is a token of τ(x). A numeral-token is,
necessarily, a token of its own numeral-type. We are leaving open the possibility,
however, that there are types with no tokens. There are no typeless tokens, but we
are open to the idea that there are tokenless types. Our identity criterion would not
apply to such types.

If we tried to formulate an identity criterion for numeral-tokens, we would face
even thornier problems. Imagine two slips of paper, each bearing one tally mark.
Bring the slips together to form a numeral-token y consisting of two tally marks. Do
we have a clear idea of what changes to the slips would yield something other than
y? What if we moved the slips one micron further apart? Would we still have y? If so,
how many microns would we have to move the slips to get something other than y?
What if we turned one of the slips upside down or applied a microscopic amount of
additional graphite to it or moved the tally marks a tiny bit out of alignment? Would
we still have y? We would have to think seriously about such questions before we
could formulate an explicit identity criterion for numeral-tokens: a daunting task
that I, frankly, am going to dodge. That does not leave us helpless. In this, as in
so many areas, our capacity to make reasonable judgments exceeds our capacity
to write down rules for making those judgments. We can make sensible decisions
about the identity or distinctness of numeral tokens without formulating necessary
and sufficient conditions for their identity or distinctness. It is worth remarking,
though, that the mathematics we will develop in this chapter is emerging from notions
infected with much more vagueness than we would tolerate in the mathematics
itself.
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1.2 Immediate Succession

We can construct longer and longer numeral-tokens by adding one tally mark at a
time:

| | | | | | | | | | | | | | | | | | | | | . . .

If we add one tally mark to a numeral-token x , the only result of this construction
that interests us, what we will call the result, is the new numeral-token consisting
of all the tally marks of x together with the tally mark we added. (If any other tally
marks have appeared or any of x’s original tally marks have disappeared, then we
have not successfully performed the intended operation.) We say that this result is
what the construction “add one tally mark” yields. If we add one tally mark at the
end of a numeral-token x consisting of six tally marks, then one of the new objects
we create is the inscription consisting of the last four tally marks in x together with
the tally mark we added.

| | | | | | |
︸ ︷︷ ︸

.

Even if we regard this inscription as a numeral-token (rather than just a part of a
numeral-token) and concede that it is one result of our construction, it is not what
we call the result. Our construction does not yield this numeral-token in our special
sense of “yield.”

In the next definition, we perform the everyday mathematical trick of compressing
a lot of words into a little symbol: in this case, ‘υ’ (the Greek letter upsilon).

Definition 1.2 υ(xy) if and only if y is the result of adding one tally mark to numeral-
token x .

Suppose y is the result of adding one tally mark to x while z is the result of adding
one tally mark to w. That is, υ(xy) and υ(wz). Suppose, further, that τ(x) = τ(w).
Then, according to our identity criterion for numeral-types, x and w feature the same
number of tally marks. If we add one tally mark to each, we will still have the same
number of tally marks. So, applying our identity criterion again, τ(y) = τ(z). We
have confirmed the following entailment.

τ(x) = τ(w) =⇒ τ(y) = τ(z).

Suppose, conversely, that τ(y) = τ(z). This means that when we add a tally mark to
x and a tally mark to w we get tokens with equal numbers of tally marks. So x and
w must have equal numbers of tally marks and, hence, τ(x) = τ(w). This confirms
the converse of our earlier entailment.

τ(y) = τ(z) =⇒ τ(x) = τ(w).

All of this establishes the following proposition.
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Proposition 1.2 If υ(xy) and υ(wz), then

τ(x) = τ(w) ⇐⇒ τ(y) = τ(z).

Suppose x consists of two tally marks while y consists of three. There is no
guarantee that υ(xy). Numeral-tokens can differ by one tally mark without either
being a lengthening of the other. x might have been written on a chalkboard in Tuvalu
fifty years ago and immediately erased, while y first appeared yesterday on a piece
of paper in Missouri. Still, somewhere in the vast expanse of space-time, we would
expect to find numeral-tokens w and z with the following properties.

τ(w) = τ(x), τ (z) = τ(y), υ(wz).

We would expect to find a token consisting of three marks that is a lengthening of a
token consisting of two marks. For example, z might be y itself and w might consist
of the first two tally marks in y. These reflections inspire the following definition.

Definition 1.3 σ(xy) if and only if a numeral-token of the same type as y is the
result of adding one tally mark to a numeral-token of the same type as x .

The idea is that two numeral-tokens will stand in this relation σ (“sigma”) if and
only if the second token features exactly one more tally mark than the first (whether
or not the second is the result of adding a tally mark to the first). We will now confirm
some important facts about σ . Suppose σ(xy). Then we can pick tokens x ′, y′ with
the properties we discussed above:

τ(x ′) = τ(x), τ (y′) = τ(y), υ(x ′y′).

Now suppose σ(xz). Pick x ′′, z′ such that

τ(x ′′) = τ(x), τ (z′) = τ(z), υ(x ′′z′).

Then τ(x ′) = τ(x ′′) and, hence, by Proposition 1.2, τ(y′) = τ(z′). So τ(y) = τ(z)

and, on the assumption that σ(xy), we have confirmed the following entailment.

σ(xz) =⇒ τ(y) = τ(z).

Suppose, conversely, that τ(y) = τ(z), still assuming that σ(xy). Then τ(y′) = τ(z)

and, hence, a numeral-token of the same type as z (namely y′) is the result of adding
one tally mark to a numeral-token of the same type as x (namely x ′). So σ(xz) and
we have confirmed the converse of the earlier entailment.

τ(y) = τ(z) =⇒ σ(xz).

Our reward is a new proposition.
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Proposition 1.3 If σ(xy), then

σ(xz) ⇐⇒ τ(y) = τ(z).

You can get warmed up by proving a closely related proposition.

Exercise 1.1 Prove: if σ(xy), then

σ(zy) ⇐⇒ τ(x) = τ(z).

σ is a relation between numeral-tokens. There is a corresponding relation between
numeral-types: the relation of immediate succession.

‘| |’immediately succeeds‘|’
‘| | |’immediately succeeds‘| |’

‘| | | |’immediately succeeds‘| | |’
‘| | | | |’immediately succeeds‘| | | |’

And so on. This relation satisfies the following proposition.

Proposition 1.4 τ(y) immediately succeeds τ(x) if and only if σ(xy).

Note that we are using a relation between tokens (the relation σ ) to character-
ize a relation between types (the relation of immediate succession). We will now
note some important facts about immediate succession. Suppose τ(y) and τ(z) both
immediately succeed τ(x). Then, by Proposition 1.4, σ(xy) and σ(xz) and, hence,
by Proposition 1.3, τ(y) = τ(z). Say that a type is instantiated if there are tokens
of that type. We have shown that an instantiated numeral-type will have at most
one instantiated immediate successor. We are going to suppose that numeral-types
behave like this whether or not they are instantiated.

Proposition 1.5 Each numeral-type has at most one immediate successor.

Now you need to do a little work to prepare the way for our next proposition.

Exercise 1.2 Show that an instantiated numeral-type will immediately succeed at

most one instantiated numeral-type.

We are going to suppose that numeral-types behave as in Exercise 1.2 whether or
not they are instantiated.

Proposition 1.6 Each numeral-type immediately succeeds at most one numeral-type

(so numeral-types that share an immediate successor are the same).

In our system of numeration, at least one tally mark appears in each numeral-token.
So you cannot add a tally mark to one of our numeral-tokens and end up with a single
tally mark all by itself. Suppose τ(y) =‘ | ’. And suppose ‘ | ’ immediately succeeds
τ(x). Then, by Proposition 1.4, σ(xy) and, hence, by Definition 1.3, a numeral-token
of the same type as y is the result of adding one tally mark to a numeral-token of the
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same type as x . But then, by Proposition 1.1, a numeral-token consisting of a single
tally mark is the result of adding one tally mark to a numeral-token of type τ(x).
Since this is impossible, we conclude that ‘ |’ does not immediately succeed any
instantiated numeral-type. We assume, as usual, that uninstantiated numeral-types
will behave the same way.

Proposition 1.7 ‘ |’ does not immediately succeed any numeral-type.

1.3 How Many Types?

Each numeral-type has at most one immediate successor. Does each numeral-type
have at least one immediate successor? I do not know. I would never claim for such
a proposition the sort of certainty we normally associate with mathematical results. I
am pretty sure, though, that the proposition is not fundamentally incoherent: it seems
logically possible. In a logically impossible scenario, anything goes: in classical logic,
everything follows from a contradiction. We, however, are going to suppose that we
can distinguish between what would and what would not be the case if every numeral-
type had an immediate successor. So it should be worthwhile to explore what things
would be like if this were really so. Furthermore, it seems conceptually possible that
every numeral-type has an immediate successor. That is, this would be compatible
with our concept of a numeral-type. So, when we explore what things would be like
under these circumstances, we continue to investigate numeral-types, not just things
we call “numeral-types” without any definite idea of what, if anything, we are really
discussing.

If b is an immediate successor of a, Proposition 1.5 allows us to describe it as the

(one and only) immediate successor of a. This justifies some new terminology:

| | = S(|)

| | | = S(| |)

| | | | = S(| | |)

and so on. S is the operation or function that takes us from a numeral-type to its
immediate successor. In our new notation, Propositions 1.6 looks like this

S(a) = S(b) =⇒ a = b

while Proposition 1.7 looks like this

| �= S(a)

with ‘a’ and ‘b’ understood to be variables that range over all numeral-types (that
is, symbols that allow us to make claims about all numeral-types). These two
propositions let us prove that there are infinitely many numeral-types (at least in the
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possible world we are exploring). To get an idea of why this is so, suppose there are
only three numeral-types: |, S(|), and S(S(|)). Each numeral-type has an immediate
successor. What, then, is the immediate successor of S(S(|))? By Proposition 1.7,
| �= S(S(S(|))). On the other hand, if S(|) = S(S(S(|))), then Proposition 1.6 implies
that | = S(S(|)), contrary to Proposition 1.7. Finally, if S(S(|)) = S(S(S(|))), then
two applications of Proposition 1.6 imply that | = S(|), contrary to Proposition 1.7.
So |, S(|), and S(S(|)) cannot really be the only numeral-types because that would
leave S(S(|)) without an immediate successor.

I should point out that I am being a little sloppy with my notation. We usually use
quotation marks when we name names. | | is the number whose name in our system
of numeration is ‘| |’. When I write

| | | = S(| |)

this may appear to say that the number | | | is the result of applying S to the number
| |. The equation

‘| | |’ = S(‘| |’)

more clearly states that the numeral-type ‘| | |’ is the result of applying S to the
numeral-type ‘| |’. A disadvantage of this more careful approach is that writing down
all the quotation marks becomes prohibitively tedious after the first few dozen pairs.
In self-defence, we adopt the convention that tokens of, say, ‘| |’ can name ‘| |’ itself.
That is, two tally marks without quotation marks can instantiate the numeral-type
‘| |’ and name it.

If tokens of type a name object x , it seems reasonable to say that type a is itself a
name of x : types name what their tokens name. So, if tokens of a numeral-type are to
name that very numeral-type, the numeral-type will name itself. Is this a problem?
It will turn out that we are exploring a world in which our numeral-types have all
the mathematically important properties of the numbers they are supposed to name.
So it should not create mathematical difficulties if we let our numeral-types name
themselves: they will still be naming things that behave like numbers. This may
or may not render our numeral-types ambiguous. Each numeral-type will, indeed,
name both a numeral-type (itself) and a number. Furthermore, at the beginning of this
chapter, I emphasized the distinction between a name and what the name names. In
general, this is an important thing to keep straight. But you might consider whether, in
this special case, the distinction is unwarranted. When imagining a situation in which
numeral-types have all the mathematically important properties we normally attribute
to numbers, it may be convenient to identify each numeral-type with the number it
names. There will then be no ambiguity: each numeral-type will name exactly one
thing. Furthermore, there may be a philosophical benefit. If you understand what
numeral-types are, you will know what numbers are. What are numbers? They are
numeral-types. Conversely, if you understand what numbers are, you will know
what numeral-types are. What are numeral-types? They are numbers. On the other
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hand, if you already understand what both numeral-types and numbers are and you
understand them to be different things, you may not be so happy with my proposal
to identify them. I will not insist upon such an identification.

1.4 Recursive Definition

In number theory, we can define primality (the property of being prime) by stating
necessary and sufficient conditions for a number to be prime.

A natural number is prime if and only if it is greater than one and its only divisors are one

and itself.

We could also define primality by describing a mechanical procedure for determining
whether a number is prime. Computer science majors could accomplish this by
writing a program. Our inspiration in this section will be definitions of this latter
sort. We are going to define operations on numeral-types by offering procedures
rather than verbal equivalents. Our first example is a definition of addition.

Definition 1.4

a + | = S(a)

a + S(b) = S(a + b).

To get some practice with Definition 1.4, we are going to use it to figure out what
| | + | | | is. Our approach will not be very subtle: we will figure out what | | + |

is; we will use that information to figure out what | | + | | is; then we will use that

information to figure out what | | + | | | is. This is the sort of thing a machine might
do, relentlessly advancing one little step at a time with no great intuitive leaps. As for
the nuts-and-bolts of applying Definition 1.4, we are, once again, using the variables
‘a’ and ‘b’ to make claims about all numeral-types: our definition says that certain
relationships will hold no matter what a and b are. So we should feel free to replace
any occurrences of ‘a’ or ‘b’ with any strings of tally marks we wish. Replacing ‘a’
with ‘| |’ in the first clause of the definition, we get:

| | + | = S(| |) = | | |.

So now we know what | | + | is. Applying this result and the second clause of the
definition, we determine that

| | + | | = | | + S(|) = S(| | + |) = S(| | |) = | | | |.

So now we know what | | + | | is. Repeating this procedure, we determine that

| | + | | | = | | + S(| |) = S(| | + | |) = S(| | | |) = | | | | |.
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We conclude that | |+ | | | = | | | | |. More generally, we have a mechanical procedure
for determining what a+b is as long a and b are presented to us in a way that allows
us to determine how many tally marks their tokens would have. (If we only know
that a and b are God’s two favorite numeral-types, we are in trouble.) Just a bit ago,
we discussed one way of so presenting them: using their own tokens to name them;
for example, writing

| | |

to refer to the type “numeral consisting of three tally marks.”
Definition 1.4 is an example of a recursive definition. A recursive definition

tells us what value an operation yields when we feed it ‘|’ and then tells us how
to calculate the output at any successor stage: a calculation in which we apply an
operation to the output at the prior stage (Definition 1.4), to the input at the prior stage
(Definition 1.5), or to both (Exercise 1.6). Among the operations we are allowed to
apply are the successor operation S, the “null operation” that assigns a to each input
a, and any operations we have already recursively defined. In Definition 1.4, we
apply S to the output at the prior stage. In Definition 1.5, we apply the null operation
to the input at the prior stage. A recursive definition allows us to calculate values for
arbitrary inputs by starting from ‘|’ and applying a fixed procedure over and over
(that is, recursively).

Definition 1.5

pred(|) = |

pred(S(a)) = a.

‘pred’ stands for “predecessor.” We could think of it as the instruction “erase one
tally mark,” with the slight glitch that, if you start with just one tally mark, you leave
it be. (We are supposing there is no numeral-type whose tokens consist of no tally
marks.) So

pred(| |) = pred(S(|)) = | = pred(|).

That is, pred treats | as the “predecessor” of both | and | |. Otherwise, pred is
well-behaved.

pred(| | |) = | |

pred(| | | |) = | | |

and so on.

Exercise 1.3 Letting the variable ‘a’ range over people, define the function child
as follows.

child( the father of a) = a
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Give an example of an absurd conclusion that follows from this definition. What is

there about S that makes our definition of pred legitimate while the definition of

child is illegitimate?

Definition 1.6

a · | = pred(a)

a · S(b) = pred(a · b)

Exercise 1.4 Use Definitions 1.5 and 1.6 to calculate | | | | | · | | |.

Exercise 1.5 Use Definitions 1.5 and 1.6 to calculate | · | | |.

Exercise 1.6 Recursively define the function f (a) = | + | | + | | | + · · · + a (letting

f (|) = |).

1.5 Proof by Induction

Although nothing I have said so far rules out numeral-types “infinitely distant” from
‘|’, I really do mean to rule them out. The idea is that, if a is a numeral-type, then

a = S(S(S(. . . S(|) . . .)))

where the ellipses ‘. . .’ represent finitely many applications of the successor opera-
tion. Mathematical induction is an attempt to capture this idea. It is also a powerful
method of proof.

If ‘|’ has a disease and each numeral-type infects its immediate successor, how
many numeral-types will catch the disease? ‘| | | |’ will catch it from ‘| | |’ who caught
it from ‘| |’ who caught it from ‘|’.

| � | | � | | | � | | | |

‘| | | | | |’ will catch it from ‘| | | | |’ who caught it from ‘| | | |’.

| | | | � | | | | | � | | | | | |.

In fact, every numeral-type will catch the disease because every numeral-type is only
finitely many successor steps away from ‘|’ and, so, stands at the end of one of these
chains of infection.

This gives us a way to show that every numeral-type has some property. First,
show that ‘|’ has the property. Then show that the property is “infectious”: that S(a)

has it whenever a does. In more standard terminology, the goal is to show that the
property is hereditary. If ‘|’ has a hereditary property, it will follow that every
numeral-type inherits the property. Here are some examples.
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Theorem 1.1 | + b = S(b).

Proof We first confirm that ‘|’ has the desired property. This would mean that

| + | = S(|)

which is an immediate consequence of Definition 1.4. We next assume the inductive

hypothesis that an arbitrary numeral-type has the desired property. Actually, no
numeral-type is more or less arbitrary than any other. It is we who are to treat the
numeral-type as arbitrary by not using any special information about it: by only
making inferences that would apply to any other numeral-type. To guarantee that
we do not cheat, we will give our “arbitrary numeral-type” a silly name that reveals
nothing about it: say, ‘π̈’. Our inductive hypothesis is that

| + π̈ = S(π̈).

We now try to confirm that π̈ passes this property on to S(π̈). We want to show that
the preceding equation still holds when we replace each ‘π̈’ with ‘S(π̈)’. When we
perform this substitution on the left side of our inductive hypothesis, we obtain

| + S(π̈).

When we perform this substitution on the right side of our inductive hypothesis, we
obtain

S(S(π̈)).

So our goal is to verify that

| + S(π̈) = S(S(π̈)).

We now find equations that take us from the left side of this equation to the right
side. By Definition 1.4,

| + S(π̈) = S(| + π̈).

Applying S to both sides of our inductive hypothesis, we obtain

S(| + π̈) = S(S(π̈)).

So, as desired,
| + S(π̈) = S(S(π̈)).

That is, S(π̈) inherits the desired property from π̈. Since π̈ could be any numeral-
type, we have shown that the property is hereditary. So, since ‘|’ has it, every numeral-
type has it.
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Theorem 1.2 S(a) + b = S(a + b).

Proof Since we are faced with two variables, ‘a’ and ‘b’, there are a couple of ways
to approach this problem. We could try to show that the formula

S( ) + b = S( + b)

comes out true no matter how we fill in the blank. Or we could try to show that the
formula

S(a) + = S(a + )

comes out true no matter how we fill in the blank. Let us try the second approach.
(If we get stuck, we can go back and try the first approach.) To begin, we want to
confirm that we get something true when we put ‘|’ in the blank. That just requires
two applications of Definition 1.4:

S(a) + | = S(S(a)) = S(a + |).

Now we deploy our inductive hypothesis:

S(a) + π̈ = S(a + π̈).

An inductive hypothesis is not always immediately useful. You may have to wander
around a bit before you see why it is helpful. Just don’t forget about it! Our goal is
to show that S(π̈) behaves like π̈. That is, we want to confirm that

S(a) + S(π̈) = S(a + S(π̈)).

As in the preceding proof, we pick one side of this equation and try to transform
it into the other side. We will go from left to right, moving from S(a) + S(π̈) to
S(a + S(π̈)). Definition 1.4 assures us that

S(a) + S(π̈) = S(S(a) + π̈).

So, by our inductive hypothesis,

S(a) + S(π̈) = S(S(a + π̈)).

Another application of Definition 1.4 now yields

S(a) + S(π̈) = S(a + S(π̈))

just as we hoped.
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You might find Theorems 1.1 and 1.2 useful in some of the exercises below. In
Exercise 1.8, your inductive hypothesis could have the form:

(a + π̈) · π̈ = a.

Of course, you do not have to use the smiley face; but, whatever symbol you use, you
are to treat it as if it were a constant term: the name of a numeral-type. The term ‘a’,
on the other hand, is a variable that ranges over all numeral-types. Your inductive
hypothesis is a claim about all numeral-types a. So, whenever it seems useful, you
can feel free to replace ‘a’ with something else. For example:

(S(a) + π̈) · π̈ = S(a).

Exercise 1.7

a + b = b + a.

Exercise 1.8

(a + b) · b = a.

Exercise 1.9

a · (b + c) = (a · b) · c.

Exercise 1.10

| · b = || · b = |.

1.6 A Characteristic Function

After two more exercises, we will consider a new function. When you do these and
any subsequent exercises, feel free to use the results of previous exercises.

Exercise 1.11

S(a) · a = |.

Exercise 1.12

S(a) · S(b) = a · b.

Now for the new function.

Definition 1.7

id(a, b) = |||| · ((S(a) · b) + (S(b) · a)).

Exercise 1.13

id(a, b) = id(b, a) = id(S(a), S(b)).
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Since no sum of numeral-types can be | and, hence, (S(a) · b)+(S(b) · a) cannot
be |, id(a, b) has to be of the form

|||| · || or |||| · ||| or |||| · |||| or |||| · ||||| or . . .

So id(a, b) has only two possible values: | and ||. We can express this as an equation

pred(id(a, b)) = |.

(Note that pred yields | only when applied to | or ||. So this is an indirect way of
saying that id(a, b) is | or ||.) The next two exercises will let you verify that this
equation is correct.

Exercise 1.14

pred(a · b) = pred(a) · b.

Exercise 1.15

||| · (a + b) = |.

Here are two exercises that tell us something about when id yields each of its two
possible values.

Exercise 1.16

id(a, a) = ||.

Exercise 1.17

id(a, a + b) = |.

A characteristic function answers a yes-or-no question about the values we
feed it. When we feed a pair of values to id, the question it answers is whether the
values are the same. || mean “yes” and | means “no.” That is,

id(a, b) =

{

|| if a = b

| otherwise.

This may seem like a pretty boring function, but it is of interest to logicians because
it allows us to define logical expressions such as ‘not’, ‘or’, ‘only if’ and more. This
shows that some parts of logic can be captured in elementary arithmetic. Although
philosophers, logicians, and the occasional mathematician argue energetically about
the proper analysis of various logical expressions, the behavior of the logical oper-
ators definable in our theory of numeral-types is well understood and not a source
of controversy. We will consider some of these operators in the next section. First,
though, we prove an obscure looking fact that will turn out to be useful.

Theorem 1.3 id(a, b) + id(id(a, b), |) = |||.

The next two exercises supply an inductive proof of this theorem.
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Exercise 1.18

id(a, |) + id(id(a, |), |) = |||.

Exercise 1.19 As an inductive hypothesis, assume that

id(a, π̈) + id(id(a, π̈), |) = |||.

Your goal is to show that

id(a, S(π̈)) + id(id(a, S(π̈)), |) = |||.

You might do a second induction to confirm that this really does hold for every a.

You would then want to prove:

id(|, S(π̈)) + id(id(|, S(π̈)), |) = |||

and

id(S(♥), S(π̈)) + id(id(S(♥), S(π̈)), |) = |||.

(‘ ♥’ is another one of our names for an “arbitrary numeral-type.” As you reason

about ♥, you should remember that you are allowed to replace ‘a’ in our earlier

inductive hypothesis with any terms you wish, including terms in which ‘♥’ appears.)

1.7 Some Logic

Back in Sect. 1.3, I assumed that inequalities (such as: ‘| �= S(a)’) were well-
understood. As natural as this assumption was, we can now see that it is unnecessary.
Each inequality

�=

is equivalent to an equation

id( , ) = |.

We can always say that some numeral-types are different by asserting that some other
numeral-types are the same. So we could have treated ‘ �=’ as a defined expression.
Let us make a fresh start and do just that.

Definition 1.8 a �= b ⇐⇒ id(a, b) = |.

Exercise 1.20

| �= S(a).

When it seems convenient, we move the negation sign to the front:
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−(a = b) ⇐⇒ a �= b.

This convention and Definition 1.8, yield the following equivalences.

id(id(a, b), |) = | ⇐⇒ −(id(a, b) = |) ⇐⇒ −(−(a = b)).

The right-hand formula (the one with the two negation signs) is called a double

negation. Assessing multiple negations of our equations requires no philosophical
or linguistic analysis: it is simply a matter of calculation. The next exercise asks you
to evaluate a triple negation.

Exercise 1.21 Confirm that −(−(−(|||| = ||))).

Given any two equations, we can use an inequality to assert that at least one of
them is true (though it might not be immediately obvious that the following definition
does the trick).

Definition 1.9 a = b ∨ c = d ⇐⇒ id(a, b) + id(c, d) �= ||

∨ is the disjunction operator. You can read it as “or.” If you have studied logic, you
have probably seen the truth table for disjunction.

φ ψ (φ ∨ ψ)
T T T
T F T
F T T
F F F

The idea is that a disjunction is false if and only if each of its components is false. If
I assert “φ or ψ ,” I am asserting that at least one of the alternatives φ,ψ is true. So
I am wrong if and only if they are both false. Now consider the following table.

α = β γ = δ id(α, β) id(γ, δ) id(α, β) + id(γ, δ) α = β ∨ γ = δ

T T || || |||| T
T F || | ||| T
F T | || ||| T
F F | | || F

If I assert “α = β or γ = δ,” I am asserting that id(α, β) and id(γ, δ) are not both
| and, hence, that id(α, β) + id(γ, δ) is not ||. Definition 1.9 guarantees that the
disjunction of two equations is false if and only if both equations are false. In the
next exercise, you will prove a disjunction central to classical logic. This might be a
good time to recall Theorem 1.3.

Exercise 1.22

a = b ∨ a �= b.
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This is a version of the law of excluded middle or LEM. Each instance
of LEM offers two alternatives: “Either φ or not φ.” What is excluded is some
alternative beyond these two. You might check to see whether we used LEM in any
of our reasoning above. (If so, we might just be reasoning in a circle.)

Exercise 1.23 Look up Grelling’s Paradox and be prepared to say why the following

instance of LEM is questionable: “The adjective ‘heterological’ either is or is not
heterological.”

The following definition will help us introduce another logical operator.

Definition 1.10
|

∑

i=|

f (i) = f (|)

S(a)
∑

i=|

f (i) = f (S(a)) +

a
∑

i=|

f (i)

∑

is the summation function. That is,

a
∑

i=|

f (i) = f (|) + f (||) + · · · + f (a).

You can let f be any function you can define using the resources of this chapter.
For example, you could let f (i) be S(i) · i , as in Exercise 1.24, or id(i, |||), as in
Exercise 1.25.

Exercise 1.24
a

∑

i=|

(S(i) · i) = a.

Exercise 1.25
||

∑

i=|

id(i, |||) = ||.

We can generalize the result of the preceding exercise. Consider any sum of the
following form:

a
∑

i=|

id( f (i), b) = id( f (|), b) + id( f (||), b) + · · · + id( f (a), b).

If each of the equations
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f (|) = b, f (||) = b, . . . , f (a) = b

were false, then each of the terms

id( f (|), b), id( f (||), b), . . . , id( f (a), b)

would equal | and, hence, their sum would equal a. Their sum would differ from a if
and only if some of the equations

f (|) = b, f (||) = b, . . . , f (a) = b

were true. This leads us to the following definition.

Definition 1.11

∃x ≤ a f (x) = b ⇐⇒

a
∑

i=|

id( f (i), b) �= a.

Definition 1.11 introduces the bounded existential quantifier: ∃x ≤ .
It is to be read as, “There is an x no greater than such that . . ..” For example, the
sentence

∃x ≤ ||||| S(x) = |||

says there is a numeral-type no greater than ||||| whose successor is |||. Here |||||

forms an upper bound for the values of the variable ‘x’. If you complain at this point
that I have not yet defined “no greater than,” I will have to plead guilty. I have defined
the expression ‘∃x ≤ |||||’ without defining the expression ‘≤’. That does not make
the definition any less legitimate. You could apply the definition without having any
independent idea of what ‘≤’ might mean. Informally, though, it might make the
definition easier to digest if you think of ≤ as the natural ordering of numeral-types
in terms of the number of tally marks in their tokens:

| ≤ || ≤ ||| ≤ |||| ≤ ||||| ≤ |||||| ≤ . . .

Exercise 1.26

∃x ≤ ||| x + || = ||||.

To indicate how useful our new quantifier is, I will use it to define divisibility
and primality. First, though, I need to define multiplication and the conjunction

operator ∧ (to be read as “and”).

Definition 1.12

a · | = a

a · S(b) = a · b + a.
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Definition 1.13 a = b ∧ c = d ⇐⇒ id(a, b) + id(c, d) = ||||.

Exercise 1.27 Explain Definition 1.13 in the way we earlier explained Definition

1.9. (You might start by supplying the truth table for conjunction.)

To express the idea that d divides a without remainder, we start with the scheme

∃x ≤ a f (x) = b

from Definition 1.11 and, letting

f (x) = x · d

b = a

we obtain
∃x ≤ a x · d = a.

d divides a without remainder if and only if a is the product of d and a term x no
greater than a. Since we need not look beyond a when searching for the quotient x ,
a bounded existential quantifier meets our needs perfectly well.

Definition 1.14 d|a ⇐⇒ ∃x ≤ a x · d = a.

Definition 1.15 prime(a) ⇐⇒ a �= | ∧ −∃x ≤ pred(a)(x �= | ∧ x |a).

When testing a for primality, our search for a’s divisors does not even carry us as
far as a. So we can, once again, make do with a bounded existential quantifier.

Exercise 1.28 Define the bounded universal quantifier ∀x ≤ (to be read
as: “for all x no greater than ”).

1.8 Π
0
1

Sentences

The primitive recursive functions are those obtainable from the numeral | and the
function S by composition and recursive definition.1 Definitions 1.4, 1.5, 1.6, 1.10,
and 1.12 are all recursive. Definition 1.7 introduces the function id by composing
S and two recursively defined functions (addition and subtraction). Definitions 1.8,
1.9, 1.11, 1.13, 1.14, and 1.15 just introduce abbreviations for expressions already
defined. So all the functions defined in the previous four sections are primitive recur-
sive. Furthermore, all the defined predicates, relations, and logical operators can be

1 I am not going to supply rigorous definitions of composition and recursion. A good source for
a more thorough treatment is the WikipediA article on primitive recursive functions (http://en.
wikipedia.org/wiki/Primitive_recursive_function). For an especially meticulous (though perhaps
not so readable) presentation, see Curry [3] (http://www.jstor.org/stable/2371522).

http://en.wikipedia.org/wiki/Primitive_recursive_function
http://en.wikipedia.org/wiki/Primitive_recursive_function
http://www.jstor.org/stable/2371522
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replaced by primitive recursive characteristic functions. Indeed, every proposition
we can formulate with our defined expressions (and with any expressions similarly
defined) will be equivalent to a sentence of the form

f (a) = |

where f is primitive recursive.
Is that obvious? Hardly. You may even even have doubts. One reason for skepti-

cism is that we can easily formulate propositions that have no occurrences of ‘a’ or
any other variable. How can a variable-free formula be equivalent to a generalization
of the form f (a) = |? There are, in fact, all sorts of sneaky ways to arrange for such
an equivalence. For example, the formula

S(|) �= |

is equivalent to the generalization

id(S(| · a), | · a) = |

since Exercise 1.10 guarantees that | · a = |.

Exercise 1.29 Write down a sentence of the form f (a) = | ( f primitive recursive)

equivalent to ‘ | + | = ||’.

Another worry is that some of our sentences feature more than one variable. How
could a sentence like ‘a+b = b+a’ be equivalent to a sentence with occurrences of
only one variable? The answer is that there are tricks that allow us to code up finite
sequences of terms using just one term. We will now consider one such trick. First,
we define exponentiation.

Definition 1.16

a| = a

aS(b) = a · ab.

It would now be helpful to have a characteristic function for divisibility. That is,
we would like a function div such that

div(d, a) =

{

|| if d|a

| otherwise.

To confirm that we can define such a function, note that the following are equivalent.
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∃x ≤ a x · d = a
a

∑

i=|

id(i · d, a) �= a

id(

a
∑

i=|

id(i · d, a), a) = |

id(id(

a
∑

i=|

id(i · d, a), a), |) = ||.

So, since d|a if and only if ∃x ≤ a x · d = a, we can let

div(d, a) = id(id(

a
∑

i=|

id(i · d, a), a), |).

Now consider

(

||||
∑

i=|

div(||i , ||||)) · ||||

or, to revert to more familiar terminology,

(

22
∑

i=1

div(2i , 22)) · 22.

21 and 22 divide 22, while 23 and 24(= 2(22)) do not. So the first two terms of our
summation are 2, while the last two are 1. That is,

(

22
∑

i=1

div(2i , 22)) · 22 = (2 + 2 + 1 + 1) · 22 = 2.

Similarly,

(

23
∑

i=1

div(2i , 23)) · 23 = (2 + 2 + 2 + 1 + 1 + 1 + 1 + 1) · 23 = 3.

Note, too, that

(

32
∑

i=1

div(3i , 32)) · 32 = (2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1) · 32 = 2.
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If a does not divide c, then

(

ab ·c
∑

i=1

div(ai , ab · c)) · ab · c = b.

This motivates the following definition.

Definition 1.17

exp(a, b) = (

b
∑

i=1

div(ai , b)) · b.

If a divides b, then exp(a, b) is the number of times it does so. For example,

exp(2, 432) = exp(2, 24 · 33) = 4

while
exp(3, 432) = exp(3, 24 · 33) = 3.

Some may find it helpful to note that if a is even, then exp(2, a) is the exponent
of 2 in the prime factorization of a. More generally, we can use exp to extract the
exponent from any term in a prime factorization.

How does this help us use a single term to code up a sequence of terms? Suppose
we want to express the commutativity of addition using just one variable. We would
be looking for a sentence that implies each instance of the generalization

a + b = b + a.

Try this:
exp(2, a) + exp(3, a) = exp(3, a) + exp(2, a).

Since this is itself an instance of the generalization we are trying to capture, it does
not say more than it should. But does it say enough? For example, does it imply that
5 + 4 = 4 + 5? To see that it does consider the following instance:

exp(2, 2592) + exp(3, 2592) = exp(3, 2592) + exp(2, 2592).

Note that 2592 = 25 · 34. So exp(2, 2592) = 5 and exp(3, 2592) = 4. This yields
the desired conclusion: 5 + 4 = 4 + 5. There is nothing special about 4 and 5: any
two numbers would have worked. So

exp(2, a) + exp(3, a) = exp(3, a) + exp(2, a)

does express the commutativity of addition using just one variable. Putting everything
in the canonical form f (a) = | takes just a little more work. One solution is
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id(id(exp(| |, a) + exp(| | |, a), exp(| | |, a) + exp(| |, a)), |) = |

which is the double negation of ‘exp(| |, a)+exp(| | |, a) = exp(| | |, a)+exp(| |, a)’.

Exercise 1.30 Write down a sentence of the form f (a) = | ( f primitive recursive)

equivalent to ‘ a · (b + c) = (a · b) · c’. We are helped here by the fundamental

theorem of arithmetic: every natural number greater than 1 has a unique prime

factorization.

A sentence is said to be Π0
1 if it is equivalent to a sentence of the form f (a) = |

where f is primitive recursive. You might think that Π0
1 sentences are all quite trivial,

but that is wrong. The following two sentences are Π0
1 . (In the second sentence, I

write ‘|| � | a’ for “| | does not divide a.”)

ad+|| + bd+|| �= cd+||

|| � | a ∨ a = | | ∨ ∃x ≤ a∃y ≤ a(prime(x) ∧ prime(y) ∧ x + y = a).

The first is Fermat’s Last Theorem; the second is Goldbach’s Conjecture (that every
even integer greater than two is the sum of two primes). A measure of their depth is
the failure of mathematicians as profound as Euler and Gauss to either prove or refute
them. Fermat’s Last Theorem was proved in 1994. Goldbach’s Conjecture remains
unresolved.

1.9 Some Philosophy

David Hilbert was convinced that many, though not all, mathematical formulas lack
content (Inhalt in German): while many formulas might seem to make definite claims
about some definite subject matter, they do not really say anything about anything.
Although there is room for debate about where exactly Hilbert would draw the line
between formulas with and without content, it is reasonably clear that he thought
Π0

1 sentences, interpreted as claims about numerals, have content (or, at least, this is
what he ought to have thought given various other things he said).

Hilbert offers some obscure reasons for believing that numerals, particularly our
numerals

| | | | | | | | | | . . .

are well-suited to be the subject matter of meaningful mathematics. For example,
while he seems to concede that we produce tokens of a numeral in various ways,
resulting in tokens that differ slightly from one another, he insists that we can recog-
nize in all of them, wherever and whenever they might occur, a single form or shape
(Gestalt).2

Students of Plato might, at this point, recall Symposium 211a-d where Diotima
discusses beauty itself, “always one in form,” not beautiful at one time, ugly at

2 See Hilbert [5], p. 163; English translation in Mancosu [6], p. 202.
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another, or beautiful at one place, ugly at another. Indeed, beauty itself is the one
form shared by all beautiful things, just as a numeral-type is the one form or shape
shared by all tokens of that type. Plato was sure that the one form could be better
known than any of the many instances: well-founded beliefs about beauty itself will
be clearer and more reliable than well-founded beliefs about any of the beautiful
things in the unstable world of experience. This is not necessarily an otherworldly
or unscientific attitude. Note, for example, that physicists are not interested in any
electrons in particular: they investigate the laws governing all electrons. These very
laws set limits to how much information we can acquire about individual electrons.
We might say, with Plato, that the laws are “more knowable” than the distinctive
features of the individuals they govern.

Someone with Platonic inclinations, might embrace numeral-types, the shapes
of numeral-tokens, as the objects of meaningful mathematics. Hilbert’s remarks,
however, point more in the direction of numeral-tokens. He says, for example, that
the objects of meaningful mathematics are present to us in immediate experience
(unmittelbares Erlebnis).3 While this is arguably an apt description of our contact
with numeral-tokens, it seems not to apply to numeral-types. Our only “experience”
of the types is “mediated” by our experience of the tokens: we acquaint ourselves
with the types by looking at the tokens. Furthermore, Hilbert says quite clearly that
his numerals are not the shapes shared by the instances, they are the instances that
share the shapes.4 Should we conclude, then, that Hilbert considered our numeral-
tokens to be the objects of his meaningful mathematics? No, that would be far too
hasty. We have barely begun to make such a case. To mention just one important
piece of unfinished business, we have not confirmed that Hilbert would accept our
neat dichotomy: numeral-type/numeral-token.

It would be best, at this point, to let the professionals work on fine-grained inter-
pretations of Hilbert. Without worrying too much about what Hilbert thought, let
us consider what we ought to think. Let us get some practice using the little bit of
philosophical machinery we have discussed in this chapter. For most of the chapter,
we have described how numeral-types do or could behave. It has turned out that
they do or could behave just like the positive integers (1, 2, 3, . . .). Now we raise a
question: would it make sense to insist that our version of arithmetic is also a theory
of numeral-tokens: a theory about how numeral-tokens do or could behave? Would it
make sense to say that the arithmetical properties we have attributed to numeral-types
also apply to numeral-tokens—that numeral-tokens do or could behave just like the
positive integers? Let us exercise our philosophical muscles by trying to show that
this would make sense. I claim only that this enterprise will be educational. Whether
we can really fabricate a viable philosophical position along these lines—well, that
is something you will have to decide for yourself.

We encounter a problem right away: our theory says that ‘|’ has only one imme-
diate successor, yet there are many tokens of ‘| |’ all of which deserve to be called
immediate successors of the many tokens of ‘|’. As Hilbert himself would be quick to

3 See Hilbert [5], p. 162; Mancosu [6], p. 202.
4 See Hilbert [5], p. 163, footnote 1; Mancosu [6], p. 214.
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remark, mathematicians have a ready-made response to this problem. It is common in
mathematics to treat objects as identical when they are really only equivalent in some
well-defined sense. There are tricks that, in favorable circumstances, allow mathe-
maticians to do this without any logical difficulties.5 If sameness-of-shape is the sort
of equivalence relation required for this mathematical sleight of hand, then these
tricks would allow us to use the language of shapes when we are really only talking
about shaped things.6 Our talk about “one shape” would then be interpretable as an
economical way of talking about the many things so shaped. This would allow us to
say that the one and only shape ‘| |’ is the unique immediate successor of the shape
‘|’ even while insisting that the official objects of our theory are numeral-tokens—
including the many tokens of ‘| |’. Or, to put the matter somewhat differently, we
could insist that each numeral-token has at most one immediate successor, but when
pressed, we would have to acknowledge that we are using the phrase “at most one”
in an unusual way.

Having too few successors may be a more pressing problem than having too
many. If every numeral-token has an immediate successor, there are infinitely many
numeral-tokens. But if numeral-tokens are physical, macroscopic objects accessible
to us through our senses (as I, for one, have been assuming), it is not so clear why we
should believe they are infinite in number. This is reminiscent of our earlier discussion
of numeral-types in Sect. 1.3. Even in the absence of compelling evidence that there
are infinitely many numeral-types, we decided it might be illuminating to explore
what things would be like if there were infinitely many. What is required for such
an exploration to be successful? When we set out to explore possible X ’s, we mean
to be discussing the behavior of X ’s in situations that can be coherently described.
If our description would be incoherent no matter what we meant to be discussing,
we will be trying to pass off as possible something that is logically impossible. If
our description is incoherent because it is incompatible with our understanding of
what it is to be an X , then we will be trying to pass off as possible something that
is conceptually impossible. It appears that the world of numeral-types, as we have
described it so far, is possible in both senses. At least, we have encountered no
evidence to the contrary.

Can we say the same about a world inhabited by infinitely many numeral-tokens?
Is an infinitude of numeral tokens possible both logically and conceptually? As for
logical possibility, it is important to remember what our project is right now. We
are trying our best to show that the Π0

1 sentences we would normally treat as true
assertions about the positive integers can be reinterpreted as coherent claims about
numeral-tokens. In making this case, we should be able to rely entirely on postulates
that attribute to numeral-tokens certain abstract, mathematically salient properties:
properties that numeral-tokens could share with positive integers. If we really have

5 For an especially clear discussion see Burgess [2], pp. 157–161.
6 But is sameness-of-shape the right sort of relation? Equivalence relations of the sort required are
transitive: if a relates to b and b relates to c, then a relates to c. However, the relation appears-

to-be-the-same-shape is, notoriously, not transitive because imperceptible differences in shape can
add up to perceptible ones. Does this consideration not apply to our numeral-tokens?
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a fighting chance of showing that numeral-tokens could behave like the positive
integers, then our project will probably not require us to emphasize the ways numeral-
tokens differ from positive integers. So we should be able to reverse the process and
reinterpret our claims about numeral-tokens as claims about positive integers.7 That
is, if our theory leads us to say that numeral-tokens have some abstract property,
then ordinary arithmetic should lead us to say that the positive integers have that
same property. But, if our theory of numeral-tokens were interpretable in ordinary
arithmetic, then any absurd consequence of the former theory would be translated
into an absurd result of arithmetic. If our theory led us to say that numeral-tokens both
have and lack a certain abstract property (to take one example of a palpable absurdity),
then ordinary arithmetic would lead us to say that the positive integers both have and
lack that property. That is, our theory of numeral-tokens would be inconsistent only if
arithmetic itself were inconsistent.8 So we should worry about the logical possibility
of infinitely many numeral-tokens only if we are already worried about the logical
possibility of infinitely many positive integers.

Our second question is whether an infinitude of numeral-tokens is conceptually
possible. This is a question about our concept of numeral-token and how far we
can venture while still discussing things that answer to that concept. Suppose it is
indeed part of our concept that numeral-tokens are macroscopic physical objects.
Suppose, too, it is part of our concept of physical objects that they are subject to the
physical necessities prevailing here in the actual world. That would make it concep-

tually impossible for physical objects to do what is physically impossible. So, before
we could be confident that an infinitude of numeral-tokens is conceptually possible,
we would need to be reassured that it is physically possible. That sounds like a job
for the physicists. While we wait to hear from them, we should note that a favor-
able verdict from the physicists might still leave us with our philosophical question
about conceptual possibility: when we discuss imaginary scenarios in which there
are infinitely many objects that we call “numeral-tokens,” are we really discussing
numeral-tokens? Even if such scenarios are physically possible, they might conflict
in some other way with our concept of numeral-tokens or with the concept we decide
we ought to have after we think about it a while. Even after getting help from the
physicists, we may need to consider very carefully what we mean by a numeral-token
before we can make progress.9 Though we will not pursue the matter further here, I

7 A case of the sort I have in mind is discussed in Chap. 3: when we craft a set theory just strong
enough to supply an interpretation of arithmetic, it turns out that arithmetic supplies an interpretation
of our set theory. Positive integers are exceptionally powerful devices for coding up all sorts of
information—information that may or may not have obvious connections to arithmetic. (We got
a taste of this in the previous section when we used individual numbers to code ordered pairs of
numbers. There will be more such examples in Chaps. 2 and 3.) It would be surprising if the Π0

1 part
of arithmetic were too weak to code up the mathematically salient claims about numeral-tokens that
we need for our reinterpretation of Π0

1 sentences. Granted, interpretability does not always work
both ways. There are theories that interpret arithmetic but are not interpretable in arithmetic. Our
project, however, does not seem to require us to formulate such a theory.
8 Section 5.4 of Chap. 5 may help you see how this works.
9 To take an extreme example of the sort of thing I have in mind, suppose we try to imagine what it
would be like for an elephant to be a pencil. Will we then be thinking about elephants and pencils

http://dx.doi.org/10.1007/978-3-319-05816-0_3
http://dx.doi.org/10.1007/978-3-319-05816-0_2
http://dx.doi.org/10.1007/978-3-319-05816-0_3
http://dx.doi.org/10.1007/978-3-319-05816-0_5
http://dx.doi.org/10.1007/978-3-319-05816-0_5
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do hope you will continue to think about it. One of the purposes of this philosophical
exercise was to inspire you to help the rest of us think about these issues more clearly.

Some of the above considerations seem not to apply to numeral-types because,
at least as I understand them, they are not physical objects subject to physical laws.
(If you think they are physical objects, you should be prepared to face the question
of where they are. Or are they, perhaps, special physical objects that have no spatial
location?) Even if you accept that numeral-types are themselves non-physical, you
might nonetheless think it conceptually impossible for a numeral-type to exist without
having physical tokens inhabiting our universe. (Your slogan might be: no token-less
types.) You would then have to concede that the above observations about physical
possibility do apply to numeral-types, since any conceptually possible scenario in
which there are infinitely many types would be one in which there are infinitely many
tokens. But is there really a good reason to believe that numeral-types are subject to
such a constraint?

Hilbert’s assistant and collaborator Paul Bernays (1888–1977) did not consider
either numeral-tokens or numeral-types to be the primary objects of meaningful
mathematics. Mathematicians, he says, study structures. “Figures” such as

| | | | | | | | | |

are of mathematical interest because they exemplify an important structure: the struc-
ture formed by the first four ordinal numbers. The figures

0 0′ 0′′ 0′′′

exemplify the same structure. The shared structure

f irst second third f ourth

is the real object of mathematical inquiry. An indication of this is the mathematician’s
disinterest in the “inessential” differences between the two sequences of figures. The
figures ‘|’ and ‘0’ are certainly different, but here they play the same mathematical
role. They represent the same position in the sequence of ordinals: the position first.
It is characteristic of mathematical thought to ignore the differences and focus on
the figures’ role as representatives of a particular position in an abstract structure.10

or about things we just call “elephants” and “pencils”? For a real-life example, consider what
Geraldine Ferraro said when Barack Obama became the front-runner in the race for the Democratic
presidential nomination. “If Obama was a white man, he would not be in this position. And if he
was a woman of any color, he would not be in this position. He happens to be very lucky to be who
he is. And the country is caught up in the concept.” Can we really think clearly about a situation in
which Barack Obama (not someone like Obama, but Obama himself) is, say, a Polynesian woman?
As our imaginary excursions become more and more fanciful, could we not reach a point where we
are not really talking about Obama?
10 See Bernays [1], pp. 338–341; English translation in Mancosu [6], pp. 243–245.
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We have been considering whether we can supply Π0
1 sentences with genuine

content by interpreting them as claims about concrete objects of sensory experience:
that is, numeral-tokens. Bernays, as we just saw, considered this approach strangely
out of step with the characteristically mathematical way of thinking. Kurt Gödel

(1906–1978) offers another reservation. When we say that Π0
1 sentences, interpreted

in a certain way, have content, does that claim itself have content? In our role as
cheerleaders for numeral-tokens, we might say “yes” because we hope to interpret
this assertion about Π0

1 sentences as a claim about concrete objects of sensory expe-
rience: namely, Π0

1 sentence-tokens. However, if asked to explain what makes a
sentence Π0

1 , we would have to invoke “the general principle of primitive recursive
definition” which “contains the abstract concept of function.”11 Since, according
to Gödel, functions are not concrete objects of sensory experience, either (1) state-
ments about abstract objects can have content or (2) we have not really managed
to say which sentences have content. In the first case, we have no reason to insist

on a concrete interpretation of Π0
1 sentences (though we might still consider this

an option worth pursuing). In the second case, when we appear to be describing a
distinctive philosophical or methodological position, we are actually saying nothing.

1.10 Solutions of Odd-Numbered Exercises

1.1 Suppose σ(xy). Pick x ′, y′ such that τ(x ′) = τ(x), τ(y′) = τ(y), υ(x ′y′).
Now suppose σ(zy). Pick z′, y′′ such that τ(z′) = τ(z), τ(y′′) = τ(y), υ(z′y′′).
Then τ(y′) = τ(y′′) and, hence, by Proposition 1.2, τ(x ′) = τ(z′). So τ(x) = τ(z).
Now go the other direction. Suppose τ(x) = τ(z), still assuming that σ(xy). Then
τ(x ′) = τ(z) and, hence, a numeral-token of the same type as y (namely y′) is the
result of adding one tally mark to a numeral-token of the same type as z (namely x ′).
That is, σ(zy).

1.3 Barack Obama has two children: Malia and Sasha. According to our definition:

child(the father of Malia) = Malia
child(the father of Sasha) = Sasha.

Furthermore:

the father of Malia = the father of Sasha.

So:

Malia = child(the father of Malia) = child(the father of Sasha) = Sasha.

The problem is that children with the same father can be distinct, whereas numeral-
types with the same successor cannot.

11 See Gödel [4], p. 272, footnote b.
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1.5

| · | | | = | · S(S(|))

= pred(| · S(|))

= pred(pred(| · |))

= pred(pred(pred(|)))

= pred(pred(|))

= pred(|)

= |.

1.7 Definition 1.4 and Theorem 1.1 confirm that the equation is true when a = |.
Our inductive hypothesis is that

π̈ + b = b + π̈.

By Definition 1.4, Theorem 1.2, and our inductive hypothesis,

S(π̈) + b = S(π̈ + b) = S(b + π̈) = b + S(π̈).

So the desired property passes from π̈ to S(π̈).

1.9 By Definition 1.6,

a · (b + |) = a · S(b) = pred(a · b) = (a · b) · |.

So the equation is true when c = |. Our inductive hypothesis is that

a · (b + π̈) = (a · b) · π̈.

By Definitions 1.4 and 1.6,

a · (b + S(π̈)) = a · S(b + π̈) = pred(a · (b + π̈)).

By Definition 1.6 and our inductive hypothesis,

pred(a · (b + π̈)) = pred((a · b) · π̈) = (a · b) · S(π̈).

So
a · (b + S(π̈)) = (a · b) · S(π̈).

That is, the desired property passes from π̈ to S(π̈).

1.11 By Definition 1.4 and Exercises 1.7 and 1.8,
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S(a) · a = (a + |) · a = (| + a) · a = |.

1.13 It follows from Definition 1.7 and Exercise 1.7 that id(a, b) = id(b, a). By
Exercise 1.12,

|||| · ((S(a) · b) + (S(b) · a)) = |||| · ((S(S(a)) · S(b)) + (S(S(b)) · S(a))).

1.15 Our proof is by induction. Note, first, that Definitions 1.5 and 1.6 and Exercises
1.7, 1.9, and 1.10 give us:

||| · (a + |) = ||| · (| + a) = (||| · |) · a = || · a = |.

By Definitions 1.4, 1.5, and 1.6 and an inductive hypothesis,

||| · (a + S(π̈)) = ||| · S(a + π̈) = pred(||| · (a + π̈)) = pred(|) = |.

1.17 By Exercises 1.9, 1.10, and 1.11,

S(a) · (a + b) = (S(a) · a) · b = | · b = |.

By Definition 1.4 and Exercises 1.7 and 1.8,

(S(a + b) · a) = (a + S(b)) · a = (S(b) + a) · a = S(b).

So Definitions 1.4, 1.6, and 1.7 and Exercises 1.9, 1.10, and 1.15 let us reason as
follows

id(a, a + b) = |||| · (| + S(b))

= (|||| · |) · S(b)

= ||| · S(b)

= ||| · (b + |)

= |.

1.19 As an inductive hypothesis, we assume that

id(a, π̈) + id(id(a, π̈), |) = |||.

We want to show that

id(a, S(π̈)) + id(id(a, S(π̈)), |) = |||.

To that end, we begin a second induction (this time on a). Exercises 1.13 and 1.18
guarantee that

id(|, S(π̈)) + id(id(|, S(π̈)), |) = |||.
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Exercise 1.13 and our earlier inductive hypothesis let us reason as follows

id(S(♥), S(π̈)) + id(id(S(♥), S(π̈)), |) = id(♥, π̈) + id(id(♥, π̈), |) = |||.

This completes our induction on a (an odd one without its own inductive hypothesis).
So we have confirmed that

id(a, S(π̈)) + id(id(a, S(π̈)), |) = |||.

This completes our first induction.

1.21 We can use Definition 1.4 to confirm that |||| = || + ||. So, by Exercises 1.13
and 1.17, id(||||, ||) = | and, hence, by Exercise 1.16, id(id(||||, ||), |) = ||. Defini-
tion 1.4 implies that || = | + |. So, by Exercises 1.13 and 1.17, id(id(id(||||, ||), |), |)

= |. That is, −(−(−(|||| = ||))).

1.23 An adjective is heterological if and only if it does not apply to itself. For example,
the adjective ‘monosyllabic’ is heterological because it is not monosyllabic. What
about the adjective ‘heterological’? If it is heterological, then it applies to itself and,
hence, is not heterological. If it is not heterological, then it does not apply to itself
and, hence, is heterological. So if it either is or is not heterological, then it both is
and is not heterological. That is, the instance of LEM we are considering yields an
outright contradiction.

1.25

||
∑

i=|

id(i, |||) = id(|, |||) + id(||, |||)

= | + |

= ||.

1.27 Here is the truth table for conjunction.

φ ψ (φ ∧ ψ)

T T T
T F F
F T F
F F F

The idea is that a conjunction is true if and only if both its components are true.
If I assert “φ and ψ ,” I am asserting that φ and ψ are both true. Now consider the
following table.

If I assert “α = β and γ = δ,” I am asserting that id(α, β) and id(γ, δ) are
both || and, hence, that id(α, β)+ id(γ, δ) is ||||. Definition 1.13 guarantees that the
conjunction of two equations is true if and only if both equations are true.
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α = β γ = δ id(α, β) id(γ, δ) id(α, β) + id(γ, δ) α = β ∧ γ = δ

T T || || |||| T
T F || | ||| F
F T | || ||| F
F F | | || F

1.29 Here is one example.

id(id(| + |, ||), | · a) = |.
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Chapter 2

Peano Arithmetic, Incompleteness

2.1 The language of PA

We have seen that some profound claims about the natural numbers are Π0
1 . On the

other hand, the vocabulary of number theory allows us to formulate sentences that
are not Π0

1 . Hilbert would say that at least some of these sentences lack content.
We are going to consider a theory replete with such sentences. The theory is Peano
Arithmetic (PA), a formalized version of elementary number theory.1 A formal theory
needs a formal language. The language of PA has the following vocabulary.

1. Two connectives: ‘−’ (“not”), ‘⇒’ (“if …then”).
2. A quantifier: ‘⇐’ (“for all”).
3. The identity symbol: ‘=’.
4. Three function symbols: ‘S’ (“successor”), ‘+’ (“plus”), ‘·’ (“times”).
5. One proper name: ‘0’ (“zero”).
6. Infinitely many variables: ‘w’, ‘x’, ‘y’, ‘z’, ‘w1’, ‘x1’, ‘y1’, ‘z1’, …
7. Two parentheses: ‘(’, ‘)’.

In everyday English, certain expressions refer to individual things or can so refer
in appropriate contexts. Examples include proper names (‘Kurt Gödel’), pronouns
(‘him’), and descriptions (‘the second son of Marianne Gödel’). The terms of PA are
the expressions that play this role in our formal language. We define them recursively
as follows.

8. ‘0’ is a term.
9. Every variable is a term.

10. If α and β are terms, then so are �Sα�, �(α + β)�, and �(α · β)�.

In everyday English, declarative sentences declare that something is the case
(‘Kurt Gödel was smart’) or could, if placed in appropriate contexts, declare that

1 Although the ‘P’ in ‘PA’ commemorates the mathematician Giuseppe Peano (1858–1932),
another mathematician, Richard Dedekind (1831–1916), deserves much of the credit. For some
of the history, see Wang [11] (http://www.jstor.org/stable/2964176).

S. Pollard, A Mathematical Prelude to the Philosophy of Mathematics, 35
DOI: 10.1007/978-3-319-05816-0_2,
© Springer International Publishing Switzerland 2014

http://www.jstor.org/stable/2964176
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something is the case (‘He was smart’). The formulas of PA are the expressions
that play this role in our formal language. We define them recursively as follows.

11. If α and β are terms, then �α = β� is a formula.
12. If φ and ψ are formulas, then so are �−φ� and �(φ ⇒ ψ)�.
13. If α is a variable and φ is a formula, then �⇐α φ� is a formula.

Symbols are said to occur in terms and formulas. For example, the function
symbol ‘+’ occurs in the term ‘((x + y) + z)’. In fact, it occurs twice: it has two
occurrences. The left-hand parenthesis ‘(’ also occurs twice, as does the right-hand
parenthesis ‘)’. The variables ‘x’, ‘y’, and ‘z’ each occur once.

The symbols ‘�’ and ‘�’ are known as corner quotes.2 If α is a term, then
�Sα� is the term consisting of an occurrence of the function symbol ‘S’ followed by
an occurrence of the term α. If α is ‘0’, then �Sα� is ‘S0’. Other corner quotations
are to be understood similarly. Note that ordinary single quotation marks would not
do what we intend here. For example, ‘Sα’ is not a term of PA even if α is. This
is because ‘α’ is not a term of PA. ‘α’ is an expression we use to discuss the terms
of PA. To take a less technical example: ‘David Hilbert’ is an expression we use to
designate a certain mathematician. To say that ‘David Hilbert’ was a mathematician
is to say that David Hilbert’s name was a mathematician. As far as we know, no
mathematician has ever been David Hilbert’s name (Such an arrangement is unlikely
to be practical).

Exercise 2.1 Suppose α is a PA-term. Is �αS� a PA-term? Is �Sα� a PA-term?

Does α occur in �Sα�? Does α occur in ‘ Sα’? Does ‘α’ occur in �Sα�? Does ‘α’

occur in ‘ Sα’?

The sub- formulas of a formula ψ are ψ itself and any formulas that occur in
ψ. For example, the formula

⇐x⇐y (x + Sy) = ((x + y) + S0)

has three sub-formulas. They are

(x + Sy) = ((x + y) + S0),

⇐y (x + Sy) = ((x + y) + S0),

and the whole formula itself. Any occurrence of a variable α within a sub-formula
of ψ of the form �⇐α φ� is bound in ψ. All other occurrences are free in ψ. There
are three bound occurrences of ‘x’ in

⇐x⇐y (x + Sy) = ((x + y) + S0).

2 See Quine [9, pp. 33–37]. I will soon get sloppy and stop using the corner quotes (Absolute rigor
does get a bit tedious). I thought, however, that you should know about them.
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There are two free occurrences of ‘x’ in

⇐y (x + Sy) = ((x + y) + S0).

A free variable is like a pronoun without an antecedent. The expressions ‘He is short’
and ‘x = 0’, outside of any appropriate context, make no definite claims and, so, are
neither true nor false. (Who is he and what is x?)

Exercise 2.2 Identify the bound occurrences of ‘x’, ‘y’, and ‘z’ in the following

formula.

⇐y⇐z(−⇐x − (z = Sy ⇒ z = x) ⇒ (x + y) = S(x · SS0))

In our formal language, we understand sentences to be formulas with no free
occurrences of variables. This is a departure from everyday usage where ‘He is
short’ counts as a declarative sentence even in contexts where the pronoun ‘He’ fails
to refer to anyone and, so, is behaving like a free variable. Each sentence of PA

makes a definite claim as soon as we supply PA with an interpretation (See Sect. 2.3
below).

2.2 The Axioms of PA

We will now use our formal language to describe the natural numbers (0, 1, 2, 3, . . .).
Actually, we will only describe how the natural numbers are related to one another:
we will only describe the structure formed by the natural numbers or (speaking more
circumspectly) the structure they would form if they were to exist. We do this by
accepting certain sentences, the axioms, without proof. We show that a sentence
is a theorem by showing that it follows from the axioms. PA has two axioms
characterizing the successor operator. The first says that 0 is not the immediate
successor of any natural number (“Given any natural number x , it is not the case that
0 is identical to the immediate successor of x”). The second says that natural numbers
with the same immediate successor are the same (“Given any natural numbers x and
y, if the immediate successor of x is identical to the immediate successor of y, then
x is identical to y”).

S1 ⇐x − 0 = Sx

S2 ⇐x⇐y(Sx = Sy ⇒ x = y)

PA has two axioms giving the recursive definition of addition and another two
offering the recursive definition of multiplication.

A1 ⇐y (y + 0) = y

A2 ⇐x⇐y (y + Sx) = S(y + x)
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M1 ⇐y (y · 0) = 0
M2 ⇐x⇐y (y · Sx) = ((y · x) + y)

Finally, PA has infinitely many induction axioms, one for each formula with free
occurrences of ‘x’ and ‘y’. That is, if φ(x, y) is a formula of PA with free occurrences
of ‘x’ and ‘y’, but no free occurrences of any other variable, if φ(0, y) is the result
of replacing each free occurrence of ‘x’ in φ(x, y) with an occurrence of ‘0’, and
if φ(Sx, y) is the result of replacing each free occurrence of ‘x’ in φ(x, y) with an
occurrence of ‘Sx’, then

�⇐y(φ(0, y) ⇒ (⇐x(φ(x, y) ⇒ φ(Sx, y)) ⇒ ⇐x φ(x, y)))�

is an axiom of PA.
An example may clarify the connection between our induction axioms and the

proofs by induction we did in Chap. 1. We can let φ(x, y) be any PA-formula with
free occurrences only of ‘x’ and ‘y’. If we let φ(x, y) be ‘(y + x) = x’, we obtain
the axiom

⇐y((y + 0) = 0 ⇒ (⇐x((y + x) = x ⇒ (y + Sx) = Sx) ⇒ ⇐x (y + x) = x))

This says the formula

((y + 0) = 0 ⇒ (⇐x((y + x) = x ⇒ (y + Sx) = Sx) ⇒ ⇐x (y + x) = x))

will be true no matter what y is. So, in particular, we are free to replace each free
occurrence of ‘y’ with an occurrence of ‘0’:

((0 + 0) = 0 ⇒ (⇐x((0 + x) = x ⇒ (0 + Sx) = Sx) ⇒ ⇐x (0 + x) = x))

This sentence says that you can show

⇐x (0 + x) = x

by first showing

(0 + 0) = 0

(to get through the first ‘⇒’) and then showing

⇐x((0 + x) = x ⇒ (0 + Sx) = Sx)

(to get through the last ‘⇒’). The goal here is to show that each natural number x is
identical to 0 + x . The first step is to show that 0 has this property: that 0 is identical
to 0 + 0. The next step is to show that this property is hereditary: that each natural
number passes it on to its successor. You might think of the left-hand part of the

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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formula
((0 + x) = x ⇒ (0 + Sx) = Sx)

as an inductive hypothesis, while the right-hand part is the result to be obtained from
that hypothesis.

Exercise 2.3 Using A1, A2, and the induction axiom we have been discussing, prove

informally that ⇐x (0 + x) = x. (I say “informally” because I have not introduced a

formal deductive system of the sort you may have studied in a logic course. You still

need to make good inferences when you do this exercise, but you can just go ahead

and make those inferences without citing any explicit inference rules).

2.3 Incompleteness 1: Compactness

As I mentioned above, a theorem of PA is a sentence in the language of PA that
follows from the axioms of PA. A proof in PA is a demonstration that a PA-sentence
does follow from the PA-axioms. A formal logic for PA will include a definition of
‘proof’ precise enough to yield a mechanical procedure for telling whether something
is a proof. The logic of PA, classical first- order logic, was first formalized
by Gottlob Frege (1848–1925).3 There are a variety of formalizations equivalent
to Frege’s. Assume we have picked one and suppose Γ is a set of sentences.

Definition 2.1 ψ is derivable from Γ if and only if there is a formal proof whose
conclusion is ψ and whose premises are members of Γ . If ψ is derivable from Γ , we
write: Γ ⊢ ψ. If ψ is derivable from axioms of PA, we write: PA ⊢ ψ.

We could have characterized the axioms and theorems of PA without offering
any hints about what those axioms and theorems say. This leaves us free to supply
various readings or interpretations. In an interpretation of PA, we (1) specify the
range of our bound variables, (2) assign an object from that range to ‘0’, and (3)
assign operations defined on that range to each of ‘S’, ‘+’, and ‘·’. If we are not
feeling too adventurous we might (1) let our bound variables range over the natural
numbers (so that we read ‘⇐x’ as “for all natural numbers x”), (2) let ‘0’ be our
name for zero, and (3) assign the operations of immediate succession, addition, and
multiplication to ‘S’, ‘+’, and ‘·’. This, after all, is the intended interpretation of PA.
You will perhaps agree that all the axioms of PA come out true when so interpreted.
An interpretation that makes all the axioms of PA true is said to be a model of PA.

Here is an alternative interpretation. Let our bound variables range over zero and
all the negative integers (so that we read ‘⇐x’ as “for all non-positive integers x”). Let
‘0’ be our name for zero. Assign the operation “minus one” to ‘S’ and the operation
of addition to ‘+’. Read ‘x · y’ as “x times y times negative one”. You might take a

3 See Frege [2]; English translation in van Heijenoort [10, pp. 5–82]. If you have had a logic course,
you have probably worked with a close cousin of Frege’s system.
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minute to confirm that all the axioms of PA come out true when interpreted in this
way (So this is a model of PA).

Exercise 2.4 Let our bound variables range over all the even natural numbers

(including zero). Complete this interpretation in a way that makes the first six axioms

of PA true.4

I already noted that a proof is a demonstration that a sentence (the conclusion) fol-
lows from some sentences (the premises). I did not, however, define “follows from”.
That was probably fine: you probably already understood this sort of “following”
well enough to make sense of the preceding discussion. Insisting on a definition of
everything is a sure-fire way to block intellectual progress. Sometimes, however,
a mathematical definition of a notion that is already well understood is a way of
drawing that notion into the mathematical realm: making it the object of productive
mathematical inquiry. That is the goal of the following definition.

Definition 2.2 ψ follows from Γ if and only if it is logically impossible for an
interpretation to make all the members of Γ true and ψ false. If ψ follows from Γ ,
we write: Γ � ψ. If ψ follows from axioms of PA, we write: PA � ψ.

OK, we still have work to do: we do not yet have a mathematical definition
of logical impossibility. Supplying such a definition is one of the most important
jobs of set theory (You might think of set theory as an inventory of logically possible
structures). We will leave a serious exposition of set theory for later chapters. For now,
we will try to make do with a less systematic understanding of logical impossibility.
Even without a full-blown theory, we have a good idea of how to establish that
a situation is logically impossible: assume that the situation is real and derive a
contradiction from that assumption.

There is another bit of work we will leave undone: we will not offer a mathemati-
cally precise account of what our logical symbols mean. This can be done (You may
have already seen it done in a logic course. You saw a bit of it done in Chap. 1). We
will just not be doing it here. If, in what follows, you need to figure out whether it is
logically possible for an interpretation to make certain sentences true or false, you
will have to draw on your rough-and-ready understanding of those sentences. I hope
it is clear, for example, that no interpretation can make ‘0 = 0’ false since that would
require that the object assigned to ‘0’ be distinct from the object assigned to ‘0’.

It turned out to be mathematically fruitful to give a mathematical definition of the
“follows from” relation. In his doctoral dissertation of 1929, for example, Kurt Gödel
proved that Frege’s formalization of first-order logic is complete: any conclusion
that follows from a set of premises is derivable from that set.5

Theorem 2.1 Γ � ψ only if Γ ⊢ ψ.

4 More modestly, we want an interpretation that would make the first six axioms true if there were

such things as the natural numbers. This sort of conditional claim is what I will generally intend
when I talk about an interpretation making certain sentences true.
5 Gödel’s dissertation is reprinted, with an English translation, in Gödel [7, pp. 60–101].

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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Frege’s formalization of first-order logic is also sound: any conclusion that is
derivable from a set of premises follows from that set.

Theorem 2.2 Γ ⊢ ψ only if Γ � ψ.

Exercise 2.5 Formal proofs are all finite: they consist of finitely many lines featuring

only finitely many premises. Use this fact, and the preceding two theorems, to prove

Gödel’s Compactness Theorem: if a formula follows from Γ , it follows from a

finite subset of Γ .

Exercise 2.6 Suppose it is logically possible for PA to have a model. Show that

PA �⊢ 0 �= 0.

Exercise 2.7 Suppose PA �⊢ 0 �= 0. Show that it is logically possible for PA to have

a model.

We are going to see that PA suffers from a particular form of incompleteness. First,
though, we need to reflect on the relationship between numbers and numerals. The
numerals of PA are ‘0’ and any terms consisting of an occurrence of ‘0’ preceded
by finitely many occurrences of ‘S’. That is:

‘0’, ‘S0’, ‘SS0’, ‘SSS0’, . . .

We understand the natural numbers to be 0 and everything obtainable from 0
by finitely many applications of the successor operation S. So it follows from our
conception of the natural numbers that each of them is named by a numeral of PA

when these numerals are interpreted in the standard way (with ‘0’ naming 0 and
‘S’ expressing the successor operation). For example, the number obtained from 0
by 15 application of S is named by the numeral consisting of an occurrence of ‘0’
preceded by 15 occurrences of ‘S’. The standard numbers are 0 and all the numbers
obtainable from 0 by finitely many applications of S: that is, exactly the numbers
named by our numerals. It is part of our concept of the natural numbers that each of
them is standard. So, if PA completely captures our concept of the natural numbers,
the axioms of PA will rule out non-standard numbers: that is, it will be logically
impossible for an interpretation to make all the axioms of PA true while including
in the range of PA’s bound variables an object that is not named by any numeral
of PA.

At this point it is useful to introduce two new symbols: the proper name ‘c’ and
the inequality symbol ‘ �=’. We use ‘ �=’ to make our claims about non-identity a bit
more readable:

α �= β ♥∨ −α = β.

You might think of ‘c’ as the name of a natural number (though I have not said
which one). Now consider the following sequence of sentences.

c �= 0, c �= S0, c �= SS0, c �= SSS0, . . .
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Let C be the set of all these sentences. Each member of C says something com-
patible with our conception of the natural numbers. For example,

c �= SSSSS0

makes the innocent claim that a certain (so far unidentified) natural number is dis-
tinct from five. Given any model of PA, we could make the above sentence true by
assigning to ‘c’ an object in the range of our bound variables. Just let c be anything
other than the object named by ‘SSSSS0’.

Exercise 2.8 Suppose C∃ is a proper subset of C. That is, every member of C∃ is a

member of C, but not every member of C is a member of C∃. Show the following:

given any model of PA, we can make all the members of C∃ true by assigning to ‘c’

an object in the range of our bound variables. You may assume the following: If α

and β are PA-numerals and if a model of PA makes the equation �α = β� true, then

α = β. (Can you see why this is so?)

Let PA ≤ C be the set consisting of the axioms of PA and the members of C .
An interpretation of PA ≤ C is an interpretation of PA that, in addition, assigns to
‘c’ an object in the range of PA’s bound variables. We now adopt a premise for a
conditional proof: that is, an argument intended to establish an “if …then” statement.
We need not believe that this premise is true. Our project is to see what follows
from it.

Premise (for conditional proof): PA completely captures our concept of the natu-
ral numbers and, so, rules out non-standard numbers.

This would mean that a model of PA ≤ C in which c behaves like a non-standard
number is logically impossible. On the other hand, if we make all the members of
C true, c will have to be non-standard, since c will be distinct from every number
named by a numeral of PA. So our premise implies that it is logically impossible for
an interpretation to make all the members of PA ≤ C true. This means that

PA ≤ C � ψ

no matter what ψ is. (Check the definition of ‘follows from’ to confirm this.) For
example,

PA ≤ C � 0 �= 0.

So, by the Compactness Theorem, ‘0 �= 0’ follows from finitely many members
of PA ≤ C . We may suppose, then, that

PA
∃ ≤ C∃

� 0 �= 0

where PA
∃ is a finite set of PA-axioms and C∃ is a finite subset of C . Any interpre-

tation that makes all the members of PA true will make all the members of PA
∃ true
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and can easily be extended to make the finitely many members of C∃ true (as you
showed in the last exercise). Such an interpretation would have to make ‘0 �= 0’ true
since ‘0 �= 0’ follows from PA

∃ ≤C∃. But that is logically impossible. (It is logically
impossible for ‘0’ to name an object that is not the same object as itself.) So there can
be no such interpretation. That is, PA is unsatisfiable: it is logically impossible
for an interpretation to make all the axioms of PA true; it is logically impossible for
PA to have a model. So

PA � 0 �= 0

and, hence, by the Completeness Theorem,

PA ⊢ 0 �= 0.

That is, PA is inconsistent.6 We reached this conclusion by first supposing that
PA completely captures our concept of the natural numbers. So our grand conclu-
sion is: PA completely captures our concept of the natural numbers only if PA is
inconsistent.

If PA is consistent, it is incomplete. (It is a bit ironic that the incompleteness of
PA follows from Gödel’s completeness theorem.) What is at issue here is expressive

incompleteness. There are mathematically important properties of the natural num-
bers that cannot even be expressed in the language of PA. Even if we use infinitely
many sentences of PA, we cannot assert that every natural number is standard nor,
to take another example, can we assert that each natural number is greater than only
finitely many natural numbers.

Exercise 2.9 Sketch a compactness argument showing that PA allows for infinitely

large numbers. It might be helpful to start by using the vocabulary of PA to define

the “less than” symbol ‘<’. Feel free to define any other vocabulary you find useful.

Feel free, too, to assume that PA is consistent. You may, if you wish, fill in all the

details of the argument, but I am only asking for the general idea.

2.4 Incompleteness 2: Representability

In the intended interpretation of PA, the PA-numeral for a natural number n con-
sists of an occurrence of ‘0’ preceded by n occurrences of ‘S’. When we use the
informal variable ‘n’ to make general claims about natural numbers, we can use the
informal variable ‘n’ to make general claims about the corresponding PA-numerals.
For example, we might say: if n is a natural number, then the PA-numeral n consists
of an occurrence of ‘0’ preceded by n occurrences of ‘S’.

6 Here are three equivalent definitions of inconsistency: an inconsistent theory is one that proves
a logical absurdity such as ‘0 �= 0’; an inconsistent theory is one that proves a sentence φ and its
negation −φ; an inconsistent theory is one that proves every sentence in its language.
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Suppose f is a one-place, primitive recursive, characteristic function. By “prim-
itive recursive”, we mean essentially what we meant in the preceding chapter with
any modifications necessary to accommodate the number zero. A one-place function
takes natural numbers one at a time as inputs. A characteristic function has only two
possible outputs: zero and one.

Suppose φ(x) is a PA-formula with free occurrences of ‘x’ and no free occurrences
of any other variable. Then φ(x) is said to represent f in PA if it has the following
properties. If n is a natural number and f (n) = 1, then PA proves the sentence that
results when we replace every free occurrence of ‘x’ in φ(x) with an occurrence of
the PA-numeral for n. That is:

f (n) = 1 =∨ PA ⊢ φ(n).

If n is a natural number and f (n) = 0, then PA proves the sentence that results
when we replace every free occurrence of ‘x’ in −φ(x) with an occurrence of the
PA-numeral for n. That is:

f (n) = 0 =∨ PA ⊢ −φ(n).

If f is represented in PA by a PA-formula, then we say that f is representable

in PA.
Each characteristic function answers a yes-or-no question about the natural num-

bers. It answers “yes” by returning the value 1. It answers “no” by returning the value
0. (In Chap. 1, || was “yes”, while | was “no”.) Suppose the characteristic function
f is represented in PA by the formula φ(x). By feeding f a number n, we can learn
whether PA thinks n has the property expressed by φ(x). f will answer “yes” only
if PA proves φ(n). f will answer “no” only if PA refutes φ(n).

Here is an example. We can infer from Definition 1.14, that there is a primitive
recursive characteristic function O that behaves as follows.

O(n) =
{

1 if n is odd
0 otherwise.

O tells us whether the numbers we feed it are odd. If we want to find a PA-formula
that represents f , we should look for one that somehow expresses the property of
oddness. If O were represented in PA by φ(x), then PA would prove each of the
sentences

φ(S0), φ(SSS0), φ(SSSSS0), φ(SSSSSSS0), . . .

and would disprove each of the sentences

φ(0), φ(SS0), φ(SSSS0), φ(SSSSSS0), . . .

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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That is, PA would prove φ(n) whenever n is odd and would prove −φ(n) whenever
n is even. Can we identify such a formula φ(x)? Well, does the vocabulary of PA

allow us to say that a number x is odd? Of course it does. We just say that x is not a
multiple of two:

⇐y (y · SS0) �= x .

As it turn out, this formula really does represent f because PA proves each of the
sentences

⇐y (y · SS0) �= S0, ⇐y (y · SS0) �= SSS0, ⇐y (y · SS0) �= SSSSS0, . . .

and disproves each of the sentences

⇐y (y · SS0) �= 0, ⇐y (y · SS0) �= SS0, ⇐y (y · SS0) �= SSSS0, . . .

So, when we offer f the number n and f responds “yes”, we do not just learn
that n is odd: we learn that PA thinks n is odd. When we offer f the number n and f

responds “no”, we do not just learn that n is even: we learn that PA thinks n is even.
Here is another example. We know from Definition 1.15, that there is a primitive

recursive characteristic function P that behaves as follows.

P(n) =
{

1 if n is prime
0 otherwise.

Exercise 2.10 Identify a PA-formula that represents P in PA.

It is no fluke that O and P are representable in PA. Gödel proved in 1930 that all

of our primitive recursive functions f are representable in PA.7 So if

f (a) = 1

is a true Π0
1 sentence, there is a formula φ(x) that represents f in PA and, so, PA

proves each of the sentences

φ(0), φ(S0), φ(SS0), φ(SSS0), . . .

Since PA does not guarantee that

0, S0, SS0, SSS0, . . .

are the only objects in the range of its bound variables, we should hesitate to infer
that PA will prove

7 See Gödel [6]; English translation in Gödel [7, pp. 145–195], and van Heijenoort [10, pp. 596–616].
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⇐x φ(x).

Indeed, Gödel identified primitive recursive functions f represented by
PA-formulas φ(x) such that, if PA is consistent, it is true that f (a) = 1, but ⇐x φ(x)

is not provable in PA. That is, Gödel actually identified formulas φ(x) with the
following odd property. PA proves each of the sentences

φ(0), φ(S0), φ(SS0), φ(SSS0), . . .

and, so, confirms that each standard number satisfies φ(x). Yet, if PA is consis-
tent, PA is unable to confirm that every number, every object in the range of its
bound variables, satisfies φ(x) (If PA is inconsistent it “confirms” everything: every
PA-sentence is a PA-theorem).

Suppose, on the other hand, that f (a) = 1 and PA ⊢ −⇐x φ(x). Then, by
Theorem 2.2, PA � −⇐x φ(x) and, hence, every model of PA makes −⇐x φ(x)

true (since no interpretation makes all the PA-axioms true and −⇐x φ(x) false). So
every model of PA makes ⇐x φ(x) false. However, since φ(x) represents f in PA,
Theorem 2.2 implies that every model of PA makes each of the sentences

φ(0), φ(S0), φ(SS0), φ(SSS0), . . .

true. This would mean that every model of PA includes a non-standard number in
the range of PA’s bound variables (a number that makes ⇐x φ(x) false). That is,
PA would have no standard models and, hence, would be logically incompatible
with our concept of the natural numbers. Our grand conclusion: if PA is compatible
with our concept of the natural numbers, then PA does not disprove ⇐x φ(x).

Suppose, now, it is logically possible for PA to have a standard model (a model in
which every object in the range of PA’s bound variables is named by a PA-numeral).
Then Gödel has shown us how to identify primitive recursive functions f represented
by PA-formulas φ(x) such that (1) it is true that f (a) = 1, but (2) ⇐x φ(x) is neither
provable nor refutable in PA. PA-sentences that are neither provable nor refutable
in PA are said to be undecidable in PA. We shall now consider what sort of an f

would allow us to establish undecidability.
We first note that we can use natural numbers to code formulas of PA. Let’s code

some of the symbols of PA as follows.

− ⇒ ⇐ = x y S 0 + · ( )

1 2 3 4 5 6 7 8 9 10 11 12

Now consider the PA-sentence ‘−0 = 0’. To code this sentence, first replace each
symbol with its code:
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− 0 = 0
∧ ∧ ∧ ∧
1 8 4 8

Now take the product of the first four prime numbers raised to the powers
1, 8, 4, 8:

21 × 38 × 54 × 78.

This number

47,278,574,201,250

is the Gödel number of the PA-sentence ‘−0 = 0’.8 Working the other direction,
if you were presented with the number 47,278,574,201,250, you could ask your
calculator or computer to factor it. Then, noting the exponents and consulting our
table of symbol codes, you could reconstruct the PA-sentence ‘−0 = 0’.

Exercise 2.11 Decode the Gödel number 2,349,101,964,825,000.

Exercise 2.12 Decode the Gödel number

96,860,719,328,790,117,762,174,283,536,741,369,039,814,728,960,000.

We can use Gödel numbering to code sequences of PA-formulas. For example, if
φ and ψ are PA-formulas with codes #φ and #ψ, we can let

2#φ × 3#ψ

code the ordered pair < φ,ψ >. (We already used this trick in Chap. 1.) We can use
similar techniques to code formalized PA-proofs. Suppose we have done so. Gödel
figured out how to identify a primitive recursive function g, represented in PA by a
PA-formula γ(x), that behaves as follows.9

8 The corresponding PA-numeral consists of a single occurrence of ‘0’ preceded by
47,278,574,201,250 occurrences of ‘S’. If you were to produce a token of this numeral, it would
be about 100 million km long. That is about two thirds the distance from the Earth to the Sun or
about 2,500 times the circumference of the Earth. This suggests that it may be naive to think of
PA-numerals as actual physical objects.
9 For a readable discussion of Gödel’s construction, see Nagel and Newman [8]. Another helpful
resource on this and other issues of interest to us is George and Velleman [5]. It might help you wrap
your brain around Gödel’s proof if you read γ(n) as “n does not code a PA-proof of G” where G

is a certain extra-special sentence of PA. Then ⇐x γ(x), the universal generalization of γ(n), says
that no natural number codes a PA-proof of G. Now it so happens that ⇐x γ(x) is G. So G says
of itself that it is not provable in PA. A PA-proof of G would prove that G is not provable in PA:
a strange situation, to say the least. Of course, all this is a bit sloppy. γ(n) does not say anything

unless we interpret it. Furthermore, under the intended interpretation it does not say anything about
PA-proofs: it only refers to natural numbers. But the road to clarity is sometimes paved with slop.

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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g(n) =
{

1 if n does not code a proof in PA of ⇐x γ(x)

0 otherwise.

Since γ(x) represents g in PA we also know:

g(n) = 1 =∨ PA ⊢ γ(n)

g(n) = 0 =∨ PA ⊢ −γ(n).

If we offer g the number n and g responds “yes”, then n does not code a PA-proof
of the generalization ⇐x γ(x), but PA does prove the instance γ(n). The other case
is more interesting: if we offer g the number n and g responds “no”, then n codes a
PA-proof of ⇐x γ(x) and PA proves −γ(n). But it is not coherent to say that every
number has a certain property and, also, that a particular number does not. So if
g were ever to say “no”, that would mean PA is inconsistent. Let us run through
this argument more carefully. Suppose PA ⊢ ⇐x γ(x). Then we can pick a natural
number k that codes a PA-proof of ⇐x γ(x). Note that g(k) = 0. So, since γ(x)

represents g, PA ⊢ −γ(k). But, since ⇐x γ(x) is derivable in PA, PA ⊢ γ(k). That
is, PA is inconsistent. Our conclusion: if PA is consistent, then PA does not prove
⇐x γ(x). Suppose, now, it is logically possible for PA to have a standard model.
Then, by Exercise 2.6, PA is consistent. So no natural number codes a PA-proof of
⇐x γ(x) and, hence, the Π0

1 -sentence

g(a) = 1

is true. So PA proves each of the sentences

γ(0), γ(S0), γ(SS0), γ(SSS0), . . .

and, hence, by our earlier reasoning, PA does not disprove ⇐x γ(x) (since, otherwise,
every model of PA would have to feature a non-standard number witnessing to the
falsehood of ⇐x γ(x)). Our grand conclusion: if it logically possible for PA to have a
standard model, then ⇐x γ(x) is undecidable (neither provable nor refutable) in PA.

We earlier saw that PA suffers from a kind of expressive incompleteness: there are
mathematically important properties of the natural numbers that cannot be expressed
in the language of PA. We now see that PA suffers from a kind of proof-theoretic

incompleteness: there are questions expressible in the language of PA that cannot be
settled by a proof or refutation in PA. That is, there are cases where PA’s expressive
resources are up to snuff, but its capacity to supply proofs is not.

Here is another example of an undecidable sentence. There is a primitive recursive
function s, represented in PA by a PA-formula σ(x), that behaves as follows.

s(n) =
{

1 if n does not code a proof in PA that 0 �= 0
0 otherwise.
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Suppose PA is consistent. That is, suppose PA does not prove the absurdity ‘0 �= 0’.
Then no natural number codes a PA-proof of ‘0 �= 0’ and, hence, the Π0

1 -sentence

s(a) = 1

is true. So PA proves each of the sentences

σ(0), σ(S0), σ(SS0), σ(SSS0), . . .

and, hence, if it is logically possible for PA to have a standard model, PA does not
disprove ⇐x σ(x). It turns out that PA does prove

(⇐x σ(x) ⇒ ⇐x γ(x)).

So, if PA proved ⇐x σ(x), it would also prove ⇐x γ(x). We conclude: if it is logically
possible for PA to have a standard model, then ⇐x σ(x) is undecidable in PA.

Suppose there is a PA-formula χ(x) that somehow expresses the idea that x codes
a PA-proof of ‘0 �= 0’. If χ(x) is really doing a good job of expressing that idea
inside PA, we would expect that, for each natural number n, if n does not code a
PA-proof of ‘0 �= 0’, then PA ⊢ −χ(n) (that is, PA will refute the sentence asserting
that n does do the coding). Suppose this is the case.

Exercise 2.13 Prove that: PA ⊢ ⇐x − χ(x) only if PA is inconsistent. (You might

start by considering the relationship between the formula −χ(x) and the function s.)

Exercise 2.14 Suppose that, for each natural number n, PA ⊢ −χ(n) only if n does

not code a PA-proof of ‘ 0 �= 0’. Show that this implies the consistency of PA.

Exercise 2.13 shows: if PA allowed us to say that no natural number codes a
PA-proof of ‘0 �= 0’, PA would not allow us to prove this unless it allowed us
to prove everything. So we will not be able to use a PA-proof to demonstrate the
consistency of PA. More generally, we will not be able to prove the consistency of
PA using methods formalizable in PA.

Note that a PA-proof of PA’s consistency would not be as pointless as it might
first appear. The PA-proof would use only finitely many axioms of PA: we would be
relying on only finitely many axioms to show that no combination of the infinitely
many PA-axioms proves an absurdity. Those finitely many axioms might have had
some property that made their consistency evident or, at least, more evident than
the consistency of PA as a whole. So the PA-proof might have provided a non-
circular reason for believing PA consistent. Alas, we now recognize that this is not
to be.
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2.5 Why Fret About Consistency?

Hilbert thought that mathematicians frequently devote time and talent to proofs of
sentences that have no content: sentences that may seem to state something, but really
state nothing. He thought it important to justify this practice in some way. He recog-
nized that consistency proofs could provide an especially powerful justification. Here
is why.

Suppose f is a primitive recursive characteristic function represented in PA by
φ(x). If f (n) = 0, then PA ⊢ −φ(n). So if PA is consistent and PA ⊢ φ(n), then
f (n) = 1 (since, otherwise, PA would prove both φ(n) and −φ(n)). So if PA is
consistent and PA ⊢ ⇐x φ(x), then

f (0) = 1, f (1) = 1, f (2) = 1, . . .

are all true and, indeed, the Π0
1 sentence

f (a) = 1

is true. If we are convinced that PA is consistent, we can feel free to use the machinery
of PA to verify Π0

1 sentences. We could think of PA as a trustworthy oracle. If the
great oracle PA says that ⇐x φ(x) is true, then that settles it: it really is true that
f (a) = 1. The same argument applies to any theory in which all the PA-axioms
are derivable: if the theory is consistent, we can use it to verify Π0

1 statements.
Let your imagination run wild: as long as your fanciful tales are not fundamentally
incoherent, we can use them to verify propositions such as Fermat’s Last Theorem
and Goldbach’s Conjecture. What matters is consistency, not truth.

If we have good reason to believe PA consistent, then we have good reason to
use PA to prove theorems. If a theorem itself corresponds to a Π0

1 sentence, we will
verify that sentence. Otherwise, we will obtain results that (meaningless or not) may
contribute to other proofs and, so, help us verify Π0

1 sentences. Note that we need a
good reason for believing PA consistent. A mathematical proof would certainly be a
good reason. I note, though, that not every good reason in mathematics is supplied by
a proof. (We might have very good reasons for adopting axioms, though axioms are
statements we accept without proof.) Gerhard Gentzen (1909–1945) did prove
the consistency of PA using techniques not formalizable in PA.10 If you are already
convinced that each axiom of PA is a true statement about the natural numbers, you
may feel no need for such a proof. After all, a collection of true sentences cannot be
inconsistent. Indeed, sentences that could all be true cannot be inconsistent. I suppose
a reasonable person could, nonetheless, question the consistency of PA. However,
the logician Solomon Feferman reports that, among today’s mathematicians, “the
number who doubt that PA is consistent is vanishingly small”.11

10 See Gentzen [3]; English translation in Gentzen [4, pp. 132–213].
11 See Feferman [1, p. 192].
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As I already mentioned, the above reasoning applies to any theory that extends
PA, any theory in which all the PA-axioms are derivable. If we have good reason
to believe such a theory consistent, we have good reason to use the theory to prove
theorems. In the next chapter, we begin our study of an important family of such
theories: set theories.

2.6 Solutions of Odd-Numbered Exercises

2.1 No. Yes. Yes. No. No. Yes.

2.3 A1 says that, no matter what y is, (y + 0) = y. So, in particular, (0 + 0) = 0.
Suppose, as an inductive hypothesis, that (0 + x) = x . Then S(0 + x) = Sx . A2
says that, no matter what x and y are, (y + Sx) = S(y + x). So, in particular,
(0 + Sx) = S(0 + x) and, hence, (0 + Sx) = Sx . We have shown

((0 + x) = x ⇒ (0 + Sx) = Sx).

Since we have not used any special information about x , x could be anything. That
is, ⇐x((0 + x) = x ⇒ (0 + Sx) = Sx). One of our induction axioms assures us that

((0 + 0) = 0 ⇒ (⇐x((0 + x) = x ⇒ (0 + Sx) = Sx) ⇒ ⇐x (0 + x) = x)).

So ⇐x(0 + x) = x .

2.5 Suppose Γ � ψ. Then, by the completeness theorem, Γ ⊢ ψ. That is, there is a
formal proof whose conclusion is ψ and whose premises are members of Γ . Let the
members of Γ ∀ be the finitely many members of Γ that appear in the proof. Then
Γ ∀ ⊢ ψ and, hence, by the soundness theorem, Γ ∀

� ψ.

2.7 Suppose PA �⊢ 0 �= 0. Then, by the completeness theorem, PA �� 0 �= 0. That
is, it is logically possible for an interpretation to make all the axioms of PA true and
‘0 �= 0’ false.

2.9 We introduce the “less than” symbol by stipulating that �α < β� is an abbrevi-
ation of �−⇐z (α + Sz) �= β�. (The idea is that x < y if and only if you can get to
y by adding some non-zero number to x .) Let the members of C be the sentences

0 < c, S0 < c, SS0 < c, SSS0 < c, . . .

Let C∃ be a finite subset of C . Each member of C∃ is an inequality �α < c� where
α is a PA-numeral. Since C∃ is finite we can pick a PA-numeral β longer than all
those α’s. We are assuming that PA is consistent. So, by the completeness theorem
and Exercise 2.7, it is logically possible for PA to have a model. Suppose we have
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picked such a model. That model will assign an object to β. Extend the model by
assigning the same object to ‘c’. Our new model will make �c = β� true. If our
new model makes an inequality �α < c� in C∃ false, then (since our model thinks
‘c’ and β name the same thing) it will make the inequality �α < β� false where α

and β are PA-numerals, the latter longer than the former. We can show that this is
impossible. (You might enjoy working out the details.) So, in fact, our new model
makes all the members of C∃ true. More generally, if C∃ is any finite subset of C , it
is logically possible for PA ≤ C∃ to have a model. If every member of C were true,
then c would exceed every finite value and, so, would deserve to be called infinitely
large. Suppose PA rules out infinitely large numbers. Then the combination PA ≤ C

is incoherent and, so, can have no models. Since no models are possible,

PA ≤ C � 0 �= 0.

Use the compactness theorem to pick a finite subset of C such that

PA ≤ C∃
� 0 �= 0.

Then PA≤C∃ cannot have a model—contrary to our earlier result. So we were wrong
to suppose that PA rules out infinitely large numbers.

2.11 ⇐x x = x .

2.13 First note the following

s(n) = 1 =∨ n does not code a proof in PA that 0 �= 0

=∨ PA ⊢ −χ(n)

s(n) = 0 =∨ n codes a proof in PA that 0 �= 0

=∨ PA proves every sentence of PA

=∨ PA ⊢ − − χ(n).

So −χ(x) represents s in PA and, hence, by our earlier reasoning, if PA proved
⇐x − χ(x), it would also prove ⇐x γ(x). But PA does that only if it is inconsistent.
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Chapter 3

Hereditarily Finite Lists

3.1 What Sets Are Not

Professors really do mean well. If they are excited by the mathematical theory of sets,
they will want others to be excited too. They will try to entice their students, to make
their initial experience as pleasant as possible. They may say, “Sets are like . . .,”
with the blank occupied by some reference to a non-threatening item of everyday
experience. “Sets are like boxes.” “A set is like a flock of geese.” “A set is what you
get when you bunch stuff together.”

Professors do mean well. When they say, “Sets are like . . .,” their intentions are
pure and noble. They want to communicate something interesting and important. By
putting students at ease, they hope to communicate it much more effectively. In the
face of such good intentions, I should probably keep my mouth shut. But here it is:
the students are being hoodwinked. I am confident there are no objects of everyday
experience that closely resemble mathematical sets. The popular incantations, “Sets
are like . . .,” may be psychologically and pedagogically beneficial, but they all fall
apart under critical scrutiny. When treated as factual assertions, rather than poetry,
they turn out to be as flimsy as wet paper.1 Here is one example.

Professor: Sets are like boxes. The things in a box are like the members of a set.
Student: Here are two boxes. Everything in one is in the other, because, in fact,

they are both empty. If sets are like boxes, then I guess different sets can have the
same members.

Professor: Well, no. A basic principle of set theory is that sets with the same
members are the same.

Student: So if I want to arrange for some boxes to behave like sets, I have to make
sure that different ones have different contents.

Professor: Yes.

1 For references and further discussion, see Pollard [11], Chap. 3.

S. Pollard, A Mathematical Prelude to the Philosophy of Mathematics, 55
DOI: 10.1007/978-3-319-05816-0_3,
© Springer International Publishing Switzerland 2014
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Student: What if I put my pen in this box? It’s the same box, but now it has
something in it that wasn’t there before. If sets are like boxes, then I guess sets with
different members can be the same.

Professor: Certainly not. It’s a basic principle of mathematical logic that sets with
different members are different.

Student: So my boxes will behave like sets as long as I seal them all up and don’t
let anyone shift things from one to another.

Professor: Yes.
Student: I put my pen in box A. Now I’m putting box A in box B. So now my pen

is also in box B. If sets are like boxes, then I guess anything that’s a member of a
member of a set z will itself be a member of z.

Professor: Well, no. If x is a member of y and y is a member of z, it doesn’t follow
that x is a member of z.

Student: So the things in a box will be like the members of a set as long as we
take “in” to mean something like “immediately inside of.” My pen is in box B, but is
not immediately inside of it because there is another box between the pen and box B.

Professor: That sounds right.
Student: OK, I’ve sealed up all my boxes. I’ve made sure that different ones have

different contents. I’m taking “in” to mean “immediately inside of.” But now I notice
something: my pen cannot be immediately inside of more than one box. If sets are
like boxes, then I guess nothing belongs to more than one set.

Professor: No, no! We can prove that every set belongs to infinitely many sets.
And so on.
I am going to try my best not to hoodwink you. I am not going to say that

mathematical sets are closely similar to any items of everyday experience. I know
of no such items. I will insist that sets are, in several important respects, like certain
things we can readily understand on the basis of everyday experience. The point
is that experience with everyday objects can help us understand things that are not
objects of everyday experience. We are going to discuss some things, known as
“unranked list-types,” that are not physical objects.2 You will not bump against them
as you move through space. You cannot find one in your pocket or under a rock or
even in a distant galaxy. Nonetheless, your experience of some of the things you
do bump against (such as paper lists) will help you understand unranked list-types.
Even if you end up a skeptic about non-physical beings, certain experiences will help
you understand what unranked list-types would be like if they were to exist. This, in
turn, will help you understand mathematical sets. So, yes, everyday experience can
help you understand mathematical sets. I do not deny that, but I do insist that the
path from physical realities to mathematical idealities is longer than some professors
admit.

To repeat: mathematical sets are, in several important respects, like certain
things, unranked list-types, that we can readily understand on the basis of everyday

2 You already encountered the type/token distinction in Chap. 1. The relation between a single
list-type and its many paper or pixel tokens is like the relation between a single numeral-type and
the many numeral-tokens of that type.

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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experience. There are also important dissimilarities and I will be careful to point out
various ways that unranked list-types are unlike sets. Our starting point is the com-
monplace remark that you can identify a finite set by listing its members. If the list
displays all the essential properties of the set, why not ignore the set and concentrate
on the list?3

3.2 List-Types

Suppose I decide to list the three Beethoven piano sonatas I most admire. You decide
to make a list of your own. I show you this:

opus 14, #2

opus 53

opus 109

You show me this:

opus 109

opus 53

opus 14, #2

As long as it is understood that our lists are unranked, it would be correct for one of
us to say, “Hey, we have the same list.” Now the physical objects we have displayed,
the paper lists, are clearly distinct. Mine is here; yours is over there. Yet we say we
have the same list. So the one-and-the-same list we share is not a paper list. The
philosophers would say it is a list- type. This terminology should not be too hard
to swallow since we ourselves might say our two paper lists are “of the same type.”
That type or species itself is the list we share. From now on let us use the word ‘list’
to refer to unranked list-types. Remember: the one list we share, the list-type, is not

3 This is a strategy mathematicians sometimes employ. For example, see Edwards [4], p. 139, for a
treatment of multi-sets as lists. A multi-set is a set whose members can occur more than once. For
a theory of ordered lists whose entries can occur more than once, see Deiser [3]. Such lists are not
unusual. For instance, here is how the list of Wimbledon Gentlemen’s Singles champions begins.

1. Spencer Gore
2. Frank Hadow
3. John Hartley
4. John Hartley

This is not a ranking. (A gentleman cannot outrank himself.) In mathematical parlance, it is a tuple

(in particular, a 4-tuple). The lists we will be discussing in this chapter are not just unranked; they
are not even ordered: they are not tuples. Among ranked lists there are some with ties and some
without. Our lists are not of either sort.
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to be identified with the marked-up piece of paper in your hand. Go ahead; tear up
your paper if you want. You will not be tearing up our one shared list.

This intangible, invisible list of ours may seem a bit mysterious. If we think about
it too hard, we are likely to churn up all sorts of puzzles and get all sorts of mental
cramps. None of this need get in the way of our current project. We do not even need
to believe that such lists exist. I am not trying to establish the existence of anything.
I am just trying to convey what it would be like if certain structures were to exist.
All this requires is a basic understanding of some fairly ordinary talk about lists
and a notion of what it would be like for that talk to be true when given a rather
literal-minded interpretation. If the outcome is a grasp of the right structures, it will
not matter if our understanding of lists is imperfect and gives us mental cramps when
we probe it in certain ways.

We are taking seriously the idea that your list is the same as mine. How did we
figure out that our lists are the same? Well, we noticed that we listed the same things.
There is a general principle at work here: lists (that is, unranked list-types) are the
same if they list the same items.

What are these items? We talk about things appearing on lists. This should not
be confused with certain marks appearing (that is, being physically present) on a
piece of paper. One could note, quite correctly, that the Waldstein sonata appears
on my list. That is because the Waldstein sonata is Beethoven’s opus 53 and opus
53 appears on my list. The words ‘Waldstein sonata’ do not appear on my list; no
marks forming these words appear on my list; but the Waldstein sonata does appear.
I have not listed phrases that refer to Beethoven sonatas (though I did write down
such phrases). I have listed Beethoven sonatas. The “listing” relation holds between
a list and the things listed. One could list phrases that refer to Beethoven sonatas.

‘Waldstein sonata’

‘Beethoven’s opus’ 53

‘Beethoven’s 21st piano sonata’

The point is simply that this is different from listing piano sonatas. Note that the list

opus 14, #2

Waldstein sonata

opus 109

and the list
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opus 14, #2

opus 53

opus 109

are the same because they list the same things. Here I am not announcing some
profound discovery about the inner workings of the universe. I am just letting you
know how I understand the expression ‘unranked list-type’.

It is useful to have several ways of referring to the relationship between a list and
an item listed. We say that y appears on x or, more briefly, x lists y. If x lists y,
we also say that y is one of x’s entries. Though it is not standard English, I say that
a list’s entries form that list. My three favorite Beethoven piano sonatas form a list:
the very list we have been discussing. Some useful notation: we let {a, b, c, . . .} be
the list whose entries are a, b, c, . . .. So a, b, c, . . . form {a, b, c, . . .}.

Lists can list lists. For example, I could list the first three lists discussed in
this chapter.

My list of three piano sonatas

My list of three phrases

My list of three lists

This list has the odd property of listing itself. My first two lists do not list themselves.
Could we list all the lists that do not list themselves? The mathematician Ernst

Zermelo (1871–1953) figured out that this is logically impossible.4

Exercise 3.1 Show that it would be absurd for there to be a list that lists exactly

those lists that do not list themselves.

Zermelo’s discovery should be a warning to us: assertions about the existence of
lists can far too easily land us in a contradiction. We should handle such assertions
with care.

Though it seems a bit of a stretch, we can imagine a list that lists nothing. I might
undertake to list all the mass murderers I admire. When someone asks me how my
list is coming along, I display a blank piece of paper. We could say there is no list of
mass murderers I admire, since I admire no mass murderers. But it seems harmless
to say there is such a list: a list with the odd property that it has no entries. (‘There
is nothing on your list’ is a perfectly acceptable sentence of English.) Since lists
with no entries all have the same entries, they are all the same list: the one-and-only
blank list. By displaying my blank piece of paper, I am identifying my list as the
blank list. More notation: we let ⇒ be the blank list.

4 Kanamori [7], Landini [9], Rang and Thomas [12] give some of the history.
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3.3 Precursors

People can do things together that none of them can do alone. Fifteen FBI agents
can surround a house. It is not even clear what it would mean for one of them to do
so.5 Lists behave the same way: they can have a property collectively that each of
them lacks individually. For example, the first three lists I discussed in this chapter
cooperate to form the third list I discussed. (That is, the first three lists are exactly the
entries of the third list.) The first list does not, by itself, form the third list. Neither
does the second nor even the third. (The third list is one of its own entries, but it is
not all three of them. So it does not form itself.) The three lists have to work together
to do this “forming.” In this respect, they are like three musicians who can play a
trio together, though none of them can do it solo.

Here is another example of a collective property. Consider the following lists: ⇒,
{⇒}, {{⇒}} (the blank list, the list whose only entry is the blank list, and the list whose
only entry is the list whose only entry is the blank list). These lists are, collectively,
entry- closed. That is, each of their entries is itself one of these very lists. The
third list has one entry: {⇒}. This is the second of the three lists. You can encounter
it without going beyond the three. The second list has one entry: ⇒. This is the first
of the three lists. Again, you do not have to venture beyond the three to encounter
this entry. The first list has no entries. (So it is easy to confirm that each of its entries
is one of the three lists.) We can always fabricate some entry-closed lists by starting
with a list, identifying each of its entries, identifying each entry of those entries, and
so on until we run out of entries. For example, start with {{⇒}}. This list has one
entry: {⇒}. This list, in turn, has one entry: ⇒. At this point, we have run out of entries.
So our procedure yields three lists ⇒, {⇒}, {{⇒}} that, as we saw, are entry-closed.
Note that the two lists ⇒, {{⇒}} are not, taken together, entry-closed, since {⇒} is not
one of them. The list ⇒, just by itself, is entry-closed.

Exercise 3.2 The one list {⇒, {{{⇒}}, {⇒}}} is not, by itself, entry-closed. Starting

with this list, identify lists until your lists, taken together, are entry-closed.

Now consider any lists that are, collectively, entry-closed. Suppose y is one of
them. Then each of y’s entries is one of them. And each entry of an entry of y is
one of them. And each entry of an entry of an entry of y is one of them. And so
on. (More in a second about the phrase ‘and so on’.) Let us refer to these entries
of entries of entries . . . of entries of y as precursors of y. Precursors have the
following properties.

Proposition 3.1 If some lists are entry-closed and y is one of them, then each pre-

cursor of y is one of them.

Proposition 3.2 The precursors of any list are, collectively, entry-closed.

5 In the folk song “Bad Man’s Blunder,” the bad man “got surrounded by a sheriff down in Mexico.”
I understand this to be a slightly odd way of saying that the sheriff arranged for the bad man to be
surrounded, not that the sheriff did the surrounding all by himself.
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If Proposition 3.2 is not evident, just note that any entry of one of y’s precursors will
itself be a precursor of y.

A list’s precursors are its entries, the entries of its entries, the entries of the entries
of its entries, and so on. This may seem to make sense. But is it really so clear what
‘and so on’ means here? I actually think it is clear. Others may disagree. Clear or
not, it does not really matter: we can avoid ‘and so on’ altogether by using a trick
invented by Gottlob Frege.6 The idea is to turn Proposition 3.1 into our definition of
‘precursor’, in a way to be specified in a minute. A slight glitch: this definition will
make each list a precursor of itself. Anyone who finds this offensive is encouraged
to replace ‘precursor’ with a better term. (And, please, let me know what that term
is.) A reason not to take offense: if we think of an entry of an entry of y as a second-
order precursor of y and think of an entry of y as a first-order precursor of y, then
a mathematician might find it natural to think of y itself as a zero-order precursor
of y.

Now for Frege’s definition. Suppose, no matter what entry-closed lists you might
consider, x will appear among them if y does. We stipulate that such x’s are the
“Frege-precursors” of y. More formally:

Definition 3.1 x is a Frege- precursor of y if and only if, given any entry-closed
lists, if y is one of those lists, then so is x .

The Frege-precursors of y are what tireless immortal beings encounter when they
start with y and persist in tracking down the entries of everything they encounter. We
now hasten to show that we could live without this new term ‘Frege-precursor’: a
list’s Frege-precursors are exactly its precursors. We take this detour through Frege-
precursors to confirm that we could introduce the term ‘precursor’ without using the
phrase ‘and so on’.

Proposition 3.1 implies that every precursor is a Frege-precursor. What about the
converse? Could something be a Frege-precursor without being a precursor? Well,
y is one of its own Frege-precursors. (Given any entry-closed lists, if y is one of
them, then y is one of them.) But y will not necessarily be an entry of itself or an
entry of an entry of itself or be embedded inside itself at all. So, as anticipated, the
notion of Frege-precursor is a bit wider than our original notion of precursor. It does
no harm, though, to expand the latter notion a tiny bit. A more important question:
could something other than y be a Frege-precursor without being a precursor in our
intended sense? That is not going to happen. For suppose x is a Frege-precursor of y.
That is:

Given any entry-closed lists, if y is one of them, then so is x .

Proposition 3.2 assures us that y’s precursors are, collectively, entry-closed. So the
phrase ‘given any’ allows us to pick these: the precursors of y. That is:

If y is one of y’s precursors, then so is x.

6 Readers who like a challenge, might tackle Frege’s own exposition in Frege [5]; English translation
in van Heijenoort [13], pp. 5–82.
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We have decided to let y be one of its own precursors. So x is a precursor of y and,
more generally, something is a Frege-precursor of y if and only if it is a precursor of y.
Apart from the slight glitch of making y one of its own precursors, Frege’s definition
captures the notion we hoped it would capture. If anyone wants to know what we
meant earlier when we said “and so on,” we can send them to Frege’s definition.
From now on, we will use Definition 3.1 as our definition of ‘precursor’ and will
drop the ‘Frege’ part.

Exercise 3.3 Say that your ancestors are your parents, your parents’ parents,

your parents’ parents’ parents, and so on. Use Frege’s technique to explain what an

ancestor is without using the phrase ‘and so on’.

Exercise 3.4 Use Definition 3.1 to show that ⇒ is the only precursor of ⇒.

Exercise 3.5 Use Definition 3.1 to show that the precursors of y’s precursors are

themselves precursors of y.

Exercise 3.6 Let “the Y-lists” be y itself and the precursors of y’s entries. Show,

first, that the Y-lists are entry-closed. Use this result and Definition 3.1 to show that

each precursor of y is either y itself or a precursor of an entry of y.

Exercise 3.7 Use Definition 3.1 to show that if y lists the entries of its entries, then

the precursors of y are y itself and y’s entries.

3.4 Logically Possible Lists

We have already seen that it is easy to produce a description of a list that turns out
to be incoherent (as with the list of all lists that do not list themselves). Speaking a
bit carelessly: there are lists that could not be. Our notion of precursor will help us
explore what lists there could be. I suggest we start out with a particular list and see
what lists it allows us to list. Take the list {{⇒}}. Since it has only three precursors we
can easily list them: ⇒, {⇒}, {{⇒}}. If a list had 10100 precursors, we human beings
could not list them (at least, not in any sense of “list” I recognize). But this is because
of our physical limitations. It does not seem logically impossible for the precursors
of each list to be listed. Now when mathematicians have convinced themselves that
something could be the case, they sometimes go ahead and assert that it is the case.
This might be an expression of certainty. (“Not only could this be true; it definitely
is true.”) On the other hand, it might just be the first step in seeing what interesting
things follow from the proposition asserted. In the latter spirit, we shall entertain a
proposition about what lists there are.
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Proposition 3.3 The precursors of any list form a list.

We hereby announce our intention to explore what the world would be like if such a
thing were true.

Before we get carried away, though, notice that our principle seems too modest.
If there is nothing fundamentally incoherent about listing all the precursors of a list,
there should be nothing fundamentally incoherent about listing some of them. There
are 23 lists that list only precursors of {{⇒}}. One of them lists none. Three list one;
another three list two. One, as we have already seen, lists all three. This suggests a
slightly stronger principle.

Proposition 3.4 Any precursors of a list form a list.

That is, if x is a list and a, b, c, . . . are all precursors of x , then {a, b, c, . . .} is a list.

Exercise 3.8 List all the lists that list only precursors of {{⇒}}.

You just listed all the lists of precursors of {{⇒}}. If you could list all of them,
surely you could have listed some of them. Without bothering to identify all 28 lists
of lists of precursors of {{⇒}}, let us go ahead and assert the corresponding principle.

Proposition 3.5 Any lists of precursors of a list form a list.

That is, if x is a list and a, b, c, . . . list only precursors of x , then {a, b, c, . . .} is a
list. The idea behind this principle comes from the philosopher David Bennett.7

Should we now assert that any lists of lists of precursors of a list form a list and
that any lists of lists of lists of precursors of a list form a list and so on forever? Not
to worry: that will not be necessary. Our principles already imply all the propositions
of this type we are going to need. Let us verify this. Here are the axioms we are going
to use.

Axiom 3.1 Lists are the same if they have the same entries.

Axiom 3.2 There is a list with no entries.

Axiom 3.3 Any lists of precursors of a list form a list.

For the rest of this chapter, we will identify interesting things that follow from
these axioms. Some new vocabulary will be useful.

Definition 3.2 A list is pure if and only if all its precursors are lists.

The list {⇒, {Frege}} is not pure because Frege is one of its precursors and (presum-
ably) Frege is not a list. Your eight lists of precursors of {{⇒}} are all pure. Precursors
of a pure list are themselves lists of precursors of that pure list. (Each of them is a
list and each of their entries is a precursor of the pure list.) So Axiom 3.3 yields the
following theorem.

7 See Bennett [2] (available via http://projecteuclid.org).

http://projecteuclid.org
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Theorem 3.1 Any precursors of a pure list form a list.

More narrowly:

Theorem 3.2 Any entries of a pure list form a list.

Definition 3.3 A part of a list y is any list of all, some, or none of y’s entries. (That
is, x is a part of list y if and only if x is a list all of whose entries are entries of y.)
A proper part of y is any part of y other than y itself.

Note that each list is a part of itself (though not a proper part) and that the blank
list is a part of every list. (⇒ is a part of list y because ⇒ has no entries that are not
entries of y.) Since each entry is a precursor, each part is a list of precursors. So
Axiom 3.3 implies:

Theorem 3.3 Any parts of a list form a list.

In particular, all of a list’s parts form a list.

Definition 3.4 Py is the list of y’s parts.

Exercise 3.9 Show that Py is pure if y is. (Remember Exercises 3.5 and 3.6.)

It is a special case of Theorem 3.1 that all of a pure list’s precursors, acting in
concert, form a list.

Definition 3.5 If y is pure, then Sy is the list of y’s precursors.

Exercise 3.10 Show that Sy is pure if y is. (Remember Exercises 3.5 and 3.6.)

Suppose y is pure. PSy is the list of all lists of y’s precursors and PPSy is the list
of all lists of lists of y’s precursors. Any entries of PPSy form a list. So any lists of
lists of precursors of a pure list form a list. We could repeat this argument as many
times as we want. So, as long as we concentrate on pure lists, we’ll have all the lists
of lists of lists . . . of lists of precursors we want.

Exercise 3.11 Show that Sy ⇐= ⇒.

Exercise 3.12 Show that Px is a proper part of Py only if x is a proper part of y.

3.5 Numbers Can Be Lists

It seems likely that Axioms 3.1–3.3 are not logically absurd. It seems likely that they
are consistent. The logician Wilhelm Ackermann (1896–1962) figured out how
to prove they are consistent.8 Natural numbers can have a lot of internal structure
that can be revealed in various ways: by taking the prime factorization, for example.

8 See Ackermann [1]. For a more recent discussion, see Kaye and Wong [8] (available via http://
projecteuclid.org).

http://projecteuclid.org
http://projecteuclid.org
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This internal structure can be used to store information. Ackermann appreciated
something that now may seem obvious: we can store a lot of information in natural
numbers by exploiting their binary representation.

Suppose you are going to meet with Julia, Martin, and Yuri and need to know
which of them are spies. I send you a very short message: “6.” We have already
agreed that you are to convert my message into binary, writing the digits under the
three names taken in alphabetical order. Here is what you get.9

Julia Martin Yuri
1 1 0

We agreed that 1 means yes and 0 means no. So my message says that Julia and
Martin are spies, but Yuri is not. That is, 6 stands for the list {Julia, Martin}.

Of course, numbers do not have to be lists of spies. They could be lists of lists.
What list of lists is 6? To find out, first represent 6 in binary: 110. Since we have only
three digits, 6 is going to list at most three lists. Our candidates are going to be the
lists represented by the numbers 0, 1, and 2. (Yes, I realize we do not yet know what
these lists are! Be patient. We will figure that out in a minute.) We do our decoding
much as we did with the spies, though we now write down our candidate entries in
descending numerical order.

List 2 List 1 List 0
1 1 0

Again, 1 means yes and 0 means no. So 6 says yes to 1 and 2, but no to 0.

List 2 List 1 List 0
1 1 0

Yes! Yes! No!

That is, 6 = {1, 2}. What are 1 and 2? A number with n binary digits passes judgment
on lists 0 through n − 1. So 1, with its one binary digit, passes judgment only on the
first of our lists.

List 0
1

Yes!

1 says yes to 0. So 1 = {0}. What is 0? That is easy: 0 is just one big no. It says no
to the one list on which it passes judgment.

List 0
0

No!

9 Recall that 6 is 110 in binary notation because 6 = 1 · 22 + 1 · 21 + 0 · 20.
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Since 0 say no to 0, it lists nothing at all: 0 = ⇒. Since 1 says yes to 0 and to nothing
else, 0 is the one entry of 1. That is, 1 = {⇒}. What is 2? 2 is 10 in binary: yes to list
1 (that we have identified as {⇒}), no to list 0 (that we have identified as ⇒).

{⇒} ⇒

1 0
Yes! No!

So {⇒} is the one entry of 2. That is, 2 = {{⇒}}. Now, finally, we know what 6 is.
Since 6 is 110 in binary, it says yes to list 2 (that we have identified as {{⇒}}), yes to
list 1 (that we have identified as {⇒}), and no to list 0 (that we have identified as ⇒).

{{⇒}} {⇒} ⇒

1 1 0
Yes! Yes! No!

So the two entries of 6 are {{⇒}} and {⇒}. That is, 6 = {{{⇒}}, {⇒}}.

Here is one more example. We shall do all our figuring in binary. What is 1010?
Our decoding key is the following.

List 11 List 10 List 1 List 0
1 0 1 0

We already know that 10 = {{⇒}}, 1 = {⇒}, and 0 = ⇒. What is 11? 11 says yes to
lists 1 and 0.

{⇒} ⇒

1 1
Yes! Yes!

So 11 = {{⇒},⇒}. This yields the following decoding scheme.

{{⇒},⇒} {{⇒}} {⇒} ⇒

1 0 1 0
Yes! No! Yes! No!

So 1010 = {{{⇒},⇒}, {⇒}}.

Exercise 3.13 Decode the number 18.

Ackermann’s coding trick allows us to interpret claims about lists as claims about
natural numbers. Axiom 3.1 says that numbers with the same binary representation
are the same. Axiom 3.2 says there is a number with no 1’s in its binary representation.
Axiom 3.3 says something a bit obscure; but it too turns out to be true.

In the Ackermann interpretation, “lists” are just natural numbers. If such a list k is
of the form 2a + 2b + 2c +· · · (where a, b, c, . . . are distinct natural numbers), then
its “entries” are the exponents a, b, c, . . ., with each of these representing a list. If
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a = 2a1 + 2a2 + 2a3 + · · ·

then a1, a2, a3, . . . are all entries of a and, hence, are all entries of entries of k. A
similar analysis of, say, a1 could reveal entries of entries of entries of k. The rather
bland idea behind the Ackermann reading of Axiom 3.3 is that this process cannot
go on forever. For example, consider the “list” 9. We dissect this as follows.

9 = 23 + 20

↓

3 = 21 + 20

↓

1 = 20

The idea is to provide a binary representation of each non-zero exponent until we
run out of such exponents. Since k < 2k , the exponents get smaller at each step
and, so, we have to run out of non-zero ones eventually. The “precursors” of 9 are
9 itself and the exponents that appear in this analysis. They are: 9, 3, 1, 0. If we
want to list some of these precursors, there is nothing to stop us. For example, since
515 = 29 + 21 + 20, it “lists” 9, 1, and 0. Similarly, there is nothing to stop us from
listing any of these lists of precursors. So any lists of precursors of a list form a list.

Exercise 3.14 Identify the precursors of 12. Identify a number that lists some lists

of 12’s precursors. (There are 4, 294, 967, 296 such numbers.)

Axioms 3.1–3.3 could all be true because they are all true under the Ackermann
interpretation. Logical absurdities are propositions that cannot be true. So the system
consisting of Axioms 3.1–3.3 is not logically absurd. Or, to state the matter more
carefully, our system is absurd only if arithmetic is absurd. The consistency of our
system is at least as certain as the consistency of arithmetic. A reasonable person
could consider this a proof of the consistency of our system.

3.6 Lists Can Be Numbers

We now have some idea of how our theory of lists could be developed inside number
theory. We can also develop number theory inside our theory of lists. Recall that Sx

is the list of x’s precursors. We now introduce some new terminology.

Definition 3.6 Some lists are, collectively, S-closed if and only if they satisfy the
following condition: if a list x is one of them, then x’s precursors form a list and that
list too is one of them.

Definition 3.7 A list x is a number if and only if it satisfies the following condition:
given any S-closed lists, if ⇒ is one of them, then so is x .
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Numbers are what tireless immortal beings encounter when they start with ⇒ and
persist in applying the operation S to everything they encounter.

Exercise 3.15 Prove that ⇒ is a number.

Our definition of number immediately yields an induction principle.

Theorem 3.4 If some lists are S-closed and ⇒ is one of them, then every number is

one of them.

In an ordinary inductive proof, we first show that 0 has a certain property. We then
suppose that an arbitrary number n has the property and use this information to show
that n + 1 also has the property. This establishes that every natural number has the
property. Theorem 3.4 justifies a similar technique. First, show that ⇒ has a certain
property. Second, assume that an arbitrary number n has the property and use this
information to show that Sn also has the property. Third, conclude that every number
has the property. We use this form of induction to prove the next two theorems.

Theorem 3.5 If n is a number, then Sn exists and is itself a number.

Proof If x is pure, then, by Theorem 3.1, Sx exists and, by Exercise 3.10, it too is
pure. So the pure lists are, collectively, S-closed. Furthermore, by Exercise 3.4, ⇒ is
pure. So, by Theorem 3.4, every number is pure (since ⇒ is pure and purity is always
transmitted from x to Sx). Suppose n is a number. Then, by Theorem 3.1, Sn exists.
Since n is a number, you will find it among some S-closed lists whenever you find
⇒ among them. So you will find Sn among some S-closed lists whenever you find ⇒

among them. That is, Sn is a number. ⊓♥

Theorem 3.6 Each number lists the entries of its entries.

Proof ⇒ lists all the entries of its entries for the same reason it lists all the even primes
greater than 2: there are no such things. Suppose n lists the entries of its entries. Then,
according to Exercise 3.7, the precursors of n are n itself and n’s entries. Suppose
Sn lists k and k lists j . Then k is either n itself or an entry of n. In either case, j is a
precursor of n and, so, is listed by Sn. So Sn lists the entries of its entries. We have
shown that ⇒ satisfies the theorem and that Sn does whenever n does. Now we just
apply Theorem 3.4. ⊓♥

Exercise 3.7 now yields the following.

Theorem 3.7 If n is a number, then n and its entries form Sn (that is, the precursors

of n are n itself and the entries of n).10

Exercise 3.16 Show that no number lists itself. (You might try induction.)

Exercise 3.17 Show that if m and n are numbers and Sm = Sn, then m = n.

10 In set theoretic notation: Sn = n ∨ {n}.
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Exercise 3.18 Show that if m and n are numbers and n lists m, then Sn lists Sm.

(You might try induction.)

Exercise 3.19 Show that every number other than⇒ lists⇒. (You might try induction.)

⇒ is playing the role of 0 here. S⇒ is 1. SS⇒ is 2. And so on. Each number is the
list of prior numbers.

0 = ⇒

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

That is, Sn = {0, . . . , n}. The mathematician Dimitry Mirimanoff (1861−1945)
invented this beautiful technique for constructing objects that behave like the natural
numbers.11 On this basis, we can reproduce arithmetic using nothing but lists.

Since each number lists all smaller numbers and is listed by all larger ones,
“number j lists number k” is equivalent to “k is smaller than j” and “j is larger than
k.” We have already shown that, as long as we are talking about numbers, the “listing”
(or “larger than”) relation is transitive (Theorem 3.6) and irreflexive (Exercise
3.16). We now show that it has two other important properties.

Theorem 3.8 Well-Foundedness: Given any numbers at all, one will list none of

the others.

Proof Say that some numbers are, collectively, friendly if each of them lists at
least one of the others. Suppose you are presented with some friendly numbers. Say
that a number is unfriendly if it lists none of those friendly numbers. Since ⇒ lists
nothing, it is unfriendly. Suppose n is unfriendly. If one of n’s entries listed one of
the friendly numbers, then, by Theorem 3.6, n would do so too. So n’s entries are
all unfriendly. But then, by Theorem 3.7, Sn lists none of the friendly numbers and,
so, is itself unfriendly. We conclude, by induction, that there really are no friendly
numbers. ⊓♥

Theorem 3.9 Connectedness: Given any two numbers, one will list the other.

Proof Say that two numbers are connected if and only if one of them lists the other.
In Exercise 3.19, you showed that ⇒ is connected with every other number. Suppose
n is so as well. Let k be a number distinct from and unconnected with Sn. k either
lists or is listed by n. It cannot be the latter, since k would then be listed by Sn. So
k lists n and, hence, (as you showed in Exercise 3.18) Sk lists Sn. This means that
Sn is either k (contrary to our assumption that they are distinct) or an entry of k

(contrary to our assumption that they are unconnected). We conclude, by induction,
that every number is connected with every other number. ⊓♥

11 See Hallett [6], pp. 185–194, and Mirimanoff [10].
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Since the relation of listing, when applied to numbers, is transitive, irreflexive,
well-founded, and connected, it is said to well-order the numbers.

Exercise 3.20 Show that if m and n are numbers, then there is a list m\n that lists,

exactly, the numbers that m lists but n does not. What is 13\9? What is 9\13?

3.7 Super-Numbers

Recall that if x is a list, then Px is the list of x’s parts.

Definition 3.8 Some lists are, collectively, P-closed if and only if the list Px is
one of them whenever the list x is.

Definition 3.9 A list x is a super- number if and only if it satisfies the following
condition: given any P-closed lists, if ⇒ is one of them, then so is x .

Super-numbers are what tireless immortal beings encounter when they start with ⇒

and persist in applying the operation P to everything they encounter. The first few
super-numbers are ⇒, P⇒, PP⇒, PPP⇒. That is:

⇒

{⇒}

{⇒, {⇒}}

{⇒, {⇒}, {{⇒}}, {⇒, {⇒}}}

Theorem 3.10 ⇒ is a super-number.

Theorem 3.11 If x is a super-number, then so is Px.

Super-numbers behave very much like numbers (hence the name).12

Theorem 3.12 Py⇐= ⇒.

Exercise 3.21 Show that Px=Py only if x = y.

Theorem 3.13 If some lists are P-closed and ⇒ is one of them, then every super-

number is one of them.

Note that the last theorem is a kind of induction principle. You can show that
every super-number has a certain property by showing that ⇒ has the property and
that each super-number x passes the property on to its “successor” Px.

12 I should warn you, though, that the term ‘super-number’ is not standard. Do not expect anyone
else to refer to these objects in this way.
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Exercise 3.22 Show that every super-number is pure.

Exercise 3.23 Show that every super-number lists the parts of its entries.

Exercise 3.24 Show that if super-number x lists y, then Px lists Py.

Theorem 3.14 If x and y are super-numbers and x is a proper part of y, then x is

an entry of y.

Proof The theorem comes out true when x = ⇒ because every super-number other
than ⇒ lists ⇒. (Every super-number lists the parts of its entries and ⇒ is a part of every
entry.) Suppose, as an inductive hypothesis, that the super-number x is an entry of a
super-number whenever it is a proper part. Suppose Px is a proper part of the super-
number y. Then y ⇐= ⇒ and we can show that y = Py∃ for some super-number y∃. (Go
ahead and prove it if you do not already believe it.) So Px is a proper part of Py∃ and,
as you showed in Exercise 3.12, x is a proper part of y∃. Our inductive hypothesis
now guarantees that x is an entry of y∃. So, by Exercise 3.23, y∃ lists all the parts of
x and, hence, Px is a part of y∃. That is, Px is an entry of Py∃, as desired. We have
shown that ⇒ satisfies the theorem and that the super-numbers satisfying the theorem
are, collectively, P-closed. So every super-number satisfies the theorem. You will
probably find this method of induction useful. (Perhaps you already found it useful
when you did Exercises 3.22 and 3.23.) ⊓♥

Exercise 3.25 Show that every super-number lists the entries of its entries (so every

entry of a super-number x is a part of x).

Exercise 3.7 now allows us to prove the following.

Theorem 3.15 The precursors of a super-number x are x itself and x’s entries.

Exercise 3.26 Show that, given any two super-numbers, one will list the other. (As

in the proof of Theorem 3.9, say that two super-numbers are connected if and only

if one of them lists the other. As an inductive hypothesis, suppose x is a super-number

connected with every other super-number. Let y be a super-number distinct from Px.

Note that either x lists y or y lists x. To confirm that y and Px are connected, consider

each of these cases.)

Definition 3.10 A list is well-founded if and only if, given any of its precursors,
at least one of them lists none of them.

Earlier in this chapter, we considered a list that may have struck you as odd. Here it
is again.

My list of three piano sonatas

My list of three phrases

My list of three lists
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My list of three lists was this very list. If called upon to pick some precursors of this
list, we could, if we wished, pick the list itself and then decline to pick anything else.
Then all of the precursors we have picked (all one of them) list a precursor we have
picked. So the above list is not well-founded: we can find an endless path through its
precursors that takes us from a precursor (my lists of three lists) to an entry of that
precursor (my lists of three lists) to an entry of that precursor (my lists of three lists)
and so on forever. Quite generally, lists that list themselves

x � x

are not well-founded. Neither are lists listed by something they list

y � z � y.

Nor is a list with infinitely many precursors w1, w2, w3, . . . each listing the next

w1 � w2 � w3 � · · ·

In each case, we have precursors each of which lists at least one of those very
precursors. (x lists x . y lists z, while z lists y. wn lists wn+1.)

Theorem 3.16 Every super-number is well-founded

Proof The only precursor of ⇒ (itself) lists nothing. So ⇒ is well-founded. Suppose
x is a well-founded super-number. Let y1, y2, y3, . . . be precursors of Px that violate
well-foundedness. (That is, each yk lists some y j .) Theorems 3.11 and 3.15 guarantee
that each yk is either Px itself or an entry of Px. Each case yields a y j that is an entry
of x . (Suppose, first, that yk is an entry of Px. Let y j be an entry of yk . Then y j is an
entry of x since it is an entry of a part of x . Now suppose yk = Px. Let yi be an entry of
yk . yi is a part of x . Pick a y j listed by yi . y j is an entry of x .) Let w1, w2, w3, . . . be
the y j ’s listed by x . Pick a wk . Since wk appears among y1, y2, y3, . . . and these lists
violate well-foundedness, we can pick a y j listed by wk . By Exercise 3.25, x lists y j

and, hence, y j appears among w1, w2, w3, . . .. More generally, each wk lists some
y j that appears among w1, w2, w3, . . .. That is, each of the lists w1, w2, w3, . . . lists
at least one of the lists w1, w2, w3, . . .. Since w1, w2, w3, . . . are all precursors of x ,
this contradicts the well-foundedness of x . So we must have been wrong to deny that
Px is well-founded. Since ⇒ is well-founded and the well-founded super-numbers
are, collectively, P-closed, every super-number is well-founded. ⊓♥

3.8 Hereditary Finiteness

A finite list is a list with finitely many entries. Hereditarily finite lists are finite “all
the way down.” Their entries have finitely many entries, as do the entries of their
entries, the entries of the entries of their entries, and so on. The pure, well-founded,
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hereditarily finite lists are the lists coded by numbers in the Ackermann interpretation.
They are also the lists listed by super-numbers. Now “pure, well-founded, hereditarily
finite” is quite a mouthful. We will follow set theoretic practice and shorten it to just
“hereditarily finite” even though the odd list we discussed in the previous section
is hereditarily finite without being either pure or well-founded. Whenever you see
“hereditarily finite,” try to remember that there are invisible qualifications: “pure and
well-founded.”

Definition 3.11 A list is hereditarily finite if and only if it is listed by a super-number.

Exercise 3.27 Show that each number is hereditarily finite. (After confirming that

a super-number lists ⇒, you might assume, as an inductive hypothesis, that a super-

number x lists the number n. Theorem 3.7 might help you show that Sn is a part of

x and, hence, that Px lists Sn.)

Definition 3.12 If x is pure, then
⋃

x is the list of the entries of x’s entries.

It may not be obvious why Definition 3.12 requires that x be pure (that is, that
x’s precursors all be lists). Consider the impure list {{Frege}, {Hilbert}}. This list has
two entries: {Frege} and {Hilbert}. The first of these entries has a single entry: Frege.
The second also has a single entry: Hilbert. So Frege and Hilbert are the entries of
the entries of {{Frege}, {Hilbert}}. Now there is nothing to prevent Frege and Hilbert
from forming a list: {Frege, Hilbert}. This would be the list

⋃
{{Frege}, {Hilbert}} or,

in notation that may be more familiar, {Frege} ∨ {Hilbert}. Remember, though, what
our current project is. We are working inside an axiomatic system. We are trying to
see what follows from Axioms 3.1–3.3. No matter how obvious it may seem that a
certain list exists, we cannot accept that it exists unless our axioms confirm this. The
relevant axiom here is 3.3:

Any lists of precursors of a list form a list.

Frege and Hilbert are, indeed, precursors of {{Frege}, {Hilbert}}, but they are not
lists of precursors because (presumably) they are not lists. So Axiom 3.3 does not
apply. This is why Theorem 3.1

Any precursors of a pure list form a list

includes the qualification “pure.” Consider, for example, the pure list {{⇒}, {{⇒}}}. It
has two entries: {⇒} and {{⇒}}. The first of these entries has a single entry: ⇒. The
second also has a single entry: {⇒}. So ⇒ and {⇒} are the entries of the entries of
{{⇒}, {{⇒}}}. Furthermore, they are lists of precursors of {{⇒}, {{⇒}}} and, so, Axiom
3.3 assures us that they form a list. That list, {⇒, {⇒}}, is

⋃
{{⇒}, {{⇒}}} or, in slightly

different notation, {⇒}∨{{⇒}}. More generally, if a list is pure, then Axiom 3.3 assures
us that the entries of its entries really do form a list. If a list is impure, we receive no
such assurance.
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Exercise 3.28 Show that if x is hereditarily finite, then so is
⋃

x. (You might assume

that a super-number y lists x and then try to show that
⋃

x is a part of y.)

Exercise 3.29 Show that if x is hereditarily finite, then so is Px.

Exercise 3.30 Show that if x and y are hereditarily finite, then {x, y} exists and is

hereditarily finite. (Exercise 3.26 might be useful.)

Exercise 3.31 Show that if some lists are all entries of a hereditarily finite list, then

they form a hereditarily finite list.

Exercise 3.32 Show that hereditarily finite lists with the same hereditarily finite

entries are the same.

Exercises 3.28–3.32 show that five of the axioms from the theory Z, Zermelo’s
classic axiomatization of set theory, can be interpreted as statements about heredi-
tarily finite lists: just read “set” as “hereditarily finite list” and “is an element of” as
“is an entry of.”13

The following theorem will be useful in Chaps. 4 and 5.

Theorem 3.17 No hereditarily finite list lists every number.

Proof By Exercise 3.25, if some hereditarily finite list listed every number, some
super-number would do so as well. We will use Theorem 3.13 (super-number induc-
tion) to show that this is impossible. Note, first, that ⇒ omits every number. Suppose
x omits the number n. Then Sn is not a part of x since Sn lists n. So Px omits Sn.

⊓♥

3.9 Finite Ranks

Here is a fairy tale. In spite of their name, the Listers have never done any listing.
Now they are going to make lists galore. They proceed systematically, in a series
of stages. At each stage, they list lists from earlier stages. They are careful not to
reproduce earlier lists; but they are also careful not to miss any opportunity to make
new lists. The Listers will list any earlier lists as long as the result is a new list.

The process begins at stage 0. Since the Listers have never listed, their first list of
earlier lists is blank.

Stage 0 yields ⇒.

At the next stage, stage 1, the Listers list the one and only earlier list. Their one new
list is the list whose only entry is the blank list.

13 See Zermelo [14]; English translation in van Heijenoort [13], pp. 199–215.

http://dx.doi.org/10.1007/978-3-319-05816-0_4
http://dx.doi.org/10.1007/978-3-319-05816-0_5


3.9 Finite Ranks 75

Stage 1 yields {⇒}.

When they reach stage 2, the Listers have already made two lists: ⇒ and {⇒}.14 They
obtain one new list by listing both of these lists. They obtain another new list by
listing {⇒} all by itself. They do not list ⇒ all by itself because they already did that
at stage 1.

Stage 2 yields {{⇒}} and {⇒, {⇒}}.

They now proceed to stages 3, 4, 5 and beyond.

Exercise 3.33 Define a function that gives the number of lists appearing at stage n.

(You can use recursion if you want.) Do you think the Listers can complete stage 4?

Do you think they can really complete stage 5?

If a list appears at stage n in the Listers’ listing process, we say that its rank is
n. ⇒ has rank 0. {⇒} has rank 1. {{⇒}} and {⇒, {⇒}} have rank 2. A graph may help to
make the notion of rank more vivid. Here are the Listers’ first four lists with arrows
representing the relation “is an entry of.”

{⇒, {⇒}}

≤
⇒ ∧
∀

{⇒} ∞ {{⇒}}

Note that the rank of list x is the number of arrows in the longest path from ⇒ to x .
In the Listers’ listing process, a list appears just after all its entries have appeared.
Each list has to wait for the appearance of its latest arriving entries. When we count
arrows in the longest path from ⇒ to x , we are letting the ranks of x’s latest arriving
entries determine the rank of x .

Exercise 3.34 Determine the rank of {{⇒}, {{{⇒}}}}. Determine the rank of

{{{{{{{{{{⇒}}}}}}}}}}.

How does the bracket notation “ {. . .}” help us determine ranks?

Here is yet another way to think about ranks. In a moment, I will introduce
some lists

14 OK, I am being sloppy here. Stated more precisely, the Listers have made tokens of the two types
⇒ and {⇒}. We do not need to imagine that they make the types. At each stage, they list types that
have tokens produced at earlier stages.
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V (0), V (1), V (2), . . .

that will turn out to be our old friends the super-numbers

⇒, P⇒, P P⇒, . . . .

Here are V (0), V (1), V (2), V (3).
⇒

{⇒}

{⇒, {⇒}}

{⇒, {⇒}, {{⇒}}, {⇒, {⇒}}}

Although V (0) lists nothing, each subsequent V (n) lists the lists of rank less than n.
V (1) lists the one list of rank 0. V (2) lists the one list of rank 0 and the one list of
rank 1. V (3) lists the one list of rank 0, the one list of rank 1, and the two lists of rank
2. Lists that first appear on list V (n + 1) have rank n. A list appears on V (n + 1) if
and only if it is part of V (n). So a list of rank n will be a part of V (n), but will not
be a part of V (k) for any k less than n. This will motivate the definition of rank that
appears below.

Though I will not give the details, we can use induction and some other tricks to
show that if n is a number, then there is a unique sequence of lists a0, a1, . . . ,an with
the following properties.15

a0 = ⇒

aSk = Pak

If we identify V (n) with the last term an in the sequence a0, a1, . . . , an , we can
confirm that the lists V (0), V (1), . . . have the following properties.

V (0) = ⇒

V (Sk) = PV (k)

Assume that this is so. (Or verify it yourself, if you want.) You can now show that
the lists V (n) are, in fact, our super-numbers.

Exercise 3.35 Use induction to show that if n is a number, then V (n) is a super-

number.

15 Among the details I am skipping over is the question of whether Axioms 3.1–3.3 allow us to
introduce the notion of finite sequence. You might find it interesting to show that they do.
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Exercise 3.36 Use Theorem 3.13 (i.e., super-number induction) to show that if x is

a super-number, then x = V (n) for some number n.

Now that you have confirmed that the lists V (0), V (1), V (2), . . . are the
super-numbers ⇒, P⇒, P P⇒, . . ., you can use facts about super-numbers to obtain
results about the V (n)’s. For example, you might want to use Exercise 3.25 to com-
plete the following exercise.

Exercise 3.37 Use induction (on n) to show that if n lists m, then V (n) lists V (m).

Theorem 3.18 If V (m) = V (n), then m = n.

Proof Suppose V (m) = V (n). According to Theorem 3.9, if m and n are distinct,
then one lists the other. Suppose n lists m. Then, by the result you just established,
V (n) lists V (m) and, hence, V (n) lists V (n). Since this contradicts Theorem 3.16,
we conclude that m and n are not distinct. ⊓♥

Exercise 3.38 Show that if V (n) lists V (m), then n lists m. (You might find Theorem

3.16 useful.)

Since the hereditarily finite lists are the entries of the super-numbers, every hered-
itarily finite list is an entry of V (n) for some number n. By Exercise 3.25, every entry
of V (n) is a part of V (n). Theorem 3.8 assures us that if x is a part of V (n) for some
number n, then there is a smallest such n. So the following definition is justified.

Definition 3.13 If x is hereditarily finite, then ρ(x) (the rank of x) is the first
number n such that x is a part of V (n).

For the rest of this section, we will assume that x, y, z are hereditarily finite lists.

Exercise 3.39 Use induction on n to show that if V (n) lists x, then n lists ρ(x).

(Note that if x is a part of V (n), then ρ(x) is no greater than n: that is, either n lists

ρ(x) or n = ρ(x).)

Definition 3.14 List y outranks list x if and only if ρ(y) lists ρ(x).

Exercise 3.40 Show that every hereditarily finite list outranks its entries.

Exercise 3.41 Show that if z outranks each entry of y, then y does not outrank z.

(You might find Exercise 3.23 useful.)

Exercise 3.41 says that each hereditarily finite list has the lowest rank compatible
with Exercise 3.40.

Exercise 3.42 Show that if y does not outrank z, then z outranks each entry of y.

(Note: since our ranks are numbers, they obey Theorem 3.9.)
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Theorem 3.19 One hereditarily finite list outranks another if and only if some hered-

itarily finite entry of the former outranks each hereditarily finite entry of the latter.

Proof According to Exercises 3.41 and 3.42, y fails to outrank z if and only if z

outranks each entry of y. This is equivalent to:

y outranks z √⇓ z fails to outrank some entry of y.

Applying Exercises 3.41 and 3.42 again, z fails to outrank a list x if and only if x

outranks each entry of z. So z fails to outrank some entry of y if and only if some
entry of y outranks each entry of z. Our grand conclusion:

y outranks z √⇓ some entry of y outranks each entry of z.

Exercise 3.25 guarantees that each entry of a hereditarily finite list is hereditarily
finite. So, given our standing assumption that y is hereditarily finite, “some entry of
y” is necessarily “some hereditarily finite entry of y.” ⊓♥

Definition 3.15 Some hereditarily finite lists are, collectively, of bounded rank

if and only if some hereditarily finite list outranks all of them.

Exercise 3.43 Show that any hereditarily finite lists of bounded rank will form a

hereditarily finite list.

3.10 And Why Are We Doing This?

Although we are marching under the banner of list theory, this is just a way of talking
about set theory. So you have already received a large dose of set theory. You will
receive two more doses in Chaps. 4 and 5. Perhaps, then, I should pause and reassure
you that this treatment really is warranted.

This book is supposed to provide a mathematical prelude to the philosophy of
mathematics. It is supposed to help you understand philosophical work that has
already been done and is also meant to prepare you to do philosophical work of your
own. A big dose of set theory should help you both understand and do philosophy
of mathematics. First of all, many philosophers of note have a lot to say about set
theory. You will want to understand what they are saying. Secondly, if you are to have
any chance of saying something intelligent about contemporary mathematics, you
will need to have a good idea of what contemporary mathematics is. No whirlwind
tour of the contemporary scene is better than the one provided by set theory. Even
if you become a professional mathematician, all the mathematics you are likely to
encounter or produce will be reducible to the set theories presented in Chaps. 3, 4
and 5 or to some natural extension of those set theories. Granted, these three chapters

http://dx.doi.org/10.1007/978-3-319-05816-0_4
http://dx.doi.org/10.1007/978-3-319-05816-0_5
http://dx.doi.org/10.1007/978-3-319-05816-0_4
http://dx.doi.org/10.1007/978-3-319-05816-0_5
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will not magically introduce you to all the specialized vocabularies, techniques, and
results of all the sub-fields of mathematics.16 Your apprenticeship in set theory will,
however, give you a general idea of what counts as a possible structure or operation
in today’s mathematics. That is a goal worth pursuing. We continue our pursuit of it
in the next chapter.

3.11 Solutions of Odd-Numbered Exercises

3.1 Let x be the list of all lists that do not list themselves. Does x list itself? It does
so only if it is one of the lists that do not list themselves. That is, it does only if it
does not. So x does not list itself and, so, appears on the list of all lists that do not
list themselves. But that list is x itself. We conclude that x both does and does not
list itself. That is, x would do this impossible thing if it existed. So no such list exists.

3.3 We are going to treat “forming a pedigree” as a property that people possess
collectively. Some people form a pedigree if and only if each parent of one of
them is one of them. x is an ancestor of y if and only if, given any people who
form a pedigree, if y is one of those people, then so is x .

3.5 Suppose w is a precursor of x and x is a precursor of y. Given any entry-closed
lists, if y is one of them, so is x . Given any entry-closed lists, if x is one of them,
so is w. So, given any entry-closed lists, if y is one of them, so is w. That is, w is a
precursor of y.

3.7 Let “the Y -lists” be y itself and y’s entries. Suppose w is an entry of x and x

is one of the Y -lists. If x = y, then w is one of the Y -lists by virtue of being an
entry of y. Suppose x is an entry of y. Then w is an entry of an entry of y and,
hence, is an entry of y. So, once again, w is one of the Y -lists. We conclude that the
Y -lists are entry-closed. Suppose z is a precursor of y. Given any entry-closed lists, if
y is one of them, so is z. So z is one of the Y -lists. That is, z is either y or an entry of y.

3.9 Suppose x is a precursor of Py. By Exercise 3.6, x is either Py (and, hence, a
list) or a precursor of an entry of Py. Suppose the latter. Then x is a precursor of
a part of y. By Exercise 3.6 again, x is either a part of y (and, hence, a list) or a
precursor of an entry of a part of y. Suppose the latter. Then x is a precursor of an
entry of y and, hence, by Exercise 3.5, is a precursor of y. If y is pure, x is a list. We
conclude that all of Py’s precursors are lists.

3.11 Since y is one of its own precursors, Sy lists y. ⇒ lists nothing.

16 To see how unlikely that is, take a look at the “Mathematics Subject Classification” at http://
www.ams.org/msc/pdfs/classifications2010.pdf. Note that this document is 47 pages long.

http://www.ams.org/msc/pdfs/classifications2010.pdf
http://www.ams.org/msc/pdfs/classifications2010.pdf
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3.13 18 is 10010 (1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20) in binary. Here is the
decoding key.

List 100 List 11 List 10 List 1 List 0
1 0 0 1 0

We already know that List 1 is {⇒}. We need to figure out what List 100 is. Here
is the decoding key for that.

List 10 List 1 List 0
1 0 0

We know that List 10 is {{⇒}}. So List 100 is {{{⇒}}} since it says yes only to List 10.
List 10010 says yes only to Lists 100 and 1. So it is {{{{⇒}}}, {⇒}}.

3.15 Given any S-closed lists, if ⇒ is one of them, then ⇒ is one of them.

3.17 Suppose Sm = Sn. Since Sm lists m, so does Sn. By Theorem 3.7, m is either
n or an entry of n. Since Sn lists n, so does Sm. By Theorem 3.7, n is either m or an
entry of m. Suppose m ⇐= n. Then m is an entry of an entry of m. So, by Theorem 3.6,
m is an entry of itself—contrary to Exercise 3.16.

3.19 We want to show that every number n has the following property: if n ⇐= ⇒, then
n lists ⇒. It is vacuously true that ⇒ has this property. As an inductive hypothesis,
suppose n has the property. That is, n either is ⇒ or lists ⇒. So ⇒ is either an entry or
an entry of an entry of Sn. By Theorem 3.6, ⇒ is an entry of Sn.

3.21 Suppose Px = Py. Since Px lists x , so does Py. That is, x is a part of y. Since
Py lists y, so does Px . That is, y is a part of x . So x and y have the same entries
and, hence, by Axiom 3.1, x = y.

3.23 It is vacuously true that ⇒ lists the parts of its entries. Suppose y is a part of an
entry of Px . Then y is a part of a part of x and, hence, is a part of x . So Px lists y.
This is one of those odd inductions without an inductive hypothesis.

3.25 It is vacuously true that ⇒ lists the entries of its entries. Suppose, as an inductive
hypothesis, that x lists the entries of its entries. Suppose y is an entry of an entry of
Px . Then y is an entry of a part of x and, hence, is an entry of x . By our inductive
hypothesis, y’s entries are entries of x and, hence, y is a part of x . So y is an entry
of Px .
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3.27 By Theorems 3.10 and 3.11, P⇒ is a super-number. So ⇒ is hereditarily finite
since P⇒ lists ⇒. Suppose, as an inductive hypothesis, that n is hereditarily finite.
Pick a super-number x that lists n. Suppose Sn lists y. Then, by Theorem 3.7, y is
either n or an entry of n. That is, y is either an entry of x or an entry of an entry of x .
By Exercise 3.25, y is an entry of x . We conclude that Sn is a part of x and, hence,
is an entry of Px . This confirms that Sn is hereditarily finite if n is.

3.29 By Theorem 3.11 and Exercise 3.24, if super-number y lists x , then super-
number Py lists Px .

3.31 By Exercise 3.25, any entries of a hereditarily finite list are entries of a super-
number. By Theorem 3.2 and Exercise 3.22, any entries of a super-number form a
list. That list will be part of the super-number. So, if the super-number is x , the list
will be an entry of Px .

3.33 Suppose you are making a list and there are n things that could appear as entries.
You are free to list all, some, or none of those n things. Once you finish your list,
each of the n things will be in one of two possible states: on the list or not. Your list
will record n decisions about two possible outcomes. So there are 2n lists you could
make. If you start with 0 things, the number of possible lists is 20: you can only
produce the blank list ⇒. Repeat the process starting with the one blank list and the
number of possible lists is 21: you could produce either ⇒ or {⇒}. Repeat the process
starting with these two lists and the number of possible lists is 22. The number of
lists that could appear at each stage of this process is given by the following function.

a(0) = 0

a(n + 1) = 2a(n)

There is, however, a complication. The Listers do not reproduce lists that have already
appeared. The following function makes the necessary correction.

f (n) = a(n + 1) − a(n)

To complete stage 4, the Listers would have to list 65,520 lists. If they listed one
list per second, this would take 18 h and 12 min. To complete stage 5, the Listers
would have to list 265,536 −65,536 lists. At one list per second, this would take about
1019,775 times the age of the universe.

3.35 By Theorem 3.10, V (0) is a super-number. By Theorem 3.11, PV (n) is a super-
number if V (n) is. So V (Sn) is a super-number if V (n) is.
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3.37 It is vacuously true that the result holds when n = ⇒. As an inductive
hypothesis, suppose n lists m only if V (n) lists V (m). Suppose Sn lists m. Since
V (Sn) = PV (n), we want to show that V (m) is a part of V (n) (and, hence, an entry
of PV (n)). By Theorem 3.7, m is either n or an entry of n. If m = n, then V (m) is a
part of V (n) since every list is a part of itself. Suppose m is an entry of n. Then, by
our inductive hypothesis, V (n) lists V (m) and, hence, by Exercise 3.25, V (m) is a
part of V (n).

3.39 It is vacuously true that the result holds when n = ⇒. Suppose V (Sn) lists x .
Then x is an entry of PV (n) and, hence, a part of V (n). ρ(x) is the first number that
behaves like this n. So ρ(x) is either n or an entry of n. By Theorem 3.7, ρ(x) is an
entry of Sn.

3.41 Suppose z outranks each entry of y. That is, ρ(z) lists ρ(x) whenever y lists x .
By Exercise 3.37, V (ρ(z)) lists V (ρ(x)) whenever y lists x . x is a part of V (ρ(x)).
So, by Exercise 3.23, V (ρ(z)) lists x whenever y lists x . That is, y is a part of
V (ρ(z)). ρ(y) is the first number n such that y is a part of V (n). So ρ(z) cannot be
smaller than ρ(y).

3.43 Pick a hereditarily finite list y and some hereditarily finite lists “the X ’s” with
the following property: if x is one of the X ’s, then ρ(y) lists ρ(x). By Exercise 3.37,
if x is one of the X ’s, then V (ρ(y)) lists V (ρ(x)). Every hereditarily finite x is part
of V (ρ(x)). So, by Exercise 3.23, if x is one of the X ’s, then V (ρ(y)) lists x . We
conclude that the X ’s are all entries of V (ρ(y)). Theorem 3.2 and Exercise 3.22 now
yield a list whose entries are exactly the X ’s. Since that list is a part of V (ρ(y)), it
is an entry of PV (ρ(y)) and, so, is hereditarily finite.
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Chapter 4

Zermelian Lists

4.1 Infinite Lists

Given any natural number n, our principles guarantee us a list with n entries. Indeed,
in our construction, the number n is itself a list with n entries. 10100 is a list with
10100 entries. Now we human beings are never going to list 10100 things. We might
describe them in some way; but we normally think of a description as an alternative

to a list, not a kind of list. So our principles posit a world inhabited by infinitely
many lists, infinitely many of which surpass, to an extravagant degree, our limited
capacity to list things. We may not believe there is such a world; but the Ackermann
interpretation discussed in the last chapter provides an excellent reason to believe
there could be. As mathematicians, we have found it interesting and productive to
explore what such worlds would be like.

Having already left far behind what is humanly feasible in our pursuit of what
is logically possible, we may feel comfortable with another leap. We already have
infinitely many lists. How about a list with infinitely many entries? What might the
entries be? Well, there are infinitely many hereditarily finite sets. Perhaps there could
be a list of them. Let us try out that idea.

Axiom 4.1 The hereditarily finite lists form a list.

The list of all hereditarily finite lists is known as V (ω). (‘ω’ is the Greek letter
omega.) As before, we claim no certain knowledge that our axiom is true, that there
is such a thing as V (ω). We are just letting everyone know we are interested in what
the world would be like if there were.

Exercise 4.1 Show that V (ω) is pure.

Exercise 4.2 Show that the numbers form a list.

The list of all numbers is known as ‘ω’. This may help to explain the name ‘V (ω)’. If
we start with ⇒, then n applications of the operation P will give us V (n). If we start
with ⇒, then ω applications of the operation P will give us V (ω). In conventional set
theoretic terminology:

S. Pollard, A Mathematical Prelude to the Philosophy of Mathematics, 85
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V (0) = ⇒

V (n + 1) = PV (n)

V (ω) =
⋃

n⇐ω

V (n)

Something is listed by V (ω) if and only if it is listed by V (n) for some number n.
You proved in Chap. 3 that the V (n)’s are the super-numbers. So V (ω) is what you
get when you list everything that appears in the construction of the super-numbers.

V (ω) = V (0) ∪ V (1) ∪ V (2) ∪ · · · = ⇒ ∪ P⇒ ∪ P P⇒ ∪ · · ·

V (ω) lists everything you obtain when you start with ⇒ and complete ω applications
of the operation P , one application for each number 0, 1, 2, 3, . . . .

We need to consider whether our new system, consisting of Axioms 3.1, 3.2, 3.3,
and now 4.1, is consistent. First, though, another question. Is it really helpful, does
it really aid understanding, to continue to use the word “list” at this point? Hasn’t
our everyday notion of list been stretched beyond recognition when we start talking
about infinite lists? Better, perhaps, to avoid unnecessary confusion and resistance
by saying good-bye to “list” and introducing a new term not so loaded down with
preconceptions.

Well, I am not sure one person can speak for everyone on the question of how
flexible our concepts are. My concept of list might be far more flexible than yours.
How then would we decide whether the concept has been stretched too far? Luckily,
we do not need to reach any such decision. We already know that we will need to
abandon “list” before long. We want to be understood by other English-speaking
mathematicians; and they say “set” not “list.” We need to learn to say “set” too. We
shall stick to “list” for just a few more pages.

Now, is our new system consistent? It turns out to be impossible to interpret all four
of our axioms as truths of arithmetic. Ackermann’s trick cannot help us here. But we
still have good evidence that our system is consistent. Zermelo managed to describe
a structure, V (ω + ω), in which all our principles would be true.1 Some of the most
profound mathematicians of the last century thought deeply about that structure, gave
strong indications of having formed a clear concept of it, and reported no signs of
incoherence. That is not a proof of consistency. But proof is not the only kind of
evidence available to mathematicians nor is it always the best kind of evidence. Our
concern is that we might spend a lot of time seeing what follows from premises that
turn out to be absurd. Since everything would be true in a logically impossible world,
the painstaking accumulation of theorems is quite misguided when the axioms are
incoherent. Ours might be; but we have very good reason to think they are not. Let
us be bold and see what sort of world we are now contemplating.

You might think of ω + ω as the result of the following construction.

1 See Zermelo [2].

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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ω + 0 = ω

ω + Sn = S(ω + n)

ω + ω =
⋃

n⇐ω

(ω + n)

That is,

ω + ω = (ω + 0) ∪ (ω + 1) ∪ (ω + 2) ∪ · · · = ω ∪ Sω ∪ SSω ∪ · · ·

ω + ω lists everything you obtain when you start with ω and complete ω iterations
of the operation S.

You can think of V (ω + ω) as the result of the following construction.

V (ω + 0) = V (ω)

V (ω + Sn) = PV (ω + n)

V (ω + ω) =
⋃

n⇐ω

V (ω + n)

That is,

V (ω+ω) = V (ω+0)∪V (ω+1)∪V (ω+2)∪· · · = V (ω)∪PV (ω)∪P PV (ω)∪· · ·

V (ω + ω) lists everything you obtain when you start with V (ω) and complete ω

iterations of the operation P .
Our four axioms allow us to show that ω + n and V (ω + n) exist for each number

n. They do not allow us to show that either ω + ω or V (ω + ω) exist. Our four
axioms and the axioms of Zermelo’s set theory Z can all be interpreted as statements
about the entries of V (ω + ω). That is, to make our axioms and Zermelo’s axioms
true, you need only (1) complete ω applications of the operation P starting from the
blank list; (2) list every list you encounter in this construction; then (3) starting from
that list, complete ω additional applications of P .

Exercise 4.3 Dream up an axiom that guarantees the existence of both ω + ω and

V (ω + ω).

Exercise 4.4 Suppose x and y are parts of V (ω). Show that there is a list x ∪ y that

lists, exactly, the entries of x and the entries of y.

Exercise 4.5 Show that ω lists the entries of its entries or, in other words, that every

number is a list of numbers.

Exercise 4.6 Suppose x is a part of ω. Show that there is a list ω\x that lists, exactly,

the numbers that x does not list.
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4.2 More Ranks

We now continue the discussion of ranks we began in the previous chapter. We will
assign ranks to lists in our new, larger universe. We can use induction to show that
if n is a number, then there is a unique sequence of lists a0, a1, . . . , an and a unique
sequence of lists b0, b1, . . . , bn with the following properties.

a0 = ω

aSk = Sak

b0 = V (ω)

bSk = Pbk

If we identify ω + n with the last term an in the sequence a0, a1, . . . , an and identify
V (ω + n) with the last term bn in the sequence b0, b1, . . . , bn , we can confirm that
the lists ω + 0, ω + 1, . . . and V (ω + 0), V (ω + 1), . . . have the properties we
noted above:

ω + 0 = ω

ω + Sn = S(ω + n)

V (S(ω + n)) = PV (ω + n).

Assume this is so. (Or verify it yourself, if you want.) You can now show that the
lists ω + n are the lists we are going to call higher ranks:

ω, Sω, SSω . . . .

The higher ranks are what tireless immortal beings encounter when they start with
ω (the list of all numbers) and apply the operation S to everything they encounter.

Exercise 4.7 Using Definition 3.7 as your guide, say what it means for something

to be one of the higher ranks ω, Sω, SSω . . .. Confirm that the higher ranks are the

lists ω + n.

You can also show that the lists V (ω + n) are the lists we are going to call
super- duper- numbers:

V (ω), PV (ω), P PV (ω), . . . .

Super-duper-numbers are what tireless immortal beings encounter when they start
with V (ω) (the list of all hereditarily finite lists) and apply the operation P to every-
thing they encounter.
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Exercise 4.8 Using Definition 3.9 as your guide, say what it means for something

to be a super-duper-number. Prove “super-duper” versions of Exercises 3.35 and

3.36.

Exercise 4.9 Show that every higher rank lists the entries of its entries.

Since ω + Sn = S(ω + n), Exercises 3.7 and 4.9 imply that the entries of ω + Sn

are ω + n and the entries of ω + n.

Exercise 4.10 Show that every super-duper-number lists the entries of its entries.

(You might consider a super-duper induction.)

Exercise 4.11 Show that if n �= 0, then ω+n lists ω. (You might consider induction

on n.)

Exercise 4.12 Show that n lists m only if ω + n lists ω + m. (If you feel like another

induction, you might consider doing it on n.)

Exercise 4.13 Show that no higher rank lists itself.

Theorem 4.1 If ω + n lists ω + m, then n lists m.

Proof Suppose ω+n lists ω+m. Suppose m lists n. Then, as you showed in Exercise
4.12, ω+ m lists ω+ n. So, according to Exercise 4.9, ω+ m will list itself, contrary
to Exercise 4.13. It will also contradict Exercise 4.13 if m = n. So Theorem 3.9
implies that n lists m. ♥∨

We have confirmed that the listing relation orders the higher ranks the same way
it does the numbers:

ω + n lists ω + m ∃≤ n lists m.

So, in fact, the listing relation well-orders the higher ranks. (Recall Sect. 3.6) In
particular, if some higher ranks satisfy a certain condition, there will be a unique first

higher rank that does so.

Exercise 4.14 Use induction (on n) to show that n lists m only if V (ω + n) lists

V (ω + m).

Exercise 4.15 Show that no super-duper-number lists itself. (Theorem 3.17 might

be useful.)

Exercise 4.16 Show that V (ω + n) lists V (ω + m) only if n lists m.

We have confirmed that the listing relation orders the super-duper-numbers the
same way it does the numbers:

V (ω + n) lists V (ω + m) ∃≤ n lists m.

So, in fact, the listing relation well-orders the super-duper-numbers.
Our ranks are the numbers and the higher ranks.

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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Exercise 4.17 Show that if α and β are ranks, then V (β) lists V (α) if and only if β

lists α.

Exercise 4.18 Show that the listing relation well-orders our ranks.

Definition 4.1 If x is a part of V (α) for some rank α, then ρ(x) is the first such α.

Exercise 4.19 What is ρ(ω)?

Definition 4.2 A list is Zermelian if and only if it is an entry of a super-duper-
number.2

We retain Definition 3.14 as our explanation of “outranking.”

Theorem 4.2 One Zermelian list outranks another if and only if some Zermelian

entry of the former outranks each Zermelian entry of the latter.

Proof Zermelian sets have all the properties of hereditarily finite sets that we used
in our proof of Theorem 3.19. (It might be a good exercise to double-check that.) ♥∨

Definition 4.3 Some Zermelian lists are, collectively, of bounded rank if and
only if a Zermelian list outranks all of them.

Exercise 4.20 Show that any Zermelian lists of bounded rank will form a Zermelian

list.

Exercise 4.21 Confirm that there is a Zermelian list with no Zermelian entries.

Exercise 4.22 Confirm that Zermelian lists with the same Zermelian entries are the

same.

Exercise 4.23 Confirm that our ranks are Zermelian and list only ranks.

Exercise 4.24 Show that no Zermelian list lists every rank. (You might want to look

at the proof of Theorem 3.17.)

It may not be obvious why Theorem 4.2 and Exercises 4.20–4.24 are of any
particular interest. Be patient. They will play a key role in our exploration of set
theory in Chap. 5. Before turning to sets, however, we will use our profusion of lists
to develop the foundations of calculus.

2 The entries of the super-duper-numbers form a model of Zermelo’s set theory Z. For a helpful
discussion see Uzquiano [1] (http://www.jstor.org/stable/421182).

http://dx.doi.org/10.1007/978-3-319-05816-0_5
http://www.jstor.org/stable/421182
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4.3 Real Numbers

We have been a little sloppy, saying “numbers” when we mean the natural numbers
0, 1, 2, 3, . . . . We are going to continue this practice even though we know perfectly
well that mathematicians recognize other numbers. It is only our dialect that is
quirky, however. Our theory does not confine us to the naturals. Indeed, our theory
lets us show that some parts of ω, when suitably ordered, behave just like the (non-
negative) real numbers. Before I can say which parts, I need to introduce some new
terminology. Parts of ω that omit only finitely many numbers are said to be cofinite.
A part of ω that omits only finitely many numbers will have a largest non-entry if it
has any non-entries at all.

Definition 4.4 A part A of ω is cofinite if and only if ω\A has a largest entry or
has no entries. (Recall that ω\A is the list of numbers not listed by A.)

ω itself is cofinite because it omits no numbers. ⇒ is not cofinite because it omits
every number. The list of all numbers of the form 6a + 9b + 20c is cofinite because
it lists every number larger than 43. The list of all numbers of the form 6a + 9b is
not cofinite because it omits 3 and every number that is not a multiple of 3. We are
going to focus on lists of this latter sort: the non-cofinite ones. If A is one of these
lists, then ω\A has entries, but no largest one.

Exercise 4.25 Show that each entry of ω (each number) is a non-cofinite part of ω.

Definition 4.5 An entry discriminates between two lists if and only if it appears
on one but not the other. Two lists agree on an entry if and only if it does not
discriminate between them (that is, if and only if it appears on both or neither).

Definition 4.6 If A and B are non-cofinite parts of ω, we say A < B (A precedes

B) if and only if A �= B and B lists the smallest number that discriminates between
A and B.3

Note that we are placing the non-cofinite parts of ω in a certain order, but we are not
comparing their sizes. For example, {1, 3} has more entries than {0}. Yet {1, 3} < {0},
since {0} lists the smallest number that discriminates between these two lists. Indeed,
the list of all odd numbers precedes {0} even though the former has infinitely more
entries than the latter.

Exercise 4.26 Show that one non-cofinite part of ω precedes all the others

Exercise 4.27 Show that if A is a non-cofinite part of ω, then A < n for some

number n.

3 Here is another way of expressing the same idea. If A is a part of ω and j is an entry of ω, let
A ∧ j be the list whose entries are, exactly, the entries of A smaller than (i.e., listed by) j . Now
suppose A and B are non-cofinite parts of ω. Then A < B if and only if, for some number j , B\A

lists j and (A ∧ j) = (B ∧ j).
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Exercise 4.28 Show that if m and n are non-zero numbers, then {m} < n.

Exercise 4.29 Show that if m and n are numbers, then m < n if and only if m is

smaller than n (that is, n lists m).

Exercise 4.30 Suppose k is a number and A is a non-cofinite list of numbers. Show

that if A < {k}, then A < {k + 1, k + 2, . . . , k + n} for some number n.

My statement of the last exercise is not really kosher because I have not said what
‘+’ means when applied to our numbers. Here is a more correct version: if A < {k},
then A < j\Sk for some number j . Recall that Sk = {0, 1, 2, . . . , k}. So j\Sk is
the result of lopping off all the numbers 0, 1, 2, . . . , k from the front of j . That is,
j\Sk has the form {k + 1, k + 2, . . . , k + n} as in Exercise 4.30. Note that we obtain

A < j\Sk < {k}

no matter how close A is to {k}. So we can make j\Sk arbitrarily close to {k} by
picking a sufficiently large j . Or, to put it differently, if a list B squeezes between
j\Sk and {k}

A < j\Sk < B < {k}

then Exercise 4.30 allows us to leapfrog it by picking a big enough j ∀:

A < j\Sk < B < j ∀\Sk < {k}.

We now turn to some particularly important facts about the relation <. A, B, and C

are understood to be non-cofinite parts of ω.

Theorem 4.3 Irreflexivity: A ≮ A.

Proof There is no way that A �= A. ♥∨

Theorem 4.4 Transitivity: If A < B < C, then A < C.

Proof Let j be the smallest number that discriminates between A and B. Let k be the
smallest number that discriminates between B and C . Then A and B agree on every
number smaller than j , while B and C agree on every number smaller than k. B lists
j , but A does not. C lists k, but B does not. Note that j �= k. This leaves two cases.
Case 1: j is smaller than k. Then, since B lists j , so does C . Since B and C agree on
every number smaller than j , so do A and C . That is, j is the smallest number that
discriminates between A and C . Case 2: k is smaller than j .4 Then, since B does not
list k, neither does A. Since A and B agree on every number smaller than k, so do A

and C . That is, k is the smallest number that discriminates between A and C . ♥∨

Exercise 4.31 Show that < is connected. That is, if A �= B, then either A < B or

B < A.

4 Yes, this is possible. Note that ⇒ < {2} < {1, 2}.
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Theorem 4.5 Denseness: If A < C, then A < B < C for some finite B.

Proof Let j be the smallest number that discriminates between A and C . Since A is
not cofinite, we can let k be the smallest number larger than j that A does not list.
Let B be the result of adding k to A while deleting all entries larger than k. Then B

lists the smallest number that discriminates between A and B (namely, k) and C lists
the smallest number that discriminates between B and C (namely, j). ♥∨

I need to prove one more fact about <. First, though, some preliminaries. We let
[ ⇒, ω) be the list of all non-cofinite parts of ω. The idea is that these parts form a ray
with first entry ⇒, but no last entry. We let [ ⇒, A) be the list of non-cofinite parts of
ω that precede A. The interval [ ⇒, A ] will be the result of adding A to [ ⇒, A).

Definition 4.7 Suppose M is part of [ ⇒, ω). A is an upper bound of M if and only
if M is part of [ ⇒, A ]. If, in addition, no upper bound of M precedes A, then A is
M’s least upper bound.

Now for our last fact about our ordering of [ ⇒, ω).

Theorem 4.6 Completeness: Every part of [ ⇒, ω) with an upper bound has a least

upper bound.

Proof I will omit some details. Suppose M is a part of [ ⇒, ω) with an upper bound.
Since, by Exercise 4.27, each such upper bound precedes a number, some number is
an upper bound of M . Suppose 1 is the first such number. (You can check later to see
whether our reasoning about this case applies more broadly.) If M lists 1, then none
of M’s upper bounds can precede 1 and, hence, 1 is M’s least upper bound. Suppose
M does not list 1. Then all of M’s entries precede 1. We can use induction and some
other tricks to show that if n is any number, then ω has parts A0, A1, . . . , An with
the following properties. First:

A0 = ⇒.

Second:

Ak+1 =

{

Ak if every entry of M precedes Ak ∪ {k}

Ak ∪ {k} otherwise.

Let A be the part of ω whose entries are the numbers that appear on one of the lists
An . In more conventional terminology:

A =
⋃

n⇐ω

An .

We are trying to creep up on M’s least upper bound from below. We exclude from
our big list A any number that would take us beyond all of M’s entries. For example,
we have the opportunity to add 0 at stage 1 of our construction, but decline to do so.
Instead, A1 = A0 = ⇒ since
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(A0 ∪ {0}) = (⇒ ∪ {0}) = {0} = 1

and all of M’s entries precede 1. Suppose, on the other hand, that some of M’s entries
do not precede {1}. Then adding 1 to our big list A would not take us too far. So we
would say

A2 = (A1 ∪ {1}) = (⇒ ∪ {1}) = {1}

and, hence, A would list 1. What happens as we move down the list? Could A list
one number after another with no further omissions? First note: if none of M’s upper
bounds precede 1, then 1 is M’s least upper bound and we are done. Suppose, then,
that B is an upper bound that precedes 1. That is, B < {0} = 1. By Exercise 4.30,
B < {1, 2, . . . , n} for some number n. All of M’s entries would precede {1, 2, . . . , n}.
So, even if A listed every number from 1 to n − 1, it would omit n. We conclude that
A omits a number greater than 1. Let k be the first such number. Then,

{1, 2, . . . , k − 1} = Ak = Ak+1.

{1, 2, . . . , k} is an upper bound of M since all of M’s entries precede Ak ∪ {k}. If
none of M’s upper bounds precede {1, 2, . . . , k}, we are done. On the other hand,
if an upper bound does precede {1, 2, . . . , k}, we can repeat the above argument to
show that A omits a number greater than k. (Note, in particular, that

{1, 2, . . . , k − 1} < B < {1, 2, . . . , k}

only if
B < {1, 2, . . . , k − 1, k + 1, . . . , k + j}

for some number j .) This holds quite generally: after each omission there will be
another omission. So A omits numbers, but there is no largest number it omits: A is
not cofinite. Is A an upper bound of M? Suppose A < C where C is an entry of M .
Let i be the first number listed by C but not by A. Then (A j ∪ { j}) < C whenever
i < j since C will list i but A j ∪ { j} will not. So

A j+1 = (A j ∪ { j})

whenever i < j . Since this would make A cofinite, we conclude that each entry of M

either precedes A or is A. That is, A is an upper bound of M . Suppose B is an upper
bound of M that precedes A. Then A lists the smallest number that discriminates
between A and B. Suppose this number is m. Then not all of M’s entries precede
Am ∪ {m}, but B does precede Am ∪ {m}. If Am ∪ {m} is itself an entry of M , then
B is not an upper bound of M . If Am ∪ {m} precedes an entry of M , then B is not an
upper bound of M . So B is not an upper bound of M after all. We conclude that, in
fact, no upper bound of M precedes A. ♥∨
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Exercise 4.31 and Theorems 4.3–4.6 state the characteristic properties of a linear
continuum. We have arranged the non-cofinite parts of ω to look like the real numbers
in the ray [ 0,∞). Since they form the same structure as the non-negative reals, it
should not lead to any great confusion if we call them “real numbers.” Under the
Mirimanoff construction, each natural number is a non-cofinite part of ω (as you
showed in Exercise 4.25). So all our natural numbers are real numbers. Which real
numbers are they? Actually, a better question would be: which real numbers would we
like them to be? We have infinitely many alternatives. One alternative is particularly
attractive: we can let each natural number be itself. That is, we can let each natural
number n be the real number n. So, for example, {0, 1, 2, 3} can be the real number
4, while {0, 1, 2, 3, 4} can be the real number 5.

If a non-cofinite part of ω happens to be a Mirimanoff number, we can now say
what real number it is. (Itself!) What about all the other non-cofinite parts? Take
{0, 1, 2, 3, 4, 7, 10}, for example. To determine the integer part of this real number,
count how many consecutive numbers are listed starting from 0. That would be 5 (0
through 4). We now subtract the remaining numbers, one by one, from 5, raise 2 to
each of those powers, and add the results to 5.

5 + 25−7 + 25−10 = 5 + 2−2 + 2−5 = 5.28125.

So {0, 1, 2, 3, 4, 7, 10} is the real number 5.28125. What about {1, 2, 3, 4, 7, 10}?
The technique we just described yields the following.

0 + 20−1 + 20−2 + 20−3 + 20−4 + 20−7 + 20−10 = 0.946289.

The integer part is 0 because, in {1, 2, 3, 4, 7, 10}, there are 0 consecutive numbers
starting from 0. Note that Exercise 4.30 has the following special case. If A < 1,
then

A <

n
∑

i=1

1

2i
=

1

2
+

1

4
+

1

8
+ · · · +

1

2n

for some number n.
The proof of Theorem 4.6 may make a bit more sense now. Suppose M lists all

the rational numbers whose square is less than 2. Then our construction of the lists
An begins as follows:

A1 = {0}
A2 = {0}
A3 = {0}
A4 = {0, 3}
A5 = {0, 3, 4}.

We add 0, 3, and 4 to our list because they do not take us beyond the square root of 2:
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{0} = 1 <
√

2
{0, 3} = 1 + 1

4 <
√

2
{0, 3, 4} = 1 + 1

4 + 1
8 <

√
2.

We omit 1 and 2 because they do take us beyond the square root of 2:

{0, 1} = 2 >
√

2
{0, 2} = 1 + 1

2 >
√

2.

So A5 is the real number

1 +
1

4
+

1

8

whose square is 1.890625. The idea is to add any power of 1
2 that does not give our

sum a square greater than 2. Skipping ahead:

A9 = {0, 3, 4, 6, 8}.

So A9 is the real number

1 +
1

4
+

1

8
+

1

32
+

1

128

whose square is about 1.99957. The limiting value A is the smallest real number that
surpasses all the entries of M , that is, all the rationals less than

√
2. More briefly,

A =
√

2.

Exercise 4.32 What real number is {0, 1, 2, 6, 9, 14, 15, 16, 17, 18, 19}?
Exercise 4.33 Show that the list of all odd numbers {1, 3, 5, 7, . . .} is the real number
2
3 . (If you get stuck, look up some facts about geometric series.)

As I noted a couple pages back, [ ⇒, ω) (ordered by <) looks like [ 0,∞) (ordered
by the usual “less than” relation). Why is this of any interest? Well, first, it tells us
something about quantity: ω has at least as many parts as there are non-negative
reals. (It has, in fact, exactly as many parts; but showing that requires a bit more
argument.) It also tells us something about logical possibility: if our theory of lists is
consistent, then our concept of a linear continuum is not fundamentally incoherent.
On a more philosophical note, we have also taken a step toward establishing the
unity of mathematics. Since theorems about the real numbers can be interpreted as
theorems about lists, mathematicians who study the reals will, whether they know
it or not, be helping us see what follows from our theory of lists. The set theoretic
reductive program of the last century showed that virtually all mathematicians are
working out the consequences of a single comprehensive theory. So even if you find
your colleague’s work quite incomprehensible, you can be confident you are laborers
in the same vineyard.

Exercise 4.34 What would go haywire if we dropped the qualification “non-cofinite”

from our definition of the real numbers?
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4.4 From Lists to Sets

The Oxford English Dictionary (OED) recognizes two substantive uses of the term
“set.” The first (“set” as in “sunset”) is remote from the mathematical sense. The
second is somewhat closer: a number of things or persons set or placed together.
For those who are curious about what this sort of “setting” might involve, the OED

helpfully provides a discussion of the verb “to set” occupying more than six thousand
lines! None of the twelve types of “setting” recognized by the OED involve an
operation that would yield the sets of mathematics. This supports the following
bland observation: mathematicians have borrowed the everyday word “set” and are
using it as a technical term.

Many terms borrowed in this way acquire meanings quite distant from everyday
language and experience. This does not mean it has to be an ordeal to learn the
technical vocabulary. Some people just “get it” right away, as if they had a deep-
seated predisposition to learn (or invent) the stuff. Others do just fine with the help
of some analogies or similes or other little nudges. Set theory is treacherous ground
because we innocently expect our everyday understanding of sets to be a rich source
of helpful nudges and signposts. It is not.

Luckily, we can find help elsewhere: everyday language and experience make
it easy for us to talk sensibly about unranked list-types; and unranked list-types
behave (or can easily be imagined to behave) very much like mathematical sets.
Mathematical sets are not part of our everyday world. Some may even find unranked
list-types a bit weird. Not to worry: paper lists are certainly familiar. Our experience
with paper lists makes it easy for us to gab about unranked list types. At that point,
set theory itself is within walking distance. This is a blessing: it offers a smooth
path into the heart of modern mathematics. The various forms of hoodwinking we
professors have been practicing for years are, it turns out, entirely unnecessary.

4.5 Solutions of Odd-Numbered Exercises

4.1 By Exercise 3.25, entries of hereditarily finite lists are hereditarily finite. So V (ω)

lists the entries of its entries and, hence, by Exercise 3.7, the precursors of V (ω) are
V (ω) and the entries of V (ω). But V (ω) and its entries are all lists.

4.3 You might assume there is a list that lists V (ω) and, furthermore, lists Px when-
ever it lists x .

4.5 Each entry of ⇒ is a number. Suppose n is a number whose entries are all numbers.
By Theorem 3.7, the entries of Sn are n and the entries of n. So every entry of Sn is
a number. We conclude that entries of numbers are numbers and, hence, ω lists the
entries of its entries.
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4.7 Say that a list x is a higher rank if and only if it satisfies the following con-
dition: given any S-closed lists, if ω is one of them, then so is x . This immediately
yields an induction principle: if some lists are S-closed and ω is one of them, then
every higher rank is one of them. Our definition also guarantees that ω is a higher
rank. Our first job is to show that if x is a higher rank, then x = ω + n for some
number n. This is an easy induction because ω = ω + 0 and, if x = ω + n, then
Sx = S(ω+n) = ω+Sn. As for the converse, we need to show that ω+n is a higher
rank whenever n is a number. ω + 0 is a higher rank because ω is. Suppose ω + n is
a higher rank x . Then ω + Sn = S(ω + n) = Sx . But our definition guarantees that
Sx is a higher rank whenever x is.

4.9 In Exercise 4.5, you proved that ω lists the entries of its entries. Suppose x lists
the entries of its entries. Then, according to Exercise 3.7, the precursors of x are x

itself and x’s entries. Suppose Sx lists y and y lists z. Then y is either x itself or an
entry of x . In either case, z is a precursor of x and, so, is listed by Sx . That is, Sx

lists the entries of its entries.

4.11 It is vacuously true that ω + 0 has the desired property. Suppose ω + n lists ω.
Since ω + n is an entry of S(ω + n) and S(ω + n) = ω + Sn, ω + n is an entry of
ω + Sn and, hence, by Exercise 4.9, ω is an entry ω + Sn.

4.13 If ω listed itself, it would be a number and, hence, a number would list itself—
contrary to Exercise 3.16. Suppose x is a higher rank that does not list itself. Sx lists
the precursors of x and, so, by Exercises 3.7 and 4.9, Sx lists x and the entries of x .
Note that Sx �= x since x does not list x . If Sx were an entry of x , then x would be
an entry of an entry of x—contrary to Exercise 4.9. So Sx is neither x nor an entry
of x and, so, does not list itself.

4.15 By Exercise 3.27, V (ω) lists every number. If V (ω) listed itself, it would be
hereditarily finite and, hence, a hereditarily finite list would list every number—
contrary to Theorem 3.17. Suppose Px lists itself. Then Px is a part of x and, hence,
x is an entry of x since x is an entry of Px . We conclude: if x does not list itself,
then neither does Px .

4.17 If α and β are both numbers, we apply Exercises 3.37 and 3.38. If α and β

are both higher ranks, we apply Exercises 4.14 and 4.16. Suppose α is a number
and β is a higher rank. By Exercises 4.9 and 4.11, β lists α. By Exercises 3.19
and 4.14, V (β) either lists V (ω) or is V (ω). V (α) is hereditarily finite since it is
an entry of V (Sα). So V (ω) lists V (α) and, hence, by Exercise 4.10, V (β) lists V (α).

4.19 By Exercise 3.27, ω is a part of V (ω). If ω were a part of V (n), n a number,
then ω would be an entry of V (n + 1)—contrary to Theorem 3.17. So ω does not
list any rank α such that ω is a part of V (α) and, hence, ρ(ω) = ω.
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4.21 ⇒ is hereditarily finite because it is an entry of the super-number P⇒. So ⇒ is
an entry of the super–duper-number V (ω) and, hence, is Zermelian. Since ⇒ has no
entries, it has no Zermelian entries.

4.23 By Exercise 3.27, each number is an entry of V (ω) and, hence, is Zermelian.
We are going to use induction to confirm that each higher rank ω + n is an entry
of V (ω + Sn) and, hence, is Zermelian. Since ρ(ω) = ω (Exercise 4.19), ω is an
entry of V (ω + S0). As an inductive hypothesis, suppose V (ω + Sn) lists ω + n.
By Exercises 3.7, 4.9, and 4.10, every precursor of ω + n is an entry of V (ω + Sn).
So S(ω + n) is a part of V (ω + Sn) and, hence, is an entry of PV (ω + Sn). But
S(ω + n) = (ω + Sn) and PV (ω + Sn) = V (ω + SSn). So ω + Sn is an entry
of V (ω + SSn). Now we need to confirm that every rank is a list of ranks. ⇒ only
lists ranks because it lists nothing. ω only lists ranks because it only lists numbers.
Suppose rank α only lists ranks. By Theorem 3.6 and Exercises 3.7 and 4.9, Sα only
lists α and the entries of α. So Sα only lists ranks.

4.25 ⇒ is a part of ω because it is a part of every list. ω\⇒ is ω. ω has no largest
entry because each number n is an entry of Sn. So ⇒ is a non-cofinite part of ω. As
an inductive hypothesis, suppose number n is a non-cofinite part of ω. By Theorem
3.6 and Exercise 3.7, Sn is a part of ω. Suppose m is the largest entry of ω\Sn.
Then Sn lists Sm but does not list m—contrary to Theorem 3.6. We conclude that
Sn is non-cofinite.

4.27 Since A is non-cofinite, ω\A has entries. By Theorem 3.8, we can let k be the
smallest of those entries. k is the smallest number not listed by A. k is listed by Sk.
So Sk lists the smallest number that discriminates between A and Sk. That is, A < Sk.

4.29 By Exercise 3.16, m does not list m. m lists all smaller numbers (since “smaller
than” means “listed by”). So m is the first number not listed by m. If n lists m, then
n lists the smallest number that discriminates between m and n. On the other hand,
suppose n lists k but m does not. Suppose k �= m. By Theorem 3.9, k lists m and,
hence, by Theorem 3.6, n lists m.

4.31 Suppose A �= B. By Axiom 3.1, A and B do not have the same entries and,
hence, there are numbers that discriminate between them. By Theorem 3.8, there is
a smallest such number. The list that does not list that number will precede the one
that does.

4.33
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Chapter 5

The Hierarchy of Sets

5.1 New Axioms

We will now rejoin the rest of the mathematical community and say “set” rather than
“list”, “member” rather than “entry”, “empty set” rather than “blank list”, “subset”
rather than “part”, and so on. We are also going to start afresh with new axioms
characterizing ranks and their relationship to sets. We will not, however, forsake our
friends the lists. We will use our old list theory to show that our new set axioms can
be interpreted as claims about lists. We will also use our new set theory to show that
our old list axioms can be interpreted as claims about sets. This may seem an odd
way to spend our time, first going to the trouble of introducing new material and then
going to even more trouble to show that this material is not so new after all. What
a letdown to roll out shiny new vocabulary and axioms and then reveal that the new
stuff is just an offbeat way of talking about stale old stuff!

Well, the situation is hardly as bad as all that. First, it is a commonplace that you can
get fresh insights by approaching something familiar from a new direction. But, sec-
ond, there is a more specific reason for our preoccupation with interpretability. Sort-
ing out relations of interpretability (what is interpretable as what) is a mathematical
enterprise that helps us understand how various bits and pieces fit together to form
the great edifice of mathematics. Interpretation is a mathematical tool for exploring
the architecture of mathematics. For example, if we show that all the settled results
of mathematical field F are interpretable as assertions derivable from theory T , we
can conclude that T provides a foundation for F . Among other things, this would
mean that all the ideas and assumptions deployed in F can be reconstructed within
T (just as, in the previous chapter, we reconstructed the principles of real number
analysis inside our list theory). So, even if an evil mathematics czar outlawed every-
thing that bears the outward stamp of F , the mathematically essential insights and
methods of F might be preserved in T . If we showed that all settled results in every

mathematical sub-field can be interpreted as assertions derivable from T , we could
conclude that T provides a foundation for all of mathematics. Philosophers who want
to understand mathematics need to understand these architectural analyses: both how

S. Pollard, A Mathematical Prelude to the Philosophy of Mathematics, 101
DOI: 10.1007/978-3-319-05816-0_5,
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they are performed and what they reveal. So another round of interpretability results
seems warranted. First, though, we need our new axioms. Here are some definitions
to prepare the way.

Definition 5.1 One rank precedes another if and only if the first is a member of
the second.

In symbols, using the Greek letter epsilon (‘⇒’) to express the membership relation
and, as in the last two chapters, letting the Greek letter rho (‘ρ’) stand for the rank
function:

ρ(x) precedes ρ(y) if and only if ρ(x) ⇒ ρ(y).

When we discuss the ordering of our ranks, we are talking about which ranks are
members of which. This should not seem so strange after your experience with list-
theoretic numbers that were ordered by the listing relation. When we discussed the
ordering of our numbers, we were talking about which numbers were entries of
which.

Definition 5.2 A set y outranks a set x if and only if ρ(x) precedes ρ(y).

Theorem 3.19 is the inspiration for our first new axiom. We are going to drop the
business about hereditary finiteness and translate the list talk into set talk. Further-
more, we are going to turn our reasoning process upside down, treating our former
theorem as a fundamental premise, an axiom, and deriving facts about sets from it.1

It will simplify our task if we describe a universe inhabited only by sets. Within the
confines of our theory, claims about “every set” will be assertions about everything
in our limited universe.

Axiom 5.1 One set outranks another if and only if some member of the former
outranks each member of the latter.

We will adopt more axioms after some preliminary definitions.

Definition 5.3 Some sets form a set if and only if the former sets are exactly the
members of the latter set.

If sets x and y were to form a set, it would be {x, y}, the set whose members are x

and y.

Definition 5.4 Some sets are, collectively, of bounded rank if and only if there
is a set that outranks all of them.

Axiom 5.2 Any sets of bounded rank will form a set.

Axiom 5.3 There is a set with no members.

1 This clever idea comes from Van Aken [9] (http://www.jstor.org/stable/2273911). For a discussion
of our axioms, see Pollard [6], pp. 161–164, and [7].

http://www.jstor.org/stable/2273911
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How many sets have no members? The next axiom tells us there is exactly one.

Axiom 5.4 Sets with the same members are the same.

We can now let ⇐ be the one and only memberless set. Axioms 5.3 and 5.4 do not
say anything new or amazing. They are just Axioms 3.1 and 3.2 translated into the
language of sets.

Exercise 5.1 Show that ⇐ outranks no set. Show that every set other than ⇐ out-

ranks ⇐.

After yet another definition, we will use our axioms to prove a fundamental theorem.

Definition 5.5 Some sets, the X ’s, are collectively closed under set formation

if and only if any set formed by some of the X ’s is itself one of the X ’s.

If there is such a set as {x, y} and this set is distinct from both x and y, then x and
y are not closed under set formation: x and y form {x, y}, but {x, y} is neither x nor
y. You have to go beyond x and y to encounter the set formed by x and y.

Theorem 5.1 If some sets are closed under set formation and ⇐ is one of them, then

every set is one of them.

Proof Suppose some sets are closed under set formation. Let’s call them “the V -sets”
or “the V ’s”. All the other sets will be “the non-V ’s”. Suppose ⇐ is one of the V ’s,
while x is one of the non-V ’s. Note that every non-V outranks ⇐. Furthermore, ⇐ is
not a member of itself (since ⇐ has no members at all). So there is at least one set
that (1) is outranked by every non-V and (2) is not a member of itself. By Axiom
5.2, all the sets satisfying these conditions will form a set. Let y be this set. Now
consider x : our representative of the non-V ’s. If all of x’s members were V -sets,
then x would be a V -set too (since the V -sets are closed under set formation). So
we can let w be a member of x that is a non-V .2 Since w outranks every member of
y, Axiom 5.1 guarantees that x outranks y. The only information we used about x

is that it is a non-V . So we can conclude that every non-V outranks y. If y is not a
member of itself, then it satisfies both conditions for membership in y and, hence, is

a member of itself. But if y is a member of itself, it must satisfy the second condition
for membership in y and, hence, is not a member of itself. So y is a member of itself
if and only if it isn’t. Since this is absurd, we must have gone wrong somewhere. Our
misstep was back at the start when we assumed that there are non-V ’s. �

The preceding theorem is known as the principle of epsilon- induction. If you
can show that ⇐ has an infection and that every set with infected members is infected,
then you can show that every set is infected.

2 What if there were non-sets in our universe? Then we would have no guarantee that w is a set.
Since non-V ’s are sets that are not V ’s, we would have no reason to believe that w is a non-V . On
the other hand, if we allowed non-sets to be non-V ’s, we could not have inferred that every non-V
outranks ⇐.
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Exercise 5.2 Use epsilon-induction to show that every set outranks its members.

Exercise 5.3 Use epsilon-induction to show that no set outranks itself.

x ⇒ x only if ρ(x) ⇒ ρ(x). So no set is a member of itself.

Theorem 5.2 If x outranks y and y outranks z, then x outranks z.

Proof Exercise 5.1 confirms that the theorem is true when z = ⇐. (If x outranks
y, then x �= ⇐ and, hence, x outranks ⇐.) As an inductive hypothesis, suppose the
theorem comes out true whenever we let z be a member of set s. We want to show
that the theorem is true when z = s. Suppose, then, that x outranks y and y outranks
s. By Axiom 5.1, we can let x ′ be a member of x that outranks every member of y,
while y′ is a member of y that outranks every member of s. Note that x ′ outranks y′.
So, by our inductive hypothesis, x ′ outranks every member of s. Hence, by Axiom
5.1, x outranks s. Since ⇐ satisfies the theorem and the sets satisfying the theorem
are, collectively, closed under set formation, we conclude that every set satisfies the
theorem. �

Definition 5.6 α is a rank if and only if α = ρ(x) for some set x .

In what follows, we will assume that α, β, γ are ranks.

Theorem 5.3 Irreflexivity: α /⇒ α.

Theorem 5.4 Transitivity: If α ⇒ β and β ⇒ γ , then α ⇒ γ .

Theorem 5.5 Well-Foundedness: Given any ranks at all, one will be preceded

by none of the others.

Proof Pick some ranks and call them “the X -ranks”. All other sets will be “non-X ’s”.
If ⇐ is an X -rank, then an X -rank is preceded by no X -rank, as desired. Suppose ⇐

is a non-X . If, in addition, a set is a non-X whenever its members are non-X ’s, then
every set is a non-X , contrary to our assumption that there are X -ranks. So there must
be an X -rank whose members are all non-X ’s. But this means there is an X -rank
preceded by no X -ranks. �

Theorem 5.6 If x outranks every member of y, then y does not outrank x.

Proof Suppose x is a counter-example to the theorem. This means we can pick a y

that satisfies the following condition:

x outranks every member of y even though y outranks x .

By Axiom 5.1, some member of y outranks every member of x . This means we can
pick a member z of y that satisfies the following condition:

z outranks every member of x even though x outranks z.

Such a z would be a counter-example to the theorem outranked by our original
counter-example x . Since this means no counter-example has minimal rank, it would
contradict Theorem 5.5 for there to be any counter-example at all. �
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Recall that, in the Mirimanoff construction ⇐, S⇐, SS⇐, . . ., each number is the
list of prior numbers. We now assume that ranks have a similar property.

Axiom 5.5 Every rank is a set of ranks.

Exercise 5.4 Show that ⇐ is a rank. (You might consider whether ρ(⇐) has any

members.)

Theorem 5.7 Connectedness: Given any two ranks, one will precede the other.

Proof Say that a rank is disconnected if some other rank neither precedes nor is
preceded by it. Suppose there is a disconnected rank. Then we can use Theorem
5.5 to pick a disconnected rank α preceded by no disconnected rank. We say α is a
minimal disconnected rank. Since α is disconnected, there is a rank distinct from α

that neither precedes nor is preceded by α. Use Theorem 5.5 to let γ be a minimal
such rank. If a rank β precedes γ , β will either precede or be preceded by α. (β cannot
be α because α would then precede γ .) If β is preceded by α, then, by Theorem 5.4,
α will precede γ . (α ⇒ β ⇒ γ ♥ α ⇒ γ .) So β will precede α and, more generally,
every rank that is a member of γ will be a member of α. According to Axiom 5.5,
this means that every member of γ is a member of α. Similar reasoning shows that
every member of α is a member of γ . So, by Axiom 5.4, α = γ , contrary to our
assumption that they are distinct. We conclude that there is no disconnected rank.�

Theorem 5.8 ρ(α) = α.

Proof Suppose α is the first rank that violates the theorem. Let α = ρ(x). Then:

β ⇒ α =♥ ρ(β) = β =♥ ρ(β) ⇒ α =♥ ρ(β) ⇒ ρ(x).

So x outranks every member of α and, hence, by Theorem 5.6, α does not outrank
x . That is, ρ(x) /⇒ ρ(α) and, hence, α /⇒ ρ(α). Suppose ρ(α) ⇒ α. Then, by the
minimality of α, ρ(ρ(α)) = ρ(α). Furthermore, by Exercise 5.2, ρ(ρ(α)) ⇒ ρ(α).
So ρ(α) ⇒ ρ(α), contrary to Exercise 5.3. We conclude that ρ(α) /⇒ α. So, by
Theorem 5.7, ρ(α) = α. This means no counter-example to the theorem can have
minimal rank. So Theorem 5.5 guarantees there are no counter-examples at all. �

Exercise 5.5 Show that ρ(ρ(x)) = ρ(x).

Exercise 5.6 Show that β outranks α if and only if α ⇒ β.

Definition 5.7 A set x is a subset of a set y (in symbols, x ∨ y ) if and only if
every member of x is a member of y.

Exercise 5.7 Show that if α �= β and α ∨ β, then α ⇒ β.

Definition 5.8 A set x is transitive if and only if every member of x is a subset
of x (that is, z ⇒ y ⇒ x only if z ⇒ x).

Exercise 5.8 Show that every rank is transitive.
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Axiom 5.5 and Exercise 5.8 guarantee that every rank is a transitive set of ranks.
Now we want to prove the converse.

Exercise 5.9 Show that if x is a set of ranks, then x ∨ ρ(x).

Theorem 5.9 Every transitive set of ranks is a rank.

Proof Suppose x is a transitive set of ranks. We want to show that x has the same
members as ρ(x). Suppose α ⇒ ρ(x). Then, by Theorem 5.8, ρ(α) ⇒ ρ(x). That is,
x outranks α. So, by Theorem 5.6, α cannot outrank every member of x . Suppose β

is a member of x not outranked by α. Then, by Exercise 5.2, β /⇒ α. So, by Theorem
5.7, either α ⇒ β or α = β. In the each case, α ⇒ x . (In the first case, because x is
transitive.) We conclude that ρ(x) ∨ x . Now apply Exercise 5.9 and Axiom 5.4. �

5.2 Two Models

At the beginning of this chapter, I noted that we will explore interpretability relations
between theories. We will consider interpretations or translations that carry us from
one theory to another. We can treat this as an entirely syntactic exercise, assigning
sentences to sentences without ever indicating what those sentences mean. I hope
it will not be too confusing if we follow established usage and (as in Sect. 2.3)
talk about “interpretations” of another sort, interpretations that offer readings of
individual theories rather than mappings between theories. In such a reading of our
set theory, we would (1) specify our universe of discourse (we would indicate
what we are discussing when we say “every set”, “any sets,” “some set”, or “some
sets”); (2) indicate which objects in our universe are members of which objects; and
(3) indicate which objects in our universe are the ranks of which objects. Recall,
from Chap. 2, that a model of our set theory would be an interpretation that makes
all our axioms true. At the moment, our only axioms are 5.1–5.5 (though we will
add more in a bit).

Here is a very simple interpretation. Let our universe of discourse consist of the
lamp on my desk. When we say that all or some objects in the universe have a certain
property, we will just mean that the lamp has that property. The lamp will count as
a set, it will have no members, and its rank will be itself.

If we eliminate defined vocabulary and translate things into a kind of logicianese,
Axiom 5.1 reads as follows.

Every set x and every set y is such that [ρ(x) ⇒ ρ(y) if and only if some member z of y is
such that [every member w of x is such that [ρ(w) ⇒ ρ(z)]]].

If that looks like gibberish, a more formal version may be helpful.

∃x∃y((x is a set ≤ y is a set) ∧ (ρ(x) ⇒ ρ(y) ∀ ∞z ⇒ y∃w ⇒ x ρ(w) ⇒ ρ(z))).

According to the above interpretation, this says that my lamp is a member of my
lamp if and only if some member of my lamp has a certain property that we need not

http://dx.doi.org/10.1007/978-3-319-05816-0_2
http://dx.doi.org/10.1007/978-3-319-05816-0_2
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analyze further. Since my lamp has no members, both sides of this biconditional are
false and, hence, the biconditional itself is true.3 So our interpretation makes Axiom
5.1 true.

Exercise 5.10 Show that our interpretation makes Axioms 5.2–5.5 true.

You have confirmed that our interpretation is a model of our set theory: we can
make all our axioms true in a universe that has only one thing in it. So our theory,
though certainly consistent, is not yet of much mathematical use: it does not assert
the existence of things that behave like the natural numbers or the real numbers
or other interesting objects of mathematical investigation. In the next section, we
shall consider how to strengthen our theory. First, however, we consider another
interpretation of our theory.

Once again, we let my lamp be the only object in our universe and we let my
lamp’s rank be my lamp. This time, though, we give my lamp a member: itself. Let
λ be my lamp. Then we have assumed the following: λ ⇒ λ and ρ(λ) = λ. Since
ρ(λ) ⇒ ρ(λ), λ is of bounded rank. So Axiom 5.2 says our universe must feature a
set {λ} whose only member is λ. Indeed it does, because λ = {λ}.

Exercise 5.11 Confirm that our new interpretation makes Axioms 5.1, 5.2, 5.4, and

5.5 true, but makes Axiom 5.3 false.

You have just shown that Axiom 5.3 is independent: it does not follow from the
other axioms of our theory. If it did follow, it would not be possible for it to be false
while the other axioms are true. But you just showed that this is possible.

5.3 How Many Ranks?

Axiom 5.2 is only too happy to give us lots of sets as long as we hold up our end:
we need to be good at showing that sets are of bounded rank. It will be easier for
us to do that if there are lots of ranks. For example, if there is a non-empty rank, it
will outrank ⇐. Since ⇐ will then be of bounded rank, there will be a set whose only
member is ⇐. That is, Axiom 5.2 will give us {⇐}. If there are two non-empty ranks,
the larger of them will outrank both ⇐ and {⇐} and Axiom 5.2 will give us {⇐, {⇐}}

and {{⇐}}. Here is an axiom that gives us infinitely many ranks.

Axiom 5.6 Every rank precedes some rank.

I am not saying that some rank is preceded by every rank. (It would then have to
precede itself.) The point is, on the contrary, that there is no maximum rank. Given
any rank α, there is a rank preceded by α.

Exercise 5.12 Show that each set is outranked by some set.

3 A biconditional is an “if and only if” statement. In classical logic, a biconditional �φ ∀ ψ� is
true when φ and ψ are both false (or both true).
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Exercise 5.13 Show that any sets x, y will form a set {x, y}.

Exercise 5.14 Show that any members of a set will form a set.

Exercise 5.15 Show that if x is a set, then the members of x’s members form a

set
⋃

x

Exercise 5.16 Show that the subsets of any set x form a set Px.

You have just derived four of the axioms of Zermelo’s set theory Z (mentioned in
Chaps. 3 and 4). Our Axiom 5.4 is another Z axiom.

Theorem 5.10 The members of any sets x, y form a set x √ y.

Proof Note that x √ y =
⋃

{x, y}. �

Definition 5.9 α + 1 = α √ {α} .

Exercise 5.17 Show that α + 1 is the first rank preceded by α.

Note that the sets outranked by α are of bounded rank and, so, form a set.

Definition 5.10 V (⇐) = ⇐. If α outranks any sets, then the members of V (α) are
the sets outranked by α.

That is, x ⇒ V (α) if and only if ρ(x) ⇒ α. So x ⇒ V (ρ(y)) if and only if y outranks
x .

Exercise 5.18 Show that V (α) is transitive.

Exercise 5.19 Show that V (α + 1) ∨ PV (α).

Exercise 5.20 Show that PV (α) ∨ V (α + 1). (It might help if you suppose α =

ρ(z).)

Theorem 5.11 V (α + 1) = PV (α).

Exercise 5.21 Show that if α ⇒ β, then V (α) ∨ V (β).

Exercise 5.22 Show that if α ⇒ β, then V (α) ⇒ V (β).

Theorem 5.12 ρ(x) is the first α such that x ∨ V (α).

Proof By Exercises 5.2 and 5.5, y ⇒ x only if ρ(y) ⇒ ρ(ρ(x)). So ρ(x) outranks
every member of x and, hence, x ∨ V (ρ(x)). Suppose x ∨ V (α). Then α outranks
every member of x . So, by Theorem 5.6, x does not outrank α and, hence, by Theorem
5.7, ρ(x) ⇒ α or ρ(x) = α, as desired. �

Theorem 5.13 ρ(x) + 1 is the first α such that x ⇒ V (α).

http://dx.doi.org/10.1007/978-3-319-05816-0_3
http://dx.doi.org/10.1007/978-3-319-05816-0_4
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Proof Theorems 5.11 and 5.12 let us reason as follows:

x ∨ V (ρ(x)) =♥ x ⇒ PV (ρ(x)) =♥ x ⇒ V (ρ(x) + 1).

According to Exercise 5.17, ρ(x)+1 is the first rank preceded by ρ(x). So ρ(x) ⇒ α

only if α /⇒ ρ(x) + 1. But x ⇒ V (α) only if ρ(x) ⇒ α. So x ⇒ V (α) only if
α /⇒ ρ(x) + 1. That is, ρ(x) + 1 is minimal. �

Exercise 5.18 and Theorem 5.13 yield the following.

Theorem 5.14 Every set is a member of a transitive set.

Exercise 5.23 Show that ρ(V (α)) = α.

Exercise 5.24 Show that V (α) ⇒ V (β) only if α ⇒ β.

5.4 Equiconsistency

We turn now to the task of showing that our new set theory is interpretable in our old
list theory—and vice versa. Here our interest is inter-theoretic interpretation. We will
consider translations that carry us from one theory to another. Recall our definition
of ‘Frege-precursor’ from Chap. 3: x is a Frege-precursor of y if and only if, given
any entry-closed lists, if y is one of those lists, then so is x . We now translate this
definition from the language of list theory into the language of set theory.

Definition 5.11 Some sets are, collectively, member- closed if and only if each
member of one of them is itself one of them.

Definition 5.12 x is a Frege- precursor of y if and only if, given any member-
closed sets, if y is one of those sets, then so is x .

We will now consider a new definition of ‘precursor’ and will show that the
precursors of a set are exactly its Frege-precursors.

Definition 5.13 x is a precursor of y if and only if x is a member of every transitive
set that has y as a member.

Suppose x is a precursor of y. We want to show that x is also a Frege-precursor
of y. Pick some sets that are, collectively, member-closed. Call them “the M-sets”.
Then every member of an M-set is an M-set. Suppose y is an M-set. We want to
show that x is an M-set too. Consider the M-sets that do not outrank y. Since these
sets are of bounded rank, they form a set z.

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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Exercise 5.25 Show that the set z described above is transitive.

Since y does not outrank itself, it is a member of z. So, by Definition 5.13, x is a
member of z and, hence, x is an M-set. We conclude that x will appear among some
member-closed sets whenever y does. That is, x is a Frege-precursor of y. More
generally, every precursor of a set is a Frege-precursor. We now want to prove the
converse.

Suppose x is a Frege-precursor of y. Suppose y is a member of the transitive set
z. Then z’s members, collectively, have the property that every member of one of
them is itself one of them. That is, z’s member are, collectively, member-closed. So,
by Definition 5.12, x is one of z’s members. We conclude that x will be a member
of a transitive set whenever y is. That is, x is a precursor of y.

Set precursors are just like list precursors: the precursors of a set y are what tireless
immortal beings encounter when they start with y and persist in tracking down the
members of everything they encounter. Precursors of y are y itself, the members of
y, the members of y’s members, and so on.

Exercise 5.26 Show that the precursors of a set x form a set Sx . (You might start

by confirming that each precursor of x is a member of V (ρ(x) + 1)).

Exercise 5.27 Show that if y is transitive, then Sy = y √ {y}. (You might first show

that y √ {y} is transitive.)

Note that, in particular, Sα = α + 1.

Theorem 5.15 Any sets of precursors of a set will form a set.

Proof Any set of precursors of a set x will be a subset of Sx and, hence, a member
of P Sx . Now apply Exercise 5.14. �

When we translate Axioms 3.1–3.3 from the language of list theory into the
language of set theory we obtain Axiom 5.3, Axiom 5.4, and Theorem 5.15. If φ is
a sentence in the language of list theory that follows from Axioms 3.1–3.3, then the
translation of φ into the language of set theory will follow from Axiom 5.3, Axiom
5.4, and Theorem 5.15 and, hence, will follow from Axioms 5.1–5.6 (since Theorem
5.15 follows from Axioms 5.1–5.6). So every result we obtained from Axioms 3.1–
3.3 becomes, when suitably translated, a theorem of our set theory and we can treat
it as such without bothering to give a whole new proof.

Suppose Axioms 3.1–3.3 are inconsistent. Then every sentence in the language
of list theory follows from them. This would include the absurdity:

Some list both is and is not an entry of itself.

Our translation of this sentence into the language of set theory is:

Some set both is and is not a member of itself.
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Since this sentence is absurd, we conclude that Axioms 3.1–3.3 are inconsistent
only if Axioms 5.1–5.6 are. So any evidence for the consistency of Axioms
5.1–5.6 is evidence for the consistency of Axioms 3.1–3.3. We say Axioms 3.1–
3.3 are consistent “relative to” Axioms 5.1–5.6. We also say that Axioms 3.1–3.3 are
interpretable in Axioms 5.1–5.6.

We have just seen how to interpret the list-theoretic claims of Axioms 3.1–3.3 as
set-theoretic claims that follow from Axioms 5.1–5.6. We now want to reverse course
and show how to interpret the set-theoretic claims of Axioms 5.1–5.6 as list-theoretic
claims that follow from Axioms 3.1–3.3. We read “set” as “hereditarily finite list”
and “member of” as “entry of”. We use Definition 3.13 to interpret the notion of rank.
Theorem 3.19, then, is our translation of Axiom 5.1. Exercise 3.43 is our translation
of Axiom 5.2. Axiom 5.3 presents no difficulties: the blank list is a hereditarily finite
list with no hereditarily finite entries. Exercise 3.32 is our list-theoretic version of
Axiom 5.4. Our list-theoretic interpretation of “rank” makes Axioms 5.5 and 5.6
true because every number is a list of numbers (Exercise 4.5) and every number is an
entry of a number. So we have shown how to make Axioms 5.1–5.6 come out true in
the universe of hereditarily finite lists. If φ is a sentence in the language of set theory
that follows from Axioms 5.1–5.6, then the translation of φ into the language of list
theory will follow from Axioms 3.1–3.3. So every result we obtained from Axioms
5.1–5.6 becomes, when suitably translated, a theorem of our list theory and we can
treat it as such without bothering to give a whole new proof.

If it follows from Axioms 5.1–5.6 that every set both is and is not a member
of itself, then it will follow from Axioms 3.1–3.3 that every hereditarily finite list
both is and is not an entry of itself. Axioms 5.1–5.6 are inconsistent only if Axioms
3.1–3.3 are. So any evidence for the consistency of Axioms 3.1–3.3 is evidence for
the consistency of Axioms 5.1–5.6. Having proved relative consistency in both
directions, we say that Axioms 3.1–3.3 and Axioms 5.1–5.6 are equiconsistent.
We have shown: Axioms 3.1–3.3 are consistent if and only Axioms 5.1–5.6 are.

5.5 Even More Ranks

Our first interpretability result from the previous section allows us to exploit the
number theoretic results of Chap. 3. In particular, we can assume that the numbers

⇐, S⇐, SS⇐, . . .

that is,

⇐, {⇐}, {⇐, {⇐}}, . . .

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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are well-defined and obey an induction principle. Given induction, Exercises 5.4,
5.17, and 5.27 imply that each number is a rank. What about the converse? Is every
rank a number? Suppose some rank is not and use Theorem 5.5 to let β be the first
such rank. This means β is a set of numbers. Since ⇐ is a number, but β is not, β

is non-empty. Exercises 5.4 and 5.7 imply that ⇐ is a member of every non-empty
rank. So ⇐ ⇒ β. Suppose the number n is a member of β, but Sn is not. Since β is
transitive, Sn cannot be a member of any member of β. Given any two numbers, one
will be a member of the other. So every member of β is a member of Sn. On the other
hand, the members of Sn are n and the members of n and these are all members of
β. But this means β = Sn, contrary to our assumption that β is not a number. We
conclude that Sn is a member of β whenever n is and, more generally, that every
number is a member of β. A rank that is not a number will have every number as a
member.

We are going to translate this result into the language of list theory so we can apply
the second interpretability result from the previous section. To be sure we know what
we are translating, let us express our result more formally. On the assumption that
some rank x is not a number, we have found that x will, first of all, have the following
property.

∞y(y ⇒ x ≤ ∃z z /⇒ y)

Our translation of this will say that x is a hereditarily finite list with a hereditarily
finite entry y that has no hereditarily finite entries. Since super-numbers list the
entries of their entries, entries of hereditarily finite lists are themselves hereditarily
finite. So y will have no entries at all and our translation will say that x lists the blank
list. Returning to the world of sets, the set x (the rank that is not a number) will also
have the following property.

∃w(w ⇒ x ∧ w √ {w} ⇒ x)

In the language of set theory, the term ‘w √ {w}’ refers to the set whose members
are w and the members of w. If w were a hereditarily finite list, Exercises 3.28 and
3.30 would assure us that there is a hereditarily finite list whose entries are w and
the entries of w. When we do our translation, we can let ‘w √ {w}’ refer to that list.
So our translation says there is a hereditarily finite list x that lists ⇐ and lists w √ {w}

whenever it lists w. We can use induction and Theorem 3.7 to show that such an x

will list every number.
If Axioms 5.1–5.6 imply that some rank is not a number, then, by the second

interpretability result from the previous section, Axioms 3.1–3.3 imply that some
hereditarily finite list lists every number. Since this contradicts Theorem 3.17, it
would mean that Axioms 3.1–3.3 are inconsistent. If you believe these axioms are
consistent, you can think of our argument as a reductio ad absurdum. Here is the
sequence of entailments, starting with the assumption to be reduced to absurdity.
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Axioms 5.1–5.6 prove that some rank is not a number

⇓
Axioms 5.1–5.6 prove that the numbers form a set

⇓
Axioms 3.1–3.3 prove that the numbers form a hereditarily finite list

⇓
Axioms 3.1–3.3 are inconsistent.

We conclude: if Axioms 3.1–3.3 are consistent (or, equivalently, if Axioms 5.1–5.6
are consistent), then Axioms 5.1–5.6 do not imply that there are any ranks other than
the numbers ⇐, S⇐, SS⇐, . . .. If we want a rank that is not a number, we will have to
adopt a new axiom. We are going to adopt an axiom that gives a rank ω that has all
the numbers as its members.

Definition 5.14 α immediately precedes γ if and only if α ⇒ γ but for no β do
we have α ⇒ β ⇒ γ . A rank that precedes γ is said to be a predecessor of γ . A
rank that immediately precedes γ is said to be γ ’s immediate predecessor.

Exercise 5.28 Confirm that a rank can have at most one immediate predecessor.

(Note, too, that we already know of a rank with no immediate predecessor.)

Exercise 5.29 Confirm that every number other than ⇐ has an immediate

predecessor.

Axiom 5.7 There is a non-empty rank with no immediate predecessor.

Since ⇐ is the only number with no immediate predecessor, Axiom 5.7 implies
that some rank is not a number and, so, is independent of the other set axioms (if our
first three list axioms are consistent).

Definition 5.15 Let ω be the first rank that satisfies Axiom 5.7

Theorem 5.16 Every number is a member of ω.

Proof Exercise 5.29 implies that ω is not a number. Now just apply the argument I
gave a few paragraphs ago about ranks that are not numbers. �

Theorem 5.17 Every member of ω is a number.

Proof Let β be the first member of ω that is not a number. Then every member of
β is a number. Furthermore, since β is a rank that is not a number, every number
is a member of β. Given any predecessor n of β, we will have: n ⇒ Sn ⇒ β. So β

is a non-empty rank with no immediate predecessor, contradicting the minimality
of ω. �
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The members of ω are the numbers ⇐, S⇐, SS⇐, . . .. According to Definition 5.10,
the members of V (ω) are the sets outranked by ω. So we have:

x ⇒ V (ω) ⇐♥ ρ(x) ⇒ ω ⇐♥ ρ(x) is a number.

Just as in the world of lists, something is a number if and only if it is an entry or, as
we now say, a member of a number. So:

ρ(x) is a number ⇐♥ ρ(x) ⇒ n for some number n.

That is, ρ(x) is a number if and only if x is outranked by a number. Since the members
of V (n) are the sets outranked by n, we conclude:

x ⇒ V (ω) ⇐♥ x ⇒ V (n) for some number n.

By Definition 5.10, Theorem 5.11, and Exercises 5.8 and 5.27,

V (0) = ⇐

V (Sn) = PV (n).

So, just as in Chap. 3, we can show that the sets V (n) are the super-numbers
⇐, P⇐, P P⇐, . . .. If we say that a hereditarily finite set is any member of a super-
number, the members of V (ω) are the hereditarily finite sets. This confirms the
following theorem.

Theorem 5.18 The hereditarily finite sets form a set.

For brevity’s sake, we say that Axioms 3.1, 3.2, 3.3, and 4.1 are “the list axioms”,
while Axioms 5.1–5.7 are “the set axioms”. We have just confirmed that the trans-
lation of Axiom 4.1 is derivable from the set axioms. We already know that the
translations of Axioms 3.1–3.3 are derivable. So, if φ is a sentence in the language
of list theory that follows from the list axioms, the translation of φ into the language
of set theory will follow from the set axioms. The list axioms, then, are inconsistent
only if the set axioms are. Any evidence for the consistency of the set axioms is
evidence for the consistency of the list axioms.

Results from Chap. 4 let us establish the converse. To translate statements about
sets into statements about lists, we read “set” as “Zermelian list” and “member of” as
“entry of”. Theorem 4.2 translates Axiom 5.1. Exercises 4.20–4.23 translate Axioms
5.2–5.5. As for Axioms 5.6 and 5.7, note two things. First, every rank is an entry of
a rank. Second, ω is a rank with entries and each entry of ω is listed by an entry of
ω. We conclude: if φ is a sentence in the language of set theory that follows from
the set axioms, then the translation of φ into the language of list theory will follow
from the list axioms. The set axioms are inconsistent only if the list axioms are.

http://dx.doi.org/10.1007/978-3-319-05816-0_3
http://dx.doi.org/10.1007/978-3-319-05816-0_4
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Any evidence for the consistency of the list axioms is evidence for the consistency
of the set axioms. Indeed, given our earlier result, we see that the list axioms and
the set axioms are equiconsistent: the list axioms are consistent if and only the set
axioms are.

5.6 V (ω + ω) and Beyond

We have seen that our set axioms all come out true in the universe of Zermelian lists.
All the mathematics you are likely to encounter in an undergraduate mathematics
course can be reconstructed within this universe. If, however, you want an even more
robust set theory, a set theory that makes demands on its models not satisfied by the
Zermelian universe, you should consider adding axioms that give you more ranks.
As we discussed in Sect. 5.3, ranks are the fuel that drives the production of sets.

What is missing from the universe of Zermelian lists? ω + ω, if it existed, would
list all the entries of all the higher ranks

ω + 0, ω + 1, ω + 2, . . .

just as ω lists all the entries of all the numbers

0, 1, 2, . . . .

ω + ω would, in fact, be the list of all Zermelian ranks. As a transitive set of ranks,
ω + ω would, by Theorem 5.9, itself be a rank. So, if ω + ω were Zermelian, it
would list itself. But this cannot happen, because we know Theorem 5.3 is true in the
universe of Zermelian lists.4 So ω +ω is missing from the Zermelian universe and it
does not follow from our set axioms that there are any ranks other than the numbers
⇐, S⇐, SS⇐, . . . and the higher ranks ω, Sω, SSω, . . ..5 Summarizing the argument:

• Premise: Our set axioms are all true in the universe of Zermelian lists.
• Premise: Anything implied by our set axioms will be true wherever those axioms

themselves are true.
• Premise: In the universe of Zermelian lists, there is no list of all Zermelian ranks.
• Conclusion: Our set axioms do not imply that there is a set of such ranks.

4 Similar reasoning yields the Burali-Forti paradox in some versions of set theory. See Burali-Forti
[1]; English translation in van Heijenoort [10], pp. 104–111.
5 OK, there is another alternative. Maybe our set axioms are inconsistent and the whole notion of
a universe of Zermelian lists is fundamentally incoherent. A good reason to believe this wrong is
that some profound minds have thought deeply about the Zermelian universe and have detected no
incoherence. A prominent mathematician who thought he did detect incoherence was Hermann

Weyl (1885–1955), who believed classical set theory was “permeated by the poison of contradic-
tion”. (See Weyl [11], p. 23; English translation in Weyl [12], p. 32.) For an argument that Weyl
should be taken seriously in general, but not in this case, see Pollard [8].
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This means it would strengthen our set theory to suppose that, say, there is more than
one non-empty rank with no immediate predecessor. This would give us ω + ω. It
would also give us a set V (ω + ω) in which our set axioms all come out true: what
had served as the universe of all sets would become a set.

Exercise 5.30 Consider the set theory consisting of Axioms 5.1–5.6 and a version

of Axiom 5.7 asserting that there are at least two non-empty ranks with no immediate

predecessors. Describe a rank whose existence does not follow from these axioms.

The preceding exercise might leave us wishing for a less piecemeal approach.
No sooner do we escape the Zermelian universe than we discover a rank missing
from our new universe. Could we manage a more dramatic gesture that gives us
lots of ranks all at once and doesn’t leave any gaps that are too obvious? Here is an
idea. If it existed, the rank ω+ω would be well-ordered by the membership relation.
Recall, from Sect. 3.6, that a well-ordering is a transitive, irreflexive, connected, well-
founded relation. The “less than” relation on the natural numbers is an example. It
is transitive

m < n < p only if m < p

irreflexive
m �< m

and connected
m = n or m < n or n < m.

As for well-foundedness, if you pick any natural numbers, one of them will be less
than all the others. (No matter what numbers you pick, there will be a “bottom” one.)
The membership relation has these same properties inside of ω and would have them
inside of ω + ω. Well-ordered by membership, ω + ω would look like two copies of
ω (two copies of the natural numbers) placed one after another. The numbers

⇐, S⇐, SS⇐, . . .

would form the first copy of ω, while the higher ranks

ω, Sω, SSω, . . .

would form the second. Now, whether or not ω + ω exists, we can re-arrange the
natural numbers themselves so that they too look like two copies of ω. For example,
we can let the even numbers 0, 2, 4, . . . be the first copy of ω, to be followed by the
odd numbers 1, 3, 5, . . . forming the second copy. The natural numbers would then
be arranged in the same way as the Zermelian ranks (the numbers n plus the higher
ranks ω + n). This suggests the following association of numbers with ranks.

f (2n) = n

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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f (2n + 1) = ω + n.

The function f associates numbers with ranks as follows.

0 2 4 . . . 1 3 5 . . .

↓ ↓ ↓ ↓ ↓ ↓

0 1 2 . . . ω + 0 ω + 1 ω + 2 . . .

Or, if you prefer:

0 1 2 3 4 5 . . .

↓ ↓ ↓ ↓ ↓ ↓

0 ω + 0 1 ω + 1 2 ω + 2 . . .

Depending on how you look at it, the function f shows us how to make the natural
numbers look like the Zermelian ranks or it shows us how to make the Zermelian
ranks look like the natural numbers.

How will this help us to get lots of new ranks? Here is a proposition that would
allow us to use functions like f to generate ranks.

Proposition 5.1 Whenever there is a function that takes us from the members of a

set to some ranks, those ranks themselves form a set.

Our function f takes us from the members of the set ω to the Zermelian ranks.
So Proposition 5.1 would give us a set whose members are the Zermelian ranks.
Proposition 5.1 would give us ω + ω. Here is another way of thinking about it: if
the members of a set, ordered by some relation, exhibit the same structure as some
ranks, ordered by membership, then those ranks form a set. Since we can make the
members of ω look like two copies of ω and the membership relation makes the
Zermelian ranks look like two copies of ω, those ranks form a set. Alternatively, if
you can make some ranks look like the members of a set, ordered by some relation,
then, again, those ranks form a set. Since we can rearrange the Zermelian ranks so
that they look like the members of the set ω, the Zermelian ranks form a set.

Exercise 5.31 If ω ·2 (“omega times two”) looks like two copies of ω and ω ·n looks

like n copies of ω, what does ω2 (“omega squared”) look like? Use Proposition 5.1

to show that ω2 exists.

Here is one way to motivate Proposition 5.1. If we abstract from everything but
order, then the even natural numbers in their standard order look just like all the
natural numbers in their standard order.

0 2 4 6 8 . . .

0 1 2 3 4 . . .
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We might say that these two structures are instances or tokens of the same type, the
same order type. Each type of well-ordering is known as an ordinal. Now if we
start talking freely about ordinals, someone might reasonably ask us whether these
ordinals are supposed to be objects in the universe of sets and, if so, what objects.
Structures that look like the members of our rank ω, structures that look like the
natural numbers in their standard order, are traditionally said to be of order type ω:
their ordinal is ω. Perhaps we should identify the ordinal ω with our rank ω. Perhaps
we should, quite generally, identify ordinals with ranks. In the absence of Proposition
5.1, this would lead immediately to problems. We want every well-ordering to be a
well-ordering of some type. We want there to be an ordinal for every well-ordering.
The Zermelian universe V (ω + ω) features well-ordered structures of type ω + ω

but no rank ω + ω. So our set axioms will leave us unable to prove that every well-
ordering has an ordinal if we identify ordinals with ranks. Proposition 5.1 is a way
of responding to this problem. Given Proposition 5.1, ω + ω exists because it is the
order type of a well-ordered set—that is, because we can make the members of the
set ω look like the Zermelian ranks.6

Chapters 3–5 have given you three big doses of set theory. You ought to know,
however, that you have only just begun to learn about a majestic, audacious mathe-
matical construction that ignited the imagination of some of the most profound minds
of the last century. You should explore further on your own.7 Our next two chapters,
however, are going to stray from the set theoretic mainstream. We begin with Frege’s
uncanny demonstration that arithmetic is a stew consisting almost entirely of ideas
and methods drawn from pure logic.

5.7 Solutions of Odd-Numbered Exercises

5.1 ⇐ outranks a set x if and only if some member of ⇐ outranks each member of
x . But ⇐ has no members. A set x will outrank ⇐ if and only if some member of x

outranks each member of ⇐. If x �= ⇐, then, by Axiom 5.4, x has members. Any
member of x will outrank each member of ⇐—again, because ⇐ has no members.

5.3 By Exercise 5.1, ⇐ does not outrank itself (because it outranks nothing). Suppose
no member of x outranks itself. Then no member of x outranks each member of x .
So, by Axiom 5.1, x does not outrank itself.

5.5 By Definition 5.6, ρ(x) is a rank. Theorem 5.8 applies to every rank α. So
ρ(ρ(x)) = ρ(x).

6 Proposition 5.1 is a version of the Replacement Axiom of Abraham Fraenkel (1891–1965)
and Thoralf Skolem (1887–1963). See Fraenkel [2], p. 231, and van Heijenoort [10], p. 297. For
an especially clear demonstration that Replacement supplies every well-ordered set with an ordinal,
see Kunen [5], p. 17. For an overview of the history, see Kanamori [4].
7 You might start with Kunen [5] for the mathematics and Hallett [3] for the history.

http://dx.doi.org/10.1007/978-3-319-05816-0_3
http://dx.doi.org/10.1007/978-3-319-05816-0_5
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5.7 If β ⇒ α ∨ β, then β ⇒ β—contrary to Theorem 5.3. So β /⇒ α and, since α �= β,
Theorem 5.7 guarantees that α ⇒ β.

5.9 Suppose x is a set of ranks and α ⇒ x . By Exercise 5.2, ρ(α) ⇒ ρ(x) and, hence,
by Theorem 5.8, α ⇒ ρ(x). We conclude that x ∨ ρ(x).

5.11 Axiom 5.1 says that my lamp outranks my lamp if and only if some member
of my lamp outranks each member of my lamp. Both halves of the biconditional are
true: my lamp does outrank my lamp and, furthermore, my lamp’s only member out-
ranks my lamp’s only member (since my lamp’s only member is my lamp). Axiom
5.2 says: if my lamp is of bounded rank, then there is a set whose only member is
my lamp. Well, my lamp is of bounded rank and is itself a set whose only member
is my lamp. Axiom 5.3 is false because the only set in the universe (my lamp) has a
member (itself). Axiom 5.4 is true because there is only one set in the universe and,
in the absence of distinct sets, there cannot be distinct sets with the same members.
Axiom 5.5 is true because our one rank has itself as its only member.

5.13 Pick sets x, y. Theorem 5.7 lets us assume that ρ(x) either precedes ρ(y) or
is ρ(y). Axiom 5.6 lets us pick a rank α preceded by ρ(y). By Theorem 5.4, ρ(x)

precedes α. So the sets x, y are collectively of bounded rank and, hence, by Axiom
5.2, form a set.

5.15 Suppose z ⇒ y ⇒ x . By Exercise 5.2 and Theorem 5.2, x outranks z. We con-
clude: the members of x’s members are of bounded rank and, so, we can apply Axiom
5.2.

5.17 Suppose β ⇒ (α √ {α}). Then either β ⇒ α or β = α. By Theorems 5.3 and 5.4,
α /⇒ β. We conclude: if α precedes β, then β does not precede α + 1. But is α + 1 a
rank? According to Theorem 5.9, the answer will be “yes” if α √ {α} is a transitive
set of ranks. It is a set of ranks because α is both a rank and (Axiom 5.5) a set of
ranks. As for transitivity, suppose γ ⇒ β ⇒ (α √ {α}). Case 1: β ⇒ α. By Theorem
5.4, γ ⇒ α. Case 2: β = α. Again, γ ⇒ α. So, in each case, γ ⇒ (α √ {α}).

5.19 Suppose x ⇒ V (α + 1). Then ρ(x) ⇒ (α + 1) and, hence, either ρ(x) ⇒ α or
ρ(x) = α. We want to show that x ∨ V (α) (since it then follows that x ⇒ PV (α)).
Suppose y ⇒ x . By Exercise 5.2, ρ(y) ⇒ ρ(x) and, hence, by Theorem 5.4, ρ(y) ⇒ α.
That is, y ⇒ V (α).

5.21 Theorem 5.4 and Definition 5.10 let us reason as follows

x ⇒ V (α) =♥ ρ(x) ⇒ α ⇒ β =♥ ρ(x) ⇒ β =♥ x ⇒ V (β).

5.23 According to Theorem 5.12, ρ(V (α)) is the first rank β such that V (α) ∨ V (β).
So, since V (α) ∨ V (α), α /⇒ ρ(V (α)). On the other hand, suppose ρ(V (α)) ⇒ α.
Then, by Exercise 5.22, V (ρ(V (α))) ⇒ V (α). But, by Theorem 5.12, V (α) ∨
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V (ρ(V (α))). So V (ρ(V (α))) ⇒ V (ρ(V (α)))—contrary to Exercises 5.2 and 5.3.
Now apply Theorem 5.7.

5.25 Suppose v ⇒ w ⇒ z. Since w is an M-set, so is v. Since w outranks v but does
not outrank y, v does not outrank y. So v ⇒ z.

5.27 Suppose y is transitive. We want to show that y √ {y} is transitive. Suppose
w ⇒ x ⇒ (y √ {y}). Then either x ⇒ y or x = y. In each case, w ⇒ y and, hence,
w ⇒ (y √ {y}). Since y √ {y} is transitive and y ⇒ (y √ {y}), every precursor of y is
a member of y √ {y}. That is, Sy ∨ (y √ {y}). On the other hand, (y √ {y}) ∨ Sy

since y and all its members are precursors of y. Now apply Axiom 5.4.

5.29 Suppose n ⇒ k ⇒ Sn. By Exercise 5.27, either n ⇒ k = n or n ⇒ k ⇒ n—
contrary to Theorems 5.3 and 5.4. So the immediate predecessor of Sn is n. Every
number is either ⇐ or a successor. So every non-zero number has an immediate pre-
decessor.

5.31 ω2 looks like ω copies of ω. Here is one way to rearrange the members of ω\{0}

to look like that. Let the odd numbers be the first copy of ω. Multiply each odd
number by 2 to get the second copy. Multiply those numbers by 2 to get the third
copy. And so on. We end up with the following structure.

1 3 5 7 9 11 . . .

2 6 10 14 18 22 . . .

4 12 20 28 36 44 . . .

8 24 40 56 72 88 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

The nth copy of ω is the result of multiplying each odd number by 2n−1. The factor-
ization (2m − 1) · 2n−1 tells us to look in column m on row n. For example,

36 = 9 · 22 = (2 · 5 − 1) · 23−1.

So 36 appears in column 5 on row 3. Since every positive integer is the product of an
odd number and a power of 2, we are not leaving out any members of ω\{0}. Here is
another way to think about it. Write down the odd numbers and the powers of 2 first.

1 3 5 7 9 11 . . .

2
4
8
.
.
.

Treat the odd numbers 3, 5, 7, 9, 11, . . . as column labels and the powers 2, 4, 8, . . .

as row labels. Fill in the table by putting j · k in column j on row k.
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Chapter 6

Frege Arithmetic

6.1 The Language of FA

If you ask to see a formalization of arithmetic, a mathematician who knows about
such things will probably point you toward Peano Arithmetic. We will now consider
an alternative formalization of number theory derived from the work of Gottlob
Frege. We will also consider an unsuccessful Fregean approach to the foundations
of set theory. As with our treatment of PA in Chap. 2, we will not present a formal
logic for our new version of number theory. Our proofs will be informal. Be assured,
however, that Frege himself provided a fully formalized version of the underlying
logic.1

The language of Frege Arithmetic (FA) has the following vocabulary.

1. Two connectives: ‘−’ (“not”), ‘⇒’ (“if …then”).
2. A quantifier: ‘⇐’ (“for all”).
3. The identity symbol: ‘=’.
4. One function symbol: ‘#’ (“number of”).
5. Infinitely many object variables: ‘w’, ‘x’, ‘y’, ‘z’, ‘w1’, ‘x1’, ‘y1’, ‘z1’, ‘w2’,

‘x2’, ‘y2’, ‘z2’, …
6. Infinitely many property variables: ‘F’, ‘G’, ‘H ’, ‘F1’, ‘G1’, ‘H1’, …
7. Infinitely many relation variables: ‘P’, ‘Q’, ‘R’, ‘P1’, ‘Q1’, ‘R1’, …
8. Two parentheses: ‘(’, ‘)’.

The object terms of FA are the object variables and any expression �#τ �

where τ is a property variable. The idea is that #F is the number of things that have
property F . If F were the property of being a prefecture of Japan, then #F would
be the number of Japanese prefectures: that is, #F would be 47. As the expression

1 Informality will not be our only departure from Frege. So be warned: this chapter does not pretend
to offer a close reading of Frege’s own exposition. It draws freely on later reconstructions such as
the one in George and Velleman [7]. For Frege’s own version, see [4] and [5]. For some helpful
commentary, see Boolos and Heck [1].

S. Pollard, A Mathematical Prelude to the Philosophy of Mathematics, 123
DOI: 10.1007/978-3-319-05816-0_6,
© Springer International Publishing Switzerland 2014
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“object term” suggests, numbers are classified as objects. # is a function that assigns
an object (a number) to each property.

We recursively define the formulas of FA as follows.

9. If α and β are object terms, then �α = β� is a formula.
10. If α is an object term and τ is a property variable, then �τ α� is a formula.
11. If α and β are object terms and υ is a relation variable, then �υαβ� is a formula.
12. If φ and ψ are formulas, then so are �−φ� and �(φ ⇒ ψ)�.
13. If µ is a variable and φ is a formula, then �⇐µ φ� is a formula.

Property variables range over properties. ‘Fx’ says that object x has property F .
Relation variables range over binary (two-place) relations. ‘Rxy’ says that object x

stands in relation R to object y.
We define free and bound occurrences of variables just as we did in Chap. 2.

A sentence is a formula with no free occurrences of variables. We now stipulate:

(ψ ∧ χ) ⇐♥ −(ψ ⇒ −χ)

(ψ ∨ χ) ⇐♥ ((ψ ⇒ χ) ∧ (χ ⇒ ψ))

(ψ ∃ χ) ⇐♥ (−ψ ⇒ χ)

≤µ φ ⇐♥ −⇐µ − φ.

‘∧’ represents conjunction (“and”), ‘∨’ represents the biconditional (“if and
only if”), while ‘∃’ represents disjunction (“or”). ‘≤’ is the existential quan-

tifier (“there is”).

Exercise 6.1 Translate the following sentences of FA into English.

⇐F⇐G(⇐x(Fx ∨ Gx) ⇒ #F = #G).

⇐F⇐G(#F = #G ⇒ ⇐x(Fx ∨ Gx)).

⇐F≤G(−⇐x(Fx ∨ Gx) ∧ #F = #G).

≤F⇐G(#F = #G ⇒ −≤x Gx).

⇐R(≤x⇐y Rxy ⇒ ⇐y≤x Rxy).

We use recursion to introduce numerical quantifiers �≤n� (“there are exactly
n”) as follows.

Definition 6.1

≤0x φx ⇐♥ −≤x φx .

≤n+1x φx ⇐♥ ≤x(φx ∧ ≤n y(φy ∧ x ∧= y)).

http://dx.doi.org/10.1007/978-3-319-05816-0_2
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‘≤0x Fx’ says no object has property F : −≤x Fx . In English: “It is false that there
is an object with property F”. ‘≤1x Fx’ says exactly one object has property F :

≤x(Fx ∧ ≤0 y(Fy ∧ x ∧= y)).

In English: “There is an object x that has property F and no object other than x has
property F”. ‘≤2x Fx’ says exactly two objects have property F :

≤x(Fx ∧ ≤1 y(Fy ∧ x ∧= y)).

In English: “There is an object x that has property F and exactly one object other
than x has property F”. And so on.

The following definition will be particularly useful.

Definition 6.2

⇐F⇐G(F ∀ G ∨ ≤R(⇐x(Fx ⇒ ≤1 y(Rxy∧Gy))∧⇐y(Gy ⇒ ≤1x(Rxy∧ Fx)))).

Suppose F ∀ G and let R be a relation of the sort required by the definition.
Say that the objects with properties F and G are, respectively, the F-objects and
the G-objects. Then R assigns to each F-object exactly one G-object. Furthermore,
each G-object is assigned by R to exactly one F-object. So R pairs F-objects with
G-objects. We also say that R is a pairing.

Suppose, for example, that F is the property of being a New England state capital,
while G is the property of being a New England state. Let R be a relation that holds
between a city and a state when the former is the capital of the latter. Then R assigns
to each New England state capital exactly one New England state, while each New
England state is assigned by R to exactly one New England state capital. Indeed, R

forms the following pairing.

Hartford
is the capital of
−−−−−−−−⇒ Connecticut

Augusta
is the capital of
−−−−−−−−⇒ Maine

Boston
is the capital of
−−−−−−−−⇒ Massachusetts

Concord
is the capital of
−−−−−−−−⇒ New Hampshire

Providence
is the capital of
−−−−−−−−⇒ Rhode Island

Montpelier
is the capital of
−−−−−−−−⇒ Vermont

From the existence of such a pairing we can infer that the F-objects and the
G-objects are equinumerous, that is, the same in number.
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6.2 The Axioms of FA

We will now make the unsurprising assumption that the F-objects and the G-objects
are the same in number if and only if the number of F-objects is the same as the
number of G-objects. This assumption is known as Hume’s principle.2

⇐F⇐G(F ∀ G ∨ #F = #G).

We also adopt infinitely many comprehension axioms for properties. These are
the sentences of the form

�⇐µ̄≤τ ⇐α(τ α ∨ φ)�

where α is an object variable, τ is a property variable, φ is a formula of FA with
no free occurrences of τ , and ⇐µ̄ is a string of universal quantifiers that bind all the
free occurrences of variables in the remainder of the sentence. Here is an example
of a comprehension axiom:

⇐G⇐y≤F⇐x(Fx ∨ (Gx ∧ x ∧= y)).

This says: given any property G and object y, there is a property F that applies,
exactly, to those G-objects that are not y. If G were the property of being a U.S.
president and y were the current president, then you could think of F as the property
of being a past president.

Exercise 6.2 Can you think of a highly undesirable comprehension axiom we would

obtain if we allowed τ to occur free in φ?

Exercise 6.3 The language of FA features a symbol ‘=’ expressing the relation

of identity. Show that this symbol is eliminable by offering a definition of identity.

Naturally, ‘=’ should not occur in your definition. You might recall from a logic class

that two fundamental properties of identity are: (1) everything is identical to itself and

(2) identical things have the same properties. Verify that your definition is adequate

by showing that it entails these two properties (Students of modern philosophy might

find it helpful to review Leibniz.).

Here is another one of our comprehension axioms:

≤F⇐x(Fx ∨ x ∧= x).

It says there is a property that applies to nothing. Let N be such a property.

2 In Sect. 63 of [3] (English translation in [6]), Frege quotes the following remark by David Hume

(1711–1776): “When two numbers are so combined as that one has always an unit answering to
every unit of the other, we pronounce them equal”.
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Exercise 6.4 Use comprehension to show that there is a property U that applies

to exactly one object (By the way, how many objects are we acquainted with at this

point?). Use Hume’s principle to show that #N is not the only number in the universe.

Exercise 6.5 Use comprehension to show that there is a property D that applies to

exactly two objects. Use Hume’s principle to show that #N and #U are not the only

numbers in the universe. How many numbers are there?

We conclude this section by adopting infinitely many comprehension axioms
for relations. These are the sentences of the form

�⇐µ̄≤υ⇐α⇐β(υαβ ∨ φ)�

where α,β are object variables, υ is a relation variable, φ is a formula of FA with
no free occurrences of υ, and ⇐µ̄ is a string of universal quantifiers that bind all the
free occurrences of variables in the remainder of the sentence. Here is an example
of a comprehension axiom of this sort:

≤R⇐x⇐y(Rxy ∨ ≤F(Fx ∧ Fy)).

This sentence says there is a relation R that holds between any objects x and y that
share at least one property.

Exercise 6.6 Show that if R behaves in the way just described, then ⇐x⇐y Rxy.

Exercise 6.7 Show: ⇐F(#F = #N ∨ ≤0x Fx).

Exercise 6.8 Show: ⇐F(#F = #U ∨ ≤1x Fx).

6.3 Some Number Theory

Let 0 = #N where N is, as in the previous section, a property that applies to nothing:

⇐x(Nx ∨ x ∧= x).

This should sound reasonable: 0 is the number of objects that are not identical to
themselves; 0 is the number of objects that have a property nothing could possibly
have. This definition certainly seems less contrived than our stipulation in Chap. 3
that 0 is the blank list. To express the whole business in the language of lists: it seems
less contrived to say that 0 is the number of entries of the blank list than to stipulate
that 0 is the blank list.

Let 1 = #U where U is a property whose existence is guaranteed by the following
comprehension axiom:

≤F⇐x(Fx ∨ x = 0).

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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That is, U is a property that applies only to 0:

⇐x(Ux ∨ x = 0).

Since 0 is the only object that has property U, the number of U-objects is, indeed,
one. 1 is the number of objects identical to 0. Again, this seems less contrived than
our earlier stipulation that 1 is the list whose only entry is the blank list.

We know, of course, that 1 is the first number after 0: that 1 immediately succeeds 0.
We now want to give a formal definition of immediate succession using the language
of FA. Since our definition will be a bit complicated, we are going to sneak up on
it one little step at a time. We begin with a theorem of FA that may appear entirely
pointless:

0 = 0 ∧ ⇐y(y ∧= y ∨ (y = 0 ∧ y ∧= 0)).

From this we infer the following:

U0 ∧ ⇐y(Ny ∨ (Uy ∧ y ∧= 0)).

So:
≤x(Ux ∧ ⇐y(Ny ∨ (Uy ∧ y ∧= x))).

Adding a bit more information about N and U:

0 = #N ∧ 1 = #U ∧ ≤x(Ux ∧ ⇐y(Ny ∨ (Uy ∧ y ∧= x))).

We conclude:

≤F≤G(0 = #F ∧ 1 = #G ∧ ≤x(Gx ∧ ⇐y(Fy ∨ (Gy ∧ y ∧= x)))).

Since we derived this sentence from a theorem of FA, we know it too is a theorem
of FA. Our theorem says there are properties F and G with the following charac-
teristics: 0 is the number of F-objects, 1 is the number of G-objects, and, for some
G-object x , the F-objects are exactly the G-objects distinct from x . That is, we can
obtain the F-objects by deleting one G-object or, in other words, the number of G-
objects succeeds the number of F-objects (I am going to save ink by leaving off the
‘immediately’ in ‘immediately succeeds’.). In symbols: σ#F#G (‘σ’ is the Greek
letter sigma.). Since #F = 0 and #G = 1, we have just confirmed that 1 succeeds
0: σ01. We have also provided an analysis of this relation of succession. We now
enshrine this analysis in a general definition of succession.

Definition 6.3

⇐w⇐z(σwz ∨ ≤F≤G(w = #F ∧ z = #G ∧ ≤x(Gx ∧ ⇐y(Fy ∨ (Gy ∧ y ∧= x))))).
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z succeeds w if and only if w is the number of F-objects (for some property F), z is
the number of G-objects (for some property G), and we can obtain the F-objects by
deleting one of the G-objects.

Exercise 6.9 Show: ≤0w σw0.

Theorem 6.1 ⇐w⇐z1⇐z2((σwz1 ∧ σwz2) ⇒ z1 = z2).

Proof Let F1, G1 be properties certifying that σwz1, while F2, G2 are properties
certifying that σwz2. That is,

w = #F1 ∧ z1 = #G1 ∧ ≤x1(G1x1 ∧ ⇐y(F1 y ∨ (G1 y ∧ y ∧= x1)))

and

w = #F2 ∧ z2 = #G2 ∧ ≤x2(G2x2 ∧ ⇐y(F2 y ∨ (G2 y ∧ y ∧= x2))).

We need to show that #G1 = #G2 and this, in turn, requires us to show that G1 ∀ G2.
Note, first, that #F1 = #F2 since both are identical to w. So Hume’s principle allows
us to pick a relation R that pairs F1-objects with F2-objects. Comprehension gives
us another pairing P with the following useful feature:

⇐x⇐y(Pxy ∨ (F1x ∧ F2 y ∧ Rxy)).

That is, P ignores everything but F1-objects and F2-objects, pairing the former with
the latter. Now pick a G1-object x1 and a G2-object x2 that behave as indicated
above. That is, first, the F1-objects are exactly the G1-objects distinct from x1 and,
second, the F2-objects are exactly the G2-objects distinct from x2. We will use these
materials to identify a relation that pairs G1-objects and G2-objects. Comprehension
provides a relation Q that behaves as follows:

⇐x⇐y(Qxy ∨ (Pxy ∃ (x = x1 ∧ y = x2))).

We want to show that Q is the desired pairing. Suppose x is a G1-object. If x = x1,
then Qxx2. Suppose x ∧= x1. Then x is an F1-object and, hence, we can pick an
F2-object y such that Pxy. So Qxy. Since every F2-object is a G2-object, y is a
G2-object. We conclude that Q assigns a G2-object to every G1-object. We still need
to show that this assignment is unique. Suppose:

G1x, Qxz, Qxz∞.

Case 1: x = x1. Then x is not an F1-object and, hence, it is not the case that Pxy

for any object y. So Qxy only if y = x2. This means that z and z∞ are the same
G2-object, namely, x2. Case 2: x ∧= x1. Then Pxz and Pxz∞. So z and z∞ are the same
F2-object and, hence, are the same G2-object. We conclude: given any G1-object x ,
there is a unique G2-object y such that Qxy. Similar reasoning shows: given any
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G2-object y, there is a unique G1-object x such that Qxy. We conclude: G1 ∀ G2.
So, by Hume’s principle, #G1 = #G2.

Theorem 6.2 ⇐w⇐z1⇐z2((σw1z ∧ σw2z) ⇒ w1 = w2).

Proof Let F1, G1 be properties certifying that σw1z, while F2, G2 are properties
certifying that σw2z. That is,

w1 = #F1 ∧ z = #G1 ∧ ≤x1(G1x1 ∧ ⇐y(F1 y ∨ (G1 y ∧ y ∧= x1)))

and

w2 = #F2 ∧ z = #G2 ∧ ≤x2(G2x2 ∧ ⇐y(F2 y ∨ (G2 y ∧ y ∧= x2))).

We need to show that F1 ∀ F2. Since #G1 = #G2, Hume’s principle allows us to
pick a relation R that pairs G1-objects with G2-objects. We also pick a G1-object
x1 and a G2-object x2 as indicated above. The G1-objects are the F1-objects plus
x1, while the G2-objects are the F2-objects plus x2. If R pairs x1 with x2, then R

already pairs F1-objects with F2-objects (since they are what is left when we have
disposed of x1 and x2). Suppose, on the other hand, that Rx1x ∞

2 and Rx ∞
1x2 where

x ∞
2 ∧= x2. Then x ∞

1 ∧= x1. Furthermore, x ∞
1 is an F1-object, while x ∞

2 is an F2-object.
We want to make an adjustment: we want x ∞

1 and x ∞
2 to be paired with one another.

Comprehension provides a relation Q that behaves as follows:

⇐x⇐y(Qxy ∨ ((x = x ∞
1 ∧ y = x ∞

2) ∃ (x ∧= x ∞
1 ∧ y ∧= x ∞

2 ∧ Rxy))).

We want to show that Q is the desired pairing. Suppose x is an F1-object. If x = x ∞
1,

then Qxx ∞
2. Suppose x ∧= x ∞

1. Pick a y such that Rxy. Then y ∧= x2 and, hence,
y is an F2-object. If y = x ∞

2, then x = x1, which is impossible since x1 is not an
F1-object. So y ∧= x ∞

2 and, hence, Qxy. We conclude that Q assigns an F2-object to
every F1-object. We still need to show that this assignment is unique. Suppose:

F1x, Qxz, Qxz∞.

Case 1: x = x ∞
1. Then Qxy only if y = x ∞

2. So z and z∞ are the same F2-object, namely,
x ∞

2. Case 2: x ∧= x ∞
1. Then Rxz and Rxz∞ and, hence, z = z∞. We conclude: given any

F1-object x , there is a unique F2-object y such that Qxy. Similar reasoning shows:
given any F2-object y, there is a unique F1-object x such that Qxy. We conclude:
F1 ∀ F2. So, by Hume’s principle, #F1 = #F2.

Definition 6.4 A property F is σ-closed if and only if:

⇐x⇐y((Fx ∧ σxy) ⇒ Fy).

A property is σ-closed property if and only if all the objects that have it pass it on
to all their successors.



6.3 Some Number Theory 131

Definition 6.5 x √ y if and only if y has every σ-closed property that x has.

x √ y if and only if y is one of the objects tireless immortal beings will encounter
if they start with x and track down all the successors of everything they encounter.

Theorem 6.3 √ is reflexive and transitive.

Proof Reflexivity: x √ x because x has every σ-closed property that x has. Transi-
tivity: if y has every σ-closed property that x has and z has every σ-closed property
that y has, then z has every σ-closed property that x has.

Theorem 6.4 ⇐x⇐y(σxy ⇒ x √ y).

Proof If σxy, then x gives each of its σ-closed properties to y.

Theorem 6.5 ⇐z(z √ 0 ⇒ z = 0).

Proof Suppose z √ 0. Then 0 has every σ-closed property that z has. Exercise 6.9
implies that the property “not identical to 0” is σ-closed. That is,

⇐x⇐y((x ∧= 0 ∧ σxy) ⇒ y ∧= 0)

since
⇐x⇐y(σxy ⇒ y ∧= 0).

So z ∧= 0 only if 0 ∧= 0. Since we are rewarded with an absurdity if z ∧= 0, we
conclude that z = 0.

Definition 6.6 ⇐x⇐y(x < y ∨ (x √ y ∧ x ∧= y)).

Theorem 6.6 ⇐w⇐x⇐y((σxy ∧ w < y) ⇒ w √ x).

Proof Suppose F is a σ-closed property that applies to w. We want to show that it
also applies to x . Use comprehension to pick a property G such that

⇐z(Gz ∨ (Fz ∧ z ∧= y)).

Note that w ∧= y since w < y. So Gw since we just supposed that Fw. y has every
σ-closed property that w has. So G can be σ-closed only if y ∧= y. Clearly, G is not

σ-closed. So we can pick z1, z2 such that σz1z2 even though G applies to z1 and
not z2. Since Gz1, we have: Fz1 and z1 ∧= y. Since not Gz2, we have: Fz2 only if
z2 = y. Since F is σ-closed and applies to z1, it applies to z2. So z2 = y. Hence, by
Theorem 6.2, z1 = x , since σz1 y and σxy. So Fx , as desired. We conclude that x

has every σ-closed property that w has.

Exercise 6.10 Show: ⇐x⇐y⇐z((σxy ∧ x < z) ⇒ y √ z). Hint: suppose F is a

σ-closed property that applies to y; consider the following comprehension axiom:

≤G⇐w(Gw ∨ (Fw ∃ w = x)).
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Definition 6.7 x is a natural number if and only if 0 √ x .

Natural numbers are objects that are doomed whenever 0 catches a disease that
is transmitted to successors. Less fancifully, the natural numbers are the objects
possessing every σ-closed property that applies to 0.

Theorem 6.7 0 is a natural number.

Exercise 6.11 Show: every object that succeeds a natural number is a natural

number.

Theorem 6.8 σ-closed properties that apply to 0 apply to every natural number.

Say that something is a number if and only if it is the number of things that have
some property. That is, z is a number if and only if z = #G for some property G.
Then every natural number is a number. To confirm this, first recall that 0 = #N. So
0 is a number. Now look back at Definition 6.3 to confirm that σwz only if z = #G

for some property G. So the property of being a number is σ-closed. Now just apply
Theorem 6.8.

Exercise 6.12 Use induction (Theorem 6.8) to show that no natural number suc-

ceeds itself.

Theorem 6.9 If x and y are natural numbers, then σxy only if x < y.

Proof Just apply Theorem 6.4 and Exercise 6.12.

Exercise 6.13 Use induction to show that every natural number other than 0 suc-

ceeds a natural number.

Exercise 6.14 Use induction and Exercise 6.10 to show: if x, y are natural numbers,

then either x √ y or y √ x.

Theorem 6.10 If x and y are natural numbers and y √ x, then −σxy.

Proof Exercise 6.9 guarantees that the theorem holds when y = 0. Suppose σyz.
Our argument is inductive: we want to show that z satisfies the theorem if y does.
Suppose z √ x . We want to show that −σxz. Exercise 6.13 says we need only
consider two cases. First: x = 0. Then, by Theorem 6.5, z = 0. So, by Exercise
6.9 (or 6.12), −σxz. Second: x succeeds a natural number. Suppose σwx . If z = x ,
then Exercise 6.12 guarantees that −σxz. Suppose z ∧= x . Then z < x and, hence,
by Theorem 6.6, z √ w. By Theorem 6.4, y √ z. So, by Theorem 6.3, y √ w. Our
inductive hypothesis is that y satisfies the theorem. So −σwy and, hence, x ∧= y. By
Theorem 6.2, −σxz.

Exercise 6.15 Use induction to show that if x and y are natural numbers, then

x √ y and y √ x only if x = y. (You might find Theorems 6.3, 6.4, 6.5, 6.6, and 6.10

useful.)
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Exercise 6.16 Show that if x, y are natural numbers, then σxy only if

⇐w(w √ x ∨ w < y).

(Again, you might find Theorems 6.6 and 6.10 useful.)

Theorem 6.11 Suppose x1, x2 are natural numbers and σx1x2. If

⇐y(F1 y ∨ y √ x1),

⇐y(F2 y ∨ y √ x2),

then σ#F1#F2.

Proof According to Exercise 6.16,

⇐y(y √ x1 ∨ (y √ x2 ∧ y ∧= x2)).

So, since x2 √ x2,

≤x(x √ x2 ∧ ⇐y(y √ x1 ∨ (y √ x2 ∧ y ∧= x))).

So:
≤x(F2x ∧ ⇐y(F1 y ∨ (F2 y ∧ y ∧= x))).

So:

≤F≤G(#F1 = #F ∧ #F2 = #G ∧ ≤x(Gx ∧ ⇐y(Fy ∨ (Gy ∧ y ∧= x)))).

That is, σ#F1#F2.

Exercise 6.17 Show that ⇐y(Fy ∨ y < 0) only if #F = 0.

Exercise 6.18 Suppose x1, x2 are natural numbers and σx1x2. Further, suppose

#F1 = x1 whenever F1 is a property satisfying the following condition:

⇐y(F1 y ∨ y < x1).

Show that if

⇐y(F2 y ∨ y < x2),

then #F2 = x2 (You might show that σx1#F2 and then apply Theorem 6.1.).

Theorem 6.12 If x is a natural number and ⇐y(Fy ∨ y < x), then #F = x.

Proof Note that the previous two exercises provide an inductive argument for this
theorem.
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We now know that each natural number n is the number of objects less than n.
Suppose x < m where m is a natural number. By Theorem 6.2 and Exercise 6.13, the
property of not being a natural number is σ-closed (since, otherwise, some natural
number would have a predecessor that both is and is not a natural number). So, since
m has every σ-closed property that x has, there is no way for x not to be a natural
number. We conclude that each natural number n is the number of natural numbers

less than n.

Exercise 6.19 Show that every natural number has a successor. (According to Exer-

cise 6.13, you only need to consider two cases: 0 and a natural number x2 that suc-

ceeds a natural number x1. The first case is already done: we showed that σ01. As

for the second case, you might take a look at Theorem 6.11.)

Suppose N is a property that applies to all and only the natural numbers, while N+

is a property that applies to all and only the positive (i.e., non-zero) natural numbers.
Then the successor relation σ is a pairing between the N-objects and the N+-objects.
So N ∀ N+ and, hence, by Hume’s principle, #N = #N+. On the other hand,

≤x(Nx ∧ ⇐y(N+y ∨ (Ny ∧ y ∧= x))).

So #N succeeds #N+ and, hence, #N succeeds itself. Exercise 6.12 lets us conclude
that #N is not a natural number. Every natural number is a number, but not every
number is a natural number. In particular, the number of natural numbers is not a
natural number. The number of natural numbers cannot be measured by any finite
number: not a million, not a billion, not

101010
.

OK, that is no surprise. There are infinitely many natural numbers. What is surprising,
even uncanny, is the way this result emerges from a lot of logical manipulations and
a few applications of one innocent looking observation about the conditions under
which numbers are the same: the number of F-objects is the same as the number of
G-objects if and only the F-objects and the G-objects are equal in number. Some-
thing that makes Hume’s principle look all the more innocent, and the emergence of
infinitely many natural numbers all the more uncanny, is the definability of “equal in
number” in our background logic. Granted, our logic does not provide a definition of
“number of” that lets us eliminate the operator ‘#’. ‘#’ is not eliminable in the way
‘σ’ is. So our development of arithmetic requires more than logic. But it does not
require much more. When we get inside some of the proofs given above, it is striking
how much of the work consists of logical manipulations of logical vocabulary—
manipulations that make us feel like we have wandered into a logic class. FA treats
number theory as applied logic. Just as applied mathematics can look an awful lot
like mathematics, applied logic can look an awful lot like logic. At the very least,
FA gives number theory a strongly logical flavor.
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6.4 FA Interprets PA

We still need to figure out how much number theory FA provides. We can give a
precise answer to this question if we introduce a beefier version of Peano Arithmetic
(PA). Let the vocabulary of second- order Peano Arithmetic consist of the
vocabulary of PA and the whole vocabulary of FA except for the function symbol
‘#’. Second-order PA includes all the comprehension axioms in this vocabulary. The
remaining axioms of second-order PA are the same as those of PA except that we
drop the infinitely many induction axioms and replace them with the single sentence:

⇐F((F0 ∧ ⇐x(Fx ⇒ F Sx)) ⇒ ⇐x Fx).

To decipher the expression ‘F Sx’ you need to remember that ‘S’ is a function symbol
in the language of PA. ‘Sx’ is a term referring to the successor of x . The formula
‘F Sx’ says that the successor of x has property F . Our induction principle says that
if 0 has property F and the successor of x has property F whenever x does, then
everything in the universe of PA (that is, every natural number) has property F .

FA provides at least as much number theory as second-order PA because, as we
will confirm, second-order PA is interpretable in FA. Though we will not prove
it, the converse is also true.3 So FA provides exactly as much number theory as
second-order PA because the two theories are mutually interpretable.

When we offer FA translations of PA axioms, we will feel free to use items of
defined vocabulary such as ‘0’ and ‘√’. This is legitimate because our definitions
allow us to eliminate all occurrences of the defined expressions. That means we are
always able to recover the official version. For example, if we offer φ(0) as our
translation of a PA axiom and someone objects that ‘0’ is not part of the official
vocabulary of FA, we can offer the alternative translation

≤F(⇐x(Fx ∨ x ∧= x) ∧ φ(#F)).

A faithful translation will preserve correct inferences: if ψ follows from φ1, ...,φn ,
then the translation of ψ will follow from the translations of φ1, ...,φn . A translation
that behaves otherwise would not even teach us about relative consistency (Recall
§5.4.). Here is an example of what we expect from our translations. Since (φ(0) ∧

ψ(0)) follows from φ(0) and ψ(0), our translation of the former sentence should
follow from our translations of the latter sentences. So

≤F(⇐x(Fx ∨ x ∧= x) ∧ (φ(#F) ∧ ψ(#F)))

should follow from

≤F(⇐x(Fx ∨ x ∧= x) ∧ φ(#F))

3 See Burgess [2], pp. 147 − 150.



136 6 Frege Arithmetic

and
≤G(⇐x(Gx ∨ x ∧= x) ∧ ψ(#G)).

Well, it does follow. If φ(#F) and ψ(#G) and, furthermore, F and G are properties
that apply to nothing, then, by Exercise 6.7, #F = #G and, hence, (φ(#F)∧ψ(#F)).
This is hardly a proof that our translations will always preserve correct inferences.
It is just an indication of what such a proof would involve (You might try to work
out what a real proof would look like.).

The following definition will let us deal smoothly with occurrences of ‘S’ in
axioms of PA. The definition is justified because each natural number has one (Exer-
cise 6.19) and only one (Theorem 6.1) successor.

Definition 6.8 ⇐x(0 √ x ⇒ ⇐y(y = Sx ∨ σxy)).

We will take advantage of this definition in our translations of the PA axioms S1
and S2. Inside of PA, we pretend that everything in the universe is a natural number. In
FA, we allow for objects (such as the number of natural numbers) that are not natural
numbers. So, when PA says “all x” our FA translation says “all natural numbers
x”—that is, according to Definition 6.7, “all x such that 0 √ x”. We translate S1 and
S2 as follows.

⇐x(0 √ x ⇒ 0 ∧= Sx)

⇐x⇐y((0 √ x ∧ 0 √ y) ⇒ (Sx = Sy ⇒ x = y))

Exercise 6.9 and Theorem 6.2 let us verify that these are theorems of FA.
What about the PA induction axiom given above? Is its translation an FA theorem?

Well, Theorem 6.8 is the induction principle of FA. We can capture it in a single
sentence of FA:

⇐F((F0 ∧ ⇐x⇐y((Fx ∧ σxy) ⇒ Fy)) ⇒ ⇐x(0 √ x ⇒ Fx)).

This says that if 0 has property F and F is σ-closed, then every natural number has
property F . Here is our translation of the PA induction axiom:

⇐F((F0 ∧ ⇐x((0 √ x ∧ Fx) ⇒ F Sx)) ⇒ ⇐x(0 √ x ⇒ Fx)).

Is this a theorem of FA? To confirm that it is, suppose F0 and

⇐x((0 √ x ∧ Fx) ⇒ F Sx).

Then, by Exercise 6.11,

⇐x((0 √ x ∧ Fx) ⇒ (0 √ Sx ∧ F Sx)).

Use comprehension to pick a property G such that
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⇐x(Gx ∨ (0 √ x ∧ Fx)).

Then ⇐x(Gx ⇒ GSx) and, hence,

⇐x⇐y((Gx ∧ σxy) ⇒ Gy).

That is, G is σ-closed. Furthermore, by Theorem 6.7, G0. So, by the FA induction
axiom, ⇐x(0 √ x ⇒ Gx) and, hence, ⇐x(0 √ x ⇒ Fx). We conclude that our
translation of the PA induction axiom is a theorem of FA.

Our next job is to confirm that translations of A1, A2, M1, and M2 are theorems of
FA. This will take a bit of work. Our job would be easier if comprehension supplied
us immediately with a relation R that behaves as follows:

⇐w⇐y1⇐y2(Ry1 y2 ∨ ((y1 = 0 ∧ y2 = w) ∃ ≤x1(σx1 y1 ∧ ≤x2(Rx1x2 ∧ σx2 y2)))).

Once we pick a w, R is supposed to be the relation that holds between two natural
numbers when the second is exactly w more than the first. That is:

Ry1 y2 ⇐♥ y2 = y1 + w.

Our formula considers two possibilities. First, y1 = 0. Note that y2 is exactly w more
than 0 if and only if y2 = w:

y2 = 0 + w ⇐♥ y2 = w.

That explains the clause
(y1 = 0 ∧ y2 = w).

The second possibility is that y1 succeeds x1. That is, y1 = x1 + 1. Note that y2 is
exactly w more than x1 + 1 if and only if y2 − 1 is exactly w more than x1:

y2 = (x1 + 1) + w = (x1 + w) + 1 ⇐♥ y2 − 1 = x1 + w.

Or, letting y2 = x2 + 1:

x2 + 1 = (x1 + 1) + w = (x1 + w) + 1 ⇐♥ x2 = x1 + w.

That is, y2 is exactly w more than y1 if and only if x2 is exactly w more than x1.
More briefly, Ry1 y2 if and only if Rx1x2. That explains the clause

≤x1(σx1 y1 ∧ ≤x2(Rx1x2 ∧ σx2 y2))).

This is all very elegant.
Unfortunately, we have a problem. The formula at the start of the last paragraph

is not a comprehension axiom: it violates the requirement that ‘R’ not appear free
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on the right side of a comprehension biconditional when R is the relation on the left
side. Nonetheless, we can use our formula to define a useful notion. If, for a given
natural number w, a relation R satisfies the formula

Ry1 y2 ∨ ((y1 = 0 ∧ y2 = w) ∃ ≤x1(σx1 y1 ∧ ≤x2(Rx1x2 ∧ σx2 y2)))

for all natural numbers y1, y2, then we say that R is a “plus-w” relation. We need to
show that there is a plus-w relation for each natural number w. We accomplish this
by induction in the following exercise and theorem.

Exercise 6.20 Show that there is a plus-0 relation.

Theorem 6.13 If w is a natural number and Q is a plus-w relation, then there is a

plus-Sw relation.

Proof Comprehension supplies a relation R that behaves as follows:

Ry1 y3 ∨ ≤y2(Qy1 y2 ∧ σy2 y3).

R is to be our plus-Sw or plus-(w + 1) relation. The idea is:

y1 + (w + 1) = y3 ∨ (y1 + w) + 1 = y3.

Since Q is a plus-w relation:

Qy1 y2 ∨ ((y1 = 0 ∧ y2 = w) ∃ ≤x1(σx1 y1 ∧ ≤x2(Qx1x2 ∧ σx2 y2))).

That is:
Qy1 y2 ∨ ((y1 = 0 ∧ y2 = w) ∃ ≤x1(σx1 y1 ∧ Rx1 y2)).

We want to show that R is a plus-Sw relation. That is,

Ry1 y3 ∨ ((y1 = 0 ∧ y3 = Sw) ∃ ≤x1(σx1 y1 ∧ ≤y2(Rx1 y2 ∧ σy2 y3)))

whenever y1 and y3 are natural numbers. To verify the left-right half of the bicon-
ditional, we assume that Ry1 y3. This lets us pick a y2 such that Qy1 y2 and σy2 y3.
Then:

(y1 = 0 ∧ y2 = w) ∃ ≤x1(σx1 y1 ∧ Rx1 y2).

By Theorem 6.1,

(y1 = 0 ∧ y2 = w) ⇒ (y1 = 0 ∧ y3 = Sw)

since σwSw. Furthermore:

≤x1(σx1 y1 ∧ Rx1 y2) ⇒ ≤x1(σx1 y1 ∧ (Rx1 y2 ∧ σy2 y3)).
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But:

≤x1(σx1 y1 ∧ (Rx1 y2 ∧ σy2 y3)) ⇒ ≤x1(σx1 y1 ∧ ≤y2(Rx1 y2 ∧ σy2 y3)).

So:

Ry1 y3 ⇒ ((y1 = 0 ∧ y3 = Sw) ∃ ≤x1(σx1 y1 ∧ ≤y2(Rx1 y2 ∧ σy2 y3))).

Now we need to show the converse. We consider two cases. First:

y1 = 0 ∧ y3 = Sw.

Note that Q0w and, hence, ≤y2(Q0y2 ∧ σy2Sw). That is, R0Sw. But then Ry1 y3.
Here is the second case:

≤x1(σx1 y1 ∧ ≤y2(Rx1 y2 ∧ σy2 y3)).

Pick such a y2. Then Qy1 y2 since ≤x1(σx1 y1 ∧ Rx1 y2). So ≤y2(Qy1 y2 ∧ σy2 y3)

and, hence, Ry1 y3. We conclude that R is a plus-Sw relation.

Exercise 6.21 Suppose R is a plus-w relation. Use induction to show that, for every

natural number y1, there is a natural number y2 such that Ry1 y2.

Exercise 6.22 Suppose R is a plus-w relation. Use induction to show that, for any

natural numbers y1, y2, y3, if Ry1 y2 and Ry1 y3, then y2 = y3.

Exercise 6.23 Suppose Q and R are plus-w relations. Use induction to show that,

for any natural numbers y1, y2, if Qy1 y2, then Ry1 y2.

Theorem 6.14 If y1 and y2 are natural numbers and R is a plus-w relation, then

Ry1 y2 if and only if RSy1Sy2.

Proof Note, first, that

RSy1Sy2 ∨ ((Sy1 = 0 ∧ Sy2 = w) ∃ ≤x1(σx1Sy1 ∧ ≤x2(Rx1x2 ∧ σx2Sy2))).

So, by Exercise 6.9,

RSy1Sy2 ∨ ≤x1(σx1Sy1 ∧ ≤x2(Rx1x2 ∧ σx2Sy2)).

Note that σy1Sy1 and σy2Sy2. So, by Theorem 6.2,

≤x1(σx1Sy1 ∧ ≤x2(Rx1x2 ∧ σx2Sy2)) ∨ Ry1 y2.

Exercise 6.24 Suppose R is a plus-0 relation. Use induction to show that, for every

natural number x, Rxx.
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Definition 6.9 If w and y are natural numbers, we let y + w be the unique natural
number that every plus-w relation associates with y.

Now that we have introduced ‘+’ into the language of FA, we can show that
straightforward translations of the PA addition axioms are theorems of FA. Here is
our translation of A1.

Theorem 6.15 ⇐x(0 √ x ⇒ (x + 0) = x).

Proof x + 0 is the unique natural number that every plus-0 relation associates with
x . But, according to Exercise 6.24, that number is x .

Theorem 6.16 ⇐x⇐y((0 √ x ∧ 0 √ y) ⇒ (Sx + y) = S(x + y)).

Proof Let R be a plus-y relation. Then Rx(x + y) and, hence, by Theorem 6.14,
RSx S(x + y). But RSx(Sx + y) since Sx + y is the unique natural number that
every plus-y relation associates with Sx . So, by Exercise 6.22, (Sx + y) = S(x + y).

Here is our translation of A2.

Theorem 6.17 ⇐x⇐y((0 √ x ∧ 0 √ y) ⇒ (x + Sy) = S(x + y)).

Proof We use induction. y is the unique natural number that every plus-y relation
associates with 0. That is, (0 + y) = y. Sy is the unique natural number that every
plus-Sy relation associates with 0. That is, (0 + Sy) = Sy. So

(0 + Sy) = Sy = S(0 + y)

and, hence, the theorem holds when x = 0. As an inductive hypothesis, suppose
(x + Sy) = S(x + y). Then, with some help from Theorem 6.16, we can reason as
follows:

(Sx + Sy) = S(x + Sy) = SS(x + y) = S(Sx + y).

Exercise 6.25 Using M1 and M2 from Chap. 2 and our definition of plus-w relations

as guides, introduce the notion of “times-w” relations.

Exercise 6.26 Show that there is a times-0 relation.

Exercise 6.27 Show: if w is a natural number and Q is a times-w relation, then

there is a times-Sw relation.

Exercise 6.28 Suppose R is a times-w relation. Use induction to show that, for every

natural number y1, there is a natural number y2 such that Ry1 y2.

Exercise 6.29 Suppose R is a times-w relation. Use induction to show that, for any

natural numbers y1, y2, y3, if Ry1 y2 and Ry1 y3, then y2 = y3.

Exercise 6.30 Suppose Q and R are times-w relations. Use induction to show that,

for any natural numbers y1, y2, if Qy1 y2, then Ry1 y2.

http://dx.doi.org/10.1007/978-3-319-05816-0_2
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If x is a natural number, we can let x · w be the unique natural number that every
times-w relation associates with x . Then we can prove the following in FA.

⇐x(0 √ x ⇒ (x · 0) = 0)

⇐x⇐y((0 √ x ∧ 0 √ y) ⇒ (x · Sy) = ((x · y) + x)).

That is, we can show that translations of the PA axioms M1 and M2 are theorems of
FA. You might want to fill in the details yourself.

The only remaining axioms of second-order PA are the infinitely many compre-
hension axioms. Consider one with the following form.

⇐w≤F⇐x(Fx ∨ φ)

Let φi be the FA formula that translates the PA formula φ. Then

⇐w≤F⇐x(Fx ∨ φi )

is a comprehension axiom of FA. This axiom implies

⇐w(0 √ w ⇒ ≤F⇐x(0 √ x ⇒ (Fx ∨ φi )))

which is our translation of the PA comprehension axiom. We conclude that every PA

comprehension axiom translates into a theorem of FA. And our grand conclusion is
that second-order PA is interpretable in FA.

6.5 Extensions: An Epic Failure

We will now consider a modification of FA: Frege Arithmetic with Extensions

(FAX).4 The vocabulary of FAX is the result of dropping ‘#’ from the vocabulary
of FA and adding the symbols ‘{’, ‘}’, and ‘:’. The object terms of FAX are the
object variables and any expression �{α : τ α}� where α is an object variable and
τ is a property variable. The idea is that {x : Fx} is the extension of the property
F : it is the set of F-objects. If F were the property of being a dog, then {x : Fx}

would be the set of dogs. As the expression “object term” suggests, extensions are
classified as objects. We define the formulas of FAX just as we did the formulas of
FA. We obtain the axioms of FAX by dropping Hume’s principle and adding Basic

Law V.5

[BLV ] ⇐F⇐G({x : Fx} = {x : Gx} ∨ ⇐x(Fx ∨ Gx)).

4 This is a version of Frege’s system in [4] and [5]. ‘FAX’ is just our name for this theory: do not
expect anyone else to call it that.
5 The ‘V’ is a Roman numeral: BLV is the fifth “basic law” from Frege’s Grundgesetze ([4], [5]).



142 6 Frege Arithmetic

The idea is: the set of F-objects is the same as the set of G-objects if and only if the
F-objects are the same as the G-objects.

As reasonable as Basic Law V might sound, we will now confirm that FAX is
inconsistent. Comprehension supplies a property G that behaves as follows:

⇐y(Gy ∨ ≤F({x : Fx} = y ∧ −Fy)).

Each G-object is an extension that lacks the very property of which it is the
extension. For example, the set of all non-self-identical objects (the set of all objects
x such that x ∧= x) is a G-object because it is identical to itself and, hence, lacks the
property (non-self-identity) of which it is the extension. The set of all self-identical
objects (the set of all objects x such that x = x) is not a G-object because it is identical
to itself and, hence, has the property (self-identity) of which it is the extension.

We are going to consider the set of all G-objects: {x : Gx}. The instance of
comprehension we just cited makes a claim about “any object y”. Letting y be
{x : Gx}, we obtain:

G{x : Gx} ∨ ≤F({x : Fx} = {x : Gx} ∧ −F{x : Gx}).

Suppose {x : Gx} is not a G-object. That is, suppose −G{x : Gx}. Then:

−≤F({x : Fx} = {x : Gx} ∧ −F{x : Gx}).

Logic students may recognize that this is equivalent to:

⇐F({x : Fx} = {x : Gx} ⇒ F{x : Gx}).

This sentence makes a claim about “any property F”. Letting F be G, we obtain:

{x : Gx} = {x : Gx} ⇒ G{x : Gx}.

But it is certainly true that {x : Gx} = {x : Gx}. So G{x : Gx}. That is, {x : Gx}

is a G-object. We got to this point by assuming that {x : Gx} is not a G-object. So
we have shown:

−G{x : Gx} ⇒ G{x : Gx}.

It follows that {x : Gx} really is a G-object (because if it were not, then it would be
and we would find ourselves in the absurd situation that it both is and is not). This
means:

≤F({x : Fx} = {x : Gx} ∧ −F{x : Gx}).

Pick such an F . Then {x : Gx} is not an F-object. Furthermore, by Basic Law V:

⇐x(Fx ∨ Gx).
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In particular:
F{x : Gx} ∨ G{x : Gx}.

So, since {x : Gx} is a G-object, it is an F-object. That is, {x : Gx} both is and is
not an F-object and, so, both is and is not a G-object. We conclude that Basic Law
V is an exceptionally plausible-looking absurdity.

6.6 The Perils of Abstraction

Frege’s plan was to use extensions to define the function # and to do so in a way that
allowed him to derive Hume’s principle. He would then develop arithmetic much
as we did above. The discovery that FAX is inconsistent left this project in ruins.6

Frege’s failure to notice the inconsistency of FAX may appear more forgivable if we
consider the logical kinship of Hume’s principle and Basic Law V. We begin with a
definition.

Definition 6.10 ⇐F⇐G(F ⇓ G ∨ ⇐x(Fx ∨ Gx)).

Properties that apply to the same objects are said to be extensionally equiv-

alent: ⇓ is the relation of extensional equivalence. Properties that apply to the
same number of objects are said to be cardinally equivalent: ∀ is the relation
of cardinal equivalence. Both extensional equivalence and cardinal equivalence are,
indeed, equivalence relations: that is, transitive, symmetric, and reflexive.7

Let us now write ‘XF’ instead of ‘{x : Fx}’. This makes the similarity between
Hume’s principle and Basic Law V even more evident.

⇐F⇐G(#F = #G ∨ F ∀ G)

⇐F⇐G(XF = XG ∨ F ⇓ G)

Propositions of this form are known as abstraction principles. Hume’s principle
says that properties have the same cardinality if and only if they are cardinally
equivalent. Basic Law V says that properties have the same extension if and only if
they are extensionally equivalent. It may not sound too outlandish to say that HP is
part of the very “logic” of the concept of cardinality, while BLV is part of the very
“logic” of the concept of extension. The formal similarity of HP and BLV tempts us
to accord them the same logical status. Of course, we know this is wrong-headed.
When you add HP to second-order logic, you get arithmetic. When you add BLV
to second-order logic, you get nonsense. It is hard to imagine a more significant
difference from a logical perspective.

6 For some of the history, see Quine [8] (http://www.jstor.org/stable/2251464), Rang & Thomas
[9], and van Heijenoort [11], pp. 124–128.
7 Transitivity: if F ⇓ G and G ⇓ H , then F ⇓ H . Symmetry: if F ⇓ G, then G ⇓ F .
Reflexivity: F ⇓ F .

http://www.jstor.org/stable/2251464
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At least one conclusion seems inescapable: if Hume’s principle is a logical
or conceptual truth, this cannot be simply because of its logical form. Some ener-
getic philosophers have labored hard to identify other distinctive features of Hume’s
principle that justify assigning it some sort of exalted status. Knowledgeable people
disagree about the extent to which these efforts have been crowned with success.8

Even if we deny that Hume’s principle is a logical truth, we can still be impressed
by how much of the heavy lifting in FA is performed by the logical machinery. FA

is a departure from the set theoretic mainstream that relies heavily on a powerful
version of classical logic. In our next chapter, we will consider an alternative to
classical logic itself. This is another way to break free from the prevailing current.
First, though, we consider a Fregean theory of extensions that is not known to be
absurd.

6.7 Monadic Frege Arithmetic

In FAX, extensions of properties are objects to which properties apply. So it makes
sense to ask whether a property does or does not apply to its own extension. This
leads to disaster: the property “being the extension of a property that does not apply
to its own extension” both does and does not apply to its own extension.

One popular fix is to keep the extensions but lose the properties: we let the variables
‘F’, ‘G’, ‘H ’, …range over sets while the variables ‘w’, ‘x’, ‘y’, …range over
members of those sets. ‘Fx’ will now mean that object x is a member of set F . It
will often be convenient to express this in the more familiar way: ‘x ∈ F’. We also
express non-membership in the familiar way: ‘x /∈ F’. It is characteristic of sets that
they are the same if they have the same members. We enshrine this principle in an
axiom (and save a little ink by writing ‘⇐F, G’ for ‘⇐F⇐G’).

Axiom 6.1 ⇐F, G(F ⇓ G ⇒ F = G).

This is one half of BLV with both occurrences of ‘X’ deleted. Of course, ‘XF’ no
longer makes much sense. Sets do not have extensions, they are extensions. The
extension of set F would be, if anything, F itself.

In the language of FAX we could ask whether FXF—that is, whether property
F applies to extension XF . We might now think that expressions such as ‘F F’ or
‘F ∈ F’ make claims that, true or false, at least make sense. We might want to use
such expressions to raise the question of whether set F is a member of itself. Our
syntax, however, does not care how we feel about this: ‘F F’ is not even a formula.
So we cannot even ask whether the set of all self-membered sets is self-membered (as
we asked, in Chap. 3, whether the list of all lists that do not list themselves lists itself).
‘F F’ was not a formula in FAX either, but FAX featured a device, the “extension-of”
operator, that blasted through the grammatical barrier by converting property terms

8 For one noteworthy appraisal of this program of “neo-Fregeanism,” see Weir [13] (available via
www.projecteuclid.org). See also Shapiro [10].

http://dx.doi.org/10.1007/978-3-319-05816-0_3
www.projecteuclid.org
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(such as ‘F’) into object terms (such as ‘XF’) in a particularly unfortunate way. We
are going to try hard to retain the grammatical prohibition on set self-membership.
We will still use the “number-of ” operator to convert set terms (such as ‘F’) into
object terms (such as ‘#F’). Our syntax will not prevent the cardinality of a set (the
number of its members) from being a member of that set. As far as we know, this is
harmless.

We are going to deviate from FAX (and, indeed, FA) in one other respect. We
are going to jettison the entire apparatus of relation variables and relational com-
prehension axioms. Our logic is then said to be monadic second- order. So we
say our new theory is Monadic Frege Arithmetic (MFA).9 Object variables are
first-order. Set variables are second-order. Set variables are, furthermore, monadic
because each applies to only one object variable at a time: ‘Fx’ is grammatical, but
‘Fxy’ is not. One reason for going monadic is that it lets us investigate in detail
the contribution that the relational machinery made to the construction of arithmetic
in FA. We will keep careful track of the new axioms and vocabulary we adopt to
compensate for the absence of relation variables.

We do not have to wait long to feel our loss. Look back at Definition 6.2. We used
relation variables to define cardinal equivalence. Although that route is no longer
open to us, we can still treat ‘∀’ as a defined term. We just use Hume’s principle as
our definition.

Definition 6.11 ⇐F, G(F ∀ G ∨ #F = #G).

Since we have not yet said how the function # behaves, this might not seem very infor-
mative. Nonetheless, we can make a little progress with just this much information.
First of all, we can show that ∀ is an equivalence relation.

Exercise 6.31 ∀ is reflexive, symmetric, and transitive.

∀ cannot be just any equivalence relation, however.

Exercise 6.32 If all our comprehension axioms are true, then ∀ cannot be identity:

∀ cannot be =.10

It is an agreeable pastime to construct finite models of comprehension and axiom
6.1. Here is a recipe for doing so. Start with n objects. This yields 2n sets of objects.
To interpret ‘∀’, partition those sets into equivalence classes: classes of sets
equivalent to one another and to nothing else. When you perform this step, just
make sure you put each of your 2n sets into exactly one equivalence class (You can

9 Yet again, this is just our name for the theory.
10 That is, the function # cannot be one-to-one:

−⇐F, G(#F = #G ⇒ F = G).

This is a version of a result known as “Cantor’s theorem”. Georg Cantor (1845–1918) was a
pioneer set theorist. The basic problem here is that you cannot use objects to supply each set of
objects with an avatar exclusive to that set—or, rather, you cannot do so while also making all our
comprehension axioms true.
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put different sets in the same class, but you must not put the same set in different
classes.). When you say what the equivalence classes are, you are also saying how
you interpret ‘∀’: F ∀ G if and only if F and G belong to the same equivalence
class. If {F1, F2, F3} is one of your equivalence classes, then you are saying that
the three sets F1, F2, F3 are equivalent only to one another and each one to itself.
To interpret ‘#’, pair off equivalence classes with objects—pairing each equivalence
class with exactly one object and each object with no more than one equivalence
class. If we pair off equivalence class {F1, F2, F3} with object x , we are telling the
function # to assign x to each member of {F1, F2, F3} and to nothing else: we are
saying, first, that #F1 = #F2 = #F3 = x and, second, that # does not assign x to
any other sets.

Here is an example. Suppose x is our only object. Then we have two sets of objects:
the set of no objects ∅ and the set of all objects {x}. This leaves us two ways to form
equivalence classes. First, we could put our two sets in the same equivalence class:
{∅, {x}}. This makes every set (all two of them) equivalent to every set. Second, we
could put our two sets in separate equivalence classes: {∅} and {{x}}. This makes each
set equivalent only to itself. This latter approach treats ∀ as identity and, as you just
showed, is not compatible with an interpretation that makes all our comprehension
axioms true.11 The former approach makes ∅ equivalent to {x}: ∅ ∀ {x}. Given the
one equivalence class {∅, {x}} and the one object x , we must pair the former with
the latter. That is, we must let # assign x to each member of our one equivalence
class: #∅ = #{x} = x . This interpretation makes Axiom 6.1 and all instances of
comprehension true. Of course, it is hardly the intended interpretation since it says
that ∅, a set with no members, is equivalent to {x}, a set with one member. Our
intention is for ∀ to behave like cardinal equivalence (Cardinally equivalent sets are
sets with the same number of members.).

In our universe of one object and two sets, the only way to get ∀ to behave
like cardinal equivalence would be to let ∀ be the relation of identity: the one set
with zero members would then be cardinally equivalent only to itself; the one set
with one member would be cardinally equivalent only to itself. But, as just noted, this
interpretation does not make all our axioms true. So, in the tiniest universe, we cannot
satisfy our axioms by treating ∀ as cardinal equivalence. This is just one instance of a
general phenomenon: there are no finite models that treat ∀ as cardinal equivalence.
The reason is simple. In a universe of n objects, sets of objects come in n + 1 sizes:
0 through n. So there will not be enough objects to serve as sizes of sets. Axioms
that make ∀ behave like cardinal equivalence will imply that the universe is infinite.
Adding the right sort of information about ∀ will let us prove there are infinitely
many objects and sets of objects. In FA, we used relation variables to convey this
information. We are now trying to do this job without relation variables.

11 Note that you will not be able to complete the remaining step in the recipe I just gave. Why?
Given one object and two equivalence classes, you will not be able to pair each equivalence class
with exactly one object and each object with no more than one equivalence class. You are facing a
crippling shortage of objects.
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Given any object z and sets F and G, comprehension and Axiom 6.1 guarantee
that there are unique sets ∅, {z}, (F ∪ G), (F \ G), and (F ∩ G) satisfying the
following conditions.

⇐x(x ∈ ∅ ∨ x ∧= x)

⇐x(x ∈ {z} ∨ x = z)

⇐x(x ∈ (F ∪ G) ∨ (x ∈ F ∃ x ∈ G))

⇐x(x ∈ (F \ G) ∨ (x ∈ F ∧ x /∈ G))

⇐x(x ∈ (F ∩ G) ∨ (x ∈ F ∧ x ∈ G))

We stipulate that 0 = #∅. We retain Definition 6.3 as our account of the successor
relation σ. Given Axiom 6.1, Definition 6.3 is equivalent to the following.12

⇐w, z(σwz ∨ ≤G≤x ∈ G(w = #(G \ {x}) ∧ z = #G)).

Note that

≤G≤x ∈ G(w = #(G \ {x}) ∧ z = #G) ∨ ≤F≤x /∈ F(w = #F ∧ z = #(F ∪ {x}))

since, given G and x , we can let F be G \ {x} and, given F and x , we can let G be
F ∪ {x}. We now introduce a successor relation that holds directly between sets.

Definition 6.12 ⇐F, G(S(F, G) ∨ ≤x /∈ F (F ∪ {x}) ∀ G).

Exercise 6.33 ⇐w, z(σwz ∨ ≤F, G(w = #F ∧ z = #G ∧ S(F, G))).

Exercise 6.34 ⇐F, G, H((S(F, G) ∧ G ∀ H) ⇒ S(F, H)).

We define the natural numbers as we did above (though we now refer to sets rather
than properties). Comprehension and Axiom 6.1 guarantee that there is exactly one

12 As another ink-saving measure, we write

�≤µ ∈ τ φ�

instead of
�≤µ(µ ∈ τ ∧ φ)�.

We will also write
�⇐µ ∈ τ φ�

instead of
�⇐µ(µ ∈ τ ⇒ φ)�.

We treat ‘/∈’ similarly. For example, we write

�≤µ /∈ τ φ�

instead of
�≤µ(µ /∈ τ ∧ φ)�.
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set ω whose members are the natural numbers. It quickly follows that 0 ∈ ω and that
ω ⊆ F whenever F is σ-closed and 0 ∈ F (As in Definition 5.7, x ⊆ y, that is, x is
a subset of y, if and only if every member of x is a member of y.).

Exercise 6.35 ω is σ-closed.

We say that a set F is finite when #F is a natural number.

Definition 6.13 ⇐F(F(F) ∨ #F ∈ ω).

The empty set ∅ is finite. Adding one member to a finite set yields a finite set.
Sets equivalent to finite sets are finite.

Exercise 6.36 F(∅).

Exercise 6.37 ⇐F(F(F) ⇒ ⇐x F(F ∪ {x})).

Exercise 6.38 ⇐F, G((F ∀ G ∧ F(F)) ⇒ F(G)).

The following result will be a powerful tool for proving facts about finite sets.

Theorem 6.18 If φ(∅) and

⇐F(φ(F) ⇒ ⇐x φ(F ∪ {x}))

⇐F, G((φ(F) ∧ F ∀ G) ⇒ φ(G))

then ⇐G(F(G) ⇒ φ(G)).

Proof This is actually a meta-theorem (a theorem about the existence of theorems)
governing arbitrary formulas φ. Comprehension lets us pick a set H such that

⇐x(x ∈ H ∨ ≤F(φ(F) ∧ #F = x)).

We are going to use induction to show that every natural number is a member of H .
0 ∈ H , since φ(∅) and #∅ = 0. Suppose w ∈ H and σwz. Exercise 6.33 lets us pick
F1, G, and x such that w = #F1, z = #G, x /∈ F1, and (F1 ∪{x}) ∀ G. Since w ∈ H

we may pick an F2 such that φ(F2) and #F2 = w. By Definition 6.11, F2 ∀ F1 and,
hence, φ(F1). So φ(F1 ∪ {x}) and, hence, φ(G). So z ∈ H . That is, H is σ-closed.
So ω ⊆ H . Suppose F(G1). By Definition 6.13, #G1 ∈ ω and, hence, #G1 ∈ H . So
we can pick an F3 such that φ(F3) and #F3 = #G1. By Definition 6.11, F3 ∀ G1

and, hence, φ(G1).

H is a proper subset of G (H ⊂ G) if and only if H ⊆ G but H ∧= G. We say
that F ≺ G when F is equivalent to a proper subset of G.

Definition 6.14 ⇐F, G(F ≺ G ∨ ≤H(F ∀ H ∧ H ⊂ G)).

Exercise 6.39 ⇐F, G(F ⊂ G ⇒ F ≺ G).
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Exercise 6.40 ⇐F F ∧≺ ∅.

Exercise 6.41 ⇐F(F ∧= ∅ ⇒ ∅ ≺ F).

Definition 6.15 ⇐G(F≺(G) ∨ (F(G) ∧ ⇐F(F ≺ G ⇒ F(F))).

Exercise 6.42 F≺(∅).

Exercise 6.43 ⇐F, G, H((F ∀ G ∧ G ≺ H) ⇒ F ≺ H).

You just showed: if F is equivalent to G and G is equivalent to a proper subset
of H , then F is equivalent to a proper subset of H . What if we switch this around a
bit? What if F is equivalent to a proper subset of G and G is equivalent to H? That
is,

F ≺ G ∀ H

instead of
F ∀ G ≺ H.

Does it then follow that F is equivalent to a proper subset of H (F ≺ H )? This
does not follow from our current axioms. In the tiny model we discussed above,
{0} ∀ ∅ ⊂ {0} and, hence, {0} ≺ {0} ∀ ∅. But {0} ∧≺ ∅. ({0} is not equivalent to a
proper subset of ∅ because ∅ has no proper subsets.) Since our variation on Exercise
6.34 is a reasonable, powerful, but underivable claim about cardinal equivalence (our
intended interpretation of ‘∀’), we adopt it as an axiom. (You might take a moment
to note, though, how far we have gotten with just comprehension and Axiom 6.1.)

Axiom 6.2 ⇐F, G, H((F ≺ G ∧ G ∀ H) ⇒ F ≺ H).

Exercise 6.44 ⇐F(F ∀ ∅ ⇒ F = ∅).

Exercise 6.45 ≺ is transitive.

Exercise 6.46 ⇐F, G(S(F, G) ⇒ F ≺ G).

Exercise 6.47 ⇐F, G((F ∧≺ F ∧ F ∀ G) ⇒ G ∧≺ G).

Exercise 6.48 ⇐F, G((F≺(F) ∧ F ∀ G) ⇒ F≺(G)).

We will need to adopt another axiom. First, though, we consider another interpre-
tation: the intended one. Our objects are the natural numbers and ∞. (You can let
∞ be anything that is not a natural number.) Our sets are all the sets of these objects.
∈ is membership. # assigns objects to sets as follows.

#F =

{

n if F has n members
∞ if F is infinite

This means that ∀ is cardinal equivalence. So F ≺ G if and only if F is the same
size as a proper subset of G. There are two ways for this to happen: either F is finite
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and smaller than G or F and G are both infinite. Now consider a comprehension
axiom of the form

⇐G1, ..., Gm⇐y1, ..., yn≤F⇐x(x ∈ F ∨ φ).

For each choice of sets G1, ..., Gm and objects y1, ..., yn , our interpretation provides
a set whose members are exactly the objects satisfying the predicate φ. Our inter-
pretation does so because it includes every set of our objects. So every instance of
comprehension is true in our interpretation. Axiom 6.1 is true because our object
variables range over all the members of our sets and, furthermore, our interpretation
treats ∈ as membership. So, if our interpretation makes

⇐x(x ∈ F ∨ x ∈ G)

true, then F and G really do have the same members and, so, are the same.

Exercise 6.49 Confirm that Axiom 6.2 is true in the intended interpretation.

After a useful definition, we will introduce a new axiom.

Definition 6.16 ⇐F, G(F � G ∨ (F ≺ G ∃ F ∀ G)).

Axiom 6.3 ⇐F, G⇐x(F ≺ (G ∪ {x}) ⇒ F � G).

Exercise 6.50 Confirm that Axiom 6.3 is true in our first (tiny) interpretation.

Exercise 6.51 Confirm that Axiom 6.3 is true in the intended interpretation.

Exercise 6.52 ⇐F((F ∪ {x}) ≺ (F ∪ {x}) ⇒ F ≺ F).

Theorem 6.19 ⇐F(F(F) ⇒ F ∧≺ F).

Proof Apply Exercises 6.40, 6.47, 6.52, and Theorem 6.18.

Exercise 6.53 ⇐F, G((F(F) ∧ F � G ∧ G � F) ⇒ F ∀ G).

Exercise 6.54 ⇐F, G(S(F, G) ⇒ ⇐H(H � F ∨ H ≺ G)).

Exercise 6.55 ⇐F, G, H((F(F) ∧ S(F, G) ∧ S(H, G)) ⇒ F ∀ H).

Exercise 6.56 ⇐x ∈ ω⇐y, z((σxy ∧ σzy) ⇒ x = z).

Exercise 6.57 If F(F), x /∈ F, and y /∈ G, then

(F ∪ {x}) ∀ (G ∪ {y}) ⇒ F ∀ G.

Exercise 6.58 ⇐G(F≺(G) ⇒ ⇐x F≺(G ∪ {x})).

Theorem 6.20 ⇐F, G((F(G) ∧ F ≺ G) ⇒ F(F)).
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Proof By Exercises 6.42, 6.48, 6.58, and Theorem 6.18, ⇐G(F(G) ⇒ F≺(G)).

Exercise 6.59 If F(F), x ∈ F, and y ∈ G, then

F ∀ G ⇒ (F \ {x}) ∀ (G \ {y}).

Exercise 6.60 ⇐F(F(F) ⇒ ⇐x /∈ F⇐y ∈ F F ∀ ((F ∪ {x}) \ {y})).

Exercise 6.61 ⇐F(F(F) ⇒ ⇐x, y /∈ F (F ∪ {x}) ∀ (F ∪ {y})).

Exercise 6.62 ⇐F, G, H((F(F) ∧ S(F, G) ∧ S(F, H)) ⇒ G ∀ H).

Exercise 6.63 Show that 0 has a unique successor.

Exercise 6.64 Show that 0’s successor has a unique successor.

Here is our final axiom.

Axiom 6.4 ⇐F, G⇐x(F ≺ G ⇒ (F ∪ {x}) � G).

Exercise 6.65 Confirm that Axiom 6.4 is true in our first (tiny) and second (intended)

interpretations.

Here is a table showing how our axioms behave in our two interpretations (writing
‘C’ for the infinitely many comprehension axioms).

Tiny Intended

C True True
6.1 True True
6.2 False True
6.3 True True
6.4 True True

Since Axiom 6.2 can be false while the other axioms are true, 6.2 does not follow
from those axioms. Furthermore, since those other axioms are all true in a universe
with just one object and two sets (a universe too small and too simple to harbor
unseen absurdities), we can have no serious doubts about their consistency. Note
too: if we are confident that the story of the intended interpretation is coherent, we
can be confident that all our axioms together are consistent.

Exercise 6.66 ⇐F(F(F) ⇒ ⇐G(F ≺ G ∃ G ≺ F ∃ F ∀ G)).

Exercise 6.67 ⇐F, G, H((F(F) ∧ S(F, G) ∧ F ∀ H) ⇒ S(H, G)).

Exercise 6.68 ⇐x ∈ ω⇐y, z((σxy ∧ σxz) ⇒ y = z).

In your solution of Exercise 6.19, you supplied an FA proof that every natural
number has a successor. If you go back and look, you can confirm that all the FA

results you used in your proof have already been or can easily be reproduced here in
MFA.13 So we state the following theorem without proof.

13 The following results are sufficient: Theorems 6.1–6.5, 6.8, 6.9, 6.11 and Exercises 6.7, 6.9, 6.12,
6.13, 6.15.
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Theorem 6.21 ⇐x ∈ ω≤y σxy.

Just as in FA, we can now obtain MFA translations of the PA axioms S1 and S2.
Axioms A1, A2, M1, and M2 (governing addition and multiplication) present new
challenges. In FA, we used relation variables to define addition and multiplication.
Having jettisoned the relational machinery, we need a new approach. Here is one way
of defining the relation “z is the sum of x and y” without using relation variables.

Definition 6.17 ⇐x, y, z(α(x, y, z) ∨ ≤F, G(x = #F ∧ y = #G ∧ z = #(F ∪

G) ∧ (F ∩ G) = ∅)).

The sum of x and y is the number of objects in the union of two disjoint sets, one
with x members and one with y members. The relation α lets us define the relation
“ x is a multiple of y”. Actually, we define the set of multiples of y.

Definition 6.18 ⇐x, y(x ∈ ω×y ∨ ⇐F((0 ∈ F ∧ ⇐w ∈ F⇐z(α(w, y, z) ⇒ z ∈

F)) ⇒ x ∈ F)).

The idea is that multiples of y are what tireless immortal beings encounter when
they start with 0 and add y to everything they encounter. The multiples of y are
the things that appear in every set that has 0 as a member and is closed under the
operation “plus-y”.

The following definition will be useful. Here the “less than” relation < is defined
just as in FA.

Definition 6.19 ⇐x, y(x ∈ ω<y ∨ (x ∈ ω ∧ x < y)).

We now notice that if z ∧= 0, then z is the product of x and y if and only if z is
a multiple of y and there are x multiples of y less than z. The product of 3 and 1
is 3 because 3 is a multiple of 1 and there are 3 multiples of 1 less than 3 (namely,
0, 1, and 2). The product of 3 and 2 is 6 because 6 is a multiple of 2 and there are
3 multiples of 2 less than 6 (namely, 0, 2, and 4). On the other hand, this approach
does not work so well when z = 0. We do not want to say: 0 is the product of x and
y if and only if 0 is a multiple of y and there are x multiples of y less than 0. This
would imply that 0 is the product of x and y only when x = 0 (since there cannot
be multiples of y less than 0). Note that the following definition of the relation “z is
the product of x and y” features a clause that allows 0 to be the product of x and y

even when x ∧= 0.14

Definition 6.20 ⇐x, y, z(π(x, y, z) ∨ (z ∈ ω×y ∧ (y = 0 ∃ x = #(ω×y ∩ ω<z)))).

If you find this topic interesting and want a big project, you might try to prove that
suitable translations of A1, A2, M1, and M2 are theorems of MFA. You will want to
show that pairs of natural numbers always have a unique natural number sum and a
unique natural number product. Here are some exercises to get you started.

14 Cf. the definition of multiplication in §5 of Visser [12].
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Exercise 6.69 ⇐F, G((F(F) ∧ F(G)) ⇒ F(F ∪ G)).

Exercise 6.70 If F(F), x /∈ F, and y /∈ G, then

F ∀ G ⇒ (F ∪ {x}) ∀ (G ∪ {y}).

Exercise 6.71 If F(G1), (F1 ∩ G1) = (F2 ∩ G2) = ∅, and G1 ∀ G2, then

F1 ∀ F2 ∨ (F1 ∪ G1) ∀ (F2 ∪ G2).

Exercise 6.72 ⇐y ∈ ω⇐x, z1, z2((α(x, y, z1) ∧ α(x, y, z2)) ⇒ z1 = z2).

Exercise 6.73

⇐x, y1 ∈ ω⇐z1, z2((α(x, y1, z1) ∧ σz1z2) ⇒ ≤y2(α(x, y2, z2) ∧ σy1 y2)).

Exercise 6.74

⇐x, y1 ∈ ω⇐y2, z1, z2((α(x, y1, z1) ∧ σy1 y2 ∧ σz1z2) ⇒ α(x, y2, z2)).

Exercise 6.75 ⇐x ∈ ω≤F x = #F.

Exercise 6.76 ⇐x ∈ ω α(x, 0, x).

Exercise 6.77 ⇐x, y ∈ ω≤z ∈ ω α(x, y, z).

6.8 Solutions of Odd-Numbered Exercises

6.1 Properties that apply to the same objects apply to the same number of objects.
Properties that apply to the same number of objects apply to the same objects. Given
any property F , there is a property that does not apply to the same objects as F , but
does apply to the same number of objects. There is a property F that interacts with
every property G as follows: if F applies to the same number of objects as G, then G

applies to no objects at all. Given any relation R, if something does R to everything,
then everything has R done to it by something.

6.3 You might define identity as follows: ⇐x⇐y(x = y ∨ ⇐F(Fx ∨ Fy)). Note that
⇐F(Fx ∨ Fx). Furthermore, our definition says that identical things have the same
properties. If you want to confirm that identical things satisfy the same formulas, sup-
pose φ(x) and x = y. Comprehension gives us an F such that ⇐z(Fz ∨ φ(z)). By
our definition, Fx if and only if Fy. So φ(x) if and only if φ(y). Just for fun, you might
confirm that the following definition would work: ⇐x⇐y(x = y ∨ ⇐F(Fx ⇒ Fy)).

6.5 Comprehension lets us suppose that ⇐x(Dx ∨ (x = #N ∃ x = #U)). As
in the previous exercise, #N ∧= #D. Suppose U ∀ D. Then, for some relation
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R, ⇐y(Dy ⇒ ≤1x(Rxy ∧ Ux)). Note that D#N and D#U. So ≤1x(Rx#N ∧ Ux)

and ≤1x(Rx#U ∧ Ux). Since #N is the only object that has property U, we
infer that R#N#N and R#N#U. But ⇐x(Ux ⇒ ≤1 y(Rxy ∧ Dy)). In particular,
≤1 y(R#Ny ∧ Dy). Since such a y is unique, we infer that #N = #U—contrary to
the previous exercise. We conclude that U ∧∀ D. So, by Hume’s principle, #U ∧= #D.
We need to do some more work before we can prove that there are infinitely many
numbers. You may already be convinced, however, that something like the above
reasoning can be repeated indefinitely.

6.7 Suppose #F = #N. By Hume’s principle, F ∀ N. For some relation R,
⇐x(Fx ⇒ ≤1 y(Rxy ∧Ny)). Since nothing has property N, this implies that nothing
has property F . On the other hand, suppose ≤0x Fx . Let R be any relation at all. It
is vacuously true that ⇐x(Fx ⇒ ≤1 y(Rxy ∧ Ny)) just as it is vacuously true that
⇐y(Ny ⇒ ≤1x(Rxy∧ Fx)). So F ∀ N and, hence, by Hume’s principle, #F = #N.

6.9 Suppose #N = #G. Then, by Exercise 6.7, nothing has property G. So there is
no way that ≤x(Gx ∧ ⇐y(Fy ∨ (Gy ∧ y ∧= x))).

6.11 Suppose x is a natural number and σxy. Suppose F is a σ-closed property that
applies to 0. Then Fx since x has every σ-closed property that 0 has. So Fy since F

is σ-closed. We conclude: y has every σ-closed property that 0 has. That is, 0 √ y.

6.13 It is vacuously true that (0 ∧= 0 ⇒ ≤w σw0). Suppose σxy. Then ≤w σwy and,
hence, (y ∧= 0 ⇒ ≤w σwy).

6.15 Theorem 6.5 guarantees that 0 has the desired property. As an inductive hypoth-
esis, suppose ⇐z((x √ z √ x) ⇒ x = z). Suppose σxy and y √ z √ y. We need
to show that y = z. By Theorems 6.3 and 6.4, x √ z. By Theorem 6.10, −σzy and,
hence, x ∧= z. So, by our inductive hypothesis, z ∧√ x . By Theorem 6.6, z ∧< y and,
hence, y = z.

6.17 If y < 0, then y ∧= 0 and, by Theorem 6.5, y = 0. So ≤0 y Fy. Now apply
Exercise 6.7.

6.19 Suppose σx1x2. By Exercise 6.16, ⇐y(y √ x1 ∨ y < x2). Suppose
⇐y(F1 y ∨ y √ x1). Then ⇐y(F1 y ∨ y < x2) and, hence, by Theorem 6.12,
#F1 = x2. Suppose ⇐y(F2 y ∨ y √ x2). Then, by Theorem 6.11, σx2#F2.

6.21 R0w because (0 = 0∧w = w). Suppose Ry1 y2 (as an inductive hypothesis) and
σy1z1. Exercise 6.19 lets us suppose that σy2z2. Then (σy1z1 ∧ (Ry1 y2 ∧ σy2z2))

and, hence, ≤x1(σx1z1 ∧ ≤x2(Rx1x2 ∧ σx2z2)). So Rz1z2.

6.23 If Q0y2, then y2 = w and, hence, R0y2. As an inductive hypothesis, suppose
⇐x2(Qy1x2 ⇒ Ry1x2). Suppose σy1z1 and Qz1z2. Then ≤x1(σx1z1 ∧≤x2(Qx1x2 ∧

σx2z2)). By Theorem 6.2, ≤x2(Qy1x2 ∧ σx2z2) and, hence, ≤x2(Ry1x2 ∧ σx2z2).
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So Rz1z2.

6.25 We could say: R is a times-w relation if and only if, for all natural numbers y1

and y2,

Ry1 y2 ∨ ((y1 = 0 ∧ y2 = 0) ∃ ≤x1(σx1 y1 ∧ ≤x2(Rx1x2 ∧ y2 = (x2 + w)))).

6.27 Comprehension lets us suppose that

⇐x1⇐y2(Rx1 y2 ∨ ≤x2(Qx1x2 ∧ y2 = (x2 + x1))).

R is to be our times-Sw or times-(w + 1) relation. The idea is that y2 = x1 · (w + 1)

if and only if y2 = (x1 · w) + x1. Since Q is a times-w relation:

Qy1 y2 ∨ ((y1 = 0 ∧ y2 = 0) ∃ ≤x1(σx1 y1 ∧ ≤x2(Qx1x2 ∧ y2 = (x2 + w)))).

We want to show that R is a times-Sw relation. That is,

Rx1 y2 ∨ ((x1 = 0 ∧ y2 = 0) ∃ ≤z1(σz1x1 ∧ ≤z2(Rz1z2 ∧ y2 = (z2 + Sw))))

whenever x1 and y2 are natural numbers. To verify the left–right half of the
biconditional, we assume that Rx1 y2. This lets us pick a z2 such that Qx1z2 and
y2 = (z2 + x1). Note that

(x1 = 0 ∧ z2 = 0) ∃ ≤z1(σz1x1 ∧ ≤y1(Qz1 y1 ∧ z2 = (y1 + w))).

Suppose x1 = 0. If z2 ∧= 0, then σz10 for some z1, contrary to Exercise 6.9. So
z2 = 0 and, hence, by Theorem 6.15, y2 = 0. Suppose x1 ∧= 0. Then we can pick
z1, y1 such that σz1x1, Qz1 y1, and z2 = (y1 + w). We can show:

y2 = z2 + Sz1 = S(z2 + z1) = S((y1 + w) + z1) = S((y1 + z1) + w) = (y1 + z1) + Sw.

Note that Rz1(y1 + z1) since (Qz1 y1 ∧ (y1 + z1) = (y1 + z1)). So

(σz1x1 ∧ (Rz1(y1 + z1) ∧ y2 = ((y1 + z1) + Sw)))

and, hence,
≤z1(σz1x1 ∧ ≤z2(Rz1z2 ∧ y2 = (z2 + Sw))).

Now we need to prove the right–left half of the biconditional. We consider two cases.
First: x1 = 0 = y2. Note that Q00 and, hence, ≤x2(Q0x2 ∧ 0 = (x2 + 0)). So R00.
As for the second case, pick z1, z2 such that σz1x1, Rz1z2, and y2 = (z2 + Sw). This
lets us pick an x2 such that Qz1x2 and z2 = (x2 + z1). Note that Qx1(x2 + w) since
(σz1x1 ∧ (Qz1x2 ∧ (x2 + w) = (x2 + w))). Furthermore,
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y2 = ((x2 + z1) + Sw) = ((x2 + w) + Sz1) = ((x2 + w) + x1).

So Rx1 y2 since (Qx1(x2 + w) ∧ y2 = ((x2 + w) + x1)).

6.29 Suppose R is a times-w relation. Suppose R0y2 and R0y3. Then, by Exercise
6.9, y2 = 0 = y3. As an inductive hypothesis, suppose

⇐y2⇐y3((Ry1 y2 ∧ Ry1 y3) ⇒ y2 = y3).

Suppose RSy1 y2 and RSy1 y3. We can pick x1, x2 such that σx1Sy1, Rx1x2, and
y2 = (x2 + w). By Theorem 6.2, x1 = y1 (since σy1Sy1) and, hence, Ry1x2. We
can also pick x3, x4 such that σx3Sy1, Rx3x4, and y3 = (x4 + w). By Theorem
6.2, x3 = y1 and, hence, Ry1x4. By our inductive hypothesis, x2 = x4 and, hence,
y2 = (x2 + w) = (x4 + w) = y3.

6.31 Note the following
⇐F #F = #F.

⇐F, G(#F = #G ⇒ #G = #F).

⇐F, G, H((#F = #G ∧ #G = #H) ⇒ #F = #H).

6.33 By Definition 6.11, the following are equivalent

≤F, G(w = #F ∧ z = #G ∧ S(F, G))

≤F, G≤x /∈ F(w = #F ∧ z = #G ∧ (F ∪ {x}) ∀ G)

≤F≤x /∈ F(w = #F ∧ z = #(F ∪ {x})).

6.35 Suppose x ∈ ω and σxy. Suppose F is σ-closed and 0 ∈ F . Then x ∈ F

because x is a natural number. So y ∈ F because F is σ-closed. We conclude that
y is a member of a σ-closed set whenever 0 is. That is, y is a natural number. So y ∈ ω.

6.37 Suppose #F ∈ ω. If x ∈ F , we are done because then F = (F ∪ {x}). Suppose
x /∈ F . Then S(F, (F ∪ {x})) and, hence, by Exercise 6.33, σ#F#(F ∪ {x}). So, by
Exercise 6.35, #(F ∪ {x}) ∈ ω.

6.39 If F ⊂ G, then F ∀ F ⊂ G.

6.41 Suppose F ∧= ∅. Then ∅ ⊂ F . So, by Exercise 6.39, ∅ ≺ F .

6.43 By Exercise 6.31, if F ∀ G ∀ H1 ⊂ H , then F ∀ H1 ⊂ H .
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6.45 Suppose F ≺ G ≺ H . Pick F1, G1 such that F ∀ F1 ⊂ G and G ∀ G1 ⊂ H .
By Exercise 6.39 and Axiom 6.2, F1 ≺ G1. Pick F2 such that F1 ∀ F2 ⊂ G1. Then
F ∀ F1 ∀ F2 ⊂ H . So F ≺ H .

6.47 If F ∀ G ≺ G ∀ F , then, by Exercise 6.43 and Axiom 6.2, F ≺ F .

6.49 If F is finite, Axiom 6.2 says: if F is smaller than G and G is the same size as
H , then F is smaller than H . If F is infinite, Axiom 6.2 says: if F and G are both
infinite and G is the same size as H , then F and H are both infinite.

6.51 If F is finite, Axiom 6.3 says: if F is smaller than G ∪ {x}, then F is either
smaller than or the same size as G. If F is infinite, Axiom 6.3 says: if F and G ∪ {x}

are both infinite, then F and G are both infinite.

6.53 If F(F) and F ≺ G ≺ F , then, by Exercise 6.45, F ≺ F , contrary to Theorem
6.19.

6.55 Suppose S(F, G) and S(H, G). By Exercise 6.46, F ≺ G and H ≺ G. By
Exercise 6.54, H � F and F � H . Now apply Exercise 6.53.

6.57 Suppose (F ∪ {x}) ∀ (G ∪ {y}). By Exercise 6.34, S(F, (G ∪ {y})) since
S(F, (F ∪ {x})). By Exercise 6.55, F ∀ G since S(G, (G ∪ {y})).

6.59 By Exercise 6.39, (F\{x}) ≺ F since x ∈ F . So, by Theorem 6.20, F(F\{x})

since F(F). Note that ((F\{x}) ∪ {x}) = F ∀ G = ((G\{y}) ∪ {y}). So we need
only apply Exercise 6.57.

6.61 By Exercise 6.37, F(F ∪ {y}). If x = y, we are done. Suppose x ∧= y. Then
x /∈ (F ∪ {y}). Furthermore, y ∈ (F ∪ {y}). So, by Exercise 6.60, (F ∪ {y}) ∀

(((F ∪ {y}) ∪ {x})\{y}). Since y /∈ F , (((F ∪ {y}) ∪ {x})\{y}) = (F ∪ {x}).

6.63 Note that S(∅, {0}) since 0 /∈ ∅ and (∅ ∪ {0}) ∀ {0}. By Exercise 6.33, σ0#{0}.
Suppose σ0z. Pick F, G such that 0 = #F , z = #G, and S(F, G). By Exercise
6.44, F = ∅ since F ∀ ∅. By Exercises 6.36 and 6.62, G ∀ {0} since S(∅, G). So
z = #G = #{0}.

6.65 In the tiny interpretation, (F ∪{x}) � G because every set is equivalent to every
set. Now consider the intended interpretation. If F is finite, Axiom 6.4 says: if F is
smaller than G, then F ∪{x} is either smaller than or the same size as G. If F is infi-
nite, Axiom 6.4 says: if F and G are both infinite, then F ∪{x} and G are both infinite.

6.67 Suppose x /∈ F and (F ∪ {x}) ∀ G. By Exercises 6.37 and 6.38, F(G). If
every object belongs to H , then F ⊂ H and, hence, by Exercise 6.39 and Axiom
6.2, F ≺ F—contrary to Theorem 6.19. Suppose y /∈ H . Suppose G ≺ (H ∪ {y}).
By Axiom 6.3 and Exercise 6.39, G � H ∀ F ≺ (F ∪ {x}) ∀ G. So, by Axiom 6.2
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and Exercises 6.43 and 6.45, G ≺ G—contrary to Theorem 6.19. On the other hand,
suppose (H ∪ {y}) ≺ G. By Axioms 6.2 and 6.3, (H ∪ {y}) � F . By Exercise 6.39,
H ≺ (H ∪{y}). So by Axiom 6.2 and Exercises 6.43 and 6.45, F ≺ F—contrary to
Theorem 6.19. Exercise 6.66 offers just one alternative: (H ∪{y}) ∀ G. So S(H, G).

6.69 We are going to apply Theorem 6.18 using the following formula φ(H):

F(H) ∧ ⇐F, G((F(F) ∧ G ∀ H) ⇒ F(F ∪ G)).

Exercises 6.36 and 6.44 make it easy to confirm that φ(∅). Suppose, as a kind of
inductive hypothesis, that φ(H). If x ∈ H , then φ(H ∪{x}) because (H ∪{x}) = H .
Suppose x /∈ H . Then ((H ∪ {x})\{x}) = H . Suppose F(F) and G ∀ (H ∪ {x}).
By Exercises 6.37 and 6.38, F(G). By Exercise 6.44, G ∧= ∅. Suppose y ∈ G. Then,
by Exercise 6.59, (G\{y}) ∀ H . So, by our inductive hypothesis, F(F ∪ (G\{y}))

and, hence, by Exercise 6.37, F(F ∪G). That is, φ(H ∪{x}). Now suppose φ(H1) and
H1 ∀ H2. By Exercise 6.38, F(H2). Suppose F(F) and G ∀ H2. Then G ∀ H1 and,
hence, F(F ∪ G). So φ(H2). Theorem 6.18 lets us conclude: ⇐H(F(H) ⇒ φ(H)).
So ⇐H(F(H) ⇒ ⇐F((F(F) ∧ H ∀ H) ⇒ F(F ∪ H)). Now apply Exercise 6.31.

6.71 We use induction on x to show: if x ∈ ω, then G1 satisfies the theorem whenever
#G1 = x . First, suppose #G1 = 0. Then, by Definition 6.11 and Exercise 6.44,
G1 = ∅. If G1 ∀ G2, then, by Exercises 6.31 and 6.44, G2 = ∅ and, hence, F1 ∀ F2

if and only if (F1 ∪ G1) ∀ (F2 ∪ G2). Now, as an inductive hypothesis, suppose x

has the desired property. Suppose σxy. Use Exercise 6.33 to pick G1, H1 such that
x = #H1, y = #G1, and S(H1, G1). Definition 6.12 lets us suppose w /∈ H1 and
(H1 ∪ {w}) ∀ G1. By Exercise 6.44, G1 ∧= ∅. Suppose z1 ∈ G1. Then, by Exercise
6.59, (G1\{z1}) ∀ H1. By Definition 6.11, #(G1\{z1}) = x and, hence, by our
inductive hypothesis, (G1\{z1}) satisfies the theorem. That is, given any F1, F2, H2,
if (F1 ∩ (G1\{z1})) = (F2 ∩ H2) = ∅, and (G1\{z1}) ∀ H2, then

F1 ∀ F2 ∨ (F1 ∪ (G1\{z1})) ∀ (F2 ∪ H2).

Suppose (F1 ∩ G1) = (F2 ∩ G2) = ∅ and G1 ∀ G2. Since G1 ∧= ∅, Exercise 6.44
guarantees that G2 ∧= ∅. Suppose z2 ∈ G2. Then, by Exercise 6.59, (G1\{z1}) ∀

(G2\{z2}). So

F1 ∀ F2 ∨ (F1 ∪ (G1\{z1})) ∀ (F2 ∪ (G2\{z2})).

But, by Theorem 6.20 and Exercises 6.39, 6.57, 6.69, and 6.70, (F1 ∪ (G1\{z1})) ∀

(F2 ∪ (G2\{z2})) if and only if

((F1 ∪ (G1\{z1})) ∪ {z1}) ∀ ((F2 ∪ (G2\{z2})) ∪ {z2}).

So F1 ∀ F2 if and only if (F1 ∪ G1) ∀ (F2 ∪ G2). That is, G1 satisfies the theorem.
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6.73 We begin with some assumptions.

(1) x = #F (5) z1 = #H1

(2) y1 = #G (6) z2 = #H2

(3) z1 = #(F ∪ G) (7) w1 /∈ H1

(4) (F ∩ G) = ∅ (8) (H1 ∪ {w1}) ∀ H2

Note that, by (1), (2), and Exercise 6.69, F(F ∪ G) since x, y1 ∈ ω. By (3), (5),
and Definition 6.11, (F ∪ G) ∀ H1. If w2 ∈ (F ∪ G) for every w2, then, by (7),
H1 ⊂ (F ∪ G) and, hence, by Exercises 6.39 and 6.43, (F ∪ G) ≺ (F ∪ G),
contrary to Theorem 6.19. Suppose w2 /∈ (F ∪ G). Then, by (2) and Exercise 6.33,
σy1#(G ∪ {w2}). Furthermore, by (7), (8), and Exercise 6.70,

(F ∪ (G ∪ {w2})) = ((F ∪ G) ∪ {w2}) ∀ (H1 ∪ {w1}) ∀ H2.

So, by (6) and Definition 6.11, z2 = #(F ∪(G∪{w2})). By (4), (F ∩(G∪{w2})) = ∅.
So, by (1), α(x, #(G ∪ {w2}), z2).

6.75 We use induction. Recall that 0 = #∅ and then apply Definition 6.3.

6.77 Induction on y. Exercise 6.76 handles the case when y = 0. Suppose α(x, y1, z1)

and σy1 y2. Theorem 6.21 lets us suppose σz1z2. Now apply Exercise 6.74.
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Chapter 7

Intuitionist Logic

7.1 Inference

We are going to use a fable to show three things. First, speakers of a language free of
the usual logical vocabulary (in particular, without the resources for making “if. . .
then” statements) can, nonetheless, have a well-developed conception of correct
inference. Second, speakers of such a language can adopt a locution allowing them
to assert that one sentence is inferable from another. Third, the result of this innova-
tion will be a fragment of something called “intuitionist logic.” The upshot is that
intuitionist logic can, at least in part, be construed as a medium for discussing and
reasoning about reasoning. This idea of a logic emerging from a pre-existing practice
of inference is not new to us: we already saw this happen in Chap. 1. There, however,
it was classical logic that emerged from PRA—and, as we shall see, classical logic
is incompatible with the intuitionist logic we are trying to develop in this chapter.
We will have to be careful not to follow the pattern of Chap. 1 too closely.

Suppose we are observing some people, the Peregrins, who reliably distinguish
between good and bad inferences (accepting only the former), but lack the vocabulary
to say that a conclusion follows from some premises.1 Here is a possible dialogue.

Village elder: The repeating decimal 0.123123123. . . is rational.
Inquisitive youth: How do you know that?
Village elder:

0.123123123. . . =
123

103 − 1
.

Inquisitive youth: OK, but how do you know that?

The youth accepts the inference from premise to conclusion. (It is apparent that 123
divided by 103 −1 is rational.) Nonetheless, the youth would like a reason to believe

1 The name ‘Peregrin’ is a tribute to Jaroslav Peregrin whose paper [7] outlines the approach
to intuitionist logic we pursue in this chapter.
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the premise itself. (It is not so apparent that the repeating decimal is exactly that
rational number.) The elder is only too happy to oblige.

Village elder:

(103 − 1) × 0.123123123. . . = 123.123123. . . − 0.123123123. . . = 123.

Inquisitive youth: Right.

The youth accepts the inference from the new premise to the prior premise. (Just
divide through by 103 − 1 in the new premise to obtain the prior one.) The youth
also accepts the new premise itself. (To verify the new premise, you only need to
perform the indicated operations.)

As I already mentioned, it is a distinctive feature of Peregrinese that the inquisitive
youth can endorse the inference from the new premise to the prior one, but cannot
assert that the one follows from the other. We can do so easily enough

0.123123123. . . =
123

103 − 1
if (103 − 1) × 0.123123123. . . = 123

but there is no Peregrinese translation of our ‘if’. We can also assert that the elder’s
initial statement follows from the earlier premise:

0.123123123. . . is rational if it is equal to
123

103 − 1
.

Again, the youth cannot say this.
If the inference from some Peregrinese sentences φ1, . . . ,φn to the Peregrinese

sentence ψ is judged correct by the Peregrins, we record this by writing

{φ1, . . . ,φn} ⇒ ψ.

Statements of this form are known as sequents. In some cases, the Peregrins will
assent to a sentence ψ without benefit of inferential support. We then record the
sequent

⇐ ⇒ ψ.

By treating inference as a relation between a set of premises and a conclusion, we
capture two important features of Peregrinese behavior. First, in assessing inferences,
the Peregrins are indifferent to the order in which premises are given. If they accept
the inference from premises φ1,φ2, presented in that order, to conclusion ψ, they
will accept the inference from premises φ2,φ1, presented in that order, to conclusion
ψ. This is reflected in the set theoretic fact that {φ1,φ2} = {φ2,φ1}. Second, in
assessing inferences, the Peregrins are indifferent to repetitions of premises. They
will accept the inference from premises φ1,φ1,φ2 to conclusion ψ if and only if they
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will accept the inference from φ1,φ2 to ψ. This is reflected in the set theoretic fact
that {φ1,φ1,φ2} = {φ1,φ2}.

Three other features of Peregrinese behavior are worth mentioning. We will
express them as axioms governing the inferability relation ⇒. First, they will accept
any inference from a sentence to itself.

Axiom 7.1 (Taut)

{φ} ⇒ φ.

‘Taut’ is short for ‘tautology’. Second, if they accept an inference, they will continue
to accept it when premises are added.

Axiom 7.2 (Thin)

τ ⇒ ψ ⇒ τ ∪ {φ} ⇒ ψ.

We use capital Greek letters (such as ‘τ’) to stand for sets of sentences. ‘Thin’ is
short for ‘thinning’. Third, if they accept the inference from φ1, . . . ,φn to ψ, they
are willing to replace ψ with φ1, . . . ,φn in any correct inference where ψ serves as
a premise.

Axiom 7.3 (Cut)

υ ⇒ ψ, τ ∪ {ψ} ⇒ χ ⇒ τ ∪ υ ⇒ χ.

A particularly simple form of the Cut principle is:

{φ} ⇒ ψ, {ψ} ⇒ χ ⇒ {φ} ⇒ χ.

For example, having accepted the inferences

(103 − 1) × 0.123123123. . . = 123 ⇒ 0.123123123. . . =
123

103 − 1

0.123123123. . . =
123

103 − 1
⇒ 0.123123123. . . is rational

the inquisitive youth will accept the inference

(103 − 1) × 0.123123123. . . = 123 ⇒ 0.123123123. . . is rational.

The Peregrins treat the inferability relation as transitive.

7.2 Conjunctions

The Peregrins are careful to distinguish between sentences and clauses within sen-
tences, giving a characteristic wink to indicate the end of a sentence. It is always
clear when
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Sentence. Sentence.

is intended rather than
Clause; clause.

We indicate the former structure by writing

φ1,φ2

and the latter by writing
(φ1 & φ2).

When they assess inferences, the Peregrins treat

Premise. Premise.

as equivalent to
Premise; premise.

We capture this practice in the following axiom.

Axiom 7.4 (And)

{φ1,φ2} ⇒ ψ ♥⇒ {(φ1 & φ2)} ⇒ ψ.

The Peregrins are willing to accept the inference from φ1,φ2 to ψ if and only if they
are willing to accept the inference from (φ1 & φ2) to ψ.

Theorem 7.1 {(φ1 & φ2)} ⇒ φ1.

Proof Here is a formal derivation.

1. {φ1} ⇒ φ1 Taut
2. {φ1,φ2} ⇒ φ1 1 Thin
3. {(φ1 & φ2)} ⇒ φ1 2 And

This will be our standard format for verifying sequents: a series of numbered lines,
each featuring a sequent and a justification. The justification ‘1 Thin’ on line 2 means
that we obtained the sequent on line 2 by applying the principle Thin to the sequent
on line 1.

Theorem 7.2 {(φ1 & φ2)} ⇒ φ2.

Exercise 7.1 {φ1,φ2} ⇒ (φ1 & φ2).

Theorem 7.3 τ ∪ {φ1,φ2} ⇒ ψ ⇒ τ ∪ {(φ1 & φ2)} ⇒ ψ.
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Proof In this case, we are not verifying a sequent: we are providing a recipe for
passing from one sequent to another in the course of such a verification. When we
write down the starting sequent, our justification is ‘Prem’ (for ‘premise’).

1. τ ∪ {φ1,φ2} ⇒ ψ Prem
2. {(φ1 & φ2)} ⇒ φ1 Thm 7.1
3. τ ∪ {(φ1 & φ2),φ2} ⇒ ψ 1,2 Cut
4. {φ1 & φ2} ⇒ φ2 Thm 7.2
5. τ ∪ {(φ1 & φ2)} ⇒ ψ 3,4 Cut

We allow ourselves to write down sequents already verified, citing the relevant the-
orem (‘Thm’) or exercise (‘Ex’). Here is a more readable version of the derivation
without set theoretic notation and Greek letters.

1. P, Q, R ⇒ S Prem
2. (Q & R) ⇒ Q Thm 7.1
3. P, (Q & R), R ⇒ S 1,2 Cut
4. (Q & R) ⇒ R Thm 7.2
5. P, (Q & R) ⇒ S 3,4 Cut

We will use this streamlined format whenever it seems helpful.

We have shown
P, Q, R ⇒ S ⇒ P, (Q & R) ⇒ S

without using any special information about ‘P’, ‘Q’, ‘R’, and ‘S’. The proof would
have worked just as well with other formulas. So any time you have a sequent of
form

P, Q, R ⇒ S

with ‘P’, ‘Q’, ‘R’, and ‘S’ as shown or replaced by other formulas (or even with
the idle letter ‘P’ replaced by several formulas), you can derive the corresponding
sequent

P, (Q & R) ⇒ S

citing ‘Thm 7.3’. For example, from

S1, . . . , Sn, (Q & P), R ⇒ P

you can derive
S1, . . . , Sn, ((Q & P) & R) ⇒ P

on the authority of Theorem 7.3.

Exercise 7.2 P, (Q & R) ⇒ S ⇒ P, Q, R ⇒ S.
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Exercise 7.3 S1, P ⇒ Q and S2, P ⇒ R ⇒ S1, S2, P ⇒ (Q & R).

Exercise 7.4 (P & Q) ⇒ (Q & P).

Exercise 7.5 (P & (Q & R)) ⇒ ((P & Q) & R).

7.3 Conditionals

We now start to wonder what sort of expansion of Peregrinese would allow the
Peregrins to assert that one sentence is inferable from others (that is, assert it by
using a sentence that says it, not just by assenting to the inference when it is made).
One device would be a new Peregrinese symbol ‘⊲’ that expresses the relation of
inferability. Affirming (φ ⊲ ψ) would then be equivalent to endorsing the inference
from φ to ψ. So ‘⊲’ should have the following properties.

First, Peregrins should accept (φ ⊲ ψ) whenever they accept the inference from
φ to ψ.

Axiom 7.5 (Ded)2

{φ} ⇒ ψ ⇒ ⇐ ⇒ (φ ⊲ ψ).

Second, from φ and (φ ⊲ ψ), Peregrins should be prepared to infer ψ.

Axiom 7.6 (MP)3

{φ, (φ ⊲ ψ)} ⇒ ψ.

Third, if Peregrins accept the inference from φ0 to ψ0 whenever they accept the
inference from φ1 to ψ1, then they should accept the inference from (φ1 ⊲ ψ1) to
(φ0 ⊲ ψ0). More generally, given

{φ1} ⇒ ψ1, . . . , {φn} ⇒ ψn ⇒ {φ0} ⇒ ψ0

2 The name ‘Ded’ recalls a result, known as the deduction theorem, of which our axiom is a special
case. We still need to confirm the full deduction theorem: that is, we still need to confirm that
(φ ⊲ ψ) is inferable when the derivation of ψ from φ depends on additional premises τ:

τ ∪ {φ} ⇒ ψ ⇒ τ ⇒ (φ ⊲ ψ).

Axioms 7.7, 7.8, and 7.9 will help us do so. This will show that the Peregrins should accept the
inference from τ to (φ ⊲ ψ) whenever they accept the inference from τ ∪ {φ} to ψ. Perhaps
we should have just adopted that as an axiom. I saw two reasons not to take that course. First, I
thought Axiom 7.9 deserved separate discussion because of its special role in distinguishing between
inferability and strict implication (to be discussed below). Second, I thought it quite evident that
Axioms 7.7 and 7.8 belong in a logic of inferability, but less immediately evident that the deduction
theorem does. Others may see the matter differently.
3 ‘MP’ stands for ‘modus ponens’.
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we should have

{(φ1 ⊲ ψ1), . . . , (φn ⊲ ψn)} ⇒ (φ0 ⊲ ψ0).

This means that Cut and Exercise 7.3 yield the following axioms.

Axiom 7.7 (⊲Cut)

{(φ ⊲ ψ), (ψ ⊲ χ)} ⇒ (φ ⊲ χ).

Axiom 7.8 (⊲And)

{(χ ⊲ φ), (χ ⊲ ψ)} ⇒ (χ ⊲ (φ & ψ)).

As I already mentioned, our target is something known as intuitionist logic.
At the moment, we are trying to introduce the rules for the intuitionist conditional.
We are still a bit short of our goal. So far, our connective ⊲ is indistinguishable from
connectives you may have encountered in a logic class: the strict implications � of
various modal logics. We need to add an axiom to make it clear that ⊲ is not �
(because we know that the intuitionist conditional is not �).

Axiom 7.9 (Int)

{ψ} ⇒ (φ ⊲ ψ).

You might think that Int is unnecessary since Ded and Thin yield:

⇐ ⇒ ψ ⇒ ⇐ ⇒ (φ ⊲ ψ).

If Peregrins accept ψ, they accept (φ ⊲ ψ). It does not follow, however, that they
should accept the inference from ψ to (φ ⊲ ψ). Students of modal logics such as
T, S4, and S5 can confirm that it does not follow. If ψ is logically true, then so is
(φ � ψ). However, (φ � ψ) will follow from ψ only in special cases. (The truth of
ψ does not guarantee that ψ will be true in every possible world where φ is true.)

Is Int faithful to the Peregrinese practice of inference? Ded does not guarantee
this. Perhaps we could acquire behavioral evidence that Int captures some aspect of
Peregrinese reasoning. Here is a dialogue that might be relevant.

Village elder: φ.
Inquisitive youth: Well, I’m willing to suppose so, just for the sake of argument.

So what?
Village elder: ψ!
Inquisitive youth: Huh?

A plausible interpretation of this discourse is that the elder has inferred ψ from φ

and that the youth is questioning that inference. The elder now offers support for that
inference. (Suppose “Huh?” is a standard way of soliciting support for an inference.
We would then expect the elder to respond by offering such support.)
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Village elder: ψ.
Inquisitive youth: OK, though I’d be interested to know why I should believe

ψ.

The youth accepts something. It is not ψ. The youth could be acknowledging that
ψ provides a good reason to accept the inference from φ to ψ. If so, Int would be
justified by the way Peregrins assess inferences. We will take it for granted that Int
is justified in this way.

Here is a result we will need for the proof of Theorem 7.4.

Exercise 7.6 ⇒ (Q ⊲ Q).

As part of our streamlining process, we leave a blank to the left of ‘⇒’ when there
should officially be ‘⇐’. An official version of the sequent in the above exercise would
be ‘⇐ ⇒ (ψ ⊲ ψ)’.

Theorem 7.4 P ⇒ (Q ⊲ (P & Q)).

Proof Here is a formal derivation.

1. (Q ⊲ P), (Q ⊲ Q) ⇒ (Q ⊲ (P & Q)) ⊲And
2. ⇒ (Q ⊲ Q) Ex 7.6
3. (Q ⊲ P) ⇒ (Q ⊲ (P & Q)) 1,2 Cut
4. P ⇒ (Q ⊲ P) Int
5. P ⇒ (Q ⊲ (P & Q)) 3,4 Cut

Theorem 7.5 P, Q ⇒ R ⇒ P ⇒ (Q ⊲ R).

Proof The formal derivation below provides a recipe for getting from one sequent
to the other.

1. P, Q ⇒ R Prem
2. (P & Q) ⇒ R 1 And
3. ⇒ ((P & Q) ⊲ R) 2 Ded
4. (Q ⊲ (P & Q)), ((P & Q) ⊲ R) ⇒ (Q ⊲ R) ⊲Cut
5. (Q ⊲ (P & Q)) ⇒ (Q ⊲ R) 3,4 Cut
6. P ⇒ (Q ⊲ (P & Q)) Thm 7.4
7. P ⇒ (Q ⊲ R) 5,6 Cut

Theorem 7.6 P1, . . . , Pn, Q ⇒ R ⇒ P1, . . . , Pn ⇒ (Q ⊲ R).

Proof The proof is by induction on the number of premises P1, . . . , Pn . Theorem
7.5 handles the case when n = 1. Suppose

P1, . . . , Pn−1, Pn, Pn+1, Q ⇒ R.
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Then, by Theorem 7.3,

P1, . . . , Pn−1, (Pn & Pn+1), Q ⇒ R.

Notice that there are now only n premises other than Q. So, by inductive hypothesis,

P1, . . . , Pn−1, (Pn & Pn+1) ⇒ (Q ⊲ R).

Now just apply Exercise 7.2. (Note that in Exercise 7.2 the one sentence P could
have been a set of sentences τ.)

Exercise 7.7 P1, . . . , Pn ⇒ (Q ⊲ R) ⇒ P1, . . . , Pn, Q ⇒ R.

Theorem 7.7 P1, . . . , Pn ⇒ (Q ⊲ R) ♥⇒ P1, . . . , Pn, Q ⇒ R.

Exercise 7.8 (P ⊲ (Q ⊲ R)) ⇒ ((P ⊲ Q) ⊲ (P ⊲ R)).

7.4 Negations

No one knows when the Peregrins first realized that some statements of arithmetic
allowed them to infer every statement of arithmetic.

Village elder: 0 = 1.

Inquisitive youth: [incredulously] What?
Village elder: [patiently] Just suppose 0 = 1.

Inquisitive youth: OK, I’ll play along, just for the sake of argument.
Village elder: 3 + 0 = 3 + 1.

Inquisitive youth: Yep.
Village elder: 3 = 4.

Inquisitive youth: Yep.
Village elder: 4 = 2 × 2.

Inquisitive youth: Yep.
Village elder: 3 = 2 × 2.

Inquisitive youth: Yep.
Village elder: 3 is even.
Inquisitive youth: Yep.
Village elder: 3 + 0 = 4 + 1.

Inquisitive youth: Yep.
Village elder: 3 = 5.

Inquisitive youth: Yep.
Village elder: 5 is even.
Inquisitive youth: Yeah, yeah, I think I get the point.
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We have
0 = 1 ⇒ ψ

whenever ψ is a statement of Peregrinese arithmetic. So, by Cut,

τ ⇒ 0 = 1 ⇒ τ ⇒ ψ

whenever ψ is a statement of Peregrinese arithmetic. For Peregrins, inferring ‘0 = 1’
from an interlocutor’s premises is like saying, “If you believe that, you’ll believe
anything about the natural numbers.” At some point, they acquired the ability to say,
in effect, “If you believe that, you’ll believe anything.” They have a pronouncement

Balderdash!

or, more briefly,
∨

from which they are prepared to infer any declarative Peregrinese sentence.

Axiom 7.10 (EFQ)4

∨ ⇒ ψ.

Theorem 7.8 τ ⇒∨ ⇒ τ ⇒ ψ.

After reading our discussion of conditionals, the Peregrins quickly adopted the
neologism ‘⊲’ and soon combined it with ‘∨’ to expand their logical vocabulary
even more. They began to use

∃φ

as shorthand for
(φ ⊲∨).

Definition 7.1 You can freely interchange ∃φ and (φ ⊲∨).

∃ is a kind of stop sign. A statement of the form

∃φ

is a warning that, if you accept φ, you risk trivializing future inferences by allowing
yourself to infer everything. A statement of the form

(φ ⊲ ∃ψ)

is a warning that, if you accept φ, you had better not accept ψ.

4 ‘EFQ’ stands for ‘ex falso quodlibet’: “from a falsehood anything [follows].”
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Theorem 7.9 ⇒ ∃ ∨ .

Proof ‘∃ ∨’ is shorthand for ‘(∨ ⊲∨)’. So we just apply Exercise 7.6.

Notice that I did not use EFQ in the above proof. I would like you, too, to avoid
EFQ in the following exercises. You should feel free, however, to use Definition 7.1
to replace sentences of the form ∃φ with ones of the form (φ ⊲∨).

Exercise 7.9 (P ⊲ Q) ⇒ (∃Q ⊲ ∃P).

Exercise 7.10 R1, . . . , Rn, P ⇒ Q ⇒ R1, . . . , Rn,∃Q ⇒ ∃P.

Exercise 7.11 (P ⊲ ∃Q) ⇒ (Q ⊲ ∃P).

Exercise 7.12 (P ⊲ ∃P) ⇒ ∃P. (Remember Exercise 7.8.)

Exercise 7.13 ∨ ⇒ ∃P.

Exercise 7.14 P ⇒ ∃ ∃ P.

Exercise 7.15 ∃ ∃ ∃P ⇒ ∃P.

Exercise 7.16 ∃∃ ∨ ⇒∨ .

Exercise 7.17 P1, . . . , Pn ⇒ ∃Q ♥⇒ P1, . . . , Pn, Q ⇒∨ .

Exercise 7.18 ∃(P ⊲ Q) ⇒ ∃Q

Exercise 7.19 ∃ ∃ (P ⊲ Q) ⇒ (P ⊲ ∃ ∃ Q). (Note that P,∃Q ⇒ ∃(P ⊲ Q).)

You have obtained three versions of contraposition (Exercises 7.9, 7.10, and
7.11) from the first of which you can easily obtain the principle of modus tollens:

(P ⊲ Q),∃Q ⇒ ∃P.

You have shown that a statement must be absurd if it yields its own absurdity (Exer-
cise 7.12). You have shown that the absurdity of everything follows from absurdity
(Exercise 7.13). You have confirmed the principle of double negation intro-

duction (Exercise 7.14). You have obtained two versions of double negation

elimination (Exercises 7.15 and 7.16). And more (Exercises 7.17–7.19). Strangely
enough, you have done all this without using EFQ. But EFQ is our only information
about what the sentence ‘∨’ might say. In the absence of EFQ, ‘∨’ could assert a
logical truth rather than an absurdity. Indeed, ‘∨’ could then say anything.

If we want ‘∃P’ to express the rejection or negation of ‘P’, then it matters
tremendously what ‘∨’ says. (Noting that a logical truth can be inferred from ‘P’ is
not an effective way of expressing disapproval of ‘P’.) It may be surprising, then, that
so many properties thought to be characteristic of negation follow from Definition
7.1 and facts about ‘⊲’.5

From now on, feel free to use EFQ.

5 This is just one of the many insights to be found in Martin [6]. I will be borrowing exercises from
that book for the rest of this chapter.
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Exercise 7.20 P,∃P ⇒ Q.

Exercise 7.21 ∃(P ⊲ Q) ⇒ ∃ ∃ P.

Exercise 7.22 (∃Q ⊲ ∃P) ⇒ ∃ ∃ (P ⊲ Q).

Exercise 7.23 (P ⊲ ∃ ∃ Q) ⇒ ∃ ∃ (P ⊲ Q). (Recall Exercise 7.11.)

Exercise 7.24 ∃(P & ∃ Q) ⇒ ∃ ∃ (P ⊲ Q). (Note Exercise 7.23.)

7.5 Absurd Absurdities

Suppose it would be absurd for φ to be absurd: that is, suppose ∃∃φ. Can we safely
infer φ itself? Exercises 7.15 and 7.16 showed that this inference is sometimes war-
ranted. Is it always warranted? Well, under what circumstances would the absurdity
of φ trivialize the Peregrinese practice of inference by allowing the Peregrins to infer
everything? (This is what it would mean for φ’s absurdity to be absurd.) One such
circumstance is that φ is a Peregrinese theorem, something they accept without
argument. If

⇐ ⇒ φ

then, by Exercise 7.14 and Cut,
⇐ ⇒ ∃ ∃ φ.

It would be absurd for a theorem to be absurd. Is that the only situation in which it
is absurd for something to be absurd? Could we have a reason to assert the absurdity
of a sentence φ’s absurdity without having a reason to assert φ?

It seems hard to imagine such a situation. It may be instructive to consider a case
that turns out not to be what we are looking for. Suppose the Peregrins have a kind
of generic statement

Thingamajig is a whatchamacallit

or, more briefly,
�.

The generic statement is like a black box. Since its contents are inaccessible to
the Peregrins, whatever they can prove about the black box, they can prove about
anything. (That is the sense in which it is generic.) In particular, if they show that
the black box is absurd, then they can show that anything is absurd. But that would
be absurd. Isn’t that a good reason for the Peregrins to assert the absurdity of the
absurdity of the black box even though they have no reason to assert the black box
itself?

We need to look into this more carefully. To start, we need to say exactly what it
means for the black box to be generic. Let θ(�) be a sentence in which ‘�’ occurs.
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Let θ(ψ) be the result of replacing every occurrence of ‘�’ in θ(�) with an occurrence
of the sentence ψ. Then the black box obeys the following principle.

Proposition 7.1 (Gen)

⇐ ⇒ θ(�) ⇒ ⇐ ⇒ θ(ψ).

If the Peregrins can prove that the mysterious black box has a property, then they
can prove that every sentence has that property. We can now show that the Peregrins
can prove an absurdity if they can prove the black box.

Proposition 7.2 ⇒ � ⇒ ⇒∨ .

Proof The proof only takes two lines.

1. ⇒ � Prem
2. ⇒ ∨ 1 Gen

The Peregrins can also prove an absurdity if they can prove the absurdity of the black
box.

Exercise 7.25 ⇒ ∃� ⇒ ⇒∨ .

It might be tempting to treat the preceding result as a proof that it would be absurd
for the black box to be absurd:

⇒ ∃ ∃ �

or, equivalently,
∃� ⇒∨ .

The next result shows that this is correct only if the Peregrinese system of inference
allows them to prove absurdities.

Exercise 7.26 ⇒ ∃ ∃ � ⇒ ⇒∨ .

In general terms, the situation is this. If a certain sentence φ is a Peregrinese
theorem, then so is a certain sentence ψ

⇐ ⇒ φ ⇒ ⇐ ⇒ ψ.

(Exercise 7.25 says: ⇒ ∃� ⇒ ⇒∨.) Yet, if the Peregrinese system is consistent, the
Peregrins cannot verify the inference from φ to ψ; that is, they cannot verify

φ ⇒ ψ.

(They cannot verify ∃� ⇒∨.) As we saw earlier in connection with Int, the inference
from φ to ψ is not the same as the inference from the theoremhood of φ to the
theoremhood of ψ. When Peregrins ask you to assume a premise for the purpose of
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deriving a conclusion, they are not asking you to assume that the premise is a theorem
for the sake of showing that the conclusion is a theorem. Assuming a premise is not
the same as assuming that the premise is provable. That is, it is not intrinsic to the
very concept of inference that these assumptions are interchangeable.

Our hope was that a sentence whose status is, in principle, indeterminate would
be an example of a sentence whose absurdity is demonstrably absurd even though the
sentence itself is not provable. This did not work out. No need to despair, however.
The following theorem introduces a useful technique for deriving the absurdity of
a sentence’s absurdity without deriving the sentence itself. The general idea is that
if ψ is derivable from both φ and ∃φ, then it would be absurd for ψ to be absurd
because the absurdity of ψ would (by contraposition) yield both ∃φ and ∃ ∃ φ.

Theorem 7.10 τ ∪ {φ} ⇒ ψ, υ ∪ {∃φ} ⇒ ψ ⇒ τ ∪ υ ⇒ ∃ ∃ ψ.

Proof See the formal derivation below.

1. τ ∪ {φ} ⇒ ψ Prem
2. υ ∪ {∃φ} ⇒ ψ Prem
3. τ ∪ {∃ψ} ⇒ ∃φ 1 Ex 7.10
4. υ ∪ {∃ψ} ⇒ ∃ ∃ φ 2 Ex 7.10
5. ∃φ,∃ ∃ φ ⇒ ∨ Ex 7.20
6. τ ∪ {∃ψ,∃ ∃ φ} ⇒ ∨ 3,5 Cut
7. τ ∪ υ ∪ {∃ψ} ⇒ ∨ 4,6 Cut
8. τ ∪ υ ⇒ ∃ ∃ ψ 7 Ex 7.17

We will now use Theorem 7.10 to prove the absurdity of the absurdity of the
following instance of Peirce’s law.6

(((P ⊲ Q) ⊲ P) ⊲ P)

This sentence is not a theorem of our formal system nor would anything we know
about the Peregrins lead us to think that it ought to be.7 Nonetheless, we now prove
its double negation.

Theorem 7.11 ⇒ ∃ ∃ (((P ⊲ Q) ⊲ P) ⊲ P).

Proof See the formal derivation below.

6 Charles Sanders Peirce (1839–1914) was an American logician, mathematician, philosopher,
and scientist.
7 If you can infer P from the inferability of Q from P , can you safely infer P? That move may
be justified; but its justifiability is not intrinsic to the very concept of inference. By the way, it is
not obvious that ‘(((P ⊲ Q) ⊲ P) ⊲ P)’ is unprovable in our system. There are proofs of its
unprovability, but I will not supply any here. If you want to pursue this further, you might consult
the WikipediA article on Heyting algebras (http://en.wikipedia.org/wiki/Heyting_algebra).

http://en.wikipedia.org/wiki/Heyting_algebra
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1. P ⇒ (((P ⊲ Q) ⊲ P) ⊲ P) Int
2. P,∃P ⇒ Q Ex 7.20
3. ∃P ⇒ (P ⊲ Q) 2 Thm 7.5
4. (P ⊲ Q), ((P ⊲ Q) ⊲ P) ⇒ P MP
5. ∃P, ((P ⊲ Q) ⊲ P) ⇒ P 3,4 Cut
6. ∃P ⇒ (((P ⊲ Q) ⊲ P) ⊲ P) 5 Thm 7.5
7. ⇒ ∃ ∃ ((P ⊲ Q) ⊲ P) ⊲ P) 1,6 Thm 7.10

We can learn an important lesson from Theorem 7.11. If each instance of the
double negation elimination priniciple

∃ ∃ φ ⇒ φ

were provable, then Theorem 7.11 would yield the instance of Peirce’s law that
we know to be unprovable. Exercises 7.15 and 7.16 showed that it is sometimes
permissible to erase pairs of ∃’s. We now see that such inferences are not always
accepted in the land of Peregrin.

Exercise 7.27 Show that if every instance of Peirce’s law is a Peregrinese theorem,

then: ∃ ∃ P ⇒ P. (You need to find a formula of the form (((φ ⊲ ψ) ⊲ φ) ⊲ φ)

that yields the desired result.)

Exercise 7.28 ⇒ ∃ ∃ (∃ ∃ P ⊲ P).

Exercise 7.29 ((P ⊲ Q) ⊲ P) ⇒ ∃ ∃ P.

Some instances of Peirce’s law are Peregrinese theorems. For example, if φ is any
Peregrinese theorem, then Int guarantees that

(((φ ⊲ ψ) ⊲ φ) ⊲ φ)

is a Pergrinese theorem no matter what ψ is. Here is another example that you can
verify without using EFQ.

Exercise 7.30 ⇒ (((∃ ∃ P ⊲∨) ⊲ ∃ ∃ P) ⊲ ∃ ∃ P). (You might want to use

Exercises 7.12 and 7.14 replacing ‘P’ with a sentence more useful to us now.)

7.6 Disjunctions

Suppose the Peregrins introduce an expression ‘≤’ that behaves as follows.8

8 I am not going to try to present ‘≤’ as a natural outgrowth of Peregrinese reflections on a logic-free
conception of inference. Perhaps you can figure out a way to do so. You might start by looking into
something called “multiple-conclusion logic.”
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Axiom 7.11 (Or)

τ ∪ {φ ≤ ψ} ⇒ χ ♥⇒ τ ∪ {φ} ⇒ χ and τ ∪ {ψ} ⇒ χ.

Students of logic may notice that the right-left direction of Or is an inference form
known as separation of cases.

Exercise 7.31 (P ≤ P) ⇒ P.

Exercise 7.32 P ⇒ (P ≤ Q).

Theorem 7.12 Q ⇒ (P ≤ Q).

Exercise 7.33 ⇒ ∃ ∃ (P ≤ ∃P).

Exercise 7.34 The law of excluded middle (LEM) is the principle

⇐ ⇒ (φ ≤ ∃φ).

Show that some instances of LEM are not provable. (You can show that something

is unprovable by showing that it would allow you to prove something you already

know to be unprovable. I can report that the addition of Axiom 7.11 does not allow

us to prove any previously unprovable instances of Peirce’s law.)

Exercise 7.35 (P ≤ Q) ⇒ (∃P ⊲ Q).

Exercise 7.36 (∃P ⊲ Q) ⇒ ∃ ∃ (P ≤ Q).

Exercise 7.37 Show that some instances of the following scheme are unprovable:

(∃φ ⊲ ψ) ⇒ (φ ≤ ψ).

Exercise 7.38 (∃P & ∃ Q) ⇒ ∃(P ≤ Q).

Exercise 7.39 ∃(P ≤ Q) ⇒ (∃P & ∃ Q).

One of the following two sequents is provable; the other is not.

∃(∃P ≤ ∃Q) ⇒ (P & Q).

(P & Q) ⇒ ∃(∃P ≤ ∃Q).

Exercise 7.40 Prove the provable one.

Exercise 7.41 Show that the unprovable one is unprovable. (If your chosen sequent

were provable, then the result of replacing each occurrence of ‘Q’ with an occur-

rence of ‘P’ would also be provable. Show that this new sequent would let us prove

something unprovable.)
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One of the following two sequents is provable; the other is not.

((P & ∃ Q) ⊲ R) ⇒ (P ⊲ (Q ≤ R)).

(P ⊲ (Q ≤ R)) ⇒ ((P & ∃ Q) ⊲ R).

Exercise 7.42 Prove the provable one.

Exercise 7.43 Show that the unprovable one is unprovable. (As in Exercise 7.41,

feel free to manipulate your chosen sequent by replacing occurrences of ‘P’, ‘Q’,

and ‘R’ with occurrences of other formulas. Then show that your new sequent would

let you prove something unprovable.)

I reported (without proof) that Peirce’s law has instances not provable in our deduc-
tive system. This allowed us to show that there are unprovable instances of double
negation elimination and LEM. These facts may also have helped you do Exercises
7.37, 7.41, and 7.43. This approach does not always work: there are unprovable
sentences that do not yield any unprovable instances of Peirce’s law. An example is

(∃P ≤ ∃ ∃ P)

which is an instance of the principle of testability

(∃φ ≤ ∃ ∃ φ).

This observation may help you with some of the following exercises.

Exercise 7.44 Show that some instances of the following scheme are unprovable9:

⇐ ⇒ ((φ ⊲ ψ) ≤ (ψ ⊲ φ)).

One of the following two sequents is provable; the other is not.

(∃P ≤ ∃Q) ⇒ ∃(P & Q).

∃(P & Q) ⇒ (∃P ≤ ∃Q).

Exercise 7.45 Prove the provable one.

Exercise 7.46 Show that the unprovable one is unprovable.

9 Is it intrinsic to the concept of inference that, given any two sentences, one will be inferable from
the other?
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7.7 Assimilators

To the east of the Peregrins lies the land of Boole. The Boolean language is similar
to Peregrinese in many ways. For example, the Booleans have a symbol ‘∨’ that
obeys EFQ. They also have a symbol ‘¬’ with some of the logical properties of the
Peregrinese ‘∃’.

Proposition 7.3

τ ⇒ ¬φ ♥⇒ τ ∪ {φ} ⇒∨ .

Booleans will infer ¬φ from τ if and only if they will infer anything from τ ∪ {φ}.
This is the Boolean version of Exercise 7.17. The Booleans are an uninhibited lot
and, unlike their cautious neighbors to the west, make free use of double negation
elimination.

Proposition 7.4

{¬¬φ} ⇒ φ.

The most easterly Peregrins had frequent contact with their Boolean neighbors
and adopted many of their customs. In particular, they found it useful to incorporate
some Boolean elements into their dialect: the expression ‘¬’, for example, with all
its logical properties. They soon discovered, to their horror, that they were losing
their cultural identity.

Proposition 7.5 ∃ ∃ P ⇒ P.

Proof Here is a formal derivation.

1. ¬P ⇒ ¬P Taut
2. ¬P, P ⇒ ∨ 1 Prop 7.3
3. ¬P ⇒ ∃P 2 Thm 7.5
4. ∃ ∃ P, ∃P ⇒ ∨ Ex 7.20
5. ∃ ∃ P, ¬P ⇒ ∨ 3,4 Cut
6. ∃ ∃ P ⇒ ¬¬P 5 Prop 7.3
7. ¬¬P ⇒ P Prop 7.4
8. ∃ ∃ P ⇒ P 6,7 Cut

The Peregrins were just trying to be nice. They thought they could ease relations
with their neighbors by adopting some Boolean customs while holding tight to their
own sacred traditions. Alas, Boolean logic does not tolerate difference. It does not
coexist: it assimilates.10 (Resistance is futile.) Add Boolean negation to Peregrinese
logic and the result is a copy of Boolean logic in which ‘∃’ behaves just like ‘¬’.
(In more conventional terminology: add classical negation to intuitionist logic and
the result is classical logic.) ‘⊲’ begins to act strangely too.

10 For more on assimilators, see Pollard [8–10]. The first two papers are available via http://www.
projecteuclid.org. You can find the third at http://www.philosophy.unimelb.edu.au/ajl/

http://www.projecteuclid.org
http://www.projecteuclid.org
http://www.philosophy.unimelb.edu.au/ajl/
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Proposition 7.6 ⇒ (((P ⊲ Q) ⊲ P) ⊲ P).

Proof Just apply Theorem 7.11 and Proposition 7.5.

Exercise 7.47 In the land of Peregrin, there is a monastic community whose members

may only utter σ0
1 sentences and compounds of σ0

1 sentences formed with ‘&’, ‘ ⊲’,

‘ ∨’, ‘ ∃’, and ‘ ≤’. The monks infer ‘ ∨’ from ‘ | = ||’. They infer − − φ from

(−φ ⊲∨). They infer ‘ f (a) = |’ from ‘id( f (a), |) = ||’. Without necessarily giving

a full-blown proof, indicate why the monks will infer φ from ∃ ∃ φ whenever φ is a

σ0
1 sentence.

To the west of the Peregrins lies the land of Peirce. The Peirceans have a symbol
‘∧’ with some of the logical properties of ‘⊲’. Here is the Peircean version of
Theorem 7.7.

Proposition 7.7

τ ∪ {φ} ⇒ ψ ♥⇒ τ ⇒ (φ ∧ ψ).

A very un-Peregrinese trait, however, is the Peircean’s acceptance of every instance
of Peirce’s law.

Proposition 7.8

⇐ ⇒ (((φ ∧ ψ) ∧ φ) ∧ φ).

Perhaps you can guess what happens when the neighborly Peregrins absorb ‘∧’ into
their dialect.

Exercise 7.48 (P ∧ Q), P ⇒ Q.

Proposition 7.9 (P ∧ Q) ⇒ (P ⊲ Q).

Proof Just apply Exercise 7.48 and Theorem 7.5.

Exercise 7.49 ((P ⊲ Q) ⊲ P) ⇒ ((P ∧ Q) ∧ P).

Proposition 7.10 ((P ∧ Q) ∧ P) ⇒ P.

Proof Just apply Propositions 7.7 and 7.8.

Exercise 7.50 ⇒ (((P ⊲ Q) ⊲ P) ⊲ P).

Peircean logic does not tolerate difference. It does not coexist: it assimilates. Add
the Peircean conditional to Peregrinese logic and the result is a copy of Peircean
logic in which ‘⊲’ behaves just like ‘∧’. (In more conventional terminology: add the
classical conditional to intuitionist logic and the result is classical logic.) ‘∃’ begins
to act strangely too.
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Proposition 7.11 ∃ ∃ P ⇒ P.

Proof Apply Exercises 7.27 and 7.50.

To the south of the Peregrins lies the land of Trivalence. The Trivalents recognize
one form of truth (T ) but two forms of untruth (U1 and U2). They attribute T to
a sentence φ by asserting φ itself. They attribute U1 to φ by asserting π φ. They
attribute U2 to φ by asserting ππ φ. Since neither form of untruth is compatible
with truth, the Trivalents enjoy two versions of EFQ.

Proposition 7.12

{φ, π φ} ⇒ ψ.

{φ, ππ φ} ⇒ ψ.

Since a declarative Trivalent sentence has to be in one of the three aforementioned
states (T, U1, U2), exactly one of the sentences

φ,π φ,ππ φ

will be true. So anything that follows from each of these three sentences will be true.
More generally, if you are able to infer ψ whenever you add one of these sentences
to τ, then you can infer ψ from τ alone.

Proposition 7.13

τ ∪ {φ} ⇒ ψ, τ ∪ {π φ} ⇒ ψ, τ ∪ {ππ φ} ⇒ ψ ⇒ τ ⇒ ψ.

Any guesses about what happens when the most southerly Peregrins extend the hand
of good fellowship and start using ‘π’?

Exercise 7.51 ∃ ∃ P ⇒ ∃ π P.

Exercise 7.52 ∃ ∃ P ⇒ ∃ ππ P.

Exercise 7.53 ∃ ∃ P ⇒ P.

Need I say it? ‘π’ is an assimilator.

Exercise 7.54 The Peregrins have neighbors to the north who recognize one form

of truth and three forms of untruth. You complete the story.

Classical (two-valued) logic does not play nice. Neither does n-valued logic for
any finite n.
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7.8 The Glivenko/Gödel Theorems

We now bid adieu to the Peregrins and consider a formal language with the following
vocabulary.

1. Three connectives: ‘&’, ‘⊲’, and ‘≤’.
2. One sentential constant: ‘∨’.
3. Infinitely many sentence letters: ‘P’, ‘Q’, ‘P1’, ‘Q1’,…
4. Two parentheses: ‘(’, ‘)’.

We recursively define the sentences of our language as follows.

5. ‘∨’ is a sentence.
6. Every sentence letter is a sentence.
7. If φ and ψ are sentences, then so are �(φ & ψ)�, �(φ ⊲ ψ)�, and �(φ ≤ ψ)�.

We introduce ‘∃’ via Definition 7.1. ⇒I will be the relation governed by Axioms
7.1–7.11. (The ‘I ’ stands for “intuitionist.”) ⇒C will be the relation governed by
Axioms 7.1 − 7.11 and LEM. (The ‘C’ stands for “classical.”) A derivation of a
sequent τ ⇒I ψ or τ ⇒C ψ will have the same form as those in the preceding
sections: a series of numbered lines each featuring a sequent and a justification. In
a classical derivation, we accept LEM as a justification for any sequent of the form
⇐ ⇒C (φ ≤ ∃φ). Feel free to use results we have already verified. Since every step
in an intuitionist derivation is a correct step in a classical derivation, we obtain the
following theorem.

Theorem 7.13 If there is an intuitionist derivation of τ ⇒I ψ, then there is a

classical derivation of τ ⇒C ψ.

The next three exercises will help us verify two theorems first proved by Valerii

Glivenko (1897–1940).11

Exercise 7.55 (P ⊲ ∃Q),∃ ∃ P ⇒I ∃Q.

Exercise 7.56 ((P ≤ ∃P) ⊲ ∃Q) ⇒I ∃Q.

Exercise 7.57 τ ∪ {(φ ≤ ∃φ)} ⇒I ∃ψ ⇒ τ ⇒I ∃ψ.

Here is a close cousin of Exercise 7.57.

Exercise 7.58 τ ∪ {(φ ≤ ∃φ)} ⇒I ψ ⇒ τ ⇒I ∃ ∃ ψ.

The only distinctively classical features of one of our classical derivations will be
lines invoking LEM. Exercise 7.57 implies that every such line is eliminable if our
conclusion is a negation. That is, we have a technique for transforming a classical
derivation of a negation into an intuitionist derivation. The following result will help
us confirm this.

11 See Glivenko [2]; English translation in Mancosu [5, pp. 301–305].
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Suppose we are presented with a classical derivation of the sequent φ ⇒C ψ. Each
application of LEM in the derivation will introduce a sequent ⇐ ⇒C (φ≤∃φ). Let the
members of ψ be the sentences (φ ≤ ∃φ) on the right-hand sides of those sequents.
We claim there is an intuitionist derivation of the sequent φ ∪ ψ ∀ ⇒I ψ for some
subset ψ ∀ of ψ . Our proof is by induction on the length of the classical derivation.
That is, having confirmed that derivations of length 1 satisfy our claim, we will show
that derivations of length n+1 will satisfy our claim as long as derivations of length n

do. Suppose the derivation consists of just one line. If that line features an instance of
LEM, ⇐ ⇒C (φ≤∃φ), then we just note that, by Taut, there is an intuitionist derivation
of {(φ≤∃φ)} ⇒I (φ≤∃φ). The only other possible occupants of the one line would
be instances of the intuitionist Axioms 7.1, 7.6, 7.7, 7.8, 7.9, or 7.10. (All the other
axioms involve a derivation from a previous line.) Now suppose φ ⇒C ψ sits at the
end of a derivation with more than one line. The axioms we just discussed present no
new problems. So we need only consider Axioms 7.2, 7.3, 7.4, 7.5, and 7.11. Suppose
the last line of the classical derivation features an application of Axiom 7.2 (Thin).
Then φ is of the form τ ∪{φ} and the sequent τ ⇒C ψ appears on an earlier line. By
our inductive hypothesis, there is an intuitionist derivation of τ ∪ψ ∀ ⇒I ψ for some
subset ψ ∀ of ψ . So, by Thin, there is an intuitionist derivation of τ ∪{φ}∪ψ ∀ ⇒I ψ.
That is, there is an intuitionist derivation of φ∪ψ ∀ ⇒I ψ, as desired. Now suppose the
last line of the classical derivation features an application of Axiom 7.3 (Cut). Then
φ is of the form τ ∪ υ and sequents υ ⇒C χ and τ ∪ {χ} ⇒C ψ appear on earlier
lines. By our inductive hypothesis, there are intuitionist derivations of υ ∪ ψ ∀ ⇒I χ

and τ ∪ {χ} ∪ ψ ∀∀ ⇒I ψ for some subsets ψ ∀ and ψ ∀∀ of ψ . So, by Cut, there is an
intuitionist derivation of τ ∪ υ ∪ ψ ∀ ∪ ψ ∀∀ ⇒I ψ where ψ ∀ ∪ ψ ∀∀ is a subset of ψ , as
desired. Suppose the last line of the classical derivation features an application of the
left-right direction of Axiom 7.4 (And). Then φ is of the form {(φ1 & φ2)} and the
sequent {φ1,φ2} ⇒C ψ appears on an earlier line. By our inductive hypothesis, there
is an intuitionist derivation of {φ1,φ2} ∪ ψ ∀ ⇒I ψ for some subset ψ ∀ of ψ . So, by
Theorem 7.3, there is an intuitionist derivation of {(φ1 & φ2)} ∪ ψ ∀ ⇒I ψ. Exercise
7.2 lets us handle the left-right direction of Axiom 7.4 in a similar way. I leave it to
you to show how to handle applications of Axioms 7.5 and 7.11.

Theorem 7.14 If there is a classical derivation of τ ⇒C ∃ψ, then there is an

intuitionist derivation of τ ⇒I ∃ψ.

Proof Suppose we are presented with a classical derivation of τ ⇒C ∃ψ. Then, as
we just showed, there is an intuitionist derivation of τ ∪ ψ ⇒I ∃ψ where ψ is a
finite set of sentences of the form (φ ≤ ∃φ). Finitely many applications of Exercise
7.57 yield an intuitionist derivation of τ ⇒I ∃ψ. (If you have any doubts, you can
use induction on the size of ψ to confirm this last claim.)

Theorem 7.15 If there is a classical derivation of τ ⇒C ψ, then there is an intu-

itionist derivation of τ ⇒I ∃ ∃ ψ.

Proof If there is a classical derivation of τ ⇒C ψ, then, by Exercise 7.14, there is a
classical derivation of τ ⇒C ∃ ∃ ψ. Now apply Theorem 7.14.
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We will now see how Kurt Gödel improved on Glivenko’s results.12 First some
definitions.

Definition 7.2 φ is an intuitionist theorem if and only if there is an intuitionist
derivation of ⇐ ⇒I φ.

Definition 7.3 φ is a classical theorem if and only if there is a classical deriva-
tion of ⇐ ⇒C φ.

Definition 7.4 φ and ψ are intuitionistically equivalent if and only if there
are intuitionist derivations of {φ} ⇒I ψ and {ψ} ⇒I φ.

Definition 7.5 φ and ψ are classically equivalent if and only if there are clas-
sical derivations of {φ} ⇒C ψ and {ψ} ⇒C φ.

Definition 7.6 A {∃, &}-sentence is a sentence in which no connectives other than
‘∃’ and ‘&’ occur.

I note two facts without proof. First, neither ‘∨’ nor any sentence letter is a classical
theorem. Second, every sentence of our formal language is classically equivalent to
a {∃, &}-sentence.

Definition 7.7 The length of a sentence is the number of occurrences of connec-
tives within it.

For example, ‘∨’ and ‘P’ have length 0, while ‘∃ ∃ (P ≤ (P ⊲ Q))’ has length
4 (with two occurrences of ‘∃’ and one occurrence each of ‘▽’ and ‘⊲’).

Theorem 7.16 A {∃, &}-sentence is a classical theorem only if it is an intuitionist

theorem.

Proof Our proof will be by induction on the length of our sentences. That is, having
confirmed that sentences of length 0 satisfy the theorem, we will show that sentences
of length n + 1 will satisfy the theorem as long as sentences of length n do. Since no
sentence of length 0 is a classical theorem, every sentence of length 0 trivially satisfies
the theorem. A {∃, &}-sentence with non-zero length will be either a negation or a
conjunction. Theorem 7.14 takes care of the negations. In the case of a conjunction
(φ & ψ), our inductive hypothesis is that both φ and ψ satisfy the theorem. Suppose
(φ & ψ) is a classical theorem. Then φ and ψ are classical theorems and, hence, φ

and ψ are intuitionist theorems. It follows, as desired, that (φ & ψ) is an intuitionist
theorem.

We now define an interpretation function i as follows. i(φ) = φ whenever
φ is ‘∨’ or a sentence letter. Furthermore:

12 See Gödel [3]; English translation in Gödel [4, pp. 287–295].
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i(φ & ψ) = (i(φ) & i(ψ))

i(φ ⊲ ψ) = ∃(i(φ) & ∃ i(ψ))

i(φ ≤ ψ) = ∃(∃i(φ) & ∃ i(ψ)).

Note that
i(∃φ) = i(φ ⊲∨) = ∃(i(φ) & ∃ ∨).

You can use Theorems 7.1 and 7.9 and Exercise 7.10 to derive ∃(i(φ) & ∃ ∨)

from ∃i(φ) and vice versa. So i(∃φ) and ∃i(φ) are intuitionistically and classically
equivalent. It follows that you can interchange these sentences without affecting
derivability. That is, if you replace occurrences of one sentence with occurrences of
the other in an intuitionistically or classically derivable sequent, the result will be
an intuitionistically or classically derivable sequent.13 Since i(∃φ) and ∃i(φ) are
interchangeable, it is harmless to treat them as identical:

i(∃φ) = ∃i(φ).

The function i transforms every sentence into a classically equivalent {∃, &}-
sentence. For example,

i(∃ ∃ P ⊲ P) = ∃(∃ ∃ P & ∃ P).

This lets us show that i assigns an intuitionist theorem to every classical theorem.

Theorem 7.17 If ψ is a classical theorem, then i(ψ) is an intuitionist theorem.

Proof If ψ is a classical theorem, then so is i(ψ) (since ψ and i(ψ) are classically
equivalent). But then, by Theorem 7.16, i(ψ) is an intuitionist theorem.

No classical derivation of a theorem is pointless from an intuitionist perspec-
tive. Every such derivation yields an intuitionist theorem. If the classical theorem
is a {∃, &}-sentence, then, by Theorem 7.16, that sentence is itself an intuitionist
theorem. In every other case, we can apply Theorem 7.15 or 7.17.

7.9 First-Order Logic With a Decidable Relation

We will now confirm that a similar result applies to a much more expressive formal
language. Our new language features the following vocabulary.

1. Three connectives: ‘&’, ‘⊲’, and ‘≤’.
2. One quantifier: ‘∞’.
3. One relation symbol: ‘R’.
4. One sentential constant: ‘∨’.

13 For a proof, see Martin [6, p. 168].
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5. Infinitely many variables: ‘w’, ‘x’, ‘y’, ‘z’, ‘w1’, ‘x1’, ‘y1’, ‘z1’,…
6. Two parentheses: ‘(’, ‘)’.

We recursively define the formulas of our language as follows.

7. ‘∨’ is a formula.
8. If α and β are variables, then �Rαβ� is a formula.
9. If φ and ψ are formulas, then so are �(φ & ψ)�, �(φ ⊲ ψ)�, and �(φ ≤ ψ)�.

10. If α is a variable and φ is a formula, then �∞α φ� is a formula.

We introduce ‘∃’ via Definition 7.1. We define free and bound occurrences of
variables as in Chap. 2.

Axiom 7.12 If φ(β) is the result of replacing every free occurrence of the variable
α in φ(α) with a free occurrence of the variable β, then

{∞α φ(α)} ⇒ φ(β).

If α = β, this takes the form
{∞α φ} ⇒ φ.

Axiom 7.13 If the variable α does not occur free in any member of τ, then

τ ⇒ φ ⇒ τ ⇒ ∞α φ.

Axiom 7.14

⇐ ⇒ ∞x∞y(Rxy ≤ ∃Rxy).

Axiom 7.14 says that the relation R satisfies a version of LEM. Such a relation
is said to be decidable. Now let ⇒I be the relation governed by Axioms 7.1–7.14.
Let ⇒C be the relation governed by Axioms 7.1–7.13 and LEM. Since Axiom 7.14
is a classical theorem, we once again have:

τ ⇒I ψ ⇒ τ ⇒C ψ.

We extend our interpretation function i to our new language by stipulating:

i(Rαβ) = Rαβ

i(∞α φ) = ∞α i(φ).

When we assess the length of a formula we will now count occurrences of the
quantifier ‘∞’ as well as occurrences of connectives. For example, ‘∞x ∃ ∞y ∃ Rxy’
has length 4.

Exercise 7.59 ⇐ ⇒I ∞x∞y(∃ ∃ Rxy ⊲ Rxy).

Exercise 7.60 ∃ ∃ (φ & ψ) ⇒I (∃ ∃ φ & ∃ ∃ψ).

http://dx.doi.org/10.1007/978-3-319-05816-0_2
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Exercise 7.61 {φ} ⇒I ψ ⇒ {∞α φ} ⇒I ∞α ψ.

Exercise 7.62 {∃ ∃ ∞α φ} ⇒I ∞α ∃ ∃φ.

Exercise 7.63 Use induction on the length of the formula i(φ) to show:

{∃ ∃ i(φ)} ⇒I i(φ).

You might find Exercise 7.15 useful.

Exercise 7.64 {(i(φ) ⊲ i(ψ))} ⇒I i(φ ⊲ ψ).

Exercise 7.65 {i(φ ⊲ ψ)} ⇒I (i(φ) ⊲ i(ψ)). (You might take a look at Exercises

7.19 and 7.24.)

Exercise 7.66 {i(φ)} ⇒I i(φ ≤ ψ) and {i(ψ)} ⇒I i(φ ≤ ψ).

Exercise 7.67

τ ∪ {i(φ)} ⇒I i(χ) and τ ∪ {i(ψ)} ⇒I i(χ) ⇒ τ ∪ {i(φ ≤ ψ)} ⇒I i(χ).

Exercise 7.68 Show that if

φ1, . . . ,φn ⇒C ψ

is an instance of a classical axiom, then there is an intuitionist derivation of

i(φ1), . . . , i(φn) ⇒I i(ψ).

You will need to check all the classical axioms that allow you to write down a sequent

without any help from earlier sequents. They are: 7.1, 7.6, 7.7, 7.8, 7.9, 7.10, 7.12,

and LEM. You will probably find Exercises 7.64 and 7.65 useful.

Exercise 7.69 Suppose we have a classical derivation of {φ1, . . . ,φn} ⇒C ψ. Use

induction on the length of that derivation to show that there is an intuitionist deriva-

tion of {i(φ1), . . . , i(φn)} ⇒I i(ψ).

If we add more relation symbols to our language, then, as long as the corresponding
versions of Axiom 7.14 are intuitionist theorems, the preceding results will continue
to hold. We might, for example, add symbols meant to express the relations “x is the
successor of y,” “x is the sum of y and z,” and “x is the product of y and z.” All three
relations are primitive recursive and intuitionists agree that all three are decidable.
Let HA be the result of retaining all the axioms of PA but switching the underlying
logic from classical to intuitionist.14 Then the result of applying an interpretation
function i with the above properties to an axiom of PA is always a theorem of HA.
So, as Gödel was quick to observe, PA is consistent if HA is. For suppose PA is
inconsistent. Then, for some PA axioms φ1, . . . ,φn and any PA formula ψ,

14 The ‘H’ in HA commemorates the mathematician Arend Heyting (1898–1980).
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{φ1, . . . ,φn} ⇒C (ψ & ∃ ψ).

Applying a version of Exercise 7.69, we get:

{i(φ1), . . . , i(φn)} ⇒I i(ψ & ∃ ψ).

But
i(ψ & ∃ ψ) = (i(ψ) & ∃ i(ψ)).

So HA is inconsistent if PA is.15 If you accept the consistency of intuitionist arith-
metic, you are in no position to question the consistency of PA.

7.10 Curry’s Paradox

We conclude this chapter, and the book, with another example of how perilous set
theory can be. Suppose a Peregrinese mathematician proposes the following.

Proposition 7.14 (Set)

β √ {α : θ(α)} ⇓ ⇒ θ(β).

The idea is that β will belong to the set of those things that have property θ if and
only if β has property θ. β will belong to the set of prime numbers if and only if β

is a prime number. Our experience with lists back in Chap. 3 should make us wary
here: recall the non-existent list of all lists that do not list themselves. Let us consider
the Peregrinese set of all sets that are not members of themselves: {x : x /√ x} or,
in unabbreviated notation, {x : (x √ x ⊲∨)}. For brevity’s sake, let us call this set
‘c’. Note that c is a member of itself if and only if (c √ c ⊲∨).

Proposition 7.15 ⇒∨ .

Proof Here is a formal derivation.

1. c √ c ⇒ (c √ c ⊲∨) Set
2. c √ c, (c √ c ⊲∨) ⇒ ∨ MP
3. c √ c ⇒ ∨ 1,2 Cut
4. ⇒ (c √ c ⊲∨) 3 Ded
5. (c √ c ⊲∨) ⇒ c √ c Set
6. ⇒ c √ c 4,5 Cut
7. ⇒ ∨ 3,6 Cut

Note that we did not use Int. Skepticism about that rule will not keep you out
of trouble here. Even more interesting: we did not use EFQ. Since we used no

15 Again, see Gödel [3]; English translation in Gödel [4, pp. 287–295].

http://dx.doi.org/10.1007/978-3-319-05816-0_3
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special information about ‘∨’, the proof will still work when we replace ‘∨’ with
any sentence. So, given only Cut, Ded, and MP as our logical apparatus, the rule Set
allows us to show that every sentence is a theorem.16

7.11 Solutions of Odd-Numbered Exercises

7.1

1. {(φ1&φ2)} ⇒ (φ1&φ2) Taut
2. {φ1,φ2} ⇒ (φ1&φ2) 1 And

7.3

1. S1, P ⇒ Q Prem
2. S2, P ⇒ R Prem
3. Q, R ⇒ (Q&R) Ex 7.1
4. S1, P, R ⇒ (Q&R) 1, 3 Cut
5. S1, S2, P ⇒ (Q&R) 2, 4 Cut

7.5

1. (P&(Q&R)) ⇒ P Thm 7.1
2. (P&(Q&R)) ⇒ (Q&R) Thm 7.2
3. (Q&R) ⇒ Q Thm 7.1
4. (Q&R) ⇒ R Thm 7.2
5. (P&(Q&R)) ⇒ Q 2, 3 Cut
6. (P&(Q&R)) ⇒ R 2, 4 Cut
7. (P&(Q&R)) ⇒ (P&Q) 1, 5 Ex 7.3
8. (P&(Q&R)) ⇒ ((P&Q)&R) 6, 7 Ex 7.3

7.7

1. P1, . . . , Pn ⇒ (Q ⊲ R) Prem
2. Q, (Q ⊲ R) ⇒ R MP
3. P1, . . . , Pn, Q ⇒ R 1, 2 Cut

16 The American logician Haskell Curry (1900–1982) noted this in [1] (http://www.jstor.org/
stable/2269292).

http://www.jstor.org/stable/2269292
http://www.jstor.org/stable/2269292
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7.9

1. P, (P ⊲ Q) ⇒ Q MP
2. Q, (Q ⊲∨) ⇒ ∨ MP
3. P, (P ⊲ Q), (Q ⊲∨) ⇒ ∨ 1, 2 Cut
4. (P ⊲ Q), (Q ⊲∨) ⇒ (P ⊲∨) 3 Thm 7.6
5. (P ⊲ Q) ⇒ ((Q ⊲∨) ⊲ (P ⊲∨)) 4 Thm 7.5

7.11

1. P, (P ⊲ (Q ⊲∨)) ⇒ (Q ⊲∨) MP
2. Q, (Q ⊲∨) ⇒ ∨ MP
3. P, Q, (P ⊲ (Q ⊲∨)) ⇒ ∨ 1, 2 Cut
4. Q, (P ⊲ (Q ⊲∨)) ⇒ (P ⊲∨) 3 Thm 7.6
5. (P ⊲ (Q ⊲∨)) ⇒ (Q ⊲ (P ⊲∨)) 4 Thm 7.5

7.13

1. ∨ ⇒ (P ⊲∨) Int

7.15

1. P ⇒ ∃ ∃ P Ex 7.14
2. ∃ ∃ ∃P ⇒ ∃P 1 Ex 7.10

7.17 Since ‘∃Q’ is shorthand for ‘(Q ⊲∨)’, this exercise is just an instance of
Theorem 7.7.

7.19

1. P, (P ⊲ Q) ⇒ Q MP
2. P,∃Q ⇒ ∃(P ⊲ Q) 1 Ex 7.10
3. P,∃ ∃ (P ⊲ Q) ⇒ ∃ ∃ Q 2 Ex 7.10
4. ∃ ∃ (P ⊲ Q) ⇒ (P ⊲ ∃ ∃ Q) 3 Thm 7.5

7.21

1. P,∃P ⇒ Q Ex 7.20
2. ∃P ⇒ (P ⊲ Q) 1 Thm 7.5
3. ∃(P ⊲ Q) ⇒ ∃ ∃ P 2 Ex 7.10
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7.23

1. (P ⊲ ∃ ∃ Q) ⇒ (∃Q ⊲ ∃P) Ex 7.11
2. (∃Q ⊲ ∃P) ⇒ ∃ ∃ (P ⊲ Q) Ex 7.22
3. (P ⊲ ∃ ∃ Q) ⇒ ∃ ∃ (P ⊲ Q) 1, 2 Cut

7.25

1. ⇒ ∃� Prem
2. ⇒ ∃∃ ∨ 1 Gen
3. ∃∃ ∨ ⇒ ∨ Ex 7.16
4. ⇒ ∨ 2, 3 Cut

7.27 Note that ‘((∃P ⊲ P) ⊲ P)’ is an instance of Peirce’s law because it is
shorthand for ‘(((P ⊲∨) ⊲ P) ⊲ P)’.

1. ⇒ ((∃P ⊲ P) ⊲ P) Prem
2. ∃P,∃ ∃ P ⇒ P Ex 7.20
3. ∃ ∃ P ⇒ (∃P ⊲ P) 2 Thm 7.5
4. (∃P ⊲ P), ((∃P ⊲ P) ⊲ P) ⇒ P MP
5. (∃P ⊲ P) ⇒ P 1, 4 Cut
6. ∃ ∃ P ⇒ P 3, 5 Cut

7.29

1. ∃(P ⊲ Q) ⇒ ∃ ∃ P Ex 7.21
2. (P ⊲ Q), ((P ⊲ Q) ⊲ P) ⇒ P MP
3. P ⇒ ∃ ∃ P Ex 7.14
4. (P ⊲ Q), ((P ⊲ Q) ⊲ P) ⇒ ∃ ∃ P 2, 3 Cut
5. ((P ⊲ Q) ⊲ P) ⇒ ∃ ∃ P 1, 4 Thm 7.10

7.31

1. P ⇒ P Taut
2. (P ≤ P) ⇒ P 1 Or

7.33

1. P ⇒ (P ≤ ∃P) Ex 7.32
2. ∃P ⇒ (P ≤ ∃P) Thm 7.12
3. ⇒ ∃ ∃ (P ≤ ∃P) 1, 2 Thm 7.10
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7.35

1. P,∃P ⇒ Q Ex 7.20
2. P ⇒ (∃P ⊲ Q) 1 Thm 7.5
3. Q ⇒ (∃P ⊲ Q) 2 Int
4. (P ≤ Q) ⇒ (∃P ⊲ Q) 2, 3 Or

7.37

1. ⇒ (∃P ⊲ ∃P) Ex 7.6
2. (∃P ⊲ ∃P) ⇒ (P ≤ ∃P) Prem
3. ⇒ (P ≤ ∃P) 1, 2 Cut

7.39

1. P ⇒ (P ≤ Q) Ex 7.32
2. Q ⇒ (P ≤ Q) Thm 7.12
3. ∃(P ≤ Q) ⇒ ∃P 1 Ex 7.10
4. ∃(P ≤ Q) ⇒ ∃Q 2 Ex 7.10
5. ∃(P ≤ Q) ⇒ (∃P& ∃ Q) 3, 4 Ex 7.3

7.41 By Theorem 7.11, we can prove every instance of Peirce’s law if we can prove:
∃ ∃ P ⇒ P. Now note the following.

1. (∃ ∃ P& ∃ ∃P) ⇒ ∃(∃P ≤ ∃P) Ex 7.38
2. ∃ ∃ P ⇒ (∃ ∃ P& ∃ ∃P) Ex 7.1
3. ∃ ∃ P ⇒ ∃(∃P ≤ ∃P) 1, 2 Cut
4. ∃(∃P ≤ ∃P) ⇒ (P&P) Prem
5. ∃ ∃ P ⇒ (P&P) 3, 4 Cut
6. (P&P) ⇒ P Thm 7.1
7. ∃ ∃ P ⇒ P 5, 6 Cut

7.43

1. (((P ⊲ P)& ∃ P) ⊲ ∃P) ⇒ ((P ⊲ P) ⊲ (P ≤ ∃P)) Prem
2. ∃P ⇒ ∃P Taut
3. (P ⊲ P),∃P ⇒ ∃P 2 Thin
4. ((P ⊲ P)& ∃ P) ⇒ ∃P 3 And
5. ⇒ (((P ⊲ P)& ∃ P) ⊲ ∃P) 4 Ded
6. ⇒ ((P ⊲ P) ⊲ (P ≤ ∃P)) 1, 5 Cut
7. ((P ⊲ P) ⊲ (P ≤ ∃P)), (P ⊲ P) ⇒ (P ≤ ∃P) MP
8. (P ⊲ P) ⇒ (P ≤ ∃P) 6, 7 Cut
9. ⇒ (P ⊲ P) Ex 7.6

10. ⇒ (P ≤ ∃P) 8, 9 Cut
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7.45

1. (P&Q) ⇒ P Thm 7.1
2. (P&Q) ⇒ Q Thm 7.2
3. ∃P ⇒ ∃(P&Q) 1 Ex 7.10
4. ∃Q ⇒ ∃(P&Q) 2 Ex 7.10
5. (∃P ≤ ∃Q) ⇒ ∃(P&Q) 3, 4 Or

7.47 The point is that the negation we defined in Chap. 1 has classical properties
that will be inherited by ‘∃’. To work this out in detail, we might reproduce the
argument we gave in support of Proposition 7.5. We begin with the odd assumption
that f (a) = | and f (a) �= |. We just to want to see what the monks will infer from
this. By Exercise 1.16 and Definition 1.8, id( f (a), |) = || and id( f (a), |) = | and,
hence, | = ||. From this, the monks infer ∨. So the following is a monastically correct
sequent:

f (a) = |, f (a) �= | ⇒ ∨ .

But, by Exercise 7.17, this yields

f (a) �= | ⇒ ∃( f (a) = |)

and, hence, as in the proof of Proposition 7.5

∃ ∃ ( f (a) = |), f (a) �= | ⇒ ∨ .

So, by Theorem 7.5,

∃ ∃ ( f (a) = |) ⇒ ( f (a) �= | ⊲∨)

and, hence,
∃ ∃ ( f (a) = |) ⇒ −(−( f (a) = |)).

Now suppose −(−( f (a) = |). That is, id(id( f (a), |), |) = |. By Exercise 1.18, this
implies that

id( f (a), |) + | = |||

and, hence, id( f (a), |) = ||. From this, the monks infer that f (a) = |. So the
following is a monastically correct sequent

−(−( f (a) = |)) ⇒ f (a) = |

and, hence, so is
∃ ∃ ( f (a) = |) ⇒ f (a) = |.

http://dx.doi.org/10.1007/978-3-319-05816-0_1
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7.49

1. (P ∧ Q) ⇒ (P ⊲ Q) Prop 7.9
2. ((P ⊲ Q) ⊲ P), (P ⊲ Q) ⇒ Q MP
3. ((P ⊲ Q) ⊲ P), (P ∧ Q) ⇒ Q 1, 2 Cut
4. ((P ⊲ Q) ⊲ P) ⇒ ((P ∧ Q) ∧ Q) 3 Prop 7.7

7.51

1. P,π P ⇒ ∨ Prop 7.12
2. π P ⇒ ∃P 1 Ex 7.17
3. ∃ ∃ P ⇒ ∃ π P 2 Ex 7.10

7.53

1. ∃ ∃ P ⇒ ∃ π P Ex 7.51
2. ∃ ∃ P ⇒ ∃ ππ P Ex 7.52
3. ∃ ∃ P,π P ⇒ ∨ 1 Ex 7.17
4. ∃ ∃ P,ππ P ⇒ ∨ 2 Ex 7.17
5. ∨ ⇒ P EFQ
6. ∃ ∃ P,π P ⇒ P 3, 5 Cut
7. ∃ ∃ P,ππ P ⇒ P 4, 5 Cut
8. P ⇒ P Taut
9. ∃ ∃ P, P ⇒ P 8 Thin

10. ∃ ∃ P ⇒ P 6, 7, 9 Prop 7.13

7.55

1. (P ⊲ ∃Q) ⇒I (Q ⊲ ∃P) Ex 7.11
2. (P ⊲ ∃Q), Q ⇒I ∃P 1 Ex 7.7
3. ∃P,∃ ∃ P ⇒I ∨ Ex 7.20
4. (P ⊲ ∃Q),∃ ∃ P, Q ⇒I ∨ 2, 3 Cut
5. (P ⊲ ∃Q),∃ ∃ P ⇒I ∃Q 4 Ex 7.17

7.57

1. τ ∪ {(φ ≤ ∃φ)} ⇒I ∃ψ Prem
2. τ ⇒I ((φ ≤ ∃φ) ⊲ ∃ψ) 1 Thm 7.6
3. {((φ ≤ ∃φ) ⊲ ∃ψ)} ⇒I ∃ψ Ex 7.56
4. τ ⇒I ∃ψ 2, 3 Cut
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7.59

1. ⇒I ∞x∞y(Rxy ≤ ∃Rxy) Ax 7.14
2. ∞x∞y(Rxy ≤ ∃Rxy) ⇒I ∞y(Rxy ≤ ∃Rxy) Ax 7.12
3. ⇒I ∞y(Rxy ≤ ∃Rxy) 1, 2 Cut
4. ∞y(Rxy ≤ ∃Rxy) ⇒I (Rxy ≤ ∃Rxy) Ax 7.12
5. ⇒I (Rxy ≤ ∃Rxy) 3, 4 Cut
6. Rxy ⇒I (∃ ∃ Rxy ⊲ Rxy) Int
7. ∃Rxy,∃ ∃ Rxy ⇒I Rxy Ex 7.20
8. ∃Rxy ⇒I (∃ ∃ Rxy ⊲ Rxy) 7 Thm 7.5
9. (Rxy ≤ ∃Rxy) ⇒I (∃ ∃ Rxy ⊲ Rxy) 6,8 Or

10. ⇒I (∃ ∃ Rxy ⊲ Rxy) 5, 9 Cut
11. ⇒I ∞y(∃ ∃ Rxy ⊲ Rxy) 10 Ax 7.13
12. ⇒I ∞x∞y(∃ ∃ Rxy ⊲ Rxy) 11 Ax 7.13

7.61

1. {φ} ⇒I ψ Prem
2. {∞α φ} ⇒I φ Ax 7.12
3. {∞α φ} ⇒I ψ 1, 2 Cut
4. {∞α φ} ⇒I ∞α ψ 3 Ax 7.13

7.63 If φ has length 0, then it is of the form Rαβ and we have to show:

{∃ ∃ Rαβ} ⇒I Rαβ.

This follows from Exercise 7.59. If φ is a negation ∃ψ, we have to show:

{∃ ∃ ∃i(ψ)} ⇒I ∃i(ψ).

This follows from Exercise 7.15. If φ is a conjunction (ψ1&ψ2), we have to show:

{∃ ∃ (i(ψ1)&i(ψ2))} ⇒I (i(ψ1)&i(ψ2)).

We reason as follows. (The premises on lines 4 and 5 are our inductive hypotheses.)

1. {∃ ∃ (i(ψ1)&i(ψ2))} ⇒I (∃ ∃ i(ψ1)& ∃ ∃i(ψ2)) Ex 7.60
2. {(∃ ∃ i(ψ1)& ∃ ∃i(ψ2))} ⇒I ∃ ∃ i(ψ1) Thm 7.1
3. {(∃ ∃ i(ψ1)& ∃ ∃i(ψ2))} ⇒I ∃ ∃ i(ψ2) Thm 7.2
4. {∃ ∃ i(ψ1)} ⇒I i(ψ1) Prem
5. {∃ ∃ i(ψ2)} ⇒I i(ψ2) Prem
6. {(∃ ∃ i(ψ1)& ∃ ∃i(ψ2))} ⇒I i(ψ1) 2, 4 Cut
7. {(∃ ∃ i(ψ1)& ∃ ∃i(ψ2))} ⇒I i(ψ2) 3, 5 Cut
8. {(∃ ∃ i(ψ1)& ∃ ∃i(ψ2))} ⇒I (i(ψ1)&i(ψ2)) 6, 7 Ex 7.3
9. {∃ ∃ (i(ψ1)&i(ψ2))} ⇒I (i(ψ1)&i(ψ2)) 1, 8 Cut
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If φ is a conditional (ψ1 ⊲ ψ2), we have to show:

{∃ ∃ ∃(i(ψ1)& ∃ i(ψ2))} ⇒I ∃(i(ψ1)& ∃ i(ψ2)).

This follows from Exercise 7.15. If φ is a disjunction (ψ1 ≤ ψ2), we have to show:

{∃ ∃ ∃(∃i(ψ1)& ∃ i(ψ2))} ⇒I ∃(∃i(ψ1)& ∃ i(ψ2)).

This follows from Exercise 7.15. If φ is a universal generalization ∞α ψ, we have to
show:

{∃ ∃ ∞α i(ψ)} ⇒I ∞α i(ψ).

We reason as follows. (The premise on line 3 is our inductive hypothesis.)

1. {∃ ∃ ∞α i(ψ)} ⇒I ∞α ∃ ∃i(ψ) Ex 7.62
2. {∞α ∃ ∃i(ψ)} ⇒I ∃ ∃ i(ψ) Ax 7.12
3. {∃ ∃ i(ψ)} ⇒I i(ψ) Prem
4. {∃ ∃ ∞α i(ψ)} ⇒I ∃ ∃ i(ψ) 1, 2 Cut
5. {∃ ∃ ∞α i(ψ)} ⇒I i(ψ) 3, 4 Cut
6. {∃ ∃ ∞α i(ψ)} ⇒I ∞α i(ψ) 5 Ax 7.13

7.65

1. {∃(i(φ)& ∃ i(ψ))} ⇒I ∃ ∃ (i(φ) ⊲ i(ψ)) Ex 7.24
2. {∃ ∃ (i(φ) ⊲ i(ψ)))} ⇒I (i(φ) ⊲ ∃ ∃ i(ψ)) Ex 7.19
3. {∃(i(φ)& ∃ i(ψ))} ⇒I (i(φ) ⊲ ∃ ∃ i(ψ)) 1, 2 Cut
4. {∃(i(φ)& ∃ i(ψ)), i(φ)} ⇒I ∃ ∃ i(ψ) 3 Ex 7.7
5. {∃ ∃ i(ψ)} ⇒I i(ψ) Ex 7.63
6. {∃(i(φ)& ∃ i(ψ)), i(φ)} ⇒I i(ψ) 4, 5 Cut
7. {∃(i(φ)& ∃ i(ψ))} ⇒I (i(φ) ⊲ i(ψ)) 6 Thm 7.5

7.67

1. τ ∪ {i(φ)} ⇒ i(χ) Prem
2. τ ∪ {i(ψ)} ⇒ i(χ) Prem
3. τ ∪ {∃i(χ)} ⇒ ∃i(φ) 1 Ex 7.10
4. τ ∪ {∃i(χ)} ⇒ ∃i(ψ) 2 Ex 7.10
5. τ ∪ {∃i(χ)} ⇒ (∃i(φ)& ∃ i(ψ)) 3, 4 Ex 7.3
6. τ ∪ {∃(∃i(φ)& ∃ i(ψ))} ⇒ ∃ ∃ i(χ) 5 Ex 7.10
7. {∃ ∃ i(χ)} ⇒I i(χ) Ex 7.63
8. τ ∪ {∃(∃i(φ)& ∃ i(ψ))} ⇒ i(χ) 6, 7 Cut

7.69 Suppose we have a classical derivation of φ ⇒C ψ. If the derivation is of length
1, we just apply Exercise 7.68. If the derivation is longer, Exercise 7.68 lets us focus
on Axioms 7.2, 7.3, 7.4, 7.5, 7.11, and 7.13. Suppose the last line of the classical
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derivation features an application of Axiom 7.2 (Thin). Then φ is of the form τ∪{φ}

and the sequent τ ⇒C ψ appears on an earlier line. Let i[τ] be the result of applying
the interpretation function i to each member of τ. By our inductive hypothesis,
there is an intuitionist derivation of i[τ] ⇒I i(ψ). An application of Thin yields
i[τ] ∪ {i(φ)} ⇒I i(ψ), as desired. Now suppose the last line of the classical derivation
features an application of Axiom 7.3 (Cut). Then φ is of the form τ ∪ υ and sequents
υ ⇒C χ and τ ∪ {χ} ⇒C ψ appear on earlier lines. By our inductive hypothesis,
there are intuitionist derivations of i[υ ] ⇒I i(χ) and i[τ] ∪ {i(χ)} ⇒I i(ψ). So, by
Cut, there is an intuitionist derivation of i[τ ∪ υ ] ⇒I i(ψ), as desired. Suppose the
last line of the classical derivation features an application of the left–right direction
of Axiom 7.4 (And). Then φ is of the form {(φ1&φ2)} and the sequent {φ1,φ2} ⇒C

ψ appears on an earlier line. By our inductive hypothesis, there is an intuitionist
derivation of {i(φ1), i(φ2)} ⇒I i(ψ). So, by And, there is an intuitionist derivation of
{(i(φ1)&i(φ2))} ⇒I i(ψ). By the definition of the function i , {i(φ1&φ2)} ⇒I i(ψ),
as desired. A similar argument applies to the right–left direction of Axiom 7.4.
Suppose the last line of the classical derivation features an application of Axiom
7.5 (Ded) yielding the sequent ⇐ ⇒C (φ ⊲ ψ). Then the sequent {φ} ⇒C ψ appears
on an earlier line. By our inductive hypothesis, there is an intuitionist derivation of
{i(φ)} ⇒I i(ψ). So, by Ded, there is an intuitionist derivation of ⇐ ⇒I (i(φ) ⊲ i(ψ)).
Exercise 7.64 lets us derive ⇐ ⇒I i(φ ⊲ ψ), as desired. Suppose the last line of the
classical derivation features an application of the left–right direction of Axiom 7.11
(Or) yielding the sequent τ ∪ {φ} ⇒C χ. Then the sequent τ∪{φ ≤ ψ} ⇒C χ appears
on an earlier line. By our inductive hypothesis, there is an intuitionist derivation of
i[τ] ∪ {i(φ ≤ ψ)} ⇒I i(χ). Exercise 7.66 lets us derive i[τ] ∪ {i(φ)} ⇒I i(χ), as
desired. Suppose the last line of the classical derivation features an application of
the right–left direction of Axiom 7.11 (Or) yielding the sequent τ ∪ {φ ≤ ψ} ⇒C χ.
Then the sequents τ ∪ {φ} ⇒C χ and τ ∪ {ψ} ⇒C χ appear on earlier lines. By our
inductive hypothesis, there are intuitionist derivations of i[τ] ∪ {i(φ)} ⇒I i(χ) and
i[τ] ∪ {i(ψ)} ⇒I i(χ). So, by Exercise 7.67, there is an intuitionist derivation of
i[τ]∪{i(φ≤ψ)} ⇒I i(χ), as desired. Suppose the last line of the classical derivation
features an application of Axiom 7.13 yielding the sequent τ ⇒C ∞α φ with α not
occurring free in any member of τ. Then the sequent τ ⇒C φ appears on an earlier
line. By our inductive hypothesis, there is an intuitionist derivation of i[τ] ⇒I i(φ).
Inspection of the definition of the function i shows that the variable α does not occur
free in any member of i[τ]. So, by Axiom 7.13, there is an intuitionist derivation of
i[τ] ⇒I ∞α i(φ). The definition of i assures us that i[τ] ⇒I i(∞α φ), as desired.
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