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Preface

These notes started in the summer of 1993 when I was teaching Number Theory at the Center for Talented Youth Summer
Program at the Johns Hopkins University. The pupils were between 13 and 16 years of age.

The purpose of the course was to familiarise the pupils with contest-type problem solving. Thus the majority of the prob-
lems are taken from well-known competitions:

AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination
USAMO United States Mathematical Olympiad
IMO International Mathematical Olympiad
ITT International Tournament of Towns
MMPC Michigan Mathematics Prize Competition
(UM)2 University of Michigan Mathematics Competition
STANFORD Stanford Mathematics Competition
MANDELBROT Mandelbrot Competition

Firstly, I would like to thank the pioneers in that course: Samuel Chong, Nikhil Garg, Matthew Harris, Ryan Hoegg, Masha
Sapper, Andrew Trister, Nathaniel Wise and Andrew Wong. I would also like to thank the victims of the summer 1994: Karen
Acquista, Howard Bernstein, Geoffrey Cook, Hobart Lee, Nathan Lutchansky, David Ripley, Eduardo Rozo, and Victor Yang.

I would like to thank Eric Friedman for helping me with the typing, and Carlos Murillo for proofreading the notes.

Due to time constraints, these notes are rather sketchy. Most of the motivation was done in the classroom, in the notes
I presented a rather terse account of the solutions. I hope some day to be able to give more coherence to these notes. No
theme requires the knowledge of Calculus here, but some of the solutions given use it here and there. The reader not knowing
Calculus can skip these problems. Since the material is geared to High School students (talented ones, though) I assume very
little mathematical knowledge beyond Algebra and Trigonometry. Here and there some of the problems might use certain
properties of the complex numbers.

A note on the topic selection. I tried to cover most Number Theory that is useful in contests. I also wrote notes (which I
have not transcribed) dealing with primitive roots, quadratic reciprocity, diophantine equations, and the geometry of numbers.
I shall finish writing them when laziness leaves my weary soul.

I would be very glad to hear any comments, and please forward me any corrections or remarks on the material herein.

David A. SANTOS
dsantos@ccp.edu
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Chapter 1
Preliminaries

1.1 Introduction
We can say that no history of mankind would ever be complete without a history of Mathematics. For ages numbers have
fascinated Man, who has been drawn to them either for their utility at solving practical problems (like those of measuring,
counting sheep, etc.) or as a fountain of solace.

Number Theory is one of the oldest and most beautiful branches of Mathematics. It abounds in problems that yet simple to
state, are very hard to solve. Some number-theoretic problems that are yet unsolved are:

1. (Goldbach’s Conjecture) Is every even integer greater than 2 the sum of distinct primes?

2. (Twin Prime Problem) Are there infinitely many primesp such thatp+2 is also a prime?

3. Are there infinitely many primes that are 1 more than the square of an integer?

4. Is there always a prime between two consecutive squares ofintegers?

In this chapter we cover some preliminary tools we need before embarking into the core of Number Theory.

1.2 Well-Ordering
The setN = {0,1,2,3,4, . . .} of natural numbers is endowed with two operations, additionand multiplication, that satisfy the
following properties for natural numbersa,b, andc:

1. Closure: a+b andabare also natural numbers.

2. Associative laws: (a+b)+c = a+(b+c) anda(bc) = (ab)c.

3. Distributive law: a(b+c) = ab+ac.

4. Additive Identity: 0+a = a+0 = a

5. Multiplicative Identity: 1a = a1 = a.

One further property of the natural numbers is the following.

1 Axiom (Well-Ordering Axiom) Every non-empty subsetS of the natural numbers has a least element.

As an example of the use of the Well-Ordering Axiom, let us prove that there is no integer between 0 and 1.

2 Example Prove that there is no integer in the interval]0;1[.

1



2 Chapter 1

Solution: Assume to the contrary that the setS of integers in]0;1[ is non-empty. Being a set of positive integers, it must
contain a least element, saym. Now, 0< m2 < m< 1, and som2 ∈ S . But this is saying thatS has a positive integerm2

which is smaller than its least positive integerm. This is a contradiction and soS = ∅.
We denote the set of all integers byZ, i.e.,

Z = {. . .−3,−2,−1,0,1,2,3, . . .}.

A rational number is a number which can be expressed as the ratio
a
b

of two integersa,b, whereb 6= 0. We denote the set of

rational numbers byQ. An irrational number is a number which cannot be expressed as the ratio of two integers. Let us give
an example of an irrational number.

3 Example Prove that
√

2 is irrational.

Solution: The proof is by contradiction. Suppose that
√

2 were rational, i.e., that
√

2 =
a
b

for some integersa,b. This implies

that the set
A = {n

√
2 : bothn andn

√
2 positive integers}

is nonempty since it containsa. By Well-OrderingA has a smallest element, sayj = k
√

2. As
√

2−1 > 0,

j(
√

2−1) = j
√

2−k
√

2 = ( j −k)
√

2

is a positive integer. Since 2< 2
√

2 implies 2−
√

2 <
√

2 and alsoj
√

2 = 2k, we see that

( j −k)
√

2 = k(2−
√

2) < k(
√

2) = j.

Thus( j −k)
√

2 is a positive integer inA which is smaller thanj. This contradicts the choice ofj as the smallest integer inA
and hence, finishes the proof.

4 Example Let a,b,c be integers such thata6 +2b6 = 4c6. Show thata = b = c = 0.

Solution: Clearly we can restrict ourselves to nonnegativenumbers. Choose a triplet of nonnegative integersa,b,c satisfying
this equation and with

max(a,b,c) > 0

as small as possible. Ifa6 + 2b6 = 4c6 thena must be even,a = 2a1. This leads to 32a6
1 + b6 = 2c6. Henceb = 2b1 and so

16a6
1 +32b6

1 = c6. This givesc = 2c1, and soa6
1 +2b6

1 = 4c6
1. But clearly max(a1,b1,c1) < max(a,b,c). This means that all of

these must be zero.

5 Example (IMO 1988) If a,b are positive integers such that
a2 +b2

1+ab
is an integer, then

a2 +b2

1+ab
is a perfect square.

Solution: Suppose that
a2 +b2

1+ab
= k is a counterexample of an integer which is not a perfect square, with max(a,b) as small as

possible. We may assume without loss of generality thata < b for if a = b then

0 < k =
2a2

a2 +1
< 2,

which forcesk = 1, a perfect square.
Now, a2 + b2 − k(ab+ 1) = 0 is a quadratic inb with sum of the rootska and product of the rootsa2 − k. Let b1,b be its

roots, sob1 +b = kaandb1b = a2 −k.
As a,k are positive integers, supposingb1 < 0 is incompatible witha2 + b2

1 = k(ab1 + 1). As k is not a perfect square,
supposingb1 = 0 is incompatible witha2 +02 = k(0·a+1). Also

b1 =
a2 −k

b
<

b2 −k
b

< b.
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Thus we have found another positive integerb1 for which
a2 +b2

1

1+ab1
= k and which is smaller than the smallest max(a,b). This

is a contradiction. It must be the case, then, thatk is a perfect square.

Practice

6 Problem Find all integer solutions ofa3 +2b3 = 4c3. 7 Problem Prove that the equalityx2+y2+z2 = 2xyzcan hold
for whole numbersx,y,z only whenx = y = z= 0.

1.3 Mathematical Induction
The Principle of Mathematical Induction is based on the following fairly intuitive observation. Suppose that we are to perform
a task that involves a certain number of steps. Suppose that these steps must be followed in strict numerical order. Finally,
suppose that we know how to perform then-th task provided we have accomplished then−1-th task. Thus if we are ever able
to start the job (that is, if we have a base case), then we should be able to finish it (because starting with the base case we goto
the next case, and then to the case following that, etc.).

Thus in the Principle of Mathematical Induction, we try to verify that some assertionP(n) concerning natural numbers is
true for some base casek0 (usuallyk0 = 1, but one of the examples below shows that we may take, sayk0 = 33.) Then we try
to settle whether information onP(n−1) leads to favourable information onP(n).

We will now derive the Principle of Mathematical Induction from the Well-Ordering Axiom.

8 Theorem (Principle of Mathematical Induction) If a setS of non-negative integers contains the integer 0, and also con-
tains the integern+1 whenever it contains the integern, thenS = N.

Proof: Assume this is not the case and so, by the Well-Ordering Principle there exists a least positive integer k
not inS . Observe that k> 0, since0∈ S and there is no positive integer smaller than0. As k−1 < k, we see that
k−1∈ S . But by assumption k−1+1 is also inS , since the successor of each element in the set is also in the
set. Hence k= k−1+1 is also in the set, a contradiction. ThusS = N. ❑

The following versions of the Principle of Mathematical Induction should now be obvious.

9 Corollary If a setA of positive integers contains the integermand also containsn+1 whenever it containsn, wheren > m,
thenA contains all the positive integers greater than or equal tom.

10 Corollary (Principle of Strong Mathematical Induction) If a setA of positive integers contains the integerm and also
containsn+1 whenever it containsm+1,m+2, . . . ,n, wheren > m, thenA contains all the positive integers greater than or
equal tom.

We shall now give some examples of the use of induction.

11 Example Prove that the expression
33n+3 −26n−27

is a multiple of 169 for all natural numbersn.

Solution: Forn = 1 we are asserting that 36 −53= 676= 169·4 is divisible by 169, which is evident. Assume the assertionis
true forn−1,n > 1, i.e., assume that

33n −26n−1 = 169N

for some integerN. Then

33n+3 −26n−27= 27·33n −26n−27= 27(33n −26n−1)+676n
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which reduces to

27·169N+169·4n,

which is divisible by 169. The assertion is thus establishedby induction.

12 Example Prove that

(1+
√

2)2n +(1−
√

2)2n

is an even integer and that

(1+
√

2)2n −(1−
√

2)2n = b
√

2

for some positive integer b, for all integersn≥ 1.

Solution: We proceed by induction onn. Let P(n) be the proposition: “(1+
√

2)2n +(1−
√

2)2n is even and(1+
√

2)2n −(1−√
2)2n = b

√
2 for someb∈ N.” If n = 1, then we see that

(1+
√

2)2 +(1−
√

2)2 = 6,

an even integer, and

(1+
√

2)2 −(1−
√

2)2 = 4
√

2.

ThereforeP(1) is true. Assume thatP(n−1) is true forn > 1, i.e., assume that

(1+
√

2)2(n−1) +(1−
√

2)2(n−1) = 2N

for some integerN and that

(1+
√

2)2(n−1) −(1−
√

2)2(n−1) = a
√

2

for some positive integera.

Consider now the quantity

(1+
√

2)2n +(1−
√

2)2n = (1+
√

2)2(1+
√

2)2n−2 +(1−
√

2)2(1−
√

2)2n−2.

This simplifies to

(3+2
√

2)(1+
√

2)2n−2 +(3−2
√

2)(1−
√

2)2n−2.

UsingP(n−1), the above simplifies to

12N+2
√

2a
√

2 = 2(6N+2a),

an even integer and similarly

(1+
√

2)2n −(1−
√

2)2n = 3a
√

2+2
√

2(2N) = (3a+4N)
√

2,

and soP(n) is true. The assertion is thus established by induction.

13 Example Prove that ifk is odd, then 2n+2 divides

k2n
−1

for all natural numbersn.

Solution: The statement is evident forn = 1, ask2 −1 = (k−1)(k+1) is divisible by 8 for any odd natural numberk because
both (k− 1) and(k+ 1) are divisible by 2 and one of them is divisible by 4. Assume that 2n+2|k2n

− 1, and let us prove that

2n+3|k2n+1
− 1. As k2n+1

− 1 = (k2n
− 1)(k2n

+ 1), we see that 2n+2 divides(k2n − 1), so the problem reduces to proving that
2|(k2n +1). This is obviously true sincek2n odd makesk2n +1 even.
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14 Example (USAMO 1978) An integern will be calledgoodif we can write

n = a1 +a2 + · · ·+ak,

wherea1,a2, . . . ,ak are positive integers (not necessarily distinct) satisfying

1
a1

+
1
a2

+ · · ·+ 1
ak

= 1.

Given the information that the integers 33 through 73 are good, prove that every integer≥ 33 is good.

Solution: We first prove that ifn is good, then 2n+8 and 2n+9 are good. For assume thatn = a1 +a2 + · · ·+ak, and

1 =
1
a1

+
1
a2

+ · · ·+ 1
ak

.

Then 2n+8 = 2a1 +2a2 + · · ·+2ak +4+4 and

1
2a1

+
1

2a2
+ · · ·+ 1

2ak
+

1
4

+
1
4

=
1
2

+
1
4

+
1
4

= 1.

Also, 2n+9 = 2a1 +2a2 + · · ·+2ak +3+6 and

1
2a1

+
1

2a2
+ · · ·+ 1

2ak
+

1
3

+
1
6

=
1
2

+
1
3

+
1
6

= 1.

Therefore,
if n is good both 2n+8 and 2n+9 are good. (1.1)

We now establish the truth of the assertion of the problem by induction onn. Let P(n) be the proposition “all the integers
n,n+1,n+2, . . . ,2n+7” are good. By the statement of the problem, we see thatP(33) is true. But (1.1) implies the truth of
P(n+1) wheneverP(n) is true. The assertion is thus proved by induction.

We now present a variant of the Principle of Mathematical Induction used by Cauchy to prove the Arithmetic-Mean-
Geometric Mean Inequality. It consists in proving a statement first for powers of 2 and then interpolating between powersof
2.

15 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Let a1,a2, . . . ,an be nonnegative real numbers. Then

n
√

a1a2 · · ·an ≤
a1 +a2 + · · ·+an

n
.

Proof: Since the square of any real number is nonnegative, we have

(
√

x1 −
√

x2)
2 ≥ 0.

Upon expanding,
x1 +x2

2
≥√

x1x2, (1.2)

which is the Arithmetic-Mean-Geometric-Mean Inequality for n= 2. Assume that the Arithmetic-Mean-Geometric-
Mean Inequality holds true for n= 2k−1,k > 2, that is, assume that nonnegative real numbers w1,w2, . . . ,w2k−1

satisfy
w1 +w2 + · · ·+w2k−1

2k−1 ≥ (w1w2 · · ·w2k−1)
1/2k−1

. (1.3)

Using (1.2) with

x1 =
y1 +y2 + · · ·+y2k−1

2k−1

and

x2 =
y2k−1+1 + · · ·+y2k

2k−1 ,
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we obtain that

y1 +y2 + · · ·+y2k−1

2k−1 +
y2k−1+1 + · · ·+y2k

2k−1

2
≥

�
(
y1 +y2 + · · ·+y2k−1

2k−1 )(
y2k−1+1 + · · ·+y2k

2k−1 )

�1/2

.

Applying (1.3) to both factors on the right hand side of the above , we obtain

y1 +y2 + · · ·+y2k

2k ≥ (y1y2 · · ·y2k)
1/2k

. (1.4)

This means that the2k−1-th step implies the2k-th step, and so we have proved the Arithmetic-Mean-Geometric-
Mean Inequality for powers of 2.

Now, assume that2k−1 < n < 2k. Let
y1 = a1,y2 = a2, . . . ,yn = an,

and

yn+1 = yn+2 = · · · = y2k =
a1 +a2 + · · ·+an

n
.

Let

A =
a1 + · · ·+an

n
andG = (a1 · · ·an)

1/n.

Using (1.4) we obtain

a1 +a2 + · · ·+an +(2k −n)
a1 + · · ·+an

n
2k ≥ �

a1a2 · · ·an(
a1 + · · ·+an

n
)(2k−n)

�1/2k

,

which is to say that
nA+(2k −n)A

2k ≥ (GnA2k−n)1/2k
.

This translates into A≥ G or

(a1a2 · · ·an)
1/n ≤ a1 +a2 + · · ·+an

n
,

which is what we wanted.❑

16 Example Let sbe a positive integer. Prove that every interval[s;2s] contains a power of 2.

Solution: If s is a power of 2, then there is nothing to prove. Ifs is not a power of 2 then it must lie between two consecutive
powers of 2, i.e., there is an integerr for which 2r < s< 2r+1. This yields 2r+1 < 2s. Hences< 2r+1 < 2s, which gives the
required result.

17 Example Let M be a nonempty set of positive integers such that 4x and[
√

x] both belong toM wheneverx does. Prove
thatM is the set of all natural numbers.

Solution: We will prove this by induction. First we will prove that 1 belongs to the set, secondly we will prove that every power
of 2 is in the set and finally we will prove that non-powers of 2 are also in the set.

SinceM is a nonempty set of positive integers, it has a least element, saya. By assumptionT
√

aU also belongs toM , but√
a < a unlessa = 1. This means that 1 belongs toM .

Since 1 belongs toM so does 4, since 4 belongs toM so does 4·4 = 42, etc.. In this way we obtain that all numbers of
the form 4n = 22n,n = 1,2, . . . belong toM . Thus all the powers of 2 raised to an even power belong toM . Since the square
roots belong as well toM we get that all the powers of 2 raised to an odd power also belong to M . In conclusion, all powers
of 2 belong toM .
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Assume now thatn ∈ N fails to belong toM . Observe thatn cannot be a power of 2. Sincen 6∈ M we deduce that
no integer inA1 = [n2,(n+ 1)2) belongs toM , because every member ofy ∈ A1 satisfies[

√
y] = n. Similarly no member

z∈ A2 = [n4,(n+1)4) belongs toM since this would entail thatz would belong toA1, a contradiction. By induction we can
show that no member in the intervalAr = [n2r

,(n+1)2r
) belongs toM .

We will now show that eventually these intervals are so largethat they contain a power of 2, thereby obtaining a contradiction
to the hypothesis that no element of theAr belonged toM . The function

f :
R∗

+ → R

x 7→ log2x

is increasing and hence log2(n+1)− log2n > 0. Since the function

f :
R → R∗

+

x 7→ 2−x

is decreasing, for a sufficiently large positive integerk we have

2−k < log2(n+1)− log2n.

This implies that

(n+1)2k
> 2n2k

.

Thus the interval[n2k
,2n2k

] is totally contained in[n2k
,(n+ 1)2k

). But every interval of the form[s,2s] wheres is a positive
integer contains a power of 2. We have thus obtained the desired contradiction.

Practice

18 Problem Prove that 11n+2+122n+1 is divisible by 133 for
all natural numbersn.

19 Problem Prove that

1−
x
1!

+
x(x−1)

2!
−

x(x−1)(x−2)

3!

+ · · ·+(−1)n x(x−1)(x−2) · · ·(x−n+1)

n!

equals

(−1)n (x−1)(x−2) · · ·(x−n)

n!

for all non-negative integersn.

20 Problem Let n∈ N. Prove the inequality

1
n+1

+
1

n+2
+ · · ·+ 1

3n+1
> 1.

21 Problem Prove thatq
2+

È
2+ · · ·+

√
2| {z }

n radical signs

= 2cos
π

2n+1

for n∈ N.

22 Problem Let a1 = 3,b1 = 4, and an = 3an−1,bn = 4bn−1

whenn > 1. Prove thata1000> b999.

23 Problem Let n∈ N,n > 1. Prove that

1·3·5· · ·(2n−1)

2·4·6· · ·(2n)
<

1√
3n+1

.

24 Problem Prove that if n is a natural number, then

1·2+2·5+ · · ·+n· (3n−1) = n2(n+1).

25 Problem Prove that if n is a natural number, then

12 +32 +52 + · · ·+(2n−1)2 =
n(4n2 −1)

3
.

26 Problem Prove that

4n

n+1
<

(2n)!

(n!)2

for all natural numbersn > 1.

27 Problem Prove that the sum of the cubes of three consec-
utive positive integers is divisible by 9.
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28 Problem If |x| 6= 1,n∈ N prove that

1
1+x

+
2

1+x2 +
4

1+x2 +
8

1+x8 + · · ·+ 2n

1+x2n

equals
1

x−1
+

2n+1

1−x2n+1 .

29 Problem Is it true that for every natural number n the
quantityn2 +n+41 is a prime? Prove or disprove!

30 Problem Give an example of an assertion which isnot true
for any positive integer, yet for which the induction step holds.

31 Problem Give an example of an assertion which is true for
the first two million positive integers but fails for every integer
greater than 2000000.

32 Problem Prove by induction onn that a set having n ele-
ments has exactly 2n subsets.

33 Problem Prove that ifn is a natural number,

n5/5+n4/2+n3/3−n/30

is always an integer.

34 Problem (Halmos) ) Every man in a village knows in-
stantly when another’s wife is unfaithful, but never when his
own is. Each man is completely intelligent and knows that ev-
ery other man is. The law of the village demands that when
a man can PROVE that his wife has been unfaithful, he must
shoot her before sundown the same day. Every man is com-
pletely law-abiding. One day the mayor announces that there
is at least one unfaithful wife in the village. The mayor always
tells the truth, and every man believes him. If in fact there
are exactly forty unfaithful wives in the village (but that fact
is not known to the men,) what will happen after the mayor’s
announcement?

35 Problem 1. Let a1,a2, . . .an be positive real numbers
with

a1 ·a2 · · ·an = 1.

Use induction to prove that

a1 +a2 + · · ·+an ≥ n,

with equality if and only ifa1 = a2 = · · · = an = 1.

2. Use the preceding part to give another proof of the
Arithmetic-Mean-Geometric-Mean Inequality.

3. Prove that ifn > 1, then

1·3·5· · ·(2n−1) < nn.

4. Prove that ifn > 1 then

n
�
(n+1)1/n −1

�
< 1+

1
2

+ · · ·+ 1
n
.

5. Prove that ifn > 1 then

1+
1
2

+ · · ·+ 1
n

< n

�
1−

1

(n+1)1/n
+

1
n+1

�
.

6. Given that u, v, w are positive, 0< a ≤ 1, and that
u+v+w = 1, prove that�

1
u

−a
��

1
v

−a
��

1
w

−a
�
≥ 27−27a+9a2 −a3.

7. Let y1,y2, . . . ,yn be positive real numbers. Prove the
Harmonic-Mean- Geometric-Mean Inequality:

n
1
y1

+
1
y2

+ · · ·+ 1
yn

≤ n
√

y1y2 · · ·yn.

8. Leta1, . . . ,an be positive real numbers, all different. Set
s= a1 +a2 + · · ·+an.

(a) Prove that

(n−1)
X

1≤r≤n

1
s−ar

<
X

1≤r≤n

1
ar

.

(b) Deduce that

4n
s

< s
X

1≤r≤n

1
ar(s−ar)

<
n

n−1

X
1≤r≤n

1
ar

.

36 Problem Suppose thatx1,x2, . . . ,xn are nonnegative real
numbers with

x1 +x2 + · · ·+xn ≤ 1/2.

Prove that

(1−x1)(1−x2) · · ·(1−xn) ≥ 1/2.

37 Problem Given a positive integern prove that there is a
polynomialTn such that cosnx= Tn(cosx) for all real numbers
x. Tn is called then-th Tchebychev Polynomial.

38 Problem Prove that

1
n+1

+
1

n+2
+ · · ·+ 1

2n
>

13
24

for all natural numbersn > 1.
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39 Problem In how many regions will a sphere be divided
by n planes passing through its centre if no three planes pass
through one and the same diameter?

40 Problem (IMO 1977) Let f , f : N 7→ N be a function satis-
fying

f (n+1) > f ( f (n))

for each positive integern. Prove thatf (n) = n for each n.

41 Problem Let F0(x) = x,F(x) = 4x(1 − x),Fn+1(x) =

F(Fn(x)),n = 0,1, . . . . Prove thatZ 1

0
Fn(x)dx=

22n−1

22n −1
.

(Hint: Let x = sin2θ.)

1.4 Fibonacci Numbers
TheFibonacci numbers fn are given by the recurrence

f0 = 0, f1 = 1, fn+1 = fn−1 + fn, n≥ 1. (1.5)

Thus the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . . A number of interesting algebraic identities can be
proved using the above recursion.

42 Example Prove that
f1 + f2 + · · ·+ fn = fn+2 −1.

Solution: We have
f1 = f3 − f2
f2 = f4 − f3
f3 = f5 − f4
...

...
fn = fn+2 − fn+1

Summing both columns,
f1 + f2 + · · ·+ fn = fn+2 − f2 = fn+2 −1,

as desired.

43 Example Prove that
f1 + f3 + f5 + · · ·+ f2n−1 = f2n.

Solution: Observe that
f1 = f2 − f0
f3 = f4 − f2
f5 = f6 − f4
...

...
...

f2n−1 = f2n − f2n−2

Adding columnwise we obtain the desired identity.

44 Example Prove that
f 2
1 + f 2

2 + · · ·+ f 2
n = fn fn+1.

Solution: We have
fn−1 fn+1 = ( fn+1 − fn)( fn + fn−1) = fn+1 fn − f 2

n + fn+1 fn−1 − fn fn−1.

Thus
fn+1 fn − fn fn−1 = f 2

n ,



10 Chapter 1

which yields
f 2
1 + f 2

2 + · · ·+ f 2
n = fn fn+1.

45 Theorem (Cassini’s Identity)
fn−1 fn+1 − f 2

n = (−1)n, n≥ 1.

Proof: Observe that
fn−1 fn+1 − f 2

n = ( fn − fn−2)( fn + fn−1)− f 2
n

= − fn−2 fn − fn−1( fn−2 − fn)
= −( fn−2 fn − f 2

n−1)

Thus if vn = fn−1 fn+1 − f 2
n , we have vn = −vn−1. This yields vn = (−1)n−1v1 which is to say

fn−1 fn+1 − f 2
n = (−1)n−1( f0 f2 − f 2

1 ) = (−1)n.

❑

46 Example (IMO 1981) Determine the maximum value of

m2 +n2,

wherem,n are positive integers satisfyingm,n∈ {1,2,3, . . . ,1981} and

(n2 −mn−m2)2 = 1.

Solution: Call a pair(n,m) admissibleif m,n∈ {1,2, . . . ,1981} and(n2 −mn−m2)2 = 1.
If m= 1, then(1,1) and(2,1) are the only admissible pairs. Suppose now that the pair(n1,n2) is admissible, withn2 > 1.

As n1(n1 −n2) = n2
2±1 > 0, we must haven1 > n2.

Let nown3 = n1 − n2. Then 1= (n2
1 − n1n2 − n2

2)
2 = (n2

2 − n2n3 − n2
3)

2, making(n2,n3) also admissible. Ifn3 > 1, in the
same way we conclude thatn2 > n3 and we can letn4 = n2 − n3 making(n3,n4) an admissible pair. We have a sequence of
positive integersn1 > n2 > .. ., which must necessarily terminate. This terminates whennk = 1 for somek. Since(nk−1,1)

is admissible, we must havenk−1 = 2. The sequence goes thus 1,2,3,5,8, . . . ,987,1597, i.e., a truncated Fibonacci sequence.
The largest admissible pair is thus (1597, 987) and so the maximum sought is 15972 +9872.

Let τ =
1+

√
5

2
be the Golden Ratio. Observe thatτ−1 =

√
5−1
2

. The numberτ is a root of the quadratic equation

x2 = x+1. We now obtain a closed formula forfn. We need the following lemma.

47 Lemma If x2 = x+1,n≥ 2 then we havexn = fnx+ fn−1.

Proof: We prove this by induction on n. For n = 2 the assertion is a triviality. Assume that n> 2 and that
xn−1 = fn−1x+ fn−2. Then

xn = xn−1 ·x
= ( fn−1x+ fn−2)x
= fn−1(x+1)+ fn−2x
= ( fn−1 + fn−2)x+ fn−1

= fnx+ fn−1

❑

48 Theorem (Binet’s Formula) The n-th Fibonacci number is given by

fn =
1√
5

��
1+

√
5

2

�n

−

�
1−

√
5

2

�n�
n = 0,2, . . . .
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Proof: The roots of the equation x2 = x+1 are τ =
1+

√
5

2
and1− τ =

1−
√

5
2

. In virtue of the above lemma,

τ n = τ fn + fn−1

and
(1− τ )n = (1− τ ) fn + fn−1.

Subtracting
τ n −(1− τ )n =

√
5 fn,

from where Binet’s Formula follows.❑

49 Example (Cesàro) Prove that
nX

k=0

�
n
k

�
2k fk = f3n.

Solution: Using Binet’s Formula,

nX
k=0

�
n
k

�
2k fk =

nX
k=0

�
n
k

�
2k τ k −(1− τ )k

√
5

=
1√
5

 
nX

k=0

�
n
k

�
τ k −

nX
k=0

�
n
k

�
2k(1− τ )k

!
=

1√
5

((1+2τ )n −(1+2(1− τ ))n) .

As τ 2 = τ +1,1+2τ = τ 3. Similarly 1+2(1− τ ) = (1− τ )3. Thus

nX
k=0

�
n
k

�
2k fk =

1√
5

�
(τ )3n +(1− τ )3n

�
= f3n,

as wanted.

The following theorem will be used later.

50 Theorem If s≥ 1, t ≥ 0 are integers then
fs+t = fs−1 ft + fs ft+1.

Proof: We keep t fixed and prove this by using strong induction on s. For s = 1 we are asking whether

ft+1 = f0 ft + f1 ft+1,

which is trivially true. Assume that s> 1 and that fs−k+t = fs−k−1 ft + fs−k ft+1 for all k satisfying1≤ k≤ s−1.
We have

fs+t = fs+t−1 + fs+t−2 by the Fibonacci recursion,
= fs−1+t + fs−2+t trivially ,
= fs−2 ft + fs−1 ft+1 + fs−3 ft + fs−2 ft+1 by the inductive assumption
= ft( fs−2 + fs−3)+ ft+1( fs−1 + fs−2) rearranging,
= ft fs−1 + ft+1 fs by the Fibonacci recursion.

This finishes the proof.❑

Practice
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51 Problem Prove that

fn+1 fn − fn−1 fn−2 = f2n−1, n > 2.

52 Problem Prove that

f 2
n+1 = 4 fn fn−1 + f 2

n−2, n > 1.

53 Problem Prove that

f1 f2 + f2 f3 + · · ·+ f2n−1 f2n = f 2
2n.

54 Problem Let N be a natural number. Prove that the largest
n such thatfn ≤ N is given by

n = T
log
�

N+
1
2

�√
5

log

�
1+

√
5

2

� U.

55 Problem Prove thatf 2
n + f 2

n−1 = f2n+1.

56 Problem Prove that ifn > 1,

f 2
n − fn+l fn−l = (−1)n+l f 2

l .

57 Problem Prove that
nX

k=1

f2k =

nX
k=0

(n−k) f2k+1.

58 Problem Prove that
∞X

n=2

1
fn−1 fn+1

= 1.

Hint: What is
1

fn−1 fn
−

1
fn fn+1

?

59 Problem Prove that
∞X

n=1

fn
fn+1 fn+2

= 1.

60 Problem Prove that
∞X

n=0

1/ f2n = 4− τ .

61 Problem Prove that

∞X
n=1

arctan
1

f2n+1
= π/4.

62 Problem Prove that

lim
n→∞

fn
τ n =

1√
5
.

63 Problem Prove that

lim
n→∞

fn+r

fn
= τ r .

64 Problem Prove that

nX
k=0

1
f2k

= 2+
f2n−2

f2n
.

Deduce that
∞X

k=0

1
f2k

=
7−

√
5

2
.

65 Problem (Cesàro) Prove that

nX
k=0

�
n
k

�
fk = f2n.

66 Problem Prove that

∞X
n=1

fn
10n

is a rational number.

67 Problem Find the exact value of

1994X
k=1

(−1)k
�

1995
k

�
fk.

68 Problem Prove the converse of Cassini’s Identity: Ifk and
m are integers such that|m2 − km− k2| = 1, then there is an
integern such thatk = ± fn,m= ± fn+1.
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1.5 Pigeonhole Principle
The Pigeonhole Principle states that ifn+1 pigeons fly ton holes, there must be a pigeonhole containing at least two pigeons.
This apparently trivial principle is very powerful. Let us see some examples.

69 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmetic progression 1,4, . . . ,100. Prove
that there must be two distinct integers inA whose sum is 104.

Solution: We partition the thirty four elements of this progression into nineteen groups{1},{52}, {4,100} , {7,97}, {10,94},
. . .{49,55}. Since we are choosing twenty integers and we have nineteen sets, by the Pigeonhole Principle there must be two
integers that belong to one of the pairs, which add to 104.

70 Example Show that amongst any seven distinct positive integers not exceeding 126, one can find two of them, saya andb,
which satisfy

b < a≤ 2b.

Solution: Split the numbers{1,2,3, . . . ,126} into the six sets

{1,2},{3,4,5,6},{7,8, . . . ,13,14},{15,16, . . . ,29,30},

{31,32, . . . ,61,62} and{63,64, . . . ,126}.
By the Pigeonhole Principle, two of the seven numbers must lie in one of the six sets, and obviously, any such two will satisfy
the stated inequality.

71 Example Given any set of ten natural numbers between 1 and 99 inclusive, prove that there are two disjoint nonempty
subsets of the set with equal sums of their elements.

Solution: There are 210−1 = 1023 non-empty subsets that one can form with a given 10-element set. To each of these subsets
we associate the sum of its elements. The maximum value that any such sum can achieve is 90+91+ · · ·+99= 945< 1023.
Therefore, there must be at least two different subsets thathave the same sum.

72 Example No matter which fifty five integers may be selected from

{1,2, . . . ,100},

prove that one must select some two that differ by 10.

Solution: First observe that if we choosen+1 integers from any string of 2n consecutive integers, there will always be some
two that differ byn. This is because we can pair the 2n consecutive integers

{a+1,a+2,a+3, . . . ,a+2n}

into then pairs
{a+1,a+n+1},{a+2,a+n+2}, . . . ,{a+n,a+2n},

and ifn+1 integers are chosen from this, there must be two that belongto the same group.
So now group the one hundred integers as follows:

{1,2, . . .20},{21,22, . . . ,40},

{41,42, . . . ,60}, {61,62, . . . ,80}
and

{81,82, . . . ,100}.
If we select fifty five integers, we must perforce choose eleven from some group. From that group, by the above observation
(let n = 10), there must be two that differ by 10.
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73 Example (AHSME 1994) Label one disc “1”, two discs “2”, three discs “3”, . . . , fifty discs‘‘50”. Put these 1+2+3+ · · ·+
50= 1275 labeled discs in a box. Discs are then drawn from the box at random without replacement. What is the minimum
number of discs that must me drawn in order to guarantee drawing at least ten discs with the same label?

Solution: If we draw all the 1+2+ · · ·+9 = 45 labelled “1”, . . . , “9” and any nine from each of the discs “10”, . . . , “50”, we
have drawn 45+9·41= 414 discs. The 415-th disc drawn will assure at least ten discs from a label.

74 Example (IMO 1964) Seventeen people correspond by mail with one another—each one with all the rest. In their letters
only three different topics are discussed. Each pair of correspondents deals with only one of these topics. Prove that there at
least three people who write to each other about the same topic.

Solution: Choose a particular person of the group, say Charlie. He corresponds with sixteen others. By the Pigeonhole Principle,
Charlie must write to at least six of the people of one topic, say topic I. If any pair of these six people corresponds on topic I,
then Charlie and this pair do the trick, and we are done. Otherwise, these six correspond amongst themselves only on topics
II or III. Choose a particular person from this group of six, say Eric. By the Pigeonhole Principle, there must be three of the
five remaining that correspond with Eric in one of the topics,say topic II. If amongst these three there is a pair that corresponds
with each other on topic II, then Eric and this pair correspond on topic II, and we are done. Otherwise, these three people only
correspond with one another on topic III, and we are done again.

75 Example Given any seven distinct real numbersx1, . . .x7, prove that we can always find two, saya,b with

0 <
a−b
1+ab

<
1√
3
.

Solution: Putxk = tanak for ak satisfying−
π
2

< ak <
π
2

. Divide the interval(−
π
2

,
π
2

) into six non-overlapping subintervals of

equal length. By the Pigeonhole Principle, two of seven points will lie on the same interval, sayai < a j . Then 0< a j −ai <
π
6

.

Since the tangent increases in(−π/2,π/2), we obtain

0 < tan(a j −ai) =
tana j − tanai

1+ tana j tanai
< tan

π
6

=
1√
3
,

as desired.

76 Example (Canadian Math Olympiad 1981) Let a1,a2, . . . ,a7 be nonnegative real numbers with

a1 +a2 + . . .+a7 = 1.

If
M = max

1≤k≤5
ak +ak+1 +ak+2,

determine the minimum possible value thatM can take as theak vary.

Solution: Sincea1 ≤ a1 +a2 ≤ a1 +a2 +a3 anda7 ≤ a6 +a7 ≤ a5 +a6 +a7 we see thatM also equals

max
1≤k≤5

{a1,a7,a1 +a2,a6 +a7,ak +ak+1 +ak+2}.

We are thus taking the maximum over nine quantities that sum 3(a1 + a2 + · · ·+ a7) = 3. These nine quantities then average
3/9 = 1/3. By the Pigeonhole Principle, one of these is≥ 1/3, i.e. M ≥ 1/3. If a1 = a1 +a2 = a1 +a2 +a3 = a2 +a3 +a4 =

a3+a4+a5 = a4+a5+a6 = a5+a6+a7 = a7 = 1/3, we obtain the 7-tuple(a1,a2,a3,a4,a5,a6,a7) = (1/3,0,0,1/3,0,0,1/3),
which shows thatM = 1/3.

Practice
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77 Problem (AHSME 1991) A circular table has exactly sixty
chairs around it. There areN people seated at this table in such
a way that the next person to be seated must sit next to some-
one. What is the smallest possible value ofN?

Answer: 20.

78 Problem Show that if any five points are all in, or on, a
square of side 1, then some pair of them will be at most at
distance

√
2/2.

79 Problem (Eötvös, 1947) Prove that amongst six people in
a room there are at least three who know one another, or at least
three who do not know one another.

80 Problem Show that in any sum of non-negative real num-
bers there is always one number which is at least the average
of the numbers and that there is always one member that it is
at most the average of the numbers.

81 Problem We call a set “sum free” if no two elements of the
set add up to a third element of the set. What is the maximum
size of a sum free subset of{1,2, . . . ,2n−1}.

Hint: Observe that the set{n+1,n+2, . . . ,2n−1} of n+1 el-
ements is sum free. Show that any subset withn+2 elements
is not sum free.

82 Problem (MMPC 1992) Suppose that the letters of the En-
glish alphabet are listed in an arbitrary order.

1. Prove that there must be four consecutive consonants.

2. Give a list to show that there need not be five consecu-
tive consonants.

3. Suppose that all the letters are arranged in a circle. Prove
that there must be five consecutive consonants.

83 Problem (Stanford 1953) Bob has ten pockets and forty
four silver dollars. He wants to put his dollars into his pockets
so distributed that each pocket contains a different numberof
dollars.

1. Can he do so?

2. Generalise the problem, consideringp pockets andn
dollars. The problem is most interesting when

n =
(p−1)(p−2)

2
.

Why?

84 Problem No matter which fifty five integers may be se-
lected from

{1,2, . . . ,100},

prove that you must select some two that differ by 9, some two
that differ by 10, some two that differ by 12, and some two that
differ by 13, but that you need not have any two that differ by
11.

85 Problem Let mn+ 1 different real numbers be given.
Prove that there is either an increasing sequence with at least
n+ 1 members, or a decreasing sequence with at leastm+ 1
members.

86 Problem If the points of the plane are coloured with three
colours, show that there will always exist two points of the
same colour which are one unit apart.

87 Problem Show that if the points of the plane are coloured
with two colours, there will always exist an equilateral trian-
gle with all its vertices of the same colour. There is, however, a
colouring of the points of the plane with two colours for which
no equilateral triangle of side 1 has all its vertices of the same
colour.

88 Problem Let r1, r2, . . . , rn,n > 1 be real numbers of abso-
lute value not exceeding 1 and whose sum is 0. Show that there
is a non-empty proper subset whose sum is not more than 2/n
in size. Give an example in which any subsum has absolute

value at least
1

n−1
.

89 Problem Let r1, r2, . . . , rn be real numbers in the interval
[0,1]. Show that there are numbersεk,1≤ k≤ n,εk = −1,0,1
not all zero, such that����� nX

k=1

εkrk

�����≤ n
2n .

90 Problem (USAMO, 1979) Nine mathematicians meet at
an international conference and discover that amongst any
three of them, at least two speak a common language. If
each of the mathematicians can speak at most three languages,
prove that there are at least three of the mathematicians who
can speak the same language.

91 Problem (USAMO, 1982) In a party with 1982 persons,
amongst any group of four there is at least one person who
knows each of the other three. What is the minimum number
of people in the party who know everyone else?



16 Chapter 1

92 Problem (USAMO, 1985) There are n people at a party.
Prove that there are two people such that, of the remaining
n− 2 people, there are at leastTn/2U − 1 of them, each of
whom knows both or else knows neither of the two. Assume
that “knowing” is a symmetrical relationship.

93 Problem (USAMO, 1986) During a certain lecture, each
of five mathematicians fell asleep exactly twice. For each pair
of these mathematicians, there was some moment when both
were sleeping simultaneously. Prove that, at some moment,

some three were sleeping simultaneously.

94 Problem Let Pn be a set ofTen!U+1 points on the plane.
Any two distinct points ofPn are joined by a straight line seg-
ment which is then coloured in one ofn given colours. Show
that at least one monochromatic triangle is formed.

(Hint: e=

∞X
n=0

1/n!.)
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Divisibility

2.1 Divisibility
95 Definition If a 6= 0,b are integers, we say that adividesb if there is an integerc such thatac= b. We write this asa|b.

If a does not divideb we writea 6 |b. The following properties should be immediate to the reader.

96 Theorem 1. If a,b,c,m,n are integers withc|a,c|b, thenc|(am+nb).

2. If x,y,z are integers withx|y,y|z thenx|z.

Proof: There are integers s, t with sc= a, tc = b. Thus

am+nb= c(sm+ tn),

giving c|(am+bn).

Also, there are integers u,v with xu= y,yv= z. Hence xuv= z, giving x|z.

It should be clear that if a|b and b6= 0 then1≤ |a| ≤ |b|.❑

97 Example Find all positive integersn for which
n+1|n2 +1.

Solution: n2 +1 = n2 −1+2 = (n−1)(n+1)+2. This forcesn+1|2 and son+1 = 1 or n+1 = 2. The choicen+1 = 1 is
out sincen≥ 1, so that the only suchn is n = 1.

98 Example If 7|3x+2 prove that 7|(15x2 −11x−14.).

Solution: Observe that 15x2 −11x−14= (3x+2)(5x−7). We have 7s= 3x+2 for some integersand so

15x2 −11x−14= 7s(5x−7),

giving the result.

Among every two consecutive integers there is an even one, among every three consecutive integers there is one divisible
by 3, etc.The following theorem goes further.

99 Theorem The product ofn consecutive integers is divisible byn!.

17
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Proof: Assume first that all the consecutive integers m+1,m+2, . . . ,m+n are positive. If this is so, the divisibility
by n! follows from the fact that binomial coefficients are integers:�

m+n
n

�
=

(m+n)!

n!m!
=

(m+n)(m+n−1) · · ·(m+1)

n!
.

If one of the consecutive integers is 0, then the product of them is 0, and so there is nothing to prove. If all the n
consecutive integers are negative, we multiply by(−1)n, and see that the corresponding product is positive, and so
we apply the first result.❑

100 Example Prove that 6|n3 −n, for all integersn.

Solution:n3 −n = (n−1)n(n+1) is the product of 3 consecutive integers and hence is divisible by 3! = 6.

101 Example (Putnam 1966) Let 0< a1 < a2 < .. . < amn+1 bemn+1 integers. Prove that you can find eitherm+1 of them
no one of which divides any other, orn+1 of them, each dividing the following.

Solution: Let, for each 1≤ k≤mn+1,nk denote the length of the longest chain, starting withak and each dividing the following
one, that can be selected fromak,ak+1, . . . ,amn+1. If no nk is greater thann, then the are at leastm+1 nk’s that are the same.
However, the integersak corresponding to thesenk’s cannot divide each other, becauseak|al implies thatnk ≥ nl +1.

102 Theorem If k|n then fk| fn.

Proof: Letting s= kn, t = n in the identity fs+t = fs−1 ft + fs ft+1 we obtain

f(k+1)n = fkn+n = fn−1 fkn+ fn fkn+1.

It is clear that if fn| fkn then fn| f(k+1)n. Since fn| fn·1, the assertion follows.❑

Practice

103 Problem Given that 5|(n+2), which of the following are
divisible by 5

n2 −4, n2 +8n+7, n4 −1,n2 −2n?

104 Problem Prove thatn5 − 5n3 + 4n is always divisible by
120.

105 Problem Prove that

(2m)!(3n)!

(m!)2(n!)3

is always an integer.

106 Problem Demonstrate that for all integer valuesn,

n9 −6n7 +9n5 −4n3

is divisible by 8640.

107 Problem Prove that ifn > 4 is composite, thenn divides
(n−1)!.
(Hint: Consider, separately, the cases whenn is and is not a
perfect square.)

108 Problem Prove that there is no prime triplet of the form
p, p+2, p+4, except for 3,5,7.

109 Problem Prove that forn ∈ N, (n!)! is divisible by
n!(n−1)!

110 Problem (AIME 1986) What is the largest positive inte-
gern for which

(n+10)|(n3 +100)?

(Hint: x3 +y3 = (x+y)(x2 −xy+y2).)

111 Problem (Olimpíada matemática española, 1985) If n
is a positive integer, prove that(n+1)(n+2) · · ·(2n) is divisi-
ble by 2n.
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2.2 Division Algorithm
112 Theorem (Division Algorithm) If a,b are positive integers, then there are unique integersq, r such thata = bq+ r,0 ≤
r < b.

Proof: We use the Well-Ordering Principle. Consider the setS = {a− bk : k ∈ Z and a≥ bk}. ThenS is a
collection of nonnegative integers andS 6= ∅ as a− b ·0 ∈ S . By the Well-Ordering Principle,S has a least
element, say r. Now, there must be some q∈ Z such that r= a− bq since r∈ S . By construction, r≥ 0. Let us
prove that r< b. For assume that r≥ b. Then r> r −b = a−bq−b = a−(q+1)b≥ 0, since r−b≥ 0. But then
a−(q+1)b∈S and a−(q+1)b< r which contradicts the fact that r is the smallest member ofS . Thus we must
have0≤ r < b. To show that r and q are unique, assume that bq1 + r1 = a = bq2 + r2,0≤ r1 < b,0≤ r2 < b. Then
r2 − r1 = b(q1 −q2), that is b|(r2 − r1). But |r2 − r1| < b, whence r2 = r1. From this it also follows that q1 = q2.
This completes the proof.❑

It is quite plain thatq = Ta/bU, whereTa/bU denotes the integral part ofa/b.
It is important to realise that given an integern > 0, the Division Algorithm makes a partition of all the integers according

to their remainder upon division byn. For example, every integer lies in one of the families 3k,3k+1 or 3k+2 wherek ∈ Z.
Observe that the family 3k+2,k∈ Z, is the same as the family 3k−1,k∈ Z. Thus

Z = A∪B∪C

where
A = {. . . ,−9,−6,−3,0,3,6,9, . . .}

is the family of integers of the form 3k,k∈ Z,

B = {. . .−8,−5,−2,1,4,7, . . .}

is the family of integers of the form 3k+1,k∈ Z and

C = {. . .−7,−4,−1,2,5,8, . . .}

is the family of integers of the form 3k−1,k∈ Z.

113 Example (AHSME 1976) Let r be the remainder when 1059,1417 and 2312 are divided byd > 1. Find the value ofd− r.

Solution: By the Division Algorithm, 1059= q1d+ r,1417= q2d+ r,2312= q3d+ r, for some integersq1,q2,q3. From this,
358= 1417− 1059= d(q2 − q1),1253= 2312− 1059= d(q3 − q1) and 895= 2312− 1417= d(q3 − q2). Henced|358=

2·179,d|1253= 7·179 and 7|895= 5·179. Sinced > 1, we conclude thatd = 179. Thus (for example) 1059= 5·179+164,
which means thatr = 164. We conclude thatd− r = 179−164= 15.

114 Example Show thatn2 +23 is divisible by 24 for infinitely manyn.

Solution:n2+23= n2−1+24= (n−1)(n+1)+24. If we taken= 24k±1,k= 0,1,2, . . . , all these values make the expression
divisible by 24.

115 Definition A primenumberp is a positive integer greater than 1 whose only positive divisors are 1 andp. If the integer
n > 1 is not prime, then we say that it iscomposite.

For example, 2, 3, 5, 7, 11, 13, 17, 19 are prime, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20 are composite. The number 1 is neither
a prime nor a composite.

116 Example Show that ifp > 3 is a prime, then 24|(p2 −1).
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Solution: By the Division Algorithm, integers come in one ofsix flavours: 6k,6k±1,6k±2 or 6k+3. If p > 3 is a prime, then
p is of the formp = 6k±1 (the other choices are either divisible by 2 or 3). But(6k±1)2 − 1 = 36k2±12k = 12k(3k− 1).
Since eitherk or 3k−1 is even, 12k(3k−1) is divisible by 24.

117 Example Prove that the square of any integer is of the form 4k or 4k+1.

Solution: By the Division Algorithm, any integer comes in one of two flavours: 2a or 2a+1. Squaring,

(2a)2 = 4a2, (2a+1)2 = 4(a2 +a)+1)

and so the assertion follows.

118 Example Prove that no integer in the sequence

11,111,1111,11111, . . .

is the square of an integer.

Solution: The square of any integer is of the form 4k or 4k+1. All the numbers in this sequence are of the form 4k−1, and so
they cannot be the square of any integer.

119 Example Show that from any three integers, one can always choose two so thata3b−ab3 is divisible by 10.

Solution: It is clear thata3b− ab3 = ab(a− b)(a+ b) is always even, no matter which integers are substituted. Ifone of the
three integers is of the form 5k, then we are done. If not, we are choosing three integers thatlie in the residue classes 5k±1 or
5k±2. Two of them must lie in one of these two groups, and so there must be two whose sum or whose difference is divisible
by 5. The assertion follows.

120 Example Prove that if 3|(a2 +b2), then 3|a and 3|b

Solution: Assumea = 3k±1 or b = 3m±1. Thena2 = 3x+1,b2 = 3y+1. But thena2 +b2 = 3t +1 or a2 +b2 = 3s+2, i.e.,
3 6 |(a2 +b2).

Practice

121 Problem Prove the following extension of the Division
Algorithm: if a andb 6= 0 are integers, then there are unique
integersq andr such thata = qb+ r,0≤ r < |b|.

122 Problem Show that if a and b are positive integers, then
there are unique integers q and r, andε = ±1 such thata =

qb+ εr,−
b
2

< r ≤ b
2
.

123 Problem Show that the product of two numbers of the
form 4k+3 is of the form 4k+1.

124 Problem Prove that the square of any odd integer leaves
remainder 1 upon division by 8.

125 Problem Demonstrate that there are no three consecutive

odd integers such that each is the sum of two squares greater
than zero.

126 Problem Let n > 1 be a positive integer. Prove that if
one of the numbers 2n − 1,2n + 1 is prime, then the other is
composite.

127 Problem Prove that there are infinitely many integersn
such that 4n2 +1 is divisible by both 13 and 5.

128 Problem Prove that any integern > 11 is the sum of two
positive composite numbers.

Hint: Think of n−6 if n is even andn−9 if n is odd.
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129 Problem Prove that 3 never dividesn2 +1.

130 Problem Show the existence of infinitely many natural
numbersx,y such thatx(x+1)|y(y+1) but

x 6 |y and(x+1) 6 |y,

and also

x 6 |(y+1) and(x+1) 6 |(y+1).

Hint: Try x = 36k+14,y = (12k+5)(18k+7).

2.3 Some Algebraic Identities
In this section we present some examples whose solutions depend on the use of some elementary algebraic identities.

131 Example Find all the primes of the formn3 −1, for integern > 1.

Solution: n3 − 1 = (n− 1)(n2 + n+ 1). If the expression were prime, sincen2 + n+ 1 is always greater than 1, we must have
n−1 = 1, i.e. n = 2. Thus the only such prime is 7.

132 Example Prove thatn4 +4 is a prime only whenn = 1 for n∈ N.

Solution: Observe that
n4 +4 = n4 +4n2 +4−4n2

= (n2 +2)2 −(2n)2

= (n2 +2−2n)(n2 +2+2n)

= ((n−1)2 +1)((n+1)2 +1).

Each factor is greater than 1 forn > 1, and son4 +4 cannot be a prime.

133 Example Find all integersn≥ 1 for whichn4 +4n is a prime.

Solution: The expression is only prime forn= 1. Clearly one must taken odd. Forn≥ 3 odd all the numbers below are integers:

n4 +22n = n4 +2n22n +22n −2n22n

= (n2 +2n)2 −
�
n2(n+1)/2

�2

= (n2 +2n +n2(n+1)/2)(n2 +2n −n2(n+1)/2).

It is easy to see that ifn≥ 3, each factor is greater than 1, so this number cannot be a prime.

134 Example Prove that for alln∈ N , n2 divides the quantity

(n+1)n −1.

Solution: Ifn = 1 this is quite evident. Assumen > 1. By the Binomial Theorem,

(n+1)n −1 =

nX
k=1

�
n
k

�
nk,

and every term is divisible byn2.

135 Example Prove that ifp is an odd prime and if

a
b

= 1+1/2+ · · ·+1/(p−1),

thenp dividesa.
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Solution: Arrange the sum as

1+
1

p−1
+

1
2

+
1

p−2
+ · · ·+ 1

(p−1)/2
+

1
(p+1)/2

.

After summing consecutive pairs, the numerator of the resulting fractions isp. Each term in the denominator is< p. Sincep is
a prime, thep on the numerator will not be thus cancelled out.

136 Example Prove that

xn −yn = (x−y)(xn−1 +xn−2y+xn−3y2 + · · ·+xyn−2 +yn−1)

Thusx−y always divides xn −yn.

Solution: We may assume thatx 6= y,xy 6= 0, the result being otherwise trivial. In that case, the resultfollows at once from the
identity

n−1X
k=0

ak =
an −1
a−1

a 6= 1,

upon lettinga = x/y and multiplying through byyn.

☞ Without calculation we see that87672345−81012345 is divisible by666.

137 Example (E őtv ős 1899) Show that
2903n −803n −464n +261n

is divisible by 1897 for all natural numbersn.

Solution: By the preceding problem, 2903n −803n is divisible by 2903−803= 2100= 7 ·300=, and 261n −464n is divisible
by 261− 464= −203= 7 · (−29). Thus the expression 2903n − 803n − 464n + 261n is divisible by 7. Also, 2903n − 464n is
divisible by 2903− 464= 9 ·271 and 261n − 803n is divisible by−542= (−2)271. Thus the expression is also divisible by
271. Since 7 and 271 have no prime factors in common, we can conclude that the expression is divisible by 7·271= 1897.

138 Example ( (UM)2C41987) Given that 1002004008016032 has a prime factorp > 250000, find it.

Solution: Ifa = 103,b = 2 then

1002004008016032= a5 +a4b+a3b2 +a2b3 +ab4 +b5 =
a6 −b6

a−b
.

This last expression factorises as

a6 −b6

a−b
= (a+b)(a2 +ab+b2)(a2 −ab+b2)

= 1002·1002004·998004
= 4·4·1002·250501·k,

wherek < 250000. Thereforep = 250501.

139 Example (Grünert, 1856) If x,y,z,n are natural numbersn≥ z, then the relation

xn +yn = zn

does not hold.
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Solution: It is clear that if the relationxn +yn = zn holds for natural numbersx,y,z thenx < zandy < z. By symmetry, we may
suppose thatx < y. So assume thatxn +yn = zn andn≥ z. Then

zn −yn = (z−y)(zn−1 +yzn−2 + · · ·+yn−1) ≥ 1·nxn−1 > xn,

contrary to the assertion thatxn +yn = zn. This establishes the assertion.

140 Example Prove that forn odd,

xn +yn = (x+y)(xn−1 −xn−2y+xn−3y2 −+− · · ·+−xyn−2 +yn−1).

Thusif n is odd, x+y divides xn +yn.

Solution: This is evident by substituting−y for y in example 1.11 and observing that(−y)n = −yn for n odd.

141 Example Show that 1001 divides
11993+21993+31993+ · · ·+10001993.

Solution: Follows at once from the previous problem, since each of 11993+10001993,21993+9991993, . . . ,5001993+5011993 is
divisible by 1001.

142 Example (S250) Show that for any natural numbern, there is another natural numberx such that each term of the sequence

x+1,xx +1,xxx
+1, . . .

is divisible byn.

Solution: It suffices to takex = 2n−1.

143 Example Determine infinitely many pairs of integers(m,n) such thatM andn share their prime factors and(m−1,n−1)

share their prime factors.

Solution: Takem= 2k −1,n = (2k −1)2,k = 2,3, . . .. Thenm,n obviously share their prime factors andm−1 = 2(2k−1 −1)

shares its prime factors withn−1 = 2k+1(2k−1 −1).

Practice

144 Problem Show that the integer

1. . .1| {z }
91 ones

is composite.

145 Problem Prove that 199+ 299+ 399+ 499 is divisible by
5.

146 Problem Show that if|ab| 6= 1, thena4 +4b4 is compos-
ite.

147 Problem Demonstrate that for any natural numbern, the

number
1· · · · · ·1| {z }

2n 1′s

−2· · · 2| {z }
n 2′s

is the square of an integer.

148 Problem Let 0≤ a < b.

1. Prove thatbn((n+1)a−nb) < an+1.

2. Prove that forn = 1,2, . . .,�
1+

1
n

�n

<

�
1+

1
n+1

�n+1

n = 1,2, . . . .

3. Show that
bn+1 −an+1

b−a
> (n+1)a.
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4. Show that�
1+

1
n

�n+1

>

�
1+

1
n+1

�n+2

n = 1,2, . . . .

149 Problem If a,b are positive integers, prove that

(a+1/2)n +(b+1/2)n

is an integer only for finitely many positive integersn.

150 Problem Prove that 100|1110−1.

151 Problem Let A andB be two natural numbers with the
same number of digits,A > B. Suppose thatA and B have
more than half of their digits on the sinistral side in common.
Prove that

A1/n −B1/n <
1
n

for all n = 2,3,4, . . ..

152 Problem Demonstrate that every number in the sequence

49,4489,444889,44448889, . . . ,4· · · · · ·4| {z }
n 4′s

8· · · 8| {z }
n−1 8′s

9,

is the square of an integer.

153 Problem (Polish Mathematical Olympiad) Prove that
if n is an even natural number, then the number 13n + 6 is
divisible by 7.

154 Problem Find, with proof, the unique square which is the
product of four consecutive odd numbers.

155 Problem Prove that the number 22225555+ 55552222 is
divisible by 7.

(Hint: Consider

22225555+45555+55552222−42222+42222−45555.)

156 Problem Prove that ifan +1,1 < a∈ N, is prime, thena

is even andn is a power of 2. Primes of the form 22k
+ 1 are

calledFermat primes.

157 Problem Prove that ifan − 1,1 < a ∈ N, is prime, then
a = 2 andn is a prime. Primes of the form 2n − 1 are called
Mersenne primes.

158 Problem (Putnam, 1989) How many primes amongst
the positive integers, written as usual in base-ten are suchthat
their digits are alternating 1’s and 0’s, beginning and ending in
1?

159 Problem Find the least value achieved by 36k − 5k,k =

1,2, . . . .

160 Problem Find all the primes of the formn3 +1.

161 Problem Find a closed formula for the product

P = (1+2)(1+22)(1+222
) · · ·(1+22n

).

Use this to prove that for all positive integersn, 22n
+1 divides

222n
+1 −2.

162 Problem Let a > 1 be a real number. Simplify the ex-
pression È

a+2
√

a−1+

È
a−2

√
a−1.

163 Problem Let a,b,c,d be real numbers such that

a2 +b2 +c2 +d2 = ab+bc+cd+da.

Prove thata = b = c = d.

164 Problem Let a,b,c be the lengths of the sides of a trian-
gle. Show that

3(ab+bc+ca) ≤ (a+b+c)2 ≤ 4(ab+bc+ca).

165 Problem (ITT, 1994) Let a,b,c,d be complex numbers
satisfying

a+b+c+d = a3 +b3 +c3 +d3 = 0.

Prove that a pair of thea,b,c,d must add up to 0.

166 Problem Prove that the product of four consecutive nat-
ural numbers is never a perfect square.

Hint: What is(n2 +n−1)2?

167 Problem Let k ≥ 2 be an integer. Show that ifn is a
positive integer, thennk can be represented as the sum ofn
successive odd numbers.

168 Problem (Catalan) Prove that

1−
1
2

+
1
3

−
1
4

+ · · ·+ 1
2n−1

−
1
2n
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equals
1

n+1
+

1
n+2

+ · · ·+ 1
2n

.

169 Problem (IMO, 1979) If a,b are natural numbers such
that

a
b

= 1−
1
2

+
1
3

−
1
4

+ · · ·− 1
1318

+
1

1319
,

prove that 1979|a.

170 Problem (Polish Mathematical Olympiad) A triangu-
lar number is one of the form 1+ 2+ . . . + n,n ∈ N. Prove
that none of the digits 2,4,7,9 can be the last digit of a trian-
gular number.

171 Problem Demonstrate that there are infinitely many
square triangular numbers.

172 Problem (Putnam, 1975) Supposing that an integern is
the sum of two triangular numbers,

n =
a2 +a

2
+

b2 +b
2

,

write 4n+1 as the sum of two squares, 4n+1= x2+y2 where
x andy are expressed in terms ofa andb.

Conversely, show that if 4n+1= x2+y2, thenn is the sum
of two triangular numbers.

173 Problem (Polish Mathematical Olympiad) Prove that
amongst ten successive natural numbers, there are always at
least one and at most four numbers that are not divisible by
any of the numbers 2,3,5,7.

174 Problem Show that ifk is odd,

1+2+ · · ·+n

divides

1k +2k + · · ·+nk.

175 Problem Are there five consecutive positive integers
such that the sum of the first four, each raised to the fourth
power, equals the fifth raised to the fourth power?
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Congruences.Zn

3.1 Congruences
The notationa≡ b modn is due to Gauß, and it means thatn|(a−b). It also indicates thata andb leave the same remainder
upon division byn. For example,−8 ≡ −1 ≡ 6 ≡ 13 mod 7. Sincen|(a− b) implies that∃k ∈ Z such thatnk = a− b, we
deduce thata≡ b modn if and only if there is an integerk such thata = b+nk.

We start by mentioning some simple properties of congruences.

176 Lemma Let a,b,c,d,m∈ Z,k∈ with a≡ b modm andc≡ d modm. Then

1. a+c≡ b+d modm

2. a−c≡ b−d modm

3. ac≡ bd modm

4. ak ≡ bk modm

5. If f is a polynomial with integral coefficients thenf (a) ≡ f (b) modm.

Proof: As a≡ b modm and c≡ d modm, we can find k1,k2 ∈ Z with a = b+ k1m and c= d + k2m. Thus
a±c= b±d+m(k1±k2) and ac= bd+m(k2b+k1d). These equalities give (1), (2) and (3). Property (4) follows
by successive application of (3), and (5) follows from (4).❑

Congruences mod 9 can sometimes be used to check multiplications. For example 875961·2753 6= 2410520633. For if
this were true then

(8+7+5+9+6+1)(2+7+5+3) ≡ 2+4+1+0+5+2+0+6+3+3 mod 9.

But this says that 0·8≡ 8 mod 9, which is patently false.

177 Example Find the remainder when 61987 is divided by 37.

Solution: 62 ≡ −1 mod 37. Thus 61987≡ 6·61986≡ 6(62)993≡ 6(−1)993≡ −6≡ 31 mod 37.

178 Example Prove that 7 divides 32n+1 +2n+2 for all natural numbersn.

Solution: Observe that 32n+1 ≡ 3·9n ≡ 3·2n mod 7 and 2n+2 ≡ 4·2n mod 7. Hence

32n+1 +2n+2 ≡ 7·2n ≡ 0 mod 7,

for all natural numbersn.

26
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179 Example Prove the following result of Euler: 641|(232+1).

Solution: Observe that 641= 27 · 5+ 1 = 24 + 54. Hence 27 · 5 ≡ −1 mod 641 and 54 ≡ −24 mod 641. Now, 27 · 5 ≡ −1
mod 641 yields 54 ·228 = (5 ·27)4 ≡ (−1)4 ≡ 1 mod 641. This last congruence and 54 ≡ −24 mod 641 yield−24 ·228 ≡ 1
mod 641, which means that 641|(232+1).

180 Example Find the perfect squares mod 13.

Solution: First observe that we only have to square all the numbers up to 6, becauser2 ≡ (13− r)2 mod 13. Squaring the
nonnegative integers up to 6, we obtain 02 ≡ 0,12 ≡ 1,22 ≡ 4,32 ≡ 9,42 ≡ 3,52 ≡ 12,62 ≡ 10 mod 13. Therefore the perfect
squares mod 13 are 0, 1, 4, 9, 3, 12, and 10.

181 Example Prove that there are no integers withx2 −5y2 = 2.

Solution: Ifx2 = 2−5y2, thenx2 ≡ 2 mod 5. But 2 is not a perfect square mod 5.

182 Example Prove that 7|(22225555+55552222).

Solution: 2222≡ 3 mod 7, 5555≡ 4 mod 7 and 35 ≡ 5 mod 7. Now 22225555+ 55552222 ≡ 35555+ 42222≡ (35)1111+

(42)1111≡ 51111−51111≡ 0 mod 7.

183 Example Find the units digit of 77
7
.

Solution: We must find 77
7

mod 10. Now, 72 ≡ −1 mod 10, and so 73 ≡ 72 · 7 ≡ −7 ≡ 3 mod 10 and 74 ≡ (72)2 ≡ 1
mod 10. Also, 72 ≡ 1 mod 4 and so 77 ≡ (72)3 ·7 ≡ 3 mod 4, which means that there is an integert such that 77 = 3+ 4t.
Upon assembling all this,

777 ≡ 74t+3 ≡ (74)t ·73 ≡ 1t ·3≡ 3 mod 10.

Thus the last digit is 3.

184 Example Prove that every year, including any leap year, has at least one Friday 13-th.

Solution: It is enough to prove that each year has a Sunday the1st. Now, the first day of a month in each year falls in one of the
following days:

Month Day of the year mod 7
January 1 1
February 32 4
March 60 or 61 4 or 5
April 91 or 92 0 or 1
May 121 or122 2 or 3
June 152 or 153 5 or 6
July 182 or183 0 or 1
August 213 or 214 3 or 4
September 244 or 245 6 or 0
October 274 or 275 1 or 2
November 305 or 306 4 or 5
December 335 or 336 6 or 0

(The above table means that, depending on whether the year isa leap year or not, that March 1st is the 50th or 51st day of the
year, etc.) Now, each remainder class modulo 7 is represented in the third column, thus each year, whether leap or not, hasat
least one Sunday the 1st.
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185 Example Find infinitely many integersn such that 2n +27 is divisible by 7.

Solution: Observe that 21 ≡ 2,22 ≡ 4,23 ≡ 1,24 ≡ 2,25 ≡ 4,26 ≡ 1 mod 7 and so 23k ≡ 1 mod 3 for all positive integersk.
Hence 23k +27≡ 1+27≡ 0 mod 7 for all positive integersk. This produces the infinitely many values sought.

186 Example Are there positive integersx,y such thatx3 = 2y +15?

Solution: No. The perfect cubes mod 7 are 0, 1, and 6. Now, every power of 2 is congruent to 1, 2, or 4 mod 7. Thus
2y +15≡ 2,3, or 5 mod 7. This is an impossibility.

187 Example Prove that 2k −5,k = 0,1,2, . . . never leaves remainder 1 when divided by 7.

Solution: 21 ≡ 2,22 ≡ 4,23 ≡ 1 mod 7, and this cycle of three repeats. Thus 2k −5 can leave only remainders 3, 4, or 6 upon
division by 7.

188 Example (AIME, 1994) The increasing sequence

3,15,24,48, . . . ,

consists of those positive multiples of 3 that are one less than a perfect square. What is the remainder when the 1994-th term of
the sequence is divided by 1000?

Solution: We want 3|n2 − 1 = (n− 1)(n+ 1). Since 3 is prime, this requiresn = 3k+ 1 or n = 3k− 1,k = 1,2,3, . . .. The
sequence 3k+ 1,k = 1,2, . . . produces the termsn2 − 1 = (3k+ 1)2 − 1 which are the terms at even places of the sequence of
3,15,24,48, . . .. The sequence 3k−1,k = 1,2, . . . produces the termsn2 −1 = (3k−1)2 −1 which are the terms at odd places
of the sequence 3,15,24,48, . . .. We must find the 997th term of the sequence 3k+ 1,k = 1,2, . . .. Finally, the term sought is
(3(997)+1)2 −1≡ (3(−3)+1)2 −1≡ 82 −1≡ 63 mod 1000. The remainder sought is 63.

189 Example (USAMO, 1979) Determine all nonnegative integral solutions

(n1,n2, . . . ,n14)

if any, apart from permutations, of the Diophantine equation

n4
1 +n4

2 + · · ·+n4
14 = 1599.

Solution: There are no such solutions. All perfect fourth powers mod 16 are≡ 0 or 1 mod 16. This means that

n4
1 + · · ·+n4

14

can be at most 14 mod 16. But 1599≡ 15 mod 16.

190 Example (Putnam, 1986) What is the units digit of

T
1020000

10100+3
U?

Solution: Seta−3= 10100. Then[(1020000)/10100+3] = [(a−3)200/a] = [
1
a

200X
k=0

�
200
k

�
a200−k(−3)k] =

199X
k=0

�
200
k

�
a199−k(−3)k.

Since
200X
k=0

(−1)k
�

200
k

�
= 0,(3)199

199X
k=0

(−1)k
�

200
k

�
= −3199. As a≡ 3 mod 10,

199X
k=0

�
200
k

�
a199−k(−3)k ≡ 3199

199X
k=0

(−1)k
�

200
k

�
≡ −3199≡ 3 mod 10.
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191 Example Prove that for anya,b,c∈ Z,n∈ N,n > 3, there is an integerk such thatn 6 |(k+a),n 6 |(k+b),n 6 |(k+c).

Solution: The integersa,b,c belong to at most three different residue classes modn. Sincen > 3, we have more than three
distinct residue classes. Thus there must be a residue class, sayk for which −k 6≡ a,−k 6≡ b,−k 6≡ c, modn. This solves the
problem.

192 Example (Putnam, 1973) Let a1,a2, . . . ,a2n+1 be a set of integers such that if any one of them is removed, theremaining
ones can be divided into two sets ofn integers with equal sums. Prove thata1 = a2 = . . . = a2n+1.

Solution: As the sum of the 2n integers remaining is always even, no matter which of theak be taken, all theak must have the
same parity. The property stated in the problem is now sharedby ak/2 or(ak −1)/2, depending on whether they are all even, or
all odd. Thus they are all congruent mod 4. Continuing in thismanner we arrive at the conclusion that theak are all congruent
mod 2k for everyk, and this may only happen if they are all equal.

193 Example Prove that

(kn)! ≡ 0 mod
n−1Y
r=0

(n+ r)

if n,k∈ N,n≥ k≥ 2.

Solution:(kn)! = M(n−1)!n(n+1) · · ·(2n−1) for some integerM ≥ 1. The assertion follows.

194 Example Let
n!! = n! (1/2!−1/3!+ · · ·+(−1)n/n!) .

Prove that for alln∈ N,n > 3,
n!! ≡ n! mod (n−1).

Solution: We have
n!−n!! = n(n−1)(n−2)!(1−1/2!

+ · · ·+(−1)n−1/(n−1)!+(−1)n/n!)

= (n−1)
�
m+(−1)n−1n/(n−1)+(−1)n/(n−1)

�
= (n−1)(m+(−1)n) ,

whereM is an integer, since(n−2)! is divisible byk!,k≤ n−2.

195 Example Prove that
6n+2X
k=0

�
6n+2

2k

�
3k ≡ 0,23n+1,−23n+1 mod 23n+2

whenn is of the form 2k,4k+3 or 4k+1 respectively.

Solution: Using the Binomial Theorem,

2S:= 2
3n+1X
k=0

�
6n+2

2k

�
3k = (1+

√
3)6n+2 +(1−

√
3)6n+2.

Also, if n is odd, witha = 2+
√

3,b = 2−
√

3,

1
2
(a3n+1 +b3n+1) =

3n+1
2X

r=0

�
3n+1

2r

�
23n+1−2r3r .

≡ 3(3n+1)/2 mod 4
≡ (−1)(n−1)/2 mod 4.
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As 2S= 23n+1(a3n+1 +b3n+1), we have, for oddn,

S≡ (−1)(n−1)/223n+1 mod 23n+3.

If n is even,
1
2
(a3n+1 +b3n+1) =

X
2r≤3n

�
3n+1
2r +1

�
22r+133n−2r

≡ 2(6n+1)33n mod 8
≡ 4n+2 mod 8.

So for evenn,S≡ 23n+22n+1 mod 23n+4.

Practice

196 Problem Find the number of alln,1 ≤ n ≤ 25 such that
n2 +15n+122 is divisible by 6.

(Hint: n2 +15n+122≡ n2 +3n+2 = (n+1)(n+2) mod 6.)

197 Problem (AIME 1983) Let an = 6n + 8n. Determine the
remainder whena83 is divided by 49.

198 Problem (POLISH MATHEMATICAL OLYMPIAD ) What
digits should be put instead ofx andy in 30x0y03 in order to
give a number divisible by 13?

199 Problem Prove that if 9|(a3 + b3 + c3), then 3|abc, for
integersa,b,c.

200 Problem Describe all integersn such that 10|n10+1.

201 Problem Prove that if

a−b,a2 −b2,a3 −b3,a4 −b4, . . .

are all integers, thena andb must also be integers.

202 Problem Find the last digit of 3100.

203 Problem (AHSME 1992) What is the size of the largest
subset S of{1,2, . . . ,50} such that no pair of distinct elements
of S has a sum divisible by 7?

204 Problem Prove that there are no integer solutions to the
equationx2 −7y = 3.

205 Problem Prove that if 7|a2 +b2 then 7|a and 7|b.

206 Problem Prove that there are no integers with

800000007= x2 +y2 +z2.

207 Problem Prove that the sum of the decimal digits of a
perfect square cannot be equal to 1991.

208 Problem Prove that

7|42n
+22n

+1

for all natural numbers n.

209 Problem Prove that 5 never divides

nX
k=0

23k
�

2n+1
2k+1

�
.

210 Problem Prove that ifp is a prime,

�
n
p

�
−[

n
p
] is divisi-

ble by p, for all n≥ p.

211 Problem How many perfect squares are there mod 2n?

212 Problem Prove that every non-multiple of 3 is a perfect
power of 2 mod 3n.

213 Problem Find the last two digits of 3100.

214 Problem (USAMO, 1986) What is the smallest integer
n > 1, for which the root-mean-square of the firstn positive
integers is an integer?

Note. The root mean square ofn numbersa1,a2, . . . ,an is defined to be�
a2

1 +a2
2 + · · ·+a2

n

n

�1/2

.
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215 Problem Find all integersa,b,c,a > 1 and all prime
numbersp,q, r which satisfy the equation

pa = qb + rc

(a,b,c, p,q, r need not necessarily be different).

216 Problem Show that the number 16 is a perfect 8-th power
modp for any primep.

217 Problem (IMO, 1975) Let a1,a2,a3, . . . be an increasing
sequence of positive integers. Prove that for everys ≥ 1
there are infinitely manyam that can be written in the form
am = xas+yat with positive integers x and y andt > s.

218 Problem For each integern> 1, prove thatnn−n2+n−1
is divisible by(n−1)2.

219 Problem Let x andai , i = 0,1, . . . ,k be arbitrary integers.
Prove that

kX
i=0

ai(x
2 +1)3i

is divisible byx2±x+1 if and only if
kX

i=0

(−1)iai is divisible

by x2±x+1.

220 Problem ( (UM)2C9 1992) If x,y,z are positive integers
with

xn +yn = zn

for an odd integern≥ 3, prove thatzcannot be a prime-power.

3.2 Divisibility Tests
Working base-ten, we have an ample number of rules of divisibility. The most famous one is perhaps the following.

221 Theorem (Casting-out 9’s) A natural numbern is divisible by 9 if and only if the sum of it digits is divisible by 9.

Proof: Let n= ak10k +ak−110k−1 + · · ·+a110+a0 be the base-10 expansion of n. As10≡ 1 mod 9, we have
10j ≡ 1 mod 9. It follows that n= ak10k + · · ·+a110+a0 ≡ ak + · · ·+a1 +a0, whence the theorem.❑

222 Example (AHSME, 1992) The two-digit integers from 19 to 92 are written consecutively in order to form the integer

192021222324· · ·89909192.

What is the largest power of 3 that divides this number?

Solution: By the casting-out-nines rule, this number is divisible by 9 if and only if

19+20+21+ · · ·+92= 372 ·3

is. Therefore, the number is divisible by 3 but not by 9.

223 Example (IMO, 1975) When 44444444 is written in decimal notation, the sum of its digits isA. Let B be the sum of the
digits ofA. Find the sum of the digits ofB. (A andB are written in decimal notation.)

Solution: We have 4444≡ 7 mod 9, and hence 44443 ≡ 73 ≡ 1 mod 9. Thus 44444444= 44443(1481) ·4444≡ 1·7≡ 7 mod 9.
Let C be the sum of the digits ofB.

By the casting-out 9’s rule, 7≡ 44444444≡A≡B≡C mod 9. Now, 4444log104444< 4444log10104 = 17776. This means
that 44444444has at most 17776 digits, so the sum of the digits of 44444444 is at most 9·17776= 159984, whenceA≤ 159984.
Amongst all natural numbers≤ 159984 the one with maximal digit sum is 99999, so it follows thatB≤ 45. Of all the natural
numbers≤ 45, 39 has the largest digital sum, namely 12. Thus the sum of the digits of B is at most 12. But sinceC≡ 7 mod 9,
it follows thatC = 7.

A criterion for divisibility by 11 can be established similarly. For letn = ak10k +ak−110k−1 + · · ·+a110+a0. As 10≡ −1
mod 11, we have 10j ≡ (−1) j mod 11. Thereforen≡ (−1)kak+(−1)k−1ak−1+ · · ·−a1+a0 mod 11, that is,n is divisible by
11 if and only if the alternating sum of its digits is divisible by 11. For example, 912282219≡ 9−1+2−2+8−2+2−1+9≡ 7
mod 11 and so 912282219 is not divisible by 11, whereas 8924310064539≡ 8−9+2−4+3−1+0−0+6−4+4−3+9≡ 0
mod 11, and so 8924310064539 is divisible by 11.
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224 Example (Putnam, 1952) Let

f (x) =

nX
k=0

akx
n−k

be a polynomial of degreen with integral coefficients. Ifa0,an and f (1) are all odd, prove thatf (x) = 0 has no rational roots.

Solution: Suppose thatf (a/b) = 0, wherea andb are relatively prime integers. Then 0= bn f (a/b) = a0bn +a1bn−1a+ · · ·+
an−1ban−1 +anan. By the relative primality ofa andb it follows thata|a0,b|an, whencea andb are both odd. Hence

a0bn +aabn−1a+ · · ·+an−1ban−1 +anan ≡ a0 +a1 + · · ·+an = f (1) ≡ 1 mod 2,

but this contradicts thata/b is a root of f .

Practice

225 Problem (AHSME 1991) An n-digit integer iscute if its
n digits are an arrangement of the set{1,2, . . . ,n} and its firstk
digits form an integer that is divisible byk for all k,1≤ k≤ n.
For example, 321 is a cute three-digit number because 1 di-
vides 3, 2 divides 32, and 3 divides 321. How many cute six-
digit integers are there?

Answer: 2.

226 Problem How many ways are there to roll two distin-
guishable dice to yield a sum that is divisible by three?

Answer: 12.

227 Problem Prove that a number is divisible by 2k,k ∈ N if
and only if the number formed by its last k digits is divisible
by 2k. Test whether

90908766123456789999872

is divisible by 8.

228 Problem An old receipt has faded. It reads 88 chickens
at the total of $x4.2y, wherex andy are unreadable digits. How
much did each chicken cost?

Answer: 73 cents.

229 Problem Five sailors plan to divide a pile of coconuts
amongst themselves in the morning. During the night, one of
them wakes up and decides to take his share. After throwing a
coconut to a monkey to make the division come out even, he
takes one fifth of the pile and goes back to sleep. The other
four sailors do likewise, one after the other, each throwing
a coconut to the monkey and taking one fifth of the remain-
ing pile. In the morning the five sailors throw a coconut to
the monkey and divide the remaining coconuts into five equal

piles. What is the smallest amount of coconuts that could have
been in the original pile?

Answer: 15621

230 Problem Prove that a number which consists of 3n iden-
tical digits is divisible by 3n. For example, 111 111 111 is
divisible by 9.

231 Problem ( (UM)2C8 1991) Suppose thata0,a1, . . .an are
integers withan 6= 0, and let

p(x) = a0 +a1x+ · · ·+anxn.

Suppose thatx0 is a rational number such thatp(x0) = 0. Show
that if 1≤ k≤ n, then

akx0 +ak+1x2
0 + · · ·+anxn−k+1

is an integer.

232 Problem 1953 digits are written in a circular order. Prove
that if the 1953-digit numbers obtained when we read these
digits in dextrogyral sense beginning with one of the digitsis
divisible by 27, then if we read these digits in the same direc-
tion beginning with any other digit, the new 1953-digit number
is also divisible by 27.

233 Problem (Lagrange) Prove that

fn+60 ≡ fn mod 10.

Thus the last digit of a Fibonacci number recurs in cycles of
length 60.

234 Problem Prove that

f2n+1 ≡ f 2
n+1 mod f 2

n .
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3.3 Complete Residues
The following concept will play a central role in our study ofintegers.

235 Definition If a≡ b modn thenb is called aresidueof a modulon. A seta1,a2, . . .an is called acomplete residue system
modulon if for every integerb there is exactly one indexj such thatb≡ a j modn.

It is clear that given any finite set of integers, this set willform a complete set of residues modulon if and only if the
set hasn members and every member of the set is incongruent modulon. For example, the setA = {0,1,2,3,4,5} forms
a complete set of residues mod 6, since any integerx is congruent to one and only one member ofA . Notice that the set
B = {−40,6,7,15,22,35} forms a complete residue set mod 6, but the setC = {−3,−2,−1,1,2,3} does not, as−3 ≡ 3
mod 6.

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 3.1: Addition Table forZ3

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Table 3.2: Addition Table forZ6

Tied up with the concept of complete residues is that ofZn. As an example, let us taken = 3. We now let0 represent all
those integers that are divisible by 3,1 represent all those integers that leave remainder 1 upon division by 3, and2 all those
integers that leave remainder 2 upon division by 3, and consider the setZ3 = {0,1,2}. We define addition inZ3 as follows.
Givena,b ∈ Z3 we considera+b mod 3. Now, there isc∈ {0,1,2} such thata+b≡ c mod 3. We then definea+3 b to be
equal toc. Table3.3contains all the possible additions.

We observe thatZ3 together with the operation+3 as given in Table3.3satisfies the following properties:

1. The element0 ∈ Z3 is anidentity elementfor Z3, i.e. 0 satisfies0+3 a = a+3 0 = a for all a ∈ Z3

2. Every elementa ∈ Z3 has anadditive inverseb, i.e., an element such thata+3 b = b+3 a = 0. We denote the additive
inverse ofa by −a. In Z3 we note that−0 = 0,−1 = 2,−2 = 1.

3. The operation addition inZ3 is associative, that is, for alla,b,c ∈ Z3 we havea+3 (b+3 c) = (a+3 b)+3 c.

We then say that< Z3,+3 > forms agroupand we call it thegroup of residues under additionmod 3.
Similarly we define< Zn,+n >, as thegroup of residues under additionmodn. As a further example we present the

addition table for< Z6,+6 > on Table (1.2). We will explore later the multiplicative structure ofZn.

Practice

236 Problem Construct the addition tables forZ8 andZ9. 237 Problem How many distinct ordered pairs(a,b) 6= (0,0)

are inZ12 such thata+12b = 0?
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Unique Factorisation

4.1 GCD and LCM

If a,b∈ Z, not both zero, the largest positive integer that divides both a,b is called thegreatest common divisor of a and b.This
is denoted by(a,b) or sometimes by gcd(a,b). Thus ifd|a andd|b thend|(a,b), because any common divisor ofa andb must
divide the largest common divisor ofa andb. For example,(68,−6) = 2,gcd(1998,1999) = 1.

If (a,b) = 1, we say thata andb arerelatively prime or coprime.Thus if a,b are relatively prime, then they have no factor
greater than 1 in common.

If a,b are integers, not both zero, the smallest positive integer that is a multiple ofa,b is called theleast common multiple
of a and b. This is denoted by[a,b]. We see then that ifa|c and if b|c, then[a,b]|c, sincec is a common multiple of botha and
b, it must be divisible by the smallest common multiple ofa andb.

The most important theorem related to gcd’s is probably the following.

238 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integersa,b can be written as a linear
combination ofa andb, i.e., there are integersx,y with

(a,b) = ax+by.

Proof: LetA = {ax+by|ax+by> 0,x,y∈ Z}. Clearly one of±a,±b is inA , as both a,b are not zero. By the
Well Ordering Principle,A has a smallest element, say d. Therefore, there are x0,y0 such that d= ax0 +by0. We
prove that d= (a,b). To do this we prove that d|a,d|b and that if t|a, t|b, then t|d.

We first prove that d|a. By the Division Algorithm, we can find integers q, r,0≤ r < d such that a= dq+ r. Then

r = a−dq= a(1−qx0)−by0.

If r > 0, then r∈ A is smaller than the smaller element ofA , namely d, a contradiction. Thus r= 0. This entails
dq= a, i.e. d|a. We can similarly prove that d|b.
Assume that t|a, t|b. Then a= tm,b = tn for integers m,n. Hence d= ax0 + bx0 = t(mx0 + ny0), that is, t|d. The
theorem is thus proved.❑

☞ It is clear that any linear combination of a,b is divisible by(a,b).

239 Lemma (Euclid’s Lemma) If a|bcand if (a,b) = 1, thena|c.

Proof: As(a,b) = 1, by the Bachet-Bezout Theorem, there are integers x,y with ax+by= 1. Since a|bc, there is
an integer s with as= bc. Then c= c·1 = cax+cby= cax+asy. From this it follows that a|c, as wanted.❑

34
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240 Theorem If (a,b) = d, then

(
a
d

,
b
d

) = 1.

Proof: By the Bachet-Bezout Theorem, there are integers x,y such that ax+by= d. But then(a/d)x+(b/d)y= 1,
and a/d,b/d are integers. But this is a linear combination of a/d,b/d and so(a/d,b/d) divides this linear
combination, i.e., divides 1. We conclude that(a/d,b/d) = 1.❑

241 Theorem Let c be a positive integer. Then
(ca,cb) = c(a,b).

Proof: Let d1 = (ca,cb) and d2 = (a,b). We prove that d1|cd2 and cd2|d1. As d2|a and d2|b, then cd2|ca,cd2|cb.
Thus cd2 is a common divisor of ca and cb and hence d1|cd2. By the Bachet-Bezout Theorem we can find integers
x,y with d1 = acx+bcy= c(ax+by). But ax+by is a linear combination of a,b and so it is divisible by d2. There
is an integer s then such that sd2 = ax+by. It follows that d1 = csd2, i.e., cd2|d1. ❑

☞ It follows similarly that(ca,cb) = |c|(a,b) for any non-zero integer c.

242 Lemma For nonzero integers a, b, c,
(a,bc) = (a,(a,b)c).

Proof: Since(a,(a,b)c) divides(a,b)c it divides bc. Thusgcd(a,(a,b)c) divides a and bc and hencegcd(a,(a,b)c)|gcd(a,bc).

On the other hand,(a,bc) divides a and bc, hence it divides ac and bc. Therefore(a,bc) divides(ac,bc) = c(a,b).
In conclusion,(a,bc) divides a and c(a,b) and so it divides(a,(a,b)c). This finishes the proof.❑

243 Theorem (a2,b2) = (a,b)2.

Proof: Assume that(m,n) = 1. Using the preceding lemma twice,

(m2,n2) = (m2,(m2,n)n) = (m2,(n,(m,n)m)n).

As(m,n) = 1, this last quantity equals(m2,n). Using the preceding problem again,

(m2,n) = (n,(m,n)m) = 1.

Thus(m,n) = 1 implies(m2,n2) = 1.

By Theorem240, �
a

(a,b)
,

b
(a,b)

�
= 1,

and hence �
a2

(a,b)2 ,
b2

(a,b)2

�
= 1.

By Theorem241, upon multiplying by(a,b)2, we deduce

(a2,b2) = (a,b)2,

which is what we wanted.❑

244 Example Let (a,b) = 1. Prove that(a+b,a2 −ab+b2) = 1 or 3.

Solution: Letd = (a+b,a2 −ab+b2). Now d divides

(a+b)2 −a2 +ab−b2 = 3ab.

Henced divides 3b(a+b)−3ab= 3b2. Similarly, d|3a2. But thend|(3a2,3b2) = 3(a2,b2) = 3(a,b)2 = 3.
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245 Example Let a,a 6= 1,m,n be positive integers. Prove that

(am−1,an −1) = a(m,n) −1.

Solution: Setd = (m,n),sd= m, td = n. Thenam− 1 = (ad)s− 1 is divisible byad − 1 and similarly,an − 1 is divisible by
ad −1. Thus(ad −1)|(am−1,an−1). Now, by the Bachet-Bezout Theorem there are integersx,y with mx+ny= d. Notice that
x andy must have opposite signs (they cannot obviously be both negative, since thend would be negative. They cannot both be
positive because thend ≥ m+n, when in fact we haved ≤ m,d ≤ n). So, assume without loss of generality thatx > 0,y≤ 0.
Set t = (am − 1,an − 1). Thent|(amx− 1) and t|(a−ny − 1). Hence,t|((amx− 1) − ad(a−ny − 1)) = ad − 1. The assertion is
established.

246 Example (IMO, 1959) Prove that the fraction
21n+4
14n+3

is irreducible for every natural numbern.

Solution: 2(21n+4)−3(14n+3) = −1. Thus the numerator and the denominator have no common factorgreater than 1.

247 Example (AIME, 1985) The numbers in the sequence

101,104,109,116, . . .

are of the forman = 100+n2,n = 1,2, . . .. For eachn let dn = (an,an+1). Find max
n≥1

dn.

Solution: We have the following:dn = (100+ n2,100+(n+ 1)2) = (100+ n2,100+ n2 + 2n+ 1) = (100+ n2,2n+ 1). Thus
dn|(2(100+n2)−n(2n+1)) = 200−n. Thereforedn|(2(200−n)+(2n+1)) = 401. This means thatdn|401 for alln. Could it be
that large? The answer is yes, for letn = 200, thena200= 100+2002 = 100(401) anda201= 100+2012 = 40501= 101(401).
Thus max

n≥1
dn = 401.

248 Example Prove that ifm andn are natural numbers andm is odd, then(2m−1,2n +1) = 1.

Solution: Letd = (2m− 1,2n + 1). It follows that d must be an odd number, and 2m− 1 = kd,2n + 1 = ld, for some natural

numbersk, l . Therefore, 2mn = (kd+ 1)n = td + 1, wheret =

n−1X
j=0

�
n
j

�
kn− jdn− j−1. In the same manner, 2mn = (ld − 1)m =

ud−1, where we have used the fact thatm is odd. Astd+1 = ud−1, we must haved|2, whenced = 1.

249 Example Prove that there are arbitrarily long arithmetic progressions in which the terms are pairwise relatively prime.

Solution: The numberskm!+1,k = 1,2, . . . ,m form an arithmetic progression of lengthmand common differencem!. Suppose
thatd|(lm!+1),d|(sm!+1),1≤ l < s≤ m. Thend|(s(lm!+1)− l(sm!+1)) = (s− l) < m. Thus 1≤ d < mand so,d|m!. But
thend|(sm!+1−sm!) = 1. This means that any two terms of this progression are coprime.

250 Example Prove that any two consecutive Fibonacci numbers are relatively prime.

Solution: Letd = ( fn, fn+1). As fn+1− fn = fn−1 andd divides the sinistral side of this equality,d| fn−1. Thusd|( fn− fn−1) =

fn−2. Iterating on this process we deduce thatd| f1 = 1 and sod = 1.
Aliter: By Cassini’s Identityfn−1 fn+1 − f 2

n = (−1)n. Thusd|(−1)n, i.e.,d = 1.

251 Example Prove that
( fm, fn) = f(n,m).

Solution: Setd = ( fn, fm),c = f(m,n),a = (m,n). We will prove thatc|d andd|c.
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Sincea|m anda|n, fa| fm and fa| fn by Theorem102. Thus

fa|( fm, fm),

i.e.,c|d.

Now, by the Bachet-Bezout Theorem, there are integersx,y such thatxm+yn= a. Observe thatx,y cannot be both negative,
otherwisea would be negative. Asa|n,a|mwe havea≤ n,a≤ m. They cannot be both positive since thena= xm+yn≥ m+n,
a contradiction. Thus they are of opposite signs, and we assume without loss of generality thatx≤ 0,y > 0.

Observe that
fyn = fa−xm = fa−1 f−xm+ fa f−xm+1

upon using the identity
fs+t = fs−1 ft + fs ft+1

of Theorem50. As n|yn,m|(−xm), we have thatfn| fyn, fm| f−xm. This implies that( fn, fm)| fyn and( fn, fm)| f−xm. Hence

( fn, fm)| fa f−xm+1.

We saw earlier that( fn, fm)| f−xm. If it were the case that

( fn, fm)| f−xm+1,

then( fn, fm) would be dividing two consecutive Fibonacci numbers, a contradiction to the preceding problem in the case when
( fn, fm) > 1. The case= 1 is a triviality. Therefore( fn, fm)| fa, which is what we wanted to prove.

252 Example Prove that no odd Fibonacci number is ever divisible by 17.

Solution: Letd = (17, fn), which obviously must be odd. Then(17, fn) = (34, fn) = ( f9, fn) = f(9,n) = f1, f3 or f9. This means
thatd = (17, fn) = 1,2 or 34. This forcesd = 1.

253 Example TheCatalan number of order nis defined as

Cn =
1

n+1

�
2n
n

�
.

Prove thatCn is an integer for all natural numbersn.

Solution: By the binomial absorption identity,

2n+1
n+1

�
2n
n

�
=

�
2n+1
n+1

�
.

Since 2n+1 andn+1 are relatively prime, and since the dextral side is an integer, it must be the case thatn+1 divides

�
2n
n

�
.

254 Example Let n be a natural number. Find the greatest common divisor of�
2n
1

�
,

�
2n
3

�
, . . . ,

�
2n

2n−1

�
.

Solution: Since
nX

k=1

�
2n

2k−1

�
= 22n−1,
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the gcd must be of the form 2a. Since the gcd must divide

�
2n
1

�
= 2n, we see that it has divide 2l+1, wherel is the largest

power of 2 that dividesn. We claim that 2l+1 divides all of them. We may writen = 2l m, whereM is odd. Now,�
2l+1m
2k−1

�
=

2l+1m
2k−1

�
2l+1m−1

2k−2

�
.

But 2k−1 6 |2l+1 for k > 1. This establishes the claim.

255 Example Let any fifty one integers be taken from amongst the numbers 1,2, . . . ,100. Show that there are two that are
relatively prime.

Solution: Arrange the 100 integers into the 50 sets

{1,2},{3,4},{5,6} . . . ,{99,100}.

Since we are choosing fifty one integers, there must be two that will lie in the same set. Those two are relatively prime, as
consecutive integers are relatively prime.

256 Example Prove that any natural numbern > 6 can be written as the sum of two integers greater than 1, eachof the
summands being relatively prime.

Solution: If n is odd, we may choosea = 2,b = n−2. If n is even, then is either of the form 4k or 4k+2. If n = 4k, then take
a = 2k+1,b = 2k−1. These two are clearly relatively prime (why?). Ifn = 4k+2,k > 1 takea = 2k+3,b = 2k−1.

257 Example How many positive integers≤ 1260 are relatively prime to 1260?

Solution: As 1260= 22 · 32 · 5 · 7, the problem amounts to finding those numbers less than 1260 which are not divisible by
2, 3, 5, or 7. LetA denote the set of integers≤ 1260 which are multiples of 2,B the set of multiples of 3, etc. By the
Inclusion-Exclusion Principle,

|A∪B∪C∪D| = |A|+ |B|+ |C|+ |D|
−|A∩B|− |A∩C|− |A∩D|
−|B∩C|− |B∩D|− |C∩D|
+|A∩B∩C|+ |A∩B∩D|+ |A∩C∩D|
+|B∩C∩D|− |A∩B∩C∩D|

= 630+420+252+180−210−126−90−84
−60−36+42+30+18+12−6 = 972.

The number of integers sought is then 1260−972= 288.

Practice

258 Problem Show that

(a,b)[a,b] = ab

for all natural numbersa,b.

259 Problem Find lcm(23!41!,29!37!).

260 Problem Find two positive integersa,b such that

a2 +b2 = 85113, and lcm(a,b) = 1764.

261 Problem Find a,b∈ N with (a,b) = 12, [a,b] = 432.

262 Problem Prove that(a,b)n = (an,bn) for all natural num-
bersn.
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263 Problem Let a∈ N. Find, with proof, allb∈ N such that

(2b −1)|(2a +1).

264 Problem Show that(n3+3n+1,7n3+18n2−n−2) = 1.

265 Problem Let the integersan,bn be defined by the relation

an +bn

√
2 = (1+

√
2)n, n∈ N.

Prove that gcd(an,bn) = 1 ∀ n.

266 Problem Prove or disprove the following two proposi-
tions:

1. If a,b∈ N,a < b, then in any set ofb consecutive inte-
gers there are two whose product is divisible byab.

2. If a,b,c,∈ N,a < b < c, then in any set ofc consecu-
tive integers there are three whose product is divisible
by abc.

267 Problem Let n,k,n ≥ k > 0 be integers. Prove that the
greatest common divisor of the numbers�

n
k

�
,

�
n+1

k

�
, . . . ,

�
n+k

k

�
is 1.

(Hint: Prove

kX
j=0

(−1) j
�

k
j

��
n+ j

k

�
= (−1)k.)

268 Problem Let Fn = 22n
+ 1 be then-th Fermat number.

Find (Fn,Fm).

269 Problem Find the greatest common divisor of the se-
quence

16n +10n−1, n = 1,2, . . . .

270 Problem Demonstrate that(n!+1,(n+1)!+1) = 1.

271 Problem Prove that any natural numbern > 17 can be
written asn = a+ b+ c wherea,b,c are pairwise relatively
prime natural numbers each exceeding 1.

(Hint: Considern mod 12. Write two of the summands in the
form 6k+s and the third summand as a constant.)

272 Problem Prove that there are no positive integersa,b,n>
1 with

(an −bn)|(an +bn).

273 Problem Prove that the binomial coefficients have the
following hexagonal property:

gcd
��

n−1
k−1

�
,

�
n

k+1

�
,

�
n+1

k

��
equals

gcd
��

n−1
k

�
,

�
n+1
k+1

�
,

�
n

k−1

��
.

274 Problem (Putnam, 1974) Call a set of integersconspir-
atorial if no three of them are pairwise relatively prime. What
is the largest number of elements in any conspiratorial subset
of the integers 1 through 16?

4.2 Primes
Recall that aprime numberis a positive integer greater than 1 whose only positive divisors are itself and 1. Clearly 2 is the only
even prime and so 2 and 3 are the only consecutive integers which are prime. An integer different from 1 which is not prime is
calledcomposite.It is clear that ifn > 1 is composite then we can writen asn = ab,1 < a≤ b < n,a,b∈ N.

275 Theorem If n > 1, thenn is divisible by at least one prime.

Proof: Since n> 1, it has at least one divisor> 1. By the Well Ordering Principle, n must have a least positive
divisor greater than 1, say q. We claim that q is prime. For if not then we can write q as q= ab,1< a≤ b< q. But
then a is a divisor of n greater than 1 and smaller than q, whichcontradicts the minimality of q.❑

276 Theorem (Euclid) There are infinitely many primes.

Proof: Let p1, p2, . . . pk be a list of primes. Construct the integer

n = p1p2 · · · pk +1.
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This integer is greater than1 and so by the preceding problem, it must have a prime divisor p. Observe that p must
be different from any of p1, p2, . . . , pk since n leaves remainder1 upon division by any of the pi . Thus we have
shown that no finite list of primes exhausts the set of primes,i.e., that the set of primes is infinite.❑

277 Lemma The product of two numbers of the form 4k+1 is again of that form.

Proof: (4a+1)(4b+1) = 4(4ab+a+b)+1.❑

278 Theorem There are infinitely many primes of the form 4n+3.

Proof: Any prime either equals2, or is of the form4k±1. We will show that the collection of primes of the form
4k−1 is inexhaustible. Let

{p1, p2, . . . pn}
be any finite collection of primes of the form4k−1. Construct the number

N = 4p1p2 · · · pn −1.

Since each pk is ≥ 3,N ≥ 11. Observe that N is not divisible by any of the primes in our collection. Now either N
is a prime, in which case it is a prime of the form4k−1 not on the list, or it is a product of primes. In the latter
case, all of the prime factors of N cannot be of the form4k+ 1, for the product of any two primes of this form is
again of this form, in view of the preceding problem. Thus N must be divisible by some prime of the form4k− 1
not on the list. We have thus shown that given any finite list ofprimes of the form4k−1 we can always construct
an integer which is divisible by some prime of the form4k−1 not on that list. The assertion follows.❑

279 Example Prove that there are arbitrarily long strings that do not contain a prime number.

Solution: Letk∈ N,k≥ 2. Then each of the numbers

k!+2, . . . ,k!+k

is composite.

280 Theorem If the positive integern is composite, then it must have a prime factorp with p≤
√

n.

Proof: Suppose that n= ab,1 < a≤ b < n. If both a and b are>
√

n, then n= ab>
√

n
√

n = n, a contradiction.
Thus n has a factor6= 1 and≤

√
n, and hence a prime factor, which is≤

√
n. ❑

281 Example Find the number of prime numbers≤ 100.

Solution: Observe that
√

100= 10. By the preceding theorem, all the composite numbers in the range 10≤ n ≤ 100 have
a prime factor amongst 2,3,5, or 7. LetAm denote the multiples ofM which are≤ 100. Then|A2| = 50, |A3| = 33, |A5| =
20, |A7|= 14, |A6|= 16, |A10|= 10, |A14|= 7, |A15|= 6, |A21|= 4, |A35|= 2, |A30|= 3, |A42|= 2, |A70|= 1, |A105|= 0, |A210|= 0.
Thus the number of primes≤ 100 is

= 100−( number of composites≤ 1)−1
= 4+100− multiples of 2, 3, 5,or 7≤ 100−1
= 4+100−(50+33+20+14)+(16+10+7+6+4+2)

−(3+2+1+0)−0−1
= 25,

where we have subtracted the 1, because 1 is neither prime norcomposite.

282 Lemma If p is a prime,

�
p
k

�
is divisible byp for all 0 < k < p.
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Proof: �
p
k

�
=

p(p−1) · · ·(p−k+1)

k!

yields

k!

�
p
k

�
= p(p−1) · · ·(p−k+1),

whence p|k!
�

p
k

�
. Now, as k< p, p 6 |k!. By Euclid’s Lemma, it must be the case that p|

�
p
k

�
.❑

283 Example Prove that ifp is a prime, thenp divides 2p −2.

Solution: By the Binomial Theorem:

2p −2 = (1+1)p −2 =

�
p
1

�
+

�
p
2

�
+ · · ·+

�
p

p−1

�
,

as

�
p
0

�
=

�
p
p

�
= 1. By the preceding lemma,p divides each of the terms on the dextral side of the above. This establishes the

assertion.

Practice

284 Problem Prove that there are infinitely many primes of
the form 6n+5.

285 Problem Use the preceding problem to show that there
are infinitely many primesp such thatp−2 is not a prime.

286 Problem If p and q are consecutive odd primes, prove
that the prime factorisation ofp+q has at least three (not nec-
essarily distinct) primes.

287 Problem 1. Let p be a prime and letn∈ N. Prove, by
induction onn, thatp|(np −n).

2. Extend this result to alln∈ Z.

3. ProveFermat’s Little Theorem: if p 6 |n, thenp|(np−1 −

1).

4. Prove that 42|n7 −n,n∈ Z.

5. Prove that 30|n5 −n,n∈ Z.

288 Problem Let p be an odd prime and let(a,b) = 1. Prove
that �

a+b,
ap +bp

a+b

�
dividesp.

289 Problem Prove that 3,5,7 is the only prime triplet of the
form p, p+2, p+4.

290 Problem Let n > 2. Prove that if one of the numbers
2n −1 and 2n +1 is prime, then the other is composite.

4.3 Fundamental Theorem of Arithmetic
Consider the integer 1332. It is clearly divisible by 2 and so we obtain 1332= 2 ·666. Now, 666 is clearly divisible by 6, and
so 1332= 2·2·3·111. Finally, 111 is also divisible by 3 and so we obtain 1332= 2·2·3·3·37. We cannot further decompose
1332 as a product of positive integers greater than 1, as all 2,3,37 are prime. We will show now that such decomposition is
always possible for a positive integer greater than 1.

291 Theorem Every integer greater than 1 is a product of prime numbers.

Proof: Let n> 1. If n is a prime, then we have nothing to prove. Assume that n is composite and let q1 be its least
proper divisor. By Theorem 4.5, q1 is a prime. Set n= q1n1,1 < n1 < n. If n1 is a prime, then we arrived at the
result. Otherwise, assume that n1 is composite, and let q2 be its least prime divisor, as guaranteed by Theorem 4.5.
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We can write then n= q1q2n2,1< n2 < n1 < n. Continuing the argument, we arrive at a chain n> n1 > n2 · · ·> 1,
and this process must stop before n steps, as n is a positive integer. Eventually we then have n= q1q2 · · ·qs. ❑

We may arrange the prime factorisation obtained in the preceding Theorem as follows,

n = pa1
1 pa2

2 · · · pak
k , a1 > 0,a2 > 0, . . . ,ak > 0,

p1 < p2 < · · · < pk,

where thep j are primes. We call the preceding factorisation ofn, thecanonical factorisationof n. For example 23325273 is the
canonical factorisation of 617400.

292 Theorem (Fundamental Theorem of Arithmetic) Every integer> 1 can be represented as a product of primes in only
one way, apart from the order of the factors.

Proof: We prove that a positive integer greater than 1 can only have one canonical factorisation. Assume that

n = pa1
1 pa2

2 · · · pas
s = qb1

1 qb2
2 · · ·qbt

t

are two canonical factorisations of n. By Euclid’s Lemma (example 1.2) we conclude that every p mustbe a q and
every q must be a p. This implies that s= t. Also, from p1 < p2 < · · ·< ps and q1 < q2 < · · ·< qt we conclude that
p j = q j ,1≤ j ≤ s.

If a j > b j for some j then, upon dividing by p
b j
j , we obtain

pa1
1 pa2

2 · · · pa j−b j
j · · · pas

s = pb1
1 pb2

2 · · · pb j−1
j−1 p

b j+1
j+1 · · · pbs

s ,

which is impossible, as the sinistral side is divisible by pj and the dextral side is not. Similarly, the alternative
a j < b j for some j is ruled out and so aj = b j for all j. This finishes the proof.❑

It is easily seen, by the Fundamental Theorem of Arithmetic,that if a has the prime factorisationa = pa1
1 pa2

2 · · · pan
n andb

has the prime factorisationb = pb1
1 pb2

2 · · · pbn
n , (it may be the case that some of theak and some of thebk are zero) then

(a,b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n . (4.1)

and also
[a,b] = pmax(a1,b1)

1 pmax(a2,b2)
2 · · · pmax(an,bn)

n . (4.2)

Sincex+y = max(x,y)+min(x,y), it clearly follows that

ab= (a,b)[a,b].

293 Example Prove that
√

2 is irrational.

Solution: Assume that
√

2 = a/b with relatively prime natural numbersa,b. Then 2b2 = a2. The sinistral side of this last
equality has an odd number of prime factors (including repetitions), whereas the dextral side has an even number of prime
factors. This contradicts the Fundamental Theorem of Arithmetic.

294 Example Prove that if the polynomial

p(x) = a0xn +a1xn−1 + · · ·+an−1x+an

with integral coefficients assumes the value 7 for four integral values ofx, then it cannot take the value 14 for any integral value
of x.
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Solution: First observe that the integer 7 can be decomposedinto at most three different integer factors 7= −7(1)(−1). Assume
that p(ak)−7 = 0 for distinctak,1≤ k≤ 4. Then

p(x)−7 = (x−a1)(x−a2)(x−a3)(x−a4)q(x)

for a polynomialq with integer coefficients. Assume that there is an integerM with p(m) = 14. Then

7 = p(m)−7 = (m−a1)(m−a2)(m−a3)(m−a4)q(m).

Since the factorsm−ak are all distinct, we have decomposed the integer 7 into at least four different factors. This is impossible,
by the Fundamental Theorem of Arithmetic.

295 Example Prove that the product of three consecutive integers is never a perfect power (i.e., a perfect square or a perfect
cube, etc.).

Solution: Let the integer be(n−1)n(n+1) = (n2−1)n. Sincen2−1 andn are relatively prime, by the Fundamental Theorem of
Arithmetic,n2−1 is a perfectkth power(k≥ 2) andn is also a perfectkth power. But then,n2−1 andn2 would beconsecutive
perfectkth powers, sheer nonsense.

296 Example Prove thatm5 +3m4n−5m3n2 −15m2n3 +4mn4 +12n5 is never equal to 33.

Solution: Observe that
m5 +3m4n−5m3n2 −15m2n3 +4mn4 +12n5

= (m−2n)(m−n)(m+n)(m+2n)(m+3n).

Now, 33 can be decomposed as the product of at most four different integers 33= (−11)(3)(1)(−1). If n 6= 0, the factors in the
above product are all different. They cannot be multiply to 33, by the Fundamental Theorem of Arithmetic, as 33 is the product
of 4 different factors and the expression above is the product of 5 different factors forn 6= 0.. If n= 0, the product of the factors
is m5, and 33 is clearly not a fifth power.

297 Example Prove that the sum
S= 1/2+1/3+1/4+ · · ·+1/n

is never an integer.

Solution: Letk be the largest integer such that 2k ≤ n, andP the product of all the odd natural numbers not exceedingn. The

number 2k−1PSis a sum, all whose terms, except for 2k−1P
1
2k , are integers.

298 Example Prove that there is exactly one natural number n for with 28 +211+2n is a perfect square.

Solution: If k2 = 28 + 211 + 2n = 2304+ 2n = 482 + 2n, then k2 − 482 = (k− 48)(k+ 48) = 2n. By unique factorisation,
k−48= 2s,k+48= 2t ,s+ t = n. But then 2t −2s = 96= 3·25 or 2s(2t−s−1) = 3·25. By unique factorisation,s= 5, t −s= 2,
giving s+ t = n = 12.

299 Example Prove that in any set of 33 distinct integers with prime factors amongst{5,7,11,13,23}, there must be two
whose product is a square.

Solution: Any number in our set is going to have the form

5a7b11c13d23f .

Thus to each number in the set, we associate a vector(a,b,c,d, f ). These vectors come in 32 different flavours, according to
the parity of the components. For example (even, odd, odd, even, odd) is one such class. Since we have 33 integers, two (at
least) will have the same parity in their exponents, and the product of these two will be a square.
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300 Example (IMO, 1985) Given a setM of 1985 distinct positive integers, none with a prime factorgreater than 26, prove
thatM contains a subset of four distinct elements whose product isthe fourth power of an integer.

Solution: Any number in our set is going to be of the form

2a3b5c7d11f 13g17h19j23k.

Thus if we gather 513 of these numbers, we will have two different ones whose product is a square.
Start weeding out squares. Since we have 1985> 513 numbers, we can find a pair of distincta1,b1 such thata1b1 = c2

1.
Delete this pair. From the 1983 integers remaining, we can find a pair of distincta2,b2 such thata2b2 = c2

2. Delete this pair.
From the 1981 integers remaining, we can find a paira3,b3 such thata3b3 = c2

3. We can continue this operation as long as
we have at least 513 integers. Thus we may perform this operation n+1 times, weren is the largest positive integer such that
1985− 2n≥ 513, i.e., n = 736. Therefore, we are able to gather 737 pairsak,bk such thatakbk = c2

k. Now, the 737 numbers
ck have all their prime factors smaller than 26, and since 737> 513, we may find two distinctcm sayci andc j , i 6= j, such that
cic j = a2, a perfect square. But thencic j = a2 implies thataibia jb j = a4, a fourth power. Thus we have found four distinct
numbers in our set whose product is a fourth power.

301 Example Let any fifty one integers be taken from amongst the numbers 1,2, . . . ,100. Show that there must be one that
divides some other.

Solution: Any of the fifty one integers can be written in the form 2am, wherem is odd. Since there are only fifty odd integers
between 1 and 100, there are only fifty possibilities form. Thus two (at least) of the integers chosen must share the same odd
part, and thus the smaller will divide the larger.

302 Example (USAMO 1972) Prove that

[a,b,c]2

[a,b][b,c][c,a]
=

(a,b,c)2

(a,b)(b,c)(c,a)
.

Solution: Put
a =
Y

pαk
k , b =

Y
pβk

k , c =
Y

pγk
k ,

with primespk. The assertion is equivalent to showing

2max(αk,βk,γk)−max(αk,βk)−max(αk,γk)−max(βk,γk)

= 2min(αk,βk,γk)−min(αk,βk)−min(αk,γk)−min(βk,γk).

By symmetry, we may assume, without loss of generality, thatαk ≥ βk ≥ γk. The equation to be established reduces thus to the
identity

2αk −αk −αk −βk = 2γk −βk −γk −γk.

303 Example Prove thatn = 24 is the largest natural number divisible by all integrala,1≤ a≤
√

n.

Solution: Supposen is divisible by all the integers≤
√

n. Let p1 = 2, p2 = 3, . . . , pl be all the primes≤
√

n, and letk j be the

unique integers such thatp
k j
j ≤

√
n < p

k j+1
j . Clearlynl/2 < pk1+1

1 pk2+1
2 · · · pkl +1

l . Let lcm(1,2,3, . . . ,T
√

nU− 1,T
√

nU) = K.

Clearly thenK = pk1
1 pk2

2 · · · pkl
l . Hencepk1+1

1 pk2+1
2 · · · pkl +1

l ≤ K2 and thusnl/2 < K2. By hypothesis,n must be divisible byK

and soK ≤ n. Consequently,nl/2 < n2. This implies thatl < 4 and son < 49. By inspection, we see that the only valid values
for n aren = 2,4,6,8,12,24.

304 Example (Irving Kaplansky) A positive integern has the property that for 0< l < m< n,

S= l +(l +1)+ . . .+m

is never divisible byn. Prove that this is possible if and only ifn is a power of 2.
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Solution: Setn = s2k with s odd. If s= 1,2S= (l + m)(m− l + 1), which has one factor even and one factor odd, cannot be
divisible by 2n= 2k+1, since, its even factor is less than 2n. But if s> 1, thenS is divisible byn, with 0< l < m< n, if we take

m= (s+2k+1 −1)/2

and

l =

�
1+m−2k+1, s> 2k+1,

1+m−s, s< 2k+1.

305 Example Let 0< a1 < a2 < · · · < ak ≤ n, wherek > T
n+1

2
U, be integers. Prove that

a1 +a j = ar

is soluble.

Solution: Thek− 1 positive integersai − a1,2≤ i ≤ k, are clearly distinct. These, together with thek given distincta’s, give
2k−1 > n positive integers, each not greater thann. Hence, at least one of the integers is common to both sets, sothat at least
oncear −a1 = a j .

The sequenceTn/2U+1,Tn/2U+2, . . . ,n, shows that fork = T(n+1)/2U the result is false.

306 Example Let 0< a1 < a2 < · · · < an ≤ 2n be integers such that the least common multiple of any two exceeds 2n. Prove

thata1 > T
2n
3

U.

Solution: It is clear that no one of the numbers can divide another (otherwise we would have an lcm≤ 2n). Hence, writing
ak = 2tkAk, Ak odd, we see that all theAk are different. Since there aren of them, they coincide in some order with the set of all
positive odd numbers less than 2n.

Now, considera1 = 2t1A1. If a1 ≤ T2n/3U, then 3a1 = 2t13A1 ≤ 2n, and 3A1 < 2n. Since 3A1 would then be an odd number
< 2n, 3A1 = A j for some j, anda j = 2t j 3A1. Thus either[a1,a j ] = 2t13A1 = 3a1 ≤ 2n, or [a1,a j ] = 2t j 3A1 = a j ≤ 2n. These
contradictions establish the assertion.

307 Example (Putnam, 1980) Derive a formula for the number of quadruples(a,b,c,d) such that

3r7s = [a,b,c] = [b,c,d] = [c,d,a] = [d,a,b].

Solution: By unique factorisation, each ofa,b,c,d must be of the form 3m7n,0≤ m≤ r,0≤ n≤ s. Moreover,M must equal

r for at least two of the four numbers, andn must equals for at least two of the four numbers. There are

�
4
2

�
r2 = 6r2 ways

of choosing exactly two of the four numbers to have exponentr,

�
4
3

�
r = 4r ways of choosing exactly three to have exponent

r and

�
4
4

�
= 1 of choosing the four to have exponentr. Thus there is a total of 1+ 4r + 6r2 of choosing at least two of the

four numbers to have exponentr. Similarly, there are 1+ 4s+ 6s2 ways of choosing at least two of the four numbers to have
exponents. The required formula is thus

(1+4r +6r2)(1+4s+6s2).

Practice

308 Problem Prove that log107 is irrational. 309 Problem Prove that

log3
log2
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is irrational.

310 Problem Find the smallest positive integer such thatn/2
is a square andn/3 is a cube.

311 Problem How many integers from 1 to 1020 inclusive,
are not perfect squares, perfect cubes, or perfect fifth powers?

312 Problem Prove that the sum

1/3+1/5+1/7+ · · ·+1/(2n+1)

is never an integer.

(Hint: Look at the largest power of 3≤ n).

313 Problem Find min
k≥1

36k −5k.

(Hint: Why is 36k −1−5k 6= 0?)

314 Problem (AIME 1987) Find the number of ordered
triples (a,b,c) of positive integers for which[a,b] =

1000, [b,c] = [a,c] = 2000.

315 Problem Find the number of ways of factoring 1332
as the product of two positive relatively prime factors each
greater than 1. Factorisations differing in order are considered
the same.

Answer: 3.

316 Problem Let p1, p2, . . . , pt be different primes and
a1,a2, . . .at be natural numbers. Find the number of ways of
factoringpa1

1 pa2
2 · · · pat

t as the product of two positive relatively
prime factors each greater than 1. Factorisations differing in
order are considered the same.

Answer: 2t−1 −1.

317 Problem Letn= pa1
1 pa2

2 · · · pat
t andm= pb1

1 pb2
2 · · · pbt

t , the
p’s being different primes. Find the number of the common
factors ofm andn.

Answer:
tY

k=1

(1+min(ak,bk)).

318 Problem (USAMO 1973) Show that the cube roots of
three distinct prime numbers cannot be three terms (not neces-
sarily consecutive) of an arithmetic progression.

319 Problem Let 2= p1,3= p2, . . . be the primes in their nat-
ural order and suppose thatn≥ 10 and that 1< j < n. Set

N1 = p1p2 · · · p j−1 −1,N2 = 2p1p2 · · · p j−1 −1, . . .

and
Np j = p j p1p2 · · · p j−1 −1

Prove

1. Eachpi , j ≤ i ≤ n, divides at most one of theNpk,1 ≤
k≤ j

2. There is aj,1 < j < n, for which p j > n− j +1.

3. Let s be the smallestj for which p j > n− j + 1. There
is at,1≤ t ≤ ps, such that all ofp1, . . . pn fail to divide
t p1p2 · · · ps−1 −1, and hencepn+1 < p1p2 · · · ps.

4. Thesabove is> 4 and sops−1−2≥ sandp1p2 · · · ps <
ps+1 · · · pn.

5. (Bonse’s Inequality) Forn≥ 4, p2
n+1 < p1 · · · pn.

320 Problem Prove that 30 is the only integern with the fol-
lowing property: if 1≤ t ≤ n and(t,n) = 1, thent is prime.

321 Problem (USAMO 1984) 1. For which positive inte-
gersn is there a finite setSn of n distinct positive inte-
gers such that the geometric mean of any subset ofSn is
an integer?

2. Is there aninfinitesetSof distinct positive integers such
that the geometric mean of any finite subset ofS is an
integer.

322 Problem 1. (Putnam 1955) Prove that there is no
triplet of integers(a,b,c), except for(a,b,c) = (0,0,0)

for which
a+b

√
2+c

√
3 = 0.

2. (Putnam 1980) Prove that there exist integers a, b, c, not
all zero and each of absolute value less than a million,
such that

|a+b
√

2+c
√

3| < 10−11.

3. (Putnam 1980) Let a,b,c be integers, not all zero and
each of absolute value less than a million. Prove that

|a+b
√

2+c
√

3| > 10−21.

323 Problem (E őtv ős 1906) Let a1,a2, . . . ,an be any permu-
tation of the numbers 1,2, . . . ,n. Prove that ifn is odd, the
product

(a1 −1)(a2 −2) · · ·(an −n)

is an even number.
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324 Problem Prove that from any sequence formed by ar-
ranging in a certain way the numbers from 1 to 101, it is always
possible to choose 11 numbers (which must not necessarily be
consecutive members of the sequence) which form an increas-
ing or a decreasing sequence.

325 Problem Prove that from any fifty two integers it is al-
ways to choose two, whose sum, or else, whose difference, is
divisible by 100.

326 Problem Prove that from any one hundred integers it is
always possible to choose several numbers (or perhaps, one
number) whose sum is divisible by 100.

327 Problem Given n numbersx1,x2, . . . ,xn each of which is
equal to±1, prove that if

x1x2 +x2x3 + · · ·+xnx1 = 0,

thenn is a multiple of 4.



Chapter 5
Linear Diophantine Equations

5.1 Euclidean Algorithm

We now examine a procedure that avoids factorising two integers in order to obtain their greatest common divisor. It is called the
Euclidean Algorithmand it is described as follows. Leta,b be positive integers. After using the Division Algorithm repeatedly,
we find the sequence of equalities

a = bq1 + r2, 0 < r2 < b,
b = r2q2 + r3 0 < r3 < r2,
r2 = r3q3 + r4 0 < r4 < r3,
...

...
...

...
rn−2 = rn−1qn−1 + rn 0 < rn < rn−1,
rn−1 = rnqn.

(5.1)

The sequence of remainders will eventually reach arn+1 which will be zero, sinceb, r2, r3, . . . is a monotonically decreasing
sequence of integers, and cannot contain more thanb positive terms.

The Euclidean Algorithm rests on the fact, to be proved below, that(a,b) = (b, r2) = (r2, r3) = · · · = (rn−1, rn) = rn.

328 Theorem Prove that ifa,b,n are positive integers, then

(a,b) = (a+nb,b).

Proof: Set d= (a,b),c = (a+nb,b). As d|a,d|b, it follows that d|(a+nb). Thus d is a common divisor of both
(a+nb) and b. This implies that d|c. On the other hand, c|(a+nb),c|b imply that c|((a+nb)−nb) = a. Thus c is
a common divisor of a and b, implying that c|d. This completes the proof.❑

329 Example Use Theorem328to find (3456,246).

Solution: (3456,246) = (13·246+ 158,246) = (158,246), by the preceding example. Now,(158,246) = (158,158+ 88) =

(88,158). Finally, (88,158) = (70,88) = (18,70) = (16,18) = (2,16) = 2. Hence(3456,246) = 2.

330 Theorem If rn is the last non-zero remainder found in the process of the Euclidean Algorithm, then

rn = (a,b).

48



Euclidean Algorithm 49

Proof: From equations5.1
r2 = a−bq1

r3 = b− r2q2

r4 = r2 − r3q3
...

...
...

rn = rn−2 − rn−1qn−1

Let r = (a,b). From the first equation, r|r2. From the second equation, r|r3. Upon iterating the process, we see that
r|rn.

But starting at the last equation5.1 and working up, we see that rn|rn−1, rn|rn−2, . . . rn|r2, rn|b, rn|a. Thus rn is a
common divisor of a and b and so rn|(a,b). This gives the desired result.❑

331 Example Find (23,29) by means of the Euclidean Algorithm.

Solution: We have
29= 1·23+6,

23= 3·6+5,

6 = 1·5+1,

5 = 5·1.

The last non-zero remainder is 1, thus(23,29) = 1.
An equation which requires integer solutions is called adiophantine equation. By the Bachet-Bezout Theorem, we see that

the linear diophantine equation
ax+by= c

has a solution in integers if and only if(a,b)|c. The Euclidean Algorithm is an efficient means to find a solution to this equation.

332 Example Find integersx,y that satisfy the linear diophantine equation

23x+29y = 1.

Solution: We work upwards, starting from the penultimate equality in the preceding problem:

1 = 6−1·5,

5 = 23−3·6,

6 = 29·1−23.

Hence,
1 = 6−1·5

= 6−1· (23−3·6)

= 4·6−1·23
= 4(29·1−23)−1·23
= 4·29−5·23.

This solves the equation, withx = −5,y = 4.

333 Example Find integer solutions to
23x+29y = 7.

Solution: From the preceding example, 23(−5)+29(4) = 1. Multiplying both sides of this equality by 7,

23(−35)+29(28) = 7,

which solves the problem.
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334 Example Find infinitely many integer solutions to

23x+29y = 1.

Solution: By Example332, the pairx0 = −5,y0 = 4 is a solution. We can find a family of solutions by letting

x = −5+29t, y = 4−23t, t ∈ Z.

335 Example Can you find integersx, y such that 3456x+246y = 73?

Solution: No.(3456,246) = 2 and 26 |73.

336 Theorem Assume thata, b, c are integers such that(a,b)|c. Then given any solution(x0,y0) of the linear diophantine
equation

ax+by= c

any other solution of this equation will have the form

x = x0 + t
b
d

, y = y0 − t
a
d

,

whered = (a,b) andt ∈ Z.

Proof: It is clear that if(x0,y0) is a solution of ax+by= c, then x= x0 + tb/d,y = y0 − ta/d is also a solution.
Let us prove that any solution will have this form.

Let (x′,y′) satisfy ax′ +by′ = c. As ax0 +by0 = c also, we have

a(x′ −x0) = b(y0 −y′).

Dividing by d= (a,b),
a
d

(x′ −x0) =
b
d

(y0 −y′).

Since(a/d,b/d) = 1,
a
d
|(y0 − y′), in virtue of Euclid’s Lemma. Thus there is an integer t such that t

a
d

= y0 − y′,

that is, y= y0 − ta/d. From this
a
d

(x′ −x0) =
b
d

t
a
d

,

which is to say x′ = x0 + tb/d. This finishes the proof.❑

337 Example Find all solutions in integers to
3456x+246y = 234.

Solution: By inspection, 3456(−1) + 246(15) = 234. By Theorem336, all the solutions are given byx = −1+ 123t,y =

15−1728t, t ∈ Z.

Practice

338 Problem Find the following:

1. (34567,987)

2. (560,600)

3. (4554,36)

4. (8098643070,8173826342)

339 Problem Solve the following linear diophantine equa-
tions, provided solutions exist:
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1. 24x+25y = 18

2. 3456x+246y = 44

3. 1998x+2000y = 33

340 Problem Prove that the area of the triangle whose ver-

tices are(0,0),(b,a),(x,y) is

|by−ax|
2

.

341 Problem A woman pays $2.78 for some bananas and
eggs. If each banana costs $0.69 and each egg costs $0.35,
how many eggs and how many bananas did the woman buy?

5.2 Linear Congruences
We recall that the expressionax≡ b modn means that there ist ∈ Z such thatax= b+nt. Hence, the congruencial equation
in x, ax≡ b modn is soluble if and only if the linear diophantine equationax+ ny = b is soluble. It is clear then that the
congruence

ax≡ b mod n

has a solution if and only if(a,n)|b.

342 Theorem Let a, b, n be integers. If the congruenceax≡ b mod n has a solution, then it has(a,n) incongruent solutions
modn.

Proof: From Theorem336we know that the solutions of the linear diophantine equation ax+ ny= b have the
form x= x0 + nt/d,y = y0 − at/d,d = (a,n), t ∈ Z, where x0,y0 satisfy ax0 + ny= b. Letting t take on the values
t = 0,1, . . .((a,n)−1), we obtain(a,n) mutually incongruent solutions, since the absolute difference between any
two of them is less than n. If x = x0 +nt′/d is any other solution, we write t′ as t′ = qd+ r,0≤ r < d. Then

x = x0 +n(qd+ r)/d
= x0 +nq+nr/d
≡ x0 +nr/d mod n.

Thus every solution of the congruence ax≡ b modn is congruent modn to one and only one of the d values
x0 + nt/d,0 ≤ t ≤ d − 1. Thus if there is a solution to the congruence, then there are dincongruent solutions
modn.❑

343 Example Find all solutions to the congruence 5x≡ 3 mod 7

Solution: Notice that according to Theorem342, there should only be one solution mod 7, as(5,7) = 1. We first solve the
linear diophantine equation 5x+7y = 1. By the Euclidean Algorithm

7 = 5·1+2
5 = 2·2+1
2 = 2·1.

Hence,
1 = 5−2·2
2 = 7−5·1,

which gives
1 = 5−2·2 = 5−2(7−5·1) = 5·3−7·2.

Whence 3= 5(9)−7(6). This gives 5·9≡ 3 mod 7 which is the same as 5·2≡ 3 mod 7. Thusx≡ 2 mod 7.

344 Example Solve the congruence
3x≡ 6 mod 12.
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Solution: As(3,12) = 3 and 3|6, the congruence has three mutually incongruent solutions. By inspection we see thatx = 2 is
a solution. By Theorem336, all the solutions are thus of the formx = 2+4t, t ∈ Z. By letting t = 0,1,2, the three incongruent
solutions modulo 12 aret = 2,6,10.

We now add a few theorems and definitions that will be of use in the future.

345 Theorem Let x, y be integers and leta, n be non-zero integers. Then

ax≡ ay mod n

if and only if

x≡ y mod
n

(a,n)
.

Proof: If ax≡ ay modn then a(x−y) = sn for some integer s. This yields

(x−y)
a

(a,n)
= s

n
(a,n)

.

Since(a/(a,n),n/(a,n)) = 1 by Theorem240, we must have

n
(a,n)

|(x−y),

by Euclid’s Lemma (Lemma239). This implies that

x≡ y mod
n

(a,n)
.

Conversely if x≡ y mod
n

(a,n)
implies

ax≡ ay mod
an

(a,n)
,

upon multiplying by a. As (a,n) divides a, the above congruence implies a fortiori that ax− ay = tn for some
integer t. This gives the required result.❑

Theorem345gives immediately the following corollary.

346 Corollary If ax≡ ay modn and(a,n) = 1, thenx≡ y modn.

Practice

347 Problem Solve the congruence 50x≡ 12 mod 14. 348 Problem How manyx, 38≤ x≤ 289 satisfy

3x≡ 8 mod 11?

5.3 A theorem of Frobenius
If (a,b) = d > 1 then the linear formax+ by skips all non-multiples ofd. If (a,b) = 1, there is always an integer solution
to ax+ by= n regardless of the integern. We will prove the following theorem of Frobenius that tells un when we will find
nonnegative solutions toax+by= n.

349 Theorem (Frobenius) Let a,b be positive integers. If(a,b) = 1 then the number of positive integers m that cannot be
written in the formar +bs= m for nonnegative integers r, s equals(a−1)(b−1)/2.
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Proof: Let us say that an integer n isattainableif there are nonnegative integers r,s with ar+bs= n. Consider
the infinite array

0 1 2 . . . k . . . a−1
a a+1 a+2 . . . a+k . . . 2a−1

2a 2a+1 2a+2 . . . 2a+k . . . 3a−1
. . . . . . . . . . . . . . . . . . . . .

The columns of this array are arithmetic progressions with common difference a. The numbers directly below a
number n have the form n+ka where k is a natural number. Clearly, if n is attainable, sois n+ka, implying thus
that if an integer n is attainable so is every integer directly below it. Clearly all multiples of b are attainable. We
claim that no two distinct multiples of b,vb and wb with0≤ v,w≤ a− 1 can belong to the same column. If this
were so then we would have vb≡ wb moda. Hence a(v− w) ≡ 0 moda. Since(a,b) = 1 we invoke Corollary
5.1 to deduce v−w≡ 0 moda. Since0≤ v,w≤ a−1, we must have v= w.

Now we show that any number directly above one of the multiples vb,0≤ v≤ a−1 is non-attainable. For a number
directly above vb is of the form vb−ka for some natural number k. If vb−ka were attainable, then ax+by= vb−ka
for some nonnegative integers x,y. This yields by≤ ax+ by= vb− ka< vb. Hence,0 ≤ y < v < a. This implies
that y 6≡ v modb. On the other hand, two numbers on the same column are congruent moda. Therefore we
deduce vb≡ bv− ka≡ ax+ by moda which yields bv≡ by moda. By Corollary346we obtain v≡ y moda.
This contradicts the fact that0≤ y < v < a.

Thus the number of unattainable numbers is precisely the numbers that occur just above a number of the form
vb,0≤ v≤ a−1. Now, on the j-th column, there are(vb− j)/a values above vb. Hence the number of unattainable
numbers is given by

a−1X
v=0

a−1X
j=0

vb− j
a

=
(a−1)(b−1)

2
,

as we wanted to show.❑

The greatest unattainable integer occurs just above(a−1)b, hence the greatest value that is not attainable is(a−1)b−a,
which gives the following theorem.

350 Theorem Let a,b be relatively prime positive integers. Then the equation

ax+by= n

is unsoluble in nonnegative integersx,y for n= ab−a−b. If n> ab−a−b, then the equation is soluble in nonnegative integers.

351 Example (Putnam, 1971) A game of solitaire is played as follows. After each play, according to the outcome, the player
receives eithera or b points, (a,b∈ N,a > b), and his score accumulates from play to play. It has been noticed that there are
thirty five non-attainable scores and that one of these is 58.Find a andb.

Solution: The attainable scores are the nonnegative integers of the formax+ by. If (a,b) > 1, there are infinitely many such
integers. Hence(a,b) = 1. By Theorem349, the number of non-attainable scores is(a−1)(b−1)/2. Therefore,(a−1)(b−1) =

70= 2(35) = 5(14) = 7(10). The conditionsa > b,(a,b) = 1 yield the two possibilitiesa = 71,b = 2 anda = 11,b = 8. As
58= 0 ·71+ 2 ·29, the first alternative is dismissed. The line 11x+ 8y = 58 passes through(6,−1) and(−2,10) and thus it
does not pass through a lattice point in the first quadrant. The unique solution isa = 11,b = 8.

352 Example (AIME, 1994) Ninety-four bricks, each measuring 4′′ × 10′′ × 19′′, are to be stacked one on top of another to
form a tower 94 bricks tall. Each brick can be oriented so it contributes 4′′ or 10′′ or 19′′ to the total height of the tower. How
many different tower heights can be achieved using all 94 of the bricks?
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Solution: Let there bex,y,z bricks of height 4′′,10′′, and 19′′ respectively. We are asking for the number of different sums

4x+10y+19z

with the constraintsx≥ 0,y≥ 0,z≥ 0,x+y+z= 94.

Now, 4x+ 10y+ 19z≤ 19· 94 = 1786. Letting x = 94− y− z, we count the number of different nonnegative integral
solutions to the inequality 376+3(2y+5z)≤ 1786,y+z≤ 94, that is 2y+5z≤ 470,y+z≤ 94. By Theorem350, every integer
≥ (2−1)(5−1) = 4 can be written in the form 2y+5z, and the number of exceptions is(2−1)(5−1)/2= 2, namelyn= 1 and
n= 3. Thus of the 471 nonnegative integersn≤ 470, we see that 469 can be written in the formn= 2y+5z. Usingx= 96−x−y,
n,4≤ n≤ 470 will be “good” only if we have 470−n = 3x+5z. By Theorem349there are(3−1)(5−1)/2 = 4 exceptions,
each≤ 8, namelyn = 1,2,4,7. This means that 463, 466, 468, and 469 are not representable in the form 4x+10y+19z. Then
every integern,0≤ n≤ 470 except for 1, 3, 463, 466, 468, and 469 can be thus represented, and the number of different sums
is 471−6 = 465.

353 Example 1. Let (n,1991) = 1. Prove that
n

1991
is the sum of two positive integers with denominator< 1991 if an

only if there exist integersm,a,b with

(∗) 1≤ m≤ 10, a≥ 1, b≥ 1, mn= 11a+181b.

2. Find the largest positive rational with denominator 1991that cannot be written as the sum of two positive rationals each
with denominators less than 1991.

Solution: (a) If(∗) holds then
n

1991
=

a
181m

+
b

11m
does the trick. Conversely, if

n
1991

=
a
r

+
b
s

for a,b≥ 1,(a, r) = (b,s) = 1,

andr,s< 1991, we may supposer = 181r1,s= 11s1 and thennr1s1 = 11as1 + 181br1, which leads tor1|11as1 and sor1|s1.
Similarly, s1|r1, whencer1 = s1 = m, say, and(∗) follows.
(b) Any n > 170,(n,1991) = 1 satisfies(∗) with b = 1 andM such thatmn is of the formmn≡ 181 mod 11. Formn> 181
except ifm= 1,n≤ 180; but thenn would not be of the formn≡ 181 mod 11.

But n = 170 does not satisfy(∗); for we would have 170≡ 181b mod 11, sob ≡ m mod 11, which yieldsb ≥ m, but
170m< 181. The answer is thus 170/1991.

Practice

354 Problem Let a,b,c be positive real numbers. Prove that
there are at leastc2/2ab pairs of integers(x,y) satisfying

x≥ 0, y≥ 0, ax+by≤ c.

355 Problem (AIME, 1995) What is largest positive integer
that is not the sum of a positive integral multiple of 42 and
a positive composite integer?

356 Problem Let a> 0,b> 0,(a,b) = 1. Then the number of
nonnegative solutions to the equationax+by= n is equal to

[
n
ab

] or [
n
ab

]+1.

(Hint: [s]− [t] = [s− t] or [s− t]+1.)

357 Problem Let a,b ∈ N,(a,b) = 1. Let S(n) denote the
number of nonnegative solutions to

ax+by= n.

Evaluate

lim
n→∞

S(n)

n
.

358 Problem (IMO, 1983) Let a,b,c be pairwise relatively
prime integers. Demonstrate that 2abc− ab− bc− ca is the
largest integer not of the form

bcx+acy+abz, x≥ 0,y≥ 0,z≥ 0.
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5.4 Chinese Remainder Theorem
In this section we consider the case when we have multiple congruences. Consider the following problem: find an integerx
which leaves remainder 2 when divided by 5, is divisible by 7,and leaves remainder 4 when divided by 11. In the language of
congruences we are seekingx such that

x ≡ 2 mod 5,
x ≡ 0 mod 7,
x ≡ 4 mod 11.

One may check thatx = 147 satisfies the requirements, and that in fact, so does the parametric familyx = 147+385t, t ∈ Z.

We will develop a method to solve congruences like this one. The method is credited to the ancient Chinese, and it is thus
called theChinese Remainder Theorem.

359 Example Find x such that
x≡ 3 mod 5 andx≡ 7 mod 11.

Solution: Sincex = 3+5a, we have 11x = 33+55a. As x = 7+11b, we have 5x = 35+55b. Thusx = 11x−10x = 33−70+

55a− 110b. This means thatx ≡ −37≡ 18 mod 55. One verifies that all the numbersx = 18+ 55t, t ∈ Z verify the given
congruences.

360 Example Find a number n such that when divided by 4 leaves remainder 2,when divided by 5 leaves remainder 1, and
when divided by 7 leaves remainder 1.

Solution: We wantn such that
n≡ 2 mod 4,
n≡ 1 mod 5,
n≡ 1 mod 7.

This implies that
35n≡ 70 mod 140,
28n≡ 28 mod 140,
20n≡ 20 mod 140.

As n = 21n−20n, we haven≡ 3(35n−28n)−20n≡ 3(70−28)−20≡ 106 mod 140. Thus alln≡ 106 mod 140 will
do.

361 Theorem (Chinese Remainder Theorem) Let m1,m2, . . .mk be pairwise relatively prime positive integers, each exceed-
ing 1, and leta1,a2, . . .ak be arbitrary integers. Then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2
...

...
...

x ≡ ak mod mk

has a unique solution modulom1m2 · · ·mk.

Proof: Set Pj = m1m2 · · ·mk/mj ,1≤ j ≤ k. Let Qj be the inverse of Pj modmj , i.e., PjQ j ≡ 1 modmj , which
we know exists since all the mi are pairwise relatively prime. Form the number

x = a1P1Q1 +a2P2Q2 + · · ·+akPkQk.

This number clearly satisfies the conditions of the theorem.The uniqueness of the solution modulo m1m2 · · ·mk can
be easily established.❑
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362 Example Can one find one million consecutive integers that are not square-free?

Solution: Yes. Letp1, p2, . . . , p1000000be a million different primes. By the Chinese Remainder Theorem, there exists a solution
to the following system of congruences.

x ≡ −1 mod p2
1,

x ≡ −2 mod p2
2,

...
...

...
...

x ≡ −1000000 modp2
1000000.

The numbersx+1,x+2, . . . ,x+1000000 are a million consecutive integers, each of which isdivisible by the square of a prime.

Practice

363 Problem Solve the following systems:

1. x≡ −1 mod 4;x≡ 2 mod 5

2. 4x≡ 3 mod 7;x≡ 10 mod 11

3. 5x≡ 2 mod 8; 3x≡ 2 mod 9;x≡ 0 mod 11

364 Problem (USAMO 1986) 1. Do there exist fourteen
consecutive positive integers each of which is divisible
by one or more primesp,2≤ p≤ 11?

2. Do there exist twenty-one consecutive integers each of
which is divisible by one or more primesp,2≤ p≤ 13?



Chapter 6
Number-Theoretic Functions

6.1 Greatest Integer Function
The largest integer not exceedingx is denoted byTxU or TxU. We also call this function thefloor function. ThusTxU satisfies
the inequalitiesx− 1 < TxU ≤ x, which, of course, can also be written asTxU ≤ x < TxU+ 1. The fact thatTxU is theunique
integer satisfying these inequalities, is often of use. We also utilise the notation{x} = x−TxU, to denote the fractional part of
x, and||x|| = min

n∈Z
|x−n| to denote the distance of a real number to its nearest integer. A useful fact is that we can write any real

numberx in the formx = TxU+{x},0≤ {x} < 1.
The greatest integer function enjoys the following properties:

365 Theorem Let α ,β ∈ R,a∈ Z,n∈ N. Then

1. Tα +aU = TαU+a

2. T
α
n

U = T
TαU

n
U

3. TαU+TβU ≤ Tα +βU ≤ TαU+TβU+1

Proof:

1. Let m= Tα + aU. Then m≤ α + a < m+ 1. Hence m− a≤ α < m− a+ 1. This means that m− a = TαU,
which is what we wanted.

2. Writeα/n asα/n = Tα/nU+θ,0≤ θ < 1. Since nTα/nU is an integer, we deduce by (1) that

TαU = TnTα/nU+nθU = nTα/nU+TnθU.

Now,0≤ TnθU ≤ nθ < n, and so0≤ TnθU/n < 1. If we letΘ = TnθU/n, we obtain

TαU

n
= T

α
n

U+Θ, 0≤ Θ < 1.

This yields the required result.

3. From the inequalitiesα −1 < TαU ≤ α ,β −1 < TβU ≤ β we getα +β −2 < TαU+TβU ≤ α +β . Since
TαU+TβU is an integer less than or equal toα +β , it must be less than or equal to the integral part ofα +β ,
i.e. Tα +βU. We obtain thusTαU+TβU ≤ Tα +βU. Also,α +β is less than the integerTαU+TβU+2, so
its integer partTα +βU must be less thanTαU+TβU+2, butTα +βU < TαU+TβU+2 yieldsTα +βU ≤
TαU+TβU+1. This proves the inequalities.

❑

57
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366 Example Find a non-zero polynomialP(x,y) such that

P(T2tU,T3tU) = 0

for all realt.

Solution: We claim that 3[2t]−2[3t] = 0,±1 or−2. We can then take

P(x,y) = (3x−2y)(3x−2y−1)(3x−2y+1)(3x−2y+2).

In order to prove the claim, we observe thatTxU has unit period, so it is enough to prove the claim fort ∈ [0,1). We divide
[0,1) as

[0,1) = [0,1/3)∪ [1/3,1/2)∪ [1/2,2/3)∪ [2/3,1).

If t ∈ [0,1/3), then bothT2tU andT3tU are= 0, and so 3T2tU−2T3tU = 0. If t ∈ [1/3,1/2) then[3t] = 1 and[2t] = 0, and so
3T2tU−2T3tU = −2. If t ∈ [1/2,2/3), then[2t] = 1, [3t] = 1, and so 3T2tU−2T3tU = 1. If t ∈ [2/3,1), thenT2tU = 1,T3tU = 2,
and 3T2tU−2T3tU = −1.

367 Example Describe all integersn such that 1+T
√

2nU
���2n.

Solution: Let 2n = m(1+T
√

2nU). If m≤ T
√

2nU− 1 then 2n≤ (T
√

2nU− 1)(T
√

2nU+ 1) = T
√

2nU2 − 1≤ 2n− 1 < 2n, a
contradiction. Ifm≥ T

√
2nU+1, then 2n≥ (T

√
2nU2+1)2 ≥ 2n+1, another contradiction. It must be the case thatm= T

√
2nU.

Conversely, letn =
l(l +1)

2
. Sincel <

√
2n < l + 1, l = T

√
2nU. So all the integers with the required property are the

triangular numbers.

368 Example Prove that the integers

T
�
1+

√
2
�n

U

with n a nonnegative integer, are alternately even or odd.

Solution: By the Binomial Theorem

(1+
√

2)n +(1−
√

2)n = 2
X

0≤k≤n/2

(2)k
�

n
2k

�
:= 2N,

an even integer. Since−1 < 1−
√

2 < 0, it must be the case that(1−
√

2)n is the fractional part of(1+
√

2)n or (1+
√

2)n +1
depending on whethern is odd or even, respectively. Thus for oddn, (1+

√
2)n − 1 < (1+

√
2)n +(1−

√
2)n < (1+

√
2)n,

whence(1+
√

2)n +(1−
√

2)n = T(1+
√

2)nU, always even, and forn even 2N := (1+
√

2)n +(1−
√

2)n = T(1+
√

2)nU+1,
and soT(1+

√
2)nU = 2N−1, always odd for evenn.

369 Example Prove that the first thousand digits after the decimal point in

(6+
√

35)1980

are all 9’s.

Solution: Reasoning as in the preceding problem,

(6+
√

35)1980+(6−
√

35)1980= 2k,



Greatest Integer Function 59

an even integer. But 0< 6−
√

35< 1/10, (for if
1
10

< 6−
√

35, upon squaring 3500< 3481, which is clearly nonsense), and

hence 0< (6−
√

35)1980< 10−1980 which yields

2k−1+ 0.9. . .9| {z }
1979 nines

= 2k−
1

101980 < (6+
√

35)1980< 2k,

This proves the assertion of the problem.

370 Example (Putnam 1948) If n is a positive integer, demonstrate that

T
√

n+
√

n+1U = T
√

4n+2U.

Solution: By squaring, it is easy to see that
√

4n+1 <
√

n+
√

n+1 <
√

4n+3.

Neither 4n+2 nor 4n+3 are squares since squares are either congruent to 0 or 1 mod 4, so

T
√

4n+2U = T
√

4n+3U,

and the result follows.

371 Example Find a formula for then-th non-square.

Solution: LetTn be then-th non-square. There is a natural numbermsuch thatm2 < Tn < (m+1)2. As there aremsquares less
thanTn andn non-squares up toTn, we see thatTn = n+m. We have thenm2 < n+m< (m+1)2 or m2 −m< n < m2 +m+1.

Sincen,m2−m,m2+m+1 are all integers, these inequalities implym2−m+
1
4

< n< m2+m+
1
4

, that is to say,(m−1/2)2 <

n < (m+1/2)2. But thenm= T
√

n+
1
2
U. Thus then-th non-square isTn = n+T

√
n+1/2U.

372 Example (Putnam 1983) Let f (n) = n+T
√

nU. Prove that for every positive integer m, the sequence

m, f (m), f ( f (m)), f ( f ( f (m))), . . .

contains at least one square of an integer.

Solution: Letm= k2 + j,0≤ j ≤ 2k. Split them’s into two sets, the setA of all them with excessj,0≤ j ≤ k and the setB
with all thosem’s with excessj,k < j < 2k+1.

Observe thatk2 ≤ m < (k+ 1)2 = k2 + 2k+ 1. If j = 0, we have nothing to prove. Assume thatm∈ B. As T
√

mU = k,
f (m) = k2+ j +k = (k+1)2+ j −k−1, with 0≤ j −k−1≤ k−1< k+1. This means that eitherf (m) is a square orf (m)∈A.
It is thus enough to consider the alternativem∈ A, in which caseT

√
m+kU = k and

f ( f (m)) = f (m+k) = m+2k = (k+1)2 + j −1.

This means thatf ( f (m)) is either a square orf ( f (m))∈ A with an excessj −1 smaller than the excessj of m. At each iteration
the excess will reduce and eventually it will hit 0, whence wereach a square.

373 Example Solve the equation
Tx2 −x−2U = TxU,

for x∈ R.

Solution: Observe thatTaU = TbU if and only if ∃k ∈ Z with a,b∈ [k,k+1) which happens if and only if|a−b| < 1. Hence,
the given equation has a solution if and only if|x2 −2x−2| < 1. Solving these inequalities it is easy to see that the solution is
thus

x∈ (−1,
1
2
(1−

√
5)]∪ [

1
2
(1+

√
17),

1
2
(1+

√
21)).
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374 Theorem If a,b are relatively prime natural numbers then

a−1X
k=1

T
kb
a

U =

b−1X
k=1

T
ka
b

U =
(a−1)(b−1)

2
.

Proof: Consider the rectangle with vertices at(0,0),(0,b),(a,0),(a,b). This rectangle contains(a− 1)(b− 1)

lattice points, i.e., points with integer coordinates. This rectangle is split into two halves by the line y=
xb
a

.

We claim that there are no lattice points on this line, exceptfor the endpoints. For if there were a lattice point

(m,n),0< m< a,0< n< b, then
n
m

=
b
a

. Thus n/m is a reduction for the irreducible fraction b/a, a contradiction.

The points Lk = (k,
kb
a

),1≤ k≤ a−1 are each on this line. Now,T
kb
a

U equals the number of lattice points on the

vertical line that goes from(k,0) to (k,
kb
a

), i.e.
a−1X
k=1

T
kb
a

U is the number of lattice points on the lower half of the

rectangle. Similarly,
b−1X
k=1

T
ka
b

U equals the number of lattice points on the upper half of the rectangle. Since there

are (a−1)(b−1) lattice points in total, and their number is shared equally by the halves, the assertion follows.❑

375 Example Find the integral part of
106X
k=1

1√
k
.

Solution: The functionx 7→ x−1/2 is decreasing. Thus for positive integerk,

1√
k+1

<

Z k+1

k

dx√
x

<
1√
k
.

Summing fromk = 1 tok = 106 −1 we deduce

106X
k=2

1√
k

<

Z 106

1

dx√
x

<
106−1X
k=1

1√
k
.

The integral is easily seen to be 1998. Hence

1998+1/103 <
106X
k=1

1√
k

< 1999.

The integral part sought is thus 1998.

Practice

376 Problem Prove that for all real numbersx,y,

TxU+Tx+yU+TyU ≤ T2xU+T2yU

holds.

377 Problem If x, y real numbers, when is it true that
TxUTyU ≤ TxyU?

378 Problem If n > 1 is a natural number andα ≥ 1 is a real
number, prove that

[α ] > T
α
n

U.

379 Problem If a, b, n are positive integers, prove that

T
ab
n

U ≥ aT
b
n
U.
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380 Problem Let α be a real number. Prove that[α ]+[−α ] =

−1 or 0 and thatTαU−2Tα/2U = 0 or 1.

381 Problem Prove that

T(2+
√

3)nU

is an odd integer.

382 Problem Show that then-th element of the sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, . . .

where there aren occurrences of the integern is T
√

2n+1/2U.

383 Problem ProveHermite’s Identity: if x is a real number
andn is a natural number then

TnxU = TxU+Tx+
1
n
U+Tx+

2
n
U+ · · ·+Tx+

n−1
n

U.

384 Problem Prove that for all integersm, n, the equality

T
m+n

2
U+T

n−m+1
2

U = n

holds.

385 Problem If a, b, c, d are positive real numbers such that

TnaU+TnbU = TncU+TndU

for all natural numbersn, prove that

a+b = c+d.

386 Problem If n is a natural number, prove that

T
n+2−Tn/25U

3
U = T

8n+24
25

U.

387 Problem Solve the equation

T
x

1994
U = T

x
1995

U.

388 Problem Let [α ,β ] be an interval which contains no inte-
gers. Prove that there is a positive integern such that[nα ,nβ ]

still contains no integers but has length at least 1/6.

389 Problem (IMO 1968) For every natural numbern, evalu-
ate the sum

∞X
k=0

T
n+2k

2k+1 U.

390 Problem (Putnam 1973) Prove that ifn∈ N,

min
k∈N

(k+Tn/kU) = T
√

4n+1U.

391 Problem (Dirichlet’s principle of the hyperbola) Let
N be the number of integer solutions toxy≤ n,x > 0,y > 0.
Prove that

N =

nX
k=1

T
n
k
U = 2

X
1≤k≤√

n

T
n
k
U−T

√
nU2.

392 Problem (Circle Problem) Let r > 0 and letT denote the
number of lattice points of the domainx2+y2 ≤ r2. Prove that

T = 1+4TrU+8
X

0<x≤r
√

2

T
p

r2 −x2U+4T
r√
2
U2.

393 Problem Let d = (a,b). Prove thatX
1≤n≤b−1

T
an
b

U =
(a−1)(b−1)

2
+

d−1
2

.

394 Problem (Eisenstein) If (a,b) = 1 anda,b are odd, thenX
1≤n≤(b−1)/2

T
an
b

U+
X

1≤n≤(a−1)/2

T
bn
a

U =
(a−1)(b−1)

4
.

395 Problem Let m∈ N with m > 1 and lety be a positive
real number. Prove thatX

x

T m

É
y
x
U = TyU,

where the summation runs through all positive integersx not
divisible by themth power of an integer exceeding 1.

396 Problem For which natural numbersn will 112 divide

4n −T(2+
√

2)nU?

397 Problem A triangular numberis a number of the form
1+2+ · · ·+n,n∈N. Find a formula for thenth non-triangular
number.

398 Problem (AIME 1985) How many of the first thousand
positive integers can be expressed in the form

T2xU+T4xU+T6xU+T8xU?

399 Problem (AIME 1987) What is the largest positive inte-
gern for which there is a unique integerk such that

8
15

<
n

n+k
<

7
13

?
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400 Problem Prove that ifp is an odd prime, then

T(2+
√

5)pU−2p+1

is divisible byp.

401 Problem Prove that then-th number not of the form
TekU,k = 1,2, . . . is

Tn = n+Tln(n+1+Tln(n+1)U)U.

402 Problem (Leningrad Olympiad) How many different
integers are there in the sequence

T
12

1980
U,T

22

1980
U, . . . ,T

19802

1980
U?

403 Problem Let k ≥ 2 be a natural number and x a positive
real number. Prove that

T k
√

xU = T k
È

TxUU.

404 Problem 1. Find a real numberx 6= 0 such that
x,2x, . . . ,34x have no 7’s in their decimal expansions.

2. Prove that for any real numberx 6= 0 at least one of
x,2x, . . .79x has a 7 in its decimal expansion.

3. Can you improve the “gap” between 34 and 79?

405 Problem (AIME 1991) Suppose thatr is a real number
for which

91X
k=19

Tr +
k

100
U = 546.

Find the value ofT100rU.

406 Problem (AIME 1995) Let f (n) denote the integer clos-
est ton1/4, whenn is a natural number. Find the exact numer-
ical value of

1995X
n=1

1
f (n)

.

407 Problem Prove thatZ 1

0
(−1)T1994xU+T1995xU

�
1993

T1994xU

��
1994

T1995xU

�
dx= 0.

408 Problem Prove that

T
√

n+
√

n+1U = T
√

n+
√

n+2U.

409 Problem (Putnam 1976) Prove that

lim
n→∞

X
1≤k≤n

�
T

2n
k

U−2T
n
k
U

�
= ln4−1.

410 Problem (Putnam 1983) Prove that

lim
n→∞

1
n

Z n

1

������n
x

������ dx= log3(4/π).

You may appeal toWallis Product Formula:

2
1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· 8
7
· 8
9
· · · = π

2
.

6.2 De Polignac’s Formula
We will consider now the following result due to De Polignac.

411 Theorem (De Polignac’s Formula) The highest power of a primep dividing n! is given by

∞X
k=1

T
n
pk U.

Proof: The number of integers contributing a factor of p isTn/pU, the number of factors contributing a second
factor of p isTn/p2U, etc..❑

412 Example How many zeroes are at the end of 300!?

Solution: The number of zeroes is determined by how many times 10 divides into 300. Since there are more factors of 2 in 300!

than factors of 5, the number of zeroes is thus determined by the highest power of 5 in 300!. By De Polignac’s Formula this is
∞X

k=1

T300/5kU = 60+12+2 = 74.
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413 Example Does

7
����1000

500

�
?

Solution: The highest power of 7 dividing into 1000! is T1000/7U+T1000/72U+T1000/73U = 142+20+2= 164. Similarly,

the highest power of 7 dividing into 500! is 71+ 10+ 1 = 82. Since

�
1000
500

�
=

1000!
(500!)2 , the highest power of 7 that divides�

1000
500

�
is 164−2·82= 0, and so 7 does not divide

�
1000
500

�
.

414 Example Let n = n1 +n2 + · · ·+nk where theni are nonnegative integers. Prove that the quantity

n!

n1!n2! · · ·nk!

is an integer.

Solution: From (3) in Theorem365we deduce by induction that

Ta1U+Ta2U+ · · ·+TalU ≤ Ta1 +a2 + · · ·+alU.

For any primep, the power ofp dividing n! isX
j≥1

Tn/p jU =
X
j≥1

T(n1 +n2 + · · ·+nk)/p jU.

The power ofp dividing n1!n2! · · ·nk! is X
j≥1

Tn1/p jU+Tn2/p jU+ · · ·Tnk/p jU.

Since
Tn1/p jU+Tn2/p jU+ · · ·+Tnk/p jU ≤ T(n1 +n2 + · · ·+nk)/p jU,

we see that the power of any prime dividing the numerator of

n!

n1!n2! · · ·nk!

is at least the power of the same prime dividing the denominator, which establishes the assertion.

415 Example Given a positive integern > 3, prove that the least common multiple of the productsx1x2 · · ·xk(k ≥ 1), whose
factorsxi are the positive integers with

x1 +x2 + · · ·xk ≤ n,

is less thann!.

Solution: We claim that the least common multiple of the numbers in question isY
p

p prime

pTn/pU.

Consider an arbitrary productx1x2 · · ·xk, and an arbitrary primep. Suppose thatpα j |x j , pα j+1 6 |x j . Clearly pα1 + · · ·+ pαk ≤ n
and sincepα ≥ α p, we have

p(α1 + · · ·αk) ≤ n or α1 + · · ·+αk ≤ T
n
p
U.

Hence it follows that the exponent of an arbitrary primep is at mostTn/pU. But on choosingx1 = · · · = xk = p,k = Tn/pU, we
see that there is at least one product for which equality is achieved. This proves the claim.

The assertion of the problem now follows upon applying De Polignac’s Formula and the claim.



64 Chapter 6

Practice

416 Problem (AHSME 1977) Find the largest possiblen such
that 10n divides 1005!.

417 Problem Find the highest power of 17 that divides(17n−

2)! for a positive integern.

418 Problem Find the exponent of the highest power of 24
that divides 300!.

419 Problem Find the largest power of 7 in 300!.

420 Problem (AIME 1983) What is the largest two-digit
prime factor of the integer�

200
100

�
?

421 Problem (USAMO 1975) 1. Prove that

T5xU+T5yU ≥ T3x+yU+T3y+xU.

2. Using the result of part 1 or otherwise, prove that

(5m)!(5n)!

m!n!(3m+n)!(3n+m)!

is an integer for all positive integersm,n.

422 Problem Prove that ifn > 1,(n,6) = 1, then

(2n−4)!

n!(n−2)!

is an integer.

423 Problem (AIME 1992) Define a positive integer n to be a
“factorial tail” if there is some positive integer m such that the
base-ten representation ofm! ends with exactly n zeroes. How
many positive integers less than 1992 arenot factorial tails?

424 Problem Prove that ifm andn are relatively prime posi-
tive integers then

(m+n−1)!

m!n!

is an integer.

425 Problem If p is a prime divisor of

�
2n
n

�
with p≥

√
2n

prove that the exponent of p in the factorisation of

�
2n
n

�
equals 1.

426 Problem Prove that

lcm
��

n
1

�
,

�
n
2

�
, . . . ,

�
n
n

��
=

lcm(1,2, . . . ,n+1)

n+1
.

427 Problem Prove the following result of Catalan:

�
m+n

n

�
divides

�
2m
m

��
2n
n

�
.

6.3 Complementary Sequences
We define thespectrumof a real numberα to be the infinite multiset of integers

Spec(α ) = {TαU,T2αU,T3αU, . . .}.

Two sequencesSpec(α ) and Spec(β) are said to becomplementaryif they partition the natural numbers, i.e.Spec(α )∩
Spec(β) = ∅ andSpec(α )∪Spec(β) = N.

For example, it appears that the two sequences

Spec(
√

2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,25, . . .},

and
Spec(2+

√
2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47,51, . . .}

are complementary. The following theorem establishes a criterion for spectra to be complementary.
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428 Theorem (Beatty’s Theorem, 1926) If α > 1 is irrational and

1
α

+
1
β

= 1,

then the sequences

Spec(α ) andSpec(β)

are complementary.

Proof: Sinceα > 1,β > 1,Spec(α ) and Spec(β) are each sequences of distinct terms, and the total number of
terms not exceeding N taken together in both sequences isTN/αU+TN/βU. But N/α −1+N/β −1 < TN/αU+

[N/β ] < N/α +N/β , the last inequality being strict because bothα ,β are irrational. As1/α +1/β = 1, we gather
that N−2< TN/αU+TN/βU < N. Since the sandwiched quantity is an integer, we deduce[N/α ]+[N/β ] = N−1.
Thus the total number of terms not exceeding N in Spec(α ) and Spec(β) is N−1, as this is true for any N≥ 1 each
interval(n,n+1) contains exactly one such term. It follows that Spec(α )∪Spec(β) = N,Spec(α )∩Spec(β) = ∅.
❑

The converse of Beatty’s Theorem is also true.

429 Theorem (Bang’s Theorem, 1957) If the sequences

Spec(α ) andSpec(β)

are complementary, thenα ,β are positive irrational numbers with

1
α

+
1
β

= 1.

Proof: If bothα ,β are rational numbers, it is clear that Spec(α ), Spec(β) eventually contain the same integers,
and so are not disjoint. Thusα and β must be irrational. If0 < α ≤ 1, given n there is anM for which
mα − 1 < n ≤ mα ; hence n= [mα ], which implies that Spec(α ) = N, whenceα > 1 (and soβ > 1 also). If
Spec(α )∩Spec(β) is finite, then

lim
n→∞

Tn/αU+Tn/βU

n
= 1,

but since(Tn/αU+Tn/βU)
1
n
→ 1/α +1/β as n→ ∞, it follows that1/α +1/β = 1. ❑

430 Example Suppose we sieve the positive integers as follows: we choosea1 = 1 and then deletea1 +1 = 2. The next term
is 3, which we calla2, and then we deletea2 +2 = 5. Thus the next available integer is 4= a3, and we deletea3 +3 = 7, etc.
Thereby we leave the integers 1,3,4,6,8,9,11,12,14,16,17, . . . . Find a formula foran.

Solution: What we are asking for is a sequence{Sn} which is complementary to the sequence{Sn +n}. By Beatty’s Theorem,
TnτU andTnτU+n = Tn(τ +1)U are complementary if 1/τ +1/(τ +1) = 1. But thenτ = (1+

√
5)/2, the Golden ratio. The

n-th term is thusan = TnτU.

Practice

431 Problem (Skolem) Let τ =
1+

√
5

2
be the Golden

Ratio. Prove that the three sequences (n ≥ 1)
{TτTτnUU},{TτTτ 2nUU},{Tτ 2nU} are complementary.
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6.4 Arithmetic Functions
An arithmeticfunction f is a function whose domain is the set of positive integers andwhose range is a subset of the complex
numbers. The following functions are of considerable importance in Number Theory:

d(n) the number of positive divisors of the number n.
σ(n) the sum of the positive divisors of n.
φ(n) the number of positive integers not exceeding

n and relative prime to n.
ω(n) the number of distinct prime divisors of n.
Ω(n) the number of primes dividing n, counting multiplicity.

In symbols the above functions are:

d(n) =
X
d|n

1, σ(n) =
X
d|n

d, ω(n) =
X
p|n

1, Ω(n) =
X
pα ||n

α ,

and
φ(n) =

X
1≤k≤n

(k,n)=1

1.

(The symbol|| in pα ||n is readexactly dividesand it signifies thatpα |n but pα+1 6 |n.)

For example, since 1, 2, 4, 5, 10 and 20 are the divisors of 20, we haved(20) = 6, σ(20) = 42,ω(20) = 2, Ω(20) = 3. Since
the numbers 1,3, 7,9, 11,13, 17,19 are the positive integers not exceeding 20 and relativelyprime to 20, we see thatφ(20) = 8.

If f is an arithmetic function which is not identically 0 such that f (mn) = f (m) f (n) for every pair of relatively prime natural
numbersm,n, we say thatf is then amultiplicative function.If f (mn) = f (m) f (n) for every pair of natural numbersm,n we
say then thatf is totally multiplicative.

Let f be multiplicative and letn have the prime factorisationn = pa1
1 pa2

2 · · · par
r . Then

f (n) = f (pa1
1 ) f (pa2

2 ) · · · f (par
r ).

A multiplicative function is thus determined by its values at prime powers. Iff is multiplicative, then there is a positive integer
a such thatf (a) 6= 0. Hencef (a) = f (1·a) = f (1) f (a) which entails thatf (1) = 1.

We will now show that the functionsd andσ are multiplicative. For this we need first the following result.

432 Theorem Let f be a multiplicative function and letF(n) =
X
d|n

f (d). ThenF is also multiplicative.

Proof: Suppose that a,b are natural numbers with(a,b) = 1. By the Fundamental Theorem of Arithmetic, every
divisor d of ab has the form d= d1d2 where d1|a,d2|b,(d1,d2) = 1. Thus there is a one-to-one correspondence
between positive divisors d of ab and pairs d1,d2 of positive divisors of a and b. Hence, if n= ab,(a,b) = 1 then

F(n) =
X
d|n

f (d) =
X
d1|a

X
d2|b

f (d1d2).

Since f is multiplicative the dextral side of the above equalsX
d1|a

X
d2|b

f (d1) f (d2) =
X
d1|a

f (d1)
X
d2|b

f (d2) = F(a)F(b).

This completes the proof.❑
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Since the functionf (n) = 1 for all natural numbersn is clearly multiplicative (indeed, totally multiplicative), the theorem
above shows thatd(n) =

X
d|n

1 is a multiplicative function. Ifp is a prime, the divisors ofpa are 1, p, p2, p3, . . . , pa and so

d(pa) = a+1. This entails that ifn has the prime factorisationn = pa1
1 pa2

2 · · · par
r , then

d(n) = (1+a1)(1+a2) · · ·(1+ar).

For example,d(2904) = d(23 ·3·112) = d(23)d(3)d(112) = (1+3)(1+1)(1+2) = 24.

We give now some examples pertaining to the divisor function.

433 Example (AHSME 1993) For how many values ofn will an n-sided polygon have interior angles with integral degree
measures?

Solution: The measure of an interior angle of a regularn-sided polygon is
(n−2)180

n
. It follows thatn must divide 180. Since

there are 18 divisors of 180, the answer is 16, becausen≥ 3 and so we must exclude the divisors 1 and 2.

434 Example Prove thatd(n) ≤ 2
√

n.

Solution: Each positive divisora of n can paired with its complementary divisor
n
a

. As n = a· n
a

, one of these divisors must be

≤
√

n. This gives at most 2
√

n divisors.

435 Example Find all positive integers n such thatd(n) = 6.

Solution: Since 6 can be factored as 2·3 and 6·1, the desiredn must have only two distinct prime factors,p andq, say. Thus
n = pα qβ and either 1+α = 2,1+β = 3 or 1+α = 6,1+β = 1. Hence,n must be of one of the formspq2 or p5, wherep,q
are distinct primes.

436 Example Prove that
nX

k=1

d(k) =

nX
j=1

T
n
j
U

Solution: We have
nX

k=1

d(k) =

nX
k=1

X
j|k

1.

Interchanging the order of summation X
j≤n

X
j≤k≤n

k≡0 mod j

1 =
X
j≤n

T
n
j
U,

which is what we wanted to prove.

437 Example (Putnam 1967) A certain locker room containsn lockers numbered 1,2, . . . ,n and are originally locked. An
attendant performs a sequence of operationsT1,T2, . . . ,Tn whereby with the operationTk,1 ≤ k ≤ n, the condition of being
locked or unlocked is changed for all those lockers and only those lockers whose numbers are multiples ofk. After all the n
operations have been performed it is observed that all lockers whose numbers are perfect squares (and only those lockers) are
now open or unlocked. Prove this mathematically.

Solution: Observe that lockerm,1≤ m≤ n, will be unlocked aftern operations if and only ifmhas an odd number of divisors.
Now, d(m) is odd if and only ifm is a perfect square. The assertion is proved.
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Since the functionf (n) = n is multiplicative (indeed, totally multiplicative), the above theorem entails thatσ is multiplica-
tive. If p is a prime, then clearlyσ(pa) = 1+ p+ p2+ · · ·+ pa. This entails that ifn has the prime factorisationn= pa1

1 pa2
2 · · · par

r ,
then

σ(n) = (1+ p1 + p2
1 + · · ·+ pa1

1 )(1+ p2 + p2
2 + · · ·+ pa2

w ) · · ·(1+ pr + p2
r + · · ·+ par

r ).

This last product also equals
pa1+1

1 −1
p1 −1

· pa2+1
2 −1
p2 −1

· · · par+1
r −1
pr −1

.

We present now some examples related to the functionσ .

438 Example (Putnam 1969) Let n be a positive integer such that 24|n+ 1. Prove that the sum of all divisors ofn is also
divisible by 24.

Solution: Since 24|n+1, n≡ 1 or 2 mod 3 andd≡ 1,3,5 or 7 mod 8. Asd(
n
d

)≡−1 mod 3 or mod 8, the only possibilities
are

d ≡ 1, n/d ≡ 2 mod 3 or vice versa,
d ≡ 1, n/d ≡ 7 mod 8 or vice versa,
d ≡ 3, n/d ≡ 5 mod 8 or vice versa.

In all casesd+n/d ≡ 0 mod 3 and mod 8, whence 24 dividesd+n/d. As d 6≡ n/d, no divisor is used twice in the pairing.
This implies that 24|

X
d|n

d.

We say that a natural number isperfectif it is the sum of its proper divisors. For example, 6 is perfect because 6=
X

d|6,d6=6

d =

1+2+3. It is easy to see that a natural number is perfect if and only if2n =
X
d|n

d. The following theorem is classical.

439 Theorem An even number is perfect if and only if it is of the form 2p−1(2p −1) where bothp and 2p −1 are primes.

Proof: Suppose that p,2p −1 are primes. Thenσ(2p −1) = 1+2p −1. Since(2p−1,2p −1) = 1,σ(2p−1(2p −

1)) = σ(2p−1)σ(2p −1) = (1+2+22 + · · ·+2p−1)(1+2p −1) = (2p −1)2(2p−1), and2p−1(2p −1) is perfect.

Conversely, let n be an even perfect number. Write n= 2sm,m odd. Thenσ(n) = σ(2s)σ(m) = (2s+1 −1)σ(m).
Also, since n perfect is,σ(n) = 2n = 2s+1m. Hence(2s+1 −1)σ(m) = 2s+1m. One deduces that2s+1|σ(m), and
soσ(m) = 2s+1b for some natural number b. But then(2s+1 −1)b = m, and so b|m,b 6= m.

We propose to show that b= 1. Observe that b+m= (2s+1 −1)b+b = 2s+1b = σ(m). If b 6= 1, then there are at
least three divisors of m, namely1,b and m, which yieldsσ(m) ≥ 1+b+m, a contradiction. Thus b= 1, and so
m= (2s+1 −1)b = 2s+1 −1 is a prime. This means that2s+1 −1 is a Mersenne prime and hence s+1 must be a
prime.❑

440 Example Prove that for every natural number n there exist natural numbersx andy such thatx−y≥ n andσ(x2) = σ(y2).

Solution: Lets≥ n,(s,10) = 1. We takex = 5s,y = 4s. Thenσ(x2) = σ(y2) = 31σ(s2).

Practice
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441 Problem Find the numerical values ofd(1024),σ(1024),ω(1024),
Ω(1024) andφ(1024).

442 Problem Describe all natural numbersn such thatd(n) =

10.

443 Problem Prove that

d(2n −1) ≥ d(n).

444 Problem Prove thatd(n)≤
√

3n with equality if and only
if n = 12.

445 Problem Prove that the followingLambert expansion
holds:

∞X
n=1

d(n)tn =

∞X
n=1

tn

1− tn .

446 Problem Let d1(n) = d(n),dk(n) = d(dk−1(n)),k =

2,3, . . .. Describedk(n) for sufficiently largek.

447 Problem Let m∈ N be given. Prove that the set

A = {n∈ N : m|d(n)}

contains an infinite arithmetic progression.

448 Problem Let n be a perfect number. Show thatX
d|n

1
d

= 2.

449 Problem Prove thatY
d|n

d = nd(n)/2.

450 Problem Prove that the power of a prime cannot be a per-
fect number.

451 Problem (AIME, 1995) Let n = 231319. How many pos-
itive integer divisors ofn2 are less than n but do not divide
n?

452 Problem Prove that ifn is composite, thenσ(n) > n+√
n.

453 Problem Prove thatσ(n) = n+ k, k > 1 a fixed natural
number has only finitely many solutions.

454 Problem Characterise alln for whichσ(n) is odd.

455 Problem Prove thatp is a prime if and only ifσ(p) =

1+ p.

456 Problem Prove that

σ(n!)

n!
≥ 1+

1
2

+ · · ·+ 1
n
.

457 Problem Prove that an odd perfect number must have at
least two distinct prime factors.

458 Problem Prove that in an odd perfect number, only one
of its prime factors occurs to an odd power; all the others occur
to an even power.

459 Problem Show that an odd perfect number must contain
one prime factorp such that, if the highest power ofp occur-
ring in n is pa, both p anda are congruent to 1 modulo 4; all
other prime factors must occur to an even power.

460 Problem Prove that every odd perfect number having
three distinct prime factors must have two of its prime factors
3 and 5.

461 Problem Prove that there do not exist odd perfect num-
bers having exactly three distinct prime factors.

462 Problem Prove that

nX
k=1

σ(k) =

nX
j=1

jT
n
j
U.

463 Problem Find the number of sets of positive integers
{a,b,c} such thata×b×c = 462.

6.5 Euler’s Function. Reduced Residues
Recall that Euler’sφ(n) function counts the number of positive integersa≤ n that are relatively prime ton. We will prove now
thatφ is multiplicative. This requires more work than that done for d andσ .

First we need the following definitions.
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464 Definition Let n > 1. Theφ(n) integers 1= a1 < a2 < · · · < aφ(n) = n−1 less thann and relatively prime ton are called
thecanonical reduced residuesmodulon.

465 Definition A reduced residue systemmodulon, n > 1 is a set ofφ(n) incongruent integers modulon that are relatively
prime ton.

For example, the canonical reduced residues mod 12 are 1,5,7,11 and the set{−11,5,19,23} forms a reduced residue
system modulo 12.

We are now ready to prove the main result of this section.

466 Theorem The functionφ is multiplicative.

Proof: Let n be a natural number with n= ab,(a,b) = 1. We arrange the ab integers1,2, . . . ,ab as follows.

1 2 3 . . . k . . . a
a+1 a+2 a+3 . . . a+k . . . 2a

2a+1 2a+2 2a+3 . . . 2a+k . . . 3a
. . . . . . . . . . . . . . . . . . . . .

(b−1)a+1 (b−1)a+2 (b−1)a+3 . . . (b−1)a+k . . . ba

Now, an integer r is relatively prime to m if and only if it is relatively prime to a and b. We shall determine first the
number of integers in the above array that are relatively prime to a and find out how may of them are also relatively
prime to b.

There areφ(a) integers relatively prime to a in the first row. Now consider the k-th column,1≤ k≤ a. Each integer
on this column is of the form ma+k,0≤ m≤ b−1. As k≡ ma+k moda, k will have a common factor with a if
and only if ma+k does. This means that there are exactlyφ(a) columns of integers that are relatively prime to a.
We must determine how many of these integers are relatively prime to b.

We claim that no two integers k,a+k, . . . ,(b−1)a+k on the k-th column are congruent modulo b. For if ia+k≡
ja+k modb then a(i − j)≡ 0 modb. Since(a,b) = 1, we deduce that i− j ≡ 0 modb thanks to Corollary346.
Now i, j ∈ [0,b−1] which implies that|i − j| < b. This forces i= j. This means that the b integers in any of these
φ(n) columns are, in some order, congruent to the integers0,1, . . . ,b−1. But exactlyφ(b) of these are relatively
prime to b. This means that exactlyφ(a)φ(b) integers on the array are relatively prime to ab, which is what we
wanted to show.❑

If p is a prime andm a natural number, the integers

p,2p,3p, . . . , pm−1p

are the only positive integers≤ pm sharing any prime factors withpm. Thusφ(pm) = pm− pm−1. Sinceφ is multiplicative, if
n = pa1

1 · · · pak
k is the factorisation ofn into distinct primes, then

φ(n) = (pa1
1 − pa1−1

1 ) · · ·(pak
k − pak−1

k ).

For example,φ(48) = φ(24 · 3) = φ(24)φ(3) = (24 − 23)(3− 1) = 16, andφ(550) = φ(2 · 52 · 11) = φ(2) ·φ(52) ·φ(11) =

(2−1)(52 −5)(11−1) = 1·20·10= 200.

467 Example Let n be a natural number. How many of the fractions 1/n,2/n, . . . ,(n−1)/n,n/n are irreducible?

Solution: This number is clearly
nX

k=1

φ(k).
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468 Example Prove that forn > 1, X
1≤a≤n

(a,n)=1

a =
nφ(n)

2
.

Solution: Clearly if 1≤ a≤ n and(a,n) = 1, 1≤ n−a≤ n and(n−a,n) = 1. Thus

S=
X

1≤a≤n
(a,n)=1

a =
X

1≤a≤n
(a,n)=1

n−a,

whence
2S=
X

1≤a≤n
(a,n)=1

n = nφ(n).

The assertion follows.

469 Theorem Let n be a positive integer. Then
X
d|n

φ(d) = n.

Proof: For each divisor d of n, let Td(n) be the set of positive integers≤ n whose gcd with n is d. As d varies
over the divisors of n, the Td partition the set{1,2, . . . ,n} and soX

d|n
Td(n) = n.

We claim that Td(n) has φ(n/d) elements. Note that the elements of Td(n) are found amongst the integers

d,2d, . . .
n
d

d. If k∈Td(n), then k= ad,1≤a≤n/d and(k,n) = d. But then(
k
d

,
n
d

) = 1. This implies that(a,
n
d

) = 1.

Therefore counting the elements of Td(n) is the same as counting the integers a with1≤ a≤ n/d,(a,
n
d

) = 1. But

there are exactlyφ(n/d) such a. We gather that

n =
X
d|n

φ(n/d).

But as d runs through the divisors of n, n/d runs through the divisors of n in reverse order, whence n=
X
d|n

φ(n/d) =X
d|n

φ(d).❑

470 Example If p−1 andp+1 are twin primes, andp > 4, prove that 3φ(p) ≤ p.

Solution: Observe thatp > 4 must be a multiple of 6, so

p = 2a3bm, ab≥ 1, (m,6) = 1.

We then haveφ(p) ≤ 2a3b−1φ(m) ≤ 2a3b−1m= p/3.

471 Example Let n∈ N. Prove that the equation
φ(x) = n!

is soluble.
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Solution: We want to solve the equationφ(x) = n with the constraint thatx has precisely the same prime factors asn. This
restriction implies thatφ(x)/x = φ(n)/n. It follows thatx = n2/φ(n).

Let n =
Y
pα ||n

pα . Thenx =
Y
pα ||n

pα

p−1
. The integerx will have the same prime factors asn provided that

Y
p|n

(p−1)|n. It is

clear then that a necessary and sufficient condition forφ(x) = n to be soluble under the restriction thatx has precisely the same
prime factors asn is

Y
p|n

(p−1)|n. If n = k!, this last condition is clearly satisfied. An explicit solution to the problem is thus

x = (k!)2/φ(k!).

472 Example Let φk(n) = φ(φk−1(n)),k = 1,2, . . . , whereφ0(n) = φ(n). Show that∀k∈ N,φk(n) > 1 for all sufficiently large
n.

Solution: Letpa1
1 pa2

2 · · · par
r be the prime factorisation ofn. Clearly

pa1/2
1 pa2/2

2 · · · par/2
r > 2r−1 ≥ 1

2
p1

p1 −1
· · · pr

pr −1
.

Hence

φ(n) =
p1 −1

p1

p2 −1
p2

· · · pr −1
pr

pa1
1 pa2

2 · · · par
r ≥ 1

2
pa1

1 pa2
2 · · · par

r

pa1/2
1 pa2/2

2 · · · par/2
r

.

This last quantity equals
√

n/2. Thereforeφ1(n) >
1
2

È
φ(n) >

1
2

r
1
4

√
n =

1
4

n1/4. In general we can show thatφk(n) >

1
4

n2−k−1
. We conclude thatn≥ 22k+2

implies thatφk(n) > 1.

473 Example Find infinitely many integersn such that 10|φ(n).

Solution: Taken = 11k,k = 1,2, . . .. Thenφ(11k) = 11k −11k−1 = 10·11k−1.

Practice

474 Problem Prove that

φ(n) = n
Y
p|n

�
1−

1
p

�
.

475 Problem Prove that ifn is composite thenφ(n)≤ n−
√

n.
When is equality achieved?

476 Problem (AIME 1992) Find the sum of all positive ra-
tional numbers that are less than 10 and have denominator 30
when written in lowest terms.

Answer: 400

477 Problem Prove thatφ(n) ≥ n2−ω(n).

478 Problem Prove thatφ(n) >
√

n for n > 6.

479 Problem If φ(n)|n, thenn must be of the form 2a3b for
nonnegative integersa,b.

480 Problem Prove that ifφ(n)|n−1, thenn must be square-
free.

481 Problem (Mandelbrot 1994) Four hundred people are
standing in a circle. You tag one person, then skipk people,
then tag another, skipk, and so on, continuing until you tag
someone for the second time. For how many positive values
of k less than 400 will every person in the circle get tagged at
least once?

482 Problem Prove that ifφ(n)|n−1 andn is composite, then
n has at least three distinct prime factors.

483 Problem Prove that ifφ(n)|n−1 andn is composite, then
n has at least four prime factors.
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484 Problem Forn > 1 let 1= a1 < a2 < · · · < aφ(n) = n−1
be the positive integers less thann that are relatively prime to
n. Define the Jacobsthal function

g(n) := max
1≤k≤φ(n)−1

ak+1 −ak

to be the maximum gap between theak. Prove thatω(n) ≤
g(n).

(Hint: Use the Chinese Remainder Theorem).

485 Problem Prove that a necessary and sufficient condition
for n to be a prime is that

σ(n)+φ(n) = nd(n).

6.6 Multiplication in Zn

In section 3.5 we saw thatZn endowed with the operation of addition+n becomes a group. We are now going to investigate the
multiplicative structure ofZn.

How to define multiplication inZn? If we want to multiplya ·n b we simply multiplya·b and reduce the result modn. As
an example, let us consider Table6.1. To obtain4 ·6 2 we first multiplied 4·2 = 8 and then reduced mod 6 obtaining 8≡ 2
mod 6. The answer is thus4 ·6 2 = 2.

Another look at the table shows the interesting product3 ·6 2 = 0. Why is it interesting? We have multiplied to non-zero
entities and obtained a zero entity!

DoesZ6 form a group under·6? What is the multiplicative identity? In analogy with the rational numbers, we would like
1 to be the multiplicative identity. We would then define the multiplicative inverse ofa to be thatb that has the property that
a ·6 b = b ·6 a = 1. But then, we encounter some problems. For example, we see that 0,2,3, and4 do not have a multiplicative
inverse. We need to be able to identify the invertible elements ofZn. For that we need the following.

·6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Table 6.1: Multiplication Table forZ6

486 Definition Let n > 1 be a natural number. An integerb is said to be the inverse of an integera modulon if ab≡ 1 modn.

It is easy to see that inverses are unique modn. For if x,y are inverses toa modn thenax≡ 1 modn anday≡ 1 modn.
Multiplying by y the first of these congruences,(ya)x≡ y modn. Hencex≡ y modn.

487 Theorem Let n > 1,a be integers. Thena possesses an inverse modulon if and only if a is relatively prime ton.

Proof: Assume that b is the inverse of amodn. Then ab≡ 1 modn, which entails the existence of an integer s
such that ab−1 = sn, i.e. ab−sn= 1. This is a linear combination of a and n and hence divisible by(a,n). This
implies that(a,n) = 1.

Conversely if(a,n) = 1, by the Bachet-Bezout Theorem there are integers x,y such that ax+ny= 1. This immedi-
ately yields ax≡ 1 modn, i.e., a has an inversemodn.❑

488 Example Find the inverse of 5 mod 7.

Solution: We are looking for a solution to the congruence 5x≡ 1 mod 7. By inspection we see that this isx≡ 3 mod 7.
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According to the preceding theorem,a will have a multiplicative inverse if and only if(a,n) = 1. We thus see that only the
reduced residues modn have an inverse. We letZ×

n = {a1,a2, . . . ,aφ(n)}. It is easy to see that the operation·n is associative,
since it inherits associativity from the integers. We conclude thatZ×

n is a group under the operation·n.
We now give some assorted examples.

489 Example (IMO 1964) Prove that there is no positive integern for which 2n +1 is divisible by 7.

Solution: Observe that 21 ≡ 2,22 ≡ 4, 23 ≡ 1 mod 7, 24 ≡ 2 mod 7, 25 ≡ 4 mod 7, 26 ≡ 1 mod 7, etc. The pattern 2, 4, 1,
repeats thus cyclically. This says that there is no power of 2which is≡ −1≡ 6 mod 7.

490 Theorem If a is relatively prime to the positive integern, there exists a positive integerk≤ n such thatak ≡ 1 modn.

Proof: Since(a,n) = 1 we must have(a j ,n) = 1 for all j ≥ 1. Consider the sequence a,a2,a3, . . . ,an+1 modn.
As there are n+ 1 numbers and only n residues mod n, the Pigeonhole Principle two of these powers must have
the same remaindermodn. That is, we can find s, t with 1 ≤ s < t ≤ n+ 1 such that as ≡ at modn. Now,
1 ≤ t − s≤ n. Hence as ≡ at modn gives at−sas ≡ at−sat modn, which is to say at ≡ at−sat modn. Using
Corollary 346we gather that at−s ≡ 1 modn, which proves the result.❑

If (a,n) = 1, the preceding theorem tells us that there is a positive integerk with ak ≡ 1 modn. By the Well-Ordering
Principle, there must be a smallest positive integer with this property. This prompts the following definition.

491 Definition If m is the least positive integer with the property thatam ≡ 1 modn, we say thata has orderm modn.

For example, 31 ≡ 3,32 ≡ 2,33 ≡ 6,34 ≡ 4,35 ≡ 5,36 ≡ 1 mod 7, and so the order of 3 mod 7 is 6. We write this fact as
ord73 = 6.

Given n, not all integersa are going to have an order modn. This is clear ifn|a, because thenam ≡ 0 modn for all
positive integersm. The question as to which integers are going to have an order modn is answered in the following theorem.

492 Theorem Let n > 1 be a positive integer. Thena∈ Z has an order modn if and only if (a,n) = 1.

Proof: If (a,n) = 1, then a has an order in view of Theorem490and the Well-Ordering Principle. Hence assume
that a has an order modn. Clearly a 6= 0. The existence of an order entails the existence of a positiveinteger
m such that am ≡ 1 modn. Hence, there is an integer s with am+ sn= 1 or a ·am−1 + sn= 1. This is a linear
combination of a and n and hence divisible by(a,n). This entails that(a,n) = 1. ❑

The following theorem is of utmost importance.

493 Theorem Let (a,n) = 1 and lett be an integer. Thenat ≡ 1 modn if and only if ordna|t.

Proof: Assume thatordna|t. Then there is an integer s such that sordna = t. This gives

at ≡ asordna ≡ (aordna)s ≡ 1s ≡ 1 mod n.

Conversely, assume that at ≡ 1 modn and t= x ·ordna+y,0≤ y < ordna. Then

ay ≡ at−xordna ≡ at · (aordna)−x ≡ 1·1−x ≡ 1 mod n.

If y > 0 we would have a positive integer smaller thanordna with the property ay ≡ 1 modn. This contradicts
the definition ofordna as the smallest positive integer with that property. Hencey = 0 and thus t= x ·ordna, i.e.,
ordna|t.❑
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494 Example (IMO 1964) Find all positive integersn for which 2n −1 is divisible by 7.

Solution: Observe that the order of 2 mod 7 is 3. We want 2n ≡ 1 mod 7. It must then be the case that 3|n. Thusn =

3,6,9,12, . . ..
The following result will be used repeatedly.

495 Theorem Let n > 1,a∈ Z,(a,n) = 1. If r1, r2, . . . , rφ(n) is a reduced set of residues modulon, thenar1,ar2, . . . ,arφ(n) is
also a reduced set of residues modulon.

Proof: We just need to show that theφ(n) numbers ar1,ar2, . . . ,arφ(n) are mutually incongruentmodn. Suppose
that ari ≡ ar j modn for some i6= j. Since(a,n) = 1, we deduce from Corollary346 that ri ≡ r j modn. This
contradicts the fact that the r’s are incongruent, so the theorem follows.❑

For example, as 1,5,7,11 is a reduced residue system modulo 12 and(12,5) = 1, the set 5,25,35,55 is also a reduced
residue system modulo 12. Again, the 1,5,7,11 are the 5,25,35,55 in some order and 1·5·7·11≡ 5·25·35·55 mod 12.

The following corollary to Theorem495should be immediate.

496 Corollary Let n > 1,a,b ∈ Z,(a,n) = 1. If r1, r2, . . . , rφ(n) is a reduced set of residues modulon, thenar1 + b,ar2 +

b, . . . ,arφ(n) +b is also a reduced set of residues modulon.

Practice

497 Problem Find the order of 5 modulo 12.

6.7 Möbius Function
498 Definition TheMöbius functionis defined for positive integer n as follows:

µ(n) =

8<: 1 if n = 1,

(−1)ω(n) if ω(n) = Ω(n),
0 if ω(n) < Ω(n).

Thusµ is 1 for n = 1 and square free integers with an even number of prime factors, −1 for square free integers with an
odd number of prime factors, and 0 for non-square free integers. Thus for exampleµ(6) = 1,µ(30) = −1 andµ(18) = 0.

499 Theorem The Möbius Functionµ is multiplicative.

Proof: Assume(m,n) = 1. If bothM and n are square-free then

µ(m)µ(n) = (−1)ω(m)(−1)ω(n) = (−1)ω(m)+ω(n) = µ(mn).

If one of m,n is not square-free then
µ(m)µ(n) = 0 = µ(mn).

This proves the theorem.❑

500 Theorem X
d|n

µ(d) =

§
1 if n = 1,
0 if n > 1.
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Proof: There are

�
ω(n)

k

�
square-free divisors d of n with exactly k prime factors. Forall such d,µ(d) = (−1)k.

The sum in question is thus X
d|n

µ(d) =

ω(n)X
k=0

�
ω(n)

k

�
(−1)k.

By the Binomial Theorem this last sum is(1−1)ω(n) = 0.❑

501 Theorem (Möbius Inversion Formula) Let f be an arithmetical function andF(n) =
X
d|n

f (d). Then

f (n) =
X
d|n

µ(d)F(n/d) =
X
d|n

µ(n/d)F(d).

Proof: We have X
d|n

µ(d)F(n/d) =
X
d|n

X
d|n

X
s|

n
d

f (s)

=
X
ds|n

µ(d) f (s)

=
X
s|n

f (s)
X
d|

n
s

µ(d).

In view of theorem500, the inner sum is different from0 only when
n
s

= 1. Hence only the term s= n in the outer

sum survives, which means that the above sums simplify to f(n).❑

We now show the converse to Theorem501.

502 Theorem Let f , F be arithmetic functions withf (n) =
X
d|n

µ(d)F(n/d) for all natural numbersn. ThenF(n) =
X
d|n

f (d).

Proof: We have X
d|n

f (d) =
X
d|n

X
s|d

µ(s)F(d/s)

=
X
d|n

X
s|d

µ(d/s)F(s)

=
X
s|n

X
r|

n
s

µ(r)F(s).

Using Theorem500, the inner sum will be0 unless s= n, in which case the entire sum reduces to F(n).❑

Practice

503 Problem Prove that

φ(n) = n
X
d|n

µ(d)

d
.

504 Problem If f is an arithmetical function andF(n) =
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nX
k=1

f ([n/k]), then

f (n) =

nX
j=1

µ( j)F([n/ j]).

505 Problem If F is an arithmetical function such thatf (n) =
nX

k=1

µ(k)F([n/k]), prove thatF(n) =

nX
j=1

f ( j).

506 Problem Prove that
X
d|n

|µ(d)| = 2ω(n).

507 Problem Prove that
X
d|n

µ(d)d(d) = (−1)ω(n).

508 Problem Given any positive integer k, prove that there
exist infinitely many integers n with

µ(n+1) = µ(n+2) = · · · = µ(n+k).



Chapter 7
More on Congruences

7.1 Theorems of Fermat and Wilson
509 Theorem (Fermat’s Little Theorem) Let p be a prime and letp 6 |a. Then

ap−1 ≡ 1 mod p.

Proof: Since(a, p) = 1, the set a· 1,a · 2, . . . ,a · (p− 1) is also a reduced set of residuesmodp in view of
Theorem495. Hence

(a·1)(a·2) · · ·(a· (p−1)) ≡ 1·2· · ·(p−1) mod p,

or
ap−1(p−1)! ≡ (p−1)! mod p.

As((p−1)!, p) = 1 we may cancel out the(p−1)!’s in view of Corollary346. This proves the theorem.❑

As an obvious corollary, we obtain the following.

510 Corollary For every primep and for every integer a,

ap ≡ a mod p.

Proof: Either p|a or p 6 |a. If p|a,a ≡ 0 ≡ ap modp and there is nothing to prove. If p6 |a, Fermat’s Little
Theorem yields p|ap−1 −1. Hence p|a(ap−1 −1) = ap −a, which again gives the result.❑

The following corollary will also be useful.

511 Corollary Let p be a prime anda an integer. Assume thatp 6 |a. Then ordpa|p−1.

Proof: This follows immediately from Theorem493and Fermat’s Little Theorem.❑

512 Example Find the order of 8 mod 11.

Solution: By Corollary511ord118 is either 1,2,5 or 10. Now 82 ≡ −2 mod 11,84 ≡ 4 mod 11 and 85 ≡ −1 mod 11. The
order is thus ord118 = 10.

513 Example Let a1 = 4,an = 4an−1,n > 1. Find the remainder whena100 is divided by 7.

78
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Solution: By Fermat’s Little Theorem, 46 ≡ 1 mod 7. Now, 4n ≡ 4 mod 6 for all positive integersn, i.e., 4n = 4+6t for some
integert. Thus

a100≡ 4a99 ≡ 44+6t ≡ 44 · (46)t ≡ 4 mod 7.

514 Example Prove that form,n∈ Z, mn(m60−n60) is always divisible by 56786730.

Solution: Leta = 56786730 = 2· 3 · 5 · 7 · 11· 13· 31· 61. Let Q(x,y) = xy(x60 − y60). Observe that(x− y)|Q(x,y), (x2 −

y2)|Q(x,y), (x3−y3)|Q(x,y), (x4−y4)|Q(x,y), (x6−y6)|Q(x,y), (x10−y10)|Q(x,y), (x12−y12)|Q(x,y), and(x30−y30)|Q(x,y).
If p is any one of the primes dividinga, the Corollary to Fermat’s Little Theorem yieldsmp − m≡ 0 modp andnp −

n ≡ 0 modp. Thus n(mp − m) − m(np − n) ≡ 0 modp, i.e., mn(mp−1 − np−1) ≡ 0 modp. Hence, we have 2|mn(m−

n)|Q(m,n),3|mn(m2−n2)|Q(m,n),5|mn(m4−n4)|Q(m,n),7|mn(m6−n6)|Q(m,n),11|mn(m10−n10)|Q(m,n),13|mn(m12−n12)|Q(m,n),31|m
n30)|Q(m,n) and 61|mn(m60−n60)|Q(m,n). Since these are all distinct primes, we gather thata|mnQ(m,n), which is what we
wanted.

515 Example (Putnam 1972) Show that given an odd primep, there are always infinitely many integersn for which p|n2n+1.

Answer: For any odd primep, taken = (p−1)2k+1,k = 0,1,2, . . .. Then

n2n +1≡ (p−1)2k+1(2p−1)(p−1)2k
+1≡ (−1)2k+112k +1≡ 0 mod p.

516 Example Prove that there are no integersn > 1 with n|2n −1.

Solution: If n|2n − 1 for somen > 1, thenn must be odd and have a smallest odd primep as a divisor. By Fermat’s Little
Theorem, 2p−1 ≡ 1 modp. By Corollary511, ordp2 has a prime factor in common withp−1. Now, p|n|2n−1 and so 2n ≡ 1
modp. Again, by Corollary511, ordp2 must have a common prime factor withn (clearly ordp2 > 1). This means thatn has a
smaller prime factor thanp, a contradiction.

517 Example Let p be a prime. Prove that

1. �
p−1

n

�
≡ (−1)n mod p, 1≤ n≤ p−1.

2. �
p+1

n

�
≡ 0 mod p, 2≤ n≤ p−1.

3. If p 6= 5 is an odd prime, prove that eitherfp−1 or fp+1 is divisible by p.

Solution: (1)(p−1)(p−2) · · ·(p−n) ≡ (−1)(−2) · · ·(−n) ≡ (−1)nn! modp. The assertion follows from this.
(2) (p+1)(p)(p−1) · · ·(p−n+2) ≡ (1)(0)(−1) · · ·(−n+2) ≡ 0 modp. The assertion follows from this.
(3) Using the Binomial Theorem and Binet’s Formula

fn =
1

2n−1

��
n
1

�
+5

�
n
3

�
+52

�
n
5

�
+ · · ·

�
.

From this and (1),

2p−2 fp−1 ≡ p−1−(5+52 + · · ·+5(p−3)/2) ≡ −
5(p−1)/2 −1

4
mod p.

Using (2),
2p fp+1 ≡ p+1+5(p−1)/2 ≡ 5(p−1)/2 +1 mod p.
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Thus
2p fp−1 fp+1 ≡ 5p−1 −1 mod p.

But by Fermat’s Little Theorem, 5p−1 ≡ 1 modp for p 6= 5. The assertion follows.

518 Lemma If a2 ≡ 1 modp, then eithera≡ 1 modp or a≡ −1 modp.

Proof: We have p|a2 − 1 = (a− 1)(a+ 1). Since p is a prime, it must divide at least one of the factors. This
proves the lemma.❑

519 Theorem (Wilson’s Theorem) If p is a prime, then(p−1)! ≡ −1 modp.

Proof: If p = 2 or p= 3, the result follows by direct verification. So assume that p> 3. Consider a,2≤ a≤ p−2.
To each such a we associate its unique inversea modp, i.e. aa ≡ 1 modp. Observe that a6= a since then we
would have a2 ≡ 1 modp which violates the preceding lemma as a6= 1,a 6= p−1. Thus in multiplying all a in the
range2≤ a≤ p−2, we pair them of with their inverses, and the net contribution of this product is therefore1. In
symbols,

2·3· · ·(p−2) ≡ 1 mod p.

In other words,

(p−1)! ≡ 1·

� Y
2≤a≤p−2

j

�
· (p−1) ≡ 1·1· (p−1) ≡ −1 mod p.

This gives the result.❑

520 Example If p≡ 1 mod 4, prove that �
p−1

2

�
! ≡ −1 mod p.

Solution: In the product(p−1)! we pair off j,1≤ j ≤ (p−1)/2 with p− j. Observe thatj(p− j) ≡ − j2 modp. Hence

−1≡ (p−1)! ≡
Y

1≤ j≤(p−1)/2

− j2 ≡ (−1)(p−1)/2
�

p−1
2

�
! mod p.

As (−1)(p−1)/2 = 1, we obtain the result.

521 Example (IMO 1970) Find the set of all positive integersn with the property that the set

{n,n+1,n+2,n+3,n+4,n+5}
can be partitioned into two sets such that the product of the numbers in one set equals the product of the numbers in the other
set.

Solution: We will show that no such partition exists. Suppose that we can have such a partition, with one of the subsets having
product of its members equal toA and the other having product of its members equal toB. We might have two possibilities.
The first possibility is that exactly one of the numbers in theset{n,n+1,n+2,n+3,n+4,n+5} is divisible by 7, in which
case exactly one ofA or B is divisible by 7, and soA·B is not divisible by 72, and soA·B is not a square. The second possibility
is that all of the members of the set are relatively prime to 7.In this last case we have

n(n+1) · · ·(n+6) ≡ 1·2· · ·6≡ A·B≡ −1 mod 7.

But if A = B then we are saying that there is an integerA such thatA2 ≡ −1 mod 7, which is an impossibility, as−1 is not a
square mod 7. This finishes the proof.

Practice
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522 Problem Find all the natural numbersn for which
3|(n2n +1).

523 Problem Prove that there are infinitely many integersn
with n|2n +2.

524 Problem Find all primesp such thatp|2p +1.

Answer: p = 3 only.

525 Problem If p andq are distinct primes prove that

pq|(apq−ap −aq −a)

for all integersa.

526 Problem If p is a prime prove thatp|ap +(p− 1)!a for
all integersa.

527 Problem If (mn,42) = 1 prove that 168|m6 −n6.

528 Problem Let p andq be distinct primes. Prove that

qp−1 + pq−1 ≡ 1 mod pq.

529 Problem If p is an odd prime prove thatnp ≡ n mod 2p
for all integersn.

530 Problem If p is an odd prime andp|mp + np prove that
p2|mp +np.

531 Problem Prove thatn > 1 is a prime if and only if
(n−1)! ≡ −1 modn.

532 Problem Prove that ifp is an odd prime

12 ·32 · · ·(p−2)2 ≡ 22 ·42 · · ·(p−1)2 ≡ (−1)(p−1)/2 mod p

533 Problem Prove that 19|(226k+2
+ 3) for all nonnegative

integersk.

7.2 Euler’s Theorem
In this section we obtain a generalisation of Fermat’s Little Theorem, due to Euler. The proof is analogous to that of Fermat’s
Little Theorem.

534 Theorem (Euler’s Theorem) Let (a,n) = 1. Thenaφ(n) ≡ 1 modn.

Proof: Let a1,a2, . . . ,aφ(n) be the canonical reduced residuesmodn. As(a,n) = 1, aa1,aa2, . . . ,aaφ(n) also
forms a set of incongruent reduced residues. Thus

aa1 ·aa2 · · ·aaφ(n) ≡ a1a2 · · ·aφ(n) mod n,

or
aφ(n)a1a2 · · ·aφ(n) ≡ a1a2 · · ·aφ(n) modn.

As (a1a2 · · ·aφ(n),n) = 1, we may cancel the product a1a2 · · ·aφ(n) from both sides of the congruence to obtain
Euler’s Theorem.❑

Using Theorem534we obtain the following corollary.

535 Corollary Let (a,n) = 1. Then ordna|φ(n).

536 Example Find the last two digits of 31000.

Solution: Asφ(100) = 40, by Euler’s Theorem, 340 ≡ 1 mod 100. Thus

31000= (340)25 ≡ 125 = 1 mod 100,

and so the last two digits are 01.

537 Example Find the last two digits of 77
1000

.
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Solution: First observe thatφ(100) = φ(22)φ(52) = (22 − 2)(52 − 5) = 40. Hence, by Euler’s Theorem, 740 ≡ 1 mod 100.
Now, φ(40) = φ(23)φ(5) = 4·4= 16, hence 716≡ 1 mod 40. Finally, 1000= 16·62+8. This means that 71000≡ (716)6278 ≡
16278 ≡ (74)2 ≡ 12 ≡ 1 mod 40. This means that 71000= 1+40t for some integert. Upon assembling all this

771000 ≡ 71+40t ≡ 7· (740)t ≡ 7 mod 100.

This means that the last two digits are 07.

538 Example (IMO 1978) m,n are natural numbers with 1≤ m< n. In their decimal representations, the last three digits of
1978m are equal, respectively, to the last three digits of 1978n. Findm,n such thatm+n has its least value.

Solution: Asm+n = n−m+2m, we minimisen−m. We are given that

1978n −1978m = 1978m(1978n−m−1)

is divisible by 1000= 2353. Since the second factor is odd, 23 must divide the first and som≥ 3. Now, ord1251978 is the
smallest positive integerswith

1978s ≡ 1 mod 125.

By Euler’s Theorem
1978100≡ 1 mod 125

and so by Corollary 7.3s|100. Since 125|(1978s−1) we have 5|(1978s−1), i.e., 1978s ≡ 3s ≡ 1 mod 5. Sinces|100, this last
congruence implies thats= 4,20, or 100. We now rule out the first two possibilities.

Observe that
19784 ≡ (−22)4 ≡ 24 ·114 ≡ (4·121)2 ≡ (−16)2 ≡ 6 mod 125.

This means thats 6= 4. Similarly

197820 ≡ 19784 · (19784)4 ≡ 6·64 ≡ 6·46≡ 26 mod 125.

This means thats 6= 20 and sos= 100. Sinces is the smallest positive integer with 1978s≡ 1 mod 125, we taken−m= s= 100
andm= 3, i.e.,n = 103,m= 3, and finally,m+n = 106.

539 Example (IMO 1984) Find one pair of positive integersa,b such that:
(i) ab(a+b) is not divisible by 7.
(ii) (a+b)7 −a7 −b7 is divisible by 77. Justify your answer.

Solution: We first factorise(a+b)7 −a7 −b7 asab(a+b)(a2 +ab+b2)2. Using the Binomial Theorem we have

(a+b)7 −a7 −b7 = 7(a6b+ab6 +3(a5b2 +a2b5)+5(a4b3 +a3b4))

= 7ab(a5 +b5 +3ab(a3 +b3)+5(a2b2)(a+b))

= 7ab(a+b)(a4 +b4 −a3b−ab3 +a2b2

+3ab(a2 −ab+b2)+5ab)
= 7ab(a+b)(a4 +b4 +2(a3b+ab3)+3a2b2)

= 7ab(a+b)(a2 +ab+b2)2.

The given hypotheses can be thus simplified to

(i)′ ab(a+b) is not divisible by 7,

(ii)′ a2 +ab+b2 is divisible by 73.

As (a+ b)2 > a2 + ab+ b2 ≥ 73, we obtaina+ b ≥ 19. Using trial and error, we find thata = 1,b = 18 give an answer, as
12 +1·18+182 = 343= 73.
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Let us look for more solutions by means of Euler’s Theorem. Asa3 −b3 = (a−b)(a2 +ab+b2), (ii)’ is implied by

(ii)′′
�

a3 ≡ b3 mod 73

a 6≡ b mod 7.

Now φ(73) = (7−1)72 = 3 ·98, and so ifx is not divisible by 7 we have(x98)3 ≡ 1 mod 73, which gives the first part of (ii)’.
We must verify now the conditions of non-divisibility. For example, lettingx = 2 we see that 298 ≡ 4 mod 7. Thus letting
a = 298,b = 1. Lettingx = 3 we find that 398 ≡ 324 mod 73. We leave to the reader to verify thata = 324,b = 1 is another
solution.

Practice

540 Problem Show that for all natural numberss, there is an
integern divisible by s, such that the sum of the digits ofn
equalss.

541 Problem Prove that 504|n9 −n3.

542 Problem Prove that for odd integern > 0, n|(2n! −1).

543 Problem Let p 6 |10 be a prime. Prove thatp divides in-
finitely many numbers of the form

11. . .11.

544 Problem Find all natural numbersn that divide

1n +2n + · · ·+(n−1)n.

545 Problem Let (m,n) = 1. Prove that

mφ(n) +nφ(n) ≡ 1 mod mn.

546 Problem Find the last two digits ofa1001 if a1 = 7,an =

7an−1.

547 Problem Find the remainder of

1010+10102
+ · · ·+101010

upon division by 7.

548 Problem Prove that for every natural numbern there ex-
ists some power of 2 whose finaln digits are all ones and twos.

549 Problem (USAMO 1982) Prove that there exists a posi-
tive integerk such thatk·2n+1 is composite for every positive
integern.

550 Problem (Putnam 1985) Describe the sequencea1 =

3,an = 3an−1 mod 100 for largen.
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Scales of Notation

8.1 The Decimal Scale

As we all know, any natural numbern can be written in the form

n = a010k +a110k−1 + · · ·+ak−110+ak,

where 1≤ a0 ≤ 9,0≤ a j ≤ 9, j ≥ 1. For example, 65789= 6·104 +5·103 +7·102 +8·10+9.

551 Example Find all whole numbers which begin with the digit 6 and decrease 25 times when this digit is deleted.

Solution: Let the number sought haven+1 digits. Then this number can be written as 6·10n +y, wherey is a number withn
digits (it may begin with one or several zeroes). The condition of the problem stipulates that

6·10n +y = 25·y

whence

y =
6·10n

24
.

From this we gather thatn≥ 2 (otherwise, 6·10n would not be divisible by 24). Forn≥ 2,y= 25·10k−2, that is,y has the form
250· · ·0(n−2 zeroes). We conclude that all the numbers sought have the form 625 0. . .0| {z }

n−2 zeroes

.

552 Example (IMO 1968) Find all natural numbersx such that the product of their digits (in decimal notation) equalsx2 −

10x−22.

Solution: Letx have the form

x = a0 +a110+a2102 + · · ·+an−110n−1, ak ≤ 9,an−1 6= 0.

Let P(x) be the product of the digits ofx, P(x) = x2−10x−22. Now, P(x) = a0a1 · · ·an−1 ≤ 9n−1an−1 < 10n−1an−1 ≤ x (strict
inequality occurs whenx has more than one digit). Sox2 −10x−22< x, and we deduce thatx < 13, whencex has either one
digit or x= 10,11,13. If x had one digit, thena0 = x2−10x−22, but this equation has no integral solutions. Ifx= 10,P(x) = 0,
but x2 −10x−22 6= 0. If x = 11,P(x) = 1, but x2 −10x−22 6= 1. If x = 12,P(x) = 2 andx2 −10x−22= 2. Therefore,x = 12
is the only solution.

553 Example A whole number decreases an integral number of times when itslast digit is deleted. Find all such numbers.

84
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Solution: Let 0≤ y ≤ 9, and 10x+ y = mx,m andx natural numbers. This requires 10+ y/x = m, an integer. We must have
x|y. If y = 0, any natural numberx will do, and we obtain the multiples of 10. Ify = 1,x = 1, and we obtain 11. Ify = 2,x = 1
or x = 2 and we obtain 12 and 22. Continuing in this fashion, the sought numbers are: the multiples of 10,11, 12,13, 14,15,
16,17, 18,19,22,24, 26,28, 33,36, 39,44, 48,55, 66,77,88, and 99.

554 Example Let A be a positive integer, andA′ be a number written with the aid of the same digits with are arranged in some
other order. Prove that ifA+A′ = 1010, thenA is divisible by 10.

Solution: ClearlyA andA′ must have ten digits. LetA = a10a9 . . .a1 be the consecutive digits ofA andA′ = a′10a
′
9 . . .a′1. Now,

A+A′ = 1010 if and only if there is aj,0≤ j ≤ 9 for whicha1+a′1 = a2+a′2 = · · ·= a j +a′j = 0,a j+1+a′j+1 = 10,a j+2+a′j+2 =

a j+3 +a′j+3 = · · · = a10+a′10 = 9. Notice that j = 0 implies that there are no sums of the forma j+k +a′j+k,k ≥ 2, and j = 9
implies that there are no sums of the formal +a′l ,1≤ l ≤ j. On adding all these sums, we gather

a1 +a′1 +a2 +a′2 + · · ·+a10+a′10 = 10+9(9− j).

Since thea′s are a permutation of theas, we see that the sinistral side of the above equality is the even number 2(a1 +a2 + · · ·+
a10). This implies thatj must be odd. But this implies thata1 +a′1 = 0, which gives the result.

555 Example (AIME 1994) Given a positive integern, let p(n) be the product of the non-zero digits ofn. (If n has only one
digit, thenp(n) is equal to that digit.) Let

S= p(1)+ p(2)+ · · ·+ p(999).

What is the largest prime factor ofS?

Solution: Observe thatnon-zerodigits are the ones that matter. So, for example, the numbers180, 108, 118, 810, 800, and 811
have the same valuep(n).

We obtain all the three digit numbers from 001 to 999 by expanding the product

(0+1+2+ · · ·+9)3 −0,

where we subtracted a 0 in order to eliminate 000. Thus

(0+1+2· · ·+9)3 −0 = 001+002+ · · ·+999.

In order to obtainp(n) for a particular number, we just have to substitute the (possible) zeroes in the decimal representation, by
1’s, and so

p(1)+ p(2)+ · · ·+ p(n) = 111+112+ · · ·+999= (1+1+2+ · · ·+9)3 −1,

which equals 463 −1. (In the last sum, 111 is repeated various times, once for 001,once for 011, once for 100, once for 101,
once for 110, etc.) As 463 −1 = 33 ·5·7·103, the number required is 103.

556 Example (AIME 1992) Let Sbe the set of all rational numbersr,0 < r < 1, that have a repeating decimal expansion of the
form

0.abcabcabc. . . = 0.abc,

where the digitsa,b,c are not necessarily distinct. To write the elements ofSas fractions in lowest terms, how many different
numerators are required?

Solution: Observe that 0.abcabcabc. . . =
abc
999

, and 999= 33 ·37. If abc is neither divisible by 3 nor 37, the fraction is already

in lowest terms. By the Inclusion-Exclusion Principle, there are

999−(999/3+999/37)+999/3·37= 648

such numbers. Also, fractions of the forms/37, where 3|s,37 6 |s are inS. There are 12 fractions of this kind. (Observe that we
do not consider fractions of the forml/3t ,37|s,3 6 |l , because fractions of this form are greater than 1, and thus not in S.)

The total number of distinct numerators in the set of reducedfractions is thus 640+12= 660.
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557 Example (Putnam 1956) Prove that every positive integer has a multiple whose decimal representation involves all 10
digits.

Solution: Letn be an arbitrary positive integer withk digits. Letm= 123456780·10k+1. Then all of then consecutive integers
m+1,m+2, . . .m+n begin with 1234567890 and one of them is divisible byn.

558 Example (Putnam 1987) The sequence of digits

12345678910111213141516171819202122. . .

is obtained by writing the positive integers in order. If the10n digit of this sequence occurs in the part in which them-digit
numbers are placed, definef (n) to be m. For examplef (2) = 2, because the hundredth digit enters the sequence in the
placement of the two-digit integer 55. Find, with proof,f (1987).

Solution: There are 9·10j−1 j-digit positive integers. The total number of digits in numbers with at mostr digits is g(r) =
rX

j=1

j ·9 ·10r−1 = r10r −
10r −1

9
. As 0<

10r −1
9

< 10r , we get(r − 1)10r < g(r) < r10r . Thusg(1983) < 1983·101983 <

104 ·101983= 101987 andg(1984) > 1983·101984> 103 ·101984. Thereforef (1987) = 1984.

Practice

559 Problem Prove that there is no whole number which de-
creases 35 times when its initial digit is deleted.

560 Problem A whole number is equal to the arithmetic mean
of all the numbers obtained from the given number with the aid
of all possible permutations of its digits. Find all whole num-
bers with that property.

561 Problem (AIME 1989) Suppose thatn is a positive inte-
ger andd is a single digit in base-ten. Findn if

n
810

= 0.d25d25d25d25. . . .

562 Problem (AIME 1992) For how many pairs of consecu-
tive integers in

{1000,1001, . . . ,2000}

is no carrying required when the two integers are added?

563 Problem Let m be a seventeen-digit positive integer and
let N be number obtained fromm by writing the same digits
in reversed order. Prove that at least one digit in the decimal
representation of the numberM +N is even.

564 Problem Given that

e= 2+
1
2!

+
1
3!

+
1
4!

+ · · · ,

prove thate is irrational.

565 Problem Let t be a positive real number. Prove that there
is a positive integern such that the decimal expansion ofnt
contains a 7.

566 Problem (AIME 1988) Find the smallest positive integer
whose cube ends in 888.

567 Problem (AIME 1987) An ordered pair(m,n) of nonneg-
ative integers is calledsimpleif the additionm+n requires no
carrying. Find the number of simple ordered pairs of nonneg-
ative integers that sum 1492.

568 Problem (AIME 1986) In the parlor game, the “magi-
cian” asks one of the participants to think of a three-digit num-
berabc, wherea,b,c represent the digits of the number in the
order indicated. The magician asks his victim to form the num-
bersacb,bac,cab and cba, to add the number and to reveal
their sumN. If told the value ofN, the magician can identity
abc. Play the magician and determineabc if N = 319.

569 Problem The integern is the smallest multiple of 15 such
that every digit ofn is either 0 or 8. Computen/15.

570 Problem (AIME 1988) For any positive integerk, let
f1(k) denote the square of the sums of the digits ofk. For
n≥ 2, let fn(k) = f1( fn−1(k)). Find f1988(11).

571 Problem (IMO 1969) Determine all three-digit numbers
N that are divisible by 11 and such thatN/11 equals the sum
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of the squares of the digits ofN.

572 Problem (IMO 1962) Find the smallest natural number
having last digit is 6 and if this 6 is erased and put in front
of the other digits, the resulting number is four times as large
as the original number.

573 Problem 1. Show thatChampernowne’s number

χ = 0.123456789101112131415161718192021. . .

is irrational.

2. Let r ∈ Q and letε > 0 be given. Prove that there exists
a positive integern such that

|10nχ − r| < ε.

574 Problem A Liouville numberis a real numberx such that
for every positivek there exist integersa andb≥ 2, such that

|x−a/b| < b−k.

Prove or disprove thatπ is the sum of two Liouville numbers.

575 Problem Given that

1/49= 0.020408163265306122448979591836734693877551,

find the last thousand digits of

1+50+502 + · · ·+50999.

8.2 Non-decimal Scales
The fact that most people have ten fingers has fixed our scale ofnotation to the decimal. Given any positive integerr > 1, we
can, however, express any number in baser.

576 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213< 75. We thus want to find 0≤ a0, . . . ,a4 ≤ 6,a4 6= 0, such that

5213= a474 +a373 +a272 +a17+a0.

Now, divide by 74 to obtain
2+proper fraction= a4 +proper fraction.

Sincea4 is an integer, it must be the case thata4 = 2. Thus 5213−2 ·74 = 411= a373 +a272 +a17+a0. Dividing 411 by 73

we obtain
1+proper fraction= a3 +proper fraction.

Thusa3 = 1. Continuing in this way we deduce that 5213= 211257.

577 Example Express the decimal number 13/16 in base-six.

Solution: Write
13
16

=
a1

6
+

a2

62 +
a3

63 + . . . .

Multiply by 6 to obtain
4+proper fraction= a1 +proper fraction.

Thusa1 = 4. Hence 13/16−4/6 = 7/48=
a2

62 +
a3

63 + . . .. Multiply by 62 to obtain

5+proper fraction= a2 +proper fraction.

We gather thata2 = 5. Continuing in this fashion, we deduce that 13/16= .45136.

578 Example Prove that 4.41 is a perfect square in any scale of notation.

Solution: If 4.41 is in scaler, then

4.41= 4+
4
r

+
1
r2 =

�
2+

1
r

�2

.
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579 Example Let TxU denote the greatest integer less than or equal tox. Does the equation

TxU+T2xU+T4xU+T8xU+T16xU+T32xU = 12345

have a solution?

Solution: We show that there is no suchx. Recall thatTxU satisfies the inequalitiesx−1 < TxU ≤ x. Thus

x−1+2x−1+4x−1+ · · ·+32x−1 < TxU+T2xU+T4xU+T8xU

+T16xU+T32xU

≤ x+2x+4x+ · · ·+32x.

From this we see that 63x−6 < 12345≤ 63x. Hence 195< x < 196.
Write thenx in base-two:

x = 195+
a1

2
+

a2

22 +
a3

23 + . . . ,

with ak = 0 or 1. Then
T2xU = 2·195+a1,
T4xU = 4·195+2a1 +a2,
T8xU = 8·195+4a1 +2a2 +a3,
T16xU = 16·195+8a1 +4a2 +2a3 +a4,
T32xU = 32·195+16a1 +8a2 +4a3 +2a4 +a5.

Adding we find thatTxU+T2xU+T4xU+T8xU+T16xU+T32xU = 63·195+31a1+15a2+7a3+3a4+a5, i.e. 31a1+15a2+

7a3 +3a4 +a5 = 60. This cannot be because 31a1 +15a2 +7a3 +3a4 +a5 ≤ 31+15+7+3+1 = 57< 60.

580 Example (AHSME 1993) Given 0≤ x0 < 1, let

xn =

§
2xn−1 if 2xn−1 < 1
2xn−1 −1 if 2xn−1 ≥ 1

for all integersn > 0. For how manyx0 is it true thatx0 = x5?

Solution: Writex0 in base-two,

x0 =

∞X
k=1

an

2n an = 0 or 1.

The algorithm given just moves the binary point one unit to the right. Forx0 to equalx5 we need 0.a1a2a3a4a5a6a7 . . . =

0.a6a7a8a9a10a11a12. . .. This will happen if and only ifx0 has a repeating expansion witha1a2a3a4a5 as the repeating block .
There are 25 = 32 such blocks. But ifa1 = a2 = · · · = a5 = 1, thenx0 = 1, which is outside[0,1). The total number of values
for whichx0 = x5 is thus 32−1 = 31.

581 Example (AIME 1986) The increasing sequence

1,3,4,9,10,12,13, . . .

consists of all those positive integers which are powers of 3or sums distinct powers of 3. Find the hundredth term of the
sequence.

Solution: If the terms of the sequence are written in base-3,they comprise the positive integers which do not contain thedigit
2. Thus, the terms of the sequence in ascending order are thus

1,10,11,100,101,110,111, . . . .

In thebinary scale, these numbers are, of course, 1, 2, 3, . . . . To obtain the 100-th term of the sequence we just write 100 in
binary 100= 11001002 and translate this into ternary: 11001003 = 36 +35 +32 = 981.

Practice
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582 Problem (Putnam, 1987) For each positive integern, let
α (n) be the number of zeroes in the base-three representation
of n. For which positive real numbersx does the series

∞X
n=1

xα(n)

n3

converge?

583 Problem Prove that forx∈ R,x≥ 0, one has

∞X
n=1

(−1)T2nxU

2n = 1−2(x−TxU).

584 Problem (Putnam, 1981) Let E(n) denote the largestk
such that 5k is an integral divisor of 112233 · · ·nn. Calculate

lim
n→∞

E(n)

n2 .

585 Problem (AHSME, 1982) The base-eight representation
of a perfect square isab3c with a 6= 0. Find the value ofc.

586 Problem (Putnam, 1977) An ordered triple of
(x1,x2,x3) of positive irrational numbers withx1 +x2 +x3 = 1
is called balanced ifxn < 1/2 for all 1≤ n≤ 3. If a triple is not
balanced, sayx j > 1/2, one performs the following “balancing
act”:

B(x1,x2,x3) = (x′1,x
′
2,x

′
3),

wherex′i = 2xi if xi 6= x j andx′j = 2x j −1. If the new triple is
not balanced, one performs the balancing act on it. Does con-
tinuation of this process always lead to a balanced triple after
a finite number of performances of the balancing act?

587 Problem Let C denote the class of positive integers
which, when written in base-three, do not require the digit 2.
Show that no three integers inC are in arithmetic progression.

588 Problem Let B(n) be the number of 1’s in the base-two
expansion ofn. For example,B(6) = B(1102) = 2,B(15) =

B(11112) = 4.

1. (PUTNAM 1981) Is

exp

 ∞X
n=1

B(n)

n2 +n

!
a rational number?

2. (PUTNAM 1984) Express

2m−1X
n=0

(−1)B(n)nm

in the form (−1)maf (m)(g(m))! wherea is an integer
and f ,g are polynomials.

589 Problem What is the largest integer that I should be per-
mitted to choose so that you may determine my number in
twenty “yes” or “no” questions?

8.3 A theorem of Kummer

We first establish the following theorem.

590 Theorem (Legendre) Let p be a prime and letn = a0pk +a1pk−1 + · · ·+ak−1p+ak be the base-p expansion ofn. The
exact power m of a prime p dividingn! is given by

m=
n−(a0 +a1 + · · ·+ak)

p−1
.

Proof: By De Polignac’s Formula

m=

∞X
k=1

T
n
pk U.
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Now, Tn/pU = a0pk−1 + a1pk−2 + · · ·ak−2p+ ak−1,Tn/p2U = a0pk−2 + a1pk−3 + · · ·+ ak−2, . . . ,Tn/pkU = a0.
Thus

∞X
k=1

Tn/pkU = a0(1+ p+ p2 + · · ·+ pk−1)+a1(1+ p+ p2 + · · ·+ pk−2)+

· · ·+ak−1(1+ p)+ak

= a0
pk −1
p−1

+a1
pk−1 −1

p−1
+ · · ·+ak−1

p2 −1
p−1

+ak
p−1
p−1

=
a0pk +a1pk−1 + · · ·+ak −(a0 +a1 + · · ·+ak)

p−1

=
n−(a0 +a1 + · · ·+ak)

p−1
,

as wanted.❑

591 Theorem (Kummer’s Theorem) The exact power of a primep dividing the binomial coefficient

�
a+b

a

�
is equal to the

number of “carry-overs” when performing the addition ofa,b written in basep.

Proof: Let a= a0 + a1p+ · · ·+ akpk,b = b0 + b1p+ · · ·+ bkpk,0 ≤ a j ,b j ≤ p− 1, and ak + bk > 0. Let Sa =
kX

j=0

a j ,Sb =

kX
j=0

b j . Let cj ,0≤ c j ≤ p−1, andε j = 0 or 1, be defined as follows:

a0 +b0 = ε0p+c0,
ε0 +a1 +b1 = ε1p+c1,
ε1 +a2 +b2 = ε2p+c2,
...
εk−1 +ak +bk = εkp+ck.

Multiplying all these equalities successively by1, p, p2, . . . and adding them:

a+b+ ε0p+ ε1p2 + . . .+ εk−1pk = ε0p+ ε1p2 + . . .+ εk−1pk + εkpk+1

+c0 +c1p+ · · ·+ckpk .

We deduce that a+b = c0 +c1p+ · · ·+ckpk + εkpk+1. By adding all the equalities above, we obtain similarly:

Sa +Sb +(ε0 + ε1 + · · ·+ εk−1) = (ε0 + ε1 + · · ·+ εk)p+Sa+b − εk.

Upon using Legendre’s result from above,

(p−1)m= (a+b)−Sa+b −a+Sa −b+Sb = (p−1)(ε0 + ε1 + · · ·+ εk),

which gives the result.❑
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Miscellaneous Problems

592 Example Prove that X
p

p prime

1
p

diverges.

Solution: LetFx denote the family consisting of the integer 1 and the positive integersn all whose prime factors are less than
or equal tox. By the Unique Factorisation TheoremY

p≤x
p prime

�
1+

1
p

+
1
p2 + · · ·

�
=
X

n∈Fx

1
n
. (9.1)

Now, X
n∈Fx

1
n

>
X
n≤x

1
n
.

As the harmonic series diverges, the product on the sinistral side of 2.3.3 diverges asx→ ∞. ButY
p≤x

p prime

�
1+

1
p

+
1
p2 + · · ·

�
=
X
p≤x

p prime

1
p

+O(1).

This finishes the proof.

593 Example Prove that for each positive integerk there exist infinitely many even positive integers which canbe written in
more thank ways as the sum of two odd primes.

Solution: Letak denote the number of ways in which 2k can be written as the sum of two odd primes. Assume thatak ≤C ∀k
for some positive constantC. Then � X

p>2
p prime

xp

�2

=

∞X
k=2

akx
2k ≤C

x4

1−x2 .

This yields X
p>2

p prime

xp−1 ≤
√

C
x√

1−x2
.

91
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Integrating term by term, X
p>2

p prime

1
p
≤
√

C
Z 1

0

x√
1−x2

dx=
√

C.

But the leftmost series is divergent, and we obtain a contradiction.

594 Example (IMO 1976) Determine, with proof, the largest number which is the product of positive integers whose sum is
1976.

Solution: Suppose that
a1 +a2 + · · ·+an = 1976;

we want to maximise
nY

k=1

ak. We shall replace some of theak so that the product is enlarged, but the sum remains the same.By

the arithmetic mean-geometric mean inequality 
nY

k=1

ak

!1/n

≤ a1 +a2 + · · ·+an

n
,

with equality if and only ifa1 = a2 = · · · = an. Thus we want to make theak as equal as possible.

If we have anak ≥ 4, we replace it by two numbers 2,ak −2. Then the sum is not affected, but 2(ak −2) ≥ ak, since we are
assumingak ≥ 4. Therefore, in order to maximise the product, we must takeak = 2 or ak = 3. We must take as many 2’s and
3’s as possible.

Now, 2+2+2= 3+3, but 23 < 32, thus we should take no more than two 2’s. Since 1976= 3·658+2, the largest possible
product is 2·3658.

595 Example (USAMO 1983) Consider anopeninterval of length 1/n on the real line, wheren is a positive integer. Prove that
the number of irreducible fractionsa/b,1≤ b≤ n, contained in the given interval is at most(n+1)/2.

Solution: Divide the rational numbers in(x,x+ 1/n) into two sets:{sk

tk
},k = 1,2, . . . , r, with denominators 1≤ tk ≤ n/2 and

thoseuk/vk,k = 1,2, . . . ,s with denominatorsn/2 < vk ≤ n, where all these fractions are in reduced form. Now, for every tk
there are integersck such thatn/2≤ cktk ≤ n. Defineus+k = cksk,vs+k = cktk,yk+r = uk+r/vk+r . No two of theyl ,1≤ l ≤ r +s
are equal, for otherwisey j = yk would yield

|uk/vk −ui/vi | ≥ 1/vi ≥ 1/n,

which contradicts that the open interval is of length 1/n. Hence the number of distinct rationals isr +s≤ n−Tn/2U≤ (n+1)/2.

Aliter: Suppose to the contrary that we have at leastT(n+ 1)/2U + 1 = a fractions. Letsk, tk,1 ≤ k ≤ a be the set of
numerators and denominators. The set of denominators is a subset of

{1,2, . . . ,2(a−1)}.

By the Pigeonhole Principle,ti |tk for somei,k, saytk = mti . But then

|sk/tk −si/ti | = |msi −sk|/tk ≥ 1/n,

contradicting the hypothesis that the open interval is of length 1/n.

596 Example Let

Qr,s =
(rs)!
r!s!

.

Show thatQr,ps≡ Qr,s mod p, wherep is a prime
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Solution: As

Qr,s =

rY
j=1

�
js−1
s−1

�
and

Qr,ps =

rY
j=1

�
jps−1
ps−1

�
,

it follows from
(1+x) jps−1 ≡ (1+xp) js−1(1+x)p−1 mod p

that �
jps−1
ps−1

�
≡
�

js−1
s−1

�
mod p,

whence the result.

Practice

597 Problem Find a four-digit number which is a perfect
square such that its first two digits are equal to each other and
its last two digits are equal to each other.

598 Problem Find all integral solutions of the equation
xX

k=1

k! = y2.

599 Problem Find all integral solutions of the equation
xX

k=1

k! = yz.

600 Problem (USAMO 1985) Determine whether there are
any positive integral solutions to the simultaneous equations

x2
1 +x2

2 + · · ·+x2
1985= y3,

x3
1 +x3

2 + · · ·+x3
1985= z2

with distinct integersx1,x2, . . . ,x1985.

601 Problem Show that the Diophantine equation

1
a1

+
1
a2

+ . . .+
1

an−1
+

1
an

+
1

a1a2 · · ·an

has at least one solution for everyn∈ N.

602 Problem (AIME 1987) Find the largest possible value of
k for which 311 is expressible as the sum ofk consecutive pos-
itive integers.

603 Problem (AIME 1987) Let M be the smallest positive
integer whose cube is of the formn+ r, wheren∈ N,0 < r <
1/1000. Findn.

604 Problem Determine two-parameter solutions for the “al-
most” Fermat Diophantine equations

xn−1 +yn−1 = zn,

xn+1 +yn+1 = zn,

xn+1 +yn−1 = zn.

605 Problem (AIME 1984) What is the largest even integer
which cannot be written as the sum of two odd composite num-
bers?

606 Problem Prove that are infinitely many nonnegative inte-
gersn which cannot be written asn = x2 +y3 +z6 for nonneg-
ative integersx,y,z.

607 Problem Find the integral solutions of

x2 +x = y4 +y3 +y2 +y.

608 Problem Show that there are infinitely many integersx,y
such that

3x2 −7y2 = −1.

609 Problem Prove that

1.

a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca).

2. Find integersa,b,csuch that 1987= a3+b3+c3−3abc.
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3. Find polynomialsP,Q,R in x,y,z such that

P3 +Q3 +R3 −3PQR= (x3 +y3 +z3 −3xyz)2

4. Can you find integersa,b,c with 19872 = a3+b3+c3−

3abc?

610 Problem Find all integersn such thatn4 +n+7 is a per-
fect square.

611 Problem Prove that 19911991 is not the sum of two per-
fect squares.

612 Problem Find infinitely many integersx > 1,y> 1,z> 1
such that

x!y! = z!.

613 Problem Find all positive integers with

mn −nm = 1.

614 Problem Find all integers with

x4 −2y2 = 1.

615 Problem Prove that for every positive integerk there
exists a sequence ofk consecutive positive integers none of
which can be represented as the sum of two squares.

616 Problem (IMO 1977) In a finite sequence of real num-
bers, the sum of any seven successive terms is negative, and
the sum of any eleven successive terms is positive. Determine
the maximum number of terms in the sequence.

617 Problem Determine an infinite series of terms such that
each term of the series is a perfect square and the sum of the
series at any point is also a perfect square.

618 Problem Prove that any positive rational integer can be
expressed as a finite sum of distinct terms of the harmonic se-
ries, 1,1/2,1/3, . . ..

619 Problem (Wostenholme’s Theorem) Let p > 3 be a
prime. If

a
b

= 1+
1
2

+
1
3

+ · · ·+ 1
p−1

,

thenp2|a.

620 Problem Prove that the number of odd binomial coeffi-
cients in any row of Pascal’s Triangle is a power of 2.

621 Problem Prove that the coefficients of a binomial expan-
sion are odd if and only ifn is of the form 2k −1.

622 Problem Let the numbersci be defined by the power se-
ries identity

(1+x+x2 + · · ·+xp−1)/(1−x)p−1 := 1+c1x+c2x2 + · · · .

Show thatci ≡ 0 mod p for all i ≥ 1.

623 Problem Let p be a prime. Show that�
p−1

k

�
≡ (−1)k mod p

for all 0≤ k≤ p−1.

624 Problem (Putnam 1977) Let p be a prime and leta ≥
b > 0 be integers. Prove that�

pa
pb

�
≡
�

a
b

�
mod p.

625 Problem Demonstrate that for a primep andk∈ N,�
pk

a

�
≡ 0 mod p,

for 0 < a < pk.

626 Problem Let p be a prime and letk,a∈N,0≤ a≤ pk−1.
Demonstrate that�

pk −1
a

�
≡ (−1)a mod p.
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