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PREFACE

In the 1930’s, nonstandard models of arithmetic were introduced into
mathematics by Thoralf Skolem in two papers [188] and [189]. Even though
the logic community was slow in recognizing the importance of Skolem’s contri-
bution of the method of definable ultrapowers (see [207]), it now seems almost
obligatory to include nonstandard models in introductory courses on mathem-
atical logic. The point that they help to emphasize is the limited expressive
power of first order logic: there are mathematical structures (one of them being
the most classical of mathematical structures—the standard model of arithmetic)
which are indistinguishable with respect to their first-order properties but whose
isomorphism types are dramatically different. The drama is personified by non-
standard elements. However, the discussion at the introductory level usually
ends here, leaving out the complex picture obtained by a closer scrutiny of the
spectrum of isomorphism types of nonstandard models. Once we know that non-
standard models exist, it is very natural to ask how different they are from the
standard one and also from each other. In other words, we would like to know
to what extent the first-order theory of a model of arithmetic determines prop-
erties that are not first-order expressible. A priori, there is no guarantee that
the possible answers would be relevant to other developments in model theory.
Even a quick initial glance at a nonstandard model reveals a very rich struc-
ture. It could be that the diversity among nonstandard models is so vast that
no coherent picture in the form of a relative classification can emerge. In fact,
this might be the the state of affairs for the spectrum of all nonstandard mod-
els. Fortunately, when we consider some well defined and important subclasses
of nonstandard models, a more attractive picture can be painted. This is the
subject of this book.

There was little progress in the model theory of arithmetic between Skolem’s
discovery and two important developments that took place at the end of 1950’s.
In the first of these, Stanley Tennenbaum proved in a famous unpublished paper
[205] that in no nonstandard model can either addition or multiplication have a
recursive presentation. This result pointed to an essential difficulty in construct-
ing nonstandard models (there are no such objects in the world of constructive
mathematics!). The second of these was the fundamental theorem of Robert
MacDowell & Ernst Specker [123]. Skolem had proved that the standard model
has an elementary end extension. The MacDowell–Specker Theorem involves a
refinement of Skolem’s method to show that every model of Peano Arithmetic
(PA) has an elementary end extension. Refining this further, Haim Gaifman (in
several papers, but most importantly in [45]) developed a technology of iter-
ating elementary end extensions along linear orders to obtain models having
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additional interesting features. Thus, Tennenbaum says: there are no effective
constructions; but the response from MacDowell, Specker, and Gaifman is: some
interesting set-theoretic constructions are easily available.

A very important concept that emerged from the proof of Tennenbaum’s
theorem is that of the standard system of a nonstandard model. This is the col-
lection of sets of natural numbers coded in the model. The standard systems are
precisely the ω-models of the fragment second-order arithmetic known as WKL0.
Having been studied by Dana Scott [180] such models are also called Scott sets.
There are 2ℵ0 countable Scott sets, and each of them is the standard system of a
model of PA. Under the Continuum Hypothesis, every Scott set is the standard
system of a model of PA. Every countable nonstandard model has 2ℵ0 distinct
initial segments which are themselves models of PA. The standard system of the
model puts some restrictions on the possible complete theories of these initial
segments (including a restriction on their theories). Still, each countable Scott
set X is the standard system of 2ℵ0 elementarily inequivalent models of PA, and
also for each model M having a standard system of X, there are 2ℵ0 pairwise
nonisomorphic countable models elementarily equivalent to M having X as their
standard systems. Considering the complexity of both classes of objects involved,
this is a mess! However, for us this is only a point of departure. Suppose the
complete theory of a model and its standard system are given. What else can be
said about the model? The theorem of MacDowell and Specker suggests that it
might be fruitful to consider elementary submodels. For any model M , the fam-
ily of elementary submodels of M forms a lattice Lt(M), with naturally defined
operations ∧ and ∨. What are the lattices which can be represented as Lt(M)
for some model of arithmetic M? This is one of the main questions we will con-
sider. Some answers are given in Chapter 3 and much of the material from the
previous chapters, especially from Chapter 3 on types, is developed with an eye
on applications to the lattice problem. While, all distributive lattices satisfying
an obvious necessary condition (they must be algebraic) can be represented as
Lt(M), many questions concerning nondistributive lattices are open. In partic-
ular, we do not know if there is a finite lattice which cannot be represented as
Lt(M).

The MacDowell–Specker Theorem has an interesting feature. It is almost
independent of the language in which arithmetic is formalized. Let L be any
countable language extending the language of PA, and let T be a theory in L
that extends PA proves the scheme of induction for all formulas of L. It turns out
that most arguments concerning models of PA apply without modifications to
models of T . We address this by formulating our results for PA∗ rather than PA,
where PA∗ is any T as above. Actually, many results carry over to uncountable
languages as well, with one notable exception, the MacDowell–Specker Theorem.
There are models of PA∗ in a language of cardinality ℵ1 with no elementary end
extensions. This result is due to George Mills, and it uses forcing in models of
arithmetic. The purpose Chapter 6 is to give a proof of Mills’ theorem and to
show how forcing can be applied to construct interesting models of PA∗.
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While we do not know exactly which lattices can be represented by lattices of
elementary submodels of models of PA, the analogous question concerning auto-
morphism groups has a complete answer, which we give in Chapter 5. For every
infinite linearly ordered structure (A,<, . . . ), there is a model M of PA such
that the automorphism groups of (A,<, . . . ) and M are isomorphic. Moreover,
one can obtain such an M as an elementary end extension of any model of PA.
Conclusion: nothing special here about arithmetic (but, it should be noted that
the proof uses the full power of arithmetic and involves a formalized Ramsey
style theorem of Nešetřil and Rödl). So we learn that in general there is no
connection between the standard system of a model or its theory and its auto-
morphism group. But this is not the end of the story. In Chapters 8 and 9, we
discuss countable recursively saturated models of PA and show that something
special is happening in this class of models. Most of the results there are for-
mulated in terms of automorphisms and automorphism groups. In particular,
many properties characterizing the important class of arithmetically saturated
models involve automorphisms; for example, a countable recursively saturated
model M of PA is arithmetically saturated iff it has an automorphism moving
all undefinable elements, and this happens iff the automorphism group of M
has uncountable cofinality. The automorphism group of a countable arithmetic-
ally saturated model, considered as an abstract group, determines the standard
system of the model.

Some important results on automorphism groups of models of PA are included
in Kaye and Macpherson’s volume on automorphisms of first-order structures[77].
Here we concentrate on the results obtained after the volume was published,
although we do include the complete proof of the theorem of Daniel Lascar on
the small index property of countable arithmetically saturated models of PA.

The aim of Chapter 10 is to present some exotic species of models with
properties dramatically contrasting those of the countable ones. In particular we
construct a recursively saturated rather classless model using ♦ (a result due to
Matt Kaufmann [67]) and then again using weak ♦. We do it despite the fact that
Saharon Shelah has already proved that the existence of such models is a theorem
of ZFC (and we explain why). Other topics in this chapter include nonisomorphic,
but still very similar, models. Previous constructions of such models used extra
set-theoretic assumptions. Here it is done in ZFC. Rigid recursively saturated
models are also constructed in this chapter and as are models of Peano Arithmetic
in the language with Ramsey quantifier and with the stationary quantifier.

One of the topics we neglect in this book is reducts. Any classification of
models of PA must include subclassifications of their natural reducts. For a model
M , let (M,+), (M,×), and (M,<) denote, respectively, the reducts of M to,
respectively, +, ×, and <. It turns out that in the countable case all these reducts
are nicely classifiable. All nonstandard countable models share the same order
type (ω∗ + ω)ρ, where ρ is the order type of the rationals. For every countable
the isomorphism type if its reducts to + and × is determined uniquely by the
standard system of M . Consequently, for any countable models M and N of
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PA, (M,+) ∼= (N,+) iff (M,×) ∼= (N,×). In Chapter 10 we prove that this is
not the case for models of cardinality ℵ1. Very little is known about order types
of uncountable models. We honor this important and rather unexplored topic
in Chapter 11 where we give proofs of two striking theorems concerning order
types, one due to Jean-François Pabion [142] on κ-saturated reducts (M,<) and
one due to Shelah [185] on the existence of (κ, κ)-gaps.

There is extensive literature on models of PA, but essentially there are only
two books: Kaye’s [71] and Hájek & Pudlák’s [50]. It has been often noted that
bookwriting in this area is not easy. Here is what Laurie Kirby wrote in his
review of Kaye’s book [82]

Our vocabulary lacks a term to denote a person whose calling is the study of mod-
els of arithmetic. Model theorists, topologists, even functional analysts can identify
themselves succinctly, but we have to resort to such locutions as “I’m in models of
arithmetic.” And the name of the field itself—“models of arithmetic”—also seems to
bespeak an insecurity about whether it is a field at all: the objects of study are baldly
named without any pretensions to a grand theory or -ology. Models of arithmetic cer-
tainly is a bona fide field. It has its own meetings, folklore, and stars. It has built up a
coherent body of knowledge relevant to some of the central problems of modern logic.
But it has never sat comfortably within the traditional fourfold division of logic, it is
sparsely populated and has been known to lie dormant for decades, and it has never
had a “bible.” Access to this difficult terrain has been daunting to outsiders.

These remarks were appropriate in 1992 and are still appropriate today.
Kaye’s book is still the “bible,” while Hájek and Pudlák’s book has become
a standard reference in the model theory of fragments of arithmetic. Before
1991, the only, and not easily available, source was the excellent notes of Craig
Smoryński [191] from his lectures on nonstandard models at the University of
Utrecht in 1978. The notes were an inspiration for many of us who studied models
of PA in the 1980s.

While writing this book we assumed that the reader is familiar with Kaye’s
book, and we tried to avoid repetitions. There is some overlap in the Chapter 7 on
cuts. In this chapter we discuss strong cuts and their various characterizations.
Strong cuts play an important role in arithmetic saturation—one of the main
themes in this book.

Most of the results presented here have been previously published, but many
of the proofs are new. Some proofs are simpler, or at least much shorter, than the
original ones. This is a great advantage of having the whole range of techniques
presented in a unified way in one place. Some results appear here for the first
time. In the Remarks and References we made an effort to include accurate cred-
its and references. Anyone who has worked in this or any area understands well
that this was not an easy job, and certainly there will be errors and omissions.

Exercises are an integral part of the book. To measure the difficulty of exer-
cises, we have designed a suitable ranking system. Exercises marked with ♣ are
the easiest. These are traditional exercises for practice. Usually they just involve
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going through the definitions of the concepts involved. The highest rank is ♠.
We have used it sparingly, as it is reserved for those exercises we could not do.
Exercises marked with ♦ and ♥ are in between. Included in the ♦ and ♥ categor-
ies are many lemmas, propositions, and theorems we took from the literature.
We recommend that the reader at least read them, as they help to provide a rel-
atively complete account of what is known about the subject. One should note
that the rankings of all these exercises is quite subjective; others may rank them
differently, and we probably would too if we were to do it again. The rankings
are also relative, as they are based on the material developed in the book. As
stand alone exercises, many would have to be ranked higher.

Throughout the book, the reader will find numerous instances of the (Do
it!) command. As in most mathematical texts, it is assumed that the reader will
fill in the more routine parts of the arguments. There will be many statements
starting with “Clearly, . . . ,” or “One can verify . . . ,” or “A similar argument
shows . . . .” These are treacherous points. It is always good for the reader to pause
for a moment and to verify whether she or he really believes the author(s). The
role of the (Do it!)’s is to provide alert stopmarks. They remind you not to
read too fast.
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BASICS

It is perhaps a bit embarrassing that a discipline as fundamental as mathematical
logic, after more than a century of intensive investigations, has not arrived at
a consistent and generally accepted notational and terminological conventions.
However, it is quite remarkable that, apparently due to the robustness of the
main concepts, the diversity of styles and conventions has never been a serious
obstacle in studying model theory. Below we give an account of our own choices
(arrived at with some effort). We also give proofs of some basic results, including
Ehrenfeucht’s Lemma, and Blass’ theorem on intersections of finitely generated
submodels, and a special case of Friedman’s Embedding Theorem.

The recent years have brought the decline and fall of “Recursion” Theory
and emergence of “Computability” Theory. Whatever was recursive in the twen-
tieth century is computable now. For us this creates a problem. Large parts of
this book are devoted to recursively saturated models of PA, and computably
saturated just does not sound right. For this reason we are sticking with the old
terminology.

On many occasions we define sequences, terms, types, and other objects
recursively. Sometimes this is done formally within PA, sometimes in the real
world. Often such constructions are not effective; hence we have decided to call
them inductive, rather than recursive. So, we will be constructing objects by
induction or formal induction.

1.1 Notation and basic definitions

The language of Peano Arithmetic (PA) consists of the symbols : +,×,≤, 0, 1
and is denoted by LPA. A formula of LPA is a first-order formula in this language.
The well-known axioms declare that M is a model of PA iff M is the nonnegative
part of a discretely ordered ring and satisfies the least number principle: every
nonempty definable subset of M has a least element. The least number principle
is equivalent to Peano’s induction schema and to other well-known principles we
freely use throughout the book.

Even though our main concern is with models of PA, it often convenient to
consider models of arithmetic in a more general setting. Let L be any language
extending LPA. Then PA∗(L) is the L-theory consisting of the basic axioms of PA
and the induction schema for all formulas of L. We are studying PA∗(L), espe-
cially when L is countable. We make the following convention: if L is countable,
we often suppress specific reference to L and then write simply PA∗. Whenever
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we refer to “model” without additional explanation, we mean a model of PA∗(L),
where L is some given countable language extending LPA. Sometimes, we may
want to restrict L further. In situations where we want to allow for uncountable
L, then we specifically say that L may be uncountable and then refer to models
of PA∗(L). In cases where we want L to be just LPA, then we refer to models of
PA. This is done when what is being discussed might not apply to models of PA∗

but also on some other occasions for notational convenience and with a warning
for the reader. Letters M and N , and sometimes also K and L, will be used for
models of PA∗(L). For general first-order structures we will use A and B.

When dealing with recursively saturated models of PA∗, we always assume
that L is finite. With some extra care we could also work with recursive
languages.

If M is an L-structure for some language L, then by L(M) we denote the
language L augmented with constants for each element of M .

For a formula ϕ(x) and a model M , we denote by ϕ(M) the set {x ∈ M :
M |= ϕ(x)}.

We denote the set of all formulas of L by FormL or just by Form if it is
clear what L is. If L is finite, identify the formulas of L with their codes via
some standard arithmetic coding of finite sequences. For a finite L, let FormL(x)
be an an arithmetical formula representing FormL in PA. Then for every model
M |= PA

FormL = N ∩ {x ∈M : M |= FormL(x)} .

If M is nonstandard, FormL(M) contains nonstandard elements. This is a
simple consequence of the overspill principle (Proposition 1.1.1). The elements
of FormL(M) are referred to as formulas in the sense of M .

We do not use separate symbols for models and their universes.
We use ω to denote the set of natural numbers (as well as its order type).

The standard model of PA is N = (ω,+,×,≤, 0, 1). By a standard model of PA∗

we mean any expansion of the standard model. We let TA, standing for True
Arithmetic, be the complete theory of N. A model of PA∗ is nonstandard if it is
not isomorphic to a standard model. The standard model N is isomorphic to a
proper initial segment of any nonstandard model. Hence, we assume that N is
an initial segment of every model of PA∗.

To express that n is a natural number we usually write n < ω; however,
the notation n ∈ N is sometimes used when we want to emphasize that n is a
standard element of some nonstandard model.

The set of subsets of a model M which are definable with parameters in M
is denoted by Def(M). If a set is definable without parameters, we say that it is
0-definable.

By Σn and Πn and ∆n we denote the usual levels of the arithmetic hierarchy
of formulas, with Σ0 = Π0 = Σ0 defined as the class of formulas all of whose
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quantifiers are bounded. If Γ is a class of formulas, then DefΓ(M) is the collection
of sets definable in M by the formulas in Γ.

For every formula ϕ(ū, v) of L we define the Skolem term

tϕ(ū) =
{
min{v : ϕ(ū, v)}, if ∃v ϕ(ū, v)
0 otherwise

TermL denotes the set of all Skolem terms of L.
When expansions of a model are considered, we use the same symbols for

elements and subsets of models and their formal names. For example, if M is
a model for a language L and X0, X1, . . . is a sequence of subsets of M , then
(M,X0, X1, . . . ) is a first-order structure for the language L ∪ {X0, X1, . . . }.
This convention allows us to use alternatively expressions of the form x ∈ Xi

and Xi(x). The sequence X0, X1, . . . does not have to be countable.
If X ⊆ M is such that (M,X) |= PA∗, then we say that X is an inductive

subset of M .
Some results are more conveniently stated and proved in the context of

second-order arithmetic and its fragments, in particular ACA0. If X ⊆ P(M),
then (M,X) is a second-order structure in which second-order variables range
over X. Then (M,X) is a model of ACA0 if for each X ∈ X, (M,X) |= PA∗, and X
is closed under arithmetical definability. This means that for all X0, . . . , Xn−1 ∈
X, all ā ∈M , and every first-order formula ϕ(x, ȳ,X0, . . . , Xn−1) the set

{x ∈M : (M,X0, . . . , Xn−1) |= ϕ(x, ā,X0, . . . , Xn−1)}

is in X.
For every model M , (M,Def(M)) |= ACA0. This implies that ACA0 is a

conservative extension of PA.
Another important theory is WKL0. It is a fragment of second-order arith-

metic consisting of the induction schema for Σ1 formulas, ∆1 comprehension
schema, and Weak König’s Lemma. Let us say that a binary tree is a subset B
of the set 2<ω of finite 0–1 sequences such that if σ : {0, . . . , n− 1} −→ {0, 1} is
in B, then so is the restriction of σ to each set {0, . . . , k − 1} for each k < n. A
tree is B unbounded if it contains sequences of any finite length. Weak König’s
Lemma says that every unbounded binary tree has an unbounded branch. Later
in this chapter we discuss coding of finite sequences in arithmetic. Weak König’s
Lemma is easily formalizable and provable in ACA0.

We use the notation I ⊆end M if I is an initial segment of M . We call an
initial segment I a cut of M if I �= ∅ and is closed under successor. A proper cut
is a cut which is a proper subset. If I is a cut of M , then we say that X ⊆ I
is cofinal in I if for every x ∈ I there is y ∈ M such that x < y. We say that
Y ⊆M \ I is coinitial in M \ I if for every x > I there is y ∈ Y such that x > y.

The following proposition is a direct consequence of the induction schema.

Proposition 1.1.1 No proper cut of a nonstandard model is definable. �
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Proposition 1.1.1 implies the following, frequently used, Overspill Principle
and its flip-side, the Underspill Principle

Proposition 1.1.2 (Overspill) Let I be a proper cut of a nonstandard model
M , and suppose that D ⊆M is definable. If I ∩D is cofinal in I, then for each
d > I, there is j such that I < j < d and j ∈ D. �

Proposition 1.1.3 (Underspill) Let I be a proper cut of a nonstandard model
M , and suppose that D ⊆ M is definable. If (M \ I) ∩D is coinitial in M \ I,
then for each d ∈ I, there is j ∈ I such that d < j and j ∈ D. �

For a ∈M , aM denotes the set {x ∈M : M |= x < a}. This notation is par-
ticularly useful in situations when a ∈M , M is cofinal in N , and aM is a proper
subset of aN . We also use the interval notation [a, b]M = {x ∈M : a ≤ x ≤ b},
or [a, b] when it is clear what M is. In particular, we often write [0, a− 1] rather
than aM . If a ∈ M and X and Y are subsets of M , then we write X < a if
∀x ∈ X (x < a), and X < Y if ∀x, y (x ∈ X ∧ y ∈ Y −→ x < y). We abuse
notation if X = I and Y = J are initial segments. In this case I < J means that
I is a proper initial segment of J . If A ⊆M , then:

inf(A) = {x ∈M : ∀y ∈ A (x ≤ y)} ,
sup(A) = {x ∈M : ∃y ∈ A (x ≤ y)} .

1.2 Skolem closures

For a structure M and A ⊆M , SclM (A) denotes the Skolem closure of A in M ,
that is the set of elements of M which are definable in M with parameters from
A, or, equivalently

SclM (A) = {t(a0, . . . , an−1) : a0, . . . , an−1 ∈ A and t ∈ Term} .

Since PA has a definable pairing function, in the definition of Skolem closure we
could just use binary terms or even just unary terms and the pairing function.
If M = SclM (A), then we say that M is generated by A. If A is finite we
say that M is finitely generated. If A = {a0, . . . , an−1} for some n < ω, then
SclM (A) = Scl(〈a0, . . . , an−1〉), where 〈a0, . . . , an−1〉 is an element of M coding
{a0, . . . , an−1}. See Section 1.4 below for details on coding. Hence, every finitely
generated model of PA∗ is generated by a single element.

The Skolem closure of A is the smallest elementary substructure of M which
contains A (Do it!). If there is no danger of confusion we drop the superscript
M in SclM (A).

Let N be an elementary extension of a model M , and let a be an element
of N \M . Then M(a) = SclN (M ∪ {a}) is an elementary extension of M . The
isomorphism type of M(a) over M is determined uniquely by the type of a over
M (Do it!); hence, we can speak of M(a) without referring to N .
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If T is a completion of PA∗ and M |= T , then let MT = SclM (0). For every
N |= T , MT

∼= NT ; hence MT is the prime model of T . Notice that MTA is N.

1.3 End extensions and cofinal extensions

We say that a model N is an end extension of a model M if M is a submodel
and a cut of N . If N is an end extension of M and the extension is elementary,
then we say that M is an elementary cut of N , and we denote this by M ≺end N .

We say that N is a cofinal extension of M if M is a submodel of N and for
each x ∈ N there is y ∈M such that N |= x ≤ y. This is denoted by M ≺cof N .
In these definitions the extensions are not required to be proper; sometimes to
emphasize this possibility we use the symbols �end and �cof .

If Γ is a class of formulas and M is a submodel of N , then we write M ≺Γ N
if for all ā in M and all ϕ in Γ,

M |= ϕ(ā)⇐⇒ N |= ϕ(ā).

If in addition M ≺end N , we write M ≺end ,ΓN . We could also introduce ≺cof ,Γ,
but as the results below indicate, this would not be used often.

Theorem 1.3.1 Suppose M |= PA∗, N is a cofinal extension of M , and M ≺Σ0

N . Then M ≺ N and, in particular, N |= PA∗. �

If in Theorem 1.3.1 M and N are models of PA, then the assumption M ≺Σ0

N can be eliminated. This follows from the MRDP theorem, whose formalized
version says:

Theorem 1.3.2 (MRDP Theorem) For every Σ1 formula ϕ(x̄) of LPA, there
is a quantifier-free formula ψ(x̄, ȳ) such that

PA � ∀x̄(ϕ(x̄)←→ ∃ȳψ(x̄, ȳ)).

�

Thus, for models of PA, M ⊆ N implies M ≺Σ0 N (Do it!). Hence, we have
the following theorem.

Theorem 1.3.3 Let M and N be models of PA. If M is cofinal in N , then
M ≺ N . �

The following proposition has a straightforward proof by induction on the
complexity of Σ0 formulas.

Proposition 1.3.4 If N is a model of PA∗ and M is a cut of N , then M ≺Σ0 N .
�

Suppose M and N are models of PA∗ and M ⊆ N . Let K be sup(M) in N .
Then K ⊆end N , and it follows from Proposition 1.3.4 that K ≺Σ0 N .
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Theorem 1.3.5 (Gaifman’s Splitting Theorem) If M and N are models of
PA, M is a submodel of N , and K = sup(M) in N ; then M �cof K ⊆end N .

Proof We can assume that K �= N . By Theorem 1.3.2 we have M �Σ0 N and
by Proposition 1.3.4, K �Σ0 N . Hence, M �Σ0 K, and the result follows by
Theorem 1.3.1. �

Since the proof of Gaifman’s Splitting Theorem uses the MRDP Theorem, it
cannot be generalized directly to models of PA∗. For models of PA∗ we have the
following variant (Do it!).

Theorem 1.3.6 If M � N |= PA∗ and K = sup(M) in N , then
M �cof K �end N . �

Gaifman’s Splitting Theorem explains why we usually consider end extensions
and cofinal extensions separately. Each of these two types of extensions requires
a different approach. For example, it follows directly from the Compactness
Theorem and the results we already mentioned, that every nonstandard model
has a proper elementary cofinal extension. While it is also true that every model
of PA has an elementary end extension, this is much more difficult to prove.

The following property of cofinal extensions is frequently used.

Theorem 1.3.7 If M ≺cof N and M∗ |= PA∗ is an expansion of M , then there
is a unique expansion N∗ of N such that M∗ ≺ N∗.

Proof (Sketch) Suppose M∗ = (M,X0, X1, . . . ). For each i and each a ∈ M ,
Xi∩aM is coded by an element of M (see the next section for conventions about
coding). Let bi,a be such a code. Then let

Yi =
⋃
a∈M

{x ∈ N : N |= x ∈ bi,a} .

Now let N∗ = (N,Y0, Y1, . . . ). It is easy to verify that M∗ ≺Σ0 N∗, and then
the result follows from Theorem 1.3.1. �

If M ≺ N , then we say that N is a minimal extension of M if for each M ′,
M � M ′ � N implies that either M ′ = M or M ′ = N . By Theorem 1.3.6, every
minimal extension is either an elementary end extension or a cofinal extension.

1.4 Coding bounded sets and classes

For simple coding tasks we use Cantor’s pairing function:

〈x, y〉 = 1
2
[(x+ y)2 + 3x+ y].

For every model M , Cantor’s pairing function establishes a one-to-one corres-
pondence between M2 and M . We use it as a convenient way for partitioning
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unbounded sets into unboundedly many unbounded subsets. Let X be an
unbounded definable subset of a model M , and let f : M −→ X be the defin-
able function enumerating X in increasing order. Then for each a ∈ M , let
Xa = {f(〈a, i〉) : i ∈M} . In other words, x ∈ Xa iff x is the 〈a, i〉th element of
X for some i ∈M . Clearly, each Xa is unbounded.

By iterating Cantor’s function, for each n < ω, we get a definable one-to-one
correspondence between Mn and M . We also need a uniform coding scheme for
arbitrary definable bounded sets and sequences. Definable bounded subsets of a
model M are called M -finite. There are many ways to code M -finite sets. To be
specific we fix one coding method. Informally, if A is M -finite, the code of A in
M is Σa∈A2a. We designate 0 to be the code of the empty set. More formally,
there is a formula ϕ(x, y) of LPA, expressing that the xth bit in the binary
representation of y is 1. Then one can define x ∈ y to be ϕ(x, y) and prove that
(M,∈) is a model of all the axioms of ZF, with one exception: (M,∈) satisfies
the negation of the axiom of infinity. The full strength of PA is not necessary
here; IΣ0 + exp suffices. A complete proof is given, for example, in [50].

Our method of coding could be replaced by any other definable coding every-
where in this book except for Chapter 11, where some specific properties of
the binary coding are used. In that chapter the number Σa∈A2a is called the
canonical code of A.

It is a common practice to identify M -finite sets with their codes. We fre-
quently take advantage of this. If x, y ∈ M , then the cartesian product x× y is
the set {〈x′, y′〉 : x′ ∈ x ∧ y′ ∈ y}. Clearly, x×y is M -finite. Then we define func-
tions and sequences in the usual way. In particular, for an M -finite A, cardM (A)
denotes the cardinality of A in M , that is the unique c ∈ M such that there is
an f ∈ M which is a one-to-one and onto function f : cM −→ A. Sometimes
cardM (A) is referred to as the internal cardinality of A . For the real world
cardinality of A, we use |A|.

Let us fix some notation. If s ∈ M codes a sequence, then �(s) is the length
of s, and for i < �(s), (s)i is the ith term of s. We need some estimates on the
size of codes. Directly from the definitions one can obtain the following.

Proposition 1.4.1 If �(s) = x and for all i < x, (s)i < y, then s ≤ 2(x+y+1)2 .
�

Let M<M be the set of codes of all sequences coded in M . We define the
partial ordering � on M<M so that if σ, τ ∈M<M , then σ � τ iff (the sequence
coded by) σ is an initial segment of (the sequence coded by) τ . We write σ � τ
if σ � τ and σ �= τ . We use ˆ for concatenation. By definition, σ τ̂ is the element
of M<M which codes the concatenation of σ with τ .

Let I be a cut of a model M . We say that X ⊆ I is coded in M if X = I ∩ Y
for some Y ∈ Def(M). The collection of all subsets of I coded in M is denoted
by Cod(M/I). Notice that if I ⊆end M ⊆end N , then Cod(M/I) = Cod(N/I).

We say that a subset X of M is a class of M if for every a ∈ M , X ∩ aM ∈
Def(M). The set of classes of M is denoted by Class(M).
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The next proposition can be easily proved by induction on the complexity of
Σ0 formulas (Do it!).

Proposition 1.4.2 A subset X of a model M is a class iff (M,X) |= IΣ0. �

One can show, and we ask the reader to do so in the exercises at the end of
this chapter, that every subset of a model M which is coded in an end extension
must be a class of M and that every countable model has classes which cannot
be coded in end extensions. It is easy to see that every countable model has
undefinable classes (Do it!). This is not so for some uncountable models. A
model M is rather classless if Class(M) = Def(M). We construct rather classless
models in the next chapter.

1.5 Standard systems

Let M be a nonstandard model. The standard system of M is the collection

SSy(M) = Cod(M/N) = {X ⊆ N : ∃Y ∈ Def(M)[X = Y ∩ N]} .

Let T be a theory in some extension L of LPA. Let X be a subset of N. We
say that T represents X iff there is a formula ϕ(x) of L such that for each n < ω,

n ∈ X ⇐⇒ T � ϕ(n)

and

n /∈ X ⇐⇒ T � ¬ϕ(n).

We denote by Rep(T ) the collection of sets represented by T . Peano Arithmetic
represents every recursive set and, in particular, represents itself.

We use the following version of Gödel’s First Incompleteness Theorem.

Theorem 1.5.1 Any consistent theory T ⊇ PA∗ which represents itself is
incomplete.

Proof Suppose that θ(x) represents T in T . By Gödel’s Diagonalization
Theorem, there is a sentence ψ be such that

PA∗ � ψ ←→ ¬Θ(ψ).

Then neither ψ nor ¬ψ is in T . �

Corollary 1.5.2 If T ⊇ PA∗ is consistent and complete, then T /∈ Rep(T ). �

If PA∗ ⊆ T and M |= T is nonstandard, then Rep(T ) ⊆ SSy(M). If T ⊇ PA∗

is complete and its prime model MT is nonstanard, then Rep(T ) = SSy(MT ).
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A Scott set is an ω-model of WKL0. In other words, a Scott set is a nonempty
collection X of subsets of N which satisfies the following conditions:

(1) X is closed under Boolean operations;
(2) If A ∈ X and B ⊆ N is recursive in A, then B ∈ X;
(3) If T ∈ X is an infinite binary tree, then T has an infinite path P ∈ X.

The following theorem summarizes some basic properties of Scott sets.

Theorem 1.5.3 (1) For each model M , SSy(M) is a Scott set.
(2) If X is a countable Scott set, T ⊇ PA∗ is complete, and Rep(T ) ⊆ X, then

there is a model M of T such that SSy(M) = X.

(3) Let T ⊇ PA∗ be a theory which represents itself, let X be a countable Scott
set, and suppose that T ∈ X. Then there are continuum many completions
T ⊇ T such that X = Rep(T ). �

The next two results will be used in Chapters 8 and 9.

Theorem 1.5.4 Let X be a countable Scott set. Then there are countable Scott
sets X0,X1 extending X such that (N,X0) |= ACA0 and (N,X1) �|= ACA0.

Proof (Sketch) To get X0 use a countable chain argument (or downward
Skolem–Löwenheim Theorem) to obtain a Scott set extending X which is closed
under arithmetical definability. To get X1, start with the set A such that
X = {An : n < ω}, where An = {x : 〈x, n〉 ∈ A}. Then, using Henkin’s con-
struction, build a nonstandard model M of PA, which is ∆2 from X and such
that X ∈ SSy(M). Let X1 = SSy(M). It follows that every set in X1 is ∆2
definable from X; hence, (N,X1) �|= ACA0. �

The last theorem of this section can be proved by combining Theorem 1.5.3,
Corollary 1.11.3, and Friedman’s Embedding Theorem (Theorem 1.13.1).

Theorem 1.5.5 Let M be a countable model. Then for every countable Scott
set X ⊇ SSy(M), there is a cofinal elementary extension N of M such that
SSy(N) = X. �

1.6 Types

An n-type p(x0, . . . , xn−1) is a collection of formulas in the variables x0, . . . , xn−1
in a given language L. If M is an L-structure, then pM is the set of all n-tuples
which realize p(x0, . . . , xn−1) in M .

For a consistent theory T and n < ω, we let Sn(T ) be the set of complete n-
types which are consistent with T . If M is a model of PA∗ and T is the theory of
the expanded structure (M,a)a∈M , then we may write Sn(M) instead of Sn(T ).

Suppose that M ≺ N , a ∈ N , and N = Scl(M ∪ {a}). Suppose further
that a realizes the type p(x) ∈ S1(M). Then we write N = M(a) and say that
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M(a) is a p(x)-extension of M . Notice that Ehrenfeucht’s Lemma (Theorem 1.7.2
below) implies that a is the only element in pN . If M is the prime model of T ,
p(x) ∈ S1(T ), and M(a) is a p(x)-extension of M , then we will say that M(a) is
a prime model of p(x). If there is no need to refer to a specific element realizing
p(x), then the p(x)-extension of M will be denoted by M(p).

Definable coding of finite sequences allows to reduce most considerations
about n-types of completions of PA∗ to 1-types.

A type p(v) ∈ S1(M) is bounded if (v ≤ a) ∈ p(v) for some a ∈M ; otherwise
p(v) is unbounded. If p(v) is a pure type extending a completion T of PA∗, then
p(v) is bounded (unbounded) if it is bounded (unbounded) over the prime model
of T .

For ā = (a0, . . . , an) ∈M , the type of ā in M is

tp(ā) = {ϕ(v0, . . . , vn) : M |= ϕ(a0, . . . , an)} .

If there is a danger of confusion, we might write tpM (ā) instead tp(ā).
The set Sn(T ) is equipped with a topology. The basic open sets are the sets

of the form {p ∈ Sn(T ) : ϕ ∈ p}. Each of these sets is also closed. It is easy to see
that Sn(T ) is a Hausdorff space. The Compactness Theorem shows that Sn(T ) is
compact. The set of bounded types in S1(T ) is open. The unbounded types form
a closed set, and if the language of T is countable, this set, with the induced
topology, is homeomorphic to the Cantor set.

1.7 Blass–Gaifman and Ehrenfeucht lemmas

One of the very useful features of PA∗ is its ability to define functions by induc-
tion. Because of this feature, iterates of definable functions are definable. Let
us make that a little more precise. Consider a Skolem term t(x). The yth iter-
ate of t(x) is the Skolem term t(y)(x) for which the following two sentences are
consequences of PA∗:

∀x[t(0)(x) = x],

∀x∀y[t(y+1)(x) = t(t(y)(x))].

For a simple specific instance of this, if t(x) is the term x+1, then t(y)(x) is the
term x+ y.

The use of iterates is essential in the proofs of the next two lemmas which
state fundamental properties concerning the nature of definable functions in
models of PA∗.

Lemma 1.7.1 (Blass–Gaifman Lemma) Let a, b ∈ M |= PA∗ and t(x) be
a Skolem term such that M |= a < b ≤ t(a). Then there is a Skolem term
s(x) such that M |= a < b ≤ s(a) = s(b). Moreover, we can also require that
PA∗ � ∀x∀y[x < y −→ x ≤ s(x) ≤ s(y)].
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Proof We can assume that PA∗ � ∀x∀y[x < y −→ x < t(x) ≤ t(y)] for if this is
not so, then replace t(x) with the term t′(x) defined inductively by

t′(0) = 1 + t(0) and t′(x+ 1) = max(1 + t′(x), t(x+ 1)).

Then M |= ∀x∃y[t(y)(0) > x], so we can let r(x) be term denoting the least such
y. Clearly, r(a) ≤ r(b) ≤ r(a) + 1. If r(b) is even, then let e(y) be the Skolem
term such that e(y) picks out the even one of y and y + 1. If r(b) is odd, then
e(y) picks out the odd one. In either case r(a) ≤ r(b) ≤ e(r(a)) = e(r(b)). Then
let s(x) be the term t(e(r(x)))(0). �

Theorem 1.7.2 (Ehrenfeucht’s Lemma) Let a, b ∈ M |= PA∗ and t(x) be a
Skolem term such that M |= a �= b = t(a). Then tp(a) �= tp(b).

Proof We define a Skolem term r(x) in each of two cases.
Case 1: b < a. We can assume that M |= ∀x[t(x) ≤ x] for, if this is not so,

then replace t(x) with the Skolem term min(x, t(x)). Then

M |= ∀x∃y[t(y)(x) = t(y+1)(x)],

so we can let r(x) be the term denoting the least such y.
Case 2: a < b. We can assume that M |= ∀x[t(x) > x] for, if this is not so,

then replace t(x) with the Skolem term max(x+ 1, t(x)). Since a < b = t(a), we
can find a term s(x) as in the Blass–Gaifman Lemma. Then

M |=|= ∀x∃y[t(y)(x) ≥ s(x)],

so we can let r(x) be the term denoting the least such y.
In either case, r(a) = r(b)+1. Thus, r(a) is even iff r(b) is odd and, therefore,

tp(a) �= tp(b). �

See the last three exercises in this chapter for an alternative proof of
Ehrenfeucht’s Lemma involving graph coloring.

The standard model, or more generally, any prime model of PA∗, is rigid,
that is it does not have nontrivial automorphisms. Ehrenfeucht’s Lemma implies
an even stronger statement. A model N is finitely generated over a model M
if there is a ∈ N such that N = SclN (M ∪ {a}). Notice that if N is finitely
generated over M , then N is a simple extension of M .

Lemma 1.7.3 Suppose N is finitely generated over a model M . If f : N −→ N
is an elementary embedding such that f(x) = x for all x ∈ M , then f is the
identity function.

Proof Consider PA∗ in the language with constants for all elements ofM . In this
language, each element of N is of the form t(a) for some Skolem term t. Hence,
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according to Ehrenfeucht’s Lemma, for each b ∈ N , if b �= a, then tp(b) �= tp(a)
and the result follows. �

1.8 Recursive saturation and arithmetic saturation

Recursive saturation plays an important role in this book. When discussing
recursive saturation of models of PA∗ we assume that the language is finite. Then
we can identify syntactic objects with their Gödel numbers. Under this conven-
tion, if b̄ is a tuple of elements of a model M and p(v, b̄) is a type, then p(v, b̄)
is recursive (arithmetic, etc.) if the set

{
ϕ(v, w̄) : ϕ(v, b̄) ∈ p(v, b̄)

}
is recursive

(arithmetic, etc.).
A first-order structure A is recursively saturated if for each tuple b̄ in A and

every recursive type p(v, w̄), if p(v, b̄) is finitely realizable, then p(v, b̄) is realized
in A.

Proposition 1.8.1 Let M and N be recursively saturated models. Then M ≡∞ω

N iff M ≡ N and SSy(M) = SSy(N). �

It follows that each countable recursively saturated model is uniquely
determined up to isomorphism by its complete theory and standard system.

Proposition 1.8.1 is a particular instance of the back-and-forth characteriz-
ation of L∞ω-equivalence. If M and N are recursively saturated elementarily
equivalent models, then the back-and-forth system for M and N is

I =
{
(ā, b̄) ∈M<ω ×N<ω : tp(ā) = tp(b̄)

}
.

If (ā, b̄) ∈ I, then for each a ∈M there is b ∈ N such that (ā̂ a, b̄̂ b) ∈ I, and for
each b ∈ N there is a ∈M such that (ā̂ a, b̄̂ b) ∈ I (Do it!). In particular, if M
and N are both countable, then M ∼= N .

Let X be a collection of subsets of ω. We say that a first-order structure A is
X-saturated

(1) If for each tuple ā in A, tp(ā) ∈ X.
(2) If b̄ is a tuple in A, p(v, w̄) is a type in X and p(v, b̄) is finitely realizable in

A, then p(v, b̄) is realized in A.

Proposition 1.8.2 A model M is recursively saturated iff it is SSy(M)-
saturated.

Proof Since PA represents every recursive set, SSy(M)-saturation implies
recursive saturation. To see the converse, let 〈ϕn(v, w̄) : n < ω〉 be a recurs-
ive enumeration of all formulas in the displayed variables, and suppose that for
some b̄ ∈M and A ∈ SSy(M), the type

p(v, b̄) =
{
ϕn(v, b̄) : n ∈ A

}
,
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is finitely realizable in M . Let a ∈ M be such that for all n < ω, n ∈ A iff
M |= n ∈ a. Now consider the recursive type

q(v, a, b̄) =
{
n ∈ a −→ ϕn(v, b̄) : n < ω

}
.

Clearly, q(v, a, b̄) is just p(v, b̄) in disguise. Since q(v, a, b̄) is finitely realizable in
M , it is realized in M and so is p(v, b̄).

To see that for all ā ∈ M , tp(ā) is in SSy(M), consider the recursive type
r(w) consisting of formulas of the form ϕ(v̄) ∈ w ←→ ϕ(ā), where ϕ(v̄) ranges
over all formulas with the variables v̄. �

A first-order structure A is arithmetically saturated iff for all ā, b̄ in A, each
finitely realizable type p(v, b̄) which is arithmetic in tp(ā) is realized in A.

Arithmetic saturation is a robust notion. We say much more about it in
Chapter 8. Now let us just note the following proposition.

Proposition 1.8.3 Let M be a recursively saturated model. The following
conditions are equivalent:

(1) M is arithmetically saturated;
(2) (M,SSy(M)) |= ACA0;
(3) The standard cut is strong in M . �

The equivalence of the first two conditions follows directly from Proposi-
tion 1.8.2. A cut I of M is strong in M if for each a ∈ M , there is a c > I such
that for all i ∈ I, (a)i > I iff (a)i > c. The equivalence of (2) and (3) for all
models M , not just for recursively saturated ones, is established in Chapter 7.

If N is not strong in M , then there is a ∈ M coding a sequence of a non-
standard length such that for every nonstandard e ∈M , there is i < ω such that
N < (a)i < e. If N is not strong in M and M is recursively saturated, then there
is an a with the additional property that all for all i < ω, if (a)i is nonstandard,
then it is undefinable. To see this consider an a ∈ M such that for every non-
standard e ∈ M there is i < ω such that N < (a)i < e. By recursive saturation,
there is b ∈ M such that Scl(0) = {(b)i : i ∈ N} . If a does not already have the
additional property, then replace it with an element realizing the recursive type:

{(v)i = min {x : ∀j ≤ �(b)[j ≤ (a)i −→ (x �= (b)j)]} : i < ω} .

Thus, we have proved the following proposition:

Proposition 1.8.4 If M is recursively saturated and N is not strong in M , then
there is a ∈ M such that for every nonstandard e ∈ M there is i < ω such that
N < (a)i < e and for all i < ω, if (a)i > N, then (a)i /∈ Scl(0). �
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1.9 Satisfaction classes and resplendency

Nonstandard satisfaction classes extend the notion of satisfaction to nonstandard
formulas. Let M ba a model for a language L. The standard satisfaction class
Sst(M) is the set

{〈ϕ, a〉 ∈M : M |= ϕ(a)}.

A subset S ⊆ M is usually defined to be a nonstandard satisfaction class for
M if Sst(M) ⊆ S, S contains pairs 〈ϕ, a〉 for all (or some) nonstandard ϕ ∈
FormL(M) and S satisfies Tarski’s inductive conditions for satisfaction. For a
precise definition, see [71]. For applications in this book, we can use a simplified
definition.

Definition 1.9.1 Let S be a subset of a model M . We say that S is a partial
inductive satisfaction class, abbreviated (M,S) |= Sat(S), if S is inductive and

〈ϕ, a〉 ∈ S ⇐⇒M |= ϕ(a). �

Our definition of a partial inductive satisfaction class does not mention
Tarski’s inductive conditions for satisfaction. However, if M is nonstandard and
(M,S) |= Sat(S), then, by overspill, there is a nonstandard e such that S satisfies
Tarski’s inductive conditions for all Σe formulas in the sense of M .

We say that S ⊆ M is a full satisfaction class for M if for all ϕ ∈ Form(M)
and all a ∈M , either 〈ϕ, a〉 ∈ S or 〈¬ϕ, a〉 ∈ S, and S satisfies Tarski’s inductive
conditions. (See [71] for details). Notice that we do not assume that S is induct-
ive. By a theorem of Kotlarski, Krajewski, and Lachlan [115], every countable
recursively saturated model has a full satisfaction class. It is easy to prove that
if M has a full inductive satisfaction class, then M |= Con(PA). Hence, not every
countable recursively saturated model has a full inductive satisfaction class. Let
us also note an important theorem of Lachlan [119].

Theorem 1.9.2 If a countable model M has a full satisfaction class, then M is
recursively saturated. �

A first-order structure A is resplendent iff for every tuple ā of A and every Σ1
1-

sentence ∃XΨ(X, ā), if Con(Th(A, ā) + ∃XΨ(X, ā)), then (A, X, ā) |= Ψ(X, ā)
for some X ⊆ A. A first-order structure A is chronically resplendent if for each
sentence ∃XΨ(X, ā) such that Con(Th(A, ā)+∃XΨ(X, ā)), there is X ⊆ A such
that (A,X, ā) |= Ψ(X, ā) and (A,X) is resplendent.

For X ⊆ P(ω), we say that A is X-resplendent iff for every tuple ā of A and
every set T of sentences in some finite extension of the language of A with an
additional predicate symbol, if T is in X and Th(A,ā) + T is consistent, then
(A,ā) has an expansion satisfying T . It is well-known that every resplendent
model is Rec-resplendent, where Rec is the collection of all recursive sets.
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Theorem 1.9.3 (1) Every countable recursively saturated first-order structure
is chronically resplendent.

(2) Every countable recursively saturated model M of PA∗ is SSy(M)-
resplendent. �

It is an open problem whether there is a resplendent first-order structure
which is not chronically resplendent.

The following simple proposition has many applications.

Proposition 1.9.4 Let M be a nonstandard model of PA∗.

(1) If M has a partial inductive satisfaction class, then M is recursively
saturated.

(2) If M is resplendent, then M has a partial inductive satisfaction class.

Proof For the proof of (1), let S be a partial inductive satisfaction class for M ,
and let 〈ϕn(v, w) : n < ω〉 be a recursive enumeration of all formulas of L. Let
A ∈ SSy(M) and suppose that the type p(v, a) = {ϕn(v, a) : n ∈ A} is finitely
realizable in M . Let A′ ∈ Def(M) be such that A = A′∩N. Then for each n < ω,

(M,S) |= ∃x∀i < n [i ∈ A′ −→ ϕi(x, a) ∈ S].

By overspill, this is also true for some nonstandard n. It follows that p(v, a) is
realized in M . Notice that this argument shows that M is SSy(M)-saturated.

To prove (2), let us assume that M is resplendent. Consider the recursive
theory:

T (S) = {∀x (ϕ(x) ∈ S ←→ ϕ(x)) : ϕ ∈ L}+ PA∗.

Every finite fragment of T (S) has a model of the form (M,D), where D is
a definable subset of M (Do it!). Hence, T (S) is consistent, and the result
follows. �

Corollary 1.9.5 No modelM has a definable partial inductive satisfaction class.

Proof By passing to an elementary extension if necessary, we can assume that
M is nonstandard. Suppose S ∈ Def(M). Let K = SclM (a), where a is a non-
standard element of M and a is such that S is definable from parameters in
SclM (a). Then S ∩ K is definable in K, and since K ≺ M , S ∩ K is a partial
inductive satisfaction class for K. But K is not recursively saturated (Do it!),
and we get a contradiction with Proposition 1.9.4. �
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Corollary 1.9.5 is a general version of Tarski’s Theorem on Undefinability of
Truth which says in its simplest form that Th(N) is not definable in N.

Here is another corollary of Proposition 1.9.4.

Theorem 1.9.6 Every cofinal extension of a recursively saturated model is
recursively saturated.

Proof Let M be a countable recursively saturated model. By Proposition 1.9.4,
M has a partial inductive satisfaction class S. Let N be a cofinal extension
of M . Use Theorem 1.3.7 to get S such that (M,S) ≺ (N,S). Then S is
a partial inductive satisfaction class for N , and the result follows again by
Proposition 1.9.4.

The uncountable case now follows by a Skolem–Löwenheim type argument
(Do it!). �

Corollary 1.9.7 Every countable recursively saturated model M has cofinal
extensions M0 and M1 such that M0 is arithmetically saturated and M1 is not.

Proof Directly from Theorems 1.5.4, 1.9.6, and Proposition 1.8.3. �

To simplify some statements, we will use a hierarchy of formulas whose levels
are closed under negation. For n < ω let Qn be the closure of the set of Σn

formulas of L under negation, conjunction, and bounded quantification. For
e ∈ M , Qe(M) is the set of Qe formulas of L(M) in the sense of M . We say
that a partial inductive satisfaction class S is an Qe-class, if S satisfies Tarski’s
inductive conditions of satisfaction for all formulas in Qe(M). If S is an Qe-class
for every e ∈ M , then S is full and we will say that S is an Q∞-class. We have
shown that a countable model is recursively saturated iff it has an Qe-class for
some nonstandard e. Notice that, since partial satisfaction classes are inductive,
if a partial inductive satisfaction class is not full, then there is a largest e > N
such that S is a Qe-class.

Let us finish this section with a useful lemma. It can be easily proved by
induction on complexity of formulas. If S ⊆ M is an Qe-class and d < e, then
S|d denotes the restriction of S to Qd(M) sentences.

Lemma 1.9.8 If S is an Qe-class, D is an Qd-class, d ≤ e, and (M,S,D) |=
PA∗, then D = S|d. �

1.10 Cuts and gaps in recursively saturated models

A nonstandard model can be partitioned into convex subsets in many natural
and useful ways. For example, every model M is partitioned into Z-blocks, where
the Z-block of every standard n is N and, for nonstandard a ∈ M , the Z-block
of a is

{a+ k : k ∈ Z} .
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This idea can be generalized as follows. Let F be a set of definable functions
f : M −→M for which x ≤ f(x) ≤ f(y) whenever x < y. There is a partition of
M into sets, which we call F-gaps. For any a ∈M , gapF (a) is the smallest set C
such that a ∈ C and whenever b ∈ C, f ∈ F , and b ≤ x ≤ f(b) or x ≤ b ≤ f(x),
then x ∈ C.

Thus, Z-blocks are the successor gaps, that is the F-gaps, where F consists
of the successor function. Similarly, one can define polynomial gaps, exponential
gaps, etc. The gap of a ∈ M , denoted by gap(a), is the F-gap of a, where F
is the set of all definable functions f : M −→ M for which x ≤ f(x) ≤ f(y)
whenever x < y. In the literature, gaps are often called skies.

Every model M has the least gap, the gap of 0. If for some a ∈ M , M =
sup(gap(a)), then we call gap(a) the last gap of M . A model with a last gap is
called short. A model which is not short is tall.

Gap terminology is particularly useful in the study of recursively saturated
models. Here are some examples. All statements below are good exercises (Do
it!). Assume that M is recursively saturated.

For any a ∈M , the type consisting of formulas t(a) < v, where t ranges over
all Skolem terms, is realized in M . Hence M is tall.

Let a, b ∈ M be such that gap(a) < b. Then I = sup(gap(a)) is a short
elementary cut such that a ∈ I < b. Another elementary cut is J = inf(gap(b)).
Moreover, I < J ; I is short, hence it is not recursively saturated; J is tall and is
recursively saturated. In the literature on recursively saturated models of PA, I
is often denoted by M(a) and J by M [b]. We do not follow this tradition here,
as it clashes with other standard conventions we have adopted.

If K ≺end M is not recursively saturated, then there is a such that K =
sup(gap(a)).

If M is countable and a, b, I, J are as above, then there are continuum many
elementary cuts K such that I < K < J . Countably many of these are short.
Using independent minimal types, discussed in Chapter 3, one can prove that
there are countably many nonisomorphic such short cuts. All other cuts K are
recursively saturated, and in fact, are isomorphic to M .

We say that a ∈ M codes an ascending sequence of gaps, abbreviated a ∈
ASG(M), if �(a) is nonstandard and for each i < �(a), gap((a)i) < (a)i+1.

Theorem 1.10.1 For any model M the following are equivalent:

(1) M is recursively saturated.
(2) For all a ∈M there is b ∈ ASG(M) such that (b)0 > a.
(3) For all a ∈M there is b ∈ ASG(M) such that �(b) > a. �

While all tall elementary cuts K in a countable recursively saturated model
M are isomorphic to M , there are many nonisomorphic pairs (M,K). We use
the following result in Chapter 10.
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Theorem 1.10.2 Every countable recursively saturated model M has con-
tinuum many elementarily inequivalent pairs of the form (M,K), where K is
a recursively saturated elementary cut. �

1.11 Truth definitions and restricted saturation

While satisfaction over any model of PA is undefinable, and only recursively
saturated models have partial inductive satisfaction classes, satisfaction for Σn

formulas is definable, and this has important consequences. This is true for
PA∗(L) for any finite L. Recall that we identify formulas with their Gödel num-
bers. Also, if a is element of a model M and ϕ(x) is a formula of L, then we can
regard ϕ(a) as an element of M which codes the substitution of the numeral of
a for x in ϕ(x).

Let L be a finite extension of LPA.

Theorem 1.11.1 There is a Σ1 formula Tr0(x, y) of L such that for every Σ0
formula ϕ(y) of L,

PA∗(L) � [∀y(ϕ(y)←→ Tr0(ϕ, y))
]
. �

The construction of Tr0 is relatively straightforward along the lines: “it is
snowing” is true iff it is snowing. Chapter 9 of [71] provides all details.

Corollary 1.11.2 For each n > 0 there is a Σn formula TrΣn
(x, y) of L such

that for every Σn formula ϕ(x) of L,

PA∗(L) � [∀y(ϕ(y)←→ TrΣn(ϕ, y))
]
.

�

We call TrΣn
(x, y) the universal Σn formula. Similarly, for each n > 0 there

is a universal Πn formula TrΠn(x, y).

Corollary 1.11.3 For any nonstandard model M and any n < ω

{ϕ ∈ Σn : M |= ϕ} ∈ SSy(M).
�

Corollary 1.11.4 Let M |= PA∗(L) be nonstandard. Let p(v, b̄) be a type coded
in M . If there is n < ω such that all formulas in p(v, b̄) are Σn and p(v, b̄) is
finitely realizable in M , then p(v, b̄) is realized in M . �

The existence of universal Σn truth formulas implies immediately that the
arithmetical hierarchy is proper. It follows from Corollary 1.11.2 and Tarski’s
theorem on the undefinability of truth (Do it!).
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The following simple exercise has applications in Chapter 6.

Exercise 1.11.5 Let M be a model of PA∗(L). Then for n > 1, every ∆n+1-
definable subset of M is ∆2-definable in (M,TrΣn(M)).

Let M be a model of PA∗(L). The set TrΣn(M) is called the Σn-complete set
of M .

1.12 Arithmetized Completeness Theorem

Let M be a model, let L ⊆ M be a definable language in the sense of M and
let T ⊆ M be a definable L-theory such that M |= Con(T ). Then Henkin’s
construction performed in M gives a definable L-structure A and a ∆2-formula
H which defines in M a full satisfaction class for A making all sentences of
T true. In particular, for all standard formulas ϕ(x0, . . . , xn−1) of L and all
a0, . . . , an−1 ∈ A

A |= ϕ(a0, . . . , an−1)⇐⇒M |= H(ϕ, 〈a0, . . . , an−1〉),

hence A is a model of T ∩ N. This discussion is an outline of the proof the
following nonstandard version of the Hilbert–Bernays Completeness Theorem:

The Arithmetized Completeness Theorem: Let M be a
model. If T ∈ Def(M) and M � Con(T ), then there is a model
A having a definable full satisfaction class S such that T ⊆ S and,
moreover, S is ∆2 in T .

The Arithmetized Completeness Theorem is a convenient tool for construct-
ing end extensions of models of PA. In order to obtain end extensions which are
models of PA, we need to know that for every nonstandard model M , there is
a C ∈ Def(M) such that PA ⊆ C and M |= Con(C). A Theorem of Mostowski
[135] implies that such a set C always exists.

A theory T is reflexive if T � Con(T ′) for every finite T ′ ⊆ T ; T is essentially
reflexive if every consistent extension S of T in the same language is reflexive.
Mostowski [135] proved that PA is essentially reflexive. The proof gives a stronger
principle which we will need in the next chapter.

Mostowski’s Reflection Principle: For any model M of
PA∗(L) for a finite L and any n < ω, M |= ∀σ[TrΣn

(σ) −→ Con(σ)].

Let M be a model and let C ∈ Def(M) be such that PA = C ∩ N and
M |= Con(C). Then let ACT(M,C) be the model obtained by applying the
Arithmetized Completeness Theorem to M and C. There is always a choice
for ACT(M,C), depending on the selection of the formulas defining the universe
ACT(M,C) and its full satisfaction class. For applications discussed in this book,
those differences do not matter.
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By induction, M is isomorphic (via a definable isomorphism) to a cut of
ACT(M,C) (Do it!). We identify M with this cut. The following properties
of ACT(M,C) are not difficult to prove (Do it!). (Hint for part (1): use
Corollary 1.9.5.)

Theorem 1.12.1 Let C be a definable subset of a model M such that PA ⊆ C
and M |= Con(C). Let N = ACT(M,C). Then:

(1) N is not an elementary extension of M .
(2) If M is nonstandard, then N is recursively saturated.
(3) For every A ∈ Def(N), A ∩M ∈ Def(M). �

The Arithmetized Completeness Theorem is a powerful tool, but it is not used
much in this book. One important application is Theorem 2.4.2. A connection
between the Arithmetized Completeness Theorem and the Low Basis Theorem
is explored further in the chapter on Generics and Forcing.

1.13 Friedman’s Embedding Theorem

In this book we are chiefly concerned with elementary extensions; thus consider-
able amount of material on arbitrary initial segments, nonelementary extensions,
and models of fragments of arithmetic are left out. Still, we need to mention one
basic result. It is a theorem of Friedman which characterizes fully those models
of PA that are initial segments of a given countable model. We formulate the
theorem in full generality and we give a sketch of a proof of a special case.

For a class Γ of formulas and a model M , let

ThΓ(M) = {ϕ ∈ Γ : M |= ϕ} .

Recall that M ≺end ,ΓN means that for all ϕ(x̄) ∈ Γ and all ā in M , M |= ϕ(ā)
iff N |= ϕ(ā).

Theorem 1.13.1 (Friedman’s Embedding Theorem) Let M and N be
countable models of PA∗(L) for a finite L. The following are equivalent:
(1) There is a cut I ≺end ,ΣnN such that M ∼= I;
(2) SSy(M) = SSy(N) and N |= ThΣn+1(M).

Proof Let us sketch the proof of the case of n = 0. Let K be an elementary
end extension of M , and let a ∈ K \M . Using the Σ1 universal truth formula
TrΣ1 , and the fact that N |= ThΣ1(K), one can show that there is b ∈ N such
that ThΣ1(K, a) = ThΣ1(N, b). Then it follows that (aK ,+,×) ≡ (bN ,+,×),
where + and × are the graphs of addition and multiplication restricted to aK
and bN , respectively. Since a satisfaction relation can be defined in M for both
these structures, they are recursively saturated. Also, (aK ,+,×) and (bN ,+,×)
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have the same standard system. Now, a back-and-forth argument can be used
to show that (aK ,+,×) ∼= (bN ,+,×), and the result follows. �

Corollary 1.13.2 Every countable nonstandard model of PA is isomorphic to a
proper cut of itself. �

One can use the universal Σn formulas to derive the full version of
Theorem 1.13.1 from the special case we proved (Do it!).

Friedman’s Embedding Theorem has many refinements and extensions for
fragments of arithmetic and other theories. One of its consequences is the
following result, due to Jensen & Ehrenfeucht [60].

Theorem 1.13.3 Each nonstandard model has 2ℵ0 many pairwise elementarily
inequivalent cuts which are models of PA.

1.14 Exercises

♣1.14.1 Let M be a nonstandard model. For any a ∈ M , sup(gap(a)) is the
smallest elementary cut of M which contains a, and inf(gap(a)), if nonempty, is
the largest elementary cut of M which does not contain a.

♣1.14.2 If M ⊆end N and X ⊆M is coded in N , then X is a class of M .

♦1.14.3 Every countable model M has classes which cannot be coded in any
end extension of M .

♣1.14.4 Let Ind(M) be the set of those X ⊆ M for which (M,X) |= PA∗.
For every model M , Def(M) ⊆ Ind(M) ⊆ Class(M). For countable models the
second inclusion is always proper. For countable models the first inclusion is also
always proper, this, however, is a more difficult exercise. A solution is given in
Chapter 6. The reader might want to look for another proof (♠).
♦1.14.5 We say that a sequence 〈an : n < ω〉 is recursively definable in a model
M if there are c ∈M and a recursive sequence of terms 〈tn(x) : n < ω〉 such that
for all n < ω, an = tn(c). A tall model M is recursively saturated iff for every
recursively definable sequence 〈an : n < ω〉 of M there is b ∈M such that for all
n < ω, an = (c)n.

♣1.14.6 If a model M has a full, inductive satisfaction class, then M |=
Con(PA).

♦1.14.7 Let S be a Qe-class for a model M , and suppose that e′ + N < e. If
S′ = S|e′ is the restriction of S to Qe′(M) sentences, then (M,S′) is recursively
saturated.

Hájek [49] defined a modelM to be thrifty if SSy(M) = Rep(Th(M)). Clearly,
every elementary end extension of a prime model is thrifty.
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♦1.14.8 There are thrifty models which are not elementary end extensions of
their prime elementary submodels.

The following exercises give an alternative proof of Ehrenfeucht’s Lemma
using graph coloring.

Definition 1.14.9 G = (V,E) is a definable (0-definable) graph in a model
M , if G is a graph whose set of vertices V and set of edges E are definable
(0-definable) in M . The chromatic number of G in M , χM (G) is the smallest
k ∈ M for which there exists a definable k-coloring of G, that is a definable
α : V −→ {0, . . . , k − 1} such that for all {a, b} ∈ E, if a �= b, then α(a) �= α(b).
If G has no k-coloring for any k ∈M , then χM (G) =∞. �

♦1.14.10 The chromatic number of a definable graph is well-defined. Moreover,
if G is 0-definable in a model M and χM (G) = k, then k ∈ Scl(0) and there
exists a 0-definable k-coloring of G.

♦1.14.11 If G = (V,E) is a 0-definable graph in a model M such that for some
{a, b} ∈ E, a �= b, and tp(a) = tp(b), then for each n < ω, χM (G) > n.

♦1.14.12 Derive Ehrenfeucht’s Lemma as a corollary of the preceding two exer-
cises, that is prove that if a, b ∈M , a �= b, and t(a) = b for some Skolem term t,
then tp(a) �= tp(b). (Hint: consider the graph (M,E), where xEy iff t(x) = y.)

1.15 Remarks & References

The material summarized in this chapter covers many decades of work. It would
be a separate project (and an interesting one too) to give the full account of who
did what, when, and why. We limit ourselves to a few comments and a list of
references. Smoryński’s articles [196] and [197] are informative and entertaining
surveys covering most of the material in this chapter.

Gaifman’s Splitting Theorem was proved by Gaifman in [44]. It should be
noted that the proof of Theorem 1.3.3 uses the Matiyasevich–Robinson–Davis–
Putnam Theorem in an essential way. In fact, one can prove that Theorem 1.3.3
is in a sense equivalent to MRDP (see [70] Exercise 7.6). Theorem 1.3.7 was
proved independently by Kotlarski [109] and Schmerl [164].

While MRDP is provable in PA (see [46] for a proof in IΣ0 +exp), MRDP is
not valid for some models of PA∗. There are an X ⊆ N and a bounded formula
of LPA ∪ {X} which is not equivalent in (N, X) to any existential formula. An
example was given by Michael Weiss in his unpublished Ph.D. thesis [208].

A hierarchy of classes with regard to codability in end extensions of countable
models was defined and studied by Kossak & Paris [105]. In particular, it is
shown there that every countable model has classes which can be coded in some
end extensions but not in any elementary end extensions.

Scott sets were introduced by Scott [180] who proved that countable Scott sets
are exactly the families of sets of natural numbers representable in completions
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of PA. Scott sets are also called c-closed families. Standard systems were defined
by Friedman [41]. They proved to be of fundamental importance in the study of
nonstandard models of first-order and second-order arithmetic and set theory.
Sometimes the standard system of a model M is referred to as the set of reals
of M . Scott sets are important in the study of Turing degrees of nonstandard
models. This topic is not dealt with in this book. For a comprehensive survey see
[88]. Theorem 1.5.3 was generalized by Knight & Nadel [85] who proved that
every Scott set of cardinality ℵ1 is the standard system of a model of PA. It is a
long standing open problem whether in ZFC one can prove that every Scott set
is the standard system of a nonstandard model.

The equivalence (2)⇐⇒ (3) in Proposition 1.8.3 is due to Kirby & Paris [83].

The gap terminology was adopted in [75] motivated by some results of
Kotlarski from [111].

The Blass–Gaifman Lemma was proved independently by Blass [12] and
Gaifman [45]. Ehrenfeucht’s Lemma is from [28].

Recursive saturation is one of the main themes in this book. The concept
was introduced and studied by Barwise & Schlipf in [5] and [6]. Similar (in
fact equivalent) notions were considered in explicit or implicit forms by oth-
ers: Jensen & Ehrenfeucht [60], Wilmers in his Ph.D. thesis [209] and in [213],
and Hamid Lessan in his Ph.D. thesis [121]. For the developments discussed
in this book articles of Schlipf [160], Jensen & Ehrenfeucht [60], and a series
of Smoryński’s articles starting with [193] were the most influential. In partic-
ular, Smoryński introduced the notion of ascending sequences of skies, which
we renamed to ascending sequences of gaps. The characterization of recursively
saturated models in Theorem 1.10.1 was proved by Smoryński & Stavi in [199].

Resplendency was defined by Barwise and Schlipf. It is a robust notion which
can be defined in many alternative ways. See [193] and the chapter on recursive
saturation in [77] for historical notes and further discussion. Theorems 1.9.3
and 1.10.2 are due to Smoryński, the first having been proved in [193], and the
second in [192].

Basic model theory of recursively saturated models and their standard sys-
tems can be viewed as a special case of the theory of recursively saturated models
of rich theories. A first-order theory T in a recursive language is rich iff there is
a recursive sequence 〈ϕn(x) : n < ω〉 of formulas such that for all disjoint finite
sets X,Y ⊆ ω,

T � ∃x[ ∧
n∈X

ϕn(x) ∧
∧

m∈Y

¬ϕm(x)
]
.

Then for a recursively saturated model M of T , the standard system of M is
defined as the collection of sets of the form {n < ω : M |= ϕn(a)} for a ∈M . See
[196] or [71] for details.
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The study of satisfaction classes of nonstandard models was initiated by A.
Robinson in [157]. The theme was picked up by Geiser [47], but it was not until
much later when satisfaction classes became an independent object of study and
a model-theoretic tool. The first systematic study was done by Krajewski [117].

Theorem 1.9.6 is due to Smoryński & Stavi [199]. Their method also shows
that cofinal extensions preserve ℵ0-saturation. This cannot be improved to ℵ1-
saturation, as shown by Kotlarski in [109]. On the other hand, every simple
cofinal extension of an ℵ1-saturated model is ℵ1-saturated. If a model is not
recursively saturated, then none of its elementary end extensions is recursively
saturated. It turns out, however, that there are models which are not recursively
saturated but have simple cofinal extensions which are. The study of such models
has led to a discovery of a whole spectrum of weak notions of saturation, which
were studied in detail by Kaufmann & Schmerl in [68] and [69] . The second
paper proves, among many other results, that, assuming ♦, there is a model
which is not recursively saturated, but every proper, simple cofinal extension of
which is ℵ1-saturated. Exercise 1.14.5 is from [69].

Kotlarski & Kaye in [76] study extensions of the form ACT(M,C). In par-
ticular, they consider and partially answer the question: given a ∈M , is there a
C ⊆M such that a is definable in ACT(M,C)?

Friedman’s theorem was proved by Friedman in [41], the proof sketched in
this chapter is due to Dimitracopoulos & Paris [26]. The result has been gener-
alized by Tanaka [203] who proved that every countable nonstandard model of
WKL0 is isomorphic to a proper cut of itself. Theorem 1.13.3 is due to Jensen &
Ehrenfeucht [60].




EXTENSIONS

Where do nonstandard models arithmetic come from? By Tennenbaum’s The-
orem, we cannot hope to construct such models by effective algebraic methods.
Instead, we usually start with one model M , given, for example, by the Com-
pleteness Theorem, and then we either analyze submodels generated by various
subsets ofM , or we build extensions. In this chapter we discuss elementary exten-
sions. By Gaifman’s Splitting Theorem each elementary extension splits into a
cofinal extension followed by an elementary end extension. We discuss methods
of constructing such extensions. We give a proof of the theorem of MacDowell
and Specker saying that every model of PA∗ in a countable language has an ele-
mentary end extension. We also discuss minimal and superminimal extensions
and use them to construct Jónsson models of PA∗. In general, models of PA∗

do not amalgamate easily; we give an example of it in Section 2.3, followed by
several positive results on amalgamations involving conservative extensions. In
particular we give a proof of a theorem of Blass characterizing conservative exten-
sions in terms of amalgamations. We finish the chapter with a brief discussion
of nonelementary extensions. Recall that in this and in the following chapters,
unless otherwise stated, a model means a model of PA∗ in a countable language.

2.1 Simple extensions

A simple extension is an extension generated by one element. More formally: if
M ≺ N , we say that N is a simple extension of M if there is a ∈ N such that
N = Scl(M ∪ {a}).

Suppose that M ≺ N , a ∈ N , and N = Scl(M ∪ {a}). Suppose further that
a realizes the type p(x) ∈ S(M). Then we write N = M(a) and say that M(a)
is a p(x)-extension of N . Notice that Ehrenfeucht’s Lemma 1.7.2 implies that a
is the only element of N that realizes the type p(x).

Recall that M is short if M is a cofinal extension of a simple extension of its
prime submodel, and M is tall iff it is not short.

We begin with a rather unexpected property of short models. It is used in
later chapters.

Theorem 2.1.1 Suppose that M is a short model and M1, M2 are cofinal,
elementary submodels of M . Then M1 ∩M2 is a cofinal submodel of M .

Proof Let d ∈ M be such that Scl(d) is cofinal in M . Since each of M1 and
M2 is an elementary cofinal submodel of the short model M , there are elements
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a ∈M1 and b ∈M2 such that a, b > d. Then Scl(a) and Scl(b) are cofinal in M .
Hence, there is a Skolem term t(x) such that M |= b < t(a). By Blass–Gaifman
Lemma 1.7.1, there is a Skolem term s(x) such that M |= a < b ≤ s(a) = s(b).
Then for c = s(a) ∈ Scl(a) ∩ Scl(b). Thus, Scl(c)�Scl(a) ∩ Scl(b)�M1 ∩M2,
and since s(c) ≥ a and Scl(a) is a cofinal substructure of M , then Scl(c) is also
a cofinal substructure of M . �

Every finitely generated model is a simple extension of its prime submodel.
Every model M can be represented as M =

⋃
α<κ Mα, for κ = |M |, where

{Mα : α < κ} is a continuous chain, and Mα+1 is a simple extension of Mα, for
each α < κ, and M0 is the prime submodel of M . Hence, to understand how
models of arithmetic are built, we need to take a look at simple extensions.

A typical construction of a simple extension is based on an inductive construc-
tion of a nonprincipal type. Usually this is done by defining some “largeness”
property and then proving appropriate theorems about this property. When
doing this, you think about the proofs in the standard model (i.e. in the real
world) and the proofs routinely carry over. Often, but not always, the important
feature of this approach is the definition of “large” and not the lemmas which
are often easy.

To construct the required type, we first enumerate all formulas of L(M) with
one variable, ϕ0(v), ϕ1(v), . . . . Here we need the language and the model M to
be countable. We select a definable large subset X0 of M , and we inductively
construct a descending sequence of large definable subsets of M , X0 ⊇ X1 ⊇ · · · ,
in such a way that, for every n, either Xn+1 ⊆ ϕn(M) or Xn+1 ⊆ ¬ϕn(M). The
sequence X0, X1, . . . determines a type in S1(M), namely the type

p(v) = {ϕ(v) : ∃n < ω [Xn ⊆ ϕ(M)]}.

If M(a) is the p-extension of M , then for every ϕ(v) ∈ L(M) we have

M(a) |= ϕ(a) iff ∃n < ω [Xn ⊆ ϕ(M)].

This allows one to determine some properties of M(a) by the appropriate
choice of the sequence X0, X1, . . . . For example, if for some n < ω, the set Xn is
bounded in M , then p(v) is bounded, and it follows that M ≺cof M(a) (Do it!).

If each set Xn is unbounded in M and M(a) is the p-extension of M , then
M < a. This, however, is not enough to conclude that M(a) is an end extension
of M . To guarantee this, for every term t(v) of L(M), if t(a) is not in M ,
then we must have t(a) > M . This can be achieved by defining X0, X1, . . . so
that each Skolem term t is either constant or unbounded on some set Xn (Do
it!). Moreover, since every unbounded definable subset of a model M can be
partitioned into two disjoint definable unbounded sets, we can obtain continuum
different types p(v), for which M(a) is an elementary end extension of M .

Let us summarize the above discussion with a proposition.
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Proposition 2.1.2 Every countable model has an elementary end extension. �

Proposition 2.1.2 is also true for uncountable models and the idea behind
the proof is similar; however, instead of enumerating all formulas of L(M), we
enumerate only formulas ϕ(v, w) of L. The construction of p still proceeds in ω
steps. In each step we make decisions about the nth formula and all parameters
from M . For each ϕ(v, w) this is done by formal induction on parameters. This
result is known as the MacDowell–Specker Theorem. The full proof is given later
in this chapter.

2.1.1 Minimal extensions

Recall that if M ≺ N , then N is a minimal extension if for all K, if M � K � N ,
then either K = M or K = N . By Gaifman’s Splitting Theorem, every minimal
extension is either a cofinal or end extension. Also, notice that every minimal
extension is simple (Do it!).

All constructions of minimal extensions are based on the next lemma and its
variations.

Lemma 2.1.3 Suppose that X is a definable unbounded subset of a model M
and t(v) is a Skolem term. Then there is an unbounded definable Y such that
Y ⊆ X and t is either constant or one-to-one on Y .

Proof If there is c ∈ M such that t−1(c) ∩ X is unbounded, then let Y =
t−1(c)∩X for such c. Otherwise we define Y = {ai : i ∈M} inductively in M . We
let a0 = minX, and for i ∈M , we let ai+1 = min {x ∈ X : ∀j ≤ i(t(x) �= t(aj))}.

�

Corollary 2.1.4 Every countable model has a minimal elementary and
extension.

Proof Using Lemma 2.1.3 define a descending sequence X0, X1, . . . of definable
unbounded subsets of M such that, for each Skolem term t of L(M), there
is n < ω such that t is either constant or one-to-one on Xn. If p is the type
determined by X0, X1, . . . , then the p-extension of M is a minimal elementary
end extension of M . �

In the proof above “large” means unbounded. In the proof that every count-
able model has a minimal cofinal extension, “large” just means “of nonstandard
size.”

The following is a variant of Lemma 2.1.3. The proof is left to the reader.

Lemma 2.1.5 Suppose that X is a definable bounded subset of a model M and
cardM (X) = a, and let t(v) be a Skolem term. Then there is a bounded definable
Y such that Y ⊆ X, (cardM (Y ))2 ≥ a, and t is either constant or one-to-one
on Y . �
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The next corollary can be obtained from Lemma 2.1.5 in the same way as
Corollary 2.1.4 is obtained from Lemma 2.1.3 (Do it!).

Corollary 2.1.6 Every countable nonstandard model has a minimal cofinal
extension. �

Let N be an extension of a model M . Then N is a conservative extension of
M if Cod(N/M) ⊆ Def(M). In Chapter 6 we show that every countable model
has undefinable inductive subsets. If M is countable and X ⊆ M is inductive,
then, as we have shown in Proposition 2.1.2, (M,X) has an elementary end
extension. If (M,X)≺end(N,Y ), then X is coded in N . From this we obtain the
following result.

Corollary 2.1.7 Every countable model has an elementary end extension which
is not conservative. �

As we show in Subsection 2.2.2, Corollary 2.1.7 does not generalize to the
uncountable case.

For a direct example of an undefinable class coded in an elementary end
extension we can apply the following argument. Let M be a countable model,
and let X = {an : n < ω}, where 〈an : n < ω〉 is an increasing sequence cofinal
in M . Clearly, X is a class of M . By the Compactness Theorem, there is a model
N such that M ≺ N and there is a ∈ N such that (a)n = an, for all n < ω. The
extension splits into M �cof K �end N , so X is an undefinable class of K coded
in N .

Theorem 2.1.8 Let M be a countable model and suppose X ⊆ M is coded
in some elementary end extension of M . Then X is coded in some minimal
elementary end extension of M .

Proof Let the subset X of M be coded in an elementary end extension N .
We will construct another extension of M by defining a descending sequence
〈Tn : n < ω〉 of unbounded subsets of 2<M (= the set of M -finite 0–1 sequences).
For a ∈ M , let χa ∈ M be the code of the characteristic function of X ∩ aM ,
that is for i < a, χa(i) = 1 iff i ∈ X.

We say that T ⊆ 2<M is large if

∀a ∈M∃σ ∈ T (χa ⊆ σ).

Claim. If a definable T is large and, for some e ∈ M , f : T −→ eM is a
definable function, then there is i < e such that f−1(i) is large.

To prove the claim, suppose to the contrary that

(M,X) |= ∀i < e∃x∀σ ∈ T (χx ⊆ σ −→ f(σ) �= i).
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Then in (M,X) we have

∀i < e∃x, τ [∀j < x(τ(j) = 1 ∧ �(τ) = x←→ j ∈ X) ∧ ∀σ ∈ T (τ ⊆ σ −→ f(σ) �= i)].

Now, let a ∈ N be such that X = M ∩ aN . Then in N , for each d > M ,

∀i < e∃x, τ < d[∀j < x(τ(j) = 1 ∧ �(τ) = x←→ j ∈ a) ∧ ∀σ ∈ T (τ ⊆ σ −→ f(σ) �= i)].

By underspill, the same statement must be true in N for some d ∈M , and this
contradicts our assumption that T is large.

Equipped with the claim, now we construct 〈Tn : n < ω〉, starting with T0 =
2<M , so that, for a given enumeration of all Skolem terms 〈tn : n < ω〉 of L(M),
all sets Tn are large and tn is either one-to-one or constant on Tn+1. Suppose
we have a large Tn. For t = tn define the sequence σi by induction in M . Let
σ0 = min(Tn) and

σi+1 =

{
min{σ ∈ Tn : χi ⊆ σ ∧ ∀j < i t(δ) �= t(δj)} if such σ exists,
σ0 otherwise.

If T = {δi : i ∈M} is unbounded, then it is large and t � T is one-to-one. In this
case we set Tn+1 = T . Otherwise, there is an i0 ∈M such that

∀σ ∈ T
(
χi0 ⊆ σ −→ t(σ) ∈ {t(σj) : j < i0}

)
.

Since T ′ = {σ ∈ T : χi0 ⊆ σ} is large, by the claim, there is j0 < i0 such that
{σ ∈ T ′ : t(σ) = t(σj0)} is large, and we declare this set to be Tn+1.

If p is the type determined by 〈Tn : n < ω〉, then M(p) is a minimal
elementary extension of M and the element realizing p in M codes X. �

Corollary 2.1.9 Every countable model has a minimal elementary end exten-
sion which is not conservative.

Proof Combine Corollary 2.1.7 with Theorem 2.1.8. �

2.1.2 Superminimal extensions

We say that the extension M ≺ N is superminimal if for each a ∈ N \ M ,
N = Scl(a). The next lemma is the key to constructing superminimal extensions.

Lemma 2.1.10 Let X be an unbounded definable subset of a model M , and let
a ∈M . Then there are a Skolem term t(x) and Y ⊆ X which is unbounded and
definable such that M |= ∀x[x ∈ Y −→ t(x) = a]. �

Proof Note that, while the definitions of X and Y might have parameters from
M , the Skolem term t(x) is required to be parameter-free.
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Let ϕ(u, x) be a formula and d ∈ M be such that ϕ(d, x) defines X in M .
We proceed rather informally.

For any u, let Xu be the set defined by ϕ(u, x). In particular, X = Xd. We
define two Skolem terms t1(y) and t2(y). Let t1(y) be the yth element of the set of
pairs {u : Xu is unbounded}×M . (This is well-defined since, in particular, Xd is
unbounded.) We next define t2(y) using formal induction. Letting t1(y) = 〈u, z〉,
we let t2(y) be the least x such that x ∈ Xu and x > t2(y′) for all y′ < y.

Now let X ′
u be the set defined by the formula

∃y∃z[t1(y) = 〈u, z〉 ∧ x = t2(y)] .

The following facts are easy to check:

(1) if X ′
u �= ∅, then X ′

u is unbounded;
(2) X ′

u ⊆ Xu;
(3) if Xu is unbounded, then X ′

u �= ∅;
(4) if u �= v, then X ′

u ∩X ′
v = ∅.

It follows from (1) and (3) that X ′
d is unbounded. It follows from (4) that

there is a Skolem term t3(x) which denotes the unique u (if such a u exists) such
that x ∈ X ′

u.
Now we define Y to be the set of all those y ∈ X ′

d such that y is the 〈a, z〉th
element of X ′

d for some z. Then Y ⊆ X by (2). We now define the Skolem term
t(x) so that t(x) is the unique w (if such a w exists) such that for some z, x is
the 〈w, z〉th element of the set X ′

t3(x). The reader can verify now, that Y and
t(x) have the required properties (Do it!). �

Before we apply the lemma to superminimal extensions, let us note a corollary
which is of independent interest.

Corollary 2.1.11 If X is a definable unbounded subset of a model M , then
Scl(X) = M . �

Theorem 2.1.12 Every countable model has a superminimal elementary end
extension.

Proof Let M be a countable model. We construct a descending sequence
X0, X1, . . . of definable unbounded subsets of M as in the construction of a
minimal end extension of M . However, now we begin with an enumeration
〈(tn, an) : n < ω〉 of all pairs of the form (t, a), where t is a unary Skolem term
and a ∈ M . For a given Xn, first we find an unbounded definable Z ⊆ Xn on
which tn is either one-to-one or constant. If tn is constant on Z, then, we use
Lemma 2.1.10 to get an unbounded definable Y ⊆ Z and a parameter-free Skolem
term t(x) such that, for all x ∈ Y , t(x) = an, and we set Xn+1 = Y . Otherwise,
we let Y be an unbounded subset of tn(Z) such that for some Skolem term t,
given by Lemma 2.1.10, t(x) = an for all x ∈ Y . Then we letXn+1 = t−1

n (Y )∩Xn.
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Let p be the type determined by X0, X1, . . . , and let M(a) be the p-extension
of M with a realizing p. Notice that the construction guarantees that M ⊆ Scl(a)
and that M(a) is a minimal extension of M . We also made sure that, for all
b ∈ M(a) \M , M ⊆ Scl(b). Now let b be an element of M(a) \M . Since the
extension is minimal a = t(b, c), for some c ∈ M . Since c ∈ Scl(b), this implies
that a ∈ Scl(b). Hence N = Scl(b) as required. �

This theorem reappears in Chapter 4 as Lemma 4.3.1 with some additional
frills.

A first-order structure A is a Jónsson model if A is infinite and has no proper
elementary submodels of cardinality |A|.

Recall that, for a cardinal number κ, we say that a linearly ordered structure
(A, <, . . . ) is κ-like if |A| = κ and every proper initial segment of (A, <) has
cardinality smaller than κ.

Corollary 2.1.13 Every countable model of PA∗ has an ω1-like elementary end
extension which is Jónsson.

Proof Let M0 be a countable model. For each α < ω1, let Mα+1 be a super-
minimal elementary end extension of Mα, and let Mλ =

⋃
α<λ Mα, for each

limit ordinal λ < ω1. Let N =
⋃

α<ω1
Mα. Then N is the Skolem hull of each

of its unbounded subsets (Do it!). If K ≺ N and |K| = |N | = ℵ1, then K is
unbounded, so the result follows. �

2.1.3 Greatest common initial segments

If M is a submodel of N , then their greatest common initial segment,
GCIS(M,N), is the set

{x ∈ N : ∀y (y ≤ x −→ y ∈M)} .

If M ≺ N , then N is an end extension of M iff GCIS(M,N) = M . What can
be said about GCIS(M,N) in other cases? This is settled by the following two
results.

Proposition 2.1.14 If M ≺ N then GCIS(M,N) is a cut which is closed under
multiplication.

Proof Clearly, I = GCIS(M,N) is a cut. To show that it is closed under
multiplication, suppose a2 ∈ N\I. Then there is b ≤ a2 such that b �∈ M .
There are d, r ∈ N such that b = ad+ r, d ≤ a, and r < a. Since b �∈ M , one of
a, d, r is not in M , implying that a �∈ I. �

If I ⊆end M ≺ N , then we say that N is an I-extension of M if I ⊆
GCIS(M,N).



32 EXTENSIONS

Lemma 2.1.15 Suppose that I ⊆end M and a type p is determined by a
decreasing sequence of M -finite sets X0, X1, . . . such that

(1) for each n < ω, cardM (Xn) > I;
(2) for each Skolem term t(x) of L(M) there is n < ω such that t(x) is either

constant or one-to-one on Xn.

Then M(p) is a minimal I-extension of M .

Proof Let a realize p in M(p). Suppose the contrary that for some b ∈ I and
some c ∈ M(p) \M , c < b. Then there is n < ω and some term t(x) such that
t(a) = c and t(x) < b for all x ∈ Xn. Then, by (2), t(x) is one-to-one on some
Xm ⊆ Xn, which implies that cardM (Xm) ∈ I, a contradiction. �

Theorem 2.1.16 Suppose that M is countable and I ⊆end M is a cut closed
under multiplication. Then M has a minimal elementary extension N such that
I = GCIS(M,N). �

Proof We will define a descending sequence X0, X1, . . . of of M -finite sets
dovetailing two constructions. The first is the one used to construct minimal
extensions. The second makes sure that the new elements in the extension occur
arbitrarily low above I. The conditions to satisfy are:

(1) each term of L(M) is either constant or one-to-one on some Xn;
(2) inf{cardM (Xn) : n < ω} = I.

Let 〈an : n < ω〉 be a decreasing sequence of elements of M whose infimum is
I. Use Lemma 2.1.5 and the fact that if a2 > I, then a > I to define X0, X1, . . .
so that (1) holds and, for each n < ω, I < cardM (Xn) < an.

Let p be the complete type determined by X0, X1, . . . , and let N = M(a) be
the p-extension of M .

If b ∈ M\I, then there is c ∈ N\M such that c < b. Indeed, let X = Xn be
such that cardM (X) < b. Let t(x) = card {y ∈ X : y < x}. Let c = t(a). Then
c < cardM (X) < b. Also, c �∈ M since t(x) is one-to-one on X. This shows that
GCIS(M,N) ⊆ I.

By Lemma 2.1.15, I ⊆ GCIS(M,N), and the result follows. �

Corollary 2.1.17 Let M be a countable model, and let I be a cut of M which is
closed under multiplication. Then M has an elementary extension N such that
GCIS(M,N) = I, and, for each a > I, |aN | > ℵ0.

Proof Iterate Theorem 2.1.16 ℵ1 times. �

Two stronger results concerning greatest common initial segments, due to
Paris & Mills [148], are discussed in Chapter 3.
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2.2 The MacDowell–Specker Theorem

Rapid development of the model theory of Peano Arithmetic in the 1960’s started
with the theorem of MacDowell and Specker. This theorem says that every model
of PA has an elementary end extension. For MacDowell and Specker this theorem
was a lemma in the study of additive groups of nonstandard models. What is
the additive group of a model M? This group is obtained from M by adding the
negative elements {−n : n ∈M} and defining addition in the extended structure
in the natural way. Let GM be the additive group of the model M . Let a be an
element of GM . For each 1 < n < ω there is a unique residue 0 ≤ rn < n such
that a = qn + rn, for some q. The elements whose all residues rn = 0 form a
subgroup of GM which is often called the divisible part of GM . The group GM

can be represented uniquely as D ⊕R, where D is the divisible part of GM and
R is the reduced part. MacDowell and Specker were interested in the relation
between cardinalities of R and D. If M is a model of PA, the cardinality of R
is the cardinality of the standard system of M . Every end extension of M has
the same standard system as M , and by the MacDowell–Specker theorem every
model of PA has an elementary end extension of every cardinality greater than
or equal to |M |. Hence, for every infinite cardinal κ ≤ 2ℵ0 and every cardinal
λ ≥ κ, there is a model of PA such that |R| = κ and |D| = λ.

For us the theorem of MacDowell and Specker is a point of departure for
further analysis of possible end extensions of models of PA. We begin with an
important definition.

Definition 2.2.1 Let T be a completion of PA∗ in a possibly uncountable lan-
guage L. A 1-type p(v) of T is definable if for each L-formula ϕ(u, v), there is an
L-formula σϕ(u) such that for any constant Skolem term t,

ϕ(t, v) ∈ p(v)⇐⇒ T � σϕ(t).

We call the map ϕ �→ σϕ a defining scheme of p(v).

Gaifman introduced the notion of a definable type over a model of a first-order
theory in [45]. In our terminology we can say that p ∈ S1(M) is definable over
M if p is a definable type of Th((M,a)a∈M ). In particular, if T is a completion
of PA∗, then a type p(v) of T is definable iff it is definable over the prime model
MT .

The concept of definability extends naturally to n-types. In the context of
PA it suffices to consider 1-types, as the type of any tuple v0, . . . , vn−1 can
be replaced the type of the code 〈v0, . . . , vn−1〉. For the same reason, we only
consider single variable u in ϕ(u, v).

Proposition 2.2.2 Let T be a complete theory extending PA∗, and let p(v) ∈
S1(T ) be a definable type. Then for any model M of T , p(v) has an extension to
a definable type p′(v) ∈ S1(M).
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Proof Let ϕ �→ σϕ be a defining scheme of p(v). Let p′(v) be the collection
of all ϕ(b, v), with b ∈ M such that M |= σϕ(b). We will show that p′(v) ∈
S1(M). Clearly, p′(v) is complete. To show that it is finitely realizable, suppose
ϕ0(b0, v), ϕ1(b1, v), . . . , ϕn−1(bn−1, v) are in p′(v). Since p(v) is finitely realizable,
we have

T � ∀u0, . . . , un−1
[ ∧
i<n

σ(ui) −→ ∃v
∧
i<n

ϕi(ui, v)
]
.

SinceM |= ∧
i<n σ(bi) andM |= T , there is b ∈M such thatM |= ∧

i<n ϕi(ui, b);
hence p′(v) is finitely realizable. �

Since every definable p(x) ∈ S1(T ) has a canonical extension to a definable
type in S1(M), for every model M of T , we will let pM (x) be this canonical
extension. Then instead of referring to M(a) as a pM (x)-extension of M , we can
unambiguously refer to it as a p(x)-extension of M .

Theorem 2.2.3 Every completion of PA∗ has nonprincipal definable types. �

Before we give formal details, let us outline the idea of the proof. The con-
struction is flexible, and it can be refined in many ways. Many different kinds of
definable types are discussed in detail in Chapter 3.

Let T be a completion of PA∗(L). To prove the theorem, we work in the prime
model M of T . Let 〈ϕn(u, v) : n < ω〉 be an enumeration of all formulas of the
language of L in the variables shown. We construct a sequence of definable sets
X0 ⊇ X1 ⊇ · · · such that, for each n, Xn is eventually a subset of or is disjoint
from every subset of M defined by ϕn(b, v). Then for each n < ω, the formula
σn(u) decides for which parameters b the set Xn is contained in the set defined
by ϕn(b, v) and for which it is disjoint. Then the definable type p(v) is defined as

{ϕn(b, v) : b ∈M and M |= σn(b)} .

One can begin the construction with the additional requirement that a particular
formula defining an unbounded subset of M is in p(v). This proves that the set
of definable types is dense, in fact comeager, in the set of nonprincipal types of
S1(T ).

The construction is based on the following main lemma. For this lemma we
do not need to assume that the language is countable.

Lemma 2.2.4 Let D be an unbounded definable subset of M , and let ϕ(u, v)
be a formula of the language of M in the variables shown. Then there is an
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unbounded definable E ⊆ D such that in M

∀u[∃w∀v > w(v ∈ E −→ ϕ(u, v)
) ∨ ∃w∀v > w(v ∈ E −→ ¬ϕ(u, v))]. �

Proof To simplify notation, let us assume that D = M , the general case being
derivable from the special case. Let ϕ(u, v) be given. For i ∈ M , let Xi = {x :
M |= ϕ(i, x)}, and let Yi = M \ Xi. By formal induction, define a sequence of
sets of indices 〈Ii : i ∈M〉, with Ii ⊆ {0, . . . , i} and the set E = {ei : i ∈M} as
follows.

I0 =

{
{0} if X0 is unbounded,
∅ otherwise.

e0 =

{
min(X0) if 0 ∈ I0,

min(Y0) otherwise.

Then for i > 0,

Ii =

{
Ii−1 ∪ {i} if

⋂ {Xj : j ∈ Ii−1} ∩Xi is unbounded,
Ii−1 otherwise.

ei =

{
min(

⋂ {Xj : j ∈ Ii−1} ∩Xi) \ {e0, . . . , ei−1}) if i ∈ Ii,

min(
⋂ {Xj : j ∈ Ii−1} ∩ Yi) \ {e0, . . . , ei−1}) otherwise.

Notice that for all i and all sufficiently large a ∈ E

M |= ϕ(i, a)←→ i ∈ Ii,

which implies that E has the required property. �

Now we can give a proof of Theorem 2.2.3.

Proof Let 〈ϕn(u, v) : n < ω〉 be an enumeration of all L-formulas in the vari-
ables shown. Let M be the prime model of T . Let X0 be the set E in Lemma 2.2.4
for D = M and ϕ = ϕ0. Suppose that for n ≥ 0 an unbounded definable set Xn

has been defined. Then Xn+1 is the E of the lemma for D = Xn and ϕ = ϕn+1.
For each n < ω we can define

σn(u) = ∃w∀v > w(v ∈ Xn −→ ϕn(u, v)).
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The definable type determined by 〈σn(u) : n < ω〉 is

{ϕn(b, v) : b ∈M ∧M |= σn(b)} ,

the defining scheme being ϕn �→ σn. �

Corollary 2.2.5 There are nonprincipal definable types over every model M
of PA∗.

Proof Apply Theorem 2.2.3 to T = Th(M), and use Proposition 2.2.2. �

For later applications, let us note another immediate corollary.

Corollary 2.2.6 Let T be a completion of PA∗ in a finite language. There are
nonprincipal definable types of T which are recursive in T . �

We now show how Theorem 2.2.3 implies the MacDowell–Specker Theorem.
The conclusion we obtain is slightly stronger.

Recall that N is a conservative extension of M if, for every X ∈ Def(N),
X ∩ M ∈ Def(M). Hence, N is a conservative extension of M iff, for every
a ∈ N , the type of a over M is a definable type of Th((M,x)x∈M ) (Do it!).

Proposition 2.2.7 Every conservative extension is an end extension.

Proof Let c be an element of N \M . Since N is a conservative extension, the
set X = {x ∈M : N |= x < c} is a definable cut of M ; hence X = M . �

Theorem 2.2.8 (MacDowell–Specker Theorem) Every model has a con-
servative elementary end extension.

Proof The theorem follows immediately from Theorem 2.2.3 and Proposi-
tion 2.2.7, since every extension generated by a definable type is conservative
(Do it!). �

Corollary 2.2.9 For every model M and every cardinal κ > |M |, M has a
κ-like elementary end extension. �

The MacDowell–Specker Theorem applies in a natural way to countable
models of ACA0.

Corollary 2.2.10 Let X be a countable family of subsets of M and suppose
that (M,X) be a model of ACA0. Then there is N such that M ≺end N and X =
Cod(N/M).

Proof Let M(X) be the expansion of M obtained by adding all sets X ∈ X as
new relations. Then M(X) is a model of PA∗ in a countable language. If N is
the reduct to the language of M of a conservative elementary end extension of
M(X), then X is the family of subsets of M coded in N . �
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The next proposition has a simple direct proof (Do it!).

Proposition 2.2.11 If a realizes a definable type over a model M and b realizes
a definable type over M(a), then 〈a, b〉 realizes a definable type over M . �

In the next subsections we give three applications of the MacDowell–Specker
Theorem.

2.2.1 Superminimal conservative extensions

The inductive construction of the definable type p(v) in the proof of The-
orem 2.2.3 can be dovetailed with other constructions of unbounded types. In
particular, by combining the proofs of Theorems 2.1.12 and 2.2.3 we get the
following corollary (Do it!):

Corollary 2.2.12 Every countable model has a superminimal conservative
extension. �

This result reappears in Chapter 4 with some additional frills as Lemma 4.3.1.
In Chapter 6 we prove that every countable model has inductive undefinable

subsets. We also give a proof of a theorem of Simpson saying that every countable
model M has an expansion (M,X) to a prime model of PA∗.

Theorem 2.2.13 If M is a cofinal extension of a prime model, then M has a
countable elementary end extension N such that, for every undefinable class X
of N , (N,X) is prime.

Proof Let N be a superminimal conservative extension of M , and let X be an
undefinable class of N . Then X ∩M is definable in M . Suppose that X ∩M =
ϕ(M, b) for some L(M) formula ϕ(v, b). Let c ∈ Scl(0) be such that b < c. If
b1 ∈M is such that X ∩M = ϕ(M, b1), then ϕ(N, b) = ϕ(N, b1). Hence the set

{z ∈ N : (N,X) |= ∃y < c∀x < z[x ∈ X ←→ ϕ(x, y)]}

is bounded in M , because X is undefinable, and it has a maximum in N , because
X is a class. Then a > M , and, by superminimality, N = Scl(a). Since a is
definable in (N,X), this finishes the proof. �

2.2.2 Rather classless models

Although not mentioned explicitly, the stronger version of the MacDowell–Specker
Theorem, the one involving conservative extensions, is implicit in the original
proof of MacDowell and Specker. In fact, it would be hard to prove that every
model of PA has an elementary end extension without proving that every model
has a conservative elementary end extension. The reason is that there are models
all of whose end extensions to models of PA are conservative. This is a property
of the rather classless models: a model M is rather classless if every class of M
is definable.
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We show now that every model has a rather classless elementary end
extension. This follows from the MacDowell–Specker Theorem and the next
result.

A sequence of models 〈Mν : ν < α〉, where α is an ordinal, is a continuous
elementary end chain, if Mν ≺end Mµ, for ν < µ < α, and Mλ =

⋃
ν<λ Mν , for

limit ordinals λ < α.

Theorem 2.2.14 Suppose α is a limit ordinal, cf(α) > ℵ0, and 〈Mν : ν < α〉
is a continuous elementary chain such that, for some stationary set I ⊆ α, and
for all ν ∈ I, Mν+1 is a conservative elementary end extension of Mν . Then
N =

⋃
ν<α Mν is rather classless.

Proof Since 〈Mν : ν < α〉 can be replaced with a continuous subchain indexed
by ν < cf(α), without loss of generality, we can assume that α is an uncountable
regular cardinal and that I consists of limit ordinals. Let X be a class of N . We
will show that X is definable in M . For ν < α, let Xν = X ∩Mν . For each ν ∈ I,
Xν is a definable subset of Mν . Let f : I −→ α be defined by

f(ν) = min{β : Xν is definable in Mν with parameters from Mβ}.

Since all ν in I are limit ordinals, for all ν ∈ I, f(ν) < ν. Hence, by Fodor’s
Lemma, there exists β < α such that f−1(β) is a stationary subset of I. Let β
be such an ordinal, and let ν0 be the smallest ordinal in f−1(β).

Let ϕ0(v) be a formula with parameters from Mβ defining Xν0 in Mν0 . Let
ν > ν0 be an element of f−1(β), and let ϕ(v) be a formula with parameters from
Mβ defining Xν in Mν . Since ϕ0(v) and ϕ(v) define the same subset of Mν0 , we
have Mν0 |= ∀v(ϕ0(v) ←→ ϕ(v)). Since Mν0 ≺ Mν , the same equivalence holds
in Mν , which shows that ϕ0(v) defines Xν in Mν , and thus, from the fact that
f−1(β) is unbounded in α, it follows that ϕ0(v) defines X in N , and the result
follows. �

Corollary 2.2.15 If κ > |M | and cf(κ) > ℵ0, then M has a κ-like, rather
classless, elementary end extension. �

2.2.3 Ramsey’s Theorem in ACA0

If X is an infinite subset of ω, a < ω, and F : [X]n −→ [0, a] is a coloring of
the set of increasing n-tuples from X using a+1 colors, then there is an infinite
Y ⊆ X which is homogeneous for F , which means that F assigns the same
color to all tuples from [Y ]n. This is the statement of Ramsey’s Theorem. The
formalized Ramsey’s Theorem asserts that if X as above is definable, then we
can find an arithmetically definable homogeneous Y . Not all proofs of Ramsey’s
adapt in a straightforward way to give the formalized version. We give a direct
proof of a stronger statement, of which the formalized Ramsey’s Theorem is a
special case.
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Theorem 2.2.16 Ramsey’s Theorem is provable in ACA0.

Proof Let (M,X) be a model of ACA0. The proof is by induction on n < ω.
The case of n = 1 is straightforward. So, let us assume that the theorem is
true for n-tuples, and let a ∈ M , and X,F ∈ X, where X is unbounded and
F : [X]n+1 −→ [0, a] is a coloring. Then (M,X,F ) |= PA∗. Let (M ′, X ′, F ′)
be a conservative elementary end extension of (M,X,F ). Pick b ∈ X ′ \M . In
(M ′, X ′, F ′) we define a sequence σ of elements of M ′ by formal induction: let
σ0 = min(X) and for k > 0 let σk be the least x > σk−1 such that x ∈ X ′ and

∀(i0, . . . , in−1) ∈ [k]n F ′(σi0 , . . . , σin−1 , x) = F ′(σi0 , . . . , σin−1 , b).

Let D′ be the range of σ, and let D = D′∩M . We claim that D is unbounded
in M . Indeed, if not, then D would have a maximum element σk in M , but then,
since (M,X,F ) ≺ (N,X ′, F ′), one can show that σk+1 ∈ M (Do it!). Since
D is coded in N , it is definable in (M,X,F ). Now let us consider a coloring of
G′ : [D′]n −→ [0, a] defined (in N) by G′(x0, . . . , xn−1) = F ′(x0, . . . , xn−1, b).
Let G be the restriction of G′ to M . Then G is a coloring of [D]n which is
definable in (M,X,F ). By the inductive assumption, there is Z ∈ X which is
homogeneous for G. One can easily check that Z is homogeneous for F as well.

�

The formalized Ramsey’s Theorem is referred to later as the formalized Infin-
ite Ramsey Theorem, or IRT. The formalized version of the well-known Finite
Ramsey Theorem, FRT, is provable in PA. FRT is

∀l,m, n∃k∀f : [k]n −→ l∃X ⊆ k (|X| = m ∧ |f([X]n)| = 1).

FRT can be proved in PA by formalizing one of its direct proofs.

2.3 Amalgamations

First, we define what is meant by an amalgamation. Let M0,M1,M2 be three
models, and let ei : M0 −→ Mi (i = 1, 2) be elementary embeddings. Then an
amalgamation (of this set-up) consists of a model M3 and elementary embeddings
fi : Mi −→ M3 (i = 1, 2) such that f1e1 = f2e2, M3 is generated by f1(M1) ∪
f2(M2) and f1e1(M0) = f1(M1) ∩ f2(M2). If f ′

i : Mi −→ M ′
3 (i = 1, 2) is

another amalgamation, then say that the two amalgamations are isomorphic if
there is an isomorphism h : M3 −→ M ′

3 such that f ′
1 = hf1 and f ′

2 = hf2.
In practice, when considering amalgamations, some or all of the embeddings
e1, e2, f1, f2 are likely to be just identity maps. If they all are, then it must be
that M0 = M1 ∩M2. Unless stated otherwise, the convention when considering
amalgamations is that all the embeddings are identity maps; thus, M1,M2 ≺M3
and M0 = M1∩M2. We then say that M3 is an amalgamation of M1 and M2 over
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M0. Up to isomorphic amalgamations, there is no loss in generality in adopting
this convention.

Models of PA do not, in general, amalgamate well.

Theorem 2.3.1 Let M0 be a countable recursively saturated model, and let X ⊆
ω. Then M0 has elementary end extensions M1 and M2 such that M0 ∼= M1 ∼=
M2, and whenever M3 is an amalgamation of M1 and M2, then X ∈ SSy(M3).

Proof The proof uses minimal types. (See Section 10.2 for background mater-
ial.) Let p(x) be a minimal type realized in M0, and let 〈an : n < ω〉 be an
increasing cofinal sequence of elements realizing p(x). Then there are a count-
able recursively saturated model M1�end M0 and an element a ∈M1 coding the
sequence 〈an : n < ω〉 and such that M1 |= ∀x, y[x < y < �(a) −→ (a)x < (a)y].
Thus, (a)n = an for each n < ω. Let xi be the ith element of X, and let
〈bi : i < ω〉 be the subsequence where bi = axi

. Similarly, there are a count-
able recursively saturated model M2�end M0 and an element b ∈M2 coding the
sequence 〈bi : i < ω〉 such that M2 |= ∀x, y[x < y < �(b) −→ (b)x < (b)y].
Clearly (see Section 1.8), M0 ∼= M1 ∼= M2. (It is even possible to arrange that
(M1, a) ∼= (M2, b).)

Now let M3 be an amalgamation of M1 and M2 over M0. Then (Do it!)

X = {n < ω : M3 |= ∃i[(a)n = (b)i]} ∈ SSy(M3),

as required. �

Neither of the extensions M0 ≺M1 and M0 ≺M2 constructed in the previous
proof are conservative. In Theorems 2.3.2 and 2.3.3 we see that amalgamations
can be better behaved when one of the extensions is conservative. Theorem 2.3.4
then characterizes conservative extensions in terms of amalgamations.

Theorem 2.3.2 Suppose M0 ≺ M1, M0 ≺ M2 and M2, is a conservative
extension of M0. Then there is an amalgamation M3 of M1 and M2 over M0
such that M3 is a conservative extension of M1. Furthermore, if M ′

3�end M1
is any amalgamation of M1,M2 over M0, then M3 and M ′

3 are isomorphic
amalgamations.

Proof Since the extension M0 ≺ M2 is conservative, for each L(M2)-formula
ϕ(x), there is an L(M0)-formula σϕ(x) such that for each a ∈M0,

M2 |= ϕ(a) iff M0 |= σϕ(a).

Let T be the L(M1 ∪M2)-theory consisting of all sentences ϕ(b), where ϕ(x)
is an L(M2)-formula and b ∈ M1 are such that M1 |= σϕ(b). There are three
important examples of sentences in T .
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If ϕ is an L(M2)-sentence for which M2 |= ϕ, then ϕ ∈ T , since σϕ(x) is
such that M0 |= ∀xσϕ(x) (Do it!). If ϕ(x) is an L(M0)-formula and b ∈ M1
are such that M1 |= ϕ(b), then ϕ(b) ∈ T . For, since M0 |= ∀x[σϕ(x)↔ ϕ(x)], it
follows that M1 |= σϕ(b). The third example is that the sentence b < c is in T
whenever b ∈M1 and c ∈M2\M0 (Do it!).

We claim that T is a consistent and complete L(M1 ∪M2)-theory.
For consistency, we consider the prototypical case of a single sentence ϕ(b)

in T . Then M1 |= σϕ(b), so that M0 |= ∃xσϕ(x). Let a ∈ M0 be such that
M0 |= σϕ(a). Then M2 |= σϕ(a), so that also M2 |= ϕ(a), thereby proving the
consistency of ϕ(b).

For completeness, consider an L(M2)-formula ϕ(x) and an element b ∈M1. If
M2 |= σϕ(b), then ϕ(b) is in T . If M2 |= ¬σϕ(b), then since M0 |= ∀x[σ¬ϕ(x)←→
¬σϕ(x)], we get that ¬ϕ(b) is in T .

Now let M3 be the prime model of T . From the three examples of sentences
in T , we get that M1 ≺ M3, M2 ≺ M3, and M1 = M2 ∩ M3. To complete
the proof of the existence part of the theorem, we still need to show that M3
is a conservative extension of M1. Consider D ∈ Def(M3), and suppose that
ϕ(x, b, c) is a formula defining D, where ϕ(x, y, z) is an L-formula and b ∈ M1
and c ∈ M2. Let σϕ(x, y) be an L(M0)-formula such that whenever a, a′ ∈ M0,
then

M2 |= ϕ(a′, a, c) iff M0 |= σ(a′, a).

We show that σϕ(x, b) defines D∩M1 in M1. If b′ ∈M1, then b′ ∈ D ⇐⇒M2 |=
ϕ(b′, b, c)⇐⇒ ϕ(b′, b, c) ∈ T ⇐⇒M1 |= σϕ(b′, b).

We next prove the uniqueness part of the theorem. Let M ′
3 be as in the

theorem. It is enough to show that if M ′
3 |= ϕ(b), where ϕ(x) is an L(M2)-

formula and b ∈ M1, then ϕ(b) ∈ T . Let σϕ(x) be as before. In M ′
3, define d to

be the least such that M ′
3 |= ϕ(d)↔ σϕ(d). (Of course, there may not be such a

d at all, but then things are even simpler.) Clearly, d ∈ M2 since it is definable
from parameters in M2, and d > M0 since M0≺end M2. But then, d > M1 since
M1≺end M ′

3 (Do it!). Therefore, M1 |= σϕ(b) and then ϕ(b) ∈ T . �

Theorem 2.3.3 Suppose M0 ≺M1, M0 ≺M2, and M1 is a conservative proper
extension of M0. Suppose there is an amalgamation M3 of M1 and M2 over M0
such that M3 is an elementary end extension of M1. Then M3 is a conservative
extension of M0.

Proof Suppose that D ∈ Def(M3), intending to show that D ∩M0 ∈ Def(M0).
Let a ∈ M1\M0, and then let D0 = D ∩ aM3 . Then D0 ∈ Def(M1) since
M1≺end M3, and then D0 ∩M0 ∈ Def(M0) since M1 is a conservative extension
of M0. Clearly, D ∩M0 = D0 ∩M0, so D ∩M0 ∈ Def(M0). �
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Theorems 2.3.2 and 2.3.3 together yield the following consequence charac-
terizing conservative extensions. The MacDowell–Specker is also needed in the
proof to get a conservative extension of M1.

Theorem 2.3.4 Suppose M0 ≺ M2. Then M2 is a conservative extension of
M0 iff whenever M0 ≺ M1, there is an amalgamation M3 of M1 and M2 over
M3 such that M1≺end M3. �

The proof of the next theorem uses an argument similar to one in the proof
of Theorem 2.3.2.

Theorem 2.3.5 Suppose M0≺cof M1 and M0≺end M2. Then there is an amal-
gamation M3 of M1 and M2 over M0 such that M1≺end M3 and M2≺cof M3.

Proof Let T be the L(M1 ∪M2)-theory consisting of all sentences ϕ(b), where
ϕ(x) is an L(M2)-formula and b ∈ M1 are such that there are a < d ∈ M0 such
that:

(1) for all b′ ∈ aM0 , M2 |= ϕ(b′) iff M0 |= b′ ∈ d;
(2) M1 |= b < a ∧ b ∈ d.

There are three important examples of sentences in T .
If ϕ is an L(M2)-sentence for which M2 |= ϕ, then ϕ ∈ T . (Do it!). If ϕ(x)

is an L(M0)-formula and b ∈ M1 are such that M1 |= ϕ(b), then ϕ(b) ∈ T (Do
it!). The third example is that the sentence b < c is in T whenever b ∈M1 and
c ∈M2\M0 (Do it!).

We claim that T is a consistent and complete L(M1 ∪M2)-theory.
For consistency, as in the proof of Theorem 2.3.2, we consider the case of a

single sentence ϕ(b) in T . Let a, d ∈M0 be as in (1) and (2). From (2), it follows
that M1 |= ∃x[x < a∧x ∈ d], so the same sentence is true in M0. Let b′ ∈M0 be
a witness for this sentence. Then from (1) it follows that M2 |= ϕ(b′), thereby
proving the consistency of ϕ(b).

For completeness, consider an L(M2)-formula ϕ(x) and an element b ∈ M1.
Let a, d ∈M0 be such that b < a and (1) holds. If (2) also holds, then ϕ(b) ∈ T .
If (2) does not hold, then let d′ ∈M0 be such that M0 |= ∀x < a[x ∈ d↔ x �∈ d′].
Then a, d′ demonstrate that ¬ϕ(b) is in T , proving completeness.

Now let M3 be the prime model of T . From the three examples of sentences
in T , we get that M1 ≺M3, M2 ≺M3, and M1 = M2 ∩M3. In fact, we get that
M1≺end M3 and M2≺cof M3 (Do it!). �

The similarity of the constructions of the amalgamations in Theorems 2.3.2
and 2.3.5 suggests that there should be a common generalization.

Definition 2.3.6 Suppose M0 ≺ M1 and M0 ≺ M2. Then we say that M2 is a
conservative extension of M0 relative to the extension M1 if, whenever ϕ(x) is
an L(M2)-formula and b ∈ M1, then there is an L(M0)-formula σ(x) such that
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M1 |= σ(b) and either for every a ∈M0, M0 |= σ(a) =⇒M2 |= ϕ(a) or for every
a ∈M0, M0 |= σ(a) =⇒M2 |= ¬ϕ(a). �

Two of the important instances of this notion occur in Theorems 2.3.2
and 2.3.5 , and nothing more is needed to get the amalgamations therein. That is,
in each of the proofs of these theorems, we define T to be the L(M1∪M2)-theory
consisting of all sentences ϕ(b), where ϕ(x) is an L(M2)-formula and b ∈ M1,
such that there is an L(M0)-formula σ(x) for which M1 |= σ(b) and, for every
a ∈M0, M0 |= σ(a) =⇒M2 |= ϕ(a). This construction then yields the principal
amalgamation.

Definition 2.3.7 Suppose M0 ≺M1, M0 ≺M2, and M2 is a conservative exten-
sion of M0 relative to M1. Then we let M1 � M2 be the principal amalgamation
of M1 and M2 over M0.

In this definition, the reference to M0 is suppressed, so some context is
necessary to interpret M1 � M2 unambiguously.

Exercise 2.3.8 Suppose M1,M2,M3 are elementary extensions of M0, with M2
and M3 being conservative extensions. Then (M1 �M2) �M3 ∼= M1 � (M2 �M3).

Exercise 2.5.11 describes another situation in which there are principal
amalgamations.

2.4 Nonelementary extensions

If an end extension of a model is not an elementary extension, how nonelementary
can it be? Every end extension is Σ0-elementary. We prove that every model has
an end extension which is not Σ1-elementary. We can require, in addition, that
the model and its extension are elementarily equivalent.

Let us begin with a theorem characterizing the complete theories of end
extensions of a given model. If M ⊆end N , then ThΠ1(N) ⊆ Th(M), and any set
represented in Th(N) must be in SSy(M) (because it is in SSy(N)). It turns out
that these are the only two restrictions. In the proof of this fact we will use the
following lemma.

Lemma 2.4.1 Let M be a model. Let n < ω and T ∈ SSy(M) be a theory such
that for some model K, M ≺Σn

K |= T . Then there is a model K ′ such that
M ≺end,Σn

K ′ |= T .

Proof If M is standard, then let K ′ = K. Thus, we assume that M is non-
standard. Suppose that M ≺Σn K |= T . Since PA ∈ SSy(M), without loss of
generality, we can assume that PA ⊆ T . Let σ be the conjunction of all sentences
in some finite fragment of T . We will show that

M |= ∀x[TrΠn
(x) −→ Con(σ ∧ x)].
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Suppose not and let ϕ ∈M be a counterexample, that is,

M |= TrΠn
(ϕ) ∧ ¬Con(σ ∧ ϕ).

Since M ≺Σn K and n > 0, the same is true in K. Since K |= σ ∧ TrΠn
(ϕ),

by Mostowski’s Reflection Principle (see p. 19), K |= Con(σ + ϕ), which is
a contradiction. Since T ∈ SSy(M), there is an M -finite S ⊇ T such that
M |= Con(S + TrΠn(M)). Then K ′ = ACT(M,S + TrΠn(M)) has the required
properties. �

Theorem 2.4.2 Let M |= PA∗(L) be a nonstandard model. Suppose that L is
coded in M and let T ⊇ PA∗(L) be a complete theory. Then M has an end
extension N such that N |= T iff the following two conditions hold:

(1) Rep(T ) ⊆ SSy(M);
(2) T ∩Π1 ⊆ Th(M).

Proof Suppose M ⊆end N and N |= T . Then Rep(T ) ⊆ SSy(N) = SSy(M), so
(1) holds. Since Σ0 formulas are absolute with respect to end extensions, (2)
holds as well.

Now suppose that (1) and (2) hold.
We define models Ni, inductively so that for each i < ω,

Ni |= T ∩Πi+1 and Ni≺end,Σi
Ni+1.

Let N0 = M and suppose Ni has been defined. We will obtain Ni+1 using
Lemma 2.4.1, where K is a model of

T0 = T ∪ (Th((Ni, a)a∈Ni
) ∩Πi

)
.

To show that T0 is consistent we will use the familiar elementary diagram argu-
ment. Suppose T0 is inconsistent. Then there are some ϕ(x) ∈ Πi and a ∈ Ni

such that

T � ¬ϕ(a) and Ni |= ϕ(a).

Since a does not occur in T , we get T � ∀x¬ϕ(x). Since T is complete, ∀x¬ϕ(x) ∈
T , and since ∀x¬ϕ(x) ∈ Πi+1, by the inductive hypothesis, Ni |= ∀x¬ϕ(x). In
particular, Ni |= ¬ϕ(a), which is a contradiction.

Let K be a model of T0. Then Ni ≺Σi
K |= T ∩ Πi+2 and since, by (1),

T ∩ Πi+2 ∈ SSy(M) = SSy(Ni) it follows from Lemma 2.4.1 that there is K ′

such that Ni≺end,Σi
K ′ |= T ∩ Πi+2. Let Ni+1 = K ′. Then, N =

⋃
i<ω Ni has

the required properties. �
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Theorem 2.4.3 For each nonstandard model M there is N such that N ≡ M ,
M ⊆end N , but N is not a Σ1-elementary extension of M .

Proof It is enough to find a model N such that M ⊆end N , N is not an Σ1-
elementary extension of M and Th(M) ∩ Π1 ⊆ Th(N), replacing N ≡ M ,
because then Theorem 2.4.2 can be applied to get the desired model.

Let ϕ(x) be a Σ1 formula defining a simple set as in Theorem 8.II of [158].
For this formula we have:

M |= ∀x∃y(x ≤ y ≤ 2x ∧ ¬ϕ(y)), (1)

and for any Σ1 formula ψ(x) either

M |= ∃x(ϕ(x) ∧ ψ(x)), (2)

or else there is n < ω such that

M |= ∀x(ψ(x) −→ x ≤ n). (3)

By (1), there is a nonstandard a such that M |= ¬ϕ(a). Let

Ta = PA +Th(M) ∩Π1 +Th(M,a) ∩ Σ1 + ϕ(a).

By (2) and (3), Ta is consistent. Then, as in the proof of Theorem 2.4.2, by the
elementary diagram argument, we see that (M,a) embeds in a model (K, a) |=
Ta. Hence, (M,a) ≺Σ0 (K, a) |= Th(M) ∩ Π1 + ϕ(a). Then, by Lemma 2.4.1,
there is a also an end extension (N, a) of (M,a) with the same properties. �

2.5 Exercises

♦2.5.1 Every countable model which is not prime has a minimal elementary end
extension which is not superminimal. (This follows from the results discussed in
Chapter 3. The reader is encouraged to look for a direct proof.)

♦2.5.2 Every countable nonstandard model which is generated by a bounded
set of generators has a superminimal cofinal extension.

♦2.5.3 Let M be a countable model of PA. Find a counterexample to the fol-
lowing “dual splitting theorem”: For every extension M ≺ N there is K such
that M �end K �cof N .

♣2.5.4 Every Jónsson model of cardinality ℵ1 is either ω1-like or short.

♦2.5.5 There are short Jónsson models M of cardinality ℵ1.

♣2.5.6 There are countable nonstandard models M such that no cofinal
extension of M is a simple extension of the prime elementary submodel of M .
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♦2.5.7 Every ω1-like model has a minimal cofinal extension.

♦2.5.8 Suppose that SSy(M) = P(N). Assuming the continuum hypothesis,
show that M has a minimal cofinal extension.

♦2.5.9 If |M | = κ, then Th((M,a)a∈M ) has κℵ0 definable types.

♣2.5.10 If κ ≥ |M |+ℵ1, thenM has a rather classless, elementary end extension
of cardinality κ.

♣2.5.11 Suppose the cut I ⊆end M0 is closed under exponentiation and that
M0 ≺M1 and M0 ≺M2. Suppose further that I ⊆ GCIS(M2,M0) and that M1
is generated by M0 ∪ {x ∈M1 : there is a ∈ I such that M1 |= x < a}. Then M2
is a conservative extension of M0 relative to M1.

A model M is short recursively saturated if M is short and it realizes every
bounded recursive type with a finite number of parameters which is finitely
realizable in M .

♦2.5.12 Every short recursively saturated model has a recursively saturated
elementary end extension. (Hint: first do it for countable models.)

The recursively saturated part of a model M is the set of those a ∈ M for
which there is a recursively saturated model K ≺M such that a ∈ K.

♣2.5.13 For every model M , the recursively saturated part of M is either empty
or is equal to M or is a recursively saturated elementary cut of M .

♥2.5.14 For every countable recursively saturated model M there is a model N
such that the recursively saturated part is M and there is an a ∈ N coding an
increasing sequence of nonstandard length such that M = sup {(a)n : n < ω}.
♦2.5.15 Adapt the proof of Theorem 2.4.2 to prove MacDowell–Specker the-
orem. Sketch: given a model M construct a sequence N0, N1, N2, . . . such
that, for each i, Ni = ACT (M,Ti), for some Ti, and Ni ≺Σi+1 Ni+1 and
M ≺end,Σi+2 Ni.

♦2.5.16 Let M be any nonstandard model of PA, let T be a completion of PA,
and let n < ω. Then M has a Σn-elementary end extension N such that N |= T
iff the following two conditions hold:

(1) Rep(T ) ⊆ SSy(M);
(2) T ∩Πn+1 ⊆ Th(M).

(Hint: consider the model (M,TrΣn
(M)).)

♥2.5.17 For each nonstandard model M and each n < ω, there is N such that
N ≡M , M ≺end,Σn

N , but N is not a Σn+1-elementary extension of M .
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Stuart Smith [190] defined a subset X of a model M to be extendible if, for
every elementary extension N of M , there is Y ⊆ N such that (M,X) ≺ (N,Y ).
He showed that the extendible subsets of countable models of PA∗ are exactly the
definable sets. The proof is outlined in the following four exercises. As indicated
by ♥ two of these exercises are not easy. For complete proofs see [190].

A set X ⊆M is end extendible if it is extendible with respect to elementary
end extensions, and it is cofinally extendible if it is extendible with respect to
cofinal extensions.

♣2.5.18 If X is a class of M , then X is end extendible iff X is definable in M .

♥2.5.19 N is not a cofinally extendible subset of any countable nonstandard
model.

♥2.5.20 There are no cofinally extendible cuts in any nonstandard countable
models.

♣2.5.21 The only cofinally extendible subsets of a countable nonstandard model
are the inductive sets.

♦2.5.22 If M and N are nonstandard elementarily equivalent models with the
same standard system, then (M,N) ≡ (N,N). (Hint: show that for each n,
the existential player has a winning strategy in the Ehrenfeucht-Fräıssé game
of length n involving (M,N) and (N,N). Notice that it follows that N is end
extendible in all nonstandard models.)

♥2.5.23 Every bounded subset of a countable model is end extendible.

2.6 Remarks & References

The theorem of MacDowell & Specker is from their article [123]. As we commen-
ted earlier, MacDowell and Specker were interested in elementary end extensions
and their application to models of Presburger arithmetic, but in fact they proved
the stronger Theorem 2.2.8 on conservative extensions, even though they did not
isolate this notion. Conservative extensions were first recognized by Phillips [150].
Theorem 2.1.1, Corollary 2.1.6, and many other results on conservative exten-
sions, nonconservative extensions and amalgamations were obtained by Blass in
several papers [13–15, 17]. Blass’ results were formulated mostly for models of full
arithmetic (i.e. models of Th(N, X)X∈P(ω).) Nonconservative minimal extensions
of the standard model were constructed by Philips [149] and, using another con-
struction, by Potthoff [152]. The ultimate, in a sense, result on nonconservative
extensions of countable models is Theorem 2.1.8, proved in [105].

Ali Enayat has been successfully pursuing a program of comparative, PA
versus ZF, model theory. In particular, he proved several analogues of the
MacDowell-Specker Theorem for models of set theory. See [30], [32], and [33].
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The nonamalgamation Theorem 2.3.1 is due to Knight & Nadel [85]. The
proof given here is ours. The connections between amalgamation and conservat-
ive extensions that appear in Theorems 2.3.2, 2.3.3, and 2.3.2 were studied by
Blass [17] but only in the case of full arithmetic.

The existence of Jónsson model was proved independently by Gaifman [45],
Knight [87], and Paris [144].

The study of κ-like models of PA∗ and their classes begins with Schmerl [161].
Theorem 2.2.14 is from [164].

Rabin [156] proved that every model M of PA has an elementarily equival-
ent extension which solves a Diophantine equation having coefficients in M but
having no solutions in M . Rabin’s result predates Matiyasevich’s solution to
Hilbert’s 10th problem from which it followed that an extension is Σ1 iff it does
not solve new Diophantine equations. Gaifman [44] asked if Rabin’s theorem
could be improved by requiring the extension to be an end extension. Partial
answers were given by Manevitz [127] and Wikie [209]. The full answer, given by
Theorem 2.4.3 and Theorem 2.4.2, characterizing possible theories of extensions
of models of PA, are due to Wilkie [211]. Our proof is from [168] and is essen-
tially the same as the unpublished proof by Lessan [121]. Lemma 2.4.1 is due to
McAloon [128].

Theorem 2.2.13 improves upon a theorem of Enayat [31] that every prime
model M has an elementary end extension whose every expansion obtained by
adding an undefinable class is prime. Recursively saturated parts of models were
introduced and studied by Kotlarski [112]. Exercise 2.5.14 is one of the results
from [112].

Exercise 2.5.12 is from Smoryński [193] for the countable case and from
Kossak [91] for the uncountable case.




MINIMAL AND OTHER TYPES

Minimal types, in the context of Peano Arithmetic, were introduced and
developed in the 1960s by Gaifman. This chapter discusses these kinds of types
and also some other related kinds of types, such as indiscernible, rare, end-
extensional and selective types. Throughout this chapter, we consider completions
of PA∗, which are referred to as T , and all types are 1-types relative to this
theory T .

3.1 Types related to indiscernibility

Indiscernibles are very important in model theory. In general, one distinguishes
between indiscernible sets and indiscernible sequences. Since all models of PA are
linearly ordered, we have no need to make such a distinction. For a model M of
PA (or even for any structure M linearly ordered by <), a subset I ⊆M is a set
of indiscernibles if, whenever ϕ(x0, x1, . . . , xn−1) is an n-ary formula and a0 <
a1 < · · · < an−1 and b0 < b1 < · · · < bn−1 are increasing n-tuples of elements
of I, then M |= ϕ(ā) ←→ ϕ(b̄). Alternatively, we could avoid the mention
of formulas in this definition of indiscernibility by saying instead that the two
n-tuples ā and b̄ realize the same n-types. In a general model-theoretic setting,
models having indiscernibles are obtained by a combination of the Compactness
Theorem and Ramsey’s Theorem. We also make use of Ramsey’s Theorem as a
formal theorem or scheme of theorems of PA∗.

3.1.1 Indiscernible types

The following definition identifies a certain kind of type which is useful for
producing indiscernibles. In this section we take a close look at indiscernible
types. Along the way we will be introduced to some other kinds of types such
as n-indiscernible, end-extensional, and rare types. The next section considers
minimal types, which are precisely the unbounded indiscernible types.

It is a fact from model theory that if p(x) is a nonprincipal type, then there
are structures with large indiscernible sets consisting of elements which realize
p(x). On the other hand, it could well be that there is a set, each of which realizes
the same type p(x), which is not an indiscernible set. This is not possible for
indiscernible types.

Definition 3.1.1 The type p(x) is an indiscernible type if it is a nonprincipal
type such that for any model M , if I ⊆ M is a set of elements each realizing
p(x), then I is a set of indiscernibles.



50 MINIMAL AND OTHER TYPES

There is a bit of shorthand that is useful when discussing indiscern-
ibles. If ϕ(x) and ψ(x0, x1, . . . , xn−1) are formulas, we say that ϕ(x) forces
ψ(x0, x1, . . . , xn−1) if the sentence

∀x0 x1, . . . , xn−1[x0 < x1 < · · · < xn−1

∧ϕ(x0) ∧ ϕ(x1) ∧ · · · ∧ ϕ(xn−1) −→ ψ(x0, x1, . . . , xn−1)]

is a consequence of T . The type p(x) forces ψ(x0, x1, . . . , xn−1) if some formula
ϕ(x) in p(x) does. Thus a nonprincipal type p(x) is indiscernible iff for each
formula, p(x) forces it or its negation.

Indiscernible types are complete (Do it!). The first order of business is to
show that indiscernible types exist. There are two very similar constructions
for doing this, one using Infinite Ramsey’s Theorem (IRT) and the other Finite
Ramsey’s Theorem (FRT). Recall that we say that a type p(x) is bounded if there
is some constant Skolem term c such that the formula x ≤ c is in p(x) and that it
is unbounded if it fails to be bounded. The first theorem, whose proof makes use
of a formalized version of IRT, shows the existence of unbounded indiscernible
types, and a later result, Corollary 3.1.6, whose proof uses a formalized version
of FRT, shows the existence of bounded indiscernible types.

Theorem 3.1.2 Suppose ϕ(x) is a formula which defines an unbounded set
in some (or, equivalently, every) model of T . Then there is an unbounded
indiscernible type p(x) which contains the formula ϕ(x).

Proof The type p(x) will be constructed inductively. That is, we inductively
define a sequence 〈ϕi(x) : i < ω〉 of formulas each one of which defines an
unbounded set, and then let Xi be the set defined in the prime model by the
formula ϕi(x). (Thus each Xi is a “large” set, which in this proof means that
Xi is unbounded.) The sequence 〈Xi : i < ω〉 will be a decreasing sequence. We
let ϕ0(x) = ϕ(x). In order to define the rest of the sequence, we need a sequence
〈χi(x0, x1, . . . , xni) : i < ω〉 consisting of all formulas having free variables as
indicated.

Now suppose that we already have ϕi(x) and that we wish to define ϕi+1(x).
By making use of a formalization of IRT in PA∗, we can find a formula ϕi+1(x)
such that each of the following holds:

(1) T � ∀w∃x[x > w ∧ ϕi+1(x)];
(2) T � ∀x[ϕi+1(x) −→ ϕi(x)];
(3) ϕi+1(x) forces χi(x0, x1, . . . , xni

) or forces its negation.

This last sentence expresses the essence of IRT: the set Xi+1 is homogeneous
with regard to the partition of [Xi]ni+1 that χi defines.

Now let p(x) consist of all those formulas θ(x) for which there is i ∈ ω such
that the sentence ∀x(ϕi(x) −→ θ(x)) is a consequence of T . We show that p(x)
is an unbounded indiscernible type to which ϕ(x) belongs. Clearly, ϕ(x) is in
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p(x) since ϕ(x) = ϕ0(x). Since X0 ⊇ X1 ⊇ X2 ⊇ · · · and each of the Xi is
nonempty, the set p(x) is consistent with T . Each Xi is even unbounded, so p(x)
is an unbounded type.

We show that p(x) is an indiscernible type. For some model M |= T , let
I ⊆ M be a set of elements each realizing p(x). To show that I is a set of
indiscernibles, consider elements a0 < a1 < · · · < an and b0 < b1 < · · · < bn
of I and some (n + 1)-ary formula, say χi(x0, x1, . . . , xni). Since each of the aj
and bj satisfy the formula ϕi+1(x), which is in p(x), it follows from (3) that
M |= χi(a0, a1, . . . , ani

) iff M |= χi(b0, b1, . . . , bni
). This proves that I is a set of

indiscernibles and, therefore, that p(x) is an indiscernible type. �

Remark The construction of the type p(x) in the previous theorem can be done
effectively in the theory T . This is more easily appreciated when the language
L is finite. There is a uniform way to do this construction. Thus, given a finite
L and formula ϕ(x), we can get a recursive set Γ(x) of formulas such that for
any completion T of PA∗(L), there is a unique complete type p(x) ⊇ Γ(x) ∪ T ,
and this type p(x) has the properties required by Theorem 3.1.2 whenever ϕ(x)
defines an unboounded set in a model of T .

The following exercise, an application of indiscernible types, should be
contrasted with Ehrenfeucht’s Lemma.

Exercise 3.1.3 There exist an unbounded type p(x) and a Skolem term t(x, y)
such that whenever M is a model and a, b ∈ M are distinct elements realizing
p(x), then t(a, b) also realizes p(x) and t(a, b) �∈ {a, b}. (Hint: let q(x) be an
indiscernible type, and then utilize the unique 2-type p2(u, v) containing q(u) ∪
q(v) ∪ {u < v}.)

Many constructions are like getting olives out of a jar: the first takes some
effort, and the rest just pour out. Indiscernible types are like that.

Theorem 3.1.4 There are 2ℵ0 unbounded indiscernible types.

Proof For each subset X ⊆ ω, we will construct an unbounded indiscernible
type, with different X’s resulting in different types. Using the notation from the
proof of Theorem 3.1.2, let ϕ(x) be x = x. Having ϕi(x), let ϕ′

i(x) be the same
as ϕi+1(x) in that proof, and then let δ(x) be the formula ϕ′

i(x)∧ “there are an
even number of y’s such that y < x ∧ ϕ′

i(y).” Then let ϕi+1(x) = δ(x) if i ∈ X,
and let ϕi+1(x) = ϕ′

i(x) ∧ ¬δ(x) if i �∈ I. �

The previous theorem can be given a topological interpretation, a quick state-
ment of which is presented for the cognoscenti. The set S1(T ) of complete 1-types
is a topological space. Let S∞

1 (T ) be the closed subset of S1(T ) consisting of the
unbounded types. With the subspace topology, S∞

1 (T ) is homeomorphic to Can-
tor Space, so the Baire Category Theorem applies, implying that each comeager
subset of S∞

1 (T ) has cardinality 2ℵ0 . The topological version of Theorem 3.1.4
is: the set of unbounded indiscernible types is a comegaer subset of S∞

1 (T ).
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In the next theorem, FRT is used to get indiscernible types that are
bounded.

Theorem 3.1.5 Suppose ϕ(x) is a formula that defines an infinite set in some
(or, equivalently, every) model of T . Then there is an indiscernible type p(x)
that contains the formula ϕ(x).

Proof If the formula ϕ(x) defines an unbounded set, then Theorem 3.1.2 can
be used. So it suffices to assume that this is not the case and that the formula
x < c, where c is some constant Skolem term, is implied by ϕ(x).

The proof to follow is just like the proof of Theorem 3.1.2 with IRT being
replaced by FRT. The type p(x) will be constructed inductively. That is, we
inductively define a sequence 〈ϕi(x) : i < ω〉 of formulas each one of which
defines an infinite (but bounded) set in the prime model; let Xi be the set
defined by the formula ϕi(x). (In this proof, each Xi is “large” in the sense of
being infinite.) The sequence 〈Xi : i < ω〉 will be a decreasing sequence. We let
ϕ0(x) = ϕ(x). In order to define the rest of the sequence, we need a sequence
〈χi(x0, x1, . . . , xni) : i < ω〉 consisting of all formulas having free variables as
indicated.

Now suppose that we already have ϕi(x) and that we wish to define ϕi+1(x).
By making use of the formalization of FRT in Peano Arithmetic, we can find
a formula ϕi+1(x) such that (2) and (3) in the proof hold. Instead of (1), we
require only that Xi+1 be infinte. This can be accomplished by letting Xi+1 be
the largest among sets satisfying (2) and (3).

Now let p(x) consist of all those formulas θ(x) for which there is i ∈ ω such
that the sentence ∀x(ϕi(x) −→ θ(x)) is a consequence of T . Just as in the proof
of Theorem 3.1.2, we can see that p(x) is an indiscernible type to which ϕ(x)
belongs. �

If T has a standard model, then all bounded types are principal and, con-
sequently, there are no bounded indiscernible types. If T does not have a standard
model, then just the opposite is true.

Corollary 3.1.6 Suppose that T does not have a standard model. If ϕ(x) is a
formula which defines an infinite set in some (or, equivalently, every) model of
T , then there is a bounded indiscernible type p(x) containing the formula ϕ(x).

Proof Let c be a constant Skolem term representing a nonstandard element,
such that the formula ϕ(x) ∧ x < c defines an infinite set. Apply the previous
theorem to this formula to obtain an indiscernible type, which is necessarily
bounded. �

Remark The remark following Theorem 3.1.2 about the effectiveness of that
theorem applies just as well to Theorem 3.1.5 and Corollary 3.1.6.
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The types in Corollary 3.1.6 are also like olives: the conclusion can be
strengthened to assert the existence of 2ℵ0 bounded indiscernible type containing
ϕ(x) (Do it!).

3.1.2 n-indiscernible types

There is a refinement of the notion of an indiscernible type. If 1 ≤ n ∈ ω, then
we say that the nonprincipal type p(x) is n-indiscernible if, whenever M |= T
and I ⊆M is a set of at most n+ 1 elements each realizing p(x), then I is a set
of indiscernibles. Trivially, every nonprincipal complete type is 1-indiscernible.
It is clear that a type is indiscernible iff it is n-indiscernible for each n ≥ 1. Also,
if 1 ≤ m < n and p(x) is n-indiscernible, then it is m-indiscernible (Do it!).

The following two easy exercises give equivalent definitions.

Exercise 3.1.7 The nonprincipal type p(x) is n-indiscernible iff whenever M is
a model of T and a0 < a1 < · · · < an−1 and b0 < b1 < · · · < bn−1 are elements
of M which realize p(x), then the n-tuples ā and b̄ realize the same n-type.

Exercise 3.1.8 The type p(x) is n-indiscernible iff each n-ary formula or its
negation is forced by p(x).

In general, we find much more diversity among bounded types than among
unbounded ones. This is the case with indiscernible types. For each n ≥ 1, there
are n-indiscernible types which are not (n+1)-indiscernible (see Theorem 3.1.10).
If n ≥ 2, these types are necessarily bounded. The main remaining goal of this
section is Theorem 3.1.20, which asserts that every unbounded 2-indiscernible
type is indiscernible. In the course of proving this we will see that all unbounded
indiscernible types are definable. The notions of rare and end-extensional types
will be defined, and we will see that all unbounded indiscernible types are rare
and end-extensional.

The next theorem states that unbounded 2-indiscernible types are definable.
See Exercise 3.6.5, in which there is the easier result that every unbounded
3-indiscernible type is definable.

Theorem 3.1.9 Every unbounded 2-indiscernible type is definable.

Proof Let p(x) be an unbounded 2-indiscernible type. To show that it is defin-
able, we consider a formula ϕ(u, x) with the intent of showing that there is a
defining formula σ(u); that is, σ(u) should have the property that whenever c is
a constant Skolem term, then ϕ(c, x) ∈ p(x) iff σ(c) ∈ T . We define the three
formulas θ0(x, y), θ1(x, y), θ2(x, y) which are as follows, respectively:

∀z < x[ϕ(z, x)←→ ϕ(z, y)],
∃z < x[∀w < z

(
ϕ(w, x)←→ ϕ(w, y)

) ∧ ϕ(z, x) ∧ ¬ϕ(z, y)],
∃z < x[∀w < z

(
ϕ(w, x)←→ ϕ(w, y)

) ∧ ¬ϕ(z, x) ∧ ϕ(z, y)].

These three formulas induce partitions in the following way: for any model M |=
T and any a, b ∈M there is exactly one i ∈ {0, 1, 2} such that M |= θi(a, b). We
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are interested in this partition only when restricted to the set of pairs (a, b) in
which a < b.

We make some informal remarks about these formulas. Let us say, if c < a <
b, that a and b look the same over c if ϕ(c, a)←→ ϕ(c, b). Then θ0(a, b) is true iff
a and b look the same over all c < a. If they do not look the same over all c < a,
then there is a least c < a over which a and b do not look. Fixing this c, we have
that ¬(ϕ(c, a) ←→ ϕ(c, b)). Now, whether θ1(a, b) or θ2(a, b) holds depends on
how a and b do not look the same over c: if ϕ(c, a), then we have that θ1(a, b),
and if ¬ϕ(c, a), then we have θ2(a, b).

Returning to the proof, we see that since p(x) is 2-indiscernible, then Exer-
cise 3.1.8 implies there is i ∈ {0, 1, 2} such that p(x) forces θi(x, y). Thus, that
exercise shows the existence of a formula ψ(x) ∈ p(x) such that the sentence

∀x∀y[ψ(x) ∧ ψ(y) ∧ x < y −→ θi(x, y)]

is in T .
We are now prepared to define σ(u) to be the formula

∃w∀x > w[ψ(x) −→ ϕ(u, x)] .

There are three cases to consider, depending on what i is, in proving that σ(u)
is a defining formula for ϕ(u, x). Suppose M is a model of T , a is an element
realizing p(x), and c is a constant Skolem term.

For the first case, let i = 0. Suppose σ(c) ∈ T . Then there is a constant
Skolem term d such that the sentence ∀x > d[ψ(x) −→ ϕ(c, x)] is in T . Thus,
M |= ψ(a) and, since p(x) is unbounded, M |= a > d, from which it follows that
M |= ϕ(c, a). Therefore, ϕ(c, x) ∈ p(x).

Conversely, suppose σ(c) �∈ T . In particular, ∃x > c[ψ(x) ∧ ¬ϕ(c, x)] is in
T . Therefore, there is a constant Skolem term d such that the sentence c <
d ∧ ψ(d) ∧ ¬ϕ(c, d) is in T . Then M |= θ0(d, a) so that M |= ¬ϕ(c, a) and,
therefore, ϕ(c, x) �∈ p(x).

Next let i = 1, and let δ(u, x) be the formula

∀v∀w∀z < u[ψ(v) ∧ ψ(w) ∧ x < v < w −→ (
ϕ(z, v)←→ ϕ(z, w)

)
] .

It is to be shown by formal induction that T � ∀u∃xδ(u, x). The basis step is
that T � ∃xδ(0, x), which is trivial since even T � ∀xδ(0, x). For the inductive
step, suppose that a, b ∈ M |= T and M |= δ(a, b). If M |= δ(a + 1, b), then
we are done, so suppose otherwise. Then there are a2 > a1 > b such that
M |= ψ(a1)∧ψ(a2)∧ (ϕ(a, a1)←→ ¬ϕ(a, a2)). We claim that M |= δ(a+1, a2).
If the claim were false, then there would be b2 > b1 > a2 such that M |=
ψ(b1) ∧ ψ(b2) ∧ ¬(ϕ(a, b1)←→ ϕ(a, b2)). Then, since M |= θ1(b1, b2), it must be
that M |= ϕ(a, b1)∧¬ϕ(a, b2), so that M |= ¬θ1(a2, b1), which is a contradiction.
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To show that ϕ(c, x) ∈ p(x) iff σ(c) ∈ T , first choose some constant Skolem
term d such that δ(c, d) ∈ T , and then argue as in the case i = 0.

Finally, when i = 2, just observe that this is just the case of i = 1 when the
formula ¬ϕ(u, x) is considered in place of ϕ(u, x). �

The following theorem is in contrast to Theorem 3.1.20 which implies that
types as in the following theorem are necessarily bounded. Notice that Corol-
lary 3.1.6 shows the existence of bounded types that are n-indiscernible for
all n.

Theorem 3.1.10 Suppose T has no standard model and 1 ≤ n < ω. Then there
is an n-indiscernible type p(x) that is not (n+ 1)-indiscernible. �

The proof is like the proof of Theorem 3.1.5 but with the another combin-
atorial theorem replacing FRT. For n < ω, let [V ]n be the set of all n-element
subsets of V . Then H = (V,E) is an n-uniform hypergarph if E ⊆ [V ]n. An
n-uniform hypergraph (V,E) is sparse if there is no K ∈ [V ]n+1 such that
[K]n ⊆ E. If H = (V,E), H ′ = (V ′, E′) are n-uniform hypergraphs, then H
is a subhypergraph of H ′ iff V ⊆ V ′ and E = E′ ∩ [V ]n.

Nešetřil–Rödl Theorem: Suppose 1 ≤ n < ω and H = (V,E)
is a finite, sparse (n+1)-uniform hypergraph. Then there is a finite,
sparse (n+1)-uniform hypergraph H ′ = (V ′, E′) such that whenever
[V ′]n+1 = F1 ∪ F2, then (V ′, E′) has a subhypergraph (W,F ) which
is isomorphic to (V,E) and such that either F ⊆ F1 or F ⊆ F2.

The Nešetřil–Rödl Theorem is both formalizable and provable in PA.

Exercise 3.1.11 Prove Theorem 3.1.10 using the Nešetřil–Rödl Theorem.
(Hint: work in the prime model M . In M , let (V,E) be a sparse (n + 1)-
uniform hypergraph such that any standard sparse (n+ 1)-uniform hypergraph
is isomorphic to a subhypergraph of (V,E). Let a definable subset X ⊆ V be
“large” if every standard sparse (n + 1)-uniform hypergraph is isomorphic to a
subhypergraph of (X,E ∩ [X]n+1).)

3.1.3 End-extensional types

It was shown in Theorem 3.1.9 that all unbounded 2-indiscernible types are
definable. In fact, they have a property even stronger than definability. For a
definable type p(x), every formula ϕ(u, x) has a defining formula σ(u), by which
it is meant that for any constant Skolem term c the formula

σ(c)←→ ϕ(c, x)

is in p(x). Moreover, the formula

∀u ≤ c[σ(u)←→ ϕ(u, x)]
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is in p(x) (Do it!). The following definition imposes some even stronger
conditions on the defining formula.

Definition 3.1.12 A type p(x) is end-extensional if it is unbounded and for any
formula ϕ(u, x), there are a Skolem term t(u) and a formula σ(u) such that the
formula

∀u[t(u) < x −→ (
σ(u)←→ ϕ(u, x)

)
]

is in p(x).

It follows right from the definition that every end-extensional type is definable
(Do it!).

Lemma 3.1.13 Every unbounded 2-indiscernible type is end-extensional.

Proof Let p(x) be unbounded, 2-indiscernible and, hence, definable by The-
orem 3.1.9. Consider some ϕ(u, x) and its defining formula σ(u). We show that
there is a Skolem term t(u) which, together with σ(u), has the stronger property
of Definition 3.1.12. Let M be the prime model of T , and let M0 = M(a0) be a
p(x)-extension of M and M1 = M0(a2) a p(x)-extension of M0. Let θ(w, x) be
the formula

∀u ≤ w[σ(u)←→ ϕ(u, x)].

Clearly, M1 |= θ(a0, a2). [This is not a typo: the a1 will appear later.]
Let s(x) be the Skolem term which denotes the least u ≤ x such that

¬[σ(u)←→ ϕ(u, x)]. Now suppose that there is no such Skolem term t(u). Thus,
if t(u) is a Skolem term, then the formula t(s(x)) < x is in p(x). It follows
that gap(s(a2)) < a2, so by compactness, in some model M2 � M1, there is a1
such that s(a2) < gap(a1) < a2 and a1 realizes p(x). But then we have that
M2 |= a0 < s(a2) < a1, contradicting the 2-indiscernibility of p(x). �

3.1.4 Rare types

The following contains a definition of a rare type. Other possible definitions come
from Lemma 3.1.15 and from Corollary 3.1.17, which is perhaps more reminiscent
of the origins of rare types in ultrafilter theory.

Definition 3.1.14 A type p(x) is rare if it is a nonprincipal complete type and
for any Skolem term t(x), there is a formula ϕ(x) ∈ p(x) such that the sentence

∀x∀y[ϕ(x) ∧ ϕ(y) ∧ x < y −→ t(x) < y]

is a consequence of T .

In other words, the nonprincipal type p(x) is rare iff it forces each formula
t(x) < y. Every rare type is unbounded (Do it!).
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The next lemma gives a more model-theoretic definition.

Lemma 3.1.15 A nonprincipal type p(x) is rare iff in any model M of T, no
two distinct elements in the same gap realize p(x).

Proof Let p(x) be a nonprincipal type. For one direction, assume that p(x) is
rare and that a ∈ M realizes p(x) and a < b ∈ gap(a). There is a Skolem term
t(x) such that M |= b < t(a), and then, according to Definition 3.1.14, there
corresponds a formula ϕ(x) ∈ p(x). But then M |= ¬ϕ(b), so b does not realize
p(x).

Conversely, assume that a, b ∈M both realize p(x) where a < b ∈ gap(a). Let
t(x) be a Skolem term such that M |= b < t(a). But now, for any ϕ(x) ∈ p(x),
M |= a < b < t(a) ∧ ϕ(a) ∧ ϕ(b), verifying that p(x) is not rare. �

Theorem 3.1.16 Let p(x) be an unbounded complete type. Then p(x) is rare iff
whenever a ∈M realizes p(x) and b ∈ gap(a), then a ∈ Scl(b).

Proof Suppose p(x) is rare. Let a ∈M realizes p(x), and let b ∈ gap(a). First,
suppose b ≤ a. Then let t(x) be a Skolem term such that M |= b ≤ a < t(b) and
also such that t(x) defines an increasing function in M . Let ϕ(x) ∈ p(x) be as in
Definition 3.1.14, and the let s(x) be a Skolem term where s(x) = min{y : x ≤
y ∧ ϕ(y)}. Clearly, M |= s(b) = a, so a ∈ Scl(b).

Next, suppose a < b, and then let t(x) be a Skolem term such that M |=
a < b < t(a) and also such that t(x) defines an increasing function in M . Let
ϕ(x) ∈ p(x) be as in Definition 3.1.14, and the let s(x) be a Skolem term where
s(x) = max{y : y < x ∧ ϕ(y)}. Clearly, M |= s(b) = a, so a ∈ Scl(b).

Conversely, suppose p(x) is not rare. Then there are a model M and a, b ∈M
such that a �= b ∈ gap(a) and both a, b realize p(x). By Ehrenfeucht’s Lemma,
a �∈ Scl(b). �

Corollary 3.1.17 Let p(x) be a complete type, and let N be a model generated
by an element a realizing p(x). Then p(x) is rare iff there is M ≺end N such that
N is a minimal extension of M .

Proof Suppose p(x) is rare, and let M = {x ∈ N : gap(x) < gap(a)}. Clearly,
M ≺ N . If b ∈ N\M , then gap(b) = gap(a), so, by Theorem 3.1.15, a ∈ Scl(b),
proving that N is a minimal extension of M .

Conversely, suppose N is a minimal elementary end extension of M . Then,
if b ∈ gap(a), then b ∈ N\M , so by the minimality of the extension, b ∈ Scl(a).
Then, by Theorem 3.1.15, p(x) is a rare type. �

Lemma 3.1.18 Every unbounded 2-indiscernible type is rare.

Proof Suppose p(x) is an unbounded 2-indiscernible type. Consider a model
M in which the distinct elements a, b realize the type p(x). Assume that a < b.
Let N � M be such that there is c ∈ N realizing p(x) and b < gap(c). Thus,
N |= t(b) < c for any Skolem term t(x), so by the 2-indiscernibility of p(x), it is
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also the case that M |= t(a) < b for every Skolem term t(x). Therefore, a and b
are in different gaps, proving that p(x) is rare. �

Lemma 3.1.19 Every end-extensional rare type is indiscernible.

Proof Suppose that p(x) is an end-extensional rare type. We will show by
induction on n that p(x) is n-indiscernible for each n ≥ 1. Trivially, p(x)
is 1-indiscernible. Suppose that p(x) is n-indiscernible. Let M be a model of
T with elements a0 < a1 < · · · < an and b0 < b1 < · · · < bn, where
each of these elements realizes p(x). Assume that M |= ϕ(a0, a1, . . . , an)
with the aim of showing that M |= ϕ(b0, b1, . . . , bn). Then an−1 < gap(an)
and bn−1 < gap(bn) since p(x), is rare. By the end-extensionality of p(x),
there is a formula σ(u0, u1, . . . , un−1) which not only is a defining formula
for ϕ(u0, u1, . . . , un−1, x) but also has the stronger property required by end-
extensionality. Thus, M |= σ(a0, a1, . . . , an−1). The n-indiscernibility of p(x)
implies that M |= σ(b0, b1, . . . , bn−1), so that M |= ϕ(b0, b1, . . . , bn), completing
the proof that p(x) is (n+ 1)-indiscernible. �

Putting together the previous lemmas yields the following theorem.

Theorem 3.1.20 Every unbounded 2-indiscernible type is indiscernible.

Proof Follows from Lemmas 3.1.13, 3.1.18, and 3.1.19. �

Unbounded indiscernible types might properly be called Ramsey types. The
following exercise, the first of three giving some stronger properties of unbounded
indiscernible types, suggests that they might even be called uniformly Ramsey
types. These three exercises are not routine, but not difficult, either. They define
properties of indiscernible types that are used elsewhere.

Exercise 3.1.21 Suppose that p(x) is an unbounded indiscernible type and
θ(u, x0, x1, . . . , xn) is an (n+2)-ary formula. Then there is a formula ϕ(x) ∈ p(x)
such that the sentence

∀u ∃w[∀x̄∀ȳ(w < x0 < x1 < · · · < xn ∧ w < y0 < y1 < · · · < yn

∧ ϕ(x0) ∧ ϕ(x1) ∧ · · · ∧ ϕ(xn) ∧ ϕ(y0) ∧ ϕ(y1) ∧ · · · ∧ ϕ(yn)

−→ (
θ(u, x̄)←→ θ(u, ȳ)

)
]

is a consequence of T .

The property that Exercise 3.1.21 claims that p(x) has could be informally
rephrased as: for each (n + 2)-ary formula θ(u, x̄) and each u, p(x) eventually
forces θ(u, x̄) or eventually forces ¬θ(u, x̄).

Another stronger property that unbounded indiscernible types pos-
sess suggests that they might also be called canonical Ramsey types. If
t∗(x0, x1, . . . , xm−1) is a Skolem term, then we say that ϕ(x) forces that
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t∗(x0, x1, . . . , xm−1) is one-to-one if, whenever i0 < i1 < · · · < im−1 < ω and
j0 < j1 < · · · < jm−1 < ω are not exactly the same m-tuples, then ϕ(x) forces
the formula

t∗(xi0 , xi1 , . . . , xim−1) �= t∗(xj0 , xj1 , . . . , xjm−1) .

Given a Skolem term t(x0, x1, . . . , xn) and a formula ϕ(x), we say that
t(x0, x1, . . . , xn) is canonical on ϕ(x) if there are m ≤ n + 1 and 0 ≤ i0 <
i1 < · · · < im−1 ≤ n and an m-ary Skolem term t∗(y0, y1, . . . , ym−1) such that
ϕ(x) forces that t∗(x̄) is one-to-one and ϕ(x) forces the formula

t(x0, x1, . . . , xn) = t∗(xi0 , xi1 , . . . , xim−1) .

Exercise 3.1.22 Suppose that p(x) is an (n + 2)-indiscernible type and
t(x0, x1, . . . , xn) is an (n+ 1)-ary Skolem term. Then there is a formula ϕ(x) ∈
p(x) such that the Skolem term t(x0, x1, . . . , xn) is canonical on ϕ(x).

Exercise 3.1.23 (Uniformly Canonical Ramsey types) Formulate and prove a
statement asserting that unbounded indiscernible types have a property which
encompasses both the uniform Ramsey and canonical Ramsey properties.

3.2 Minimal types

The notion of minimal types is due to Gaifman, who exposed most of their
fundamental properties. This section contains various characterizations of min-
imal types, perhaps the most notable being that the minimal types are precisely
the unbounded indiscernible types. This and some other characterizations are
presented in Theorem 3.2.10.

Minimal extensions were considered in Chapter 2. Recall from that chapter
that whenever M ≺ N , then we say that N is a minimal extension of M if there
is no K such that M ≺ K ≺ N . It was proved in Theorem 2.1.4 that every
countable model has a minimal elementary end extension. Minimal types were
originally introduced in order to generalize this to models of arbitrary cardinality
as Theorem 3.3.1 shows.

The following is Gaifman’s definition.

Definition 3.2.1 A type p(x) is minimal if it is an unbounded complete type
and whenever M ≺ M(a), where a realizes p(x) and a > M , then M(a) is a
minimal extension of M .

3.2.1 Selective types

It follows from Corollary 3.1.17 that not only are all minimal types rare, but
also so are all selective types, the definition of which follows.
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Definition 3.2.2 A type p(x) is selective if it is a nonprincipal complete type
and the p(x)-extension of the prime model M of T is a minimal extension of M .

Every minimal type is selective. The following exercise presents a more
syntactical way to characterize selective types.

Exercise 3.2.3 If p(x) ∈ S1(T ) is a nonprincipal type, then p(x) is selective
iff for every Skolem term t(x) either p(x) forces t(x0) = t(x1) or p(x) forces
t(x0) �= t(x1).

The particular case of n = 0 of Exercise 3.1.22 on canonical Ramsey types
says that all 2-indiscernible types are selective.

Lemma 3.2.4 Every unbounded selective type is rare.

Proof Let p(x) be an unbounded selective type. We will use Theorem 3.1.16 to
show that p(x) is rare. Assume that p(x) is not rare. Then there are a model M
and a, b ∈M such that a realizes p(x) and a ∈ gap(b)\ gap(b). Let M1,M2 � M
be generated by a, b respectively. LetM0 = M1∩M2. Then a �∈M0, since a �∈M2.
By Theorem 2.1.1, M0≺cof M1, so M0 is not the prime model. Therefore, M1
is not a minimal extension of its prime submodel, contradicting the selectivitity
of p(x). �

In particular, every minimal type is rare.

Lemma 3.2.5 Every minimal type is definable.

Proof Suppose that p(x) is not definable, and let θ(u, x) be a formula for which
there is no defining formula. Let Γ(x, y, z) be the following set of formulas:

p(y) ∪ p(z) ∪ {t0 < x : t0 is a constant Skolem term}
∪{t1(x) < y < z : t1(x) is a Skolem term}
∪{∀u < x[θ(u, y)←→ θ(u, z)]} ∪ {θ(x, y)←→ ¬θ(x, z)}.

This set is consistent with T (Do it!), so let M be a model of T having elements
a, b, c satisfying Γ(x, y, z), and let M0 be the prime substructure of M . Clearly
M0 < a < gap(b), so that a �∈ M(b), and also b < gap(c) since p(x) is rare, so
that c �∈ M(a, b). Therefore, M(b) ≺ M(a, b) ≺ M(a, b, c) = M(b, c), so M(b, c)
is not a minimal extension of M(b). Therefore, p(x) is not a minimal type. �

Lemma 3.2.6 Every definable selective type is end-extensional.

Proof Let p(x) be a definable selective type. Consider the formula ϕ(u, x),
and let σ(u) be a defining formula for it. Let s(x) be the Skolem term which,
informally, is the largest w such that w ≤ x∧∀u[u < w −→ (σ(u)←→ ϕ(u, x))].
Let M(a) be a p(x)-extension of the prime model M , and let c ∈ M . Then
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M |= c < s(a). Since p(x) is selective, there is a Skolem term s′(y) such that
M |= s′(s(a)) = a. Let t(x) be the Skolem term for which the sentence

∀x∀y[x < y −→ s(x) < t(x) < t(y)]

is a consequence of T . Then, the formula

∀u[t(u) < x −→ (σ(u)←→ ϕ(u, x))]

is in p(x), verifying that p(x) is end-extensional. �

Lemma 3.2.7 Every rare end-extensional type is minimal

Proof Let p(x) be a rare end-extensional type. Since p(x) is definable, we can
let M(a) be a p(x)-extension of M . Consider some b ∈ M(a)\M , and let the
Skolem term t(u, x) and element c ∈ M be such that M(a) |= b = t(c, a). Since
p(x) is end-extensional, gap(b) = gap(a) (Do it!), so by Corollary 3.1.17 there
is a Skolem term s(y) such that M |= s(b) = a, thereby proving that p(x) is
minimal. �

Definition 3.2.8 If I ⊆M is a set of indiscernibles in a model M , then I is a set
of strong indiscernibles if whenever c0, c1, . . . , ck ≤ a ∈ I, then {x ∈ I : x > a}
is a set of indiscernibles in the structure (M, c0, c1, . . . , ck). The type p(x) is a
strongly indiscernible type if it is a nonprincipal type such that for any model
M , if I ⊆ M is a set of elements each realizing p(x), then I is a set of strong
indiscernibles.

Lemma 3.2.9 Every definable indiscernible type is strongly indiscernible.

Proof Let p(x) be a definable indiscernible type, and let I be a set of elements
in a model M realizing p(x). Let a < a0 < a1 < · · · < an−1 and a < b0 <
b1 < · · · < bn−1 be elements of I. Let c0, c1, . . . , ck ≤ a, and consider a formula
ϕ(ū, x0, x1, . . . , xn−1), with the goal of showing that M |= ϕ(c̄, ā) ←→ ϕ(c̄, b̄).
Because p(x) is definable, it is unbounded, so there is M0≺end M such that
a ∈ M0 < a0, b0. The n-type q(x0, x0, . . . , xn−1) of 〈a0, a1, . . . , an−1〉 (which is
the same as the type of 〈b0, b1, . . . , bn−1〉) is definable (Do it!), so there is a
defining formula σ(ū) for ϕ(ū, x̄). Then M |= ϕ(c̄, ā)↔ σ(c̄)↔ ϕ(c̄, b̄). �

3.2.2 Characterizing minimal types

The are many different ways to characterize minimal types.

Theorem 3.2.10 Let p(x) be a type. Then p(x) is minimal iff p(x) is any one
of the following:

(1) indiscernible and unbounded;
(2) rare and end-extensional;
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(3) selective and definable;
(4) 2-indiscernible and unbounded;
(5) strongly indiscernible and definable.

Proof This is just a compilation of Lemmas 3.2.5, 3.2.6, 3.2.7, 3.1.13, 3.1.18,
3.1.19, 3.2.4, and 3.2.9. �

It is natural to ask, upon viewing the list in Theorem 3.2.10, whether (2) or
(3) can be replaced by weaker conditions. How about replacing “end-extensional”
with “definable” in (2) or replacing “definable” with “unbounded” in (3)? The
purpose of Exercises 3.6.14 and 3.6.17 is to show that in each of these cases there
are counterexamples showing this cannot be done.

In the previous section we saw in Theorem 3.1.4 that every completion of
PA∗ has 2ℵ0 unbounded, indiscernible types. Since these types are precisely the
minimal types, we get the existence of 2ℵ0 minimal types.

Unbounded rare types which are not definable are even more plentiful, as the
following theorem demonstrates.

Theorem 3.2.11 Suppose that M is a model and that d ∈ M and formula
ϕ(u, x) are such that ϕ(d, x) defines an unbounded subset of M . Then M has a
conservative extension N in which some a > M realizes a rare type and is such
that N |= ϕ(d, a).

Proof In the language of the structure (M,d), let q(d, x) be a minimal type
containing the formula ϕ(d, x), and let (N, d) be a q(d, x)-extension of M gener-
ated by the element a realizing q(d, x). Then (N, d) is a conservative extension
of (M,d), so N is a conservative extension of M . We show that the type p(x)
realized by a is rare by showing that Definition 3.1.14 holds.

Let t(x) be a Skolem term. Since q(d, x) is minimal, hence rare, there is a
formula θ(d, x) ∈ q(d, x) such that M |= ∀xy[θ(d, x) ∧ θ(d, y) ∧ x < y −→ t(x) <
y]. Let σ(d) be this sentence, and then let ψ(x) be the formula ∃u[σ(u)∧ϕ(u, x)].
Clearly, ψ(x) ∈ p(x) and M |= ∀xy[ψ(x) ∧ ψ(y) ∧ x < y −→ t(x) < y], proving
that p(x) is rare. �

Remark The rare type constructed in the previous proof can be made recursive
in tp(d). See the remark following the proof of Theorem 3.1.2.

Corollary 3.2.12 There is a rare type which is not definable.

Proof Let ϕ(u, x) be the formula ∃v[x = 〈u, v〉], and then let M be a model
with d ∈M not being definable. Apply Theorem 3.2.11. �
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More syntactical characterizations of minimal types can be given.

Theorem 3.2.13 Let p(x) be an unbounded type. Then p(x) is minimal iff for
every Skolem term t(u, x) there are a formula ϕ(x) ∈ p(x) and Skolem terms
t1(u) and t2(y) such that the sentence

∀u∃w[∀x > w
(
ϕ(x) −→ t(u, x) = t1(u)

) ∨ ∀x > w
(
ϕ(x) −→ t2(t(u, x)) = x

)]
is a consequence of T .

Proof There is another condition that a type p(x) can have that appears weaker
than the one in the theorem: for every Skolem term t(u, x) there are Skolem terms
t1(u) and t2(u, y) such that the formula

∀u∃w[x > w −→ (
t(u, x) = t1(u) ∨ t2(u, t(u, x)) = x

)
]

is in p(x).
Notice that the main difference between the formal sentence in the theorem

and the above formula is the arity of the Skolem term t2. For the one direction
of the theorem, we assume that p(x) satisfies this weaker condition. Consider a
model M of T and an elementary extension M(a), where a > M and a realizes
p(x). Suppose that M ≺ N � M(a). Then, there is a Skolem term t(u, x) and
there is an element b ∈M such that t(b, a) denotes an element c ∈ N\M . Then
there are the claimed Skolem terms t1(u) and t2(u, y), and either

M(a) |= t(b, a) = t1(b)

or

M(a) |= t2(b, t(b, a)) = a .

The first alternative is impossible since c ∈M , and the second alternative implies
that N = M(a), thereby proving that M(a) is a minimal extension of M .

Conversely, suppose that p(x) is a minimal type. Then p(x) is indiscernible,
so let ϕ(x) ∈ p(x) be the formula in Exercise 3.1.21 corresponding to the formula
θ(u, x, y) ≡ t(u, x) = t(u, y). [Roughly speaking, for each u, the function defined
by t(u, x) is either eventually constant or eventually one-to-one on ϕ(x).] Let
t1(u) be defined so that if t(u, x) is eventually constant on ϕ(x), then the value
of t1(u) is that constant. Let t2(u, x) be defined so that if t(u, x) is eventually
one-to-one on ϕ(x), then t2(u, x) is its inverse. Clearly t1(u) and t2(u, x) satisfy
the weaker condition.

To complete the proof of the theorem, we must show that the parameter u
in the Skolem term t2(u, x) can be dispensed with. Let θ(u) be the formula

∀w∃x∃y[ϕ(x) ∧ ϕ(y) ∧ w < x < y ∧ t(u, x) �= t(u, y)] .
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In words, θ(u) says that the function defined by t(u, x) is eventually one-to-
one on ϕ(x). We next consider a Skolem term f(z) which is defined by formal
induction but which we describe more informally. Let f(0) = 0. Inductively,
f(z + 1) is the least y such that the formula

∀u ≤ z∀v ≤ z∀w ≤ f(z)∀x ≥ y

[ϕ(x) ∧ ϕ(w) ∧ θ(u) ∧ θ(v) −→ t(u, x) > t(v, w)]

holds. Since p(x) is rare (by Lemma 3.2.4), there is a formula ψ(x) in p(x) such
that the sentences ∀x[ψ(x) −→ ϕ(x)] and ∀x∀y[ψ(x) ∧ x < y ≤ f(x) −→ ¬ψ(y)]
are in T . The significance of the formula ψ(x) is that if t(u1, x) and t(u2, x) define
functions which are eventually one-to-one on ϕ(x), then they eventually have
disjoint images on ψ(x). Moreover, this is true not just for two such functions
but for any bounded set of functions. Thus, we can get t2(y) which defines a
one-to-one function such that the sentence

∀x∀y∀u[ψ(x) ∧ t(u, x) = y ∧ ¬∃z∃v < u(ψ(z) ∧ t(v, z) = y) −→ t2(y) = x]

is in T . Then t1(u) and t2(y) satisfy the requirement of the theorem. �

Lemma 3.2.14 Let p(x) be an unbounded type. Then p(x) is minimal iff for
every Skolem term t(u, x) there is a formula ϕ(x) ∈ p(x) such that the sentence

∀u∃w[∀x∀y(ϕ(x) ∧ ϕ(y) ∧ w ≤ x < y −→ t(u, x) �= t(u, y)
)

∨ ∀x∀y(ϕ(x) ∧ ϕ(y) ∧ w ≤ x < y −→ t(u, x) = t(u, y)
)]

is a consequence of T .

In words, the formal sentence in the theorem asserts that each of the functions
defined by t(u, x) is either eventually one-to-one or eventually constant on the
set defined by ϕ(x).

Proof For one direction, suppose that p(x) is a minimal type and, therefore,
an indiscernible type. Let θ(u, x, y) be the formula t(u, x) = t(u, y), and apply
Exercise 3.1.21 to get ϕ(x).

For the converse, let p(x) satisfies the condition in the lemma with the aim
of showing that it is minimal. Let t1(u) be a Skolem term such that the sentence

∀u∀w
[
∀x∀y(ϕ(x) ∧ ϕ(y) ∧ w ≤ x < y −→ t(u, x) = t(u, y)

)
−→ ∀x(ϕ(x) ∧ w ≤ x −→ t(u, x) = t1(u)

)]
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is in T . Similarly, let t2(u, y) be such that

∀u∀w
[
∀x∀y(ϕ(x) ∧ ϕ(y) ∧ w ≤ x < y −→ t(u, x) �= t(u, y)

)
−→ ∀x(ϕ(x) ∧ w ≤ x −→ t2(u, t(u, x)) = x

)]
is in T . Then apply the previous theorem (or even the weaker version of that
theorem stated in its proof). �

3.2.3 An example

It is evident that every 2-indiscernible type is selective (Do it!). This subsection
contains an example of a bounded selective type that is not 2-indiscernible. This
example (or a variation of it) will reappear in Theorem 8.9.4.

The crucial combinatorial fact that is used in the proof of Theorem 3.2.15 is
the canonical version of a Ramsey-style theorem due to Erdős and Rado. Let I be
a finite index set, and for each i ∈ I, let Ai be a finite set. Let X =

∏
i∈IAi. Then

a function f is said to be canonical on X if there is K ⊆ I such that whenever
x, y ∈ X, then f(x) = f(y) iff xj = yj for each j ∈ K. If we wish to indicate the
set K, we say that f is K-canonical on X. Notice that if f is I-canonical, then
f is one-to-one on X, and if f is ∅-canonical, then f is constant on X.

Erdős–Rado Theorem: For any n, k < ω, there is m < ω such
that whenever |J | = k, |Aj | ≥ m for each j ∈ J , and f is a function
on

∏
j∈J Aj, then there are Bj ⊆ Aj for each j ∈ J such that each

|Bj | ≥ n and f is canonical on
∏

j∈J Bj.

We can think of this theorem as saying that if we start with a k-dimensional
m-box, then it has a k-dimensional n-subbox with the required property. The ER
Theorem has a consequence which is important in the proof of Theorem 3.2.15.
Suppose that f is K-canonical on the k-dimensional box Y =

∏
j∈J Bj as in the

conclusion of the ER Theorem, and let z be an arbitrary element of the box.
Then f is constant on the set

Z1 = {x ∈ Y : xj = zj for all j ∈ K}

and is one-to-one on

Z2 = {x ∈ Y : xi = zi for all i ∈ J\K} .

Just (Do it!). The sets Z1 and Z2, while technically not boxes, are naturally iso-
morphic to boxes. For example, the set Z2 can be thought of as a |K|-dimensional
n-box by considering the projection map x �→ x�K. Thus, we refer to Z1 as a
|J\K|-dimensional subbox of Y and Z2 as a |K|-dimensional subbox of Y . Since
k = |K|+ |J\K|, there is the following corollary.
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Corollary of the ER Theorem: For any n, k < ω, there is
m < ω such that whenever Y is a k-dimensional m-box and f is
a function on Y , then there is a ! 1

2 (k + 1)"-dimensional n-subbox
Z ⊆ Y on which f is either constant or one-to-one.

The Erdős–Rado Theorem and its corollary are formalizable in PA and their
proofs, which just involve some applications of FRT, are also formalizable in PA.

Theorem 3.2.15 Assume T does not have a standard model. There is a
bounded, selective type that is not 2-indiscernible.

Proof Let M0 be the prime model of T , and let r ∈ M0 be nonstandard. Let
h(x) be a Skolem term which defines a function that grows sufficiently fast with
respect to the Erdős–Rado Theorem and its corollary. What this means should
become apparent in the proof. Let 〈fn : n < ω〉 be a list of all the definable
functions f : M0 −→M0.

Working in M0, let A = [0, h(r)−1], and then let X = Ar. In other words, let
X be the set of (codes of) sequences of elements of A having length r. As usual,
if x ∈ X and i < r, then we denote the ith element of this sequence by (x)i.

We construct a complete type p(x) by defining a decreasing sequence of
definable large subsets X0 ⊇ X1 ⊇ X2 ⊇ · · · of M0, and then letting

p(x) = {ϕ(x) : M0 |= ∀x[x ∈ Xn −→ ϕ(x)], for some n < ω} .

A subset Y ⊆ X is large if, for some m < ω, Y is k-dimensional h(a−m)-subbox
of X, where km > a.

Let X0 = X, which clearly is large.
Now suppose that we have large Xn. In particular, Xn is a k-dimensional

h(a − m)-box, where km > a. At this stage we consider a definable function
fn : M0 −→M0. Applying the formalized ER Theorem and its corollary, we get
Y ⊆ Xn which is a ! 1

2 (k+1)"-dimensional h(a−m−1)-box on which fn is either
one-to-one or constant.

Since the characteristic functions of definable subsets of M0 appear in the
list of functions, it is evident that this construction produces a complete type
p(x) ∈ S1(T ). Clearly, this type is selective using the criterion of Exercise 3.2.3.

Notice, for each n < ω, that there are a, b ∈ Xn such that |{i < r : (a)i �=
(b)i}| = 1. Therefore, there are M |= T and a, b ∈ M such that |{i < r :
(a)i �= (b)i}| = 1. And similarly, there are M |= T and a, b ∈ M such that
|{i < r : (a)i �= (b)i}| = 2. Thus there are at least two different complete 2-types
q(x, y) containing p(x)∪ p(y). (Exercise: How many are there?) Hence, p(x) is
not 2-indiscernible. �

3.3 Canonical extensions

The fundamental MacDowell–Specker Theorem asserting that every model of
PA∗ has an elementary end extension was proved in Chapter 2. The extensions
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constructed in that proof were conservative extensions generated by an arbitrary
definable type. We saw in the previous sections that minimal types are defin-
able, so minimal types could also be used in the proof of the MacDowell–Specker
Theorem. Indeed, this is just what Gaifman did to obtain the following
improvement of the MacDowell–Specker Theorem.

Theorem 3.3.1 Every model of PA∗ has a conservative, minimal end extension.

Proof By Theorem 3.1.2, there are unbounded indiscernible types which, by
Theorem 3.2.10, are minimal and definable. Such a type can be used to get
a conservative extension which, following the definition of minimal type, is a
minimal extension. �

The minimal elementary end extension of M constructed in the previous
proof is just a p(x)-extension of M(a), where p(x) is a minimal type. Such a
model is referred to as a canonical extension of M . More generally, if (I,<)
is a linearly ordered index set, then an I-canonical extension of M is a model
M(〈ai : i ∈ I〉) which is a (p(x))I -extension of M for some minimal type p(x), a
notion defined in the next subsection.

3.3.1 Products of types

There is a natural way to iterate p(x)-extensions, where p(x) is a definable type.
Considerations of such iterations lead to the notion of the product of definable
types. If p(x), q(y) ∈ S1(T ) are definable types. (Actually, only the definability of
q(y) is crucial.) Then p(x)×q(y) is the 2-type r(x, y) ∈ S2(T ) obtained as follows:
Let M(a) be a prime model of p(x), and let M(a)(b) be a q(y)-extension of M(a).
Then r(x, y) is the type realized by the pair (a, b). It is also possible to give a
syntactic definition of the product using defining schemes (Do it!). Either way,
the definition easily extends to the product of an n-type and a definable type,
producing an (n+1)-type. Thus, given types p0(x0), p1(x1), . . . , pn(xn) ∈ S1(T ),
where all (except possibly p0(x0)) are definable types, we can make the inductive
definition

p0(x0)× p1(x1)× · · · × pn(xn) = (p0(x0)× p1(x1)× · · · × pn−1(xn−1))× pn(xn)

resulting in a complete (n+ 1)-type.
This product of types has all the nice properties you would expect. Two of

these appear in the following two exercises.

Exercise 3.3.2 If p0(x0), p1(x1), . . . , pn(xn) are definable types, then the (n+
1)-type p0(x0)× p1(x1)× · · · × pn(xn) is also definable.]

Exercise 3.3.3 Suppose that p0(x0), p1(x1), . . . , pn(xn) ∈ S1(T ) are definable
types and 0 ≤ i0 < i1 < · · · < ik ≤ n. Then pi0(xi0)× pi1(xi1)× · · · × pik(xik) ⊆
p0(x0)× p1(x1)× · · · × pn(xn). ]
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The previous exercise has a more model-theoretic rendition. Suppose we have
the types as in Exercise 3.3.3 and that M(a0, a1, . . . , an) and M(b0, b1, . . . , bk)
are p0(x0)×p1(x1)×· · ·×pn(xn)-extensions and pi0(xi0)×pi1(xi1)×· · ·×pik(xik)-
extensions, respectively, of M . Then there is a unique elementary embedding of
M(b0, b1, . . . , bk) into M(a0, a1, . . . , an) that is the identity on M and takes each
bj to aij . With all these elementary embeddings available, it is possible to define
infinite products.

Let (I,<) be a (possibly infinite) linearly ordered set. For each i ∈ I, let
pi(xi) be a definable type, where to each distinct i there corresponds a distinct
variable xi. We can then form a big elementary extension M(〈ai : i ∈ I〉) of M
by taking the union of all possible M(ai0 , ai1 , . . . , aik), where i0 < i1 < · · · < ik
are in I and M(ai0 , ai1 , . . . , aik) is a pi0(xi0)× pi1(xi1)× · · ·× pik(xik)-extension
of M . Then M(〈ai : i ∈ I〉) is a ∏{pi(xi) : i ∈ I}-extension of M .

Exercise 3.3.4 Let (I,<) be a linearly ordered set, and let pi(xi) be a definable
type for each i ∈ I. Suppose that N = M(〈ai : i ∈ I〉) is a

∏{pi(xi) : i ∈ I}-
extension ofM . Let g be an automorphism ofM and h an automorphism of (I,<)
such that pi(x) = pf(i)(x) for every i ∈ I. Then there is a unique automorphism
h of N extending g such that g(ai) = af(i) for each i ∈ I. �

If p(x) is a minimal type and each pi(xi) = p(xi) for i ∈ I, where (I,<)
is a linearly ordered set, then (p(x))I =

∏{pi(xi) : i ∈ I}. We refer to a
(p(x))I -extension as an I-canonical extension.

It can be that when considering an I-canonical extension, we are not so much
interested in the ordered set I as in its order type. In such a case, we refer to a
τ -canonical extension, where τ is the order type of I. For example, τ may be an
ordinal. If τ is the order type of (I,<), then τ∗ is the order type of its reversal
(I,>).

The I-canonical extensions of a model are more amenable to successful
investigations than are arbitrary extensions. This applies, in particular, to their
automorphism groups and their substructure lattices. Both of these topics, auto-
morphism groups and substructure lattices, are considered in this section, but
in later chapters they are studied more intensively.

However, our first example has to do with the order type of the set of gaps of
a model. Clearly, every model has a first gap, namely gap(0). In general, there
is nothing more that can be said.

Theorem 3.3.5 Let M be a model whose set of gaps has order type α. Let τ be
an order type, and let N be a τ -canonical extension of M . Then the set of gaps
of N has order type α+ τ .

Proof Let I be an ordered set having order type τ , and let N be an I-
canonical extension of M using the minimal type p(x). (We can assume that
I is chosen so that its elements are actually the elements of N which gener-
ate the extension of M .) Every element b of N has the form t(a, i0, i1, . . . , in),
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where t(u, x0, x1, . . . , xn) is a Skolem term, a ∈ M , and i0 < i1 < · · · < in are
elements of I. Consider such an element b. It suffices to show that either b ∈M
or gap(b) = gap(i) for some i ∈ I.

The reader had been asked in Exercise 3.1.23 to formulate and prove a state-
ment asserting that indiscernible types (and so in particular p(x)) are uniformly
canonical Ramsey types. The intent was for the reader to show that for each
subset J ⊆ {0, 1, 2, . . . , n}, there is a formula σJ(u) and there is a Skolem term
t∗J(u, y0, y1, . . . , ym−1), where m = |J |, such that the sentence

∀u
∨
J

σJ(u)

is a consequence of T as are the sentences

∀u∀ȳ∀z̄[σJ(u) ∧ t∗J(u, ȳ) = t∗J(u, z̄) −→ ȳ = z̄]

and

∀u∃w∀x̄[σJ(u) ∧ w < x0 < x1 < · · · < xn ∧ ϕ(x0) ∧ ϕ(x1) ∧ · · · ∧ ϕ(xn)

−→ t(u, x0, x1, . . . , xn) = t∗J(u, xi0 , xi1 . . . , xim−1)],

where J = {i0, i1, . . . , im−1} and i0 < i1 < · · · < im−1 ≤ n. Now let J =
{i0, i1, . . . , im−1} be such that M |= σJ(a). If m = 0, then b ∈ M . If m > 0,
then there is a term s(u, y) such that N |= s(a, b) = im−1, from which it follows
that gap(b) = gap(im−1). �

Corollary 3.3.6 If τ is any order type, then there is a model N of T whose set
of gaps has order type 1 + τ .

Proof In Theorem 3.3.5, let M be the prime model of T . �

3.3.2 The automorphism group

We next look at automorphism groups. Recall that if G is a group acting on a set
X and if A ⊆ X, then G{A} is the setwise stabilizer of A, which is the subgroup of
G consisting of those elements of G which fix the set A, and G(A) is the pointwise
stabilizer consisting of those elements of G which fix each point in A. In partic-
ular, if M is a model and A ⊆ M , then Aut(M){A} = {f ∈ Aut(M) : f(a) ∈
A iff a ∈ A} and Aut(M)(A) = {f ∈ Aut(M) : f(a) = a for all a ∈ A}. The fol-
lowing theorem gives us a description of those automorphisms of an I-canonical
extension which pointwise fix the ground model. We see in the corollary that all
such automorphisms are uniquely determined by an automorphism of I.
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Theorem 3.3.7 Let N be an I-canonical extension of M , where N = M(〈ai :
i ∈ I〉).
(1) If f ∈ Aut(N){M}, then there is h ∈ Aut(I,<) such that f(ai) = ah(i) for

each i ∈ I.
(2) Conversely, if h ∈ Aut(I,<) and g ∈ Aut(M), then there is a unique f ∈

Aut(N) such that f extends g and f(ai) = ah(i) for each i ∈ I.

Proof Let p(x) be the minimal type used in obtaining the I-canonical exten-
sion.

(1) As we saw in the proof of Theorem 3.3.5, every new gap contains an element
realizing p(x). Since p(x) is a minimal (hence, rare) type, there are no
other new elements realizing p(x). Thus f just permutes the new gaps and,
therefore, determines h ∈ Aut(I,<).

(2) This is a special case of Exercise 3.3.3. �

Corollary 3.3.8 If (I,<) is a linearly ordered set and N an I-canonical
extension of M , then Aut(M)(M)

∼= Aut(I,<).

Corollary 3.3.9 If (I,<) is a linearly ordered set and M an I-canonical
extension of the prime model, then Aut(M) ∼= Aut(I,<).

Corollary 3.3.10 For every cardinal κ ≥ ℵ1, every completion of PA∗ has a
rigid κ-like model.

Proof Let I have order type κ. �

The question of which groups can appear as (being isomorphic to) the auto-
morphism group of a model of Peano Arithmetic is answered in a later chapter.
The following lemma is useful in answering this question. For now, the lemma is
used to answer the question in some special cases.

Lemma 3.3.11 If M is a model, then for some ordered set I of cardinality at
most |M |, every I-canonical extension N0 of M satisfies the following:

(1) each automorphism of M is extendible to exactly one automorphism of N0;
(2) if N �end N0, then Aut(N) = Aut(N){M} = Aut(N){N0}. �

Letting N = N0 in (2), we see that Aut(N0) = Aut(M), essentially.

Proof We begin with two remarks about order types. The first one concerns
ordinals. An ordinal τ is indecomposable if whenever τ = α+β, then either β = 0
or β = τ . Then, an ordinal τ is indecomposable iff either τ = 0 or τ = ωγ for
some γ (Do it!). Thus, for any uncountable cardinal κ, there are arbitrarily
large indecomposable ordinals τ < κ.
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The second remark also concerns ordinals but also concerns an arbitrary order
type τ . If τ is the order type of a linearly ordered set (J,<) having cardinality
κ, then there is an ordinal α < κ+ such that whenever τ = τ0 + β + τ1, where β
is an ordinal, then β < α. For each i ∈ J , let

Bi = {j ∈ J : i ≤ j and [i, j] is well-ordered by <}.

Since κ+ is a regular cardinal, we can let α < κ+ be greater than the order type
of each of the Bi’s.

For an order type τ , we let τ∗ be the reverse order type. Thus, if (J,<) has
order type τ , the (J,>) has order type τ∗.

We return to the proof of the lemma per se, but we first prove a weaker
version in which (2) is replaced by:

(2′) if N1 �end N0, then Aut(N1) = Aut(N1){M}.
Let τ be the order type of the set of gaps of M , and let κ = |M |. Applying the

second remark, there is an ordinal α < κ+ such that whenever τ∗ = τ0 + β + τ1,
where β is an ordinal, then β < α. The first remark implies that we can assume
that α is indecomposable. Let N0 be an α∗-canonical extension of M .

Clearly, (1) follows from Theorem 3.3.7 since α∗, considered as a linearly
ordered set, is rigid. For (2′), let N0 = M(〈ai : i < α〉), let N be an elementary
end extension of N0, and let f ∈ Aut(N). For a contradiction, assume that
f �∈ Aut(N){M}. By considering f−1 instead of f if needed, we can assume that
f(M) ⊆ M . Suppose f(M) � M and, therefore, f(ai) ∈ M for some i < α.
Then the order type of the set of those gaps gap(f(aj)), where i ≤ j < α, must
be α∗, by the indecomposability of α. This contradicts the choice of α.

Finally, to get N0 as in the lemma, let M0 � M be an extension of M
as in the lemma with the weaker condition (2′). Obtain an elementary chain
〈Mn : n < ω〉, where each Mn+1 is an elementary extension of Mn as in the
weaker version of the lemma. Finally, letting N0 =

⋃
n<ω Mn, conditions (1) and

(2) are easily checked (Do it!), completing the proof. �

Corollary 3.3.12 Let M be a model and (I,<) a linearly ordered set. Then
M has a conservative extension N such that |N | = |M | + |I| and Aut(N) ∼=
Aut(M)×Aut(I,<).

Proof Let N0 be as in the previous lemma, and then let N be a canonical
I-extension of N0. �

Strengthening the notion of a rigid model, we say that M is very rigid if it
is rigid and whenever N ≺end M , then N �∼= M . We see in Theorem 3.3.14 that
every model has a very rigid elementary end extension. A preliminary lemma is
needed.
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Lemma 3.3.13 For every M there is a N �end M such that |N | = |M | and
whenever N ′ �end N and f : N −→ N ′ is an isomorphism, then f is the identity
on M .

Proof This proof repeatedly applies Theorem 3.2.11, with ϕ(u, x) being the
formula ∃y[x = 〈u, y〉]. This particular formula was chosen because, first of all,
PA∗ � ∀u∀w∃x[x > w ∧ ϕ(u, x)], and, second, there is a Skolem term t(x) such
that PA∗ � ∀x∀u[ϕ(u, x)→ t(x) = u].

Let κ = |M |, and let M = {dα : α < κ}. We construct a continuous element-
ary chain 〈Nα : α < κ〉, where N0 = M and |Nα| = κ for each α < κ. We then
let N =

⋃{Nα : α < κ}.
Now suppose we have Nα and wish to get Nα+1. First, use Theorem 3.2.11

to get N ′
α = Nα(aα) which is a conservative extension of Nα generated by the

element aα that realizes a rare type such that N ′
α |= ϕ(dα, aα). Second, use

Lemma 3.3.11 to get Nα+1�end N ′
α satisfying the requirements of that lemma.

Clearly N �end M and |N | = κ = |M |.
To show that N is as required, consider N ′ �end N and isomorphism f :

N −→ N ′, intending to show that f is the identity on M . By Lemma 3.3.11(2),
for each α < κ, f(Nα+1) = Nα+1 and f(N ′

α) = N ′
α. Therefore, N

′ = N so that
f ∈ Aut(N). Since f�N ′

α ∈ Aut(N ′
α) for each α < κ and aα realizes a rare type

in the last gap of N ′
α, it follows that f(aα) = aα. Since dα = t(aα), it follows

that f(dα) = dα. Thus, f is the identity on M . �

Theorem 3.3.14 For every M there is a very rigid N �end M such that |N | =
|M |.

Proof Let N =
⋃{Nn : n < ω}, where N0 = M and each Nn+1 is an elementary

extension of Nn obtained by applying Lemma 3.3.13. �

3.3.3 The substructure lattice

Given any model M we define Lt(M), the set of elementary substructures of M
considered as a lattice, to be the substructure lattice of M . Chapter 4 of this
book is devoted to substructure lattices, where a more detailed definition can
be found. The following proposition yields some corollaries and also serves as
an introduction to substructure lattices which are more fully discussed in that
chapter.

Proposition 3.3.15 Let N be an I-canonical extension of M , where N =
M(〈ai : i ∈ I〉).
(1) If N0 ≺ N , then N0 = Scl((M ∪ {ai : i ∈ I}) ∩N0);
(2) If N1 � M , J ⊆ I, and N0 = Scl(N1 ∪ {ai : i ∈ J}), then N1 = N0 ∩M ,

and {ai : i ∈ J} = {ai : ai ∈ N0}.
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Proof (1) This can be proved the way that (1) of Theorem 3.3.7 was (Do it!).
(2) Clearly, N1 � N0 ∩M , so for the first equality, it suffices to show that

N0 ∩M � N1. Let t(x) be a Skolem term, possibly involving some ai for i ∈ J ,
and let b ∈ N1 be such that t(b) = c ∈M . Thus, c is a typical element of N0∩M .
It follows from Proposition 2.2.11 that there is a defining formula σ(x, y) (with
no additional parameters) such that whenever b′, c′ ∈ M , then M |= σ(b′, c′) iff
N |= t(b′) = c′. Then c is the unique element in M such that M |= σ(b, c), so c
is definable from b. Therefore, c ∈ N1.

The second equality can be proved like (2) of Theorem 3.3.7 (Do it!). �

Corollary 3.3.16 For any set I each model M has an elementary end extension
N such that Lt(N) ∼= Lt(M)× P(I).
Corollary 3.3.17 Let I be any set and T any completion of PA∗. Then T has
a model M such that Lt(M) ∼= P(I).
Exercise 3.3.18 There is M such that |M | = 2ℵ0 , no two distinct elements of
M realize the same type, and Lt(M) ∼= P(R).

The next exercise puts a restriction on possible generalizations of Theorem
2.1.1.

Exercise 3.3.19 Let M be a model and (I,<) a linearly ordered set having
no last element. Let N be an I-canonical extension of M . Then N has cofinal
substructures N1, N2 such that M = N1 ∩N2.

3.4 Resolute types

Suppose that M1 is a model, p(x) is a definable type, and M1(b) is a p(x)-
extension of M1. Let M0 be the prime submodel of M1, and let M0(b) the
elementary submodel of M1(b) generated by b. Then M0(b) is a p(x)-extension
of M0. Now consider a model N1 where M1 � N1 � M1(b). Then M0 � N1 ∩
M0 � M0(b). Thus, there is a function N1 �→ M1 ∩ M0(b) which maps an
arbitrary model between M1 and M1(b) to an elementary substructure of M0(b).
In general, this function is onto; in fact, whenever N � M0(b) and N1 is the
elementary substructure of M1(b) generated by M1 ∪N0, then N = N1 ∩M0(b)
(Do it!). Resolute types are those definable types for which this function is
always one-to-one.

Definition 3.4.1 Suppose that p(x) is a nonprincipal definable type. Then p(x)
is a resolute type if whenever M0 ≺M1 are models of T , M0(b),M1(b) are p(x)-
extensions of M0,M1 respectively, and M1 � N0, N1 � M1(b) are distinct, then
N0 ∩M0(b) and N1 ∩M1(b) are distinct.

In this section we take a look at resolute types, which lie strictly between
minimal types and definable types. That is, all minimal types are resolute and
all resolute types are definable, with examples showing that both inclusions are
proper. The significance of resolute types becomes more apparent in Chapter 4.
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The next proposition gives a more syntactic characterization of resolute types.

Proposition 3.4.2 Suppose that p(x) is a nonprincipal definable type. Then
p(x) is resolute iff whenever M(b) is a p(x)-extension of M , t(u, x) is a Skolem
term, and c ∈ M , then there are Skolem terms f ′(u, y), f ′′(u, z), and f(x) such
that the sentence

f ′(c, f(b)) = t(c, b) ∧ f ′′(c, t(c, b)) = f(b)

is true in M(b).

Proof For the one direction, assume that p(x) satisfies the condition in
this proposition. To see that Definition 3.4.1 is satisfied, consider models
M0,M1,M0(b),M1(b), N0 and N1 in that definition. Without loss of general-
ity, assume that a ∈ N1\N0. Let t(u, x) be a Skolem term and c ∈ M1 be such
that a = t(c, b). Then there are the Skolem terms f ′(u, y), f ′′(u, z), f(x) having
the requisite property. Then, we claim that f(b) ∈ (N1 ∩M0(b))\(N0 ∩M0(b)).

Clearly, f(b) ∈ M0(b), also f(b) = f ′′(c, a) ∈ N1. Finally, f(b) �∈ N0, as
otherwise a = f ′′(c, f(b)) ∈ N0, which is a contradiction. Thus, p(x) is resolute.

For the other direction, assume that p(x) is resolute and that M(b) is a p(x)-
extension of M . Let t(u, x) be a Skolem term and c ∈ M . Then let a = t(c, b),
and let N = M(a) ∩M(b). Due to the resoluteness, we can assume that M is
generated by c.

We claim that N is finitely generated. For, if not, then there is an increasing
chain 〈Ni : i < ω〉 of elementary submodels of N whose union is N . Let Mi be the
submodel of M(b) generated by M ∪Ni. Then 〈Mi : i < ω〉 is also an increasing
elementary chain; let Mω be its union. Then Mω∩M(b) = M(a)∩M(b) (Do it!),
so by resoluteness, Mω = M(a). But Mω is not a finitely generated extension of
M and M(a) is, which is a contradiction.

Hence, there is a Skolem term f(x) such that f(b) ∈ N generates N . Notice
that by resoluteness, a ∈ Scl(c, f(b)), thereby showing the existence of f ′(u, y).
Similarly, f(b) ∈ Scl(c, a), thereby showing the existence of f ′′(u, z). �

In the characterization of resolute types in the previous proposition, the
choice of the Skolem terms depends upon the model M and the definable function
t(c, ·). In the case of a minimal type, the Skolem term f(x) can always be the
one defining the constant function 0 or the identity function. The choice depends
upon whether t(c, b) ∈M or t(c, b) �∈M (Do it!). If a resolute type is such that
there is a supply of n+1 Skolem terms from which the choice of f(x) can always
be made, then we say that the type is n-resolute. The following is the formal
definition:

Definition 3.4.3 Let n < ω and p(x) ∈ S1(T ) be a type. Then p(x)
is an n-resolute type if it is unbounded and there are Skolem terms
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t0(x), t1(x), . . . , tn(x) such that for every Skolem term t(u, x) there is a formula
ϕ(x) ∈ p(x) such the sentence

∀u
∨
i≤n

∃w∀x > w∀y > w[ϕ(x) ∧ ϕ(y) −→ (
t(u, x) = t(u, y)←→ ti(x) = ti(y)

)
]

is in T .

The 0-resolute types are just the principal types.

Proposition 3.4.4 If 1 ≤ n < ω, then every n-resolute type is resolute.

Proof Let p(x) be n-resolute, with n being minimal. Let t0(x), t1(x), . . . , tn(x)
be Skolem terms as in Definition 3.4.3. Without loss of generality, we can assume
that T � ∀x[t0(x) = 0 ∧ t1(x) = x].

We first show that p(x) is definable. Consider a formula ψ(u, x) with the
intent of finding a defining formula σ(u) for it. We might as well assume that
ψ(d, x) ∈ p(x) for some constant term d, as otherwise we could just let σ(u) be
the formula u �= u. Let t(u, x) be a Skolem term such that

T � ∀u∀x[(ψ(u, x) −→ t(u, x) = 0) ∧ (¬ψ(u, x) −→ t(u, x) = x+ 1)] .

Let ϕ(x) ∈ p(x) be as in Definition 3.4.3. Let σ(u) = ∃w∀x > w[ϕ(x) −→
t(u, x) = 0]. We claim that σ(u) is a defining formula for ϕ(u, x). To prove this
claim, consider a constant term c.

If T � σ(c), then T � ∃w∀x > w[ϕ(x) −→ t(c, x) = 0], so that T � ∃w∀x >
w[ϕ(x) −→ ψ(c, x)]. Therefore, ψ(c, x) ∈ p(x).

Conversely, assume that ψ(c, x) ∈ p(x). Then there is i ≤ n for which

∃w∀x > w∀y > w[(ϕ(x) ∧ ϕ(y)) −→ (t(c, x) = t(c, y)←→ ti(x) = ti(y))]

is a consequence of T . It cannot be that i > 1. For, notice that the function
defined by t(c, x) is constant on {x : t(d, x) = 0} and is one-to-one on its comple-
ment. Therefore, there is a formula δ(x) ∈ p(x) on which ti(x) is either constant
or one-to-one. Therefore, ti(x) is superfluous, contradicting the minimality of n.
Thus, i = 0 or i = 1. But i �= 1 since ψ(c, x) ∈ p(x), so that i = 0. Therefore,
T � σ(c), completing the proof that p(x) is definable. �

It is now clear that the 1-resolute types are precisely the minimal types (Do
it!).

Recall that if p(x) is a definable type and M0(a) is a p(x)-extension of the
prime model M0, then every element of M0(a) realizes a definable type. Resolute
types behave in a similar way: if p(x) is a resolute type and M0(a) is a p(x)-
extension of the prime model M0, then every nondefinable element of M0(a)
realizes a resolute type (Do it!). This suggests a definition. We say that a
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model M is resolute if each nondefinable element in M realizes a resolute type.
The definition of a resolute model can be generalized to a resolute extension.
If M ≺ N , then N is a resolute extension of M if its expansion (N, a)a∈M

is resolute. Thus, a model is resolute iff it is a resolute extension of its prime
submodel.

Let M be any model and N a conservative extension of the prime model.
We make use of the amalgamation M � N over the prime model as discussed in
Theorem 2.3.2 and defined in Definition 2.3.7. Recall that M�N is a conservative
extension M .

Corollary 3.4.5 The model N is resolute iff N is a conservative extension of
its prime submodel M0 and the following holds: whenever M0 � M � N0 ≺ N1 �
M�N , then N0 ∩N ≺ N1 ∩N . �

Corollary 3.4.6 If M1,M2 are resolute, then so is M1�M2.

Proof Corollary 3.4.5 is used. Let M0 be the prime model, and consider

M0 � M � N0 ≺ N1 � M�(M1�M2),

intending to show thatN0∩(M1�M2) ≺ N1∩(M1�M2). We consider two cases.

First case: assume that (M�M1) ∩ N0 = (M�M1) ∩ N1. Then (M�M1) �
N0 ≺ N1 � (M�M1)�M2. Since M2 is resolute, then N0 ∩M2 ≺ N1 ∩M2, so
that N0 ∩ (M1�M2) ≺ N1 ∩ (M1�M2).
Second case: assume that (M�M1)∩N0 ≺ (M�M1)∩N1. Let N ′

i = (M�M1)∩
Ni. Since M1 is resolute, then N ′

0 ∩M1 ≺ N ′
1 ∩M1, so that N0 ∩M1 ≺ N1 ∩M1.

Therefore, N0 ∩ (M1�M2) ≺ N1 ∩ (M1�M2). �

The previous corollaries allow us to construct new resolute types from old
ones. It has already been noted that minimal types are resolute, so that minimal
types can be used. The following theorem shows that not just minimal types can
be used.

Theorem 3.4.7 If M is resolute and N is a minimal, conservative extension
of M , then N is resolute.

Proof Let M0 be the prime model. Suppose that M0 � M1 � N0 ≺ N1 �
M1�N , with the intention of showing thatN0∩N ≺ N1∩N . (See Corollary 3.4.5.)

We can assume that N0 ∩ (M1�M) = N1 ∩ (M1�M), as otherwise the
resoluteness of M would imply that N0 ∩M ≺ N1 ∩M .

Let N ′
0 = Scl(N0 ∪M) and N ′

1 = Scl(N1 ∪M). We claim that N ′
0 ≺ N ′

1.
Assume that this is not so, and choose some c ∈ N1\N0. Then c ∈ N ′

0, so
there are elements a ∈ N0 and b ∈ M and a Skolem term t(u, v) such that
c = t(a, b). Now let d ∈ M1�N be the least element such that c = t(a, d). Since
d ≤ b ∈ M1�M ≺end M1�N , it follows that d ∈ M1�M . Clearly, d ∈ N1. Thus,
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d ∈ N1 ∩ (M1�M), and then, by the earlier assumption, d ∈ N0 ∩ (M1�M).
It follows then that c ∈ N0, which is a contradiction, proving the claim that
N ′

0 ≺ N ′
1.

Since N is a minimal, resolute extension of M , the previous claim implies
that N ′

0 = M1�M and N ′
1 = M1�N . But then N0 � M1�M , so that N0 = N1,

which is a contradiction. �

There is a companion result to Theorem 3.4.7 for cofinal extensions, but it is
not quite as neat. Suppose I ⊆end M and p(x) ∈ S1(M). Then say that the type
p(x) is uniformly selective over I if it is selective and, in addition, whenever
t(u, x) is a Skolem term in the language L(M) and i ∈ I, then there is a formula
ϕ(x) in p(x) such that the sentence

∀u ≤ i[∀x(ϕ(x) −→ t(u, x) > i) ∨ ∃y ≤ i∀x(ϕ(x) = y)]

is in T .

Theorem 3.4.8 Let M be a resolute model generated by a proper cut I ⊆end M .
Let p(x) ∈ S1(M) be a bounded type that is uniformly selective over I. If N is a
p(x)-extension of M , then N is resolute.

Proof First observe that N is a minimal extension of N since p(x) is selective.
Let M0 be the prime model. Since M is resolute, it is a conservative, hence end,
extension of M0. Thus, we can assume that M0 < I.

The proof now parallels the proof of Theorem 3.4.7.
Suppose that M0 � M1 � N0 ≺ N1 � M1�N , with the intention of showing

that N0 ∩N ≺ N1 ∩N . As in the proof of Theorem 3.4.7, we can assume that
N0 ∩ (M1�M) = N1 ∩ (M1�M).

We again let N ′
0 = Scl(N0 ∪ M) and N ′

1 = Scl(N1 ∪ M) and claim that
N ′

0 ≺ N ′
1. The same proof works here except for one point: we do not have that

M1�M ≺end M1�N . But we do have a replacement fact that suffices.
Since I ⊆end M ≺M1 �M , we let J = sup(I)⊆end M1 �M . Then the replace-

ment fact is : M1 �N is a J-extension of M1 �M . To see this, suppose that q ∈ J ,
and let i ∈ I\M0 be such that q ≤ i. The goal is to show that q ∈M1 � M .

There are a Skolem term t(u, x) in the language L(M) and c ∈M1 such that
t(c, b) = q. Let ϕ(x) ∈ p(x) be as in the definition of a uniformly selective type;
that is, ϕ(x) is an L(M)-formula such that M1 � N |= ϕ(b) and the displayed
sentence above is true in M1 � N . Since M0 < i ∈ I, then c < i. Thus, either

∀x[ϕ(x) −→ t(c, x) > i]

or

∃y ≤ i∀x[ϕ(x) −→ t(c, x) = y]
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is true in M1 � M . Since t(c, b) ≤ i, it must be that the second sentence holds,
and therefore, t(c, b) ∈ Scl(M ∪ {i, c}) ⊆M1 � M . �

Corollary 3.4.9 Let M be a nonstandard countable resolute model generated by
a proper cut I ⊆end M . Then M has a superminimal cofinal I-extension N that
is resolute.

Proof Recall (Exercise 2.5.2) that M has a superminimal cofinal I-extension N .
When constructing the type p(x) ∈ S1(M) such that N is p(x)-extension of M ,
interlace into the construction the requirements to make p(x) uniformly selective
over I (Do it!). �

3.5 The Paris–Mills theorems

Indiscernible types are used in this section to prove the Second Paris–Mills
Theorem. The proof of the First Paris–Mills Theorem, which is also presented
in this section, uses types related to indiscernible types.

It was shown in Proposition 2.1.14 that if M � N , then GCIS(M,N) is a
cut of M closed under multiplication, and a converse to this was proved in The-
orem 2.1.16. An improvement to Theorem 2.1.16 will be given in Theorem 3.5.3.
A definition is needed.

Definition 3.5.1 If M is a model of PA∗ and X ⊆M , then we define the outer
cardinality of X to be OC(X) = min{|D| : X ⊆ D ∈ Def(M)}.

Notice that OC(X) is a cardinal number which depends not only on the set
X but also the model M which it is a subset of. Our interest in outer cardinality
is restricted to just cuts. If I ⊆end M is a proper cut, then OC(I) = min{|aM | :
I < a ∈M} (Do it!).

Corollary 3.5.2 If I ⊆end M is such that OC(I) > |I|, then I is closed under
multiplication.

Proof Let M0 = Scl(I). Then |M0| < OC(I), so GCIS(M0,M) = I. Hence, I
is closed under multiplication by Proposition 2.1.14. �

The previous corollary has a converse, at least for countable M .

Theorem 3.5.3 (The First Paris–Mills Theorem) Suppose thatM is count-
able and I ⊆end M is closed under multiplication. Then M has an elementary
extension N such that GCIS(M,N) = I and OCN (I) = 2ℵ0 .

This theorem raises the question of whether we can increase the cardinal 2ℵ0

occurring in it. The next proposition places a restriction on doing this.

Proposition 3.5.4 If I ⊆end M is a cut such that OC(I) > 2|I|, then I is closed
under exponentiation.
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Proof Suppose that a ∈ I. Then, in M , there is a definable bijection f from
[0, 2a−1] to what M thinks is the powerset of [0, a−1]. But then, f is in actuality
an injection from [0, 2a− 1] into P([0, a− 1]). Since |[0, a− 1]| ≤ |I|, we get that
|[0, 2a − 1]| ≤ 2|I|, so that 2a ∈ I. �

This proposition also has a converse, at least for countable M .

Theorem 3.5.5 (The Second Paris–Mills Theorem) Suppose that M is
countable and I ⊆end M is closed under exponentiation. Then for any infinite
cardinal λ, M has an elementary extension N such that GCIS(M,N) = I and
OCN (I) = λ.

The proofs of the two Paris–Mills theorems will now be presented. For the
proof of the second, to be given first, the following lemma is quite useful.

Lemma 3.5.6 Assume that 1 ≤ n < ω. Let M be a countable model and let
p(x) ∈ S1(M) be an indiscernible bounded type. Let I = inf{cardM (ϕ(x)) :
ϕ(x) ∈ p(x)}. Let M(ā) be a pn(x̄)-extension of M , where pn(x̄) is the unique
complete n-type extending {x0 < x1 < · · · < xn−1}∪p(x0)∪p(x1)∪· · ·∪p(xn−1).
Then I = GCIS(M,M(ā)).

Proof First we show that GCIS(M,M(ā)) ⊆ I. It suffices to show this just for
the case n = 1. Suppose b ∈ M\I. Then there is a formula ϕ(x) ∈ p(x) such
that cardM (ϕ(x)) ≤ b. Proceeding informally, let t(x) be the Skolem term such
that: if ϕ(x) and t(x) = y, then x is the yth element in the set defined by ϕ(x).
Clearly, t(a) < cardM (ϕ(x)) ≤ b, so t(a) > I. (Notice that this part of the proof
made no use of the indiscernibility of p(x).)

Next, we show the converse inclusion, that I ⊆ GCIS(M,M(ā)), by induction
on n. Consider some n, assuming the inclusion holds for all smaller values.
Suppose b ∈ I and c ∈ M(ā)\M , aiming for a contradiction. Let t(x̄) be an
n-ary Skolem term such that c = t(ā). It follows from the inductive hypothesis
(Do it!) that there is a formula ϕ(x) ∈ p(x) which forces that t(x̄) is a one-to-
one function (as defined just before Exercise 3.1.22). Suppose c < b, and then
by indiscernibility and Exercise 3.1.8, we can also assume that all values of t(x̄)
on ϕ(x) are less than b. Thus, cardM (ϕ(x)) ≤ b, contradicting that b ∈ I. �

Proof of Theorem 3.5.5 The way the theorem is stated, it is possible that
I = M . If that is the case, we make the preliminary move of taking a countable
elementary end extension of M . Thus, without loss of generality, we can assume
that I is bounded.

This proof not only makes use of FRT inside the model M but also makes
use of numerical bounds for Ramsey numbers. For natural numbers h, n, c, let
R(h, n, c) be the least number r such that whenever |X| ≥ r and P : [X]n −→ c,
then there is a subset H ⊆ X such that |H| = h and P is constant on [X]n.
Ramsey’s Theorem for n = 1 is just the Pigeon-hole Principle, and in this case
the exact value of R(h, 1, c) is easily calculated: R(h, 1, c) = c(h−1)+1. There are
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various proofs of FRT, some yielding no information about the size of R(h, n, c).
On the other hand, there are proofs that yield the following:

1 ≤ h, n, c =⇒ R(h, n+ 1, c) ≤ R(h, n, c)nR(h,n,c)
.

Moreover, this is provable in PA. Thus we get the following lemma:

Lemma: Suppose 1 ≤ n < ω. Let I ⊆end M be a cut closed under
exponentiation, and let Y ⊆ M be definable and card(Y ) > I, and
let F : [Y ]n −→ [0, c], where f is definable and c < I. Then there is
a definable X ⊆ Y such that f is constant on [X]n and card(X) > I.

Now proceed with the construction of an indiscernible type p(x) as in the
proof of Theorem 3.1.5 but using the above lemma and some additional care to
guarantee that I = inf{cardM (ϕ(x)) : ϕ(x) ∈ p(x)}.

Now let N be a model generated by a set of λ elements each realizing the
indiscernible type p(x). It easily follows from Lemma 3.5.6 that GCIS(M,N) = I
(Do it!). It also follows from Lemma 3.5.6 that OC(I) = λ. For, letting a be
one of the indiscernibles and b ∈M such that I < b, there is a Skolem term t(x)
such that I < t(a) < b and t(a) �∈ M . Then there is a formula ϕ(x) ∈ p(x) such
that

M |= ∀x, y[ϕ(x) ∧ ϕ(y) ∧ x < y −→ t(x) �= t(y) < b] .

Thus, for each one of the λ indiscernibles a, there is a distinct t(a) such that
I < t(a) < b. This completes the proof of the Second Paris–Mills Theorem. �

Proof of Theorem 3.5.3 The proof of this theorem involves the construction
of continuum many types which fit together in a very compatible way. A rather
detailed account of the construction of this type is given here. Most of the details
of showing that it does what it should do are left for the reader to verify. The
key concept underlying this construction is an appropriate notion of a large set.

As we have noticed before when dealing with countable models, we can
assume that M is the prime model of its theory. Also, as we saw in the proof of
Theorem 3.5.5, we can assume that I is a proper cut.

For 1 ≤ n < ω, we say that a subset A ⊆ Mn is large if it is definable
and there are a > I and definable subsets X0, X1, . . . , Xn−1 ⊆ M such that
card(X0) = card(X1) = · · · = card(Xn−1) = a, A ⊆ X0 ×X1 × · · · ×Xn−1, and
an/ card(A) ∈ I. This last phrase is to be interpreted as: there is b ∈ I such that
b · card(A) ≥ an. There are three needed lemmas concerning large sets.

Lemma 3.5.7 Suppose A is large and g : A −→M is a definable function. Then
there is a large B ⊆ A such that either g is constant on B or else g(x) > I for
each x ∈ B.

Proof There is (unique) c ∈ M such that M |= card({x ∈ A : g(x) < c}) <
1
2 card(A) ≤ card({x ∈ A : g(x) ≤ c}). If c > I, then let B = {x ∈ A : g(x) ≥ c}.
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If c ∈ I, then B = {x ∈ A : g(x) = i}, where i ≤ c is chosen to make card(B)
as big as possible. In the first case card(B) ≥ card(A)/2, and in the second case
card(B) ≥ card(A)/(2(c+ 1)). Either way, B is large. �

Lemma 3.5.8 Suppose A is large and c > I. Then there are bounded, definable
X0, X1, . . . , Xn−1 ⊆ M such that card(X0) = card(X1) = · · · = card(Xn−1) = c
and A ∩ (X0 ×X1 × · · · ×Xn−1) is large.

Proof This argument is intended to be formalized in M . Without loss of gen-
erality, let A ⊆ Xn, and let b < I < a be such that |X| = a and card(A) ≥ an/b.
We can assume that c < a as otherwise just let each Xi ⊇ X. [The ensuing
argument is essentially a probabilistic one, showing that for random choices of
X0, X1, . . . , Xn−1 ⊆ X, the expected value of card(A∩ (X0 ×X1 × · · · ×Xn−1))
is at least cn/b.] We use C(i, j) for the binomial coefficient which is the number
of j-element subsets of an i-element set. Then∑

card(A ∩ (X0 ×X1 × · · · ×Xn−1)) = card(A) · (C(a− 1, c− 1))n,

where the sum is taken over all X0, X1, . . . , Xn−1 ⊆ X with each card(Xi) = c.
Since there are (C(a, c))n choices for the Xi’s, there is some choice for which

card(A ∩ (X0 ×X1 × · · · ×Xn−1))

≥ card(A) · (C(a− 1, c− 1))n/(C(a, c))n ≥ cn/b,

and, therefore, for this choice A ∩ (X0 ×X1 × · · · ×Xn−1) is large. �

Lemma 3.5.9 Suppose A ⊆Mn is large. Then there is c ∈M such that

Bc ={〈x0, x1, . . . , xn−1, xn〉 ∈Mn+1 :

〈x0, x1, . . . , xn−1〉, 〈x0, x1, . . . , xn−2, xn〉 ∈ A and xn−1 < c ≤ xn}

is large.

Proof This argument is intended to be formalized in M . Without loss of gen-
erality, let b < I < a be such that A ⊆ (aM )n and card(A) ≥ an/b. Our object
is to obtain c so that Bc is large. [In fact, we show that for a randomly chosen
c ≤ a, the expected value of card(Bc) is at least an+1/8b3.]

We use x̄ exclusively to denote elements of (aM )n−1. If x̄ = 〈x0, x1, . . . , xn−2〉,
then let Y (x̄) = {y < a : 〈x0, x1, . . . , xn−2, y〉 ∈ A} and let e(x̄) = card(Y (x̄)).
Then,

|Bc| =
∑
x̄

|(Y (x̄) ∩ cM )| · |(Y (x̄)\cM )|,



82 MINIMAL AND OTHER TYPES

so that

a∑
c=0

|Bc| =
∑
x̄

a∑
c=0

|(Y (x̄) ∩ cM )| · |(Y (x̄)\cM )|.

For each x̄ we have that

a∑
c=0

|(Y (x̄) ∩ cM)| · |(Y (x̄)\cM)| ≥
a∑

c=0

|(e(x̄)M ∩ cM)| · |(e(x̄)M\cM)|

=
1
6
(e(x̄)− 1)e(x̄)(e(x̄) + 1).

Therefore,

a∑
c=0

|Bc| ≥ 1
6

∑
x̄

(e(x̄)− 1)e(x̄)(e(x̄) + 1).

The right-hand side of the previous inequality is bounded below by the sum
obtained by replacing each occurrence of e(x̄) with |A|/an−1 since

|A| =
∑
x̄

e(x̄),

resulting in

a∑
c=0

|Bc| ≥ an−1

6

( |A|
an−1 − 1

)3

>
an−1

7

( |A|
an−1

)3

≥ an+2

7b3 .

Thus, there is some c such that

|Bc| > an+2

(a+ 1)7b3 >
an+1

8b3 ,

so that this Bc is large. �

Let c0 > c1 > c2 > · · · be a sequence for which I = inf{ci : i < ω}. We also
need a list of all Skolem functions f : Mn −→ M , with each Skolem function
appearing infinitely often in the list. We now inductively construct a sequence
A0, A1, A2, . . . of large sets, where Ai ⊆ M2i

for each i < ω. With each Ai we
also have subsets demonstrating that Ai is large, with the additional property

I < card(X(i)
0 ) = card(X(i)

1 ) = · · · = card(X(i)
2i−1) ≤ ci .

Getting A0 is easy enough: let A0 = X
(0)
0 = [0, c0 − 1].
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Now suppose that we have Ai ⊆ X
(i)
0 ×X

(i)
1 × · · · ×X

(i)
2i−1. We get Ai+1 by

applying the three lemmas. Suppose the ith Skolem function in our list is the
n-ary function f . For each n-tuple k0 < k1 < · · · < kn−1 < 2i, there is the
induced function g : A −→M where

g(x̄) = f(xk0 , xk1 , . . . , xkn−1) .

Apply Lemma 3.5.7 repeatedly to get large B ⊆ Ai such that each of the func-
tions g which f induces is either constant on B or else g(x̄) > I for each x̄ ∈ B.
Next, apply Lemma 3.5.8 and get X ′

j ⊆ Xj for j < 2i such that

I < card(X ′
0) = card(X ′

1) = · · · = card(X ′
2i−1) ≤ ci+1

and B ∩ (X ′
0 ×X ′

1 × · · · ×X ′
2i−1) is large. Finally, apply Lemma 3.5.9 2i times,

getting cj for j < 2i, such that, letting

X
(i+1)
2j = {x ∈ X ′

j : x < cj}, X
(i+1)
2j+1 = {x ∈ X ′

j : x ≥ cj}

and letting Ai+1 be the set of those x̄ ∈ X
(i+1)
0 × X

(i+1)
1 × · · · × X

(i+1)
2i+1−1 such

that whenever ȳ is a 2i-tuple which is a subsequence of x̄, with yj ∈ {x2j , x2j+1},
then ȳ ∈ B, we have that Ai+1 is large.

The Ai’s that we just constructed are used to construct a massive type Γ. We
consider {0, 1}ω, the set of ω-sequences of 0’s and 1’s. For each k < ω and each
such sequence s, let s|k be the initial subsequence of s of length k. We consider
{0, 1}ω to be ordered lexicographically; thus s < t iff there is k < ω such that
s|k = t|k and s(k) < t(k). For each s ∈ {0, 1}ω, we introduce a variable vs. Then
Γ is a type in all of these 2ℵ0 variables.

Consider a formula ϕ(vs0 , vs1 , . . . , vsn−1), where, without loss of generality,
s0 < s1 < · · · < sn−1. This formula is in Γ iff there is i < ω such that the
following holds:

Let f : Mn −→ {0, 1} be the Skolem function such that f(ā) = 0 iff M |= ϕ(ā). There
is i < ω such that s0|i < s1|i < · · · < sn−1|i and such that if g : M2i −→ {0, 1} is the
induced function such that g(x̄) = f(ȳ), where x̄ is a 2i-tuple, ȳ is an n-tuple which
is a subsequence of x̄ for which yj = xk if sj |i is the kth element of {0, 1}i, and g is
constant 0 on Ai.

This type Γ is consistent with Th(M) (Do it!) and is complete in the sense
that for any appropriate formula ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ. Then Γ can be
used to get an elementary extension N of M by first obtaining some model in
which Γ is realized (say by 〈as : s ∈ {0, 1}ω〉), and then letting N = Scl({as : s ∈
{0, 1}ω}). It can be checked (Do it!) that I = GCIS(M,N) and OCN (I) = 2ℵ0 .

�
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3.6 Exercises

Reminder: in this chapter, including in this Exercises section, we have a fixed
completion T of PA∗.

♥3.6.1 There is a model M of T which has a minimal elementary end extension
M(a) in which the type of a is not selective.

♦3.6.2 There are end-extensional types which are not rare.

♦3.6.3 Suppose M ≺ N and a ∈ M , b ∈ N are such that a, b are in the same
gap of N and b realizes a rare type. Then b ∈M .

♦3.6.4 If γ is a gap of M , then the number of elements of γ realizing rare types
is either 0 or ℵ0.

♣3.6.5 Without Theorem 3.1.9, prove that every unbounded 3-indiscernible
type is definable by showing that for any formula ϕ(u, x), a defining formula σ(u)
can be obtained as the formula ∀x∀y[θ(x) ∧ θ(y) ∧ u ≤ x < y < z −→ ϕ(u, y)],
where θ(x) is a formula in the type which forces ∀u[u ≤ x −→ (ϕ(u, y) ←→
ϕ(u, z))].

Suppose that t(x) is a Skolem term and p(x) is a type. We then define t(p(x))
to be the set of all formulas θ(x) such that for some ϕ(x) ∈ p(x), the sentence
∀x[ϕ(x) −→ θ(t(x))] is in T . A set X of minimal types is independent if whenever
p(x) ∈ X and t(x) is a Skolem term, then either t(p(x)) = p(x) or t(p(x)) �∈ X.
The following four exercises concern these notions.

♣3.6.6 If p(x) is a complete type and t(x) is a Skolem term, then t(p(x)) is a
complete type. Furthermore, if a ∈M realizes p(x), then t(a) realizes t(p(x)).

♣3.6.7 If p(x) is a minimal type, then t(p(x)) is either a minimal type or a
principal type.

♣3.6.8 If p(x) is an end-extensional type, then t(p(x)) is either an end-
extensional type or a principal type.

♦3.6.9 There is a set of 2ℵ0 independent minimal types.

♦3.6.10 Let M ≺end N and A ⊆ N\M be such that N = Scl(M ∪ A), where A
is a set of elements realizing minimal types. Then there is B ⊆ N\M and an
independent set X of minimal types such that each element of B realizes a type
in X and N = Scl(M ∪B).

♦3.6.11 There is M such that |M | = 2ℵ0 , no two distinct elements of M realize
the same type, and Lt(M) ∼= P(R).

The following two exercises give characterizations of end-extensional types
which could be used as definitions.
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♦3.6.12 The type p(x) is end-extensional iff whenever M is a model of T and
M(a) is an elementary extension of M generated by a, where a > M and a
realizes p(x), then M(a) is an end extension of M .

♣3.6.13 The type p(x) is end-extensional iff whenever M is a model of T and
M(a) is an elementary extension of M generated a, then M(a)\M is a gap of
M(a).

♦3.6.14 There are unbounded rare types that are not end-extensional.

♣3.6.15 For each completion of PA∗, there are 2ℵ0 rare types which are not
definable.

♦3.6.16 Show that Theorem 3.2.11 becomes false when “rare” is replaced by
“selective.”

♦3.6.17 There are unbounded selective types that are not definable. (Hint:
modify the proof of Theorem 1.2.12.)

♦3.6.18 If p(x) is an n-resolute type and M is a p(x)-extension of the the prime
model, then |Lt(M)| ≤ n+ 1.

♦3.6.19 Let M be a nonstandard countable n-resolute model generated by a
proper cut I ⊆end M . Then M has a superminimal cofinal I-extension N that is
(n+ 1)-resolute.

The definition of weakly Ramsey type is adapted from a definition originating
in ultrafilter theory. Suppose p(x) is a type and k ∈ N. Then p(x) is a k-weakly
Ramsey if there are at most k 2-types containing p(x) ∪ p(y) ∪ {x < y}. Thus,
the 0-weakly Ramsey types are just the principal types, and the nonprincipal 1-
weakly Ramsey types are just the 2-indiscernible types. A type which is k-weakly
Ramsey but is not m-weakly Ramsey for any m < k is called strictly k-weakly
Ramsey.

♣3.6.20 Give an easy construction which shows: there are definable strictly
6-weakly Ramsey types. (Hint: see Exercise 3.1.3.)

♣3.6.21 Make a small change to the type constructed in Exercise 3.6.20 to show:
there are definable strictly 5-weakly Ramsey types.

♦3.6.22 Make a small change to the type constructed in Exercise 3.6.21 to show:
there are definable strictly 2-weakly Ramsey types.

♦3.6.23 Every definable 3-weakly Ramsey type is end-extensional.

♥3.6.24 If p(x) is 4-weakly Ramsey and M is a p(x)-extension of the prime
model, then Lt(M) is linearly ordered.

♦3.6.25 are definable 4-weakly Ramsey types that are not end-extensional.
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♥3.6.26 There is an end-extensional 5-weakly Ramsey type p(x) such that if M
is a p(x)-extension of the prime model of T , then Lt(M) is not linearly ordered.

♦3.6.27 Suppose that p(x) is k-weakly Ramsey and that M(a) is p(x)-
extension of the prime model M . Then M(a) has at most k proper elementary
substructures.

♥3.6.28 Suppose p(x) is a definable k-weakly Ramsey type and M(a) is a
p(x)-extension of the prime model. If M(a) has exactly k proper element-
ary substructures, then (a) Lt(M(a)) is linearly ordered and (b) p(x) is
end-extensional.

♦3.6.29 For each k ∈ ω, there is an end-extensional strictly k-weakly Ramsey
type.

♦3.6.30 There is a selective type which is not k-weakly Ramsey for any k ∈ ω.

Refer to Section 2.3 for definitions related to amalgamations. The next exer-
cise concerns the number of inequivalent amalgamations that two isomorphic
copies of a model M can have.

♦3.6.31 Let p(x) be a type and let M(a) be a p(x)-extension of the prime model
M . If k ∈ ω, then the following are equivalent:

p(x) is strictly k-weakly Ramsey;
M(a) has exactly 2k + 1 inequivalent amalgamations with itself.

We define another kind of type. Suppose that p(x) is a nonprincipal type and
k ∈ ω. Then p(x) is a k-arrow type if for any formula θ(x, y), either

T � ∃x0, x1, . . . , xk−1[x0 < x1 < · · · < xk−1 ∧
∧

i<j<k

¬θ(xi, xj)]

or there is a formula ϕ(x) ∈ p(x) such that

T � ∀x∀y[ϕ(x) ∧ ϕ(y) ∧ x < y −→ θ(x, y)] .

Every nonprincipal type is 2-arrow.

♣3.6.32 Every 2-indiscernible type is a k-arrow type for each k ∈ ω.

♥3.6.33 If T does not have a standard model and 3 ≤ k < ω, then there is a
k-arrow type that is not (k + 1)-arrow.

The definition of amalgamation (for two models of T ) can easily be extended
to k models, whenever 2 < k ∈ ω, and the notion of equivalent amalgama-
tions can be generalized to this context. If M0,M1, . . . ,Mk−1 are models and
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ei : Mi −→ N are elementary embeddings which form an amalgamation, then
for any i < j < k, there is an induced amalgamation of Mi and Mj , namely
ei : Mi −→ Nij and ej : Mj −→ Nij , where Nij is the elementary substructure
of N generated by ei(Mi) ∪ ej(Mj).

♦3.6.34 For k ∈ ω, the type p(x) is a k-arrow type iff whenever M is a p(x)-
extension of the prime model and e, f : M −→ N is an amalgamation of M with
itself, then there is an amalgamation of k copies of M such that each induced
amalgamation of two copies of M is equivalent to the amalgamation e, f .

♦3.6.35 Every 3-weakly Ramsey type is a k-arrow type for each k < ω.

♦3.6.36 Let p(x) be a nonprincipal type such that for any formula θ(x, y, z),
either there is a formula ϕ(x) ∈ p(x) such that

T � ∀x, y, z[ϕ(x) ∧ ϕ(y) ∧ ϕ(z) ∧ x < y < z −→ θ(x, y, z)]

or

T � ∃w, x, y, z[w < x < y < z

∧ ¬θ(x, y, z) ∧ ¬θ(w, y, z) ∧ ¬θ(w, x, z) ∧ ¬ θ(w, x, y)].

Then p(x) is 2-indiscernible.

Let I be a proper cut of M . A type p(x) ∈ S1(M) is indiscernible over I if
for any L(M)-formula θ(u, x0, x1, . . . , xn), there is a formula ϕ(x) ∈ p(x) such
that whenever a ∈ I, then ϕ(x) forces θ(a, x̄). (See Exercise 3.1.8.)

♣3.6.37 If M is a nonstandard model and I is a proper cut of M , then there is
a bounded type p(x) ∈ S1(M) which is indiscernible over I.

♣3.6.38 If p(x) is indiscernible over I, then p(x) is selective over I.

If I is a bounded cut of M and M ≺end N , then N fills I if there is b ∈ N
such that whenever a < I < c are elements of M , then a < b < c. The next two
exercises refine the two Paris–Mills theorems.

♦3.6.39 To the conclusion of Theorem 3.5.5, the requirement that N does not
fill I can be added.

♦3.6.40 To the conclusion of Theorem 3.5.3, the requirement that N does not
fill I can be added.

A type p(x) ∈ S1(T ) is ubiquitous if, whenever M is recursively saturated
and a ∈ M realizes p(x), then the set of elements in gap(a) realizing p(x) is
cofinal in gap(a). A type p(x) ∈ S1(T ) is locally ubiquitous if, whenever M is
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recursively saturated, a ∈M realizes p(x), and c ∈M is nonstandard, then there
is b ∈ [a+ 1, c] realizing p(x).

♣3.6.41 If p(x) is ubiquitous, M is recursively saturated, a ∈ M realizes p(x),
and b ∈ gap(a), then there is c realizing p(x) such that b > c ∈ gap(a).

♦3.6.42 Every recursively saturated model has an element realizing a ubiquitous
type.

♥3.6.43 Every arithmetically saturated model has an element realizing a locally
ubiquitous type.

♠3.6.44 Does every recursively saturated model have an element realizing a
locally ubiquitous type?

3.7 Remarks & References

Much of the material in this section concerning definable, indiscernible, minimal,
and end-extensional types had its origins in the seminal and highly influential
work of Gaifman [43], where many of the results first appeared. Definable types,
which originated in [43], evolving from the notion of a conservative extension,
are also of central importance in stability theory. A complete theory T is stable
iff whenever A is a subset of a model of T , then every type in S1(A) is definable.

Theorem 3.1.20 is from [103]. Theorem 3.1.9 is from [103]. Rare types are
the analogues of rare ultrafilters (also called Q-points) over ω. Theorem 3.2.11 is
from Schmerl [174] but is quite similar to a theorem in Kossak & Schmerl [107].
The proof presented here, due to Ermek Nurkhaidarov, is simpler than the one
in [174]. Theorem 3.3.14 and its proof are taken directly from [174].

The concept of a resolute type appears here for the first time.
The material in Section 3.5 on the two Paris–Mills theorems is due to Jeff

Paris and George Mills, and it is taken from their paper [148].
The notion of a k-arrow type appearing in the Exercises was influenced by

Baumgartner & Taylor [7], where k-arrow ultrafilters were introduced. Blass in
several papers, especially in [16], has stressed the close connection between types
and ultrafilters. Many of the exercises, including 3.6.28 and 3.6.34, are suggested
by this connection. In this regard, Exercise 3.6.33 is essentially in [7].

There are other kinds of types not mentioned in this chapter. For example,
the weakly definable types introduced by Kirby [81] and further studied by him
and Anand Pillay [84] and by Schmerl [170], while interesting, have not yet
proved to be useful.




SUBSTRUCTURE LATTICES

The set of all elementary substructures of a model of Peano Arithmetic is a
lattice. This is most easily seen by observing that if M is a model and C is an
arbitrary collection of elementary substructures of M , then its intersection

⋂ C
is also an elementary substructure of M . This lattice is called the substructure
lattice of M and is denoted by Lt(M). In this chapter we take a detailed look
at substructure lattices, with the unrealized goal of characterizing those lattices
which can appear as substructure lattices. More generally, suppose that M � N ,
then define the interstructure lattice Lt(N/M) to be the sublattice of Lt(N)
consisting of those models M0 for which M � M0 � N . Given a model M , we
also consider in this chapter the question of which lattices can appear as some
interstructure lattice Lt(N/M).

These questions are a natural outgrowth of the existence of minimal exten-
sions. For, if we let 2 be the 2-element lattice, then a consequence of Gaifman’s
Theorem 3.3.1 is that every model M has an elementary end extension N such
that Lt(N/M) ∼= 2. Blass’ Theorem 2.1.1 has a similar sort of consequence
concerning cofinal extensions of countable nonstandard models. As to which lat-
tices can appear as substructure and interstructure lattices, there are three main
results in this chapter. Many finite lattices are shown in Section 4.5 to be sub-
structure lattices. In Section 4.6 it is proved that the pentagon lattice always
can appear as an interstructure lattice. Finally, those distributive lattices which
can appear as substructure lattices are characterized in Section 4.7.

4.1 Lattices

Lattices can be thought of in two ways: as partially ordered sets or as algebras.
This section contains definitions of a lattice and also definitions of an algebra
and other related concepts. Examples of lattices that arise from algebras are also
discussed. The reader having some familiarity with lattices may want to skip this
section at first, referring to it as needed.

For the first of the two approaches to lattices, consider (P,≤) which is a
partially ordered set (hereinafter referred to as a poset). Small finite posets are
conveniently represented by their Hasse diagrams. Some examples are given in
Figure 4.1.

Given any subset X ⊆ P and element b ∈ P , we say that b is the supremum
(also called the least upper bound) of X, denoted by sup(X) or

∨
X, if b is the

unique element of P such that for any y ∈ P , if x ≤ y for each element x ∈ X,
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Fig. 4.1. The Hasse diagrams of several small posets.

then b ≤ y. The subset X may or may not have a supremum, but if it does,
then it is unique. (Of course, the uniqueness was built into the definition, but it
was not essential to do so.) We similarly define the infimum of X, denoted by
inf(X) or

∧
X, to be the unique a ∈ P such that for any y ∈ P , if y ≤ x for

each element x ∈ X, then y ≤ a. If X = {x, y} and b = sup(X), then we also
write b = x ∨ y, and if a = inf(X), then we write a = x ∧ y. The poset (P,≤) is
a lattice ordered set if both x ∨ y and x ∧ y exist whenever x, y ∈ P .

The first of the posets depicted in Figure 4.1 is a chain of length 2. For any
natural number n ≥ 1, the chain n of length n is a lattice ordered set. The
second of the depicted posets is also one of an infinite family of lattice ordered
sets: for each n < ω, Mn is the lattice ordered set having n + 2 elements, n
of which are pairwise incomparable. All but the last of the depicted posets is a
lattice ordered set.

We next take a look at the other, more algebraic, approach. Consider a set L
on which there are two binary operations ∨ and ∧. Then (L,∨,∧) is an example
of an algebra; this concept is given a precise definition later in this section. The
algebra (L,∨,∧) is a lattice if it obeys the following four pairs of laws:

commutative laws : x ∨ y= y ∨ x, x ∧ y = y ∧ x;

associative laws : (x ∨ y) ∨ z= x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z);

idempotency laws : x ∨ x= x, x ∧ x = x;

absorption laws : x ∨ (x ∧ y)= x, x ∧ (x ∨ y) = x.

The operation ∨ is the meet and ∧ is the join of L. These two concepts, that
of a lattice ordered set and a lattice, are essentially the same. Given a lattice
ordered set (P,≤), we have already seen how to define the binary operations ∨
and ∧, and with these operations, (P,∨,∧) is lattice. Conversely, if (P,∨,∧) is
a lattice, then there is a binary relation ≤ which can be defined in either of two
equivalent ways to get the poset (P,≤): let x ≤ y iff x ∨ y = y, or let x ≤ y
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iff x ∧ y = x. These two procedures, going from (P,≤) to (P,∨,∧) and going
from (P,∨,∧) to (P,≤), are inverses of one another. Because these two ways of
defining a lattice are so similar, no effort is made to distinguish them: a lattice is
viewed as a poset and/or an algebra. However, a little care must be used when
considering sublattices. If (L1,∨1,∧1) and (L2,∨2,∧2) are lattices, then L1 is a
sublattice of L2 iff L1 ⊆ L2 and whenever x, y ∈ L1, then x ∨1 y = x ∨2 y and
x ∧1 y = x ∧2 y. If (L1,≤1) and (L2,≤2) are lattice posets and L1 is a subposet
of L2, then it is possible that L1 is not a sublattice of L2.

If (L,≤) is a poset and if every subset X ⊆ L has a supremum, then (L,≤) is
a lattice. For, given x, y ∈ X, we see that x∧y =

∨{z ∈ L : z ≤ x, y}. In fact, for
every subset X ⊆ L,

∧
X =

∨{z ∈ P : z ≤ x for all x ∈ X}. If (L,≤) is a poset
for which sup(X) and inf(X) exist whenever X ⊆ L, then (L,≤) is a complete
lattice. In a complete lattice L we often let 0 =

∨ ∅ = ∧
L and 1 =

∧ ∅ = ∨
L.

Every finite lattice is complete.
For any set X, let P(X), the powerset of X, be the set of all subsets of X.

Then (P(X),⊆) is a poset which is a complete lattice ordered set with join ∪ and
meet ∩. If X = n = {0, 1, 2, . . . , n − 1}, then Bn = (P(n),∪,∩) is the Boolean
lattice having 2n elements. Notice that B0 ∼= 1, B1 ∼= 2, and B2 ∼=M2.

For another example of a complete lattice, let Eq(X) be the set of equivalence
relations on X. Each equivalence relation is a subset of X×X, so (Eq(X),⊆) is a
subposet of P(X×X). It is not a sublattice of (P(X×X),∪,∩) (unless |X| ≤ 2)
as the union of two equivalence relations need not be an equivalence relation.
However, the intersection of two equivalence relations is an equivalence relation.
Notice that if Θ1 and Θ2 are equivalence relations in Eq(X), then the equivalence
classes of Θ1 ∩ Θ2 are the nonempty sets of the form X1 ∩ X2, where X1, X2
are equivalence classes of Θ1,Θ2 respectively. Moreover, the intersection of an
arbitrary collection of equivalence relations is also an equivalence relation, so
that (Eq(X),⊆) is a complete lattice. If Θ1 ⊆ Θ2 are equivalence relations on
X, then Θ1 is a refinement of Θ2.

For any lattice (L,∨,∧), there is its dual lattice (L,∧,∨), and for any poset
(P,≤) there is its dual poset (P,≥). We let L⊥ and P⊥ denote the duals of the
lattice L and the poset P respectively. It makes no difference whether we view
the lattice L as an algebra or a poset, its dual L⊥ is well-defined. The dual of a
complete lattice is also a complete lattice.

The two extreme equivalence relations in Eq(X) are 00X =
∧
Eq(X), which

is the equality relation on X, and 11X =
∨
Eq(X) = X ×X, which is the trivial

equivalence relation on X.
There are many sources of lattices. We discuss two lattices which come from

algebras: the subalgebra lattice and the congruence lattice. We begin with a
definition of an algebra. An algebra is a structure of the form (A, 〈fi : i ∈ I〉)
such that for each i ∈ I there is some n < ω for which fi : An −→ A. The number
n associated with the operation fi is the arity of fi. It is allowed for the arity
of an operation to be 0; operations of arity 0 are sometimes called constants.
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The functions fi are the operations of A. The type of this algebra is the function
τ : I −→ ω, where τ(i) is the arity of the operation fi.

A lattice is an algebra. Officially, the type of a lattice is the function τ :
{∨,∧} −→ ω where τ(∨) = τ(∧) = 2. We follow the more customary practice
and say that its type is 〈2, 2〉. Some other familiar examples of algebras are any
group (G, ·,−1 , e), which has type 〈2, 1, 0〉, and any ring (A,+, ·, 0), which has
type 〈2, 2, 0〉.

If (A, 〈fi : i ∈ I〉) and (B, 〈gi : i ∈ I〉) are algebras (of the same type τ), then
B is a subalgebra of A if B ⊆ A and, for each i ∈ I, the operations fi and gi agree
on B. (A small point: it is allowed that a subalgebra might be empty; however,
if the type has an operation of arity 0, then there are no empty algebras of that
type.) We let Sub(A) be the set of subalgebras of A, which is to be considered
as a poset ordered by the subalgebra relation. If A is an algebra and X ⊆ A (by
which is meant that X is a subset of A but is not necessarily a subalgebra), then
there is a smallest subalgebra B ⊆ A such that X ⊆ B. For such X and B, we
say that X generates B. It then follows that, not only is Sub(A) a lattice, but it
is even a complete lattice. The lattice Sub(A) is the subalgebra lattice of A.

Not just any complete lattice can be isomorphic to some Sub(A). We make
some definitions which are used to characterize those lattices isomorphic to
subalgebra lattices.

Let (L,∨,∧) be a complete lattice. An element a ∈ L is compact if whenever
X ⊆ L and a ≤ ∨

X, then a ≤ ∨
Y for some finite Y ⊆ X. The compact

elements of P(X) are the finite subsets of X (Do it!). It is easy to identify the
compact elements of a subalgebra lattice. An algebra A is finitely generated if
there is a finite X ⊆ A which generates A. The following proposition shows that
the finitely generated subalgebras of A are recognizable in Sub(A) as an abstract
lattice. Its easy proof is left as an exercise.

Proposition 4.1.1 If A is an algebra, then the compact elements of Sub(A) are
exactly the finitely generated subalgebras of A. �

A lattice L is algebraic if it is complete and each element of L is the supremum
of a set of compact elements. It follows from Proposition 4.1.1 that Sub(A) is
algebraic. The reader may find it instructive to show that Eq(A) and Eq(A)⊥

are algebraic and to determine the compact elements of each. This definition can
be refined to include a cardinal parameter. For κ an infinite cardinal, we say
that L is κ-algebraic if L is algebraic and for each compact x ∈ L, |{a ∈ L :
a ≤ x and a is compact}| < κ. Every finite lattice is ℵ0-algebraic. The following
proposition, which is most relevant to models of PA in the case when κ = ℵ0,
has a routine proof.

Proposition 4.1.2 If κ is an infinite cardinal and A is an algebra with at most
κ operations, then Sub(A) is a κ+-algebraic lattice. �

There is a converse to Proposition 4.1.2.
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Proposition 4.1.3 Let κ be an infinite cardinal and L a κ+-algebraic lattice.
Then there is an algebra A with κ operations such that Sub(A) ∼= L.

Proof Let A be the set of compact elements of L. For each x ∈ L, let Kx be
the set of compact a ≤ x, and then let Kx = {ax,i : i < κ}. For each i < κ, let
fi : A2 −→ A be such that fi(x, y) = ax∨y,i. Then Sub(A,∨, 〈fi : i < κ〉) ∼= L; in
fact, the function B �→ ∨

B is an isomorphism (Do it!). (See Exercise 4.8.4.) �

The subalgebra lattice is one of the important lattices associated with an
algebra. We next consider another one, the congruence lattice of an algebra.

Let A be an algebra. A congruence of A is an equivalence relation Θ on
the set A such that whenever f is an n-ary operation of A and ai, bi ∈ A for
i < n are such that 〈ai, bi〉 ∈ Θ for each i < n, then 〈f(ā), f(b̄)〉 ∈ Θ. For a
familiar example, consider a group G. If N is a normal subgroup of G, then
the cosets of N are the equivalence classes of a congruence of G. Conversely, for
any congruence Θ of G, the set of elements congruent to e is a normal subgroup
of G whose cosets are precisely the equivalence classes of Θ. Let Cg(A) be the
set of congruences of the algebra A. The intersection of an arbitrary collection
of congruences is a congruence (Do it!). Thus, Cg(A) is a complete lattice in
which

∧
Cg(A) = 00A and

∨
Cg(A) = 11A, and we always think of Cg(A) as a

lattice. Not only is Cg(A) a sublattice of Eq(A) but also, if C ⊆ Cg(A), then
∨ C

and
∧ C are independent of whether they are interpreted in Eq(A) or Cg(A).
The next proposition shows that Cg(A) is algebraic. Before stating it, we

define the product of two algebras. Given two algebras (A, 〈fi : i ∈ I〉) and
(B, 〈gi : i ∈ I〉) of the same type τ , their product, also of type τ , is the algebra
(A×B, 〈hi : i ∈ I〉), where

hi(〈a0, b0〉, 〈a1, b1〉, . . . , 〈an−1, bn−1〉) = 〈fi(ā), gi(b̄)〉.

Notice that the product of two lattices is a lattice.

Proposition 4.1.4 If A is an algebra, then Cg(A) is algebraic.

Proof It is rather straightforward to prove this proposition by a direct attack,
but we take another route.

Let D be the algebra obtained from A × A by adjoining some additional
operations: a 0-ary operation ca for each a ∈ A, where ca = 〈a, a〉; a 1-ary
operation r, where r(〈x, y〉) = 〈y, x〉 for each x, y ∈ A; and a 2-ary operation t,
where

t(〈x, y〉, 〈z, w〉) =
{ 〈x,w〉 if y = z,
〈x, y〉 if y �= z,

for x, y, z, w ∈ A. Then Cg(A) = Sub(D) (Do it!), so that Cg(A) is algebraic
by Proposition 4.1.2. �
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The previous proposition has a converse, the proof of which is not easy and
will not be given here.

Theorem 4.1.5 If L is an algebraic lattice, then there is an algebra A such that
Cg(A) ∼= L. �

This theorem leaves open some important and difficult questions that concern
additional conditions being put on the algebra A. What is the most relevant with
regard to the substructure lattice of models of PA is whether A can be finite
whenever L is. This is discussed more fully in Sections 4.5 and 4.9.

4.2 Substructure lattices

A model M of Peano Arithmetic can be interpreted as an algebra with countably
many operations. More generally, a model of PA∗(L) can be interpreted as an
algebra with |L| + ℵ0 operations. Let the set of all Skolem terms be I, which
is considered as an index set, and for each i ∈ I, let fi : Mn −→ M be the
function that it defines. This allows us to consider M |= PA∗(L) as an algebra
(M, 〈fi : i ∈ I〉), and then it makes perfect sense to consider Sub(M). Of course,
a subalgebra of M (qua an algebra) is the same as an elementary substructure
of M (qua a model of PA∗(L)). If M |= PA∗, then Lt(M) = Sub(M), so we get
the following consequence of Proposition 4.1.2.

Corollary 4.2.1 If M is a model of PA∗, then Lt(M) is an ℵ1-algebraic lattice.
�

More generally, consider N ≺ M . Now let I be the set of all Skolem terms
in which parameters from N are allowed, and let fi : Mn −→ M be the func-
tion that i defines. Letting MN be the algebra (M, 〈fi : i ∈ I〉), we see that
Lt(M/N) = Sub(MN ), entailing the following generalization of the previous
corollary.

Corollary 4.2.2 If N ≺M are models of PA and κ = |N |, then Lt(M/N) is a
κ+-algebraic lattice. �

The fundamental question concerning substructure lattices is:

Which lattices are isomorphic to substructure lattices?

There is no known restriction on such a lattice other than what is in Corol-
lary 4.2.1. Included in the class of ℵ1-algebraic lattices are all the finite lattices.
Thus, every finite lattice is a candidate for being a substructure lattice. However,
there are finite lattices which are not known to be substructure lattices.

The simplest of all lattices is the rather uninteresting one-element lattice 1.
For any model M , Lt(M) ∼= 1 iff M is prime. The next simplest lattice is the
two-element lattice 2. (See Figure 4.1.) For any M |= PA, Lt(M) ∼= 2 iff M
is a minimal extension of its prime model. More generally, if M ≺ N , then
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Lt(N/M) ∼= 2 iff N is a minimal extension of M . Thus, there are two ways to
realize 2 as a substructure lattice, corresponding to Corollaries 2.1.4 and 2.1.6,
respectively.

Corollary 4.2.3 Each model M of PA has an elementary end extension N such
that Lt(N/M) ∼= 2. �

Corollary 4.2.4 Each nonstandard countable model M of PA has a cofinal
extension N such that Lt(N/M) ∼= 2. �

These two corollaries demonstrate how to realize the lattice 2 in two dif-
ferent ways: by an end extension or by a cofinal extension. These differences
get lost when the lattice Lt(N/M) is considered as an abstract lattice. The lat-
tice Lt(N/M) is not discriminating enough to reveal which of these two types
of extensions actually occurs. In order to capture this difference abstractly,
we are going to define a new algebra obtained from a lattice by adjoining a
1-ary operation which is a kind of rank function. Recall from Gaifman’s Split-
ting Theorem 1.3.5 that if M ≺ N , then there is a unique M such that
M �cof M �end N . The function r : Lt(N) −→ Lt(N), which we call the rank
function of N , is such that if M � N , then r(M) is that unique structure M .
We let Ltr(N) = (Lt(N), r), and we call Ltr(N) the ranked substructure lattice
of N . If M ≺ N and Ltr(N) = (Lt(N), r), where r is the restriction of the
rank function of N to Lt(N/M), then we let Ltr(N/M) = (Lt(N/M), r). We call
Ltr(N/M) the ranked interstructure lattice.

The important feature of the ranked substructure lattice is that it distin-
guishes between elementary end extensions and cofinal extensions. This is made
precise by the following proposition with a routine proof (Do it!).

Proposition 4.2.5 Let M ≺ N and let r be the rank function of N . Suppose
N0, N1 ∈ Lt(N/M) are such that N0 ≺ N1. Then:

(1) N0≺cof N1 iff r(N0) = r(N1);
(2) N0≺end N1 iff N0 = r(N0) ∧N1. �

In particular, a model N is a cofinal extension of its prime submodel iff
r(0L) = 1L, and it is an end extension of its prime submodel iff r(0L) = 0L.
Consequently, we say that a rank function r of L is a cofinal rank function if
r(0L) = 1L and is an end rank function if r(0L) = 0L.

Definition 4.2.6 An algebra (L, r) of type 〈2, 2, 1〉 is a ranked lattice if L is a
lattice and r : L −→ L satisfies the following for each x, y ∈ L:

(1) x ≤ r(x);
(2) r(r(x)) = r(x);
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(3) r(x) ≤ r(y) or r(y) ≤ r(x);
(4) r(x ∨ y) = r(x) ∨ r(y).

In a ranked lattice (L, r), we call the set R = {r(x) : x ∈ L} the rankset
of (L, r). The rank function r can be recovered from the rankset R by setting
r(x) =

∧{y ∈ R : x ≤ y}. Therefore, when describing a ranked lattice (L, r)
we may say what R is instead of saying what r is. In a finite lattice L, a subset
R ⊆ L is a rankset iff R is linearly ordered and 1 ∈ R.

It is easily checked that if M ≺ N , then Ltr(N/M) is a ranked lattice (Do
it!). However, there are ranked lattices, even very small finite ones, which
are not isomorphic to any ranked interstructure lattices. For an example of
such a ranked lattice, consider the ranked four-element Boolean lattice (B2, r)
whose rankset is R = {0, 1}. Suppose that Ltr(N/M) ∼= (B2, r) and that
Lt(N/M) = {M,M1,M2, N}. Then N is a cofinal extension of both M1 and
M2, so that by Theorem 2.1.1, M = M1 ∩M2 is a cofinal substructure of N ,
which is a contradiction. The next proposition, which is just a reformulation
of Blass’ Theorem (Corollary 2.1.6), imposes a condition on a ranked lattice
necessary for it to be an interstructure lattice.

Proposition 4.2.7 (The Blass Condition) Suppose that M ≺ N and that
(L, r) ∼= Ltr(N/M). Then

r(x) = r(y) =⇒ r(x) = r(x ∧ y)

whenever x, y ∈ L and x is compact. �

We say that a ranked lattice (L, r) satisfies the Blass Condition if it satisfies
the condition of the previous proposition. The only purpose of the next exercise
is to help the reader to gain familiarity with the notions involved.

Exercise 4.2.8 There are exactly 2n nonisomorphic expansions of the Boolean
lattice Bn to a ranked lattice (Bn, r), but only n of them satisfy the Blass
condition.

Proposition 4.2.7 is useful for showing that certain lattices cannot appear as
substructure lattices of models of True Arithmetic. The salient feature of True
Arithmetic that gets used is that every one of its nonstandard models is an
elementary end extension of its prime model. In other words, if M is a model
of True Arithmetic and Ltr(M) ∼= (L, r), then r(0) = 0. Thus, the following
example shows that if M is a model of True Arithmetic, then Lt(M) �∼=M3. More
generally, if M ≺ N and Lt(N/M) ∼=M3, then M ≺cof N . Refer to Section 4.5
to see that the lattice M3 can actually be realized as a substructure lattice.

Proposition 4.2.9 If (M3, r) is a ranked lattice satisfying the Blass Condition,
then r(0) = 1.
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Proof LetM3 = {0, 1, a, b, c}. By (3) in Definition 4.2.6, the rankset is linearly
ordered, so there are distinct x, y ∈ {a, b, c} which are not in the rankset. There-
fore, by (1) it must be that r(x) = r(y) = 1, and then by the Blass Condition,
r(0) = r(x ∧ y) = r(x) = 1. �

Corollary 4.2.10 If M ≺ N and Lt(N/M) ∼=M3, then M ≺cof N . �

Another restriction that must be imposed on a ranked lattice for it to be
isomorphic to a ranked interstructure lattice comes from the next lemma.

Lemma 4.2.11 Suppose that M ≺end N and that N0, N1 ≺ N are such that
N0 ∩M = N1 ∩M and N = Scl (M ∪ (N0 ∩N1)). Then N0 = N1.

Proof By symmetry, it suffices to show that N0 � N1. Consider any b ∈ N0.
Then N |= b = t(c, a), for some c ∈M , a ∈ N0∩N1, and Skolem term t(x, y). Let
d ∈ N be the least such that N |= b = t(d, a). Then d ∈M since d ≤ c. But also
d ∈ N0 since d is defined from a, b. Therefore, d ∈ N1, and then b = t(d, a) ∈ N1.

�

The previous lemma yields the following necessary condition on a ranked
lattice for it to be an interstructure lattice (Do it!).

Proposition 4.2.12 (The Gaifman Condition) Suppose that M ≺ N and
that (L, r) ∼= Ltr(N/M). If x, y, z ∈ L are such that x < y < x ∨ z, z = r(z),
and x ∧ z = y ∧ z, then x = y. �

We say that a ranked lattice (L, r) satisfies the Gaifman Condition if it satis-
fies the condition of the previous proposition. Following is an example of the use
of the Gaifman Condition. Refer to Figure 4.1 to see what the hexagon lattice
H is.

Proposition 4.2.13 If r is a rank function for H satisfying both the Blass and
Gaifman Conditions, then r(0) = 1.

Proof Let the elements of H be 0, a, b, c, d, 1, where 0 < a < b < 1 and 0 <
c < d < 1. Since the rankset is linearly ordered, it cannot be that both r(b) = b
and r(d) = d, so without loss of generality assume that r(b) = 1. If r(d) = d,
then letting a = x, b = y, and d = z in Proposition 4.2.12 contradicts the
Gaifman Condition. Therefore, r(d) = 1, but then by letting b = x and d = y in
Proposition 4.2.7, we see that the Blass Condition implies r(0) = 1. �

Corollary 4.2.14 If M ≺ N and Lt(N/M) ∼= H, then M ≺cof N . �

4.3 Finite distributive lattices, I

It is proved in this section that every finite distributive lattice is a sub-
structure lattice. Stronger results involving ranked substructure lattices and
ranked interstructure lattices are proved in the next section. This section begins
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with a method for constructing extensions of lattices by doubling a filter,
then relates these types of extensions with substructure lattices, and culmin-
ates with Theorem 4.3.7 that every finite distributive lattice is a substructure
lattice.

Any lattice L can be extended to the lattice L×2. Here we are letting 2 be the
two-element lattice with elements 0, 1 (see Figure 4.1), and then identifying each
element a ∈ L with the element 〈a, 0〉 ∈ L×2. In this extension, no new element
is below any old element. Another way to get an extension with no new element
below any old one is by adding to the lattice L just one new element which
is greater than each element of L. This one-element extension can be identified
with the sublattice of L×2 consisting of the elements 〈a, i〉, where either i = 0 or
a = 1. Extensions of L, generalizing these two types of extensions, are considered
next.

A subset F of a lattice L is a filter of L if it is nonempty sublattice such
that whenever x ≥ y ∈ F then x ∈ F . Each filter F determines an extension
of L which is referred to as the lattice obtained by doubling the filter F . This
extension is the sublattice of L× 2 consisting of those 〈z, i〉 for which z ∈ F or
i = 0. To realize this lattice as an extension of L, identify each element z ∈ L
with 〈z, 0〉 ∈ L×2. Two examples of filters are L itself and {1} (if 1 exists in L).
The lattice obtained by doubling L is L× 2, and the one obtained by doubling
{1} is the one-element extension.

A filter is principal if it has the form {z ∈ L : z ≥ e} for some e ∈ L. All
filters in a finite lattice are principal. The only filters which we use for doubling
are principal filters, and we refer to the lattice obtained by doubling the principal
filter {z ∈ L : z ≥ e} as the e-doubling extension of L. An extension of L is a
doubling extension if it is an e-doubling extension for some e ∈ L. Every doubling
extension of a κ-algebraic lattice is κ-algebraic (Do it!).

The reader is reminded of Corollary 2.2.12 asserting that every countable
model has a conservative, superminimal extension. The next lemma gets such
an extension but with an additional property.

Lemma 4.3.1 Let M be a countable model. Then there is a type p(x) ∈ S1(M)
such that the p(x)-extension M(b) � M is a conservative, superminimal exten-
sion and, for each Skolem term t(u, x) there is an L-formula θ(x) in p(x) such
that each of the following hold in M :

(1) Every function t(u, ·) is eventually constant or eventually one-to-one on
θ(M). Specifically, the sentence

∀u[∀x∀x′(u ≤ x ≤ x′ ∧ θ(x) ∧ θ(x′) −→ t(u, x) �= t(u, x′)
)

∨ ∀x∀x′(u ≤ x ≤ x′ ∧ θ(x) ∧ θ(x′) −→ t(u, x) = t(u, x′)
)
]

holds in M .
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(2) If u < v and then the functions t(u, ·) and t(v, ·) eventually have disjoint
images on θ(M) or they eventually agree on θ(M). Specifically, the sentence

∀u∀v[u < v −→ ∀x∀x′(v ≤ x ∧ v ≤ x′ ∧ θ(x) ∧ θ(x′)

−→ t(u, x) �= t(v, x′)
) ∨ ∀x(v ≤ x ∧ θ(x)

−→ t(u, x) = t(v, x)
)
]

holds in M .

Proof We indicate how to modify the proof of Theorem 2.1.12 to get the type
p(x). In the proof of Theorem 2.1.12, a decreasing sequence X0 ⊇ X1 ⊇ X2 ⊇ · · ·
of unbounded definable subsets of M was constructed. Each Xn has the property
that there is a Skolem term s(x) (in the language L) and an element a ∈M such
that M |= ∀x[x ∈ Xn −→ s(x) = a], and Xn is definable in M using only the
parameter a. For this proof, we need to dovetail into the construction another
step:

Suppose Xn, a, and s(x) are as just described. At this step we
consider a Skolem term t(u, x). Then there is an L-formula θ(x)
such that θ(M) ∩Xn is unbounded and (1) and (2) hold.

We show how to get such a θ(x). Let ϕ(a, x) be a formula defining Xn. Let
Y ⊆ M2 be defined by ϕ(u, x) ∧ s(x) = u, and let Yu = {x ∈ M : 〈u, x〉 ∈ Y }.
Notice that if u �= v, then Yu ∩ Yv = ∅. Then, using an inductive construction in
M , there is an L-formula θ(x) (involving no parameters since neither t(u, x) and
ϕ(u, x) do) such that (1) and (2) hold and θ(M) has an unbounded intersection
with each unbounded Yu. Now let Xn+1 = Xn ∩ θ(M). Notice that Xn+1 is also
definable from a. �

In the statement of the next theorem, the notation M�N0 is from Defini-
tion 2.3.7. Also, since M0 is an element of the lattice Lt(M), it makes sense to
refer to the M0-doubling extension of Lt(M).

Theorem 4.3.2 Let M0 be a countable model. Then M0 has a conservative
extension N0 such that whenever M0 ≺ M and N = M�N0, then Lt(N) is
isomorphic to the M0-doubling extension L of Lt(M). (In fact, there is an
isomorphism α : Lt(N) −→ L which is the identity on Lt(M).)

Proof Suppose M � M0. Then M0 ∈ Lt(M), so let L be the M0-doubling
extension of Lt(M). The elements of L have the form 〈K, 0〉, where K ∈ Lt(M),
or 〈K, 1〉, where K ∈ Lt(M/M0). By identifying each K ∈ Lt(M) with 〈K, 0〉,
we have that Lt(M) is a sublattice of L.

Notice that theN0 is necessarily a superminimal extension ofM0. Apparently,
not any conservative, superminimal extension will do, and that is why we need
Lemma 4.3.1. Let N0 = M0(b) be a conservative, superminimal extension as
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described in that lemma, and then let N = M(b) = M�N0. There are two
crucial facts about this extension that suffice to prove the theorem:

(1) If K � N , then either M0 ≺ K or K � M .
(2) If M1 ∈ Lt(M/M0), then there is a unique K ∈ Lt(N)\Lt(M) such that

M1 = K ∩M .

We first prove (1). Suppose K � N and K �∈ Lt(M). Let a ∈ K\M . To show
that M0 ≺ K, it suffices to show that b ∈ K. Thus, we want a Skolem term t0(y)
for which N |= t0(a) = b.

There are an element c ∈ M and a Skolem term t(u, x) such that N |= a =
t(c, b). Let θ(x) be as in the Lemma 4.3.1, so that N |= θ(b). Let Y = θ(M).
Let t0(y) be the Skolem term defining the function f : N −→ N which we now
describe in words how to evaluate. Let v be the least such that there is x ∈ Y
such that t(v, x) = a, and then let t0(y) be that uniqe element x.

We verify that t0(a) = b. Clearly, v ≤ c since t(c, b) = a. If v < c and
t(v, x) = a for some x, then, since c ∈ M < a, it must be that t(v, ·) and t(c, ·)
eventually agree on Y, so that x = b. If v = c, then t(c, ·) is eventually one-to-one
on Y, so x = b.

For the proof of (2) just observe that K = M1(b)M1 � K.
Having proved (1) and (2), we define α : Lt(N) −→ L so that it is the identity

on Lt(M) and α(K) = 〈K ∩M, 1〉 if K �∈ Lt(M). Then α is the isomorphism. �

The previous theorem yields a whole slew of lattices which can be realized
as substructure lattices. Let L0, L1, L2, . . . , Ln be a finite sequence of lattices
in which L0 is the one-element lattice and each subsequent lattice Li+1 is some
doubling extension of Li. In particular, L1 is the two-element lattice. Then,
not only can Ln be realized as a substructure lattice, but each completion T
of PA∗ has a model M such that Lt(M) ∼= Ln. So, what exactly are these
lattices derivable from the one-element lattice by successively taking doubling
extensions? The answer: they are precisely the finite distributive lattices. A brief
introduction to distributive lattices follows.

Recall that (P(X),∪,∩) is a lattice. A lattice is distributive if, for some set
X, it is isomorphic to a sublattice of P(X). Alternative definitions can be given
using the distributive laws or by forbidding certain sublattices as in the next two
propositions. Clearly, a lattice is distributive iff its dual is distributive (Do it!).

Proposition 4.3.3 A lattice L is distributive iff it obeys one (or, equivalently,
both) of the two distributive laws:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). �
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Proposition 4.3.4 A lattice L is distributive iff neither of the lattices N5 and
M3 is isomorphic to a sublattice of L. �

In order to state the Representation Theorem for finite distributive lattices,
we need some definitions. For a lattice L, an element a ∈ L is join-irreducible
if whenever a = b ∨ c, then a ∈ {b, c}. Let J(L) be the set of join-irreducible
elements of L. If the element 0 =

∧
L exists, then 0 is join-irreducible, although

in the literature 0 is not consistently regarded as being join-irreducible; we let
J0(L) be the set of those join-irreducibles other than 0. Since L can be thought
of as a poset and J(L) ⊆ L, we consider J(L) and J0(L) as posets. Given a
poset P , we call a subset D ⊆ P a downset if whenever a ≤ b ∈ D, then a ∈ D.
The intersection and the union of an arbitrary collection of downsets of P are
also downsets of P . Therefore, if we let D(P ) be the collection of downsets of P ,
then (D(P ),⊆) is a lattice. Furthermore, D(P ) is a sublattice of P(P ), so D(P )
is a distributive lattice.

Theorem 4.3.5 (The Representation Theorem) Let L be a finite dis-
tributive lattice. Then the function

ϕ : L −→ D(J0(L))

defined by ϕ(x) = {a ∈ J0(L) : a ≤ x} is a lattice isomorphism. �

The next theorem characterizes the finite distributive lattices as those which
can be built up from the one-element lattice by a finite sequence of doubling
extensions.

Theorem 4.3.6 Suppose L is a finite lattice. Then L is distributive iff there is
a sequence L0, L1, L2, . . . , Ln of lattices such that L0 is the one-element lattice,
Ln
∼= L, and each Li+1 is a doubling extension of Li.

Proof The half of the proof that shows that Ln is distributive is an easy induc-
tion on i. Since Li is distributive, then so is Li×2. Then Li+1, being a sublattice
of Li × 2, also is.

For the other direction, let a0, a1, a2, . . . , an be the join-irreducibles of L
arranged so that if ai < aj , then i < j. In particular, a0 = 0. Let Li be the
sublattice of L generated by {a0, a1, . . . , ai}. Then it follows from the Represent-
ation Theorem 4.3.5 that L ∼= Ln and that each Li+1 is an x-doubling extension
of Li, where x = ai+1 ∧

∨
Li (Do it!). �

The next theorem is the principal theorem of this section. See Corollary 4.4.5
in the next section for an improvement.

Theorem 4.3.7 Let D be a finite distributive lattice. Let M0 be a prime model
of PA∗. Then M0 has an elementary end extension M such that M is resolute
and Lt(M) ∼= D.
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Proof Theorem 4.3.6 shows that D can be obtained by a finite sequence of
doubling extensions. Then, by Theorem 4.3.2, there is a corresponding sequence
of conservative minimal extensions resulting in M �end M0 such that Lt(M) ∼= D.
Then M is resolute by Theorem 3.4.7. �

Corollary 4.3.8 Let D be a finite distributive lattice. Then every model M has
an elementary end extension N such that Lt(N/M) ∼= D. �

4.4 Finite distributive lattices, II

The proof of Theorem 4.3.7 in the previous section yields some information
about ranked substructure lattices. Let D be a finite distributive lattice and let
r be a rank function whose rankset is a maximal subchain of D. Then there are
a0, a1, . . . , an ∈ D, as in the proof of Theorem 4.3.6, such that the rankset is
{a0∨a1∨· · ·∨ai : i ≤ n}. The model M constructed in the proof of Theorem 4.3.6
is such that Ltr(M) ∼= (D, r) (Do it!).

In this section the construction of the previous section is refined to yield
a characterization of those finite ranked distributive lattices which can appear
as ranked substructure lattices. There are two theorems which enter into this
construction; the first is Theorem 4.3.2, which was crucial in the proof of The-
orem 4.3.7, and the second is its analogue for cofinal extensions. The main results
of this section are Corollaries 4.4.2 and 4.4.4.

We need the following analogue of Theorem 4.3.2 for cofinal extensions.

Theorem 4.4.1 Let M0 be a nonstandard countable model generated by the
proper initial segment I ⊆end M0. Then M0 has a cofinal I-extension N0 such that
whenever M is an I-extension of M0 and N = M�N0, then Lt(N) is isomorphic
to the M0-doubling extension L of Lt(M). (In fact, there is an isomorphism
α : Lt(N) −→ L which is the identity on Lt(M).)

Proof The model N0 will be a superminimal, I-conservative cofinal extension
of M0 having the form M0(b). We construct a bounded type p(x) ∈ S1(M) that
b should realize. This is done by constructing a decreasing sequence X0 ⊇ X1 ⊇
X2 ⊇ · · · of bounded definable subsets M0. These sets have to satisfy certain
properties that will be stated in a moment.

Let h(v) be a term which defines a very fast growing function; that is h(v+1)
should be much larger than h(v). How big is “much larger”? The short answer
is: big enough for this proof to work.

Let Yv = {x ∈ M : h(v) ≤ x < h(v + 1)}. Without loss of generality, we can
assume that a ∈ M is nonstandard and that I ⊆end{x ∈ M : x < h(a)}. Then
we let X0 = Ya. Then h(a + 1) should be big enough so that for each n < ω,
cardM (Xn) > h(a).

The type p(x) that this sequence generates should have the following proper-
ties somewhat analogous to those in Lemma 4.3.1. For every Skolem term t(u, x)
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there is an L-formula θ(x) such that the following hold in M0:

(1) If u < h(v), then the function t(u, ·) is constant or one-to-one on θ(M)∩Yv.
(2) If u < u′ < h(v), then the functions t(u, ·) and t(u′, ·) have disjoint images

on θ(M) ∩ Yv or are identical on θ(M) ∩ Yv.
(3) If v′ < v, u′ < h(v′), u < h(v), and the function t(u, ·) is one-to-one on

θ(M) ∩ Yv, then the image of t(u, ·) on θ(M) ∩ Yv and the image of t(u′, ·)
on θ(M) ∩ Yv′ are disjoint.

It is also be required that:

(4) For each n < ω, there are a Skolem term s(x) and a ∈ I such that Xn is
definable using only the parameter a and M0 |= ∀x ∈ Xn[s(x) = a].

(5) For each a ∈ I, there is n < ω and a Skolem term s(x) such that M0 |=
∀x[x ∈ Xn −→ s(x) = a].

(6) cardM (Xn) is large enough.

Again, the question is how large is “large enough,” and the answer again
is large enough for the proof to work. We see, however, that as long as h was
chosen correctly, (6) takes care of itself.

Suppose we are at a stage of the construction where we have Xn and are
concerned about a in (5). Let Xn+1 be the set of those x ∈ Xn which, for some
i ∈M , is the 〈i, a〉th element of Xn. This takes care of (5).

Next suppose that we are at a stage of the construction where we have Xn

and are concerned about (1), (2), and (3) for some Skolem term t(u, x). Along
with Xn, we also have a and s(x). Let ϕ(a, x) be a formula defining Xn. Let
Zv ⊆ Yv ∩ ϕ(v,M) be the biggest such that:

(1′) If u < h(v), then t(u, ·) is constant or one-to-one on Zv.
(2′) If u < u′ < h(v), then the functions t(u, ·) and t(u′, ·) have disjoint images

or are identical on Zv.
(3′) If v′ < v, u′ < h(v′),u < h(v) and the function t(u, ·) is one-to-one on

θ(M) ∩ Yv, then the image of t(u, ·) on θ(M) ∩ Yv and the image of t(u′, ·)
on θ(M) ∩ Yv′ are disjoint.

There may be more than one biggest set satisfying (1′)–(3′), in which case
let Zv be the first in some canonical ordering of the subsets. Let θ(x) be the
formula x ∈ ⋃

v Zv, and then let Xn+1 = Za. The set Xn+1 should be big
enough so that cardM (Xn+1) > h(a); moreover, for each v ≥ n, it should be
that cardM (Zv) > h(v).

It is now clear that, with this construction, (1)–(6) will hold. The proof can
now be completed just as the proof of Theorem 4.3.2 was. �

From Theorems 4.3.2 and 4.4.1, we can obtain the following theorem
characterizing those ranked finite distribute lattices which appear as ranked
interstructure lattices for extensions which are not end extensions. Notice that
the condition on the rank is just the Blass Condition, the Gaifman Condition
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being redundant. The following theorem does remain true if the hypothesis that
r(0) > 0 is deleted; however, when r(0) = 0, then the extension must be an
elementary end extension, and for such extensions a stronger result appears as
Corollary 4.4.5.

Corollary 4.4.2 Let (D, r) be a ranked finite distributive lattice such that r(0) >
0 and

r(x) = r(y) =⇒ r(x) = r(x ∧ y)

whenever x, y ∈ D. Then every nonstandard countable model M has an
elementary extension N such that Ltr(N/M) ∼= (D, r).

Proof It suffices to assume that M is a prime model, for if it is not, then just
expand the language to include constant symbols for all elements of M .

Let a0, a1, . . . , an be a sequence of the join-irreducibles arranged as in the
proof of Theorem 4.3.6 (that is, ai < aj =⇒ i < j) but with the additional
property that for each x ∈ D, there is i ≤ n such that r(x) = a0∨a1∨· · ·∨ai. It
follows from the Representation Theorem 4.3.5 that there is such a sequence. For
each i ≤ n, let Di be the sublattice of D generated by the elements a0, a1, . . . , ai
and let 1i = a0∨a1∨· · ·∨ai =

∨
Di. We let ri be the rank function on Di defined

by ri(x) = r(x) ∧ 1i. We inductively obtain a sequence M0 ≺M1 ≺ · · · ≺Mn of
models such that Ltr(Mi) ∼= (Di, ri). Then, since (Dn, rn) = (D, r), we can let
N = Mn.

Let M0 = M . Now suppose that i < n and that we have Mi. We get Mi+1
to be isomorphic to a (ai ∧ 1i)-doubling extension of Di using Theorem 4.3.2 if
ri+1(1i) = 1i and Theorem 4.4.1 otherwise. The argument that Lt(N) ∼= D is
just like the argument in Theorem 4.3.2. �

This is an appropriate point to make some more definitions. Let p(x) be
a type and L a lattice. We say that p(x) produces L if, whenever M is a p(x)-
extension of its prime submodel, then Lt(M) ∼= L. Similarly, p(x) produces (L, r)
if Ltr(M) ∼= (L, r). This definition is useful in dealing with substructure lattices
but is less useful for interstructure lattices. Resolute types, which are defined in
Definition 3.4.3 and discussed in Section 3.4 of the previous chapter, are tailor-
made for realizing lattices as interstructure lattices. Recall that if p(x) ∈ S1(T )
is a resolute type, then p(x) is definable, so we can refer to the p(x)-extension of
a model M of T and to the ranked lattice it produces. The following proposition
identifies the key feature of resolute types.

Proposition 4.4.3 Let T be a completion of PA∗ and let p(x) ∈ S1(T ) be a
resolute type which produces the ranked lattice (L, r). If M |= T and N is a
p(x)-extension of M , then Ltr(N/M) ∼= (L, r).

Proof Let M(b) be a p(x)-extension of M , and let M0 be the prime model of
T . We can say exactly what the isomorphism is: it is N �→ N ∩M0(b). It follows
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right from Proposition 3.4.2 that this is an isomorphism of the lattices (Do it!)
which preserves ranksets (Do it!). �

The next corollary follows in the manner of Corollaries 4.3.7 and 4.4.2. The
resoluteness of the type depends on Theorem 3.4.8 (Do it!).

Corollary 4.4.4 Let T be a completion of PA∗, and let (D, r) be a ranked finite
distributive lattice such that r(0) = 0 and

r(x) = r(y) =⇒ r(x) = r(x ∧ y)

whenever x, y ∈ D. Then there is a resolute type p(x) ∈ S1(T ) producing
(D, r). �

By invoking Proposition 4.4.3, we get the following corollary.

Corollary 4.4.5 Let (D, r) be a ranked finite distributive lattice such that r(0) =
0 and

r(x) = r(y) =⇒ r(x) = r(x ∧ y)

whenever x, y ∈ D. Then every model M has an elementary end extension N
such that Ltr(N/M) ∼= (D, r). �

4.5 Finite lattices

One of the results of the previous section is that for any finite distributive lattice
D, every countable nonstandard model M of PA∗ has a cofinal extension N
such that Lt(N/M) ∼= D. In this section we see that there are many finite
nondistributive lattices L for which the same is true. For example, if 3 ≤ n ≤ 15,
then every countable nonstandard modelM of PA∗ has a cofinal extensionN such
that Lt(N/M) ∼=Mn. Other such lattices are N5 and H depicted in Figure 4.1.
The current state of our knowledge does not rule out the possibility that every
finite lattice has this property. However, there are finite lattices which are not
even known to be interstructure lattices. The latticeM16 is perhaps the simplest
instance of our ignorance here.

This section begins with a discussion about representations of finite lattices.
Recall from Section 4.1 that Eq(A) is the lattice of equivalence relations on the
set A and that its extreme elements are 11A =

∨
Eq(A) and 00A =

∧
Eq(A).

Definition 4.5.1 If L is a finite lattice and A any set, then α : L −→ Eq(A)
is a representation of L if α is an injection for which each of the following holds
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for x, y ∈ L:

α(x ∨ y) = α(x) ∧ α(y);

α(0) = 11A;

α(1) = 00A.

The representation α : L −→ Eq(A) is finite if A is finite.

Notice that a representation of the lattice L is an embedding of the
∨-semilattice L into the ∧-semilattice Eq(A). The reader is cautioned that it
is not required of a representation α that it satisfies

α(x ∧ y) = α(x) ∨ α(y)

for all x, y ∈ L, but if α does satisfy this, then we say that that α is a lattice
representation.

Let L be a finite lattice and α : L −→ Eq(A) a representation. If B ⊆ A, then
α|B : L −→ Eq(B) is the function such that for any x ∈ L, (α|B)(x) = α(x)∩B2.
There is no guarantee that α|B is also a representation of L, for it may be that
B is just too small. But if C ⊆ B ⊆ A and α|C is a representation, then so is
α|B.

Let α : L −→ Eq(A) and β : L −→ Eq(B) be two representations of L. Then
α and β are isomorphic if there is a bijection h : A −→ B such that for any
x ∈ L and a, b ∈ A, 〈a, b〉 ∈ α(x) iff 〈h(a), h(b)〉 ∈ β(x). The bijection h is said
to confirm that α and β are isomorphic.

Every finite lattice L has a finite representation α : L −→ Eq(L). For each
r ∈ L, let α(r) ∈ Eq(L) be such that 〈x, y〉 ∈ α(r) iff either x, y ≤ r or x = y
(Do it!). It follows from Theorem 4.1.5 that every finite lattice has a lattice
representation, but there are no guarantees that this will give a finite represent-
ation. Much more difficult is the following important theorem of Pudlák–Tůma
[155]

Theorem 4.5.2 Every finite lattice has a finite lattice representation. �

Finite lattice representations of finite distributive lattices are easy to come
by. Here is one way to get them. Let D be a finite distributive lattice and let
A = J(D) ⊆ D. (See Theorem 4.3.5 and the paragraph preceding it.) Define
α : D −→ Eq(A) so that for each r ∈ D, the equivalence relation α(r) has
only singletons for its equivalence classes with the (possible) exception of the
equivalence class containing 0D, which is {x ∈ J(D) : x ≤ r}.
Exercise 4.5.3 This function α : D −→ Eq(A) is a lattice representation of D.

The lattice M3 has a very simple finite lattice representation since, in fact,
M3 ∼= Eq(3)⊥ (Do it!). More generally, each lattice Eq(n)⊥ has a finite lattice
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representation, namely the identity function α on Eq(n)⊥. (Reminder: L⊥ is the
dual lattice of L obtained by interchanging the roles of ∧ and ∨.)

If you take a peek at Theorem 4.5.32 later in this section, you will see that
substructure lattices are universal in the sense that every finite lattice is a iso-
morphic to a sublattice of some substructure lattice. The proof of Theorem 4.5.32
makes use of the difficult Theorem 4.5.2. There is a weaker version of universality
having a proof avoiding Theorem 4.5.2 and which is conceptually simpler than
the proof of Theorem 4.5.32. The proof of this theorem can serve as an easy
introduction to the ideas presented later in this section. Readers not interested
in such an introduction may skip right to Definition 4.5.7.

The following definition introduces a partition property, reminiscent of
Ramsey’s Theorem, which representations may have.

Definition 4.5.4 Let α : L −→ Eq(A) and β : L −→ Eq(B) be representations
of the lattice L. Then α −→ (β)2 if whenever A = C ∪D, there is X ⊆ B such
that β ∼= α|X and either X ⊆ C or X ⊆ D. More generally, if 2 ≤ k < ω, then
α −→ (β)k if whenever A = C0 ∪ C1 ∪ · · · ∪ Ck−1, then there are i < k and
X ⊆ Ci such that β ∼= α|X.

Theorem 4.5.5 Let 2 ≤ k < ω and let α : L −→ Eq(A) be a finite lattice
representation of the finite lattice L. Then there is n < ω such that αn −→ (α)k.

�

The above theorem is, in a somewhat disguised form, what is arguably the
most fundamental theorem in Ramsey Theory, that branch of finite combinat-
orics which evolved from FRT. For 2 ≤ k < ω and 1 ≤ m < ω, let |A| = m
and then let γ : Eq(A)⊥ −→ Eq(A) be the identity represenatation of the lattice
Eq(A)⊥. This representation is certainly a lattice representation, so an instance
of Theorem 4.5.5 is that there is n < ω such that γn −→ (γ)k. This special
case of Theorem 4.5.5 is the Hales–Jewett Theorem, stated in a way which may
not appear to some readers to be what they know as that theorem. We see that
it is.

If A is a finite set and 1 ≤ n < ω, then a subset B ⊆ An is a combinatorial
line of An if there is a nonempty subset I ⊆ n and a function c : n\I −→ A such
that

B = {a ∈ An : ai = ci if i ∈ n\I and ai = aj if i, j ∈ I}.

If B is a combinatorial line as just given, then there is a natural bijection f :
A −→ B where f(a)i = ai if i ∈ I. The following is the more traditional form of
the Hales–Jewett Theorem.

The Hales–Jewett Theorem: Suppose that 1 ≤ m, r < ω, and
|A| = m. Then there is n < ω such that if An = C0∪C1∪· · ·∪Ck−1,
then some Ci contains a combinatorial line.
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We use the Hales–Jewett Theorem to prove the special case of Theorem 4.5.5.
Given k and γ : Eq(A)⊥ −→ Eq(A), let n be as in the Hales–Jewett Theorem,
and let An = C0∪C1∪ · · ·∪Ck−1. Then, letting B ⊆ Ci be a combinatorial line,
we see that α ∼= αn|B as confirmed by the natural bijection f : A −→ B.

Conversely, the Hales–Jewett Theorem follows from this special case of
Theorem 4.5.5 using the same value of n. For, letting An = C0∪C1∪ · · ·∪Ck−1,
we get B ⊆ Ci such that αn|B ∼= α as confirmed by the function f . But then B
is a combinatorial line with f : A −→ B being the natural bijection (Do it!).

We easily prove Theorem 4.5.5. If 1 ≤ k < ω and α : L −→ Eq(A) is a finite
lattice representation, then let n be as in the Hales–Jewett Theorem. This n is
easily seen to work (Do it!).

By considering the lattice L =M3 ∼= Eq(3)⊥ in the next proposition, we see
that there are substructure lattices that are not distributive.

Proposition 4.5.6 If L is a finite lattice having a finite lattice representation
and M is a countable nonstandard model, then M has a cofinal extension N such
that L is isomorphic to a sublattice of Lt(N/M).

Proof Let α : L −→ Eq(A) be a finite lattice representation of the lattice
L. That α is such a representation can be formalized in M . By overspill and
Theorem 4.5.5, let n ∈ M be nonstandard so that, in M , α : L −→ Eq(A)
is a representation with the property that for each k < ω, αn −→ (α)k. Let
X0 = An. For each i ∈ L, let fi : X0 −→ X0 be the definable function for which
fi(x) = y iff y = min{z ∈ X0 : 〈x, z〉 ∈ αn(i)}.

Let D0, D1, D2, . . . be list all the definable subsets of M . We obtain induct-
ively a sequence X0 ⊇ X1 ⊇ X2 ⊇ · · · of definable subsets of M such that if
i, k < ω, then αn|Xi −→ (α)k. Now suppose we have Xi. Then, by overspill,
there is a nonstandard even 2r ∈ M such that αn|Xi −→ (α)2r, and therefore,
letting Xi+1 be either Xi ∩Di or Xi\Di, we get that αn|Xi+1 −→ (α)r. Then,
since r is nonstandard, αn|Xi+1 −→ (α)k for each k < ω. Clearly, the sequence
X0 ⊇ X1 ⊇ X2 ⊇ · · · determines a unique type p(x), which is bounded since X0
is. Let N be the p(x)-extension of M generated by the element a ∈ N . For each
i ∈ L, let bi = fi(a) and let Mi be the elementary extension of M generated by
the element bi. To prove that i �→ Mi is an embedding of L in Lt(N/M), we
prove the following four things:

(1) M0 = M and M1 = N . For the first equality, notice that the function f0 is
constant on X0, mapping each x ∈ X0 to min(X0) ∈M . Thus, b0 = f0(a) ∈
M , so that M0 = M . For the second equality, just observe that f1 is the
identity function on X0. Thus, b1 = f1(a) = a, so that M1 = N .

(2) Mi∨j is generated by Mi ∪Mj. First we show that bi ∈ Mi∨j (which, by
symmetry, also shows that bj ∈ Mi∨j). Since αn(i ∨ j) refines αn(i), it
follows that fi(x) = fi(fi∨j(x)) for all x ∈ X0. Therefore, bi = fi(bi∨j), so
bi ∈Mi∨j .
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For the converse, observe that fi∨j(x) = min{z ∈ X0 : fi(z) = fi(x)
and fj(z) = fj(x)}. Therefore, bi∨j = min{z ∈ X0 : fi(z) = bi and fj(z) =
bj(x)}, so that bi∨j is in the model generated by {bi, bj}.

(3) Mi ∩ Mj = Mi∧j. The inclusion Mi∧j ∧ Mi ∩ Mj follows from (2) since,
for example, Mi∧j ⊆ Mi∨(i∧j) ⊆ Mi. For the reverse inclusion, consider
some b ∈ Mi ∩Mj . Then there are M -definable functions gi, gj : N −→
N such that b = gi(bi) = gj(bj). There is some k < ω such that Dk =
{x ∈ X0 : gi(fi(x)) = gj(fj(x))}. Since N |= b ∈ Dk, it must be that
Xk+1 ⊆ Dk. Thus, we might as well assume that gi(fi(x)) = gj(fj(x)) for all
x ∈ X0.

We claim: if 〈x, y〉 ∈ αn(i ∧ j), then gi(fi(x)) = gj(fj(x)). Working in
M , consider such x, y ∈ X0. Since αn is a lattice representation, there are
x = x0, x1, x2, . . . , xt = y such that 〈xr, xr+1〉 ∈ αn(i) for even r ≤ t and
〈xr, xr+1〉 ∈ αn(j) for odd r ≤ t. Thus fi(xr) = fi(xr+1) for even r and
fj(xr) = fj(xr+1) for odd r. Then gi(fi(x)) = gi(fi(x0)) = gi(fi(x1)) =
gj(fj(x1)) = gj(fj(x2)) = gi(fi(x2)) = · · · = gi(fi(xt)) = gi(fi(y)), proving
the claim. Thus, b = gi(fi∧j(a)) = gi(bi∧j), so b ∈Mi∧j .

(4) If i �= j, then Mi �= Mj . It suffices to show that if i < j, then bj �∈ Mi. For
a contradiction, suppose that bj = g(bi), where g : N −→ N is M -definable.
Since αn(j) is a refinement of αn(i), it follows that fi(x) = fi(fj(x)) for
all x ∈ X0, so that bi = fi(bj). Thus, bj = g(fi(bj)). Therefore, there is
k < ω such that fj(x) = fj(g(fi(x))) for all x ∈ Xk. Then, (αn|Xk)(i)
is a refinement of (αn|Xk)(j). This implies that (αn|Xk)(i) = (αn|Xk)(j),
contradicting that αn|Xk is a representation of L. �

Recall that if A is an algebra, then Cg(A) is the lattice of congruences of A.

Definition 4.5.7 Let α : L −→ Eq(A) be a representation of the finite lattice
L. We say that the representation is a congruence representation if there is an
algebra A such that α is an isomorphism of L and Cg(A)⊥.

Simple examples of lattices having finite congruence representations are the
finite lattices Eq(A)⊥. The identity function is a congurence representation since,
if A is considered as an algebra with no operations, then Eq(A) = Cg(A).

Every congruence representation is a lattice representation. Theorem 4.1.5
implies that every finite lattice has a congruence representation. Unfortu-
nately, arbitrary congruence representations do not appear to be so useful for
showing that a given finite lattice is isomorphic to a substructure lattice. How-
ever, finite congruence representations turn out to be very useful. All known
examples of finite lattices which are isomorphic to intermediate structure lat-
tices come from the following theorem. Of course, with our current state of
knowledge, it is still possible that every finite lattice has a finite congruence
representation.
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Theorem 4.5.8 Let L be a finite lattice which has a finite congruence repres-
entation. Then every countable nonstandard model M has an elementary cofinal
extension N such that Lt(N/M) ∼= L. �

Before starting the proof of this theorem, we take a look at some more
examples of finite lattices and their finite congruence representations.

Example 4.5.9 Every finite distributive lattice has a finite congruence repres-
entation.

In fact, the representations given in Exercise 4.5.3 are congruence represent-
ations. Let {fi : i ∈ I} be the set of all functions f : A −→ A such that f(x) ≤ x
for all x ∈ A. The congruences of (A, 〈fi : i ∈ I〉) are exactly those which are
in the range of α (Do it!). Much more difficult to prove is that for any finite
distributive lattice there is a finite lattice L such that D ∼= Cg(L).

Example 4.5.10 The lattice N5 has a finite congruence representation.

Perhaps the simplest such representation comes from an algebra having four
elements and two 1-ary operations. Let A = {1, 2, 3, 4, } and let f, g : A −→ A
be the functions such that f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3, f(5) = 1,
and g(1) = g(3) = 2, g(2) = g(4) = 2. Consider the algebra (A, f, g) of type
〈1, 1〉. Besides the two extreme congruences Θ0 = 11A and Θ1 = 00A, there are
three others, Θa,Θb,Θc, whose corresponding partitions are:

{{1, 2}, {3, 4}}, {{1, 2}, {3}, {4}}, {{1, 3}, {2, 4}}.

It can be checked that N5 ∼= Cg(A)⊥ (Do it!). In fact, the function r �→ Θr is
a congruence representation.

Example 4.5.11 The lattice H has a finite congruence representation.

There is an algebra A having 16 elements such that H ∼= Cg(A)⊥. It is
convenient to let A = Z4 × Z4, where Z4 is the additive cyclic group of order
4. Let γ : A −→ A be the permutation defined by γ(〈i, j〉) = 〈j + 1, i〉. Besides
the two extreme congruences Θ0 = 11A and Θ1 = 00A, there are four others:
Θa,Θb,Θc, and Θd. We define Θa and Θb so that if i, j, r, s ∈ Z4, then:

〈i, j〉Θa〈r, s〉 ⇐⇒ i = r;

〈i, j〉Θb〈r, s〉 ⇐⇒ i = r and either j = i = s or j �= i �= s.

Then let Θc = γ(Θa) and Θd = γ(Θb). These six equivalence relations form
a sublattice of Eq(A)⊥ which is isomorphic to H. This sublattice is also a
congruence lattice. (See Exercise 4.8.10.)

Example 4.5.12 If q = pk, where p is a prime and 1 ≤ k < ω, then Mq+1 has
a finite congruence representation.
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Let Fq be the Galois field of order q, and let A = Fq×Fq. For each a ∈ Fq, let
Θa be the equivalence relation on A such that 〈x, y〉Θa〈u, v〉 iff a(x−u) = y− v,
and let Θ∞ ∈ Eq(A) be such that 〈x, y〉Θ∞〈u, v〉 iff x = u. Then {00A, 11A,Θ∞}∪
{Θa : a ∈ Fq} is a sublattice of Eq(A) which is isomorphic to Mq+1 (Do
it!). We can think of A as the affine plane over Fq and the defined equivalence
relations as partitions of this plane into parallel lines. To see that this lattice
is actually a congruence lattice, consider A as an algebra whose operations are
the linear functions f : A −→ A, meaning that there are a, b, c, d ∈ Fq such that
f(〈x, y〉) = 〈ax+ by, cx+ dy〉. Then, Mq+1 ∼= Cg(A)⊥ (Do it!).

The reader may have observed that in Examples 4.5.9, 4.5.10, and 4.5.12 all
of the operations of the given algebras have arity 1. The following exercise, which
is used in the proof of Theorem 4.5.27, shows that this is not an accident.

Exercise 4.5.13 Let (A, 〈fi : i ∈ I〉) be an algebra. A function p : An −→ A is
a polynomial of A if it can be obtained as the composition of operations of A and
constant functions c : A −→ A. If {pj : j ∈ J} is the set of all 1-ary polynomials
of (A, 〈fi : i ∈ I〉), then Cg(A, 〈fi : i ∈ I〉) = Cg(A, 〈pj : j ∈ J〉).

In the following definition, we define the Canonical Partition Property which
is a property that a representation of a finite lattice might have. The abbreviation
CPP is used.

Definition 4.5.14 Let L be any lattice and α : L −→ Eq(A) a representation
of L.

(1) If Θ ∈ Eq(A) and B ⊆ A, then we say that Θ is canonical for α on B if
there is r ∈ L such that Θ ∩B2 = (α|B)(r).

(2) Let L be a finite lattice. Using induction on n < ω, we define when α is an
n-CPP representation of L. We say that α is a 0-CPP representation if α(r)
has more than two equivalence classes whenever 0 < r ∈ L, and we say that
α is an (n + 1)-representation if whenever Θ is an equivalence relation on
A, then there is B ⊆ A such that α|B is an n-CPP representation and Θ is
canonical on B.

The converse to the following exercise is also true. It is easily deduced from
Lemma 4.5.19.

Exercise 4.5.15 A representation α : 2 −→ Eq(A) is n-CPP if |A| > 22n

.

Lemma 4.5.16 Suppose that L is a finite lattice and m < n < ω. Then every
n-CPP representation of L is also an m-CPP representation.

Proof It suffices to consider only the case in which m = 0 as then the general
case easily follows (Do it!). The proof is by induction on n, and the basis step
n = 0 is trivial. Assume that every n-CPP representation is a 0-CPP represent-
ation, and then suppose that α is an (n + 1)-CPP representation which is not
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0-CPP. Let α(y) be an offending equivalence relation. Let B ⊆ A be such that
α|B is an n-CPP representation and for some x ∈ L, α(x) ∩ B2 = α(y) ∩ B2.
Necessarily, x = y. By the inductive hypothesis, α|B is 0-CPP, so (α|B)(y) does
not have exactly two equivalence classes, so it must have just one, and therefore
y = 0. But then α(y) = 11A, contradicting that it has two equivalence classes. �

The following easy exercise is used in the proof of the lemma following it.

Exercise 4.5.17 If α : L −→ Eq(A) is a representation of the finite lattice L
and B ⊆ A is such that α|B is an n-CPP representation of L, then α is an
n-CPP representation.

Lemma 4.5.18 Suppose that L is a finite lattice and α : L −→ Eq(A) is an
(n + 1)-CPP representation of L. If A = A0 ∪ A1, then α|A0 or α|A1 is an
n-CPP representation of L.

Proof We can assume that A0, A1 �= ∅ and, by the previous exercise, that
A0 ∩ A1 = ∅. Let Θ be the equivalence relation having just A0 and A1 for
equivalence classes. Let B ⊆ A be such that α|B is an n-CPP representation
and Θ is canonical on B. By Lemma 4.5.16 α|B is 0-CPP, so that either B ⊆ A0
or B ⊆ A1. Then, by Exercise 4.5.17, either α|A0 or α|A1 is n-CPP. �

Lemma 4.5.19 Let α : L −→ Eq(A) be an n-CPP representation. If 0 < r ∈ L,
then α(r) has more than 22n

equivalence classes.

Proof The proof is by induction on n. If n = 0, then this follows from the
definition of a 0-CPP representation. For the inductive step, let α : L −→ Eq(A)
be an (n+ 1)-CPP representation. Consider 0 < r ∈ L, assuming that α(r) has
no more than 22n+1

equivalence classes. Let Θ ∈ Eq(A) be such that it is refined
by α(r) and that it has no more than 22n

equivalence classes each containing
no more than 22n

equivalence classes of α(r). Let B ⊆ A be such that α|B is
n-CPP and Θ is canonical on B. By the inductive hypothesis, Θ ∩ B2 has only
one equivalence class, contradicting that r > 0. �

Lemma 4.5.20 If α : L −→ Eq(A) is an n-CPP representation, then there is a
finite B ⊆ A such that α|B is an n-CPP representation of L.

Proof The proof is by induction on n. The case n = 0 is easy. Let α : L −→
Eq(A) be an (n+ 1)-CPP representation, and suppose that for no finite B ⊆ A
is α|B an (n+1)-CPP representation. For each finite B ⊆ A, let ΘB be an equi-
valence relation on B demonstrating that α|B is not n-CPP. By a compactness
argument, there is an equivalence relation Θ on A such that for any finite C ⊆ A
there is a finite B such that C ⊆ B ⊆ A and Θ ∩B2 = ΘB . Now let C ⊆ A and
x ∈ L be such that α|C is an n-CPP representation of L and (α|C)(x) = Θ∩C2.
By the inductive hypothesis, we can assume that C is finite. Let B ⊇ C be finite
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such that Θ ∩ B2 = ΘB . By Exercise 4.5.17 α|B is an n-CPP representation of
L, and also (α|B)(x) = Θ ∩B2. But this contradicts the choice of ΘB . �

A useful consequence of the previous lemma is that for any finite lattice
L there is a Σ1 LPA formula cpp(L, x) such that for any n < ω, the sentence
cpp(L, n) expresses the fact that L has an n-CPP representation. Thus, recalling
that N is the standard model, N |= cpp(L, n) iff L has an n-CPP representation.
Since each sentence cpp(L, n) is Σ1, if N |= cpp(L, n), then PA � cpp(L, n).

The next theorem is the principal way to get cofinal extensions having a
specified finite interstructure lattice.

Theorem 4.5.21 Let M be a countable nonstandard model of PA∗ and let L be
a finite lattice. If M |= cpp(L, n) for every n < ω, then M has a cofinal extension
N such that Lt(N/M) ∼= L.

Proof The extension N is obtained by constructing a complete type p(x) ∈
S1(M) and then letting N be a p(x)-extension of M . Since the theorem applies
to models of PA∗, we can expand M by adjoining constant symbols denoting
each of its elements. In this way, we can assume, without loss of generality, that
M is a nonstandard prime model of PA∗.

Since M is nonstandard, by overspill there is a nonstandard c ∈ M such
that M |= cpp(L, c). Working in M , we can find a finite c-CPP representation
α : L −→ Eq(A). Thus A is a bounded definable set and α is definable. We now
define large sets to be those definable subsets X ⊆ A for which there is some
nonstandard d ∈M such that α|X is a d-CPP representation.

Let Θ0,Θ1,Θ2, . . . be an enumeration of all definable equivalence relations
on A. Then we can get a decreasing sequence A = X0 ⊇ X1 ⊇ X2 ⊇ · · · of large
subsets such that, for each n, Θ is canonical on Xn+1.

Let p(x) be the type consisting of all formulas ϕ(x) such that M |= ∀x[x ∈
Xn −→ ϕ(x)] for some n < ω.

The type p(x) is complete. For, consider any formula ϕ(x), and consider the
equivalence relation Φ defined by the formula ϕ(x)←→ ϕ(y). Then Φ is canonical
on some Xn; that is, Φ ∩ X2

n = α(r) ∩ X2
n for some r ∈ L. Since Φ has only

two equivalence classes and α|Xn is 0-CPP, it is clear that Φ ∩X2
n = Θ0 ∩X2

n,
and therefore either M |= ∀x[x ∈ Xn −→ ϕ(x)] or M |= ∀x[x ∈ Xn −→ ¬ϕ(x)].
Thus, either ϕ(x) ∈ p(x) or ¬ϕ(x) ∈ p(x), so p(x) is complete.

Let N be a p(x)-extension of M generated by the element d realizing p(x).
For each r ∈ L, let tr(x) be a Skolem term such that whenever x ∈ A, then
tr(x) is the least element of the Θr-equivalence class to which x belongs. Let
Mr = Scl(tr(d)).

Each model Mr just defined is in Lt(N). In fact, these are the only models in
Lt(N). For, suppose that M � N0 � N and that N0 not one of the Mr. We can
assume, without loss of generality, that N0 = Scl(b) for some b ∈ N . Thus, there
is a Skolem term t(x) such that b = t(d). Let Ψ be the equivalence relation that
t(x) induces; that is, xΨy ⇐⇒ t(x) = t(y). Then there is some Xn on which Ψ



114 SUBSTRUCTURE LATTICES

is canonical, so we can let r ∈ L be such that Ψ ∩X2
n = α(r) ∩X2

n. There are
Skolem terms t′(x) and t′′(x) such that

∀x ∈ Xn[t′(tr(x)) = t(x) ∧ t′′(t(x)) = tr(x)]

holds in M . But then N |= t′(tr(d)) = t(d) ∧ t′′(b) = tr(d), so that N0 = Mr.
Finally, to complete this proof, we show that if q, r ∈ L, then q ≤ r iff

Mq � Mr. First, suppose q ≤ r. Then M |= ∀x ∈ A[tq(tr(x)) = tq(x)], so that
tq(tr(d)) = tq(d), thereby implying that Mq � Mr. Conversely, suppose that
Mq � Mr. Then there is a Skolem term t(x) such that N |= t(tr(d)) = tq(d).
Let Ψ be the equivalence relation that t(x) induces, and let Xn be such that Ψ
is canonical on Xn. Then α(r) ∩D2

n refines Θq ∩X2
n, so that q ≤ r. �

There is a strong converse to Theorem 4.5.21 which is the next theorem.
Notice that in this theorem there are no restrictions on the cardinality of M nor
on the nature of the extension N �M .

Theorem 4.5.22 Let L be a finite lattice and suppose that Lt(N/M) ∼= L. Then,
M |= cpp(L, n) for every n < ω.

Proof Let the function s �→ Ms be an isomorphism of L onto Lt(N/M). For
each s ∈ L, let as ∈ N be such that Ms = Scl(M ∪{as}). Then, there are Skolem
terms ts(x) (allowing parameters from M) such that N |= ts(a1) = as for each
s ∈ L. Let Θs be the equivalence relation on M induced by ts(x); that is, xΘsy
iff ts(x) = ts(y).

The function α : L −→ Eq(M), where α(s) = Θs is a 0-CPP representation
of L (Do it!). The proof, for each n < ω, that M |= cpp(L, n) is like the proof
of Lemma 4.5.20 but carried out inside of M . It can be shown that there is a
large enough b ∈M such that α|[0, b] is an n-CPP representation of L (Do it!).

�

Theorems 4.5.21 and 4.5.22 jointly yield the following corollary, which, at
least for nonstandard countable models, asserts that it is easier to realize a finite
lattice by a cofinal extension than it is by an end extension.

Corollary 4.5.23 Suppose that L is a finite lattice and Lt(N/M) ∼= L. Then
every nonstandard countable M0 ≡ M has a cofinal extension N0 such that
Lt(N0/M0) ∼= L. �

The remaining ingredient in the proof of Theorem 4.5.8 is the proof that every
lattice having a finite congruence representation has an n-CPP representation
for each n. To this end, we make some more definitions.

Definition 4.5.24 Let L be a finite lattice, and let α : L −→ Eq(A) and
β : L −→ Eq(B) be two representations of L. We say that α arrows β [notation:
α −→ β] if, whenever Θ ∈ Eq(A), then there are C ⊆ A and x ∈ L such that
(α|C)(x) = Θ ∩ C2 and α|C is isomorphic to β.
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One way to show that the finite lattice L has an n-CPP representation is to
show that there are representations α0, α1, α2, . . . , αn, . . . such that α0 is a 0-
CPP representation and αn+1 −→ αn for each n < ω. For such representations,
αn is n-CPP. This is exactly the approach that we will use for lattices having
finite congruence representations.

Let α : L −→ Eq(A) be a representation of the finite lattice L. If 1 ≤
n < ω, then we let αn : L −→ Eq(An) be the function such that whenever
a0, a1, . . . , an−1, b0, b1, . . . , bn−1 ∈ A and x ∈ L, then 〈ā, b̄〉 ∈ αn(x) iff 〈ai, bi〉 ∈
α(x) for each i < n. If α : L −→ Eq(A) is a representation of the finite lattice
L and 1 ≤ m,n < ω, then αn is a representation of L and (αm)n and αmn are
isomorphic representations (Do it!).

Exercise 4.5.25 Suppose that 1 ≤ n < ω. If α is a lattice representation of the
finite lattice L, then so is αn.

Lemma 4.5.26 Let α be a finite congruence representation of the finite lattice
L. Then:

(1) α2 is a 0-CPP representation;
(2) if 1 ≤ n < ω, then αn is a finite congruence representation.

Proof (1) Clearly, if x ∈ L, then |α2(x)| = |α(x)|2 �= 2.
(2) By Example 4.5.9, we can let α : L −→ Cg(A)⊥ be an isomorphism,

where A is a finite algebra all of whose operations are 1-ary. Without loss of
generality, we can assume that among the operations of A are all the constant
functions and the identity function. For, any of these which happen not to be
among the operations can be adjoined without altering Cg(A).

We wish to turn An into an algebra. The operations of An will be 1-ary; that
is, each will be a function g : An −→ An. The function g : An −→ An will be
among the operations of An iff one of the following holds:

• there are operations f0, f1, . . . , fn−1 of A such that

g(〈a0, a1, . . . , an〉) = f̄(ā)

for every a0, a1, . . . , an−1 ∈ A;
• for some i < n, g = hi where

hi(ā) = 〈ai, ai, . . . , ai〉

for every a0, a1, . . . , an−1 ∈ A.

Notice that in the items above, we have used abbreviations such as f̄(ā) for
〈f0(a0), f1(a1), . . . , fn−1(an−1)〉. We continue with this practice.
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Verifying that αn : L −→ Cg(An)⊥ is an isomorphism will complete the
proof. Since we know from Exercise 4.5.25 that αn is a lattice representation, it
suffices to prove that αn(L) = Cg(An).

We first prove that αn(L) ⊆ Cg(An). Consider x ∈ L. To show that αn(x) ∈
Cg(An), we need to show that whenever c̄, d̄ ∈ An and g is an operation of An,
then

〈c̄, d̄〉 ∈ αn(x) =⇒ 〈g(c̄), g(d̄)〉 ∈ αn(x) .

Since g can be one of two kinds of operations, two arguments are required.
If g is the first kind of operation defined from the operations f0, f1, . . . , fn−1,

then

〈c̄, d̄〉 ∈ αn(x) =⇒ 〈ci, di〉 ∈ α(x) for all i < n

=⇒ 〈fi(ci), fi(di)〉 ∈ α(x) for all i < n

=⇒ 〈f̄(c̄), f̄(d̄)〉 ∈ αn(x)

=⇒ 〈g(c̄), g(d̄)〉 ∈ αn(x).

If g is the second kind of operation, where g = hi, then

〈c̄, d̄〉 ∈ αn(x) =⇒ 〈ci, di〉 ∈ α(x)

=⇒ 〈〈ci, ci, . . . , ci〉, 〈di, di, . . . , di〉〉 ∈ αn(x)

=⇒ 〈g(c̄), g(d̄)〉 ∈ αn(x).

We next show that Cg(An) ⊆ αn(L). Consider some Θ ∈ Cg(An), with
the aim of finding some x ∈ L such that αn(x) = Θ. Let Θ0 ∈ Eq(A) be
such that

〈a, b〉 ∈ Θ0 ⇐⇒ 〈〈a, a, . . . a〉, 〈b, b, . . . , b〉〉 ∈ Θ .

Then Θ0 ∈ Cg(A). For, if a, b ∈ A and f is an operation of A, then

〈a, b〉 ∈ Θ0 =⇒ 〈〈a, a, . . . , a〉, 〈b, b, . . . , b〉〉 ∈ Θ

=⇒ 〈〈f(a), f(a), . . . , f(a)〉, 〈f(b), f(b), . . . , f(b)〉〉 ∈ Θ

=⇒ 〈f(a), f(b)〉 ∈ Θ0 .
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Since Θ0 ∈ Cg(A), there is some x ∈ L such that α(x) = Θ0. We finish the proof
by showing that αn(x) = Θ. We first show that Θ ⊆ αn(x). If c̄, d̄ ∈ An, then

〈c̄, d̄〉 ∈ Θ =⇒ 〈hi(c̄), hi(d̄)〉 ∈ Θ for each i < n

=⇒ 〈〈ci, ci, . . . , ci〉, 〈di, di, . . . , di〉〉 ∈ Θ for each i < n

=⇒ 〈ci, di〉 ∈ Θ0 for each i < n

=⇒ 〈ci, di〉 ∈ α(x) for each i < n

=⇒ 〈c̄, d̄〉 ∈ αn(x).

To show that αn(x) ⊆ Θ, suppose 〈c̄, d̄〉 ∈ αn(x). Then 〈ci, di〉 ∈ α(x) for
each i < n. But Θ0 = αn(x), so 〈ci, di〉 ∈ Θ0 for each i < n and, therefore,
〈〈ci, ci, . . . , ci〉, 〈di, di, . . . , di〉〉 ∈ Θ for each i < n. Now let g0, g1, . . . , gn−1 :
An −→ An be such that whenever i < n and ā ∈ An, then gi(ā) = b̄, where

bj =


dj if j < i,

aj if j = i,

cj if j > i.

Clearly, each gi is an operation of An, so 〈gi(〈ci, ci, . . . , ci〉), gi(〈di, di, . . . , di〉)〉 ∈
Θ for each i < n. But since

c̄ = g0(〈c0, c0, . . . , c0〉),
gi(〈di, di, . . . , di〉) = gi+1(〈ci+1, ci+1, . . . , ci+1〉),

gn−1(〈dn−1, dn−1, . . . , dn−1〉) = d̄,

we can conclude that 〈c̄, d̄〉 ∈ Θ. �

Theorem 4.5.27 If α is a finite congruence representation of the finite lattice
L, then there is n < ω such that αn −→ α.

Proof The proof of this theorem uses a generalization of the Hales–Jewett
Theorem, which has been referred to earlier in this chapter. The Hales–Jewett
Theorem implies an extension of itself. Combinatorial lines of Ar, which were
defined earlier, could also be called one-dimensional combinatorial subsets of
Ar. We extend this definition to higher dimensions. If s ≤ r, then B ⊆ A is an
s-dimensional combinatorial subset of Ar if there are a subset I ⊆ r partitioned
into s nonempty sets I0, I1, . . . , Is−1 and a function c : r\I −→ A such that

B = {a ∈ Ar : ai = ci if i ∈ n\I and ai = aj if i, j ∈ Ik for some k < r}.

If B is an s-dimensional combinatorial subset of Ar as just described, there is a
natural bijection f : As −→ B where f(a)i = aj if i ∈ Ij .
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The Extended Hales–Jewett Theorem: Suppose that 1 ≤
m, s, k < ω and |A| = m. Then there is r < ω such that if
Ar = C0 ∪C1 ∪ · · · ∪Ck−1, then some Ci contains an s-dimensional
combinatorial subset of Ar.

The Extended Hales–Jewett Theorem involves partitioning Ar into some fixed
finite number k of sets. There is a further generalization of the Hales–Jewett
Theorem, due to Prömel and Voigt, in which Ar is partitioned into an arbitrary
number of sets.

The Prömel–Voigt Theorem: Suppose that 1 ≤ m, s < ω and
|A| = m. Then there is r < ω such that if Θ ∈ Eq(Ar), then there
is an s-dimensional combinatorial subset B ⊆ Ar with a natural
bijection h : As −→ B and Ψ ∈ Eq(A) such that h(Ψ)s) = h(As)∩Θ.

The following is an immediate corollary of the Prömel–Voigt Theorem.

Corollary 4.5.28 Suppose that 1 ≤ m, s < ω, |A| = m, and γ : Eq(A)⊥ −→
Eq(A) is the identity representation. There is r < ω such that γr −→ γs. �

The representation γ in the previous corollary is a finite congruence repres-
entation since A can be considered as an algebra having no operations. Then, by
Lemma 4.5.26(2), γs is also a finite congruence representation. Thus, by choos-
ing n so that ns ≥ r, we see that (γs)n −→ γr, thereby obtaining the special
case of the theorem for α = γr. We use this special case of Theorem 4.5.27 to
prove the theorem for arbitrary α.

Continuing with the proof of the theorem, let α : L −→ Cg(A)⊥ be an iso-
morphism. With thanks to Exercise 4.5.13, we assume that all the operations of
A are 1-ary; moreover, we assume that the set of operations is closed under com-
position and includes the identity function. Let f0, f1, . . . , fm be the operations
of A, and let F : Am+1 −→ A be such that F (a) = 〈f0(a), f1(a), . . . , fm(a)〉.
Letting γ : Eq(A)⊥ −→ Eq(A) be the identity representation, we can get from
the Prömel–Voigt Theorem some n < ω such that γn −→ γm+1. We claim that
αn −→ α.

To prove this claim, consider some Θ ∈ Eq(An). Let B ⊆ An be such that
γn|B is isomorphic to γm+1 (as confirmed by g : Am+1 −→ B) and let z ∈ Eq(A)
be such that (γn|B)(z) = Θ ∩ B2. Now define h : A −→ An so that that
h(a) = g(F (a)), and let C ⊆ An be its image. To finish the proof, it suffices to
show that (1) αn|C is isomorphic to α, and (2) (αn|C)(x) = Θ ∩ C2 for some
x ∈ L.
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We prove (1) by showing that h confirms the isomorphism. To this end,
consider x ∈ L and a, b ∈ A. Then:

〈a, b〉 ∈ α(x)⇐⇒ 〈fi(a), fi(b)〉 ∈ α(x) for each i ≤ m

⇐⇒ 〈F (a), F (b)〉 ∈ αm+1(x)

⇐⇒ 〈g(F (a)), g(F (b))〉 ∈ αn(x)

⇐⇒ 〈h(a), h(b)〉 ∈ αn(x).

To complete the proof of the theorem, it remains to prove (2). Let Ψ ∈ Eq(A)
be such that

〈a, b〉 ∈ Ψ⇐⇒ 〈h(a), h(b)〉 ∈ Θ .

Since h confirms that αn|C and α are isomorphic, it suffices to show that Ψ ∈
Cg(A). Thus, we show that for any j ≤ m, if 〈a, b〉 ∈ Ψ, then 〈fj(a), fj(b)〉 ∈ Ψ.
First notice that for any a, b ∈ A,

〈a, b〉 ∈ Ψ⇐⇒ 〈h(a), h(b)〉 ∈ Θ

⇐⇒ 〈g(F (a)), g(F (b))〉 ∈ Θ

⇐⇒ 〈F (a), F (b)〉 ∈ γm+1(z)

⇐⇒ 〈fi(a), fi(b)〉 ∈ γ(z) for each i ≤ m.

Now suppose that 〈a, b〉 ∈ Ψ. Then 〈fi(a), fi(b)〉 ∈ γ(z) for each i ≤ m.
Since the set of operations of A is closed under composition, we have that
〈fi(fj(a)), fi(fj(b))〉 ∈ γ(z) for each i ≤ m, so that 〈fj(a), fj(b)〉 ∈ Ψ, thereby
proving (2). �

Corollary 4.5.29 If L is a finite lattice which has a finite congruence repres-
entation, then for each n < ω, L has an n-CPP representation.

Proof Let α be a finite congruence representation of the lattice L. Let
α0 = α2, which, by Lemma 4.5.26(1), is a 0-CPP representation of L. Apply-
ing Lemma 4.5.26(2) repeatedly, we can get finite congruence representations
α0, α1, α2, α3 . . . such that

· · · −→ α3 −→ α2 −→ α1 −→ α0.

Then, αn is an n-CPP representation of L. �

The pieces of the proof of Theorem 4.5.8 can now be assembled. Let M be
a countable nonstandard model and L a finite lattice having a finite congruence
representation. By the previous corollary, L has an n-CPP representation for
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each n < ω. Thus, each of the sentences cpp(L, n) is true in the standard model
N, and so each is true in M. Then, by Theorem 4.5.21, M has a cofinal extension
N such that Lt(N/M) ∼= L, completing the proof of Theorem 4.5.8.

The following is a sample corollary.

Corollary 4.5.30 If q = pk, where p is a prime and 1 ≤ k < ω, then every
countable nonstandard model M has a cofinal extension N such that Lt(N/M) ∼=
Mq+1.

Proof Refer to Theorem 4.5.21 and Example 4.5.12. �

The method of proof of Theorem 4.5.21 can also be used for some infinite
lattices. For an infinite cardinal κ, letMκ be the lattice of cardinality κ in which
all elements, other than 0 and 1, are pairwise incomparable. Example 4.5.12 can
be extended to the case where q ∈M is nonstandard, resulting in the following.

Corollary 4.5.31 Every countable nonstandard modelM has a cofinal extension
N such that Lt(N/M) ∼=Mℵ0 . �

While the question of whether every finite lattice is isomorphic to a substructure
lattice is still unresolved, there is nothing to prevent a finite lattice from being
embeddable into a finite substructure lattice.

Corollary 4.5.32 If L is a finite lattice and M is a countable nonstandard
model, then M has a cofinal extension N such that Lt(N/M) is finite and L is
isomorphic to a sublattice of Lt(N/M).

Proof By Theorem 4.5.2, L⊥ has a finite lattice representation; that is, there
is a finite set A and a lattice embedding α : L⊥ −→ Eq(A)⊥. Then α is an
embedding of L in Eq(A). The lattice Eq(A) has a finite congruence repres-
entation since Eq(A) ∼= Cg(A), where A is the algebra having no operations.
Thus, Theorem 4.5.8 implies that there is a cofinal extension N such that
Lt(N/M) ∼= Eq(A). Then L is isomorphic to a sublattice of Lt(N/M). �

In all cases that we know of, that is for any finite lattice L and n < ω,
if M |= cpp(L, n) for some model M , then in fact PA � cpp(L, n). Moreover,
if the sentence ∀x[cpp(L, x)] is true in the standard model of PA, then it is a
consequence of PA. This section ends with some results concerning models in
which ∀x[cpp(L, x)] holds.

An important feature of Lemma 4.5.19, when restricted to finite represent-
ations, is that it and its proof can be formalized in PA. We make use of this
feature in the next theorem which is an analogue of Theorem 4.5.21 for the case
that ∀x[cpp(L, x)] holds.

Theorem 4.5.33 Let M be a countable nonstandard model of PA∗ and L a
finite lattice such that M |= ∀x[cpp(L, x)]. Then for each a ∈ M , there is a
cofinal [0, a]-extension N such that Lt(N/M) ∼= L.
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Proof We can assume that a is nonstandard. To construct the extension, pro-
ceed as in the proof of Theorem 4.5.21 but requiring that the nonstandard c
at the beginning of the proof be large enough, say c > 2a. Then the sets Xn

that we get are such that α|Xn is a (c − n)-CPP representation. Consequently,
by Lemma 4.5.19 (or, more precisely, its formalization in PA) each α(r), where
0 < r ∈ L, has at least a equivalence classes. We obtain a cofinal extension
N = M(d) just as in the proof of Theorem 4.5.21. It remains to show that N is
an [0, a]-extension.

Consider a Skolem term t(x) such that N |= t(d) < a. Then there is some n
such that M |= ∀x[x ∈ Xn −→ t(x) < a]. Then the formula t(x) = t(y) defines
an equivalence relation Θ on Xn, so there is some m > n such that Θ is canonical
on Xm. But, as Θ∩X2

m has no more than a equivalence classes, it must be that
(α|Xm)(0) = Θ ∩X2

m. But then t(x) is constant on Xm, so that t(d) ∈M . �

Some results which concern the producing of lattices by cofinal exten-
sions have consequences about the producing of lattices by end extensions.
In particular, we will see that certain finite lattices are produced by resolute
end-extensional types.

For finite lattices L1 and L2 (assumed to be disjoint), let L1 ⊕ L2 be their
linear sum, which is the lattice simultaneously extending L1 and L2 and having
elements L1 ∪ L2, except that 1L1 and 0L2 are identified. Thus, L ⊕ 2 is a
1-doubling extension of L, and 2 ⊕ L is L with a new 0 added to it. If N is
a p(x)-extension of M , where p(x) is an end-extensional type, and Lt(N/M) is
finite, then, by Theorem 2.1.1 (Do it!), Lt(N/M) is isomorphic to some 2⊕L.
The following is a sort of converse to this.

Corollary 4.5.34 Let T be a completion of PA∗. Let L be a finite lattice such
that T � ∀x[cpp(L, x)]. Then there is an end-extensional resolute type p(x) ∈
S1(T ) which produces 2⊕ L.

Proof It is a little easier to work in the prime model M0 of T and then construct
the end-extensional resolute type p(x) ∈ S1(M0). Since M0 |= ∀x[cpp(L, x)],
there are definable sequences 〈Ax : x ∈ M0〉 and 〈αx : x ∈ M0〉 such that
〈Ax : x ∈ M0〉 is a sequence of pairwise disjoint, bounded subsets of M0, and
each αx : L −→ Eq(Ax) is an x-CPP representation of L. Let A =

⋃
x Ax. We

say that the unbounded definable subset Y ⊆ A is large if there is n < ω such
that αx|(Ax ∩ Y ) is an (x− n)-CPP representation whenever Ax ∩ Y �= ∅. Thus,
A is large. There are two lemmas which are used in constructing the type. The
second of the lemmas should be compared with Theorem 4.5.21. Their proofs
are omitted, but (Do it!).

Lemma: Suppose that Y is large and that 〈fa : a ∈ M0〉 is a defin-
able sequence of functions on M0. Then there is a large Z ⊆ Y
such that for each a ∈ M0, either fa is eventually constant on
{x ∈M0 : Ax ∩ Z �= ∅} or is eventually one-to-one on that set.
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Lemma: Suppose that Y is large and that 〈Θa : a ∈ M0〉 is
a definable sequence of equivalence relations on M0. Then there
is a large Z ⊆ Y such that for each a ∈ M0 there is r ∈ L
such that for all sufficiently large x ∈ M0, if Ax ∩ Z �= ∅, then
Θa ∩ (Ax ∩ Z)2 = αx(r) ∩ (Ax ∩ Z)2.

These lemmas are used to construct a type by forming a decreasing sequence
A = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · of large sets such that:

(1) whenever 〈fa : a ∈M0〉 is a definable sequence of functions f : M0 −→M0,
then there is m < ω such that for each a ∈ M0, either fa is eventually
constant on {x ∈M0 : Ax ∩Ym �= ∅} or is eventually one-to-one on that set;

(2) whenever 〈Θa : a ∈ M0〉 is a definable sequence of equivalence relations on
M0, then there is m < ω such that for each a ∈M0 there is r ∈ L such that
for all sufficiently large x ∈ M0, if Ax ∩ Ym �= ∅, then Θa ∩ (Ax ∩ Ym)2 =
αx(r) ∩ (Ax ∩ Ym)2.

The sequence 〈Ym : m < ω〉 determines a type p(x), where ϕ(x) ∈ p(x) iff for
some m < ω,

M0 |= ∀x[x ∈ Ym −→ ϕ(x)] .

This type is definable (Do it!) and produces 2⊕ L (Do it!).
Finally, p(x) is resolute. In fact, p(x) is (1+|L|)-resolute (Do it!) from which

it follows by Proposition 3.4.4 that it is resolute. �

We saw in Corollary 4.5.31 that there is a type producing Mℵ0 . This type
cannot be used get a resolute type producing 2 ⊕Mℵ0 . In fact, what we do
get is a definable type p(x) such that whenever N is a p(x)-extension of M and
|M | = κ, then Lt(N/M) ∼= Mκ. In particular, this p(x) is not resolute. See
Exercise 4.8.17.

4.6 The pentagon lattice

The pentagon lattice, also known as N5, is an important nondistributive
lattice, being one of the two nondistributive lattices which are in the forbidden
sublattice characterization of distributive lattices in Proposition 4.3.4. The other
lattice isM3. By means of cofinal extensions, both of these lattices were shown in
the previous section to be substructure lattices. Corollary 4.2.10 is the converse
to this forM3: if M ≺ N and Lt(N/M) ∼=M3, then M ≺cof N . The bulk of this
section is devoted to proving Wilkie’s Theorem 4.6.2 that the lattice N5 is, in
this respect, different from M3 in that it can be realized by an elementary end
extension. This theorem is historically the first proving the existence of a finite
nondistributive substructure lattice.
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Fig. 4.2. Five ranked pentagon lattices

The lattice N5 has ten different rank functions, five of which satisfy both the
Blass and Gaifman Conditions (Do it!). These five are displayed in Figure 4.2.
Note that both ◦ and • denote points of the lattice, but the latter is used
for points in the rankset. The first of these ranked lattices has a cofinal rank
function, and the last two have end rank functions. We saw in the previous section
that the first is a ranked substructure lattice, and the proof of Theorem 4.6.2
shows that the last one also is. The first result of this section, Theorem 4.6.1,
implies that the second depicted lattice cannot be a ranked substructure lattice.
It will not be shown here, but the remaining two ranked lattice are also ranked
substructure lattices. Throughout this section, when referring to N5, we assume
that it consists of the points 0, a, b, c, 1 as indicated in Figure 4.2.

Theorem 4.6.1 Suppose that M ≺ N and that Ltr(N/M) ∼= (N5, r). Then
r(0) �= b.

Proof Let F : (N5, r) −→ Ltr(N/M) be an isomorphism, and suppose that
r(0) = b. Thus, (N5, r) is the second of the depicted ranked lattices in Figure 4.2.
We assume there are elements a, b, c ∈ N such that F (a) = M(a), F (b) = M(b),
and F (c) = M(c). Let e ∈M be such that a, b < e. Then there is an M -definable
function G : N × N −→ N such that G(c, a) = b, and let g ∈ M(c) be (a code
for) the function {〈x, y〉 : x, y < e and G(c, a) = b}. Since M ≺end M(c) and
g < 22e

, it follows that g ∈ M . Thus b = g(a) = G(c, a) ∈ M(a), which is a
contradiction. �

Theorem 4.6.2 Every countable model M of PA has an elementary end
extension N such that Lt(N/M) ∼= N5. �

Proving Theorem 4.6.2 in the case that M is the standard model is notation-
ally much easier than in the general case, although conceptually there’s not a
whole lot of difference. We take the expedient approach of presenting the proof
just for the standard model leaving it up to the reader to make the appropriate
modifications for the general proof.
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The proof involves the study of a particular representation of N5 which,
necessarily, is not a finite representation. This representation makes use of a tree
(T,�), which is an ω-tree with a unique root and such that each node of the tree
of rank n has exactly 2n+1 immediate successors. One way to get a definitive
such tree is by letting T be the set of all s ∈ ω<ω such that �(s) = 2n − 1 for
some n < ω. The ordering � of T is initial segment, and the rank rk(s) is n if
�(s) = 2n − 1. To each s ∈ T , we associate a subset Xs ⊆ ω in such a way that
the following hold:

(1) If s � t, then Xs ⊇ Xt.
(2) If s, t are incomparable, then Xs ∩Xt = ∅.
(3) There are infinitely many elements of Xs which, for any t� s are not in Xt.
(4) For every k < ω there is a rank n such that k �∈ Xs whenever s has rank k.

These conditions determine 〈Xs : s ∈ T 〉 up to a bijection. That is, if (1)–(4)
hold for of 〈Xs : s ∈ T 〉 and 〈Ys : s ∈ T 〉, then there is a bijection f : X∅ −→ Y∅
such that for any s ∈ T , Ys = {f(k) : k ∈ Xs}.

Let A = {〈s, k〉 : s ∈ T, k ∈ Xs〉}. We now define the representation α :
N5 −→ Eq(A). There is no question about what α(0) and α(1) are; we define
α(a), α(b), α(c) by identifying the equivalence classes of each of these equivalence
relations.

The α(c)-classes are the columns of A, the kth column being the set of those
〈s, k〉 in A. Each Xs is an α(b)-class. For each s ∈ T , the union of all the Xt,
where t is an immediate successor of s, is an α(a)-class. This determines α(a) as
long as we also let X∅ be an α(a)-class.

It is clear that α is a 0-CPP representation of N5 (Do it!). The next lemma
is the key combinatorial fact about this representation.

Lemma 4.6.3 α −→ α.

What is this lemma saying? Whenever Θ is an equivalence relation on A,
there is B ⊆ A such that α|B ∼= α and Θ is canonical on B. Thus, to prove the
lemma, we start with Θ and then find the requisite B. This is done by a rather
slow process of gradually thinning down A until we get to B.

In the definition of α we made use of a tree which had very specific branching.
This was done just to be definitive; it would have been just as good if we had
required that every point of rank n had at least 2n+1 immediate successors. For,
if β : N5 −→ Eq(B) is such a representation, then there are subsets A′ ⊆ B and
B′ ⊆ A′ such that β|A′ ∼= α and α|B′ ∼= β. We say that B ⊆ ω is correct if α|B
is a representation satisfying this weaker requirement. If B is correct, then the
set (α|A)(b)-classes form a tree, and then for n < ω, we let Λn(B) be the subset
of B which is the union of all the (α|B)(b)-classes of rank n in this tree.
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In the following series of claims we assume that B ⊆ A is correct and Θ ∈
Eq(A).

Claim 1: Let X ⊆ Λn(B) be an (α|B)(b)-class. Then there is a correct D ⊆ B
such that:

(1) Λi(D) = Λi(B) for each i < n;
(2) X ∩D �= ∅;
(3) If Y is an (α|B)(b)-class of rank n and Y �= X, then Y ⊆ D;
(4) Θ ∩ (B ∩D)2 is either trivial or discrete.

By repeated applications of Claim 1, we can get the following claim.
Claim 2: There is a correct D ⊆ B such that whenever X is an (α|D)(b)-

class, then Θ ∩X2 is either trivial or discrete.
In the light of Claim 2, we can assume that each point in the tree is “trivial”

or “discrete.” By taking an appropriate subtree, we can get that either all points
are “trivial” or all are “discrete,” resulting in the following improvement to
Claim 2.

Claim 3: There is a correct D ⊆ B such that either: (1) whenever X is an
(α|D)(b)-class, then Θ ∩X2 is trivial; or (2) whenever X is an (α|D)(b)-class,
then Θ ∩X2 is discrete.

We have reduced Lemma 4.6.3 to the two cases of Claim 3. Let us assume
that the original Θ ∈ Eq(A) is as in (1) or (2) of Claim 3.

Suppose (1) occurs; that is Θ ∩ X2 is trivial for each α(b)-class. We find a
correct B ⊆ A such that Θ ∩ B2 is either trivial, α(a)|B or α(b)|B. Since Θ
induces an equivalence relation the tree T , this problem of finding such a B
reduces to a problem about trees. This problem is solved by the right lemma
about the trees. Since we are just concerned about the tree T , we will state the
lemma for that tree only.

Let Φ be the equivalence relation on T for which any two elements are equi-
valent iff they have the same immediate predecessor. A warning about notation:
if s ∈ T , then rk(s) always is the rank of s in the sense of T . Now let us say that
a subset S ⊆ T is a strong subtree if S �= ∅ and whenever s ∈ S and rk(s) = m,
then there is n > m such that whenever s � s′ ∈ T and rk(s′) = m + 1, then
there is a unique t ∈ T ′ such that rk(t) = n, s′ � t and there is no t′ ∈ S for
which s′ � t′ � t.

Lemma 4.6.4 Suppose that E ∈ Eq(T ). Then there is a strong subtree S ⊆ T
such that E ∩ S2 is either trivial, discrete, or Φ ∩ S2. �

No formal proof will be given, but here is how one would go about construct-
ing S. First try to construct S such that S ∩ E2 is discrete, working your way
up the tree. If this succeeds, fine. If not, then it is for one of two reasons: either
you always have to choose a point in an equivalence class in which there already
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is a point, or you have to choose two points in the same class. If it is for the
first reason, then there is a strong subtree S′ ⊆ T such that E ∩ S′2 is finite,
and then it is easy to get a strong subtree S ⊆ S′ such that E ∩ S2 is trivial.
If it is for the second reason, then there is a strong subtree S′ ⊆ T such that
Φ ∩ S′2 ⊆ E ∩ S′2. Next, try to construct a strong subtree S ⊆ S′ such that
S ∩ S′2, again working your way up the tree. If this succeeeds, fine. Otherwise,
there is S ⊆ S′ such that E ∩ S2 is trivial.

So we can suppose that (2) of Claim 3 occurs; that is Θ ∩ A2 is discrete for
each α(b)-class. We will obtain a correct D0 ⊆ A such that Θ∩D2

0 ⊆ α(c). This
can be done in the following way: let B0, B1, B2, . . . be a list of all α(b)-class
with each block appearing infinitely often. Successively pick xn ∈ Bn which is
not in the same column as any previously chosen xm and no y which is in the
same column as xn is in the same Θ-class of some z in the same column as a
previously selected xm. Let Cn be the set of points y in the same column as
xn that are below xn, by which we mean that there are i ≤ j < ω such that
y ∈ Λi(A) and xn ∈ Λj(A). Let D0 =

⋃
n Cn. Clearly, D0 is correct and has the

required property.
The trouble is that in Cn there may be some points in the same Θ-class and

others that are not. It is now possible (exactly how is left to be worked out) to
find a correct D2 ⊆ D1 such that if Cn meets D2, then Cn ⊆ D2 and such that
if y ∈ Λi(D1) ∩ Cn, z ∈ Λj(D1) ∩ Cn, y′ ∈ Λi(D1) ∩ Cm, and z′ ∈ Λi(D1) ∩ Cm,
then 〈y, z〉 ∈ Θ iff 〈y′, z′〉 ∈ Θ. This allows us to define an equivalence relation
R on ω as follows: 〈i, j〉 ∈ R iff for every (or, equivalently, some) y ∈ Λi(D1)
and z ∈ Λj(D1), 〈y, z〉 ∈ Θ. Let I ⊆ ω be infinite such that R ∩ I2 is discrete
or trivial, and let D =

⋃
i∈I Λi(D1). Clearly, D is correct. If R ∩ I2 is discrete,

then Θ ∩D2 is discrete, and if R ∩ I2 is trivial, then Θ ∩D2 = α(c) ∩D2.
Theorem 4.6.2 was stated for countable M only and for good reason.

The next theorem implies that there are uncountable M having no element-
ary end extension N such that Lt(N/M) ∼= N5. In fact, no rather classless
M does.

Theorem 4.6.5 If Lt(N/M) ∼= N5, then N is not a conservative extension
of M .

Proof The submodels M(a),M(b), and M(c) are as in the proof of
Theorem 4.6.1. Suppose N is a conservative extension of M . Then M ≺end N , so
that M ≺end M(c) and M(b)≺end N (Do it!).

Let g : N −→ N be an M(c)-definable function such that g(a) = b. Since N
is a conservative extension of M , there is an M -definable G ⊆ N2 which agrees
with g on M ; that is, whenever x, y ∈ M , then 〈x, y〉 ∈ G iff g(x) = y. Since
G ∩M2 is a function, so is G. Let D be its domain. Then D is M -definable
and G and g agree on M ∩D (Do it!). We investigate whether or not a ∈ D,
deriving a contradiction in either case.
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Suppose a ∈ D. Then G(a) ∈ M(a), so that G(a) �= b = g(a), and G and g
do not agree D. Let m ∈ D be the least such that G(m) �= g(m). Then m ≤ a
and m ∈M(c), so that m ∈M , which is a contradiction.

Suppose a �∈ D. Let

I = {z ∈ N : ∀x ≤ z[x �∈ D −→ g(x) > z]} .

Then I is an M(c)-definable initial segment of N which includes M , so by over-
spill, there is m ∈ (I ∩ M(c))\M . Since a < m, it follows that g(a) > m,
contradicting that g(a) = b < m. �

Corollary 4.6.6 There is no resolute type producing N5. �

4.7 Infinite distributive lattices

It was seen in Corollary 4.2.1 that for any model M , Lt(M) is an ℵ1-algebraic
lattice. Whether each ℵ1-algebraic lattice is isomorphic to some Lt(M) is still
unknown. Indeed, there are even finite lattices for which this is not known. How-
ever, for distributive lattices, nothing more than its ℵ1-algebraicity is required.
This is the content of the following theorem.

Theorem 4.7.1 (Mills’ Theorem) For any completion T of PA∗ and for any
ℵ1-algebraic distributive lattice D, there is a resolute model M |= T such that
Lt(M) ∼= D. �

The proof of Mills’ Theorem, which involves some highly technical details,
will not be presented here. The key to the proof is a vast generalization of
Theorem 4.4.1 for which a generalization of the notion of doubling extension is
needed.

Let L and D be two lattices, each having a 0 element. For this construction,
the lattice D need not be distributive, but in the applications it will be. In
particular, if D = 2, then the extension of L that is about to be defined is a
doubling extension. Let F : D −→ L be such that F (0) = 0 and F (x ∨ y) =
F (x) ∨ F (y) for all x, y ∈ D. The (F,D)-bling extension of L is the sublattice
of L × D consisting of those pairs 〈z, x〉 such that z ≥ F (x). This is indeed a
lattice (Do it!), and by identifying z ∈ L with 〈z, 0〉 (which we will do), it is an
extension of L (Do it!). Notice that if D = 2, then the (F,D)-bling extension is
just the F (1)-doubling extension of L. An extension of L is a D-bling extension
if it is an (F,D)-bling extension for some F .

Theorem 4.7.2 Let M be a countable resolute model, let D be a distributive
algebraic lattice having at most countably many compact elements, and let L be
a D-bling extension of Lt(M). Then M has a conservative extension N which is
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resolute such that Lt(N) ∼= L. (In fact, there is an isomorphism α : Lt(N) −→ L
which is the identity on Lt(M).) �

This theorem implies its own generalization obtained by weakening the hypo-
thesis that D has at most countably many compact elements to requiring that
D be ℵ1-algebraic. Then Theorem 4.7.1 results by letting M be the prime model
of T .

There is a variant of Mills’ Theorem which applies to cofinal extensions: if M
is a countable, nonstandard model and D is an ℵ1-algebraic distributive lattice
D, then M has a cofinal extension N such that Lt(N/M) ∼= D. The proof of
this involves some of the same highly technical details that the proof of Mills’
Theorem does. The proof of the following weaker theorem avoids some of these
and will be presented here.

Theorem 4.7.3 Let M be a countable nonstandard model, and let D be an
algebraic distributive lattice having at most countably many compact elements.
Then M has a cofinal extension N such that Lt(N/M) ∼= D. �

The lattice D in this theorem is complete, so
∨

D exists. This element may
not be compact, but without loss of generality we can assume it is by adjoining
to D a new element 1 >

∨
D. We make use of the representations of finite

distributive lattices D found in Exercise 4.5.3. So as to be able to refer to
such representations, let us say that the representation α : D −→ Eq(A) is
normal if it is isomorphic to a power of the ones described in that exercise.
The next lemma is rather technical in its appearance, but its significance is
clear.

Suppose that you are constructing a cofinal extension using the method of
Theorem 4.5.21 to produce an interstructure lattice isomorphic to D1. The rep-
resentations of D1 that you are using are the αn

1 for nonstandard n. You are
proceeding merrily along in the construction, and then suddenly you change
your mind and decide to produce D2 instead. No problem, as Lemma 4.7.4 says
that you can switch in midstream to the represenations αm

2 of D2.

Lemma 4.7.4 Let (D1,∨,∧) and (D2,∨,∧) be finite distributive lattices, with
(D1,∨) being a subsemilattice of (D2,∨), and

∨
D1 =

∨
D2,

∧
D1 =

∧
D2. Then

for each normal α1 : D1 −→ Eq(A1) there is a normal α2 : D2 −→ Eq(A2), with
A2 ⊆ A1 such that α1|A2 = α2�D1.

Proof We first assume that α1 : D1 −→ Eq(J(D1)). Instead of actually getting
A2 ⊇ J(D1), we find a large enough n and an embedding f : J(D1)) −→
(J(D2))n. Define µ : D2 −→ D1 so that µ(r) =

∧{x ∈ D1 : r ≤ x}. Then∨
D1 =

∨
D2 implies that r ≤ µ(r) for each r ∈ D2. We choose a function
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f : J(D2) −→ (J(D1))n such that:

(1) if r ∈ J(D2) and i < n, then f(r)i ≤ µ(r);
(2) if r, s ∈ J(D2) are distinct and x ∈ J(D1) is such that x ≤ µ(r), then there

is i < n such that f(r)i = x and f(s)i = 0.

By letting n = |J(D2)|2×|J(D1)|, we have n large enough to get such a function.
To verify the required condition, let us consider x ∈ D1 and r, s ∈ J(D2). If

r = s, then there is no problem, so we assume that r �= s.

〈r, s〉 ∈ α2(x) =⇒ r, s ≤ x =⇒ µ(r), µ(s) ≤ x

=⇒ f(r)i, f(s)i ≤ x for all i < n

=⇒ 〈f(r), f(s)〉 ∈ αn
1 (x).

Conversely, we have

〈r, s〉 �∈ α2(x) =⇒ r �≤ x (say) =⇒ µ(r) �≤ x

=⇒ f(r)i �≤ x, f(s)i = 0 for some i < n

=⇒ 〈f(r)i, f(s)i〉 �∈ α1(x) for some i < n

=⇒ 〈f(r), f(s)〉 �∈ αn
1 (x),

completing the proof for m = 1. (Notice that the third implication in the con-
verse direction follows from the Representation Theorem 4.3.5 and the fourth
implication from the hypothesis

∧
D1 =

∧
D2 (Do it!).)

For arbitrary normal α2 : D2 −→ (J(D2))m, let f1 : J(D2) −→ (J(D1))n1 be
a function which works for m = 1, and then let n = mn1 and f : (J(D2))m −→
(J(D1))n be such that f(r)jn1+i = f1(rj)i where j < m and i < n1. That this f
also works can easily be checked (Do it!). �

The following fact about algebraic distributive lattices enables us to imple-
ment the previous lemma in the proof of Theorem 4.7.3. For a lattice L, we
let K(L) be the set of its compact elements. Note that if x, y ∈ K(L), then
x ∨ y ∈ K(L) (Do it!). In other words, (K(L),∨) is a subsemilattice of
(L,∨).
Lemma 4.7.5 Let D be an algebraic distributive lattice. For each finite X ⊆
K(D) there is a finite D0 ⊆ K(D) such that X ⊆ D0, x ∨ y ∈ D0 whenever
x, y ∈ D0, and D0 is a distributive lattice (whose meet might not be the same as
the meet of D).

Proof Let F ⊆ D be the sublattice of D generated by X. Then F is also a
distributive lattice and, being finitely generated, is finite. If it happens that
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F ⊆ K(D), then we can let D0 = F , and we are done. But in general F contains
elements that are not compact. Let J ⊆ F be the join-irreducibles of F . For each
x ∈ F , there is a Jx ⊆ J such that x =

∨
Jx =

∨{y ∈ K(L) : y ≤ j for some j ∈
Jx}. Therefore, by compactness, there is, for each j ∈ J , a compact kj ≤ j
such that for each compact x ∈ F , x =

∨{kj : x ≥ j ∈ J}. By choosing the
kj ’s large enough, we can also have that if x �≥ kj , then x �≥ j. Now let D0 be
the upper semilattice that the kj ’s generate; that is, D0 = {∨{kj : j ∈ J ′} :
J ′ ⊆ J}.

Clearly, x∨y ∈ D0 whenever x, y ∈ D0. To see that D0 has the other required
properties, define ϕ : F −→ D0 so that ϕ(x) =

∨{kj : x ≥ j ∈ J}. Then ϕ(x) =
x for x ∈ X, so X ⊆ D0. To finish the proof it suffices to observe that if x, y ∈ F ,
then x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y). If x ≤ y, then ϕ(x) =

∨{kj : x ≥ j ∈ J} ≤ ∨{kj :
y ≥ j ∈ J} = ϕ(y). Conversely, suppose x �≤ y, then there is some kj ≤ x such
that kj �≤ y, and then kj ≤ ϕ(x) and kj �≤ ϕ(y) so that ϕ(x) �≤ ϕ(y). �

Proof of Theorem 4.7.3 Let M be countable and nonstandard. Assume
that D is as in the theorem and also that 1D is compact. Let D0 = {0D, 1D}.
Using Lemma 4.7.5, we can get a sequence D0 ⊆ D1 ⊆ D2 ⊆ · · · of finite
distributive subsemilattices of K(D) such that each is a distributive lattice and
that K(D) =

⋃
i Di. The idea is to start the construction as if you are producing

D0, and then after a while switch to D1 (as in Lemma 4.7.4), and still later to
D2, and so on. Then, when all is said and done, you will have produced D.

Let g0, g1, g2, . . . be a list of all definable functions g : M −→ M . We will
obtain a sequence of normal representations αi : Di −→ Eq(Ai), each one being
n-CPP for some nonstandard n ∈M . Let α0 : D0 −→ Eq(A0) be such that A0 is
a bounded subset of M of nonstandard cardinality. At stage i, we have a normal
αi which is n-CPP for some nonstandard n ∈M . First let B ⊆ Ai be such that
αi|B is (n − 1)-CPP and normal and such that gi is canonical on B. Then use
Lemma 4.7.4 to get Ai+1 ⊆ Ai and αi : Di+1 −→ Eq(Ai+1) which is m-CPP for
nonstandard m.

The desceneding sequence A0 ⊇ A1 ⊇ A2 ⊇ · · · determines a type over
M . Let N = M(c) be an extension generated by c realizing that type. Then
Lt(N/M) ∼= D. The argument verifying this is just like the argument at the end
of the proof of Theorem 4.5.21 and is left for the reader to supply. �

4.8 Exercises

A semilattice is an algebra (S,∨) which satisfies the commutative, associative,
and idempotency laws for ∨. If S is a semilattice, then define ≤ on S so that
x ≤ y iff x ∨ y = y. If L is a lattice, then let K(L) be the set of its compact
elements.

♣4.8.1 If S is a semilattice, then (S,≤) is a poset.
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♣4.8.2 If (L,∨,∧) is a lattice, then (K(L),∨) is a subsemilattice of (L,∨).
♣4.8.3 Let L1, L2 be algebraic lattices and let f : K(L1) −→ K(L2) be a
semilattice isomorphism (see 4.8.2). Then there is a unique isomorphism g :
L1 −→ L2 which extends f .

If (S,∨) is a semilattice, then I ⊆ S is an ideal of S if whenever x, y ∈ I and
z ∈ S are such that z ≤ x ∨ y, then z ∈ I. Let I(S) be the set of ideals of S.

♦4.8.4 If S is a semilattice, then (I(S),⊆) is an algebraic lattice and K(I(S)) ∼=
S. Define the isomorphism.

♦4.8.5 If κ is an infinite cardinal and A is an algebra which has no more than
κ operations, then Cg(A) is κ+-algebraic.

♣4.8.6 Let A be a finitely generated algebra having a proper subalgebra. Then
it has a proper subalgebra B ⊆ A such that A is a minimal extension of B. (That
is, whenever B ⊆ C ⊆ A, then either C = B or C = A.)

If L0 is a sublattice of L1 and whenever a, c ∈ L0 and b ∈ L1 are such that
a < b < c, then b ∈ L0, then L0 is a convex sublattice of L1.

♦4.8.7 Let L0 be a finite convex sublattice of L1. If M is a countable nonstand-
ard model which has an elementary extension N1 such that Lt(N1/M) ∼= L1,
then M has a cofinal extension N0 such that Lt(N0/M) ∼= L0.

♣4.8.8 If p be a prime and Zp is the cyclic group of order p, then Cg(Zp×Zp) ∼=
Mp+1.

♥4.8.9 If L is a lattice, then Cg(L) is a distributive lattice.

♣4.8.10 Show that the lattice in Example 4.5.11 is a congruence lattice.

♣4.8.11 Let L be a lattice having H as a sublattice with 0H = 0L and 1H = 1L.
If r is a rank function on L satisfying the Blass and Gaifman Conditions, then
r(0) = 1. (This generalizes Proposition 4.2.13.)

The next two exercises concern the lattice of convex subsets of a three-element
chain ordered by reverse inclusion, which we refer to as K3.

♦4.8.12 Every countable nonstandard M has a cofinal extension N such that
Lt(N/M) ∼= K3.

♠4.8.13 Is there a model M of True Arithmetic such that Lt(M) ∼= K3?

The next three exercises are all modifications of Theorem 4.3.2.

♦4.8.14 Show that in Theorem 4.3.2, if both occurrences of the word “resolute”
are omitted, then the theorem remains true.
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♦4.8.15 Show that in Theorem 4.3.2, if both occurrences of the word “resolute”
are replaced with the word “definable,” then the theorem remains true.

♣4.8.16 Suppose M is a countable model, L is a lattice for which 1 < |L| < ℵ0,
and L′ is a doubling extension of L. If M has a cofinal extension N such that
Lt(N/M) ∼= L, then M has a cofinal extension N ′ such that Lt(N ′/M) ∼= L′.

♥4.8.17 There is a definable type producing 2⊕Mℵ0 which is not resolute.

♥4.8.18 There an end-extensional type producing 3 which is not resolute.

♥4.8.19 There is a resolute type producing an infinite lattice.

♠4.8.20 Is there a resolute type producing 2⊕Mℵ0?

If a ∈M � N = Scl(M∪[0, a]N ), then we say that N is an a-cofinal extension
of M .

♦4.8.21 Let M be a countable nonstandard model and L a finite lattice. Then
the following are equivalent: (1) For every nonstandard a ∈ M there is an
a-cofinal extension N of M such that Lt(N/M) ∼= L; (2) L has an n-CPP
representation of each n < ω.

♥4.8.22 Suppose that L is a finite lattice which has an n-CPP repesentation
for each n < ω. Let M0 be a nonstandard prime model. Then M0 has a cofinal
extension M such that:

(1) Lt(M) ∼= 2⊕ L;
(2) SSy(M) = SSy(M0);
(3) M is generated by a such that a < c whenever ω < c ∈M0.

♣4.8.23 A converse to Theorem 4.5.33: Let M be any model of PA∗ and L a
finite lattice. If for each a ∈M there is an elementary a-end extension such that
Lt(N/M) ∼= L, then M |= ∀x[cpp(L, x)].

♥4.8.24 If α is a finite representation and αm −→ α, then α is a congruence
representation.

4.9 Remarks & References

Lattices have their roots in the nineteenth century, but it was not until the
publication of the first edition of Birkhoff [11] that there was a subject of lattice
theory. There are now very many books available on this subject. We mention,
besides [11], [3] which is devoted just to distributive lattices and [129] which is
about both lattices and algebras.

Theorem 4.2.1 was proved by G. Grätzer & E.T. Schmidt [48]. A much simpler
proof can be found in Pudlák [153].
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The first result on interstructure lattices was Gaifman’s improvement of the
MacDowell-Specker Theorem to minimal end extensions. It was discussed in
detail by Gaifman in [45] and in some earlier papers as well. Blass’ Theorem
on minimal cofinal extensions appeared in [13]. The paper [45] also contains a
proof of Theorem 4.3.7 (but without requiring M to be resolute) as well as some
additional cases in which D is an infinite distributive lattice. Corollary 4.4.5 was
first proved by Schmerl in [162]. Theorem 4.7.3 was proved by Paris [144], and the
complete charaterization for distributive lattices was later proved by Mills [131].

It is unknown whether or not every uncountable model has a minimal cofinal
extension. See Question 2 in Chapter 12.

Two papers concerning substructure lattices appeared in the same issue
of Fundamenta Mathematicae in 1977. In one paper, Paris [145] proved Pro-
position 4.5.6 using a completely different method, thereby showing that a
substructure lattice need not be distributive. In the other, Alex Wilkie [210]
proved that a substructure lattice did not have to be modular by showing that
the pentagon lattice could be realized. The proof of Theorem 4.6.2 is only
slightly different from the one in [210]. Theorem 4.6.5 is from Schmerl [178].
The notion of n-CPP representations was first isolated in Schmerl [167], and
Theorems 4.5.21 and 4.5.22 were proved there. It was also proved in [167] that
M3 is a substructure lattice. Theorem 4.5.8 and Corollaries 4.5.29 and 4.5.30
are from Schmerl [169].

Theorem 4.3.5 is attributable to G. Birkhoff. It is the finite case of the funda-
mental representation theorem for arbitrary distributive lattices due to Birkhoff
[10] and M.H. Stone [201]. This can be found in any book on lattice theory.

We make some remarks about the status of the problem of determining which
finite lattices can appear as substructure lattices. It is possible that for every
finite lattice L, every nonstandard countable model M has a cofinal extension
N such that Lt(N/M) ∼= L. On the other hand, it is possible that some finite
lattices, one such beingM16, are not isomorphic to any Lt(N/M). All the finite
lattices which are known to be interstructure lattices have finite congruence rep-
resentations, and so Theorem 4.5.8 applies. There is nothing now known which
would preclude any finite lattice from having a finite congruence representation.
But there is also nothing known which precludes a finite lattice from being a
substructure lattice and having no finite congruence representation.

It is still an open problem to find a finite lattice not having a finite congruence
representation. Although it is possible that there are none, the most popular
conjecture is that they do exist. The following theorem has been proved by
Pálfy & Pudlák [143].

Theorem 4.9.1 The following are equivalent:

(1) Every finite lattice has a finite congruence representation.
(2) Every finite lattice is isomorphic to a convex sublattice of the lattice of

subgroups of a finite group.
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The implication (2) =⇒ (1) is true locally in that any convex sublattice of
the lattice of subgroups of a finite group has a finite congruence representation
(Do it!). The proof of the converse (1) =⇒ (2) does not apply locally: it could
be that there is a finite lattice which has a finite congruence representation but
is not isomorphic to any convex sublattice of the lattice a subgroup lattice.

A. Lucchini [122] has given some remarkable improvements to Example 4.5.12,
vastly extending earlier results of Walter Feit [39] for M7 and M11. If either
n = q + 2, where q a power of a prime, or n = ((qt + 1)/(q + 1)) + 1, where q is
a power of a prime and t is an odd prime, then Mn is isomorphic to a convex
sublattice of the lattice of subgroups of some finite group. Thus, each such Mn

has a finite congruence representation. For no other values of n is this known
to hold.

Three lattices that we know to be substructure lattices are 2, N5, and M3.
The variety V(2) generated by 2 is the class of distributive lattices, and we know
that every finite distributive lattice has a finite congruence representation so is
a substructure lattice. By results in [154], every finite finitely fermentable lattice
has a finite congruence representation so is a substructure lattice. Among these
lattices isN5, so that all finite lattices in V(N5) are finitely fermentable and thus
are substructure lattices. While M3 is not finitely fermentable, John W. Snow
[200] proved every finite lattice in V(M3) has a finite congruence representation
and, consequently, is a substructure lattice.




HOW TO CONTROL TYPES

The method of model construction using indiscernibles is sometimes referred to
as the EM-technology to honor Ehrenfeucht and Mostowski, who introduced it
in their seminal 1956 paper. One of its features is its use of Ramsey’s Theorem.
This chapter is devoted to an important extension of the EM-technology that
can be used to construct models having no (or only very small) sets of indis-
cernibles. We were tempted to call this chapter “AH-Technology” in honor of
Abramson and Harrington who intoduced the technique and also proved the
needed combinatorial theorem generalizing Ramsey’s Theorem. We will use that
as this chapter’s unofficial subtitle.

5.1 Solid bases and AH-sets

We make some definitions concerning a subset A of some fixed model M |= PA∗.
Recall that A is a set of generators if M is the only N � M for which A ⊆ N .
We say that the set A is a basis for M if for any X ⊆ A there is exactly one
N � M such that X = N ∩ A. In particular, a basis is a set of generators (Do
it!). When dealing with a basis A for M , if X ⊆ A, then we let MX be that
unique model for which X is a set of generators. Finally, a basis A is solid if
whenever X,Y ⊆ A are finite subsets and f : MX −→ MY is an isomorphism,
then f�X : X −→ Y is a bijection. Alternatively, A is solid iff if a ∈ A and b ∈M
are such that tp(a) = tp(b), then b ∈ A (Do it!).

There are some observations to be made about bases. Let B be a basis for M ,
and let X = {a0, a1, . . . , an−1} ⊆ A, where a0 < a1 < · · · < an−1. Suppose also
that b ∈ MX generates MX . Then there are Skolem terms t(x0, x1, . . . , xn−1)
and si(y) for i < n such that

N |= b = t(a0, a1, . . . , an−1) ∧
∧
i<n

ai = si(b) .

This notion of a solid basis appeared implicitly in Proposition 3.3.15, from
which it follows that if N is an I-canonical extension of a prime model M , then
I is a solid basis. It is possible to construct solid bases exhibiting much more
diversity. The method for obtaining such solid bases is discussed in detail in this
section, the key theorem being Theorem 5.1.3.
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5.1.1 Controlling indiscernibles and automorphisms

The first proposition of this subsection shows that solid bases are useful in
controlling the amount of indiscernibility that exists in a model. A set of indis-
cernibles in a model is an ordered set and, therefore, has an order type, by which
we mean the isomorphism type of this ordered set. A finite order type is just
the same as a finite ordinal. If λ is an order type, then λ∗ is the reverse order
type. Thus, n∗ = n for finite n. Every infinite order type has either ω or ω∗ as
a suborder type.

Proposition 5.1.1 Suppose B is a nonempty solid basis for M |= PA∗ and λ
is an order type. If there is I ⊆ M which is a set of indiscernibles having order
type λ, then there is J ⊆ B which is a set of indiscernibles having order type λ
or λ∗.

Proof If λ = 0, then there is nothing to prove, and if λ = 1, then any singleton
J ⊆ B will do. So we assume that λ is at least 2.

Consider i < j in I. Since I is a set of indiscernibles, i, j realize the same type
q. Since B is a basis, we can let X,Y ⊆ B be such that MX , MY are the sub-
models generated by i, j respectively, and since MX ,MY are finitely generated,
the sets X and Y are finite. Notice that by Ehrenfeucht’s Lemma, i and j are the
only elements of MX and MY , respectively, realizing q. Therefore MX �= MY ,
so that X �= Y . Since i, j realize the same type, the models MX and MY are
isomorphic, so we can let f : MX −→ MY be an isomorphism, which is unique
since f(i) = j. As B is a solid basis, f�X maps X onto Y , and then there is
some a ∈ X such that a �= f(a). Let a be the kth element of X. Thus, we have
seen that the kth element of X is not the same as the kth element of Y .

Now let s(y) be a Skolem term such that M |= s(i) = a. Then s(j) is the
kth element of Y via the isomorphism f . By the indiscernibility of I (actually,
only 2-indiscernibilty is needed here), s(i0) �= s(i1) for any distinct i0, i1 ∈ I.
Thus, s(y) defines a one-to-one function on I into B. Let J = {s(i) : i ∈ I} ⊆ B.
If s(i) < s(j), then (again by the 2-indiscernibility of I) the set J has order
type λ, and if s(i) > s(j), then J has order type λ∗. Finally, since I is a set of
indiscernibles, then also J is. �

The next proposition shows that solid bases are useful in controlling the
automorphisms of a model. If M |= PA∗ and B ⊆ M , then there is a natural
way of expanding (B,<) to a structure B = (B,<, . . .). For each n < ω and
p ∈ Sn(Th(M)), let Rp be the n-ary relation on B consisting of those n-tuples
realizing p. Let B be the expansion of (B,<) by adjoining all possible Rp, and
call this structure B the type expansion of B.

Proposition 5.1.2 Suppose B is a nonempty solid basis for M |= PA∗, and let
B be the type expansion of B. Then, Aut(M) ∼= Aut(B).
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Proof There is a very natural isomorphism α : Aut(M) −→ Aut(B) that is
defined by letting α(f) = f�B for f ∈ Aut(M).

Observe that α(f) : B −→ B because B is a solid basis, and then also
α(f)−1 : B −→ B. Then, α(f) is an automorphism of B since f ∈ Aut(M)
(Do it!). Hence, α does indeed map Aut(M) into Aut(B), and clearly it is a
homomorphism. It then follows, just from the fact that B generates M , that α
is one-to-one and onto. Therefore, α is an isomorphism. �

5.1.2 AH-sets

Just a reminder: For a set B and n < ω, we let [B]n be the set of n-element
subsets of B, and [B]<ω be the set of all finite subsets of B. An n-type (for
a completion T of PA∗) is a set of formulas whose free variables are among
x0, x1, . . . , xn−1. If I ∈ [ω]<ω, then an I-ary formula has its free variables among
{xi : i ∈ I}, and an I-type is a consistent set of I-ary formulas. Given J ⊆ I ∈
[ω]<ω and an I-type p, we let p|J be the J-type consisting of all J-ary formulas
in p. If I = {i0, i1, . . . , in−1} ∈ [ω]n, where i0 < i1 < · · · < in−1, then we say
that an I-ary type p is solid if it is complete, the formula xi0 < xi1 < · · · < xin−1

is in p, and whenever b0 < b1 < · · · < bin−1 are elements of M that realize p,
and M is generated by B = {b0, b1, . . . , bin−1}, then B is a solid basis for M .

Theorem 5.1.3 Let T ⊇ PA∗ be a completion having a nonstandard prime
model. Then there is a set P such that:

(1) For each p ∈ P, there is I ∈ [ω]<ω for which p is a bounded solid I-type.
(2) T is (the unique ∅-type) in P.
(3) If p ∈ P is an I-type and J ⊆ I, then p|J ∈ P.
(4) If i0 < i1 < · · · < in−1 < ω and if p(xi0 , xi2 , . . . , xin−1) is an I-type, then

p(xi0 , xi2 , . . . , xin−1) is in P iff the n-type p(x0, x1, . . . , xn−1) is in P.
(5) Suppose that 1 ≤ n < ω and pI ∈ P is an I-type whenever I � n, and that

pJ ⊆ pI whenever J ⊆ I � n. Then there are 2ℵ0 n-types p ∈ P such that
p ⊇ ⋃{pI : I � n}. �

Conditions (1)–(4) are rather routine. Condition (5), the most interesting,
implies that an n-type in P is not determined by its proper subtypes. In fact,
for any given n-type in P, there are 2ℵ0 n–types in P having exactly the same
proper subtypes. The cardinal 2ℵ0 is not especially crucial: ℵ0 would work just
about as well.

All the 1-types in P are selective, and they all fail to be 2-indiscernible. They
even fail to be n-weakly Ramsey for any n < ω and, furthermore, would fail to
be ℵ0-weakly Ramsey had that notion been defined.

A set P satisfying the conditions (1)–(5) is referred to as an AH-set for T .
Before getting into the proof of this theorem, we take a look at how it is used

to build solid bases. Some further terminology is needed.
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Let (B,<) be any linearly ordered set, and let X ∈ [B]n. Then X inherits
the ordering from B, so that X = {x0, x1, . . . , xn−1}, where xi is the ith element
of X in this ordering. If I ⊆ n = {0, 1, 2, . . . , n − 1}, then define X ◦ I = {xi ∈
X : i ∈ I}.

Now let (B,<) be a linearly ordered set. For example, we might let B be
a subset of some model M |= PA∗. A function f : [B]<ω −→ W is compatible
if, whenever I ⊆ n < ω and X,Y ∈ [B]n are such that f(X) = f(Y ), then
f(X ◦ I) = f(Y ◦ I).
Example 5.1.4 Let M |= PA∗ and let B ⊆M . We define f on [B]<ω as follows.
Given X ∈ [B]<ω, we let X = {b0, b1, . . . , bn−1}, where the bi’s are in increasing
order. Then let f(X) = tp(b0, b1, . . . , bn−1). It is clear that f is compatible. We
could also say that tp is compatible on [B]<ω.

Example 5.1.5 Let L be any language comprising only relation symbols, includ-
ing the binary relation symbol <. Let A = (A,<, . . .) be a linearly ordered
L-structure. Define f on [A]<ω so that f(X) is the isomorphism type of the
substructure A|X. Clearly, this function f is compatible.

Example 5.1.6 Let A be as in the previous example, and let G = Aut(A) be
its automorphism group. Then, not only does G act on A, but also G acts on
An and on [A]n for each n < ω. For X ∈ [A]n, let orb(X) be the orbit of X
under the action of G on [A]n. Let O be the set of all orbits for all n. Then
orb : [A]<ω −→ O is a compatible function. This example works if A is replaced
with a model M |= PA∗.

When considering compatible functions on [B]<ω, it is the equivalence rela-
tions that the functions induce on each [B]n that are important. We say that
two functions f : [B]<ω −→W and g : [B]<ω −→ V are equivalent if they induce
identical equivalence relations on each of the [B]n. For example, if M is a count-
able recursively saturated model of PA∗, then tp and orb (see Examples 5.1.4
and 5.1.6) are equivalent. Any function equivalent to a compatible function is
compatible.

Proposition 5.1.7 Let T ⊇ PA∗ be a completion and M its nonstandard prime
model. Suppose that (B,<) is a linearly ordered set, |W | ≤ 2ℵ0 and f : [B]<ω −→
W is compatible. Then there exists N �cof M such that B is a solid basis for N
and f and tp are equivalent functions on [B]<ω.

Remark The set W plays no role in this Proposition except for its cardinality,
which is at most 2ℵ0 so as to conform with (5) of Theorem 5.1.3.

Proof Let P be an AH-set for T as in Theorem 5.1.3. We assume that the
elements of B are new constant symbols with the aim of finding an appro-
priate complete (L∗

PA ∪ B)-theory Σ extending T . We want a compatible
function g : [B]<ω −→ P that is equivalent to f such that the following hold
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whenever X ∈ [B]k:

• g(X) is an |X|-type.
• Suppose I ∈ [k]s, where I = {i0, i1, . . . , is−1} and i0 < i1 < · · · < is−1 < k.
Then g(X ◦ I) is the type p(x0, x1, . . . , xs−1), where p(xi0 , xi1 , . . . , xis−1) is
the I-subtype of g(X).

Let’s suppose for now that we have such a function g. The function g can
be used to obtain a complete theory Σ in the language L∗

PA ∪ B. If n < ω,
X ∈ [B]n, and ϕ(x̄) is an n-ary formula, let ϕ(X) be the sentence obtained
from ϕ(x̄) by replacing each free variable xi by the ith element of X. Then let
ḡ(X) = {ϕ(X) : ϕ(x̄) ∈ g(X)}. Let Σ =

⋃{ḡ(X) : X ∈ [B]<ω}. Clearly, Σ is
a consistent extension of T . Let N ′ be a model of Σ, and then let N be the
L∗

PA-reduct of the submodel generated by B. It can now be checked (Do it!)
that N �cof M , B is a solid basis, and that tp is equivalent to g which in turn is
equivalent to f .

To get the function g, define g0 ⊆ g1 ⊆ g2 ⊆ · · · inductively, where gi :
[B]≤i −→ P, and then let g be their union. To start, let g0 be such that g0(∅) =
T ∈ P (by (2)). Now suppose that n > 0 and that we have g0, g1, . . . , gn−1
satisfying the necessary conditions. Using (3)–(5), it is easy (Do it!) to see how
to get an appropriate gn. �

5.1.3 The proof

We now turn to the proof of Theorem 5.1.3. The proof of this theorem makes use
of a somewhat weakened variation of the Nešetřil–Rödl Theorem that previously
appeared at the end of Subsection 3.1.2. We need to consider finite L-structures,
where L is a finite language consisting only of relation symbols among which
is the binary relation symbol <, which always denotes a linear ordering of the
universe of the L-structures. Suppose that A = (A,<, . . .) is a finite ordered
L-structure. Notice that P(A) = [A]<ω. Suppose f is a function whose domain
includes [A]<ω. We say that f is homogeneous on A if whenever X,Y ⊆ A and
A|X ∼= A|Y , then f(X) = f(Y ). We say that f is canonical on A if for any
X ⊆ A, there is K ⊆ X such that whenever K1 ⊆ X1 ⊆ A and K2 ⊆ X2 ⊆ A
are such that (A|X1,K1) ∼= (A|X2,K2) ∼= (A|X,K), then f(X1) = f(X2) iff
K1 = K2. For such a canonical f , this subset K ⊆ X is unique and is called the
f -core of X.

It might help to look at the two extremes for a function f that is canonical
on A = (A,<, . . .). Let X ⊆ A, and let X = {Y ⊆ A : A|Y ∼= A|X}. Then f is
constant on X iff the f -core of X is ∅, and f is one-to-one on X iff X is the f -core
of X (Do it!). Thus, if f is canonical and every X ⊆ A has ∅ as its f -core, then
f is homogeneous. For a still stronger property, f is solidly canonical on A if f
is canonical and whenever K ⊆ X ⊆ A, where K is the f -core of X, then either
f(X) ∈ K or f(X) �∈ A.



140 HOW TO CONTROL TYPES

The AH/NR Theorem: Suppose A = (A,<, . . .) is a finite
ordered L-structure. Then there is a finite ordered L-structure B =
(B,<, . . .) such that whenever f : [B]<ω −→ {0, 1}, then there is
A′ ⊆ B such that A′ ∼= A and f is homogeneous on A′.

This theorem is both formalizable and provable in PA. However, for the proof
of Theorem 5.1.3 it suffices that it is provable in TA, that is, true in the real world.

Proof of Theorem 5.1.3 Let M be the prime model of T , and let c ∈ M
be nonstandard. Let f0, f1, f2, . . . be a list of all (codes of) definable functions
f : [M ]≤c −→ {0, 1}. [We are adopting a convention (that is not completely
spelled out) by identifying functions f : [M ]n −→M with certain other functions
f : Mn −→ M .] Working in M , let L = {<} ∪ {Rij : i, j < c} be a relational
language, where each Rij is an i-ary relation symbol. For each k ≤ c let Lk =
{<} ∪ {Rij : i, j < k}. Clearly, for each standard k there is an ordered Lk-
structure A = (A,<, . . .) such that every ordered Lk-structure of cardinality k
is isomorphic to a substructure of A. By overspill, there is such a nonstandard
k ∈M and such an A. Let e0 = k and A0 = A.

Working in the real world, we construct a decreasing sequence e0 ≥ e1 ≥
e2 ≥ . . . of nonstandard elements of M , and a sequence A0,A1,A2, . . . such that
for each n < ω:

(a) An = (An, <, . . .) is an ordered finite (still in the sense of M) Ln-structure;
(b) An is large enough so that every ordered Ln-structure of cardinality en is

isomorphic to a substructure of An;
(c) fn is homogeneous on An+1;
(d) An+1�Ln ⊆ An.

To obtain en+1 and An+1, assume we have en and An = (An, <, . . .). Expand An

to an Ln+1-structure A′
n having the property that for some nonstandard e′ ≤ en,

every orderedLn+1-structure of cardinality e′ is isomorphic to a substructure ofA′
n.

[We interject a remark here that there are other ways that this construction
might proceed. For example, we might have started with A that embeds every
Lc-structure of cardinality c. We have adopted the approach we did because with
it we do not need to know that the full AH/NR Theorem is true in M .]

By the AH/NR Theorem, for each standard e ≤ e′ there is a substructure B ⊆
A′

n onwhich fn is homogeneous such that every orderedLe-structure of cardinality
e is isomorphic to a substructure of B. By overspill, there is a nonstandard such e;
let en+1 some such e, and let An+1 be a corresponding B.

One of the beauties of this construction is that you get much more than you
originally bargained for. The following are all bonuses:

(e) If f : [M ]≤c −→M is definable, then there is n < ω such that f is canonical
on An.

(f) If f : [M ]≤c −→ M is definable, then there is n < ω such that f is solidly
canonical on An.
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Still working in the real world, let Lω = {<} ∪ {Rij : i, j < ω}. For each
I ∈ [ω]<ω, let QI be the set of Lω-structures (I,<, . . .), where the ordering <
on I coincides with usual ordering of the elements of I. Then let Q =

⋃{QI :
I ∈ [ω]<ω}. This set Q behaves in a way that is very close to the way we
want P to behave. Specifically, the following (which should be compared to the
corresponding requirements in Theorem 5.1.3) hold:

(2′) The empty structure is the unique member of Q0.
(3′) If A ∈ QI and J ⊆ I, then A|J ∈ QJ .
(4′) If A ∈ QI and A is isomorphic to B = (J,<, . . .) (by an order-preserving

isomorphism), then B ∈ QJ .
(5′) If 1 ≤ n < ω and {AI : I � n} ⊆ Q, where AI ∈ QI and AJ ⊆ AI whenever

J ⊆ I � n, then there are 2ℵ0 different A ∈ Qn such that A ⊇ ⋃{AI :
I � n}.
Given I ∈ [ω]<ω and A ∈ QI , we associate with them an I-type pA. For

simplicity, let I = n, and let p = pA. We have to decide whether a given n-ary
formula ϕ(x0, x1, . . . , xn−1) does or does not belong in p. Consider the definable
function f : [M ]n −→ 2 such that whenever a0 < a1 < · · · < an−1 are n elements
of M , then f({a0, a1, . . . , an−1}) = 0 iff M |= ϕ(a0, a1, . . . , an−1). Then there is
some k < ω such that f is homogeneous on Ak. Thus, f is constant on the set
of substructures of Ak that are isomorphic to A. Then ϕ(x0, x1, . . . , xn−1) ∈ p
iff this constant value is 0. Thus, we get that p is an n-type.

With an eye towards (1), we will show that p is a bounded solid n-type.
It is easily seen that p is bounded since A ⊆ M is bounded. To show that
it is solid, consider a model N generated by a set B = {b0, b1, . . . , bn−1},
where 〈b0, b1, . . . , bn−1〉 realizes p. It suffices to show that B is a solid basis
for N .

For each X ⊆ B, let NX � N be the submodel generated by X. We show
for each X ⊆ B that (i) NX ∩ B = X and (ii) if N ′ � N and X = N ′ ∩ B,
then N ′ = NX . These two facts imply that B is a basis for N . For notational
simplicity, let’s assume that k ≤ n and X = {bi : i < k}.
(i) Suppose, without loss of generality, that bk ∈ NX . Then there is a k-ary

Skolem term t(x0, x1, . . . , xk−1) such that N |= bk = t(b0, b1, . . . , bk−1). It
follows from (2′)–(5′) that there are B ∈ Q2n such that A = B|n ∼= B|(n+
1){k}. But then t(x0, x1, . . . , xk−1) = xk and t(x0, x1, . . . , xk−1) = xk+1
are both in pB, a contradiction.

(ii) Suppose N ′ � N and X = N ′∩B. Suppose b ∈ N ′. Then there is an n-ary
Skolem term t(x0, x1, . . . , xn−1) such that N |= b = t(b0, b1, . . . , bn−1). By
(e), and with some abuse of terminology, there is a t-core K ⊆ B. If bi ∈ K,
then there is a Skolem term s(y) such that N |= s(b) = bi, so that bi ∈ X.
Therefore, b ∈ NX .

We have shown that B is a basis. We now show that it is in fact a solid
basis. Consider an n-ary Skolem term t(x0, x1, . . . , xn−1) and let N |= b =
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t(b0, b1, . . . , bn−1), where b �∈ X. By (f), there some Am such that M |=
∀x0, x1, . . . , xn−1 ∈ Am[x0 < x1 < · · · < xn−1 → t(x0, x1, . . . , xn−1) �∈ Am].
Thus, b does not realize the same type as any element of B, thereby proving
that B is a solid basis.

Finally, let P be the set of all those pA. It needs to be checked that P satisfies
(1)–(5). As we have just seen, each n-ary type in P is solid and, similarly, each
I-type in P also is. Thus (1) holds. It is easily checked that (2)–(4) follow from
(2′)–(4′). Since different A’s yield different types, (5) follows from (5′). This
completes the proof of Theorem 5.1.3. �

We make two comments about Theorem 5.1.3 and its proof:

1. It would be easy to add in the proof the requirement that ω =
inf{cardM (An) : n < ω}. If this were done, then for each 1-type p(x) in
P, if N is a p(x)-extension of the prime model M , then ω = GCIS(M,N).

2. It is also possible to modify the proof in the opposite direction of the previous
comment. Consider some d ∈ M . Then it can be arranged that the AH-set
P is such that for any n-type p(x̄) in P, if N is a p(x̄)-extension of the prime
model M , then N is a cofinal d-end extension of M . For this modification,
we use that the AH/NR Theorem is provable in PA.

5.1.4 True Arithmetic

A defect in Theorem 5.1.3 is that it requires the prime model of T to be non-
standard. Thus, it does not apply if T = TA. There is way to modify the theorem
so as to cover TA.

If M ≺ N , then N is a wasp extension of M if whenever N0 ≺ N , then either
N0 � M or M � N0. For example, a minimal extension is a wasp extension iff
it is superminimal.

Theorem 5.1.8 Let M be a countable nonstandard model of PA∗ generated by
an element b, and let T = Th(M, b). Then there is an AH-set P for T having the
following additional property: whenever n < ω, p ∈ P is an n-type, and (N, b) is
a p-extension of (M, b), then N is a wasp extension of M .

Proof If the additional condition about the wasp extensions were not included,
then this theorem would say nothing beyond Theorem 5.1.3, and the proof of
Theorem 5.1.3 would work. But with the additional requirement, the construc-
tion of P needs to be modified by incorporating both Comment 2 following the
proof of Theorem 5.1.3 and the method of constructing a superminimal exten-
sion in Theorem 2.1.12. We will give a heuristic description of how the proof
should go.

Let T0 = Th(M) and let M0 be its prime model. Comment 2 referred to
constructing what it will be convenient to refer to here as a d-end AH-set for
T0. This construction involves constructing a sequence A0 ⊇ A1 ⊇ A2 ⊇ · · · .
Such a construction can be done uniformly for all d ∈ M0. Thus, at stage n
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of the construction, instead of having An, we will have a definable sequence
〈Au,n : u ∈M0〉, in which Ad,n = An, with each Au,n being a bounded, definable
subset of M0. A new step will be interlaced into the construction.

We would expect that, in general, card(Au+1,n) is much bigger than
card(Au,n). But now we require that card(Au+1,n) be much, much bigger than
card(Au,n). This is to accommodate the new step. At some stage n we consider
a definable sequence 〈fu : u ∈ M0〉 of definable functions f : M<M0

0 −→ M0,
where each function fu is canonical on Au,n. At the next stage we have
〈Au,n+1 : u ∈ M0〉 such that whenever u < v ∈ M0 and the fv-core of Av,n+1 is
not ∅, then fu([Au,n+1]<M0) ∩ fv([Av,n+1]<M0) = ∅.

This uniform construction not only produces a u-end AH-set for each u ∈M0,
but can be applied in any model. For example, it can be applied in M , and since
b generates M , the construction will produce a b-end AH-set P for Th(M, b).
This AH-set P will have the additional property called for by the theorem.

To see that P has this additional property, let p(x̄) be an m-type in P, and
let (N, b) be a p(x̄)-extension of (M, b) generated by the m-tuple c̄. We show
that N is a wasp extension of M . Suppose that t(u, x̄) is a Skolem term and
d ∈ N\M is such that N |= d = t(b, c̄). It suffices to show that there is a Skolem
term s(y) such that N |= b = s(d).

There is some stage n < ω of the construction at which we considered the
definable sequence 〈fu : u ∈ M0〉, where, for all u ∈ M0 and x0 < x1 < · · · <
xm−1 ∈ M0, t(u, x̄) = fu({x0, x1, . . . , xm−1}) and each fu is canonical on Au,n.
Then, for all u < b, d �∈ fu([Au,n+1]<M0). Therefore, in M0 we can let s(y) be
the least v such that y ∈ fv([Av,n+1]<M0). Clearly, N |= b = s(d). �

The following lengthy proposition should be compared with Proposition 5.1.1.

Proposition 5.1.9 Let (M, b) |= PA∗, let T = Th(M, b), and let (M0, b) be
the prime model of T . Suppose B is a solid basis for (M, b) |= PA∗ having the
following additional property: whenever n < ω, p ∈ P is an n-type, and (N, b) is a
p-extension of (M0, b), then N is a wasp extension of M0. Let λ be an order type.
If there is I ⊆M\M0 which is a set of indiscernibles for M having order type λ,
then there is J ⊆ B which is a set of indiscernibles for M having order type λ
or λ∗.

Proof By the proof of Proposition 5.1.1, we get a Skolem term s(u, y) such that
s(b, y) defines a one-to-one function on I into B. Consider some j ∈ I. There
is a Skolem term t(y) such that M |= t(j) = b. Therefore, for any i ∈ I, t(j)
realizes the same type as b. But it follows (Do it!) from Ehrenfeucht’s Lemma
that b is the only element of M realizing its type. Hence t(i) = b for all i ∈ I,
and then the Skolem term s(t(y), y) defines a one-to-one function on I into B.
Then, as at the end of the proof of Proposition 5.1.1, J = {s(t(i), i) : i ∈ I} ⊆ B
is a set of indiscernibles having order type λ or λ∗. �
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An important feature of Proposition 5.1.9 is that it can be applied to TA by
letting M0 be a minimal extension of the standard model generated by b.

5.2 Omitting indiscernibles

Recall that the infinite cardinal numbers �α, for α an ordinal, are defined by
transfinite recursion. More generally, if κ is any cardinal then: �0(κ) = κ;
�α+1(κ) = 2�α(κ); �β(κ) = sup{�α(κ) : α < β} for limit ordinal β. Then
let �α = �α(ℵ0).

Theorem 5.2.1 Let A = (A, . . .) be any structure for a countable language. If
|A| > �n, then A has an indiscernible set I ∈ [A]n+1.

Theorem 5.2.2 Let M |= PA∗, and let 1 ≤ n < ω. Then there is N ≡ M such
that |N | = �n and there is no indiscernible set I ∈ [N ]n+1.

The first of the above theorems is an immediate consequence of the Erdős–
Rado Theorem. For the record, here it is.

The Erdős–Rado Theorem: Suppose n < ω and κ is an infinite
cardinal. If |A| > �n(κ) and f : [A]n+1 −→ κ, then there is H ⊆ A
such that |H| = κ+ and f is constant on [H]n+1.

The proof of Theorem 5.2.2 uses the the following converse of the ER Theorem.

The Erdős–Hajnal–Rado Theorem: Suppose n < ω and κ is
an infinite cardinal. If |A| ≤ �n(κ), then there is f : [A]n+1 −→ κ
for which there is no H ∈ [A]n+2 such that f is constant on [H]n+1.

Proof of Theorem 5.2.2 The construction of the model relies on the techno-
logy of the previous section. Subsection 5.1.4 is needed only in case the prime
model of Th(M) is a standard model.

Let M |= PA∗, and let 1 ≤ n < ω. If n = 1, then this theorem reduces
to Exercise 3.3.18, so we can assume that n ≥ 2. If M is not a prime model,
then we replace it with its prime elementary submodel. The case that M is a
standard model will be handled at the end of this proof; for now, assume that
M is nonstandard. The model N that we will construct is a cofinal extension
of M .

Let (A,<) be a linearly ordered set of cardinality �n; thus |A| = �n−1(2ℵ0).
Let f : [A]n −→ R be as in the EHR Theorem. This function f easily extends
to a compatible function g : [A]<ω −→ R (Do it!). Apply Proposition 5.1.7 to
get N �cof M such that A is a solid basis for N and g and tp are equivalent on
[A]<ω. It follows from Proposition 5.1.1 that N contains no indiscernible set of
cardinality n + 1. For, if it did, then there would be such an indiscernible set
from A. But as g and tp are equivalent, this would contradict the characteristic
property of f , finishing the proof for nonstandard M .

Now suppose that the prime model is a standard model. So, instead of taking
M to be the prime model, let it be an elementary extension of the prime model
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generated by an element b realizing a minimal type. Proceed in a very similar
manner to what was just done, using Theorem 5.1.8 and Proposition 5.1.9 instead
Theorem 5.1.3 and Proposition 5.1.1. �

The technique for proving Theorem 5.2.2 extends easily to other related situ-
ations. Here is a typical one. If κ, λ are infinite cardinals, then κ −→ (ω)<ω

λ

means: for every function f : [κ]<ω −→ λ there is an infinite H ⊆ κ such that f
is constant on [H]n for each n < ω. If κ −→ (ω)<ω

λ fails, then κ �−→ (ω)<ω
λ . If

κ �−→ (ω)<ω
λ and λ < κ, then κ �−→ (ω)<ω

2 . The reader should have no difficulty
(Do it!) supplying the details of the proof of the following theorem.

Theorem 5.2.3 Let M be a model of PA∗, and let κ be an infinite cardinal.
Then there is N ≡M of cardinality κ having no infinite set of indiscernibles iff
κ �−→ (ω)<ω

2 . �

5.3 Hanf numbers

Theorem 5.2.2 has a consequence concerning Hanf numbers. For the moment, let
us fix an arbitrary complete theory T for some countable language L. Let Φ(x)
be set of L-formulas with x being the only free variable. Then h(Φ(x)), the Hanf
number of Φ(x), is the least cardinal κ such that every model A of T having
cardinality at least κ realizes Φ(x). There is no guarantee that there is such a κ,
but if none exist, then we let h(Φ(x)) =∞. We let H(T ), the Hanf number for
omitting types, be the supremum of all (h(Φ(x))+, as Φ(x) ranges over all sets
of unary formulas in the language of T for which h(Φ(x)) <∞.

Theorem 5.3.1 (Morley) (1) For any complete theory T for a countable
language, H(T ) ≤ �ω1 .

(2) There is T (for a language with just a binary relation symbol) such that
for every α < ω1, there is some Φα(x) such that h(Φα(x)) = (�α)+. �

For any completion T of PA∗, it is very easy to get Φ(x) for which h(Φ(x)) =
(�0)+ = ℵ1: for example, let Φ(x) assert “x is not definable.” Thus, an immediate
consequence of Theorems 5.2.1 and 5.2.2 is:

Corollary 5.3.2 Let T be any completion of PA∗, and let n < ω. Then there is
a type Φn(x) such that h(Φn(x)) = (�n)+. �

Thus, for any completion T of PA∗, we get from Theorem 5.3.1(1) and Corol-
lary 5.3.2 that �ω ≤ H(T ) ≤ �ω1 . Just where within this interval does H(T )
lie? For completions T of PA, the answer depends on whether or not T is True
Arithmetic.

Theorem 5.3.3 Let T ⊇ PA∗ be a completion having a standard model. Then
H(T ) = �ω.
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Proof The inequality H(T ) ≥ �ω comes from Corollary 5.3.2. We need to prove
H(T ) ≤ �ω, which means: if Φ(x) is a set of formulas and for each n < ω, there
is a model N |= T such that |N | > �n and N omits Φ(x), then there are
arbitrarily large models of T omitting Φ(x). So let us assume that Φ(x) is such
a set of formulas.

Let N∗ be the prime model of T . Throughout this proof, formula refers to a
formula in the language of PA∗ whose free variables are among x0, x1, x2, . . ., and
model refers to a model of T . If M is a model, I ⊆ M and ϕ(x0, x1, . . . , xn−1)
(or simply ϕ(x̄)) is an n-ary formula, then we say that ϕ(x0, x1, . . . , xn−1) is
valid on I if, whenever c0 < c1 < · · · < cn−1 are elements of I, then M |=
ϕ(c0, c1, . . . , cn−1), and we say that ϕ(x̄) is ω-valid if there are arbitrarily large
finite subsets of N∗ on which ϕ(x̄) is valid.

By Ramsey’s Theorem, for every formula ϕ(x̄), either ϕ(x̄) or ¬ϕ(x̄) is ω-
valid. (There is a stronger statement that we will not need: either ϕ(x̄) or ¬ϕ(x̄) is
valid on an unbounded definable subset of N∗.) But there is a stronger statement
that we will need:

(1) If θ(x̄) is ω-valid and ϕ(x̄) is any formula, then either θ(x̄) ∧ ϕ(x̄) or θ(x̄) ∧
¬ϕ(x̄) is ω-valid.

The above statement (1) also is a consequence of Ramsey’s Theorem (Do it!).
The key to this proof of the theorem is the following:

(2) If θ(x̄) is ω-valid and t(x̄) is a Skolem term, then there is a formula ϕ(x) in
Φ(x) such that θ(x̄) ∧ ¬ϕ(t(x̄)) is ω-valid.

We prove (2). Suppose that t(x̄) is an (n + 1)-ary Skolem term. Let M be
a model omitting Φ(x) such that |M | > (�n)+. Then there is a ∈ M such that
|[0, a]| ≥ (�n)+. Since θ(x̄) is ω-valid and M |= T , there is a bounded definable
A ⊆ M such that cardM (A) = a and θ(x̄) is valid on A. We next define a
function f : [A]n+1 −→ ω. Let Φ(x) = {ϕi(x) : i < ω}. If c0 < c1 < · · · < cn
are elements of A, then let f({c0, c1, . . . , cn}) = i, where i < ω is chosen so that
M |= ¬ϕi(t(c̄)). By the Erdős–Rado Theorem, there are i < ω and an infinite
H ⊆ A such that f is constantly i on [H]n+1. Letting ϕ(x) = ϕi(x), we see that
θ(x̄) ∧ ¬ϕ(t(x̄)) is ω-valid. This proves (2).

By repeated applications of (1) and (2), we can get a set Γ of ω-valid formulas
such that Γ is closed under conjunction, and (from (1)) for every θ(x̄) either θ(x̄)
or ¬θ(x̄) is in Γ, and (from (2)) for any θ(x̄) ∈ Γ and Skolem term t(x̄), there is
ϕ(x) ∈ Φ(x) such that ¬ϕ(t(x̄)) ∈ Γ.

Now consider an arbitrary infinite (large) cardinal κ. By compactness, there
is a model N that is generated by a set I of indiscernibles such that I (and thus
also N) has cardinality κ and such that each θ(x̄) in Γ is valid on I. It is easily
checked (Do it!) that N omits Φ(x). �

Theorem 5.3.4 If T ⊇ PA∗ is a completion having a nonstandard prime model,
then H(T ) = �ω1 . �
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The inequality H(T ) ≤ �ω1 comes from Theorem 5.3.1(1). For the other
inequality, we have the following theorem.

Theorem 5.3.5 Let T ⊇ PA∗ be a completion having a nonstandard prime
model, and let α < ω1. Then there is a set Φ(x) of formulas such that h(Φ(x)) =
(�α+1)+.

Proof Corollary 5.3.2 covers finite α, so we assume that ω ≤ α < ω1. Let M be
the (nonstandard!) prime model of T . Considered as an ordered set, M embeds
any countable, linearly ordered set (Why?).

To get Φ(x), we will need an increasing bounded sequence 〈cν : ν < α〉 from
M that will be determined later on. For convenience we define a set Φα(x, y) of
2-ary formulas instead of unary formulas (permissible due to the existence of a
pairing function). This set consists of the following assertions:

(1) x < y;
(2) cν ≤ y → ∀u ≤ cν [ϕ(u, x)↔ ϕ(u, y)], for each ν < α and each 2-ary formula

ϕ(u, x);
(3) ϕ(x)↔ ϕ(y), for each unary formula ϕ(x) .

We show that h(Φα(x, y)) = (�α+1)+.
For the easier half of the proof, we show: if N |= T and N omits Φα(x, y),

then |N | ≤ �α. First, we show by induction on ν < α that |[0, cν ]| ≤ �ν+1. For
ν > 0, we consider three cases: ν = 0, ν is a successor ordinal, and ν is a limit
ordinal.

ν = 0. The simple argument used here will be repeated. If |[0, c0]| > �1,
then there would be a, b such that a < b < c0 with a, b realizing the same type.
Clearly, 〈a, b〉 realizes Φα(x, y).

ν = µ + 1 < α and |[0, cµ]| ≤ �µ+1. There are at most �ν+1 1-types over
[0, cµ]. If |[0, cν ]| > �ν+1, then |[cµ, cν ]| > �ν+1, so there would be a, b such that
cµ < a < b < cν , with a, b realizing the same type over [0, cµ]. Clearly 〈a, b〉
satisfies Φα(x, y).

ν < α is a limit ordinal and |[0, cµ]| ≤ �µ+1 for all µ < ν. Let C =
⋃{[0, cµ] :

µ < ν}. Then |C| ≤ �ν . If |[0, cν ]| > �ν+1, then there would be a < b in
[0, cν − 1]\C realizing the same type over C. Clearly 〈a, b〉 satisfies Φ(x, y).

Now observe that the same simple argument that had been used in the three
cases also shows that |M\⋂{[cν ,∞) : ν < α}| ≤ �α+1, and therefore |N | ≤
�α+1.

Now for the harder half of the proof: h(Φα(x, y)) ≥ �α+1. Thus, it suffices
to construct a model N |= T which omits Φα(x, y) such that |N | = �α+1. To do
this, we need to take a look again at the AH/NR Theorem and its consequence,
Theorem 5.1.3. We will take a short recess from the proof of Theorem 5.3.5 to
do this.
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Theorem 5.1.3 asserts the existence of a large collection P of complete types,
among which are 2ℵ0 distinct 1-types. Each 1-type p(x) ∈ P determines a proper
cut K of the prime model M , where K = {a ∈ M : a < x is a formula in P}.
However, all 1-types determine exactly the same cut since: if p(x), q(x) are
1-types in P, then p(x) ∪ q(y) ∪ {x < y} is consistent by (5). We get a vari-
ation of Theorem 5.1.3 in which all the 1-types determine different cuts. For this
we need a variation of the AH/NR Theorem.

Suppose that among the relation symbols in L are the unary relation symbols
P0, P1, . . . , Pk. For this discussion only, let us say that A = (A,<, . . .) is a
partitioned L-structure if A = P0 ∪ P1 ∪ · · · ∪ Pk and a < b whenever i < j ≤ k
and a ∈ Pi, b ∈ Pj . If A is a partitioned L-structure, then there is an L-structure
B that is not only as required by the AH/NR Theorem but is also partitioned.
This fact, which we refer to as the Partitioned AH/NR Theorem, easily follows
from the AH/NR Theorem (Do it!). By modifying the proof of Theorem 5.1.3
by using the Partitioned AH/NR Theorem instead of the AH/NR Theorem, we
can prove the following variation of Theorem 5.1.3.

Theorem 5.3.6 Let T ⊇ PA∗ be a completion having a nonstandard prime
model. Then there is a set P0 such that (1)–(4) of Theorem 5.1.3 hold and there
is a bijection r �→ qr(x) from the set of rationals to the set of 1-types in P0 such
that the following hold:

(5) If r < s are rationals, then there is a ∈M such that the formulas x < a and
a < x are in qr(x) and qs(x) respectively.

(6) Suppose that 3 ≤ n < ω and pI ∈ P0 is an I-type whenever I � n, and that
pJ ⊆ pI whenever J ⊆ I � n. Then there are 2ℵ0 n-types p ∈ P0 such that
p ⊇ ⋃{pI : I � n}.

(7) Suppose that r < s are rationals. Then there are 2ℵ0 2-types p(x0, x1) ∈ P0
such that p(x0, x1) ⊇ qr(x0) ∪ qs(x1).

To prove this theorem, do a construction just like the one in the proof of
Theorem 5.1.3 but with a small difference: the Partitioned AH/NR Theorem is
used in place of the AH/NR Theorem.

We now resume the proof of Theorem 5.3.5 but with a rather sketchy present-
ation. What we have at this point is an ordinal α < ω1 and the 2-type
Φα(x, y). Let B = �α+1 which, as usual, is the set of ordinals less than it.
For each ν < ω, let Bν = {ν}, and if µ ≤ α and ν = ω + µ ≤ ω + α, let
Bν = {β ∈ B : �ν ≤ β < �ν+1}. The Bν ’s form a partition of B. It is an easy
matter to get a compatible function f : [B]<ω −→ ω such that:

• f(x) = f(y) iff there is ν ≤ ω + α such that x, y ∈ Bν ;
• if x, y ∈ Bν are distinct, then there are µ < ν and z ∈ Bµ such that

f({z, x}) �= f({z, y}).
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As in the proof of Proposition 5.1.7, we get a compatible g : [B]<ω −→ P0 that
is equivalent to f such that the following hold whenever X ∈ [B]k:

• g(X) is an |X|-type.
• Suppose I ∈ [k]s, where I = {i0, i1, . . . , is−1} and i0 < i1 < · · · < is−1 < k.
Then g(X ◦ I) is the type p(x0, x1, . . . , ps−1), where p(xi0 , xi1 , . . . , xis−1) is
the I-subtype of g(X).

Continuing as in the proof of Proposition 5.1.7, we get N �cof M such that
B is a solid basis for N and f and tp are equivalent functions on [B]<ω. Clearly
|N | = |B| = �α+1.

It still has to be decided what the cν ’s in Φα(x, y) are, and we do that now.
For each ν < α, let cν ∈M be such that Bω+ν < cν < Bω+ν+1.

The bonuses (e) and (f) that the construction using the AH/NR Theorem
yields have analogues in this situation. These help us to show that N omits
Φα(x, y). �

Theorem 5.3.5 leaves unanswered if for every (limit) ordinal α < ω1 there is
Φ(x) such that h(Φ(x)) = (�α)+. This appears to be open.

5.4 The automorphism group

The concern of this section is to investigate what are the possibilities for Aut(M),
the group of automorphisms of an arbitrary model M of PA∗.

Definition 5.4.1 Let G be a group. A linear ordering < of G is a right-ordering
if, whenever a, x, y ∈ G are such that x < y, then xa < ya. We say G is
right-orderable if it has a right-ordering. �

The importance of right-orderable groups is that they characterize the pos-
sible automorphism groups of linearly ordered structures, putting a significant
restriction on the possible automorphism groups of models of PA. We will see in
Theorems 5.4.3 and 5.4.4 that there are no other restrictions.

Lemma 5.4.2 Let G be a group. Then G is right-orderable iff there is a linearly
ordered structure A = (A,<, . . .) such that G ∼= Aut(A). �

Theorem 5.4.3 Let G be a right-orderable group, and let M be a nonstandard
prime model. Then there is N �cof M such that Aut(N) ∼= G.

Proof By Lemma 5.4.2, we can assume that G = Aut(A), where A = (A,<, . . .).
Let κ = |A|. If κ is finite, then G is trivial, so we can just let N = M . Assume
for the rest of this proof that κ ≥ ℵ0. We get N �cof M such that Aut(N) ∼= G
and |N | = κ. First, we give a proof for κ ≤ 2ℵ0 , and then, after that, give the
proof for arbitrary κ.

Let T = Th(M). Assume κ ≤ 2ℵ0 . Recall Example 5.1.6 in which orb :
[A]<ω −→ O is a compatible function. Clearly, |O| ≤ κ ≤ 2ℵ0 . Now apply
Proposition 5.1.7, getting N �cof M such that A is a solid basis for N and orb
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and tp are equivalent. Let B = (A,<, 〈tp−1(p) : p ∈ Sn(T ), n < ω〉). It is clear
that G = Aut(A) = Aut(B). Proposition 5.1.2 implies that Aut(M) ∼= G. This
completes the proof for κ ≤ 2ℵ0 .

Now let κ be arbitrary. Assume, without loss of generality, that κ and A are
disjoint sets, thereby getting the linearly ordered set (B,<), where B = κ ∪ A,
(κ,<) and (A,<) are both substructures of (B,<), and x < y whenever x ∈ κ
and y ∈ A.

We next define a compatible function f : [B]<ω −→ ω. Let |O| = λ. Clearly,
λ ≤ κ. Even though λ may be quite large, by a little coding trick, we will manage
to get f to map into ω.

Let O = {Oα : α < λ}. Let f : [B]<ω −→ ω be such that whenever X =
{x0, x1, . . . , xm−1} ∈ [B]<ω and X = {y0, y1, . . . , yn−1} ∈ [B]<ω, where x0 <
x1 < · · · < xm−1, y0 < y1 < · · · < yn−1, then f(X) = f(Y ) iff the following
hold:

(1) m = n;
(2) if i < n, then xi ∈ A iff yi ∈ A;
(3) if i < n and I ⊆ n are such that X ◦ I ⊆ A and xi ∈ κ, then X ◦ I ∈ Oxi

iff
Y ◦ I ∈ Oyi

.

Such a function f exists (Do it!).
Now apply Proposition 5.1.7, getting N �cof M such that B is a solid basis

for N and orb and tp are equivalent. Let B = (B,<, 〈f−1(m)∩[B]n : m,n < ω〉).
It is clear that G = Aut(A) ∼= Aut(B) (Do it!). Proposition 5.1.2 implies that
Aut(M) ∼= G. �

A defect with the previous theorem is that it does not apply to prime models
which are standard. For example, the standard model of TA has been left out.
There are several ways that the theorem (and its proof) can be modified to yield
a theorem covering TA. One possibility is Exercise 5.6.2. Another is by replacing
cofinal extensions by end extensions as in the next theorem. (See Exercise 5.6.5
for an improved refinement of this theorem.)

Theorem 5.4.4 Let G be a right-orderable group, and let M be a model of PA∗.
Then there is N �end M such that G ∼= Aut(N). �

There are two main ingredients in the proof of this theorem. The first is
Theorem 3.3.14 which is a result about the existence of very rigid models. The
second is the AH-technology which was developed in Section 5.1 of this chapter.
Some refinement of this technology is needed for this proof.

Let T ⊇ PA∗ be a completion having the nonstandard prime model M , and
let p(x̄) ∈ Sn(T ). We defined in Section 5.1 what it means for p(x̄) to be a solid
type. We now jazz up the definition. If c ∈ M , then p(x̄) is solid over c if it is
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solid and two more requirements are met:

(1) If N is a p(x̄)-extension of M , then N is a cofinal c-end extension.

Before stating the second requirement, we observe a consequence of (1). Let
M0 be a p(x̄)-extension ofM . Thus, M0 = M(ā) in which ā realizes p(x̄). Suppose
that M ≺cof M1 and that M1 is generated by [0, c]M1 . Then M0 and M1 have an
amalgamation M2 as discussed in Section 2.3. We denote this amalgamation by
M1�M0. Then, M1�M0 = M0(ā). Let p′(x̄) ∈ Sn(M0) be the type realized by ā

(2) If p′(x̄) is as just described, then p′(x̄) is a solid type.

If P is an AH–set for T and, in addition, each type in P is solid over c,
then we say that P is an AH-set for T over c. The proof of the next theorem is
basically like the proof of Theorem 5.1.3. We leave the details of the proof to be
worked out.

Theorem 5.4.5 Let T ⊇ PA∗ be a completion having a nonstandard prime
model M , and let c ∈M . Then there is an AH–set P for T over c. �

Proof of Theorem 5.4.4 By Lemma 5.4.2, we can assume that G = Aut(A),
where A = (A,<, . . .). Let κ = |A|. The elementary end extension N that we
obtain is not be very big; in fact |N | = |M |+ κ.

By Theorem 3.3.14, we can assume that M is very rigid. Then let p(x) be
a minimal type for Th(M), and let M(c) be a p(x)-extension of M . Therefore,
M(c)�end M and |M(c)| = |M |.

As in the second part of the proof of Theorem 5.4.3, assume κ and A are
disjoint sets, and then get the same (B,<) and the same compatible function
f : [B]<ω −→ ω as in that proof.

Next, we want to apply Theorem 5.4.5. Consider the theory T = Th(M, c),
and let (M0, c) be its prime model. Let P be an AH-set for T over c. Let f :
[B]<ω −→ ω be as in the proof of Theorem 5.4.3. Now let (N0, c) be an extension
of (M0, c) generated by the solid basis B such that f and tp are equivalent
on [B]<ω.

Let (N, c) = (M(c), c)�(N0, c). Since P is an AH-set for T over c, it follows
that B is a solid basis for (M, c, i)i∈M0 (Do it!). Just as in the first part of the
proof of Theorem 5.4.3, G ∼= Aut((N, c, i)i∈M ). Notice that c is in the last gap
of N and realizes a minimal (hence, rare) type, so it cannot be moved by an
automorphism of N . Thus Aut((N, c, i)i∈M ) = Aut((N, i)i∈M ). But M ≺end and
N is very rigid, so Aut((N, i)i∈M ) = Aut(N). Therefore, G ∼= Aut(N). �

5.5 Indiscernible generators

This section contains a proof of the theorem that every countable recursively
saturated model of PA∗ is generated by a set of indiscernibles. While technically
the proof does not rely on AH-technology, its presence in this chapter can be justi-
fied because, at a crucial point in the proof, the AH/NR Theorem is called upon.
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Theorem 5.5.1 Every countable, recursively saturated model M |= PA∗ is
generated by a set of indiscernibles.

Proof Let M be countable and recursively saturated. We will NOT find an
indiscernible set I ⊆ M such that M = Scl(I). What we will do is find an
indiscernible set I ⊆ M such that if N = Scl(I) � M , then (1) N is recursively
saturated and (2) SSy(N) = SSy(M). Then (1) and (2) imply that N ∼= M .
Since N is generated by a set of indiscernibles, so must M be.

For this proof we adopt the following notational convention: If X ⊆ M and
n < ω, then [X]n is the set of increasing n-tuples from X.

We begin this proof with a discussion about “universal” functions.
There is a definable function F : M ×M −→ M that is universal for all

bounded, definable functions. This means: if a ∈ M and f : [0, a] −→ M is a
definable function, then there is u ∈ M (in fact, there is an unbounded set of
u’s) such that F (x, u) = f(x) for every x ≤ a. Such a function F can be found
which is even 0-definable. Moreover, if (M ′, F ′) ≡ (M,F ), then F ′ is universal
for all bounded, definable functions in M ′.

Other types off universal functions can easily be derived from F . For example,
if n < ω, then let Fn : [M ]n+1 −→ M be defined by Fn(x0, x1, . . . , xn−1, u) =
F (〈n, x0, x1, . . . , xn−1〉, u). Then theFn’s are universal in the following sense: if a ∈
M , s < ω and fn : [0, a]n −→M are definable functions for each n ≤ s, then there
is u ∈ M (again, an unbounded set of them) such that Fn(x0, x1, . . . , nn−1, u) =
fn(x0, x1, . . . , xn−1) whenever n ≤ s and x0 < x1 < · · · < xn−1 ≤ a.

It is easy to get still other universal functions. Let Gi,n : [M ]n+1 −→ 2
be such that Gi,n(x0, x1, . . . , xn−1, u) = min{1, F (〈0, i, n, x0, x1, . . . , xn−1〉, u)}.
Then the Gi,n’s are universal in a similar way that the Fn’s are: if a ∈ M ,
s < ω, and gi,n : [0, a]n −→ 2 are definable functions for each i, n ≤ s, then there
is u ∈ M such that Gi,n(x0, x1, . . . , xn−1, u) = gi,n(x0, x1, . . . , xn−1) whenever
i, n ≤ s and x0 < x1 < · · · < xn−1 ≤ a. Moreover, there is a mutual universal-
ity; that is, if a ∈ M , s < ω and fn : [0, a]n −→ M and gi,n : [0, a]n −→ 2
are definable functions for each i, n ≤ s, then there is u ∈ M such that
Fn(x0, x1, . . . , xn−1, u) = fn(x0, x1, . . . , xn−1) and Gi,n(x0, x1, . . . , xn−1, u) =
gi,n(x0, x1, . . . , xn−1) whenever x0 < x1 < · · · < xn−1 ≤ a and i, n ≤ s. We
make use of the Fn’s and the Gi,n’s and their mutual universality.

Let 〈ϕn
j (x̄, y) : j, n < ω〉 be a recursive, doubly indexed list of formulas such

that each ϕn
j (x̄, y) is (n+ 1)-ary (that is, x̄ is the n-tuple x0, x1, . . . , xn−1) and

such that if 〈θj(x̄, y) : j < ω〉 is a recursive sequence of (m + 1)-ary formulas,
then there is some n < ω such that n ≥ m and for each k < ω there is l < ω
such that the sentence

∀x0, x1, . . . , xn−1∀y
[ ∧
j≤k

θj(x0, x1, . . . , xm−1, y)↔
∧
j≤l

ϕn
j (x0, x1, . . . , xn−1, y)

]

is in Th(M). (Notice that m and n may not be equal, but that little bit of
inelegance is more than compensated for by the simplification in notation.) For
n, k < ω, let Φn

k (x̄, y) =
∧

j≤k ϕn
j (x̄, y).



5.5 INDISCERNIBLE GENERATORS 153

We want to get an increasing sequence b0 < b1 < b2 < · · · of elements in
M such that whenever k, n < ω and i0 < i1 < i2 < · · · < in < ω, then the
sentence

∃yΦn
k (bi0 , bi1 , . . . , bin−1 , y)→Φn

k

(
bi0 , bi1 , . . . , bin−1 , Fn(bi0 , bi1 , . . . , bin−1 , bin)

)
is true in M . The sequence can be constructed inductively. Suppose that m < ω
and that we already have b0 < b1 < · · · < bm−1 so that all of the above sentences
involving b0, b1, . . . , bm−1 are true in M . Let B = {b0, b1, . . . , bm−1}. The bm
that we want should satisfy a certain recursive set Σ(u) of formulas. A typical
formula in Σ(u) is obtained by taking one of the above sentences involving only
b0, b1, . . . , bm and then replacing each occurrence of bm with the variable u. By
the recursive saturation of M , there is such a bm provided any finite subset of
Σ(u) is satisfiable. Let Σ0(u) ⊆ Σ(u) be a finite set, and suppose that s < ω is
such that if Φn

k occurs somewhere in Σ0(u), then n, k ≤ s. For each n ≤ s, let
fn : Bn −→ M be such that if a0, a1, . . . , an−1 ∈ B, then for each k ≤ s the
sentence

∃yΦn
k (a0, a1, . . . , an−1, y)→ Φn

k

(
a0, a1, . . . , an−1, fn(a0, a1, . . . , an−1)

)
is true in M . By the universal property of F0, F1, . . . , Fs there is b ∈ M such
that b > bm−1 and Fn(a0, a1, . . . , an−1, b) = fn(a0, a1, . . . , an−1) whenever n ≤ s
and a0 < a1 < · · · < an−1 are in B. Then b satisfies Σ0(u). Thus, let bm = b.

We now have the increasing sequence b0 < b1 < b2 < · · · of elements in M .
Let X = {b0, b1, b2, . . .}. Thus X ⊆ M is a nonempty subset with no largest
element such that the expansion (M,X) satisfies the sentences σn,k for each
n, k < ω, where σn,k is

∀x0, x1, . . . , xn−1, u ∈ X[x0 < x1 < · · · < xn−1 < u ∧

∃yΦn
k (x̄, y)→ Φn

k (x̄, Fn(x̄, u))] .

This setX has an interesting property: Scl(X) is recursively saturated. Moreover,
if (M,X) |= σn,k for all n, k < ω and Y ⊆ X is nonempty and has no largest
element, then Scl(Y ) is recursively saturated. (Do it!)

We are going to go back to the construction of the sequence b0 < b1 <
b2 < · · · and impose some additional conditions on it involving the Gi,n’s,
thereby imposing further conditions on the set X.

Definition Suppose r < ω and Y ⊆ M . We say that Y is r-free if whenever
∅ �= D ⊆ Y is finite, s < ω, and gi,n : [D]n −→ 2 whenever i ≤ s and r ≤ n ≤ |D|,
then there is c ∈ Y such that c > max(D) and whenever i ≤ s, r ≤ n ≤ |D|, and
〈d0, d1, . . . , dn−1〉 ∈ [Y ]n, then Gi,n(d0, d1, . . . , dn−1, c) = gi,n(d0, d1, . . . , dn−1).



154 HOW TO CONTROL TYPES

The further condition that we want to impose on X is that it is 0-free.
Remembering that the Fn’s and the Gi,n’s have a mutual universality property,
we have no difficulty building this condition into the construction of the sequence
b0 < b1 < b2 < · · · .

The next definition should look familiar.

Definition Suppose r < ω and Y ⊆ M . We say that Y is r-indiscernible
if whenever n ≤ r, θ(x̄) is an n-ary formula, and 〈c0, c1, . . . cn−1〉,
〈d0, d1, . . . , dn−1〉 ∈ [Y ]n, then M |= θ(c̄)↔ θ(d̄).

Obviously, every set is 0-indiscernible. Therefore, we now have a set X ⊆M
such that all but (1) of the following hold:

(0) (M,X) |= σn,k for all n, k < ω;
(1) (M,X) is recursively saturated;
(2) X �= ∅ and X has no largest element;
(3) X is 0-indiscernible;
(4) X is 0-free.

However, by the chronic resplendence of M , by choosing another set X if needed,
we can get all of (0)–(4) to hold.

An enumeration of SSy(M) is needed, so let SSy(M) = {Sr : r < ω}. Our
goal is, by a careful thinning process, to get a set I ⊆ M of indiscernibles such
that Scl(I) ∼= M . We do this by constructing a decreasing sequence X = X0 ⊇
X1 ⊇ X2 ⊇ · · · such that, for each r < ω, we have:

(1r) (M,Xr) is recursively saturated;
(2r) Xr �= ∅ and Xr has no largest element;
(3r) Xr is r-indiscernible;
(4r) Xr is r-free;
(5r) if r > 0 and i < ω, then Gi,r−1([Xr]r) = {1} iff i ∈ Sr−1.

Before we construct the sequence X = X0 ⊇ X1 ⊇ X2 ⊇ · · · , let us see how
it is used to get the desired I ⊆ M . If Y =

⋂{Xr : r < ω} has a nonempty
subset I with no largest element, then I would do, for it would be indiscernible
by (3r), and SSy(M) ⊆ SSy(Scl(I)) by (5r). There is a problem since it might
be that Y = ∅. However, the recursive saturation of M allows us to get around
this problem.

Let y0 < y1 < y2 < · · · be an increasing sequence from M so that the type of
〈y0, y1, . . . , yr−1〉 is the same as the type of the r-tuple of the first r elements of
Xr. The recursive saturation of M allows us to obtain yr having already chosen
y0, y1, . . . , yr−1. Now I = {y0, y1, y2, . . .} is an indiscernible set which will do
the job.
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We now construct the sequence X = X0 ⊇ X1 ⊇ X2 ⊇ · · · so that each Xr

satisfies (1r)–(5r). For starters, let X0 = X. Now suppose we have Xr. For a
preliminary move, we get Z ⊆ Xr such that:

(1′) (M,Z) is recursively saturated;
(2′) Z �= ∅ and Z has no largest element;
(3′) Z is r-indiscernible;
(4′) Z is (r + 1)-free;
(5′) if i < ω, then

(a) Gi,r([Z]r+1) = {1} iff i ∈ Sr;
(b) Gi,r([Z]r+1) = {0} iff i �∈ Sr.

It suffices to get Z ⊆ Xr satisfying just (2′),(4′), and (5′), condition (3′) being
inherited from Xr, for then by the chronic resplendence of (M,Xr), we will be
able to get such a Z also satisfying (1′).

The method for constructing Z is very similar to the method used for con-
structing X. We get an increasing sequence c0 < c1 < c2 < · · · of elements in Xr.
We want the sequence to be such that Z is (r+ 1)-free, and such that whenever
i0 < i1 < i2 < · · · < ir < ω, then

Gi,r(ci0 , ci1 , . . . , cir−1 , cir ) = 1⇐⇒ i ∈ Sr .

Since Xr is r-free, an inductive construction of this sequence is straightforward
and not dependent on recursive saturation.

Now we have Z satisfying (1′)–(5′) and have arrived at the final step of the
proof, which is to get Xr+1 ⊆ Z satisfying (1r+1)–(5r+1). Condition (5r+1) is
not a problem as this will be inherited from (5′), and (1r+1) can be handled by
the chronic resplendence of (M,Z) as has been done twice before.

We are almost ready to apply the AH/NR Theorem. Let L be the relational
language that comprises the binary relation symbol < and the (n+1)-ary relation
symbols Rin for i < ω and r + 1 ≤ n < ω. If s < ω, let Ls = {<} ∪ {Rin : i ≤
s and r + 1 ≤ n ≤ s}. Let B = (Z,<, . . .) be the L-structure such that if
z0, z1, . . . , zn ∈ Z, then B |= Rij(z0, z1, . . . , zn) iff z0 < z1 < · · · < zn and
Gi,n(z0, z1, . . . , zn) = 1.

Because Z is (r + 1)-free, there is a sequence w0 < w1 < w2 < · · · such that
if W = {w0, w1, w2, . . .}, then W is also (r + 1)-free and B|W is recursive. To
be more precise, let C = (ω,<, . . .) ∼= B|W , and then C is recursive. For each
s < ω, let Cs = (C|s)�Ls. Then, the sequence 〈Cs : s < ω〉 is a recursive sequence.

By the AH/NR Theorem, for each s < ω there is an Ls-structure Bs =
(Bs, <, . . .) such that Cs

∼= Bs ⊆ B�Ls, with the additional property that for
each i ≤ s, Bs is (r+1)-indiscernible for the first s (r+1)-ary formulas in some
fixed recursive enumeration of these formulas. Observe that, if s < t < ω and
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Bt = {d0, d1, . . . dt−1}, where d0 < d1 < · · · < dt−1, then

Bs
∼= (Bt|{d0, d1, . . . , ds−1})�Ls.

By the recursiveness of the sequence 〈Cs : s < ω〉 and the resplendence of (M,Z)
there is a sequence d0 < d1 < d2 < · · · from Z such that (and now we can let
Xr+1 = {d0, d1, d2, . . .}) Xr+1 is (r + 1)-indiscernible and for each s < ω,

Bs
∼= (B|{d0, d1, . . . , ds−1})�Ls.

Thus, (2r+1)–(5r+1) hold. Finally, by the chronic resplendence of (M,Z) we
can arrange that (1r+1) also holds.

Recall how I is obtained from the sequence X0 ⊇ X1 ⊇ X2 ⊇ · · · and that
N = Scl(I) is recursively saturated. We see that SSy(N) = SSy(M). Consider
an arbitrary Sr ∈ SSy(M), and then let 〈i0, i1, i2, . . . , ir〉 ∈ [I]r+1. Then, for any
i < ω, i ∈ Sr iff Gi,r+1(i0, i1, . . . , ir) = 1, so Sr ∈ SSy(N). �

Once it has been determined that every countable, recursively saturated
model of PA∗ is generated by a set of indiscernibles, one can ask about the
order types of these sets. Clearly, such generating sets are nonempty, countable
and have no last element. The proof of the previous theorem shows that nothing
else is needed.

Corollary 5.5.2 Let η be the order type of a countable, nonempty linearly set
having no last element. Then every countable, recursively saturated model M |=
PA∗ is generated by a set of indiscernibles with order type η.

Proof Let I be the set of indiscernibles constructed in the proof of The-
orem 5.5.1. Consider a model N generated by a set J of indiscernibles of order
type η, where increasing tuples from J and I realize the same types. Then N
is recursively saturated (Do it!) and SSy(N) = SSy(M) (Do it!). Therefore,
N ∼= M . �

5.6 Exercises

♣5.6.1 Define left-orderable and prove: a group is left-orderable iff it is right-
orderable.

♦5.6.2 (Improving Theorem 5.4.3.) Let G be a right-orderable group, and let
T ⊇ PA∗ be a completion. Let M be a simple (nonstandard) extension of the
prime model of T . Then there is N �cof M such that Aut(N) ∼= G.

♦5.6.3 Suppose T �= TA is a completion of PA. If n+ 1 ≤ k ≤ 2n, then there is
M |= T such that Lt(M) ∼= Bn and M has exactly k nonisomorphic elementary
substructures.

The next two problems concern Theorem 5.4.3.
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♣5.6.4 Show that the extension N constructed in the proof does not fill the
standard cut of M .

♦5.6.5 The conclusion can be improved so that N is a cofinal b-end extension
of M , where b ∈M is arbitrary but given in advance.

♦5.6.6 Let M be a countable, recursively saturated model, and let G =
Aut(A,<, . . .), where A is countable. Then M has an inductive satisfaction class
S such that Aut(M,S) ∼= G.

♠5.6.7 Does every (or even some recursively saturated) nonstandard countable
model M have a rigid cofinal extension?

5.7 Remarks & References

The Ehrenfeucht–Mostowski paper mentioned in the first sentence of this chapter
is [29].

The AH/NR Theorem was proved, independently by Nešetřil & Rödl [137]
and by Abramson & Harrington [1]. In the latter paper, this theorem was proved
just so it could be applied to models of Peano Arithmetic. Theorems 5.2.2, 5.3.4,
and 5.2.3 are from [1]. Theorem 5.3.5 is a slight improvement of a theorem from
[1] with a possibly slightly simpler proof. Theorems 5.3.4 answered questions
raised by Julia Knight [87] who had proved in that paper that H(TA) ≤ �ω

and in [86] that each completion T of PA has a type Φ(x) for which h(Φ(x)) =
ℵ2. Michael Morley’s classic Theorem 5.3.1, originally proved in [134], was the
first application of the Erdős–Rado Theorem in model theory. The Erdős–Rado
Theorem and the Erdős–Rado–Hajnal Theorem were first proved in [38] and [37]
respectively.

For any ordinal α, the Erdős cardinal κ(α) is the least cardinal κ such that
κ −→ (α)<ω

2 . Theorem 5.2.3 concerns κ(ω). A good source of information on
Erdős cardinals is the book [64].

The material in Section 5.4 on automorphism groups is based on Schmerl
[174]. Theorem 5.4.3 is apparently new, not having appeared in [174]. There
has been much written about right-orderable groups. The book [89] by Kopytov
and Medvedev is a comprehensive account of the subject. Lemma 5.4.2 is due
independently to P. M. Cohn [23] and P. Conrad [24].

The proof of Theorem 5.5.1 is from Schmerl [166] with only minor changes.
Exercise 5.6.3 is from Schmerl [177].




GENERICS AND FORCING

Forcing is a standard technique in set theory. It can be used advantageously in
the construction of models of Peano Arithmetic. This chapter is devoted to doing
exactly that.

In this chapter it is sometimes convenient, although generally not necessary,
to have the language L of PA∗ be finite. Consequently, throughout this chapter,
the underlying assumption is that PA∗ is in a finite language L.

6.1 Generics

If M is a model of PA∗, then a notion of forcing for M is a nonempty partially
ordered set P = (P,�) that is definable inM . The order relation has been written
with the symbol �, emphasizing that it is reflexive (i.e. x � x for all x ∈ P ). It
will be our convention that for a notion of forcing, the order relation is reflexive.
It is convenient to identify P with its underlying set P , so we will often do that.
There is often some ambiguity about how to interpret the ordering in a notion
of forcing. For us, if p� q, then q is an extension of p, so that q contains more
information than p does. Elements of P are often referred to as conditions.

An example of a notion of forcing is the full binary tree as defined in M .
This is the partially ordered set B = (M,�) of all (codes of) finite sequences of
0’s and 1’s, as defined in M , where p � q if p is an initial segment of q. (Here
we are assuming that every element of M codes a unique such sequence.) The
empty sequence, which we always assume to be coded by 0, is the unique minimal
condition in B. A notion of forcing P = (P,�) is a binary tree if P ⊆ B such that
p ∈ P whenever p � q ∈ P. Every binary tree P has a unique minimal condition
(namely 0), and each of its conditions has at most two immediate successors. If
a condition p ∈ P has two immediate successors, namely p̂ 0 and p̂ 1, then we
say that p splits in P.

Some definitions concerning a notion of forcing P will be needed. For those
already familiar with forcing, these are just the usual basic definitions. We will
omit many proofs since in most cases they are just repetitions of well-known
arguments from set theory. The reader is encouraged to fill in the details.

For a condition p, a subset D ⊆ P is dense above p if for each q � p there
is r � q such that r ∈ D. The subset D ⊆ P is dense if it is dense above every
p ∈ P, and it is open if there is a condition p such that {q ∈ P : p � q} ⊆ D.
Conditions p, q ∈ P are compatible if there is a condition that extends both p
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and q and are incompatible otherwise. A subset F ⊆ P is a filter if (1) for
any two conditions p, q ∈ F there is r ∈ F such that p, q � r and (2) whenever
p�q ∈ F , then p ∈ F . A filter G ⊆ P is generic relative to P if G has a nonempty
intersection with every definable, dense subset of P. For each p ∈ P, the set
{q ∈ P : p � q or q is incompatible with p} is a definable, dense set, thereby
showing that every generic filter is a maximal filter. If P is a binary tree, then
the maximal filters are also known as branches. Generic filters will often be
referred to simply as generics. Generics relative to the full binary tree B are
Cohen generics. A subset D ⊆ P is open if whenever q � p ∈ D, then q ∈ D.
A filter is generic iff it has a nonempty intersection with every definable dense
open set (Do it!).

Lemma 6.1.1 IfM is countable and P is a notion of forcing, then each condition
is in some generic filter. �

It is generally desirable for generics not to be definable. In countable models,
this is guaranteed if the notion of forcing is perfect, where P is defined to be
perfect if each condition in P has two incompatible extensions. The full binary
tree B is an obvious example of a perfect notion of forcing.

Lemma 6.1.2 If M is countable and P is a perfect notion of forcing, then:

(1) each condition is in 2ℵ0 generics;
(2) no generic is definable. �

Conversely, if a notion of forcing for a countable model has no definable
generics, then it is perfect (Do it!). There is also a converse of (1) of the
previous lemma: if a notion of forcing for a countable model is not perfect, then
some condition is in exactly one (necessarily definable) generic (Do it!).

Arbitrary notions of forcing are in some sense no better than just binary trees.
The following sequence of three exercises is intended to make this a little more
precise. A notion of forcing P is a tree if, for any p ∈ P, the set {q ∈ P : q � p}
of the predecessors of p is linearly ordered by �. A notion of forcing is ranked if
(in M) there is a bound on the length of the linearly ordered subsets of the set
of predecessors of any element p ∈ P. The least of these bounds can be thought
of as the rank of p. Every binary tree is a ranked tree.

Exercise 6.1.3 Suppose P and Q are notions of forcing for M and f : P −→ Q
is a definable embedding (i.e. if p1, p2 ∈ P, then p1 � p2 iff f(p1)� f(p2)) onto a
dense subset of Q. Suppose Y is a filter of Q. Then, Y is a generic relative to Q
iff f−1(Y ) is a generic relative to P. �

Exercise 6.1.4 For every P there is a dense Q ⊆ P which is a ranked tree. �

Exercise 6.1.5 If Q is a ranked tree, then there is a binary tree P and a definable
embedding f : P −→ Q onto a dense subset. �
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Lemma 6.1.6 Let P be a notion of forcing for M , and let X be generic relative
to P. Suppose that (M,P, X) ≺ (N,Q, Y ). Then, Q is a notion of forcing for N ,
and Y is generic relative to Q. �

Exercise 6.1.7 If P is a notion of forcing for a model M of countable cofinality,
then each condition is in a generic. If, moreover, P is perfect, then each condition
is in an undefinable generic. (Hint: use Lemmas 6.1.1 and 6.1.2.)

6.2 Forcing

There are models (e.g. rather classless models) having no undefinable inductive
subsets. On the other hand, all resplendent models have undefinable inductive
subsets (Do it!). The same is true of all countable models, but we do not know
a proof of this fact that does not involve some version of forcing. In fact, every
generic filter is inductive; thus, from the results of the previous section, we are
able to get many undefinable, inductive subsets of a countable model of PA.
The main ingredient in the proof that generics are inductive is forcing, which
is the subject of this section. In this section we will develop this technique for
constructing undefinable inductive sets.

6.2.1 Definition

We begin by defining the forcing relation �. For a model M , the forcing lan-
guage LF (M) is L(M) augmented with a unary predicate symbol U . It is quite
convenient to assume that the only logical symbols are ∨, ∃, and ¬. The other
logical symbols will be considered as operations on formulas: for example, we let

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)

and

∀vϕ(v) = ¬∃v¬ϕ(v) .

Fix a notion of forcing (P,�) for M . We define a relation p � σ (to be read:
p forces σ), where p ∈ P and σ is a sentence of LF (M), by induction on the
complexity of σ.

Definition 6.2.1 Suppose σ is an LF (M)-sentence and p a condition. Then:

(1) if σ is an atomic L(M)-sentence, then p � σ iff M |= σ;
(2) if σ = U(c) and c ∈M , then p � σ iff c � p;
(3) if σ = σ1 ∨ σ2, then p � σ iff p � σ1 or p � σ2;
(4) if σ = ∃vψ(v), then p � σ iff p � ψ(c) for some c ∈M ;
(5) if σ = ¬σ1, then p � σ iff for no q extending p does q � σ1.
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We say that p decides σ if either p � σ or p � ¬σ.
The forcing relation for conjunction and universal quantification is defined

by double negation:

p � σ1 ∧ σ2 iff p � ¬(¬σ1 ∨ ¬ϕ2);

p � ∀vψ(v) iff p � ¬∃v¬ψ(v).

The following proposition contains some, but not all, of the basic properties of
forcing. It can be proved by induction on the complexity of σ (Do it!).

Proposition 6.2.2 Let P be a notion of forcing for M . For all conditions p and
LF (M)-sentences σ, the following hold:

(1) If p � σ and p � q, then q � σ.
(2) If p � σ, then p �� ¬σ.
(3) There is q � p such that q decides σ. �

Proposition 6.2.3 For every n ≥ 1, there is a Σn formula Forcn(x, y) in the
language L∪ {P,�} such that whenever M |= PA∗(L), P = (P,�) is a notion of
forcing for M , and σ is a Σn sentence in LF (M), then p � σ iff (M,P,�) |=
Forcn(p, σ). �

What the previous proposition is saying is that there is a Σn formula which
uniformly defines forcing of Σn sentences. There is an analogous Πn formula
which uniformly defines forcing of Πn sentences. This proposition really requires
that the language L is finite. If L is infinite, then this proposition has a natural
local version.

6.2.2 n-Generics

In this subsection we pay closer attention to the complexity of the forced
sentences.

Definition 6.2.4 If n < ω, then X ⊆ P is n-generic if X is a filter and every
LF (M)-sentence that is Σn is decided by some p ∈ X.

The 0-generics are precisely the maximal filters (Do it!). Consequently, we
will usually tacitly assume that n ≥ 1 when referring to n-generics.

Lemma 6.2.5 For each n < ω and p ∈ P, there is a definable n-generic X ⊆ P
such that p ∈ X. In fact, there is such an X which is ∆n+1 definable in (M,P),
and if P is a binary tree, then there is one which is ∆n in (M,P). �

Lemma 6.2.6 (Truth = Forcing) Suppose that X ⊆ P is n-generic and
that σ is a Σn LF (M)-sentence. Then (M,X) |= σ iff there is p ∈ X such that
p � σ. �
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If X is a generic, then we write X � σ to mean either (M,X) |= σ or,
equivalently, that there is p ∈ X such that p � σ. The next proposition connects
generics and forcing.

Proposition 6.2.7 Let P be a notion of forcing for M , and let X ⊆ P. Then X
is generic iff X is n-generic for every n < ω. �

Corollary 6.2.8 Let P be a notion of forcing for M and let X be generic relative
to P. Suppose that (M,P) ≺ (N,Q), Y is generic relative to Q and X = M ∩ Y .
Then (M,X) ≺ (N,Y ).

Proof Consider an LF (M)-sentence σ that is Σn, and suppose that M |= σ. By
Theorem 6.2.6, there is p ∈ X such that p � σ. Then, from Proposition 6.2.3,
p � σ =⇒ (M,P,�) |= Forcn(p, σ) =⇒ (N,Q,�) |= Forcn(p, σ), and then by
Theorem 6.2.6 again, N |= σ. �

Corollary 6.2.9 Suppose that σ is an LF (M)-sentence and X is a generic
such that (M,X) |= σ. Then there is a definable maximal filter D ⊆ P such that
(M,D) |= σ.

Proof Suppose σ is Σn and let p ∈ X force σ. Then by Lemma 6.2.5 there is a
definable n-generic containing p. Then (M,D) |= σ by Lemma 6.2.6. �

Theorem 6.2.10 Every generic is inductive.

Proof Suppose that X is generic but not inductive. Then there is an LF (M)-
sentence σ that is an instance of the induction scheme such that (M,X) |= ¬σ.
Then, by Corollary 6.2.9 there is definable D ⊆ P such that (M,D) |= ¬σ. But
this contradicts the fact that every definable set is inductive. �

6.2.3 Prime expansions

A countable model may be large in the sense that there are many nondefinable
elements. However, it is always possible to adjoin a Cohen generic to create a
prime model, as shown in the next theorem of Simpson.

Theorem 6.2.11 Every countable model M |= PA has an inductive subset X
such that (M,X) is a prime model. �

Proof Let M be a countable model of PA. We will construct a subset X ⊆ M
which is a Cohen generic. Let a0, a1, . . . enumerate M , and let σ0, σ1, . . . be a
list of all LF (M)-sentences, but being careful so that each σi involves only the
constants a0, . . . , ai−1.

We will inductively define a sequence p0 � p1 � p2 � · · · of conditions. Let
p0 be the empty condition, let p2n+1 be the extension of p2n by appending a 1
followed by an 0’s and then another 1, and then let p2n+2 be the first (in M)
condition that extends p2n+1 and decides σn.
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Let X = {p ∈ P : p � pn for some n < ω}. Then X is generic, so it is
inductive. Clearly, an is definable from p2n+2 in M . By induction on i one can
show that each pi is definable in (M,X). �

In the previous theorem, the class X was carefully constructed. For arbitrary
M , not just any nondefinable class X will do. However, by contrast, The-
orem 2.2.13 shows that there are many models M for which any nondefinable
class X does yield a prime (M,X). See Exercise 6.6.9 for an exercise that goes
in the opposite direction.

6.2.4 The Low Basis Theorem

The Low Basis Theorem is useful in conjunction with the Completeness Theorem,
and the same for its formalized version and the Arithmetized Completeness The-
orem. In this subsection, 1-generics are used to prove the Low Basis Theorem.
But first, a few background remarks.

König’s Lemma states that every infinite binary tree has an infinite branch.
The Completenss Theorem can be viewed, in part, as a consequence of this. A
refinement of König’s Lemma is that every infinite recursive binary tree has a
branch recursive in 0′ or, equivalently, a ∆2 branch. The Low Basis Theorem
has a further refinement: every infinite recursive binary tree has an infinite low
branch B (where B is low iff B′ ≤T 0′). These refinements yield correspond-
ing refinements to the Completeness Theorem. All these theorems have their
formalized counterparts, the Completeness Theorem’s being the Arithmetized
Completeness Theorem and the Low Basis Theorem’s being Theorem 6.2.14.

Borrowing some terms from Computability (né Recursion) Theory, we say
that a class X ⊆M is low in M if whenever Y ⊆M is ∆2 in (M,X), then it is
∆2 in M .

We say that X is generalized low in M if whenever Y is ∆2 in (M,X), then
there is a set K ⊆M which is Σ1 in M such that Y is ∆1 in (M,X,K). Utilizing
complete Σ1 sets, this definition can be simplified. If K is the complete Σ1 set
of M , then X is generalized low iff whenever Y is ∆2 in (M,X), then Y is ∆1 in
(M,X,K) (refer to Exercise 1.11.5 and (Do it!)). Neither of these definitions
would be different if we only required Y to be Σ1 in (M,X) (Do it!). Every low
set is generalized low; in fact:

Exercise 6.2.12 If X ⊆M , then X is low in M iff X is generalized low and ∆2
in M .

Lemma 6.2.13 Let P be a notion of forcing for a model M . Every 1-generic
relative to P is generalized low in (M,P).

Proof Let G be 1-generic. To prove that G is generalized low, we need to con-
sider an arbitrary Y that is ∆2 in (M,P, G), but we need only consider one such
Y , namely the complete Σ1 subset (M,P, G). Let K be the Σ1 complete subset
in (M,P). Both Y and K are sets of Σ1 sentences in which constants denoting
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elements of M are allowed. Consider any such sentence σ in the language of
(M,P, G). Then σ ∈ Y iff there is p ∈ G such that p � σ. Thus, σ ∈ Y iff
[∃p ∈ G(p � σ)] ∈ K. Following Proposition 6.2.3, this yields that Y is Σ1 in
(M,P, G,K). �

Theorem 6.2.14 (Low Basis Theorem) Let P be a definable unbounded bin-
ary tree in a model M . Then P has an unbounded branch B which is low in
(M,P).

Proof By Exercise 6.2.12 and Lemma 6.2.13, it suffices to let B be an unboun-
ded ∆2 1-generic branch. That is exactly the kind of B we will construct. Notice
that not just any old ∆2 1-generic branch will do: the tree P may have (and, in
interesting cases, does have) a maximal element a, and then {p ∈ P : p � a} is
bounded and 1-generic (in fact, it is generic) and is ∆2 (in fact, it is ∆0).

We work in the model (M,P,K), where K is the Σ1 complete set of (M,P).
Note that a subset X ⊆M is ∆2 in (M,P) iff it is ∆1 in (M,P,K). Let 〈σi : i ∈
M〉 be some standard enumeration of all Σ1 sentences in the forcing language
LF (M,P).

Working in (M,P,K), we define an increasing ∆1 sequence 〈pi : i ∈ M〉
of conditions as follows. Let p0 = 0. Having pi, with {q ∈ P : pi � q} being
unbounded, consider the set F = {q ∈ P : pi � q � σi}. Clearly, F is unbounded
iff the sentence

∀x∃y[y > x ∧ y ∈ F ]

holds, but also iff the sentence

∃x∀y[y � x −→ y ∈ F ]

holds. If F is unbounded, let pi+1 be the first member of F for which {q ∈ P :
q � pi+1} ⊆ F ; if F is bounded, let pi+1 be the first member of P for which
pi+1 � pi and {q ∈ P : pi+1 � q} are unbounded. This sequence determines a
branch B = {x ∈ P : x � pi for some i ∈ M}, which is unbounded and is ∆2 in
(M,P) since it is ∆1 in (M,P,K).

To complete the proof, we need to see that B is 1-generic. Clearly, either
pi+1 � σi or there is some j > i for which pj � ¬σi. �

The branch constructed in the previous proof was 1-generic. It is too much
to expect to be able to get an unbounded 2-generic, because: An unbounded
definable binary tree P has an unbounded 2-generic branch iff the set of maximal
conditions is not dense.

The Low Basis Theorem implies a correpsonding improvement to the Arith-
metized Completeness Theorem in which the ∆2 in that theorem is replaced
by low. This improved theorem is called the Low Arithmetized Completeness
Theorem.
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6.3 Product forcing

This section discusses product forcing, our main uses of which appear in the
next section on how the MacDowell–Specker Theorem reacts to an uncountable
language.

Definition 6.3.1 Let P1 = (P1,�1) and P2 = (P2,�2) be two notions of forcing
for a model M . Define their product P1×P2 to be (P1×P2,�), where (p1, p2)�

(q1, q2) iff both p1 � q1 and p2 � q2.

There are some routine facts about products which should be checked. If P1
and P2 are notions of forcing, then their product P1 × P2 is also a notion of
forcing. The two notions of forcing P1 × P2 and P2 × P1 are isomorphic in the
obvious sense. If F1 ⊆ P1 and F2 ⊆ P2, then F1 × F2 is a filter of P1 × P2 iff
F1, F2 are filters of P1,P2 respectively (Do it!). If G = G1 × G2 is a generic
relative to P1 × P2, then G1 and G2 are generics. But more is true.

Lemma 6.3.2 (The Product Lemma) Suppose P1 and P2 are notions of
forcing for M and G ⊆ P1 × P2. Then G is a generic iff there are generics G1
and G2, relative to P1 and P2 respectively, such that G = G1 ×G2. �

Lemma 6.3.3 If G1 × G2 is generic relative to P1 × P2, then Def(M) =
Def(M,G1) ∩Def(M,G2).

Proof Suppose D ∈ Def(M,G1)∩Def(M,G2), and let ϕ1(G1, v) and ϕ2(G2, v)
be defining formulas in (M,G1) and (M,G2), respectively. Then there is a condi-
tion (p1, p2) ∈ G1×G2 such that (p1, p2) � ϕ1(G1, v)↔ ϕ2(G2, v). Since forcing
is definable (Proposition 6.2.3), it suffices to show that d ∈ D iff, for i = 1, 2, the
set {qi ∈ Pi : pi � qi � ϕi(Gi, d)} is dense above pi. The one direction is obvious
(Do it!), so assume that there is d ∈ D and, without loss of generality, a con-
dition q1 � p1 such that q1 � ¬ϕ1(G1, d). Then let q2 � p2 be such that q2 ∈ G2
and q2 � ϕ2(G2, d). But then (p1, p2) � (q1, q2) � ¬ϕ1(G1, d)∧ ϕ2(G2, d), which
is a contradiction. �

This theorem can be used to show that Cohen generics are not minimal with
respect to definability (Corollary 6.3.4). This will contrast them with perfect
generics which are discussed in the next section.

Consider the full binary tree B. Then B×B is not much different from B since
there is a definable embedding f : B −→ B2 onto a dense subset of B × B. (See
Exercise 6.1.3 for the relevance of this.) We will describe one such embedding.

If p ∈ B, then p(e) ∈ B is its even part if 2 · �(p(e)) ≤ �(p) ≤ 2 · �(p(e)) + 1 and
p

(e)
i = p2i for each i < �(p(e)). Similarly, p(o) is the odd part, where 2 · �(p(o)) ≤

�(p) + 1 ≤ 2 · �(p(o)) + 1 and p
(o)
i = p2i+1 for each i < �(p(o)). For example, if

p = 〈0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0〉, then p(e) = 〈0, 1, 1, 0, 1, 0〉 and p(o) = 〈0, 0, 1, 1, 1〉.
Then, let f be such that f(p) = 〈p(e), p(o)〉. This f is a definable embedding onto
a dense subset (Do it!).
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If X is a Cohen generic, then let its even part be X(e) = {p(e) : p ∈ X},
and its odd part be X(o) = {p(o) : p ∈ X}. Clearly, X ∈ Def(M,X(e), X(o)) and
X(e), X(o) ∈ Def(M,X) (Do it!).

Corollary 6.3.4 Let X be a Cohen generic in M . Then there are Y,Z ∈
Def(M,X) such that Y,Z are Cohen generic and Def(M) = Def(M,Y ) ∩
Def(M,Z).

Proof You probably have already figured out to let Y = X(o) and Z = X(e).
Then, since f is a definable embedding of B onto a dense subset of B2, the set
{〈p1, p2〉 ∈ B2 : 〈p1, p2〉 � f(p) for some p ∈ X} is a generic relative to B2. But
this set is just Y × Z, so by the Product Lemma, both Y and Z are Cohen
generics. Lemma 6.3.3 implies that Def(M) = Def(M,Y ) ∩Def(M,Z). �

Given three notions of forcing P1,P2,P3 we can form their products (P1×P2)×
P3 and P1×(P2×P3), which are canonically isomorphic, so we can unambiguously
write P1×P2×P3. More generally, we can form P1×P2×· · ·×Pn. It is intended
here that n is a standard integer. However, this makes good sense even if n is a
nonstandard element in M as long as the sequence 〈P1,P2, . . . ,Pn〉 is definable
in M . If all of the factors Pi are identical, say Pi = P for each i, then we will
write Pn instead of P1 × P2 × · · · × Pn. The Product Lemma 6.3.2 easily implies
its own generalization to cover n-fold products.

Definition 6.3.5 If P is a notion of forcing and G is a set of generics, then we
say that G is a set of mutual generics if whenever G1, G2, . . . , Gn are finitely
many distinct generics in G, then G1 ×G2 × · · · ×Gn is a generic relative to Pn.

Equivalently, G is a set of mutual generics if whenever G0, G1, . . . , Gn are
finitely many distinct generics in G, then Gn is a generic relative to P in
(M,G0, G1, . . . , Gn−1) (Do it!). For perfect notions of forcing, there can be
large sets of mutual generics as we will see in Theorem 6.3.7. First, the case of
countable models.

Lemma 6.3.6 If M is countable and P is a perfect notion of forcing, then there
is a set G of 2ℵ0 mutual generics. �

Proof For n < ω, let Sn = {0, 1}n be the set of all sequences of 0’s and 1’s
having length n, and then let Pn = PSn+1 (which is the set of all funtcions
p : Sn+1 −→ P ordered pointwise: p � q iff p(s) � q(s) for each s ∈ Sn+1).
Let D0, D1, D2, . . . be a list of definable subsets of M , where each Dn is a dense
open subset of Pn, and the following holds: whenever 1 ≤ k < ω and D ⊆ Pk is
a dense open subset, then there are arbitrarily large n < ω such that whenever
e : k −→ Sn+1 is one-to-one, then Dn ⊆ {p ∈ Pn : 〈pe(0), pe(1), . . . , pe(k−1)〉 ∈ D}.

Inductively on n < ω, we obtain ps ∈ P for each s ∈ Sn. For n = 0, let p∅ ∈ P
be arbitrary. Now suppose we have ps for each s ∈ Sn. Let q = 〈qt : t ∈ Sn+1〉 ∈
Pn be such that qsˆ0 and qsˆ1 are incompatible extensions of ps for each s ∈ Sn.
Then, since Dn is dense, we can get 〈pt : t ∈ Sn+1〉 ∈ Dn extending q. For each
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s ∈ {0, 1}ω, let Gs = {p ∈ P : p � ps|n for some n < ω}. Then distinct s’s yield
distinct Gs’s. For, if s �= t, then let n < ω be the least for which sn �= tn. Then
ps|n ∈ Gs and pt|n ∈ Gt are incompatible. Thus, the set G, consisting of all the
Gs’s, has cardinality 2ℵ0 . It is clear that each Gs is generic with respect to P. In
fact G is a set of mutual generics (Do it!). �

Theorem 6.3.7 Suppose M has countable cofinality and that |M | = κ. If P is a
perfect notion of forcing, then there is a set G of mutual generics such that each
condition p ∈ P is in κℵ0 of these generics.

Proof The proof will be like the proof of the previous lemma, but more of the
work will be done inside the model. Since P is perfect, it can be proved using
formal induction in M that for each a ∈ M and each condition p there is a set
of a pairwise incompatible conditions extending p.

Since M has countable cofinality, we can let b0 < b1 < b2 < · · · be a cofinal
sequence. Inductively, we will define another cofinal sequence a0 < a1 < a2 < · · ·
and definable bounded subsets A0 ⊆ A1 ⊆ · · · . For each n < ω, we will let
An = {p ∈ P : p ≤ an}. First, choose a0 > b0 large enough so that A0 �= ∅.
Having an and also An, let an+1 > bn+1 large enough so that for each p ∈ An,
there is a definable set of Q ⊆ An+1 of pairwise incompatible extensions of p
such that M |= |Q| ≥ bn.

Let Sn = {s ∈ A0×A1× · · · ×An : s0 � s1 � · · · � sn}, and then let Pn = PSn .
Each of An, Sn, and Pn is definable in M .

Let D0, D1, D2, . . . be much like the sequence in the proof of the previous
lemma; specifically, each Dn is a dense open subset of Pn+1, and the following
holds: whenever 1 ≤ k < ω and D ⊆ Pak is a dense open subset, then there
are arbitrarily large n < ω such that whenever e : ak −→ Sn+1 is a definable
bijection, then Dn ⊆ {p ∈ Pak

: 〈pe(i) : i < ak〉 ∈ D}.
Inductively on n < ω, we obtain pn = 〈pn,s : s ∈ Sn〉 ∈ Pn. For n = 0, choose

p0 ∈ P0 arbitrarily. Now suppose we have pn = 〈ps : s ∈ Sn〉 ∈ Pn.
Let q = 〈qt : t ∈ Sn+1〉 ∈ Pn+1 be such that whenever s, t ∈ Sn+1 are distinct

r = s�n = t�n, then qs and qt are incompatible extensions of pn,r. Then, since
Dn is a dense subset of Pn+1, we can get pn+1 = 〈pn+1,t : t ∈ Sn+1〉 ∈ Dn

extending q.
Let I = {s ∈ Pω : s�n ∈ Sn for each n < ω}, and for each s ∈ I, let

Gs = {p ∈ P : p � ps�nfor some n < ω}. As in the previous lemma, distinct s’s
yield distinct Gs’s, and the set G of all the Gs’s is mutually generic.

It remains to check the cardinality of |G| = |I|. Let κn = |{x ∈M : x ≤ bn}|.
Then, κ =

⋃
n<ω κn. Therefore, |I| ≥

∏
n<ω κn = κℵ0 . �

6.4 MacDowell–Specker vs the uncountable

The proof of the MacDowell–Specker Theorem proceeds by a double induction.
One is an induction on parameters, which is done internally, allowing the proof to
work for uncountable models. The other takes place in the real world and seems
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to require the countability of the language. Thus, the proof of the MacDowell–
Specker Theorem works well for models of PA∗(L) when L is countable but is
dubious for uncountable L. The goal of this section is to investigate what the situ-
ation is when the MacDowell–Specker Theorem meets an uncountable language.
In the first subsection, the theorem of Mills puts a damper on the possibil-
ity of completely generalizing the MacDowell–Specker Theorem to uncountable
languages. In the second section, Theorem 6.4.3 shows that all is not lost and
that in certain cases MacDowell–Specker can overcome the uncountability of
the language and produce elementary end extensions. In the third subsection,
Theorem 6.4.3 is applied to construct models having many classes.

6.4.1 No end extension

The MacDowell–Specker may fail when the language is uncountable, as the
following theorem shows.

Theorem 6.4.1 Let M be a nonstandard countable model. There are Xα for
α < ω1 such that

(M,Xα)α<ω1 |= PA∗

and (M,Xα)α<ω1 has no elementary end extension.

Proof Let us fix a nonstandard countable model M and a nonstandard element
e ∈M . Let P be the notion of forcing consisting of (codes of) definable functions
p : [0, c] −→ [0, e], for some c ∈ M , ordered by extension of functions. Different
conditions in P may have different domains. For n < ω and c ∈ M , let Pn+1

c be
the subset of Pn+1 consisting of all 〈p0, p1, . . . , pn〉 such that whenever i < j ≤ n
and c < x < �(pi), �(pj), then pi(x) �= pj(x). With these definitions the following
lemma, which is a cousin of Lemma 6.3.6, is the key to proving the theorem.
Notice that the generics which the lemma asserts to exist are not mutual generics,
but they do have a very similar sort of mutual relation. Its proof is so similar to
the proof of Lemma 6.3.6 that we will omit it.

Lemma 6.4.2 There is a set G of 2ℵ0 generics relative to P with the added
property that whenever n < ω and G0, G1, G2, . . . , Gn ∈ G are distinct, then
there is c ∈M such that G0 ×G1 × · · · ×Gn is generic relative to Pn+1

c . �

It is worth noting that if we had chosen e to be standard, then for n > e, there
would no condition 〈p0, p1, . . . , pn〉 ∈ Pn+1

c such that �(p0), �(p1), . . . , �(pn) ≥
c+ 2, and then the lemma would no longer be true.

Let G be the set of generics from the lemma above. Then (M,X)X∈G |= PA∗

since, (by the previous lemma) whenever X0, X1, . . . , Xn−1 ∈ G are distinct,
there is c ∈ M such that X0 ×X1 × · · · ×Xn−1 is generic relative to Pn

c . Now
let Xα, for α < ω1, be distinct generics in G.
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To obtain a contradiction, assume that (M,Xα)α<ω1 ≺end(N,Yα)α<ω1 . Notice
that each Xα determines a function fα : M −→ [0, e]M and each Yα determines
a function gα : N −→ [0, e]N . Clearly, (M,fα)≺end(N, gα) so that fα = gα|M .
Consider some a ∈ N\M . We claim: if α < β < ω1, then gα(a) �= gβ(a). For,
let c ∈M be such that Xα ×Xβ is generic relative to P2

c . Then (M,Xα, Xβ) |=
∀x[x > c → fα(x) �= fβ(x)], and then also (N,Yα, Yβ) |= ∀x[x > c → gα(x) �=
gβ(x)]. So, in particular, gα(c) �= gβ(c).

Therefore, the set Y = {gα(c) : α < ω1} is uncountable, yet Y ⊆ [0, e]N =
[0, e]M ⊆M , which is a contradiction. �

6.4.2 Extensions with mutual generics

The significance of the next theorem, generalizing the MacDowell–Specker The-
orem, becomes apparent with the realization that there may be uncountably
many mutual Cohen generics.

Theorem 6.4.3 Suppose M is a model and G is a set of mutual Cohen generics.
Then the model (M,X)x∈G has a conservative elementary end extension. �

The proof of this theorem makes use of four lemmas (Lemmas 6.4.4–6.4.7)
and will be completed after them.

If the set G in the theorem consists of just one generic, then there is nothing
new here. For, if G is its unique member, then the expansion (M,G) is a model
of PA∗ for a countable language and the MacDowell–Specker Theorem applies.
Despite this, we will first consider the case of one generic, but in a broader
context.

Let P be a notion of forcing for M (which may or may not be the full bin-
ary tree B). If X ⊆ P and C ⊆ M are definable and if p ∈ P, then X is
C-homogeneous above p if X is dense above p and whenever p � q, q′ ∈ X, then
q ∈ C ⇐⇒ q′ ∈ C. Informally, if X is dense above p, then X is C-homogeneous
above p iff either C is a subset of X above p or C is disjoint from X above p. We
say that X is eventually C-homogeneous if there is a dense set of condtions p ∈ P
for which X is C-homogeneous above p. If X is eventually C-homogeneous, then
it is dense (Do it!). A sequence of definable sets X0, X1, X2, . . . is complete for
P if P ⊇ X0 ⊇ X1 ⊇ X2 ⊇ · · · and whenever 〈Ci : i ∈M〉 is a definable sequence
of subsets of P that is definable (meaning that {〈i, x〉 : x ∈ Ci} is definable), then
there is some k < ω such that for each i ∈M , Xk is eventually Ci-homogeneous.
Given a generic G relative to P and a complete sequence X0 ⊇ X1 ⊇ · · · , we
define the set ΦG(v) of unary L(M)-formulas so that a formula ϕ(v) is in ΦG(v)
iff G ∩Xm ∩ ϕ(v)M is unbounded for all m < ω.

Lemma 6.4.4 Suppose that G is generic relative to P and X0 ⊇ X1 ⊇ X2 ⊇ · · ·
is complete for P. Then:

(1) ΦG(v) is a complete type over M .
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(2) Let M(c) be a ΦG(v)-extension of M , and let P′ be such that (M,P) ≺
(M(c),P′). Then c � s for every s ∈ G, and if G′ ⊆ M(c) is generic with
respect to P′ such that c ∈ G′, then (M(c), G′) is a conservative extension
of (M,G).

Proof To prove that ΦG(v) is a complete type, it suffices to prove the following:

(a) for any ϕ(v), either ϕ(v) ∈ ΦG(v) or ¬ϕ(v) ∈ ΦG(v).
(b) if ϕ0(v), ϕ1(v) ∈ ΦG(v), then ϕ0(v) ∧ ϕ1(v) ∈ ΦG(v).

For (a), suppose ϕ(v) �∈ ΦG(v). Let ϕ(v) define C, and let k < ω be such that
G∩Xk ∩C is bounded. Then, if m > k, G∩Xm∩C is bounded, so (G∩Xm)\C
is unbounded. Hence ¬ϕ(v) ∈ ΦG(v).

For (b), let C0, C1 be the sets defined by ϕ0(v) and ϕ1(v). Let k < ω
be large enough so that Xk is eventually C0-homogeneous and eventually C1-
homogeneous. Then there is p ∈ G such that whenever p � q ∈ Xk, then p ∈ C0
iff q ∈ C0 and p ∈ C1 iff q ∈ C1. Therefore, if p � q ∈ G, then q ∈ C0 ∩ C1, so
that ϕ0(v) ∧ ϕ1(v) ∈ ΦG(v), proving (b).

We now prove (2). For p ∈ G, let Cp be the set defined by the formula v � p.
It is clear that each Xm ∩ Cp is dense above p, so that G ∩Xm ∩ Cp �= ∅. Since
this is so for all p ∈ G, we that G ∩Xm ∩ Cp is unbounded. Therefore, v � p is
in ΦG(v), so that c � p.

Next, consider an LF (M)-formula ϕ(x, v) intending to show that if D ⊆M(c)
is defined by ϕ(c, v) in (M(c), G′), then D ∩M ∈ Def(M,G). Even though the
formula ϕ(x, v) is an LF (M)-formula, we can assume, without loss, that U does
not occur in it. For every q, i ∈ M , there is p ∈ G which decides ϕ(q, i), so, in
M(c), c decides all ϕ(q, i) for q, i ∈M . Since forcing is definable, there is d such
that c � d ∈ G′ which forces all the sentences “c decides ϕ(q, i).” But d = g(c)
for some M -definable function g : M(c) −→ M(c). Thus, instead of ϕ(x, v) we
use the formula q(x) � ϕ(x, v) in which U does not occur.

Thus, let ϕ(x, v) be an L(M)-formula. Let Ci ⊆M be defined by ϕ(x, i). Let
k < ω be such that Xk is eventually Ci-homogenous for each i. Then i ∈ D iff
G ∩Xk ∩ Ci is unbounded. This gives a definition of D in (M,G). �

Some notation concerning B is needed. The lexicographical relation <lex is
defined on B by letting s <lex t iff there is n < �(s), �(t) such that s�n = t�n,
s(n) = 0 and t(n) = 1. Notice that B is not linearly ordered by <lex but any set
of pairwise incompatible conditions is. This relation can be extended to Cohen
generics by letting G0 <lex G1 iff there are s ∈ G0 and t ∈ G1 such that s <lex t.
Then <lex linearly orders the set of Cohen generics (Do it!).

If X ⊆ B and 1 ≤ n < ω, then let 〈X〉n be the set of 〈s0, s1, . . . , sn−1〉 ∈ Xn

such that �(s0) = �(s1) = · · · = �(sn−1) and s0 <lex s1 <lex · · · <lex sn−1. This
notation routinely extends to nonstandard n ∈ M . With no risk of confusion,
we let 〈B〉n be ordered by � in the natural way: if s, t ∈ 〈B〉n, then s � t iff
si ≤ ti for each i < n. The two notions of forcing, Bn and 〈B〉n, are not a whole
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lot different from each other: if G = G0 ×G1 × · · · ×Gn−1 is generic relative to
Bn and G0 <lex G1 <lex · · · <lex Gn−1, then G ∩ 〈B〉n is generic relative to 〈B〉n.
(There is a converse to this. Exercise: what is it?)

Now for an important definition: a subset X ⊆ B is large if 〈X〉n is a dense
subset of 〈B〉n (or, equivalently, of Bn) whenever 1 ≤ n ∈M .

Lemma 6.4.5 Let M be a model and 1 ≤ n < ω. Let X ⊆ B be a definable
large set, and let 〈Ci : i ∈ M〉 be a definable sequence of subsets of 〈B〉n. Then
there is a definable large Y ⊆ X such that 〈Y 〉n is eventually Ci-homogeneous
for each i. �

The main ingredient the proof of this lemma is the Halpern–Laüchli–Laver–
Pincus Theorem, which is a weaker version of Lemma 6.4.5 for the standard
model. Recall that {0, 1}<ω is just the standard version of B. The following
statement of the HLLP Theorem is not exactly the traditional one, but it can
either be derived from the traditional one or be proved by a straightforward
modification of the “manipulative” proof (as given, for example, in [130]) of the
traditional one.

The HLLP Theorem: Let 1 ≤ n < ω, and let X,C ⊆ {0, 1}<ω be
such that X is large. Then there is a large Y ⊆ X such that 〈Y 〉n is
eventually C-homogeneous.

There are two related observations to be made about this theorem. One is
that the large set Y can be chosen to be recursive in C and X. The second is
that the theorem, even in this stronger form, can be formalized and proved as a
scheme in PA∗. This gives us the variation of the Lemma 6.4.5 in which there is
only one Ci, (i.e. all Ci are the same C) and with the additional feature that Y
is ∆1 in (M,X,C). From this, Lemma 6.4.5 can be derived (an exercise), even
with the strengthened conclusion that Y is ∆1 in (M,X,C).

Using Lemma 6.4.5, we fix a decreasing sequence B = X0 ⊇ X1 ⊇ X2 ⊇ · · ·
of large subsets such that whenever n < ω and 〈Ci : i ∈ M〉 is a definable
sequence of definable subsets of 〈B〉n, then there is some k < ω such that 〈Xk〉n
is eventually Ci-homogeneous for each i. Not only is this sequence complete for
B, but the sequence 〈X0〉n ⊇ 〈X1〉n ⊇ · · · is complete for 〈B〉n. Thus, associated
with each generic F relative to 〈B〉n is a well-defined 1-type ΦF (v) whose nice
properties are stated in Lemma 6.4.4. We will, however, be more interested in a
related n-type than in the 1-type ΦF (v).

Suppose that G = G0 × G1 × · · · × Gn−1 is generic relative to Bn, where
G0 <lex G1 <lex · · · <lex Gn−1. Then F = G ∩ 〈B〉n is generic relative to 〈B〉n.
Let ΨG(v0, v1, . . . , vn−1) be the set of n-ary L(M)-formulas ψ(v0, v1, . . . , vn−1)
such that ψ(〈(v)0, (v)1, . . . , (v)n−1〉) is in ΦF (v). The nice properties of ΦF (v)
from Lemma 6.4.4 are easily transferred to nice properties of ΨG(v̄).

The next lemma follows directlly from Lemma 6.4.4 (Do it!).
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Lemma 6.4.6 Assume 1 ≤ n < ω and G is as described above. Then:

(1) ΨG(v̄) is a complete n-type over M .
(2) Let M(c̄) be a ΨG(v̄)-extension of M , and let P′ be such that (M,P) ≺

(M(c̄),P′). Then c̄ � s̄ for every s̄ ∈ G and if G′ ⊆ M(c̄) is generic with
respect to B′ such that c̄ ∈ G′, then (M(c̄), G′) is a conservative extension
of (M,G). �

There is a compatibilty condition that connects up all the types ΨG(v̄) that
we have constructed.

Lemma 6.4.7 (Compatibility Condition) Let G = G0 × G1 × · · · × Gn−1,
where G0 <lex G1 <lex · · · <lex Gn−1, is generic relative to Bn. Let i0 <
i1 < · · · < im−1 < n and H = Gi0 × Gi1 × · · · × Gim−1 . Then H is generic
relative to Bm and ΨH(vi0 , vi1 , . . . , vim−1) ⊆ ΨG(v0, v1, . . . , vn−1).

Proof Just unravel the definitions (Do it!). �

Proof of Theorem 6.4.3 The set G is linearly ordered by <lex. Let (I,<) be a
linearly ordered set having the same order type as G, and then let G = {Gi : i ∈
I}, where i < j ⇐⇒ Gi <lex Gj . Let I∗ be the set of increasing finite sequences
from I, and for each j ∈ I∗ of length n, let Gj = Gj0 ×Gj1 × · · · ×Gjn−1 , which
is generic relative to Pn. We form the giant I-type

Ψ(v̄) =
⋃
{ΨGj

(vj0 , vj1 , . . . , vjn−1) : j ∈ I∗} .

Lemmas 6.4.6 and 6.4.7 guarantee that this is a complete I-type over M which
generates an extension M(c̄). It is clear that M(c̄) has countable cofinality (either
(Do it!) or replace M(c̄) with a simple elementary end extension of itself), so
Theorem 6.3.7 applies, and we can find a set {G′

i : i ∈ I} of mutual Cohen
generics in M(c̄) such that ci ∈ Gi for each i ∈ I. Then Lemma 6.4.6 shows that
(M(c̄), G′

i)i∈I is a conservative extension of (M,Gi)i∈I . �

6.4.3 Getting many classes

Theorem 6.4.3 is critical for showing the existence of models having many classes.
Every modelM of cardinality κ has at least κ classes. It could be that it has more.
For example, if cf(M) = ω, then M has at least κℵ0 classes which are quite easy
to construct once you realize that a class can have order type ω. Theorem 6.3.7
improves upon this by asserting the existence of κℵ0 mutual Cohen generics. Of
course, if we are unlucky, it might be that κℵ0 = κ and then we still have the
minimum number of classes. A saturated model of cardinality κ has 2κ classes
(Do it!), but the existence of saturated models requires some additional set-
theoretic assumptions. Another approach to getting models with many classes
would be to use a two-cardinal theorem from model theory. There are two
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candidate theorems: Chang’s, which would also require some additional set-
theoretic hypothesis such as the GCH, and Shelah’s, which would require some
additional work to implement. The next theorem shows that for any infinite
cardinal κ, there are models having more than κ classes.

Theorem 6.4.8 Suppose that M is a model and |M | ≥ κ. Then M has an
elementary end extension N of cardinality κ having a set of κ+ mutual Cohen
generics.

Proof The construction of the model N in the theorem will make use of trees.
A tree is a partially ordered set (T,<) such that for any x ∈ T , the set {y ∈ T :
y < x} of its predecessors is well-ordered by <. The order type of this set is the
rank of x, denoted by rk(x). For each ordinal α, we let Tα be the set of elements
having rank α. The height ht(T ) of T is the least ordinal α for which Tα = ∅. If
T is a tree of height γ, then a branch of T is a linearly ordered subset B ⊆ T
such that B ∩ Tα �= ∅ whenever α < γ. We let [T ] be the set of branches of T . A
tree T is normal if three conditions are met:

(1) whenever x ∈ Tα, then |{y ∈ Tα+1 : x < y}| ≤ 2;
(2) if α is not a successor ordinal and x, y ∈ Tα have exactly the same

predecessors, then x = y;
(3) ht(T ) is a limit ordinal.

We begin the proof with a fact about the existence of certain kinds of trees.

For each κ there is a normal tree T such that |T | = κ, |[T ]| > κ,
and ht(T ) < κ.

To get such a tree, we first consider the tree S of height κ + 1 consisting of
all functions f , where for some ordinal α ≤ κ, f : α −→ {0, 1}. Let < on S be
extension, so that rk(f) is the domain of f . Thus, f < g iff there is α < rk(g)
such that f = g�α. Clearly, |Sκ| = 2κ > κ. Let γ ≤ κ be the least ordinal such
that |Sγ | > κ. Some simple cardinal arithmetic shows that γ is a limit ordinal
and that T = {f ∈ S : rk(f) < γ} is a normal tree such that |T | = κ and
|[T ]| = |Sγ | > κ. This proves the fact.

We next describe a method for constructing elementary end extensions along
a normal tree. (Of course, we will have in mind one of the trees whose existence
was just proved.) Let M be any model and let T be a normal tree of height
γ < κ. We will construct an elementary chain 〈Mα : α ≤ γ〉 such that:

(0) M ≺end M0;
(1) if α < β ≤ γ, then Mα≺end Mβ ;
(2) if α < γ is not a limit ordinal, then cf(Mα) = ω;
(3) if α ≤ γ is a limit ordinal, then Mα =

⋃{Mβ : β < α};
(4) if α ≤ γ, then |Mα| = κ.
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As we construct this chain, we will also construct 〈Gx : x ∈ T 〉 such that:

(5) if α < γ, then {Gx : x ∈ Tα} is a set of mutual Cohen generics in Mα;
(6) if α < γ and x, y ∈ Tα are distinct, then Gx �= Gy;
(7) if α < β < γ, x ∈ Tα, y ∈ Tβ , then Gx = Gy ∩Mβ .

To get started, letM ′ be an elementary end extension ofM having cardinality
κ, and then let M0 be a simple elementary end extension of M ′, so that |M0| = κ
and cf(M0) = ω. Let Gx ⊆ M0 be a Cohen generic for the unique x ∈ T0. For
ordinals α > 0, we consider separately the cases of successor ordinal and of limit
ordinal.

α is a successor ordinal. Let α = β + 1. By Theorem 6.4.3 and the
remark following it, the model (Mβ , Gx)x∈Tβ

has an elementary end extension
(Mα, G

′
x)x∈Tβ

, where |Mα| = κ and cf(Mα) = ω. Use Theorem 6.3.7 to get a set
H of mutual Cohen generics such that each condition in BMα is in some generic
in H. Let c ∈ Mα\Mβ , and then for each x ∈ Tβ , let ax ∈ G′

x be such that
�(ax) = c. Let f : Tα −→ Mα be a one-to-one function such that whenever
x < y, where x ∈ Tβ and y ∈ Tα, then f(y) ∈ {ax̂ 0, ax̂ 1}, and then let Gy ∈ H
be such that f(y) ∈ Gy.

α is a limit ordinal. We have no choice. By (3), we must let Mα =
⋃{Mβ :

β < α}, and by (7), (only for α < γ) if x ∈ Tα, then Gx =
⋃{Gy : y < x}.

It is clear (Do it!) that (0)–(7) hold, except possibly for (5) in the case that α
is a limit ordinal. For this case, consider distinct x0, x1, . . . , xn ∈ Tα to show that
Gx0 , Gx1 , . . . , Gxn

are mutual Cohen generics. For each β < α, let xi|β be the
unique y ∈ Tβ such that y < xi. Let β < α be large enough so that xi|β �= xj |β
whenever i < j ≤ n. Then, by induction on ordinals and Corollary 6.2.8,
it follows that whenever β < ν ≤ α, then (Mβ , Gx0|β , Gx1|β , . . . , Gxn|β) ≺
(Mν , Gx0|ν , Gx1|ν , . . . , Gxn|ν). We then can conclude (5) by letting ν = α.

Now let N = Mγ . For each branch B ∈ [T ], let GB =
⋃{Gx : x ∈ B}, and

then let G = {GB : B ∈ [T ]}. Distinct B’s yield distinct GB ’s, so |G| ≥ κ+.
Finally, that G is a set of mutual Cohen generics is the same as showing (5) for
limit ordinals. �

Remarks 1. The construction in the proof of Theorem 6.4.8 started with a
normal tree T and then produced a model N and a set G = {GB : B ∈
[T ]} of mutual generics. If ht(T ) has uncountable cofinality, then the model
(N,G)G∈G will be rather classless. (See Theorem 6.3.7 for comparison.)

2. Let κ be an uncountable regular cardinal. A tree T is a κ-tree if ht(T ) = κ
and |Tα| < κ whenever α < κ. By slightly modifying the notion of a normal
tree so as to better apply to κ-trees, we can use the construction of the
theorem to get: corresponding to each normal κ-tree T is a κ-like model
N having a set G = {GB : B ∈ [T ]} of mutual Cohen generics such that
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(N,G)G∈G is rather classless. Some additional properties of the tree T may
be reflected in the model N .

6.5 Perfect generics

The method of forcing that has just been introduced is very useful for getting
inductive subsets. But not all can be obtained in this way. The following exercise
is aimed at showing this. It should be compared with Theorem 6.5.8.

Exercise 6.5.1 Let X ⊆M be an undefinable generic relative to P. Then there
are Y,Z ∈ Def(M,X) such that X ∈ Def(M,Y,Z) and Def(M) = Def(M,Y ) ∩
Def(M,Z). (Hint: consult Corollary 6.3.4.)

Suppose P ⊆M is a definable perfect binary tree; that is P is a subtree of B,
so P also can be thought of as a notion of forcing. To define the forcing relation
for P, denoted by �P, restrict the range of conditions in Definition 6.2.1 to P.
For n < ω, we say that the subtree Q ⊆ P is an n-deciding subtree of P if Q
is a definable perfect binary tree and for each Σn sentence σ of LF (M) there is
c ∈M such that whenever c < p ∈ Q, then either p �P σ or p �P ¬σ.

Lemma 6.5.2 Let M be a model and n < ω, and suppose that P is a definable
perfect binary tree. Then there is an n-deciding subtree Q ⊆ P.

Proof Let 〈σi : i ∈ M〉 be a definable list of all Σn sentences in the lan-
guage LF (M). By induction on B in M , we define a function f : B −→ P. Let
f(0) be the shortest p which splits in P. If e ∈ {0, 1}, s ∈ B, and �(s) = i,
then let f(ŝ e) = p̂ e, where p � f(s) and p is the shortest such condition
which splits and decides σi. There is such a definable f since forcing is definable
(Proposition 6.2.3). Then Q = {p ∈ P : p�f(s) for some s ∈ B} is as required. �

Definition 6.5.3 In a model M , a branch G of B is a perfect generic if there
is a sequence B = P0 ⊇ P1 ⊇ P2 ⊇ · · · such that, for each n < ω, Pn+1 is an
n-deciding subtree of Pn and G ⊆ Pn.

Why do perfect generics exist? After all, there may be no branch in the
intersection of the decreasing sequence of trees.

Exercise 6.5.4 In a model M , let P0 ⊇ P1 ⊇ P2 ⊇ · · · be a sequence of definable
binary trees such that for each a ∈ M there is n < ω such that no p < a splits
in Pn. Then B =

⋂
n<ω Pn is a branch of B.

Proposition 6.5.5 Suppose G is a perfect generic in a model M . Then:

(1) if σ is an LF (M)-sentence and (M,G) |= σ, then there is a definable D ⊆M
such that (M,D) |= σ;
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(2) (M,G) |= PA∗;
(3) G �∈ Def(M).

Proof Let G ⊆ ⋂
n<ω Pn, where B = P0 ⊇ P1 ⊇ P2 ⊇ · · · and each Pn+1 is a

definable n-deciding subtree of Pn.

(1) Suppose σ is Σn. Then there is p ∈ G such that p �Pn
σ. By Corollary 6.2.9,

there is a definable D ⊆ Pn such that (M,D) |= σ.
(2) Just like the proof of Theorem 6.2.10.
(3) Suppose that G ∈ Def(M) is definable by a formula ϕ(x), and let σ be the

sentence ∀x[U(x) ←→ ϕ(x)]. Then there is n < ω such that p �Pn σ for all
p ∈ Pn (Do it!). Let p ∈ Pn\G. Then p �Pn σ ∧ U(p), so by (1) there is a
definable D ⊆ Pn such that (M,D) |= σ ∧ U(p). But then ϕ(x) also defines
D in M , so D �= G. However, p ∈ D\G, which is a contradiction. �

The next theorem improves Simpson’s Theorem 6.2.11.

Theorem 6.5.6 Suppose M is a countable model and R0, R1, R2, . . . are count-
ably many subsets of M such that M∗ = (M,R0, R1, R2, . . .) |= PA∗. Then there
is G ⊆M such that (M,G) |= PA∗ and Rn ∈ Def(M,G) for each n < ω.

Proof The G that works will be a carefully constructed perfect generic of M∗.
For this we need to define a decreasing sequence B = P0 ⊇ P1 ⊇ P2 ⊇ · · · so that,
for each n < ω, Pn+1 is an n-deciding subtree of Pn that is definable in M∗. At
the same time we will define another decreasing sequence Q0 ⊇ Q1 ⊇ Q2 ⊇ · · · of
perfect binary trees definable in M∗. These sequences of trees will be dovetailed;
that is

B = P0 ⊇ Q0 ⊇ P1 ⊇ Q1 ⊇ P2 ⊇ · · · .

We need a cofinal sequence a0 < a1 < a2 < · · · in M . Given Pn, we refer to
Lemma 6.5.2 to get

Qn ∈ Def(M,Pn) (1)

that is an n-deciding subtree of Pn. We want that Qn has no elements q < an
that split. If this is not the case, then let p ∈ Qn be such that if p � q ∈ Qn, then
q ≥ an, and then replace Qn with {q ∈ Qn : q � p or p � q}. We then get Pn+1
as a definable perfect binary subtree of Qn as follows: if q ∈ Qn, then q ∈ Pn+1
iff whenever i ∈ M and p � q are such that p splits in Qn and there are exactly
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2i conditions r � p that split in Qn, then p̂ 0 � q iff i ∈ Rn. Therefore,

Pn+1 ∈ Def(M,Qn, Rn). (2)

The point of this definition is that if G is any branch of Pn+1, then

Rn ∈ Def(M,Qn, G). (3)

Since Qn is an n-deciding subtree of Pn, then so is Pn+1.
By Exercise 6.5.4, G =

⋂
n<ω Pn a branch of B. Clearly, it is perfect generic.

It follows from (1), (2), (3) that each Rn ∈ Def(M,G). �

The following technical lemma, which is in the spirit of Lemma 6.5.2, will be
needed in the theorem that comes right after it.

Lemma 6.5.7 Let M be a model and ϕ(x) an LF (M)-formula. Suppose that P
is a definable perfect binary tree. Then there is a definable binary subtree Q such
that either:

(1) there is c ∈ M such that whenever a ∈ M , then either p �P ϕ(a) whenever
c < p ∈ Q, or else p �P ¬ϕ(a) whenever c < p ∈ Q;

(2) for each i ∈M there are j, c ∈M such that j > i and whenever p, q ∈ Q are
such that �(p) = �(q) = j and p�i �= q�i, then there is a ∈M such that either
p �P ϕ(a) and q �P ¬ϕ(a) or else p �P ¬ϕ(a) and q �P ϕ(a).

Proof Suppose ϕ(x) is a Σn formula. For the first move, let P0 be an n-deciding
subtree of P. For the second move, define P1 to be the perfect subtree of P such
that letting f : B −→ P1 be the unique definable order-preserving function onto
the set of those points in P1 which split, whenever s ∈ B and �(s) = i, then f(s)
decides ϕ(i). There are two possiblities:

(a) There is s ∈ B such that whenever s � t1, t2 and �(t1) = �(t2), then f(t1) �P

ϕ(i) iff f(t1) �P ϕ(i). Then we let Q = {p ∈ P1 : p � f(s)}, and (1) holds.
(b) Possibility (a) fails. By induction in M , we define a function g : B −→ P1.

Let g(0) = f(0). If s ∈ B let g(ŝ 0) = p0 and g(ŝ 1) = p1, where p0, p1 are
the first incompatible pair in B1 such that for some i ∈ M , g(s) � p0, p1,
�(p0) = �(p1) = i, p0 �P ϕ(i) and p1 �P ¬ϕ(i). Then we let Q = {p ∈ P :
p � g(s) for some s ∈ B}, and (2) holds. �

Cohen generics are inductive nondefinable classes. Corollary 6.3.4 says that
Cohen generics not “minimally nondefinable.” The next theorem shows that
perfect generics can be different in that they may be “minimally nondefinable.”

Theorem 6.5.8 Let M be countable. Then there is an inductive A ⊆ M such
that A �∈ Def(M) and whenever B ∈ Def(M,A), then either B ∈ Def(M) or
A ∈ Def(M,B).
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Proof The set A will be a perfect generic with an additional feature that
Lemma 6.5.7 provides. Let a0 < a1 < a2 < · · · be a cofinal sequence in M . Let
ϕ0(x), ϕ1(x), ϕ2(x), . . . enumerate all the LF (M)-formulas with one free variable.
Construct a sequence

B = P0 ⊇ Q0 ⊇ P1 ⊇ Q1 ⊇ P2 ⊇ · · ·

of definable perfect binary trees such that each Qn is an n-deciding subtree of
Pn, and each Pn+1 is a subtree of Qn as described in Lemma 6.5.7 using the
formula ϕn(x). In order to guarantee that the sequence B = P0 ⊇ P1 ⊇ P2 ⊇ · · ·
produces a perfect generic (as in Definition 6.5.3), we will require that Qn has
no elements q < an that split. This is easily accomplished (Do it!) as in the
proof of Theorem 6.5.6. Then A =

⋂
n<ω Pn is a perfect generic according to

Exercise 6.5.4, and then by Proposition 6.5.5(2), A is inductive.
We show that A has the required property. Consider B ∈ Def(M,A). There

is a formula ϕn(x) which defines B. The subtree Pn+1 ⊆ Qn is obtained using
Lemma 6.5.7, so one of the two possibilities from that lemma hold.

Suppose (1) holds. Let p ∈ Pn+1 be large enough to decide all instances of
ϕn(a). Thus B = {a ∈M : p �Qn

ϕn(a)}, so it is definable by Proposition 6.2.3.
Suppose (2) holds. In this case A ∈ Def(M,B). In fact,

∀c∃q � p∀b
[
q ∈ Pn+1 ∧ q > c ∧ [(q �Qn ϕn(b)

) −→ b ∈ B
]

∧ [(q �Qn
¬ϕn(b)

) −→ b �∈ B
]]

holds iff p ∈ A. �

Corollary 6.5.9 Every countable model has an inductive undefinable subset
which is not generic.

Proof See Exercise 6.5.1. �

6.6 Exercises

♣6.6.1 Every notion of forcing P in M has a maximal filter F ∈ Σ1((M,P)).

♣6.6.2 Every binary tree P in M has a branch B ∈ ∆1((M,P)).

♣6.6.3 (Weak König’s Lemma) Every unbounded binary tree P in M has an
unbounded branch B ∈ ∆2((M,P)).

♦6.6.4 Can Corollary 6.3.4 be modified by replacing each “Def” with “Def0,”
to be interpreted as definability without parameters?

♦6.6.5 If M is countable, then there is an (undefinable!) perfect subtree P ⊆ B
such that every branch of P is a perfect generic.
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♦6.6.6 Let G be a Cohen generic in M . There is a function f ∈ Def(M,G), such
that for every function g ∈ Def(M), (M,G) |= ∃w∀x > w[f(x) > g(x)].

♦6.6.7 Let G be a perfect generic in M . For every function f ∈ Def(M,G) there
is a function g ∈ Def(M), such that (M,G) |= ∃w∀x > w[f(x) < g(x)].

♥6.6.8 Every countable model M has a strongly minimal extension N which
has a Cohen generic G such that (N,G) is not a prime model.

♠6.6.9 Characterize those countable models M that have a generic X such that
any element definable in (M,X) is already definable in M .

6.7 Remarks & References

Forcing was invented by Paul Cohen in order to prove independence results in
set theory. The definition of generic that is given in Section 6.1 is attributed
to Solovay. Subsection 6.2.2 was influenced by Odifreddi [140]. Theorem 6.2.11
is due to Steve Simpson [186] who expanded on an idea of Felgner [40]. The
Low Basis Theorem was first proved, in its usual recursion-theoretic form, by
Jockusch & Soare [63]. The formalized version was proved implicitly by Paris
[147] whose use was adapted by Kossak [99] and others. Product forcing was
in Cohen’s original exposition of forcing. The set-theoretic version of the res-
ults in Section 6.3 are quite standard. Theorem 6.4.1 was proved by Mills [131]
and answered in the negative the strongest (and therby all) of the five question
asked by Gaifman [43]. Theorem 6.4.3 was first correctly proved by Schmerl
[163] following an earlier incorrect attempt that did not invoke the Pincus–Laver
Theorem.

The PL Theorem has a somewhat mysterious history. This theorem is a
slight improvement of a theorem first proved by Halpern & Läuchli in [52].
Then, according to what is written in [132], Laver proved the PL Theorem
in 1969 but did not publish the results, and then indepndently and later in
1974, Pincus proved it. The proof that our proof is based on is from Milliken
[132], who adapted the proof of the HL Theorem in [52]. The proof of the HL
Theorem is ingenious, but idiosyncratic. There have been attempts to give a
more conventional proof, one of the most recent being by [2].

The results in Section 6.4, and others along these lines, have appeared in
Schmerl [166] and Keisler & Schmerl [79]. These results have applications to the
construction of some real-closed fields. In the first paragraph of Subsection 6.4.3
reference is made to two two-cardinal theorems, the first due to C.C. Chang [20]
and the second to Saharon Shelah [183].

Perfect generics are an adaptation of Sacks reals to models of Peano Arith-
metic. Theorem 6.5.6 appears here for the first time, although one of the authors
discussed the possibility of such a theorem with Simpson around 1978 give or
take a half decade.




CUTS

Strong cuts play an important role in the model theory of arithmetic. They
were introduced by Kirby and Paris in their work that lead to the discovery of
combinatorial principles independent of PA. For us, the important connection to
the material of the subsequent chapters is that a recursively saturated model is
arithmetically saturated iff the standard cut is strong in it.

The main result of this chapter is Theorem 7.3.4 which explains the import-
ance of strongness. To prove it, we need to discuss other combinatorial properties
of cuts first. This preliminary discussion takes us a bit longer than necessary
because of a detour to see how bad nonconservative extensions can be. If N is a
nonconservative elementary end extension of M , then N codes some undefinable
class X of M . Can this class be noninductive? Can we get an X as above for
which (M,X) is not a model of IΣ1? It turns out that the answer depends on
the model M .

We conclude the chapter with a section titled Why PA?. It contains two
interesting theorems illustrating the special status that PA has among extensions
of IΣ0. These results are of independent interest. We include them in this chapter
because of the techniques used in their proofs.

Let I be a cut of a model M . The combinatorial properties of I that we
consider here are definable in terms of properties of the subsets of I which are
coded in M . All these properties are first-order definable in (M, I), but it will
also be convenient to formalize them as properties of the second-order structure
(I,Cod(M/I)), where Cod(M/I) is the collection of subsets of I which are coded
in M . In particular, we show that I is strong in M iff (I,Cod(M/I)) |= ACA0.

The other two properties of cuts that we discuss here are semiregularity
and regularity. These notions can be characterized in terms of the induction
and collection schemes. For this discussion, we will work with the first-order
structures (I, A0, A1, . . . ), where A0, A1, . . . is a list of all the sets in Cod(M/I).
Let Γ be either the collection of Σn or Πn formulas of L∪{A0, A1, . . . }, for some
n < ω. Since it is usually clear what M is, to simplify notation, we just write
I∗ |= IΓ if (I, A0, A1, . . . , Ak−1) |= IΓ, for all A0, A1, . . . , Ak−1 ∈ Cod(M/I) and
similarly for BΓ. Then for all I ⊆end M and all n < ω,

I∗ |= IΣ0 +BΣn+1 ⇒ I∗ |= IΣn ⇒ I∗ |= BΣn,
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and all other well-known results concerning induction, collection, and the least
number scheme for the arithmetical hierarchy hold. We will show that if I ⊆end M
is a cut of a model M , then I is semiregular iff I∗ |= IΣ1, and I is regular iff
I∗ |= BΣ2.

Let us note that all coding machinery we use can be formalized in IΣ1, and,
with some extra effort, in IΣ0 + exp. In particular, we will use the fact that if
I ⊆end M is an exponentially closed cut in M and A ⊆ I is M -finite, then A has
a code in I.

All Σ0 formulas are absolute with respect to cuts which are closed under
multiplication. The next proposition generalizes this.

Proposition 7.0.1 Let I ⊆end M be a cut closed under multiplication. Then for
every B ∈ Cod(M/I), there is b ∈ M such that for every Σ0 formula ϕ(x, Y )
with a set variable Y , there is an arithmetic formula ϕ′(x, y) such that for all
a ∈ I,

(I,B) |= ϕ(a,B) iff M |= ϕ′(a, b).

Proof Let b ∈M be a code of a bounded definable X ⊆M such that B = X∩I.
Obtain ϕ′ by replacing each occurrence of a subformula of the form v ∈ B, by
v ∈ b. �

7.1 Semiregular cuts

The notion of semiregularity, like many other combinatorial properties, is an
analogue of the corresponding property of cardinal numbers. This particular
analogy is not exact, as semiregularity in arithmetic corresponds to regularity
in set theory. Regularity is reserved for a stricter property which is discussed in
the next section.

Definition 7.1.1 Let I ⊆end M be a cut of a model M . Then I is semiregular if
for every function f ∈ M whose domain is bounded in I, rg(f) ∩ I is bounded
in I.

Semiregularity can be also defined via the notion of cofinality. For I ⊆end M ,
the cofinality of I in M , cfM (I), is the intersection of those J ⊆end M for which
there is a function f ∈M such that J ⊆ dom(f) and sup(f(J)) = I.

Exercise 7.1.2 Let I be a cut of M . Then I is semiregular in M iff cfM (I) = I.

Clearly, cfM (N) = N in any nonstandard model M . If a ∈M codes an infinite
increasing sequence and I = supn∈N(a)n, then cfM (I) = N (Do it!). More
generally, if J is a cut of M , a ∈ M codes an increasing sequence, �(a) > J ,
and I = supi∈J(a)i, then cfM (I) = cfM (J) (Do it!). If I is downward ω
coded, that is, there is a ∈ M which codes an infinite decreasing sequence,
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and I = infn∈N(a)n, then cfM (I) = N. However, for each b ∈ M , coding an
increasing ω-sequence, I �= supn∈N(b)n (Just Do it!).

Let I ⊆end M be semiregular. Our first goal is to determine how much induc-
tion or collection holds in (I, A0, . . . , Ak−1) for all A0, . . . , Ak−1 coded in M .
Let us begin with a simple observation, the proof of which is left to the reader.
(Hint: use Proposition 7.0.1.)

Proposition 7.1.3 Let I be a cut of a model M . Then I∗ |= IΣ0 +BΣ1. �

For semiregular cuts one can prove more.

Proposition 7.1.4 Let I be a semiregular cut of a model M . Then I is closed
under addition and multiplication. �

Proof For a ∈ I, let f : (a + 1)M −→ M be defined by f(i) = a + i. We will
show that rg(f) ⊆ I, so, in particular, f(a) ∈ I. If not, then, by semiregularity,
rg(f)∩ I is bounded in I. Hence, there is c < a such that f(c) = max(rg(f)∩ I).
Then f(c+ 1) = a+ c+ 1 /∈ I, which is a contradiction, since I, being a cut, is
closed under successor.

Now, to prove that I is closed under multiplication, take a ∈ I and prove in
a similar manner that the range of g : (a+ 1)M −→ M , defined by g(i) = ai, is
bounded in I. �

We could continue strengthening the above proposition by showing that
semiregular cuts are closed under exponentiation, superexponentiation, etc..
Instead, we now prove a result which implies that semiregular cuts are closed
under all primitive recursive functions.

Theorem 7.1.5 Let I be a cut of a model M . Then I is semiregular in M iff
I∗ |= IΣ1.

Proof First suppose I is semiregular. Let ϕ(x, y, Y ) be a Σ0 formula, let B ∈
Cod(M/I), and let ϕ′(x, y, b) be the first-order translation of ϕ(x, y,B) given by
Proposition 7.0.1.

Suppose that

(I,B) |= ∃yϕ(0, y, B) ∧ ∀x[∃yϕ(x, y,B) −→ ∃yϕ(x+ 1, y, B)]. (∗)

We will show that

(I,B) |= ∀x∃yϕ(x, y,B).

Consider the function

f(x) =

{
min {z : M |= ∀i < x∃y < zϕ′(i, y, b)} if such z exists,
b otherwise.
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The conclusion will follow if we prove that for each i ∈ I, f(i) ∈ I. Suppose
not, and let c ∈ I be such that f(c) > I. By semiregularity, there is d ∈ I
such that rg(f � cM ) ∩ I ⊆ dM . Let c′ = min{x : x ≤ c and f(x) ≥ d}.
By (∗), c′ > 0 and f(c′ − 1) < d. Then f(c′) = max{f(c′ − 1), e}, where
e = min{y : M |= ϕ′(c′, y, b)}. By (∗), e ∈ I, so f(c′) ∈ I, a contradiction.

For the converse, assume that I∗ |= IΣ1 and a function f ∈M be given. Let
F = f ∩ I2. We define another function g using IΣ1 in (I, F ):

g(0) = min {y : ∃x < a(〈x, y〉 ∈ F )} ,

and for i ∈ I,

g(i) =

{
min {y : ∃x < a(〈x, y〉 ∈ F ) ∧ ∀j < i[y �= g(j)]} if such y exists,
g(i) otherwise.

By Σ1 induction, for each i < a, g(i) is defined, and g(i) ≤ g(a − 1). Hence
rg(f � aM ) ∩ I is bounded, proving that I is semiregular in M . �

By Theorem 7.1.5, semiregular cuts are models of IΣ1. The converse is not
true. For example, every nonstandard model M has cuts I which are models
of PA such that cfM (I) = N. (See Exercise 7.5.2). However, not all countable
models of PA have end extensions in which they are semiregular. If a countable
I is not semiregular in a model M , then I has continuum many automorphisms.
(See Exercise 7.5.3.) In particular, all rigid models are semiregular in all of their
end extensions.

7.1.1 Semiregularity and WKL0

If I is an LPA structure and X is a collection of subsets of I, then (I,X) is a
model of RCA0 if;

(1) (I, A0, . . . , An−1) |= IΣ1 for all A0, . . . , An−1 ∈ X;
(2) X is closed under ∆1 definability.

Let I be a model of IΣ1 and let 2<I be the set of 0–1 sequences coded in I.
Coding here is the same coding we use for models of PA. All its properties we
need are formalizable and provable in IΣ1. As usual, we identify coded objects
with their codes. We call T ⊆ 2<I a binary tree if for every σ ∈ T and every
i < �(σ), the restriction of σ to i, σ � i = 〈(σ)0, . . . , (σ)i−1〉 is in T . A tree
T is of unbounded if for each i ∈ I there is a σ ∈ T such that �(σ) = i. An
f : I −→ {0, 1} is an unbounded path in T if for each i ∈ I, f � i ∈ T .

Weak König’s Lemma: Every unbounded binary tree has an
unbounded path.
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Let (I,X) be a model of RCA0. Then (I,X) is a model of WKL0 if it satis-
fies Weak König’s Lemma, that is every unbounded binary tree T ∈ X has an
unbounded path in X.

If I is a cut of a model M , then, even if I is not a model of IΣ1, we can still
consider 2<I defined as the set of M -finite 0–1 sequences σ such that dom(σ) is
a bounded subset of I. With this adjustment, we can show the following:

Proposition 7.1.6 Let I be a cut of a model M . Then (I,Cod(M/I)) satisfies
Weak König’s Lemma.

Proof Let T be a binary tree in Cod(M/I) such that for each i ∈ I, there is
σ ∈ T such that �(σ) = i. Let t ∈M be a code of T . For each i ∈ I,

M |= ∃σ ∈ t [�(σ) = i ∧ ∀j < i(σ � j ∈ t)]. (∗)

By overspill, we get a σ ∈ t satisfying (∗) for some i > I. This σ codes an
unbounded path of T . �

If a cut I ⊆end M is not semiregular, then I∗ �|= IΣ1, hence (I,Cod(M/I)) is
not a model of WKL0. In fact, we can now rephrase Theorem 7.1.5 as follows:

Theorem 7.1.7 Let I be a cut of a model M . Then I is semiregular in M iff
(I,Cod(M/I)) |= WKL0. �

7.2 Regular cuts

Let M be a countable model, and let I ⊆end M be a cut of M . Is there a model
K such that M ≺ K, I = GCIS(M,K), and I < c < (M \ I), for some c ∈ K?
It is not difficult to see that this is impossible if I is not semiregular in M (Do
it!). To prove a positive result, we need to replace semiregularity with a stricter
property.

Definition 7.2.1 A cut I ⊆end M is regular in M if for every function f ∈M , if
I ⊆ dom(f) and rg(f � I) is bounded in I, then there is i ∈ I such that f−1(i)∩I
is unbounded in I.

The standard cut is regular in every nonstandard model. It is also not difficult
to show that regular cuts are semiregular (Do it!). The next theorem shows that
the converse does not hold. The proof of the next theorem is rather involved. An
easier construction can be given to show that there are semiregular cuts which
are not regular (see Propositional 2 in [83]). The extra level of difficulty in the
theorem below is due to the fact that we are dealing with elementary cuts.

Theorem 7.2.2 Every countable model M has an elementary end extension N
such that M is semiregular but not regular in N .
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Proof Let M be a countable model. First we will construct an elementary end
extension ofM in whichM is not regular, and then we will refine the construction
to make sure that M is semiregular in the extension. Symbols f, g, h, . . . will
denote functions coded in M . We identify coded sets, sequences, and functions
with their codes. For f ∈M let

〈f〉 = {g ∈M : f ⊆ g} .

We will now define a decreasing sequence of definable subsets of M with the
following largeness property: for a β ∈ M and an M -finite set X, we say that
the set Z (of coded functions) is (β,X)-large, if every f such that dom(f) > β−1
and rg(f) ⊆ X, has an extension in Z.

Claim: Suppose that Z is (β,X)-large. If Z =
⋃

j<b Zj is a definable partition
of Z for some b ∈M , then there are j < b, δ > β, and f : [β, δ) −→ X such that
Zj ∩ 〈f〉 is (δ,X)-large.
Proof of the claim: Assume to the contrary that there are no j, δ and f as

in the claim. We will obtain a contradiction by defining a function g ∈ M such
that dom(g) > β − 1, rg(g) ⊆ X, and g has no extension in Z. The function
g will be defined as

⋃
i<b gi, where gi’s are constructed inductively as follows.

First notice that Z0 is not (β,X)-large, because if it were, then this would
prove the claim with j = 0, any δ > β, and the empty f . Hence there is g0
such that dom(g0) > β − 1, rg(g0) ⊆ X, and g0 has no extension in Z0. Let
β0 = β. We can assume that dom(g0) = [β0, β1) for some β1 > β0. Similarly,
since Z1 ∩ 〈g0〉 is not (β1, X)-large, there is g1 such that dom(g1) = [β1, β2) for
some β2 > β1, rg(g1) ⊆ X, and g1 has no extension in Z1 ∩ 〈g0〉. Continuing
in this fashion, we define an increasing sequence 〈βi : i < b〉 and a sequence of
functions gi : [βi, βi+1) −→ X, i < b such that for each i, gi has no extension in
Zi ∩ 〈gi−1〉. But then, g =

⋃
i<b gi has no extension in Z. Contradiction.

Continuing the proof of the theorem, let a ∈ M be nonstandard and let
〈ai : i < ω〉 be an enumeration of [0, a]. LetX0 = [0, a], and letXn+1 = Xn\{an},
and let 〈tn : n < ω〉 be an enumeration of all Skolem terms with parameters from
M .

We will construct a descending sequence 〈Zn : n < ω〉 of definable subsets of
M such that Z0 = M and

(1) Zn is (βn, Xn)-large for some βn in M ;
(2) There exists gn ∈M such that dom(gn) ⊆ [0, βn − 1] and Zn ⊆ 〈gn〉;
(3) For n > 0, if for every z ∈ Zn−1, tn(z) < b for some b ∈ M , then for some

c < b, Zn ⊆ {z ∈M : tn(z) = c}.
Suppose we have found Zn with the above properties and for every z ∈ Zn,

tn+1(z) < b. Then Zn ⊆
⋃{

t−1
n+1(c) : c < b

}
. By (1), Zn is (βn, Xn)-large, hence

it is (βn, Xn+1)-large as well. By the claim, there are δ > βn, X ⊆ Zn, and
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f : [β, δ) −→ Xn+1 such that for some c < b, X ⊆ t−1
n+1(c) and X ∩ 〈f〉 is

(δ,Xn+1)-large. Then we set Zn+1 = X ∩ 〈f〉, βn+1 = δ, and gn+1 = gn ∪ f .
Now let p(x) be the type {ϕ(x) : ∃n < ω[Zn ⊆ ϕ(M)]}, let N be the p(x)-

extension of N , and let π ∈ N be such that N = M(π) and π realizes p(x). Then
M ≺end N and π codes a function

⋃
n<ω gn : M −→ [0, a]. By the construction,

each e ≤ a is in only finitely many Zn’s, hence, for each e ≤ a, π−1(e) is
bounded in M . Because each Zn is unbounded, π−1([0, a]) is unbounded in M ,
and it follows that M is not regular in M .

Now we will modify the construction to make sure that M is semiregular
in N . Enumerate all definable maps x �→ hx such that for all x, hx codes an
increasing function hx : [0, e] −→ M for some e ∈ M . In the nth step we first
define Z2n from Z2n−1 as before.

Suppose Z2n satisfies (1), (2), and (3) above. Take the nth map x �→ hx in the
enumeration and assume that for all x, dom(hx) = [0, e]. Let Z = Z2n, X = X2n,
β = β2n, and let

R = {f ∈M : dom(f) > β − 1 ∧ rg(f) ⊆ X} .

Suppose that there is i ≤ e such that

∀f ∈ R∃g ∈ Z ∩ 〈f〉 [hg(i) > f ].

Then let i0 be the least such i (notice that (2) implies that i0 ≥ β). If there is
no such i, let i0 = e+ 1. Then there is f0 ∈M , f0 : [β, β′) −→ X such that

∀g[g ∈ Z ∩ 〈f0〉 −→ hg(i0 − 1) ≤ f0].

For each f ∈ R ∩ 〈f0〉, let gf be the least g ∈ Z ∩ 〈f〉 such that hgf
(i0) > f and

let Z2n+1 = {gf : f ∈ R ∩ 〈f0〉}. Then Z2n+1 satisfies (1) and (2).
As before, let p(x) be the complete type determined by 〈Zn : n < ω〉 and let

N be the p(x)-extension of M . Then for any ĥ ∈ N , which corresponds to some
definable x �→ hx, there are i0, f0 ∈M such that ĥ(i0−1) ≤ f0, while ĥ(i0) > M .
Hence M is semiregular in N . �

Theorem 7.2.2 generalizes to higher levels of the arithmetic hierarchy but not
in a straightforward way and not (so far) in full generality. We say more about
it in Remarks and references at the end this chapter.

The following proposition can be proved directly form the definition, using
the fact that regular cuts are semiregular (Do it!).

Proposition 7.2.3 Let I ⊆end M be a regular cut. Then for every unbounded
X ∈ Cod(M/I) and every function f ∈M such that X ⊆ dom(f) and rg(f � I)
is bounded in I, there is i ∈ I such that f−1(i) ∩X is unbounded in I. �
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For I ⊆ K and M ≺ K, let KM\I = infK(M \ I). We write M ≺I K if I is
a cut both in M and in K and there is c ∈ K such that I < c < KM\I .

Theorem 7.2.4 Let M be a countable model and let I be a cut of M . Then the
following are equivalent:

(1) I is regular in M ;
(2) There is a K such that M ≺I K;
(3) I∗ |= BΣ2.

Proof To prove (1) =⇒ (2) we will define a descending sequence 〈Xn : n < ω〉
of sets in Cod(M/I) such that:

(i) each Xn is unbounded in I;
(ii) if f ∈ M is a function, I ⊆ dom(f), and rg(f) is bounded in I, then there

are i ∈ I and n < ω such that Xn ⊆ f−1(i).

Let X0 = I, and suppose Xn has been defined. Let f be the nth function
in a fixed enumeration of all coded functions whose domains include I. If rg(f �
(I ∩ Xn)) is bounded in I, then, by Proposition 7.2.3, there is i ∈ I such that
f−1
n (i) ∩Xn is unbounded in I. Let Xn+1 = f−1(i) ∩Xn for this i.
Let U be a filter in Cod(M/I) generated by 〈Xn : n < ω〉. For every X ∈

Cod(M/I), exactly one of X and I \X is in U , hence U is an ultrafilter.
Let K be the model whose universe is the set of equivalence classes of the

coded functions f : I −→M under the equivalence relation

f ∼ g ⇐⇒ {i ∈ I : f(i) = g(i)} ∈ U.

Then, after identifying each a ∈M with the equivalence class of the constant
function f(x) = a, one can verify that �Loś’s Theorem holds (Do it!); hence
M ≺ K. It is also easy to verify that M ≺I K (Do it!).

To prove of (2) =⇒ (3), suppose that for a ∈ I and B ∈ Cod(M/I),

(I,B) |= ∀x < a∃y∀z ϕ(x, y, z, B),

for some Σ0 formula ϕ(x, y, z,X). Let ϕ′(x, y, z, b) be the first-order translation
of ϕ(x, y, z, B) given by Proposition 7.0.1. For each x0 < a there is y0 ∈ I such
that

∀z ∈ I M |= ϕ′(x0, y0, z, b).

Fix such x0 and y0. By overspill, there is z0 > I such that

M |= ∀z < z0ϕ
′(x0, y0, z, b).
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Since M ≺ K, the same is true in K. Let c ∈ K be such that I < c < (M \ I).
We have proved that

∀x < a∃y ∈ I K |= ∀z < c ϕ′(x, y, z, b). (∗)

Let e ∈ K be the smallest such that

K |= ∀x < a∃y < e∀z < c ϕ′(x, y, z, b). (∗∗)

Clearly e ∈ I, since otherwise the failure of (∗∗) for e − 1 would contradict
(∗). This proves that

(I,B) |= ∀x < a∃y < e∀z ϕ(x, y, z, B).

It remains to prove (3) =⇒ (1). Suppose that f ∈M is such that I ⊆ dom(f),
rg(f � I) is bounded in I, and f−1(i) ∩ I is bounded in I, for all i ∈ I. Let
F = f ∩ I2 and let a ∈ I be such that rg(f � I) ⊆ aM . Then, since, for each
i ∈ I, f−1(i) is bounded in I,

(I, F ) |= ∀x < a∃y∀z[z > y −→ 〈z, x〉 /∈ F ].

By BΣ2, there is b ∈ I such that

(I, F ) |= ∀x < a∃y < b∀z[z > y −→ 〈z, x〉 /∈ F ].

Hence, for each i ∈ I, if i ≥ b, then f(i) ≥ a, which is a contradiction. �

Ramsey Theorem plays an important role in the theory of strong cuts. Let
M be a model, and let I ⊆end M be a cut of M . For n < ω, [I]n is the set on
increasing n-tuples (x0, . . . , xn−1) of elements of I. For n < ω and m ∈ I, let
RTn

m be the sentence of the second-order arithmetic expressing that for every
partition f : [I]n −→ [0,m − 1], there are an i < m and an unbounded X such
that f(a0, . . . , an−1) = i, for all (a0, . . . , an−1) ∈ [X]n. By RTn

∞ we denote the
statement ∀xRTn

x .

Proposition 7.2.5 Let I be a semiregular cut of a model M , and assume that
(I,Cod(M/I)) |= RT2

2. Then I is regular in M .

Proof Suppose f : I −→ M is coded in M and such that rg(f � I) is bounded
in I. Define a partition of g : [I]2 −→ {0, 1} by

g(b, c) =

{
0 if f(b)=f(c),
1 otherwise.
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Suppose C ⊆ I is such that ∀x, y ∈ C if x < y, then g(x, y) = 1. In this case f
is one-to-one on C; hence C is bounded in I. By RT2

2, there is C ∈ Cod(M/I),
which is unbounded in I and such that for all x, y in C, if x < y, then f(x) = f(y),
which finishes the proof. �

By the above proposition and Theorems 7.1.7 and 7.2.2 we have

Corollary 7.2.6 (1) WKL0 �� RT1
∞.

(2) WKL0 �� RT2
2. �

7.3 Many faces of strongness

The definition below is one of many equivalent ways in which strongness can be
expressed. The main result of this section, Theorem 7.3.4, is a long list of other
characterizations.

Definition 7.3.1 A cut I ⊆end M is strong in M if for each c ∈ M there exists
d ∈M such that d > I and for all i ∈ I, (c)i > I iff (c)i > d.

We begin with a short summary of some results concerning Ramsey’s
Theorem and König’s Lemma.

In the subsection on WKL0 we discussed binary trees. All conventions intro-
duced there apply also to trees. Let I be a model of IΣ1 and let I<I be the set
of sequences of elements of I coded in I. T ⊆ I<I is a tree if for every σ ∈ T ,
and every i < �(σ), σ � i = 〈(σ)0, . . . , (σ)i−1〉 ∈ T . A tree T is unbounded if for
every i ∈ I there is a σ ∈ T such that �(σ) = i. A tree T is finitely branching, if
for each σ ∈ T card {i ∈ I : σ î ∈ T} ∈ I.

König’s Lemma, KL: Every unbounded finitely branching tree has
an unbounded path.

In Chapter 2 we used the MacDowell-Specker Theorem to show that ACA0 �
RTn

∞ for all n < ω (Theorem 2.2.8). This also can be proved directly. In fact,
the following theorem is well-known.

Theorem 7.3.2 Let (I,X) be a model of RCA0. Then the following are
equivalent:

(1) (I,X) |= RT3
2;

(2) (I,X) |= RTn
∞ for all n < ω;

(3) (I,X) |= KL;
(4) (I,X) |= ACA0.

Since RCA0 includes the induction schema for Σ1 formulas, Theorem 7.3.2
does not apply to all models of the form (I,Cod(M/I)). Every model M has
a cut I ⊆end M such that for all m,n < ω, (I,Cod(M/I)) |= RTn

m + ¬ACA0.
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(See Exercise 7.5.5.) For semiregular cuts, by Theorem 7.1.7, we can reformulate
Theorem 7.3.2 as follows:

Corollary 7.3.3 Let I be a semiregular cut of a model M . Then the conditions
(1)–(4) of Theorem 7.3.2 are equivalent for X = Cod(M/I).

Proof By Theorem 7.1.5, if I is a semiregular cut of M , then (I,Cod(M/I)) |=
RCA0; hence the result follows from Theorem 7.3.2. �

Recall that if M ≺ K, then KM\I = infK(M \ I), and we write M ≺I K if
M ≺ K, I ⊆end M , I ⊆end K, and there is c ∈ K such that I < c < KM\I .

Theorem 7.3.4 Let I be a semiregular cut of a countable model M . Then the
following are equivalent:

(1) (I,Cod(M/I)) |= RT3
2.

(2) There is a model K such that M ≺I K and Cod(M/I) = Cod(K/I).
(3) (I,Cod(M/I)) |= KL.
(4) For any infinite cardinal λ, there is a model K such that M ≺I K, KM\I =
{a ∈ K : |aK | ≤ λ} and |KM\I | = λ+.

(5) There is a model K such that M ≺I K and KM\I is semiregular in K.
(6) I is strong in M .
(7) If A ∈ Cod(M/I) and B is Σ1 definable in (I, A), then B ∈ Cod(M/I).
(8) If A ∈ Cod(M/I) and B is definable in (I, A), then B ∈ Cod(M/I).

Proof (1) =⇒ (2) Suppose (I,Cod(M/I)) |= RT3
2. By Proposition 7.2.5, I is

regular in M . As in the proof of Theorem 7.2.4, we define a descending sequence
〈Xn : n < ω〉 of elements of Cod(M/I) such that:

(i) each Xn is unbounded in I;
(ii) if f ∈ M is a function, I ⊆ dom(f), and rg(f) is bounded in I, then there

are i ∈ I and n < ω such that Xn ⊆ f−1(i).

Since (I,Cod(M/I)) |= RT3
2, we also can impose that:

(iii) if g : [I]3 −→ {0, 1} is coded in M , then there are n < ω and i < 2 such that
for all (a, b, c) ∈ [Xn]3, g(a, b, c) = i.

As in the proof of Theorem 7.2.4, let U be the ultrafilter

{X ∈ Cod(M/I) : ∃n Xn ⊆ X},

and let K be the corresponding ultrapower, whose elements are equivalence
classes modulo U of coded functions f : I −→ M . Conditions (i) and (ii) imply
that M ≺I K.
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Suppose that A ∈ Cod(K/I) is coded by the equivalence class of a function
f : I −→M coded in M . For i ∈ I, let Ai be the subset of I coded by f(i). Let

g(a, b, c) =

{
0 if aI ∩Ab = aI ∩Ac,

1 otherwise.

Let X ∈ U be an homogeneous set for g. Suppose that for all (a, b, c) ∈ [X]3,
g(a, b, c) = 1. Fix a, b ∈ X such that a < b. Then for all c ∈ X such that b < c,
aI ∩Ab �= aI ∩Ac. Since there are only 2a coded subsets of aI , by semiregularity
of I, X is bounded in I. This contradicts the fact that X ∈ U . Hence, for all
(a, b, c) ∈ [X]3, g(a, b, c) = 0.

Let d be an element of I. For all a, b, c ∈ X such that d < a < b < c we have
d ∈ Ab iff d ∈ Ac. Let

bd = min {x ∈ X : ∃y ∈ X d < y < x} .

Then for every d there is j ∈ I such that

d ∈ Abd
⇐⇒ ∀i > j[i ∈ X −→ d ∈ Ai]. (∗)

By �Loś’s Theorem

K |= d ∈ A⇐⇒ {i ∈ I : d ∈ Ai} ∈ U.

Since X ∈ U and U is an ultrafilter, (∗) implies that

K |= d ∈ A⇐⇒ d ∈ Abd
.

Since the last condition is expressible in M (using the codes for f and X), this
shows that A ∈ Cod(M/I). Thus we proved that Cod(K/I) ⊆ Cod(M/I), and
since the other inclusion is obvious, this finishes the proof of (1) =⇒ (2).

(2) =⇒ (3) Let T ∈ Cod(M/I) be a finitely branching tree. The code for
T also codes a tree TK in K. Since M ≺I K, for every a ∈ I, the sequences
of length a in the two trees are the same. Pick an element b ∈ K such that
I < b < (M \ I). Then, since �(b) > I,

B =
{
x ∈ TK : x <TK b

} ∩ I

is a branch of T coded in K and is unbounded in I. By the assumption, B is
coded in M .

(3) =⇒ (4) Notice that by Corollary 7.3.3 we have now proved that the state-
ments (1), (2), and (3) are equivalent and are also equivalent to the statement:
for all n < ω, (I,Cod(M/I)) |= RTn

∞.
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Let 〈ϕi : i ∈ ω〉 be an enumeration of all formulas of L(M). Using RTn
2 we will

inductively define a sequence X0 ⊇ X1 ⊇ · · · of unbounded sets in Cod(M/I)
such that for all ā, b̄ ∈ [Xi]n

M |= [ϕi(ā)←→ ϕi(b̄)].

We add to L(M) a set of new constants {cν : ν < λ+}, and we define a theory
S as

{
ϕ(cν0 , . . . , cνn−1) : 〈ν0, . . . , νn−1〉 ∈ [λ+]n ∧ ∃i∀ā ∈ [Xi]n M |= ϕ(ā)

}
.

The choice if the Xi’s guarantees that S is consistent and Th(M,a)a∈M ⊆ S.
Let K be a model of S generated by the set C of (interpretations of) cν ’s in K.

For each c ∈ C, and all a ∈ I and b ∈ M \ I, the sentence a < c < b is in S.
Hence I < c < M \ I.

Suppose K |= t(c̄) < a for some Skolem term t of L(M), c̄ ∈ [C]n, and a ∈ I.
Then there is i such that

M |= t(ā) < a for all ā ∈ [Xi]n. (∗)

Consider the formula

ϕ = [t(x0, . . . , xn−1) = t(xn, . . . , t2n−1)].

Let Xj be the homogeneous set for ϕ. Since Xi ∩ Xj is unbounded (and I is
semiregular), there are ā ∈ [Xj ]2n such that

M |= t(a0, . . . , an−1) = t(an, . . . , a2n−1) = d,

for some d ∈ I. Then t(ā) = d for all ā ∈ [Xj ]n. Hence K |= t(c̄) = d, and this
proves that M ≺I K.

It remains to show that | {a ∈ K : |aK | ≤ λ} | = λ+. To this end we will show
that for all infinite ν, |(cν)M | = |ν|. Let t be a Skolem term of L(M). We will
show that if

K |= t(cν0 , . . . , cνn−1 , cµ0 , . . . , cµm−1) ≤ cνn−1 ,

where ν0 < · · · < νn−1 < µ0 < · · · < µm−1, then

t(cν0 , . . . , cνn−1 , cµ0 , . . . , cµm−1) = t(cν0 , . . . , cνn−1 , cµ′
0
, . . . , cµ′

m−1
),
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where ν0 < · · · < νn−1 < µ′
0 < · · · < µ′

m−1. The proof is similar to the one
showing that M ≺I K, and is left to the reader. Hint: consider the formula

t(x0, . . . , xn−1, y0, . . . , ym−1) = t(x0, . . . , xn−1, z0, . . . , zm−1).

The last claim implies that |(cν)K | = max(ℵ0, |ν|), finishing the proof.
(4) =⇒ (5) This implication is immediate. Let K be a model given by (4).

Then the cut {a ∈ K : |aK | ≤ λ} is λ+-like, hence semiregular.
(5) =⇒ (6) Let f ∈ M be a function such that I ⊆ dom(f). Let K be a

model given by (5), and let fK be the function coded by f in K. Since KM\I ⊆
dom(fK) and KM\I is semiregular, for each b, if I < b ∈ KM\I , then fK(bK) ∩
KM\I is bounded in KM\I . Hence, for each b, if I < b ∈ KM\I , then there is
c ∈ KM\I such that for each d ∈ KM\I ,

K |= ∀x < b [f(x) > c −→ f(x) > d]. (∗)

By overspill, there is d > KM\I such that (∗) holds. By taking a smaller d if
necessary, we can assume that d ∈ M . It follows that for all i ∈ I, if f(i) > I,
then f(i) > d.

(6) =⇒ (7) For A ∈ Cod(M/I), let

B = {x ∈ I : (I, A) |= ∃y ϕ(x, y,A)} ,

where ϕ(x, y,X) is a Σ0 formula with parameters from I.
For a fixed c > I, let

f(x) =

{
min {y : ϕ(x, y,A)} if such y exists,
c otherwise.

Let d ∈M \ I be such that for all x ∈ I, if f(x) > I, then f(x) > d. Then

B = {x ∈ I : M |= ∃y < d ϕ′(x, y, a)} ,

where ϕ′(x, y, a) is the translation of ϕ(x, y,A) given by Proposition 7.0.1. Hence,
B ∈ Cod(M/I).

(7) =⇒ (8) This is proved by standard induction on the quantifier complexity
of formulas.

Since (1), (2), and (3) are equivalent, to finish the proof of the theorem we
show now that (8) =⇒ (3). This already follows from Corollary 7.3.3. The argu-
ment is just the proof of König’s Lemma formalized in PA∗. First notice that (8)
implies that (I,Cod(M/I)) |= PA∗. Indeed, if the set defined by ϕ(x,A0, . . . , An)
in (I, A0, . . . , An) is nonempty, then, since it is coded inM , it has a least element.



194 CUTS

Let T ∈ Cod(M/I) be a finitely branching tree. Define a branch B in T by
induction in (I, T ):

f(0) = min {x ∈ T : �(x) = 1 ∧ ∀i > 0∃y ∈ T (�(y) = i ∧ x ⊆ y)} ,

f(i+ 1) = min {x ∈ T : �(x) = i+ 2 ∧ f(i) ⊆ x ∧ [∀j > i∃y ∈ T (�(y) = j ∧ x ⊆ y)]} .

Since I is semiregular, if i ∈ I and f(i) is defined (i.e. the corresponding set
is nonempty), then f(i+ 1) is defined.

Let B = f(I). Then B is an unbounded branch of T in I and, because B is
definable from <T , B ∈ Cod(M/I). �

Notice that while proving Theorem 7.3.4 we gave an almost complete proof
of Theorem 7.3.2. The missing link is the implication RCA0 +KL � RTn

∞, for all
n < ω. This is a formalization of the classical result of Ramsey Theory using the
so called Erdős–Rado tree. See [83] or [187].

The assumption of semiregularity of I was used several times in the proof
of Theorem 7.3.4. For an argument that this assumption is necessary, see
Exercise 7.5.5.

7.4 Why PA?

There are several lines of argument one could take to explain why Peano Arith-
metic deserves a special place in foundational studies. Still, instead of an
argument, one prefers a theorem which shows PA is not only a convenient formal
system, but is, in a sense, necessary. In this section we present two theorems in
this direction. Of course, it is debatable whether they fulfill the objective. The
first result, Theorem 7.4.2, reverses two theorems in the model theory of PA. The
objective is to prove that if a theory T in LPA has such and such model theoretic
properties, then T is at least as strong as PA. Now we describe the assumptions
on T and the relevant properties.

For the rest of this section, we assume that T is a consistent theory in LPA

extending IΣ0.
It is not difficult to see that PA is “necessary” for the MacDowell-Specker

Theorem. In fact, it is not even the MacDowell-Specker Theorembut its weaker
form restricted to countable models. This is the content of the following exercise.

Exercise 7.4.1 Suppose that every countable model of T has an elementary
end extension. Then T � PA.

The next theorem shows that PA is also necessary for Gaifman’s splitting
theorem suitably modified.
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Theorem 7.4.2 Let T be an LPA theory extending IΣ0 + exp, and suppose that
every complete extension of T has a countable model K such that:

(1) K has no proper elementary substructures.
(2) Whenever K ≺ L, and L is countable, there exist K ′ and L′ such that

L ≺ L′ and K ≺cof K
′⊆end L′.

Then T � PA. �

Theorem 7.4.2 follows from the next two theorems (Do it!). The proof of the
first one is not very difficult and is left as an exercise. The rest of this section is
devoted to an outline of the proof of the second theorem. For details consult [70].

Theorem 7.4.3 Let K |= IΣn for some n < ω, and suppose

K ≺cof N ⊆end L |= IΣn,

N �= L, and K ≺ L. Then K |= BΣn+1. �

Theorem 7.4.4 Let K |= BΣn + exp + ¬IΣn for some 0 < n < ω. Then
K has a proper elementary submodel. Moreover, if K is countable, then it is
isomorphic to a proper elementary submodel of itself and it has continuum many
automorphisms. �

Notice that by Theorem 7.4.4, condition (1) in Theorem 7.4.2 can be replaced
by

(1′) K is countable and has fewer than continuum many automorphisms;

The following lemma is a refinement of Theorem 7.1.5.

Lemma 7.4.5 Suppose that K ⊆end N |= IΣ0, K �= N , and K |= BΣn + exp +
¬IΣn, where 0 < n < ω. For n > 1, assume also that K ≺Σn

N . Then K is not
semiregular in N . Moreover, there are a, f ∈ N and b ∈ K such that f ≤ a, f
is a function from bK into N such that rg(f) ∩K cofinal in K, and aa

a

exists
in N . �

Proof Consider the case of n > 1. The assumption K ≺Σn
N implies that N |=

IΣn−2 + exp. Since K is not a model of IΣn, there is ψ(x, y) ∈ Πn−1, possibly
with parameters from K, such that K |= ∃x, yψ(x, y) and there is no least x in
K such that ∃yψ(x, y). Let ψ(x, y) be ∀zϕ(x, y, z) with ϕ(x, y, z) ∈ Σn−2.

The formula

∃x′ ≤ x∃y′ ≤ y ∀zϕ(x′, y′, z)

is equivalent to

∀w[∃x′ ≤ x∃y′ ≤ y ∀z ≤ wϕ(x′, y′, z)].
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Let θ(x, y, w) be the formula in the square brackets above. Since K and N
are models of BΣn−2, θ(x, y, w) is equivalent both in K and N to a Σn−2 for-
mula. Notice that K |= ∃x, y∀wθ(x, y, w) and there is no least x ∈ K for which
∃y∀wθ(x, y, w) holds.

Now, let r, s ∈ K be such that K |= ∀wθ(r, s, w). Then for all k ∈ K,
K |= ∀w < kθ(r, s, w). By overspill, there is β ∈ N \K such that

N |= ∀w < βθ(r, s, w).

Now define f : rK −→ N by

f(x) =

{
min {u : ∀w < β∃y < uϕ(x, y, z)} if such u exists,
β otherwise.

As in the proof of Theorem 7.1.5, one can prove that the range of f must be
unbounded in K (Do it!); hence f has the required properties.

Since N is closed under exponentiation, there is an a ∈ N such that a > f
and aa

a

exists in N . In the case of n = 1 the proof is similar, but since N
might not be closed under exponentiation, extra care must be taken when using
overspill to select a β as above. See the details in [70]. �

The techniques used in the proof of Theorem 7.4.4 are slightly outside the
scope of this book. We omit the details and refer the reader to [70]. Here is
the idea of the proof. Let a, b, and f be as in Lemma 7.4.5. Let x0, x1, . . . be
an enumeration of K. Using the fact that (aN ,+,×), considered as a relational
structure, is recursively saturated, one can construct a sequence α0, α1, . . . of
automorphisms of aN such that αi fixes bn ∪ {x0, . . . , xi−1, f} pointwise. Then
the required embedding β is defined by

β(xi) = α−1
0 α−1

1 . . . α−1
i (xi).

One can easily show that β is an embedding of K into itself. The main difficulty is
to arrange the αi’s so that β(K) is a proper substructure of K and the extension
β(K) ⊆ K is elementary. This takes some work.

7.4.1 Schemes axiomatizing arithmetic

The induction schema of PA is obtained by schematizing the second-order
induction axiom IA:

∀X[0 ∈ X ∧ ∀x(x ∈ X −→ x+ 1 ∈ X) −→ ∀x x ∈ X].

The schematization of a second-order sentence ∀X Φ(X), with no other second-
order quantifiers, is the scheme consisting of the universal closures of all instances
of Φ(ϕ), where ϕ is a first-order formula, and Φ(ϕ) is obtained from Φ(X) by
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replacing each occurrence of xi ∈ X by ϕ(xi), where ϕ(xi) is first-order and it
can have other variables. The schema obtained this way is denoted by Φ(Def).

Notice that IA is equivalent to ∀X LA(X), where LA(X) declares that if X
is nonempty, then it has a least element. Formally, LA(X) can be written as
follows (notice the use of x0, it is not a typo):

∀x0 ∈ X∃x1 ∈ X∀x2 ∈ X(x1 ≤ x2).

Thus, PA can be considered a schematization of ∀X LA(X).
The slightly unusual form of LA(X) is needed to conform to the following

definition. We say that a second-order formula is restricted if it is of the form

Q0x0 ∈ X . . .Qn−1xn−1 ∈ Xϕ(x0, . . . , xn−1),

where each Qi is either ∃ or ∀, and ϕ is in LPA. So, LA(X) is restricted.
The standard model is the only model IA and the basic semi-ring axioms of

PA. In other words, PA is the schematization of a second-order axiom which is
categorical for N over a finite subset of Th(N). We will show that PA is, in a
sense, the weakest such theory. More precisely:

Theorem 7.4.6 Suppose Φ(X) is a restricted formula of second-order arith-
metic such that ∀XΦ(X) is categorical for N over some finite theory T in
LPA. Then there is a finite set T1 of LPA sentences such that N |= T1 and
T1 +Φ(Def) � PA. �

Before we begin the proof we need some preparation. Let L be a relational
language and let I = (I,<) be a linearly ordered set. An I-structure is a sequence
A = 〈Ai : i ∈ I〉 of L-structures such that for i < j, Ai ⊆ Aj . Let A be the L-
structure

⋃
i∈I Ai. If ϕ is a sentence of L(A) in prenex normal form, then the

relation A � ϕ is defined by induction on ϕ as follows:

A � ϕ iff A |= ϕ if ϕ is quantifier-free;
A � ∀xϕ(x) iff for all a ∈ A, A � ϕ(a);
A � ∃xϕ(x) iff for all i such that the parameters of ϕ are in Ai, and for all

j > i, there is b ∈ Aj such that A � ϕ(b).

The following lemma is easy and it is left as an exercise.

Lemma 7.4.7 (1) If I has no last element and A � ϕ, then A |= ϕ.
(2) Suppose I ′ ⊆ I. Let A′ = 〈Ai : i ∈ I ′〉, and let A′ =

⋃
i∈I′ Ai. If ϕ ∈ L(A′)

and A � ϕ, then A′ � ϕ. �

Let U be the set of formulas of L(A) which are in the prenex normal form,
in which all negations are applied to atomic formulas. For every formula ϕ of
L(A), let ϕ∗ be a formula in U logically equivalent to ¬ϕ. A subset S of U is
closed if it is closed under subformulas and if ϕ∗ is in S, then ϕ is in S. Notice
that any finite S ⊆ U is contained in a finite closed subset of U .
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If ϕ(x̄) is in U , then we say that A determines ϕ(x̄) if for all ā in A either
A � ϕ(ā) or A � ϕ∗(ā).

Lemma 7.4.8 Suppose that I = (ω,<) and A is an I-structure with each Ai

finite. Let S be a finite closed subset of U . Then there is an infinite increasing
sequence 〈ij : j < ω〉 such that the I-structure 〈Aij : j < ω

〉
determines S.

Proof A relatively straightforward proof by induction on the size of S is left to
the reader (Do it!). Hints: The result is obvious if S contains only quantifier-
free formulas. Otherwise let ϕ ∈ S be of maximal length. Then the inductive
hypothesis applies to S′ = S \{ϕ,ϕ∗}. Without loss of generality, we can assume
that ϕ is of the form ∃yψ(y, x̄). Now inductively define a sequence i0 < i1 < · · ·
such that for all k < ω and all b̄ in Aik−1 , either A(k) � ϕ(b̄) or A(k) � ϕ(b̄)∗,
where

A(k) =
〈
Ai0 , . . . , Aik , Aik+1 , Aik+2 , . . .

〉
. �

Proof of Theorem 7.4.6 Let

Φ(X) = Q0x0 ∈ X, . . . , Qk−1xk−1 ∈ Xϕ(x0, . . . , xk−1)

be a restricted formula, where ϕ(x0, . . . , xk−1) is in LPA. Suppose that N is the
only model ∀XΦ(X)+T for some finite theory T in LPA. Let L be the language
containing just one k-ary relation symbol R, and let

σ = Q0x0 . . . Qk−1xk−1R(x0, . . . , xk−1).

First we claim that for each n < ω, there is an (n + 1, <)-structure A =
〈Ai : i ≤ n〉 for the language L such that for each i ≤ n, Ai ⊆ ω is finite,

∀n0, . . . , nk−1 ∈ Ai [Ai |= R(n0, . . . , nk−1) iff N |= ϕ(n0, . . . , nk−1)],

and A � σ∗.
To this end, let M |= TA be countable and nonstandard. Since N �∼= M , there

is some X ⊆M such that M |= ¬Φ(X). Notice that for all n < ω,

∀Y ⊆ N
[|Y | = n −→ (N, Y ) |= Φ(Y )

]
is a true statement which can be written as an equivalent sentence of LPA. Since
M |= TA, the statement is also true in M , from which it follows that X must be
infinite.
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Let B0 ⊆ B1, . . . be finite sets such that X =
⋃

i<ω Bi. Let

V =
{
(a0, . . . , ak−1) ∈Mk : M |= ϕ(a0, . . . , ak−1)

}
.

Finally, let B be the (ω,<)-structure
〈
(Bi, V ∩Bk

i ) : i < ω
〉
. By Lemma 7.4.8

we can assume that B determines σ. If B � σ, then, by Lemma 7.4.7,
⋃B |=

σ. Now, since
⋃B = (X,V ∩ Bk), this implies that M |= Φ(X), which is

a contradiction. Hence, B � σ∗ and, again by Lemma 7.4.7, for any n < ω,〈
(Bi, V ∩Bk

i ) : i ≤ n
〉

� σ∗. Now let G(x) be an LPA formula expressing the
following:

∃y{y is a (code of a) (x+ 1, <)-structure such that y � σ∗ and

∀a0, . . . , ak−1 ∈
⋃

y [(y � R(a0, . . . , ak−1))←→ ϕ(a0, . . . , ak−1)]}.

We have shown that for every n < ω, M |= G(n). Since N ≺M , this finishes
the proof of the claim.

To finish the proof of the theorem, let the base theory T1 be IΣ1 + ∀xG(x).
Since IΣ1 is finitely axiomatizable, T1 is finite. It remains to show that T1 +
Φ(Def) � PA. Suppose not. Then there is a model M |= T1 + Φ(Def) such that
for some LPA formula ψ(x)

M |= ψ(0) ∧ ∀x(ψ(x) −→ ψ(x+ 1)) ∧ ∃x¬ψ(x).

Let J be the cut {b ∈M : ∀x ≤ b ψ(x)} . Let a ∈ M be such that J < a. Since
M |= G(a), there is a coded sequence A = 〈Ai : i ≤ a〉 of L-structures such that

M |= ∀i ≤ j ≤ a{Ai ⊆ Aj ∧ A � σ∗∧

∀a0, . . . , ak−1 ∈ Ai [Ai |= R(a0, . . . , ak−1)←→ ψ(a0, . . . , ak−1)]}. (∗)

Using IΣ1, one can verify that A is an (aM , <)-structure and A � σ∗. It follows
that 〈Ai : i ∈ J〉 � σ∗. The formula

χ(x) = ∃y[∀z ≤ y(ψ(z) ∧ x ∈ Ay)]

defines A =
⋃

i∈J Ai in M . By (∗), the interpretation of R is exactly Ak ∩ψ(M).
Since A |= σ∗, this implies that M satisfies the negation of the sentence

Q0x0 . . . Qn−1xn−1[
∧
i<n

χ(xi) ∧ ψ(x0, . . . , xn−1)]

in violation of M |= Φ(Def). This contradiction finishes the proof. �
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7.5 Exercises

♣7.5.1 There are nonstandard M ≺end N such that all X ∈ Cod(N/M) are
inductive and (M,Cod(N/M)) is not a model of ACA0.

♦7.5.2 Every nonstandard model M has cuts I such that I |= PA and cfM (I) =
N. (Hint: every countable recursively saturated model M has elementary cuts
I such that cfM (I) = N, and every nonstandard model has a cut which is a
recursively saturated model of PA.)

♦7.5.3 Let M be a countable model, and let N be such that M ⊆end N and
cfN (M) = N. Then |(Aut(M))| = 2ℵ0 . More generally, if M ⊆end N and M is
not semiregular in N , then |(Aut(M))| = 2ℵ0 .

♦7.5.4 Every countable model has an elementary extension in which N is strong
and has elementary extension in which N is not strong.

♣7.5.5 Let I be a strong cut of a model M . For c > I, let J ={
x : ∃i ∈ I (x < ci)

}
. Then for all n < ω and all a ∈ I, (J,Cod(M/J)) |= RTn

a .

♦7.5.6 If I is a strong cut of countable model M , then there is K such that
M ≺I K and I is strong in K.

♦7.5.7 If I is a cut of a countable model M and (I,Cod(M/I)) |= RT2
∞, then

there is K such that M ≺I K and I is regular in K.

♥7.5.8 If I is a strong cut of a countable model M and K is the model con-
structed in the proof of (1) =⇒ (2) in Theorem 7.2.4, then KM\I is strong in
K.

♥7.5.9 If I is a strong cut of a countable modelM andM ≺I K, then I ≺ KM\I .

Superstrong cuts: for I ⊆end M and c ∈ I, [I]c is the collection of coded
increasing sequences σ of elements of I such that �(σ) = c. A cut I of M is
superstrong if it is semiregular, and there is a nonstandard c such that every coded
partition of [I]c into two sets has a coded homogeneous set which unbounded in I.

♣7.5.10 If I is strong in M and (M, I) is recursively saturated, then I is
superstrong.

♦7.5.11 If I is a nonstandard superstrong cut of M , then Th(I) ∈ SSy(M).

♣7.5.12 There is a cut which is strong but not superstrong. (Hint: use previous
exercise.)

♦7.5.13 Let Ψ(X) be the formula expressing the following: “Either (X)0 = ∅ or
(X)0 has a least element or (X)1 is not a full satisfaction class.” Then:

(1) ∀X ψ(X) is categorical for N (over some finite LPA-theory).
(2) For a sufficiently strong finite fragment T of TA, T � Ψ(Def).
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7.6 Remarks & References

The study of the hierarchy of cuts in models of arithmetic was initiated by Paris
and developed by Kirby & Paris in [80], [83], and [146], by Mills and Paris in
[148], and in many papers that followed. See [50] and [71] for more details and,
in particular, for applications to independence results.

Hirst and Simpson recognized the importance of combinatorial properties of
structures of the form (I,Cod(M/I)) in the analysis of fragments of second-order
arithmetic and their applications to Reverse Mathematics. Much of the work of
Kirby and Paris, reconstructed in this context, together with new results are
in Hirst’s Ph.D. thesis [55]. Full discussion of the role of König’s Lemma and
Ramsey’s Theorem(s) in second-order arithmetic is given in [187].

Kirby & Paris asked in [83] whether the assumption that (I,Cod(M/I)) |=
RT2

∞ implies that I is strong. The problem is related to an earlier question of
Jockusch [62] concerning effective versions of Ramsey’s Theorem : is there a
recursive partition of [N]2 into two pieces such that 0′ is recursive in any infinite
homogeneous set? The negative solution was given by Seetapun [181]. Seetapun’s
result implies that RT2

∞ does not prove ACA0 over RCA0. Some improvements
and a comprehensive account of the problem are given in [21].

Proposition 7.2.5 (RT2
2 =⇒ RT1

∞) and Theorem 7.2.2 (there are semiregular
cuts which are not regular) imply that WKL0 does not prove RT2

2. This and other
related results are independently due to Hirst [55], see [21].

Clote [22] contains various results concerning cuts, partition properties, and
collection schemas for fragments of arithmetic.

Theorem 7.2.2 is from [105]. A generalization to higher levels of the arithmetic
hierarchy is due to Kanovei [65]. Kanovei’s generalization requires the model to
be recursively saturated. It is open whether this assumption is necessary. A
shorter proof of Kanovei’s result using partial inductive satisfaction classes is
published in [99].

The example in Exercise 7.5.5 is from [80].
Theorem 7.4.2 is due to Kaye [70]. Part of Lemma 7.4.5, stating that every

countable model of BΣn + exp + ¬IΣn, n > 0 has continuum many auto-
morphisms, was proved earlier in [94] (with a correction in [95]). For interesting
complementary results on cofinal extensions of models fragments of arithmetic
see [72].

The elegant Theorem 7.4.6 on schemes axiomatizing arithmetic is due to
Wilkie [212]. There are some fine points of this result that need to be mentioned.
First, the finite fragment T1 in Theorem 7.4.6 might not be provable in PA. In
fact, the second theorem in [212] states:

There is a restricted formula Φ(X) such that ∀XΦ(X) is categorical
for N (over some finite PA-provable LPA theory), but such that for
no n < ω do we have IΣn+ Φ(Def) � PA.

Concerning the question of categorical axiomatizations which are not
expressed in the restricted form, Paris gave a counterexample which is our
Exercise 7.5.13 (the counterexample is given in [212]).




AUTOMORPHISMS OF RECURSIVELY SATURATED

MODELS

Every countable recursively saturated first-order structure is strongly
ω-homogeneous, which means that if ā, b̄ are finite tuples from the structure
and tp(ā) = tp(b̄), then there is an automorphism f such that f(ā) = b̄. Also,
each infinite definable set A has infinitely many elements realizing the same type
(Do it!). This shows that countable recursively saturated structures have rich
automorphism groups. In this chapter we show that some interesting properties
of countable recursively saturated models of PA can be expressed in terms of their
automorphisms and automorphism groups. In particular, a countable recursively
saturated model is arithmetically saturated iff it has an automorphism moving
all undefinable elements. Much of this chapter is devoted to the proof of this and
several other characterizations of arithmetic saturation. We also study the rela-
tionship between the type of an element and its stabilizer in the automorphism
group. As elsewhere in this book, the results apply to models of PA∗. However,
since we now have to pay attention to the way the syntax is arithmetized, in this
chapter we consider PA∗ for finite languages only.

8.1 Moving undefinable elements

Let M be a countable recursively saturated model. Which elements of M can be
moved by an automorphism? What do orbits of elements of M look like? Which
elements can be moved if some set of elements is fixed? Let us start with two
simple observations.

A direct argument shows that every undefinable element of a countable
recursively saturated model can be moved by an automorphism. If M is recurs-
ively saturated, then so is (M,a), for each a ∈M . Hence, we have the following
basic proposition:

Proposition 8.1.1 Let M be a countable recursively saturated model. Then for
every a, b ∈M , if b /∈ Scl(a), then there is an automorphism f such that f(a) = a
and f(b) �= b. �

Let f be a nontrivial automorphism of a model M . Since f(0) = 0 and for
every x ∈ M , if f(x) = x, then f(x+ 1) = x+ 1. Then f is not inductive, and,
consequently, f is not definable in M .
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By Ehrenfeucht’s Lemma 1.7.2, if tp(a) = tp(b) and a �= b, then b /∈ Scl(a). In
particular, if f(a) �= a, then f(a) /∈ Scl(a); hence, f is not 0-definable at a single
(moved) point. This, as we will now prove, implies that nontrivial automorphisms
of recursively saturated models are not even L∞ω-definable. The key to this result
is the following lemma.

For a subset X of a first-order structure A, let

aA(X) = | {f(X) : f ∈ Aut(A)} |.

Lemma 8.1.2 (Kueker–Reyes Lemma) Let A be a countable first-order
structure and X ⊆ A. If for any finite A ⊆ A, there is g ∈ Aut((A, a)a∈A)
such that g(X) �= X, then aA(X) = 2ℵ0 . �

Let f and g be automorphisms of a model M . Then fg, the conjugate of f
by g, is gfg−1. Notice that the image of the graph of f under g is the graph of
fg (Do it!).

Proposition 8.1.3 Every nontrivial automorphism of a countable recursively
saturated model has continuum many conjugates.

Proof Let f be a nontrivial automorphism of a model M . Using the
Kueker–Reyes Lemma, we will show that if X = {〈x, f(x)〉 : x ∈M}, then
aM (X) = 2ℵ0 . Since M |= PA∗, it is enough to consider one-element subsets
A = {a} ⊆M . There are two cases.

Case 1: f(a) = a. Let b be such that f(b) �= b. Then, by Ehrenfeucht’s Lemma
applied to the model (M,a), f(b) /∈ Scl(a, b). By Proposition 8.1.1, there is g
such that g(a) = a, g(b) = b, and g(f(b)) �= f(b). Hence, g(X) �= X.
Case 2: f(a) �= a. Then f(a) /∈ Scl(a). In this case, let g be such that g(a) = a

and g(f(a)) �= f(a). So, g(X) �= X. �

It follows from Proposition 8.1.3 that if f is a nontrivial automorphism of
a countable recursively saturated model M , then f is not definable in M by a
formula with a finite number of parameters in any extension of first-order logic.
In particular, f is not definable in L∞ω.

There are countable recursively saturated linearly ordered structures which
have nontrivial definable automorphisms. If a structure A has a nontrivial
0-definable automorphism then so does each structure elementarily equivalent to
A. Thus, to get an example, consider a recursively saturated model of Th(Z, <).

8.2 Moving cuts and classes

In the previous section we showed that if X is the graph of a nontrivial auto-
morphism of a recursively saturated model M , then aM (X) = 2ℵ0 . What other
sets have continuum many automorphic images? If D is an undefinable subset
of a countable first-order structure A and (A, D) is recursively saturated, then
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aA(D) = 2ℵ0 (Do it!). In general, however, there are undefinable sets D for
which aA(D) is small. For example, in every model M of PA, aM (N) = 1.

The next exercise is another application of the Kueker–Reyes Lemma.

Exercise 8.2.1 Let I be a proper cut of a countable recursively saturated model
M . Then, aM (I) < 2ℵ0 iff there is a ∈M such that either I ∩ Scl(a) is cofinal in
I or (M \ I) ∩ Scl(a) is coinitial in M \ I.
Corollary 8.2.2 For any cut I in a countable recursively saturated model M ,
aM (I) ∈ {1,ℵ0, 2ℵ0}. �

Theorem 8.2.3 Let X be an undefinable class in a countable recursively
saturated model M . Then aM (X) = 2ℵ0 .

Proof Let a ∈ M be given. For each b ∈ M , let Xb = X ∩ bM , and let pb(u, v)
be the recursive type:

{ϕ(u, a)←→ ϕ(v, a) : ϕ ∈ Form} ∪ {(v < b) ∧ (u ∈ Xb) ∧ (v /∈ Xb)} .

By the Kueker–Reyes Lemma, it is enough to show that there is a b for which
pb(u, v) is finitely realizable. Assume, to the contrary, that there is no such b.
Then for every b ∈M , there is a formula θb(u, a) such that

M |= ∀u < b [θb(u, a)←→ u ∈ Xb].

Now, suppose Scl(a) < b0 < b1. Then

M |= ∀u < b0 [θb0(u, a)←→ θb1(u, a)],

hence, for K = sup(Scl(a)),

K |= ∀u [θb0(u, a)←→ θb1(u, a)],

and it follows that θb0(u, a) and θb1(u, a) define the same subset of M . Since b1
was arbitrary, it follows that θb0(u, a) defines X, contradicting the undefinability
of X. �

We need a stronger version of the previous theorem. In its proof we will make
use of the topology of Aut(M). See Section 8.8 for background.

Theorem 8.2.4 Let {Xi : i < ω} be a collection of undefinable classes of a
countable recursively saturated model M . Then there is an f ∈ Aut(M) such
that for all i, j < ω, f(Xi) �= Xj.

Proof For any i, j < ω, the set

Ui,j = {f ∈ Aut(M) : f(Xi) �= Xj}
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is dense and open in Aut(M). To see this, suppose that g(a) = b for some
g ∈ Aut(M). If g(Xi) �= Xj , we are done. So suppose g(Xi) = Xj . Then let
f ∈ Aut(M, b), given by Theorem 8.2.3, be such that f(b) = b and f(Xj) �= Xj .
Then fg(a) = b and fg(Xi) �= Xj . This shows that Ui,j is dense. It is easy to
see that it is open.

By the Baire Category Theorem, U =
⋂

i,j<ω Ui,j is comeager. Any f ∈ U
has the required property. �

Corollary 8.2.5 Every countable recursively saturated model M has two count-
able recursively saturated elementary end extensions M0 and M1 such that

Cod(M0/M) ∩ Cod(M1/M) = Def(M).

Proof Let M0 be a countable recursively saturated elementary end extension
of M and let X = Cod(M0/M) \ Def(M). Let f ∈ Aut(M) be such that for
all A ∈ X, f(A) /∈ X. Then f : M −→ M is an elementary embedding of M
onto an elementary cut of M0. After identifying M with its image f(M), the
embedding gives a recursively saturated elementary end extension M ≺end M1.
Then for each undefinable A ⊆ M , if A is coded in M0, it is not coded in M1;
hence Cod(M0/M) ∩ Cod(M1/M) = Def(M). �

8.3 Moving gaps

If a and b are elements of a countable recursively saturated model M and for all
n < ω, a + n < b, then there are automorphisms of M which fix a and b and
move some elements inside the interval [a, b]. In particular, for every nonstandard
a ∈ M , there are an automorphism f and an element c ∈ gap(a) such that
f(c) �= c and f(c) ∈ gap(a). Now, if c ∈ gap(a) and f(c) ∈ gap(a), then
f(gap(a)) = gap(a). We also have a more interesting result.

Proposition 8.3.1 Let f be an automorphism of a model M and let a ∈M be
such that f(a) ∈ gap(a). Then there is c ∈ gap(a) such that f(c) = c.

Proof Suppose that b = f(a) ∈ gap(a). By the Blass–Gaifman Lemma 1.7.1,
there are c ∈ gap(a) and a Skolem term t(v) such that t(a) = t(b) = c. Then
f(c) = f(t(a)) = t(f(a)) = t(b) = c. �

One can ask whether there is a nontrivial automorphism of M such that
f(a) ∈ gap(a) for every a. The result known as The Moving Gaps Lemma implies
that there is none.

Theorem 8.3.2 (Moving Gaps Lemma) Suppose f is an automorphism of
a countable recursively saturated model M . Then for every d such that f(d) �= d
and for all b, c ∈ M such that d < gap(b) < gap(c), there is an a such that
gap(b) < a < gap(c) and f(a) /∈ gap(a).
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Proof Let d ∈ M be such that f(d) �= d. Let ϕ(x, d) = ∃y(〈d, y〉 = x). By
Theorem 3.2.11, there is a ∈ M such that tp(a) is rare and M |= ϕ(d, a). By
recursive saturation, we can assume that gap(b) < a < gap(c). Then d ∈ Scl(a).
Hence, for every g ∈ Aut(M), if g(d) �= d, then g(a) �= a. Thus, f(a) �= a. Since
tp(a) is rare, it follows that f(a) /∈ gap(a). �

Corollary 8.3.3 Let M be a recursively saturated model and let f ∈ Aut(M)
be such that for all a ∈M , f(a) ∈ gap(a). Then f = id . �

8.4 Back-and-forth

Almost every theorem about automorphisms of countable recursively saturated
model is proved by a back-and-forth construction. One enumerates the model
and then proceeds with the construction of a sequence σ0 ⊆ σ1 ⊆ · · · of finite
partial automorphisms making sure that all elements in M are in the domain
and in the range of

⋃
n<ω σn. Crucial in each such construction is a back-and-

forth lemma which guarantees that the process can be continued preserving some
required property. In other words, if σ is a partial finite automorphism with the
required property, we need to show that for any a ∈M , there is b ∈M such that
the extension σ∪{(a, b)} is a partial automorphism with the same property. This
is the “forth” step. Similarly, we must be able to extend σ by choosing b first and
then finding the appropriate a. This constitutes the “back” step. Typically, the
“back” and the “forth” steps are symmetric, so only one is explained in detail.
The same approach is used for constructing isomorphisms between two countable
structures. In this case, sequences of partial finite isomorphisms are built using
enumerations of both structures.

In this section, we present one important back-and-forth construction. It is
a prototype for many similar constructions.

Definition 8.4.1 If f is an automorphism of a model M , then

Ifix(f) = {a ∈M : ∀x < a(f(x) = x)} .

For every automorphism f , Ifix(f) is a cut of M . Suppose f(x) = x for all
x < a. Consider an element b < 2a. Let b = Σc

i=12
xi be the binary expansion of

b, where x1 < · · · < xc < a, and c ≤ a. Then

f(b) = Σf(c)
i=1 2

f(xi) = Σc
i=12

xi = b.

This proves that every cut of the form Ifix(f) is closed under exponentiation.
This turns out to be the only restriction.
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Theorem 8.4.2 Suppose M is a countable recursively saturated model and I is a
cut closed under exponentiation. Then there is f ∈ Aut(M) such that Ifix(f) = I.

�

Theorem 8.4.2 is a consequence of the following two back-and-forth lemmas.
Recall that, according to our conventions on coding, if a ∈ M and a set

x ⊆ aM is coded in M , then x has a code below 2a.

Lemma 8.4.3 Let M be recursively saturated and suppose that a, b, c ∈ M are
such that for all x < 22c

, (M,x, a) ≡ (M,x, b). Then for each a′ ∈ M there is
b′ ∈M such that, for all x < c, (M,x, a, a′) ≡ (M,x, b, b′).

Proof Let a′ be given. Consider the recursive type p(w) with parameters
a, a′, b, c consisting of all those formulas

∀x < c [ϕ(x, a, a′)←→ ϕ(x, b, w)],

where ϕ(x, y, w) is a ternary L-formula.
We will finish the proof when we show that p(w) is finitely realizable. Let

ϕ0(u, v, w), . . . , ϕn(u, v, w) be given. Let

Di = {x < c : M |= ϕi(x, a, a′)} .

Then Di < 2c and

M |= ∃w
n∧

i=0

[∀x < c(ϕi(x, a, w)←→ x ∈ Di)], (∗)

since a′ is a witness. Since the set of parameters in (∗) has a code which is smaller
than 22c

, by the hypothesis of the lemma, (∗) is true with a replaced by b, and
the result follows. �

Lemma 8.4.3 can be used to construct an automorphism fixing every element
of I and sending a to b. To finish the proof of Theorem 8.4.2 we need another
lemma which tells us how to make sure that the automorphism moves arbitrarily
small elements above I.

Lemma 8.4.4 Let M be recursively saturated. Then for every a ∈M and every
nonstandard c there are a′, a′′ < 2c

2
such that a′ �= a′′ and for all x < c,

(M,x, a, a′) ≡ (M,x, a, a′′).

Proof For n < ω, let tpn(x) be the type of x restricted to the first n formulas in
some fixed recursive enumeration of all unary formulas. Consider the recursive
type q(v, w) with parameters a, c, d:

{∀x < c (tpn(x, a, v) = tpn(x, a, w)) : n < ω} ∪ {(v �= w)} ∪
{
v, w < 2c

2
}
.
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We will show that q(v, w) is finitely realizable. If not, then there is n < ω such
that

M |= ∀v, w < 2c
2
[∀x < c (tpn(x, a, v) = tpn(x, a, w) −→ v = w)]. (∗)

Now consider the equivalence relation on [0, 2c
2 − 1] defined by

v ∼ w ⇐⇒ ∀x < c (tpn(x, a, v) = tpn(x, a, w)).

According to (∗), this relation has exactly 2c
2
equivalence classes. However, it is

clear from the definition that there cannot be more than 2cn such classes, which
is a contradiction. �

Proof of Theorem 8.4.2 Let I be a cut of M closed under exponentiation.
We enumerate M \ I and construct an automorphism f , such that f(x) = x for
all x ∈ I, by a back-and-forth procedure involving Lemma 8.4.3. Each couple
of back-and-forth steps is followed by an extra step to make sure that f moves
points arbitrarily close to I. We fix a sequence d0 > d1 > · · · coinitial in M \ I.
Suppose that ai �→ bi, i < n < ω, is a finite partial automorphism and there is
c > I such that for all x < c, (M,x, ā) ≡ (M,x, b̄). (For n = 0, any c > I will
do.) First, we use Lemma 8.4.4 to get c′ > I and a′, a′′ < dn such that a′ �= a′′

and for all x < c′,

(M,x, ā, a′) ≡ (M,x, ā, a′′). (∗)

Notice that there is such c′ > I, because I is closed under exponentiation.
Applying Lemma 8.4.3, we get bn and c′′ > I such that for all x < c′′,
(M,x, ā, a′) ≡ (M,x, b̄, bn). Then we define an = a′ if a′ �= bn and an = a′′

otherwise. �

With possibly one restriction, we can improve the statement of Theorem 8.4.2
a bit. We say that a cut I ⊆end M is downward ω coded by a if there is a ∈M such
that I = inf{(a)n : n < ω}. A cut is downward ω coded in M if it is downward
ω coded by some a ∈M .

Theorem 8.4.5 Let M be a countable recursively saturated model. Suppose that
I ⊆end M is a cut closed under exponentiation and not downward ω coded in M ,
and let a, b ∈M . If (M,x, a) ≡ (M,x, b) for all x ∈ I, then there is f ∈ Aut(M)
such that Ifix(f) = I and f(a) = b.

Proof Let 〈ϕi(x, y) : i < ω〉 be a recursive enumeration of the formulas of L
with the free variables as shown. Let

dn = max
{
d : d < a ∧ ∀x < d

∧
i≤n

[ϕi(x, a)←→ ϕi(x, b)]
}
.
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By the assumption, dn > I for each n < ω. By recursive saturation, there is
d ∈M such that (d)n = dn for all n < ω. Hence, there is e > I such that for all
n < ω, dn > e, and the theorem follows from Lemmas 8.4.3 and 8.4.4 (Do it!).

�

The assumption that I is not downward ω coded cannot be eliminated from
Theorem 8.4.5. Let a, b realize the same minimal type in M and assume that
gap(a) < b. Then for I = inf(gap(a)), (M,x, a) ≡ (M,x, b) for all x ∈ I.
However, if f ∈ Aut(M) is such that Ifix(f) = I, then f(gap(a)) = gap(a).
Hence f(a) �= b.

The following simple corollary will be used in Chapter 9.

Corollary 8.4.6 Let M be a countable recursively saturated model. Suppose
I ≺end M is not downward ω coded. Then for all a, b, c, d ∈M such that I < a < b
and I < gap(c) < gap(d), there is f ∈ Aut(M) such that I = Ifix(f) and
c < f(a) < f(b) < d.

Proof Since I is not downward ω coded, I �= inf(gap(e)) for all e ∈ M . Then
there are a0, a1, a2, b0, b1 which realize the same minimal type in M such that
I < a0 < a1 < a < b < a2 and c < b0 < b1 < d. Since minimal types are
strongly indiscernible, (M,x, a1, a2) ≡ (M,x, b1, b2) for all x < a0. Hence, the
result follows from Theorem 8.4.5. �

We finish this section with an application of Theorem 8.4.5.

Theorem 8.4.7 Let I be a cut of a model M , and assume that I is closed under
exponentiation. If a ∈M is definable in the structure (M, I), then a ∈ Scl(b) for
some b ∈ I.

Proof Suppose to the contrary that for every b ∈ I, a /∈ Scl(b). The same
is true in every structure which is elementarily equivalent to (M, I, a). Hence,
without loss of generality, we can assume that (M, I) is countable and recursively
saturated. In particular, I is not downward ω coded. Let p(x) be the recursive
type

{x �= a} ∪ {∀y ∈ I[ϕ(a, y)←→ ϕ(x, y)] : ϕ ∈ Form} .

We will show that p(x) is finitely realizable in (M, I). To this end, let ϕi(x, y),
for i ≤ n be given. For c ∈M let Dc be the code of the set

{〈y, i〉 : M |= y < c ∧ ϕi(a, y)} .
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Since I is closed under exponentiation, Dc ∈ I for each c ∈ I. Hence, for all
c ∈ I,

M |= ∃x[x �= a ∧ ∀y < c(
∧
i≤n

(〈y, i〉 ∈ Dc ←→ ϕi(x, y))], (∗)

because otherwise the formula ∀y < c(
∧

i≤n(〈y, i〉 ∈ Dc ←→ ϕi(x, y)) would
define a in M from the parameter Dc ∈ I. Now, by overspill, there is c > I for
which (∗) holds. This shows that p(x) is finitely realizable. Let b ∈ M realize
p(x). By Theorem 8.4.5, there is f ∈ Aut(M, I) such that f(a) = b. Hence a is
not definable in (M, I), which is a contradiction. �

8.5 Extending automorphisms

If f is an automorphism of M and M ≺end N , is there an automorphism g of
N which extends f? If f has such an extension, then, for every X ⊆ M , X is
coded in N iff f(X) is (Do it!). In other words, if f extends g, then it induces a
permutation of Cod(N/M). Hence, we can identify f with an automorphism of
the second-order structure (M,Cod(N/M)). We prove that, with an exception,
the converse holds. In the discussion below, we think of Aut((M,Cod(N/M)))
as a subgroup of Aut(M).

Theorem 8.5.1 Let N be countable and recursively saturated and suppose
that M ≺end N and M is not downward ω coded in N . Then every f ∈
Aut((M,Cod(N/M))) extends to an automorphism of N .

Proof The proof can be carried out in the usual back-and-forth fashion,
provided we prove that for all ā, b̄, a ∈ N , if for all x ∈M , (N, ā, x) ≡ (N, b̄, f(x)),
then there is b such that for all x ∈ M , (N, ā, a, x) ≡ (N, b̄, b, f(x)). Let
M < e < N . By the recursive saturation there is an N -finite set α such that for
any formula ϕ(ū, v, x),

N |= ∀x < e[〈ϕ, x〉 ∈ α←→ ϕ(ā, a, x)].

Let S = α ∩M . Since S ∈ Cod(N/M) we let S′ = f(S) ∈ Cod(N/M) and let
N -finite β be such that S′ = β∩M . For every nonstandard c ∈M , a is a witness
to the existential statement

N |= ∃u∀x < c[〈ϕ, x〉 ∈ S ∩ [0, c2]←→ ϕ(ā, u, x)].

By the assumption on ā and b̄, we get that for every nonstandard c ∈M

N |= ∃u∀x < f(c)[〈ϕ, x〉 ∈ S′ ∩ [0, f(c)2]←→ ϕ(b̄, u, x)].
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Since f is an automorphism, this implies that for every nonstandard c ∈M

N |= ∃u∀x < c[〈ϕ, x〉 ∈ S′ ∩ [0, c2]←→ ϕ(b̄, u, x)].

Then the same is true with S′ replaced with β. For each ϕ(ū, v, x), define dϕ to
be the largest d ∈ N such that

N |= ∃u∀x < d[〈ϕ, x〉 ∈ β ∩ [0, d2]←→ ϕ(b̄, u, x)].

By overspill, each dϕ > M and then by the fact that M is not downward ω
coded, there is d ∈ N such that M < d < dϕ for each ϕ (Do it!). Thus,

N |= ∃u∀x < d[〈ϕ, x〉 ∈ β ∩ [0, d2]←→ ϕ(b̄, u, x)],

for every ϕ. By recursive saturation of N , there is b ∈ N which simultaneously
witnesses all of these sentences. Thus, for every ϕ and every e ∈M ,

N |= 〈ϕ, e〉 ∈ S′ −→ ϕ(b̄, b, e).

Now we want to show that this b works. Indeed, for each e ∈M , N |= ϕ(ā, a, e)
⇐⇒ N |= 〈ϕ, e〉 ∈ S ⇐⇒ N |= 〈ϕ, f(e)〉 ∈ S′ ⇐⇒ N |= ϕ(b̄, b, f(e)).

Notice that in the beginning stages of the proof we considered nonstandard
c. Hence the proof works for nonstandard M . If M is standard, replace c2 with
nc, where n < ω is chosen so that n > ϕ. �

Essentially the same proof also gives the following theorem.

Theorem 8.5.2 Suppose M0≺end N0, M1≺end N1, N0 and N1 are countable
and recursively saturated, and Mi is not downward ω coded in Ni for i = 0, 1. If
f : M0 −→M1 is an isomorphism such that for all X ⊆M0, X is coded in N0 iff
f(X) is coded in N1, then f can be extended to an isomorphism g : N0 −→ N1.

�

Theorem 8.5.1 gives an extendability criterion, but it has nothing to say
about the question whether there are any nontrivial automorphisms of M which
extend to an automorphism of N? As the next theorem shows, the picture is
rather complex.

Theorem 8.5.3 Let G be the automorphism group of a countable linearly
ordered first-order structure. Then every countable recursively saturated model
M has an elementary cut I such that Aut(I,Cod(M/I)) ∼= G. �

Theorem 8.5.3 is closely related to the results in Section 5.4. Here is one
application. Let G be Aut(Z, <), and let I be as in Theorem 8.5.3 for this G.
Let F : Aut(I,Cod(M/I)) −→ G be an isomorphism. There is f ∈ Aut(M) such
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that F (f � I) is the automorphism n �→ n+1 of Z. Then there is no h ∈ Aut(M)
such that f = h2 (Do it!). Hence, we have the following corollary.

Corollary 8.5.4 For every countable recursively saturated model M , the
automorphism group of M is not divisible. �

Theorem 8.5.3 can also be used to prove the following.

Theorem 8.5.5 If G is the automorphism group of a countable recursively
saturated model, then Th(G) is essentially undecidable. �

Complete proofs of Theorems 8.5.3 and 8.5.5 are given in [174].
Theorem 8.5.3 implies that every countable recursively saturated model M

has a recursively saturated elementary end extension N such that no nontrivial
automorphism of M extends to N . The following related question remains open.
See Exercise 8.11.20 for an answer in a special case.

Problem 8.5.6 Let M be countable and recursively saturated. Is there a non-
trivial automorphism of M which cannot be extended to an automorphism of any
countable recursively saturated elementary end extension of M?

We finish this section with a proof that the assumption that M is not
downward ω coded cannot be eliminated in Theorem 8.5.1.

Theorem 8.5.7 Let M be a countable recursively saturated model. Then there
are K ≺end M and f ∈ Aut(K,Cod(M/K)) which has no extension to an
automorphism of M .

Proof By Theorem 3.2.11, there are s, e ∈M such that s < gap(e), s ∈ Scl(e),
and tp(e) is rare. Let us fix such s and e, and let K = inf(gap(e)). Then every
automorphism of M which moves s must move e to another gap; hence, it also
moves K setwise.

Now we outline the rest of the proof. The details are provided in the three
lemmas below. By Lemma 8.5.10, there are a ∈ gap(e) and a model N ⊆end M
such that K = inf {(a)n : n < ω}, K ≺end N , N is recursively saturated, and for
each n < ω, gapN ((a)n+1) < (a)n. Clearly, tpM (a) �= tpN (a). Without loss of
generality, we can assume that all (a)n, for n < ω, realize the same indiscernible
type (Do it!). Let s′ ∈ K be such that s �= s′ and tp(s) = tp(s′). Consider the
recursive type p(v, s, s′)

{(v)n = (a)n : n < ω} ∪ {ϕ(v, s)←→ ϕ(v, s′) : ϕ(v, w) ∈ Form}.

Since every indiscernible type is strongly indiscernible, p(v, s, s′) is finitely real-
izable, so, without loss of generality, we can assume that a realizes p(v, s, s′);
hence tpN (a, s) = tpN (a, s′). Let g ∈ Aut(N, a) be such that g(s) = g(s′).
Notice that g(K) = K. Let f = g � K. Since M and N code the same subsets of
K, f ∈ Aut(K,Cod(M/K)), but f cannot be extended to an automorphism of
M , because, as noted earlier, each such automorphism moves K setwise. �
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In the lemmas below we use the auxiliary functions Fn. Recall that TrΣn is
the universal Σn truth formula (See Corollary 1.11.2). Let

Fn(x) = min {y : ∀ϕ, u < x[∃v TrΣn
(ϕ, 〈u, v〉) −→ ∃v < y TrΣn

(ϕ, 〈u, v〉)]} .

Notice that the formula Fn(x) = y is Σn+1 in PA. Also, if t is a Σn Skolem
term, then, for every model M and all a ∈M , M |= ∀x < a[t(x) < Fn(a)].

We use the symbol ≡n to denote elementary equivalence for Σn formulas.
The proof of the first lemma is left as an exercise.

Lemma 8.5.8 Let M be a model. If a, b ∈ M are such that M |= Fn(a) < b,
then there are arbitrarily large c ∈M such that (M,a, b) ≡n (M,a, c). �

In the next lemma, contrary to the usual convention, the finite sequences
a0, . . . , an and b0, . . . , bn are decreasing.

Lemma 8.5.9 Let M be a countable model and let a0, . . . , an ∈M be such that
for all i, with 0 < i ≤ n, M |= F2i(ai) < ai−1. Then there are b0, . . . , bn ∈ M
such that bn = an, gap(bn) < gap(bn−1) < · · · < gap(b0), and

(M,a0, . . . , an) ≡1 (M, b0, . . . , bn).

Proof We proceed by induction on n. For n = 0, let b0 = a0. Suppose that
the statement in the lemma is true for some n and the sequence a0, . . . , an, an+1
satisfies the assumption of the lemma. In particular, M |= F2n+2(an+1) < an.
Applying Lemma 8.5.8 to a = an+1 and b = 〈a0, . . . , an〉, we get 〈b′

0, . . . , b
′
n〉 such

that Scl(an+1) < b′
n and

(M,a0, . . . , an, an+1) ≡2n+1 (M, b′
0, . . . , b

′
n, an+1).

Since the formula F2i(x) < y is Σ2i+1, it follows that the inductive assumptions
are satisfied for the sequence b′

0, . . . , b
′
n−1, 〈b′

n, an+1〉. Hence, there is a sequence
b0, . . . , bn, where bn = 〈b′

n, an+1〉, which satisfies the conclusion of the lemma.
Then the sequence b0, . . . , bn−1, b

′
n, an+1 has the required properties. �

Lemma 8.5.10 Let a ∈ M , and let K = inf(gap(a)). If for all i < ω,
M |= F2i((a)i) < (a)i−1 and K = inf {(a)n : n < ω}, then there is a recursively
saturated model N such that:

(1) a ∈ N ⊆end M ;
(2) for all n < ω, SclN ((a)n+1) < (a)n;
(3) K ≺end N .
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Proof Let T be the recursive theory in L ∪ {I, a}:

{a ∈ I ⊆end M} ∪ {I |= PA∗} ∪ {I |= Fn((a)k+1) < (a)k : k, n < ω} .

We will show that T is consistent. Let ψ be a finite fragment of T and let k be
the largest such that (a)k occurs in ψ. By Lemma 8.5.9, there are b0, . . . , bk such
that

(M, (a)0, . . . , (a)k) ≡1 (M, b0, . . . , bk)

and gap(bk) < gap(bk−1) < · · · < gap(b0). Let J = sup(gap(b0)). By Friedman’s
Embedding Theorem (Theorem 1.13.1) there is I ⊆end M such that (a)0 ∈ I and

(J, b0, . . . , bk) ∼= (I, (a)0, . . . , (a)k).

Then (M, I, a) |= ψ.
By chronic resplendency, there is N ⊆end M such that (M,N, a) is a recurs-

ively saturated model of T . Since for every b ∈ K, gapN (b) ⊆ K, K ≺end N , and
the result follows. �

8.6 Maximal automorphisms

The Moving Gaps Lemma implies that the identity is the only automorphism that
fixes all gaps. Now we consider a dual problem: can there be an automorphism
that moves all gaps other than least one? It turns out that the countable recurs-
ively saturated models with such automorphisms are exactly the arithmetically
saturated models.

Recall that an element a of a structure A is algebraic if there is a formula ϕ
of the language of A such that ϕ(A) is finite and A |= ϕ(a). If M is a model of
PA∗, then the algebraic elements of M are the definable elements.

Definition 8.6.1 If A is a first-order structure and f is an automorphism of A,
then we say that f is maximal if f(a) �= a for all nonalgebraic elements a ∈ A.

The main result of this section is that a countable recursively saturated
model has a maximal automorphism iff it is arithmetically saturated. This follows
from Theorem 8.6.3 and Corollary 8.6.7 below. We state these results separately
because of the nature of their proofs and because of their further applications.
We begin with a back-and-forth lemma.

Lemma 8.6.2 Suppose that M is arithmetically saturated and a, b ∈ M are
such that tp(a) = tp(b) and for each Skolem term t(v) either t(a) ∈ Scl(0) or
t(a) �= t(b). Then, for each a′ ∈M , there is b′ ∈M such that tp(a, a′) = tp(b, b′)
and for each Skolem term t(v, x), either t(a, a′) ∈ Scl(0) or t(a, a′) �= t(b, b′).
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Proof Let M , a, a′, and b be as in the lemma. To find b′, we consider the type
p(x) with parameters a, a′, b

{ϕ(a, a′)←→ ϕ(b, x) : ϕ(v, x) ∈ Form}∪

{t(a, a′) �= t(b, x) : t(v, x) ∈ Term and t(a, a′) /∈ Scl(0)} .

Since the type p(x) is arithmetic in tp(a, a′), to finish the proof it suffices
to show that it is finitely realizable in M . Suppose it is not. Then there are a
formula ϕ(v, x) and Skolem terms t0(v, x),...,tk(v, x) such that M |= ϕ(a, a′) and
ti(a, a′) /∈ Scl(0) for i ≤ k and

M |= ∀x[ϕ(b, x) −→
k∨

i=0

(ti(b, x) = ti(a, a′))].

Let us assume that k is the least number for which there are such a formula
ϕ(v, x) and such terms t0(v, x), . . . , tk(v, x). Since there is b′ ∈ M such that
tp(a, a′) = tp(b, b′), some terms t(x, v) must contribute to inconsistency of p(x);
hence k ≥ 0.

First notice that

M |= ∃y0, . . . , yk∀x[ϕ(b, x) −→
k∨

i=0

(ti(b, x) = yi)].

Thus, there are Skolem terms s0(v), . . . , sk(v) such that

M |= ∀x[ϕ(b, x) −→
k∨

i=0

(ti(b, x) = si(b))]. (∗)

Since tp(a) = tp(b), the same is true when b is replaced by a. Hence, ti(a, a′) =
si(a) for some i ≤ k; without loss of generality, we can assume that i = 0.

Let ϕ′(v, x) be ϕ(v, x) ∧ t0(v, x) = s0(v). Then M |= ϕ′(a, a′) and we claim
that

M |= ∀x[ϕ′(b, x) −→
k∨

i=1

(ti(b, x)) = ti(a, a′)].

Suppose it is not. Then it follows from (∗) that there must be c ∈M such that

M |= ϕ(b, c) ∧ t0(b, c) = s0(b) ∧ t0(b, c) = t0(a, a′).
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Then s0(a) = s0(b) and, by the assumption of the lemma, s0(a) ∈ Scl(0). Hence
t0(a, a′) ∈ Scl(0), which contradicts the assumption that t0(a, a′) /∈ Scl(0).

Thus, we have proved the claim. Since k was chosen to be minimal, we get a
contradiction; hence p(x) is finitely realizable. �

Theorem 8.6.3 Every countable arithmetically saturated model has a maximal
automorphism.

Proof Using Lemma 8.6.2 we can construct an f ∈ Aut(M) in a back-and-forth
process in which the following inductive condition is satisfied: if f(ā) = b̄, then
for each Skolem term t(v), either t(ā) ∈ Scl(0) or t(ā) �= t(b̄). Clearly, this f is
maximal. �

If f is an automorphism of a model M , then the fixed point set of f , fix(f) =
{x ∈M : f(x) = x}, is closed under Skolem terms and hence, is a universe of an
elementary submodel of M . Our goal now will be to, at least partially, classify
those K ≺ M which are of the form fix(f) for some f ∈ Aut(M), for countable
recursively saturated M .

Theorem 8.6.3 implies that every finitely generated submodel of a countable
arithmetically saturated model is a fixed point set. Hence each such model has
at least countably many nonisomorphic fixed point sets. Surprisingly, if M is
countable recursively saturated but not arithmetically saturated, then there is
only one isomorphic type of the fixed point sets of M , namely the type of M ,
that is, the fixed point set of the identity. To prove this we need a lemma which
also has other applications.

Lemma 8.6.4 Let M be a nonstandard model, and suppose that e ∈M has the
property that for each nonstandard n there is i < ω such that (e)i < n. Then for
each f ∈ Aut(M), there is a nonstandard n such that for all i < ω, if (e)i < n,
then f((e)i) = (e)i.

Proof Let e ∈M be as in the lemma, and let f ∈ Aut(M). Let e′ = f(e). Then
for each n < ω,

M |= ∀i < n[(e)i < n −→ (e′)i = (e)i].

Hence, by overspill, the same is true for some nonstandard n. Let i < ω be such
that (e)i < n. Then (e′)i = (e)i and f((e)i) = (e′)f(i) = (e′)i = (e)i. �

If N is not strong in a model M , then there is e ∈ M such that for each
nonstandard n, there is i < ω such that N < (e)i < n. Hence, we get the
following corollary:

Corollary 8.6.5 Let M be a nonstandard model in which N is not strong.
Then for every f ∈ Aut(M), there is arbitrarily small nonstandard d such that
f(d) = d. �
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Theorem 8.6.6 Let M be a countable recursively saturated model, and let f ∈
Aut(M) be such that for every nonstandard n ∈M , there is d such that N < d <
n and f(d) = d. Then fix(f) ∼= M .

Proof Our task is to show that fix(f) is recursively saturated and SSy(fix(f)) =
SSy(M). This is accomplished by showing that for every a ∈ fix(f), every com-
plete type p(v, a) realized in M is realized by some element e ∈ fix(f). Let
〈ϕn(v, a) : n < ω〉 be an enumeration of p(v, a) coded in M . Then the sequence
cn = min{x ∈M : M |= ∧

i≤n ϕi(x, a)} is well-defined (since p(v, a) is realized in
M) and is coded in M . Let c be a code and let d = f(c). Then cn = (c)n = (d)n
for each n ∈ N. By recursive saturation and the assumption on f , there is a non-
standard m ∈ M such that f(m) = m, (c)m = (d)m, and M |= ϕn((c)m, a) for
every n ∈ N. Thus, (c)m realizes p(v, a), and f((c)m) = (d)f(m) = (d)m = (c)m.
�

Corollary 8.6.7 Let M be a countable recursively saturated model which is not
arithmetically saturated. Then for every f ∈ Aut(M), fix(f) ∼= M .

Proof Directly from Corollary 8.6.5 and Theorem 8.6.6. �

From Theorem 8.6.3 and Corollary 8.6.7, we obtain a list of conditions
characterizing arithmetic saturation.

Corollary 8.6.8 Let M be countable and recursively saturated. Then the
following conditions are equivalent:

(1) M is arithmetically saturated;
(2) There is f ∈ Aut(M) such that fix(f) = Scl(0);
(3) For every finitely generated K ≺ M , there is f ∈ Aut(M) such that fix

(f) = K.
(4) There is f ∈ Aut(M) such that fix(f) �∼= M . �

8.7 Fixing strong cuts

By the results of the previous section, if M is a countable recursively saturated
model of TA, then there is an f ∈ Aut(M) such that fix(f) = N iff N is strong
in M . In this section, we generalize this to arbitrary elementary cuts in an
arbitrary countable recursively saturated model. A proof similar to the proof of
Lemma 8.6.4 can be given to show that if I ⊆end M is not strong and f ∈ Aut(M)
is such that I ⊆ fix(f), then I �= fix(f) (Do it!). Hence we have the following:

Proposition 8.7.1 Let I be a cut of a model M and suppose that f ∈ Aut(M)
is such that fix(f) = I. Then I is strong in M . �

The main result of this section is the converse of Proposition 8.7.1 for
countable recursively saturated models. We will prove an even stronger result.
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Theorem 8.7.2 Let I be a strong elementary cut of a countable recursively
saturated model M . Then there is f ∈ Aut(M) such that fix(f) = I and for all
x > I, f(x) > x.

Proof Since I is strong, Cod(M/I) is closed under arithmetic definability.
Therefore, I = (I,X0, X1, . . . ) |= PA∗, where X0, X1, . . . is an enumeration
of all sets in Cod(M/I). Let N = (N,Y0, Y1, . . . ) be a canonical Z-extension of
I. Since the extension is conservative, Cod(M/I) = Cod(N/I). We claim that
N is recursively saturated. To this end, let S be a partial inductive satisfaction
class for M (see Definition 1.9.1). Then there is i such that S ∩M = Xi, hence
Yi is a partial inductive satisfaction class for N . The claim now follows from
Proposition 1.9.4. By Theorem 8.5.2, the identity function on I can be extended
to an isomorphism f : M ∼= N .

Since N is a Z-extension, it has a set of generators 〈ai : i ∈ Z〉 over I, with
all ai realizing the same minimal type. Moreover, ai < aj iff i < j, and the
map ai �→ ai+1 extends to an automorphism f of N such that f � I = id. Then
fix(f) = I and for all x > I, f(x) > x. Since (M, I) ∼= (N, I), the result follows.
�

If M is a model having nonstandard definable elements, then there is no
f ∈ Aut(M) such that f(x) > x for all undefinable x. Indeed, if a < b, where
a �∈ Scl(0) and b ∈ Scl(0), then, for every automorphism f , f(a) > a iff f(b−a) <
b− a. One can prove more:

Exercise 8.7.3 Let M be recursively saturated, and suppose that a be an ele-
ment of gap(0) \ Scl(0). Let Ω be a maximal convex subset of gap(0) such that
a ∈ Ω and Ω∩Scl(0) = ∅. If f ∈ Aut(M) is such that f(a) > a, then there is b ∈ Ω
such that f(b) < b. (Hint 1: take a coded decreasing sequence 〈an : n < ω〉 such
that inf {an : n < ω} = sup(Ω), and consider the sequence defined by bn = an−a.
Hint 2: we can assume that for arbitrarily small nonstandard x ∈M , f(x) ≤ x.)

Let us finish this section with a generalization of Theorem 8.7.2.

Theorem 8.7.4 If I is a strong elementary cut of a recursively saturated model
M and f ∈ Aut(I,Cod(M/I)), then there is g ∈ Aut(M) such that f ⊆ g and
fix(f) = fix(g).

Proof By Theorem 8.5.1, there is h ∈ Aut(M) such that f ⊆ h. Let us fix such
an h.

Let N be as the proof of Theorem 8.7.2 except that instead of requiring N to
be a canonical Z-extension of I, we now assume that I is a canonical Q-extension.
So suppose that N = SclN (I∪{aq : q ∈ Q}), aq realizing the same minimal type,
where aq < ar iff q < r. Then N \M is the union of {gap∗(aq) : q ∈ Q}, where
∗ indicates that the gaps are in the sense of N .
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Now we define an order preserving one-to-one map σ : Q −→ Q by a
back-and-forth construction. Suppose the partial mapping (q0, q1, . . . , qn−1) �→
(r0, r1, . . . , rn−1) satisfies the inductive assumption: for all i, j < n, qi < qj iff
ri < rj , and f(ari

) /∈ gap∗(aqi
). In the “forth” step, pick the first element qn (in

a fixed enumeration of Q) not among q0, . . . , qn−1 and consider f(aqn). There are
infinitely many r which we can chose for the extension (q0, q1, . . . , qn−1, qn) �→
(r0, r1, . . . , rn−1, r) to preserve ordering. We have f(ar) ∈ gap∗(aqn) for at most
one such r. Hence, we can define rn so that f(arn) /∈ gap∗(aqn). The “back” step
is symmetric.

Now, let g′ be the unique extension of σ to an automorphism of N such that
g′ � I = id, and let g = fg′. Then f ◦ (g � I) = f and for each i < ω,

g(aqi) = f(ari) /∈ gap∗(aqi).

Hence, fix(g) = fix(f). �

8.8 Topology on the automorphism group

Throughout this section let M be a fixed countable recursively saturated model,
and let G = Aut(M).

Recall that for a ∈M , the stabilizer of a is

Ga = {f ∈ G : f(a) = a} .

In this section we describe some relationships between types of elements and
group-theoretic properties of their stabilizers. Let us also recall the following
notation already used in the discussion on the automorphism groups of canonical
I-extensions in Chapter 3. The setwise stabilizer of X ⊆M is

G{X} = {f ∈ G : f(X) = X} = Aut(M,X).

The pointwise stabilizer of X ⊆M is

G(X) = {f ∈ G : ∀x ∈ X f(x) = x} = Aut((M,a)a∈X).

There is a natural topology on G. The basic open subgroups are pointwise
stabilizers of finite sets. The basic open subsets are cosets of basic open subgroups.
For models of PA∗, the topology is determined by cosets of stabilizers of single
elements. For f ∈ G and H ⊆ G, f is in the topological closure of H iff for any
finite A ⊆M , there is g ∈ H such that f � A = g � A (Do it!).

Let {a0, a1, . . . } be an enumeration of M . We define a metric on G, by letting
for f �= g, d(f, g) = 2−k, where k is the smallest such that f(ak) �= g(ak). One
can verify that the topology on G defined by this metric agrees with the one
defined via stabilizers of finite sets (Do it!). It is also easy to verify that G with
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this topology is complete and separable; hence G is a Polish space (Do it!).
Multiplication and inverse are continuous operations (Do it!), so G is a Polish
group.

The proposition below lists some useful properties of open subgroups of G.
These facts apply to arbitrary automorphism groups, and they follow directly
from the definitions.

Proposition 8.8.1 Let H be a subgroup of G. Then:

(1) H is open iff H contains a basic open subgroup;
(2) If H is open, then it is closed;
(3) If Ga ≤ H, f ∈ H, and f(a) = b, then g ∈ H for every g ∈ G such that

g(a) = b;
(4) If a, b ∈ M , tp(a) = tp(b), and g ∈ H for every g ∈ G such that g(a) = b,

then Ga, Gb ≤ H. �

Since the automorphism group of any expansion of M is a closed subgroup
of Aut(M), it easily follows that there are closed subgroups of Aut(M) which
are not open (Do it!).

To illustrate the use of topology, we prove a result concerning pointwise
stabilizers of cuts in countable recursively saturated models.

If I ⊆end M , then we define

G(>I) =
⋃{

G(J) : I < J ⊆end M
}
.

The following proposition is a direct corollary of Theorem 8.4.2.

Proposition 8.8.2 If I and J are cuts in M , I < J , and I is closed under
exponentiation, then G(J) < G(I). �

Recall that exp0(x) = x and for n < ω,

expn+1(x) = expn(2x).

For a ∈M , let

Ilog(a) = {x ∈M : ∀n < ω expn(x) < a} ,
Iexp(a) = {x ∈M : ∃n < ω x < expn(a)} .

Thus, in the gap terminology, Iexp(a) \ Ilog(a) is the exponential gap of a. Both
Ilog(a) and Iexp(a) are closed under exponentiation.

Let I ⊆end M be a cut of M such that Ilog(a)⊆end I ⊆end Iexp(a) for some a ∈
M . Then Iexp(a) is the smallest cut which is exponentially closed and contains
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I and Ilog(a) is the largest cut which is exponentially closed and does not contain
I. Moreover, G(>I) = G(Iexp(a)) (Do it!). If I is closed under exponentiation
and I �= Ilog(a) for every a ∈ M , then for each c > I, there is a cut J which is
closed under exponentiation and such that J < c and I < J (Do it!).

Proposition 8.8.3 Let I ⊆end M be closed under exponentiation, and assume
that I �= Ilog(a) for all a ∈M . Then the topological closure of G(>I) is G(I).

Proof We will show that for all a, b ∈ M , if there exists f ∈ G(I) such that
f(a) = b, then there are a cut J and g ∈ G(J) such that I < J and g(a) = b. By
Lemma 8.4.4 and the remark preceding the proposition, it suffices to prove that
there is c > I such that for all x < c, (M,x, a) ≡ (M,x, b).

For each n < ω define dn = min {x : tpn(x, a) �= tpn(x, b)}. For each
n < ω, dn > I and dn+1 ≤ dn. We will finish the proof by showing that
inf {dn : n < ω} > I. By recursive saturation, there is d ∈M such that (d)n = dn
for all n < ω. By overspill, it follows that inf {dn : n < ω} > N. Let us assume
then that N < I. Let d′ = f(d). Suppose inf {dn : n < ω} = I. Then there is a
nonstandard e ∈ I such that for all nonstandard i < e, (d)i ∈ I. It follows that
for each i < e, (d′)i = (d)i. Hence, for some standard n, (d′)n = (d)n. Then
f(dn) = dn, which is a contradiction, because f(a) = b and tp(dn, a) �= tp(dn, b).
�

8.9 Maximal point stabilizers

Throughout this section let M be a fixed countable recursively saturated model,
and let G = Aut(M).

In this section we give a group-theoretic characterizations of stabilizers of
elements realizing unbounded selective types and minimal types.

For a group G and A ⊆ G, 〈A〉 denotes the subgroup of G generated by A.

Theorem 8.9.1 Let a ∈ M be such that a > Scl(0). Then Ga is a maximal
subgroup of G iff tp(a) is selective. Moreover, if tp(a) is selective, then for every
f ∈ G \Ga, either

G =
{
g0fg1f

−1g2 : g0, g1, g2 ∈ Ga

}
or

G =
{
g0f

−1g1fg2 : g0, g1, g2 ∈ Ga

}
.

Proof If tp(a) is not selective, then Scl(a) is not a minimal extension of Scl(0).
Hence, there is c ∈ Scl(a) \ Scl(0) such that a �∈ Scl(c). Then Ga < Gc. Hence,
Ga is not maximal.
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Assume now that tp(a) is selective. Pick an f ∈ G \ Ga and suppose that
f(a) = b < a. Under this assumption the first of the equalities of the theorem
will be proved. In the other case the same argument works with f−1 instead
of f ; proving the second equality. The type of a is unbounded and selective,
and hence, by Corollary 3.2.4, it is rare. Then, since f(a) = b < a, we have
b < gap(a).

Now consider arbitrary g ∈ G such that g(a) = c. Let p(v) be the recursive
type expressing that tp(v, a) = tp(b, a) and tp(v, a) = tp(v, c). We will show that
p(v) is finitely realizable.

Suppose M |= ϕ(b, a). Let m = min {x : ϕ(x, a)}. Since m ≤ b < gap(a) and
tp(a) is selective, m ∈ Scl(0). It follows that tp(m, a) = tp(m, c), as g(a) = c.
Thus, p(v) is finitely realizable.

Let d be an element realizing p(v) in M . Then

tp(b, a) = tp(d, a) = tp(d, g(a)) = tp(g−1(d), a).

It follows that there are g0, g2 ∈ Ga such that g0(b) = d and g2(g−1(d)) = b.
Then f−1g−1

0 gg−1
2 f(a) = a, and we let g1 = f−1g−1

0 gg−1
2 f . �

Theorem 8.9.1 implies that the stabilizer of any element realizing a minimal
type is a maximal subgroup ofG. The next result improves this for 2-indiscernible
types.

Definition 8.9.2 We say that a subgroup H < G is strongly maximal if for
every f ∈ G \H

G = H ∪ {g0fg1 : g0, g1 ∈ H} ∪ {g0f
−1g1 : g0, g1 ∈ H

}
.

By Theorem 3.2.15, there are selective types which are not 2-indiscernible;
hence the next proposition shows that the difference between the form of
representation of G in the above definition and in Theorem 8.9.1 is essential.

Theorem 8.9.3 For a ∈M , Ga is strongly maximal iff tp(a) is 2-indiscernible.

Proof First assume that tp(a) is 2-indiscernible. Let f ∈ G be such that f(a) =
b �= a. Let g be another automorphism such that g(a) = c �= a. By considering
f−1 instead of f , if necessary, we can assume that a < b ←→ a < c. Then
tp(a, b) = tp(a, c). So there is g0 ∈ Ga such that g0(b) = c. Then fg−1

0 g = g1 ∈
Ga. Hence g = g0f

−1g1.
Now suppose that Ga is a strongly maximal subgroup of G. Let b, c be such

that a, b < c and tp(a) = tp(b) = tp(c). Let f, g ∈ G be such that f(a) = b
and g(a) = c. By strong maximality of Ga, there are g0, g1 such that g = g0fg1.
Notice that the other case is ruled out since it would imply that g(a) < a. Then,
g0(b) = c; hence tp(a, b) = tp(a, c).
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Now, let b, c, d realizing tp(a) be such that a < b and c < d. Let h ∈ G be
such that h(c) = a. Then tp(c, d) = tp(a, h(d)) and, by the previous argument
tp(a, h(d)) = tp(a, b), which proves that tp(a) is 2-indiscernible. �

We conclude this section by showing that the correspondence between
unbounded selective types and maximal stabilizers in Theorem 8.9.1 does not
hold for bounded types.

Theorem 8.9.4 Suppose Th(M) does not have a standard model. Then there
is a ∈M such that tp(a) is selective and Ga is not a maximal subgroup of G.

Proof Let p(x) be the bounded selective type constructed in the proof of
Theorem 3.2.15. The type p(x) is determined by a descending sequence of defin-
able sets of the form Πi∈IAi, where k = cardM (I) is nonstandard, and for a
nonstandard m and all i ∈ I, m ≤ cardM (Ai). We call such sets k-dimensional
m-boxes. The construction of p(x) can be made effective in Th(M); hence p(x)
is realized in M . The argument below shows that if a realizes p(x), then Ga is
not a maximal subgroup of G. Consider the following type q(x, y, z)

p(x) ∪ p(y) ∪ p(z) ∪ {∃!i [(x)i �= (y)i]} ∪ {card {i : (x)i �= (z)i} > n : n < ω}.

For every formula ϕ(x) ∈ p(x), ϕ(M) contains a k-dimensional m-box for some
nonstandard k and m. Hence, q(x, y, z) is finitely realizable, and, because it is
recursive in p(x), it is realized in M . Suppose the triple (a, b, c) realizes q(x, y, z)
in M . Let g, h ∈ G be such that g(a) = b and h(a) = c. For every x, y ∈
M , if the set {i : (x)i �= (y)i} is finite, then so is the set {i : (f(x))i �= (f(y))i}
for any f ∈ Aut(M). Then it follows that for every f ∈ 〈Ga ∪ {g}〉, the set
{i : (a)i �= (f(a))i} is finite (Do it!). Hence, for every such f , f(a) �= c. Thus,
h /∈ 〈Ga ∪ {g}〉, proving that Ga is not a maximal subgroup of G. �

8.10 Arithmetic saturation and open subgroups

In this section, we expand the list of properties characterizing arithmetic
saturation for countable models. Most arguments are variations of the proof
of Theorem 8.9.1. We continue with the assumption of the previous section that
M is a countable recursively saturated model and G = Aut(M).

For a, b ∈ M , we say that tp(a, b) is an heir of tp(a), if for every formula
ϕ(x, y) ∈ tp(a, b), there is k ∈ Scl(0) such that ϕ(x, k) ∈ tp(a).

Lemma 8.10.1 Suppose M is arithmetically saturated. Then for all a, b ∈ M ,
there is b′ ∈M such that tp(b′) = tp(b) and tp(a, b′) is an heir of tp(a).

Proof For given a, b ∈M , consider the type p(v):

tp(b) ∪ {ϕ(a, v) : ∀k ∈ Scl(0) M |= ϕ(a, k)} .
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Clearly, p(v) is arithmetic in tp(a, b) and it is finitely realizable in M . If b′ realizes
p(v), then tp(b′) = tp(b), and tp(a, b′) is an heir of tp(a). �

Lemma 8.10.2 If a, b ∈M and tp(a, b) is an heir of tp(a), then 〈Ga ∪Gb〉 = G.

Proof Consider some f ∈ G and suppose that f(a) = c. Let p(v) be the type
expressing that tp(a, b) = tp(a, v) = tp(c, v). To see that p(v) is finitely real-
izable, consider ϕ(x, y) ∈ tp(a, b). Since tp(a, b) is an heir of tp(a), there is
k ∈ Scl(0) such that M |= ϕ(a, k). Since tp(a) = tp(c), we also have M |= ϕ(c, k).

Let d ∈ M realize p(v). There are g ∈ Ga and h ∈ Gd such that g(b) = d
and h(a) = c. Then k = g−1hg is in Gb. Since l = h−1f is in Ga, we have
f = hl = gkg−1l, hence f ∈ 〈Ga ∪Gb〉. �

Now we are ready for the main result of this section.

Theorem 8.10.3 M is arithmetically saturated iff whenever H < G is open,
then there is f ∈ G such that 〈H ∪ {f}〉 = G.

Proof Assume that M is arithmetically saturated and let H < G be open.
Without loss of generality, we can assume that H = Ga for some a ∈ M . By
Lemma 8.10.1, there is b ∈ M be such that tp(a) = tp(b) and tp(a, b) is an
heir of tp(a). Let f ∈ G be such that f(b) = a. Then, since f−1Hf = Gb,
〈Ga ∪ {f}〉 ⊇ 〈Ga ∪Gb〉, and the conclusion follows by Lemma 8.10.2.

Next, suppose that M is not arithmetically saturated. Since N is not strong
in M , there is a ∈ M such that for every nonstandard n, there is i ∈ N such
that N < (a)i < n. By Proposition 1.8.4, we can assume that for all i ∈ N, if
(a)i > N, then (a)i /∈ Scl(0).

Let H = Ga and let f ∈ G be given. We will show that 〈Ga ∪ {f}〉 �= G. Let
a′ = f(a). For every n ∈ N,

M |= ∀i < n[(a)i < n −→ (a′)i = (a)i].

By overspill, there is a nonstandard such n. In particular, for all i ∈ N, if
(a)i < n, then f((a)i) = (a)i.

Now, let i ∈ N be such that N < (a)i < n. Let c = (a)i. Then c is undefinable
in M ; hence Gc < G. But c ∈ Scl(a) and f(c) = c, so we have Ga∪{f} ⊆ Gc < G,
and the result follows. �

Corollary 8.10.4 M is arithmetically saturated iff G is finitely generated over
each of its open subgroups.

Proof One direction is just Theorem 8.10.3. For the converse, notice that the
proof of Theorem 8.10.3 works also when f is replaced with a finite set f0, . . . , fn
of automorphisms in G (Do it!). �
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Corollary 8.10.5 M is arithmetically saturated iff for all a, b ∈ M , there is
b′ ∈M such that tp(b′) = tp(b) and tp(a, b′) is an heir of tp(a).

Proof In one direction, this is just Lemma 8.10.1. For the other direction, notice
that the only property of arithmetically saturated models used in the first part
of the proof of Theorem 8.10.3 is the property formulated in this corollary. �

Corollary 8.10.6 Suppose that M is arithmetically saturated, and let H be an
open proper subgroup of G. Then H is contained in maximal subgroup of G.

Proof By Theorem 8.10.3, let f ∈ G be such that 〈H ∪ {f}〉 = G. Let H∗ be
maximal with the property that H < H∗ and f /∈ H∗, given by Zorn’s lemma.
Clearly, H∗ is a proper maximal subgroup of G containing H. �

We are left with an open problem:

Problem 8.10.7 Suppose every open proper subgroup of G is contained in a
maximal subgroup of G. Is M arithmetically saturated?

8.11 Exercises

♣8.11.1 If M is a recursively saturated model and a, b ∈ M are such that
gap(a) < b, then there are unboundedly many c ∈ M such that (M,a, b) ≡
(M,a, c). More generally, ifK ≺end M and b ∈M\K, then there are unboundedly
many c such that (M,a, b) ≡ (M,a, c) for all a ∈ K.

The next four exercises should be done together.

♣8.11.2 If D is a 0-definable subset of a model M and |D| > 1, then there are
a, b ∈ D such that tp(a) �= tp(b).

♦8.11.3 If D is an unbounded definable subset of a recursively saturated model
M , then there are a, b ∈ D such that tp(a) �= tp(b). (Hint: see Corollary 2.1.11.)

♣8.11.4 If X is an unbounded inductive subset of a model M , then Aut(M)(X)
is trivial. (Hint: Apply Corollary 2.1.11 to (M,X).)

♣8.11.5 If p(v) is an unbounded type realized in a countable recursively
saturated model M , then there is an unbounded inductive set E ⊆ pM .

♣8.11.6 By Theorem 8.5.3 every countable recursively saturated model has an
elementary cut K whose setwise stabilizer is equal to its pointwise stabilizer. Use
this result to prove the Moving Gaps Lemma.

♣8.11.7 If M is countable and arithmetically saturated, then, there is f ∈
Aut(M) such that fix(f) �∼= M and fix(f) is not a finitely generated submodel
of M .
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If I ⊆end M and K ≺ M , then we say that K is I- small, if there is c ∈ M
such that K = {(c)i : i ∈ I}. In particular, if K is N-small, we call it small .

♠8.11.8 Let I be a cut of a countable recursively saturated model M , and
let K ≺M be I-small. There is f ∈ Aut(M) such that fix(f) = K iff I is strong
in M .

♠8.11.9 Körner’s theorem [90] says that every countable arithmetically satur-
ated first-order structure has a maximal automorphism. Show that Körner’s
theorem follows from Theorem 8.6.3.

For a model M , let

RSA(M) = {f ∈ Aut(M) : (M,f) is recursively saturated} .

♦8.11.10 The subgroup generated by RSA(M) is proper normal subgroup of
Aut(M).

♥8.11.11 If M is countable and recursively saturated and I ⊆end M is closed
under exponentiation, then there are f, g ∈ RSA(M) such that Ifix(fg) = I.

♣8.11.12 Use Theorem 8.6.3 to prove the following proposition: if a ∈ M
realizes a rare type and b ∈ gap(a), then a ∈ Scl(b).

♦8.11.13 If R is the set of all rare types realized in M , then M = Scl(
⋃

p∈R pM ).
The same is true if R is replaced by its complement in the family of complete
types realized in M (♣), but it is false if R is replaced by the set of all minimal
types realized in M (♥).

♦8.11.14 Every model M which is not prime has an elementary submodel which
is not a fixed point set. If M has more than one gap, then M has an elementary
cut which is not a fixed point set.

♥8.11.15 Every countable arithmetically saturated model M has continuum
many nonisomorphic elementary submodels of the form fix(f) for some f ∈
Aut(M).

♣8.11.16 If K is a countable model, then there is an arithmetically saturated
model M and an f ∈ Aut(M) such that fix(f) ∼= K.

♦8.11.17 If M is recursively saturated and K ≺M is such that, for each a ∈M ,
K ∩ gap(a) �= ∅, then K = M .

♦8.11.18 If M is countable and recursively saturated and M ≺cof N , then there
are c, d ∈ N such that gap(c) < d and [c, d] ∩M = ∅.
♦8.11.19 If M is a countable model and I ⊆end M is not semiregular in M , then
I has continuum many automorphisms. (Hint 1: without loss of generality, we



8.12 REMARKS & REFERENCES 227

can assume that M is recursively saturated. Hint 2: if J = cf(I) and c ∈ M is
such that I = sup {(c)i : i ∈ J}, then M has automorphisms which fix J ∪ {c}
pointwise and move some elements of I.)

♣8.11.20 If M is recursively saturated and f ∈ Aut(M) is such that f ∈
Aut(M,S) for some partial inductive satisfaction class S, then there are a
recursively saturated model N and g ∈ Aut(N) such that M ≺end N and f ⊆ g.

♦8.11.21 If M is countable and recursively saturated G = Aut(M) and f ∈ G
is such that f(a) < Scl(a) \ Scl(0), then G = 〈Ga ∪ {f}〉.

8.12 Remarks & References

Automorphisms of models of PA have an extensive literature. A good survey of
results until 1995 is Kotlarski [113].

Corollary 8.1.2 (L∞ω-undefinability of automorphisms) was proved in [75]
using the Moving Gaps Lemma. The proof presented here is from [74], where
the proof of Proposition 8.1.3 is attributed to Athanassios Tzouvaras.

The Moving Gaps Lemma (Theorem 8.3.2) is due to Kotlarski. The proof
given in this chapter, is from [108] by Kossak & Schmerl. This paper also includes
another short proof using minimal types. In this chapter, we stated and proved
the lemma for gaps of elements above the least gap. The lemma has a variant
concerning the action of the automorphism group on the undefinable elements
of the least gap. Let M be a countable recursively saturated model. Suppose M
has nonstandard definable elements. Then every element of a ∈ gap(0) \ Scl(0)
belongs to a maximal convex set consisting of undefinable elements of M , which
is called the interstice of a. In the case of an arithmetically saturated M , each
interstice is partitioned into countably many convex sets. These sets are called
intersticial gaps, and each of them is of the form gapF (e) for some set F of Skolem
terms. The study of the action of Aut(M) on the intersticial gaps results in an
interesting structure theory of gap(0). The first erroneous proof of the Moving
Intersticial Gaps Lemma was given in [75]. The error was corrected by Bamber &
Kotlarski [4], who also introduced the intersticial terminology. Their results were
later improved and generalized by Bigorajska, Kotlarski, and Schmerl in [9]
and [175].

In the introduction to [193] Smoryński wrote: “Back-and-forth, arguments
are so dull and familiar that nothing beyond length is gained by their inclusion.”
While this might be true about some arguments, a good counterexample is The-
orem 8.4.2, proved by Smoryński in [194]. Lemma 8.4.3 is due independently to
Kotlarski [111] and Alena Vencovská, who proved a similar result for Alternative
Set Theory. Smoryński’s work, in particular [193] and [194], inspired many fur-
ther developments discussed in this chapter. See [193] for an interesting account
of the early history of the subject.

Theorem 8.4.7 is a generalization of a result of Kanovei [66] which says that
if an element of a model M is definable in (M,N), then it is already definable
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in M . Theorem 8.4.7 was proved in [100] by Kossak & Bamber. For more insight
concerning back-and-forth we recommend John Surman [202].

Theorem 8.5.1 is from [101] by Kossak & Kotlarski. Theorem 8.5.7 was proved
in [102]. These results are about extending automorphisms to elementary end
extensions. The analogous question in the territory of cofinal extensions is virtu-
ally unexplored. If M ≺cof N , then a subset X of M is coded in K if X = a∩M
for some a ∈ N . It is shown in [102] that every countable recursively saturated
model M has a countable cofinal extension such that every automorphism of M
which sends coded sets to coded sets extends to an automorphism of N . This
is the only published result on extending automorphisms to cofinal extensions.
Exercise 8.11.17 is an unpublished result of Kotlarski.

Theorem 8.5.3 was proved by Schmerl in [174]. The proof is closely related
to the proof of Theorem 5.4.4.

Theorems 8.6.3 and 8.7.2 are due to Kaye, Kossak, and Kotlarski [75]. Our
proof of Theorem 8.7.2 differs much from the one given in [75]. It is based on a
proof of a special case from [107]. In fact, the proof presented in [75] has some
important details omitted. A complete back-and-forth proof of Theorem 8.7.2
is given in [96]. Recently, Enayat has found a very elegant way to prove results
like Smoryński’s Theorem 8.4.2 and Theorem 8.7.2. Enayat’s technique, which
avoids back-and-forth, is a refinement of the arguments used in the proof of
Theorem 8.7.2. The result in Exercise 8.7.3 is Corollary 2.13 in [175]. Among the
many other results in [175] is a general version of the Moving Gaps Lemma for
intersticial gaps.

Frederike Körner [90] has generalized Theorem 8.6.3 by proving that every
countable arithmetically saturated first-order structure has a maximal auto-
morphism. Motivated by the converse for models of PA she has also asked the
following question:

Problem 8.12.1 Let T be a complete first-order theory. Is it true that either
every countable recursively saturated model of T has a maximal automorphism,
or for every countable recursively saturated model A of T , A has a maximal
automorphism iff A is arithmetically saturated?

Grégory Duby [27] imporoved Körner’s result by showing that every count-
able arithmetically saturated first-order structure has an automorphism of whose
all powers are maximal.

As observed by Fredrik Engström in his Ph.D. thesis [36], the theorem on
the existence of maximal automorphisms of countable arithmetically saturated
models can be viewed as an omitting types result. Consider the type p(x) =
{g(x) = x ∧ x �= t(0) : t ∈ Term} in LPA with a function symbol g. Then
for each model M and automorphism f , (M,f) omits p(x) iff f is maximal.
Engström studies various expandability notions and introduces a strong form of
resplendence which guarantees existence of expansions omitting certain types.

Results concerning the automorphism groups of recursively saturated models
from this and the next chapter can be considered as part of the general theory
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of automorphisms of first-order structures. The book [77] edited by Kaye &
Macpherson is a good introduction to the subject and covers many topics directly
related to the material discussed in this book.

The study of connections between types of elements and their stabilizers
began in [75] and was continued in [103] by Kossak et al. More results concerning
types realized in intersticial gaps can be found in [9], [8] by Bigorajska and other
papers referenced there. Theorem 8.9.4 is from [9].

Our illustration of the use of topology on Aut(M), Proposition 8.8.2, is due
to Kaye [74]. Proposition 8.8.2 is one of the preliminary lemmas in the proof the
theorem of Kaye [74] characterizing closed normal subgroups of Aut(M). The
result says that H is a closed normal subgroup of Aut(M) iff H is a pointwise
stabilizer of an invariant initial segment of M . Kaye leaves open the problem
of classifying all normal subgroups, conjecturing that they are all G(I) or G(>I)
for invariant I. A different proof of Kaye’s theorem which has some additional
consequences is given in [173].

Theorems 8.9.1 and 8.9.3 are from [103]. This paper, which continues work
started in [75], contains more results on open maximal subgroups. For more
results in this direction see also [114]. Corollaries 8.10.4, 8.10.5, and 8.10.6 are
from [107]. Kotlarski & Piekart in [116] discuss the question: When does an open
subgroup of the automorphism group of a countable recursively saturated model
of TA extend to a unique maximal subgroup¿

Exercise 8.11.11 is due to Jǐŕı Sgall and Anton Sochor (unpublished).
Kotlarski has found a very elegant short proof.

Exercise 8.11.19 is based on [94]. Earlier similar results were obtained by
Hamid Lessan in his Ph.D. thesis [121].

In [110] and [111] Kotlarski began a systematic study of combinatorial prop-
erties of families of elementary cuts of countable recursively saturated models.
In particular, he defined the notion of a closed subset of a recursively saturated
model and proved several results concerning closed cuts. A subset X of a model
M is closed if for every x /∈ X, there is an f ∈ Aut(M) such that f � X = id
and f(x) �= x. Clearly, if the type of a ∈ M is rare, then inf(gap(a)) is not
closed. Kotlarski showed that if I ≺end M is not closed, then it must be of the
form inf(gap(a)) for some a. Piekart [151] gives a complete summary of what is
known about closed cuts.




AUTOMORPHISM GROUPS OF RECURSIVELY

SATURATED MODELS

In this chapter we use the topology of the automorphism group in a more
substantial way than just to formulate the results in the topological language.
We present several results concerning the structure of the automorphism group
of a countable recursively saturated model. One of the central notions is that of
a Lascar generic automorphism. We prove that all countable arithmetically sat-
urated models have Lascar generic automorphisms; and we use Lascar generics
to prove that all countable arithmetically saturated models have the small index
property. In the proofs, we take full advantage of the fact that automorphism
groups of countable structures are Polish groups, and that, in particular, the
Baire Category Theorem applies. In another major result in this section, we
show that every countable arithmetically saturated model is determined up to
isomorphism by its complete theory and its automorphism group. We also char-
acterize countable arithmetically saturated models as those whose automorphism
groups have uncountable cofinality.

9.1 Generic automorphisms

Recall that a subset of a topological space is meager if it is contained in a
countable union of closed nowhere dense sets. A comeager set is the complement
of a meager set. If A is a countable first-order structure, then Aut(A) with
the topology whose basic open subgroups pointwise stabilizers of finite sets is
a Polish (completely metrizable and separable) group, and, in particular, the
Baire Category Theorem holds: every comeager subset of Aut(A) is dense (hence,
nonempty).

An automorphism f of a countable first-order structure A is generic if its
conjugacy class [f ]G = {fg : g ∈ G} is comeager in G = Aut(A).

Generic automorphisms are an important tool in the study of automorph-
ism groups of ℵ0-categorical structures. They play a similar role in the study of
arithmetically saturated models of arithmetic; however the definition of generi-
city needs to be altered. In Definition 9.1.4, we define the notion of Lascar generic
automorphisms. It is an open problem, and the specifics of it are discussed later
in this chapter, whether Lascar generics are generic.

Recall that a submodel K ≺ M is small, written K ≺sm M , if for some
a ∈ M , K = {(a)i : i ∈ ω}. Every finitely generated elementary submodel of a
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recursively saturated model M is small in M (Do it!). By compactness, every
countable model K is small in some recursively saturated model M . If K is a
small elementary submodel of M , then AutM (K) denotes the group of those
automorphisms of K which can be extended to automorphisms of M . Notice
that, using the notation introduced in the previous chapter, there is a natural
isomorphism between AutM (K) and G{K}/G(K).

Notice that if K ≺sm M , then G(K) is an open subgroup of G. Therefore G{K}
is open as well. The next proposition generalizes this slightly.

Proposition 9.1.1 If K ≺sm M , g ∈ AutM (K), and G = Aut(M), then the set
of f ∈ G such that g ⊆ f is open.

Proof Let K = {(a)n : n < ω} for some a ∈M , and suppose that f ∈ G extends
g. Then H = {f ′ ∈ G : f ′(a) = f(a)} is an open neighborhood of f , and for all
f ′ ∈ H, g ⊆ f ′ (Do it!). �

Definition 9.1.2 Let K ≺sm M . We say that f ∈ AutM (K) is existentially
closed if for every formula ϕ(x, y) with parameters in K and for all h ∈ Aut(M),
if f ⊆ h and M |= ∃xϕ(x, h(x)), then K |= ∃xϕ(x, f(x)).
Lemma 9.1.3 Let M be countable and arithmetically saturated. Suppose that
a, a′ ∈ M are such that tp(a) = tp(a′). Then there are K ≺sm M and an
existentially closed f ∈ AutM (K) such that a ∈ K and f(a) = a′.

Proof By standard closure arguments one can construct a model K ≺ M and
an automorphism f of K such that a, a′ ∈ K, f(a) = a′, and for all a0, . . . , ai−1
in K and all ϕ(x, y), if there are c, d ∈ M and such that tp(a0, . . . , ai−1, c) =
tp(f(a0), . . . , f(ai−1), d), and M |= ϕ(c, d), then there are such c and d in K.
Now we define a type, which is arithmetic in tp(a, a′), the construction of which
emulates the construction of such K and f .

For each i < ω we define an operation Ei(X) such that for each A ⊆ M , if
A0 = A and for i < ω, Ai+1 = Ei(Ai), then

⋃
i<ω Ai = Scl(A). The particular

choice of Ei is not important, but we need to be more specific because we also
need an effective bound for the size of Ei(A) for finite A. Let 〈ti(x) : i < ω〉 be a
recursive enumeration of all unary Skolem terms, and for i < ω and A ⊆M , let

Ei(A) = A ∪ {〈a, b〉 : a, b ∈ A} ∪ {tj(a) : j < i, a ∈ A} .

We define a type p(v, w) such that for c, d realizing the type, we have K =
{(c)i : i < ω} = {(d)i : i < ω}≺sm M and (c)i �→ (d)i an existentially closed
automorphism of K. We define p(v, w) as

⋃
i<ω pi(v, w) by induction on i. The

definition involves an increasing coded ω-sequence 0 = λ0 < λ1 < · · · < ω, with
the property that for every set A such that |A| = 2λi + 2, |Ei(A)| < λi+1. It is
easy to define such a sequence λi by induction. The specifics are not important,
as any coded sequence satisfying the condition above will do. Think of v and w
as finite approximations to an existentially closed automorphism which is built
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in a back-and-forth process, where at step i we have the sequences of length
λi + 1 and we extend them to sequences of length λi+1 + 1 in the next step.

Let p0(v, w) = {(v)0 = a ∧ (w)0 = a′}. Suppose now that pi(v, w) has been
defined. If i is odd, then we adjoin to pi(v, w) the formula

Ei

( {(v)0, . . . , (v)λi
, (w)0, . . . , (w)λi

} ) ⊆ {
(v)0, . . . , (v)λi+1

}
,

and if i is even, we adjoin the formula

Ei

( {(v)0, . . . , (v)λi
, (w)0, . . . , (w)λi

} ) ⊆ {
(w)0, . . . , (w)λi+1

}
.

Then we define qi(v, w) to be pi(v, w) together with the formula we just added
plus the recursive set of formulas expressing that

tp((v)0, . . . , (v)λi+1) = tp((w)0, . . . , (w)λi+1).

Although we have not finished defining pi+1(v, w) yet, notice that if we declared
that pi+1(v, w) = qi(v, w), any elements c, d realizing p(v, w) would give us a
small model and an automorphism (c)i �→ (d)i. We still need to insert an extra
condition to make sure that this automorphism is existentially closed.

Let 〈ϕi(xk0 , . . . , xki
, x, y) : i < ω〉 be a recursive enumeration of all formulas

in the variables shown, where {k0, . . . , ki} ⊆ [0, λi]. If for all finite conjunctions
ψ(v, w) of formulas in qi(v, w) and all θ(u, x),

M |= ∃v, w, x, y {ψ(v, w) ∧ [θ(v, x)←→ θ(w, y)] ∧ ϕi((v)k0 , . . . , (v)ki , x, y)}, (∗)

then let

pi+1(v, w) = qi(v, w) ∪ {ϕi((v)k0 , . . . , (v)ki
, (v)λi+1, (w)λi+1)}.

Otherwise let pi+1(v, w) = qi(v, w). Notice that the condition (∗) guarantees,
that if qi(v, w) is finitely realizable, then so is pi(v, w).

To finish the proof we need two observations. The first is that for each i < ω,
pi(v, w) is finitely realizable (Do it!). The second is that

⋃
i<ω pi is arithmetic

in tp(a, a′); hence, by arithmetic saturation, p(v, w) is realized in M , and the
result follows. �

Definition 9.1.4 Let M be a model and G = Aut(M). An automorphism g ∈ G
is Lascar generic if the following conditions are satisfied:

(1) For each finite A ⊆M , there is K ≺sm M such that A ⊆ K, g(K) = K, and
g � K is existentially closed.

(2) If K ≺sm M , and g(K) = K and g � K is existentially closed, K ≺ L≺sm M ,
f ∈ AutM (L), and g � K ⊆ f , then there is h ∈ G(K) such that f ⊆ gh.
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It follows directly from the definition that the set of Lascar generic auto-
morphisms is closed under conjugation. Here is the fundamental property of
Lascar generics.

Proposition 9.1.5 Let f and g be Lascar generic automorphisms of a countable
model M , and let G = Aut(M). Suppose that M0≺sm M , f � M0 = g � M0 ∈
Aut(M0), and f � M0 is existentially closed. Then f and g are conjugate in G.

Proof We will define α, β ∈ G such that gα = fβ . The automorphisms α and β
will be obtained as the limits of two sequences of automorphisms defined induct-
ively as we “glue” f and g together in a back-and-forth process, alternating
applications of (1) and (2) in Definition 9.1.4. The idea is to build an elementary
chain 〈Mi : i < ω〉 of small elementary submodels of M such that M =

⋃
i<ω Mi

aid for each i, the restriction of a conjugate either of f or g to Mi is an existen-
tially closed automorphism of Mi, and then to use (2) from the definition above
to glue a conjugate of f to a conjugate of g on Mi using an automorphism in
G(Mi−1). To make sure that

⋃
Mi<ω = M , we let 〈ai : i < ω〉 be an enumeration

of M . At step i we use (1) to make sure that ai ∈Mi+1. Let us describe the first
three steps of this process.

In step 1, since g is Lascar generic, by (1), there is M1≺sm M such that
a0 ∈ M1, M0 ≺ M1, f(M1) = M1, and g � M1 is existentially closed. Fix such
a model M1. Then, since f is Lascar generic and f � M0 is existentially closed,
then, by (2), there is h0 ∈ G(M0) such that g � M1 ⊆ fh0 .

So now, in step 2, g and fh0 are Lascar generic, they agree on M1 and
g � M1 is existentially closed. So, let M2≺sm M be such that M1 ≺ M2,
a1 ∈ M2, and fh0 is existentially closed on M2. So there is h1 ∈ G(M1) such
that fh0 � M2 ⊆ gh1 .

In step 3, we get M3 such that a2 ∈ M3≺sm M , and then get h2 ∈ G(M2)

such that gh1 � M3 ⊆ (fh0)h2 .
Continuing in the same fashion for every i < ω, we get hi ∈ G(Mi) such that

for all even n,

gh1h3···hn−1 � Mn−1 = fh0h2···hn � Mn−1.

Since
⋃

i<ω Mi = M , the following functions are well-defined. In fact, they are
automorphisms of M :

α = lim
i→∞

h1h3 · · ·h2i+1,

β = lim
i→∞

h0h2 · · ·h2i.

Then gα = fβ (Do it!), and the result follows. �
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In Definition 9.1.4, we did not assume that M is recursively saturated, but,
to avoid trivial examples, this assumption is necessary. We will actually need
more to establish that Lascar generics exist.

Theorem 9.1.6 The set of Lascar generic automorphisms of a countable
arithmetically saturated model M is comeager in G = Aut(M).

Proof Let A be a finite subset of M . By Proposition 9.1.1, the set of all g ∈ G,
such that ∃K[A ⊆ K ≺sm M ], g(K) = K, and g � K is existentially closed, is
open. Proposition 9.1.3 shows that this set is dense. It follows that the set of
automorphisms which satisfy the first part of the definition of Lascar generics is
comeager in G.

Now suppose that K,L, and g satisfy the conditions:

(1) K ≺sm M and K ≺ L≺sm M ;
(2) g ∈ AutM (L) and g(K) = K;
(3) g � K is existentially closed.

Let O(K,L, g) be the set

{f ∈ G : ∃h ∈ G(K) [g ⊆ fh]} ∪ {f ∈ G : ∃a ∈ K[g(a) �= f(a)]}.

Since there are countably many K,L, and g as above, and each set O(K,L, g)
is open, to prove that their intersection is comeager, we will show that each of
them is dense. This follows from the claim:
Claim: Suppose that c, c′ ∈ M are such that for all a ∈ K, tp(a, c) =
tp(g(a), c′). Then there exist h ∈ G(K) and f ∈ G such that g ⊆ fh, and
f(c) = c′.
Proof of the claim: Let α, β ∈ M be such that K = {(α)n : n < ω} and
L = {(β)n : n ∈ ω}. The proof of the claim is finished if we find d, d′, and f ∈ G
such that g ⊆ f , and f(d) = d′, and for all a ∈ K, tp(a, c, c′) = tp(a, d, d′) (Do
it!).

Then g can be extended to an automorphism of M . Let β′ be the image of β
under an extension of g. We apply resplendency to the set of formulas Γ(v, v′, f)
with parameters α, β, β′, c, c′ in L ∪ {f} expressing that f is an automorph-
ism, tp((α)k, c, c′) = tp((α)k, v, v′), for all k < ω and containing the formulas
f((β)k) = (β′)k ∧ f(v) = v′ for all k < ω.

Since g � K is existentially closed, every finite fragment of Γ is satisfied by
some d, d′ ∈ K and any f ∈ G which extends g. Hence, by resplendency, there
are d, d′ ∈M and f ∈ G, satisfying Γ, which finishes the proof of the claim.

The claim shows that the intersection of all O(K,L, g) for K,L, g satisfying
(1), (2), and (3) above is comeager. All automorphisms in this intersection are
Lascar generics. �
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Theorem 9.1.6 has an immediate corollary:

Corollary 9.1.7 In a countable arithmetically saturated models, every generic
automorphism is Lascar generic. �

9.2 Dense conjugacy classes

The set of Lascar generics is comeager and closed under conjugation, but it is
not clear whether Lascar generics are generic. They are, nevertheless, locally
generic. An automorphism is locally generic if its conjugacy class is comeager in
some open subset of the automorphism group. We prove that for arithmetically
saturated models of TA, all Lascar generics are generic. It follows that, in an
arithmetically saturated model of TA, all Lascar generics are conjugate. First
we give a condition which implies the existence of generic automorphisms of
arithmetically saturated models.

Proposition 9.2.1 If a countable arithmetically saturated model has an auto-
morphism whose conjugacy class is dense, then every Lascar generic of the model
is generic.

Proof Suppose that [h] is dense in G. Let g1, g2 ∈ G be Lascar generics. Then
there are M1,M2≺sm M such that g1 � M1 and g2 � M2 are existentially closed.
Let a1, a2 ∈ M be such that M1 = {(a1)i : i < ω} and M2 = {(a2)i : i < ω}.
Let h1, h2 be conjugates of h such that h1(a1) = g1(a1) and h2(a2) = g2(a2),
and let f be such that h2 = f−1h1f . Then h1(f(a2)) = f(g2(a2)). The set of
Lascar generics is dense; hence, there is a Lascar generic g agreeing with g1 on
{a1, f(a2)}, so that g(a1) = g1(a1) and g(f(a2)) = f(g2(a2)). Thus, f−1gf(a2) =
g2(a2). Now, both g and f−1gf are Lascar generics, and they agree with g1 and
g2 on M1 and M2, respectively. Therefore, g and g1 are conjugates and also
f−1gf and g2 are conjugates. Thus, g1 and g2 are conjugates. �

By Theorem 9.1.6 we have the following corollary.

Corollary 9.2.2 If a countable arithmetically saturated model M has an auto-
morphism whose conjugacy class is dense, then for every f ∈ Aut(M), f is
generic iff it is Lascar generic. �

Notice that in Proposition 9.2.1, we could assume that M is just recurs-
ively saturated. However, at this point it could be a debatable improvement
since we do not know whether a model which is recursively saturated but not
arithmetically saturated has Lascar generics.

The next natural question is: which countable recursively saturated mod-
els have an automorphism whose conjugacy class is dense? The answer is not
straightforward. In the proof we will use the following theorem of Hajnal [51].
To state the theorem, we need a few definitions. A digraph is a structure (V,E),
where E ⊆ V 2 is such that for all x ∈ V , (x, x) /∈ E. If D = (V,E) is a digraph,
then the chromatic number of D, denoted by χ(D), is the smallest cardinal κ
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for which there is a function (coloring) f : V −→ κ such that for all (x, y) ∈ E,
f(x) �= f(y). If D1 = (V1, E1) and D2 = (V2, E2) are digraphs, then their product
D1×D2 is the digraph (V1×V2, E), where ((x1, x2), (y1, y2)) ∈ E iff (x1, y1) ∈ E1
and (x2, y2) ∈ E2.

Hajnal’s Theorem: If D1 and D2 are digraphs, χ(D1) ≥ ℵ0 and
χ(D2) ≥ ℵ0, then χ(D1 ×D2) ≥ ℵ0.

Theorem 9.2.3 Every countable recursively saturated model of TA has an
automorphism whose conjugacy class is dense.

Proof Let M be a countable recursively saturated model of TA. We construct
an automorphism h whose conjugacy class is dense by back-and-forth. It is the
usual construction, however, infinitely often we stop, and consider the partial
automorphism a1 �→ a2 constructed so far. Think of a1 and a2 as codes of
the finite domain and range of the partial automorphism. Consider b1, b2 ∈ M
such that tp(b1) = tp(b2). We will find b′

1, b
′
2 such that tp(b1, b2) = tp(b′

1, b
′
2)

and tp(a1, b
′
1) = tp(a2, b

′
2). Then we will declare that the automorphism we are

constructing sends b′
1 to b′

2. Notice that if h is built in this way, then, since there
is g ∈ Aut(M) such that g(b1, b2) = (b′

1, b
′
2), we have g−1hg(b1) = b2; hence, [h]

has a nonempty intersection with the basic open set {f ∈ G : f(b1) = b2}.
To find b′

1 and b′
2, consider the type Γ(x1, x2, y1, y2) with parameters

a1, a2, b1, b2:

{ϕ(x1, x2) : M |= ϕ(a1, a2)} ∪ {ψ(y1, y2) : M |= ψ(b1, b2)}
∪ {tpn(x1, y1) = tpn(x2, y2) : n < ω} ,

where tpn(a, b) stands for the type of (a, b) restricted to the first n formulas in
some fixed recursive enumeration of all formulas in two variables. Notice that
Γ(x1, x2, y1, y2) is recursive in tp(a1, a2, b1, b2).

It is enough to show that Γ(x1, x2, y1, y2) is finitely realizable. Suppose it is
not. Then there are ϕ(x1, x2), ψ(y1, y2) ∈ Γ and n < ω such that

M |= ∀x1, x2, y1, y2[ϕ(x1, x2) ∧ ψ(y1, y2) −→ tpn(x1, y1) �= tpn(x2, y2)]. (∗)

Let D1 = (M,E1), D2 = (M,E2), where (v1, v2) ∈ E1 iff M |= ϕ(v1, v2) and
(w1, w2) ∈ E2 iff M |= ψ(w1, w2). First we check that D1, D2 are digraphs.
Suppose M |= ∃xϕ(x, x). Then let c = min {x : M |= ϕ(x, x)}. Then from (∗)
we get tpn(c, b1) �= tpn(c, b2), and this is a contradiction because c ∈ Scl(0) and
tp(b1) = tp(b2). The argument for D2 is analogous.

We claim that χ(D1) ≥ ℵ0 and χ(D2) ≥ ℵ0. To prove the claim, suppose that
D1 is k-colorable for some k < ω. Then every subdigraph of D1 is k-colorable. In
particular every finite subdigraph of DN

1 = (N, E1 ∩ N2) has a k-coloring. Since
M |= TA, DN

1 is 0-definable in N. The theorem: “If every finite subdigraph of a
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digraph D is k-colorable, then D is k-colorable” is provable in WKL0. Thus, DN
1

has a 0-definable k-coloring α′ (Do it!). The same definition gives a k-coloring
α of D1. Since (a1, a2) is an edge of D1, we have α(a1) = k1, α(a2) = k2 for
some distinct k1, k2 < k. But this gives a contradiction because tp(a1) = tp(a2).
Thus, the claim is proved for D1. Similar for D2.

By Hajnal’s theorem, χ(D1 × D2) ≥ ℵ0. However, by (∗), the mapping
(x, y) �→ tpn(x, y) is a 2n-coloring of D1 ×D2. This contradiction shows that Γ
is finitely realizable and finishes the proof. �

For natural numbers k and n we now consider the following statement H(k, n)
concerning finite digraphs:

∀D1, D2[χ(D1) ≥ k ∧ χ(D2) ≥ k −→ χ(D1 ×D2) ≥ n].

It is an open problem whether for each n there is a k such that H(k, n) holds.
The statement ∀n∃kH(k, n) is known to be equivalent to ∃kH(k, 4). Moreover,
the proof when formalized in PA gives the following proposition:

Proposition 9.2.4 For any model M the following are equivalent:

(1) ∀n < ω∃k < ω M |= H(k, n).
(2) ∃k < ω M |= H(k, 4). �

Theorem 9.2.5 Let M be a countable recursively saturated model having a
nonstandard prime submodel. Then the following are equivalent:

(1) M has an automorphism whose conjugacy class is dense.
(2) For some k < ω, M |= H(k, 4).

Proof To prove that (2) implies (1), we proceed exactly as in the proof of
Theorem 9.2.3. Our objective is to prove that the type Γ(x1, x2, y1, y2) is finitely
realizable. The graphs D1 and D2 are defined the same way, but now we can
not claim that χ(Di) ≥ ℵ0, i = 1, 2, by arguing that otherwise there would
be a 0-definable finite coloring α of Di ∩ N, since these digraphs might not be
definable in N (and even if they were that would not be enough). But we still
get a contradiction if we assume that Γ is inconsistent and there is a 0-definable
finite coloring of either D1 and D2. Hence, suppose that Γ is inconsistent and
neither D1 nor D2 has a 0-definable finite coloring. Since the theorem, stating
that if every finite subdigraph of a digraph D is k-colorable, then so is D, is
provable in PA, it follows that, for each k < ω, we must have

M |= ∃D′
1 ⊆ D1∃D′

2 ⊆ D2[χ(D′
1) > k ∧ χ(D′

2) > k].
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By Proposition 9.2.4, if k is large enough, then for D′
1, D′

2 whose chromatic
numbers in M are bigger than k, we have M |= χ(D′

1 × D′
2) > 2n. But, as in

the previous proof, the mapping (x, y) �→ tpn(x, y) is a 0-definable 2n-coloring
of D′

1 ×D′
2, contradiction.

Next we show that (1) implies (2). Assume that M has an automorphism
whose conjugacy class is dense, and suppose that for all k < ω, M |= ¬H(k, 4).

Let θ(x) be the formula

∃D1, D2 [χ(D1) ≥ x ∧ χ(D2) ≥ x ∧ χ(D1 ×D2) < 4].

For every standard k, M |= θ(k). By overspill, θ(k) holds in M for some non-
standard k. Pick a nonstandard definable a ∈M , and let t be the largest t < a for
which M |= θ(2t). Clearly, t is nonstandard and definable. There are 0-definable
D1, D2 such that χ(D1) > 2t∧χ(D2) > 2t∧χ(D1×D2) < 4. Let D1 = (V1, E1),
D2 = (V2, E2), and let ϕ0(x), ψ0(x), ρ1(x1, x2), and ρ2(y1, y2) be the definitions
of V1, V2, E1, and E2, respectively. Also, let β be a definable 3-coloring ofD1×D2.
(We could instead let β be any k-coloring, where k < ωi.)

Let θ0(x), θ1(x), . . . be a recursive list of all unary formulas. We define two
complete types: p(x) = {ϕi(x) : i < ω} and q(x) = {ψi(x) : i < ω}, where ϕ0(x)
and ψ0(x) are as defined above. Proceeding inductively, we define ϕi+1(x) to
be θi(x) or ¬θi(x), preserving the largeness condition: the induced subdigraph
D1 ∩ ϕi(M) is not 2t−i-colorable. Notice that this is always possible because, if
D = D1 ∩ θi(M) is not 2t−i-colorable in M and D = A1 ∪ A2 is a 0-definable
partition, then it cannot be that both A1 and A2 are 2t−i−1-colorable. We follow
the same procedure defining ψi+1(x), considering induced subdigraphs of D2 ∩
ψi(M), which are not 2t−i-colorable.

Now consider the types:

P (x1, x2) = p(x1) ∪ p(x2) ∪ {ρ1(x1, x2)} ,
Q(y1, y2) = q(y1) ∪ q(y2) ∪ {ρ2(y1, y2)} .

Both P (x1, x2) and Q(y1, y2) are recursive in Th(M), and they are both
finitely realizable in M because none of the induced subdigraphs in the construc-
tion of p(x) and q(x) is 1-colorable. Let (a1, a2) realize P and (b1, b2) realize Q.
We have tp(a1) = tp(a2) and tp(b1) = tp(b2). Let h be an automorphism whose
conjugacy class is dense. Then there are a′

1, a
′
2, b

′
1, b

′
2 such that h(a′

1) = a′
2,

h(b′
1) = b′

2, tp(a1, a2) = tp(a′
1, a

′
2), and tp(b1, b2) = tp(b′

1, b
′
2). Since

M |= ρ1(a1, a2) ∧ ρ2(b1, b2),

it follows that

M |= ρ1(a′
1, a

′
2) ∧ ρ2(b′

1, b
′
2).
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Hence, ((a′
1, b

′
1), (a

′
2, b

′
2)) is an edge in D1 × D2. Since β is 0-definable,

h(β(a′
1, b

′
1)) = β(a′

2, b
′
2). But β(a

′
1, b

′
1) is standard, so β(a′

1, b
′
1) = β(a′

2, b
′
2), which

is a contradiction. �

9.3 Small index property

This section is devoted to a rather special topic. The question we ask is: can
the topology on an automorphism group be determined completely by the group
itself (as an abstract group)? In some specific cases the answer is positive, and
generic automorphisms play an important role. We begin with some general facts
concerning topology on automorphisms.

If A is a first-order structure and G = Aut(A), then it is fairly easy to see that
a subgroup H < G is open in G iff there is a finite X ⊆ A such that G(X) < H.
Consequently, if the universe of A is countable, then [G : H] ≤ ℵ0 for each open
H < G, where [G : H] is the index if H in G. We also have the following general
theorem.

Theorem 9.3.1 Let G be a Polish group. If H < G is meager, then
[G : H] = 2ℵ0 . �

A first-order structure A has the small index property if every subgroup H <
Aut(A) such that [Aut(A) : H] ≤ ℵ0 is open in Aut(A). In the definition of the
small index property we could replace ≤ ℵ0 with < 2ℵ0 . In practice it makes little
difference as it can be shown that every subgroup H of a Polish group G with
the property of Baire is either open (and hence [G : H] ≤ ℵ0) or [G : H] = 2ℵ0 .
(See Corollary 6.5 of [77].) Our main result, Theorem 9.3.9, holds with the
stronger definition.

The list of structures which are known to have the small index property
includes: (Q, <), the countable atomless boolean algebra, every vector space of
countable dimension over a finite or countable field, every countable ω-stable
ℵ0-categorical structure, and the random graph. In this section we prove that all
countable arithmetically saturated models of arithmetic belong in this list. We
start with two general lemmas.

Lemma 9.3.2 Let H be an open subgroup of a Polish group G. If K < G and
H ∩K is comeager in H, then K is open.

Proof For each a ∈M , the map x �→ ax is a homeomorphism; hence, each coset
of H ∩K in H is also comeager. Since cosets are disjoint, there can be only one
such coset; hence, H is contained in K, so K is open. �

In Section 9.1, we studied generic automorphisms, now we need to discuss
generic tuples. If G = Aut(M), then for each n < ω, we consider the group
product Gn with the product topology. A tuple (f0, . . . , fn−1) ∈ Gn is generic,



240 AUTOMORPHISM GROUPS OF RECURSIVELY SATURATED MODELS

and its conjugacy class

[f0, . . . , fn−1]G =
{
(fg

0 , . . . , f
g
n−1) : g ∈ G

}
is comeager in Gn.

All of the results from Section 9.1 concerning Lascar generics can be gen-
eralized to generic tuples. The proofs are essentially the same. Here are the
results. Each is equipped with the reference to the corresponding result for single
automorphisms.

Definition 9.3.3 (9.1.2) Let K ≺sm M . We say that the tuple (f0, . . . , fn) ∈
(AutM (K))n+1 is existentially closed if for every formula ϕ(x, ȳ) with para-
meters in K and for all h0, . . . , hn ∈ Aut(M), if fi ⊆ hi for i ≤ n, and
M |= ∃xϕ(x, h0(x), . . . , hn(x)), then K |= ∃xϕ(x, f0(x), . . . , fn(x)).

Lemma 9.3.4 (9.1.3) LetM be countable and arithmetically saturated. Suppose
that a, a0, . . . , an ∈ M are such that tp(a) = tp(a0) = · · · = tp(an). Then there
are K ≺sm M and an existentially closed tuple (f0, . . . , fn) ∈ (AutM (K))n+1 such
that a ∈ K and fi(a) = ai for all i ≤ n. �

Definition 9.3.5 (9.1.4) Let M be a model and G = Aut(M). A tuple
(g0, . . . , gn) ∈ Gn+1 is Lascar generic if the following conditions are satisfied:

(1) For each finite A ⊆ M , there is K ≺sm M such that A ⊆ K, gi(K) = K for
i ≤ n, and the tuple (g0 � K, . . . , gn � K) is existentially closed.

(2) If K ≺sm M , and gi(K) = K for i ≤ n, and (g0 � K, . . . , gn � K) is
existentially closed, K ≺ L≺sm M , and (f0, . . . , fn) is such that for all
i ≤ n fi ∈ AutM (L), and gi � K ⊆ fi, then there is h ∈ G(K) such that for
all i ≤ n, fi ⊆ ghi .

Proposition 9.3.6 (9.1.5) Let (f0, . . . , fn) and (g0, . . . , gn) be two Lascar gen-
eric tuples for a model M , and let G = Aut(M). Suppose that M0≺sm M ,
fi(M0) = gi(M0) = M0, fi�M0 = gi�M0, for i ≤ n, and (f0�M0, . . . , fn�M0) is
existentially closed. Then [f0, . . . , fn]G = [g0, . . . , gn]G. �

Lemma 9.3.7 (9.1.6) For each n < ω, the set of Lascar generic n-tuples is
comeager in Gn. �

Finally another extension of Theorem 9.1.6:

Lemma 9.3.8 Let (g0, . . . , gn) be a Lascar generic tuple. Then the set

X = {g ∈ G : (g0, . . . , gn, g) is Lascar generic}

is comeager in G.
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Proof It follows from Definition 9.3.5 that X is an intersection of countably
many open sets. We will prove that X is dense. Let ā, b̄ ∈ M , be such that
tp(ā) = tp(b̄). We will find g ∈ X such that g(ā) = b̄. Let K ≺sm M be such that
ā, b̄ ∈ K, gi(K) = K, i ≤ n, and (g0 � K, . . . , gn � K) is existentially closed. By
Theorem 9.1.6, there is a Lascar generic tuple (g′

0, . . . , g
′
n, g

′) such that g′(ā) = b̄
and for all x ∈ K and all i ≤ n, gi(x) = g′

i(x). Since (g′
0, . . . , g

′
n) is also Lascar

generic by Lemma 9.1.5, there is h ∈ G(K) such that g′
i = ghi for i ≤ n. Let

g = (g′)h. Then (g0, . . . , gn, g) is Lascar generic and g(ā) = b̄. �

Here is the main theorem of this section:

Theorem 9.3.9 All countable arithmetically saturated models of PA∗ have the
small index property.

Proof Let M be countable and arithmetically saturated, and let G = Aut(M).
Suppose H < G is non-open such that [G : H] < 2ℵ0 .

We construct a family {Mσ : σ ∈ 2<ω} of small elementary submodels of M
and two families {gσ : σ ∈ 2<ω}, {hσ : σ ∈ 2<ω \ {∅}} of automorphisms of M
such that:

(1) For all σ, τ ∈ 2<ω, if σ ⊆ τ , then Mσ ≺Mτ ;
(2) For all F : ω −→ {0, 1}, ⋃n<ω MF �n = M ;
(3) For all σ ∈ 2<ω, the tuple (gσ�0, gσ�1, . . . , gσ��(σ)−1, gσ) is Lascar generic;
(4) For all σ, σ′, τ ∈ 2<ω, if τ ⊆ σ and τ ⊆ σ′, then hσ(x) = hσ′(x) for all

x ∈Mτ ;
(5) For all σ, σ′, τ ∈ 2<ω, if τ ⊂ σ ⊆ σ′, then ghσ

τ = g
hσ′
τ ;

(6) For all σ ∈ 2<ω, ghσ̂0
σ ∈ H and ghσ̂1

σ /∈ H.

Let 〈an : n ∈ ω〉 be an enumeration of M . By Theorem 9.3.1, there is a
Lascar generic g∅ ∈ H. Let M∅≺sm M be such that g∅(M∅) = M∅ and g∅ � M∅
is existentially closed, and let h0 be the identity on M . Now, by Lemma 9.3.2,
there is a Lascar generic f ∈ G(M∅) \H. By Proposition 9.1.5, there is h1 such
that gh1

∅ = f .
Assume now that gσ, Mσ, hσ 0̂, and hσ 1̂ have been defined. Let e ∈ {0, 1},

and let τ = σ ê. We will define gτ , Mτ , hτ 0̂, and hτ 1̂.
Since [G : Hh−1

τ ] < 2ℵ0 , Theorem 9.3.1 and Lemma 9.3.8 imply that there is
gτ ∈ Hh−1

τ such that the tuple

(g∅, gσ�1, . . . , gσ, gτ )

is Lascar generic. Let hτ 0̂ = hτ . Then ghτ̂0
τ ∈ H. The tuple

(ghτ

∅ , ghτ

σ�1, . . . , g
hτ
σ , ghτ

τ )
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is also Lascar generic. Thus, there exists M ′≺sm M such that hτ (Mσ∪
{
a�(σ)

}
) ⊆

M ′ and

(ghτ

∅ � M ′, ghτ

σ�1 � M ′, . . . , ghτ
σ � M ′, ghτ

τ � M ′)

is existentially closed. Let Mτ = h−1
τ (M ′). By Lemma 9.3.2, there is f /∈ H such

that f(x) = ghτ
τ (x) for all x ∈M ′, and the tuple

(ghτ

∅ , ghτ

σ�1, . . . , g
hτ
σ , ghτ

τ , f)

is Lascar generic. By Proposition 9.3.6, there is h ∈ G(M ′) such that ghτh
τ = f

and ghτh
ρ = ghτ

ρ for ρ ⊆ σ. Finally, we set hτ 1̂ = hhτ . One can check now that
the conditions (1) through (6) are satisfied.

Consider an F : ω −→ {0, 1}. The sequence 〈hF �n : n < ω〉 is a Cauchy
sequence (by conditions (2) and (4)). Let hF be its limit. If σ = F � k, then the
sequence

〈
g
hF �n
σ : n < ω

〉
is eventually constant (condition (5)) and its limit hhF

σ

is equal to ghσ̂0
σ if σ 0̂ ⊆ F , and it is equal to ghσ̂1

σ if σ 1̂ ⊆ F (by continuity).
Now, let F ′ : ω −→ {0, 1} be different from F , and let n be the largest initial
segment of ω on which F and F ′ agree and let σ = F � n. Assume, for example,
that σ 0̂ ⊆ F and σ 1̂ ⊆ F ′. Then ghF

σ ∈ H and g
hF ′
σ /∈ H. It follows that

hFhF ′ /∈ H; hence, hF and hF ′ are in different cosets of H in G. Thus [G : H] =
2ℵ0 , which is a contradiction. �

9.3.1 The cofinality of the automorphism group

Let G be a group which is not finitely generated. The cofinality of G, denoted by
cf(G), is the least cardinal number λ such that G is the union of an increasing
chain of λ many proper subgroups. The group of all permutations of ω, the
automorphism group of the random graph, and the automorphism groups of
various ℵ0-categorical structures have uncountable cofinality. In this section, we
show that the cofinality of the automorphism group of a countable arithmetically
saturated model is uncountable. As in proofs for other structures, the proof
involves generic automorphisms. However, for models M of PA∗ we can prove
more: the cofinality of Aut(M) is uncountable iff M is arithmetically saturated.
This is the main theorem of this subsection.

Theorem 9.3.10 Let M be countable and recursively saturated. Then M is
arithmetically saturated iff cf(Aut(M)) > ℵ0. Moreover, if M is not arith-
metically saturated, then Aut(M) is the union of a countable chain of its open
subgroups.

Proof Let G = Aut(M), and assume that M is arithmetically saturated. Sup-
pose G is the union of a countable chain of proper subgroups 〈Hn : n < ω〉.
Notice first that, by Theorem 8.10.3, none of the Hn’s can be open in G. By
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Lemma 9.3.2, for all a ∈ M and n < ω, Ga ∩Hn is not comeager in Ga. Also,
since the union of countably many meager sets is meager, without loss of gener-
ality we can assume that no Hn is meager in G. Since for each a and each n, Hn

is the union of countably many cosets of Hn ∩Ga in Hn, it follows that none of
the Hn ∩Ga is meager.

Now we use the construction from the proof of Theorem 9.3.9. We define the
automorphisms gσ, and hσ as before; however this time we require that for each
σ ∈ 2n, gσ 0̂ ∈ Hn and gσ 1̂ /∈ Hn. Then for any σ ∈ 2n, and F, F ′ ∈ 2ω such that
σ 0̂ ⊆ F and σ 1̂ ⊆ F ′, as in the proof of Theorem 9.3.9, we have hFhF ′ /∈ Hn.

Since G =
⋃

n<ω Hn, there are an n < ω and an uncountable Σ ⊆ 2ω such
that hF ∈ Hn for all F ∈ Σ. Since Σ is uncountable, there must be m ≥ n, and
F, F ′ ∈ Σ such that F � m = F ′ � m and F � m + 1 �= F ′ � m + 1. But then
hFhF ′ �∈ Hm while Hn ⊆ Hm, which is a contradiction.

Suppose now that M is not arithmetically saturated. It is shown in the proof
of Theorem 8.10.3 that there is a ∈M such that:

(1) For each d > N, there is a standard i such that N < (a)i < d;
(2) For each standard i, if (a)i > N, then (a)i /∈ Scl(0);

We will define a sequence of 〈ci : i < ω〉, where each ci codes a sequence whose
terms are among {(a)j : j < �(a) ∧ (a)j ≤ (a)i}. For i < ω, let �(ci) = (a)i, and
for k < (a)i let

(ci)k =

{
(a)k if k < �(a) and (a)k ≤ (a)i,
(a)i otherwise.

The sequence 〈ci : i < ω〉 is coded in M . Notice that for all i < ω, ci ∈ N iff
(a)i ∈ N.

Suppose that i, j < ω and (a)i < (a)j . Then �(ci) = (a)i = (cj)i and for all
k < �(ci),

(ci)k =

{
(cj)k if (cj)k ≤ (cj)i,
(cj)i otherwise.

Since �(ci) = (cj)i, this proves that ci ∈ Scl(cj).
Let 〈ki : i < ω〉 be a sequence of standard numbers such that (a)k0 > (a)k1 >

· · · > N and inf {(a)ki
: i < ω} = N. Then Gck0

≤ Gck1
≤ · · · is a chain of

open subgroups of G. Since for every i < ω, (a)i ∈ Scl(ci), all these groups are
proper subgroups of G. Since the sequence 〈ci : i < ω〉 is coded in M , the proof
of Lemma 8.6.4 shows that for every f ∈ G, there is a nonstandard n such that
for all standard k, if ck < n, then f(ck) = ck. Since inf {cki

: i < ω} = N, this
proves that G =

⋃
i<ω Gcki

, and the result follows. �
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Corollary 9.3.11 Let M and N be countable recursively saturated models. If
M is arithmetically saturated and Aut(M) ∼= Aut(N), then N is arithmetically
saturated as well.

Proof If M is arithmetically saturated, then cf(Aut(M)) > ℵ0 and it follows
that cf(Aut(N)) > ℵ0, as the groups are isomorphic. Then N is arithmetically
saturated. �

9.3.2 Property FA

A group is said to have property FA if, whenever it acts without inversion on a
tree T , then there is a vertex fixed by all g ∈ G. The property has been defined
by Serre, see [182] for all terms unexplained here. Theorem 18 of [182] states
that a group G has property FA iff the following three conditions hold:

(1) G is not a free product with amalgamation.
(2) The infinite cyclic group is not a homomorphic image of G.
(3) G has uncountable cofinality.

Macpherson & Thomas [125] proved that if a Polish group G has a comea-
ger conjugacy class, then it satisfies conditions (1) and (2) above. Hence, by
Theorem 9.3.10, Proposition 9.2.1, and Theorem 9.2.3, we get the following
corollary:

Corollary 9.3.12 Let M be a countable recursively saturated model of TA. Then
Aut(M) has property FA iff M is arithmetically saturated. �

Of course, TA in the above corollary could be replaced by PA if we knew that
the automorphism group of every countable arithmetically saturated model has
a dense conjugacy class, which, in light of the results discussed in Section 9.2,
seems plausible but most likely will be difficult to prove.

For every countable arithmetically saturated model, condition (2) above
holds, and we have an alternative proof for it. Observe that, by Kaye’s charac-
terization of closed normal subgroups, no normal subgroup of the automorphism
group of a countable recursively saturated model can be open. This fact can be
given an independent proof. We ask the reader to do it in Exercise 9.6.4.

Proposition 9.3.13 Let G be the automorphism group of a countable arith-
metically saturated model M . Then no group of cardinality less than 2ℵ0 is a
homomorphic image of G.

Proof Let G be as above and suppose that f : G −→ H is a homomorphism
with |H| < 2ℵ0 . Then ker(f) is a normal subgroup of G and [G : ker(f)] < 2ℵ0 .
Since M has the small index property, ker(f) is open. But, as we just observed,
G does not have nontrivial open normal subgroups. �
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9.4 Coding the standard system

Does the isomorphism type of the automorphism group of a countable recursively
saturated model determine the isomorphism type of the model? This question
might be too difficult since, in particular, one would need to analyze if and how
the theory of a model is coded in the automorphism group. At present we do
not seem to know enough to attempt this. Still, some information about the
theory of a countable arithmetically saturated model can be recovered from its
automorphism group.

Let M and N be countable arithmetically saturated models. If M is a model
of TA and Aut(M) ∼= Aut(N), then N is also a model of TA. This follows
from the theorem of Kaye [74] which we already mentioned in the previous
section. The theorem completely characterizes closed normal subgroups of the
automorphism group of a countable recursively saturated model: H < Aut(M)
is closed and normal iff there is a Aut(M) invariant cut I ⊆end M such that
H is the pointwise stabilizer of I. It is easy to see that every model having
nonstandard definable elements has continuum many invariant cuts, while every
model of TA has only one—N. This information can be recovered from Aut(M)
as topological group, and hence, due to the small index property, from Aut(M)
as an abstract group as well. Notice that, by Corollary 9.3.11, in the above
argument we could assume that M and N are recursively saturated and one of
the models is arithmetically saturated. The same remark applies to the main
result of this section, Theorem 9.4.1 below.

We show that the reconstruction problem restricted to the class of count-
able arithmetically saturated models of a given completion of PA has a positive
solution. Once we fix the theory of an arithmetically saturated model, then the
only isomorphism invariant left to determine is the standard system. This is
accomplished by the following theorem.

Theorem 9.4.1 Suppose M and N are countable arithmetically saturated
models such that Aut(M) ∼= Aut(N). Then SSy(M) = SSy(N). �

To prove Theorem 9.4.1, we develop some coding machinery. For the rest
of this section, let M be a countable recursively saturated model, and let G =
Aut(M). We define several properties of G and its subgroups culminating in
Definition 9.4.15, in which we say what it means for a group to encode a subset
of N. The definitions are formulated for G and M as above, but they all apply
to arbitrary topological groups.

Definition 9.4.2 Given H,K ≤ G we say that H precedes K if
⋂

h∈H Kh is the
trivial group.

Observe that if H < G, then G precedes H iff H does not contain any
nontrivial normal subgroups of G. Also, H precedes H iff H is trivial. If H
precedes K, H ≤ H ′, and K ′ ≤ K, then H ′ precedes K ′. Thus, H precedes K
means, in some way, that H is “big” with respect to K. The term “precedes”
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is motivated by one of its important features. We will show that if I and J are
distinct proper elementary cuts of M , then I < J iff G(I) precedes G(J) iff G{I}
precedes G{J}.

Lemma 9.4.3 Let I and J be elementary cuts in M . Then:

(1) If I < J , then G(I) precedes G{J}.
(2) If I ⊆ J , then G{J} does not precede G(I).

Proof For the proof of (1), consider some nonidentity f ∈ G. By the Moving
Gaps Lemma (Theorem 8.3.2), there is a > I such that gap(a) �= gap(f(a)). By
considering a larger cut I ′ such that I < I ′ < gap(min{a, f(a)}), if needed, we
can assume that I is not downward ω coded. Then, by Corollary 8.4.6, there
is h ∈ G(I) such that h(a) ∈ J iff h(f(a)) /∈ J . Therefore f /∈ h−1G{J}h,
completing the proof.

To prove (2), notice that if f ∈ G(J) and k ∈ G{J} then kfk−1 ∈ G(I). Hence,
G(J) ⊆ k−1G(I)k, but G(J) is nontrivial, so the proof is complete. �

Lemma 9.4.4 Let H be a maximal open subgroup of G such that G precedes H.
Then H = G{I} for some elementary cut I of M .

Proof Let J = J(H) = inf {a ∈M : Ga ≤ H}. Since H is open, it follows that
J �= M . Since G precedes H, it follows that gap(0) < J . For suppose to the
contrary that J ⊆ gap(0). If J < gap(0), then G(gap(0)) is a subgroup of each
conjugate of H (Do it!). If J = gap(0), then, for every f ∈ G(>J) (see the
definition preceding Proposition 8.8.2) and every g ∈ G, there is a > gap(0)
such that Gg(a) ≤ H and f(a) = a. Clearly f ∈ g−1Hg; hence, G(>J) is a
subgroup of each conjugate of H.

Let I be the largest elementary cut such that I ⊆ J . Clearly, gap(0) < I �= M
and G{J} ≤ G{I}. Also, if f ∈ G \ G{J}, then, without loss of generality, there
is a > J such that f(a) ∈ J and Ga ≤ H. Then f /∈ H, since otherwise, by
Proposition 8.8.1, we would have Gf(a) ≤ H, which contradicts the definition of
J . Thus we have established that H ≤ G{J} ≤ G{I}; hence, by maximality of
H, H = G{I}. �

Now we define two operations on subgroups of G. The meaning of these some-
what cryptic definitions is revealed in the following lemma and its corollaries.
Our goal is to provide topological characterizations of the pointwise and setwise
stabilizers of elementary cuts of M .

Definition 9.4.5 For H ≤ G,

(1) Π(H) =
⋂ {Hg : g ∈ G and Hg precedes H};
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(2) Σ(H) is the topological closure of the subgroup generated by

⋃
{Π(Hg) : g ∈ G and H precedes Hg} .

Lemma 9.4.6 Let J be a tall elementary cut of M . Then Π(G{J}) = G(J).

Proof Let H = G{J}. Suppose first that f ∈ G(J) and K is a conjugate of H
which precedes H. Then K = G{I}, where I is an elementary cut and, according
to Lemma 9.4.3 (2), I < J . Clearly, then f ∈ K. Thus G(J) ≤ Π(H).

Next, suppose that f /∈ G(J), so that f(a) �= a for some a ∈ J . Since
J is tall, the Moving Gaps Lemma implies that there is a ∈ J such that
f(gap(a)) �= gap(a) (Do it!). Without loss of generality, we can assume
that gap(a) < gap(f(a)). There is h ∈ Ga such that h(f(a)) > J . Then
K = h−1Hh = G{I}, where I = h−1(J) < J , so that, by Lemma 9.4.3 (1),
K precedes H. But f /∈ K, so f /∈ Π(H). Therefore Π(H) ≤ G(J). �

Corollary 9.4.7 (1) Let D be a gap of M . Then Σ(G{D}) = G(sup(D)) �

G(inf(D)) = Π(G{D}).
(2) Let J be a tall elementary cut of M such that J �= inf(D) for any gap D of

M . Then Π(G{J}) = Σ(G{J}) = G(J).

Proof Let D be a gap of M . Clearly, G(sup(D)) � G(inf(D)). Let H = G{D}.
Notice that, since H = G{inf(D)}, Lemma 9.4.6 implies that Π(H) = G(inf(D)).
Also, Lemmas 9.4.6 and 9.4.3(1) imply that Σ(H) is the closure of G(>sup(D)).
Since sup(D) is an elementary cut, by Proposition 8.8.3, the closure of G(>sup(D))
is G(sup(D)), which finishes the proof of (1).

To prove (2), just as in (1) we get Π(H) = G(J) and Σ(H) is the closure of
G(>J), which is G(J). �

Suppose that D is a gap of M and a ∈ D realizes a minimal type. Then
Ga is an open maximal subgroup of G (Proposition 8.9.1) and Ga = G{D}. For
every elementary cut I and every unbounded type p(x) realized in M , either
sup(pM ∩ I) = I or inf(pM ∩ (M \ I)) = M \ I. Let p(x) be a minimal type
realized in M and let I be an elementary cut of M .Then either I is tall and

I =
⋃
{sup(D) : D ∩ pM �= ∅ ∧D < I}

or I is short and then

I =
⋂
{sup(D) : D ∩ pM �= ∅ ∧ I < D}.
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This argument, combined with Corollary 9.4.7, proves the following corollary
(Do it!).

Corollary 9.4.8 Let H be a subgroup of G. The following are equivalent:

(1) H = G(I) for some elementary cut I;
(2) There is a nonempty set K of open maximal subgroups K < G which are

preceded by G such that H =
⋂ {Π(K) : K ∈ K} or H is the closure of⋃ {Π(K) : K ∈ K}. �

Corollary 9.4.8 characterizes pointwise stabilizers of elementary cuts. The
following simple lemma is needed to obtain a similar characterization of setwise
stabilizers.

Lemma 9.4.9 Let I be an elementary cut of M . Then G{I} is the normalizer
of G(I); that is, G{I} =

{
f ∈ G : fG(I) = G(I)f

}
.

Proof For any f ∈ G, fG(I) = G(I)f iff G(I) = G(f(I)). Since I is an elementary
cut, it easily follows that the latter condition is equivalent to f(I) = I. Hence{
f ∈ G : fG(I) = G(I)f

}
= G{I}. �

Corollary 9.4.10 Let H be a subgroup of G. The following are equivalent:

(1) H = G{I} for some elementary cut I;
(2) there is a nonempty set K of open maximal subgroups K < G which are

preceded by G such that H is the normalizer of
⋂ {Π(K) : K ∈ K} or H is

the normalizer of the closure of
⋃ {Π(K) : K ∈ K}.

Proof Directly from Corollary 9.4.8 and Lemma 9.4.9. �

Next we define the notion of a gap stabilizer. The choice of terms is justified
by the corollary that follows.

Definition 9.4.11 A subgroup H of G is a gap stabilizer if there is a nonempty
set K of open maximal subgroups K < G which are preceded by G such that H
is the normalizer of

⋂ {Π(K) : K ∈ K} and Π(H) �= Σ(H).

Corollary 9.4.12 A subgroup H of G is a gap stabilizer iff H = G{D} for some
gap D of M . �

Definition 9.4.13 Given subgroups K,H0, H1, . . . of G, we say that K supports
〈H0, H1, . . . 〉 if the following conditions hold:

(1) K and all Hi for i < ω, are gap stabilizers;
(2) if i < j, then Hi precedes Hj ;
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(3) if K ≤ H < G and H is a gap stabilizer, then H = K or H = Hi for some
i < ω.

Lemma 9.4.14 If K,H0, H1, . . . are subgroups of G and K supports
〈H0, H1, . . . 〉, then there are gaps D0 < D1 < · · · and a ∈ M such that
Hi = G{Di} and (a)i ∈ Di for each i < ω.

Proof The existence of gaps D,D0, D1, . . . such that K = G{D} and Hi =
G{Di} for i < ω, follows directly from definitions and Corollary 9.4.12.

Let b be an element of D, and let p(x) be the type of b. We claim that for
any Skolem term t(x) the following conditions are equivalent:

t(b) ∈ D ∪D0 ∪D1 ∪ . . . , (1)

∀b′[b′ ∈ (D ∩ pM ) −→ t(b′) ∈ gap(t(b))]. (2)

To prove that (1) implies (2), first notice that if t(b) ∈ D, then there is
a Skolem term t′(x) such that the formula x < t′(t(x)) is in p(x). Hence, in
this case we must have t(b′) ∈ D. So now suppose that t(b) ∈ Di for some
i. Let f ∈ G be such that f(b) = b′. Then f ∈ G{D} = K ≤ G{Di}; hence,
t(b′) = f(t(b)) ∈ Di = gap(t(b)).

To prove that (2) implies (1), suppose that t(b′) ∈ gap(t(b)) whenever b′ ∈ D
realizes p(x). Therefore for any f ∈ G{D}, we have f(t(b)) ∈ gap(t(b)); hence,
f ∈ G{gap(t(b))}. From Definition 9.4.13(3) it follows that G{gap(t(b))} must be
either K or one of the Hi’s. Therefore t(b) ∈ D ∪D0 ∪D1 . . . .

Let 〈tn(x) : n < ω〉 be a recursive enumeration of all Skolem terms. Let
ϕn(x, y) be the formula y ≤ tn(x) ∧ x ≤ tn(y). Directly from the definitions
it follows that for any a ∈M

gap(a) = {c ∈M : M |= ϕn(a, c), for some n < ω} . (3)

Now let p(x) = {θ′
m(x) : m < ω}, where 〈θ′

m(x) : m < ω〉 is recursive in p(x),
and then let θm(x) = θ′

0(x) ∧ · · · ∧ θ′
m(x). We claim that for each Skolem term

t(x), the following is equivalent to (2) (and thus also to (1)):

∀n < ω∃m < ω M |= ∀x[θm(x) ∧ ϕn(b, x) −→ ϕm(t(b), t(x))]. (4)

Clearly, (4) implies (2) (Do it!). For the proof of (2)=⇒(4), suppose that
(4) is false and let n < ω be a witness to this. By recursive saturation there is
b′ ∈M such that for all m < ω,

M |= θm(b′) ∧ ϕn(b, b′) ∧ ¬ϕm(t(b), t(b′)).

Therefore, b′ ∈ gap(b), b′ realizes p(x), and t(b′) /∈ gap(t(b)), so (2) is false.
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Let ki be the ith element in the set

{k < ω : tk(b) ∈ D ∪D0 ∪D1 ∪ . . . } .

Since (1) is equivalent to (4), the sequence 〈ki : i < ω〉 is arithmetic in p(x) and
then so is the set of formulas {(x)i = tki

(b) : i < ω}. By arithmetic saturation,
let c ∈M be such that (c)i = tki

(b) for each i < ω.
We claim that for each r < ω there is a Skolem term t(x) such that t(b) ∈ Dr.

For suppose there was no such t(x). Then for any a ∈ Dr there is a′ /∈ Dr such
that tp(a, b) = tp(a′, b) (Do it!). Therefore, by recursive saturation, there would
be f ∈ Gb such that f(a) = a′. Such an automorphism would contradict the fact
that K ≤ Hr.

Now let ir be the least i such that (c)i ∈ Dr; that is, ir is the least i such
that (c)i /∈ gap((c)is) for each s < r and for each m < ω, either (c)m ∈ gap((c)is)
for some s < r, (c)m ∈ gap((c)i), or (c)i < (c)m. Because of (3), 〈ir : r < ω〉 is
arithmetic in tp(c). Therefore, by arithmetic saturation, there is a ∈ M such
that (a)r = (c)ir for all r < ω. Thus (a)i ∈ Di for all i < ω. �

Now we come to our final definition.

Definition 9.4.15 Let X be subset of N. We say that G encodes X if either
X is finite or X = {i0, i1, . . . }, where i0 < i1 < · · · and there are subgroups
K1,K2, H0, H1, H2, . . . of G such that K1 supports 〈H0, H1, H2, . . . 〉 and K2
supports 〈Hi0 , Hi1 , Hi2 , . . . 〉.
Theorem 9.4.16 For every X ⊆ N, G encodes X iff X ∈ SSy(M).

Proof Suppose first that G encodes X. Since all finite sets are in SSy(M),we can
assume that X = {i0, i1, . . . }, where i0 < i1 < · · · and K1,K2, H0, H1, H2, . . .
are as in Definition 9.4.15. By Lemma 9.4.14, there are distinct gaps D0, D1 . . .
such that Hi = G{Di} for i < ω, and there are a, b ∈M such that (a)i ∈ Di and
(b)n ∈ Din , whenever i, n < ω. By arithmetic saturation, there is c ∈ M such
that (c)n is the least i such that (a)i ∈ gap((b)n) (Do it!). But then (c)n = in,
so that X ∈ SSy(M).

Assume now that X = {i0, i1, . . . }, where i0 < i1 < · · · and X ∈ SSy(M).
Let p(x) be a minimal type realized in M . Then, by recursive saturation,
there is a ∈ M which codes an increasing sequence 〈(a)i : i < ω〉 of elements
realizing p(x). Applying Lemma 2.1.10, we can get a minimal type q(x) of
Th((M, (a)0, (a)1, . . . )) which is recursive in tp(a), with the additional prop-
erty that for each i < ω, there is a Skolem term ti(x) such that the formula
ti(x) = (a)i is in q(x). Let b realizes q(x). Since q(x) is unbounded and
2-indiscernible, by Lemma 3.1.18, tp(b) is a rare type of Th(M). Notice that
tp(b) is not a minimal, nor even a selective, type of Th(M).

Let Hi = Gai
and K1 = Gb. We shall show that K1 supports 〈H0, H1, . . . 〉.

Each (a)i realizes a minimal type; hence, each Hi is a gap stabilizer. Since the
type of b in M is rare, by Corollary 9.4.12, K1 is a gap stabilizer as well.
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By Lemma 9.4.3(1), if i < j, then Hi precedes Hj . Finally, to show that
Definition 9.4.13(3) holds, consider a gap D such that K ≤ G{D} < G. Then
there is a Skolem term t(x) such that t(b) ∈ D (Do it!). Since b realizes a
minimal type of Th((M, (a)0, (a)1, . . . )), there is a least k < ω such that either

t′((a)0, (a)1, . . . , (a)k−1, t(b)) = b

for some Skolem term t′(x̄) or else

t′((a)0, (a)1, . . . , (a)k−1) = t(b)

for some Skolem term t′(x̄). In the first case, t(b) ∈ gap(b) = D, so that K =
G{D}. In the second case, k > 0 (else D = gap(0) so that G{D} = G) and then,
because (a)0, (a)1, . . . , (a)k−1 realize the minimal type p(x), t(b) ∈ gap(a)j for
some j ≤ k − 1, so G{D} = Hj . Therefore, K1 supports 〈H0, H1, . . . 〉.

Using the fact that X ∈ SSy(M), we can find in the same way an element
c ∈ M such that if K2 = Gc then K2 supports 〈Hi0 , Hi1 , . . . 〉. Therefore G
encodes X. �

Now we are ready to prove Theorem 9.4.1. Suppose M1 and M2 are countable
arithmetically saturated models, G1 and G2 are their automorphism groups,
respectively, and F : G1 −→ G2 is an isomorphism. Since M1 has the small
index property, F is also an isomorphism of G1 and G2 qua topological groups.
Suppose X ∈ SSy(M1). By Theorem 9.4.16, G1 encodes X; hence, G2 encodes
X as well, and, by the same theorem, X ∈ SSy(M2). Thus SSy(M1) = SSy(M2).

9.5 The spectrum of automorphism groups

What have we learned so far about the automorphism groups of countable
recursively saturated models? By Theorem 9.4.1, there are continuum many
nonisomorphic automorphism groups of arithmetically saturated models for any
completion of PA. By Theorems 9.3.9 and 9.3.10, no automorphism group of an
arithmetically saturated model can be isomorphic to an automorphism group of
a recursively saturated model which is not arithmetically saturated. By Kaye’s
characterization of closed normal subgroups as the pointwise stabilizers of invari-
ant cuts, if M and N are recursively saturated, only one of the models is a model
of TA, and at least one is arithmetically saturated, then Aut(M) �∼= Aut(N) (Do
it!). There is also a related recent Theorem by Nurkhaidarov on which we com-
ment at the end of the Remarks and References section. In all other cases the
question of which automorphism groups are isomorphic has not been settled.

Automorphism groups of countable recursively saturated models are large not
only because of their size. By Corollary 5.5.2, if M is countable and recursively
saturated model and (I,<) a countable linearly ordered set, then Aut(I,<)
embeds in Aut(M). In particular, we have:
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Proposition 9.5.1 Let M be countable and recursively saturated model. Then
Aut(Q, <) embeds into Aut(M). �

Proposition 9.5.2 Let M be countable and recursively saturated. Then there is
an embedding of Aut(M) onto a dense subgroup of Aut(Q, <).

Proof If p(x) is a minimal type realized in M , then (pM , <M ) ∼= (Q, <), and
it follows from Corollary 8.6.8 that the function f �→ f � pM induces a faithful
embedding of Aut(M) onto a dense subgroup of Aut(Q, <) (Do it!). �

So Aut(M) and Aut(Q, <) are very much alike. Still Aut(M) �∼= Aut(Q, <).
In fact, we have a more general result.

Theorem 9.5.3 Let M be a countable arithmetically saturated model and let A
be a countable ℵ0-categorical first-order structure. Then Aut(M) �∼= Aut(A).

Proof Every increasing chain of open subgroups of the automorphism group of
any ℵ0-categorical structure is finite. (See, for example, Fact 3.5 of [57]). This is
not the case for Aut(M). To see this, consider the recursive type p(v):

{∃x[(v)n = 〈(v)n+1, x〉] : n < ω} ∪ {t((v)n+1) < (v)n : n < ω and t ∈ Term}.

Clearly, p(v) is finitely realizable. If a ∈ M realizes p(v), then for each n < ω,
(a)n+1 ∈ Scl((a)n) and (a)n /∈ Scl((a)n+1). Hence G(a)0 < G(a)1 < · · · is an
infinite increasing chain of open subgroups of Aut(M). This argument shows
that Aut(M) and Aut(A) are not isomorphic as topological groups. It follows
that Aut(M) and Aut(A) are not isomorphic as abstract groups. For suppose
to the contrary that F : Aut(M) −→ Aut(A) is a group isomorphism. Then
for every open H < Aut(A), F−1(H) has at most countable index in Aut(M);
hence, by the small index property F−1(H) is open in Aut(M), which proves
that F is a homeomorphism. �

In the argument above we used the small index property in a substantial
way. We do not know if the result is true for recursively saturated but not
arithmetically saturated models.

By Theorem 9.4.1, the automorphism group of a countable arithmetically
saturated model determines its standard system. We finish this section with
another result relating standard systems to automorphism groups. The following
lemma is due to B. H. Neumann & H. Neumann [138].

Lemma 9.5.4 There is a recursive sequence of group terms tn(x, y), n < ω such
that for every A ⊆ N there are f, g ∈ Aut(Q, <) such that

tn(f, g) = id⇐⇒ n ∈ A. �
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Theorem 9.5.5 Let M and N be countable recursively saturated models. Sup-
pose there is an embedding F : Aut(M) −→ Aut(N) such that for all f, g ∈
Aut(M), if (M,f, g) is recursively saturated, then (N,F (f), F (g)) is recursively
saturated. Then SSy(M) ⊆ SSy(N).

Proof Suppose that there is an embedding F : Aut(M) −→ Aut(N) which
maps recursively saturated pairs of automorphisms to recursively saturated pairs
of automorphisms. We will show that SSy(M) ⊆ SSy(N). So let A ∈ SSy(M) be
given. By Lemma 9.5.4 and Corollary 9.5.1, there are f, g ∈ Aut(M) such that

A = {n ∈ N : tn(f, g) = id} .

Hence the theory

T = {f and g are automorphisms}∪
{tn(f, g) = id : n ∈ A} ∪ {tn(f, g) �= id : n /∈ A}

is coded in SSy(M) and is consistent. By chronic resplendency, we get such f
and g so that (M,f, g) |= T and (M,f, g) is recursively saturated. Then

A = {n ∈ N : (N,F (f), F (g)) |= tn(F (f), F (g)) = id} ,

and, since (N,F (f), F (g)) is recursively saturated, this implies that A ∈ SSy(N).
�

Corollary 9.5.6 Let M and N be countable recursively saturated models such
that M ≡ N and there is an isomorphism F : Aut(M) −→ Aut(N) such that
for all f, g ∈ Aut(M), (M,f, g) is recursively saturated iff (N,F (f), F (g)) is
recursively saturated. Then M ∼= N . �

9.6 Exercises

♣9.6.1 Every recursively saturated model has small elementary submodels
which are not finitely generated.

♣9.6.2 If f is an automorphism of countable recursively saturated model, then
the conjugacy class of f is not open. Some conjugacy classes are not closed.
Every countable arithmetically saturated model has an automorphism whose
conjugacy class is the intersection of a countable family of open sets.

♦9.6.3 If M is a countable recursively saturated model of TA and G = Aut(M),
then G precedes each of its open maximal subgroups. Consequently, each open
maximal subgroup of G is a setwise stabilizer of an elementary cut of M .
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♣9.6.4 If M is a countable, arithmetically saturated model and H < Aut(M)
is normal, then H is not an open subgroup of Aut(M). This follows from Kaye’s
theorem on closed normal subgroups. An independent proof can be given (♥).

♦9.6.5 If M is a countable and arithmetically saturated model and H <
Aut(M), then [Aut(M) : H] ≥ ℵ0.

♦9.6.6 An alternative proof of Theorem 9.5.3 can be given, by showing that
the automorphism group of a countable recursively saturated model has at least
continuum many open subgroups.

9.7 Remarks & References

The proof of the small index property for countable arithmetically saturated
models of PA follows closely Lascar’s proof in [120] with some minor modifica-
tions. In particular, Lemmas 9.1.3 and 9.3.4 have a new, more direct proof. For
background material on generic sequences in ℵ0-categorical structures see [77]
and the paper [59] by Hodges, Hodkinson, Lascar, and Shelah. In the definiton of
the small index property we use the condition “[G : H] is at most countable.” As
Hodges notes in [58]: “Some people say ‘<2ω’ in place of ‘at most ω’; in practice
it makes little difference.” The proof of Theorem 9.3.9 shows that for countable
arithmetically saturated models indeed there is no difference.

The connection between dense conjugacy classes and graph coloring is
exploited in Schmerl [178]. Let H∗(k, n) be the same statement as H(k, n)
but applied to (undirected) graphs rather than digraphs. It is easy to see that
∀n¬H∗(n, n + 1). The statement ∀nH∗(n, n) is known as Hedetniemi’s Conjec-
ture. See the survey [159]. A weaker form of Hedetniemi’s Conjecture, which is
still open, is ∀n∃kH∗(k, n). It is known that ∀n∃kH∗(k, n)⇐⇒ ∃kH∗(k, 10)⇐⇒
∃kH(k, 4)⇐⇒ ∀n∃kH(k, n). The middle equivalence appears in [204].

John Truss proved (personal communication) that if an automorphism group
G of a countable structure has an automorphism whose conjugacy class is dense,
then every local generic of G is generic.

The result on cofinality of arithmetically saturated models was proved in
Kossak & Schmerl [107]. For a survey of the group cofinality problem see Simon
Thomas’ [206].

Coding the standard system of an arithmetically saturated model in its auto-
morphism group is from [108]. The proof owes much to earlier work of Kaye
and Kotlarski on the same problem from [114]. In a recent paper, Nurkhaidarov
[139] modified some arguments from [108] and combined them with a result of
Seetapun [181] on Ramsey’s theorem for pairs to show the following:

Theorem: There are countable arithmetically saturated models
M0, M1, M2, M3 which share the same standard system such that
Aut(Mi) �∼= Aut(Mj) for i �= j.
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Theorem 9.5.3 is from [75].
Theorem 9.5.5 is a slightly simplified special case of a theorem of Kaye [73].

Corollary 9.5.6 holds for arbitrary countable recursively saturated first-order
structures. The proof is similar. Kaye’s question whether pairs in Theorem 9.5.5
can be replaced by single recursively saturated automorphisms is open.




ω1-LIKE MODELS

We already have discussed some ω1-like models in Chapter 2. Constructions
of Jónsson models and rather classless recursively saturated models show how
the model theory of uncountable structures differs from the model theory of
countable ones. As evidenced throughout this book, countable nonstandard
models form a complex class. Set theory involved in the study of uncountable
models brings vast new layers of complexity. Many interesting structures can be
built. Many natural problems remain open.

Recall that a linearly ordered structure (A,<) is κ-like for an infinite cardinal
κ if |A| = κ and every proper initial segment of (A,<) is of cardinality smaller
than κ. The ω1-like models of PA are worth studying for (at least) two reasons.
First: ω1 iterations of end extensions of countable models generate ω1-like models
with interesting second-order properties. Second: the study of ω1-like models is
really the study of their countable elementary substructures. It has often been the
case that questions about ω1-like models translate into open problems concerning
countable structures providing valuable insights.

Results on ω1-like models can be sometimes generalized to κ-like models
for all or some uncountable cardinals κ. The question of which of the results
generalize and in what form leads to nontrivial set-theoretic and model-theoretic
questions. We say more about it in the Remarks and References section of this
chapter.

10.1 ω1-Like recursively saturated models

To begin, we need to know that ω1-like recursively saturated models exist. For
an easy example, start with M = (N, S), where S is the satisfaction relation
of N. Let κ be a cardinal and let N be a κ-canonical extension of M . Then
N is κ-like and its reduct to LPA is recursively saturated. In this way we get
recursively saturated κ-like models of TA, but the same argument works if instead
of the standard model we begin with (M,S), where M is a countable recursively
saturated models and S is a partial inductive satisfaction class.

There are many other constructions. The starting point is the following
proposition. Recall that if M and N are countable and recursively saturated,
then

M ∼= N iff M ≡ N and SSy(M) = SSy(N).
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In particular, for countable and recursively saturated M and N , if M ≺end N ,
then M ∼= N .

Proposition 10.1.1 Every countable recursively saturated model M has a
recursively saturated elementary end extension. Moreover, every such model M
has an elementary end extension N such that (N,M) is recursively saturated.

Proof We will prove the moreover part. Let T be the theory in L(K), where K
is a new predicate symbol expressing that K is an elementary cut of M . Clearly T
is consistent with Th(M) (because there are models of Th(M) which have proper
elementary cuts). By chronic resplendency there is K ≺end M such that (M,K)
is recursively saturated. Then K is recursively saturated and SSy(M) = SSy(K);
hence M ∼= K, and the result follows. �

In Corollary 10.1.6, we show that Proposition 10.1.1 does not generalize to
uncountable models. In other words, the recursively saturated version of the
MacDowell–Specker Theorem is false.

Whereas not every model has a nonconservative elementary end extension,
it is easy to show that every resplendent model has one (Do it!). In fact, more
is true:

Proposition 10.1.2 If M ≺ N and N is recursively saturated, then N is not a
conservative extension of M .

Proof We only need to consider the case when N is an elementary end extension
of M . Suppose N is recursively saturated. By recursive saturation, for every
a ∈ N , there is sa ∈ N such that for all formulas ϕ(v),

N |= ∀v < a(〈ϕ, v〉 ∈ sa ←→ ϕ(v)).

Pick an a > M and let S = sa ∩M . By Corollary 1.9.5, S is undefinable in
M . Since S is coded in N , N is not a conservative extension. �

Thus, ifM ≺end N andN is recursively saturated, then there is an undefinable
X ⊆ M which is coded in N . By contrast, the next proposition shows that
for every such X, there is a recursively saturated elementary end extension of
M in which X is not coded. The proposition is an immediate consequence of
Corollary 8.2.5.

Proposition 10.1.3 If X is an undefinable subset of a countable recursively
saturated model M , then M has a recursively saturated elementary end extension
in which X is not coded. �

Another proof of Proposition 10.1.3 using Qe-classes is sketched in
Exercise 10.7.2.

A digression: in connection with Proposition 10.1.3, one could ask whether
for every undefinable subset X of recursively saturated model M , there is an
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elementary end extension N of M such that there is no Y ⊆M coded in N such
that (M,X) ≡ (M,Y ). The negative answer is a consequence of the result on
perfect generics in Exercise 6.6.7. (Do it!).

Theorem 10.1.4 Every countable recursively saturated model M has an
undefinable inductive subset X such that for all I ≺end M , (I,X ∩ I) ≺ (M,X).

�

Recall that a model M is rather classless if every class of M is definable.
We will use Proposition 10.1.3 to show that there exist recursively satur-
ated rather classless models. This was first proved by Kaufmann [67] using
Jensen’s set-theoretic principle ♦ which states that there exists a sequence of
sets 〈Sα : α < ω1〉 such that for every X ⊆ ω1, the set {α < ω1 : X ∩ α = Sα} is
a stationary subset of ω1. ♦ is true in the constructible universe, and it implies
(in ZFC) that ℵ1 = 2ℵ0 .

We say that M is a Kaufmann model if M is ω1-like, recursively saturated
and rather classless. We will show that Kaufmann models exist. The proof below
uses ♦; however, as shown by Shelah in [184], the theorem is provable in ZFC.

Theorem 10.1.5 Every countable recursively saturated model has an
elementary end extension to a Kaufmann model.

Proof Let M0 be a countable recursively saturated model. We define a
continuous chain of recursively saturated elementary end extensions
〈Mα : α < ω1〉. For a successor α < ω1, let Mα+1 be a countable recursively sat-
urated elementary end extension of Mα. For limit λ < ω1, let Mλ =

⋃
α<λ Mα.

We can assume that the universe of Mλ is λ. To define Mλ+1, consider Sλ

from the ♦ sequence. If Sλ is definable in Mλ, then let Mλ+1 be any countable
recursively saturated elementary end extension of Mλ. Otherwise, let Mλ+1 be
a countable recursively saturated elementary end extension of Mλ in which Sλ

is not coded, given by Proposition 10.1.3.
The model N =

⋃
α<ω1

Mα is a recursively saturated ω1-like elementary
end extension of M0. Let X be a class of N and let Xα = X ∩Mα. The set
A = {α < ω1 : (Mα, Xα) ≺ (N,X)} is closed and unbounded in ω1. Hence, there
is a limit λ ∈ A such that Xλ = Sλ. Since X is a class of N , Sλ is coded in Mλ+1.
From the construction it follows that Sλ ∈ Def(Mλ). But (Mλ, Sλ) ≺ (N,X);
hence, X ∈ Def(N), and this finishes the proof. �

It is easy to see that all elementary end extensions of a rather classless model
must be conservative. Combining this with Proposition 10.1.2 we get.

Corollary 10.1.6 Kaufmann models have no recursively saturated elementary
end extensions. �

Recall that X ⊆ M |= PA∗(L) is a class of M iff (M,X) |= IΣ0. If M is
κ-like, for a regular κ > ℵ0, then, for set-theoretic reasons, for every X ⊆ M ,
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(M,X) satisfies the collection principle for all formulas of L∪{X}. Hence, every
class of a κ-like model, for regular κ > ℵ0, is inductive.

Kaufmann models are recursively saturated and do not have partial inductive
satisfaction classes; however to get a model with these properties, a simpler
construction can be given. Let M be such a model. It follows from the discussion
above that every class ofM is inductive. This impliesM does not have recursively
saturated elementary end extensions; thus we get a proof of Corollary 10.1.6
without constructing Kaufmann models.

Despite the fact that Theorem 10.1.5 is provable in ZFC, it is still an open
problem to give a direct construction of a Kaufmann model. This is one of the
open questions in the list of Twenty Questions in the last chapter. Below we give
another construction which uses a weaker combinatorial principle, weak ♦ for
ω1. The principle, denoted by Φ in the literature, says that: given a “partition”
function P : 2<ω1 −→ 2, there is a function ρ : ω1 −→ 2 such that for all σ ∈ 2ω1

the set {α < ω1 : P (σ � α) = ρ(α)} is stationary in ω1.
As shown by Devlin & Shelah [25], Φ is equivalent to 2ℵ0 < 2ℵ1 .
To build a Kaufmann model , we will use a slightly modified equivalent

version of Φ.

Weak ♦: For every function P : 2<ω1 × 2<ω1 −→ 2 there is ρ :
ω1 −→ 2 such that for all (σ, τ) ∈ 2ω1 × 2ω1 the set

{α < ω1 : P (σ � α, τ � α) = ρ(α)}

is stationary in ω1.

We will utilize Corollary 8.2.5, which states that every countable recurs-
ively saturated model M has two countable recursively saturated elementary
end extensions M0 and M1 such that

SSy(M0/M) ∩ SSy(M1/M) = Def(M).

Let M be a countable recursively saturated model. For every s ∈ 2<ω1 we
define a model Ms by induction on the length of s. Let M∅ = M . For nonempty
s, we have the usual two cases to consider.

Successor step. If Ms is defined, then we let Msˆ0 and Msˆ1 be countable
recursively saturated elementary end extensions of Ms such that

SSy(Msˆ0/Ms) ∩ SSy(Msˆ1/Ms) = Def(Ms).

Limit step. If �(s) is a limit ordinal and Ms′ is defined for all s′ � s, then
Ms =

⋃
s′s Ms′ .

We can assume that if �(s) = λ and λ is a limit ordinal, then the universe of
Ms is λ.
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Now we define the partition function P . For notational convenience we
identify subsets of ordinals α < ω1 with their characteristic functions. For X ⊆ α
and s ∈ 2α, let

P (X, s) =

{
0, if X ∈ SSy(Msˆ1/Ms) \Def(Ms),
1, if X ∈ SSy(Msˆ0/Ms) \Def(Ms).

Notice that P is defined only for some pairs (X, s). It is irrelevant how P is
defined for other pairs.

Let ρ be the guessing function for the P given by Φ and let N =
⋃

α<ω1
Mρ�α.

Clearly N is ω1-like and recursively saturated. We will prove that it is also
rather classless. Suppose X is a class of N . Since the set

E = {α < ω1 : P (X ∩ α, ρ � α) = ρ(α)}

is stationary, there is a limit ordinal λ ∈ E such that for s = ρ � λ and Xs =
Ms ∩X,

(Ms, Xs) ≺ (N,X).

We claim that Xs is definable in Ms, which implies that X is definable in N
and this will finish the proof. So suppose Xs is not definable in Ms. Then for an
e ∈ {0, 1}, Xs is in SSy(Msˆe/Ms) \ Def(Ms). Since Xs is coded in N , we must
have ρ(λ) = e. By the definition of P , we also have P (X ∩Ms, ρ � λ) = 1 − e,
hence ρ(λ) = 1− e, and we get a contradiction.

10.2 Similar nonisomorphic models

A countable recursively saturated model is characterized up to isomorphism by
its complete theory and its standard system. For models of arbitrary cardinality,
this is generalized to the following proposition.

Proposition 10.2.1 Let M and N be recursively saturated models and suppose
that M ≡ N . Then, SSy(M) = SSy(N) iff M ≡∞ω N . �

L∞ω-equivalence has a characterization in terms of partial isomorphisms. Let
A and B be first-order structures. Then, A ≡∞ω B iff there exists a back-and-
forth system for A and B, that is, a nonempty set I of pairs (ā, b̄) of finite tuples
of elements of A and B, respectively such that:

(1) if (ā, b̄) is in I, then tp(ā) = tp(b̄);
(2) for every pair (ā, b̄) in I and every c ∈ A, there is d ∈ B such that (āc, b̄d)

is in I;
(3) for every pair (ā, b̄) in I and every d ∈ B, there is c ∈ A such that (āc, b̄d)

is in I.
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If M and N are recursively saturated elementarily equivalent models and
SSy(M) = SSy(N), then the back-and-forth system for M and N is provided
by the set I =

{
(ā, b̄) : ā ∈M, b̄ ∈ N, tp(ā) = tp(b̄)

}
. We will show that if, in

addition, M and N are ω1-like, then M and N have back-and-forth system
consisting of partial countable isomorphisms. This is made precise in the fol-
lowing characterization of elementary equivalence of structures of cardinality ℵ1
in L∞ω1 .

Theorem 10.2.2 Let A and B be first-order structures of cardinality ℵ1 for the
same countable language. Then, A ≡∞ω1 B iff A and B can be represented as
unions of chains 〈Aα : α < ω1〉, 〈Bα : α < ω1〉 of countable submodels of A and
B respectively, and there is 〈Gα : α < ω1〉 such that each Gα is nonempty set of
isomorphisms f : Aα −→ Bα and for all α < β < ω1, every isomorphism in Gα

extends to one in Gβ. �

Note that the chains in Theorem 10.2.2 are not required to be continuous.
Recall that a ∈ M codes an ascending sequence of gaps, abbreviated a ∈

ASG(M), if �(a) is nonstandard and for each i < �(a), gap((a)i) < (a)i+1.
For a ∈ ASG(M) and a cut I < �(a), let

M(I, a) = sup {(a)i : i ∈ I} .

Proposition 10.2.3 Let M be recursively saturated. Then:

(1) For each c ∈M there is a ∈ ASG(M) such that c = (a)0.
(2) If p(v) is an unbounded type realized in M , then for each a ∈ ASG(M) there

is a′ ∈ ASG(M) such that M(ω, a) = M(ω, a′) and for every n < ω, (a′)n
realizes p(v).

Proof Part (1) is an easy exercise. The proof of (2) is not difficult either. Let
p(v) be a type realized in M . For a ∈ ASG(M), consider the type p′(v, a)

{ϕ((v)n) : ϕ(v) ∈ p(v) and n < ω} ∪ {(a)n < (v)n < (a)n+1 : n < ω} .

This type is recursive in p(v), and it is easy to see that it is finitely realizable in
M (Do it!). Any a′ realizing p′(v) in M has the required property. �

The following technical proposition and its corollary will be used later.

Proposition 10.2.4 Let p(v) be a minimal type realized in a countable recurs-
ively saturated model M . If 〈an : n < ω〉, 〈bn : n < ω〉 are increasing unbounded
sequences of pM , then there is an automorphism f of M such that for each n < ω,
f(an) = bn.
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Proof The proof is based on the fact that elements realizing a minimal type are
strongly indiscernible (see Lemma 3.2.9). Since p is an unbounded indiscernible
type, ā = 〈a0, . . . , an−1〉, b̄ = 〈b0, . . . , bn−1〉 are increasing sequences of elements
of pM then, for all c < gap(min {a0, b0}) and all formulas ϕ

M |= ϕ(ā, c)←→ ϕ(b̄, c).

In fact, we have a stronger property: if c, c′ < gap(min {a0, b0}) and tp(c) =
tp(c′), then for all formulas ϕ,

M |= ϕ(ā, c)←→ ϕ(b̄, c′).

See the proof of Lemma 3.2.9. Now (1) can be proved by the usual back-and-
forth construction begun by enumerating M in such a way that no element c is
considered in the construction before the image of an is declared to be bn, where
n is the smallest such that c < gap(min {an, bn}) (Do it!). �

Corollary 10.2.5 Let p(v) be a minimal type realized in a countable recursively
saturated model M . Then every increasing unbounded sequence 〈an : n < ω〉 of
elements realizing p in M is coded in some recursively saturated elementary end
extension N of M .

Proof Consider the type q(v)

{ϕ((v)n) : ϕ(v) ∈ p(v) and n < ω} ∪ {(v)n < (v)n+1 : n < ω}.

The type q(v) is recursive in p(v) and finitely realizable, hence it is realized in
M . Let b realizes q(v). Then M(ω, b) is isomorphic to M . By Proposition 10.2.4,
there is an isomorphism f : M(ω, b) ∼= M such that for all n < ω, f((b)n) = an,
and the result follows. �

Let p(v) be a minimal type realized in M . Proposition 10.2.3 (2) implies that
for every a ∈ ASG(M), there is a′ ∈ ASG(M) such that M(ω, a) = M(ω, a′)
and for each n < ω, (a′)n realizes p(v). Since p(v) is indiscernible, the above
observation has further consequences, which are summarized in the next propos-
ition. Part (2) below is formulated in a rather mysterious way due to a particular
application we have in mind.

Proposition 10.2.6 Let M be countable and recursively saturated.

(1) For all a, b ∈ ASG(M), (M,M(ω, a)) ∼= (M,M(ω, b)), moreover:
(2) If a0, . . . , an, b0, . . . , bn ∈ ASG(M) are such that M(ω, a0) < · · · <

M(ω, an), M(ω, b0) < · · · < M(ω, bn), k ≤ n is such that for all i < k,
ai = bi and c ∈M(ω, ak) ∩M(ω, bk), then

(M,M(ω, a0), . . . ,M(ω, bn), c) ∼= (M,M(ω, b0), . . . ,M(ω, bn), c).
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(3) Suppose a, b ∈ ASG(M), K ≺end M , K is not downward ω-coded and
(a)0, (b)0 > K. Then every f ∈ Aut(K,Cod(M/K)) can be extended to
an automorphism g of M such that g(M(ω, a)) = M(ω, b).

Proof For the proof of (1) notice that, by recursive saturation and indiscern-
ibility, if for a, b ∈ ASG(M), (a)n and (b)n for n < ω, realize p(v), then there
are a′, b′ ∈ M such that (a)n = (a′)n and (b)n = (b′)n for all n < ω, and
tp(a′) = tp(b′).

The proof of (2) is essentially the same using finite tuples of elements of
ASG(M) and strong indiscernibility (Do it!).

To prove (3) notice that, by previous arguments, we can assume that,

(M,a, c)c∈K ≡ (M, b, c)c∈K ,

because if a and b do not satisfy this condition, we can replace them by elements
a′, b′ which code ω-sequences of indiscernibles which are cofinal in M(ω, a) and
M(ω, b), respectively, and for which the above condition holds. Now the result
follows from Theorem 8.5.1 (Do it!). �

Theorem 10.2.7 Let M and N be ω1-like and recursively saturated. Then

M ≡∞ω1 N ⇐⇒ [M ≡ N and SSy(M) = SSy(N)].

Proof Let 〈aα : α < ω1〉 , 〈bα : α < ω1〉 be such that for all α < β < ω1, aα ∈
ASG(M), bα ∈ ASG(M) , M(ω, aα) ≺ M(ω, aβ), and N(ω, bα) ≺ N(ω, bβ).
For each α < ω1, let Gα be the set of all isomorphisms f : M(ω, aα) −→
N(ω, bα) which satisfy the condition: for all X ⊆ M(ω, aα), Y ⊆ N(ω, bα),
X is coded in M iff f(X) is coded in N . Proposition 10.2.6 shows that the
conditions of Theorem 10.2.2 are satisfied, and this proves the nontrivial part of
the theorem. �

Every countable recursively saturated model has 2ℵ1 nonisomorphic ω1-like
recursively saturated elementary end extensions. (There are many ways to prove
this, and we approach this topic more systematically in the next section.)
Then, Theorem 10.2.7 implies that there are nonisomorphic ω1-like recursively
saturated models which are L∞ω1-elementarily equivalent. Theorem 10.2.9 is an
even stronger version of this result.

Recall that a chain 〈Mα : α < κ〉 is continuous if for all limit ordinals λ < κ,
Mλ =

⋃
α<λ Mα. A filtration of M is a continuous chain of elementary extensions

〈Mα : α < κ〉 such that |Mα| < κ for all α < κ and
⋃

α<κ Mα = M .
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Let L and K be countable and recursively saturated with K ≺end L. We say
that a model M is (L,K)-filtrated if it has a filtration 〈Mα : α < ω1〉 such that
the set

{α < ω1 : (Mα+1,Mα) ∼= (L,K)}

is closed and unbounded in ω1. Of course, any (L,K)-filtrated model of
cardinality ℵ1 is ω1-like and recursively saturated.

Proposition 10.2.8 If a model M is (L,K)-filtrated, then for every filtration
〈Mα : α < ω1〉 of M , the set

{α : ∀β < ω1 [α < β −→ (Mβ ,Mα) ∼= (L,K)]}

is closed and unbounded in ω1.

Proof First notice that since M is (L,K)-filtrated, for any filtration
〈Mα : α < ω1〉, the set

{α : [(Mα+1,Mα) ∼= (L,K)]}

is closed and unbounded in ω1 (Do it!). By Theorem 8.5.2, if K ≺end L≺end M ,
all models are countable and recursively saturated, then the identity on K
extends to an isomorphism f : L −→ M ; hence (M,K) ∼= (L,K). The assump-
tion in Theorem 8.5.2 that K is not downward ω-coded can be satisfied by
replacing K with a K ′ such that K ≺end K ′≺end L and K ′ is not downward ω-
coded, if needed. Hence, for α < ω1, if (Mα+1,Mα) ∼= (L,K), then for every
countable β ≥ α, (Mβ ,Mα) ∼= (L,K). �

There are ω1-like recursively saturated models which are not (L,K)-filtrated
for any K ≺end L. For example, by Theorem 1.10.2, there is a recursively
saturated ω1-like model M with a filtration 〈Mα : α < ω1〉 such that for all
α < β < ω1, (Mα+1,Mα) and (Mβ+1,Mβ) are elementarily inequivalent.

If a model M is (L,K)-filtrated, is M determined up to isomorphism by
(L,K)? The next theorem provides a negative answer.

Theorem 10.2.9 Let K = L(ω, a), where L is countable recursively satur-
ated and a ∈ ASG(L). Then L has 2ℵ1 nonisomorphic, ω1-like, (L,K)-filtrated
elementary end extensions.

Proof Let f : ω → ω eventually dominate every function g ∈ SSy(L). That is,
for every g ∈ SSy(L), there is n < ω such that for all k > n, f(k) > g(k).

We will construct nonisomorphic (L,K)-filtrated models M and N . The
construction can be generalized to obtain 2ℵ1 pairwise nonisomorphic such
models.
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We will build M =
⋃ {Mα : α < ω1} and N =

⋃ {Nα : α < ω1} by transfinite
induction. Let M0 = N0 = L. If α is a successor ordinal, then let Mα+1 and
Nα+1 be any countable recursively saturated models such that Mα≺end Mα+1
and Nα≺end Nα+1. Now, suppose Mα and Nα have been defined for all α < λ and
λ is a limit ordinal. We let Mλ =

⋃
α∈λ Mα and Nλ =

⋃
α∈λ Nα. To define Mλ+1

and Nλ+1, let 〈δn : n < ω〉 be an increasing sequence of ordinals whose limit is
λ. We let Mλ+1 be such that (Mλ+1,Mλ) ∼= (L(ω, a),K) and such that for some
aλ ∈Mλ+1 and all n < ω, (aλ)n ∈Mδn+1 \Mδn (possible by Proposition 10.2.5).
We let Nλ+1 be such that (Nλ+1, Nλ) ∼= (M,K) and for some bλ ∈ Nλ+1 and all
n < ω, (bλ)n ∈ Nδf(n)+1 \Nδf(n) (possible by the same proposition).

We claim that M �∼= N . For suppose F : M → N is an isomorphism. Let
C = {α < ω1 : F (Mα) = Nα}, and let λ be a limit point of C. Let a = aλ, b = bλ,
and c = F (a). Let g : ω → ω be defined by

g(i) = min{m : (c)i ≤ (b)m}.

For arbitrarily large n < ω, there is γ ∈ C such that δf(n) < γ ≤ δf(n+1). For
every such γ we have, for all i ≤ f(n),

(c)i = (F (a))i = F ((a)i) ∈ Nγ ,

hence for all i,

i ≤ f(n)→ g(i) ≤ n+ 1.

Now, since g is coded in N (and hence in M as well), so is the function
h(n) = cardN {i : g(i) ≤ n+ 1}. But we have shown that for arbitrarily large n,
h(n) ≥ f(n), which is a contradiction. �

The above proof relies heavily on the special type of the filtrations used. This
leaves open the question:

Problem 10.2.10 Are there countable recursively saturated K ≺end L such that
any two (L,K)-filtrated models are isomorphic?

10.3 Finitely determinate structures and PA(aa)

By Theorem 10.2.7, any two ω1-like elementarily equivalent models with the
same standard system are L∞ω1-equivalent. As we have seen in the previous
section, there are many nonisomorphic such models. For another example, let
K0≺end L0, K1≺end L1, be countable recursively saturated models and suppose
(L0,K0) �≡ (L1,K1) and K0 ∼= K1. If M0 is (L0,K0)-filtrated and M1 is (L1,K1)-
filtrated, thenM0 �∼= M1 and, by Theorem 10.2.7, M0 ≡∞ω1 M1. There is another
logic in which the difference between M0 and M1 can be expressed. It is the
stationary logic L(aa).
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Let Pℵ1(M) be the set of countable subsets ofM . A collection ofA ⊆ Pℵ1(M)
is unbounded if for every X ∈ Pℵ1(M), there is Y ∈ A such that X ⊆ Y . A is
closed if whenever X0 ⊆ · · · ⊆ Xn ⊆ · · · is a countable chain of sets in A, then⋃ {Xn : n < ω} ∈ A.

For a language L, L(aa) is L augmented with the membership symbol ∈, a
new set of set variables s, t, . . . , and a quantifier aa to bind them. Semantics for
L(aa) is defined by adding the following to Tarski’s definition of satisfaction. For
an L-structure M : M |= aasϕ(s) iff the set

{X ∈ Pℵ1(M) : (M,X) |= ϕ(X)}

is closed and unbounded in Pℵ1(M).
The sentence aas∃x(x /∈ s) is considered an axiom of L(aa); hence, all models

of stationary logic are uncountable. All models of L(aa) satisfy the Diagonal
Intersection Scheme:

∀x aasϕ(x, s) −→ aas ∀x ∈ sϕ(x, x).

The Diagonal Intersection Scheme is a formal expression of the Diagonal
Intersection Lemma: for any regular uncountable cardinal κ, the diagonal
intersection of a κ-sequence of closed unbounded subsets of κ is closed and
unbounded in κ. The diagonal intersection of a sequence 〈Xα : α < κ〉 is{
α < κ : α ∈ ⋃ν<α Xν

}
.

An L-structure M is finitely determinate if it satisfies the scheme Det:

aas0aas1 . . . aasn1∀x̄[aatϕ(x̄, s̄, t) ∨ aat¬ϕ(x̄, s̄, t)].

By a direct proof by induction on complexity of formulas, one can show the
following proposition on normal forms for formulas of L(aa):
Proposition 10.3.1 Let L be a first-order language, and let A be a finitely
determinate L-structure. Then every formula of L(aa) is equivalent in A to one
of the form aas0 . . . aasn−1ϕ(s̄, t̄, x̄), where ϕ has no second-order quantifiers. �

The following Eklof–Mekler Criterion characterizes finitely determinate
structures of cardinality ℵ1.

Theorem 10.3.2 Let A be a structure of cardinality ℵ1. Then A is finitely
determinate iff it has a filtration 〈Aα : α < ω1〉 such that whenever k ≤ n < ω,
〈α0, . . . , αn〉, 〈β0, . . . , βn〉 ∈ [ω1]n+1 are such that αj = βj for j < k; and
c0, . . . , cr ∈ Aαk

∩ Aβk
for some r < ω, then

(A,Aα0 , . . . ,Aαn , c0, . . . , cr) ≡ (A,Aβ0 , . . . ,Aβn , c0, . . . , cr). �
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By Proposition 10.2.6 and Theorem 10.2.9, we get the following corollary.

Corollary 10.3.3 Every countable recursively saturated model has 2ℵ1 pairwise
nonisomorphic finitely determinate recursively saturated ω1-like elementary end
extensions. �

By a theorem of Shelah (see Lemma 4.1 in [93]), the models constructed in the
proof of Theorem 10.2.9 have an additional property: they are all LPA∞ω1(aa)-
equivalent.

Let PA(aa) be Peano Arithmetic in which the induction schema ranges over
all formulas of LPA(aa). The results below apply also to the similarly defined
PA∗(aa), but for notational simplicity, we will consider PA only.

Is PA(aa) consistent? What do its models look like? Let us prove an easy fact
first.

Proposition 10.3.4 If N |= PA(aa), then N is ω1-like.

Proof Suppose N |= PA(aa) and consider the formula

ϕ(x) = aas∀y (y < x −→ y ∈ s).

Clearly

N |= ϕ(0) ∧ ∀x(ϕ(x) −→ ϕ(x+ 1)),

so that N |= ∀x ϕ(x). Thus, for every a ∈ N , aN is countable. Since all L(aa)
structures are uncountable, N is ω1-like. �

The rest of the section is devoted the construction of a model of PA(aa).
We will need some results concerning CA, the second-order theory in LPA

consisting of the basic axioms of PA, the induction axiom, and the full
comprehension schema

∃X∀x (x ∈ X ←→ ϕ(x)),

where ϕ(x) is a second-order formula which can have undisplayed first- and
second-order variables other than X. We will consider CA+AC, where AC is the
following version of the axiom of choice:

∀x∃Xϕ(X,x) −→ ∃X∀x ϕ((X)x, x),

where ϕ(X,x) can have additional undisplayed free variables.

Theorem 10.3.5 Let (M,X) |= CA+AC be countable. Let X = {A0, A1, . . . }, let
p be a minimal type of Th(M,A0, A1, . . . ), and let (I,<) be an ω1-like ordering.
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For M∗ = (M,A0, A1, . . . ), let M∗(I) be the canonical I-extension of M∗. Then
the reduct of M∗(I) to LPA is a model of PA(aa) + Det. �

The proof of Theorem 10.3.5 is based on the following two technical lemmas
proved in [171]. We will show how the theorem follows from the lemmas. The
proofs of the lemmas are rather involved, and we will not give them here. For a
linearly ordered set (I,<) and J ⊆ I, we write J < I if J is an a proper initial
segment of I.

Lemma 10.3.6 Suppose (I,<) is a linearly ordered set, n < ω, and let I0 <
· · · < In−1 < I. Let J ⊆ I be such that if we set Ji = Ii for i < n, then
J0 < · · · < Jn−1 < J . Then

(M∗(J),M∗(J0), . . . ,M∗(Jn−1)) ≺ (M∗(I),M∗(I0), . . . ,M∗(In−1)). �

Lemma 10.3.7 Suppose (I,<) is a linearly ordered set, n < ω, and I0 < · · · <
In−1 < I. Suppose D ∈ Def(M∗(I),M∗(I0), . . . ,M∗(In−1)). Then D∩M∗(I0) ∈
Def(M∗(I0)).

Proof of Theorem 10.3.5 Since (I,<) is ω1-like, it has a filtration
〈Iα : α < ω1〉. Then 〈M∗(Iα) : α < ω1〉 is a filtration of M∗(I). We will show
that this filtration satisfies the Eklof–Mekler Criterion.

Let k, n, r, α0, . . . , αn, β0, . . . , βn, c0, . . . , cr be as in the criterion. For j =
k, k + 1, . . . , n − 1, pick some aj ∈ Iαj+1 \ Iαj and bj ∈ Iβj+1 \ Iβj

and pick
an ∈ I \ Iαn and bn ∈ I \ Iβn . Let

J = (Iαk
∩ Iβk

) ∪ {ak, ak+1, . . . , an}

and

K = (Iαk
∩ Iβk

) ∪ {bk, bk+1, . . . , bn} .

By Theorem 3.3.11, there is an isomorphism f : M∗(J) −→M∗(K) which is
the identity on M∗(Iαk

∩ Iβk
) and which maps M∗(J) ∩ Iαi

onto M∗(K) ∩ Iβi

for i ≤ n and ai to bi whenever k ≤ i < n. By Lemma 10.3.6 both

(M∗(J),M∗(J ∩ Iα0), . . . ,M
∗(J ∩ Iαn))

and

(M∗(K),M∗(K ∩ Iα0), . . . ,M
∗(K ∩ Iαn

))

are elementary substructures of

(M∗(I),M∗(Iα0), . . . ,M
∗(Iαn

)).
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Therefore

(M∗(J),M∗(J ∩ Iα0), . . . ,M
∗(J ∩ Iαn), c0, . . . , cr)

is elementarily equivalent to

(M∗(K),M∗(K ∩ Iα0), . . . ,M
∗(K ∩ Iαn

), c0, . . . , cr),

so the Eklof–Mekler Criterion is verified. Thus, M∗(I) is finitely determinate so
its reduct to LPA also is.

Let N be the reduct of M∗(I) to LPA. We will prove that N |= PA(aa).
Suppose a ∈ N and ϕ(x, y) is an LPA(aa) formula in which the only free variables
are the first-order variables x and y. Suppose D = {x ∈ N : N |= ϕ(x, a)} is such
that 0 ∈ D and x+1 ∈ D whenever x ∈ D. By Proposition 10.3.1, we can assume
that ϕ(x, y) is of the form aas0 . . . aasn−1ψ(s̄, x, y). By Lemma 10.3.6, whenever
I0 < · · · < In−1 < I, there is a formula in the language of M∗(I) with parameters
from M∗(I0) defining

DI0 = {x ∈M∗(I0) : N |= ψ(M∗(I0), . . . ,M∗(In−1), x, a)} .

By Lemma 10.3.7, this defining formula depends on I0 only. For J < I, define
f(J) to be some K < J such that DJ is definable in M∗(J) with parameters
from M∗(K), if there is such K, and let f(J) = J otherwise. By Fodor’s lemma
f is constant on a stationary set. It follows from Lemma 10.3.6 that there is a
single formula θ(x) of the language of M∗(I) such that the collection

{I0 : DI0 = {x ∈M∗(I0) : M∗(I0) |= θ(x)}}

is stationary. Then it easily follows that θ(x) defines D in M∗(I). But M∗(I) |=
PA∗, soD = M∗(I) = N . �

10.4 Ramsey quantifiers and PA(Q2)

The theory PA(Q2) is an extension of PA in LPA augmented by a Ramsey
quantifier Q2 which binds two free variables. The intended interpretation is:
M |= Q2x0, x1ϕ(x0, x1) iff there is an unbounded X ⊆ M such that M |=
ϕ(a0, a1) for all distinct a0, a1 in X. A set X with this property is a witness
for Q2x0, x1ϕ(x0, x1). Under this interpretation, every PA(Q2) formula has an
equivalent second-order form in which every occurrence of Q2x0, x1ϕ(x0, x1) is
replaced by

∃X[∀y∃z(z > y ∧ z ∈ X) ∧ ∀x0, x1 ∈ X(x0 �= x1 −→ ϕ(x0, x1))].

PA(Q2) is Peano Arithmetic formulated in LPA(Q2). A weak model of PA(Q2)
is the second-order structure (M,X), where X ⊆ P(M), with the interpretation
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(M,X) |= Q2x0, x1ϕ(x0, x1) iff Q2x0, x1ϕ(x0, x1) has a witness in X. A strong
model M is identified with the weak model (M,P(M)).

We begin with a proposition that justifies the presence of PA(Q2) in this
chapter.

Proposition 10.4.1 If M is a strong model of PA(Q2), then M is κ-like for
some regular cardinal κ.

Proof Suppose that for some a ∈ M there is a function f whose range is
unbounded in M and whose domain is contained in aM . Then the set of codes
of (standard) finite restrictions of f witnesses M |= ϕ(a), where ϕ(z) is

Q2x, y[x and y code functions with domains contained in [0, z]

∧∀i(i ∈ dom(x) ∩ dom(y) −→ x(i) = y(i))].

Since M |= PA(Q2), there must be a least b such that ϕ(b) holds. Clearly
b �= 0. But if X is a witness to ϕ(b), then the set {σ � [0, b − 1] : σ ∈ X} is a
witness to ϕ(b− 1), which is a contradiction. So, for each a, |aM | < |M |. �

The rest of this section is devoted to the proof that PA(Q2) has κ-like models
for every regular cardinal κ. Of course, the standard model is a strong model of
PA(Q2). Proposition 10.4.1 shows that it is the only countable strong model.

Now we prove that if a formula of LPA(Q2) has a witness, then it has a
definable one. More precisely:

Lemma 10.4.2 For any formula ϕ(x0, x1) of LPA(Q2) there is a formula Wϕ(x)
LPA(Q2) such that for every weak model (M,X) of PA(Q2),

(M,X) |= ∀x0, x1(Wϕ(x0) ∧Wϕ(x1) ∧ x0 �= x1 −→ ϕ(x0, x1)),

and

(M,X) |= Q2x0, x1ϕ(x0, x1)←→ ∀x∃y > x Wϕ(x).

Proof Let (M,X) be a weak model of PA(Q2). We define a sequence of elements
of M by formal induction as follows. Let

(s)0 = min
{
w : Q2x0, x1[ϕ(x0, x1) ∧ w �= x0 ∧ ϕ(w, x0) ∧ ϕ(x0, w)]

}
,

if this set is nonempty, and w0 = 0 otherwise. For n ∈ M , let (s)n+1 be the
smallest w such that for all i ≤ n, w �= (s)i and in (M,X),

Q2x0, x1[ϕ(x0, x1) ∧ ∀i ≤ n(ϕ((s)i, x0) ∧ ϕ(x0, (s)i) ∧ ϕ((s)i, w) ∧ ϕ(w, (s)i))],

if there is such a w, and (s)n+1 = 0 otherwise.
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There is a formula ψ(s) such that (M,X) |= ψ(s) iff s is an initial segment of
the sequence 〈(s)n : n ∈M〉. Then define Wϕ(x) to be

x > 0 ∧ ∃s[ψ(s) ∧ ∃i < �(s)(x = (s)i). �

As an immediate consequence we have:

Corollary 10.4.3 Let (M,X) be a weak model of PA(Q2), and let X′ be the
collection of subsets of M definable in (M,X) by formulas of LPA(Q2) with
parameters from M . Then (M,X′) is a weak model of PA(Q2), and (M,X) and
(M,X′) satisfy the same LPA(Q2) sentences with parameters from M . �

To prove the existence of κ-like strong models of PA(Q2), we need one more
lemma.

Lemma 10.4.4 Let κ be an uncountable regular cardinal. Suppose |M | < κ and
N is a κ-canonical elementary end extension of M . If N |= Q2x0, x1ϕ(x0, x1)
for a formula ϕ(x0, x1) with parameters from N , then there is a witness for this
fact which is definable in N .

Proof Let 〈Mα : α < κ〉 be filtration of N , and let p be a minimal type such
that for each α, Mα+1 is generated over Mα by some cα realizing p. Then for
each α < κ, N = Scl(Mα ∪ {cξ : α ≤ ξ < κ}).

Assume N |= Q2x0, x1ϕ(x0, x1). Let X ⊆ M be an unbounded witness for
this fact. Then X is a collection of elements of the form f(a, cξ1 , . . . , cξn) for
some a ∈ Mα, n < ω, and a Skolem term f . Let α < κ be such that the
parameters in ϕ(x0, x1) are in Mα. Since |X| = κ and κ is regular, a counting
argument shows that there are a Skolem term f , an a ∈ Mα, an n < ω, and an
increasing sequence of n-tuples of 〈c̄α : α < κ〉 of elements of 〈cα : α < κ〉 such
that f(a, c̄α) ∈ X and f(c̄α) < f(c̄β), for all α < β < κ. We can assume that
the parameters in ϕ(x0, x1) are in Scl(a).

By strong indiscernibility of 〈cα : α < κ〉, there is b ∈ N and a formula θ(x)
defining an unbounded subset of N such that:

N |= ∀x1, . . . , x2n[b < x1 < · · · < x2n ∧ θ(x1) ∧ · · · ∧ θ(x2n)

−→ [ϕ(f(a, x1, . . . , xn), f(a, xn+1, . . . , x2n))

∧ ϕ(f(a, xn+1,

. . . , x2n), f(a, x1, . . . , xn))].

Let g(b, z) be the z-th element of {x : b < x ∧ θ(x)}, and let

Y = {f(a, g(b, nz + 1), . . . , g(b, nz + n)) : z ∈ N} .

Then Y is a definable witness for Q2x0, x1ϕ(x0, x1). �
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Theorem 10.4.5 Let κ be a regular uncountable cardinal, and let (M,X) be
a countable weak model of PA(Q2). Then there exists a κ-like strong model N
which is an LPA(Q2) elementary end extension of (M,X).

Proof Let 〈Ui : i < ω〉 be an enumeration of the subsets of M which are
0-definable in (M,X). Let M∗ be a model of PA∗ obtained from M by adjoining
the Ui’s as extra predicates. Let N∗ be a κ-canonical extension of M∗. Let N be
the reduct of N∗ to the language of PA.

Clearly (M∗,X) is a weak model of PA∗(Q2). To prove that N is as desired,
we will show that for each formula ϕ(ū) in LPA∗(Q2) with the only free variables
shown, there exists a formula χ(ū) of LPA∗ with the same free variables such that
both (M∗,X) and N∗ satisfy ∀ū (ϕ(ū)←→ χ(ū)).

The proof is by induction on complexity of ϕ(ū). The only nontrivial case
is when ϕ(ū) is of the form Q2x0, x1ψ(ū, x0, x1), where ψ is in LPA∗ . By
Lemma 10.4.2 applied to PA∗(Q2), there exists a formula Wψ(ū, x) such that:

(x0 �= x1 ∧Wψ(ū, x0) ∧Wψ(ū, x1)) −→ ψ(ū, x0, x1)

and

Q2x0, x1ψ(ū, x0, x1)←→ ∀y∃x > yWψ(ū, x)

hold in any weak model of PA(Q2).
Let i be such that

Ui = {(ā, d) ∈M : (M∗,X) |= Wψ(ā, d)} .

Let χ(ū) be the formula ∀y∃x > y Ui(ū, x). Trivially

(M∗,X) |= ∀ū(ϕ(ū)←→ χ(ū)).

We will show that the same sentence holds in N∗. Directly from the definition
of i it follows that

M∗ |= ∀ū∀x0, x1[x0 �= x1 ∧ Ui(ū, x0) ∧ Ui(ū, x1) −→ ψ(ū, x0, x1)].

Since M∗ ≺ N∗, the same sentence is true in N∗; hence,

N∗ |= ∀ū(χ(ū) −→ ϕ(ū)).

To finish the proof suppose that N∗ |= ϕ(ā), that is, N∗ |= Q2x0,
x1ψ(ā, x0, x1). By Lemma 10.4.4, there is an LPA∗ formula θ(ν̄, x) such that
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N∗ |= η(ā), where η(ū) is the formula

∃ν̄{∀y∃x > yθ(ν̄, x) ∧ ∀x0, x1[x0 �= x1 ∧ θ(ν̄, x0) ∧ θ(ν̄, x1) −→ ψ(ū, x0, x1)]}.

Clearly (M∗,X) |= ∀ū(η(ū) −→ ϕ(ū)); hence, M∗ |= ∀ū(η(ū) −→ χ(ū)), so the
same sentence is true in N∗. Hence N∗ |= χ(ā). �

10.5 Rigid recursively saturated models

In contrast with the numerous results on automorphism groups of countable
models discussed in previous chapters, in this section we prove that there is a
recursively saturated ω1-like model which is rigid, that is, it has no nontrivial
automorphisms. We prove an even stronger result: there is a recursively saturated
ω1-like model which has no elementary endomorphisms. In fact, as the next
proposition shows, such models have no endomorphisms at all.

Proposition 10.5.1 Let M be a κ-like model of PA for an uncountable cardinal
κ. Then every embedding of M into itself is elementary.

Proof Notice that, since M is κ-like, for every embedding f : M −→ M ,
f(M) ⊆cof M . Hence the result follows from Gaifman’s theorem on cofinal
extensions (Theorem 1.3.3). �

To construct models without endomorphisms, we use prime satisfaction
classes. A partial inductive satisfaction class S of a model M is prime if (M,S)
is prime. We say that S1, S2 ⊆M are elementarily equivalent (isomorphic, etc.)
if (M,S1) and (M,S2) are elementarily equivalent (isomorphic, etc.). Every
countable recursively saturated model has many elementarily inequivalent prime
classes. This, as we prove below, is a consequence of Scott’s Theorem 1.5.3.

Theorem 10.5.2 If a countable model M has an Qe-class, where either e ∈M
is nonstandard or e = ∞, then M has continuum many pairwise elementarily
inequivalent prime Qe-classes.

Proof We consider the case of e ∈ M , the other case being similar. Let L =
LPA ∪{S, e}, and let T0 = Th(M, e)+ “S is an Qe-class”. Since for each formula
ϕ of LPA,

M |= ϕ(e)←→ T0 � (ϕ(e) ∈ S),

and the axioms of Qe-classes form a recursive set, T0 represents itself. Moreover,
since M is recursively saturated, T0 ∈ SSy(M); hence, by Theorem 1.5.3, there
are continuum many completions T of T0 such that Rep(T ) = SSy(M). For each
such T , let (MT , eT , ST ) be the prime model of T . Now, since MT is recursively
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saturated, SSy(MT ) = SSy(M), and (MT , eT ) ≡ (M, e), there is an isomorphism
f : MT −→M such that f(eT ) = e. Then f(ST ) is a prime Qe-class for M , and
the result follows. �

If M ≺cof N and (M,X) |= PA∗, then by X we denote the unique Y ⊆ N
such that (M,X) ≺ (N,Y ). (See Theorem 1.3.7)

Lemma 10.5.3 Suppose that N ≺cof M , S is a prime Qe-class for N , where
e ∈ N is nonstandard or e = ∞, and f : N −→ M is an elementary embedding
such that f(N)≺cof M , either f(e) ∈ N or e = ∞, and f(S) ∈ Def((M,S)).
Then f is the identity function.

Proof Notice that, by the assumptions, both N and M are recursively satur-
ated. First, we consider the case that e ∈ N and let d = f(e). We will show
that d = e. If not, then first we will show that we can assume that d < e. If
d > e, then f(S) is a prime Qd-class for f(N); hence f(S) is a Qd-class for M .
Since f(S) ∈ Def((M,S)) and S is a Qe class, by Lemma 1.9.8, f(S)|e = S. This
argument shows that if d > e, then we can consider f−1 : f(N) −→ M instead
of f in the lemma we are proving.

So now we assume that d < e. Since f(S) ∈ Def((M,S)) and S is an Qe-
class for M , we have f(S) = S|d, hence Th((N,S)) = Th((f(N), f(S))) =
Th((M,f(S))) = Th((M,S|d)) = Th((N,S|d)). Since tp(e) = tp(d), we
get that d + N < e; hence, (N,S|d) is recursively saturated, and, consequently,
Th((N,S|d)) ∈ SSy(N). But (N,S) is prime; hence, by Corollary 1.5.2,
Th(N,S) /∈ SSy(N), which is a contradiction. Hence d = e.

Thus, in either case (d = e or e = ∞) we get f(S) = S (Do it!), so
that (N,S) ≺ (M,S) and (f(N), f(S)) ≺ (M,S). But both these substruc-
tures of (M,S) are prime, consequently (N,S) = (f(N), f(S)), and f being an
automorphism of a prime model must be the identity. �

Corollary 10.5.4 If S is a prime Qe-class for M , where either e ∈ M is
nonstandard or e = ∞, then each cofinal embedding f : M −→ M for which
f(S) ∈ Def((M,S)) is the identity function. �

Corollary 10.5.5 Let M be countable and recursively saturated. Then there
is a countable recursively saturated N such that M ≺end N and for every end
extension N ′ of N and every embedding f : N ′ −→ N ′ such that f(M) is cofinal
in M , f � M is the identity function.

Proof Let S be a prime partial inductive satisfaction class forM , and let (N,S′)
be a conservative elementary end extension of (M,S). Corollary 10.5.4 implies
that N has the required property. �

Theorem 10.5.6 Every countable recursively saturated model has an ω1-
like recursively saturated elementary end extension which has no nontrivial
embeddings into itself.
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Proof Let M0 be countable and recursively saturated. For α < ω1, let Mα+1
be the extension of Mα given by Corollary 10.5.5. For limit λ, let Mλ =⋃ {Mα : α < λ}. Let M =

⋃ {Mα : α < ω1}. Suppose f : M −→M is an embed-
ding. Since there are arbitrarily large α < ω1 for which f(Mα) is cofinal in Mα,
Corollary 10.5.5 implies that f is the identity function on M . �

10.6 Isomorphic + nonisomorphic ×
In this section we use a slightly illogical convention: for a model M , (M,+)
denotes the reduct ofM to +, and (M,×) is the reduct ofM to ×. The basic facts
about these reducts are: for every model model M , (M,+) ≡ (N,+), (M,×) ≡
(N,×), and, if M is nonstandard, both (M,+) and (M,×) are recursively satur-
ated. These results follow from quantifier elimination for Presburger Arithmetic
(= Th(N,+)) and Skolem Arithmetic (= Th(N,×)).

Presburger Arithmetic and Skolem Arithmetic are rich theories. (See
Remarks and References section in Chapter 1 and (Do it!).) As a corollary
we have:

Proposition 10.6.1 If M and N are countable, nonstandard, and SSy(M) =
SSy(N), then (M,+) ∼= (N,+) and (M,×) ∼= (N,×). Consequently, for all
countable M and N , (M,+) ∼= (N,+) iff (M,×) ∼= (N,×). �

For models of arbitrary cardinality we also know that if (M,×) ∼= (N,×),
then (M,+) ∼= (N,+). To see this, note that primes are definable in (M,×)
and the only prime dividing a power of 2 is 2 and conversely, the powers of 2
are just the numbers which are not divisible by any prime other than 2. Hence,
if f : (M,×) −→ (N,×) is an isomorphism, then for each a ∈ M , there is a
unique a′ ∈ N such that f(2a) = 2a

′
. The mapping a �→ a′ is an isomorphism

of the additive reducts of M and N (Do it!). We will show that in general the
additive structure of a model does not determine its multiplicative structure.
The examples are suitably chosen ω1-like models. The part of Proposition 10.6.1
concerning additive reducts has the following generalization to ω1-like models.
We will not prove it here.

Theorem 10.6.2 If M and N are ω1-like models and SSy(M) = SSy(N), then
(M,+) ∼= (N,+). �

Now it remains to show that there are ω1-like models with the same standard
systems whose reducts to × are nonisomorphic.

Theorem 10.6.3 Every countable model M has 2ℵ1 ω1-like elementary end
extensions with pairwise nonisomorphic multiplicative reducts.

Proof Let K be an ω1-like model and let X be a set of primes of K. Then,
X is a class of K iff for every countable A ⊆ M there is a ∈ K such that
∀x ∈ A(x ∈ X ←→ x|a) (Do it!). Consequently, if X is a set of primes of K
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and f : (K,×) −→ (L,×) is an isomorphism, then f(X) is a set of primes of L
and if X is a class, then f(X) is a class as well.

Now let M be a countable model, let I be stationary subset of ω1, and let
MI be an ω1-like elementary end extension of M with a filtration 〈Mα : α < ω1〉
such that Mα≺end Mβ , for all α < β < ω1 with the property that the extension
Mα≺end Mα+1 is conservative iff α ∈ I. We will show that I can be recovered
from (MI ,×) modulo a closed unbounded subset of ω1, which will finish the
proof.

By Theorem 2.2.14, each MI is rather classless. Let 〈Cν : ν < ω1〉 be a
nonrepeating enumeration of all those classes (= definable sets) of MI which con-
sist of primes only. By the observation above, the set {Cν : ν < ω1} is determined
by (MI ,×).

Let Pα be the collection of sets of primes of Mα which are coded in Mα+1. Let
J ⊆ ω1 be the set of those α < ω1 for which {Cν ∩Mα : ν < α}=Pα. To see that
J is nonempty, consider the function ν �→ βν , where βν is the least β such that
Cν is definable using parameters from Mβ . The set {α : ∀ν(ν < α←→ βν < α)}
is closed and unbounded in ω1 (Do it!).

Now consider the set

Z = {α < ω1 : α ∈ Lim ∧ ∀ν(ν < α←→ βν < α)} .

We will show that I ∩ Z = J ∩ Z.
Consider some α ∈ I ∩ Z. Since Mα+1 is a conservative extension of Mα,

the set of coded subsets of Mα is Def(Mα). To prove that α ∈ J , it suffices to
show that the set {Cν ∩Mα : ν < α} is the set of all definable set of primes of
Mα. If C ⊆ Mα is a definable sets of primes, then C = Cν ∩Mα for some ν for
which βν ≤ α. But since α is a limit ordinal and βν is not, βν < α. Then ν < α
because α ∈ Z. Conversely, if C = Cν ∩Mα for some ν < α, then βν < α, so
that C ∈ Def(Mα).

Now, let α ∈ J ∩Z, intending to show that Mα+1 is a conservative extension
of Mα. Since an extension in which all coded set of primes are definable in the
ground model must be conservative, it is enough to show that each set of primes
C ⊆Mα which is coded in Mα+1 is definable in Mα. Let C be such a set. Then
there is ν < α such that C = Cν∩Mα. But then βν < α, so that C ∈ Def(Mα). �

10.7 Exercises

♣10.7.1 If M is a countable recursively saturated model, S is a Qe-class for M
for some nonstandard e, and X is an undefinable subset of M , then there is a
nonstandard e′ such that X is undefinable in (M,S|e′).

♣10.7.2 Use previous exercise to prove Proposition 10.1.3.
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♣10.7.3 If cf(κ) > ℵ0, then every model M such that |M | < κ has a κ-like,
rather classless elementary end extension. If κ > ℵ0, then every model M such
that |M | ≤ κ has a rather classless elementary end extension of cardinality κ.

♦10.7.4 Prove without using ♦ in any form that there is an ω1-like recursively
saturated model without partial inductive satisfaction class.

♣10.7.5 If M is a recursively saturated ω1-like model without inductive
satisfaction classes, then M has no recursively saturated elementary end
extension.

♦10.7.6 Every countable recursively saturated model has 2ℵ1 nonisomorphic
recursively saturated rigid elementary end extensions.

♦10.7.7 Every countable recursively saturated model has a recursively saturated
rigid elementary end extension without partial inductive satisfaction class.

♦10.7.8 Every countable recursively saturated model has a recursively saturated
rigid elementary end extension with a partial inductive satisfaction class.

♦10.7.9 If M and N are countable and recursively saturated models and
M ≺end N , then there is an automorphism of M which cannot be extended to an
automorphism of N .

♦10.7.10 If K is countable and recursively saturated, then there are continuum
many pairwise nonisomorphic structures of the form (K,L), where L is an
elementary cut of K.

♣10.7.11 If p(v) is an unbounded type realized in a recursively saturated model
M , then for any c ∈ M , there is an a ∈ M such that �(a) = c and for all i < c,
(a)i realizes p.

Let M be a recursively saturated model, and let I be a cut of M . Let
ASG(M, I) be the set of those a ∈ M such that �(a) > I and for all i ∈ I,
gap((a)i) < (a)i+1. For a ∈ ASG(M, I), let M(I, a) = sup {(a)i : i ∈ I}.
♣10.7.12 For any cut I and a ∈ ASG(M, I), M(I, a) is a recursively saturated
elementary cut of M . If I is semiregular in M and a ∈ ASG(M, I), then I is
definable in (M,M(I, a)).

♥10.7.13 If M is countable and recursively saturated, then there are a
semiregular I and a, b ∈ ASG(M, I) such that (M,M(I, a)) �≡ (M,M(I, b)).

♦10.7.14 Let K be countable and recursively saturated. There are continuum
many pairwise elementarily inequivalent structures of the form (K,L), where L
is an elementary cut of K. (Hint: use the previous exercise and the fact that
ever nonstandard model has continuum many pairwise elementarily inequivalent
semiregular cuts.)
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♣10.7.15 If M is countable and arithmetically saturated, K ≺end M is
recursively saturated, and for some c ∈ M , K = sup {(c)n : n < ω}, then
K = M(ω, a) for some a ∈ ASG(M).

♥10.7.16 If M is countable and recursively saturated and every elementary cut
K of M which is of the form sup {(c)n : n < ω}, is also of the form K = M(ω, a)
for some a ∈ ASG(M), then M is arithmetically saturated.

♣10.7.17 If M be countable and recursively saturated, then M has countable
recursively saturated elementary end extensions K and L such that for some
a ∈ K, M = sup {(a)n : n < ω} and there is no such a in L.

♣10.7.18 Every countable recursively saturated model M has 2ℵ1 recurs-
ively saturated elementary end extensions, whose reducts to × are pairwise
nonisomorphic. (Hint: use the previous exercise.)

♣10.7.19 If K and L are countable and recursively saturated, and K ≺end L,
then K has an ω1-like recursively saturated elementary end extension M which
is (L,K)-filtrated.

A model M is e-lofty, if for every recursive, finitely realizable type p(x, b̄),
b̄ ∈ M , there is s ∈ M such that cardM (s) = e and the type p(v, b̄) ∪ {x ∈ s} is
finitely realizable as well. A model is lofty if it is e-lofty for some e ∈ M . It is
shown in [68] that a countable M is lofty iff it has a simple elementary extension
which is recursively saturated.

♣10.7.20 If N is a recursively saturated simple extension of M , then M ≺cof N .

♣10.7.21 Every simple cofinal extension of a κ-like model is κ-like.

♥10.7.22 If M is lofty and has no recursively saturated simple extensions, then
M is κ-like for some regular uncountable cardinal κ.

10.8 Remarks & References

Bovykin & Kaye [18] give a survey and some new results on Friedman’s 14th
problem concerning the spectrum of order types of nonstandard models.

Kaufmann used ♦ to construct a Kaufmann model in [67]. The crucial
Lemma 10.1.3 has many proofs. Kaufmann’s proof in [67] uses the theory of
admissible structures. The proof in Exercise 10.7.2 is from [164]. Much is known
about κ-like, recursively saturated, rather classless models for κ > ω1. The
following theorems are proved in [164]:

(1) If κ > cf(κ) > ℵ0, then every consistent extension of PA∗ has a
κ-like, recursively saturated, rather classless model.

(2) If κ is a regular cardinal and PA has a κ-like, recursively
saturated, rather classless model, then there is an Aronszajn
κ-tree.
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(3) Assume V=L. Let κ be an inifinite cardinal, and let T be a con-
sistent extension of PA∗. Then the following are equivalent:

(a) there is a κ-like, recursively saturated, rather classless
model of T ;

(b) cf(κ) > ℵ0 and κ is not weakly compact.

(4) If κ > ℵ0, then every consistent extension of PA∗ has a
recursively saturated, rather classless model of cardinality κ.

The question: how highly saturated can a rather classless model be? is considered
by Schmerl in [172] and [176]. In particular, Theorem 1.2 of [176] says:

If κ is a singular cardinal, λ is a regular cardinal, cf(κ) > λ, and M
is a λ-saturated κ-like model of PA∗. Then there is a rather classless,
λ-saturated, κ-like N ≡M .

Every model M of PA∗ has a naturally defined extension to a real closed
field. By constructing special uncountable models, one obtains fields with inter-
esting properties. This is explored by Schmerl [165] and Keisler & Schmerl [79]
in connection with the question of Sikorski concerning ordered fields with the
Bolzano–Weierstrass property.

While Corollary 10.1.6 shows that the MacDowell–Specker theorem is not
valid when restricted to the class of recursively saturated models, some spe-
cial cases of it hold. It is shown in [91] that every short recursively saturated
model and every recursively saturated model with cofinality ω has a recursively
saturated elementary end extension.

Theorems 10.5.2 and 10.5.6 are from Kossak & Schmerl [106].
Theorem 10.2.2, characterizing L∞ω1-equivalence for models of cardinality

ℵ1 is due to David Kueker [118].
Cuts of the form M(ω, a), where a ∈ ASG(M), were introduced and studied

by Smoryński in [192] and [195]. The results of Section 10.2, with the exception
of Theorem 10.6.2, are from Kossak [92] and [93]. An example giving a solution
to the problem in Exercise 10.7.13 is given in [97].

Ramsey quantifiers were introduced and studied in the general model-
theoretic setting by Magidor & Malitz [126]. Macintyre [124] pointed out the
importance of PA(Q2) as a natural extension of PA which eliminates Paris–
Harrington type independence phenomena and he proved several relevant results.
Proposition 10.4.1 and Lemma 10.4.2 are due to him. Macintyre has also shown
that PA(Q2) has a definable truth definition for LPA formulas; hence, the
first-order reducts of nonstandard models of PA(Q2) are recursively saturated.
This and some results concerning provability of some combinatorial principles
independent of PA were obtained independently by Morgenstern [133]. The-
orem 10.4.5 was proved in Schmerl & Simpson [179] as a part of the completeness
theorem for PA(Q2). It is shown that PA(Q2) and Π1

1 − CA0 have the same
first-order consequences. A weak model (M,X) of PA(Q2) is called reduced if
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X = Def(M,X). A model (M,X) of Π1
1−CA0 is called reduced if for each A ∈ X

there is k < ω such that A is ∆1 in 0(k) of (M,X). It is proved in [179] that
the reduced weak models of PA(Q2) are the same as the reduced models of
Π1

1 − CA0. The results of Macintyre and Morgenstern become easy corollaries of
this statement.

The material on PA(aa) is from [171]. The main theorem, Theorem 10.3.5
constitutes a half of the proof that PA(aa)+Det and CA have the same first-order
consequences.

The theorem on existence of recursively saturated ω1-like rigid models is from
Kossak & Schmerl [106].

Victor Harnik [53, 54] developed a theory countable and ω1-like recursively
saturated models of Presburger arithmetic. Theorem 10.6.2 is due to him [53].
Theorem 10.6.3 is from Kossak et al. [104].

The fact that additive and multiplicative reducts of models of PA are recurs-
ively saturated is based on quantifier elimination for the theories of addition and
multiplication. Quantifier elimination for addition is the well-known theorem
of Presburger, see [198] for the result and its history. While the decidability
of multiplication of integers was proved already by Skolem in 1930, the result
on elimination of quantifiers for multiplication, needed in the proof of Pro-
positiom 10.6.1, was proved independently by Cegielski [19] and Nadel [136]
in 1981.

Kaufman & Schmerl [68, 69] present a theory of loftiness. Among many other
results, it is shown that the converse to the statement in Exercise 10.7.22 holds:
If M is κ-like for some regular κ and it is not recursively saturated, then M
has no recursively saturated simple extension. It is an interesting open problem
whether there is an ω1-like lofty model which is not recursively saturated.
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Every model M of Peano Arithmetic has a reduct (M,<) that is a linearly
ordered set. There is only one possible order type of (M,<) if M is countable
and nonstandard and that order type is very well understood. By contrast, very
little is known about (M,<) for uncountable M . One especially vexing question
is: is it true that whenever M,N are uncountable models, then there is M ′ ≡M
such that (M ′, <) ∼= (N <)? This chapter contributes nothing to this question.
But it does contain some results on order types of models of Peano Arithmetic.

The common thread of the main results of this chapter is the following notion
of a (κ, λ)-cut.

Definition 11.0.1 Let I ⊆end M be a cut of a model of PA∗, and let κ, λ be
infinite cardinals. Then I is a (κ, λ)-cut if cf(I) = κ and dcf(I) = λ.

In this definition, cf(I) is the “external” cofinality, which is the least cardinal
κ for which there exists X ⊆ I that is unbounded in I and |X| = κ. Similarly,
dcf(I) is the least cardinal λ for which there is Y ⊆M\I such that |Y | = λ and,
for each x > I there is y ∈ Y with y < x.

11.1 On (κ, κ)-cuts

Not very much that is nontrivial can be said, in general, about the existence of
(κ, λ)-cuts other than the following theorem.

Theorem 11.1.1 For every nonstandard M there are an infinite cardinal κ and
a (κ, κ)-cut I ⊆end M .

Proof Before starting the proof, let us see what goes wrong with a naive
approach. Pick some nonstandard elements a0, b0 ∈ M with b0 very much big-
ger than a0. Inductively, and slowly, construct a transfinite increasing sequence
a0 < a1 < · · · < aα < · · · and simultaneously a transfinite decreasing sequence
b0 > b1 > · · · > bα > · · · , always making sure that aα < bα. Of course, this
cannot go on forever. Suppose there is a limit ordinal γ0 at which it stops;
that is, there is no c such that aα < c < bα for all α < γ0. Then, letting
I = sup{aα : α < γ0} = {x ∈M : x ≤ aα for some α < γ0}, we have a cut I for
which cf(I) = dcf(I) = cf(γ0). The problem is that this construction may end,
not at a limit ordinal but at a successor ordinal. The construction in the proof
is designed to circumvent this problem.
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Instead of constructing just one pair of increasing and decreasing sequences,
we will construct infinitely many, and we will not construct these sequences by
adjoining one point at each stage but ω points. Thus, for some limit ordinal γ0
and for each n < ω we will have, for α < β < γ0, that

an,α < an,β < bn,β < bn,α . (�)

It will also be required that the sequence of an’s grows fast, the growth rate
being determined by the sequence of bn+1’s. We will make use of the function
E(x) = xx. Specifically, we require that

an,α + E(bn+1,α) < an,α+1 . (�)

We start by obtaining an,α and bn,α for n, α < ω, satisfying both (�)’s for
n < ω and α < β < ω. One way to get these is first, by overspill, get a descending
sequence d0 > d1 > d2 > · · · , where E(dn+1) = dn, and then set an,i = i·d2n and
bn,i = 2d2n − i, for n, i < ω. It is easily checked (Do it!) that these definitions
do the job.

Now suppose that, for the limit ordinal γ, we have managed to get an,α and
bn,α satisfying both (�)’s for n < ω and α < γ. We try to get, for each n < ω,
some cn such that an,α < cn < bn,α for every α < γ. This leads to two cases.

Case 1 : All the cn exist. In this case we just continue with the two sequences
by letting

an,γ+i = cn − E(cn+1) + i · E(cn+1 − 1)

and

bn,γ+i = cn − E(cn+1) + cn+1 · E(cn+1 − 1)− i

whenever n, i < ω. It is necessary to check that these extended sequences still
satisfy both (�)’s, a task that is left as an exercise for the reader to do. One
helpful observation, however, is that bn,γ+i < cn for n, i < ω.
Case 2 : Some cn does not exist. In this case, we let κ = cf(γ) and I =

sup{an,α : α < γ}. Then cf(I) = dcf(I) = κ, so we are done.
Since Case 2 must eventually occur, the proof is complete. �

11.2 Saturation of the order reduct

There are connections between the extent of saturation of a model M and the
existence of (κ, λ)-cuts. The following proposition is the simplest.

Proposition 11.2.1 If M is a κ-saturated model of PA∗, where κ is an
uncountable cardinal, then M has no (µ, λ)-cuts, where µ, λ < κ. �
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The main result of this section, Theorem 11.2.4, shows that the converse also
is true.

11.2.1 Canonical codes

There are lots of different sorts of objects that can be coded in PA and lots
of different ways that they can be coded. Recall that if a ∈ M |= PA and
a0, a1, a2, . . . is an ω-sequence from M , then a codes this sequence if M |= (a)n =
an for every standard n ∈M . Any coded ω-sequence is necessarily bounded.

Every bounded definable subset A ⊆M (that is, A is M -finite) can be coded
in a canonical way. We say that a ∈M is the canonical code for A if a =

∑
x∈A 2x.

For example, 0 is the canonical code for ∅, 1 is the canonical code for {0}, and 75
is the canonical code for {0, 1, 3, 6}. Every M -finite set has a unique canonical
code and, conversely, every element of M is the canonical code of a unique
M -finite set. We will write x ∈ y if x is in the set canonically coded by y, and
x ⊆ y if the set canonically coded by x is a subset of the one canonically coded
by y. For example, 3 ∈ 75 and 1 ⊆ 75.

Lemma 11.2.2 Suppose M |= PA∗, p ∈ M , B,C,D ⊆ M are M -finite, pM ∩
B = ∅, and D = B ∪ pM . Let b, c, d ∈ M be the canonical codes for B,C,D,
respectively. Then b ≤ c ≤ d iff B ⊆ C ⊆ D.

Proof If B ⊆ C ⊆ D, then it is clear that b ≤ c ≤ d (Do it!).
For the converse direction, we proceed by induction. For i ∈ M , let S(i) be

the following statement: if p,B,C,D,b,c,d are as in the Lemma, b ≤ c ≤ d and x
is the ith largest element of B, then x is the ith largest element of C. It suffices
to prove that S(i) holds for all i, and we will do this by induction on i.

Basis step. Here i = 0 so that x = max(B). Then b > 0 since B �= ∅, from
which it follows that c > 0 and then C �= ∅. Let y = max(C). Clearly, d < 2x,
and as c ≤ d, then y ≤ x. Also, 2x−1 ≤ b, and as b ≤ c, then y ≥ x. Thus, y = x,
so x = max(C).
Inductive step. Assume S(i), and let x be the (i+ 1)th largest element of B.

Let B′ = B ∩ [0, x], C ′ = C ∩ [0, x] and D′ = D ∩ [0, x]. Now the basis step
can be applied to B′, C ′, D′ (Do it!) to show that x = max(C ′). Thus, x is the
(i+ 1)th largest element of C. �

11.2.2 ℵ1-saturation

The following theorem gives two characterizations of ℵ1-saturation.

Theorem 11.2.3 For each M |= PA∗, the following are equivalent:

(1) M is ℵ1-saturated.
(2) The reduct (M,<) is ℵ1-saturated.
(3) Every ω-sequence from M is coded.
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Proof The implication (1) =⇒ (2) is trivial. We will prove (2) =⇒ (3) =⇒ (1).

(3) =⇒ (1): Assume (3) holds. Then cf(M) ≥ ℵ1, as otherwise
there would be a coded, cofinal ω-sequence, which is impossible. Now let
{ϕ0(x), ϕ1(x), ϕ2(x), . . .} be a finitely satisfiable set of unary formulas, possibly
involving some parameters from M . Our goal is get some z ∈ M such that
M |= ϕn(z) for each n < ω.

Let bn ∈M be such that M |= ϕ0(bn)∧ϕ1(bn)∧· · ·∧ϕn(bn), and then choose
b ∈ M so that b > bn for each n < ω. Let cn be the canonical code for the set
{x ∈M : M |= x < b∧∧i≤n ϕi(x)}, and then let c be a code for the ω-sequence
c0, c1, c2, . . .. Observe that for all standard e ∈M

M |= ∀n < e[(c)n ⊇ (c)e > 0],

so, by overspill, there is a nonstandard e ∈ M for which this is also true. Pick
any z ∈ (c)e. Then z ∈ (c)n for each n < ω, so that M |= ϕn(z) for each n < ω,
completing the proof that (1) holds.

(2) =⇒ (3): Assume (2) holds. Let a0, a1, a2, . . . ∈ M be any ω-sequence
from M , intending to show that it is coded. We define two other sequences
a′

0, a
′
1, a

′
2, . . . and a′′

0 , a
′′
1 , a

′′
2 , . . . as follows. Let the first of these sequences be

a0, 1+a0+a1, 2+a0+a1+a2, . . . , n+a0+a1+· · ·+an, . . ., so a′
0 < a′

1 < a′
2 < · · · .

Clearly, cf(M) ≥ ℵ1, so we can let s be an upper bound for this sequence, and
then let a′′

n = s− a′
n, resulting in a decreasing sequence a′′

0 > a′′
1 > a′′

2 > · · · . It
is evident that if any one of these sequences is coded, then all three are. Thus,
without loss of generality, we can assume that the given sequence a0, a1, a2, . . .
is decreasing.

Let bn be the canonical code for the set {a0, a1, . . . , an}, and let cn be the
canonical code for the set {a0, a1, . . . , an} ∪ [0, an+1]. Then, b0 < b1 < b2 <
· · · < c2 < c1 < c0. By the ℵ1-saturation of (M,<), there is d ∈ M such that
b0 < b1 < b2 < · · · < d < · · · < c2 < c1 < c0. By Lemma 11.2.2, d is the
canonical code of a set whose nth largest element is an. Clearly, there is a ∈M
which codes a sequence whose nth term is the nth largest x ∈ d. Thus, (a)n = an
for each n < ω. �

11.2.3 κ-saturation for κ > ℵ1

The equivalence of (1) and (2) of the previous theorem generalizes to all
uncountable cardinals.

Theorem 11.2.4 Let M |= PA∗ and let κ be an uncountable cardinal. The
following are equivalent:

(1) M is κ-saturated.
(2) The reduct (M,<) is κ-saturated.
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Proof Fix M |= PA∗. The implication (1) =⇒ (2) is trivial. The reverse implica-
tion is proved by induction on the uncountable cardinal κ. The basis step κ = ℵ1
is Theorem 11.2.3.

For κ a limit cardinal, there is nothing to prove since in this case a structure
is κ-saturated iff it is λ-saturated for all λ < κ.

So we will consider the case that κ is a successor cardinal, namely κ = λ+.
(For the rest of this proof, we will eschew κ in favor of λ+.) We assume that
(M,<) is λ+-saturated and, by the inductive hypothesis, that M is λ-saturated.
Our goal is to prove that M is λ+-saturated.

Let {ϕα(x) : α < λ} be a finitely satisfiable set of λ unary formulas, possibly
involving some parameters from M . The object is to get some z ∈M such that,
for each α < λ, M |= ϕα(z). For each finite subset S ⊆ λ, let xS ∈ M be
such that M |= ∧

α∈S ϕα(xS). Since there are at most λ of these witnesses and
cf(M) ≥ λ+ by the λ+-saturation of (M,<), there is r ∈M that is bigger than
all of these witnesses. Letting a′

α be the canonical code of {x ∈ M : M |= x ≤
r ∧ ϕα(x)}, we see that ϕα(x) is equivalent to x ∈ a′

α. Using the λ-saturation
of M , we can find a strictly increasing sequence 〈aα : α < λ〉 such that for any
u ∈ M , 2u ∈ aα iff u = a′

α. Let ϕ(v, x) be the formula ∃u[2u ∈ v ∧ x ∈ u]. The
point of doing this is that ϕ(aα, x) is equivalent to ϕα(x). Henceforth, we will
use ϕ(aα, x) instead of ϕα(x).

Since M is λ-saturated, there is a sequence 〈zα : α < λ〉 such that α ≤ β < λ,
then M |= ϕ(aα, zβ).

Using the λ-saturation of M , we can get a sequence 〈cα : α < λ〉 (where we
are thinking of each cα as a canonical code) such that whenever α ≤ β < λ, the
following sentences are true in M :

(1) aα ∈ cβ ;
(2) ∀u[u ∈ cα → u ≤ aα];
(3) ∀u[u ∈ cα → ϕ(u, zα)];
(4) ∀u < aα[u ∈ cβ → u ∈ cα].

Using the λ-saturation of M , we will be able to construct such a sequence
inductively. From (1) and (2), there is no choice but to let c0 = 2a0 . Now suppose
that 0 < γ < λ, and that we already have 〈cα : α < γ〉 such that (1)–(4) are true
whenever α ≤ β < γ. We want c = cγ such that the sentences:

(1′) aα ∈ c ∧ aγ ∈ c;
(2′) ∀u[u ∈ c→ u ≤ aγ ];
(3′) ∀u[u ∈ c→ ϕ(u, zγ)];
(4′) ∀u < aα[u ∈ c→ u ∈ cα]

are true whenever α < γ. Since M is λ-saturated, it suffices that for each finite
S ⊆ γ, there is c ∈M that makes these sentences true for each α ∈ S. For finite
S ⊆ γ, let δ = max(S) (or δ = 0 if S = ∅), and then let c be the canonical code
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for {u ∈ cδ : M |= ϕ(u, zγ)} ∪ {aγ}. This c works (Do it!), thereby proving the
existence of the sequence 〈cα : α < λ〉.

Our next goal is to obtain a strictly decreasing sequence 〈dα : α < λ〉, with
dα encoding (in a way to be seen) both cα and zα. Start with a strictly increasing
sequence 〈sα : α < λ〉 such that, for every α < λ, (sα)0 = cα and (sα)1 = zα.
Such a sequence can be constructed using the λ-saturation of M (Do it!). Since
(M,<) is λ+-saturated, this sequence has an upper bound s ∈ M . Now let
dα = s − sα. Define the functions C,Z : [0, s] −→ M by C(y) = (s − y)0 and
Z(y) = (s− y)1. In particular, C(dα) = cα and Z(dα) = zα.

The next sequence we want is 〈bα : α < λ〉 (where we are thinking of each bα
as a canonical code) such that whenever α ≤ β < λ, the following sentences are
true in M :

(5) dα ∈ bβ ;
(6) ∀y[y ∈ bα → dα ≤ y ≤ d0];
(7) ∀y[y ∈ bα → ∀u

(
u ∈ C(y)→ ϕ(u, Z(y))

)
];

(8) ∀y ≥ dα[y ∈ bα ↔ y ∈ bβ ];
(9) ∀y[y ∈ bβ ∧ y ≤ dα → aα ∈ C(y)].

Using the λ-saturation of M , we will be able to construct such a sequence
inductively. From (5) and (6), there is no choice but to let b0 = 2d0 . Now suppose
that 0 < γ < λ, and that we already have 〈bα : α < γ〉 such that (5)–(9) are true
whenever α ≤ β < γ. We want b = bγ such that the sentences:

(5′) dα ∈ b ∧ dγ ∈ b;
(6′) ∀y[y ∈ b→ dγ ≤ y ≤ d0];
(7′) ∀y[y ∈ b→ ∀u(u ∈ C(y)→ ϕ(u, Z(y))

)
];

(8′) ∀y ≥ dα[y ∈ bα ↔ y ∈ b];
(9′) ∀y[y ∈ b ∧ y ≤ dα → aα ∈ C(y)];

are true whenever α < γ. Since M is λ-saturated, it suffices that for each finite
S ⊆ γ, there is b ∈M that makes these sentences true for each α ∈ S. For finite
S ⊆ γ, let δ = max(S) (or δ = 0 if S = ∅), and then let b be the canonical code
for Bδ ∪ {dγ}, where Bδ is the set canonically coded by bδ. This b works (Do
it!), thereby proving the existence of the sequence 〈bα : α < λ〉.

Let Bα be the set canonically coded by bα. Then (5), (6), (8) imply that
dα ∈ Bα ⊆ [dα, d0] and Bα = Bβ∩[dα, d0] whenever α ≤ β < λ. Then bα+2dα−1
is the canonical code of Bα ∪ [0, dα − 1], and

bα < bβ < bβ + 2dβ − 1 < bα + 2dα − 1

whenever α < β < λ.
By the λ+-saturation of (M,<), there is b∞ ∈ M such that bα < b∞ <

bα + 2dα − 1 for all α < λ. Let B∞ be the set canonically coded by b∞. By
Lemma 11.2.2, B∞ ∩ [dα, d0] = Bα; therefore, dα ∈ B∞ for each α < λ.
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For α < λ, define wα to be the least w ∈ B∞ such that M |= ∀y[y ∈ B∞∧w ≤
y ≤ dα → aα ∈ C(y)]. From (9), wα < dβ for all α, β < λ. Therefore, by the
λ+-saturation of (M,<), there is d∞ ∈ B∞ such that wα < d∞ < dα for each
α < λ (Do it!). Let z∞ = Z(d∞).

Since wα < d∞, the defining property of wα gives us that aα ∈ C(d∞), and
then from (7), (5), (1) that M |= ϕ(aα, z∞). �

Suppose (A,<) is a linearly ordered set. If X,Y ⊆ A are such that x < y
whenever x ∈ X and y ∈ Y , then we write X < Y . We say that (A,<) is
κ-dense if, whenever X,Y ⊆ A are such that |X|, |Y | < κ and X < Y , then
there is c ∈ A such that x ≤ c for x ∈ X and c ≤ y for y ∈ Y . Every κ-saturated
linearly ordered set is κ-dense, and there are κ-dense linearly ordered sets that
are not κ-saturated. In the proofs of Theorems 11.2.3 and 11.2.4, the κ-density
of (M,<) was the only consequence of κ-saturation that was used. Therefore,
if κ is an uncountable cardinal and M |= PA∗ is such that (M,<) is κ-dense,
then (M,<)-saturated. Observe that that for an infinite cardinal κ, (M,<) is
κ-dense iff whenever there is a (µ, λ)-cut, then κ ≤ max(µ, λ). Thus, there is the
following corollary.

Corollary 11.2.5 Let M |= PA∗ and let κ be an uncountable cardinal. The
following are equivalent:

(1) M is κ-saturated.
(2) If I ⊆end M is a (µ, λ)-cut, then κ ≤ max(µ, λ). �

But more is true and is more easily proved. See Exercise 11.3.4.

11.3 Exercises

♣11.3.1 The order type of a nonstandard model is of the form ω + (ω∗ + ω)ρ,
where ρ is the order type of a dense linear ordering without endpoints.

♦11.3.2 Show that the order type ρ in the previous exercise cannot be the order
type of the real numbers.

♣11.3.3 Every ω1-like model of PA∗ has order type ω + (ω∗ + ω) · (Q · ω1).

♦11.3.4 Let (A,<) be a linearly ordered set having a first element such that
every element has an immediate successor and every element but the first has an
immediate predecessor. If κ is an uncountable cardinal, then (A,<) is κ-dense
iff it is κ-saturated.

♥11.3.5 Suppose κ is an uncountable cardinal, M a model and � a definable
linear ordering of M . If the ordered set (M,�) is κ-saturated, then the model
M is κ-saturated.
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Let I ⊆end N be a cut of the model N , and then define M(I) = {y ∈ N :
yz ∈ I for all z ∈ I}. For x ∈ N , let xI = {y ∈ N : y < xz for some z ∈ I}
and x/I = {y ∈ N : x > yz for all z ∈ I}. The cut I is a type one cut if either
I = xM(I) for some x ∈ I or I = x/M(I) for some x ∈ N\M(I). If I is not
type one, then it is type two.

♦11.3.6 If I is a type two cut, then I is a (κ, κ)-cut for some infinite cardinal
κ. (Hint: κ = dcf(M(I)).)

♥11.3.7 Every nonstandard model has a type two cut.

11.4 Remarks & References

The still unanswered question stated at the beginning of this chapter is the 14th
in H. Friedman’s list of 102 problems in mathematical logic [42]. More on this
question can be found in Bovykin & Kaye [18].

Theorem 11.1.1 is from Shelah [185]. The proof presented there is a model
of clarity to which the proof given here is nearly identical. Theorem 11.2.4 is
due to J.-F. Pabion [142]. The proof of Theorem 11.2.4 presented here, while
following closely the one in [142], contains some simplifications. Theorem 11.2.3
also is from [142], where a good deal of the credit for this theorem is given to
Denis Richard. Exercise 11.3.5, which generalizes Theorem 11.2.4, is a little later
result of Pabion [141].

Exercise 11.3.6 comes from Keisler & Leth [78], where the connections with
nonstandard analysis are investigated. Exercise 11.3.7 is a theorem of Renling
Jin [61]; its proof uses ideas from the proof of Theorem 11.1.1.




TWENTY QUESTIONS

Needless to say, there is still work to be done. There are many open questions.
We would like to conclude with our personal selection of twenty of them. Some
have already been noted in previous chapters, some not. Most of them have been
published elsewhere. We have reasons to believe that none of these problems is
easy. If there is a question here that admits an easy answer, then most likely we
are to blame, and it should be also easy to restate the question to restore its
open status.

No list of open problems concerning models of PA is complete without the
venerable Scott set Problem. As noted in Chapter 1, under CH every Scott set
is the standard system of a nonstandard model of PA.

Question 1 Assume CH is false. Is every Scott set the standard system of a
nonstandard model of PA?

Every model M has a minimal elementary end extension, and every non-
standard countable model a minimal cofinal extension. If Ramsey ultrafilters
exist (which will be the case if CH holds, but is not always the case), then
every nonstandard model whose standard system is P(ω) has a minimal cofinal
extension. What happens in general?

Question 2 Does every nonstandard model M have a minimal cofinal
extension?

There are many questions that can be asked about substructure lattices. The
following question would have a positive answer if we knew that every finite
lattice has a finite congruence representation. Even if this turns out not to be
the case, this question still could have a positive answer.

Question 3 Is every finite lattice isomorphic to some Lt(M)?

For every finite distributive lattice L, every M has an elementary end exten-
sion N such that Lt(N/M) ∼= L. There are also nondistributive lattices L with
this property; however, both M3 and N5 fail to have this property, although
their failures are of different degrees. Every countable M has an elementary end
extension N such that Lt(N/M) ∼= N5, but no M at all has an elementary end
extension such that Lt(N/M) ∼=M3.

This situation suggests the following two questions, which we list together.
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Question 4 What finite lattices L are such that every M has an elementary
end extension N such that Lt(N/M) ∼= L? What finite lattices L are such that
every countable M has an elementary end extension N such that Lt(N/M) ∼= L?

We prove in Chapter 7 that every countable model M has an elementary end
extension N such that (M,Cod(N/M)) |= IΣ1 + ¬BΣ2. A conjecture in [105]
states that this statement generalizes to higher levels of the arithmetic hierarchy.
Kanovei [65] proved the conjecture for countable recursively saturated M .

Question 5 Let M be a countable model. Is it true that for every n > 0, M has
an elementary end extension N such that (M,Cod(N/M)) |= IΣn + ¬BΣn+1?

All Jónsson models constructed in Corollary 2.1.13 realize uncountably many
complete types.

Question 6 Is there a Jónsson model of PA which realizes only countably many
complete types?

In Mills’ counterexample to the MacDowell–Specker for uncountable lan-
guages, the model constructed is nonstandard. This leaves open the following
question, posed in [131].

Question 7 Is there an expansion of the standard model having no conservative
elementary extension?

Many important results concerning countable recursively saturated models
rely on the existence of Lascar generic automorphisms and sequences. Since
we do not know if non-arithmetically saturated recursively saturated models
have Lascar generics, many questions concerning such models remain open. In
Chapters 8 and 9, we have proved that for countable arithmetically saturated
models all four questions below have positive answers (well, we have not proved
everything: (3) below is our Exercise 9.6.5).

Question 8 Let M be a countable recursively, but not arithmetically, saturated
model.

(1) Does M have a Lascar generic automorphism?
(2) Does M have the small index property?
(3) Does Aut(M) have subgroups of finite index?
(4) Is every open subgroup of Aut(M) contained in a maximal one?

As shown in [98], if M is countable recursively saturated and not arithmet-
ically saturated, then for every f ∈ Aut(M), fix(f) ∼= M . If M is arithmetically
saturated, then M has continuum many nonisomorphic elementary submodels
which can be fixed point sets.
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Question 9 Let M be countable and arithmetically saturated and let K be an
elementary submodel of M . Is there f ∈ Aut(M) such that fix(f) ∼= K?

In Chapter 8, we have seen that for all countable recursively saturated M and
N such that M ≺end N , there are 2ℵ0 automorphisms of M which do not extend
to automorphisms of N . In extreme cases only the identity on M extends.

Question 10 Let M be countable and recursively saturated. Is there a non-
trivial automorphism of M which does not extend to any recursively saturated
elementary end extension of M?

If S ⊆ M is a partial inductive satisfaction class and f is an automorphism
of (M,S), then f can be extended to a recursively saturated elementary end
extension of M . Hence, Question 10 is related to the following question: let f
be an automorphism of a countable recursively saturated model M . Is there a
partial inductive satisfaction class S such that f is an automorphism of (M,S)?

Question 11 Are there countable, arithmetically saturated models M1 and M2
such that Th(Aut(M1)) �= Th(Aut(M2))?

The next question is due to Richard Kaye [74], who proved that if M is
countable and recursively saturated, then the closed normal subgroups of G =
Aut(M) are exactly the pointwise stabilizers of invariant cuts of M . If I is such
a cut and it is closed under exponentiation, then G(>I), which is the union of
pointwise stabilizers of all cuts J > I, is also normal, and its topological closure
is G(I).

Question 12 Is every normal subgroup of G either of the form G(>I) or G(I)
for an invariant cut I? In particular, is G(>N) generated by automorphisms f
such that (M,f) is recursively saturated?

It is shown in [174] that if M is a countable, recursively saturated model of
PA, then Th(Aut(M)) is undecidable. How undecidable is it? The next question
asks about the Turing degree.

Question 13 If M is countable and recursively saturated, is deg(Th(Aut(M)))
≥ 0(ω)?

Friedman’s 14th was mentioned at the beginning of Chapter 11. We repeat
it here.

Question 14 If M is uncountable and T ⊇ PA is a completion, does T have a
model N such that the order reducts (M,<) and (N,<) are isomorphic?

Nurkhaidarov proved in [139] that there are a countable Scott set X and
four recursively saturated models whose standard system is X with pairwise
nonisomorphic automorphism groups.
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Question 15 For a given countable Scott set X, what is the cardinality of the set
of isomorphism types of automorphism groups of countable recursively saturated
models whose standard system is X?

Loftiness was introduced and studied in [68] and [69]. If M is a countable
model of PA, then M is lofty iff M has a simple cofinal extension that is recurs-
ively saturated. The right-to-left implication holds even if M is uncountable,
but it is unknown if the converse implication holds for uncountable M . If it fails
for some M , then M must be κ-like for some uncountable regular cardinal κ,
and then there is also a counterexample with κ = ω1. It is known that if M is
κ-like and has a simple cofinal extension that is recursively saturated, then M
is already recursively saturated. Thus:

Question 16 Is there an ω1-like model that is lofty but not recursively
saturated?

The usual proof of the existence of a Kaufmann model proceeds by first show-
ing, assuming ♦, that there is a Kaufmann model, and then eliminating ♦ by
Shelah’s Absoluteness Theorem from [184]. We are hoping for a still more dir-
ect proof, avoiding ♦. This problem is included in the list of open problems in
Hodges’ [56] in the form:“Prove the existence of rather classless recursively sat-
urated models of Peano arithmetic in cardinality ω1 without assuming diamond
at any stage of the proof.” A positive answer to the following question would
do it.

Question 17 Suppose M be countable and X ⊆ M is such that Th(M,X) ∈
SSy(M). Does M always have an elementary end extension N that is recursively
saturated such that if Y ⊆M is coded in N , then (M,Y ) �∼= (M,X)?

The next question is one we heard from Kanovei. The question has some
cousins such as: does ZF � ∃M [SSy(M) = P(ω)]?

Question 18 Does PA have a model M whose universe is the set R and whose
+ and × are Borel subsets of R3 and SSy(M) = P(ω)?

It is shown in [97] that no ω1-like recursively saturated model is Jónsson.
It is also shown there that if such an M has a partial inductive satisfaction
class, then it has no recursively saturated elementary proper submodels of cardi-
nality ℵ1.

Question 19 Is there an ω1-like recursively saturated model which has no
recursively saturated proper elementary submodels of cardinality ℵ1?
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In the proof of Theorem 10.6.3 we constructed two ω1-like models whose
additive reducts are isomorphic and multiplicative reducts are not.

Question 20 Let M and N be ω1-like models of the same completion of PA,
whose both additive and multiplicative reducts are isomorphic. Are M and N
isomorphic?

Added in proof After we circulated our list of 20 questions among our col-
leagues, Ali Enayat wasted no time and promptly answered two of them. He gave
an elegant ultrapower construction to give the positive answer to Question 9 [30].
He also constructed a standard model with no conservative elementary exten-
sion, answering Question 7 [31]. His solution leaves open the following variant of
Question 7.

Question 7’ Is there a standard model A such that some nonstandard model
of Th(A) has no (conservative) elementary end extension.
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Halpern-Läuchli partition theorem. Eur. J. Combin., 23(1), 1–10. [179]

[3] Balbes, Raymond & Dwinger, Philip (1974). Distributive lattices. Univer-
sity of Missouri Press, Columbia, Mo. [132]

[4] Bamber, Nicholas & Kotlarski, Henryk (1997). On interstices of count-
able arithmetically saturated models of Peano arithmetic. Math. Logic
Quart., 43(4), 525–540. [227]

[5] Barwise, Jon & Schlipf, John (1975). On recursively saturated models
of arithmetic, Volume 498 of Lecture Notes in Mathematics, pp. 42–55.
Springer, Berlin. [23]

[6] Barwise, Jon & Schlipf, John (1976). An introduction to recursively
saturated and resplendent models. J. Symbolic Logic, 41(2), 531–536. [23]

[7] Baumgartner, James E. & Taylor, Alan D. (1978). Partition theorems and
ultrafilters. Trans. Amer. Math. Soc., 241, 283–309. [88]

[8] Bigorajska, Teresa (2003). Strongly maximal subgroups determined by
elements in interstices. MLQ Math. Logic. Quart., 49(1), 101–108. [229]

[9] Bigorajska, Teresa, Kotlarski, Henryk, & Schmerl, James H. (1998). On
regular interstices and selective types in countable arithmetically saturated
models of Peano arithmetic. Fund. Math., 158(2), 125–146. [227], [229]

[10] Birkhoff, Garrett (1933). On the combination of subalgebras. Proc.
Cambridge Philos. Soc., 29, 441–464. [133]

[11] Birkhoff, Garrett (1967). Lattice theory. Third edition. American Mathem-
atical Society Colloquium Publications, Vol. XXV. American Mathemat-
ical Society, Providence, RI. [132]

[12] Blass, Andreas (1972). The intersection of nonstandard models of arith-
metic. J. Symbolic Logic, 37, 103–106. [23]

[13] Blass, Andreas (1974). On certain types and models for arithmetic.
J. Symbolic Logic, 39, 151–162. [133]

[14] Blass, Andreas (1977). Amalgamation of nonstandard models of arith-
metic. J. Symbolic Logic, 42(3), 372–386.

[15] Blass, Andreas (1977). End extensions, conservative extensions, and the
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[52] Halpern, J. D. & Läuchli, H. (1966). A partition theorem. Trans. Amer.
Math. Soc., 124, 360–367. [179]

[53] Harnik, Victor (1986). ω1-like recursively saturated models of Presburger’s
arithmetic. J. Symbolic Logic, 51(2), 421–429. [280]

[54] Harnik, Victor (1987). Countable or ω1-like models of Presburger’s arith-
metic, pp. 89–106. Springer, Berlin. [280]

[55] Hirst, Jeffry, L. (1987). Combinatorics in subsystems of second order
arithmetic. Ph.D. thesis, The Pennsylvania State University. [201]



298 REFERENCES

[56] Hodges, Wilfrid (1985). Building models by games, Volume 2 of Lon-
don Mathematical Society Student Texts. Cambridge University Press,
Cambridge. [292]

[57] Hodges, Wilfrid (1989). Categoricity and permutation groups, Volume 129
of Studies in Logic and the Foundations of Mathematics, pp. 53–72. North-
Holland, Amsterdam. [252]

[58] Hodges, Wilfrid (1993). Model theory, Volume 42 of Encyclope-
dia of Mathematics and its Applications. Cambridge University Press,
Cambridge. [254]

[59] Hodges, Wilfrid, Hodkinson, Ian, Lascar, Daniel, & Shelah, Saharon
(1993). The small index property for ω-stable ω-categorical struc-
tures and for the random graph. J. London Math. Soc. (2), 48(2),
204–218. [254]

[60] Jensen, D. & Ehrenfeucht, A. (1976). Some problem in elementary
arithmetics. Fund. Math., 92(3), 223–245. [21], [23], [24]

[61] Jin, Renling (1997). Type two cuts, bad cuts and very bad cuts. J. Symbolic
Logic, 62(4), 1241–1252. [288]

[62] Jockusch, Jr., Carl G. (1972). Ramsey’s theorem and recursion theory. J.
Symbolic Logic, 37, 268–280. [201]

[63] Jockusch, Jr., Carl G. & Soare, Robert I. (1972). Π0
1 classes and degrees of

theories. Trans. Amer. Math. Soc., 173, 33–56. [179]
[64] Kanamori, Akihiro (2003). The higher infinite. Second edition. Springer

Monographs in Mathematics. Springer-Verlag, Berlin. Large cardinals in
set theory from their beginnings. [157]

[65] Kanovei, Vladimir (1998). On “star” schemata of Kossak & Paris,
Volume 12 of Lecture Notes Logic, pp. 101–114. Springer, Berlin. [201],
[290]
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of true arithmetic: more on subgroups which extend to a maximal one
uniquely. MLQ Math. Logic. Quart., 46(1), 111–120. [229]

[117] Krajewski, S. (1976). Non-standard satisfaction classes, Volume 537 of
Lecture Notes in Mathematics, pp. 121–144. Springer, Berlin. [24]

[118] Kueker, David W. (1981). L∞ω1 elementarily equivalent models of power
ω1, pp. 120–131. Springer, Berlin. [279]

[119] Lachlan, A. H. (1981). Full satisfaction classes and recursive saturation.
Canad. Math. Bull., 24(3), 295–297. [14]

[120] Lascar, Daniel (1994). The small index property and recursively satur-
ated models of Peano arithmetic, pp. 281–292. Oxford University Press,
New York. [254]

[121] Lessan, Hamid (1978). Models of arithmetic. Ph.D. thesis, University of
Manchester. [23], [48], [229]

[122] Lucchini, A. (1994). Intervals in subgroup lattices of finite groups. Comm.
Algebra, 22(2), 529–549. [134]

[123] Mac Dowell, R. & Specker, E. (1961). Modelle der Arithmetik, pp. 257–263.
Pergamon, Oxford. [v], [47]

[124] Macintyre, Angus (1980). Ramsey quantifiers in arithmetic, Volume 834 of
Lecture Notes in Mathematics, pp. 186–210. Springer, Berlin. [279]

[125] Macpherson, Dugald & Thomas, Simon (2005). Comeagre conjugacy
classes and free products with amalgamation. Discrete Math., 291(1–3),
135–142. [244]

[126] Magidor, Menachem & Malitz, Jerome (1977). Compact extensions of
L(Q). Ia. Ann. Math. Logic, 11(2), 217–261. [279]



302 REFERENCES

[127] Manevitz, Larry Michael (1976). Internal end-extensions of Peano arith-
metic and a problem of Gaifman. J. Lond. Math. Soc. (2), 13(1),
80–82. [48]

[128] McAloon, Kenneth (1978). Completeness theorems, incompleteness theor-
ems and models of arithmetic. Trans. Amer. Math. Soc., 239, 253–277. [48]

[129] McKenzie, Ralph N., McNulty, George F., & Taylor, Walter F. (1987).
Algebras, lattices, varieties. Volume I. The Wadsworth & Brooks/Cole
Mathematics Series. Wadsworth & Brooks/Cole Advanced Books &
Software, Monterey, CA. [132]

[130] Milliken, Keith R. (1979). A Ramsey theorem for trees. J. Combin. Theory
Ser. A, 26(3), 215–237. [171]

[131] Mills, George (1978). A model of Peano arithmetic with no elementary end
extension. J. Symbolic Logic, 43(3), 563–567. [133], [179], [290]

[132] Mills, George (1979). Substructure lattices of models of arithmetic. Ann.
Math. Logic, 16(2), 145–180. [179]

[133] Morgenstern, Carl (1982). On generalized quantifiers in arithmetic. J.
Symbolic Logic, 47(1), 187–190. [279]

[134] Morley, Michael (1965). Omitting classes of elements. In Theory of Models
(Proceedings of the 1963 International Symposium Berkeley, CA), pp. 265–
273. North-Holland, Amsterdam. [157]

[135] Mostowski, A. (1952). On models of axiomatic systems. Fund. Math., 39,
133–158 (1953). [19]

[136] Nadel, Mark E. (1981). The completeness of Peano multiplication. Israel
J. Math., 39(3), 225–233. [280]
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[188] Skolem, Th. (1933). Über die Unmglichkeit einer vollstndigen Charakter-

isierung der Zahlenreihe mittels eines endlichen Axiomensystems. Norsk
Matematisk Forenings Skrifter, 10, 73–82. [v]
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