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Preface 

This is the first volume of a two-volume textbook' which evolved from a 
course (Mathematics 160) offered at the California Institute of Technology 
during the last 25 years. It provides an introduction to analytic number 
theory suitable for undergraduates with some background in advanced 
calculus, but with no previous knowledge of number theory. Actually, a 
great deal of the book requires no calculus at all and could profitably be 
studied by sophisticated high school students. 

Number theory is such a vast and rich field that a one-year course cannot 
do justice to all its parts. The choice of topics included here is intended to 
provide some variety and some depth. Problems which have fascinated 
generations of professional and amateur mathematicians are discussed 
together with some of the techniques for solving them. 

One of the goals of this course has been to nurture the intrinsic interest 
that many young mathematics students seem to have in number theory and 
to open some doors for them to the current periodical literature. It has been 
gratifying to note that many of the students who have taken this course 
during the past 25 years have become professional mathematicians, and some 
have made notable contributions of their own to number theory. To all of 
them this book is dedicated. 

1  The second volume is scheduled to appear in the Springer-Verlag Series Graduate Texts in 
Mathematics under the title Modular Functions and Dirichlet Series in Number Theory. 
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Historical Introduction 

The theory of numbers is that branch of mathematics which deals with 
properties of the whole numbers, 

1, 2, 3, 4, 5, ... 

also called the counting numbers, or positive integers. 
The positive integers are undoubtedly man's first mathematical creation. 

It is hardly possible to imagine human beings without the ability to count, 
at least within a limited range. Historical record shows that as early as 
5700 BC the ancient Sumerians kept a calendar, so they must have developed 
some form of arithmetic. 

By 2500 BC the Sumerians had developed a number system using 60 as a 
base. This was passed on to the Babylonians, who became highly skilled 
calculators. Babylonian clay tablets containing elaborate mathematical 
tables have been found, dating back to 2000 BC. 

When ancient civilizations reached a level which provided leisure time 
to ponder about things, some people began to speculate about the nature and 
properties of numbers. This curiosity developed into a sort of number-
mysticism or numerology, and even today numbers such as 3, 7, 11, and 13 
are considered omens of good or bad luck. 

Numbers were used for keeping records and for commercial transactions 
for over 5000 years before anyone thought of studying numbers themselves 
in a systematic way. The first scientific approach to the study of integers, 
that is, the true origin of the theory of numbers, is generally attributed to the 
Greeks. Around 600 BC Pythagoras and his disciples made rather thorough 
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studies of the integers. They were the first to classify integers in various ways: 

Even numbers: 2, 4, 6, 8, 10, 12, 14, 16, .. . 
Odd numbers: 1, 3, 5, 7, 9, 11, 13, 15, ... 
Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 

67, 71, 73, 79, 83, 89, 97, . 
Composite numbers: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, ... 

A prime number is a number greater than 1 whose only divisors are 1 and 
the number itself. Numbers that are not prime are called composite, except 
that the number 1 is considered neither prime nor composite. 

The Pythagoreans also linked numbers with geometry. They introduced 
the idea of polygonal numbers: triangular numbers, square numbers, pen-
tagonal numbers, etc. The reason for this geometrical nomenclature is 
clear when the numbers are represented by dots arranged in the form of 
triangles, squares, pentagons, etc., as shown in Figure 1.1. 

Figure 1.1 

Another link with geometry came from the famous Theorem of Pythagoras 
which states that in any right triangle the square of the length of the hy-
potenuse is the sum of the squares of the lengths of the two legs (see Figure 1.2). 
The Pythagoreans were interested in right triangles whose sides are integers, 
as in Figure 1.3. Such triangles are now called Pythagorean triangles. The 
corresponding triple of numbers (x, y, z) representing the lengths of the sides 
is called a Pythagorean triple. 
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Historical introduction 

x 2  +y 2  =z 2  

Figure 1.2 

A Babylonian tablet has been found, dating from about 1700 BC, which 
contains an extensive list of Pythagorean triples, some of the numbers being 
quite large. The Pythagoreans were the first to give a method for determining 
infinitely many triples. In modern notation it can be described as follows: 
Let n be any odd number greater than 1, and let 

x = n, 	y = -1-(n 2  — 1), 	z 	-1-(n 2  + 1). 

The resulting triple (x, y, z) will always be a Pythagorean triple with z = y 
+ 1. Here are some examples: 

3 5 7 9 11 13 15 17 19 

y 4 12 24 40 60 84 112 144 180 

z 5 13 25 41 61 85 113 145 181 

There are other Pythagorean triples besides these; for example: 

x 8 12 16 20 

y 15 35 63 99 

z 17 37 65 101 

In these examples we have z = y + 2. Plato (430-349 BC) found a method for 
determining all these triples; in modern notation they are given by the 
formulas 

x = 4n, 	y = 4n 2  — 1, 	z = 4n 2  + 1. 

Around 300 BC an important event occurred in the history of mathematics. 
The appearance of Euclid's Elements, a collection of 13 books, transformed 
mathematics from numerology into a deductive science. Euclid was the 
first to present mathematical facts along with rigorous proofs of these facts. 

3 2 +4 2 =5 2 13 	2 	2 5 -  +12 -  =13 5 

12 

Figure 1.3 
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Historical introduction 

Three of the thirteen books were devoted to the theory of numbers (Books VII, 
IX, and X). In Book IX Euclid proved that there are infinitely many primes. 
His proof is still taught in the classroom today. In Book X he gave a method 
for obtaining all Pythagorean triples although he gave no proof that his 
method did, indeed, give them all. The method can be summarized by the 
formulas 

x = t(a2  - b2 ), 	y = 2tab, 	z = t(a2  + b2 ), 

where t, a, and b, are arbitrary positive integers such that a > b, a and b have 
no prime factors in common, and one of a or b is odd, the other even. 

Euclid also made an important contribution to another problem posed 
by the Pythagoreans-that of finding all perfect numbers. The number 6 
was called a perfect number because 6 = 1 + 2 + 3, the sum of all its proper 
divisors (that is, the sum of all divisors less than 6). Another example of a 
perfect number is 28 because 28 = 1 + 2 + 4 + 7 + 14, and 1, 2, 4, 7, and 
14 are the divisors of 28 less than 28. The Greeks referred to the proper 
divisors of a number as its "parts." They called 6 and 28 perfect numbers 
because in each case the number is equal to the sum of all its parts. 

In Book IX, Euclid found all even perfect numbers. He proved that an 
even number is perfect if it has the form 

2P -  '(2P - 1), 

where both p and 2" - 1 are primes. 
Two thousand years later, Euler proved the converse of Euclid's theorem. 

That is, every even perfect number must be of Euclid's type. For example, for 
6 and 28 we have 

6 = 22-1 (2 2  - 1) = 2.3 	and 28 = 2'(2 3  -1) = 4 . 7. 

The first five even perfect numbers are 

6, 28, 496, 8128 	and 33,550,336. 

Perfect numbers are very rare indeed. At the present time (1975) only 24 
perfect numbers are known. They correspond to the following values of p 
in Euclid's formula: 

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 
3217, 4253, 4423, 9689, 9941, 11,213, 19,937. 

Numbers of the form 2P - 1. where p is prime, are now called Mersenne 
numbers and are denoted by M p  in honor of Mersenne, who studied them in 
1644. It is known that M p  is prime for the 24 primes listed above and coin.- 
posite for all other values of p <; 257, except possibly for 

p = 157, 167, 193, 199, 227, 229; 

for these it is not yet known whether M p  is prime or composite. 
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Historical introduction 

No odd perfect numbers are known; it is not even known if any exist. 
But if any do exist they must be very large; in fact, greater than 10" (see 
Hagis [29]). 

We turn now to a brief description of the history of the theory of numbers 
since Euclid's time. 

After Euclid in 300 BC no significant advances were made in number 
theory until about AD 250 when another Greek mathematician, Diophantus 
of Alexandria, published 13 books, six of which have been preserved. This 
was the first Greek work to make systematic use of algebraic symbols. 
Although his algebraic notation seems awkward by present-day standards, 
Diophantus was able to solve certain algebraic equations involving two or 
three unknowns. Many of his problems originated from number theory and it 
was natural for him to seek integer solutions of equations. Equations to be 
solved with integer values of the unknowns are now called Diophantine 
equations, and the study of such equations is known as Diophantine analysis. 
The equation x 2  + y 2  = z2  for Pythagorean triples is an example of a 
Diophantine equation. 

After Diophantus, not much progress was made in the theory of numbers 
until the seventeenth century, although there is some evidence that the 
subject began to flourish in the Far East—especially in India—in the period 
between AD 500 and AD 1200. 

In the seventeenth century the subject was revived in Western Europe, 
largely through the efforts of a remarkable French mathematician, Pierre de 
Fermat (1601-1665), who is generally acknowledged to be the father of 
modern number theory. Fermat derived much of his inspiration from the 
works of Diophantus. He was the first to discover really deep properties of 
the integers. For example, Fermat proved the following surprising theorems: 

Every integer is either a triangular number or a sum of 2 or 3 triangular 
numbers; every integer is either a square or a sum of 2, 3, or 4 squares; every 
integer is either a pentagonal number or the sum of 2, 3, 4, or 5 pentagonal 
numbers, and so on. 

Fermat also discovered that every prime number of the form 4n + 1 
such as 5, 13, 17, 29, 37, 41, etc., is a sum of two squares. For example, 

5 = 1 2  + 2 2 , 	13 = 2 2  + 32, 	17  = 1 2 + 42, 	29 = 2 2  + 52 , 
37  = 12 + 62 , 	41 = 42  + 5 2 . 

Shortly after Fermat's time, the names of Euler (1707-1783), Lagrange 
(1736-1813), Legendre (1752-1833), Gauss (1777-1855), and Dirichlet 
(1805-1859) became prominent in the further development of the subject. 
The first textbook in number theory was published by Legendre in 1798. 
Three years later Gauss published Disquisitiones Arithmeticae, a book which 
transformed the subject into a systematic and beautiful science. Although he 
made a wealth of contributions to other branches of mathematics, as well 
as to other sciences, Gauss himself considered his book on number theory 
to be his greatest work. 
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Historical introduction 

In the last hundred years or so since Gauss's time there has been an 
intensive development of the subject in many different directions. It would be 
impossible to give in a few pages a fair cross-section of the types of problems 
that are studied in the theory of numbers. The field is vast and some parts 
require a profound knowledge of higher mathematics. Nevertheless, there 
are many problems in number theory which are very easy to state. Some of 
these deal with prime numbers, and we devote the rest of this introduction 
to such problems. 

The primes less than 100 have been listed above. A table listing all primes 
less than 10 million was published in 1914 by an American mathematician, 
D. N. Lehmer [43]. There are exactly 664,579 primes less than 10 million, 
or about 64 cyc, . More recently D. H. Lehmer (the son of D. N. Lehmer) 
calculated the total number of primes less than 10 billion; there are exactly 
455,052,512 such primes, or about 41 %, although all these primes are not 
known individually (see Lehmer [41]). 

A close examination of a table of primes reveals that they are distributed 
in a very irregular fashion. The tables show long gaps between primes. For 
example, the prime 370,261 is followed by 111 composite numbers. There are 
no primes between 20,831,323 arid 20,831,533. It is easy to prove that arbitrar-
ily large gaps between prime numbers must eventually occur. 

On the other hand, the tables indicate that consecutive primes, such as 
3 and 5, or 101 and 103, keep recurring. Such pairs of primes which differ 
only by 2 are known as twin primes. There are over 1000 such pairs below 
100,000 and over 8000 below 1,000,000. The largest pair known to date 
(see Williams and Zarnke [76]) is 76 3 1 " — 1 and 76 • 3 1 " + 1. Many 
mathematicians think there are infinitely many such pairs, but no one has 
been able to prove this as yet. 

One of the reasons for this irregularity in distribution of primes is that no 
simple formula exists for producing all the primes. Some formulas do yield 
many primes. For example, the expression 

.x 2  — x + 41 

gives a prime for x --= 0, 1, 2, ... , 40, whereas 

x2  — 79x + 1601 

gives a prime for x 	0, 1, 2, .. . , 79. However, no such simple formula can 
give a prime for all x, even if cubes and higher powers are used. In fact, in 
1752 Goldbach proved that no polynomial in x with integer coefficients can 
be prime for all x, or even for all sufficiently large x. 

Some polynomials represent infinitely many primes. For example, as 
x runs through the integers 0, 1, 2, 3, ... , the linear polynomial 

2x + 1 
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Historical introduction 

gives all the odd numbers hence infinitely many primes. Also, each of the 
polynomials 

4x + 1 	and 	4x + 3 

represents infinitely many primes. In a famous memoir [15] published in 
1837, Dirichlet proved that, if a and b are positive integers with no prime 
factor in common, the polynomial 

ax + b 

gives infinitely many primes as x runs through all the positive integers. 
This result is now known as Dirichlet's theorem on the existence of primes 
in a given arithmetical progression. 

To prove this theorem, Dirichlet went outside the realm of integers and 
introduced tools of analysis such as limits and continuity. By so doing he 
laid the foundations for a new branch of mathematics called analytic number 
theory, in which ideas and methods of real and complex analysis are brought 
to bear on problems about the integers. 

It is not known if there is any quadratic polynomial ax2  + bx + c with 
a 0 0 which represents infinitely many primes. However, Dirichlet [16] 
used his powerful analytic methods to prove that, if a, 2b, and c have no 
prime factor in common, the quadratic polynomial in two variables 

ax2  + 2bxy + cy2  

represents infinitely many primes as x and y run through the positive integers. 
Fermat thought that the formula 2 2 " + 1 would always give a prime for 

n = 0, 1, 2, ... These numbers are called Fermat numbers and are denoted 
by F. The first five are 

Fo  = 3, 	F 1  = 5, 	F2 = 17, 	F3 = 257 	and F4 = 65,537, 

and they are all primes. However, in 1732 Euler found that F5 is composite; 
in fact, 

F5 = 232  + 1 = (641)(6,700,417). 

These numbers are also of interest in plane geometry. Gauss proved that if 
F„ is a prime, say F„ = p, then a regular polygon of p sides can be con-
structed with straightedge and compass. 

Beyond F5, no further Fermat primes have been found. In fact, for 5 < 
n < 16 each Fermat number F„ is composite. Also, F„ is known to be com-
posite for the following further isolated values of n: 

n = 18, 19, 21, 23, 25, 26, 27, 30, 32, 36, 38, 39, 42, 52, 55, 58, 63, 73, 77, 
81, 117, 125, 144, 150, 207, 226, 228, 260, 267, 268, 284, 316, 452, 
and 1945. 

The greatest known Fermat composite, F1945, has more than 10 582  digits, a 
number larger than the number of letters in the Los Angeles and New York 
telephone directories combined (see Robinson [59] and Wrathall [77]). 
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Historical introduction 

It was mentioned earlier that there is no simple formula that gives all the 
primes. In this connection, we should mention a result discovered in 1947 
by an American mathematician, W. H. Mills [50]. He proved that there is 
some number A, greater than 1 but not an integer, such that 

[A 31 is prime for all x = 1, 2, 3, ... 

Here [An means the greatest integer < A 3'. Unfortunately, no one knows 
what A is equal to. 

The foregoing results illustrate the irregularity of the distribution of the 
prime numbers. However, by examining large blocks of primes one finds 
that their average distribution seems to be quite regular. Although there is 
no end to the primes, they become more widely spaced, on the average, as 
we go further and further in the table. The question of the diminishing 
frequency of primes was the subject of much speculation in the early nine-
teenth century. To study this distribution, we consider a function, denoted 
by i(x), which counts the number of primes < x. Thus, 

n(x) = the number of primes p satisfying 2 < p < x. 

Here is a brief table of this function and its comparison with x/log x, where 
log x is the natural logarithm of x. 

n(x) x/log x 	n(x)I  x  
log x 

10 4 4.3 0.93 
10 2  25 21.7 1.15 
103  168 144.9 1.16 
o4  1,229 1,086 1.11 

10 5  9,592 8,686 1.10 
106  78,498 72,464 1.08 
10 7  664,579 621,118 1.07 
10 8  5,761,455 5,434,780 1.06 
109  50,847,534 48,309,180 1.05 
10 1°  455,052,512 434,294,482 1.048 

By examining a table like this for x < 10 6, Gauss [24] and Legendre [40] 
proposed independently that for large x the ratio 

n(x)
I  x  

log x 

was nearly 1 and they conjectured that this ratio would approach 1 as x 
approaches co. Both Gauss and Legendre attempted to prove this statement 
but did not succeed. The problem of deciding the truth or falsehood of this 
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Historical introduction 

conjecture attracted the attention of eminent mathematicians for nearly 
100 years. 

In 1851 the Russian mathematician Chebyshev [9] made an important 
step forward by proving that if the ratio did tend to a limit, then this limit 
must be 1. However he was unable to prove that the ratio does tend to a 
limit. 

In 1859 Riemann [58] attacked the problem with analytic methods, using 
a formula discovered by Euler in 1737 which relates the prime numbers to 
the function 

as) = 
n = 1  n 

for real s> 1. Riemann considered complex values of s and outlined an 
ingenious method for connecting the distribution of primes to properties 
of the function as). The mathematics needed to justify all the details of his 
method had not been fully developed and Riemann was unable to com-
pletely settle the problem before his death in 1866. 

Thirty years later the necessary analytic tools were at hand and in 1896 
J. Hadamard [28] and C. J. de la Vallee Poussin [71] independently and 
almost simultaneously succeeded in proving that 

rc(x)log x 
lim 	 =1, 
...0 	x  

This remarkable result is called the prime number theorem, and its proof was 
one of the crowning achievements of analytic number theory. 

In 1949, two contemporary mathematicians, Atle Selberg [62] and Paul 
Erdos [19] caused a sensation in the mathematical world when they dis-
covered an elementary proof of the prime number theorem. Their proof, 
though very intricate, makes no use of c(s) nor of complex function theory 
and in principle is accessible to anyone familiar with elementary calculus. 

One of the most famous problems concerning prime numbers is the 
so-called Goldbach conjecture. In 1742, Goldbach [26] wrote to Euler 
suggesting that every even number > 4 is a sum of two primes. For example 

4 = 2 + 2, 	6 = 3 + 3, 	8 = 3 + 5, 
10 = 3 + 7 = 5 + 5, 	12 = 5 + 7. 

This conjecture is undecided to this day, although in recent years some 
progress has been made to indicate that it is probably true. Now why do 
mathematicians think it is probably true if they haven't been able to prove it? 
First of all, the conjecture has been verified by actual computation for all 
even numbers less than 33 x 10 6. It has been found that every even number 
greater than 6 and less than 33 x 10 6  is, in fact, not only the sum of two odd 
primes but the sum of two distinct odd primes (see Shen [66]). But in number 
theory verification of a few thousand cases is not enough evidence to con-
vince mathematicians that something is probably true. For example, all the 
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odd primes fall into two categories, those of the form 4n + 1 and those of the 
form 4n + 3. Let m 1 (x) denote all the primes <x that are of the form 4n + 1, 
and let 7r3 (x) denote the number that are of the form 4n + 3. It is known that 
there are infinitely many primes of both types. By computation it was found 
that m 1 (x) 7c 3(x) for all x < 26,861. But in 1957, J. Leech [39] found that 
for x = 26,861 we have i 1 (x) = 1473 and 7r3(x) = 1472, so the inequality 
was reversed. In 1914, Littlewood [49] proved that this inequality reverses 
back and forth infinitely often. That is, there are infinitely many x for which 
n 1 (x) < 7r 3(x) and also infinitely many x for which 7r 3(x) < n i (x). Con-
jectures about prime numbers can be erroneous even if they are verified by 
computation in thousands of cases. 

Therefore, the fact that Goldbach's conjecture has been verified for all 
even numbers less than 33 x 106  is only a tiny bit of evidence in its favor. 

Another way that mathematicians collect evidence about the truth of 
a particular conjecture is by proving other theorems which are somewhat 
similar to the conjecture. For example, in 1930 the Russian mathematician 
Schnirelmann [61] proved that there is a number M such that every number 
n from some point on is a sum of M or fewer primes: 

n = pi  + p2  + • • • + pm 	(for sufficiently large n). 

If we knew that M were equal to 2 for all even n, this would prove Goldbach's 
conjecture for all sufficiently large n. In 1956 the Chinese mathematician 
Yin Wen-Lin [78] proved that M < 18. That is, every number n from some 
point on is a sum of 18 or fewer primes. Schnirelmann's result is considered a 
giant step toward a proof of Goldbach's conjecture. It was the first real 
progress made on this problem in nearly 200 years. 

A much closer approach to a solution of Goldbach's problem was made 
in 1937 by another Russian mathematician, I. M. Vinogradov [73], who 
proved that from some point on every odd number is the sum of three primes: 

n = pi  + p2  + p3 	(n odd, n sufficiently large). 

In fact, this is true for all odd n greater than 3 315  (see Borodzkin [5]). To date, 
this is the strongest piece of evidence in favor of Goldbach's conjecture. For 
one thing, it is easy to prove that Vinogradov's theorem is a consequence of 
Goldbach's statement. That is, if Goldbach's conjecture is true, then it is 
easy to deduce Vinogradov's statement. The big achievement of Vinogradov 
was that he was able to prove his result without using Goldbach's statement. 
Unfortunately, no one has been able to work it the other way around and 
prove Goldbach's statement from Vinogradov's. 

Another piece of evidence in favor of Goldbach's conjecture was found 
in 1948 by the Hungarian mathematician Renyi [57] who proved that there 
is a number M such that every sufficiently large even number n can be 
written as a prime plus another number which has no more than M prime 
factors: 

n = p + A 
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where A has no more than M prime factors (n even, n sufficiently large). 
If we knew that M = 1 then Goldbach's conjecture would be true for all 
sufficiently large n. In 1965 A. A. Buh§tab [6] and A. I. Vinogradov [72] 
proved that M < 3, and in 1966 Chen Jing-run [10] proved that M < 2. 

We conclude this introduction with a brief mention of some outstanding 
unsolved problems concerning prime numbers. 

1. (Goldbach's problem). Is there an even number >2 which is not the 
sum of two primes? 

2. Is there an even number >2 which is not the difference of two primes? 
3. Are there infinitely many twin primes? 
4. Are there infinitely many Mersenne primes, that is, primes of the form 

2" — 1 where p is prime? 
5. Are there infinitely many composite Mersenne numbers? 
6. Are there infinitely many Fermat primes, that is, primes of the form 

22 ' + 1? 
7. Are there infinitely many composite Fermat numbers? 
8. Are there infinitely many primes of the form x 2  + 1, where x is an integer? 

(It is known that there are infinitely many of the form x 2  + y2 , and of the 
form x 2  + y2  + 1, and of the form x 2  + y2  + z2  + 1). 

9. Are there infinitely many primes of the form x 2  + k, (k given)? 
10. Does there always exist at least one prime between n 2  and (n + 1)2  for 

every integer n > 1? 
11. Does there always exist at least one prime between n 2  and n 2  + n for 

every integer n > 1? 
12. Are there infinitely many primes whose digits (in base 10) are all ones? 

(Here are two examples: 11 and 11,111,111,111,111,111,111,111.) 

The professional mathematician is attracted to number theory because 
of the way all the weapons of modern mathematics can be brought to bear on 
its problems. As a matter of fact, many important branches of mathematics 
had their origin in number theory. For example, the early attempts to prove 
the prime number theorem stimulated the development of the theory of 
functions of a complex variable, especially the theory of entire functions. 
Attempts to prove that the Diophantine equation xn + yn = zn has no 
nontrivial solution if n > 3 (Fermat's conjecture) led to the development of 
algebraic number theory, one of the most active areas of modern mathe-
matical research. Even though Fermat's conjecture is still undecided, this 
seems unimportant by comparison to the vast amount of valuable mathe-
matics that has been created as a result of work on this conjecture. Another 
example is the theory of partitions which has been an important factor in the 
development of combinatorial analysis and in the study of modular functions. 

There are hundreds of unsolved problems in number theory. New 
problems arise more rapidly than the old ones are solved, and many of the 
old ones have remained unsolved for centuries. As the mathematician 
Sierpinski once said, "... the progress of our knowledge of numbers is 
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advanced not only by what we already know about them, but also by realizing 
what we yet do not know about them." 

Note. Every serious student of number theory should become acquainted 
with Dickson's three-volume History of the Theory of Numbers [13], and 
LeVeque's six-volume Reviews in Number Theory [45]. Dickson's History 
gives an encyclopedic account of the entire literature of number theory up 
until 1918. LeVeque's volumes reproduce all the reviews in Volumes 1-44 of 
Mathematical Reviews (1940-1972) which bear directly on questions com-
monly regarded as part of number theory. These two valuable collections 
provide a history of virtually all important discoveries in number theory from 
antiquity until 1972. 
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1 The Fundamental Theorem of 
Arithmetic 

1.1 Introduction 
This chapter introduces basic concepts of elementary number theory such 
as divisibility, greatest common divisor, and prime and composite numbers. 
The principal results are Theorem 1.2, which establishes the existence of 
the greatest common divisor of any two integers, and Theorem 1.10 (the 
fundamental theorem of arithmetic), which shows that every integer greater 
than 1 can be represented as a product of prime factors in only one way 
(apart from the order of the factors). Many of the proofs make use of the 
following property of integers. 

The principle of induction If Q is a set of integers such that 

(a) 1 e Q, 
(b) n E Q implies n + 1 c Q, 

then 

(c) all integers 1 belong to Q. 

There are, of course, alternate formulations of this principle. For example, 
in statement (a), the integer 1 can be replaced by any integer k, provided that 
the inequality 1 is replaced by > k in (c). Also, (b) can be replaced by the 
statement 1, 2, 3, .. . , n e Q implies (n + 1) e Q. 

We assume that the reader is familiar with this principle and its use in 
proving theorems by induction. We also assume familiarity with the following 
principle, which is logically equivalent to the principle of induction. 

The well-ordering principle If A is a nonempty set of positive integers, then A 
contains a smallest member. 
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1: The fundamental theorem of arithmetic 

Again, this principle has equivalent formulations. For example, "positive 
integers" can be replaced by "integers > k for some k." 

1.2 Divisibility 

Notation In this chapter, small latin letters a, b, c, d, n, etc., denote integers; 
they can be positive, negative, or zero. 

Definition of divisibility We say d divides n and we write di n whenever n = cd 
for some c. We also say that n is a multiple of d, that d is a divisor of n, 
or that d is a factor of n. If d does not divide n we write d /1/ n. 

Divisibility establishes a relation between any two integers with the 
following elementary properties whose proofs we leave as exercises for the 
reader. (Unless otherwise indicated, the letters a, b, d, m, n in Theorem 1.1 
represent arbitrary integers.) 

Theorem 1.1 Divisibility has the following properties: 

(a) nin 
(b) din and n I rn implies dlm 
(c) din and dim implies di(an + bm) 
(d) din implies adian 
(e) adian and a 0 0 implies din 
(f.) 1 In 
(g) n10 
(h) 0 I n implies n .----- 0 
(i) din and n 0 0 implies Id' ___ in1 
CD din and nid implies IdI = In 1 
(k) din and d 0 0 implies (n1d)in. 

(reflexive property) 
(transitive property) 
(linearity property) 
(multiplication property) 
(cancellation law) 
(1 divides every integer) 
(every integer divides zero) 
(zero divides only zero) 
(comparison property) 

Note. If din then nld is called the divisor conjugate to d. 

1.3 Greatest common divisor 

If d divides two integers a and b, then d is called a common divisor of a and b. 
Thus, 1 is a common divisor of every pair of integers a and b. We prove now 
that every pair of integers a and b has a common divisor which can be ex-
pressed as a linear combination of a and b. 

Theorem 1.2 Given any two integers a and b, there is a common divisor d of a 
and b of the form 

d = ax + by, 
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1,3: Greatest common divisor 

where x and y are integers. Moreover, every common divisor of a and b 
divides this d. 

PROOF. First we assume that a > 0 and b > 0. We use induction on n, 
where n = a + b. If n = 0 then a = b = 0 and we can take d 0 with 
x = y = 0. Assume, then, that the theorem has been proved for 0, 1, 2, . . 
n — 1. By symmetry, we can assume a > b. If b = 0 take d = a, x = 1, 
y = 0. If b 1 apply the theorem to a — b and b. Since (a — b) + b = 
a=n—b<n— 1, the induction assumption is applicable and there is a 
common divisor d of a — b and b of the form d = (a — b)x + by. This d 
also divides (a — b) + b = a so d is a common divisor of a and b and we 
have d = ax + (y x)b, a linear combination of a and b. To complete the 
proof we need to show that every common divisor divides d. But a common 
divisor divides a and b and hence, by linearity, divides d. 

If a < 0 or b < 0 (or both), we can apply the result just proved to la and 
lb I . Then there is a common divisor d of I al and I b I of the form 

d = laix + 

If a < 0, 'al x = — ax = a(— x). Similarly, if b < 0, I b ly = b(—y). Hence d 
is again a linear combination of a and b. 

Theorem 1.3 Given integers a and b, there is one and only one number d with 
the following properties: 

(a) d 0 	 (d is nonnegative) 
(b) dla and dib 	 (d is a common divisor of a and b) 
(c) ela and elb implies eld 	(every common divisor divides d). 

PROOF. By Theorem 1.2 there is at least one d satisfying conditions (b) and (c). 
Also, —d satisfies these conditions. But if d' satisfies (b) and (c), then did' 
and d' Id, so Icil = I d' I. Hence there is exactly one d 0 satisfying (b) 
and (c). 

Note. In Theorem 1.3, d = 0 if, and only if, a = b = 0. Otherwise d > 1. 

Definition The number d of Theorem 1.3 is called the greatest common 
divisor (gcd) of a and b and is denoted by (a, b) or by aDb. If (a, b) = 1 
then a and b are said to be relatively prime. 

The notation aDb arises from interpreting the gcd as an operation per-
formed on a and b. However, the most common notation in use is (a, b) and 
this is the one we shall adopt, although in the next theorem we also use the 
notation aDb to emphasize the algebraic properties of the operation D. 
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1: The fundamental theorem of arithmetic 

Theorem 1.4 The gcd has the following properties: 

(a) (a, b) = (b, a) 
aDb = bDa 

(b) (a, (b, c)) = ((a, b), c) 
aD(bDc) = (aDb)Dc 

(c) (ac, bc) = I c 1(a, b) 
(ca)D(cb) 	Icl(aDb) 

(commutative law) 

(associative law) 

(distributive law) 
(d) (a, 1) = (1, a) = 1, 	(a, 0) = (0, a) = lal. 

aD1 = 1Da = 1, 	aDO = ODa = ial
. 

PROOF. We prove only (c). Proofs of the other statements are left as exercises 
for the reader. 

Let d = (a, b) and let e = (ac, bc). We wish to prove that e = IcI d. Write 
d = ax + by. Then we have 

( 1 ) 	 cd = acx + bcy. 

Therefore cdle because cd divides both ac and bc. Also, Equation (1) shows 
that elcd because elac and elbc. Hence lel = I cd1, or e = IcId. 	Ml 

Theorem 1.5 Euclid's lemma. If albc and if (a, b) = 1, then alc. 

PROOF. Since (a, b) = 1 we can write 1 = ax + by. Therefore c = acx + bc 
But alacx and albcy, so alc. 

1.4 Prime numbers 

Definition An integer n is called prime if n > 1 and if the only positive 
divisors of n are 1 and n. If n > 1 and if n is not prime, then n is called 
composite. 

EXAMPLES The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97. 

Notation Prime numbers are usually denoted by p, p', p i , q, 	q i . 

Theorem 1.6 Every integer n > 1 is either a prime number or a product of 
prime numbers. 

PROOF. We use induction on n. The theorem is clearly true for n = 2. Assume 
it is true for every integer < n. Then if n is not prime it has a positive divisor 
d 1,d n. Hence n = cd, where c n. But both c and dare <n and >1 
so each of c, d is a product of prime numbers, hence so is n. LI 

Theorem 1.7 Euclid. There are infinitely many prime numbers. 
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EUCLID'S PROOF. Suppose there are only a finite number, say D n 	• • ,Pn• 

Let N = 1 + Pi P2 • • • p„. Now N> 1 so either N is prime or N is a product 
of primes. Of course N is not prime since it exceeds each p i . Moreover, 
no pi  divides N (if pi iN then pi  divides the difference N — Pi P2 • • • p n  = 1). 
This contradicts Theorem 1.6. 

Theorem 1.8 If a prime p does not divide a, then (p, a) = 1. 

PROOF. Let d = (p, a). Then dip so d = 1 or d = p. But dla so d 
because p a. Hence d = 1. 	 ill 

Theorem 1.9 If a prime p divides ab, then pia or plb. More generally, if a 
prime p divides a product a l  • • a„, then p divides at least one of the factors. 

PROOF. Assumeplab and thatp a. We shall prove thatp lb. By Theorem 1.8, 
(p, a) = 1 so, by Euclid's lemma, plb. 

To prove the more general statement we use induction on n, the number of 
factors. Details are left to the reader. 

1.5 The fundamental theorem of arithmetic 

Theorem 1.10 Fundamental theorem of arithmetic. Every integer n > 1 can 
be represented as a product of prime factors in only one way, apart from the 
order of the factors. 

PROOF. We use induction on n. The theorem is true for n = 2. Assume, then, 
that it is true for all integers greater than 1 and less than n. We shall prove 
it is also true for n. If n is prime there is nothing more to prove. Assume, then, 
that n is composite and that n has two factorizations, say 

(2) 	 n = PiP2 • • Ps = giq2 • • • qt• 

We wish to show that s = t and that each p equals some q. Since p i  divides 
the product q 1 q2  • • • q, it must divide at least one factor. Relabel q 1 , q 2 , , q, 
so that Pi q1 . Then p i  = q 1  since both p i  and q i  are primes. In (2) we may 
cancel p i  on both sides to obtain 

= P2 .  • Ps = q2 .  • qr. 

If s> 1 or t > I then 1 < nlp, < n. The induction hypothesis tells us that 
the two factorizations of nlp I  must be identical, apart from the order of the 
factors. Therefore s = t and the factorizations in (2) are also identical, apart 
from order. This completes the proof. 

Note. In the factorization of an integer n, a particular prime p may occur 
more than once. If the distinct prime factors of n are p i , , p,. and if pi  
occurs as a factor a, times, we can write 

n = Pia ' • • • Prar 
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1: The fundamental theorem of arithmetic 

or, more briefly, 

n = 
i= 

This is called the factorization of n into prime powers. We can also express 1 
in this form by taking each exponent ai  to be 0. 

Theorem 1.11 If n = Fri= , p, the set of positive divisors of n is the set of 
numbers of the form Ili=  piCI, where 0 	c i 	ai  for i = 1, 2, ... , r. 

PROOF. Exercise. 

Note. If we label the primes in increasing order, thus: 

Pi = 2, 	p2  = 3, 	p 3  = 5, . , 	p„ = the nth prime, 

every positive integer n (including 1) can be expressed in the form 

n = npiai 
1=1 

where now each exponent ai  > 0. The positive divisors of n are all numbers of 
the form 

where 0 
	

c i  ai . The products are, of course,finite. 

Theorem 1 .12 If two positive integers a and b have the factorizations 

a = 	b = n pibi , 
1=1 	 i=1 

then their gcd has the factorization 

(a, b) = n pici 
i =1 

where each c i  = min fai , 	the smaller of ai  and b•. 

PROOF. Let d =fl p. Since ci  < a, and c, 	we have dla and dlb so d 
is a common divisor of a and b. Let e be any common divisor of a and b, and 
write e = 	I  pie'• Then ei  a, and ei  < b, so ei  < ci . Hence eld, so d is 
the gcd of a and b. 	 El 

1.6 The series of reciprocals of the primes 

Theorem 1.13 The infinite series Do= 1/p„ diverges. 

PROOF. The following short proof of this theorem is due to Clarkson [11]. 
We assume the series converges and obtain a contradiction. If the series 
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converges there is an integer k such that 

,--,' 	1 	1 
L -----„‹ i• 

mr=k1-1E'm 	.'-• 

Let Q = p i  • • - pk , and consider the numbers1 + nQ for n = 1, 2, . .. None 
of these is divisible by any of the primes p i , ... , pk . Therefore, all the prime 
factors of l ± nQ occur among the primes pk+  1, Pk+ 2, . . . Therefore for each 
r > 1 we have 

n 	I + nQ 	t= 1 m=k+ 1 t'm 
1 
=1 

1 	 E ( E -r, , 
00 	1 y  00 

since the sum on the right includes among its terms all the terms on the left. 
But the right-hand side of this inequality is dominated by the convergent 
geometric series 

t=i 2 i  0 .  

Therefore the series E n'_ 1 1/(1 + nQ) has bounded partial sums and hence 
converges. But this is a contradiction because the integral test or the limit 
comparison test shows that this series diverges. 

Note. The divergence of the series E lip, was first proved in 1737 by 
Euler [20] who noted that it implies Euclid's theorem on the existence of 
infinitely many primes. 

In a later chapter we shall obtain an asymptotic formula which shows 
that the partial sums Eik'= i  1/pk  tend to infinity like log(log n). 

1.7 The Euclidean algorithm 
Theorem 1.12 provides a practical method for computing the gcd (a, b) when 
the prime-power factorizations of a and b are known. However, considerable 
calculation may be required to obtain these prime-power factorizations and 
it is desirable to have an alternative procedure that requires less computa-
tion. There is a useful process, known as Euclid's algorithm, which does not 
require the factorizations of a and b. This process is based on successive 
divisions and makes use of the following theorem. 

Theorem 1.14 The division algorithm. Given integers a and b with b > 0, there 
exists a unique pair of integers q and r such that 

a = bq + r, with 0 r < b. 

Moreover, r = 0 if, and only if, b Ia. 

Note. We say that q is the quotient and r the remainder obtained when b 
is divided into a. 

1 

IR 
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PROOF. Let S be the set of nonnegative integers given by 

S = {y : y = a — bx, x is an integer, y 0}. 

This is a nonempty set of nonnegative integers so it has a smallest member, 
say a — bq. Let r = a — bq. Then a = bq + r and r > 0. Now we show that 
r<b. Assume r>b. Then 0 <r—b<r. But r—bcS since r—b= 
a — b(q + 1). Hence r — b is a member of S smaller than its smallest member, 
r. This contradiction shows that r < b. The pair q, r is unique, for if there were 
another such pair, say q', r', then bq + r = bq' + r' so b(q — q') = r' r. 
Hence 131(r' — r). If r' — r 0 this implies b < Ir — r' I, a contradiction. 
Therefore r' = r and q' = q. Finally, it is clear that r = 0 if, and only if, 
bla. 0 

Note. Although Theorem 1.14 is an existence theorem, its proof actually 
gives us a method for computing the quotient q and the remainder r. We 
subtract from a (or add to a) enough multiples of b until it is clear that we have 
obtained the smallest nonnegative number of the form a — bx. 

Theorem 1.15 The Euclidean algorithm. Given positive integers a and b, where 
b /I/ a. Let T 0 = a, r1  = b, and apply the division algorithm repeatedly to 
obtain a set of remainders r2 , r3 , . . , r„, r„ +1  defined successively by the 
relations 

rc, = r i q i  + r2 , 	0 < r2  < r1 , 
= r2  q 2  + r 3 , 	0 < r3  < r2 , 

r_2 = rn- lqn- I + ril 5 
	0 < rn  < 

= rn qn 	1 , 	rn+i  = 0. 

Then rn , the last nonzero remainder in this process, is (a, b), the gcd of a and b. 

PROOF. There is a stage at which rn+ 1  = 0 because the r, are decreasing 
and nonnegative. The last relation, r„_ 1  = rn qn  shows that r„Irn _ 1 . The next 
to last shows that rn  1 r„ _ 2  By induction we see that rn  divides each ri . In 
particular TT 1  = b and r„ ro  = a, so rn  is a common divisor of a and b. 
Now let d be any common divisor of a and b. The definition of r 2  shows that 
dl r2 . The next relation shows that d I r 3 . By induction, d divides each ri  so 
dIrn . Hence r„ is the required gcd. LI 

1.8 The greatest common divisor of more 
than two numbers 

The greatest common divisor of three integers a,b,c is denoted by (a,b,c) and 
is defined by the relation 

(a, b, c) = (a, (b, c)). 
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Exercises for Chapter 1 

By Theorem 1.4(b) we have (a, (b, c)) = ((a, b), c) so the gcd depends only on 
a, b, c and not on the order in which they are written. 

Similarly, the gcd of n integers al , 	, an  is defined inductively by the 
relation 

(a1, • • • , an) = (a1, (a 2 , • • • , 

Again, this number is independent of the order in which the a, appear. 
If d = (a 1 , , an) it is easy to verify that d divides each of the at  and that 

every common divisor divides d. Moreover, d is a linear combination of the 
a,. That is, there exist integers x l, , x„ such that 

(a1 , 	, an) = a ix i  + • • • + an xn . 

If d = 1 the numbers are said to be relatively prime. For example, 2, 3, and 10 
are relatively prime. 

If (ai , 	1 whenever i j the numbers a t , . . . , a, are said to be relatively 
prime in pairs. If a l , . , an  are relatively prime in pairs then (a 1 , .. . , an) = 1. 
However, the example (2, 3, 10) shows that the converse is not necessarily 
true. 

Exercises for Chapter 1 

In these exercises lower case latin letters a, b, c, . . . , x, y, z represent integers. 
Prove each of the statements in Exercises 1 through 6. 

1. If (a, b) = 1 and if c a and dlb, then (c, d) = I. 

2. If (a, b) = (a, c) = 1, then (a, bc) = 1. 

3. If (a, b) = 1, then (a", bk ) = 1 for all n 	1, k > 1. 

Ic 4. If (a, b) = 1, then (a + b, a — b) is either 1 or 2. 

5. If (a, b) 	1, then (a + b, a 2  - ab + b2 ) is either 1 or 3. 

6. If (a, b) = 1 and if dl(a + b), then (a, d) = (b, d) = 1. 

7. A rational number a/b with (a, b) = 1 is called a reduced . fraction. If the sum of two 
reduced fractions is an integer, say (alb) + (c1d) = n, prove that 1bl= Id' I. 

8. An integer is called squarefree if it is not divisible by the square of any prime. Prove 
that for every n > 1 there exist uniquely determined a > 0 and b > 0 such that 
n = a2 b, where b is squarefree. 

9. For each of the following statements, either give a proof or exhibit a counter example. 
(a) If 132  In and a2  In and a2  < b2 , then alb. 
(b) If b 2  is the largest square divisor of n, then a2  In implies alb. 

10. Given x and y, let m = ax + by, n = ex + dy, where ad — bc = +1. Prove that 
(m, n) = (x, y). 

11. Prove that n4  + 4 is composite if n> 1. 
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1: The fundamental theorem of arithmetic 

In Exercises 12, 13, and 14, a, b, c, m, n denote positive integers. 

12. For each of the following statements either give a proof or exhibit a counter example. 

(a) If 	b" then a I b. 
(b) If n"I mm then n m. 
(c) If a"I2b" and n> 1, then alb. 

13. If (a, b) = 1 and (a/b)tm = n, prove that b = 1. 
(b) If n is not the mth power of a positive integer, prove that n 11!" is irrational. 

14. If (a, b) = 1 and ab = c", prove that a = x" and b = y" for some x and y. [Hint: 
Consider d = (a, c).] 

15. Prove that every n > 12 is the sum of two composite numbers. 

16. Prove that if 2 — 1 is prime, then n is prime. 

17. Prove that if 2" + 1 is prime, then n is a power of 2. 

18. If m n compute the gcd (a2-  + 1, a2 " + 1) in terms of a. [Hint: Let A n  = a2" + 1 
and show that A n I(A. — 2) if m > n.] 

19. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . is defined by the recursion formula 

an+ = an  + an _ 1 , with a l  = a2  = 1. Prove that (an , an  + 1 ) = 1 for each n. 

20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a 
linear combination of 826 and 1890. 

21. The least common multiple (lcm) of two integers a and b is denoted by [a, b] or by 
aMb, and is defined as follows: 

	

[a, b] = I abl/(a, b) if a 0 0 and b 	0, 

[a, b] = 0 if a = 0 or b = O. 

Prove that the lcm has the following properties: 

(a) If a = 	lo ia and b =fl 	el then [a, b] =fl. 1 p/, where c i  = maxa 1 , 1) 1 1. 
(b) (aDb)M = (aMc)D(bA 4c). 
(c) (aMb)Dc = (aDc)M(bDc). 

(D and M are distributive with respect to each other) 

22. Prove that (a, b) — (a + b, [a, b]). 

23. The sum of two positive integers is 5264 and their least common multiple is 200,340. 
Determine the two integers. 

24. Prove the following multiplicative property of the gcd : 

(ah, bk) = (a, b)(h, k) 	 
((a a  b) (hk, 	k))((ab, 	b)' (h,fi  lc)) 

In particular this shows that (oh, bk) = (a, k)(b, h) whenever (a, b) 	(h, k) = 1. 
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Exercises for Chapter 1 

Prove each of the statements in Exercises 25 through 28. All integers are 
positive. 

25. If (a, b) = 1 there exist x >0 and y > 0 such that ax — by = 1. 

26. If (a, b) = 1 and x" = y i' then x = nb  and y . n° for some n. [Hint: Use Exercises 25 
and 13.] 

27. (a) If (a, b) = 1 then for every n > ab there exist positive x and y such that n = 
ax + by. 

(b) If (a, b) = 1 there are no positive x and y such that ab = ax + by 

28. If a > 1 then (am a 1, an — 1) = a4")  — 1. 

29. Given n> 0, let S be a set whose elements are positive integers <2n such that if a 
and b are in S and a b then a 4/ b. What is the maximum number of integers that S 
can contain? [Hint. S can contain at most one of the integers 1, 2, 2 2 , 2 3 , ... , at 
most one of 3, 3 . 2, 3 . 2 2 , .. . , etc.] 

30. If n> 1 prove that the sum 

is not an integer. 
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2  Arithmetical Functions and 
Dirichlet Multiplication 

2.1 Introduction 

Number theory, like many other branches of mathematics, is often concerned 
with sequences of real or complex numbers. In number theory such sequences 
are called arithmetical functions. 

Definition A real- or complex-valued function defined on the positive 
integers is called an arithmetical function or a number-theoretic function. 

This chapter introduces several arithmetical functions which play an 
important role in the study of divisibility properties of integers and the 
distribution of primes. The chapter also discusses Dirichlet multiplication, 
a concept which helps clarify interrelationships between various arith-
metical functions. 

We begin with two important examples, the Mobius function p(n) and 
the Euler totient function (p(n). 

2.2 The Mobius function it(n) 

Definition The Mobius function il is defined as follows: 

j41)= 1; 

If n > 1, write n = p i "' • • • pkak. Then 

p(n) = ( — 1)k  if a l  = a2  = • • • = ak  = 1, 

(n) = 0 otherwise. 

Note that An) = 0 if and only if n has a square factor > 1. 
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2.3: The Euler totient function cp(n) 

Here is a short table of values of 12(n): 

n: 1 2 3 4 5 6 7 8 9 10 

pkn): 1 —1 —1 0 —1 1 —1 0 0 1 

The Mobius function arises in many different places in number theory. 
One of its fundamental properties is a remarkably simple formula for the 
divisor sum Edin  gd), extended over the positive divisors of n. In this formula, 
[x] denotes the greatest integer x. 

Theorem 2.1 If n > 1 we have 

E Ad) = [-1 ] . ti if n = 1, 
din 	n 	0 if n > 1. 

PROOF. The formula is clearly true if n = 1. Assume, then, that n > 1 and 
write n = p i a ' • • • pk ak. In the sum Ed ,„ 14(d) the only nonzero terms come from 
d = 1 and from those divisors of n which are products of distinct primes. 
Thus 

E u(d) = A 1 ) + 1-1(13  1) + • • • + ii(Pk) + AP iP 2) + • • • + 11(Pk - iPk) 
din 

+ • " + 1-1(PiP2 ' • ' Pk) 

k 
= 1 + (k )(— 1) + (

2
)( — 1) 2  + • - • + (

k
)( — 1) k  = (1 — 1)k  = 0. • 

1 	 k 

2.3 The Euler totient function 9(n) 

Definition If n > 1 the Euler totient cp(n) is defined to be the number of 
positive integers not exceeding n which are relatively prime to n; thus, 

n 

(1) 	 yo(n) --= Er 1, 

where the ' indicates that the sum is extended over those k relatively 
prime to n. 

Here is a short table of values of o(n): 

n: 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
1 	1 	2 	2 	4 	2 	6 	4 	6 	4 

As in the case of ii(n) there is a simple formula for the divisor sum E d!, cp(d). 
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2: Arithmetical functions and Dirichlet multiplication 

Theorem 2.2 If n > 1 we have 

E od) = n. 
din 

PROOF. Let S denote the set f1, 2, . . . , n}. We distribute the integers of S into 
disjoint sets as follows. For each divisor d of n, let 

	

A(d) = {k:(k, n) = d, 1 	k 	n}. 

That is, A(d) contains those elements of S which have the gcd d with n. 
The sets A(d) form a disjoint collection whose union is S. Therefore if f (d) 
denotes the number of integers in A(d) we have 

(2) 	 E f(d) = n. 
din 

But (k, n) = d if and only if (kld,n1d)= 1, and 0 <k n if and only if 
0 < kid < n1d. Therefore, if we let q = kid, there is a one-to-one correspon-
dence between the elements in A(d)and those integers q satisfying 0 < q nld, 
(q, n1d) = 1. The number of such q is 9(0). Hence f(d) = 9(n1d) and (2) 
becomes 

E 9(0) = n. 
din 

But this is equivalent to the statement Ed,. co(d) = n because when d runs 
through all divisors of n so does nld. This completes the proof. 	0 

2.4 A relation connecting (p and p 

The Euler totient is related to the Mobius function through the following 
formula: 

Theorem 2.3 If n > 1 we have 

49(n) = E p(d) —74 . 
di n 	I.4. 

PROOF. The sum (1) defining 9(n) can be rewritten in the form 

9(n)  = kt- 1 [01 ,101 
where now k runs through all integers < n. Now we use Theorem 2.1 with n 
replaced by (n, k) to obtain 

. 	 . 
9(n) = E E ki(d) = 

k = 1 di(n, k) 	 k = 1 din 
d I k 
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2.5: A product formula for cp(n) 

For a fixed divisor d of n we must sum over all those k in the range 1 < k < n 
which are multiples of d. If we write k = qd then 1 < k < n if and only if 
1 < q < n/d. Hence the last sum for 9(n) can be written as 

	

n/d 	 nld 

9(n) = E E ito = E it(d) E 1 = E kt(d) 11-, 

	

din q = 1 	din 	q= 1 	din 	" 

This proves the theorem. 	 0 

2.5 A product formula for 9(n) 

The sum for 9(n) in Theorem 2.3 can also be expressed as a product extended 
over the distinct prime divisors of n. 

Theorem 2.4 For n > 1 we have 

(3 ) 9(n) = n j  (1 — 
pin 	P 

PROOF. For n = 1 the product is empty since there are no primes which 
divide 1. In this case it is understood that the product is to be assigned the 
value 1. 

Suppose, then, that n > 1 and let p i , 	pr  be the distinct prime divisors 
of n. The product can be written as 

(4) 1-1(1 
pin 

1 ) 	1L1 
P 	

(1 
i= 1 	Pi 

1 	1 	1 	(— 
---- 1  — E— + E 	— 

PP 
	E 	+ • • • + 	 

PiPiPk 	PiP2 • • • Pr 

On the right, in a term such as E 1/p i pipk  it is understood that we consider 
all possible products pi pj pk  of distinct prime factors of n taken three at a 
time. Note that each term on the right of (4) is of the form + l/d where d 
is a divisor of n which is either 1 or a product of distinct primes. The numera-
tor ±1 is exactly ,u(d). Since 11(d) = 0 if d is divisible by the square of any pi  
we see that the sum in (4) is exactly the same as 

p(d)  
L d ' 
din " 

This proves the theorem. 	 0 

Many properties of 9(n) can be easily deduced from this product formula. 
Some of these are listed in the next theorem. 
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2: Arithmetical functions and Dirichlet multiplication 

Theorem 2.5 Euler's totient has the following properties: 

(a) p(p) = p - p 1  for prime p and a 1. 
(b) (p(mn) = (p(m)(p(n)(dAp(d)), where d = (m, n). 
(c) cp(mn) = co(m)co(n) if (m, n) = 1. 
(d) alb implies (p(a)ly9(b). 
(e) (p(n) is even for n 	3. Moreover, if n has r distinct odd prime factors, 

then 2' (p(n). 

PROOF. Part (a) follows at once by taking n = pa in (3). To prove part (b) 
we write 

On) ri ( 1  

n 	I  i!ip 	P) 

Next we note that each prime divisor of mn is either a prime divisor of m 
or of n, and those primes which divide both m and n also divide (m, n). Hence 

m, 
	 - 
(p(mn) 

mn 	pp 
 1 ) _ 1-1(1-',-)fi„,„(1-pl)  'PM° C 9 (nn)  

go(d) 

POI, n) 	— 19  
ii 1 	1) 

( 

for which we get (b). Part (c) is a special case of (b). 
Next we deduce (d) from (b). Since alb we have b = ac where 1 < c < b. 

If c = b then a = 1 and part (d) is trivially satisfied. Therefore, assume 
c < b. From (b) we have 

(5) 
co(c)  

(p(b) = (p(ac) = 9(a)co(c) 
(p(d)= 

 dcp(a) 

where d = (a, c). Now the result follows by induction on b. For b = 1 it 
holds trivially. Suppose, then, that (d) holds for all integers <b. Then it 
holds for c so cp(d)l co(c) since d I c . Hence the right member of (5) is a multiple 
of co(a) which means cp(a) I co(b). This proves (d). 

Now we prove (e). If n = 2, a > 2, part (a) shows that (p(n) is even. If n 
has at least one odd prime factor we write 

p — 1 	n 
cp(n) = n 	= 	— 1) = c(n)11(p — 1), 

pin 	P 	11P pin 	 pin 
Pin 

where c(n) is an integer. The product multiplying c(n) is even so co(n) is even. 
Moreover, each odd prime p contributes a factor 2 to this product, so 2'1 (p(n) 
if n has r distinct odd prime factors. 	 0 
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2.6: The Dirichlet product of arithmetical functions 

2.6 The Dirichlet product of arithmetical 
functions 

In Theorem 2.3 we proved that 

9(n) = E gd) . 

	

din 	(A 

The sum on the right is of a type that occurs frequently in number theory. 
These sums have the form 

E f(d)g(-11,1) 
din 	 a 

where f and g are arithmetical functions, and it is worthwhile to study some 
properties which these sums have in common. We shall find later that sums 
of this type arise naturally in the theory of Dirichlet series. It is fruitful to 
treat these sums as a new kind of multiplication of arithmetical functions, 
a point of view introduced by E. T. Bell [4] in 1915. 

Definition If f and g are two arithmetical functions we define their Dirichlet 
product (or Dirichlet convolution) to be the arithmetical function h 
defined by the equation 

h(n) = E f (d)g(:). 
din 

Notation We write f * g for h and (f * g)(n) for h(n). The symbol N will be 
used for the arithmetical function for which N(n) = n for all n. In this nota-
tion, Theorem 2.3 can be stated in the form 

= * N. 

The next theorem describes algebraic properties of Dirichlet multi-
plication. 

Theorem 2.6 Dirichlet multiplication is commutative and associative. That is, 
for any arithmetical functions f, g, k we have 

f*g=g*f 	(commutative law) 

(f * g) * c 	f * (g * k) 	(associative law). 

PROOF. First we note that the definition of f * g can also be expressed as 
follows: 

(f * g)(n) = E f (a)g(b), 
b n 

where a and b vary over all positive integers whose product is n. This makes 
the commutative property self-evident. 
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2: Arithmetical functions and Dirichlet multiplication 

To prove the associative property we let A = g * k and consider f * A = 
f * (g * k). We have 

(f * A)(n) = E f (a)A(d) = E f (a) E g(b)k(c) 
a.d=n 	 a.d=n 	b-c=d 

. E f (a)g(b)k(C). 
a.b-c=n 

In the same way, if we let B = f * g and consider B * k we are led to the same 
formula for (B * k)(n). Hence f *A =B*k which means that Dirichlet 
multiplication is associative. 	 0 

We now introduce an identity element for this multiplication. 

Definition The arithmetical function I given by 

I(n) =[-- 
11 
n 

= 
{1 

0 
if n = 1, 
if n > 1, 

is called the identity function. 

Theorem 2.7 ForallfwehaveI*f ,-----f*I=f. 

PROOF. We have 

nd 
(f * I)(n) = E f(d)10 = E f(d)[--

n
1= 	f(n) 

din 	 a 	din 

since Ed/n] = 0 if d < n. 	 E 

2.7 Dirichlet inverses and the Mobius 
inversion formula 

Theorem 2.8 lf f is an arithmetical function with f(1) 0 0 there is a unique 
arithmetical function f -1 , called the Dirichlet inverse off, such that 

f * f - 1 ..= f - l * f 1.  

Moreover, f - 1  is given by the recursion formulas 

A , f -1 (n) = f—(11)  f(dn)f -  '(d) for n > 1, 

d<n 

PROOF. Given f, we shall show that the equation (f * f 1 ) (n)= I(n) has a 
unique solution for the function valuesf - 1 (n). For n = 1 we have to solve the 
equation 

(f * f - 1 )(1) = 41) 
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2.7: Dirichlet inverses and the Mobius inversion formula 

which reduces to 

f (1)f (1) = 1. 

Since f (1) o 0 there is one and only one solution, namely / 1 (1) --= 1 /f (1). 
Assume now that the function values/ - 1 (k) have been uniquely determined 
for all k < n. Then we have to solve the equation (f * f -1 )(n) = I(n), or 

E f(,)f - 1 (d) = 0. 
din 	u 

This can be written as 

	

f ( 1 )f l (n) + f 0) f 	= 0. 
din 

d < n 

If the values f 1 (d) are known for all divisors d < n, there is a uniquely 
determined value for f 1 (n), namely, 

f (n) =  f ( 1 ) din 	d 
d<n 

since f(1) 0. This establishes the existence and uniqueness of f ' by 
induction. 

Note. We have (f * g)(1) = f (1)g(1). Hence, iff (1) 0 and g(1) 0 then 
(f * g)(1) 0. This fact, along with Theorems 2.6, 2.7, and 2.8, tells us that, 
in the language of group theory, the set of all arithmetical functions f with 
f(1) 0 0 forms an abelian group with respect to the operation *, the identity 
element being the function I. The reader can easily verify that 

(f * 	= f * g 	if f (1) 0 and g(1) 0. 

Definition We define the unit function u to be the arithmetical function such 
that u(n) = 1 for all n. 

Theorem 2.1 states that Edin 1- 1(d) = 1(n). In the notation of Dirichlet 
multiplication this becomes 

Thus u and are Dirichlet inverses of each other: 

U 	s
U — 1 	and 	kt = /4 -1 . 

This simple property of the Mobius function, along with the associative 
property of Dirichlet multiplication, enables us to give a simple proof of the 
next theorem. 
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2: Arithmetical functions and Dirichlet multiplication 

Theorem 2.9 MObius inversion formula. The equation 

(6) (n) = E g(d) 
din 

implies 

(7) g(n) = f (d)4-iin) . 
din 

Conversely, (7) implies (6). 

PROOF. Equation (6) states that f = g * u. Multiplication by p. gives f * 
(g * u) * = g * (u * p.) = g * I = g, which is (7). Conversely, multiplication 
of f *= g by u gives (6). 	 El 

The Mobius inversion formula has alrea0y been illustrated by the pair of 
formulas in Theorems 2.2 and 2.3: 	b 	 ' 

yv 
n = (p(d), 	On) = E 

din 	 din 

2.8 The Mangoldt function A(n) 

We introduce next Mangoldt's function A which plays a central role in the 
distribution of primes. 

Definition For every integer n 	1 we define 

log p if n = pm for some prime p and some m > 1, 
A(n) = 

0 	otherwise. 

Here is a short table of values of A(n): 

n: 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
A(n): 	0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0 

The proof of the next theorem shows how this function arises naturally 
from the fundamental theorem of arithmetic. 

Theorem 2.10 If n > 1 we have 

(8) log n E A(d). 
din 

PROOF. The theorem is true if n = 1 since both members are 0. Therefore, 
assume that n > 1 and write 

n = n pkak. 
k1 

32 



2.9: Multiplicative functions 

Taking logarithms we have 
, 

log n = E ak  log pk . 
k=1 

Now consider the sum on the right of (8). The only nonzero terms in the sum 
come from those divisors d of the form pi(' for m = 1, 2, ... , a k  and k = 
1, 2, . .. , r. Hence 

r 	ak 	 r 	ak 	 r 

E A(d) = E E A(pm) = E E log Pk = E ak  log Pk = log n, 
din 	 lc= 1 m=1 	 k=1 m=1 	 k=1 

which proves (8). 	 El 

Now we use Mobius inversion to express A(n) in terms of the logarithm. 

Theorem 2.11 If n > 1 we have 

A(n) = E p(d)log7, --= — E p(d)log d. 
din 	 “ 	din 

PROOF. Inverting (8) by the MObius inversion formula we obtain 

n 
A(n) = E p(d)log 

d
— = log n E p(d) — E p(d)log d 

din 	 din 	 din 

= /(n)log n — E p(d)log d. 
din 

Since /(n)log n = 0 for all n the proof is complete. 	 E1 

2.9 Multiplicative functions 
We have already noted that the set of all arithmetical functions f with 
f(1) 0 forms an abelian group under Dirichlet multiplication. In this 
section we discuss an important subgroup of this group, the so-called multi-
plicative functions. 

Definition An arithmetical function f is called multiplicative if f is not 
identically zero and if 

f(m) = f (m)f (n) whenever (m, n) = 1. 

A multiplicative function f is called completely multiplicative if we also 
have 

f (mn) = f (m) f(n) for all m, n. 

EXAMPLE 1 Let f(n) = re`, where a is a fixed real or complex number. This 
function is completely multiplicative. In particular, the unit function u = fo  
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2: Arithmetical functions and Dirich let multiplication 

is completely multiplicative. We denote the function L by N" and call it the 
power function. 

EXAMPLE 2 The identity function 1(n) = [11n] is completely multiplicative. 

EXAMPLE 3 The Mobius function is multiplicative but not completely multi-
plicative. This is easily seen from the definition of ii(n). Consider two 
relatively prime integers m and n. If either m or n has a prime-square factor 
then so does mn, and both p(mn) and ii(m)y(n) are zero. If neither has a square 
factor write m = p i  - • • ps  and n = ql • • qt  where the pi  and qi  are distinct 
primes. Then ii(m) = — os, ti(n) = — y and gmn) = ( — l) = 
This shows that tt is multiplicative. It is not completely multiplicative since 
p(4) = 0 but p(2)y(2) = 1. 

EXAMPLE 4 The Euler tot ient cp(n) is multiplicative.This is part (c) of Theorem 
2.5. It is not completely multiplicative since (p(4) = 2 whereas (p(2)(1)(2) = 1. 

EXAMPLE 5 The ordinary product fg of two arithmetical functions f and g 
is defined by the usual formula 

(fg)(n) = f(n)g(n). 

Similarly, the quotient f/g is defined by the formula 

(L)(n)  f (PO whenever g(n) O. 
g(n) 

If f and g are multiplicative, so are fg and fig. If f and g are completely 
multiplicative, so are fg and f/g. 

We now derive some properties common to all multiplicative functions. 

Theorem 2.12 Iff is multiplicative then f (1) = 1. 

PROOF. We have f(n) = f(l)f(n) since (n, 1) = 1 for all n. Since f is not 
identically zero we have f (n) 0 for some n, so f (1) = 1. 

Note. Since A(1) = 0, the Mangoldt function is not multiplicative. 

Theorem 2.13 Given f with f(1) = 1. Then: 

(a) f is multiplicative if, and only if, 

f la' 	p yal = f(pla') • • • f (I) rai 

for all primes pi  and all integers ai  > 1. 
(b) Iff is multiplicative, then f is completely multiplicative if, and onlyif, 

f(pa) = f (11)a  

for all primes p and all integers a > 1. 
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2.10: Multiplicative functions and Dirichlet multiplication 

PROOF. The proof follows easily from the definitions and is left as an exercise 
for the reader. 

2.10 Multiplicative functions and Dirichlet 
multiplication 

Theorem 2.14 If f and g are multiplicative, so is their Dirichlet product f * g. 

PROOF. Let h = f * g and choose relatively prime integers m and n. Then 

h(mn) --=: E f (c)41. 
clmn 	C 

Now every divisor c of mn can be expressed in the form c = ab where al m 
and b in.   Moreover, (a, b) = 1, (ml a, nib) = 1, and there is a one-to-one 
correspondence between the set of products ab and the divisors c of mn. 
Hence 

h(mn) = Ef(ab)g(7) = 

	

aim 	an 	a i m  

	

bin 	 bin 

= E f (a)g(111-) E f (b)4 11 = h(m)h(n). 

	

am 	a bi n 	b 

	

This completes the proof. 	 El 

Warning. The Dirichlet product of two completely multiplicative functions 
need not be completely multiplicative. 

A slight modification of the foregoing proof enables us to prove: 

Theorem 2.15 If both g and f * g are multiplicative, then f is also multiplicative. 

PROOF. We shall assume that f is not multiplicative and deduce that f * g is 
also not multiplicative. Let h = f * g. Since f is not multiplicative there 
exist positive integers m and n with (m, n) = 1 such that 

f(rnn) f (Of (n). 

We choose such a pair m and n for which the product mn is as small as possible. 
If mn = 1 then f(t) 0 f (1)f (1) so f(1) o 1. Since h(1) = f(1)g(1) . 

f(1) O 1, this shows that h is not multiplicative. 
If mn > 1, then we have f (ab) = f (a) f (b) for all positive integers a and b 

with (a, b) = 1 and ab < mn. Now we argue as in the proof of Theorem 2.14, 
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2: Arithmetical functions and Dirich let multiplication 

except that in the sum defining h(mn) we separate the term corresponding to 
a = m, b = n. We then have 

h(mn) = E f (ab)( ) + f (mn)g(1) = E f (a) f (b)g (-rn)g(-n) + f (mn) 
alm 	ab 	 aim 	 a 	b 
bin 	 bin 

ab <mn 	 ab <mn 

= E f (a)g(?-n-) E f (b)g(-1 ) - f (m)f (n) + f (mn) 
aim 	a bin 	b 

= h(M)h(n) — f (m)f (n) + f (mn). 

Since f (mn) f (m) f (n) this shows that h(mn) h(m)h(n) so h is not multi-
plicative. This contradiction completes the proof. 

Theorem 2.16 If g is multiplicative, so is g -1 , its Dirichlet inverse. 

PROOF. This follows at once from Theorem 2.15 since both g and g * g -  = 

	

are multiplicative. (See Exercise 2.34 for an alternate proof.) 	 El 

Note. Theorems 2.14 and 2.16 together show that the set of multiplicative 
functions is a subgroup of the group of all arithmetical functions f with 
f (1) 0 O. 

2.11 The inverse of a completely 
multiplicative function 

The Dirichlet inverse of a completely multiplicative function is especially 
easy to determine. 

Theorem 2.17 Let f be multiplicative. Then f is completely multiplicative if, 
and only if, 

f '(n) = p(n)f(n) for all n 	1. 

PROOF. Let g(n) = p(n)f(n). If f is completely multiplicative we have 

	

(g * f )(n) = E p(d)f (d)f ( n) = f (n) E 	= f (n)I(n) = I(n) 
din 	 dln 

since f (1) = 1 and 1(n) = 0 for n > 1. Hence g = f'. 
Conversely, assume f '(n) = p(n)f(n). To show that f is completely 

multiplicative it suffices to prove that f(pa) = f (p)" for prime powers. The 
equation f "(n) = p(n)f(n) implies that 

E p(d)f (d)f (
d
-)  = 0 	for all n> 1. 

din 
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2.12: Liouville's function 2(n) 

Hence, taking n = pa we have 

1-4 1 )f (Of (P)a  + 14/4.i(P)f (Pa-1) = 0, 

from which we find f(pa) = f (p)f (p" -1 ). This implies f(pa) = f(p)a, so f is 

	

completely multiplicative. 	 E 

EXAMPLE The inverse of Euler's cp function. Since (I) = p * N we have 
= p- 1  * N - 1  . But N - 1  = piN since N is completely multiplicative, so 

cp -1  = /2 -1  * IAN = u * pN . 

Thus 

(p - 1 (n) = E d p(d). 
din 

The next theorem shows that 

= 11 (1 - 14 
Pin 

Theorem 2.18 If f is multiplicative we have 

E 1u(d)f(d) = 11 (1 - f OM. 

	

din 	 Pin 

PROOF. Let 

g(n) = E p(d) f (d). 
din 

Then g is multiplicative, so to determine g(n) it suffices to compute g(p")• But 

OM = E p(d) f (d) = p(1)f(1) + p(p) f (p) = 1 — f (p). 
dipa 

Hence 

g(n) --- n g(p) = rj (1 - f (p)). 	 0 
Pin 	pin 

2.12 Liouville's function A(n) 

An important example of a completely multiplicative function is Liouville's 
function 2, which is defined as follows. 

Definition We define 2(1) = 1, and if n = pv • - • xk we define 

1(n) = ( — 0°1+ ...+ak. 
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2: Arithmetical functions and Dirichlet multiplication 

The definition shows at once that is completely multiplicative. The next 
theorem describes the divisor sum of A. 

Theorem 2.19 For every n > 1 we have 

A(d) = 
din 	 10 

Also, )'(n) = 1)0)1 for all n. 

ifn is a square, 
otherwise. 

PROOF. Let g(n) = EdinA(d). Then g is multiplicative, so to determine 
g(n) we need only compute g(pa) for prime powers. We have 

g(pa) = E A(d) = 1 + A(p) + 42) + 
dip" 

= 1 — 1 + 1 — • • + 

• • + A(P") 

10 if a is odd, 
= 

1 if a is even. 

Hence if n = [lc= , pia' we have g(n) = fl. g(pial). If any exponent a• is 
odd then g(p) = 050 g(n) = 0. If all the exponents a• are even then g(p) = 1 
for all i and g(n) = 1. This shows that g(n) = 1 if n is a square, and g(n) = 0 
otherwise. Also, .1 -  '(n) = p(n)A(n) = 112(n) = I P.(n)I El 

2.13 The divisor functions a c,(n) 

Definition For real or complex a and any integer n > 1 we define 

= d8, 
din 

the sum of the ath powers of the divisors of n. 

The functions a„ so defined are called divisor functions. They are multi-
plicative because a„ = u * N', the Dirichlet product of two multiplicative 
functions 

When a = 0, c1 0(n) is the number of divisors of n; this is often denoted by 
d(n). 

When oc = 1, a l (n) is the sum of the divisors of n; this is often denoted by 
u(n). 

Since o-„ is multiplicative we have 

0. ce(p l a 	p k a = ("espi al ) 	cra(pkak) .  

To compute cj(pa)  we note that the divisors of a prime power pa are 

P, P2, • • Pa, 
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na(a+ 1) _ 1 
0. cba) = la ± pa ± p 22 ± . . . ± paa . Y  

= a + 1 

p2  — 1 
if a 0 

if a = 0. 

2.14: Generalized convolutions 

hence 

The Dirichlet inverse of cr„ can also be expressed as a linear combination 
of the ath powers of the divisors of n. 

Theorem 2.20 For n > 1 we have 

o-  „- 1 (n) = E dapop0). 
din 

PROOF. Since a, = N2  * u and N" is completely multiplicative we have 
=___ (tdva) * u - 1 	(jiNa) * El 

2.14 Generalized convolutions 

Throughout this section F denotes a real or complex-valued function 
defined on the positive real axis (0, + co) such that F(x) = 0 for 0 < x < 1. 
Sums of the type 

E a(n)F (-C) 
nsx 	 n 

arise frequently in number theory. Here a is any arithmetical function. 
The sum defines a new function G on (0, + co) which also vanishes for 
0 <x < 1. We denote this function G by a o F. Thus, 

(a 0 F)(x) =  
n<x 	n 

If F(x) = 0 for all nonintegral x, the restriction of F to the integers is an 
arithmetical function and we find that 

(a o F)(m) = (a * F)(m) 

for all integers m > 1, so the operation o can be regarded as a generalization 
of the Dirichlet convolution *. 

The operation o is, in general, neither commutative nor associative. 
However, the following theorenrserves as a useful substitute for the associa-
tive law. 

Theorem 2.21 Associative property relating o and *. For any arithmetical 
functions a and fl we have 

(9) 	 a o (i3 0 F) = (a * f3). F. 
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2: Arithmetical functions and Dirichlet multiplication 

PROOF. For x> 0 we have 

{a . ( i6 . F)} (x) = 1 a(n) E fl(m)F(1 = E cx(n)fl(m)F( 2—C  ) 
n5x 	In5x/n 	mn 	mn<x 	 mn 

. 1  (1 afrilic))F(x) . 1 (a  * micw(X) 

k5 Anlic 	 )/ VC) 	k 5_ x 	IC) 

. 1(a * /3) . FI(x). 

This completes the proof. 0 

Next we note that the identity function 1(n) = [1/n] for Dirichlet convolu-
tion is also a left identity for the operation .. That is, we have 

1 - 
x 

(1 . F)(x) = E [-n F(
n) 

= F(x). 
n<x 

Now we use this fact along with the associative property to prove the follow-
ing inversion formula. 

Theorem 2.22 Generalized inversion formula. If cx has a Dirich let inverse a -1 , 
then the equation 

Conversely, (11) implies (10). 

PROOF. If G ---- a . F then 

a -1  . G = a' a (a a F) , (a -1 4, a).F=I.F=F. 

Thus (10) implies (11). The converse is similarly proved. 	 0 

The following special case is of particular importance. 

Theorem 2.23 Generalized Mobius inversion formula. If a is completely 
multiplicative we have 

G(x) = E a(n)F(x) if, and only if, F(x) = E 
n5x 	n 	 n5x 	 n 

PROOF. In this case a- 1 (n) . ii(n)a(n). 	 0 
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2.15: Formal power series 

2.15 Formal power series 

In calculus an infinite series of the form 

(12) E a(n)x" = a(0) + a(1)x + a(2)x 2  + • + a(n)x" + • • • 
n=0 

is called a power series in x. Both x and the coefficients a(n) are real or 
complex numbers. To each power series there corresponds a radius of 
convergence r > 0 such that the series converges absolutely if Ixl < r 
and diverges if I x I > r. (The radius r can be + co.) 

In this section we consider power series from a different point of view. 
We call them formal power series to distinguish them from the ordinary 
power series of calculus. In the theory of formal power series x is never 
assigned a numerical value, and questions of convergence or divergence are 
not of interest. 

The object of interest is the sequence of coefficients 

(13) (a(0), a(1), 	, a(n), 	.). 

All that we do with formal power series could also be done by treating the 
sequence of coefficients as though it were an infinite-dimensional vector with 
components a(0), a(1), ... But for our purposes it is more convenient to 
display the terms as coefficients of a power series as in (12) rather than as 
components of a vector as in (13). The symbol x" is simply a device for 
locating the position of the nth coefficient a(n). The coefficient a(0) is called 
the constant coefficient of the series. 

We operate on formal power series algebraically as though they were 
convergent power series. If A(x) and B(x) are two formal power series, say 

A(x) = E awxn 	and B(x) =  
n=0 	 n=0 

we define: 

Equality: A(x) = B(x) means that a(n) = b(n) for all n 0. 
Sum: 	A(x) + B(x) = E;,°= 0  (a(n) + b(n))x". 
Product: A(x)B(x) = Do= 0  c(n)xn, where 

(14) c(n) 	E a(k)b(n — k). 
k=0 

The sequence {c(n)} determined by (14) is called the Cauchy product 
of the sequences {a(n)} and {b(n)}. 

The reader can easily verify that these two operations satisfy the commuta-
tive and associative laws, and that multiplication is distributive with respect 
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2: Arithmetical functions and Dirichlet multiplication 

to addition. In the language of modern algebra, formal power series form a 
ring. This ring has a zero element for addition which we denote by 0, 

co 
0 = 1 a(n)x", where a(n) = 0 for all n > 0, 

n=0 

and an identity element for multiplication which we denote by 1, 
00 

1 . E a (n )x" , where a(0) = 1 and a(n) = 0 for n > 1. 
n=0 

A formal power series is called a formal polynomial if all its coefficients 
are 0 from some point on. 

For each formal power series A(x) = Enco... 0  a(n)x" with constant coefficient 
a(0) 0 0 there is a uniquely determined formal power series B(x) = Enco= 0  b(n)xn 
such that A(x)B(x) = 1. Its coefficients can be determined by solving the 
infinite system of equations 

a(0)b(0) 
a(0)b(1) 
a(0)b(2) 

= 1 
+ a(1)b(0) 
+ a(1)b(1) 

= 0, 
+ a(2)b(0) = 0, 

in succession for b(0), b(1), b(2), ... The series B(x) is called the inverse of A(x) 
and is denoted by A(x)' or by 1/A(x). 

The special series 
00 

A(x) = 1 + E anx" 
n=1 

is called a geometric series. Here a is an arbitrary real or complex number. 
Its inverse is the formal polynomial 

B(x) = 1 — ax. 

In other words, we have 

1 CO 

, 1 + 1 anxn. 

n=1 1 — ax 

2.16 The Bell series of an arithmetical 
function 

E. T. Bell used formal power series to study properties of multiplicative 
arithmetical functions. 

Definition Given an arithmetical function f and a prime p, we denote by 
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f(x) = E f (p)fle = 
n=0 

co 	 1  

1— f (p)x ' 

2.16: The Bell series of an arithmetical function 

f(x) the formal power series 

CC) 

f(x) =  
n=0 

and call this the Bell series off modulo p. 

Bell series are especially useful when f is multiplicative. 

Theorem 2.24 Uniqueness theorem. Let f and g be multiplicative functions. 
Then f = g if and only if 

f(x) = g(x) for all primes p. 

PROOF. If f = g then f (p") = g(p") for all p and all n 0, so f(x) = g p(x). 
Conversely, if f(x) = g(x) for all p then f(p") = g(p") for all n > 0. Since f 
and g are multiplicative and agree at all prime powers they agree at all the 
positive integers, so f = g. CI 

It is easy to determine the Bell series for some of the multiplicative 
functions introduced earlier in this chapter. 

EXAMPLE 1 Mobius function y. Since It(p) = —1 and It(p") = 0 for n .._. 2 
we have 

ttp(x) = 1 — x. 

EXAMPLE 2 Euler's totient co. Since p(p") = p" — p"' for n > 1 we have 

q(x) = 1 + E (pn — p11-1 )x" = E pnxn — x E pnxn 
n=1 	 n=0 	 n=0 

co 

= (1 — x) E p150 =  1x  . 
n=0 	 1 — px 

EXAMPLE 3 Completely multiplicative functions. Iff is completely multiplica-
tive then f (p") = f(p)fl for all n _._ 0 so the Bell series f(x) is a geometric 
series, 
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2: Arithmetical functions and Dirichlet multiplication 

In particular we have the following Bell series for the identity function I, 
the unit function u, the power function N', and Liouville's function A.: 

u (x) E xn = 	 
1 — x n=0 

N(x) = 1 + E enxn = 1 	 
n = 1 

1 
— pc X  

A(x) = E (— onxn = 
• n=0 	 1 ± X  

2.17 Bell series and Dirichlet multiplication 

The next theorem relates multiplication of Bell series to Dirichlet multi-
plication. 

Theorem 2.25 For any two arithmetical functions f and g let h = f * g. Then 
for every prime p we have 

hp(x) = fp(x)g p(x). 

PROOF. Since the divisors of /I' are 1, p, p 2 , . . . , pn we have 

ion)  _ E  m411) _ fipkwn—k) .  

	

dip" 	 k= o 

This completes the proof because the last sum is the Cauchy product of the 
sequences {f (p")} and {g(e)} El 

EXAMPLE I Since 1..1 2 (n) = A -1 (n) the Bell series of i.t 2  modulo p is 

2,(x) 	Api(x)  = 	x. 1 +  

EXAMPLE 2 Since o- c, = N * u the Bell series of a c, modulo p is 

1 	1 	 1 
(cri),(x) = N(x)u(x) = 	 

1 — ex 1 — x 1 — o -a(p)x + PccX 2  

EXAMPLE 3 This example illustrates how Bell series can be used to discover 
identities involving arithmetical functions. Let 

f (n) = 

1 
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where v(1) = 0 and v(n) = k iln  = p i a' • - • pkak. Thenfis multiplicative and its 
Bell series modulo p is 

2x 	1 + x 

	

f(x) = 1 + E 2v(P")x. = 1 + E an = I. + 	 = 	 
n = 1 	 n=1 	 1 -- X 	1 — X 

Hence 

f(x) = 4, (x)up(x) 

which implies f = i12  * u, or 

2vo) = 
din 

2.18 Derivatives of arithmetical functions 

Definition For any arithmetical function f we define its derivative f' to be 
the arithmetical function given by the equation 

f'(n) = f(n)log n for n _:. 1. 

EXAMPLES Since /(n)log n =-- 0 for all n we have r = 0. Since u(n) --= 1 
for all n we have On) = log n. Hence, the formula Din  A(d) = log n can be 
written as 

(15) 	 A * u = u'. 

This concept of derivative shares many of the properties of the ordinary 
derivative discussed in elementary calculus. For example, the usual rules for 
differentiating sums and products also hold if the products are Dirichlet 
products. 

Theorem 2.26 Iff and g are arithmetical functions we have: 

(a) (f + g)' = f' + g'. 
(b) (f * gy = f' *g± f * g'. 
(c) (f - 1 )' = ---f' * (f * f )- ' , provided that f(1) 	0. 

PROOF. The proof of (a) is immediate. Of course, it is understood that 
f + g is the function for which (f + g)(n) = f (n) + g(n) for all n. 

To prove (b) we use the identity log n = log d + log(n/d) to write 

(f * g)'(n) , E f (d)g(n)log n 
din 

± ., f (cog (dn)iog(dn) 
= d

i n di n 
d(1 ) 

= (f ' * g)(n) + (f * g')(n). 
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To prove (c) we apply part (b) to the formula I' = 0, remembering that 
/ = f * f '. This gives us 

0  = (f * f -1 )' --- f' * f -1  + f * (f l )' 

SO 

f * (f-l)' _, ___ff * f-1 .  

Multiplication by f -1  now gives us 
(f -i ), _ (f , *f -1)*f -i = f, *(f -i *f -i ).  

But f' * f -1  = (f * f ) 1  so (c) is proved. 	 0 

2.19 The Selberg identity 

Using the concept of derivative we can quickly derive a formula of Selberg 
which is sometimes used as the starting point of an elementary proof of the 
prime number theorem. 

Theorem 2.27 The Selberg identity. For n > 1 we have 

n A(n)log n + E A(d)A(1) = E ft(d)log 2  (71  . 
d din 	 din 

PROOF. Equation (15) states that A * u = u'. Differentiation of this equation 
gives us 

A' * u + A * u' = u" 

or, since u' = A * u, 

A' * u + A * (A * u) = u". 

Now we multiply both sides by p. = u-1  to obtain 

A' + A * A = u" * it. 

This is the required identity. 	 0 

Exercises for Chapter 2 

1. Find all integers n such that 

(a) go(n) = n/2, 	(b) go(n) = cp(2n), 	(c) cp(n) = 12. 

2. For each of the following statements either give a proof or exhibit a counter example. 

(a) If (m, n) = 1 then ((p(m), co(n)) = 1. 
(b) If n is composite, then (n, (o(n)) > 1. 
(c) If the same primes divide m and n, then ncp(m) = nup(n). 
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3. Prove that 

n 	ii2(d) 
= E 	. 

(PO) 	din 9(d) 

4. Prove that cp(n) > n/6 for all n with at most 8 distinct prime factors. 

5. Define v(1) = 0, and for n > 1 let v(n) be the number of distinct prime factors of n. 
Let f = au * v and prove that f(n) is either 0 or 1. 

6. Prove that 

E au(d) = ti2 (n) 
d2 in 

and, more generally, 

0 if m k  I n for some m > 1, 

dkin 	 1 otherwise. 

The last sum is extended over all positive divisors d of n whose kth power also 
divide n. 

7. Let pt(p, d) denote the value of the Mobius function at the gcd of p and d. Prove that 
for every prime p we have 

1 if n = 1, 
E kt(d)p(p, d) --- 2 if n = pa, a > 1, 
din 0 otherwise. 

8. Prove that 

E ,u(d)logni d = 0 
din 

if m > 1 and n has more than m distinct prime factors. [Hint: Induction.] 

9. If x is real, x > 1, let cp(x, n) denote the number of positive integers <x that are 
relatively prime to n. [Note that (p(n, n) = cp(n).] Prove that 

(p(x, n) = E it(d)[—x  and E cp —x  , 111  = [x]. 
din 	d din d d 

In Exercises 10, 11, and 12, d(n) denotes the number of positive divisors of n. 

10. Prove that 	t = en". 

11. Prove that d(n) is odd if, and only if, n is a square. 

12. Prove that E,,, d(03 = (E,,,, do)2. 
13. Product form of the Mobius inversion formula. Iff (n) > 0 for all n and if a(n) is real, 

a(1) 0 0, prove that 

g(n) = fl f (d)a("14)  if, and only if, f (n) -= ii g(d)n, 
din 	 din 

where b = a', the Dirichlet inverse of a. 
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14. Let f (x) be defined for all rational x in 0 < x < 1 and let 

F(n) = 	f (—k ), 	F * (n) = 
	
f() 

k= 	n 	 k= 1 	n 
n) -= 1 

(a) Prove that F* = p * F, the Dirichlet product of p and F. 
(b) Use (a) or some other means to prove that it(n) is the sum of the primitive nth 

roots of unity: 

An) = E e 2 rain 

k .= 1 
(k.n)= 1 

15. Let cPk(fl)  denote the sum of the kth powers of the numbers <n and relatively prime 
to n. Note that cp 0(n) = cp(n). Use Exercise 14 or some other means to prove that 

	

lc kw) ik 	 nk 

dk 	nk 
din 

16. Invert the formula in Exercise 15 to obtain, for n > 1, 

1 
91(n) = —

1 
ngo(n), 	and 	2(n) = n2  On) + 11 (1 — 14. 2 	 6 pin  

Derive a corresponding formula for 9 3(n). 

17. Jordan's totient J k is a generalization of Euler's totient defined by 

J k(n) = fl (1 — pl. 
Pin 

(a) Prove that 

k(n) = E 	and 	n k  =  
din 	 din 

(b) Determine the Bell series for k 

18. Prove that every number of the form 2' 1 (2" — 1) is perfect if 2" — 1 is prime. 

19. Prove that if n is even and perfect then n = 2 (2° — 1) for some a > 2. It is not 
known if any odd perfect numbers exist. It is known that there are no odd perfect 
numbers with less than 7 prime factors. 

20. Let P(n) be the product of the positive integers which are <n and relatively prime 
to n. Prove that 

d!ynld) 
e P(n) = 	n) 	 (dd 	 . 

din 

21. Let f (n) = Firi] — {\/n — 11 Prove that f is multiplicative but not completely 
multiplicative. 

22. Prove that 

t(n) = E 

	

 
din 	

;), 

r-t 

48 



Exercises for Chapter 2 

and derive a generalization involving a(n). (More than one generalization is 
possible.) 

23. Prove the following statement or exhibit a counter example. If f is multiplicative, 
then F(n) = Min  f (d) is multiplicative. 

24. Let A(x) and B(x) be formal power series. If the product A(x)B(x) is the zero series, 
prove that at least one factor is zero. In other words, the ring of formal power series 
has no zero divisors. 

25. Assume f is multiplicative. Prove that: 

(a) f '(n) = ft(n)f (n) for every squarefree n. 
(b) f - 1 (p 2 ) . f (p) 2  — f(p 2 ) for every prime p. 

26. Assume f is multiplicative. Prove that f is completely multiplicative if, and only 
if, f - 1 (pa) = 0 for all primes p and all integers a > 2. 

27. (a) If f is completely multiplicative, prove that 

f - (g * h) = ( f - g) * (f • h) 

for all arithmetical functions g and h, where f • g denotes the ordinary product, 
(f • g)(n) .-- f (n)g(n). 

(b) If f is multiplicative and if the relation in (a) holds for g = a and h = 
prove that f is completely multiplicative. 

28. (a) If f is completely multiplicative, prove that 

(f , g) 1 =  

for every arithmetical function g with g(1) 0. 
(b) If f is multiplicative and the relation in (a) holds for g = p.-  ' , prove that f is 

completely multiplicative. 

29. Prove that there is a multiplicative arithmetical function g such that 

E f ((k, n))  
k 	

( 

= 1 	 din 	d 

for every arithmetical function f Here (k, n) is the gcd of n and k. Use this identity to 
prove that 

n 
E (k, n)y((k, n)) =u(n). 

k = 1 

30. Let f be multiplicative and let g be any arithmetical function. Assume that 

(a) f (pn+ 1 ) = f (p)f (pn) — g(p) f (pn - 1 ) for all primes p and all n 	1. 

Prove that for each prime p the Bell series for f has the form 

f(x) = 
1 — f (p)x + g(p)x 2  • 

Conversely, prove that (b) implies (a). 

1 
(b) 
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2: Arithmetical functions and Dirichlet multiplication 

31. (Continuation of Exercise 30.) If g is completely multiplicative prove that statement 
(a) of Exercise 30 implies 

am 
f (m)f (n) =  

dicm,n) 	d2  ' 

where the sum is extended over the positive divisors of the gcd (m, n). [Hint: Consider 
first the case m = pa, n = pb.] 

32. Prove that 

= E d.0-„(n). 

	

dl(rnn) 	d 

33. Prove that Liouville's function is given by the formula 

n 
A(n) = 

 d
EpW. 
in  a 

34. This exercise .  describes an alternate proof of Theorem 2.16 which states that the 
Dirichlet inverse of a multiplicative function is multiplicative. Assume g is multi-
plicative and let f = g- 1  . 

(a) Prove that if p is prime then for k > 1 we have 

k 
f(pk) = _ E g( ,,r)f(pk _ t).  

t= 1 

(b) Let h be the uniquely determined multiplicative function which agrees with f 
at the prime powers. Show that h * g agrees with the identity function / at the 
prime powers and deduce that h * g = I. This shows that f = h so f is multi-
plicative. 

35. If f and g are multiplicative and if a and b are positive integers with a b, prove 
that the function h given by 

h(n) = E 041 
ein 	d° 	db  

is also multiplicative. The sum is extended over those divisors d of n for which da 
divides n. 

MOBIUS FUNCTIONS OF ORDER k. 

If k > 1 we define pk , the Mobius function of order k, as follows: 

Pk( 1 ) = 1, 
1.4(n) = 0 if pk  + 1  In for some prime p, 

	

kt k(n) = (— 1)r if n = p 1k • • • Pr' TI Pia ', 	0 < a• < k, 
i> r 

Pk(fl) = 1 otherwise. 

In other words, /2k(fl) vanishes if n is divisible by the (k + 1)st power of some 
prime; otherwise, ilk(n) is 1 unless the prime factorization of n contains the 
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Exercises for Chapter 2 

kth powers of exactly r distinct primes, in which case pk(n) = (— 1)r. Note that 
p i  = tc, the usual Mobius function. 

Prove the properties of the functions ti k  described in the following exercises. 

36. If k > 1 then ptk(nk ) = i(n). 

37. Each function fi k  is multiplicative. 

38. If k > 2 we have 

n ) 	In '\ 
iG, -ci). 

dkIn 

39. If k > 1 we have 

I tik(n)I = E p(d). 
dk-in 

40. For each prime p the Bell series for it k  is given by 

1  _ 2xk + x ici- 1 

010 p(X) = 
1 —x 
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3  Averages of 
Arithmetical Functions 

3.1 Introduction 

The last chapter discussed various identities satisfied by arithmetical func-
tions such as p(n), (p(n), A(n), and the divisor functions o-cc(n). We now inquire 
about the behavior of these and other arithmetical functions f(n) for large 
values of n. 

For example, consider d(n), the number of divisors of n. This function takes 
on the value 2 infinitely often (when n is prime) and it also takes on arbitrarily 
large values when n has a large number of divisors. Thus the values of d(n) 
fluctuate considerably as n increases. 

Many arithmetical functions fluctuate in this manner and it is often 
difficult to determine their behavior for large n. Sometimes it is more fruitful 
to study the arithmetic mean 

J(n) = in 
 n k=1 

Averages smooth out fluctuations so it is reasonable to expect that the mean 
values f(n) might behave more regularly than f (n). This is indeed the case 
for the divisor function d(n). We will prove later that the average d(n) grows 
like log n for large n; more precisely, 

. 	a  (n)  
( 1 ) 	 lim 	 = 1. 

log n 

This is described by saying that the average order of d(n) is log n. 
To study the average of an arbitrary function f we need a knowledge 

of its partial sums Ez= , f (k). Sometimes it is convenient to replace the 
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3.2: The big oh notation. Asymptotic equality of functions 

upper index n by an arbitrary positive real number x and to consider instead 
sums of the form 

Here it is understood that the index k varies from 1 to [x], the greatest 
integer < x. If 0 < x < 1 the sum is empty and we assign it the value 0. Our 
goal is to determine the behavior of this sum as a function of x, especially 
for large x. 

For the divisor function we will prove a result obtained by Dirichlet 
in 1849, which is stronger than (1), namely 

(2) E d(k) = x log x + (2C — 1)x + 19(NTX) 
k <,c 

for all x > 1. Here C is Euler's constant, defined by the equation 

1 	1 	1 
C = lim(1 

n 

	+ —
2 

+ —
3 

+ • • • + TI  

The symbol 0(ix) represents an unspecified function of x which grows no 
faster than some constant times x. This is an example of the "big oh" 
notation which is defined as follows. 

3.2 The big oh notation. Asymptotic equality 
of functions 

Definition If g(x) > 0 for all x > a, we write 

	

f (x) 	0(g(x)) 	(read: "f (x) is big oh of g(x)") 

to mean that the quotient f (x)/ g(x) is bounded for x a; that is, there 
exists a constant M > 0 such that 

	

I f (x)I 	Mg(x) for all x > a. 

An equation of the form 

f (x) = h(x) + 0(g(x)) 

means that f (x) — h(x) = 0(g(x)). We note that f (t) = 0(g(t)) for t a 

	

implies f  f (t) dt = 	g(t) dt) for x .,>2 a. 

Definition If 

, 	f (x) 	, 
tim 	= x 	g(x) 

we say that f (x) is asymptotic to g(x) as x co, and we write 

	

f (x) g(x) as x 	co. 

(3) 
co 
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3: Averages of arithmetical functions 

For example, Equation (2) implies that 

> d(k) — x log x as x —> CO. 
k<x 

In Equation (2) the term x log x is called the asymptotic value of the sum; 
the other two terms represent the error made by approximating the sum 
by its asymptotic value. If we denote this error by E(x), then (2) states that 

(4) 	 E(x) = (2C — 1)x + 0(,/). 

This could also be written E(x) = 0(x), an equation which is correct but 
which does not convey the more precise information in (4). Equation (4) 
tells us that the asymptotic value of E(x) is (2C — 1)x. 

3.3 Euler's summation formula 

Sometimes the asymptotic value of a partial sum can be obtained by com-
paring it with an integral. A summation formula of Euler gives an exact 
expression for the error made in such an approximation. In this formula 
[t] denotes the greatest integer t. 

Theorem 3.1 Euler's summation formula. If f has a continuous derivative f' 
on the interval [y, x], where 0 < y < x, then 

(5) 	E f (n) = fx  f (t) dt + fx  (t — [Of '(t) dt 
y<n.,c 	 Y 	 Y 

+ f (x) ([x] — x) 

-÷RooF. Let m = [y], k = [x]. For integers n and n — 1 in [y, x] we have 

fn  [t] Pt) dt = fn  (n — 1) f (t) dt = (n — 1) { f (n) — f (n — 1)} 
n-1 	 n-1 

— {nf (n) — (n — 1)f (n — I)} — f (n). 

Summing from n = m + 1 to n = k we find 

f k 
dt = 

k 

E {nf (n) — (n — 1)f (n — 1)1 — E f (n) 
n=m+1 	 Y<rix 

= kf (k) — mf (m) — E f (n), 
y<n<x 

hence 
k 

(6) • 	E f (n) — — 5 	dt + kf (k) — mf (m) 
Y'<nx 

= fx  — [t] f ' (t) dt + kf (x) — mf (y). 
Y 

— f (y)(Ey1 — y). 
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3.4: Some elementary asymptotic formulas 

Integration by parts gives us 
J. 

f x  f (t) dt = xf (x) — yf (y) — 	tf '(t) dt, 
Y 	 Y 

and when this is combined with (6) we obtain (5). [1] 

3.4 Some elementary asymptotic formulas 
The next theorem gives a number of asymptotic formulas which are easy 
consequences of Euler's summation formula. In part (a) the constant C is 
Euler's constant defined in (3). In part (b), C(s) denotes the Riemann zeta 
function which is defined by the equation 

- 1 
if s > 1, 

n=1 ns  

and by the equation 

((s) = l 	
1 	x l  -s 

)urnL s 	, 

	

x_... 1(nx n 	1 — s 
if 0 < s < 1. 0.; 

Theorem 3.2 If x > 1 we have: 

1 
(a) E —

1 
= log x + C + 0(

x
). 

n5x n 

= 	+ (s) + 0(x-  s) if s> 0, s 0 1. 
1 — s 

= O(x i - s) if s > 1. 

I - 

PROOF. For part (a) we take f(t) = 1 I t in Euler's summation formula to 
obtain 

fx dt 	ix t — [t] 
dt + 1 

x — [x] 
J 1 	t2 	 X 

= log x — f x  
i 

t — [t] 
dt + 1 + 0(-

) 
t 	2 	

X 

j*: t 	—t [t] 	r t — Et] 
dt + = log x + 1 — 	dt + 2 	 t2 	

X x 

(b) 

(c) 

X 1 — s 

1  (d) E n" = xa  +  + 0(x") if a .-., 0. 
n<x 	1  + 1  

n<x n 	1 
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3: Averages of arithmetical functions 

The improper integral $cp (t — [t])t-2  dt exists since it is dominated by 
J f) t -2  dt. Also, 

	

09 1 	1 

	

0< fx  t —
t2

Et]  dt f —
t2 	x

dt = — 
x 

so the last equation becomes 

' t 	
0(-

1
). E —

1
= log x ± 1 — 	

— [t] 
dt + 

fi, 	t2 	
X 

n5x n 

This proves (a) with 

C = 1 — f c°  t  —  [t]  dt 
J 1 	t 2 	• 

Letting x —0 cc in (a) we find that 

1 	
2 	dt, lim(

n x 
 E — — log x) = 1 —

" t — 
[
t] 

x-, co 	n 	 J.1 	t 

so C is also equal to Euler's constant. 
To prove part (b) we use the same type of argument with f (x) = x - S, 

where s > 0, s 1. Euler's summation formula gives us 

	

v, 1x dt 	.1' t —Lt]  dt + 1 	
x — [x] 

L, — = 5 --t: — S 
n<x ns 	

1 	
1 	ts+ I 	 X s  

	

x 1—s 	1 	 cc  t 
	 + 1 s 	

— [t] 
dt + 0(x -5). = 

	

1 — s 	1 — s 	.11 	ts+1 

Therefore 

(7) 
x 1 - s 

E 1  = 	+ c(s) + o(x - s), 
„, x  ns 	1 — s 

where 

1 	' t 
 C(s) = 1 	 

1 — s s 	
— [t]  

 SI 	ts+1 
dt

. 

If s > 1, the left member of (7) approaches c(s) as x —> oo and the terms x 1 ' 
and x both approach 0. Hence C(s) = “s) if s> 1. If 0 < s < 1, x' —0 0 
and (7) shows that 

iirn E   = Qs). 
ns  1 — S 

Therefore C(s) is also equal to (s) if 0 < s < 1. This proves (b). 
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3.5: The average order of d(n) 

To prove (c) we use (b) with s> 1 to obtain 

x i -s 1  1 _ (s)  
	+ 0(x') = 19(X I-1 

n> x ns 	 nLi<x ns 	5 — 1 

since x < x 1 '. 
Finally, to prove (d) we use Euler's summation formula once more with 

f (t) = r to obtain 

x 	x 
f tc` dt + a f t" -1 (t — [t]) dt + 1 — (X — [XDX 2  

rix 	1 	 1 

xa+1 	 x 1 
=  	± 0(01 f ta-1  dt) ± 0(f) 

	

a + 1 a + 1 	1 

= 	+ 0(x"). 
a + 1 
x" + 1  

D 

3.5 The average order of d (n) 

In this section we derive Dirichlet's asymptotic formula for the partial sums 
of the divisor function d(n). 

Theorem 3.3 For all x > 1 we have 

(8) 	 E d(n) = x log x + (2C — 1)x + 19(-A, 
n_x 

where C is Euler's constant. 

PROOF. Since d(n) = E d ,„ 1 we have 

E d(n) = E E 1. 

	

n x 	 n_x din 

This is a double sum extended over n and d. Since d In we can write n = qd 
and extend the sum over all pairs of positive integers q, d with qd < x. Thus, 

(9) 
	

E d(n) = E 1. 
n<x 	q,d 

qd _..x 

This can be interpreted as a sum extended over certain lattice points in the 
qd-plane, as suggested by Figure 3.1. (A lattice point is a point with integer 
coordinates.) The lattice points with qd = n lie on a hyperbola, so the sum in 
(9) counts the number of lattice points which lie on the hyperbolas corre-
sponding to n = 1, 2, ... , [x]. For each fixed d < x we can count first those 
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3: Averages of arithmetical functions 

SIMI• 
OVERMAN= 
1111111111 qd = 10 	Il 
NEI • EMI 
M qd = Ealigilli 

In 

6 	7 	8 	9 	10 

qd = 1 

Figure 3.1 

lattice points on the horizontal line segment 1 < q < x/d, and then sum over 
all d < x. Thus (9) becomes 

(10) 	 E d(n) = E E 1. 
n<x 	d5x q5xlii 

Now we use part (d) of Theorem 3.2 with a = 0 to obtain 

x 
E 1 , -

d 

+ 0(1). 
q5x1d 

Using this along with Theorem 3.2(a) we find 

	

x 	 1 E d(n) = E 
 n5x 	 d5x 

{-_,  

	

" 	 d<x a 

1 
= x{ log x + C + O()} + 0(x) = x log x + 0(x). 

This is a weak version of (8) which implies 

E d(n) — x log x as x cc 
n5x 

and gives log n as the average order of d(n). 
To prove the more precise formula (8) we return to the sum (9) which 

counts the number of lattice points in a hyperbolic region and take advantage 
of the symmetry of the region about the line q = d. The total number of 
lattice points in the region is equal to twice the number below the line q = d 
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[]_ d lattice points on this segment 

3.5: The average order of d(n) 

Figure 3.2 

plus the number on the bisecting line segment. Referring to Figure 3.2 we 
see that 

E d(n) = 2 
n x  

Now we use the relation [y] = y + 0(1) and parts (a) and (d) of Theorem 3.2 
to obtain 

E d(n) = 2 E 	- d + 0(1)} + 0(/) 
n < x 	d < 	d 

1 
=2x E - 2 E d + O() 

= 2410g 	C 0( 1,1 2{)—; + 0(\/)} + 0(c) 
\ 

= x log x + (2C — 1)x + 

This completes the proof of Dirichlet's formula. 	 1:1 

Note. The error term 0(.1) can be improved. In 1903 Voronoi proved 
that the error is 0(x 1 I 3  log x); in 1922 van der Corput improved this to 
o(x 331  The best estimate to date is 0(x (12137) ) for every e > 0, obtained 
by Kolesnik [35] in 1969. The determination of the infimum of all 8 such that 
the error term is 0(x°) is an unsolved problem known as Dirichlet's divisor 
problem. In 1915 Hardy and Landau showed that inf 0 > 1/4. 
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3: Averages of arithmetical functions 

3.6 The average order of the divisor 
functions ff i  (n) 

The case a = 0 was considered in Theorem 3.3. Next we consider real a > 0 
and treat the case a = I separately. 

Theorem 3.4 For all x > 1 we have 

1 E ai(n) = -2 
C(2)x 2  + 0(x log x). 

Note. It can be shown that (2) = e/6. Therefore (11) shows that the 
average order of a i (n) is en/12. 

PROOF. The method is similar to that used to -derive the weak version of 
Theorem 3.3. We have 

E ai(n) =EEq= Eq= E Eq 
n:Sx 	 n_-,c qIn 	q,d 	dSx ci.x/d 

qd_x 

=  Ef(-:)2 +00)} 	„x =-C 2+  0(x  E-1) d<x 	 d<x d 

	

1 	 1 
= —

x2 
{-- -

1 
+ C(2) + 0(--i)} + 0(x log x)= -

2 
C(2)x 2  + 0(x log x), 

2 	x 	x 

where we have used parts (a) and (b) of Theorem 3.2. 

Theorem 3.5 If x > 1 and a > 0, a 0 1, we have 

C(cc 
 (n) = 	
± 1)  x' +1  + E (7.  a + 1 n_.Sx 

where fi = max{1, a}. 
PROOF. This time we use parts (b) and (d) of Theorem 3.2 to obtain 

E o-cc(n) = E E qa = E E qa 
nSx 
	

nSx gin 	 d_-sx q..x/d 

= 7 
{  1  (xy 

+ 0
(1} 

= 
xcH" 1  v, 1 

L d" 	a + 1 d<xd2+1 
+ 0(\x" E 7,0,1 ) 

d<x Oe + 1 	 d<x " ) 

x2+1  Ix' 
= 

+ 1 
	 + C(a + 1) + 0(x -' 1 )} 

a 	-a 

+ 0(

x' 
 f{1 - a + C(a) + 0(x -2)}) 

aa  
 = 	
+ 1) 

.e +1  + 0(x) + 0(1) + 0(x2) = 
c(a + 1) 

x
,c

+1-  + 0(x 17) 
a + 1 	 a + 1 

where 16 = max{1, a}. 	 0 

0 
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3.7: The average order of p(n) 

To find the average order of a „(n) for negative a we write a = #, where 
/3 > 0. 

Theorem 3.6 If /3> 0 let 6 max{0, 1 — #}. Then if x > 1 we have 

E r - p(n) = C(fl + 1)x + 0(x6) 	1, 
n<x 

= (2)x + 0(log x) 	= 1. 

PROOF. We have 

din 	 q_x/d 

v 1  ix 
dxld

ow} = x E 	 
d<x 

1 

d<x 

The last term is 0(log x) if /3 = 1 and 0(x 6) if # 0 1. Since 

1 x" 
x E ,fl+ , = 	+ co + 	+ O(x) c(fl + 1)x + 0(X l—P ) 

d<x a 

this completes the proof. 	 LI 

3.7 The average order of q)(n) 

The asymptotic formula for the partial sums of Euler's totient involves the 
sum of the series 

v  11(n) 
L 

'.- 	n 2  n1  

This series converges absolutely since it is dominated by En-=, n- 2 • In a later 
chapter we will prove that 

(12) 	
p(n) 	1 	6 

2 	— 

	

/ILI= 1 n 	(2) 	1r2  

Assuming this result for the time being we have 

ii(n) 	tz(n) 	p(n) 
E 2 = E 2 E 2 

n<x 	n=1 	n>x 

= 
6 

—712 
1 ) 

+ 0(2 —.2 
n>x " 

= 
6 

—7(2 + 0( 1  —) 
X 

by part (c) of Theorem 3.2. We now use this to obtain the average order of (p(n). 
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3: Averages of arithmetical functions 

Theorem 3.7 For x > 1 we have 

(13) 	 E co(n) = 	+ 0(x log x), 
n<x 	7E 

so the average order of cp(n) is 3n/e. 

PROOF. The method is similar to that used for the divisor functions. We start 
with the relation 

q(n) = E p(d) 111  
di n 	d 

and obtain 

E co(n) = E p(d) —
n 

= E p(d)q = E p(d) E q 
n<x 	rt-x din 	 q,d 

q(1.x 

. E 1,40 fl  (1 2  ± 
,i ., 

	

. 	2 d 

	

= 1 	p(d) 	( 	1) 
+ 0 x E —,I  

2 d x  d2 	 d<x f4  

_ 1 
 2 
2{ 

 it2 
6 + 0(

x

1)} 	 3 
± 0(x log x) = I.r 2 x   

X2 + 0(X log x). LI 

3.8 An application to the distribution of 
lattice points visible from the origin 

The asymptotic formula for the partial sums of (p(n) has an interesting 
application to a theorem concerning the distribution of lattice points in the 
plane which are visible from the origin. 

Definition Two lattice points P and Q are said to be mutually visible if the 
line segment which joins them contains no lattice points other than the 
endpoints P and Q. 

Theorem 3.8 Two lattice points (a, b) and (m, n) are mutually visible if, and 
only if, a — m and b — n are relatively prime. 

PROOF. It is clear that (a, b) and (m, n) are mutually visible if and only if 
(a — m, b — n) is visible from the origin. Hence it suffices to prove the theorem 
when (m, n) = (0, 0). 

Assume (a, b) is visible from the origin, and let d = (a, b). We wish to 
prove that d = 1. If d> 1 then a = da' , b = db/ and the lattice point (a', b') is 
on the line segment joining (0, 0) to (a, b). This contradiction proves that 
d 1. 
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3.8: An application to the distribution of lattice points visible from the origin 

Conversely, assume (a, b) = 1. If a lattice point (a', b') is on the line segment 
joining (0, 0) to (a, b) we have 

a' = ta, 	b' 	tb, where 0 < t < 1. 

Hence t is rational, so t = rls where r, s are positive integers with (r, s) = 1. 
Thus 

	

sa' = ar 	and 	sb' = br, 

so slar, sibr. But (s, r) = 1 so sia, sib. Hence s 	1 since (a, b) = 1. This 
contradicts the inequality 0 < t < 1. Therefore the lattice point (a, b) is 
visible from the origin. 	 LI 

There are infinitely many lattice points visible from the origin and it is 
natural to ask how they are distributed in the plane. 

Consider a large square region in the xy-plane defined by the inequalities 

	

I x 	 r. 

Let N(r) denote the number of lattice points in this square, and let N'(r) 
denote the number which are visible from the origin. The quotient nr)IN(r) 
measures the fraction of those lattice points in the square which are visible 
from the origin. The next theorem shows that this fraction tends to a limit as 
r cc. We call this limit the density of the lattice points visible from the 
origin. 

Theorem 3.9 The set of lattice points visible from the origin has density 6/7r 2 . 

PROOF. We shall prove that 

	

N'(r) 	6 
lim 	= — . 

	

N(r) 	it 

The eight lattice points nearest the origin are all visible from the origin. 
(See Figure 3.3.) By symmetry, we see that N'(r) is equal to 8, plus 8 times the 
number of visible points in the region 

{(x, y): 2 	x 	r, 	1 	y 	x}, 

(the shaded region in Figure 3.3). This number is 

N'(r) = 8 + 8 E E 1 = 8 E (p(n). 
25n<r 1 <m<n 	1 <n<r 

(m, n)= 

Using Theorem 3.7 we have 

24 
N'(r) = 	+ 0(r log r). 

it 
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3: Averages of arithmetical functions 

Figure 3.3 

But the total number of lattice points in the square is 

N(r) = (2[r] + 1) 2  = (2r + 0(1)) 2  = 4r2  + 0(r) 

SO 

NV) = 

N(r) 	

r + 0(r log r) 
24 

2 it 

4r2  + 0(r) 	= 

P r 

6 ± o (log r) 

1 + 00 - 
r 

Hence as r —> oo we find NWN(r) —> 6/n 2 . 	 El 

Note. The result of Theorem 3.9 is sometimes described by saying that a 
lattice point chosen at random has probability 6/7r 2  of being visible from the 
origin. Or, if two integers a and b are chosen at random, the probability that 
they are relatively prime is 6//r 2 . 

3.9 The average order of 12(n) and of A(n) 
The average orders of p(n) and A(n) are considerably more difficult to deter-
mine than those of (p(n) and the divisor functions. It is known that p(n) has 
average order 0 and that A(n) has average order I. That is, 

1 
iim - E p(n) = 0 
x-.09 X n<x 

and 

1 
Ern — E A(n) = 1, 
... x n<x 
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3.10: The partial sums of a Dirichlet product 

but the proofs are not simple. In the next chapter we will prove that both these 
results are equivalent to the prime number theorem, 

(. 	x)log x 

	

Jim 	 = 1, 

where it(x) is the number of primes x. 
In this chapter we obtain some elementary identities involving kt(n) and 

A(n) which will be used later in studying the distribution of primes. These 
will be derived from a general formula relating the partial sums of arbitrary 
arithmetical functions f and g with those of their Dirichlet product f * g. 

3.10 The partial sums of a Dirichlet product 

Theorem 3.10 If h = f* g, let 

H(x) = 	h(n), 	F(x) = E f(n), 	and G(x) = 	g(n). 
flx 	 n5x 	 n<x 

Then we have 

(14) H(x) = E 
n^x 

 f(n)GO = E g(n)F(f). 
n 	 nhX 

PROOF. We make use of the associative law (Theorem 2.21) which relates the 
operations o  and *. Let 

0 if 0 < x < 1, 

	

U(x) = 	. 
{1 	x > 1. 

Then F = f o  U, G = g o  U, and we have 

foG= fo (g U) (f * g) U = H, 

goF=go(foU)=(g*f).U=H. 

This completes the proof. 	 LI 

If g(n) = 1 for all n then G(x) = [x], and (14) gives us the following 
corollary: 

Theorem 3.11 If F(x) = E„,x  f(n) we have 

(15) E E f(d) = E f(n)[]= E 
n.5x din 	n<x 	n 	<x 	n 
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3: Averages of arithmetical functions 

3.11 Applications to 1,1(n) and A(n) 

Now we take f (n) = tt(n) and A(n) in Theorem 3.11 to obtain the following 
identities which will be used later in studying the distribution of primes. 

Theorem 3.12 For x > 1 we have 

El-0)N = 1 
n<x 	n 

and 

(17) E A(n)r] = log [x] !. 
„ x 	n 

PROOF. From (15) we have 

and 

E i(n)[—
n
] = E E p(d) = E [-] 

n<x 	 n<x din 	 n<x n 

E A(n)[] = E E A(d) = E log n = log[x] !. 
din 	 n<x 

0 

Note. The sums in Theorem 3.12 can be regarded as weighted averages 
of the functions ti(n) and A(n). 

In Theorem 4.16 we will prove that the prime number theorem follows 
from the statement that the series 

E  tt(n) 

n=1 n 

converges and has sum 0. Using (16) we can prove that this series has bounded 
partial sums. 

Theorem 3.13 For all x > 1 we have 

E  p(n) 

n<x n 

with equality holding only if x < 2. 

PROOF. If x < 2 there is only one term in the sum, /41) = 1. Now assume 
that x > 2. For each real y let {y} = y — [y]. Then 

1 	E  /20,0 1-xl E  1.0) (x _ 	x  E  j(n)  z  10){1.  
n:Sx 	Ln 	 tni) 	te lcx n 	n _.c x 	n 

(16) 

(18) 

66 



3.11: Applications to ft(n) and A(n) 

Since 0 	{y} < 1 this implies 

x 11(n)  = 1 ± E 1,1(n){} < 1 ± E 
ntx  n n<x 	n n<x 

= 1 + {X} 	E { —x } < + {X} + [X] — 1 = X. 
2<n<x n 

Dividing by x we obtain (18) with strict inequality. 

We turn next to identity (17) of Theorem 3.12, 

(17) 	 E A(n)[—
x
i = log[x] !, 

n :.cx 	n 

and use it to determine the power of a prime which divides a factorial. 

Theorem 3.14 Legendre's identity. For every x > 1 we have 

(19) = 11 if" )  
px 

where the product is extended over all primes <x, and 

(20) 0419) 	E 
.=, P 

x  

Note. The sum for x(p) is finite since [xlpm] = 0 for p > x. 

PROOF. Since A(n) = 0 unless n is a prime power, and A(pm) = log p, we have 

log[x]! = E A(n)[—
n]

= E E [—]log p = E x(p)log p, 
n<x 	 nt=1 P 	P x 

where x(p) is given by (20). The last sum is also the logarithm of the product 
in (19), so this completes the proof. 

Next we use Euler's summation formula to determine an asymptotic 
formula for log[x]!. 

Theorem 3.15 If x > 2 we have 

(21) log[x]! = x log x — x + 0(log x), 

and hence 

(22) E A(n) [?-c] = x log x x + 0(log x). 
n<x 

1:1 
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3: Averages of arithmetical functions 

PROOF. Taking f(t) = log t in Euler's summation formula (Theorem 3.1) 
we obtain 

log n = log t dt + ix t Et]  dt — (x — [x])log x 
n<x 	 1 	 t 

= x log x x + 1 + f t [t]  dt + 0(log x). 

This proves (21) since 

ix t -  [t]  dt 0( r dt)  = 0(log x), 
Ji 	t 	 t 

and (22) follows from (17). 

The next theorem is a consequence of (22). 

Theorem 3.16 For x > 2 we have 

(23) 	 E [I log p = x log x + 0(x), 
p^x P 

where the sum is extended over all primes <x. 

PROOF. Since A(n) = 0 unless n is a prime power we have 

E [IA(n) =E E p-impm). 
n 5 x  n 	 p m=1 Pm  

Now pm x implies p x. Also, [x/pm] = 0 if p > x so we can write the 
last sum as 

E y, p = E 	p + 
p^x miLP 	 P p,x 

[Alog  p. 
.= 2 P 

Next we prove that the last sum is 0(x). We have 

E log pEH.1 E log p E = x E log p (-7 
m=2 P 	psx 	m=2 P 	psx 	m=2 P 

= x E log p 12  
x v  log p 

pt x PQ) 

 

—1) 

log n 
	= 0(x). 
n(n — 1) 
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3.12: Another identity for the partial sums of a Dirichlet product 

Hence we have shown that 

E NA(n) = E rilog  p + 0(x), 
n<x n 	p.x P 

which, when used with (22), proves (23). o 
Equation (23) will be used in the next chapter to derive an asymptotic 

formula for the partial sums of the divergent series E (1/p). 

3.12 Another identity for the partial sums of 
a Dirichlet product 

We conclude this chapter with a more general version of Theorem 3.10 that 
will be used in Chapter 4 to study the partial sums of certain Dirichlet 
products. 

As in Theorem 3.10 we write 

F(x) ---- E f (n), 	G(x) = E g(n), 	and H(x) = E ( f * g)(n) 
n<x 	 n<x 

so that 

H(x) = E E f (d)g(
d
) = E f (d)g(q). 

rrx din 	 q,d 
qd-x 

are positive real numbers such that ab = x, then 

(24) 	E f (d)g(q) = 
q,d 

qdx 

+ E g(n)F(—
x
) — F (a)G(b). 

n<a 	 n 	n <b 	 n 

q 

b 

  

• 	d 

   

     

Figure 3.4 

n 

Theorem 3.17 If a and b 
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3: Averages of arithmetical functions 

PROOF. The sum H(x) on the left of (24) is extended over the lattice points in 
the hyperbolic region shown in Figure 3.4. We split the sum into two parts, 
one over the lattice points in A u B and the other over those in B u C. The 
lattice points in B are covered twice, so we have 

H(x) = 
d<a 

f(d)g(q) + E E f(d)g(q) —  
qsx/d 	q5b d5xlq 	 d5a q5b 

which is the same as (24). 	 El 

Note. Taking a = 1 and b = 1, respectively, we obtain the two equations 
in Theorem 3.10, since f(1) = F(1) and g(1) = G(1). 

Exercises for Chapter 3 

1. Use Euler's summation formula to deduce the following for x > 2: 

1 log n 
(a) E 	= 

2 
log2  x + A + 0

(l0g x)
, where A is a constant. 

1  (b) E 	=_ log(log x) + B + 0
(x lolg x)' 

where B is a constant. 
2<n<x n log n 

2. If x > 2 prove that 

	

d(n) 	1 E — = - log 2  x + 2C log x + 0(1), where C is Euler's constant. 
, n 2 

3. If x > 2 and rx > 0, rx 	1, prove that 

v  d(n) x' log x 
	 + C(a) 2  + 0(x'). 

na` 1 — a 

4. If x >2 prove that: 

(a) E I,t(n)[-- = 	+ 0(x log x). 
nsx 	C(2) 

(b) E '4") [
n
x] 

n 	42) 
 + 0(log x). 

nsx 

5. If x 	1 prove that: 

	

1 	[x12. 	1 

+ 

[x

fl

].  

n 

These formulas, together with those in Exercise 4, show that, for .x > 2, 

2  
+ 0(x lo 

42) 
g x) and E (P(n ) 	x 

n 	C(2) + 0(1°g  4 
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Exercises for Chapter 3 

6. If x > 2 prove that 

q(n) 	1 	 (lo xg x) E  	log x + 	 A + 0 
n< x n2 	X) 	C(2) 

where C is Euler's constant and 

p(n)log n 
A= E 	 • 

n=1 	1,  

7. In a later chapter we will prove that L„"__ p(n)n" = 1/4a) if a > 1. Assuming this, 
prove that for x > 2 and a > 1,c 2, we have 

q(fl) 	x 2 	1 	— 1) 
L 	 + 0(x' - " log x). 

nx 	2— a (2) 	C(a) 

8. If a < 1 and x > 2 prove that 

(p(n) = X 2   	+ col -a log x).  
n" 	2 — 	(2) 

9. In a later chapter we will prove that the infinite product ft, (1 - p -  2), extended 
over all primes, converges to the value 02) = 6/n 2 . Assuming this result, prove 
that 

o-(n) 	n 	it2  a(n) 
(a) if n > 2. 

n 	p(n) 	6 n 

	

[Hint: Use the formula p(n) = n fl  (1 — 	1 ) and the relation 

1 	1 + x 1 

	

1 + x + X 2  + • • = 	= 	 with x = 
1 — x 1 — x 2 	pJ 

(b) If x > 2 prove that 

10. If x > 2 prove that 

E -n 
= 0(x). 

E 	 
n<x 49(n) 	

0(log x). 
 

11. Let co (n) = n 	11.(d) Vd. 

(a) Prove that (p i  is multiplicative and that ç0 1 (n) = n fl,,  (1 + p-  I ). 
(b) Prove that 

where the sum is over those divisors of n for which d 2  In. 
(c) Prove that 

(Pi(n) = p(d)S(ii2), where S(x)  
reSx 	 t s 	 k x 

co (n) E 11(d)0(n ) d2  d2 it 
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3: Averages of arithmetical functions 

then use Theorem 3.4 to deduce that, for x > 2, 

E (p1(n) -  (2)   x 2  + 0(X log x). 
2C(4) n<x 

As in Exercise 7, you may assume the result E„°°=_ I  1.1(n)n - ' = 1/C(a) for a > 1. 

12. For real s> 0 and integer k > 1 find an asymptotic formula for the partial sums 

with an error term that tends to 0 as x co. Be sure to include the case s = 1. 

PROPERTIES OF THE GREATEST-INTEGER FUNCTION 

For each real x the symbol [x] denotes the greatest integer < x. Exercises 13 
through 26 describe some properties of the greatest-integer function. In these 
exercises x and y denote real numbers, n denotes an integer. 

13. Prove each of the following statements: 

(a) If x = k + y where k is an integer and 0 y < 1, then k = [x]. 
(b) Ex + n] = [x] + n. 

[x] 	if x = [x], 
(c) [-x] 

l- [x] - 1 if x [x]. 
(d) [x/n] = [[x]/n] if n 	1. 

14. If 0 < y < 1, ''hat are the possible values of [x] - Ex - y]? 

15. The number {x} = x - [x] is called the fractional part of x. It satisfies the in-
equalities 0 {x} < 1, with {x} = 0 if, and only if, x is an integer. What are the 
possible values of {x} + { x} ? 

16. (a) Prove that [2x] - 2[x] is either 0 or 1. 
(b) Prove that [2x] + [2y] [x] + [y] + [x + 

17. Prove that [x] + 	+ = [2x] and, more generally, 

E
— 1 [ 	k  

x + -
n
1= [nx]. 

k=o 

18. Let f (x) = x [x] - 1. Prove that 

nEl  f 	 k  x + -n) = f(nx) 
k=0 

and deduce that 

E
rn 	 1 ) 

f (2"x + -
2 

< 1 for all m > 1 and all real x. 
n= 

19. Given positive odd integers h and k, (h, k) = 1, let a = (k - 1)/2, b = (h - 1)/2. 

(a) Prove that D.= , [hod + 	[kr/h] = ab. Hint. Lattice points. 
(b) Obtain a corresponding result if (h, k) = d. 
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Exercises for Chapter 3 

20. If n is a positive integer prove that [j1 + .\/n + 1] = [.\/4n + 2]. 

21. Determine all positive integers n such that [j2] divides n. 

22. If n is a positive integer, prove that 

[8n + 131 [n — 12 
[n  —251]  

25 	 3 

is independent of n. 

23. Prove that 

E  nx .1(4—
x
n
i= [.A. 

24. Prove that 

25. Prove that 

and that 

rx1 v 
= 	

rxi 
„„ LV j 	Ln2  

Fki Fn2i 
k =1 

k = 1 L3i

[ 	
 

26. If a = 1, 2, .., 7 prove that there exists an integer b (depending on a) such that 

vn pc]1-(2n + b)2  

k =1

1  

L' Lai = L 8a I.  
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4  Some Elementary Theorems on the 
Distribution of Prime Numbers 

4.1 Introduction 

If x > 0 let n(x) denote the number of primes not exceeding x. Then n(x) -4 co 
as x —> co since there are infinitely many primes. The behavior of 7t(x) as a 
function of x has been the object of intense study by many celebrated mathe-
maticians ever since the eighteenth century. Inspection of tables of primes 
led Gauss (1792) and Legendre (1798) to conjecture that n(x) is asymptotic to 
x/log x, that is, 

(. 	n x)log x 
lim 	 =1. 

This conjecture was first proved in 1896 by Hadamard [28] and de la Vallee 
Poussin [71] and is known now as the prime number theorem. 

Proofs of the prime number theorem are often classified as analytic or 
elementary, depending on the methods used to carry them out. The proof of 
Hadamard and de la Vallee Poussin is analytic, using complex function 
theory and properties of the Riemann zeta function. An elementary proof 
was discovered in 1949 by A. Selberg and P. Era's. Their proof makes no 
use of the zeta function nor of complex function theory but is quite intricate. 
At the end of this chapter we give a brief outline of the main features of the 
elementary proof. In Chapter 13 we present a short analytic proof which is 
more transparent than the elementary proof. 

This chapter is concerned primarily with elementary theorems on primes. 
In particular, we show that the prime number theorem can be expressed in 
several equivalent forms. 
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4.2: Chebyshev's functions c/r(x) and ,9(x) 

For example, we will show that the prime number theorem is equivalent 
to the asymptotic formula 

(I) 	 E A(n) — x as x —> x,. 
ii_....r 

The partial sums of the Mangoldt function A(n) define a function introduced 
by Chebyshev in 1848. 

4.2 Chebyshev's functions ti/(x) and 9(x) 

Definition For x> 0 we define Chebyshev's 0-function by the formula 

i/i(x) = 	A(n). 
rix 

Thus, the asymptotic formula in (1) states that 

(2) 
iii(x)  

lim 	 = 1. 
X -,-X. X 

Since A(n) = 0 unless n is a prime power we can write the definition of 
iNx) as follows: 

ox) = E A(n) = E E A(pm) , E E log p. 
r?..x 	m=1 p 	 m=1 p.x 1 /''' 

P"' x 

The sum on m is actually a finite sum. In fact, the sum on p is empty if x i im < 2, 
that is, if (1/m)log x < log 2, or if 

log x 
m > 

log 2 
= log2  x. 

Therefore we have 

tp(x) = I 	E log p. 
rrilog2x p<xlim 

This can be written in a slightly different form by introducing another 
function of Chebyshev. 

Definition If x > 0 we define Chebyshev's 9-function by the equation 

9(x) = Z log p, 
p..x 

where p runs over all primes <x. 
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4: Some elementary theorems on the distribution of prime numbers 

The last formula for tk(x) can now be restated as follows: 

(3 ) 	 ii/(x) ------ 	E 9(x 1  im). 
MI 10g2X 

The next theorem relates the two quotients t/(x)/x and 9(x)/x. 

Theorem 4.1 For x > 0 we have 

ii(x) 	9.(x) 	(log  x) 2  
< 0 

—
< 

 x 	x 	2 xlog2 .  

Note. This inequality implies that 

lirn  0(x)  0.(x)) a  

	

X 	x ) 

In other words, if one of t/i(x)/x or ,9(x)/x tends to a limit then so does the other, 
and the two limits are equal. 

PROOF. From (3) we find 

0 _- 0(x) — t9(x) = 	E 	t9(X lim). 

2 Lc m_c tog2x 

But from the definition of ,9(x) we have the trivial inequality 

9(x) 	E log x x log x 

SO 

o go) - 5(x) 	E x on log(x i lm) < (log2  x)iX log N./X 
2.m log2x 

.    og x 
log x x 

l 	— 
 x (log x) 2  

	

log 2 2 	2 log 2 • 

Now divide by x to obtain the theorem. 	 El 

4.3 Relations connecting ,9(x) and n(x) 

In this section we obtain two formulas relating 9.(x) and n(x). These will be 
used to show that the prime number theorem is equivalent to the limit 
relation 

t9(x) 
firn 	=1. 

X—+c0 X 

Both functions n(x) and 0(x) are step functions with jumps at the primes; 
7r(x) has a jump 1 at each prime p, whereas ,9(x) has a jump of log p at p. Sums 
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4.3: Relations connecting 3(x) and n (x) 

involving step functions of this type can be expressed as integrals by means of 
the following theorem. 

Theorem 4.2 Abel's identity. For any arithmetical function a(n) let 

A(x) = 
,1<x 

where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval 
[y, x], where 0 < y < x. Then we have 

E (4) a(n)f(n) = A(x)f(x) — A(y)f(y) 
—5 

 A(t)f '(t) dt. 
Y < n V 	 )7  

PROOF. Let k = [x] and m = [ y], so that A(x) = A(k) and A(y) = A(m). 
Then 

1 
y<n<x 

a(n)f(n) =-- 
k 	 k 

E a(n) f (n) = E {A(n) — A(n — 1)1 f (n) 
ri--tn -1- 1 	 n=m+1 

k 
	

k-1 

.-- E A(n) f (n) — E A(n)f (n + 1) 
n=m+1 	 n=m 

k-1 

= E A(n) 1 f (n) — f (n + 1)1 + A(k) f (k) — A(m) f (m + 1) 
n=m+1 

k-1 	fn+1 

= — E A(n) 	f '(t) dt + A(k)f(k) — A(m) f (m + 1) 
n=m+1 	n 

k-1 

n --,- m+ 1 

fn+1 

n  A(t)f V) dt + A(k)f(k) — A(m)f (m + 1) 

= 
 — f

k 

A(t) f' (t) dt + A(x)f(x) — j: A(t)Pt) dt 
m + 1  

— A(Y)f (Y) 

= 

— 
 fm

+ 1 
 A(t) f '(t) dt 

Y 

A(x)f(x) — A(y) f (y) — f xA(t)f it) dt. 
Y 

0 

ALTERNATE PROOF. A shorter proof of (4) is available to those readers 
familiar with Riemann-Stieltjes integration. (See [2], Chapter 7.) Since A(x) 
is a step function with jump f (n) at each integer n the sum in (4) can be 
expressed as a Riemann-Stieltjes integral, 

E 
x 

a(n)f(n) = 5 f (t) dA(t). 
y<nx 	y 
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4: Some elementary theorems on the distribution of prime numbers 

Integration by parts gives us 

a(n)f(n) = f (x)A(x) — f (y)A(y) — 

Y<rix J A(t) df (t) 
Y 

= f(x)A(x) — f (y)A(y) — f x  A(t) f lt) dt. 	0 
Y 

Note. Since A(t) = 0 if t < 1, when y < 1 Equation (4) takes the form 

E ( 5 ) 
n5,x 

a(n)f(n) = A(x)f(x) — J1 A(t)f '(t) dt. 

It should also be noted that Euler's summation formula can easily be 
deduced from (4). In fact, if a(n) = 1 for all n L- 1 we find A(x) = [x] and (4) 
implies 

E f (n) = f(x)[x] - f (y)bil - 	dt. 
Y < nx 	 Y 

Combining this with the integration by parts formula 

dt = xf (x) — yf (y) — ff (t) dt 
Y 	 Y 

we immediately obtain Euler's summation formula (Theorem 3.1). 

Now we use (4) to express 9(x) and ir(x) in terms of integrals. 

Theorem 4.3 For x > 2 we have 

5(x) = n(x)log x — f
x n(t) 

 dt 
2 t 

r  9(t)  dt 
v 2 t log2  t ' 

PROOF. Let a(n) denote the characteristic function of the primes; that is, 

a(n) = 
0 otherwise. 

Then we have 1 

n(x) = E 1= E a(n) 
	

and 9(x) = Z log p = E a(n)log n. 
p5x 	1<n5x 

	 p5x 	 1<n<x 

(6) 

and 

(7) 
9(x)  

n(x)= - 	+ 
log x 

{1 if n is prime, 
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4.4: Some equivalent forms of the prime number theorem 

Taking f (x) = log x in (4) with y , 1 we obtain 

,9(x) = 1 a(n)log n = n(x)log x - it(1)log 1 - f n(
tt) 

 dt
' 1 <n<x 	 1 

which proves (6) since n(t) = 0 for t < 2. 
Next, let b(n) = a(n) log n and write 

1 
it(x) = 	E b(n)

lo 	
9(x) = E b(n). 

g n 312<n<x 	 n<x 

Taking f (x) = 1/log x in (4) with y = 3/2 we obtain 

n(x) = 	
j 9(x) 	9(3/2) 	'" 	9(0 

log x 	log 3/2 
+ 

3 1 2 t log2 t
dt, 

which proves (7) since 9(t) = 0 if t < 2. 	 CI 

4.4 Some equivalent forms of the prime 
number theorem 

Theorem 4.4 The following relations are logically equivalent: 

, n(x)log x  
(8) urn . 1. 

x x - Go 

5(x) 
(9) lim 	 = 1. 

x x .co 

(10) urn 1/1(x) 	 = 1. 
x x- co 

PROOF. From (6) and (7) we obtain, respectively, 

St(x) 	n(x)log x 	
1  fx n(t)  dt 

x 	x 	x 2 t 

and 
ir(x)log x . 9(x) ± log x rx 9(t)  dt 

x 	x 	x j2 t log2  t • 

To show that (8) implies (9) we need only show that (8) implies 

1 fx lc(t) 
lim - — dt = O. 
x -. oo x 2  t 

But (8) implies 40  =o(  1   for t _> 2 so 
t 	log t 

' fx no)  dt = 0(1  fx  dt  ) 
X 2 t 	 x 2  log t • 
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4: Some elementary theorems on the distribution of prime numbers 

Now 

ix  dt 	r  dt f  dt  <  .N./ 	x - 
.12 log t 	J 2  log t + 	log t 	log 2 

+ 
log  .\,/ 

SO 

1 rx dt 
x j2 log t 

—■ 0 as x —> co. 

This shows that (8) implies (9). 
To show that (9) implies (8) we need only show that (9) implies 

. log x  r  NO dt  
lim 	 = 0. 

X J2 t log 2  t 

But (9) implies 9(t) = OW so 

log x r  9.(t) dt . ("log  x  r  dt 
X J2 t log 2  t 	x j 2  log2  t 1 

Now 

ix 	dt (%/X 	dt ± 	rx 	dt x 	X - ± 
J 2  log2  t = j 2  log2  t 	J,/T, log2  t 1 g2 2 	log2  jc 

hence 

log x Cx dt 
	 -+ 0 as x —■ co. 

x j2  log2  t 

This proves that (9) implies (8), so (8) and (9) are equivalent. We know 
already, from Theorem 4.1, that (9) and (10) are equivalent. 	 E 

The next theorem relates the prime number theorem to the asymptotic 
value of the nth prime. 

Theorem 4.5 Let pn  denote the nth prime. Then the following asymptotic 
relations are logically equivalent: 

(. 	it x)log x 
(11) lim 	 = 1. 

x x--,:o 

n(x)log  n(x)  
(12) lim 	 = 1. 

x- cc 	x 

(13) lim 	P" 	= 1. 
„_,,, n log n 
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4.4: Some equivalent forms of the prime number theorem 

PROOF. We show that (11) implies (12), (12) implies (13), (13) implies (12), and 
(12) implies (11). 

Assume (11) holds. Taking logarithms we obtain 

lirn [log 7r(x) + log log x - log x] = 0 
x --'0' eC 

or 

lim [log x(l og  n(x)  + log 	log x  1)] = O. 
log x 	log x 

Since log x -■ oo as x -> oo it follows that 

	

lim (log it(x) + log log x 	. 
1 0 

	

x-00 log x 	log x 

from which we obtain 
log 7r(x) 

l•rn 	 = 1. 
x- co log x 

This, together with (11), gives (12). 
Now assume (12) holds. If x = p„ then n(x) = n and 

n(x)log 7r(x) = n log n 

so (12) implies 
1. n og n 

lim 	 =1. 
n- CC 	Pn 

Thus, (12) implies (13). 
Next, assume (13) holds. Given x, define n by the inequalities 

Pn -- x 

so that n = 7r(x). Dividing by n log n, we get 

Pn 	 X 	Pn+1 	 Pn+1 	(n  + 1)log(n + 1) 
< 	< 

n log n - n log n n log n (n + 1)log(n + 1) 	n log n 	• 

Now let n -> co and use (13) to get 

xx 
Jim 	 = 1, 	or l•m 	 = 1. 

n—■ oo n log n 	 x -0 co Tr(x)log n(x) 

Therefore, (13) implies (12). 
Finally, we show that (12) implies (11). Taking logarithms in (12) we 

obtain 
Jim (log 7r(x) + log log 7r(x) - log x) = 0 

X —' Cr3 

or 

	

log log n(x) 	log x  )1Vi  
Em = 0.m [log ir(x)(1 + 	 

log ir(x) 	log ir(x) x-...) 
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4: Some elementary theorems on the distribution of prime numbers 

Since log ir(x) -■ co it follows that 

urn (1 + log log n(x) 	log x  ) 
= 0 

x- Go 	log n(x) 	log Ir(x) 

or 

o. 	1 g x 
lim 	= 1. 
x- Go log Ir(x) 

This, together with (12), gives (11). 	 0 

4.5 Inequalities for it(n) and pn  

The prime number theorem states that n(n) --, n/log n as n -+ co. The in-
equalities in the next theorem show that n/log n is the correct order of 
magnitude of ir(n). Although better inequalities can be obtained with greater 
effort (see [60]) the following theorem is of interest because of the elementary 
nature of its proof. 

Theorem 4.6 For every integer n > 2 we have 

in 	 n  

	

(14)   < n(n) < 6 
6 log n 	 log n • 

PROOF. We begin with the inequalities 

(15)
2n  < (2/7 < 4n,  

n ) 

(2/7 	(2n)! 
where 	 is a binomial coefficient. The rightmost inequality 

n ) 	ti!n! 

follows from the relation 

	

2" 2n 	2nn 4. _ (1  + 1)2n= 	
> 	, E  

k = 0 

k 

and the other one is easily verified by induction. Taking logarithms in (15) we 
find 

(16) n log 2 	log(2n)! - 2 log n! <n log 4. 

But Theorem 3.14 implies that 

log n! = E oc(p)log p 
13.71 

where the sum is extended over primes and cc(p) is given by 
[m] n  

00) = 
m= 1 P 

. 
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4.5: Inequalities for n(n) and A, 

Hence 
[iu  2p1 

(17) log(2n)! — 2 log n! = E 	-22-7- — 2 —n  1 log p. 
p s 2n m = 1 	Pm 	Pmj 

Since [2x] — 2[x] is either 0 or 1 the leftmost inequality in (16) implies 

1 log p 
( 

Pog 2n1 

__ 
L log  PJ ) 

n log 2 	E 	E 	E log 2n = Tr(2n)log 2n. 
iy.2,n 	m=1 	 132n 

This gives us 

(18) n(2n)
n log 2 	2n log 2 	1 2n 

	

log 2n log 2n 2 
	> 

4 log 2n 

since log 2> 1/2. For odd integers we have 

1 2n 	1 2n 	2n + 1 	1 2n + 1 
7T(2n + 1) 	(2n)> 	>  	> 	 

4 log 2n 4 2n + 1 log(2n + 1) — 6 log(2n + 1) 

since 2n/(2n + 1) > 2/3. This, together with (18), gives us 

i n 
n(n) > 	 

6 log n 

for all n > 2, which proves the leftmost inequality in (14). 
To prove the other inequality we return to (17) and extract the term 

corresponding to m = 1. The remaining terms are nonnegative so we have 

E 	ni fpnliog p.  
log(2n)! — 2 log n! 	

p 
p<2n (LP i 

For those primes p in the interval n < p 2n we have [2n/p] — 2[n/p] = 1 
SO 

log(2n)! — 2 log n! __ E log p = ,9 (2n) — Nn). 
n< p< 2n 

Hence (16) implies 

9(2n) — 9(n) < n log 4. 

In particular, if n is a power of 2, this gives 

,9(2' 1 ) — 9(2') < 2' log 4 = 2' 1  log 2. 

Summing on r = 0, 1, 2, ... , k, the sum on the left telescopes and we find 
,9(2k + 1) < 2k + 2 log 2.  

Now we choose k so that 2" _< n < 2k + I  and we obtain 

	

,9(n) .._. 9(2k + 1) < 2k + 2 log 2 	4n log 2. 
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4: Some elementary theorems on the distribution of prime numbers 

But if 0 < a < 1 we have 

(n(n) - n(0)log n' < E log p 9.(n) < 4n log 2, 
n't<p_n 

hence 

4n log 2 

	

n(n) < 	 + n(nu)< 4n log 2 
+ n' 

a log n 	 a log n 

n (4 log 2 log n 

	

.  	+ f l 	_a)  a) log n 	 • a 

Now if c> 0 and x > 1 the function f (x) = x -  ' log x attains its maximum 
at x = e l l', so n' log n < 11(ce) for n > 1. Taking a = 2/3 in the last 
inequality for n(n) we find 

3 	n 

	

n(n) < 	 
long n 

(6 log 2 + 
e
) < 6 

log n ' 

This completes the proof. 	 CI 

Theorem 4.6 can be used to obtain upper and lower bounds on the size 
of the nth prime. 

Theorem 4.7 For n > 1 the nth prime p„ satisfies the inequalities 

1 	 12 
(19) 	-

6 
n log n < p„ < 12(n log n + n log —

e
). 

	

PROOF. If k --= pi, then k 	2 and n ,--- ir(k). From (14) we have 

k 
n = n(k) < 6 	=6  Pn  

log k 	log pn  

hence 

1 	
1 

p„ > --- n log p„ > -
6 

n log n. 
6 

This gives the lower bound in (19). 
To obtain the upper bound we again use (14) to write 

1 k 	1 p„ 
n = n(k) > — 	 

6 log k 6 log p„' 

from which we find 

(20) 	 P. < 6n log Pn• 
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4.6: Shapiro's Tauberian theorem 

Since log x (2/ 
	

x if x > 1 we have log pn (2/0N/P„, so (20) implies 

N/A, < -1----
2 

n. 

Therefore 

1 
—
2 	

2 
log p

" 
< log n + log 

 

which, when used in (20), gives us 

12 
p„ < 6n(2 log n + 2 log —

e
). 

This proves the upper bound in (19). 

Note. The upper bound in (19) shows once more that the series 

diverges, by comparison with Enco= 2 11(n log n). 

4.6 Shapiro's Tauberian theorem 

We have shown that the prime number theorem is equivalent to the 
asymptotic formula 

(21) E A(n) — 1 as x 	co. 
x 

In Theorem 3.15 we derived a related asymptotic formula, 

(22) E A(n)L1 = x log x — x + 0(log X). 

Both sums in (21) and (22) are weighted averages of the function A(n). 
Each term A(n) is multiplied by a weight factor 1/x in (21) and by [x/n] in (22). 

Theorems relating different weighted averages of the same function are 
called Tauberian theorems. We discuss next a Tauberian theorem proved in 
1950 by H. N. Shapiro [64]. It relates sums of the form En  „ a(n) with those of 
the form En, a(n)[x/n] for nonnegative a(n). 

Theorem 4.8 Let {a(n)} be a nonnegative sequence such that 

(23) E a(n)P-1= x log x + 0(x) Jr all x 1. 
nx 
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4: Some elementary theorems on the distribution of prime numbers 

Then: 
(a) For x > 1 we have 

z  a(n) ,_ 
log x + 0(1). 

n<x n 

(In other words, dropping the square brackets in (23) leads to a correct 
result.) 

(b) There is a constant B> 0 such that 

E a(n) .. Bx for all x _- 1. 
n..5..x 

(c) There is a constant A > 0 and an xo  > 0 such that 

E a(n) ._ Ax for all x _- x o . 
nx 

PROOF. Let 

s(x) = E a(n), 	T(x) =  
x 

n<x 	 11 -EX 

First we prove (b). To do this we establish the inequality 

(24) 	 S(x) — S( ,-) T(x) — 2T(;). 
x 

We write 

T(x) — 241 = E Na(n) — 2 E [..,, 11(n) 
L 	Itx n 	n < xi2 Ln 

E ([1 _2[:_x_la(n)± E [
x

]a(n). 
Sx/2 	n 	zn 	x12<n<x n 

Since [2y] — 2[y] is either 0 or 1, the first sum is nonnegative, so 

T(x) — 2T( x-
2
) .- E []an = E a(n) = S(x) — 

92<n<x n 	x12<nx 

This proves (24). But (23) implies 

T(x) — 2T(-xi) = x log x + 0(x) — 2( log ; + 0(x)) = 0(x). 

Hence (24) implies S(x) — S(x/2) = 0(x). This means that there is some 
constant K > 0 such that 

S(x) — S(x) Kx for all x > 1. 

n 
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4.6: Shapiro's Tauberian theorem 

Replace x successively by x/2, x/4, ... to get 

	

S(Lxi) — 	< K
, 4 

	

— 	K —
x 

SGx)  S(:xi) 
4 

etc. Note that S(x/2n) = 0 when 2n > x. Adding these inequalities we get 

1 	1 
S(x) < Kx(1 + + —

4 
+ • • ) = 2Kx. 

This proves (b) with B = 2K. 
Next we prove (a). We write [x/n] = (x/n) + 0(1) and obtain 

T(x) = E n ia(n) = 	(Tx  + 0(1))a(n) = x E —a(n) 

+ 0( I, a(n)) 
n x 	 x 

a(n) 
= x E 	+ 0(4 	

n 

x  n 

by part (b). Hence 

a(n) E 	—x T(x) + 0(1) = log x + 
n 

This proves (a). 
Finally, we prove (c). Let 

A(x) = E 
a(n) 

 . 
n 

Then (a) can be written as follows: 

A(x) = log x + R(x), 

where R(x) is the error term. Since R(x) = 0(1) we have I R(x)I < M for 
some M > 0. 

Choose a to satisfy 0 <c < 1 (we shall specify a more exactly in a moment) 
and consider the difference 

a(n) 	a(n) 	a(n) 
A(x) — A(ax) E 	= E — — E — . 

ax<rt:c.x 	n x  n 	n . nx  n 

If x > 1 and ax 1 we can apply the asymptotic formula for A(x) to write 

A(x) — A(ax) = log x + R(x) — (log ocx + R(ax)) 
= —log a + R(x) — R(ax) 

	

—log a — IR(x)I — IR(ax)1 	—log a — 2M. 
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4: Some elementary theorems on the distribution of prime numbers 

Now choose a so that —log a — 2M = 1. This requires log a = —2M — 1, 
or a = e -2M-1 . Note that 0 < a < 1. For this a, we have the inequality 

A(x) — A(ax) 	1 if x 	1/a. 

But 

a(n) 	1 
A(x) — A(ax) = E —

n 

— a(n) = 
S(x) 

. 
ax<n-Sx 	 ax n<x 	ax 

Hence 

S(x) 
	 >1 if x > 1/a. 
ax 

Therefore S(x) > ocx if x > 1/a, which proves (c) with A = a and x o  = 

4.7 Applications of Shapiro's theorem 

Equation (22) implies 

E A(n)[—
x
] = x log x + 0(x). 

n<x 	n 

Since A(n) 0 we can apply Shapiro's theorem with a(n) = A(n) to obtain: 

Theorem 4.9 For all x > 1 we have 

A(n) 
(25) 	 E 	= log x + 0(1). 

,x  n 

Also, there exist positive constants c 1  and c2  such that 

P(x) c ix for all x > 1 

and 

1//(x) 	c 2 x for all sufficiently large x. 

Another application can be deduced from the asymptotic formula 

E p = x log x + 0(x) 
1)-x P 

proved in Theorem 3.16. This can be written in the form 

(26) 	 E Ajni_x] = x log x + 0(x), 
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4.8: An asymptotic formula for the partial sums Ep<x (l/p) 

where A 1  is the function defined as follows: 

log p if n is a prime p, 
A i (n) = 

0 	otherwise. 

Since A i(n) > 0, Equation (26) shows that the hypothesis of Shapiro's 
theorem is satisfied with a(n) = A l(n). Since 3(x) = E t, Ai(n), part (a) of 
Shapiro's theorem gives us the following asymptotic formula. 

Theorem 4.10 For all x > 1 we have 

(27)
E  log p 

log x + 0(1). 
i,.Jc 	P 

Also, there exist positive constants c 1  and c2  such that 

3(x) __ c ix for all x > 1 

and 

‘9(x) > c2 x for all sufficiently large x. 

In Theorem 3.11 we proved that 

n.,xf ( 4:1 ,xxl ,(xn) 

for any arithmetical function f(n) with partial sums F(x) = E,,_,„ f(n). 
Since (//(x) = En< „ A(n) and SI(x) -- En  <„ A i (n) the asymptotic formulas in 
(22) and (26) can be expressed directly in terms of tfr(x) and 9(x). We state 
these as a formal theorem. 

Theorem 4.11 For all x > 1 we have 

(28) E 4-x) = x log x — x + 0(log x) 
n < x n 

and 

E 50 = x log x + 0(x). 
n < x n 

4.8 An asymptotic formula for the partial 
sums E, < x  (1/p) 

In Chapter 1 we proved that the series E (1/p) diverges. Now we obtain an 
asymptotic formula for its partial sums. The result is an application of 
Theorem 4.10, Equation (27). 

89 



4: Some elementary theorems on the distribution of prime numbers 

Theorem 4.12 There is a constant A such that 

(29) 	E 
1 
— log log x + A + 0( 

 1  
log x) P 

for all x > 2. 

PROOF. Let 

A(x) = E 
log 

p 
p < x P 

and let 

a(n) = 
11 if n is prime, 
0 otherwise. 

Then 

V1 	a(n) 
and A(x) 	a(n)  log n. 

p:Sx P 	n<x   

Therefore if we take f (t) = 1/log t in Theorem 4.2 we find, since A(t) = 0 for 
t <2, 

(30) >2
11. 	A(x) 	i

x 

A(t) 
 dt. 

p<x P 	log X 	j2 t .log 2  t 
 

From (27) we have A(x) = log x + R(x), where R(x) = 0(1). Using this on 
the right of (30) we find 

L 
1 = log x +  0(1)  fx log  t + R(t) 

 dt 
log x 	2 	t log2  t 

(31) 
= 1 + 0

(  1 	
j 	 log2 

dt. 
dt 	R(t)  

log x) 	2  t log t 	j2 t 	t 
 

Now 

Cx dt 

t log 
	= log log x — log log 2 

t 

and 
Cx  R(t) 	R(t)  
2 t log2  t 

dt = 	, dt   dt, 
Cc° R(t) 

2 t log- t 	jx  t log-  t 

the existence of the improper integral being assured by the condition R(t) = 
0(1). But 

1 dt  
°(lo 

r oo R(t) 	dt  = n 
t log2  t 	g x t log t 
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4.9: The partial sums of the Mobius function 

Hence Equation (31) can be written as follows: 

'  E -1 . log log x + 1 — log log 2 + 	
R(t)

L t log' t
dt + 0( 	1  

pS.X P 	 log x) .  

This proves the theorem with 

'  R(t) 
A = 1 — log log 2 + 

f2 t log' t 
dt. 0 

4.9 The partial sums of the Mobius function 

Definition If x > 1 we define 

M(x) = 
n<x 

The exact order of magnitude of M(x) is not known. Numerical evidence 
suggests that 

IM(x) i < .jc if x > 1, 

but this inequality, known as Mertens' conjecture, has not been proved nor 
disproved. The best 0-result obtained to date is 

M(x) = 0(x6(x)) 

where o(x) = exp{ — A log3/ 5  x(log log x) -1 / 5 } for some positive constant A. 
(A proof is given in Walfisz [75].) 

In this section we prove that the weaker statement 

M(x)  

	

lim 	= 0 

	

,c —' CO 	x 

is equivalent to the prime number theorem. First we relate M(x) to another 
weighted average of p(n). 

Definition If x > 1 we define 

H(x) = E p(n)log n. 
n<x 

The next theorem shows that the behavior of M(x)/x is determined by 
that of H(x)/(x log x). 

Theorem 4.13 We have 

1M(x) 	H(x) 	 ) 
(32 ) hm 

	

.c 	 = O. 
x log x x-)co 
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4: Some elementary theorems on the distribution of prime numbers 

PROOF. Taking f(t) = log t in Theorem 4.2 we obtain 

	

H(x) = 	p(n)log n = M(x)log x — x Al(t)  dt. 
t 

Hence if x > 1 we have 

M(x) 	H(x) 	 M(t) 
	 — dt. 

	

x 	x log x xlogxj 1  t 

Therefore to prove the theorem we must show that 

1 	fx  
(33) 	 lim 	

M(t) 
dt = O. 

. xlogxJ 1  t 

But we have the trivial estimate M(x) = 0(x) so 

:

m (0  
	dt = 0(f dt) = 0(x), 

t 

from which we obtain (33), and hence (32). 	 LI 

Theorem 4.14 The prime number theorem implies 

lim M(x)  = 0. 
co X 

PROOF. We use the prime number theorem in the form tk(x) x and prove 
that H(x)/(x log x) —> 0 as x —> co. For this purpose we shall require the 
identity 

(34) 	 —H(x) = 	E p(n)log n =  
n<x 

To prove (34) we begin with Theorem 2.11, which states that 

A(n) = — E p(d)log d 
din 

and apply Mobius inversion to get 

—p(n)log n = E ii(d)AGn). 
din 

Summing over all n < x and using Theorem 3.10 with f = t, g = A, we 
obtain (34). 

Since tfr(x) x, if 8 > 0 is given there is a constant A > 0 such that 

< e whenever x > A. 
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< x E /417)0 
„y 	 11 

SO 

4.9: The partial sums of the Mains function 

In other words, we have 

(35) 	 I 0(x) - x I < ex whenever x > A. 

Choose x > A and split the sum on the right of (34) into two parts, 

E + E 
nlcy 	y<nx 

where y = [x/A]. In the first sum we have n y so n < xIA, and hence 
xln > A. Therefore we can use (35) to write 

 

X 
<t 	11 n < V. 

Thus, 

 

_ x)n<y 	n 	n<y 	n 	n 	n 

P(n) 	 x 	x 
= x 

n  y  n 
+ E y(n)(IK-

n
) - -

n  

<x+EE T7 <x+Ex(i+ log y) 
n <v 

< x + EX + EX log x. 

In the second sum we have y < n < x so n > y + 1. Hence 

< 	
 
<A 

n y + 1 

because 

y 	< y + 1. 
A 

The inequality (xln) < A implies 4/(x/n) OA). Therefore the second sum is 
dominated by x4/(A). Hence the full sum in (34) is dominated by 

	

(1 + e)x + ex log x + 	< (2 + 4/(A))x + EX log x 

if E < 1. In other words, given any E such that 0 < g < 1 we have 

H(x) <(2 + ifr(A))x + x log x if x > A, 

or 

	

111(x) I 	2 + 0(A) + E. 

	

x log x 	log x 
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4: Some elementary theorems on the distribution of prime numbers 

Now choose B> A so that x > B implies (2 + fr(A))/log x < E. Then for 
x> B we have 

1H(x) I  
x log x 

which shows that H(x)/(x log x) 0 as x 

We turn next to the converse of Theorem 4.14 and prove that the relation 

(36) 	 lim 111(x)  = 0 
x .00 

implies the prime number theorem. First we introduce the "little oh" 
notation. 

Definition The notation 

f (x) = o(g(x)) as x 	oo 	(read: f (x) is little oh of g(x)) 

means that 

f (x) 
urn= O. 

g(x) 

An equation of the form 

f (x) = h(x) + o(g(x)) as x 	co 

means that f (x) — h(x) = o(g(x)) as x ---0 co. 
Thus, (36) states that 

M(x) = o(x) as x cc, 

and the prime number theorem, expressed in the form i/(x) x, can also be 
written as 

	

0(x) = x o(x) as x 	co. 

More generally, an asymptotic relation 

f (x) g(x) as x 	oo 

is equivalent to 

f (x) = g(x) + o(g(x)) as x 	cc. 

We also note that f (x) = 0(1) implies f (x) = o(x) as x cc. 

Theorem 4.15 The relation 

(37) 	 M(x ) 	o(x) as x 

implies ti(x) 	x as x —) 
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PROOF. First we express 0(x) by a formula of the type 

(38) 4/(x) = x — E u(d)f(q) + 0(1) 
q, d 

qd 1 5. x 

and then use (37) to show that the sum is o(x) as x --> co. The function f 
in (38) is given by 

f (n) = o-  0 (n) — log n — 2C, 

where C is Euler's constant and o-  0(n) = d(n) is the number of divisors of n. 
To obtain (38) we start with the identities 

	

[x] = E 1, 	0(x) = E A(n), 	1 = E 1 ] 
n < x 	 n _< . x n < x [n 

and express each summand as a Dirichlet product involving the Mobius 
function, 

n 
1  = E it(d)0  -0( 	 d' d) ' 	

A(n) = E ,u(d) log 1-1- 	[1 1 = 
din 	 din 	 n 	di n  

Then 

[x] — k I '(x) — 2C = E {1 — A(n) — 2C[]}
n < x 

=Xx ci  it(d){.7 0(:11) — log 'ci, — 2C} 

= E p(d){o-  0 (q) — log q — 2C} 
q, d 

qd . x 

= E p(d) f (q). 
q, d 

qd x 

This implies (38). Therefore the proof of the theorem will be complete if we 
show that 

(39) E p(d)f(q) -- o(x) as x —> cc. 
q, d 

qd x 

For this purpose we use Theorem 3.17 to write 

(40) E p(d)f(q) = E p(n)F(--
x
) + E f (n)M (—

x
) — F(a)M(b) 

9, d 	 n 1 ch 	n 	n < a 	n 
qd ._ x 

where a and b are any positive numbers such that ab = x and 

F(x) = E f (n). 
n < x 
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We show next that F(x) = 0(.1X) by using Dirichlet's formula (Theorem 3.3) 

E o 0(n) = x log x + (2C — 1)x + 0(IX) 
n < x 

together with the relation 

E log n = log[x]! = x log x — x 0(log x). 
n x 

These give us 

F(x) = E o- o(n) — E log n — 2C E 
n:sx 	 nIc_x 	 n < x 

= x log x + (2C — 1)x + 0(/)-c) — (x log x — x + 0(log x)) 

2Cx + 0(1) 

= 0(i)-c) + 0(log x) + 0(1) = O(jX). 

Therefore there is a constant B > 0 such that 

F(x)I RIX for all x > 1. 

Using this in the first sum on the right of (40) we obtain 

(41) E P(11)F X  
n < b

(— 
n 

	 Ax  
BE  

n < b n 

  

for some constant A > B > 0. 
Now let s > 0 be arbitrary and choose a > 1 such that 

A < E. 

N/a 

Then (41) becomes 

E p(11)F X  
n < b

(— 
n ) 

for all x > 1. Note that a depends on & and not on x. 
Since M(x) = 0(x) as x —> Go, for the same E there exists c > 0 (depending 

only on e) such that 

x > c implies 
I M(x) 	E — 

x 	K 

where K is any positive number. (We will specify K presently.) The second 
sum on the right of (40) satisfies 

(42) < 

(43) E f (n)M(—)c  
< a 	 n) 

Ex 	EX 	f(n)1  = - E K n 	a  n n Is a 
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4.9: The partial sums of the Mobius function 

provided xin > c for all n < a. Therefore (43) holds if x > ac. Now take 

K 	f(n)I  
n5a n 

Then (43) implies 

(44) E f(n)M0 
n<a 

< Ex provided x > ac. 

  

  

The last term on the right of (40) is dominated by 

ROM(b)1 < A NT. M(b)1 <Afb <cJJb=fxb < 

provided that x > a, or x > a2 . Combining this with (44) and (42) we 
find that (40) implies 

E iu(d)f(q) 
q,d 

qd5x 

<3x 

 

provided x > a 2  and x > ac, where a and c depend only on s. This proves (39). 
LI 

Theorem 4.16 If 

A(x) = E 11(n)  
n 

the relation 

(45) 	 A(x) = o(1) as x —> co 

implies the prime number theorem. In other words, the prime number theorem 
is a consequence of the statement that the series 

ti(n) 

n=1 n 

converges and has sum 0. 

Note. It can also be shown (see [3]) that the prime number theorem 
implies convergence of this series to 0, so (45) is actually equivalent to the 
prime number theorem. 

PROOF. We will show that (45) implies M(x) = o(x). By Abel's identity we 
have 

M(x) = E u(n) = E ti(11)  n = xA(x) — A(t) dt, 
n5x 	 <x 

SO 

M(x) 
= A(x) — —1  A(t) dt. 

x 
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f:
A (t) dt 

x 
< —

1 .1 	
dt

'
A(t) 

x 1 
+ —1  Fx  A(t) dt 

x j c. 
• 

x 	x 
c — 1 &(x — c) 

< 	+ 	 

4: Some elementary theorems on the distribution of prime numbers 

Therefore, to complete the proof it suffices to show that 

(46) 	 urn-1 'x  - jA(t) dt --- 0. 
x ...,, cc  x 	I  

Now if E > 0 is given there exists a c (depending only on E) such that I A(x)I 
< c if x > c. Since I A(x)I < 1 for all x > 1 we have 

Letting x -4 co we find 

   

 

lim sup 
X-• OD 

—
1 

j'x A(t) dt 
x 1  

< E, 

    

and since e is arbitrary this proves (46). 	 D 

4.10 Brief sketch of an elementary proof of 
the prime number theorem 

This section gives a very brief sketch of an elementary proof of the prime 
number theorem. Complete details can be found in [31] or in [46]. The key 
to this proof is an asymptotic formula of Selberg which states that 

tfr(x)log x + E A(n)0(—x) = 2x log x + 0(x). 
PI X 	 n 

The proof of Selberg's formula is relatively simple and is given in the next 
section. This section outlines the principal steps used to deduce the prime 
number theorem from Selberg's formula. 

First, Selberg's formula is cast in a more convenient form which involves 
the function 

c(x) = e- xiii(ex) — 1. 

Selberg's formula implies an integral inequality of the form 
xj.y  

(47) I a(x) Ix' 	2 j. 	I  o(u) I du dy + 0(x), 
o o  

and the prime number theorem is equivalent to showing that o(x) —> 0 as 
x -4 co. Therefore, if we let 

C = lirn sup I cr(x)I, 
x-• co 

the prime number theorem is equivalent to showing that C = 0. This is 
proved by assuming that C > 0 and obtaining a contradiction as follows. 
From the definition of C we have 

(48) I 0-(x)1 	C + g(x), 
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4.11: Selberg's asymptotic formula 

where g(x) —> 0 as x --+ cc. If C > 0 this inequality, together with (47), gives 
another inequality of the same type, 

(49) 	 16(x)1 	C + h(x), 

where 0 < C' < C and h(x) —> 0 as x -4 co. The deduction of (49) from (47) 
and (48) is the lengthiest part of the proof. Letting x oo in (49) we find that 
C < C', a contradiction which completes the proof. 

4.11 Selberg's asymptotic formula 

We deduce Selberg's formula by a method given by Tatuzawa and Iseki 
[68] in 1951. It is based on the following theorem which has the nature of an 
inversion formula. 

Theorem 4.17 Let F be a real- or complex-valued function defined on (0, co), 
and let 

Then 

G(x) = log x E F(—x). 
n .,, 	n 

F(x)log x + E FOA(n) =  
n<x n 	d'x 	d 

PROOF. First we write F(x)log x as a sum, 

F(x)log x = E riFOlog  .)± . E F( .1c)log  .` E y(d). 
n 	n 	n<x n 	n din n<x n 

Then we use the identity of Theorem 2.11, 

A(n) = E p(d)log 'II  
din 	 d 

to write 
, 

E FOA(n) = E F(--
x) E p(d)log —

n 
. 

n 	 d fl<X 	 n<. 	n din 

Adding these equations we find 

F(x)log x + E FOA(n) = E FO E p(d){log + log 1 
n 	d rtx 	n din ..,,, 	n 

= E 1 Felp(d)log .c  . 
n<x din 	 dn 
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0(x) x E 

d<x 

4: Some elementary theorems on the distribution of prime numbers 

In the last sum we write n = qd to obtain 

E E F(—)p(d)log = E p(d)log —
x E F(-1 

ti5x 
E p(d)GO, 

n<x din 	n 	u 	 d 4„id  qd  

	

which proves the theorem. 	 CI 

Theorem 4.18 Selberg's asymptotic formula. For x > 0 we have 

Iii(x)log x + E A(n)kli(—) = 2x log x + 0(x). 
n5x 

PROOF. We apply Theorem 4.17 to the function F 1 (x) lit(x) and also to 
F2(x) = x — C — 1, where C is Euler's constant. Corresponding to F 1  we 
have 

G 1 (x) = log x E 	x log2  x — x log x + 0(log2  
n5_ x 

where we have used Theorem 4.11. Corresponding to F2 we have 

G 2(x) = log x E F2(-x) = log x E 	c i) 
„<„ 	n 	n5x 

1 
= x log x E - (C + 1)log x E 1 

	

n < x  n 	 n5x 

1 
= x log x(log x + C + O()) — (C + 1)log x(x + 0(1)) 

= x log2  x — x log x + 0(log x). 

Comparing the formulas for G 1 (x) and G2(x) we see that G 1 (x) — G 2(x) 
0(10g2  9. Actually, we shall only use the weaker estimate 

G 1 (x) — G 2(x) = 

Now we apply Theorem 4.17 to each of F 1  and F2 and subtract the two 
relations so obtained. The difference of the two right members is 

E pfrotc,(:) - G 2U = 0( E 	0(  
d<x 	 d<x a 

by Theorem 3.2(b). Therefore the difference of the two left members is also 
0(x). In other words, we have 

{0(x) — (x — C — 1)}log x + 
I (X\ 

Icl°-171) 
C — 1)}A(n) = 0(x). 
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Rearranging terms and using Theorem 4.9 we find that 

0(x)log x + E 4,(-1A(n) = (x - C - flog x 
„ n 

+ E - c - 1)A(n) + 0(x) 
n < x n 

= 2x log x + 0(x). 

Exercises for Chapter 4 

1. Let S = {1, 5, 9, 13, 17, ...} denote the set of all positive integers of the form 
4n + 1. An element p of S is called an S-prime if p> 1 and if the only divisors of p, 
among the elements of S, are 1 and p. (For example, 49 is an S-prime .) An element 
n> 1 in S which is not an S-prime is called an S-composite. 
(a) Prove that every S-composite is a product of S-primes. 
(b) Find the smallest S-composite that can be expressed in more than one way as a 

product of S-primes 
This example shows that unique factorization does not hold in S. 

2. Consider the following finite set of integers: 

T = {1, 7, 11, 13, 17, 19, 23, 29}. 

(a) For each prime p in the interval 30 < p < 100 determine a pair of integers 
m, n, where m > 0 and n E T, such that p = 30m + n. 

(b) Prove the following statement or exhibit a counter example: 
Every prime p> 5 can be expressed in the form 30m + n, where m > 0 and 
n E T. 

3. Let f (x) = x 2  + x + 41. Find the smallest integer x > 0 for which f (x) is composite. 

4. Let f(x) = ao  + a i x + • • • + ax n be a polynomial with integer coefficients, 
where an  > 0 and n > 1. Prove that f (x) is composite for infinitely many integers x. 

5. Prove that for every n> 1 there exist n consecutive composite numbers. 

6. Prove that there do not exist polynomials P and Q such that 

P(x) 
rt(x) = 

Q(x) 
for x = 1, 2, 3, ... 

7. Let a, < a 2  < • • < a„ < x be a set of positive integers such that no ai  divides the 
product of the others. Prove that n < rt(x). 

8. Calculate the highest power of 10 that divides 1000!. 

9. Given an arithmetic progression of integers 

h, h + k, h + 2k, . . . , h + nk, . . . , 

where 0 < k < 2000. If h + nk is prime for n = t, t + 1, 	, t + r prove that 
r < 9. In other words, at most 10 consecutive terms of this progression can be 
primes. 
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10. Let s„ denote the nth partial sum of the series 

1 

r(r + 1) 

Prove that for every integer k > 1 there exist integers m and n such that s m  — 

= 1/k. 

11. Let s,, denote the sum of the first n primes. Prove that for each n there exists an 
integer whose square lies between sn  and sn ., 1 . 

Prove each of the statements in Exercises 12 through 16. In this group of 
exercises you may use the prime number theorem. 

12. If a > 0 and b > 0, then rt(ax)/n(bx) a/b as x 	oo. 

13. If 0 < a < b, there exists an x o  such that it(ax) < 7r(bx) if x > x0 . 

14. If 0 < a < b, there exists an x o  such that for x > x o  there is at least one prime 
between ax and bx. 

15. Every interval [a, I)] with 0 < a < b, contains a rational number of the form 
p/q, where p and q are primes. 

16. (a) Given a positive integer n there exists a positive integer k and a prime p such that 
101'n <p < 10"(n + 1). 

(b) Given m integers a l , 	, an, such that 0 < ai  < 9 for i = 1, 2, ... , m, there exists 
a prime p whose decimal expansion has a l , 	, a„, for its first m digits. 

17. Given an integer n> 1 with two factorizations n -=fl..  pi  and n 	qi , 
where the pi  are primes (not necessarily distinct) and the qi  are arbitrary integers 
> 1. Let a be a nonnegative real number. 
(a) If a 	1 prove that 

(b) Obtain a corresponding inequality relating these sums if 0 < < 1. 

18. Prove that the following two relations are equivalent: 

	 + 
log x 	( 

x  

log 4.  

3(x) = x + 0( loxg 	x). 

19. If x > 2, let 

dt 
Li(x) =-- (the logarithmic integral of x). 

2 log t 
(a) Prove that 

dt 	2 
Li(x) = 	 

log x 
+ 

.f2 log2 t log 2 ' 

(a) 

(b) 
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and that, more generally, 

n-1 

Li(x) = 
X 	

id  ) 
1 + E 	 + n! 

log x 	k=1 log k  X 

where C„ is independent of x. 

(b) If x _.>: 2 prove that 

fx 	dt 

1°g"+1  

r  dt  
0 	 

J2 log" t 
=

x).  

20. Let f be an arithmetical function such that 

E f(p)log p = (ax + b)log x + cx + 0(1) for x > 2. 

Prove that there is a constant A (depending on f ) such that, if x > 2, 

dt  
f(p) = ax + (a ± c)( 	

log
x

x J2 log2  t 
+ b log(log x) +A+0 	1  

(log x)* 

21. Given two real-valued functions S(x) and T(x) such that 

T(x) = E s(2--̀ ) for all x > 1. 

	

raCx 	n 

If S(x) = 0(x) and if c is a positive constant, prove that the relation 

S(x) cx as x oo 

implies 

T(x) cx log x as x co. 

22. Prove that Selberg's formula, as expressed in Theorem 4.18, is equivalent to each of 
the following relations: 

(a) 0(x)log x + E 00108  p = 2x log x + 0(x), 

	

p.Jc 	p 

(b) S(x)log x + E &(-x-)log p = 2x log x + 0(x). 
P 

23. Let M(x) = E„, x  pt(n). Prove that 

M(x)log x + E x
)A(n) = 0(x) 

n 5 x 

and that 

	

M(x)log x + 	
x
)log p = 0(x). 

P 

[Hint: Theorem 4.17.] 
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24. Let A(x) be defined for all x > 0 and assume that 

T(x) = E 4-x) = ax log x + bx + 
n 	 log x 

as x 

where a and b are constants. Prove that 

A(x)log  x + E 4—)c)A(n) = 2ax log x + o(x log x) as x co. 
„ 	n 

Verify that Selberg's formula of Theorem 4.18 is a special case. 

25. Prove that the prime number theorem in the form t/i(x) x implies Selberg's 
asymptotic formula in Theorem 4.18 with an error term o(x log x) as x cc. 

26. In 1851 Chebyshev proved that if iii(x)/x tends to a limit as x 	co then this limit 
equals 1. This exercise outlines a simple proof of this result based on the formula 

(50) 	 E tp(-x) = x log x + 0(x) 
„<„ n 

which follows from Theorem 4.11. 
(a) Let 	lirn sup(ip(x)/x). Given 6 > 0 choose N = N(E) so that x > N implies 

c0 

ii(x) 	+ 6)x. Split the sum in (50) into two parts, one with n < x/N, the 
other with n > x/N, and estimate each part to obtain the inequality 

+ 6)x log x + Xlk(N). 
n<x n 

Comparing this with (50), deduce that o > 1. 
(b) Let y = lim inf(V/(x)/x) and use an argument similar to that in (a) to deduce that 

X —,  03 

	

1. Therefore, if ip(x)/x has a limit as x 	co then y = = 1. 

In Exercises 27 through 30, let A(x) = En, a(n), where a(n) satisfies 

(51) a(n) 	0 for all n > 1, 

and 

(52) E 	= E aolf—x] ax log x + bx + 0( 	x 	as x 	- > co. 
n< x 	n5x 	 log x 

When a(n) = A(n) these relations hold with a = 1 and b = —  1. The following 
exercises show that (51) and (52), together with the prime number theorem, 
ii/(x) x, imply A(x) ax. This should be compared with Theorem 4.8 
(Shapiro's Tauberian theorem) which assumes only (51) and the weaker 
condition E„ <„ A(x1n) = ax log x + 0(x) and concludes that Cx A(x) 
< Bx for some positive constants C and B. 

27. Prove that 

(a) E A(±)A(n) = 	A(c)A(n) + E tir(-- -)a(n) + 0(x) 
fl^x n 	 „ 	n 
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and use this to deduce the relation 

(b) 11(x)  + 1  	E AC)A(n)+ 	 E 	a(n) = 2a + o(1). 
x 	x log x 	n 	x log x 	n 

28. Let a = firn inf(A(x)/x) and let /3 = lim sup(A(x)/x). 
X -4 00 	 X —'cO 

(a) Choose any s > 0 and use the fact that 

4-x) < (/3 + e) -x 	and 4-x) < (1 + e)-x  

for all sufficiently large x/t to deduce, from Exercise 27(b), that 

# a e ac 

Since e is arbitrary this implies 

13 a 	, 
cx + - + - > za. 

2 2 

[Hint: Let x co in such a way that A(x)/x a.] 
(b) By a similar argument, prove that 

a a 
13 + -

2 
+ -

2 
2a 

and deduce that a = /3 = a. In other words, A(x) ax as x co. 

29. Take a(n) = 1 + pt(n) and verify that (52) is satisfied with a = 1 and b = 2C - 1, 
where C is Euler's constant. Show that the result of Exercise 28 implies 

1 
lim E 12(n) = 0. 
x, x n<x  

This gives an alternate proof of Theorem 4.14. 

30. Suppose that, in Exercise 28, we do not assume the prime number theorem. Instead, 
let 

tk(x) 4/(x) = lim 	 = lim sup 	. 
x-. 

(a) Show that the argument suggested in Exercise 28 leads to the inequalities 

	

# ao 	 a ay 
a + -2  + —2  2a, 	fl + -2  + —2  2a. 

(b) From the inequalities in part (a) prove that 

ay < cx < 	ab. 

This shows that among all numbers a(n) satisfying (51) and (52) with a fixed a, 
the most widely separated limits of indetermination, 

A(x) 	, 

	

lim inf 	and lim sup 
A(x) 

x—.00 	X 	 X—.G0 	X 

occur when a(n) = aA(n). Hence to deduce A(x) ax from (51) and (52) it 
suffices to treat only the special case a(n) = aA(n). 
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5 Congruences 

5.1 Definition and basic properties of 
congruences 

Gauss introduced a remarkable notation which simplifies many problems 
concerning divisibility of integers. In so doing he created a new branch of 
number theory called the theory of congruences, the foundations of which are 
discussed in this chapter. 

Unless otherwise indicated, small latin and Greek letters will denote 
integers (positive, negative, or zero). 

Definition Given integers a, b, in with in > 0. We say that a is congruent to 
b modulo m, and we write 

(1) 	 a = b (mod m), 

if m divides the difference a — b. The number m is called the modulus of 
the congruence. 

1 

In other words, the congruence (1) is equivalent to the divisibility relation 

ml(a — b). 

In particular, a 0 (mod m) if, and only if, m I a. Hence a b (mod m) if, 
and only if, a — b 0 0 (mod m). If m )/' (a — b) we write a 0 b (mod m) and 
say that a and b are incongruent mod m. 
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5.1: Definition and basic properties of congruences 

EXAMPLES 

1. 19 7 (mod 12), 1 	— 1 (mod 2), 3 2 	— 1 (mod 5). 
2. n is even if, and only if, n 	0 (mod 2). 
3. n is odd if, and only if, n 	1 (mod 2). 
4. a -a b (mod 1) for every a and b. 
5. If a a b (mod m) then a b (mod d) when dim, d> 0. 

The congruence symbol was chosen by Gauss to suggest analogy with 
the equals sign =. The next two theorems show that congruences do indeed 
possess many of the formal properties of equations. 

Theorem 5.1 Congruence is an equivalence relation. That is, we have: 

(a) a a (mod m) 	 (reflexivity) 
(b) a b (mod m) implies b a (mod m) 	(symmetry) 
(c) a b (mod m) and b c (mod m) 

imply a 	c (mod m) 	 (transitivity). 

PROOF. The proof follows at once from the following properties of divisi-
bility: 

(a) m10. 
(b) If ml (a — b) then m I (b — a). 
(c) If m1 (a — b) and ml(b — c) then ml (a — b) + (b — c) = a — c. 	LI 

Theorem 5.2 If a -= b (mod m) and a f3 (mod m), then we have: 

(a) ax + cxy bx + fly (mod m) for all integers x and y. 
(b) ac 	bfl (mod m). 
(c) a" b" (mod m)for every positive integer n. 
(d) f (a) f(b) (mod m) for every polynomial f with integer coefficients. 

PROOF. (a) Since ml (a — b) and m (a — fl) we have 

ml x(a — b) + y(a — 16) = (ax + ay) — (bx + fly). 

(b) Note that ac — b,(3 = a(a — b) + b(a — fl) 0 (mod m) by part (a). 
(c) Take a = a and fl = b in part (b) and use induction on n. 
(d) Use part (c) and induction on the degree of f 	 LI 

Theorem 5.2 tells us that two congruences with the same modulus can 
be added, subtracted, or multiplied, member by member, as though they were 
equations. The same holds true for any finite number of congruences with 
the same modulus. 

Before developing further properties of congruences we give two examples 
to illustrate their usefulness. 
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5: Congruences 

EXAMPLE I Test for divisibility by 9. An integer n > 0 is divisible by 9 if, 
and only if, the sum of its digits in its decimal expansion is divisible by 9. 
This property is easily proved using congruences. If the digits of n in decimal 
notation are a o , a l , , ak, then 

n = ac, + 10a 1  + 102a2  + • • • + 10kak . 

Using Theorem 5.2 we have, modulo 9, 

	

10 	1, 	10 2  a-- 1, . . , 	10' a-  1 (mod 9) 

SO 

	

n (to  + a + 	+ ak  (mod 9). 

Note that all these congruences hold modulo 3 as well, so a number is 
divisible by 3 if, and only if, the sum of its digits is divisible by 3. 

EXAMPLE 2 The Fermat numbers F„ = 2 2  + 1 were mentioned in the 
Historical Introduction. The first five are primes: 

	

Fo  = 3, 	F 1  = 5, 	F2 = 17, 	F3 = 257, 	and F4 = 65,537. 

We now show that F5 is divisible by 641 without explicitly calculating F5. 
To do this we consider the successive powers 2 2" modulo 641. We have 

	

= 4, 	24  = 16, 	2 8  = 256, 	2" = 65,536 154 (mod 641), 

SO 

	

2 32 	(154) 2  = 23,716 	640a--  —1 (mod 641). 

Therefore F5 = 2 32  + 1 Fa-  0 (mod 641), so F5 is composite. 

We return now to general properties of congruences. Common nonzero 
factors cannot always be cancelled from both members of a congruence as 
they can in equations. For example, both members of the congruence 

48 E 18 (mod 10) 

are divisible by 6, but if we cancel the common factor 6 we get an incorrect 
result, 8 3 (mod 10). The next theorem shows that a common factor can 
be cancelled if the modulus is also divisible by this factor. 

Theorem 5.3 if c > 0 then 

a b (mod m) if, and only if, ac bc (mod mc). 

PROOF. We have ml (b — a) if, and only if, cm I c(b — a). 

The next theorem describes a cancellation law which can be used when 
the modulus is not divisible by the common factor. 
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Theorem 5.4 Cancellation law. If ac bc (mod m) and if d = (in, c), then 

a b (mod —m). 

In other words, a common factor c can be cancelled provided the modulus 
is divided by d = (m, c). In particular, a common factor which is relatively 
prime to the modulus can always be cancelled. 

PROOF. Since ac bc (mod m) we have 

ml c(a — b) 	so — 
d 

(a — b). 

 

But (m/d, c I d) 	1, hence mid I (a — b). 

 

LI 

Theorem 5.5 Assume a b (mod m). If dim and dla then dlb. 

PROOF. It suffices to assume that d> 0. If dlm then a b (mod m) implies 
a b (mod d). But if dia then a -= 0 (mod d) so b 0 (mod d). 	0 

Theorem 5.6 If a b (mod m) then (a, m) = (b, m). In other words, numbers 
which are congruent mod m have the sane gcd with m. 

PROOF. Let d = (a, m) and e = (b, m). Then dim and dia so di b; hence die. 
Similarly, elm, elb, so ela; hence eld. Therefore d = e. 	 El 

Theorem 5.7 If a_—_ b (mod m) and if 0 < l b — al < m, then a = b. 

PROOF. Since m 	I)) we have m la — bi unless a b = 0. 	LI 

Theorem 5.8 We have a a b (mod m) if and only if a and b give the same 
remainder when divided by m. 

PROOF. Write a = mq + r, b == mQ + R, where 0 < r < m and 
0 < R < m. Then a — b r — R (mod m) and 0 < lr — < m. Now 
use Theorem 5.7. 	 LI 

Theorem 5.9 If a b (mod m) and a h (mod n) where (m, n) = 1, then 
a -a b (mod mn). 

PROOF. Since both m and n divide a — b so does their product since 
(m, n) = 1. 	 LI 

5.2 Residue classes and complete residue 
systems 

Definition Consider a fixed modulus m > 0. We denote by a the set of all 
integers x such that x a (mod m) and we call a the residue class a 
modulo m. 
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5: Congruences 

Thus, a consists of all integers of the form a + mg, where q = 0, + 1, 
±2, 

The following properties of residue classes are easy consequences of this 
definition. 

Theorem 5.10 For a given modulus m we have: 

(a) a = b if and only if, a b (mod m). 
(b) Two integers x and y are in the same residue class if, and only if, 

x y (mod m). 
(c) The m residue classes i, 2, ... , Ili are disjoint and their union is the set 

of all integers. 

PROOF. Parts (a) and (b) follow at once from the definition. To prove (c) we 
note that the numbers 0, 1, 2, ... , m — 1 are incongruent modulo m (by 
Theorem 5.7). Hence by part (b) the residue classes 

are disjoint. But every integer x must be in exactly one of these classes because 
x = gm + r where 0 < r < m, so x r (mod m) and hence x e P. Since 
O = th this proves (c). 	 El 

Definition A set of m representatives, one from each of the residue classes 
1, 2, ... , ñz , is called a complete residue system modulo m. 

EXAMPLES Any set consisting of m integers, incongruent mod m, is a complete 
residue system mod m. For example, 

	

{1, 2, . 	, m}; 	{0, 1, 2, .. . , m — 1} ; 

{1, m + 2, 2m + 3, 3m + 4, .. , m 2 }. 

Theorem 5.11 Assume (k, m) = 1. If {a 1 , . . . , am } is a complete residue system 

	

modulo m, so is {ka i , 	, ka.}. 

PROOF. If kai  ka;  (mod m) then ai  ai  (mod m) since (k, m) = 1. 
Therefore no two elements in the set {ka i , , ka,„} are congruent modulo m. 
Since there are m elements in this set it forms a complete residue system. El 

5.3 Linear congruences 

Polynomial congruences can be studied in much the same way that poly-
nomial equations are studied in algebra. Here, however, we deal with 
polynomials f (x) with integer coefficients so that the values of these poly-
nomials will be integers when x is an integer. An integer x satisfying a 
polynomial congruence 

(2) 	 f (x) 0 (mod m) 
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is called a solution of the congruence. Of course, if x y (mod m) then 
f(x)--= f(y) (mod m) so every congruence having one solution has in-
finitely many. Therefore we make the convention that solutions belonging 
to the same residue class will not be counted as distinct. And when we speak 
of the number of solutions of a congruence such as (2) we shall mean the 
number of incongruent solutions, that is, the number of solutions contained 
in the set {1, 2, ... , m} or in any other complete residue system modulo m. 
Therefore every polynomial congruence modulo m has at most m solutions. 

EXAMPLE 1 The linear congruence 2x 3 (mod 4) has no solutions, since 
2x — 3 is odd for every x and therefore cannot be divisible by 4. 

EXAMPLE 2 The quadratic congruence x 2  -a 1 (mod 8) has exactly four 
solutions given by x 	1, 3, 5, 7 (mod 8). 

The theory of linear congruences is completely described by the next three 
theorems. 

Theorem 5.12 Assume (a, m) = 1. Then the linear congruence 

(3) ax _,. b (mod m) 

has exactly one solution. 

PROOF. We need only test the numbers 1, 2, ... , m, since they constitute a 
complete residue system. Therefore we form the products a, 2a, . .. , ma. 
Since (a, m) = 1 these numbers also constitute a complete residue system. 
Hence exactly one of these products is congruent to b modulo m. That is, 
there is exactly one x satisfying (3). 0 

Although Theorem 5.12 tells us that the linear congruence (3) has a unique 
solution if (a, m) = 1, it does not tell us how to determine this solution 
except by testing all the numbers in a complete residue system. There are 
more expeditious methods known for determining the solution; some of 
them are discussed later in this chapter. 

Note. If (a, m) = 1 the unique solution of the congruence ax 1 (mod m) 
is called the reciprocal of a modulo m. If a' is the reciprocal of a then ba' is 
the solution of (3). 

Theorem 5.13 Assume (a, m) = d. Then the linear congruence 

(4) ax ..- b (mod m) 

has solutions if, and only if, dlb. 
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5: Congruences 

PROOF. If a solution exists then dlb since dim  and dia. Conversely, if di b 
the congruence 

a x  b ( mod  m 

d 	d 	d ) 

has a solution since (ald,m1d) = 1, and this solution is also a solution of (4). 
0 

Theorem 5.14 Assume (a, m) = d and suppose that dib. Then the linear 
congruence 

(5) ax =- b (mod m) 

has exactly d solutions modulo m. These are given by 

(6) 
m 	 m 

t, t + 
m 

, t + 2 —
d ' 

. . . , t + (d — 1)—
d ' d 

where t is the solution, unique modulo mld, of the linear congruence 

a 	b 
(7) —

d
x = —

d 
( 	ll mod 

d . 

PROOF. Every solution of (7) is also a solution of (5). Conversely, every 
solution of (5) satisfies (7). Now the d numbers listed in (6) are solutions of (7) 
hence of (5). No two of these are congruent modulo m since the relations 

m 	m 
t + r —

d 
t + s —

d 
(mod tn), with 0<r<d,0<s<d 

imply 

m m 

	

s —
d 

(mod m), 	and hence r = s (mod d). 

But 0 .ir —si<dsor= s. 
It remains to show that (5) has no solutions except those listed in (6). 

If y is a solution of (5) then ay at (mod m) so y--= t (mod mid). Hence 
y = t + kmld for some k. But k-=.--. r (mod d) for some r satisfying 0 r < d. 
Therefore 

m m 	 m 

	

k —
d 

r —
d 

(mod m) 	so y t + r —
d 

(mod m). 

Therefore y is congruent modulo m to one of the numbers in (6). This com- 
pletes the proof. 	 0 

In Chapter 1 we proved that the gcd of two numbers a and b is a linear 
combination of a and b. The same result can be deduced as a consequence of 
Theorem 5.14. 

112 



5.4: Reduced residue systems and the Euler-Fermat theorem 

Theorem 5.15 If (a, b) = d there exist integers x and y such that 

	

(8 ) 	 ax + by = d. 

PROOF. The linear congruence ax .- d (mod b) has a solution. Hence there 
is an integer y such that d — ax = by. This gives us ax + by = d, as required. 

0 

Note. Geometrically, the pairs (x, y) satisfying (8) are lattice points lying 
on a straight line. The x-coordinate of each of these points is a solution of the 
congruence ax a-  d (mod b). 

5.4 Reduced residue systems and the 
Euler—Fermat theorem 

Definition By a reduced residue system modulo m we mean any set of (p(m) 
integers, incongruent modulo m, each of which is relatively prime to m. 

Note. (p(m) is Euler's totient, introduced in Chapter 2. 

Theorem 5.16 If {a 1 , a2 , . . . , a0,0 1 is a reduced residue system modulo m and 
if (k, m) = 1, then {ka i , ka2 , . . . , ka,p(m) } is also a reduced residue system 
modulo m. 

PROOF. No two of the numbers kai  are congruent modulo m. Also, since 
(ai , m) = (k, m) = 1 we have (kai , m) = 1 so each kai  is relatively prime 

	

to rn. 	 0 

Theorem 5.17 Euler—Fermat theorem. Assume (a, m) = 1. Then we have 

ac(m) -- 1 (mod m). 

PROOF. Let {b 1 , b2 ,. . . , bcp0,0} be a reduced residue system modulo m. Then 
{ab 1 , ab2 , ... , abo,, ) } is also a reduced residue system. Hence the product of 
all the integers in the first set is congruent to the product of those in the 
second set. Therefore 

b 1  . - . b,(m)  .H- a49( m )b 1 . . • kpon)  (mod m). 

Each b i  is relatively prime to m so we can cancel each b i  to obtain the theorem. 
El 

Theorem 5.18 If a prime p does not divide a then 

al". 1  --. 1 (mod p). 

PROOF. This is a corollary of the foregoing theorem since cp(p) = p — 1. CI 
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5: Congruences 

Theorem 5.19 Little Fermat theorem. For any integer a and any prime p we 
have 

aP a (mod p). 

PROOF. If p ,f/ a this is Theorem 5.18. If pla then both a" and a are congruent 
to 0 mod p. 	 LI 

The Euler-Fermat theorem can be used to calculate the solutions of a 
linear congruence. 

Theorem 5.20 If (a, m) = 1 the solution (unique mod m) of the linear con-
gruence 

(9) ax b (mod m) 

is given by 

(10) x ba'")-1  (mod m). 

PROOF. The number x given by (10) satisfies (9) because of the Euler-Fermat 
theorem. The solution is unique mod m since (a, m) = 1. 	 LI 

EXAMPLE 1 Solve the congruence 5x 3 (mod 24). 

Solution 
Since (5, 24) = 1 there is a unique solution. Using (10) we find 

x 	3 5(P124)-1 	3 . 5' (mod 24) 

since 9(24) = 9(3)08) = 2 . 4. Modulo 24 we have 5 2  1, and 

54  -a 5 6 	1, 	5' -a 5, 	so x 	15 (mod 24). 

EXAMPLE 2 Solve the congruence 25x 15 (mod 120). 

Solution 
Since d = (25, 120) = 5 and dl 15 the congruence has exactly five solu-

tions modulo 120. To find them we divide by 5 and solve the congruence 
5x 3 (mod 24). Using Example 1 and Theorem 5.14 we find that the five 
solutions are given by x = 15 + 24k, k = 0, 1, 2, 3, 4, or 

x 	15, 39, 63, 87, 111 (mod 120). 

5.5 Polynomial congruences modulo p. 
Lagrange's theorem 

The fundamental theorem of algebra states that for every polynomial f 

of degree n > 1 the equation f (x) = 0 has n solutions among the complex 
numbers. There is no direct analog of this theorem for polynomial con-
gruences. For example, we have seen that some linear congruences have no 
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solutions, some have exactly one solution, and some have more than one. 
Thus, even in this special case, there appears to be no simple relation between 
the number of solutions and the degree of the polynomial. However, for 
congruences modulo a prime we have the following theorem of Lagrange. 

Theorem 5.21 (Lagrange). Given a prime p, let 

f (x) = c o  + cl x + • • • + cn xn 

be a polynomial ofdegree n with integer coefficients  such that c „ # 0 (mod p). 
Then the polynomial congruence 

(11) 
	

f (x) # 0 (mod p) 

has at most n solutions. 

Note. This result is not true for composite moduli. For example, the 
quadratic congruence x 2  # 1 (mod 8) has 4 solutions. 

PROOF. We use induction on n, the degree of f When n = 1 the congruence 
is linear: 

CiX ± Co=-=-- (mod p). 

Since c 1  # 0 (mod p) we have (c 1 , p) ----- 1 and there is exactly one solution. 
Assume, then, that the theorem is true for polynomials of degree n — 1. 
Assume also that the congruence (11) has n + 1 incongruent solutions 
modulo p, say 

xo , x i , . • . , x,„ 

where f (x k ) # 0 (mod p) for each k = 0, 1, ... , n. We shall obtain a contra-
diction. We have the algebraic identity 

n 
f(x) — f (x 0) = X c,.(xr — x or) = (x — x o)g(x) 

r= 1 

where g(x) is a polynomial of degree n — 1 with integer coefficients and with 
leading coefficient en . Thus we have 

f (x k ) — f (x 0) = (xk  — xo)g(x k)=-- 0 (mod p), 

since f (xk) # f (x 0) # 0 (mod p). But xk  — xo  # 0 (mod p) if k 0 0 so we 
must have g(x k )-,-_-7 0 (mod p) for each k 0 0. By this means that the con-
gruence g(x) # 0 (mod p) has n incongruent solutions modulo p, con-
tradicting our induction hypothesis. This completes the proof. El 

5.6 Applications of Lagrange's theorem 

Theorem 5.22 If f(x) --= c o  + c i x + • . • + cn xn is a polynomial of degree n 
with integer coefficients, and if the congruence 

f (x) # 0 (mod p) 
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5: Congruences 

has more than n solutions, where p is prime, then every coefficient off is 
divisible by p. 

PROOF. If there is some coefficient not divisible by p, let ck  be the one with 
largest index. Then k < n and the congruence 

co  + c l x + - • • + ck xk  --= 0 (mod p) 

has more than k solutions so, by Lagrange's theorem, pick , a contradiction. 
El 

Now we apply Theorem 5.22 to a particular polynomial. 

Theorem 5.23 For any prime p all the coefficients of the polynomial 

f (x) = (x — 1)(x — 2) • — (x — p + 1) — xi ' + 1 

are divisible by p. 

PROOF. Let g(x) = (x — 1)(x -- 2). • - (x — p + 1). The roots of g are the 
numbers 1, 2, ... , p — 1, hence they satisfy the congruence 

g(x)E.-_- 0 (mod p). 

By the Euler -Fermat theorem, these numbers also satisfy the congruence 
h(x) 0 (mod p), where 

h(x) = xp - 1  - 1. 

The difference ,f (x) = g(x) — h(x) has degree p -- 2 but the congruence 
f (x) --_ 0 (mod p) has p — 1 solutions, 1, 2, ... , p — 1. Therefore, by 
Theorem 5.22, each coefficient off (x) is divisible by p. 	 0 

We obtain the next two theorems by considering two particular coefficients 
of the polynomial f (x) in Theorem 5.23. 

Theorem 5.24 Wilson's theorem. For any prime p we have 

( p — 1) !----_- — 1 (mod p). 

PROOF. The constant term of the polynomial f(x) in Theorem 5.23 
is (p — 1)! + 1. 	 D 

Note. The converse of Wilson's theorem also holds. That is, if n > 1 and 
(n — 1)! -=-. —1 (mod n), then n is prime. (See Exercise 5.7.) 

Theorem 5.25 Wolstenholme's theorem. For any prime p 5 we have 

P-1  (P  - 1 )!  

I 	k 	---7- 0 (mod 19 2 ). 
k=1 

116 



5.7: Simultaneous linear congruences. The Chinese remainder theorem 

PROOF. The sum in question is the sum of the products of the numbers 1, 
2, ... , p — 1 taken p — 2 at a time. This sum is also equal to the coeffi-
cient of — x in the polynomial 

g(x) = (x — 1)(x — 2) • • • (x — p + 1). 

In fact, g(x) can be written in the form 

g(x) — X P-1  - S 1X 17- 2  + S2X 17- 3  - • • • + Sp _ 3X 2  - S p _2X ± (p — 1)!, 

where the coefficient Sk is the kth elementary symmetric function of the roots, 
that is, the sum of the products of the numbers 1, 2, ... , p — 1, taken k at a 
time. Theorem 5.23 shows that each of the numbers S 1 , S i  , . .. , S p _ 2 is 
divisible by p. We wish to show that S,,_ 2 is divisible by p 2 . 

The product for g(x) shows that g(p) = (p — 1)! so 

(p — 1)! = p" — S i  pi' + - • • + Sp _ 3 p2  — Sp _ 2 p + (p — 1)!. 

Canceling (p — 1) ! and reducing the equation mod p 3  we find, since p> 5, 

pS p _ 2  0 (mod p 3 ), 

and hence Sp _ 2 ---=. 0 (mod p 2), as required. 	 0 

5.7 Simultaneous linear congruences. The 
Chinese remainder theorem 

A system of two or more linear congruences need not have a solution, even 
though each individual congruence has a solution. For example, there is no x 
which simultaneously satisfies x 1 (mod 2) and x 0 (mod 4), even 
though each of these separately has solutions. In this example the moduli 2 
and 4 are not relatively prime. We shall prove next that any system of two or 
more linear congruences which can be solved separately with unique solu-
tions can also be solved simultaneously if the moduli are relatively prime in 
pairs. We begin with a special case. 

Theorem 5.26 Chinese remainder theorem. Assume m l , . . . , m,. are positive 
integers, relatively prime in pairs: 

(m i , m k) = 1 if i 0 k. 

Let b 1 , . . . , br  be arbitrary integers. Then the system of congruences 

x --- b i  (mod m l ) 

X b,. (mod 170 

has exactly one solution modulo the product m 1  • • • m r . 
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PROOF. Let M = m i  • • • mr  and let Mk = MIMk. Then (Mk  , mk) = 1 so each 
Mk has a unique reciprocal M;, modulo m k  . Now let 

X = b 1 M 1 M + b2 M 2 M12  + • • + 10/1i.Mir . 

Consider each term in this sum modulo m k . Since M 0 (mod mk) if i k 
we have 

X = bk MO% bk (mod Mk ). 

Hence x satisfies every congruence in the system. But it is easy to show that the 
system has only one solution mod M. In fact, if x and y are two solutions of 
the system we have x y (mod m k) for each k and, since the m k  are relatively 
prime in pairs, we also have x y (mod M). This completes the proof. El 

The following extension is now easily deduced. 

Theorem 5.27 Assume m i , . . . , m i. are relatively prime in pairs. Let b 1 , . 
br  be arbitrary integers and let al , 	, a,. satisfy 

(ak , mk) = 1 for k = 1, 2, .. . , r. 

Then the linear system of congruences 

a i x b (mod m 1 ) 

ar x I), (mod mr) 

has exactly one solution modulo m m 1 -2 	nir • 

PROOF. Let ak' denote the reciprocal of ak  modulo mk  . This exists since 
(ak , m k) = 1. Then the congruence ak x b k  (mod mk) is equivalent to the 
congruence x bk a'k  (mod mk). Now apply Theorem 5.26. 	 LI 

5.8 Applications of the Chinese remainder 
theorem 

The first application deals with polynomial congruences with composite 
moduli. 

Theorem 5.28 Let f be a polynomial with integer coefficients, let m l , m 2 , . . 
m r  be positive integers relatively prime in pairs, and let m 	m 1 m 2  • m,.. 
Then the congruence 

(12) f(x) a-  0 (mod m) 

has a solution if, and only if, each of the congruences 

(13) f (x) 	0 (mod mi) 	(i = 1, 2, . , r) 
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has a solution. Moreover, if v(m) and v(m 1) denote the number of solutions 
of (12) and (13), respectively, then 

(14) 	 v(m) = v(m 1 )v(m 2 ) • • • v(m,.). 

PROOF. If f(a) 0 (mod m) then f(a) 0 (mod m i) for each i. Hence every 
solution of (12) is also a solution of (13). 

Conversely, let ai  be a solution of (13). Then by the Chinese remainder 
theorem there exists an integer a such that 

(15) 	 a--== ai  (mod mi) for i = 1, 2, . , r, 

SO 

f (a) f (a i) a 0 (mod mi). 

Since the moduli are relatively prime in pairs we also have f (a) 0 (mod m). 
Therefore if each of the congruences in (13) has a solution, so does (12). 

We also know, by Theorem 5.26, that each r-tuple of solutions (a 1 , . , 
of the congruences in (13) gives rise to a unique integer a mod m satisfying 
(15). As each ai  runs through the v(m 1) solutions of (13) the number of integers a 
which satisfy (15) and hence (13) is v(m 1 ) • • • v(m,.). This proves (14). 

Note. If m has the prime power decomposition 
at 

M = P1 • • • Pr c̀r 

we can take mi  = pi"' in Theorem 5.28 and we see that the problem of solving 
a polynomial congruence for a composite modulus is reduced to that for 
prime power moduli. Later we will show that the problem can be reduced 
further to polynomial congruences with prime moduli plus a set of linear 
congruences. (See Section 5.9.) 

The next application of the Chinese remainder theorem concerns the set 
of lattice points visible from the origin. (See Section 3.8.) 

Theorem 5.29 The set of lattice points in the plane visible from the origin 
contains arbitrarily large square gaps. That is, given any integer k > 0 
there exists a lattice point (a, b) such that none of the lattice points 

(a + r, b + s), 0 < r k, 0 < s k, 

is visible from the origin. 

PROOF. Let p i , p2  , . . . , be the sequence of primes. Given k > 0 consider 
the k x k matrix whose entries in the first row consist of the first k primes, 
those in the second row consist of the next k primes, and so on. Let mi  be the 
product of the primes in the ith row and let M i  be the product of the primes 
in the ith column. Then the numbers m i  are relatively prime in pairs, as are 
the Mi . 
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Next consider the set of congruences 

X = —1 (mod m 1 ) 
X =- — 2 (mod m2) 

X —k (mod mk). 

This system has a solution a which is unique mod m 1  • • mk  . Similarly, the 
system 

y —1 (mod M1) 

y 	k (mod Mk ) 

has a solution b which is unique mod M 1  • • • Mk = 111 1  • • • Mk  . 

Now consider the square with opposite vertices at (a, b) and (a + k, b + k). 
Any lattice point inside this square has the form 

(a + r, b + s), where 0 < r < k, 0 < s < k, 

and those with r = k or s = k lie on the boundary of the square. We now 
show that no such point is visible from the origin. In fact, 

a —r (mod mr) 	and b — s (mod Ms) 

so the prime in the intersection of row r and column s divides both a + r and 
b + s. Hence a + r and b + s are not relatively prime, and therefore the 
lattice point (a + r, b + s) is not visible from the origin. 	 El 

5.9 Polynomial congruences with prime 
power moduli 

Theorem 5.28 shows that the problem of solving a polynomial congruence 

f (x) 0 (mod m) 

can be reduced to that of solving a system of congruences 

f (x) 	0 (mod pia') 	(i = 1, 2, ... , r), 

where m = p • prar. In this section we show that the problem can be 
further reduced to congruences with prime moduli plus a set of linear con-
gruences. 

Let f be a polynomial with integer coefficients, and suppose that for some 
prime p and some a > 2 the congruence 

(16) 	 f(x) 0 (mod 

has a solution, say x = a, where a is chosen so that it lies in the interval 

0 < a <pa. 
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This solution also satisfies each of the congruences f (x) 0 (mod pi') for 
each /3 < cc. In particular, a satisfies the congruence 

	

(17) 	 f (x) 0 (mod r-  '). 

Now divide a by p' -1  and write 

	

(18) 	 a = qp"-1  + r, where 0 < r < 

The remainder r determined by (18) is said to be generated by a. Since 
r a (mod 13' 1 ) the number r is also a solution of (17). In other words, 
every solution a of congruence (16) in the interval 0 < a < p" generates 
a solution r of congruence (17) in the interval 0 < r  < pa-1 .  

Now suppose we start with a solution r of (17) in the interval 0 < r < 
and ask whether there is a solution a of (16) in the interval 0 < a < pa which 
generates r. If so, we say that r can be lifted from p 1 to p". The next theorem 
shows that the possibility of r being lifted depends on f (r) mod p1  and on the 
derivative f '(r) mod p. 

Theorem 5.30 Assume oc > 2 and let r be a solution of the congruence 

(19) 	 f (x) 0 (mod p' 1 ) 

lying in the interval 0 < r < 

(a) Assume ft(r) # 0 (mod p). Then r can be lifted in a unique way from 
p' -1  to p1. That is, there is a unique a in the interval 0 < a <p1  which 
generates r and which satisfies the congruence 

(20) 	 f (x) 0 (mod p"). 

(b) Assume f'(r) 0 (mod p). Then we have two possibilities: 
(b1) If f(r) 0 (mod 131), r can be lifted from pc— to p" in p distinct 
ways. 
(b2) If f(r) # 0 (mod p"), r cannot be lifted from pa— to p". 

PROOF. If n is the degree off we have the identity (Taylor's formula) 

	

(21) 	f (x + h) = f (x) + f '(x)h + f 2  h2  + 	+ 
f (")(x) 

h" 
2 ! 	 n! 

for every x and h. We note that each polynomial f(x)/k! has integer co-
efficients. (The reader should verify this.) Now take x = r in (21), where r is a 
solution of (19) in the interval 0 < r < 1 , and let h = qp"-1  where q is an 
integer to be specified presently. Since a > 2 the terms in (21) involving h 2 

 and higher powers of h are integer multiples of p". Therefore (21) gives us the 
congruence 

f (r + pa') f (r) + f '(r)q p"-  (mod p"). 
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Since r satisfies (19) we can write f (r) = kp" for some integer k, and the 
last congruence becomes 

f (r + qp') fqf (r) + k} pa -1  (mod pa). 

Now let 

	

(22) 	 a = r + qp" 

Then a satisfies congruence (20) if, and only if, q satisfies the linear congruence 

	

(23) 	 q f '(r) + k 0 (mod p). 

If f (r) # 0 (mod p) this congruence has a unique solution q mod p, and if 
we choose q in the interval 0 q < p then the number a given by (22) will 
satisfy (20) and will lie in the interval 0 < a < p. 

On the other hand, if f '(r) 0 (mod p) then (23) has a solution q if, 
and only if, p I k, that is, if and only if f (r) 0 (mod p2). If p k there is no 
choice of q to make a satisfy (20). But if p I k then the p values q = 0, 1, . • • , 
p — 1 give p solutions a of (20) which generate r and lie in the interval 
0 < a < pa . This completes the proof. 

The proof of the foregoing theorem also describes a method for obtaining 
solutions of congruence (20) if solutions of (19) are known. By applying the 
method repeatedly the problem is ultimately reduced to that of solving the 
congruence 

	

(24) 	 f (x) 0 (mod p). 

If (24) has no solutions, then (20) has no solutions. If (24) has solutions, 
we choose one, call it r, which lies in the interval 0 < r < p . Corresponding 
to r there will be 0, 1, or p solutions of the congruence 

	

(25) 	 f (x) 0 (mod p2 ) 

depending on the numbers f (r) and k = f (01 p. If p k and p I f '(r) then r 
cannot be lifted to a solution of (25). In this case we begin anew with a 
different solution r. If no r can be lifted then (25) has no solution. 

If p I  k for some r, we examine the linear congruence 

qf'(r) + k 0 (mod p). 

This has 1 or p solutions q according as p f '(r) or p I  f '(r). For each solution 
q the number a = r qp gives a solution of (25). For each solution of (25) 
a similar procedure can be used to find all solutions of 

f (x) 0 (mod 133 ), 

and so on, until all solutions of (20) are obtained. 
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E No(Si si) — • - + (—orNo(si 
1 _i<jr.  

When r = n this gives the required formula. 

r 

N r(S) = N 0(S) — .ENo(si)+ 
i.i 

5.10: The principle of cross-classification 

5.10 The principle of cross-classification 

Some problems in number theory can be dealt with by applying a general 
combinatorial theorem about sets called the principle of cross-classification. 
This is a formula which counts the number of elements of a finite set S which 
do not belong to certain prescribed subsets S 1 , ... , S. 

Notation If T is a subset of S we write N(T) for the number of elements of T. 
We denote by S — T the set of those elements of S which are not in T Thus, 

n 

S — US1 
i= I 

consists of those elements of S which are not in any of the subsets S 1 , . .. , S„. 
For brevity we write S i S j , S i Si S k , ... , for the intersections S i  n S, 
S i  n S i  n S k , . . . , respectively. 

Theorem 5.31 Principle of cross -classification. If S i ,„ . , S„ are given subsets 
of a finite set S, then 

n 
N(S — U S i) = N( — 1 N(S i) + E ms i si) 

1=1 	 1<i5n 	 1<i<pcn 

— 	E 	msi sisk) + • • • + (—i)ms i s2  • • • s„). 
1<i‹./.0,,„ 

PROOF. If T _C S let Nr(T) denote the number of elements of T which are 
not in any of the first r subsets S I , ... , S„ with N o(T) being simply N(T). 
The elements enumerated by N ,. _ 1 (T) fall into two disjoint sets, those which 
are not in Sr  and those which are in S r . Therefore we have 

N r _ 1 (T) = Nr(T) + Nr _ i (TS,.). 

Hence 

(26) 	 N,.(T)= N._ 1 (T) — N r _ i (TS T). 

Now take T = S and use (26) to express each term on the right in terms of 
Nr _2. We obtain 

1 V ,.(S) = {N,... 2(S) — N ,- 2(S S , - 01 — IN , - 2(S r) — N , - 2(S ,S , - 0} 

= Nr_ 2(S)— N r_ 2(5,- 1 ) — N r-2(S r) + Nr-2(SrSr—i). 

Applying (26) repeatedly we finally obtain 



5: Congruences 

EXAMPLE The product formula for Euler's totient can be derived from the 
cross-classification principle. Let p i , . . . , pr  denote the distinct prime 
divisors of n. Let S = {1, 2, . .. , n} and let Sk be the subset of S consisting of 
those integers divisible by p k  . The numbers in S relatively prime to n are those 
in none of the sets S 1 , . . . , Sr , so 

(p(n) = N(S — 0 S k). 
k=1 

If dIn there are n/d multiples of d in the set S. Hence 

n 	 n 
N(S) = —

n
, N(SS) = 	,..., N(S i  • • • S,) = 	 

Pi 	 AP; 	 Pi • • • Pr 

so the cross-classification principle gives us 

, 

il 

	

 n 	 n 	 n 
co(n)=n— E — + 1 	 • • • + ( 1)' 	 

	

i= 1 Pi 	1..i<jr PiPj 	 P1 • * • Pr 

= n E kt(d) 
 = nil 1 - 1) . 

din d 	pin ( 	P 

The next application of the cross-classification principle counts the 
number of elements in a reduced residue system mod k which belong to a 
given residue class r mod d, where dlk and (r, d) = 1. 

Theorem 5.32 Given integers r, d and k such that dlk, d> 0, k > 1 and 
(r, d) = 1. Then the number of elements in the set 

S = {7. + td : t = 1, 2, ... , k/d} 

which are relatively prime to k is p(k)/p(d). 

PROOF. If a prime p divides k and r + td then p ,l' d, otherwise p Ir, contra-
dicting the hypothesis (r, d) = 1. Therefore, the primes which divide k and 
elements of S are those which divide k but do not divide d. Call them p i , 
and let 

le = P i P2 • • • Pm- 

Then the elements of S relatively prime to k are those not divisible by any of 
these primes. Let 

S i  = {x : x e S and pi  I x} 	(i = 1, 2, . .. , m). 

If x € S i  and x = r + td, then r + td -a 0 (mod p i). Since pi  A' d there is a 
unique t mod p i  with this property, therefore exactly one t in each of the 
intervals [1, pi], [pi  + 1, 2pi], ... ,[(q — 1)p + 1, gpi] where gp i  = k/d. 

Therefore 

N(S 1) = 
Pi 
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Similarly, 

k/d 	 k/d  
N(S i  Si) = 	, .. . , N(S 1  • - • S,n) = 	. 

PiPi 	 Pi • • • P. 

Hence by the cross-classification principle the number of integers in S which 
are relatively prime to k is 

1 
kl11 - - 

N(S
m   

1=1 	

k v  ti(6)  _ k n  (1 	
i. 	,,k ( 	

p)  cp(k) 	, 
- use)  = -3 L (5 - :4 - d 

d ; 	 1) =  (p (d) • 	I-I  - aik, 	 P ) n 1 — 

Pid

( 	
P 

5.11 A decomposition property of reduced 
residue systems 

As an application of the foregoing theorem we discuss a property of reduced 
residue systems which will be used in a later chapter. We begin with a 
numerical example. 

Let S be a reduced residue system mod 15, say 

S --, {I, 2, 4, 7, 8, 11, 13, 14}. 

We display the 8 elements of S in a 4 x 2 matrix as follows: 

1 
_ 

2 [ 
48 
7 11 

13 14 , 

Note that each row contains a reduced residue system mod 3, and the 
numbers in each column are congruent to each other mod 3. This example 
illustrates a general property of reduced residue systems described in the 
following theorem. 

Theorem 5.33 Let S be a reduced residue system mod k, and let d> 0 be a 
• divisor of k. Then we have the following decompositions of 5: 

(a) S is the union of (p(k)/9(d) disjoint sets, each of which is a reduced residue 
system mod d. 

(b) S is the union of 9(d) disjoint sets, each of which consists of co(k)/9(d) 
numbers congruent to each other mod d. 

Note. In the foregoing example, k --- 15 and d = 3. The rows of the matrix 
represent the disjoint sets of part (a), and the columns represent the disjoint 
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5: Congruences 

sets of part (b). If we apply the theorem to the divisor d = 5 we obtain the 
decomposition given by the matrix 

r  1 2 4 8 
L11 7 14 13 

Each row is a reduced residue system mod 5 and each column consists of 
numbers congruent to each other mod 5. 

PROOF. First we prove that properties (a) and (b) are equivalent. If (b) holds 
we can display the 9(k) elements of S as a matrix, using the 9(d) disjoint sets 
of (b) as columns. This matrix has 9(k)19(d) rows. Each row contains a 
reduced system mod d, and these are the disjoint sets required for part (a). 
Similarly, it is easy to verify that (a) implies (b). 

Now we prove (b). Let Sd be a given reduced residue system mod d, and 
suppose r E Sd. We will prove that there are at least 9(k)19(d) integers n in S, 
distinct mod k, such that n r (mod d). Since there are 9(d) values of r in 
Sd and 9(k) integers in S, there can't be more than co(k)I9(d) such numbers n, 
so this will prove part (b). 

The required numbers n will be selected from the residue classes mod k 
represented by the following kld integers: 

r r + d r + 2d, . , r + — d. 

These numbers are congruent to each other mod d and they are incongruent 
mod k. Since (r, d) = 1, Theorem 5.32 shows that co(k)19(d) of them are 
relatively prime to k, so this completes the proof. (For a different proof based 
on group theory see [1].) CI 

Exercises for Chapter 5 

I. Let S be a set of n integers (not necessarily distinct). Prove that some nonempty 
subset of S has a sum which is divisible by n. 

2. Prove that 5n3  + 7n5  -= 0 (mod 12) for all integers n. 

3. (a) Find all positive integers n for which n" 	n (mod 1365). 
(b) Find all positive integers n for which n" n (mod 4080). 

4. (a) Prove that p(n) 2 (mod 4) when n = 4 and when n = pa, where p is a prime, 
p 3 (mod 4). 

	

(b) Find all n for which 'p(n) 	2 (mod 4). 

5. A yardstick divided into inches is again divided into 70 equal parts. Prove that 
among the four shortest divisions two have left endpoints corresponding to 1 and 
19 inches. What are the right endpoints of the other two? 

6. Find all x which simultaneously satisfy the system of congruences 

x 	1 (mod 3), 	x 2 (mod 4), 	x 3 (mod 5). 
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7. Prove the converse of Wilson's theorem: If (n — 1)! + 1:_—_.-  0 (mod n), then n is prime 
if n > 1. 

8. Find all positive integers n for which (n — 1)! + 1 is a power of n. 

9. If p is an odd prime, let q = (p — 1)/2. Prove that 

(q!) 2  + (— 1)4  0 (mod p). 

This gives q! as an explicit solution to the congruence x 2  + 1 a 0 (mod p) when 
p -. 1 (mod 4), and it shows that q! -a +1 (mod p) if p --_ 3 (mod 4). No simple 
general rule is known for determining the sign. 

10. If p is odd, p> 1, prove that 

123252 . . . (p 	2)2 = 	OP +1 )/2 (mod p) 

and 

2242 62  — (p — 1)2  = ( — 1) (P+ 1)/2  (mod p). 

11. Let p be a prime, p > 5, and write 

11 	1 	r 
2 3 	p ps 

Prove that p3  I(r — s). 

12. If p is a prime, prove that 

Also, if 1)2  I [03] prove that 

(np)----. [np-] (mod p). 

If 1(1). 

13. Let a, b, n be positive integers such that n divides a" — bn. Prove that n also divides 
(a" — b)/(a — b). 

14. Let a, b, and xo  be positive integers and define 

x. = ax- 1  + b for n = 1, 2, ... 

Prove that not all the x 	be primes. 

15. Let n, r, a denote positive integers. The congruence n 2  a- n (mod 10/ implies 
n' m n (mod 10) for all r. Find all values of r such that n' a- n (mod 10' 1) implies 
n 2--., -  n (mod 10). 

16. Let n, a, d be given integers with (a, d) = 1. Prove that there exists an integer m 
such that m ,--_ a (mod d) and (m, n) = 1. 

17. Let f be an integer-valued arithmetical function such that 

f (m + n) —.- f (n) (mod m) 
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5: Congruences 

for all m > 1, n > 1. Let g(n) be the number of values (including repetitions) of 
f (1), f (2), . . . , f (n)divisible by n, and let h(n) be the number of these values relatively 
prime to n. Prove that 

g(d) 
h(n) = n E ft(d) 	. 

din 	d 

18. Given an odd integer n > 3, let k and t be the smallest positive integers such that 
both kn + 1 and tn are squares. Prove that n is prime if, and only if, both k and t 
are greater than n/4. 

19. Prove that each member of the set of n — 1 consecutive integers 

is divisible by a prime which does not divide any other member of the set. 

20. Prove that for any positive integers nand k, there exists a set of n consecutive integers 
such that each member of this set is divisible by k distinct prime factors no one of 
which divides any other member of the set. 

21. Let n be a positive integer which is not a square. Prove that for every integer a 
relatively prime to n there exist integers x and y satisfying 

axL---_- y (mod n) with 0 < x < in and 0 < IA </. 

22. Let p be a prime, p -a- 1 (mod 4), let q = (p — 1)/2, and let a = g!. 
(a) Prove that there exist positive integers x and y satisfying 0 < x < j) and 

0 < y < .\/i) such that 

a 2x2  — 	0 (mod p). 

(b) For the x and y in part (a), prove that p = x2  ± y 2 . This shows that every prime 
p m 1 (mod 4) is the sum of two squares. 

(c) Prove that no prime p _.- 3 (mod 4) is the sum of two squares. 

128 



6  Finite Abelian Groups and 
Their Characters 

6.1 Definitions 

In Chapter 2 we had occasion to mention groups but made no essential use 
of their properties. Now we wish to discuss some elementary aspects of group 
theory in more detail. In Chapter 7 our discussion of Dirichlet's theorem on 
primes in arithmetical progressions will require a knowledge of certain 
arithmetical functions called Dirich let characters. Although the study of 
Dirichlet characters can be undertaken without any knowledge of groups, 
the introduction of a minimal amount of group theory places the theory of 
Dirichlet characters in a more natural setting and simplifies some of the 
discussion. 

Definition Postulates for a group. A group G is a nonempty set of elements 
together with a binary operation, which we denote by ., such that the 
following postulates are satisfied: 

(a) Closure. For every a and b in G, a - b is also in G. 
(b) Associativity. For every a, b, c in G, we have (a - b) • c = a - (b - c). 
(c) Existence of identity. There is a unique element e in G, called the 

identity, such that a-e= e-a = a for every a in G. 
(d) Existence of inverses. For every a in G there is a unique element b in G 

such that a•b=b•a= e. This b is denoted by a-1  and is called the 
inverse of a. 

Note. We usually omit the dot and write ab for a - b. 

Definition Abelian group. A group G is called abelian if every pair of elements 
commute; that is, if ab = ha for all a and b in G. 
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6: Finite abelian groups and their characters 

Definition Finite group. A group G is called finite if G is a finite set. In this 
case the number of elements in G is called the order of G and is denoted 
by IGI. 

Definition Subgroup. A nonempty subset G' of a group G which is itself a 
group, under the same operation, is called.a subgroup of G. 

6.2 Examples of groups and subgroups 

EXAMPLE 1 Trivial subgroups. Every group G has at least two subgroups, 
G itself and the set {e} consisting of the identity element alone. 

EXAMPLE 2 Integers under addition. The set of all integers is an abelian group 
with + as the operation and 0 as the identity. The inverse of n is — n. 

EXAMPLE 3 Complex numbers under multiplication. The set of all non-zero 
complex numbers is an abelian group with ordinary multiplication of 
complex numbers as the operation and 1 as the identity. The inverse of z is the 
reciprocal 1/z. The set of all complex numbers of absolute value 1 is a 
subgroup. 

EXAMPLE 4 The nth roots of unity. The groups in Examples 2 and 3 are 
infinite groups. An example of a finite group is the set {1 , e, 8 2 ,  , en-1} ,  

where 8 = e2 n iin and the operation is ordinary multiplication of complex 
numbers. This group, of order n, is called the group of nth roots of unity. It is a 
subgroup of both groups in Example 3. 

6.3 Elementary properties of groups 

The following elementary theorems concern an arbitrary group G. Unless 
otherwise stated, G is not required to be abelian nor finite. 

Theorem 6.1 Cancellation laws. If elements a, b, c in G satisfy 

ac bc or ca = cb, 

then a = b. 

PROOF. In the first case multiply each member on the right by c -  ' and use 
associativity. In the second case multiply on the left by c -1 . 

Theorem 6.2 Properties of inverses. In any group G we have: 

(a) = e. 
(b) For every a in G, 	= a. 
(c) For all a and b in G, (ab)-  = b'a'. (Note reversal of order.) 
(d) For all a and b in G the equation ax = b has the unique solution x = 

'b; the equation ya = b has the unique solution y = ba'. 
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PROOF. 

(a) Since ee = ee-1  we cancel e to obtain e = e' 
(b) Since aa' = e and inverses are unique, a is the inverse of a 1 . 

(c) By associativity we have 

(ab)(b- - ) = a(bb- 1)a- 1 = aea 1  = aa-  = e 

so b'a' is the inverse of ab. 
(d) Again by associativity we have 

a(a-1b) = (aa- 1 )1) = b 	and (ba- 1 )a = b(a-1a) = b. 

The solutions are unique because of the cancellation laws. 	 111 

Definition Powers of an element. If a c G we define a" for any integer n by the 
following relations: 

a°  = e, 	a" = aa"-1 , 	a = (a 1 )n for n > 0. 

The following laws of exponents can be proved by induction. We omit 
the proofs. 

Theorem 6.3 If a e G, any two powers of a commute, and for all integers m and n 
we have 

	

aman = am+  = dam 	and (am)" = anm = (a")"` 

Moreover, if a and b commute we have 

anbn = (ab)". 

Theorem 6.4 Subgroup criterion. If G' is a nonempty subset of a group G, then 
G' is a subgroupif, and only if, G' satisfies group postulates (a) and (d): 
(a) Closure: If a, b e G', then ab E G'. 
(d) Existence of inverse. if a e G', then a -1  e G'. 

PROOF. Every subgroup G' certainly has these properties. Conversely, if G' 
satisfies (a) and (d) it is easy to show that G' also satisfies postulates (b) and (c). 
Postulate (b), associativity, holds in G' because it holds for all elements in G. 
To prove that (c) holds in G' we note that there is an element a in G' (since G' is 
nonempty) whose inverse a' e G' (by (d)) hence aa 1  e G' by (a). But aa' 
= e so e G'. E1 

6.4 Construction of subgroups 

A subgroup of a given group G can always be constructed by choosing any 
element a in G and forming the set of all its powers an, n = 0, + 1, + 2, . . . 
This set clearly satisfies postulates (a) and (d) so is a subgroup of G. It is called 
the cyclic subgroup generated by a and is denoted by <a>. 
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Note that <a> is abelian, even if G is not. If a" = e for some positive 
integer n there will be a smallest n > 0 with this property and the subgroup 
<a> will be a finite group of order n, 

<a> = {a, a2 , 	, an-1 , an = e l . 

The integer n is also called the order of the element a. An example of a cyclic 
subgroup of order n is the group of nth roots of unity mentioned in Section 
6.2. 

The next theorem shows that every element of a finite group has finite 
order. 

Theorem 6.5 if G is finite and a e G, then there is a positive integer n 
such that an = e. 

PROOF. Let g = GJ. Then at least two of the following g + 1 elements of G 
must be equal: 

e, a, a2 , 	, ag. 

Suppose that ar = a5, where 0 <; s < r < g. Then we have 

e = ar(as)-  = a'. 

This proves the theorem with n = r — s. 

As noted in Section 6.2, every group G has two trivial subgroups, {e} and 
G itself. When G is a finite abelian group there is a simple process for con-
structing an increasing collection of subgroups intermediate to fel and G. 
The process, which will be described in Theorem 6.8, is based on the following 
observation. 

If G' is a subgroup of a finite group G, then for any element a in G there is an 
integer n such that an e G'. If a is already in G' we simply take n = 1. If 
a ci G' we can take n to be the order of a, since an = e e G'. However, there may 
be a smaller positive power of a which lies in G'. By the well-ordering principle 
there is a smallest positive integer n such that a" e G'. We call this integer the 
indicator of a in G'. 

Theorem 6.6 Let G' be a subgroup of a finite abelian group G, where G' 0 G. 
Choose an element a in G, a ct G'", and let h be the indicator of a in G'. Then 
the set of products 

G" = {xak  :x e G' and k = 0, 1, 2„ . . , h — 1} 

is a subgroup of G which contains G'. Moreover, the order of G" is h times 
that of G', 

I G" I = h I G' I. 
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PROOF. To show G" is a subgroup we use the subgroup criterion. First we 
test closure. Choose two elements in G", say xak and yaj, where x, y e G' and 
0 < k < h, 0 < j < h. Since G is abelian the product of the elements is 

( 1 ) 	 (xy)a k+  j. 

Now k + j = qh + r where 0 < r < h. Hence 

ak+  j = ag" r = aghar = zar, 

where z = agh  = (di)" E G' since a' E G'. Therefore the element in (1) is 
(xyz)ar = war, where w E G' and 0 < r < h. This proves that G" satisfies the 
closure postulate. 

Next we show that the inverse of each element in G" is also in G". Choose 
an arbitrary element in G", say xak . If k = 0 then the inverse is x' which is in 
G". If 0 < k < h the inverse is the element 

yah - k, where y = x -1(ah) - 1, 

which again is in G". This shows that G" is indeed a subgroup of G. Clearly 
G" contains G'. 

Next we determine the order of G". Let m = I G' I. As x runs through the 
m elements of G' and k runs through the h integers 0, 1, 2, . , h — 1 we obtain 
mh products xak . If we show that all these are distinct, then G" has order mh. 
Consider two of these products, say xak  and yaj and assume that 

xak  = yaJ with 0 < j < k < h. 

Then ak- i = x - 1 y and 0 < k — j < h. Since x - l y c G' we must have ak-i  in 
G' so k = j and hence x = y. This completes the proof. 

6.5 Characters of finite abelian groups 

Definition Let G be an arbitrary group. A complex-valued function f defined 
on G is called a character of G if f has the multiplicative property 

f (ab) = f (a) f (b) 

for all a, b in G, and if f (c) 0 for some c in G. 

Theorem 6.7 Iff is a character of a finite group G with identity element e, then 
f (e) = 1 and each function value f (a) is a root of unity. In fact, ifa = e then 
f (ar = 1. 

PROOF. Choose c in G such that f (c) 0 0. Since ce = c we have 

f (c)f (e) = f (c) 

so f (e) = 1. If an = e then f(a) .= f (a") = f (e) = 1. 
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EXAMPLE Every group G has at least one character, namely the function which 
is identically 1 on G. This is called the principal character. The next theorem 
tells us that there are further characters if G is abelian and has finite order > 1. 

Theorem 6.8 A finite abelian group G of order n has exactly n distinct characters. 

PROOF. In Theorem 6.6 we learned how to construct, from a given subgroup 
G' G, a new subgroup G" containing G' and at least one more element a 
not in G'. We use the symbol KG'; a) to denote the subgroup G" constructed 
in Theorem 6.6. Thus 

<G'; a> = {xak  :x E G' and 0 k < h} 

where h is the indicator of a in G'. 
Now we apply this construction repeatedly, starting with the subgroup 

{e} which we denote by G I . If G 1  G we let al  be an element of G other than 
e and define G2 = <G1; al ). If G2 0 G let a2  be an element of G which is not 
in G2  and define G3 = <G2; a2 >. Continue the process to obtain a finite 
set of elements a l , a2 , , a, and a corresponding set of subgroups G 1 , 
G2,..., G + 1  such that 

Gr+ 	ar> 

with 

G2 c • • 	Gr+  1 = G. 

The process must terminate in a finite number of steps since the given group 
G is finite and each Gr , contains more elements than its predecessor G,. 
We consider such a chain of subgroups and prove the theorem by induction, 
showing that if it is true for G, it must also be true for Gr+ 1. 

It is clear that there is only one character for G 1 , namely the function which 
is identically 1. Assume, therefore, that G, has order m and that there are 
exactly m distinct characters for G r . Consider G,..÷ 1  = <Gr ; ar> and let h 
be the indicator of a,. in G„ that is, the smallest positive integer such that 
arh  E G,.. We shall show that there are exactly h different ways to extend each 
character of Gr  to obtain a character of Gr+  1 , and that each character of 
Gr  4. 1 is the extension of some character of G r . This will prove that Gr+  1  has 
exactly mh characters, and since mh is also the order of G, 1  this will prove the 
theorem by induction on r. 

A typical element in G, 1  has the form 

xark , where x E G, and 0 < k < h. 

Suppose for the moment that it is possible to extend a character f of G, to 
G, 1 . Call this extensionfand let us see what can be said about (xark). The 
multiplicative property requires 

f(xark) = f(x)f(cok. 
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6.6: The character group 

But x e Gr  so f (x) f (x) and the foregoing equation implies 

f (x a rk) = f (x)f (ar)" 

This tells us that f (x a rk ) is determined as soon as f (ar) is known. 
What are the possible values for f (a,.)? Let c = arh . Since c E Gr  we have 

J(c) f (c), and since " is multiplicative we also have f (c) = J(ar)'. Hence 

f(ar)h = f (c), 

so f (a,.) is one of the hth roots of f (c). Therefore there are at most h choices 
for f (a,.). 

These observations tell us how to define'. Iff is a given character of G„ 
we choose one of the hth roots off (c), where c = arh, and define f (a r) to be 
this root. Then we define f on the rest of G,. +1  by the equation 

(2) 	 f (x a ,!`) = f (x)1 (ar)" 

The h choices for 1(0 are all different so this gives us h different ways to 
define (x a rk ). Now we verify that the function f so defined has the required 
multiplicative property. From (2) we find 

f( xark  • yarj) = (xy • ark  + = f (xy) f (a,)k 

 = f (x) f (y)f (ar)" (arY 

= f(xa„k)f(yar), 

so f is a character of Gr+1. No two of the extensionsf and g can be identical 
on Gr4. 1  because the functions f and g which they extend would then be 
identical on G, . Therefore each of the m characters of G. can be extended in h 
different ways to produce a character of G r +1 . Moreover, if co is any character 
of Gri. 1 then its restriction to Gr  is also a character of G„ so the extension 
process produces all the characters of G,. +. This completes the proof. 0 

6.6 The character group 

In this section G is a finite abelian group of order n. The principal character 
of G is denoted byf1 . The others, denoted by f2  ,f, , f,„ are called non-
principal characters. They have the property that f (a) t 1 for some a in G. 

Theorem 6.9 If multiplication of characters is defined by the relation 

(fi  fi)(a) = fi(a)ga) 

for each a in G, then the set of characters of G forms an abelian group of 
order n. We denote this group by G. The identity element of G is the principal 
character f The inverse off, is the reciprocal 

PROOF. Verification of the group postulates is a straightforward exercise and 
we omit the details. 
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6: Finite abelian groups and their characters 

Note. For each character f we have I f(a)1 = 1. Hence the reciprocal 
lif (a) is equal to the complex conjugate fl). (a). Thus, the function f defined by 
7(a) = f (a) is also a character of G. Moreover, we have 

7(a) = 	= f(a 1 ) 
f (a) 

for every a in G. 

6.7 The orthogonality relations for characters 

Let G be a finite abelian-group of order n with elements a l , a2 , 	, a„, and 
let A, f2 , . , fn  be the characters of G, with f1  the principal character. 

Notation We denote by A = A(G) the n X n matrix [au] whose element a u  in 
the ith row and jth column is 

= 

We will prove that the matrix A has an inverse and then use this fact 
to deduce the so-called orthogonality relations for characters. First we 
determine the sum of the entries in each row of A. 

Theorem 6.10 The sum of the entriesin the ith row of A is given by 

fifro 	In f/ is the principal character (1 = 1), 

r = 1 	 0 otherwise. 

PROOF. LetS denote the sum in question. Iffi  = A each term of the sum is 1 
and S = n. If fi f,  there is an element b in G for which f(b) 1. As a,. 
runs through the elements of G so does the product bar . Hence 

S 	E fi(bar) = f(b) E ii(ar) = f(b)S. 
r= 1 	 r = 

Therefore S(1 — fi(b)) = 0. Since f(b) O 1 it follows that S = 0. 	11 

Now we use this theorem to show that A has an inverse. 

Theorem 6.11 Let A* denote the conjugate transpose of the matrix A. Then we 
have 

AA* = nl, 

where I is the n x n identity matrix. Hence n' A* is the inverse of A. 
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6.8: Dirichlet characters 

PROOF. Let B = AA*. The entry bii  in the ith row and jth column of B is 
given by 

n 	 n 	 n 

= 	= 	Mar), 
r=1 	 r=1 	 r=1 

where fk  = fi  4 = f/ f3. Now fil f;  = fi, if, and only if, i = j. Hence by 
Theorem 6.10 we have 

fn if i = j, 
h &j  = 

0 if i 0 j. 

In other words, B -= n1 . 	 ID 

Next we use the fact that a matrix commutes with its inverse to deduce the 
orthogonality relations for characters. 

Theorem 6.12 Orthogonality relations for characters. We have 
. 	 n if ai  = ai , 

(3) 	 E fr(adir(a) = 
r=1 	 0 if ai 	a/ . 

PROOF. The relation AA* = ni implies A*A = nl. But the element in the ith 
row and jth column of A* A is the sum on the left of (3). This completes the 
proof. 	 11 

Note. Since /(ai) = fr(ai) -1  = fr(a1 1 ), the general term of the sum in (3) 
is equal to fr(ai - 1 ) f,.(a j) = Pal 'a3). Therefore the orthogonality relations 
can also be expressed as follows: 

n if ai  = In E f,.(a i -laj) = 
r-=1 	 0 if ai  0 

When ai  is the identity element e we obtain: 

Theorem 6.13 The sum of the entries in the jth column of A is given by 

(4) 
n n if ai  = e, 
E Pai) = 

r=1 	 0 otherwise. 

6.8 Dirichlet characters 

The foregoing discussion dealt with characters of an arbitrary finite abelian 
group G. Now we specialize G to be the group of reduced residue classes 
modulo a fixed positive integer k. First we prove that these residue classes do, 
indeed, form a group if multiplication is suitably defined. 

We recall that a reduced residue system modulo k is a set of (p(k) integers 
{a l , a 2 , . . . , ago) } incongruent modulo k, each of which is relatively prime to 
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k. For each integer a the corresponding residue class a is the set of all integers 
congruent to a modulo k: 

a = {x: x -. a (mod k)}. 

Multiplication of residue classes is defined by the relation 

(5)  

That is, the product of two residue classes a and b is the residue class of the 
product ab. 

Theorem 6.14 With multiplication defined by (5), the set of reduced residue 
classes modulo k is a finite abelian group of order (p(k). The identity is the 
residue class 1. The inverse of a is the residue class b where ab --• 1 (mod k). 

PROOF. The closure property is automatically satisfied because of the way 
multiplication of residue classes was defined. The class 1 is clearly the identity 
element. If (a, k) = 1 there is a unique b such that ab 1 (mod k). Hence 
the inverse of a is S. Finally, it is clear that the group is abelian and that its 
order is c9(k). El 

Definition Dirichlet characters. Let G be the group of reduced residue 
classes modulo k. Corresponding to each character f of G we define an 
arithmetical function x = xf  as follows: 

X(n) = f (, ) if (n, k) = 1 , 

x(n) = 0 	if (n, k) > 1. 

The function x is called a Dirichlet character modulo k. The principal 
character x i  is that which has the properties 

{1
— 	(n, k) = 1, 

Xi(n) = 0 if (n, k) > 1. 

Theorem 6.15 There are p(k) distinct Dirichlet characters modulo k, each of 
which is completely multiplicative and periodic with period k. That is, we 
have 

(6) 	 X(mn) = X(m)X(n) for all m, n 

and 
x(n + k) = x(n) for all n. 

Conversely, if x is completely multiplicative and periodic with period k, 
and if x(n) = 0 if (n, k) > 1, then x is one of the Dirichlet characters mod k. 

PROOF. There are q(k) characters f for the group G of reduced residue classes 
modulo k, hence co(k) characters xf  modulo k. The multiplicative property (6) 
of xf  follows from that of f when both m and n are relatively prime to k. 
If one of m or n is not relatively prime to k then neither is mn, hence both 
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6.8: Dirichlet characters 

members of (6) are zero. The periodicity property follows from the fact that 
x f (n) = J() and that a 	b (mod k) implies (a, k) = (b, k). 

To prove the converse we note that the function f defined on the group 
G by the equation 

f(ñ) = x(n) if (n, k) = 1 

is a character of G, so x is a Dirichlet character mod k. 

EXAMPLE When k = 1 or k = 2 then cp(k) = 1 and the only Dirichlet 
character is the principal character x i . For k > 3, there are at least two 
Dirichlet characters since 9(k) > 2. The following tables display all the 
Dirichlet characters for k = 3, 4 and 5. 

n 1 2 3 4 5 

x 1 (n) 1 1 1 1 0 

n 1 2 3 n 1 2 3 4 X2(n) 1 — 1 — 1 1 0 

Xi(n) 1 1 0 xi(n) 1 0 1 0 X3(n) 1 i 1 0 

X2(n) 1 — 1 0 X2(11) 1 0 — 1 0 x4(n) 1 i i — 1 0 

k = 3, q(k) = 2 
	

k — 4, (,0(k) = 2 	 k = 5, cp(k) = 4 

To fill these tables we use the fact that x(nf (k)  = 1 whenever (n, k) = 1, 
so x(n) is a 9(k)th root of unity. We also note that if x is a character mod k so is 
the complex conjugate Z. This information suffices to complete the tables for 
k = 3 and k = 4. 

When k = 5 we have 9(5) = 4 so the possible values of x(n) are + 1 and + i 
when (n, 5) = 1. Also, x( 2)X( 3) = x(6) = x(1) = 1 so x(2) and x(3) are re-
ciprocals. Since x(4) = x(2) 2  this information suffices to fill the table for 
k = 5. As a check we can use Theorems 6.10 and 6.13 which tell us that the 
sum of the entries is 0 in each row and column except for the first. The follow-
ing tables display all the Dirichlet characters mod 6 and 7. 

1234 	5 6 	n 	1 	2 	3 	4 	5 	67 

x (n ) 1 0 0 0 	1 0 	x 1(u) 1 	1 	1 	1 	1 	1 0 

X2(n) 1 0 0 0 —1 0 	X2(n) 1 	1 	— 	1 	1 	—1 	— 1 0 

k = 6, cp(k) = 2 	X3(n) 1 	co' 	co —co —c0 2  — 1 0 co = e'113  

X4(n) 1 	co 2 — CO — CO 	(0 2 	1 0 

X 5 ( n) 1 — U) 	CO 2 CO2 — CO 	1 0 

X 6 (n) 1  — 03 —0O2 	CO 2 	CO — 1 0 

k = 7, q(k) = 6 
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6: Finite abelian groups and their characters 

In our discussion of Dirichlet's theorem on primes in an arithmetic 
progression we shall make use of the following orthogonality relation 
for characters modulo k. 

Theorem 6.16 Let x i , . . . , 4,00  denote the 9(k) Dirichlet characters modulo k. 
Let m and n be two integers, with (n, k) = 1. Then we have 

,p(k) 

E Xr(inV (n) . {(P(k) 	in if = _ n (mod k), 

r=1 	r 	0 	if 	4 
v 111  i- n (mod k), 

PROOF. If (m, k) = 1 take ai  = A and di  = rri in the orthogonality relations 
of Theorem 6.12 and note that WI = A if, and only if, m n (mod k). If 
(m, k) > 1 each term in the sum vanishes and m 0 n (mod k). P 

6.9 Sums involving Dirichlet characters 

This section discusses certain sums which occur in the proof of Dirichlet's 
theorem on primes in arithmetical progressions. 

The first theorem refers to a nonprincipal character x mod k, but the 
proof is also valid if x is any arithmetical function that is periodic with 
period k and has bounded partial sums. 

Theorem 6.17 Let x be any nonprincipal character modulo k, and let f be a 
nonnegative function which has a continuous negative derivative f'(x) for 
all x > xo . Then if y > x > x o  we have 

(7) E Z(n) i (n) = 0(f (x)). 
x<n<y 

If, in addition, f(x) --, 0 as x -- oo, then the infinite series 

x(n)f(n) 
n=1 

converges and we have, for x > x o , L 
00 

(8) / *V (n) = E x(n)f(n) + Off (x)). 
nx 	 n-=-1 

PROOF. Let A(x) = 1„ x  x(n). Since x is nonprincipal we have 

k 

A(k) = E z(n) = o. 
n=1 

By periodicity it follows that A(nk) = 0 for n = 2, 3, . . . , hence I A(x)I < cp(k) 
for all x. In other words, A(x) = 0(1). 
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6.10: The nonvanishing of L(1, x) for real nonprincipal x 

Now we use Abel's identity (Theorem 4.2) to express the sum in (7) as an 
integral. This gives us 

Y 

E X(n)i(n) ------ f(Y)A(Y) — f(x)A(x) — J A(t)r(t) dt 
x<n_ 

Y 
= 0( f (y)) + 0(f (x)) + 0( f x ( — f '(t)) dt) = 0(f (x)). 

This proves (7). If f (x) -+ 0 as x -+ oo then (7) shows that the series 
c.o 
E x(n)f(n) 

n=1 

converges because of the Cauchy convergence criterion. To prove (8) we 
simply note that 

i x(n)f (n) = E x(n)f(n)  + lim E x(n)f(n). 
n=1 	 n<x 	 y—occ x<rt..5y 

Because of (7) the limit on the right is 0(f (x)). This completes the proof. 0 

Now we apply Theorem 6.17 successively with f (x) = 1/x, f (x) = (log x)/x, 
and f (x) = 1 / x for x > 1 to obtain: 

Theorem 6.18 If x is any nonprincipal character mod k and if x 1 we have 

	

X(n) 	' An) 	(1 

	

1 = E 	+ o 

	

 
n1 	

-;-,), 

	

n<x n 	= 	r/ 

X(n)log  n 	,---,'" x(n)log n 
 + o

(log x) 
, 

n 	= =1 	n 	x 

	

E  x(n) 	x(n)  + 0(  1  ). 

	

nx N./T1 n = 1 j1 	\ 

6.10 The nonvanishing of L(1, x) for real 
nonprincipal x 

We denote by L(1, x) the sum of the series in (9). Thus, 

' x 
L(1, x) = E  (n) .  

n=1 n 

In the proof of Dirichlet's theorem we need to know that L(1, x) 0 0 when x 
is a nonprincipal character. We prove this here for real nonprincipal char-
acters. First we consider the divisor sum of x(n). 

(9) 

(10) 
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Theorem 6.19 Let x be any real-valued character mod k and let 

A(n) = 
din 

Then A(n) > 0 for all n, and A(n) 1 i fn is a square. 

PROOF. For prime powers we have 

	

a 	 a 

A(pa) = E x(pt) = 1 + E x(p)t. 

	

t = 0 	 1=1 

Since x is real-valued the only possible values for x(p) are 0, 1 and — 1. If 
X(P) = 0 then A(pa) = 1; if x(p) = 1 then A(p) = a + 1; and if X(P) = —1 
then 

	

A(pa) 	SO if a is odd, 

11 if a is even. 

In any case, A(pa) > 1 if a is even. 
Now if n = pi a' • • p7 then A(n) = A(p i ai) • • • A(p7) since A is multi-

plicative. Each factor A(p ia') > 0 hence A(n) 0. Also, if n is a square then 
each exponent ai  is even, so each factor A(p ia.) > 1 hence A(n) > 1. This 
proves the theorem. 

Theorem 6.20 For any real-valued nonprincipal character x mod k, let 

A(n)  

	

A(n) = E Ad) 	and B(x) = E 	. 
din 	 nx 	n 

Then we have: 

(a) B(x) -+ oo as x -+ oo. 

(b) B(x) = 2.JcL(1, x) + 0(1) for all x 	1. 

Therefore L(1, x) 0. 

PROOF. To prove part (a) we use Theorem 6.19 to write 

B(x) 
E 	_ 

 mm n5x 
nr,2 

The last sum tends to co as x -÷ oo since the harmonic series E 1/m diverges. 
To prove part (b) we write 

1 
B(x) = E 	E xfro 	E  (d) 

n^x ./dn 	 4,d N/qd 
qtlx 
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Exercises for Chapter 6 

Now we invoke Theorem 3.17 which states that 

E f (d)g(q) = E f(n)G0 + 1 g(n)F(1 — F(a)G(b) 
q,d 	 n<a 	 n 	n<b 	n 

qd...5.x 

where ab = x, F(x) = En. f(n), and G(x) = E„< x  g(n). We take a = b = 
NiX and let f (n) = x(n)/ N/ .1, g(n) = 1 / -N/17; to obtain 

(12) B(x) = E 	 X(d) _ I  An) dx) + 1  1  F(x) 
F(j)c(jc). 

t I, d -\,/ gd 	n _ slic NAZ VI) r: • N/ -1TZ \,n 
(idx 

By Theorem 3.2 we have 

1 
G(x) = E 

 fl x 

, j 	4 _ = 2c + A + -1—, 
N/ X) < v n 

where A is a constant, and by Theorem 6.18, Equation (11), we have 

F(x) = E ). 11) B + 01 	1  ) 
n<x v n  

where B =  ,■°= 1 AO NAT. Since F(jc)G(jX) = 2Bx 1/4  + 0(1), Equation 
(12) gives us 

An) B(x) =  
nsvyvn 

+ A + 0(1)} 
x 

+ E  1, {B + o(1)} — 2Bx114 + ow x ns, N/n 

An) 	x(n)  
+A 	+0 (1 

	

E —r- 	E Ix(n)I) 
n's/7x n 	n,7 i -\ / n 	,\FC rr,/.V 

1 
+ B E —7. + 0

(  1 
 „ E 1) — 2Bx1/4 + ow 

n..5.,fi Vn 	NOC n...,rx 

= 2.j.)-c L(1, x) + 0(1). 

This proves part (b). Now it is clear that parts (a) and (b) together imply that 
L(1, x) 0 O. 	 El 

Exercises for Chapter 6 

1. Let G be a set of nth roots of a nonzero complex number. If G is a group under 
multiplication, prove that G is the group of nth roots of unity. 

2. Let G be a finite group of order n with identity element e. If a 1 , ... , a„ are n 
elements of G, not necessarily distinct, prove that there are integers p and q with 
1 15_ p ._ q ._ n such that ap ap , 1  • • • a, = e. 
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3. Let G be the set of all 2 x 2 matrices 
(a b 

, where a, b, c, d are integers with 
c d) 

ad — bc = 1. Prove that G is a group under matrix multiplication. This group is 
sometimes called the modular group. 

4. Let G = <a> be a cyclic group generated by a. Prove that every subgroup of G is 
cyclic. (It is not assumed that G is finite.) 

5. Let G be a finite group of order n and let G' be a subgroup of order m. Prove that 
rn In (Lagrange's theorem). Deduce that the order of every element of G divides n. 

6. Let G be a group of order 6 with identity element e. Prove that either G is cyclic, or 
else there are two elements a and b in G such that 

G = {a, a2 , a3 , b, ab, a2b}, 

with a3  = b2  = e. Which of these elements is ha? 

7. A group table for a finite group G = {al , 	, an } of order n is an n x n matrix 
whose ij-entry is ai ai . If a 1 a = e prove that aja, = e. In other words, the identity 
element is symmetrically located in the group table. Deduce that if n is even the 
equation x2  = e has an even number of solutions. 

8. Generalizing Exercise 7, let f (p) denote the number of solutions of the equation 
xP e, where p is a prime divisor of n, the order of G. Prove that p f (p) (Cauchy's 
theorem). [Hint: Consider the set S of ordered p-tuples (a t , 	, as,) such that ai  c G 
and a l  • • ap  = e. There are nP p-tuples in S. Call two such p-tuples equivalent 
if one is a cyclic permutation of the other. Show thatf (p) equivalence classes contain 
exactly one member and that each of the others contains exactly p members. Count 
the number of members of S in two ways and deduce that pI f (p).] 

9. Let G be a finite group of order n. Prove that n is odd if, and only if, each element of 
G is a square. That is, for each a in G there is an element b in G such that a = b2 . 

10. State and prove a generalization of Exercise 9 in which the condition "n is odd" is 
replaced by "n is relatively prime to k" for some k > 2. 

11. Let G be a finite group of order n, and let S be a subset containing more than n/2 
elements of G. Prove that for each g in G there exist elements a and b in S such that 
ab 	g. 

12. Let G be a group and let S be a subset of n distinct elements of G with the property 
that a c S implies a -1  S. Consider the n 2  products (not necessarily distinct) of the 
form ab, where a c S and b c S. Prove that at most n(n — 1)/2 of these products 
belong to S. 

13. Letfi , 	, fn, be the characters of a finite group G of order m, and let a be an element 
of G of order n. Theorem 6.7 shows that each number fr(a) is an nth root of unity. 
Prove that every nth root of unity occurs equally often among the numbers f1  (a), 

f2(a), • • • , L(a). [Hint: Evaluate the sum 

m E E  
r= 1 k 

in two ways to determine the number of times e 21( 11" occurs.] 
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14. Construct tables showing the values of all the Dirichlet characters mod k for 
k = 8, 9, and 10. 

15. Let x be any nonprincipal character mod k. Prove that for all integers a < b we have 

b 1 
-
2 

cp(k). 

  

16. If x is a real-valued character mod k then x(n) = + 1 or 0 for each n, so the sum 

k 
S = E n(n) 

n = 1 

is an integer. This exercise shows that 125 -, 0 (mod k). 

(a) If (a, k) = 1 prove that ax(a)S -a-  S (mod k). 
(b) Write k = rq where q is odd. Show that there is an integer a with (a, k) = 1 

such that a E --- 3 (mod 2") and a -1-, 2 (mod q). Then use (a) to deduce that 
12S E--- 0 (mod k). 

17. An arithmetical function f is called periodic mod k if k > 0 and f(m) = f(n) 
whenever m -.a n (mod k). The integer k is called a period of f 

(a) If f is periodic mod k, prove that f has a smallest positive period k o  and that 
/co l k. 

(b) Let f be periodic and completely multiplicative, and let k be the smallest 
positive period of f Prove that f(n) = 0 if (n, k) > 1. This shows that f is a 
Dirichlet character mod k. 

18. (a) Let f be a Dirichlet character mod k. If k is squarefree, prove that k is the smallest 
positive period of f 

(b) Give an example of a Dirichlet character mod k for which k is not the smallest 
positive period of f 
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7  Dirichlet's Theorem on 
Primes in Arithmetical Progressions 

7.1 Introduction 

The arithmetic progression of odd numbers 1, 3, 5, ... , 2n + 1, ... contains 
infinitely many primes. It is natural to ask whether other arithmetic pro-
gressions have this property. An arithmetic progression with first term h and 
common difference k consists of all numbers of the form 

( 1 ) 
	

kn + h, n = 0, 1, 2, . . . 

If h and k have a common factor d, each term of the progression is divisible 
by d and there can be no more than one prime in the progression if d> 1. 
In other words, a necessary condition for the existence of infinitely many 
primes in the arithmetic progression (1) is that (h, k) = 1. Dirichlet was the 
first to prove that this condition is also sufficient. That is, if (h, k) = 1 the 
arithmetic progression (1) contains infinitely many primes. This result, 
now known as Diriehlers theorem, will be proved in this chapter. 

We recall that Euler proved the existence of infinitely many primes by 
showing that the series E p-  ', extended over all primes, diverges. Dirichlet's 
idea was to prove a corresponding statement when the primes are restricted 
to lie in the given progression (1). In a famous memoir [15] published in 1837 
Dirichlet carried out this plan by ingenious analytic methods. The proof was 
later simplified by several authors. The version given in this chapter is based 
on a proof published in 1950 by Harold N. Shapiro [65] and deals with the 
series E p -  ' log p rather than E p - 1 . 

First we show that for certain special progressions it is easy to prove 
Dirichlet's theorem by a modification of Euclid's proof of the infinitude of 
primes. 
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7.2: Dirichlers theorem for primes of the form 4n — 1 and 4n + 1 

7.2 Dirichtet's theorem for primes of 
the form 4n — 1 and 4n + 1 

Theorem 7.1 There are infinitely many primes of the form 4n — 1. 

PROOF. We argue by contradiction. Assume there are only a finite number of 
such primes, let p be the largest, and consider the integer 

N = 22  • 3 • 5 • • • p — 1. 

The product 3 • 5 • • • p contains all the odd primes <p as factors. Since N 
is of the form 4n — 1 it cannot be prime because N> p. No prime <p 
divides N, so all the prime factors of N must exceed p. But all of the prime 
factors of N cannot be of the form 4n + 1 because the product of two such 
numbers is again of the same form. Hence some prime factor of N must be 
of the form 4n — 1. This is a contradiction. El 

A different type of argument can be used for primes of the form 4n + 1. 

Theorem 7.2 There are infinitely many primes of the form 4n + 1. 

PROOF. Let N be any integer > 1. We will show that there is a prime p> N 
such that p -a- 1 (mod 4). Let 

m = (N!) 2  + 1. 

Note that m is odd, m> 1. Let p be the smallest prime factor of m. None of 
the numbers 2, 3, . _ . , N divides m, so p> N. Also, we have 

(N !) 2 	— 1 (mod p). 

Raising both members to the (p — 1)/2 power we find 

(N  Di, - 1 	( _ iyp - 1)/2 (mod p).  

But (N !)P - 1  1 (mod p) by the Euler-Fermat theorem, so 

( _ 1)(P- 1)/2 -= 1 (mod p). 

Now the difference (— 1)(P- 1)/2 ____ 1 is either 0 or —2, and it cannot be —2, 
because it is divisible by p, so it must be 0. That is, 

( _ 1)(p- 1)/2 = 1.  

But this means that (p — 1)/2 is even, so p .---- 1 (mod 4). In other words, 
we have shown that for each integer N > 1 there is a prime p > N such that 
p..- 1 (mod 4). Therefore there are infinitely many primes of the form 
4n + 1. 0 

Simple arguments like those just given for primes of the form 4n — 1 
and 4n + 1 can also be adapted to treat other special arithmetic progressions, 
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7: Dirichlet's theorem on primes in arithmetic progressions 

such as 5n — 1, 8n — 1, 8n — 3 and 8n + 3 (see Sierpinski [67]), but no one 
has yet found such a simple argument that works for the general progression 
kn + h. 

7.3 The plan of the proof of Dirichlet's 
theorem 

In Theorem 4.10 we derived the asymptotic formula 

(2) 	 E 
lo-g  p 

= log x + 0(1), 
P 5.x P 

where the sum is extended over all primes p < x. We shall prove Dirichlet's 
theorem as a consequence of the following related asymptotic formula. 

Theorem 7.3 If k > 0 and (h, k) = 1 we have, for all x > 1, 

I  log p .  1 

P 	co(k) 
ph (mod k) 

where the sum is extended over those primes p < x which are congruent to 
h mod k. 

Since log x -+ co as x -÷ co this relation implies that there are infinitely 
many primes p h (mod k), hence infinitely many in the progression 
nk + h, n = 0, 1, 2, ... 

Note that the principal term on the right of (3) is independent of h. There-
fore (3) not only implies Dirichlet's theorem but it also shows that the primes 
in each of the (19(k) reduced residue classes mod k make the same contribution 
to the principal term in (2). 

The proof of Theorem 7.3 will be presented through a sequence of lemmas 
which we have collected together in this section to reveal the plan of the 
proof. Throughout the chapter we adopt the following notation. 

The positive integer k represents a fixed modulus, and h is a fixed integer 
relatively prime to k. The (19(k) Dirichlet characters mod k are denoted by 

X19 X2, • • • , X9(k) 

with x l  denoting the principal character. For x 0 x i  we write L(1, x) and 
L'(1, x) for the sums of the following series: 

'  
L(1, x) = E x(n) ,  

n= 1 n 

' x( 	n 
L'(1, x) = — 
	

(n)log 
1 	. 
  n 

(3 ) log x + 0(1), 
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7.3: The plan of the proof of Dirichlet's theorem 

The convergence of each of these series was shown in Theorem 6.18. More-
over, in Theorem 6.20 we proved that L(1, x) 0 0 if x is real-valued. The 
symbol p denotes a prime, and E p ,„ denotes a sum extended over all primes 
p :5_ x. 

Lemma 7.4 For x > 1 we have 

log p 	1 	1  T(k) 	 xr(p)log  p 
2. 	= 	log x + 	E uh) E 	- - + 0(1). 

p5x 	P 	(1)(k) 	(P(k) r= 2 	,r,,,, 	P 
pEh (mod k) 

It is clear that Lemma 7.4 will imply Theorem 7.3 if we show that 

E 
 

x(p)log  p 
= 0(1) 

psx 	P 

for each x 0 x i . The next lemma expresses this sum in a form which is not 
extended over primes. 

Lemma 7.5 For x > 1 and x 0 xi  we have 

E  x(p)tog  p_ 01, x) E  
kt(n)z(n)  

+ 0(1). 
Px 	P 	 n < x 	n 

Therefore Lemma 7.5 will imply (4) if we show that 

au(n)x(n) E 	= ow. 
n<x 	" 

This, in turn, will be deduced from the following lemma. 

Lemma 7.6 For x> 1 and x 0 x i  we have 

(6) L(1, X) 
v 	= 0(1). L 

n<x 	n 

If L(1, x) 0 0 we can cancel L(1, x) in (6) to obtain (5). Therefore, the 
proof of Dirichlet's theorem depends ultimately on the nonvanishing of 
L(1, x) for all x # x i . As already remarked, this was proved for real x 0 Xi in 
Theorem 6.20, so it remains to prove that L(1, x) 0 0 for all x 0 x i  which 
take complex as well as real values. 

For this purpose we let N(k) denote the number of nonprincipal characters 
x mod k such that L(1, x) = 0. If L(1, x) = 0 then L(1, k) = 0 and x 0 
since x is not real. Therefore the characters x for which L(1, x) = 0 occur in 
conjugate pairs, so N(k) is even. Our goal is to prove that N(k). 0, and this 
will be deduced from the following asymptotic formula. 

(4) 

(5) 
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7: Dirichlet's theorem on primes in arithmetic progressions 

Lemma 7.7 For x> 1 we have 

log p .  1 — N(k) 
 log x + 0(1). 

p 	9(k) 

If N(k) 0 0 then N(k) > 2 since N(k) is even, hence the coefficient of 
log x in (7) is negative and the right member —0 — co as x --> co. This is a 
contradiction since all the terms on the left are positive. Therefore Lemma 7.7 
implies that N(k) = 0. The proof of Lemma 7.7, in turn, will be based on the 
following asymptotic formula. 

Lemma 7.8 If x 0 x i  and L(1, x) = 0 we have 

/1(n)X(n)  

	

L'(1, x) 	= log x + 0(1). E 	 
n<x 	n 

7.4 Proof of Lemma 7.4 

To prove Lemma 7.4 we begin with the asymptotic formula mentioned 
earlier, 

log p 
(2) 	 E -- = log x + 0(1) 

	

1,-,c 	P 

and extract those terms in the sum arising from primes p h (mod k). The 
extraction is done with the aid of the orthogonality relation for Dirichlet 
characters, as expressed in Theorem 6.16: 

(I)(k) {cp(k) if m a-  n (mod k), 

r1 
E xr(n)ir(n) = 

0 	if m 0 n (mod k). .--  

This is valid for (n, k) = 1. We take m =- p and n = h, where (h, k) = 1, then 
multiply both members by 13 -1  log p and sum over all p < x to obtain 

	

co(k) 	 log p 	 log  p  

	

E E Xr(P)ir(h)   = (19(k) E 

	

19.x r=1 	 P 	 13.x 	P 
pE h (mod k) 

In the sum on the left we isolate those terms involving only the principal 
character x i  and rewrite (8) in the form 

log p 	 ,p(k) 
(9) (I)(k) 	E 	 x 1 (p)log  p  + E r(h )  E  xr(p)log P 

	

P 
	= Xi(h) E 	 . 

	

p.x 	 p:Sx 	P 	r= 2 	p.x 	P 
ph (mod k) 

Now i l (h) = 1 and x(p) = 0 unless (p, k) = 1, in which case x i (p) . 1. 
Hence the first term on the right of (9) is given by 

, log p 	log p 	log p 	log p  
(10) L 	 E 	n 	n  E 	= E 	+ ow, 

	

p<). 	P 	p<x 	r 	1,-.7c 	r 	p:cx 	P 

	

(p, k)= 1 	 p lk 

(7) 
	

E 
p.x 

p__.1 (mod k) 

(8) 
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7.5: Proof of Lemma 7.5 

since there are only a finite number of primes which divide k. Combining 
(10)with (9) we obtain 

log p 	y  log p 	I'v(k)  
co(k) E 	 Moog  + O P  W. L, Xr(h) E 

0 

7.5 Proof of Lemma 7.5 
We begin with the sum 

E  x(n)A(n) ,  

rtx 

where A(n) is Mangoldt's function, and express this sum in two ways. First 
we note that the definition of A(n) gives us 

y  x(n)A(n) 	x(pa)log  p 

n^x
= E E n 	1;Px a=1 	

pa 

pa x 

We separate the terms with a = 1 and write 

(11)
x(n)A(n)  = 	x(p)log p 	x(pa)log p 

n<x 	 p5x a=2 	
pa 

pa  :5.x  

The second sum on the right is majorized by 

c° 	 log  p  E log 	
1 

p 	E 	< E 
a=2 P 	p P(P — 1) n=2 

so (11) gives us 

log n 
	= 0(1), 
n(n — 1) 

x(p)log p 	x(n)A(n) 
(12) = L 	+ 0(1). 

pSx 

Now we recall that A(n) = Ed i n  p(d)log(n/d), hence 

n 	n 

X(n)A(n) 	
E x(n)  E iu(d)log 

n s x 	n<x 	din 
 

In the last sum we write n = cd and use the multiplicative property of x 
to obtain 

(13) 
x(n)A(n)  = 	p(d)x(d) 	x(c)log c  

E 	E 
n<x 	 d<x 	d 

Since x Id > 1, in the sum over c we may use formula (10) of Theorem 6.18 to 
obtain 

E x(c)log  c 
 = 01, x) + 0( 

 xid
log  x/d). 

c<xld 	C 

P 	P 	r=2 	px 
ph (modk) 

Using (2) and dividing by (p(k) we obtain Lemma 7.4. 
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7: Dirichlet's theorem on primes in arithmetic progressions 

Equation (13) now becomes 

(14) E X(n)A(n)  = L ,(1, E  Adv(d)  + 0( 	1 log XICI) 

n<x d<x 	 cl<x d x/d 

The sum in the 0-term is 

E (log x — log d) = ([x]log x 	E log d) = 0(1) 
X d<x 	 X 	 d<x 

since 

E log d = log[x]! = x log x + 0(x). 
a< x 

Therefore (14) becomes 

x(n)A(n) 	 u(d)x(d) 
 + 0(1) L, 	 E(1, X) L, 

nx 	 d<x 	d 

which, with (12), proves Lemma 7.5. 	 1:1 

7.6 Proof of Lemma 7.6 

W e use the generalized Mobius inversion formula proved in Theorem 2.23 
which states that if a is completely multiplicative we have 

(15) G(x) = E a(n)F(x) if, and only if, F(x) =  
n_.5x 

We take a(n) = x(n) and F(x) = x to obtain 

(16) x = E ii(n)x(n)G0 
n<x 

where 

G(x) = 
X(11) n 	X  nEx 

X(n) 

 x  

By Equation (9) of Theorem 6.18 we can write G(x) = xL(1, x) + 0(1). 
Using this in (16) we find 

1-  x = 	i(n)x(n) 	+ 0(1)} = xL(1, X) L 
4(n)X(n)  + 0(x).  

n<x 	 n5 x 

Now we divide by x to obtain Lemma 7.6. 	 El 
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7.7 Proof of Lemma 7.8 

We prove Lemma 7.8 and then use it to prove Lemma 7.7. Once again we 
make use of the generalized Mobius inversion formula (15). This time we 
take F(x) = x log x to obtain 

(17) x log x = E gn)x(n)G0 
n n5x 

where 

G(x) = E An) log . x log x 7 X(n) _ x  \-, x(n)log n . 

n<x 	n 	n 	'n n 5 X 	 n n<.x 

Now we use formulas (9) and (10) of Theorem 6.18 to get 

G(x) = x log x{ L(1 x) + 0(
1
)1 + x{L'(1, x) + 0

(log )41 
x 	 x )f 

= xL'(1, x) + 0(log x) 

since we are assuming that L(1, x) = 0. Hence (17) gives us 

x log x = 
x 

E ii(n)X011 —
n 

L'(1, x) + 0(log -)} 
n<x 	 n 

P014(n)  + 0( E (log x — log n)). = xL'(1, x) E 
n<x 	n 	n<x 

We have already noted that the 0-term on the right is 0(x) (see the proof of 
Lemma 7.5). Hence we have 

x 
x log x = xL '(1, x) E p(n)(n)  + 0(x), 

n n5x 

and when we divide by x we obtain Lemma 7.8. 	 1:1 

7.8 Proof of Lemma 7.7 

We use Lemma 7.4 with h = 1 to get 

, 	log p1 	 1 <0(k) l x-,  Xr(p)og  p 
(18) L 	. 	log x + 	(LI  E L 	+ 0(1). 

iyx 	P 	(P(k) 	(Plitl r=2 p5x 	P 
pF, 1 (mod k) 

In the sum over p on the right we use Lemma 7.5 which states that 

E 
 

x (p)log  p 	 v,  01, Xr) 	
11(n)Xr(n)  + 0(1). = 	

2.4 
p5x 	P 	 n:cx 	n 
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7: Dirichlet's theorem on primes in arithmetic progressions 

If L(1, L.) 0 0, Lemma 7.6 shows that the right member of (18) is 0(1). But 
if L(1, L.) = 0 then Lemma 7.8 implies 

)E 
/-0)2CAti)  = —log x + 0(1). Xr  

n<x 

Therefore the sum on the right of (18) is 

1 

(p(k) 
— N(k)log x + 0(1)), 

so (18) becomes 

log  p 1  — N(k) 
 log x + 0(1). 

p5x 	 9(k) 
pEl (mod k) 

This proves Lemma 7.7 and therefore also Theorem 7.3. 	 LI 

As remarked earlier, Theorem 7.3 implies Dirichlet's theorem: 

Theorem 7.9 If k > 0 and (h, k) 1 there are infinitely many primes in the 
arithmetic progression nk + h, n = 0, 1, 2, ... 

7.9 Distribution of primes in arithmetic 
progressions 

If k > 0 and (a, k) = 1, let 

na(x) = 
	

1. 
p5x 

pa (mod k) 

The function 7 a(X) counts the number of primes <x in the progression 
nk + a, n = 0, 1, 2, ... Dirichlet's theorem shows that m u(x) oo as x cc. 
There is also a prime number theorem for arithmetic progressions which 
states that 

n(x) 	1 	x  
(19)

lca(x) 	
as x 	co, 

p(k) 	p(k) log x 

if (a, k) = 1. A proof of (19) is outlined in [44]. 
The prime number theorem for progressions is suggested by the formula 

of Theorem 7.3, 
log p 	1 
	= 

(p(k) 
log x + 0(1). 

p5x 
ph (mod k) 

Since the principal term is independent of h, the primes seem to be equally 
distributed among the cp(k) reduced residue classes mod k, and (19) is a 
precise statement of this fact. 

154 



a = 1 	x 
(a, k)= 1 pE a (mod k) 

1 = A(k) + E na(x). 
a = 1 

(a, k)= 1 

7r(x) = E 1 = A(k) + 
x 

= A(k) + 

Exercises for Chapter 7 

We conclude this chapter by giving an alternate formulation of the prime 
number theorem for arithmetic progressions. 

Theorem 7.10 If the relation 

(20) n(x) 	7r(x)  as x 
(p(k) 

holds for every integer a relatively prime to k, then 

(21) ira(x) 	nb(x) as x 	op 

whenever (a, k) = (b, k) = 1. Conversely, (21) implies (20). 

PROOF. It is clear that (20) implies (21). To prove the converse we assume (21) 
and let A(k) denote the number of primes that divide k. If x > k we have 

Therefore 

n(x) — A(k) = 	
7Ia(X) E  „ . 

lcb(x) 	a = 1 ThigP C ) 
(a, k)= 1 

By (21) each term in the sum tends to 1 as x oo so the sum tends to 9(k). 
Hence 

n(x) 	A(k)  
as x 	co. 

b(X) 	b(X) 	
9(k) 

But A(k)Mb(x) —> 0 so 7E(x)Mb(x) —> 9(k), which proves (20). 	 II 

Exercises for Chapter 7 
In Exercises 1 through 4, h and k are given positive integers, (h, k) = 1, 
and A(h, k) is the arithmetic progression A(h, k) = {h + kx:x = 0, 1, 2, . ..}. 
Exercises 1 through 4 are to be solved without using Dirichlet's theorem. 

1. Prove that, for every integer n > 1, A(h, k) contains infinitely many numbers relatively 
prime to n. 

2. Prove that A(h, k) contains an infinite subset {a l , a2 , .} such that (at , ai) = 1 if 
i 0 j. 

3. Prove that A(h, k) contains an infinite subset which forms a geometric progression 
(a set of numbers of the form arn, n = 0, 1, 2, ...). This implies that A(h, k) contains 
infinitely many numbers having the same prime factors. 
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7: Dirichlet's theorem on primes in arithmetic progressions 

4. Let S be any infinite subset of A(h, k). Prove that for every positive integer n there is a 
number in A(h, k) which can be expressed as a product of more than n different 
elements of S. 

5. Dirichlet's theorem implies the following statement: If h and k > 0 are any two 
integers with (h, k) = 1, then there exists at least one prime number of the form 
kn + h. Prove that this statement also implies Dirichlet's theorem. 

6. If (h, k) = 1, k> 0, prove that there is a constant A (depending on h and on k) such 
that, if x > 2, 

E -1 
= "-log  log x + A + 0(  1  ) 

P 	q(k) log x 
p h (mod k) 

7. Construct an infinite set S of primes with the following property: If p c S and q E S 
then (1-(p — 1), -1(q — 1)) = (p, q — 1) = (p — 1, q) = 1. 

8. Let ibe an integer-coefficient polynomial of degree n > 1 with the following property: 
For each prime p there exists a prime q and an integer m such that f (p) = qm 

Prove that q = p, in = n and f 	= x" for all x. [Hint. If q p then qui +1  divides 
f (p + tiff') — f (p) for each t = 1, 2, .. 
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8  Periodic Arithmetical Functions 
and Gauss Sums 

8.1 Functions periodic modulo k 
Let k be a positive integer. An arithmetical function f is said to be periodic 
with period k (or periodic modulo k) if 

f (n + k) = f (n) 

for all integers n. If k is a period so is mk for any integer m > 0. The smallest 
positive period off is called the fundamental period. 

Periodic functions have already been encountered in the earlier chapters. 
For example, the Dirichlet characters mod k are periodic mod k. A simpler 
example is the greatest common divisor (n, k) regarded as a function of n. 
Periodicity enters through the relation 

(n + k, k) = (n, k). 

Another example is the exponential function 

(n) = e2 ram/ k 

where m and k are fixed integers. The number e'm is a kth root of unity 
and f (n) is its nth power. Any finite linear combination of such functions, say 

E c(m)e 2nimn/k 

is also periodic mod k for every choice of coefficients c(m). Our first goal is to 
show that every arithmetical function which is periodic mod k can be 
expressed as a linear combination of this type. These sums are called finite 
Fourier series. We begin the discussion with a simple but important example 
known as the geometric sum. 
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8: Periodic arithmetical functions and Gauss sums 

Theorem 8.1 For fixed k > 1 let 
k-1 

g(n) = E e 2nimn/k . 
m= 0 

Then 

g(n) = 
0 if k ,}' n, 

1k if kin. 

PROOF. Since g(n) is the sum of terms in a geometric progression, 
k-1 

g(n) = E xm, 
m=o 

where x . e2/k, we have 

iXk  — 1 

	

g(n) = 1 x — 
1 if x 	1, 

[lc 	if x = 1. 

But x 	, and x = 1 if and only if ki n,   so the theorem is proved. 	D 

8.2 Existence of finite Fourier series for 
periodic arithmetical functions 

We shall use Lagrange's polynomial interpolation formula to show that every 
periodic arithmetical function has a finite Fourier expansion. 

Theorem 8.2 Lagrange's interpolation theorem. Let z o , z 1 , ..., z k _ 1  be k 
distinct complex numbers, and let w o , w 1 , ... , w k _ I  be k complex numbers 
which need not be distinct. Then there is a unique polynomial P(z) of degree 
<k — 1 such that 

P(z.) = wm  for m = 0, 1, 2, ... , k — 1. 

PROOF. The required polynomial P(z), called the Lagrange interpolation 
polynomial, can be constructed explicitly as follows. Let 

A(z) = (z — z o)(z — z i ) - • - (z — z k _ 1 ) 

and let 

A m(Z)z) = 	
 A(z) 
 . 
z — z„, 

Then A m(Z) is a polynomial of degree k — 1 with the following properties: 

24„,(z„,) 0 0, 	il„,(z) = 0 if ./ 0 m. 

158 



8.2: Existence of finite Fourier series for periodic arithmetical functions 

Hence A m (z)/ A m(z.) is a polynomial of degree k — 1 which vanishes at each 
zi  for j m, and has the value 1 at z m . Therefore the linear combination 

	

k 1 	Am(z) 

	

P(z) = E 	 
m 0  A m(z m ) 

is a polynomial of degree < k — 1 with P(z3) = w;  for each j. If there were 
another such polynomial, say Q(z), the difference P(z) — Q(z) would vanish at 
k distinct points, hence P(z) = Q(z) since both polynomials have degree 
<k — 1. 

	

Now we choose the numbers .4, z 1 , 	, zk  _ 1  to be the kth roots of unity 
and we obtain: 

Theorem 8.3 Given k complex numbers w 0 , w 1 , . , wk  _ 1 , there exist k uniquely 

	

determined complex numbers a o , al , 	, ak _ such that 

k — 1 

(1) Wm = Y a e2nimnik 
n=0 

for m 0, 1, 2, ... , k — 1. Moreover, the coefficients a n  are given by the 
formula 

(2) 
1 k — 1 

an  = - E wme-27simnik 

.= 
for n = 0, 1, 2, 	, k — 1. 

PROOF. Let z m  = e2 ramik . The numbers z 0 , z 1 , 	, zk _ I  are distinct so there is 
a unique Lagrange polynomial 

k- 

P(z) = E an z" 
n=0 

such that P(z,,,) 	w m  for each m = 0, 1, 2, ... , k — 1. This shows that there 
are uniquely determined numbers a„ satisfying (1). To deduce the formula (2) 
for a multiply both sides of (1) by e -  'P.m, where m and r are nonnegative 
integers less than k, and sum on m to get 

k— 1 	 k— 1 k — 1 E  wme -2/rimr/k 	E 	E  e2ni(n—r)mlk .  

m=0 	 n=0 m=0 

By Theorem 8.1, the sum on m is 0 unless k 1(n — r). But In — rl < k — 1 so 
kl(n — r) if, and only if, n = r. Therefore the only nonvanishing term on the 
right occurs when n = r and we find 

k—i 

E w7ne -2nimr/k = ka,. 
m=0 

This equation gives us (2). 
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8: Periodic arithmetical functions and Gauss sums 

Theorem 8.4 Let f be an arithmetical function which is periodic mod k. Then 
there is a uniquely determined arithmetical function g, also periodic mod k, 
such that 

k- 1 
f(m) = E g(n)e'lmni k . 

n=0 

In fact, g is given by the formula 

1  k- 1 

g(n) = - E f (m)e 
k ,„, 0  

- 2nimnIk .  

PROOF. Let w„, = f(m) for m = 0, 1, 2, . .. , k - 1 and apply Theorem 8.3 to 
determine the numbers ao , al ,. . . , ak _ 1 . Define the function g by the relations 
g(m) = am  for m = 0, 1, 2, ... , k - 1 and extend the definition of g(m) to all 
integers m by periodicity mod k. Thenfis related to g by the equations in the 
theorem. 0 

Note. Since both f and g are periodic mod k we can rewrite the sums in 
Theorem 8.4 as follows: 

(3) f(m) = E g(n)e 2rzimnIk 
n mod k 

and 

(4) g(n) = -
1 

E f (m)e - 2nimn/ k .  
k m mod k 

In each case the summation can be extended over any complete residue 
system modulo k. The sum in (3) is called the finite Fourier expansion off and 
the numbers g(n) defined by (4) are called the Fourier coefficients off 

8.3 Ramanujan's sum and generalizations 

In Exercise 2.14(b) it is shown that the Mobius function go is the sum of the 
primitive kth roots of unity. In this section we generalize this result. Specifi-
cally, let n be a fixed positive integer and consider the sum of the nth powers 
of the primitive kth roots of unity. This sum is known as Ramanujan's sum 
and is denoted by ck(n): 

ck(n) = E  e 2nim,vk . 
in mod k 

(m, k) = 1 

We have already noted that this sum reduces to the Mobius function when 
n = 1, 

11(k ) = ck(i ). 
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8.3: Ramanujan's sum and generalizations 

When k In the sum reduces to the Euler cp. function since each term is 1 and 
the number of terms is p(k). Ramanujan showed that ck(n) is always an 
integer and that it has interesting multiplicative properties. He deduced these 
facts from the relation 

(5) ck(n) = E du(). 

	

dj(n, k) 	" 

This formula shows why ck (n) reduces to both 1.4,(k) and p(k). In fact, when 
n = 1 there is only one term in the sum and we obtain c k(1) = it(k). And when 
k I n we have (n, k) = k and ck(n) = Edik  dtt(k/d) = cp(k). We shall deduce (5) 
as a special case of a more general result (Theorem 8.5). 

Formula (5) for ck(n) suggests that we study general sums of the form 

k (6) E f(d)g(
) . 

7, 
di(n, k) 	" 

These resemble the sums for the Dirichlet convolution f * g except that we 
sum over a subset of the divisors of k, namely those d which also divide n. 

Denote the sum in (6) by sk (n). Since n occurs only in the gcd (n, k) we have 

sk(n + k) = sk(fl) 

so sk(n) is a periodic function of n with period k. Hence this sum has a finite 
Fourier expansion. The next theorem tells us that its Fourier coefficients are 
given by a sum of the same type. 

Theorem 8.5 Let sk(fl) = Ldr(n, k) f(d)g(k/d). Then s k(n) has the finite Fourier 
expansion 

(7) sk(n) = L ak(m)e 2nimn/k 
m mod k 

where 

(8) ak(m) = E g(d)f ( 1,-(1) (/‘  • 

	

al(m, k) 	14  

1 

PROOF. By Theorem 8.4 the coefficients ak(m) are given by 

ak (m) = —
1 E sk(n)e - 2ninmlk 
k n mod k 

1 k k 
= —,_ E E f(d)g(

d
)e -21anmi k . 

K n = 1 djn 
djk 

Now we write n = cd and note that for each fixed d the index e runs from 1 
to k/d and we obtain 

ak(m) = .7_ E f(d)g(— 
K. di k 

kid k
) E 

d 	c= 1 

e
- 2nicdmik 
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8: Periodic arithmetical functions and Gauss sums 

Now we replace d by kid in the sum on the right to get 

1 	k 
ak(m) = 7,1 ( 

n. dik 
(d) E e - 2'7". 

c= 1 

But by Theorem 8.1 the sum on c is 0 unless dlm in which case the sum has 
the value d. Hence 

akm)k dlk  
di. 

which proves (8). 	 0 

Now we specialize f and g to obtain the formula for R.amanujan's sum 
mentioned earlier. 

Theorem 8.6 We have 

ci,(n) = E ditek,). 
dio,k, 	a 

PROOF. Taking f(k) = k and g(k) = it(k) in Theorem 8.5 we find 

E 44(
d 

= E ak(rn)e2RimnIk 
di(n , k) 	 m mod k 

where 

ak(m) = 	
to)  j- 	1 if (m, k) = 1, 

km, k)] 10 if (m, k) > 1. ()R., k) 

Hence 

=_ L  e2 R imni k 	ck (n). 	 1:1 
dj(n ,k) 	 m mod k 

(m, k) = 1 

8.4 Multiplicative properties of the 
sums s k (n) 

Theorem 8.7 Let 

sk(n) = E f (d)geki) 

	

di(n, k) 	a 

where f and g are multiplicative. Then we have 

(9) 	smk (ab) = sm(a)sk(b) whenever (a, k) = (b, m) = 1. 
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8.4: Multiplicative properties of the sums sk (n) 

In particular, we have 

(10) sm(ab) = sm(a) if (b, m) = 1, 

and 

(11) smk (a) = s(a)g(k) if (a, k) = 1. 

PROOF. The relations (a, k) = (b, m) = 1 imply (see Exercise 1.24) 

(mk, ab) = (a, m)(k, b) 

with (a, in) and (b, k) relatively prime. Therefore 

mk 	 mk 
smk (ab) = E f (d)g(—

d
) = 	E f (d)g(-) .  

d 1(mk, ab) 	 (11(a, m)(b, k) 

Writing d = d1 d 2  in the last sum we obtain 

smk (ab) = E 	E f(did2)g
( 

mk ) 

did2) d i l(a,m) d 21(b , k) 

m 	 k 
= E f(cli)g(—d 	1 ffriDgE,) = sm (a)sk(b). 

di Ra,m) -1 d 2 1(b, k) 	 "2 

This proves (9). 
Taking k = 1 in (9) we get 

sm(ab) = sm(a)s i (b) = sm(a) 

since s 1 (b) = f(1)g(1) = 1. This proves (10). Taking b 	1 in (9) we find 

smk(a) = s,„(1)8k(1) = s,n(a)g(k) 

since 5 k(1) = f (1)g(k) = g(k). This proves (14 
	

El 

EXAMPLE For Ramanujan's sum we obtain the following multiplicative 
properties: 

cmk (ab) = cm(a)ck(b) 	whenever (a, k) = (b, m) = 1, 

cm(ab) = cm(a) 	whenever (b, m) = 1, 

and 
cmk (a) = cm (a)u(k) 	whenever (a, k) = 1. 

Sometimes the sums sk (n) can be evaluated in terms of the Dirichlet 
convolution f * g. In this connection we have: 

Theorem 8.8 Let f be completely multiplicative, and let g(k) = ,u(k)h(k), where 
h is multiplicative. Assume that f(p) 0 0 and f(p) 0 h(p) for all primes p, 
and let 

k 

dl(n, k) 
sk(n) = E fidvG). 

" 

163 



8: Periodic arithmetical functions and Gauss sums 

Then we have 

= 
F(k)g(N) 

 sk(n)  
F(N) 

where F = f * g and N = k/(n, k). 

PROOF. First we note that 

F(k) = E f (d)4—
k
)11(

k
) — E f (k )kt(d)h(d) = f (k) E u(d) 

h(d)
, 

 d d 	d 	 f (d) dlk 

= f(k)fl 1 	
h(p)  

l 	f (P)) .  

Next, we write a = (n, k), so that k = aN . Then we have 

s ;c(l)  = ficop(k) h( 	ficol aN)hi 

di. 	 d 	d 

= f(:),u(N d)h(Nd). 
dia  

Now ,u(Nd) = p(N)p(d) if (N, d) = 1, and ti(Nd) = 0 if (N, d) > 1, so the last 
equation gives us 

sk(n) = ti(N)h(N) 	f Op,(d)h(d) f(a)t(N)h(N) 7 
ti(d)  h(d) 

dla 

	

d 	 f (d) 
(N , d) = 1 	 (N = I 

(P  

= f (a)p 	
h(p) 	

( 	 11 1  

	

(N)h(N) 11 (1 	- 	= f 	f(a)i(N)h(N) PlaN 	f (I)  
Pia 	f (P) 	 \ 

p,t N 	 111( 1 	f (1) 

h(p)
))  

= f (a)p(N)h(N)
F(k) f (N) = F(k)ii(N)h(N) F(k)g(N)  
f(k) F(N) 	F(N) 	F(N) 

EXAMPLE For Ramanujan's sum we obtain the following simplification: 

(*VI( 	k  (n, k) 
(pGni,(0)  C1,( 1) = ((k)1(N)/ p(N) 
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8.5: Gauss sums associated with Dirichlet characters 

8.5 Gauss sums associated with Dirichlet 
characters 

Definition For any Dirichlet character x mod k the sum 
k 

G(n, x) . E x(oe2nimnik 
m = 1 

is called the Gauss sum associated with x. 

If x = x i , the principal character mod k, we have x i (m) = 1 if (m, k) = 1, 
and x 1 (m) = 0 otherwise. In this case the Gauss sum reduces to Ramanujan's 
sum: 

k 

G(n, x i ) = E e2nimnIk = ck (n). 
.= 1 

(n, k)= 1 

Thus, the Gauss sums G(n, x) can be regarded as generalizations of Ramanu-
jan's sum. We turn now to a detailed study of their properties. 

The first result is a factorization property which plays an important role 
in the subsequent development. 

Theorem 8.9 If x is any Dirichlet character mod k then 

G(n, x) = X(n)G( 1 , x) whenever (n, k) = 1. 

PROOF. When (n, k) = 1 the numbers nr run through a complete residue 
system mod k with r. Also, I X(n) 1 2 	X(n)i(n) = 1 so 

X(r) = i(n)X(n)X(r) = An)X(nr). 

Therefore the sum defining G(n, x) can be written as follows: 

G(n, x) = E X(r)e 2 '" = 2(n) E x(nr)e 2ninrIk 
r modk 	 r mod k 

= i(n) E x(n)e 2 xlmik = i(n)G( 1 , X). 
m mod k 

This proves the theorem. 	 El 

Definition The Gauss sum G(n, x) is said to be separable if 

(12) 	 G(n, x) = i(n)G(1, x). 

Theorem 8.9 tells us that G(n, x) is separable whenever n is relatively 
prime to the modulus k. For those integers n not relatively prime to k we 
have the following theorem. 
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8: Periodic arithmetical functions and Gauss sums 

Theorem 8.10 If x is a character mod k the Gauss sum G(n„ x) is separable for 
every n if, and only if 

G(n, x) = 0 whenever (n, k) > 1. 

PROOF. Separability always holds if (n, k) = 1. But if (n, k) > 1 we have 
i(n) = 0 so Equation (12) holds if and only if G(n, x) = 0. 

The next theorem gives an important consequence of separability. 

Theorem 8.11 If G(n, x) is separable for every n then 

(13) 1G(1, x)1 2  = k. 

PROOF. We have 

	

IG(1, x)1 2  = G(1, x)G(1, 	= G(1, X) 
m =1 

k 	k = E  G(n,  x )e -2mfl = 

m= 1 	 m=1 r1
=1 

Zfr)e2rtimrlke- 

= E X(r) E e2-40 —1)/k = kx(1)  k,  

r=1 	m=1 

since the last sum over m is a geometric sum which vanishes unless r = 1. 

8.6 Dirichlet characters with nonvanishing 
Gauss sums 

For every character x mod k we have seen that G(n, x) is separable if (n, k) = 1, 
and that separability of G(n, x) is equivalent to the vanishing of G(n, x) for 
(n, k) > 1. Now we describe further properties of those characters such that 
G(n, x) = 0 whenever (n, k) > 1. Actually, it is simpler to study the comple-
mentary set. The next theorem gives a necessary condition for G(n, x) to be 
nonzero for (n, k) > 1. 

Theorem 8.12 Let x be a Dirichlet character mod k and assume that G(n, x) 0 0 
for some n satisfying (n, k) > 1. Then there exists a divisor d of k, d < k, 
such that 

(14) X(a) = 1 whenever (a, k) = 1 and a 	1 (mod d). 

PROOF. For the given n, let q = (n, k) and let d = k/q. Then d k and, since 
q> 1, we have d < k. Choose any a satisfying (a, k) = 1 and a 1 (mod d). 
We will prove that x(a) = 1. 
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8.7: Induced moduli and primitive characters 

Since (a, k) = 1, in the sum defining G(n, x) we can replace the index of 
summation m by am and we find 

G(n, x) = E X(M)e
2zinmlk . E xonoe 2 ainam/k 

rn mod k 	 m mod k 

= x(a) E An*
2rzinam/k 

m mod k 

Since a a 1 (mod d) and d = k/q we can write a = 1 + (bk/q) for some 
integer b, and we have 

anm nm bknm nm bnm nm 
(mod 1) 

k 	k 	qk 	k 	q 	k 

since q In. Hence e 2 Rinainfk . ethunik  and the sum for G(n, x) becomes 

G(n, x) = X(a) E x(m)e2animik = x(a)G(n, x). 
m mod k 

Since G(n, x) # 0 this implies z(a) = 1, as asserted. 	 El 

The foregoing theorem leads us to consider those characters x mod k 
for which there is a divisor d < k satisfying (14). These are treated next. 

8.7 Induced moduli and primitive characters 
Definition of induced modulus Let z be a Dirichlet character mod k and let d 

be any positive divisor of k. The number d is called an induced modulus 
for z if we have 

(15) 	z(a) = 1 whenever (a, k) = 1 and a a 1 (mod d). 

In other words, d is an induced modulus if the character z mod k acts like 
a character mod d on the representatives of the residue class 1 mod d which 
are relatively prime to k. Note that k itself is always an induced modulus 
for x. 

Theorem 8.13 Let x be a Dirichlet character mod k. Then 1 is an induced 
modulus for x if, and only if, x = Xi. 

PROOF. If z = x i  then z(a) = 1 for all a relatively prime to k. But since every a 
satisfies a 1 (mod 1) the number 1 is an induced modulus. 

Conversely, if 1 is an induced modulus, then z(a) = 1 whenever (a, k) = 1, 
so x = x i  since z vanishes on the numbers not prime to k. 	 1:1 
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8: Periodic arithmetical functions and Gauss sums 

For any Dirichlet character mod k the modulus k itself is an induced 
modulus. If there are no others we call the character primitive. That is, 
we have: 

Definition of primitive characters A Dirichlet character x mod k is said to be 
primitive mod k if it has no induced modulus d < k. In other words, 
x is primitive mod k if, and only if, for every divisor d of k, 0 < d < k, 
there exists an integer a 1 (mod d), (a, k) = 1, such that x(a) 0 1. 

If k > 1 the principal character x i  is not primitive since it has 1 as an 
induced modulus. Next we show that if the modulus is prime every non 
principal character is primitive. 

Theorem 8.14 Every non principal character x modulo a prime p is a primitive 
character mod p. 

PROOF. The only divisors of p are 1 and p so these are the only candidates 
for induced moduli. But if x 0 x i  the divisor 1 is not an induced modulus 
so x has no induced modulus <p. Hence x is primitive. 	 CI 

Now we can restate the results of Theorems 8.10 through 8.12 in the 
terminology of primitive characters. 

Theorem 8.15 Let x be a primitive Dirichlet character mod k. Then we have: 

(a) G(n, x) = 0 for every n with (n, k) > 1. 
(b) G(n, x) is separable for every n. 
(c) I G(1, x)1 2  = k. 

PROOF. If G(n, x) 0 0 for some n with (n, k) > 1 then Theorem 8.12 shows 
that x has an induced modulus d < k, so x cannot be primitive. This proves (a). 

Part (b) follows from (a) and Theorem 8.10. Part (c) follows from part (b) 
and Theorem 8.11. 	 0 

Note. Theorem 8.15(b) shows that the Gauss sum G(n, x) is separable if x 
is primitive. In a later section we prove the converse. That is, if G(n, x) is 
separable for every n then x is primitive. (See Theorem 8.19.) 

8.8 Further properties of induced moduli 

The next theorem refers to the action of x on numbers which are congruent 
modulo an induced modulus. 

Theorem 8.16 Let x he a Dirichlet character mod k and assume d lk, d > 0. 
Then d is an induced modulus for x if and only If 

(16) x(a) = x(b) whenever (a, k) = (b, k) = 1 and a a-  b (mod d). 
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8.8: Further properties of induced moduli 

PROOF. If (16) holds then d is an induced modulus since we may choose b = 1 
and refer to Equation (15). Now we prove the converse. 

Choose a and b so that (a, k) = (b, k) = 1 and a b (mod d). We will 
show that x(a) = x(b). Let a' be the reciprocal of a mod k, aa' -- 1 (mod k). 
The reciprocal exists because (a, k) = 1. Now ad —= 1 (mod d) since d1k. 
Hence x(aa') = 1 since d is an induced modulus. But aa' a-  ba' a 1 (mod d) 
because a __ b (mod d), hence x(aa') = x(ba'), so 

= 

But x(a') 0 0 since x(a)x(a') = 1. Canceling x(a') we find x(a) = x(b), and 
this completes the proof. 	 El 

Equation (16) tells us that x is periodic mod d on those integers relatively 
prime to k. Thus x acts very much like a character mod d. To further explore 
this relation it is worthwhile to consider a few examples. 

EXAMPLE 1 The following table describes one of the characters x mod 9. 

n 	1 	2 	3 	4 	5 	6 	7 	8 	9 

x (n) 	1 	—1 	o 	1 	—1 	o 	1 	1 	0 

We note that this table is periodic modulo 3 so 3 is an induced modulus for x. 
In fact, x acts like the following character 0 modulo 3: 

n 	1 	2 	3 

tk(n) 	1 	-1 	0 

Since An) = 0(n) for all n we call x an extension of 0. It is clear that whenever x 
is an extension of a character 0 modulo d then d will be an induced modulus 
for x. 

EXAMPLE 2 Now we examine one of the characters x modulo 6: 

n 	1 	2 	3 	4 	5 	6 

(n) 	1 	0 	0 	0 	—1 	0 

In this case the number 3 is an induced modulus because x(n) = 1 for all 
n -a 1 (mod 3) with (n, 6) = 1. (There is only one such n, namely, n = 1.) 
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8: Periodic arithmetical functions and Gauss sums 

However, x is not an extension of any character 0 modulo 3, because the 
only characters modulo 3 are the principal character 0 1 , given by the table: 

1 	2 	3 

k 1 (n) 	1 	1 	0 

and the character 0 shown in Example 1. Since x(2) = 0 it cannot be an 
extension of either 0 or 0 1 . 

These examples shed some light on the next theorem. 

Theorem 8.17 Let x be a Dirichlet character modulo k and assume dlk, d > 0. 
Then the following two statements are equivalent: 

(a) d is an induced modulus for x. 
(b) There is a character tfr modulo d such that 

(17) 	 x(n) = tfr(n)x,(n) for all n, 

where x 1  is the principal character modulo k. 

PROOF. Assume (b) holds. Choose n satisfying (n, k) = 1, n 	1 (mod d). 
Then x i (n) = 0(n) = 1 so x(n) = 1 and hence d is an induced modulus. Thus, 
(b) implies (a). 

Now assume (a) holds. We will exhibit a character 0 modulo d for which 
(17) holds. We define 0(n) as follows: If (n, d) > 1, let 0(n) = 0. In this case 
we also have (n, k) > 1 so (17) holds because both members are zero. 

Now suppose (n, d) = 1. Then there exists an integer m such that m 
n (mod d), (m, k) = 1. This can be proved immediately with Dirichlet's 
theorem. The arithmetic progression xd + n contains infinitely many primes. 
We choose one that does not divide k and call this m. However, the result 
is not that deep; the existence of such an m can easily be established without 
using Dirichlet's theorem. (See Exercise 8.4 for an alternate proof.) Having 
chosen m, which is unique modulo d, we define 

lk(n) = 

The number 0(n) is well-defined because x takes equal values at numbers 
which are congruent modulo d and relatively prime to k. 

The reader can easily verify that x is, indeed, a character mod d. We shall 
verify that Equation (17) holds for all n. 

If (n, k) = 1 then (n, d) = 1 so 0(n) = x(m) for some m n (mod d). 
Hence, by Theorem 8.16, 

X(n) = X(m) = On) = 0(n)X101) 
since x 1 (n) = 1. 

If (n, k) > 1, then x(n) = x 1 (n) = 0 and both members of (17) are 0. Thus, 
(17) holds for all n. 	 LI 
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8.10: Primitive characters and separable Gauss sums 

8.9 The conductor of a character 
Definition Let x be a Dirichlet character mod k. The smallest induced modulus 

d for x is called the conductor of x. 

Theorem 8.18 Every Dirichlet character x mod k can be expressed as a product, 

(18) 	 X(n) -= 11/(n)Xi(n) for all n, 

where x i  is the principal character mod k and tif is a primitive character 
modulo the conductor of 0. 

PROOF. Let d be the conductor of x. From Theorem 8.17 we know that x can 
be expressed as a product of the form (18), where tir is a character mod d. 
Now we shall prove that tii is primitive mod d. 

We assume that tif is not primitive mod d and arrive at a contradiction. 
HO is not primitive mod d there is a divisor q of d, q < d, which is an induced 
modulus for tif. We shall prove that this q, which divides k, is also an induced 
modulus for x, contradicting the fact that d is the smallest induced modulus 
for x. 

Choose n -- 1 (mod q), (n, k) = 1. Then 

x(n) = ifr(n)x i (n) = iii(n) = 1 

because q is an induced modulus for 0. Hence q is also an induced modulus 
for x and this is a contradiction. 	 171 

8.10 Primitive characters and separable 
Gauss sums 

As an application of the foregoing theorems we give the following alternate 
description of primitive characters. 

Theorem 8.19 Let x be a character mod k. Then x is primitive mod k if, and 
only if, the Gauss sum 

G(n, x) , E x(m)e 27imnik 

m mod k 

is separable for every n. 

PROOF. If x is primitive, then G(n, x) is separable by Theorem 8.15(b). Now 
we prove the converse. 

Because of Theorems 8.9 and 8.10 it suffices to prove that if x is not 
primitive mod k then for some r satisfying (r, k) > 1 we have G(r, x) 0. 
Suppose, then, that x is not primitive mod k. This implies k> 1. Then x has a 
conductor d < k. Let r = kid. Then (r, k) > 1 and we shall prove that 
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8: Periodic arithmetical functions and Gauss sums 

G(r, x) 0 0 for this r. By Theorem 8.18 there exists a primitive character 
tir mod d such that x(n) = ip(n)x i (n) for all n. Hence we can write 

G(r, x) = 
E coxi(m)e2„,,k = E 0. (m)e 2nirm,„ 

m mod k 	 m rnod k 
(m, k) = 1 

.7   E tii (m)e 
2 lEimici, 

 
m mi—d°d 	

— 9(d) m mod d k tfr (rn)e 
27 int/ d _ WO 

(m, k) = 1 	 (m, d)= i 

where in the last step we used Theorem 5.33(a). Therefore we have 

9(k)  
G(r, X) = 

tp(d) 
G(1, 0). 

But I G(1, 0)1 2  = d by Theorem 8.15 (since iii is primitive mod d) and hence 
G(r, x) # 0. This completes the proof. 17 

8.11 The finite Fourier series of the Dirichlet 
characters 

Since each Dirichlet character x mod k is periodic mod k it has a finite 
Fourier expansion 

k 

(19) x(m) = E ak (n)e 2'imni k 
 n=1 

and Theorem 8.4 tells us that its coefficients are given by the formula 
1  k 

ak(n) = - E Z(M)e
— 27imn 

 
k m  = 1 

The sum on the right is a Gauss sum G( — n, x) so we have 

1 
(20) ak(n) = -

k
G( — n, x). 

When x is primitive the Fourier expansion (19) can be expressed as follows: 

Theorem 8.20 The finite Fourier expansion of a primitive Dirich let character 
x mod k has the form 

k
(X)  k  (21) x(m) =  	E An)e - 2-imnik 
k n = 1 

where 

G(1, 	X) 	1 	k 

(22) Tk(X) = 	= 	/- E xon)e 2nim/k. 

fk 	_\/k m-1 

The numbers tk(x) have absolute value 1. 
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8.12: Polya's inequality for the partial sums of primitive characters 

PROOF. Since x is primitive we have G( — n, X) = X( — n)G(1, x) and (20) 
implies ak (fl) =i(—n)G(1, X)/k. Therefore (19) can be written as 

	

G(1, 	k 	 G(1, x) 	- X(m) 	
v x( n)e 2nim.n/k E x(n)e -21r imni k , 

	

k 	 A 	n= 1 

which is the same as (21). Theorem 8.11 shows that the numbers z k (x) have 
absolute value 1. 	 El 

8.12 POlya's inequality for the partial sums 
of primitive characters 

The proof of Dirichlet's theorem given in Chapter 7 made use of the relation 

E x(m) 
,n<x 

which holds for any Dirichlet character x mod k and every real x > 1. This 
cannot be improved when X = x i  because Ekm= X1(m) = co(k). However, 
Polya showed that the inequality can be considerably improved when x is a 
primitive character. 

Theorem 8.21 Polya's inequality. If x is any primitive character mod k then 
for all x > 1. we have 

(23) E x(m) 
,n<x 

< .1k log k. 

   

PROOF. We express x(m) by its finite Fourier expansion, as given in Theorem 
8.20 

Tk(x)  x 	E A (m) = 	n)e'lmni k , 
k n= 1 

and sum over all m < X to get 

Tk(x)k -1  E x(m) = 	 E i(n) E e 
m<x 	n= 1 	m< x 

— 2 nimn/k 

since x(k) = 0. Taking absolute values and multiplying by jc we find 

(24) — nininfic L e 2 
m<x 

k — 1 

= E WO, 
n=1 

say, where 

   

f(n) = E e - 2nimnIk 

m <x 

q(k) 
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8: Periodic arithmetical functions and Gauss sums 

Now 

so 

1 f (k — n)I = 

f (k — n) = E  e – 2nim(k–n)lk = E  e 2.m.nik = fin)  
m‹. 	 m 

I f (n) I. Hence (24) can be written as 

r 	–r 
Z — Z 

- 1 
Z — Z 

r. n n 
sin 	 

k 

. nn 
sin —

k 

(25) E x(m) 
m<x 

< 2 E (PO. 
n-lc/2 

  

Now f (n) is a geometric sum of the form 
, 

f(n) = E ym 
m= 1 

where r = [x] and y = e - 2irbl11'. Here y 0 1 since 1 < n < k — 1. Writing 
z = e- n 1nm, we have y = z2  and z 2  0 1 since n < k/2. Hence we have 

f (n) = y 	 ,_ Y r  — 1  = z2  2
z  r _ 1 

1 	 Zr  — Z –r  
Z r+ 

– y — 1 	z 2  — 1 	z — z 1 

SO 

1 
< 	 

. irn 
sin —

k 

(26) If(n)1 — 
e- nIk _ enirnik 

e -nin/k — e nin/k 

Now we use the inequality sin t > 2t/n, valid for 0 < t < 7r/2, with t = 
milk to get 

1 	k 

I f (n)I 	2 irn = - 2 71 .  

irk 

Hence (25) becomes 

E x(m) 
„,<„ 

k E —
1 

< k log k, 
nsk/2 n 

 

and this proves (23). 	 C7 

Note. In a later chapter we will prove that Polya's inequality can be 
extended to any nonprincipal character. For nonprimitive characters it 
takes the form 

E x(m) = O( \/k log k). 
m<x 

(See Theorem 13.15.) 
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Exercises for Chapter 8 
1. Let x = e 2 " and prove that 

n — 1 

X _ E k k  — 
1 c = 1 

11 

 

 

x — 1 . 

2. Let ((x)) --- x — [x] — i if x is not an integer, and let ((x)) = 0 otherwise. Note that 
((x)) is a periodic function of x with period 1. If k and n are integers, with n > 0, 
prove that 

((lc  )) = — 1 nl  i cot "I 
sin brkm 

3. Let ck (m) denote Ramanujan's sum and let M(x) = E,, , p(n), the partial sums of the 
Mobius function. 

(a) Prove that 

	

n 	 n E ck(n) = E dm( j). 
k = 1 	 d[m 	11  

In particular, when n --- m, we have 

E ck(m) = E dm(--
m

). 
k= 1 	di. 	d 

(b) Use (a) to deduce that 

, p(m/d)  d  

	

M(M) =M L 	E CM. A 

	

dim 	" 	k = 1 

(c) Prove that 

i ckon) = E 0(41 . 

	

,,, = 1 	dik 	d 	d 

4. Let n, a, d be given integers with (a, d) = 1. Let m = a + qd where q is the product 
(possibly empty) of all primes which divide n but not a. Prove that 

m ---E a (mod d) 	and (m, n) = 1. 

5. Prove that there exists no real primitive character x mod k if k = 2m, where m is odd. 

6. Let x be a character mod k. If k 1  and k 2  are induced moduli for x prove that so too is 
(k 1 , k 2 ), their gcd. 

7. Prove that the conductor of x divides every induced modulus for x. 

In Exercises 8 through 12, assume that k = k 1 k 2  • • • k„ where the positive 
integers k i  are relatively prime in pairs: (k, k) = 1 if i 0 j. 

8. (a) Given any integer a, prove that there is an integer ai  such that 

ci f  m a (mod k i) 	and ai  ...- 1 (mod kJ) for all j 	i. 

175 



8: Periodic arithmetical functions and Gauss sums 

(b) Let x be a character mod k. Define x i  by the equation 

Xi(a) = 

where ai  is the integer of part (a). Prove that x i  is a character mod k i . 

9. Prove that every character x mod k can be factored uniquely as a product of the 
form x 	Xi X2 • • • Zr, where x i  is a character mod k i . 

10. Let f (x) denote the conductor of x. If x has the factorization in Exercise 9, prove 

that f (X) 	f 	• f (xr). 

11. If x has the factorization in Exercise 9, prove that for every integer a we have 

r  G(a, x) = fi Xi(—k  )G(ai, x i), 
i= 	k i  

where a, is the integer of Exercise 8. 

12. If x has the factorization in Exercise 9, prove that x is primitive mod k if, and only if, 
each x i  is primitive mod k i . [Hint: Theorem 8.19.] 

13. Let x be a primitive character mod k. Prove that if N < M we have 

 

(m)  2 

1 
.,/k log k. 

N +  m=N+ 1 

  

   

14. This exercise outlines a slight improvement in POlya's inequality. Refer to the proof 
of Theorem 8.21. After inequality (26) write 

1 	1 	k/ 2  dt 
E if(n)i 	E 	< 	+ • 

n <k/2 	7rn 	• it 	• nt  sin
k 	

sin —
k 	

sin —
k 

Show that the integral is less than —(k/n)log(sin(n/2k)) and deduce that 

E An) < •,./k + 	log k. 

  

This improves Polya's inequality by a factor 2/Tr in the principal term. 

15. The Kloosterman sum K(m, n; k) is defined as follows: 

K(m, n; k)  
h mod k 
(h, k)= I 

where If is the reciprocal of h mod k. When k I  n this reduces to Ramanujan's sum 
ck(m). Derive the following properties of Kloosterman sums: 
(a) K(m, n; k) = K(n, m; k). 
(b) K(m, n; k) = K(1, mn; k) whenever (m, k) = 1. 
(c) Given integers n, k 1 , k 2  such that (k 1 , k 2) = 1, show that there exist integers n 1  

and n 2  such that 

n 	n 1 k 2 2  + n2 k 1 2  (mod k1k2), 

and that for these integers we have 

K(n, n; k 1 k 2 ) = K(tn, n 1 ; k1)10m, n2; k2). 
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This reduces the study of Kloosterman sums to the special case K(m, n; pa), where 
p is prime. 

16. If n and k are integers, n > 0, the sum 

n 

G(k; n) .--- E  e 2nikr2In 

r =1 

is called a quadratic Gauss sum. Derive the following properties of quadratic Gauss 
sums: 
(a) G(k; mn) — G(km; n)G(kn; m) whenever (in, n) = 1. This reduces the study of 

Gauss sums to the special case G(k; pr), where p is prime. 
(b) Let p be an odd prime, p ,' k, a.'. 2, Prove that G(k; pf1) --= pG(k; p'- ') and 

deduce that 

G(k ; if) = 
{

P
a/ 2 if a is even, 

FP- 1 "G(k; p) if a is odd. 

Further properties of the Gauss sum G(k; p) are developed in the next chapter 
where it is shown that G(k; p) is the same as the Gauss sum G(k, x) associated with a 
certain Dirichlet character x mod p. (See Exercise 9.9.) 
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9  Quadratic Residues and the 
Quadratic Reciprocity Law 

.9.1 Quadratic residues 

As shown in Chapter 5, the problem of solving a polynomial congruence 

f(x) -=- 0 (mod m) 

can be reduced to polynomial congruences with prime moduli plus a set of 
linear congruences. This chapter is concerned with quadratic congruences 
of the form 

( 1 ) 	 x 2  -=' n (mod p) 

where p is an odd prime and n # 0 (mod p). Since the modulus is prime we 
know that (1) has at most two solutions. Moreover, if x is a solution so is 
— x, hence the number of solutions is either 0 or 2. 

Definition If congruence (1) has a solution we say that n is a quadratic 
residue mod p and we write nRp. If (1) has no solution we say that n is 
a quadratic nonresidue mod p and we write nRp. 

Two basic problems dominate the theory of quadratic residues: 

1. Given a prime p, determine which n are quadratic residues mod p and 
which are quadratic nonresidues mod p. 

2. Given n, determine those primes p for which n is a quadratic residue mod p 
and those for which n is a quadratic nonresidue mod p. 

We begin with some methods for solving problem 1. 
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9.2: Legendre's symbol and its properties 

EXAMPLE To find the quadratic residues modulo 11 we square the numbers 
1, 2, ... , 10 and reduce mod 11. We obtain 

1 2  a,  1, 	2 2  a- 4, 	3 2  -- 9, 	42=5 	5 2  -_-. 3 (mod 11). 

It suffices to square only the first half of the numbers since 

62 = ( _ 5)2 = 3, 	72 = ( _ 4)2 = 5, ... , 10 2 	(_1)2 	1 (mod 11). 

Consequently, the quadratic residues mod 11 are 1, 3, 4, 5, 9, and the non-
residues are 2, 6, 7, 8, 10. 

This example illustrates the following theorem. 

Theorem 9.1 Let p be an odd prime. Then every reduced residue system mod p 
contains exactly (p - 1)/2 quadratic residues and exactly (p - 1)/2 
quadratic nonresidues mod p. The quadratic residues belong to the residue 
classes containing the numbers 

(2) 	 1 2 , 2 2 , 
 32 ' . ' .' ( 

PROOF. First we note that the numbers in (2) are distinct mod p. In fact, if 
x2  y2  (mod p) with 1 _._ x __ (p - 1)/2 and 1 	y < (p - 1)/2, then 

(x - y)(x + y) L----  0 (mod p). 

But 1 <x+y<psox-y,-, 0 (mod p), hence x = y. Since 
(p k) 2 = k2 (mod  p),  

every quadratic residue is congruent mod p to exactly one of the numbers 
in (2). This completes the proof. 	 0 

The following brief table of quadratic residues R and nonresidues k was 
obtained with the help of Theorem 9.1. 

p= 3 	p= 5 	p= 7 	p=11 	p= 13  

R: 1 1,4 1, 2, 4 1, 3, 4, 5, 9 1, 3, 4, 9, 10, 12 

.R: 2 2, 3 3, 5, 6 2, 6, 7, 8, 10 2, 5, 6, 7, 8, 11 

9.2 Legendre's symbol and its properties 
Definition Let p be an odd prime. If n 0 (mod p) we define Legendre's 

symbol (n I p) as follows: 

(ni
p) = {+-11 

If n 0 (mod p) we define (n i p) = 0. 

if nRp, 

if nRp. 
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9: Quadratic residues and the quadratic reciprocity law 

ExAmpus (1 I p) = 1, (m 2  p) = 1, (7 I 11) = -1, (22111) = 0. 

(I  Note. Some authors write -1  instead of (n p). 
p 

	

It is clear that (m1p) = (n I  p) whenever m 	n (mod p), so (n p) is a 
periodic function of n with period p. 

	

The little Fermat theorem tells us that nP -1 	1 (mod p) if p n. Since 

nP-1  - 1 = (n(P -1)12  - 1)(n(P -1" + 1) 

it follows that n (P - "(2  = + 1 (mod p). The next theorem tells us that we get 
+ 1 if nRp and - 1 if nkp. 

Theorem 9.2 Euler's criterion. Let p be an odd prime. Then for all n we have 

(n I) 	n(P-  " 2  (mod P)- 

PROOF. If n 0 (mod p) the result is trivial since both members are con-
gruent to 0 mod p. Now suppose that (n I  p) = 1. Then there is an x such 
that x 2  n (mod p) and hence 

	

n(p- 1)/2 =  ( 2) 	i)/2 1)/2 = X P-  1 	1 = (nip) (mod p). 

This proves the theorem if (n1p) = 1. 
Now suppose that (nip) = -1 and consider the polynomial 

f( x ) = x (p- 1)/2 	1 .  

Sincef(x) has degree (p - 1)/2 the congruence 

f(x) 0 (mod p) 

has at most (p - 1)/2 solutions. But the (p - 1)/2 quadratic residues mod p 
are solutions so the nonresidues are not. Hence 

	

n (P 1" 	1 (mod p) if (nip) = -1. 

But n(P-  1 )/ 2  =± 1 (mod p) so n(P -1)/ 2 	- 1 	(n 1 p) (mod p). This com- 
pletes the proof. 	 1=1 

Theorem 9.3 Legendre's symbol (n p) is a completely multiplicative function 
of n. 

PROOF. If p 1 m or p In then p mn so (mnip) = 0 and either (m p) = 0 or 
(n 	= 0. Therefore (mn I = 	I P)(n I P) if p I m or pin. 

If p m and p n then p mn and we have 

(mn1 p) 	(mn)°' - 1) / 2  = m(P -  1 )/ 2n (P -  1)12 	
(mIP)(nIP) (mod P). 
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9.3: Evaluation of (— lip) and ( 2 1P) 

But each of (mn I P), (m I) and (n I p) is 1 or — 1 so the difference 

(mniP) — (m1P)(n1P) 

is either 0, 2, or —2. Since this difference is divisible by p it must be 0. 

Note. Since (n1 p) is a completely multiplicative function of n which is 
periodic with period p and vanishes when p In, it follows that (n I p) = 
where x is one of the Dirichlet characters modulo p. The Legendre symbol is 
called the quadratic character mod p. 

9.3 Evaluation of (— 1 1 p) and (21p) 

Theorem 9.4 For every odd prime p we have 

i 	__ 
( — 1  I ) = ( — 1 )(P -1)/2  = 

{ 1 f p 	1 (mod 4), 
 — 1 if p __ 3 (mod 4). 

PROOF. By Euler's criterion we have ( — 1I p) (-1)(P -  1" (mod p). Since 
each member of this congruence is 1 or — 1 the two members are equal. 0 

Theorem 9.5 For every odd prime p we have 

if p —= ±1 (mod 8), 
(2  IP) = ( — 1 )(1' 2-1 " = { 1  — 1 	if p ±3 (mod 8). 

PROOF. Consider the following (p — 1)/2 congruences: 

p — 1 -=- 1( — 1) 1 	(mod p) 

2 a-  2( — 1) 2 	(mod p) 

p — 3 -=- 3( — 1) 3 	(mod p) 

4 ,--_ 4( — 1) 4 	(mod p) 

p — 1 
r = 	( 

2 	
1)( P -1)(2  (mod p), 

where r is either p — (p — 1)/2 or (p — 1)/2. Multiply these together and note 
that each integer on the left is even. We obtain 

2 . 4 . 6 . . . (p — 1) = (
P  - 1.  2  	!( _ 1) 1 +2+ - +(p -1 )/ 2 

 
(mod p). 

This gives us 

D - 1 2)12(t' 	( - 0°2-1 " (mod p). (p- 012(13  — 1 !  — ( 	 
2 	• 	2 —  
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9: Quadratic residues and the quadratic reciprocity law 

Since ((p — 1)/2)! 	0 (mod p) this implies 

2(P- 1 )/ 2  = (- 1)" 1 ) 18 (mod p). 

By Euler's criterion we have 2 (1-1)/ 2  a (21p) (mod p), and since each 
member is 1 or —1 the two members are equal. This completes the proof. 

9.4 Gauss' lemma 

Although Euler's criterion gives a straightforward method for computing 
(n 1 p), the calculation may become prohibitive for large n since it requires 
raising n to the power (p — 1)/2. Gauss found another criterion which 
involves a simpler calculation. 

Theorem 9.6 Gauss' lemma. Assume n # 0 (mod p) and consider the least 
positive residues mod p of the following (p — 1)/2 multiples of n: 

13-1  (3) 	 n, 2n, 3n, . . . 
' 	2 
	 n. 

 

If m denotes the number of these residues which exceed p72, then 

(nip) = (-1)m. 

PROOF. The numbers in (3) are incongruent mod p. We consider their least 
positive residues and distribute them into two disjoint sets A and B, according 
as the residues are <p/2 or > p/2. Thus 

A = {a i , a 2 , 	, ak } 

where each ai  --a- tn (mod p) for some t (p — 1)/2 and 0 < a, < p/2; and 

B = {b 1 , b 2 , 	, b„,} 

where each b i  sn (mod p) for some s (p — 1)/2 and p72 < b 1  < p. Note 
that m + k = — 1)/2 since A and B are disjoint. The number m of elements 
in B is pertinent in this theorem. Form a new set C of m elements by sub-
tracting each bi  from p. Thus 

C = {c 1 , c 2 , 	, c„7 }, where c i  = p — bi . 

Now 0 < c i  < p72 so the elements of C lie in the same interval as the elements 
of A. We show next that the sets A and C are disjoint. 

Assume that c i  = ai  for some pair i and j. Then p b, = a, or aj  + bi 
 #0 (mod p). Therefore 

tn + sn (t + s)n -a 0 (mod p) 

for some s and t with 1 < t <p72, 1 <s < p72. But this is impossible since 
p n and 0 < s + t < p. Therefore A and C are disjoint, so their union 
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9.4: Gauss' lemma 

A u C contains m + k = (p — 1)/2 integers in the interval [1, (p — 1)/2]. 
Hence 

P — 

	

AuC= fa ' , a2 , ... , ak , c i , c 2 , ..., cm } = { 1 	 1, 2,  

Now form the product of all the elements in A L.) C to obtain 

(p 	— 1) 
a 1 a2  - • • ak c i c 2  - - • c m  = 	!. 

2 

Since c, = p — b, this gives us 

(P _  I) ! ! 	aa — 	•••a(p — b)(P — b2) - • - (P —  b.) • 	1 2 	k 	1 2 

(-1)ma i a 2  • • ak b i b 2  • • • bm  (mod P) 

( — 1)mn(2n)(3n) 	(P 1  n) (mod p) 
2 

(— l)mn(p-i)/2(P  — 
1), 

2 	' 

Canceling the factorial we obtain 

n
(p- 1)/2 	

— ir (mod p). 

(mod p). 

Euler's criterion shows that ( — r (n I p) (mod p) hence (— ly" = (n I  p) and 

	

the proof of Gauss' lemma is complete. 	 0 

To use Gauss' lemma in practice we need not know the exact value of m, 
but only its parity, that is, whether m is odd or even. The next theorem gives 
a relatively simple way to determine the parity of m. 

Theorem 9.7 Let m be the number defined in Gauss' lemma. Then 

(P-1)/2  tn 	
—  E 

LP]
- + (n — 1) P

2  1  (mod 2). 
t 8 

In particular, i fn is odd we have 

(p- 1)/2 

[
n
] (mod 2). 

t= 	P 

PROOF. Recall that m is the number of least positive residues of the numbers 

p — 

	

 
n, 2n, 3n, ... 	 

2 1 

183 



9: Quadratic residues and the quadratic reciprocity law 

which exceed p/2. Take a typical number, say tn, divide it by p and examine 
the size of the remainder. We have 

—
tn 

= [t—
n 

+ —
tn

}, where 0 < {--
P
-

tn

1 < 1, 
P 	P P 

SO 

tn] 	.[tn} 	[tn 
tn = pH + p — = P — 1+ rr, 

P 	P 	P 

say, where 0 < r, < p. The number r, = tn — p[tn/p] is the least positive 
residue of tn modulo p. Referring again to the sets A and B used in the proof 
of Gauss' lemma we have 

{r 1 , r2 , ..., r( ,_ 1)/2} = {a l , a 2 , ..., ak , b 1 , • • • , bm }. 

Recall also that 

{1, 2, ... 19  — 1 } =  
2 	

{a l , a2 , ..., ak , c i , ..., c„,} 
5   

where each ci  = p — b i . Now we compute the sums of the elements in these 
sets to obtain the two equations 

(p — 1)/2 	k 	m 

E r, = E ai  + E bi  
t= 1 	i= 1 	j=1 

and 

	

(p — 1)/2 	k 	m 	k 	 m 

E t = E cl, + E ci  = E ai  + mp — E bi . 

	

t = 1 	1=1 	j= 1 	i = 1 	 j=1 

In the first equation we replace r, by its definition to obtain 

	

k 	m 	(p — 1)/2 	(p — 1)/2 

E ai + Ebi =n E t—p E [—tn
1 

	

r= 1 	f = 1 	r= 1 	1=1 	P 

The second equation is 
k 	n 	(P —  0/ 2  

mp + E ai  — E b;  = E t. 
i= 1 	j= 1 	t=1 

Adding this to the previous equation we get 

k 	 (p— 1)/2 	(p— 1)/2 tn  
mp + 2Ea i ----(n +1) E t — p E 

1=1 	 t=i 	r = 1 	P 

= (n + 1) P2  8  
1 	(P— 1" [ tn 

P E —1 t=1 	P 
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9.5: The quadratic reciprocity law 

Now we reduce this modulo 2, noting that n + 1-._:_---. n — 1 (mod 2) and 
p = 1 (mod 2), and we obtain 

p2 _ 1 	(p-1)/2[
tn  

m _- (n — 1) 	+ E -1 (mod 2), 
8 	1=1 	P 

which completes the proof. 	 I=1 

9.5 The quadratic reciprocity law 

Both Euler's criterion and Gauss' lemma give straightforward though 
sometimes lengthy procedures for solving the first basic problem of the 
theory of quadratic residues. The second problem is much more difficult. 
Its solution depends on a remarkable theorem known as the quadratic 
reciprocity law, first stated in a complicated form by Euler in the period 
1744-1746, and rediscovered in 1785 by Legendre who gave a partial proof. 
Gauss discovered the reciprocity law independently at the age of eighteen 
and a year later in 1796 gave the first complete proof. 

The quadratic reciprocity law states that if p and q are distinct odd primes, 
then (p I q) = (q I p) unless p q 3 (mod 4), in which case (p I q) = — (q I p). 
The theorem is usually stated in the following symmetric form given by 
Legendre. 

Theorem 9.8 Quadratic reciprocity law. If p and q are distinct odd primes, then 

(4) 	 (P 10(qi P)= (- 1)(P - 1)(q - 1)/4. 

PROOF. By Gauss' lemma and Theorem 9.7 we have 

(q I P) = ( — 1 )m  

where 

(p- 1)/2 [tq 
in =- E -] (mod 2). 

Similarly, 

(pig) = 

where 
(q- 1)/2[1 

r (mod 2). 
s=1 	q 

Hence (pIq)(qIp) = (— l)", and (4) follows at once from the identity 

(1) )/ 2 I-  tql + ( 11-1/ 2 1-spl . p — 1 q — 1 

t=1 [P] 	s=1 li d 	2 	2 ' (5) 
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9: Quadratic residues and the quadratic reciprocity law 

To prove (5) consider the function 

f(x, y) --= qx — py. 

If x and y are nonzero integers then f(x, y) is a nonzero integer. Moreover, 
as x takes the values 1, 2, • .. , (p — 1)/2 and y takes the values 1, 2, ... , 
(q — 1)/2 then f (x, y) takes 

p — 1 q — 1 
2 	2 

values, no two of which are equal since 

f (x, y) — f (x' , y') = f (x — x', Y — y') O. 

Now we count the number of values of f (x, y) which are positive and the 
number which are negative. 

For each fixed x we have f(x, y) > 0 if and only if y < qx/p, or y 
[qx/p]. Hence the total number of positive values is 

(p- 1)/2 qx E H 
x= 	

. 
, 	I' 

Similarly, the number of negative values is 
(q- 1)/2 	] E  [ 

y1 
PY 

= 	q 

Since the number of positive and negative values together is 

p—lq— 1 
2 	2 

this proves (5) and hence (4). 	 El 

Note. The reader may find it instructive to interpret the foregoing proof 
of (5) geometrically, using lattice points in the plane. 

At least 150 proofs of the quadratic reciprocity law have been published. 
Gauss himself supplied no less than eight, including a version of the one 
just given. A short proof of the quadratic reciprocity law is described in an 
article by M. Gerstenhaber [25]. 

9.6 Applications of the reciprocity law 

The following examples show how the quadratic reciprocity law can be 
used to solve the two basic types of problems in the theory of quadratic 
residues. 

EXAMPLE 1 Determine whether 219 is a quadratic residue or nonresidue 
mod 383. 
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Solution 
We evaluate the Legendre symbol (2191383) by using the multiplicative 

property, the reciprocity law, periodicity, and the special values (— 11p) and 
(21p) calculated earlier. 

Since 219 = 3 73 the multiplicative property implies 

(2191383) = (31383)(731383). 

Using the reciprocity law and periodicity we have 
(3 1 3 83)  _ (38313)  ( _ 1)(383-1)(3-1)/4 = 	113) 	0(3-1)/2 = 

and 
(731383)  _ (383l73)(_ 1)(383_1)(73_14 	(18173) = (2173)(9173) 

= (_0((73)2-1)/8 = 1 .  

Hence (2191383) = 1 so 219 is a quadratic residue mod 383. 

EXAMPLE 2 Determine those odd primes p for which 3 is a quadratic residue 
and those for which it is a nonresidue. 

Solution 
Again, by the reciprocity law we have 

(3 1P) = 	1 3)( — 1) (P  "3 1" 	1)(P -1)12(P 13). 

To determine (p13) we need to know the value of p mod 3, and to determine 
(_1)_ 1 )1 2  we need to know the value of (p — 1)12 mod 2, or the value of p 
mod 4. Hence we consider p mod 12. There are only four cases to consider, 
p 1, 5, 7, or 11 (mod 12), the others being excluded since p is odd. 

Case 1. p 	1 (mod 12). In this case p 	1 (mod 3) so (p13) = (113) = 1. 
Also p 	1 (mod 4) so (p — 1)72 is even, hence (31p) = 1. 

Case 2. p 5 (mod 12). In this case p 2 (mod 3) so (pi3) = (2 1 3) = 
( 1)(32 -1" = - 1. Again, (p — 1)72 is even since p 	1 (mod 4), so (31P) = 
—1. 

Case 3. p 	7 (mod 12). In this case p 	1 (mod 3), so (p13) = (1i 3) = 1 
Also (p — 1)/2 is odd since p -= 3 (mod 4), hence (31p) 	—1. 

Case 4. p 	11 (mod 12). In this case p 2 (mod 3) so (p13) = (2 1 3) = 
—1. Again (p — 1)/2 is odd since p 3 (mod 4), hence (31p) = 1. 

Summarizing the results of the four cases we find 

3Rp if p +1 (mod 12) 

3Rp if p 	±5 (mod 12). 

9.7 The Jacobi symbol 
To determine if a composite number is a quadratic residue or nonresidue 
mod p it is necessary to consider several cases depending on the quadratic 
character of the factors. Some calculations can be simplified by using an 
extension of Legendre's symbol introduced by Jacobi. 
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9: Quadratic residues and the quadratic reciprocity law 

Definition If P is a positive odd integer with prime factorization 

p = n  

the Jacobi symbol (n IP) is defined for all integers n by the equation 

(6) 	 (nIP) = n 

where (nIp i) is the Legendre symbol. We also define (n I 1) = 1 

The possible values of (n1 P) are 1, — 1, or 0, with (n IP) = 0 if and only if 
(n, P) > 1. 

If the congruence 

x 2  n (mod P) 

has a solution then (n p3 = 1 for each prime p i  in (6), and hence (n I  P) = 1. 
However, the converse is not true since (n IP) can be 1 if an even number of 
factors — 1 appears in (6). 

The reader can verify that the following properties of the Jacobi symbol 
are easily deduced from properties of the Legendre symbol. 

Theorem 9.9 If P and Q are odd positive integers, we have 

(a) (m1 P)(n 	= (mn P), 
(b) (n1 P) (n1 12) = (n PO, 
(c) (rn IP) = (nIP) whenever m n (mod P), 
(d) (a2n1P) = (nIP) whenever (a, P) = 1. 

The special formulas for evaluating the Legendre symbols (-1 p) and 
(2Ip) also hold for the Jacobi symbol. 

Theorem 9.10 If P is an odd positive integer we have 

(7) 
	

(— 11 	=  

and 

(8) 
	

( 2 1 P ) = 	1 ) P 2  - 1 8  . 

PROOF. Write P = p1  P2 • pm  where the prime factors pi  are not necessarily 
distinct. This can also be written as 

P = 	+ pi  — 1) = 1 + E (pi  — 1) +  
i= 1 	 i= 1 	 ij 
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9.7: The Jacobi symbol 

But each factor p i  - 1 is even so each sum after the first is divisible by 4. 
Hence 

P-a--  1 + E (p i  - 1) (mod 4), 

or 

	

-
2 

(P - 1) 	E - (p. - 1) (mod 2). 
2 I  

Therefore 

	

( -1 1P) = 	( - 1  I pi) = 11 ( - 1 )(P1 	2 = - 1 )(P 1)/ 2 
I = 1 	 i = 1 

which proves (7). 
To prove (8) we write 

p2 	 pi2 _ 1) _ 1 + 	(pi2 _ 1)  + 	(pi2 _ 1)(pi2 _ l)  
i.1 	 i.1 

Since pi  is odd we have pi 2  - 1 0 (mod 8) so 

P2  1 + E (p i 2  - 1) (mod 64) 

hence 

m 
-
I 
(P2 - 1) =E - (p. 2  - 1) (mod 8). 

	

8 	 8  

This also holds mod 2, hence 

	

(21P) = fl(21p) = 	1)(P1 2—  1 )/ 8  = 	1)(P2  — 1)/8 

which proves (8). 

Theorem 9.11 Reciprocity law for Jacobi symbols. If P and Q are positive odd 
integers with (P, Q) = 1, then 

	

(P 1 12)021 	= (- 1)( P - 1)(Q — 1 )/ 4 .  

PROOF. Write P = pi  ••• pm , Q = qi  • • • gn , where the pi  and g i  are primes. 
Then 

m n 

	

(1310(0P) = 	il(p1logilpi)=(-1)r, 
i = 1 j1 

say. Applying the quadratic reciprocity law to each factor we find that 

i1 	L 	 i =1 2 	j=1 
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9: Quadratic residues and the quadratic reciprocity law 

In the proof of Theorem 9.10 we showed that 

in 1 	1 
E - (p i  — 1) a, —

2 
(P — 1) (mod 2), 

and a corresponding congruence holds for E Yq i  — 1). Therefore 

P — 1 Q — 1 
r = 	   

2 	2 	
(mod 2), 

which completes the proof. 	 0 

EXAMPLE 1 Determine whether 888 is a quadratic residue or nonresidue of 
the prime 1999. 

Solution 
We have 

(88811999) = (411999)(211999)(11111999) = (11111999). 

To calculate (11111999) using Legendre symbols we would write 

(11111999) = (311999)(3711999) 

and apply the quadratic reciprocity law to each factor on the right. The 
calculation is simpler with Jacobi symbols since we have 

(11111999) = — (19991111) = — (11111) = —1. 

Therefore 888 is a quadratic nonresidue of 1999. 

EXAMPLE 2 Determine whether — 104 is a quadratic residue or nonresidue of 
the prime 997. 

Solution 
Since 104 = 2 . 4. 13 we have 

( — 1041997) = ( — 11997)(21997)(131997) = —(131997) 

= —(997113) = —(9113) = —1. 

Therefore — 104 is a quadratic nonresidue of 997. 

9.8 Applications to Diophantine equations 

Equations to be solved in integers are called Diophantine equations after 
Diophantus of Alexandria. An example is the equation 

(9) 3  y 2 -= X + k 

where k is a given integer. The problem is to decide, for a given k, whether 
or not the equation has integer solutions x, y and, if so, to exhibit all of them. 
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We discuss this equation here partly because it has a long history, going 
back to the seventeenth century, and partly because some cases can be 
treated with the help of quadratic residues. A general theorem states that the 
Diophantine equation 

Y2  = f(x) 

has at most a finite number of solutions if f (x) is a polynomial of degree 
> 3 with integer coefficients and with distinct zeros. (See Theorem 4-18 in 
LeVeque [44], Vol. 2.) However, no method is known for determining the 
solutions (or even the number of solutions) except for very special cases. 
The next theorem describes an infinite set of values of k for which (9) has 
no solutions. 

Theorem 9.12 The Diophantine equation 

(10) y2 = x3 + k  

has no solutions if k has the form 

(11) k = (4n — 1) 3  — 4m2 , 

where m and n are integers such that no prime p —1 (mod 4) divides m. 

PROOF. We assume a solution x, y exists and obtain a contradiction by 
considering the equation modulo 4. Since k —1 (mod 4) we have 

(12) y2 	x 3  — 1 (mod 4). 

Now y2  0 or 1 (mod 4) for every y, so (12) cannot be satisfied if x is even 
or if x —1 (mod 4). Therefore we must have x 1 (mod 4). Now let 

a = 4n — 1 

so that k = a3  — 4m2 , and write (10) in the form 

(13) y2 ± 4m2 = x3 ± a3 	aRx2 — ax + a 2 ). 

Since x 1 (mod 4) and a —1 (mod 4) we have 

(14) x2  — ax + a2  1 — a + a2  —1 (mod 4). 

Hence x2  — ax + a2  is odd, and (14) shows that all its prime factors 
cannot be 1 (mod 4). Therefore some prime p —1 (mod 4) divides 
x2  — ax + a2 , and (13) shows that this also divides y 2  + 4m 2 . In other words, 

(15) y2 	4m  2 (mod 13) for some p-a--  —1 (mod 4). 

But p m by hypothesis, so ( — 4m 2 1 p) = ( — 1 I p) = — 1, contradicting (15). 
This proves that the Diophantine equation (10) has no solutions when k has 
the form (11). 	 LI 
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9: Quadratic residues and the quadratic reciprocity law 

The following table gives some values of k covered by Theorem 9.12. 

n 

m 

k 

0 

1 

-5 

0 

2 

-17 

0 

4 

-65 -100 

011 

512 

23 11 

 1 

 4 

-37 

1 

5 

-73 

2 

1 

339 

2 

2 

327 

2 

4 

279 

2 

5 

243 

Note. All solutions of (10) have been calculated when k is in the interval 
- 100 < k < 100. (See reference [32].) No solutions exist for the following 
positive values of k < 100: 

k = 6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, 45, 46, 47, 51, 53, 58, 
59, 60, 61, 62, 66, 67, 69, 70, 74, 75, 77, 78, 83, 84, 85, 86, 87, 88, 90, 
93, 95, 96. 

9.9 Gauss sums and the quadratic 
reciprocity law 

This section gives another proof of the quadratic reciprocity law with the 
help of the Gauss sums 

(16) G(n, = E xoe2A1nr/P, 
r mod p 

where x(r) = (Hp) is the quadratic character mod p. Since the modulus is 
prime, x is a primitive character and we have the separability property 

(17) G(n, x) = (nip)G(1, x) 

for every n. Also, Theorem 8.11 implies that 1G(1, X)I 2  = p. The next theorem 
shows that G(1, x)2  is +p. 

Theorem 9.13 If p is an odd prime and x(r) = (rip) we have 

(18) G(1, x) 2  = 	1 1P)P- 

PROOF. We have 
p-1 p-1 

Go, xy 	E E (rI P)(s P)e
2iti(r + s)I p 

r=1 s=1 

For each pair r, s there is a unique t mod p such that s tr (mod p), and 
(r 1 p) (31 	= (r P)(tr 	= (r2  P)(t 13) = (tip). Hence 

P - 1 P - 	 p -  1 	p- 

G(1, b2  = E E (t i  p)e2.411 -Ftwp 

, =1 r= 1 	 t=1 	r=1 

	

E 	E e2' ir" " 1  P 

The last sum on r is a geometric sum given by 

P-1 	 - 1 if p (1 + t), 
p - 1 if pl(1 + t). r=1 
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Therefore 
p-2 	 p- 1 

G(1, x) 2  ,-,--- — E (tip) + (p — 1)(p — 1 1 13) = — E (tip) + A -1 1P) 
t = 1 	 t = 1 

= ( — 1  I P)P 

since Er-fi (tip) = 0. This proves (18). 	 0 

Equation (18) shows that G(1, x) 2  is an integer, so G(1, x) 1  is also an 
integer for every odd q. The next theorem shows that the quadratic reciprocity 
law is connected to the value of this integer modulo q. 

Theorem 9.14 Let p and q be distinct odd primes and let x be the quadratic 
character mod p. Then the quadratic reciprocity law 

(19) (q I p) ,- ( _ 1)(P - 1)(9 - 1)1 4 (p  1 II ) 

is equivalent to the congruence 

(20) G(1, x)q' 	(q I p) (mod q). 

PROOF. From (18) we have 

(21) G(1, ))q- 1 = (_ ii p)(q- 1)/2p(q - 1)12 = ( _ 1)(p- 1)(q- 1)/ 4p(g- 1)12 .  

By Euler's criterion we have poi - 1)/2 -=" (p I q) (mod q) so (21) implies 

(22) G(1, x)q- 1 = ( _ 1 )p - 1)(g- 1)/4 (p lq) (mod q). 

If (20) holds we obtain 

(q I p) -- (— OP - 1 " - I " (p I q) (mod q) 

which implies (19) since both members are +1. Conversely, if (19) holds then 
(22) implies (20). 	 El 

The next theorem gives an identity which we will use to deduce (20). 

Theorem 9.15 If p and q are distinct odd primes and if xis the quadratic character 
mod p we have 

(23) G(1, x) 1  = (gip) E • • • E (r 1  • • • rq  I p). 
ri mod p rq  mod p 

ri+•••+r q  _-- q (modp) 

PROOF. The Gauss sum G(n, x) is a periodic function of n with period p. 
The same is true of G(n, xr so we have a finite Fourier expansion 

G(n, xr = E a q(m)e 2itimni p
, 

m mod p 
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9: Quadratic residues and the quadratic reciprocity law 

where the coefficients are given by 

(24) 	 aq(m) = -
1 

E G(n, xre - 2ximn/p. 
P n mod p 

From the definition of G(n, x) we have 

G(n, 	= y, (ri P)e2,zinritp . . 
r mod p 

(rq  p)e 27thwq 1P 
rq  mod p 

- E • • • E (r • . . 	p)e2itinfri +" +rgyp 
9 

ri mod p 	rq  mod p  

so (24) becomes 

1 
aq(m) = - L • • • E (r 1  • • • rq i 	E e2icinfr i  + + rq — m)/P 

- P ri mod p 	r q  mod p 	 n mod p 

The sum on n is a geometric sum which vanishes unless r 1  + • • • + rq  
m (mod p), in which case the sum is equal to p. Hence 

(25) 	 aq(m) = E 	• • • E (r 1  • rq 1p). 
✓ mod p 	r q  mod p 
✓ + • • • + rq  m (mod P) 

Now we return to (24) and obtain an alternate expression for aq(m). 
Using the separability of G(n, x) and the relation (n1p)q = (n p) for odd q 
we find 

1 	 1 
aq(m) = - G(1, xr E (n1 p)e - 2'inu" = G(1 , XYG(—m,  X) 

n mod p 

1 
= - G(1, X)(m1P)G( — 1 , X) = (m1P)G( 1 , Xr 1  

since 

G(1, x)G( — 1, x) = G(1, x)G(1, X) = I G( 1 , X)I 2  = P. 

In other words, GO, Xr -1  = (m1P)aq(m). Taking m = q and using (25) we 
obtain (23). 	 1=1 

PROOF OF THE RECIPROCITY LAW. To deduce the quadratic reciprocity law 
from (23) it suffices to show that 

(26) 
r mod p 

E (r i  • rq  Ip) 	1 (mod q), 
r, mod p 

where the summation indices r 1 , 	, rq  are subject to the restriction 

(27) 	 r 1  + • • • + rq 	q (mod p). 
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If all the indices r 1 , 	, rq  are congruent to each other mod p, then their 
sum is congruent to qr.;  for each j = 1, 2, ... , q, so (27) holds if, and only if, 

qri  q (mod p), 

that is, if, and only if ri 	1 (mod p) for each j. In this case the corresponding 
summand in (26) is (1 I ) = 1. For all other choices of indices satisfying (27) 
there must be at least two incongruent indices among r 1 , , rq . Therefore 
every cyclic permutation of r 1 , . , rq  gives a new solution of (27) which 
contributes the same summand, (r 1  • • r 4 1 p). Therefore each such summand 
appears q times and contributes 0 modulo q to the sum. Hence the only 
contribution to the sum in (26) which is nonzero modulo q is (11p) = 1. This 
completes the proof. I=1 

9.10 The reciprocity law for quadratic Gauss 
sums 

This section describes another proof of the quadratic reciprocity law based 
on the quadratic Gauss sums 

(28) G(n; m) = 	e2ninr2/m. 

r= 1 

If p is an odd prime and p n we have the formula 

(29) G(n; p) = (n1 p)G(1 ; p) 

which reduces the study of the sums G(n; p) to the case n = 1. Equation (29) 
follows easily from (28) or by noting that G(n ; = G(n, X), where x(n) = (n 
and observing that G(n, x) is separable. 

Although each term of the sum G(1; p) has absolute value 1, the sum 
itself has absolute value 0, \fi or /2p. In fact, Gauss proved the remarkable 
formula 

\An 	if m 1 (mod 4) 
1 r— 	 0 	if m 2 (mod 4) 

(30) G(1; m) = —
2 

Vm(1 + i)(1 + e - nim/ 2  
if m 3 (mod 4) 

(1 + ON/In if m 0 (mod 4) 

for every m > 1. A number of different proofs of (30) are known. We will 
deduce (30) by treating a related sum 

M 1 	2  

SO, in) = E ear  irn )  
r 0 

where a and m are positive integers. If a = 2, then S(2, m) = G(1; m). 
The sums S(a, m) enjoy a reciprocity law (stated below in Theorem 9.16) 

which implies Gauss' formula (30) and also leads to another proof of the 
quadratic reciprocity law. 
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Theorem 9.16 If the product ma is even, we have 

(31) 	 S(a, in) = 	
(1 + i)

S(m, a), 

where the bar denotes the complex conjugate. 

Note. To deduce Gauss' formula (30) we take a = 2 in (31) and observe 
that S(rn, 2) = 1 + e'int12 . 

PROOF. This proof is based on residue calculus. Let g be the function defined 
by the equation 

m -1 
(32) 	 g(z) =  

r =0 

Then g is analytic everywhere, and g(0) = S(a, in). Since ma is even we find 
a— 1 

g (z. ± 1) 	60) = 	 1) = eniaz 2Irl e2niz 	1)  E  e2ninz.  

n=0 

Now define f by the equation 

g(z)  
f (z) = e2'iz 
	1 • 

Then f is analytic everywhere except for a first-order pole at each integer, 
and f satisfies the equation 

(33)

 where 

(34) 

f (z + 1) = f (z) + cp(z), 

a— 1 
go(z) = e1ciaz2lm 	e2itinz. 

n=0 

The function q is analytic everywhere. 
At z = 0 the residue off is g(0)/(27ri) and hence 

(35) S(a, m) = g(0) = 27ri Res f (z) = f (z) dz ;  
z = o 

where y is any positively oriented simple closed path whose graph contains 
only the pole z = 0 in its interior region. We will choose y so that it describes 
a parallelogram with vertices A, A + 1, B + 1, B where 

1 
A = - -

1 
- Re'14  and B = - -

2 
+ Re", 

2 

as shown in Figure 9.1. Integrating f along y we have 
A 1 	B+1 	B 	 A 

ff=fA f+fA+1f4JB+if±fBf 
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m-1 
(38) 	I g[Y(t)] I 	E 

r---=0 

Inia(t  + Re'"  + 02 } 
exp 

m 
5 

9.10: The reciprocity law for quadratic Gauss sums 

A+ 

Figure 9.1 

In the integral flt,1 f we make the change of variable w = z + 1 and then 
use (33) to get 

	

B+1 	 B 	 B 	 B 

f(w) dw = i f (z + 1) dz = f f (z) dz + f co(z) dz. 

	

f A+1 	 A 	 A 	 A 

Therefore (35) becomes 
B 	 A+1 	 B+1 

(36) S(a, m) = i cp(z) dz + .1. 	f (z) dz — i 	f (z) dz. 
A 	 A 	 B 

Now we show that the integrals along the horizontal segments from A to 
A + 1 and from B to B + 1 tend to 0 as R —> + co. To do this we estimate the 
integrand on these segments. We write 

I g(z)!  
(37) I f (z)I = 	2 ' 	, I e ir iz  — i i '  

and estimate the numerator and denominator separately. 
On the segment joining B to B + 1 we let 

	

1 	1 
At) = t + Re'14 , where — —

2 —
< t 

—
< —

2
. 

From (32) we find 

where exp z = ez . The expression in braces has real part 

— ira(tR + R 2  + \/.1-R) 

m 
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Since lex +  iY 1 = ex and exp{ — nalirRIm} < 1, each term in (38) has absolute 
value not exceeding exp{ — naR 2/m}exp{ — jinatRIm}. But — 1/2 t 1/2, 
so we obtain the estimate 

I g[7(0]1 .__. me  IENIaRI(2m)e— iraR2im. 

For the denominator in (37) we use the triangle inequality in the form 
l e 2niz _ ii ... ile2.i. 1 _ 11.  

Since I exp{27a7(0} I = exp{ — 2nR sin(n/4)} = exp{ — jinRI, we find 

1e 21`1)4i)  — 11 > 1 — cf2 nR. 

Therefore on the line segment joining B to B + 1 we have the estimate 

me avr2aR1(2m)
e
- waR 2 Ini 

I f (z)1 	
1 - e Thr 2  AR 
	  = o(1) as R -- + oo. 

A similar argument shows that the integrand tends to 0 on the segment 
joining A to A + 1 as R — ■ + co. Since the length of the path of integration 
is 1 in each case, this shows that the second and third integrals on the right 
of (36) tend to 0 as R —> + cc. Therefore we can write (36) in the form 

B 

(39) S(a, m) = i 9(z) dz + o(1) as R -- + CO. 
A 

To deal with the integral .ri  9 we apply Cauchy's theorem, integrating 
yo around the parallelogram with vertices A, B, a, —a, where a = B + 4 = 
Re' il4  . (See Figure 9.2.) Since co is analytic everywhere, its integral around this 
parallelogram is 0, so 

(40)
rm 	r  - a 	rA 

) + j 9 + i 9 + j 9 = O. 
f

B 

(1 
A 	B 	a 	—a 

Figure 9.2 
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Because of the exponential factor et iaz 2im in (34), an argument similar to that 
given above shows that the integral of 9 along each horizontal segment - ■ 0 
as R + cc. Therefore (40) gives us 

B 

I 9 = 	9 + o(1) .as R + , 

	

A 	 -8 

and (39) becomes 

(41) S(a, m) = 	9(z) dz + o(1) as R 	+ co, 

where a = Re". Using (34) we find 

Ia 

	 a— 1 j(*a 	 a-1 _ 

	

co(z) dz = E 	
eitia.2/7„e2.in. dz  = E  c iumn2/a/(a, m, n,  R ),  

— a 	 n = 0 — a 	 n=0 

where 
a 	 2 

I(a, m, n, R) = f expf 
n
-
ia (

z + 
nm

)}  dz. 
a 

Applying Cauchy's theorem again to the parallelogram with vertices -a, a, 
a - (nm/a), and -a - (nm/a), we find as before that the integrals along the 
horizontal segments - ■ 0 as R + cc,  so 

mnla nia 	nm 2  
I(a, m, n, R) = 	expt—

m 

z + —
a

)} dz + o(1) as R + co. 
-a- nmla 

The change of variable w = .\/a/m(z + (nm/ a)) puts this into the form 

a,/alm 

l(a, m, n, R) = 	 eiw 2  dw + o(1) as R-* co. 
a -8,7577n 

Letting R 	+ oo in (41), we find 

a— 1 

	

n=0 	 a R-> +.0 -12,/alme'114 

M . 
(42) S(a, = E 	 — lim 	eiw2  dw. 

By writing T = .\/a/mR, we see that the last limit is equal to 
Text/ 4  

lirn I 	ei w 2  dw = I 
T + oo —Ten , 1 4  

say, where I is a number independent of a and m. Therefore (42) gives us 

(43) S(a, 	= -
a 

IS(m, a). 

To evaluate I we take a = 1 and m = 2 in (43). Then S(1, 2) = 1 + i and 
S(2, 1) = 1, so (43) implies I = (1 + i)/.\/, and (43) reduces to (31). 	0 
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k 1  + i  2h-1 E  e -nikr2/(2h) 
2 	r=0 	

• (45) G(h ; k) = S(2h, k) = 

9: Quadratic residues and the quadratic reciprocity law 

Theorem 9.16 implies a reciprocity law for quadratic Gauss sums. 

Theorem 9.17 If h > 0, k > 0, h odd, then 

G(h; k) = 	
k 1 + 

 (1 + e 112)G(k; h). 
2 

PROOF. Take a = 2h, m = k in Theorem 9.16 to obtain 

(44) 

We split the sum on r into two parts corresponding to even and odd r. 
For even r we write r = 2s where s = 0, 1, 2, . . . , h — 1. For odd r we note that 
(r + 2h)2  r2  (mod 4h) so the sum can be extended over the odd numbers 
in any complete residue system mod 2h. We sum over the odd numbers in the 
interval h < r < 3h, writing r = 2s + h, where s = 0, 1, 2, . , h — 1. (The 
numbers 2s + h are odd and distinct mod 2h.) This gives us 

2h-1 	 h-1 	 h-1 
aE e r2/(21) = 	e —nik(2s) 21(2h)  

L e 
r -=0 	 s= 0 	 s=0 

h-1 
= E e —itihk12) 

s=0 

= (1 ± e k/2)G(k ; 	h) .  

	

Using this in (45) we obtain (44). 	 LI 

9.11 Another proof of the quadratic 
reciprocity law 

Gauss' formula (30) leads to a quick proof of the quadratic reciprocity law. 
First we note that (30) implies 

G(1 ; k) = 	1)214jc 

if k is odd. Also, we have the multiplicative property (see Exercise 8.16(a)) 

G(m; n)G(n; m) = G(1; mn) if (m, n) = 1. 

Therefore, if p and q are distinct odd primes we have 

G(p; q) = (plq)G(1; q) = (plq)i(4-1)214 -\/4 

G(q; p) = (q p)G(1 ; p) = (q p)i(P 1)2/4\/ 

and 

G(p; q)G(q; p) = G(1; pq) = i(P4-1)214,\/pq. 
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Exercises for Chapter 9 

Comparing the last equation with the previous two we find 

(p 1 (4) (14 I p)i 'Kg — 1) 2  + (p— 1)2}/4 = i(pq — 1)2 / 4 , 
and the quadratic reciprocity law follows by observing that 

1) 2  — (q — 1) 2 —(p— 1) 2 )/4 _ ( _ 1)(p— 1)(q— 1)/4 . 	 El 

Exercises for Chapter 9 

1. Determine those odd primes p for which ( — 31 p) = 1 and those for which ( —31 p) = 
—1. 

2. Prove that 5 is a quadratic residue of an odd prime p if p ---_ + 1 (mod 10), and that 
5 is a nonresidue if p --- + 3 (mod 10). 

3. Let p be an odd prime. Assume that the set {1, 2, ... , p — 1} can be expressed as the 
union of two nonempty subsets S and T, S 0 T, such that the product (mod p) of any 
two elements in the same subset lies in 5, whereas the product (mod p) of any 
element in S with any element in T lies in T. Prove that S consists of the quadratic 
residues and T of the non residues mod p. 

4. Letf (x) be a polynomial which takes integer values when x is an integer. 
(a) If a and b are integers, prove that 

E (f(ax + 141P) = E (f(x)Ip) if (a, P) = 1 , 
x Mod p 	 x mod p 

and that 

E (af (x)I P) = (a I P) E (fool p) for all a. 

	

x mod p 	 x mod p 

(b) Prove that 

E (ax + b I p) = 0 if (a, p) . 1. 
x mod p 

(c) Let f (x) = x(ax + b), where (a, p) . (b, p) = 1. Prove that 

	

12—  1 	 P -1  

E (pop) = E (a + bx 1 13) = — (aIP). 

	

x =I 	x=1 

[Hint: As x runs through a reduced residue system mod p, so does x', the 
reciprocal of x mod p.] 

5. Let a and 13 be integers whose possible values are +1. Let N (a, /3) denote the number 
of integers x among 1, 2, ... , p — 2 such that 

(x1P) = et 
	and (x + 1 IP) — fi, 

where p is an odd prime. Prove that 

p — 2 
4N(a, 18) = E {1 + cc(x I p)} {1 + ,6(x + 11 p)}  , 

x= 1 

201 



9: Quadratic residues and the quadratic reciprocity law 

and use Exercise 4 to deduce that 

4N(cc, 13) = p — 2 — — a/3 — a( — lip). 

In particular this gives 

N(1, 1) = 
p 

 — 4—  (-11p)  

p - 2 + (—  p) 
N(— 1, —1) = N(— 1, 1) = 

4 

N(1, —1) = 1 + N(1,1). 

6. Use Exercise 5 to show that for every prime p there exist integers x and y such that 
x2 + y2 + 1  0 (mod p). 

7. Let p be an odd prime. Prove each of the following statements: 

1 

(a) E rfrip) = 0 if p 	1 (mod 4). 

p- 	p(p —1) (b) E r = 	4  	if p 1 (mod 4). 

(r; .12-) ,-1--  1 

P - 1 
	

P -1  

(c) r2 (r IP) = P 	r(r Pp) if p 	3 (mod 4). 
r =1 	 r =1 

12-  

(d)E r3(r IP) = 
r= 1 

3 p-1 

— p E r2(rip) 
2 r=1 

if p 	1 (mod 4). 

p - 1 	 P -1 
	

P -1  

(e) r4(r IP) = 2P E r3(r IP) - p2 	r2(r 1 p) if p 	3 (mod 4). 
r=1 
	

r=1 
	

r =1 

[Hint: p — r runs through the numbers 1, 2, ... , p — 1 with r.] 

8. Let p be an odd prime, p 3 (mod 4), and let q = (p — 1)/2. 

(a) Prove that 

{1 — 2(2lp)lir(rip) =p 	E (rip). 
2 	r  = 1 

[Hint• As r runs through the numbers 1, 2, ... , q then r and p — r together run 
through the numbers 1, 2, ... , p 1, as do 2r and p — 2r.] 

(b) Prove that 

P -1  

{( 2 119) - 2 } E r(rip) = p 	(r1/3). 
r1 	 r = 1 

4 

r=1 
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Exercises for Chapter 9 

9. If p is an odd prime, let x(n) = (nip). Prove that the Gauss sum G(n, x) associated 
with x is the same as the quadratic Gauss sum G(n; p) introduced in Exercise 8.16 
if (n, p) = 1. In other words, if p ,f' n we have 

G(n, x) = 
P 

E x(m)e2-imniP = E  e 2ninr 2/p = G(n; p). 
m mod p 	 r=1 

It should be noted that G(n, x) 0 G(n; p) if p i n because G(p, x) = 0 but G(p ; IA = p. 

10. Evaluate the quadratic Gauss sum G(2; p) using one of the reciprocity laws. Com -
pare the result with the formula G(2; p) = (21 p)G(1; p) and deduce that (2 1p) = 
( — 1) ( P 2- 1 " if p is an odd prime. 
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10 Primitive Roots 

10.1 The exponent of a number mod in. 
Primitive roots 

Let a and m be relatively prime integers, with m > 1, and consider all the 
positive powers of a: 

a, a2
, a3

, . . . 

We know, from the Euler-Fermat theorem, that dP( m )  1 (mod m). How-
ever, there may be an earlier power af such that af -a-  1 (mod m). We are 
interested in the smallest positive f with this property. 

Definition The smallest positive integer f such that 

af 1 (mod m) 

is called the exponent of a modulo m, and is denoted by writing 

f = expm(a). 

If exp„,(a) = p(m) then a is called a primitive root mod m. 

The Euler-Fermat theorem tells us that exp m(a) (p(m). The next theorem 
shows that exp m(a) divides yo(m). 

Theorem 10.1 Given m _>: 1, (a, m) = 1, let f = expm(a). Then we have: 

(a) ce ah  (mod m) if, and only if, k h (mod f). 
(b) ak  = 1 (mod m) if, and only if, k --.E- 0 (mod f). In particularf i(P(m). 
(c) The numbers 1, a, a2 , .. . , af - 1  are incongruent mod m. 
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10.2: Primitive roots and reduced residue systems 

PROOF. Parts (b) and (c) follow at once from (a), so we need only prove (a). 
If a" 	(mod m) then alc- h  1 (mod m). Write 

k h = qf + r, where 0 < r < 

Then 1 	aq f r  ar (mod m), so r = 0 and k h (mod f). 
Conversely, if k h (mod f) then k — h = qf so a' 1 (mod m) 

and hence Cl ic 	(mod m). 	 LI 

10.2 Primitive roots and reduced residue 
systems 

Theorem 10.2 Let (a, m) = 1. Then a is a primitive root mod m if and only if 
the numbers 

(1) 
	

a, a2
, . . . , ac")  

form a reduced residue system mod m. 

PROOF. If a is a primitive root the numbers in (1) are incongruent mod m, by 
Theorem 10.1(c). Since there are p(m) such numbers they form a reduced 
residue system mod m. 

Conversely, if the numbers in (1) form a reduced residue system, then 
ac")  1 (mod m) but no smaller power is congruent to 1, so a is a primitive 
root. LI 

Note. In Chapter 6 we found that the reduced residue classes mod m form 
a group. If m has a primitive root a, Theorem 10.2 shows that this group is 
the cyclic group generated by the residue class a. 

The importance of primitive roots is explained by Theorem 10.2. If m 
has a primitive root then each reduced residue system mod m can be expressed 
as a geometric progression. This gives a powerful tool that can be used in 
problems involving reduced residue systems. Unfortunately, not all moduli 
have primitive roots. In the next few sections we will prove that primitive 
roots exist only for the following moduli: 

m = 1, 2, 4, pa, and 2e, 
where p is an odd prime and a > 1. 

The first three cases are easily settled. The case m = 1 is trivial. For m = 2 
the number 1 is a primitive root. For m = 4 we have y9(4) = 2 and 3 2  
1 (mod 4), so 3 is a primitive root. Next we show that there are no primitive 
roots mod 2' if a > 3. 
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10: Primitive roots 

10.3 The nonexistence of primitive roots 
mod 2a for a > 3 

Theorem 10.3 Let x be an odd integer. If a > 3 we have 

(2) 
	

1 (mod 22), 

so there are no primitive roots mod 22 . 

PROOF. If a = 3 congruence (2) states that x 2 	1 (mod 8) for x odd. This is 
easily verified by testing x = 1, 3, 5, 7 or by noting that 

(2k + 1) 2  = 4k 2  + 4k + 1 = 4k(k + 1) + 1 

and observing that k(k + 1) is even. 
Now we prove the theorem by induction on a. We assume (2) holds for 

a and prove that it also holds for a + 1. The induction hypothesis is that 

x`P(29/ 2  = 1 + 22t, 

where t is an integer. Squaring both sides we obtain 

x`P(2 ')  = 1 + 22f1 1-  + 222t2  = 1 (mod 2" +  

because 2a > a + 1.This completes the proof since 02 2) = 20( — 1 = (p (2Ce+ 1)/2 .  

El 

10.4 The existence of primitive roots mod p 
for odd primes p 

First we prove the following lemma. 

Lemma 1 Given (a, m) = 1, let f = exp„,(a). Then 

expm(ak) 	exp,(a) 

f) 

In particular, exp„,(a k) = exp,„(a) if, and only if, (k, f) = 1. 

PROOF. The exponent of ak  is the smallest positive x such that 

a' 1 (mod m). 

This is also the smallest x> 0 such that kx 0 (mod f). But this latter 
congruence is equivalent to the congruence 

x 0 (mod) 'L.) 
d 

where d = (k, f). The smallest positive solution of this congruence is f Id, 
so exp,n(ak) = fld, as asserted. 	 El 
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10.4: The existence of primitive roots mod p for odd primes p 

Lemma 1 will be used to prove the existence of primitive roots for prime 
moduli. In fact, we shall determine the exact number of primitive roots 
mod p. 

Theorem 10.4 Let p be an odd prime and let d be any positive divisor of p — 1. 
Then in every reduced residue system mod p there are exactly 9(d) numbers 
a such that 

expp(a) = d. 

In particular, when d = co(p) = p — 1 there are exactly cp(p — 1) primitive 
roots mod p. 

PROOF. We use the method employed in Chapter 2 to prove the relation 

L 9(d) = n. 
din 

The numbers 1, 2, ... , p — 1 are distributed into disjoint sets A(d), each set 
corresponding to a divisor d of p — 1. Here we define 

A(d) = Ix : 1 x p — 1 and expp(x) = dl. 

Let f (d) be the number of elements in A(d). Then f (d) > 0 for each d. Our 
goal is to prove that f (d) = 9(d). 

Since the sets A(d) are disjoint and since each x = 1, 2, . . . , p — 1 falls into 
some A(d), we have 

E f (d) = p — 1. 
dip— 1 

E 

But we also have 

p(d) = P — 1  
dip —  1 

SO 

E {9(d)— f(d)} = 0. 
dip- 1 

To show each term in this sum is zero it suffices to prove that f (d) yp(d). 
We do this by showing that either f (d) = 0 or f (d) = 9(d); or, in other words, 
that f (d) 0 0 implies f (d) = 9(d). 

Suppose that f (d) 0 0. Then A(d) is nonempty so a e A(d) for some a. 
Therefore 

expp(a) = d, hence ad  a 1 (mod p). 

But every power of a satisfies the same congruence, so the d numbers 

(3) 
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10: Primitive roots 

are solutions of the polynomial congruence 

(4) 	 — 1 0 (mod p), 

these solutions being incongruent mod p since d = expp(a). But (4) has at 
most d solutions since the modulus is prime, so the d numbers in (3) must be 
all the solutions of (4). Hence each number in A(d) must be of the form aic 
for some k = 1, 2, d. When is expp(ak) = d? According to Lemma 1 this 
occurs if, and only if, (k, d) = II . In other words, among the d numbers in (3) 
there are cp(d) which have exponent d modulo p. Thus we have shown that 
f (d) = p(d) if f (d) 0 0. As noted earlier, this completes the proof. 	LI 

10.5 Primitive roots and quadratic residues 

Theorem 10.5 Let g be a primitive root mod p, where p is an odd prime. Then 
the even powers 

g2 , g4, 	gp- 1 

are the quadratic residues mod p, and the odd powers 

g 3 ,  

are the quadratic nonresidues mod p. 

PitooF. If n is even, say n = 2m, then gn = (gm) 2  so 

gn =- x 2  (mod p), where x = gm. 

Hence g"Rp. But there are (p — 1)/2 distinct even powers g 2 , 	, gP -1  
modulo p and the same number of quadratic residues mod p. Therefore the 
even powers are the quadratic residues and the odd powers are the non- 
residues. 	 I=1 

10.6 The existence of primitive roots mod p' 

We turn next to the case m = 132, where p is an odd prime and a > 2. In 
seeking primitive roots mod p' it is natural to consider as candidates the 
primitive roots mod p. Let g be such a primitive root and let us ask whether 
g might also be a primitive root mod p 2 . Now g"' (mod p) and, since 
(p(p 2 ) = p(p — 1) > p — 1, this g will certainly not be a primitive root 
mod p2  if gP- 1  1 (mod pi. Therefore the relation 

gP- 1  # 1 (mod p2 ) 

is a necessary condition for a primitive root g mod p to also be a primitive 
root mod p2 . Remarkably enough, this condition is also sufficient for g 
to be a primitive root mod p2  and, more generally, mod p' for all powers 
a > 2. In fact, we have the following theorem. 
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10.6: The existence of primitive roots mod p" 

Theorem 10.6 Let p be an odd prime. Then we have: 

(a) If g is a primitive root mod p then g is also a primitive root mod p" for 
all a 	1 if, and only if, 

(5) 
	

gP-1  0 1 (mod p 2 ). 

(b) There is at least one primitive root g mod p which satisfies (5), hence 
there exists at least one primitive root mod pa if a > 2. 

PROOF. We prove (b) first. Let g be a primitive root mod p. IfgP -  # 1 (mod p9 
there is nothing to prove. However, if g 	(mod p9 we can show that 
g l  = g + p, which is another primitive root modulo p, satisfies the condition 

g 1 P -1  # 1 (mod p 2 ). 

In fact, we have 
g i ll -  1 = (g 	p)'' 1 	g 1 + 	1 )g13 2p  + tp2 

gP 1 + (p2 p)gP 2 (mod p2) 

1 — pgP -2  (mod p2 ). 

But we cannot have pgP- 2  0 (mod p9 for this would imply gP- 2  
0 (mod p), contradicting the fact that g is a primitive root mod p. Hence 

1 (mod p9, so (b) is proved. 
Now we prove (a). Let g be a primitive root modulo p. If this g is a primitive 

root mod p. for all a > 1 then, in particular, it is a primitive root mod p 2  and, 
as we have already noted, this implies (5). 

Now we prove the converse statement. Suppose that g is a primitive 
root mod p which satisfies (5). We must show that g is also a primitive 
root mod p. for all a > 2. Let t be the exponent of g modulo p.. We wish 
to show that t = cp(p). Since gt 1 (mod p.) we also have gt a- 1 (mod p) so 

It and we can write 

(6) t = q9(p). 

Now t cp(pc`) so qcp(p) I q)(e). But 9(p2) = p•- 1 (p — 1) hence 

q(p _ 1)ip.-1 (p  _ 1)  

which means q I - Therefore q = p° where /3 < a — 1, and (6) becomes 

t = ps(p — 1). 

If we prove that # = a — 1 then t = 9(t) and the proof will be complete. 
Suppose, on the contrary, that 13 < a — 1. Then f? < a — 2 and we have 

t = /AP 1 )1If -2(P — 1 ) = 

Thus, since (p(p`r -1 ) is a multiple of t, this implies, 

(7) OP') 1 (mod pa). 
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10: Primitive roots 

But now we make use of the following Lemma which shows that (7) is a 
contradiction. This contradict -ion will complete the proof of Theorem 10.6. 

El 

Lemma 2 Let g be a primitive root modulo p such that 

(8) gP-  # 1 (mod p9. 

Then for every a > 2 we have 

(9) go:e - 1) 	1 (mod pl. 

PROOF OF LEMMA 2. We use induction on a. For a = 2, relation (9) reduces 
to (8). Suppose then, that (9) holds for a. By the Euler-Fermat theorem 
we have 

go' = 1 (mod p2-1 ) 

SO 

' = 1 + kp2- 1  

where p r  k because of (9). Raising both sides of this last relation to the pth 
power we find 

Ow)  = (1 + kp2- 1 )P = 1 + kpa  + k2 	—  1)  p2(`` - 1)  + rp3(2-  "- 2 

Now 2a — 1 > a + 1 and 3a — 3 > a + 1 since a > 2. Hence, the last 
equation gives us the congruence 

go(P) EE 1 + kif (mod pa') 

where p r  k. In other words, OP')  1 (mod p' 1 ) so (9) holds for a + 1 
if it holds for a. This completes the proof of Lemma 2 and also of Theorem 
10.6. 	 0 

10.7 The existence of primitive roots mod 2p' 

Theorem 10.7 If p is an odd prime and cc 1 there exist odd primitive roots 
g modulo pa. Each such g is also a primitive root modulo 2p 2 . 

PROOF. If g is a primitive root modulo pa so is g + p2 . But one of g or g + pa 

is odd so odd primitive roots mod pa always exist. Let g be an odd primitive 
root mod pa and let f be the exponent of g mod 2p'. We wish to show that 
f = cp(2p2). Now f I  cp(2p2), and (p(2e) = cp(2) p(pa) = q(pa) so f l(p(p2). On 
the other hand, gf 	1 (mod 2p') so gf --a- 1 (mod pa), hence cp(p2)1 f since 
g is a primitive root mod pa. Therefore f = cp(pa) = cp(2p2), so g is a primitive 
root mod 2p1 . 	 El 
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10.8: The nonexistence of primitive roots in the remaining cases 

10.8 The nonexistence of primitive roots in 
the remaining cases 

Theorem 10.8 Given m > 1 where m is not of the form m = 1, 2, 4, p , or 2p2 , 
where p is an odd prime. Then for any a with (a, m) = 1 we have 

dP(m )12 	1 (mod m), 

so there are no primitive roots mod M. 

PROOF. We have already shown that there are no primitive roots mod 2' 
if a > 3. Therefore we can suppose that m has the factorization 

m = 22p i  • • • psGts 

where the pi  are odd primes, s > 1, and a > 0. Since m is not of the form 
1, 2, 4, p or 2pcc we have a > 2 if s = 1 and s > 2 if a = 0 or 1. Note that 

(P(m) = (P(22)(P(P1' 1 ) • • (P(Ps2s). 

Now let a be any integer relatively prime to m. We wish to prove that 

d'0(m )12 	1 (mod m). 

Let g be a primitive root mod p i '' and choose k so that 

a 	gk  (mod p i "'). 

Then we have 

(10) dponY2 	gk O(1")/ 2 	gttP(P17i)  (mod pi'') 

where 

t = k(P(22)(P(P2 a2) • • • (4:5)/1  

We will show that t is an integer. If a > 2 the factor cp(2 2) is even and hence 
t is an integer. If a = 0 or 1 then s > 2 and the factor (p(p22)  is even, so t is an 
integer in this case as well. Hence congruence (10) gives us 

In the same way we find 

(11) 

aom) 1 2 	1 (mod pic"). 

a9(m )12 	1 (mod pi2 i) 

for each i = 1, 2, ... , s. Now we show that this congruence also holds mod 2. 
If a > 3 the condition (a, m) = 1 requires a to be odd and we may apply 
Theorem 10.3 to write 

ao(22 _= 1 (mod r). 
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10: Primitive roots 

Since cp(2') I  (p(m) this gives us 

(12) dPfm)/2 	1 (mod 2") 

for a > 3. 
If a < 2 we have 

(13) a`P( ') 	1 (mod 2'). 

But s 	1 so cp(m) = (p(2')9(p 1 '') • • • cp(p) = 2rT(22) where r is an integer. 
Hence (19(2")1 cp(m)/2 and (13) implies (12) for a 	2. Hence (12) holds for all a. 
Multiplying together the congruences (11) and (12) we obtain 

	

acp(mv2 	1 (mod m), 

and this shows that a cannot be a primitive root mod m. 	 LI 

10.9 The number of primitive roots mod m 

We have shown that an integer m > 1 has a primitive root if and only if 

m = 1, 2, 4, e or 2e, 

where p is an odd prime and a > 1. The next theorem tells us how many 
primitive roots exist for each such m. 

Theorem 10.9 If m has a primitive root g then m has exactly cp(cp(m)) incongruent 
primitive roots and they are given by the numbers in the set 

S = {g" :1 	n 	cp(m), and (n, (p(m)) = 11. 

PROOF. We have exp(g) = (p(m), and Lemma 1 shows that exp(g") = exp,n(g) 
if and only if (n, cp(m)) = 1. Therefore each element of S is a primitive root 
mod m. 

Conversely, if a is a primitive root mod m, then a g" (mod m) for some 
k = I, 2, . , (p(m). Hence exp n,(e) = exp,n(a) = cp(m), and Lemma 1 implies 
(k, cp(m)) = 1. Therefore every primitive root is a member of S. Since S 
contains cp(cp(m)) incongruent members mod m the proof is complete. LI 

Although we have shown the existence of primitive roots for certain 
moduli, no direct method is known for calculating these roots in general 
without a great deal of computation, especially for large moduli. Let g(p) 
denote the smallest primitive root mod p. Table 10.1 lists g(p) for all odd 
primes p < 1000. 
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10.10: The index calculus 

Table 10.1 g(p) is the smallest primitive root of the prime p 

P g(P) P g(P) P g(P) P g(P) P g(P) P g(P) 

2 1 109 6 269 2 439 15 617 3 811 3 
3 2 113 3 271 6 443 2 619 2 821 2 
5 2 127 3 277 5 449 3 631 3 823 3 
7 3 131 2 281 3 457 13 641 3 827 2 

11 2 137 3 283 3 461 2 643 11 829 2 

13 2 139 2 293 2 463 3 647 5 839 11 
17 3 149 2 307 5 467 2 653 2 853 2 
19 2 151 6 311 17 479 13 659 2 857 3 
23 5 157 5 313 10 487 3 661 2 859 2 
29 2 163 2 317 2 491 2 673 5 863 5 

31 3 167 5 331 3 499 7 677 2 877 2 
37 2 173 2 337 10 503 5 683 5 881 3 
41 6 179 2 347 2 509 2 691 3 883 2 
43 3 181 2 349 2 521 3 701 2 887 5 
47 5 191 19 353 3 523 2 709 2 907 2 

53 2 193 5 359 7 541 2 719 11 911 17 
59 2 197 2 367 6 547 2 727 5 919 7 
61 2 199 3 373 2 557 2 733 6 929 3 
67 2 211 2 379 2 563 2 739 3 937 5 
71 7 223 3 383 5 569 3 743 5 941 2 

73 5 227 2 389 2 571 3 751 3 947 2 
79 3 229 6 397 5 577 5 757 2 953 3 
83 2 233 3 401 3 587 2 761 6 967 5 
89 3 239 7 409 21 593 3 769 11 971 6 
97 5 241 7 419 2 599 7 773 2 977 3 

101 2 251 6 421 2 601 7 787 2 983 5 
103 5 257 3 431 7 607 3 797 2 997 7 
107 2 263 5 433 5 613 2 809 3 

10.10 The index calculus 
If m has a primitive root g the numbers 1, g, g2 , . . . , ggi (m )- 1  form a reduced 
residue system mod m. If (a, m) = 1 there is a unique integer k in the interval 
0 -. k co(m) — 1 such that 

a gk  (mod m). 

This integer is called the index of a to the base g (mod m), and we write 

k = indg  a 

or simply k = ind a if the base g is understood. 
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10: Primitive roots 

The following theorem shows that indices have properties analogous to 
those of logarithms. The proof is left as an exercise for the reader. 

Theorem 10.10 Let g be a primitive root mod m. If (a, m) = (b, m) = 1 we have: 

(a) ind(ab) ind a + ind b (mod cp(m)). 
(b) ind a" n ind a (mod (p(m)) if n 	1. 
(c) ind 1 = 0 and ind g = 1. 
(d) ind( —1) = cp(m)/2 if m> 2. 
(e) If g' is also a primitive root mod m then 

ind, a # ind9 , a • ind9  g' (mod 49(m)). 

Table 10.2 on pp. 216-217 lists indices for all numbers a # 0 (mod p) and 
all odd primes p < 50. The base g is the smallest primitive root of p. 

The following examples illustrate the use of indices in solving congruences. 

EXAMPLE 1 Linear congruences. Assume m has a primitive root and let 
(a, m) = (b, m) = 1. Then the linear congruence 

(14) 	 ax b (mod m) 

is equivalent to the congruence 

ind a + ind x ind b (mod Onn, 

so the unique solution of (14) satisfies the congruence 

ind x ind b — ind a (mod (p(m)). 

To treat a numerical example, consider the linear congruence 

9x 13 (mod 47). 

The corresponding index relation is 

ind x ind 13 — ind 9 (mod 46). 

From Table 10.2 we find ind 13 = 11 and ind 9 = 40 (for p = 47), so 

ind x 11 — 40 —29 a-  17 (mod 46). 

Again from Table 10.2 we find x 38 (mod 47). 

EXAMPLE 2 Binomial congruences. A congruence of the form 

x" a (mod m) 

is called a binomial congruence. If m has a primitive root and if (a, m) = 1 
this is equivalent to the congruence 

n ind x ind a (mod (p(m)), 
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10.10: The index calculus 

which is linear in the unknown ind x. As such, it has a solution if, and only if, 
ind a is divisible by d = (n, (p(m)), in which case it has exactly d solutions. 

To illustrate with a numerical example, consider the binomial congruence 

(15) x' -=- a (mod 17). 

The corresponding index relation is 

(16) 8 ind x --a: ind a (mod 16). 

In this example d --- (8, 16) = 8. Table 10.2 shows that 1 and 16 are the only 
numbers mod 17 whose index is divisible by 8. In fact, ind 1 = 0 and ind 16 = 
8. Hence (15) has no solutions if a # 1 or a # 16 (mod 17). 

For a = 1 congruence (16) becomes 

(17) 8 ind x 0 (mod 16), 

and for a = 16 it becomes 

(18) 8 ind x --. 8 (mod 16). 

Each of these has exactly eight solutions mod 16. The solutions of (17) are 
those x whose index is even, 

x 	1, 2, 4, 8, 9, 13, 15, 16 (mod 17). 

These, of course, are the quadratic residues of 17. The solutions of (18) are 
those x whose index is odd, the quadratic nonresidues of 17, 

x = 3, 5, 6, 7, 10, 11, 12, 14 (mod 17). 

EXAMPLE 3 Exponential congruences. An exponential congruence is one of 
the form 

ax b (mod m). 

If m has a primitive root and if (a, m) = (b, m) = 1 this is equivalent to 
the linear congruence 

(19) x ind a a ind b (mod Om)). 

Let d = (ind a, Om* Then (19) has a solution if, and only if, d i ind b, in 
which case there are exactly d solutions. In the numerical example 

(20) 25x -- 17 (mod 47) 

we have ind 25 = 2, ind 17 . 16, and d = (2, 46) = 2. Therefore (19) 
becomes 

2x _. 16 (mod 46), 

with two solutions, x -= 8 and 31 (mod 46). These are also the solutions of 
(20) mod 47. 
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Table 10.2 Indices of all numbers a # 0 (mod p) for odd primes p < 50. The base g is the smallest primitive 
root of p. 

Primes 
a 3 5 7 11 13 17 19 23 29 31 37 41 43 47 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 2 1 1 14 1 2 1 24 1 26 27 18 e

n
 3 1 8 4 1 13 16 5 1 26 15 1 20 

2 4 2 2 12 2 4 2 18 2 12 12 36 
5 4 9 5 16 1 22 20 23 22 25 1 

C
D

  
\  0

  l"
- -
 
0

0
 

3 9 5 15 14 18 6 25 27 1 28 38 
7 11 11 6 19 12 28 32 39 35 32 
3 3 10 3 6 3 12 3 38 39 8 
6 8 2 8 10 10 2 16 30 2 40 
5 10 3 17 3 23 14 24 8 10 19 

11 7 7 12 9 25 23 30 3 30 7 
12 6 13 15 20 7 19 28 27 13 10 
13 4 5 14 18 11 11 31 32 11 
14 9 7 21 13 22 33 25 20 4 
15 6 11 17 27 21 13 37 26 21 

16 8 4 8 4 6 4 24 24 26 
17 10 7 21 7 7 33 38 16 
18 9 12 11 26 17 16 29 12 
19 15 9 4 35 9 19 45 
20 5 24 8 25 34 37 37 



21 
22 
23 
24 
25 

13 	17 
11 	26 

20 
8 

16 

29 
17 
27 
13 
10 

22 
31 
15 
29 
10 

14 
29 
36 
13 
4 

36 
15 
16 
40 

8 

6 
25 

5 
28 

2 

26 19 5 12 17 17 29 

27 15 3 6 5 3 14 

28 14 16 34 11 5 22 

29 9 21 7 41 35 

30 15 14 23 11 39 

31 9 28 34 3 

32 5 10 9 44 

33 20 18 31 27 

34 8 19 23 34 

35 19 21 18 33 

36 18 2 14 30 

37 32 7 42 

38 35 4 17 

39 6 33 31 

40 20 22 9 

41 6 15 

42 21 24 

43 13 

44 43 

45 41 

46 23 



10: Primitive roots 

10.11 Primitive roots and Dirichlet characters 

Primitive roots and indices can be used to construct explicitly all the Dirichlet 
characters mod m. First we consider a prime power modulus it, where p is 
an odd prime and a > 1. 

Let g be a primitive root mod p which is also a primitive root mod pl3  
for all fl 1. Such a g exists by Theorem 10.6. If (n, p) 1 let b(n) indg  n 
(mod pm), so that b(n) is the unique integer satisfying the conditions 

n gb( ")  (mod 0, 0 b(n) < 9(e). 

For h = 0, 1, 2, ... , 9(p") — 1, define x h  by the relations 

.e2.ihboomp-) if p n , 
(21) 	 Xh(n) = 

	

0 	if pin. 

Using the properties of indices it is easy to verify that Xh is completely 
multiplicative and periodic with period p2, so x h  is a Dirichlet character 
mod p2 , with x o  being the principal character. This verification is left as an 
exercise for the reader. 

Since 

	

xh(g) 	e2n1k,p(p.) 

the characters x o  , x 1 , 	, x490,2 ) _ I  are distinct because they take distinct 
values at g. Therefore, since there are 9(p2) such functions they represent 
all the Dirichlet characters mod p2 . The same construction works for the 
modulus 2' if a 1 or a = 2, using g = 3 as the primitive root. 

Now if m = p l 'i • • • p7, where the pi  are distinct odd primes, and if x i  is a 
Dirichlet character mod p, then the product x = x • • • x,. is a Dirichlet 
character mod m. Since p(m) = (p(p i 'l) • • p(p7) we get cp(m) such characters 
as each x i  runs through the cp(p) characters mod Thus we have ex-
plicitly constructed all characters mod m for every odd modulus m. 

If a > 3 the modulus 2 2  has no primitive root and a slightly different 
construction is needed to obtain the characters mod 2 2 . The following 
theorem shows that 5 is a good substitute for a primitive root mod 2 2 . 

Theorem 10.11 Assume a > 3. Then for every odd integer n there is a uniquely 
determined integer b(n) such that 

n 	(-1)(n -  iv 25boti (mod 22), with 1 	b(n) 	9(22)/2. 

PROOF. Let f = exp 22(5) so that 5' a- 1 (mod 22). We will show that f = 
9(22)/2. Now f IQ(2 2) = so .f = 2fl for some # a — 1. From Theorem 
10.8 we know that 

	

54,( 2")1 2 	1 (mod 21 , 
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10.11: Primitive roots and Dirichlet characters 

hence f 9(2.)/2. 21 '. Therefore # <oc - 2. We will show that # 
- 2. 
Raise both members of the equation 5 =1 + 2 2  to the f = 2fl power to 

obtain 

5f = (1 + 22 ) 2 ' = 1 + 2fl +2  + r213+3  = 1 + 2".2(1 + 2r) 

where r is an integer. Hence 5 1  - 1 - 21' 2t where t is odd. But 21 1(51  - 1) 
so a # + 2, or 13 a -2, Hence # = a - 2 and f = 2 2  = 9(21)/2. 
Therefore the numbers 

(22) 

are incongruent mod 2 1. Also each is 	1 (mod 4) since 5 -3-2 1 (mod 4). 
Similarly, the numbers 

(23) -5, _ 5 2 , 	_ 5f 

are incongruent mod 2 1  and each is 	3 (mod 4) since -5 a 3 (mod 4). 
There are 2f = 9(2 1) numbers in (22) and (23) together. Moreover, we cannot 
have 5" - 5 13  (mod 21) because this would imply 1 - 1 (mod 4). 
Hence the numbers in (22) together with those in (23) represent 9(2 1) in-
congruent odd numbers mod 2 1. Each odd n 1 (mod 4) is congruent 
mod 21  to one of the numbers in (22), and each odd n -----  3 (mod 4) is con-
gruent to one in (23). This proves the theorem. 

With the help of Theorem 10.11 we can construct all the characters 
mod 21  if a > 3. Let 

(24) 

and let 

tyn- 1)/2 

f(n) 
= 0 

if n is odd, 
if n is even, 

On) = 
if n is odd, 

0 	if n is even, 

where b(n) is the integer given by Theorem 10.11. Then it is easy to verify 
that each off and g is a character mod 2 1. So is each product 

(25) Xa,c(n) = f(n)ag(ny 

where a = 1, 2 and c 	1, 2, ... , 9(21)/2. Moreover these 9(2 1) characters are 
distinct so they represent all the characters mod 2 1 . 

Now if m 21Q where Q is odd, we form the products x x 1 x 2  where 
x i  runs through the 9(21) characters mod 2 1  and x2  runs through the 9(Q) 
characters mod Q to obtain all the characters mod m. 
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10: Primitive roots 

10.12 Real-valued Dirichlet characters 
mod p' 

If x is a real-valued Dirichlet character mod m and (n, m) = 1, the number 
X(n) is both a root of unity and real, so x(n) = + 1. From the construction 
in the foregoing section we can determine all real Dirichlet characters 
mod if . 

Theorem 10.12 For an odd prime p and a > 1, consider the cp(p) Dirichlet 
characters xh  mod p given by (21). Then x h  is real if, and only if, h = 0 
or h = co(p)/2. Hence there are exactly two real characters mod p. 

PROOF. We have e'lz 	+1 if, and only if, z is an integer. If 	n we have 

Xh(n) = e2nihb(n)/91109 

so x h(n) = + 1 if, and only if, cp(p")j2hb(n). This condition is satisfied for all 
n if h = 0 or if h = (p(p2)/2. Conversely, if (p(p')I2hb(n) for all n then when 
b(n) = 1 we have cp(p')I 2h or cp(p)/2 I h. Hence h = 0 or h = 9(0/2 since 
these are the only multiples of (p(p2)12 less than (p(p'). 

Note. The character corresponding to h = 0 is the principal character. 
When a = 1 the quadratic character x(n) = (n I  p) is the only other real 
character mod p. 

For the moduli m = 1, 2 and 4, all the Dirichlet characters are real. 
The next theorem describes the real characters mod 2 when a > 3. 

Theorem 10.13 If a > 3, consider the (p(r) Dirichlet characters x„,, mod 2' 
given by (25). Then x a,„ is real if and only if, c = cp(2")/2 or c = (p(2")/4. 
Hence there are exactly four real characters mod 2' if a 3. 

PROOF. If a > 3 and n is odd we have, by (25), 

xa  „(n) =f (n)O g(n)c 

where f(n) = ±1 and 

= e  21C icb(n)I 2 - 2 

with 1 Lc. c 	2' 2 . This is + 1 if, and only if, 2" -2  I 2cb(n), or 22_3  Icb(n). 
Since cp(2") = 2" -1  this condition is satisfied if c = (p(22)12 = 2' or if 
c = 9(21/4 = 22_ 3 .  Conversely, if 2' - 3  cb(n) for all n then b(n) = 1 requires 
22- 3 1c so c = 22- 3  or 22-  2  since 1 < c < 22-2. El 
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10.13: Primitive Dirichlet characters mod p" 

10.13 Primitive Dirichlet characters mod p' 

In Theorem 8.14 we proved that every nonprincipal character x mod p 
is primitive if p is prime. Now we determine all the primitive Dirichlet 
characters mod pa. 

We recall (Section 8.7) that x is primitive mod k if, and only if, x has no 
induced modulus d < k. An induced modulus is a divisor d of k such that 

x(n) = 1 whenever (n, k) = 1 and n __ 1 (mod d). 

If k = p. and x is imprimitive mod pc,  then one of the divisors 1, P, • . • , P2-1  
is an induced modulus, and hence p.- - 1 is an induced modulus. Therefore, 
x is primitive mod e if, and only if, pi x -1  is not an induced modulus for x. 

Theorem 10.14 For an odd prime p and a 2, consider the cp(p) Dirich let 
characters xh  mod p' given by (21). Then x h  is primitive mod p' if, and 
only if, p ,}' h. 

PROOF. We will show that p2-1  is an induced modulus if, and only if, plh. 
If p /1/ n we have, by (21), 

x h(n) = e2Aihb(n)/fp(pa), 

where n .-- gli( ")  (mod p') and g is a primitive root mod pi' for all )6 > 1. 
Therefore 

gb(fl
)  .... n (mod p' 1 ). 

Now if n = 1 (mod p" -  1 ) then gb(n)  1 (mod p 	and, since g is a primitive 
root of pat -- 1 , we have p(p" - 1 )1 b(n), or 

b(n) = tcp(p' 1 ) = to(p)/p 

for some integer t. Therefore 
zh (n) = e2nEht/ p .  

If plh this equals 1 and hence xh  is imprimitive mod pc'. If p /1/ h take n = 
1 + p' 1 . Then n __ 1 (mod p' 1 ) but n # 1 (mod p.) so 0< b(n) < 9(p2). 
Therefore p ,i/ t, p ,r ht and x h(n) # 1. This shows that yh is primitive if p ,}' h. 

0 

When m = 1 or 2, there is only one character x mod m, the principal 
character. If m = 4 there are two characters mod 4, the principal character 
and the primitive character f given by (24). The next theorem describes all 
the primitive characters mod 2" for a > 3. The proof is similar to that of 
Theorem 10.14 and is left to the reader. 

Theorem 10.15 If a 	3, consider the (p(2X)  Dirichlet characters x,,,, mod 2" 
given by (25). Then 4, is primitive mod 2 if, and only if, c is odd. 
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10: Primitive roots 

The foregoing results describe all primitive characters mod p. for all 
prime powers. To determine the primitive characters for a composite modulus 
k we write 

k = P 1 21  • • • Pr2r,  

Then every character x mod k can be factored in the form 

X = X1 • • • Xr 

where each x i  is a character mod IV% Moreover, by Exercise 8.12, x is primi-
tive mod k if, and only if, each x i  is primitive mod p Therefore we have a 
complete description of all primitive characters mod k. 

Exercises for Chapter 10 

1. Prove that m is prime if and only if exp„,(a) = m — 1 for some a. 

2. If (a, m) = (b, m) = 1 and if (exp„,(a), exp„,(b)) = 1, prove that 

exp„,(ab) = exp„,(a)exp„,(b). 

3. Let g be a primitive root of an odd prime p. Prove that — g is also a primitive root 
of p if p 	1 (mod 4), but that expp( — g) = (p — 1)/2 if p ---- 3 (mod 4). 

4. (a) Prove that 3 is a primitive root mod p if p is a prime of the form 2" + 1, n > 1. 
(b) Prove that 2 is a primitive root mod p if p is a prime of the form 4q + 1, where q 

is an odd prime. 

5. Let m > 2 be an integer having a primitive root, and let (a, m) = I. We write aRm if 
there exists an x such that a x2  (mod m). Prove that: 

(a) aRm if, and only if, aq")I2  "=" 1 (mod m). 
(b) If aRm the congruence x 2  a (mod m) has exactly two solutions. 
(c) There are exactly p(m)/2 integers a, incongruent mod m, such that (a, m) = 1 

and aRm. 

6. Assume m> 2, (a, m) = 1, aRm. Prove that the congruence x 2  a (mod m) has 
exactly two solutions if, and only if, m has a primitive root. 

7. Let Sp) = I k", where p is an odd prime and n> 1. Prove that 

0 (mod p) if n # 0 (mod p — 1), 

 — 1 (mod p) if n 0 (mod p — 1). 

8. Prove that the sum of the primitive roots mod p is congruent to gp — 1) mod p. 

9. If p is an odd prime > 3 prove that the product of the primitive roots mod p is 
congruent to 1 mod p. 

10. Let p be an odd prime of the form 2 2k  + 1. Prove that the set of primitive roots 
mod p is equal to the set of quadratic nonresidues mod p. Use this result to prove 
that 7 is a primitive root of every such prime. 
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Exercises for Chapter 10 

11. Assume dIcp(m). If d = exp.(a) we say that a is a primitive root of the congruence 

1 (mod m). 

Prove that if the congruence 

1 (mod m) 

has a primitive root then it has 9((p(m)) primitive roots, incongruent mod m. 

12. Prove the properties of indices described in Theorem 10.10. 

13. Let p be an odd prime. If (h, p) = 1 let 

S(h) = On :1 	n 	cp(p — 1), (n, p 	1) = 11. 

If h is a primitive root of p the numbers in the set S(h) are distinct mod p (they are, 
in fact, the primitive roots of p). Prove that there is an integer h, not a primitive root 
of p, such that the numbers in S(h) are distinct mod p if, and only if, p 3 (mod 4). 

14. If m > 1 let p i , 	, Pk  be the distinct prime divisors of (p(m). If (g, m) = 1 prove 
that g is a primitive root of m if, and only if, g does not satisfy any of the congruences 
Om" 	1 (mod m) for i = 1, 2, ... , k. 

15. The prime p = 71 has 7 as a primitive root. Find all primitive roots of 71 and also 
find a primitive root for p2  and for 219 2 . 

16. Solve each of the following congruences: 

(a) 8x 7 (mod 43). 
(b) x 8 	17 (mod 43). 
(c) 8' 3 (mod 43). 

17. Let q be an odd prime and suppose that p = 4q + 1 is also prime. 

(a) Prove that the congruence x 2 	— 1 (mod p) has exactly two solutions, each 
of which is quadratic nonresidue of p. 

(b) Prove that every quadratic nonresidue of p is a primitive root of p, with the 
exception of the two nonresidues in (a). 

(c) Find all the primitive roots of 29. 

18. (Extension of Exercise 17.) Let q be an odd prime and suppose that p = 2nq + 1 is 
prime. Prove that every quadratic nonresidue a of p is a primitive root of p if 

# 1 (mod p), 

19. Prove that there are only two real primitive characters mod 8 and make a table 
showing their values. 

20. Let x be a real primitive character mod m. If m is not a power of 2 prove that m has 
the form 

m = 22P • • • Pr 

where the pi  are distinct odd primes and a = 0, 2, or 3. If a = 0 show that 

x( - 1)= n( _. 1)(p— 1)12 

Pint 

and find a corresponding formula for x( —1) when a =- 2. 
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11 Dirichlet Series and 
Euler Products 

11.1 Introduction 

In 1737 Euler proved Euclid's theorem on the existence of infinitely many 
primes by showing that the series E p -  ', extended over all primes, diverges. 
He deduced this from the fact that the zeta function (s), given by 

(1) 
00 I 

— 
n =1 ns  

for real s > 1, tends to co as s --> 1. In 1837 Dirichlet proved his celebrated 
theorem on primes in arithmetical progressions by studying the series 

L(s, x) = E 
n = 1  ns 

where x is a Dirichlet character and s> 1. 
The series in (1) and (2) are examples of series of the form 

'  y f(n) 
 — 

nt1 ns 

where f(n) is an arithmetical function. These are called pirichlet series with 
coefficients f(n). They constitute one of the most useful tools in analytic 
number theory. 

This chapter studies general properties of Dirichlet series. The next 
chapter makes a more detailed study of the Riemann zeta function C(s) and 
the Dirichlet L-functions L(s, x). 

(2) 

(3) 
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11.2: The half-plane of absolute convergence of a Dirichlet series 

Notation Following Riemann, we let s be a complex variable and write 

S = o-  + it, 

where o-  and t are real. Then ns = es logn = e(a+ it) logn = ncreit logn. This 
shows that I ns I = na since I el = 1 for real 6. 

The set of points s = o-  + it such that o-  > a is called a half-plane. We will 
show that for each Dirichlet series there is a half-plane a > ac  in which the 
series converges, and another half-plane o -  > aa  in which it converges 
absolutely. We will also show that in the half-plane of convergence the series 
represents an analytic function of the complex variable s. 

11.2 The half-plane of absolute convergence 
of a Dirichlet series 

First we note that if a > a we have Ins' = e › le hence 

< 1 f(n)I  . 
— na 

Therefore, if a Dirichlet series E f (n)n - s converges absolutely for s = a + ib, 
then by the comparison test it also converges absolutely for all s with o-  > a. 
This observation implies the following theorem. 

Theorem 11.1 Suppose the series E I f(n)n - sl does not converge for all s or 
diverge for all s. Then there exists a real number aa , called the abscissa of 
absolute convergence, such that the series E f(n)n' converges absolutely 
if a > aa  but does not converge absolutely if a < ca . 

PROOF. Let D be the set of all real o- such that E I f (n)n' I diverges. D is not 
empty because the series does not converge for all s, and D is bounded above 
because the series does not diverge for all s. Therefore D has a least upper 
bound which we call cr a . If a-  < o-a  then 0-  E D, otherwise o-  would be an upper 
bound for D smaller than the least upper bound. If o-  > cl-„ then a-  rt D since 
Ca  is an upper bound for D. This proves the theorem. 0 

Note. If E I f (n)n -  s I converges everywhere we define cr a  = — co. If the 
series E I f (n)n - si converges nowhere we define a- a  = + oo. 

EXAMPLE 1 Riemann zeta function. The Dirichlet series Enco_ i  n -5  converges 
absolutely for o-  > 1. When s = 1 the series diverges, so a, = 1. The sum 
of this series is denoted by C(s) and is called the Riemann zeta function. 

EXAMPLE 2 If f is bounded, say I f(n)j ._ M for all n 1, then E f(n)n' 
converges absolutely for a > 1, so cra  1. In particular if x is a Dirichlet 
character the L-series L(s, x) = E x(n)n—S converges absolutely for a-  > 1. 

f(n) 

ns 
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I I : Dirichlet series and Euler products 

EXAMPLE 3 The series E pen diverges for every s so a. = + co. 

EXAMPLE 4 The series E n'n' converges absolutely for every s so au  = – co. 

11.3 The function defined by a Dirichlet 
series 

Assume that E f(n)n' converges absolutely for a> au  and let F(s) denote 
the sum function 

f (n) 
(4) 	 F(s) = 	— for a> au . 

u=1  pis 

This section derives some properties of F(s). First we prove the following 
lemma. 

Lemma 1 If N > 1 and a > c> au  we have 

CO co 

E f(n)n -  
n=N 

N -07-0 E if (n) —c.  

n=N 

PROOF. We have 

00 	 00 

E f(n)n = E f (n)in - en - (a  
n=N 	 n=N 

111-('- `)  E I f (n)In. 
n=N 

00 

E f(n)n - s 
n=14 

0 

The next theorem describes the behavior of F(s) as a + co. 

Theorem 11.2 If F(s) is given by (4), then 

lirn F(a + it) = f(1) 
+ 

uniformly for –a <t < + GC. 

PROOF. Since F(s) = f(1) + Enx=2 f (n)n -  s we need only prove that the 
second term tends to 0 as a + co. Choose c > au . Then for a c the lemma 
implies 

f (n) 
n=2 ns  

a, 

E f(n)In - c = A 
n=2 	 2a 

  

where A is independent of a and t. Since A/2a –■ 0 as a + Co this proves 
the theorem. 	 0 

EXAMPLES 	+ it) –o 1 and L(a + it, z) –0 1 as a 	+ co. 
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11.3: The function defined by a Dirichlet series 

We prove next that all the coefficients are uniquely determined by the 
sum function. 

Theorem 11.3 Uniqueness theorem. Given two Dirichlet series 

' f(n) 
 F(s) = E 

„, ns  

' g(n) 
and G(s) = E  s  , 

pi = 1 n 

both absolutely convergent for a > o-a . If F(s) = G(s)for each s in an infinite 
sequence {sk } such that ak  —0 + oo as k —0 co, then f(n) = g(n) for every n. 

PROOF. Let h(n) = f (n) — g(n) and let H(s) = F(s) — G(s). Then H(sk) = 0 
for each k. To prove that h(n) = 0 for all n we assume that h(n) 0 0 for some n 
and obtain a contradiction. 

Let N be the smallest integer for which h(n) 0 0. Then 

	

' h(n) h) 	' h(n) 
H(s) = E 	= (N  , + E 	. 

n .N n3 	IN S 	n=N+1 ns  

Hence 

' h(n)  
h(N) = NH(s) — NS E 	. 

n=N+1 rts 

Putting s = sk  we have H(sk ) = 0 hence 
OC 

h(N) = — Arsk E h(n)n - sk. 
n=N+1 

Choose k so that ak  > c where c > o-a . Then Lemma 1 implies 

co 
I h(N )1A T crk(N + 1) -  (6k  — C)  E 1 h(n)In - c = (  N   rA 

n=N+1 	 1 + 1 

where A is independent of k. Letting k —0 oo we find (N /(N + 1))rk —> 0 so 
h(N) = 0, a contradiction. 	 0 

The uniqueness theorem implies the existence of a half-plane in which 
a Dirichlet series does not vanish (unless, of course, the series vanishes 
identically). 

Theorem 11.4 Let F(s) = E f(n)n 5  and assume that F(s) 0 0 for some s with 
a> aa . Then there is a half-plane a > c > o-a  in which F(s) is never zero. 

PROOF. Assume no such half-plane exists. Then for every k = 1, 2, ... there 
is a point sk  with ak  > k such that F(sk) = 0. Since ak  + a) as k —0 oo the 
uniqueness theorem shows that f (n) = 0 for all n, contradicting the hypothesis 
that F(s) 0 0 for some s. 0 
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11.4 Multiplication of Dirichlet series 

The next theorem relates products of Dirichlet series with the Dirichlet 
convolution of their coefficients. 

Theorem 11.5 Given two functions F(s) and G(s) represented by Dirichlet series, 

F(s) = 	f  (PI)  for a> a, 
n=1 ns  

and 

g(n)  
G(s) E 	 for a> b. 

n=1 ns  

Then in the half-plane where both series converge absolutely we have 

(5) 	 F(s)G(s) = 	
h(n)E 

n=1 n 

where h = f * g, the Dirichlet convolution off and g: 

h(n) = E f (d)g(j). 
din 

Conversely, if F(s)G(s) = E oc(n)n - s for all s in a sequence {s k } with a k  --+ + co 
as k oo then a = f * g. 

PROOF. For any s for which both series converge absolutely we have 

	

00 	 CO 	 CO 	CO 

F(s)G(s) = E f (n)n -  E g(m)m' = E E f (n)g(m)(mnrs 

	

n=1 	m=1 	 n=1 m•=1 

Because of absolute convergence we can multiply these series together and 
rearrange the terms in any way we please without altering the sum. Collect 
together those terms for which mn is constant, say mn = k. The possible values 
of k are 1, 2, ... , hence 

. 	 . 
F(s)G(s) = E ( E f (n)g(m))k -  s = E h(k)k - s 

k=1 mn=k 	 k=1 

where h(k) = Em= k f (n)g(m) = ( f * g)(k). This proves the first assertion, 
and the second follows from the uniqueness theorem. O 

EXAMPLE 1 Both series E n and E i(n)n 5  converge absolutely for a> 1. 
Taking f (n) = 1 and g(n) = p(n) in (5) we find h(n) = [1/n], so 

C(s) 	414ns )  = 1 if a> 1. 
n = 1  n 
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In particular, this shows that C(s) 0 for c> 1 and that 

E 	 = 	if a > 1. 
. = 1 ns 	C(s) 

EXAMPLE 2 More generally, assume f (1) 0 0 and let g = f ' , the Dirichlet 
inverse off Then in any half-plane where both series F(s) = E f (n)n - N and 
G(s) = E g(n)n' converge absolutely we have F(s) 0 0 and G(s) = 1/ F(s). 

EXAMPLE 3 Assume F(s) = E f (n)n' converges absolutely for a> a a . If 
f is completely multiplicative we have f - 1 (n) = An) f (n). Since I f ' (n) I < 
1 f (n) I the series E 12(n) f (n)n - s also converges absolutely for a> o-  a  and we 
have 

it(n) f (n) 
 =  L 

n .-. 1 	ns 	F(s) 

In particular for every Dirichlet character x we have 
co 

	

, 1./(n)x(n) = 	1 	if a  > 1.  
„L= '1 	ns 	L(s, x) 

EXAMPLE 4 Take f (n) = 1 and g(n) = cp(n), Euler's totient. Since (p(n) __ n 
the series E 9(n)n -  s converges absolutely for a > 2. Also, h(n) = Li a  9(d) 
= n so (5) gives us 

co ' On) 	n 
C(s) E — = E — = as — 1) if a> 2. 

a = 1  ns „s 
n= 1 ” 

Therefore 

(p(n) = C(s — 1) 

n - '1 ns 	(.5) 
if a> 2. 

EXAMPLE 5 Take f (n) = 1 and g(n) = n'. Then h(n) = Din  d2  = o-„(n), and 
(5) gives us 

C(s)as — a) = ci a 2(1.1)  if a > max{1, 1 + Re(a)}. 
a=1  ns 

EXAMPLE 6 Take f (n) = 1 and g(n) = A(n), Liouville's function. Then 

1 if n = m2  for some m, 
h(n) = E A(d) = 

din 	 0 otherwise, 

so (5) gives us 

	

1 	. 
C(s) E s  = 	=.-. E 

n=  i n 	n=  1 11 	m1 

 1 

= m 
n =square 

= 
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Hence 

	

A(n) 	C(2s) . 
L 	 if a > 1. 

n=1n 	C(s) 

11.5 Euler products 

The next theorem, discovered by Euler in 1737, is sometimes called the 
analytic version of the fundamental theorem of arithmetic. 

Theorem 11.6 Let f be a multiplicative arithmetical function such that the series 
E f (n) is absolutely convergent. Then the sum of the series can be expressed 
as an absolutely convergent infinite product, 

CO 

E f(n) = H { 1  + f (p) + f(p2)  + • .} 
n=1 	 p 

extended over all primes. If f is completely multiplicative, the product 
simplifies and we have 

(7) E 	H 	 
n=1 	 p  

Note. In each case the product is called the Euler product of the series. 

PROOF. Consider the finite product 

P(x) = fl { 1  + f (p) + f(p2)  + • • •I 

extended over all primes p < x. Since this is the product of a finite number 
of absolutely convergent series we can multiply the series and rearrange 
the terms in any fashion without altering the sum. A typical term is of the 
form 

fipial)fip2C12) . .. nprar) 	f (piai p2a2 	p ar) 

since f is multiplicative. By the fundamental theorem of arithmetic we can 
write 

P(x) 	E f(n) 
neA 

where A consists of those n having all their prime factors <x. Therefore 

E f (n) P(x) = 
n=1 	 neB 

where B is the set of n having at least one prime factor > x. Therefore 

E f(n) P(x) 

As x -4 co the last sum on the right 0 since EI f(n)1 is convergent. Hence 
P(x) -+ E f(n) as x -4 co. 

(6) 

f(n)l 	E f 001 
neB 	

pi  
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Now an infinite product of the form fl + a„) converges absolutely 
whenever the corresponding series E a„ converges absolutely. In this case 
we have 

/ f(p) + f(p2)  + - • • I 	E (1 f (p)I + I f (p 2)I +•• -) 	Eif(t)1. 
ps.x 	 px 	 n=2 

Since all the partial sums are bounded, the series of positive terms 

E f + f (p2 ) + • • • I 

converges, and this implies absolute convergence of the product in (6). 
Finally, when f is completely multiplicative we have f (p") = f (p)" and 

each series on the right of (6) is a convergent geometric series with sum 
(1 — f (p)) -  0 

Applying Theorem 11.6 to absolutely convergent Dirichlet series we 
immediately obtain: 

Theorem 11.7 Assume E f(n)n -  s converges absolutely for a > ca . If f is 
multiplicative we have 

(8) 	f 01)  = 	f (P) f)  + .1 
if a>  aa, 

1  ns 	 Ps 	P
2s 

and iff is completely multiplicative we have 

°±1 f  t(en)  — 11 1  — f (p)p - 
if > 

It should be noted that the general term of the product in (8) is the Bell 
series fp(x) of the function f with x = p'. (See Section 2.16.) 

EXAMPLES Taking f (n) = 1, gn), 9(n), 0.8(n), yi(n) and x(n), respectively, we 
obtain the following Euler products: 

1 	1  
CO) = E 	= 	 if o-  > 1. 

n= n- 	p  

1 	p(n) - E — n (1 — p') if o-  > 1. 
Os) 	„= 1  ns 	p 

((s—  1) 	q(n) 	1  _ p -s 

- E s = 	 if a> 2. 
((s) 	n= n5 	1  — 	- s  

1 
((s)((s — a) = 	cjn) if a> max{1, 1 + Re(a)}, 

ns 	lip ( 1  — 	1( 1  — P2- ) 

((2s) 	 1  
if a > 1, 

((s) 	nE= ns  = 	1 + s  
1 

L(s. = VG° X(n)  " 	  i 
n=1 ns 	p 1  — X(P)P— s

f a> 1. 
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11: Dirichlet series and Euler products 

Note. If x = x 1 , the principal character mod k, then x 1 (p) = 0 if plk 
and x i (p) = 1 if p ,ii k, so the Euler product for L(s, x i ) becomes 

— s  
L(s, x i ) = n ,  1 	

= II , 
1  	

11 (1 — p - s) = (s)1-1 (1 — P —s). P Ark 1  — if 	p 	— P s  plk 	 Plk 

Thus the L-function L(s, xi) is equal to the zeta function c(s) multiplied by a 
finite number of factors. 

11.6 The half-plane of convergence of a 
Dirichlet series 

To prove the existence of a half-plane of convergence we use the following 
lemma. 

Lemma 2 Let s o  = co  + ito  and assume that the Dirichlet series E f(n)n s- o 

 has bounded partial sums, say 

E f(n)n - s° 
nsx 

< m 

for all x > 1. Then for each s with a > ao  we have 

(9) 	 E f(n)n 	< 2Ma'0-  "(1 -I- 	 
Is — soi

a<n<b 	 a  — ao i 

PROOF. Let a(n) = f(n)n° and let A(x) = En ,.„ a(n). Then f(n)n = 
a(n)e3 so we can apply Theorem 4.2 (with f (x) = x 50-5) to obtain 

E f(n)n = A(b)b' — A(a)a 0  s + (s — so) fb A(t)ts° -  s - 1  dt. 
a<n<b 	 a 

Since I A(x)1 	M this gives us 

E f (n)n - s 
a<nsb 

b 
.._ Mb erci-6  ± MC1 613—'7  ± IS — SOIM i t 1°-6— I  dt 

a 

  

< 2Ma'°' + Is — so  I M 

  

 

a0 — a  

 

    

< 2Ma" - '(1 + 
Is — so  I) .  

6  — ao ) 

EXAMPLES If the partial sums E., x  .f (n) are bounded, Lemma 2 implies that 
E f (n)n -  s converges for a > 0, In fact, if we take s o  = ao  = 0 in (9) we 
obtain, for a> 0, 

E f(n)n - s 
a<nSb 

< Ka' 

  

n 
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11.6: The half-plane of convergence of a Dirichlet series 

where K is independent of a. Letting a -.- + ao we find that I f(n)n -  s 
converges if a> 0. In particular, this shows that the Dirichlet series 

v  l— ir  co 

L., 	s 
n=-- 1 	n 

converges for a> 0 since lE„,,, ( — I)" 	I 	1. Similarly, if x is any non- 
principal Dirichlet character mod k we have 

ci X(n) 
„,. 1  re 

converges for a > 0. The same type of reasoning gives the following theorem. 

Theorem 11.8 If the series E f (n)n - s converges for s = ao  + it o  then it also 
converges for all s with a> ao . If it diverges for s = ao  + ito  then it 
diverges for all s with a < ao . 

PROOF. The second statement follows from the first. To prove the first 
statement, choose any s with a> ao . Lemma 2 shows that 

E f(n)n < Ka"' 
a<n<6 

where K is independent of a. Since a"' -4 0 as a --4 + co, the Cauchy con- 
dition shows that E f(n)_S converges. 	 D 

Theorem 11.9 If the series E f (n)n' does not converge everywhere or diverge 
everywhere, then there exists a real number a„ called the abscissa of 
convergence, such that the series converges for all s in the half-plane a> a, 
and diverges for all s in the half-plane a < a„ 

PROOF. We argue as in the proof of Theorem 11.1, taking a , to be the least 
upper bound of all a for which E f (n)n - 3  diverges. 	 0 

Note. If the series converges everywhere we define a c  .-- — oo, and if it 
converges nowhere we define a, . + co. 

Since absolute converge implies convergence, we always have o-a  __ a,. 
If aa  > a, there is an infinite strip a, < o-  < ora  in which the series converges 
conditionally (see Figure 11.1.) The next theorem shows that the width of 
this strip does not exceed I. 

1E„<x x(n)1 __ 9(k) so 

Convergence Divergence 

Conditional 

convergence 
Absolute convergence 

Figure 11.1 
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11: Dirichlet series and Euler products 

Theorem 11.10 For any Dirichlet series with ac finite we have 

0 < 0, — (7, < 1. 

PROOF. It suffices to show that if E f (n)n -  s° converges for some s o  then it 
converges absolutely for all s with o-  > co  + 1. Let A be an upper bound for 
the numbers 1 f (n)n - s° 1.  Then 

f(n) 
 le 

= f (n) 
nso 

  

1 

 

A 
< 

  

ns- so 

        

so E I f (n)n -  s I converges by comparison with E n°° - a . 	 0 

EXAMPLE The series 

i (-ir  
S n = 1 	r 

converges if u> 0, but the convergence is absolute only if o-  > 1. Therefore 
in this example a, . 0 and aa  =. 1. 

Convergence properties of Dirichlet series can be compared with those 
of power series. Every power series has a disk of convergence, whereas 
every Dirichlet series has a half-plane of convergence. For power series 
the interior of the disk of convergence is also the domain of absolute con-
vergence. For Dirichlet series the domain of absolute convergence may 
be a proper subset of the domain of convergence. A power series represents 
an analytic function inside its disk of convergence. We show next that a 
Dirichlet series represents an analytic function inside its half-plane of 
convergence. 

11.7 Analytic properties of Dirichlet series 

Analytic properties of Dirichlet series will be deduced from the following 
general theorem of complex function theory which we state as a lemma. 

Lamna 3 Let {f„} be a sequence of functions analytic on an open subset S 
of the complex plane, and assume that {fn } converges uniformly on every 
compact subset of S to a limit function f. Then f is analytic on S and the 
sequence of derivatives { f } converges uniformly on every compact subset of 
S to the derivative f'. 

PROOF. Since f„ is analytic on S we have Cauchy's integral formula 

f„(a)= —217ri  Sap  zi;".(z)a  dz 
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< 2Ma" 	
I s — so I) (10) 

	 E f(n)n s 

a<n5b a — ao 

11.7: Analytic properties of Dirichlet series 

where D is any compact disk in S, OD is its positively oriented boundary, 
and a is any interior point of D. Because of uniform n convergence we can pass 
to the limit under the integral sign and obtain 

f(a) 	1 	f(z)  dz  
2ni 	Z — a 

which implies that f is analytic inside D. For the derivatives we have 

f,;(a)  = 	f(z) 

27ri jeD (Z 	a)2 
dz 

 

1 r 	f (z) 
  and f l(a) = 	

2  dz 
2mi OD (z 	a) 

from which it follows easily that f„'(a) f la) uniformly on every compact 
subset of S as n 	co. 	 El 

To apply the lemma to Dirichlet series we show first that we have uniform 
convergence on compact subsets of the half-plane of convergence. 

Theorem 11.11 A Dirichlet series E f(n)n converges uniformly on every 
compact subset lying interior to the half-plane of convergence a> a,. 

PROOF. It suffices to show that E f(n)n converges uniformly on every 
compact rectangle R = [a, )6] x [c, d] with a > a,. To do this we use the 
estimate obtained in Lemma 2, 

where so  = co  + ito  is any point in the half-plane a > a, and s is any point 
with a> ao . We choose s o  = co  where c, < co  < a. (See Figure 11.2.) 

E 

   

R = Ice. 3I X  ft. dI 

     

Figure 11.2 

Then if s R we have a — c o  a — co  and I so  — s I < C, where C is a 
constant depending on s o  and R but not on s. Then (10) implies 

f(n)n - S 
a<nEl 

< 2Ma'° — '(1 	C  

cx — ao 

  

where B is independent of s. Since eo 	o as a —> + co the Cauchy condi- 
tion for uniform convergence is satisfied. 	 El 
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11: Dirichlet series and Euler products 

Theorem 11.12 The sum function F(s) = E f(n)n_ 5  of a Dirichlet series is 
analytic in its half-plane of convergence a > a, and its derivative F'(s) 
is represented in this half-plane by the Dirichlet series 

f(n)log  n 

	

F'(s) = — E 	ns 	, 
n= 1 

obtained by differentiating term by term. 

PROOF. We apply Theorem 11.11 and Lemma 3 to the sequence of partial 
sums. 

Notes. The derived series in (11) has the same abscissa of convergence and 
the same abscissa of absolute convergence as the series for F(s). 

Applying Theorem 11.12 repeatedly we find that the kth derivative is 
given by 

f(n)(log n)k 
F(s) = (_ 1)k E 	 for a > cc. 

s n= 1 	n 

EXAMPLES For a > 1 we have 

log n 
(12) '(s) = — 

n  = 1 ns 

and 

(13) 
C(s) 	A(n) — 
C(s) 	nt-dt ns  

Equation (12) follows by differentiating the series for the zeta function term 
by term, and (13) is obtained by multiplying the two Dirichlet series E A(n)n -
and E n - s and using the identity Idi„ A(d) = log n. 

11.8 Dirichlet series with nonnegative 
coefficients 

Some functions which are defined by Dirichlet series in their half-plane of 
convergence a> a, can be continued analytically beyond the line a = a,. 
For example, in the next chapter we will show that the Riemann zeta function 
((s) can be continued analytically beyond the line a = 1 to a function which 
is analytic for all s except for a simple pole at s = 1. Similarly, if x is a non-
principal Dirichlet character, the L-function L(s, x) can be continued an-
alytically beyond the line a = 1 to an entire function (analytic for all s). 
The singularity for the zeta function is explained by the following theorem of 
Landau which deals with Dirichlet series having nonnegative coefficients. 
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Theorem 11.13 Let F(s) be represented in the half-plane a> c by the Dirichlet 
series 

(14) 	 F(s) = E 	 
n=1  ns ' 

where c is finite, and assume that f(n) 0 for all n _ n0 . If F(s) is analytic 
in some disk about the point s = c, then the Dirichlet series converges in the 
half-plane a> c — s for some s > 0. Consequently, if the Dirichlet series 
has a finite abscissa of convergence a, then F(s) has a singularity on the real 
axis at the point s = o-c . 

PROOF. Let a = 1 + c. Since F is analytic at a it can be represented by an 
absolutely convergent power series expansion about a, 

' Fm(a) 
(s — (15) F(s) = E 	 

	

k=0 k! 	
a)k, 

 

and the radius of convergence of this power series exceeds 1 since F is 
analytic at c. (See Figure 11.3.) By Theorem 11.12 the derivatives Fm(a) can 
be determined by repeated differentiation of (14). This gives us 

co 
F(a) = ( — 1)k  E f (n) (log n)k n -  a, 

n= 1 

so (15) can be rewritten as 

" (a — s) k  
(16) F(s) = E E 	f(n)(log n) k n -  a. 

k=0 n=1 	kl • 

Since the radius of convergence exceeds 1, this formula is valid for some real 
s = c — E where E > 0 (see Figure 11.3.) Then a — s = 1 + E for this s 
and the double series in (16) has nonnegative terms for n > n 0 . Therefore 
we can interchange the order of summation to obtain 

F(c — ) 
f (n) x_," {(1 + g)log n} k  . v" f (n) eo  +0  ,„g „ 

s = L 	 
n=1 " k=0 	 n1 na 	 n=1 ne—t•  

In other words, the Dirichlet series E f (n)n' converges for s = c — s, hence 
it also converges in the half-plane a> c — s. 	 El 

Figure 11.3 
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11.9 Dirichlet series expressed as exponentials 
of Dirichlet series 

A Dirichlet series F(s) = E f (n)n which does not vanish identically has a 
half-plane in which it never vanishes. The next theorem shows that in this 
half-plane F(s) is the exponential of another Dirichlet series iff (1) 0 0. 

Theorem 11.14 Let F(s) = f ( n )n ' be absolutely convergent for a > o-„ 
and assume that f(1) 0. If F(s) 0 for a > co 	, then for a> ao  
we have 

F(s) = eG(s)  

with 

	

G(s) = log f(1) + E 	* f  

	

n=2 	log n 

where f -1  is the Dirichlet inverse off and f'(n) = f(n)log n. 

Note. For complex z 0, log z denotes that branch of the logarithm which 
is real when z > 0. 

PROOF. Since F(s) 0 we can write F(s) = eG(s)  for some function G(s) which 
is analytic for a > a 0 . Differentiation gives us 

F'(s) = eG1s) G'(s) = F(s)G'(s), 

so Gls) = F'(s)/F(s). But 

f(n)log  n 	fi(n) 	1 	-1 (n) 

	

F(s) = E 	 and 	= 
f E 	 

	

n=1 	 n=i ns 	F(s) 	1 	ns 

hence 

	

G'(s) = Fr(s) • -f-T-3)  = — 	( fr *   nE2  

Integration gives 

	

(f' 	 - 	pc , 

	

G(s) = C + E 	* f 1 )(0  

	

n=2 	log n 

where C is a constant. Letting 	+ cc we find Hill,. G(o-  + it) = C, 
hence 

f(1) = lim F(c + it) = ec  

so C = log f(1). This completes the proof. The proof also shows that the 

	

series for G(s) converges absolutely if a > a 0 . 	 El 
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EXAMPLE 1 When f (n) = 1 we have/ 1(n) = log n and f -1 (n) = tt(n) so 

(f' * f - ')(n) = E log Oe
n
) = A(n). 

	

din 	d 
Therefore if a > 1 we have 

(17) 	 C(s) = eGIs) 

where 

' A(n) 
G(s) = 	n -  s . 

„ 2 log n 
 

EXAMPLE 2 A similar argument shows that if f is completely multiplicative 
and F(s) = E f (n)n - s then in the half-plane of absolute convergence a> a t, 
we have 

F(s) 

where 

'  
G(s) = 	

f (n)A(n) 
 n

_ s  E 
n=2 log n 

since (f ' * f - 1 )(n) = Edin  f (d)log c 1 (n/d) f (n/d) = f (n)A(n). 

The formulas in the foregoing examples can also be deduced with the 
help of Euler products. For example, for the Riemann zeta function we have 

	

((s) = n 	1  1_  vs  - 
Keep s real, s> 1, so that 4s) is positive. Taking logarithms and using the 
power series — log(1 — x) = E fyin we find 

co „- ms 	oc 
log C(s) = — E log(1 — p - 5) = E L r 	= L A l(n)n' 

P 	 p m= 1 M 	n=1 

where 

Ai(n) =if  1 1 --m  f n = pm for some prime p, 

0 otherwise. 

But if n = pm then log n = m log p = mA(n) so 1/m = A(n)/log n. Therefore 

log C(s) = 	
A(n)E 

n=2 log n 
n 

which implies (17) for real s > 1. But each member of (17) is analytic in the 
half-plane a > 1 so, by analytic continuation, (17) also holds for a > 1. 
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11.10 Mean value formulas for Dirichlet 
series 

Theorem 11.15 Given two Dirichlet series F(s) = E f(n)n - s and G(s) = 
E g(n)n with abscissae of absolute convergence a l  and a2 , respectively. 
Then for a > a1  and b > cr2  we have 

liM — 
- (3

1 ST TRa + it)G(b — it) dt 
	

f(11)9(n)  
, 2T _ 	 n=1 na +b 

PROOF. We have 

f (m))( x-," g(n) 	 f (m)g(n) 
F(a + it)G(b — it) = E a+it n2ri  nb-it = 	 manb 

m=1 M 

f(n)g(n) 	" f(m)g(n)  (
) 

n 
=E aTti + 

n=1 n 	m = 1 „=1  m anb 	- m 

Now 

   

 

co 
E E m=1 n1 

f(m)g(n)  
men" km) 

1 f (01 	Ig(n)1  E 	E n b m 	ma = i — n 	.. 

    

so the series is absolutely convergent, and this convergence is also uniform 
for all t. Hence we can integrate term by term and divide by 2T to obtain 

= 	f(n)g(n)  f(m)g(n)  1 ST  
e t  1°g(nlm)  dt. 

n = 1 n
a + b 	,,,, n =i 	manb  

m*n 

But for m n we have 

ir 

2T F(a + it)G(b — it) dt 

,it log(n/m) 

ei"c'enim)  dt = 
i
`
log(n/m) I T  

 

2 sin[T log(win )] 

 

–T log( 

  

so we obtain 

2T LT F(a + it)G(b — it) dt 

f (m)g(n) 
 sin[ T log(—

m
)1 

a 
f (n)g(n)  

+ V n-1-1) 	m,  ,t= 1 M
anb 	

T log
(

—
n ) 

n 
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11.10: Mean value formulas for Dirichlet series 

Again, the double series converges uniformly with respect to T since (sin 9/x 
is bounded for every x. Hence, we can pass to the limit term by term to 
obtain the statement of the theorem. 	 0 

Theorem 11.16 If F(s) = Ef= f(n)n-  s converges absolutely for a > o-a  
then for a> aa  we have 

1  j.T 
(18) 	lim 

2T 
 

-T  
F(a + it)12  dt 

T oo 
'8  If(n)1 2  

2  „E1 n 

In particular, if o-  > 1 we have 

f(a) lim 
2T _ T

KO.  + 01 2  dt = 	= (2a).
T op 	 n= n 

(b) lim 
T co 

1  Jr 	 log2kn 	2k  
2T _ 

NU it) 12 dt = E 	2, 1= (( )(20-). (( 
n=1  n 

(c)
urn1 sT 	O n) 	(2.7) 

2T _ T
1 ((ow + it)l— 2 dt = 

n= 	n2Cr T- C(46r) • 

1 rr 	 0.0 2(n) 	1 4(20  
(d) lim 

2T .3_
7) C(u + it)14  dt = 

n=1 n2a 	((4o-) 

PROOF. Formula (18) follows by taking g(n) = f(n) in Theorem 11.15. To 
deduce the special formulas (a) through (d) we need only evaluate the Dirichlet 
series E I f (n)1 2 n -  2 '7  for the following choices off (n): (a) f(n) = 1; (b) f(n) = 
( — 1)k  logk  n; (c) f (n) = kt(n); (d) f (n) = o(n). The formula (a) is clear, and 
formula (b) follows from the relation 

(k)(s)  = 	ok 
	

log  k  n 

n= 	n 

To prove (c) and (d) we use Euler products. For (c) we have 

	

n= 	 p 	 1 — p ' 	(2s) 

Replacing s by 2u we get (c). For (d) we write 

o-0 2 (n) 

	

s 	fi 	± 0. 0 2(p)p -s 	(70 2(op -25 	...) 
n 

22p _s 	3 2p _2s 	...) 

= 	(n + 1)2 p -  "s} = 	
1 — p 2s 	l (s) n 

p 	 p 1 	p - s)4 	C(2s) 

C  

(n 	X + 1 	1 — x 2  _ 
since E`.*=o 	

1)2xn 
(x — 1) 3  — (1 — x)4  • 

Now replace s by 2u to get (d). 

0 
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11: Dirichlet series and Euler products 

11.11 An integral formula for the coefficients 
of a Dirichlet series 

Theorem 11.17 Assume the series F(s) = Enco_ f(n)n . ' converges absolutely 
for a> aa . Then for a> a, and x > 0 we have 

fT 
lim 	F(o-  + it)x' dt 

T 00 LT 	T 

(n) if x = n, 
0 	otherwise. 

PROOF. For a > a-a  we have 

(19) 	LTTF(a + it)x'" dt = —
xa 	f(n) (xy 

dt 
j _ T  2T 	1  e n 

f(n)  fT  
 2T 	
eit log(x/n) 

- 	
dt, 

T  

since the series is uniformly convergent for all t in any interval [- T, TI. If x 
is not an integer then x/n 1 for all n and we have 

e" ' 	

2 sin  LT log -
x 

	

4(x* dt = 	 
T • 	 logLX 

tz) 

and the series becomes 

f(n)  sin[T log(:)] 

-77  nE= 1  
logO 

which tends to 0 as T co. However, if x is an integer, say x k, then the 
term in (19) with n = k contributes 

nT i r(x)it 

- dt = ST  (-1c)it  dt = f dt = 2T, 

	

-T k 	-T 

and hence 

x a 	f(n)  CT  (xy 
dt = f(k) + 

2T 1  ne7  _ T  n 	 2T n = 1 
k 

f(n) 
 S T  (-k)it  dt. 

T n 

The second term tends to 0 as T cx) as was shown in first part of the 
argument. 
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11.12; An integral formula for the partial sums of a Dirichlet series 

11.12 An integral formula for the partial 
sums of a Dirichlet series 

In this section we derive a formula of Perron for expressing the partial sums 
of a Dirichlet series as an integral of the sum function. We shall require a 
lemma on contour integrals. 

Lemma 4 If c> 0, defineSce L ' - °°„ to mean limT , 1. Then i f a is any positive 
real number, we have 

2ni c- Goi 	Z 
= -1 -  a  	- if a = 1, 

1 lc +  ' z  dz 	1 

0 if° < a < 1. 

1 if a > 1, 

Moreover, we have 

(20) 	
1  fc' T  z  dz ac 

< 	1 	if0<a<1, 

nT log() 
a 

2ni c-IT a  z 

1 c+iT 
az 

dz 
— 1 

27ri 1- iT 	Z 

1 r" iT dz 

2iri Jc—iT Z 

ac 
< 	 if a > 1, 

nT log a 

<  c 
	

if a --, 1. 
irT 

(21) 

and 

(22) 
1 
2 

- 

PROOF. Suppose first that 0 < a < 1 and consider the rectangular contour 
R shown in Figure 11.4. Since az/z is analytic inside R we have 1R az  IZ dz = 0. 
Hence 

f
c+iT 	c+iT 	r.b+iT 	eb—iT 

J = J 	+ J 	+ j 
9 

c — i T 	b+iT 	b—IT 	c—iT 

c + IT 	 b + iT 

C— IT 	 — iT 

Figure 11.4 
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r_b-iT dz 
az — 

.1 c- IT 	Z 

C 
 _ b  T 	T log a .  
	 < 	 

c ax dx 	1 ac 

11: Dirichlet series and Euler products 

SO 

	

c+iT dz 	b  ax 	2  Tab 	fcb ax 

az  — < f — dx + 	+ —
T

dx 
— T c 	b 1-IT 	Z 

2. 	2Tab  2 (  —ac)
+ 	

2 Tab  
-t- f c  ax dx + 	 

	

b 	T log a 	b 

Let b —> co. Then ab  --> 0, hence 

I 
d— 

c-iT 	Z 

c+iT dz 2ac 
< 	 

T log() . 
a 

This proves (20). 

-b + iT c + iT 

W 
A * 	 • 

0 

O. 	 
-b - iT c - iT 

Figure 11.5 

-b C 

If a> 1 we use instead the contour R shown in Figure 11.5. Here b > c > 0 
and T > c. Now az/z has a first order pole at z = 0 with residue 1 since 

az . ez tog a = 1 + z log a + 0(lz12 ) as z —> 0. 

Therefore 

hence 

c+iT 	-b+iT 

( 	 + 
-b-iT 

2ni = 	+ 	 + 
c-IT 	c+iT 	f -b+iT 

re- a 	dz 

J-b- 
iaz 	, 

al z 

1 ic ±iT  dz 1 	c + IT 	-b+iT 	f-b- IT) 	

z 

dz  
az _ _ 1  = __: 	+ 	+ 	az —. 

2ni jc- IT 	1 	27a (f- b+iT 	-b-iT 	c-iT 

We now estimate the integrals on the right. We have 
ic+ a dz 

az — 
J-b+iT 	Z 

<I 
 ax dx 1 

<—( 
	1 d 

ax dx = 	 
T — T 	 T log a ' -. 

  

r -b-fiT d z 
az — 

J-b-iT 	Z 
< 2T 

a-b 

b ' 

As b —> co the second integral tends to 0 and we obtain (21). 
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11.12: An integral formula for the partial sums of a Dirichlet series 

When a = 1, we can treat the integral directly. We have 
ic+iT A la — = 
ic—iT Z 

r i, i  du 	T 	
Y 	

T 	dy  
f 	= 	2  dy + ic f 	 

.1 -T C ± iY f — T C 2  ± Y 	-T. C 2 ± Y
2 

T 
 = 2ic 	
dy 

 fo c2 + y2' 

the other integral vanishing because the integrand is an odd function. Hence 

	

1 lc' dz c I T  dy 1 	T 1 1 
= - arctan = - - -7r arctan 

	

n 	 2 	
—
c

. 
2ni je_iT Z 	n Jo  c2  + y2 	 T 

Since arctan c/T < c/T this proves (22), and the proof of Lemma 4 is complete. 
El 

Theorem 11.18 Perron's formula. Let F(s) = Ea")=1  f(n)/ns be absolutely 
convergent for o-  > aa ; let c > 0, x > 0 be arbitrary. Then i f o-  > a, - c we 
have: 

1 r+ooi 	 xz 	f(n) 
2ni L._ 

F(s + z) dz = E* 	 
coi 	Z 	n<x ns  

where E* means that the last term in the sum must be multiplied by 1/2 when 
X is an integer. 

PROOF. In the integral, c is the real part of z, so the series for F(s + z) is 
absolutely and uniformly convergent on compact subsets of the half-plane 
a + c > ca . Therefore 

rc+iT z 	c+iT co X 
E 

f(n)  xz 
dz F(s + z) —dz = 

./c—IT c—IT 	 c—IT n=1 ns±z Z 

oo 

 = E 
f(n) rc+ ir(x )z dz  

	

„= 1  n' j c _iT n 	z 

= 
f(n) cc+ ivy d + z 	n) ic+ ivy dz  

V 	 V 	 
fi  

	

ri i,x  ns Je _ii- n 	z 	a -̀‘, ns jc-iT n 	z 

+' f (x) c+iT  dz 
, 

XS  C - 7 Z 

the symbol +' indicating that the last term appears only if x is an integer. 
In the finite sum E„ < x  we can pass to the limit T -> co term by term, and the 
integral is 2ni by Lemma 4. (Here a = x/n, a > 1.) The last term (if it appears) 
yields nif (x)x -  s and the theorem will be proved if we show that 

f(n)  
 (23) 	 lim 	
r+ iT  (x)z dz E  	-n 	= O. 

T--*co n> x ns  dc—iT 
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11: Dirichlet series and Euler products 

We know that fcc ,+-_!-3 (x/n)z(dz/z)= 0 if n > x but to prove (23) we must 
estimate the rate at which fccif tends to zero. 

From Lemma 4 we have the estimate 

ic+ iT az 
az 

Z 

2 	a` 
< — 

T 	1 
(log 

if 0 < a < 1. 

  

Here a = x/n, with n > x. In fact, n > [x] + 1, so that 1/a = n/x 
([4 + 1)/x. Hence 

f(n) rc+a 0 dz 	
v I  f(n)l  2 (xy 	1  

E  	< 1._, 
n>x ns j , _ ir n z 	n>. n6  T ti) 

log
([x] + 1)  

x 

2 	x` 	v I f (01  , 0 as T _, 09. = 
T log([x]  +  

x ) 

This proves Perron's formula. 	 El 

Note. If c > a, Perron's formula is valid for s = 0 and we obtain the 
following integral representation for the partial sums of the coefficients: 

1c+00i 	xz 
F(z)

z 
dz = E* f(n). 

27ti f,, 	n<x 

Exercises for Chapter 11 

1. Derive the following identities, valid for a > 1. 

(a) (s) = s j: [x]   dx. x s+ 

(b) El = f TC(X)  s+ 1 dx' where the sum is extended over all primes. 
x p p s  

1 	X MOO 
(c)	= s f x , 	 dx, where M(x) 	E p(n). 

n- 

c(s)  —  (d) ,(s)  — s 	xs+ 1 dx, where ti(x) = 	A(n). 

(e) L(s, x) = s f A( x) xs+ 1 dx, where A(x) = 

Show that (e) is also valid for a > 0 if z is a nonprincipal character. [Hint: 

Theorem 4.21 
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Exercises for Chapter 11 

2. Assume that the series E„°°_ f (n) converges with sum A, and let A(x) = L <„ f(n), 

Prove that the Dirichlet series F(s) = Enco_ f (n)n -  s converges for each s with 
> 0 and that 

f 	(n) 	f  R(x)  

	

E 	= A s s + 1 dx ' 
n = 1 ns  

where R(x) = A — A(x). [H int : Theorem 4.2.] 
(b) Deduce that F(0) A as c —> 0 + . 
(c) If a > 0 and N > 1 is an integer, prove that 

f (n) A(N) 	f A( y)  
F(s) = E — 	+ s 

n = ns 	Ns 	NY s+ 

 dy. 

(d) Write s = a + it, take N = 1 + [It I] in part (c) and show that 

I F(cr + 	= 0(1 t 1 1  ') if 0 <a< 1. 

3. (a) Prove that the series E 	it has bounded partial sums if t 0. When t = 0 the 

partial sums are unbounded. 
(b) Prove that the series E n 	is diverges for all real t. In other words, the Dirichlet 

series for (s) diverges everywhere on the line a = 1. 

4. Let F(s) = 	 _, f (n)n ' where . f (n) is completely multiplicative and the series 
converges absolutely for a > o-a . Prove that if a-  > 0a we have 

F#(s ) 	f (n)A(n) 

F(s) n L 	s 
n  =  

In the following exercises, ,l(n) is Liouville's function, d(n) is the number of 
divisors of n, v(n) and K(n) are defined as follows: v(1) = 0, K(1) = 1; if 
n = p ia' • • • pkak then v(n) = k and K(n) = a ia2  • • • ak . 

Prove that the identities in Exercises 5 through 10 are valid for a > 1. 

d(n 2 ) 	C 3 (s) 
5. E  	. 

=i rts 	(2s) 

	

v(n) 	1 
6. E 	= c(s) E . 

	

1  ns 	P Ps  

	

8 	2 v (" ) (n) 	(2s) 

• „-fft 	ns 	2.(s) 

	

9 	K(n) _ as)((2s)(3s) 

• n=1 ns 	C(6s) 

	

2v ( ") 	.2(s) 	
10 	

3"(") K(n) 	V(s) 
7. V . nEi 	— cosy  

	

n = 1 ns 	( 2  s) 

11. Express the sum of the series E;;r'_ 3"ic(n)/1(n)n" in terms of the Riemann zeta 

function. 

12. L,etf be a completely multiplicative function such that f (p) = f (p) 2  for each prime p. 
If the series E f (n)n' converges absolutely for a> a a  and has sum F(s), prove that 

F(s) 0 and that 

f (n)A(n) F (2s) 
f a > a a . 

	

F(s) 	
i 
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11 : Dirichlet series and Euler products 

13. Let f be a multiplicative function such that f (p) = f (p) 2  for each prime p. If the series 
E p(n)f (n)n -  s converges absolutely for a> a„ and has sum F(s), prove that F(s) 0 
and that 

v- ,cc  f (n)IF (2s) 
s 	 if a > a  

n 	n 

	

=1 	 F(s) 

14. Let f be a multiplicative function such that E f (n)n s converges absolutely for 
> O. If p is prime and a> a1, prove that 

f (n)p(n) 	_ 	f (01(0*, n) 

	

( 1  + f(p)p — s) E 	s 	= 	f(plp s)E 
n

s n= 	n 	 n= 1 

where ii(p, n) is the Miibius function evaluated at the gcd of p and n. 
[Hint: Euler products.] 

15. Prove that 

m = 1 n=1 — 
E E m 2 n 2 

, 
	

C 2(2)  
C(4) 

(m,n)= 1 

More generally, if each s has real part o> 1, express the multiple sum 

GO 

E 	E ml — s. • • • mr — s- 
mt = 1 	mr  = 1 

(m . 	m,)= 1 

in terms of the Riemann zeta function. 

16. Integrals of the form 

A(x) 
dx, (24) 

(8)  = 	xs  

where A(x) is Riemann-integrable on every compact interval [1, al have some 
properties analogous to those of Dirichlet series. For example, they possess a 
half-plane of absolute convergence a> aa and a half-plane of convergence a> a, 
in which .f (s) is analytic. This exercise describes an analogue of Theorem 11.13 
(Landau's theorem). 

Let f(s) be represented in the half-plane a > o, by (24), where a-, is finite, and 
assume that A(x) is real-valued and does not change sign for x x o . Prove that 
f (s) has a singularity on the real axis at the point s = a. 

17. Let , a(fl) = Din  da A(d) where A(n) is Liouville's function. Prove that if a> 
max{1, Re(a) + 1), we have 

„" 'a(fl) 	C(s)C(2s — 2a) 
L 

n=1 ns 	a) 

and 

C(2s)C(s — a) 
„L___ 1 	ns 	C(s) 
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The Functions 12  
,(s) and L(s, x) 

12.1 Introduction 

This chapter develops further properties of the Riemann zeta function as) 
and the Dirichlet L-functions L(s, x) defined for a > 1 by the series 

.0 1  
C(s) = E ---, 	and L(s, X) = L, 	• s 

As in the last chapter we write s = a + it. The treatment of both c(s) and 
L(s, x) can be unified by introducing the Hurwitz zeta function C(s, a), defined 
for a > 1 by the series 

	

Go 	1 

	

(s, a) = E 	. 
n=0 (n + a)s 

Here a is a fixed real number, 0 < a < 1. When a = 1 this reduces to the 
Riemann zeta function, as) . as, 1). We can also express L(s, x) in terms 
of Hurwitz zeta functions. If x is a character mod k we rearrange the terms 
in the series for L(s, x) according to the residue classes mod k. That is, 
we write 

n = qk + r, where 1 < r < k and q = 0, 1,2, ... , 

and obtain 

	

' x(qk + r) 	1 k 	c° 	1 

	

L(S) X) = E - = E
=1 ,

E
.0 (qk + Os 

= 
ks 

E x(r) E 	 
n 	 , = 1 ns 	 r=1 q=0 (q + _ry 

k ) 
k 	( r 

= 
r. 1 

n=1 n 	 n=1 n 
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12: The functions c(s) and L(s, x) 

This representation of L(s, x) as a linear combination of Hurwitz zeta func-
tions shows that the properties of L-functions depend ultimately on those of 
as, a). 

Our first goal is to obtain the analytic continuation of as, a) beyond the 
line a-  = 1. This is done through an integral representation for as, a) obtained 
from the integral formula for the gamma function F(s). 

12.2 Properties of the gamma function 

Throughout the chapter we shall require some basic properties of the gamma 
function F(s). They are listed here for easy reference, although not all of them 
will be needed. Proofs can be found in most textbooks on complex function 
theory. 

For a > 0 we have the integral representation 

(1) F(s) = f xs-  e' dx. 

The function so defined for a> 0 can be continued beyond the line a = 0, 
and r(s) exists as a function which is analytic everywhere in the s-plane 
except for simple poles at the points 

s = 0, —1, —2, —3, ... , 

with residue ( — 1)n/n! at s = —n. We also have the representation 

F(s) = lim 
s(s + 1) — (s -F n) 

and the product formula 

U(s) = 
secs fl (1 + 	sin for all s, 

n = 1 

1 	cx) 

where C is Euler's constant. Since the product converges for all s, F(s) is 
never zero. The gamma function satisfies two functional equations, 

(2) r(s + 1) --= sr(s) 

and 

(3) 
lv 

F(s)F(1 — s) = 	• 	, 
sin irs 

valid for all s, and a multiplication formula 

(4) r(s)F(s + 	• • • F(s + 
in 

 — 1 ) 
in , in 

valid for all s and all integers m > 1. 

= (27 )(m — 1 )/2m  ( 1 /2)— msr(ms), 

nsn! 
for s 	0, —1, —2, ... , 
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12.3: Integral representation for the Hurwitz zeta function 

We will use the integral representation (1), the functional equations (2) 
and (3), and the fact that r(s) exists in the whole plane, with simple poles at 
the integers s = 0, — 1, —2,...  We also note that T(n + 1) = n! if n is a 
nonnegative integer. 

12.3 Integral representation for the Hurwitz 
zeta function 

The Hurwitz zeta function C(s, a) is initially defined for a > 1 by the series 

	

0,, 	1 

	

C(s, a) = E 	 „ 0  (n + a)s .  

Theorem 12.1 The series for C(s, a) converges absolutely for a > 1. The 
convergence is uniform in every half-plane a > 1 + 6, 6 > 0, so C(s, a) is 
an analytic function of s in the half-plane a > 1. 

PROOF. All these statements follow from the inequalities 

E 1(n + a) s l = E (1 + a) - ' 	E (n + a) , 
	 El 

n=1 	 n=1 	 n=1 

Theorem 12.2 For a > 1 we have the integral representation 

' xsa lea.' 
dx. (5) 	 F(s)4(s, a) = 

J.  0  1 — ea' 

In particular, when a = 1 we have 
co xs-i e -x 

F(s)C(s) = 
J 1 — e' 

dx. 
o 

PROOF. First we keep s real, s > 1, and then extend the result to complex s 
by analytic continuation. 

In the integral for 1-(s) we make the change of variable x = (n + a)t, 
where n > 0, to obtain 

f 1-(s) = 	e'xsa 1  dx = (n + a)s I  ea (n + a)t ts a 1  dt, 
o 	 0 

or 

co 
(n + a)--  sT(s) =f e - we - at

t
s — 1 dt. 

Jo  

Summing over all n > 0 we find 

as, a)F(s)= E f e - me - atts - 1  dt, 
n = 0 0 

00 	00 
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n = 0 	 n 0 

Os, aPS) = E 0  'e't' dt = JO E e're- arts-  dt. 
CO 	 'Co CD Co 

e  

Co 	I  
	dt. 

0 1 — e1 
 dt 	+ 

0 	1 — 
dt f 

e't' 
1 — .10°°  

12: The functions 4s) and L(s, 

the series on the right being convergent if a> 1. Now we wish to interchange 
the sum and integral. The simplest way to justify this is to regard the integral 
as a Lebesgue integral. Since the integrand is nonnegative, Levi's convergence 
theorem (Theorem 10.25 in Reference [2]) tells us that the series 

e -nte -atts- 1 
n = o 

converges almost everywhere to a sum function which is Lebesgue-integrable 
on [0, + co) and that 

But if t > 0 we have 0 < e - t < 1 and hence 

1 E cia = 	 
n = 0 	 1 — e 

the series being a geometric series. Therefore we have 

e 	1  
E e - nte - at ts- 1 — 

	 

n = 0 	 1 — e 

almost everywhere on [0, + co), in fact everywhere except at 0, so 

co co 	 e - arts -1  

n 

	

C(S, aS) = 
f 

E 
n = 0 

nte -  at ts -  dt = 
f 
	dt. 0 — 

This proves (5) for real s > 1. To extend it to all complex s with a > 1 we note 
that both members are analytic for a > 1. To show that the right member is 
analytic we assume 1 + 6 5 a :.< c, where c > 1 and 6 > 0 and write 

If 0 < t < 1 we have t' < t ö, and if t > 1 we have C -1  5 te - 1 . Also, 
since et — 1 > t for t > 0 we have 

	

1%1 e - at t a - 1 	 eu a)t t o 	 1 	 - a 

	dt 	dt < 	- a) 	
t i 	dt 	- 

 (5 ' 

	

1 - e - t 	 o 	— 1 

and 
- at r - 

	  dt 

	

co e - at tc - 1 	̀13  e 	t 
< 

J1  1 — 	f1  1 — e-1 dt < 
	

1 — 
	dt — f(c)C(c, a). 

This shows that the integral in (5) converges uniformly in every strip 1 + 6 
< a < c, where (5> 0, and therefore represents an analytic function in 
every such strip, hence also in the half-plane a> 1. Therefore, by analytic 
continuation, (5) holds for all s with a> 1. El 
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12.4: A contour integral representation for the Hurwitz zeta function 

12.4 A contour integral representation for the 
Hurwitz zeta function 

To extend C(s, a) beyond the line o-  = 1 we derive another representation in 
terms of a contour integral. The contour C is a loop around the negative 
real axis, as shown in Figure 12.1. The loop is composed of three parts 
C 1 , C2, C3. C2 is a positively oriented circle of radius c < 27r about the origin, 
and C 1 , C3 are the lower and upper edges of a " cut " in the z-plane along the 
negative real axis, traversed as shown in Figure 12.1. 

   

	c2  

   

   

   

Cl  

Figure 12.1 

 

This means that we use the parametrizations z = re' on C t  and z = re'l  
on C3 where r varies from c to + co. 

Theorem 12.3 If 0 < a < 1 the function defined by the contour integral 

1 f zs- 
	dz I(s, a) = 	 

27ri jc  1 — ez 

is an entire function of s. Moreover, we have 

(6) 	 C(s, a) = F(1 — s)I(s, a) if o-  > 1. 

PROOF. Here zs means rse -' on C 1  and rse's on C3. We consider an arbitrary 
compact disk IsI M and prove that the integrals along C 1  and C3 converge 
uniformly on every such disk. Since the integrand is an entire function of s 
this will prove that I(s, a) is entire. 

Along C 1  we have, for r > 1, 
1 1  = 	le - ni(a-1+it)1 = ra - l ent < rM - l enM 

since I s I < M. Similarly, along C3 we have, for r > 1, 

z 1 	lei(' ') = rc-  e' < rm  e 

Hence on either C 1  or C3 we have, for r > 1, 

 

z -  

 

rM - l enMe -ar 	rM-l enM e(1-a)r 

— 1 — e 	er — 1 

 

1 — ez 

 

    

But er — 1 > e72 when r > log 2 so the integrand is bounded by Arm-l  e' 
where A is a constant depending on M but not on r. Since rm l e - " dr 
converges if c > 0 this shows that the integrals along C 1  and C3 converge 
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12: The functions “s) and L(s, x) 

uniformly on every compact disk I s I < M, and hence I(s, a) is an entire 
function of s. 

To prove (6) we write 

2niI(s, a) = 	+ f + f )z'g(z) dz 
 C2 	C3 

where g(z) = eaz/(1 — ez). On C 1  and C3 we have g(z) = g(— r), and on C2 
we write z = ce, where —7r < 0 < Ir. This gives us 

2rtiI(s, a) — 	e - nisg ,  _ ( r) dr + I 	 es -1e "uce ieg(ce i°) dO 

co 
— r) dr 

= 21 sin(its) f rs -1g(— r) dr + ics 	eis8g(ce i0) dO. 

Dividing by 2i, we get 

nI(s, a) = sin(ms)1 1 (s, c) + I2 (s, c) 

say. Now let c —> 0. We find 
—— ar S G°  rs e 

urn c) —
r 0  1 — e 
	dr — r(s)((s, a), 

if a > 1. We show next that lim c _ o  12(s, c) = 0. To do this note that g(z) 
is analytic in I z I < 27r except for a first order pole at z = 0. Therefore zg(z) 
is analytic everywhere inside I z I < 27r and hence is bounded there, say 
g(z)I < A/I z I , where IzI = c < 27r and A is a constant. Therefore we have 

c' 
I 2(s, c)I < —

2 
f e - th —

A 
dO < AertI t ic' 

If a > 1 and c —> 0 we find I2 (s, c) —> 0 hence mr(s, a) = sin(irs)F(s)(s, a). 
Since F(s)F(1 — s) = 7r/sin its this proves (6). 

12.5 The analytic continuation of the 
Hurwitz zeta function 

In the equation C(s, a) = F(1 — s)I(s, a), valid for a > 1, the functions 
I(s, a) and F(1 — s) are meaningful for every complex s. Therefore we can use 
this equation to define C(s, a) for a < 1. 

Definition If a < 1 we define ((s, a) by the equation 

(7) 	 C(s, a) = F(1 — s)I(s, a). 

This equation provides the analytic continuation of ((s, a) in the entire 
s-plane. 

co 
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12.6: Analytic continuation of C(s) and L(s, x) 

Theorem 12.4 The function as, a) so defined is analytic for all s except for a 
simple pole at s = 1 with residue 1. 

PROOF. Since /(s, a) is entire the only possible singularities of as, a) are the 
poles of F(1 — s), that is, the points s = 1, 2, 3, ... But Theorem 12.1 shows 
that as, a) is analytic at s = 2, 3, . , so s = 1 is the only possible pole of 
as, a). 

Now we show that there is a pole at s = 1 with residue 1. If s is any integer, 
say s = n, the integrand in the contour integral for I(s, a) takes the same 
values on C 1  as on C3 and hence the integrals along C 1  and C3 cancel, 
leaving 

12-  lea' 
dz = Res 

zn- 
I(n, a) = 

21'1  fc,. 1  — e z 	1 — e • 

In particular when s = 1 we have 

eaz 	zeaz 	 — 1 
41, a) = Res 	= 	= lim 	 = lim 	= — 1. 

z  ., 0  1 — e z, 0 1- e 	ez z _ o  ez 

To find the residue of as, a) at s = 1 we compute the limit 

lim(s — 1)as, a) = — lim(1 	s)1-(1 — s)l(s, a) = —1(1, a)lim 	— s) 
s-1 	 s- 	 s-1 

= F(1) = 1. 

This proves that as, a) has a simple pole at s = 1 with residue 1. 

Note. Since as, a) is analytic at s = 2, 3, . .. and F(1 — s) has poles at these 
points, Equation (7) implies that I(s, a) vanishes at these points. 

12.6 Analytic continuation of (s) and L(s, x) 

In the introduction we proved that for a> 1 we have 

C(s) = C(s, 1) 

and 

(8 ) 	 L(s, x) = 	xoc(s, 
r= 1 

where x is any Dirichlet character mod k. Now we use these formulas as 
definitions of the functions C(s) and L(s, x) for a < 1. In this way we obtain the 
analytic continuation of C(s) and L(s, x) beyond the line a = 1. 

Theorem 12.5 (a) The Riemann zeta function C(s) is analytic everywhere 
except for a simple pole at s = 1 with residue 1. 
(b) For the principal character xi  mod k, the L-function Us, x)  is analytic 

everywhere except for a simple pole at s = 1 with residue p(k)/k, 
(c) If x 	x i , L(s, x) is an entire function of s. 
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12: The functions C(s) and L(s, x) 

PROOF. Part (a) follows at once from Theorem 12.4. To prove (b) and (c) 
we use the relation 

E x(r)  = So 	if x 0 XI, 

rmodk 	t9(k) 1f ) = Xl• 

Since as, r/k)has a simple pole at s = 1 with residue 1, the function x(r)C(s, r/k) 
has a simple pole at s = 1 with residue x(r). Therefore 

k 

Res L(s, x) = lim(s — 1)L(s, x) = litn(s — 1)k ' E x(r)c(s, 1 ks= 1 	s--.1 	 s--b 1 	 r = 1 

= 7 L 
K r =1 

X(r) = 

0 

(p(k) 

if x 0 x i , 
. 
lf X = Xi - 

0 

k 

12.7 Hurwitz's formula for C(s, a) 
The function as, a) was originally defined for a> 1 by an infinite series. 
Hurwitz obtained another series representation for as, a) valid in the half-
plane a < 0. Before we state this formula we discuss a lemma that will be used 
in its proof. 

Lemma 1 Let S(r) denote the region that remains when we remove from the 
z-plane all open circular disks of radius r, 0 < r < it, with centers at 
z = 2niri, n =-- 0, + 1, + 2, . .. Then i f0 <a < 1 the function 

g(z) = 
e" 

1 — ez 

is bounded in S(r). (The bound depends on r.) 

PROOF. Write z = x + iy and consider the punctured rectangle 

02(r) = {z :Ix' 	1, IYI 	It, I zl ..-_ r}, 

shown in Figure 12.2. 

Figure 12.2 
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eaz 

1 — ez 

e" 
	eax 

= Ii — ezI 	11 — exi 
Ig(z) 1 = 

12.7: Hurwitz's formula for CO', a) 

This is a compact set so g is bounded on Q(r). Also, since I g(z + 2701 = 
g(z)I, g is bounded in the punctured infinite strip 

{z : Ix' 	1, I z — 2nnil 	r, n = 0, ±1, + 2, ...}. 

Now we show that g is bounded outside this strip. Suppose I x I > 1 and 
consider 

For x > 1 we have I 1 — 
ext = ex — 1 and eax < ex, so 

ex 	1 	1 
19(z)1 ex — 1 	— e' 1 e 	e- 1  

Also, when x < — 1 we have I 1 — ex I = 1 — ex so 

eax 	1 	1 
19(z)i 	1— e  < 1  _ ex < 1  _ e  - 1=  e 	_ 1  

Therefore I g(z) 	el(e — 1) for I x 	1 and the proof of the lemma is 
complete. 

We turn now to Hurwitz's formula. This involves another Dirichlet 
series F(x, s) given by 

nz 
e

2 minx 

(9) 	 F(x, s) = 
.= 1  ns 

where x is real and a> 1. Note that F(x, s) is a periodic function of x with 
period 1 and that F(1, s) = C(s). The series converges absolutely if a > 1. 
If x is not an integer the series also converges (conditionally) for o-  > 0 
because for each fixed nonintegral x the coefficients have bounded partial 
sums. 

Note. We shall refer to F(x, s) as the periodic zeta function. 

Theorem 12.6 Hurwitz's formula. If 0 < a < 1 and a> 1 we have 

F( 	. 
(10) 	

s) 
— s, a) --= 	fe -'12F(a, s) + els12 F(— a, s)}. 

(2705  

If a 0 1 this representation is also valid for a> 0. 

PROOF. Consider the function 

1zs - le" 
I N(s, a) = 

2ni L (N)  1 — ez
dz,  

where C(N) is the contour shown in Figure 12.3, N being an integer. 

257 



12: The functions C(s) and L(s, 

• (2N + 2)ri 

R = (2N + 1)ir 

Figure 12.3 

First we prove that lim N ,„ I N(s, a) = I(s, a) if a < 0. For this it suffices 
to show that the integral along the outer circle tends to 0 as N —> cc. 

On the outer circle we have z = 	< 0 < ir, hence 

_= 'Rs- eieo- 1)1 = R 1 e t8  < Rif el f '. 

Since the outer circle lies in the set S(r) of Lemma 1, the integrand is bounded 
by Aeni tIR' , where A is the bound for I g(z)l implied by Lemma 1; hence 
the integral is bounded by 

2nAe'll 1 Ra , 

and this —> 0 as R —> co if a < 0. Therefore, replacing s by 1 — s we see that 

lim I N(1 	s, a) = I(1 — s, a) if a > 1. 
N 

Now we compute / N(1 — s, a) explicitly by Cauchy's residue theorem. We 
have 

I NO — s, a) = 	E R(n) = — E {R(n) + R( — nil 
n= -N 	 n=1 

n#0 

where 

z seaz 
R(n) = Res 

 z=-2nni 
, 	

ez 

Now 
z -seaz 	e2nnia 

R(n) 	urn  (z 2nni) 	 = 	. lim 
z — 2nni 

1 — ez 	(2nni)s 2-42nrci 

	
Iez 

" 2nni 

e2nnia 

(2nmi) 
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12.8: The functional equation for the Riemann zeta function 

hence 

	

N 
e

2nnia 	N 
e
- 2n7tia 

I N(1 — s, a) = E 	+ E 	. 

	

„,, (2nni)s 	n=  1 ( — 2nnOs 

But Cs = e — nisI2  and (— irs = el" so 

e -reis12 N e2nnia 	enisI2 N e - 2nrcia 

1N(1 — s, a) = 	 	  
(27r)S 	

+ 
nE_ . 1  ns 	(27r)s „E, ._ 1 	ns 

Letting N oo and using (11) we obtain 

e -nis/2 	enis/2 

1(1 — s, a) = 	(2n)8 F(a, s) + 
(2n)s 

F(—a, s). 

Hence 

F(s)  
((1 — s, a) = F(s)I(1 — s, a) = 	fe -'12F(a, s) + e'sl2F(—a, s)}. 0 

(2n)s 

12.8 The functional equation for the 
Riemann zeta function 

The first application of Hurwitz's formula is Riemann's functional equation 
for (s). 

Theorem 12.7 For all s we have 

irs „ 
(12) ((1 — s) = 2(27r) - sl-(s)cos(-

2 )C(s) 

or, equivalently, 

irs 
(13) C(s) = 2(27r)s - 1 F(1 — s)sin(--

2
)((1 — s). 

PROOF. Taking a = 1 in the Hurwitz formula we obtain, for a> 1, 

. 
al —  •s) — F(s)  (2Thr  te -'12((s) + e's12 ((s)} = (F2(1rs))., 2 

This proves (12) for a-  > 1 and the result holds for all s by analytic continua- 
tion. To deduce (13) from (12) replace s by 1 — s. 	 0 

Note. Taking s = 2n + 1 in (12) where n = 1, 2, 3, ... , the factor cos(ns/2) 
vanishes and we find the so-called trivial zeros of C(s), 

(( — 2n) = 0 for n = 1, 2, 3, . .. 
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12: The functions C(s) and gs, X) 

The functional equation can be put in a simpler form if we use Legendre's 
duplication formula for the gamma function, 

1 270/22— 2sr(2s) = F(s)r(s + 

which is the special case m = 2 of Equation (4). When s is replaced by 
(1 — s)/2 this becomes 

2s7r 112 F(1 — s) = F(
1 — s

)F(1 — 
2 	2 

Since 

1-(:-)r(i — ') .  ir  
\2 j \ 	2 i 

sin —
2 

this gives us 

2 - sn i l2F(1 —2 s  its 
F(1— s) sin —

2 
= 	 I  . 

FGs ) 

Using this to replace the product F(1 — s)sin(ns/2) in (13) we obtain 

sl2r0

v  c(s) . 7r  — (1 — s)/2 r(1 — 
2 

s) (l — s). 
2  

In other words, the functional equation takes the form 

430(s) = 430(1 — s), 

where 

(Ns) = ir- 42 1- (5 )(s). 

The function 0(s) has simple poles at s = 0 and s = 1. Following Riemann, 
we multiply 4i(s) by s(s — 1)/2 to remove the poles and define 

Os) = —
1 

s(s — 1)0(s). 
2 

Then (s) is an entire function of s and satisfies the functional equation 

(s) = (1 — s). 
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12.9 A functional equation for the Hurwitz 
zeta function 

The functional equation for C(s) is a special case of a functional equation 
for C(s, a) when a is rational. 

Theorem 12.8 If h and k are integers, 1 < h < k, then for all s we have 

2irkrh)c(s,  rk) .  
(14) 	c(1 — S,0 = 

(221:r(ks s r 
COS( Ir2s  

= 

PROOF. This comes from the fact that the function F(x, s) is a linear combina-
tion of Hurwitz zeta functions when x is rational. In fact, if x h/k we can 
rearrange the terms in (9) according to the residue classes mod k by writing 

n = qk + r, where 1 < r < k and q = 0, 1, 2, ... 

This gives us, for a > 1, 

h 	co 

 F( 
' 	

e2 irinhlk 	k 	cc 	e
2Irirhik 	

1 	k 	 1 
-
k 

s) = E 	= E E 	v e27rirkk 

n 	
E 

=1 ris 	r= 1 41 =0 (qk + Os 7  le r' 	q=0 (
q + -

k 

ry  

= k—s E e2nirhlicr(c, r) 
s a, 	• 

r= 1 

Therefore if we take a = h/k in Hurwitz's formula we obtain 

— 5, -k-h) = 	 E  (e -xis/2 e2nirhik 	enis/2e-2.nirh/kg 	_r 

(2nk)s 

2r(s) k 	(irs 27Erh\r( E cos 
(27Ekr r=  1 	2 	k 

which proves (14) for a> 1. The result holds for all s by analytic continuation. 
El 

It should be noted that when h = k = 1 there is only one term in the sum in 
(14) and we obtain Riemann's functional equation. 

12.10 The functional equation for L-functions 

Hurwitz's formula can also be used to deduce a functional equation for the 
Dirichlet L-functions. First we show that it suffices to consider only the 
primitive characters mod k. 
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Theorem 12.9 Let x be any Dirichlet character mod k, let d be any induced 
modulus, and write 

X(n) =  

where tfr is a character mod d and x i  is the principal character mod k. Then 
for all s we have 

L(s, = 1(s, tfr) 11 (1 	OP))  
plk 	Ps.  

PROOF. First keep c> 1 and use the Euler product 

L(s, x) = II 
P  1 	AP). 

pS 

Since x(p) = kii(P)Xi(P) and since xi(P) = 0 if plk and xi(P) = 1 if p k we 
find 

1  

	

11 (1 	'P(P))  L(s, x) = 11 	 
Ifr(P) 

 = 
 P 	
1P(p) rlk \ 	Ps  

P 41  1 	1 
Ps 	 Ps  

	

= L(s, 0)11(1 	III (P))  
pp, 	Ps  

This proves the theorem for a > 1 and we extend it to all s by analytic 
continuation. 	 1:1 

Note. If we choose d in the foregoing theorem to be the conductor of x, 
then kP is a primitive character modulo d. This shows that every L-series 
L(s, x) is equal to the L-series L(s, tfr) of a primitive character, multiplied 
by a finite number of factors. 

To deduce the functional equation for L-functions from Hurwitz's 
formula we first express L(s, x) in terms of the periodic zeta function F(x, s). 

Theorem 12.10 Let x be a primitive character mod k. Then for a > 1 we have 

(15) 	 G(1, i)L(s, X) = E i(h)FG S) , 
h= 1 

where G(m, x) is the Gauss sum associated with x, 

G(m, x) = E x (r)e2.irm/k. 

r= 1 

1 
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PROOF. Take x = h/k in (9), multiply by )-(h) and sum on h to obtain 

k 	co 	 co 	k 

E ,--(0)Fek  , s) 	E E 	me 2xinis/k n - s = 

h= 1 	 h= 1 n = 1 	 n = 1 	h=1 

2ninh/k 

CO 

= E n - sG(n, 
n= 1 

But G(n, i) is separable because is primitive, so G(n, = X(n)G(1, b, hence 

k 
E i(h)F s) = 	 = Go, ios, x). 

h= 	ik 	 n= 1 

Theorem 12,11 Functional equation for Dirichlet L-functions. If x is any 
primitive character mod k then for all s we have 

k s- i ns)  
(16) 	L(1 — s, x) = 	 te 1s/ 2  + x( — oegisf 2 IG(1, x)L(s, 

(2n)s 

PROOF. We take x = hlk in Hurwitz's formula then multiply each member 
by x(h) and sum on h. This gives us 

	

E x(h)c(1 s, -h) 	f(s) 	k  — nisi 2 E  zooF(h, s) 
h=1 k 	(2705 

e 	
h= 1 

— h 
+ e 2  E x(h)F( 	s)}. 

h= 1 

Since F(x, s) is periodic in x with period 1 and x(h) x(— 1)X(— h) we can 
write 

	

E xow( 	, s)= — 1) E 	h)F( k  , s 
hmodk 	 h mod k 

	

= x( — 1) E x(k — h)Fc c 	
k 

h
' 
s) 

h mod k 

	

= 	1) E Z(h)F(7, s), 
h mod k 	K 

and the previous formula becomes 

IC 
	 h) 	F(s)  _ _ 	 k  (20  le  Ris12 	 1)e2}E x(h)c( 1 — s, 

h= 1 	 h= 1 E X01)F 	s). 

Now we multiply both members by k 5 ' 	use (15) to obtain (16). 	El 
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12.11 Evaluation of (—n, a) 

The value of C( — n, a) can be calculated explicitly if n is a nonnegative integer. 

	

Taking s = —n in the relation ((s, a) = 	— s)I(s, a) we find 

4(—n, a) = 1(1 + n)I(— n, a) = n!I(— n, a). 

We also have 

z -  1e. 
n, a 	Res 	 

1 — z e 

The calculation of this residue leads to an interesting class of functions known 
as Bernoulli polynomials. 

Definition For any complex x we define the functions B(x) by the equation 

ze" 

	

 	E 
B(x) 

z", where Izi < 2m. 
ez — 1 - • 

The numbers B„(0) are called Bernoulli numbers and are denoted by B. 
Thus, 

B 
	= 	z", where I z I < 2n. 
e2  — 1 	n ',0  n! 

Theorem 12.12 The functions B n(x) are polynomials in x given by 

13,(X) = 	(
n

)Bk 
k = 0 k 

PROOF. We have 

B(x) 
 z  	

(' B„ 	x" 
exz = E —z.  

L 	n  = e2  — 1 n=0 "• 	 n= 0 n! n=0 —• 

Equating coefficients of zn we find 

B n(x) 	" Bk  X n—k  

n!  

from which the theorem follows. 

Theorem 12.13 For every integer n > 0 we have 

B„+1 (a) 
(17)  

n + 1 
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PROOF. As noted earlier, we have C( — n, a) = n! I(— n, a). Now 

(z-n — lea.) 	 zeaz 
I(— n, a) = Res 	 = Res( 	

ez — 1
z - " -  2 	 

z=o 1 — ez 	z = 0 

' 	a 
= — Res  (z 2 	

B,„() 
-n-  2  E 

.-0 	m=o rn 1  
zr") = B„ +  1(a)  

(n + 1)!' 

from which we obtain (17). 	 CI 

12.12 Properties of Bernoulli numbers and 
Bernoulli polynomials 

Theorem 12.14 The Bernoulli polynomials B(x) satisfy the difference equation 

(18) B„(x + 1) — B(x) = nx"' i fn .- 1. 

Therefore we have 

(19) B„(0) = B„(1) if n 	2. 

PROOF. We have the identity 

e(x+  
z 

ez — 1 
z 

ez — 1
= ze' 

 

from which we find 

B„(x + 1) — 13.(x)  zn = i L 
 n= o 	1 

	

n 	. 	 n = o n • 
z'. 

Equating coefficients of e we obtain (18). Taking x = 0 in (18) we obtain (19). 

Theorem 12.15 If n > 2 we have 

B,, = i 
k = 0 

(n)Bk • 
k 

PROOF. This follows by taking x = 1 in Theorem 12.12 and using (19). El 

Theorem 12.15 gives a recursion formula for computing Bernoulli numbers. 
The definition gives B o  = 1, and Theorem 12.15 yields in succession the 
values 

Bo  = 1, 

B5 = 0, 

1 
B1 = - 

1 
B6 = , 

1 
B2 

B7 = 0, 

B3 = 0, 

1 
B8 = - 

1 
B4= - -31-5, 

B9 =0, 

Bi 1  = O. 
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From a knowledge of the Bk we can compute the polynomials B„(x) by using 
Theorem 12.12. The first few are: 

Bo(x) = 1, 	B 1(x) = x - , 	B 2(x) = x 2  - x + -
6 ' 

3 	1 	 1 
B3(x) = x 3  - -

2 
x2  + -

2 
x

' 	
B4(x) = x4  - 2x3  + x 2  - -,...- 

.3O • 

We observe that Theorems 12.12 and 12.15 can be written symbolically 
as follows: 

B„(x) = (B + x)", 	B„ = (B + 1). 
In these symbolic formulas the right members are to be expanded by the 
binomial theorem, then each power Bk  is to be replaced by Bk. 

Theorem 12.16 If n > 0 we have 

(20) 	 -n) = 	1 	. 
n + 1 

Also, i fn 	1 we have C( - 2n) = 0, hence B2„ + 1 0. 

PROOF. To evaluate a - n) we simply take a = 1 in Theorem 12.13. We have 
already noted that the functional equation 

ITS 
(21) 	 - = 2(27r) - sr(s)cos(-

2
)(s) 

implies a - 2n) = 0 for n 1, hence B 2,, 1  = 0 by (20). Li 

Note. The result B 2„ +1  = 0 also follows by noting that the left member of 

1 	 B 
ez — 1

+ —
2
z=l+ E 

n=2 •n1 

is an even function of z. 

Theorem 12.17 If k is a positive integer we have 

(22) 	 C(2k) = 
(27.02kB 2k  

2(2k)! 

PROOF. We take s = 2k in the functional equation for c(s) to obtain 

al - 2k) = 2(2n) -24"(2k)cos(irk)(2k), 

or 

B2k = 2(27r) 2k(2k - 1)!( - l)k((2k). 
2k 

This implies (22). 	 Li 
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12.12: Properties of Bernoulli numbers and Bernoulli polynomials 

Note. If we put s = 2k + 1 in (21) both members vanish and we get no 
information about C(2k + 1). As yet no simple formula analogous to (22) 
is known for 4(2k + 1) or even for any special case such as C(3). It is not even 
known whether C(2k + 1) is rational or irrational for any k. 

Theorem 12.18 The Bernoulli numbers B2k alternate in sign. That is, 

(-1)"1B21,> 0. 

Moreover, B2k —+ 00 as k —4 pc. In fact 

(23) +1432
k 	

2(2k)! 
 as k  (2702k 

PROOF. Since (2k) > 0, (22) shows that the numbers B2k alternate in sign. 
The asymptotic relation (23) follows from the fact that C(2k) 	I as k 

Note. From (23) it follows that1B 	)B 2k + 2:— 2k 1 ".."' 
k2/n2  as k 	GC. Also, by 

invoking Stirling's formula, n! 	(n/e)"\/27rn we find 

4  k- 1, 	7c -\/(—  
k  )2k +1/2 

—1 )"B2  

The next theorem gives the Fourier expansion of the polynomial B(x) 
in the interval 0 < X < 1. 

Theorem 12.19 If 0 < x < 1 we have 

ft! 	+co 	27zikx e 
(24) B(x) = 

(27ri) A =L-2 cc  k" 
k* 0 

and hence 

B2(x) (_ 
on+  2(2n)! 	cos 2irkx 

(2n)2n  k. d- 	k 2n  

B2n + 1(X) = ( 1)71+ 

2(2n + 	

L

,--,

c° 

sin 27rkx 

(2702,,+ 1 k  = 	k2n+ 1 • 

PROOF. Equation (24) follows at once by taking s = n in Hurwitz's formula 
and applying Theorem 12.13. The other two formulas are special cases of 
(24). 

Note. The function /3„(x) defined for all real x by the right member of 
(24) is called the nth Bernoulli periodic function. It is periodic with period 1 
and agrees with the Bernoulli polynomial B(x) in the interval 0 <x 1. 
Thus we have 

B(x) = B n(x [x]). 

as k —> co. 
ire 
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12: The functions C(s) and L(s, x) 

12.13 Formulas for L(0, z) 

Theorem 12.13 implies 

1 
(0, a) = —13 1 (a) = 1 — a. 

In particular 00) = CA 1) = — 1/2. We can also calculate L(0, x) for every 
Dirichlet character X. 

Theorem 12.20 Let x be any Dirichlet character mod k. 
(a) If x = x i  (the principal character), then L(0, x i ) = 0. 
(b) If x 0 x i  we have 

1 k 

L(0, x) = — 	rx(r). 

Moreover, L(0, x) = 0 if x(— 1) = 1. 

PROOF. If x = x i  we use the formula 

us, xi) = c(s) Fl (1 — p — s) 
pik 

proved for a> 1 in Chapter 11. This also holds for all s by analytic continua-
tion. When s = 0 the product vanishes so L(0, xi) = O. 

If x 0 x i  we have 

Now 

k   k  r 	 1 	r \ 
L(0, x) = 

r1 
E x(r

(
)c 0, 

) 
— = E x(r)

( 
 -i — i—c) = k 	r. 1  =  

k 	 k 	 k 	 k 

E r(r) = E (k — 0)0 — 11 = k E x(k — r) — E rX( - 1) 
r=1 	r=1 	 r=1 	 r=1 

k 

- X( - 1) E rx(r). 
r=1 

Therefore if
(— 

1) = 1 we have E1,!= irx(r) = 0. 	 CI 

12.14 Approximation of C (s, a) by finite sums 

Some applications require estimates on the rate of growth of C(a + it, a) as a 
function of t. These will be deduced from another representation of C(s, a) 
obtained from Euler's summation formula. This relates Os, a) to the partial 
sums of its series in the half-plane a > 0 and also gives an alternate way to 
extend C(s, a) analytically beyond the line a = 1. 
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12.14: Approximation of (.s, a) by finite sums 

Theorem 12.21 For any integer N > 0 and o-  > 0 we have 

" 	1 	(N + a)1- s 	r x  — [x] 

	

(25) 	(s, a) = E 	+ 	 s 	 dx. 
n = 0  (n + a)5 	s — 1 	N (X ± a)' 

PROOF. We apply Euler's summation formula (Theorem 3.1) with f (t) = 
(t + a)_ 3  and with integers x and y to obtain 

1x 	dt 	x t — [t] 
E 	= 	 S 

	

y<n <x (n + a)s 	i,, (t + a)3 	f 	1 
dt. 

y  (t + 	ar 
 

Take y = N and let x --+ co, keeping a> 1. This gives us 

1 	= r - 	dt 	1 co t — [t] 
s 

	

1 (n + ar 	4! N (t ± a)3 .1 N (t + ar 1 
dt

' 
or 

N 	1 
 (s, a) — 	

(N + a)' s 
	

 
C 	E 	— 	 

n . 0  (n + a)5  	(t + a) +1 dt.  

This proves (25) for a> 1. If a > (5 > 0 the integral is dominated by 
IT/  (t + a)- 1  dt so it converges uniformly for a > (5 and hence represents 
an analytic function in the half-plane a > 0. Therefore (25) holds for a > 0 
by analytic continuation. 111 

The integral on the right of (25) can also be written as a series. We split 
the integral into a sum of integrals in which [x] is constant, say [x] = n, 
and we obtain 

ro x 
	dx = 

— [ 	

n + 1 x] 	co 	X — n 	 u 	
du 	dx = E 	 E 	 ' fl i N  (x + ar 1 	n = N n (X + ar 1 	n= N 0 04 + n + ar 1  . 

Therefore (25) can also be written in the form 
N 	1 

 (26) 	
(N +  a)' 	op jo. 	u  

as, a) — E 	= 	 s E 	du 
n= 0 (n + a)5 	s — 1 	n=N co (14 + n + 0' 1  

if a > 0. Integration by parts leads to similar representations in successively 
larger half-planes, as indicated in the next theorem. 

Theorem 12.22 If a > —1 we have 

N 	1 	(N + a)1  s 

	

(27) 	as, a) — E 
... (n + a)3 	s — 1 

S 	 N 	1 	1 

- -. (S ± 1, a) — no  (n  + a) 1  

s(s  + 1) 	11 	u 2 

2! 	„.'N Jo (n + a + u) 
 

= 
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12: The functions C(s) and L(s, 26 

More generally, if a > —m, where m = 1, 2, 3, . .. , we have 

	

N 	1 	(N + a)' 	s(s + 1) • - - (s + r — 1)  

	

(28) C(s, a) — E 	. 	L „, (n + Os 	s — 1  r1 	(r + 1)! = 

X f(S ± r, a) — i 	1 	} 
n . 0  (n + arr 

s(s + 1) • - . (s +  m)  
(m + 1)! 

x 	1 
x Y.' c...d 

n=N 0 

14' 1  
	 du. 
(n + a + urn t+1  

PROOF. Integration by parts implies 

	

. 	
u du u 2 	s + 1 	u 2  du  

J (n 	+ a  ± ar 1 	
± 

2(n + a + u)s +1 	2 J (n + a + Os +2  

so if a > 0 we have 

u du 	1 	1 

n _ iki 0  (n + a + u) 1  = 2 ,,E, I,, (n + a + E 	  

co f 	 ") 
	i)s+ 1 

s + 1 
+ 	

 co f1 	u 2 du 

2 nE. N 0  (n + a + u)s' 

But if a-  > 0 the first sum on the right is C(s + 1, a) — EnN= 0 (n + a)'' and 
(26) implies (27). The result is also valid for a> — 1 by analytic continuation. 
By repeated integration by parts we obtain the more general representation 

	

in (28). 	 El 

12.15 Inequalities for 1((s, a)1 

The formulas in the foregoing section yield upper bounds for I C(a -  + it, a)f 
as a function of t. 

Theorem 12.23 (a) If (5 > 0 we have 

(29) I C(s, a) — a -  1 	Ca + 6) if a 	1 + 6. 

(b) If 0 < 6 < 1 there is a positive constant AO), depending on 6 but not on 
s or a, such that 

(30) 1C(s, a) — a -  sl 	A((5)itl 6  if 1 — 6 < a < 2 and Itl 	1, 

(31) Ms, a) — a -  sl 	A((5)10 1+6  if — 6 	e r ._ (5 and Id 	1, 

(32) i(,s, a)l LC A((5)Itim +1+ 6  if —m — (5 	a ___ — m + (5 and Iti _._>:_ 1, 

where m = 1, 2, 3, ... 

, 
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12.15: Inequalities for I C(s, a)I 

PROOF. For part (a) we use the defining series for C(s, a) to obtain 

	

co 	1 	co 	1  
1 C(s, a) — a -  s I < 	 = E 	< 7 	 

	

n=1 	(n + a) — :-'1 n i +6 	CO + (5), 

which implies (29). 
For part (b) we use the representation in (25) when 1 — .5 < a < 2 to 

obtain 

	

N 	1 	(N + a)1  '  
I (s, a) — a -  s I 	

n1 (n + ar 	Is — 11 
...• E 	 + 	+ Is 1 

=  

r co 	dx 
i N (x + a)' 1  

I' 	dx 	(N + a)' ' 	I s I 
< 1 + 	+ 	 

f 1 (x + a) 	Is — 11 
+ --a-  

Since a 1 — (5 > 0 we have (x + a) > (x + a)'' > x' so 

l'N  dx 	N  dx 	N °  	< _ . 
.1 1 (x + ar 

< 
f 1  X 1-6 	6 

Also, since Is — 11 . lo-  — 1 + it1 	1t1 > 1 we have 

(N + a)1  " 

I s — 1 1 

Finally, since Is 1 LS lal + 1 t1 	2 + 1 t1 we find 

	

2  + Ili 	< 
2 + It' 1  

(N + ar 1  
a 	 1 — 6 	 1 — 6 N I  

N ° 

 

These give us 

2+ 1t1 N o  
I C(s, a) — a-5 I < 1 + 

T 
+ (N + 1)°  + 

1 — 6 N . 

Now take N = 1 + ['tn. Then the last three terms are 0(lt 1 45), where the 
constant implied by the 0-symbol depends only on ( 5. This proves (30). 

To prove (31) we use the representation in (27). This gives us 

N 	1 	(N + a)1  
I (S  9 a) — a -s l 	E  	+ — isi{i as + 1 ), a) — a -s-1 11 

n=i (n + ar 
+ Is — 11 	2 

1 	N 	1 	1 	°° 	1 
± — 	E 	+ Is' is + 1 1 Isi 	E 	 

	

2 n= i (n + a) 	 n=141 (n + 0° + 2  

As in the proof of (30) we take N = 1  + [It I] so that N = OW I) and we 
show that each term on the right is 0(1tr"), where the constant implied 
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12: The functions “s) and Us, x) 

by the 0-symbol depends only on S. The inequalities —6 ... a 6 imply 
1 — 6 < 1 — a < 1 + 6, hence 

	

x_N, 	1 N 	dx 	(N + a)1-17  

	

L., 	 < 1 + 	< 1 + 
f 1  (x + 0 	1 — a 

(N + 0'6  
< 1 + 

1 — 	
— OW1 1+6). 

 6 

Since Is — 11 > 1t1 > 1 the second term is also 0(1t1 1  + a). For the third term 
we use (30), noting that 1 — 6 _. a + 1 ... 1 + 5 and Is 1 = O( t  1), and we 
find that this term is also 0(1 t l' +6). Next, we have 

	

N 	1 dx  

	

IsIE 	 
.. 1 (n + of + ' = °(it  1 J'IN (x + a)'t' ) 

= O(It1N -6) = O(It11-6) = 0(lt11+6). 

Finally, 

1  
islis + 11E 	

fc° 	dx 	) 
(0 ItI 2 N -1) — 	' 

n.--N 01 + a) 2 
 = o(It12 

iN (X + a) 2  — 

= CI(10 2  Na- I ) = 0(I0 1+6). 

This completes the proof of (31). 
The proof of (32) is similar, except that we use (28) and note that a' = 0(1) 

when cr < O. CI 

12.16 Inequalities for IC(s)1 and 1 L(s, x)I 

When a = 1 the estimates in Theorem 12.23 give corresponding estimates 
for 1C(s)1. They also lead to bounds for Dirichlet L-series. If a > 1 + 6, where 
6 > 0, both 1C(s)1 and IL(s, x)I are dominated by ((I + 6) so we consider 
only a < 1 + 6. 

Theorem 12.24 Let x be any Dirichlet character mod k and assume 0 < 6 < 1. 
Then there is a positive constant A(6), depending on 6 but not on s or k, 
such that for s = a + it with It' > 1 we have 

(33) 	1L(s, X)I 5 A(6)iktim+1+6  if —m — 6 	a .__ —m + 6, 

where m = —1, 0, 1, 2, ... 

PROOF. We recall the relation 

	

k - 1 	r 
L(s, x) = k -s  E xfrqs, k). 

r= i 
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Exercises for Chapter 12 

If m = 1, 2, 3, ... we use (32) to obtain 
k-1 

I Ms, x)I k E 
r=1 

< km "kA((5)1tI m+ 1+6  

  

which proves (33) for Tr/ > 1. If m = 0 or —1 we write 

- s ( r\ _ k-I v—  1 X(r) 	E x(olcs' = 
k 	

rs 	
r=1 

(34) 
r = 

Since — m — 6 < ci< — m + (5 we can use (30) and (31) to obtain 

  

k < km+6A(6)1tr i+1+6, 

  

so the second sum in (34) is dominated by A((5)] ktIm + 1  + • The first sum is 
dominated by 

i k-1 	k-1 	 km+1+6 	km++o 
E _= < E en')  < 1 + f xm"dx = 

m + 1 + 6 
< 	 

r=1 	r=1 

and this sum can also be absorbed in the estimate A((5)IktIm+ I  + 6 . 

Exercises for Chapter 12 

I. Let f (n) be an arithmetical function which is periodic modulo k. 

(a) Prove that the Dirichlet series E f (n)n' converges absolutely for a> 1 and that 

= 	folc(s, ;:c) 
if a> 1. 

n1  r=1 

(b) If Ekr =1 f (r) 0 prove that the Dirichlet series E f (n)n -  s converges for a > 0 
and that there is an entire function F(s) such that F(s) = E f (n)n s for a > 0. 

2. If x is real and a > 1, let F(x, s) denote the periodic zeta function, 

F(x, s) = E 
n 1 n 

If 0 < a < 1 and a> 1 prove that Hurwitz's formula implies 

— s) 	. 
F(a, s) = 

F(1 
	 {e' _)I 2 (1 — s, a) + e' 1)/2 (1  — s, 1 — a)). 
(270' 

3. The formula in Exercise 2 can be used to extend the definition of F(a, s) over the 
entire s-plane if 0 < a < 1. Prove that F(a, s), so extended, is an entire function of s. 

4. If 0 < a < 1 and 0 < b < 1 let 

(1)(a, b, s) = 
r(s) 

 g(s, a)F(b, 1 + s) + Os, 1 — a)F(1 — b, 1 + s)}, 
(270' 

e 2mimx 

S • 
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12: The functions c(s) and Ms, x) 

where F is the function in Exercise 2. Prove that 

(I)(a, b, s) = 
{(s, a)( — s, 1 — 	+ c(s, 1 — a)( —s, b)} 

r(s)r( — 
+ e 1s12  {C(— s, 1 — b)C(s, 1 — a) + 	s, b)C(s, a)}, 

and deduce that (I)(a, b, s) = (/)(1 — b, a, — s). This functional equation is useful in 
the theory of elliptic modular functions. 

In Exercises 5, 6 and 7, (s) denotes the entire function introduced in Section 
12.8, 

(s) = —
2 

s(s — 1)n - s12F(-
2
)(s). 

5. Prove that ,;(s) is real on the lines t = 0 and o-  = 1/2, and that (0) 	(1) = 1/2. 

6. Prove that the zeros of (s) (if any exist) are all situated in the strip 0 < cx < 1 and lie 
symmetrically about the lines t = 0 and o- = 1/2. 

7. Show that the zeros of C(s) in the critical strip 0 < o-  < 1 (if any exist) are identical 
in position and order of multiplicity with those of 4s). 

8. Let x be a primitive character mod k. Define 

{0 if — 1) = 1, 

L(1 — s, = E(x)2(270 -  sks -  I cos 

(b) Let 

kr a" (S + a) 
( = 	L.(s, 

2 

	

Show that 	— s, x) = e.(X)(s ,  X). 

9. Refer to Exercise 8. 

(a) Prove that 	x) 0 0 if a > 1 or cr <0. 
(b) Describe the location of the zeros of L(s, x) in the half-plane o- <0. 

10. Let x be a nonprimitive character modulo k. Describe the location of the zeros of 
Ms, x) in the half-plane a-  <0. 

11. Prove that the Bernoulli polynomials satisfy the relations 

B„(1 x) = (— 1)B(x) and B2 	= 0 for every n 0. 

12. Let B 	the nth Bernoulli number. Note that 

B2 = = — — 	B4 = -*1 = 1 — — — 
1 	1 	1 B6 = 412 = — — — 7. 

a = a(x) = 
1 if( — 1) = — 1. 

(a) Show that the functional equation for L(s, x) has the form 

(rt(s  — a))  
2 	

r(s)L(s, x), where I g(x)I = 1. 
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Exercises for Chapter 12 

These formulas illustrate a theorem discovered in 1840 by von Staudt and Clausen 

	

(independently). If n 	1 we have 

1 
B2n "- In — E - , 

P — 1 1 2 n P 

where I,, is an integer and the sum is over all primes p such that p — 1 divides 2n. 
This exercise outlines a proof due to Lucas. 

(a) Prove that 

	

" 	1 	k 
	(k\ 

B r,= - E b 	1 	(— 1)'
] )1.. k=0 " + - ,-0 	r 

[Hint. Write x =-- log{1 + (ex — 1)} and use the power series for x/(ex — 1).] 
(b) Prove that 

" 	It! 
B„ = 1 	c(n, k), 

k , 0  k + 1 

where c(n, k) is an integer. 
(c) If a, b are integers with a > 2, b > 2 and ab > 4, prove that abl(ab — 1)!. This 

shows that in the sum of part (b), every term with k + 1 composite, k > 3, is an 
integer. 

(d) If p is prime, prove that 

	

P— 1 	(p — 1)
rn 
 { — 1 (mod p) if p — lIn, n > 0, 

	

r= 0 	r 	 0 (mod p) if p — 1 ,i/ n. 

(e) Use the above results or some other method to prove the von Staudt-Clausen 
theorem. 

13. Prove that the derivative of the Bernoulli polynomial Bp(x) is nB„_ 1 (x) if n > 2. 

14. Prove that the Bernoulli polynomials satisfy the addition formula 

B„(x + y) = i (n)Bk(x)yn -k . 
k — O k 

15. Prove that the Bernoulli polynomials satisfy the multiplication formula 

m--1 k 
 Bp(mx) = ne - 1  E B p(x + j 

k — O 

16. Prove that if r > 1 the Bernoulli numbers satisfy the relation 

i 22kB2k 	_ 1 

k= 0 (2k)! (2r + 1 — 2k)! — (20! ' 

17. Calculate the integral J  xBp(x) dx in two ways and deduce the formula 

	

P /\ 	Br  

,4_A1jp + 2— r p + 1 
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if p = q = 0, 

0 	 if p 	1, q = 0; or p = 0, q> 1. 

19. (a) Use a method similar to that in Exercise 18 to derive the identity 

(b) Let J =J Bp(x)13q(x) dx. Show that J is the coefficient of p!q!uPvg in the 
expansion of part (a). Use this to deduce that 

p! q! 
—1)P+' 

( 	q)! B P +q 
 if p 	1, q 	1, 

p +  
B p(x)B g(x) dx = 

o  

12: The functions C(s) and L(s, 

18. (a) Verify the identity 

uv 	e"' — 1 	up 	1 	1 

= 
	1 1+ 	 

(e" — 1)(e" — 1) u+v 	u+ v 	e" — 1
+ 

e" 	1) 

uv un—  + vn —  = 	E   B„. 
= 2 n! 	u + v 

	

G° 	2UmVflm 	 m m 

	

(U 1, ) E E B.(x)Bn(x)  u m v n  = E E 	„(x) 	 
B  

m! n! ,.E= 0  (2r)!(u2rV 
+ 1402r ). 

m = 0 n=0 	 m!n! 	m=0 n=0 

(b) Compare coefficients in (a) and integrate the result to obtain the formula 

	

13„,(x)B„(x) = {(m )n + 
(n

r  )
m } B„ 

m + n — 
Bm+.- 2r(x) 	ir+ 1  m!n! 

(m + n) ,. 2r 	2 	 2r 	 ! 
Brn,„ 

for m > 1, n > 1. Indicate the range of the index r. 

20. Show that if m > 1, n > 1 and p > 1, we have 

1 
B,„(x)B„(x)B p(x) dx 

JO 

	

m 	( n'\__ 1 (m + n — 2r — 1)! 
= 	1)P  + 11)! . 	2r 	2r2r)ni f (m + n + 	20! 

B2rBm+n+,-2r- 

In particular, compute f t; B 2 3(x) dx from this formula. 

21. Let f (n) be an arithmetical function which is periodic mod k, and let 

1 
g(n) = 	E f(m)e 

m mod k 

—2nimnIk 

denote the finite Fourier coefficients off If 

k 	 r 
F(s) = 	E f(r)C 

r= 1 

prove that 

F(1 — s) 
(27r)s 

1-(s)  {
et is/2 

r= 1 

	

L g(r)C(s, -
r 

+ e 	E g(—r 
r = 1 )} 
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Exercises for Chapter 12 

22. Let x be any nonprincipal character mod k and let S(x) = E.<x An). 

(a) If N _-_ l and o-  > 0 prove that 

	

N  x(n) 	i'' S(x) — S(N) 
L(s, x) = 	--E 	+ s 	dx. 

	

n . 1  ns 	N 	X3+1 

(b) If s = a + it with a _>_ 5 > 0 and I ti > 0, use part (a) to show that there is a 
constant A(5) such that 

IL(s, X)I -. A(5)B(k)(1t1 + l)' -6  

where B(k) is an upper bound for 1S(x)I. In Theorem 13.15 it is shown that 

13(k) = 0(\A log k). 
(c) Prove that for some constant A > 0 we have 

	

1 1-(s, X)I 5_ A log k if a > 1 	
1 

log k 
and 0 .. I t I < 2. 

[Hint: Take N = k in part (a).] 

\ 
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13 Analytic Proof of the 
Prime Number Theorem 

13.1 The plan of the proof 

The prime number theorem is equivalent to the statement 

(1) tfr(x) 	x as x 	oo, 

where tl(x) is Chebyshev's function, 

	

//(x) = 	A(n). 
rt<X 

This chapter gives an analytic proof of (1) based on properties of the Riemann 
zeta function. The analytic proof is shorter than the elementary proof 
sketched in Chapter 4 and its principal ideas are easier to comprehend. 
This section outlines the main features of the proof. 

The function is a step function and it is more convenient to deal with its 
integral, which we denote by t/i i . Thus, we consider 

	

i (x) = 	x 11/(t) dt. 
1 

The integral i i is a continuous piecewise linear function. We show first that 
the asymptotic relation 

(2) -1- x 2  as x 	cc 
2 

implies (1) and then prove (2). For this purpose we express 0 1 (x)/x 2  in terms 
of the Riemann zeta function by means of a contour integral, 

0 1 (x) 	1 Cc+ x i  xs-1 	C(s)) 
 ds where c > 1. 

x2 	2n1 e _ „i  s(s + 1) 	C(s) 
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13.2: Lemmas 

The quotient — '(s)/(s) has a first order pole at s = 1 with residue 1. If we 
subtract this pole we get the formula 
vji(x)  1  ( 1  

2 \ x 

1 )2  1 	rt.+ oo i 	xs — 1 = ( 	CIS) I 
ds, 

s — 
1 ) for c> 1. 

X2 2nii 	s(s + 1) c- 00i (s) 

We let 
1 	( Ns) 	1  ) 

h(s) = 
s(s + 1) 	C(s) 	s — 1) 

and rewrite the last equation in the form 

( 1A 1 (x) 	1 1  _ 1)2 	1 	c+ooi 
(3) = 	x'h(s) ds 

x 2 	2 	x 	27ri f 

xc-1 r +co 
=  	h(c + it)e" b)g 3' dt. 

27E i _ „) 

To complete the proof we are required to show that 

xc--1. f +. 
(4) urn  	h(c + it)ei t 1`)" dt = 0. 

2n x --• a) 	— ao 

Now the Riemann-Lebesgue lemma in the theory of Fourier series states that 
+ oo 

lim f f (t)e' dt = 0 
x —■ cc. 	— co 

if the integral ft I  f(t)I dt converges. The integral in (4) is of this type, with x 
replaced by log x, and we can easily show that the integral ft")  I h(c + it) I dt 

converges if c > 1, so the integral in (4) tends to 0 as x —> co. However, the 
factor 'cc - 1  outside the integral tends to oo when c > 1, so we are faced with an 
indeterminate form, oo • 0. Equation (3) holds for every c > 1. If we could 
put c = 1 in (3) the troublesome factor 'cc - 1  would disappear. But then 
h(c + it) becomes h(1 + it) and the integrand involves C'(s)/(s) on the line 
o-  = 1. In this case it is more difficult to prove that the integral ft c'oc, Ih(1 + it)I dt 
converges, a fact which needs to be verified before we can apply the Riemann-
Lebesgue lemma. The last and most difficult part of the proof is to show that 
it is possible to replace c by 1 in (3) and that the integral f t ft, I h(1 + it)I dt 
converges. This requires a more detailed study of the Riemann zeta function 
in the vicinity of the line or = 1. 

Now we proceed to carry out the plan outlined above. We begin with 
some lemmas. 

13.2 Lemmas 
Lemma 1 For any arithmetical function a(n) let 

A(x) = E a(n), 
n<x 
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13: Analytic proof of the prime number theorem 

where A(x) = 0 if x < 1. Then 

(5) 
x 

E (x - n)a(n) = f A(t) dt. 
nx 	 1 

PROOF. We apply Abel's identity (Theorem 4.2) which states that 
x 

(6) 	 > a(n)f(n) = A(x)f(x) — 5 A(t)f V) dt 
rix 	 1 

iff has a continuous derivative on [1, x]. Taking f (t) = t we have 

E a(n) f (n) = 1 na(n) and A(x)f (x) = x E a(n) 
n<x 	 nx 	 n<x 

so (6) reduces to (5). 	 D 

The next lemma is a form of L'Hospital's rule for increasing piecewise 
linear functions. 

Lemma 2 Let A(x) = En<x  a(n) and let A 1 (x) = $I A(t) dt. Assume also that 
a(n) > 0 for all n. If we have the asymptotic formula 

(7) A 1 (x) — Lx` as x -- co 

for some c > 0 and L> 0, then we also have 

(8) A(x) — cLxc -1  as x -- co. 

In other words, formal differentiation of (7) gives a correct result. 

PROOF. The function A(x) is increasing since the a(n) are nonnegative. 
Choose any f> 1 and consider the difference A i ($x) — A i (x). We have 

tlx 	 ax 
Aig3X) — Ai(X) = J A(u) du _>., f A(x) du = A(x)(13x — x) 

x 	x 

= x(/3 — 1)A(x). 

This gives us 

1 
xA(x) < 	{A1(13x) — Ai(x)} 

- )6' - 1  
or 

A(x) 	1 	5  A 	i(fix)fic 	A 1 (x) . 
<  

xc-- I. — 13 — 11 (fix)c 	xe f 

Keep /3 fixed and let x -- co in this inequality. We find 

A(x) 1 	 Se  — 1  urnsup ,c _ i je 1  (LP' L) = L 
, co -A- 	 13 - x - 	1 
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13.2: Lemmas 

Now let (3 —> 1 +. The quotient on the right is the difference quotient for the 
derivative of x` at x = 1 and has the limit c. Therefore 

A(x)  
lirn sup 	 .15_ cL. 

x' 1  .-• co 

Now consider any a with 0 < a < 1 and consider the difference 
A 1 (x) — Ajax). An argument similar to the above shows that 

(. A x) 	1— a' 
lim inf 	> L 	 

X' -1  — 	1— a . X -0  OD 

As a -- 1 — the right member tends to cL. This, together with (9) shows that 

	

A(x)/x e - 1  tends to the limit cl, as x —> co. 	 0 

When a(n) = A(n) we have A(x) = 0(x), A l (x) = 0 1 (x), and a(n) 0. 
Therefore we can apply Lemmas 1 and 2 and immediately obtain: 

Theorem 13.1 We have 

(10) 	 0 1 (x) . E (x - n)A(n). 

Also, the asymptotic relation 0 1 (x) — x2/2 implies EP(x) — x as x —> co. 

Our next task is to express 0 i (x)/x 2  as a contour integral involving the 
zeta function. For this we will require the special cases k = 1 and k = 2 of 
the following lemma on contour integrals. (Compare with Lemma 4 in 
Chapter 11.) 

Lemma 3 If c > 0 and u > 0, then for every integer k > 1 we have 

2n1 j,_ xi  z(z + 1) - - . (z + k) 

	

0 	f u > 1,

dz -
-=. 1k! 

1  re-i-coi 	u - z 	 (1 — u) k  if 0 < u 	1, 

the integral being absolutely convergent. 

PROOF. First we note that the integrand is equal to u - zr(z)/1 -(z + k + 1). 
This follows by repeated use of the functional equation F(z + 1) = zilz). 
To prove the lemma we apply Cauchy's residue theorem to the integral 

1 1 	u - z1-(z) 
2ni jc(R) F(z + k + 

where C(R) is the contour shown in Figure 13.1(a) if 0 < u < 1, and that in 
Figure 13.1(b) if u > 1. The radius R of the circle is greater than 2k + c so 
all the poles at z = 0, —1, . . . , —k lie inside the circle. 

(9) 

i 
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u - x 
—c 

k H z + 1 1 	l z + 	R Jz +1I'' z + kI  

13: Analytic proof of the prime number theorem 

(a) O.< u < I (b) > 1 

Figure 13.1 

Now we show that the integral along each of the circular arcs tends to 0 
as R cc. If z = x + iy and Izt R the integrand is dominated by 

u' 
z(z + 1) • • • (z + k) 

The inequality u < u' follows from the fact that u' is an increasing 
function of x if 0 < u < 1 and a decreasing function if u> 1. Now if 1 < n < k 
we have 

since R > 2k. Therefore the integral along each circular arc is dominated by 

2irRu' 
	= 0(R -k ) 
R(4R) k  

and this —00 as R 	oo since k > 1. 
If u > 1 the integrand is analytic inside C(R) hence Scut)  = 0. Letting 

R oo we find that the lemma is proved in this case. 
If 0 < u < 1 we evaluate the integral around C(R) by Cauchy's residue 

theorem. The integrand has poles at the integers n = 0, —1, . , —k, hence 

1 I u "I"(z) k UT(z) 

2ni Jc(R)F(z + k + 1)
dz = E Res 	 

n=0 —n F(z + k + 1) 

U 
	 k

Un(— ir V 	 Res 1-(z) = E 	 
nO nk + 1 - 	_„ 	n=0 (k — n). n.  

k (1, 	 14k 
= 

k! n=o n) k! 

Letting R oo we obtain the lemma. 	 0 
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13.3: A contour integral representation for iii 1 (x)/x 2  

13.3 A contour integral representation 
for tfr (x)/x2  

Theorem 13.2 If c> 1 and x > 1 we have 

01(x) 
X

2 

1 r  XS - 
 (- 

C'(s))  
=— I 	 ds. 

2ni 	00i  s(s + 1) 	“s) 

PROOF. From Equation (10) we have IP i (x)/x = E,(1 — n1 x)A(n). Now 
use Lemma 3 with k = 1 and u = nix. If n < x we obtain 

, n 
- = — 

1 le'  (x/n)s 
-  
x 	2ni c _ cei  s(s + 1) 

ds. 

Multiplying this relation by A(n) and summing over all n < x we find 

i(x) 	7  1   f 	A(11)(xln) s  ds 	1  re+ °Di  A(n)(x1n)s ds  

X 	ntx 27Ei 	s(s + 1 ) 	27ri j c - coi  s(s + 1) 

since the integral vanishes if n> x. This can be written as 

tki(x) 	f 	fe+ coi 
(12) = E 	n(s) ds, 

n=1 c— 

where 27r(x) = A(n)(x/n)s/(s 2  + s). Next we wish to interchange the sum and 
integral in (12). For this it suffices to prove that the series 

c+ cot 

(13) in(s) ds 
n=1 c— poi 

is convergent. (See Theorem 10.26 in [2].) The partial sums of this series 
satisfy the inequality 

N  A(n) + i 	x c 	cc)  A(n) A(n)(x/n)` 
	ds A E 	 

n= 1 fc_cci islis+ 	ds — ( S E n= 1 tic 	coi 	I'S ± I i 	n=  1  

where A is a constant, so (13) converges. Hence we can interchange the sum 
and integral in (12) to obtain 

i(x) 	
c+ cci co 	

1 	
c+ coi 	

Xs 	A(n) E fn(s) ds =   E 	ds 
c- 00i n= 	 2nii-coi s(s + 1) 	ns 

1 rc+coi 	xs 	C/(s)) 
 ds. 

	

2ni c _ coi  s(s + 1) 	4s) 

Now divide by x to obtain (11). 
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13: Analytic proof of the prime number theorem 

Theorem 133 If c> 1 and x > 1 we have 
1 f c+.0i 

(14)   — 1(1 —
)2 

= - 	 h(s) x' ds, 
x 	2 	x 	2mi c.-- 00i 

where 

1 	( c(s) 	1  
(15) 	 h(s) = 	 

s(s + 1) 	c(s) 	s - 1) •  

PROOF. This time we use Lemma 3 with k = 2 to get 
1  ( 	1 )2 	1  rc+ooi 	Xs 
— 1 — — = 

 2 	x 	2/ti j c _,,,o;  s(s + 1)(s + 2) 
.Sc V, 

where c> 0. Replace s by s - 1 in the integral (keeping c > 1) and subtract 
the result from (11) to obtain Theorem 13.3. 	 0 

If we parameterize the path of integration by writing s = c + it, we find 
xs- i = xc- i xit = xc-l e it logx and Equation (14) becomes 

111 i (X) 	1 	1 2 	,cc-1 	c+ooi 

(16) 	 1 - - = --- 	h(c + it)eit l'gx dt. 
x2 	2 	x j 	

i
c - 00i 

Our next task is to show that the right member of (16) tends to 0 as x -- cc. 
As mentioned earlier, we first show that we can put c = 1 in (16). For this 
purpose we need to study C(s) in the neighborhood of the line a = 1. 

13.4 Upper bounds for I C(s)I and i c(s)1 
near the line 0 = 1 

To study c(s) near the line a ---= 1 we use the representation obtained from 
Theorem 12.21 which is valid for a > 0, 

N 1 	cc  X — [X] 	N 1 ' 
(17) 	 C(s) = E , - s f 	_s-1-1 	dx + 

s - 1 n= 1 n 	N 	-4'  

We also use the formula for C(s) obtained by differentiating each member 
of (17), 

N  log  n 	I (x -  [x])log x 	f: x - [x]  
(18) Cls) = -  	 dx E 	+ s 	 dx 

n= 1 ns 	N 	xs+1 	 xs +1 

N' log N N 1  ' 

s - 1 	(s 	02 • 

The next theorem uses these relations to obtain upper bounds for I ((s) I 
and I c(s)1. 
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13.4: Upper bounds for I C(s)I and Kls) I near the line a = 1 

Theorem 13.4 For every A > 0 there exists a constant M (depending on A) 
such that 

(19) 	(s) 	M log t 	and )C1(s)1 	M log 2  t 

for all s with a 	1/2 satisfying 

(20) a > 1 
log t 

and t > e. 
A 

Note. The inequalities (20) describe a region of the type shown in Figure 
13.2. 

a 

Figure 13.2 

PROOF. If a 	2 we have 1(s)1 	(2) and 1'(s)I 	I C(2)1 and the inequalities 
in (19) are trivially satisfied. Therefore we can assume a < 2 and t > e. 
We then have 

Is' 	a + t 2 + t < 2t 	and Is — 11 > t 

so 1/1s — 	1/t. Estimating C(s)1 by using (17) we find 

N 1 	
cc) 

,..a

1 	 1 	2t 	N l- a 
I C(S) I E - + 2t   + 	 E 	+ 	 n = 1 116 	i 	

+
N "`" 	 = n' 	aNer 

Now we make N depend on t by taking N = [t]. Then N < t <N + 1 and 
log n < log t if n N. The inequality (20) implies 1 — a < A/log t so 

1 _1 e(1 — a) log n < eA log n/ log t < _1 eA  
— 	 
n' 
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C 3 (0-)1C(.1  + it)1 4 1C(a + 2 01 

= exp L 
3 + 4 cos(mt log p) + cos(2mt log p)} .  

mpm.. 
p m = 1 

But we have the trigonometric inequality 

3 + 4 cos 0 + cos 20 > 0 

13: Analytic proof of the prime number theorem 

Therefore 

2t 	N + 1  
0(1) 	and 

N 1-6  N 1 	1 
aN'T 	N 	 t 

	= —
t 

—
N6 

 = 0 	= 0(1), 

SO 

N 

1401 0( E 	+ 0(1) = 0(log N) + 0(1) 0(log t). 
n n 

This proves the inequality for I(s)1 in (19). To obtain the inequality for 
I Os) I we apply the same type of argument to (18). The only essential difference 
is that an extra factor log N appears on the right. But log N = 0(log t) so we 
get I C'(s) = 0(log 2  t) in the specified region. El 

13.5 The nonvanishing of (,$) on the 
line o-  = 1 

In this section we prove that C(1 + it) 0 0 for every real t. The proof is based 
on an inequality which will also be needed in the next section. 

Theorem 13.5 If a> 1 we have 

(21) 	 C 3(a)] ((a + it)14  I C(o-  + 201 	1. 

PROOF. We recall the identity C(s) eG(')  proved in Section 11.9, Example 1, 
where 

	

" 	1 

	

G(s) = Z 
A(n) 

 nS = E E 	 
n = 2 1°g n 	p m= rnPms  

This can be written as 

(a > 1). 

c(s) = exp{E E  	expfE E 	 
= 1 "gli p m = 1 Me p m 	 la 	

3 

oo e -imt log p 1 

from which we find 

cos(mt log p)} .  
IC(s)I = exp L 

p mi 	rnlim6  

We apply this formula repeatedly with s = a, s = a + it and s = a + 2it, 
and obtain 

1 
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(22) 	go.  — 1 K(a)} 3  
C(a  +  it) 

— 1 

4 	 1 
K(a +2it)I 	

— 1 .  

13.6: Inequalities for I 1/C(s)1 and I C i(s)/C(s) 

which follows from the identity 

3 + 4 cos 0 + cos 20 = 3 + 4 cos 0 + 2 cos 2  0 — 1 = 2(1 + cos 0) 2 . 

Therefore each term in the last infinite series is nonnegative so we obtain 
(21). 

Theorem 13.6 We have C(1 + it) 0 0 for every real t. 

PROOF. We need only consider t # 0. Rewrite (21) in the form 

This is valid if a> 1. Now let a 	1+ in (22). The first factor approaches 
1 since C(s) has residue 1 at the pole s = 1. The third factor tends to I C(1 + 2it)I. 
If C(1 + it) were equal to 0 the middle factor could be written as 

((a +  it) — C(1  + it) 
— 1 

4 
I CV 	it)I 4  as a 	1+. 

  

Therefore, if for some t 0 we had C(1 + it) = 0 the left member of (22) 
would approach the limit 1C11 + it)I 4 IC(1 + 2it) I as a 	1+ . But the right 
member tends to co as a —> 1+ and this gives a contradiction. 	El 

13.6 Inequalities for I lg(s)I and 1 1 (s)g(s)1 
Now we apply Theorem 13.5 once more to obtain the following inequalities 
for I 1/C(s) I and I C'(s)/C(s)I I . 

Theorem 13.7 There is a constant M> 0 such that 

whenever a > 

1 
< M log7  t 	and 

t > e. 

Ns) <M log9  t 
C(s) 

1. and 

((s) 

PROOF. For a > 2 we have 

 

1 
c(s) 

12(n) 
E 

n = 1 "5  

c 

< E --2- < c(2) 
n = 1  n 

and 

   

A(n)  
E 2 

n = 1 n  

so the inequalities hold trivially if a > 2. Suppose, then, that 1 < a < 2 and 
t > e. Rewrite inequality (21) as follows: 

1 
	 < C(a) 314 IC(a + 2it)I 1 / 4 . 
I (0-  + it) I 

c(s)  
C(s) 
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13: Analytic proof of the prime number theorem 

Now (o-  — 1)C(a) is bounded in the interval 1 	2, say (a — 1)C(a) M, 
where M is an absolute constant. Then 

C(o-) 	
a — 1 

if 1< a < 2. 

Also, C(a + 2it) = 0(log t) if 1 < a 2 (by Theorem 13.4), so for 1 < o-  < 2 
we have 

1 	m3/ 4-(log  01/4 	A(log 0 114  

I ((a + 	— (a — 1) 314 	(a — 1) 314  

where A is an absolute constant. Therefore for some constant B > 0 we have 

B(o-  — 1)34  
(23) 	IC(0" + 	> 	 if 1 < a- 	2, and t > e. 

(log t)" ' 

This also holds trivially for a-  = 1. Let a be any number satisfying 1 < a <2. 
Then if 1 < a < a, t > e, we may use Theorem 13.4 to write 

	

I C(ci  + it) — 	+ it)I 	f I C(u + it)I du 	(a — a-)M log2  t 
a 

(a — 1)M log 2  t. 

Hence, by the triangle inequality, 

+ it)I 	acx + 	— C(a + it) — acx + 1:01 

B(a — 1) 314  

	

K(cx + 	— (ct — 1)M log2 t
(log t)114 	

(a — 1)M log2  t. 

This holds if 1 < o- < a, and by (23) it also holds for a < ci < 2 since (a-  — 1)34 
 >(o — 1)34. In other words, if 1 < a < 2 and t > e we have the inequality 

B(cx — 1)34  
IC(a + it)I (log t)1/4 	

(a — 1)M log2  t 

for any cx satisfying 1 < a <2. Now we make a depend on t and choose a 
so the first term on the right is twice the second. This requires 

± 
 (

By  1 
 2M) (log 09 

 Clearly c> 1 and also a < 2 if t > to  for some t o . Thus, if t > t o  and 
1 < ci < 2 we have 

(log 07  

The inequality also holds with (perhaps) a different C if e < t < to . 
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13.7: Completion of the proof of the prime number theorem 

This proves that I C(s)I > C log t for all a > 1, t > e, giving us a corre- 
sponding upper bound for I lg(s)I I.  To get the inequality for I Ci(s)g(s)1 we 
apply Theorem 13.4 and obtain an extra factor log 2  t. 	 El 

13.7 Completion of the proof of the prime 
number theorem 

Now we are almost ready to complete the proof of the prime number theorem. 
We need one more fact from complex function theory which we state as a 
lemma. 

Lemma 4 Iff(s) has a pole of order k at s = a then the quotient f'(s)/f(s) has a 
first order pole at s = a with residue —k. 

PROOF. We have f (s) = g(s)/(s — , where g is analytic at a and g(a) 0 0. 
Hence for all s in a neighborhood of a we have 

g'(s) 	kg(s) 	g(s)  {—k 	g'(s)} .  

Thus 

—k 	g' (s) 
	 + 	. 

f (s) 	s— a 	g(s) 

This proves the lemma since g'(s)Ig(s) is analytic at a. 	 El 

Theorem 13.8 The function 

c(s) 	1  
F(s) = 

C(s) 	s — 1 

is analytic at s = 1. 

PROOF. By Lemma 4, —c(s)g(s) has a first order pole at 1 with residue 1, 
as does 1/(s — 1). Hence their difference is analytic at s = 1. El 

Theorem 13.9 For x > 1 we have 

tii1(x) 	1 (1 	1)2 	
—

1 	
h(1 + it)eit logX  dt, 

x 2 	2 	27r 

where the integral ff „ I h(1. + it)I dt converges. Therefore, by the Riemann-
Lebesgue lemma we have 

(24) 	 t// i (x) — x 2/2 

and hence 

1,1/(x) 	x as x 	o. 

f '(s) = (s  _ a )k 	(s 	)k+ 1 	(s 	cok s 	g(s) 
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13: Analytic proof of the prime number theorem 

PROOF. In Theorem 13.3 we proved that if c> 1 and x > 1 we have 

01(x) 	1 (
1

1 	1 rc+coi 

X 
2 	2 	

x = 2ni jc _ ooi  
X S_ h(s) ds, 

where 

1 	Cf(s) 	1 
h(s) = 	 

	

s(s -I- 1) 	Os) 

Our first task is to show that we can move the path of integration to the line 
a = 1. To do this we apply Cauchy's theorem to the rectangle R shown in 
Figure 13.3. The integral of xs -l h(s) around R is 0 since the integrand 

1 + IT 	c + iT • 	  

a 

1 — IT c IT 

Figure 13.3 

is analytic inside and on R. Now we show that the integrals along the 
horizontal segments tend to 0 as T oo. Since the integrand has the same 
absolute value at conjugate points, it suffices to consider only the upper 
segment, t = T On this segment we have the estimates 

1 1 
and 

1 1 	1 
< 	< 

s(s + 1) - T2  s(s + 1 )(s — 1) T3  - T2  

Also, there is a constant M such that I C(s)/((s)I < M log 9  t if a 1 and 
t > e. Hence if T > e we have 

M log9  T 
s 	 

T 2  

so that 
f C 

x' l h(s)ds 
do.  xixc_ log 9 T rxc_i m log9 T 	 9

(c — 1). 
1 	T 2 	 T2 

  

. 
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13.8: Zero-free regions for ç(s) 

Therefore the integrals along the horizontal segments tend to 0 as T co, 
and hence we have 

C coi 

aoi 
x'h(s) ds = 	x'h(s) ds. 

On the line a = 1 we write s = 1 + it to obtain 

1 r ,+coi 	
1 s" 

x'h(s) ds = —
27r

h(i + it)ett logx  dt. 
co , 

Now we note that 

e 	oo 
_ 00 1 11( 1  ± 	dt = 

— e 	

f 
+ + 

e  

In the integral from e to co we have 

M log9  t 
Ih(1 + 

so fe" I h(1 + it)I dt converges. Similarly, j:e. converges, so j 	h(1 + it)I dt 
converges. Thus we may apply the Riemann-Lebesgue lemma to obtain 
t/i 1 (x) — x 2/2. By Theorem 13.1 this implies i(x) x as x -4 co, and this 
completes the proof of the prime number theorem. 	 El 

13.8 Zero-free regions for (s.) 

The inequality I 1/C(s)I < M log' t which we proved in Theorem 13.7 for 
a > 1 and t > e can be extended to the left of the line a = 1. The estimate is 
not obtained in a vertical strip but rather in a region somewhat like that 
shown in Figure 13.2 where the left boundary curve approaches the line 
a = 1 asymptotically as t co. The inequality implies the nonvanishing of 
(s) in this region. More precisely, we have: 

Theorem 13.10 Assume a > 1/2. Then there exist constants A > 0 and C > 0 
such that 

1((a + it)i > log' t 

whenever 

A  
(25) 	 1 	

log9  t 
< a < 1 	and t > e. 

This implies that C(a + it) 0 0 if a and t satisfy (25). 
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PROOF. The triangle inequality, used in conjunction with Theorem 13.7, 
gives us 

(26) 	I ((a + it)I 	+ it)I 	+ it) — 	+ it)I 

>
log7  t 	

+ it) — 	+ 01, 

for some B > 0. To estimate the last term we write 

I ((1 + i t) — ((a + it) I = Jo.  c(u + it) du 5- I Nu + 01 du. 

   

Since t e we have log' t > log t so 1 — (A/log t) > 1 — (A/log t). Thus, if 
a satisfies (25) for any A > 0 we can apply Theorem 13.4 to estimate 
1('(u + it)! , giving us 

MA  

	

I ((1 + it) — ((a + it) I M(1 	a)log2  t < M log2  t 
 A 
log

9 
 t 	log7  t .  

Using this in (26) we find 

B — MA  

	

I ((a + 	> 
log

7 
 t 

This holds for some B > 0, any A > 0 and some M > 0 depending on A. A 
value of M that works for some A also works for every smaller A. Therefore 
we can choose A small enough so that B — MA > 0. If we let C=B—MA 
the last inequality becomes I ((a + it)I > C log t which proves the theorem 
for all a and t satisfying 

A 
1 	< a < 1, 	and t > e. 

log9  t 

But the result also holds for a = 1 by Theorem 13.7 so the proof is complete. 
El 

We know that as) # 0 if a > 1, and the functional equation 

	

as) = 2(2/0' 	— s)sin(-7)41 — s) 

shows that (s) # 0 if a < 0 except for the zeros at s = —2, —4, —6,...  
which arise from the vanishing of sin(rts/2). These are called the "trivial" 
zeros of (s). The next theorem shows that, aside from the trivial zeros, 
as) has no further zeros on the real axis. 

Theorem 13.11 If a > 0 we have 

(27) 	 (1 — 2 1- s)((s) = E 	ns  n=1 

This implies that (s) < 0 if s is real and 0 < s < 1. 
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PROOF. First assume that a> 1. Then we have 

( 1  — 
1 	'2°  

2' - s)C(s) = E — 2 E  1  
„, ns 	„,., (2n)s 

= (1 + 2 - s + 3 -8  + • • .) — 2(2 -8  + 4 - s + 6 - s + • - .) 

= 1 — 2 -8  + 3 -8  — 4 -5  + 5 -5  — 6 -8  + • 

which proves (27) for a > 1. However, if a > 0 the series on the right con-
verges, so (27) also holds for a> 0 by analytic continuation. 

When s is real the series in (27) is an alternating series with a positive sum. 
If 0 < s < 1 the factor (1 — 2 1- s) is negative hence C(s) is also negative. El 

13.9 The Riemann hypothesis 

In his famous 8-page memoir on n(x) published in 1859, Riemann [58] 
stated that it seems likely that the nontrivial zeros of ((s) all lie on the line 
a = 1/2, although he could not prove this. The assertion that all the non-
trivial zeros have real part 1/2 is now called the Riemann hypothesis. In 1900 
Hilbert listed the problem of proving or disproving the Riemann hypothesis 
as one of the most important problems confronting twentieth century 
mathematicians. To this day it remains unsolved. 

The Riemann hypothesis has attracted the attention of many eminent 
mathematicians and a great deal has been discovered about the distribution 
of the zeros of C(s). The functional equation shows that all the nontrivial 
zeros (if any exist) must lie in the strip 0 < a < 1, the so-called "critical 
strip." It is easy to show that the zeros are symmetrically located about the 
real axis and about the "critical line" a = 1/2. 

In 1915 Hardy proved that an infinite number of zeros are located on the 
critical line. In 1921 Hardy and Littlewood showed that the number of zeros 
on the line segment joining 1/2 to (1/2) + iT is at least AT for some positive 
constant A, if T is sufficiently large. In 1942 Selberg improved this by showing 
that the number is at least AT log T for some A > 0. It is also known that 
the number in the critical strip with 0 < t < T is asymptotic to T log T/27c 
as T -+ cc, so Selberg's result shows that a positive fraction of the zeros lie 
on the critical line. Recently (1974) Levinson showed that this fraction is 
at least 7/10. That is, the constant in Selberg's theorem satisfies A > 7/20m. 

Extensive calculations by Gram, Backlund, Lehmer, Haselgrove, Rosser, 
Yohe, Schoenfeld, and others have shown that the first three-and-a-half 
million zeros above the real axis are on the critical line. In spite of all this 
evidence in favor of the Riemann hypothesis, the calculations also reveal 
certain phenomena which suggest that counterexamples to the Riemann 
hypothesis might very well exist. For a fascinating account of the story of 
large-scale calculations concerning C(s) the reader should consult [17]. 
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13.10 Application to the divisor function 

The prime number theorem can sometimes be used to estimate the order of 
magnitude of multiplicative arithmetical functions. In this section we use it to 
derive inequalities for d(n), the number of divisors of n. 

In Chapter 3 we proved that the average order of d(n) is log n. When n is 
prime we have d(n) = 2 so the growth of d(n) is most pronounced when n 
has many divisors. Suppose n is the product of all the primes < x, say 

(28) 	 n = 2 • 3 • 5 	• • p,o) . 

Since d(n) is multiplicative we have 

d(n) = d(2)d(3) • • d(p„(x)) = 21t( x ) . 

For large x, n(x) is approximately x/log x and (28) implies that 

log n = E log p = 51(x) x 
x 

so 27r( x )  is approximately 2 log 11/  log 
logo  Now 

2a log n = e
a 

logo log 2 = '2" log 2 

hence 2 log n/ log log n = n  log 2/ log log n In other words, when n is of the form (28) 
then d(n) is approximately 2 "/ 1 °8 

 
log o = n  log 2/ log log n 

By pursuing this idea with a little more care we obtain the following 
inequalities for d(n). 

Theorem 13.12 Let g > 0 be given. Then we have: 

(a) There exists an integer N(E) such that n 	N(v) implies 

d(n) < 2" ±') logo/log log o 	n (1 + e) log 2/ log log n .  

(b) For infinitely many n we have 

d(n) > 2(1') logo/log log o = n (1 — e) log 2/ log logo 

Note. These inequalities are equivalent to the relation 

lim sup 
log  d(n)log  log n 

= log 2. 
log n 

PROOF. Write n = p1 °' • • Pk, so that d(n) = 111,= (a1  + 1). We split the 
product into two parts, separating those prime divisors < f (n) from those 

f (n), where f (n) will be specified later. Then d(n) = P i (n)P 2 (n) where 

P1(n) = fl (ai  + 1) 	and P2(n) = fl (ai  + 1). 
Pi < f(n) 	 p 	(n) 
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In the product P 2(n) we use the inequality (a + 1) 5_ 2' to obtain P 2 (n) 5_ 
where 

S(n) =a. 
= 

p 	(n) 

Now 

n = npiai 	n p ia, > 1I finr , = foo s(n), 
p 	 f(n) 

hence 

log n 	S(n)log f (n), 	or S(n) 
log f (n) .  

This gives us 

(29) P2(n) < 2 log n/ log foo . 

 To estimate P 1 (n) we write 

P 1 (n) = exp{ E log(a i  + 1)} 
Pi< f (n) 

and show that log(a i  + 1) < 2 log log n if n is sufficiently large. In fact, 
we have 

hence 
log n > a i  log 2, 	or a, < log n/log 2. 

Therefore 

1 ± a < 1 + 
log n
log 2 

< (log n) 2  if n > n 1  

for some n 1 . Thus n > n 1  implies log(1 + ai) < log(log n)2  = 2 log log n. 
This gives us 

P i (n) < exp{2 log log n E 1} exp{2 log log n n( f (n))} 
Pt < f(n) 

Using the inequality m(x) < 6x/log x (see Theorem 4.6) we obtain 

(30) P i (n) < exp 
12f (n)log  log n 	2, f  (n)  log log ni hr.

" 
 eq11 
", 

log f (n) 

where c = 12/log 2. Combining (29) and (30) we obtain d(n) = P i (n)P 2 (n) < 
2g(n )  where 

f (n) log log n 
1 + c 

log n + cf (n)log log n = log n 	 log n 

log log n 

log n 

g(n) = 
log f (n) 	log log n 	log f (n) 
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Now we choose f (n) to make f(n)log log n/log n --0 0 and also to make 
log 1(n)/log log n -+ 1 as n —0 Co. For this it suffices to take 

log  n 
f (n) = 

(log log n)2  

Then 

log n 
g(n) = 

log n 1 + o(1) 	log 
n (1 + o(1)) < (1 + e) 	 

 log log n 1 + o(1) log log n 	 log log n  

if n N(E) for some N(E). This proves part (a). 
To prove part (b) we pick a set of integers n with a large number of prime 

factors. In fact, we take n to be the product of all the primes < x. Then 
n -+ oo if and only if x —o oo. For such n we have, by the prime number 
theorem, 

01) 	27 (x) = 2(1 + o(1))x/ log x.  

Also for such n we have 

log n = E log p = i9(x) = x(1 + o(1)) 
p x 

SO 

log n 
X = 

1 + o(1) 
= (1 + o(1))log n 

hence 

log x = log log n + log(t + o(1)) = log log n(1 + 

= (1 + o(1))log log n. 

Therefore x/log x = (1 + o(1))log n/log log n and 

d(n) = 2(1 + 0(1)) log n/ log log n 

for such n. But 1 + o(1) > 1 — E if n > N(e) for some N(e), and this proves (b). 

Note. As a corollary of Theorem 13.12 we obtain the relation 

(31) 	 d(n) = o(n) 

for every .5 > 0. This result can also be derived without the use of the prime 
number theorem. (See Exercise I 3.13.) 

log log n 
log(1 +  o(1)))  
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13.11 Application to Euler's totient 
The type of argument used in the foregoing section can also be used to 
obtain inequalities for 9(n). When n is prime we have q(n) = n — 1. When n 
has a large number of prime factors (p(n) will be much smaller. In fact, if n 
is the product of all primes < x we have 

(p(n) = n fi  (1 _ _1). 
p<x 	P 

The next theorem gives the asymptotic behavior of this product for large x. 

Theorem 13.13 There is a positive constant c such that, for x > 2, 

	

1 	1 	c 	1  
(32) 	 + 0 	. 

pll 1  — p ) — log x 	log x 

Note. It can be shown that c = e-c, where C is Euler's constant. (See [31].) 

PROOF. Let P(x)denote the product in (32). Then log P(x) = E,,, x  log(1 — 1/p). 
To estimate this sum we use the power series expansion 

t 2 	t 3 	t" 
— log(1 — t) = t + + j-- + • - - + —

n 
+ - • - 01 < 1) 

with t = 1/p. Transposing one term we find, with ap  = — log(1 — 1/p) — 1/p, 

1 	1 	ii 	1 	 1  
0 < a = 	+ 	+ - • < 	+ + • • .) = 

P  2p 2 	3p 3 	2 p2  p3 	2p(p — 1)' 

This inequality shows that the infinite series 

(33) 	 E a,,= E { —log(1 — —
1 _ _1 

P 	P 	 P 	P 

converges, since it is dominated by E„-= 2 1/n(n — 1). If B denotes the sum of 
the series in (33) we have 

o <B— Eap = Eap _.E 	 
p>x 	rIxn(n — 1)  p_.5x 

Hence 

E ap = B + 

or 

— log P(x) = E -1 + B + 
P-"Sx P 	x 
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log log n 

(b) For infinitely many n we have 

for all n 	N(E). 
en 

9(n) 	(1 	E) 

13: Analytic proof of the prime number theorem 

But by Theorem 4.12 the sum on the right is log log x + A + 0(1/log x) so 

Therefore 

log P(x) = —log log x B — A + 

P(x) =- exp{log P(x)} = e- B— Ae— log log xe0(1 / log x). 

Now let c = 	A  and use the inequality e" = 1 + 0(u) for 0 < u < 1 to 
obtain 

1 )1  	(  1  
P(x) =  e 

 log x 
{1 + (

log x)f = log x G\log2  

This completes the proof. 	 El 

Theorem 13.14 Let c be the constant of Theorem 13.13, and let E > 0 be given. 
(a) There exists an N(E) such that 

cn 
On) (1 + E) 

log log n - 

In other words, 

lim inf 
9(n)log log n 

= c. 

PROOF. We prove part (b) first. Take n = np, p. Then 

(13(n) 
 = 	( 	

1) 	c  
+ 0

( 1 
1 

	

P5x 	P) log x 	log x) .  

But log n = Si(x) = (1 + o(1))x, so log log n = (1 + o(1))log x, hence 

	

(p(n) c(1 + o(1)) 
 + o

( 	) 1 	c(1 + o(1))  
— 

n 	log log n 	(log log n)2 	log log n 
"C. (1 + e) 

log log n 

if n 	(E) for some N(s). This proves (b). 
To prove (a) take any n> 1 and write 

cp(n) 
= n (1 - 	P i(n)P 2(n) 

n 	pin 	P 

where 

Pico 
=1\ n (1 - 	and 

Pin 	 13 , 

logn 

P 2(n) 1 
pin ( 

p> log n 
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Then 

1 	 1 y(n)  
(34) P2(n) > 11 1 	log n 	1 	 —  

log n) 
p> log n 

where f (n) is the number of primes which divide n and exceed log n. Since 

n fl p > 11 p > (log n)f(n)  
pin 	Pin 

p> log n 

we find log n > f(n)log log n, so f(n) < log n/log log n. Since 1 — (1/log n) 
<1, inequality (34) gives us 

1 	log n/ log log n 	.1( 

log 	n 

) 

= I 
) 

1  \ log n}1/ log log n 

Now (1 — (1/u))u -+ e -  1  as u -÷ co so the last member in (35) tends to 1 as 
n -- cc. Hence (35) gives us 

P2 (n) > 1 + o(1) as n --> cc. 

Therefore 

ç(n) 	 1) 
= Pi(n)P2(n) > (1 + o(1)) II (1 — 	(1 + o(1)) n (i _ 

n 	
Pin 	 P 	 p log n 	P 

p_-5 log. 

= (1 + o(l)) 	c 	(1 + o(1)) 	(1 — e) 	c  
log log n 	 log log n 

if n > N(e). This proves part (a). 	 CI 

13.12 Extension of POlya's inequality for 
character sums 

We conclude this chapter by extending Polya's inequality (Theorem 8.21) to 
arbitrary nonprincipal characters. The proof makes use of the estimate for 
the divisor function, 

d(n) = 0(n) 

obtained in (31). 

Theorem 13.15 If z is any nonprincipal character mod k, then for all x > 2 
we have 

E z (n) =-_- o(„A log k). 
ni,. 

(35) P2(n) > ( 1 	 log n 
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PROOF. If x is primitive, Theorem 8.21 shows that 

E x(m) < \fic log k. 
m<x 

Now consider any nonprincipal character x mod k and let c denote the 
conductor of x. Then elk, c < k, and we can write 

X(m) = knI)Xi(m) 

where x i  is the principal character mod k and IP is a primitive character 
mod c. Then 

E x(m) = E ono = E o(m) E p(d) = E E ti1d0(m) 
<x 	 m<x 	 m<x 	di(m, k) 	 m<x djk 

(m, k)= 1 	 dim 

= E p(d) E 11/(qd) = E p(d)11/(d) E 11/(q). 
dik 	q x/d 	 dik 	 q x/d 

Hence 

(36) E x(n) 
,,,<x 

 

E iti(d)o(d)i 
dik 

E 
q xld 

<\/ log eE I tifr/Md)1 
dik 

   

   

because tk is primitive mod c. In the last sum each factor Iii(d)1/.(d)1 is either 
0 or 1. If I ii(010)1 = 1 then I M(d)1 = 1 so d is a squarefree divisor of k, say 

d 	PiP2, -  • • Pr- 

Also, I tk(d)1 = 1 so (d, c) = 1, which means no prime factor p i  divides c. 
Hence each pi  divides k/c so d divides k/c. In other words, 

EI wood)I E 1 = d(k-) = 0((k)15) 
dik 	 dik/c 

for every .5 > 0. In particular, d(k/c) = 0(.\/k/c) so (36) implies 

E xon) = 
m<x 

.\./c log c) = 0(11c log c) = 0( 	log k). 
k 

El 

Exercises for Chapter 13 

1. Chebyshev proved that if 1,1/(x)/x tends to a limit as x 	cc then this limit equals 1. 
A proof was outlined in Exercise 4.26. This exercise outlines another proof based 
on the identity 

C '(s) 	ik(x)  
(37) 	 c(s) 	s 	xs÷i  dx, 	(a > 11) 

given in Exercise 11.1(d). 

(a) Prove that (1 — 	—■ 1 as s 	1. 
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Exercises for Chapter 13 

(b) Let (5 = lirn sup(i,I/(x)/x). Given g > 0, choose N = N(E) so that x> N implies 
2C -.0C 

tfr(x) 	(6 + E)x. Keep s real, 1 < ss 2, split the integral in (37) into two parts, 
+ f, and estimate each part to obtain the inequality 

CO) 	s(3 E) 
— — C(e) + 

C(s) 	s — 1 

where C(g) is a constant independent of s. Use (a) to deduce that (5 > 1. 
(c) Let y = lim inf(*(x)/x) and use a similar argument to deduce that y s 1. 

Therefore if tfr(x)/x tends to a limit as x 	oo then y = = 1. 

2. Let A(x) = E„,„ a(n), where 

0 if n 0 a prime power, 

a(n) ={. 1 

if n  = Pk ' 

Prove that A(x) = n(x) + 0(,/x log log x). 

3. (a) If c> 1 and x 0 integer, prove that if x> 1, 

1 
f 	log ((s) —ds = 7r(x) + n(x 112) + — m(x 1 / 3) + • • • 

27ri 	 2 	3 

(b) Show that the prime number theorem is equivalent to the asymptotic relation 

1 	 x" 
log C(s) ds 	 as x --> cc.

2ni J,_ „, 	log x 

A proof of the prime number theorem based on this relation was given by Landau 
in 1903. 

4. Let M(x) = E„, x  p(n). The exact order of magnitude of M(x) for large x is not 
known. In Chapter 4 it was shown that the prime number theorem is equivalent to 
the relation M(x) = o(x) as x cc. This exercise relates the order of magnitude of 
M(x) with the Riemann hypothesis. 

Suppose there is a positive constant 0 such that 

M(x) = 0(x°) for x> 1. 

Prove that the formula 

1M(x) 
	dx 

—as) = s  •fl  xs +1  

which holds for a > 1 (see Exercise 11.1(c)) would also be valid for a > 0. Deduce 
that C(s) 0 0 for a > 0. In particular, this shows that the relation M(x) = 0(x 1 / 2 ") 
for every e > 0 implies the Riemann hypothesis. It can also be shown that the 
Riemann hypothesis implies M(x) = 0(x 1 / 2 ") for every E > 0. (See Titchmarsh [69], 
p. 315.) 
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5. Prove the following lemma, which is similar to Lemma 2. Let 

A(u) 
4 1 (x) = .1 	du, 

where A(u) is a nonnegative increasing function for u 	1. If we have the asymptotic 
formula 

A i (x) 	Lx` as x -+ cc, 

for some c > 0 and L> 0, then we also have 

A(x) cLx` as x 	oo. 

6. Prove that 

1 52+ 	ds = 0 if 0 < y < 1. 
2ni 2_ 	S 2  

What is the value of this integral if y > 1? 

7. Express 

	

1 12 + Xs 	 c(s) 
------ i ds 

27ri J 2 _ 0,1 S 2 	(5)  

as a finite sum involving A(n). 

8. Let x be any Dirichlet character mod k with x i  the principal character. Define 

	

L ' 	 L' 
F(a, t) = 3 —

L' 
(a, x i ) + 4— (a + it, x) + — (a + 2it, x2 ). 

If a> 1 prove that F(a, t) has real part equal to 

" A(n) — E 	Re { 3x i (n) + 4x(n)n -it + X 2 (n)n 2 ') 
n1 fl 

and deduce that Re F(a, t) < 0. 

9. Assume that L(s, x) has a zero of order m > 1 at s = 1 + it. Prove that for this t 
we have: 

L' 
(a) —(a + it, x) = a - 1 + 0(1) as a- 1+, 

and 

(b) there exists an integer r > 0 such that 

	

—
L' 

(a + 2it, x2) - 	+ 0(1) as a 1 +, 
a - 1 

except when X 2  = x 1  and t 0. 

10. Use Exercises 8 and 9 to prove that 

L(1 + it, x) 0 0 for all real t if X 2  0 Xt 

U 
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and that 

L(1 + it, x) 0 0 for all real t 0 0 if x 2  = xi. 

[H int : Consider F(cr , t) as a --, 1 +.] 

11. For any arithmetical functionf (n), prove that the following statements are equivalent: 

(a) f (n) = 0(n') for every E > 0 and all n n 1 . 
(b) f (n) = o(1?) for every (5> 0 as n -4 cc. 

12. Let f (n) be a multiplicative function such that if p is prime then 

f(pm) —+ 0 as pm 

That is, for every E > 0 there is an N(E) such that I f (pm)I < E whenever pm > N (E). 
Prove that f (n) -4 0 as n -4 cc. 
[Hint: There is a constant A> 0 such that I f (pm)I < A for all primes p and all 
m > 0, and a constant B > 0 such that I f (pm)! < 1 whenever pm > B.] 

13. If a 0 let o(n) = Lip, d2 . Prove that for every (5> 0 we have 

o(n) = o(n" ') as n -4 cc. 

[Hint: Use Exercise 12.] 
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14. Partitions 

14.1 Introduction 

Until now this book has been concerned primarily with multiplicative number 
theory, a study of arithmetical functions related to prime factorization of 
integers. We turn now to another branch of number theory called additive 
number theory. A basic problem here is that of expressing a given positive 
integer n as a sum of integers from some given set A, say 

A=  

where the elements ai  are special numbers such as primes, squares, cubes, 
triangular numbers, etc. Each representation of n as a sum of elements of A 
is called a partition of n and we are interested in the arithmetical function 
A(n) which counts the number of partitions of n into summands taken from A. 
We illustrate with some famous examples. 

Goldbach conjecture Every even n > 4 is the sum of two odd primes. 

In this example A(n) is the number of solutions of the equation 

( 1 ) 	 n = Pi + P2> 

where the pi  are odd primes. Goldbach's assertion is that A(n) > 1 for even 
n > 4. This conjecture dates back to 1742 and is undecided to this date. 
In 1937 the Russian mathematician Vinogradov proved that every sufficiently 
large odd number is the sum of three odd primes. In 1966 the Chinese 
mathematician Chen Jing-run proved that every sufficiently large even 
number is the sum of a prime plus a number with no more than two prime 
factors. (See [10].) 
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14.1: Introduction 

Representation by squares For a given integer k > 2 consider the partition 
function r&(n) which counts the number of solutions of the equation 

(2) 
	

n = x1 2 
± ' • • + Xk

2
, 

where the x i  may be positive, negative or zero, and the order of summands 
is taken into account. 

For k = 2, 4, 6, or 8, Jacobi [34] expressed rk (n) in terms of divisor func-
tions. For example, he proved that 

r 2(n) = 4{d 1 (n) — d 3 (n)}, 

where d i (n) and d3(n) are the number of divisors of n congruent to 1 and 3 
mod 4, respectively. Thus, r 2(5) = 8 because both divisors, 1 and 5, are 
congruent to 1 mod 4. In fact there are four representations given by 

5 = 22  + 1 2  = ( — 2) 2  + 1 2  = ( — 2)2  + ( — 1) 2  = 22  + ( — 1) 2 , 

and four more with the order of summands reversed. 
For k = 4 Jacobi proved that 

r 4(n) = E d .---- 8a(n) if n is odd, 
din 

= 24 E d if n is even. 
din 

d odd 

The formulas for r 6(n) and r 8(n) are a bit more complicated but of the same 
general type. (See [14].) 

Exact formulas for rk(n) have also been found for k = 3, 5, or 7; they 
involve Jacobi's extension of Legendre's symbol for quadratic residues. 
For example, if n is odd it is known that 

r3(n) = 24 E (m I n) if n 1 (mod 4) 
rn5 n/4 

= 8 E (m I n) if n -a 3 (mod 4), 
ms n/2 

where now the numbers x l , x 2 , x 3  in (2) are taken to be relatively prime. 
For larger values of k the analysis of rk(n)is considerably more complicated. 

There is a large literature on the subject with contributions by Mordell, 
Hardy, Littlewood, Ramanujan, and many others. For k 5 it is known that 
rk(n) can be expressed by an asymptotic formula of the form 

(3) 	 r k(n) = Pk(n) + Rk(n), 
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where Pk()  is the principal term, given by the infinite series 

	

irk/2,nk/2 -- 1 co 	
4 	G(h; q)  k  

Pk(n) =  	E 	E 	e - 2Trinh/q , 

F(

k) q = 1 h= 1 	q 
2 	(h,q)=1 

and R k (n) is a remainder term of smaller order. The series for p(n) is called 
the singular series and the numbers G(h; q) are quadratic Gauss sums, 

G(h; q) = E e 21thr2ig  
r= 1 

In 1917 Mordell noted that rk(n) is the coefficient off in the power series 
expansion of the kth power of the series 

CO 

= 1 + 2 E x.2. 
n=1 

The function is related to elliptic modular functions which play an im-
portant role in the derivation of (3). 

Waring's problem To determine whether, for a given positive integer k, there 
is an integer s (depending only on k) such that the equation 

(4) 
	

n = Xi
k 	

X2
k 	

' • • ± Xsk  

has solutions for every n 	1. 

The problem is named for the English mathematician E. Waring who 
stated in 1770 (without proof and with limited numerical evidence) that every 
n is the sum of 4 squares, of 9 cubes, of 19 fourth powers, etc. In this example 
the partition function A(n) is the number of solutions of (4), and the problem 
is to decide if there exists an s such that A(n) > 1 for all n. 

If s exists for a given k then there is a least value of s and this is denoted by 
g(k). Lagrange proved the existence of g(2) in 1770 and, during the next 139 
years, the existence of g(k) was shown for k = 3, 4, 5, 6, 7, 8 and 10. In 1909 
Hilbert proved the existence of g(k) for every k by an inductive argument 
but did not determine its numerical value for any k. The exact value of g(k) 
is now known for every k except k = 4. Hardy and Littlewood gave an 
asymptotic formula for the number of solutions of (4) in terms of a singular 
series analogous to that in (3). For a historical account of Waring's problem 
see W. J. Ellison [18]. 

Unrestricted partitions 

One of the most fundamental problems in additive number theory is that 
of unrestricted partitions. The set of summands consists of all positive 
integers, and the partition function to be studied is the number of ways n 

306 



14.2: Geometric representation of partitions 

can be written as a sum of positive integers < n, that is, the number of 
solutions of 

(5) 
	

n = a11  + ai, + • • • 

The number of summands is unrestricted, repetition is allowed, and the 
order of the summands is not taken into account. The corresponding partition 
function is denoted by p(n) and is called the unrestricted partition function, 
or simply the partition function. The summands are called parts. For example, 
there are exactly five partitions of 4, given by 

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, 

so p(4) — 5. Similarly, p(5) = 7, the partitions of 5 being 

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 
= 1 + 1 + 1 + 1 + 1. 

The rest of this chapter is devoted to a study of p(n) and related functions. 

14.2 Geometric representation of partitions 

There is a simple way of representing partitions geometrically by using a 
display of lattice points called a graph. For example, the partition of 15 given 
by 

6 + 3 + 3 + 2 + 1 

can be represented by 15 lattice points arranged in five rows as follows: 

If we read this graph vertically we get another partition of 15, 

5 + 4 + 3 + 1 + 1 + 1. 

Two such partitions are said to be conjugate. Note that the largest part in 
either of these partitions is equal to the number of parts in the other. Thus we 
have the following theorem. 

Theorem 14.1 The number of partitions of n into m parts is equal to the number of 
partitions of n into parts, the largest of which is m. 

Several theorems can be proved by simple combinatorial arguments 
involving graphs, and we will return later to a beautiful illustration of this 
method. However, the deepest results in the theory of partitions require 
a more analytical treatment to which we turn now. 
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14.3 Generating functions for partitions 

A function F(s) defined by a Dirichlet series F(s) = E f (n)n " is called a 
generating function of the coefficients f (n). Dirichlet series are useful generat-
ing functions in multiplicative number theory because of the relation 

n'm• = (nm)'. 

In additive number theory it is more convenient to use generating functions 
represented by power series, 

F(x) = E f(n)x" 

because x"x"` = x"+"`. The next theorem exhibits a generating function for 
the partition function p(n). 

Theorem 14.2 Euler. For Ix! < 1 we have 
'30 	1  

II 	E 
. 	

p(n)f,, 
x n 0 

where p(0) = 1. 

PROOF. First we give a formal derivation of this identity, ignoring questions 
of convergence, then we give a more rigorous proof. 

If each factor in the product is expanded into a power series (a geometric 
series) we get 

1 
	 = (1 + x + 	+ • • )(I + x2  + 	+ -)(1 + x3  + x6  + • • -) • 

nil=  1 — x" 

Now we multiply the series on the right, treating them as though they were 
polynomials, and collect like powers of x to obtain a power series of the form 

1 + E a(k)x k . 
k= 1 

We wish to show that a(k) = p(k). Suppose we take the term xi" from the 
first series, the term x 21d 2  from the second, the term x 3k3  from the third,. , and 
the term xink'n from the mth, where each k i  > 0. Their product is 

3 k 3 . 	k  = X k  
i
x

2 2x 
	• x 

say, where 

k = k i  + 2k2  + 3k3  + • • • + mk.. 

This can also be written as follows: 

k = (1 + 1 + • • + 1) -1- (2 + 2 + • • + 2) + • • • +(m+ m + • • + m), 
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co 	1  
and F(x) = n i  - k 	lim Fm(x). 

k = 1 1  — X -  == 
F m(x) = fi 

k1 1 — X k 9  

. 	1 

14.3: Generating functions for partitions 

where the first parenthesis contains k 1  ones, the second k 2  twos, and so on. 
This is a partition of k into positive summands. Thus, each partition of k 
will produce one such term x' and, conversely, each term x' comes from a 
corresponding partition of k. Therefore a(k), the coefficient of x", is equal to 
p(k), the number of partitions of k. 

The foregoing argument is not a rigorous proof because we have ignored 
questions of convergence and we have also multiplied together infinitely 
many geometric series, treating them as though they were polynomials. 
However, it is not difficult to transform the above ideas into a rigorous proof. 

For this purpose we restrict x to lie in the interval 0 < x < 1 and introduce 
two functions, 

The product defining F(x) converges absolutely if 0 < x < 1 because its 
reciprocal no - xk) converges absolutely (since the series E x' converges 
absolutely). Note also that for each fixed x the sequence {F m(x)} is increasing 
because 

1 
F m+ 1(x) = 

1 — m + 1  
	Fm(X) .. Fm(x). 

x 

Thus Fm(x) F(x) for each fixed x, 0 c x < 1, and every m. Now F m(x) 
is the product of a finite number of absolutely convergent series. Therefore 
it, too, is an absolutely convergent series which we can write as 

CO 

Fm(x) = 1 + E pm(k)x k  . 
k = 1 

Here pm(k) is the number of solutions of the equation 

k = k i  + 2k2  + - • • + mkm . 

In other words, pm(k) is the number of partitions of k into parts not exceeding 
m. If m > k, then pm(k) = p(k). Therefore we always have 

pm(k) 	p(k) 

with equality when m > k. In other words, we have 

Inn pm(k) = p(k). 
m --1. op 

Now we split the series for Fm(X) into two parts, 

	

. 	 . 

Fm(X) = E pm(oxk + E pm(k)x k  

	

k = 0 	 k =m+ 1 

	

m 	. 
= E p(k)x k  + L pmvoxic. 

	

k= 0 	 k=m+ 1 
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Since x > 0 we have 

E p(k)x k  Fm(x) F(x). 
k = 

This shows that the series EFT= 0  p(k)x k  converges. Moreover, since pm(k) 
p(k) we have 

E pm(k)x k 	E p(k)x k F(x) 
k = 0 	 k = 0 

so, for each fixed x, the series E p,n(k)x ic converges uniformly in rn. Letting 
rn —> co we get 

F(x) --= lirn 	= lirn E Pm(k)X' 	Elthi p,„(x)x k  = 
in, co k =-- 0 	 k = 0 m 

E p(k)x k , 
k = 0 

which proves Euler's identity for 0 5_ x < 1. We extend it by analytic 
continuation to the unit disk Ix I < 1. 	 0 

Table 14.1 Generating functions 

The number of partitions of n 
Generating function 	into parts which are 

odd 

even 

squares 

primes 

cc 

11 (1 + 'cm) 

ma= 1 

(i 	x2m— 1) 

m= 1 

CC 

unequal 

odd and unequal 

even and unequal 

distinct squares 

distinct primes 
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By similar arguments we can readily find the generating functions of many 
other partition functions. We mention a few examples in Table 14.1. 

14.4 Euler's pentagonal-number theorem 

We consider next the partition function generated by the product n( 1 _ xm), 
the reciprocal of the generating function of p(n). Write 

II (1 - x '") --, 1 + > a(n)f. 
m= 1 	 n= 1 

To express a(n) as a partition function we note that every partition of n 
into unequal parts produces a term x" on the right with a coefficient +1 or 
—1. The coefficient is + 1 if x" is the product of an even number of terms, and 
—1 otherwise. Therefore, 

a(n) = Pe(n) — p o(n), 

where p(n) is the number of partitions of n into an even number of unequal 
parts, and p0(n) is the number of partitions into an odd number of unequal 
parts. Euler proved that Pe(fl) = p0(n) for all n except those belonging to a 
special set called pentagonal numbers. 

The pentagonal numbers 1, 5, 12, 22, ... were mentioned in the Historical 
Introduction. They are related to the pentagons shown in Figure 14.1. 

• 
1 	1+4=5 
	

1+4+7=12 	1+4+7+10=22 

Figure 14.1 

These numbers are also the partial sums of the terms in the arithmetic 
progression 

1, 4, 7, 10, 13, ... , 3n + 1, ... 

If co(n) denotes the sum of the first n terms in this progression then 

n— 1 	3n(n — 1) 	3n2  — n 
w(n) = E (3k + 1) = 	+ n = 	 

k=0 	 2 	 2 

The numbers (i)(n) and co( — n) = (3n2  + n)/2 are called the pentagonal 
numbers. 
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Theorem 14.3 Euler's pentagonal-number theorem. If Ix] < 1 we have 

fi — x'n) = 1 — x — X 2  + X 5  + X7  — X 12  — X 15  + • • • 
m=i 

	

OD 	 OD 

= 1 + E (— i)n{x-(n) + Xt°(-nq = E (-1)xm.). 

	

n= 1 	 n= – co 

PROOF. First we prove the result for 0 < x < 1 and then extend it to the disk 
x I < 1 by analytic continuation. Define P o  = So  --- 1 and, for n > 1, let 

= 11(1 — x') 	and Sn  = 1 + E (— inxmo + xm - r)}. 
r= 1 	 r = 1 

The infinite product n(1 _ x.)  converges so P„ 1-1(1 — xm) as n —o co. 
We will prove (using a method of Shanks [63]) that 

(6) 	 15n — Pn l 	nxn +  

Since nxn +  — 0 0 as n —o co this will prove Euler's identity for 0 < x < 1. 
To prove (6) we let g(r) = r(r + 1)/2 and introduce the sums 

F„ = X"'  g( r ) . 
r= 0 	Pr 

We show first that Fn  is a disguised form of S„. It is easily verified that 
F 1  = S i  = 1 — x — x 2 . Therefore, if we show that 

F„ — 	= S„ — Sn _ 1 , 	or F, Sn  — Fn -1 Sn-1, 

this will prove that Fn  = Sn  for all n > 1. Now 
n– 1 

F — F „_ = E (— 1)r 	Jen +  g(r )  — E 	y P n–  x r(n – 1)+g(r) 

r =0 	Pr 	 r =0 	Pr  

In the first sum we write P„ = (1 — xn)Pn _ and separate the term with r = n. 
Then we distribute the difference 1 — xn to obtain 

n– 1 
(— 1)r 

P 
	xrn+ g(r) 

r= 0 	Pr 

n– 1 

	

P n 1 	
n– 1 	

P,, 

	

_ E  (_ or 	- x(r + 1)n + g(r) _ 	(_ 	–  xr(n – 	. 
r= 0 	Pr 	 r 0 	P

1 	1)+ g(r) 

r  

Now combine the first and third sums and note that the term with r = 0 
cancels. In the second sum we shift the index and obtain 

n– 

	

Fn  — Fn _ = (— 1rX 9(n) 	E (— 	pn-  Xr (n – 1)-4-  g (r )(Xr — 1) 
r= 1 

(_ or- 1  n– 1  xrn+ g(r– 1) 

P 19  

	

r = 1 	 r – 1 
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But (xr — 1)//), = — 1/P,,_ 1  and r(n — 1) + g(r) = rn + g(r — 1) so the last 
two sums cancel term by term except for the term with r = n in the second 
sum. Thus we get 

Fn  — Fn - 1  = ( — l)" xn 2  + g(n)  + ( — l)fl xn 2  + g(n - 1)  . 

But 

	

n2  + g(n) = n2 + n(n + 1)  = co(— n) 	and n2  + g(n — 1) = 
2 

SO 

Fn  — Fn - 1  = ( — 1)"{)e)(n)  + x") ( ') } = S„ — Sn - 1 , 

and hence F„ = S„ for all n > 1. In the sum defining F, the first term is Pn  so 
n 

(7) 	 F n  = P„ + E (— ly -)1'n xr
n+

g
(r)

. 
r = 1 	Pr 

Note that 0 < Pa/Pr < 1 since 0 < x < 1. Also, each factor xrn +g(r)  < xn +1 
 so the sum on the right of (7) is bounded above by nx" 1 . Therefore I Fn  — Pnl 

nx" + 1  and, since F, = S,„ this proves (6) and completes the proof of 
Euler's identity. 	 El 

14.5 Combinatorial proof of Euler's 
pentagonal-number theorem 

Euler proved his pentagonal-number theorem by induction in 1750. Later 
proofs were obtained by Legendre in 1830 and Jacobi in 1846. This section 
describes a remarkable combinatorial proof given by F. Franklin [22] in 
1881. 

We have already noted that 

CO 	 CO 

ri (1 — xrn) == 1 + E {P o(n) — 
m=1 	 n= 1 

where pe(n) is the number of partitions of n into an even number of unequal 
parts, and p0(n) is the number of partitions into an odd number of unequal 
parts. Franklin used the graphical representation of partitions by lattice 
points to show that there is a one-to-one correspondence between partitions 
of n into an odd and even number of unequal parts, so that Pe() = 
except when n is a pentagonal number. 

Consider the graph of any partition of n into unequal parts. We say the 
graph is in standard form if the parts are arranged in decreasing order, as 
illustrated by the example in Figure 14.2. The longest line segment connecting 
points in the last row is called the base of the graph, and the number of 
lattice points on the base is denoted by b. Thus, b > 1. The longest 450 

 line segment joining the last point in the first row with other points in the 
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Slope (s = 4) 

Base (l ,  = 2) 

Figure 14.2 

graph is called the slope, and the number of lattice points on the slope is 
denoted by s. Thus, s > 1. In Figure 14.2 we have b 2 and s = 4. 

Now we define two operations A and B on this graph. Operation A moves 
the points on the base so that they lie on a line parallel to the slope, as 
indicated in Figure 14.3(a). Operation B moves the points on the slope so that 
they lie on a line parallel to the base, as shown in Figure 14.3(b). We say an 
operation is permissible if it preserves the standard form of the graph, that is, 
if the new graph again has unequal parts arranged in descending order. 

  

• • • • • 
• • • • 
• • • 

 

• -•1 
111. - - • - 

(a) Operation A 
	

(H Operation B 

Figure 14.3 

If A is permissible we get a new partition of n into unequal parts, but the 
number of parts is one less than before. If B is permissible we get a new 
partition into unequal parts, but the number of parts is one greater than 
before. Therefore, if for every partition of n exactly one of A or B is per-
missible there will be a one-to-one correspondence between partitions of n 
into odd and even unequal parts, so N(n) = p 0(n) for such n. 

To determine whether A or B is permissible we consider three cases: 
(1) b < s; (2) b 	s; (3) b > s. 

Case 1: If b < s then b < s 1 so operation A is permissible but B is not 
since B destroys the standard form. (See Figure 14.3.) 

Case 2: If b = s, operation B is not permissible since it results in a new 
graph not in standard form. Operation A is permissible except when the 
base and slope intersect, as shown in Figure 14.4(a), in which case the new 
graph is not in standard form. 

Case 3: If b > s, operation A is not permissible, whereas B is permissible 
except when b = s + 1 and the base and slope intersect, as shown in Figure 
14.4(b). In this case the new graph contains two equal parts. 

Therefore, exactly one of A or B is permissible with the two exceptions 
noted above. Consider the first exceptional case, shown in Figure 14.4(a), 
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• • • • • • 	• • • • • • • 

• • • • • 	 • • • • • • 
• • • • 
• • 	 • 	 

	

(a ) h s 	 (b) h=s+ 

Figure 14.4 Neither A nor B is permissible. 

and suppose there are k rows in the graph. Then b — k also so the number 
n is given by 

2  — 
n = k + (k + 1) + • + (2k — 1) =

3k
2

k 
 = w(k). 

For this partition of n we have an extra partition into even parts if k is even, 
and an extra partition into odd parts if k is odd, so 

p (n) 
— 

p0(n) = (-1)". 

In the other exceptional case, shown in Figure 14.4(b), there is an additic il 
lattice point in each row so 

	

3k 2  — k 	3k 2  + k 
n = 	 +k = 	— w(— k) 

	

2 	 2 

and again Pe(fl) — Po(n) = (-1r. This completes Franklin's proof of 
identity. 

14.6 Euler's recursion formula for p (n) 

Theorem 14.4 Let p(0) = 1 and define p(n) to be 0 if n < 0. Then for n 1 
we have 

(8) p(n) — p(n — 1) — p(n — 2) + p(n — 5) + p(n — 7) + • • • 0, 

or, what amounts to the same thing, 

GO 

p(n) = E (—ow {p(n w(k)) + p(n — 
k=1 

PROOF. Theorems 14.2 and 14.3 give us the identity 

(1 + E (—troc-(k) + x-( - k)})( E potox-) = 1. 
k= 1 	 m= 0 

If n > 1 the coefficient of x" on the right is 0 so we immediately obtain (8) 
by equating coefficients. 	 LI 
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MacMahon used this recursion formula to compute p(n) up to n = 200. 
Here are some sample values from his table. 

p(1) = 1 
P(5) = 7 

p(10) = 42 
p(15) = 176 
p(20) = 627 
p(25) = 1,958 
p(30) = 5,604 
p(40) = 37,338 
p(50) = 204,226 

p(100) = 190,569292 
p(200) = 3,972,999,029,388 

These examples indicate that p(n) grows very rapidly with n. The largest 
value of p(n) yet computed is p(14,031), a number with 127 digits. D. H. 
Lehmer [42] computed this number to verify a conjecture of Ramanujan 
which asserted that p(14,031) 0 (mod 11 4). The assertion was correct. 
Obviously, the recursion formula in (8) was not used to calculate this value 
of p(n). Instead, Lehmer used an asymptotic formula of Rademacher [54] 
which implies 

eK 
p(n) as n 	co, 

zln 

where K = n(2/3) 1 / 2 . For n = 200 the quantity on the right is approximately 
4 x 1012  which is remarkably close to the actual value of p(200) given in 
MacMahon's table. 

In the sequel to this volume we give a derivation of Rademacher's 
asymptotic formula for p(n). The proof requires considerable preparation 
from the theory of elliptic modular functions. The next section gives a crude 

t upper bound for p(n) which involves the exponentia l eLir  and which can be 
obtained with relatively little effort. 

14.7 An upper bound for p(n) 

Theorem 14.5 If n > 1 we have p(n) < eK , where K = 

PROOF. Let 

F(x) = n  _ ,c1-1 1 + E p(k)x k , 
n = 1 	 k=1 
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and restrict x to the interval 0 <x < 1. Then we have p(n)x" < F(x), from 
which we obtain log p(n) + n log x < log F(x), or 

(9) 
	

log p(n) < log F(x) + n log 

We estimate the terms log F(x) and n log(1/x) separately. First we write 

.0 
log F(x) = —log fl  (1 — x") = — log(1 — e) = 

 
L-r 

	

n=1 	 n=1 	 n=1 m=1 ni 

00 	co 	 - 1 	xm = E E (xm)n = E 	 

	

m n=1 	m=  iM1 — m• 

Since we have 

1 — x'" 

	

= 1 + x + x 2  + • • • + 	1 , 

and since 0 < x < 1, we can write 

1 — xm m - 	 mx < 	< m, 
1 — x 

and hence 

m(1 — x) 1 — xm m(1 — x) 
xm 	xm 

Inverting and dividing by m we get 

1 xm 	1 xm 	1 
m 2  1 —x ml—xmm 2  1 —x 

Summing on m we obtain 

1 xm 	 1 	n2  xn 2 
log F(x) = 

m= 1  m — 	— x mL1, 1  m2  6 1 — x 

where 

X 

Note that t varies from co to 0 through positive values as x varies from 
0 to 1 

Next we estimate the term n log(1/x). For t > 0 we have log(1 + t) < t. 
But 

1—x 1 	 1 
1 + t = 1 + 	= — , 	so log — < t. 

1 — x 
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- 
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Now 

1 	7E 2 
(10) log p(n) < log F(x) + n log x— < —

6t 
+ nt. 

The minimum of (7 216t) + nt occurs when the two terms are equal, that is, 
when n 2/(6t) ---- nt, or t = 7r//6n. For this value of t we have 

log p(n) < 2nt = 2nit/\An = K ji 

so p(n) < e 	as asserted. 	 0 

Note. J. H. van Lint [48] has shown that with a little more effort we can 
obtain the improved inequality 

p(n) < 	,
ne 1C,, 

(11)
T 

	  for n > 1. 
— 1) 

Since p(k) p(n) if k > n, we have, for n > 1, 
co 	 cc 

F(x) > 1 p(k)xk p(n) E xk = P(n)x"  . 
k=n  

Taking logarithms we obtain, insteady of (9), the inequality 

log p(n) < log F(x) + n log —
1 

+ log(1 — x). 
x 

Since 1 — x = tx we have log(1 — x) = log t — log(1/x), hence 
(10) can be replaced by 

71 2 

(12) log  P(n)  < 	
+ (n — 1)t + log t. 

An easy calculation with derivatives shows that the function 

n2 

f(t) 	
+ (n — 1)t + log t 

has its minimum at 

Using this value of t in (12) and dropping insignificant terms we obtain (11). 

14.8 Jacobi's triple product identity 

This section describes a famous identity of Jacobi from the theory of theta 
functions. Euler's pentagonal number theorem and many other partition 
identities occur as special cases of Jacobi's formula. 
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14.8: Jacobi's triple product identity 

Theorem 14.6 Jacobi's triple product identity. For complex x and z with 
I xl < 1 and z 0 0 we have 

. 	 . 
(13) 	no  _ x21(1 + x2,,, z 2 )(1  + x 2n-i z -2 ) „__ vi m 2  2m 

PROOF. The restriction I x I < 1 assures absolute convergence of each of the 
products no - x2n), no + x2n - iz2), no + x 2" - l z -2), and of the 
series in (13). Moreover, for each fixed x with I x I < 1 the series and products 
converge uniformly on compact subsets of the z-plane not containing z = 0 
so each member of (13) is an analytic function of z for z 0 0. For fixed z 0 0 
the series and products also converge uniformly for I x I < r < 1 hence 
represent analytic functions of x in the disk Ix I < 1. 

To prove (13) we keep x fixed and define F(z) for z 0 0 by the equation 

CO 

(14) F(z) = n(1  + x 2n— 1 z 2)(i + x 2n— 1 z — 2) . 

 n=1 

First we show that F satisfies the functional equation 

(15) xz 2F(xz) = F(z). 

From (14) we find 
0. 
Fl o + x 2n+1 z2)(1 + x2n— 3z -2) 

n= 1 

co 	 co 

= no  + x 2m— 1 z 2) n( , + x2r— 1 z -2). 

 m=2 	 r=0 

Since xz 2  = (1 + xz 2)/(1 + x - lz -2), multiplication of the last equation 
by xz2  gives (15). 

Now let G(z) denote the left member of (13) so that 

CO 

(16) G(z) = F(z) no _ x2n). 
'1-i 

Then G(z) also satisfies the functional equation (15). Moreover, G(z) is an 
even function of z which is analytic for all z 0 0 so it has a Laurent expansion 
of the form 

(17) G(z) = E am z 2m 

where a, = am  since G(z) = G(z -1 ). (The coefficients am  depend on x.). 
Using the functional equation (15) in (17) we find that the coefficients satisfy 
the recursion formula 

am  = x 2m— l am_ 1  

F(xz) = 
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which, when iterated, gives 

= ao xm2  for all m > 0 

since 1 + 3 + • + (2m — 1) = m2. This also holds for m < 0. Hence 
(17)becomes 

GO 

(18) G(z) = a0(x) E xrn2z2rn, 
/71 - GO 

where we have written G x(z) for G(z) and a0(x) for ao  to indicate the dependence 
on x. Note that (18) implies a 0(x) —> 1 as x --> 0. To complete the proof we 
must show that a 0(x) = 1 for all x. 

Taking z = e4 in (18) we find 

Gx(eil 
(19) = E  x .2 i. = E  (_ 1)x(2.)2 

a0(x)  

since en = — 	if m is odd. From (18) we see that the series on the right of 
(19) is Gx4(0/a0(x 4) so we have the identity 

G x(en i f4) 	G x4i)  
(20) 

	

a(x) 
	 = 

ao(x4)• 

We show next that G x(e'114) = G 	In fact, (14) and (16) gives us 

G(e4) = 
	(1  _ x2n)(1  + x4n— 2) .  

n 

Since every even number is of the form 4n or 4n — 2 we have 

11 (1 - x 2") = 	— x4.)(1 — X"  
n = 1 	 n = 1 

SO 

oo 	 co 

Gx(er114) = {I (1  _ x4.)(1  _ x4n_2 )(1 	x4n_2 )  = 11 (1  _ x4n)(1  _ x8n_4)  

n = 1 	 n = 1 

GO 

= 	— x8n)(l — X 8t1-4)(1 	X 8n-4) = G4(i). 
n = 1 

Hence (20) implies a0(x) = a0(x4). Replacing x by x4, x42 , 	, we find 

a0(x) = a 0(x4k) for k = 1, 2, ... 

But x4k  —> 0 as k —> co and a0(x) —> 1 as x 0 so a 0(x) = 1 for all x. This 
completes the proof. 	 LI 
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14.9 Consequences of Jacobi's identity 

If we replace x by x° and z 2  by x b  in Jacobi's identity we find 
.0 	 .0 n(1 _ x2na)(1  + x2na–a+13)(1 + x 2na–a–b) = E  xam 2 + bm . 

 n=- 1 

Similarly, if z 2  = — X b  we find 

00 	 00 

n (1_ x2na)(1_ x2na – a+17)( _ x 2na – a – 13) = E  (_ 1)mxam 2 +bm.  

To obtain Euler's pentagonal number theorem simply take a = 3/2 and 
b = 1/2 in this last identity. 

Jacobi's formula leads to another important formula for the cube of 
Euler's product. 

Theorem 14.7 If lx1 < 1 we have 

cro 	 co 
(21) 	n 0 - Xn) 3  = E (_ irnix on2+m)/2 

n=1 	 m= –cc) 

00 

= E (-1)m(2m + 1)x(m2+ " )12 
 ,n0
.  

PROOF. Replacing z 2  by —xz in Jacobi's identity we obtain 

CO 	 CO 

no _ x2n) (1_ x2nz)(1_ x 2n – 2z  – 1) = 	2 + m  2.7 (-1)m  xm (zm — 
n=1 	 m=0 

Now we rearrange terms on both sides, using the relations 

0. 	 .0 

n
(1 _ x 2n– 2z– 1 ) = (1 — z - I) nu _ x2nz –1) 

n=1 	 n=1 

and 

Zm  — 	( 1 — Z -1)(1 + Z -1  + Z - 2  + 	+ Z -2m )Z m . 

Canceling a factor 1 — z' we obtain 

00 n (1 _ x2n)(1  _ x2.40  _ 

CO 

= E (-- irxm2 +mzm(1 + z -  1  + z - 
2 + 
	+ Z –  2m). 

m -- 0 

Taking z = 1 and replacing x by X 1/2  we obtain (21). 	 E 
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14.10 Logarithmic differentiation of 
generating functions 

Theorem 14.4 gives a recursion formula for p(n). There are other types of 
recursion formulas for arithmetical functions that can be derived by logarith-
mic differentiation of generating functions. We describe the method in the 
following setting. 

Let A be a given set of positive integers, and let f (n) be a given arithmetical 
function. Assume that the product 

FA(x) 	1J  (1 — xn) —  'RR" 

neA 

and the series 

G A (x) = E f (n)
x. 

neA n 

converge absolutely for I x I < 1 and represent analytic functions in the unit 
disk Ix I < 1. The logarithm of the product is given by 

f (n) 
 log(1 x") = E 

f (n) 	xm" 	GO I  

	

log FA (x) = E 	 E — E GA(x-). 
neA n 	 neA n m=1 m 	m= m 

Differentiating and multiplying by x we obtain 

FA(x)  
E GiA(xm)x- = E E f (n)xm" = E E xA (n)/(n)xm., 

	

X 
FA(x) m=1 	m=1 neA 	 m=1 n=1 

where xA  is the characteristic function of the set A, 

11 if n e A, 
X A(n) = 0 if n A. 

Collecting the terms with mn = k we find 

E E XA(n) f (n)xm" = E fixoxk, 
m= n=1 	 k=1 

where 

Li(k) = E X AfrO f (d) = E f(d). 
dik 	dlk 

deA 

Therefore we have the following identity, 
CO 

(22) 	 xF'A(x) = FA(x) E f A(k)X k  
k=1 
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Now write the product FA (x) as a power series, 

00 

FA (x) = E pA , f (n)x", where pA , f (0) = 1, 
P3 = 0 

and equate coefficients of x" in (22) to obtain the recursion formula (24) in the 
following theorem. 

Theorem 14.8 For a given set A and a given arithmetical function f, the numbers 
PA , f (n) defined by the equation 

00 

(23) nu — xl-fooin = I + E pA , f (n)x" 
ne A 	 n=1 

satisfy the recursion formula 

(24) PA, f() = E iii(opA, f(n — k), 
k= 1 

where p A , f (0) = 1 and 

fA(k) = E f(d). 
dlk 

d e A 

EXAMPLE 1 Let A be the set of all positive integers. Iff (n) = n, then PA, f (n) = 

p(n), the unrestricted partition function, and fA (k) = u(k), the sum of the 
divisors of k. Equation (24) becomes 

np(n) = E cr(k)p(n — k), 
k = 1 

a remarkable relation connecting a function of multiplicative number 
theory with one of additive number theory. 

EXAMPLE 2 Take A as in Example 1, but let f (n) = —n. Then the coefficients 
in (23) are determined by Euler's pentagonal-number theorem and the 
recursion formula (24) becomes 

(25) npA , f (n) = 	— k) = —(n) — E PA,f(0 0(n — k), 
k = 1 	 k= 1 

where 

( — 1)" if n is a pentagonal number co(m) or co( — in) 
PA, f01) = 0 	if n is not a pentagonal number. 
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Equation (25) can also be written as follows: 

a(n) — a(n — 1) — a(n — 2) + ofn — 5) + a (n — 7) — • . • 

1( — 1r - 'w(m) 	if n = 
= ( — l)m - 1  w(— m) if n = 

0 	 otherwise. 

The sum on the left terminates when the term a(k) has k < 1. To illustrate, 
when n = 6 and n = 7 this gives the relations 

a(6) = a(5) + cr(4) — 
a(7) = a(6) + a(5) — a(2) — 7. 

14.11 The partition identities of Ramanujan 

By examining MacMahon's table of the partition function, Ramanujan was 
led to the discovery of some striking divisibility properties of p(n). For 
example, he proved that 

(26) p(5m + 4) 0 (mod 5), 

(27) p(7 m + 5) 0 (mod 7), 

(28) p(1 1 m + 6) 0 (mod 11). 

In connection with these discoveries he also stated without proof two 
remarkable identities, 

(29) E p(5rn + 4)xm = 5 9(x5)5  
.= o 	 rp(x) 6  

and 

(30) E p(7 m + 5)xm = 7 
p(x7)3 

+ 49x 
(p(x 7  ) 7  

o p (x) 	(x) 8  

where 
CO 

yo(x) = 	— xn). 
n = 1 

Since the functions on the right of (29) and (30) have power series expansions 
with integer coefficients, Ramanujan's identities immediately imply the 
congruences (26) and (27). 

Proofs of (29) and (30), based on the theory of modular functions, were 
found by Darling, Mordell, Rademacher, Zuckerman, and others. Further 
proofs, independent of the theory of modular functions, were given by 
Kruyswijk [36] and later by Kolberg. Kolberg's method gives not only the 
Ramanujan identities but many new ones. Kruyswijk's proof of (29) is 
outlined in Exercises 11-15. 
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Exercises for Chapter 14 
1. Let A denote a nonempty set of positive integers. 

(a) Prove that the product 

fl (1 _ xm)— 1 

me A 

is the generating function of the number of partitions of n into parts belonging 
to the set A. 

(b) Describe the partition function generated by the product 

I1 ( 1  + xm). 

ICI E A 

In particular, describe the partition function generated by the finite product 
IT„ = 1  (1 + xm). 

2. If Ixl< t prove that 

fl ( 1  + xm) = n 0 _ x2-- ty- 1, 
m=i 	 m.i 

and deduce that the number of partitions of n into unequal parts is equal to the 
number of partitions of n into odd parts. 

3. For complex x and z with Ix I < 1, let 

GO 

f(x, z) = fl ( l _ xinz). 
m..1 

(a) Prove that for each fixed z the product is an analytic function of x in the disk 
Ix I < 1, and that for each fixed x with I x I < 1 the product is an entire function 
of z. 

(b) Define the numbers an(x) by the equation 

cc 

f(x, z) = E a(x)z. 
n=0 

Show that f (x, z) = (1 — xz)f(x, zx) and use this to prove that the coefficients 
satisfy the recursion formula 

an(x) = an(x)x" — an _ i (x)x". 

(c) From part (b) deduce that a(x) = (— 1)xn(n+ 1)/2/P„(x), where 

n 

P(x) = no — xi. ). 
r =1 

This proves the following identity for I x I < 1 and arbitrary z: 

co 

11 (1 — xmz) = i (— nn  . Z . 
m=1 	 n=0 P(x) 
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14: Partitions 

4. Use a method analogous to that of Exercise 3 to prove that if Ix < 1 and I z I < 1 
we have 

if — xnizy 1  E 
m=1 

where Pi(x) = ft,!=, (1 — xr). 
5. If x 	I let Q 0(x) = land for n > 1 define 

n 1— x2r 

Qn(X) = 

n  
rii(m- 1)/2 = 

P - 1 
'4' 

n( 

 I,
x) 
 xs(2n+ 1) 

5 

S =4,3 QS(X) 

2n+1 	
n 	(x)  E k.„(.-1)/2 = 	n 	x s(2n+ 1) 

m= 1 	 s‘-d= 0 Qs(X) 

(b) Use Shanks' identities to deduce Gauss' triangular-number theorem: 

	

co 	
" 1 — X

2n 

1 1 	x 2n - 1 

	

m= 1 	 n= 1 

6. The following identity is valid for Ix I < 1: 

for xl < 1. 

E x m+ 01
2 _ flu xn-1 )(1  _ 

m= - co 	 n= 1 

(a) Derive this from the identities in Exercises 2 and 5(b). 
(b) Derive this from Jacobi's triple product identity. 

7. Prove that the following identities, valid for Ix I < I, are consequences of Jacobi's 
triple product identity: 

(a) 11 (1 — x 5n)(1 — x 5 " -1 )(1 	x 5n-4) = E ( _1)mxm(5m+3)12. 
n= 1 	 m= - oo 

(b) 11 (1 — x 5 )(1 	x 5' 2 )(1 	x 5 n -3 ) = E  (_ i)m.em5m+ 1)12 .  

n--= 1 	 m= - co 

8. Prove that the recursion formula 

np(n) = E o-(k)p(n — k), 
k= 1 

obtained in Section 14.10, can be put in the form 

np(n) = E E mp(n — km). 
m=1 k 

9. Suppose that each positive integer k is written in g(k) different colors, where g(k) 
is a positive integer. Let pg(n) denote the number of partitions of n in which each 
part k appears in at most g(k) different colors. When g(k) = 1 for all k this is the 

.-0 Pn(x) 

1 — x 2 r -1  • r = 1 

(a) Derive the following finite identities of Shanks: 
2n 

E x 
m=1 
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unrestricted partition function p(n). Find an infinite product which generates 
pg(n) and prove that there is an arithmetical function f (depending on g) such that 

npg(n) = E f(k)p g(n — k). 
k = 1 

10. Refer to Section 14.10 for notation. By solving the first-order differential equation 
in (22) prove that if I x I < 1 we have 

n  _ xny . = expl H(t) dt} ,  

ne A 	 tiO t 

where 

H(x) = E fAcioxk and fA (k) = E f (d). 
k= 1 	 dlk 

d e A 

Deduce that 
GO 

n — frown = e - x for lxi < 1, 
n=1 

where u(n) is the Mobius function. 

The following exercises outline a proof of Ramanujan's partition identity 

E p(5m + 4)xm = 5 9(x5)5  , where cp(x) = 	— 
m=0 	 (p(x)6 	 n=1 

by a method of Kruyswijk not requiring the theory of modular functions. 

11. (a) Let g = e 27" where k > 1 and show that for all x we have 

nxeh) = 1 — X k  

h = 1 

(b) More generally, if (n, k) = d prove that 

n (1 — xenh) = (1 — 
h=1 

and deduce that 

{1 — X nk 	if (n, k) = 1, n (1  _ x ne2ninhl9 = 

h= 1 	 (1 — x")4  if kin, 

12. (a) Use Exercise 11(b) to prove that for prime q and I x I < 1 we have 

GO 	q 	 (x)+ 
1  

n 14 (1 — xne 2ninhig) = 
 (p(x`72) n= 1 h = 1 

(b) Deduce the identity 

(p(x 25)  4 	co 

E *of = 	5 6  ri 	_ x ne 2ninhi 5) .  

m= 0 	 (P(X 	h= 1 n=1 
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13. If q is prime and if 0 < r < q, a power series of the form 

a(n)xqn+r 
n=0 

is said to be of type r mod q. 
(a) Use Euler's pentagonal number theorem to show that q(x) is a sum of three 

power series, 

GO 

Too = n(1 — xn) = /. + /i + 1 2 
n= 1 

where 1 1, denotes a power series of type k mod 5. 
(b) Let a = et" and show that 

4 co 	 4 

(1 -- fan') = ri (J.  + ,T ioch + /2 ,2h).  
h=1 n=1 

(c) Use Exercise 12(b) to show that 

q(x25)
p(5m + 	+ 4  = V4 (p6 

	

m= a:1 	 (x 5 )  

where V4  is the power series of type 4 mod 5 obtained from the product in part (b). 

14. (a) Use Theorem 14.7 to show that the cube of Euler's product is the sum of three 
power series, 

q(x) 3  = Wo + W1  + W3, 

where W denotes a power series of type k mod 5. 
(b) Use the identity W0  + W1  + W3 = (/0 It ± /2) 3  to show that the power 

series in Exercise 13(a) satisfy the relation 

10 1 2  = 

(c) Prove that I = —xcp(x 25). 

15. Observe that the product fit= (I0  + 1 1 ? + /20( 2h) is a homogeneous polynomial 
in /0 , / 1 , /2 of degree 4, so the terms contributing to series of type 4 mod 5 come from 
the terms / 1 4, 1011 212 and / 0 2  1 2 2 . 
(a) Use Exercise 14(c) to show that there exists a constant c such that 

V4 = C/1 4 , 

where V4 is the power series in Exercise 13(c), and deduce that 

E p(5m + 4)x 5m + 4 = CX4 (P(x25)5  

	

m=0 	 9(x5)6 

(b) Prove that c = 5 and deduce Ramanujan's identity 

op 

pom + 4)x- = 5 9(x5)5  
m= 	 9(X)6 
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Fermat theorem (little), 114 
Finite Fourier expansion, 160 
Formal power series, 41 
Fourier coefficient, 160 
Franklin, Fabian, 313, 330 
Function, arithmetical, 24 

Bernoulli periodic B„(x), 267 
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for C(s), 259 
for C(s, h/k), 261 

Fundamental theorem of arithmetic, 17 

Gamma function, 250 
Gauss, Carl Friedrich, 5, 7, 8, 106, 165, 177, 

182, 185, 306, 326 
Gauss sum, associated with x, 165 

quadratic, 177, 306 
Gauss' lemma, 182 
Gauss' triangular-number theorem, 326 
Generating function, 308 
Geometric sum, 157, 158 
Gerstenhaber, Murray, 186, 330 
Goldbach, C., 6, 9, 304 
Goldbach conjecture, 9, 304 
Greatest common divisor, 15, 20, 21 
Greatest integer symbol, 8, 25, 54, 72 
Grosswald, Emil, 330 

Group, definition of, 129 
abelian, 129 
cyclic, 131 

Group character, 133 

Hadamard, Jacques, 9, 74, 330 
Hagis, Peter, Jr., 5, 330 
Half-plane, of absolute convergence, 225 

of convergence, 233 
Hardy, Godfrey Harold, 59, 293, 305, 330 
Hemer, Ove, 330 
Hilbert, David, 293 
Hurwitz, Adolf, 249 
Hurwitz formula for t,"(s, a), 257 
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