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permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media LLC, 233

Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with

reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,

electronic adaptation, computer software, or by similar or dissimilar methodology now known or

hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they

are not identified as such, is not to be taken as an expression of opinion as to whether or not they are

subject to proprietary rights.

9 8 7 6 5 4 3 2 1

www.birkhauser.com (TXQ/EB)



To our families:

Linda, Carolyn, David, Scott, Shane, and Sawyer,

Katariina, Anja, and Aila



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction and Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The Ring of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Divisibility, Primes, and Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Congruences and Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Basic Theory of Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The Ring of Integers Modulo n . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Units and the Euler Phi Function . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Fermat’s Little Theorem and the Order of an Element . . . . . . 31

2.4.5 On Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 The Solution of Polynomial Congruences Modulo m . . . . . . . . . . . . . 37

2.5.1 Linear Congruences and the Chinese Remainder Theorem . . 37

2.5.2 Higher-Degree Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Quadratic Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 The Infinitude of Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 The Infinitude of Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Some Direct Proofs and Variations . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Some Analytic Proofs and Variations . . . . . . . . . . . . . . . . . . . . 58

3.1.3 The Fermat and Mersenne Numbers . . . . . . . . . . . . . . . . . . . . 61

3.1.4 The Fibonacci Numbers and the Golden Section . . . . . . . . . . 65

3.1.5 Some Simple Cases of Dirichlet’s Theorem . . . . . . . . . . . . . . 78

3.1.6 A Topological Proof and a Proof Using Codes . . . . . . . . . . . . 83

3.2 Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Pythagorean Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.2 Fermat’s Two-Square Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.3 The Modular Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



viii Contents

3.2.4 Lagrange’s Four-Square Theorem . . . . . . . . . . . . . . . . . . . . . . 100

3.2.5 The Infinitude of Primes Through Continued Fractions . . . . . 102

3.3 Dirichlet’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Twin Prime Conjecture and Related Ideas . . . . . . . . . . . . . . . . . . . . . . 121

3.5 Primes Between x and 2x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.6 Arithmetic Functions and the Möbius Inversion Formula . . . . . . . . . . 123

4 The Density of Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.1 The Prime Number Theorem: Estimates and History . . . . . . . . . . . . . 133

4.2 Chebychev’s Estimate and Some Consequences . . . . . . . . . . . . . . . . . 136

4.3 Equivalent Formulations of the Prime Number Theorem . . . . . . . . . . 149

4.4 The Riemann Zeta Function and the Riemann Hypothesis . . . . . . . . . 157

4.4.1 The Real Zeta Function of Euler . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.2 Analytic Functions and Analytic Continuation . . . . . . . . . . . . 163

4.4.3 The Riemann Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.5 The Prime Number Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.6 The Elementary Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.7 Some Extensions and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5 Primality Testing: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.1 Primality Testing and Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Sieving Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Brun’s Sieve and Brun’s Theorem . . . . . . . . . . . . . . . . . . . . . . 204

5.3 Primality Testing and Prime Records . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.3.1 Pseudoprimes and Probabilistic Testing . . . . . . . . . . . . . . . . . . 218

5.3.2 The Lucas–Lehmer Test and Prime Records . . . . . . . . . . . . . . 225

5.3.3 Some Additional Primality Tests . . . . . . . . . . . . . . . . . . . . . . . . 231

5.4 Cryptography and Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.4.1 Some Number-Theoretic Cryptosystems . . . . . . . . . . . . . . . . . 237

5.4.2 Public Key Cryptography and the RSA Algorithm . . . . . . . . . 240

5.5 The AKS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6 Primes and Algebraic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.1 Algebraic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.2 Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.2.1 Euclidean Domains and the Gaussian Integers . . . . . . . . . . . . 261

6.2.2 Principal Ideal Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.2.3 Prime and Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.3 Algebraic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.1 Algebraic Extensions of QQQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

6.3.2 Algebraic and Transcendental Numbers . . . . . . . . . . . . . . . . . . 284

6.3.3 Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

6.3.4 Discriminant and Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

6.4 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

6.4.1 The Ring of Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . 296



Contents ix

6.4.2 Integral Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.4.3 Quadratic Fields and Quadratic Integers . . . . . . . . . . . . . . . . . 300

6.4.4 The Transcendence of e and π . . . . . . . . . . . . . . . . . . . . . . . . . 303

6.4.5 The Geometry of Numbers: Minkowski Theory . . . . . . . . . . . 306

6.4.6 Dirichlet’s Unit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

6.5 The Theory of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

6.5.1 Unique Factorization of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.5.2 An Application of Unique Factorization . . . . . . . . . . . . . . . . . 319

6.5.3 The Ideal Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

6.5.4 Norms of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

6.5.5 Class Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Bibliography and Cited References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



Preface

Number theory is fascinating. Results about numbers often appear magical, both in

their statements and in the elegance of their proofs. Nowhere is this more evident than

in results about the set of prime numbers. The prime number theorem, which gives the

asymptotic density of the prime numbers, is often cited as the most surprising result

in all of mathematics. It certainly is the result that is hardest to justify intuitively.

The prime numbers form the cornerstone of the theory of numbers. Many, if

not most, results in number theory proceed by considering the case of primes and

then pasting the result together for all integers using the fundamental theorem of

arithmetic. The purpose of this book is to give an introduction and overview of

number theory based on the central theme of the sequence of primes. The richness of

this somewhat unique approach becomes clear once one realizes how much number

theory and mathematics in general are needed in order to learn and truly understand the

prime numbers. Our approach provides a solid background in the standard material

as well as presenting an overview of the whole discipline. All the essential topics

are covered: fundamental theorem of arithmetic, theory of congruences, quadratic

reciprocity, arithmetic functions, the distribution of primes. In addition, there are

firm introductions to analytic number theory, primality testing and cryptography, and

algebraic number theory as well as many interesting side topics. Full treatments and

proofs are given to both Dirichlet’s theorem and the prime number theorem. There is

a complete explanation of the new AKS algorithm, which shows that primality testing

is of polynomial time. In algebraic number theory there is a complete presentation

of primes and prime factorizations in algebraic number fields.

The book grew out of notes from several courses given for advanced undergrad-

uates in the United States and for teachers in Germany. The material on the prime

number theorem grew out of seminars also given both at the University of Dortmund

and at Fairfield University. The intended audience is upper-level undergraduates and

beginning graduate students. The notes on which the book was based were used

effectively in such courses in both the United States and Germany. The prerequisites

are a knowledge of calculus and multivariable calculus and some linear algebra. The

necessary ideas from abstract algebra and complex analysis are introduced in the

book. There are many interesting exercises ranging from simple to quite difficult.



xii Preface

Solutions and hints are provided to selected exercises. We have written the book in

what we feel is a user-friendly style with many discussions of the history of various

topics. It is our opinion that this book is also ideal for self-study.

There are two basic facts concerning the sequence of primes on which this book

is focused and from which much of the theory of numbers is introduced. The first

fact is that there are infinitely many primes. This fact was of course known since

at least the time of Euclid. However, there are a great many proofs of this result

not related to Euclid’s original proof. By considering and presenting many of these

proofs, a wide area of modern number theory is covered. This includes the fact that

the primes are numerous enough so that there are infinitely many in any arithmetic

progression an + b with a, b relatively prime (Dirichlet’s theorem). The proof of

Dirichlet’s theorem allows us to introduce analytic methods.

In contrast to there being infinitely many primes, the density of primes thins

out. We first encounter this fact in the startling (but easily proved) result that there

are arbitrarily large gaps in the sequence of primes. The exact nature of how the

sequence of primes thins out is formalized in the prime number theorem, which as

already mentioned, many people consider the most surprising result in mathematics.

Presenting the proof and the ideas surrounding the proof of the prime number theorem

allows us to introduce and discuss a large portion of analytic number theory.

Algebraic number theory arose originally as an attempt to extend unique factoriza-

tion to algebraic number rings. We use the approach of looking at primes and prime

factorizations to present a fairly comprehensive introduction to algebraic number

theory.

Finally, modern crypotography is intimately tied to number theory. Especially

crucial in this connection is primality testing. We discuss various primality testing

methods, including the recently developed AKS algorithm, and then provide a basic

introduction to cryptography.

There are several ways that this book can be used for courses. Chapters 1 and 2

together with selections from the remaining chapters can be used for a one-semester

course in number theory for undergraduates or beginning graduate students. The only

prerequisites are a basic knowledge of mathematical proofs (induction, etc.) and some

knowledge of calculus. All the rest is self-contained, although we do use algebraic

methods, so that some knowledge of basic abstract algebra would be beneficial. A

year-long course focusing on analytic methods can be done from Chapters 1, 2, 3, and 4

and selections from 5 and 6, while a year-long course focusing on algebraic number

theory can be fashioned from Chapters 1, 2, 3, and 6 and selections from 4 and 5.

There are also possibilities for using the book for one-semester introductory courses

in analytic number theory, centering on Chapter 4, or for a one-semester introductory

course in algebraic number theory, centering on Chapter 6. Some suggested courses:

Basic Introductory One-Semester Number Theory Course:

Chapter One, Chapter Two, Sections 3.1, 4.1, 4.2, 5.1, 5.3, 5.4, 6.1

Year-Long Course Focusing on Analytic Number Theory:

Chapter 1, Chapter 2, Chapter 3, Chapter 4, Sections 5.1, 5.3, 5.4, 6.1
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Year-Long Course Focusing on Algebraic Number Theory:

Chapter 1, Chapter 2, Chapter 3, Chapter 6, Sections 4.1, 4.2, 5.1, 5.3, 5.4

One-Semester Course Focusing on Analytic Number Theory:

Chapter 1, Chapter 2 (as needed), Sections 3.1, 3.1.5, 3.3, 3.4, 3.5, Chapter 4

One-Semester Course Focusing on Algebraic Number Theory:

Chapter 1, Chapter 2 (as needed), Chapter 6

We would like to thank the many people who have read through other prelimi-

nary versions of these notes and made suggestions. Included among them are Kati

Bencsath and Al Thaler as well as the many students who have taken the courses.

In particular, we would like to thank Peter Ackermann, who read through the whole

manuscript, both proofreading it and making mathematical suggestions. Peter was

also heavily involved in the seminars on the prime number theorem from which much

of the material in Chapter 4 comes. We also thank the editors at Birkhäuser, who

did a detailed reading of the manuscript and made many important suggestions and

improvements.

Benjamin Fine—Fairfield, CT, USA

Gerhard Rosenberger—Dortmund, Germany

January, 2006
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1

Introduction and Historical Remarks

The theory of numbers is concerned with the properties of the integers, that is, the

class of whole numbers and zero, 0, ±1, ±2 . . . . The positive integers, 1, 2, 3 . . . , are

called the natural numbers. The basic additive structure of the integers is relatively

simple. Mathematically it is just an infinite cyclic group (see Chapter 2). Therefore the

true interest lies in the multiplicative structure and the interplay between the additive

and multiplicative structures. Given the simplicity of the additive structure, one of

the enduring fascinations of the theory of numbers is that there are so many easily

stated and easily understood problems and results whose proofs are either unknown

or incredibly difficult. Perhaps the most famous of these was Fermat’s big theorem,

which was stated about 1650 and only recently proved by A. Wiles. This result said

that the equation an+bn = cn has no nontrivial (abc �= 0) integral solutions if n > 2.

Wiles’s proof ultimately involved the very deep theory of elliptic curves. Another

result in this category is the Goldbach conjecture, first given about 1740 and still

open. This states that any even integer greater than 2 is the sum of two primes. Another

of the fascinations of number theory is that many results seem almost magical. The

prime number theorem, which describes the asymptotic distribution of the prime

numbers has often been touted as the most surprising result in mathematics.

The cornerstone of the multiplicative theory of the integers is the series of primes

together with the fundamental theorem of arithmetic, which states that any integer

can be decomposed, essentially uniquely, as a product of primes. One of the basic

modes of proof in the theory of numbers is to reduce to the case of a prime and then use

the fundamental theorem to patch things back together for all integers. This concept of

a fundamental prime decomposition, which has its origin in the fundamental theorem

of arithmetic, permeates much of mathematics. In many different disciplines one of

the major techniques is to find the indecomposable building blocks (the “primes’’ in

that discipline) and then use these as starting points in proving general results. The

idea of a simple group and the Jordan–Hölder decomposition in group theory is one

example (see [R]).

The purpose of this book is to give an introduction and overview of number theory

based on the sequence of primes. It grew out of courses for advanced undergraduates

in the United States and courses for teachers in Germany. There are many approaches
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to presenting this first material on number theory. We felt that this approach through

the sequence of primes gives a solid background in standard material while presenting

a wide overview of the whole discipline.

Modern number theory has essentially three branches, which overlap in many

areas. The first is elementary number theory, which can be quite nonelementary,

and which consists of those results concerning the integers themselves that do not use

analytic methods. This branch has many subbranches: the theory of congruences,

Diophantine analysis, geometric number theory, and quadratic residues, to mention

a few. The second major branch is analytic number theory. This is the branch of

the theory of numbers that studies the integers using methods of real and complex

analysis. The final major branch is algebraic number theory, which extends the

study of the integers to other algebraic number fields. By examining the sequence of

primes, we will touch on all these areas.

In Chapter 2 we will consider the basic material in elementary number theory: the

fundamental theorem of arithmetic, the theory of congruences, quadratic reciprocity,

and related results. One of the most important straightforward results is that there is

an infinite collection of primes. In Chapter 3 we will look at a collection of proofs of

this result. We will also look at Dirichlet’s theorem, which says that there is an infinite

number of primes in any arithmetic progression, and at the twin prime conjecture.

Although there is an infinite number of primes, their density tends to thin out. It was

observed, though, that if π(x) denotes the number of primes less than or equal to x,

then this function behaves asymptotically like the function x
ln x

. This result is known

as the prime number theorem. Besides being a startling result, the proof of the prime

number theorem, done independently by Hadamard and de la Vallée Poussin, became

the genesis for analytic number theory. We will discuss the prime number theorem

and its proof as well as the Riemann hypothesis in Chapter 4. For larger integers,

determining whether a number is a prime and determining its factorization becomes

a nontrivial problem. The fact that factorization of large integers is so difficult has

been used extensively in cryptography, especially public key cryptography, that is,

coding messages that cannot be hidden, such as priveleged information sent over

public access computer lines. In Chapter 5 we will discuss primality testing and hint

at the uses in cryptography. The excellent book by Koblitz [Ko] is entirely devoted

to the subject. Finally, in Chapter 6 we discuss primes in algebraic number theory.

We introduce the general idea of unique factorization and primes and prime ideals in

number fields.

The history of number theory has been very well documented. The book by

L. E. Dickson, The History of the Theory of Numbers [D], gives a comprehensive

history until the early part of the twentieth century. The book by O. Orstein, Number

Theory and Its History [O], gives a similar but not as comprehensive account and

includes results up to the mid-twentieth century. Another excellent historical approach

is the book by A. Weil, Number Theory: An Approach Through History. From

Hammurapi to Legendre [W]. The chapter notes in Nathanson’s book Elementary

Methods in Number Theory [N] also provide good historical insights. In this book

we will only touch on the history. For this introduction we give a very brief overview

of some of the major developments.
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Number theory arises from arithmetic and computations with whole numbers.

Every culture and society has some method of counting and number representation.

However, it wasn’t until the development of a place value system that symbolic

computation became truly feasible. The numeration system that we use is called the

Hindu–Arabic numeration system and was developed in India most likely during the

period A.D. 600–800. This system was adopted by Arab cultures and transported to

Europe via Spain. The adoption of this system in Europe and elsewhere was a long

process, and it wasn’t until the Renaissance and thereafter that symbolic computation

widely superseded the use of abaci and other computing devices. We should remark

that although mathematics is theoretical, it often happens that abstract results are

delayed without proper computation. Calculus and analysis could not have developed

without the prior development of the concept of an irrational number.

Much of the beginnings of number theory came from straightforward observa-

tion, and a great deal of number-theoretic information was known to the Babylonians,

Egyptians, Greeks, Hindus, and other ancient cultures. Greek mathematicians, espe-

cially the Pythagoreans (around 450 B.C.), began to think of numbers as abstractions

and deal with purely theoretical questions. The foundational material of number

theory—divisors, primes, greatest common divisors, least common multiples, the

Euclidean algorithm, the fundamental theorem of arithmetic, and the infinitude of

primes—although not always stated in modern terms—are all present in Euclid’s

Elements. Three of Euclid’s books, Book VII, Book VIII, and Book IX, treat the

theory of numbers. It is interesting that Euclid’s treatment of number theory is still

geometric in its motivation and most of its methods. It wasn’t until the Alexandrian

period, several hundred years later, that arithmetic was separated from geometry.

The book Introductio Arithmeticae by Niomachus in the second century A.D. was the

first major treatment of arithmetic and the properties of the whole numbers without

geometric recourse. This work was continued by Diophantus of Alexandria about

A.D. 250. His great work Arithmetica is a collection of problems and solutions in

number theory and algebra. In this work he introduced a great deal of algebraic sym-

bolism as well as the topic of equations with indeterminate quantities. The attempt to

find integral solutions to algebraic equations is now called Diophantine analysis in

his honor. Fermat’s big theorem of solving xn + yn = zn for integers is an example

of a Diophantine problem.

The improvements in computational techniques led mathematicians in the 1500s

and 1600s to look more deeply at number theoretical questions. The giant of this

period was Pierre Fermat, who made enormous contributions to the theory of numbers.

It was Fermat’s work that could be considered the beginnings of number theory as a

modern discipline. Fermat professionally was a lawyer and a judge and essentially

only a mathematical amateur. He published almost nothing and his results and ideas

are found in his own notes and journals as well as in correspondence with other

mathematicians. Yet he had a profound effect on almost all branches of mathematics,

not just number theory. He, as much as Descartes, developed analytic geometry. He

did major work, prior to Newton and Leibniz, on the foundations of calculus. A series

of letters between Fermat and Pascal established the beginnings of probability theory.

In number theory, the work he did on factorization, congruences, and representations
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of integers by quadratic forms determined the direction of number theory until the

nineteenth century. He did not supply proofs for most of his results, but almost all of

his work was subsequently proved (or shown to be false). The most difficult proved

to be his big theorem, which remained unproved until 1996. The attempts to prove

this big theorem led to many advances in number theory including the development

of algebraic number theory.

From the time of Fermat in the mid-seventeenth century through the eighteenth

century a great deal of work was done in number theory, but it was basically a

series of somewhat disconnected, but often brilliant and startling, results. Important

contributions were made by Euler, who proved and extended many of Fermat’s results,

including Fermat’s two-square theorem (see Section 3.2). Euler also hinted at the law

of quadratic reciprocity (see Section 2.6). This important result was eventually stated

in its modern form by Legendre, and the first complete proof was given by Gauss.

During this period, certain problems were either stated or conjectured that became the

basis for what is now known as additive number theory. The Goldbach conjecture

and Waring’s problem are two examples. We will not touch much on this topic in this

book but refer the interested reader to [N].

In 1800 Gauss published a treatise on number theory called Disquitiones Arith-

meticae. This book not only standardized the notation used, but also set the tone and

direction for the theory of numbers up until the present. It is often joked that any new

mathematical result is somehow inherent in the work of Gauss, and in the case of

number theory this is not really that far-fetched. Tremendous ideas and hints of things

to come are present in Gauss’ Disquisitones. Gauss’ work on number theory centered

on three main concepts: the theory of congruences (see Chapter 2), the introduction

of algebraic numbers (see Chapter 5), and the theory of forms, especially quadratic

forms, and how these forms represent integers. Gauss, through his student Dirich-

let, was also important in the infancy of analytic number theory. In 1837 Dirichlet

proved, using analytic methods, that there are infinitely many primes in any arith-

metic progression {a + nb} with a, b relatively prime. We will discuss this result

and its proof in Chapter 3. Euler and Legendre had both conjectured this theorem.

Dirichlet’s use of analysis really marks the beginning of analytic number theory. The

main work in analytic number theory though, centered on the prime number theorem,

also conjectured by Gauss among others, including Euler and Legendre. This result

deals with the asymptotic behavior of the function

π(x) = number of primes ≤ x.

The actual result says that

lim
x→∞

π(x)

x/ ln x
= 1

and was proved in 1896 by Hadamard and independently by de la Vallée Poussin.

Both of their proofs used the behavior of the Riemann zeta function

ζ(z) =
∞∑

n=1

1

nz
,
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where z = x + iy is a complex variable. Using this function, Riemann in 1859

attempted to prove the prime number theorem. In the attempted proof he hypothesized

that all the zeros z = x + iy of ζ(z) in the strip 0 ≤ x ≤ 1 lie along the line x = 1
2
.

This conjecture is known as the Riemann hypothesis and is still an open question.

Algebraic number theory also started basically with the work of Gauss. Gauss did

an extensive study of the complex integers, that is, the complex numbers of the form

a + bi with a, b integers. Today these are known as the Gaussian integers. Gauss

proved that they satisfy most of the same properties as the ordinary integers including

unique factorization into primes. In modern parlance he showed that they form a

unique factorization domain. Gauss’ algebraic integers were extended in many

ways in an attempt to prove Fermat’s big theorem, and these extensions eventually

developed into algebraic number theory. Kummer, a student of Gauss and Dirichlet,

introduced in the 1840s a theory of algebraic integers and a set of ideal numbers from

which unique factorization could be obtained. He used this to prove many cases of

the Fermat theorem. Dedekind, in the 1870s, developed a further theory of algebraic

numbers and unique factorization by ideals that extended both Gaussian integers and

Kummer’s algebraic and ideal numbers. Further work in the same area was done by

Kronecker in the 1880s. We will discuss algebraic number theory and prime ideals

in Chapter 6.

Modern number theory extends and uses all these classical ideas, although there

have been many major new innovations. The close ties between number theory,

especially Diophantine analysis, and algebraic geometry led to Wiles’ proof of the

Fermat theorem and to an earlier proof by Faltings of the Mordell conjecture, which

is a related result. The vast areas of mathematics used in both of these proofs is phe-

nomenal. Probabilistic methods were incorporated into number theory by P. Erdős,

and studies in this area are known as probabilistic number theory. A great deal of

recent work has gone into primality testing and factorization of large integers. These

ideas have been incorporated extensively into cryptography (see [K]).



2

Basic Number Theory

2.1 The Ring of Integers

The theory of numbers is concerned with the properties of the integers, that is, the

class of whole numbers and zero, 0, ±1, ±2 . . . . We will denote the class of integers

by Z. The positive integers, 1, 2, 3 . . . , are called the natural numbers, which we

will denote by N. We will assume that the reader is familiar with the basic arithmetic

properties of Z, and in this section we will look at the abstract algebraic properties of

the integers and what makes Z unique as an algebraic structure.

Recall that a ring R is a set with two binary operations, addition, denoted by +,

and multiplication, denoted by · or just by juxtaposition, defined on it satisfying the

following six axioms:

(1) Addition is commutative: a + b = b + a for each pair a, b in R.

(2) Addition is associative: a + (b + c) = (a + b) + c for a, b, c ∈ R.

(3) There exists an additive identity, denoted by 0, such that a + 0 = a for each

a ∈ R.

(4) For each a ∈ R there exists an additive inverse, denoted by −a, such that

a + (−a) = 0.

(5) Multiplication is associative: a(bc) = (ab)c for a, b, c ∈ R.

(6) Multiplication is distributive over addition: a(b + c) = ab + ac and (b + c)a =
ba + ca for a, b, c ∈ R.

If in addition R satisfies

(7) multiplication is commutative: ab = ba for each pair a, b in R,

then R is a commutative ring, while if R satisfies

(8) there exists a multiplicative identity, denoted by 1 (not equal to 0), such that

a · 1 = 1 · a = a for each a in R,

then R is a ring with identity. A commutative ring with identity satisfies (1)

through (8).
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A ring has two operations. A set G with only one operation, usually denoted ·, is

called a group is it satisfies the following three axions:

(1) · is associative. That is, (g1 · g2) · g3 = g1 · (g2 · g3) for g1, g2, g3 ∈ G.

(2) There exists an identity, denoted by 1, for ·. That is, g · 1 = 1 · g = g for all

g ∈ G.

(3) Each g ∈ G has an inverse relative to ·. That is, to each g ∈ G there is a g−1

such that g · g−1 = g−1 · g = 1.

If, in addition, · is commutative, G is called an abelian group. Groups, and in

particular abelian groups, will play a very important role in number theory. We will

say much more about them later in this chapter. Notice that the additive part of any

ring forms an abelian group. When a group is abelian, the operation is usually denoted

by + and the identity by 0.

A field K is a commutative ring with an identity in which every nonzero element

has a multiplicative inverse, that is, for each a ∈ K with a �= 0 there exists b ∈ K

such that ab = ba = 1. In this case the set K⋆ = K \ {0} forms an abelian group

with respect to the multiplication in K . The set K⋆ under multiplication is called the

multiplicative group of K .

A ring can be considered as the most basic algebraic structure in which addition,

subtraction, and multiplication can be done. In any ring the equation x + b = c

can always be solved. Further, a field can be considered as the most basic algebraic

structure in which addition, subtraction, multiplication, and division can be done.

Hence in any field the equation ax + b = c with a �= 0 can always be solved.

Combining this definition with our knowledge of Z we get the following important

statement about the structure of the integers.

Lemma 2.1.1. The integers Z form a commutative ring with identity.

There are many examples of such rings (see the exercises), so to define Z uniquely

we must introduce certain other properties. If two nonzero integers are multiplied

together then the result is nonzero. This is not always true in a ring. For example,

consider the set of functions defined on the interval [0, 1]. Under ordinary multipli-

cation and addition these form a ring (see the exercises) with the zero element being

the function that is identically zero. Now let f (x) be zero on
[
0, 1

2

]
and nonzero else-

where and let g(x) be zero on
[

1
2
, 0
]

and nonzero elsewhere. Then f (x) · g(x) = 0

but neither f nor g is the zero function. We define an integral domain to be a com-

mutative ring R with an identity and with the property that if ab = 0 with a, b ∈ R

then either a = 0 or b = 0. Two nonzero elements that multiply together to get zero

are called zero divisors, and hence an integral domain is a commutative ring with an

identity and no zero divisors. Therefore Z is an integral domain.

The integers are also ordered, that is, we can compare any two integers. We

abstract this idea in the following manner. We say an integral domain D is an ordered

integral domain if there exists a distinguished set D+, called the set of positive

elements, with the following properties:

(1) The set D+ is closed under addition and multiplication.
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(2) If x ∈ D then exactly one of the following is true:

(a) x = 0,

(b) x ∈ D+,

(c) −x ∈ D+.

In any ordered integral domain D we can order the elements in the standard way.

If x, y ∈ D then x < y mean that y − x ∈ D+. With this ordering D+ can clearly

be identified with those x ∈ D such that x > 0. We then get the following result.

Lemma 2.1.2. If D is an ordered integral domain then

(1) x < y and y < z implies x < z.

(2) If x, y ∈ D then exactly one of the following holds:

x = y or x < y or y < x.

We thus have that the integers are an ordered integral domain. Their unique-

ness among such structures depends on two additional properties of Z, which are

equivalent.

The inductive property. Let S be a subset of the natural numbers N. Suppose 1 ∈ S

and S has the property that if n ∈ S then n + 1 ∈ S. Then S = N.

The well-ordering property. Let S be a nonempty subset of the natural numbers N.

Then S has a least element.

Lemma 2.1.3. The inductive property is equivalent to the well-ordering property.

Proof. To prove this we must assume first the inductive property and show that the

well-ordering property holds and then vice versa. Suppose the inductive property

holds and let S be a nonempty subset of N. We must show that S has a least element.

Let T be the set

T = {x ∈ N : x ≤ s, ∀s ∈ S}.
Now, 1 ∈ T since S ⊂ N. If whenever x ∈ T it would follow that x + 1 ∈ T then

by the inductive property T = N, but then S would be empty, contradicting that S is

nonempty. Therefore there exists an a with a ∈ T and a + 1 /∈ T . We claim that a

is the least element of S. Now, a ≤ s for all s ∈ S since a ∈ T . If a /∈ S then every

s ∈ S would also satisfy a+1 ≤ s. This would imply that a+1 ∈ T , a contradiction.

Therefore a ∈ S and a ≤ s for all s ∈ S and hence a is the least element. Therefore

the inductive property implies the well-ordering property.

Conversely, suppose the well-ordering property holds and suppose 1 ∈ S and

whenever n ∈ S it follows that n + 1 ∈ S. We must show that S = N. If S �= N then

N − S is a nonempty subset of N. Therefore it must have a least element n. Hence

n − 1 ∈ S. But then (n − 1) + 1 = n ∈ S also, which is a contradiction. Therefore

N − S is empty and S = N. ⊓⊔

The inductive property is of course the basis for inductive proofs, which play a

big role in the theory of numbers. To remind the reader, in an inductive proof we

want to prove statements P(n) that depend on positive integers n. In the induction
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we show that P(1) is true, then show that the truth of P(n+1) follows from the truth

of P(n). From the inductive property, P(n) is then true for all positive integers n.

We give an example that has an ancient history in number theory.

Example 2.1.1. Show that 1 + 2 + · · · + n = (n)(n+1)
2

Here for n = 1 we have 1 = (1)(2)
2

= 1. So the assertion is true for n = 1.

Assume that the statement is true for n = k, that is,

1 + 2 + · · · + k = k(k + 1)

2
,

and consider n = k + 1:

1 + 2 + · · · + k + (k + 1) = (1 + 2 + · · · + k) + (k + 1)

= k(k + 1)

2
+ (k + 1) = (k + 1)(k + 2)

2
.

Hence if the statement is true for n = k, then it is true for n = k + 1 and hence

true by induction for all n ∈ N.

The sequence of integers

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, . . .

is called the set of triangular numbers, since they are the sums of dots placed in

triangular form, as in Figure 2.1.1. These numbers were studied by the Pythagoreans

in Greece about 500 B.C.

1 + 2 1 + 2 + 3 1 + 2 + 3 + 4

Figure 2.1.1. Triangular numbers.

The inductive property is enough to characterize the integers among ordered

integral domains up to isomorphism. Recall that if R and S are rings, a function

f : R → S is a homomorphism if it satisfies the following:

(1) f (r1 + r2) = f (r1) + f (r2) for r1, r2 ∈ R.

(2) f (r1r2) = f (r1)f (r2) for r1, r2 ∈ R.

If f is also a bijection, then f is an isomorphism, and R and S are isomorphic.

Isomorphic algebraic structures are essentially algebraically the same. We have the

following theorem.

Theorem 2.1.1. Let R be an ordered integral domain that satisfies the inductive

property (replacing N by the set of positive elements in R). Then R is isomorphic

to Z.

We outline a proof in the exercises.
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2.2 Divisibility, Primes, and Composites

The starting point for the theory of numbers is divisibility.

Definition 2.2.1. If a, b are integers we say that a divides b, or that a is a factor or

divisor of b, if there exists an integer q such that b = aq. We denote this by a|b.

Then b is a multiple of a. If b > 1 is an integer whose only factors are ±1, ±b then

b is a prime; otherwise, b > 1 is composite.

The following properties of divisibility are straightforward consequences of the

definition.

Theorem 2.2.1.

(1) a|b =⇒ a|bc for any integer c.

(2) a|b and b|c implies a|c.

(3) a|b and a|c implies that a|(bx + cy) for any integers x, y.

(4) a|b and b|a implies that a = ±b.

(5) If a|b and a > 0, b > 0 then a < b.

(6) a|b if and only if ca|cb for any integer c �= 0.

(7) a|0 for all a ∈ Z and 0|a only for a = 0.

(8) a| ± 1 only for a = ±1.

(9) a1|b1 and a2|b2 implies that a1a2|b1b2.

Proof. We prove (2) and leave the remaining parts to the exercises.

Suppose a|b and b|c. Then there exist x, y such that b = ax and c = by. But

then c = axy = a(xy) and therefore a|c. ⊓⊔

If b, c, x, y are integers then an integer bx + cy is called a linear combination of

b, c. Thus part (3) of Theorem 2.2.1 says that if a is a common divisor of b, c then

a divides any linear combination of b and c.

Further, note that if b > 1 is a composite then there exists x > 0 and y > 0 such

that b = xy, and from part (5) we must have 1 < x < b, 1 < y < b.

In ordinary arithmetic, given a, b we can always attempt to divide a into b. The

next theorem, called the division algorithm, says that if a > 0, either a will divide

b or the remainder of the division of b by a will be less than a.

Theorem 2.2.2 (division algorithm). Given integers a, b with a > 0 then there exist

unique integers q and r such that b = qa + r , where either r = 0 or 0 < r < a.

One may think of q and r as the quotient and remainder, respectively, when

dividing b by a.

Proof. Given a, b with a > 0 consider the set

S = {b − qa ≥ 0; q ∈ Z}.

If b > 0 then b + a ≥ 0 and the sum is in S. If b ≤ 0 then there exists a q > 0 with

−qa < b. Then b + qa > 0 and is in S. Therefore in either case S is nonempty.
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Hence S is a nonempty subset of N∪{0} and therefore has a least element r . If r �= 0

we must show that 0 < r < a. Suppose r ≥ a, then r = a + x with x ≥ 0 and

x < r since a > 0. Then b − qa = r = a + x =⇒ b − (q + 1)a = x. This means

that x ∈ S. Since x < r this contradicts the minimality of r which is a contradiction.

Therefore if r �= 0 it follows that 0 < r < a.

The only thing left is to show the uniqueness of q and r . Suppose b = q1a + r1

also. By the construction above, r1 must also be the minimal element of S. Hence

r1 ≤ r and r ≤ r1, so r = r1. Now

b − qa = b − q1a =⇒ (q1 − q)a = 0,

but since a > 0 it follows that q1 − q = 0 so that q = q1. ⊓⊔
The next ideas that are necessary are the concepts of greatest common divisor

and least common multiple.

Definition 2.2.2. Given nonzero integers a, b, their greatest common divisor or

GCD d > 0 is a positive integer that is a common divisor, that is, d|a and d|b, and

if d1 is any other common divisor then d1|d . We denote the greatest common divisor

of a, b by either gcd(a, b) or (a, b).

The next result says that for any nonzero integers, they have a greatest common

divisor and it is unique.

Theorem 2.2.2. For nonzero integers a, b, their GCD exists, is unique, and can be

characterized as the least positive linear combination of a and b.

Proof. Given nonzero a, b, consider the set

S = {ax + by > 0 : x, y ∈ Z}.

Now a2 + b2 > 0, so S is a nonempty subset of N and hence has a least element

d > 0. We show that d is the GCD.

First we must show that d is a common divisor. Now d = ax +by and is the least

such positive linear combination. By the division algorithm a = qd + r with 0 ≤
r < d . Suppose r �= 0. Then r = a−qd = a−q(ax +by) = (1−qx)a−qby > 0.

Hence r is a positive linear combination of a and b and therefore is in S. But then

r < d, contradicting the minimality of d in S. It follows that r = 0 and so a = qd

and d|a. An identical argument shows that d|b, and so d is a common divisor of a

and b. Let d1 be any other common divisor of a and b. Then d1 divides any linear

combination of a and b and so d1|d . Therefore d is the GCD of a and b.

Finally, we must show that d is unique. Suppose d1 is another GCD of a and b.

Then d1 > 0 and d1 is a common divisor of a, b. Then d1|d since d is a GCD.

Identically, d|d1 since d1 is a GCD. Therefore d = ±d1 and then d = d1 since they

are both positive. ⊓⊔

If (a, b) = 1 then we say that a, b are relatively prime. It follows that a and b

are relatively prime if and only if 1 is expressible as a linear combination of a and b.

We need the following three results.
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Lemma 2.2.1. If d = (a, b) then a = a1d and b = b1d with (a1, b1) = 1.

Proof. If d = (a, b) then d|a and d|b. Hence a = a1d and b = b1d. We have

d = ax + by = a1dx + b1dy.

Dividing both sides of the equation by d , we obtain

1 = a1x + b1y.

Therefore (a1, b1) = 1. ⊓⊔

Lemma 2.2.2. For any integer c we have that (a, b) = (a, b + ac).

Proof. Suppose (a, b) = d and (a, b + ac) = d1. Now, d is the least positive linear

combination of a and b. Suppose d = ax + by. Since d1 is a linear combination of

a, b + ac, we have

d1 = ar + (b + ac)s = a(cs + r) + bs.

Hence d1 is also a linear combination of a and b and therefore d1 ≥ d. On the other

hand, d1|a and d1|b + ac, and so d1|b. Therefore d1|d , so d1 ≤ d . Combining these,

we must have d1 = d. ⊓⊔

The next result, called the Euclidean algorithm, provides a technique for both

finding the GCD of two integers and expressing the GCD as a linear combinations.

Theorem 2.2.3 (the Euclidean algorithm). Given integers b and a > 0 form the

repeated divisions

b = q1a + r1, 0 < r1 < a,

a = q2r1 + r2, 0 < r2 < r1,

. . .

rn−2 = qnrn−1 + rn, 0 < rn < rn−1,

rn−1 = qn+1rn.

The last nonzero remainder, rn, is the GCD of a, b. Further, rn can be expressed as a

linear combination of a and b by successively eliminating the ris in the intermediate

equations.

Proof. In taking the successive divisions as outlined in the statement of the theorem

each remainder ri gets strictly smaller while remaining nonnegative. Hence the

sequence of ris must finally end with a zero remainder. Therefore is a last nonzero

remainder rn. We must show that this is the GCD.

Now, from Lemma 2.2.2, gcd(a, b) = (a, b − q1a) = (a, r1) = (r1, a − q2r1) =
(r1, r2). Continuing in this manner, we have then that (a, b) = (rn−1, rn) = rn since

rn divides rn−1. This shows that rn is the GCD.
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To express rn as a linear combination of a and b notice first that

rn = rn−2 − qnrn−1.

Substituting this in the immediately preceding division, we get

= rn−2 − qn(rn−3 − qn−1rn−2) = (1 + qnqn−1)rn−2 − qnrn−3.

Doing this successively, we ultimately express rn as a linear combination of a

and b. ⊓⊔

Example 2.2.1. Find the GCD of 270 and 2412 and express it as a linear combination

of 270 and 2412.

We apply the Euclidean algorithm:

2412 = (8)(270) + 252,

270 = (1)(252) + 18,

252 = (14)(18).

Therefore the last nonzero remainder is 18, which is the GCD. We now must express 18

as a linear combination of 270 and 2412.

From the first equation,

252 = 2412 − (8)(270),

which gives in the second equation

270 = (2412 − (8)(270) + 18 =⇒ 18 = (−1)(2412) + (9)(270),

which is the desired linear combination.

Now suppose that d = (a, b), where a, b ∈ Z and a �= 0, b �= 0. Then we note

that given one integer solution of the equation

ax + by = d,

we can easily obtain all solutions.

Suppose without loss of generality that d = 1, that is, a, b are relatively prime. If

not we can divide through by d > 1. Suppose that x1, y1 and x2, y2 are two integer

solutions of the equation ax + by = 1, that is,

ax1 + by1 = 1,

ax2 + by2 = 1.
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Then

a(x1 − x2) = −b(y1 − y2).

Since (a, b) = 1 we get from Lemma 2.2.3 that b|(x1 − x2) and hence

x2 = x1 + bt

for some t ∈ Z. Substituting back into the equations, we then get

ax1 + by1 = a(x1 + bt) = by2 =⇒ by1 = abt + by2 since b �= 0.

Therefore y2 = y1 − at . Hence all solutions are given by

x2 = x1 + bt,

y2 = y1 − at,

for some t ∈ Z.

The final idea of this section is that of a least common multiple.

Definition 2.2.2. Given nonzero integers a, b their least common multiple or LCM

m > 0 is a positive integer that is a common multiple, that is a|m and b|m, and if

m1 is any other common multiple then m|m1. We denote the least common multiple

of a, b by either lcm(a, b) or [a, b].

As for GCDs given any nonzero integers they do have a least common multiple

and it is unique. First we need the following result known as Euclid’s lemma. In the

next section we will use a special case of this applied to primes. We note that this

special case is traditionally also called Euclid’s lemma.

Lemma 2.2.3 (Euclid’s lemma). Suppose a|bc and (a, b) = 1. Then a|c.

Proof. Suppose (a, b) = 1. Then 1 is expressible as a linear combination of a and

b. That is,

ax + by = 1.

Multiply through by c, so that

acx + bcy = c.

Now, a|a and a|bc, so a divides the linear combination acx+bcy, and hence a|c. ⊓⊔

Theorem 2.2.2. Given nonzero integers a, b, their LCM exists and is unique. Further,

we have

(a, b)[a, b] = ab.

Proof. Let d = (a, b) and let m = ab
d

. We show that m is the LCM. Now, a = a1d ,

b = b1d with (a1, b1) = 1. Then m = a1b1d . Since a = a1d , m = b1a, so
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a|m. Identically, b|m, so m is a common multiple. Now let m1 be another common

multiple so that m1 = ax = by. We then get

a1dx = b1dy =⇒ a1x = b1y =⇒ a1|b1y.

But (a1, b1) = 1, so from Lemma 2.2.3 a1|y. Hence y = a1z. It follows then that

m1 = b1d(a1z) = a1b1dz = mz

and hence m|m1. Therefore m is an LCM.

The uniqueness follows in the same manner as the uniqueness of GCDs. Suppose

m1 is another LCM. Then m|m1 and m1|m so m = ±m1, and since they are both

positive, m = m1. ⊓⊔

Example 2.2.2. Find the LCM of 270 and 2412.

From Example 2.2.1 we found that (270, 2412) = 18. Therefore

[270, 2412] = (270)(2412)

(270, 2412)
= (270)(2412)

18
= 36180.

2.3 The Fundamental Theorem of Arithmetic

In this section we prove the fundamental theorem of arithmetic, which is really the

most basic number-theoretic result. This results says that any integer n > 1 can be

decomposed into prime factors in essentially a unique manner. First we show that

there always exists such a decomposition into prime factors.

Lemma 2.3.1. Any integer n > 1 can be expressed as a product of primes, perhaps

with only one factor.

Proof. The proof is by induction. Since n = 2 is prime, the statement is true at the

lowest level. Suppose that any integer k < n can be decomposed into prime factors.

We must show that n then also has a prime factorization.

If n is prime then we are done. Suppose then thatn is composite. Hence n = m1m2

with 1 < m1 < n, 1 < m2 < n. By the inductive hypothesis both m1 and m2 can

be expressed as products of primes. Therefore n can also be so expressed using the

primes from m1 and m2, completing the proof. ⊓⊔

Before we continue to the fundamental theorem, we mention that this result can be

used to prove that the set of primes is infinite. The proof we give goes back to Euclid

and is quite straightforward. In the next chapter we will present a whole collection

of proofs, some quite complicated, that also show that the primes are an infinite set.

Each of these other proofs will shed more light on the nature of the integers.

Theorem 2.3.1. There are infinitely many primes.
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Proof. Suppose that there are only finitely many primes p1, . . . , pn. Each of these

is positive so we can form the positive integer

N = p1p2 · · · pn + 1.

From Lemma 2.3.1, N has a prime decomposition. In particular, there is a prime p

that divides N . Then

p|p1p2 · · · pn + 1.

Since the only primes are assumed p1, p2, . . . , pn it follows that p = pi for some

i = 1, . . . , n. But then p|p1p2 · · · pi · · · pn, so p cannot divide p1 · · · pn + 1, which

is a contradiction. Therefore p is not one of the given primes, showing that the list

of primes must be endless. ⊓⊔

A variation of Euclid’s argument gives the following proof of Theorem 2.3.1.

Suppose there are only finitely many primes p1, . . . , pn. Certainly n ≥ 2. Let

P = {p1, . . . , pn}. Divide P into two disjoint nonempty subsets P1, P2. Now

consider the number m = q1 +q2, where qi is a product of primes from P1 and q2 is a

product of primes from P2. Let p be a prime divisor of m. Since p ∈ P it follows that

p divides either q1 or q2 but not both. But then p does not divide m, a contradiction.

Therefore p is not one of the given primes and the number of primes must be infinite.

Although there are infinitely many primes, a glance at a list of primes shows that

they appear to become scarcer as the integers get larger. If we let

π(x) = number of primes ≤ x,

a basic question is, what is the asymptotic behavior of this function? This question

is the basis of the prime number theorem, which will be discussed in Chapter 4.

However it is easy to show that there are arbitrarily large spaces or gaps within the

set of primes.

Theorem 2.3.2. Given any positive integer k there exists k consecutive composite

integers.

Proof. Consider the sequence

(k + 1)! + 2, (k + 1)! + 3, . . . , (k + 1)! + k + 1.

Suppose n is an integer with 2 ≤ n ≤ k + 1. Then n|(k + 1)! + n. Hence each of the

integers in the above sequence is composite. ⊓⊔

To show the uniqueness of the prime decomposition we need Euclid’s lemma,

from the previous section, applied to primes.

Lemma 2.3.2 (Euclid’s lemma). If p is a prime and p|ab, then p|a or p|b.

Proof. Suppose p|ab. If p does not divide a then clearly a and p must be relatively

prime, that is, (a, p) = 1. Then from Lemma 2.2.3, p|b. ⊓⊔
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We now state and prove the fundamental theorem of arithmetic.

Theorem 2.3.3 (the fundamental theorem of arithmetic). Given any integer n �= 0

there is a factorization

n = cp1p2 · · · pk,

where c = ±1 and p1, . . . , pn are primes. Further, this factorization is unique up to

the ordering of the factors.

Proof. We assume that n ≥ 1. If n ≤ −1 we use c = −1 and the proof is the same.

The statement certainly holds for n = 1 with k = 0. Now suppose n > 1. From

Lemma 2.3.1, n has a prime decomposition

n = p1p2 · · · pm.

We must show that this is unique up to the ordering of the factors. Suppose then that

n has another such factorization n = q1q2 · · · qk with the qi all prime. We must show

that m = k and that the primes are the same. Now, we have

n = p1p2 · · · pm = q1 · · · qk.

Assume that k ≥ m. From

n = p1p2 · · · pm = q1 · · · qk

it follows that p1|q1q2 · · · qk . From Lemma 2.3.2, then, we must have that p1|qi for

some i. But qi is prime and p1 > 1, so it follows that p1 = qi . Therefore we can

eliminate p1 and qi from both sides of the factorization to obtain

p2 · · · pm = q1 · · · qi−1qi+1 · · · qk.

Continuing in this manner, we can eliminate all the pi from the left side of the

factorization to obtain

1 = qm+1 · · · qk.

If qm+1, . . . , qk were primes, this would be impossible. Therefore m = k and each

prime pi was included in the primes q1, . . . , qm. Therefore the factorizations differ

only in the order of the factors, proving the theorem. ⊓⊔

For any positive integer n > 1, we can combine all the same primes in a

factorization of n to write

n = p
m1

1 p
m2

2 · · · pmk

k with p1 < p2 < · · · < pk.

This is called the standard prime decomposition. Note that given any two positive

integers a, b we can always write the prime decomposition with the same primes by

allowing a zero exponent.

There are several easy consequences of the fundamental theorem.
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Theorem 2.3.4. Let a, b be positive integers > 1. Suppose

a = p
e1

1 · · · pek

k ,

b = p
f1

1 · · · pfk

k ,

where we include zero exponents for noncommon primes. Then

(a, b) = p
min(e1,f1)

1 · p
min(e2,f2)

2 · · · pmin(ek,fk)
k ,

[a, b] = p
max(e1,f1)

1 · p
max(e2,f2)

2 · · · pmax(ek,fk)
k .

Corollary 2.3.1. Let a, b be positive integers > 1. Then (a, b)[a, b] = ab.

We leave the proofs to the exercises but give an example.

Example 2.3.1. Find the standard prime decompositions of 270 and 2412 and use

them to find the GCD and LCM.

Recall that we found the GCD and LCM of these numbers in the previous section

using the Euclidean algorithm. We note that in general it is very difficult as the size

of an integer gets larger to determine its actual prime decomposition or even whether

it is a prime. We will discuss primality testing in Chapter 5.

To find the prime decomposition we factor and then continue factoring until there

are only prime factors:

270 = (27)(10) = 33 · 2.5 = 2 · 33 · 5,

which is the standard prime decomposition of 270. Similarly,

2412 = 4 · 603 = 4 · 3 · 201 = 4 · 3 · 3 · 67 = 22 · 32 · 67,

which is the standard prime decomposition of 2412. Hence we have

270 = 2. · 33 · 5 · 670,

2412 = 22 · 32 · 50 · 67,

from which we conclude that

(a, b) = 2 · 32 · 50 · 670 = 2 · 32 = 18

and

[a, b] = 22 · 33 · 5 · 67 = 36180.
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Note that the fundamental theorem of arithmetic can be extended to the rational

numbers. Suppose r = a
b

is a positive rational. Then

r =
p

e1

1 · · · pek

k

p
f1

1 · · · pfk

k

= p
e1−f1

1 · · · pek−fk

k .

Therefore any positive rational has a standard prime decomposition

p
t1
1 · · · ptk

k , where t1, . . . , tk are integers.

So, for example,
15

49
= 2 · 3 · 7−2.

This has the following interesting consequence.

Lemma 2.3.3. If a is an integer that is not a perfect nth power, then the nth root of a

is irrational.

Proof. This result says, for example, that if an integer is not a perfect square then its

square root is irrational. The fact that the square root of 2 is irrational was known to

the ancient Greeks.

Suppose b is an integer with standard prime decomposition

b = p
e1

1 · · · pek

k .

Then

bn = p
ne1

1 · · · pnek

k ,

and this must be the standard prime decomposition for bn. It follows that an integer

a is an nth power if and only if it has a standard prime decomposition

a = q
f1

1 · · · qft
t with n|fi for all i.

Suppose a is not an nth power. Then

a = q
f1

1 · · · qft
t ,

where n does not divide fi for some i. Taking the nth root, we obtain

a1/n = q
f1/n

1 · · · qfi/n
i · · · qft/n

t .

But fi/n is not an integer, so a1/n cannot be rational by the extension of the

fundamental theorem to rationals. ⊓⊔

While induction and well-ordering characterize the integers, unique factorization

into primes does not. We close this section with a brief further discussion of unique

factorization.
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The concept of divisor and factor can be extended to any ring. We say that a|b
in a ring R if there is a c ∈ R with b = ac. We will restrict ourselves to integral

domains. A unit in an integral domain is an element e with a multiplicative inverse.

This means that there is an element e1 in R with ee1 = 1. Thus the only units in Z
are ±1. Two elements r, r1 of an integral domain are associates if r = er1 for some

unit e. A prime in a general integral domain is an element whose only divisors are

associates of itself. With these definitions we can talk about factorization into primes.

We say that an integral domain D is a unique factorization domain or UFD if

for each d ∈ D, either d = 0, d is a unit, or d has a factorization into primes that is

unique up to ordering and unit factors. This means that if

r = p1 · · · pm = q1 · · · qk

then m = k and each pi is an associate of some qj .

The fundamental theorem of arithmetic in more general algebraic language says

that the integers Z are a unique factorization domain. However, they are far from

being the only one. In the exercises we outline a proof of the following theorem.

Theorem 2.3.5. Let F be a field and F [x] the ring of polynomials in one-variable

over F . Then F [x] is a UFD.

This theorem is actually a special case of something even more general. An

integral domain D is called a Euclidean domain if there exists a function N : D \
{0} → N ∪ {0} satisfying:

For each a, b ∈ D, a �= 0, there exist q, r ∈ D such that

b = aq + r and either r = 0 or r �= 0 and N(r) < N(a).

Theorem 2.3.6. Any Euclidean domain is a UFD.

The proof of this essentially mimics the proof for the integers. See the exercises.

The Gaussian integers Z[i] are the complex numbers a + bi where a, b are

integers.

Lemma 2.3.4. The integers Z, the Gaussian integers Z[i],and the ring of polynomials

F [x] over a field F are all Euclidean domains.

Corollary 2.3.2. Z[i] and F [x] with F a field are UFDs.

2.4 Congruences and Modular Arithmetic

Gauss based much of his number-theoretical investigations around the theory of con-

gruences. As we will see, a congruence is just a statement about divisibility put into

a more formal framework. In this section and the remainder of the chapter we will

consider congruences and in particular the solution of polynomial congruences. First

we give the basic definitions and properties.
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2.4.1 Basic Theory of Congruences

Definition 2.4.1.1. Suppose m is a positive integer. If x, y are integers such that

m|(x−y) we say that x is congruent to y modulo m and denote this by x ≡ y mod m.

If m does not divide x − y then x and y are incongruent modulo m.

If x ≡ y mod m then y is called a residue of x modulo m. Given x ∈ Z, the set

of integers {y ∈ Z; x ≡ y mod m} is called the residue class for x modulo m. We

denote this by [x]. Notice that x ≡ 0 mod m is equivalent to m|x. We first show

that the residue classes partition Z, that is, that each integer falls in one and only one

residue class.

Theorem 2.4.1.1. Given m > 0, then congruence modulo m is an equivalence

relation on the integers. Therefore the residue classes partition the integers.

Proof. Recall that a relation ∼ on a set S is an equivalence relation if it is reflexive,

that is, s ∼ s for all s ∈ S; symmetric, that is, if s1 ∼ s2, then s2 ∼ s1; and transitive,

that is, if s1 ∼ s2 and s2 ∼ s3, then s1 ∼ s3. If ∼ is an equivalence relation then the

equivalence classes [s] = {s1 ∈ S; s1 ∼ s} partition S.

Consider ≡ mod m on Z. Given x ∈ Z, x − x = 0 = 0 · m so m|(x − x) and

x ≡ x mod m. Therefore ≡ mod m is reflexive.

Suppose x ≡ y mod m. Then m|(x−y) =⇒ x−y = am for some a ∈ Z. Then

y − x = −am, so m|(y − x) and y ≡ x mod m. Therefore ≡ mod m is symmetric.

Finally, suppose x ≡ y mod m and y ≡ z mod m. Then x − y = a1m and

y − z = a2m. But then x − z = (x − y) + (y − z) = a1m + a2m = (a1 + a2)m.

Therefore m|(x − z) and x ≡ z mod m. Therefore ≡ mod m is transitive, and the

theorem is proved. ⊓⊔

Hence given m > 0, every integer falls into one and only one residue class. We

now show that there are exactly m residue classes modulo m.

Theorem 2.4.1.2. Given m > 0 there exist exactly m residue classes. In particular,

[0], [1], . . . , [m − 1] gives a complete set of residue classes.

Proof. We show that given x ∈ Z, x must be congruent modulo m to one of

0, 1, 2 . . . , m−1. Further, none of these are congruent modulo m. As a consequence,

[0], [1], . . . , [m − 1]

gives a complete set of residue classes modulo m and hence there are m of them.

To see these assertions suppose x ∈ Z. By the division algorithm we have

x = qm + r, where 0 ≤ r < m.

This implies that r = x − qm, or in terms of congruences, that x ≡ r mod m.

Therefore x is congruent to one of the set 0, 1, 2, . . . , m − 1.

Suppose 0 ≤ r1 < r2 < m. Then m ∤ r2 −r1, so r1 and r2 are incongruent modulo

m. Therefore every integer is congruent to one and only one of 0, 1, . . . , m − 1, and

hence [0], [1], . . . , [m − 1] gives a complete set of residue classes modulo m. ⊓⊔
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There are many sets of complete residue classes modulo m. In particular, a set

of m integers x1, x2, . . . , xm will constitute a complete residue system modulo m

if xi �≡ xj mod m unless i = j . Given one complete residue system it is easy to get

another.

Lemma 2.4.1.1. If {x1, . . . , xm} form a complete residue system modulo m and

(a, m) = 1, then {ax1, . . . , axm} also forms a complete residue system.

Proof. Suppose axi ≡ axj mod m. Then m|a(xi − xj ). Since (a, m) = 1 then by

Euclid’s lemma m|xi − xj and hence xi ≡ xj mod m. ⊓⊔

Finally, we will need the following.

Lemma 2.4.1.2. If x ≡ y mod m, then (x, m) = (y, m).

Proof. Suppose x−y = am. Then any common divisor of x and m is also a common

divisor of y. From this the result is immediate. ⊓⊔

2.4.2 The Ring of Integers Modulo n

Perhaps the easiest way to handle results on congruences is to place them in the

framework of abstract algebra. To do this we construct, for each n > 0, a ring, called

the ring of integers modulo n. We will follow this approach. However, we note

that although this approach simplifies and clarifies many of the proofs, historically,

purely number-theoretical proofs were given. Often these purely number-theoretical

proofs inspired the algebraic proofs.

To construct this ring we first need the following.

Lemma 2.4.2.1. If a ≡ b mod n and c ≡ d mod n, then

(1) a + c ≡ b + d mod n,

(2) ac ≡ bd mod n.

Proof. Suppose a ≡ b mod n and c ≡ d mod n. Then a − b = q1n and c − d = q2n

for some integers q1, q2. This implies that (a + c) − (b + d) = (q1 + q2)n, or that

n|(a + c) − (b + d). Therefore a + c ≡ b + d mod n.

We leave the proof of (2) to the exercises. ⊓⊔

We now define operations on the set of residue classes.

Definition 2.4.2.1. Consider a complete residue system x1, . . . , xn modulo n. On the

set of residue classes [x1], . . . , [xn] define

(1) [xi] + [xj ] = [xi + xj ],
(2) [xi][xj ] = [xixj ].

Theorem 2.4.2.1. Given a positive integer n > 0, the set of residue classes forms a

commutative ring with an identity under the operations defined in Definition 2.4.2.1.

This is called the ring of integers modulo n and is denoted by Zn. The zero element

is [0] and the identity element is [1].
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Proof. Notice that from Lemma 2.4.2.1 it follows that these operations are well-

defined on the set of residue classes, that is, if we take two different representatives

for a residue class, the operations are still the same.

To show that Zn is a commutative ring with identity, we must show that it satisfies,

relative to the defined operations, all the ring properties. Basically, Zn inherits these

properties from Z. We show commutativity of addition and leave the other properties

to the exercises.

Suppose [a], [b] ∈ Zn. Then

[a] + [b] = [a + b] = [b + a] = [b] + [a],
where [a + b] = [b + a] since addition is commutative in Z. ⊓⊔

This theorem is actually a special case of a general result in abstract algebra. In

the ring of integers Z, the set of multiples of an integer n forms an ideal (see [A] for

terminology), which is usually denoted by nZ. The ring Zn is the quotient ring of Z
modulo the ideal nZ, that is, Z/nZ ∼= Zn.

We usually consider Zn as consisting of 0, 1, . . . , n − 1 with addition and multi-

plication modulo n. When there is no confusion, we will denote the element [a] in

Zn by just a. Below we give the addition and multiplication tables modulo 5, that is,

in Z5.

Example 2.4.2.1. Addition and multiplication tables for Z5:

+ 0 1 2 3 4

0 0 1 1 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Notice, for example, that modulo 5, 3 · 4 = 12 ≡ 2 mod 5, so that in Z5, 3 · 4

= 2. Similarly, 4 + 2 = 6 ≡ 1 mod 5, so in Z5, 4 + 2 = 1.

The question arises as to when the commutative ring Zn is an integral domain and

when Zn is a field. The answer is when n is a prime and only when n is a prime.

Theorem 2.4.2.2.

(1) Zn is an integral domain if and only if n is a prime.

(2) Zn is a field if and only if n is a prime.

Proof. Since Zn is a commutative ring with identity for any n, it will be an integral

domain if and only if it has no zero divisors.

Suppose first that n is a prime and suppose that ab = 0 in Zn. Then in Z we have

ab ≡ 0 mod n =⇒ n|ab.

Since n is prime, by Euclid’s lemma n|a or n|b. In terms of congruences, then,

a ≡ 0 mod n =⇒ a = 0 in Zn or b ≡ 0 mod n =⇒ b = 0 in Zn.

Therefore Zn is an integral domain if n is prime.
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Suppose n is not prime. Then n = m1m2 with 1 < m1 < n, 1 < m2 < n. Then

n ∤ m1, n ∤ m2, but n|m1m2. Translating this into Zn, we have

m1m2 = 0 but either m1 �= 0 or m2 �= 0.

Therefore Zn is not an integral domain if n is not prime. These prove part (1).

Since a field is an integral domain, Zn cannot be a field unless n is prime. To

complete part (2) we must show that if n is prime then Zn is a field. Suppose n is

prime. Since Zn is a commutative ring with identity, to show that it is a field we must

show that each nonzero element has a multiplicative inverse.

Suppose a ∈ Zn, a �= 0. Then in Z we have n ∤ a and hence since n is prime,

(a, n) = 1. Therefore in Z there exists x, y such that ax + ny = 1. In terms of

congruences, this says that

ax ≡ 1 mod n,

or in Zn,

ax = 1.

Therefore a has an inverse in Zn and hence Zn is a field. ⊓⊔
The proof of the last theorem actually indicates a method to find the multiplicative

inverse of an element modulo a prime. Suppose n is a prime and a �= 0 in Zn. Use

the Euclidean algorithm in Z to express 1 as a linear combination of a and n, that is,

ax + ny = 1.

The residue class for x will be the multiplicative inverse of a.

Example 2.4.2.2. Find 6−1 in Z11.

Using the Euclidean algorithm,

11 = 1 · 6 + 5,

6 = 1 · 5 + 1,

=⇒ 1 = 6 − (1 · 5) = 6 − (1 · (11 − 1 · 6) =⇒ 1 = 2 · 6 − 1 · 11.

Therefore the inverse of 6 modulo 11 is 2, that is, in Z11, 6−1 = 2.

Example 2.4.2.3. Solve the linear equation

6x + 3 = 1

in Z11.

Using purely formal field algebra, the solution is

x = 6−1 · (1 − 3).

In Z11 we have

1 − 3 = −2 = 9 and 6−1 = 2 =⇒ x = 2 · 9 = 18 = 7.

Therefore the solution in Z11 is x = 7. A quick check shows that

6 · 7 + 3 = 42 + 3 = 45 = 1 in Z11.
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Alinear equation in Z11 is called a linear congruence modulo 11. We will discuss

solutions of such congruences in Section 2.5.

The fact that Zp is a field for p a prime leads to the following nice result, known

as Wilson’s theorem.

Theorem 2.4.2.3 (Wilson’s theorem). If p is a prime then

(p − 1)! ≡ −1 mod p.

Proof. Write (p−1)! = (p−1)(p−2) · · · 1. Since Zp is a field, each x ∈ {1, 2, . . . ,

p−1} has a multiplicative inverse modulo p. Further, suppose x = x−1 in Zp. Then

x2 = 1, which implies (x − 1)(x + 1) = 0 in Zp, and hence either x = 1 or

x = −1 since Zp is an integral domain. Therefore in Zp only 1, −1 are their own

multiplicative inverses. Further, −1 = p − 1, since p − 1 ≡ −1 mod p.

Hence in the product (p−1)(p−2) · · · 1 considered in the field Zp, each element

is paired up with its distinct multiplicative inverse except 1 and p − 1. Further, the

product of each element with its inverse is 1. Therefore in Zp we have (p − 1)(p −
2) · · · 1 = p − 1. Written as a congruence, then,

(p − 1)! ≡ p − 1 ≡ −1 mod p. ⊓⊔

The converse of Wilson’s theorem is also true, that is, if (n − 1)! ≡ −1 mod n,

then n must be a prime.

Theorem 2.4.2.4. If n > 1 is a natural number and

(n − 1)! ≡ −1 mod n,

then n is a prime.

Proof. Suppose (n − 1)! ≡ −1 mod n. If n were composite, then n = mk with

1 < m < n − 1 and 1 < k < n − 1. Hence both m and k are included in (n − 1)!. It

follows that (n − 1)! is divisible by n, so that (n − 1)! ≡ 0 mod n, contradicting the

assertion that (n − 1)! ≡ −1 mod n. Therefore n must be prime. ⊓⊔

2.4.3 Units and the Euler Phi Function

In a field F every nonzero element has a multiplicative inverse. If R is a commu-

tative ring with an identity, not necessarily a field, then a unit is any element with

a multiplicative inverse. In this case its inverse is also a unit. For example, in the

integers Z the only units are ±1. The set of units in a commutative ring with identity

forms an abelian group under ring multiplication called the unit group of R. Recall

that a group G is a set with one operation that is associative, has an identity for that

operation, and such that each element has an inverse with respect to this operation.

If the operation is also commutative, then G is an abelian group.

Lemma 2.4.3.1. If R is a commutative ring with identity, then the set of units in R

forms an abelian group under ring multiplication. This is called the unit group of

R, denoted by U(R).
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Proof. The commutativity and associativity of U(R) follow from the ring properties.

The identity of U(R) is the multiplicative identity of R, while the ring multiplicative

inverse for each unit is the group inverse. We must show that U(R) is closed under

ring multiplication. If a ∈ R is a unit, we denote its multiplicative inverse by a−1.

Now suppose a, b ∈ U(R). Then a−1, b−1 exist. It follows that

(ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = 1.

Hence ab has an inverse, namely b−1a−1 (= a−1b−1 in a commutative ring) and

hence ab is also a unit. Therefore U(R) is closed under ring multiplication. ⊓⊔

The proof of Theorem 2.4.2.2 actually provides a method to classify the units in

any Zn.

Lemma 2.4.3.2. An element a ∈ Zn is a unit if and only if (a, n) = 1.

Proof. Suppose (a, n) = 1. Then there exists x, y ∈ Z such that ax + ny = 1. This

implies that ax ≡ 1 mod n which in turn implies that ax = 1 in Zn and therefore a

is a unit.

Conversely, suppose a is a unit in Zn. Then there is an x ∈ Zn with ax = 1. In

terms of congruences, then,

ax ≡ 1 mod n =⇒ n|ax − 1 =⇒ ax − 1 = ny =⇒ ax − ny = 1.

Therefore 1 is a linear combination of a and n, and so (a, n) = 1. ⊓⊔

If a is a unit in Zn then a linear equation

ax + b = c

can always be solved with a unique solution given by x = a−1(c − b). Determining

this solution can be accomplished by the same technique as in Zp with p a prime.

If a is not a unit the situation is more complicated. We will consider this case in

Section 2.5.

Example 2.4.3.1. Solve 5x + 4 = 2 in Z6.

Since (5, 6) = 1, 5 is a unit in Z6, we have x = 5−1(2−4). Now 2−4 = −2 = 4

in Z6. Further, 5 = −1, so 5−1 = −1−1 = −1. Then we have

x = 5−1(2 − 4) = −1(4) = −4 = 2.

Thus the unique solution in Z6 is x = 2.

Since an element a is a unit in Zn if and only if (a, n) = 1, it follows that the

number of units in Zn is equal to the number of positive integers less than or equal

to n and relatively prime to n. This number is given by the Euler phi function, our

first look at a number theoretical function.
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Definition 2.4.3.1. For any n > 0,

φ(n) = number of integers less than or equal to n and relatively prime to n.

Example 2.4.3.2. φ(6) = 2, since among 1, 2, 3, 4, 5, 6 only 1, 5 are relatively

prime to 6.

The following is immediate from our characterization of units.

Lemma 2.4.3.3. The number of units in Zn, which is the order of the unit group

U(Zn), is φ(n).

Definition 2.4.3.2. Given n > 0, a reduced residue system modulo n is a set of

integers x1, . . . , xk such that each xi is relatively prime to n, xi �= xj mod n unless

i = j , and if (x, n) = 1 for some integer x then x ≡ xi mod n for some i.

Hence a reduced residue system is a complete collection of representatives of those

residue classes of integers relatively prime to n. Hence it is a complete collection of

units (up to congruence modulo n) in Zn. It follows that any reduced residue system

modulo n has φ(n) elements.

Example 2.4.3.3. A reduced residue system modulo 6 is {1, 5}.

We now develop a formula for φ(n). In accord with the theme of this book we

first determine a formula for prime powers and then paste the results together via the

fundamental theorem of arithmetic.

Lemma 2.4.3.4. For any prime p and m > 0,

φ(pm) = pm − pm−1 = pm

(
1 − 1

p

)
.

Proof. Recall that if 1 ≤ a ≤ p then either a = p or (a, p) = 1. It follows that

the positive integers less than pm that are not relatively prime to pm are precisely

the multiples of p, that is, p, 2p, 3p, . . . , pm−1, p. All other positive a < pm are

relatively prime to pm. Hence the number relatively prime to pm is

pm − pm−1. ⊓⊔

Lemma 2.4.3.5. If (a, b) = 1, then φ(ab) = φ(a)φ(b).

Proof. Let Ra = {x1, . . . , xφ(a)} be a reduced residue system modulo a, let Rb =
{y1, . . . , yφ(b)} be a reduced residue system modulo b, and let

S = {ayi + bxj : i = 1, . . . , φ(b), j = 1, . . . , φ(a)}.

We claim that S is a reduced residue system modulo ab. Since S has φ(a)φ(b)

elements it will follow that φ(ab) = φ(a)φ(b).
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To show that S is a reduced residue system modulo ab we must show three things:

first that each x ∈ S is relatively prime to ab; second that the elements of S are distinct;

and finally that given any integer n with (n, ab) = 1, then n ≡ s mod ab for some

s ∈ S.

Let x = ayi + bxj . Then since (xj , a) = 1 and (a, b) = 1 it follows that

(x, a) = 1. Analogously, (x, b) = 1. Since x is relatively prime to both a and b, we

have (x, ab) = 1. This shows that each element of S is relatively prime to ab.

Next suppose that

ayi + bxj ≡ ayk + bxl mod ab.

Then

ab|(ayi + bxj ) − (ayk + bxl) =⇒ ayi ≡ ayk mod b.

Since (a, b) = 1 it follows that yi ≡ yk mod b. But then yi = yk since Rb is a

reduced residue system. Similarly, xj = xl . This shows that the elements of S are

distinct modulo ab.

Finally, suppose (n, ab) = 1. Since (a, b) = 1 there exist x, y with ax +by = 1.

Then

anx + bny = n.

Since (x, b) = 1 and (n, b) = 1 it follows that (nx, b) = 1. Therefore there is an

si with nx = si + tb. In the same manner (ny, a) = 1, and so there is an rj with

ny = rj + ua. Then

a(si + tb) + b(rj + ua) = n =⇒ n = asi + brj + (t + u)ab

=⇒ n ≡ ari + bsj mod ab,

and we are done. ⊓⊔
We now give the general formula for φ(n).

Theorem 2.4.3.1. Suppose n = p
e1

1 · · · pek

k . Then

φ(n) =
(
p

e1

1 − p
e1−1
1

)(
p

e2

2 − p
e2−1
2

)
· · ·

(
p

ek

k − p
ek−1
k

)
= n

∏

i

(
1 − 1/pi

)
.

Proof. From the previous lemma we have

φ
(
n
)

= φ
(
p

e1

1

)
· φ

(
pe2

2

)
· · · φ

(
p

ek

k

)

=
(
p

e1

1 − p
e1−1
1

)(
p

e2

2 − p
e2−1
2

)
· · ·

(
p

ek

k − p
ek−1
k

)

= p
e1

1

(
1 − 1/p1

)
· · · pek

k

(
1 − 1/pk

)
= p

e1

1 · · · pek

k ·
(
1 − 1/p1

)
· · ·

(
1 − 1/pk

)

= n
∏

i

(
1 − 1/pi

)
. ⊓⊔

Example 2.4.3.4. Determine φ(126). Write

126 = 2 · 32 · 7 =⇒ φ(126) = φ(2)φ(32)φ(7) = (1)(32 − 3)(6) = 36.

Hence there are 36 units in Z126.
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An interesting result with many generalizations that we will look at later is the

following.

Theorem 2.4.3.2. For n > 1 and for d ≥ 1,
∑

d|n
φ(d) = n.

Proof. As before, we first prove the theorem for prime powers and then paste together

via the fundamental theorem of arithmetic.

Suppose that n = pe for p a prime. Then the divisors of n are 1, p, p2, . . . , pe, so
∑

d|n
φ(d) = φ(1) + φ(p) + φ(p2) + · · · φ(pe)

= 1 + (p − 1) + (p2 − p) + · · · + (pe − pe−1).

Notice that this sum telescopes, that is, 1 + (p − 1) = p + (p2 − p) = p2, and

so on. Hence the sum is just pe, and the result is proved for n a prime power.

We now do an induction on the number of distinct prime factors of n. The above

argument shows that the result is true if n has only one distinct prime factor. Assume

that the result is true whenever an integer has fewer than k distinct prime factors and

suppose n = p
e1

1 · · · pek

k has k distinct prime factors. Then n = pec, where p = p1,

e = e1, and c has fewer than k distinct prime factors. By the inductive hypothesis,
∑

d|c
φ(d) = c.

Since (c, p) = 1 the divisors of n are all of the form pαd1, where d1|c and

α = 0, 1, . . . , e. It follows that
∑

d|n
φ(d) =

∑

d1|c
φ(c) +

∑

d1|c
φ(pd1) + · · · +

∑

d1|c
φ(ped1).

Since (d1, p
α) = 1 for any divisor of c, this sum equals

∑

d1|c
φ(c) +

∑

d1|c
φ(p)φ(d1) + · · · +

∑

d1|c
φ(pe)φ(d1)

=
∑

d1|c
φ(c) + (p − 1)

∑

d1|c
φ(d1) + · · · +

(
pe − pe−1

)∑

d1|c
φ(d1)

= c + (p − 1)c +
(
p2 − p

)
c + · · · +

(
pe − pe−1

)
c.

As in the case of prime powers this sum telescopes, giving the final result
∑

d|n
φ(d) = pec = n. ⊓⊔

Example 2.4.3.5. Consider n = 10. The divisors of 10 are 1, 2, 5, 10. Then φ(1) = 1,

φ(2) = 1, φ(5) = 4, φ(10) = 4. Then

φ(1) + φ(2) + φ(5) + φ(10) = 1 + 1 + 4 + 4 = 10.
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2.4.4 Fermat’s Little Theorem and the Order of an Element

For any positive integer n the unit group U(Zn) is a finite abelian group. Recall that

in any group G each element g ∈ G generates a cyclic subgroup consisting of all the

distinct powers of g. If this cyclic subgroup is finite of order m, then m is called the

order of the element g. Equivalently, the order of an element g ∈ G can be described

as the least positive power m such that gm = 1. If no such power exists, then g has

infinite order. We denote the order of the group G by |G| and the order of g ∈ G by

|g|. If the whole group G is finite, then each element clearly has finite order. We will

apply these ideas to the unit group U(Zn), but first we recall some further facts about

finite groups.

Theorem 2.4.4.1 (Lagrange’s theorem). Suppose G is a finite group of order n.

Then the order of any subgroup divides n. In particular, the order of any element

divides the order of the group.

If g ∈ G with |G| = n, then from Lagrange’s theorem above there is an m with

gm = 1 and m|n. Hence n = mk, and so gn = gmk = (gm)k = 1k = 1. Hence in

any finite group we have the following.

Corollary 2.4.4.1. If G is a finite group of order n and g ∈ G, then gn = 1.

Theorem 2.4.4.2. Let G be a finite abelian group with |G| = n. Then

(1) If g1, g2 ∈ G with |g1| = a, |g2| = b, then (g1g2)
lcm(a,b) = 1.

(2) If g1, g2 ∈ G with |g1| = a, |g2| = b and (a, b) = 1, then |g1g2| = ab.

(3) If n = p
e1

1 p
e2

2 · · · pek

k is the prime factorization of n, then

G = H1 × H2 × · · · × Hk,

where |Hi | = p
ei

i .

The second part of the last theorem is part of the fundamental theorem of finitely

generated abelian groups, which plays the same role in abelian group theory as the

fundamental theorem of arithmetic does in number theory.

With these facts in hand, consider a unit a ∈ Zn. Then a ∈ U(Zn) and hence a

has a multiplicative order, that is, there is an integer m with am = 1 in Zn. In terms

of congruences this means that am ≡ 1 mod n. If a ∈ Zn is not a unit then there

cannot exist a power m ≥ 1 such that am ≡ 1 mod n, for if such an m existed, then

am−1 would be an inverse for a.

Lemma 2.4.4.1. Given n > 0, then for an integer a there exists an integer m such

that am ≡ 1 mod n if and only if (a, n) = 1 or, equivalently, a is a unit in Zn.

Definition 2.4.4.1. If (a, n) = 1, then the order of a modulo n is the least power m

such that am ≡ 1 mod n. We will write order(a) or |〈a〉| or |a| for the order of a.

Equivalently, the order of a is the order of a considered as an element of the unit

group U(Zn).

Since the order of U(Zn) equals φ(n), we immediately get that the order of any

element modulo n must divide φ(n).
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Lemma 2.4.4.2. If (a, n) = 1, then order(a)|φ(n).

Applying Corollary 2.4.4.1 to the unit group U(Zn) we get the following result,

known as Euler’s theorem.

Theorem 2.4.4.3 (Euler’s theorem). If (a, n) = 1, then

aφ(n) ≡ 1 mod n.

If n = p a prime then any integer a �= 0 mod p is a unit in Zp. Further,

φ(p) = p − 1, and hence we obtain the next corollary, which is called Fermat’s

theorem. (This is often called Fermat’s little theorem to distinguish it from the

result on xn + yn = zn.)

Corollary 2.4.4.2. If p is a prime and p ∤ a, then

ap−1 ≡ 1 mod p.

If (a, n) = 1 and the order of a is exactly φ(n), then a is called a primitive root

modulo n. In this case the unit group is cyclic with a as a generator. For n = p a

prime there is always a primitive root.

Theorem 2.4.4.4. For a prime p there is always an element a of order φ(p) = p−1,

that is, a primitive root. Equivalently, the unit group of Zp is always cyclic.

Proof. Since every nonzero element in Zp is a unit, the unit group U(Zp) is precisely

the multiplicative group of the field Zp. The fact that U(Zp) is cyclic follows from

the following more general result, whose proof we also give. ⊓⊔

Theorem 2.4.4.5. Let F be a field. Then any finite subgroup of the multiplicative

group of F must be cyclic.

Proof. Suppose G ⊂ F is a finite multiplicative subgroup of the multiplicative group

of F . Suppose |G| = n. As has been our general mode of approaching results we will

prove it for n a power of a prime and then paste the result together via the fundamental

theorem of arithmetic.

Suppose n = pk for some k. Then the order of any element in G is pα with

α ≤ k. Suppose the maximal order is pt with t < k. Then the LCM of the orders is

pt . It follows that for every g ∈ G we have gpt = 1. Therefore every g ∈ G is a

root of the polynomial equation

xpt − 1 = 0.

However, over a field a polynomial cannot have more roots than its degree. Since G

has n = pk elements and pt < pk , this is a contradiction. Therefore the maximal

order must be pk = n. Therefore G has an element of order n = pk and hence this

element generates G, and G must be cyclic.

We now do an induction on the number of distinct prime factors in n = |G|.
The above argument handles the case that there is only one distinct prime factor.
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Assume that the result is true if the order of G has fewer than k distinct prime factors.

Suppose n = p
e1

1 · · · pek

k . Then n = pec, where c has fewer than k distinct prime

factors. Since G is a finite abelian group with

|G| = n = pec, it follows that G = H × K with |H | = pe, |K| = c.

By the inductive hypothesis H and K are both cyclic, so H has an element h of order

pe and K has an element k of order c. Since (pe, c) = 1, the element hk has order

pec = n, completing the proof. ⊓⊔

Example 2.4.4.1. Determine a primitive root modulo 7.

This is equivalent to finding a generator for the multiplicative group of Z7. The

nonzero elements are 0, 1, 2, 3, 4, 5, 6, and we are looking for an element of order 6.

The table below list these elements and their orders:

x 1 2 3 4 5 6
|x| 1 3 6 3 6 2

Therefore there are two primitive roots, 3 and 5 modulo 7. To see how these were

determined, powers were taken modulo 7 until a value of 1 was obtained. For example,

32 = 9 = 2, 33 = 2 · 3 = 6, 34 = 3 · 6 = 18 = 4,

35 = 3 · 4 = 12 = 5, 36 = 3 · 5 = 15 = 1.

Example 2.4.4.2. Show that there is no primitive root modulo 15.

The units in Z15 are {1, 2, 4, 7, 8, 11, 13, 14}. Since φ(15) = 8 we must show

that there is no element of order 8. The table below gives the units and their respective

orders:
x 1 2 4 7 8 11 13 14
1 4 2 4 4 2 4 2 2

Therefore there is no element of order 8.

Modulo a prime there is always a primitive root, but other integers can have

primitive roots also. The fundamental result describing when an integer will have a

primitive root is the following. We outline the proof in the exercises.

Theorem 2.4.4.6. An integer n will have a primitive root modulo n if and only if

n = 2, 4, pk, 2pk,

where p is an odd prime.

The order of an element, especially Fermat’s theorem, provides a method for

primality testing. Primality testing refers to determining for a given integernwhether

it is prime or composite. The simplest primality test is the following. If n is composite,

then n = m1m2 with 1 < m1 < n, 1 < m2 < n. At least one of these factors must

be ≤ √
n. Therefore check all the integers less than or equal to

√
n. If none of these

divides n then n is prime. This can be improved using the fundamental theorem of
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arithmetic. If n has a divisor ≤ √
n then it has a prime divisor ≤ √

n, so in the above

divisibility check only the primes ≤ √
n need be checked.

While this method always works, it is often impractical for large n, and other

methods must be employed to see whether a number is prime. By Fermat’s theorem,

if n is prime and a < n, then an−1 ≡ 1 mod n. If a number a is found for which this

isn’t true, then a cannot be prime. We give a trivial example.

Example 2.4.4.3. Determine whether 77 is prime.

If 77 were prime, then we would have 276 ≡ 1 mod 77. Now,

276 = 238·2 = 438.

Now we do computations mod 77:

43 = 64 = −13 =⇒ 46 = 169 = 15 =⇒ 412 = 225 = 71 = −6

=⇒ 436 = (−6)3 = −216 = −62 =⇒ 438 = 42(−62) = −992 = −68 �= 1.

Therefore 77 is not prime.

This method can determine whether a number n is not prime. However, it cannot

determine whether it is prime. There are numbers n for which an−1 ≡ 1 mod n is

true for all (a, n) = 1 but n is not prime. These are called pseudoprimes. We will

discuss primality testing further and in more detail in Chapter 5.

2.4.5 On Cyclic Groups

In the previous sections we used some material from abstract algebra to prove results

in number theory. Here we briefly reverse the procedure to use some number theory

to develop and prove other ideas from algebra. After we do this we will turn the tables

back again and use this algebra to give another proof of Theorem 2.4.3.2 on the Euler

phi function.

Recall that a cyclic group G is a group with a single generator, say g. Then G

consists of all the powers of g, that is, G = {1, g±1, g±2, . . . }. If G is finite of order

n, then gn = 1 and n is the least positive integer x such that gx = 1. It is then clear

that if gm = 1 for some power m, it must follow that m ≡ 0 mod n, and if gk = gl

then k ≡ l mod n.

Let H = (Zn, +) denote the additive subgroup of Zn. Then H is cyclic of order

n with generator 1. If G = 〈g〉 is also cyclic of order n then since multiplication

of group elements is done via addition of exponents, it is fairly straightforward to

show that the homomorphism f : G → (Zn, +) given by g �→ 1 is actually an

isomorphism (see the exercises). Further, if G = 〈g〉 is cyclic of infinite order then

g �→ 1 gives an isomorphism from G to the additive group of Z.

Lemma 2.4.5.1.

(1) If G is a finite cyclic group of order n then G is isomorphic to (Zn, +). In

particular, all finite cyclic groups of a given order are isomorphic.

(2) If G is an infinite cyclic group then G is isomorphic to (Z, +).
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Cyclic groups are abelian and hence their subgroups are also abelian. However,

as an almost direct consequence of the division algorithm, we get that any subgroup

of a cyclic group must be cyclic.

Lemma 2.4.5.2. Let G be a cyclic group. Then any subgroup of G is also cyclic.

Proof. Suppose G = 〈g〉 and H ⊂ G is a subgroup. Since G consists of powers of

g, H also consists of certain powers of g. Let k be the least positive integer such that

gk ∈ H . We show that H = 〈gk〉, that is, H is the cyclic subgroup generated by gk .

This is clearly equivalent to showing that every h ∈ H must be a power of gk .

Suppose gt ∈ H . We may assume that t > 0 and that t > k since k is the least

positive integer such that gk ∈ H . If t < 0 work with −t . By the division algorithm

we then have

t = qk + r with r = 0 or 0 < r < k.

If r �= 0 then 0 < r < k and r = t − k. Hence gr = gt−k = gtg−k . Now gt ∈ H

and gk ∈ H and since H is a subgroup it follows that gt−k ∈ H . But then gr ∈ H ,

which is a contradiction since 0 < r < k and k is the least power of g in H . Therefore

r = 0 and t = qk. We then have

gt = gqk = (gk)q ,

completing the proof. ⊓⊔
Each element of a cyclic group G generates its own cyclic subgroup. The question

is, when does this cyclic subgroup coincide with all of G? In particular, which powers

gk are generators of G? The answer is purely number-theoretic.

Lemma 2.4.5.3.

(1) Let G = 〈g〉 be a finite cyclic group of order n. Then gk with k > 0 is a

generator of G if and only if (k, n) = 1, that is, k and n are relatively prime.

(2) If G = 〈g〉 is an infinite cyclic group, then g, g−1 are the only generators.

Proof. Suppose first that G = 〈g〉 is finite cyclic of order n and suppose that (k, n) =
1. Then there exist integers x, y such that kx + ny = 1. It follows then that

g = g1 = gkx+ny = gkxgny = (gk)x(gn)y .

But gn = 1 so (gn)y = 1 and therefore

g = (gk)x .

Therefore g is a power of gk and hence every power of g is also a power of gk . The

whole group g then consists of powers of gk and hence gk is a generator for G.

Conversely, suppose that gk is also a generator for G. Then there exists a power

x such that g = (gk)x = gkx . Hence kx ≡ 1 mod n and so k is a unit mod n, which

implies from the last section that (k, n) = 1.

Suppose next that G = 〈g〉 is infinite cyclic. Then there is no power of g that is

the identity. Suppose gk is also a generator with k > 1. Then there exists a power x

such that g = (gk)x = gkx . But this implies that gkx−1 = 1, contradicting that no

power of g is the identity. Hence k = 1. ⊓⊔
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Recall that φ(n) is the number of positive integers less than n that are relatively

prime to n. This is then the number of generators of a cyclic group of order n.

Corollary 2.4.5.1. Let G be a finite cyclic group of order n. Then there are φ(n)

generators for G.

By Lagrange’s theorem (Theorem 2.4.4.1), for any finite group the order of a

subgroup divides the order of a group, that is if |G| = n and |H | = d with H a

subgroup of G then d|n. However, the converse in general is not true, that is, if

|G| = n and d|n there need not be a subgroup of order d. Further, if there is a

subgroup of order d there may or may not be other subgroups of order d . For a

finite cyclic group G of order n, however, there is for each d|n a unique subgroup of

order d .

Theorem 2.4.5.1. Let G be a finite cyclic group of order n. Then for each d|n with

d ≥ 1 there exists a unique subgroup H of order d .

Proof. Let G = 〈g〉 and |G| = n. Suppose d|n. Then n = kd. Consider the element

gk . Then (gk)d = gkd = gn = 1. Further if 0 < t < d then 0 < kt < kd , so kt �= 0

mod n and hence gkt = (gk)t �= 1. Therefore d is the least power of gk that is the

identity and hence gk has order d and generates a cyclic subgroup of order d . We

must show that this is unique.

Suppose H = 〈gt 〉 is another cyclic subgroup of order d (recall that all subgroups

of G are also cyclic). We may assume that t > 0 and we show that gt is a power of

gk and hence the subgroups coincide. The proof is essentially the same as the proof

of Lemma 2.4.5.2.

Since H has order d we have gtd = 1, which implies that td ≡ 0 mod n. Since

n = kd it follows that t > k. Apply the division algorithm:

t = qk + r with 0 ≤ r < k.

If r �= 0 then 0 < r < k and r = t − qk. Then

r = t − qk =⇒ rd = td − qkd ≡ 0 mod n.

Hence n|rd , which is impossible since rd < kd = n. Therefore r = 0 and t = qk.

From this, we obtain

gt = gqk = (gk)q .

Therefore gt is a power of gk and H = 〈gk〉. ⊓⊔

We now use this result to give an alternative proof of Theorem 2.4.3.2.

Theorem 2.4.5.2. For n > 1 and for d ≥ 1,

∑

d|n
φ(d) = n.
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Proof. Consider a cyclic group G of order n. For each d|n, d ≥ 1, there is a unique

cyclic subgroup H of order d. Then H has φ(d) generators. Each element in G

generates its own cyclic subgroup H1, say of order d , and hence must be included in

the φ(d) generators of H1. Therefore

∑

d|n
φ(d) = sum of the numbers of generators of the cyclic subgroups of G.

But this must be the whole group and hence this sum is n. ⊓⊔

2.5 The Solution of Polynomial Congruences Modulo m

We are interested in solving polynomial congruences mod n, that is, solving

polynomial equations

f (x) ≡ 0 mod m,

where f (x) is a nonzero polynomial with coefficients in Zm, the ring of integers

modulo m. Typical examples are

4x2 + 3x − 2 ≡ 0 mod 12 and 4x + 5 ≡ 0 mod 7.

Of course, the solution of such congruences is given in terms of residue classes, for

if x ≡ y mod m then f (x) ≡ f (y) mod m. Hence if x is a solution to a polynomial

congruence then so is every integer congruent to it modulo m.

As has been our general procedure, we will reduce the solution of polynomial

congruences to the solution modulo primes and then try to paste general solutions

back together via the fundamental theorem of arithmetic. Suppose then that m has

the prime factorization m = p
e1

1 p
e2

2 · · · pek

k and that x0 is a solution of f (x) ≡ 0 mod

m. Then x0 is also a solution of f (x) ≡ 0 mod p
ei

i for i = 1, . . . , k. Then for each

i = 1, . . . , k there is a yi with x0 ≡ yi mod p
ei

i . Conversely, suppose we are given

yi with f (yi) ≡ 0 mod p
ei

i for i = 1, . . . , k. Then there is a technique based on what

is called the Chinese remainder theorem, which we will discuss shortly, to piece

these yi together to get a solution x0 of f (x) ≡ 0 mod m.

As a first step we will describe the solution of linear congruences and the Chinese

remainder theorem and then move on to higher-degree congruences.

2.5.1 Linear Congruences and the Chinese Remainder Theorem

A linear congruence is of the form ax + b ≡ 0 mod m, where a �= 0 mod m. In this

section we will consider solutions of linear congruences.
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Before proceeding further, we note that solving a polynomial congruence

f (x) ≡ 0 mod m

is essentially equivalent to solving a polynomial equation

f (x) = 0

in the modular ring Zm. The solutions of the congruence are precisely the conguence

classes modulo m. For example, the congruence

2x ≡ 4 mod 5

is equivalent to the equation

2x = 4

in Z5. The unique solution in Z5 is x = 2, so that the solution of the congruence is x =
2 mod 5. We will move freely between the two approaches to solving congruences,

using ≡ for congruence and = for equality in Zm

Now we consider the linear congruence ax +b ≡ 0 mod m, where a �= 0 mod m.

For m = p a prime, the solution is immediate and it is unique. Since Zp is a field

and a �= 0, the element a has an inverse. Therefore the solution in Zp is

x = a−1(−b),

and any solution x0 must be of the form x0 ≡ a−1(−b) mod p.

Example 2.5.1.1. Solve 3x + 4 ≡ 0 mod 7.

From the formal field properties the solution is x = 3−1 · (−4). In Z7 we have

−4 = 3 and since 3.5 ≡ 1 mod 7, it follows that 3−1 = 5. Therefore the solution is

x ≡ 5 · 3 = 15 ≡ 1 mod 7.

Essentially the same method works if m is not prime but (a, m) = 1. In this case

a is a unit in Zm and the unique solution is x = a−1(−b). Consider the same equation

as in Example 2.5.1.1 but modulo 8, that is,

3x + 4 ≡ 0 mod 8 =⇒ x ≡ 3−1 · (−4) mod 8

However, modulo 8 we have −4 = 4 and 3−1 = 3, so the solution is x = 4 · 3 =
12 = 4 mod 8.

If (a, m) �= 1 the situation becomes more complicated. We have the follow-

ing theorem, which describes the solutions and provides a technique for finding all

solutions.

Theorem 2.5.1.1. Consider ax + b = 0 mod m with (a, m) = d > 1. Then the

congruence is solvable if and only if d|b. In this case there are exactly d solutions,

which are given by

x = x0 + tm

d
, t = 0, 1, . . . , d − 1,

where x0 is any solution of the reduced equation

a

d
x + b

d
= 0 mod

m

d
.
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Proof. Let d = (a, m). If x0 is a solution then b = −ax0 mod m or, equivalently,

b = −ax0 + tm for some t . Therefore d|b. Hence if d does not divide b, there is no

solution.

Suppose then that d|b. Then
(

a
d
, m

d

)
= 1 and the reduced congruence

a

d
x + b

d
= 0 mod

m

d

has a unique solution
(
mod m

d

)
, say x0. But then x0 is also a solution mod m of

the original congruence. Any integer x congruent to x0 modulo m
d

, and hence of the

form x = x0 + tm
d

is also a solution to the reduced congruence. However, only d

of these are incongruent modulo m. It is easy to check that all of x = x0 + tm
d

,

t = 0, 1, . . . , d − 1, are incongruent modulo m. ⊓⊔
The problem of solving a linear congruence is then reduced to finding a single

solution of a congruence of the form ax = b mod m with (a, m) = 1. The solution is

then x = a−1b, where a−1 is the inverse of a mod m. As explained in Section 2.4.3,

this can be found using the Euclidean algorithm.

Example 2.5.1.2. Solve 26x + 81 = 0 mod 245.

We apply the Euclidean algorithm both to determine whether (26, 245) = 1 and

if so to find the inverse of 26 mod 245:

245 = (9)(26) + 11,

26 = (2)(11) + 4,

11 = (2)(4) + 3,

4 = (1)(3) + 1.

Therefore (245, 26) = 1. Working backward, we express 1 as a linear combination

of 26 and 245:

1 = 4 − (1)(3) = 4 − (11 − (2)(4)) = (3)(4) − (1)(11)

= · · · = (66)(26) − (7)(245).

Hence modulo 245 we have 66 · 26 = 1 and 26−1 = 66. Therefore the solution is

x = (26−1)(−81) =⇒ x = (66)(164) = 10824 = 44 mod 245.

Example 2.5.1.3. Solve 78x + 243 = 0 mod 735.

Using the Euclidean algorithm we find that (78, 735) = 3 and 3|243. The reduced

congruence is

78

3
x + 243

3
= 0 mod

735

3
=⇒ 26x + 81 = 0 mod 245.

From the previous example, we see that the solution to the reduced congruence

is x0 = 44 with d = 3. The solutions mod 735 are then

x0 + tm

d
, t = 0, 1, . . . , d − 1 =⇒ x = 44 + 735t

3
, t = 0, 1, 2

=⇒ x = 44, 289, 534 mod 735.
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The methods above provide techniques for solving linear congruences. Systems

of linear congruences are handled by the next result, which is called the Chinese

remainder theorem.

Theorem 2.5.1.2 (Chinese remainder theorem). Suppose that m1, m2, . . . , mk are

k positive integers that are relatively prime in pairs. If a1, . . . , ak are any integers

then the simultaneous congruences

x ≡ ai mod mi, i = 1, . . . , k,

have a common solution that is unique modulo m1m2 · · · mk .

Proof. The proof we give not only provides a verification but also provides a technique

for finding the common solution.

Let m = m1m2 · · · mk . Since the mi are relatively prime in pairs we have(
m
mi

, mi

)
= 1. Therefore there is a solution xi to the reduced congruence

m

mi

xi ≡ 1 mod mi .

Further, for xi we clearly have

m

mj

xi ≡ 0 mod mi if i �= j.

Now let

x0 =
k∑

i=1

m

mi

xiai .

We claim that x0 is a solution to the simultaneous congruences and that it is unique

modulo m.

Now,

x0 =
k∑

i=1

m

mi

xiai ≡ m

mj

xjaj mod mj

since m
mi

xi ≡ 0 mod mj if i �= j . It follows then that

x0 ≡ m

mj

xjaj mod mj ≡ aj mod mj

since m
mj

xj ≡ 1 mod mj . Therefore x0 is a common solution. We must prove the

uniqueness part.

If x1 is another common solution then x1 ≡ x0 mod mi for i = 1, . . . , k.

Therefore x1 ≡ x0 mod m.

We note that if the integers mi are not relatively prime in pairs there may be no

solution to the simultaneous congruences. ⊓⊔
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Example 2.5.1.4. Solve the simultaneous congruences

x ≡ 6 mod 13,

x ≡ 9 mod 45,

x ≡ 12 mod 17.

Here m1 = 13, m2 = 45, m3 = 17, so m = 13 · 45 · 17. We first solve

(17)(45)x = 1 mod 13 =⇒ x ≡ 6,

(13)(17)x = 1 mod 45 =⇒ x ≡ 11,

(13)(45)x = 1 mod 17 =⇒ x ≡ 5.

To see how these solutions are found, let us look at the second one:

(13)(17) ≡ 1 mod 45 =⇒ 221x ≡ 1 mod 45 =⇒ 41x ≡ 1 mod 45

since 221 ≡ 41 mod 45. We now use the Euclidean algorithm,

45 = 1 · 41 + 4, 41 = 10 · 4 + 1 =⇒ 1 = (11)(41) − (10)(45)

=⇒ 41−1 ≡ 11 mod 45

Therefore using these solutions, we see that the common solution is

x0 = 13 · 45 · 17

13
(6)(6) + 13 · 45 · 17

45
(11)(9) + 13 · 45 · 17

17
(5)(12)

=⇒ x0 = 27540 + 21879 + 35100 = 84519 = 13 · 45 · 17 mod 9945

=⇒ x0 = 4959.

The Chinese remainder theorem can also be used to piece together the solution of

a single linear congruence.

Example 2.5.1.4. Solve 5x + 7 ≡ 0 mod 468.

Now, (468, 5) = 1, so the solution is x = 5−1(−7) mod 468. The prime

decomposition of 468 is 223213. Therefore the solution can be considered as the

simultaneous solution of

x = 5−1(−7) mod 22 =⇒ x ≡ 1 mod 4,

x = 5−1(−7) mod 32 =⇒ x ≡ 4 mod 9,

x = 5−1(−7) mod 13 =⇒ x ≡ 9 mod 13.

Letting m1 = 4, m2 = 9, m3 = 13, and m = 468, as before we first solve

(9)(13)x = 1 mod 4 =⇒ x ≡ 1,

(4)(13)x = 1 mod 9 =⇒ x ≡ 4,

(4)(9)x = 1 mod 13 =⇒ x ≡ 4.
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The common solution is

x0 = (9)(13)(1)(1) + (4)(13)(4)(4) + (4)(9)(9)(4) ≡ 10201 mod 468

=⇒ x0 = 373.

In the previous sections we noted that for any natural number n, the additive group

of Zn and the group of units of Zn are finite abelian groups. As an easy consequence

of the Chinese remainder theorem we have the following result.

Theorem 2.5.1.3. For any natural number m let (Zm, +) denote the additive group of

Zm and let U(Zm) be the group of units of Zm. Let n = n1n2 . . . nk be a factorization

of n with pairwise relatively prime factors. Then

(Zn, +) ∼= (Zn1
, +) × (Zn2

, +) × · · · × (Znk
, +),

U(Zn) = U(Zn1
) × · · · × U(Znk

).

We leave the proof to the exercises.

2.5.2 Higher-Degree Congruences

Now that we have handled linear congruences we turn to the problem of solving

higher degree polynomial congruences

f (x) ≡ 0 mod m, (2.5.2.1)

where f (x) is a nonconstant integral polynomial of degree k > 1. Suppose that

f (x) = a0 + a1x + · · · + akx
k and g(x) = b0 + b1x + · · · + bkx

k,

where ai ≡ bi mod m for i = 1, . . . , k. Then f (c) ≡ g(c) mod m for any integer c

and hence the roots of f (x) modulo m are the same as those of g(x) modulo m.

Therefore we may assume that in (2.5.2.1) the polynomial f (x) is actually a

polynomial with coefficients in Zm.

As remarked earlier if m has the prime factorization m = p
e1

1 p
e2

2 · · · pek

k and x0

is a solution of f (x) ≡ 0 mod m, then x0 is also a solution of f (x) ≡ 0 mod p
ei

i

for i = 1, . . . , k. Then for each i = 1, . . . , k there is a yi with x0 ≡ yi mod p
ei

i .

Conversely, suppose we are given yi with f (yi) ≡ 0 mod p
ei

i for i = 1, . . . , k. Then

the Chinese remainder theorem can be used to patch these yi together to get a solution

x0 of f (x) ≡ 0 mod m. Specifically,

x0 =
k∑

i=1

m

p
ei

i

ziyi

will give a solution where the zi are determined so that m

p
ei
i

zi ≡ 1 mod p
ei

i .
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Example 2.5.2.1. Solve x2 + 7x + 4 = 0 mod 33.

Since 33 = 3 · 11 we consider x2 + 7x + 4 = 0 mod 3 and x2 + 7x + 4 mod 11.

First,

x2 + 7x + 4 = 0 mod 3 =⇒ x2 + x + 1 = 0 mod 3 =⇒ x = 1,

and this is the only solution. Notice that in Z3 we have (x + 2)2 = x2 + x + 1. Now

modulo 11 we have

x2 + 7x + 4 = 0 =⇒ x2 − 4x + 4 = 0 =⇒ (x − 2)2 = 0 =⇒ x = 2

is the only solution. Therefore a solution modulo 33 is given by the solution of the

pair of congruences

x = 1 mod 3,

x = 2 mod 11.

Now, 11y = 1 mod 3 =⇒ y = 2 and 3y = 1 mod 11 =⇒ y = 4, so by the

Chinese remainder theorem the solution modulo 33 is

x = (11)(2)(1) + (3)(4)(2) = 46 = 13 mod 33.

Hence we have reduced the problem of solving polynomial congruences to the

problem of solving modulo prime powers. From the algorithm using the Chinese

remainder theorem we can further give the total number of solutions. If f (x) is a

polynomial with coefficients in Zm we let Nf (m) denote the number of solutions of

f (x) = 0 mod m. Then we have the following.

Theorem 2.5.2.1. If m = p
e1

1 p
e2

2 · · · pek

k is the prime decomposition of m, then

Nf (m) = Nf

(
p

e1

1

)
Nf

(
p

e2

2

)
· · · Nf

(
p

ek

k

)
.

The simplest case of solving modulo a prime power pα is of course α = 1. Then

we are attempting to find solutions within Zp. Recalling that if p is a prime then Zp is

a field, we can use certain basic properties of equations over fields to further simplify

the problem. First, recalling that in a field a polynomial of degree n can have at most

n distinct roots, we obtain the following theorem.

Theorem 2.5.2.2. The polynomial congruence f (x) ≡ 0 mod p, p prime, has at

most k solutions if the degree of f (x) is k.

Recall that from Fermat’s theorem, xp = x for any x ∈ Zp. This implies that

every element of Zp is a root of the polynomial xp − x. Suppose that f (x) is

a polynomial of degree higher than p over Zp. Using the division algorithm for

polynomials we then have

f (x) = q(x)(xp − x) + g(x), where g(x) = 0 or deg(g(x)) < p.

Since every element of Zp is a solution of xp − x it follows that the solutions of

f (x) = 0 are precisely the solutions of g(x) = 0. Hence we can always reduce a

polynomial congruence modulo p to a congruence of degree less than p.
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Theorem 2.5.2.3. If f (x) has degree higher than p, p prime, then there exists a

polynomial h(x) of degree less than p such that the solutions of f (x) = 0 mod p are

exactly the solutions of h(x) = 0 mod p.

There is no general method to solve a polynomial congruence modulo a prime p.

However, for degree 2 and p an odd prime the quadratic formula holds. First, some

more definitions.

Definition 2.5.2.1. If (a, m) = 1 and x2 ≡ a mod m has a solution then a is called

a quadratic residue mod m. If x2 ≡ a mod m has no solution then a is a quadratic

nonresidue.

We will talk more about quadratic residues and nonresidues in the next section.

However, modulo a prime we get something special: x2 −a is a quadratic polynomial

and hence in a field it can have at most two solutions. Therefore, we have the

following.

Lemma 2.5.2.1. Given (a, p) = 1 with p a prime, suppose a is a quadratic residue

mod p and x2
0 = a mod p. Then −x0 is the only other solution and if p is odd, x0

and −x0 are distinct.

If a is a quadratic residue mod p, let
√

a denote one of the two solutions to

x2 = a mod p. We then obtain the quadratic formula modulo any odd prime.

Theorem 2.5.2.4. If p is an odd prime, then the solutions to the quadratic congruence

ax2 + bx + c = 0 mod p with a noncongruent to 0 mod p are given by

x = −b ±
√

b2 − 4ac

2a
.

In particular, if b2 − 4ac is a quadratic nonresidue mod p then ax2 + bx + c = 0

has no solutions mod p.

Proof. The development of the quadratic formula is dependent solely on the field

properties and so can be carried out purely symbolically in Zp. Suppose

ax2 + bx + c = 0. Then x2 + b

a
x = −c

a
.

Completing the square on the left side in the usual manner gives

x2 + b

a
x + b2

4a2
= b2

4a2
− c

a
,

where b2

4a2 is defined since 4 �= 0 and a2 �= 0 in Zp (since p is odd). Then

(
x + b

2a

)2

= b2 − 4ac

2a
=⇒ x + b

2a
= ±

√
b2 − 4ac

2a
,

where the square root has the meaning described above. Finally,

x = −b ±
√

b2 − 4ac

2a
. ⊓⊔
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Example 2.5.2.2. Solve 3x2 + 5x + 1 = 0 mod 7.

First we divide through by 3. Since 3 · 5 = 1 in Z−1
7 , 3−1 = 5, and so

3x2 + 5x + 1 = 0 =⇒ x2 + 25x + 5 = 0 =⇒ x2 + 4x + 5 = 0.

Applying the quadratic formula

x = −4 ±
√

16 − 4(1)(5)

2
= 3 ±

√
−4

2
= 3 ±

√
3

2
.

Now 3 is a quadratic nonresidue mod 7, so the original congruence has no solutions

modulo 7.

For prime-power moduli pα with α > 1 the general idea is to first find solutions

mod p, if possible, and then move, using the found solutions, iteratively to solutions

mod p2, then solutions mod p3, and so on. There is an algorithm to handle this

iterative procedure. We will not discuss this, but refer the reader to [NZ] or [N] for

more on this topic.

2.6 Quadratic Reciprocity

We close this chapter on basic number theory with a discussion of a famous result

due originally to Gauss, called the law of quadratic reciprocity. There are now

dozens of proofs of this result in print, and the result has far ranging implications

well beyond what might be expected. Further, there are generalizations to algebraic

number theory as well as applications to problems involving sums of squares.

Recall from the last section that if x2 ≡ a mod n has a solution, then a is called

a quadratic residue mod n. If n = p, an odd prime, then there are exactly two

solutions mod p. Suppose that p, q are distinct odd primes. Then p might be, or

might not be, a quadratic residue mod q. Similarly, q might be, or might not be,

a quadratic residue mod p. At first glance there might seem to be no relationship

between these two questions. Gauss proved that there is a quite strong relationship,

and this is the quadratic reciprocity law. In particular, if either of p or q is congruent

to 1 mod 4, then either both of x2 ≡ p mod q and x2 ≡ q mod p are solvable or

neither is. If both p and q are congruent to 3 mod 4 then one is solvable and the

other isn’t. Before we state the theorem precisely we introduce some terminology

and machinery.

First we give a criterion for an integer to be a quadratic residue modulo an odd

prime.

Lemma 2.6.1. If p is an odd prime and (a, p) = 1, then a is a quadratic residue

mod p if and only if a
p−1

2 ≡ 1 mod p. If a is a quadratic nonresidue, then a
p−1

2 ≡
−1 mod p.

Proof. Suppose (a, p) = 1. We do the computations in the field Zp. Since a �= 0,

from Fermat’s theorem we have ap−1 = 1 in Zp. This implies that
(
a

p−1
2 −1

)(
a

p−1
2 +
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1
)

= 0 in Zp. Since Zp is a field it has no zero divisors, and this implies that either

a
p−1

2 = 1 or a
p−1

2 = −1. Hence either a
p−1

2 ≡ 1 mod p or a
p−1

2 ≡ −1 mod p. We

show that in the former case and only in the former case is a a quadratic residue.

Suppose that x2 = a has a solution, say x0, in Zp. Then

a
p−1

2 = (x2
0)

p−1
2 = x

p−1
o = 1.

It follows further that if a
p−1

2 = −1 there can be no solution.

Conversely, suppose a
p−1

2 = 1. Since the multiplicative group of Zp is cyclic

(see the last section) it follows that there is a g ∈ Zp that generates this cyclic group,

and a = gt for some t . Hence g
t (p−1)

2 = 1. However, the order of the multiplicative

group of Zp is p − 1, and this implies that

t (p − 1)

2
≡ 0 mod p − 1.

Therefore t must be even: t = 2k. Hence a = g2k = (gk)2 and there is a solution to

x2 = a. ⊓⊔

To express the quadratic reciprocity law in a succint manner we introduce the

Legendre symbol.

Definition 2.6.1. If p is an odd prime and (a, p) = 1, then the Legendre symbol

(a/p) is defined by

(1) (a/p) = 1 if a is a quadratic residue mod p,

(2) (a/p) = −1 if a is a quadratic nonresidue mod p.

Thus the value of the Legendre symbol distinguishes quadratic residues from

quadratic nonresidues. The next lemma establishes the basic properties of (a/p).

Lemma 2.6.2. If p is an odd prime and (a, p) = (b, p) = 1, then

(1) (a2/p) = 1,

(2) if a ≡ b mod p, then (a/p) = (b/p),

(3) (a/p) ≡ a
p−1

2 mod p,

(4) (ab/p) = (a/p)(b/p).

Proof. Parts (1) and (2) are immediate from the definition of the Legendre symbol.

Part (3) is a direct consequence of Lemma 2.6.1.

To see part (4) notice that (ab)
p−1

2 = a
p−1

2 b
p−1

2 and use part (3). ⊓⊔

From part (4) of this last lemma we see that to compute (a/p) we can use the

prime factorization of a and then restrict to (q/p), where q is a prime distinct from p.

The quadratic reciprocity law will allow us to compute (q/p) for odd primes q and

we will give a separate result for (2/p). After proving the quadratic reciprocity law

we will give examples of how to do this. We now give the theorem.
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Theorem 2.6.1 (law of quadratic reciprocity). If p, q are distinct odd primes, then

(p/q)(q/p) = (−1)

(
p−1

2

)(
q−1

2

)
.

Alternatively, if p, q are distinct odd primes, then we have the following:

(1) If at least one of p, q is congruent to 1 mod 4, then

x2 ≡ q mod p and x2 ≡ p mod q

are either both solvable or both unsolvable.

(2) If both p and q are congruent to 3 mod 4, then one of

x2 ≡ q mod p and x2 ≡ p mod q

is solvable and the other is unsolvable.

Proof. The proof we give is based on two lemmas due to Gauss and then a nice

geometric argument due to Eisenstein.

Let p, q be distinct odd primes and set h = p−1
2

. Consider the set

R = {−h, . . . , −2, −1, 1, 2, . . . , h}.

This is a reduced residue system mod p and hence every integer a relatively prime

to p, that is, with (a, p) = 1, is congruent to exactly one element of R. Let

S = {q, 2q, . . . , hq}.

Since (p, q) = 1 any two elements of S are incongruent mod p and therefore each

element of S is congruent to exactly one element of R. We first need the following

lemma. ⊓⊔

Lemma 2.6.3. If n is the number of elements of S congruent mod p to negative

elements of R, then (q/p) = (−1)n.

Proof of Lemma 2.6.3. Suppose a1, . . . , an are the negative elements of R congruent

to elements of S and b1, . . . , bm with m + n = h are the positive elements congruent

to the remaining elements of S. The product of the elements of S is h!qh, so

h!qh ≡ a1 · · · anb1 · · · bm mod p.

Since any two elements of S are incongruent modulo p, we cannot have

−ai = bj for some i, j , for if so, then ai + bj = 0 ≡ mq + nq mod p, which

would imply that p|(m + n)q, which is impossible since m, n ≤ p−1
2

. Therefore

−a1, . . . ,−an, b1, . . . , bm give h distinct positive integers all less than or equal to h.
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Hence

{−a1, . . . ,−an, b1, . . . , bm} = {1, . . . , h}.
It follows that

(−1)na1 · · · anb1 · · · bm = h! =⇒ (−1)nh!qh ≡ h! mod p.

However, (h!, p) = 1, so then

(−1)nqh ≡ 1 mod p =⇒ qh = q
p−1

2 ≡ (−1)n mod p.

From Lemma 2.6.2, we have

(q/p) ≡ q
p−1

2 mod p =⇒ (q/p) ≡ (−1)n mod p.

We are now going to calculate (q/p) in a different way. Let [x] denote the greatest

integer less than or equal to x. Notice that if a, b ∈ Z and a = qb+ r with 0 ≤ r < b

then
[

a
b

]
= q and so a =

[
a
b

]
b + r . Consider now the sum

M =
h∑

i=1

[
iq

p

]
,

called a Gauss sum. The next lemma ties this Gauss sum to (q/p). ⊓⊔

Lemma 2.6.4. Let p, q be distinct odd primes and let M be defined as above. Then

(q/p) = (−1)M .

Proof of Lemma 2.6.4. As explained above, for each i we have

iq =
[

iq

p

]
p + ri, 0 < ri < p.

Let R be as in Lemma 2.6.3. If iq is congruent to a negative element ai of R, then

ri = p + ai , while if iq is congruent to a positive element bi , then ri = bi . Then

h∑

i=1

iq = p

h∑

i=1

[
iq

p

]
+

n∑

i=1

(ai + p) +
m∑

i=1

bi .

Further,
h∑

i=1

i = h(h + 1)

2
= p2 − 1

8
.

Let P = p2−1
8

, and plugging back into our sum over {iq}, we get

h∑

i=1

iq = Pq = pM + np +
n∑

i=1

ai +
m∑

i=1

bi .
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However, as we saw in the proof of Lemma 2.6.3,

{−a1, . . . ,−anb1, . . . , bm} = {1, . . . , h} =⇒ −
n∑

i=1

ai +
m∑

i=1

bi = P.

Then

Pq = pM + np + P + 2

n∑

i=1

ai =⇒ P(q − 1) = (M + n)p + 2

n∑

i=1

ai .

Since q is odd q − 1 ≡ 0 mod 2, if we take the last sum mod 2, we get that

M + n ≡ 0 mod 2,

which implies that M, n are both even or both odd. It follows that (−1)M = (−1)n.

From Lemma 2.6.3 we have (q/p) = (−1)n and hence (q/p) = (−1)M , proving the

second lemma.

We now interchange the roles of p and q. Let k = q−1
2

and let N be the Gauss

sum for q,

N =
k∑

i=1

[
ip

q

]
.

Therefore from Lemma 2.6.4 applied to q we have (p/q) = (−1)N . Hence

(p/q)(q/p) = (−1)M(−1)N = (−1)M+N .

We will show that

M + N = hk =
(

p − 1

2

)(
q − 1

2

)
, (2.6.1)

which will prove the quadratic reciprocity law.

To prove (2.6.1) we will use a lovely geometric argument. Consider the lattice

points (points with integer coordinates) within the rectangle with corners at

(0, 0),
(p

2
, 0
)

,
(p

2
,
q

2

)
,
(

0,
q

2

)
,

as pictured in Figure 2.6.1.

Let T be the total number of lattice points within the rectangle. We will compute

T in two different ways. First notice that T = hk since
[p

2

]
= h and

[ q
2

]
= k.

Now consider the number below the diagonal. Since the equation of the diagonal

is y = q
p
x, there are no lattice points on the diagonal. For an integer i, the vertical

line x = i hits the diagonal at the point
(
i,

q
p
i
)

and hence the number of lattice points
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(0A/2)

(0,0)

y

i
x

(i, iq/p)

(p/2, q/2)

y = (p/q)x

(p/2, 0)

Figure 2.6.1.

along the line x = i and below the diagonal is
[ iq

p

]
. It follows that the total number

of lattice points below the diagonal is

h∑

I=1

[
iq

p

]
= M.

An analogous argument shows that the total number of lattice points above the

diagonal is N . Therefore T = M + N . Hence

M + N = hk,

and the quadratic reciprocity law is proved. ⊓⊔

Before giving some examples we note that by modifying slightly the proof of

Lemma 2.6.3, we get the following which allows us to compute (2/p) for any odd

prime p.

Lemma 2.6.5. If p is an odd prime, then (2/p) = (−1)
p2−1

8 .

Proof. Although we assumed that q was an odd prime in both Lemmas 2.6.3 and

2.6.4, the construction of the sets R and S and the Gauss sum M required only that

(q, p) = 1. Now let q = 2. Then from the definition of the Gauss sum, M = 0.

Hence
p2−1

8
≡ n mod p. Then (2/p) = (−1)n = (−1)

p2−1
8 . ⊓⊔

With the quadratic reciprocity law and Lemma 2.6.5 it is relatively easy to compute

(a/p) for any a.

Example 2.6.1. Determine (870/7).
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The prime factorization of 870 is 870 = 2 · 3 · 5 · 29. Then

(870/7) = (2/7)(3/7)(5/7)(29/7).

First,

(2/7) = (−1)
49−1

8 = (−1)6 = 1,

(3/7) = −(7/3) since both are congruent to 3 mod 4,

(7/3) = (1/3) = 1 =⇒ (3/7) = −1,

(5/7) = (7/5) since 5 ≡ 1 mod 4,

(7/5) = (2/5) = (−1)
24
8 = −1 =⇒ (5/7) = −1.

Finally,

(29/7) = (1/7) = 1.

Putting these all together, we obtain

(870/7) = (2/7)(3/7)(5/7)(29/7) = (1)(−1)(−1)(1) = 1,

and hence 870 is a quadratic residue mod 7.

This was just an illustration. For a small prime like 7 it would be easier to reduce

mod 7 and do it directly:

870 ≡ 2 mod 7 =⇒ (870/7) = (2/7) = 1.

EXERCISES

2.1. Verify that the following are rings. Indicate which are commutative and which

have identities. Which are integral domains?

(a) The set of rational numbers.

(b) The set of continuous functions on a closed interval [a, b] under ordinary

addition and multiplication of functions.

(c) The set of 2 × 2 matrices with integral entries.

(d) The set nZ consisting of all integers that are multiples of the fixed integer n.

2.2. (a) Show that in an ordered ring squares must be positive. Conclude that in

an ordered ring with identity the multiplicative identity must be positive.

(b) Show that the complex numbers under the ordinary operations cannot be

ordered.

2.3. Show that any ordered ring must be infinite. (Hint: Suppose a > 0. Then

a + a > 0, a + a + a > 0 and continue).

2.4. Prove by induction that there are 2n subsets of a finite set with n elements.

2.5. Prove that 12 + 22 + · · · + n2 = n(n+1)(2n+1)
6

.
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2.6. Let R be an ordered integral domain that satisfies the inductive property. Prove

that R is isomorphic to Z.

(Hint: Let 1 be the multiplicative identity in R. Define 2 · 1 = 1 + 1 and

inductively n · 1 = (n − 1) · 1 + 1 in R. Define

R̄ = {n · 1 ∈ R; n ∈ Z}

and let f : Z → R by f (n) = n · 1. Show first that f is an isomorphism from

Z to R. Then use the inductive property in R to show that R̄ is all of R.)

2.7. Prove the remaining parts of Theorem 2.2.1.

2.8. Find the GCD and LCM of the following pairs of integers and then express the

GCD as a linear combination:

(a) 78 and 30.

(b) 175 and 35.

(c) 380 and 127.

2.9. Prove that if a = qb + r then (a, b) = (b, r).

2.10. Prove that if d = (a, b) then a
d

and b
d

are relatively prime.

2.11. Show that if (a, b) = c then (a2, b2) = c2. (Hint: The easiest method is to use

the fundamental theorem of arithmetic.)

2.12. Redo Exercise 2.8 using the prime decomposition of each integer.

2.13. Show that an integer is divisible by 3 if and only if the sum of its digits (in

decimal expansion) is divisible by 3. (Hint: Write out the decimal expansion

and take everything modulo 3.)

2.14. Let F be a field and let F [x] denote the ring of polynomials over F . Prove

that if f (x), g(x) ∈ F [x] with g(x) �= 0, then there exist unique polynomials

q(x), r(x) ∈ F [x] such that

f (x) = q(x)g(x) + r(x), r(x) = 0 or deg(r(x)) < deg(g(x)).

This is the division algorithm for polynomials. (Hint: Model the proof on the

proof for the integers.)

2.15. Suppose p(x) is a polynomial over F and p(r) = 0. Show that p(x) =
(x − r)h(x), where h(x) is another polynomial of degree one less than that of

p(x). (Use the division algorithm.)

2.16. Let g(x), f (x) ∈ F [x]. Then their greatest common divisor or GCD is the

monic polynomial d(x) (leading coefficient 1) such that d(x) divides both f (x)

and g(x) and if d1(x) is any other common divisor of g(x) and f (x), then d1(x)

divides d(x). Show that the GCD of two polynomials exists and is the monic

polynomial of least degree that can be expressed as a linear combination of

f (x) and g(x). That is,

d(x) = h(x)f (x) + k(x)g(x)

and d(x) has the least degree of any linear combination of this form. (Hint:

again model the proof on the proof for the integers.)
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2.17. Prove Euclid’s lemma for polynomials, that is, if d(x) divides f (x)g(x) and

(d(x), g(x)) = 1 then d(x) divides f (x).

2.18. A polynomial p(x) of positive degree over a field F is a prime polynomial or

irreducible polynomial if it cannot be expressed as a product of two poly-

nomials of positive degree over F . Prove: Any nonconstant polynomial

f (x) ∈ F [x] where F is a field can be decomposed as a product of prime

polynomials. Further, this decomposition is unique except for ordering and

unit factors. This is the unique factorization theorem for polynomial rings

over fields. (Hint: Again model the proof on the proof of the fundamental

theorem of arithmetic.)

2.19. Suppose p(x) is a polynomial over F and the degree of p(x) is n. Prove that

p(x) can have at most n distinct roots over F .

2.20. Mimic the results in Exercises 2.14–2.18 for general Euclidean domains (see

the definition in Section 2.3) and then use this to prove Theorem 2.3.6.

2.21. Show that the Gaussian integers Z[i] are a Euclidean domain with

N(a + bi) = a2 + b2. This shows that the Gaussian integers are a unique

factorization domain.

2.22. Prove part (c) of Lemma 2.4.2.1: If a ≡ b mod n and c ≡ d mod n, then

ac ≡ bd mod n.

2.23. Verify the remaining ring properties to show that for any positive integer n, Zn

is a commutative ring with identity.

2.24. Find the multiplicative inverse if it exists of

(a) 13 in Z47;

(b) 17 in Z22;

(c) 6 in Z30.

2.25. Solve the linear congruences

(a) 4x + 6 = 2 in Z7;

(b) 5x + 9 = 12 in Z47;

(c) 3x + 18 = 27 in Z40;

2.26. Find φ(n) for

(a) n = 17;

(b) n = 526;

(c) n = 138.

2.27. Determine the units and write down the group table for the unit group U(Zn) for

(a) Z12;

(b) Z26.

2.28. Verify Theorem 2.4.3.2 for

(a) n = 26;

(b) n = 88.
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2.29. Prove Theorem 2.5.1.3, that is, for any natural number m let (Zm, +) denote

the additive group of Zm and let U(Zm) be the group of units of Zm. Let

n = n1n2 · · · nk be a factorization of n with pairwise relatively prime factors.

Then

(Zn, +) ∼= (Zn1
, +) × (Zn2

, +) × · · · × (Znk
, +),

U(Zn) = U(Zn1
) × · · · × U(Znk

).

2.30. Prove that if an integer is congruent to 2 modulo 3 then it must have a prime

factor congruent to 2 modulo 3.

2.31. Prove that if p is an odd prime then there exist positive integers x, y such that

p = x2 − y2.

2.32. Prove that if bc is a perfect square for integers b, c and (b, c) = 1, then both b

and c are perfect squares.

2.33. Determine a primitive root modulo 11.

2.34. We outline a proof of Theorem 2.4.4.6: An integer n will have a primitive root

modulo n if and only if

n = 2, 4, pk, 2pk,

where p is an odd prime.

(a) Show that if (m, n) = 1 with m > 2, n > 2, then there is no primitive root

modulo mn.

(b) Show that there is no primitive root modulo 2k for k > 2.

(c) Prove: If p is an odd prime then there exists a primitive root a mod p such

that ap−1 is not congruent to 1 modulo p2. (Hint: Let a be a primitive

root mod p. Then a + p is also a primitive root. Show that either a or

(a + p) satisfies the result.)

(d) Prove: There exists a primitive root modulo pk for any k ≥ 2. (Hint: Let

a be the primitive root mod p from part (c). Then this is a primitive root

mod pk for any k ≥ 2.)

(e) Prove: If a is a primitive root mod pk , then if a is odd, a is also a primitive

root mod 2pk . If a is even then a + pk is a primitive root modulo 2pk .

2.35. Use the primality test based on Fermat’s theorem to show that 1051 is not prime.

2.36. If m > 2 show that φ(m) is even.

2.37. Prove that φ(n2) = nφ(n) for any positive integer n.

2.38. Prove that if n ≥ 2 then

∑

(m,n)=1,0<m<n

m = nφ(n)

2
.

2.39. Prove that if n has k distinct odd factors, then 2k|φ(n).
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The Infinitude of Primes

3.1 The Infinitude of Primes

The two most striking characteristics of the sequence of primes is that there are many

of them but that their density is rather slim. From Euclid’s theorem (Theorem 2.3.1)

there are infinitely many primes; in fact, there are infinitely many in any nontrivial

arithmetic sequence of integers. This latter fact was proved by Dirichlet and is

known as Dirichlet’s theorem. As mentioned before, if x is a natural number and

π(x) represents the number of primes less than or equal to x, then asymptotically this

function behaves like the function x
ln x

. This result is known as the prime number

theorem. Besides being a startling result, the proof of the prime number theorem,

done independently by Hadamard and de la Vallée Poussin, became the genesis for

analytic number theory. In this chapter we will discuss various aspects of the infinitude

of primes. The prime number theorem will be introduced in the next chapter.

As a starting point we will give an array of proofs of the infinitude of primes:

some are direct, some involve analysis, and some come from quite different directions.

Hopefully, seeing these proofs will both shed some light on the nature of the sequence

of primes and at the same time show the complexity of this rather straightforward

result. Included among these will be several simple cases of Dirichlet’s theorem,

which we will prove in its entirety in Section 3.3.

3.1.1 Some Direct Proofs and Variations

The purpose of this chapter is to present a wide array of proofs that the set of primes is

infinite. Each of these other proofs will shed further light on the nature of the primes

and the nature of the integers. We first restate the basic theorem that was given in the

last chapter as Theorem 2.3.1.

Theorem 3.1.1. There are infinitely many primes.

In the last chapter we gave two proofs of this result, the first of which goes back

to Euclid. Recall that Euclid’s argument went like this: suppose that there are only



56 3 The Infinitude of Primes

finitely many primes p1, . . . , pn. Each of these is positive so we can form the positive

integer

N = p1p2 · · · pn + 1.

Since N has a prime decomposition, in particular there is a prime p that divides N .

Then

p|p1p2 · · · pn + 1.

Since the only primes are assumed to be p1, p2, . . . , pn, it follows that p = pi for

some i = 1, . . . , n. But then p|p1p2 · · · pi · · · pn, so p cannot divide p1 · · · pn + 1,

which is a contradiction. Therefore p is not one of the given primes, showing that the

list of primes must be endless. Notice that in this argument we could just as easily

have worked with N = p1 · · · pn − 1.

We also presented the following variation of Euclid’s argument. Again suppose

that there are only finitely many primes p1, . . . , pn. Certainly n ≥ 2. Let P =
{p1, . . . , pn}. Divide P into two disjoint nonempty subsets P1, P2. Now consider

the number m = q1 + q2, where qi is the product of all the primes from P1 and q2 is

the product of all the primes from P2. Let p be a prime divisor of m. Since p ∈ P

it follows that p divides either q1 or q2 but not both. But then p does not divide m,

giving a contradiction. Therefore p is not one of the given primes, and the number

of primes must be infinite.

We now give some further variations of Euclid’s basic proof. None of these proofs

uses analysis. In the next section we prove Theorem 3.1.1 with some analytic ideas.

These are precursors to both the proof of the prime number theorem and the proof of

Dirichlet’s theorem.

Proof 1a (using factorials). Again suppose that p1, . . . , pn are the only primes and

let N = p1 · · · pn. Certainly pi < N for each i. Let q be the smallest prime divisor

of N !+1. If q < N then q certainly divides N !, so q cannot divide N !+1. Therefore

q > N and hence q > pi for i = 1, . . . , n. Hence q is not one of the pi and the

sequence of primes is infinite.

Notice that the fact that the smallest prime divisor of N ! + 1 is greater than N

did not depend on N being a product of primes. Hence this proof can be varied as

follows. ⊓⊔

Proof 1b (again using factorials). For each n > 1 let qn be the smallest prime divisor

of n! + 1. Exactly as in the previous proof we must have qn > n and hence there

cannot be finitely many primes. ⊓⊔

We get another simple variation using the sum
∑

p
1
p

and assuming that the set

of primes is finite. In the next section we show that this sum actually diverges, which

also shows that the primes are infinite. More importantly, it shows that the density of

primes is not too thin. We will return to this idea shortly.
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Proof 2 (using sums). As before, suppose that p1, . . . , pn are the only primes and

let N = p1 · · · pn. Set

a =
n∑

i=1

1

pi

, so that aN =
n∑

i=1

N

pi

.

Now, aN is an integer so it has a prime divisor, which by assumption must be some

pj . Then pj |aN and pj | N
pi

for i �= j . Since N is a sum it follows that pj | N
pj

, which

is a contradiction. ⊓⊔

The next proof involves the use of the Euler phi function. Recall from Section 2.5

that for a positive integer n,

φ(n) = number of positive integers x ≤ n with (x, n) = 1.

For a prime p we have φ(p) = p − 1 and if (a, b) = 1 then φ(a, b) = φ(a)φ(b).

Proof 3 (using the Euler phi function). Suppose that p1, . . . , pn are the only primes

and let N = p1 · · · pn. Notice that if pi > 2 then φ(pi) = pi − 1 > 1.

If 1 < n < N then n must have a prime divisor, say pj , and hence pj is a common

divisor of n and N . It follows that (n, N) �= 1, that is, n and N are not relatively

prime. By definition, then, we must have φ(N) = 1. On the other hand,

φ(N) = φ(p1 · · · pn) = φ(p1) · φ(p2) · · · φ(pn) = (p1 − 1) · · · (pn − 1) > 1,

a contradiction. ⊓⊔

The final proof of this first section is somewhat different from the others and

involves integral polynomials. Let Z[x] denote the set of polynomials with integral

coefficients and let N0 = N ∪ {0}.

Lemma 3.1.1. For each nonconstant polynomial f (x) ∈ Z[x], the set of prime divi-

sors of the integers {f (k); k ∈ N0} is infinite. In particular, the total number of

primes is infinite.

Proof. Suppose that

f (x) = a0 + a1x + · · · + amxm

and assume that for the set {f (k); k ∈ N0} the number of prime divisors that occur

for some f (k) is finite. Let U = {p1, . . . , pn} be this set of prime divisors and let

D = p1 · · · pn. Without loss of generality, suppose a0 �= 0. Choose an integer t such

that pt
i does not divide f (0) = a0 for any i. Since the pi are the only primes we must

have a0|Dt , that is, Dt = a0b for some b ∈ Z. For k ≥ 1 we have

f
(
kD2t

)
=

m∑

j=1

ajk
jD2tj + a0 = a0

⎛
⎝

m∑

j=1

ajk
jb2ja

2j−1
0 + 1

⎞
⎠ = M.

For k large enough the integer M must have a prime divisor p that does not divide

a0b and hence p /∈ U , a contradiction. ⊓⊔
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3.1.2 Some Analytic Proofs and Variations

Both the proof of the prime number theorem and the proof of Dirichlet’s theorem

depend heavily on the use of analysis, both real and complex. The introduction of

analytic methods into number theory can be traced back basically to the following

two results of Euler, which also imply that the sequence of primes is infinite.

Theorem 3.1.2.1. The sum
∑

p prime
1
p

diverges. In particular, the sequence of primes

is infinite.

Proof. Clearly, if the series
∑

p prime
1
p

diverges, then there must be infinitely many

primes, for otherwise this would be a finite sum.

We present two proofs that this sum diverges. The first is direct, while the second

introduces the Riemann zeta function, which will be crucial in investigations of the

density of primes.

Let p1, . . . , pk, . . . be the sequence of primes in increasing order, which at this

point may or may not be infinite. We first need the following fact.

Lemma 3.1.2.1. If p1, . . . , pk, . . . is the sequence of primes in increasing order then

pn ≤ 22n−1
for all n and pn < 22n−1

for all n > 1.

Proof of the lemma. By induction: p1 = 2 ≤ 21 so the assertion is true for n = 1.

Further, no other prime is even, so pk �= 22k
if k > 1. Suppose then that pk < 22k−1

and consider pk+1. Now, as in Euclid’s proof of the infinitude of primes, K =
p1 · · · pk + 1 must have a prime divisor that is not one of p1, . . . , pk . Hence

pk+1 ≤ K = p1 · · · pk + 1 < 22222

223· · · 22k−1 + 1 < 22k

.

Therefore the assumption is true for all n by induction. ⊓⊔

Now we continue the proof of Theorem 3.1.2.1. Assume that

∑

p prime

1

p
=

∞∑

i=1

1

pi

converges. Note that we are not assuming here that there are infinitely many primes.

If there are only finitely many then this is a finite sum. Since the series converges

and the pi are increasing ,there must be an N such that

∞∑

i=N+1

1

pi

<
1

2
.

Fix this value N and let QN (x) for any natural number x be the number of

positive integers less than or equal to x that are not divisible by any of the primes
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pN+1, pN+2, . . . . For a given prime p the number of integers n ≤ x and divisible

by p is smaller than x
p

. It follows then that for any integer x,

x − QN (x) <
x

pN+1
+ x

pN+2
+ · · · <

x

2
,

since we assumed that
∞∑

i=N+1

1

pi

<
1

2
.

Therefore x
2

< QN (x). On the other hand, if n < x and n is not divisible by any of

pN+1, pN+2, . . . then n = n2
1m where m is square-free. Hence m = 2e1 3e2 · · · peN

N ,

where each ei = 0 or 1. Hence there are at most 2N choices for m. Further, there are

at most
√

x choices for n1. It follows then that

x

2
< QN (x) < 2N

√
x.

Since N is fixed this, is a contradiction for x large enough and hence
∑

p prime
1
p

diverges. ⊓⊔
We now give a second proof of Theorem 3.1.2.1 which introduces the ideas of

the Riemann zeta function and Euler products, which are fundamental in some of our

further discussions.

Proof of Theorem 3.1.2.1. For a real variable s > 1 we define the Riemann zeta

function by

ζ(s) =
∞∑

n=1

1

ns
.

From the classical p-series test this will converge if s > 1 and hence will define a

function. When we discuss the prime number theorem in the next chapter we will

extend this function to complex variables. Since
∑∞

n=1
1
n

diverges, it follows that as

s → 1+ the sum ζ(s) will diverge. From the fundamental theorem of arithmetic each

n can be expressed as a product of primes, and hence the zeta function can be written

as the following product:

ζ(s) =
∏

p prime

(
1 + 1

ps
+ 1

p2s
+ · · ·

)
.

However, the geometric series converges, so that

1 + 1

ps
+ 1

p2s
+ 1

p3s
+ · · · = 1

1 − p−s
.

Therefore

ζ(s) =
∏

p prime

(
1

1 − p−s

)
.

These last two products are called Euler products after Euler, who first used them in

his investigations.
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Now if the sequence of primes were finite, then the Euler product would be a

finite number and hence ζ(s) would always converge. However, as we pointed out,

ζ(s) diverges as s → 1+ and hence the sequence of primes is infinite.

To prove Theorem 3.1.2.1 consider the inequality

ln

(
1

1 − x

)
=

∞∑

n=1

xn

n
<

∞∑

n=1

xn = x

1 − x
,

which holds if 0 < x < 1 (see the exercises). It follows that for 0 < x < 1
2

,

ln

(
1

1 − x

)
< 2x.

Then using the Euler product representation of ζ(s) and taking logarithms, we obtain

ln(ζ(s)) =
∑

p prime

ln

(
1 − 1

ps

)−1

< 2
∑

p prime

p−s .

If
∑

p prime
1
p

were convergent, then we would have 2
∑

p p−s < 2
∑

p p−1 for all

s > 1 and it would follow that ζ(s) would not diverge as s → 1+, a contradiction.

Therefore the sum diverges. ⊓⊔

Notice that this result actually infers that the density of the sequence of primes is

not too thin. For example, they are, in a sense, denser than the sequence of squares

{1, 4, 9, 16, . . . }. Recall that
∑∞

n=1
1
n2 converges by the p-series test, whereas we

have just proved that
∑

p
1
p

diverges.

The final results in this section give lower bounds on π(x), the number of primes

less than or equal to x. These lower bounds further imply the infinitude of primes.

Theorem 3.1.2.2. For any natural number x ≥ 2 we have

π(x) > ln ln x.

Proof. Let p1, . . . , pk, . . . be the sequence of primes in increasing order. Recall that

pn < 22n−1
for all n > 1. For a given x, choose k such that

22k−1 ≤ x < 22k

.

Therefore, since pk < 22k−1
, we have

k ≤ π
(
22k−1) ≤ π(x).

From x < 22k
< eek

it follows that

ln ln x < k ≤ π(x). ⊓⊔
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Using the fundamental theorem of arithmetic, we can arrive at a separate but

similar lower bound.

Theorem 3.1.2.3. For any natural number x ≥ 21, we have

π(x) >
ln x

2 ln ln x
.

Proof. For fixed x let pi run over all the primes less than or equal to x. Then from the

fundamental theorem of arithmetic, the number of integral solutions to the inequality

∏

pi

p
ei

i ≤ x

for ei ≥ 0 is precisely x. On the other hand, the number of solutions is the product

of the number of choices for each ei . Since for a solution p
ei

i ≤ x we have

ei ≤ 1 + ln x

ln pi

≤ 1 + ln x

ln 2
< (ln x)2

for x > 20, it follows that

x ≤
∏

pi

(
1 + ln x

ln pi

)
<

(
(ln x)2

)π(x)
,

which implies that π(x) >
ln x

2 ln ln x
. ⊓⊔

Corollary 3.1.2.1. π(x) → ∞ as x → ∞. In particular, the sequence of primes is

infinite.

Proof. From Theorem 3.1.2.2 we have π(x) > ln ln x for x ≥ 2. The latter sequence

becomes infinite with x. Similarly, from Theorem 3.1.2.3 we have π(x) > ln x
2 ln ln x

for x ≥ 21, and this latter sequence also becomes infinite with x. ⊓⊔

3.1.3 The Fermat and Mersenne Numbers

In the next several subsections we will examine primes in relation to certain special

sequences of integers. Although not directly related to it, this path will lead ultimately

to Dirichlet’s theorem.

The first such sequence we consider is called the set of Fermat numbers.

Definition 3.1.3.1. The Fermat numbers are the sequence (Fn) of positive integers

defined by

Fn = 22n + 1, n = 1, 2, 3, . . . .

If a particular Fm is prime, it is called a Fermat prime.
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Fermat conjectured that all the the numbers in this sequence were primes. In

fact, F1, F2, F3, F4 are all prime, but F5 is composite and divisible by 641 (see

the exercises). It is still an open question whether there are infinitely many Fermat

primes. It has been conjectured that there are only finitely many. On the other hand,

if a number of the form 2n + 1 is a prime for some integer n, then it must be a Fermat

prime.

Theorem 3.1.3.1. If a ≥ 2 and an +1 is a prime, then a is even and n = 2m for some

nonnegative integer m. In particular, if p = 2k + 1 is a prime then k = 2n for some

n, and p is a Fermat prime.

Proof. If a is odd then an + 1 is even and hence not a prime. Suppose then that a is

even and n = kl with k odd and k ≥ 3. Then

akl + 1

al + 1
= a(k−1)l − a(k−2)l + · · · + 1.

Therefore al + 1 divides akl + 1 if k ≥ 3. Hence if an + 1 is a prime, we must have

n = 2m. ⊓⊔
We now use the Fermat numbers to get another proof of the infinitude of primes.

We first need the following.

Lemma 3.1.3.1. Let (Fn) be the sequence of Fermat numbers. Then if m �= n we

have (Fn, Fm) = 1.

Proof. Suppose that n > m and suppose that d|Fn, d|Fm. Then

Fn − 2

Fm

= 22n − 1

22m + 1
= (22m

)2n−m−1 − (22m

)2n−m−2 + · · · − 1.

Therefore Fm|Fn − 2 and hence d|Fn − 2. Since d|Fn it follows that d|2. But d �= 2

since both Fn and Fm are odd. ⊓⊔
This now yields another proof of the infinitude of primes. Since the members of

the infinite sequence (Fn) are pairwise coprime and each Fn must have at least one

prime divisor, it follows directly that the number of primes must be infinite.

We can also get the following variation of this method. Suppose a ∈ N. Define

the sequence An = a2n + 1. Then it can be proved that (see the exercises)

(1) If n > m ≥ 1 then a2m + 1|a2n − 1.

(2) (An, Am) = 1 if a is even and (An, Am) = 2 if a is odd.

Then the same proof as used with the Fermat numbers goes through. In fact, any

infinite integer sequence (an) with (ai, aj ) = 1 for i �= j will yield a similar proof.

As an example start with (m, n) = 1 and let a0 = m + n. Then define inductively

ak+1 = a2
k − mak + m.

Then it can be proved that (ai, aj ) = 1 if i �= j , and this sequence can be used in the

same proof.

The second sequence we consider is called the sequence of Mersenne numbers.



3.1 The Infinitude of Primes 63

Definition 3.1.3.2. The Mersenne numbers are the sequence (Mn) of positive

integers defined by

Mn = 2n − 1, n = 1, 2, 3, . . . .

If a particular Mn is prime it is called a Mersenne prime.

The Mersenne numbers were introduced by the French clergyman and mathe-

matician M. Mersenne, who showed that if Mn is a prime, then n must be a prime and

claimed then that Mn is a prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and

composite for all others. It is now known that M67 and M257 are not primes, while

M61 and M89 are primes. Further, Mp is prime for several large exponents, and the

search for larger and larger primes generally revolves around Mersenne primes. As

in the case of the Fermat primes it is still an open question as to whether there are

infinitely many Mersenne primes. However, for the Mersenne primes it is conjec-

tured that there are infinitely many. As of May 2005 there were 43 known Mersenne

primes, the largest of which is M30402457. Further information on the search for larger

Mersenne primes can be found at the Internet site www.mersenne.org.

Theorem 3.1.3.2. Suppose a, n are positive integers. If an − 1 is prime then a = 2

and n is prime. In particular, if a Mersenne number Mn is a Mersenne prime, then n

is prime.

Proof. Assume a ≥ 3. Then a − 1|an − 1. Therefore if an − 1 is prime we must

have a = 2. If n = kl with 2 ≤ k, l < n then

2k − 1|2n − 1.

Hence if 2n − 1 is prime, n must be prime. ⊓⊔

In accord with the theme of this chapter we will now use the Mersenne numbers

to derive the infinitude of primes.

Lemma 3.1.3.2. For any pair of Mersenne numbers Mn, Mm we have

(Mm, Mn) = (2m − 1, 2n − 1) = 2(m,n) − 1.

Proof. This is certainly correct if m = n or n = 1 or m = 1. Assume then that

n > m > 1. From the Euclidean algorithm applied to m, n we have

m = nq0 + r1,

n = r1q1 + r2,

. . .

rs−2 = rs−1qs−1 + rs,

rs−1 = rsqs,

and rs = (m, n).
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It follows then that

2m − 1 = 2nq0+r1 − 1 = 2r1(2q0n − 1) + (2r1 − 1),

2n − 1 = 2r2(2q1r1 − 1) + (2r2 − 1),

. . .

2rs−1 − 1 =
(
2rs − 1

)(
2rs (qs−1) + · · · + 1

)
.

This yields (
2rs − 1

)∣∣(2rs−1 − 1
)

and
(
2rs − 1

)∣∣(2rs−2 − 1
)

since also

2qs−1rs−1 − 1 =
(
2rs−1 − 1

)(
2rs−1(qs−1−1) + · · · + 1

)
.

Finally, (
2rs − 1

)∣∣(2n − 1
)

and
(
2rs − 1

)∣∣(2m − 1
)
.

Suppose now that d = (2n − 1, 2m − 1). It follows that d|(2ri − 1) for i = 1, . . . , s.

Therefore d|(2rs − 1) = 2(m,n) − 1. ⊓⊔

Now let P = {p1, . . . , pn} be a finite set of primes with 2 = p1 < p2 < · · · < pn.

Then

(2p1 − 1, 2pj − 1) = (2(pi ,pj ) − 1) = 1 if i �= j.

For i = 1, . . . , n each 2pi − 1 is odd and hence no two of them have an odd prime

divisor in common. Since there are only n − 1 odd primes in P it follows that there

must be a prime number not in P .

The Mersenne numbers are closely tied to what are called the perfect numbers.

A natural number n is a perfect number if it is equal to the sum of its proper divisors.

That is,

n =
∑

d|n,d≥1,d �=n

d.

For example, the number 6 is perfect since its proper divisors are 1, 2, 3, which add

up to 6.

If we denote by σ(n) the sum of all positive divisors of n, that is,

σ(n) =
∑

d|n,d≥1

d,

then σ(n) = 2n if and only if n is perfect. The following result, the first part of

which appears in Euclid and the second part of which due to Euler, gives the relation

between perfect numbers and Mersenne primes.

Theorem 3.1.3.3. Let (Mn) be the sequence of Mersenne numbers. Then we have the

following:

(1) (Euclid) If Mp = 2p − 1 is a Mersenne prime, then

n = 2p−1(2p − 1)

is a perfect number.
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(2) (Euler) If n ≥ 2 is a perfect number and even, then n = 2p−1(2p − 1) and

Mp = 2p − 1 is a Mersenne prime.

Proof.

(1) Suppose 2p − 1 = q is a prime and let n = 2p−1(2p − 1). Then

σ(n) = 1 + 2 + · · · + 2p−1 + q + 2q + · · · + 2p−1q

= (q + 1)(1 + 2 + · · · + 2p−1) = 2p(2p − 1) = 2(2p−1(2p − 1)) = 2n.

Therefore σ(n) = 2n and hence n is a perfect number.

(2) Suppose n is a perfect number. Let n = 2tu with u odd. The divisors of n are

of the form 2sm with 0 ≤ s ≤ t and m|u. Consider s fixed and consider the divisors

m. Their contribution to the sum σ(n) is equal to 2sσ(u). It follows that

σ(n) = (1 + 2 + · · · + 2t )σ (u) =
(
2t+1 − 1

)
σ(u).

Since n is perfect we have σ(n) = 2n and hence

2t+1u =
(
2t+1 − 1

)
σ(u).

Since u is odd, from Euclid’s lemma we get

σ(u) = 2t+1a and u =
(
2t+1 − 1

)
a

for some natural number a. The number u has two different divisors a and

(2t+1−1)a > a. Their sum is 2t+1a = σ(u). This is possible only if u = (2t+1−1)a

has no other divisors, that is, if a = 1 and 2t+1 − 1 is prime. It follows that t + 1

must be a prime, 2t+1 − 1 is a Mersenne prime, and n has the required form. ⊓⊔
This completely characterizes in terms of Mersenne primes the even perfect

numbers. It is still an open question whether there is an odd perfect number.

Finally we mention a result called the Lucas–Lehmer test, which is useful in

testing for large Mersenne primes. We will give this result again, as well as its proof,

in Chapter 5, on primality testing.

Theorem 3.1.3.4. Let p be an odd prime and define the sequence (Sn) inductively by

S1 = 4 and Sn = S2
n−1 − 2.

Then the Mersenne number Mp = 2p − 1 is a Mersenne prime if and only if Mp

divides Sp−1.

3.1.4 The Fibonacci Numbers and the Golden Section

The next sequence of integers that we consider is called the Fibonacci numbers.

This sequence has many remarkable properties, some of which we will explore in this

section. The interest in this sequence, both by professional mathematicians and by

amateurs, has been almost mystical and there is a whole journal, The Fibonacci

Quarterly, devoted to results surrounding these numbers. In addition, this sequence

has an intricate tie to a number called the golden section or golden ratio, which has

tremendous and varied applications in geometry.
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Definition 3.1.4.1. The Fibonacci numbers are the sequence (fn)defined recursively

by f1 = 1, f2 = 1, and then

fn = fn−1 + fn−2.

Hence the first few terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, . . . .

This sequence was introduced by the Italian mathematician Leonardo Pisano, also

called Leonardo of Pisa (and given the moniker Fibonacci—son of Bonaccio—by a

nineteenth-century author), via a problem in his book Liber Abaci, published in 1202.

In this problem he asked the following question:

How many pairs of rabbits will be produced in a year, beginning with a single

pair, if in every month each pair bears a new pair, which becomes productive from

the second month on.

This leads to the scheme depicted in Figure 3.1.1, with A being a productive pair

and B a nonproductive pair.

A

A B

A

A B A A B

AB

Figure 3.1.1. Scheme for Leonardo’s rabbit problem.

Computing, we then get the following table:

No. of A No. of B Total number

1 0 1

1 1 2

2 1 3

3 2 5

and so on, which produces the recursive formula giving the Fibonacci numbers.

An alternative formulation of the Fibonacci numbers can be given by the next

theorem.

Theorem 3.1.4.1. Let P1 = 1 and for n ≥ 2 let Pn be the number of 0-1 sequences

of length n − 2 with no repeating 1s. Then Pn = fn for all n.
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Proof. For P2 there is just the sequence (0), so P2 = f2 = 1. For n > 2 let qn be

the number of 0-1 sequences of length n − 2 with no repeating 1s and ending in 0

and let hn be the number of 0-1 sequences of length n − 2 with no repeating 1s and

ending in 1. For each such sequence of length n − 2 ending in 0, there are two new

sequences of length n − 1, while there is only one new sequence for those ending

in 1. Therefore

qn = qn−1 + hn−1 and hn = qn−1

and

Pn = qn + hn.

The result follows easily from this. ⊓⊔

The properties of the Fibonacci numbers are intricately tied to the number

α = 1 +
√

5

2
.

This number is called the golden section or golden ratio and arises naturally in many

geometric applications. Before continuing with the Fibonacci numbers, we digress

and discuss the golden section and its ties to geometry.

To define α, consider a line segment AB, and let the point P be located so that it

divides the line segment in extreme to mean ratio. By this we mean that

|AP|
|PB| = |AB|

|AP| .

If we let PB have length 1, as in Figure 3.1.2, then length of AP is the golden section α.

A P B

1α

Figure 3.1.2. Extreme to mean ratio.

To see that the value of α is 1+
√

5
2

, we have the ratio

α

1
= α + 1

α
.

This then gives the quadratic equation

α2 − α − 1 = 0.

The two solutions are 1±
√

5
2

, and since the golden ratio is positive, we get that α =
1+

√
5

2
as desired.

If we have a rectangle ABCD with |BC| = α and |CD| = 1 as in Figure 3.1.3,

then this is a golden rectangle.
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A D

B Cα

1

Figure 3.1.3. Golden rectangle.

The classical Greeks regarded the golden rectangle as the most pleasing

rectangular shape and built many of their temple fronts with this format.

If we begin with a golden rectangle ABCD as in Figure 3.1.4 and remove the

square ABEF , the remaining rectangle ECDF is again a golden rectangle. To see this

suppose that |BC| = α and |CD| = 1. Then

|EC| = α − 1 =⇒ |CH | = α − 1

and then

|DC|
|EC| = |DC|

|CH | = 1

α − 1
= 1

1+
√

5
2

− 1
= 1 +

√
5

2
= α.

A DF J

B E

G H
I

C

Figure 3.1.4. Golden spiral.

This process of removing squares can be continued and each time we get a smaller

golden rectangle, as in Figure 3.1.4. If the corners are connected by circular arcs with

radius the side of the given square, we get a spiral called the golden spiral. Its

equation in polar coordinates is r = α
2θ
n .

The golden section is of course an irrational number. However, it can be con-

structed very easily with ruler and compass. To do this, start with a line segment AB of
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length 1, and a line segment AE of length 1
2

and orthogonal to AB. Then the segment

EB has length

√
1 + 1

4
=

√
5

2
. Adjoin to EB a line segment BC of length 1

2
and EC has

length α.

The golden section arises naturally in many geometric applications. We describe

several of these. First, consider a square inscribed in a semicircle of radius R, as

pictured in Figure 3.1.5.

A

B

R

R–x/2

C Bx

xx

Figure 3.1.5. Golden section relative to an inscribed square.

Suppose |AB| = r and let x be the length of the side of the inscribed square. Then

r = R + x
2

. We then have

tan θ = x

x/2
= sin θ

cos θ
= sin θ√

1 − sin2 θ
.

This implies that

sin2 θ = 4

5
= x2

R2
, and so x = 2√

5
R.

But then

|AB| = r = R

(
1 + 1√

5

)
and r − x = R

(
1 − 1√

5

)
.

Since (
1 + 1√

5

)

2√
5

=
2√
5(

1 − 1√
5

) ,

we have
r

x
= x

r − x
,

that is, the point C divides the line segment AB by the golden ratio.

Next consider a regular decagon inscribed in a circle of radius R. A side S10, as

shown in Figure 3.1.6, has length 2R sin
(

π
10

)
.
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R S10

R

Figure 3.1.6. Regular decagon inscribed in a circle.

Using the trigonometric identities

sin

(
2π

10

)
= 2 sin

( π

10

)
cos

( π

10

)
,

cos

(
2π

10

)
= 1 − 2 sin2

( π

10

)
,

we get that

4 sin
( π

10

) (
1 − 2 sin2

( π

10

))
= 1.

Therefore the value of sin( π
10

) is a solution of the polynomial equation

4x(1 − 2x2) = 1.

Since sin
(

π
10

)
> 0 and sin

(
π
10

)
�= 1

2
, we obtain

sin
( π

10

)
=

√
5 − 1

4
= 1

2(α − 1)
,

where α is the golden section. Therefore

|S10| = 2R sin
( π

10

)
= R

α − 1
.

Hence the side of a regular decagon inscribed in a circle is the bigger section of the

radius divided by the golden section.

Using this connection it is easy to construct regular decagons and regular

pentagons with ruler and compass.

Next consider a regular pentagon. Its diagonals describe a regular starlike penta-

gram, as in Figure 3.1.7.
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A
B C

F

E

D

Figure 3.1.7. Regular pentagon.

The angle ∠AFD is 6π
10

, while the angle ∠ADF is 2π
10

. From the law of sines

we have

|AD|
|AF | =

sin
(

6π
10

)

sin
(

2π
10

) = 2 cos

(
2π

10

)
= α

since

2 cos

(
2π

10

)
= 2 − 4 sin2

(
2π

5

)
= 2 − 1

α2
= α.

Because |AF | = |AC| we have
|AD|
|AC| = α, and hence the point C divides the line

segment AD by the golden ratio.

Finally consider a rectangle as in Figure 3.1.8.

CD

BA Q

P

k y

w

z

x + y

w + z

Figure 3.1.8. Rectangle.

We wish to find the points P and Q such that the triangles △PAQ, △QBC, and

△CDP all have equal areas.



72 3 The Infinitude of Primes

If the triangles do have equal areas, we have the identities

xw = y(w + z) = z(x + y) =⇒ xw = yw + yz = xz + yz.

This implies that

yw = xz =⇒ w

z
= x

y
.

Then from xw = y(w + z) we get

x

y
= w + z

w
= 1 + z

w
= 1 + 1

w
z

= 1 + 1
x
y

.

This means that (
x

y

)2

− x

y
− 1 = 0 =⇒ x

y
= w

z
= α.

Hence the solution to the equal area problem is precisely the points P and Q that

divide the sides AB and AD in the golden ratio.

We now return to the Fibonacci numbers and first show the tie to the golden

section.

Theorem 3.1.4.2 (Binet formula). Let (fn) be the Fibonacci sequence, let α = 1+
√

5
2

be the golden section, and let β = −α−1 = 1−
√

5
2

. Then for n ≥ 1,

fn = αn − βn

α − β
.

Proof. The golden section α and β as defined in the statement of the theorem are the

zeros of the polynomial

x2 − x − 1 = 0.

It follows that

αn+2 = αn+1 + αn,

βn+2 = βn+1 + βn for n ≥ 1.

Further, α − β =
√

5 �= 0. We then have

f1 = α − β

α − β
,

f2 = α2 − β2

α − β
= α + β = 1,

and

fn+2 = αn+1 − βn+1

α − β
+ αn − βn

α − β
= fn+1 + fn

for n ≥ 3. ⊓⊔
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Corollary 3.1.4.1. If fn and α are as above, then

lim
n→∞

fn+1

fn

= α = 1 + 1

1 + 1
1+···

.

Proof. From the Binet formula,

fn+1

fn

= αn+1 − βn+1

αn − βn
=

1 −
(β

α

)n+1

α−1
(
1 −

(β
α

)n) .

Since
∣∣β
α

∣∣ < 1, the ratio
fn+1

fn
clearly goes to α as n → ∞. Further, by rearranging,

it is easily seen that

fn+1

fn

= 1 + 1

1 + fn

fn−1

. ⊓⊔

We now list a collection of properties of the Fibonacci numbers. In addition to

showing the rich theory of these numbers, they will lead us to two more proofs of

the infinitude of primes. Throughout all the remainder of this section, (fn) are the

Fibonacci numbers and α is the golden section.

Lemma 3.1.4.1. f1 + f2 + · · · + fn = fn+2 − 1, n ≥ 1.

Proof. This is correct for n = 1 and n = 2. For n ≥ 3 we have

f1 + · · · + fn−1 + fn = fn+1 − 1 + fn = fn+2 − 1. ⊓⊔

The next two results are again straightforward inductions, the first on n directly

and the second fixing n and inducting on m. We leave the details to the exercises.

Lemma 3.1.4.2. fnfn+1 = f 2
1 + f 2

2 + · · · + f 2
n , n ≥ 1.

Lemma 3.1.4.3. fn+m = fn−1fm + fnfm+1, n ≥ 1.

Lemma 3.1.4.4.

(a) If r, s are positive integers then r dividing s implies that fr divides fs .

Conversely, if m ≥ 2, then if fn|fm, it follows that n|m.

(b) (fn, fm) = f(m,n). That is, the GCD of fn and fm is the GCD of the (m, n)

term in the Fibonacci sequence. In particular, fn and fm are relatively prime if m

and n are relatively prime.

Proof.

(a) Recall that αβ = −1 and α + β = 1. We then have

frs = αrs − βrs

α − β

= αs − βs

α − β

(
α(r−1)s + α(r−2)sβs + · · · + αsβ(r−2)s + β(r−1)s

)
.
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Hence if r|s then fr |fs .

We need part (b) in order to prove the converse. Suppose that m > n. Then by

the Euclidean algorithm we have rt = (m, n), where

m = nqo + r1 with 0 ≤ r1 < n,

n = r1q1 + r2 with 0 ≤ r2 < r1,

. . .

rt−2 = rt−1qt−1 + rt with 0 ≤ rt < rt−1,

rt−1 = rtqt .

Then applying this to the corresponding Fibonacci numbers, we have

(fn, fm) = (fnq0+r1
, fn) = (fnq0−1fr1

+ fnq0
fr1+1, fn)

= (fnq0−1fr1
, fn) = (fr1

, fn)

because fn|fnq0
from the first part of part (a) and (fnq0

, fnq0−1) = 1. (Clearly, two

neighboring Fibonacci numbers are relatively prime.)

Analogously

(fr1
, fn) = (fr2

, fr1
) = · · · = (frt , frt−1

) = frt

since frt |frt−1
. This completes the proof of part (b).

We now consider the second half of part (a). Suppose that m ≥ 2 and that fn|fm.

Then

fn = (fn, fm) = f(m,n)

from part (b). It follows then n|m since m ≥ 2 and fr < fs if 2 ≤ r < s. ⊓⊔

Lemma 3.1.4.5.

(a) f2k = fk(fk+1 + fk−1) = f 2
k+1 − f 2

k−1.

(b) f2k =
∑k

i=0

(
k
i

)
fi , where

(
k
i

)
is the binomial coefficient.

(c) fn+1 =
∑[ n

2 ]
i=0

(
n−i
i

)
, where [x] is the greatest integer function.

Proof. These are all applications of the Binet formula. For part (a) we have

f2k = fk(α
k + βk) = fk

(
αk−1 − βk−1 + αk+1 − βk+1

α − β

)

= fk(fk−1 + fk+1) = f k + 12 − f 2
k−1.

For part (b) apply the Binet formula to obtain

k∑

i=0

(
k

i

)
fi = 1

α − β

(
k∑

i=0

(
k

i

)(
αi − βi

)
)

= 1

α − β

(
(1 + α)k − (1 + β)k

)
= 1

α − β

(
α2k − β2k

)
= f2k.
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Finally, for part (c), the assertion clearly holds for 0 ≤ n ≤ 2. Suppose now that

n ≥ 2 and we proceed by induction. Then

fn+1 = fn + fn−1 =

[
n−1

2

]
∑

i=0

(
n − 1 − i

i

)
+

[
n−2

2

]
∑

i=0

(
n − 2 − i

i

)
.

We first consider the case n = 2m with m ≥ 1. Then
[

n−1
2

]
= m − 1 =

[
2m−2

2

]
and

hence from above,

fn+1 =
m−1∑

i=0

(
2m − 1 − i

i

)
+

m−1∑

i=0

(
2m − 2 − (i + 1)

(i + 1) − 1

)

=
(

2m − 1

0

)
+
(

2m − 1 − m

m − 1

)
+

m−1∑

i=1

((
2m − 1 − i

i

)
+
(

2m − 1 − i

i − 1

))

=
m∑

i=o

(
2m − i

i

)
,

completing the even case.

Now suppose n is odd, so n = 2m + 1 with m ≥ 1. Then
[

n−1
2

]
= m,

[
n−2

2

]
=

m − 1,
[

n
2

]
= m, and hence

fn+1 =
m∑

i=0

(
2m − i

i

)
+

m−1∑

i=0

(
2m − 1 − i

i + 1 − 1

)

=
(

2m

0

)
+

m∑

i=1

(
2m + 1 − i

i

)

=
m∑

i=0

(
2m + 1 − i

i

)
,

finishing the odd case and part (c). ⊓⊔

The next result and corollary deal with the relationship between the Fibonacci

numbers and the primes. This will lead directly to another proof that there are infinitely

many primes.

Theorem 3.1.4.3. Let p be a prime. Then

(1) p|fp if p = 5 and p|fp−1 or p|fp+1 if p �= 5.

(2) p|fp+1 if p = 2.

(3) p|fp−1 if p is congruent to ±1 modulo 10.

(4) p|fp+1 if p is congruent to ±3 modulo 10.
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Proof. If p = 2 then f3 = 2 and hence p|fp+1. If p = 3 then f4 = 3 and p|fp+1.

If p = 5 then f5 = 5 and p|fp. Now let p ≥ 7. By Binet’s formula,

fn = 1√
5

((
1 +

√
5

2

)n)
− 1√

5

((
1 −

√
5

2

)n)
, n ≥ 1,

and by the binomial expansion,

(1 ±
√

5)n = 1 ±
(

n

1

)√
5 +

(
n

2

)
5 ±

(
n

3

)
(
√

5)3 + · · · + (−1)n(
√

5)n.

If n is odd then

2n−1fn = 1

2
√

5
((1 +

√
5)n − (1 −

√
5)n) = n +

(
n

3

)
5 +

(
n

5

)
52 + · · · + 5

n−1
2 .

Now let n = p be prime. Since p|
(
p
i

)
if 1 ≤ i < p, we must have

fp ≡ 5
p−1

2 mod p

and hence

f 2
p ≡ 1 mod p

by Fermat’s theorem. Since

f 2
p − fp−1fp+1 = (−1)p−1 = 1,

we get

0 ≡ f 2
p − 1 ≡ fp−1fp+1 mod p.

Therefore p|fp+1 or p|fp−1 since (fp−1, fp+1) = f(p−1,p+1) = f2 = 1. More

concretely, we can use the above identities to show that

p|fp−1 if p is congruent to ±1 modulo 10

and

p|fp+1 if p is congruent to ±3 modulo 10 (see the exercises). ⊓⊔
Corollary 3.1.4.2. Let p be a prime greater than 7. Then each prime divisor of fp is

greater than p.

Proof. Let q be a prime divisor of fp with p ≥ 7 a prime. Assume q ≤ p. If q = p

then q = p = 5 and hence we may assume that q < p. We then have

(fp, fq) = f(p,q) = f1 = 1,

(fp, fq−1) = f(p,q−1) = f1 = 1,

(fp, fq+1) = f(p,q+1) = f1 = 1.

Then from Lemma 3.1.4.5, either q|fq or q|fq−1 or q|fq+1. This gives a contradiction

because q|fp and q|fq implies that q|f1 = 1 and q|fp, and q|fq+1 or q|fq−1 also

implies that q|1. Therefore we must have that q > p. ⊓⊔
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Based on the Fibonacci numbers, we can now give two more proofs of the fact

that there are infinitely many primes.

Proof one. Let M = {p1, . . . , pn} be a finite set of distinct prime numbers and

suppose that p1 < p2 < · · · < pn with pn ≥ 7. Let p be a prime divisor of fpn .

Then from Corollary 3.1.4.2 we must have p > pn and hence p /∈ M .

Proof two. Suppose {p1, . . . , pn} with p1 = 2 are all the prime numbers. We have

fp1
> 1 for i = 2, . . . , n. Then at most one of the fpi

for i = 2, . . . , n has two prime

divisors, for otherwise, since (fp1
, fpj

) = f(pi ,pj ) for i �= j , we would already have

n + 1 primes. This contradicts, for example, that

f19 = (37)(113) and f53 = (557)(2417).

We note that many of the ideas concerning the Fibonacci numbers can be greatly

generalized. For example suppose K is an arbitrary field and x, y ∈ K . Then we

define

T0(x, y) = 0, T1(x, y) = 1

and then

Tn(x, y) = xTn−1(x, y) − yTn−2(x, y).

This sequence in K will satisfy many of the same properties as the Fibonacci

numbers. If A is a 2×2 invertible matrix over K with tr(A) = x and det(A) = y, then

An = Tn(x, y)A + yTn−1(x, y)I,

where I is the identity matrix. In particular,

Tn(x, y)2 − Tn+1(x, y)Tn−1(x, y) = yn−1, n ≥ 1.

If x = 1 and y = −1, then Tn(x, y) = fn for n ≥ 0.

These generalized Fibonacci numbers are also related to the Chebychev polyno-

mials, which play a role in the general approximation of functions. If y = 1 and

n ≥ 1, then

Tn(x, 1) = Sn(x),

where Sn(x) is the nth Chebychev polynomial of the second kind. We have

Sn+m(x) = Sn(x)Sm+1(x) − Sm(x)Sn−1(x)

and

Snm(x) = Sm(Sn+1(x) − Sn−1(x)) · Sn(x)
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for all natural numbers n, m. As polynomials in x, these Chebychev polynomials

satisfy

S(m,n)(x) = (Sn(x), Sm(x)).

For positive real values, these Chebychev polynomials have a particularly simple

form. If K = R and x ≥ 0, then let x = 2 cos θ < 2. Then

Sn(x) = sin(nθ)

sin(θ)
.

If x = 2 cosh θ > 2, then

Sn(x) = 2 sinh(nθ)

sinh(θ)
,

while if x = 2, then

Sn(x) = n.

3.1.5 Some Simple Cases of Dirichlet’s Theorem

Recall that Dirichlet’s theorem, which we will state and prove formally in Section 3.3,

says that if a, b are positive integers with (a, b) = 1 then there are infinitely many

primes of the form an + b. In this section we prove certain special cases of this

result that can be handled by elementary methods. Most of these proofs depend on

the following easy idea. Suppose x ∈ Z has the prime factorization

x = p
e1

1 · · · pek

k .

Then if each pi ≡ 1 mod m then x ≡ 1 mod m. This fact follows directly from the

multiplicative property of congruences.

We first handle the case modulo 4.

Lemma 3.1.5.1. There exist infinitely many primes of the form 4n + 3 and infinitely

many of the form 4n + 1.

Proof. Suppose there are only finitely many primes of the form 4n+3, say p1, . . . , pk ,

with pk the largest. Let q1, . . . , qt be all the primes of the form 4n+1 less then pk . Let

x = 4 · 3 · 7 · · · pkq1 · · · qt − 1.

Then x ≡ −1 ≡ 3 mod 4 and hence x must be divisible by a prime p ≡ 3 mod 4. But

then p|4 · 3 · 7 · · · pkq1 · · · qt so p cannot divide x and thus we have a contradiction.

Therefore there are infinitely many primes of the form 4n + 3.

To handle the case 4n + 1, we must recall some facts about quadratic residues.

From Section 2.6 it follows that if p is a prime greater than or equal to 3, then

(−1/p) = (−1)
p2−1

4 .

Hence −1 is a quadratic residue mod p only if p ≡ 1 mod 4. Equivalently, if x is any

positive integer then if p|x2 +1 it follows that p ≡ 1 mod 4. Now suppose that there
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are only finitely many primes of the form 4n + 1, say q1, . . . , qk . Let x = q1 · · · qk

and let p be a prime divisor of x2 + 1. Then p ≡ 1 mod 4. But p|x, so p|x2 and

hence p cannot divide x2 + 1. Therefore we have obtained a contradiction and there

must exist infinitely many primes of the Sform 4n + 1. ⊓⊔

Essentially the same methods handle the situation modulo 8.

Lemma 3.1.5.2. There exist infinitely many primes of each of the forms 8n + 1,

8n + 3, 8n + 5, and 8n + 7.

Proof. From the fact that (2/p) = (−1)
p2−1

8 if p ≥ 3 is prime (see Section 2.6), we

can obtain the following results, whose proofs we leave to the exercises. If x is any

positive integer and p ≥ 3 is a prime, then

(1) If p|x4 + 1, then p ≡ 1 mod 8.

(2) If p|x2 − 2, then either p ≡ 1 mod 8 or p ≡ 7 mod 8.

(3) If p|x2 + 2, then either p ≡ 1 mod 8 or p ≡ 3 mod 8.

Now suppose that there exist only finitely many primes of the form 8n + 1,

say p1, . . . , pk , and let x = p1 · · · pk . Let p be a prime divisor of x4 + 1. Then

from above, p ≡ 1 mod 8, but p is not one of p1, . . . , pk , and hence we have a

contradiction. Therefore there exist infinitely many primes of the form 8n + 1.

Suppose next that there exist only finitely many primes of the form 8n + 7. As

before, call them p1, . . . , pk and let x = p1 · · · pk . Now, each pi ≡ −1 mod 8 and

so x ≡ ±1 mod 8 and so x2 ≡ 1 mod 8. Let p be a prime divisor of x2 − 2. It must

be congruent to either 1 or 7 modulo 8. If each prime divisor of x2 − 2 is congruent

to 1 mod 8 then x2 − 2 is also congruent to 1 modulo 8. However, x2 is congruent

to 1 modulo 8 and so x2 − 2 is not congruent to 1 modulo 8. Therefore there must

exist a prime divisor p of x2 − 2 congruent to 7 modulo 8. This p cannot be one of

p1, . . . , pk and hence we have obtained a contradiction.

The case of the form 8n + 3 is handled in an analogous manner (see the

exercises). ⊓⊔

To handle the case 8n + 5, we first show the following.

Lemma 3.1.5.3. Let a, b be nonzero integers with (a, b) = 1. Then each odd prime

divisor of a2 + b2 is of the form 4n + 1.

Proof of Lemma 3.1.5.3. Let p be an odd prime divisor of a2 + b2. Then there exists

an n with

n2 = −1 + kp

for some k ∈ Z. Hence −1 is a quadratic residue mod p and therefore p ≡ 1

mod 4. ⊓⊔

Now let p be the largest prime of the form 8n + 5 and let

x = 3252 · · · p2 + 4,

where 3, 5, . . . , p are all the primes up to p and p > 7. From Lemma 3.1.5.3, any

prime divisor of x is congruent to 1 modulo 4, so then is congruent to either 1 modulo
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8 or 5 modulo 8. Since (2m+1)2 +4 = 4m(m+1)+5 it follows that x is congruent

to 5 modulo 8. Therefore x must have a prime divisor of the form 8n+5 that is larger

then p.

A slight modification and the use of quadratic reciprocity allows us to handle

primes modulo 3.

Lemma 3.1.5.4. There exist infinitely many primes of the form 3n + 1 and infinitely

many of the form 3n + 2.

Proof. The case 3n+2 is handled directly. Suppose that p1, . . . , pk are all the primes

congruent to 2 modulo 3 and let x = p1p2 . . . pk . If x ≡ 1 mod 3 then x + 1 ≡ 2

mod 3. Hence there must be a prime congruent to 2 mod 3 dividing x + 1. But as

before, p|p1 · · · pk , so p cannot divide x + 1.

If x ≡ 2 mod 3, then x+3 ≡ 2 mod 3. Then as before, there must be a prime p ≡ 2

mod 3 dividing x + 3. But p|x so p cannot divide x + 3. These two contradictions

then imply that there are infinitely many primes of the form 3n + 2.

To handle 3n+1, we must use quadratic reciprocity. Consider for an odd prime p,

(−3/p) = (−1/p)(3/p).

Now, (−1/p) = (−1)
p−1

2 and (3/p) = (−1)
p−1

2 (p/3) by quadratic reciprocity.

Therefore

(−3/p) = (−1)
p−1

2 (−1)
p−1

2 (p/3) = (p/3).

Directly, then,

(p/3) =
{

1 if p ≡ 1 mod 3,

−1 if p ≡ −1 mod 3.

Therefore −3 is a quadratic residue mod p only if p ≡ 1 mod 3. Equivalently, for

any integer x any odd prime divisor of x2 + 3 must be congruent to 1 mod 3.

Now suppose that there are only finitely many primes of the form 3n + 1, say

p1, . . . , pk . Let x = 2p1 · · · pk and let p be a prime divisor of x2 + 3. Then p ≡
1 mod 3, but as before, p cannot be one of the pi . Hence there are infinitely many

primes of the form 3n + 1. ⊓⊔

The methods used in the preceding lemmas can handle many other special situa-

tions of Dirichlet’s theorem, for example, 6n+ 5. However, they cannot be extended

to the whole result. We close this section with one general result that can be proved

with the same kinds of elementary methods. The proof of this result, which is a

modification of a result in [NP], is taken from [NZ].

Theorem 3.1.5.1. Let m be a positive integer. Then there exist infinitely many primes

of the form mn + 1.

Proof. The theorem is actually a consequence of the next lemma, which is interesting

in its own right. ⊓⊔
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Lemma 3.1.5.5. Given a positive integer m, there exists a prime divisor of mm − 1

that is congruent to 1 modulo m.

Proof of Lemma 3.1.5.5. Suppose that given m > 0 there is no prime p ≡ 1 mod m

such that p|mm − 1. For any prime factor q of mm − 1, let h be the order of m

modulo q, that is, h is the smallest positive integer such that mh ≡ 1 mod q. Since

the nonzero elements in Zq form a multiplicative group, it follows that h|q − 1 and

h|m (see Chapter 2). If h = m then m|q − 1 and q ≡ 1 mod m, contrary to the

assumption above. Therefore h �= m and m = hc with c > 1. This holds, under the

assumption, for possibly different h and c for any prime divisor of mm − 1.

Suppose qr is the highest power of q dividing mm − 1. Then

mm − 1 = (mh − 1)(mch−h + mch−2h + · · · + mh + 1).

Since mh ≡ 1 mod q, we have

mch−h + mch−2h + · · · + mh + 1 ≡ 1 + 1 + · · · + 1 ≡ c mod q.

But q is a divisor of mm − 1, so q is not a divisor of m or c and hence not of

mch−h +mch−2h +· · ·+mh +1. Therefore qr is also the highest power of q dividing

mh − 1. Further, the same argument shows that if s|m then qr is also the highest

power of q dividing ms − 1.

Given a prime divisor q of m, let h, c be defined as above and then let the distinct

prime divisors of c and m be

p1, . . . , pk and p1, . . . , pk, pk+1, . . . , pn, respectively,

with 1 ≤ k ≤ n. Then h is not a divisor of any of the integers

m

pk+1
,

m

pk+2
, . . . ,

m

pn

.

Consider the integers of the form

m

pi1pi2 · · · pit

,

where 1 ≤ i1 < i2 < · · · < it . Let T be the set of integers of this form with t odd

and U the set with t even. Define

Q =
∏

s∈T (ms − 1)∏
s∈U (ms − 1)

.

We show that Q = mm − 1 and then show that this is impossible, leading to a

contradiction, and hence there must be a prime divisor congruent to 1 mod m.

To show first that Q = mm − 1, we show that the prime power factors are the

same. Each exponent s appearing in Q divides m and hence we need only consider

prime factors of mm − 1. If for a prime divisor q of mm − 1 the corresponding it is

greater than k, then h does not divide s. On the other hand if it ≤ k then the highest
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power of q dividing ms − 1 is qr also, as shown above. Therefore q is a divisor of

any term ms − 1 in Q if and only if h|s and this is true if and only if it ≤ k. The

number of factors of ms − 1 in the numerator of Q having it ≤ k is

(
k

1

)
+
(

k

3

)
+
(

k

5

)
+ · · · . (3.1.5.1)

Similarly, the number of factors of ms − 1 in the denominator of Q having it ≤ k is

(
k

2

)
+
(

k

4

)
+
(

k

6

)
+ · · · . (3.1.5.2)

If we subtract (3.1.5.1) from (3.1.5.2) we get the binomial expansion of 1 − (1 − 1)k ,

which clearly has value 1. It follows that Q must be an integer, and the highest power

of q dividing Q is qr . Since this holds for every prime divisor q of mm − 1, it must

be the case that Q = mm − 1.

We now show that this is impossible. Rewriting Q as mm − 1, we get

(mm − 1)
∏

s∈U

(ms − 1) =
∏

s∈T

(ms − 1).

Let b be the smallest integer of the form m
pi1

pi2
···pit

and consider the above equation

modulo mb+1. Every factor ms − 1 is congruent to −1 modulo mb+1 except mb − 1.

Therefore the above equation reduces to

±(mb − 1) ≡ ±1 mod mb+1.

This then implies that

mb ≡ 0 mod mb+1 or mb ≡ −2 mod mb+1.

Both of these congruences are impossible, since b is positive and m ≥ 2. This

contradiction establishes Lemma 3.1.5.5. ⊓⊔

We now prove Theorem 3.1.5.1.

We want to show that for a given m there are infinitely many primes of the form

mn + 1. From Lemma 3.1.5.5 we know that in any progression of the form 1 + m,

1 + 2m, . . . there is a prime that is a divisor of mm − 1. Since this holds for any m it

follows that in any arithmetic progression 1 +M, 1 + 2M, . . . there must be a prime.

Suppose then that for some m there are only finitely many primes of the form mn+ 1

and let P be the product of these primes. From the observation above with M = mP

there is a prime q in the arithmetic progression 1 + mP, 1 + 2mP, . . . , 1 + nmP, . . . .

This prime is congruent to 1 modulo m but is not a divisor of the product P . Therefore

we have obtained a contradiction and hence there must be infinitely many primes of

the form nm + 1.

We note that the proof can be modified also to show that there infinitely many

primes of the form nm − 1.
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3.1.6 A Topological Proof and a Proof Using Codes

We close this section on elementary proofs of the infinitude of primes by presenting

several more; one topological, one using codes and two more elementary analytic

proofs.

We first look at the topological proof, which is due to H. Fürstenberg [Fu].

Proof (using topology). We introduce a topology on the integers Z. As a basis for

the topology we take all arithmetic progressions from −∞ to ∞. Each arithmetic

progression is then open but also closed since its complement is a union of these

arithmetic progressions. Hence each finite union of arithmetic progressions is closed.

Now let Ap be those arithmetic progressions consisting of multiples of a prime p,

that is,

Ap = {. . . , −np, . . . , −p, 0, p, . . . , np, . . . } for n ∈ N.

Now let A = ∪pAp, where this union is taken over all primes p. The complement of

A is {−1, 1}. Since {−1, 1} is not open, A is not closed. Hence A cannot be a finite

union of closed sets. Therefore the number of primes must be infinite. ⊓⊔

A variation of this was given by S. Golomb [Go]. As a basis for the topology take

the arithmetic progressions an + b. The progression {np} with p a prime is closed

and X = ∪p{np} is not closed. Then in the same manner as above the number of

primes must be infinite.

We next give a proof using codes that is due to I. Stewart. We first need the

following theorem.

Theorem 3.1.6.1. If we have a finite set of 2N elements and map it bijectively onto a

set of binary strings, then at least one string has length ≥ N .

Proof. There are only 2N − 1 binary strings of length < N , the empty string, two of

length 1, four of length 2, . . . , 2N−1 of length N − 1. ⊓⊔

Now we can give our proof using codes.

Proof (using codes). Assume that the set of primes is finite, say {p1, . . . pr}. We

introduce a code via strings for each natural number together with zero. For 0 we

choose the symbol 0. For each natural number n we write it as a product of primes and

for each prime divisor we write down the multiplicity in the product. For the listing

of these multiplicities we use brackets to start and end a listing. Suppose r = 5. Then

the primes are 2, 3, 5, 7, 11. Then we get the following codes for the first few natural

numbers:

0 ↔ 0

1 ↔ [00000]
2 ↔ [[00000]0000]
3 ↔ [0[00000]000]

4 ↔ [[[00000]0000]0000]
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5 ↔ [00[00000]00]
6 ↔ [[00000][00000]000]

To analyze these codes we shorten each representation by canceling the closing

brackets and take 1 for the starting bracket. Hence we have the following:

0 ↔ 0

1 ↔ 100000

2 ↔ 11000000000

3 ↔ 10100000000

4 ↔ 1110000000000000

5 ↔ 100100000100

6 ↔ 1100000100000000

We next need the following lemma.

Lemma 3.1.6.1. Assume that the first N nonnegative integers are coded all by strings

of length less than t . Then the first 2N nonnegative integers are coded by strings of

length less than rt .

Proof. In their prime factorization the first 2N natural numbers have the factor 2

fewer than N times. Analogously, all r multiplicities in the decomposition are less

than N . By assumption all the prime numbers p1, . . . , pr have codes of length less

then t , giving the result. ⊓⊔

We now show that r finite leads to a contradiction. If N = 0 then we can choose

t = 2 since the length of the string 0 is 1, which is less than 2. Using the above

lemma, we obtain by induction that the first 22···2
, the power being taken t times,

natural numbers are coded all with strings less than 2(r t ). Choose t = t0 large

enough so that

log2(2
2···2

) = 22···2
taken (t0−1) times > 2r t0 .

It follows that for

N0 = 22···2
taken (t0−1) times

the first 2N0 natural numbers can be coded by strings with length less than N0. This

contradicts Theorem 3.1.6.1, showing that there must be infinitely many primes. ⊓⊔

The next proof is analytic and uses Stirling’s approximation along with a formula

due to Legendre. This proof appears in the book by Apostol [A].
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Proof (using Stirling’s approximation). Stirling’s approximation for n! is given by

(see [A])

n! ≈
(n

e

)n √
2πn for large n.

It follows then that

lim
n→∞

(n!) 1
n = ∞.

For n ≥ 1 we have

n! =
∏

p≤n

pαp(n!),

where p runs over all the primes less than or equal to n. From a formula of Legendre

(see [A]),

αp(n!) =
∑

k>0

[
n

pk

]
.

Now (see Cohen [C])

αp(n!) =
∑

(k>0)
[

n

pk

]
≤n

∞∑

k=1

1

pk
= n

p − 1
.

It follows that

(n!) 1
n =

∏

p≤n

p
αp(n!)

n ≤
∏

p≤n

p
1

p−1 .

If the number of primes is finite, it follows from the above that (n!) 1
n is finite

contradicting the Stirling approximation. ⊓⊔

Proof (another analytic proof ). This appears in the book of P. Ribenboim [Ri].

Assume that there are only finitely many prime numbers

p1 < p2 < · · · < pr .

Suppose t ∈ N and let N = pt
r . Each m ≤ N in N can be written as

m = p
α1

1 p
α2

2 · · · pαr
r with αi ≥ 0

and the sequence (α1, . . . , αr) unique. We then have

p
αi

i ≤ m ≤ N = pt
r .

Let E = ln pr

ln p1
. Then αi ≤ tE.

On the other hand, N is at most equal to the number of sequences (α1, . . . , αr).

Hence

pt
r = N ≤ (tE + 1)r ≤ t r(E + 1)r .

This gives a contradiction for t sufficiently large, showing that there must be infinitely

many primes. ⊓⊔
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3.2 Sums of Squares

As we described in our historical overview, much of the outline of the formal study

of number theory was laid out in Gauss’s work Disquitiones Arithmeticae. He rested

the study of number theory on three pillars: the theory of congruences, which we

discussed in Chapter 2; the theory of algebraic integers, which we will discuss in

Chapter 6; and the theory of forms. In particular, relative to this last topic, Gauss

considered the question of when an integer n can be represented by a quadratic form

in other integers.

An (integral) quadratic form in n variables is a polynomial

f (x1, . . . , xn) =
n∑

i,j=1

aijxixj ,

where each aij is an integer. A form is a positive form if the substitution of any

integers other than (0, 0, . . . , 0) leads to a positive value. It is a negative form if the

substitution of any integers other than (0, 0, . . . , 0) leads to a negative value. It is a

definite form if it is either positive or negative. For example f (x, y) = x2 + y2 is a

positive definite form.

In particular, in two variables a quadratic form has the representation

f (x, y) = ax2 + bxy + cy2,

where a, b, c are integers. The following lemma describes when such forms are

positive definite.

Lemma 3.2.1. The quadratic form f (x, y) = ax2 + bxy + cy2 is positive definite if

and only if the discriminant b2 − 4ac is negative and a > 0, c > 0.

Proof. Suppose first that f (x, y) is positive definite. Then f (1, 0) = a > 0 and

f (0, 1) = c > 0. To show that the discriminant must be negative, notice that f (x, y)

may be rewritten as

f (x, y) = 1

4a

(
(2ax + by)2 + (4ac − b2)y2

)
.

Using this rewritten form we see that f (−b, 2a) = (4ac − b2)a. Since this must be

positive and a > 0, it follows that (4ac − b2) > 0, and hence the discriminant is

negative.

Conversely, suppose that the discriminant is negative and a > 0, c > 0. From

the rewritten form for f (x, y) above it is clear that f (x, y) ≥ 0 for all integral pairs

(x, y). If f (x, y) = 0 it follows that 2ax + by = 0 and (4ac − b2)y2 = 0, from

which one easily obtains that x = y = 0. Therefore f (x, y) is positive. ⊓⊔

A quadratic form f (x1, . . . , xn) represents an integer m if there exist integers

(b1, . . . , bn) such that f (b1, . . . , bn) = m.

In this section we will look at the quadratic form question. Specifically we will

consider the question of when an integer is represented as a sum of squares.
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3.2.1 Pythagorean Triples

The oldest occurrence of questions about sums of squares arises from integral solu-

tions of the Pythagorean theorem. Recall that a right triangle can have integral sides,

for example (3, 4, 5) or (5, 12, 13). The question naturally arises as to finding, if

possible, all such integer right triangles.

Definition 3.2.1.1. A Pythagorean triple is a triple (a, b, c) of integers with

a2 + b2 = c2. We consider c fixed and consider the triple (a, b, c) equivalent to

the triple (b, a, c). A Pythagorean triple (a, b, c) is called primitive if (a, b, c) are

coprime.

Now if a2 + b2 = c2 then (da)2 + (db)2 = (dc)2 for any integer d . Clearly

then for the classification of Pythagorean triples it is enough to consider primitive

triples. The following theorem, which in essence appeared in Diophantus’s book

Arithmetica, written about 250 A.D., gives a complete classification of primitive

Pythagorean triples.

Theorem 3.2.1.1. If n and m are two relatively prime integers with n − m > 0 and

n − m odd then (2mn, n2 − m2, n2 + m2) is a primitive Pythagorean triple. Further,

any primitive Pythagorean triple can be obtained in this way.

Proof. Straightforward calculations show that if a = 2nm, b = n2 − m2, and c =
n2 + m2 with (n, m) = 1 and n − m = 2k + 1 > 0 then (a, b, c) forms a primitive

Pythagorean triple (see the exercises).

Conversely, we must show that any primitive Pythagorean triple is obtained in this

manner. Let (a, b, c) be a primitive Pythagorean triple. Since (a, b, c) are coprime

and a2 + b2 = c2, it is easy to see that these integers must also be pairwise coprime.

Hence no two can be even. Further, suppose that both a and b are odd, so that

a = 2m + 1, b = 2n + 1. Then

c2 = a2 + b2 = (2m + 1)2 + (2n + 1)2 = 2(2m2 + 2n2 + 2m + 2n + 1).

Then c2 is even but c2 is not divisible by 4, which is impossible. Hence a and b

cannot both be odd. It follows that in (a, b, c) one of (a, b) must be even, the other

odd, and then c is odd.

Now suppose a is even and b and c are both odd. Then c + b and c − b are both

even. Let

c + b = 2u and c − b = 2v.

This implies directly that

b = u − v and c = u + v.

Further, (u, v) = 1, for otherwise, (b, c) �= 1. We now have

a2 = c2 − b2 = (c + b)(c − b) = 4uv.

Since a is even, a = 2w, which implies from the above that w2 = uv and hence

uv is a perfect square. Since (u, v) = 1 it is then an easy consequence of the
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fundamental theorem of arithmetic that both u and v must also be perfect squares (see

Exercise 2.31). Hence u = n2, v = m2. Therefore we have

a = 2mn, b = n2 − m2, c = n2 + m2.

Thus (a, b, c) has the required from and we must show that n, m have the required

properties.

Since (u, v) = 1, it follows that (m, n) = 1. Since b > 0, it follows that u > v,

which implies that n2 > m2, which gives n > m since both are positive. Observe

that m and n cannot both be even, and from the same argument as before, they cannot

both be odd. Therefore n − m is odd, completing the proof. ⊓⊔

There are many other questions concerning Pythagorean triples that have been

considered. For example, we may ask when the (3, 4, 5) or (5, 12, 13) situation

arises, that is, when does the hypotenuse differ from one of the legs by 1 or some

fixed number d? (See the exercises.) Further, as a corollary of the classification, we

get the following, which is a special case of Fermat’s big theorem and illustrates what

has been called Fermat’s method of infinite descent. Fermat had a proof of his big

theorem for exponent 4 using this technique. It is believed that Fermat’s supposed

proof of the big theorem was also based on this technique.

Corollary 3.2.1.1. The equation x4 + y4 = z2 has no solutions in natural numbers.

In particular, the equation x4 + y4 = z4 has no solutions in natural numbers.

Proof. Assume that there is a solution to x4+y4 = z2 for natural numbers (x0, y0, z0).

We then construct a further solution (x1, y1, z1) with z1 < z0. As in the classification

theorem, we may assume that x0, y0, z0 are coprime, and then (x2
0 , y2

0 , z0) is a prim-

itive Pythagorean triple. As in the proof of the classification, one of (x0, y0) must be

even, the other odd, and z0 is then odd. Suppose then that y0 is even. Then from the

classification theorem there exist natural numbers a, b with (a, b) = 1 and

x2
0 = a2 − b2, y2

0 = 2ab, z0 = a2 + b2.

Now, a cannot be even because then b would be odd, and it would follow that

x2
0 ≡ 3 mod 4. Hence a is odd and b is even and x2

0 + b2 = a2. This implies that

(x0, b, a) is a primitive Pythagorean triple with b even. It follows again from the

classification theorem that

x0 = c2 − d2, b = 2cd, a = c2 + d2

for coprime positive integers c, d with c > d and c + d odd.
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Since (a, b) = 1 we obtain that c, d , and c2 + d2 are pairwise coprime, that is,

(c, d) = (c, c2 + d2) = (d, c2 + d2) = 1.

From (
1

2
y0

)2

= cd(c2 + d2)

we get a pairwise coprime triple (x1, y1, z1) with

x2
1 = c, y2

1 = d, z2
1 = c2 + d2.

This in turn implies that

c2 + d2 = x4
1 + y4

1 = z2
1

and hence this triple gives another solution to the original equation. From

z1 ≤ z2
1 = c2 + d2 = a < a2 + b2 = z0

it follows that z1 < z0. Therefore if we assume that there is a solution (x0, y0, z0) ∈
N3 of the equation x4+y4 = z2 then we can construct an infinite sequence (xk, yk, zk),

k = 0, 1, 2 . . . , of solutions with z0 > z1 > z2 > · · · > 0. However, by the well-

ordering of the natural numbers, this sequence must have a minimal element and

hence this is impossible, and therefore we have a contradiction. ⊓⊔

3.2.2 Fermat’s Two-Square Theorem

We have completely classified Pythagorean triples (a, b, c) with c2 = a2 + b2. We

now consider the question of when an integer n, not necessarily a square, can be

written as a sum of squares. That is, given n, when is n = a2 + b2 for integers a, b.

In the language of forms we are asking when an integer n can be represented by the

quadratic form f (x, y) = x2 +y2. The basic result is the following, generally called

Fermat’s two-square theorem.

Theorem 3.2.2.1 (Fermat’s two-square theorem). Let n > 0 be a natural number.

Then n = a2 + b2 with (a, b) = 1 if and only if −1 is a quadratic residue modulo n.

In this section we lay out a purely number-theoretic proof of this theorem. In

the course of developing this proof we will give several equivalent formulations of

the theorem. In the next section we give a separate proof using the structure of the

modular group M = PSL2(Z) (see the next section for an explanation). This second

proof is interesting since it is in some sense independent of number theory.

We first consider the case of primes.

Lemma 3.2.2.1. −1 is a quadratic residue modulo a prime p if and only if p = 2 or

p ≡ 1 mod 4.
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Proof. If p = 2, then −1 ≡ 1 ≡ 12 mod 2 and so −1 is a quadratic residue mod 2.

Consider p now to be an odd prime. By Wilson’s theorem (Theorem 2.4.2.3), we have

(p − 1)! ≡ −1 mod p =⇒
(

1 · 2
p − 1

2

)
·
(

p + 1

2

)
· · · (p − 1)) ≡ −1 mod p.

Now, each number in the product
(p+1

2
· · · (p − 1)

)
is the negative modulo p of

a number in the product
(
1 · 2 · · · p−1

2

)
. For example, modulo p, −1 ≡ p − 1,

−2 ≡ p − 2, and so on. Therefore we can rewrite Wilson’s theorem as

(
1 · 2 · · · p − 1

2

)
·
(

−
(

p − 1

2

)(
−p − 3

2

)
· · · (−1)

)
≡ −1 mod p.

But this implies

(−1)
p−1

2

(
1 · 2 · · · p − 1

2

)2

≡ −1 mod p.

Let x = 1 · 2 · · · p−1
2

mod p. If p ≡ 1 mod 4 then
p−1

2
is even and (−1)

p−1
2 = 1.

Hence

x2 ≡ −1 mod p

and −1 is a quadratic residue mod p.

Conversely, suppose x2 ≡ −1 mod p has a solution x0. Then

x2
0 ≡ −1 mod p =⇒ x

2
p−1

2

0 ≡ (−1)2
p−1

2 mod p.

But x
2

p−1
2

0 = x
p−1
0 ≡ 1 mod p by Fermat’s theorem. It follows that (−1)2

p−1
2 ≡ 1

mod p. Since p is an odd prime, −1 is not congruent to 1 mod p, so the above implies

that
p−1

2
is even and p ≡ 1 mod 4, completing the proof. ⊓⊔

We now tie this result to sums of squares.

Lemma 3.2.2.2. If p ≡ 1 mod 4, then p = a2 + b2 with (a, b) = 1.

Proof. Note first that if p = a2 +b2 then a, b must be relatively prime, for otherwise,

a common divisor of a and b would divide p.

Now suppose p ≡ 1 mod 4. Then from the previous lemma, −1 is a quadratic

residue mod p. Let x0 then be a solution to x2 ≡ −1 mod p.

Let K = [√p] be the greatest integer less than or equal to
√

p. Clearly then

K <
√

p < K + 1 =⇒ K2 < p < (K + 1)2.

Consider the set of integers

S = {u + x0v; 0 ≤ u ≤ K, 0 ≤ v ≤ K}.

There are K +1 choices for each of u and v and hence S has (K +1)2 elements. Since

p < (K + 1)2 and there are only p residue classes mod p we must have two distinct
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elements of S that are congruent modulo p. Hence there exist u1, v1, u2, v2 with

u1 + x0v1 ≡ u2 + x0v2 mod p.

Now if u1 = u2 we have x0v1 ≡ x0v2 mod p. But x0 is a unit mod p, so then

v1 ≡ v2 mod p. Since both v1, v2 are less than p it follows that v1 = v2. Similarly,

if v1 = v2, it follows that u1 = u2. Since u1 + x0v1 is distinct from u2 + x0v2 it

follows that u1 �= u2 and v1 �= v2.

We may rewrite the above congruence involving u1, v1, u2, v2 as

u1 − u2 ≡ x0(v2 − v1) mod p.

Let a = u1 − u2, b = v2 − v1. Then a �= 0, b �= 0, and a ≡ x0b mod p. Therefore

a2 ≡ x2
0b2 =⇒ a2 ≡ −b2 =⇒ a2 + b2 ≡ 0 mod p.

Hence p|a2 + b2. We show that p = a2 + b2. Since 0 ≤ u1 ≤ K and 0 ≤ u2 ≤ K it

follows that −K ≤ u1 −u2 ≤ K . Then (u1 −u2)
2 = a2 ≤ K2 < p. Hence a2 < p.

Analogously b2 < p. Therefore 0 < a2 + b2 < 2p. However, the only multiple of

p within the range 0 to 2p is p itself. Therefore p = a2 + b2. ⊓⊔

Lemma 3.2.2.3. Suppose n = a2 + b2 and q is a prime divisor of n. If q ≡ 3 mod 4,

then q2|n.

Proof. Suppose q|a2 + b2 with q a prime congruent to 3 mod 4. If q ∤ a then a is a

unit mod q. Then

a2 + b2 ≡ 0 =⇒ b2 ≡ −a2 =⇒ (ba−1)2 ≡ −1 mod q.

Hence −1 is a quadratic residue mod q, contradicting q ≡ 3 mod 4. Hence q|a.

Similarly q|b. But then q2|a2 + b2 = n. ⊓⊔

Theorem 3.2.2.2. Suppose n ≥ 2 has the prime decomposition

n = 2αp
β1

1 · · · pβk

k q
γ1

1 · · · gγt
t ,

where pi ≡ 1 mod4 for i = 1, . . . , k and qj ≡ 3 mod 4 for j = 1, . . . , t . Then n

can be expressed as the sum of two squares if and only if all the exponents γj of the

primes congruent to 3 mod 4 are even.

We note that this theorem is also called Fermat’s two-square theorem.

Proof. Notice first that for integers a, b, c, d we have

(a2 + b2)(c2 + d2) = (ac − bd)2 + (bc + ad)2.

Therefore if m = uv and u is a sum of two squares and v is a sum of two squares

then m is also a sum of two squares.
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Now, 2 = 1 + 1 = 12 + 12, so any power of 2 is a sum of two squares. Similarly

if p ≡ 1 mod 4, then from Lemma 3.2.2.2, p is the sum of two squares and hence

any power of p is the sum of two squares. If γ = 2k is even and q ≡ 3 mod 4 then

qγ = q2k = (qk)2 + 02 and qγ is a sum of two squares. Putting these all together

we have that if each exponent of a prime congruent to 3 mod 4 is even in the prime

decomposition of n then n is the sum of two squares.

Conversely, if n = a2 + b2 and q|n with q ≡ 3 mod 4, then from Lemma 3.2.2.3,

q2|n and thus the exponent of q in n must be even. ⊓⊔

We now prove Theorem 3.2.2.1.

Proof of Theorem 3.2.2.1. Suppose n = a2 + b2 with (a, b) = 1. Then (n, b) = 1,

for otherwise, a common divisor of n and b would divide a. Hence b is a unit mod n

and so b−1 exists mod n. Then

n = a2 + b2 =⇒ a2 + b2 ≡ 0 =⇒ (ab−1)2 ≡ −1 mod n.

Therefore −1 is a quadratic residue mod n.

Conversely, suppose −1 is a quadratic residue mod n. We show that n = a2 + b2

with (a, b) = 1 by using a modification of the proof of Lemma 3.2.2.2. Let x0 be a

solution of x2 ≡ −1 mod n. Then there exist integers (y, b) = 1 with 0 < b ≤ √
n

such that ∣∣∣−x0

n
− y

b

∣∣∣ <
1

b
√

n

(see the exercises). Now let

a = x0b + ny.

Then a ≡ x0b mod n and hence a2 + b2 ≡ 0 mod n. Now, |a| <
√

n, so

0 < a2 + b2 < 2n,

and as in the proof of Lemma 3.2.2.2, the only multiple of n in this range is n itself

and therefore n = a2 + b2. Further, (a, b) = 1. To see this, notice that we have

n = (x0b + ny)2 + b2 = (1 + x2
0)b2 + 2x0nby + n2y2.

It follows that

1 =
1 + x2

0

n
b2 + x0by + x0by + ny2 = ub + y(x0b + ny) = ub + ya. ⊓⊔

Theorem 3.2.2.2 gives a criterion given n to determine whether n is representable

as a sum of two squares. Arepresentation n = a2+b2 with (a, b) = 1 is called a prim-

itive representation. Combining the two form for Fermat’s two-square theorem, we

get the following corollary.

Corollary 3.2.2.1. An integer n has a primitive representation as a sum of two squares

if and only if n = 2ǫp
α1

1 · · · pαk

k , where ǫ = 0 or ǫ = 1 and each pi ≡ 1 mod 4.
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Proof. From Fermat’s two-square theorem, n has a primitive representation if and

only if −1 is a quadratic residue mod n. Then −1 must be a quadratic residue mod p

for any prime divisor of n. Therefore any odd prime divisor of n must be congruent

to 1 mod 4. Further, −1 is not a quadratic residue mod 2α if α > 1. Therefore the

highest power of 2 that can divide n is 1. ⊓⊔

Theorems 3.2.2.1 and 3.2.2.2 characterize those integers n for which there is a

representation as a sum of two squares. The question can then be asked, how many

different representations can there be? If we let

r(n) = the number of pairs (a, b) ∈ Z2 with n = a2 + b2,

then the following can be proved (see [Za] or [NZ]). We leave the proof as an exercise

(see Exercise 3.35).

Theorem 3.2.2.3. Let r(n) be defined as above. Then

(1) r(n) = 4
∑

d|n χ(d), where

χ(d) =

⎧
⎪⎨
⎪⎩

1 if n ≡ 1 mod 4,

−1 if n ≡ −1 mod 4,

0 if n ≡ 0 mod 2;

(2)
∑∞

n=1
r(n)
n

= 4ζ(s)L(s), where

ζ(s) =
∞∑

n=1

1

ns
,

L(s) =
∞∑

n=1

χ(n)

ns
with Re(s) > 1;

(3) 1
4
r(mn) = 1

4
r(n) 1

4
r(m) if (n, m) = 1.

If p ≡ 1 mod 4 is a prime, then

r(p) = 4
∑

d|p
χ(d) = 4(χ(1) + χ(p)) = 8.

For p ≡ 3 mod 4 then r(p) = 0. For example, for p = 5, the eight pairs are

(2, 1), (1, 2), (−1, 2), (2, −1), (1, −2), (−2, 1), (−1, −2), (−2, −1).

The function ζ(s) in the theorem is the Riemann zeta function, which we intro-

duced earlier and which will play a crucial role in the proof of the prime number

theorem. The function χ(n) is called a Dirichlet character, and the function L(s) a

Dirichlet series. These will play a role in the proof of Dirichlet’s theorem.
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3.2.3 The Modular Group

If R is any ring with identity, then the set of invertible n×n matrices with entries from

R forms a group under matrix multiplication called the n-dimensional general linear

group over R (see [Ro]). This group is denoted by GLn(R). Since det(A) det(B) =
det(AB) for square matrices A, B, it follows that the subset of GLn(R) consisting of

those matrices of determinant 1 forms a subgroup. This subgroup is called the special

linear group over R and is denoted by SLn(R). In this section we concentrate on

SL2(Z) or, more specifically, a quotient of it, PSL2(Z), and use properties of this

group to give another, more direct, proof of Fermat’s two-square theorem.

The group SL2(Z) then consists of 2 × 2 integral matrices of determinant one:

SL2(Z) =
{(

a b

c d

)
; a, b, c, d ∈ Z, ad − bc = 1

}
.

SL2(Z) is called the homogeneous modular group, and an element of SL2(Z) is

called a unimodular matrix.

If G is any group, its center, denoted by Z(G), consists of those elements of G

that commute with all elements of G:

Z(G) = {g ∈ G; gh = hg, ∀h ∈ G}.
It is easy to see that Z(G) is a normal subgroup of G (see the exercises) and hence we

can form the factor group G/Z(G). For G = SL2(Z) the only unimodular matrices

that commute with all others are ±I = ±( 1 0

0 1
). Therefore Z(SL2(Z)) = {I, −I }.

The quotient

SL2(Z)/Z(SL2(Z)) = SL2(Z)/{I, −I }
is denoted by PSL2(Z) and is called the projective special linear group or inho-

mogeneous modular group. More commonly, PSL2(Z) is just called the modular

group and denoted by M .

The group M arises in many different areas of mathematics including number

theory, complex analysis and Riemann surface theory, and the theory of automorphic

forms and functions. The group M is perhaps the most widely studied single finitely

presented group. Complete discussions of M and its structure can be found in the

books Integral Matrices by M. Newman [New 2] and Algebraic Theory of the Bianchi

Groups by B. Fine [F].

Since M = PSL2(Z) = SL2(Z)/{I, −I }, it follows that each element of M can

be considered as ±A, where A is a unimodular matrix. A projective unimodular

matrix is then

±
(

a b

c d

)
, a, b, c, d ∈ Z, ad − bc = 1.

The elements of M can also be considered as linear fractional transformations over

the complex numbers:

z′ = az + b

cz + d
, a, b, c, d ∈ Z, ad − bc = 1.

Thought of in this way, M forms a Fuchsian group, which is a discrete group of

isometries of the non-Euclidean hyperbolic plane. The book by Katok [K] gives
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a solid and clear introduction to such groups. This material can also be found in

condensed form in [FR].

We will shortly describe the abstract structure of the group M . First, though, we

use it to give a direct proof of Fermat’s two-square theorem. We need the following

lemma. Recall that the trace of a matrix A is the sum of its diagonal elements. Trace

is preserved under conjugation, so that tr(A) = tr(T −1AT ) for any square matrices

A and invertible T . Recall also that in a group G two elements g, g1 are conjugate if

there exists an h ∈ G such that h−1gh = g1. Conjugation is an equivalence relation

on a group and the equivalence classes are called conjugacy classes.

Lemma 3.2.3.1. Let A be a projective unimodular matrix with tr(A) = 0. Then A is

conjugate within M to X = ±(
0 1

−1 0
). That is, there exists T ∈ M with T −1XT = A.

Proof. Let A = ±(
α β

γ −α
). Let S be the set of conjugates of A within M , so that

S = {T −1AT ; T ∈ M}.

Since conjugation preserves trace, S consists of matrices of trace zero. Let

Y = ±
(

a b

c −a

)

be an element of S with |a| minimal. This exists from the well-ordering of Z. We

show that a must equal zero.

Suppose a �= 0. Then

−a2 − bc = 1 =⇒ −bc = a2 + 1 =⇒ |b||c| = a2 + 1.

It follows then that b �= 0, c �= 0 and either |b| < |a| or |c| < |a|. Assume first that

|c| < |a|. We may assume that a > 0 and c > 0. Then

0 < a − c < a.

Now conjugate Y by T = ±(
1 1

0 1
). Then T −1 = ±(

1 −1

0 1
) and

T −1YT = ±
(

1 −1

0 1

)(
a b

c −a

)(
1 1

0 1

)
= ±

(
a − c 2a + b − c

c c − a

)
.

But then 0 < a − c < a, contradicting the minimality of |a|.
If b < a assuming a > 0, b > 0, conjugate Y by T = ±(

1 0

−1 1
). Then

T −1 = ±
(

1 0

1 1

)

and

T −1YT = ±
(

a − b b

2a + c − b b − a

)
.

Again 0 < a − b < a, contradicting the minimality of |a|.
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Therefore in a minimal conjugate of A we must have a = 0 and hence −bc = 1.

It follows that b = ±1 and c as well, and therefore

Y = ±
(

0 1

−1 0

)
= X

completing the proof. ⊓⊔

Now consider conjugates of X within M . Let T = ±(
a b

c d
). Then

T −1 = ±
(

d −b

−c a

)

and

TXT−1 = ±
(

a b

c d

)(
0 1

−1 0

)(
d −b

−c a

)
= ±

(
−(bd + ac) a2 + b2

−(c2 + d2) bd + ac

)
.

(3.2.1)

Therefore any conjugate of X must have the form (3.2.1).

We now re-prove Fermat’s two-square theorem.

Theorem 3.2.3.1 (Fermat’s two-square theorem). Let n > 0 be a natural number.

Then n = a2 + b2 with (a, b) = 1 if and only if −1 is a quadratic residue modulo n.

Proof. Suppose −1 is a quadratic residue mod n. Then there exists an x with x2 ≡ −1

mod n or x2 = −1 + mn. This implies that −x2 − mn = 1, so that there must exist

a projective unimodular matrix

A = ±
(

x n

m −x

)
.

The trace of A is zero, so by Lemma 3.2.3.1, A is conjugate within M to X and

therefore A must have the form (3.2.1). Therefore n = a2 + b2. Further, (a, b) = 1

since in finding the form (3.2.1) we had ad − bc = 1.

Conversely, suppose n = a2 +b2 with (a, b) = 1. Then there exist c, d ∈ Z with

ad − bc = 1 and hence there exists a projective unimodular matrix

T = ±
(

a b

c d

)
.

Then

TXT−1 = ±
(

α a2 + b2

γ −α

)
= ±

(
α n

γ −α

)
.

This then has determinant one, so

−α2 − nγ = 1 =⇒ α2 = −1 − nγ =⇒ α2 ≡ −1 mod n.

Therefore −1 is a quadratic residue mod n. ⊓⊔
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This type of group theoretical proof can be extended in several directions. Kern-

Isberner and Rosenberger [KR 1] considered groups of matrices of the form

U =
(

a b
√

N

c
√

N d

)
, a, b, c, d, N ∈ Z, ad − Nbc = 1

or

U =
(

a
√

N b

c d
√

N

)
, a, b, c, d, N ∈ Z, Nad − bc = 1.

They then proved that if

N ∈ {1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 37, 58}

and n ∈ N with (n, N) = 1, then we have the following:

(1) If −N is a quadratic residue mod n and n is a quadratic residue mod N then n

can be written as n = x2 + Ny2 with x, y ∈ Z.

(2) Conversely, if n = x2+Ny2 with x, y ∈ Z and (x, y) = 1 then −N is a quadratic

residue mod n and n is a quadratic residue mod N .

The proof of the above results depends on the class number of Q(
√

−N) (see

[KR 1]).

In another direction, Fine [F 1, F 2] showed that the Fermat two-square property

is actually a property satisfied by many rings R. These are called sum of squares

rings. For example, if p ≡ 3 mod 4 then Zpn for n > 1 is a sum of squares ring.

We close this subsection by describing the group-theoretical structure of both

SL2(Z) and M = PSL2(Z). This structure can be developed with only minimal

number theory.

Theorem 3.2.3.2. The group SL2(Z) is generated by the elements

X =
(

0 −1

1 0

)
and Y =

(
0 1

−1 −1

)
.

Further, a complete set of defining relations for the group in terms of these

generators is given by

X4 = Y 3 = YX 2Y−1X−2 = I.

In the language of combinatorial group theory we say that SL2(Z) has the

presentation

〈X, Y ; X4 = Y 3 = YX 2Y−1X−2 = I 〉.

Proof. We first show that SL2(Z) is generated by X and Y , that is, every matrix A in

the group can be written as a product of powers of X and Y .
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Let

U =
(

1 1

0 1

)
.

Then a direct multiplication shows that U = XY and we show that SL2(Z) is generated

by X and U , which implies that it is also generated by X and Y . Further,

Un = (
1 n

0 1
),

so that U has infinite order.

Let A =
(

a b

c d

)
∈ SL2(Z). Then we have

XA =
(

−c −d

a b

)
and U kA =

(
a + kc b + kd

c d

)

for any k ∈ Z. We may assume that |c| ≤ |a|. Otherwise, start with XA rather than A.

If c = 0 then A = ±Uq for some q. If A = Uq then certainly A is in the group

generated by X and U . If A = −Uq then A = X2Uq since X2 = −I . It follows

that here also A is in the group generated by X and U .

Now suppose c �= 0. Apply the Euclidean algorithm to a and c in the following

modified way:

a = q0c + r1,

−c = q1r1 + r2,

r1 = q2r2 + r3,

. . .

(−1)nrn−1 = qnrn + 0,

where rn = ±1 since (a, c) = 1. Then

XU−qn · · · XU−q0A = ±Uqn+1 with qn+1 ∈ Z.

Then

A = XmUq0XU q1 · · · XU qnXU qn+1

with m = 0, 1, 2, 3; q0, q1, . . . , qn+1 ∈ Z, and q0 · · · qn �= 0. Therefore X and U

and hence X and Y generate SL2(Z).

We must now show that

X4 = Y 3 = YX 2Y−1X−2 = I (3.2.2)

are a complete set of defining relations for SL2(Z), or that every relation on these

generators is derivable from these (see [Ro] or [J] for a description of group presen-

tations). It is straightforward to see that X and Y do satisfy these relations. Assume
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then that we have a relation

S = Xǫ1Y α1Xǫ2Y α2 · · · Y αnXǫn+1 = I

with all ǫi, αj ∈ Z. Using the relations (3.2.2) we may transform S so that

S = Xǫ1Y α1 · · · Y αmXǫm+1

with ǫ1, ǫm+1 = 0, 1, 2, or 3 and αi = 1 or 2 for i = 1, . . . , m and m ≥ 0.

Multiplying by a suitable power of X we obtain

Y α1X · · · Y αmX = Xα = S1

with m ≥ 0 and α = 0, 1, 2, or 3. Assume that m ≥ 1 and let

S1 =
(

a −b

−c d

)
.

We show by induction that

a, b, c, d ≥ 0, b + c > 0,

or

a, b, c, d ≤ 0, b + c < 0.

This claim for the entries of S1 is true for

YX =
(

1 0

−1 1

)
and Y 2X =

(
−1 1

0 −1

)
.

Suppose it is correct for S2 = (
a1 −b1

−c1 d1
). Then

YXS2 =
(

a1 −b1

−(a1 + c1) b1 + d1

)

and

Y 2XS2 =
(

−a1 − c1 b1 + d1

c1 d1

)
.

Therefore the claim is correct for all S1 with m ≥ 1. This gives a contradiction, for

the entries of Xα with α = 0, 1, 2 or 3 do not satisfy the claim. Hence m = 0 and S

can be reduced to a trivial relation by the given set of relations. Therefore they are a

complete set of defining relations and the theorem is proved. ⊓⊔
Corollary 3.2.3.1. The modular group M = PSL2(Z) has the presentation

M = 〈x, y; x2 = y3 = 1〉.

Further, x, y can be taken as the linear fractional transformations

x : z′ = −1

z
and y : z′ = − 1

z + 1
.
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Proof. The center of SL2(Z) is ±I . Since X2 = −I , setting X2 = I in the presen-

tation for SL2(Z) gives the presentation for M . Writing the projective matrices as

linear fractional transformations gives the second statement. ⊓⊔

In group theoretical language this corollary says that M is the free product of a

cyclic group of order 2 and a cyclic group of order 3 (see [Ro]). From this structure

it is easy to show that any element of M of order 2 must be conjugate within M to x.

Further, a straightforward calculation shows that projective unimodular matrix has

order 2 if and only if its trace is zero. Combining these two facts gives an easy proof

of Lemma 3.2.3.1, which was the crux of the proof of Fermat’s two-square theorem.

3.2.4 Lagrange’s Four-Square Theorem

In the last section we considered when a natural number can be expressed as a sum

of two squares. Here we prove the following theorem of Lagrange, which shows that

any natural number can be expressed as the sum of four squares. In the language of

forms this says that any natural number is represented by the form f (x, y, z, w) =
x2 + y2 + z2 + w2. The Lagrange four-square theorem is actually a special case

of Waring’s problem. In 1770 Edward Waring stated, but did not prove, that every

positive integer is a sum of nine cubes and also a sum of nineteen fourth powers.

Waring’s problem then became whether for each positive integer k there is an integer

s(k) such that every natural number is the sum of at most s(k) kth powers. In this

formulation, Lagrange’s theorem says that s(2) = 4. Wieferich proved Waring’s

assertion about cubes, that is, every natural number can be written as a sum of nine

cubes. D. Hilbert in 1909 proved Waring’s problem for all exponents k. Subsequently

there have been several other proofs given of this same result including ones by Hardy

and Littlewood [HL], Vinogradov [V], and Linnik [Li]. Linnik’s proof of the general

result can be found in the book of Nathanson [N]. We give a proof of the four-square

result.

Theorem 3.2.4.1 (Lagrange). Every natural number n can be represented as the sum

of four squares,

n = a2 + b2 + c2 + d2

with a, b, c, d ∈ Z.

Proof. Now 1 = 12 + 02 + 02 + 02 and 2 = 12 + 12 + 02 + 02, so the theorem is

clearly true for n = 1, 2. Further, the product of two sums of four squares is again a

sum of four squares. That is,

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) = A2 + B2 + C2 + D2,

where

A = ax + by + cz + dw, B = ay − bx − cw + dz,

C = az + bw − cx − dy, D = aw − bz + cy − dx.
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This implies then that we need only prove the theorem for primes. Therefore let p be

a prime p ≥ 3.

We need the following lemma.

Lemma 3.2.4.1. Let p be a prime. Then there exist x, y ∈ Z with x2 + y2 ≡ −1

mod p.

Proof of Lemma 3.2.4.1. This is clear for p = 2 so assume p ≥ 3. Consider the

squares modulo p. That is, consider the set

S = {12, 22, . . . , (p − 1)2} modulo p.

Since a2 ≡ b2 mod p implies that a ≡ ±b mod p it follows that there are
p−1

2
elements of S that are incongruent mod p. Therefore if we consider the integers

−x2 − 1 for x = 0, 1, . . . , p − 1

we must get some x ∈ {0, 1, 2, . . . , p − 1} such that −x2 − 1 ≡ y2 mod p for some

y ∈ {0, 1, 2, . . . , p − 1}. ⊓⊔

From the lemma there is a natural number m and integers x, y such that

mp = x2 + y2 + 12 + 02.

We may assume that |x|, |y| ≤ 1
2
p, so that m ≤ 1

2
p. If m = 1 then the theorem

holds. Suppose then that m > 1.

From the above we have that for each prime p ≥ 3, there is an m with m ≤ 1
2
p

and

mp = x2 + y2 + z2 + w2, x, y, z, w ∈ Z.

We will show that there is then a choice with m = 1.

Let a, b, c, d be the positive residues of x, y, z, w, respectively, mod m with the

smallest absolute values. Then |a|, |b|, |c|, |d| are all ≤ m
2

. Then

pm = x2 + y2 + z2 + w2 ≡ a2 + b2 + c2 + d2 ≡ 0 mod m.

Hence

a2 + b2 + c2 + d2 = mm′.

It follows then that

pm2m′ = (x2 + y2 + z2 + w2)(a2 + b2 + c2 + d2) = A2 + B2 + C2 + D2,

where A, B, C, D are described as in the beginning of the proof. From these expres-

sions, since

a ≡ x, b ≡ y, c ≡ z, d ≡ w mod m

it follows that

A ≡ B ≡ C ≡ D ≡ 0 mod m.

Dividing through A2, B2, C2, D2 by m2 we can then represent pm′ as a sum of

four squares.
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Now, from

m′ = a2 + b2 + c2 + d2

m
and |a|, |b|, |c|, |d| ≤ m

2
,

we get that m′ ≤ m. If m′ < m then we have a smaller multiple m′ of p such that

m′p is a sum of four squares. Assume then that m′ = m. We show that in this case

p is a sum of four squares. The relation m = m′ implies that

|a| = |b| = |c| = |d| = m

2
.

Then

2a ≡ 2b ≡ 2c ≡ 2d ≡ 2x ≡ 2y ≡ 2z ≡ 2w ≡ 0 mod m.

It then follows that

4pm = 4x2 + 4y2 + 4z2 + 4w2 = vm2

for some v ∈ Z, v �= 0. Hence m|4p. From (m, p) = 1 we get that m|4. Recall

further that 1 < m ≤ 1
2
p.

If m′ = m = 4 then x, y, z, w are all even, so from above we get that

p =
(x

2

)2

+
(y

2

)2

+
( z

2

)2

+
(w

2

)2
.

If m = m′ = 2 then

4p = (1+1+0+0)2p = (1+1+0+0)(x2 +y2 +z2 +w2) = A2 +B2 +C2 +D2

with A = x + y, B = y − x, C = z + w, and D = w − z. Since A, B, C, D are all

even we get a representation for p as a sum of four squares as above.

Therefore for each pm, m > 1, that is a sum of four squares we can find a pm′

with m′ < m that is also a sum of four squares. Therefore the minimal m must be 1,

and p itself is a sum of four squares, proving the theorem. ⊓⊔

We note that we can further show that if a natural number n is not of the form

4k(8n + 7) then n can be expressed as a sum of three squares. However if n =
4k(8n+ 7) then four squares are necessary. This is related to the following extension

of Waring’s problem. Hilbert’s solution showed that given k there exists an s(k)

such that every natural number can be represented as a sum of s(k), kth powers. The

extension asks to find the minimal value of s(k). More details on this are in the book

of Ribenboim [Ri].

3.2.5 The Infinitude of Primes Through Continued Fractions

In this final part of Section 3.2 we give a proof of the infinitude of primes using

continued fractions. A complete discussion of the theory of continued fractions can

be found in [NZM]. We just touch on what we need for this proof.
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Definition 3.2.5.1. Let a0, a1, . . . , an be a finite sequence of integers all positive

except possibly a0. Then a finite simple continued fraction is the rational number

defined by

a0 + 1

a1 + 1
a2+... 1

an

.

If a0, a1, . . . , an, . . . is an infinite sequence of integers all positive except possibly

a0, then an infinite simple continued fraction is determined by the limit of the finite

simple continued fractions formed up to an. Each of the finite simple continued

fractions is called a convergent of the infinite simple continued fraction.

The following can be proved (see [NZM]).

Theorem 3.2.5.1. If a0, a1, . . . , an, . . . is an infinite sequence of integers all positive

except possibly a0, then they determine a unique infinite simple continued fraction,

that is, the limit of convergents exists. Further, this value is always an irrational

number.

If the sequence defining a continued fraction becomes a periodic sequence after a

certain point, the resulting continued fraction is called a periodic continued fraction.

Consider an infinite continued fraction with sequence a0, a1, . . . and let Am, Bm be

the numerator and denominator, respectively, for the mth convergent. We need the

following results, the first being a theorem of Lagrange (see [P]).

Theorem 3.2.5.2. A real irrational number that is a solution of the quadratic equation

ax2 + bx + c = 0

with a, b, c, d ∈ Z and not all zero has a development as a periodic continued

fraction.

As a special case of the above theorem we have that if

x = p +
√

p2 + 4

2
, with p �= 0, p ∈ Z,

then

x = p + 1

p + 1
p+···

.

Lemma 3.2.5.1 ([P]). Suppose d is a positive square-free integer. If the development

of
√

d as a periodic regular continued fraction has a period of length m then the

equation x2 − dy2 = −1 has an integral solution and each positive solution x, y is

of the form x = Ai, y = Bi for i = qm − 1 with q odd.

Using Theorem 3.2.5.2 and Lemma 3.2.5.1, we get the following proof of the

infinitude of primes due to Barnes [B].
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Proof (the sequence of primes is infinite). As always, assume that there are only

finitely many prime numbers

p1 = 2 < p2 = 3 < · · · < pr .

Let p = p1 · · · pr and q = p2 · · · pr = p
2

. Now let

x = p +
√

p2 + 4

2
.

Then

x = q +
√

q2 + 1.

Since pi does not divide q2 + 1 for i = 2, . . . , r it follows that q2 + 1 must be a

power of 2. Further, this power must be odd since x is irrational. Hence

q2 + 1 = 22t+1, t ∈ N.

This gives

q2 − 2(2t )2 = −1,

and hence the Diophantine equation

x2 − 2y2 = −1

has a solution x = q, y = 2t . From Lemma 3.2.5.1, then,
q
2t is an even convergent

value of √
2 = 1 + 1

2 + 1
2+···

.

It can be shown that

Bm+1 = am+1Bm + Bm−1, m ≥ 1,

where as before Bk is the denominator of the kth convergent. From this it follows

that for m ≥ 1, B2m is a positive odd integer > 1. Since 2t is even we then must have

m = 0 and hence
q

2t
= A0

B0
= 1

1
= 1.

Then from (q, 2t ) = 1 we get q = 1, which is a contradiction since q = p2 · · ·
p2 > 1. ⊓⊔

3.3 Dirichlet’s Theorem

If (a, b) = 1 for natural numbers a and b, then Dirichlet’s theorem states that there

are infinitely many primes in the arithmetic progression {an + b}. On the one hand,

given the many proofs that we have exhibited of the infinitude of primes, this may
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not seem surprising. However, when looked at in light of the prime number theorem,

which says that the density of primes gets scarcer and scarcer as x gets larger, it

is quite surprising. Since an + b is linear in n, the distribution of numbers in this

sequence is uniform or regular on the integers. However, since π(x) ∼ x
ln x

we have

that π(x)
x

∼ 1
ln x

. We can interpret this as that the probability of randomly choosing a

prime ≤ x goes to zero as x goes to ∞. On the other hand, if the primes are randomly

distributed, it is not surprising that the densities in arithmetic sequences are equal,

that is, that there are infinitely many in each arithmetic progression. This dichotomy

again points out the fascination in the sequence of primes.

Earlier in this chapter we presented several special cases of Dirichlet’s theorem.

Specifically, we showed that there are infinitely many primes of the form 3n + 1,

3n + 2, 4n + 1, 4n + 3, 8n + 1, 8n + 3, 8n + 5, and 8n + 7. Many other specific

situations, such as 6n + 5, can be proved by the same techniques. The most general

case that we proved was Theorem 3.1.5.1, which showed that there are infinitely many

primes of the form mn + 1 for any positive integer m. A complete proof of the full

Dirichlet theorem involves analysis, and we present it in this section.

Theorem 3.3.1 (Dirichlet’s theorem). Let a,b be natural numbers with (a, b) = 1.

Then there are infinitely many primes of the form an + b.

Dirichlet’s proof rests on two concepts; Dirichlet characters and Dirichlet series.

The basic idea is to build, for each integer a, a series that would converge if there

were only finitely many primes congruent to b mod a and then show that this series

actually diverges. We discuss characters first.

Definition 3.3.1. For any integer k, a Dirichlet character modulo k is a complex

valued function on the integers χ : Z → C satisfying

(1) χ(a) = 0 if (a, k) > 1,

(2) χ(1) �= 0,

(3) χ(a1a2) = χ(a1)χ(a2) for all a1, a2 ∈ Z,

(4) χ(a1) = χ(a2) whenever a1 ≡ a2 mod k.

From (3) and (4) it is clear that a Dirichlet character can be considered as a mul-

tiplicative complex function on the set of residue classes modulo k. We will shorten

the notation and use the word character to mean a Dirichlet character modulo k.

From a group-theoretical point of view a Dirichlet character is just a character of

a finite complex representation of the unit group U(Zk). We will say more about this

after our discussion of characters.

As an example consider the function

χ0(a) =
{

0 if (a, k) > 1,

1 if (a, k) = 1.

It is easy to verify that this is a character. Thus, modulo k, there is always at least

one character. The character above is called the principal character and exists as



106 3 The Infinitude of Primes

defined for each k. We will presently show that there are φ(k) characters, where φ is

the Euler phi function, for each positive integer k.

We now describe some necessary properties of characters. In each of the following

results, when we say character we mean character modulo k, with k fixed.

Lemma 3.3.1.

(1) For every character, χ(1) = 1.

(2) For every character, if (a, k) = 1 then |χ(a)|φ(k) = 1. Hence |χ(a)| = 1

and χ(a) is a φ(k)th root of unity.

Proof.

(1) Since χ is multiplicative we have χ(1) = χ(1)χ(1). Since χ(1) �= 0, it

follows that χ(1) = 1.

(2) From Euler’s theorem (Theorem 2.4.4.3) we have that if (a, k) = 1, then

aφ(k) ≡ 1 mod k.

Since a character is multiplicative this implies

|χ(a)|φ(k) =
∣∣χ
(
aφ(k)

)∣∣ = |χ(1)| = 1. ⊓⊔

Lemma 3.3.2. For every k there exist only finitely many characters mod k.

Proof. Given k there are only finitely many different residue classes mod k. If a is

a positive residue mod k then from the previous lemma χ(a) is a kth root of unity.

Hence there are only finitely many choices. ⊓⊔

For the time being we will let c denote the finite number of characters modulo k.

After we prove certain orthogonality relations we will show that c = φ(k).

Lemma 3.3.3.

(1) If χ1 and χ2 are characters, then so is χ1χ2, where (χ1χ2)(a) = χ1(a)χ2(a).

(2) If χ is a character, so is its complex conjugate χ . Further, χ(a)−1 = χ(a).

(3) If χ1 is a fixed character and χ runs over all characters, then so does χ1χ .

Proof. The proofs of (1) and (2) are straightforward verifications of the four properties

in the definition of a character, and we leave these to the exercises.

For part (3) suppose that (a, k) = 1 and χ1(a)χ2(a) = χ1(a)χ3(a). Then since

χ1(a) �= 0 it follows that χ2(a) = χ3(a). Hence if χ is a fixed character and we

let χ1 run over all c distinct characters, then χχ1 are again c distinct characters and

hence must be all of them. ⊓⊔

We need to prove certain orthogonality relations among the characters. The next

lemma is crucial for this and contains much of the work in proving these results.

Lemma 3.3.4. If d > 0 and (d, k) = 1 with d not congruent to 1 mod k, then there

exists a character for which χ(d) �= 1.
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Proof. Since χ(a) = 0 if (a, k) > 1 it follows that to determine a character for

which χ(d) �= 1 we must only find a function satisfying properties (2), (3), (4) of the

definition of a character for (a, k) = 1.

Let k = p
e1

1 · · · pek

k be the prime decomposition of k. Since d �= 1 mod k it

follows that for one of the prime divisors p of k we have d �= 1 mod pt for some

t > 0. Suppose first that p is an odd prime divisor of k satisfying this, that is, d �= 1

mod pt , where pt |k. Then p does not divide d since (d, k) = 1.

Recall that the unit group modulo pt is cyclic, that is, there is a primitive root g

modulo pt . There are φ(pt ) primitive roots so choose g �= d . (See Theorem 2.4.4.5

and Section 2.4.4.) If (a, k) = 1 then a is a unit modulo k and hence a power of g

modulo k. That is,

a ≡ gb mod pt with b ≥ 0.

Let σ be the root of unity given by

σ = e
2πi

φ(pt )

and define for each a with (a, k) = 1 with a ≡ gb as above,

χ(a) = σ b.

Further, if (a, k) > 1 define χ(a) = 0. This defines a function on the residue classes

mod k. We must show that χ is a character and that χ(d) �= 1.

Property (1) of the definition of a character is clear from the definition of χ . Now,

χ(1) = σ 0 = 1 since g0 = 1. Hence χ(1) �= 0. Further if (a1, k) = (a2, k) = 1

then a1 ≡ gb1 and a2 ≡ gb2 mod pt . This implies that χ(a1) = σ b1 , χ(a2) = σ b2 .

But a1a2 = gb1+b2 mod pt and hence

χ(a1a2) = σ b1+b2 = σ b1σ b2 = χ(a1)χ(a2).

Therefore χ is multiplicative.

Finally, if a1 ≡ a2 mod pt then a ≡ gb ≡ a2 and hence χ(a1) = χ(a2).

Therefore χ is a character. Since d �≡ 1 mod pt then d ≡ grmod pt for some r with

φ(pt ) not dividing r . Therefore

χ(d) = σ r �= 1.

The above proof works whenever we have an odd prime divisor of k with d not

congruent to 1 mod pt . This leaves only the prime 2. Now suppose that d �≡ 1 mod 2t ,

where 2t |k. If t = 1 then k = 2q with q odd and then d ≡ 1 mod 2. Therefore if

d �≡ 1 mod k there must exist an odd prime divisor of k with d �≡ 1 mod ps , and we

are back to the first case. Hence we may assume that k = 2tq with t > 1 and d �≡ 1

mod 2t .

Now d ≡ 1 mod 2 and hence d ≡ 1 mod 4 or d ≡ 3 mod 4. We consider each of

these cases separately.
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If d ≡ 1 mod 4 then t > 2. If (a, k) = 1 then clearly (a, 2) = 1. Then it can be

shown that (see the exercises)

a ≡ (−1)
a−1

2 5b mod 2t for some b ≥ 0.

Now let

σ = e
2πi

2t−2

and define χ(a) = 2b. Since b is determined mod 2t−2 it follows that χ is well-

defined on the residue classes mod k. As in the odd case if we define χ(a) = 0 for

(a, k) > 1 then it is straightforward to verify that χ is a character. Again as in the odd

case since d �≡ 1 mod 2t and d ≡ 1 mod 4, then d ≡ 5r mod 2t with r not divisible

by 2t−2. Hence χ(d) = σ r �= 1.

If d ≡ 3 mod 4 then d ≡ −1 mod 4. For (a, k) = 1 define

χ(a) = (−1)
a−1

2 .

As in the other cases it is straightforward to verify that χ is a character. Here χ(d) =
−1 �= 1. This completes the proof of Lemma 3.3.4. ⊓⊔

The next two theorems are called the orthogonality relations for Dirichlet char-

acters. They are special cases of general results on characters of representations of

finite groups.

Theorem 3.3.1 (orthogonality relations I).

(1) If χ is a fixed character and a runs over a complete set of residue classes

mod k, then
∑

a

χ(a) =
{

φ(k) if χ = χ0,

0 if χ �= χ0.

(2) If a > 0 is an integer, then if χ runs over the set of all c characters,

∑

χ

χ(a) =
{

c if a ≡ 1 mod k,

0 if a �≡ 1 mod k.

Proof.

(1) Let χ0 be the principal character as defined immediately after Definition 3.3.1.

That is,

χ0(a) =
{

0 if (a, k) > 1,

1 if (a, k) = 1.

If a runs over a complete set of k positive residue classes mod k, then
∑

a

χ0(a)

has φ(k) terms each with value 1, and (k − φ(k)) terms each with value 0. Hence
∑

a

χ0(a) = φ(k).

If χ �= χ0 choose d with d > 0, (d, k) = 1 and χ(d) �= 1. This exists since it is

not the principal character. Then as a runs over a complete residue system mod k so
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does da. Then ∑

a

χ(a) =
∑

a

χ(da).

But χ is multiplicative, so

∑

a

χ(a) =
∑

a

χ(da) =
∑

a

χ(d)χ(a) = χ(d)
∑

a

χ(a).

Since χ(d) �= 1 it follows that
∑

a χ(a) = 0.

(2) For a ≡ 1 mod k the sum
∑

χ χ(a) runs over c characters. From Lemma 3.3.1

each of these has value 1 and the sum has value c.

If (a, k) > 1 then each of the terms in the series is zero, so the sum vanishes.

If (a, k) = 1 but a �= 1 mod k then there exists a character (by Lemma 3.3.6) with

χ1(a) �= 1. Now as χ runs over all c characters, then by Lemma 3.3.3 so does χ1χ .

Hence ∑

χ

χ(a) =
∑

χ

χ1(a)χ(a) = χ1(a)
∑

χ

χ(a).

Since χ1(a) �= 1 it follows that
∑

χ χ(a) = 0. ⊓⊔

We can now prove that c, the number of distinct characters mod k, is exactly φ(k).

Corollary 3.3.1. There exist exactly φ(k) characters modulo k.

Proof. There are exactly φ(k) positive residues a with (a, k) = 1. If we sum over

all c characters and φ(k) residues we get using the orthogonality results above that

∑

a,χ

χ(a) =
∑

a

∑

χ

χ(a) = c + 0 + · · · + 0 = c.

On the other hand,

∑

a,χ

χ(a) =
∑

χ

∑

a

χ(a) = φ(k) + 0 + · · · + 0 = φ(k).

Therefore c = φ(k). ⊓⊔

Theorem 3.3.2 (orthogonality relations II).

(1) If χ1 and χ2 are characters mod k and a runs over a complete set of residue

classes mod k, then

∑

a

χ1(a)χ2(a) =
{

φ(k) if χ1 = χ2,

0 if χ1 �= χ2.

(2) If a > 0 is an integer and (a, k) = 1, then if χ runs over the set of all φ(k)

characters,
∑

χ

χ(t)χ(a) =
{

φ(k) if a ≡ t mod k,

0 if a �≡ t mod k.



110 3 The Infinitude of Primes

Proof.

(1) From Lemma 3.3.3 we have that for any character, χ−1 = χ . Hence if

χ1 = χ2, then

χ1(a)χ2(a) = χ1(a)χ1(a) = χ0(a),

where χ0 is the principal character. Therefore from Theorem 3.3.1,

∑

a

χ1(a)χ2(a) =
∑

a

χ00(a) = φ(k).

If χ1 �= χ2, then χ−1
1 �= χ2 and hence χ1χ2 �= χ0. Then again from Theo-

rem 3.3.1, ∑

a

χ1(a)χ2(a) = 0.

(2) The proof of the second part of the theorem follows in an analogous manner

from Theorem 3.3.1. We leave the details to the exercises. ⊓⊔

Before moving on to Dirichlet series we mention that Theorems 3.3.1 and 3.3.2

are special cases of general results in group representation theory. If G is a finite

group then a (matrix) representation of G is a homomorphism ρ : G → GLn(R)

(see Section 3.2) for some n and some ring R. Hence ρ(g) is an invertible n×n matrix

for g ∈ G. The character of the representation ρ is the function χρ : G → R given

by χρ(g) = tr(ρ(g)). For any finite group G there are orthogonality relations on

the set of characters that specialize in the case of finite abelian groups (for complex

representations) to the theorems on Dirichlet characters. The book by Curtis and

Reiner [CR] is a standard reference on representations of finite groups. A more

elementary treatment can be found in the book by M. Newman [New 1].

The next ingredient in the proof of Dirichlet’s theorem is Dirichlet series.

Definition 3.3.2. If χ is a character mod k then the Dirichlet L-series is defined for

complex values s by

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

A rough outline of the way these series lead to a proof of Dirichlet’s theorem is

as follows. Consider (a, b) = 1 and consider Dirichlet characters mod a. It can be

shown that for s > 1 the series L(s, χ) is an analytic function of s and further, for

s > 1, satisfies an analogue of the Euler product (see Section 3.1.2 and [N]), that is,

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

.

Then by logarithmic differentiation,

−L′(s, χ)

L(s, χ)
=

∑

p

χ(p) ln p

ps − χ(p)
.
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If we introduce the function � on N by

�(n) =
{

ln p if n = pc, c ≥ 1,

0 for all other a > 0,

then the above can be rewritten as

−L′(s, χ)

L(s, χ)
=

∞∑

n=1

χ(n)�(n)

ns
.

The function �(n) is called the von Mangoldt function and will also play a role in

the proof of the prime number theorem. Multiplying by χ(b) and then summing over

all other characters χ⋆ we get by the orthogonality relations

∑

n≡b mod a

�(n)

ns
= 1

φ(a)

∑

χ⋆

χ⋆(b)
−L′(s, χ⋆)

L(s, χ⋆)
.

As s → 1+ the left-hand side becomes approximately

∑

p≡b mod a

ln p

p
.

What must be shown is that the right-hand side becomes infinite. This would then

imply that the number of primes congruent to b mod a must be infinite.

It can be shown that for the principal character we have −L′(s,χ0)
L(s,χ0)

→ ∞ as

s → 1+. It follows that to show that the right-hand side above becomes infinite we

must show that
L′(s,χ)
L(s,χ)

remains bounded for any nonprincipal character. To show this

we must show that L(1, χ) �= 0 for any nonprincipal character. We now outline a

series of results that prove all these assertions.

Theorem 3.3.3. For any character χ mod k the Dirichlet L-series is an analytic

function for s > 1. Further, it has an Euler product representation

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

.

The proof of this theorem follows from the following sequence of lemmas.

Lemma 3.3.5. L(s, χ) is absolutely convergent for s > 1.

Proof. From Lemma 3.3.3 we know that |χ(n)| ≤ 1 and hence
|χ(n)|

ns ≤ 1
ns . Therefore

|L(s, χ)| =
∣∣∣∣∣

∞∑

n=1

χ(n)

ns

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣
χ(n)

ns

∣∣∣∣ ≤
∞∑

n=1

1

ns
,

which converges for s > 1. Hence L(s, χ) is absolutely convergent for s > 1. ⊓⊔



112 3 The Infinitude of Primes

Lemma 3.3.6. The series
∞∑

n=1

χ(n) ln n

ns

converges absolutely for s > 1 and, further, in this range

L′(s, χ) = −
∞∑

n=1

χ(n) ln n

ns
.

Proof. For s > 1 + ǫ we have

∣∣∣∣
χ(n) ln n

ns

∣∣∣∣ ≤ ln n

n1+ǫ
.

However,
∑∞

n=1
ln n

n1+ǫ converges by the integral test. Thus the given series converges

uniformly for s > 1+ ǫ and hence absolutely for s > 1. Now L(s, χ) =
∑∞

n=1
χ(n)
ns ,

so by uniform convergence we can differentiate termwise, and therefore

L′(s, χ) = −
∞∑

n=1

χ(n) ln n

ns
.

(Recall that if y = n−s then y′ = −n−s ln n.) ⊓⊔

Let μ be the Möbius function defined for natural numbers n by

μ(n) =

⎧
⎪⎨
⎪⎩

1 if n = 1,

(−1)r if n = p1p2 · · · pr with p1, . . . , pr distinct primes,

0 otherwise.

Then the following is true.

Lemma 3.3.7. The series
∞∑

n=1

χ(n)μ(n)

ns

converges absolutely for s > 1 and, further, in this range

L(s, χ)

∞∑

n=1

χ(n)μ(n)

ns
= 1.

It follows that L(s, χ) �= 0 for s > 1.

Proof. As before,
∣∣χ(n)μ(n)

ns

∣∣ ≤ 1
ns , so the absolute convergence follows from the

convergence of the series
∑∞

n=1
1
ns for s > 1.
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Now it can be shown that for the Möbius function μ(n) we have

∑

d|n
μ(d) =

{
1 if n = 1,

0 if n > 1.

(See Theorem 2.4.3.2 for a similar result and Section 3.6 for a proof.)

Using this above fact, we then have

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)μ(n)

ns
=

∞∑

t=1

∑

mn=t

χ(m)χ(n)μ(n)

msns
=

∞∑

t=1

χ(t)

t s

∑

n|t
μ(n) = 1.

Therefore

L(s, χ)

∞∑

n=1

χ(n)μ(n)

ns
= 1. ⊓⊔

We can now obtain the indicated Euler product representation for L(s, χ).

Lemma 3.3.8. For s > 1 we have the Euler product representation

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

.

Proof. For m > 1 let S be the set of all positive integers n not divisible by any prime

p > m. Then we have

∏

p≤m

(
1 − χ(p)

ps

)
=

∑

n∈S

χ(n)μ(n)

ns
.

All n ≤ m are included in the set S and therefore

∏

p≤m

(
1 − χ(p)

ps

)
=

∑

1≤n≤m

χ(n)μ(n)

ns
+

∑

n′>m

χ(n′)μ(n′)

n′s ,

where the second sum runs over those n′ > m that are not divisible by any prime

p > m. Now as m → ∞ the first sum on the right goes to

∞∑

n=1

χ(n)μ(n)

ns
= 1

L(s, χ)

by Lemma 3.3.7. The second sum on the right approaches 0 since its absolute value

is less than
∑

n>m
1
ns . Combining these, we obtain

∏

p

(
1 − χ(p)

ps

)
= 1

L(s, χ)
=⇒ L(s, χ) =

∏

p

(
1 − χ(p)

ps

)−1

. ⊓⊔
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Recall that the von Mangoldt function �(n) was defined for positive integers by

�(n) =
{

ln p if n = pc, c ≥ 1,

0 for all other n > 0.

We then get the following result.

Theorem 3.3.4.

(1) For s > 1 we have

−L′(s, χ)

L(s, χ)
=

∞∑

n=1

χ(n)�(n)

ns
.

(2) As s → 1+ we have for the principal character χ0,

−L′(s, χ0)

L(s, χ0)
→ ∞.

Proof. Since |χ(n)�(n)| ≤ ln n it follows that the series
∑∞

n=1
χ(n)�(n)

ns converges

absolutely for s > 1.

Now it can be shown, in a similar manner as for the Möbius function, that

∑

d|n
�(d) = ln n

(see the exercises). Hence for s > 1,

L(s, χ)

∞∑

n=1

χ(n)�(n)

ns
=

∞∑

m=1

χ(m)

ms

∞∑

n=1

χ(n)�(n)

ns

=
∞∑

t=1

χ(t)

t s

∑

n|t
�(n) =

∞∑

t=1

χ(t) ln t

t s
= −L′(s, χ).

For the principal character χ0 we have χ0(n) = 1 if (n, k) = 1 and 0 otherwise.

Therefore from the first part of the theorem, it follows that

−L′(s, χ0)

L(s, χ0)
=

∑

n=1,(n,k)=1

�(n)

ns
=

∞∑

n=1

�(n)

ns
−
∑

p|k
ln p

∞∑

m=1

1

pms

=
∞∑

n=1

�(n)

ns
−
∑

p|k

ln p

ps − 1
.

As s → 1 the second term on the right is finite. Hence to prove that −L′(s,χ0)
L(s,χ0)

→
∞ as s → 1+we must only show that the first term in the expression above diverges.



3.3 Dirichlet’s Theorem 115

From Euler’s proof of the infinitude of primes, we know that
∑

p
1
p

diverges.

Since
ln p
p

> 1
p

it follows that
∑

p
ln p
p

diverges and hence so does
∑∞

n=1
�(n)

n
. Hence

for every t > 0 there exists an m = m(t) for which

m∑

n=1

�(n)

n
> t.

For 1 < s < 1 + ǫ(t) we then have

m∑

n=1

�(n)

ns
> t =⇒

∞∑

n=1

�(n)

ns
> t.

From this last inequality it follows clearly that the sum diverges. ⊓⊔

We now have one big brick of Dirichlet’s proof in place, that is, that for the

principal character
−L′(s, χ0)

L(s, χ0)
→ ∞.

As explained above we now need to show that L(1, χ) does not vanish for any

nonprincipal character. This is the most difficult part of the proof.

First three more preliminary results are needed.

Lemma 3.3.9. If t ≥ m ≥ 1 and χ is not the principal character, then

∣∣∣∣∣

t∑

n=m

χ(n)

∣∣∣∣∣ ≤ φ(k)

2
.

Proof. By the orthogonality relations the sum
∑

χ(a) over a complete set of residues

is zero. Hence in the given sum we may assume that there are at most k − 1 terms. In

a complete set of residues exactly φ(k) terms have |χ(a)| = 1 and all the remaining

terms have |χ(a)| = 0. If between m and t there are at most
φ(k)

2
terms with

|χ(a)| = 1, then ∣∣∣∣∣

t∑

n=m

χ(n)

∣∣∣∣∣ ≤
t∑

n=m

|χ(n)| ≤ φ(k)

2
.

If there are more than
φ(k)

2
such terms then

∣∣∣∣∣

t∑

n=m

χ(n)

∣∣∣∣∣ =

∣∣∣∣∣∣

m+k−1∑

n=m

χ(n) −
m+k−1∑

n=t+1

χ(n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

m+k−1∑

n=t+1

χ(n)

∣∣∣∣∣∣
≤

m+k−1∑

n=t+1

|χ(n)| <
φ(k)

2
. ⊓⊔
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Lemma 3.3.10. For any character χ and s > 1, we have the inequality

(L(s, χ0))
3|L(s, χ)|4|L(s, χ2)|2 ≥ 1.

Proof. For real numbers x, y with 0 < x < 1 we have the inequality

(1 − x)3|1 − xeiy |4|1 − xe2iy |2 < 1

(see the exercises).

If p is a prime that does not divide k let χ(p) = eiy and let x = 1
ps . Applying

the above inequality then gives

(
1 − χ0(p)

ps

)3 ∣∣∣∣
(

1 − χ(p)

ps

)∣∣∣∣
4 ∣∣∣∣
(

1 − χ2(p)

ps

)∣∣∣∣
2

≤ 1.

Multiplying over all primes and using the Euler product representation of the L-series

then gives the stated inequality. ⊓⊔

Lemma 3.3.11. For any nonprincipal character χ we have |L′(s, χ)| < φ(k)

for s ≥ 1.

Proof. From Lemma 3.3.6 we have

|L′(s, χ)| =
∣∣∣∣∣

∞∑

n=1

χ(n) ln n

ns

∣∣∣∣∣

for s > 1 and so we work with the right-hand sum.

It is straightforward to show that the function f (t) = ln t
ts

is a decreasing function

for t ≥ 3. Therefore from Lemma 3.3.9 we have for t ≥ m ≥ 3 the inequality

∣∣∣∣∣

t∑

n=m

χ(n) ln n

ns

∣∣∣∣∣ ≤ φ(k)

2

ln m

ms
≤ φ(k)

2

ln m

m
.

Hence the series for L′(s, χ) converges uniformly for s ≥ 1. In this range, taking

m = 3 and letting t → ∞, it follows that

∣∣∣∣∣

∞∑

n=1

χ(n) ln n

ns

∣∣∣∣∣ ≤ ln 2

2
+ φ(k)

2

ln 3

3
<

1

2
+ φ(k)

2
≤ φ(k). ⊓⊔

Theorem 3.3.5. L(1, χ) �= 0 for any nonprincipal character and, further, for any

nonprincipal character,
L′(s,χ)
L(s,χ0)

is bounded for s > 1.

Proof. We break the proof into two pieces. The first for nonreal characters, that

is, characters that take complex values, and the second for real, but not principal,

characters. This second part is the more difficult.
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From Lemma 3.3.9 we have for any nonprincipal character

∣∣∣∣∣

t∑

n=m

χ(n)

∣∣∣∣∣ ≤ φ(k)

2
.

Therefore for any nonprincipal character with s > 1, we see that

|L(s, χ)| < φ(k),

by letting m = 1 and t → ∞ in the above inequality and using that

|χ(n)|
ns

< |χ(n)|.

Assume first that χ is a nonreal character. Then χ2 is not the principal character

for if it were, χ would have to be real. Then from the remark above, we have for

s > 1 that |L(s, χ2)| < φ(k). On the other hand, if 1 < s < 2, we have

L(s, χ0) =
∞∑

n=1,(n,k)=1

1

ns
≤

∞∑

n=1

1

ns
< 1 +

∫ ∞

1

dz

zs

= 1 + 1

s − 1
= s

s − 1
<

2

s − 1
.

Applying Lemma 3.3.10 we have

|L(s, χ)| ≥ 1

(L(s, χ0)
3
4

1

|L(s, χ2)| 2
4

>
(s − 1)

3
4

2
3
4

1√
φ(k)

>
(s − 1)

3
4

2
√

φ(k)
.

If L(1, χ) = 0, then for s > 1,

|L(s, χ)| = |L(s, χ) − L(1, χ)| =
∣∣∣∣
∫ s

1

L′(t, χ)dt

∣∣∣∣ < φ(k)(s − 1).

Hence for 1 < s < 2 we would have

(s − 1)
1
4 >

1

2φ(k)
3
2

.

However, this inequality is false for s = 1 + 1

16φ(k)
3
2

. Therefore L(1, χ) �= 0 for χ

any nonreal character.

Now assume that χ is a real character but not the principal character. As remarked

earlier, this is the more difficult part. To begin we define the function f (n) on the

positive integers n by

f (n) =
∑

d|n
χ(d).

Then we can prove that (see the exercises) f (n) ≥ 0 for all n ≥ 1 and f (n) ≥ 1 if

n = c2, a square.
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Let m = (4φ(k))6 and z =
∑m

n=1 2(m − n)f (n). Applying the definition of

f (n), we have

z =
∑

uv≤m

2(m − uv)χ(v).

Since f (n) ≥ 0 and f (c2) ≥ 1, we have

z ≥

√
m∑

v=1

2(m − v2) ≥

√
m

2∑

v=1

2(m − v2) ≥

√
m

2∑

v=1

2
(
m − m

4

)
= 3

4
m

3
2 = 3

4
(4φ(k))9.

Let

z1 =
m

1
3∑

u=1

∑

m
3
2 <v≤ m

u

2(m − uv)χ(v),

z2 =
m

2
3∑

v=1

∑

0<u≤ m
v

2(m − uv)χ(v).

Then it follows from uv ≤ m that either u ≤ m
1
3 , v > m

2
3 , or v ≤ m

2
3 . This implies

then that

z = z1 + z2.

Suppose that z(n) is a complex valued function on the natural numbers. Let c be

a natural number and for t ≥ c let r(t) =
∑t

n=c z(n). Let r(u − 1) = 0. For d ≥ c

let ν = maxc≤t≤d |r(t)| and let ǫc ≥ ǫc+1 ≥ · · · ≥ ǫd ≥ 0. Then

d∑

n=c

ǫnz(n) =
d∑

n=c

ǫn(r(n) − r(n − 1)) =
d−1∑

n=c

r(n)(ǫn − ǫn+1) + r(d)ǫd .

This then implies that

∣∣∣∣∣

d∑

n=c

ǫnz(n)

∣∣∣∣∣ ≤ ν

(
d−1∑

n=c

(ǫn − ǫn+1) + ǫd

)
= νǫc. (3.3.1)

From Lemma 3.3.9, ∣∣∣∣∣

d∑

n=c

χ(n)

∣∣∣∣∣ ≤ φ(k)

2
.

Applying the above remarks to this inequality with ǫn = 1
ns we get

∣∣∣∣∣

d∑

n=c

χ(n)

ns

∣∣∣∣∣ ≤ φ(k)

2
· 1

cs
≤ φ(k)

2c
. (3.3.2)
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Now applying the inequality (3.3.1) to the definition of z1 gives us

z1 ≤
m

1
3∑

u=1

∣∣∣∣
∑

m
2
3 <v≤ m

u

2(m − uv)χ(v)

∣∣∣∣ ≤
m

1
3∑

u=1

2m
φ(k)

2
= m

4
3 φ(k).

Now as defined

z2 =
m

2
3∑

v=1

∑

0<u≤ m
v

2(m − uv)χ(v).

Let θ = m
v

−
[

m
v

]
, where [ ] is the greatest integer function. Then 0 ≤ θ < 1 and

∑

u

(2m − 2uv) = 2m
∑

u

1 − v
∑

u

2u = 2m
[m

v

]
− v

[m

v

] ([m

v

]
+ 1

)

= 2m
(m

v
− θ

)
− v

((m

v
− θ

)2

+ m

v
− θ

)

= 2m2

v
− 2mθ − v

(
m2

v2
− 2θ

m

v
+ θ2 + m

v
− θ

)

= m2

v
− m + v(θ − θ2).

Since 0 ≤ θ < 1 we have |θ − θ2| ≤ 1 and hence

z2 = m2
m

2
3∑

v=1

χ(v)

v
− m

m
2
3∑

v=1

χ(v) +
m

2
3∑

v=1

χ(v)v(θ − θ2)

≤ m2

⎛
⎜⎝L(1, χ) −

∞∑

v=m
2
3 +1

χ(v)

vs

⎞
⎟⎠ + m

φ(k)

2
+ m

2
3

m
2
3∑

v=1

1.

Applying the inequality

∣∣∣∣∣

d∑

n=c

χ(n)

ns

∣∣∣∣∣ ≤ φ(k)

2
· 1

cs
≤ φ(k)

2c

and letting c = m
2
3 + 1, v → ∞, we obtain

z2 < m2L(1, χ) + m2 φ(k)

2

1

m
2
3

+ m
4
3
φ(k)

2
+ m

4
3 φ(k)

= m2L(1, χ) + m
4
3 φ(k)

(
1

2
+ 1

2
+ 1

)

= m2L(1, χ) + 2m
4
3 φ(k).
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It follows then, summarizing all these inequalities, that

3

4
(4φ(k))9 ≤ z < m2L(1, χ) + 3m

4
3 φ(k) = m2L(1, χ) + 3(4φ(k))8φ(k)

= m2L(1, χ) + 3

4
(4φ(k))9.

This then clearly implies that m2L(1, χ) > 0 and therefore L(1, χ) > 0. Hence

L(1, χ) �= 0 for χ a real nonprincipal character, completing the proof that L(1, χ) �=
0 for any nonprincipal character.

We must now show that
L′(s,χ)
L(s,χ)

remains bounded for s > 1. Since L(1, χ) �= 0

it follows that 1
L(s,χ)

is bounded for s ≥ 1. From Lemma 3.3.11 L′(s, χ) is also

bounded for s ≥ 1 completing the proof. ⊓⊔

The final piece is the next theorem.

Theorem 3.3.6. Suppose (t, k) = 1, t > 0. Then for s > 1 we have

− 1

φ(k)

∑

χ

χ(t)
L′(s, χ)

L(s, χ)
=

∑

n≡t mod k

�(n)

ns
.

Proof. For s > 1 we have from Theorem 3.3.4 that

−L′(s, χ)

L(s, χ)
=

∞∑

n=1

χ(n)�(n)

ns
.

Combining this with the orthogonality relations for characters, we get

−
∑

χ

1

χ(t)

L′(s, χ)

L(s, χ)
=

∑

χ

1

χ(t)

∞∑

n=1

χ(n)�(n)

ns

=
∞∑

n=1

�(n)

ns

∑

χ

1

χ(t)
χ(n) =

∑

n≡t mod k

�(n)

ns
φ(k). ⊓⊔

We can now give the proof of Dirichlet’s theorem.

Proof. We suppose that (a, b) = 1 and we want to show that there are infinitely

many primes of the form an + b or equivalently infinitely many primes congruent

to b mod a. We consider the Dirichlet characters mod a. Apply Theorem 3.3.6 with

a = k and b = t , so that

− 1

φ(a)

∑

χ

χ(b)
L′(s, χ)

L(s, χ)
=

∑

n≡b mod a

�(n)

ns
.

As s → 1+ the left-hand side approaches ∞ since the term for the principal character

goes to −∞, while the other φ(a) − 1 terms remain bounded. Therefore we have as
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s → 1+ and with all congruences mod a,

∑

p≡b

ln p

ps
+

∑

(p,m),pm≡b,m>1

ln p

pms
→ ∞.

Now

∞∑

n=1

2 ln n

n2
>

∞∑

n=2

ln n

n(n − 1)
≥
∑

p

ln p

p(p − 1)

≥
∑

p,m;m>1

ln p

pm
>

∑

p,m;m>1

ln p

pms

≥
∑

(p,m),pm≡b,m>1

ln p

pms
, s > 1.

Therefore the second sum ∑

p,m,pm≡b,m>1

ln p

pms

remains bounded as s → 1+. It follows that

∑

p≡b

ln p

ps
→ ∞.

Therefore the number of primes congruent to b mod a must be infinite. ⊓⊔

Before leaving Dirichlet’s theorem we would like to mention a beautiful new result

of Ben Green and Terence Tao [GT] also related to primes and arithmetic progressions.

It is a classical conjecture that there are arbitrarily long arithmetic progressions of

prime numbers. This conjecture was hinted at in the work of Lagrange and Waring

in the late 1700s (see [D]). In 1939 van der Corput [VC] established that there are

infinitely many triples of primes in arithmetic progression. Green and Tao [GT]

proved the following.

Theorem 3.3.7. The prime numbers contain arithmetic progressions of length k for

all k. That is, for all k ∈ N there exist a, b ∈ N with (a, b) = 1 such that a, a + b,

a + 2b, . . . , a + (k − 1)b are all primes.

Their proof is probabilistic and nonconstructive and quite difficult.

3.4 Twin Prime Conjecture and Related Ideas

Twin primes are prime numbers p and q such that |p − q| = 2. For example {3, 5},
{5, 7}, {11, 13} are all pairs of twin primes. Trivially, 2, 3 is the only pair of primes

that differ by one. It is not known whether there are infinitely many pairs of twin
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primes, but an examination of the list of primes shows an abundance of such pairs

and leads to the following conjecture. Notice that the random distribution of primes

also supports this conjecture.

Twin primes conjecture. There are infinitely many pairs of twin primes.

Despite the twin primes conjecture there is a remarkable theorem of Brun that

says essentially that even if there are infinitely many twin primes the sum of their

reciprocals converges. Recall that Euler proved that the sum
∑

p prime
1
p

diverges.

This implies that the sequence of primes is infinite. Here let

S = {p; p prime and p + 2 prime}.

That is, S is the set of twin primes. Brun’s theorem is the following.

Theorem 3.4.1 (Brun). Let S be the set of twin primes. Then

∑

p∈S

(
1

p
+ 1

p + 2

)

converges.

Notice that if S is a finite set, then certainly the sum converges. Brun’s proof

depends on a method known as Brun’s sieve. We will look at this method as well as

the proof of Theorem 3.4.1 in Chapter 5. We mention some elementary facts about

twin primes, leaving the proofs to the exercises.

Lemma 3.4.1. The integer 5 is the only prime appearing in two different twin prime

pairs.

Primes are those natural numbers that have only two possible positive divisors.

The next lemma gives a similar characterization of twin primes.

Lemma 3.4.2. There is a one-to-one correspondence between twin prime pairs and

those integers n for which n2 − 1 has only four possible positive divisors.

Lemma 3.4.3. Suppose p, q are primes. Then pq +1 is a square if and only if p and

q are twin primes.

Lemma 3.4.4. If p, q are twin primes greater than 3 then p + q is divisible by 12.

3.5 Primes Between x and 2x

In Theorem 2.3.2 we saw that there are arbitrarily large gaps in the sequence of primes.

Despite this fact, the next result, known as Bertrand’s theorem, says that for any

integer x there must be a prime between x and 2x. Bertrand verified this empirically

for a large number of natural numbers and conjectured the result. The theorem was

proved by Chebychev.
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Theorem 3.5.1 (Bertrand’s theorem). For every natural number n > 1 there is a

prime p such that n < p < 2n.

Chebychev’s proof of Bertrand’s conjecture used techniques that he also used in

obtaining a simple asymptotic bound on π(x). This bound was a step on the road to

the prime number theorem. We will give a proof of Chebychev’s theorem in the next

chapter and defer a proof of Bertrand’s theorem until then.

3.6 Arithmetic Functions and the Möbius Inversion Formula

In the course of Chapters 2 and 3, we used several functions, such as the Euler phi

function φ(n), the sum of the divisors function σ(n), the von Mangoldt function �(n)

and the Möbius function μ(n), whose domains are the natural numbers and whose

ranges are contained in the complex numbers. Functions such as these are called

arithmetic functions or number-theoretic functions, and they play an extensive

role in number theory. Several other functions of this type will be used in the proof

of the prime number theorem. In this final section of Chapter 3, we take a look at

arithmetic functions in general and a very important result called the Möbius inversion

formula.

Definition 3.6.1. An arithmetic function or number-theoretic function is a func-

tion f : N → C, that is, a function whose domain is the natural numbers and whose

range is a subset of the complex numbers.

Besides the arithmetic functions that we have mentioned already, very important

examples are given by the divisor functions:

τ(n) = number of positive divisors of n;
σ(n) = sum of the positive divisors of n;
σk(n) = sum of the kth powers of the positive divisors of n.

These can also be written in the following form.

τ(n) =
∑

d|n
1,

σ (n) =
∑

d|n
d,

σk(n) =
∑

d|n
dk.

We saw in Section 2.4.3 that if φ is the Euler phi function and (m, n) = 1, then

φ(mn) = φ(m)φ(n). This property is called multiplicativity.

Definition 3.6.2. An arithmetic function f is multiplicative if

f (mn) = f (m)f (n)

whenever (m, n) = 1.
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If n has a prime decomposition n = p
e1

1 · · · pek

k and f is a multiplicative arith-

metic function then f (n) = f (p
e1

1 ) · · · f (p
ek

k ). Therefore, multiplicative arithmetic

functions are uniquely determined by their values on prime powers. Further, notice

that for any n we have f (n) = f (n)f (1). Hence if there is any n with f (n) �= 0, we

must have f (1) = 1.

Multiplicativity is preserved under summing over divisors. More precisely, we

have the following theorem.

Theorem 3.6.1. Suppose that f (n) is a multiplicative arithmetic function and

F(n) =
∑

d|n
f (d).

Then F(n) is also multiplicative.

Proof. Suppose that n = n1n2 with (n1, n2) = 1. If d|n then since n1 and n2

are relatively prime it follows that d = d1d2 with d1|n1, d2|n2, and (d1, d2) = 1.

Conversely, if d = d1d2 with d1|n1 and d2|n2, then d|n. This establishes a one-to-

one correspondence between the positive divisors of n and pairs of divisors d1, d2 of

n1, n2, respectively. It follows that

f (n) =
∑

d|n
f (d) =

∑

d1|n1

∑

d2|n2

f (d1d2).

The function f is assumed to be multiplicative and hence f (d1d2) = f (d1)f (d2).

Therefore

F(n) =
∑

d1|n1

f (d1)
∑

d2|n2

f (d2) = F(n1)F (n2),

proving the theorem. ⊓⊔

This theorem can be used immediately to show that the divisor functions are mul-

tiplicative. It is clear from the fundamental theorem of arithmetic and the definition

that τ(n) is mulitplicative. From the expressions

σ(n) =
∑

d|n
d,

σk(n) =
∑

d|n
dk,

it follows from the theorem that these are also multiplicative.

Lemma 3.6.1. The divisor functions τ(n), σ (n), σk(n) are all multiplicative.

The multiplicativity of φ(n) was used in Section 2.4.3 to derive a closed-form

formula for φ(n) in terms of the standard prime decompositions. The same can be

done for τ(n) and σ(n).
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Theorem 3.6.2. Suppose that n = p
e1

1 · · · pek

k . Then

τ(n) = (e1 + 1) · · · (ek + 1),

σ (n) =
(

p
e1+1
1 − 1

p1 − 1

)(
p

e2+1
2 − 1

p2 − 1

)
· · ·

(
p

ek+1
k

pk − 1

)
.

Proof. We will exhibit the proof for τ(n) and leave the derivation of σ(n) for the

exercises.

As in the derivation of the formula for φ(n) we establish the formula first for

prime powers. The general result then follows from multiplicativity.

Suppose then that n = pe and consider

τ(n) =
∑

d|n
1.

The divisors of pe are 1, p, p2, . . . , pe and hence

τ(n) = τ(pe) =
e∑

i=0

1 = (e + 1).

This proves the first part of the theorem. ⊓⊔

Example 3.6.1. Compute τ(250) and σ(250).

We have

τ(250) = τ(2 · 53) = τ(2)τ (53) = 2 · 4 = 8.

Hence 250 has 8 positive divisors, namely 1, 2, 5, 52, 53, 2 · 5, 2 · 52, 2 · 53. Next,

σ(250) = 22 − 1

2 − 1

54 − 1

5 − 1
= (3)(156) = 468.

An extremely important arithmetic function is the Möbius function that we intro-

duced in Section 3.3 and used in the proof of Dirichlet’s theorem. Recall that the

Möbius function is defined for natural numbers n by

μ(n) =

⎧
⎪⎨
⎪⎩

1 if n = 1,

(−1)r if n = p1p2 · · · pr with p1, . . . , pr distinct primes,

0 otherwise.

Lemma 3.6.2. The Möbius function μ(n) is multiplicative.
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Proof. Suppose that (n, m) = 1. If either n or m is not square-free, then mn is not

square-free. Hence in this case μ(mn) = 0 and either μ(m) = 0 or μ(n) = 0, so that

μ(mn) = μ(n)μ(m).

Hence we may assume that both n and m are square-free. Assume

n = p1 · · · pk and m = q1 · · · qt ,

with each having distinct sets of prime factors. Then μ(n) = (−1)k and μ(n) =
(−1)t . Since the sets of prime factors are disjoint the prime decomposition for nm is

nm = p1 · · · pkq1 · · · qt .

Therefore

μ(nm) = (−1)k+t = (−1)k(−1)t = μ(n)μ(m). ⊓⊔

Using multiplicativity we obtain the following theorem.

Theorem 3.6.3. For the Möbius function μ(n),

∑

d|n
μ(d) =

{
1 if n = 1,

0 if n > 1.

Proof. Clearly, if n = 1, ∑

d|n
μ(d) = 1.

Since μ(n) is multiplicative, from Theorem 3.6.1 we have that

F(n) =
∑

d|n
μ(d)

is also multiplicative. Therefore we need only prove the result for prime powers.

Let n = pe with e > 0. Then the positive divisors of n are 1, p, . . . , pe and

hence
∑

d|n
μ(d) =

e∑

i=1

μ(pi).

However, μ(pi) = 0 if i > 1, and so

∑

d|n
μ(d) = μ(1) + μ(p) = 1 + (−1) = 0,

completing the proof. ⊓⊔

This result allows us to prove the following very important theorem, which has

far-ranging applications.



3.6 Arithmetic Functions and the Möbius Inversion Formula 127

Theorem 3.6.4 (Möbius inversion formula). Suppose that f (n) is an arithmetic

function and

F(n) =
∑

d|n
f (d).

Then

f (n) =
∑

d|n
μ(d)F

(n

d

)
.

Conversely, if F(n) is an arithmetic function and

f (n) =
∑

d|n
μ(d)F

(n

d

)
,

then

F(n) =
∑

d|n
f (d).

Proof. Consider

∑

d|n
μ(d)F

(n

d

)
=

∑

d|n

∑

k| n
d

f (k) =
∑

dk|n
μ(d)f (k).

This last sum is taken over all ordered pairs (d, k) with dk|n. This is symmetric in

(d, k), so we can reverse the roles of d and k to obtain

∑

d|n
μ(d)F

(n

d

)
=

∑

k|n
f (k)

∑

d| n
k

μ(d).

From Theorem 3.6.3,

∑

d| n
k

μ(d) = 0 unless
n

k
= 1,

which would imply that k = n and hence the sum on the right-hand side would reduce

to f (n), completing the first part.

Retracing the steps exactly in the opposite direction will prove the converse (see

the exercises) ⊓⊔.

The Möbius inversion formula is a special case of an inversion formula in math-

ematics. These arise in many different areas. An important continuous example is

the Fourier inversion theorem. Suppose that f (x) is an integrable function over

the whole real line. Its Fourier transform is defined as the complex-valued function

given by

f̂ (w) =
∫ ∞

−∞
f (u)e−iwudu.

Then
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Theorem 3.6.5 (the Fourier inversion theorem). If f (x) is an integrable function

and f̂ (w) is its Fourier transform, then

f (x) = 1

2π

∫ ∞

−∞
f̂ (w)eiwxdu.

This inversion theorem is used in the solution of partial differential equations and

also can be used in a proof of the famous central limit theorem from mathematical

statistics (see [Gr]). The Fourier transform is an example of an integral transform.

We will see and use another such transform, the Mellin transform, in the proof of the

prime number theorem.

EXERCISES

3.1. Show that for any real number x with 0 < x < 1, we have

ln

(
1

1 − x

)
=

∞∑

n=1

xn

n
<

∞∑

n=1

xn = x

1 − x
.

(Hint: For the first part consider the Taylor series for ln(1 − x). Start with the

sum of a geometric series 1
1−x

= 1 + x + x2 + · · · and integrate.)

3.2. Show that the Fermat numbers F1, F2, F3 are all prime but that F4 is composite

(divisible by 641).

3.3. Prove: Suppose {an} is any sequence of integers with (an, am) = 1 if n �= m.

Then there exist infinitely many primes.

3.4. If An = a2n + 1 then prove the following:

(a) If n > m ≥ 1, then (Am − 1)|(An − 1).

(b) (An, Am) = 1 if n �= m and a is even.

(c) (An, Am) = 2 if n �= m and a is odd.

3.5. Determine using the same types of methods used to find the value of the golden

section the value of √
1 +

√
1 +

√
1 + · · ·.

3.6. Recall from Section 3.2.5 that a continued fraction is defined in the follow-

ing way: Let a0, a1, . . . , an be a finite sequence of integers all positive except

possibly a0. Then a finite simple continued fraction is the rational number

defined by

a0 + 1

a1 + 1
a2+···

.

If a0, a1, . . . , an, . . . is an infinite sequence of integers all positive except

possibly a0, then an infinite simple continued fraction is determined by the

limit of the finite simple continued fractions formed up to an. Each of the
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finite simple continued fractions is called a convergent of the infinite simple

continued fraction.

Find the values of the following infinite continued fractions:

(a) an = 3 for all n.

(b) (an) = (1, 2, 1, 2, 1, 2, . . . ).

3.7. Prove Lemma 3.1.4.2, that is, prove that

fnfn+1 = f 2
1 + f 2

2 + · · · + f 2
n , n ≥ 1,

where fn are the Fibonacci numbers.

3.8. Prove Lemma 3.1.4.3, that is, prove that

fn+m = fn−1fm + fnfm+1, n ≥ 1,

where fn are the Fibonacci numbers.

3.9. Prove:

(a) p|fp+1 if p ≡ ±3 mod 10 with p prime.

(b) p|fp−1 if p ≡ ±1 mod 10 with p prime.

(Hint: Use the identities in the proof of Theorem 3.1.4.2.)

3.10. The real Chebychev polynomials of the second kind can be defined by

S0(x) = 0, S1(x) = 1, Sn+1(x) = xSn(x) − Sn−1(x).

Prove the following:

(a) If x ≥ 0, x = 2 cos θ < 2, then

Sn(x) = sin(nθ)

sin θ
.

(b) If x ≥ 0, x = 2 cosh θ > 2, then

Sn(x) = sinh(nθ)

sinh θ
.

(c) If x = 2, then

Sn(x) = n.

(Hint: Use induction and trigonometric identities.)

3.11. Prove directly that there exist infinitely many primes of the form 8n + 3.

3.12. Classify the Pythagorean triples for which the hypotenuse differs by one from

one of the legs.

3.13. Show that given integers x0, n with x2
0 ≡ −1 mod n, then there exist integers

y, b with (y, b) = 1, 0 < b ≤ √
n, and

∣∣∣−x0

n
− y

b

∣∣∣ <
1

b
√

n
.
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3.14. Show that the number of representations of m > 1 as a sum m = a2 + b2 with

(a, b) = 1 is equal to the number of solutions of

x2 ≡ −1 mod m.

3.15. Determine the set of integers represented by the quadratic forms

(a) f (x, y) = 2x2 + 2y2,

(b) f (x, y) = 2x2 − 2y2.

3.16. Show that a projective matrix (see Section 3.2.3) X ∈ PSL(2, Z) has order 2

if and only if its trace is zero.

3.17. If G is any group, its center, denoted by Z(G), consists of those elements of

G that commute with all elements of G;

Z(G) = {g ∈ G; gh = hg, ∀h ∈ G}.

Prove that Z(G) is a normal subgroup of G.

3.18. Prove parts (1) and (2) of Lemma 3.3.5. That is, prove the following:

(a) Ifχ1 andχ2 are characters, then so isχ1χ2 where (χ1χ2)(a) = χ1(a)χ2(a).

(b) If χ is a character, so is its complex conjugate χ . Further, χ(a)−1 = χ(a).

3.19. Prove that if a is an odd integer and t > 2, then

a ≡ (−1)
a−1

2 5b mod 2t for some b ≥ 0.

(Hint: Separate into two cases, a ≡ 1 mod 4 and a ≡ 3 mod 4. Then use the

facts that 5b represents exactly 2t−2 numbers incongruent mod 2t and that 5b

is periodic mod 2t with period 2t−2.)

3.20. Fill in the details of the proof of the second part of Theorem 3.3.2. That is, prove

that if a > 0 is an integer and χ runs over the set of all φ(k) characters, then

∑

χ

χ(t)χ(a) =
{

φ(k) if a ≡ t mod k,

0 if a �≡ t mod k.

3.21. Consider the von Mangoldt function �(n) defined for positive integers by

�(n) =
{

ln p if n = pc, c ≥ 1,

0 for all other n > 0.

Prove that ∑

d|n
�(d) = ln n.

3.22. Let χ be a real character mod k and define f (n) =
∑

d|n χ(d). Prove that

f (n) ≥ 0 for all n ≥ 1 and f (n) ≥ 1 if n = c2, a square.
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3.23. Prove Lemma 3.4.1; that is, prove that the integer 5 is the only prime appearing

in two different twin prime pairs.

3.24. Prove Lemma 3.4.2; that is, prove that there is a one-to-one correspondence

between twin prime pairs and those integers n for which n2 − 1 has only four

possible positive divisors.

3.25. Prove Lemma 3.4.3; that is, prove that if p, q are primes, pq + 1 is a square if

and only if p and q are twin primes.

3.26. Prove Lemma 3.4.4, that is, prove that if p, q are twin primes greater than 3,

then p + q is divisible by 12.

3.27. Prove that the divisor functions τ(n), σ (n), σk(n) are all multiplicative. (Fill

in the details of the proof of Lemma 3.6.1.)

3.28. Prove that if σ(n) is the sum of the positive divisors of n and n =
p

e1

1 · · · pek

k , then

σ(n) =
(

p
e1+1
1 − 1

p1 − 1

)(
p

e2+1
2 − 1

p2 − 1

)
· · ·

(
p

ek+1
k

pk − 1

)

(see Theorem 3.6.2).

3.29. Compute τ(n) and σ(n) for n = 105, 72, 788.

3.30. Prove that if F(n) is an arithmetic function and

f (n) =
∑

d|n
μ(d)F

(n

d

)
,

then

F(n) =
∑

d|n
f (d).

3.31. Prove that for real numbers x, y with 0 < x < 1, we have the inequality

(1 − x)3
∣∣1 − xeiy

∣∣4∣∣1 − xe2iy
∣∣2 < 1.

3.32. Suppose that f (n) and g(n) are mutliplicative arithmetic functions. Show that

F(n) = f (n)g(n) is also multiplicative.

3.33. Show that a natural number p is a prime if and only if σ(p) = p + 1.

3.34. Use mulitplicativity to derive a formula for σk(n) the sum of the kth powers of

the positive divisors of n.

3.35. Prove Theorem 3.2.2.3 using the Möbius inversion formula. (Hint: First prove

part (3) directly.) A group theoretic proof is in [KR 2].



4

The Density of Primes

4.1 The Prime Number Theorem: Estimates and History

As we have seen, and proved in many different ways, there are infinitely many primes.

In fact, as Dirichlet’s theorem shows, there are infinitely many primes in any arithmetic

progression an + b with (a, b) = 1. However, an examination of the list of positive

integers shows that the primes become scarcer as the integers increase. This statement

was quantified in Theorem 2.3.2, where we proved that there are arbitrarily large

spaces or gaps within the sequence of primes. As a result of these observations the

question arises concerning the distribution or density of the primes. The interest

centers here on the prime number function π(x) defined for positive integers x by

π(x) = number of primes ≤ x.

Clearly π(x) → ∞ as x → ∞, so the appropriate question on the distribution of

primes is, what is the rate of growth of this function? The prime number theorem

asserts that asymptotically, π(x) is given by x
ln x

. Asymptotically means as x goes

to ∞. It has been touted as one of the most surprising results in mathematics given that

it ties together the primes and the natural logarithm function in a simple way that is

most unexpected. The proof of the prime number theorem, or more precisely the

attempted proof by Riemann, is really considered the beginnings of modern analytic

number theory. This refers to the use of analytic methods, especially complex

analysis, in the study of number theory. However, as we saw relative to Dirichlet’s

theorem, the use of hard analysis actually precedes Riemann’s work.

The prime number theorem was originally conjectured by both Gauss and

Legendre, although Euler also surmised the result. Gauss looked at the list of primes

less than 3,000,000 and noticed that the prime number function is given very closely

by the function Li(x) which is defined by the integral

Li(x) =
∫ x

2

1

ln t
dt.

Gauss’s observation was then that

π(x) ∼ Li(x).
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If integration by parts is used on the integral defining Li(x) and we take the limit as

x → ∞, it is clear that this integral is asymptotically x
ln x

. Hence Gauss’s observation

is then that

lim
x→∞

π(x)

x/ ln x
= 1.

This is the prime number theorem, which we now state formally.

Theorem 4.1.1 (prime number theorem). If π(x) is the prime number function, then

lim
x→∞

π(x)

x/ ln x
= 1.

Legendre (actually published a bit earlier than Gauss), by looking at the list of

primes up to 1,000,000, came up with a slightly different formula:

π(x) ∼ x

ln x − 1.08366
.

Again Legendre’s estimate is asymptotically x
ln x

. Neither Gauss nor Legendre gave

a proof of the prime number theorem nor an indication of how they arrived at their

estimates. However, in hindsight a possible explanation is as follows. Looking at

tables of π(10n) it is observed that as n changes by 2 the ratio x
π(x)

changes by an

almost constant amount 4.6, which is 2 ln(10). This would suggest that 10n

π(10n)
∼

ln(10n). The figures are as below:

x 102 104 106 108 1010 1012

π(x) 25 1229 78498 5761455 455052512 37607912018
x

π(x)
4.000 8.137 12.739 17.357 21.975 26.590

ln(x) 4.605 9.210 13.816 18.421 23.026 27.361
ln(x)

x/π(x)
1.151 1.132 1.085 1.061 1.048 1.039

The first real attempt to prove the prime number theorem was done by Chebychev

in 1848. He proved that there exist constants A1 and A2 with .922 < A1 < 1 and

1 < A2 < 1.105 such that

A1 <
π(x)

x/ ln(x)
< A2.

Further, he proved that if π(x)
x/ ln x

had a limit it would have to be 1. However, he could

not prove that the function in the middle actually tends to a limit. In proving this

result Chebychev used the Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
,

where s > 1 is a real variable. This function was introduced originally by Euler, who

used it to give a proof of the infinitude of primes (see Section 3.1.2). This was really

the first use of analysis in number theory.
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Chebychev’s inequality has been improved upon many times. Sylvester in 1882

improved it to A1 = .95695 and A2 = 1.04423 for sufficiently large x. It can now

be shown that for all x > 10, A1 = 1 can be used.

In 1859 Riemann attempted to give a complete proof of the prime number theorem

using the zeta function for a complex variable s. Although he was not successful

in proving the prime number theorem, he established many properties of the zeta

function and showed that the prime number theorem depended on the zeros of the

zeta function. He conjectured that all the zeros of ζ(s) in the strip 0 ≤ Re(s) ≤ 1

lie along the line Re(s) = 1
2
. This is known as the Riemann hypothesis and is still

an open problem. We will discuss both the Riemann zeta function and the Riemann

hypothesis is Section 4.4. In 1896, building on the work of Riemann, Hadamard,

and, independently, C. de la Vallée Poussin proved the prime number theorem. Their

proofs relied heavily on complex analysis. It was felt for a long time that the prime

number theorem was at least as complicated as the theory of complex variables. Most

mathematicians doubted that a proof that did not heavily rely on the theory of analytic

functions could be found. However, in 1949 Selberg and later Erdős came up with

an elementary proof of the prime number theorem. This proof is actually harder than

the analytic proof but is elementary in that it doesn’t use any complex analysis.

Although the proof of the prime number theorem is really considered the begin-

nings of analytic number theory, we have seen that the use of analysis in proving

results in number theory was done earlier. Euler introduced the zeta function in giv-

ing a proof that there are infinitely many primes. We presented this proof in Chapter 3.

In his proof, though, the analysis was relatively easy. The first hard use of analysis

was used by Dirichlet to prove Dirichlet’s theorem. As we exhibited in Chapter 3,

there are many special cases of this result that can be proved by very elementary

methods. However, no proof of the complete result is known without analysis.

Given that the prime number theorem has been established, many other questions

concerning it can be raised. First of all, notice that if a is any constant then

x

ln x
≈ x

ln x − a
if x is large.

Hence the prime number theorem is equivalent to

lim
x→∞

π(x)

x/ ln x − a
= 1

for any constant a. The question arises as to whether there is an optimal value for a.

Empirical evidence is that a = 1 is an optimal choice and generally better for large

x than Legendre’s 1.08366 and better than Gauss’s Li(x). The table below compares

the estimates:

x π(x) x
ln x

Li(x) x
ln x−1.08366

x
ln x−1

103 168 145 178 172 169

104 1229 1086 1246 1231 1218

105 9592 8686 9630 9588 9512

106 78498 72382 78628 78534 78030

107 664579 620420 664918 665138 661459

108 5761455 5428681 5762209 5769341 5740304
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Observing the table above, it is noticed that Li(x) > π(x). The question arises

as to whether this is always true. Littlewood in 1914 [Li] proved that π(x) − Li(x)

assumes both positive and negative values infinitely often. Te Riele in 1986 [Re]

showed that there are more than 10180 consecutive integers for which π(x) > Li(x)

in the range 6.62 × 10370 < x < 6.69 × 10370.

The prime number function π(x) and the prime number theorem answer the basic

questions concerning the density of primes. A related question concerns the function

p(n) = pn,

where pn is the nth prime. That is the question whether there is a closed-form function

that estimates the nth prime. The answer to this is yes and turns out to be equivalent

to the prime number theorem. We state it below.

Theorem 4.1.2. The nth prime pn is given asymptotically by

pn ∼ n ln n.

Proof. From the prime number theorem we have that π(x) ∼ x
ln x

. Let

y = x

ln x
,

which implies that

ln y = ln x − ln ln x.

But ln ln x is asymptotically small compared to ln x, and hence

ln y ∼ ln x.

Now

x = y ln x ∼ y ln y.

This shows that the inverse function to x
ln x

is asymptotically x ln x. But by the prime

number theorem this is asymptotically the inverse function of π(x). ⊓⊔

Notice that if we had started with Theorem 4.1.2, we could have recovered the

prime number theorem.

4.2 Chebychev’s Estimate and Some Consequences

The first significant progress in developing a proof of the prime number theorem was

obtained by Chebychev in 1848. He proved that the functions π(x) and x
ln x

are of

the same order of magnitude, a concept we will explain in detail below, and that if

limx→∞
π(x)

x/ ln x
existed then the limit would have to be 1. At first glance it appeared

that he was quite close to a proof of the prime number theorem. However, it would take
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another fifty years and the development of some completely new ideas from complex

analysis to actually accomplish this. Aproof, along the lines of Chebychev’s methods,

without recourse to complex analysis, would not be done until the work of Selberg

and Erdős in the late 1940s (see [N]).

Chebychev proved the following result, now known as Chebychev’s estimate.

Theorem 4.2.1. There exist positive constants A1 and A2 such that

A1
x

ln x
< π(x) < A2

x

ln x

for all x ≥ 2.

The proof we will give is somewhat simpler than that of Chebychev. The constants

we arrive at in the proof given below are sufficient but nowhere near best possible.

We will say more about this at the conclusion of the proof.

The proof depends on some properties and inequalities involving the binomial

coefficients
(
n
k

)
. We have used these numbers in several instances in previous sections

but here we begin by formally defining them and then reviewing some of their basic

properties.

Definition 4.2.1. Given nonnegative integers n, k with n ≥ 1 and n ≥ k, the binomial

coefficient
(
n
k

)
is defined as (

n

k

)
= n!

k!(n − k)! .

Note that by convention 0! = 1.

The first several results outline standard properties of the binomial coefficients

and proofs can be found in any book on probability and statistics. We also outline

proofs in the exercises.

Lemma 4.2.1.
(
n
k

)
represents the number of ways of choosing k objects out of n

without replacement and without considering order.

Clearly the number of ways of choosing k objects out of n objects also counts the

number of possible subsets of size k in a finite set with n elements.

Corollary 4.2.1.
(
n
k

)
= the number of subsets of size k in a finite set with n elements.

Lemma 4.2.2 (the binomial theorem). For any real numbers a, b and natural

number n, we have

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Letting a = b = 1 in the binomial theorem, we get the following corollary.

Corollary 4.2.2. (1 + 1)n = 2n =
∑n

k=0

(
n
k

)
. In particular,

(
n
k

)
< 2n for all k with

0 ≤ k ≤ n.
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Combining Corollaries 4.2.1 and 4.2.2, we obtain the well known result that the

number of subsets of a set with n element is 2n. Consider a set with n elements. Then

total number of subsets = number of subsets of size 0 + · · ·
+ number of subsets of size n

=
(

n

0

)
+
(

n

1

)
+ · · · +

(
n

n

)

=
n∑

k=0

(
n

k

)

= 2n

Lemma 4.2.3.
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
.

This last lemma is the basis of Pascal’s triangle in which each row consists of

the set of binomial coefficients for that numbered row:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 . . . 5 1

Each subsequent row is formed by placing a one on the outside, and each subse-

quent number is placed between two numbers in the previous row and is their sum.

For example,

1 3 3 1

1 4 6 4 1

since

1 + 3 = 4, 3 + 3 = 6, 3 + 1 = 4.

The final standard idea we will need is that of Stirling’s approximation, which

we state without proof.

Stirling’s approximation. n! ≈
√

2πn
(

n
e

)n
.

For Chebychev’s estimate we need the following results, which are deeper and

use number theory. Here π(n) is the prime number function.

Lemma 4.2.4.

(i) nπ(2n)−π(n) <
(

2n
n

)
≤ (2n)π(2n).

(ii) 2n ≤
(

2n
n

)
≤ 22n.
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Proof. If p is a prime let ep be the highest power such that pep |n!. Then by an easy

induction (see the exercises) we have

ep =
tp∑

i=1

[
n

pi

]
,

where [ ] is the greatest integer function and tp is the first integer such that ptp+1 > n.

Clearly such a tp exists for each prime p. Now consider

(
2n

n

)
= (2n)!

n!n! = (2n)(2n − 1) · · · (n + 1)

n! =
n∏

j=1

(
n + j

j

)
.

Given a primep, letmp be the highest power such thatpmp |
(

2n
n

)
. From the observation

above,

mp =
kp∑

i=1

([
2n

pi

]
− 2

[
n

pi

])
,

where here kp is the first integer such that pkp+1 > 2n.

If 1 ≤ i ≤ kp, then

[
2n

pi

]
− 2

[
n

pi

]
<

2n

pi
− 2

(
n

pi
− 1

)
= 2.

Since
[

2n
pi

]
and 2

[
n
pi

]
are integers, it follows that

[
2n

pi

]
− 2

[
n

pi

]
≤ 1

if 1 ≤ i ≤ kp. This then implies that

mp =
kp∑

i=1

([
2n

pi

]
− 2

[
n

pi

])
≤

kp∑

i=1

1 = kp.

Therefore (
2n

n

)∣∣∣
∏

p≤2n

pkp

and hence (
2n

n

)
≤

∏

p≤2n

pkp ≤
∏

p≤2n

(2n) = (2n)π(2n),

giving one side of the first inequality.
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On the other hand, if n < p ≤ 2n then p|(2n)! but p doesn’t divide n!. It follows

that ∏

n<p≤2n

p

∣∣∣
(

2n

n

)
=⇒

∏

n<p≤2n

p ≤
(

2n

n

)
.

Now ∏

n<p≤2n

p >
∏

n<p≤2n

n = nπ(2n)−π(n)

since there are π(2n) − π(n) primes in the range p < n ≤ 2n. Therefore

nπ(2n)−π(n) <

(
2n

n

)
,

establishing the other side of the first inequality.

For the second inequality we have

(
2n

n

)
≤ (1 + 1)2n = 22n,

and from above, (
2n

n

)
=

n∏

j=1

(
n + j

j

)
≥

n∏

j=1

2 = 2n.

Therefore

2n ≤
(

2n

n

)
≤ 22n,

establishing the second inequality. ⊓⊔

We now give the proof of Chebychev’s estimate.

Proof of Theorem 4.2.1. We have to show that there exist positive constants A1 and

A2 such that

A1
x

ln x
< π(x) < A2

x

ln x

for all x ≥ 2.

From the previous lemma we have the inequalities

nπ(2n)−π(n) <

(
2n

n

)
≤ (2n)π(2n),

2n ≤
(

2n

n

)
≤ 22n.

Hence

nπ(2n)−π(n) < 22n =⇒ (π(2n) − π(n)) ln n ≤ 2n ln 2

=⇒ π(2n) − π(n) ≤ 2n ln 2

ln n
.
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On the other hand,

(2n)π(2n) ≥ 2n =⇒ π(2n) ≥ n ln 2

ln(2n)
.

For a real variable x ≥ 2 let 2n be the greatest even integer not exceeding x, so

that x ≥ 2n, n ≥ 1, and x < 2n + 2. Then

π(x) ≥ π(2n) ≥ n ln 2

ln(2n)
≥ n ln 2

ln x
≥ (2n + 2) ln 2

4 ln x
>

ln 2

4

x

ln x
.

Therefore

π(x) ≥ A1
x

ln x

for all x ≥ 2 with A1 = ln 2
4

.

To establish the existence of A2 let 2n = 2t with t ≥ 3. Then

π(2t ) − π(2t−1) ≤ 2t ln 2

(t − 1) ln 2
= 2t

t − 1
.

Consider the telescoping sum

2j∑

t=3

(π(2t ) − π(2t−1) = π(22j ) − π(4).

Since π(4) ≤ 4 = 22

2−1
and π(2t ) − π(2t−1) ≤ 2t

t−1
we obtain using the telescoping

sum that

π(22j ) <

2j∑

t=2

2t

t − 1
=

j∑

t=2

2t

t − 1
+

2j∑

t=j+1

2t

t − 1
.

Now
j∑

t=2

2t

t − 1
<

j∑

t=2

2t = 2j+1

and
2j∑

t=j

2t

t − 1
<

2j∑

t=j

2t

j
= 1

j
22j+1.

It follows that

π(22j ) < 2j+1 + 1

j
22j+1.

Since j < 2j we have 2j+1 < 22j+1

j
and therefore for j ≥ 2,

π(22j ) < 2

(
22j+1

j

)
.
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This implies that

π(22j )

22j
<

4

j
for all j ≥ 2.

Let x ≥ 2 be a real variable. Then there exists an integer j ≥ 1 such that

22j−2 < x ≤ 22j . Hence

π(x)

x
≤ π(22j )

22j−2
= 4π(22j )

22j
.

Further,

2j ≥ ln x

ln 2
=⇒ 4

j
≤ 8 ln 2

ln x
.

Employing the inequality for π(22j )

22j gives

π(22j )

22j
<

4

j
=⇒ π(x)

x
<

16

j
≤ 32 ln 2

ln x

=⇒ π(x) ≤ (32 ln 2)
x

ln x

for all x ≥ 2. Therefore

π(x) ≤ A2
x

ln x

for all x ≥ 2 with A2 = 32 ln 2, establishing Chebychev’s estimates. ⊓⊔

We mention again that the proof is somewhat simpler than that originally given by

Chebychev and arrives at weaker constants. We obtained A1 = ln 2
4

and A2 = 32 ln 2,

which were sufficient for the theorem but nowhere near best possible. Chebychev

showed that A1 = .922 and A2 = 1.105 could be used. His proof actually involved

a careful analysis of a form of Stirling’s approximation. The values in the constants

in Chebychev’s inequality have been improved upon many times. Sylvester in 1882

improved the values to A1 = .95695 and A2 = 1.04423 for sufficiently large x. It

can now be shown that for all x > 10, A1 = 1 can be used.

This following is an immediate corollary of the estimate, independent of the values

of A1 and A2.

Corollary 4.2.3. π(x)
x

→ 0 as x → ∞.

Proof. From Chebychev’s estimate we have

0 < π(x) ≤ A2
x

ln x
=⇒ 0 <

π(x)

x
≤ A2

ln x
.

Since A2 is a constant, A2
ln x

→ 0 as x → ∞, so clearly π(x)
x

→ 0 also. ⊓⊔

This corollary says that the primes become relatively scarcer as x gets larger. In

probabilistic terms it says that the probability of randomly choosing a prime less than

or equal to x goes to zero as x goes to infinity. What is perhaps of more interest in this
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probabilisic sense is that the probability of randomly choosing a prime is relatively

not that small. For any x the probability of randomly choosing a prime less than x is
π(x)

x
. For large x this is approximately equal to 1

ln x
. Even for very large real numbers

x, this is not that small. The number e200 has 86 decimal digits, yet the probability of

randomly choosing a prime less than this value is about .005. This argument shows

that the primes, although scarce, are still rather dense in the integers. As we have

already remarked, the primes are asymptotically denser in the sequence of squares

{1, 4, 9, 16, . . . }. This relatively high probability of locating a prime will play a role

in cryptography (see Chapter 5).

Before continuing and presenting some consequences of Chebychev’s result we

introduce a convenient notation for describing the order of magnitude of a function.

Definition 4.2.2. Suppose f (x), g(x) are positive real valued functions. Then we

have the following:

(1) f (x) = O(g(x)) (read f (x) is big O of g(x)) if there exists a constant A

independent of x and a real number x0 such that

f (x) ≤ Ag(x) for all x ≥ x0.

(2) f (x) = o(g(x)) (read f (x) is little o of g(x)) if

f (x)

g(x)
→ 0 as x → ∞

In other words, g(x) is of a higher order of magnitude than f (x).

(3) If f (x) = O(g(x)) and g(x) = O(f (x)), that is, there exist constants A1, A2

independent of x and x0 such that

A1g(x) ≤ f (x) ≤ A2g(x) for all x ≥ x0,

then we say that f (x) and g(x) are of the same order of magnitude and write

f (x) ≅ g(x).

(4) If

f (x)

g(x)
→ 1 as x → ∞,

then we say that f (x) and g(x) are asymptotically equal and we write

f (x) ∼ g(x).

In general, we write O(g) or o(g) to signify an unspecified function f such that

f = O(g) or f = o(g). Hence, for example, writing f = g + o(x) means that
f −g

x
→ 0 and saying that f is o(1) means that f (x) → 0 as x → ∞.



144 4 The Density of Primes

It is clear that being o(g) implies being O(g) but not necessarily the other way

around. Further, it is easy to see that

f ∼ g is equivalent to f = g + o(g) = g(1 + o(1)).

In terms of the notation above, Chebychev’s estimate can be expressed as

π(x) ≅
x

ln x
.

Further, the prime number theorem can be expressed by

π(x) ∼ x

ln x

or equivalently

π(x) = x

ln x
(1 + o(1)).

We will use this notation freely as we develop the proof of the prime number theorem.

We now present some consequences of Chebychev’s estimate. It was mentioned

at the end of the previous section that the prime number theorem is equivalent to

pn ∼ n ln n, where pn denotes the nth prime (Theorem 4.1.1). Chebychev’s estimate

gives immediately that pn and n ln n are of the same order of magnitude.

Theorem 4.2.2. There exist positive constants B1, B2 such that

B1n ln n ≤ pn ≤ B2n ln n.

Equivalently,

pn ≅ n ln n.

Proof. Let pn be the nth prime. Then clearly π(pn) = n. From Chebychev’s

estimate,

n = π(pn) ≤ A2
pn

ln pn

for all n ≥ 2.

This implies
1

A2
n ln pn ≤ pn for all n ≥ 2.

However, pn > n, so

1

A2
n ln n <

1

A2
n ln pn ≤ pn for all n ≥ 2.

Therefore

B1n ln n ≤ pn

for all n ≥ 2 with B1 = 1
A2

.
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In the other direction we have

n = π(pn) ≥ A1
pn

ln pn

.

Since pn > n it follows that
ln pn√

pn
→ 0 as n → ∞. Therefore there exists a constant

k such that

ln pn√
pn

< A1 if n > k.

Hence

n
ln pn

pn

≥ A1 >
ln pn√

pn

if n > k.

It follows that n >
√

pn and so ln pn < 2 ln n if n > k. Let

B2 = max

(
2

A1
,

p2

2 ln 2
,

p3

3 ln 3
, . . . ,

pk−1

(k − 1) ln(k − 1)

)
.

Then

pn ≤ B2n ln n for all n ≥ 2. ⊓⊔

Note that we could have proved Theorem 4.2.2 and then deduced Chebychev’s

estimate from it. This result also provides a very simple proof of Euler’s theorem

given in Chapter 3 that the series
∑

p
1
p

diverges.

Corollary 4.2.4.
∑

p,prime
1
p

diverges.

Proof. For n ≥ 2 we have 1
pn

≤ 1
B1n ln n

from the last theorem. However, the series
∑∞

n=1
1

n ln n
diverges by the integral test. ⊓⊔

Although there are infinitely many primes and
∑

p
1
p

diverges, it still diverges

very slowly. Using the methods applied in the proof of Chebychev’s estimate we can

actually bound the growth of the series of reciprocals of the primes.

Theorem 4.2.3. There exists a constant k such that

∑

2<p≤x

1

p
< k ln ln x if x > 3.
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Proof. From Theorem 4.2.2 we have

pn ≥ B1n ln n.

Therefore

∑

2<p≤x

1

p
=

π(x)∑

n=2

1

pn

<

π(x)∑

n=2

1

B1n ln n
<

1

B1

[x]∑

n=2

1

n ln n
.

However,

1

n ln n
=

∫ n

n−1

dt

n ln n
≤
∫ n

n−1

dt

t ln t

since 1
n ln n

≤ 1
t ln t

on [n − 1, n] if n ≥ 3. Then

∑

2<p≤x

1

p
<

1

B1

[x]∑

n=2

1

n ln n
≤ 1

2B1 ln 2
+ 1

B1

[x]∑

n=3

∫ n

n−1

dt

t ln t

≤ 1

2B1 ln 2
+ 1

B1

∫ x

2

dt

t ln t

= 1

2B1 ln 2
+ 1

B1
ln ln x − 1

B1
ln ln 2

= 1

B1
ln ln x + C < k ln ln x

if we take k large enough. ⊓⊔

In a similar vein we get the following result, which bounds the product of all the

primes p less than some given x.

Theorem 4.2.4. If x ≥ 2, then
∏

p≤x p < 4x .

Proof. The theorem is clear for 2 ≤ x < 3. Suppose the theorem is true for an odd

integer n with n ≥ 3. Then it is true for n ≤ x < n + 2 since

∏

p≤x

p =
∏

p≤n

p < 4n < 4x .

Therefore it is sufficient to prove the theorem for odd integers n. We do an induction

on the odd integers. The theorem is true for n = 3 and so we assume that it is true for

all odd integers less than or equal to n ≥ 5. Let k = n+1
2

or k = n−1
2

chosen so that

k is also odd. Then k ≥ 3 and n − k is even. Further, n − k = 2k ± 1 − k ≤ k + 1.

If p is a prime with k < p ≤ n then p|n! but p does not divide either k! or (n − k)!.
Therefore p|

(
n
k

)
= n!

k!(n−k)! . It follows that the product of all such primes divides
(
n
k

)
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and hence
∏

k<p≤n

p ≤
(

n

k

)
.

Since
(
n
k

)
=

(
n

n−k

)
and both are in the binomial expansion of (1 + 1)n it follows that(

n
k

)
< 2n−1. Therefore using that k < n and the inductive hypothesis, we obtain

∏

p≤n

p =
∏

p≤k

p
∏

k<p≤n

p < 4k2n−1 = 2n+2k−1 ≤ 22n = 4n. ⊓⊔

Finally, based on many of these estimates we can provide a proof of Bertrand’s

theorem (actually proved by Chebychev), which we introduced in the last chapter.

Recall that this theorem says that given any natural number n there is always a prime

between n and 2n. The proof actually shows that given any real number x > 1 there

exists a prime between x and 2x.

Theorem 4.2.5 (Bertrand’s theorem). For every natural number n > 1 there is a

prime p such that n < p < 2n.

Proof. By direct computation the theorem is easily established for n ≤ 128. Now

suppose that for some n > 128 there is no prime between n and 2n. For a prime p let

mp be the highest power of p dividing
(

2n
n

)
, and kp the first power such that pkp+1 > 2n

as in the proof of Chebychev’s estimate. Then as in the proof of Chebychev’s estimate,

since we assume no primes in the range n to 2n, we have

(
2n

n

)
=

∏

p≤2n

pmp =
∏

p≤n

pmp , mp ≤ kp.

Now if 2n
3

< p ≤ n we then have p ≥ 3 and 2 ≤ 2n
p

< 3 and therefore

mp =
[

2n

p

]
− 2

[
n

p

]
= 2 − 2 = 0.

If
√

2n < p ≤ 2n
3

then we have p2 > 2n and hence kp = 1 and so mp ≤ 1.

Finally, if p ≤
√

2n, we have pmp ≤ pkp ≤ 2n. Therefore

(
2n

n

)
=

∏

p≤
√

2n

pmp
∏

√
2n<p≤ 2n

3

pmp
∏

2n
3 ≤p<n

pmp ≤
∏

p≤
√

2n

(2n)
∏

√
2n<p≤ 2n

3

p.

For a real number x ≥ 128 we have π(x) ≤ x+1
2

since there are at most x+1
2

odd

integers less than x, so certainly no more than that number of primes. Further, since

x ≥ 128, we have at least two odd nonprimes less than x, so π(x) ≤ x+1
2

−2 < x
2
−1.



148 4 The Density of Primes

It follows that π(
√

2n) <
√

n
2

− 1 and hence

∏

p≤
√

2n

p < (2n)
√

n
2 −1.

Further, from Theorem 4.2.4 we have

∏

p≤ 2n
3

p < 4
2n
3 .

Therefore (
2n

n

)
< (2n)

√
n
2 −14

2n
3 .

Now,

22n = (1 + 1)2n = 1 +
(

2n

1

)
+ · · · +

(
2n

n

)
+ · · · +

(
2n

2n − 1

)
+ 1.

There are 2n + 1 terms in this expansion and
(

2n
n

)
is the largest. Combining the two

outside terms (1 + 1 = 2), we have 2n terms each of which is at most
(

2n
n

)
, and

therefore

22n < (2n)

(
2n

n

)
=⇒

(
2n

n

)
> (2n)−122n.

Combining these two inequalities gives

(2n)−122n < (2n)
√

n
2 −14

2n
3 =⇒ 2

2n
3 < (2n)

√
n
2 .

Taking logarithms then yields

n
2

3
ln 2 <

√
n

2
ln(2n) =⇒

√
8n ln 2 − 3 ln(2n) < 0.

We show that this is a contradiction.

Let F(x) =
√

8x ln 2 − 3 ln(2x). Then F(128) = 8 ln 2 > 0. Further,

F ′(x) = ln 2

√
8

2

1√
x

− 3

x
= ln 2

√
2
√

x − 3

x
.

This last expression is positive for x ≥ 128 and hence F(x) is an increasing function

for x ≥ 128. Since F(128) > 0 it follows that F(x) > 0 for all x ≥ 128. Therefore

n
2

3
ln 2 <

√
n

2
ln(2n),

which implies that √
8n ln 2 − 3 ln(2n) < 0.

For n ≥ 128 this is impossible and hence a contradiction. Therefore there must be a

prime between n and 2n for any integer n. ⊓⊔
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4.3 Equivalent Formulations of the Prime Number Theorem

The proof of the prime number theorem rests on the analysis of three additional

functions besides the prime number function π(x). The first and most important of

these is the Riemann zeta function ζ(s). As was discussed in the previous chapter

this function was introduced for real s > 1 by Euler in proving that there are infinitely

many primes and that
∑

1
p

diverges (see Section 3.3). The function was then modified

by Dirichlet and used in proving that there are infinitely many primes of the form

an+b with (a, b) = 1. Riemann extended the definition to allow the variable s to be

complex and showed how knowledge of the location of the zeros of the now complex

function ζ(s) in the complex plane would imply the prime number theorem. We will

discuss the zeta function and describe its ties to the prime number theorem in the next

section. The other two functions that must be analyzed are known as the Chebychev

functions. The first, denoted by θ(x), is defined for a real variable x by

θ(x) =
∑

p≤x

ln p with p prime, (4.3.1)

while the second, denoted by ψ(x), is defined, again for a real variable x, by

ψ(x) =
∑

pk≤x;k≥1

ln p with p prime. (4.3.2)

These functions count, respectively, the number of primes p ≤ x and the number

of prime powers pk ≤ x weighted by ln p. Recall that the von Mangoldt function

�(n) is defined for positive integers by

�(n) =
{

ln p if n = pc, c ≥ 1,

0 for all other n > 0.

Hence the Chebychev function ψ(x) is actually the summation function of �(n).

That is,

ψ(x) =
∑

n≤x

�(n).

Further, for a given prime p ≤ x the number of times ln p is counted in the sum

for ψ(x) is
[

ln x
ln p

]
. Hence ψ(x) can also be expressed as

ψ(x) =
∑

p≤x

[
ln x

ln p

]
ln p.

In the type of notation we have used in defining the Chebychev functions the

prime number function can be expressed as

π(x) =
∑

p≤x

1 with p prime. (4.3.3)
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There are certain immediate relationships between these three functions. First, if

pk ≤ x, then p ≤ x, so clearly

θ(x) ≤ ψ(x).

Further, since 1 ≤ ln p for p ≥ 3 we have

π(x) ≤ θ(x) for x ≥ 5.

Now if pk ≤ x then k ≤
[

ln x
ln p

]
, where [ ] is the greatest integer function. It follows

that

ψ(x) =
∑

pk≤x,k≥1

ln p

=
∑

p≤x

⎛
⎝ ∑

pk≤x;k≥1

1

⎞
⎠ ln p ≤

∑

p≤x

[
ln x

ln p

]
ln p ≤

∑

p≤x

ln x

= π(x) ln x.

Therefore

ψ(x) ≤ π(x) ln x.

Now, θ(x) =
∑

p≤x ln p = ln
(∏

p≤x p
)
. However, from Theorem 4.2.4 we

have
∏

p≤x p < 4x . Therefore

θ(x) ≤ x(ln 4)

and consequently

θ(x) = O(x).

We will need the following lemma, which says that relative to x, θ(x) and ψ(x)

have the same order of magnitude.

Lemma 4.3.1. ψ(x) = θ(x) + O
(
x

1
2 (ln x)2

)
.

Proof. ψ(x) =
∑

pk≤x;k≥1 ln p. For a given prime p ≤ x let pt be the highest power

of p such that pt ≤ x. Then

p ≤ x, p2 ≤ x, . . . , pt ≤ x =⇒ p ≤ x, p ≤ x
1
2 , . . . , p ≤ x

1
t .

It follows that

ψ(x) = θ(x) + θ
(
x

1
2
)
+ · · · + θ

(
x

1
m
)
,

where m is the first integer such that m + 1 > ln x
ln 2

. We have

θ(x) =
∑

p≤x

ln p ≤
∑

p≤x

ln x ≤ x ln x if x ≥ 2.
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It follows that

θ
(
x

1
k
)

< x
1
k ln x ≤ x

1
2 ln x if x ≥ 2.

In the sum

m∑

k=2

θ
(
x

1
k
)

there are O(ln x) terms since m − 1 ≤ ln x
ln 2

. This coupled with the fact that θ
(
x

1
k

)
≤

x
1
2 ln x gives that

m∑

k=2

θ
(
x

1
k
)

= O
(
x

1
2 (ln x)2

)
.

Therefore

ψ(x) = θ(x) + O
(
x

1
2 (ln x)2

)
. ⊓⊔

It follows immediately from this lemma and the fact that x
1
2 (ln x)2 = o(x) that

if there exists a constant A with θ(x) < Ax then there exists a constant B such that

ψ(x) < Bx, and if there exists a constant C with Cx < ψ(x) then there exists a

constant D with Dx < θ(x).

We extend these observations to show that θ(x) and ψ(x) both have order of

magnitude x.

Theorem 4.3.1. There exist positive constants A1, A2, B1, B2 such that

A1x ≤ θ(x) ≤ A2x,

B1x ≤ ψ(x) ≤ B2x.

In particular, θ(x) ≅ x and ψ(x) ≅ x.

Proof. In light of the comments made preceding the theorem it suffices to bound

θ(x) above and ψ(x) below. From Theorem 4.2.4 we have that
∏

p≤x p < 4x . This

implies that θ(x) =
∑

p≤x ln p < x ln 4 and hence θ(x) < Bx with B = ln 4. This

bounds θ(x) above.

We now show that we can bound ψ(x) below. This is similar to the proof given

for Chebychev’s estimate. As in that proof, if p is a prime, let mp be the highest

power of p such that pmp |
(

2n
n

)
and let kp be the first exponent such that pkp+1 > 2n.
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Then as before, (
2n

n

)
=

∏

p≤2n

pmp

and

mp ≤
[

ln 2n

ln p

]
.

It follows that

ln

(
2n

n

)
=

∑

p≤2n

mp ln p ≤
∑

p≤2n

[
ln 2n

ln p

]
ln p = ψ(2n).

Further, from before,

(
2n

n

)
≥ 2n =⇒ ψ(2n) ≥ n ln 2.

If x ≥ 2 let n =
[

x
2

]
≥ 1 and then

ψ(x) ≥ ψ(2n) ≥ n ln 2 >
1

4
x ln 2.

Therefore ψ(x) ≥ Cx with C = ln 2
4

, completing the proof. ⊓⊔

Considering again the result of Lemma 4.3.1 that

ψ(x) = θ(x) + O
(
x

1
2 (ln x)2

)

coupled with the fact that x
1
2 (ln x)2 = o(x) we obtain that

ψ(x)

x
= θ(x)

x
+ o(1).

In particular, this implies that

lim
x→∞

ψ(x)

x
= 1 if and only if lim

x→∞
θ(x)

x
= 1.

In the notation we introduced earlier this says that

ψ(x) ∼ x if and only if θ(x) ∼ x.

We show now that each of these statements is equivalent to the prime number

theorem.

Theorem 4.3.2. The following are all equivalent formulations of the prime number

theorem:

(a) π(x) ∼ x
ln x

;
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(b) θ(x) ∼ x;
(c) ψ(x) ∼ x.

Proof. From the remarks immediately preceding the theorem we have that θ(x) ∼ x

if and only if ψ(x) ∼ x. Therefore it is sufficient to show that π(x) ∼ x
ln x

is

equivalent to θ(x) ∼ x.

We have that θ(x) ≤ π(x) ln x and, further, that Ax ≤ θ(x) for some constant A.

Therefore

π(x) ≥ θ(x)

ln x
≥ Ax

ln x
.

For any real ǫ with 0 < ǫ < 1 we have

θ(x) ≥
∑

x1−ǫ<p≤x

ln p ≥ (1 − ǫ) ln x
∑

x1−ǫ<p≤x

1

= (1 − ǫ) ln x
(
π(x) − π

(
x1−ǫ

))
≥ (1 − ǫ) ln x

(
π(x) − x1−ǫ

)

since x1−ǫ > π
(
x1−ǫ

)
.

It follows that

π(x) ≤ x1−ǫ + θ(x)

(1 − ǫ) ln x
.

Combining these inequalities gives

Ax

ln x
≤ θ(x)

ln x
≤ π(x) ≤ x1−ǫ + θ(x)

(1 − ǫ) ln x
,

from which it follows that

1 ≤ π(x) ln x

θ(x)
≤ x1−ǫ ln x

θ(x)
+ 1

1 − ǫ
.

Now θ(x) ≥ Ax, so

x1−ǫ ln x

θ(x)
<

ln x

Axǫ
.

Since ǫ is arbitrary in (0, 1) the value 1
1−ǫ

can be made arbitrarily close to 1. Further,

for a fixed ǫ, the value ln x
Axǫ can be made arbitrarily small by choosing a large x.

Therefore
x1−ǫ ln x

θ(x)
+ 1

1 − ǫ
< 1 + ǫ1

for x large enough and ǫ1 arbitrarily small. Hence we have

1 ≤ π(x) ln x

θ(x)
< 1 + ǫ1

and thus

lim
x→∞

π(x) ln x

θ(x)
= 1.
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By definition, then,

π(x) ln x ∼ θ(x) =⇒ π(x) ln x

x
∼ θ(x)

x
.

From this it is straightforward to show that as x → ∞,

θ(x)

x
→ 1 if and only if

π(x)

x/ ln x
→ 1,

or

θ(x) ∼ x if and only if π(x) ∼ x

ln x
. ⊓⊔

In the proof we will present for the prime number theorem we will actually show

that ψ(x) ∼ x and then invoke the above result.

As we remarked in the last section, Chebychev also proved that if limx→∞
π(x)

x/ ln x

existed then the limit would have to be one. Thus he seemed very close to the prime

number theorem. However, he couldn’t actually prove that this limit existed. We

close this section by giving a proof of this result of Chebychev. We need first the

following result due to Mertens. This is one of several results in the area due to

Mertens and known collectively as Mertens’ theorems (see [N]).

Theorem 4.3.3. If �(n) is the von Mangoldt function then

∑

n≤x

�(n)

n
= ln x + O(1).

Proof. Consider the sum ∑

n≤x

ln
(x

n

)
.

Since ln x is an increasing function, we have for n ≥ 2,

ln
(x

n

)
≤
∫ n

n−1

ln
(x

t

)
dt.

From this it follows that

[x]∑

n=2

ln
(x

n

)
≤
∫ x

1

ln
(x

t

)
dt = x

∫ x

1

ln u

u2
du < x

∫ ∞

1

ln u

u2
du.

However, the infinite integral
∫∞

1
ln u

u2 du is convergent, so it has finite value A.

Therefore
[x]∑

n=2

ln
(x

n

)
< Ax =⇒

[x]∑

n=2

ln
(x

n

)
= O(x).
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Hence ∑

n≤x

ln n = [x] ln x + O(x) = x ln x + O(x).

As in the proof of Chebychev’s estimate let

ep =
tp∑

m=1

[ [x]
pm

]
,

so that

[x]! =
∏

p

pep .

Then taking logarithms we get

ln([x]!) = ln

(
∏

p

pep

)
=⇒

∑

n≤x

ln n =
∑

p≤x

ep ln p

=
∑

pm≤x

[
x

pm

]
ln p =

∑

n≤x

[x

n

]
�(n),

where �(n) is the von Mangoldt function. Further,

∑

n≤x

(x

n

)
�(n) <

∑

n≤x

[x

n

]
�(n) +

∑

n≤x

�(n)

=
∑

n≤x

[x

n

]
�(n) + ψ(x) =

∑

n≤x

[x

n

]
�(n) + O(x)

since ψ(x) = O(x). Combining these inequalities gives us

∑

n≤x

(x

n

)
�(n) =

∑

n≤x

ln n + O(x) = x ln x + O(x).

Removing the factor x yields finally

∑

n≤x

�(n)

n
= ln x + O(1). ⊓⊔

As an immediate corollary we obtain the following.

Corollary 4.3.1.
∑

p≤x
ln p
p

= ln x + O(1).

Proof. By definition
∑

n≤x

�(n)

n
=

∑

pm≤x

ln p

pm
.

This implies that

∑

n≤x

�(n)

n
−
∑

p≤x

ln p

p
=

∑

m≥2

∑

pm≤x

ln p

pm
<

∑

p

(
1

p2
+ 1

p3
+ · · ·

)
ln p
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=
∑

p

ln p

p(p − 1)
≤

∞∑

n=2

ln n

n(n − 1)
.

This last infinite series converges to some value S. Hence

∑

n≤x

�(n)

n
−
∑

p≤x

ln p

p
< A

for some value A. Since from the previous theorem
∑

n≤x
�(n)

n
= ln x + O(1), it

follows that

∑

p≤x

ln p

p
= ln x + O(1). ⊓⊔

Theorem 4.3.4. If limx→∞
π(x)

x/ ln x
exists, then limx→∞

π(x)
x/ ln x

= 1.

Proof. Recall that ψ(x) =
∑

n≤x �(n). Then

∑

n≤x

�(n)

n
=

∑

n≤x−1

ψ(n)

(
1

n
− 1

n + 1

)
+ ψ(x)

[x] ,

which follows easily since �(n) = ψ(n) − ψ(n − 1). Since ψ(x) = ψ(n) if

n ≤ x < n + 1, we have

ψ(n)

(
1

n
− 1

n + 1

)
=

∫ n+1

n

ψ(t)

t2
dt.

Summing then yields

∑

n≤x−1

ψ(n)

(
1

n
− 1

n + 1

)
=

∫ x

2

ψ(t)

t2
dt

since ψ(1) = 0. Hence

∑

n≤x

�(n)

n
= ψ(x)

x
+
∫ x

2

ψ(t)

t2
dt.

Since ∑

n≤x

�(n)

n
= ln x + O(1) and

ψ(x)

x
= O(1),

it follows that ∫ x

2

ψ(t)

t2
dt = ln x + O(1).

Now suppose that lim inf
ψ(x)

x
= 1 + ǫ with ǫ > 0. Then

ψ(x) >

(
1 + 1

2
ǫ

)
x
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for x sufficiently large, say x ≥ x0. Then

∫ x

2

ψ(t)

t2
dt =

∫ x0

2

ψ(t)

t2
dt +

∫ x

x0

ψ(t)

t2
dt >

(
1 + 1

2
ǫ

)
ln x − A

for some constant A. However this contradicts that
∫ x

2

ψ(t)

t2
dt = ln x + O(1).

On the other hand, if lim sup
ψ(x)

x
= 1 − ǫ with ǫ > 0 we obtain an analogous

contradiction. Therefore

lim sup
ψ(x)

x
≥ 1 and lim inf

ψ(x)

x
≤ 1

and therefore if the limit
ψ(x)

x
exists as x → ∞ the value has to be one. Further,

since
π(x)

x/ ln x
∼ 1 if and only if

ψ(x)

x
∼ 1

this shows that if π(x)
x/ ln x

has a limit its value must be one also. ⊓⊔

4.4 The Riemann Zeta Function and the Riemann Hypothesis

From Chebychev’s estimate and its consequences it seemed that a proof of the prime

number theorem was close at hand. In 1860 G.B. Riemann attempted to prove this

main result. Riemann eventually wrote only one paper in number theory, and although

he failed in his primary goal of proving the prime number theorem, this paper had

a profound effect on both number theory in particular and mathematics in general.

Much as Gauss’s Disquisitiones Arithmeticae set the direction for elementary and

algebraic number theory, Riemann’s work set the direction for analytic number theory.

Riemann’s basic new (and brilliant) idea was to extend the zeta function of Euler ζ(s)

(see Section 3.1.2) to allow complex arguments, that is, to allow s to be a complex

number. This idea of Riemann initiated the use of complex analysis, specifically, the

theory of analytic functions and complex integration, into number theory and laid the

groundwork for modern analytic number theory. Recall that use of analysis begins

with the Euler zeta function and continues through the work of Dirichlet. However,

it is in this paper of Riemann and the introduction of complex analytic methods that

really marks the beginning of analytic number theory.

Euler had introduced ζ(s) for real s in giving a proof that the primes are infinite

and that the series
∑

1
p

diverges. Dirichlet used a variation of this function, still for

real s, in building the Dirichlet series used in the proof of his theorem on primes in

arithmetic progressions (see Section 3.3). Riemann, in allowing complex s, showed

that the resulting function ζ(s) is an analytic function for Re(s) > 1 and, further, can

be continued analytically (see the next section) to a function, which we will also
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denote by ζ(s), that is analytic in all of C except at s = 1. Further, s = 1 is a simple

pole with residue 1, that is,

ζ(s) = 1

s − 1
+ H(s)

where H(s) is an entire function. Riemann then showed that knowledge of the

location of the complex zeros of ζ(s) describes the density of primes. In particular, if

there are no zeros along the line Re(s) = 1, this would then imply the prime number

theorem. This was precisely the main step in the proofs of Hadamard and de la Vallée

Poussin (given independently) of the prime number theorem given thirty-six years

after Riemann’s paper.

4.4.1 The Real Zeta Function of Euler

Recall that the Euler zeta function was defined for real s > 1 by

ζ(s) =
∞∑

n=1

1

ns
.

From the classical p-series test this series converges absolutely for s > 1 and hence

defines a real C∞ function in this range. Further, as s → 1, ζ(s) → ∞, which

implies through the Euler product representation that there are infinitely many primes

(see Section 3.1.3).

As a direct consequence of the fundamental theorem of arithmetic, Euler derived

the following product decomposition (see Section 3.1.2):

ζ(s) =
∏

p prime

(
1

1 − p−s

)
.

This product decomposition will remain valid for complex s with Re(s) > 1 and

hence it is clear that there are no real zeros of ζ(s) if s > 1.

There are ties between the zeta function and several of the other arithmetical

functions with which we have worked in this chapter. First, from the Euler product

decomposition we obtain by logarithmic differentiation

−ζ ′(s)

ζ(s)
=

∑

p

∞∑

m=1

ln p

pms
.

Recall again that the von Mangoldt function �(n) is defined for positive integers by

�(n) =
{

ln p if n = pc, c ≥ 1,

0 for all other n > 0.

Therefore
∑

p

∞∑

m=1

ln p

pms
=

∞∑

n=1

�(n)

ns
− ζ ′(s)

ζ(s)
=

∞∑

n=1

�(n)

ns
.
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Next, again from the Euler product decomposition, we have for s > 1,

ζ(s)−1 =
∏

p

(1 − p−s).

Expanding the infinite product yields

ζ(s)−1 = 1 −
∑

p

p−s +
∑

p,q

(pq)−s −
∑

p,q,r

(pqr)−s + · · ·

with p, q, r, . . . primes. In this summation only square-free integers appear. Further,

for a square-free integer n, the coefficient of n−s in the above product is ±1, depending

on whether the number of prime factors of n is odd or even. This is precisely μ(n),

where μ(n) is the Möbius function (see Sections 3.3 and 3.6). Therefore

ζ(s)−1 =
∞∑

n=1

μ(n)

ns
.

Lemma 4.4.1.1. For s > 1 we have the following relationships:

(1) ζ(s)−1 =
∑∞

n=1
μ(n)
ns , where μ(n) is the Möbius function.

(2) − ζ ′(s)
ζ(s)

=
∑∞

n=1
�(n)
ns , where �(n) is the von Mangoldt function.

Euler further determined the exact value of ζ(2) and showed that it is π2

6
. Orig-

inally this was done by a clever use of certain trigonometric identities (see [NZM]).

Subsequently, Euler developed a method to determine the values of ζ(s) at all positive

even integers. We first give a proof of the basic result that ζ(2) = π2

6
using a different

approach. Some basic ideas from the theory of Fourier series are needed.

Recall that a real or complex function f (x) is periodic of period L if f (x +L) =
f (x) for all x. In the early 1800s Fourier attempted to prove that any periodic function

can be expressed as a trigonometric series that is a sum of sine functions and cosine

functions. If f (x) is periodic of period 2L, then its Fourier series is

f = a0 +
∞∑

n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
.

Using certain orthogonality relations between sines and cosines, Fourier showed that

if f (x) = f (x) then the coefficients a0, an, bn must be given by

a0 = 1

2L

∫ L

−L

f (x)dx,

an = 1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx, n = 1, 2, . . . ,

bn = 1

L

∫ L

−L

f (x) sin
(nπx

l

)
dx, n = 1, 2, . . . .
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The numbers an, bn are called the Fourier coefficients.

Fourier assumed that f (x) = f (x) but the situation was not definitively proved

until the theory of Lebesgue integration was developed. What was then obtained is

called the Fourier convergence theorem.

Theorem 4.4.1.1 (Fourier convergence theorem; see [Gr]). Let f (x) be periodic

of period 2L. Then we have the following:

(i) If both f (x) and f ′(x) are piecewise continuous on (−L, L) then the Fourier

series converges pointwise to the mean value
f (x+)+f (x−)

2
.

(ii) If both f (x) and f ′(x) are continuous on (−L, L) then the Fourier series

converges uniformly to f (x).

Therefore a C1 periodic function is everywhere represented by its Fourier series,

realizing Fourier’s original idea. We now prove Euler’s result using Fourier series.

Theorem 4.4.1.2. ζ(2) = π2

6
.

Proof. Let f (x) = x2, −π < x < π , and let f (x) then be continued period-

ically with period 2π . This function is continuous everywhere and differentiable

everywhere except at integer multiples of π . Therefore by the Fourier convergence

theorem it is everywhere represented by its Fourier series.

We apply the formulas. First f (x) is an even function, so there are only cosine

terms and hence bn = 0 for all n. Then

a0 = 1

2π

∫ π

−π

x2dx = π2

3

and

an = 1

π

∫ π

−π

x2 cos(nx)dx = (−1)n
4

n2
,

using integration by parts and the fact that cos(nπ) = (−1)n. Therefore the Fourier

series for f (x) is given by

x2 = π2

3
+ 4

∞∑

n=1

(−1)n

n2
cos nx, −π < x < π.

Now let x = π and place this value into the Fourier expansion. Then

π2 = π2

3
+ 4

∞∑

n=1

(−1)n

n2
cos(nπ).

But cos(nπ) = (−1)n, so

π2 = π2

3
+ 4

∞∑

n=1

(−1)n

n2
(−1)n
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=⇒ π2 = π2

3
+ 4

∞∑

n=1

1

n2
= 4ζ(2)

=⇒ ζ(2) = π2

6
. ⊓⊔

Euler’s method to find ζ(2) involved a detailed look at certain trigonometric

identities (see [NZM] or [Na]). Subsequently he developed a technique to determine

the value of ζ(s) for s an even positive integer. In particular, he tied the values of

ζ(2n) to the Bernoulli numbers Bn. These numbers are defined in terms of the

coefficients of the Taylor series expansion about x = 0 of the function f (x) = x
ex−1

with f (0) = 1. Specifically,

x

ex − 1
=

∞∑

n=0

Bn

n! xn.

Euler proved the following.

Theorem 4.4.1.3. ζ(2n) = (−1)n−1B2n

2(2n)! (2π)2n.

Substitution in this formula using that B2 = 1
6

, B4 = − 1
30

yields ζ(2) = π2

6

and ζ(4) = π4

90
. Euler himself determined such values up to ζ(26) for even n.

From Euler’s formula and the fact that π is transcendental it follows that ζ(2n) is

transcendental for any even positive integer 2n. On the other hand, very little is

known about the arithmetic nature of ζ(s) for s = 2n + 1 an odd positive integer. It

was shown by R. Apéry (also by de Branges) that ζ(3) is irrational and Apéry also

gave the following formula:

ζ(3) = 3

∞∑

k=1

1

k2
(

2k
k

) .

The number ζ(3) is called Apéry’s constant and has an approximate value of

1.202057. Euler’s result has also been recovered using Fourier series methods along

the lines of the proof we gave for ζ(2) = π2

6
.

There are several equivalent analytic expressions for ζ(s) for real s > 1. We

mention one such expression here because of the ties to the analytic continuation

of the complex Riemann zeta function. This will be discussed shortly. In order to

introduce this expression we must first describe the Gamma function.

Definition 4.4.1.1. If s > 0, the Gamma function is given by

Ŵ(s) =
∫ ∞

0

xs−1e−xdx.

By a straightforward integration by parts (see exercises) we obtain the following.
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Lemma 4.4.1.1. Ŵ(s + 1) = sŴ(s).

It is easy to determine that Ŵ(1) = 1. Hence

Ŵ(2) = 1Ŵ(1) = 1, Ŵ(3) = 2Ŵ(2) = 2!, Ŵ(4) = 3Ŵ(3) = 3!, . . . .

An easy induction then gives the following result.

Corollary 4.4.1.1. Ŵ(n) = (n − 1)! for any n ≥ 1, n ∈ N.

The Gamma function is then the extended factorial function.

The functional equation Ŵ(s + 1) = sŴ(s) allows us to extend the definition

of Ŵ(s) to all nonpositive real s except for 0 and the negative integers. Further,

lims→−n Ŵ(s) = ∞.

Another important result whose proof we will outline in the exercises is the

following.

Lemma 4.4.1.2. Ŵ( 1
2
) = √

π.

The relation we wish to show for ζ(s) is given in the next theorem.

Theorem 4.4.1.4. For real s > 1

ζ(s) = 1

Ŵ(s)

∫ ∞

0

t s−1

et − 1
dt.

Proof. For s > 1 let

G(s) = 1

Ŵ(s)

∫ ∞

0

t s − 1

et − 1
dt.

We show that G(s) = ζ(s). Recall that the sum of a geometric series with ratio r is

given by
∞∑

k=0

rk = 1

1 − r
if |r| < 1.

It follows then that
1

1 − e−t
=

∞∑

k=0

e−kt .

Now,

t s − 1

et − 1
= e−t t s−1 1

1 − e−t
= e−t t s−1

∞∑

k=0

e−kt = t s−1
∞∑

k=1

e−kt .

It follows that ∫ ∞

0

t s − 1

et − 1
dt =

∞∑

k=1

(∫ ∞

0

e−kt t s−1dt

)
.

Now let y = kt , so that dt = 1
k
dy, and substitute:

G(s) = 1

Ŵ(s)

∞∑

k=1

(∫ ∞

0

e−kt t s−1dt

)



4.4 The Riemann Zeta Function and the Riemann Hypothesis 163

= 1

Ŵ(s)

∞∑

k=1

(∫ ∞

0

e−y
(y

k

)s−1 1

k
dy

)

= 1

Ŵ(s)

( ∞∑

k=1

1

ks

)∫ ∞

0

ys−1e−ydy.

However,
∫∞

0 ys−1e−ydy = Ŵ(s) and therefore

G(s) =
∞∑

k=1

1

ks
= ζ(s). ⊓⊔

4.4.2 Analytic Functions and Analytic Continuation

Riemann introduced complex analysis, specifically the theory of analytic functions

and the theory of complex integration, into the study of number theory. In this section

we briefly go over the basic necessary ideas.

If w = f (z) is a complex function then the complex derivative is defined in

exactly the same formal manner as the real derivative.

Definition 4.4.2.1. If f (z) is any complex function, then its derivative f ′(z0) at

z0 ∈ C is

f ′(z0) = lim
�z→0

f (z0 + �z) − f (z0)

�z

whenever this limit exists. If f ′(z0) exists, then f (z) is differentiable there. The

function f (z) is differentiable on a whole region if it is differentiable at each point of

the region.

The complex function w = f (z) is analytic or holomorphic at z0 if f (z) is

differentiable in a circular neighborhood of z0. The function f (z) is analytic in

a region U if it is analytic at each point of U . If f (z) is analytic throughout C,

then it is called an entire function. Many of the standard functions from analysis:

polynomials, ez, sin z, cos z, appropriately defined for complex arguments, are entire.

If f (z) is a complex function defined on a region U containing the curve

γ (t) = x(t) + iy(t), t0 ≤ t ≤ t1,

then the complex contour integral
∫
γ

f (z)dz is defined by

∫

γ

f (z)dz =
∫ t1

t0

f (γ (t))γ ′(t)dt.

Most of complex analysis deals with the properties and implications of complex

integration of analytic functions. One of the cornerstones of this theory is Cauchy’s

theorem.



164 4 The Density of Primes

Theorem 4.4.2.1 (Cauchy’s theorem). Let f (z) be analytic throughout a simply

connected domain U and suppose γ is a simple closed curve entirely contained in U .

Then ∫

γ

f (z)dz = 0.

As a consequence of Cauchy’s theorem one obtains (via the Cauchy integral

formulas) that analytic functions have the property that they have derivatives of all

possible orders. That is, iff (z) is analytic at z0 thenf ′(z0), f
′′(z0), . . . , f

(n)(z0), . . .

all exist. Further, in a neighborhood of z0 the function f (z) is then given by a

convergent Taylor series centered on z0:

f (z) =
∞∑

n=0

f (n)(z0)

n! (z − z0)
n for |z − z0| < R.

The derivatives f (n)(z0) are given by the Cauchy integral formula as

f (n)(z0) = n!
2πi

∫

γ

f (z)

(z − z0)n+1
dz,

where γ is any simple closed curve around z0 within a simply connected domain U ,

where f (z) is analytic. Recall that a simply connected domain in C is a region where

every simple closed curve can be continuously shrunk to a point, that is, a region that

has no holes in it (see [Ah]). Hence the values of a complex analytic function and its

derivatives within U are determined by its values on the boundary. Hence the interior

values are a type of average of the boundary values. Although we will not pursue

this further, the idea has been exploited extensively in number theory and analysis.

The next theorem summarizes all these comments.

Theorem 4.4.2.2. Suppose f (z) is analytic in a simply connected domain U

containing z0 and γ is a simple closed curve within U . Then we have the following:

(1) f (z) has derivatives of all possible orders at z0.

(2) There exists a R > 0 such that f (z) is given by a convergent Taylor series

centered on z0:

f (z) =
∞∑

n=0

f (n)(z0)

n! (z − z0)
n for |z − z0| < R.

(3) The derivatives are given by the Cauchy integral formulas as

f (n)(z0) = n!
2πi

∫

γ

f (z)

(z − z0)n+1
dz.

We note that Theorem 4.4.2.2 is in distinction to the situation for real differentiable

functions. A function y = f (x) with x, y ∈ R can have one derivative but not two,

two derivatives but not three, and so on. Further, there are real functions that are C∞,
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that is, they have infinitely many derivatives, but that are not given by convergent

Taylor series. A real function that has a convergent Taylor series centered on x0 is

said to be real analytic at x0.

An extremely important concept in studying the zeta function is that of analytic

continuation. The basic idea is the following: suppose a complex analytic function

f (z) is given by an analytic expression that holds in a region S in C. Suppose that

this is equivalent within S or within a subset of S to another analytic expression that

holds in a larger region S1. Then the second expression can be used to analytically

extend or continue f (z) to the larger region S1. We make this precise.

Suppose that f1(z) is analytic on a region S1 and f2(z) is analytic on a region S2.

Suppose that S1 ∩ S2 is a nonempty open set and f1(z) = f2(z) on S1 ∩ S2. Then

(f2(z), S2) is said to be a direct analytic continuation of (f1(z), S1). The individual

pairs (f1, S1) and (f2, S2) are called function elements. A function element (f, S) is

an analytic continuation of (f1, S1) if there is a chain (fi, Si) of function elements

connecting (f1, S1) to (f, S) and with each neighboring pair a direct analytic con-

tinuation. A global analytic function is a nonempty collection of function elements

F = {(fα, Sα)} such that any two in this collection are analytic continuations of each

other. A global analytic function is complete if it contains all analytic continuations

of any of its function elements.

Finally, analytic continuation is essentially unique in the sense that two ana-

lytic functions which agree on a sufficiently large domain, for example a curve, are

identical.

As an example of a type of analytic continuation, consider the Gamma function

Ŵ(s) =
∫ ∞

0

t s−1e−tdt.

This integral has meaning only for real s > 0. However, Euler proved that for real

s > 0,

Ŵ(s) = e−γ s

s

∞∏

n=1

(
1 + s

n

)−1

e
s
n , (4.4.2.1)

where γ is Euler’s constant, with an approximate value of .57722. The expression in

(4.4.2.1) is valid now for complex s with Re(s) > 0 and can be used for the definition

of the complex Gamma function Ŵ(z). Using the relation

Ŵ(z + 1) = zŴ(z),

the complex function can be continued to a function that is analytic except at z = 0,

z = −1, z = −2, . . . .

If f (z) is not analytic at z0 but is analytic in a neighborhood of z0 then z0 is

called an isolated singularity. Isolated singularities are classified as either remov-

able, in which case limz→z0
f (z) exists and is not infinite; a pole, in which case

limz→z0
f (z) = ∞; or an essential singularity, in which case limz→z0

f (z) does

not exist. For a pole z0 there exists an integer m ≥ 1 such that f (z) = h(z)
(z−z0)

m with
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h(z) analytic at z0. The minimal integer m with that property is called the order of

the pole. If m = 1 then z0 is a simple pole. The value

1

(m − 1)! lim
z→z0

dn−1(z − z0)
nf (z)

dzn−1

is the residue of f (z) at z0. The residue is equal to

1

2πi

∫

γ

f (z)dz,

where γ is any simple closed curve around z0 within a region around z0 where f (z)

is analytic.

If f (z) has a simple pole at z0 with residue w0 then the function h(z) given by

h(z) = f (z) − w0

z − z0

is analytic at z0.

A function f (z) is meromorphic in a region S if it is analytic except for poles,

which by definition are isolated. We will see in the next section that via analytic

continuation the zeta function ζ(s) can be considered as a meromorphic function in

the whole complex plane with a simple pole at z = 1 with residue 1. Hence

ζ(z) − 1

z − 1
= H(z),

where H(z) is an entire function.

4.4.3 The Riemann Zeta Function

The Riemann zeta function starts with the Euler zeta function ζ(s) and extends it

by allowing complex arguments s. That is,

ζ(s) =
∞∑

n=1

1

ns
. (4.4.3.1)

Recall that for real numbers x and t we have

xit = eix ln t = cos(x ln t) + i sin(x ln t).

It follows that |xit | = 1. Therefore for each natural number n and s = σ + it with

σ, t ∈ R, we have

∣∣∣∣
1

ns

∣∣∣∣ =
∣∣∣∣

1

nσ+it

∣∣∣∣ =
∣∣∣∣

1

nσ

∣∣∣∣
∣∣∣∣

1

nit

∣∣∣∣ =
∣∣∣∣

1

nσ

∣∣∣∣ =
∣∣∣∣

1

nRe(s)

∣∣∣∣ .

Consequently by the p-series test the series in (4.4.3.1) converges absolutely for

Re(s) > 1 and hence defines ζ(s) as an analytic function in this region.
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Since the basic formulas concerning the Euler product decomposition and those

tying ζ(s) to the von Mangoldt function hold on a connected arc (the part of the real

line s > 1), by analytic continuation they are still valid for complex arguments within

the region of analyticity Re s > 1. Thus we have

ζ(s) =
∏

p prime

(
1

1 − p−s

)
, s ∈ C, Re s > 1;

−ζ ′(s)

ζ(s)
=

∞∑

n=1

�(n)

ns
, s ∈ C, Re s > 1;

and

ζ(s)−1 =
∞∑

n=1

μ(n)

ns
, s ∈ C, Re s > 1.

From the Euler product decomposition it is clear that ζ(s) has no zeros for

Re s > 1.

The initial step in studying the zeta function and applying it to the proof of the

prime number theorem is to show that it can be continued analytically to a function,

also denoted by ζ(s), that is meromorphic in all of C. This is accomplished in several

steps but we next state the whole result.

Theorem 4.4.3.1. The Riemann zeta function ζ(s) can be analytically continued to

a function, also denoted ζ(s), which is meromorphic in the whole plane. The only

singularity of ζ(s) is a simple pole at s = 1 with residue 1, that is,

ζ(s) = 1

s − 1
+ H(s),

where H(s) is an entire function.

As remarked above, for Re s > 1, it follows from the basic definition that ζ(s)

is analytic. The first step is to analytically continue to a function that is analytic for

Re s > 0 except s = 1. To do this, suppose first that Re s > 2. Then

ζ(s) =
∞∑

n=1

1

ns
=

∞∑

n=1

n

ns
−

∞∑

n=1

n − 1

ns

=
∞∑

n=1

n

ns
−

∞∑

n=1

n

(n + 1)s

=
∞∑

n=1

n

(
1

ns
− 1

(n + 1)s

)

=
∞∑

n=1

ns

∫ n+1

n

x−s−1dx = s

∞∑

n=1

∫ n+1

n

[x]x−s−1dx
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= s

∫ ∞

1

[x]x−s−1dx.

This final integral defines an analytic function of s for Re s > 1 and therefore by

the uniqueness of analytic continuation this integral formulation of ζ(s) holds for

Re s > 1.

Now consider the integral

s

∫ ∞

1

(x)x−s−1dx = s

s − 1
= 1 + 1

s − 1
.

Combining this with the integral representation of ζ(s) gives

ζ(s) = 1

s − 1
+ 1 + s

∫ ∞

1

([x] − x)x−s−1dx. (4.4.3.2)

The integral on the right-hand side converges for Re s > 0, and hence for Re s > 0

the right-hand side provides a meromorphic function with a simple pole at s = 1

with residue 1. Therefore this provides an analytic continuation of ζ(s) to such a

meromorphic function in the whole half-plane Re s > 0.

To proceed further, we need the following functional relation involving ζ(s) and

ζ(1 − s), which ties the Riemann zeta function to the complex Gamma function (see

Theorem 4.4.1.4).

Theorem 4.4.3.2. The Riemann zeta function satisfies the functional relation

π−s/2Ŵ
( s

2

)
ζ(s) = π−(s+1)/2Ŵ

(
1 − s

2

)
ζ(1 − s)

or equivalently

ζ(s) = 2sπ s−1 sin
(πs

2

)
Ŵ(1 − s)ζ(s − 1), s �= 0, 1.

Proof. The proof uses certain facts about the complex Gamma function and another

function known as the Jacobi theta function. This latter function is defined as

θ(u) =
∞∑

n=−∞
e−πn2u.

Using the theory of Fourier transforms applied to the function f (x) = e−πux2
it

can be shown that the Jacobi theta function satisfies the functional relation

θ

(
1

u

)
=

√
uθ(u).

Now recall that

Ŵ(s) =
∫ ∞

0

xs−1e−xdx,
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so that

Ŵ
( s

2

)
=

∫ ∞

0

xs/2−1e−xdx.

Applying the change of variables y = x

πn2 , this becomes

π−s/2Ŵ
( s

2

)
n−s =

∫ ∞

0

ys/2−1e−πn2ydy.

This will hold for each positive integer n > 1. Summing over all the positive integers,

we get

π−s/2Ŵ
( s

2

)
ζ(s) =

∫ ∞

0

1

2
(θ(y) − 1)ys/2−1dy =

∫ ∞

0

θ1(y)ys/2−1dy, (4.4.3.3)

where θ1(y) = 1
2
(θ(y) − 1).

If we make the new change of variable z = 1
y

, then we have from the functional

relation on θ that

θ

(
1

y

)
= √

yθ(y) =⇒ θ(z) =
θ
(

1
z

)
√

z
.

Splitting the integral at y = 1 and using this change of variable gives us

∫ 1

0

θ1(y)ys/2−1dy = 1

s(s − 1)
+
∫ ∞

1

θ1(z)z
−(s+1)/2dz.

Substituting this back into (4.4.3.3), we have

π−s/2Ŵ
( s

2

)
ζ(s) = 1

s(s − 1)
+
∫ ∞

1

θ1(x)
(
x−(s+1)/2 + xs/2−1

)
dx. (4.4.3.4)

The integral on the right-hand side of (4.4.3.4) converges and hence defines an analytic

function of s. Hence the whole right-hand side defines a meromorphic function that

is invariant under the transformation s → 1 − s. Therefore the left-hand side must

also be invariant under this transformation, implying that

π−s/2Ŵ
( s

2

)
ζ(s) = π−(1−s)/2Ŵ

(
1 − s

2

)
ζ(1 − s), (4.4.3.5)

which is the desired functional relation.

To obtain the equivalent formulation given in the statement of the theorem we use

two properties of the Gamma function. The first is called the formula of complements
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and is given by

Ŵ(s)Ŵ(1 − s) = π

sin(πs)
.

The second is called the duplication formula and is given by

Ŵ(s)Ŵ

(
s + 1

2

)
=

√
π21−2sŴ(2s).

The duplication formula was originally given by Legendre. Using these formulas in

(4.4.3.5), the relation becomes

ζ(s) = 2sπ s−1 sin
(πs

2

)
Ŵ(1 − s)ζ(s − 1), s �= 0, 1.

We leave the details to the exercises. ⊓⊔

Note that the functional relation has the form

ζ(s) = K(s)ζ(s − 1),

where

K(s) = 2sπ s−1 sin
(πs

2

)
Ŵ(1 − s).

The transformation s → 1 − s has s = 1
2

as its center of symmetry. Therefore

since ζ(s) is defined for Re s ≥ 1
2

the functional equation can be used to continue

ζ(s) to a function defined for Re s ≤ 1
2

and hence defined over the whole complex

plane.

From the analytic continuation of the Gamma function it follows that the function

K(s) has singularities, namely, it becomes infinite at the positive odd integers 2n+1,

n ≥ 1. However, ζ(2n+ 1) is finite for all n ≥ 1. Hence from the functional relation

this is possible only if ζ(1 − s) = 0 if s = 2n + 1. Therefore ζ(s) = 0 at all the

negative even integers −2, −4, . . . . These are called the trivial zeros of ζ(s).

The functional equation also establishes that s = 1 is the only singularity of

ζ(s) in the whole complex plane. This follows from the fact that ζ(s) has only a

simple pole at s = 1 for Re s ≥ 1
2

, and the only singularities of K(s) are at the

positive odd integers. Hence by analytic continuation this is true over the whole

plane. Further, the fact that s = 1 is a simple pole and that the residue is 1 follows

from the integral representation of ζ(s) (4.4.3.2). These last comments complete the

proof of Theorem 4.4.3.1.

What becomes crucial in applying the zeta function to the proof of the prime

number theorem is the location of its zeros. In particular, we will see in the next

section that the fact that ζ(s) has no zeros on the line Re s = 1 is equivalent to the

prime number theorem. We have already seen that ζ(s) has zeros at s = −2, −4, . . . .

These are called the trivial zeros. Riemann in his original paper showed that any

nontrivial zeros must fall in the critical strip 0 ≤ Re s ≤ 1. Further, he conjectured

that all the nontrivial zeros lie along the line Re s = 1
2
, which is called the critical

line. This is called the Riemann hypothesis and is still an open question. It has
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resisted solution for almost a hundred and fifty years and has had tremendous impact

on both number theory and other branches of mathematics. Now that Fermat’s last

theorem has been settled the Riemann hypothesis can be considered the outstanding

open problem in mathematics. We will say more about the Riemann hypothesis after

we show that there are no zeros on the line Re s = 1. This fact was the fundamental

step in the proofs of both Hadamard and de la Vallée Poussin of the prime number

theorem. Their proofs were independent and appear different but are essentially the

same (see [Na]).

Theorem 4.4.3.3. The Riemann zeta function ζ(s) has no zeros on the line Re s = 1.

Proof. The proof we give is a simplification of the proofs of Hadamard and de la

Vallée Poussin and was given by Mertens in 1898. The starting point is the inequality

3 + 4 cos θ + cos(2θ) = 2(1 + cos(2θ))2 ≥ 0 for all real θ.

Now suppose that ζ(1 + it) = 0 for t real and t �= 0. Then let

φ(s) = ζ 3(s)ζ 4(s + it)ζ(s + 2it).

Since the pole at s = 1 of ζ 3(s) cannot cancel the zero of ζ 4(s + it) it would follow

that φ(s) is analytic and that

ln |φ(s)| → −∞ as s → 1.

Now take s to be real with s > 1. By the Euler product decomposition,

ln |φ(s)| = − Re

(
∑

p

ln(1 − p−s−it )

)

= Re

(
∑

p

(
p−s−it + 1

2
(p2)−s−it + 1

3
(p3)−s−it + · · ·

))

= Re

( ∞∑

1

ann
−s−it

)
with an ≥ 0.

Then

ln |φ(s)| = Re

( ∞∑

1

ann
−s(3 + 4n−it + n−2it )

)

=
∞∑

1

ann
−s(3 + 4 cos(t ln n) + cos(2t ln n)).

However, this last sum is ≥ 0 by the trigonometric inequality given at the beginning

of the proof, contradicting the fact that the limit must go to −∞. This contradiction

then implies that ζ(s + it) �= 0. ⊓⊔
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Theorem 4.4.3.3 will imply the prime number theorem in roughly the following

manner. This will be made precise in the next section. Recall that the prime number

theorem is equivalent to ψ(x) ∼ x, where ψ(x) is the Chebychev function. Therefore

we want to show that ψ(x) ∼ x. Now,

ψ(x) =
∑

n≤x

�(n) and [x] =
∑

n≤x

1.

Therefore we want to show that roughly as x → ∞ the von Mangoldt function �(n)

looks like 1. We have further

−ζ ′(s)

ζ(s)
=

∞∑

n=1

�(n)

ns
.

If Re s > 1 we can obtain an integral representation of this:

−ζ ′(s)

ζ(s)
= s

∫ ∞

1

ψ(x)x−s−1dx.

If there are no zeros of ζ(s) on the line Re s = 1, then by complex integration this

integral can be handled and in turn used to show that ψ(x) ∼ x.

Before closing this section we make some further comments on the zeros and on

the Riemann hypothesis. Hardy in 1914 proved that ζ(s) has infinitely many zeros

along the line Re s = 1
2

. As of 2002 it is known that at least the first billion and a half

nontrivial zeros of ζ(s) lie along the critical line.

Selberg in 1942 showed that a positive proportion of the nontrivial zeros lie along

the critical line. Levinson in 1974 improved this to show that at least 1
3

of the nontrivial

zeros are on the critical line. This has subsequently been improved to at least 40% of

the nontrivial zeros are on the critical line.

There are several quantitative statements that are equivalent to the Riemann

hypothesis. Koch in 1901 showed that the Riemann hypothesis is equivalent to

π(x) = Li(x) + O(
√

x ln x),

where Li(x) is the logarithmic integral function of Gauss,

Li(x) =
∫ x

2

1

ln t
dt.

In a similar manner the Riemann hypothesis can be shown to be equivalent to

π(x) = Li(x) + O
(
x

1
2 +ǫ

)
∀ǫ > 0.

An entirely elementary formulation of the Riemann hypothesis is the following

(see [P]). Define a positive square-free integer n to be red if it is the product of an

even number of distinct primes and blue if it is the product of an odd number of

distinct primes. Let R(n) be the number of red integers not exceeding n and B(n)
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the number of blue integers not exceeding n. The Riemann hypothesis is equivalent

to the statement that for any ǫ > 0 there exists an N such that for all n > N ,

|R(n) − B(n)| < n
1
2 +ǫ .

We mention one major extension of the Riemann hypothesis. Recall that for an

integer k a Dirichlet L-series is defined‘ by

L(s, χ) =
∞∑

n=1

χ(n)

ns
,

whereχ is a character mod k and s is a complex variable (see Chapter 3). Recall further

that Dirichlet L-series also have Euler product representations. The generalized

Riemann hypothesis is that the zeros of any Dirichlet L-series also lie along the

critical line Re s = 1
2

.

4.5 The Prime Number Theorem

We are now ready to prove the prime number theorem.

Theorem 4.5.1. π(x) ∼ ln x
x

.

As we have already mentioned, the proof is dependent on the fact that ζ(s) has

no zeros on the line Re s = 1. The original proofs were given by Hadamard and

de la Vallée Poussin and were quite complicated. An exposition and commentary

on the original proofs can be found in the book of Narkiewicz [Na]. The proof was

somewhat simplified by Wiener and others but still remained quite complicated. In

1980 D. J. Newman found a way to give a proof using only fairly straightforward facts

about complex integration, which allowed a relatively short proof to be presented.

The proof we give is based on Newman’s method.

In another direction, in 1949 Selberg and then Erdős came up with an “elementary

proof’’ of the prime number theorem along the lines that Chebychev had begun a

century earlier. This proof is elementary only in the sense that it does not use complex

analysis and is in fact more complex, meaning complicated, than the complex-analytic

proofs. We will say more about the elementary proof in the next section.

Newman’s method is based on the following theorem and the subsequent corollary.

We will state them and then show how they imply the proof of the prime number

theorem. After this we will go back and prove them.

Theorem 4.5.2. Let F(t) be bounded on (0, ∞) and integrable over every finite

subinterval and suppose that the Laplace transform

G(s) =
∫ ∞

0

F(t)e−stdt

is well-defined and analytic throughout the open half-plane Re s > 0. Suppose

further that G(s) can be continued analytically to a neighborhood of every point of
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the imaginary axis. Then ∫ ∞

0

F(t)dt

exists and equals G(0).

Corollary 4.5.1. Let f (x) be nonnegative, nondecreasing, and O(x) on [1, ∞), so

that the function

g(s) = s

∫ ∞

1

f (x)x−s−1dxx

is well-defined and analytic throughout the half-plane Re s > 1 (g(s) is called the

Mellin transform of f (x)). Suppose further that for some constant c the function

G(s) = g(s) − c

s − 1

can be continued analytically to a neighborhood of every point on the line Re s = 1.

Then
f (x)

x
→ c as x → ∞.

The proof of the prime number theorem now follows easily from the corollary.

Proof of Theorem 4.5.1. Recall that the prime number theorem is equivalent to

ψ(x) ∼ x, that is, that
ψ(x)

x
→ 1 as x → ∞.

Take f (x) in the corollary to be ψ(x). Since we know that ψ(x) is nonnegative,

nondecreasing, and O(x) on [1, ∞), we must show that the other conditions of the

corollary apply. We have already seen (see Section 4.4) that

g(s) = s

∫ ∞

1

ψ(x)x−s−1dx = −ζ ′(s)

ζ(s)
.

Since ζ(s) has a simple pole with residue 1 at s = 1 the same is then true of g(s). The

analyticity of ζ(s) at the points of Re s = 1, s �= 1, and its nonvanishing on this line

then imply that g(s) can be continued analytically to a neighborhood of each point

on this line. Hence

G(s) = g(s) − 1

s − 1

has an analytic continuation to the closed half-plane Re s ≥ 1. Therefore the condi-

tions of the corollary are met (with c = 1) and hence

ψ(x)

x
→ 1 as x → ∞. ⊓⊔

We now give the proofs of Theorem 4.5.2 and the corollary.
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Proof of Theorem 4.5.2. We suppose that F(t) is bounded on (0, ∞) and that its

Laplace transform

G(s) =
∫ ∞

0

F(t)e−stdt

is well-defined and analytic throughout Re s > 0. We suppose further that G(s) can

be continued analytically to a neighborhood of every point of the imaginary axis.

Therefore we have an analytic function, which we will also call G(s) that is analytic

on a neighborhood of Re s ≥ 0. Hence there is a δ > 0, chosen small enough, such

that G(s) is analytic for Re s ≥ −δ.

Since f (t) is bounded, without loss of generality, we may assume that |F(t)| ≤ 1

for t > 0. For λ > 0 let

Gλ(s) =
∫ λ

0

F(t)e−stdt.

Since this is a finite integral and F(t) is bounded, Gλ(s) is analytic for all s and for

all finite λ. We must show that

Gλ(0) =
∫ λ

0

F(t)dt → G(0) as λ → ∞.

For R > 0 choose a δ = δ(R) so that G(s) is analytic on and within the closed

curve W , where W is given by the arc of the circle |z| = R for Rs ≥ −δ together

with the line segment Re s = −δ. We picture this in Figure 4.5.1.

R

Re s = – δ

W

0

Figure 4.5.1.

We orient W to go counterclockwise and let W+ be the part of W for Re s > 0

and W− the part of W for Re s < 0.



176 4 The Density of Primes

Now for each λ the function G(s) − Gλ(s) is analytic at s = 0. Therefore by the

Cauchy integral formula (Theorem 4.4.2.2, part (3)), we have

G(0) − Gλ(0) = 1

2πi

∫

W

G(z) − Gλ(z)

z
dz. (4.5.1)

We have the following inequalities, which will be needed to evaluate the final

limit. First, for x = Re s > 0,

|G(s) − Gλ(s)| =
∣∣∣∣
∫ ∞

λ

F(t)e−stdt

∣∣∣∣ ≤
∫ ∞

λ

e−xtdt = 1

|x|e
−λx .

Next, for x = Re s < 0,

|Gλ(s)| =
∣∣∣∣
∫ λ

o

F(t)e−stdt

∣∣∣∣ ≤
∫ λ

0

e−xtdt ≤ 1

|x|e
−λx .

Next, if we let H(z) = eλzG(z) and Hλ(z) = eλzGλ(z), then clearly H(0) =
G(0) and Hλ(0) = Gλ(0), so

H(0) − Hλ(0) = G(0) − Gλ(0).

Further, within and on W , the function (G(s)−Gλ(s))eλss

R2 is analytic, so that

∫

W

(G(z) − Gλ(z))e
λzz

R2
dz = 0

by Cauchy’s theorem. Therefore combining these observations with (4.5.1), we get

G(0) − Gλ(0) = H(0) − Hλ(0) = 1

2πi

∫

W

(G(z) − Gλ(z))e
λz

(
1

z
+ z

R2

)
dz.

On the circle |z| = R we have

1

z
+ z

R2
= 2x

R2
,

and hence on W+,

(G(z) − Gλ(z))e
λz

(
1

z
+ z

R2

)
≤ 1

x
e−λxeλx

(
2x

R2

)
= 2

R2
.

It follows that
∣∣∣∣

1

2πi

∫

W+
(G(z) − Gλ(z))e

λz

(
1

z
+ z

R2

)
dz

∣∣∣∣ ≤ 1

2π

2

R2
πR = 1

R
.

Now we consider the integral over W−. Since Gλ(s) is analytic for all s we may

replace, using Cauchy’s theorem, the W− path by the corresponding integral over the
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semicircle W ∗
− = |z| = R, Re z < 0. Then by Cauchy’s theorem and our previous

inequalities,

∣∣∣∣
1

2πi

∫

W−
Gλ(z)e

λz

(
1

z
+ z

R2

)
dz

∣∣∣∣ =
∣∣∣∣∣

1

2πi

∫

W ∗
−

Gλ(z)e
λz

(
1

z
+ z

R2

)
dz

∣∣∣∣∣ <
1

R
.

Now consider ∣∣∣∣
1

2πi

∫

W−
G(z)eλz

(
1

z
+ z

R2

)
dz

∣∣∣∣ . (4.5.2)

Since G(s) is analytic on W− there exists a constant B depending on δ and on R such

that ∣∣∣∣G(s)

(
1

s
+ s

R2

)∣∣∣∣ ≤ B on W−.

It follows that ∣∣∣∣G(s)eλs

(
1

s
+ s

R2

)∣∣∣∣ ≤ Beλx on W−.

Therefore on W− where x ≤ −δ < 0 the integrand in (4.5.2) tends to zero uniformly

as λ → ∞. On the remaining small part of W− (take δ1 < δ small) the integrand is

bounded by B. Hence given a fixed W chosen as above, the integral in (4.5.2) tends

to zero as λ → ∞.

Now we put all of this together. Given ǫ > 0 choose R = 1
ǫ
. Choose δ as above

such that G(s) is analytic within and on W . Finally, determine a value λ1 such that

(4.5.1) is bounded by ǫ for all λ > λ1. Combining then all the inequalities, we get

|G(0) − Gλ(0)| < 3ǫ for λ > λ1.

Therefore

Gλ(0) → G(0) as λ → ∞. ⊓⊔

The corollary follows in a relatively straightforward manner from this theorem.

Proof of Corollary 4.5.1. We suppose that f (x) and G(x) satisfy the conditions

given in Corollary 4.5.1. That is, f (x) is nonnegative, nondecreasing, and O(x)

on [1, ∞) and

g(s) = s

∫ ∞

1

f (x)x−s−1dx

is well-defined and analytic throughout the half-plane Re s > 1. Further, there is a

constant c such that the function

G(s) = g(s) − c

s − 1

can be continued analytically to a neighborhood of every point on the line Re s = 1.
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Now let x = et and define

F(t) = e−tf (et ) − c.

From the conditions on f (x) it follows that F(t) is bounded on (0, ∞). The Laplace

transform of F(t) is given by

G(s) =
∫ ∞

0

(e−tf (et ))e−stdt =
∫ ∞

1

f (x)x−s−2dx − c

s

= 1

s + 1

(
g(s + 1) − c

s
− c

)
.

From the conditions on g(s) it follows that G(s) can be continued analytically to a

neighborhood of every point of the imaginary axis.

Now let t = − ln x and apply Theorem 4.5.2 to G(s). From this it follows that

the improper integrals

∫ ∞

0

(e−tf (et ) − c)dt =
∫ ∞

1

f (x) − cx

x2
dx (4.5.4)

exist. Since f (x) is an increasing function, this would imply that
f (x)

x
→ c as

x → ∞.

To see this last assertion suppose that lim sup
f (x)

x
> c. Then there would exist a

δ ≥ 0 such that for certain arbitrarily large y,

f (y) > (c + 2δ)y.

Since f (x) is increasing it would then follow that

f (x) > (c + 2δ)y > (c + δ)x for y < x < σy,

where σ = (c+2δ)
(c+δ)

. Then

∫ σy

y

f (x) − cx

x2
dx >

∫ σy

y

δ

x
dx = δ ln σ.

But this is bounded away from zero for arbitrarily large y, contradicting that the

improper integral in (4.5.4) converges. Therefore lim sup
f (x)

x
≤ c.

Next suppose that lim inf
f (x)

x
< c. Then in a similar manner there exists an

interval σy < x < y with σ < 1 and f (x) < (c − δ)x on this interval. Applying

this to the integral we obtain

∫ y

σy

f (x) − cx

x2
dx <

∫ y

σy

− δ

x
dx = δ ln σ.

This is negative and again bounded away from zero, contradicting the convergence

of the improper integrals. It follows that lim inf
f (x)

x
≥ c.
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Since lim inf
f (x)

x
≤ lim sup

f (x)
x

it follows that

lim inf
f (x)

x
= lim sup

f (x)

x
= c

and therefore the limit exists and also equals c, completing the proof of the

corollary. ⊓⊔

We have seen that the absence of zeros of ζ(s) on the line Re s = 1 implies the

prime number theorem. It was pointed out by Wiener that the converse is also true,

and hence the prime number theorem is equivalent to the fact that there are no zeros

of ζ(s) on Re s = 1.

Theorem 4.5.3. The prime number theorem is equivalent to the fact that there are no

zeros of ζ(s) on the line Re s = 1.

Proof. We have already seen that the absence of zeros implies the prime number

theorem. Suppose now that ψ(x) ∼ x and ζ(1 + it) = 0 with t real and t �= 0. Then

if the order of the zero is m we have the expansion

ζ(s) = c(s − (1 + it))m + · · · ,

which is valid on a neighborhood of 1 + it . Let

g(s) = −ζ ′(s)

ζ(s)
=

∞∑

n=1

�(n)

ns
.

The expansion above would imply that

lim
Re s→1+

(s − 1)g(s + it) = −m.

Further,

g(s) = s

s − 1
+ s

∫ ∞

1

(ψ(y) − y)
1

ys+1
dy with Re s > 1.

Then since ψ(y) ∼ y,

(s − 1)|g(s)| ≤ (s − 1)|s|
(

1

|t | +
∫ ∞

0

o(y− Re s)dy

)
= o(1)

as Re s → 1+. This would imply that m = 0, contradicting the existence of a zero

on the line Re s = 1. ⊓⊔
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4.6 The Elementary Proof

As we have noted, Chebychev’s theorem (Theorem 4.2.1) appeared to be quite close

to the prime number theorem. It provided the right bounds, and further, Cheby-

chev showed that if limx→∞
π(x) ln x

x
existed then the value of the limit must be one.

Chebychev’s methods were elementary in the sense that they involved no analysis

more complicated than simple real integration and the properties of the logarith-

mic function (although the proofs themselves were complicated). This would seem

appropriate for a proof of a theorem about primes, since primes are in the realm of

arithmetic and should not require deep analytic notions. However, Chebychev could

not establish that the limit existed and then Riemann, ten years or so later, tried a

different approach using the theory of complex analytic functions. As discussed in

the last section, the proof of the prime number theorem was reduced to knowing the

location of the zeros of the complex analytic Riemann zeta function. Still, even with

Riemann’s ideas, the proof resisted solution for another thirty-six years and during

this time many mathematicians began to doubt that the limit limx→∞
π(x) ln x

x
existed.

These doubts were put to rest with the proofs of Hadamard and de la Vallée Poussin.

As we have proved (Theorem 4.5.3), the prime number theorem, a result seemingly

arising in arithmetic, is equivalent to the result that there are no zeros of the Riemann

zeta function ζ(s) along the line Re(s) = 1, a result really in complex analysis. This

raised the question of the actual relationship between the distribution of primes and

complex function theory. This led to the further question of whether there could exist

an elementary proof of the prime number theorem along the lines of Chebychev’s

methods.

The opinion that came to prevail was that it was doubtful that such a proof existed.

The feeling was that complex analysis was somehow deeper than real analysis and in

view of the equivalence mentioned above, it would be unlikely that one could prove

the prime number theorem using just the methods of real analysis. On the other hand

it was felt that if such a proof existed it would open up all sorts of new avenues in

number theory.

The English mathematician G. H. Hardy, who made major contributions to the

study of the relationship between the prime number function π(x) and Gauss’s loga-

rithmic integral function Li(x), described the situation this way in a lecture in 1921

(see [N]):

G. H. Hardy. No elementary proof of the prime number theorem is known and one may

ask whether it is reasonable to expect one. Now we know that the theorem is roughly

equivalent to a theorem about an analytic function, the theorem that Riemann’s zeta

function has no roots on a certain line. A proof of such a theorem, not fundamentally

dependent upon the ideas of the theory of functions, seems to me to be extraordinarily

unlikely. It is rash to assert that a mathematical theorem cannot be proved in a

particular way; but one thing seems quite clear. We have certain views about the

logic of the theory; we think that some theorems, as we say “lie deep’’ and others

nearer to the surface. If anyone produces an elementary proof of the prime number

theorem, he will show that these views are wrong, that the subject does not hang
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together in the way we have supposed, and that it is time for the books to be cast aside

and for the theory to be rewritten.

However, what actually occurred was even more surprising. Selberg and then

Erdős and then Erdős and Selberg together in 1948 developed elementary proofs of the

prime number theorem along the lines of Chebychev’s methods. All of these proofs

depended on asymptotic estimates for an extension of the von Mangoldt function.

These asymptotic estimates are now called Selberg formulas. The discovery of this

elementary proof put to rest the discussion of the relative profoundness of complex

analysis versus real analysis. However, despite the brilliance of the Selberg–Erdős

approach, it did not produce the startling consequences in understanding both the

distribution of primes and the zeros of the Riemann zeta function that were predicted.

There are now many so-called elementary proofs, and the techniques involved have

become standard in analytic number theory. It may be that in time these methods will

lead to a deeper understanding of the basic questions.

In this section we will state the Selberg formulas (without proof) and then outline

(also without proof) how this formula leads to a proof of the prime number theorem.

A complete exposition of Selberg’s original proof can be found in the book of

Nathanson [N], while a self-contained exposition of another elementary proof is

in the book of Tenenbaum and Mendès-France [TMF]. A slightly different approach

based on Selberg’s methods can also be found in Hardy and Wright [HW].

The Selberg formula from which the elementary proof can be derived is the

following.

Theorem 4.6.1 (Selberg formula). For x ≥ 1,

∑

p≤x

(ln p)2 +
∑

p,q≤x

ln p ln q = 2x ln x + O(x),

where p, q run over all the primes ≤ x.

Several alternative formulations of this result are used in the elementary proof.

First, the formula can be expressed in terms of the von Mangoldt function, which we

used in our other (nonelementary) proof. In particular:

Theorem 4.6.2 (Selberg formula). For x ≥ 1,

∑

n≤x

�(n) ln n +
∑

n,m≤x

�(n)�(n) = 2x ln x + O(x),

where �(n) is the von Mangoldt function.

To show that these are equivalent, the two sums are considered separately. We

give a partial demonstration. Consider the first sum
∑

n≤x �(n) ln n. Since �(n) = 0
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if n �= pk for a prime p and �(pk) = ln p, we have

∑

n≤x

�(n) ln n =
∑

p≤x

(ln p)2 +
∑

pk≤x,k≥2

k(ln p)2.

If pk ≤ x with k ≥ 2 then p ≤ √
x. Hence

∑

pk≤x,k≥2

k(ln p)2 =
∑

p≤√
x

(ln p)2

ln x
ln p∑

k=2

k ≤
∑

p≤√
x

(ln p)2

(
ln x

ln p

)2

≤
√

x(ln x)2.

However, clearly √
x(ln x)2 = O(x)

and therefore it follows that

∑

n≤x

�(n) ln n =
∑

p≤x

(ln p)2 + O(x).

In a similar manner (see the outline in the exercises)

∑

n,m≤x

�(n)�(n) =
∑

p,q≤x

ln p ln q + O(x).

Hence for x ≥ 1,

∑

n≤x

�(n) ln n +
∑

n,m≤x

�(n)�(n) = 2x ln x + O(x)

if and only if ∑

p≤x

(ln p)2 +
∑

p,q≤x

ln p ln q = 2x ln x + O(x).

Therefore the two versions given of Selberg’s formula are equivalent.

If we introduce a generalization of the von Mangoldt function, Selberg’s formula

can be expressed in a very succinct manner. To do this we must introduce some

operations on the set of arithmetic functions.

Recall that a number-theoretic function is any complex-valued function whose

domain is the natural numbers N (see Section 3.6). We have introduced numerous

examples of such functions: the von Mangoldt function, the Möbius function, and

the Euler phi function, to name just a few. On the set of number-theoretic functions

we define addition in the standard way pointwise. That is, if f (n), g(n) are number-

theoretic functions, then

(f + g)(n) = f (n) + g(n).

The function given by 0(n) = 0 for all n ∈ N is then an additive identity for this

addition.

We define a multiplication in the following manner.
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Definition 4.6.1. If f (n), g(n) are number-theoretic functions, then their Dirichlet

convolution is the number-theoretic function given by

(f ⋆ g)(n) =
∑

d|n
f (d)g

(n

d

)
.

If we define

δ(n) =
{

1 if n = 1,

0 if n ≥ 2,

then δ(n) is a multiplicative identity for Dirichlet convolution. With these operations

the set of number-theoretic functions becomes a ring.

Theorem 4.6.3. The set of number-theoretic functions with addition defined pointwise

and multiplication given by Dirichlet convolution forms a commutative ring with

identity.

The proof is a straightforward calculation (see the exercises).

We need the idea of Möbius inversion (see Section 3.6). Recall that the Möbius

function μ is defined for natural numbers n by

μ(n) =

⎧
⎪⎨
⎪⎩

1 if n = 1,

(−1)r if n = p1p2 . . . pr with p1, . . . , pr distinct primes,

0 otherwise.

For number-theoretic functions, we then have the following formula, known as the

Möbius inversion formula, which was stated and proved in Section 3.6.

Theorem 4.6.4 (Theorem 3.6.4, Möbius inversion formula). Let f (n) be a number-

theoretic function. Define

g(n) =
∑

d|n
f (d).

Then

f (n) =
∑

d|n
μ(d)g

(n

d

)
.

Based on Dirichlet convolution and using Möbius inversion, we define a

generalization of the von Mangoldt function. First define

L(n) = ln n for all n ∈ N.

We then have the following result.

Lemma 4.6.1. �(n) = μ ⋆ L(n), where μ is the Möbius function.
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Proof. Let 1(n) = n for all n ∈ N. Then if n = p
e1

1 · · · pek

k , we have

1 ⋆ �(n) =
∑

d|n
d�

(n

d

)
=

∑

d1d2=n

d1�(d2)

= e1 ln p1 + · · · + ek ln pk = ln n = L(n).

Therefore 1 ⋆ � = L, and so from the Möbius inversion formula,

μ ⋆ L = �. ⊓⊔

Definition 4.6.2. For each r ≥ 1 define the generalized von Mangoldt function

�r = μ ⋆ Lr .

The tie to the Selberg formula is the following.

Lemma 4.6.2. For each natural number n,

�2(n) = �(n) ln n + � ⋆ �(n).

Selberg’s formula can now be expressed concisely as follows.

Theorem 4.6.5 (Selberg formula). For all x ≥ 1,

∑

n≤x

�2(n) = 2x ln x + O(x).

The elementary proof requires two more equivalent formulations, which tie the

Selberg formula to the Chebychev functions θ(x) and ψ(x).

Theorem 4.6.3 (Selberg formula). For x ≥ 1,

(1) θ(x) ln x +
∑

p≤x

ln pθ

(
x

p

)
= 2x ln x + O(x),

(2) ψ(x) ln x +
∑

n≤x

�(n)ψ
(x

n

)
= 2x ln x + O(x).

In Theorem 4.3.2 we showed that the prime number theorem is equivalent to

θ(x) ∼ x and to ψ(x) ∼ x. In our earlier (nonelementary) proof we actually showed

that ψ(x) ∼ x to establish the prime number theorem. In Selberg’s elementary proof

he showed that θ(x) ∼ x. In particular, if we let R(x) = θ(x) − x, then the Selberg

proof shows that R(x) = o(x), which clearly implies that θ(x) ∼ x. More precisely,

in the proof it is shown that there exist sequences (an), (bn) of positive real numbers

such that

|R(x)| ≤ anx for all x ≥ bn

and limn→∞ an = 0.

This is proved via a series of estimates whose proofs all work with, or start with,

the Selberg formula (in one of its formulations), and then use tricky and difficult



4.7 Some Extensions and Comments 185

manipulation of series. The lengthy details of a completely elementary (again not

simple but no complex analysis) proof due to Selberg can be found in the book of

Nathanson [N]. A separate proof along the same lines but using some analysis is in the

book of Hardy and Wright [HW]. Finally, a separate elementary proof (again using

some analysis) is in the notes of Tenenbaum and Mendès-France [TMF].

It is an easy consequence of the prime number theorem that if pn is the nth prime

then

lim
n→∞

pn+1

pn

= 1. (4.6.1)

This fact, however, plays a role in the history of the elementary proof. When Selberg

first gave his formula, Erdős used it to give an elementary proof of (4.6.1). Selberg

then used his formula along with the methods of Erdős’s proof to develop the first

elementary proof of the prime number theorem. Erdős then gave a second elementary

proof. There now exist several elementary proofs of the prime number theorem that

do not depend on Selberg’s formula. A nice survey on the use of elementary methods

in the study of primes was written by Diamond [Di].

4.7 Some Extensions and Comments

In Chapter 3 we looked at a large number of ways to prove that there are infinitely

many primes, and our look led us to a large array of number-theoretical ideas. Basic

congruences and the fundamental theorem of arithmetic handled many of the proofs,

but we used some elementary analysis to show that
∑

1
p

diverges. We then used some

more difficult analysis to prove that there are infinitely many primes in any arithmetic

progression {an+b} with (a, b) = 1. However, despite the fact that the set of primes

is infinite, it is clear that the density of primes among the natural numbers thins out

as the natural numbers get larger. In fact, we showed (Theorem 2.3.2) that there are

arbitrarily large gaps in the sequence of primes. Hence in this chapter we looked at the

density of the sequence of primes. The major result was the prime number theorem,

which says that π(x) ∼ x
ln x

as x → ∞, where π(x) is the number of primes less

than or equal to x. However we have just touched the tip of the iceberg relative to

the study of the distribution of primes. In this final section of Chapter 4 we mention

some further results and conjectures on primes and their distribution that are in the

same spirit as the results and proofs of the last two chapters.

By far the most important open problem surrounding the distribution of primes

and the prime number theorem is the Riemann hypothesis. We introduced this at the

end of Section 4.4, but here we repeat what we said at that point and extend somewhat

our comments and observations. Recall that the Riemann zeta function was defined

for all s > 1 by

ζ(s) =
∞∑

n=1

1

ns
.

This could be continued analytically to a meromorphic function also denoted by ζ(s)

that is analytic for all complex s �= 1 and that has a simple pole at s = 1. This fact



186 4 The Density of Primes

follows from the fact that ζ(s) satisfies a functional relation

ζ(s) = K(s)ζ(s − 1),

where

K(s) = 2sπ s−1 sin
(πs

2

)
Ŵ(1 − s).

This functional relation also establishes that ζ(s) = 0 at all the negative even

integers −2, −4, . . . . These are called the trivial zeros of ζ(s). Riemann in his

original paper showed that any nontrivial zeros must fall in the critical strip 0 ≤
Re s ≤ 1. He furthered showed that if ζ(s) has no zeros on the line Re s = 1, this

was sufficient to prove the prime number theorem. This final fact was proven by

Hadamard and de la Vallée Poussin. In the course of this investigation Riemann

conjectured that all the nontrivial zeros lie along the line Re s = 1
2

, which is called

the critical line. This is the common form of the Riemann hypothesis.

Riemann hypothesis. All the nontrivial zeros of the Riemann zeta function lie along

the line Re(s) = 1
2
.

The Riemann hypothesis has resisted solution for almost a hundred and fifty

years and has had tremendous impact on both number theory and other branches

of mathematics. Now that Fermat’s last theorem has been settled, the Riemann

hypothesis can be considered the outstanding open problem in mathematics. There

are various further results concerning the Riemann hypothesis and the zeros of the

zeta function. Hardy in 1914 proved that ζ(s) has infinitely many zeros along the

critical line Re s = 1
2
. As of 2002 it is known that at least the first billion and a half

nontrivial zeros of ζ(s) lie along the critical line.

Selberg in 1942 showed that a positive proportion of the nontrivial zeros lie along

the critical line. Levinson in 1974 improved this to show that at least 1
3

of the nontrivial

zeros are on the critical line. This has subsequently been improved to at least 40% of

the nontrivial zeros are on the critical line.

There are several quantitative statements that are equivalent to the Riemann

hypothesis. Koch in 1901 showed that the Riemann hypothesis is equivalent to

π(x) = Li(x) + O(
√

x ln x), (4.7.1)

where Li(x) is the logarithmic integral function of Gauss,

Li(x) =
∫ x

2

1

ln t
dt.

In a similar manner the Riemann hypothesis can be shown to be equivalent to

π(x) = Li(x) + O
(
x

1
2 +ǫ

)
∀ǫ > 0.

The equality (4.7.1) was also conjectured by Riemann in his original paper and is

often called the prime number theorem form of the Riemann hypothesis.
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There are many other computational variations of both the prime number theorem

and the Riemann hypothesis. Many of these are discussed in the excellent book by

Crandall and Pomerance [CP]. Several of these involve the Möbius function μ(n)

and Mertens’s function, defined by

M(x) =
∑

n≤x

μ(x).

Mertens’s function is related to the Riemann zeta function by (see Section 4.4.3)

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
= s

∫ ∞

1

M(x)

xs+1
dx.

Von Mangoldt proved the following.

Theorem 4.7.1. The prime number theorem is equivalent to the statement

∞∑

n=1

μ(n)

n
= 0.

Further, the following is also known.

Theorem 4.7.2. If M(x) is Mertens’s function, then

(1) the prime number theorem is equivalent to

M(x) = o(x);

(2) the Riemann hypothesis is equivalent to

M(x) = O
(
x

1
2 +ǫ

)
for any fixed ǫ > 0.

One of the questions that arises from the prime number theorem is which function

exactly is the “best approximation’’ to π(x). Note that for any positive real numbers

A, B we have that x
A ln x+B

is asymptotically equal to Li(x). Hence

(1) π(x) ∼ x
ln x

,

(2) π(x) ∼ x
ln x−a

for a > 0,

(3) π(x) ∼ x
ln x−1.08366

(Legendre’s estimate),

(4) π(x) ∼ Li(x) (Gauss)

are all equivalent to the prime number theorem. The question arises as to whether

there is an optimal value for a in (2) above. Empirical evidence is that a = 1 is an

optimal choice and generally better for large x than Legendre’s 1.08366 and better
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than Gauss’s Li(x). The table below compares the estimates:

x π(x) x
ln x

Li(x) x
ln x−1.08366

x
ln x−1

103 168 145 178 172 169

104 1229 1086 1246 1231 1218

105 9592 8686 9630 9588 9512

106 78498 72382 78628 78534 78030

107 664579 620420 664918 665138 661459

108 5761455 5428681 5762209 5769341 5740304

Observing the table above, it is noticed that Li(x) > π(x). Riemann proposed

that this is true for all sufficiently large x. This turned out to be incorrect. In 1914

Littlewood [Li] proved the following.

Theorem 4.7.3. The difference π(x) − Li(x) assumes both positive and negative

values infinitely often.

Littelwood’s proof was interesting in that it used the following technique, which

has become extremely useful in analytic number theory. First he assumed that the

Riemann hypothesis is true and proved that π(x)−Li(x) changes sign infinitely often.

He then showed that the same is true if the Riemann hypothesis is assumed to be false.

A complete but somewhat simplified proof of Littelwood’s result can be found in [P].

More recently Te Riele in 1986 [Re] showed that there are more than 10180 consecutive

integers for which π(x) > Li(x) in the range 6.62 × 10370 < x < 6.69 × 10370.

In light of trying to improve the approximation to π(x) afforded by Li(x), Rie-

mann’s work suggested (see Zagier [Za]) that π(x)
x

would be closer to 1
ln x

, that is, the

probability of choosing a prime randomly less than x would be closer to 1
ln x

if one

counted not only the primes but also the “weighted powers’’ of the primes. That is,

counting a p2 as half a prime, p3 as a third of a prime, and so on. This would lead to

an approximation for Li(x) given by

Li(x) ≈ π(x) + 1

2
π
(
x

1
2
)
+ 1

3
π
(
x

1
3
)
+ · · · .

Upon inverting this, one obtains

π(x) ≈ Li(x) − 1

2
Li

(
x

1
2
)
− 1

3
Li

(
x

1
3
)
− · · · .

Based on these ideas, Riemann proposed the following explicit formula for π(x):

π(x) =
∞∑

n=1

μ(n)

n
Li

(
x

1
n
)
. (4.7.2)

The series on the right side of (4.7.2) can be shown to converge for x ≥ 2 and is

called the Riemann function R(x), that is,

R(x) =
∞∑

n=1

μ(n)

n
Li

(
x

1
n
)
, x ≥ 2.
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Riemann’s conjecture was then that π(x) = R(x). The equality given in (4.7.2) is

not true. However, it is asymptotically correct.

Theorem 4.7.4. We have π(x) ∼ R(x), where R(x) is the Riemann function.

In fact, this approximation is remarkably close for large x. For x = 400,000,000,

we have

π(400,000,000) = 21,336,326 and R(400,000, 000) = 21,355,517,

while for x = 1,000,000,000,

π(1,000,000,000) = 50,847,534 and R(1,000,000,000) = 50,847,455.

Related to Riemann’s explicit formula, it can be shown that the distribution of

the number of zeros of the Riemann zeta function along the critical line can be given

asymptotically by

N(t) = t

2π
ln

(
t

2π

)
− t

2π
,

where N(t) is the number of zeros z with z = 1
2

+ is along the critical line with

0 < s < t .

There are also some surprising relationships between some physical phenomena

and the location of the zeros of the Riemann zeta function. The article [BK] discusses

some of these that are far afield from our present presentation.

An entirely elementary formulation of the Riemann hypothesis is the following

(see [P]). Define a positive square-free integer n to be red if it is the product of an

even number of distinct primes and blue if it is the product of an odd number of

distinct primes. Let R(n) be the number of red integers not exceeding n and B(n)

the number of blue integers not exceeding n. The Riemann hypothesis is equivalent

to the statement that for any ǫ > 0 there exists an N such that for all n > N

|R(n) − B(n)| < n
1
2 +ǫ .

As we mentioned in Section 4.1, if pn denotes the nth prime then it is a straight-

forward consequence of the prime number theorem that

pn ∼ n ln n

and hence

lim
pn+1

pn

= 1,

even though there are arbitrarily large gaps in the primes. It was noted in the last sec-

tion that when Selberg first gave his formula, Erdős then used it to give an elementary

proof of the second fact above. Subsequently, Selberg then used his formula along

with the methods of Erdős’s proof to develop the first elementary proof of the prime

number theorem.
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There are two well-known conjectures concerning the difference pn+1 −pn. The

first is called Cramer’s conjecture.

Cramer’s conjecture. pn+1 − pn ≤ (1 + o(1))(ln n)2.

It follows from Koch’s equivalence to the Riemann hypotheis that if the Riemann

hypothesis is true, then

pn+1 − pn = O
(
p

1
2 +ǫ
n

)
for any fixed ǫ > 0.

The second conjecture is called Lindelöf’s hypothesis.

Lindelöf’s hypothesis.
∑

pn≤x(pn+1 − pn)
2 ≤ x1+o(1).

It can be shown that the Riemann hypothesis implies the Lindelöf hypothesis.

Dirichlet’s theorem, giving that there are infinitely many primes in any arithmetic

progression an+ b with (a, b) = 1, extended the result that there are infinitely many

primes. Dirichlet’s proof (see Chapter 3) used L-series and then an Euler product

formula. Recall that for an in teger k, a Dirichlet L-series is defined by

L(s, χ) =
∞∑

n=1

χ(n)

ns
,

where χ is a character mod k, and s is a complex variable. Hence Dirichlet’s proof was

an extension of the Euler proof of the infinitude of primes using the real zeta series.

Along the same lines both the prime number theorem and the Riemann hypothesis

can be extended to primes in arithmetic progressions.

For (a, b) = 1, let

π(x; a, b) = numbers of primes congruent to b mod a and ≤ x.

The prime number theorem for arithmetic progressions can then be expressed as

follows.

Theorem 4.7.4 (prime number theorem for arithmetic progressions). For fixed

a, b > 0 with (a, b) = 1,

π(x; a, b) ∼ 1

φ(a)
π(x) ∼ 1

φ(a)

x

ln x
∼ 1

φ(a)
Li(x).

The result can be expressed in probabilistic terms by saying that the primes are

uniformly distributed in the φ(a) residue classes relatively prime to a. In fact, much

of the material on the prime number theorem can be rephrased in terms of probability

theory. The prime number theorem itself can be expressed as follows

Theorem 4.7.5 (the prime number theorem). The probability of randomly choosing

a prime less than or equal to x is asymptotically given by 1
ln x

.



4.7 Some Extensions and Comments 191

Most of the ideas surrounding the use of probabilistic methods are discussed in

the book Probabilistic Number Theory by Elliott [E].

The extension of the Riemann hypothesis to the case of arithmetic progressions

is called the generalized Riemann hypothesis or the extended Riemann hypothe-

sis. This says that the zeros of any Dirichlet L-series also lie along the critical line

Re s = 1
2
.

Generalized Riemann hypothesis. For an integer k and any character χ mod k,

the nontrivial zeros of the L-series

L(s, χ) =
∞∑

n=1

χ(n)

ns

all lie along the critical line Re s = 1
2

.

We close this chapter with a brief discussion of primes in short intervals [x, x+ǫ],
where ǫ > 0 is a positive constant. Bertrand’s theorem (Theorem 4.2.5) showed that

for any real number x there is always a prime in the interval [x, 2x]. Further, the

proof used the same methods as the proof of Chebychev’s estimate. As an immediate

consequence of the prime number theorem we can obtain the following result. We

leave the proof to the exercises.

Theorem 4.7.5. For any ǫ > 0 there exists an x0 = x0(ǫ) such that there is always

a prime in the interval [x, (1 + ǫ)x] for x > x0. Equivalently, π(x + y) > π(x) for

y = ǫx.

The above theorem and its proof have the following interesting interpretation.

For large x (again see the exercises)

π(2x) − π(x) ∼ π(x).

Hence for large x there are as many primes asymptotically between x and 2x as there

are less than x, despite the fact that by the prime number theorem the density of

primes tends to thin out. However, it can be shown that

2π(x) − π(2x) → ∞

as x → ∞.

The result given in Theorem 4.7.5 has been improved upon in various ways.

Huxley in 1972, continuing a long line of research in this direction, showed that there

is always a prime in the interval [x, x +xc] if c > 7
12

for large enough x. The value of

c has subsequently been improved, the most recent being done by Baker and Harman,

who reduced c to .535, again for large enough x. Further, Baker and Harman show

that

π
(
x + x.535

)
− π(x) >

x.535

20 ln x

for large enough x.
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Earlier, Erdős, using Selberg’s formula, had proved that for each ǫ > 0 there

exists a constant c(ǫ) such that in the interval [x, (1 + ǫ)x] there are at least c(ǫ)x
ln x

primes.

Finally, we mention the following remarkable result, which is a consequence of

Bertrand’s theorem. We outline a proof in the exercises.

Theorem 4.7.6. Given any positive integer n, the set of integers {1, 2, . . . , 2n} can

be partitioned into n disjoint pairs such that the sum of each pair is a prime.

So for example {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} can be partitioned into {1, 10}, {2, 9},
{3, 4}, {5, 8}, {6, 7}. The result is in the same spirit as the Goldbach conjecture,

which states that any even integer is the sum of two primes.

EXERCISES

4.1. Show that Li(x) =
∫ x

2
2

ln t
dt is asymptotically equal to x

ln x
. (Hint: Take the

Taylor expansion of Li(x).)

4.2. If pn is the nth prime show that limn→∞
pn+1

pn
= 1.

Recall that the binomial coefficient
(
n
k

)
(see Section 4.2) is defined by

(
n

k

)
= n!

k!(n − k)! .

4.3. Prove the following facts about
(
n
k

)
:

(a)
(
n
k

)
represents the number of ways of choosing k objects out of n without

replacement and without order (Lemma 4.2.1). This is equivalent to the

number of possible subsets of size k in a finite set with n elements. (Hint:

Consider the number of ways of choosing k out of n with order; this is

n(n − 1) · · · (n − k + 1). Then consider how many ways each choice of k

objects can be rearranged.)

(b)
(
n
k

)
=

(
n

n−k

)
.

(c)
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
. (This is the basis for Pascal’s triangle.)

4.4. Prove the binomial theorem: for any real numbers a, b and natural number n,

we have

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

(Hint: Use induction and part (c) of Exercise 4.3.)

4.5. Prove: For a prime p, (x + y)p ≡ xp + yp mod p. (Hence the beginning

algebra mistake (x + y)p = xp + yp is true in the field Zp.)

4.6. If s > 0 the Gamma function is given by

Ŵ(s) =
∫ ∞

0

xs−1e−xdx.

Show the following:
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(a) Ŵ(s + 1) = sŴ(s). (Use integration by parts.)

(b) Ŵ(n) = (n − 1)! for any n ≥ 1, n ∈ N.

4.7. (a) Show that
∫∞

0 e−x2
dx =

√
π

2
. (Hint: Let A =

∫∞
0 e−x2

dx. Then

A2 =
(∫ ∞

0

e−x2

dx

)(∫ ∞

0

e−y2

dy

)
=

∫ ∞

0

∫ ∞

0

e−(x2+y2)dxdy.

Now change to polar coordinates. Recall that dxdy = rdrdθ .)

(b) Use part (a) to show that Ŵ
(

1
2

)
= √

π .

4.8. Recall that Stirling’s approximation is

n! ≅
√

2πn
(n

e

)n

.

We outline a proof of this result.

(a) From Exercise 4.6, Stirling’s approximation is equivalent to

Ŵ(p + 1) ≅ ppe−p
√

2πp.

(b) Write the integral for Ŵ(p + 1) as follows:

Ŵ(p + 1) =
∫ ∞

o

xpe−xdx =
∫ ∞

0

ep ln x−xdx.

Now substitute the variable x = p + y
√

p, so that dx = √
pdy. Show

then that

Ŵ(p + 1) =
∫ ∞

−√
p

ep ln(p+√
py)−p−√

py√pdy.

(c) By looking at the Taylor series for ln x, show that for large p

ln(p + √
py) = ln p + ln(1 + y

√
p

) ≅ ln p + y
√

p
− y2

2p
.

(d) Using part (c) and the integral in part (b), show that

Ŵ(p + 1) = ep ln p−p√
p

∫ ∞

−√
p

e− 1
2 y2

dy

= ppe−p√
p

(∫ ∞

−∞
e− 1

2 y2

dy −
∫ −√

p

−∞
e− 1

2 y2

dy

)
.
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(e) Evaluate the two integrals in part (d) to get Stirling’s approximation. Notice

that from Exercise 4.4, we have

∫ ∞

−∞
e−x2

dx =
√

π

and so ∫ ∞

−∞
e− 1

2 x2

dx =
√

2π

and ∫ −√
p

−∞
e− 1

2 y2

dy

goes to zero as p goes to infinity.

4.9. Use the prime number theorem to give an alternative proof that there are arbi-

trarily large gaps in the sequence of primes. (Hint: Suppose that there is a

bound A such that there is always a prime between x and x +A. Then consider

π(nA) to deduce a contradiction.)

4.10. Show that f (x) ∼ g(x) is equivalent to f (x) = g(x)(1 + o(1)).

4.11. Show that f = o(g) implies f = O(g).

4.12. Show that

(a) cos x = O(1);

(b) sin x = o(x);

(c) x = o(xd) if d > 1;

(d) if P(x) is a polynomial of degree n with leading coefficient a, then P(x) ∼
axn.

4.13. (a) Show that if f = O(1) and g = O(1), then f +g = O(1) or, equivalently,

O(1) + O(1) = O(1).

(b) Show that O(1) = o(x).

4.14. Show that ln x
xδ → 0 as x → ∞ for any δ > 0. Equivalently, ln x = o(xδ).

Hence ln x goes to infinity more slowly than any positive power of x.

4.15. Using Bertrand’s theorem show that pn+1 < 2pn, where pn is the nth prime.

4.16. Prove that for each ǫ > 0 there exists an x0 = x0(ǫ) such that there is always a

prime in the interval [x, (1+ǫ)x] for x > x0. (Hint: Consider π(x+ǫx)−π(x)

and apply the prime number theorem.)

4.17. Show that π(2x) − π(x) ∼ π(x). Hence asymptotically there are as many

primes between x and 2x as are less than x.

4.18. Prove that

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
,

where μ(n) is the Möbius function.
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4.19. Prove that the set of rationals of the form {p
q
; p, q primes } is dense in the set of

positive reals. Recall that a set S is dense in the reals if given any real number

r and ǫ > 0 there is an s ∈ S with |r − s| < ǫ.

4.20. Prove Theorem 4.7.6: Given any positive integer n the set of integers

{1, 2, . . . , 2n} can be partitioned into n disjoint pairs so that the sum of each

pair is a prime. (Hint: Use induction and then notice that for n = 2k, by

Bertrand’s theorem there exists an m with 1 ≤ m < 2k such that 2k + m is

prime.)

4.21. Prove that the equation n! = mk has no solutions in integers with m, n, k > 1.

4.22. Prove that there exist real numbers a, b such that for all n,

nan <

n∏

i=1

pi < nbn,

with pi the ith prime.

4.23. Let �(n) be the von Mangoldt function. Prove that

∑

d|n
�(d) = ln n

or, equivalently, � = μ ⋆ L.

4.24. Prove the following orthogonality relations among the trigonometric functions:

(a)
∫ π

−π
cos(mx) cos(nx) = 0 if m �= n; = π if m = n �= 0; = 2π if

m = n = 0.

(b)
∫ π

−π
sin(mx) sin(nx) = 0 if m �= n; = π if m = n �= 0.

(c)
∫ π

−π
cos(mx) sin(nx) = 0 for all m, n.

4.25. Use the previous problem to show that if f (x) is a periodic function with period

2π and Fourier series

f = a0 +
∞∑

n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
,

then if f (x) = f (x), the coefficients a0, an, bn must be given by

a0 = 1

2L

∫ L

−L

f (x)dx,

an = 1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx, n = 1, 2, . . . ,

bn = 1

L

∫ L

−L

f (x) sin
(nπx

l

)
dx, n = 1, 2, . . . .
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4.26. Using the formula for complements,

Ŵ(s)Ŵ(1 − s) = π

sin(πs)
,

and the duplication formula,

Ŵ(s)Ŵ

(
s + 1

2

)
=

√
π21−2sŴ(2s),

show that the relation

π−s/2Ŵ
( s

2

)
ζ(s) = π−(1−s)/2Ŵ

(
1 − s

2

)
ζ(1 − s)

can be transformed into

ζ(s) = 2sπ s−1 sin
(πs

2

)
Ŵ(1 − s)ζ(s − 1), s �= 0, 1.

4.27. Prove Theorem 4.6.3: The set of number theoretic functions with addition

defined pointwise and multiplication given by Dirichlet convolution forms a

commutative ring with identity.



5

Primality Testing: An Overview

5.1 Primality Testing and Factorization

In the previous two chapters we have seen that there are infinitely many primes and

showed that as we move through larger and larger integers the density of primes thins

out. In particular, we proved that

π(x)

x
∼ 1

ln x
as x → ∞,

where π(x) represents the number of primes less than the positive real number x. This

result, the prime number theorem, could be interpreted as saying that the probability

of randomly choosing a prime number less than or equal to a positive real number

x is approximately 1
ln x

as x gets large. In this chapter we consider the question of

determining whether a particular given positive integer n is prime or not prime. The

methods concerning this problem are called primality testing and consist of algo-

rithms to determine whether an inputted positive integer is prime. Primality testing

has become extremely important and has been of great interest in recent years due to

its close ties to cryptography and especially public key cryptography. Cryptog-

raphy is the science of encoding and decoding secret messages. Many of the most

powerful and secure encoding methods depend on number theory, especially on the

computational difficulty of factoring large integers. It turns out, somewhat surpris-

ingly, that relative to ease of computation, determining whether a number is prime is

easier than actually factoring it.

Public key cryptography is that part of cryptography that deals with sending secret

(and hopefully secure) messages across public communications systems. The major

algorithm in this area, called the RSA algorithm, depends directly on the difficulty

of factoring large integers. We will briefly introduce cryptography and the RSA

algorithm in Section 5.4. First we take a short overview look at primality testing.

At first glance, the problem of determining whether a positive integer n is prime

seems like an easy one. If n is not prime, it must have a divisor m with 1 < m < n.

Therefore test all integers 2, . . . , n
2

to see whether one of them divides n. If there is

such a divisor, then n is composite. If not, then n is prime. We need only test up to
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n
2

since if n has a proper divisor less than n, it will have a divisor less than or equal

to n
2

.

Of course this can be improved in several ways. First of all, if n = mk, then one

of m, k must be ≤ √
n. Hence we need only check integers from 2 to

√
n rather than

from 2 to n
2

. Further, if n has a divisor m with 1 < m ≤ √
n then n must have a

prime divisor p with 1 < p ≤ √
n. Therefore it is necessary to check only the primes

≤ √
n. Therefore knowing all the primes ≤ √

n allows us to test for primality all

the integers ≤ n. We summarize all these comments to give a general algorithm for

primality testing.

General algorithm for primality testing. Given n > 0, test all primes p with

p ≤ √
n. The integer n is prime if and only if none of these primes divides n.

Example 5.1.1. Test whether the integer 83 is prime.

Now, 9 <
√

83 < 10, so we must test all the primes less than 9. Hence we must

test 2, 3, 5, 7. None of these divides 83 and therefore 83 is prime.

This general algorithm is simple and always works. However, it becomes com-

putationally infeasible for large integers. Therefore other methods become necessary

to determine primality. Most of these methods rely on a number-theoretic property,

such as Fermat’s theorem, which is true for all primes but may not true for all com-

posites. Recall that Fermat’s theorem (see Chapter 2) says that ap−1 ≡ 1 mod p for

any prime p and for any a with 1 < a < p. We will return to this in Section 5.3.

In the next section we examine a series of techniques for determining primes called

sieving methods.

5.2 Sieving Methods

In ordinary language a sieve is a device to separate or sift finer particles from coarser

particles. This idea has been applied to number theory via numerical sieving methods.

A sieve in number theory is a method or procedure to find numbers with desired

properties (for example primes) by sifting through all the positive integers up to a

certain bound, successively eliminating invalid candidates until only numbers with the

particular attributes desired are left. Sieving methods are quite effective for obtaining

lists of primes (and numbers with other characteristics) up to a reasonably small limit.

Relative to generating lists of primes, sieving methods originated with the sieve

of Eratosthenes. This is a straightforward method to obtain all the primes less than or

equal to a fixed bound x. It is ascribed (as the name suggests) to Eratosthenes (276–

194 B.C.), who was the chief librarian of the great ancient library in Alexandria.

Besides the sieve method he was an influential scientist and scholar in the ancient

world, developing a chronology of ancient history (up to that point) and helping

to obtain an accurate measure (within the measurement errors of his time) of the

dimensions of the Earth.

The method of the Sieve of Eratosthenes is direct and works as follows. Given

x > 0 list all the positive integers less than or equal to x. Starting with 2, which

is prime, cross out all multiples of 2 on the list. The next number on the list not
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crossed out, which is 3, is prime. Now cross out all the multiples of 3 not already

eliminated. The next number left uneliminated, 5, is prime. Continue in this manner.

As explained for the primality test described in the previous section the elimination

must only be done for numbers ≤ √
x. Upon completion of this process, any number

not crossed out must be a prime.

Below we exhibit the sieve of Eratosthenes for numbers ≤ 100. In beginning

each round of elimination, we must consider only numbers ≤
√

100 = 10.

1 2 3 � 4 5 � 6 7 � 8 � 9 � 10

11 � 12 13 � 14 � 15 � 16 17 � 18 19 � 20

� 21 � 22 23 � 24 � 25 � 26 � 27 � 28 29 � 30

31 � 32 � 33 � 34 � 35 � 36 37 � 38 � 39 � 40

41 � 42 43 � 44 � 45 � 46 47 � 48 � 49 � 50

� 51 � 52 53 � 54 � 55 � 56 � 57 � 58 59 � 60

61 � 62 � 63 � 64 � 65 � 66 67 � 68 � 69 � 70

71 � 72 73 � 74 � 75 � 76 � 77 � 78 79 � 80

� 81 � 82 83 � 84 � 85 � 86 � 87 � 88 89 � 90

� 91 � 92 � 93 � 94 � 95 � 96 97 � 98 � 99 � 100

After completing the sieving operation we obtain the list

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 83, 89, 97},

which comprises all the primes less than or equal to 100.

Given positive integers m, x, by a slight modification, the sieve of Eratosthenes

can be used to determine all the positive integers relatively prime to m and less than

or equal to x.

Here suppose we are given m and x. Let p1, . . . , pk be the distinct prime factors

of m arranged in ascending order, that is, p1 < p2 < · · · < pk . Next list all the

positive integers less than or equal to x as we did for the ordinary sieve. Start with

p1 and eliminate all multiples of p1 on the list. Then successively do the same for p2

through pk . The numbers remaining on the list are precisely those relatively prime

to m that are also less than or equal to x. If pi > x, ignore this prime and all higher

primes.

Below we exhibit the sieve applied to finding the numbers less than 50 and

relatively prime to 180.

Since 180 = 22325, we must sieve out multiples of 2, 3, and 5.

1 � 2 � 3 � 4 � 5 � 6 7 � 8 � 9 � 10

11 � 12 13 � 14 � 15 � 16 17 � 18 19 � 20

� 21 � 22 23 � 24 � 25 � 26 � 27 � 28 29 � 30

31 � 32 � 33 � 34 � 35 � 36 37 � 38 � 39 � 40

41 � 42 43 � 44 � 45 � 46 47 � 48 49 � 50

The remaining list is

{1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49}.
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These are all relatively prime to 180. Recall that these numbers then are all units

modulo 180.

Legendre in 1808, in an attempt to determine the distribution of primes π(x),

derived a computational formula for the sieve of Eratosthenes. Recall (see Chapter 4)

that Legendre had conjectured the prime number theorem in the form

π(x) ≅
x

ln x − 1.08
.

We first present a slightly more general form of Legendre’s formula. Given a

positive integer m and a positive x let

Nm(x) = number of integers ≤ x and relatively prime to m.

This is precisely the size of the list obtained in the modified sieve of Eratosthenes

derived above. We obtain the following theorem.

Theorem 5.2.1 (Legendre’s formula for the sieve of Eratosthenes). Let m ∈ N,

x ≥ 0. Then

Nm(x) =
∑

d|m
μ(d)

[x

d

]
,

where μ(d) is the Möbius function and [ ] is the greatest integer function.

Proof. If m = 1 then clearly

N1(x) = [x].
Now given m > 1 let p1 < p2 < · · · < pk be the distinct prime factors of m and for

each j , 1 ≤ j ≤ k, let mj = p1 · p2 · · · pj .

For a given mj the only integers counted by Nmj
(x) not counted by Nmj+1

(x) are

those of the form pj+1n ≤ x, where (n, mj ) = 1. It then follows that

Nmj
(x) − Nmj+1

(x) = Nmj

(
x

pj+1

)
.

Applying this repeatedly, we obtain

Nm1
(x) = N1(x) − N1

(
x

p1

)
= [x] −

[
x

p1

]
,

Nm2
(x) = Nm1

(x) − Nm1

(
x

p2

)
= [x] −

[
x

p1

]
−
[

x

p2

]
+
[

x

p1p2

]
.

Continuing in this manner inductively we arrive at

Nm(x) =
∑

d|m
(−1)ω(d)

[x

d

]
, (5.2.1)

where m = p1p2 · · · pk and ω(d) is the number of distinct prime factors of d . The

integer m is called the square-free kernel of m. This can then be expressed in terms
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of the Möbius function. Recall (see Chapter 2 and Section 3.6) that the Möbius

function is defined by

μ(d) =
{

(−1)ω(d) if d is square-free,

0 otherwise.

Substituting this in the form of Legendre’s formula (5.2.1) and realizing that μ(d) = 0

except for the factors of the square-free kernel, we obtain

Nm(x) =
∑

d|m
μ(d)

[x

d

]
, (5.2.2)

proving the theorem. ⊓⊔
Now given x ≥ 0 let

m =
∏

(p≤√
x)

p,

where p is prime. Then Nm(x) counts the number of primes in the interval [√x, x].
It follows that

Nm(x) = π(x) − π(
√

x) + 1.

Substituting Legendre’s formula (5.2.2) into this expression, we obtain the following

as a corollary.

Corollary 5.2.1. For x ≥ 2,

π(x) = −1 + π(
√

x) +
∑

ν(d)≤√
x

μ(d)
[x

d

]
,

where ν(d) is the greatest prime factor of d.

Although this gives a formula for π(x), it is essentially useless in computing π(x)

for large x, or in shedding any light on the prime number theorem. First of all, if we

estimate
[

x
d

]
by x

d
+ O(1) and substitute in the formula, we have

π(x) − π(
√

x) + 1 =
∑

ν(d)≤√
x

μ(d)
(x

d
+ O(1)

)

= x
∏

p≤√
x

(
1 − 1

p

)
+ O

(
2π(

√
x)
)
.

Hence the error term is exponentially larger than the main term. Further, the number

of steps in the sieve of Eratosthenes and hence in the computation of the formula is

proportional to
∑

p≤x
x
p

. However, it can be shown that

∑

p≤x

x

p
= x ln ln x + O(x)

(see [CP, p. 113] and [HW, Theorem 427]). Therefore the number of steps is pro-

portional to ln ln x, which goes to infinity (albeit slowly) with x. In addition, from
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a computer/computational point of view, one of the major computational drawbacks to

implementing the sieve of Eratosthenes (for large x) is the computer space it requires

(see [CP]), which can be substantial. We mention that Brun attempted to make Leg-

endre’s formula computable. As an application he was able to prove the spectacular

result that the sum of the reciprocals of the twin primes

∑

p,p+2 primes

(
1

p
+ 1

p + 2

)

converges. We will look at Brun’s method and his proof of this result in the next

section. We note that a further slight modification of the sieve of Eratosthenes can be

utilized to obtain a complete prime factorization of a positive integer n.

Meisel in 1870 also gave an improvement to Legendre’s formula and was able to

use this technique to compute π(x) correctly up to x = 108.

Theorem 5.2.2 (Meisel’s formula). Let p1 < p2 < · · · < pn < · · · be the listing of

the primes in increasing order so that pj is the j th prime. Let x ≥ 4, n = π(
√

x),

and mn = p1 . . . pn. Then

π(x) = Nmn(x) + m(1 + s) + 1

2
s(s − 1) − 1 −

s∑

j=1

π

(
x

pm+j

)
,

where m = π
(
x

1
3

)
and s = n − m.

Proof. From the proof of Legendre’s formula we have

Nmj
(x) − Nmj+1

(x) = Nmj

(
x

pj+1

)
.

This holds for 1 ≤ j ≤ n. Summing this equality for j = m + 1, . . . , n, we obtain

Nmn(x) = Nmm(x) −
s∑

j=1

Nmm+j−1

(
x

pm+j

)
.

The inequalities

x
1
3 < pm+j ≤ x

1
2 <

x

pm+j

< x
2
3 ,

holding for j = 1, 2, . . . , s, then imply that

Nmn(x) = 1 + π(x) − π(
√

x) = π(x) − n + 1

and

Nmm+j−1

(
x

pm+j

)
= 1 + π

(
x

pm+j

)
− π(pm+j−1) = π

(
x

pm+j

)
− (m + j − 2).

Therefore

π(x) = Nmn(x) + n − 1 = Nm(x) −
s∑

j=1

(
π

(
x

pm+j

)
− m − j + 2

)
+ n + 1
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= Nmm(x) −
s∑

j=1

π

(
x

pm+j

)
− m(1 + s) + s(s + 1)

2
− 1,

proving the theorem. ⊓⊔

Note that Nn(n) is the total number of integers less than n and relatively prime

to n. Hence

Nn(n) = φ(n),

the Euler phi function introduced in Chapter 2. Applying Legendre’s formula with

m = n = x, we obtain

φ(n) =
∑

d|n
μ(d)

n

d
= n

∏

p|n

(
1 − 1

p

)
.

This recovers the formulas given for φ(n) in Theorems 2.4.3.1 and 2.4.3.2.

A variation of Legendre’s formula can be obtained in the following manner.

Suppose

p1 < p2 < · · · < pn < · · ·

are the primes listed in increasing order. Let

�(x, k)

be the number of positive integers ≤ x not divisible by the first k primes. Hence

�(x, k) = Nm(x)

if the square-free kernel of m is p1 · · · pk . The same counting arguments applied to

this function lead us to the next result.

Theorem 5.2.3. Let the function � be defined as above. Then

�(x, n) = [x] −
∑[

x

pi

]
+
∑[

x

pipj

]
−
∑[

x

pipjpk

]
+ · · · ,

where each sum is over the set of primes less than or equal to x.

Here �(x, x) = Nx(x), so

�(x, x) = π(x) − π(
√

x) + 1

= [x] −
∑

pi≤
√

x

[
x

pi

]
+

∑

pi<pj ≤√
x

[
x

pipj

]
−

∑

pi<pj <pk≤
√

x

[
x

pipjpk

]

+ · · · .

This version of Legendre’s formula satisfies a very nice recurrence relation.
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Corollary 5.2.2. Let the function � be defined as above. Then

�(x, k) = �(x, k − 1) − �

(
x

pk

, k − 1

)
.

There is a very nice visual quadratic sieve that also generates the prime numbers.

Consider the parabola x = y2 and consider the points (n2, n) lying on the parabola

for n = 2, 3, . . . . Now connect all pairs of such points lying on the two branches of

the parabola above and below the x-axis by straight line segments. The intersection

points of these lines with the positive x-axis correspond to composite numbers. The

integer points remaining are precisely the primes (see exercises). We give the picture

of this in Figure 5.2.1.

4

2

5 10 0
–2

–4

Figure 5.2.1.

5.2.1 Brun’s Sieve and Brun’s Theorem

The sieve of Eratosthenes and the extensions of it described in the last section are

really just the tip of the iceberg as far as sieving methods in number theory are

concerned (see [CP] or [N]). In this section we give one beautiful application by

V. Brun of a refinement of Legendre’s formula for the sieve of Eratosthenes.

Recall that the twin primes are the set {(p, p + 2)} where both p and p + 2

are primes. There are two related still open questions concerning this set. Both

are called the twin primes conjecture. The first is that there are infinitely many

twin primes. Empirical evidence and a probabilistic argument suggest that there are

infinitely many such pairs, and most people working in the area feel that this part of

the conjecture is almost certainly true. However, it remains still open. The second

twin prime conjecture deals with the density of the twin primes and is in the same

spirit as the prime number theorem.

If we let

π2(x) = the number of pairs of twin primes (p, p + 2) with p ≤ x,

then the second twin prime conjecture, or strong twin prime conjecture, is that

π2(x) ∼ C

∫ x

2

dt

(ln t)2
.
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The constant C is called the twin primes constant and is given by

C = 2�2,

where

�2 =
∏

p>2,p prime

(
1 − 1

(p − 1)2

)
.

Sometimes �2 is also called the twin primes constant. The value of �2 has been

computed to a great many decimal places and has the approximate value

�2 ≈ .660161815 . . . .

Brun proved that there exists an integer N such that

π2(x) ≤ 100x

(ln x)2
for x ≥ N.

It has further been proved that

π2(x) ≤ k�2

(
x

(ln x)2

)(
1 + O

(
ln ln x

ln x

))
,

where k is a constant. Hardy and Littlewood proposed the value of 2 in the strong

twin primes conjecture.

The strong twin primes conjecture is actually the smallest case of a general

conjecture called the Hardy–Littlewood conjecture or k-tuple conjecture.

Here suppose 0 < m1 < m2 < · · · < mk are k odd integers. Then a prime

constellation is a set {p, p + 2m1, p + 2m2, . . . , p + 2mk}, where all are primes. If

we let

πm1,...,mk
(x)

denote the number of such prime constellations (relative to a fixed set {m1, . . . , mk})
less than or equal to x, then the k-tuple conjecture or Hardy–Littlewood conjecture

is that

πm1,...,mk
(x) ∼ C(m1, . . . , mk)

∫ x

2

dt

(ln t)k+1
,

where C(m1, . . . , mk) is a constant depending only on m1, . . . , mk . The strong twin

primes conjecture is the special case of this with m1 = 1 and k = 1.

Although these conjectures are still open, V. Brun in 1920 was able to prove the

amazing result that the sum of the reciprocals of the twin primes converges. We call

this amazing since this result can be accomplished without even knowing whether

there are infinitely many twin primes. Brun’s theorem is the following.

Theorem 5.2.1.1 (Brun). If S = {(p, p+2)} denotes the set of twin prime pairs then

the series
∑

(p,p+2)∈S

(
1
p

+ 1
p+2

)
converges. That is,

1

3
+ 1

5
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ · · ·

converges.
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Of course, if there are only finitely many twin prime pairs, the series will trivially

converge.

The value of the series

B =
∑

(p,p+2)∈S

(
1

p
+ 1

p + 2

)

is called Brun’s constant. A great deal of work has gone into determining the exact

value of B. Empirically, the value of B has been computed as (see [CP])

B ≅ 1.902160583104 . . . .

Brun’s theorem has been extended to further pairs of primes separated by a con-

stant d > 2. For example, if d = 4 the pairs of primes of the form (p, p + 4) are

called cousin primes. Again it is open whether there are infinitely many of these (for

each d or for any fixed d), but Segal [S] proved that for any given d the sum of the

reciprocals of the pairs is also convergent.

Brun’s proof of Theorem 5.2.1.1 is technical and involves attempting to improve

computationally on Legendre’s formula for the sieve of Eratosthenes. His proof

depends on the following technical results. After giving the proof of Brun’s theorem,

we will give the proofs of the lemmas.

Lemma 5.2.1.1. If n ≥ 0 and m ≥ 0 then

m∑

i=0

(−1)i
(

n

i

)
= (−1)m

(
n − 1

m

)
.

In particular, if m is odd then,

m−1∑

i=0

(−1)i
(

n

i

)
≥ 0.

The next lemma depends on symmetric polynomials and symmetric functions.

In Chapter 6 we will look at these in detail. Here we just introduce what is needed

for the next result.

Suppose y1, . . . , yn are n distinct real numbers. (Later we will look at a more

general situation.) Form the polynomial

p(x, y1, . . . , yn) = (x − y1) · · · (x − yn).

The ith elementary symmetric polynomial or ith elementary symmetric function

si in y1, . . . , yn for i = 1, . . . , n is (−1)iai , where ai is the coefficient of xn−i in

p(x, y1, . . . , yn).

To be more specific, consider y1, y2, y3. Then

p(x, y1, y2, y3) = (x − y1)(x − y2)(x − y3)

= x3 − (y1 + y2 + y3)x
2 + (y1y2 + y1y3 + y2y3)x − y1y2y3.

Therefore, the three elementary symmetric polynomials in y1, y2, y3 are
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(1) s1 = y1 + y2 + y3,

(2) s2 = y1y2 + y1y3 + y2y3,

(3) s3 = y1y2y3.

In general, the pattern of the last example holds for y1, . . . , yn. That is,

s1 = y1 + y2 + · · · + yn,

s2 = y1y2 + y1y3 + · · · + yn−1yn,

s3 = y1y2y3 + y1y2y4 + · · · + yn−2yn−1yn,

...

sn = y1 · · · · · yn.

We now state the lemma we need.

Lemma 5.2.1.2. If Sn is the nth elementary symmetric function of s positive numbers

a1, . . . , as , 1 ≤ n ≤ s, then

Sn ≤
Sn

1

n! .

Lemma 5.2.1.3. Let d > 0, n > 0. Then the number of positive integers m ≤ n that

belong to any given residue class mod d differs from n
d

by less than 1.

The following is the crucial lemma.

Lemma 5.2.1.4. Let P(x) denote the number of primes p ≤ x for which p + 2 is

prime. Then for x ≥ 3 we have

P(x) < c
x

(ln x)2
(ln ln x)2,

where c is a constant.

We can now give a proof of Brun’s theorem.

Proof of Theorem 5.2.1.1. As in the statement of Lemma 5.2.1.4, let P(x) denote the

number of primes p ≤ x for which p+2 is prime. It follows then from Lemma 5.2.1.4

that for x ≥ 3 (see the exercises),

P(x) ≤ k
x

(ln x)
3
2

,

where k is a constant. Let (pr , pr + 2) denote the rth twin prime pair. Then for all

r ≥ 1 we have

r = P(pr) < k
pr

(ln pr)
3
2

< k
pr

(ln(r + 1))
3
2

=⇒ 1

pr

<
k

r(ln(r + 1))
3
2

.
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Now it follows easily from the integral test for infinite series (see exercises) that the

series
∞∑

r=1

1

r(ln(r + 1))
3
2

converges. Therefore by the comparison test,

2

∞∑

r=1

1

pr

≥
∞∑

r=1

(
1

pr

+ 1

pr+2

)

converges. ⊓⊔

We now give the proofs of the four technical lemmas. The first three are very

straightforward. The real difficulty lies in Lemma 5.2.1.4.

Proof of Lemma 5.2.1.1. We wish to prove that if n, m ≥ 0 then

m∑

i=0

(−1)i
(

n

i

)
= (−1)m

(
n − 1

m

)
.

The second assertion that if n is odd then

m−1∑

i=0

(
n

i

)
≥ 0

follows directly from the first.

We prove the first assertion by induction on m. If m = 0 then

m∑

i=0

(−1)i
(

n

i

)
= (−1)0

(
n

0

)
= 1 = (−1)0

(
n − 1

0

)
= 1,

so it is true for m = 0. Suppose that

m∑

i=0

(−1)i
(

n

i

)
= (−1)m

(
n − 1

m

)
.

Then

m+1∑

i=0

(−1)i
(

n

i

)
= (−1)m+1

(
n

m + 1

)
+

m∑

i=0

(−1)i
(

n

i

)

= (−1)m+1

(
n

m + 1

)
+ (−1)m

(
n − 1

m

)

= (−1)m+1

(
n − 1

m + 1

)

(see the exercises). Therefore the first statement is true by induction. ⊓⊔
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Proof of Lemma 5.2.1.2. Here we wish to show that

Sn ≤
Sn

1

n! ,

where Sn is the nth elementary symmetric function of s positive numbers a1, . . . , as ,

1 ≤ n ≤ s. Notice that Sn consists of the sum of all n-fold products taken from

a1, . . . , as . Now consider

Sn
1 = (a1 + · · · + as)

n.

There are
(
s
n

)
n-fold products ai1 , . . . , ain in the binomial expansion and each has

coefficient n!. Hence the result follows. ⊓⊔

Proof of Lemma 5.2.1.3. Let d > 0, n > 0. We wish to show that the number of

positive integers m ≤ n that belong to any given residue class mod d differs from n
d

by less than 1.

On each set of d consecutive integers there is only one number counted for a

given residue class mod d . Up to a given positive n there are
[

n
d

]
complete sets of

residues mod d, and if n
d

is not integral, an additional partial set of residues. Hence

the number counted in the statement of the lemma is either
[

n
d

]
or possibly

[
n
d

]
+ 1

depending on whether n
d

is integral or not. Therefore the number m in the lemma

always satisfies

n

d
− 1 < m <

n

d
+ 1. ⊓⊔

Proof of Lemma 5.2.1.4. Let P(x) denote the number of primes p ≤ x for which

p + 2 is prime. Then we wish to show that for x ≥ 3,

P(x) < c
x

(ln x)2
(ln ln x)2,

where c is a constant. First, suppose that x > 5 and y is chosen such that 5 ≤ y < x.

Let Q(x) be the number of integers n in the interval y ≤ n < x for which both n and

n + 2 are primes. Clearly, then,

P(x) ≤ y + Q(x). (5.2.1)

Let p1 < p2 < · · · < pn < · · · denote the sequence of primes and suppose that

π(y) = r . Let A(x) denote the number of integers n for which 0 < n ≤ x and n is

not congruent to either 0 or −2 mod pi for i = 2, . . . , r . Then

Q(x) ≤ A(x), (5.2.2)

for every n counted in Q(x) is greater than y and therefore greater than ph for h ≤ r

since π(y) = r . Combining (5.2.1) and (5.2.2), we get

P(x) ≤ y + A(x).

Let �(d) denote the number of distinct prime factors of d > 0. If d is odd and

square-free let B(d, x) be the number of positive integers n ≤ x for which for every
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prime factor p of d either n ≡ 0 mod p or n ≡ −2 mod p. From Lemma 5.2.1.3

we have ∣∣∣B(d, x) − 2�(d) x

d

∣∣∣ < 2�(d), (5.2.3)

for if 0 < n ≤ x, then n belongs to 2�(d) residue classes mod d (two classes for each

of the �(d) prime factors of d =
∏

p|d p).

We next claim that

A(x) ≤
∑

d|p2···pr ,�(d)<m

μ(d)B(d, x), (5.2.4)

where m is an arbitrary positive integer.

Every n with 0 < n ≤ x that is not counted in A(x) satisfies n ≡ 0 mod pti or

n ≡ −2 mod pti for b primes pt1 , . . . , ptb with 2 ≤ t1 < · · · < tb ≤ r . Hence those

n not counted in A(x) are counted in the sum precisely for those terms B(d, x) for

which d|p2 · · · pr and d|pt1 · · · ptb and, further, �(d) < m.

Since p2 · · · pr is square-free it follows that every n with 0 < n ≤ x that is

counted in A(x) is counted exactly once in the sum since μ(d) = 0 unless d = 1 or

d is square-free. Combining these two observations, we get that the complete count

in the sum is then

∑

d|p2···pr ,�(d)<m

μ(d)B(d, x) =
m−1∑

i=1

(−1)i
(

n

i

)
≥ 0

by Lemma 5.2.1.3. Hence the inequality (5.2.4) is proved.

Combining this inequality with inequality (5.2.3), we have

A(x) < x
∑

d|p2···pr ;�(d)<m

μ(d)2�(d)

d
+

m−1∑

i=0

2i

(
r − 1

i

)
.

First we have

m−1∑

i=1

2i

(
r − 1

i

)
≤ 2m

m−1∑

i=1

(
r − 1

i

)
≤ 2m

m−1∑

i=1

r i

since (
r − 1

i

)
= (r − 1) · · · (r − i)

i! ≤ r i .

But this last sum satisfies

2m

m−1∑

i=1

≤ 2m rm − 1

r − 1
< 2mrm ≤ (2y)m

since r − 1 ≥ 2, r ≤ y.
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For the second part of the sum,

∑

d|p2···pr ,�(d)<m

μ(d)2�(d)

d
=

∑

d|p2···pr

μ(d)2�(d)

d
−

r−1∑

n=m

∑

d|p2···pr ,�(d)=n

μ(d)2�(d)

d
.

If m ≥ r the last term is zero. But then we have by Euler expansion

∑

d|p2···pr ,�(d)<m

μ(d)2�(d)

d
=

∏

2<p≤pr

(
1 − 2

p

)
−

r−1∑

n=m

(−1)n2n
∑

d|p2···pr ,�(d)=n

1

d

=
∏

2<p≤n

(
1 − 2

p

)
−

r−1∑

n=m

(−1)n2nSn,

where Sn is the nth elementary symmetric polynomial in

1

p2
, . . . ,

1

pr

.

From Lemma 5.2.1.2 and since n!en > nn (see the exercises), it follows that

Sn ≤
Sn

1

n! ≤ (eS1)
n

nn
<

(
3c ln ln y

n

)n

,

where c is a constant. Then

∣∣∣∣∣

r−1∑

n=m

(−1)n2nSn

∣∣∣∣∣ ≤
r−1∑

n=m

(
6c ln ln y

m

)n

≤
r−1∑

n=m

(
c1 ln ln y

m

)n

with c1 another constant. It follows that if

m > 2c1 ln ln y,

then ∣∣∣∣∣

r−1∑

n=m

(−1)n2nSn

∣∣∣∣∣ <

∞∑

n=m

1

2n
= 1

2m−1
.

Combining this with the earlier inequalities, we obtain

∣∣∣∣∣∣

∑

d|p2···pr ,�(d)<m

μ(d)2�(d)

d

∣∣∣∣∣∣
<

c2

(ln y)2
+ 1

2m−1

with c2 another constant. Therefore

P(x) < y + c2

(ln y)2
+ x

2m−1
+ (2y)m.
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These inequalities are true if 5 ≤ y < x and m > 2c1 ln ln y. If we choose

y = x
1

3c1 ln ln x and m = 2[c1 ln ln x] − 1,

then these conditions are met and so the derived inequalities hold. Therefore

P(x) ≤ c4

(
y + x

(ln y)2
+ x

22c1 ln ln x
+ (2y)2c1 ln ln x

)

for x > c5 with c5 another constant.

Each of the terms in the parentheses is less than

c6
x

(ln x)2
(ln ln x)2,

for some constant c6 holding for all of them. To see this, we have first

y ≤ k1

√
x for some constant k1.

Further,
x

(ln y)2
≤ x

(ln x)2
(k2 ln ln x)2

and
x

22c1 ln ln x
= x

(ln x)2c1 ln 2
<

x

(ln x)2

since c1 > 2 and 2 ln 2 > 1. Finally,

(2y)2c1 ln ln x = e
2c1 ln ln x

(
ln x

3c1 ln ln x
+ln 2

)
< e

2
3 ln x+c1 ln ln x < c7e

3
4 ln x = c7x

3
4 .

Therefore for x > c5, we have

P(x) < c6
x

(ln x)2
(ln ln x)2.

Combining the first terms into a new constant C, we get that for x ≥ 3,

P(x) < C
x

(ln x)2
(ln ln x)2,

proving the lemma. ⊓⊔

5.3 Primality Testing and Prime Records

As we have seen in the previous two sections it is theoretically very straightforward,

using either the direct method of trial division or the sieve of Eratosthenes, to test an

integer for primality. The problem is that for large integers n these methods become

computationally intractable if not almost impossible. Hence direct trial division and
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the sieve of Eratosthenes can be used only for relatively small integers, and therefore

for large integers other methods must be employed. We should note before going

further that the concepts of small and large are very relative in number theory to

the type of computing machinery one is using. Numbers as large as 10,000,000,000

can be tested very easily, even on small computers, using the sieve of Eratosthenes.

In terms of computational asymptotic number theory, 109 is still small. Similarly,

for human computation the total number of atoms in the universe is massive. This

number is estimated as being on the order of 1079. However, 79 digit integers are

considered only moderate in asymptotic computational number theory, which may

want to handle integers with hundreds or even thousands of digits. Therefore what is

needed are tests for primality that will handle some of these gigantic integers.

A primality test is then an algorithm that inputs a positive integer n and outputs

whether it is prime or composite. These tests can be subclassified as either deter-

ministic primality tests or probabilistic primality tests. In a deterministic test an

integer n is inputted and the output is, yes the integer is prime, or no the integer is not

prime. Hence both the direct method of trial division and the sieve of Eratosthenes

are deterministic tests.

Anondeterministic primality test takes an inputted integer n and returns either no it

is not prime or it may be a prime. A probabilistic primality test is a nondeterministic

test that returns either that the inputted integer is not a prime or that is probably a

prime to some given degree of likelihood. There are various tests (that we will look

at in the next section) that can give this likelihood to as high a probability as desired.

Numbers that pass a probabilistic primality test are called probable primes. For use

in cryptography, knowing whether an integer is prime to a high probability is often

just as good as knowing if it is definitely prime. For this reason, probable primes with

a high degree of probability are called industrial grade primes, a term originally

coined by M. Cohen.

The majority of nondeterministic tests are based on either Fermat’s theorem or

some variation of it. Recall from Chapter 2, Fermat’s (little) theorem (Corollary

2.4.4.2).

Theorem 5.3.1 (Fermat’s theorem). If p is a prime and p ∤ a, then

ap−1 ≡ 1 mod p.

This was a special case of the more general Euler’s theorem, which we will

also need.

Theorem 5.3.2 (Euler’s theorem). If (a, n) = 1, then

aφ(n) ≡ 1 mod n.

Hence if n is an integer and a is relatively prime to n with an−1 not congruent

to 1 mod n, then n cannot be prime. This is usually called the Fermat probable

prime test and was introduced briefly in Chapter 2. Basically, given n we find an a

with (a, n) = 1 and compute an−1 mod n. If this value is not 1 mod n then n is not
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prime. If it is congruent to 1 mod n then n may be prime. In the latter case, by trying

different values for a we can assign a probability value. We will make this precise

in the next section. For now we will state the basic Fermat probable prime test and

present an example.

The Fermat probable prime test. Suppose n is an inputted integer. Find an a with

(a, n) = 1. Compute an−1 mod n. If this value is not 1 mod n, then n is not prime.

If this value is 1 mod n then n may be prime.

Example 5.3.1. Test whether 11387 is prime.

This integer is relatively small, so even by trial division determining whether it

is prime is easy. We use the Fermat method just to illustrate the technique.

Start with a = 2 and test 211386 mod 11387. The basic idea is to use repeated

squarings to reduce the congruence. All the equivalences are modulo 11387:

213 = 8192 ≡ −3195 =⇒ 226 ≡ 10208025 ≡ 5273

=⇒ 252 ≡ 8862 ≡ 2525 =⇒ 2104 ≡ 10292 ≡ −1095

=⇒ 2208 ≡ 3390 =⇒ 2416 ≡ 2617 =⇒ 2832 ≡ 5102.

Continuing in this manner, we eventually get

211388 ≡ 8642 =⇒ 211387 ≡ 4321.

From Fermat’s theorem, if n is prime we would have an−1 ≡ 1 mod n and therefore

an ≡ a mod n. Here 4321 is not congruent to 2 mod 11387. Therefore 11387 is

not prime.

For this integer, using trial division it is easy to obtain the factorization

11387 = (59)(193).

However, even with an integer this size at least a calculator is necessary.

In 1891 Lucas gave the following extension of Fermat’s theorem, which actually

makes the Fermat test deterministic.

Theorem 5.3.3 (Lucas). Let n > 1. If for every prime factor p of n − 1 there exists

an integer a such that

(1) an−1 ≡ 1 mod n and

(2) a
n−1
p is not congruent to 1 mod n,

then n is prime.

Proof. Suppose n satisfies the conditions of the theorem. To show that n is prime

we will show that φ(n) = n − 1, where φ is the Euler phi function. Since in general

φ(n) < n − 1, to show equality we will show that under the above conditions n − 1

divides φ(n). Suppose not. Then there exists a prime p such that pr divides n−1 but



5.3 Primality Testing and Prime Records 215

pr does not divide φ(n) for some exponent r ≥ 1. For this prime p, there exists an

integer a satisfying the conditions of the theorem. Let m be the order of a modulo n.

Then m divides n − 1 since the order of an element divides any power that equals

1 (see Chapter 2). However, by the second condition in the theorem and for the

same reason, m does not divide n−1
p

. Therefore pr divides m, which divides φ(n),

contradicting our assumption. Hence n − 1 = φ(n) and therefore n is prime. ⊓⊔

Although this Lucas test is deterministic, it is, in most cases, no more computa-

tionally feasible than trial division or sieving since it depends on the factorization of

n−1. In general, factorization is even more difficult than solely testing for primality.

Therefore even here further methods are necessary. We note that the idea in the Lucas

test has been quite effective in developing methods for testing Fermat and Mersenne

numbers for primality. We will return to these in Section 5.3.2.

The majority of probabilistic primality tests are based on the Fermat test or some

variation of it. The basic idea is that if an integer passes the test for a base b (so that

it is a probable prime), then try another base. There is then a technique to attach a

probability tied to the number of bases attempted. We will make this precise in the

next section. For now we would like to look at a brand new (2003) deterministic

algorithm that answered a major open problem in both number theory and computer

science.

Primality testing is essentially a computational problem. Therefore a primality

test raises questions about the accompanying algorithm’s computational speed and

computational complexity. For these types of number-theoretic algorithms the com-

putational complexity is measured in terms of functions of the input length, which

here is roughly the number of digits of the inputted integer. The sieve of Eratosthenes

requires, for an inputted integer n, roughly the same order n of operations. If n has

log10 n digits, then the sieve requires O(10log10 n) operations to prove primality. We

say that this algorithm is of exponential time in terms of the input length. The big

open question was whether there existed a deterministic algorithm that was of poly-

nomial time in the input length. This means that for this algorithm there is a positive

integer d such that the number of operations in the algorithm to prove primality is

O((ln n)d). Earlier, Miller and Rabin had shown that the Miller–Rabin test, which

we will describe in the next section, can be made deterministic. Further, it is of poly-

nomial time if one accepts as true the extended Riemann hypothesis (see Chapter 4).

However, prior to 2003 it was an open question whether there was a deterministic

algorithm for primality that could be shown to be of polynomial time without using

any unproved conjectures.

In 2003, M. Agrawal and two of his students, N. Kayal and N. Saxena, developed

an algorithm, now called the AKS algorithm, that is deterministic and has been

proved to be of polynomial time. The result was even more spectacular since it was

accomplished with relatively elementary methods. The basic algorithm depends on

two rather straightforward extensions of Fermat’s theorem. This result has of course

generated a great deal of attention and much has already been written about it. We

refer the reader to the articles [Bo] and [Be] for a more complete discussion of the

algorithm and its development. Because of the timeliness and excitement this result
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has generated we will present the basic arguments in the paper of [AKS]. This will

be done in Section 5.5 at the conclusion of this chapter. The first result needed is the

following, which was well known in the theory of finite fields.

Theorem 5.3.4. Suppose (a, n) = 1 with n > 1. Then n is a prime if and only if

(x − a)n ≡ xn − a mod n

in the ring of polynomials Z[x].

Proof. Suppose n is prime. From the binomial theorem,

(x − a)n =
n∑

k=0

(
n

k

)
xn−k(−a)k.

If n is prime and k �= 0, 1, then
(
n
k

)
≡ 0 mod n (see the exercises). Therefore

(x − a)n ≡ xn − an in Zn[x].

But from Fermat’s theorem an ≡ a mod n, and so the result follows.

Conversely, if n is composite then it has a prime divisor p. Suppose pk is the

highest power of p dividing n. Then pk does not divide
(
n
p

)
. Therefore in the binomial

expansion of (x − a)n the coefficient of the xp term is not zero mod n and hence

(x − a)n �≡ xn − a mod n. ⊓⊔

This theorem is computationally just as difficult to use as Fermat’s theorem in

proving primality. Agrawal, Kayal, and Saxena then proved the following extension

of the above result which leads to the AKS algorithm. To state the theorem we need

the following notation. If p(x), q(x) are integral polynomials, then we say that

p(x) ≡ q(x) mod (xr − 1, n)

if the remainders of p(x) and q(x) after division by xr−1 are equal (equal coefficients)

modulo n.

Theorem 5.3.5 (AKS). Suppose that n is a natural number and s ≤ n. Suppose

that q, r are primes satisfying q|(r − 1), n
r−1
q is not congruent to 0, 1 modulo r , and(

q+s−1
s

)
≥ n2[√r]. If for all a with 1 ≤ a < s,

(1) (a, n) = 1,

(2) (x − a)n ≡ xn − a mod (xr − 1, n),

then n is a prime power.

The proof of this theorem is not difficult but requires some results from the theory

of cyclotomic fields that are outside the scope of this book. Hence at this point we

omit the proof. However, as mentioned, the basic arguments in the paper of [AKS]
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will be presented in Section 5.5. The most difficult part of the proof is showing that

given n there do exist primes q, r satisfying the conditions in the theorem.

From Theorem 5.3.4 we get the following algorithm (the AKS algorithm). It is

deterministic.

The AKS algorithm. Input an integer n > 1.

Step (1): Determine whether n = ab for some integers a, b. If so and b > 1

output composite and done.

Step (2): Choose q, r, s satisfying the hypotheses of Theorem 5.3.1.2.

Step (3): For a = 1, 2, . . . , s − 1 do the following:

If a is a divisor of n output composite and done.

If (x − a)n is not congruent to xn − a mod (xr − 1, n) output composite and

done.

Step (4): Output prime.

Although the algorithm is deterministic, it is not clear that it can be accomplished

in polynomial time. What is necessary is to show that polynomial bounds can be

placed on determining q, r, s. This can be done. The following is a program written

in pseudocode, which can be implemented even on a relatively small computer, that

places the appropriate bounds. It is also necessary to have an algorithm to implement

the first step. This can be done in linear time.

AKS algorithm program. Input an integer n > 1.

1: If n = ab for some natural numbers a, b with b > 1 then output COMPOSITE.

2: r = 2

3: while (r < n) do {
4: if ((n, r) �= 1) output COMPOSITE

5: if (r is prime)

6: let q be the largest prime factor of r − 1

7: if (q ≥ 4
√

r log2 n) and (n
r−1
q �= 1) mod r

8: break;

9: r ← r + 1

10: }
11: for a = 1 to 2

√
r log2 n

12: If (x−a)n is not congruent to xn−a mod (xr −1, n) output COMPOSITE;

13: output PRIME;

The crucial thing is that determining these bounds makes the algorithm run in

polynomial time.

Theorem 5.3.6 (AKS). The AKS algorithm runs in

O((log2 n)12f (log2 log2 n)

time. That is, the time to run this algorithm is bounded by a constant times the number

of digits to the 12th power times a polynomial in the log of the number of digits.
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The proof of the AKS algorithm has been refined by several people (see [Be]) and

it has been conjectured that it actually has polynomial running time O
(
(log2 n)6

)
.

In theory the AKS algorithm should be the fastest running primality tester. How-

ever, computational complexity is only a theoretical statement as n → ∞. In practice,

at the present time, several of the existing algorithms actually run faster. However,

the implementation of the AKS algorithm will probably improve. As mentioned, in

Section 5.5 we will give the proof of this theorem. In the next section we introduce

the ideas behind the probabilistic primality tests.

5.3.1 Pseudoprimes and Probabilistic Testing

In this section we present two probabilistic primality tests: the Solovay–Strassen test

and the Miller–Rabin test. The basic idea in both of these is to test, for an inputted

integer n, a sequence of bases in the Fermat test. The hope is that a base will be

located for which the test fails. In this case the number is not prime. If no such base

is found a probability can be assigned, determined by the number of bases tested, that

the number is prime. First we introduce some necessary concepts.

Definition 5.3.1.1. Let n be a composite integer. If b > 1 with (n, b) = 1, then n is

a pseudoprime to the base b if bn−1 ≡ 1 mod n.

Hence n is a pseudoprime to the base b if it passes the Fermat test and hence is a

probable prime.

Example 5.3.1.1. 25 is a pseudoprime to the base 7. To see this notice that

72 = 49 ≡ −1 mod 25.

This implies that 74 ≡ 1 mod 25 and hence 724 ≡ 16 ≡ 1 mod 25.

Notice that 25 is not a pseuodprime mod 2 or 3.

Theorem 5.3.1.1. For each base b > 1, there exist infinitely many pseudoprimes to

the base b.

Proof. Suppose b > 1. We show that if p is any odd prime not dividing b2 − 1 then

the integer n = b2p−1
b2−1

is a pseudoprime to the base b. Note that for this n we have

n = b2p − 1

b2 − 1
= bp − 1

b − 1
· bp + 1

b + 1
,

so that n is composite.

Given b from Fermat’s theorem, we have bp ≡ b mod p and hence b2p ≡ b2

mod p. Now, n − 1 = b2p−b2

b2−1
and since p does not divide b2 − 1 by assumption it

follows that p divides n − 1.
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Further,

n − 1 = b2p−2 + b2p−4 + · · · + b2p.

Therefore n− 1 is a sum of an even number of terms of the same parity so n− 1 must

be even. It follows that 2p divides n − 1. Hence b2p − 1 is a divisor of bn−1 − 1.

However,

b2p − 1 ≡ 0 mod n =⇒ bn−1 − 1 ≡ 0 mod n.

Therefore n is a pseudoprime to the base b, proving the theorem. ⊓⊔

Although there are infinitely many pseudoprimes they are not that common. It

has been shown, for example, that there are only 21,853 pseudoprimes to the base 2

among the first 25,000,000,000 integers. Hence there is a good chance that if a

number, especially a large number, passes a test as a pseudoprime, then it is really a

prime. The question becomes how to make this chance or probability precise. Lists

of many pseudoprimes can be found on various Internet websites (see [PP]).

From simple congruences the following is clear.

Lemma 5.3.1.1. If n is a pseudoprime to the base b1 and also a pseudoprime to the

base b2, then it is a pseudoprime to the base b1b2.

Probabilistic methods proceed by testing n to a base b1. If it is not a pseudoprime

then it is composite and we are done. If it is a pseudoprime, test a second base b2

and so on, in the hope of finding a base for which n is not a pseudoprime. However,

there do exist numbers which are pseudoprimes to every possible base.

Definition 5.3.1.2. A composite integer n is a Carmichael number if n is a

pseudoprime to each base b > 1 with (n, b) = 1.

The Carmichael numbers can be completely classified. Interestingly, this was

done even before the existence of Carmichael numbers was shown. The following is

called the Korselt criterion after A. Korselt.

Theorem 5.3.1.2. An odd composite number n is a Carmichael number if and only if

n is square-free and (p − 1)|(n − 1) for every prime p dividing n.

Proof. We first show that if a number n is not square-free, then it cannot be a

Carmichael number.

Suppose that n is not square-free. Then there exists a prime p with p2|n. From

Theorem 2.4.4.6 the multiplicative group in Zp2 is cyclic (that is, there exists a

primitive element) and hence there is a multiplicative generator g mod p2. Since

φ(p2) = p(p − 1) we have gp(p−1) ≡ 1 mod p2 and this is the least power of g that

is congruent to 1 mod p2. Now let m = p1 · · · pk , where p1, . . . , pk are the other

primes besides p dividing n. Notice that pk is not a Carmichael number so these

primes exist. Choose a solution b to the pair of congruences

b ≡ g mod p2,

b ≡ 1 mod m,
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which exists from the Chinese remainder theorem. Since b ≡ g mod p2 it follows

that b also has multiplicative order p(p − 1) mod p2. Suppose n was a Carmichael

number. Then n would be a pseudoprime to the base b and hence

bn−1 ≡ 1 mod n.

This implies that p(p − 1)|n from the multiplicative order of b. However, since p|n
we have n−1 ≡ −1 mod p. On the other hand, if p(p −1)|n−1 we have n−1 ≡ 0

mod p, a contradiction. Therefore n cannot be a pseudoprime to the base b and hence

is not a Carmichael number.

Now suppose that n is square-free, so that n = p1p2 · · · pk with k ≥ 2 and the

pi distinct primes. Suppose first that (p1 − 1)|(n − 1) for i = 1, . . . , k and suppose

that (b, n) = 1. Then

bn−1 ≡ b(p1−1)k ≡ 1k ≡ 1 mod pi, i = 1, . . . , k.

Hence

bn−1 ≡ 1 mod p1 · · · pk = n.

Therefore n is a pseudoprime to the base b and since b was aribtrary with (b, n) = 1

it follows that n is a Carmichael number.

Conversely, suppose that n = p1 · · · pk is a Carmichael number. Let pi be one

of these primes and suppose that g is a generator of the multiplicative group of Zpi
.

Recall as in the proof of the square-free property that this group is cyclic. Hence g has

multiplicative order pi −1 mod pi . Now let b be a solution to the pair of congruences

b ≡ g mod pi,

b ≡ 1 mod
n

pi

.

Then b also has multiplicative order p1 − 1 mod pi . Further, since (b, p1) = 1

and (b, n
pi

) = 1 it follows that (b, n) = 1. Since n is a Carmichael number it is a

pseudoprime to the base b and hence

bn−1 ≡ 1 mod n =⇒ bn−1 ≡ 1 mod pi .

It follows that (p1 − 1)|(n − 1), proving the theorem. ⊓⊔

Corollary 5.3.1.1. A Carmichael number must be divisible by at least three primes.

Proof. Suppose that n is a Carmichael number. Then from the proof of the previous

theorem, n = p1 · · · pk with k ≥ 2 and the pi distinct primes. We must show that

k > 2. Suppose that n = pq with p < q primes. Since n is a Carmichael number,

from the previous theorem (q − 1)|(n − 1). However,

n − 1 = pq − 1 = p(q − 1 + 1) − 1 ≡ p − 1 mod q − 1.

Since (q −1)|(n−1) this would imply that (q −1)|(p−1), which is impossible since

p < q. Therefore if n = pq it cannot be a Carmicahel number and hence k > 2, so

that n must be divisible by at least three distinct primes. ⊓⊔
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Using the Korselt criterion, we can present an example of a Carmichael number.

Example 5.3.1.2. The integer n = 561 = 3 · 11 · 17 is a Carmichael number. Here

n− 1 = 560, which is divisible by 2, 10, and 16, and hence by the Korselt criterion it

is a Carmichael number. This is well known as the smallest Carmichael number (see

the exercises).

Carmichael numbers are relatively infrequent. It has been shown, for example,

that there are only 2163 Carmichael numbers among the first 25,000,000,000 integers.

However it has been proved by Alford, Granville, and Pomerance that there exist

infinitely many Carmichael numbers. There is a list of Carmichael numbers up to

1016 (see [CP]).

Theorem 5.3.1.3 (Alford, Granville, Pomerance). There are infinitely many Car-

michael numbers. In particular, if C(x) denotes the number of Carmichael numbers

less than or equal to x then C(x) > x
2
7 for x sufficiently large.

We note that there are conjectured theorems on the distribution of C(x) analogous

to the prime number theorem (see [CP]).

To proceed further we define several stronger types of pseudoprimes. Recall that

if n = p is a prime then Zp is a field. Hence the polynomial equation

x2 ≡ 1 mod p

has only the solutions x ≡ 1 mod p and x ≡ −1 mod p. Therefore if (a, p) = 1 we

must have

a
p−1

2 ≡ ±1 mod p. (5.3.1)

Recall that for a prime p the Legendre symbol satisfies (a/p) = ±1, depending

on whether or not a is a quadratic residue mod p (see Section 2.6). We need an

extension of the Legendre symbol.

Definition 5.3.1.3. If n is a positive odd integer with prime factorization n =
p

e1

1 · · · pek

k and a is a positive integer then the Jacobi symbol is defined as

(a/n) = (a/p1)
e1 · · · (a/pk)

ek .

Several of the results concerning the Legendre symbol, including quadratic

reciprocity, can be extended to the Jacobi symbol.

Theorem 5.3.1.4. If m, n are odd positive integers, then

(1) (2/n) = (−1)
n2−1

8 ;
(2) (Jacobi quadratic reciprocity)

(m/n) = (−1)
(m−1)(n−1)

4 (n/m).
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The proofs of both of these assertions follow easily from the corresponding results

on the Legendre symbol and we leave them to the exercises.

Note that if p is a prime then the Jacobi symbol and the Legendre symbol are

identical. Hence for any prime p and integer a with (a, p) = 1,

a
p−1

2 ≡ (a/p) mod p,

where on the right-hand side we consider (a/p) as the Jacobi symbol.

Definition 5.3.1.4. An odd composite integer n is an Euler pseudoprime to the

base b if

b
n−1

2 ≡ (b/n) mod n,

where (b/n) is the Jacobi symbol.

Since (b/n) = ±1 it follows easily that an Euler pseudoprime to the base b must

also be a pseudoprime to the base b (see the exercises). However, the converse is

not true: there exist pseudoprimes to a base b that are not Euler pseudoprimes to

that base.

Example 5.3.1.2. 91 is a pseudoprime to the base 3 since 390 ≡ 1 mod 91. However,

345 ≡ 27 mod 91, so 91 is not an Euler pseudoprime to the base 3.

What is crucial in describing our first probabilistic primality test is that there are

no “Carmichael-type’’ numbers for Euler pseudoprimes. If fact, if n is composite it

will fail to be an Euler pseudoprime for at least one-half of the bases b with (b, n) = 1.

Theorem 5.3.1.5 (Solovay, Strassen). If n is an odd composite integer, then n is an

Euler pseudoprime for at most one-half of the bases b with 1 < b < n and (b, n) = 1.

Proof. Suppose that n is odd and composite. We first show that in this case if n is

not an Euler pseudoprime for at least one base b then it is not an Euler pseudoprime

for at least half of the bases b with 1 < b < n, (b, n) = 1. We then show that if n is

odd and composite there is a base b for which n is not an Euler pseudoprime.

Suppose that n is odd and composite and suppose that n is not an Euler

pseudoprime to the base b. That is,

b
n−1

2 �= ±1 mod n.

If n is not an Euler pseudoprime to any base then certainly it is not an Euler

pseudoprime for at least half of the possible bases. Suppose then that n is an Euler

pseudoprime to the base b1, so that

b
n−1

2

1 ≡ 1 mod n.

Then

(bb1)
n−1

2 ≡ b
n−1

2 b
n−1

2

1 ≡ b
n−1

2 �= ±1 mod n.

Hence n is not an Euler pseudoprime to the base bb1. Therefore for every base bi

for which n is an Euler pseudoprime, n is not an Euler pseudoprime for the base bbi .
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Further, if bi, bj are distinct (mod n) bases for which n is an Euler pseudoprime, then

bbi is not congruent to bbj mod n. It follows that if {b1, . . . , bk} are the distinct bases

for which n is an Euler pseudoprime then {bbi, . . . , bbk} are distinct bases for which

n is not an Euler pseudoprime. Therefore there are at least as many bases for which

n is not an Euler pseudoprime as there are bases for which it is. We conclude then

that if there exists at least one base b for which n is an Euler pseudoprime then n is

an Euler pseudoprime for at most one-half of the possible bases.

We now show that there must exist a base b for which n is not an Euler pseu-

doprime. Suppose first that n is not square-free, so that there exists a prime p with

p2|n. Let g be a generator of the multiplicative group of Zp2 . Then as in the proof

of the Korselt criterion, g has exact multiplicative order φ(p2) = p(p − 1). Let b

solve the pair of congruences

b ≡ g mod p2,

b ≡ 1 mod
n

p2
.

Then suppose that b
n−1

2 ≡ 1 mod n. It follows that p(p − 1)|(n − 1), which is

impossible since p2|n. Next suppose that b
n−1

2 ≡ −1 mod n. Then bn−1 ≡ 1 mod

n, so bn−1 ≡ 1 mod p2. It follows that p(p − 1)|n − 1. But then again p|n − 1

a contradiction. Hence if n is not square-free, then b as chosen above is a base for

which n is not an Euler pseudoprime.

Now suppose that n is square-free with n = p1 · · · pk with pi distinct primes. Let

g be a nonsquare mod p1. Recall that there are only
p−1

2
squares mod p1, so such

nonsquares exist. Hence
( g

p1

)
= −1. Choose a base b satisfying the simultaneous

congruences

b ≡ g mod p1,

b ≡ 1 mod pi, i = 2, . . . , k,

which exists by the Chinese remainder theorem. We then have for the Jacobi symbol

(
b

n

)
=

(
b

p1

)(
b

p2

)
· · ·

(
b

pk

)
.

But
(

b
p1

)
= −1 since b ≡ g mod p1 and

(
b
pi

)
=

(
1
pi

)
= 1. Hence

(
b

n

)
= −1.

If n were an Euler pseudoprime to the base b then

b
n−1

2 ≡
(

b

n

)
mod n,

so that

b
n−1

2 ≡ −1 mod n.
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But then

b
n−1

2 ≡ −1 mod p2,

which is a contradiction since b ≡ 1 mod p2. Therefore n cannot be an Euler

pseudoprime to the base b. Hence in each case there does exist a base for which n is

not an Euler pseudoprime, proving the theorem. ⊓⊔

Theorem 5.3.1.4 is the basis for the Solovay–Strassen primality test. Suppose

that we are given an odd integer n. Choose k integers b1, b2, . . . , bk at random with

1 < bi < n. If for some i we have (bi, n) > 1 then n is composite. If all bi are

relatively prime to n, then for each bi compute

(1) b
(n−1)/2
i mod n and

(2) (bi/n) mod n.

If (1) does not equal (2) for some bi then n is composite. Finally, if

b
(n−1)/2
i ≡ (bi/n) mod n

for all i = 1, . . . , k then the probability that n is not prime is less than
(

1
2

)k
.

To see this notice that if n passes the conditions for b1 then the probability of

being composite from the Solovay–Strassen result is less than 1
2
. But b2 is chosen

randomly, so the events that n passes the conditions for b1 and b2 are independent.

Hence the probability that n passes the conditions for both b1 and b2 is 1
2

· 1
2

= 1
4
,

and so on.

Solovay–Strassen primality test. Input an odd integer n

1: Choose k random integers b1, . . . , bk with 1 < bi < n

2: For i = 1, . . . , k

a: Compute (bi, n) (by the Euclidean algorithm)

i: If (bi, n) > 1, then n is composite and stop

b: Compute (1) b
(n−1)/2
i mod n and (2) (bi/n) mod n

i: If (1) �= (2), then n is composite and stop

3: The probability that n is prime is greater then 1 − 1
2k

Miller and Rabin determined an even stronger test than the above by extending

the idea of an Euler pseudoprime.

Definition 5.3.1.3. Let n be a composite integer with n−1 = 2s t with t odd. If b > 1

and (n, b) = 1 then n is a strong pseudoprime to the base b if either

(1) bt ≡ 1 mod n or

(2) there exists r with 0 ≤ r < s such that b2r t ≡ −1 mod n.

The Miller–Rabin test is based on the following theorem, analogous to the

Solovay–Strassen result. It was proved independently by Monier and Rabin.

Theorem 5.3.1.6. For each composite integer n > 9, the number of bases b with

0 < b < n for which n is a strong pseudoprime is less than 1
4

.
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If n is not a strong pseudoprime to the base b we say that b is a witness for n

(a witness that n is composite). Hence if n is composite, Theorem 5.3.1.5 says that

at least 3
4

of all the integers in [1, n − 1] are witnesses for n. The Miller–Rabin test

now proceeds exactly as the Solovay–Strassen test, except that the probability now

that n is prime is greater than 1 − 1
4k .

Miller–Rabin primality test. Input an odd integer n and suppose n − 1 = 2s t with

t odd.

1: Choose k random integers b1, . . . , bk with 1 < bi < n

2: For i = 1, . . . , k

a: Compute (bi, n) (by the Euclidean algorithm)

i: If (bi, n) > 1, then n is composite and stop

b: For i = 1, . . . , k

i: Compute mi = bt
i mod n

j: If mi = ±1, then n is a strong pseudoprime to the base bi and go on to

the next i. Else

k: For j = 1, . . . , s − 1 compute kj = b2j t
i mod n

l: If kj ≡ −1 mod n, then n is a strong pseudoprime to the base bi and go

on to the next i. If not then go to the next j .

m: If kj is not congruent to −1 mod n for all j , then n is composite and stop

3: The probability that n is prime is greater then 1 − 1
4k

The Miller–Rabin test can be made deterministic under the assumption the the

extended Riemann hypothesis holds (see Chapter 4). In particular, Bach proved the

following.

Theorem 5.3.1.7. Assuming that the extended Riemann hypothesis holds, then for

any odd composite integer n there is a witness less than 2(ln n)2.

Hence based on the theorem we would only have to test for witnesses, that is, not

strong pseudoprimes less than 2(ln n)2. If there are none, then n is prime. This is

then a deterministic polynomial time algorithm. However, it depends on the unproved

extended Riemann hypothesis.

5.3.2 The Lucas–Lehmer Test and Prime Records

Alarge portion of primality testing has centered on the Mersenne primes. In fact, most

of the prime records, that is, the determination of a largest known prime, involves

finding larger and larger Mersenne primes.

Recall from Section 3.1.3 that a Mersenne number is a positive integer of the form

Mn = 2n − 1, n = 1, 2, . . . . If Mn is prime then Mn is a Mersenne prime. Recall

that it is not known whether there are infinitely many Mersenne primes. However, it

is conjectured, and believed, that there are infinitely many Mersenne primes.

Testing Mersenne numbers for primality has been particularly fruitful because of

the Lucas–Lehmer test. This is a straightforward deterministic primality test specific

to the Mersenne numbers. It is relatively easy to implement on a computer and has
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been quite successful in finding larger and larger Mersenne primes. For the most

part historically, the largest known Mersenne prime has been also the largest known

prime or current prime record. From Theorem 3.1.3.2 (see below) if Mn = 2n − 1 is

prime then n must be prime. Finding Mersenne primes then is often an experimental

procedure with random prime exponents being tested using the Lucas–Lehmer test.

In Table 5.3.1 we list the known Mersenne primes as of the writing of this book.

Note that because the choice of prime exponents to test is random there may be other

Mersenne primes between those on the list.

In looking at this table, it should be mentioned how enormous the recent Mersenne

primes are. In particular, the most recent (in 2005) has 9152052 digits. We should also

point out that although there may be intermediate Mersenne primes between those

on the list, as of 2005, all prime exponents less than or equal to 6972593 have been

checked. Thus number 38 on the list above is the 38th Mersenne prime; there are no

intermediate unknown Mersenne primes before this. We note that the last nine on this

list were discovered using software provided by Woltman and Kurowksi as part of

the GIMPS (Great Internet Mersenne Prime Search) Project. It has been conjectured

that there is a prime number–type theorem for Mersenne primes. In particular, it has

been conjectured that if M(x) is the number of primes p ≤ x with Mp prime, then

M(x) ∼ c ln x. Further, c = eγ

ln 2
, where γ is Euler’s constant (see [CP]).

Before giving the Lucas–Lehmer test, we review some facts about the Mersenne

numbers. Recall that the Mersenne numbers are closely tied to the perfect numbers.

A natural number n is a perfect number if if it is equal to the sum of its proper divisors.

That is,

n =
∑

d|n,d≥1,d �=n

d.

For example, the number 6 is perfect since its proper divisors are 1, 2, 3, which add up

to 6. We then have the following concerning Mersenne numbers, Mersenne primes,

and the ties to perfect numbers.

Theorem 5.3.3.1.

(1) If Mn = 2n − 1 is prime then n is prime (Theorem 3.1.3.2).

(2) If Mp = 2p − 1 is a Mersenne prime then n = 2p−1(2p − 1) is a perfect

number (due to Euclid and given in Theorem 3.1.3.3.)

(3) Conversely, if n ≥ 2 is a perfect number and even then n = 2p−1(2p − 1)

and Mp = 2p − 1 is a Mersenne prime (due to Euler and given in Theorem 3.1.3.3.)

Notice that from the theorem in searching for Mersenne primes only prime expo-

nents must be considered. We now state the Lucas–Lehmer test. (Note that this was

presented also in Section 3.1.3.)

Theorem 5.3.3.2 (Lucas–Lehmer test). Let p be an odd prime and define the

sequence (Sn) inductively by

S1 = 4 and Sn = S2
n−1 − 2.

Then the Mersenne number Mp = 2p − 1 is a Mersenne prime if and only if Mp

divides Sp−1.
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Table 5.1. The known Mersenne primes Mp with p prime.

Number p Discoverer and Year

1 2 Unknown – pre-1500

2 3 Unknown – pre-1500

3 5 Unknown – pre-1500

4 7 Unknown – pre-1500

5 13 Anonymous – 1461

6 17 Cataldi – 1588

7 19 Cataldi – 1588

8 31 Euler – 1750

9 61 Pervushin – 1883

10 89 Powers – 1911

11 107 Powers – 1914

12 127 Lucas – 1876

13 521 Robinson – 1952

14 607 Robinson – 1952

15 1279 Robinson – 1952

16 2203 Robinson – 1952

17 2281 Robinson – 1952

18 3217 Riesel – 1957

19 4253 Hurwitz and Selfridge – 1961

20 4423 Hurwitz and Selfridge – 1961

21 9689 Gillies – 1963

22 9941 Gillies – 1963

23 911213 Gillies – 1963

24 19937 Tuckerman – 1971

25 21701 Noll and Nickel – 1978

26 23209 Noll – 1979

27 44497 Slowinski and Nelson – 1979

28 86243 Slowinski – 1982

29 110503 Colquitt and Welsh – 1988

30 132049 Slowinski – 1983

31 216091 Slowinski – 1985

32 756839 Slowinski and Gage – 1992

33 859433 Slowinski and Gage – 1994

34 1257787 Slowinski and Gage – 1996

35 1398269 Armengaud, Woltman et al. – 1996

36 2976221 Spence, Woltman et al. – 1996

37 3021377 Clarkson,Woltman, Kurowski et al. – 1998

38 6972593 Hajratwala,Woltman and Kurowski – 2000

39 13466917 Cameron – 2001

40 20996011 Shafer – 2003

41 24036583 Findley – 2004

42 25964951 Nowak – 2005

43 30402457 Cooper-Boone – 2005
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Proof. We first show that if Mp divides Sp−1 then Mp is prime. We follow the proof

given in [Br] and redone in [Tu] and [PP].

Let u = 2 −
√

3, v = 2 +
√

3. Then u + v = 4 = S1 and uv = 1. An easy

induction (see the exercises) shows that

Sn = u2n−1 + v2n−1

.

Suppose that Mp|Sp−1. We show that Mp must be a prime. Suppose not and let

q be a prime dividing Mp with q <
√

Mp. Since Mp|Sp−1, we also have q|Sp−1.

Consider the finite field Zq . If 3 is a square mod q, that is,
(

3
q

)
= 1, let F = Zq .

If 3 is not a square mod q let F be the extension field of Zq obtained by adjoining a

square root of 3. That is, F = Zq(w), where w2 = 3 (see Chapter 6). In either case

F is a finite field, of order q in the former case and order q2 in the latter. Recall that

the multiplicative group of a finite field is cyclic (see Chapter 2). Hence if g ∈ F

with g �= 0 then g has multiplicative order d with either d|(q − 1) or d|(q2 − 1).

Since (q − 1)|(q2 − 1) we can assume without loss of generality that d|(q2 − 1).

From uv = 1 and the induction, we have

Sp−1 = u2p−2 + v2p−2 = u2p−2(
1 + v2·2p−2)

.

Since q|Sp−1 we then obtain

u2p−2(
1 + v2·2p−2) ≡ 0 mod q.

Now u = 2 −
√

3 is not congruent to 0 mod q, for if it were, then we would have

2 ≡
√

3 mod q =⇒ 4 ≡ 3 mod q,

which is possible only if q = 1. Hence mod q,

1 + v2·2p−2 = 1 + v2p−1 = 0 =⇒ v2p−1 = −1.

Therefore v2p = 1. It follows that the multiplicative order of v mod q must divide

2p and therefore the multiplicative order of v as an element of F must also divide 2p.

This then must be a power of 2, say 2m. If m ≤ p − 1, then 2m|2p−1, from which it

follows that v2p−1 = 1 and not −1. Therefore m must equal p and the order of v in

F must be exactly 2p.

However, as explained earlier, the order of any nonzero element in F must divide

q2 − 1, and so 2p|(q2 − 1) which implies that 2p < q2 − 1. On the other hand, we

have 2p = Mp + 1 and q <
√

Mp, and so we have the inequality

Mp + 1 = 2p < q2 − 1 < Mp − 1,

which is a contradiction. Therefore no such q can exist and therefore Mp must be

prime, proving the Lucas–Lehmer theorem in one direction.

Conversely, we show that if Mp is prime then Mp|Sp−1.
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Let q = Mp and let u = 2 −
√

3, v = 2 +
√

3 as in the first part of the proof. We

will show that

v2p−1 ≡ −1 mod q

and hence

Sp−1 = u2p−2 + v2p−2 = u2p−2(
1 + v2·2p−2) ≡ 0 mod q.

This then shows that Mp = q|Sp−1.

To show that v has this order notice first that q − 1 = 2p − 2 = 2(2p − 1). It

follows that
q−1

2
is odd, so that (−1)

q−1
2 = −1, so that −1 is not a square mod q.

Next, notice that since q is prime, 2q ≡ 2 mod q from Fermat’s theorem. Hence

2q+1 ≡ 4 mod q, which implies that 22p ≡ 4 mod q. Since p is a prime ≥ 3, it

follows that mod q, 2 has both a square root
(
21/2 = 2(q+1)/4

)
and a fourth root

(
21/4 = 2

q+1
8

)
mod q.

Finally, as a preliminary we show that 3 is not a square mod q. One of the three

consecutive integers q −1, q, q +1 must be divisible by 3, and q +1 = 2p is a power

of 2 and q is a prime > 3. Hence 3|(q −1). Let g be a generator of the multiplicative

group of Zq . It follows that w = g
q−1

3 satisfies w3 ≡ 1 mod q and w �= 1 mod q.

Since

w3 − 1 = (w − 1)(w2 + w + 1)

it follows that

w2 + w + 1 ≡ 0 mod q.

Let z = w − w2. Then mod q,

z2 = (w − w2)2 = w2 − 2w3 + w4 = w2 − 2 + w = −3.

Therefore −3 is a square mod q. Since −1 is not a square mod q it follows that 3 is

also not a square mod q.

Since 3 is not a square mod q let F be the extension field of Zq obtained by

adjoining a square root of 3. That is, F = Zq(w), where w2 = 3. F is then a finite

field of order q2.

Let v = 2+w = 2+
√

3 in F . Since 3 is not a square mod q we have 3
q−1

2 ≡ −1

mod q. Hence in F ,

vq = (2 + w)q = 2q + wq = 2 + (
√

3)q = 2 + 3
q
2 ;

=⇒ vq = 2 + 3
q−1

2 · 3
1
2 = 2 − 3

1
2 = 2 −

√
3 = u.

Since 2 is a square mod q, 2−1 is also a square mod q. Here 2−1 is the multiplica-

tive inverse of 2 mod q, which exists since q is an odd prime. Let 2− 1
2 be a square
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root of 2−1 mod q. Let t ∈ F be given by

t = (1 + w)2− 1
2 .

Then in F we have

t2 = (1 + w)2
(
2− 1

2
)2 = (1 + 2w + w2)2−1 = (1 + 2w + 3)2−1 = 2 + w = v.

Therefore w is a square root of v in F . We show that v does not have a fourth root

in F .

Suppose v had a fourth root. Then t would have to be a square and since 2− 1
2 is a

square this would imply that 1 + w would have to be a square also. Hence we show

that 1 + w is not a square in F . This is done by computation in F . The elements of

F are of the form a + bw with a, b ∈ Zq . Suppose that (a + bw)2 = 1 + w. Then

a2 + 2abw + b2w2 = (a2 + 3b2) + (2ab)w = 1 + w.

This would imply that

a2 + 3b2 = 1 and 2ab = 1 =⇒ a2 + 3b2 = 2ab mod q

=⇒ a2 − 2ab + 3b2 = (a − b)2 + 2b2 = 0 mod q

=⇒ (a − b)2

b2
=

(
a − b

b

)2

= −2 mod q.

Hence −2 must be a square mod q. However, 2 is a square mod q and −1 is not a

square mod q and therefore −2 cannot be a square. Therefore 1 + w is not a square

in F and hence v has no fourth root in F .

Now vq = u so vq+1 = uv = 1 mod q. Since v has no fourth root it follows that

in F the order of t is precisely 2(q+1). Since this must divide q2−1 = (q+1)(q−1)

it follows that the order of v must be exactly q + 1. But then

v
q+1

2 = v2p−1 = −1 mod q,

completing the proof. ⊓⊔

Based on the theorem, the algorithm for testing a Mersenne prime is particularly

simple.

Lucas–Lehmer algorithm.

1: Input a prime p

a: Let u = 4

b: For i = 3 to p

(1): Let u = u2 − 2 mod 2p−1

(a): If u = 0 output prime and finish

(b): else next i

c: output composite
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5.3.3 Some Additional Primality Tests

The Lucas–Lehmer test is called an n+1 test since it requires knowledge of a complete

factorization of n + 1. (Recall Mn = 2n − 1 so Mn + 1 = 2n.) Other tests have

been developed to handle the situation in which there is knowledge of a complete

factorization of n − 1. These are known as n-1 tests and handle, in particular, testing

for Fermat primes. Recall (see Chapter 3) that the Fermat numbers are the sequence

(Fn) of positive integers defined by

Fn = 22n + 1, n = 1, 2, 3, . . . .

If Fm is prime it is called a Fermat prime. As discussed in Chapter 3, Fermat

conjectured that all the numbers in this sequence were primes. In fact, F1, F2, F3, F4

are all prime but F5 is composite. It is still an open question whether there are

infinitely many Fermat primes. However, it has been conjectured that there are only

finitely many. On the other hand, if a number of the form 2n + 1 is a prime for some

integer n, then it must be a Fermat prime (see Theorem 3.1.3.1). Lucas’s primality

test (Theorem 5.3.2) can be considered an (n − 1) test.

Lucas’s result was strengthened by Pocklington in the following form.

Theorem 5.3.3.1 (Pocklington’s theorem). Suppose n − 1 = f r with (f, r) = 1

and suppose that a complete factorization of f is known. Suppose that there exists

an a such that

an−1 ≡ 1 mod n and
(
a

n−1
q , n

)
= 1

for every prime factor q of f . Then every prime factor of n is congruent to 1 mod f .

Proof. Let p be a prime factor of n. Since an−1 ≡ 1 mod n the multiplicative order d

of ar in the finite field Zp is a divisor of n−1
r

= f . However, from
(
a

n−1
q , n

)
= 1 it

follows that d cannot be a proper divisor of f and hence d = f . Therefore f |(p−1)

since the multiplicative group in Zp has order p − 1. ⊓⊔

Pocklington’s theorem can then be fashioned into a primality test.

Corollary 5.3.3.1. Suppose n − 1 = fr with (f, r) = 1 and suppose that a complete

factorization of f is known. Suppose that there exists an a such that

an−1 ≡ 1 mod n and
(
a

n−1
q , n

)
= 1

for every prime factor q of f . Then if f ≥ √
n, it follows that n is prime.

Proof. From Theorem 5.3.3.1 it follows that each prime factor p of n is congruent

to 1 mod f . Hence p > f . But f ≥ √
n, so each p >

√
n. Therefore n cannot have

a prime factor ≤√
n, and so n = p and n is prime. ⊓⊔

Pocklington’s theorem, which was proved in 1914, actually extended several

earlier results that were specific to the testing of Fermat numbers for primality. Pepin’s

theorem (Theorem 5.3.3.2) was proved in 1877 and Proth’s theorem in 1878.
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Theorem 5.3.3.2 (Pepin’s theorem). Let Fn = 22n + 1 be the nth Fermat number.

Then Fn is prime if and only if 3
Fn−1

2 ≡ −1 mod Fn.

Proof. If 3
Fn−1

2 ≡ −1 mod Fn then the argument used in proving Pocklington’s

theorem with a = 3 can be used to show that Fn is prime. Conversely, suppose

Fn is prime. Then 3
Fn−1

2 ≡
(

3
Fn

)
mod Fn, where

(
3
Fn

)
is the Jacobi symbol. It is

straightforward to check (see the exercises) that
(

3
Fn

)
= −1. ⊓⊔

Theorem 5.3.3.3 (Proth’s theorem). Let n = f · 2k + 1 with 2k > f . If there exists

an integer a with a
n−1

2 ≡ −1 mod n, then n is prime.

Proof. The same arguments as in the proof of Pocklington’s theorem can be

applied. ⊓⊔

These results, together with the Lucas–Lehmer test, just begin to scratch the

surface of primality testing. A complete discussion of primality testing together

with discussions of computational complexity of both primality testing and factoriza-

tion algorithms can be found in the excellent and comprehensive book by Crandall

and Pomerance [CP]. There are also many suggestions given in [CP] for research

problems.

Recent work, leading eventually to the polynomial-time algorithm (AKS), has

concentrated on improving both the running time and computational complexity of

primality testing algorithms. The major breakthrough from a computational point

of view came with the development in 1983 by Adelman, Pomerance, and Rumely

of a deterministic algorithm (the APR algorithm) based on Jacobi sums (see [CP])

that ran in subexponential time. The fact that this could be done was in essence the

first step toward the eventual polynomial-time algorithm. The approach of the APR

algorithm extended a line of research that considered testing for primality via Gauss

sums (see [CP]).

There have been many additional approaches to primality testing. A very fruitful

approach that has had wide-ranging applications both in number theory and cryptog-

raphy used elliptic curves. If F is a field of characteristic not equal to 2 or 3 then an

elliptic curve over F is the locus of points (x, y) ∈ F × F satisfying the equation

y2 = x3 + ax + b with 4a3 + 27b2 �= 0.

We denote by 0 a single point at infinity and let

E(F) = {(x, y) ∈ F × F ; y2 = x3 + ax + b} ∪ {0}.

The important thing about elliptic curves from the viewpoint of number theory

and primality testing is that a group structure can be placed on E(F). In particular,

we define the operation + on E(F) by

(1) 0 + P = P for any point P ∈ E(F);

(2) If P = (x, y) then −P = (x, −y) and −0 = 0;
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(3) P + (−P) = 0 for any point P ∈ E(F);

(4) If P1 = (x1, y1), P2 = (x2, y2) with P1 �= −P2, then

P1 + P2 = (x3, y3)

with

x3 = m2 − (x1 + x2), y3 = −m(x3 − x1) − y1

and

m =
{

y2−y1

x2−x1
if x2 �= x1,

3x2
1+a

2y1
if x2 = x1.

This operation has a very nice geometric interpretation if F = R, the real numbers.

It is known as the chord and tangent method. If P1 �= P2 are two points on the curve

then the line through P1, P2 intersects the curve at another point P3. If we reflect P3

through the x-axis we get P1 + P2. If P2 = P2 we take the tangent line at P1.

With this operation E(F) becomes an abelian group (due to Cassels) whose

structure can be worked out (see [CP]).

Theorem 5.3.3.4. E(F) together with the operations defined above forms an abelian

group. In F is a finite field of order pk then E(F) is either cyclic or has the structure

E(F) = Zm1
× Zm2

with m1|m2 and m1|(pk − 1).

By considering the order of the group E(F) over finite fields, Lenstra developed

a factorization algorithm (ECM) (see [CP]). His method, as well as elliptic curve

primality testing, depends on the concept of an elliptic pseudocurve. This is just the

set of points satisfying an elliptic curve equation over a modular ring not necessarily

a field. In particular, if n is a positive integer with (n, 6) = 1, and a, b ∈ Zn satisfy

4a3 + 27b2 �= 0, then an elliptic pseudocurve over Zn is a set

Ea,b(Zn) = {(x, y) ∈ Zn × Zn; y2 = x3 + ax + b} ∪ {0}

with 0 a point at infinity.

Using Lenstra’s concept of a pseudocurve, Goldwater and Killian developed an

elliptic curve analogue of Pocklington’s theorem (Theorem 5.3.3.1) which ushered

in elliptic curve primality proving (ECPP) (see [CP]).

Theorem 5.3.3.5 (ECPP). Let n > 1 with (n, 6) = 1, Ea,b(Zn) an elliptic pseu-

docurve over Zn, and s, m positive integers with s|m. Let [m] denote the residue

class of m and assume that there exists a point P ∈ E such that [m]P = 0 and[
m
q

]
P �= 0 for every prime divisor q of s. Then for every prime p dividing n we have

|Ea,b(Zp)| ≡ 0 mod s.

Further, if s >
(
n

1
4 + 1

)2
, then n is prime.
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The Goldwater–Killian theorem was improved upon by Atkin and Morain, who

developed a very efficient elliptic curve primality testing algorithm. In practice this

algorithm seems to be at present the fastest computationally. However, it is felt

that ultimately an implementation of the theoretically faster AKS algorithm will be

developed that will be computationally faster.

A comprehensive description and discussion of elliptic curve methods can be

found in Crandall and Pomerance [CP].

5.4 Cryptography and Primes

Cryptography refers to the science and/or art of sending and receiving coded

messages. Coding and hidden ciphering are old endeavors used by governments

and militaries and between private individuals from ancient times. Recently it has

become even more prominent because of the necessity of sending secure and pri-

vate information, such as credit card numbers, over essentially open communication

systems.

In general, both the plaintext message (uncoded message) and the ciphertext

message (coded message) are written in some N -letter alphabet, which is usually the

same for both plaintext and code. The method of coding, or the encoding algorithm,

is then a transformation of the N letters. The most common way to perform this

transformation is to consider the N letters as N integers modulo N and then apply

a number-theoretical function to them. Therefore most encoding algorithms use

modular arithmetic, and hence cryptography is closely tied to number theory. In

this section we give a brief overview of cryptography and some number-theoretic

algorithms used in encryption. The subject is very broad, and as mentioned above,

very current, due to the need for publicly viewed but coded messages. There are many

references to the subject. The book by Koblitz [Ko] gives an outstanding introduction

to the interaction between number theory and cryptography. It also includes many

references to other sources. The book by Stinson [St] describes the whole area.

Modern cryptography is usually separated into classical cryptography and public

key cryptography. In the former, both the encoding and decoding algorithms are

supposedly known only to the sender and receiver, frequently referred to as Bob

and Alice. In the latter, the encryption method is public knowledge but only the

receiver knows how to decode. We make this more precise in Section 5.4.2 when we

introduce public key methods. Here we present first the basic terminology used in

classical cryptography.

The message that one wants to send is written in plaintext and then converted

into code. The coded message is written in ciphertext. The plaintext message and

ciphertext message are written in some alphabets that are usually the same. The

process of putting the plaintext message into code is called enciphering or encryp-

tion, while the reverse process is called deciphering or decryption. Encryption

algorithms break the plaintext and ciphertext message into message units. These are

single letters or pairs of letters or more generally k-vectors of letters. The transfor-

mations are done on these message units and the encryption algorithm is a mapping
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from the set of plaintext message units to the set of ciphertext message units. Putting

this into a mathematical formulation we let

P = set of all plaintext message units and

C = set of all ciphertext message units.

The encryption algorithm is then the application of an invertible function

f : P → C.

The function f is the encryption map. The inverse

f −1 : C → P

is the decryption or deciphering map. The triple {P, C, f }, consisting of a set of

plaintext message units, a set of cipertext message units, and an encryption map, is

called a cryptosystem.

Breaking a code is called cryptanalysis. An attempt to break a code is called an

attack. Most cryptanalysis depends on a statistical frequency analysis of the plaintext

language used (see the exercises). Cryptanalysis depends also on a knowledge of the

form of the code, that is, the type of cryptosystem used.

We now give some examples of cryptosystems and cryptanalysis.

Example 5.4.1. The simplest type of encryption algorithm is a permutation cipher.

Here the letters of the plaintext alphabet are permuted and the plaintext message is

sent in the permuted letters. Mathematically, if the alphabet has N letters and σ is a

permutation on 1, . . . , N , the letter i in each message unit is replaced by σ(i). For

example, suppose the plaintext language is English and the plaintext word is BOB

and the permutation algorithm is

a b c d e f g h i j k l m

b c d f g h j k l n o p r

n o p q r s t u v w x y z

s t v w x a e i z m q y u

then BOB → CTC.

Example 5.4.2. A very straightforward example of a permutation encryption algo-

rithm is a shift algorithm. Here we consider the plaintext alphabet as the integers

0, 1, . . . , N − 1 mod N . We choose a fixed integer k, and the encryption algorithm is

f : m → m + k mod N.

This is often known as a Caesar code, after Julius Caesar, who supposedly invented

it. It was used by the Union Army during the American Civil War. For example,

if both the plaintext and ciphertext alphabets were English and each message unit

was a single letter, then N = 26. Suppose k = 5 and we wish to send the message



236 5 Primality Testing: An Overview

ATTACK . If a = 0 then ATTACK is the numerical sequence 0, 20, 20, 0, 2, 11. The

encoded message would then be FZZFIP.

Any permutation encryption algorithm that goes letter to letter is very simple

to attack using a statistical analysis. If enough messages are intercepted and the

plaintext language is guessed, then a frequency analysis of the letters will suffice

to crack the code. For example, in the English language the three most commonly

occurring letters are E, T , and A with a frequency of occurrence of approximately

13%, 9%, and 8%, respectively. By examining the frequency of occurrences of letters

in the ciphertext, the letters corresponding to E, T , and A can be uncovered (see the

exercises).

Example 5.4.3. A variation on the Caesar code is the Vigenère code. Here message

units are considered as k-vectors of integers modN from anN letter alphabet. LetB =
(b1, . . . , bk) be a fixed k-vector in Zk

n. The Vigenère code then takes a message unit

(a1, . . . , ak) → (a1 + b1, . . . , ak + bk) mod N.

From a cryptanalysis point of view, a Vigenère code is no more secure than a Caesar

code and is susceptible to the same type of statistical attack.

The Alberti code is a polyalphabetic cipher and can be often used to thwart a

statistical frequency attack. We describe it in the next example.

Example 5.4.4. Suppose we have an N -letter alphabet. We then form an N×N matrix

P where each row and column is a distinct permutation of the plaintext alphabet.

Hence P is a permutation matrix on the integers 0, . . . , N − 1. Bob and Alice decide

on a keyword. The keyword is placed above the plaintext message and the intersection

of the keyword letter and plaintext letter below it will determine which cipher alphabet

to use. We will make this precise with a 9-letter alphabet A, B, C, D, E, O, S, T , U .

Here for simplicity we will assume that each row is just a shift of the previous row,

but any permutation can be used.

Key Letters

A B C D E O S T U

a A a b c d e o s t u

l B b c d e o s t u a

p C c d e o s t u a b

h D d e o s t u a b c

a E e o s t u a b c d

b O o s t u a b c d e

e S s t u a b c d e o

t T t u a b c d e o s

s U u a b c d e o s t

Suppose the plaintext message is STAB DOC and Bob and Alice have chosen the

keyword BET. We place the keyword repeatedly over the message

B E T B E T B

S T A B D O C
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To encode we look at B, which lies over S. The intersection of the B key letter and

the S alphabet is a t , so we encrypt the S with T . The next key letter is E, which lies

over T . The intersection of the E keyletter with the T alphabet is c. Continuing in

this manner and ignoring the space we get the encryption

STAB DOC → TCTCTDD.

Example 5.4.4. A final example, which is not number theory based, is the so-called

Beale cipher. This has a very interesting history, which is related in the popular

book Archimedes Revenge by P. Hoffman (see [Ho]). Here letters are encrypted by

numbering the first letters of each word in some document like the Declaration of

Independence or the Bible. There will then be several choices for each letter and a

Beale cipher is quite difficult to attack.

5.4.1 Some Number-Theoretic Cryptosystems

Here we describe some basic number-theoretically derived crytosystems. In applying

a cryptosystem to an N -letter alphabet we consider the letters as integers mod N .

The encryption algorithms then apply number-theoretic functions and use modular

arithmetic on these integers. One example of this is the shift or Caesar cipher described

in Example 5.4.2. In this encryption method a fixed integer k is chosen and the

encryption map is given by

f : m → m + k mod N.

The shift algorithm is a special case of an affine cipher. Recall that an affine

map on a ring R is a function f (x) = ax + b with a, b, x ∈ R. We apply such a map

to the ring R = Zn as the encryption map. Specifically, again suppose we have an

N -letter alphabet and we consider the letters as the integers 0, 1, . . . , N − 1 mod N ,

that is, in the ring ZN . We choose integers a, b ∈ ZN with (a, N) = 1 and b �= 0.

The integers a, b are called the keys of the cryptosystem. The encryption map is then

given by

f : m → am + b mod N.

Example 5.4.1.1. Using an affine cipher with the English language and keys a = 3,

b = 5, encode the message EAT AT JOE’S. Ignore spaces and punctuation.

The numerical sequence for the message ignoring the spaces and punctuation is

4, 0, 19, 0, 19, 9, 14, 4, 18.

Applying the map f (m) = 3m + 5 mod 26, we get

17, 5, 62, 5, 62, 32, 47, 17, 59 → 17, 5, 10, 5, 10, 6, 21, 17, 7.

Now rewriting these as letters we get

EAT AT JOE’S → RFKFKGVRH.
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Since (a, N) = 1 the integer a has a multiplicative inverse mod N . The decryption

map for an affine cipher with keys a, b is then

f −1 : m → a−1(m − b) mod N.

Since an affine cipher, as given above, goes letter to letter, it is easy to attack using

a statistical frequency approach. Further, if an attacker can determine two letters and

knows that it is an affine cipher the keys can be determined and the code broken (see

the exercises). To give better security it is preferable to use k-vectors of letters as

message units. The form then of an affine cipher becomes

f : v → Av + B,

where here v and B are k-vectors from Zk
N and A is an invertible k × k matrix with

entries from the ring ZN . The computations are then done modulo N . Since v is a

k-vector and A is a k × k matrix the matrix product Av produces another k-vector

from Zk
N . Adding the k-vector B again produces a k-vector, so the ciphertext message

unit is again a k-vector. The keys for this affine cryptosystem are the enciphering

matrix A and the shift vector B. The matrix A is chosen to be invertible over ZN

(equivalent to the determinant of A being a unit in the ring ZN ), so the decryption

map is given by

v → A−1(v − B).

Here A−1 is the matrix inverse over ZN and v is a k-vector. The enciphering matrix

A and the shift vector B are now the keys of the cryptosystem.

A statistical frequency attack on such a cryptosystem requires knowledge, within

a given language, of the statistical frequency of k-strings of letters. This is more

difficult to determine than the statistical frequency of single letters. As for a letter to

letter affine cipher, if k + 1 message units, where k is the message block length, are

discovered, then the code can be broken.

Example 5.4.1.2. Using an affine cipher with message units of length 2 in the English

language and keys

A =
(

5 1

8 7

)
, B = (5, 3),

encode the message EAT AT JOE’S. Again ignore spaces and punctuation.

Message units of length 2, that is, 2-vectors of letters, are called digraphs. We

first must place the plaintext message in terms of these message units. The numerical

sequence for the message EAT AT JOE’s ignoring the spaces and punctuation is as

before

4, 0, 19, 0, 19, 9, 14, 4, 18.

Therefore the message units are

(4, 0), (19, 0), (19, 9), (14, 4), (18, 18),

repeating the last letter to end the message.
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The enciphering matrix A has determinant 1, which is a unit mod 26, and hence

is invertible, so it is a valid key.

Now we must apply the map f (v) = Av + B mod 26 to each digraph. For

example,

A

(
4

0

)
+ B =

(
5 1

8 7

)(
4

0

)
+
(

5

3

)
=

(
20

32

)
+
(

5

3

)
=

(
25

9

)
.

Doing this to the other message units, we obtain

(25, 9), (22, 25), (5, 10), (1, 13), (9, 13).

Now rewriting these as digraphs of letters, we get

(Z, J ), (W, Z), (F, K), (B, N), (J, N).

Therefore the coded message is

EAT AT JOE’S → ZJWZFKBNJN.

Example 5.4.1.3. Suppose we receive the message ZJWZFKBNJN and we wish to

decode it. We know that an affine cipher with message units of length 2 in the English

language and keys

A =
(

5 1

8 7

)
, B = (5, 3)

is being used.

The decryption map is given by

v → A−1(v − B),

so we must find the inverse matrix for A. For a 2 × 2 invertible matrix ( a b

c d
),

we have (
a b

c d

)−1

= 1

ad − bc

(
d −b

−c a

)
.

Therefore in this case, recalling that multiplication is mod 26,

A =
(

5 1

8 7

)
=⇒ A−1 =

(
7 −1

−8 5

)
.

The message ZJWZFKBNJN in terms of message units is

(25, 9), (22, 25), (5, 10), (1, 13), (9, 13).

We apply the decryption map to each digraph. For example,

A−1

((
20

6

)
− B

)
=

(
7 −1

−8 5

)((
25

9

)
−
(

5

3

)
= (4, 0).
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Doing this to each, we obtain

(4, 0), (19, 0), (19, 9), (14, 4), (18, 18),

and rewriting in terms of letters,

(E, A), (T , A), (T , J ), (O, E), (S, S).

This gives us

ZJWZFKBNJN → EATATJOESS.

5.4.2 Public Key Cryptography and the RSA Algorithm

Presently there are many instances where secure information must be sent over open

communication lines. These include banking and financial transactions, purchasing

items via credit cards over the Internet, and similar things. This led to the development

of public key cryptography. Roughly, in classical cryptography only the sender and

receiver know the encoding and decoding methods. Further, it is a feature of such

cryptosystems, such as the ones that we have looked at, that if the encrypting method

is known the decrypting can be carried out. In public key cryptography the encryp-

tion method is public knowledge but only the receiver knows how to decode. More

precisely, in a classical cryptosystem once the encrypting algorithm is known the

decryption algorithm can be implemented in approximately the same order of magni-

tude of time. In a public key cryptosystem, developed first by Diffie and Hellman, the

decryption algorithm is much more difficult to implement. This difficulty depends on

the type of computing machinery used (much as primality testing), and as computers

get better, new and more secure public key cryptosystems become necessary.

The basic idea in a public key cryptosystem is to have a one-way function, that

is, a function that is easy to implement but very hard to invert. Hence it becomes

simple to encrypt a message but very hard, unless you know the inverse, to decrypt.

The standard model for public key systems is the following. Alice wants to send a

message to Bob. The encrypting map fA for Alice is public knowledge as well as

the encrypting map fB for Bob. On the other hand, the decryption algorithms f −1
A

and f −1
B are secret and known only to Alice and Bob, respectively. Let P be the

message Alice wants to send to Bob. She sends fBf −1
A (P). To decode, Bob applies

first f −1
B , which only he knows. This gives him f −1

B

(
fBf −1

A (P)
)

= f −1
A (P). He

then looks up fA, which is publicly available, and applies this, fA

(
f −1

A (P)
)

= P, to

obtain the message. Why not just send fB(P)? Bob is the only one who can decode

this. The idea is authentication, that is, being certain from Bob’s point of view that

the message really came from Alice. Suppose P is Alice’s verification: signature,

social security number, etc. If Bob receives fB(P) it could be sent by anyone, since

fB is public. On the other hand, since only Alice supposedly knows f −1
A , getting

a reasonable message from fA

(
f −1

B fBf −1
A (P)

)
would verify that it is from Alice.

Applying f −1
B alone should result in nonsense.
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Getting a reasonable one-way function can be a formidable task. The most widely

used (at present) public key systems are based on difficult-to-invert number-theoretic

functions. Diffie and Hellman in 1976 developed the original public key idea using

the discrete log problem. In modular arithmetic it is easy to raise an element to a

power but difficult to determine, given an element, whether it is a power of another

element. Specifically, if G is a finite group, such as the cyclic multiplicative group

of Zp, where p is a prime, and h = gk for some k, then the discrete log of h to the

base g is any integer t with h = gt . The rough form of the Diffie–Helman public

key system is as follows. Bob and Alice will use a classical cryptosystem based on a

key k with 1 < k < q − 1, where q is a prime. It is the key k that Alice must send

to Bob. Let g be a multiplicative generator of Z⋆
q . Alice chooses an a ∈ Zq with

1 < a < q − 1. She makes public ga . Bob chooses a b ∈ Z⋆
q and makes public gb.

The secret key is gab. Both Bob and Alice, but presumably no one else, can discover

this key. Alice knows her secret power a, and the value gb is public from Bob. Hence

she can compute the key gab = (gb)a . The analogous situation holds for Bob. An

attacker, however, knows only ga and gb. Unless the attacker can solve the discrete

log problem, that is finding the base g, the key exchange is secure.

In 1977 Rivest, Adelman, and Shamir developed the RSA algorithm, which is

presently one of the most widely used public key cryptosystems. It is based on the

difficulty of factoring large integers and in particular on the fact that it is easier to

test for primality (hence the inclusion in this chapter) than to factor. It works as

follows. Alice chooses two large primes pA, qA and an integer eA relatively prime to

φ(pAqA) = (pA −1)(qA −1). It is assumed that these integers are chosen randomly

to minimize attack. The primality tests arise in the following manner. Alice first

randomly chooses a large odd integer m and tests it for primality. If it is prime, it is

used. If not, she tests m + 2, m + 4, . . . , and so on until she gets her first prime pA.

She then repeats the process to get qA. Similarly, she chooses another odd integer m

and tests until she gets an eA relatively prime to φ(pAqA). The primes she chooses

should be quite large. Originally, RSA used primes of approximately 100 decimal

digits, but as computing and attack have become more sophisticated, larger primes

have had to be utilized. We will say more of this shortly. Once Alice has obtained

pA, qA, eA she lets nA = pAqA and computes dA, the multiplicative inverse of eA

modulo φ(nA). That is, dA satisfies eAdA ≡ 1 mod (pA − 1)(qA − 1). She makes

public the enciphering key KA = (nA, eA), and the encryption algorithm known to

all is

fA(P) = PeA mod nA,

where P ∈ ZnA
is a message unit. It can be shown that if (eA, (pA − 1)(qA − 1)) =

1 and eAdA ≡ 1 mod (pA − 1)(qA − 1) then PeAdA ≡ P mod nA (see the exercises).

Therefore the decryption algorithm is

f −1
A (C) = Cda mod nA.

Notice then that f −1
A (fA(P)) = PeAdA ≡ P mod nA, so it is the inverse.

Now Bob makes the same type of choices to obtain pB , qB , eB . He lets nB =
pBqB and makes public his key KB = (nB , eB).
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If Alice wants to send a message to Bob that can be authenticated to be from Alice

she sends fB(f −1
A (P)). An attack then requires factoring nA or nB , which is much

more difficult than obtaining the primes pA, qA, pB , qB . The fact that randomly

finding large primes is easier than factoring is a consequence of the density of primes.

As mentioned earlier, given a large integer n, choosing a random prime less than n

has probability approximately equal to 1
ln n

. Even for very large n, this is not that

small. For example, choosing a prime less than a 200-digit integer is greater than one

in a thousand.

In practice, suppose there is an N -letter alphabet that is to be used for both plaintext

and ciphertext. The plaintext message is to consist of k vectors of letters and the

ciphertext message of l vectors of letters with k < l. Each of the k plaintext letters

in a message unit P are then considered as integers mod N and the whole plaintext

message is considered as a k-digit integer written to the base N (see example below).

The transformed message is then written as an l-digit integer mod N and then the

digits are considered integers mod N , from which encrypted letters are found. To

ensure that the ranges of plaintext messages and ciphertext messages are the same,

k < l are chosen so that

Nk < nU < N l

for each user U , that is, nU = pUqU . In this case any plaintext message P is an

integer less than Nk considered as an element of ZnU
. Since nU < N l the image

under the power transformation corresponds to an l-digit integer written to the base

N and hence to an l letter block. We give an example with relatively small primes.

In real-world applications, the primes would be chosen to have over a hundred digits

and the computations and choices must be done using good computing machinery.

Example 5.4.2.1. Suppose N = 26, k = 2, and l = 3. Suppose further that Alice

chooses pA = 29, qA = 41, eA = 13. Here nA = 29 · 41 = 1189, so she makes

public the key KA = (1189, 13). She then computes the multiplicative inverse dA

of 13 mod 1120 = 28 · 40. Now suppose we want to send her the message TABU.

Since k = 2 the message units in plaintext are two vectors of letters, so we separate

the message into TA BU. We show how to send TA. First, the numerical sequence for

the letters TA mod 26 is (19, 0). We then use these as the digits of a 2-digit number

to the base 26. Hence

TA = 19 · 26 + 0 · 1 = 494.

We now compute the power transformation using Alice’s eA = 13 to evaluate

f (19, 0) = 49413 mod 1189.

This is evaluated as 320. Now we write 320 to the base 26. By our choices of k, l,

this can be written with a maximum of three digits to this base. Then

320 = 0 · 262 + 12 · 26 + 8.

The letters in the encoded message then correspond to (0, 12, 8), and therefore the

encryption of TA is AMI.

To decode the message, Alice knows dA and applies the inverse transformation.
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Since we have assumed that k < l, this seems to restrict the direction in which

messages can be sent. In practice, to allow messages to go between any two users the

following is done. Suppose Alice is sending an authenticated message to Bob. The

keys kA = (nA, eA), kB = (nB , eB) are public. If nA < nB Alice sends fBf −1
A (P).

On the other hand, if nA > nB she sends f −1
A fB(P).

The computations and choices used in real-world implementations of the RSA

algorithm must be done with computers. Similarly, attacks on RSA are done via

computers. As computing machinery gets stronger and factoring algorithms get faster,

RSA becomes less secure, and larger and larger primes must be used. In order to

combat this, other public key methods are in various stages of ongoing development.

RSA and Diffie–Hellman and many related public key cryptosystems use properties

of abelian groups. In recent years a great deal of work has been done to encrypt

and decrypt using certain nonabelian groups such as linear groups and braid groups.

(See [AAG] or [BFX] and the references therein.)

5.5 The AKS Algorithm

The development of the AKS algorithm and the fact that it is of polynomial time is

the major most recent theoretical breakthrough in primality testing. Because of the

timeliness and relative simplicity of the proof we here reproduce the arguments in

the original paper of Agrawal, Kayal, and Saxena [AKS]. There have already been

substantial improvements (see [Bo], [Be]), yet the elegance of the original stands

out. For the most part, this section, with some explanatory material, is taken directly

from their paper. We first need the following notation. If p(x), q(x) are integral

polynomials then we say

p(x) ≡ q(x) mod (xr − 1, n)

if the remainders of p(x) and q(x) after division by xr−1 are equal (equal coefficients)

modulo n. Further, if p is a prime, op(r) is the multiplicative order of r mod p. Two

further number-theoretic results are needed.

Lemma 5.5.1 ([Fou85, BH96]). Let P(n) denote the greatest prime divisor of n.

Then there exist constants c > 0 and n0 such that for all x ≥ n0,

|{p; p prime p ≤ x and P(p − 1) > x
2
3 }| ≥ c

x

log2 x
.

Lemma 5.5.2 ([A]). If π(x) is the standard prime number function then for n ≥ 1,

n

6 log2 n
≤ π(n) ≤ 8n

log2 n
.

We now restate the AKS algorithm as given in [AKS].
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AKS algorithm program. Input an integer n > 1.

1: If n = ab for some natural numbers a, b with b > 1 then output COMPOSITE.

2: r = 2

3: while (r < n) do {
4: if ((n, r) �= 1) output COMPOSITE

5: if (r is prime)

6: let q be the largest prime factor of r − 1

7: if (q ≥ 4
√

r log2 n) and
(
n

r−1
q �= 1

)
mod r

8: break;

9: r ← r + 1

10: }
11: for a = 1 to 2

√
r log2 n

12: If (x−a)n is not congruent to xn−a mod (xr −1, n) output COMPOSITE;

13: output PRIME;

The proof by Agrawal, Kayal, and Saxena is in two parts. The first establishes

that the algorithm is deterministic. That is, the algorithm will return PRIME if and

only if the inputted integer is a prime. The second part shows that the algorithm is

polynomial in log2 n the number of binary digits of n. The remainder of this section

is taken from the original paper [AKS].

Theorem 5.5.1 ([AKS]). The AKS algorithm returns PRIME if and only if n is prime.

The proof is established by a series of lemmas. The first lemma bounds the number

of iterations in the while loop. This loop attempts to find a prime r such that r − 1

has a large prime factor q ≥ 4
√

r log2 n and q|or(n).

Lemma 5.5.3. There exist positive constants c1, c2 for which there is a prime r in

the interval [c1(log2 n)6, c2(log2 n)6] such that r − 1 has a prime factor q with

q ≥ 4
√

r log2 n and q|or(n).

Proof. Let c and P(n) be as in Lemma 5.5.1. For any c1, c2 call the primes r in

the interval
[
c1(log2 n)6, c2(log2 n)6

]
that satisfy P(r − 1) >

(
c2 log2 n)6

) 2
3 > r

2
3

special primes. Then for n large enough the number of special primes is greater than

or equal to

number of special primes in [1, c2(log2 n)6]−number of primes in [1, c1(log2 n)6].

Using Lemmas 5.5.1 and 5.5.2, this value is then greater than or equal to

cc2(log2 n)6

7 log2 log2 n
− 8c1(log2 n)6

6 log2 log2 n
= (log2 n)6

log2 log2 n

(
cc2

7
− 8c1

6

)
.

Now choose the constants c1 ≥ 46 and c2 so that cc2
7

− 8c1
6

> 0. Call this positive

value c3.
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Let x = c3(log2 n)6. Consider the product

P = (n − 1)(n2 − 1) · · ·
(

n

[
x

1
3

]
− 1

)
.

This product has at most x
2
3 log2 n different prime factors. Note that

x
2
3 log2 n <

c3(log2 n)6

log2 log2 n
.

It follows that there is at least one special prime, say r that does not divide the product

P . This is the required prime in the lemma. The number r − 1 has a large prime

factor q ≥ r
2
3 ≥ 4

√
r log2 n since c1 ≥ 46 and q|or(n). ⊓⊔

Lemma 5.5.4. If n is prime the AKS algorithm returns PRIME.

Proof. Suppose that n is a prime. Then the while loop in the algorithm cannot return

COMPOSITE since (n, r) = 1 for all r ≤ c2(log2 n)6, where c2 is the constant from

Lemma 5.5.3. Since f (x)p ≡ f (xp) mod p for any integral polynomial, the for loop

in the algorithm also cannot return COMPOSITE. Hence the algorithm will identify

n as PRIME. ⊓⊔

It must be shown now that if n is composite then the algorithm will return

COMPOSITE. Suppose that n is composite with the distinct prime factors p1, . . . , pk .

Let r be the prime found in the while loop as in Lemma 5.5.3. Then in this case

or(n)| lcm(or(pi)) and hence there exists a prime factor p of n such that q|or(p)

with q the largest prime factor of r − 1. Let p be such a prime factor of n.

The bottom loop in the program uses the value of r to do polynomial computations

on the t = 2
√

r log2 n polynomials x − a for 1 ≤ a ≤ t . In the finite field Zp the

polynomial xr − 1 has an irreducible factor h(x) of degree or(p). Now

(x − a)n ≡ (xn − a) mod (xr−1, n)

implies that

(x − a)n ≡ (xn − a) mod (h(x), p).

It follows that the polynomial identities on the set of (x −a) hold in the quotient field

Zp[x]/(h(x)). The set of (x − a) form a large cyclic group in this field.

Lemma 5.5.5. In the field F = Zp[x]/(h(x)) the group G generated by the t

polynomials (x − a) with 1 ≤ a ≤ t is cyclic and of size >
(

d
t

)t
.

Proof. Recall that the multiplicative group of a finite field is cyclic. Since F is finite

and G is a multiplicative subgroup of F it follows that G is also cyclic. What must

be shown is the size.
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Consider the set

S =

⎧
⎨
⎩

∏

1≤a≤t

(x − a)αa ;
∑

1≤a≤t

αa ≤ d − 1, αa ≥ 0, ∀1 ≤ a ≤ t

⎫
⎬
⎭ .

The while loop ensures that the final r when the algorithm halts satisfies r >

q > 4
√

r log2 n > t . If any of the as are congruent mod p then p < l < r and

step 4 of the algorithm identifies n as composite. Therefore any two elements of S

are distinct modulo p. This implies that all elements of S are distinct in the field

F = Zp[x]/(h(x)) since the degree of an element of S is less than d the degree of

h(x).

The cardinality of S is then

(
t + d − 1

t

)
= (t + d − 1)(t + d − 2) · · · (d)

t ! >

(
d

t

)t

.

Since S is a subset of G this gives the desired result. ⊓⊔

Since d > 2t the size of G is > 2t = n2
√

r . From the previous lemma G is cyclic.

Let g(x) be a generator of G. The order of g(x) in F is then >n2
√

r . Let

Ig(x) = {m; g(x)m ≡ g(xm) mod (xr − 1, p)}.

Lemma 5.5.6. The set Ig(x) is closed under multiplication.

Proof. Let m1, m2 ∈ Ig(x). Then

g(x)m1 ≡ g(xm1) mod (xr − 1, p)

and

g(x)m2 ≡ g(xm2) mod (xr − 1, p).

Substituting xm1 for x in the second congruence we get

g(xm1)m2 ≡ g(xm1m2) mod (xr − 1, p).

From this it follows that

g(x)m1m2 ≡ g(xm1m2) mod (xr − 1, p)

and hence m1m2 ∈ Ig(x). ⊓⊔

Lemma 5.5.7. Let og be the order of g(x) in F . Let m1, m2 ∈ Ig(x). Then m1 ≡ m2

mod r implies that m1 ≡ m2 mod og .

Proof. Since m1 ≡ m2 mod r we have m2 = m1 + kr for some k ≥ 0. Since

m2 ∈ Ig(x), taking congruences in F = Zp[x]/(h(x)), we get

g(x)m2 ≡ g(xm2) mod (xr − 1, p)
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=⇒ g(x)m2 ≡ g(xm2)

=⇒ g(x)m1+kr ≡ g(xm1+kr)

=⇒ g(x)m1g(x)kr ≡ g(x)m1

=⇒ g(x)m1g(x)kr ≡ g(x)m1 .

Now g(x) not congruent to 0 implies that g(x)m1 is not congruent to 0 and hence

it has a multiplicative inverse in F . Canceling it from both sides of the congruence

above gives

g(x)kr ≡ 1.

Therefore

kr ≡ 0 mod og =⇒ m1 ≡ m2 mod og. ⊓⊔

Lemma 5.5.8. If n is composite the AKS algorithm will return COMPOSITE.

Proof. Suppose that n is composite and suppose that the algorithm returns PRIME.

We show a contradiction. The for loop ensures that for all 1 ≤ a ≤ 2
√

r log2 n,

(x − a)n ≡ (xn − a) mod (xr − 1, p).

The polynomial g(x), the generator of G, is a product of powers of t polynomials

(x − a) with 1 ≤ a ≤ t all of which satisfy the above equation. Thus

g(x)n ≡ g(xn) mod (xr − 1, p).

Therefore n ∈ Ig(x). Further, p ∈ Ig(x) and 1 ∈ Ig(x). We show that Ig(x) has too

many numbers less than og , contradicting Lemma 5.5.7.

Consider the set

E =
{
nipj ; 0 ≤ i, j ≤ [

√
r]
}
.

By Lemma 5.5.6, E ⊂ Ig(x). Since |E| = (1 + [√r])2 > r , there are two elements

ni1pj1 and ni2pj2 in E with i1 �= i2 or j1 �= j2 such that

ni1pj1 ≡ ni2pj2 mod r

by the pigeonhole principle. Then from Lemma 5.5.7,

ni1pj1 ≡ ni2pj2 mod og.

This implies

ni1−i2 ≡ pj2−j1 mod og.

Since og ≥ n2
√

r and n|i1−i2| < n2
√

r and p|j2−j1| < n2
√

r the above congruence

becomes an equality. Since p is prime this equality implies n = pk for some k ≥ 1.

However, in step 1 of the algorithm composite numbers of the form pk for k ≥ 2

have already been detected. Therefore n = p, a contradiction. ⊓⊔
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This establishes that the AKS algorithm is deterministic and completes the proof

of Theorem 5.5.1.

The final theorem calculates the time complexity of the algorithm. For further

details see [AKS].

Theorem 5.5.2. The asymptotic time complexity of the AKS algorithm is

O((log2 n)12f (log2 log2 n), where f is a polynomial.

Proof. Let Õ(t (n)) stand for O(t(n) poly(log2(t (n)))), where t (n) is some function

of n and poly means polynomial in the argument. In this notation the theorem says that

the time complexity is Õ((log2 n)12). The first step in the algorithm has asymptotic

time complexity O(log2 n)3 while the while loop makes O(log2 n)6 iterations.

The first step in the while loop, the GCD computation, takes poly(log2 log2 r)

asymptotic time. The next two steps in the while loop would take at most

r
2
2 poly (log2 log2 n) in a brute-force implementation. The next three steps take at most

poly(log2 log2 n) steps. Thus the total asymptotic time taken by the while loop is

Õ
(
r

2
2 (log2 n)6

)
= Õ

(
(log2 n)9

)

The for loop does modular computation over polynomials. If repeated squar-

ing and fast-Fourier multiplication are used then one iteration of the for loop takes

Õ(log2 n ·r log2 n) steps. Thus the for loop takes asymptotic time Õ
(
r

3
2 (log2 n)3

)
=

Õ
(
(log2 n)12

)
. ⊓⊔

As pointed out in [AKS], in practice the algorithm should actually work much

faster. This is due to the relationship to an older conjecture involving what are called

Sophie Germain primes. If both r and r−1
2

are primes then r−1
2

is a Sophie Germain

prime and r is a co-Sophie Germain prime. In this case P(r − 1) = r−1
2

. It

has been conjectured that the number of co-Sophie Germain primes is asymptotic to
Dx

(log2 x)2 , where D is the twin prime constant (see Section 5.2.1). It has been verified

for r ≤ 1010. If the conjecture is true then the while loop exits with an r of size

O((log2 n)2), taking the overall complexity to Õ(log2 n)6).

EXERCISES

5.1. Use trial division to determine which if any of the following integers are prime:

(a) 10387,

(b) 269,

(c) 46411.

5.2. Use the sieve of Eratosthenes to develop a list of primes less than 300. (Note

that this list could be used for Exercise 5.1.)

5.3. Use the modified sieve of Eratosthenes to find the integers less than 100 and

relatively prime to 891.

5.4. Apply Legendre’s formula to evaluate

(a) N655(200),
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(b) N891(100).

5.5. Let P(x) denote the number of primes p ≤ x for which p + 2 is prime. Then

by Lemma 5.2.1.4 for x ≥ 3 we have

P(x) < c
x

(ln x)2
(ln ln x)2,

where c is a constant. Show that this implies that for x ≥ 3,

P(x) ≤ k
x

(ln x)
3
2

,

where k is a constant.

5.6. Use the integral test for infinite series to show that

∞∑

r=1

1

r(ln(r + 1))
3
2

converges.

5.7. Prove that

(−1)m+1

(
n

m + 1

)
+ (−1)m

(
n − 1

m

)
= (−1)m+1

(
n − 1

m + 1

)
.

5.8. Use the Fermat probable prime test to determine whether 42671 is prime or not.

5.9. Use the Lucas test to establish that 271 is prime.

5.10. Show that if n is prime and k �= 0, 1 then the binomial coefficient
(
n
k

)
is

congruent to 0 mod n.

5.11. Use problem 5.10 to show that if p is prime, then

(x − a)p = xp − a in Zp.

5.12. Determine the bases b (if any), 0 < b < 14, for which 14 is a pseudoprime to

the base b.

5.13. Prove Lemma 5.3.1.1: If n is a pseudoprime to the base b1 and also a

pseudoprime to the base b2 then it is a pseudoprime to the base b1b2.

5.14. Show that 561 = 3 ·11 ·17 is the smallest Carmichael number. (Use the Korselt

criterion together with Corollary 5.3.1.)

5.15. Define the sequence (Sn) inductively by

S1 = 4 and Sn = S2
n−1 − 2.

Let u = 2 −
√

3, v = 2 +
√

3. Show that u + v = 4 = S1 and uv = 1. Then

use induction to show that

Sn = u2n−1 + v2n−1

.
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5.16. Let Fn = 22n + 1 be the nth Fermat number. Show that
(

3
Fn

)
= −1, where(

3
Fn

)
is the Jacobi symbol.

5.17. Show that if p, q are primes and e, d are positive integers with (e, (p − 1)

(q − 1)) = 1 and ed ≡ 1 mod (p − 1)(q − 1) then aed ≡ a mod pq for

any integer a. (This is the basis of the decryption function used in the RSA

algorithm.)

5.18. The following table gives the approximate statistical frequency of occurrence

of letters in the English language. The passage below is encrypted with a

simple permutation cipher without punctuation. Use a frequency analysis to

try to decode it.

letter frequency letter frequency letter frequency

A .082 B .015 C .028

D .043 E .127 F .022

G .020 H .061 I 070

J .002 K .008 L .040

M .024 N .067 O .075

P .019 Q .001 R .060

S .063 T .091 U .028

V .010 W .023 X .001

Y .020 Z .001

ZKIRNVMFNYVIRHZKLHRGREVRMGVTVIDSR

XSSZHZHGHLMOBKLHRGREVWRERHLIHLMVZ

MWRGHVOUKIRNVMFNYVIHKOZBZXIFXRZOI

LOVRMMFNYVIGSVLIBZMWZIVGSVYZHRHUL

IGHSHVMLGVHGSVIVZIVRMURMRGVOBNZMB

KIRNVHZMWGSVBHVIEVZHYFROWRMTYOLXP

HULIZOOGSVKLHRGREVRMGVTVIH

5.19. Encrypt the message NO MORE WAR using an affine cipher with single-letter

keys a = 7, b = 5.

5.20. Encrypt the message NO MORE WAR using an affine cipher on two vectors

of letters and encrypting keys

A =
(

5 2

1 1

)
, B = (3, 7).

5.21. What is the decryption algorithm for the affine cipher given in the previous

problem.

5.22. How many different affine enciphering transformations are there on single

letters with an N -letter alphabet.

5.23. If we use an affine cipher on single letters with n → an + b show that there is

always a unique fixed letter. (This can be used in cryptanalysis.)
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5.24. Let N ∈ N with N ≥ 2, and let n → an+b with (a, N) = 1 be an affine cipher

on an N -letter alphabet. Show that if any two letters n1 → m1, n2 → m2 with

(n1 − n2, N) = 1 are guessed, then the code can be broken.
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Primes and Algebraic Number Theory

6.1 Algebraic Number Theory

The final major area within the theory of numbers is algebraic number theory. In this

last chapter we present an overview of the major ideas in this discipline. In line with

the theme of these notes we will concentrate on primes and prime decompositions.

Algebraic number theory is roughly the study of algebraic number fields, which

are finite extensions of the rationals, and their rings of algebraic integers. We will

define each of these concepts formally in Section 6.3. Algebraic number theory

lies between pure abstract algebra and (elementary) number theory. It originated in

methods to solve classical problems in number theory, such as proving Fermat’s big

theorem, but evolved into an independent discipline. It is a true melding of algebra

and number theory. Whereas in many places in these notes we used abstract algebra to

simplify a proof or clarify an idea in elementary number theory, in algebraic number

theory the algebraic concepts are crucial to what is being studied. In fact, the basic

terminology and format of modern abstract algebra comes from algebraic number

theory. While the concepts of rings and fields were implicit in the work of Galois

and Abel, it was Kronecker and Dedekind, working in number theory, who formally

defined them in the modern manner.

The starting point for algebraic number theory was the observation, first made

by Gauss, that unique factorization into primes is not unique to the integers. That is,

there are other algebraic systems that also permit such unique factorizations. Gauss, in

attempting to extend the quadratic reciprocity law, investigated the complex integers

Z[i] = {a + bi; a, b ∈ Z}. They are now called the Gaussian integers in his honor.

He discovered that he could define divisibility and primes in Z[i] and that there is

a division algorithm analogous to the division algorithm in the ordinary integers Z.

From this he derived that in Z[i] there is unique factorization into primes, of course,

primes in Z[i]. We will discuss the Gaussian integers in detail in Sections 6.2 and 6.3.

Kummer, who studied with Gauss, extended these investigations to complex

integers, which was Kummer’s terminology, of the form
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a0 + a1ω + · · · + ap−1ω
p−1,

where ai ∈ Z and ω is a primitive pth root of unity where p is a prime. That is, ω is

a root of the polynomial equation xp − 1 = 0 with x �= 1. His original motivation

was an attempt to prove Fermat’s big theorem for prime exponents. Kummer’s idea

was to take xp + yp and factor it into

xp + yp = (x + y)(x + ωy) · · · (x + ωp−1y).

Kummer defined divisibility and primes for the sets of complex integers. However,

it became clear that for some primes p, the corresponding sets of complex integers

Z[ω] did not satisfy unique factorization. We will give an example to show this in

the next section. To alleviate this problem, the lack of unique factorization, Kummer

adjoined to his sets of complex integers certain other complex numbers, which he

called ideal numbers. By allowing these ideal numbers, there was unique factor-

ization. This allowed him to actually settle many cases of Fermat’s big theorem for

prime exponents.

Dedekind, another student of Gauss, extended both Gauss’s work on the Gaussian

integers and Kummer’s ideal numbers. Dedekind introduced the idea of an algebraic

integer, which is defined as a complex number that is a root of a monic polynomial

with integral coefficients. That is, θ ∈ C is an algebraic integer if p(θ) = 0, where

p(x) = xn + an−1x
n−1 + · · · + a0, ai ∈ Z.

Each integer m is, of course, an algebraic integer satisfying the polynomial p(x) =
x−m. In this context the ordinary integers are called the rational integers. Dedekind

introduced the definition of a ring and showed that the set of algebraic integers forms

a ring. Further, he showed that the algebraic integers within each algebraic number

field form a ring within that number field. We will discuss algebraic integers in

Section 6.4.

To handle unique factorization, Dedekind worked not with the algebraic integers

themselves, but with special subrings of algebraic integers that he called ideals in

honor of Kummer’s ideal numbers. He then showed that he could define divisibility

and primes for ideals and then that there was unique factorization of ideals. The

concept of an ideal in a ring is now fundamental in abstract algebra. We will dis-

cuss general ideals in the next section and then ideals in algebraic number rings in

Section 6.5.

Finally, Kronecker, a student of Kummer, developed a general theory of fields and

algebraic numbers over a field. By considering polynomial rings over a general field

he showed, given an irreducible polynomial, that it was always possible to construct

a field in which this polynomial has a root. This is done by adjoining the root to the

original field. This is now known as Kronecker’s theorem. It was implied in the

work ofAbel and Galois done earlier, but Kronecker’s theorem is now the cornerstone

of Galois theory.

We begin our overview of algebraic number theory by looking at unique

factorization.
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6.2 Unique Factorization Domains

The true beginning point for the theory of numbers was the fundamental theorem of

arithmetic, which states that any rational integer can be factored into primes and that

this factorization is unique up to ordering and unit factors. Algebraic number theory

begins with the observation that this property is not unique to Z but actually holds

in many other integral domains. We start by reviewing some basic concepts from

abstract algebra that were introduced in Chapter 2.

Recall that an integral domain R is a commutative ring R with identity and with

no zero divisors. That is, R has the property that if ab = 0 with a, b ∈ R then either

a = 0 or b = 0. It is clear that the integers Z form an integral domain. A unit in

an integral domain is an element u with a multiplicative inverse, that is, there exists

an element u1, which we denote by u−1, such that u · u−1 = 1. It is easy to show

that the product of two units is again a unit and hence the set of units in an integral

domain forms a group under multiplication (see Chapter 2 and the exercises). A field

F is an integral domain in which every nonzero element is a unit. The rationals Q,

the reals R, and the complex numbers C all form fields.

Two elements r1, r2 in an integral domain R are associates if there exists a unit

u such that r1 = ur2. We now extend to any integral domain the ideas of divisibility

and primes.

Definition 6.2.1. Let R be an integral domain. If r1, r2 ∈ R then r1 divides r2,

denoted by r1|r2, if there exists an r3 ∈ R such that r2 = r1r3. In analogy with the

integers, the elements r1, r3 are factors of r2 and r1r3 is a factorization of r2. An

element r ∈ R is a prime if r is not a unit and whenever r = r1r2 one factor must be

a unit.

We now use the statement of the fundamental theorem of arithmetic to define a

unique factorization domain.

Definition 6.2.2. An integral domain R is a unique factorization domain or UFD

if for each r ∈ R, either r = 0, r is a unit, or r has a factorization into primes that

is unique up to ordering and unit factors. This means that if

r = p1 · · · pm = q1 · · · qk,

where the pi and qj are primes, then m = k and each pi is an associate of some qj

and, conversely, each qi is an associate of some pj .

Hence in this more general algebraic language the fundamental theorem of arith-

metic states that the integers Z are a unique factorization domain. However, they

are far from being the only one. Gauss’s original observation was that the complex

integers are also a UFD. We will look at these in the next section. As a first example

we show that the ring of polynomials over any field F (which we define below) forms

a UFD.
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If F is a field and n is a nonnegative integer, then a polynomial of degree n over

F is a formal sum of the form

P(x) = a0 + a1x + · · · + anx
n (6.2.1)

with ai ∈ F for i = 0, . . . , n, an �= 0, and x an indeterminate. A polynomial P(x)

over F is either a polynomial of some degree or the expression P(x) = 0, which

is called the zero polynomial and has no degree. We denote the degree of P(x)

by deg P(x). A polynomial of zero degree has the form P(x) = a0 and is called a

constant polynomial and can be identified with the corresponding element of F . The

elements ai ∈ F are called the coefficients of P(x); an is the leading coefficient.

If an = 1, P(x) is called a monic polynomial. Two nonzero polynomials are equal

if and only if they have the same degree and the same coefficients. A polynomial

of degree 1 is called a linear polynomial, while one of degree two is a quadratic

polynomial.

We denote by F [x] the set of all polynomials over F and we will show that

F [x] becomes a unique factorization domain. We first define addition, subtraction,

and multiplication on F [x] by algebraic manipulation. That is, suppose P(x) =
a0 + a1x + · · · + anx

n, Q(x) = b0 + b1x + · · · + bmxm. Then

P(x) ± Q(x) = (a0 ± b0) + (a1 ± b1)x + · · · ,

that is, the coefficient of xi in P(x) ± Q(x) is ai ± bi , where ai = 0 for i > n and

bj = 0 for j > m. Multiplication is given by

P(x)Q(x) = (a0b0)+(a1b0 +a0b1)x+(a0b2 +a1b1 +a2b0)x
2 +· · ·+(anbm)xn+m,

that is, the coefficient of xi in P(x)Q(x) is (a0bi + a1bi−1 + · · · + aib0).

Example 6.2.1. Let P(x) = 3x2 + 4x − 6 and Q(x) = 2x + 7 be in Q[x]. Then

P(x) + Q(x) = 3x2 + 6x + 1

and

P(x)Q(x) = (3x2 + 4x − 6)(2x + 7) = 6x3 + 29x2 + 16x − 42.

From the definitions the following degree relationships are clear. The proofs are

in the exercises.

Lemma 6.2.1. Let P(x) �= 0, Q(x) �= 0 ∈ F [x]. Then

(1) deg P(x)Q(x) = deg P(x) + deg Q(x).

(2) deg(P (x) ± Q(x)) ≤ max(deg P(x), deg Q(x)) if P(x) ± Q(x) �= 0.

We next obtain the following.

Theorem 6.2.1. IfF is a field, thenF [x] forms an integral domain. F can be naturally

embedded into F [x] by identifying each element of F with the corresponding constant

polynomial. The only units in F [x] are the nonzero elements of F .
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Proof. Verification of the basic ring properties is solely computational and is left to

the exercises. Since deg P(x)Q(x) = deg P(x)+deg Q(x), it follows that if neither

P(x) �= 0 nor Q(x) �= 0, then P(x)Q(x) �= 0 and therefore F [x] is an integral

domain.

If G(x) is a unit in F [x], then there exists an H(x) ∈ F [x] with G(x)H(x) = 1.

From the degrees we have deg G(x) + deg H(x) = 0 and since deg G(x) ≥ 0,

deg H(x) ≥ 0. This is possible only if deg G(x) = deg H(x) = 0. Therefore

G(x) ∈ F . ⊓⊔

Now that we have F [x] as an integral domain we proceed to show that there is

unique factorization into primes. We first repeat the definition of a prime in F [x].
If 0 �= f (x) has no nontrivial, nonunit factors (it cannot be factorized into polynomials

of lower degree) then f (x) is a prime in F [x] or a prime polynomial. A prime

polynomial is also called an irreducible polynomial. Clearly, if deg g(x) = 1 then

g(x) is irreducible.

The fact that F [x] is a UFD follows from the division algorithm for polynomials,

which is entirely analogous to the division algorithm for integers.

Lemma 6.2.2 (division algorithm in F [x]). If 0 �= f (x), 0 �= g(x) ∈ F [x], then

there exist unique polynomials q(x), r(x) ∈ F [x] such that f (x) = q(x)g(x)+r(x),

where r(x) = 0 or deg r(x) < deg g(x). (The polynomials q(x) and r(x) are called,

respectively, the quotient and remainder.)

This theorem is essentially long division of polynomials. A formal proof is based

on induction on the degree of g(x). We omit this but give some examples from Q[x].

Example 6.2.2.

(a) Let f (x) = 3x4 − 6x2 + 8x − 6, g(x) = 2x2 + 4. Then

3x4 − 6x2 + 8x − 6

2x2 + 4
= 3

2
x2 − 6 with remainder 8x + 18.

Thus here q(x) = 3
2
x2 − 6, r(x) = 8x + 18.

(b) Let f (x) = 2x5 + 2x4 + 6x3 + 10x2 + 4x, g(x) = x2 + x. Then

2x5 + 2x4 + 6x3 + 10x2 + 4x

x2 + x
= 2x3 + 6x + 4.

Thus here q(x) = 2x3 + 6x + 4 and r(x) = 0.

Using the division algorithm, the development of unique factorization follows in

exactly the same manner as in Z. We need the idea of a greatest common divisor,

or gcd, and the lemmas following the definition.

Definition 6.2.3.

(1) If f (x), g(x) ∈ F [x] with g(x) �= 0 then a polynomial d(x) ∈ F [x] is a

greatest common divisor, or gcd, of f (x), g(x) if d(x) is monic, d(x) divides both
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g(x) and f (x), and if d1(x) divides both g(x) and f (x), then d1(x) divides d(x). We

write d(x) = (g(x), f (x)). If (f (x), g(x)) = 1, then we say that f (x) and g(x) are

relatively prime. If f (x) = g(x) = 0 then d(x) = 0 is the gcd of f (x) and g(x).

(2)An expression of the form f (x)h(x)+g(x)k(x) is called a linear combination

of f (x), g(x).

Lemma 6.2.2. Given f (x), g(x) ∈ F [x] with g(x) �= 0 then a gcd exists, is unique,

and equals the monic polynomial of least degree that is expressible as a linear

combination of f (x), g(x).

Finding the gcd of two polynomials can be done in the same manner as finding the

gcd of two integers. That is, we use the Euclidean algorithm. Recall from Chapter 2

that this is done in the following manner. Suppose 0 �= f (x), 0 �= g(x) ∈ F [x] with

deg f (x) ≥ deg g(x). Use repeated applications of the division algorithm to obtain

the sequence:

f (x) = q(x)g(x) + r(x),

g(x) = q1(x)r(x) + r1(x),

r(x) = q2(x)r1(x) + r2(x),

. . .

. . .

rk−1(x) = qk+1(x)rk(x).

Since each division reduces the degree, and the degree is finite, this process will

ultimately end. Let rk(x) be the last nonzero remainder polynomial and suppose c

is the leading coefficient of rk(x). Then c−1rk(x) is the gcd. If there does not exist

a last nonzero remainder polynomial then r(x) = 0 and g(x) is a divisor of f (x).

In this case (f (x), g(x)) = c−1g(x), where c is the leading coefficient of g(x). We

give an example.

Example 6.2.3. In Q[x] find the gcd of the polynomials

f (x) = x3 − 1 and g(x) = x2 − 2x + 1

and express it as a linear combination of the two.

Using the Euclidean algorithm we obtain

x3 − 1 = (x2 − 2x + 1)(x + 2) + (3x − 3),

x2 − 2x + 1 = (3x − 3)

(
1

3
x − 1

3

)
.

Therefore the last nonzero remainder is 3x − 3. Since the gcd must be a monic

polynomial we divide through by 3 and hence the gcd is x − 1.
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Working backwards we have

3x − 3 = (x3 − 1) − (x2 − 2x + 1)(x + 2),

so

x − 1 = 1

3
(x3 − 1) − 1

3
(x2 − 2x + 1)(x + 2),

expressing the gcd as a linear combination of the two given polynomials.

The next component is Euclid’s lemma applied to polynomial rings.

Lemma 6.2.3 (Euclid’s lemma). If p(x) is an irreducible polynomial and p(x)

divides f (x)g(x), then p(x) divides f (x) or p(x) divides g(x).

Proof. The proof is identical to the proof in Z. Suppose p(x) does not divide f (x).

Then since p(x) is irreducible, p(x) and f (x) must be relatively prime. Therefore,

there exist h(x), k(x) such that

f (x)h(x) + p(x)k(x) = 1.

Multiply through by g(x) to obtain

g(x)f (x)h(x) + g(x)p(x)k(x) = g(x).

Now, p(x) divides each term on the left-hand side since p(x)|g(x)f (x) and therefore

p(x)|g(x). ⊓⊔

Theorem 6.2.2. If 0 �= f (x) ∈ F [x] and f (x) is nonconstant, then f (x) has a

factorization into irreducible polynomials that is unique up to ordering and unit

factors. In other words, F [x] is a UFD.

The proof is almost identical to the proof for Z, and we sketch it. We outlined this

sketch in the exercises to Chapter 2. First we use induction on the degree of f (x) to

obtain a prime factorization. If deg f (x) = 1, then f (x) is irreducible, so suppose

deg f (x) = n > 1. If f (x) is irreducible, then it has such a prime factorization. If

f (x) is not irreducible, then f (x) = h(x)g(x) with deg g(x) < n and deg h(x) < n.

By the inductive hypothesis, both g(x) and h(x) have prime factorizations, and so

f (x) does as well.

Now suppose that f (x) has two prime factorizations

f (x) = p1(x)n1 · · · pk(x)nk = q1(x)m1 · · · qt (x)mt ,

where pi(x), i = 1, . . . , n, qj (x), j = 1, . . . , t , are prime polynomials and

the Pi(x) and also the qj (x) are pairwise relatively prime. Consider pi(x). Then

pi(x)|q1(x)m1 · · · qt (x)mt , and hence from Euclid’s lemma, pi(x)|qj (x) for some j .

Since both are irreducible, pi(x) = cqj (x) for some unit c. By repeated application

of this argument we get that ni = mj . Thus we have the same primes with the same

multiplicities but perhaps unit factors, proving the theorem.
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A polynomial P(x) ∈ F [x] can also be considered as a function

P : F → F

via the substitution process. If P(x) = a0+a1x+· · ·+anx
n ∈ F [x] and t ∈ F , then

P(t) = a0 + a1t + · · · + ant
n ∈ F

since F is closed under all the operations used in the polynomial. If r ∈ F, P (x) ∈
F [x], and P(r) = 0 under the substitution process, we say that r is a root of P(x)

or a zero of P(x). Synonymously we say that r satisfies P(x).

Before closing this section we further review some properties of roots of polyno-

mials that will be essential when we deal with algebraic number fields. First we have

an important divisibility property.

Lemma 6.2.4. If P(x) �= 0 and c is a root of P(x), then (x − c) divides P(x), that

is, P(x) = (x − c)Q(x) with deg Q(x) = deg P(x) − 1.

Proof. Suppose P(c) = 0. Then from the division algorithm P(x) = (x −c)Q(x)+
r(x), where r(x) = 0 or r(x) = f ∈ F , since deg r(x) < deg(x −c) = 1. Therefore

P(x) = (x − c)Q(x) + f.

Substituting, we have P(c) = 0 + f = 0, and so f = 0. Hence P(x) =
(x − c)Q(x). ⊓⊔

Corollary 6.2.1. An irreducible polynomial of degree greater than one over a field

F has no roots in F .

From this we obtain the following result, which bounds the number of roots of a

polynomial over a field.

Lemma 6.2.5. A polynomial of degree n in F [x] can have at most n distinct roots.

Proof. Suppose P(x) has degree n and suppose c1, . . . , cn are n distinct roots. From

repeated application of Lemma 6.2.4,

P(x) = k(x − c1) · · · (x − cn),

where k ∈ F . Let c be a root of P(x). Then

P(c) = 0 = k(c − c1) · · · (c − cn).

Since a field F has no zero divisors, one of these terms must be zero: c − ci = 0 for

some i, and hence c = ci . ⊓⊔
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Besides having a maximum ofn roots (with n the degree), the roots of a polynomial

are uniquely determined by the polynomial. Suppose P(x) has degree n and distinct

roots c1, . . . , ck with k ≤ n. Then from the unique factorization in F [x], we have

P(x) = (x − c1)
m1 · · · (x − ck)

mkQ1(x) · · · Qt (x),

whereQi(x), i = 1, . . . , t , are irreducible and of degree greater than 1. The exponents

mi are called the multiplicities of the roots ci . Let c be a root. Then as above,

(c − c1)
m1 · · · (c − ck)

mkQ1(c) · · · Qt (c) = 0.

NowQi(c) �= 0 for i = 1, . . . , t sinceQi(x) are irreducible of degree> 1. Therefore,

(c − ci) = 0 for some i, and hence c = ci .

Finally, the famous fundamental theorem of algebra (see [FR 2]) says that any

nonconstant complex polynomial must have a root. As a consequence of this and the

divisibility property it follows that a complex polynomial of degree n must have n

roots, counting multiplicities.

Theorem 6.2.3 (fundamental theorem of algebra). Ifp(x) is a nonconstant complex

polynomial, p(x) ∈ C[x], the p(x) has a complex root.

6.2.1 Euclidean Domains and the Gaussian Integers

In analyzing the proof of unique factorization in both Z and F [x] it is clear that it

depends primarily on the division algorithm. In Z the division algorithm depends on

the fact that the positive integers can be ordered, and in F [x] on the fact the degrees of

nonzero polynomials are nonnegative integers and hence can be ordered. This basic

idea can be generalized in the following way.

Definition 6.2.1.1. Let R be an integral domain. Then R is a Euclidean domain if

there exists a function N from R⋆ = R\{0} to the nonnegative integers such that

(1) N(r1) ≤ N(r1r2) for any r1, r2 ∈ R⋆;
(2) for all r1, r2 ∈ R with r2 �= 0, there exists q, r ∈ R such that

r2 = qr1 + r,

where either r = 0 or N(r) < N(r1).

The function N is called a Euclidean norm on R.

Therefore Euclidean domains are precisely those integral domains that allow

division algorithms. In the integers Z define N(z) = |z|. Then N is a Euclidean norm

on Z and hence Z is a Euclidean domain. On F [x] define N(p(x)) = deg(p(x)) if

p(x) �= 0. Then N is also a Euclidean norm on F [x], so that F [x] is also a Euclidean

domain. In any Euclidean domain we can mimic the proofs of unique factorization

in both Z and F [x] to obtain the following.

Theorem 6.2.1.1. Every Euclidean domain is a unique factorization domain.
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Before proving this theorem we must develop some results on the number theory

of general Euclidean domains. First some properties of the norm.

Lemma 6.2.1.1. If R is a Euclidean domain, then

(a) N(1) is minimal among {N(r); r ∈ R⋆};
(b) N(u) = N(1) if and only if u is a unit;
(c) N(a) = N(b) for a, b ∈ R⋆ if a, b are associates;
(d) N(a) < N(ab) unless b is a unit.

Proof.

(a) From property (1) of Euclidean norms we have

N(1) ≤ N(1 · r) = N(r) for any r ∈ R⋆.

(b) Suppose u is a unit. Then there exists u−1 with u · u−1 = 1. Then

N(u) ≤ N(u · u−1) = N(1).

From the minimality of N(1) it follows that N(u) = N(1).

Conversely, suppose N(u) = N(1). Apply the division algorithm to get

1 = qu + r.

If r �= 0 then N(r) < N(u) = N(1), contradicting the minimality of N(1). Therefore

r = 0 and 1 = qu. Then u has a multiplicative inverse and hence is a unit.

(c) Suppose a, b ∈ R⋆ are associates. Then a = ub with u a unit. Then

N(b) ≤ N(ub) = N(a).

On the other hand, b = u−1a so

N(a) ≤ N(u−1a) = N(b).

Since N(a) ≤ N(b) and N(b) ≤ N(a) it follows that N(a) = N(b).

(d) Suppose N(a) = N(ab). Apply the division algorithm,

a = q(ab) + r,

where r = 0 or N(r) < N(ab). If r �= 0 then

r = a − qab = a(1 − qb) =⇒ N(ab) = N(a) ≤ N(a(1 − qb)) = N(r),

contradicting that N(r) < N(ab). Hence r = 0 and a = q(ab) = (qb)a. Then

a = (qb)a = 1 · a =⇒ qb = 1

since there are no zero divisors in an integral domain. Hence b is a unit. Since

N(a) ≤ N(ab) it follows that if b is not a unit we must have N(a) < N(ab). ⊓⊔
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We next need the concept of a greatest common divisor. We use GCD for the

term and write that the GCD of α and β is gcd(α, β).

Definition 6.2.1.2. Let R be a Euclidean domain and let r1, r2 ∈ R. If r2 �= 0 then

d ∈ R is a gcd for r1, r2 if d|r1 and d|r2, and if d1|r1 and d1|r2, then d|d1. If r1 =
r2 = 0, then d = 0 is the gcd of r1, r2.

In Z GCDs are unique if we choose d to be positive. In general they are unique

only up to associates.

Lemma 6.2.1.2. Any two GCDs of r1, r2 ∈ R are associates. Further, an associate

of a GCD of r1, r2 is also a GCD.

The proof is straightforward and we leave it to the exercises.

Lemma 6.2.1.3. Suppose R is a Euclidean domain and r1, r2 ∈ R with r2 �= 0. Then

a gcd d for r1, r2 exists and is expressible as a linear combination with minimal norm.

That is, there exist x, y ∈ R with

d = r1x + r2y

and N(d) ≤ N(d1) for any other linear combination d1 = r1u + r2v of r1, r2.

Further, if r1 �= 0, r2 �= 0 then a gcd can be found by the Euclidean algorithm

exactly as in Z and F [x].

The proof of this lemma, except for uniqueness, which from Lemma 6.2.1.2 is

true only up to associates, is identical to the proof in Z and we leave it to the exercises

(see Chapter 2 also).

Unique factorization will follow from the analogue of Euclid’s lemma.

Lemma 6.2.1.4 (Euclid’s lemma). Suppose R is a Euclidean domain and r ∈ R is

a prime. If r|r1r2 then r|r1 or r|r2.

Proof. Suppose r|r1r2. If r does not divide r1 then the gcd of r and r1 must be a unit

u since the only factors of r are units and associates of r . Then from Lemma 6.2.1.2,

1 is also a gcd since 1 is an associate of any unit. Therefore there exist x, y ∈ R with

1 = r1x + ry.

Multiplying through by r2 we obtain

r2 = (r1r2)x + r2ry.

Since r|r1r2 and r|r it follows that r|r2. ⊓⊔

We can now prove Theorem 6.2.1.1. Suppose that R is a Euclidean domain. We

must show that R is a UFD. First let r ∈ R with r �= 0. To show that r either is a

unit or has a prime factorization we use induction on the norm. If N(r) is minimal

then N(r) = N(1) and r is a unit. Suppose that N(r) is the minimal norm greater



264 6 Primes and Algebraic Number Theory

than N(1). We claim that r must be a prime. If r = r1r2 and neither r1 nor r2 were

units from Lemma 6.2.1.1 then both N(r1) < N(r), N(r2) < N(r), contradicting

the minimality of N(r) among nonunits. Therefore r is a prime and the beginning of

the induction is correct. Assume that if N(r) < k then r has a prime factorization and

suppose then that N(r) = k. If r is prime then it certainly has a prime factorization.

If r is not prime then r = r1r2 with both r1, r2 nonunits. Then N(r1) < N(r)

and N(r2) < N(r) and from the inductive hypothesis both r1 and r2 have prime

factorizations and hence so does r .

The uniqueness of the factorization, at least up to units and ordering, follows

almost identically to what was done in Z. Notice that if r, s are both primes in R and

r|s then r, s are associates. Then, as in Z, assume that r has two prime factorizations

r = r1 · · · rk = s1 · · · st

with r1, . . . , rk, s1 . . . , st all primes in R. We now apply Euclid’s lemma repeatedly

to get that each ri pairs off with an sj as associates and that k = t . We leave the

details to the exercises.

We now apply these ideas to the Gaussian integers

Z[i] = {a + bi; a, b ∈ Z}.

It was first observed by Gauss that this set permits unique factorization. To show this

we need a Euclidean norm on Z[i].

Definition 6.2.1.3. If z = a + bi ∈ Z[i] then its norm N(z) is defined by

N(a + bi) = a2 + b2.

The basic properties of this norm follow directly from the definition (see

exercises).

Lemma 6.2.1.5. If α, β ∈ Z[i], then

(1) N(α) is an integer for all α ∈ Z[i],
(2) N(α) ≥ 0 for all α ∈ Z[i],
(3) N(α) = 0 if and only if α = 0,

(4) N(α) ≥ 1 for all α �= 0,

(5) N(αβ) = N(α)N(β), that is, the norm is multiplicative.

From the multiplicativity of the norm we have the following concerning primes

and units in Z[i].

Lemma 6.2.1.6.

(1) u ∈ Z[i] is a unit if and only if N(u) = 1.

(2) If π ∈ Z[i] and N(π) = p, where p is an ordinary prime in Z then π is a

prime in Z[i].
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Proof. Certainly u is a unit if and only if N(u) = N(1). But in Z[i] we have

N(1) = 1, so the first part follows.

Suppose next that π ∈ Z[i] with N(π) = p for some p ∈ Z. Suppose that

π = π1π2. From the multiplicativity of the norm, we have

N(π) = p = N(π1)N(π2).

Since each norm is a positive ordinary integer and p is a prime it follows that either

N(π1) = 1 or N(π2) = 1. Hence either π1 or π2 is a unit. Therefore π is a prime

in Z[i]. ⊓⊔

Armed with this norm we can show that Z[i] is a Euclidean domain.

Theorem 6.2.1.3. The Gaussian integers Z[i] form a Euclidean domain.

Proof. That Z[i] forms a commutative ring with identity can be verified directly and

easily. If αβ = 0 then N(α)N(β) = 0 and since there are no zero divisors in Z we

must have N(α) = 0 or N(β) = 0. But then either α = 0 or β = 0 and hence Z[i] is

an integral domain. To complete the proof we show that the norm N is a Euclidean

norm.

From the multiplicativity of the norm, we have that if α, β �= 0,

N(αβ) = N(α)N(β) ≥ N(α) since N(β) ≥ 1.

Therefore property (1) of Euclidean norms is satisfied. We must now show that the

division algorithm holds.

Let α = a + bi and β = c + di be Gaussian integers. Recall that for a nonzero

complex number z = x + iy its inverse is

1

z
= z

|z|2 = x − iy

x2 + y2
.

Therefore as a complex number,

α

β
= α

β

|β|2 = (a + bi)
c − di

c2 + d2
= ac + bd

c2 + d2
+ ac − bd

c2 + d2
i = u + iv.

Now since a, b, c, d are integers, u, v must be rationals. The set

{u + iv; u, v ∈ Q}

is called the Gaussian rationals.

If u, v ∈ Z then u + iv ∈ Z[i], α = qβ with q = u + iv and we are done.

Otherwise choose ordinary integers m, n satisfying |u−m| ≤ 1
2

and |v −n| ≤ 1
2

and

let q = m + in. Then q ∈ Z[i]. Let r = α − qβ. We must show that N(r) < N(β).
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Working with complex absolute value we get

|r| = |α − qβ| = |β|
∣∣∣∣
α

β
− q

∣∣∣∣ .

Now

∣∣∣∣
α

β
− q

∣∣∣∣ = |(u−m)+ i(v −n)| =
√

(u − m)2 + (v − n)2 ≤

√(
1

2

)2

+
(

1

2

)2

< 1.

Therefore

|r| < |β| =⇒ |r|2 < |β|2 =⇒ N(r) < N(β),

completing the proof. ⊓⊔

Since Z[i] forms a Euclidean domain it follows from our previous results that

Z[i] must be a UFD.

Corollary 6.2.1.1. The Gaussian integers are a UFD.

Since we will now be dealing with many kinds of integers we will refer to the

ordinary integers Z as the rational integers and the ordinary primes p as the rational

primes. It is clear that Z can be embedded into Z[i]. However, not every rational

prime is also prime in Z[i]. The primes in Z[i] are called the Gaussian primes. For

example, we can show that both 1 + i and 1 − i are Gaussian primes, that is, primes

in Z[i]. However, (1 + i)(1 − i) = 2 so that the rational prime 2 is not a prime in

Z[i]. Using the multiplicativity of the Euclidean norm in Z[i] we can describe all the

units and primes in Z[i].

Theorem 6.2.1.4.

(1) The only units in Z[i] are ±1, ±i.

(2) Suppose π is a Gaussian prime. Then π is either

(a) a positive rational prime p ≡ 3 mod 4 or an associate of such a rational

prime,

(b) 1 + i or an associate of 1 + i,

(c) a + bi or a − bi, where a > 0, b > 0, a is even, and N(π) = a2 + b2 = p

with p a rational prime congruent to 1 mod 4 or an associate of a + bi or

a − bi.

Proof.

(1) Suppose u = x + iy ∈ Z[i] is a unit. Then from Lemma 6.2.1.6 we have

N(u) = x2 + y2 = 1, implying that (x, y) = (0, ±1) or (x, y) = (±1, 0). Hence

u = ±1 or u = ±i.

(2) Now suppose that π is a Gaussian prime. Since N(π) = ππ and π ∈ Z[i] it

follows that π |N(π). Since N(π) is a rational integer, N(π) = p1 · · · pk , where the

pis are rational primes. By Euclid’s lemma π |pi for some pi and hence a Gaussian

prime must divide at least one rational prime. On the other hand, suppose π |p and
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π |q, where p, q are different primes. Then (p, q) = 1 and hence there exist x, y ∈ Z
such that 1 = px + qy. It follows that π |1, a contradiction. Therefore a Gaussian

prime divides one and only one rational prime.

Let p be the rational prime that π divides. Then N(π)|N(p) = p2. Since N(π)

is a rational integer it follows that N(π) = p or N(π) = p2. If π = a + bi then

a2 + b2 = p or a2 + b2 = p2.

If p = 2 then a2 + b2 = 2 or a2 + b2 = 4. It follows that π = ±2, ±2i or

π = 1 + i or an associate of 1 + i. Since (1 + i)(1 − i) = 2 and neither 1 + i nor

1 − i is a unit it follows that neither 2 nor any of its associates are primes. Then

π = 1 + i or an associate of 1 + i. To see that 1 + i is prime suppose 1 + i = αβ.

Then N(1 + i) = 2 = N(α)N(β). It follows that either N(α) = 1 or N(β) = 1 and

either α or β is a unit.

If p �= 2 then either p ≡ 3 mod 4 or p ≡ 1 mod 4. Suppose first that p ≡ 3

mod 4. Then a2 + b2 = p would imply from Fermat’s two-square theorem (see

Chapter 2) that p ≡ 1 mod 4. Therefore from the remarks above, a2 + b2 = p2 and

N(π) = N(p). Since π |p we have π = αp with α ∈ Z[i]. From N(π) = N(p) we

get that N(α) = 1 and α is a unit. Therefore π and p are associates. Hence in this

case π is an associate of a rational prime congruent to 3 mod 4.

Finally suppose p ≡ 1 mod 4. From the remarks above either N(π) = p or

N(π) = p2. If N(π) = p2 then a2 + b2 = p2. Since p ≡ 1 mod 4, from Fermat’s

two-square theorem there exist m, n ∈ Z with m2 + n2 = p. Let u = m + in. Then

the norm N(u) = p. Since p is a rational prime, it follows from Lemma 6.2.1.6

that u is a Gaussian prime. Similarly, its conjugate u is also a Gaussian prime. Now

uu = p2 = N(π). Since π |N(π) it follows that π |uu, and from Euclid’s lemma

either π |u or π |u. If π |u they are associates since both are primes. But this is a

contradiction since N(π) �= N(u). The same is true if π |u. It follows that if p ≡ 1

mod 4 then N(π) �= p2. Therefore in this case N(π) = p = a2 + b2. An associate

of π has both a, b > 0 (see the exercises). Further, since a2 + b2 = p one of a or

b must be even. If a is odd then b is even, and then iπ is an associate of π with a

even, completing the proof. ⊓⊔

In the proof above we used Fermat’s two-square theorem. Gauss’s original moti-

vation in investigating the complex integers was to prove results in elementary number

theory. As an application of unique factorization in Z[i] we give another proof of the

Fermat two-square theorem in the following form.

Theorem 6.2.1.5. Let p be an odd rational prime. Then p = a2 + b2 for a, b ∈ Z if

and only if p ≡ 1 mod 4.

Proof. Suppose first that p = a2 + b2. Since p is odd one of a, b is even and the

other is odd. Suppose a = 2n, b = 2m + 1. Then

p = a2 + b2 = (2n)2 + (2m + 1)2 = 4n2 + 4m2 + 4m + 1 = 4(n2 + m2 + m) + 1

and therefore p ≡ 1 mod 4.

Conversely, suppose that p ≡ 1 mod 4. From Chapter 2 we then have that −1 is a

quadratic residue mod p, that is, there exists an integer x such that x2 +1 ≡ 0 mod p.
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Then p|x2 + 1 = (x + i)(x − i). If p were prime (we cannot use the characterization

of primes in Z[i] since we used the two-square theorem in that proof), then p|(x + i)

or p|(x − i). If p|(x + i) then x + i = p(a + bi) for some integers a, b. This would

imply that pb = 1, which is impossible. Hence p cannot divide x + i. An identical

argument shows that p cannot divide x − i. Therefore p cannot be a Gaussian prime.

Since p is not a Guassian prime we have a factorization p = (a + bi)(c + di),

where neither factor is a unit. Then

N(p) = p2 = (a2 + b2)(c2 + d2).

Since p is prime this implies that a2 + b2 = p or a2 + b2 = p2. If a2 + b2 = p2

then c2 + d2 = 1 and c + di is a unit, contradicting that it is not a unit. Therefore

a2 + b2 = p and we are done. ⊓⊔
Finally, we show that the methods used in Z[i] cannot be applied to all quadratic

integers. Kummer, as mentioned in Section 6.1, considered rings of the form

Z[
√

−p] = {a + ib
√

p; a, b ∈ Z, p a prime}.

One can then define the norm as N(a + ib
√

p) = a2 +pb2. This norm is multiplica-

tive, N(αβ) = N(α)N(β). However, not all of these rings are UFDs. We show, for

example, that there is not unique factorization in Z[
√

−5].
By using the multiplicativity of the norm in Z[

√
−5], it can be shown that

3, 7, 1 + 2i
√

5, 1 − 2i
√

5 are all primes and none an associate of any of the others

(see the exercises). However,

21 = 3 · 7 = (1 + 2i
√

5)(1 − 2i
√

5).

Therefore factorization into primes in Z[
√

−5] is not unique and hence this set is not

a UFD. We will examine these rings of quadratic integers more closely in Section 6.4

and consider the question of exactly which ones are UFDs.

6.2.2 Principal Ideal Domains

We now take a slightly different approach to UFDs which will eventually lead us to

Dedekind’s theory of ideals. Recall (see Chapter 2) that an integral domain R is a

commutative ring with identity in which there are no zero divisors.

Definition 6.2.2.1. An ideal I in an integral domain R is a subring with the property

that RI ⊂ I , that is, ri ∈ I for all r ∈ R and i ∈ I . An ideal is thus a subring closed

under multiplication by elements from the whole ring.

In the rational integers Z the set nZ consisting of all multiples of n is an ideal.

We will see shortly that every ideal in Z has this form.

Theorem 6.2.2.1. Let R be an integral domain and α1, . . . , αn fixed elements of R.

Let I = {r1α1 + · · · + rnαn; ri ∈ R}. Then I forms an ideal in R called the ideal

generated by {α1, . . . , αn}. We will denote this by 〈α1, . . . , αn〉. If I is generated by

a single element, that is, I = 〈α〉 for some α ∈ R, then I consists of all R-multiples

of α. An ideal of this form 〈α〉 is called a principal ideal.
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Proof. The proof is straightforward. If I = {r1α1 + · · · + rnαn; ri ∈ R} and i1 =
r1α1 + · · · + rnαn, i2 = s1α1 + · · · + snαn are two elements of I , then

i1 ± i2 = (r1 ± s1)α1 + · · · + (rn ± sn)αn ∈ I,

and hence I is closed under addition and additive inverses. If r ∈ R then

ri1 = (rr1)α1 + · · · + (rrn)αn ∈ I,

so that I is closed under multiplication from R. Therefore RI ⊂ I and in particular

I · I ⊂ I , so I is closed under multiplication. Therefore I is an ideal. ⊓⊔

Notice that nZ = 〈n〉 is a principal ideal. In the rational integers Z we have the

following.

Theorem 6.2.2.2. Every ideal in Z has the form nZ for some n ∈ Z. In particular,

every ideal in Z is a principal ideal.

Proof. Let I be an ideal in Z. If I = {0} then I = 0Z. If I �= {0} then there exists

z ∈ I with z �= 0. Since I is a subring, −z is also in I . Since either z or −z is positive

it follows that I must contain positive elements. Let n be the least positive element

of I . We show that I = nZ.

Let a be a positive element of I . Then by the division algorithm,

a = nq + r,

where r = 0 or 0 < r < n. If r �= 0 then 0 < r = a − nq < n. Now a ∈ I ,

n ∈ I and hence nq and a − nq belong to I since I is a subring. This contradicts the

minimality of n as the least positive element of I . Therefore r = 0 and a = nq. If

a is a negative element of I , then −a > 0 and −a = nq. Then a = n(−q). Hence

every element of I is a multiple of n and therefore I = nZ, since certainly every

multiple of n is in I . ⊓⊔

Definition 6.2.2.2. A principal ideal domain, abbreviated as PID, is an integral

domain in which every ideal is a principal ideal.

In this language, Theorem 6.2.2.2 says that the rational integers Z are a PID. The

same proof using degrees of polynomials would show that the polynomial ring F [x]
over a field F is also a PID. This is no accident since both are Euclidean domains and

the following is true.

Theorem 6.2.2.3. Any Euclidean domain R is a PID.

The proof is entirely analogous to the proof of Theorem 6.2.2.2 using the Euclidean

norm. We leave the details to the exercises. Euclidean domains are PIDs and

also UFDs. This will follow also from the next result, although we proved unique

factorization in Euclidean domains directly.

Theorem 6.2.2.4. Every PID R is a UFD.
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We use a series of lemmas to obtain a proof of the above result. As for Euclidean

domains, uniqueness of prime factorization depends on an analogue of Euclid’s

lemma. The existence of a prime factorization depends on a property in PIDs called

the ascending chain condition.

Lemma 6.2.2.1. Let R be an integral domain and I1 ⊂ I2 ⊂ · · · an ascending chain

of ideals of R. Then I = ∪iIi is also an ideal.

Proof. Let r1, r2 ∈ I . Then since {Ii} is an ascending chain there exists an In with

both r1, r2 ∈ In. Then r1 ± r2 and rr1 with r ∈ R are all in In since In is an ideal.

But In ⊂ I so all are in I and hence I is an ideal. ⊓⊔

We next show that in a PID every strictly increasing sequence of ideals must

terminate. We call this the ascending chain condition or ACC on ideals.

Definition 6.2.2.3. An integral domain R satisfies the ascending chain condition or

ACC on ideals if for every ascending chain of ideals I1 ⊂ I2 ⊂ · · · , there exists

a positive integer n such that Ii = In for all i ≥ n. Equivalently, every strictly

increasing ascending chain, that is all inclusions proper, must have finite length.

Lemma 6.2.2.2. Every PID satisfies the ACC.

Proof. Let I1 ⊂ I2 ⊂ · · · be an ascending chain of ideals in the PID R. Then

I = ∪iIi is an ideal in R. Since R is a PID we have I = 〈r〉 for some r ∈ R. Now

r ∈ I so r ∈ In for some In. Then for all i ≥ n,

〈r〉 ⊂ In ⊂ Ii ⊂ I = 〈r〉.

It follows that Ii = In for all i ≥ n and R satisfies the ACC. ⊓⊔

Finally, we need the analogue of Euclid’s lemma.

Lemma 6.2.2.3 (Euclid’s lemma for PIDs). Suppose R is a PID and p ∈ R is a

prime. If p|ab then p|a or p|b.

Proof. Notice first the following relationships between divisibility and principal

ideals in a PID:

(i) a|b if and only if 〈b〉 ⊂ 〈a〉.
(ii) 〈b〉 = 〈c〉 if and only if b and c are associates.

(iii) 〈a〉 = R if and only if a is a unit.

The proofs of these properties follow directly from the definitions (see the

exercises).

Now suppose that p is a prime in R and p|ab. Suppose p does not divide a. Then

〈a〉 is not contained in 〈p〉. It follows that I = 〈a, p〉, the ideal generated by a and

p, is not equal to 〈p〉. Since R is a PID we have an element c ∈ R with 〈a, p〉 = 〈c〉.
Therefore 〈p〉 ⊂ 〈c〉, so p = cr . Since p is a prime either c or r is a unit. If c

is not a unit then p and c are associates and 〈p〉 = 〈c〉 and hence 〈a, p〉 = 〈p〉, a

contradiction. Therefore c is a unit and 〈c〉 = 〈a, p〉 = R, the whole integral domain.
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In the next subsection we will see that what we have actually proved is that if p is a

prime in a PID then 〈p〉 is a maximal ideal. Then since 〈a, p〉 = R we must have

1 ∈ 〈a, p〉, where 1 is the multiplicative identity:

1 ∈ 〈a, p〉 =⇒ ar + ps = 1 for some r, s ∈ R.

As in the proof for rational integers, multiply through by b to obtain

abr + pbs = b.

Since p|ab and p|p it follows then that p|b. ⊓⊔
We can now prove Theorem 6.2.2.4.

Proof of Theorem 6.2.2.4. We show first that each nonunit in R can be expressed as

a product of primes. Let r ∈ R with r �= 0 and r a nonunit. We show that there is a

prime p ∈ R that divides it. If r is a prime we are done. If not, then r = r1s, with

neither r1 nor s a unit. It follows that

〈r〉 ⊂ 〈r1〉.

If r1 is prime then r is an associate of r1 and we are done. If not, continue in this

manner to obtain an ascending chain of ideals

〈r〉 ⊂ 〈r1〉 ⊂ 〈r2〉 · · · .

By the ACC this chain must terminate at some rn ∈ r and hence rn must be a

prime. Hence r must be divisible by at least one prime p1. Therefore r = p1s1.

By the same argument there is a prime p2|s1 so that r = p1p2s2. We cannot get an

infinite factorization by the ACC, so it follows that there must be a finite factorization

r = p1 · · · pk with pi all primes. Therefore there must be a prime factorization.

The uniqueness of this factorization up to ordering and units follows exactly as

in all the previous cases from Euclid’s lemma. If r = p1 · · · pk = q1 · · · qt with

pi, qj all primes in R then p1|qj for some j . Since both are primes, p1 and qj are

associates. It now goes through as before. ⊓⊔
Hence every PID is a UFD. Are there UFDs that are not PIDs? The answer is

yes. To give an example we state the following theorem. This is not directly relevant

to our subsequent work on algebraic numbers, so we omit the proof (and sketch an

outline of it in the exercises).

Theorem 6.2.2.5. If R is a UFD then the polynomial ring R[x] is also a UFD.

From this result we have the following corollary.

Corollary 6.2.2.1. Z[x] is a UFD.

Corollary 6.2.2.2. If F is a field then F [x1, . . . , xn], the ring of polynomials in n

variables over F , is a UFD.

From this second corollary we get the example that F [x, y] is a UFD for any field

F . Let I be the set of polynomials in F [x, y] with constant term 0. This forms an

ideal but it is not principal (see the exercises).
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6.2.3 Prime and Maximal Ideals

Certain ideas arose in the proof of Theorem 6.2.2.4, which we look at a bit more

closely.

Definition 6.2.3.1. An ideal I in an integral domain R is a prime ideal if whenever

r1r2 ∈ I then either r1 ∈ I or r2 ∈ I . Moreover, I is a maximal ideal if whenever

I ⊂ I1 with I1 an ideal then either I1 = I or I1 = R.

Hence a maximal ideal is an ideal that is contained in no larger ideal other than

the whole integral domain. This is equivalent to 〈I, r〉 = R if r /∈ I . In the proof of

Euclid’s lemma for PIDs we actually showed that if p is a prime then 〈p〉 is a maximal

ideal. The general relationship between primes and the principal ideals they generate

in PIDs is given in the next theorem.

Theorem 6.2.3.1. Let R be a PID and let r ∈ R with r �= 0. The following are

equivalent:

(1) r ∈ R is prime.

(2) 〈r〉 is a prime ideal.

(3) 〈r〉 is a maximal ideal.

In particular, in a PID a nonzero ideal is maximal if and only if it is prime.

Proof. We show first that (1) is equivalent to (2). Suppose r is a prime and r1r2 ∈ 〈r〉.
Then r|r1r2 so by Euclid’s lemma r|r1 or r|r2. If r|r1 then r1 ∈ 〈r〉, while if r|r2 then

r2 ∈ 〈r〉. It follows that 〈r〉 is a prime ideal.

Conversely, suppose that 〈r〉 is a prime ideal and r = r1r2. Since r1r2 ∈ 〈r〉 we

have either r1 ∈ 〈r〉 or r2 ∈ 〈r〉. If r1 ∈ 〈r〉 then r1 = r3r and then

r = r1r2 = (r2r3)r =⇒ r3r2 = 1.

Hence r2 is a unit. Similarly, if r2 ∈ 〈r〉 then r1 is a unit. It follows that r is prime.

The proof about maximality is essentially the proof of Euclid’s lemma.

We now show that (1) is equivalent to (3). Suppose r is a prime and 〈r〉 ⊂ I . If

〈r〉 �= I then there exists an r1 ∈ I with r1 /∈ 〈r〉. Hence 〈r, r1〉 �= 〈r〉. Since R is

a PID, 〈r, r1〉 = 〈r2〉 and so r ∈ 〈r2〉. Then r2|r and hence r2 is either a unit or an

associate of r . If r2 is a unit then 〈r2〉 = R and hence I = R. If 〈r2〉 is not a unit then

r2 is an associate of r and hence

〈r, r1〉 = 〈r2〉 = 〈r〉,

a contradiction since r1 /∈ 〈r〉. Hence r2 is a unit, I = R, and 〈r〉 is a maximal ideal.

Conversely, suppose that 〈r〉 is maximal and r1r2 = r . Suppose first that r|r1.

Since r1|r , then r and r1 are associates. Now if r does not divide r1 then r1 /∈ 〈r〉,
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so that 〈r, r1〉 �= 〈r〉. It follows from the maximality of 〈r〉 that 〈r, r1〉 = R. Hence

1 ∈ 〈r, r1〉 and so there exist x, y ∈ R with

rx + r1y = 1.

Multiplying through by r2, we have

rr2x + r1r2y = r2.

Then r|r2. Therefore r2 = r3r and we have r = (r1r3)r . Hence r1r3 = 1 and r1

is a unit. Hence either r1 is an associate of r or a unit. In either case r2 is either an

associate of r or a unit. Therefore r is prime. ⊓⊔

In an integral domain R we can use ideals to build factor rings. This is a fun-

damental concept in abstract algebra and will also play a role in algebraic number

theory. We define this in general.

Definition 6.2.3.2. If R is an integral domain and I is an ideal in R then a coset of

I is a subset of the form

r + I = {r + i; i ∈ I }.
The set of cosets of I in R is denoted by R/I .

Lemma 6.2.3.1.

(1) The set of cosets R/I partitions R, and r ∈ I if and only if r + I = 0 + I .

Proof. On R define r1 ∼ r2 if r1 − r2 ∈ I . This is an equivalence relation (see

exercises) and therefore the equivalence classes partition R. If r ∈ R, its equivalence

class [r] is precisely the coset r + I . ⊓⊔

Next we define operations on R/I . If [r1] = r1 + I and [r2] = r2 + I , then

[r1] + [r2] = (r1 + r2) + I = [r1 + r2],
[r2][r2] = (r1r2) + I = [r1r2].

Lemma 6.2.3.1. The operations defined on R/I are well-defined.

Proof. Well-defined means that if [r1] = [r2] and [r3] = [r4] then [r1] + [r3] =
[r2] + [r4] and [r1][r3] = [r2][r4]. We show that this is true for addition and leave

multiplication to the exercises.

Suppose [r1] = [r2]. Then r1 ∼ r2 =⇒ r1 − r2 ∈ I . Similarly, if [r3] = [r4]
then r3−r4 ∈ I . Then (r1−r2)+(r3−r4) ∈ I , which implies (r1+r3)−(r2+r4) ∈ I .

Therefore [r1 + r3] = [r2 + r4] and addition is well-defined. ⊓⊔

Theorem 6.2.3.2. Let R be an integral domain and I ⊂ R an ideal. Then

(1) R/I forms a commutative ring with identity under the operations defined above.

(2) R/I is an integral domain if and only if I is a prime ideal.

(3) R/I is a field if and only if I is a maximal ideal.
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The ring R/I is called the factor ring or quotient ring of R modulo I .

Proof. The proof that R/I is a commutative ring with identity is a routine exercise.

We show (2) and (3). We need that the elements of R/I are the cosets, which we will

now denote by [r], and that the additive identity is [0], which we will just write as

0 in R/I . Further the multiplicative identity of R/I is [1] which we will write as 1

in R/I .

Suppose I is a prime ideal and suppose [r1][r2] = [0] = 0 in R/I . Then r1r2 ∈ I

and then either r1 ∈ I or r2 ∈ I . If r1 ∈ I then [r1] = 0 in R/I and if r2 ∈ I

then [r2] = 0 in R/I . Therefore there are no zero divisors in R/I and hence it is an

integral domain.

Conversely suppose R/I is an integral domain and suppose r1r2 ∈ I . Then

[r1][r2] = 0 and since R/I is an integral domain either [r1] = 0 or [r2] = 0. In the

former case r1 ∈ I and in the latter r2 ∈ I . Therefore I is a prime ideal.

Next suppose that I is maximal. If [r] �= 0 in R/I then r /∈ I . From the

maximality of I it follows that 〈I, r〉 = R and then 1 ∈ 〈I, r〉. This implies that there

exist x, y ∈ R with

rx + iy = 1 for some i ∈ I.

But then in R/I we have [r][x] = [1] = 1 since [iy] = [0] = 0. Hence in the factor

ring [r] is a unit. Since [r] was an arbitrary nonzero element of R/I it follows that

R/I is a field.

Conversely, suppose R/I is a field. If r /∈ I then [r] �= 0 in R/I and hence there

exists an inverse [x] with [r][x] = 1. Hence there exist i ∈ I , y ∈ R with

rx + iy = 1.

It follows that 1 ∈ 〈I, r〉, which implies that 〈I, r〉 = R. Therefore I is maximal. ⊓⊔

Now, a field F is always an integral domain. Therefore if R/I is a field, it follows

that R/I is an integral domain. Translating this into statements about the ideal I , we

have the following result.

Corollary 6.2.3.1. In any integral domain a maximal ideal is a prime ideal.

Note that the converse of this corollary is not necessarily true in general but it is

true in a PID for nonzero prime ideals.

Finally, we sketch a beautiful application of these ideas called Kronecker’s the-

orem. Although it was proved by Kronecker well after the work of Galois, from a

modern perspective it is really the starting point for Galois theory. We will look more

carefully at this in the next section.

Theorem 6.2.3.3. Let F be a field and p(x) ∈ F [x] an irreducible polynomial. Then

there exists a field F ′ with F ⊂ F ′ in which p(x) has a root.
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Proof. Since p(x) is irreducible and F [x] is a PID, the ideal 〈p(x)〉 is a maximal

ideal. Then the factor ring

F ′ = F [x]/〈p(x)〉
is a field. The elements of F ′ are cosets g(x) + 〈p(x)〉. If we identify f ∈ F with

the coset f + 〈p(x)〉 = [f ] this gives an embedding of F into F ′. Therefore F can

be considered as a subfield of F ′.
Now consider [x] = x + 〈p(x)〉. Then by considering the operations in F ′ it

is clear that p([x]) = [p(x)] (see the exercises). But [p(x)] = p(x) + 〈p(x)〉 =
〈p(x)〉 = [0]. Therefore in F ′ we have p([x]) = 0 and so [x] is a root of p(x)

in F ′. ⊓⊔

We will give a well-known example to clarify the theorem. Let F = R and

p(x) = x2 + 1. Then p(x) is irreducible in R[x]. Let R′ = R[x]/〈x2 + 1〉. Since

x2 + 1 is prime the ideal 〈x2 + 1〉 is a maximal ideal and hence R′ is a field.

Each element of R′ is a polynomial in R[x] modulo 〈x2 + 1〉. By the division

algorithm, if h(x) ∈ R[x] with h(x) �= 0 then

h(x) = q(x)(x2 + 1) + h1(x) with deg(h1(x)) < deg(x2 + 1) = 2.

Therefore h1(x) = a + bx with a, b ∈ R. However,

h(x) ≡ h1(x) mod 〈x2 + 1〉.

It follows that every element of R′ can be expressed as a+bx with a, b ∈ R. Therefore

R′ = {a + bx; a, b ∈ R}.

Further, in R′ we have x2 + 1 = 0 and hence x2 = −1. Then

R′ = {a + bx; a, b ∈ R, x2 = −1}.

Mapping R′ onto C, the complex numbers, by 1 → 1, x → i gives an isomorphism.

Therefore R′ is precisely C, the complex numbers.

6.3 Algebraic Number Fields

An algebraic number field is a finite field extension of the rational numbers Q within

the complex numbers C. As before, we must first look at some essential definitions

from abstract algebra.

If F and F ′ are fields with F a subfield of F ′, then F ′ is an extension field, or

simply an extension, of F . If we have a chain of fields and extension fields

F ⊂ E ⊂ E′ ⊂ F ′,

then F is called the ground field and E and E′ are intermediate fields.

Recall that if F is a field then a vector space V over F consists of an abelian

group V together with scalar multiplication from F satisfying
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(1) f v ∈ V if f ∈ F , v ∈ V ;

(2) f (u + v) = f u + f v for f ∈ F , u, v ∈ V ;

(3) (f + g)v = f v + gv for f, g ∈ F , v ∈ V ;

(4) (fg)v = f (gv) for f, g ∈ F , v ∈ V ;

(5) 1v = v for v ∈ V .

A set of elements {v1, . . . , vn} in a vector space V is independent over F if

whenever f1v1 + · · · + fnvn = 0 then each scalar fi is equal to 0. If a set is not

independent then it is called dependent. For a subset U ⊂ V , the set

{f1v1 + · · · + fnvn; n ≥ 1, vi ∈ U, fi ∈ F }

of linear combinations of elements of U forms a subspace of V called the span of

U or the subspace spanned by U . This is denoted by 〈U〉. If U = {v1, . . . , vn} is

finite then we write 〈U〉 = 〈v1, . . . , vn〉. An independent set that spans the whole

vector space V is called a basis for V . The number of elements in a basis is unique

and is called the dimension of V over F , denoted by dimF V or just dim V if F is

understood. If there is a finite basis then V is finite-dimensional over F .

If v1, . . . , vn is a basis for V and w1, . . . , wn is another set of vectors in V then

w1 = f11v1 + · · · + f1nvn,

w2 = f21v1 + · · · + f2nvn,

. . .

wn = fn1v1 + · · · + fnnvn,

for some scalars fij ∈ F . Then w1, . . . , wn is also a basis if and only if the transition

matrix ⎛
⎜⎜⎝

f11 . . . f1n

f21 . . . f2n

. . .

fn1 . . . fnn

⎞
⎟⎟⎠

has nonzero determinant.

If F ′ is an extension field of F then multiplication of elements of F ′ by elements

of F are still in F ′. Since F ′ is an abelian group under addition, F ′ can be considered

as a vector space over F . Thus any extension field is a vector space over any of

its subfields. The degree of the extension is the dimension of F ′ as a vector space

over F . We denote the degree by |F ′ : F |. If the degree is finite, that is, |F ′ : F | < ∞,

so that F ′ is a finite-dimensional vector space over F , then F ′ is called a finite

extension of F .

From vector space theory we easily obtain that the degrees are multiplicative.

Specifically, we have the following.

Lemma 6.3.1. If F ⊂ F ′ ⊂ F ′′ are fields with F ′′ a finite extension of F , then

|F ′ : F | and |F ′′ : F ′| are also finite, and |F ′′ : F | = |F ′′ : F ′||F ′ : F |.
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Proof. The fact that |F ′ : F | and |F ′′ : F ′| are also finite follows easily from linear

algebra, since the dimension of a subspace must be less than the dimension of the

whole vector space.

If |F ′ : F | = n with α1, . . . , αn a basis for F ′ over F , and |F ′′ : F ′| = m with

β1, . . . , βm a basis for F ′′ over F ′, then the mn products {αiβj } form a basis for F ′′

over F (see the exercises). Then

|F ′′ : F | = mn = |F ′′ : F ′||F ′ : F |. ⊓⊔

Example 6.3.1. C is a finite extension of R, but R is an infinite extension of Q.

The complex numbers 1, i form a basis for C over R. It follows that the degree

of C over R is 2, that is, |C : R| = 2.

The existence of transcendental numbers provides an easy proof that R is infinite

dimensional over Q. An element r ∈ R is algebraic (over Q) if it satisfies some

nonzero polynomial with coefficients from Q. That is, P(r) = 0, where

0 �= P(x) = a0 + a1x + · · · + anx
n with ai ∈ Q.

An element r ∈ R is transcendental if it is not algebraic.

In general, it is very difficult to show that a particular element is transcendental.

However, there are uncountably many transcendental elements, as we will show in

Section 6.3.2. Specific examples are our old friends e and π . We give a proof of their

transcendence later in this chapter.

Since e is transcendental, for any natural number n the set of vectors

{1, e, e2, . . . , en} must be independent over Q, for otherwise there would be a poly-

nomial that e would satisfy. Therefore, we have infinitely many independent vectors

in R over Q, which would be impossible if R had finite degree over Q.

We are interested in special types of field extensions called algebraic extensions.

We present the definitions in general and then specialize to extensions of the rationals

Q within C.

Definition 6.3.1. Suppose F ′ is an extension field of F and α ∈ F ′. Then α is

algebraic over F if there exists a nonzero polynomial p(x) in F [x] with p(α) = 0.

(α is a root of a polynomial with coefficients in F.) If every element of F ′ is algebraic

over F , then F ′ is an algebraic extension of F .

If α ∈ F ′ is nonalgebraic over F , then α is called transcendental over F .

A nonalgebraic extension is called a transcendental extension.

Lemma 6.3.2. Every element of F is algebraic over F .

Proof. If f ∈ F then p(x) = x − f ∈ F [x] and p(f ) = 0. ⊓⊔

The tie-in to finite extensions is via the following theorem.

Theorem 6.3.1. If F ′ is a finite extension of F , then F ′ is an algebraic extension.
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Proof. Suppose α ∈ F ′. We must show that there exists a nonzero polynomial

0 �= p(x) ∈ F [x] with p(α) = 0.

Since F ′ is a finite extension, |F ′ : F | = n < ∞. This implies that there are n

elements in a basis for F ′ over F , and hence any set of (n + 1) elements in F ′ must

be linearly dependent over F .

Consider then 1, α, α2, . . . , αn. These are (n + 1) elements in F ′ and therefore

must be linearly dependent. Then there must exist elements f0, f1, . . . , fn ∈ F not

all zero such that

f0 + f1α + · · · + fnα
n = 0. (6.3.1)

Let p(x) = f0 + f1x + · · · + fnx
n. Then p(x) ∈ F [x] and from (6.3.1), p(α) = 0.

Therefore any α ∈ F ′ is algebraic over F and hence F ′ is an algebraic extension

of F . ⊓⊔

Example 6.3.2. C is algebraic over R, but R is transcendental over Q.

Since |C : R| = 2, C being algebraic over R follows from Theorem 6.3.1. More

directly, if z ∈ C then p(x) = (x − z)(x − z) ∈ R[x] and p(z) = 0.

R (and thus C) being transcendental over Q follows from the existence of

transcendental numbers such as e and π .

If α is algebraic over F , it satisfies a polynomial over F . It follows that it must

then also satisfy an irreducible polynomial over F . Since F is a field, if f ∈ F

and p(x) ∈ F [x], then f −1p(x) ∈ F [x] also. This implies that if p(α) = 0 with

an the leading coefficient of p(x), then p1(x) = a−1
n p(x) is a monic polynomial in

F [x] that α also satisfies. Thus if α is algebraic over F there is a monic irreducible

polynomial that α satisfies. The next result says that this polynomial is unique.

Lemma 6.3.3. If α ∈ F ′ is algebraic over F , then there exists a unique monic

irreducible polynomial p(x) ∈ F [x] such that p(α) = 0.

This unique monic irreducible polynomial is denoted by irr(α, F ).

Proof. Suppose f (α) = 0 with 0 �= f (x) ∈ F [x]. Then f (x) factors into irreducible

polynomials. Since there are no zero divisors in a field, one of these factors, say

p1(x) must also have α as a root. If the leading coefficient of p1(x) is an, then

p(x) = a−1
n p1(x) is a monic irreducible polynomial in F [x] that also has α as a root.

Therefore, there exist monic irreducible polynomials that have α as a root. Let

p(x) be one such polynomial of minimal degree. It remains to show that p(x) is

unique.

Suppose g(x) is another monic irreducible polynomial with g(α) = 0. Since

p(x) has minimal degree, deg p(x) ≤ deg g(x). By the division algorithm

g(x) = q(x)p(x) + r(x), (6.3.2)

where r(x) = 0 or deg r(x) < deg p(x). Substituting α into (6.1.2), we get

g(α) = q(α)p(α) + r(α),

which implies that r(α) = 0 since g(α) = p(α) = 0. But then if r(x) is not

identically 0, α is a root of r(x), which contradicts the minimality of the degree
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of p(x). Therefore, r(x) = 0 and g(x) = q(x)p(x). The polynomial q(x) must

be a constant (unit factor) since g(x) is irreducible, but then q(x) = 1 since both

g(x), p(x) are monic. This says that g(x) = p(x), and hence p(x) is unique. ⊓⊔

We say that an algebraic element has degree n if the degree of irr(α, F ) is n.

Embedded in the proof of Lemma 6.3.3 is the following important corollary.

Corollary 6.3.1. If α is algebraic over F and f (α) = 0 for f (x) ∈ F [x], then

irr(α, F )|f (x). That is, irr(α, F ) divides any polynomial over F that has α as a root.

Suppose α ∈ F ′ is algebraic over F and p(x) = irr(α, F ). Then there exists a

smallest intermediate field E with F ⊂ E ⊂ F ′ such that α ∈ E. By smallest we

mean that if E′ is another intermediate field with α ∈ E′ then E ⊂ E′. To see that this

smallest field exists, notice that there are subfields E′ in F ′ in which α ∈ E′ (namely

F ′ itself). Let E be the intersection of all subfields of F ′ containing α and F . Then

E is a subfield of F ′ (see the exercises) and E contains both α and F . Further, this

intersection is contained in any other subfield containing α and F .

This smallest subfield has a very special form.

Definition 6.3.2. Suppose α ∈ F ′ is algebraic over F and

p(x) = irr(α, F ) = a0 + a1x + · · · + an−1x
n−1 + xn.

Let

F(α) = {f0 + f1α + · · · + fn−1α
n−1; fi ∈ F }.

On F(α) define addition and subtraction componentwise and define multiplication

by algebraic manipulation, replacing powers of α higher than αn using

αn = −a0 − a1α − · · · − an−1α
n−1.

Theorem 6.3.2. F(α) forms a finite algebraic extension of F with |F(α) : F | =
deg irr(α, F ). F(α) is the smallest subfield of F ′ that contains the root α. A field

extension of the form F(α) for some α is called a simple extension of F .

Proof. Recall that Fn−1[x] is the set of all polynomials over F of degree ≤ n − 1

together with the zero polynomial. This set forms a vector space of dimension n

over F . As defined in Definition 6.3.2, relative to addition and subtraction F(α) is

the same as Fn−1[x], and thus F(α) is a vector space of dimension deg irr(α, F ) over

F and hence an abelian group.

Multiplication is done via multiplication of polynomials, so it is straightforward

then that F(α) forms a commutative ring with identity. We must show that it forms a

field. To do this we must show that every nonzero element of F(α) has a multiplicative

inverse.

Suppose 0 �= g(x) ∈ F [x]. If deg g(x) < n = deg irr(α, F ), then g(α) �= 0

since irr(α, F ) is the irreducible polynomial of minimal degree that has α as a root.
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If h(x) ∈ F [x] with deg h(x) ≥ n, then h(α) = h1(α), where h1(x) is a poly-

nomial of degree ≤ n − 1, obtained by replacing powers of α higher than αn by

combinations of lower powers using

αn = −a0 − a1α − · · · − an−1α
n−1.

Now suppose g(α) ∈ F(α), g(α) �= 0. Consider the corresponding polynomial

g(x) ∈ F [x] of degree ≤ n− 1. Since p(x) = irr(α, F ) is irreducible, it follows that

g(x) and p(x) must be relatively prime, that is, (g(x), p(x)) = 1. Therefore, there

exist h(x), k(x) ∈ F [x] such that

g(x)h(x) + p(x)k(x) = 1.

Substituting α into the above, we obtain

g(α)h(α) + p(α)k(α) = 1.

However, p(α) = 0 and h(α) = h1(α) ∈ F(α), so that

g(α)h1(α) = 1.

It follows then that in F(α), h1(α) is the multiplicative inverse of g(α). Since every

nonzero element of F(α) has such an inverse, F(α) forms a field.

The field F is contained in F(α) by identifying F with the constant polynomials.

Therefore, F(α) is an extension field of F . From the definition of F(α), we have that

{1, α, α2, . . . , αn−1} is a basis, so F(α) has degree n over F . Therefore, F(α) is a

finite extension and hence an algebraic extension.

If F ⊂ E ⊂ F ′ and E contains α, then clearly E contains all powers of α since

E is a subfield. Then E contains F(α), and hence F(α) is the smallest subfield

containing both F and α. ⊓⊔

Example 6.3.3. Consider p(x) = x3 − 2 over Q. This is irreducible over Q but has

the root α = 21/3 ∈ R. The field Q(α) = Q(21/3) is then the smallest subfield of R
that contains Q and 21/3.

Here

Q(α) = {q0 + q1α + q2α
2; qi ∈ Q and α3 = 2}.

We first give examples of addition and multiplication in Q(α).

Let g = 3 + 4α + 5α2, h = 2 − α + α2. Then

g + h = 5 + 3α + 6α2

and

gh = 6−3α+3α2 +8α−4α2 +4α3 +10α2 −5α3 +5α4 = 6+5α+9α2 −α3 +5α4.

But α3 = 2, so α4 = 2α, and then

gh = 6 + 5α + 9α2 − 2 + 5(2α) = 4 + 15α + 9α2.

We now show how to find the inverse of h in Q(α).
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Let h(x) = 2 − x + x2, p(x) = x3 − 2. Use the Euclidean algorithm as in

Chapter 3 to express 1 as a linear combination of h(x), p(x):

x3 − 2 = (x2 − x + 2)(x + 1) + (−x − 4),

x2 − x + 2 = (−x − 4)(−x + 5) + 22.

This implies that

22 = (x2 − x + 2)(1 + (x + 1)(−x + 5)) − ((x3 − 2)(−x + 5)),

or

1 = 1

22
[(x2 − x + 2)(−x2 + 4x + 6)] − [(x3 − 2)(−x + 5)].

Now substituting α and using that α3 = 2, we have

1 = 1

22
[(α2 − α + 2)(−α2 + 4α + 6)],

and hence

h−1 = 1

22
(−α2 + 4α + 6).

Now suppose α, β ∈ F ′ with both elements algebraic over F and suppose

irr(α, F ) = irr(β, F ). From the construction of F(α) we can see that it will be

essentially the same as F(β). We now make this idea precise.

Definition 6.3.3. Let F ′, F ′′ be extension fields of F . An F -isomorphism is an

isomorphism σ : F ′ → F ′′ such that σ(f ) = f for all f ∈ F . That is, an F-

isomorphism is an isomorphism of the extension fields that fixes each element of the

ground field. If F ′, F ′′ are F-isomorphic, we denote this relationship by F ′ ∼=F F ′′.

Lemma 6.3.4. Suppose α, β ∈ F ′ are both algebraic over F and suppose irr(α, F ) =
irr(β, F ). Then F(α) is F-isomorphic to F(β).

Proof. Define the map σ : F(α) → F(β) by σ(α) = β and σ(f ) = f for all f ∈ F .

Allow σ to be a homomorphism, that is, σ preserves addition and multiplication. It

follows then that σ maps f0+f1α+· · ·+fnα
n−1 ∈ F(α) to f0+f1β+· · ·+fnβ

n−1 ∈
F(β). From this it is straightforward that σ is an F -isomorphism. ⊓⊔

Further, we note that if α, β ∈ F ′ with both algebraic over F and F(α) is F -

isomorphic to F(β), ten there is a γ ∈ F(β) with irr(α, F ) = irr(γ, F ). We can take

for γ the image of α under the F -isomorphism.

If α, β ∈ F ′ are two algebraic elements over F , we use F(α, β) to denote

(F (α))(β). Since F(α, β) and F(β, α) are F -isomorphic, we treat them as the

same. We now show that the set of algebraic elements over a ground field is closed

under the arithmetic operations and from this obtain that the algebraic elements form

a subfield.
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Lemma 6.3.5. If α, β ∈ F ′, β �= 0, are two algebraic elements over F , then α ± β,

αβ, and α/β are also algebraic over F .

Proof. Since α, β are algebraic, the subfield F(α, β) will be of finite degree over F

and therefore algebraic over F . Now, α, β ∈ F(α, β) and since F(α, β) is a subfield,

it follows that α ± β, αβ, and α/β are also elements of F(α, β). Since F(α, β) is

an algebraic extension of F , each of these elements is algebraic over F . ⊓⊔

Theorem 6.3.3. If F ′ is an extension field of F , then the set of elements of F ′ that

are algebraic over F forms a subfield. This subfield is called the algebraic closure

of F in F
′.

Proof. Let AF (F ′) be the set of algebraic elements over F in F ′. Then AF (F ′) �= ∅
since it contains F . From the previous lemma it is closed under addition, subtraction,

multiplication, and division, and therefore it forms a subfield. ⊓⊔

We close this subsection with a final result, which says that every finite extension

is formed by taking successive simple extensions.

Theorem 6.3.4. If F ′ is a finite extension of F , then there exists a finite set of algebraic

elements α1, . . . , αn such that F ′ = F(α1, . . . , αn).

Proof. Suppose |F ′ : F | = k < ∞. Then F ′ is algebraic over F . Choose an α1 ∈ F ′,
α1 /∈ F . Then F ⊂ F(α1) ⊂ F ′ and |F ′ : F(α1)| < k. If the degree of this extension

is 1, then F ′ = F(α1), and we are done. If not, choose an α2 ∈ F ′, α2 /∈ F(α1).

Then as above, F ⊂ F(α1) ⊂ F(α1, α2) ⊂ F ′ with |F ′ : F(α1, α2)| < |F ′ : F(α1)|.
As before, if this degree is one we are done; if not, continue. Since k is finite this

process must terminate in a finite number of steps. ⊓⊔

6.3.1 Algebraic Extensions of QQQ

We now specialize to the case that the ground field is the rationals Q. An algebraic

number field is a finite and hence algebraic extension field of Q within C. Hence an

algebraic number field is a field K such that

Q ⊂ K ⊂ C

with |K : Q| < ∞. We will prove shortly that K is actually a simple extension of Q.

Definition 6.3.1.1. An algebraic number α is an element of C that is algebraic

over Q. Hence an algebraic number is an α ∈ C such that f (α) = 0 for some

f (x) ∈ Q[x]. If α ∈ C is not algebraic it is transcendental.

We will let A denote the totality of algebraic numbers within the complex numbers

C, and T the set of transcendentals, so that C = A ∪ T . In the language of the last

subsection, A is the algebraic closure of Q within C. As in the general case, if α ∈ C
is algebraic we will let irr(α, Q) denote the unique monic irreducible polynomial of
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minimal degree that α satisfies over Q. Then irr(α, Q) divides any rational polynomial

p(x) that satisfies p(α) = 0.

If α /∈ Q then Q(α) is the smallest subfield containing both Q and α. Since

|Q(α) : Q| = deg(irr(α, Q)) it follows that K = Q(α) is an algebraic number field.

It then follows trivially that an algebraic number is any element of C that falls in an

algebraic number field, and A is the union of all algebraic number fields.

We next need the following.

Lemma 6.3.1.1. If p(x) ∈ Q[x] is irreducible of degree n then p(x) has n distinct

roots in C.

Proof. That p(x) has n roots is a consequence of the fundamental theorem of algebra.

What is important here is that if p(x) is irreducible over Q then its roots in C are

distinct.

Let c be a root of p(x). Then c is an algebraic number and then irr(c, Q)|p(x).

Since p(x) is irreducible it follows that p(x) is just a constant multiple of irr(c, Q)

and hence they have the same degree, which is minimal among the degrees of all

rational polynomials that have c as a root.

Suppose that c is a double root. Then p(x) = (x − c)2h(x), where h(x) ∈ C[x].
Now the formal derivative of a rational polynomial is also a rational polynomial.

Therefore p′(x) ∈ Q[x]. However, from above, using the product rule,

p′(x) = 2(x − c)h(x) + (x − c)2h′(x).

Therefore p′(c) = 0. This is a contradiction, since deg(p′(x)) < deg(p(x)).

Therefore a root cannot be a double root and hence all the n roots are distinct. ⊓⊔

It follows that if α is an algebraic number of degree n then its minimal polynomial

irr(α, Q) has n distinct roots in C.

Definition 6.3.1.2. If α is an algebraic number then its conjugates over Q is the set

{α1 = α, . . . , αn} of distinct roots of irr(α, Q) in C.

Since distinct monic irreducible polynomials cannot have a root in common it

follows that if αi is conjugate to α then irr(αi, Q) = irr(α, Q) (see the exercises). It

follows that Q(αi) is Q-isomorphic (see last section) to Q(α) with the Q-isomorphism

being given by σi : 1 → 1, α → αi .

We now get that any algebraic number field is actually a simple extension of Q.

Theorem 6.3.1.1. Any algebraic number field K is a simple extension of Q, that

is, K = Q(α) for some algebraic number α. The number α is called a primitive

element.

Proof. Since K is a finite extension, K = Q(α1, . . . , αn) for some algebraic numbers

α1, . . . , αn. If for any two algebraic numbers α, β adjoined to Q it follows that

Q(α, β) = Q(γ ) for some algebraic number γ , then any easy induction would show

the same result for K . Hence to show that K is a simple extension, it is sufficient to

show that (α, β) = (γ ) for algebraic numbers α, β.



284 6 Primes and Algebraic Number Theory

Let, as is usually written, α = α1, . . . , αn be the conjugates of α over Q, and let

β = β1, . . . , βm be the conjugates of β over Q. If j �= 1 then βi �= β, since the

conjugates are distinct. It follows that for each i = 1, . . . , n and each j �= 1, j =
2, . . . , m, the equation

αi + βjx = α + βx

has exactly one complex solution and hence at most one rational solution. Since there

are only finitely many such equations there are only finitely many rational solutions

x and therefore there exists a rational number q with q �= 0 and q differing from all

the solutions. That is,

αi + βjq �= α + βq

for all i and all j �= 1.

Let γ = α + qβ. We claim that Q(α, β) = Q(γ ). Since Q(α, β) contains all of

Q as well as α and β, it is clear that γ ∈ Q(α, β) and hence Q(γ ) ⊂ Q(α, β). We

show that Q(α, β) ⊂ Q(γ ). Here it suffices to show that each of α, β ∈ Q(γ ).

Let f (x) = irr(α, Q) and g(x) = irr(β, Q). Then f (γ − qβ) = f (α) = 0.

Therefore β is a root of the polynomials g(x) and h(x) = f (γ − qx). If h(βi) =
f (γ − qβi) = 0 for some conjugate βi �= β, then γ − βiq = αj for some αj ,

contradicting the choice of q. Therefore g(x) and h(x) have only β as a common

root.

Now g(x) and h(x) = f (γ − qx) are polynomials in K[x], where K = Q(γ ).

Since Q(α, β) has finite degree over Q, then Q(β) has finite degree over Q(α) and

so β is algebraic over K . Let h1(x) = irr(β, K). Since g(β) = 0 and h(β) = 0 it

follows that h1(x)|g(x) and h1(x)|h(x) in K[x]. Since then every root of h1(x) is

then a root of both g(x) and h(x) and β is the only common root of g(x) and h(x) it

follows that h1(x) must have degree one. Therefore

h1(x) = ax + b for some a, b ∈ K.

But h1(β) = 0, so β = −b
a

∈ K . Therefore β ∈ K = Q(γ ). An analogous argument

shows that α ∈ K . Hence Q(α, β) ⊂ Q(γ ) and so Q(α, β) = Q(γ ). ⊓⊔

Let K be an algebraic number field and α a primitive element, so that K = Q(α).

It follows that K must have at least one basis (as a vector space over Q) of the form

1, α, α2, . . . , αn−1,

where n = |K : Q|. We will use this observation in Section 6.3.4 to define an

invariant of a number field called its discriminant.

6.3.2 Algebraic and Transcendental Numbers

In this section we examine the sets A and T more closely. Since A is precisely the

algebraic closure of Q in C we have from our general result that A actually forms a

subfield of C. Further, since the intersection of subfields is again a subfield, it follows

that A′ = A ∩ R, the real algebraic numbers, form a subfield of the reals.
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Theorem 6.3.2.1. The set A of algebraic numbers forms a subfield of C. The subset

A′ = A ∩ R of real algebraic numbers forms a subfield of R.

Since each rational number is algebraic, it is clear that there are algebraic numbers.

Further, there are irrational algebraic numbers,
√

2 for example, since it satisfies

the irreducible polynomial x2 − 2 = 0 over Q. On the other hand, we haven’t

examined the question of whether transcendental numbers really exist. To show

that any particular complex number is transcendental is, in general, quite difficult.

However, it is relatively easy to show that there are uncountably infinitely many

transcendentals.

Theorem 6.3.2.2. The set A of algebraic numbers is countably infinite. Therefore T ,

the set of transcendental numbers, and T ′ = T ∩R, the real transcendental numbers,

are uncountably infinite.

Proof. Let

Pn = {f (x) ∈ Q[x]; deg(f (x)) ≤ n}.

Since if f (x) ∈ Pn, f (x) = qo + q1x + · · · + qnx
n with qi ∈ Q, we can identify a

polynomial of degree ≤ n with an (n+1)-tuple (q0, q1, . . . , qn) of rational numbers.

Therefore the set Pn has the same size as the (n + 1)-fold Cartesian product of Q:

Qn+1 = Q × Q × · · · × Q.

Since a finite Cartesian product of countable sets is still countable, it follows that Pn

is a countable set.

Now let

Bn =
⋃

p(x)∈Pn

{roots of p(x)},

that is, Bn is the union of all roots in C of all rational polynomials of degree ≤ n.

Since each such p(x) has a maximum of n roots and since Pn is countable, it follows

that Bn is a countable union of finite sets and hence is still countable. Now

A =
∞⋃

n=1

Bn,

so A is a countable union of countable sets and is therefore countable.

Since both R and C are uncountably infinite the second assertions follow directly

from the countability of A. If, say, T were countable, then C = A ∪ T would also be

countable, which is a contradiction. ⊓⊔

Therefore we now know that there exist infinitely many transcendental numbers.

Liouville in 1851 gave the first proof of the existence of transcendentals by exhibiting

a few. He gave as one the following example.
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Theorem 6.3.2.3. The real number

c =
∞∑

j=1

1

10j !

is transcendental.

Proof. First of all, since 1
10j ! < 1

10j and
∑∞

j=1
1

10j is a convergent geometric series

it follows from the comparison test that the infinite series defining c converges and

defines a real number. Further, since
∑∞

j=1
1

10j = 1
9

. It follows that c < 1
9

< 1.

Suppose that c is algebraic, so that g(c) = 0 for some rational nonzero

polynomial g(x). Multiplying through by the least common multiple of all the

denominators in g(x) we may suppose that f (c) = 0 for some integral polynomial

f (x) =
∑n

j=0 mjx
j . Then c satisfies

n∑

j+0

mj c
j = 0

for some integers m0, . . . , mj .

If 0 < x < 1 then by the triangle inequality,

|f ′(x)| =

∣∣∣∣∣∣

n∑

j=1

jmjx
j−1

∣∣∣∣∣∣
≤

n∑

j=1

|jmj | = B,

where B is a real constant depending only on the coefficients of f (x).

Now let

ck =
k∑

j=1

1

10j !

be the kth partial sum for c. Then

|c − ck| =
∞∑

j=k+1

1

10j ! < 2 · 1

10(k+1)! .

Apply the mean value theorem to f (x) at c and ck to obtain

|f (c) − f (ck)| = |c − ck||f ′(ζ )|

for some ζ with ck < ζ < c < 1. Now since 0 < ζ < 1 we have

|c − ck||f ′(ζ )| < 2B
1

10(k+1)! .

On the other hand, since f (x) can have at most n roots, it follows that for all k

large enough we would have f (ck) �= 0. Since f (c) = 0 we have

|f (c) − f (ck)| = |f (ck)| =

∣∣∣∣∣∣

n∑

j=1

mj c
j
k

∣∣∣∣∣∣
>

1

10nk!
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since for each j , mj c
j
k is a rational number with denominator 10jk!. However, if k is

chosen sufficiently large and n is fixed we have

1

10nk! >
2B

10(k+1)! ,

contradicting the equality from the mean value theorem. Therefore c is transcenden-

tal. ⊓⊔

After we discuss algebraic integers we will show that both e and π are transcen-

dental. The transcendence of e was proved first by Hermite in 1873, while Lindemann

in 1881 proved the transcendence of π .

6.3.3 Symmetric Polynomials

Many results on algebraic number fields and algebraic integers depend on the

properties of symmetric polynomials. These were briefly introduced and used in

Section 5.2.1. Here we look at them more carefully and present a fundamental result

concerning them.

Definition 6.3.3.1. Let y1, . . . , yn be (independent) variables over a field F . A poly-

nomial f (y1, . . . , yn) ∈ F [y1, . . . , yn] is a symmetric polynomial in y1, . . . , yn

if f (y1, . . . , yn) is unchanged by any permutation σ of {y1, . . . , yn}, that is,

f (y1, . . . , yn) = f (σ(y1), . . . , σ (yn)).

If F ⊂ F ′ are fields and α1, . . . , αn are in F ′, then we call a polynomial

f (α1, . . . , αn) with coefficients in F symmetric in α1, . . . , αn if f (α1, . . . , αn) is

unchanged by any permutation σ of {α1, . . . , αn}.

Example 6.3.3.1.

Let F be a field and f0, f1 ∈ F . Let h(y1, y2) = f0(y1 + y2) + f1(y1y2).

There are two permutations on {y1, y2}, namely σ1 : y1 → y1, y2 → y2 and

σ2 : y1 → y2, y2 → y1.

Applying either one of these two to {y1, y2} leaves h(y1, y2) invariant. Therefore,

h(y1, y2) is a symmetric polynomial.

Definition 6.3.3.3. Let x, y1, . . . , yn be indeterminates over a field F (or elements of

an extension field F ′ over F ). Form the polynomial

p(x, y1, . . . , yn) = (x − y1) · · · (x − yn).

The ith elementary symmetric polynomial si in y1, . . . , yn for i = 1, . . . , n, is

(−1)iai , where ai is the coefficient of xn−i in p(x, y1, . . . , yn) as a polynomial in x

with coefficients from F(y1, . . . , yn).

Example 6.3.3.2. Consider y1, y2, y3. Then

p(x, y1, y2, y3) = (x − y1)(x − y2)(x − y3)
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= x3 − (y1 + y2 + y3)x
2 + (y1y2 + y1y3 + y2y3)x − y1y2y3.

Therefore, the three elementary symmetric polynomials in y1, y2, y3 over any

field are

(1) s1 = y1 + y2 + y3,

(2) s2 = y1y2 + y1y3 + y2y3,

(3) s3 = y1y2y3.

In general, the pattern of the last example holds for y1, . . . , yn. That is,

s1 = y1 + y2 + · · · + yn,

s2 = y1y2 + y1y3 + · · · + yn−1yn,

s3 = y1y2y3 + y1y2y4 + · · · + yn−2yn−1yn,

...

sn = y1 . . . yn.

The importance of the elementary symmetric polynomials is that any symmetric

polynomial can be built up from the elementary symmetric polynomials. We make

this precise in the next theorem, called the fundamental theorem of symmetric

polynomials. We will use this important result several times in our study of algebraic

numbers and algebraic integers.

Theorem 6.3.3.1 (fundamental theorem of symmetric polynomials). If P is a sym-

metric polynomial in the indeterminates y1, . . . , yn overF , that is, P ∈ F [y1, . . . , yn]
and P is symmetric, then there exists a unique g ∈ F [y1, . . . , yn] such that

P(y1, . . . , yn) = g(s1, . . . , sn). That is, any symmetric polynomial in y1, . . . , yn

is a polynomial expression in the elementary symmetric polynomials in y1, . . . , yn.

In order to prove this result we need the concept of a piece. Any polynomial

f (x1, . . . , xn) ∈ F [x1, . . . , xn] is composed of a sum of pieces of the formax
i1
1 · · · xin

n

with a ∈ F . We first put an order on these pieces of a polynomial.

The piece ax
i1
1 . . . x

in
n with a �= 0 is called higher than the piece bx

j1

1 · · · xjn
n with

b �= 0 if the first one of the differences

i1 − j1, i2 − j2, . . . , in − jn

that differs from zero is in fact positive. The highest piece of a polynomial

f (x1, . . . , xn) is denoted by HG(f ).

Lemma 6.3.3.1. For f (x1, . . . , xn), g(x1, . . . , xn) ∈ F [x1, . . . , xn] we have

HG(fg) = HG(f )HG(g).

Proof. We use an induction on n, the number of indeterminates. It is clearly true for

n = 1, and now assume that the statement holds for all polynomials in k variables
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with k < n and n ≥ 2. Order the polynomials via exponents on the first variable x1

so that

f (x1, . . . , xn) = xr
1φr(x2, . . . , xn) + xr−1

1 φr−1(x2, . . . , xn) + · · · + φ0(x2, . . . , xn),

g(x1, . . . , xn) = xs
1ψs(x2, . . . , xn) + xs−1

1 ψs−1(x2, . . . , xn) + · · · + ψ0(x2, . . . , xn).

Then

HG(fg) = xr+s
1 HG(φrψs).

By the inductive hypothesis

HG(φrψs) = HG(φr)HG(ψs).

Hence

HG(fg) = xr+s
1 HG(φr)HG(ψs)

= (xr
1HG(φr))(x

s
1HG(ψs))

= HG(f )HG(g). ⊓⊔

In general, the kth elementary symmetric polynomial is given by

sk =
∑

i1<i2<···<ik

xi1xi2 · · · xik ,

where the sum is taken over all the
(
n
k

)
different systems of indices i1, . . . , ik with

i1 < i2 < · · · < ik . We need the following concerning the pieces of sk .

Lemma 6.3.3.2. In the highest piece ax
k1

1 . . . x
kn
n , a �= 0, of a symmetric polynomial

s(x1, . . . , xn) we have k1 ≥ k2 ≥ · · · ≥ kn.

Proof. Assume that ki < kj for some i < j . As a symmetric polynomial,

s(x1, . . . , xn) also must then contain the piece ax
k1

1 · · · xkj

i · · · xki

j · · · xkn
n , which is

higher than ax
k1

1 · · · xki

i · · · xkj

j · · · xkn
n , giving a contradiction. ⊓⊔

Lemma 6.3.3.3. The product s
k1−k2

1 s
k2−k3

2 · · · skn−1−kn

n−1 s
kn
n with k1 ≥ k2 ≥ · · · ≥ kn

has the highest piece x
k1

1 x
k2

2 · · · xkn
n .

Proof. From the definition of the elementary symmetric polynomials we have that

HG(st
k) = (x1x2 · · · xk)

t , 1 ≤ k ≤ n, t ≥ 1.

From Lemma 6.3.3.1,

HG
(
s
k1−k2

1 s
k2−k3

2 · · · skn−1−kn

n−1 skn
n

)

= x
k1−k2

1 (x1x2)
k2−k3 · · ·

(
x1 · · · xkn−1−kn

n−1

)
(x1 · · · xn)

kn

= x
k1

1 x
k2

2 · · · xkn
n . ⊓⊔
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We can now prove the fundamental theorem of symmetric polynomials.

Proof of Theorem 6.3.3.1. Let s(x1, . . . , xn) ∈ F [x1, . . . , xn] be a symmetric poly-

nomial. We must show that s(x1, . . . , xn) can be uniquely expressed as a polynomial

f (s1, . . . , sn) in the elementary symmetric polynomials s1, . . . , sn with coefficients

from F . We prove the existence of the polynomial f by induction on the size of the

highest piece. If in the highest piece of a symmetric polynomial all exponents are

zero, then it is constant, that is, an element of F , and there is nothing to prove.

Now we assume that each symmetric polynomial with highest piece smaller than

that of s(x1, . . . , xn) can be written as a polynomial in the elementary symmetric

polynomials. Let ax
k1

1 · · · xkn
n , a �= 0, be the highest piece of s(x1, . . . , xn). Let

t (x1, . . . , xn) = s(x1, . . . , xn) − as
k1−k2

1 · · · skn−1−kn

n−1 skn
n .

Clearly, t (x1, . . . , xn) is another symmetric polynomial, and from Lemma 6.3.3.3

the highest piece of t (x1, . . . , xn) is smaller than that of s(x1, . . . , xn). Therefore,

t (x1, . . . , xn) and hence s(x1, . . . , xn) = t (x1, . . . , xn)+as
k1−k2

1 · · · skn−1−kn

n−1 s
kn
n can

be written as a polynomial in s1, . . . , sn.

To prove the uniqueness of this expression assume that s(x1, . . . , xn) =
f (s1, . . . , sn) = g(s1, . . . , sn). Then f (s1, . . . , sn) − g(s1, . . . , sn) =
h(s1, . . . , sn) = φ(x1, . . . , xn) is the zero polynomial in x1, . . . , xn. Hence, if we

write h(s1, . . . , sn) as a sum of products of powers of the s1, . . . , sn, all coefficients

disappear because two different products of powers in the s1, . . . , sn have different

highest pieces. This follows from Lemma 6.3.3.3. Therefore, f and g are the same,

proving the theorem. ⊓⊔

From this theorem we obtain the following theorem, which is crucial in our study

of both algebraic numbers in general and algebraic integers.

Theorem 6.3.3.2. Let α be an algebraic number and α1, . . . , αn its set of conjugates

in C. Then any symmetric polynomial in α1, . . . , αn over Q is a rational number.

Proof. Since α is algebraic we have irr(α, Q) ∈ Q[x]. Since α1, . . . , αn are the

conjugates of α we have that irr(α, Q) splits in C as

irr(α, Q) = (x − α1)(x − α2) · · · (x − αn).

Therefore the coefficients of irr(α, Q) are up to ±1 precisely the elementary sym-

metric polynomials in the conjugates. Since irr(α, Q) ∈ Q[x] it follows then that

any elementary symmetric polynomial in the conjugates of α is a rational num-

ber and then Theorem 6.3.3.2 follows from the fundamental theorem of symmetric

polynomials. ⊓⊔

6.3.4 Discriminant and Norm

We introduce certain complex numbers that will be used to further describe both

algebraic numbers and algebraic number fields. We first must extend our definition

of conjugate.
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Let K = Q(θ) be an algebraic number field of degree n. Then K has precisely

n embeddings σi : K → C that fix Q. These can be defined by σi : 1 → 1, θ → θi ,

where θi is a conjugate of θ . Now let α ∈ K be of degree m. Since

|K : Q(α)||Q(α) : Q| = |K : Q|,

it follows that m|n. Let d = n
m

.

Definition 6.3.4.1. Let K be an algebraic number field of degree n and α ∈ K of

degree m. Then the set of conjugates of α for K is the set {σi(α)} where σi are the

n embeddings of K into C.

Lemma 6.3.4.1. Let K be an algebraic number field of degree n and α ∈ K of

degree m. Then the set of conjugates of α for K consists of the m distinct conjugates

of α in C each repeated d = n
m

times.

Proof. On the set of n embeddings K → C fixing Q define the relation σ ∼ τ if

σ(α) = τ(α). This is an equivalence relation (see the exercises). Each equivalence

class has size |K : Q(α)| = d and hence there are m of them. Since each σ(α) is a

conjugate of α in C it follows that the set {σi(α)} consists of the m conjugates of α

in C each repeated d times. ⊓⊔

Hence an α ∈ K always has n conjugates for K . By looking at degrees it follows

that these conjugates will be distinct if and only if K = Q(α). Next we define the

discriminant of a basis.

Definition 6.3.4.2. Let K be an algebraic number field of degree n and let α1, . . . , αn

be a basis for K over Q. For each αi let αij , j = 1, . . . , n be the n conjugates of αi

for K . Then the discriminant of the basis α1, . . . , αn is

�(α1, . . . , αn) = (det(αij ))
2 =

∣∣∣∣∣∣∣∣

α11 α12 . . . α1n

α21 α22 . . . α2n

. . .

αn1 αn2 . . . αnn

∣∣∣∣∣∣∣∣

2

.

Notice that if we change the ordering of the basis we interchange a column of

the matrix (αij ) and thus multiply the determinant by ±1. Hence by squaring the

determinant the value remains the same. Therefore the discriminant of a basis is

independent of the ordering. Second, notice that if β1, . . . , βn is another basis then

�(β1, . . . , βn) = |(cij )|2�(α1, . . . , αn),

where (cij ) is the transition matrix. Therefore the discriminant of any basis has the

same sign. We show below that the discriminant is a rational number.

Theorem 6.3.4.1. Let K = Q(α) be an algebraic number field. Then the discriminant

of any basis is rational and nonzero.
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Proof. Now, �(α1, . . . , αn) is a symmetric function of α1, . . . , αn and their con-

jugates, so by the results of the last section it follows that the discriminant is

rational.

Since K = Q(α), it has a basis of the form 1, α, . . . , αn−1. If αi is a conjugate

of α then α
j
i is a conjugate of αj . Therefore if α1 = α, . . . , αn are the conjugates of

α for K we have

�(1, α, . . . , αn−1) =

∣∣∣∣∣∣∣∣

1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

. . .

1 αn α2
n . . . αn−1

n

∣∣∣∣∣∣∣∣

2

.

This determinant is called the Vandermonde determinant and can be shown to have

the value (see the exercises)

V (α) =

∣∣∣∣∣∣∣∣

1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

. . .

1 αn α2
n . . . αn−1

n

∣∣∣∣∣∣∣∣
=

∏

i<j

(αj − αi).

Since the elements of a basis are all distinct it follows that V (α) �= 0, so that

�(1, α, . . . , αn−1) �= 0. Since the discriminant of one basis is nonzero the

discriminant of any basis is nonzero, completing the theorem. ⊓⊔

As part of our discussion of algebraic integers in the next section we will look at

bases that have minimal discriminant and from these define the discriminant not only

of a particular basis but as an invariant of the whole field K .

We next define two further concepts.

Definition 6.3.4.3. Suppose α ∈ K , where K is an algebraic number field of

degree n. Let

α1 = σ1(α), . . . , αn = σn(α)

be the conjugates of α for K , where the σi are the n embeddings of K into C. Then

the norm of α in K is

NK(α) = α1α2 · · · αn.

This definition agrees with our previous definition of norm in Z[i]. If α ∈ Z[i] ⊂
Q(i) = K then its conjugate for K is precisely its complex conjugate α. To see this

notice that if α = a+bi ∈ Z[i] then p(α) = 0, where p(x) = (x−α)(x−α) ∈ Q[x].
If α /∈ Z then p(x) = irr(α, Q). Hence NK(α) = αα = a2 + b2, which agrees with

the previous definition. We will discuss quadratic integers and their norms more

completely in the next section. In Z[i] the norm was multiplicative and always had

rational value. In general, we have the following.

Lemma 6.3.4.2.

(1) NK(α) is a rational number for α ∈ K .

(2) If α, β are in the algebraic number field K , then NK(αβ) = NK(α)NK(β).
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Proof. If α1, . . . , αn are the conjugates of α for K , then the norm NK(α) is a

symmetric function of α1, . . . , αn and hence rational.

If β1, . . . , βn are the conjugates of β for K then α1β1, . . . , αnβn are the conjugates

of αβ for K . It follows that NK(αβ) = NK(α)NK(β). ⊓⊔

Finally, if α ∈ K for an algebraic number field K we define the trace of α in K

as trK(α) = α1 + · · · + αn, where α1 = σ1(α), . . . , αn = σn(α) are the conjugates

of α for K .

Now let K = Q(θ) be an algebraic number field of degree n. For α ∈ K define

the mapping Tα : K → K by

Tα(x) = αx.

This is a linear transformation of the n-dimensional Q-vector space K (see the exer-

cises) and therefore is given by an n × n matrix. This matrix is related to the trace

and norm in the following manner.

Theorem 6.3.4.2. Let K = Q(θ) be an algebraic number field of degree n and let

α ∈ K . Then if Tα is the linear transformation defined above,

(1) NK(α) = det(Tα),

(2) trK(α) = tr(Tα).

Let fα(t) = det(tI − Tα) be the characteristic polynomial of Tα and let pα(t) =
irr(α, Q). Theorem 6.3.4.2 will then follow from the next two lemmas. Notice that

the multiplicativity of the norm and the additivity of the trace follow directly from

this matrix formulation.

Lemma 6.3.4.4. Let K be an algebraic number field of degree n and α ∈ K of

degree m. Let d = n
m

and suppose that fα(t) and pα(t) are as above. Then

fα(t) = (pα(t))d .

Proof. Let pα(t) = tm + cm−1t
m−1 + · · · + c0. Now {1, α, α2, . . . , αm−1} is a basis

for Q(α) over Q. Let α1, . . . , αd be a basis for K over Q(α). Then

{α1, α1α, . . . , α1α
m−1, . . . , αdαm−1}

is a basis of K over Q. The matrix of the linear transformation Tα with respect to this

basis has the form ⎛
⎜⎜⎝

M 0 . . .

0 M . . .

. . . . . . 0

. . . 0 M

⎞
⎟⎟⎠ ,

where

M =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2

. . .

0 0 . . . 1 −cn−1

⎞
⎟⎟⎟⎟⎠

.
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The characteristic polynomial of M is

det(tI − M) = tm + cm−1t
m−1 + · · · + c0 = pα(t).

Then from the form of the matrix for Tα we have fα(t) = (pα(t))d . ⊓⊔

Lemma 6.3.4.5. Let σ run through all the embeddings of K into C that fix Q. Then

(1) fα(t) =
∏

σ (t − σ(α)),

(2) trK(α) =
∑

σ σ(α),

(3) NK(α) =
∏

σ σ(α).

Proof. As before, the embeddings of K into C fall into m equivalence classes. Let

σ1, . . . , σm be a set of representatives. Then

pα(t) =
m∏

i=1

(t − σi(α)),

and from the previous lemma,

fα(t) =
(

m∏

i=1

(t − σi(α))

)d

=
m∏

i=1

∏

σ∼σi

(t − σ(α)) =
∏

σ

(t − σ(α)).

This proves part (1). The other two parts follow directly from the definitions of trace

and norm in terms of Tα . ⊓⊔

6.4 Algebraic Integers

We now look at integers in an algebraic number field.

Definition 6.4.1. An algebraic integer is a complex number α that is a root of a

monic integral polynomial. That is, α ∈ C is an algebraic integer if there exists

f (x) ∈ Z[x] with f (x) = xn + bn−1x
n−1 + · · · + b0, bi ∈ Z, n ≥ 1, and f (α) = 0.

An algebraic integer is clearly an algebraic number. Hence there exists p(x) =
irr(α, Q).

Lemma 6.4.1. If α ∈ C is an algebraic integer, then all its conjugates, α1, . . . , αn,

over Q are also algebraic integers.

Proof. Let f (x) ∈ Z[x] be a monic polynomial with f (α) = 0. Let p(x) =
irr(α, Q). Let α1, . . . , αn be the conjugates of α. Since p(x) = irr(α, Q) =
irr(αi, Q) = pαi

(x), for i = 1, . . . , n we have pαi
(x)|f (x) for i = 1, . . . , n. Hence

f (αi) = 0 for i = 1, . . . , n. ⊓⊔

Lemma 6.4.2. α ∈ C is an algebraic integer if and only if irr(α, Q) ∈ Z[x].
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Proof. If irr(α, Q) ∈ Z[x] then α is an algebraic integer directly from the definition.

To prove the converse we need the concept of a primitive integral polynomial.

This is a polynomial p(x) ∈ Z[x] such that the GCD of all its coefficients is 1. The

following can be proved (see the exercises):

(1) If f (x) and g(x) are primitive, then so is f (x)g(x).

(2) If f (x) ∈ Z[x] is monic, then it is primitive.

(3) If f (x) ∈ Q[x], then there exists a rational number c such that f (x) = cf1(x)

with f1(x) primitive.

Now suppose f (x) ∈ Z[x] is a monic polynomial with f (α) = 0. Let p(x) =
irr(α, Q). Then p(x) divides f (x) so f (x) = p(x)q(x).

Let p(x) = c1p1(x) with p1(x) primitive and let q(x) = c2q2(x) with q2(x)

primitive. Then

f (x) = cp1(x)q1(x).

Since f (x) is monic, it is primitive, and hence c = 1, so f (x) = p1(x)q1(x).

Since p1(x) and q1(x) are integral and their product is monic they both must be

monic. Since p(x) = c1p1(x) and they are both monic it follows that c1 = 1 and

hence p(x) = p1(x). Therefore p(x) = irr(α, Q) is integral. ⊓⊔

We now show the close ties between algebraic integers and rational integers.

Lemma 6.4.3. If α is an algebraic integer and also rational then it is a rational

integer.

Proof. If α ∈ Q then irr(α, Q) = x − α. But if α is also an algebraic integer, then

irr(α, Q) ∈ Z[x]. Hence x − α ∈ Z[x] and so α ∈ Z. ⊓⊔

The following ties algebraic numbers in general to corresponding algebraic inte-

gers. Notice that if q ∈ Q then there exists a rational integer n such that nq ∈ Z.

This result generalizes this simple idea.

Theorem 6.4.1. If θ is an algebraic number then there exists a rational integer r �= 0

such that rθ is an algebraic integer.

Proof. Since θ is an algebraic number there exists a p(x) ∈ Z[x] with p(θ) = 0.

Suppose p(x) = anx
n + an−1x

n−1 + · · · + a0 with ai ∈ Z. Then

anθ
n + an−1θ

n−1 + · · · + a0 = 0.

Let ζ = anθ . Then

ζ n + an−1ζ
n−1 + anan−2ζ

n−2 + · · · + an−1
n a0 = 0.

Let p(x) = xn + an−1x
n−1 + anan−2x

n−2 + · · · + an−1
n a0. Then from the above,

p(ζ ) = 0 and therefore ζ = anθ is an algebraic integer. ⊓⊔
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6.4.1 The Ring of Algebraic Integers

We saw that the set A of all algebraic numbers is a subfield of C. We now show

that the set I of all algebraic integers forms a subring of A. First an extension of the

following result on algebraic numbers.

Lemma 6.4.1.1. Suppose {α1, . . . , αn} is the set of conjugates over Q of an algebraic

integer α. Then any integral symmetric function of α1, . . . , αn is a rational integer.

Proof. We have irr(α, Q) = (x − α1) · · · (x − αn) ∈ Z[x]. Hence the elementary

symmetric functions are rational integers. It follows from the fundamental theorem

of symmetric polynomials that any integral symmetric function is also a rational

integer. ⊓⊔

Theorem 6.4.1.1. The set I of all algebraic integers forms a subring of A.

Proof. Clearly it suffices to show that if α, β are algebraic integers then so are α ±
β and αβ. Let α1 = α, . . . , αn be the conjugates of α and β1 = β, . . . , βm the

conjugates of β. Let

f (x) =
n∏

i=1

m∏

j=1

(x − (αi + βj )) = xn+m + dn+m−1x
n+m−1 + · · · + d0.

The coefficients dk are symmetric functions in αi, βj , and therefore from the remarks

above we have dk ∈ Z. It follows that f (x) ∈ Z[x] and f (α + β) = 0. Therefore,

α + β is an algebraic integer. We treat α − β and αβ analogously. ⊓⊔

We note that A, the field of algebraic numbers, is precisely the field of quotients

of the ring of algebraic integers.

Now let K = Q(θ) be an algebraic number field and let OK = K ∩ I . Then

OK forms a subring of K called the algebraic integers or just integers of K . Further

analysis of the proof of Theorem 6.4.1 shows that each β ∈ K can be written as

β = α

r

with α ∈ OK and r ∈ Z.

We now look at the norms of algebraic integers.

Lemma 6.4.1.2. If α is an algebraic integer then N(α) is a rational integer.

Proof. N(α) = α1 · · · αn, where α1 = σ1(α), . . . , αn = σn(α) are the conjugates

of α for K . But this is an integral symmetric function of the conjugates and so by

Lemma 6.4.1.1 it is a rational integer. ⊓⊔

Lemma 6.4.1.3. Let K = Q(θ) be an algebraic number field. Then α is a unit in Ok

if and only if N(α) = ±1.
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Proof. If αβ = 1 then 1 = N(αβ) = N(α)N(β). But N(α), N(β) are rational

integers so |N(α)| = |N(β)| = 1.

Conversely, suppose N(α) = ±1. Then if α = α1,

α1 · · · αn = 1 =⇒ α1(α2 · · · αn) = 1

Since K is a field, α−1
1 = α2 · · · αn ∈ K . But α2 · · · αn is an algebraic integer, so

α2 · · · αn ∈ OK . Hence α is a unit in OK . ⊓⊔

Based on the multiplicativity of the norm we obtain prime factorizations (not

necessarily unique) in any algebraic number ring OK . Notice first that there are no

primes at all in I , the set of all algebraic integers. If α ∈ I then α = √
α
√

α,

where
√

α ∈ C. However, if p(α) = 0 for p(x) ∈ Z[x], then p1(
√

α) = 0, where

p1(x) = p(x2). Hence
√

α is also an algebraic integer. Since this is true for any

α ∈ I there is always a nontrivial factorization and hence α cannot be prime.

From now on K will denote an algebraic number field and OK its ring of integers.

Lemma 6.4.1.4. If α ∈ OK and N(α) = p, where p is a rational prime then α is a

prime in OK .

Proof. Suppose α = βγ . Then N(α) = N(β)N(γ ). Since all are rational integers

and N(α) is prime we must have either |N(β)| = 1 or |N(γ )| = 1, from which it

follows that either β or γ is a unit. ⊓⊔

Theorem 6.4.1.2. Let K be an algebraic number field and OK its ring of integers.

Then each α ∈ OK is either 0, a unit, or can be factored into a product of primes.

Proof. Suppose α �= 0 is not a unit. Then N(α) �= 1. We do an induction on

|N(α)|. If |N(α)| = 2, then α is prime from Lemma 6.4.1.4. Suppose |N(α)| > 2.

If α = βγ , then if neither β nor γ is a unit, it follows that |N(β)| < |N(α)| and

|N(γ )| < |N(α)|. From the inductive hypothesis it follows that both β and γ have

prime factorizations and hence so does α. ⊓⊔

We stress again that the prime factorization need not be unique. However. from

the existence of a prime factorization we can mimic Euclid’s original proof (see

Chapter 2) to obtain the following.

Corollary 6.4.1.1. There exist infinitely many primes in OK for any algebraic number

ring OK .

6.4.2 Integral Bases

If K has degree n over Q, we show that there exist ω1, . . . , ωn in OK such that each

α ∈ OK is expressible as

α = m1ω1 + · · · + mnωn,

where m1, . . . , mn ∈ Z.
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Definition 6.4.2.1. An integral basis for OK is a set of integers ω1, . . . , ωt ∈ OK

such that each α ∈ OK can be expressed uniquely as

α = m1ω1 + · · · + mtωt ,

where m1, . . . , mt ∈ Z.

We show first that there must exist an integral basis.

Theorem 6.4.2.1. Let OK be the ring of integers in the algebraic number field K of

degree n over Q. Then there exists at least one integral basis for OK .

Proof. Since K has degree n there is a basis ω1, . . . , ωn for K over Q. Each ωi

is algebraic, so by Theorem 6.4.1 for each i there is a rational integer ri such that

riωi ∈ OK . Multiplying through by a large enough rational integer r we would have

rω1, . . . , rωn all in OK . These are clearly still independent, so they still constitute

a vector space basis of K over Q. It follows that K has bases (as a vector space)

that are all integers in OK . Further, if ω1, . . . , ωn is such a basis for K all in OK

then the discriminant of this basis �(ω1, . . . , ωn) must be a rational integer since the

discriminant is a symmetric polynomial over Z of its arguments.

Among all bases of K that are in OK choose one, say ω1, . . . , ωn, with

|�(ω1, . . . , ωn)| minimal. This exists since these values are positive rational integers.

We claim that this is an integral basis for OK .

Let α ∈ OK . Since α ∈ K and ω1, . . . , ωn is a basis over Q,

α = q1ω1 + · · · + qnωn

with qi ∈ Q. We show that each qi must be a rational integer. Suppose that q1 is not

rational. Then q1 = m1 + r1 with m1 ∈ Z and 0 < r1 < 1. Consider now the set

ω⋆
1, . . . , ω

⋆
n, where

ω⋆
1 = (q1 − m1)ω1 + q2ω2 + · · · + qnωn,

ω⋆
i = ωi if i �= 1.

The transition matrix from ω1, . . . , ωn to ω⋆
1, . . . , ω

⋆
n is

C =

⎛
⎜⎜⎝

q1 − m1 q2 . . . qn

0 . . . . . .

. . .

. . . 1

⎞
⎟⎟⎠ .

This has determinant q1 − m1 = r1 > 0, so ω⋆
1, . . . , ω

⋆
n is another basis consisting

solely of integers. Its discriminant is given by

�(ω⋆
1, . . . , ω

⋆
n) = r2

1�(ω1, . . . , ωn).

Since r1 < 1 this implies that

|�(ω⋆
1, . . . , ω

⋆
n)| < |�(ω1, . . . , ωn)|,

contradicting the minimality of |�(ω1, . . . , ωn)|. Therefore r = 0 and q1 = m1 ∈ Z.

The other coefficients follow in the same manner. ⊓⊔
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Therefore OK has at least one integral basis. We next show that the cardinality of

any integral basis is the same as the degree of K .

Theorem 6.4.2.2. Let OK be the ring of integers in the algebraic number field K of

degree n over Q. Then any integral basis for OK is also a basis for K over Q. Hence

the cardinality of any integral basis is the same as the degree of K . Further, all

integral bases have the same discriminant.

Proof. Let ω1, . . . , ωt be an integral basis and suppose α ∈ K . Then there exists an

r ∈ Z, r �= 0, with rα ∈ OK . Hence

rα = m1ω1 + · · · + mtωt with mi ∈ Z.

Then

α = m1

r
ω1 + · · · + mt

r
ωt .

Therefore ω1, . . . , ωt span K as a vector space over Q. We must show that they are

independent over Q.

Suppose q1ω1 + · · · + qtωt = 0. Then multiplying through by the LCM of the

denominators of the qi , we obtain m1ω1 + · · · + mtωt = 0 for some mi ∈ Z. Since

ω1, . . . , ωt is an integral basis it follows that each mi = 0. But then each qi = 0 and

therefore ω1, . . . , ωt are independent and hence form a basis.

It then follows that t = n, where n = |K : Q|.
Now let ω1, . . . , ωn and ζ1, . . . , ζn be two integral bases. Their transition matrix

C = (cij ) is rational integral and

�(ω1, . . . , ωn) = |(cij )|2�(ζ1, . . . , ζn).

It follows that �(ω1, . . . , ωn) divides �(ζ1, . . . , ζn). Reversing the roles, we

get that �(ζ1, . . . , ζn) divides �(ω1, . . . , ωn) and therefore �(ω1, . . . , ωn) =
�(ζ1, . . . , ζn). ⊓⊔

Definition 6.4.2.2. The discriminant dK of an algebraic number field K is the

common value of the discriminants of all integral bases of its ring of integers OK .

For some later work in Section 6.4, we need the following result, whose proof we

will give in Section 6.5 after we introduce some material on ideals.

Theorem 6.4.2.3. If K has degree n over Q then each ideal I ⊂ OK has an integral

basis of rank n. That is, there exist ω1, . . . , ωn ∈ I such that any α ∈ I can be

expressed uniquely as

α = m1ω1 + · · · + mnωn

with mi ∈ Z. In particular, any ideal in I is finitely generated of rank ≤ n.

In particular, this implies that the index [OK : I ] is finite. Then for an ideal I in

OK , we define the discriminant d(I ) of I analogously via an integral basis of I . This

certainly exists, and the value d(I ) is independent of the chosen integral basis of I .

Since the index [Ok : I ] is finite, we have d(I ) = [OK : I ]2dK .
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6.4.3 Quadratic Fields and Quadratic Integers

We now look more closely at quadratic fields. These are algebraic number fields

K of degree 2. The Gaussian rationals Q(i) are an example. Let K = Q(θ) with

|K : Q| = 2. Then θ satisfies a degree 2 integral polynomial p(x) = ax2+bx+c. Let

d = b2 − 4ac be the discriminant of this polynomial. Then clearly Q(
√

d) ⊂ Q(θ)

and hence if d is not a perfect square it follows by degrees that Q(
√

d) = Q(θ).

Further, if d = m2d1 then Q(
√

d) = Q(
√

d1). It follows from these comments that

any quadratic field K has the form Q(
√

d) for some square-free integer d . In the

following we always consider d to be square-free. If d > 0 then K is called a real

quadratic field, while if d < 0 it is an imaginary quadratic field. In both cases

{1,
√

d} is a basis for K over Q.

The integers in Q(
√

d) are called quadratic integers and we characterize them.

Suppose α ∈ OK is a quadratic integer. Since α ∈ K we have α = q1 +q2

√
d . Since

irr(α, Q) is a monic rational integral polynomial of degree 2 we have

irr(α, Q) = (x − α)(x − α) = x2 − (α + α)x + αα ∈ Z[x],

where α = q1 − q2

√
d . It follows that α ∈ OK if and only if its trace and norm are

both rational integers:

trK(α) = α + α = 2q1 ∈ Z,

NK(α) = αα = q2
1 − dq2

2 ∈ Z.

Now

(2q2)
2d = (2q1)

2 − 4(q2
1 − q2

2d) ∈ Z =⇒ 2q2 ∈ Z.

Therefore q1 = m
2
, q2 = n

2
for rational integers m, n and

α = m + n
√

d

2
with m, n ∈ Z.

Further,

m2 − n2d ≡ 0 mod 4.

If d ≡ 2 mod 4 or d ≡ 3 mod 4, this congruence is solved only if m, n are even or,

equivalently, q1, q2 ∈ Z.

If d ≡ 1 mod 4 then m2 − dn2 ≡ 0 mod 4 is equivalent to m ≡ n mod 2.

It follows that the integers in OK can be described by the following:

(1) m + n
√

d with m, n ∈ Z.

(2) If d ≡ 1 mod 4 but not otherwise, also m+n
√

d
2

with m, n odd rational integers.

From this characterization it follows that if d is not congruent to 1 mod 4, every

integer in OK can be written as m + n
√

d with m, n ∈ Z. In other words {1,
√

d} is

an integral basis.

If d ≡ 1 mod 4 let ω = 1+
√

d
2

. Then from the characterization every integer in

Ok is uniquely of the form m + nω, m, n ∈ Z and so {1, ω} is an integral basis (see

exercises). We summarize all this discussion in the next theorem.
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Theorem 6.4.3.1. Let K be a quadratic field. Then we have the following:

(1) K = Q(
√

d) for some square-free rational integer d .

(2) The integers in K can be characterized as follows:

(a) m + n
√

d with m, n ∈ Z.

(b) If d ≡ 1 mod 4 but not otherwise, also m+n
√

d
2

with m, n odd rational

integers.

(3) An integral basis for OK is given by

(a) {1,
√

d} if d ≡ 2 mod 4 or d ≡ 3 mod 4;
(b) {1, ω}, where ω = 1+

√
d

2
if d ≡ 1 mod 4.

(4) The discriminant of K = Q(
√

d) is

(a) 4d if d ≡ 2, 3 mod 4;
(b) d if d ≡ 1 mod 4.

Proof. Everything was explained prior to the theorem except part (4). If d ≡ 2, 3

mod 4 then {1,
√

d} is an integral basis. Then

�(1,
√

d) =
∣∣∣∣
1

√
d

1 −
√

d

∣∣∣∣
2

= 4d.

If d ≡ 1 mod 4 then {1, ω} is an integral basis and

�(1, ω) =
∣∣∣∣∣
1 1+

√
d

2

1 1−
√

d
2

∣∣∣∣∣

2

= d. ⊓⊔

Theorem 6.4.3.2. Suppose that K = Q(
√

d) with d < 0 and d square-free is a

quadratic imaginary number field. If d �= −1, −3 then the only units in OK are ±1.

If d = −1 the units are ±1, ±i, while if d = −3 the units are ±1, ±ω, ±ω, where

ω = 1+i
√

3
2

.

Proof. As we have seen, α ∈ OK is a unit if and only |N(α)| = 1. Let α be a

unit in OK . Then α = x + y
√

d or α = x+y
√

d
2

and then N(α) = x2 − dy2 or

N(α) = x2−dy2

4
.

Since d < 0, x2 − dy2 ≥ 0. If d < −1 and d is not congruent to 1 mod 4 the

only solutions to x2 − dy2 = 1 are x = ±1, y = 0.

Our analysis of the Gaussian integers showed that if d = −1 then ±i are also

units.

If d < −3 then the only solutions to x2 − dy2 = 4 are x = ±2, again giving the

result.

Finally, if d = −3 we see by computation that ±ω and ±ω are also units (see

exercises and note that ω3 = 1). ⊓⊔

Theorem 6.4.3.3. In any real quadratic field there are infinitely many units.
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Proof. The equation x2−dy2 = 1 for d > 0 and x, y ∈ Z is called Pell’s equation. If

d > 1, in Section 6.4.6 we will show that this equation has infinitely many solutions.

Since α = x + y
√

d is an integer in OK with N(α) = 1 it follows that OK has

infinitely many units. ⊓⊔

In the real quadratic case the units can be built up from one special unit called a

fundamental unit.

Theorem 6.4.3.4. Suppose K = Q(
√

d) with d > 0 and square-free. Then in Ok

there exists a special unit, ǫd , called the fundamental unit, such that all units in OK

are given by

μ = ±ǫn
d , n = 0, ±1, ±2, . . . .

This is a special case of a general result called Dirichlet’s unit theorem, which we

will present in Section 6.4.6.

Now, what can be said about primes and prime factorization for quadratic integers?

We saw in Section 6.4.2 that there is always a prime factorization. However, our

example in Q(
√

5) shows that this is not always unique. Since there is a norm in

every OK the first question to ask is when this is a Euclidean norm or, equivalently,

which OK are Euclidean domains. From the results in Section 6.2, this would imply

unique factorization. We have already seen that the Gaussian integers are Euclidean.

We state several results concerning these questions.

Theorem 6.4.3.5. Suppose K = Q(
√

d) with d < 0 and square-free is a quadratic

imaginary number field. Then OK is Euclidean if and only if d = −1, −2,

−3, −7, −11.

The rings O−1, O−2, O−3, O−7, O−11 are called the Euclidean quadratic imag-

inary number rings. They and matrix groups with entries from them have been

investigated extensively (see [F] and [FR 1]).

In the real case we have the following.

Theorem 6.4.3.6. The real quadratic fields K = Q(
√

d) for which OK is Euclidean

are for

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Recall from Section 6.2.3 that being a principal ideal domain always implies

unique factorization. It was conjectured by Gauss and finally proven in several

results by Heegner, Baker, and Stark that are only finitely many imaginary quadratic

number fields whose integer rings are principal ideal domains.

Theorem 6.4.3.7. Suppose K = Q(
√

d) with d < 0 is a quadratic imaginary number

field. Then OK is a principal ideal domain if and only if

d = −1, −2, −3, −7, −11, −19, −43, −67, −163.
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It has been conjectured that there are infinitely many real quadratic fields whose

integral rings are principal ideal domains.

In the case that OK does have unique factorization we can analyze the primes

exactly as we analyzed the Gaussian primes in Theorem 6.2.1.4. We state the

following and leave the proof to the exercises.

Theorem 6.4.3.8. Suppose K is a quadratic field and suppose OK is a unique

factorization domain. Then we have the following:

(1) To each prime π ∈ OK , there corresponds one and only one rational prime p

such that π |p.

(2) Any rational prime p is either a prime in OK or a product π1π2 of two primes

(not necessarily distinct) from OK . In this case if π1 �= π2, we say p is decomposed.

If π1 = π2, so that p = π2, we say the rational prime is ramified.

(3) All primes in OK are either rational primes or one of two factors of rational

primes (and their associates).

6.4.4 The Transcendence of e and π

There are infinitely many transcendental numbers (see Section 6.3.2). However, the

only particular number that we have exhibited as transcendental is

c =
∞∑

j=1

1

10j ! .

Here we show that the fundamental constants e and π are also transcendental. The

transcendence of e was established first by Hermite in 1873, while Lindemann in

1881 proved the transcendence of π .

Theorem 6.4.4.1. e is a transcendental number, that is, transcendental over Q.

Proof. We use some complex analysis. Let f (x) ∈ R[x] with the degree of f (x) =

m ≥ 1. Let z1 ∈ C, z1 �= 0, and γ : [0, 1] → C, γ (t) = tz1. Let

I (z1) =
∫

γ

ez1−zf (z)dz =
(∫ z1

0

)

γ

ez1−zf (z)dz.

By
( ∫ z1

0

)
γ

we mean the integral from 0 to z1 along γ . Recall that

(∫ z1

0

)

γ

ez1−zf (z)dz = −f (z1) + ez1f (0) +
(∫ z1

0

)

γ

ez1−zf ′(z)dz.

It follows then by repeated partial integration that

(1) I (z1) = ez1
∑m

j=0 f (j)(0) −
∑m

j=0 f (j)(z1).

Let |f |(x) be the polynomial that we get if we replace the coefficients of f (x) by

their absolute values. Since |ez1−z| ≤ e|z1−z| ≤ e|z1|, we get
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(2) |I (z1)| ≤ |z1|e|z1||f |(|z1|).

Now assume that e is an algebraic number, that is,

(3) q0 + q1e + · · · + qne
n = 0 for n ≥ 1 and integers q0 �= 0, q1, . . . , qn, and the

greatest common divisor of q0, q1, . . . , qn, is equal to 1.

We consider now the polynomial f (x) = xp−1(x − 1)p · · · (x − n)p with p a

sufficiently large prime number, and we consider I (z1)with respect to this polynomial.

Let

J = q0I (0) + q1I (1) + · · · + qnI (n).

From (1) and (3) we get that

J = −
m∑

j=0

n∑

k=0

qkf
(j)(k),

where m = (n + 1)p − 1 since (q0 + q1e + · · · + qne
n)
(∑m

j=0 f (j)(0)
)

= 0.

Now, f (j)(k) = 0 if j < p, k > 0, and if j < p − 1 then k = 0, and hence

f (j)(k) is an integer that is divisible by p! for all j, k except for j = p − 1, k = 0.

Further, f (p−1)(0) = (p − 1)!(−1)np(n!)p, and hence if p > n, then f (p−1)(0) is an

integer divisible by (p − 1)! but not by p!.
It follows that J is a nonzero integer that is divisible by (p − 1)! if p > |q0| and

p > n. So let p > n, p > |q0|, so that |J | ≥ (p − 1)!.
Now, |f |(k) ≤ (2n)m. Together with (2) we then get that

|J | ≤ |q1|e|f |(1) + · · · + |qn|nen|f |(n) ≤ cp

for a number c independent of p. It follows that

(p − 1)! ≤ |J | ≤ cp,

that is,

1 ≤ |J |
(p − 1)! ≤ c

cp−1

(p − 1)! .

This gives a contradiction, since cp−1

(p−1)! → 0 as p → ∞. Therefore, e is

transcendental. ⊓⊔

We now move on to the transcendence of π . Recall first from the proof of

Theorem 6.4.1 that if α ∈ C is an algebraic number and f (x) = anx
n + · · · + a0,

n ≥ 1, an �= 0, and all ai ∈ Z with f (α) = 0, then anα is an algebraic integer.

Theorem 6.4.4.2. π is a transcendental number, that is, transcendental over Q.
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Proof. Assume that π is an algebraic number. Then θ = iπ is also algebraic. Let

θ1 = θ, θ2, . . . , θd be the conjugates of θ . Suppose

p(x) = q0 + q1x + · · · + qdxd ∈ Z[x], qd > 0, and gcd(q0, . . . , qd) = 1

is the entire minimal polynomial of θ over Q. Then θ1 = θ, θ2, . . . , θd are the zeros

of this polynomial. Let t = qd . Then from the discussion above tθi is an algebraic

integer for all i. From eiπ + 1 = 0 and from θ1 = iπ we get that

(1 + eθ1)(1 + eθ2) · · · (1 + eθd ) = 0.

The product on the left side can be written as a sum of 2d terms eφ , where

φ = ǫ1θ1 + · · · + ǫdθd , ǫj = 0 or 1. Let n be the number of terms ǫ1θ1 + · · · + ǫdθd

that are nonzero. Call these α1, . . . , αn. We then have an equation

(4) q + eα1 + · · · + eαn = 0 with q = 2d − n > 0. Recall that all tαi are algebraic

integers. We consider the polynomial

f (x) = tnpxp−1(x − α1)
p · · · (x − αn)

p

with p a sufficiently large prime integer. We have f (x) ∈ R[x], since the αi are

algebraic numbers and the elementary symmetric polynomials in α1, . . . , αn are

rational numbers.

Let I (z1) be defined as in the proof of Theorem 6.4.4.1, and now let

J = I (α1) + · · · + I (αn).

From (1) in the proof of Theorem 6.4.4.1 and (4) we get

J = −q

m∑

j=0

f (j)(0) −
m∑

j=0

n∑

k=1

f (j)(αk),

with m = (n + 1)p − 1.

Now,
∑n

k=1 f (j)(αk) is a symmetric polynomial in tα1, . . . , tαn with integer

coefficients since the tαi are algebraic integers. It follows from the main theorem on

symmetric polynomials that
∑m

j=0

∑n
k=1 f (j)(αk) is an integer. Further, f (j)(αk) =

0 for j < p. Hence
∑m

j=0

∑n
k=1 f (j)(αk) is an integer divisible by p!.

Now, f (j)(0) is an integer divisible by p! if j �= p − 1 and f (p−1)(0) = (p −
1)!(−t)np(α1 · · · αn)

p is an integer divisible by (p − 1)! but not divisible by p! if p

is sufficiently large. In particular, this is true if p > |tn(α1 · · · αn)| and also p > q.

From (2) in the proof of Theorem 6.4.4.1, we get that

|J | ≤ |α1|e|α1||f |(|α1|) + · · · + |αn|e|αn||f |(|αn|) ≤ cp

for some number c independent of p.
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As in the proof of Theorem 6.4.4.1, this gives us

(p − 1)! ≤ |J | ≤ cp,

that is,

1 ≤ |J |
(p − 1)! ≤ c

cp−1

(p − 1)! .

This as before gives a contradiction, since cp−1

(p−1)! → 0 as p → ∞. Therefore, π

is transcendental. ⊓⊔

6.4.5 The Geometry of Numbers: Minkowski Theory

We consider some ties between algebraic integers and the geometry of real n-space.

Definition 6.4.5.1. Let V be an n-dimensional vector space over the real numbers R.

A lattice in V is a subgroup of the form

Ŵ = {m1v1 + · · · + mkvk; mi ∈ Z}

with v1, . . . , vk linearly independent vectors of V .

The k-tuple {v1, . . . , vk} is called a basis and the set

φ = {x1v1 + · · · + xkvk; xi ∈ R, 0 ≤ x1 < 1}

is a fundamental mesh of the lattice.

The lattice is complete if k = n.

As an example consider the lattice given by the Gaussian integers in real 2-space.

Here V = R2, Ŵ = Z + Zi = Z[i] and the fundamental mesh is

φ = {x + iy; 0 ≤ x < 1, 0 ≤ y < 1}.

Now suppose V is a real Euclidean space, that is, a finite-dimensional R-vector

space with an inner product, that is, a symmetric, positive definite bilinear form

〈, 〉 : V × V → R.

On such a V we can define a volume. The cube spanned by the standard orthonormal

basis e1, . . . , en has volume 1 and, more generally, the parallelopiped

φ = {x1v1 + · · · + xnvn xi ∈ R, 0 ≤ xi < 1}

spanned by the independent set of vectors v1, . . . , vn has a volume given by

vol(φ) = | det(A)|,
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where A = (aij ) is the transition matrix from the basis e1, . . . , en to the basis

v1, . . . , vn, that is,

vi =
n∑

i=1

aij ej .

As an example, if we use the ordinary Euclidean inner product on Rn, then

vol(φ) = λ(φ),

where λ is Lebesgue measure.

Further, we have vol(φ) = | det(〈vi, vj 〉)|
1
2 since

(〈vi, vj 〉) =

⎛
⎝∑

k,l

aikaj l〈ek, ej 〉

⎞
⎠ =

(
∑

k

aikajk

)
= AAt .

Let Ŵ be the lattice spanned by v1, . . . , vn. If φ is the fundamental mesh, then we

define

vol(Ŵ) = vol(φ).

This definition is independent of the choice of basis v1, . . . , vn for the lattice because

the transition matrix to another basis for the lattice is from GL(n, Z).

Now let K be an algebraic number field with |K : Q| = n. Then there are n

different embeddings of K into C that fix Q. Call these τ1, . . . , τn. Of these, some

are real and some are nonreal. Let ρ1, . . . , ρr be the real embeddings K → C. The

nonreal complex embeddings K → C are given in pairs σ1, σ1, . . . , σs, σs , where σi

is the complex conjugate of the mapping σi . Altogether we have n = r + 2s.

For each pair σi, σi we choose a fixed nonreal embedding and call this just σi .

We define for a ∈ K the map f : K → Rn by

f (a) = (ρ1(a), . . . , ρr(a), Re(σ1(a)), . . . , Re(σs(a)), Im(σ1(a)), . . . , Im(σs(a))).

Further, we define

〈a, b〉 =
r∑

i=1

ρi(a)ρi(b) + 2

s∑

i=1

Re(σi(a)) Re(σi(b)) + 2

s∑

i=1

Im(σi(a)) Im(σi(b)).

We may extend this to an inner product on Rr+2s . For the following we consider the

metric defined by this inner product.

Theorem 6.4.5.1. If I �= 0 is an ideal in OK then Ŵ = f (I) is a complete lattice in

Rr+2s with

vol(Ŵ) =
√

|dK |[OK : I ],

where dK is the discriminant of K .
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Proof. Let α1, . . . , αn be an integral basis for I such that

Ŵ = Zf (α1) + · · · + Zf (αn).

We number the embeddings τ : K → C via τ1, . . . , τn and consider the matrix

A = (τl(αi)). Then

d(I ) = (det(A))2 = [Ok : I ]2dK

and

vol(Ŵ) = | det(< f (αi, f (αj ) > | 1
2 = | det(A)|. ⊓⊔

In the Minkowski theory we consider in Rn the parallelepipeds

X = {x1, . . . , xr , u1, . . . , us, v1, . . . , vs |xi | ≤ ci,

i = 1, . . . , r, u2
i + v2

i ≤ di, i = 1, . . . , s}

with ci, dj > 0.

Using Minkowski’s theorem on the existence of lattice points in this type of subset

of Rn (see [Co]) and an analytic evaluation with respect to the above metric we get

the following.

Theorem 6.4.5.2. If dK is the discriminant of OK , then

√
|dk| ≥ nn

n!
(π

4

) n
2
.

As a direct consequence we have the following result of Minkowski.

Theorem 6.4.5.3 (Minkowski). If K �= Q, then |dK | �= 1.

A refinement of the analytic evaluation leads to a result of Hermite.

Theorem 6.4.5.4. If D > 0 is constant then there are only finitely many algebraic

number fields with |dK | ≤ D.

6.4.6 Dirichlet’s Unit Theorem

We mentioned when discussing real quadratic fields that each unit is up to ±1 a power

of a fundamental unit. This is a special case of the theorem below called the Dirichlet

unit theorem. We state it in general and then give a proof for the quadratic case.

Theorem 6.4.6.1 (Dirichlet unit theorem). The group of units U(OK) of OK is the

direct product of the finite cyclic group U(K) of roots of unity that are contained in

K and a free abelian group of rank r + s − 1, where as in the last section r is the

number of real embeddings K → R and s is the number of pairs of complex nonreal

embeddings K → C.

Equivalently, there exist units ǫ1, . . . , ǫt in U(OK) with t = r + s − 1 called

fundamental units such that each unit u ∈ U(OK) is a product

u = ζǫ
ν1

1 · · · ǫνt
t

with νi ∈ Z and ζ is a root of unity contained in K .
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We prove only the case for quadratic fields K = Q(
√

d) with d square-free.

We have already considered the units in quadratic imaginary number fields (The-

orem 6.4.3.2) The structure of the unit groups (see [Co]) can be given by the

following:

(1) If d = −1, then U(OK) = {±1, ±i}. This is cyclic of order 4.

(2) If d = −3, then U(OK) = {±1, ±ω, ±ω}. This is cyclic of order 6 (see the

exercises).

(3) If d �= −1, −3 and d < 0 square-free, then U(OK) = {−1, 1}, which is cyclic

of order 2.

For the remainder of this section we assume that d is a positive square-free integer.

As explained in the proof ofTheorem 6.4.3.3, for real quadratic fields we must consider

solutions of Pell’s equation x2 −dy2 = 1. We will show that there are infinitely many

solutions. First we need some technical results.

Lemma 6.4.6.1. If ζ is an irrational real number, then there are infinitely many

rational numbers x
y

with (x, y) = 1 and | x
y

− ζ | < 1
y2 .

Proof. Consider the partition of the half-open interval [0, 1) by

[0, 1] =
[

0,
1

n

)
∪
[

1

n
,

2

n

)
∪ · · · ∪

[
n − 1

n
, 1

)
.

If α ∈ R then the fractional part of α is α − [α], where as usual [x] is the greatest

integer function. The fractional part of any irrational number lies in a unique member

of the above partition.

Consider the fractional parts of 0, ζ, 2ζ, . . . , nζ . At least two of these must lie in

the same subinterval. Hence there must exist j, k with j > k, 0 ≤ j, j ≤ n such that

|jζ − [jζ ] − (kζ − [kζ ])| <
1

n
.

Put y = j −k, x = [kζ ]−[jζ ], so that |x−yζ | < 1
n

. We may assume that (x, y) = 1

for dividing by (x, y) only strengthens the inequality. Further, 0 < y < n implies that

that ∣∣∣∣
x

y
− ζ

∣∣∣∣ <
1

ny
<

1

y2
.

To obtain infinitely many solutions note that
∣∣ x
y

− ζ
∣∣ �= 0 and then choose any

integer m > 1
| x
y
−ζ | . The above procedure then gives the existence of integers x1, y1

such that ∣∣∣∣
x1

y1
− ζ

∣∣∣∣ <
1

my1
<

∣∣∣∣
x

y
− ζ

∣∣∣∣

and 0 < y < m. Continuing like this then leads to an infinite number of solutions. ⊓⊔

Lemma 6.4.6.2. There is a constant M such that |x2 −dy2| < M has infinitely many

integral solutions.
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Proof. Write x2 − dy2 = (x +
√

dy)(x −
√

dy). From Lemma 6.4.6.1 there

exist infinitely many pairs of relatively prime integers (x, y), y > 0 satisfying

|x −
√

dy| < 1
y

. It follows that

|x +
√

dy| ≤ |x −
√

dy| + 2
√

dy <
1

y
+ 2

√
dy.

Then

∣∣x2 − dy2
∣∣ <

∣∣∣∣
1

y
+ 2

√
dy

∣∣∣∣
1

y
≤ 2

√
d + 1. ⊓⊔

Theorem 6.4.6.2. Pell’s equation x2−dy2 = 1 has infinitely many integral solutions.

Further, there is a particular solution (x1, y1) such that every solution has the form

±(xn, yn), where xn + yn

√
d = (x1 + y1

√
d)n for n ∈ Z.

Proof. From Lemma 6.4.6.2 there is an m ∈ Z with m > 0 such that x2 − dy2 = m

for infinitely many integral pairs (x, y) with x > 0, y > 0. We may assume that the

x components are distinct. Further, since there are only finitely many residue classes

modulo |m| one can find pairs (x1, y1), (x2, y2) such that x1 �= x2 and x1 ≡ x2 mod

|m| and y1 ≡ y2 mod |m|.
Let α = x1 − y1

√
d, β = x2 − y2

√
d . If γ = x − y

√
d let γ = x − y

√
d , the

conjugate of γ , and N(γ ) = x2 − dy2 the norm of γ .

Then αβ = A + B
√

d with m|A and m|B. Thus αβ = m(u + v
√

d) for some

integers u, v. Taking norms on both sides yields

m2 = m2(u2 − v2d) =⇒ u2 − v2d = 1.

It remains to show that v �= 0.

If v = 0 then u = ±1 and then αβ = ±m. Multiplying by β gives αm = ±mβ

or α = ±β. But this implies x1 = x2, a contradiction. Therefore there is a solution

to Pell’s equation with xy �= 0.

We now prove the second assertion. We say that a solution (x, y) is greater

than a solution (u, v) if x + y
√

d > u + v
√

d . Now consider the smallest solution

α = x + y
√

d with x > 0, y > 0. Such a solution clearly exists and is unique.

It is called a fundamental solution. Consider any solution β = u + v
√

d with

u > 0, v > 0. We show that there is a positive integer n such that β = αn.

Suppose not. Then choose n > 0 such that αn < β < αn+1. Then 1 < (α)nβ < α

since α = α−1. However, if (α)nβ = A + B
√

d then (A, B) is a solution to Pell’s

equation and 1 < A + B
√

d < α.

Now, A + B
√

d > 0, so A − B
√

d = (A + B
√

d)−1 > 0. Hence A > 0. Also

A − B
√

d = (A + B
√

d)−1 < 1 and hence B
√

d > A − 1 ≥ 0. Thus B > 0. This

contradicts the minmality of α. If β = a + b
√

d is a solution with a > 0, b < 0 then

β−1 = a − b
√

d = αn by the above argument, so β = α−n.

The cases a < 0, b > 0 and a < 0, b < 0 lead to −αn for n ∈ Z. This proves the

theorem. ⊓⊔
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We can now prove Dirichlet’s unit theorem for real quadratic fields.

Theorem 6.4.6.3. Let K = Q(
√

d) with d > 0 and square-free be a real quadratic

field. Then there exists a unit ǫ0 ∈ OK such that every unit in Ok is of the form ±ǫn
0

for n ∈ Z. It follows that U(OK) = Z2 × Z, the direct product of Z and Z2.

Proof. From Theorem 6.4.6.2 there exist positive nonzero integers x, y such that

x2 − dy2 = 1. Thus ǫ = x + y
√

d is a unit in OK with ǫ > 1. Let M be a

fixed real number greater than ǫ. There are at most finitely many α ∈ OK , α =
p + q

√
d, p, q, ∈ Q with |α| < M and also |α| < M . This is clear since there are

only finitely many integers k with |k| < M .

Let β be a unit with 1 < β < M . Such a β exists since M > ǫ. Then

N(β)N(β) = ±1. If β = − 1
β

then −M < − 1
β

< M and if β = 1
β

then also

−M < 1
β

< M . Thus there are only finitely many units β with 1 < β < M and of

course there is at least one ǫ.

Let ǫ0 be the smallest positive unit greater than 1. If β is any positive unit then

there is a unique integer s with ǫs ≤ β < ǫs+1. Then 1 ≤ βǫ−s
0 < ǫ0. Since βǫ−s

0 is

also a unit we must have βǫ−s = 1. If β < 0 then −β is positive and −β = ǫs
0 for

some s ∈ Z, completing the proof. ⊓⊔

If d = 2 the fundamental unit is ǫ0 = 1 +
√

2 and for d = 5 the fundamental unit

is 1
2
(1+

√
5) (see the exercises). However, even for small discriminants, computation

of the fundamental unit can be quite difficult. For example, the fundamental unit for

d = 34 is 2143295 + 221064
√

34.

6.5 The Theory of Ideals

In analyzing the proofs of unique factorization, the uniqueness part, whether in Z,

a general Euclidean domain, or a principal ideal domain, hinged on the respective

analogue of Euclid’s lemma. That is, if p is a prime and p|ab then p|a or p|b. In

these cases this lemma depended on the fact that the principal ideal 〈p〉 generated

by a prime p was both a prime ideal and a maximal ideal. For the algebraic number

rings OK we have seen that there are always prime factorizations (Theorem 6.4.2.2)

but these are not always unique. Hence Euclid’s lemma cannot hold in general. The

problem is that the principal ideal generated by a prime π ∈ OK need not be a

prime ideal. Kummer addressed this problem by adjoining to OK ideal numbers that

generated prime ideals. He could recover unique factorization but the components of

the factorization did not always lie in the ring Ok . Dedekind took a different approach.

Rather than work with factorizations of the elements of OK he worked with ideals

in OK . He was then able to show that for all OK there is unique factorization of

ideals into prime ideals. Further, as consequences of this factorization many results

in elementary number theory such as Fermat’s theorem and the Chinese remainder

theorem can be recovered, albeit in terms of ideals.

Since each algebraic number ring OK is an integral domain we can apply the

material on ideals introduced in Section 6.2. Recall that an ideal I in OK is a subring
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of OK such that λI ⊂ I for all λ ∈ OK . Equivalently, I ⊂ OK is an ideal if

λα + τβ ∈ I whenever α, β ∈ I and λ · τ ∈ OK . If α1, . . . , αk ∈ OK , then the set

〈α1, . . . , αk〉 = {λ1α1 + · · · + λkαk; λi ∈ OK}

forms an ideal called the ideal generated by α1, . . . , αk . An ideal that can be written

〈α1, . . . , αk〉 for a finite set of generators is finitely generated. The ideal 〈α〉 is the

principal ideal generated by α. An ideal I is a prime ideal if whenever αβ ∈ I

then either α ∈ I or β ∈ I . An ideal I is a maximal ideal if whenever α /∈ I then

〈α, I 〉 = Ok .

First we show that every ideal I ⊂ OK has an integral basis and hence is finitely

generated. This fact follows directly from the fact that OK is a finitely generated free

Z-module and results on submodules of such modules or more simply from the basis

theorem for finitely generated abelian groups (see Chapter 2 or [Ro]). However, we

give a direct proof mimicking the existence of an integral basis for all of OK .

Theorem 6.5.1. If K has degree n over Q then each ideal I ⊂ OK has an integral

basis of rank n. That is, there exist ω1, . . . , ωn ∈ I such that any α ∈ I can be

expressed uniquely as

α = m1ω1 + · · · + mnωn

with mi ∈ Z. In particular, any ideal in I is finitely generated of rank ≤ n.

Proof. Suppose A ⊂ OK ⊂ K is a nonzero ideal and suppose |K : Q| = n. If A has

an integral basis ω1, . . . , ωk then these are linearly independent (as elements of K)

over Q. Since the dimension of K over Q is n it follows that k ≤ n. Suppose then that

β1, . . . , βn are integers in OK that form a basis for K over Q. In the proof of Theorem

6.4.2.1 it was shown that K has such a basis. If α ∈ A with α �= 0 then αβ1, . . . , αβn

are all in A, since A is an ideal, and are linearly independent. However, since they

are in A they can be linearly expressed in terms of ω1, . . . , ωk , which is impossible

if k < n. Therefore if A has an integral basis then it must have n elements in it.

The proof that A does indeed have an integral basis is almost identical to the proof

of Theorem 6.4.2.1. Consider all sets ω1, . . . , ωn in A that are linearly independent

over Q. The set αβ1, . . . , αβn is an example. For each such set the discriminant

�(ω1, . . . , ωn) is then a nonzero rational integer. Therefore we can choose a set

ω1, . . . , ωn for which the discriminant is minimal. This is an integral basis for A.

The details are identical to those in Theorem 6.4.2.1 (see the exercises). ⊓⊔

The fact that each ideal in Ok has bounded rank implies immediately that each

OK is Noetherian. That is, each ring of algebraic integers satisfies the ascending

chain condition on ideals. Hence each ascending chain of ideals in any Ok eventually

becomes stationary (see Section 6.2.3).

Clearly two ideals A = 〈α1, . . . , αm〉, B = 〈β1, . . . , βk〉 are the same if each αi is

an integral linear combination of the βj and each βi is an integral linear combination

of the αj . From this we obtain the following result.

Lemma 6.5.1. If α, β �= 0 then 〈α〉 = 〈β〉 if and only if α and β are associates.
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Crucial to unique factorization in Z and in Euclidean domains in general is that

each prime ideal is maximal. This is true in all OK .

Theorem 6.5.2. An ideal I ⊂ OK with I �= 〈0〉 is a prime ideal if and only if it is a

maximal ideal.

Proof. Suppose P = 〈ω1, . . . , ωs〉 is a maximal ideal in OK . We show that P is also

a prime ideal. Suppose αβ ∈ P and suppose that α /∈ P . We must show that β ∈ P .

Let P ′ = 〈ω1, . . . , ωs, α〉. Since {ω1, . . . , ωs} ⊂ P ′ it follows that P ⊂ P ′. Since P

is maximal either P ′ = P or P ′ = OK . If P = P ′ then α ∈ P ′ = P , contradicting

the assumption that α /∈ P . Therefore P ′ = OK and hence 1 ∈ P ′. It follows that

1 = α1ω1 + · · · + αsωs + αs+1α

with α1, . . . , αs, αs+1 ∈ OK . Multiplying through by β yields

β = (βα1)ω1 + · · · + (βαs)ωs + αβ.

Since ω1, . . . , ωs ∈ P and αβ ∈ P and P is an ideal, it follows that β ∈ P . Therefore

P is a prime ideal.

Conversely, suppose P is a prime ideal. We show that it is maximal. Recall that

if R is a commutative ring and I is an ideal then I is maximal if and only if R/I is

a field (see Section 6.2). If α �= 0 is an element of P then its norm Nα is also in P .

Since the norm is a rational integer it follows that P ∩ Z �= 〈0〉. Since P is a prime

ideal then P ∩ Z is a nonzero prime ideal in Z. Hence P ∩ Z = pZ for some rational

prime p. Then Z/pZ = Zp, a finite field. Now the quotient ring OK/P is formed

by adjoining algebraic elements to the finite field k = Z/pZ. However, adjoining

algebraic elements to a field forms a field. Therefore the quotient ring OK/P is a

field and therefore P is a maximal ideal. ⊓⊔

6.5.1 Unique Factorization of Ideals

We now introduce a product on the set of ideals of OK . Relative to this product we

will show that there is unique factorization in terms of prime ideals.

Definition 6.5.1.1. If A = 〈α1, . . . , αm〉, B = 〈β1, . . . , βk〉 are ideals in OK then

their product

AB = 〈α1β1, α1β2, . . . , αiβj , . . . , αmβk〉
is the ideal generated by all products of the generating elements.

It is a simple exercise to show that this definition is independent of the generating

systems chosen.

Now we say that A divides B, denoted by A|B, if there exists an ideal C such

that B = AC. Then A is then called a factor of B, and A is a divisor of B if B ⊂ A.

Finally, A is an irreducible ideal if the only factors of A are A and 〈1〉 = OK .

The concepts of factor and divisor will turn out to be equivalent, but we will prove

the main theorem before proving this. We would like to use the irreducible ideals in



314 6 Primes and Algebraic Number Theory

the role of primes. However, for the time being we will not call them prime ideals,

reserving that term for the previous definition. However, we will eventually prove

that an ideal I ⊂ OK is irreducible if and only if it is a prime ideal. Therefore as

in the case of rational integers, for ideals, the terms prime and irreducible will be

interchangeable.

First we show that a factor is a divisor.

Lemma 6.5.1.1. If A|B then B ⊂ A, that is, a factor is a divisor.

Proof. Suppose B = AC so that A|B. Let

A = 〈α1, . . . , αs〉, B = 〈β1, . . . , βt 〉, C = 〈γ1, . . . , γu〉.

Then

〈β1, . . . , βt 〉 = 〈α1γ1, . . . , αiγj , . . . , αsγu〉.

Therefore for each k = 1, . . . , t ,

βk =
∑

i,j

θi,jαiγj with θi,j ∈ OK .

This implies that

βk =
∑

i

(∑

j

θi,jγj

)
αi .

Hence each βk is an integral (from OK ) linear combination of the αi and thus βk ∈ A.

Therefore B ⊂ A. ⊓⊔

To arrive at the prime factorization we need certain finiteness conditions.

Lemma 6.5.1.2. A rational integer m �= 0 belongs to at most finitely many ideals

in OK .

Proof. Suppose m is a rational integer and m ∈ A, where A is an ideal in OK . Since

both ±m ∈ A we may assume that m > 0. Let ω1, . . . , ωn be an integral basis for

K . If A = 〈α1, . . . , αs〉 then each αi may be written as

αi =
n∑

i=1

cijωj ,

where the {cij } are rational integers. Then for each j = 1, . . . , n,

cij = qi,jm + ri,j , 0 ≤ ri,j < m.

Then

αi =
∑

(qijm + rij )ωi = m
∑

qijωi +
∑

rijωi = mγi + βi,
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where γj and βj are integers and βj can take on only finitely many values, since

rij < m. Now since m ∈ A, we have

A = 〈α1, . . . , αs〉 = 〈α1, . . . , αs, m〉 = 〈mγ1 + β1, . . . , mγs + βs〉.

However, since m ∈ A it follows that mγi ∈ A for all i and thus

A = 〈β1, . . . , βs〉.

Since there are only finitely many choices for each βi there are only finitely many

choices for A. ⊓⊔

Lemma 6.5.1.3. An ideal A �= 〈0〉 has only a finite number of divisors and hence

only a finite number of factors.

Proof. Let A be an ideal with A �= 〈0〉. If α ∈ A with α �= 0, then the norm N(α) is

in A. Since α is an algebraic integer, N(α) ∈ Z. It follows that A ∩ Z �= {0}. But

then N(α) can belong to only finitely many ideals and so A can have only finitely

many divisors. Since each factor is a divisor, A has only finitely many factors. ⊓⊔

We now state the main result.

Theorem 6.5.1.1 (unique factorization of ideals). Every ideal I ⊂ OK with I �= 〈0〉
and I �= 〈1〉 can be factored into a product of prime ideals. This factorization is

unique except for the ordering of the factors.

The proof is broken into several steps. First we introduce some further general

ideas from algebra.

Definition 6.5.1.2. If R is a commutative ring with identity, then a module over R,

or an R-module, is an abelian group M that allows scalar multiplication from R

satisfying

(1) rv ∈ M if r ∈ R, v ∈ M ,

(2) r(u + v) = ru + rv for r ∈ R, u, v ∈ M ,

(3) (r + s)v = rv + sv for r, s ∈ R, v ∈ M ,

(4) (rs)v = r(sv) for r, s ∈ R, v ∈ M ,

(5) 1v = v for v ∈ M .

Therefore we can think of a module as a vector space in which the set of scalars is

just a commutative ring rather than a field. Clearly, any abelian group is a Z-module.

A subset {mi} of elements of M generates M if every element of M is a finite

R-linear combination of finitely many elements from {mi}. If a set of generators

is finite then M is a finitely generated module over R. If M is a module then an

R-basis for M is a generating set that is linearly independent over R. Not every

R-module has anR-basis. AnR-module that has anR-basis is called a freeR-module.

A submodule N is a subgroup of M that is also a module. The following is important

for our further work.
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Theorem 6.5.1.2. Let R be a principal ideal domain and M a free R-module. If

m1, . . . , ms is a finite R-basis and N is a nonzero submodule of M then N is also

free and has a finite basis with ≤ s elements.

Since each abelian group is a Z-module and Z is a principal ideal domain, if we

apply this theorem to abelian groups we get the basis theorem for finitely generated

abelian groups.

Now we return to the proof of the main theorem. To obtain the existence of unique

factorization, we extend the definition of an ideal.

Definition 6.5.1.2. A fractional ideal in K is a nonzero finitely generated OK -

submodule of K . That is,

I ⊂ K

is a fractional ideal if I is an additive subgroup of K closed under multiplication

from OK . An ordinary ideal A ⊂ Ok is then also a fractional ideal. In this context

we call an ordinary ideal an integral ideal.

Notice that fractional ideals can be multiplied in the same manner as ordinary

ideals to obtain other fractional ideals. We next define an addition of fractional

ideals.

Definition 6.5.1.3. If A and B are fractional ideals then the sum is given by

A + B = {α + β; α ∈ A, β ∈ B}.

The sum of fractional ideals is again a fractional ideal (see exercises).

Lemma 6.5.1.4. Every integral ideal contains a product of prime ideals.

Proof. Let S consist of the set of integral ideals for which this statement is false. If

S is nonempty, since OK satisfies the ACC on ideals (is Noetherian), it follows that

S must have a maximal element A. Therefore A is an integral ideal that is not prime

and for which any ideal properly containing A must contain a product of prime ideals.

Since A is not a prime ideal there must exist elements α, β both not in A but with

αβ ∈ A. Then A1 = 〈A, α〉 and B1 = 〈A, β〉 both properly contain A and hence

both contain a product of primes ideals. Then A1B1 also contains a product of prime

ideals. But

A1B1 ⊂ AA + αA + βA + 〈αβ〉 ⊂ A

since αβ ∈ A. But then A contains a product of prime ideals, which is a contradiction.

Therefore the set S must be empty and hence every integral ideal contains a product

of prime ideals. ⊓⊔

We also need the following, which gives an inverse under this multiplication for

ordinary ideals.

Definition 6.5.1.4. For an integral ideal A ⊂ Ok , we define

A−1 = {α ∈ K; αA ∈ OK}.
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Lemma 6.5.1.5. For A ⊂ OK an integral ideal, the set A−1 is a fractional ideal and

Ok ⊂ A−1. Further, if A is a proper ideal then A−1 properly contains OK .

Proof. We leave the proof that A−1 is again a fractional ideal to the exercises and

prove that if A is a proper ideal then A−1 properly contains OK . We must show that

there is an element of A−1 that is not an algebraic integer. Choose an α ∈ A with

α �= 0. From Lemma 6.5.1.4 there is a set of prime ideals P1, . . . , Ps satisfying

P1 · · · Ps ⊂ 〈α〉 ⊂ A.

Choose such a set of prime ideals with minimal possible s. Since A �= OK , by the

Noetherian property it follows that A must be contained in some maximal (and hence

prime) ideal P . Therefore we have

P1 · · · Ps ⊂ P.

If P �= Pi for all i = 1, . . . , s then there is an αi ∈ Pi with αi /∈ P and with

α1 · · · αs ∈ P . This contradicts the fact that P is a prime ideal. Therefore P = Pi

for some i. Without loss of generality, assume P = P1. We now have

PP2 · · · Ps ⊂ 〈α〉 ⊂ A ⊂ P.

Since s was minimal, P2 · · · Ps is not contained in 〈α〉. Therefore there is a β ∈
P2 · · · Ps with β /∈ 〈α〉. Let γ = α−1β. Then γ is not an algebraic integer. However,

γA = α−1βA ⊂ α−1βP ⊂ α−1PP2 · · · Ps ⊂ OK .

Hence by definition, γ ∈ A−1. ⊓⊔

Lemma 6.5.1.6. If A is an integral ideal then A−1A = OK .

Proof. Let B = A−1A. Then B ⊂ OK , so BB is an integral ideal. Then

AA−1B = BB−1 ⊂ OK =⇒ A−1B−1 ⊂ A.

It follows that for any α ∈ B−1 we must have A−1α ⊂ A−1 and so A−1αn ⊂ A−1 for

all natural numbers n. But then A−1[α] is an Ok-submodule of A−1 and is therefore

finitely generated (see Theorem 6.5.1.2). However, OK [α], being a submodule of

A−1[α], is also finitely generated. Since Ok is integrally closed in K it follows that

α ∈ OK . Therefore B−1 ⊂ Ok and hence B−1 = OK . It follows that B = OK , for

otherwise, by Lemma 6.5.1.5, Ok would be proper in B−1. ⊓⊔

Lemma 6.5.1.7. Every integral ideal is a product of prime ideals

Proof. From Lemma 6.5.1.4 we know that any integral ideal contains a product of

prime ideals. If an integral ideal contains a single prime ideal it must coincide with

that ideal since prime ideals are maximal. We now do induction on the length of a

product of prime ideals contained in an integral ideal and assume that any integral
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ideal containing a product of fewer than n prime ideals is a product of prime ideals.

Now suppose A is an integral ideal and A contains a product of n prime ideals:

P1P2 · · · Pn ⊂ A.

As in the proof of Lemma 6.5.1.4 choose a maximal ideal P containing A, so that

we have

P1P2 · · · Pn ⊂ A ⊂ P.

Again as in the proof of Lemma 6.5.1.4, P must coincide with one of the Pi , say P1,

so that we have

PP2 · · · Pn ⊂ A ⊂ P =⇒ P −1PP2 · · · Pn ⊂ P −1A ⊂ OK .

The integral ideal P −1A now contains a product of fewer than n prime ideals, so by

our inductive hypothesis we have

P −1A = Q1 · · · Qs,

where each Qi is a prime ideal. But then

A = PP−1A = PQ1 · · · Qs

is a product of prime ideals. ⊓⊔

Now that we have established that each integral ideal is a product of prime ideals

we must show that this product is unique up to ordering.

Lemma 6.5.1.8. Let P1 · · · Ps ⊂ Q1 · · · Qt , where the Pi and Qj are all prime ideals.

Then s = t and the set of Qj are just a rearrangement of the set of Pi .

Proof. The proof mimics the proof of the uniqueness of factorization of the rational

integers. Since Q1 · · · Qt ⊂ Q1 we have

P1 · · · Ps ⊂ Q1 · · · Qt ⊂ Q1.

Since Q1 is prime and hence maximal, as in the proofs of the previous lemmas Q1

must coincide with some Pi . Without loss of generality, we may assume, then, that

Q1 = P1. We then have

P −1
1 P1P2P3 · · · Ps ⊂ P −1

1 P1Q2 · · · Qt =⇒ P2 · · · Ps ⊂ Q1 · · · Qt .

Continuing in this manner we get the result. ⊓⊔

As an immediate consequence of this lemma we get the following corollary, which

is the required unique factorization.

Corollary 6.5.1.1. Suppose A = P1 · · · Ps = Q1 · · · Qt are two expressions for the

integral ideal A as a product of prime ideals. Then s = t and the set of Qj are just

a rearrangement of the set of Pi .
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This series of lemmas completes the proof of the unique factorization theorem.

If A is a nonzero proper integral ideal then from Lemma 6.5.1.6 it can be expressed

as a product of prime ideals. Then from Corollary 6.5.1.1 this expression is unique.

Finally, we show that a divisor is a factor. Hence by the uniqueness theorem, if

A is a prime ideal it is also an irreducible ideal. Therefore for ideals the terms prime

and irreducible become interchangeable.

Lemma 6.5.1.9. Let A and B be integral ideals. Then A is a divisor of B if and only

if A is a factor of B.

Proof. We have already seen that if A is a factor of B then A is a divisor, that is, if

A|B then B ⊂ A. We must show then that if A is a divisor of B, that is, B ⊂ A, then

A is a factor of B. Hence we must show that if B ⊂ A then there is an ideal C with

B = AC. Now from unique factorization we have

A = P
e1

1 · · · P er
r

for some prime ideals P1, . . . , Pr . Here we have combined identical prime ideals

to an exponent as in the standard form of a rational integer. Since B ⊂ A it is an

easy consequence of the unique factorization theorem that the factorization of B will

contain all the prime ideals in the factorization of A and to a higher exponent. Hence

B = P
f1

1 · · · P fr
r Q1 · · · Qs

with each fi ≥ ei and Q1, . . . , Qs prime ideals. Then

C = P
f1−e1

1 · · · P fr−er
r Q1 · · · Qs

is an integral ideal and B = AC. ⊓⊔

6.5.2 An Application of Unique Factorization

As we saw in Chapter 2, many results are direct consequences of the fundamental

theorem of arithmetic. In a similar manner, as a consequence of the unique factor-

ization theorem for ideals, many of these results have lovely analogues for ideals

in algebraic number rings. In this section we will look at one of these, the Chinese

remainder theorem. In the final section, after we discuss the ideal class group, an

analogue of Fermat’s theorem will also be presented.

Recall that for the rational integers the following is the Chinese remainder

theorem.

Theorem 6.5.2.1 (Chinese remainder theorem). Suppose that m1, m2, . . . , mk are

k positive integers that are relatively prime in pairs. If a1, . . . , ak are any integers

then the simultaneous congruences

x ≡ ai mod mi, i = 1, . . . , k,

have a common solution which is unique modulo m1m2 · · · mk .
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To extend this result we need to give the analogues of greatest common divisors

(GCDs) and least common multiples (LCMs) for ideals. Since these concepts are

defined in terms of divisibility, the definitions are identical.

Definition 6.5.2.1. If A and B are integral ideals in OK , then

(1)

gcd(A, B) = D,

where D is an integral ideal such that D|A,D|B and if D1 is another integral

ideal such that D1|A and D1|B then D1|D;
(2)

lcm(A, B) = L,

where L is an integral ideal such that A|L,B|L, and if A|L1,B|L1 for some

integral ideal L1, then L|L1.

From the unique factorization theorem it easily follows, in exactly the same

manner as for the integers, that if

A = P
e1

1 · · · P er

r and B = P
f1

1 · · · P fr
r

with P1, . . . , Pr distinct prime ideals and ei, fi ≥ 0 and P 0
i = OK , then

gcd(A, B) = P
min(e1,f1)

1 · · · P min(er ,fr )
r

and

lcm(A, B) = P
max(e1,f1)

1 · · · P max(er ,fr )
r .

Further, since an ideal is a factor if and only if it is a divisor, that is, D|A if and

only if A ⊂ D, it follows that gcd(A, B) is the smallest ideal containing both A and

B, while lcm(A, B) is the largest ideal contained in both A and B. Now, the sum

A+B is the smallest ideal containing both A and B and the intersection A∩B is the

largest ideal contained in both A and B. Hence

gcd(A, B) = A + B,

lcm(A, B) = A ∩ B.

Further, exactly as for the rational integers,

AB = gcd(A, B) · lcm(A, B) = (A + B) · (A ∩ B).

We summarize all these observations in the next theorem.

Theorem 6.5.2.2. Let A, B be integral ideals in OK and suppose

A = P
e1

1 · · · P er

r and B = P
f1

1 · · · P fr
r

with P1, . . . , Pr distinct prime ideals and ei, fi ≥ 0 and P 0
i = OK . Then

(1) gcd(A, B) = A + B = P
min(e1,f1)

1 · · · P min(er ,fr )
r ;

(2) lcm(A, B) = A ∩ B = P
max(e1,f1)

1 · · · P max(er ,fr )
r ;

(3) AB = (A + B)(A ∩ B).
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Now, to get the Chinese remainder theorem we need to extend the concept of

relatively prime or coprime. Since P 0
i = OK , we have the following definition.

Definition 6.5.2.2. The integral ideals A, B are relatively prime or coprime if they

have no common prime factor. Equivalently, they are coprime if A + B = OK .

We now get the following version of the Chinese remainder theorem for ideals.

Theorem 6.5.2.3 (Chinese remainder theorem for ideals). Let {A1, . . . , An} be a

set of integral ideals in Ok that are pairwise relatively prime, that is, Ai + Aj = OK

if i �= j , and let {α1, . . . , αn} be an arbitrary set of algebraic integers in OK . Then

there exists an element α ∈ OK such that

α ≡ αi mod Ai for 1 ≤ i ≤ n,

and, further, α is unique modulo A1A2 · · · An.

Proof. The proof mimics the proof for the rational integers, that is, we actually

construct the element α (see Chapter 2).

Since A1, . . . , An are pairwise relatively prime it follows that Ai is relatively

prime to
∏

i �=j Aj . Hence for 1 ≤ i ≤ j there exist elements βi, β
′
i with βi ∈ Ai and

β ′
i ∈

∏
i �=j Aj such that βi + β ′

i = 1. Now let

α = α1β
′
1 + α2β

′
2 + · · · + αnβ

′
n.

Since βi + β ′
i = 1 and βi ∈ Ai it follows that β ′

i ≡ 1 mod Ai . Further, β ′
i ∈ Aj if

i �= j , so β ′
i ≡ 0 mod Aj . Therefore

α ≡ αi mod Ai for i = 1, . . . , n.

Suppose α′ is another simultaneous solution to the given congruences. Then

α − α′ ∈ A1 ∩ a2 ∩ · · · ∩ An.

Since they are pairwise relatively prime,

A1 ∩ A2 ∩ · · · ∩ An = A1A2 · · · An,

and hence α ≡ α′ mod A1 · · · An. ⊓⊔

6.5.3 The Ideal Class Group

Out of the set of fractional ideals in OK we will now form a group, called the ideal

class group, which in a sense will measure how close OK is to being a principal ideal

domain and hence a unique factorization domain. In particular, this group will be

trivial if and only if OK is a principal ideal domain.
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First of all, note that fractional ideals can be multiplied exactly like the ordinary

integral ideals of OK . That is, if A, B are fractional ideals with

A = 〈α1, . . . , αm〉, B = 〈β1, . . . , βk〉,

then their product,

AB = 〈α1β1, α1β2, . . . , αiβj , . . . , αmβk〉,

is the ideal generated by all products of the generating elements.

Theorem 6.5.3.1. The fractional ideals of K form an abelian group under the above

multiplication called the ideal group IK of K . The unit element is 〈1〉 = OK and

the inverse element for a fractional ideal A is

A−1 = {x ∈ K; xA ⊂ OK}.

Proof. Associativity and commutativity are clear. Further, for any fractional ideal A

we have AOK = A so OK is a unit element. Hence we must show the existence of

inverses.

If A is an integral ideal then from Lemma 6.5.1.6 we have A−1A = OK with A−1

as defined in the theorem. Hence A−1 is an inverse for integral ideals. Now let B

be a fractional ideal. Then there exists an α ∈ OK with α �= 0 such that αB ⊂ OK .

Then (αB)−1 = α−1B−1 as defined above and hence BB−1 = OK . ⊓⊔

Corollary 6.5.3.1. Each fractional ideal A has, up to order, a unique product

decomposition

A =
∏

P

P ep

with ep ∈ Z, at most finitely many ep �= 0 (recall that P 0 = OK), and {P } the set of

prime ideals in OK .

Proof. This mimics the proof that any rational number is a product of rational primes.

Each fractional ideal V can be written as a quotient V = A
B

= AB−1 of two integral

ideals A, B. Since each of A, B has a unique expression as a product of prime ideals

the result follows. ⊓⊔

The above corollary can also be phrased as follows.

Corollary 6.5.3.2. The ideal group IK is a free abelian group generated by the prime

ideals P �= 〈0〉 in OK .

If a ∈ K⋆ = K − {0} then aOk forms a fractional ideal. Any fractional ideal of

this form is called a fractional principal ideal.

Theorem 6.5.3.2. The set of fractional principal ideals {aOK} with a ∈ K⋆ forms a

normal subgroup of the ideal group IK . We denote this subgroup by PK .
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Proof. Now (aOK)(bOK) = abOK and (aOK)−1 = a−1OK so the set of fractional

principal ideals is closed under product and inverse. Therefore PK forms a subgroup.

Since the ideal group is abelian any subgroup is normal and hence PK is a normal

subgroup. ⊓⊔

Since PK is a normal subgroup we can form the factor group.

Definition 6.5.3.1. The factor group

ClK = IK/PK

is called the ideal class group or the class group of K .

Let O⋆
K be the group of units of OK . Then there is an exact sequence

1 → O
⋆
K → K⋆ φ→ IK → ClK → 1.

The following is immediate.

Theorem 6.5.3.3. OK is a principal ideal domain if and only if ClK = {1}.

In general, the problem of determining the class group ClK is quite complicated.

6.5.4 Norms of Ideals

We define a norm for an ideal that is related to the norm of an element. Further, we

show that this norm is multiplicative.

Definition 6.5.4.1. If A is an ideal in OK then we define the norm of A by

N (A) = [OK : A].

First of all, notice that the norm of an ideal is always finite, since

d(A) = [OK : A]2dK ,

where d(A) is the discriminant of the ideal and dK is the discriminant of the field.

The following result shows how the norm of an ideal is related to the norm of an

element.

Theorem 6.5.4.1. If A = 〈a〉 is a principal ideal in OK , then

N (A) = |NK(a)|.

Proof. Suppose ω1, . . . , ωn is a Z-basis for OK . Then aω1, . . . , aωn is a Z-basis for

aOK . If aωi =
∑n

j=1 aijωj and A = (aij ), then

| det(A)| = [OK : aOk]

on one side, while det(A) = NK(a) by definition. ⊓⊔
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Further this norm is multiplicative on the set of ideals.

Theorem 6.5.4.2. Let A be a nonzero integral ideal in OK . If

A = P1P2 · · · Pr

is the prime ideal decomposition of A, then

N (A) = N (P1)N (P2) · · · N (Pr).

In particular,

N (AB) = N (A)N (B)

for nonzero integral ideals A, B.

Proof. Suppose A is a nonzero integral ideal and A �= OK . Then A has a canonical

prime ideal decomposition

A = P
e1

1 · · · P es
s , s ≥ 1, ei ≥ 1,

with distinct Pi . We must show that

N (A) =
s∏

i=1

N (Pi)
ei .

By the Chinese remainder theorem we have

OK/A = ⊕s
i=1OK/P

ei

i ,

which gives

N (A) =
s∏

i=1

N (P
ei

i ).

It remains to show that for each prime ideal P and each natural number n we

have [P n : P n+1] = N (P ). For this we choose t ∈ P n/P n+1 and consider the

homomorphism of abelian groups given by x → tx + P n+1 from OK into the factor

group P n/P n+1.

The kernel of this map is an ideal in Ok . The kernel does not contain all of OK

since t /∈ P n+1 but it does contain P since tP ⊂ P n+1. Therefore since P is maximal

this kernel must be P . The image of this homomorphism is the factor group T/P n+1,

where T = tOK +P n+1 is an ideal in OK contained in P n but not contained in P n+1.

Therefore we must have precisely T = P n. The isomorphism theorem for abelian

groups then gives

OK/P ∼= P n/P n+1.

Hence in particular

[Ok : P ] = N (P ) = [P n : P n+1],
completing the proof. ⊓⊔
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Suppose P is a nonzero prime ideal in OK . Then it is a maximal ideal and hence

the factor ring OK/P is a field and hence a finite field since [OK : P ] is finite. If

its characteristic is p then P ∩ Z = pZ, where p is a rational prime. Now N (P ) is

the number of elements in OK/P and therefore N (P ) = pf for some f ∈ N. This

exponent is called the residue class degree of the prime ideal P . It is the degree of

the field OK/P over its prime field Zp. The multiplicative group (Ok/P )⋆ is cyclic,

being the finite multiplicative group of a field (see Chapter 2 and the exercises). From

this we obtain the analogue of Fermat’s theorem for ideals in OK .

Theorem 6.5.4.3 (Fermat). If P �= 〈0〉 is a prime ideal in OK , then

αN (P ) ≡ α mod P

for all α ∈ OK .

We saw in Section 6.4.3 that rational primes in quadratic integer rings may

be decomposed in OK . Further, we can classify all possible situations. We

generalize this.

Theorem 6.5.4.4 (decomposition of a rational prime). Let p be a rational prime.

The exponent e(p) = νP (pOK) of a prime ideal P with P |pOk in the prime ideal

decomposition is called the ramification index of p in K over Q. Then

∑

P |pOK

e(p)f (p) = [K : Q],

where f (p) is the residue class degree of p.

Proof. Let n = [K : Q] be the degree of K over Q and let p be a rational prime.

Then

N (pOK) = |N(p)| = pn.

On the other hand, by the Chinese remainder theorem, Ok/pOk is isomorphic to the

direct sum of the factor rings OK/(P e(p)), where P |pOK . Hence

pn = |OK/pOK | =
∏

P |pOk

N (P )e(p) =
∏

P |pOK

P f (p)e(p). ⊓⊔

Finally, we show that there are only finitely many elements α in OK of a

given norm.

Theorem 6.5.4.5. Up to units there are only finitely many elements α ∈ OK with a

given norm NK(α) = a.

Proof. Let a be a rational integer with a > 1. We first claim that in each of the

finitely many residue classes of OK/aOk there are, up to units, at most one element

α with |NK(α)| = a.
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To see this, suppose β = α+aγ with γ ∈ Ok is another element with |NK(β)| =
a. Then

α

β
= 1 ± N(β)

β
γ ∈ OK

since
N(β)

β
∈ OK . Analogously,

β

α
= 1 ± N(α)

α
γ ∈ OK .

This implies that α, β are associates, that is, α = ǫβ with ǫ a unit.

It follows that up to units there are at most [OK : aOK ] elements in OK with the

norm ±a. ⊓⊔

6.5.5 Class Number

In this final section we show that the ideal class group must be finite, giving another

finite integer invariant for each number field.

Minkowski theory (see Section 6.4.5) leads to the following, which we state

without proof.

Theorem 6.5.5.1. Each ideal A �= 〈0〉 in Ok contains an element a ∈ A with

|NK(a)| ≤
(

2

π

)s √
|dK |N (A),

where, as before, s denotes the number of pairs of complex, nonreal embeddings of

K into C.

Using this result we obtain the following theorem.

Theorem 6.5.5.2. For each algebraic number field K the ideal class group

ClK = IK/PK

is finite. Its order hK = [IK : PK ] is called the class number of K .

Proof. Let P �= (0) be a prime ideal in OK and suppose P ∩ Z = pZ with p a

rational prime. Then OK/P is a finite extension of its prime field Fp = Z/Zp of

degree f ≥ 1. Hence N (P ) = pf .

For a fixed rational prime p there are only finitely many prime ideals P with

P ∩Z = pZ since then P |pZ. Therefore there are only finitely many prime ideals P

with bounded absolute norm. Now each nonzero integral ideal A has a prime ideal

decomposition

A = P
e1

1 · · · P er
r with er ≥ 1,

and then we have

N (A) = (N (P1))
e1 · · · (N (Pr))

er .

Putting this all together we have that there are only finitely many ideals A �= (0)

in OK with bounded absolute norm N (A) ≤ M .
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Hence it is enough to show that each class [A] ∈ ClK contains an integral ideal

A1 with

N (A1) ≤ M =
(

2

π

)s√
dK ,

where s is as in Theorem 6.5.5.1.

To show this, choose an arbitrary representative A �= (0) in this class and a

nonzero γ ∈ OK with B = Ŵa−1 ⊂ OK . By Theorem 6.5.5.1 there exists an α ∈ B

with α �= 0 such that

|NK(α)|(N (B))−1 = N ((αOK)B−1) = N (αB−1) ≤ M.

The ideal A1 = αB−1 = αγ −1A ∈ [A] has the desired property. ⊓⊔

We remarked before that an algebraic number ring Ok is a principal ideal domain

if and only if its ideal class group is trivial. Hence in the present language we can say

that OK is a principal ideal domain if and only if the class number of K is 1.

For quadratic imaginary number fields Q(
√

−d) Heegner, Stark, and Baker

proved the following.

Theorem 6.5.5.3. Let K = Q(
√

−d) where d is a square-free positive integer. Then

K has class number 1, that is hK = 1, if and only if

d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

We end with the following well-known conjecture.

Conjecture. There are infinitely many algebraic number fields with class number one.

EXERCISES

6.1. Show that in any ring R with identity 1 (commutative or not), if uv = 1 and

wu = 1 then v = w. Hence if an element has both a left and right inverse it is

a unit.

6.2. Let T be an n × n matrix over a field F . Suppose T U = I for some matrix U .

Show that UT = I also. (Hint: Consider T as a linear transformation. If T U =
I

it must have rank n. Hence there exists a matrix V such that V T = I . Apply

Exercise 6.1.)

6.3. Show that the set of units in a commutative ring R with identity forms an

abelian group under multiplication.

6.4. Show that if a ∈ Zn then a is a unit if and only if (a, n) = 1.

6.5. Show that in any UFD there are infinitely many primes. (Hint: Use Euclid’s

proof.)
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6.6. Prove Lemma 6.2.1. Let F be a field and let P(x) �= 0, Q(x) �= 0 be nonzero

polynomials in F [x]. Then

(1) deg P(x)Q(x) = deg P(x) + deg Q(x);

(2) deg(P (x) ± Q(x)) ≤ max(deg P(x), deg Q(x)) if P(x) ± Q(x) �= 0.

6.7. Let F be a field and F [x] the set of polynomials over F . Verify the ring

properties for F [x].
6.8. Fill in the details for a proof of the division algorithm in F [x]. (Hint: Consider

the degrees of the polynomials.)

6.9. Let S be a subring of the field F (such as Z in R). Let S[x] consist of the

polynomials in F [x] with coefficients from S. Show that S[x] is a subring of

F [x]. Recall that to show that a subset is a subring we need show only that it

is nonempty and closed under addition, subtraction, and multiplication.

6.10. Use the division algorithm to find the quotient and remainder for the following

pairs of polynomials in the indicated polynomial rings:

(a) f (x) = x3 + 5x2 + 6x + 1, g(x) = x − 1 in R[x].
(b) f (x) = x3 + 5x2 + 6x + 1, g(x) = x − 1 in Z5[x].
(c) f (x) = x3 + 5x2 + 6x + 1, g(x) = x − 1 in Z13[x].

6.11. Use the Euclidean algorithm to find the GCD of the following pairs of

polynomials in Q[x]:
(a) f (x) = 2x3 − 4x2 + x − 2, g(x) = x3 − x2 − x − 2.

(b) f (x) = x4 + x3 + x2 + x + 1, g(x) = x3 − 1.

6.12. Show that if f (x) ∈ R[x] and α ∈ C is a root then α, its complex conjugate,

is also a root.

6.13. Use the fundamental theorem of algebra coupled with Exercise 6.12 to show

that if p(x) ∈ R[x] is irreducible, then p(x) is of degree 1 or of degree 2.

6.14. Prove Lemma 6.2.1.2: Let R be a Euclidean domain and let r1, r2 ∈ R.

Then any two GCDs of r1, r2 ∈ R are associates. Further, an associate of

a GCD of r1, r2 is also a GCD.

6.15. Prove Lemma 6.2.1.3: Suppose R is a Euclidean domain and r1, r2 ∈ R with

r2 �= 0. Then a GCD d for r1, r2 exists and is expressible as a linear combination

with minimal norm. That is, there exist x, y ∈ R with

d = r1x + r2y

and N(d) ≤ N(d1) for any other linear combination of r1, r2.

Further, if r1 �= 0, r2 �= 0, then a GCD can be found by the Euclidean algorithm

exactly as in Z and F [x]. (Hint: Mimic the proof in the ordinary integers Z.)

6.16. Suppose D is a Euclidean domain and assume r ∈ D has two prime

factorizations

r = r1 · · · rk = s1 · · · st
with r1, . . . , rk, s1 . . . , st all primes in D. Show that each ri is an associate of

some sj and k = t . (Hint: Use Euclid’s lemma repeatedly.)
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6.17. Prove Lemma 6.2.1.5: If α, β ∈ Z[i], then

(1) N(α) is an integer for all α ∈ Z[i];
(2) N(α) ≥ 0 for all α ∈ Z[i];
(3) N(α) = 0 if and only if α = 0;

(4) N(α) ≥ 1 for all α �= 0;

(5) N(αβ) = N(α)N(β), that is, the norm is multiplicative.

6.18. (a) Find the GCD and LCM of the Gaussian integers 5 + 3i and 6 − 4i.

(b) Determine if 1 + 4i and 13i are primes in Z[i].
(c) Determine the prime decomposition in Z[i] of 3 + 5i.

6.19. Solve the congruence

(2 + 3i)x ≡ 1 mod 1 + 3i

in Z[i].
6.20. Suppose that p(x) = anx

n + · · · + ao ∈ Z[x] and p(r) = 0 with r = m
n

∈ Q.

Show that m|a0, n|an. (This is called the rational root theorem.)

6.21. Use the rational root theorem coupled with polynomial factorization to

show that

p(x) = x3 − x + 5

is irreducible over Q.

6.22. Use the multiplicativity of the norm to show that in Z[
√

−5] the numbers

3, 7, 1+2i
√

5, 1−2i
√

5 are all primes and not associates of each other. Recall

that N(a + bi
√

5) = a2 + 5b2.

Since 21 = 3 · 7 = (1 + 2i
√

5)(1 − 2i
√

5), this shows that prime factorization

is not unique in Z[
√

−5].
6.23. Prove that any Euclidean domain is a principal ideal domain. (Hint: Let I ⊂ D

be an ideal with D a Euclidean domain. Let r ∈ I with minimal norm. Mimic

the proof in Z to show that I = (r).)

6.24. Show that the following properties hold in a PID:

(i) a|b if and only if 〈b〉 ⊂ 〈a〉.
(ii) 〈b〉 = 〈c〉 if and only if b and c are associates.

(iii) 〈a〉 = R if and only if a is a unit.

6.25. The following steps outline a proof of Theorem 6.2.2.5. If R is a UFD, then

the polynomial ring R[x] is also a UFD.

6.26. Let F be a field and I the set of polynomials in F [x, y] with constant term 0.

Show that this forms an ideal that is not principal.

6.27. Let R be an integral domain and I ⊂ R an ideal. Show that r1 ∼ r2 if r1−r2 ∈ I

defines an equivalence relation on R. (Since the equivalence classes are the

cosets of I , this shows that the cosets partition R.)
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6.28. Suppose F is a field and p(x) ∈ F [x] is irreducible. Then show that if [x] =
x + 〈p(x)〉 in the factor ring

F ′ = F [x]/〈p(x)〉

then p([x]) = [p(x)]. (Consider the operations in F ′.)

6.29. Prove Lemma 6.3.1: If F ⊂ F ′ ⊂ F ′′ are fields with F ′′ a finite extension of F ,

then |F ′ : F | and |F ′′ : F ′| are also finite, and |F ′′ : F | = |F ′′ : F ′||F ′ : F |.
6.30. Show that if F ⊂ F ′ are fields and α ∈ F ′ then the intersection of all subfields

of F ′ containing both α and F is again a subfield.

6.31. Let K be an algebraic number field of degree n. On the set of n embeddings

K → C fixing Q define the relation σ ∼ τ if σ(α) = τ(α). Show that this is

an equivalence relation.

6.32. Let α ∈ R be algebraic over Q and let β be transcendental. Show that α ±
β, αβ, α

β
are all transcendental.

6.33. Let F be a field and x0, x1, . . . , xn are n+ 1 distinct elements of F . Prove that

the Vandermonde determinant has the value

V (x0, . . . , xn) =

∣∣∣∣∣∣∣∣

1 x0 . . . xn
0

1 x1 . . . xn
1

. . .

1 xn . . . xn
n

∣∣∣∣∣∣∣∣
=

∏

i<j

(xj − xi).

(Hint: Use the following steps.)

(i) Show that it is true for n = 2.

(ii) Let Vn(x) = V (x0, . . . , xn−1, x) with x as a variable. Show that Vn(x) is

a polynomial of degree n with roots x0, . . . , xn−1.

(iii) Use part (ii) to show that

Vn(x) = V (x0, . . . , xn−1)(x − x0) · · · (x − xn).

(iv) Substitute xn to complete the induction and the proof.

6.34. Let K = Q(θ) be an algebraic number field of degree n. For α ∈ K define the

mapping Tα : K → K by

Tα(x) = αx.

Show that this is a linear transformation of the n-dimensional Q-vector space

K .

6.35. A primitive integral polynomial is a polynomial p(x) ∈ Z[x] such that the

GCD of all its coefficients is 1. Prove the following:

(a) If f (x) and g(x) are primitive, then so is f (x)g(x).

(b) If f (x) is monic, then it is primitive.

(c) If f (x) ∈ Q[x], then there exists a rational number c such that f (x) =
cf1(x) with f1(x) primitive.
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6.36. Let K = Q(
√

−d) with d square-free and d ≡ 1 mod 4. Let ω = 1+
√

d
2

.

Show that every integer in Ok is uniquely of the form m + nω, m, n ∈ Z and

so {1, ω} is an integral basis.

6.37. Let d = 3,K = Q(
√

−d) and ω = −1+i
√

3
2

. Show that ±ω, ±ω are units in

OK . (Note that ω3 = 1.)

6.38. Complete the proof of Theorem 6.5.1, that is, that A does indeed have an

integral basis. (Hint: Mimic the proof of Theorem 6.4.2.1.)

6.39. Show that the product of two ideals is independent of the ideals’ generating

systems, that is, if A = 〈α1, . . . , αm〉, B = 〈β1, . . . , βk〉 are ideals in OK and

also A = 〈α′
1, . . . , α

′
m〉, B = 〈β ′

1, . . . , β
′
k〉, then

〈α1β1, α1β2, . . . , αiβj , . . . , αmβk〉 = 〈α′
1β

′
1, α

′
1β

′
2, . . . , α

′
iβ

′
j , . . . , α

′
mβ ′

k〉.

6.40. Prove that the sum of fractional ideals is again a fractional ideal.

6.41. Express the symmetric polynomialf (x1, x2, x3) = x3
1+x3

2+x3
3 as a polynomial

in the elementary symmetric polynomials s1, s2, s3.

6.42. Find the minimal polynomial of
√

2 +
√

3 over Q. (How do you know that it

is algebraic?) (Hint: Q(
√

2,
√

3) has degree 4 over Q and hence
√

2 +
√

3 has

degree 2 or degree 4 over Q. Show that it cannot have degree 2.)

6.43. Let p be a prime and θ a rational number not a pth power. Let K = Q
(
θ

1
p
)
.

Show that if K1 is a field with Q ⊂ K1 ⊂ K then either K1 = Q or K1 = K .

6.44. Let α1, . . . , αn be algebraic integers in K . Show that if α1, . . . , αn is a basis

for K over Q and �(α1, . . . , αn) is square-free then α1, . . . , αn is an integral

basis.

6.45. Let α, β be algebraic integers in K and 〈α〉, 〈β〉 the principal ideals they

generate. Show that if 〈α〉|〈β〉 then α|β.

6.46. Classify the algebraic number fields K with discriminant −100 ≤ dK ≤ 100.
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