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Preface

This book deals with Model Theory. So the first question that a possible,
recalcitrant reader might ask is just: What is Model Theory? Which are its
intents and applications? Why should one try to learn it? Another, more
particular question might be the following one. Let us assume, if you like,
that Model Theory deserves some attention. Why should one use this book
as a guide to it?

The answer to the former question may sound problematic, but it is quite
simple, at least in our opinion. For, Model Theory has been developing,
since its birth, a number of methods and concepts that do have their intrin-
sic relevance, but also provide fruitful and notable applications in various
fields of Mathematics. We could mention here its role in Algebra and Alge-
braic Geometry, for instance the analysis of differentially closed fields (and
the results on the differential closure of a differential field), or p-adic fields
(and the asymptotic solution of Artin’s Conjecture), as well as the recent
Hrushovski’s model theoretic approach to classical problems, like Mordell-
Lang’s Conjecture or Manin-Mumford’s Conjecture.

So Model Theory is today a lively, sprightly and fertile research area, which
surely deserves the attention of the mathematical world and, consequently,
its own references. This recalls the latter question above. Actually there do
exist some excellent textbooks explaining Model Theory, such as [56] and
[57]. Also Poizat’s book [131] should be mentioned; it was written more than
ten years ago, but it is still up-to-date, and it has been recently translated
in English. In addition more specialistic references treat adequately some
particular fields in Model Theory, such as stability theory, simplicity theory,
o-minimality, classification theory and so on.

Nevertheless, we believe that this book has its own role and its own origi-
nality in this setting. Indeed we wish to address this work not only to the
experts of the area, but also, and mainly, to young people having a basic
knowledge of model theory and wishing to proceed towards a deeper anal-
ysis, as well as to mathematicians which are not directly involved in Model
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vi PREFACE

Theory but work in related and overlapping fields, such as Algebra and Ge-
ometry. Accordingly we will emphasize the frequent and fruitful connections
between Model Theory and these branches of Mathematics (differentially
closed fields, Artin’s Conjecture, Mordell-Lang’s Conjecture and so on). In
each case, we aim at giving a detailed report or, at least, at sketching the
main ideas and techniques of the model theoretic approach.

Our book wishes also to follow a historical perspective in introducing Model
Theory. Of course, this does not mean to provide a full history of Model
Theory (although such a project could be interesting and worthy of some
attention), but just to insert any basic concept in the historical framework
where it was born, and so to better clarify the reasons why it was introduced.
Hence, after shortly recalling in Chapter 1 basic Model Theory (structures
and theories, compactness and definability), we deal in Chapter 2 with
quantifier elimination, in particular with the work of Alfred Tarski on al-
gebraically closed fields and real closed fields. We will discuss the role of
quantifier elimination in Model Theory, but we will treat briefly also its in-
triguing role in the P = N P problem within the new models of computation
(such as the Blum-Shub-Smale approach, and so on).

Chapter 3 will be concerned with Abraham Robinson’s ideas: model com-
pleteness, model companions, existentially closed structures. We will con-
sider again algebraically closed fields and real closed fields, but we will il-
lustrate also other crucial classes, like differentially closed fields, separably
closed fields, p-adically closed fields and, finally, existentially closed differ-
ence fields (a rather recent matter, with some remarkable applications to
Algebraic Geometry).

Chapter 4 deals with imaginary elements. They are essentially classes of
definable equivalence relations in a structure A, so elements in some quotient
structure. We describe Shelah’s construction of A%Y, englobing these classes
as new elements in the whole structure, and we show that these imaginary
elements can be sometimes eliminated, because the corresponding quotients
can be simulated by some suitable definable subsets of \A.

Chapters 5 and 6 are devoted to Morley’s Theorem on uncountable cate-
goricity. Actually its proof will be given only in Chapter 7, but here we
describe Morley’s ideas -algebraic closure, totally transcendental theories,
prime models, an so on- and we illustrate their richness and their applica-
tions.

We will be led in this way to one of the main topics in Model Theory, namely
the Classification Problem. We will explain in Chapter 7 the more relevant
ideas in the formidable work of Shelah on this matter (simplicity, stability,
superstability, modularity), and we will discuss their significance in some
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important algebraic classes, like differential fields, difference fields, and so
on. We wish also to deal with the Zilber program of classifying structures
up to biinterpretability, in particular with Zilber’s Conjecture on strongly
minimal sets, and its brilliant solution due to Hrushovski.

Also Chapter 8 largely owes to Hrushovski. In fact, after illustrating in
more detail the natural connection between Model Theory and Algebraic
Geometry, we will describe the Hrushovski proof of Mordell-Lang conjecture;
we will refer very quickly also to the Hrushovski solution of the related
Manin-Mumford conjecture. In particular we will realize how deeply Model
Theory, actually both pure Model Theory and Model Theory applied to
algebra are involved in these proofs.

The final Chapter is devoted to a (comparatively) recent and fertile area
in Model Theory: o-minimality. We will expound the basic results on o-
minimal theories, and we will discuss some intriguing developments, includ-
ing Wilkie’s solution of a classical problem of Tarski on the exponentiation
in the real field.

We assume some familiarity with the basic notions of Algebra, Set Theory
and Recursion Theory. [65], [66] or [78], and [121] respectively are good
references for these areas. Incidentally, let us point out that we are working
within the usual Zermelo - Fraenkel axiomatic system, including the Axiom
of Choice. We also assume some acquaintance with basic Model Theory,
such as it is usually proposed in any introductory course. However, Chapter
1 is devoted, as already said, to a short and somewhat informal sketch of
these matters.

As its title states, this book aims at being only a guide. We do not claim
to provide an exhaustive treatment of Model Theory; indeed our omissions
are likely to be much more numerous and larger than the topics we deal
with. But we have aimed at giving an almost complete report of at least
two crucial subjects (w-stability and o-minimality), and at providing the
basic hints towards some conspicuous generalizations (such as superstability,
stability, and so on).

In a similar way, we have treated in detail some key algebraic examples
(algebraically closed fields, real closed fields, differentially closed fields in
characteristic 0), but we have provided at least some basic information on
other relevant structures (like p-adic fields, existentially closed fields with
an automorphism, differentially and separably closed fields in a prime char-
acteristic). In conclusion, we do hope that the outcome of our work is a
sufficiently clear and terse picture of what Model Theory is, and provides
a report as homogeneous and general as possible. Incidentally, let us say
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that this book is not a literal translation of the former italian version [108];
all the material was revised and rewritten; our treatment of some topics,
like quantifier elimination and model completeness, are entirely new; and
we have added some relevant matters, such as prime models and Morley’s
Theorem on uncountable categorical theories.
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Chapter 1

Structures

1.1 Structures

The aim of this chapter is to sketch out basic model theory. We wish to
summarize some key facts for people already acquainted with them, but
also, at the same time, to introduce them to people unfamiliar to logic, and
perhaps disliking too many logical details. Accordingly we will use a rather
colloquial tone. The fundamental question to be answered is: what is Model
Theory? As we will see in more detail in Section 1.2, Model Theory is -or,
more precisely, was at its beginning- the study of the relationship between
mathematical formulas and structures satisfying or rejecting them. But, in
order to fully appreciate this matter, it is advisable for us preliminarily to
recall what a structure is, and which kind of formulas we are dealing with.
This section is devoted to the former concept.

Structures are an algebraic notion. Actually, since Galois, Algebra is not
only the solving of equations, or literal calculus, but becomes the science of
structures (groups, rings, fields, and so on). This new direction gets clearer
at the beginning of the last century, with Steinitz’s work on fields and, later,
the publication of the Van der Waerden book. What is a structure? Basi-
cally, it is a non-empty set A, with a collection of distinguished elements,
operations, and relations. For instance, the set Z of integers with the usual
operations of addition + and multiplication - is a structure, as well as the
same set Z with the order relation <. Note that, in these examples, the un-
derlying set is the same (the integers), but, of course, the structure changes:
in the former case we have the ring of integers, in the latter the integers as
an ordered set. To make this kind of difference among structures clearer, we
have to choose a language, in other words to specify how many distinguished

1



2 CHAPTER 1. STRUCTURES

elements, how many n-ary operations and relations (for every natural n # 0)
we want to involve in building our structure. So, when we discuss the in-
tegral domain of integers, our language needs two binary operations (for
addition and multiplication), while, in the latter case, a binary relation (for
the order) is enough. Notice that the language of the ring case works as well
for all the structures admitting two binary operations, and hence possibly
for structures which are not rings; for instance, the reals with the functions

flz,y)=sin(z —y), gz, y)=e"Y

for all z and y in R provide a new structure for our language, but, of
course, the algebraic features of this structure are very far from the basic
properties of integral domains. Accordingly it is advisable, from a general
point of view, to distinguish the constant, operation and relation symbols of
a language L and the elements, operations and relations embodying these
symbols in a given structure for L. Symbols are something like the characters
in a tragedy (like Hamlet), while their interpretations in a structure are the
actors playing on the stage (Laurence Olivier, or Kenneth Branagh, or your
favourite ”Hamlet”).

In this framework, we can at last provide a sharp definition of structure.
We fix a language L. For simplicity, we assume that L is countable, hence
either finite or denumerable (but most of what we shall say can be extended
without problems to uncountable languages).

Definition 1.1.1 A structure A for L is a pair consisting of a non empty
set A, called the universe of A, and a function mapping

(i) every constant ¢ of L into an element c* of A,

and, for any positive integer n,

(ii) every n-ary operation symbol f of L into an n-ary operation f* of
A (hence a function from A™ into A),

(i) every n-ary relation symbol R of L into an n-ary relation RA of A
(hence a subset of A" ).

The structure A is usually denoted as follows

A= (A, (Meer, (FY)ser, (RYRer).

Let us propose some examples, which will be useful later in this book.



1.1. STRUCTURES 3

Examples 1.1.2 1. A graph is a non empty set A with a binary relation
P both irreflexive and symmetric. Hence a graph can be viewed as a
structure A in the language L consisting of a unique binary relation
symbol R, with R4 = P. Also a non empty set A partially ordered by
some relation < can be regarded as a structure in the same language
L; this time, R* =<.

2. A (multiplicative) group G is a structure of the language L = {1, -, 7'},
where 1 is a constant, - and ~! are operation symbols of arity 2 and
1 respectively. 19 represents the identity element in G, while 9 and
=19 denote the product and the inverse operation in G. Actually one
might enrich L with some additional symbols; for instance, one might
introduce a new binary operation symbol [ , ] corresponding to the
commutator operation in G. But, for @ and b in G, [a, b] is just a - b -
a l-b7' so[ , ]is not really new, and is implicitly defined by L.
Actually we will prefer L later; but it is noteworthy that L can capture
and express some further operations (and relations and constants) of
G besides those literally interpreting its symbols.

3. A field K is a structure of the language L = {0, 1, +, —, -} where 0
and 1 are constant, and +, — and - are operation symbols (each having
an obvious interpretation in K). Alternatively, K can be viewed as a
structure in the language L' = LU {~'} with a new operation symbol
~1. obviously, ! has to be interpreted within K in the inverse oper-
ation for nonzero elements of K. However, according to the general
definition of structure given before, ~1X Should denote a l-ary opera-
tion with domain K. So we run into the problem of defining 0~; this
can be overcome by agreeing, for instance, 07! = 0, but this solution
may sound slightly artificial. So we will prefer to adopt below the
language L when dealing with fields. Indeed, when @ and b are two
elements in a field K, then @ = ™! can be equivalently expressed by
saying a - b = 1.

4. An ordered field is a structure in the language L = {+, —, -, 0, 1, <}
obtained by adding a new binary relation symbol <. Its interpretation
in a given ordered field is clear: the order relation in the field.

5. Let N denote the set of natural numbers. 0 is an element of Nj the
successor s (mapping each natural » into n + 1) is a l-ary function
from N to N. Giuseppe Peano pointed out that the Induction Principle
(together with the auxiliary conditions that s is 1 — 1 but 0 is not in
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its image) fully characterizes (N, 0, s). A suitable language to discuss
this structure should include a constant symbol and a 1-ary operations
symbol.

6. Let K be a (countable) field. A vectorspace V over K can be regarded
as a structure in the language Lx = {0, +, —, r (r € K)}, where 0 is
a constant, 4 and — are operation symbols with arity 2 and 1 respec-
tively, and, for every r € K, r denotes in Lg a 1-ary operation symbol,
to be interpreted inside V in the scalar multiplication by r. The other
symbols in Lk are interpreted in the obvious way. The assumption on
the cardinality of K has the only role of ensuring L countable. More-
over, what we have said so far easily extends to right or left modules
over a (countable) ring R with identity; the corresponding language is
obviously denoted by Lg.

As already said, we should distinguish symbols and interpretations, for in-
stance, a binary relation symbol R and the relation R* embodying it in a
structure A (sometimes an order relation in a partially ordered set, but else-
where possibly the adjacency relation in a graph). But, to avoid too many
complications, we will often confuse (and actually we already confused) the
language symbols and their ”most natural” interpretations. For instance, in
Example 1.1.2, 6, we denoted in the same way the addition symbol + of L
and its obvious interpretation in a given R-module M, namely the addition
in M.

We will be interested in several algebraic notions concerning structures. In
particular embeddings play a crucial role in Model Theory. So let’s recall
their definition.

Definition 1.1.3 Let A and B two structures in a language L. A homo-
morphism of A into B is a function f from A into B such that

(i) for every constant ¢ of L, f(c*) = c5;

(ii) for every positive integer n, for every n-ary operation symbol F in L
and for every sequence @ = (ay, ..., a,) in A®, f(FA(@)) = FB(f(d))
(hereafter f((_i) abridges (f(a1)7 Tty f(a’n)));

(iii) for every positive integer n, for every n-ary relation symbol R of L
and for every sequence @ in A™, if @ € R*, then f(@) € RE.

[ is called an embedding of A into B if f is injective and, in (iii), f(@) € R®
implies @ € R* for every @ in A". When there is some embedding of A
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into B, we write A C B. An isomorphism of A onto B is a surjective
embedding. When there is some isomorphism of A onto B, we say that
A and B are isomorphic and we write A ~ B. Finally, an endomorphism
(automorphism) of A is a homomorphism (isomorphism) of A onto A.

Definition 1.1.4 Let A and B be two structures of L such that A C B. If
the inclusion of A into B defines an embedding of A into B, A is called a
substructure of B, and B an extension of A.

Now let B be a structure of L, and A be a non-empty subset of B. We
wonder if A is the domain of a substructure of B. One promptly realizes
that this may be false. Indeed

(i) if ¢ is a constant of L, it may happen that ¢® is not in A;

(i) if F is an n-ary operation symbol in L, it may happen that the restric-
tion of FB to A™ is not an n-ary operation in A, in other words that A
is not closed under F5;

(iii) on the contrary, if R is an n-ary relation symbol in L, then R® N A" is
an n-ary relation in A.

So A is not necessarily the domain of a substructure of B. However the
closure of AU {c® : ¢ constant in L} with respect to the operations F5,
when F' ranges over the operation symbols in L, does form the domain
of a substructure of L, usually denoted (A), and called the substructure
generated by A: in this case A is said to be a set of generators of (A). Notice
that these notions can be introduced even in the case A = @), provided that
L contains at least a constant symbol. B is called finitely generated if there
exists a finite subset A of B such that B = (A).

Finally, let L C L’ be two languages, A be an L-structure, A’ be an L'-
structure such that A = A’ and the interpretations of the symbols in L are
the same in A and in A’. In this case, we say that A’ expands A, or also
that A’ is an expansion of A to L'; A is called a restriction of A’ to L.

1.2 Sentences

Given a language L, after forming the structures of L, one builds, in a
complementary way, the formulas of L, in particular the sentences of L, and
one defines when a formula (a sentence) is true in a given structure. This is
the realm of Logic rather than of Algebra.
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Actually there are several possible ways of introducing formulas and truth,
according to our tastes or our mathematical purposes. We will limit our-
selves in this book to the first order framework. Let us sketch briefly how
formulas and truth are usually introduced in the first order logic. For sim-
plicity let us work in the particular setting of natural numbers (full general
details and sharp definitions can be found in any handbook of basic Math-
ematical Logic, such as [153]).

Consider the natural numbers and the corresponding structure (N, 0, s),
where s denotes the successor function. The corresponding language L in-
cludes a constant (for 0) and a l-ary operation symbol (to be interpreted
in s). As announced at the end of the previous section, we denote these
symbols by still using 0 and s: this is not completely correct, but simplifies
our life. In the first order setting, formulas can be built by using additional
symbols

e countably many element variables vg, v, ..., vn, ... (just to respect
our countable framework; otherwise we can use as many variables as
we need),

e the basic connectives A (and), V (or), — (not) (and even — (if ...,
then), < (if and only if) if you like),

e the quantifiers V (for all) and 3 (there exists),
e parentheses (, )

and a symbol = to be interpreted everywhere by the equality relation. At
this point one forms the terms of L. Essentially they are polynomials; in
our case they are built starting from the constant 0 and the variables v, (n
natural) and using the operation symbols (so s in our setting). The second
step is to construct the atomic formulas of L: basically they are equations
between terms, but, when the language includes a k-ary relation symbol R,
we have to include every statement saying that a k-uple of terms satisfies R.
At this point the formulas of L are built from the atomic ones inductively
in the following way:

1. one can negate, or conjunct, or disjunct some given formulas «, 3, ...
and get new formulas ~a, a A B, a V §;

2. one can take a formula « and a variable v, and form new formulas
Yo,o, Ju,0;

3. nothing else is a formula.
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For o and f formulas, a — 8, a < 3 just abridge ~aV 3, (0 = B)A (B — )

respectively. Let us propose some examples in our framework of natural

numbers. The injectivity of s can be expressed by the following formula in

our language L '
YooVu1 (s(ve) = s(v1) — vo = vy,

while the formula
Yup—(0 = s(vo))

says that 0 is not in the image of s. Actually these formulas are sentences
(each occurring variable is under the influence of a corresponding quantifier).
In general, an occurrence of a variable v in a formula « is bounded if it is
under the influence of a quantifier Vv, Jv, and free otherwise; « is called a
sentence if, as already said, each occurrence of a variable in « is bounded.
When writing a(?), we want to emphasize that the variables freely occurring
in the formula « are in the tuple 7.

2. and 3. are very restrictive conditions, and are the distinctive peculiarity
of first order logic. Actually, in Mathematics, one sometimes uses V and 3 on
subsets (rather than on elements) of a structure. This is just what happens
in our setting concerning (N, 0, s) with respect to the Induction Principle.
In fact, Induction says

for every subset X of N, if X contains 0 and is closed under s, then
X =N.

This statement uses Y on subsets, and this is not allowed in first order logic.
Accordingly, the Induction Principle cannot be written (at least literally in
the form proposed some lines ago) in the first order framework. This might
look very disappointing: consequently, one may search more powerful and
expressive ways of constructing formulas, for instance by allowing quantifi-
cation on set variables (this it the so-called second order logic). But actually
first order logic enjoys several important and reasonable technical theorems,
that get lost and do not hold any more in these alternative worlds. We
will discuss these results later, but it may be useful to quote already now a
theorem of Lindstrém saying (very roughly speaking) that "first order logic
is the best possible one” (see [11] for a detailed exposition of Lindstrém
theorem).

However, formulas and sentences are not sufficient to form a logic. What
we need now to accomplish a complete description of our setting is a notion
a truth. We want to define when a sentence of a language L is true in
a structure A of L, and, more generallly, when a sequence @ in A makes
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a formula «(¥) true in .A. This can be done in a very natural way, saying
exactly what one expects to hear. For instance the sentence Jv(v?+1 = 0) is
true in the complex field just because C contains some elements +1 satisfying
the equation v?> + 1 = 0; and in the ordered field of reals v/2 makes the
formula v2 = 2Av > 0 true because satisfies both its conditions, while —/2,
or 1, or other elements cannot satisfy the same formula. See again [153], or
any handbook of Mathematical Logic for more details on the definition of
first order truth. We omit them here.

Incidentally we note that, according this notion of truth, oV 3 just means
=(=a A-f), and Yu,« says the same thing as =3v, (—a). So we could avoid
the connective V and the quantifier V in our alphabet and, consequently,
in our inductive definition of formula, and to introduce a V § and Vv, o as
abbreviations, just as we did for « —+ § and « < (. In this perspective,
formulas are obtained from the atomic ones by using A, -, 3 and nothing
else.

Moreover one can see that, according to this definition of truth, up to suit-
able manipulations, each formula (@) can be written as

(*) Qv ... Quuya(7, W)

where Qy, ..., @, are quantifiers, 0 = (vy, ..., v,) and a(¥, ¥) is a quanti-
fier free formula, and even a disjunction of conjunctions of atomic formulas
and negations. (x) is called the normal form of a formula. When () is in
its normal form and every quantifier @Q; (1 < ¢ < n) is universal V (existential
), we say that ¢(w) is universal (existential, respectively).

Before concluding this section, we would like to emphasize that the study of
this truth relation between structures and sentences is just Model Theory,
at least according to the feeling in the fifties. In fact, one says that a
structure A4 is a model of a sentence «, or of a set T of sentences in the
language L of A, and one writes A = a, A = T respectively, whenever «,
or every sentence in T, is true in .A. Model Theory is just the study of this
relationship between structures and (sets of) sentences. Tarski provides an
authoritative corroboration of this claim, when he writes in 1954 [158]

Whithin the last years, a new branch of metamathematics
has been developing. It is called theory of models and can be
regarded as a part of the semantics of formalized theories. The
problems studied in the theory of models concern mutual rela-
tions between sentences of formalized theories and mathematical
systems in which these sentences hold.



1.3. EMBEDDINGS 9

It is notable that this Tarski quotation is likely to propose officially for the
first time the expression theory of models. Accordingly, one might fix 1954
as the birthyear -or perhaps the baptism year- of Model Theory (if one
likes this kind of matters). Actually, several themes related to the theory
of models predate the fifties; but one can reasonably agree that just in
that period Model Theory took its first steps as an autonomous subject in
Mathematical Logic and in general mathematics.

1.3 Embeddings

We already defined in 1.1 embeddings and isomorphisms among structures
of the same language L. We followed the usual algebraic approach. How-
ever there are alternative and equivalent ways, of more logical flavour, to
introduce these notions. Let us recall them. First we consider embeddings.

Theorem 1.3.1 Let A and B be structures of L, f be a function from A
into B. Then the following propositions are equivalent :

(i) f is an embedding of A into B;

(i) for every quantifier free formula ¢(¥) in L and for every sequence @

in A, A= ¢(@) if and only if B = o(f(a@));

(iii) for every atomic formula ¢(0) in L and for every sequence @ in A,
AE (@) if and only if B = o(f(a).

The proof is just a straightfoward check using the definitions of embedding,
term and (atomic or quantifier free) formula. Referring to definitions is a
winning and straightforward strategy also in showing the following charac-
terizations of the notion of isomorphism.

Theorem 1.3.2 Let A and B be structures of L, f be a surjective function
from A onto B. Then the following propositions are equivalent:

(i) f is an isomorphism of A onto B;

(ii) for every quantifier free formula ¢(¥) in L and for every sequence @

in A, A | (@) if and only if B = ¢(f(@));

(iii) for every atomic formula ¢(¥) in L and for every sequence @ in A,

A = @(@) if and only if B = o(f(@));

(iv) for every formula ¢(¥) in L and for every sequence @ in A, A |= ¢(a)
if and only if B = ¢(f()).
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It can be observed that, when f is any embedding of A into B, for every
quantifier free formula «(%, w) in L and every sequence @ in A,

if A Jwa(d, @), then B | Fva(f(a), W)
or also, equivalently,
if B | Vwa(f(@), @), then A |= Vda(d, ).

Definition 1.3.3 Two structures A and B of L are elementarily equiv-
alent (A = B) if they satisfy the same sentences of L.

As an easy corollary of Theorem 1.3.2, we have:
Theorem 1.3.4 Isomorphic structures are elementarily equivalent.

Conversely, it may happen that elementarily equivalent structures A and B
are not isomorphic. We will see counterexamples below. However it is an
easy exercise to show that, for finite structures, elementary equivalence and
isomorphism are just the same thing.

Now let us introduce a related notion: partial isomorphism.

Definition 1.3.5 Let A and B be structures of L. A partial isomorphism
between A and B is an isomorphism between a substructure of A and a
substructure of B. A and B are said to be partially isomorphic A ~, B
if there is a non empty set 1 of partial isomorphisms between A and B
satisfying the back-and-forth property: for all f € I,

(i) for every a € A, there is some g € I such that f C g and a is in the
domain of g;

(ii) for every b € B, there is some g € I such that f C g and b is in the
image of g.

Example 1.3.6 Two dense linear orderings without endpoints A = (4, <)
and B = (B, <) are partially isomorphic.

In fact, let I include all the possible isomorphisms between a finite substruc-
ture of A and a finite substructure of B. I is not empty, because, for every
a € A and b € B, a— b defines a partial isomorphism in I. Now take any
fel;letag < ay < ... < ay, list the elements in the domain of f and
bp < by < ... < by, those in the image of f; so f(a;) = b; for every ¢ < n.
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Pick @ € A, and notice that there exists some b € B such that, for every
1 < n,
a;<a <+ b;<hb.

This is trivial when @ is in the domain of f. Otherwise, one uses the facts
that B has no minimum when a < ag, that B has no maximum when a > a,,
and, finally, that the order of B is dense in the remaining cases. Define g € T
by putting

Domg= Dom f U{a}, Img=Imf U{b},

Clearly g satisfies (i). (ii) is proved in the same way.

Remark 1.3.7 o If A~ J, then A~, B.
In fact, let f be an isomorphism of A onto B. I = {f} does satisfy (i) and

(ii).
o Conversely, partially isomorphic structures may not be isomorphic.

Indeed one can find two structures that admit a different cardinality, and
yet are partially isomorphic. For instance, this is the case of two dense
linear orderings without endpoints. We have just seen that they are al-
ways partially isomorphic, indipendently of their cardinalities; in particular

(R, <) ~, (Q, <)

But one can also find partially isomorphic non isomorphic structures with
the same cardinality. For instance, still consider dense linear orderings with-
out endpoints, and notice that (R, <) ~ (R+ Q, <) ((R+ Q, <) denotes
here the disjoint union of a copy of (R, <) and a copy of (Q, <), where
(R, <) precedes (Q, <)). Both (R, <) and (R + Q, <) have the contin-
uum power. But they cannot be isomorphic, because (R + Q, <), unlike
(R, <), contains some countable intervals, and any order isomorphism maps
countable intervals onto countable intervals.

However, within countable models, partially isomorphic structures are also
isomorphic.

Theorem 1.3.8 Let A and B be countable partially isomorphic structures.
Then A ~ B.
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The proof is obtained as follows. First one list A and B in some way
A={a, :neN}, B={b,:necN}

Let I be a set of partial isomorphisms between A and B ensuring A ~, B.
Due to (i) and (ii) one enlarges a given fj € I by defining, for every natural
n, a function f, € I such that, for any n,

1. fn g fn+1,

2. a, 18 in the domain of fs,,
3. b, is in the image of fo,41.

Put f = Up,enfa. Owing to 1., f is a function; 2. implies that its domain
is A, and 3. ensures that its image is B. In order to conclude that f is an
isomorphism, we have to check that, for every atomic formula ¢(%) of L and
every sequence @ in A, A |= ¢(d) if and only if B | ¢(f(d)). But this is
easily done, as there is some n such that @ is in the domain of f,, and f,
restricts f and is an isomorphism between its domain and its image.

A noteworthy consequence of the theorem is

Corollary 1.3.9 (Cantor) Two countable dense linear orderings without
endpoints are isomorphic.

Hence linearity, density and lack of endpoints characterize the order of ra-
tionals up to isomorphism. It should be underlined that Cantor’s original
proof used a different argument; but a subsequent approach of Hausdorff
and Huntington inaugurated the back-and-forth method. In fact, what they
did was just firstly to observe that two dense linear orders without end-
points are partially isomorphic (according to our modern terminology), and
consequently to deduce that, if one adds the countability assumption, then
isomorphism follows; the latter point can be easily generalized to arbitrary
structures (and actually this is what Theorem 1.3.8 says). Now let us com-

pare ~~, and =.

Theorem 1.3.10 Partially isomorphic structures are elementarily equiva-
lent.

In fact let A and B be partially isomorphic structures in a language L, and
let I be a set of partial isomorphisms between A4 and B witnessing A ~, B.
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Then one can show that, for every choice of a formula (%) in L, a function
f €I and a sequence @ in the domain of f,

AFE¢@ <  BEo(f(a).

Note that, when ¢ ranges over the sentences of L, this implies A = B. The
proof proceeds by a straightforward induction on ¢(%): the conditions (i)
and (ii) are useful in handling the quantifier step. In fact suppose that
(V) is of the form Jwa (¥, w). If A | (@), then there is some b € A
satisfying A = «(d, b). According to (i), there is some g € I enlarging
J such that b is in the domain of g. By induction, B | «(g(@), g(b))-
Therefore B |= Jwa(g(d@), w), B = Jwa(f(d@), w) and, at last, B | ¢(f(d)).

The converse is proved in a similar way, using (ii) instead of (i).

As a consequence of this theorem, one can deduce that there exist elemen-
tarily equivalent structures which are not isomorphic. For instance, among
dense linear orders with no endpoints, (Q, <), (R, <) and (R + Q, <) are
partially isomorphic, hence elementarily equivalent. But they cannot be
isomorphic, as already observed.

Notice that Theorem 1.3.10 provides also another proof that isomorphism
implies elementary equivalence (via partial isomorphism). However, we will
see later that elementarily equivalent structures may not be partially iso-
morphic (we will produce a counterexample). Let us also quote here the
following result, characterizing elementary equivalence in terms of partial
isomorphism.

Theorem 1.3.11 (Fraissé) Let A and B be structures in a finite language
L. Then A = B if and only if there is a decreasing sequences {I,, : n € N}
of non empty sets I,, of partial isomorphisms between A and B such that,
for every natural n and every f € I,,41,

(a) for every a € A, there is g € I, such that g extends f and the
domain of g includes a,

(b) for every b € B, there is g € I, such that g extends f and the image
of g includes b.

Now let us deal again with arbitrary embeddings. The characterization of
isomorphism given in Theorem 1.3.2 (iv) suggests the following notion.

Definition 1.3.12 Let A and B be siructures of L. An embedding f of
A into B is called elementary if, for every formula ¢(v) in L and every
sequence @ in A, A |= o(d) if and only if B = o(f(@)).
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We say that A is elementarily embeddable in B, and we write A <
B, when there is some elementary embedding of A in B. A is called an
elementary substructure of B if A C B and the inclusion of A in B
defines an elementary embedding of A in B (hence, for every formula ¢(?)
in L and every sequence @ in A, A |= ¢(@) if and ounly if B |= ¢(d)). In this
case, we say also that B is an elementary extension of A.

Remark 1.3.13 1. Every isomorphism is, of course, an elementary em-
bedding.

2. If A is elementarily embeddable in B, then .A and B are elementar-
ily equivalent (just restrict the definition of elementary embedding to
sentences ¢ in L).

Examples 1.3.14 (a) In thelanguage L = {<}, consider the following
structures

A= (N-{0}, <), B=(N,<).
The inclusion of N—{0} in N defines an embedding of A in B which is

not elementary because 1 is a minimal element in .A, but not in B (in
other words, satisfies Jw(w < v) in B, but not in .A). On the contrary,
the successor function from N in N — {0} is an isomorphism between

B and A.

(b) The real field R is a subfield of the complex field C, and hence is
a substructure in the language L = {0, 1, +, -, —}. However R is not
an elementary substructure of C. In fact, for every positive real a, a
satisfies the formula Jw(w?+ v = 0) in C, but not in R. On the other
hand, we will see later that every embedding of algebraically closed
fields (or real closed fields) is elementary.

Another remarkable class of embeddings concerns existential formulas.

Definition 1.3.15 Let A and B be structures in a language L. An embed-
ding f of A into B is called existential if and only if, for every ezistential
formula () in L and for every sequence @ in A,

A | ¢(@) < B = o(f(@)).

In more detail, we require that, for every quantifier free formula «(d@, @) in
L and for every sequence & in A,

(%) A E Fda(d, @) if and only if B |= Ida(f(a), ).



1.3. EMBEDDINGS 15

When A C B and f is the inclusion of A into B, we say that A is an
existential substructure of B. When there is some existential embedding
of A in B, we say that A is existentially embedded in B and we write

A <y B.

Let us discuss briefly existential embeddings f. First of all, it is clear that
elementary embeddings are existential, too. Furthermore, notice that (%)
can be weakened to require

if B | Jwa(f(d), &), then A | Iva(d, 0)
because the inverse implication
if A |E IWa(d, ), then B | Ida(f(d), W)

is satisfied by every embedding. Now, a quantifier free formula a(?, @) can
be equivalently written (by standard propositional techniques) as a disjunc-

tion

\/ a; (6v u_)')

i<s
where s is a natural number and, for every j < s, a;(¥, @) is a conjunc-
tion of atomic formulas (equations) and negations. One easily deduce that
Jba (T, W) can be equivalently written as

\/ 3By (7, ).

j<s
It follows that f is existential if and only if
B | Fba(f(a@), @) implies A | Ida(d, @)

for every @ in A and for every finite conjunction a(¥, W) of equations and
negations.

Now let us deal again with arbitrary elementary embeddings. Let L be
a language, A be a structure of L. In order to examine the structures
elementarily equivalent to A, L is just the language we need. But, within
these models, one meets those where A is elementarily embeddable; and
these structures actually require a richer language, emphasizing the fact
that A embeds (elementarily) in each of them. This larger language is built
by adding to L a constant symbol for every a € A, and will be called L(A);
the new constant corresponding to a could be written ¢,, in order to remind
a but to avoid any confusion with a. But we will often denote it ambiguously
by a (for simplicity’s sake).
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A itself becomes a structure of L{A) provided we interpret quite naturally,
for every a € A, the constant corresponding to ¢ in a. The resulting structure
will be denoted A 4.

Which are the structures elementarily equivalent to A4 in L(A)? They are
obtained as follows. Take an L-structure B where A embeds elementarily,
say by f; for every a € A, let f(a) interpret the constant of a. One gets in
this way a structure By(4) of L(A), and it is easy to check that B4y = A4.
Conversely, every structure elementarily equivalent to .44 can be obtained
in this way.

More generally, for every structure A of L and for every subset X of A, one
can introduce a new language L(X) by adding to L a new constant for every
element z in X. Ax is the L(X)-structure expanding A and interpreting,
for every € X, the constant symbol corresponding to z in z itself. Of
course, there do exist other structures elementarily equivalent to Ax. Let
us see how to construct them. Let B be a structure of L.

Definition 1.3.16 A function f from X into B is called elementary if,
for every formula ¢(7) in L and for every sequence T in X,

AEe(@) « BEe(f(@)

Notice that, when X = A, an elementary function from X in B is just
an elementary embedding of A in B. Moreover, for any X, an elementary
function f from X in B enjoys the following properties.

(i) fis1—1 (use (v, va) : v1 = vg).
(ii) f~1 itself is an elementary function (from f(X) in A).

(iii) A and B are elementarily equivalent (apply the definition of elementary
function to the sentences ¢ of L).

Now take an L-structure B. Let f be an elementary function from X into
B, and, for every # € X, let f(z) interpret the constant of 2 in L(X). One
gets in this way a structure By x) of L(X), and even a model elementarily
equivalent to Ax. Conversely, every structure = Ax can be obtained in this
way.

Remark 1.3.17 Let (¥, &) be a formula of L, @ be a sequence in A, & be
a sequence in X. Fussy people will like to distinguish

(a) A | (@, 7) (in the sense that A satisfies the L-formula ¢(¥, W) if
¥, W are embodied by @, ¥ respectively);
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(b) Ax E (@, &) (in the sense that Ax satisfies the L(X)-formula

(0, &) if ¥ is embodied by @)

(c) Aa E #(@, &) (in the sense that A4 satisfies the L(A)-sentence
p(a@, 7).

However one easily shows that (a), (b) and (c) are equivalent. So we will
use the simplest notation (that of (a)) to mean any of these conditions.

We conclude this section by mentioning without proof two theorems on
elementary embeddings. We will state them for simplicity in the case when
the involved embeddings are just inclusions but they extend to arbitrary
(elementary) embeddings.

The former theorem provides a criterion to check whether a given subset of
a structure B is the domain of an elementary substructure of B (remember
the discussion at the end of 1.1).

Theorem 1.3.18 (Tarski-Vaught) Let B be a structure of L, A be a subset
of B. Then the following propositions are equivalent:

(i) A is the domain of an elementary substructure A of B;

(ii) for every formula a(¥, w) of L and for every sequence @ in A, if B |=
Jwa(d, w), then there exists an element b € A such that B = a(d, b).

Now let us introduce the latter result. Take a set I totally ordered by a
relation <. For every ¢ € I, let A; be a structure of L. Suppose that, for
every choice of 7 < j in I, A; is a substructure of .A;: this means that
A; C Aj and

e for every constant ¢ of L, ¢ = ¢4,

e for every n-ary operation symbol F of L, F4i is the restriction of Fs
to A?,

e for every n-ary relation symbol R of L, R4 = R4 N AL,

Therefore we can build a new structure A in L, having domain A = U;e1A;
(and hence including A; for all ¢ € I), and interpreting the symbols of L as
follows:

e for every constant ¢ of L, ¢* = ¢ where 7 is any element in I;
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e for every m-ary operation symbol F of L and for every choice of

A1y +vvy Uy in A,
FA(al, ceuy Gp) = FA"(al, ey Qp)
where ¢ € I satisfies a4, ..., a, € A;;
e for every n-ary relation symbol R of L and for every choiceof a;, ..., a,
in A,
(a1,...,a,) € R* & (a1,...,a,) € RAi
where ¢ € I satisfies a4, ..., a, € A;.

It is clear that A is well defined and extends A; for every ¢ € I. Straight-
foward techniques show:

Theorem 1.3.19 (Elementary Chain Theorem) Suppose that, for every
choice of i < j in I, A; is an elementary substructure of A;. Then, for
every 1 € I, A; is an elementary substructure of A.

1.4 The Compactness Theorem

The Compactness Theorem is the most powerful tool -and indeed a key
feature- in classical Model Theory. It states

Theorem 1.4.1 Let S be an infinite set of sentences in a language L. Sup-
pose that every finite subset of S has a model. Then S has a model.

Notice that the converse is obvious, because a model of S is a model of
every (finite or infinite) subset of S. But the theorem ensures that, if every
finite subset of S has its own model (hence different subsets may admit
different models), then there is a global model satisfying all the sentences
in S. In fact, there are several situations where the Compactness Theorem
applies and guarantees satisfiability for sets S of sentences for which it is
very difficult to imagine a general model directly, but it is quite simple to
equip every finite subset with a suitable private model: we will see some of
them later in 1.5. In fact this section and (implicitly) the next one will be
devoted to discussing this fundamental theorem and, in detail:

e its proof;

e its name;
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e its role in producing ”"nonstandard” and, in some sense, unexpected
models, and, as the reverse side of the same medal, in bounding the
expressiveness of first order logic and in excluding that some familiar
principles, like induction on naturals, may be written in any way in
the first order framework;

e in spite of this, its plausibility, supported by metamathematical con-
siderations on the nature of mathematical proofs;

e finally, some words about the already mentioned theorem of Lindstrom
saying that the Compactness Theorem, together with a related result
(the downward Lowenheim Skolem Theorem) fully characterizes first
order logic.

As said, let us begin by discussing the proof. There are several possible
ways to show the Compactness Theorem. For instance, there is an approach
based on the algebraic notion of ultraproduct and due to Keisler (see [39]).
Another classical proof was proposed by Henkin. Let us outline very quickly
its idea.

What we have at the beginning is a(n infinite) set of sentences S such that
every finite subset has a model. Some technical -and non trivial- preliminary
work shows that there is no loss of generality in assuming that S satisfies
two further conditions:

1. S is complete, in other words, for every sentence ¢ in L, either ¢ or
- is in S;

2. S is rich: if S contains a sentence of the form Jva(v), then there is a
constant symbol ¢ in L such that a(c) is in S.

At this point a quite artificial construction produces the model we are look-
ing for. Basically, the domain is just the set of terms without variables in L
(the so-called Herbrand universe of L); this is non-empty owing to 2. The
L-structure arises in a rather reasonable way. 1 and 2 play a key role in
showing that what we build is a model of S.

It is worth emphasizing that the model we get in our proof is countable (for
a countable L; when the language has a larger cardinality A, it is easy to
check that our argument still works and produces a model of power < A).
So, as a byproduct of the Henkin proof, we have that, when S has a model,
then S has a countable model: this is the so called Downward Léwenheim-
Skolem Theorem, and is a notable result. We shall discuss its relevance in
1.5.
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Now let us treat the reasons of the theorem name. Actually compactness
recalls topology. In fact, we will see later in Chapter 5 that the theorem has
a topological content and implicitly says that a certain topological space is
compact.

We shall see within a few lines in 1.5 that the Compactness Theorem pro-
duces some strong and severe expressiveness restrictions in first order logic.
For instance, we will show that, just owing to Compactness, conditions like
finiteness, or popular statements such as the Minimum Principle, cannot be
expressed in a first order way. On the other hand, one should agree that
what the Compactness Theorem says is a quite reasonable statement, espe-
cially if one considers the following corollary. Let S be a set of sentences of
L and o be a sentence of L; we say that o is a logical consequence of S, and
we write S |= o, when o is true in all the models of S.

Corollary 1.4.2 If S |= o, then there is a finite subset Sy of S such that
So lI ag.

Proof. Clearly S |= o if and only if S U {—0c} has no models. But, owing
to Compactness, this is equivalent to say that there is a finite subset of
S U {—o} without any models. With no loss of generality we can assume
that this finite set is of the form Sy U {-c} where Sp C S. But, again,
stating that So U {-c} has no models is equivalent to say that So = . &

Now, another fundamental result in first order logic, deeply related to com-
pactness -the Completeness Theorem- says that one can explicitly provide
a notion of provability accompanying and supporting this concept of con-
sequence in such a way that the logical consequences of a given S are just
what is proved by S at the end of a sequence of rigorous deductions. So
what compactness in conclusion emphasizes is the finitary nature of math-
ematical proofs; this feature can be regarded as an authoritative witness in
its favour and, trough it, as a support to first order logic.

1.5 Elementary classes and theories

When considering, for a given language L, structures, formulas and truth,
two problems arise quite naturally:

(a) given a set T of L-sentences, ”classify” the models of T' (their class
will be denoted Mod(T));
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(b) given aclass K of L-structure, ”characterize” the set of the L-sentences
true in all the structures of K (this set will be called the theory of K
and denoted Th(K)).

According to its declared intents, Model Theory should be mainly concerned
with Problem (a). However, also (b) arises quite naturally in the model
theoretic framework. For instance, consider a class K formed by a single
structure, like the complex field, or the real field. We will see later that K
cannot be represented as Mod(T) for any T. But it may be quite interesting
to realize in an explicit way which sentences are true in the only structure
in K.

However we have to admit that the previous statements of (a) and (b) are
somewhat vague and unprecise. First of all, what do classifying or charac-
terizing mean? This is not a minor question; on the contrary, it is a very
delicate and central matter. For instance, the classification problem for a
class of structures touches and overlaps several basic open questions in Al-
gebra. So we should be more detailed about this crucial point. Of course,
one can reasonably agree that a classification should identify isomorphic
structures. But this is still a partial and indefinite answer; we should fix
more precisely which criteria, tools and invariants we want to use in our
classification problem. We shall try to clarify these fundamental questions
in the next chapters. Here we limit ourselves to discuss other points, mainly
concerning (a). T is a set of sentences in a language L.

1. Let o be a sentence of L, and suppose that every model of T is also a
model of o (so o a logical consequence of T T |= ). Hence Mod(T) =
Mod(TU{c}). Consequently we can assume with no loss of generality
for our purposes that

for every sentence o of L, if T |= o, then o € T.

A set of sentences in L with this property is called a theory of L. It
is a simple exercise to show that, given a set T of sentences of L, T is
a theory if and only if there is a class K of structures of L such that

T =Th(K) (hint: (<) is clear; to show (=) use K = Mod(T)).

2. A theory T is called consistent if and only if T satisfies one of the
following (equivalent) conditions:

(i) for every sentence o of L, either o ¢ T or o ¢ T

(ii) there is some sentence of I which is not in T
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(iii) Mod(T) # 0.

To show the equivalence among (i), (ii) and (iii) is an easy exercise. (i) says
that the consistent theories are just those excluding any contradiction. (iii)
ensures that these theories are exactly those admitting at least one model. It
is clear that, within Problem (a), we are exclusively interested in consistent
theories. So we can assume in (a) that T is a consistent theory; accordingly
hereafter theory will always abbreviate consistent theory.

A rigid model theoretic perspective might limit the classification analysis to
the classes of models of (consistent) theories. But open minds could prefer
a more general study, providing an abstract treatment of the classification
problem for arbitrary classes of structures. Hence it is worth underlining
that there do exist classes K of L-structures which are not of the form
K = Mod(T) for any theory T of L. We propose here some examples; the
Compactness Theorem is a fundamental tool in this setting.

Definition 1.5.1 A (non-empty) class K of structures of L is said to be
elementary (or also axiomatizable) if there is a set T' of sentences of L
(without loss of generality, a theory T' of L) such that K = Mod(T).

Now let us propose a series of examples, as promised. Part of them aim
at pointing out that several classes of structures are explicitly elementary
because their definitions can be naturally written in a first order way. But
other cases are not elementary: it is here that the Compactness Theorem
plays its role and first order logic shows its expressiveness bounds.

Examples 1.5.2 1. Let L = () (so the structures of L are the non-empty
sets), K be the class of infinite sets. ”Infinite” means "admitting at
least n + 1 elements for every natural n”. Given n, the property
”there are at least n + 1 elements” can be expressed in a first order
way by the following sentence of L

o, : dvg...3v, /\ —(v; = v;).
<j<n

Hence K = Mod(T') where T = {0y, : n € N}, and so K is elementary.

2. Let again L = (), but now let K be the class of finite (non-empty)
sets. ” Finite” means ” having at most n+ 1 elements for some natural
n”. Given n, the proposition ”there are at most n + 1 elements” can
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be expressed in a first order way by the sentence —o,;. But now
Mod({—6,41 : n € N}) is not K, indeed it equals the class of the
sets having only one element. So the approach in 1 does not work any
longer. However, assume that K is elementary, hence K = Mod(T)
for a suitable set T of sentences of L. Put

T'=TuU{o, : n € N}.
Let T§ be a finite subset of 7. For some natural N,
T, CTU{o, :neN,n<N}.

Notice that T U {o, : » € N, n < N} (and hence T{) has a model: it
suffices to take a finite set with at least N 4+ 1 elements. At this point,
owing to the Compactness Theorem, we deduce that 77 itself has a
model. This is a set both finite (as a model of 7’) and infinite (as a
model of o, for every natural n). We get in this way a contradiction.
Hence K is not elementary.

Notice that this argument works as well for every class K of finite
arbitrarily large structures (in the sense that, for every positive integer
n, there is a structure in K whose size is larger than n). A class K
of this kind cannot be elementary; in other words, the theory of K
does admit infinite models, too; notice that this applies, for instance,
to the class of finite groups, as well as to the class of finite fields. So
one can wonder which are the infinite models of the theory of these
finite structures. We will consider the particular case of fields later in
Example 6.

Now let us deal with orders.

3. Let L = {<} where < is a binary relation symbol (which we confuse,
for simplicity, with its interpretation below -an order relation-). In
L we consider the class K of linear orders. It is easily seen that K
is elementary, because the properties defining linear orders are first
order sentences (and indeed universal first order sentences) of L. For
instance, linearity can be expressed by

V’U()V’Ul ('UO S (%1 Vv (%] S U()).

The set of the logical consequences of these sentences is the theory of
linear orders; it is formed by the sentences true in every linear order.
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In the same way the class of dense linear orders without endpoints is
elementary; in fact, density is stated by

\V”UO\V”Ula’Uz(’UO <V = <AV < ’01),
and lackness of endpoints by
Yogduy (’1.)1 < ’Uo),

V’an’l)l (’U() < ’l)l)
(vo < vy abbreviates here vy < vy A =(vp = v1)).

The set of the logical consequences of the sentences quoted so far is the
theory of dense linear orders without endpoints; we will denote it by
DLO~. 1t is formed by the sentences true in every dense linear order
with no endpoints. Recall that (Q, <), (R, <) are dense linear orders
without endoints, and consequently their theories include DLO~ (and
one may wonder if they actually equal DLO™).

The reader can check directly that the following classes of L-structures
are elementary:

e dense linear orders with a least but no last element, or a last but
no least element, or both a least and a last element,

e infinite discrete linear orders with or without endpoints (an order
is discrete when every element, but the least one -if any-, has a
predecessor and every element, but the last one -if any-, has a
successor).

. We still work in L = {<} (where < is a binary relation symbol), but

this time we deal with the class K of well ordered sets (so ordered sets
where every non-empty subset has a least element). Hence (N, <) € K
owing to the Minimum Principle, while any dense linear order (4, <),
even with a minimum, does not lie in K (in fact, given b > @ in A,
which is the least element > a in A?). So the situation is, in some
sense, opposite to the last (elementary) example 3.

Suppose that K is elementary, so K = Mod(T) for a suitable set T of

L-sentences. Put
L'=LU{c, : n €N}

where, for every natural n, c, is a constant symbol, and in L' look at
the following set of sentences

T'=TU{cht1 < ¢p : n € N}L
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Let T} be a finite subset of T”, then there is some natural N such that
T, CTU{cnp1 <cn:meN, n< N}

Then T} has a model because T U {cp41 < ¢ : » € N, n < N}
has: it suffices to take the well ordered set (N, <), to interpret co,
€1y ...y N1 10 N+1, N, ..., 0 respectively, and any further constant
¢, (with n > N) arbitrarily. By the Compactness Theorem, T’ does
admit a model

A = (A <, (6 )nen)-

Let A = (A, <), then A is a model of 7', and hence is a well ordered
set; however it contains the non-empty subset

X={c :neN}

admitting no minimum, because, for every natural n, c;ﬁ_l < cfl. So
we get a contradiction. Consequently K is not elementary. In other
words there are linearly ordered sets which are not well ordered but
satisfy the same first order sentence as well ordered sets.

5. Let now L = {0, 1, +, —, -} be our language for fields. We consider in
L the class K of fields. K is elementary. In fact the definition itself of
field can be written as a series of first order sentences (in most cases,
of universal first order sentences) in L. For instance

YvgFvy (—(vo = 0) = vo - v1 = 1),

says that any non zero element has an inverse.

Also the class of algebraically closed fields is elementary, although the
corresponding check is a little subtler. In fact what we have to say now
is that, for every natural n, any (monic) polynomial of degree n + 1
has at least one root. So the point is how to quantify over polynomials
of degree n + 1. However recall that such a polynomial is just an
ordered sequence of length n 4 2 of elements in the field: the first is
the coefficient of degree 0, the last is the coefficient of degree n + 1
(and equals 1 if we deal with monic polynomials); so what we have to
write is just, for every n,

YooVo; ... Vo, Fo(vo+ vy v+ ... v, - 0™ + 0™ =0)

(where v' has the obvious meaning, for every ¢ < n + 1).
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The logical consequences of the sentences listed so far form the theory
of algebraically closed fields, usually denoted AC'F. Now let p be a
prime, or p = 0. Also the class of (algebraically closed) fields of charac-
teristic p is elementary; for, it suffices to add to the previous sentences
the one saying that the sum of p times 1 is 0 when p is a prime, or,
when p = 0, the negations of all these sentences. In conclusion, for
every p prime or equal to 0, we can introduce the theory AC'F, of
algebraically closed fields of characteristic p. Among the algebraically
closed fields in characteristic 0 recall the complex field C, as well as
the (countable) field Cy of complex algebraic numbers; their theories
contain ACFp, and one may wonder if they equal AC'Fy. Recall also
that every field K has a (minimal) algebraically closed extension K;
in particular, for p prime, Z/pZ is an example of algebraically closed
field in characteristic p.

Since we are treating fields, let us consider again finite fields, and,
more exactly, the infinite models of their theory we met in example
2: the so called pseudofinite fields. As observed before, one can ask
which is the structure of these fields. J. Ax equipped them with a very
elegant axiomatization, explaining the essential nature of finite fields
in the first order setting: in fact, pseudofinite fields are just the fields
K such that:

* K is perfect,
* K has exactly one algebraic extension of every degree,
* every absolutely irreducible variety over K has a point in K.

All these conditions can be written in a first order way, although this
is not immediate to check.

. A first order language for the class K of ordered fieldsis L = {0, 1, +, —,

-, <}. K is elementary in L because it equals Mod(T) where T is the
set of the following sentences in L:

(i) the field axioms (see Example 5);

(i) those characterizing the linear orders (see Example 3);

(iii) the sentence saying that sums and products of nonnegative ele-
ments are nonnegative

Vvovvl(ogvo/\OSQH—)OSU()—I-’UI/\OSUO-’Ul).
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Also the class of real closed ordered fields (those satisfying the Inter-
mediate Value Property for polynomials of degree > 1) is elementary,
it suffices to add the new sentences:

(iv) for every natural =,
YooVuy ... Yo, VuVwIv(vo+ v -u+ ... +vp - u™ + w"t < oA

ADO<vo+v-w+ ciit v, W+ ™ Au<w —

SuU<VAUV<WAvFU U ... o, " 0" =0).

The logical consequences of (i), (ii), (iii), (iv) form the theory of real
closed ordered fields, usually denoted RC'F'. Examples of real closed
ordered fields are the ordered field of the real numbers R, as well as the
(countable) ordered field Ry of real algebraic numbers. Their theories
include RCF, and one may wonder if actually they equal RC'F.

7. Let R be a (countable) ring with identity. Consider the language
Lr ={0,+, —, r(r € R)} of (left) R-modules. The class of left R-
modules is elementary because it equals the class of models of the
following sentences in Lpg:

(i) those axiomatizing the abelian groups in the language with 0, +
and —;

(i) forevery r,s € R, if r+s and r-s denote the sum and the product
(respectively) of r and s in R,

Yoo ((r + s)vg = rvo + svo),
VUO((T . S)'UO = T(SUO)),
YuoVo1(r(vo + v1) = rve + rv1),

(iii) finally, if 1 denotes the identity element in R,
V’Uo(l’vo = ’UO).

The logical consequences of the previous sentences form the theory
rT of left R-modules. Of course, there is no reason to prefer the
left to the right, at least in this case; indeed, one can check that even
the class of right R-modules is elementary, and consequently one can
introduce the theory Tg of right R-modules.
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Let us come back to our classification problem for elementary, or also non-
elementary classes. The following fundamental theorem can suggest that,
even in the elementary case, this problem is not simple, as the class of models
of a theory T can include many pairwise non-isomorphic structures.

Theorem 1.5.3 (Léwenheim-Skolem) Let T be a theory in a (countable)
language L. Suppose that T has some infinite model. Then, for every infinite
cardinal X, T admits some model of power X.

The proof just uses Compactness in the extended framework of languages
of arbitrary cardinalities. In fact one enlarges L by A many new constant
symbols ¢; (¢ € I,|I| = ) and one gets in this way an extended language L'.
In L one considers the following set of sentences

Any finite portion T of 77 has a model; in fact it turns out that, for some
finite subset Iy of I,

TECTU{~(c;=¢j) : i,5€ o, i#j}

s0, in order to obtain a model of T}, it is sufficient to refer to an infinite
model A di T, as ensured by the hypothesis, and to interpret the finitely
many constants ¢; (¢ € Ip) in pairwise different elements of A. At this point,
Compactness applies and gives a model of 77 (hence of T') of power < .
But this model has to include the A\ many distint interpretations of the ¢;’s,
and so its power is exactly A.

Therefore, if a theory T' of L has at least an infinite model then T has a model
in each infinite power (and two models with different cardinalities cannot
be isomorphic). Of course, one may wonder how strong is the assumption
that T has some infinite model. Not so much, if one recalls that a theory
T admitting finite models of arbitrarily large size must admit also some
infinite models. Another reasonable question may concern how many models
T admits in any fixed infinite cardinal A\. One can check that their number
cannot exceed 2*, but this upper bound can be reached, for every A, by some
suitable T’s. The opposite case, when T has just one model in power A (up
to isomorphism), will be of some interest in the next chapters; we fix it in
the following definition.

Definition 1.5.4 Let T be a theory with some infinite model, A be an infi-
nite cardinal. T is said to be A-categorical if and only it any two models
of T of power \ are isomorphic.
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We wish to devote some more lines to the Lowenheim-Skolem theorem.
Among other things, it confirms that elementary equivalence is a weaker
relation than isomorphism. In fact, take an infinite structure A, and use
the Lowenheim-Skolem to build a model A’ satisfying the same first order
sentences as A but having a different cardinality. It is easily checked that
A, A" are elementary equivalent; but, of course, they cannot be isomorphic.
Now recall what we pointed out in 1.2 : the Induction Principle (in its usual
form) cannot be written in the first order style in the language for (N, 0, s)
because first order logic forbids quantification on set variables. However,
as far as we know, one might find an equivalent statement that can be ex-
pressed in the first order setting; in this sense, Induction might become a
first order statement. Well, the Lowenheim-Skolem theorem excludes this
extreme possibility. For, the Induction Principle characterizes (N, 0, s) up
to isomorphism, while the Léwenheim-Skolem theorem ensures us that any
tentative first order equivalent translation (even involving infinitely many
sentences) has some uncountable models. So this translation cannot exist.

The Loéwenheim-Skolem theorem emphasizes other similar expressiveness
restrictions in first order logic. For instance, it is well known that the ordered
field of reals is, up to isomorphism, the only complete ordered field (here
completeness means that every non-empty upperly, lowerly bounded set of
reals has a least upper bound, a greatest lower bound respectively). So
completeness cannot be expressed in a first order way, because any tentative
first order translation should be true in some real closed field with a non-
continuum power.

On the other side, we will see that the Léwenheim-Skolem theorem is a
very useful and powerful technical tool in first order model theory (just as
the Compactness Theorem). And actually the expressiveness restrictions re-
marked before are only the other side of the picture of these technical advan-
tages. This is just the content of the Lindstrém theorem quoted before in 1.2.
Indeed, what Lindstrém shows is that, if you have a logic (namely a reason-
able system of formulas and truth) and you demand that your logic satisfies
the Compactness Theorem and the weaker form of the Léwenheim-Skolem
Theorem, called Downward Lowenheim-Skolem Theorem, introduced in 1.4
and requiring -for countable languages- that any set of sentences admitting
a model does have a countable model, then your logic is the first order logic.
In this sense the first order framework is (Leibnizianly) the best possible
one.
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1.6 Complete theories

Let us deal again now with one of the main themes in Model Theory, i.e.
classifying structures in a given class K. Due to our first order setting, we
limit our analysis to elementary classes K = Mod(T), where T is a first
order theory. This choice is not so partial and narrow as it may appear. In
fact, it certainly includes the cases when T is explicitly given and equips
K with an effective list of first order axioms, as in the positive examples of
the last section; but it is also concerned with other, and worse situations.
For instance, think of the theory T of finite sets, or groups, or fields, or,
in general, of a class of finite arbitrarily large structures, so that T has
also infinite models. Alternatively, think of the theory T of a single infinite
structure A: due to the Lowenheim-Skolem Theorem, T' has some models
non-isomorphic to A. In these cases, T is introduced by specifying some
crucial models, but this does not determine in an explicit way a priori which
first order sentences belong to T, and which are excluded; indeed we could
just be interested in finding an effective axiomatization as in the previous
examples, and we could aim both at describing T and also -as a related
matter- at classifying its models.

These are the settings we wish to consider. Actually we should also admit
that we have not clearly explained up to now which kind of classification
we pursue; however we have agreed that this classification should identify
isomorphic models but distinguish non isomorphic structures. Also, we have
seen that isomorphic models satisfy the same order order sentences. So a
preliminary classification is just up to elementary equivalence, and aims at
distinguishing non elementarily equivalent structures. Once this is done,
we could restrict our analysis to structures satisfying the same first order
conditions; i.e. fix a structure A and classify up to isomorphism the models
of its theory T = Th({A}) (by the way, let us abbreviate for simplicity
Th({A}) by Th(A)).

Which is an intrinsic syntactical characterization of such a theory 77 Basi-
cally it is "complete” according to the following definition.

Definition 1.6.1 A (consistent) theory T of L is said to be complete if,
for every sentence o of L, either p €T or ~p € T.

In fact, it is easily observed on the ground of the definition of truth in first
order logic that, given a structure A in a language L, for every L-sentence ¢,
either ¢ is true in A or - is; equivalently, either ¢ € Th(A) or ~¢ € Th(A).
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On the other hand, every complete theory T can be represented in this way.
In fact, fix any model A of T. Clearly T C Th(A). Conversely, let ¢ be
a sentence of Th(A), then —¢ ¢ Th(A) and so ~¢ € T; as T is complete,
pel.

Notice that the same argument shows that, if T C T’ are consistent theories
and T is complete, then T = T".

Now notice what follows.

Remark 1.6.2 Every (consistent) theory T of L can be enlarged in at least
one way to a complete theory in L. In fact, it suffices to consider Th(A)
where A is any model of T. A complete theory extending 7T is called a
completion of T'.

So our classification project can be organized as follows.

e First, determine structures up to elementary equivalence, in other
words find all the completions of a given theory T}

e then, classify up to isomorphism the models of a complete 7.

‘We deal in this section with the former problem, hence with completions
and, definitively, with complete theories. Incomplete theories are easy to
meet.

Example 1.6.3 For instance, the theory of groups it is not complete (as
there are both abelian and nonabelian groups, and commutativity can be
written in a universal first order sentence). In the same way, the theory
of fields is not complete (why?). Also the theory of linear orders is not
complete (as there are both dense and non dense total orders, as well as
orders with or without a minimum or a maximum).

On the other hand, the previous remark pointing out that a complete T’
is the theory of any model of T seems to provide a great deal of complete
theories; but these examples are not satisfactory. In fact, as already said,
what we reasonably expect is to have complete theories T equipped with
an explicit list of basic axioms, ensuring that the sentences in T are just
the consequences of these axioms. Now, when we look at Th(A) for some
structure A (the field of complex numbers, or the ordered field of reals,
and so on), this list of axioms is lacking; indeed we could wish to obtain
such a basic axiomatization in the mentioned cases. A possible strategy to
solve these problems might be the following. Given A, prepare a tentative
explicit axiomatization and the corresponding theory 1'. Of course, A should



32 CHAPTER 1. STRUCTURES

be a model of T. At this point, check if T is complete, by some suitable
procedures. If yes, T = Th(A).

Unfortunately, checking completeness for a theory T as before is not sim-
ple. We mention here a celebrated sufficient (but non-necessary) condition,
founded on the notion of A-categoricity.

Theorem 1.6.4 (Vaught) Let T' be a theory of L. Suppose that every model
of T is infinite and T is A-categorical for some infinite cardinal \. Then T'
is complete.

Proof. Suppose towards a contradiction that 7" is not complete; let ¢ be a
sentence such that ¢ € T and ~¢ & T. As ¢ ¢ T, there exists a(n infinite)
model Ag of T such that Ag = —¢. In a similar way, there exists a(n infinite)
model A, of T such that A; | ¢. For every i < 1, put T; = Th(A;); then
T; O T, and T; has an infinite model. By the Lowenheim-Skolem theorem,
T; has a model B; of power A. Both By and By are models of 7', hence
they are isomorphic because T is A-categorical. However By # B; because

Bo = —, while By =, &

Here are some consequences of Vaught’s Theorem.
Corollary 1.6.5 Let L = (0. Then the theory I, of infinite sets is complete.

Proof. Clearly T has no finite models. Moreover two (infinite) sets in
the same power are isomorphic; in other words I, is A-categorical in any
A > Ng. Consequently I, is complete. & -

Corollary 1.6.6 The theory DLO~ of dense linear orders without end-
points is complete.

Proof. DLO~ has no finite models; this is easy to check, by using density
or the absence of endpoints. Moreover the famous theorem of Cantor on
dense linear orders recalled in 1.3 ensures that DLO™ is Ny-categorical:
every countable linear order without endpoints is isomorphic to the order of
rationals. Hence DLO™ is complete. &

Recall that both (Q, <) and (R, <) are models of DLO7; it follows that
DLO- = Th(Q, <) = Th(R, <).

Corollary 1.6.7 For every p = 0 or prime, the theory ACF, of alge-
braically closed fields of characteristic p is complete.
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Proof. An algebraically closed field K is always infinite; in fact, if ag, ..., a,
are distinct elements of K, the polynomial (z —ap)- ... (z—a,) + 1 in K[z]
has a root & in K; a cannot equal ag, ..., a,, and sois a new element. At this
point, in order to apply Vaught’s Theorem, we have to prove A-categoricity
for some infinite A. But this is just a consequence of Steinitz’s analysis of
algebraically closed fields. For, this analysis essentially implies (in our termi-
nology) that, fixed p = 0 or prime, the theory ACF, of algebraically closed
fields of characteristic p is A-categorical for every uncountable cardinal A (so
Vaught’s Theorem applies and yields completeness). Let us recall briefly
why (we will provide an alternative, detailed proof of the completeness of
ACEF, in Chapter 2). Any algebraically closed field in characteristic p can
be obtained as

K = Ko(5)
where Ko is the prime subfield of K (hence Ky is isomorphic to the rational
field if p = 0, or to the field with p elements if p is prime), S is a transcen-
dence basis of K (namely a maximal algebraically independent subset), and
~ denotes the algebraic closure in K. Furthermore the isomorphism type
of K is fully determined by the cardinality of S (the transcendence degree
of K). Accordingly, one can realize that AC'F}, has

e Nj pairwise non isomorphic countable models (correspondingly to the
transcendence degrees 0, 1, ..., Ro),

e for every uncountable cardinal A, exactly one isomorphism class of
models of power A, because all these models share the same transcen-
dence degree A.

Hence ACF, is A-categorical in every cardinal A > Ny, and consequently
complete. &

In particular, two algebraically closed fields Ky and Ko having the same
characteristic p but different transcendence degrees dy # d are elementarily
equivalent, but cannot be isomorphic. Hence, when K; and K5 are countable,
they are not even partially isomorphic.

Notice also that the field of complex numbers is a model of ACFy, and so
ACFy equals its theory: we find in this way an explicit list of axioms (that
of AC'Fp) for the theory of the complex field.

Let us propose a further application of Vaught’s Theorem to deduce com-
pleteness. Perhaps at this point someone may expect to meet RCF and
the theory of the real field in our list of examples. But we have to delay
this appointment. Indeed, RCF is complete (and hence equals the theory
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of the ordered field of reals), but RC'F is not A-categorical for any infinite
cardinal A. So a different approach is necessary: we shall follow this new
strategy in the next chapter. On the contrary, Vaught’s Theorem applies to
vectorspaces over a countable field. Let us see why.

Corollary 1.6.8 Let K be a countable field. Then the theory T of infinite
vectorspaces over K is complete.

Proof. Clearly T’ has no finite models. Moreover we know that two (infi-
nite) vectorspaces with the same dimension over K are isomorphic. Conse-
quently, for every cardinal A bigger than g, there is a unique isomorphism
class for all the K-vectorspace of power A (in fact, each of them has dimen-
sion A). In other words, 7" is A-categorical for every cardinal A > Ro. By
Vaught’s Theorem, T" is complete. &

On the contrary, «T' may not be categorical in ®y. In fact, when K is infinite,
K,K% ...,k (Ro) are countable K-vectorspaces with distinct dimensions, and
so cannot be isomorphic, hence they are not even partially isomorphic. So el-
ementary equivalence cannot imply partial isomorphism (and isomorphism).
The reader may check directly what happens when K is finite.

We conclude this section by introducing another notion related to complete-
ness. It will be used in Chapter 3 to show that RC'F is complete. Recall
that a complete theory T equals Th(A) for every model A, and hence a
theory T is complete if and only if any two models of T are elementarily
equivalent.

Definition 1.6.9 A theory T is model complete if every embedding of mod-
els of T is elementary.

It is easy to exhibit theories which are not model complete. For instance,
the previous examples 1.3.14 ensure that the theory of (N, <), as well as the
theory of fields, are not model complete. On the contrary, it is not simple to
give explicit examples of model complete theories. Chapter 3 will be devoted
to this point, and to discussing the relevance of this notion within Model
Theory.
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1.7 Definable sets

Formulas include equations, and Algebra aims at finding solutions of equa-
tions. More generally, given a language L, a formula (%) of L and a struc-
ture A of L, one could try to determine all the sequences @ in A for which
A | ¢(@). As we shall see in the next chapters, this is not just a minor,
collateral exercise; on the contrary, in treating this framework, we are mov-
ing to the core of modern model theory. So let us give the corresponding
definition.

Definition 1.7.1 Let A be a structure of L, n be a positive integer. A
subset D of A" is called definable in A if there is a formula p(7) of L(A)
such that D equals the set of the elements @ in A™ for which A = ¢(d@) (n
is the length of U, of course).

In this case one says that the L(A)-formula () defines D, and one writes
D = p(A").

The elements of A occurring as constants in the formula (%) are called a
sequence of parameters defining D.

Let us propose a simple example.

Consider a polynomial p(z1, z2) € R[z1, z2], and look at the algebraic curve
of the solutions of p(z1, z3) in R2. This is a definable set, because it is
formed by the elements in R? satisfying the formula p(v;, vs) = 0 (together
with the coefficients of p(zq, £2) -the parameters of the formula in R-).

A function f having domain C A™ and image C A® for some positive integer
s is called definable when its graph (hence the set of sequences (&, b) in A™+*
such that f(@) = b) is.

If X C A and the parameters Z in a formula defining D are in X, then D
is said to be X-definable. In particular D is §-definable if and only if there
exists a formula ¢(¥) in L such that D = ¢(A™) is the set of the sequences
of A™ satisfying ¢(?) in A.

For D C A”,

(i) D is definable if and only if D is A-definable;
(ii) if X CY C A and D is X-definable, then D is Y-definable, too;

(iii) D is definable if and only if there exists a finite subset X of A such that
D is X-definable ((<=) follows from (ii); in order to show (=), just let
X be the set of the parameters in a defining L(A)-formula ¢(7)).
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An element ¢ € A is X-definable if its singleton is. Of course, every a is
A-definable (by v = @). But, when a ¢ X, things are not so trivial.

Remark 1.7.2 Fix a structure A of L and a positive integer n.

1. Let X be a subset of A. The X-definable subset of A™ form a subal-
gebra of the Boolean algebra of all the subset of A™.

In other words, both A™ and @) are X-definable (by the formulas v; = vy
and —(vy = v1) respectively), and, if Dp and D; are two X-definable
subsets of A”, then even their union DgU Dy, their intersection DoN.D;
and the complement A" — Dy are X-definable (if ¢o(7) and ¢;(7) are
two L(X)-formulas defining Dy and D; respectively, just look at the

formulas ©o (%) V ¢1(7), ¢o(T) A ¢1(5), ~o(7)).

B, (X,.A) will denote below the Boolean algebra of the subsets of A™
X-definable in A.

2. Definable sets are closed also under projections, in the following sense.
Let D be a subset of A™ definable in A. Let 7w be the projection of
A onto some fixed i < n coordinates. Then 7(D) (a subset of A*) is
still definable. For instance, if the L(A)-formula ¢(¥) defines D, then
vy ... Jv, (V) defines the image of D by its projection onto the first
coordinate (of course, ¥ abridges here (v1, vo, ..., v,))-

3. Every finite subset of A" is definable.
In fact let D be a finite subset of A", and let d_é, e d; be its elements.

For every j < t, put d_; = (dj1, ..., djp). Then
\/ /\ v = djz
i<t 1<i<n

defines D in A. In particular, in a finite structure A every subset of
A"™ is definable; moreover, owing to 1, in any structure A even the
cofinite subsets of A™ are definable.

4. A is infinite, then there exist some subsets of A™ which are not defin-
able in A.

This follows from a simple cardinal counting argument. In fact, we
know that there are 2!4! distinct subsets of A", while the subsets of
A™ definable in A cannot exceed the L(A)-formulas defining them.
Consequently the definable subsets of A" are at most |A| (for a count-
able L, of course).
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An explicit example of an infinite structure with a non-definable subset
is the following. Let L = {), so the structures of L are just the non-
empty sets A. Take an infinite set A. We have seen that every finite
or cofinite subset of A is definable. We claim that no other subset of
A is definable. In fact, let D be a subset of 4 such that both D and
its complement A — D are infinite. Suppose towards a contradiction
that D is definable, and so D = ¢(A, 5) for a suitable L-formula
¢(v, W) and a sequence b of parameters from A. Take d € D, d’ €
A— D, d,d out of b. We can find a bijection f of A onto A (and
hence an automorphism of A) fixing b pointwise and mapping d in
d. Asd € D, A | ¢(d, 5), as isomorphisms preserve satisfiability,
A E o(d, l;), consequently d' € D -a contradiction-. In conclusion, D

is not definable.

Let us concentrate our attention on infinite structures from now on. In fact,
owing to Remark 1.7.2, 3, there is no point in exploring definability in the
finite case. First let us give some more examples of definable sets, suggesting
some intriguing connections between this part of Model Theory and other
branches of Mathematics.

Examples 1.7.3 1. (Definable sets and Complex Algebraic Ge-
ometry) Let L = {0, 1, +, -, —} be the language of fields. We have
seen at the beginning of this section that, over the real field, polyno-
mials determine definable sets. Let us investigate this example more
generally and closely. Accordingly consider an arbitrary field K and a
positive integer n. Algebraic Geometry deals with algebraic varieties
in K. These are the zero sets in K™ of finite systems of polynomials

0@(Z), ..., 4:(%) € K[].

Hence algebraic curves are examples of algebraic varieties. Moreover
every algebraic variety as before is definable in K, for instance by the
(quantifier free) formula

A (@) = 0.

i<t
So one may wonder how close and deep this connection between de-
finable sets in K and algebraic varieties in K is. Of course, we cannot
expect that any definable set is a variety (although this is certainly
true when K is finite). In fact, owing to Remark 1.7.2,1 before, ev-
ery finite Boolean combination of definable sets is also definable. But,
with respect to this point, algebraic varieties behave in a different way.
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e The union of two (and consequently of finitely many) algebraic
varieties in an algebraic variety. This is a simple exercise of Al-
gebra, essentially using the fact that, in a field &, the product of
two nonzero elements is different from 0.

e The intersection of two, or finitely many, or even infinitely many
algebraic varieties is still an algebraic variety. This is a trivial
exercise in the finite case, and a deep theorem in Algebra -known
as Hilbert’s Basis Theorem- otherwise.

Notice that these properties (together with the easy observation that
K™ and ) are algebraic varieties -for, they are the zero sets of the
zero polynomial, and of any nonzero constant polynomial in K[Z]
respectively-) show that the algebraic varieties of K™ are the closed
sets in a suitable topology of K" (the Zariski topology). However

e the complement of an algebraic variety of K™ is not necessarily
an algebraic variety of K”.

So there are definable sets of K™ which are not algebraic varieties.
Indeed Algebraic Geometry introduces the notion of constructible set
to define a finite Boolean combination of algebraic varieties of K".
Remark 1.7.2,1 before ensures that every constructible set is definable.

In certain fields K the converse is also true, and hence definable just
means constructible. For instance, this is what happens when K is an
algebraically closed field (and so, in particular, when K is the complex
field). This is not a trivial result, but a deep theorem of Tarski and
Chevalley, and will be discussed in the next Chapter.

. (Definable sets and Real Algebraic Geometry) Let L = {0, 1, +,

., — <} be our language for ordered fields. Fix an ordered field X, and
a positive integer n. Algebraic Geometry studies the sets of the ele-
ments of K™ satisfying disequations like ¢(Z) > 0 where ¢(&) € K[&],
and calls semialgebraic set any finite Boolean combination of them.
It is clear that every semialgebraic set is definable in K, and even by
a quantifier free formula (a Boolean combination of atomic formulas
q(¥) > 0). A theorem of Tarski and Seidenberg ensures that, when K
is a real closed ordered field (in particular when K is the ordered field
of reals), then the definable sets of K™ are exactly those semialgebraic.
So a close connection arises between Model Theory and Algebraic Ge-
ometry also in this framework. The Tarski and Seidenberg theorem
will be treated in detail in the next chapter.
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Notice also that the order relation > is definable in the real field R
even within the language of fields {0, 1, +, -, —}: in fact, it suffices to

recall that the nonnegative reals are exactly the squares, and hence to
define

vl > Vg

by the formula
Fw (v, — vy = w?).

Consequently every semialgebraic set D in R is definable in the real
field even within the language of fields, just by replacing any formula

q(v) 2 0
(with ¢(Z) € R[Z]) by the equivalent formula
Fw(q(v) = w?).
However, notice that the latter formula requires a quantifier.

3. (Definable sets and recursive sets) Now we consider the language
L = {+, -} and, in L, the structure (N, 4+, -). First notice that every
natural n is §-definable in (N, +, -). This can be easily shown by using
an induction argument on n; if n = 0 or n = 1, just take the formulas

"o =0" tvtuor=v, "uu=1":v -0 =0 A=vy =0")
respectively, while, for n > 1, n + 1 is (-definable by
"vp=n41" 320351 P20 =1" A2 = 0" Avy = 20+ 21).

Consequently in (N, +, -) definable sets just equal (-definable sets.

Definability in (N, +, -) is deeply related to recursion theory. Let us
see why. A basic aim in recursion theory is to provide a sharp definition
of the notion of algorithm. According to the Church and Turing thesis,

algorithm means Turing machine,

in the sense that the problems with a solving algorithm are just those
handled by a Turing machine. Actually the Church-Turing model of
computation dates back to the thirties, and, from the practical point
of view, is undoubtedly surpassed by the new advances in computer
science. However, as an abstract and theoretic proposal, it is still valid
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and commonly agreed, at least in any discrete setting. This is clearly
our framework when we are dealing with natural numbers. Inciden-
tally, recall that every discrete context can be easily translated into
the world of natural numbers, owing to the Gdédel coding procedures,
equipping effectively each element with its own natural label. So let’s
work with the structure (N, +, ). On the ground of the Church and
Turing thesis, one can define in a sharp way which are the subsets
D C N™ (with n a positive integer) admitting a decision algorithm,
namely a procedure running in finitely many steps and establishing,
for every @ € N™, if @ is in D or not. These sets D are called recur-
sive. A crucial result in Recursion Theory -indeed a key step within
the proof of Gddel First Incompleteness Theorem- ensures that every
recursive set is definable in (N, +, -). More generally, any recursively
enumerable D C N” is definable in (N, 4, -). Recall that recursive
enumerability is a weaker notion than recursiveness, and just requires
that there is some algorithm effectively listing the elements of the in-
volved set D. On the contrary, there do exist some subset of N™ which
are not recursively enumerable (and hence are not even recursive), but
are definable. These remarks witness that now definable sets are a very
complicated class, because they inherit the complexity of the class of
recursively enumerable sets with the corresponding intrinsic hierar-
chies, and possibly more. So, when dealing with (N, 4, -}, definable
sets are not so clean as in the complex, or in the real field.

. (Definable sets and decidable theories) We again work in the

language L = {+, -}, but this time we examine the structure (Z, +, ).
Identify natural numbers and nonnegative integers. Then N becomes
an P-definable subset of Z; in fact, a celebrated theorem of Lagrange
ensures that, among the integers, the nonnegative elements are just
the sums of 4 squares. Hence the formula

Fw; FweFwzIwy(v = w? 4 w3 + wi + w?)

defines N inside (Z, +, -). Also the sum and product operations in N
are -definable in (Z, +, -), because they just restrict to N the addition
and multiplication in Z. So we can conclude that the whole structure
(N, +, ) is ”@-definable” in (Z, +, -).

Now it is well known that the theory of (N, +, -) is not decidable, in
the sense that the set of the natural codes of the sentences true in
(N, +, -) is not recursive. In other words, no general algorithm can
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decide, for every sentence ¢ di L, if ¢ is true in (N, +, -) or not. On
the other hand, the previous observations let us effectively translate
every sentence ¢ of L in a sentence ¢’ of L such that

(N7 +; ) |: p = (Z7 +, ) ': 90/'

Consequently even the theory of (Z, +, ) is undecidable.

The method sketched here is often used to show undecidability for
theories interpreting as described other theories whose undecidability
is known, or also, specularly, to deduce decidability for the theories
that can be interpreted in the previous way in some other decidable
theory. Hence definability plays a crucial role also within the decision
problem for theories.

5. (Modules and pp-definable subgroups) Let R a (countable) ring
with identity. Consider the language Lrp = {0, +, —, r (r € R)} of
R-modules, and in Lg the class R — Mod of (left) R-modules. A
formula ¢(¥) of Lg is called a positive primitive formula (or also,
more synthetically, a pp-formula) if ¢(7) is of the form

(A ‘5= B - '0)

where A and B are matrices with coefficients in R and suitable sizes,
- denotes the usual row-by-column multiplication for matrices, and *
is the transpose operation. Equivalently, if one puts @ = (v, ..., vn),
W= (wi, ..., Wn), A= (rij):; and B = (s:4); 4, where j ranges from
1 to n, h from 1 to m, and 7 from 1 to some suitable positive integer
t, then ¢(%) can be written

Jw; ... 3w, /\ ( Z rijv; = Z SinWh).

1<i<t 1<j<n 1<h<m

Hence, in every R-module M, ¢o(M™) is the set of the sequences @ =
(a1, ..., a,) in M™ for which the linear system

A-'¢d=B-"w

has some solution in M™.

Let us examine some particular cases.
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o Let r € R, ¢p(v) : rv = 0. Then ¢(v) is a pp-formula (take an

empty W, or write ¢(v) in the equivalent form Jw(rv = Ow)). For
every R-module M,

pM)={a €M :ra=0}

is just the annihilator of r in M, hence a(n additive) subgroup
of M, and even a submodule of M when R is commutative, or
when, simplerly, r is in the centre of R.

Take again r € R, and now consider ¢(v) : Jw(v = rw). Then
©(v) is a pp-formula (for which A e B?). If M is an R-module,
then

p(M)=rM

is a subgroup of M, and even a submodule at least when R is
commutative, or, simplerly, when r is in the centre of R.

In general it is easy to check that, for every pp-formula ¢(%), ¢(M™) is
an additive subgroup of M"; on the other hand, ¢(M") is not always
a submodule, although this is certainly true when R is commutative,
as we saw in the previous examples. ¢(M?") is called a pp-definable
subgroup of M™. Every coset D of ¢(M™) in M™ is definable in M:

in fact, let @ be any element in D, then the formula ¢(7 — @) defines
the whole coset D.

A theorem of Baur and Monk ensures that, in every R-module M, any
definable sets is a finite Boolean combination of cosets of pp-definable
subgroups (see Chapter 2).

1.8 References

There exist several excellent handbooks providing the backgrounds of Math-
ematical Logic necessary in this chapter. Among them, let us mention once
again Shoenfield [153], but also Malitz [103] or Ebbinghaus-Flum-Thomas
[37]. The key reference for basic Model Theory is [18]. We also refer to
Devlin [31] for Set Theory, to Odifreddi [121] for Recursion Theory and to
Jacobson [65] for Algebra. [173] is the historical source quoted at the end of
1.2. Ax’s analysis of pseudofinite fields is given in [3]



Chapter 2

Quantifier Elimination

2.1 Elimination sets

Let L be a language. It may happen that two different L-formulas ¢(7)
and ¢'(¥) admit the same meaning in a structure A of L, or in a class
of L-structures, for instance among the models of a given L-theory T.
For example, in the ordered field of reals (and even in every real closed
field), the formula ¢(v) : v > 0 (being nonnegative) is the same thing as
¢'(v) + Jw(v = w?) (being a square). Similarly, in the ordered domain
of integers, ¢(v) : v > 0 (being positive) has the same interpretation as
¢'(v) @ JwiTFweTwsIws (v = oy <jcq w?) (being the sum of four squares):
this is a celebrated theorem of Lagrange, already mentioned in the last chap-
ter.

So, fix a consistent, possibly incomplete theory T in a countable L. We shall
say that two L-formulas ¢(%) and ¢'(¥) are equivalent with respect to T,
and we shall write ¢(7) ~7 ¢'(7), when

Vi(p(¥) < ¢'(0)) € T,

equivalently when

P(A") = ¢'(A")
for all models A of T'.
The notion of elimination set arises quite naturally at this point. An elimi-
nation set for 7' is a set F' of L-formulas such that every L-formula ¢(?) is
T-equivalent to a suitable Boolean combination of formulas of F.

Clearly the set of all the L-formulas is an elimination set for T. But, of
course, this is not an interesting case, and we reasonably expect simpler sets

43
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F. In particular, when the set of atomic formulas in L is an elimination set
for T, we say that T has the quantifier elimination in L. In detail

Definition 2.1.1 Let T be a theory in a language L. T has the elimination
of quantifiers (g.e.) in L if and only if every formula ¢ (V) of L is equivalent
in T to a quantifier free L-formula ¢'(0) (so to a finite Boolean combination
of atomic formulas).

One easily realizes that every T gets the elimination of quantifiers in a
suitable language extending L. In fact, put L = Lo, T = Tp, and enlarge Lo
to a language Ly containing an n-ary relation symbol R, for every formula
() of Lo (n is the length of ¥, of course); then add the following sentences
to TO

Vi(i(5) ¢ Ry(®))

for every ¢(7), and get a new theory Ti; it is clear that the atomic formulas
of L; form an elimination set in 7} for the formulas in Lo. By repeating this
procedure countably many times, one eventually defines a language L' O L
and a theory 7" of L’ ”naturally” extending T and having the elimination
of quantifiers in L'.

Unfortunately this procedure has a quite artificial and abstract flavour. In-
deed, what we would like to obtain, given a theory T in a language L, is
showing that T has the quantifier elimination directly in L or, otherwise,
determining a smallest extension L' D L, possibly suggested by the algebraic
analysis of the models of T', where T' (or, more exactly, its natural extension
to L') has the elimination of quantifiers, or also a reasonably simple elimi-
nation set of formulas, in L’. In fact, there are good reasons to believe that
such a language L' is, in some some, "the” proper language of T'.

Which are the main advantages of an elimination set, in particular of quan-
tifier elimination? They concern several applications.

1. The main one (at least from a historical point of view) is decidability.
Actually the first and most celebrated quantifier elimination results
are related to the decision theme. Let us explain why. Recall that a
theory T is decidable if there is an algorithm checking in finitely many
steps, for every sentence « in the language L of T, whether v is in T
or not. Now suppose that F is an elimination set for 7" and that the
following are available:

e an effective procedure translating any L-sentence into a T-equiv-
alent Boolean combination of sentences in F (or even an effective
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reduction of any L-formula into a T-equivalent Boolean combi-
nation of formulas in F);

e an algorithm to decide, for every Boolean combination « of sen-
tences of F', whether « is or not in 7.

Then, clearly, T is decidable, and actually we have got a decision
algorithm (by successively applying the previous two procedures).

. Another noteworthy application of quantifier elimination concerns de-

finability. In fact, if F is an elimination set for 7', then the definable
sets of a model A of T reduce to

(A", T)

where ¢(7, W) is a finite Boolean combination of formulas of F' and
Z € A; in particular, if T has the quantifier elimination in L, then the
definable sets of A are just the ones of the form

@(A", T)

where (7, @) is a quantifier free formula and Z in A.

. A third application regards the classification of completions of T'. Re-

call that T is possibly incomplete; but we know that T has some
(non-unique!) complete extension in L. So we are led to consider the
problem of finding all the complete extensions of T'in L, in other words
classifying the isomorphism classes of models of T' up to elementary
equivalence. Now, if A and B are two models and A is not elementarily
equivalent to B, then there is some sentence ¢ in L such that A = ¢
and B | —p. As F is an elimination set for T in L, we can assume
that ¢ is a Boolean combination of sentences in F. Indeed, one easily
realizes that one can choose ¢ directly in F.

For instance, we will see in this chapter that the theory AC'F of
algebraically closed fields has the quantifier elimination in L = {+, -,

—,0,1}. Consequently the classification of algebraically closed fields
up to elementary equivalence depends on the quantifier free sentences
in L, which are of the form m = n, where m and n are integers
(m abbreviates in the previous formula the addition of m summands
equal to 1 if m > 1, and —(—m) if m < —1; similarly for n). This
implies that the complete extensions of AC'F are fully determined by
the characteristic of their models, and hence coincide with the theories
ACF, where p is 0, or a prime.
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4. Finally, let us deal with model completeness. Assume that T has quan-
tifier elimination in L. We claim that, in this case, every embedding

between models of T is elementary, in other words 7' is model com-
plete. In fact, let A and B be models of T, f be an embedding of A

—

into B. Given a formula ¢(?) in L, let ¢'(¥) a quantifier free formula
equivalent to ¢(?¥) in L. Take @ in A. As f is an embedding,

AEV@ & BE(f(a).
As V5(p(7) & ¢(7)) €T,

AEp(@ < BEo(f(a@).

Hence f is elementary.

This chapter is devoted to illustrating several key examples of quantifier
elimination, starting from the earliest (Langford’s results on discrete or
dense linear orders) to include those perhaps most classical and celebrated
(Tarski’s elimination procedures for the real and the complex fields). We
shall treat other eliminations sets as well (most notably, Baur-Monk’s pp-
elimination theorem for modules over a given ring).

These examples will lead us to introduce two basic notions in Model Theory,
strong minimality and o-minimality respectively. We shall discuss them at
the end of the chapter. The final section will be devoted to some computa-
tional aspects of the quantifier elimination procedures.

It should be underlined that the interest in quantifier elimination arose sev-
eral years before the official birth of Model Theory. In fact it was at the
beginning of the twentieth century that Lowenheim and, later, Skolem pro-
vided some procedures translating formulas into a simpler form avoiding
quantifiers (they are, more or less, the artificial method we sketched at the
beginning of this section). Moreover, the earliest explicit examples of quanti-
fier elimination in some specific algebraic structures treat discrete and dense
linear orders and date back to the twenties (they were obtained by Langford
in 1927). In these results, as well as in Tarski’s theorems, the major em-
phasis seems to be on decidability: the elimination of quantifiers is a step
towards decidability, just as described before. But over the years this em-
phasis on decidability reduced and was replaced by an increasing interest in
definability. Actually, definability is the main theme where Model Theory
and quantifier elimination meet.
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2.2 Discrete linear orders

We begin here our analysis of quantifier eliminable theories. First we treat
infinite linear orders. Accordingly our basic language is L = {<}. More
precisely we deal with:

e theories of discrete linear orders (in this section),
e theories of dense linear orders (in the next one).

As already said, the quantifier elimination results in these cases were firstly
shown by Langford in 1927; Tarski pursued the analysis to get decidability
and to classify the complete theories of infinite discrete and dense total
orders.

Recall that a(n infinite) linear order A = (4, <) is discrete if and only if

(i) Ya € A, if there is some a’ € A such that ¢ < @/, then there exists a
least b € A for which @ < b (b is called the successor of @ and is denoted

s(a));

(ii) Ya € A, if there is some o’ € A such that ¢’ < a, then there exists
a maximal b € A for which b < a (b is called the predecessor of «;
obviously a = s(b)).

Accordingly we can distinguish 4 classes of (infinite) discrete linear orders:

1. the class of discrete linear orders with a least, but no last element (like
(N, <));

2. the class of discrete linear orders with a last, but no least element (for
instance, N with respect to the relation reversing its usual order);

3. the class of (infinite) discrete linear orders with both a least and a last
element (like the disjoint union of two discrete linear orders (A4, <),
(B, <), the former in 1, the latter in 2, with @ < b for all @ € A and
b € B);

4. the class of discrete linear orders without endpoints (like (Z, <)).

Each of these classes is elementary. Moreover one can show that its theory
has the elimination of quantifiers in a suitable language extending L, and is
complete even in L. Here we limit ourselves to prove, for simplicity, these
results in the case 1, in other words for discrete linear orders with a least
but no last element.
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Accordingly consider the language L' = {<,0, s} where 0 is a constant (to
be interpreted in the least element) and s is a 1-ary operation symbol (to
be interpreted in the function mapping any element into its successor).

It is easy to write down a first order set of axioms for our class in L’. Let
dLO% denote the corresponding theory. By the way, notice that suitable
formulas in the restricted language L define the minimal element and the
successor function in every model of dLO*. This implies that the axioms of
dLO can be rewritten also in L, at the cost of some more complications (and
quantifiers). For instance, expressing the existence of a minimal element

requires the L-sentence
JwVv(w < v)

instead of
Vo0 < v).

But we momentarily prefer to treat dLO?* in L’. Observe that:
e (N, <,0,s)is a model of dLO;

e if Ais another model of dLO™, then A contains a substructure ({s"(04) :
n € N}, <,04,s4) isomorphic to a (N, <,0,s), and moreover some
further copies of (Z, <, s) (as 04 is the only element without any pre-
decessor).

Theorem 2.2.1 dLOt has the elimination of quantifiers in L.

Proof. Take a formula ¢(7) in our language L’; we look for an equivalent
formula ¢'(¥) without quantifiers.
Our first step is to show that we can assume that ¢(%) is of the form

Jw /\ o; (U, w)

1 <r

where each o;(¥, w) is an atomic formula, or its negation, and w actually
occurs in ¢;(¥, w) for every ¢ < r.

We wish to underline that this step is quite general, and does not depend
on our particular language L’. Let us see why. First of all, we can tacitly
assume that ¢(%) is of the form

Q1w ... Qnwna(T, W)

where the );’s (1 < j < m) denote quantifiers ¥ or 3, o(¥, W) is a quantifier
free formula, and even a disjunction of conjunctions of atomic formulas and
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negations (and @ abridges (wy, ..., wn), of course). The strategy at this
point is first to eliminate @,,, and then to repeat the procedure and remove
the quantifier string completely. We recall that V is equivalent to =3— and
consequently agree that it is enough to deal with the case when Q,, is 3,
namely with

Jw a7, w)

where « is a disjunction of conjunctions of atomic formulas or negations, w =
w,, and 7 is possibly enlarged to include wy, ..., wy,—1. As 3 is distributive
with respect to V, namely Jw(a’ V @”) is equivalent to (Jwa’) vV (Fwa”),
there is no loss of generality for our purposes in assuming that o is just a
conjunction of atomic formulas or negations. In conclusion we are dealing
with
Jw /\ o; (T, w)
i<r

where each «;(¥,w) is an atomic formula, or its negation. We can also
assume that w actually occurs in «a;(7,w) for every ¢ < r; otherwise let
j < r deny this condition and notice that our formula

w N\ oi(T, w)

1<r

is equivalent to
a;(0) A Jw /\ a; (U, w);
i
at this point it suffices to eliminate the quantifier 3 in the latter part of the
formula,
Jw N i (7, w).
i#j
This completes our preliminary step. As already said, this does not depend
on our particular framework.
Now let us work with our formula

Jw A 0i(7, w)
i<r
and our language L'. We wonder which is the form of any ;. A look at L'
shows that a; is t = ¢/, or t < ¥/, or the negation of one of these formulas,
where t and t' are terms in 0, w, ¥ (and w actually occurs in t or ). Recall
that —=(¢t < t') means ¢ > ¢, and so on. Deduce that «; is, with no loss of
generality, either ¢ = ¢’ or ¢ > ¢/, with ¢ and t' as before. Notice that ¢ and
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t' are of the form s?(u) where p is a nonnegative integer and u ranges over
0, w, ¥. Now recall that s is injective and deduce that the formula under
exam ensures that there is a solution w for a finite set of conditions saying
that w or a successor s?(w) (g a nonnegative integer) is equal, or bigger, or
smaller than a term s?(u) where p is, again, a nonnegative integer and u
ranges over w, 0, U@ as s is injective, we can assume that, in each of these
equations and inequations, s occurs only in one side (on the left, or on the
right). Our aim is to translate this formula into an equivalent one avoiding
w and simply stating quantifier free conditions on ¥ (and 0).

To obtain this, proceed as follows. Trivialities like w = w or w < s?(w) for
a positive p can be ignored and deleted (they can be preliminarily listed and
hence are easily recognized); if nothing else occurs, then replace the whole
formula by 0 = 0. On the contrary, when meeting a condition that cannot
be satisfied by any w, like w = s”(w), or 0 = sP(w) for a positive p (also
these conditions can be preliminarily listed), then replace our formula with
=(0 = 0) (or with —(v; = v;) if you like and ¥ is not empty).

Otherwise, as soon as you meet one equation like w = s”(v;), delete w and
3, and replace w with s?(v;) throughout our formula. Proceed in the same
way if an equation w = sP(0) occurs. Similarly, when meeting a condition
s?(w) = v;, consider any further occurrence of w in the formula and, again
using the injectivity of s, represent it as st (w) for a suitable nonnegative
integer ¢’ > ¢; finally delete w and J and replace each occurrence sq’(w) by
5979 (v;).

At last, assume that only disequations occur. Again using the injectivity
of s, we can suppose that all of them concern the same term s?(w) in w.
So our formula states that s?(w) is smaller that certain terms fo, ..., t
in 0 and ¥, and larger that some other terms ¢4y, ..., tx. We obtain an
equivalent formula avoiding w and its quantifier in the following way. List
(in a suitable disjunction) all the possible orderings of to, ..., t; in < ac-
cording to which o, ..., ¢, precede tpy1, ..., tx; for every ordering, let t,
t' denote respectively the greatest element among ¢, ..., t;, and the least
among tx41, ..., tk; add s(t) < ¢’ (in order to provide s?(w) with suitable
room).

This concludes the elimination procedure. &

Corollary 2.2.2 dLO™ is model complete (in L') and complete (both in L'
and L).

Proof.  Clearly dLO™ is model complete in L’. Moreover (N, <,0,s) =
dLO*, and (N, <, 0, s) is embeddable in every model of dLOt. As dLO% is
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model complete, all the corresponding embeddings are elementary. Accord-
ingly all the models of dLO™ are elementarily equivalent to (N, <, 0, s) and
hence to each other. This shows that dLO? is complete in L’. Now recall
that both the minimal element and the successor function (so the interpre-
tations of the symbols in L’ — L) are (-definable by L-formulas in the models
of dLOt. Then it is an easy exercise to deduce that dLO? is complete in
L,too. &

Corollary 2.2.3 dLOY is decidable (in L' and in L).

Proof. Reduce any sentence of L’ into an equivalent quantifier free state-
ment. This is a Boolean combination of formulas s™(0) > s”(0) where m
and n are non-negative integers, and dLO™ can easily check its membership.
This procedure works even for L-sentences. &

Corollary 2.2.4 Let A |= dLO". The subsets of A definable in A (in L or
in L') are just the finite unions of (open or closed) intervals in A (possibly
having 400 as a right endpoint).

Proof. Let ¢(v, w) be a L'-formula. As dLO™ has the elimination of quanti-
fiers in L', we can assume thant ¢(v, @) is quantifier free; owing to Theorem
2.2.1 (and its proof), for every @ in A, ¢(A, @) is a union of intersections of
intervals, and hence a union of intervals. &

This accomplishes our analysis of discrete linear orders with a last but no
least elements. How to deal with the other three cases of infinite discrete
linear orders listed before? They can be handled in a similar way to get
quantifier elimination and consequently completeness. In particular it turns
out that the four cases exhaust all the possible completions of the theory
of infinite discrete linear orders; in other words, these completions are fully
characterized by saying if the corresponding models admit or lack a least
and a greatest element.

Actually the case without endpoints deserves some more comments. In
fact, in this framework, the enlarged language L’ needs no natural ”con-
stant” symbol (just because endpoints are lacking), and takes the only addi-
tional operation symbol s. Accordingly, properly speaking, the elimination
of quantifiers fails in this extended language, because we have no constant to
build atomic sentences. For instance the (true) sentence Jw(w = w) cannot
be translated into an equivalent quantifier free sentence; the same happens
for the (false) sentence Jw(s(w) = w). So the right statement here is as
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follows: an elimination set for the theory of discrete linear orders without
endpoints is the set of atomic formulas plus a unique sentence (such as ”there
is no least element”, or ”there is no last element”). We do not discuss the
proof here. In fact, we shall treat this case in detail when considering dense
linear orders in the next section.

Finally, notice that decidability can be shown (in L) in the 4 possible cases.
Consequently the (incomplete) theory dLO of infinite discrete linear orders
is decidable, too; in fact, a sentence ¢ of L belongs to dLO if and only if it
is in each of its 4 completions.

2.3 Dense linear orders

Now we deal with dense linear orders. The plan here is exactly the same
as in the discrete case. We use the language L = {<} and we distinguish 4
possible cases:

1. there is a least element, but no last element (just as among non-
negative rationals with respect to the usual order);

2. thereis alast element, but no least element (now non-positive rationals
provide an example);

3. there are both a least element and a last element (look at the rationals,
or even at the reals, in the closed interval [0, 1]);

4. there are no endpoints (this is the case of (Q, <)).

In 1, 2, 3 one shows elimination of quantifiers in a language with one or
two additional constants to be intepreted into the endpoints; 4 deserves a
more specific treatment, because quantifier free formulas need an auxiliary
single L-sentence to form an elimination set (even in L): we provide full
details below. In all these cases it is easy to deduce completeness in L.
This implies that these 4 classes exhaust all the possible completions of the
theory of dense linear orders.

As already said, here we limit our analysis to dense linear orders without
endpoints. We just met their theory in Chapter 1; we called it DLO™ and we
observed that it is Ng-categorical, hence complete. We treat now quantifier
elimination (in L), and in this way we provide an alternative and detailed
proof of its completeness.

Theorem 2.3.1 The quantifier free formulas of L together with a single
sentence of DLO™ (such as Jv(v = v)) are an elimination set of DLO™.
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Proof. We follow the same approach as in the discrete case. But now the
successor symbol does not make sense, our language is smaller and hence
our setting is simpler: L-terms are just variables (no constant arises because
there are no endpoints). Accordingly what we have to do is to eliminate the
quantifier in a formula

Fw a(v, w)

where (7, w) is a conjunction of conditions saying that w is equal, or
smaller, or larger than some v in ¥. To obtain this, proceed as follows. Again
ignore trivialities like w = w (they can be preliminarily listed and easily rec-
ognized); if nothing else occurs, just replace our formula with Jv(v = v).
On the contrary, when meeting a condition that cannot be satisfied by any
w, like w < w (also these negative statements can be preliminarily listed),
replace our formula with =3v(v = v). Otherwise, as soon as you meet one
equation w = wv;, delete w and 3, and replace w with v; throughout our
formula. At last, if only disequations occur and hence our formula states
that w is smaller than certain variables (vy, ..., v, with no loss of general-
ity) and larger that others (vp41, ..., vk), then get the required quantifier
free formula in the following way. List (in a suitable disjunction) all the
possible orderings of vy, ..., v; in < according to which vy, ..., vy precede
Vhi1, .- ., U; for every ordering, let v, v’ denote respectively the maximal
element among vy, ..., vy and the least among vp41, ..., vk; v < v’ and the
density assumption are sufficient to ensure that an intermediate w exists.
When & = 0 or h = k, one uses the lack of endpoints.

This concludes the elimination procedure. &

Corollary 2.3.2 DLO™ is model complete and complete.

Proof. Model completeness is a straightforward consequence. Completeness
can be deduced as follows, using model completeness. First notice that any
two dense linear orders with no endpoints (4, <) and (B, <) embed in a
common extension (for instance, their sum (A + B, <), where A4 B is the
disjoint union of A and B, < enlarges the orderings in A and B and, in
addition, satisfies a < b for every choice of @ € A and b € B). As DLO™
is model complete, each of these embeddings is elementary, in particular
(A, <) and (B, <) are elementarily equivalent to their sum, and hence to
each other. &

As already recalled, completeness was also observed in the previous chapter
via No-categoricity and the Vaught criterion. By the way, notice that the
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Vaught Theorem provides a completeness proof even when endpoints arise.
In fact, also the remaining classes of dense linear orders (with least and/or
last element) have an Rg-categorical theory.

The decidability of DLO™ can be easily shown. Indeed, by proceeding as
in the discrete case, one sees that even the theory of arbitrary dense orders
(with or without endpoints) is decidable.

Now let us deal with definability.

Corollary 2.3.3 Let A = DLO~. The subsets of A definable in A are
just the finite unions of (open or closed) intervals, possibly with infinite
endpoints.

Proof. Proceed as for dLOT. &

2.4 Algebraically closed fields (and Tarski)

Tarski obtained his celebrated quantifier elimination procedures for the com-
plex field and the ordered field of reals in the thirties. Owing to the stop due
to the World War, he published his results only in 1948. We consider here
the complex case, and we delay the real one to the next section. We should
underline that Tarski dealt with theories of single structures (the complex
field, the ordered field of reals) rather than on axiomatizable classes (ACF,
RCF). But a careful analysis of the proofs singles out which kind of alge-
braic conditions are necessary to ensure the quantifier elimination result: so
one realizes that what makes the machinery work is just being algebraically
closed in the complex case, and the intermediate value property for polyno-
mials in the real case. This is a crucial result, specially towards the aim of
finding a nice axiomatization for the theory of the complex field, or of the
ordered field of reals.

As promised, here we consider the complex case, but we prefer an approach
dealing with the whole class of algebraically closed fields.

Theorem 2.4.1 (Tarski) The theory ACF of algebraically closed fields has
the elimination of quantifiers in the language L = {+, -, —, 0, 1}.

Proof. Take a formula (%) of L, we are looking for an equivalent quantifier
free formula ¢'(¥). As before, we can limit our analysis to the case when
@(?) is of the form

Jw o(V, w)
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where a(?7, w) is a finite conjunction of atomic formulas and negations, all
containing w. In our language, atomic formulas are just equalities of terms,
hence equations. Using —, one can express each of them as

where p(7, z) is a polynomial with integer coefficients. Accordingly ¢(7) is

/\p,vw —0/\/\ =(g; (0, w) = 0))

i<k i<h

where the p;’s and the g¢;’s are polynomials with integer coefficients, all
having a positive degree, n; and m; respectively, in z, hence with respect to
w.

Basic field theory tells us that a sequence of elements in a field excludes 0
if and only if its product is not 0. Accordingly, we can assume that at most
one inequation occurs in ¢(7, w), say

where ¢(#, ¢) is the product of the polynomials ¢;(#, z) when j < h; let m
denote the degree in z of ¢(¥, ).

At this point one might wonder whether we can reduce the number of equa-
tions in our formula ¢(7, w) to get at most a single equation. This is true,
and can be shown by using again pure field theory (so without appealing to
algebraic closure), but requires some more subtlety. The idea is that, for a
given field K and a sequence bin K , the common roots of the polynomials
pi(l_;, ) are just the roots of their greatest common divisor, and that there is
a quantifier free formula in ¥, defining the coefficients (in z) of this greatest
common divisor, and independent of K and b. The former claim is clear.
Let us explain the details of the latter.

Consider p;(, z) for i < k. For every ¢, write p;(¥, ) as a polynomial in z
with coefficients in Z[]

= pir(§a".

r<n;

Take two of these polynomials, for instance py and p;, and suppose for
simplicity ng > ny. We claim that there is quantifier free formula in ¢
yielding, whenever p; (¥, z) is not the null polynomial (in ), the coefficients
in z of the quotient and the remainder of the division of po (¥, z) by p1(7, ).
To get this formula, just follow the usual division procedure for polynomials.



56 CHAPTER 2. QUANTIFIER ELIMINATION

This is a tedious but straightforward exercise. For instance, the first step is
to write that either

P1,ny (6) =0

or the coefficients of po(¥, ) and p1 (¥, ) satisfy
P11, () po(T, @) = Po, e (T)p1 (T, @)z ™™ + P(5, z),

where P(7, z) is a polynomial of degree < ng in @, and, in the latter case,
the required quotient admits

20,15 (9) (P15, (7)) 1m0 ™™
as a coefficient of maximal degree.
At this point, recall the Euclidean algorithm of repeated divisions, yielding
the greatest common divisor (in z) of our polynomials p;(¥, ) (¢ < k) as the
last nonzero remainder in a finite sequence of successive divisions. Again, a
suitable quantifier free formula in ¢ determines the coefficients in z of our
greatest common divisor, whenever the p;(7, z)’s (¢ < k) are not all zero.
In conclusion, we can assume that our formula (¥, w) has one of the fol-
lowing three forms:

1. Jw(p(d, w) = 0),
2. w—(q(v, w) = 0),
3. El’w(p(’[;, w) =0A _'(q(ﬁ, w) = 0))

where p and ¢ are as before.

First consider 1. In any field, 1 is equivalent to say that, if ¢ annihilates
all the coefficients of p(7, z) in = of positive degree in z, then ¥ assigns the
value 0 also to the term of degree 0 in z; this can be written as a suitable
quantifier free formula in .

Now consider 2. In any infinite field, 2 is equivalent to say that ¢ does not
annihilate the coefficients of the polynomial p(y, ) in z. Again, the latter
statement can be expressed by a quantifier free formula in .

Finally let us deal with 3. We claim that, in any algebraically closed field,
3 is equivalent to the statement

(%) p(¥, z) does not divide ¢(¥, z)";

recall that = is the degree of p(#, z) with respect to z, and notice that (x) can
be expressed as a quantifier free formula in ¥ (just use the previous remarks
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about divisibility, and write that the remainder of the division in (x) is not
0). The direction from left to right is true in every field K: if, for a given
sequence bin K, the annihilator of p(b _@) is not included in the annihilator
of ¢(b, z), then p(b z) cannot divide ¢(b, z) and | (¢ (b, z))™. Conversely, take
K and b as before; assume that every root of p(b, ) annihilates q(b ), too;
for K algebraically closed, this implies that every linear factor of p(b a:)
divides q(b, z) and hence that p(b, z) divides ¢(b, z)™.

This accomplishes our proof. &

Now let us comment this quantifier elimination result, and propose some
noteworthy consequences. First of all, we want to emphasize that the quan-
tifier elimination property characterizes the algebraically closed fields among
infinite fields. In fact, it is a profound result of Macintyre, McKenna e Van
den Dries that an infinite field whose theory eliminates the quantifiers in the
language L = {+, —, -, 0, 1} must be algebraically closed.

An obvious consequence of quantifier elimination is the following.

Corollary 2.4.2 ACF is model complete.

Clearly ACF is not complete. In fact, for every prime p, the sentence p = 0
is true in every algebraically closed field of characteristic p and false in
every algebraically closed field of characteristic # p. However, as we already
showed in Chapter 1,

Corollary 2.4.3 For every p = 0 or prime, the theory ACF), is complete.

Proof. In Chapter 1 we provided a proof founded on Vaught’s Theorem.
An alternative approach, using quantifier elimination (indeed model com-
pleteness), is the following. Fix p. There is a minimal algebraically closed
field K, of characteristic p: this is the algebraic closure of the prime subfield.
Kp is embeddable in every algebraically closed field of the same character-
istic. Owing to the model completeness of ACF,, all these embedding are
elementary. In particular, all the algebraically closed fields of characteristic
p are elementarily equivalent to Kp), and consequently to each other. &

As we already observed in section 2.1, the theories AC'F, exhaust all the
possible completions of ACF in L when p ranges over the primes and 0
{furthermore, each of them has the quantifier elimination in L, just because
it extends AC'F).

An application of the Compactness Theorem lets us say even more. In fact,
we have seen that the theory of the complex field is just AC Fp, and so is ax-
iomatized by AC'F' and, in addition, by the infinitely many sentences stating
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—(p = 0) for every prime p. Let o be any sentence in ACFy. Compactess
tells us that o is a consequence of AC'F and finitely many sentences con-
cerning the characteristic. Hence o is true in every algebraically closed field
of prime characteristic p for all but finitely many p’s. So we have shown the
following result.

Theorem 2.4.4 Let o be a sentence of the language L. o is true in some
(equivalently every) algebraically closed field of characteristic 0 if and only
if o is true in some (equivalently every) field of characteristic p for all but
finitely many primes p.

Hence what is true in the complex field (and in any algebraically closed
field of characteristic 0) is satisfied by the algebraically closed fields of char-
acteristic p for almost all primes p. We’ll see later in this section a nice
application of this model theoretic transfer principle to Algebra.

Now let us deal briefly with decision problems. As already said, decidability
follows in a very simple way from quantifier elimination.

Corollary 2.4.5 The theory ACF of algebraically closed fields is decidable.

Proof. 1t suffices to decide if a given quantifier free sentence o of L is in
ACF or not. With no loss of generality, ¢ is a conjunction of disjunctions
of atomic sentences and negations. As a conjunction is in a theory if and
only if each conjunct is, we can write o (up to equivalence, using —) as

(\/ i = 0) v (\/ (= 0).

J

where the m;’s and the n;’s are positive integers. So our sentence just says
that the characteristic divides []; m; or is coprime with some n; (or suitable
variants when no equation, or inequation arises). This can be easily checked
in the fixed framework. &

We shall add some more comments about the decidability of ACF in the
last section of this chapter.

Now let us deal with definability. We have seen in Chapter 1 that, in any
field K, constructible sets (in particular algebraic varieties) are definable.
Theorem 2.4.1 implies that, within algebraically closed fields, the converse
is also true.

Corollary 2.4.6 In an algebraically closed field IC, for every positive integer
n, a subset of K™ is definable if and only if is constructible.
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Proof. It suffices to show that, if X C K" is definable, then X is con-
structible. Let (¥, @) be a formula of L and @ be a sequence in K satisfying

X = (K", a)

where n is the length of ¥. Using quantifier elimination, we can replace
(¥, W) by an equivalent formula which excludes quantifiers and conse-
quently is a finite Boolean combination of equations

where ¢(Z,7) is a polynomial with coefficients in the subring generated by
1. Hence X = ¢(K",d) is the Boolean combination of the algebraic varieties
defined by the formulas

q(¥,@) =0,

and so is a constructible set. &

Notice that in every field K the subsets of K™ definable by quantifier free
formulas are constructible. Quantifier elimination ensures that, when K is
algebraically closed, no further definable set arises.

The following proposition underlines the geometrical content of Tarski’s The-
orem.

Theorem 2.4.7 (Chevalley) Let K be an algebraically closed field, n be a
positive integer, X C K"t1, X' be the projection of X onto the first n
coordinates. If X 1is constructible, then X' is also constructible.

Proof. If ¢(7, w) defines X, then Jwp (7, w) defines X'. &

Now let us consider 1-ary definable sets in an algebraically closed field K.
In this restricted framework, the following proposition holds.

Corollary 2.4.8 Let K be an algebraically closed field, X C K be definable
in K. Then X is either finite or cofinite.

Proof. For every ¢(z,d) € K(z], ¢(v,d) = 0 defines K if ¢(z, @) is zero, and
a finite set otherwise. A finite Boolean combination of finite or cofinite sets
is still finite or cofinite. &

Actually we can say even more. Indeed, in any (possibly non-algebraically
closed) field K, a subset X of K definable by a quantifier free formula is either
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finite or cofinite. Quantifier elimination extends this property to arbitrary
1-ary subsets when K is algebraically closed.

To conclude this section, we want to propose a nice application of Model
Theory to Algebra within algebraically closed fields. This is the so called
injectivity-implies-surjectivity Theorem, due to J. Ax [3]. Compactness, and
the consequent remark that the sentences true in the complex field are just
those satisfied by the algebraically closed fields of characteristic p for almost
all primes p, are used to deduce

Theorem 2.4.9 Any injective morphism f from an algebraic variety V over
the complex field into V itself is surjective.

Proof. We already noticed that any algebraic variety is a definable set, and
is even defined by a finite conjunction of equations (possibly with parame-
ters). In particular let the formula

N pi(@, @) =0

J<t

give V in this way (the p,’s are polynomials with integer coeflicients, and
@ denotes a sequence of complex parameters). Analogously, a morphism
between varieties is a map defined by a finite conjunction of equations.
Accordingly let

N (@, @, d) =0

1<s
yield f (the ¢;’s are again polynomials with integer coefficients; we can freely
use here the same parameters @ as before; if necessary, we extend @ to include
new complex numbers). At this point it is an easy exercise to write a first
order sentence in the language L (without parameters) saying:

for all Z, if N\;<s ¢i(0, W, 2) = 0 defines a morphism from the
variety given by A<, p;(¥, Z) = 0 into itself, and this morphism
is injective, then it is also surjective.

Let n denote, as usual, the length of ¥. What we have to show is that
the complex field is a model of all these sentences when the p;’s and the ¢;’s
range over the polynomials with integer coefficients, equivalently that AC'Fy
includes these statements. Using compactness, we can alternatively check
what happens in AC'F, when p is a prime, and so if the previous sentences
are true in every algebraically closed field of characteristic p; as ACF}, is
complete, it suffices to look at the behaviour of a single model of ACF,,
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for instance of the algebraic closure F—p of the field F, with p elements: a
positive answer in F; for sufficiently many p implies a positive answer for
the complex field. So take an algebraic variety V over F_p and an injective
morphism f from V to V over F,. Use the algebraic fact that F,, is locally
finite and represent V as the union of its intersections with F™ where F
ranges over the finite subfields of F,, (containing the parameters defining V/
and f). Recall the trivial principle that any injective function from a finite
set to itself is also surjective. Deduce that the restriction of f to VN F" is
surjective for every F. Extend this result to f: f is surjective, as required.

&

2.5 Tarski again: Real closed fields

In this section we deal with the quantifier elimination theorem for real closed
fields. This is the main result of Tarski in this framework, not only because,
as we shall see, the proof is deeper and more complicated than in the complex
case, but also because the ordered field of reals is intrinsecally related to ge-
ometry. It is certainly needless to recall that, for instance, in the Euclidean
plane equipped with some fixed Cartesian axes, every point is essentially an
ordered pair of reals, every straight line is the variety given by a polyno-
mial with degree 1 and 2 unknowns over the reals, and so on. Accordingly,
statements about points, lines, ... can be easily translated into statements
about reals, addition, multiplication (often in a first order way). In partic-
ular, a decision algorithm about the theory of the ordered field of reals (the
elementary algebra according to Tarski’s terminology) should work for (first
order) Euclidean geometry as well.

Actually Tarski’s quantifier elimination procedure dealt with the reals rather
than with the theory RC'F. But, just as in the complex case, one can realize
that the basic ingredients of the proof concern arbitrary real closed fields. So
we state (and show) the result in this (seemingly enlarged) setting; but we
shall deduce quickly that RC'F is complete and hence equals the theory of
(R, +, —, -, 0, 1, <). We follow the elegant approach of Cohen [27] rather
than Tarski’s original proof.

Theorem 2.5.1 The theory RCF of reals closed fields has the elimination
of quantifiers in the language L = {+, —, -, 0, 1, <}.

Proof. By proceeding as in the case of algebraically closed fields, one pre-
liminarily realizes that the heart of the matter is to eliminate the quantifier
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Jin a formula
Jwa(w, 0)

where a(w, ¥) is the conjunction of at most one equation p(w, ¥) = 0 and a
finite (possibly empty) set of disequations ¢;(w, ) > 0 (with j < m), where
p(z, ¥) and ¢;(z, §) (j < m) are polynomials with integer coefficients.

So let us open a (long) parenthesis and examine an arbitrary polynomial
f(z) = 3, fix* with coefficients in a real closed field K. It is known that,
if f;is not 0 for all ¢ < ¢, then f(z) has at most ¢ roots in the field. Fix t.
Then it is easily seen that

1) the function calculating, for every polynomial f(z) as before, equiva-
lently for every non-zero sequence (fo, ..., fi) in K'*!, how many
roots f(z) admits

as well as, for every r and s with 1 <r < s <,

2) the set of non-zero sequences (fo, ..., fi) in K'*! such that f(z) has
exactly s roots,

3) the function mapping any nonzero (fy, ..., fi) into the r-th root of f(z)

are definable in any ordered field K in a uniform way (independent of K).
We claim that, within real closed fields, for every t, these objects are de-
finable by quantifier free formulas, still in a uniform way (independent of
the underlying field). To see this, one uses the Sturm theory of real root
counting. We proceed by induction on ¢.

The case t = 0 is clear: the number of roots is 0 if fy # 0, and undefined
otherwise; 2 and 3 are empty objects.

So assume t > 0 and suppose our claim true for every natural value < ¢, in
order to extend it to t. The idea here is to relate the zeroes of f(z) to the
roots of its derivative and the sign of f(z) in these roots. Hence build the
formal derivative f’(z) of f(z) with respect to

flly= Y ifie™".
0<i<t
Preliminarily, notice that f'(z) = 0 if and only if (fi, ..., fi) = (0, ..., 0).
Except this case, induction equips us with quantifier free formulas defining
(with respect to (fo, ..., fi) via (f1, 2f2, ..., tft))

1) the function counting, for every sequence (fo, ..., fi) with (fi, ..., fi) #
(0, ..., 0), how many roots f’'(z) admits,
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and, for 1 <r <s<t,

2) the set of the sequences (fo, ..., fi) in K'*! such that (fy, ..., f;) is not
zero and f’(z) has exactly s roots,

3) the function mapping any (suitable) non-zero (fo, ..., f) into the r-th
root of f'(z).

Now order the roots of f'(z)

p1 < ... < ps.

The intermediate value property, holding in every real closed field, ensures
that f/(z) cannot change its sign between two successive roots. Can we
deduce that f(z) is monotone (increasing or decreasing according to the sign
of f'(z)) in the same interval? Certainly yes in the case of the real field: this
is a well known result in elementary real analysis. But a complete algebraic
(although non trivial) proof can be done for polynomials by using only the
axioms of RC'F. Consequently, in every real closed field K, f(x) is monotone
(increasing or decreasing according to the sign -positive or negative- of its
derivative) in each interval (p;, pit1), 1 < @ < s. Now look at f(p;) and

f(pit1).

(i) If they are not 0 and their sign is the same, then (p;, pit1) does not
contain any root of f(z) because f(z) is monotone in the interval (notice
that the cases when exactly one between p; and p;4; annihilates f(z)
can be handled in a similar way).

(ii) If f(p:) and f(pi+1) admit opposite signs, then (p;, piy1) does contain
a toot of f(z) by the intermediate value property. The uniqueness of
this root might follow from Rolle’s Theorem (two distinct roots of f(z)
pi < @ < b < p;y; determine a new intermediate root of f’(z), and
this is impossible). Elementary analysis ensures that Rolle’s Theorem
is certainly true for the reals; but, again, one can give an alternative
algebraic and non trivial proof (for polynomials) holding in every real
closed field.

(iii) Assume at last f(p;) = f(pi+1) = 0. The argument in 2 again excludes
any additional intermediate root of f(z).

This machinery lets us count the roots in the interval [p;, ps]. But what can
we say in (—o0, p1) and (ps, +00)? The same arguments as before ensure
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that f(z) is monotone, and at least one root occurs in each of these half-
lines. But our setting changes when we examine the existence of this root.
For, every interval (p;, piy1) (1 < ¢ < s) is bounded, while our half-lines are
not. However the following algebraic fact helps us.

Let f(z) = 3i< f;x* as before. Then f(z) has no roots out of the
interval [—a, a] where a = 3t maz{(|fi—if; '] : 0 < i<t} + 1.

(The proof only uses the axioms of ordered fields). So a possible root less
than p; should lie in [—a, p1), and a possible root greater than p, should
belong to (ps, a]; moreover the absolute value function | | can be defined
in a quantifier free way, because, for every b € K, |b| is b when b > 0 and —b
otherwise. Hence we are led to a bounded framework, and we can proceed
as in the previous cases.
In conclusion, we have provided a uniform procedure counting, for every
nonzero (fo, ..., fi) in K, how many roots f(z) admits. The function cal-
culating their number s is defined by a quantifier free formula (essentially
checking the sign of f(z) in the roots of its derivative and in +a). Similarly
the set of non-zero sequences (fo, ..., fz) in K for which f(z) has exactly s
roots can be defined by checking these sign relations and forming a suitable
first order disjunction to list the cases when s occurs. Finally, the function
producing, for every non-zero (fo, ..., ft) and 1 < r < s, the r-th root of
f(z) is easily defined on the same basis.
This accomplishes the proof of the claim and ends our parenthesis. Now
we come back to quantifier elimination. Recall that we are considering a
formula,
(@  Swlp(w, 6)=0A A ¢(w,7)>0)
i<m
or
)  Fw A gi(w,©)>0

j<m

where p(z, i) and ¢;(z, §) (j < m) are polynomials with integer coefficients.
Each of them can be written as a polynomial with coefficients in Z[g] in the
following way

p(z, §) = Y pil@)',

i<t

gi(@, 9) = Y @i (D"

i<t

(@) is quickly reduced to (b) because its formula is equivalent to
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(Api@=0nA3w A\ ¢(w, d) >0)V

1<t i<m
Vicr<s<t ("p(z, U) has s roots” A
A "the r-th root p,(¥) satisfies Ni<m 4 (p,(7), 7) > 07),

where the latter disjunct can be expressed by a quantifier free first order
formula. So look at (b). For every j < m and for every s; < t;, there are
quantifier free formulas defining, for every real closed field K, the set of the
sequences b such that q(z, I;) has s; roots in z, and listing these roots

pi,1(b) < ... < pjs;(b)

—

One can compute the sign of ¢;(z, b) in the intervals

(_007 Pj,1 (g)),

— —

(p,i(b); pji+1(B)) (1 <4< s5),

-,

in a uniform way (independent of K and b) by looking at the (sign) value of

g;(pj,1(6) — 1, 0)

(Pj,i(g) +2(Pj,i+1(b), 5)

q; (pi,s; () +1, b)

respectively. List all the possible orderings of the roots (in z) of the ¢;(z, 17) ’s
when j ranges over the natural numbers < m, and divide in every case K
into finitely many intervals such that the g;(z, l?) ’s have a constant sign
(with respect to z) in each of them; check these signs (in the way suggested
before) and form a suitable disjunction picking the intervals where all these
signs are positive. This procedure is independent of K and b and provides
the required quantifier free formula. &

4q;

Corollary 2.5.2 RCF is model complete.

Corollary 2.5.3 RCF is complete; in particular, RCF is the theory of the
ordered field of reals (as well as of every real closed field).
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Proof. There is a minimal ordered real closed field, embedded in any model
of RC'F. This is the ordered field Rg of real algebraic numbers. The model
completeness of RCF ensures that every real closed field is an elementary
extension of Rgy. In particular all the real closed fields are elementarily
equivalent to Ro and, consequently, to each other. &

This is the first completeness proof we give about RC'F’; in fact Vaught’s
criterion does not apply because RCF is not categorical in any infinite

power.
We have seen that real closed fields eliminate quantifiers in their language
L ={+, -, 0,1, <}. Notably, they are fully characterized by this prop-

erty: for, Macintyre, McKenna and Van den Dries showed that an or-
dered field, whose theory has the quantifier elimination in L, must be real
closed. We also notice that RCF does not preserve quantifier elimination
in the restricted language L' = {+, —, -, 0, 1} without order. Actually one
can remember that, even in checking solvability of the popular equation
az? 4+ bz + ¢ = 0 with degree 2 and 1 unknown over the reals (or over any
real closed field), one needs a disequation b2 — 4ac > 0 to ensure roots, and
hence to eliminate 3 in the formula Elw(vgw2 +viw+vg = 0). More formally,
recall that, with respect to the theory of the real field, the formulas

¢'(v): Jw(v= w?)

are equivalent. As RC'F is complete and hence equals the theory of the real
field, the same holds in every real closed field. Consequently the L’-formula
(with the quantifier 3)

¢'(v) : Fw(v = w?)

defines the set of non-negative elements in every real closed field. However
¢(v) cannot be equivalent in RC'F to any quantifier free L'-formula ¢"(v). In
fact ¢(R) is the half-line [0, +00) of R, and so is both infinite and coinfinite,
while ¢"(K) is either finite or cofinite for every field K: see the proof of
Corollary 2.4.8.

Now we discuss decidability: as already said, this was the main consequence
of elimination of quantifiers, according to the general feeling in the fourties.

Corollary 2.5.4 RCF is decidable.

Proof. Owing to quantifier elimination, every L-sentence o is equivalent in
RCF to a Boolean combination of sentences m = n or m < n where m and
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n are integers. This quantifier free statement can be easily checked in our
framework. &

We shall comment this result later in 2.9. Now we examine another remark-
able consequence of quantifier elimination, namely definability. Recall that,
in an ordered field K, every semialgebraic set (in other words, every finite
Boolean combination of sets of solutions of disequations

9(%) 2 0
with ¢(Z) € K[Z]) is definable.

Corollary 2.5.5 In a real closed ordered field K, the definable sets are ex-
actly the semialgebraic ones.

Proof. Let n be a positive integer, X C K™ be a set definable in K. So
there are a formula ¢(7, @) of L and a sequence @ € K such that

X = (K", a).

Owing to Tarski’s quantifier elimination theorem, we can assume that ¢ (7, @)
has no quantifier and hence is a finite Boolean combination of disequations

q(, %) > 0

with ¢(Z,9) € Z[Z,y]. Consequently X is a finite Boolean combination of
sets of solutions of disequations

and so is a semialgebraic set. &

Here is a geometric restatement of Tarski’s Theorem.

Theorem 2.5.6 (Tarski-Seidenberg) Let K be a real closed ordered field, n
be a positive integer, X C K™t1 X' be the projection of X onto the first n
coordinates. If X is semialgebraic, then X' is semialgebraic, too.

This formulation is due to Thom, who also coined the name semialgebraic
set. It has a more geometric flavour. Some mathematicians might appreciate
this alternative terminology, for instance because it allows to state several
results in a (seemingly) more agreable way (avoiding logic). Nevertheless,
Tarski’s original approach (via quantifier elimination and formulas) often
provides quicker proofs, even in this geometric framework. Let us quote the
following example from [168].
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Example 2.5.7 Consider the following statement: For a semialgebraic func-
tion f from R™! to R, the set A of the sequences & in R™*! such that

limysoo f(Z,y) isin R
is semialgebraic.

If one replaces everywhere semialgebraic by definable, this proposition may
lose part of its (mathematical) glamour. But, using logic, one obtains a
short proof: A is definable via the formula

e(0) : JwVe(e >0 — IrVy(y >r —

— 2(f(F, y) = 2 A |z — w| < €)))

(recall that both f and the absolute value are definable). A direct approach
via semialgebraic sets and projections is longer.

In a real closed field K, the definable subsets X C K have a very simple
form.

Corollary 2.5.8 Let K be a real closed field, X be a definable subset of K.
Then X is a finite union of intervals (closed or open, possibly with infinile
endpoints).

Proof. Let q(z) € K[z]. We know that ¢(v) = 0 defines K if ¢(z) = 0 and a
finite set (that is, the set of the roots ap < ... < a; of ¢(z) in K) otherwise.
On the other hand, g(v) > 0 defines § if ¢(z) = 0; otherwise g(v) > 0 defines
the union of some intervals among ] — oo, agl, ]ao, a1, - - -, Jas, +oo[ (recall
that K satisfies the intermediate value property for polynomials). Hence
any definable (equivalently, semialgebraic) set X C K is a finite Boolean
combination of intervals, and so a finite union of intervals. &

2.6 pp-elimination of quantifiers and modules

In this section we deal with (left) modules over a (countable) ring R with
identity. In Chapter 1, we introduced a suitable language Lg = {0,+, —, r
(r € R)} for these structures, and we saw how to axiomatize their class
by first order sentences in Lg. Let T denote the corresponding theory.
A quick look at the axioms of gT shows that each of them is a universal
sentence Yua(v) where a(7) is an atomic formula of Lg; this confirms that
the class of the models of xT (namely of the R-modules) is closed under
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substructures. Now we wonder whether g7 has quantifier elimination in
Lg. A trivial example shows that this is false even in the simple case when
R is the ring Z of integers. In fact, just consider Z as a module over itself.
In Z the formula

p(v) : Fw(v = 2w)

defines the set 2Z of even integers. On the other side, every atomic formula
¢'(v) in Lg is equivalent within z7', and hence in the theory of the Z-module
Z, to

rv =10

for some non-negative integer r. This formula defines in Z {0} if r # 0 and
Z otherwise. No Boolean combination of these sets can equal 2Z. Therefore
no quantifier free formula ¢'(v) of Lz is equivalent to ¢(v) in Th(Z), and
so in zT'. It follows that zT does not eliminate the quantifiers in Lz.
However notice that ¢(v) is a typical pp-formula in Lz. Indeed we will see
that, for any R, the pp-formulas of Ly are just the only obstruction to the
elimination of quantifiers of RT in Lr. Let us see why.

Take any (countable) ring R with identity. Recall that a pp-formula of L
is an existential formula of the form

@(v): FT(A-T= B - )

where A and B are matrices with coefficients in R with suitable sizes, -
denotes the usual row-by-column product between matrices, and &, @ should
be viewed as column vectors (with suitably many rows). So, when @ = 0,
pp-formulas include the atomic formulas of Lg.

In Chapter 1 we pointed out that, for every pp-formula ¢(?) of Lr and
every R-module M, o(M™) is a subgroup of M™ (called a pp-definable
subgroup), but is not in general a submodule. Let us add here some more
remarks about pp-formulas.

Remark 2.6.1 1. If ¢(%), ¢(¥) are pp-formulas of Lg, then also ¢(%) A
¥(0) is (equivalent in zT" to) a pp-formula.

2. Let (7, 2) be a pp-formula of Lg, ¢(7,2) : 3@ (A%, 2) = Bw).
Then ¢(#,0) is a pp-formula, and hence, for every R-module M,
©(M™,0) is a pp-definable subgroup of M™. Furthermore, for ev-
ery @ € M, p(M", @) = 0 or p(M", @) is a coset of P(M™,0)in M (in

=

fact, given b € (M", @), it is easy to check p(M™, @) = p(M™,0)+b).
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3. Let ¢(0), ¥(¥) be pp-formulas of Lr with n free variables, and let k
be a positive integer. It is simple to write a sentence in Lp ensuring
that, in a given R-module M, the index of p(M") NP (M™) in p(M™)
is > k; in detail this sentence says

dvg .. .04 (/\ QD(UZ‘) A /\ —i’lp(ﬁ'i — 17]')) .

i<k i<j<k

We will denote it by (¢ : 9) > k. Any sentence of this form is called
an invariant statement (we will see later the reason why). Notice that
the finite Boolean combinations of invariant statements include the
sentences saying:

e the index of p(M"™)NP(M™) in p(M") is k (” = k” means ” >
k” but ” ? k+17); we will denote this formula by (¢ : ¢) = k;

e the index of p(M™) N P(M") in (M") is < k (” < k” means
7 # k4 17); we shall denote this formula by (¢ : ¢) < k.

At this point we can state and show the following fundamental theorem (of
pp-elimination of quantifiers for modules).

Theorem 2.6.2 (Baur - Monk) Let R be a (countable) ring with identity.
Then the pp-formulas of Ly together with the invariant statements form an
elimination set for T in Lr. More precisely: for every formula o(¥) of LR,
there are a Boolean combination  of invariant statements and a Boolean
combination (V) of pp-formulas such that

Vi(a(?) « fAy(0) € rT.
We shall use in our proof the following result of group theory.

Lemma 2.6.3 (B. H. Neumann) Let G be a group, a, a; € G, H, H; be
subgroups of G (where ¢ ranges among the naturals less than some fized
N), aH C U;cnyaill;. Let I be the set of the naturals i < N for which
|H : HNH;| < N!. Then aH C U;cra;H;.

Now let us begin the proof of the theorem.

Proof. We proceed by induction on a(7). If a(?) is an atomic formula, then
a(¥) is directly a pp-formula. The cases = and A are easy to handle. So
suppose that a(?) is of the form Ywo!(w, ), where the induction hypothesis
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ensures that there exist an invariant statement 3’ and a Boolean combination
v'(w, ¥) of pp-formulas such that

YV 5(a (w, ) + B Ay (w,0)) € rT.

1%t reduction: without loss of generality, o'(w, ) is a disjunction of pp-
formulas or negations. In fact, V#{a(%) < ' AVwy'(w,?)) € rT. Accord-
ingly we can replace o/(w, %) by v'(w, ¥), which is a Boolean combination
of pp-formulas, and hence is equivalent to a conjunction of disjunctions
of pp-formulas or negations. Correspondingly put o/ (w, %) : Aj<, o (w, )
where, for every j < s, of(w, ¥) is a disjunction of pp-formulas or negations.
Ywa! (w, 0) is equivalent in T to A;<, Ywe)(w,¥). Then we can handle
o (w, ¥) (with j < s) instead of &/ (w, ¥).

274 reduction: o (w,?) is of the form 8(w, ) — V;cn 0;(w, V) where N is a
positive integer, 8(w, ¥) and 8;(w,?) (with ¢ < N) are pp-formulas. In fact
o' (w, ¥) is a single disjunction of pp-formulas and negations. But we know
that any conjunction of pp-formulas is (equivalent in g7 to) a pp-formula,
and hence any disjunction of negations of pp-formulas is the negation of a
single pp-formula. This clearly implies our claim.

Let us summarize the situation. We want to find § and (%) such that, for
every R-module M and every sequence @ in M,

<N
if and only if M |= BA7(&). We know that, given M and @, either (M, @) =
0 or B(M, @) is a coset of the pp-definable subgroup (M, 0). The same can
be said about 8;(M, @) for every ¢ < N. By the way, notice that Jwé(w, v),
Jwh;(w, ¥) (with ¢ < N) are pp-formulas. (1) is certainly true when @
satisfies ~Jwh(w, &) (the negation of a pp-formula) in M, and certainly

false when @ satisfies

Jwb(w, ) A \/ ~Fwbi(w, 7)
<N
in M. So there is no loss of generality for our purposes in assuming
O(M,d) # 0 and ;(M,@) # @ for every : < N. Let S be the set of
the indices ¢ < N satisfying

|0(M, 0) : (M, 0) N 8;(M,0)] < N!.

Notice that S depends on M (and on &, of course). However there are only
finitely many possible ways of choosing S, and each of them is described by
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a suitable invariant statement. Let us assume, with no loss of generality,
that S is just the set of the positive integers < m for some m < N. We can
apply B. H. Neumann’s Lemma and deduce that (1) is equivalent to

@ oMaC oM.
<m
Put K = (M, 0) N Nicyn 0:(M,0). As §(M,d) and 6;(M, &) for i < m are
union of cosets of K in M, (2) can be equivalently written

3) 6M,a)/K C | 6;(M,d)/K.
<m
As (M, d)/K is finite, we can use some (hopefully) well known combina-
torial arguments and restate (3) in the equivalent form

@) S (=¥, an ) 0:(M,a) /K| =0

X 1€X

where X ranges over the subsets of {0, 1, ..., m — 1}. For every X, put

k(X)=0(M,0)n [ 8:(M,0) : KJ;
1eX

notice that, when O(M, @) NN;ex 0:i(M, @) # 0,

B(X) = [(0(M, @) 0 () 6:(M, @)/K].

1€X

Moreover k(X) < N!V. Hence we have shown that M satisfies (@) if and
only if 3(~1)XIk(X) = 0, where the sum concerns all the subsets X of
{0, 1, ..., m — 1} such that M = Jw(8(w, @) A A;ex 0i(w, @)), and hence if
and only if M satisfies a convenient disjunction of conjunctions of invariant
statements and pp-formulas. This is what happens for a given S. As there

are only finitely many possible S’s, one can find some suitable 3 and (%),
valid for every R-module M. &

Remark 2.6.4 1. Notice that the procedure given in the proof of Theo-
rem 2.6.3 is effective, and provides explicitly for every a(?) the required
formulas # and (7). Furthermore 8 is actually a finite Boolean com-
bination of invariant statements concerning pp-formulas ¢(v), ¥(v)
(with at most one free variable).
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2. In particular, when « is a sentence of Lg, what the previous proce-
dure produces is just a Boolean combination § of invariant statements
(concerning pp-formulas ¢(v), ¥(v) with at most one free variable)
such that o <> 3 € gT'.

3. Now fix an R-module M. Then, for every formula a(?) of Lg, there
exists a Boolean combination 7 () of pp-formulas such that M [
VT (a(0) < () (in fact, we know that «(7) is equivalent to 3 A~(?)
for some Boolean combination « (%) of pp-formulas and some sentence
B; so, if M = 3, then () is equivalent to (?), while, if M | -4,
then a(M™") is empty and consequently «(%) is equivalent to &(%) A
—§(¥), where §(7) is an arbitrary pp-formula).

With respect to definable sets in modules, this is what Theorem 2.6.3 implies.

Corollary 2.6.5 Let M be an R-module, n be a positive integer. Then
every set X C M"™ definable in M 1is a finite Boolean combination of cosets
of pp-definable subgroups.

Proof.  There exist an Lpr-formula (¥, w) and a sequence @ in M such
that X = a(M",d). We can assume that «(7, @) is a Boolean combination
of pp-formulas, and we know that, for every pp-formula (¥, %), p(M™, @),
when it is not empty, is a coset of the pp-definable subgroup ¢(M7, 6) &

We can also characterize the complete extensions of T (and hence the
=-classes of R-modules).

Corollary 2.6.6 Let M, M’ be two R-modules. Then M = M’ if and only
if, for every choice of two pp-formulas p(v), ¥ (v), the indices of (M) N
(M) in (M) and e(M') N P(M’) in p(M’) are either finite and equal,
or both infinite.

Proof. 1t is clear that, if M and M’ are elementarily equivalent, then, for
every ¢(v),¥(v) as before, and for every positive integer k,

ME (@) 2k & ME(@@:¢¥)2k

The inverse implication follows from Remark 2.6.4,2. &

The previous result explains why ”invariant statements” are called in this
way: actually these sentences fully characterize any R-module M up to
elementary equivalence.
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Now let us discuss the content of the previous results in some particular case.
We deal with a principal ideal domain R (this setting includes the ring Z of
integers, as well as any field). First let us examine a generic pp-formula of
Lr
a(?) : 30 (AT = Bw).

A and B can obtain a simpler form when R is a principal ideal domain.
For, it is a fact of Algebra that, in this framework, there are two invertible
matrices X, Y with coefficients in R such that the product B’ = XBY is
diagonal. So «(%) is equivalent to

30 (X AT = B'Y ~1w)

and, unless replacing @ by Y 1w, A by XA and B by B’, one can suppose
B diagonal in «(7). Consequently a(%) becomes of the form

Jwy ... Jwy, ( /\ (zn: a;;v; = biw;)).

1<i<m j=1

Now let us momentarily restrict our analysis to a smaller setting.

Case 1: R = K is a field (so we are dealing with vectorspaces over K).
Assume that, for some 7 with 1 < 7 < m, b; # 0. Then we can divide the
i-th equation in «(¥) by b; and consequently assume b; = 1. At this point
it is easy to show that a(7) is equivalent to

A (Zn: a;jvj = 0),

1<i<m,bi;; =0 j=1

which is a conjunction of atomic formulas.

Combine this observation and Baur-Monk’s Theorem, and deduce that every
Lg-formula is equivalent in 7T to a conjunction of a quantifier free formula
and a Boolean combination of invariant statements.

Moreover the pp-formulas with a unique free variable v reduce to rv = 0
for some r € K, and hence to either v = 0 when r # 0 or to v = v when
r = 0. Consequently the only pp-definable subgroups of a vectorspace V are
{0} and V. Owing to Corollary 2.6.5, the subsets of V definable in V are
just the finite Boolean combinations of the cosets of these subgroups, and
so reduce to the finite or cofinite subsets.

Now let us examine invariant statements. In particular we direct our atten-
tion on the sentences of the form
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where k is a positive integer. In any given vectorspace V over K, they witness
if the size |[V| di V is finite or not, and, in the positive case, its value. We
claim that they can even determine the =-type of the vectorspace. Let us
see why.

First assume K infinite. We know that, in this case, all the nonzero vec-
torspaces over K are elementarily equivalent (for, their theory is complete).
In other words, when K is infinite, there are only two =-classes of K-
vectorspaces: the former contains all the nonzero vectorspaces, and the
latter reduces to the zero space. But a vectorspace V is {0} if and only
if V| (v=v:v=0)=1. In particular, the statements (x) determine the
=-type of any vectorspace.

Now assume K finite (say of size ¢). Now we meet infinitely many =-classes
of K-vectorspaces. In fact, there is a class for every natural », consisting
of the (pairwise isomorphic) vectorspaces of dimension n over K (hence size
q™), while infinite vectorspaces form again a unique class. The sentences
(v=v:v=0) > k can obviously distinguish these classes.

One can deduce that every invariant statement in Lg is a Boolean combi-
nation of sentences (v = v : v = 0) > k where & ranges over the positive
‘integers.

In conclusion, given a field X, the atomic formulas of Ly together with the
invariant statements (v = v : v = 0) > k, with k a positive integer, form an
elimination set for 7. In particular this yields quantifier elimination in Ly
for the theory of infinite K-vectorspaces.

Case 2: Now let us enlarge our setting to arbitrary principal ideal domains
R. First let us examine a pp-formula a(¥). We cannot expect any longer
that, whenever b; # 0 in the i-th equation of (%), one can divide the whole
equation by b; and so obtain b; = 1. However a(?) is equivalent in gT to
a conjunction of formulas

(1) Y7;aiv; =0 (for by = 0),
(2) Fw(Tr; aijv; = qw) (where g = by; # 0).

The latter ones are divisibility conditions: we can abbreviate each of them
by

(2) q|Xj=iaijv;-

Of course, when ¢ is a unit in R, this is a trivial condition and can be
forgotten. In the remaining cases, recall that ¢ decomposes (uniquely) as a
product of powers of pairwise distinct primes in R, and ¢ divides an element
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r € R if and only if all these prime powers divide r. So there is no loss of
generality in assuming that, in (2), ¢ is a prime power.

The situation becomes clearer if we restrict our analysis to formulas hav-
ing only one free variables. In fact, in this case, our pp-formula a(v) gets
equivalent in xT to a conjunction of formulas

(1)’ rv =0 (a torsion condition),
(2)’ p' | sv (a divisibility condition);

here p, r, s € R, p is a prime and [ is a non-negative integer. Again, simple
algebraic facts about principal ideal domains let us assume that s itself
is a power of p, s = p" for some non-negative integer 2 < I. Every pp-
formula in at most one free variable is a conjunction of torsion and divisibility
conditions as before.

This result helps also the analysis of invariant statements (¢(v) : ¥(v)) > k.
We avoid here too many details. However we wish to mention the following
sentences (r, p are elements of R, p is prime, n, k are positive integers):

(3) (pr=0Ap"Hov:pv=0Ap"lv) >
(4) (pp=0Ap*|v:v=0)2>k,

(5) (P Mo :ptlv) 2 &,

(8) (

The reader may check their truth (at least when R is the ring of integers)
in some familiar abelian groups, like Z/q¢"Z, the Priifer groups Z/q¢*Z, the
localizations of Z at ¢ (when ¢ ranges over the primes, and h over the natural
numbers), and the additive group of rationals, and realize in this way their
meaning.

Indeed Wanda Szmielew (a student of Tarski’s) showed that, for every R-
module M, the =-type of M is fully determined by the invariant statements
(3)-(6) satisfied by M.

In conclusion, owing to Baur-Monk’s theorem, the formulas (1)-(6) are an
elimination set for the theory T when R is a principal ideal domain.

v=v:irv=0)>k.

2.7 Strongly minimal theories

We saw in 2.4 that the only (1-ary) definable sets in an algebraically closed
field are the finite and cofinite ones. 2.6 told us that the same happens, for
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instance, in every (infinite) vectorspace over a fixed countable field. One
can also check that even pure sets (in a language with no symbols besides
equality =) enjoy this feature; again, every definable set is either finite or
cofinite (this was implicitly shown when we treated definable sets in 1.7,
in particular when we provided an example of an infinite coinfinite non
definable set).

So we find some non-trivial algebraic structures A whose definable 1-ary
subsets reduce to the ones definable in the pure set A (with the equality
relation =) by quantifier free formulas. Let us name these structures in the
following way.

Definition 2.7.1 An infinite structure A is said to be minimal if and only
if the only definable subsets of A are those finite or cofinite. A complete
theory T is said to be strongly minimal if and only if every model A of T
is minimal.

Hence any algebraically closed field is a minimal structure, and any theory
ACEF, (with p = 0 or prime) is strongly minimal. The same is true for
infinite vectorspaces, or pure sets.

It should be underlined that the minimality of a structure is not preserved
by elementary equivalence. In other words there are minimal structures
A such that the theory of A is not strongly minimal, and so admits some
non-minimal models. Here is an example.

Example 2.7.2 Consider the theory dLO™ of discrete orders with a least
element 0 but no last element. We know that dLO™ is complete, and has
quantifier elimination in a language L with a constant (for 0) and a l-ary
operation symbol (for the successor function s) in addition to the relation
symbol <. Consequently every definable subset of a model of T is a finite
Boolean combination of intervals (possibly with an infinite right endpoint).
Therefore (N, <,0,s) is a minimal model of T, because every interval in
(N, <, 0, 5) is either finite or cofinite. However no other model A = (4, <,
04, sA) of T is minimal. In fact, let a € A satisfy a # (s4)*(04) for any
natural n. Then both [04, a[ and [a, +co[ are infinite intervals in A.

We shall examine again strongly minimal theories in the next chapters. In
particular, with respect to algebraically closed fields, we will prove a theorem
of Macintyre showing (among other things) that the only integral domains
with indentity having a strongly minimal complete theory are just the alge-
braically closed fields.
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2.8 o-minimal theories

Turning now to linearly ordered structures A = (A4, <, ...), we met in the
previous sections some examples where the definable subsets of A reduce
to the finite unions of intervals (possibly with infinite endpoints) in (A4, <).
This is what happens in real closed fields (as observed in 2.5), but also in
dense or discrete (infinite) linear orders (see the sections 2.2 and 2.3). This
suggests the following definition.

Definition 2.8.1 An infinite linearly ordered structure A = (A, <, ...) is
called o-minimal if and only if every subset of A definable in A is a finite
union of intervals (closed or open, possibly with infinite endpoints). A com-
plete theory T of infinite linearly ordered structures is called o-minimal if
and only if every model of T is o-minimal.

”o” abridges "order”, of course. This o-minimal setting clearly reminds min-
imality. In fact the minimal structures (and the strongly minimal theories)
are the ones where every definable (1-ary) set is already defined by a quan-
tifier free formula involving the only (language) symbol =. Similarly the
o-minimal structures (and theories) are just those admitting a total order
relation < such that every definable (1-ary) is already defined by a quantifier
free formula involving the only (language) symbol <.

In this sense the o-minimal structures and theories are the simplest ones
in the presence of a total order relation. Nevertheless they include several
non-trivial algebraic examples. We will study in more detail these structures
and theories in the last chapter of this book.

But it is worth emphasizing since now that, in spite of the similarities un-
derlined above between minimality and o-minimality, a relevant difference
arises. In fact, we noticed that the theory of a minimal structure may admit
some non-minimal models, and so fail to be strongly minimal. This does
not happen in the o-minimal setting. In fact the following theorem hold.

Theorem 2.8.2 (Knight - Pillay - Steinhorn) If T is the theory of a linearly
ordered o-minimal structure, then every model of T is o-minimal.

Accordingly, we can spare the adverb "strongly” in defining a theory with
o-minimal models.

Coming back to real closed fields, we would like to mention here a result quite
similar to the one recalled at the end of the previous section on algebraically
closed fields. In fact, it was shown by Pillay and Steinhorn that the only
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ordered rings (with identity) having an o-minimal theory are the real closed
fields.

The proofs of these theorems will be provided in Chapter 9.

2.9 Computational aspects of q. e.

In this section we shortly discuss the quantifier elimination procedures with
respect to effectiveness and fastness. Actually these criteria did not corre-
spond to the spirit of the forties (and some decades later), when the main
quantifier elimination results were proved. For, those times lived the influ-
ence of Godel incompleteness and undecidability phenomena; so, according
to that feeling, any decision algorithm (such as Tarski’s method for real
elementary algebra), or even a decidability theorem simply ensuring the ex-
istence of such a procedure without explicitly exhibiting it, were exactly
the best answer one might expect. But later, in the seventies, the birth
of modern computers and the beginning of their science changed this set-
ting and inspired a prevalent interest in quickly running algorithms. Hence
complexity theory introduced

* the class P of the problems having a fast procedure to find solutions,

* the class NP of the problems having a fast procedure to verify solutions
(namely to check that a solution works).

We agree that a problem has a solving procedure when there is a Turing
machine handling it and that an algorithm is fast when it runs in a polyno-
mial time with respect to the length of the input. To realize the difference
between finding or verifying solutions, look at the problem of factoring in-
tegers. To decompose a natural number > 2 into its prime factors -more
precisely, to find these factors- can be significantly slower (at least with re-
spect to the currently available algorithms) than to check this decomposition
when done. Just to quote a famous historical example, F. Cole announced
during an AMS meeting in 1903 that the Mersenne number 267 — 1 is not
prime. Factoring 267 — 1 is not easy (and certainly it was not in 1903, when
computers were not available). But Cole’s proof is quite short to write and
needs only one line

267 _ 1 = 193797721 x 761838257287

and can be checked very quickly.
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Coming back to P and NP, it is trivial to observe that P C N P, because
a procedure yielding solutions implicitly confirms these solutions. A fun-
damental problem in complexity theory (and, more generally, in the area
linking computer science and mathematics) asks whether P = NP, hence
whether, whenever a problem has a fast procedure verifying solutions, then
it admits a (possibly slower but still) fast (=polynomial) procedure finding
solutions.

According to the new spirit, what is primary even in quantifier elimination,
mainly towards decidability, is to get fast methods. Let us discuss this
feature for the elimination of quantifiers of real closed fields: this is perhaps
the most interesting case, owing to its connection with elementary geometry.
However a devastating result of Fischer and Rabin shows

Theorem 2.9.1 Any algorithm deciding, or even verifying membership to
RCF for sentences in the language of ordered fields requires a running time
at least exponential with respect to the length of the input sentence.

Algorithm still means Turing machine. Notice that Fischer-Rabin’s Theorem
only refers to the additive structure of the reals (R, 4, —); recall that, in
this restricted language, the reals inherit in an obvious way a structure of Q-
vectorspace, because the scalar multiplication by any rational can be defined
using +, and so form a structure elementarily equivalent to (C, 4+, —). In
this sense, the theorem applies also to the complex field, yielding the same
negative lower bound for the decision procedures concerning algebraically
closed fields.

By the way, it is not known any decidable theory with infinite models and
a decision procedure running in polynomial time. Indeed, if such a theory
exists, then P = NP.

In particular, Tarski’s original elimination procedure is very inefficient and
slow. However, recently faster and more powerful elimination methods for
real closed fields have been introduced. We wish to quote the Collins proce-
dure, called cylindrical algebraic decomposition CAD, working in the worst
cases in a doubly exponential time with respect to the number of variables
in the input formula. Implementations of CAD, and other real quantifier
elimination methods are discussed, for instance, in [33].

But now we want to treat briefly another intriguing relationship between
complexity theory and quantifier elimination (for arbitrary theories and
structures). A few lines ago we have said algorithm = Turing machine,
in accordance with the Church-Turing Thesis. But the Turing model of
computation has an intrinsic discrete character, so that its applications to
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a continous framework (like R or C) seem laborious and unnatural (how-
ever, see [121] for a discussion of this point). Consequently, new models of
computation, including real and complex numbers as possible inputs, and
even working in arbitrary structures, have been introduced. We quote the
Blum-Shub-Smale BSS model ([14], [13]), or also the Poizat approach [133].
These new perspectives extend the Turing point of view: the classical com-
putability is just the computability over the field Fy with 2 elements; but
now computability over arbitrary structures is allowed. In particular, for
every structure A, one can define in a suitable sense the classes P and NP
(over A), one can compare these classes and check if P = NP over A. To
introduce these matters in detail would require a long time, so we refer
the interested reader to the bibliography quoted at the end of the chapter.
Remarkably, quantifier elimination arises in this setting. In fact, Poizat
observed

Theorem 2.9.2 If P = NP over A, then the theory of A eliminates the
quantifiers.

It is comparatively easy to realize why. Let us refer for simplicity to the Cole
example quoted before. To prove that 267 — 1 is composite requires to find
a non trivial divisor, and hence to obtain some witnesses of the (existential)
sentence Juv(2%7 — 1 = wv). But, after Cole, we have simply to check the
quantifier free sentence

287 — 1 =193797721 x 761838257287.

In other words, what P = NP asks here is a procedure (indeed a quick
procedure) of elimination of quantifiers. Theorem 2.9.2 provides several ex-
amples of structures for which P # N P. For instance, recall the Macintyre-
McKenna-Van den Dries theorems characterizing the infinite fields whose
theory eliminates the quantifiers in the language for fields (they are the al-
gebraically closed fields), or the ordered fields whose theory eliminates the
quantifiers in the language for ordered fields (the real closed fields). One
easily deduces

Corollary 2.9.3 1. P # NP over the field of rationals, or over the field
of reals (without the order relation).

2. P # NP over the ordered field of rationals.

On the other side, quantifier elimination is only a necessary condition to-
wards P = NP over a given structure. There do exist quantifier eliminable
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structures A such that P # NP over A: this is the content of the following
nice result of Meer.

Theorem 2.9.4 P # NP over (R, +, —).

In fact the theory of (R, 4+, —) is essentially the theory of nonzero vec-
torspaces over the rational field, and so admits the elimination of quantifiers
in the language Lq and even in {4+, —} because the action of any rational
is easily defined by the additive structure without using quantifiers.

What can we say about the complex field, or the ordered field of reals?
Their theories eliminate the quantifiers in the corresponding language. Nev-
ertheless P = NP is still an open question over these structures. Notably,
in the complex case, a key (N P-complete) problem towards a definitive an-
swer is related to the celebrated Hilbert Nullstellensatz (a classical algebraic
result closely related to Model Theory, as we will see in the next chapter):
in fact, it asks a quick procedure checking the solvability of a given finite
system of polynomials over C (in arbitrarily many variables). One shows
that P = NP over the complex field if and only if this fast procedure exists.
N P-complete problems over the ordered field of reals are discussed in the
references quoted below.

2.10 References

Van den Dries [168] and Doner-Hodges [34] are two excellent and enjoyable
expository papers, explaining Tarski’s work on the quantifier elimination
and, more generally, the history of this matter. They also include a rich
list of references. Here let us mention [87] and [154] on the pioneeristic
contributions of Lowenheim and Skolem to the elimination of quantifiers.
Langford’s elimination methods for dense or discrete orders are in [81] and
in [82], while Tarski’s subsequent contributions in this setting are in [160].

Tarski’s elimination procedures for the real field and the complex field are
given in [157], while Cohen’s method in the real case is in [27]. [98] contains
the Macintyre-McKenna-Van den Dries theorems saying that algebraically
closed fields are the only infinite fields whose first order theory eliminates the
quantifiers, and real closed fields are the only ordered fields with the same
feature. Let us mention that R. Thom coined the word ”semialgebraic” in
[162].

Some more details about pp-elimination in modules (and a proof of Neu-
mann’s Lemma 2.6.3) can be found in M. Prest’s book [136]; the Eklof-Fisher
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paper [40] deals with the particular case of abelian groups (and modules over
Dedekind domains).

The computational aspects of the quantifier elimination for the real field are
discussed in [33], while the cylindrical algebraic decomposition algorithm
CAD is in the Collins paper [29]. The Fisher-Rabin theorem ensuring that
no decision algorithm for the real field runs in polynomial time is in [47].
[13], [14] describe the new Blum-Shub-Smale model of computation; [133]
provides Poizat’s approach to this theme. K. Meer’s theorem that P # NP
over (R,+,—) (although the corresponding theory eliminates the quanti-
fiers) is in [112].



Chapter 3

Model Completeness

3.1 An introduction

We already defined model completeness in Chapter 1: a theory T is called
model complete if every embedding between models of T is elementary. We
dealt with this notion also in Chapter 2, where we considered its connection
with quantifier elimination and completeness. But now we wish to examine
model completeness in a closer and more direct way, to discuss its genesis
and motivations, as well as its importance and applications.

Model completeness deals with embeddings between structures. This per-
spective might look slightly oblique with respect to the fundamental purpose
in model theory, namely to connect sentences and structures via truth; under
this point of view, the most genuine relation among structures is elemen-
tary equivalence (that is, to satisfy the same sentences). Nevertheless some
basic theorems in model theory, such as the Lowenheim-Skolem theorems,
involve pretty naturally extensions, substructures, embeddings, and so draw
attention to this subject. Furthermore, as we will see in Section 3.2, there
are other possible ways of introducing model completeness. The first one
still deals with embeddings and says that a theory T is model complete
when each embedding between models of T preserves existential formulas.
But another characterization is quite syntactical and resembles the way we
defined quantifier elimination; it says that a theory T is model complete
exactly when any formula ¢(¥) in the language of T' is equivalent in T to an
appropriate existential formula ¢'(7).

The main motivations leading to model completeness come from algebra. For
instance, consider field theory. Given a field K, one looks at the irreducible
polynomials f(x) € K[z]. Algebra builds richer and richer extensions of

85
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K, equipping these polynomials with a single root, or all the possible roots.
Eventually, one reaches the algebraic closure K of K: a minimal extension
where every nonconstant polynomial f(z) in K[z], and even in K[z] itself,
splits into linear factors, and so gets its own roots. Notice that, from a
logical point of view, adding a root of a polynomial f(z) means to satisfy the
sentence Jw(f(w) = 0) with parameters from K (the coefficients of f(z)). K
is algebraically closed when it equals K and hence when it is able to satisfy
all these sentences when f(z) ranges over the nonconstant polynomials over
K itself. Pursuing this logical approach, one can generalize and look at
arbitrary L-structures A instead of pure fields, towards two possible objects:

x to enlarge A to a richer A satisfying every existential sentence Zo(w)
(with a quantifier free a(w)), or even every sentence in L(A), or (why

not?) in L(A), too;
* to examine closely the structures A.

This program recalls A. Weil’s notion of universal domains in [176]. Weil’s
idea (for the class of fields) was to determine large and rich structures, em-
bedding every field under consideration. Of course, in the case of fields,
universal domains are just algebraically closed fields of infinite transcen-
dence degree. This strategy has now fallen into disuse within Algebraic
Geometry, but it is still alive in Model Theory (and certainly it was in the
sixties). Model completeness arises quite naturally in this framework: for, in
a model complete theory T, for every model A and for every L(A)-sentence
©, whenever ¢ is true in some model extending A, then A itself satisfies ¢;
so, it is worth devoting some specific pages to this matter. This is what
we will do in this chapter. First we will give an abstract analysis of model
completeness. Then we will emphasize its strong connection with Algebra.
In fact, Algebra inspires the notion of model completeness, and several re-
lated concepts; but, conversely, we will see that some developments in Model
Theory concerning model completeness do produce a significant progress in
Algebra; indeed some alternative elegant proofs of the celebrated Hilbert
Nullstellensatz, or of the Hilbert Seventeenth Problem, and, more notably,
the solution of Artin’s Conjecture on p-adic fields witness these fruitful con-
tributions. Actually, this was the dream of Abraham Robinson (the father
of model completeness): to quote his own words in his address to the 1950
ICM,

”Symbolic Logic can produce useful tools for the developments of
actual mathematics, more particularly of Algebra and, it would
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appear, of Algebraic Geometry. This is the realization of an
ambition... expressed by Leibniz in a letter to Huyghens as long
ago as 1679”.

This point of view is developed one year later in [140]. The algebraic theo-
rems recalled before do corroborate this program. Other deep confirmations
(also concerning Geometry) will be provided in the next chapters.

Let us conclude this section by recalling some connections between model
completeness, elimination of quantifiers and completeness.

First of all, remember that elimination of quantifiers implies model complete-
ness. The converse is not true. For instance, we saw in the last chapter that
the theory of real closed fields RC'F loses the quantifier elimination property
if one removes the relation symbol for < from its language L: actually the
order < is definable in the restricted language Lo = {+, —, -, 0, 1},as v > 0
is equivalent in RC'F to

FJw(w? = v),

but any possible definition needs quantifiers. However to forget < does not
affect model completeness: in fact every embedding f : A — B of real
closed fields in the restricted language Lo enlarges naturally and involves <
(because the nonnegative elements must equal the squares), so is elementary
in both L and Lg.

On the other side, model completeness can yield completeness under some
suitable additional hypotheses. We saw that this happens, for instance,
for real closed fields (or also for discrete linear orders). The reason was
that RC'F has a "minimal” model, embeddable in every real closed field:
the ordered field of real algebraic numbers (hence the real closure of the
rationals). To extend this example towards a general setting, we need the
following

Definition 3.1.1 Let T be a theory. A model of T is prime if it is embed-
dable in every model of T.

Examples 3.1.2 1. The (complex) algebraic numbers are a prime model
of ACFy.

2. The real algebraic numbers are a prime model among real closed or-
dered fields.

3. (N, £, 0, s) is a prime model of dLO.

Proposition 3.1.3 Let T' a model complete theory. If T has a prime model
A, then T is complete.
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Proof. Just adapt the argument of RC'F. For every model B of T, there is
an embedding of A into B. Owing to model completeness, this embedding
is elementary. In particular B is elementarily equivalent to .4. Hence all the
models of T are elementarily equivalent to each other. Consequently T is
complete. &

Another useful criterion deducing completeness from model completeness is
the following one (we used it when dealing with dense linear orders in the
last chapter).

Proposition 3.1.4 Let T a model complete theory. Assume that any two
models A and B of T admit a common extension C in Mod(T). Then T is
complete.

Proof.  Given A and B, form a common extension C. Owing to model
completeness, the embeddings of both A and B in C are elementary. So A
and B are elementarily equivalent to C, and consequently to each other. &

However, be careful: model completeness does not imply completeness in
general. Just to avoid any temptation about this point, recall algebraically
closed fields. AC'F is model complete, but it is not complete: one needs to
specify the characteristic to get a prime model and hence to deduce, even
via model completeness, that AC'F,, is complete for every p = 0 or prime.

3.2 Abraham Robinson’s test

Let T be a theory in a language L. We know that T eliminates the quantifiers
if and only if every L-formula is equivalent in T to a suitable quantifier
free formula (with the same free variables). Model completeness can be
characterized in a similar way. Indeed one can show that T is model complete
if and only every L-formula is equivalent in 1" to an existential formula, or
also, if you like V rather than 3, to a universal formula (in fact, assume
that every L-formula ¢(¥) admits an existential L-formula equivalent in T;
apply this property to —¢(¥) and yield the corresponding existential formula
¢'(0); conclude that (%) is equivalent in T' to —¢'(7), which in its turn is
obviously equivalent to a universal formula; the converse can be shown in
the same way).

There is another remarkable related characterization of model completeness
via embeddings. Recall that T model complete just means that every em-
bedding between two models of T is elementary. But, notably, this is also
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equivalent to require that every embedding between two models of T is
existential (at a first sight, a weaker condition). This is the content of the
so called Abraham Robinson Test for model completeness. We will apply
this criterion to some algebraic settings in the next section. Now we want to
show Robinson’s Test and, at the same time, the previous characterizations
of model completeness in terms of existential, or universal formulas.

Theorem 3.2.1 (A.Robinson) Let T be a theory of L. The following propo-
sitions are equivalent:

(i) T is model complete;

(ii) every embedding from A into B, where A and B are models of T, is
existential;

(iii) for every L-formula (0), there is an existential formula ¢'(V) equiv-
alent to ¢(V) in T;

—

(iv) for every L-formula ¢(7), there is a universal formula ©"(¥) equiv-
alent to ¢() in T.

Proof. (i)=(ii) is clear, and (iii)<(iv) was already established.

Let us consider now (ii)=(iii),(iv).

We preliminarily show that, if (ii) holds, then every existential formula ¢(%)
admits an equivalent universal formula, and conversely. So assume ¢(?)
existential. Let n be the length of ©#. Look at the set S of the universal
formulas o (%) in L satisfying

V(o) = o) € T.

Notice that S is closed under conjunctions A (up to straightforward ma-
nipulations). What we need is a formula o(%) in S satisfying the further
condition

V(o (V) = ¢(0)) € T;

in fact, in this case, o(¥) is a universal formula equivalent to ¢(%) in T', and
we are done. Suppose towards a contradiction that no ¢(?0) € S works. We
can express this assumption in the following way: in a language L’ extending
L by a sequence ¢ of n new constant symbols,

for every o(?) € S, T U {0(¢), ~¢(¢)} has a model
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(otherwise, for every model M of T and every 7 in o(M™), M € p(M"),
and so Yi(o(0) = ¢(?)) is in T'). Recall that S is closed under conjunctions
and use compactness to deduce that

TU{o(@ : o(®) € S}U {~¢(d)

has a model. In other words, there are a model A of T and a sequence @ in
A" (the interpretation of ¢in A) such that

d € No()es o (A™)

but @ ¢ p(A"). Put @ = (a1, ..., a,). Now take any quantifier free for-
mula #(7, &) in L and suppose that there is a sequence bin A for which
A = 0(d, _') Let h denote the length of @ (and of b), in particular put
b= (b, ..., by). Then V—0(, ) is a universal L-formula, but & cannot
satisfy it. Hence Vw—0(7, @) ¢ S. It follows that, in some model A" of T,
a suitable sequence a* in ¢(A*™") does not satisfy Vi—6(#, @); hence, for
some b*, A* = 6(a*, b:). We can express this fact in the following way.
Consider the language L(A); to avoid any danger of confusion, distinguish
the elements of A and their names in L(A), and denote by ¢, the constant
symbol corresponding to a, for every ¢ € A. What we have just shown is
that

TU{o(Cayy - -y Cap) JU{B(Cayy -1 Cany Coyy -+ Cbp)}
has a model. Again using compactness and the fact that the quantifier
free formulas of L are closed under conjunction, we see that the union of
TU{¢(cay, -- -, €a,)} and of the whole collection of the formulas 6(c,,, ...,
Cany Chyy - - cbh) where h ranges over nonnegative integers, b= (bl, ooy by)
over A", 0(1), W) over quantifier free L-formulas and A = 6(d, b), has a
model. Let A’ denote the restriction of this structure to L -hence a model of
T-, and let ¢’ = cA for every a € A. Therefore, for every quantifier free L-
formula 6(%, w) and every bin A, A’ |= 6(d’, &) if and only if A |= 8(@, b). So
a — a' for every a € A embeds .A into A’. (ii) implies that this embedding
is existential. Consequently, as A’ = ¢ —‘), one deduces A | (@) -
contradiction-. So a universal o (%) equivalent to ¢(7) exists.
The converse reduction (from universal to existential formulas) can be han-
dled by passing to negations.
At this point, the proof is straightforward. Take an arbitrary L-formula
(7). We are looking for an equivalent existential, or universal formula. If
() has no quantifier, then there is nothing to prove, and we are done.
Otherwise write ¢(7) as

121 ... Qrzra(T, z1, -+, 2k)
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where k is a positive integer, the @;’s (1 < j < k) are quantifiers (V or
3) and «(0, z1, ..., 2x) is quantifier free. Proceed by induction on k, using
what was preliminarily shown: the details are an easy exercise.

At last, let us show that (iv) =-(i). This is quite simple. We know that,
if f : A — Bis any embedding between models A, B of T, then, for
every universal L-formula (%) and every sequence @ in A, B = ¢(f(d))
implies A | ¢(&@). But (iv) ensures that any L-formula is equivalent in T
to a suitable universal formula, and so enlarges the previous statement to
arbitrary formulas. &

As an immediate consequence of (i)=-(iii), let us point out the following
noteworthy fact.

Corollary 3.2.2 In a model complete theory, the definable sets are just the
projections of sets definable by quantifier free formulas.

3.3 Model completeness and Algebra

Model completeness of ACF and RCFE was shown in the last chapter as
a consequence of elimination of quantifiers. Robinson’s Test provides a di-
rect proof (in these and in other relevant cases). Here we wish to illustrate
this new approach. However, the main object in this section is to empha-
size the role of model completeness towards some noteworthy applications
to Algebra. We underlined in 3.1 A. Robinson’s program, and his hope
that a progress in model theory could supply Algebra with new important
and fruitful tools and techniques. Model completeness really exemplifies this
project. In fact, we will see that, just using the model completeness of AC'F
and RCF, A. Robinson found neat and elegant proofs of classical results,
such as the Hilbert Nullstellensatz and the solution of Hilbert’s Seventeenth
Problem (a theorem of Artin). But we want to underline that the model the-
oretic approach can provide not only alternative proofs of previously known
theorems, but also, and more notably, new and original answers to some
formerly open famous algebraic problems, for instance Artin’s Conjecture
on p-adic fields (this will be treated in 3.4).

But now let us show the model completeness of ACF and RCF via the A.
Robinson Test, as promised.

Theorem 3.3.1 (A. Robinson) ACF is model complete.
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Proof. Suppose not. Owing to the Robinson Test, there is some embedding
between algebraically closed fields which is not existential. Let f : K — #
be a counterexample. With no loss of generality, we can assume that K
is a subfield of H# and f is just the inclusion (otherwise, replace K by its
isomorphic copy inside H). There are a quantifier free formula «(%, @) in
the language L = {+, —, -, 0, 1} and a sequence @ in K such that e (7, @)
is true in H and false in K. Incidentally, recall that «(%, @) is (equivalent
to) a disjunction of conjunctions of equations and inequations; however, as
3 is distributive with respect to V, we can assume that a(7, %) is directly
a single conjunction of equations and inequations. Let b satisfy «(d, I;) in

‘H. Form the extension IC(E) of K by b; its algebraic closure K (I;) embeds
itself in #H and satisfies IWa(d, W) because it includes b. So there is no loss

- -

of generality in replacing H by K(b) and hence in assuming that H = K(b)
has a finite transcendence degree (> 0) over K. Now take a transcendence
basis t1, ..., ts of # over K, and split the embedding X C K(ty, ..., ts) by

IC:ICOQIClg g’CSZH

where K; = K(ty, ..., t;) forevery i =1, ..., s. Thereissomei=1,...,s
such that Ida(d, @) is true in K; and false in K;_;. We can replace K C H
by K;_1 C K; and to assume

H=K()
for a single transcendental element ¢ over K. So Iwa(d, &) is true in K(t)
and false in K.
Now take any algebraically closed extension K’ of K having transcendence

degree > 1. Hence K’ enlarges K (u) for some transcendental element u over
K. Steinitz’s analysis of algebraically closed fields tells us that m and
K (u) are isomorphic via a function enlarging the identity of K and mapping
t into u. Then K(u) and, consequently, K’ satisfy Ida(d, @): our sentence
is true in every algebraically closed extension K’ of K with transcendence
degree > 1. Equivalently, in the language extending L(K) by a new constant
¢, IWa(d, W) is a consequence of Th(K k) plus the infinitely many sentences
ensuring that ¢ is transcendental over K, i. e. does not solve any nonzero
polynomial with 1 unknown and coefficients from K. Use compactness and
deduce that finitely many sentences suffice (in addition to Th(Kxk)) to imply
IWe(d, W); in particular, ¢ can be interpreted by a suitable element of K
(out of the roots of a finite system of polynomials in K[z]). In conclusion, K
satisfies IWa(d, @): a contradiction. Hence AC'F is model complete. &
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Which are the main algebraic ingredients of this Robinson proof? Basically,
Steinitz’s analysis of algebraically closed fields. More specifically, two key
points should be underlined:

1. every field has an algebraic closure, and this is unique up to isomor-
phism enlarging the identity in the ground field;

2. if K is an algebraically closed field and ¢ is transcendental over K,
then the isomorphism class of K(t) over K is uniquely determined (in
the sense that two extensions of this kind are isomorphic via a map
extending the identity of K).

One can realize that real closed fields satisfy similar properties:

1. every ordered field has a real closure (a minimal real closed exten-
sion), and this is algebraic over the ground field, and unique up to
isomorphism enlarging the identity in the ground field;

2. if K is a real closed ordered field and ¢ is transcendental over K, then
the isomorphism class of K(t) over K is fully characterized by the cut
t determines over K.

So, when dealing with model completeness for RC'F, one can reproduce the
proof of the algebraically closed case (with some complications due to the
order) and deduce

Theorem 3.3.2 (A. Robinson) RCF is model complete.

Robinson’s Test can also be used to prove the model completeness of several
theories we met in the previous chapter: discrete linear orders, dense linear
orders and so on. The reader may check this, as an exercise. But here we
prefer to discuss some very noteworthy applications of the model complete-
ness of ACF and RCF to Algebra. They provide new elegant proofs of
known algebraic facts.

First let us deal with algebraically closed fields and Hilbert’s Nullstellensatz.

Theorem 3.3.3 (Hilbert Nullstellensatz) Let K be an algebraically closed
field, T be an ideal of the ring K[Z] (where & abridges, as usual, the sequence
of unknowns (z1,...,,)). Then, for every polynomial f(Z) € K[Z],

f(@) =0 for every @ € K™ such that g(@) = 0 for all g(¥) € I
if and only if
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for some positive integer m f™(%) € I.

Proof. The direction from right to left is clear. Conversely, suppose towards
a contradiction that there exists some polynomial f(Z) in K[Z] such that

(@) = 0 for every @ € K" such that ¢(&) = 0 for all g(%) € I
but
f™(%) ¢ I for every positive integer m.

Let J be an ideal of K[Z] such that J D I, no power (%) of f(Z) (with m a
positive integer) lies in J, and J is maximal with respect to these conditions
(Zorn’s Lemma ensures that such a J exists). We claim that J is prime. In
fact, take two polynomials go(Z), ¢1(Z) in K[Z] — J; then the ideals

—
b

Jo generated by J and go(&)
Jy generated by J and g, (%)

strictly include J; accordingly there are two positive integers mg, m; such
that f™ (%) € Jo, f™ (&) € J;. So there exist two polynomials go(%),
¢1(Z) € K[&] such that

(&) — 9:(%)gi (%) € J;, Ve =10,1.

Consequently
fmo +mi ( f)

is in the ideal generated by J and go(%) - 91(%), and so go(%) - ¢1(%) &€ J.
Hence J is prime, and R = K[Z]/J is an integral domain extending K
by the function mapping any a € K to a +J. Then K embeds into the
algebraic closure F of the field of quotients of R. As AC'F is model com-
plete, this embedding is elementary. Now take any (finite) set of generators
Jo(@), .-, fs(Z) of I (I is finitely generated because K[Z] is Noetherian),
and notice that the L(K)-sentence

35 (/\ £i(@) = 0 A= (f(5) = 0)

1<s

is true in F (owing to the sequence (z1+J,...,z,+J)). Consequently this
sentence is true also in K. So there exists some @ in K™ such that & satisfies
fo(Z), ..., fs(Z) and consequently all the polynomials in I, but @ does not
annihilate f(Z) -a contradiction-. &
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Now we deal with RC'F, and with Hilbert’s Seventeenth Problem. This was
solved by Artin in 1927. Indeed Artin himself and Schreier developed the
algebraic notion of real closed field just to answer Hilbert’s question. Later
A. Robinson proposed a very nice and simple proof, founded on the model
completeness of RC'F. Here we want to report A. Robinson’s approach.
First let us introduce Hilbert’s problem in detail.

Indeed the seventeenth question in the celebrated Hilbert 1900 list just con-
cerns ordered fields (more properly, the ordered field of reals ). Recall that,
in any ordered field K, a rational function f(Z) € K (&) is said to be semidef-
inite positive if and only if, for every sequence @ in K (such that f(@) is
defined), f(@) > 0. Of course, the sums of squares in K (%) are semidefinite
positive. Hilbert’s Seventeenth Problem conjectures that the converse is
also true when K is the ordered field of real numbers. As already said, Artin
solved positively this question; indeed he extended the result to arbitrary
real closed ordered fields K. Now we provide A. Robinson’s proof of this
theorem.

Theorem 3.3.4 (Artin) Let K be a real closed ordered field, f(Z) a semidef-
inite positive rational function in K(Z). Then f(Z) can be expressed as a
sum of squares in K(Z).

Proof. We need the following algebraic fact.

Fact 3.3.5 Let K be a field, and assume that, for every natural t and for
every choice of ag, ..., a; € K, if Y ,.,a® =0, thenag = ... = a; = 0 (such
a field K is usually called formally real). Let a be an element of K such that
a cannot be represented as a sum of squares in K. Then there exists a total
order < in K making K an ordered field and a < 0.

Now let us begin our proof. Take a semidefinite positive f(Z) € K(Z).
Suppose towards a contradiction that f(Z) cannot be expressed as a sum
of squares. Clearly K(Z) is a formally real field. So, owing to Fact 3.3.5,
there is some total order relation < in K(Z) with respect to which K(&)
becomes an ordered field and f(Z) < 0. Notice that this order relation
< in K(Z), when restricted to K, does equal the primitive order of K: in
fact, in both these relations, the non-negative elements of K are just the
squares in K. In other words, K is a substructure of K(Z) in our language
for ordered fields. Recall that every ordered field admits a minimal real
closed extension (its real closure), and accordingly embed K (&) into the real
closure R. Altogether we obtain an embedding of K into R. As RCF is
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model complete, this embedding is elementary. But (%), and consequently
R, satisfy the L(K)-sentence

39/ < 0)
(owing to the sequence &). Accordingly also K satisfies 37(f(7) < 0). But
this contradicts our assumption that f(Z) is semidefinite positive. &

3.4 p-adic fields and Artin’s Conjecture

Real numbers complete the rational field with respect to the usual metric
topology. For every prime p, p-adic numbers complete the rationals with
respect to an alternative topology, called p-adic. Let us shortly remind this
topology. First write (uniquely) any nonzero rational a as

a=7p'-
s

where h, r and s are integers, s is positive and h, r, s are pairwise coprime;

then define a function v, from the multiplicative group Q* of nonzero ratio-

nals into the ordered additive group of integers by putting, for a as before,

vp(a) = h.

One gets in this way a group homomorphism from Q* into the integers,
satisfying the additional condition

vp(a+b) > min{v,(a), vp(b)} Va,be Q”

(this is straightforward to check). v, can be formally extended to 0 in some
artificial way; putting v,(0) = oo is a reasonable choice, as p" divides 0
among the integers for every natural number h. Now put, for every positive
integer h,

Or={a€Q : vy(a)> h}

and take the Op’s as basic open neighbourhoods of 0, hence their translations
Oy + b with b € Q as basic open sets. One gets a new topology of the
rationals: the p-adic topology. As already said, the set Q,, of p-adic numbers
is the completion of Q with respect to this topology.

In order to realize as well as possible what a p-adic number is, and so to
introduce Q, in a more detailed way, one can follow several equivalent ways:
see [36] for a general outline of this point. Here we limit ourselves to sketch
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some basic ideas. A possible approach to p-adic numbers might use the well
known fact that every positive integer a has a unique p-adic decomposition

a=do+ap+ ... +a,p"

where n and the a;’s are natural numbers, a,, # 0 and a; < p for all 7 < n.
Under this perspective, v,(a) is just the least 7 < n for which a; # 0. Hence,
for every nonzero natural a,1 < p, it is trivial to realize

p((a + an10™) — @) = vp(anp1p™t) = n 4+ 1.

So, when considering Cauchy sequences of integers with respect to the p-adic
topology and equipping such a sequence with a limit, one naturally builds

infinite sums
oo
g
> aip
1=0

where the a;’s are nonnegative integers < p.
Enlarging the analysis from positive integers to arbitrary nonzero rationals
leads to consider general infinite sums

oo

(%) > ap

=N

where the a;’s are, as above, natural numbers < p, ay # 0 but N is now
any fixed -even negative- integer: in this sense (%) exhibits a typical p-adic
number. 0 can be easily recovered in this framework as the infinite sum
whose coeflicients are constantly 0.

Hence, for every prime p, Q,, is the set of these infinite sums. One defines
in a suitable way addition + and multiplication - in Q,, extending the usual
operations in Q. But here we have to be careful: sum and product are not
computed componentwise, but as suggested by the algebraic framework. For
instance, the trivial identity 1+ (p — 1) = p must be read

(1+0-p)+((p-1)+0:p)=0+1-p.

However these operations equip Q, with a field structure, extending the
rational field; v, can be enlarged to Q, in very simple way, as, for a =
Yoien a;p' as before (and an # 0), vp(a) is just N. One sees that

Z,={a€Q, : vy(a) >0}
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is a local subring (the ring of p-adic integers), and

I, ={a € Qp : vy(a) > 0}

is its maximal ideal. One easily checks that the quotient field Z,/I, is
isomorphic to the field F, with p elements.
We want to underline two further basic properties of Q,.

(a) The first one is quite trivial, and simply points out that v,(p) = 1.

(b) The other is more substantial and concerns the so called Hensel’s
Lemma. This is a key result in locating roots of polynomials in Q,, in
fact it states that,

if f(z) is a monic polynomial in Zy[z], then any decomposi-
tion of f(z) modulo I, in F,[z] as a product of two relatively
coprime monic polynomials lifts to a decomposition of f(z)
as a product of two monic polynomials in Zy[z].

This concludes our short summary about the algebraic structure of Q, for
every prime p. What we have sketched suggests some similarities with the
reals. Actually both Q, and R have a common topological genesis from the
rationals (and, under this point of view, a common topological structure of
locally compact field); moreover there do admit some reasonable criteria to
locate roots of polynomials (the Sign Change property for the reals, Hensel’s
Lemma in the p-adic case).

Now we want to discuss another example, closely recalling Q,. We take any
field K (but below we will be primarily interested in the field F, with p
elements for any prime p). We look at the formal Laurent series

0 .
a(t) = Z a;t’
=N

where a; € K for every i > N and N is a given integer. The corresponding
set K((t)) inherits a field structure extending K, provided that we define
the addition + componentwise and the multiplication - in the obvious way
enlarging the product in K. Again the set K{[t]] of formal power series

st .
Z a;t"

=0
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is a local subring, whose maximal ideal just contains the power series with
ag = 0. One easily deduce that the quotient ring is (isomorphic to) K.

The function vg from the multiplicative group K((t))* (where *, as before,
means to exclude 0) into the (ordered) additive group of integers sending
any nongero Laurent series a(t) as before (with ax # 0) to N again yields a
group homomorphism sharing with v, and Q,, the following property

v (a(t) + (1)) 2 min{uk (a(t)), vk (b(t))}

for all a(t) and b(¢) in K((¢))*.
Now assume K = F, for a given prime p. In this restricted framework

(a) vr,(p) # 1. Notice that this distinguishes F,((¢)) and Q,.

(b) However F,((t)), just as Q,, satisfies Hensel’s Lemma.

An abstract notion including p-adics as well as formal Laurent series and
other related examples towards a common general treatment is the concept
of valued field: this is a structure (K, G, v) where K is a field, G is an ordered
abelian group, and v is a group homomorphism from the multiplicative group
K* in G satisfying the further assumption

v(a+b) > min{v(a), v(b)} Va,be K*.

The function v is called the valuation map. A general algebraic analysis
promptly confirms some basic properties observed in the previous examples:
in particular, for every valued field (K, G, v), {¢ € K : v(a) > 0} is a local
subring (the valuation ring), and its maximal ideal is just {a € K : v(a) >
0}; the corresponding quotient field is called the residue field of (K, G, v),
and will be denoted by K below (hence all throughout this section K denotes
residue field rather than algebraic closure).

A valued field is called Henselian when it satisfies Hensel’s Lemma, hence
when the following holds:

Let f(x) be a monic polynomial in R[z] and let f(z) denote its
projection in K[z]. Then any decomposition of f(z) in K[z] as a
product of two relatively coprime monic polynomials

fz) =7(z) - s(z)
lifts to a decomposition of f(x) into the product of two monic
polynomials in R[z]

f(z) = g(z) - k(z)

where g(z) = v(z) and k(z) = x(z).
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For every prime p, both (Q,, Z, v,) and (Fy((t)), Z, vr,) are Henselian
valued fields (although they do not admit the same characteristic, and hence
their valuation of p is not the same).

Now let us come back to our original framework and hence to p-adic numbers.
Here Artin proposed a famous conjecture.

Conjecture 3.4.1 (Artin’s Conjecture) Let p be a prime. For all positive
integersn and d with n > d?, every homogeneous polynomial f(z1, ..., x,) €
Qulz1, ..., £,] of degree d has a nonzero root in Q,.

The conjecture is inspired by the underlined resemblance between Q, and
F,((t)) for every prime p. Actually in the valued field F,((t)) the claim is
true for every choice of p, n and d, as proved by Lang. But the behaviour
of the p-adics in this setting is not the same, in fact Artin’s Conjecture fails
for some p, n and d. This was observed by Terjanian, who in [161] did
exactly what one is expected to do in disproving a statement, and exhibited
a counterexample for some suitable p, n and d.

However an asymptotic form of the conjecture is true: for any choice of n
and d, Artin’s statement is satisfied by all but finitely many values of p. This
was the content of a celebrated theorem of Ax, Kochen and Ershov in 1965,
which, combined with Terjanian’s counterexample, provides a sufficiently
complete answer to the question. The Ax-Kochen-Ershov approach is es-
sentially model theoretic. Indeed, they developed a general analysis of the
model theory of valued fields, and deduced the asymptotic form of Artin’s
Conjecture as a consequence, using compactness and transfer techniques.
Let us briefly survey their work.

First of all, we have to clarify how to handle valued fields from a model the-
oretic point of view: which language to use, and so on. The more convincing
approach views a valued field as a two-sorted structure, in other words as a
structure with two sorts of variables, where

* the former sort of variables concerns the elements of the field,

x the latter sort of variables is devoted to the elements of the valuation
group;

moreover there are the usual field symbols for the former sort, and (dis-
jointly) the symbols of ordered groups for the latter; finally a 1-ary oper-
ation symbol v is reserved for the valuation map. Valued fields are easily
axiomatized in a first order way in this language.

This approach emphasizes, within valued fields (K, G, v), the role of three
underlying structures:
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the original field K,
the ordered abelian group G,

and finally, to capture the valuation map v,
the residue field K.

Ax, Kochen and Ershov show that these structures rule the behaviour of
the whole valued field (K, G, v) with respect to elementary equivalence. In
fact, their main general result says

Theorem 3.4.2 Let (K, G, v) be an Henselian valued field, whose residue
field has characteristic 0. Then the complete theory of (K, G, v) is fully
determined by the complete theories of the ordered valued group G and the
residue field K.

Warning: The theorem does not apply directly to Q, or to F,((t)) for
any prime p because these valued fields do not respect the hypothesis on
the characteristic of the residue field. Nevertheless the Ax-Kochen-Ershov
main theorem is enough to throw a bridge between the valued fields of
Laurent series F,((t)) and the p-adic valued fields Q, with respect to Artin’s
Conjecture, and to deduce its asymptotic solution.

Theorem 3.4.3 (Ax-Kochen-Ershov) For all positive integers n, d with
n > d?, for all but finitely many primes p, every homogeneous polynomial
f(@1, .-y Tn) € Qplay, - .., z,] of degree d has a nontrivial root in Q.

Proof.  (Sketch) We can limit ourselves to treat the case n = d* + 1.
Otherwise put z; = 0 for n > ¢ > d?+1 and work with 4, ..., T;24,: up to
rearranging the indices of our unknowns, we can assume that what we get
in this way is a homogeneous polynomial of degree d in 21, ..., 424, and
every nontrivial zero of this polynomial clearly produces a nontrivial root of
f(z1, ..., z,). Needless to say, for any fixed d (and n), Artin’s Conjecture
becomes a first order sentence oy in the language of valued fields: this is
a routine exercise, easy to check. We know from Lang that this sentence
ag is true in the valued field (F,((¢)), Z, vp,) for all primes p. This fact,
in particular its uniform validity for every p, is noteworthy; actually, we
are in a situation quite similar to the one described in Chapter 2, § 4, for
algebraically closed fields. In particular, one can apply the same transfer
machinery, combine the Ax-Kochen-Ershov main theorem and Lang’s result,
and in conclusion deduce that aq is true in every valued field (K, G, v) such
that
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* K is Henselian,

* G is elementarily equivalent (as an ordered group) to the integers (G is
called a Z-group in this case),

% the residue field K is a pseudofinite field of characteristic 0.

Of course, this does not concern directly any p-adic field Q,, because its
residue field has characteristic p. But, in proving g4, only finitely many
sentences about the characteristic 0 of the residue field are necessary. This
implies that aq is true in Q,, for almost all primes p, as claimed. &

Owing to the Terjanian counterexample quoted before, this Ax-Kochen-
Ershov answer to the Artin Conjecture is the best possible.

None of these results refers directly to model completeness. Nevertheless
the spirit and the techniques of the model theoretic approach of Ax, Kochen
and Ershov clearly owe to A. Robinson’s ideas, and are intimately related
to his dream of linking Algebra and Mathematical Logic via Model Theory.
One should also remember that the Ax-Kochen-Ershov main theorem does
not apply to the p-adic fields Q,, because, as already observed, the charac-
teristic of their residue fields is not 0. So one may wonder, for every prime p,
how to characterize Q,, and even its twin F,((t)), up to elementary equiva-
lence, in other words how to axiomatize in a first order way their complete
theories (incidentally recall that Th(Q,) # Th(F,((t)), because the involved
characteristics are not equal). Here model completeness sounds useful. In-
deed, we already underlined that p-adics and reals share several relevant
similarities: model completeness, and a precise first order axiomatization,
are among them. In fact, the following theorem holds.

Theorem 3.4.4 (Ax-Kochen-Ershov) For every prime p, let T, be the the-
ory of the valued fields (K, G, v) such that

* K is Henselian and has characteristic 0,

* G is a Z-group,

x the residue field K is (elementarily equivalent to) the field with p elements,
* v(p) is 1 -the least positive element in G-.

Then T, is model complete and complete. In particular T, is the theory of
the valued field of p-adic numbers.
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What can we say about definable sets in Q,, or also about quantifier elimina-
tion for p-adics? Macintyre showed quantifier elimination in a very natural
language with additional relation symbols for the valuation ring and the set
of n-th powers for every n. This provides, of course, some more information
on definable sets; in particular, one can see that the p-adics satisfy

Theorem 3.4.5 (Macintyre) Every infinite definable subset of Q, has a
nonempty interior.

Notice that this is exactly what happens for the reals. Finally, let us remind
that 7}, is not the theory of F,((¢)); actually, the question of determining
the first order theory of this valued field seems still open.

3.5 Existentially closed structures

Example 3.5.1 The class of fields and the subclass of algebraically closed
fields satisfy the following properties:

(i) every field embeds into an algebraically closed fields (for instance, into
its algebraic closure);

(ii) every embedding between algebraically closed fields is elementary (in
other words, the theory ACF is model complete).

Consequently (in our language L for fields)

(iii) for every embedding of an algebraically closed field K into a field #,
and for every quantifier free formula ¢(@) of L(K), if H = Fbp(w),
then K | Jwep(w) (in other words the embedding is existential).

In fact, owing to (i), # embeds in some algebraically closed field #; as
H | Ibp(i), also H satisfies Jbp(w). Clearly K embeds into H through
H, and this embedding is elementary because of (ii). Hence K |= Jwp(w).
Notice that (iii) is not a secondary property, but does include the definition
itself of an algebraically closed field K. In fact, the latter requires that every
non-constant polynomial f(z) € K[z] has a root K, or, equivalently, that £
satisfies all the L(K)-formulas

Fu(f(w) = 0)

(true in some extension of K). (iii) says that this still holds when we replace
f(w) = 0 by any quantifier free L(K)-formula ¢(w) (with arbitrarily many
variables).
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From an algebraic point of view, (iii) implies that any finite system of equa-
tions

fo(f) = 07 .. ’ft(f) = 07

with fo(Z),..., fi(Z) € K[Z], has a solution in our algebraically closed field
K whenever it finds a zero in some extension of K: to see this, just apply
(iii) to

e(®) : \ fi(¥) = 0.

i<t

Example 3.5.2 A similar analysis can be developed in the language L of
ordered fields with respect to the subclass of real closed fields.
In fact

(i) any ordered field has some real closed extension (for instance, its real
closure);

(ii) any embedding between real closed fields is elementary (as the theory
RCF is model complete).

(i) and (ii) imply, just as in the previous case, that, in the language L of
ordered fields,

(iii) for every embedding of a real closed field K into an ordered field H
and for every quantifier free formula (W) of L(K), if # | Fdp(w),
then K | Jdip(w).

Algebraically speaking, (iii) implies that, in a real closed field K, any finite
system of equations and disequations

fO(f) = 0’ .. 7ft(f) = 07 gO(f) > 07 .. -795(5) > 07

with fo(Z),..., fi(Z), g0(%), ..., 9s(Z) € K[Z], admitting a solution in some
ordered field extending K, does have some solution even in K.

So (iii) is not a minor property of real closed fields but includes their defini-
tion itself, or, more precisely, their characterization saying that real closed
fields are just the ordered fields K with no proper ordered algebraic exten-
sion: if f(z) € K[z] has a root in some ordered extension of K, then it finds
a solution also in K.

Now consider any class K of structures in a language L. The previous
examples suggest the following notion.
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Definition 3.5.3 A structure A in K is existentially closed (e. c.)
if and only if every embedding of A in some B € K is existential (i. e.,
for every quantifier free L(A)-formula o(@), if B E Iva(w), then A |=
ABa(w)).

Let £(K) denote the class of e. c. structures in K. Clearly, among fields,
e. c. structures are just the algebraically closed fields, and, among ordered
fields, e. c. structures are just the real closed fields.

Given a class K # (), first we can wonder whether there exist some e. c.
structures in K, and hence whether £(K) # 0. The answer is positive, at
least under some simple conditions on K. For instance, one can see what
follows.

Example 3.5.4 Let K be a class of structures. Assume that, whenever
(I,<) is a totally ordered set and each ¢ € I indicates a structure A; € K
in such a way that, for 1 < j in I, A; is a substructure of A4;, then the
union A = J;cs A; -as defined in Chapter 1- is still in K. In this case, every
A € K embeds in some structure of £(K); in particular, £(K) is not empty.

'Notice also that, in the examples above, K is elementary, as well as £(K).
Accordingly one can wonder whether, in general, if K is elementary, then
£(K) is. The answer is negative.

Examples 3.5.5 (a) If K is the -elementary- class of groups, then
£(K) is not elementary any more (this is a result of Eklof and Sab-
bagh).

(b) If K is the -elementary- class of commutative rings, then £(K) is
not elementary any more (as shown by Cherlin).

The proofs mix compactness and some algebraic facts. We shall provide
their details at the end of this section. It should be emphasized that, while
e. c. fields are fully characterized in a first order way, e. c. rings are
not. The same happens for groups. Conversely, among abelian groups, e.
c. structures are an elementary class: they are exactly the divisible abelian
groups admitting infinitely many elements of period p for every prime p;
this is shown in [41], where e. c. closed modules over suitable rings are also
discussed.

However, take an elementary class K; let 7' denote its theory. If £(K) is
elementary, then T* = Th(£(K)) is said to be a model companion of T'.
Clearly T C T*. Moreover the following result holds (generalizing what was
observed in our starting examples).
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Theorem 3.5.6 (Eklof - Sabbagh) Let K be an elementary class of L-
structures, T = Th(K), T* be an L-theory containing T. Then T* is a
model companion of T (and £(K) = Mod(T™)) if and only if

(i) for every A € K, there exists some B € Mod(T*) where A embeds

in;
(i) T* is model complete.

Existentially closed structures, and model companions, were intensively
studied in the sixties and in the seventies. Several -elementary- algebraic
classes K were considered, to check whether existentially closed structures
in K were or not an elementary class, to provide a satisfactory characteriza-
tion in the positive case, and to analyse their complexity in the negative one.
This was not (and is not) a barren and unproductive exercise: in fact, it
brought to light some very interesting classes of (existentially closed) struc-
tures, such as differentially closed fields. We shall treat them (and other
key examples) in the next sections; but we want to emphasize since now
that the notion itself of differentially closed field -a quite algebraic concept-
arises for the first time within the framework of e. c. structures: no algebraic
treatment preceded the model theoretic approach. Moreover, it should be
pointed out that new interesting elementary classes of existentially closed
structures have been considered quite recently, for instance among fields
with a distinguished automorphism. This framework, too, will be explained
later in this chapter.

Also in the negative case, when existentially closed structures cannot form
an elementary class, their analysis has some intriguing features. The main
purpose here is to understand the reasons of nonelementarity and, hence, in
some sense, to measure how complicated the class of e. c. objects is. To
illustrate this point, we show, as promised, that existentially closed groups
are not an elementary class, and the same is true for existentially closed
commutative rings (with identity), and we discuss briefly these negative
results. First let us deal with groups.

Theorem 3.5.7 (Eklof - Sabbagh) Let K be the -elementary- class of groups.
Then £(K) is not elementary.

Proof. We work in the language L = {-, 7!, 1}. We need two preliminary
facts. G denotes an e. c. group.

Fact 3.5.8 For every positive integer n, G admits some elements of period
n.
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Proof.  Take the direct product G’ of G and a cyclic group of order n.
Clearly G' has some elements of period n, in other words it satisfies the
existential sentence Jw(w™ = 1 A Ay, dn ~(w? =1)). AsGise c, G
satisfies the same condition, hence it has some elements as required.

Fact 3.5.9 Two elements of infinite period in G are conjugate.

Proof. This is a more delicate point, and refers to a theorem of Higman,
B. H. Neumann and H. Neumann, building, for any two elements « and b
of infinite period in G, a group G’ extending G and an element t € G’ such
that tat=! = b. So G’ | Jw(waw™! = b). G inherits this property because
it is existentially closed.

Now assume £(K) elementary, £(K) = Mod(T) for a suitable L-theory T.
Fact 2 says that, in a language L’ extending L by two new constant symbols
¢ and d,

TU{=(c"=1),=(d*=1) : n€ N,n> 0} E Jw(wew™" = d).
By compactness there is some positive integer N for which
TU{~(c"=1),~(d"=1) : 0< n < N} | Iw(wew™ " = d).

Hence take an e. c. group G and two elements a, b in G of period N + 1,
N + 2 respectively: owing to Fact 1, this can be done. Then a and b are
conjugate in G: but this clearly contradicts the fact that their periods are
different. &

Actually existentially closed groups are a very complicated class: [91] con-
tains several results illustrating their wildness. In particular, we like to
mention a noteworthy connection with the word problem for groups.

Theorem 3.5.10 (Macintyre, Neumann) A finitely generated group can be
presented with a solvable word problem if and only if it is embeddable in all
€. C. groups.

Now let us deal with rings.

Theorem 3.5.11 (Cherlin) Let K be the -elementary- class of commutative
rings with identity. Then £(K) is not elementary.

Proof.  Throughout the proof, ring abbreviates commutative ring with
identity. Accordingly we work in the language L = {4+, —, -, 0, 1}. Again,
we need two preliminary facts. R denotes an e. c. ring.
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Fact 3.5.12 The nilradical of R (i. e. the ideal of nilpotent elements) is
0-definable in R in a uniform way (valid in any e. c. ring).

Proof.  We claim that, for every a € R, a is nilpotent if and only if a
does not divide any nonzero idempotent element. This is clearly enough
for our purposes, because the latter condition can be easily written as a(n
existential) first order formula in I

Fw(v-w=v?-w?A-(v-w=0)).

The implication from the left to the right is quite simple. For, let a divide
some idempotent e € R; as ¢™ = 0 for some integer n > 2, it follows
0 = e" = e. Conversely, assume that a is not nilpotent. Form the quotient
ring R’ = R[z]/I where I is the ideal generated by the polynomial az —a?z?.
Then R’ extends R in the obvious way, by the embedding of R in R[z] and
the projection of R[z] onto R’. In R’ the image I + a of a divides the
idempotent I + az; moreover I + az # 0, otherwise in R[z]

(%) az = (az — a®2?) f(z)

for some f(z) = ¥, fiz® € R[z]. A comparison of the coefficients of the
same degree in (%) yields

afo = a,

Afi=afiyy Vi=1,...,n—1,

and, eventually,

a’f, =0.
In particular a"*t? = 0 -a contradiction-. So the image of a in R’ divides a
nonzero idempotent; as R is e. c., a satisfies the same condition in R.

Fact 3.5.13 For every positive integer n, R contains some nilpotent a sat-
isfying a™*! =0 and a™ # 0.

Proof. Again enlarge R to suitable quotients of the polynomial ring R[z].
This time, for every positive integer n, form R’ = R[z]/I where I is the
ideal generated by 2™*!. One easily checks that R embeds in R’ by the map
a v+ I+ a for every a € R; moreover (I + z)"*! = I, while (I +z)" # 1.
Hence R’ satisfies Jw(w™! = 0 A ~(w™ = 0)). As R is e. c., the same is
true in R.

Now we can conclude our proof. Again we use compactness. Enlarge L by
a new constant symbol ¢ and, in the new language L', look at

T'=Th(E(K))U{~(c"=0) : n€ N,n > 0}U
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U{3w(c-w = - w? A=(c-w=0))}.

Every finite 7§ C T’ has its own model: for, there is a positive integer N
such that

Ty € Th(E(K)U{=(c" =0) : 0 < n < NYWU{Fw(cw = > w A=(cw = 0))},

and the latter set of sentences does admit a model: it suffices to take an
e. c. ring and interpret ¢ in a nilpotent element a satisfying a’¥ # 0 (Fact
2 ensures that a exists). By compactness 7’ has a model: this is a ring
satisfying the same sentences as e. c. rings, but it is not e. c., because
it contains a nonnilpotent element (the interpretation of ¢) dividing some
nonzero idempotent. In conclusion, £(K) is not elementary, because its
theory has non e. c. models. &

Notably, nilpotents are the key obstacle to the non elementarity of the class
of e. c. rings. In fact, for the restricted class K of reduced rings (i. e.
rings without nonzero nilpotents) £(K) is elementary. On the other side, if
one allows nilpotent elements, even of bounded exponent (for instance one
considers rings whose nilpotents a satisfy ¢* = 0), then the elementarity of
e. c. objects gets lost [164].

3.6 DCF,

A differential ring is a commutative ring K with identity, having an addi-
tional 1-ary operation D (called derivation) such that

D(a+b) = Da + Db,
D(a-b)y=a-Db+b-Da

for every a and b in K. A differential field is a differential ring which is also
a field. So a suitable first order language L' for differential fields enlarges
our language L for fields by a new 1-ary operation symbol (to be represented
by D).

Differential fields include

e (K, D) where K is any field and D = 0,
but also more significant and interesting structures, like

e (K(z),4) where K is any field, K(z) is the field of rational functions
with coefficients from K in the unknown z, and gd; is the derivative
operation;
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e for any nonempty connected open subset U of C, the field of mero-
morphic functions from U to C, with respect to the usual derivative.

Differential fields and rings were introduced by Ritt in the thirties, and
differential algebra developed greatly since then. Now classical and excellent
references, like [76] or the nimbler [67], expound its foundations. For our
purposes in this section, we just need a few algebraic crumbs on differential
fields (K, D).

First of all, notice that the usual derivation rules for powers and quotients,
like

D(a™) = na" ' Da

for every element a in K and every integer n, still hold and can be easily
deduced from the definition.

Moreover, the elements a € K such that Da = 0 form a subfield of K, called
the constant subfield and denoted C'(K).

Instead of the usual (algebraic) polynomials f(z) € K[z], now differential
polynomials are considered: they are algebraic polynomials in the unknowns

z,Dx,...,D", ...

where 7 is a natural, and form a differential ring K{z} with respect to the
obvious operations.
For every non-zero differential polynomial f(z) € K{z} we can define

e the degree of f(z) (with respect to z, or Dz, and so on)
but also

e the order of f(z): this is the maximal natural n» such that D"z occurs
in f(z), if there is some n with this property, and —1 otherwise, so
when f(z) = a € K (clearly one agrees D%z = z).

Differential polynomial rings in more variables K{Z} are introduced in the
same way.

What is the role of model theory in this setting? As we shall see in a few lines,
it is quite relevant, mainly with respect to existentially closed structures.
Actually differential algebra did not provide, before model theory, any notion
of differentially closed field -something resembling algebraically closed fields
among fields, or real closed fields among ordered fields-. But the interest in
existentially closed structures, and hence, particularly, in existentially closed
differential fields, led A. Robinson to consider this question from the model
theoretic point of view.
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Hence take the -elementary- class of differential fields in our language L'.
We wonder if the class of existentially closed objects is elementary, in other
words if the theory of differential fields has a model companion. At this point
it is advisable for us to distinguish in our treatment the characteristic 0 case
from the prime characteristic case. We shall devote the next section to the
latter; hence, now we limit ourselves to differential fields of characteristic 0.
In this restricted framework, A. Robinson pointed out

Theorem 3.6.1 (A. Robinson, 1959) The theory of differential fields of
characteristic 0 has a model companion, and this eliminates the quantifiers
in the language L'.

This model companion was denoted DC Fp; its models were called differen-
tially closed fields (of characteristic 0). Unfortunately, A. Robinson’s ap-
proach was not able to determine any incisive first order axiomatization for
DCF,. Actually, what was lacking at that time was a suitable background.
In fact, in the paradigmatical cases of ACF and RCF, the notions them-
selves of algebraically closed field and real closed field clearly preceded A.
Robinson’s treatment, and the existence and uniqueness of an algebraic clo-
sure and a real closure played a key role in the model completeness proofs.
On the contrary, in the differential case, the concept of differentially closed
fields was just rising within the model theoretic approach, and, consequently,
nothing resembling a differential closure of a differential field (as a minimal
differentially closed extension) was known, even in characteristic 0.
Accordingly one had to wait for new significant progress in model theory,
mainly due to Michael Morley, before overcoming this algebraic gap. We
shall refer in detail Morley’s ideas, and their effects for differentially closed
fields, in Chapter 6. But we wish to anticipate here a short report on the
end of the affair (so far). In particular, we want to recall that in 1968 L.
Blum, in her PhD thesis, found an elegant and nice axiomatization of DC Fy.
What she showed was

Theorem 3.6.2 (L. Blum) Among differential fields (K, D) in characteris-
tic 0, the existentially closed objects are exactly those satisfying the following

property:

(x) for every choice of f(x) and g(z) in K{x} — {0} such that the order of f
is larger than the order of g, there is some a € K for which f(a) =0

but g(a) # 0.

It is easy to express (%) in a first order way by infinitely many sentences
in L'. L. Blum’s work is described in Sacks’s book [146]: she confirmed
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quantifier elimination, model completeness (and completeness) of DC Fy;
but her analysis went farther and, combined with a quite abstract model
theoretic result of Shelah, yielded

Theorem 3.6.3 Any differential field (K, D) of characteristic 0 has a dif-
ferential closure (a minimal differentially closed extension), and this is
unique up to isomorphism fizing K pointwise.

We shall refer in more detail on this point in Chapter 6. But we want
to emphasize that, at last, differential closures do exist and are unique (in
characteristic 0), and the model theoretic approach of A. Robinson and L.
Blum was the very first not only in introducing differentially closed fields,
but also in showing these existence and uniqueness results. Of course, some
mystery still persists. Most notably, it is surprising, and perhaps regrettable,
to learn that, presently, no explicit example of differentially closed field is
known.

However, we conclude this section by discussing some minor but useful
points.

First of all, notice that every differentially closed field (K, D) of character-
istic 0 is algebraically closed: to see this, just apply Blum’s theorem to the
particular case when f(z) € K{z], g(z) = 1. Similarly the constant field
C(K) is algebraically closed (we will see why in Chapter 6).

Secondly, what can we say about definable sets in a differentially closed field
(K, D) of characteristic 07 Here

(%) the basic definable sets are, of course, the sets of roots of finite systems
of differential polynomials in K{Z}; they are just the closed sets in
a Noetherian topology (the Kolchin topology) in K™ (where n is the
length of %);

(x) the Kolchin constructible sets -i. e. the finite Boolean combinations of
Kolchin closed sets- are still definable, of course;

(%) owing to the elimination of quantifiers, no further definables occur; in
other words, definable just means Kolchin constructible.

3.7 SCF, and DCF,

As promised, we want to deal here with differentially closed fields in prime
characteristic p. But our treatment needs a preliminary remark. Indeed we
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underlined in the previous section that differentially closed fields of char-
acteristic 0 are algebraically closed as well. This cannot hold any more in
the prime characteristic case. In fact, take any differential field (KC, D) in
characteristic p: notice that K? C C(K) because

D(a?) =pa® ' Da=0 VacK.

Now any algebraically closed field of characteristic p is perfect; in other
words, every element can be (uniquely) expressed as a p-th power. It fol-
lows that no differential field of characteristic p can be algebraically closed,
except the trivial case when the derivation D is identically 0. In particular
we cannot expect that the underlying field of a differentially closed field is
still algebraically closed. This remark threatens some major complications
with respect to the characteristic 0 case; and anyhow suggests a prelim-
inary analysis on some possible weak closure notions for pure fields K in
characteristic p, compatible with K # K?.

Accordingly, take a field K (in any characteristic). A polynomial f(z) € K[z]
of degree > 1 is said to be separable if and only if f(2) has no multiple roots
(in the algebraic closure of K).

When K has characteristic 0, every irreducible polynomial f(z) € K[z] is
also separable. Otherwise a multiple root a of f(z) annihilates also the
formal derivative f'(z) of f(z) -still a polynomial in K[z]-, and hence the
greatest common divisor ¢(z) of f(z) and f'(z) (in K[z]). So g(z) is not
constant; however the degree of ¢(z) is strictly smaller than the degree
of f(z), because it is less or equal to the degree of f’(z). Hence f(z) is
reducible.

Now assume that K has a prime characteristic p. Recall the Frobenius
morphism Fr in K (and in every extension of K), the one sending any
element « into its p-th power a?. Fr is injective. This time, K[z] may include
some irreducible non-separable polynomials: for instance, given a € K — K?
and a positive integer h,

flz) = " —a

is irreducible, but has a unique root in the algebraic closure of K because
Fr is 1-1; notice that f'(z) = 0.

We say that K is separably closed if and only if every separable polynomial
f(z) in K[z] has a root in K.

Separably closed fields K form an elementary class in the language L of
fields; in fact, they are axiomatized by the infinitely many sentences saying
that every polynomial f(z) with a non-zero derivative has a root in K.
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However, in characteristic 0, separably closed just means algebraically closed.
On the contrary, in a prime characteristic p, there exist some separably
closed, non-algebraically closed fields; indeed one shows that a field K is

algebraically closed
if and only if
K is separably closed and F'r is onto (that is, K = K? is perfect).

If this is not the case, we are led to consider the field extension K 2 K? and
hence K as a vectorspace over KP. A set B C K is called a p-basis of K over
K? if the monomials

€o €n
Qg .. 0y",

(when n, e, ..., €, range over natural numbers, ao, ..., a, are pairwise
distinct elements in B and e; < p for every ¢ < n) form a basis of K over
KP (as a vectorspace). One shows that a p-basis B always exists and its
cardinality depends only on K: it is called the imperfection degree of K.
The model theory of separably closed (possibly non algebraically closed)
fields K of prime characteristic p was investigated by Ershov in 1967 [46].
Let SCF, denote their theory. Of course, SC'F}, is not complete, because
the imperfection degree of these fields may change, and suitable first order
formulas in the language of fields can express its value, when finite, or witness
its infinity otherwise. But Ershov observed that this imperfection degree is
the only obstruction to completeness; in fact, he showed

Theorem 3.7.1 (Ershov) Let K be a separably closed field of prime char-
acteristic p. Then the elementary equivalence class of K is fully determined
by its imperfection degree, if finite, or by the fact that this degree is infinite,
otherwise.

Ershov’s proof shows (and uses) model completeness in a suitable enriched
language capturing the notion of p-basis. Notice that separably closed fields
do have some noteworthy algebraic connections with differential fields. For
instance, given any separably closed field K and a p-basis B of K, one can
see that any function é from B to K enlarges uniquely to a derivation D of
K, and so equips K with a structure of differential field.

This relationship between separably closed fields and differential fields in
prime characteristic p gets stronger if we enter the model theoretic frame-
work and we consider differentially closed fields. But, before providing more
details, we have to explain what a differentially closed field in characteristic
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p is. Indeed, we still have to clarify if, even in this setting, existentially
closed objects are an elementary class: so far, we have simply realized that
the analysis should be more complicated than in characteristic 0, because
no existentially closed differential field can be algebraically closed.

Well, the answer is again positive: the theory of differential fields of charac-
teristic p does admit a model companion. This is the content of a theorem
of Carol Wood, who also found a nice axiomatization of existentially closed
objects.

Theorem 3.7.2 (C. Wood) A differential field (K, D) in characteristic p
is existentially closed if and only if

(i) C(K) equals K?,

(ii) for every choice of two differential polynomials f(z) and g(z) in
K {2} —{0} such that the order of f(z) is greater than the order of g(z)
and the formal derivative of f(z) with respect to D™z is not 0, there is
some a € K such that f(a) =0 and g(a) # 0.

The model companion of the theory of differential fields in characteristic p is
usually denoted DCF,; its models -hence the existentially closed differential
fields- are again called differentially closed fields. Notably, they are separably
closed: this is implicitly said in (ii), provided that we restrict to polynomials
f(z) of order 0 and we take g(z) = 1. Moreover their imperfection degree is
infinite, because the dimension itself of K over C{K) = K? is infinite: to see
this, just use (ii) again and take, for every positive integer m, an element
Z,, in K satisfying D™z, = 0 and D™ 'z, # 0; notice that the z,,’s are
linearly independent over C'(K) (this is an easy exercise).

DCF, is model complete and complete, but does not eliminate the quanti-
fiers in the language L’: quantifier elimination needs a larger setting, with
a further operation extracting p-th roots when possible, and valuing 0 oth-
erwise.

Again, general results of pure model theory ensure the existence and unique-
ness of a differential closure for differential fields (K, D) satisfying C(K) =
KP.

3.8 ACFA

In this section we deal with difference fields. These are structures (K, o)
where K is a field and ¢ is a distinguished (surjective) automorphism. More
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generally, difference rings can be introduced in the same way. Difference
fields include some trivial examples like

(K, id) for every field K
but also
(K, Fr)

where K is a perfect field of prime characteristic p and Fr is the Frobenius
morphism in K: for every a € K, Fr(a) = a”. Notice that these examples
include any finite field K.

At a superficial sight, this setting resembles differential fields. In both cases
the underlying field is enriched by a 1-ary operation, and the only dissonance
concerns the rules that this new function has to satisfy: the derivation
laws in the differential case, and the morphism laws presently. Of course,
this connection is shallow, and sharp distinctions arise in examining these
structures in a deeper way. Nevertheless some (minor) similarities persist.
For instance, given a difference field (K, o), one can look at the fixed subfield

Fiz(o)={a € K : o(a) = a}.

This resembles in some way the constant subfield of a differential field.
Similarly, instead of algebraic polynomials f(z) € K[z], one can form differ-
ence polynomials in z (or, possibly, in more unknowns): they are algebraic
polynomials in

¢, o(z), o*(z), ..., a"(2), ...

(with n natural). So formally this is the same set as in the differential case;
but, of course, the new rules relating ¢ and the operations of addition and
multiplication dictate a different ring structure. This ring is usually denoted
K{z) and gets a difference ring structure extending (K, o) in the obvious
way.

Difference algebra was began by Ritt in the thirties; now it is largely devel-
oped and includes some fundamental references, such as [28] (warning: the
terminology used in [28] is not the same as here; in fact in that book a dif-
ference field is a field with a distinguished monomorphism o; when o is also
surjective, the difference field is called inversive). What can we say within
the model theoretic approach? First of all, notice that the language for dif-
ference fields enlarges {+, -, —, 0, 1} by a new l-ary operation symbol. So
the resulting setting again reminds differential fields, although now we prefer
to denote the new symbol by o. Difference fields are easily axiomatized in
a first order way in this language.
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But our main question is how to characterize existentially closed difference
fields. Is their class axiomatizable? In other words, does the theory of
difference fields admit a model companion?

We should emphasize that this interest in existentially closed difference fields
is comparatively recent. Indeed, at the beginning of the nineties, Macintyre,
Van den Dries and Wook showed their elementarity and found a nice (al-
though non trivial) axiomatization: this is reported in [95]. In detail

Theorem 3.8.1 A difference field (K, o) is existentially closed if and only
if

(i) K is algebraically closed;

(i) for every irreducible affine variety U over K and for every subvariety
V of U x o(U) such that both the projections of V into U and o(U) are
dense with respect to the Zariski topology, there is a point a of U (over
K ) for which (a, o(a)) is in V.

Expressing (ii) in a first order way is not immediate, because it requires,
after all, to quantify with respect to irreducible varieties. However this can
be done, owing to general boundedness results for (algebraic) polynomials
over fields [172].

The theory of existentially closed difference fields is denoted AC'F'A; their
models are called algebraically closed fields with an automorphism, although
this name is a little misleading, and we have to be careful about it. So recall
that they are not simply algebraically closed fields enriched by any arbitrary
automorphism, but just existentially closed structures among fields with an
automorphism: (ii) has to be respected. Of course AC'F'A is model complete,
as a model companion. But ACFA is not complete. However one shows
that the key features fully determining the elementary equivalence class of
a model (K, o) of ACF A are

(%) the characteristic of the underlying field £,
and

(x) the action of ¢ on the algebraic closure of the prime subfield (up to
isomorphism).

The interest in ACF A is also related to its role towards a model theoretic
proof of classical questions in Algebraic Geometry, like the Manin-Mumford
Conjecture. We will discuss this point in Chapter 8. However these intrigu-
ing connections led to a systematic study of ACF A, mainly pursued by
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Chatzidakis and Hrushovski in [20], and later by Chatzidakis, Hrushovski
and Peterzil in [21]. Here we limit ourselves to some very basic information.
First of all, it turns out that, for any algebraically closed field with an
automorphism (K, o), the fixed subfield Fiz(o) is pseudofinite, so it satisfies
the axioms of finite fields, but (consequently) it is not algebraically closed.
What about definable sets?

e First one meets the zero sets of finite systems of difference polynomials
in K(Z); they are, again, the closed sets in a Noetherian topology for
K" (where n is the length of Z). Fiz(o) is an example, because it is
defined by o(v) = v.

o Secondly, one has to include the constructible sets in this topology, i.
e. the finite Boolean combinations of closed sets.

e However, this is not enough, because quantifier elimination fails for
ACFA in its original language. So definable does not imply con-
structible. Here is a possible counterexample. We work inside an
”algebraically closed field with an automorphism” (K, o) of charac-
teristic 0 and suitably large cardinality. Due to this assumption and
existential closedness, we can find inside K two elements ¢ and b tran-
scendental over the prime subfield Q, a and b in Fiz(o), and two
square roots a’ and b’ of a, b, respectively, such that

o(a')y =d, o(b) = b

a and b satisfy the same quantifier free formulas, because they are
fixed by o and f(a), f(b) # 0 for every nonzero polynomial f(z) over
the rationals. Nevertheless

o(v) =v A Jw(w? = v A -(o(w) = w))

holds for b and not for a, and hence defines a non-constructible set. Of
course, owing to model completeness, the projections of constructible
sets exhaust the definable ones.

Of course, owing to model completeness, the projections of constructible
sets exhaust the definable ones.

A final important remark. We saw that no example of differentially closed
field (even in characteristic 0) is known so far. This is not the case for
ACFA. 1n fact, Hrushovski and, independently, Macintyre built some mod-
els (K, o) of ACFA explicitly; they are obtained by considering suitable
pseudofinite fields with a rather natural extension of the Frobenius mor-
phism.



3.9. REFERENCES 119
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An excellent introduction to model completeness is in Macintyre expository
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nilpotent elements is also discussed by Carson [17], Lipshitz-Saracino [86],
and Macintyre again [92], who observed that the theory of commutative
rings without nonzero nilpotent elements do have a model companion. See
also [164]. Differentially closed fields are introduced in {142], but their model
theory (in characteristic 0) is principally developed in L. Blum’s Ph.D. The-
sisi [12], also related in the Sacks book [146]. By the way, both [76] and [67]
provide complete treatments of the basic differential algebra.

The Ershov model theoretic analysis of separably closed fields is in [46], while
C. Wood’s theorem on differentially closed fields of prime characteristic is in
[179] and, with respect to prime models, in [180]; the Marker and Messmer
contributions to [110] provide a complete and excellent exposition of these
matters.

The Macintyre - Van den Dries - Wood axiomatization of existentially closed
fields with an automorphism is related in [95]; their large model theoretic
analysis due to Chatzidakis, Hrushovski and (later) Peterzil is in [20] and in
[21]. The Hrushovski and Macintyre explicit example of an e.c. field with
an automorphism can be found in [88] and [58].



Chapter 4

Elimination of imaginaries

4.1 Interpretability

Let A be a structure for a language L. We already dealt with definabil-
ity in A when we introduced definable sets and, more generally, definable
structures in A (see example 1.7.3, 4). The latter are the structures A’ for
a language L' (possibly different from L) such that both the universe A’ of
A’ and the interpretations of symbols of L’ in A’ are definable in A. As in
the case of sets, we can introduce also the concept of X -definable structure
for X C A. In the quoted example, we observed that (N, +, ) is a structure
definable in (Z,+, ). Here we provide some further examples.

Examples 4.1.1 1. Let L = {x,e,”1} be the language for groups, G be
a group. The centre Z(G) of G is the set of elements of G commuting
with any element of GG, and so it is §-definable as a set, by the formula

Vw(v X w=w X v).

But Z(G) is also a subgroup of G, and hence a group with respect to the
restrictions to Z(G) of the operations of G. Clearly these operations

are (-definable in G. It follows that Z(G) is 0-definable in G also as a
group (and hence as an L-structure).

2. Let L = {0,1,+,-, —} be the language for fields, K be a field. Let us
consider, in the language L' = {x,e,”!} for groups, the linear group
of degree n (n a positive integer) over K

GL(n,K),

121
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in other words the group of n x n matrices with entries in K and deter-
minant # 0, with the usual row-by-column product. Then GL(n,K)
is a structure (-definable in K.

In fact, the n x n matrices with entries in K can be viewed as tuples
d = (a;)i; in K™. So the elements of GL(n,K) are exactly those

tuples in K n? satisfying
“!(det U= 0)

(here ¥ abridges (v;;);;): recall that det is a homogeneus polynomial
of degree n with coefficients in the substructure of K generated by 0, 1.
The multiplication is defined by

n
TXw=2: (Zz'j:Zvihwhj)7
1<i,5<n R=1
the identical matrix I,, by
v=1, : /\ vii=1A /\ v; = 0,
1<i<n 1<i,j<n,ii
and, finally, the inverse operation by

1

”

T=u"" : “Uxd=1I,".

But Algebra deals not only with substructures, but also with quotient struc-
tures. For instance, in the examples quoted before, one can observe what
follows.

1. Look at the quotient group G/Z(G). As Z(G) is (-definable in G, the

equivalence relation in G
a~b & axbte Z(G)

whose equivalence classes are just the elements of G/Z(G) is also (-
definable. It follows that G/Z(G), as a quotient set, but also as a
quotient group, "lives” in G.

2. The special linear group of degree n over K
SL(n,K)
(a subgroup of GL(n,K)) is -definable in K: just consider the formula

det(v) = 1.
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Accordingly, just as in the previous example, the quotient group
GL(n,K)/SL(n,K) can be recovered in K by a suitable (-definable
equivalence relation. On the other side GL(n,K)/SL(n,K) is isomor-
phic to the multiplicative group K* of nonzero elements of K, and K*
itself is directly @-definable in K (as a group, without involving any
quotient construction).

These remarks introduce the following

Definition 4.1.2 Let A be a structure for L. A structure A’ for L' is said
to be interpretable in A if and only if there exist a positive integer n, a
subset S C A™ definable in A, an equivalence relation E over A™ definable

in A such that A' = S/E and

(i) for every costant symbol c of L', {d@ € A" : @|E = 'Y is definable in
A;

(i) for every k-ary function symbol f of L', {(ai,...,dy,d) € Ark+1)
fY(Gi|E,...,di|E) = @|EY} is definable in A;

(iii) for every k-ary relation symbol R of L', {(d,...,a;) € Ark
(G1|E,...,di|E) € R} is definable in A.

The concept of X-interpretable structure (for X C A) is defined in the
usual way. Every structure definable in A is interpretable in A (through the
equality relation).

Example 4.1.3 GL(n,K)/SL(n,K) is (-interpretable in .

4.2 Imaginary elements

The examples of the previous section show that, in a given L-structure A,
one meets not only

real elements
(those of the domain A), but even
imaginary elements,

i.e. equivalence classes of (-definable equivalence relations F.

The following technique, essentially due to Shelah, shows how to expand in
a natural way the structure A (and its language L) in order to make the
imaginary elements real.
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Definition 4.2.1 L°? is the language obtained by L taking, for every equiv-
alence relation E over A™ (for some positive integer n) (0-definable in A

e a l-ary relation symbol Ag (and among these also A= );

e an n-ary function symbol .

Definition 4.2.2 A% s the structure for L such that

e the universe of A® is the disjoint union of the interpretations in A%?
of the relation symbols Ag;

o for every equivalence relation E, Ag is interpreted as the quotient
set A"/E (in particular A as {{a} : a € A}, which can be canoni-
cally identified with A) and T as the natural projection from A™ onto
ATL/E;

e the symbols from L have the same interpretation as in A (after iden-
tifying A and the interpretation of A= ).

One can check that, if A and B are structures for L and A = B, then
A®? = B%. This allows to define, T°? = Th(.A*?) when T = Th(A). Many
significant properties of T' are preserved under passing from 7" to T°?. On
the other hand, in T°? = Th(.A®?) the imaginary elements of A get real. For
example, take a positive integer n and the relation = in A”; = is (-definable,
and hence, for every @ = (ay,...,a,) € A", the class {@} of @ modulo =, is
a real element of A°?; so we can view any n-tuple in A™ as a real element.
Indeed it is a common agreement in Model Theory to consider the tuples
from a structure A as elements of A: they are imaginary elements in .4, and
hence real elements in A%,

Sometimes imaginary elements can be naturally identified with real elements
of A (or with finite sequences of real elements of A), and hence referring to
A®? is no more necessary. Let us propose a simple example.

Example 4.2.3 Let K be a field. We already pointed out that
GL(n,K)/SL(n,K)is isomorphic to the multiplicative group K* ((-definable
in K). It follows that the imaginary elements SL(n,K)d withd € GL(n,K)
can be identified with the real elements det(@) of K*, by the determinant
function (more precisely by the isomorphism from GL(n,K)/SL(n,K) to
K* induced by det).

In general:
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Definition 4.2.4 A structure A for L has the elimination of imagi-
naries if and only if, for every equivalence relation E over A™ (n a positive
integer) (-definable in A and @ € A™, there are a formula (0, W) of L and
a unique sequence b in A such that

@|E = ¢(A™, b).

A structure A for L has a uniform elimination of imaginaries if and
only if, for every E as above, there exist a formula ¢(¥, W) of L and, for
each @ € A™, a unique sequence b in A such that

@|E = p(A™,b).

Theorem 4.2.5 Let A be a structure for L. Then the following propositions
are equivalent.

(i) A has a uniform elimination of imaginaries;

(ii) for every positive integer n and equivalence relation E over A™ (-
definable in A, there is a map Fg 0-definable in A, with domain A™
and range C A™ (for some positive integer m), such that, Va,a € A",

d,a are equivalent in E <  Fg(@) = Fg(@).

Hence, if A has a uniform elimination of imaginaries, then, for every equiv-
alence relation F as above, the equivalence classes of E can be thought as
tuples of real elements of A, provided we identify, Va in A™,

dE  with  Fg(a).

It follows that referring to A% is not necessary, because what is (-inter-
pretable in A is even (-definable in A.

Proof. (i)=(ii) For each @ € A, define Fg(@) as the unique element b such
that @|E = (A", b).
(i))=(1) Take p(¥,2): “Fg(¥) =2" eb= Fg(d). &

The theory of elimination of imaginaries was essentially developed by Poizat.
Actually Poizat’s treatment is slightly different from ours. They do coincide
for structures admitting at least two constants, or even two distinct definable
elements (see [131], Theorem 16.16). As we are mainly interested in fields,
and fields clearly satisfy this condition, we can proceed with no anguishes.
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4.3 Algebraically closed fields

Notably, many familiar structures admit a uniform elimination of imaginar-
ies. Let us propose some examples. The first case we deal with concerns
algebraically closed fields: the aim of this section is just to prove

Theorem 4.3.1 FEvery algebraically closed field K has a uniform elimina-
tion of imaginaries.

The proof is a direct consequence of the following two lemmas.

Lemma 4.3.2 If K is an algebraically closed field, then K has the elimina-
tion of imaginaries.

Lemma 4.3.3 Let L be a language with (at least) two constant symbols,
K be an L-structure interpreting these two constant symbols in different
elements. If K has the elimination of imaginaries, then K has a uniform
elimination of imaginaries.

Obviously an algebraically closed field K satisfies also the hypotheses of
lemma 4.3.3: the language for fields has two constant symbols 0,1 inter-
preted in K as two different elements. Hence K uniformly eliminates imagi-
naries (provided it eliminates them).

Now we show Lemma 4.3.2. The proof we provide here uses the minimal-
ity of any algebraically closed field K, hence the fact that every definable
subset of K is finite or cofinite. An alternative approach (working even for
differentially closed fields) will be produced in Chapter 6.

Proof. Let n be a positive integer, E be an equivalence relation (-definable
in K™. Let E(0,w) indicate the formula defining . Fix @ € K". Consider
the formula

Ey(vy, @) : Avg...Jv, E(7, W).

FE1(K, @) is a definable set, and hence by Corollary 2.4.8 is either finite or
cofinite. If F;(K,a) is finite, then it contains only elements algebraic over
(the subfield generated by) @; in fact two elements transcendental over (the
subfield generated by) @ are linked by some automorphism of K fixing every
element of @; hence if one of them occurs in E}(K, @), then the latter is in
F1 (K, d) as well, and hence all the elements of K transcendental over @ are in
Ey(K,d), and E;(K,q) is infinite. On the other side, if E,(K, @) is cofinite,
then F;(K, @) contains at least an algebraic element, because K has finitely
many elements algebraic over the subfield generated by d.
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In any case we can choose ¢; = ¢1(d@) € E1(K, @) algebraic over @. Now let
E2(v1, v, W) : Jvs...3v, E (7, ¥).

E3(e1, K, a@) is either finite or cofinite, and as above we can pick out in
Fy(c1,K,d@) an element algebraic over (@, c;), and hence over d. Repeating
the procedure we build &= (¢y,...,¢,) € E(K",d) such that ¢q,...,c, are
algebraic over @ We can even form a finite set X (@) C K™ d-definable such
that &€ X (a); it suffices to consider the set X (&) defined by

/\ “fi(’U) =0

1<i<n

where, for each ¢« = 1,...,n, fi(z) is the minimum polynomial of ¢; over
the subfield generated by @. Without loss of generality, X (@) C E(K",q)
(otherwise substitute X (&) for X (@) N E(K", d@)).

Suppose X (@) = {¢®,..., &™)} where = ¢© and ¢V) = (¢, V), ..., ¢, 1))
for every 7 < m. Then we have

E(K", &) = E(K™, &)

for every j < m. Recall that we are looking for a formula ¢(¥,7) and a
unique sequence b such that

E(K™,a@) = (K™, b).

Then consider the following polynomial f(y, %) € K[y, Z] (with & = (z4,...,

Tp)):

n

F, 0 =TI = e Va).

j<m =1

Let b be the sequence of coefficients of f(y,Z) (with respect to some pre-
established ordering). It is clear that b is uniquely defined by X (@) =
{¢©,...,@™)}. Conversely, as K[y, 7] is a unique factorization domain,
given the sequence b of the coefficients of f(y, &), in other words given f(y, &),
we know that f(y,Z) decomposes in at most one way as

n

H (y — Z ¢ (J’)xi)

j<m =1

(up to permuting factors). So b lets recover X(@) = {¢©), .. .,6'(’”)} (al-
though it may not provide the single sequences &(©), . . .,E(m)). Then we can
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pick out b as the sequence of coefficients of f(y, Z), and define ¢(v, 2) in such
a way that

oy

»(7,b)
is the formula

Vo (“(y — Z w; z;) divides f(y, )" — E(¥, W)).
=1
Obviously ¢(7, Z) depends on d@. &

Let us prove now Lemma 4.3.3.

Proof. Let 0, 1 be two different constant symbols in L such that £ | —(0 =
1). We know that, if F is an equivalence relation over K™ ()-definable in K,
then for every @ € K™ there exist a formula ¢z(7, Z) and a unique sequence
b = b(a@) in K such that
E(K™, @) = ¢z (K", b).
By compactness there exist a natural number h and dy,...,d, € K™ such
that, for each @ € K",
K E \/ AN 5 VI(E(T,d) < ¢a(T,%)).
i<h
Without loss of generality, we can assume that Z,...,2, have the same
length m (otherwise add some 0’s to the shorter sequences). Consider the
formula
¢ (7, @, )

(where @ = (ug, ..., us) and Z has length m) conjuncting:

o the formula saying that, Vi < h, u; € {0,1} and there exists a unique

t < h such that u; = 1;

e the formula saying that, Vi < h, u; = 1 if and only if ¢ (7, 2)), 7'is
the unique sequence ¢ such that ¢z (K™, 2) = ¢g (K™, t) and, Vj < h
with j < 1, it is not true that there is a unique sequence ¢ such that
Pd; (I{n, 2') = Pdj (K’nv E)

It follows that for every @ € K™, there exists a unique b in K™th*1 guch
that

K E V3 (E(@,ad) < ¢'(0,D)).
The formula ¢'(7, @, Z) depends only on E. Hence K has a uniform elimina-
tion of imaginaries. &
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4.4 Real closed fields

The aim of this section is to show that real closed fields uniformly eliminate
imaginaries.

Theorem 4.4.1 In every real closed field K imaginary elements can be uni-
formly eliminated.

Proof. First of all, let us emphasize a relevant property of definable sets
in real closed fields, essentially related to their o-minimality. Take any for-
mula 6(v, @) in the language L = {4, -, —, 0, 1, <} of ordered fields. We
know that 9(v, @) is (equivalent in RC'F to) a finite boolean combination
of formulas

(%) fa(@)0" + ...+ fi(W)v+ fo(w) >0

where n is a natural number and fo(&), ..., fo(Z) are polynomials with inte-
gral coefficients. Let q(y, Z) = Y ;<,, f:(Z)¥', ¢(y, &) - as a polynomial in y -
has at most n roots denoted by so(%), ..., s,—1(%) (where clearly r depends
on Z, but r < n). Then (%) is equivalent to the formula saying that either
w is equal to some so(J), ..., s,—1(¥) or it is in a suitable union of intervals

among
] — 00, 30(6)[7 ]30(6)7 31(6)[7 ERRE! ]Sr—l(ﬁ)v —I—OO[

It follows that in a real closed field K, for every @ in K, #(K,qd) is a fi-
nite union of intervals whose endpoints annihilate some polynomials ¢(y, @);
hence these intervals are d-definable by a formula only depending on 9¥(v, @);
even the number of these intervals is uniformly bounded with respect to
J(v,W). Let b denote the sequence of these endpoints: b depends on &, as
said before, indeed every element in b is d@-definable. At this point we may
wonder how to determine, for a given @, the zeros so(@), ..., s,—1(@) (with

r = r(d@) < n) belonging to (K, @) and, above all, the intervals among

] - 00, 50(6)[7 ]50(6)7 51 (‘ﬂ[a LR ]Sr—l(ﬁ)7 +oo[

contained in §(K, @). Of course, this depends on the sign (+, — or 0) of the
polynomials ¢(y, @) in each point of l;, and inside the intervals. This can
be checked directly for the roots, and choosing in each interval a b-definable
(hence d-definable) witness ¢ to test. The latter operation can be easily done
for every possible choice of the endpoints —oco < d < e < 4+00. For, take

c:%2 if —co<d<e<+oo,
c=d+1 if —-oco<d<e=+o0,
c=e—1 if —o=d<e<+00,
c=0 if —co=d<e=+4cc.
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and notice that ¢ is @-definable when d and e are d-definable (or infinite).
In particular, observe that we can pick a unique @-definable ¢ in (K, @):
just choose the lowest root, or the witness in the leftmost interval. Hence,
what we have seen so far is that, given a formula 6(v, @), one can build
a formula o (v, 2') and, for every IC E RCF and every sequence ain K, a
unique sequence b in K for which o (K,b) = 6(K, @): b is the ordered tuple of
the roots of the polynomials ¢(y, @) (and so is d@-definable), o (v, b) specifies
which roots and which intervals with endpoints among b and +oo form
8(K, @). A patient reader may write down o (v, Z) in detail as an exercise.

Now let us come back to elimination of imaginaries. Let F be an equivalence
relation on K™, and assume F (-definable in K. Let (¥, %) the formula
defining it. We are looking for a formula (7, 2) and, for every @ € K7,
a sequence b such that E(K™ @) = o(K", g), and b is the unique sequence
with this property.

When n = 1, our claim is a direct consequence of our preliminary work: just
let #(v, w) be the defining formula E(v, w). Now let » > 1. Put

01(v, @) : Fvy...3Jv, E(7, ¥).

Again using our preliminary work, and applying it to 8 (vy, W), we deduce
that there are a formula oy(v1, 21) and, for each @ € K™, a unique sequence
b—i in K such that .

o1 (K, b1) = 61(K, @).

Moreover there is a formula xq(vi, 21) such that xq (v, b_i) picks a unique
element ¢; in 01(K, by) = 6:(K, &). Now consider

02(’01, Uy, W ) 37)3 Eivn E(’l?, ’lﬁ)

As before we obtain the existence of a formula oy(vq, 73) and, for every
d@ € K™, of a unique sequence by in K such that

a2 (K, b2) = b5(c1, K, @);

as above, there is a formula x2(vg, b;) selecting a unique element co in
UQ(IC, bz) = 02(61, ]C, (_1:)

Continuing the procedure one defines a formula x(7, 2) and, for each a in
K, a unique sequence b such that

x(K™, 5) consists of a unique element ¢ = (cy,...,cy)

and
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K = E(¢ d), hence E(K",d) = E(K™,¢).

Hence
@(0,2) : I (x (@, 2) A E(V, D))

is the required formula. &

4.5 The elimination of imaginaries sometimes fails

Differentially closed fields eliminate imaginaries. This will be shown in
Chapter 6, in the section devoted to developing in detail their model theory.
Similarly, algebraically closed fields with an automorphism (i. e. models of
ACFA) eliminate imaginaries [20], as well as separably closed fields of finite
imperfection degree in an enriched language capturing p-bases (see [110]).
But there do exist structures without this property. This is the case, for
instance, of the separably closed fields themselves in the pure language of
fields (again, see [110]). Let us propose here a simpler example.

Proposition 4.5.1 Let K be a finite field with at least 3 elements and V
be a vectorspace of dimension > 2 over K. Then V does not eliminate the
tmaginaries.

Proof. Suppose yes. As K is finite, one can consider in Lg the formula

E(w): \/ (v=rkw)

keK —{0}

This formula defines in V an equivalence relation F, identifying two elements
a,a’ € V if and only if a, a’ generate the same subspace. Take a € V, a # 0.
Then there exist a formula ¢(v,2) of Lx and a unique sequence binV
such that F(V,a) = ¢(V, 5) As K has at least three elements, fix k € K,
k#0,1; for every x € V,

ke e EV,a) & k'z € o(V,D).

Since the multiplication by k is an automorphism of V, we have, for every
zeV,

z e E(V,ka) & z € o(V,kb).
Then E(V,a) = E(V,ka) = oV, kb). It follows b = kb; but k # 1, hence
necessarily b = 0. In other words, we can assume that Z = § and ¢(v, 2)
reduces to a Li-formula ¢(v) with at most one free variable. The theory



132 CHAPTER 4. ELIMINATION OF IMAGINARIES

T has the quantifier elimination in Lk, and hence ¢(v) is equivalent to a
boolean combination of formulas

v=uv, v=10.

But V has dimension at least 2, therefore no such boolean combination can
equal E(V,a). &

4.6 References

An exhaustive introduction to 4% can be found in Hodges’ book [56]. The
elimination of imaginaries was introduced by Poizat [130]; a complete treat-
ment can be found in Poizat’s book [131], recently translated in english
[134].

The results on the elimination of quantifiers for separably closed fields can
be found in [110], while the corresponding analysis for e.c. fields with an
automorphism is provided in [20].



Chapter 5

Morley rank

5.1 A tale of two chapters

In 1965, M. Morley’s work [116] proposed new ideas, new tools and, alto-
gether, new fertile perspectives in Model Theory. Actually Morley’s main
theorem is very simple to state: for, it says that a theory T categorical
in some uncountable power is, consequently, categorical in every uncount-
able power. This is noteworthy, but perhaps not so dramatic and relevant.
However the germs of Morley’s ideas went much further, and their richness
permeated the development of Model Theory for several years.
Accordingly, this chapter, and the following one, will be devoted to preparing
a proof of Morley’s theorem (although this proof will be done only in chapter
7); but our main intent throughout these pages will be to introduce, to
discuss and to apply several Morley tools: types, saturated models, algebraic
and definable closure, totally transcendental theories.

We will deal also with some related questions, both model theoretical (like
prime models) and algebraic (such as differentially closed fields, or w-stable
groups and fields).

5.2 Definable sets

Definable sets were introduced in Chapter 1, and were a constant leitmotiv
throughout the subsequent pages. They arise quite naturally within a given
structure A from the basic operations and relations in A, and fully charac-
terize A. Indeed the structure A could be thought as a non empty set A
plus the collection of its definable sets. This new outlook is less formal than
the traditional definition given in Chapter 1, and may sound a little puz-
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zling. However it is quite free and easy. Just to refer to our basic examples,
it is instinctive to view an algebraically closed field as naturally endowed
with the collection of its constructible sets (including varieties), or, in the
same way, a real closed field with the collection of its semialgebraic sets, or
a differentially closed field with the family of its Kolchin constructible sets.
Besides, should you like to fix exactly this new perspective in introducing
structures, you could take note that the definable sets in a given A can be
characterized in a formally precise way, as follows.

Theorem 5.2.1 The sets definable in a structure A are the smallest family
D of subsets of Upsg A™ such that

(i) A™ isin D for every positive integer n; more generally fort < j <n
positive integers, {d € A™ : a; = a;} is in D;

(ii) every relation of A, as well as the graph of every operation in A, is
in Dy

(ili) D is closed under union, intersection and complement;

(iv) D is closed under projections: if X C A" is in D, then the image
of X by the projection of A™ onto any ¢ < n coordinates is also in D;

(v) D is closed under fibres: if X C A" is in D, @ is a positive integer
smaller than n and b € A™™*, then the set of the sequences @ € A® for

-

which (d@, b) € X isin D.

Just a few words to comment. A careful and straightforward check easily
confirms that these conditions are satisfied by the definable sets in A and
even characterize them. Indeed, (i)-(v) allow sets defined by atomic formu-
las (i)-(ii), Boolean combinations (iii), quantifiers (iv), parameters (v) and
nothing else.

In order to realize how complicated a structure or, more generally, a class
of structures -for instance, the models of a given theory T- is, one can try
to measure the complexity of its, or their, definable sets. A possible way to
accomplish this program is to assign, to every definable, a value (such as an
ordinal, or something similar) satisfying some reasonable assumptions, like
monotonicity (for C C D definable sets, the measure of D should not be
smaller than the measure of C), and so on.

To prepare this assignment, let us consider again definables. Fix a set X
of parameters. Correspondingly one can form the Boolean algebra of X-
definable sets, as we saw in Chapter 1. In introducing our measure, we
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may refer to this algebraic framework. But we have to be careful; for,
the Boolean algebra of X-definable sets, as sketched in Chapter 1, seems to
depend on the structure A where X lies, and clearly, even among the models
of a given complete theory T, the choice of A may vary in an essential way.
Also, if we enlarge X to a bigger set of parameters X', the X-definable sets
become automatically X'-definable, but in this extended setting they gain
more complexity because they have to be compared with more objects; so a
finer analysis must be expected.

To clarify these doubts (at least the former one), consider our set X, a
structure A containing X and a positive integer n. Take a model By(x) of
Th(Ax); accordingly B is a structure for L and f is an elementary func-
tion from X into B, in particular f(X) is a subset of B and Ax = By(x)-
As already said, for every positive integer n we wish to compare the alge-
bras B, (X, A) and B, (f(X), B) introduced before. So consider any L(X)-
formula (@, %) (7 denots here the sequence (vi, ..., v,)). Then ¢(7,7)
defines two sets

o(A", Z) in A, and p(B", f(%)) in B.
It is easy to realize that they satisfy the following properties.

1. If A is an elementary substructure of B (and f is the inclusion of X
in B), then ¢(A", &) C o(B™, 7).

In fact, for every @ € A", if A = (@, &), then B = ¢(d, ), just
because B elementarily extends A.

2. If (A", Z) is finite (of power k), then |p(B", f(Z))| = k as well.

In fact, as Ax = Bj(x), Ax and By (x) satisfy the sentence 3!k tp(7, )
In particular, under the assumptions in 1, ¢(A", &) = ¢(B", Z).

On the contrary, for an infinite (A", ¥), ¢(B", f(Z)) is infinite as well,
owing to elementary equivalence, but is possibly larger when B is an ele-
mentary extension of 4. What we want to emphasize here is that, anyway,
the Boolean algebras B, (X, A) and B, (f(X), B) are isomorphic; in this
sense our analysis of X-definable sets and the corresponding assignment of
a measure does not depend on the choice of A or B.

For this purpose, we need a preliminary analysis of B,(X,.A) (and, in par-
allel, of B,(f(X),B)). We know that every D in B,(X,.A), namely every
subset D C A™ X-definable in A, can be viewed as D = ¢(A", %) for some
L(X)-formula (%, ). Of course, it may happen that two different L(X)-
formulas (%) and 1 (¥) define the same subset of A”. This means that ¢(?)
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and 9 (0) are logically equivalent within Th(Ax) in the usual sense

Vi (p(0) & $(9)) € Th(Ax).

Let ~ denote this (equivalence) relation. Elementary mathematical logic
tells us that the quotient set of L(X)-formulas ¢(%) with respect to ~ gets
a natural Boolean algebra structure, provided we put, for ¢(?9) and ¥ (%) in
L(X):

* the meet of the ~-classes of ¢(¥) and 9 (?) is the ~-class of their conjunc-
tion,

* the join of the ~-classes of ¢(?) and (%) is the ~-class of their disjunction,
* the complement of the ~-class of ¢(¥) is the ~-class of its negation,

so the bottom element is the ~-class of -(v; = v;) or any contradiction,
and the top element is the ~-class of vy = vy or any tautology; in particular
the ~-class of ¢(¥) is smaller or equal to the ~-class of (%) if and only if
@(A™) C ¢(A™), and hence if and only if

V7 ((9) = 9(9)) € Th(Ax).

Therefore it is easy to check that this quotient algebra is isomorphic to
B, (X, A) via the function mapping the ~-class of (%) into ¢(A™). The
same applies to B, (f(X), B), of course, and hence, in conclusion, B, (X, A)
and B, (f(X), B) are isomorphic, as claimed, by the function mapping
¢{.A™) into ¢ (B™) for every (7). Hence the isomorphism type of B, (X, A)
depends on the theory of Ax rather than the mere structure Ax. Moreover
we can view the elements of B, (X, .4) not only as X-definable subsets of
A", but also as ~-classes of formulas in L(X). We will often confuse these
different points of view below, and even we will directly think of the elements
in B,(X, A) as L(X)-formulas (identifying ~-equivalent formulas).

5.3 Types

People acquainted with Boolean algebras B know what an ultrafilter is and
remember that the ultrafilters in a given B can be naturally endowed with
a topology which makes their set a Boolean (i.e. Hausdorff, compact and
totally disconnected) space: the dual space of B. Of course this procedure
applies to the Boolean algebras of definable sets B, (X, .A). Even in this
particular setting one can look at the ultrafilters: they are called complete
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n-types over X and their space is usually denoted S, (X, A). That’s all
about types.

But who is not familiar with Boolean algebras may appreciate some more
details. It is worthy satisfying her (him), also in order to realize explicitly
what a type is. This is the aim of this section.

Let us begin with a simple example. Everybody knows how real numbers
are introduced starting from the rationals and their usual order. But let
us summarize very briefly their construction (in our style using formulas
and structures). Accordingly consider the language L = {<} and the L-
structure (Q, <). Partition Q in two non-empty subsets A, B such that, for
every a € Aand b € B, a < b, A has no maximum and B has no minimum.
Then consider the following set of L(Q)-formulas

p={a<v:ac A}U{v<b:be B}.

No element r € Q can satisfy all the formulas in p. However, for every finite
conjunction ¢(v) of formulas of p, there does exist r € Q for which Q = ¢(r);
in fact, let ag,...,a € A, by, ..., b, € B, a be the maximal element among
ag, ..., ap and b be the minimal element among by, ..., b,,; then a < b
and, as the order of Q is dense, there is some rational r larger than a, and
consequently than ag, ..., ap, and smaller than b, hence than by, ..., b,,.
Now a simple application of Compactess Theorem (to be explained in detail
in the next Theorem 5.3.4) proves that in some elementary extension of
(Q, <) there is some element realizing p. On the other hand, even forgetting
Compactness Theorem and Model Theory, we do know that p is realized in
(R, <) just by the real irrational number corresponding to the section (A, B)
in Q.

The notion of type provides an abstract framework where to study the situ-
ation just sketched in the case of (Q, <) and (R, <). Accordingly take any
structure A for a language L, a subset X of A and a positive integer n.

Definition 5.3.1 A consistent n-type over X in Th(Ax) is a set p of
L(X)-formulas ¢(7) (where ¥ abbreviates (vy, . .., v,)) such that every finite
conjunction of formulas of p is satisfied in A - more precisely in Ax - by
some suitable tuple @ ¢ A™.

Definition 5.3.2 A complete n-type over X in Th(Ax) is a consistent
n-type mazimal with respect to inclusion. S, (X, A) denotes the set of com-
plete n-types over X in Th(Ax).

In the sequel “n-type” will abbreviate “complete n-type”, unless otherwise
stated.
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Example 5.3.3 Consider a model Byxy) of Th(Ax). Accordingly B = A
and f is an elementary function of X into B. For simplicity, assume that
X C B and f is the inclusion of X into B. Let b € B", p be the set of
the L(X)-formulas ¢(¥) such that B |= @(b). It is easy to check that p is a
complete n-type over X. Let us see why.

-

e For every finite conjunction () of formulas of p, B = ¢(b), whence

B = 35p(v) and A | Jvp(0).
e Enlarge p by a new formula ¥(7); (%) ¢ p implies B f ¢(b) and

so B = —(b) and —(F) € p; hence no set of formulas extending
pU {¢(¥)} is a consistent n-type any more, because it contains two
formulas - ¢ (7) and its negation - whose conjunction cannot be satis-

fied by any tuple in A™.

p is called the type of b over X and is denoted tp(I;/X).
The next theorem shows that any n-type over X can be obtained in this
way.

Theorem 5.3.4 Let p be a set of L(X)-formulas ¢(¥) (where U abbreviates
(v1y...,0,) as before). The following propositions are equivalent:

(i) p e Sn(X,A);

(ii) there are a model B of Th(A) such that X C B and the inclusion
of X into B is an elementary function, and a tuple b € B™ such that

tp(b/X) = p.

Proof. (ii)=(i) was shown before.
(i)=(ii) Enlarge L(X) by a tuple ¢ of n new constant symbols. Let L’ be
the language obtained in this way. Consider the following set of sentences
in L'

T' = Th(Ax) U{»(&) : ¢(¥) € p}.
Every finite subset T} of T’ has a model. In fact

To € Th(Ax) U{#(€) : () € po}

for some finite subset py of p. As p is consistent, there is some @ € A"
satisfying in A the conjunction of the formulas of py. At this point look at
the L'-structure expanding A and interpreting the new constants ¢ in @ and
notice that this provides a model of T§.

Now apply Compactness Theorem and deduce that there is a model B’ of
T'. Restrict B to L(X) and get a model By x) of Th(Ax) (here B denotes
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a model of Th(A) and f is an elementary function of X into B, but there is

no loss of generality in supposing X C B, f = inclusion of X into B). Let

be B" interpret ¢'in B'. In Bx, p C tp(b/X) Owing to the maximality of
=tp(b/X). &

When p = tp(b/X) for b € B", one says that b is a realization of p (or
also that b realizes p), and one writes b = p. Notice that the argument in
(i)=>(ii) actually works also when p is a consistent n-type over X, with the
only exception of the last point (deducing p = tp(b/X) from p C tp(b/X))
accordingly, if p is a consistent n-type over X, then there are B and b such
that p C tp(g/X), and we can state:

Theorem 5.3.5 Lel p be a consistent n-type over X. Then p enlarges to a
complete n-type over X (possibly in several ways).

In the particular case when X = A, Theorem 5.3.4 says that every complete
n-type over A is realized in some elementary extension of A. Notice also
that, when X C A, any complete n-type over X can be viewed as a consistent
n-type over A and can be enlarged to a complete n-type over A, whence it
is realized in some elementary extension of A.

Theorem 5.3.4 (together with the definition of complete type) also implies:

Corollary 5.3.6 Let p € S,(X,A), ¢(5), ¥(9) be L(X)-formulas.
(i) If o(9) € p and $(0) € p, then p(V) AP(D) € p;
(ii) i ¢(7) € p and V5(p(0) — (V) € Th(Ax), then ¢(0) €
(iii) either (¥) € p or ~p(7T) € p (and each case excludes the other).

Just to summarize, we might say that, as the rational order (Q, <) implicitly
contains through its sections all the real numbers -even the irrational ones-
as ideal elements, similarly, for any A, X and n, the n-types over X in
Th(Ax) tell us which new n-tuples of elements can arise in the structures
Bsx) = Ax, in particular in the elementary extensions of A. Under this
point of view, the notion of n-type seems to deserve a good deal of attention.
So let us explore it. First we consider the set S,(X,.4). We already linked
types and topology at the beginning of this section. Let us examine this
connection in more detail.

For every L(X)-formula ¢(?) di L(X), put
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Notice that, for ¢(%), ¥ (F) L(X)-formulas,

Up(3) NUy(i) = Up(y () -
In other words, for every type p € S,(X, A),

p@ep,v(@ep & @) AP(D) €p.

In fact (=) is just (i) in Corollary 5.3.6, while (<) is a simple consequence
of (ii).

Consequently the sets U,y form a basis of open neighbourhoods for a topol-
ogy on S, (X,.A) when ¢(v) ranges over L(X)-formulas. Notice also that

Z/L,(Ul:ul) = @, Uyl =u; = Sn (X, .A) .
Furthermore, for every L(X)-formula ¢(?),
Sp( X, A) = Uy = U p(a

o(3) = Ug()

(as implicitly stated in Corollary 5.3.6, (iii)).
So the topological space S, (X, .A) is:

o Hausdorff (in fact, for p,¢q € S, (X,.A) and p # ¢, choose ¢(¥) € ¢ —p
and observe =@ (%) € p, whence p € U_,(7), while ¢ € Uy(y)));

e totally disconnected (because every open set of the given basis is also
closed).

Sn(X, A) is also compact. In fact, take an open covering of S, (X, A). With
no loss of generality we can assume that every open set of this covering is
basic. So for some suitable set I of indexes our covering is just {U, 0i(@) °
i € I} where, for any i € I, ¢;(?) is an L(X)-formula. Notice that {U,,) :

i € I'} covers S,(X, A) if and only if, for every model Bx of Th(.AX) and
b € B, there is some i € I such that tp(b/X) € Ug,(#), namely B = ¢;(b b),
and hence if and only if, in a language with an n- tuple & of new constants,

Th(Ax) U {~i(¢) : i € I}

has no model. So, by Compactness Theorem, there exists a finite subset I
of I for which

Th(.Ax) U {—mpi(é) 11 € IO}
has no model, equivalently, {,, : i € Ip} is a (finite) subcovering of
Sp(X,A).
By the way, this topological application of Compactness Theorem is just
the reason of its name. But the topological framework also suggests the
following definition.
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Definition 5.3.7 A type p € S,.(X,.A) is said to be isolated if and only if
p is isolated as a point of the topological space S, (X, .A), and so if and only
if there is some L(X)-formula ¢(¥) such that p is the only element in U, (y),
namely the only n-type over X containing ¢(7).

The next notion has a prevalent model theoretic flavour.

Definition 5.3.8 An n-type p € S,(X,.A) is said to be algebraic if and
only if there is a formula ¢(¥) € p such that ¢(A™) is finite (and hence

¢(B") is also finite, and even of the same cardinality as p(A™), for every
model By(xy of Th(Ax)).

Let us compare these notions. p is any type in S, (X, A).

(i) If p is algebraic, then p is isolated.

In fact take a formula (%) in p such that ¢(.A") is finite of minimal size
k. We claim that p is the only type in S, (X,.A) containing ¢(7). Let
g be another type over X including ¢(%). For every formula 9(%) € p,
o(0) A 9(7) is also in p, and so, owing to the choice of ¢(¥), ¢(A™) N
P (A") = p(A"), namely p(A") C 9(A™). Hence #(v) € ¢. It follows

p C ¢, and so p = ¢ by the maximality of p.
(ii) If X = A and p € S,(A, A) is isolated, then p is algebraic.

Let ¢(¥) be an L(A)-formula isolating p. p is realized in some elemen-
tary extension B of A; consequently B = I0p(F). As an elementary
substructure, A satisfies 3¢ (%) as well, and so includes a realization @
of p, and p = tp(d/A). But tp(d@/A) contains the formula ¢ = @ and so
d is its only realization.

However we will see within a few lines that an isolated type over an arbitrary
subset X may be non-algebraic. But, more generally, let us propose now
some specific examples of types.

Examples 5.3.9 1. Let L = 0, A be an infinite set (viewed as a structure
for L), X C A. Forevery a € X, tp(a/X) is the only 1-type containing
v = a, and so is both isolated and algebraic. Now take two elements
a and @’ in A — X; there does exist a bijection from A onto A, hence
an automorphism of A, fixing X pointwise and mapping @ in a’. So,
for every L(X)-formula ¢(v), A | ¢(a) if and only if A = ¢(a'); in
other words, tp(a/X) = tp(a’/X). This shows that all the elements
in A — X realize the same type over X. Notice that, for a finite
X ={=o, ..., Ts}, this type is isolated, for instance by A, =(v = z;);
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however, it has infinitely many realizations (the elements in A — X)),
whence it cannot be algebraic.

. Now take the language L = {+, -, —, 0, 1} for fields and an alge-

braically closed field K. Let X be a subset of K. For simplicity we
assume that X is the domain of some subfield # of K. This is not so
restrictive. Indeed, notice that each element in the field H generated
by X is X-definable, in other words it is the only point in K satisfying
a suitable L(X)-formula. Consequently there is no great loss of gen-
erality, when discussing the types over X, in replacing X by H and
hence in assuming that X = H is the domain of a subfield #.

Owing to quantifier elimination, every n-type p over H is fully de-
termined by its formulas f(¥) = 0 where f(&) ranges over polyno-
mials in H[Z]. Indeed every Lpy-formula is equivalent in AC'F to a
Boolean combination of equations over H. Notice that the polynomi-
als f(Z) € H[%] for which f(¥) = 0 € p form a proper prime ideal
in H[Z]. This is easy to check. Just take a realization @ of p in a
suitable extension, and notice that, for f(%), ¢(Z), h(Z) in H[Z], if
f(@) = ¢g(a@) = 0, then f(a@) + g(@) = f(@) - h(@) = 0; moreover, if d@ is
a root of f(Z) - ¢g(&), then it annihilates f(Z) or g(Z). Conversely, let
I be a (proper) prime ideal in H[Z] and look at the set of formulas

{f(®)=0: f(&) e I}u{~(9(9) = 0) : g(?) € H[7] - I}.

This defines a (complete) n-type over H, the one of I + ¥ viewed as
an element of the extension of # provided by the field of quotients of
the integral domain H[Z]/1.

In this way we obtain a connection (indeed a bijection) between n-
types over H and prime ideals in H[Z]. We shall provide a more de-
tailed analysis of this point in Chapter 8. Now let us examine closely

the case n = 1. When [ is the ideal generated by some monic irre-
ducible f(z) € HJ[z], then we obtain the type defined by the single
equation f(v) = 0 (and its consequences). So the roots of f(z) share
a common 1-type over H. This type p is clearly realized in K because
K is algebraically closed; actually K contains all the realizations of p.
p is isolated by f(v) = 0, and algebraic, because f(z) has only finitely
many roots.

Otherwise I = 0. Now the corresponding 1-type p concerns all the

elements which are transcendental over H. When the transcendence
degree of K over #H is bigger than 0, then p has (infinitely many)
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realizations in K, in particular it is not algebraic. Otherwise, if K is
just the algebraic closure of #, then there is no room to satisfy p in
K. One easily sees that p is not even isolated.

3. Now take the language L = {+, -, —, 0, 1, <} for ordered fields and
a real closed field . We discuss directly the types over K, for sim-
plicity. Owing to quantifier elimination, every n-type over K is fully
determined by its equations and disequations f(v) = 0, ¢(d) > 0,
where f(&) and g(Z) range over polynomials in » unknowns with co-
efficients in K. In particular, when we look at a 1-type p over K,
we have to consider polynomials in K[z]. But then, as explained in
Chapter 2, § 5, p is completely determined by its formulas v < a,b < v
(and negations), with a and b in K. So a nonalgebraic p is given by
the cut it defines in K.

4. Let L = {<}, consider the L-structure A = (R, <) and the subset
X=Q. Ifa,d € Rand a # o (say a < d'), there is r € Q such
that a < 7 and r < d’. Sov < r €tp(a/Q), but v < r ¢ ip(a’/Q). In
conclusion, there are at least 2%-types over Q in (R, <).

In general, for a countable language, there are at most 2™ {RolX1} p_types
over a set X for every positive integer n.

Now let us mention another relevant technical fact about types; it will be
useful several times later. Let A be a model of T, X C A, f be an elementary
function from X into a model B of T' (for instance, let f be the restriction
to X of some isomorphism between A and B). For p € S(X, A), put

f(p) ={e(v, (@) : p(v,%) € p (and Fin X)}.

Then f(p) is a type over f(X) in B. Indeed f determines in this way a
homeomorphism between S(X,.A) and S(f(X),B). In particular f(p) is
isolated, or algebraic, exactly when p is.

To conclude, it is worth underlining that, just as the algebra B, (X, .A) of
X-definable subsets of A", similarly the space S,(X,.A) of n-types over X
does not depend directly on the model A where X is elementarily embedded,
but only on the theory of Ax.

5.4 Saturated models

Let T be a complete theory with infinite models in a countable language
L. A model A of T may not realize all the 1-types over a subset X: a
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trivial counterexample is provided, when X = A, by the consistent 1-type
{-(v = a) : a € A}, which cannot satisfied by any element in A. The
saturated models of T are, roughly speaking, those realizing as many types
as possible over their subsets. In particular, for an infinite cardinal A, the A-
saturated models of T are those able to satisfy any 1-type over an arbitrary
subset of power less than A.

Definition 5.4.1 Let A be an infinite cardinal. A model B of T is said to
be A-saturated if and only if, for every subset X of B or power < A, B
realize every I1-type over X.

Of course this definition makes sense when A < |B| (as the previous coun-
terexample shows); it is also clear that, if A > p > R are cardinal numbers
and B is A-saturated, then B is p-saturated, too. The first question one may
raise at this point just concerns the existence of A-saturated models. The
answer is positive, as the next theorem shows.

Theorem 5.4.2 Let A be an infinite cardinal. Then every model A of T
has a A-saturated elementary extension.

Proof. We provide a comparatively simple argument working when A = Ry.
For an uncountable X this approach does not work any more, and one needs
a more complicated proof of a quite different style (but the result remains
true). So take a model A of T', we are looking for an elementary extension
A’ > A realizing any 1-type over a finite subset of A’. We do know that
every l-type over any (finite or infinite) subset of A is satisfied in some
elementary extension of A. Accordingly, well order the set P of 1-types over
finite subsets of A, P = {p, : v < a} and associate with any v < « an
elementary extension A(v) of A realizing p. Do this in such a way that, if
v < 1 < o then A(v) is an elementary substructure of .4(y) (the reader may
check the details as an exercise). Now use the Elementary Chain Theorem
(1.3.19) and deduce that A* =J,, A(v) is an elementary extension of A,
and even of A(v) for any v < «; it is also clear that A* realize any type
p € P and so every 1-type over a finite subset of A. But this does not imply
that A* is Ng-saturated, namely realizes every 1-type over a finite subset of
itself. However we can repeat the previous procedure and define, for every
natural n, an elementary extension A,, of A in such a way that Ag is just A
and, for every n, A, 4+; is an elementary extension of A, realizing any 1-type
over an arbitrary finite subset of A,,. Using the Elementary Chain Theorem
once again, we deduce that A" = (J,cN An is an elementary extension of A,
and even of A,, for every n. Moreover A’ is Ng-saturated. In fact, let X be
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a finite subset of A’; there is some n for which X C A,; consequently every
1-type over X is realized in A,y and, through it, in A’. &

Now let us show some basic properties of A-saturated models.

Theorem 5.4.3 (Weak Homogeneity Theorem) Let B be a A-saturated model
of T. Let A be a model of T, X be a subset of A of power < X and [ be
an elementary function from X into B. Then, for every a € A there is an
elementary function of X U {a} into B enlarging f. (A model B with this
property is called weakly A-homogeneous ).

Proof. Let p=tp(a/X), so f(p) is a complete n-type over f(X). As fis
1-1, | f(X)] < A. As B is A-saturated, B contains some realization b of f(p);

hence, for every L(X)-formula (v, Z)
Al v(a, %) & v(v,%) € pe (v, f(2)) € f(p) & B (b, £(2)).

So enlarge f to a function g of X U {a} into B putting ¢g(a) = b. Clearly ¢
is what we are looking for. &

By definition, a A-saturated model B of T realizes any 1-type over a subset
of power < A. But actually B satisfies every type (even with more than 1
variable) over such a subset. Let us see why.

Corollary 5.4.4 Let A be an infinite cardinal, B be a A-saturated model of
T, X be a subset of B of power < A, n be a positive integer. Then every
n-type p over X is realized in B.

Proof. We know that p is realized in some model Ax of Th(Bx), say
by @ = (a1,...,a,) € A". As Ax = By, the identity map of X is an
elementary function from X into B. Using the Weak Homogeneity Theorem
over and over again, one extends this map to an elementary function g from
X U{ay, ..., a,} into B. Let b= g(a@). For every L(X)-formula ¢(7, &),

-

A ¢(@ %) & BE ¢, 7).
Hence tp(b/X) =p. &

Theorem 5.4.5 (Universality Theorem) Let B be a A-saturated model of T,
A be a model of T of power < A. Then there is an elementary embedding of
A into B (and so A is an elementary substructure of B up to isomorphism).
In this case B is called A-universal.
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Proof. Well order A = {a, : v < a} and, for v < o, put 4, = {a, :
u < o}. As A = B, the empty map is an elementary function from A = ]
(viewed as a subset of A) into B. Using the A-saturation (actually the weak
A-homogeneity) of B, extend this map to elementary functions from A,
into B for every v < «, whose domain progressively includes every element
in A. One eventually gets an elementary function (and so an elementary
embedding) of A into B. &

Now we deal with the “most saturated” models of T'; as observed before,
they are the models saturated in their own power.

Definition 5.4.6 A model B of T is said to be saturated if and only if B
is | B|-saturated (and consequently realizes every 1-type over subsets of B of

power < |B|).

Such a model B is (also) weakly |B|-homogeneous and |B|-universal.
First let us observe that, for every infinite cardinal A, there is at most one
saturated model of T of power A (up to isomorphism).

Theorem 5.4.7 (Uniqueness Theorem) Let B and B' be saturated models
of T of the same power. Then B~ B'.

Proof.  Recall the Weak Homogeneity Theorem: as both B and B’ are
saturated, if X C B, X' C B’, |X| < |B| and f is an elementary function of
X into B/ with image X' (whence | X’| = |X| < |B’| and f~! is an elementary
function from X’ into B), then

(i) for every a € B, one can enlarge f to an elementary function g from
X U {a} into B/,

(i) for every a’ € B!, one can enlarge f~' to an elementary function g from
X'"U{a'} into B.

Now observe that, as B = B’, the empty map is an elementary function of
0 C B into B’ (and conversely). Start from this function, well order both B
and B’ and use alternatively (i) and (ii) in a suitable (possibly transfinite)
induction procedure. One eventually gets an isomorphism between B and
B'.

Let us provide the details of this construction. Let A denote the common
power of B and B'; view X as an initial ordinal; let {b, : v < A}, {b},: v <
A }. List B, B’ respectively. For every v < A, one builds two elementary
functions f,, f!, the former from a subset of B including all the b,’s with
p < X and having power < A into B, the latter from a subset of B’ including
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all the b;t’s with g < X and having power < A into B, in such a way that,
for p < v < A, f, enlarges f, and f;' and f] enlarges f, and 71, and
eventually fy and f} are two isomorphisms, the one inverse of the other one,
between B and B’. We proceed by induction on v.

When v = 0, we know what to do: fy and fj are just the empty function.
For a limit v, put f, = Uu<, fu and f], = U, f,,. Finally suppose v = p+1
successor. First build f,. Its domain is I'm f] U{a, }; using (i), enlarge f,'j_l,
hence f,, to include a, in the domain; f, is what we form in this way. Now
construct f/. Its domain is Im f, U {b,}; using (ii), enlarge f; ' to include
b, in the domain; let f] be the resulting function. Clearly this machinery
produces fy and f; as required. &

As a consequence we obtain:

Corollary 5.4.8 (Strong Homogeneity Theorem) Let B a saturated model
of T, X be a subset of B of power < |B|, f be an elementary function of
X into B. Then f can be enlarged to an automorphism of B (and then B is
called homogeneous ).

Proof. 1In the language L(X) consider the structures Bx and By(x). As fis
an elementary function, Bx = Bj(x), and so Bx and By(x) are models of the
same complete theory. As |X|=|f(X)| < |B|, Bx and By x) are saturated
also in L(X). Finally Bx and Bj(x) have the same power. Accordingly there
is some isomorphism (in L(X)) between Bx and Bj(x), whose restriction to
L determines an automorphism of B enlarging f. &

As a particular case, consider X C B, |X| < |B| and two tuples &, @ in
B™ having the same n-type over X. The function fixing X pointwise and
mapping @ into @ is elementary, hence can be enlarged to an automorphism
of B. As said, this automorphism acts identically on X and maps @ into a’.

Now we wonder for which cardinals A a complete theory 7" may have a
saturated model of power A. This is a quite delicate and deep question, and
the answer is not easy. Of course, stronger assumptions on 7' may sometimes
ensure these existence results. For instance, one can see:

e if T is A-categorical in some infinite cardinal A, then the unique model
of T of power A is saturated (we will see why for a countable A in the
final section of Chapter 7, where we will also discuss the uncountable
case; the examples at the end of the present section partly concern
this point).
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Furthermore the (complete) theories having a countable saturated model
can be characterized in the following way.

e T has a saturated model of power Ny if and only if T has at most
countably many n-types over {) for every positive integer n (the reader
may check this as an exercise).

But what we can say from a general perspective, when dealing with arbitrary
complete theories T'? In this abstract framework, proving the existence of
saturated models seeems related to some deep set theoretic assumptions,
like the existence of large cardinals. In fact one shows:

Theorem 5.4.9 Let A > Ry be an inaccessible cardinal. Then T has a
saturated model of power .

The existence of an uncountable inaccessible cardinal is a quite delicate
matter. But assume momentarily that such a saturated model Q exists (for
a given inaccessible A > ¥g). Recall that Q is unique up to isomorphism.
Furthermore

e is A-universal: every model of T of power < A can be embedded as
an elementary substructure in €2;

e (2 is A\-homogeneous: if X is a subset of Q of power < X and @,d’
are two tuples in Q having the same type over X, then there is an
automorphism of Q fixing X pointwise and mapping @ into a'.

It is a general agreement (and habit) in Model Theory to assume that such
a model Q exists. This makes things easier and, on the other hand, is
sufficiently plausible; in particular, one can check that everything is shown
inside €2, so assuming that € exists, can be proved (at the cost of some
major complications) even avoiding any reference to 2.

Which are the benefits of working in 27 As we said, the cardinality of {2
is very large, and so one can reasonably suppose that all the models we
expect to handle have a smaller power. But this implies that they actually
are elementary substructures of Q of a smaller size (up to isomorphism).
Under this perspective, the subsets of models of T' can be directly viewed as
subsets of  with power < |Q|: we will call these subsets small subsets of €2,
just to tell them from the other subsets of 2 admitting its same inaccessible
cardinality.

As already said, referring to small subsets of €2 instead of subsets of arbitrary
models makes our life, and also our notation simpler. For instance, take a
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small X and a positive integer n. When defining B, (X, .4) and S, (X, .4), we
had to explicitly refer to a model A of T' (now an elementary substructure of
Q) where X is embedded. We also emphasized that B,(X,.A) and S,(X, A)
do not depend directly on A, but only on the theory of Ax: the choice
of A is quite arbitrary within these bounds. But then it is convenient to
refer to A = Q, as a universal model where X is embedded. This is what
we will do from now on. Indeed we will write, when there is no danger of
misunderstanding, S, (X) to mean S, (X, Q) for every small X; so S(X) will
denote the union of the spaces S, (X) when n ranges over positive integers.

At last, let us propose some algebraic examples concerning more or less
saturated structures.

Examples 5.4.10 1. Which algebraically closed fields K are saturated
in a given cardinality A > Ro? To answer, we may recall that, for any
p = 0 or prime, the theory AC'F, is categorical in every uncountable
power; so, according to what we said before, every uncountable alge-
braically closed field (in any characteristic) is saturated. To confirm
this from the algebraic point of view and to discuss the existence of sat-
urated models in the countable case, we can refer to Steinitz’s analysis
of algebraically closed fields K and recall that such a K is the algebraic
closure of Ko(S), where Kq is the prime subfield and S is a transcen-
dence basis of K, so a maximal algebraically independent subset. The
isomorphism type of K is fully determined by its characteristic and
its transcendence degree, i. e. the power of S. Moreover, when S is
infinite, this transcendence degree equals |K|. Now let |K| > A and
take a subset H of K of power < A. As we saw in the last section, H
can be replaced by the subfield generated by H; this does not change
its size, except when H is finite; however, even in this case, each point
in this subfield is H-definable. Every algebraic 1-type over H is clearly
realized in K because K is algebraically closed. So the point is: can
we realize the remaining 1-type, the one of the elements which are
transcendental over H, for any H?

If X has an infinite transcendence degree, then this degree is just
|K| > A > |H|, so it is strictly larger than the transcendence degree
of the field generated by H. This means that we can realize our type
inside K for every H.

Otherwise, let H be generated by a finite transcendence basis S of K.
Clearly |H| < A, but now there is no way to realize our type inside K.

In conclusion, for |K| > A, K is A-saturated if and only if its transcen-
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dence degree is infinite. In particular every algebraically closed field
satisfying this condition is saturated (in its own power). So every un-
countable algebraically closed field is saturated (this applies also to the
complex field), while the only countable saturated algebraically closed
field (in a fixed characteristic) is the algebraic closure of Ko(S) where
Ko is the prime subfield and S is a countable (infinite) algebraically
independent set.

2. The real ordered field is not Ng-saturated. This is perhaps remarkable,
if one remembers that the reals are a complete ordered field (in the
sense that every Cauchy sequence has a limit), and even the only
complete ordered field up to isomorphism: in other words, given a
Cauchy sequence (r,)n>0 in R, the 1-type defined by

1
|U_rn| <
n

when n ranges over positive integers, has a (unique) realization in the

real field.

However, look at the type of a positive infinitesimal nonzero element.
This is defined by the cut

1
O<v<—,
n

for n as before. So it is a type over the empty set. Any finite portion
is satisfied among the reals, so this infinitesimal element lives in some
elementary extension of the real field. Nevertheless the type cannot
be realized in R.

Further examples will be discussed in the next section within modules.

5.5 A parenthesis: pure injective modules

Saturated models are very large, powerful and rich. Within algebraically
closed fields, they remind, and actually coincide with the universal domains
introduced by André Weil in his ” Foundations of Algebraic Geometry” [176];
in fact, as we saw in the last section, they are just the algebraically closed
fields with an infinite transcendence degree (over the prime subfield). Hence
it is not surprising to realize that there do exist in other parts of Algebra
some notions resembling saturation, perhaps in a weaker form. This is the
case of pure injectivity within module theory.
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So, fix a (countable) ring R (with identity), and consider (say left) R-
modules. We want to recall in this section what a pure injective R-module
is, and why these modules are so important. First we need introduce a
particular class of embeddings concerning modules.

Definition 5.5.1 Let M and N be R-modules. An R-module homomor-
phism f from M into N if called pure if, for every pp-formula ¢(0) in Lg
and every d in M,

(%) M@ & NEe(f(@).

Notice that a pure homomorphism is 1-1 and hence is an embedding. To
see this, just apply the definition to the formula v; = v;. Moreover the
implication = in (%) is trivial, hence the qualifying point in the definition
of purity is <=. When M is a submodule of A/, M is called pure in N if
its inclusion embedding is pure; in this case, one says also that A is a pure
extension of M.

The algebraic content of purity is the following: if a linear system A-d = B-%
with parameters @ from M admits a solution in the extension A, then it
admits a solution already in M; here A and B are, of course, matrices with
entries in R and suitable sizes.

Examples 5.5.2 1. If M is an elementary substructure of A/, then M
is pure in V. Indeed, (x) holds for arbitrary formulas.

2. If M is a direct summand of A, then M is pure in A. In fact, any
solution in NV of a linear system as before projects itself to a solution

in M.

3. Let R = Z, so let us deal with abelian groups. We saw in Chapter
2 that, in this particular framework, pp-formulas reduce to torsion or
divisibility conditions. Hence it is not difficult to realize that, over Z,
M is pure in NV if and only if rM = M N rN for every integer r, as
usually required in the definition of purity in the handbooks of abelian
group theory.

Incidentally, let us quote a noteworthy result of Sabbagh.

Theorem 5.5.3 Let M and N be R-modules, M be a submodule of N .
Then M s an elementary substructure of N if and only if M is pure in N'
and M and N are elementarily equivalent.
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Now we can introduce pure injectivity: this notion restricts in some sense
the usual injectivity requirement to pure embeddings.

Definition 5.5.4 An R-module M is called pure injective p. i. (but some-
one prefers to say algebraically compact) if and only if one of the following
equivalent conditions holds:

(i) For every choice of R-modules N and N', for which N is a pure
submodule of N, every homomorphism f from N to M lifts to a ho-
momorphism f' from N to M.

(i) M is a direct summand of every pure extension.

The equivalence between (i) and (ii) is proved in the references quoted at
the end of the chapter. (i) and (ii) chacterize pure injectivity from the
algebraic point of view. But there is a third equivalent definition, disclosing
a model theoretic flavour and showing that pure injectivity is directly related
to saturation.

Theorem 5.5.5 An R-module M is pure injective if and only if, for every
countable subset X of M and every (incomplete) 1-type p of pp-formulas
p(v, @) with parameters @ from X, when every finite portion of p has a
realization in M, then the whole p can be satisfied in M.

Hence pure injectivity is just a weak form of saturation, restricted to incom-
plete 1-types of pp-formulas (they are usually called pp-types). Consequently
every N;-saturated R-module M is p. i.; this fact, and Theorem 5.4.2 clearly
imply that any R-module enlarges to a p. i. elementary extension. But
something much stronger holds.

Theorem 5.5.6 Let M be an R-module. Then M has a p.i. pure ertension
M which is minimal in the following sense: for every pure and p.i. extension
N of M, N contains M as a pure submodule up to isomorphism. Moreover
M is unique up to isomorphism fizing M pointwise. Finally, M is an
elementary extension of M.

For a proof, see the references at the end of the chapter.

These existence and uniqueness results justify the specific symbol M to
denote this p.i. extension of M and, furthermore, a special name to dub it;
actually, M is called ”the” pure injective hull of M.
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Up to elementary equivalence, p. i. R-modules represent the whole class of
R-modules, hence their algebraic analysis can help a description of the pos-
sible completions of gT. But what can we say about a possible classification
of pure injective R-modules? A usual and general technique in studying a
given class of modules is

(a) to look for a possible (and hopefully unique) direct sum decomposition
of any module of the class into indecomposable objects,

and then
(b) to classify the indecomposable modules of the class up to isomorphism.

By the way, recall that an R-module M is called indecomposable if M # 0
but there is no way to express M as a direct sum of two nonzero submodules.
This procedure is not always successful within arbitrary classes of modules,
but is sufficiently satisfactory when applied to p. i. modules. Let us explain
why. First of all it is comparatively easy to check that pure injectivity
is preserved by direct summands. Moreover (a) does work within p. i.
modules, due to the following result of Fisher and Ziegler.

Theorem 5.5.7 (Fisher-Ziegler) Let M be a p.i. R-module. Then M de-
composes uniquely (up to isomorphism) as

U, O E,

where F has no indecomposable direct summand, denotes p.i. hull
and, for every i, U; is an indecomposable p.i. R-module. Moreover M is
elementarily equivalent to &;U;.

Incidentally, pure injectivity is not preserved under infinite direct sums. To
summarize what we have seen so far:

e every R-module is an elementary substructure of its p.i. hull;

e every p.i. R-module is elementarily equivalent to a direct sum of in-
decomposable p.i.’s, and even isomorphic to the p.i. hull of this sum
up to a summand with no indecomposable direct factors.

So what we have to do now is to study isomorphism classes, or elementary
equivalence classes of indecomposable p.i. R-modules.

Classification up to isomorphism is sometimes easy. For instance, when R is
a field, so when we are dealing with R-vectorspaces, the only indecomposable
object is just R (as a vectorspace over itself) and is pure injective.
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But over other rings the situation changes dramatically and in some cases
one has to conclude that no classification is possible. This is what hap-
pens, for instance, when R = K{(z, y) is the ring of polynomials over a
field K in two non-commuting variables # and y, so when one considers
K-vectorspaces with two additional linear operators, corresponding to the
action of z, y respectively; in fact, this class of modules encodes in some way
the word problem for groups, and there are some good reasons to believe
that this forbids any classification of indecomposable p.i. objects. See [136]
for a detailed discussion of this point. As a consequence, even modules over
Klz, y] (with two commuting unknowns z and y) and, in another direction,
over K(zy, ..., z,) with n > 2 inherit the same "wild” situation, excluding
any possible classification.

So the key point is to realize for which rings R indecomposable p.i. modules
can be classified up to isomorphism. In this perspective we would like to
quote a beautiful result of Ziegler, using model theory to equip in a natural
way indecomposable p.i. modules over any fixed ring R with a topological
space structure.

In fact, let gZg denote the set of (isomorphism classes of) indecomposable
p.i. R-modules. For every choice of pp-formulas ¢(v) and %(v) (in one free
variable) in Lg, let (¢ /1) be the set of the elements U in rZg such that
o(U) properly includes () N (). Then the (¢ /1)’s are a basis for a
topology of rZg, which is always compact and seldom Hausdorff. rZg with
this topology is called the (left) Ziegler spectrum of R. Again, see [136] or
directly [181] for more details. What we can say in the restricted framework
of these pages is that the knowledge of the Ziegler spectrum of R is a sort of
fixed course towards the solution of several significant model theoretic (and
also algebraic) problems about R-modules.

In particular, a successful analysis of the Ziegler spectrum can provide some
useful information on the elementary equivalence class of any R-module M.
Let us see very briefly and roughly why. We saw in Chapter 2 that the
complete theory of M is fully determined by the values (modulo oco) of
[p(M) : (M)] where p(v) and % (v) range over pp-formulas in one free
variable in Lgr. Now, up to elementary equivalence, M can be replaced by
a direct sum of indecomposable p. i . R-modules &;if;, where

M=oU o F

is the canonical decomposition of the pure injective hull M of M according
to the Fisher-Ziegler Theorem. Consequently, for ¢(v) and ¢ (v) as before,

[p(M) : P(M)] = [p(®ilh) : P(Dilhs)]
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modulo oo (in the sense that these values are either finite and equal or both
infinite). Now it is easy to realize that

[o(@ilh) = p(@)] =D lph) : $(h)]

modulo co. So, when in the Ziegler spectrum the points (i.e. the indecom-
posable p.i. B-modules) are classified as well as their basic open neighbour-
hoods, the elementary equivalence type of M can be determined by saying
which U €g Zg are involved in the decomposition @;i4; and how many times
they occur. For instance, if U is known to be isolated -say by (¢ / ¢)-, then
the value (modulo co) of [p(M) : ¢(M)] can witness if U occurs in the de-
composition, and how many times. Of course, for a non-isolated U, a finer
analysis is necessary. In conclusion, when the spectrum is known, looking
at the points in gZ¢ and at their open neighbourhoods, one can effectively
list the complete extensions of gT. Let us illustrate this by some examples.

Examples 5.5.8 1. Let R be the ring Z of integers. Recall that every
pp-formula ¢(v) of Lz is logically equivalent within zT to a conjunc-
tion of torsion or divisibility conditions

ruv=0, p¥p'v

where p is a prime, | < k are positive integers and r is an integer. An
effective list of indecomposable p. i. Z-modules is known, and includes
(up to isomorphism) exactly the following objects:

e the finite modules Z/p"Z,

e the Priifer groups Z/p*,

e the p-adic integers _ZEIT),

e the additive group of rationals Q

where p ranges over primes and n over positive integers; the p-adic
integers are just the p. i. hull of the localization Z, of Z at p. It is not
prohibitive to realize that the previous examples are indecomposable
and p. i.; for instance, the pure injectivity of the Priifer groups and
the rationals comes directly from their divisibility. But the point is
to show that their list exhausts all the possible cases: see [181] for a
discussion, and a complete proof of this.

Now we have to study the topology of the Ziegler spectrum zZg. Here
is its Cantor-Bendixson analysis.
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e The isolated points (those having rank 0) are the finite modules
Z/p"Z; in fact, each of them is the only element in the open set
(7" Yo A pv=0)/(p"lv A pv=0)).

e Now forget the Z/p™Z’s; then a Priifer group Z/p*> gets isolated
by ((p"|v A pv = 0) /v = 0) for any positive n, while the p-adic
integers are isolated by (p"~!|v/p™|v) for any n; hence all these
groups have rank 1.

e The rational group is the only remaining point, and so gets rank
2.

This analysis was pursued by Eklof-Fisher in the particular case when
R is a principal ideal domain, and supports and clarifies the previ-
ous work of Wanda Szmielew (sketched in our Chapter 2) for abelian
groups. In particular, as a consequence, it implies the decidability of
the theory z7T. Ziegler’s approach was inspired by these particular
cases, but is fully general and covers any ring R.

2. Hence what has been said on Z actually enlarges to principal ideal
domains and, partly, to Dedekind domains. For instance, it applies to
the ring K[z] of polynomials over a field K with a single unknown: also
in this case one can accomplish a quite satisfactory description of the
Ziegler spectrum, essentially repeating the analysis for the integers
with the necessary variants. Compare this and what was observed
before when the number of unknowns increases.

5.6 Omitting types

Saturated models realize many types. But non isolated types are not easy to
satisfy in arbitrary models. Let us see why. We consider a complete theory
T, and we denote its universe by Q. Recall that we met isolated types in
5.3: a type p over a set X C € is isolated when p is the only type over X
containing some L(X)-formula ¢(v). It is an easy exercise to check what
follows.

Fact 5.6.1 For p € S(z), the following propositions are equivalent.

1. p is isolated;

—#

2. there is some L(X)-formula ¢(¥) € p such that p is just the set of
L(X)-formulas 9 (%) for which ¢(2"%) C 4 (Q");
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¢ and p is just
().

Actually what distinguishes 2 and 3 is that in 2 we require the additional
condition ¢(¥) € p. But it is easy to see that ¢(v) ¢ p forces —p(¥) € p,
hence (") C —(2"), and so (") = 0, a contradiction.

Now an isolated type p over X is trivially realized in every model M of
Th(Q2x). For, 2 does contain some tuple satisfying p, and in particular the
formula () isolating p. So 36¢(%) € Th(Qx).

On the contrary a non-isolated type p is not always realized. This is the
content of the following result.

3. there is some L(X)-formula (%) such that ¢(Q") #
the set of the L(X)-formulas 9 (%) for which ¢(2") C

Theorem 5.6.2 (Omitting Types) Let T be a complete theory in a language
L, p be a non-isolated type over . Then there exists a (countable) model
M of T omitting p (in the sense that p(M) =0).

Proof.  For simplicity, assume p € S1(0) (the reader can easily adapt the
following argument to more variables, if he (she) likes). We use some usual
techniques of classical Model Theory. In detail, first we extend our language
L by countably many new constant symbols

€0y Cly- -y Cny- .. (nnatural).

List the sentences of the enlarged language L' = LU {¢,, : n € N}

P0yPLy ey Prye e
Now we build an increasing sequence of consistent theories in L'
ThCh C...CT,...,
all enlarging T and satisfying the following conditions, for every n:
1. T, is axiomatized by Ty and a unique further L’-sentence 6,,;
2. either ¢, or —, isin Tp41;

3. whenever ¢, or -, is in T,4; and has the form Fve,(v), then
Yn(cm) € Th41 for some new constant ¢, not already occuring in
any ;, 0; for : < n;

4. finally, there is some formula o, (v) € p for which -, (c,) € Tpy1.
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Ty is just T, or, more precisely, the L'-theory axiomatized by T. Now,
assume T, given, and let us build 7},4;.

Let ¢;gy - - -, Ci,_,s ¢ be the constants in L' — L occuring in 6,; replace these
constants by new variables wy,...,w—1,v chosen out of 6,; place before
dwp, ...,Jw,_y and get a formula 6/, (v) in L, with the only free variable

v. Take a model M/, of T,; as 0, € T, 6/,(M],) is not empty (it includes
cMiz). As p is not isolated, the condition 3 in Fact 5.6.1 ensures that, for
some formula o, (v) € p,

Fo(8],(v) A =0y (v)) € T C Th,.

Put =0y, (¢,) in Tpy1. This guarantees 4. Now look at ¢,,. If T, U {—ay(cy),
©n} has some model, let 7,4, include also ¢,. Otherwise =, is a conse-
quence of T, U {—o,(c,)}. This gives 2. When ¢, (or —y,) is of the form
v, (v), pick the least m such that ¢, does not occur in ¢;, 6; for ¢+ < n,
and put t,(cy) in Tpqq. This ensures 3.

Let T,,4+1 be the theory obtained in this way. Clearly T}, is consistent and
satisfies 1.

Now form T’ = |J,, T,,. T" is consistent. Take any model M’ of T'. By 2,
T’ is complete, 77 = Th(M’): the sentences Jvp(v) M’ satisfies are just
those occuring in some T,. Owing to 3, we can apply the Tarski-Vaught
Theorem and deduce that {¢™' : n natural} is the domain of a (countable)
elementary substructure of M’, and hence a countable model of T'. Its
restriction to L is a countable model of T', and omits p because, for every =,
M’ cannot satisfy o, (v). &

Cn

5.7 The Morley rank, at last

Let T be a complete theory in a countable language. We remind the pro-
gram outlined in 5.2: we aim at measuring the complexity of definable sets
X in Q (equivalently, of ~-classes of formulas with parameters in Q) and,
more generally, of sets of formulas with parameters in €2, including types
over small subsets of 2. A reasonable way to get this is to define some
function assigning, if possible, to every definable, or formula, or type, an
ordinal value, according to some reasonable conditions, like monotonicity.
An axiomatic introduction to this complexity measures can be found in [8]
or [131, 134]; these functions are usually called ranks. There are several
possible ways to define a rank, according to some particular algebraic or
model theoretic features of the theory T'. Morley’s rank was the very first,
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and fundamental, example in this direction. Historically, it was inspired
by the Cantor-Bendixson analysis of topological spaces S. Recall that this
equips any point in S with a rank, whose value is either an ordinal number
or co (where one assumes that oo is greater than any ordinal); in particular
the Cantor-Bendixson rank assigns the value 0 to the isolated points of S,
the value 1 to the points in S that get isolated within the relative topology
once the isolated points are forgotten, and so on. Of course one can apply
this Cantor-Bendixson machinery to the topological space S(C), where C'
is a small subset of €, and hence to the types over C. Using the Stone
duality between topological Boolean spaces and Boolean algebras, one can
define a Cantor-Bendixson rank also for the elements of the dual algebra of
S{C), and hence for C-definable sets. However, if one translates literally
the Cantor-Bendixson analysis into our particular setting, then the same
definable object may obtain several possible ranks, according to which basic
set of parameters C' we refer to; in particular, if we replace C by a larger C’,
then we can expect that, over C’, C-definable sets get a stronger complexity
and consequently a bigger Cantor-Bendixson rank: some examples of this
phenomenon will be provided later in the present section.
Morley’s rank adapts the Cantor-Bendixson approach to obviate this diffi-
culty. The recipe is just to refer to our universe Q and so to evaluate any
definable within arbitrary Q-definable sets. But it is time to give, at last, the
exact definition of the Morley rank; we will introduce also a related notion
(Morley degree).
We consider a complete theory 7" in a countable language L: € denotes,
as usual, the universe of 7. Let X be a definable subset of Q" (for some
positive integer n), we want to define the Morley rank of X RM(X). First
let us say what

RM(X) > «a

means for every ordinal o. We proceed by induction on a.

Definition 5.7.1 When o = 0, put RM(X) > a if and only if X # 0.
When « is a limit ordinal, put RM(X) > « if and only if RM(X) > v
for every ordinal v < «. Finally, when o = v + 1 is a successor ordinal,
put RM(X) > a if and only if there are infinitely many pairwise disjoint
definable subsets X; (i € N) of X such that RM(X;) > v for every i € N.

It is easy to observe that, if «, 3 are ordinals and « > 3, then
RM(X)> a implies RM(X) > .

Accordingly it makes sense to put:
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Definition 5.7.2 1. If X =0, then RM(X) = —1.

2. Let X # 0 and suppose that there is some ordinal o such that RM (X)) 7
a (so RM(X) # 3 for every ordinal § > «); the least ordinal oy with
this property is a successor; if ag = v + 1, then put RM(X) = v.

3. Finally suppose X # (0, RM(X) > a for every ordinal a. Then put
RM(X) = oo.

(Of course we assume —1 < @ < oo for every ordinal ). When ¢(0) is a
formula (possibly with parameters from 2), define

RM(p(9)) = RM (p(2"))

=

(where n is the length of 7)

Examples 5.7.3 1. RM(X) = —1if and only if X = 0.

2. RM(X) = 0if and only if X is finite and non-empty. For instance, in
algebraically closed fields, the (definable) zero set of a given polynomial
of degree > 1 in one unknown is finite and non-empty, and hence has
Morley rank 0.

3. RM(X) = 1if and only if X is infinite, but cannot partition as the
union of infinitely many pairwise disjoint infinite definable subsets.
For example, in algebraically closed fields, the only definable infinite
1-ary sets are cofinite. This implies that their Morley rank is 1. Notice
that the same is true for infinite vectorspaces over a countable field.

4. Let T = DLO™ be the theory of dense linear orders without endpoints.
Fix @ < b in © and consider the interval I =la,b[= {2 € Q : a <
z < b}. I is definable, and RM(I) = oo. In fact, for every a, b as
before and ordinal «, RM(]a,b[) > «. This can be easily checked by
induction on a. The cases @ = 0 and « limit are trivial. So suppose
o = v+ 1 for some v. As the order < is dense, we can choose ¢ €
la, b[, and observe that ]a, [ includes the disjoint intervals Ja, ¢, ]¢, ],
both having Morley rank > v, because of the induction hypothesis.
Repeating this procedure, one finds infinitely many pairwise disjoint
open intervals in ]a, b[, all of Morley rank > v. Hence RM(]a, b[) >
v+ 1. Notice that even [a, b[, ]a, b], [a, ] (for @ < b) have Morley rank
00.

Let us point out now some simple properties of RM:
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Proposition 5.7.4 Let X, Y be two definable subsets of Q" for some pos-
itive integer n.

() FX CY, then RM(X) < RM(Y).
(ii) For every automorphism f of @, RM(X)= RM(f(X)).
(i) RM(XUY) = maz{RM(X), RM(Y)}.

Proof. (i) Every definable subset of X is clearly a definable subset also
of Y. So a simple induction argument shows that, for every ordinal «, if
RM(X) > o, then RM(Y) > a.

(ii) Tt suffices to show RM(X) < RM(f(X)) (as the opposite relation
RM(X) > RM(f(X)) can be obtained just by reversing the roles of X
and f(X) and replacing f by f~'). In other words, we have to check that,
for every ordinal o, RM(X) > o implies RM(f(X)) > a. Proceed again
by induction on « (and observe that, if Z is a definable subset of X, then
f(Z) is a definable subset of f(X)).

(i) > follows from (i). To check <, it suffices to prove that, for every ordinal
o, RM(X UY) > o implies either RM(X) > aor RM(Y) > . As before,
we can proceed by induction on «. If @ = 0 and RM(X UY) > «, then
X UY # 0 and consequently either X or Y is not empty. Now suppose
a limit and RM(X UY) > o, namely RM(X UY) > v for every ordinal
v < a. If there exists some v < « such that RM(X) > u for every ordinal
u satisfying v < p < a, then RM(X) > a. Otherwise, for every ordinal
v < a, there is some p > v such that 4 < v and RM(X) 2 u. By induction,
RM(Y) > p, whence RM(Y) > v. It follows RM(Y') > a. At last, take a

successor & = v+ 1 and suppose RM (X UY) > a. Then there are infinitely
many pairwise disjoint infinite definable subsets Z; (i € N) of X UY, all
having RM > v. Look at the sets

X;=XNnZ, Y;=YNZ (ieN).

For every i, either RM(X;) > v or RM(Y;) > v. Accordingly RM (X;) > v,
or RM(Y;) > v for infinitely many #’s. In the former case RM(X) > o; in
the latter RM(Y) > a. &

Now we are going to associate with any definable subset X C Q™ (whose
Morley rank is an ordinal) a positive integer: the Morley degree of X
GM(X).
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Proposition 5.7.5 Let X C Q" be a definable set whose Morley rank is an
ordinal a. Then there is a mazimal positive integer d such that X partitions
as the union of d pairwise disjoint definable subsets of Morley rank o.

Proof. Suppose not. Then, for every positive integer d, one can partition
X as the union of d definable subsets of Morley rank «

X(d,0),...,X(d,d—1).

We can assume that, for every d and ¢ < d, there is some j < d such
that X(d+ 1,¢) C X(d,j). In fact, X(d+ 1,¢) decomposes as the disjoint
union of its subsets X (d + 1,7) N X(d, j) for j < d. Owing to Proposition
5.7.4, (iii), at least one of these subsets has the same Morley rank o as
X(d+ 1, 7). By Proposition 5.7.4, (i), all these subsets have Morley rank
< a. Accordingly we can replace X (d+1, ¢) by a subset X (d+1, )N X{(d, j)
(to which one possibly adds other subsets X (d, j) of Morley rank < «). Now
a combinatorial argument (Ko6nig’s Lemma) ensures that there are positive
integers
do<di <...<dp < ... (m € N)

and natural numbers
20y Ty e e oy by e e - (m € N)
such that, Ym € N, ¢,, < d,,, and
X(dmytm) D X (dm+t1stmt1)y, BM(X(dm,im) — X (dmt1, tmy1)) = .

We obtain in this way infinitely many pairwise disjoint definable subsets of
X
X(dmv lm) - X(dm-i-lv im+1)

(where m ranges over N), all having Morley rank . Consequently RM (X) >
o+ 1, and this is a contradiction. &

Owing to this proposition, we can at last introduce the Morley degree as
follows.

Definition 5.7.6 Let X be a definable subset of Q™ (for some positive inte-
ger n) whose Morley rank is an ordinal o.. The Morley degree of X (denoted
GM (X)) is the mazimal positive integer d such that X can partition as the
union of d definable subsets of Morley rank o.
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Remarks 5.7.7 1. If X is finite and non-empty (in other words RM (X)) =
0), GM(X) is just the size | X| of X. In particular, when X is the zero
set of a polynomial f(z) of positive degree in one unknown over an
algebraically closed field K, then the Morley degree of X is just the
number of roots of f(z) in K.

2. A definable X having Morley rank 1 and Morley degree 1 (so an infinite
definable X admitting no infinite coinfinite definable subset) is called
strongly minimal. A theory T is strongly minimal if its universe (so
the formula v = v) is: we met this notion in Chapter 2, and we shall
deal again with it in the next sections. Recall that algebraically closed
fields, as well as infinite vectorspaces over a countable field, admit a
strongly minimal theory.

3. Let X, Y be two definable disjoint subsets of Q" such that both
RM(X) and RM(Y) are ordinals, and RM(X) < RM(Y). Then
GM(X UY) equals

GM(X)+GM(Y) if RM(X) = RM(Y),
GM(Y) otherwise

(the reader may check this as an exercise).

When ¢(?) is a formula (possibly with parameters from Q) and RM (¢(Q2"))
is an ordinal, we put GM (p(¥)) = GM (p(Q27)).

Now we want to discuss the following problem. Let X be a definable subset
of Q" (for some positive integer n), a denote the Morley rank of X and d its
Morley degree (if any): both a and d can be calculated by looking at the de-
finable subsets of X. But suppose that X is M-definable for some model M
of T. Then we wonder whether the values of & and d are already witnessed
by the M-definable subsets of X, in other words whether o and d remain
the same after replacing “definable” by “M-definable” in the definition of
RM and GM.

Examples 5.7.8 1. We know that RM (X)) = 0if and only if X is finite;
furthermore, in this case, GM(X) is just the size |X| of X. Suppose
X = ¢(Q",d) for a suitable tuple @ of parameters of a model M of
T. As M is an elementary substructure of Q, X = ¢(M™, @). So the
elements of X in M can witness RM(X) =0, GM(X) = | X]|.

2. RM(X) = 1if and only if X is infinite, but X cannot contain infinitely
many pairwise disjoint infinite definable subsets. As before, suppose
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X =pQ"a) fordin MET. As M < Q, p(M", @) is infinite, so
M can witness RM(X) > 1. It is also clear that ¢(M", @) cannot
contain infinitely many pairwise disjoint infinite M-definable sets.

3. Now consider a structure Mo = (Mp, F) where F is an equivalence
relation having exactly one equivalence class of size & for every posi-
tive integer k, but no infinite class. Let 7' denote the theory of M.
One easily sees that Mg is elementarily embeddable in every model
of T. But a simple application of Compactness Theorem shows that
there exist some other models of T' containing also infinite equivalence
classes, and indeed, for every positive integer t, T has a countable
model M; with exactly ¢ infinite classes, while the universe 2 has in-
finitely many infinite classes. Now consider the formula v = v. The set
it defines is just €2, and consequently has Morley rank > 2, because it
partitions into infinitely many infinite pairwise disjoint definable sub-
sets (the infinite classes of £). Indeed one sees that €2 has Morley
rank 2 and Morley degree 1. On the other side, there is only one non-
algebraic 1-type over My as, for every a and b in £ — My, one can
find an Mp-automorphism of Q mapping a in b. In particular, every
Mjy-definable set is finite or cofinite according to whether it excludes
or includes the elements in  — My. Hence 2 cannot partition in two
infinite My-definable subsets, and Mg cannot witness RM () > 2.

So we can wonder which models M of a given T can witness the Morley
rank and degree of every M-definable set. As a partial answer, let us show
that Ng-saturated models have this feature.

Proposition 5.7.9 LetT be a complete theory, M be an Wo-saturated model
of T. Then M can witness the Morley rank and (if it exists) the Morley
degree of any M -definable set X .

Proof. Put X = ¢(Q", @) for some suitable positive integer n and d € M.
First let us deal with RM(X). It suffices to show that, for every ordinal
v, if RM(X) > v+ 1, then there are infinitely many pairwise disjoint M-
definable subsets of X, all having Morley rank > v. On the other side we
do know that there are infinitely many pairwise disjoint subsets X; C X
(¢ € N), all having RM > v. For every 1 € N, let X; = ¢;(Q", d;) with
a; € Q. As M is Ng-saturated, for every natural k there are b_(;, ey b_;; in
M such that tp(dy,...,d; /d) = tp(b_(;, .. .,b_;;/d'). Consequently, for every
i < ky, (7, b;) C (", d) because Vi (¢;(W, ;) — @(w,d)) lies in the
type of (dg, ..., dx) over @. Moreover, for i < j < k, ¢;(Q7, b_;) Np(Q", b;) =
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0 because —3 W (i (W, ;) A @;(W,0;)) is in tp(dyp, .. .,dk /). Notice also
that, Vi < k, di, b; correspond to each other by some automorphlsm of Q
fixing @ pointwise, and consequently ¢;(Q2", @;) and ¢;(Q", b;) have the same
RM > v. Finally, for every i < k, (2", b;) is M-definable because b;
is in M. In conclusion, for every natural k, X contains at least k£ + 1 M-
definable pairwise disjoint subsets of Morley rank > v. So, the combinatorial
argument in Proposition 5.7.5 can be repeated and shows our claim.
Now let RM(X) = a where « is an ordinal, d = GM(X). We have to show
that X can partition as the union of d M-definable subsets of Morley rank
a. Again we know that X does admit such a decomposition in definable
subsets

SDO(Qn, 076), RS @d—l(Qn, 6d—1)
with d@p,...,a4"1 in Q. On the other hand tp(dy, ..., as_1 /&) can be realized
in M, say by bT), .. .,Ed_l, because M is Ng-saturated. By proceeding as
before, one sees that

@O(an b_gl)a SRR Qod—l(an gd—l)
provide a partition as required. &

Now we want to define the Morley rank and degree of a complete type p over
a small subset A of Q: the Morley rank of p RM (p) is an ordinal or oo, while
the Morley degree GM (p) is defined only when RM (p) is an ordinal, and is
a positive integer. The reader can easily observe that this assignment of a
Morley rank and degree can be easily extended to arbitrary set of formulas
over A (although, in this enlarged framework, the Morley rank may assume
also the value —1 -for inconsistent set of formulas-).

Definition 5.7.10 Let A be a small subset of Q, p € S(A). The Morley
rank of p RM(p) is the least Morley rank of a formula in p. If RM(p) is
an ordinal o, GM (p) (the Morley degree of p) is the least Morley degree of
a formula in p of Morley rank o.

Accordingly, with any p € S(A) it is associated a formula ¢(?) € p such that
RM (¢(%)) = RM(p) and, when RM (p) is an ordinal, GM (¢(%)) = GM(p).
Of course, one may wonder whether this formula ¢(?) is unique. To clarify
this question, first notice:

Proposition 5.7.11 Let p € S(A) satisfy RM(p) < oo, (V) be a formula

in p having the same Morley rank and degree as p. Let ¢'(0) be any for-

mula with parameters from A. Then ¢'(¥) € p if and only if RM (o(2") —
¢'(Q")) < RM(p).
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Proof.  First suppose ¢'(¥) € p. Then ¢() A ¢'(7) € p; as RM (p(7) A
¢'(V)) < RM (7)), ¢(0) A ¢'(0) have the same Morley rank and degree as
(), hence as p. Consequently RM (¢(%) A ~¢' (7)) < RM(p).

Conversely, suppose RM (p(Q")—¢'(2")) < RM (p), so (p( ) A—¢' (T) cannot
belong to p. In particular —¢'(7) gZ p, and so ¢'(7) € &

At this point one deduces:

Corollary 5.7.12 Let p € S(A) satisfy RM (p) < oo, ¢(¥) be a formula in
p having the same Morley rank and degree as p. Let /() be a formula of
L(A) also having the same Morley rank and degree as p. Then ¢'(V) € p if
and only if RM(o(Q") A ¢ (™)) < RM(p).

Here A denotes symmetric difference: for X, X’ sets, X A X' = (X - X")U
(X' - X).

Proof. Let ¢'(¥) € p. Owing to Proposition 5.7.11, RM (¢(Q") — ¢'(27")) <
RM (p). But now we can reverse the roles of ¢(%) and ¢'(%), and so deduce
RM (0(Q") — ¢'(™)) < RM(p). By Proposition 5.7.4, (iii), RM (¢(Q") A
©'(2™)) equals maz{ RM (¢ (") —¢' (7)), RM (¢’ (2")—¢(2"))}, and hence
is < RM(p). Conversely suppose RM (p(2") A ¢'(2")) < RM(p). Then
RM(o(Q") — ¢'(2")) < RM(p) as well, and so ¢'(7) € p. &

It is easy to realize that, for every ordinal a, the relation =, identifying two
L({A)-formulas ¢(7), ¢'(?) if and only if

RM(p(Q") & /(%) < @

is an equivalence relation. Accordingly, when RM (p) is an ordinal a, a
formula ¢(¥) € p with the same Morley rank and degree as p is uniquely
determined (in p) up to =,.

Remarks 5.7.13 1. Let A C B be small subsets of Q, p € S(A )7 q €
S(B), p C q. Then RM(p) > RM(q) and, when RM( ) = RM(q),
GM(p) > GM(q). For, all the formulas in p belong to g as Well

2. Let p € S(A). Then p is algebraic if and only if RM(p) = 0 (recall
that p is algebraic if and only if there is a formula ¢(%) € p such that
©(Q") is finite and non-empty, in other words has Morley rank 0). We

saw that, for types in a suitable setting, algebraic just means isolated:

in this way we recover in our framework a very basic and familiar
property of the Cantor-Bendixson rank. For algebraically closed fields
(of a fixed characteristic) the only nonalgebraic 1-type over a small
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subset of  has Morley rank 1. The same is true for every strongly
minimal theory.

So we have just introduced Morley rank and degree for types p € S(A) by
referring to Morley rank and degree of formulas. Conversely, for every L(A)-
formula ¢(7), we can recover the Morley rank and degree of () (and of
the corresponding A-definable set ¢(€2")) from the Morley rank and degree
of the types over A containing ¢(¥) (provided that, of course, there is some
type over A containing this formula, in other words ¢(Q2") # 0).

Proposition 5.7.14 Let A be a small subset of Q, p(¥) be an L(A)-formula
(in the free variables U = (vy,...,v,)) such that p(Q") £ 0. Then

RM(p(Q")) = maz{RM(p) : p € Sn(A), (V) € p}
and, when RM (¢(Q")) is an ordinal o,

GM (") =Y _ GM(p)

where p ranges over the n-types over A containing ¢(0) and having rank a.

Proof. Clearly, if p € S,(A) and ¢(7) € p, then RM (p) < RM (¢(£27)). So
we have preliminarily to show that there exists at least one type p € S, (A)
containing (%) and having its rank.

First suppose RM (p(Q2™)) = co. By compactness the set of L(A)-formulas

po = {p(0)} U{=9(7) : RM(9(Q")) < oo}

is consistent. In fact, let 9¢(7),...,95(F) be L(A)-formulas of rank <
oo; by Proposition 5.7.4, (iii), also V;<, 9:(¥) have rank < oco. Moreover
©(2") € Uic,s 9:(27), otherwise even (i) has Morley rank < co. Accord-
ingly @(Q7) N (Nics 7% (2")) # 0. So extend po to a type p € S,(A);
¢(%) € p, and p has rank co.

Now suppose RM(p(2")) = a where a is an ordinal. Decompose (%) as
Vi<s ¢i(¥) where ¢o(?), ..., @s(¥) are L(A)-formulas of Morley rank o and
minimal Morley degree and, for i < j < s, RM(;(Q7) N ¢;(2") < a.
The formulas (7)), ..., ¢s(¥) occurring in this decomposition are uniquely
determined up to =,, as they have minimal degree. Furthermore the Morley
degree of ¢(¥) is the sum of the degrees of ¢;(¥) for ¢ < s. Now fix i < s

and consider

g = {i(8)} U{~9(5) : 0(5) L(A)—formula, RM (;(5) A 9()) < o).
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By proceeding as in the previous case, one checks that ¢; is consistent, and
so enlarges to a type p; € S,(A). Furthermore this type p; is unique: in
fact, if ¥(¥) is an L(A)-formula and RM (p;(¥) A #(¥)) = «, then, owing
to the choice of ¢(¥) (and the minimality of its degree over A), it follows
RM (p(%) A =9(7)) < a, whence 9(7) is in p;. Clearly RM (p;) = a. Using
the minimality of the degree of ¢;(7) once again, one deduces GM (p;) =
GM (p;(7)). Finally ¢;(0) € p;, and so ¢(7) € p;.

So we have found types po,-..,ps € S,(A) as claimed. To accomplish the
proof (in particular, to show the equality about degrees) it suffices to observe
that the only n-types p over A containing ¢(?7) and having rank « are just
Po, .-+, Ps. In fact, if @(¥) € p, then there is a unique z < s such that
©;(¥) € p. As p has rank a, it follows ¢; C p, whence p; =p. &

5.8 Strongly minimal sets

As said before, a definable set is strongly minimal if it is infinite, but admits
no partition into 2 disjoint infinite definable subsets in 2. A theory is called
strongly minimal if the domain of its universe is.

Recall also from Chapter 2 that a structure A is said to be strongly minimal
if its theory is, and minimal when its domain A admits no partition into 2
disjoint A-definable infinite subsets. Of course, strongly minimal structures
are minimal, but the converse is not true (see, again, Example 2.7.2).
Clearly strongly minimal sets are the simplest infinite definable sets and
hence provide a matter worthy of some interest. Incidentally, due to the
new approach to structures provided in 5.2, any strongly minimal set, and,
more generally, any definable D in  can be naturally regarded as a structure
in its own right. It suffices to assume as definable sets in D the traces in D
of the definable sets in €2, hence D™ N X for every definable X C Q™. It is
easy to check that the resulting collection satisfies the condition in Theorem
5.2.1. When D is strongly minimal, the resulting new structure is strongly
minimal, too.

Accordingly, one can examine strongly minimal structures and theories in-
stead of strongly minimal sets. We already met some examples in this area.
In fact we know that infinite vectorspaces over a countable fields, as well
as algebraically closed fields (in a fixed characteristic), and even mere infi-
nite sets, admit a strongly minimal complete theory. Let us analyse closerly
these examples.
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Examples 5.8.1 1. Let K be a countable field and consider the theory
kT of infinite vectorspaces over K. Recall that each of them is fully
determined, up to isomorphism, by a cardinal number (its dimension
over K). In view of a possible generalization, let us remind very quickly
why. So let V be any vectorspace over K. For a € V, X C V define

a < X (alinearly dependent on X)

if and only if @ is in the subspace {X) of V spanned by X (in other
words, a is a finite linear combination of elements in X U {0}). One
introduces in this way a subset < of V' x P(V) (the linear dependence
relation). Moreover one sees that < satisfies the following properties:
fora,bin Vand X, Y CV,

(D1) if a € X, then a < X;

(D2) if a < X, then there is some finite Xo C X such that a < Xo;
(D3) ifa < X and, forevery z € X,z <Y, then a <Y}

(D4) if a < X U {b} but a £ X, then b < X U {a}.

Checking (D1) and (D2) is trivial, while (D3), (D4) just need some
simple calculations.

Now define a subset B of V linearly independent if and only if, for
every b € B, b £ B — {b}; and say that B C V is a basis of V if and
only if B is linearly independent and, for every @ € V, a < B.

Using (D1) - (D4) and Zorn’s Lemma (with no specific reference to the
algebraic framework of vectorspaces), one shows that V admits some
basis B and that two bases of V have the same power. Accordingly
one defines the dimension of V over K as the power of any basis of V.

Finally one proves that two vectorspaces over K are isomorphic if and
only if they have the same dimension. This time, the proof needs also
the following fact: if V is a vectorspace over £, X C V, a, b € V
and both a and b are linearly independent of X, then there is an
automorphism of V fixing X pointwise and mapping a into b (in other
words, a and b have the same type over X).

2. Let p = 0 or p be prime, consider now the theory AC'F}, of algebraically
closed fields of characteristic p. Also in this case it is known that every
model K of ACF, is fully determined up to isomorphism by a cardinal
number: its transcendence degree (over the prime subfield). Under
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this point of view, the setting is quite similar to what we saw in the
previous example. In fact, for every algebraically closed field K of
characteristic p, one introduces a subset < of K x P(K) (now called
the algebraic dependence relation) in the following way: for @ € K
and X C K, one puts

a < X (aalgebraically dependent on X)

if and only if a is algebraic over the subfield generated by X. One
checks that (D1) - (D4) still hold fora, b € K and X, Y C K (although
the proofs, especially that of (D3) and (D4), require now some major
algebraic difficulties).

Anyhow, as in the previous example, we can define a subset B C K
algebraically independent if and only if, for every b € B, b < B — {b};
and we can say that B is a transcendence basis of K if B is alge-
braically independent and, for every a € K, a < B. The existence of a
transcendence basis of K and the fact that two transcendence bases of
K have the same power are shown exactly as in the previous examples,
despite the different algebraic framework, by using only (D1) - (D4)
(and Zorn’s Lemma). The cardinality of a transcendence basis of K
is called the transcendence degree of K. As in the previous examples,
one shows that an algebraically closed field K of characteristic p is
fully determined up to isomorphism just by its transcendence degree
(so by a cardinal number). The reason is, again, the fact that, if a,
be K, X C K and a, b £ X (so both a and b are transcendental
over the subfield generated by X), then there is an automorphism of
K fixing X pointwise and mapping a into b (whence a and b have the
same type over X).

3. Let us propose a more trivial example. Let L = (), M be an infinite
set. Fora € M, X C M, put

a<X & aclX;

this again defines a subset < of M x P(M) clearly satisfying (D1) -
(D4). In this case the only possible basis of M is just M, and actually
the power of M fully determines the isomorphism class of M among
L-structures (i. e. nonempty sets).

Before continuing our analysis of strongly minimal theories and sets, in order
to exclude any possible misunderstandings and to prepare the next Chapter
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7, let us point out a key remark: we cannot expect that, for any complete
theory T, every model of T is determined up to isomorphism by a single
cardinal invariant. Here is a simple ”counterexample”.

Example 5.8.2 Let T be the theory of the structures (A, B) where BC A
and both B and A — B are infinite. Notice that T is complete, for example
because it satisfies the assumptions of Vaught’s Theorem: it has no finite
models and is No-categorical, as the only countable model (up to isomor-
phism) must satisfy |B| = |4 — B| = R¢. In order to characterize a model
(A, B) of T up to isomorphism, one needs an ordered pair (|B|, |A — B|)
of cardinal numbers.

Of course this example can be easily generalized. Just think of a structure
A = (A, (Bn)n<n) where 2 < N < w and the B,’s are pairwise disjoint
infinite subsets of A. In this extended framework the isomorphism type of
A is given by the ordered sequence of cardinals

((an|)n<N7 IA_ U Bn|)7

n<N

notice that this sequence is infinite when N = w.

Now let us restrict again our attention to strongly minimal theories. We
wonder if the similar behaviour observed in Examples 1, 2 and 3 in 5.8.1 for
infinite C-vectorspaces, algebraically closed fields and infinite sets is founded
on some common basis. To clarify this point, let us give a further glance at
these examples.

Examples 5.8.3 1. Let V be a vectorspace over K, a € V, X C V.
Recall that @ < X means that there are n € N, ko,..., %k, € K,
Zo,..., %y € X such that a =} ., k;x;; in other words a is the only
element of V satisfying the L(X)-formula v = 3", ., k;;.

2. Let K = ACF,),a € K, X C K. Now a < X if and only if there is a
polynomial f(t) € K[t]—{0} with coefficients in the subfield generated
by X such that f(a) = 0. There is no loss of generality in assuming
that the coefficients of f(t) are also in the subring generated by X (so
in the L-substructure generated by X). Accordingly every coefficient
of f(t) gets X-definable, and “f(v) = 0” can be written as an L{X)-
formula. Of course there are only finitely many elements satisfying
this formula, and «a is one of them.
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3. Let A be an infinite set, a € A, X C A. Now a < X simply means
a € X, hence that a is the unique element in A satisfying the L({X)-
formula v = @ (e is in X).

5.9 Algebraic closure and definable closure

What we observed at the end of the previous section suggests the following
definitions. Let M be a structure in a language L, X C M.

Definition 5.9.1 1. The algebraic closure of X (denoted by acl(X))
is the union of all the finite X -definable subsets of M (and so is the
set of the elements a € M such that, for some L(X)-formula ¢(v),
a € p(M) and p(M) is finite).

2. The definable closure of X (denoted by dcl(X)) is the set of all the
X -definable elements of M (and hence of the elements of M such that,
Jor some L(X)-formula ¢(v), (M) = {a}).

Clearly dcl(X) C acl(X) for every X and M. Sometimes del(X) = acl(X).
For instance, this is the case when M expands a linear order < and X is
any subset of M.

In fact, let @ € acl(X), ¢(v) be an L(X)-formula such that ¢(M) is finite
and includes a. More precisely, let ap < ... < a, be the elements of ¢(M),
and let @ = a; for a unique 7 < r. Then a is the only element in M satisfying
the formula

() A w (p(w) Aw < v).

However there do exist some structures M and subsets X C M such that
del(X) # acl(X), as we will see in the next lines.

Remarks 5.9.2 1. Let M, N be structures for I such that M is an
elementary substructure of N, X C M (hence X C N). Of course, we
might expect to have to form two algebraic closures of X, the former
in M and the latter in N. However these two sets coincide. Let us see
why. First notice that, for every L(X)-formula ¢(v), (M) is finite if
and only if ¢(N) is, and these sets have the same power. In fact, if
lo(M)| = k, then M | Tk v (¢(v)); as M < N, N | Ik v (¢(v)),
whence |p(N)| = k. Of course this argument holds even in the other
direction, from AN to M. Moreover, using M < A once again, one
sees that every element of a finite (M) satisfies p(v) in N as well.
Consequently, for every L(X)-formula ¢(v) such that ¢(M) is finite,
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©(M) = (N). In conclusion, the algebraic closure of X is the same
in M and in A.

Clearly the same can be said about the definable closure. Conse-
quently, for a complete theory 7" with universe  and for a small

X C Q, acl(X) and del(X) do not depend on the model of T’ contain-
ing X one refers to.

2. Let T be a complete theory, X be a small subset of Q, a € . Then

a € acl(X) < there are at most finitely many elements f(a) when f
ranges over the automorphisms of Q fixing X pointwise.

In fact, take a € acl(X). Let ¢(v) be an L(X)-formula such that
a € () and () is finite. For every automorphism f of Q fixing X
pointwise, f(a) € ¢(£2) as well. Accordingly the images of a under the
automorphisms of 2 fixing X pointwise form a finite set.

Conversely, let ¢ ¢ acl(X), so, for every L(X)-formula ¢(v), if a €
©(€), then () is infinite. Let ay,...,a, be different elements, all
realizing tp(a/X). For every formula ¢(v) € tp(a/X), thereis some b €
©(Q), b # ag, ..., a,. As tp(a/X) is closed under finite conjunction,
tpla/X) U {~(v = a;) : 1 < n} is consistent and can be enlarged to
a complete type over X U {ag,...,a,}: any element a,41 realizing
this type satisfies a,41 | tp(a/X), @pngy1 # ao,...,an. So there are
infinitely many realizations of tp(a/X) in Q, and each of them is the
image of @ under some automorphism of €2 fixing X pointwise.

A similar argument shows

a € dcl(X) & f(a) = a for every automorphism f of  fixing X
pointwise.

Now let us come back to the Examples 5.8.1 of the last section. We want to
examine acl and del in their frameworks.

Examples 5.9.3 1. Let V be a vectorspace over a countable field K,
X C V. Then dcl(X) = acl(X) coincide with the subspace (X) of V
spanned by X.

In fact, we know that del(X) C acl(X) in general, and we have already
seen that (X) C del(X). Hence it suffices to prove acl(z) C (X).
Notice that, if ¢ and b are two elements of 2, and both of them are
linearly independent of X, then there is some automorphism of Q fixing
X pointwise and mapping a into b. So, for a ¢ (X), every element
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in © — (X) is the image of a under some automorphism of  acting
identically on X'; accordingly ¢ ¢ acl(X).

Now consider an algebraically closed field K (of some given character-
istic p). If X C K, then acl(X) coincide with the algebraic closure (in
the usual field theoretic sense) of the subfield of K generated by X.

In fact, we already saw that D holds. Conversely, if a,b € Q are
transcendental over the subfield generated by X, then there is some
automorphism of 2 fixing X pointwise and mapping a into b. Just as
in 1, this excludes that a, or b, or any element transcendental over the
subfield generated by X can belong to acl(X).

This time, del(X) # acl(X). The reason is very simple: in fact, if
a,b € K are two different roots of the same irreducible polynomial
with coefficients in the subring generated by X, then one can build an
automorphism of K fixing X pointwise and mapping a into . Hence

a € acl(X), but a ¢ dcl(X).

Indeed one can check that, if K has characteristic 0, then del(X) is just
the subfield of K generated by X, while, if K has a prime characteristic
p, then del(X) coincides with the closure of the subfield of K generated
by X under the inverse function of the Frobenius morphism F'r (the
one taking any ¢ € K to Fr(a) = aP).

. Finally let M be an infinite set, X C M. Now acl(X) = dcl(X) = X.

In fact acl(X) 2 del(X) 2 X is clear. So it suffices to show acl(X) C
X . Owing to the Remark 5.9.2.1, we can assume | X| < |M|. Any two
elements of M — X correspond to each other by a permutation of M
fixing X pointwise. Hence any X-definable subset of M overlapping
M — X includes M — X, and so is infinite. In conclusion, acl(X) C X,
as claimed.

Anyhow, in these examples, we recognize a common feature: in fact, for
every small subset X of  and a € €,

a<X & acacdX).

But, before examining closerly this point, let us propose a couple of further
examples.

Examples 5.9.4 1. Let T = DLO™, X be a small subset of 2. As T is

concerned with linear orders, acl(X) = del(X). We claim acl(X) = X.
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In fact, take a € Q@ — X. Owing to Theorem 2.3.1, every element

b € Q — X such that
b<z & a<cz

for every © € X satisfies the same L(X)-formulas as a. Hence, if
a € p() for some L(X)-formula ¢(v), ¢(€2) contains all these elements
b. By Compactness, there are infinitely many b’s; hence (£2) must be
infinite. In conclusion a ¢ acl(X).

2. Let T = RCF, X be a small subset of Q. As before acl(X) = dcl(X).
But now acl(X) equals the real closure of the subfield generated by X,
that is the least real closed field including X (inside €2). This can be
equivalently introduced as the ordered field of the elements in €2 alge-
braic over (the subfield generated by) X. So it is obvious that acl(X)
includes it. Conversely let @ € acl(X) = dcl(X), accordingly a is the
only element in € satisfying a suitable L(X)-formula ¢(v). Owing
the quantifier elimination, we can assume that ¢(v) is a disjunction of
conjunctions -and indeed a single conjunction- of equations f(v) = 0
or disequations g(v) > 0 where f(z) and g(z) are nonzero polynomials
with coefficients in the subfield generated by X. As a must be the
only element satisfying these conditions, at least one equation occurs,
whence a is algebraic over the subfield generated by X, as claimed.

The reader may check the details of the last example, and also calculate
acl(X), del(X) in other familiar cases, for instance when X is a small subset
of the universe Q of dLOT.

Now let us come back to a general framework. Accordingly, let 4 be a
structure for a given language L. For a € A, X C A, put
a<X <& acad(X).

We wonder whether this relation < satisfies the conditions (D1) - (D4) in
5.8 (just as in the three main examples before). (D1) - (D3) still hold in
this general setting. Let us see why.

(D1) For every a € Aand X C A, if a € X, then a < X.
In fact @ is the only element satisfying v = a (and so is even in del(X)).
(D2) For every a € A and X C A, if a € acl(X), then there is a finite
subset Xg of X such that a € acl(Xo).

In fact take a € acl(X); there is some L(X)-formula ¢(v) such that
@(A) is finite and includes a. Let Xy be the set of the parameters
from X occurring in ¢(v). Clearly X is what we are looking for.
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(D3) For every X C A, acl(acl(X)) C acl(X).

Let a € acl(acl(X)), ¢(v, Z) be aformula with parameters ¥ = (zo, ...,
Tp) in acl(X) such that a € ¢(A,&) and ¢(A,7) is finite. Put
lp(A, £)| = k. For every ¢ < m, there is a formula 9;(v, ;) of L(X)
such that 9;(A, 7;) is finite and includes ;. Put ¥ = (3o, ..., ym) and
consider the formula

P(v,9) : Jwp ... Jwpy, ( /\ 3 (ws, gi) A 3k p(z, W) A p(v, u‘)’))

i<m

where 1 abbreviates the tuple (wq,...,w,). Clearly a € 9(A,).
Furthermore 9(A,7) is the union of the sets ¢(A, #/) when & =
(zg, - .-, zi,) satisfies 2} € 9;(A, 7;) and |p(A, 2')| = k. Accordingly
¥(A, 7) is a finite union of sets of size k, an hence is finite.

Now let us wonder if even (D4) holds in any structure A. Recall what (D4)
states.

(D4) For every a,b € Aand X C A, if a € acl(X U {b}) — acl(X), then
beacd(XU{a}).

Example 5.9.5 Let A = (N2, f) where f is the l-ary function such that,
for every z,y € N, f(z,y) = (z,0). Put

a=(0,0), b=(0,1).

Then a is the only element in N? satisfying v = f(b), whence a € acl(b).
Moreover a ¢ acl((}) because any element (z,0) with z € N is the image of
a in some automorphism of N2. But b ¢ acl(a) because any element (0, y)
with y € N — {0} is the image of b = (0, 1) under some automorphism fixing
a = (0,0).

Accordingly (D4) fails in general. However the following proposition holds.

Proposition 5.9.6 Let A be a minimal structure. Then (D4) holds in A:
ifa,be A, X C A and a € acl(X U{b}) — acl(X), then b € acl(X U {a}).

Recall that A is minimal if and only if any subset of A definable in A is either
finite or cofinite. Algebraically closed fields, vectorspaces (over countable
fields) and pure infinite sets are minimal structures. On the contrary, the
structure A of the last example is not minimal: for, the formula f(v) = (0, 0)
defines an infinite coinfinite set.
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Proof. As the minimality of A is preserved under adding or forgetting pa-
rameters from A, there is no loss of generality in assuming X = @ (otherwise
replace A by Ax). Suppose towards a contradiction that there are a and b
in A such that

a € acl(b) — acl(D), b ¢ acl(a).

As a € acl(b), there is an L-formula (v, w) for which ¢(A, b) is finite and
includes a; let k be the size of ¢(A,b). Accordingly b satisfies the formula

B(v,a) : p(a,v) A 2 0(z,0).

As b ¢ acl(a), 9(A, a) must be infinite, hence cofinite. Let m denote the
(finite) cardinality of A — 9(A, a); so a satisfies

y(v) : A"t =9(¢, v).

As a & acl(D), also y(A) must be infinite. Pick & + 1 pairwise different
elements ag, ..., ar in v(A). For every i < k, there are exactly m elements
in ~9(A, a;). Exclude all these elements for ¢ < k. We can still find some
b’ € A satisfying
AE N9V, a),
i<k
hence
A E N elai, b)) A AFz0(z,b).
i<k
Consequently ag,...,a; € ¢(A,b), contradicting |p(A,b)| = k. This ac-
complishes the proof. &

Hence, when T is a strongly minimal theory, < satisfies (D1)-(D4) in every
model A of T. This allows to generalize the notions already introduced in
the main examples: for B C A, one can say that

e B is independent if and only if, for every b € B, b & acl(B — {b}),
e B is a basis of A if and only if B is independent and A = acl(B).

Using Zorn’s Lemma, one can still deduce the existence of a basis of A, and
the fact that two bases have the same cardinality; in this way A is naturally
associated with a cardinal number, that is the power of any basis. This is
called the dimension of A. Of course, all this directly depends on (D1)-(D4).
However the fact that this cardinal determines A up to isomorphism refers
to another basic property of strongly minimal theories, ensuring that, for
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every X C A, in particular for X = (), there is a unique non-algebraic 1-type
px over X: the one containing every formula o (v) such that ¢() is cofinite.
In this perspective a basis B of A is actually a subset of py(.A), and indeed
any element b in B realizes the unique non-algebraic 1-type over B — {b}.
Consequently, if A, A’ = T have the same dimension and B, B’ are two
bases of A, A’ respectively, then there does exist some bijection between B
and B’, but (which is more relevant) such a bijection is even an elementary
function. Furthemore, as A = acl(B) and A’ = acl(B'), it can be extended
with a little patience to an isomorphism from A onto A’.

In conclusion, the models of a strongly minimal theory can be classified quite
satisfactorily up to isomorphism in the way we have just described, and the
main ingredients of this classification result are:

(a) < satisfies (D1)-(D4);
(b) there is a unique non-algebraic 1-type over any small subset X of €.

To underline once again the relevance of (b), let us mention the behaviour of
o-minimal theories. Recall that they are the complete theories of the infinite
structures A expanding linear orders in such a way that the only definable
subsets of A are the finite unions of singletons and open intervals (possibly
with infinite endpoints). We will see in the Chapter 7 that there are good
reasons to agree that the models of these theories cannot be classified up
to isomorphism. In spite of this, in an o-minimal structure A < can satisfy
(D1) - (D4), hence (a) holds (but (b) does not). As (D1) - (D3) are always
true, we have to check (D4). Here is the proof.

Proposition 5.9.7 Let A be an o-minimal structure expanding the linear
order (A, <), a, b € A, X C A. Ifa € ac(X U {b}) — acl(X), then
beacd(XUd{a}).

Proof. As the o-minimality of A is preserved under adding or forgetting
parameters from A, there is no loss of generality in assuming X = 0. Let a,
b € A satisfy a € acl(b) — acl(D), we have to show b € acl(a). As acl and
del coincide in linearly ordered structures, a is in del(b) and so there is an
L-formula ¢(v, w) such that a is the only element in ¢(A, b). We can even
assume that ¢(v, w) defines a partial function f such that f(b) = a. Let B
denote the set of the elements z € A such that f(z) = a. B is {a}-definable
because f is -definable. By o-minimality, B is the union of finitely many
intervals Io, ..., I (where each interval may be open, closed or semi-closed,
come down to a singleton, or admit infinite endpoints). Take k minimal and
assume Iy < ... < Ir. Notice that all the endpoints of these intervals in A
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are {a}-definable. Consequently, if b equals one of them, then b € acl(a).
So suppose that b is in the interior of some interval among Iy, ..., Ix. Let
I denote this interval, d; < dg be its endpoints (where dy, d; may possibly
equal —o00, +0o respectively). If I is finite, then it is easy to deduce again
b € acl(a). Accordingly assume [ infinite. Notice that d; cannot equal —oo,
otherwise a is the only element in A satisfying JwVz(z < w — f(2) = v),
whence a € acl(®). Similarly, d; < +c0.

For a suitably large positive integer n, let D,, denote the ((-definable) set
of the left endpoints d € A of some open interval J having size > n and
satisfying the following further assumptions: f is (defined and) constant in
J, and one cannot enlarge J to the left keeping this condition. Associate
any d € D,, with the right endpoint g(d) € AU {400} of a maximal interval
J. By o-minimality, g(d) is well defined: in fact, the elements > d lying
in the domain of f and having the same value in f as immediately after d
form a definable set, and so a finite union of intervals (in the broader sense
said before). Moreover, for d < d' in D, ]d, g(d)[N]d’, g(d')[= 0. Recall
that D,, is definable, so, by o-minimality, D, must be finite. As d; € D,
d; € acl(P) = dcl(D). As a is the image of any element in |dy, dp[ by f, a
is in acl(@) as well, and this contradicts our hypotheses. So I cannot be
infinite, and we are done. &

Before concluding this section and the whole chapter, we would like to un-
derline two more points.

The former specifically concerns a minimal, or o-minimal L-structure M.
Both these properties (minimality and o-minimality) are preserved under
adding parameters from a subset X of M, so under passing from L to L(X)
and from M to Mx: Mx remains minimal, or o-minimal. Indeed, if the
theory of M is strongly minimal, then Th(Mx) is: in fact its models are the
structures Ny x) where N is an L-structure elementarily equivalent to M
-so a minimal structure-, and f is an elementary function from X into N.
The same happens for an o-minimal Th(M). So, for M as before, we can
introduce for every X C M a new dependence relation <x in M x P(M)
by putting, fora € M e S C M, a <x S if and only if ¢ € acl(S) in My, in
other words if and only if a € acl(X U S) in M. Moreover <x still satisfies
(D1)-(D4).

Secondly, when our relation < on M x P(M) satisfies (D1) - (D4), we can
equip not only M, but also every subsets S of M with a dimension dim S:
this can be formally introduced as the minimal power of a subset B of .S such
that S C acl(B) (in fact, it is easy to check that such a B is independent).
Of course, this also concerns the framework sketched a few lines ago: for
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X C M, the dimension of X over X dim(S/X) is just the dimension of S
with respect to <x.

A final remark: in order to pursue and possibly accomplish our analysis of
strong minimality, we can wonder how general the examples we proposed
(pure sets, vectorspaces and algebraically closed fields) are. Do there exist
any "new” significant instances, or do they exhaust all the possible cases?
In Chapter 7 we will discuss the relevance of this question (due to Zilber)
and we will provide its solution (due to Hrushovski).
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other rank notions, are in [8]: see also [131].



Chapter 6

w -stability

6.1 Totally transcendental theories

We continue here our treatment of Morley’s Theorem and related ideas. All
throughout this section, 7' is a complete theory with no finite models in a
countable language L, and €2 denotes a big saturated model of T'. In the last
chapter we defined Morley rank and Morley degree as a complexity measure
for definable sets. In particular we studied the simplest infinite definable sets
with respect to this measure, i. e. the strongly minimal sets, those having
Morley rank 1 and Morley degree 1; we considered also strongly minimal
theories, i. e. the complete theories whose universe is strongly minimal.
More generally, one can examine the theories in which every non empty
definable set gets a(n ordinal) Morley rank. These were called by Morley
totally transcendental.

Definition 6.1.1 T is called totally transcendental if and only if, for
every non empty definable set X C Q™ (with n a positive integer), RM(X)
is an ordinal number.

Hence totally transcendental theories exclude the theory DLO™ of dense
linear orderings without endpoints, as observed in Example 5.7.3,4, but
include, for instance, the strongly minimal theories, which satisfy RM (Q) =
GM(Q) = 1; indeed, as we will see within a few lines, strong minimality
implies RM(Q™) = n, GM(Q™) = 1 for every n, and so RM(X) < n for
every definable set X C Q".

Totally transcendental theories can be characterized in the following alter-
native and equivalent way.

181
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Definition 6.1.2 T is w-stable if and only if, for every countable A C Q,
the space S(A) of types over A is also countable.

One can equivalently ask that, for every countable A C Q and positive
integer n, S, (A) is countable. Actually it suffices to require S; (A4) countable.
In fact let n be an integer bigger than 1, p € S,(A4),d@ = (a1, ..., ,ay) realize
pin ", Then p is fully determined by:

(i) the (n — 1)-type of (a1,...,an_1) over A (equivalently, the orbit of
(@1, ..,a,—1) with respect to the A-automorphisms of Q);

(i) the 1-type of a, over AU {a1,...,an,—1} (hence over a countable set)
up to A-automorphism.

So, when S;(A) is countable, a simple induction proves that S, (A4) is count-
able for every positive integer n.

Observe also that T is w-stable if and only if, for every countable model M
of T, S1(M) is countable. In fact, for every countable A C €, there exists
some countable model M of T including A (just apply the Léwenheim-
Skolem Theorem to the theory of Q4). Every l-type over A extends to
some (possibly non unique) 1-type over M, and conversely restricting to
L(A) a 1-type over M determines a 1-type over A. So |S1(4)| < |S1(M)].
Now let us point out:

Proposition 6.1.3 A strongly minimal theory T is w-stable.

Proof. Let A be a countable subset of Q. The language L(A) is countable,
as well as the set of the L(A)-formulas ¢(v) such that ¢(f2) is finite. Ac-
cordingly acl(A) is countable, and the algebraic 1-types over A also form a
countable set. As there is only one non-algebraic 1-type over A, S;(A) is
countable, too. &

Example 6.1.4 DLO™ is not w-stable. In fact (Q, <) is countable, but
it is easy to realize that there are 2%° 1-types over Q: just observe that,
for every r,s € R with r < s, there is some ¢ € Q such that r < a < s.
Accordingly tp(r/Q) # tp(s/Q) as the former type contains v < a, and the
latter does not.

As said before, w-stability is just equivalent to total transcendency. Indeed
the following theorem holds.

Theorem 6.1.5 T is totally transcendental if and only if it is w-stable.
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Proof. Let T be totally transcendental. Then every type p over a small set
A C Q is fully determined by an L(A)-formula (%) in p having the same
Morley rank and degree as p. Then there are at most as many types over
A as L(A)-formulas, and in conclusion at most |A| + Ry types over A. In
particular, when A is countable, S(A) is countable, too.

Now assume T w-stable. First we claim that there exists an ordinal a7 such
that, for every positive integer n and definable set X C Q", if RM(X) > ar,
then RM(X) = oo.

In fact, let ¢(7, W) be a formula of L, @, b be two sequences in § having the
same length as @ and the same type over §; so there is an automorphism of
mapping & into b, hence »(Q™, @) onto (27", (}') It follows that ¢ (2", @) and
©(Q", b) have the same Morley rank. On the other side, S(#) is countable,
as well as the set of all possible formulas ¢(7, @). So there are at most
countably many Morley ranks # oo of definable sets in 2, and we can take
ar as the least ordinal greater than all these values. By the way, one can
even show that a7 is countable.

Now suppose towards a contradiction that T is not totally transcendental.
Then there exists a definable set X = X having Morley rank oo, namely
> ay. Hence RM(Xy) > ar + 1, and so there exist two disjoint definable
subsets X and X of Xy both having Morley rank > a7 and consequently
0o. Repeating this procedure one builds, for every finite ordered sequence
o of 0 and 1, hence for every element in {0, 1}<%, a definable subset X, of
Xy of Morley rank oo such that, for every o € {0, 1}<% and ¢ € {0, 1},

Xai - Xaa XO'O r]AXPUI = @

The set A of the parameters needed to define the X,’s when o ranges over
{0,1}<“ is countable. For every o € {0,1}¥, the L(A)-formulas “v belongs
to X,,” (with n a natural number) form a consistent type, which can be
extended to a (complete) type p, € S1(A). Of course different sequences
o,0' € {0,1}< yield different types p, # pl,. Accordingly there are at least

2% 1-types over A, and this contradicts the fact that T is w-stable. &

A consequence of this theorem is that total transcendence (in fact w-stability)
is preserved by interpretability.

Corollary 6.1.6 Let A be a structure for L, A’ be a structure for a possibly
different language L' such that A, A’ are infinite and A’ is interpretable in
A. If Th(A) is w-stable, then Th(A') is.

Proof.  (Sketch) We know that, for a suitable choice of a positive integer
n, a subset S of A™ definable in A and an equivalence relation F in A"
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definable in A, A’ is just the quotient set S/E and the whole L’-structure
A’ can be definably recovered by .A. Furthermore, if Q is a big saturated
elementary extension of A, then the machinery defining A’ inside A singles
in Q a big saturated elementary extension Q' of A’ (of the same power as )
and every set X' definable in ' is the quotient set of some X definable in
Q with respect to E. At this point a simple argument of ordinal induction
shows that the Morley rank of X' in Th(.A’) is smaller or equal to the Morley
rank of X in Th(A). Consequently, when RM(X) is an ordinal, RM(X") is
an ordinal, too. In conclusion, if Th(A) is w-stable, then Th(A’) is. &

Now let us deal again with Morley rank and degree for a strongly minimal
theory T. We already seen that

RM(Q) =1, GM(Q) =1.

Recall that there is a unique 1-type of Morley rank 1 over any small subset
X of Q, the one of the elements out of acl(X). Furthermore, for a, S in €,

a<x Seacad(XUS)

determines a dependence relation satisfying (D1) - (D4).
More generally, one can see that, for every positive integer n and n-tuple
@ in Q, RM(tp(d@/X)) equals the dimension of @ with respect to <x. In
particular RM (tp(@/X)) cannot exceed n; indeed there is a unique n-type
over X of Morley rank n, the one of an n-tuple @ <x-independent.
Furthermore

RM(Q") =n, GM(Q") =1

as already said at the beginning of this section. The proofs of these facts re-
quire patience rather than ingenuousness, and can be found in the references
quoted at the end of the chapter.

Notice that, in the particular case of algebraically closed fields, the Morley
rank of a tuple @ over a subfield F just equals the trascendence degree of
F(a) over F.

6.2 w-stable groups

A paradigmatical example of w-stable theory is the theory ACF, of alge-
braically closed fields of a fixed characteristic p = 0 or prime. But conse-
quently every structure definable, or interpretable in an algebraically closed
field K has an w-stable theory. This is the case of the groups GL(n, K) and,
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more generally, of the algebraic groups over K, as we will see in Chapter 8.
A common feature of these examples is the presence of a binary operation
(the addition in K, the usual row-by-column multiplication in GL(n, K))
making them a group. Accordingly we propose the following definitions.

Definition 6.2.1 An w-stable structure is a structure having an w-stable
theory; an w-stable group is an w-stable structure with a binary operation
making it a group (and possibly other operations and relations).

Then any algebraically closed field K is an w-stable group (with respect to
the sum operation), as well as any group GL(n, K) and, more generally, any
algebraic group over K (as we will see in Chapter 8). Other examples can
be found among abelian groups; for instance, we know that the theory of
non-zero vectorspaces over Q is strongly minimal and consequently w-stable.
Accordingly every non-zero Q-vectorspace is an w-stable group (with respect
to addition), and so every divisible torsionfree abelian group A is an w-stable
group (for, A can be naturally equipped with a structure of Q-vectorspace).
The aim of this section is to begin the analysis of w-stable groups. In fact,
part of its results will be accomplished, and hence fully understood and
appreciated, only in the next Chapters 7 and 8, where more powerful tools
will help our study. However the present pages will develop several basic
notions in this area. Most of them clearly owe to the theory of algebraic
groups, and part of them refer to the study of finite groups. Of course, we
are also interested in classifying w-stable groups and in understanding their
connections with algebraic groups, or finite groups, or abelian groups; but
we will examine in a closer and deeper way these themes in Chapter 8.
First let us observe what follows. Let G be an w-stable group, H be a
definable subgroup, a € G. Notice that, if X is a subset of H definable in
G, then

aX = {ag : g € X} is a definable subset of the coset al{
and
Xa={ga:ge€ X} is a definable subset of Ha.

It follows that, for any a, both ¢ H and Ha have the same Morley rank and
degree as H. Consequently, if H C K are definable subgroups of G and
H # K, then

RM(H) < RM(K) and, if = holds, GM(H) < GM (K)

(indeed K is a union of cosets of H). Now we show a chain condition for
definable subgroups of w-stable groups.
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Theorem 6.2.2 Let G be an w-stable group. For every natural n, let H,, be
a definable subgroup of G such that, for every n, H,y; is a subgroup of H,,.
Then there is natural n such that, for every m > n in N, H,, = H,,.

Proof.  Otherwise, for every natural n, there exists m € N such that
m > n and H,, # H,. Hence RM(H,,) < RM(H,,) and, when RM(H,,) =
RM(H,), GM(H,) < GM(H,). In particular, fixed n, there is some s € N
tale che s > ne RM(H;) < RM(H,). But in this way one forms a strictly
decreasing infinite sequence of ordinals, and this is a contradiction. &

Corollary 6.2.3 Let G be an w-stable group and, for every natural n, let
K, be a definable subgroup of G. Then (N Kn is definable.

Proof. For every natural n, put H, = (;<, K;. Then H, is a definable
subgroup of G and H,+, C H,, for every n. Consequently there exists m € N
such that, for every ¢« < m, H; = H;;. So (,en Kn = Npen Hn = Hyy =
Np<m Krn and N, <., Kp is definable. &

Corollary 6.2.4 Let G be an w-stable group, f be a definable group homo-
morphism from G into G having a finite kernel. Then the image f(G) of G
has a finite indez in G.

Proof. Otherwise one can build a strictly decreasing infinite sequence of
subgroups

GO f(G) D fAG)...D f(G)...

contradicting Theorem 6.2.2. In fact, as f is definable, f*(G) is a definable
subgroup of G for every natural n. Furthermore, if f(G) has an infinite
index in G, then, for every n € N, f**1(G) has an infinite index in f™(G),
and so f"t1(G) # f*(G). Let us see why. The case n = 0 is just our
assumption. So take n > 0, and suppose that the index of f™(G) in f*~1(G)
is infinite. Notice that, for ¢ and b in f*(G), f(a) — f(b) € f*(G) if and
onlyifa—b € f*1(G)+ Kerf. As Kerf is finite and f"(G) has an infinite
index in f"~'(G), there are infinitely many elements in f"*1(G) pairwise
inequivalent modulo f*(G), and so f"*1(G) has infinite index in f*(G).
&

Now take any structure G expanding some given group (G, ) (so G is not
necessarily an w-stable group). As said before, if X is a definable subset of
di G, then also

aX ={{ag:9g€ X}, Xa={ga:g€ X}
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are for every a € G, as well as X! = {g71 : g € X}. Notice also that, for
every type p over G and a € GG, we can form the sets ap, pa of the formulas
¢(v) of L(G) such that ¢(av) € p, p(va) € p respectively. It is easy to see
that ap, pa are types over G. More precisely, if © denotes any realization of
p, then ap is the type of a~ 'z over G and pa is the type of za=! over G.
The functions from G x S(G) to S(G) mapping any ordered pair (a,p) of
G x §(G) into ap and pa define two actions (a left action and a right action
respectively) of G on S(G). Correspondingly we can consider, for every
p € S(G), the left stabilizer {a € G : ap = p} of p in G and the right
stabilizer {¢ € G : pa = p} of p in (. It is well known that both are
subgroups of G.

In a similar way, for every type p over G, we can form the set p~! of the
formulas ¢(v) in L(G) such that ¢(v=1) € p. Even p~! is a type over G;
indeed, if = is any realization of p, then p~! is just the type of 27! over G.
Now let G be an w-stable group. As w-stability is preserved by =, there is
no loss of generality for our purposes in replacing G by a suitably saturated
elementary extension, and so in assuming that G itself is saturated in some
uncountable power (and so is the universe of its complete theory).

Let X C G be definable. As observed before X has the same Morley rank
and degree as aX and Xa for every a € G, and also as X 1. Consequently,
for every type p € S(G), RM(p) = RM(ap) = RM (pa) per ogni ¢ € G and
RM (p) = RM(p~'). Moreover

Lemma 6.2.5 Let G be an w-stable group, p be a type over G. Then both
the left and the right stabilizers of p in G are definable subgroups of G.

Proof. We treat the left case (the right one can be handled in a similar
way). For every L-formula ¢(v, @) let G(p, ¢) denote the set of the elements
a € G such that, for every § and h in G,

ev,§) ep <  lhv, g) € ap.

It is easy to check that G(p, ) is a subgroup of G. In fact, let a,b € G(p, ¢);
then, for every h and g in G,

p(hv,g) € pe ¢(hv, g) € ap & ¢(hav, §) € p & p(hav, §) € bp <

< @(habv, §) € p < ¢(hv, §) € abp;
whence ab € G(p, ¢). Furthermore

o(hv,§) € p p(ha™tav, §) € p e p(ha™'v,§) € ap & p(ha™'v,§) € p &
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& p(hv, §) € a7 'p,

whence a=1 € G(p, ), too.

Now let us momentainly assume what we will actually show only in Chapter
7, Theorem 7.5.5: due to w-stability, G(p, ¢) is definable in G because there
are some formulas with parameters in G defining the sets of the tuples (, g)
in G for which

w(hv,§) €p, or @(hv,§) €ap (that isp(hav,g) € p).

Clearly the left stabilizer of p is the intersection of the subgroups G(p, ¢)
when (v, @) ranges over L-formulas. Hence, by Corollary 6.2.3, the left
stabilizer is definable. &

Let us extend again out interest to arbitrary expansions G of groups (G, -)
(so we are momentarily forgetting the w-stable assumption). A definable
subgroup H of G is called connected (in G) if and only if H has no proper
subgroup definable (in G) and of finite index. Clearly G has at most one
definable connected subgroup of finite index (if Hy and H; satisfy these con-
ditions, then HoN H; must equal both Hy and Hy, so Hp and H; coincide).
However G may lack such a subgroup. For instance, the additive group of
integers Z has a definable subgroup nZ of finite index n for every natural
n # 0. But a simple application of Theorem 6.2.2 ensures that every w-stable
G has a connected definable subgroup of finite index.

Theorem 6.2.6 Let G be an w-stable group. Then there exists a unique
subgroup G° of G which is definable, connected and of finite index in G.
Every definable subgroup of finite index of G includes G°.

Proof. Suppose that G has no definable connected subgroup of finite index.
Accordingly every definable subgroup H of G of finite index has in its turn
a proper subgroup definable in G and of finite index (in H and consequently
in G). Then one can build a strictly decreasing infinite sequence of definable
subgroups of G

G=Hy>DHD>...0H,DHp41...,

each of finite index in its predecessor, and so in G. But this contradicts
Theorem 6.2.2. This shows the existence of a subgroup as required. Its
uniqueness was already observed. Of course this unique subgroup does de-
serve a specific symbol (G, for instance). Finally notice that, if H is a
definable subgroup of finite index and H 2 G°, then H NG° contradicts the
fact that GO is connected. &



6.2. w-STABLE GROUPS 189

GO is called the connected component of G. G° is a normal subgroup of G.
In fact both the right and the left multiplication by a given element ¢ € G
are definable. Hence, for every a € G, a=*G% is a definable subgroup of G
of the same index as G°, and consequently equals G°. But we can say even
more.

Proposition 6.2.7 Let G be an w-stable group. The connected component
GO of G is an D-definable subgroup; in particular it is invariant under any
automorphism of G.

Proof. GU is definable, and so there are a formula ¢(v, %) in the language
of G and a tuple @ in G such that G° = (G, @). Let k denote the index of
G in G. The formula

©°(v) : TG (“p(G, W) is a subgroup of G of index k” A (v, @))

defines a subgroup ¢°(G) of index k of G. Then ¢°(G) 2 G°. But G° and
©°(G) have the same index in G, whence ¢°(G) =G°. &

The connected component greatly clarifies the role of Morley degree of an
w-stable group G. In fact the following result holds.

Theorem 6.2.8 Let G be an w-stable group, and let G° be its connected
component. Then GO has the same Morley rank as G, and Morley degree 1.

The former claim is almost trivial. Let k still denote the index of G° in G.
Of course G is the union of the k cosets of GY in G. Each coset is of the
form aGP for some a € G, and so has the same Morley rank as G°. Hence
RM(G) = RM(G°).

With respect to the latter claim, again it is easy to observe that, if G is an
w-stable group of Morley degree 1, then G has to be connected. But showing
that in general, for any w-stable G, G® has Morley degree 1 is not so simple.
Indeed we have to prove that G° does not decompose as the union of two
disjoint subsets of the same Morley rank, and so that there is a unique 1-
type p over G containing the formula ¢°(v) defining G° and having the same
Morley rank as G. This needs some further more sophisticated ideas and
tools (to be introduced in Chapter 7). So we postpone the full details of
Theorem 6.2.8 to Theorem 7.5.10. Here we limit ourselves to a preliminary
result, saying that, if p is a type over G as required before (so containing
the formula ¢°(v) defining G° and having the same Morley rank as G), then
G equals both the left and the right stabilizers of p.
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Lemma 6.2.9 Let G be an w-stable group, G° be its connected component,
p be any type containing the formula ¢°(v) defining G° and having the same
Morley rank as G. Then G° equals the left and the right stabilizer of p.

Proof. Tt suffices to handle the left case. Let S denote the left stabilizer
of p. Then S is a definable subgroup of G. Moreover, for every a in G, ap
has the same Morley rank as p; as there are only finitely many types over
G having the same Morley rank as G, there are only finitely many different
types ap when « ranges over G. On the other side, for ¢ and bin G, ap = bp
holds if and only if @ and b are in the same left coset of S in G. So S
has finite index in G, whence S O G°. Conversely take a € S. For every
realization @ of p in Q, ax satisfies p as well. In particular both z and ez lie
in ©°(Q); hence a = azz~! satisfies p°(v). Asa € G, a € °(G) =G°. &

To summarize, if G is an w-stable group (of Morley rank «), G is its con-
nected component and 1 = ag, a1, ..., ar—1 are a set of representatives of the
cosets of GY in G, then G = Ui<k a;G° where each a;G° has Morley rank «
and Morley degree 1. So G has Morley degree k = [G : G?), there are exactly
k 1-types over G of Morley rank «, and each of them is isolated (among the
1-types of Morley rank a) by a formula v € a;G° (more precisely ¢°(a;'v))
for some ¢ < k. These types are usually called the generic types of G.

More generally, when G is an w-stable group and A is any small subset of
the universe  of the theory of G,

e a type p € S(A) is said to be generic if and only if it has the same
Morley rank as G

e an element z of € is said to be generic over A if and only if its type
over A is.

Clearly there are only finitely many generic types over any small A C .
Moreover, if z is generic over A, then also 271, az and za (for a in A) are.
It is worthy underlining that every ¢ € G can be written (in Q) as the
product of two elements generic over G: in fact, if z € € is generic over G,
then also gz ' is, and g = (gz~1)z.

Let us conclude this section by proposing another fundamental tool in the
analysis of w-stable groups, in particular of w-stable groups of finite Morley
rank (i. e. of Morley rank < w): this is the so called Zilber’s Indecompos-
ability Theorem. We need the following definition.

Definition 6.2.10 Let G be a structure exzpanding a group (G, -), X be a
(non empty) definable subset of G. X is said to be (left) indecomposable
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if and only if, for every definable subgroup H di G, either X is included in
a unique left coset of H in G, or X overlaps infinitely many such cosets.

Right indecomposability is defined in a specular way. It is easy to see that,
for every definable X, X is left indecomposable if and only if X~ is right
indecomposable. In particular, when X = X!, X is left indecomposable if
and only if it is right indecomposable.

Now we can state and prove Zilber’s Indecomposability Theorem.

Theorem 6.2.11 (Zilber) Let G be an w-stable group of finite Morley rank
(where finite means < w). For every i in a set I of indezes, let X; denote
a definable left (right) indecomposable subset of G' containing the identity
element 1 of G. Then the subgroup of G generated by | J;c; X; is definable and
connected in G. Moreover only finitely many X;’s are sufficient to generate
it.

Proof. Assume for simplicity X; left indecomposable for every #: the right
case can be handled in a similar way. As G has a finite Morley rank, we
can choose a subset B of G such that B is a finite product of sets X; or
X' with i € I (and hence is definable) and B has a maximal Morley rank.
Accordingly, for every i € I, RM(X;B) = RM(X7'B) = RM(B); in fact
1e X;n XZ-_1 and hence B C X;B, B C Xz-_lB. Let p be a type over G
containing the formula “v € B” defining B and having the same Morley
rank as B. Moreover let S denote the (left) stabilizer of p. Recall that S is
definable (Lemma 6.2.5). We claim that S is just the subgroup generated by
the X;’s when ¢ ranges over I, and that only finitely many X;’s are sufficient
to generate S.

First notice that, for every ¢« € I, X; C §. It suffices to show that X;
intersects at most finitely many left cosets of S in G in fact, in this case,
as X; is left indecomposable, X; is wholly included in a single left coset of
S in G, which must coincide with S as 1 € X;. Accordingly take a € X;;
the formula “v € X' B” defining X; !B is in ap. We know that RM (ap) =
RM(p) = RM(B) and that “v € X;!B” occurs in at most finitely many
types having its rank. Hence there are only finitely many pairwise different
types of the form ap with @ € X, otherwise RM (X, 'B) > RM(B), which
contradicts what we have observed before. Consequently there are only
finitely many left cosets of S in G of the form aS with a € X (recall aS =
bS < b~la € S « bp = ap for every a and b), as claimed. So S is a subgroup
containing each X;.

Now we show § C BB~L. Let a € S, = |= p. So even az realizes p, and both
z and az satisfy the formula “v € B”. Consequently a = azz™! satisfies



192 CHAPTER 6. w -STABILITY

“p € BB™'” in Q and hence in G. In particular S is generated by the X;’s
(actually, by a finite subfamily of them).

At this point it remains to show that .S is connected in G. So take a subgroup
H of S definable in G and having a finite index in S. Accordingly, for every
1 € I, X; overlaps only finitely many left cosets of H, whence X; C H. But
this forces H=5. &

6.3 w-stable fields

The aim of this section is twofold. First we want to apply what we have seen
about w-stable theories and, more particularly, w-stable groups to prove a
beautiful theorem due to Macintyre and characterizing the fields having an
w-stable theory. We already know that they include the algebraically closed
fields; but now we will show that no further examples arise, so the w-stable
complete theories of (pure) fields are just the theories ACF, where p is 0
or a prime. Secondly, we will provide a new proof of the fact that alge-
braically closed fields eliminate the imaginaries; this alternative approach
mainly refers to their w-stability and, owing to this feature, applies to other
w-stable settings, including differentially closed fields of characteristic 0 (as
we will see later in this chapter).

Now let us state Macintyre’s Theorem.

Theorem 6.3.1 (Macintyre) Let K be an infinite integral domain with iden-
tity 1, and let K have an w-stable theory. Then K is an algebraically closed
field.

Proof. First let us see that K is a field. Take a € K, a # 0. Let C denote
proper inclusion. If K C K, then a"t' K C a"K for every positive integer
n because K is a domain and so, for b € K — aK, a™b € a"K — a" ™K. So
K is an w-stable group (with respect to the sum operation) with a strictly
decreasing infinite sequence of definable subgroups K D aK D a?K D ...,
which contradicts Theorem 6.2.2. Accordingly a K = K, whence there is
some ¢ € K such that ac = 1. So K is a field. Now suppose towards

a contradiction that K is not algebraically closed. Hence K has a Galois
extension F of finite degree > 1. Consequently there is some intermediate
field £ extending K and included in F such that the Galois group of F over
L is (cyclic) of prime order ¢. On the other side £ is an extension of finite
degree of K, and hence is definable in K: in fact, let d denote the dimension
of £ as a vectorspace over K, then £ can be viewed as K¢ equipped with
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suitably defined field operations. Hence £ has an w-stable theory, and an
extension F with a (cyclic) Galois group of prime order ¢. With no loss
of generality replace K by £ and hence assume that K itself has a Galois
extension F of prime degree ¢q. Field theory tells us that, in this setting,
F = K(«) where the minimum polynomial a over K is either

z?—a witha € K, ¢ # carK
or
2? —x —a with a € K, ¢ = car K.

To get a contradiction, we show that every polynomial of this form must
be reducible. For this purpose, first recall that K is an w-stable group with
respect to addition +. Moreover K coincides with its connected component
(with respect to +). In fact, take @ € K and look at the multiplication by
a. This gives an automorphism of the additive group of K, and indeed an
automorphism definable in K. Consequently the multiplication by a fixes
the connected component K°. So aK® = K° for every a € K, in other words
aK? is an ideal of K. Hence K° = K as K is infinite and so K° cannot
equal {0}.

Now consider K* = K — {0}; K* is an w-stable group with respect to
multiplication. As K is infinite, K* has the same Morley rank and degree as
K, in particular K* has degree 1, and consequently K* equals its connected
component. Notice that the function of K* into K* mapping any element
k € K* into k? is a definable group homomorphism having a finite kernel
{a € K : a? = 1}. Owing to Corollary 6.2.4, the image of this function
has a finite index in K* and consequently equals K* as K* is connected.
Moreover 0¢ = 0 and so k — k? defines a surjective function from K onto
K. In particular, for every a € K the polynomial 27 — a is reducible.

In the same way, when ¢ = car K, the function h of K into K mapping any
element k € K into k?—k is a definable endomorphism of the additive group
K and has a finite kernel {a € K : a? = a}. Accordingly its image has finite
index in K, and so coincides with K because K is connected. Then h is
surjective and, for every a € K, even the polynomial 9 — z — a is reducible.
This yields the required contradiction. &

It is worth underlining once again that Macintyre’s Theorem deals not only
with infinite fields, but more generally with integral domains with identity;
moreover, as algebraically closed fields are strongly minimal, it classifies
even the strongly minimal examples in this framework.
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Now let us deal with the second matter of this section: elimination of imag-
inaries.

Theorem 6.3.2 Fvery algebraically closed field K eliminates uniformly the
tmaginaries.

Proof. Our new approach needs the following non trivial algebraic pre-
liminaries, regarding arbitrary fields K and ideals I in K[Z] (where & still
abbreviates (21, ..., ©,)): their details can be found in the references quoted
at the end of the chapter.

1. The first concerns the fields of definition of I: these are subfields of K
containing the coefficients of the polynomials of some generating subset
of I. One can see that there is a (countable) field of definition K(I) of I
satisfying the following additional condition: for every automorphism

oof K,
o (more exactly, its natural extension to K[Z]) fixes I setwise

if and only if
o acts identically on K ([).

2. Incidentally one can notice that, for every automorphism o of I, if
o(I) D Itheno(l)=1.

3. Now consider prime ideals in K[Z]. More particularly, take pairwise
different prime ideals Iy, ..., I, of K[Z] in the same conjugacy orbit:
so, for every j < h < m, there is some automorphism of K taking
I; to Ij. Correspondingly one can find a subfield Ko of K such that,
for every automorphism o of K, ¢ permutes Iy, ..., I, if and only
if o fixes Ko pointwise. It suffices to form I = ();.,, I; and choose
as Ko the field of definition K(I) associated with I asin 1. The key
point here is that an automorphism o fixes I setwise if and only if it
permutes the I;’s. This is a consequence of two facts: the former is
that, owing to 2, I = (;<,, /; is an irredundant decomposition of the
(radical) ideal I as an intersection of prime ideals, and the latter is
that this irredundant decomposition is unique up to the order of the
involved prime ideals.

Let us deal at last with algebraically closed fields K and with Model Theory:
we want to show that K uniformly eliminates the imaginaries. As observed
in Chapter 4, it is sufficient for our purposes to prove that any such K

eliminates the imaginaries and so to find, for every (-definable equivalence
relation F = E(7, @) in K" and @ in K™,
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* a formula ¢(7, 2),
* a unique sequence b in K

such that E(K", @) = ¢(K", b) (here the common length of Z and b may be
# n). There is no loss of generality in | assuming K Rj-saturated: in fact,
given @ in K", if there exists a unique b in some R;- saturated extension IC’
of K such that K' = VB(E(, @ + o(7, b)), then this tuple b must belong
to del(d@) and consequently to K.

Now we use the w-stability -more precisely the total transcendence- of K,
as promised. In fact, given @ € K™ and the formula E(¥, @), there are
only finitely many n-types po, ..., py over K containing F(#, @) and having
the same Morley rank as E (¥, @). Let Iy, ..., I; be the prime ideals of K[Z]
corresponding to these types. Partition these ideals into conjugacy orbits, so
into equivalence classes with respect to the relation linking two ideals exactly
when they correspond to each other by some automorphism of K. Take any
orbit O. Up to rearranging the indexes, one can assume O = {ly, ..., I,,}
for some m < ¢. Apply 3 and find a (countable) subfield X(O) of K such
that, for every automorphism o of K, ¢ permutes I, ..., I, if and only if
o fixes K(O) pointwise. Let Ko be the countable subfield of K generated by
the £(O)’s when O ranges over the orbits of Iy, ..., I;. We claim that, for
every o, o fixes F(K", @) setwise if and only if ¢ acts identically on Kg.

In fact, if o preserves F/(K", @), then o permutes the types po, ..., p, con-
taining FE(7, @) and having the same Morley rank as E'(7, @); hence o per-
mutes the corresponding ideals Iy, ..., I, as well, and in particular any
single orbit O. Hence o fixes pointwise each K(O) and in conclusion K.
Conversely, let o act identically on Ky, and so on any K(O). It follows
that o permutes the ideals in any orbit O and so the whole set Iy, ..., I,.
Equivalently ¢ permutes po, ..., p;. But ¢ has to preserve E because F
is {-definable, and so takes F-classes to E-classes. In particular o fixes
E(K™, @) because the formula F (7, @) lies in all the types po, ..., pq-
Therefore any automorphism of K fixing @ pointwise, and so preserving
E(v, @), fixes K¢ pointwise as well; in other words, Ko C dcl(d).

Now assemble all the L(Kjp)-formulas () for which E(K™, @) C ¢(K™).
They form a possibly incomplete type p over Kg. We claim

ICn-» m¢Kn

P(T)ep

Otherwise there is some d € K™ satisfying p and -F (d @). This remains
true for every d e Kn having the same type as d over Kp; in fact, as K is
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N;-saturated and Ky is countable, J; d correspond to each other by some
automorphism ¢ of K fixing Ko pointwise, hence F(K", @) setwise. Then
tp(d/Ko) implies =E(7, @) in K. Use compactness and determine 8(%) €
tp(d/Ko) such that 8(K") C ~E(K™, @), equivalently —6(K™) D F(K", d@).
But this forces —0(%) € p C tp(d/Ko), a contradiction.

Consequently F(7, q) is a consequence of p. Again use compactness and
find a formula (%, b) in p - so with bin Ko - implying E(%, &), and hence
equivalent to it. At this point it remains to show the uniqueness of b. This
can be obtamed by some simple manipulations, shghtly changing ¢(7, b) In
fact, take any 1% #* bin K having the same type as b over 0. There is some
automorphism ¢ of K sending b to b’ so o does not act identically on K
because it moves b'; accordingly o does not fix setwise E (K", @) = (K", l;)
in other words go(IC" ) # (K", b'). This is true for every § # 5 realizing
tp(b/0). By compactness, there is some formula 5(Z) in tp(b/0) for which

-

K V2 (n(3) A—(Z = §) — ~(V3(e(5, 2) ¢ o(5, §))).

So, unless replacing (7, 2) by ¢'(7, @ : o(F, 2) An(2), we see that b is
the only tuple in K such that ¢'(K", b) = (IC” @): in fact, if & does not
satisfy 7(Z), then (K", b') = 0. This accomplishes our proof. &

6.4 Prime models

This section treats a fundamental feature of w-stable theories, namely the
existence and uniqueness of prime models over subsets. This property will
be useful in 7.8, in proving Morley’s Theorem on uncountably categorical
theories; but a remarkable application will be provided also in 6.5, when
dealing with differential fields; in fact we will observe that DCFy is w-stable,
and so the machinery of this section will apply and yield both existence and
uniqueness of prime models over subsets among differentially closed fields of
characteristic 0 - in algebraic terms, existence and uniqueness of differential
closures among differential fields of characteristic 0 -.

The first step of our treatment is clearly to define what a prime model is.
Let T be any (possibly non w-stable) complete theory with infinite models
in a countable language L. 2 still denotes a big saturated model of T.

Definition 6.4.1 Let X be a small subset of Q. A model A of T is called
prime over X if and only if:

(i) there is an elementary function f of X into A,
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(ii) for every model B of T and elementary function g from X into B,
there is an elementary embedding h of A into B for which h f = g.

Two problems spring quite naturally in this setting. Let X C 2 be given.
(a) (Existence) Is there any model A of T prime over X7

(b) (Uniqueness) Is this model unique? More precisely, let Ag and A;
be two models of T prime over X - via the elementary functions fo,
fi respectively -. Are Ag and A; isomorphic by a map h satisfying
hfo = f1?

Intuitively speaking, a model of T prime over X is a “minimal” model
extending X by some elementary function. Of course a sharp definition in
a general setting fatally involves all the details given before. In particular
uniqueness has to be required up to isomorphism, in the way stated some
lines ago. On the other hand, this generality has its positive sides, and even
allows some well accepted freedom. For instance, just owing to (b), there is
no loss of generality in assuming that a model A prime over X, if any, does
extend X (and so f is an inclusion).

We will see that existence and uniqueness of prime models are not guaran-
teed in general, for arbitrary theories T' and over arbitrary sets X. However
they do hold when T is w-stable. But now let us propose some examples.

Examples 6.4.2 1. Let T'= ACF or, if you like to keep our complete-
ness assumption on T, let T' = ACF,, for some p = 0 or prime. When
X is an integral domain with identity in characteristic p, a model of
ACF, prime over X is the algebraic closure of the field of quotients of
X (in the field theoretic sense), and is unique (as the Algebra hand-
books relate).

2. Let T = RCF. A model of RCF prime over an ordered field X is its
real closure, and is unique up to isomorphism. Again, any handbook
of Algebra (such as [65]) provides the details.

3. Now let T = DCF,. Take a differential field X of characteristic 0. Now
Algebra does not tell us anything similar to the previous examples; in
fact it clarifies neither the existence nor the uniqueness of a differential
closure of X, indeed Algebra cannot either define what a differential
closure is.

So the existence and uniqueness problems of prime models overlap some non
trivial (unsolved?) algebraic questions.
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Now let us summarize briefly how we plan to organize this section. First we
introduce and discuss some notions closely related to prime models: atomic
sets and constructible sets. Indeed we will see that over countable sets a
model is prime if and only if it is atomic and countable, and if and only
if it is constructible (warning: here constructible has a specific meaning,
having nothing to do with what we introduced in Chapters 1, 2 and 3 in the
particular framework of fields). In this perspective, a theorem of Ressayre
stating the uniqueness of a model constructible over a given subset is very
noteworthy, as it implies, among other things, the uniqueness of a prime
model over a countable set. At this point we will discuss the existence
problem of prime models. We will give a condition of topological flavour
characterizing the theories T such that every small subset X of Q admits
a prime model over itself: they are exactly those where the isolated types
over every X are dense in S(X). This will accomplish the general analysis
for arbitrary theories.

At this point we will assume T w-stable, and we will show a theorem of
Morley proving that, in this setting, the previous topological condition is
satisfied and, consequently, the existence of prime models is always guar-
anteed. Finally we will treat a nice and deep theorem of Shelah showing
the uniqueness of prime models in the w-stable framework. Actually what
Shelah proves is that, for an w-stable 7', a model prime over a set X is also
constructible over X; so Ressayre’s Theorem applies and gives the required
uniqueness result. As already said, Shelah’s Theorem is quite complicated,
and needs some subtle notions and tools to be introduced later in this book.
So we will postpone its proof until Chapter 7. To conclude, we will see that
both existence and uniqueness of prime models fail when the w-stability
assumption is dropped.

This is the sketch of this section. Now let us begin our report by introducing
atomic and constructible sets, as promised. We assume some basic acquain-
tance with ordinal numbers. X, Y, Z, ... denote small subsets of 2, &, i;,
C,... tuples in . For simplicity we sometimes identify a tuple @ and the
(finite) set of the elements in 4.

Definition 6.4.3 Y D X is atomic over X if and only if every tuple in Y
has an isolated type over X.

Recall that every model A of T extending X via an elementary function
realizes all the isolated types over X; on the contrary, non-isolated types
can be omitted by suitably chosen models, as the Omitting Types Theorem
shows. So a model prime over X, being elementarily embeddable in every
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model A extending X as before, should not be far from being atomic over
X.
Here is a list of simple and useful facts concerning atomic sets and isolated

types.

Remarks 6.4.4 1. If tp(b, ¢/X) is isolated, then tp(b/X) is.

In fact, let (%, w) be an L(X)-formula isolating tp(b, c/X). An easy
check shows that Jwe(0, w) isolates tp(b/X ). In fact b does satisfy
Jwep(7, w). Furthermore, for every ¥ realizing Jwe (7, w), there is
some ¢’ for which |= gp(l;;, c’). Then (b_; ') has the same type as (b c)
over X, and consequently &' has the same type as b over X.

2. If tp(b, &/ X) is isolated, then tp(b/X U &) is.

In fact, if (¥, W) is an L(X )-formula isolating tp(b, €/X), then (T, é)
isolates tp(b/X U ¢).

3. Let X CY. Suppose tp(¢/Y) isolated by some L(Y)-formula ¢(7, 5)
with parameters b in Y, and tp(b/X) also isolated. Then tp(¢/X) is
isolated.

In fact, take an L(X)-formula 9 () isolating ¢p(b/X). Look at the
L(X)-formula 6(v) : Fi(yp(@) A (¥, ¥)). Clearly Q | 6(¢). We
claim that 6(%) isolates tp(¢/X). For, let ¢ satisfy (%), so for some
v, Q E () A o(c, b). In particular & has the same type over
X as b and hence there is an automorphism f of Q fixing X point-
wise and taking b to &. Then (0, b_;) isolates a type over f(Y); as
QE go(c_;, b_;), tp(c_;/f(Y)) equals this type and so contains every for-
mula «(7, f(d_j) with a(7, d_j € tp(¢/Y). In particular, as f fixes X
pointwise, tp(c/X) = tp(¢/X).

Notice that 3 implies that atomicity is transitive: for X CY C Z, if
Z is atomic over Y and Y is atomic over X, then Z is atomic over X.

4. Let Y D X be atomic over X, ¢bein Y. Then Y is atomic over X U¢.

In fact, forevery b € Y, tp((—),7 ¢/X) is isolated. So 2 implies tp(g/XUE)
isolated, too.

Definition 6.4.5 Y D X is constructible over X if one can list the ele-
ments of Y by ordinal indexes b, (with v < o, a a suitable ordinal) in such
a way that, for every v < a, b, has an isolated type over X U{b, : p < v}.

In this case the sequence (b, : v < «) is called a construction of Y over
X.
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We put for simplicity X, = X U{b, : u < v}. So Xo = X, for a limit
v X, = U,<, Xy and, for a successor v = p+1, X, = X, U {b,}. Of
course Y = {J, .o X,. It is quite trivial that, if b, € X, then tp( »/X), and
consequently tp(b,/X,), is isolated (by v=12,).

Now we discuss the relationship between atomicity and constructlbllity.
First we propose a simple result.

Lemma 6.4.6 Let Y D X be atomic over X. IfY — X is countable, then
Y is constructible over X .

Proof. Let b, by, ..., by, ... (n natural) enumerate Y — X. It is enough
to show that, for every n, the type of b, over X, = X U {b,, : m < n} is
isolated. As X,, — X is finite, the previous Remark 6.4.4.4 ensures that Y
is isolated over X, and so that ¢p(b,/X,,) is isolated, as required. &

So atomicity sometimes implies constructibility. But a stronger and deeper
result holds in the opposite direction: in fact, as we will see within a few
lines, if Y O X is constructible over X, then Y is atomic over X.

Now we relate constructibility and prime models. Fix a small X C Q and
take a model A of T extending X by some given elementary function. As
already said, there is no loss of generality for our purposes in assuming that
X is just a subset of A and that the corresponding inclusion is elementary.

Theorem 6.4.7 If A is constructible over X, then A is prime over X.

Proof. Let B be a model of T and g be an elementary function from X into
B. We are looking for an elementary embedding A of A into B extending
g. Let (b, : v < @) be a construction of A over X. The strategy we devise
to build & is the following: we progressively extend ¢ to larger and larger
elementary functions g, from X, into B (for v < «); at last, we check that
U, <a 9 is just the required embedding A.

We proceed by induction on v. For v = 0, we put go = g. When v is limit,
we set g, = U#<U gy, a function from X, = J,., X, into B. It is easy to
check that g, is elementary. In fact let @ in X, satisfy = ¢(d) for some L-
formula ¢(); for a sufficiently large u < v, @ lies in X,,. So the elementarity
of g, ensures B = (9,(@)- A5 9, 2 gy B E 9l0,(@))-

Finally let » = u + 1 be a successor ordinal. Look at the isolated type
tp(bu/X,). Call it p, for simplicity; g,(p,) is in its turn an isolated type
over g,(X,) C B, and so it is satisfied by some element b}, € B. Extend g,
by including the new element b, in the domain and mapping b, into &/ . Let
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g, be the resulting function. Then the domain of g, is just X, = X, U {b,};
moreover, owing to the choice of b/, g, is elementary.

At last form f =J,., g». The same argument as before shows that h is an
elementary embedding of A into B (recall A =, X,). &

So constructible models are prime. At this point, we show that constructible
models satisfy the uniqueness assumption. This is a non trivial result of
Ressayre. But, before stating it exactly and beginning its proof, we need
some technical preliminaries. So let Y be constructible over X, fix a con-
struction (b, : v < a) of Y over X. For every v < « choose an L(X,)-
formula ¢, (v, d;) isolating the type of b, over X,, in particular fix the
parameters d; from X,. When b, € X, choose v = b, as an isolating for-
mula. In this framework, a subset Z of YV is called closed (with respect to
the given construction of Y over X) if, for every v < « with b, € Z, even
the defining tuple d;, is in Z. Clearly X and Y are closed; moreover closed
sets are preserved under (finite) union and intersection.

Lemma 6.4.8 Let X C Z C Y, Z be closed. Then the theory of Qz is
axiomatized by Th(Qx) U {p(b,, @;) : v < a, b, € Z}.

Proof. For every p < aput Z, = {b, € Z : v < pu}. It is an easy exercise
to see that Z, is closed for every p < . Moreover Z,, coincides with Z. We
claim that, for every u < «,

Th(Qxyuz,) is axiomatized by Th(Qx) U {¢,(b,, 6;) : b, € Z,}.

This is clearly enough, as the case y = « is just our thesis. Now it is obvious
that
Th(Qx)U{p,(b,, @) : b, € ZM} - Th(QXUZ,,)

because, for every v and p, when b, € Z,, d;, is in Z,, too. So we have
to prove that, conversely, every sentence in Th(Qxy Z,L) is a consequence of
Th(Qx) U {p,(b,, a;) : b, € Z,}. We proceed by induction on p. When
u =0, Zy is empty and so the claim is trivial. When g is limit, we can
observe that a sentence in Th(2xyz,) involves only finitely many elements
in Z, and so belongs to Th(Qxyz,) for some suitable v < u. Hence the
induction hypothesis applies. At last, take a successor p = v + 1. We
can assume b, € Z, otherwise there is nothing to prove. As ¢, (v, d;)
isolates tp(b,/X,), the sentences concerning b, in Th(Q2x,) are proved by
Th(Qx,)U{e.(b,, d;)}. When we restrict our attention to Z, we can deduce
by standard arguments of elementary logic that

Th(Qx,nz) is axiomatized by Th(Qx,nz) U {@u(b, d;)}
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because b, and consequently d;, arein Z. Notice X,NZ = XUZ,, X,NZ =
X U Z, and deduce that

Th(Qxuz,) is axiomatized by Th(Qxuz,) U {¢. (b, a;)}.

But owing to the induction hypothesis Th(Qxyz, ) is axiomatized in its turn
by Th(Qx)U{pr(by, @}) : A < v, by € Z}, whence the last set of sentences,
together with ¢, (b,, d;), axiomatizes the theory of Qxyz,, as claimed. &

Still keeping the same notation, now we show:
Lemma 6.4.9 If Z CY and Z is closed, then Y is atomic over X U Z.

Notice that this applies also to Z = X and implies

Corollary 6.4.10 IfY D X is constructible over X, then Y is atomic over
X.

Proof. (of the lemma) Let b be in Y, we have to show that the type of b over
X U Z is isolated. Extend & to a larger and closed tuple &in the following
way. For every b € I;, pick v < «a for which b = b,, and consider the formula,
(v, @) isolating the type of b over X,. For every a € q,, take p < v
such that @ = b,, and repeat the previous procedure. As there is no infinite
strictly decreasing sequence of ordinals, this machinery stops after finitely
many steps. Let ¢ absorb all the elements arising in this procedure. Clearly
Cis closed, as well as Z U ¢ and X U Z. Owing to Lemma 6.4.8, the theory
of Qxuzuz is axiomatized by Th(Qxuz) U {¢.(b,, d)) : v < o, b, € ¢}.
Hence Ay, cz¢v (v, d;) isolates the type of ¢ over X U Z. As ¢ enlarges b,
tp(b/X U Z) is isolated, too. &

Now we can state and prove Ressayre’s Uniqueness Theorem.

Theorem 6.4.11 (Ressayre) Let X be a small subset of €2, Ao and Ay be
two models of T containing X via some elementary inclusions, and con-
structible over X. Then there is an isomorphism h of Ag onto Ay fizing X
pointwise.

Proof. Look at the triples (Yp, Y1, f) where, forevery i =0, 1, X CY; C
A;, Y, is closed with respect to some given construction of A; over X and f
is an elementary function of Yj into A; acting identically on X and having
Y; as image. The collection of these triples is not empty because it contains
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(X, X, idx) (in fact, X is closed); moreover it is partially ordered by the
relation < such that

(Y07 Yl7 f) = (YO,’ Yllv f,)

if and only if ¥; C Y/ for every ¢ = 0,1 and f C f’. A straightforward
check ensures that Zorn’s Lemma applies to < and yields a maximal triple
(Yo, Y1, f). We claim that Y; = A; for every i = 0, 1, so f is the required
isomorphism.

Suppose not. For instance, assume Yy # Ap. Use the same technique as in
the proof of Lemma 6.4.10 and enlarge Yp to a closed YY D Yo U {b} with
YL — Y, finite. Owing to Lemma 6.4.10 the sequence ¢j of the elements in
YY — Y, has an isolated type over Yy. Call it p. Notice that even f(p) is
an isolated type (over Y;) because f is elementary. In particular f(p) is
realized in A;, say by ¢i. Enlarge Y; by ¢ and get a new set Y D Y7 in
A;. Clearly f can be extended to an elementary function f© from Yy into
A; with image Yy': just map ¢ in &. If Y is closed with respect to the
fixed construction of A; over X, then we are done; in fact, we have found
a counterexample (YY, Y2, f°) to the maximality of (Yo, Y, f); this is a
contradiction, and so shows Yy = Ag as claimed. Otherwise we apply the
previous procedure to Y. Accordingly we enlarge Y to a closed Y! D Y
with Y;! — Y finite, and correspondingly we build Y3’ C Y C Ag and an
elementary function f! from Yg in .A; with image Y1, If Y{! is closed, then
we are done; otherwise we continue our procedure. In the worst case, we get
for every natural n a triple (Yg*, Y7, f) such that, for every n and ¢ = 0, 1,
(Yo, Y1, ) X (Y&, Y*, f), X C YicC Yin"'l, f™ is an elementary map from
Y into A; with image Y;*, Y;* - Y; is finite and both Y™ and Y;*"*? are
closed. Owing to the last condition both |J, Yg* and |J, Y;* are closed. So
U, Y&, U, Y%, U, f™) again contradicts the choice of (Yo, Y1, f).

In conclusion Yy = A, and, similarly, Y; = 4;. &

But now it is time to come back to the existence and uniqueness problems
of prime models. As a warm-up, let us first discuss the case X = (. Here
we show uniqueness and we characterize existence by some equivalent con-
ditions. Notice that the assumption X = ) is not so restrictive as it may
look. Indeed it implicitly includes the seemingly more general case when X
is countable: it suffices to replace L by the (countable) language L(X) and
T by the theory of Qx, and to observe that a model of Th(Q2x) prime over
0 is just, as a structure of L, a model of T' prime over X. Notice also that
a model of T prime over § is elementarily embeddable in every model B
of T; in fact, as T is complete, the inclusion of @) in B is elementary. The
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uniqueness of a model prime over (§ is a direct consequence of Ressayre’s
Theorem and the following result.

Theorem 6.4.12 Let A be a model of T. Then the following propositions
are equivalent:

(1) A is prime over §;
(2) A is countable and atomic over §;
(8) A is constructible over .

Proof. (1) = (2) As already said, a model A of T prime over () elementarily
embeds itself in any model of T'. This clearly implies that A is countable, as
T does admit some countable models. Furthermore every non-isolated type
over ) is omitted in some countable model of 7' (by the Omitting Types
Theorem) and consequently in A: so A is atomic over 0.

(2) = (3) Just apply Lemma 6.4.6to Y = A and X = 0.

(3) = (1) This is a particular case of Theorem 6.4.7. &

At this point Ressayre’s Uniqueness Theorem applies and shows:
Theorem 6.4.13 Any two models of T prime over ) are isomorphic.

In fact these models are constructible over ). Now let us discuss the exis-
tence of a model of T prime over (). The following theorem provides a nice
equivalent condition.

Theorem 6.4.14 There exists a model of T prime over 0 if and only if, for
every positive integer n, the isolated n-types over () are dense in the topologi-
cal space S, (0) (this means that, for every L-formula () in n free variables
¥, if p(2") # 0, then there is some isolated n-type over () containing ¢(v)).

Proof. (=) Assume that A is a model of T" prime over §. As T is complete,
©(A)™ is not empty, in other words there is some tuple @ in A satisfying
©(7). As A is atomic over (), the type of @ over { is isolated (and includes
©(V)).

(<) The strategy here is to use some classical techniques (adding constants,
referring to the Tarski-Vaught Theorem and so on) and to construct a count-
able model A constructible over @: as said before, this is also prime over
0. In order to form A we build preliminarily a sequence of isolated types
prCps C...C p, C...(with n a positive integer) such that, for every n,
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(a) py is an n-type over § (in the free variables (vy, ..., vy) = ¥(n));

(b) if Jwp(w, ¥(n)) € p, for some formula p(w, ¥(n)), then for some
integer m > n @(vn,, 9(n)) € Pm.

These types are built by induction on n. p; is any isolated 1-type over §.
Now assume that p, is defined, we show how to form pnyq1. Let v,(7(n))
be a formula isolating p,, list all the formulas Fwe(w, ¥(n)) occuring in p,.
As p, D pi for k < n, this list includes all the formulas of the same kind
occurring in py with k& < n. Take the first formula Jwe, (w, ¥(n)) in this list
not already considered in the previous steps < n. Observe Jwep, (w, F(n)) A
Y(%(n)) € pn, 50 pn(w, F(n))Ay(¥(n)) occurs in some (n+1)-type over §. Use
our assumption that isolated (n + 1)-types over () are dense in Sy, 4;(0) and
deduce that ¢, (w, §(n)) A y(¥(n)) actually occurs in some isolated (n + 1)-
type. Choose such a type as pp41.

Actually this construction should involve sooner or later any formula Jwe(w,
¥) occurring in some p; when k ranges over positive integers. But this can
be obtained by using a suitable diagonal Cantor like procedure.

Now extend the language L of T' by countably many new constants C =
{cp : h positive integer}. For every h replace vy by ¢p in the formulas of
p = U, Pn. One gets a set T), of sentences in the enlarged language LUC: T),
is a consistent theory, and indeed a complete theory, as the reader can easily
check. Now take a model B, of T,,. T, is just the theory of 5,, hence the
(L UC)-sentences of the form Jwp(w, €) (with ¢'in C) true in B, are exactly
those occurring in T),. Look at the set A = {cf” : hpositive integer} and
notice that, owing to (b) and the Tarski-Vaught Theorem, A is the domain
of an elementary substructure of B,. Restrict this substructure to L and get
a model -actually a countable model- A of T. Moreover A is atomic over {,
as required: in fact, given a sequence ¢ = (cy, ..., ¢;) from C, the type of
& over ) contains p,,, hence equals p, and is isolated. &

This concludes our discussion of the case X = (. As already said, when
we enlarge our attention to countable sets X, we immediately obtain what
follows.

Corollary 6.4.15 (1) There exists a model of T prime over X if and only
if, for every positive integer n, the isolated n-types over X are dense

in Sp(X).

(2) Two models of T extending X by elementary inclusions are isomorphic
by a function fixing X pointwise.
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But the previous analysis discloses some useful information even in the gen-
eral case, when X is any, possibly uncountable, small subset of €. In partic-
ular, it clarifies under which conditions on 7" any X admits a prime model.
This is what the following theorem explains.

Theorem 6.4.16 The following propositions are equivalent.
(1) For every X, there is a model of T prime over X.

(2) For every X and positive integer n, the isolated n-types over X are
dense in S, (X).

(8) For every X, the isolated 1-types over X are dense in S1(X).
(1)’ For every countable X, there is a model of T prime over X.

(2)’ For every countable X and positive integer n, the isolated n-types
over X are dense in S,(X).

(3)’ For every countable X, the isolated 1-types over X are dense in

S1(X).

Proof. (1) = (1), (2) = (2)" and (3) = (3)’ are trivial, as well as (2) = (3)
and (2)' = (3)’. Moreover (1)’ < (2)' is just Corollary 6.4.15. So, in order to
accomplish the proof, it suffices to show (3)" = (3), (3) = (2) and (3) = (1).

(3)' = (3) Suppose towards a contradiction that there are X, a tuple @ in X
and a formula (v, @) such that ¢(v, @) occurs in no isolated 1-type over X.
We want to extract a countable X’ C X such that X’ contains @ but ¢(v, @)
occurs in no isolated 1-type over X': this is clearly enough because such a
set X’ contradicts (3)'. Let X denote the set of the elements in d@. Is X a
reasonable candidate as X'? No, it is not, because it may happen that, in
the restricted framework of Xy, some L(Xo)-formula 1 (v) isolates a single
1-type containing ¢(v, @). However 9 (v) cannot preserve this property over
X, so there are at least two different 1-types over X containing ¢ (v)Ag(v, @);
consequently there exists some formula 6(v, I;) with parameters b from X
occurring in the former type but not in the latter. For every 9 (v) as above,
fix a corresponding b (and 6(v, b)). Enlarge X; by adding the elements
of these tuples b when 1(v) ranges over the L(X;)-formulas isolating some
type over Xo containing ¢(v, @). One gets a countable X; C X enlarging @
and such that no L(Xp)-formula 1 (v) isolates a 1-type over X; containing

-

¢(v, @). Indeed, for every 1 (v), there is some formula 8(v, b) in L(X;) for



6.4. PRIME MODELS 207

which both ¥ (v) A ¢(v, @) A 8(v, b) and 1%(v) A (v, @ A —8(v, b) enlarge to
consistent 1-types over X;. For any L(Xp)-formula 1 (v) which cannot isolate
any 1-type containing ¢(v, &) even in S;(Xo), 6(v, I;) can be also found in
L(Xo); otherwise 8(v, 5) is produced by the previous procedure. We repeat
this machinery and we build, for every natural n, a countable X, C X
enlarging @ in a way such that, for any n, no L(X,,)-formula can isolate a
1-type over X, 41 containing ¢(v, &). At this point, consider X' = {J,, X,.
X' in countable. Moreover, for every L(X’)-formula ¢ (v), there is a suitable
n for which (v) belongs to the language L(X,) and hence cannot isolate

any 1-type containing ¢(v, @) over X4, and consequently over X'.

(3) = (2) We proceed by induction on n. As the case n =1 is just our hy-
pothesis, we have simply to see how to pass from any n to n+1. Let (v, @)
be an L(X)-formula with n+1 free variables (v, @) (& = (wy, ..., wy)) and
©(Q2"1) # 0. So Jvp(v, W) lies in some n-type over X, and hence in some
isolated n-type p over X. Let b realize p, so Q = Jup(v, E), and ¢(v, I_;) is in
some 1-type over X U b. By hypothesis, there is some isolated 1-type ¢ over
X U_’l; containing ¢(v, (_{) Let a realize ¢, so = ¢(a, 5) Look at the type of

(a, b) over X: it contains ¢(v, W) and is isolated because both ¢p(a/X U b)
and tp(b/X) are.

(3) = (1) Fix X, we have to find a model of T prime over X. As shown
in Theorem 6.4.7, it suffices to build a model A of T" constructible over X.
Let us work in a model M of T containing X via an elementary inclusion.
To obtain A inside M, we extend progressively X and form larger and
larger sets X,, 2 X in M (for g an ordinal), all constructible over X and
elementarily included in M, until we meet in this increasing sequence the
domain of an elementary substructure of M and, in this way, a model of
T constructible over X. Start putting Xo = X. For a limit p, set X, =
U<, Xv, as it is right to expect: indeed this preserves constructibility and
the other assumptions on X,,. The crucial step concerns successor ordinals
4 = v+1. Suppose that X, is not the domain of an elementary substructure
of M (otherwise we are done). By the Tarski-Vaught Theorem, there is an
L(X,)-formula ¢(v) such that Jvp(v) is true in M - in other words (M) #
0 - but X, contains no realization of ¢(v). Use (3) and get some isolated
1-type p over X, including ¢(v). There is some element a, € M satisfying p.
Put X, 41 = X, U{a,}; X, 41 is constructible over X because p = tp(a,/X,)
is isolated; moreover the inclusion of X, 4; in M is elementary. Now notice
that the length of this procedure cannot exceed |M|. Accordingly X, =
X 41 for some p < |M]|; but this means that X, is the domain of the
required model. &
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Let us underline one more time that what we get in (3) = (1) is actually a
model of T constructible over X.

Now assume, at last, T w-stable. We show that, under this assumption, the
existence of prime models is ensured over any X. This is a result of Morley
and is obtained as a direct consequence of the previous theorem.

Theorem 6.4.17 (Morley) Let T' be w-stable. Then, for every X, there is
a model of T' prime over X.

Proof. Owing to Theorem 6.4.16, it suffices to show that, for every count-
able X, the isolated 1-types over X are dense in S1(X). Use w-stability and
deduce that, for a countable X, S1(X) is countable, too. Now refer to topol-
ogy and specifically recall a theorem of Cantor and Bendixson saying that
in every countable compact Hausdorff space - like Sy(X) - isolated points
are dense. This is just what we need. &

Indeed the previous theorem says even more: in fact, for an w-stable T', over
any X we can find a constructible model.
Finally let us deal with uniqueness in the w-stable setting.

Theorem 6.4.18 (Shelah) Let T be w-stable, X be a small subset of Q, Ao
and A; be two models of T prime over X. Then there is an isomorphism h
between Ao and A; fizing X pointwise.

Actually what Shelah proves is that, for an w-stable T', a model A prime
over X must be constructible over X as well. So Ressayre’s Theorem applies
and ensures the uniqueness of the prime model over X. However, Shelah’s
tools in the proof are quite sophisticated and require new progress in the
general theory. We will develop these preliminaries in Chapter 7, so we have
to delay the full details of the proof to that chapter.

We conclude this section observing that neither existence nor uniqueness of
prime models are guaranteed when 7T is not w-stable. In particular we pro-
pose a simple counterexample to existence. Uniqueness is also contradicted
by some suitable theories T, but the corresponding examples are more tech-
nical and complicated, and may make this section still heavier. We omit
them.

Example 6.4.19 In the language L = {<, P}, where P is a l-ary relation
symbol, look at the structure (R, <, Q). This is a dense linear order without
endpoints (R, <) with a subset Q both dense and codense in R. All these
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properties can be easily written as first order sentences in L. Let T' be the L-
theory axiomatized in this way. A simple arrangement of Cantor’s Theorem
on DLO™ shows that T is Ro-categorical and so, by Vaught’s Test, complete.
Hence T = Th(R, <, Q). Of course T is not w-stable (just as DLO™).
Now suppose that T has a prime model over Q inside (R, <, Q). Up to
isomorphism this model will be of the form (A4, <, Q) for some countable
subset A of R properly including Q. Let ¢ € A — Q. If we take a away
from A, then we get a new model (4 — {a}, <, Q) of T; this contains the
rationals, but cannot embed (4, <, Q). In fact the cut « fills in A over Q
is not realized in (A — {a}, <, Q).

6.5 DCF, revisited

We pursue here the analysis of existentially closed differential fields of char-
acteristic 0 begun in Chapter 2. We said at that time that their class
is elementary and we provided (without proof) their nice first order char-
acterization DCFy due to Lenore Blum, according to which they are the
differential fields K of characteristic 0 such that, for every non zero f(z)
and g(z) in K{z} such that the order of g(z) is smaller than the order of
f(z), there is some a € K such that f(a) = 0 and g(a) # 0 (let us mo-
mentarily call these fields differentially closed fields; actually we are going
to show that they are just the existentially closed differential fields). Now it
is the right moment to prove at last that result, as well as the related fact,
mentioned several times, that every differential field of characteristic 0 has
its own differential closure. In fact, we will show that DCFy is w-stable,
and so the machinery developed in the last section will apply and produce
a prime model of DC'Fj (so a differential closure) over any differential field
of characteristic 0. The w-stability of DCFy will be also used to prove, in a
way closely resembling that pursued for AC'F in 6.3, that DC Fy uniformly
eliminates the imaginaries.

This is the plan of this section. In order to begin our treatment and, in
particular, to focus existentially closed differential fields, let us preliminarily
examine how a differential field K can be enlarged and which is the structure
of a differential extension # of K. In particular, for & € H — K, we want
to single out in 4 the smallest differential subfield X(a) containing K and
a (i. e. the intersection of all the differential subfields of H containing both
K and «); this requires to clarify and understand how « is related to K, in
other words which differential polynomials over K « satisfies. Of course this
is basic (Differential) Algebra rather than Model Theory; and in fact there is
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a straightforward and general algebraic technique to approach this question,
that is to consider the function F, from the differential domain K{z} into
H taking any differential polynomial f(z) € K{z} to its value f(a) in .
This is a differential ring homomorphism, and its kernel I(a/K) = {f(z) €
K{z} : f(a) = 0} is a proper prime ideal of K{z}, and even a differential
ideal (i. e. an ideal closed under derivation D, as it is easy to check).
Incidentally define o differentially algebraic over K if I(a/K) # 0 (so if
f(a) = 0 for some nonzero differential polynomial f(z) € K{z}), and dif-
ferentially transcendental otherwise.

When « is differentially transcendental over K, there is nothing to add. For,
F, is a differential ring isomorphism between K {z} and a suitable differential
subring of K containing K and «. It is straightforward to deduce that the
differential field K{a) we are looking for is isomorphic to the field of quotients
of K{z} (which inherits a natural structure of differential field regulated by
the usual derivation rules for quotients).

But the most critical point of our analysis concerns a differentially algebraic
element « over K. In fact, on the one hand it is easy to realize that even
in this case the quotient ring K{z}/I(a/K) gets a natural structure of dif-
ferential domain, just because I(o/K) is a prime differential ring and so it
makes sense to put, for f(z) € K{z},

D(f(z) + I(a/K)) = Df(e) + I(a/K);

the field of quotients of K{z}/I(a/K) inherits in its turn an obvious struc-
ture of differential field, and K{a) is isomorphic to this field. This is quite
general, and formally satisfactory. But we aim at understanding the internal
structure of K{a), and this clearly requires to study the prime differential
ideal I(a/K) and to provide an intrinsic description of its polynomials.
First let us observe that every prime differential ideal I # {0}, K{z} of
K{z} can be represented as I = I(a/K) for some suitable # and o € H
(differentially algebraic over K). This is straightforward and quite general.
In fact, look at the differential domain K{z}/I, form its differential field of
quotients Q, notice that Q extends K provided one identifies each & € K
and its class I + k in @), and that @ = I + = just annihilates the differential
polynomials in I over K.

So take any nontrivial prime differential ideal I of K{z}. Choose a nonzero
polynomial f(z) € I having

* & minimal order n,

then
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% a minimal degree in D"(z),
and finally
* a minimal total degree.

As I'is prime, f(z)is irreducible as an algebraic polynomial in [D™(z) : m
natural]. We wonder whether I equals by chance the differential ideal (f(z))
generated by f(z), in other words the algebraic ideal of K[D™(z) : m
natural] generated by f(z) and its derivatives. This is not true in general,
and [ is somewhat more complicated. But clarifying this point requires a
further notion.

Definition 6.5.1 Let f(z) € K{z} have order n. The formal partial deriva-
tive of f(z) with respect to D™ () is called the separant of f(z) and denoted

sf(z).

For example, the separant of f(z) = (D3z)?+z-D3z+ Dz-D?z is 2D%x+=.
Now, given a differential polynomial f(z) € K{z}, look at the set I(f(z))
of the polynomials t(z) € K{z} such that for some natural m

s7 (z) - t(z) € (f(2));

one sees that I(f(z)) is a differential ideal and, when f(z) is irreducible,
it is also prime. Of course the membership to I(f(z)) is not easy and
immediate to check; but one can show that, for an irreducible f(z) of order
n, a polynomial ¢g(z) € I(f(z)) must have order > n and, if its order is just
n, then f(z) directly divides g(z). This analysis implies that, if « is a root
of f(z), then I(f(z)) = I(a/K).

More generally, let us come back to our nontrivial prime differential ideal I
and to the polynomial f(z) € I chosen before. One proves

Theorem 6.5.2 [ = I(f(z)).

This is a noteworthy and deep algebraic fact; its proof can be found in
the references quoted at the end of this chapter. This also concludes our
preliminary outline of basic Differential Algebra. Now let us deal at last
with Model Theory. In fact, owing to what we said about I(f(z)) we are in
a position to show:

Theorem 6.5.3 Ezistentially closed differential fields K of characteristic 0
are differentially closed.
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Proof. We have to check that K satisfies Blum’s axioms: for every nonzero
polynomials f(z), g(z) € K{z} such that the order of f(z) is larger than
the order of g(z), there is « is K satisfying f(a) = 0 and g(a) # 0. As the
existence of a can be expressed by an existential sentence with parameters
in K and K is existentially closed, it suffices to find such an element « in
some differential field # extending K. Pick an irreducible factor f'(z) of
f(z) in K{z} of the same order as f(z), and form I = I(f'(z)). Clearly
f(z) € I, while g(z) cannot belong to I because its order is less than the
order of f/(z). Now enlarge K to the differential field of quotients # of
K{z}/I and notice that in H I + z satisfies f(v) = 0 and cannot realize
g(v) =0, because f(z) € T and g(z) ¢1. &

In order to conclude that DCFy is just the theory of existentially closed
differential fields of characteristic 0, we have to show the inverse implication
(saying that any differentially closed field of characteristic 0 is existentially
closed) and definitively to check two more points:

(i) every differential field of characteristic 0 has a differentially closed
extension;

(ii) DCFy is model complete.
Here are their proofs.

Theorem 6.5.4 Every differential field K of characteristic 0 has a differ-
entially closed extension.

Proof.  This can be shown by using some familiar chain arguments. In
detail, list in some (possible transfinite) way the pairs (f(z), g(«)) of nonzero
polynomials in K{z} such that the order of f(z) is larger than the order
of g(z). Apply the same technique as in Theorem 6.5.3 and, for every pair
(f(z), g(z)), enlarge the ground field in order to include a root a of f(z) such
that g(a) # 0. Repeat this procedure and eventually obtain a differential
extension K’ of K with the following property: for every choice of f(z), g(z)
in K{z} — {0} such that the order of f(z) is larger than the order of g(z),
there is some o € K’ such that f(a) = 0 and g(a) # 0. However this does
not mean that K’ is differentially closed (in fact, what happens for f(z)
and g(z) in K'{z}?). But now we can form a new sequence of differential
extensions K,, of K, by putting Ko = K and, for every n, K,+1 = K, (a
differential field enlarging K, and containing, for every choice of nonzero
polynomials f(z), g(z) in K,{z} such that the order of f(z) is larger than
the order of g(z), a root a of f(z) that does not annihilate g(z)). K = K,
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is the domain of a differential field extending K. A straightforward check
shows that K is differentially closed. &

Theorem 6.5.5 DCFy is complete and eliminate the quantifiers in the lan-
guage L = {+, -, —, 0, 1, D}. In particular DCFy is model complete.

Proof.  First we show that DCFy is complete, and hence that any two
models K, K’ of DCFy are elementarily equivalent. As every structure has
some Ng-saturated elementary extension, we can assume that both K and X’
are Ng-saturated. As partial isomorphism implies elementary equivalence, it
suffices to show K ~,, K'. Accordingly let J be the set of all the isomorphisms
between finitely generated differential subfields of K and K’ respectively. J
is not empty because both K and K’ include the rational field (with a zero
derivative) as the minimal differential subfield generated by (. Now let Ko
and K{, be two finitely generated differential subfields of X, K’ respectively,
corresponding to each other by some isomorphism h. Of course, if @ is a tuple
generating Ky, then h(@) = a’ generates K. So, algebraically speaking, any
element of Ky can be obtained from @ by the usual elementary operations
and D, and the same can be said about K} and d’. Incidentally notice that
Ko C del(@) and, parallely, K} C dcl(a’). We have to control that k satisfies
the back-and-forth properties (i) and (ii). Clearly it suffices to deal with (i),
as (ii) can be handled in a similar way. So take o« € K — K. We look for
two finitely generated extensions K, Ki of Ky, K|, respectively such that
a € Ky and h can be enlarged to an isomorphism between K; and K}. We
distinguish two cases, according to whether « is differentially algebraic, or
differentially transcendental over K.

When « is differentially algebraic, consider the nonzero prime differential
ideal I(a/Kj) and the (irreducible) polynomial f(z) in I(a/Ko) having
minimal order n, then minimal degree in D"z and, finally, minimal total
degree. Then f'(z) = h(f(z)) is an irreducible polynomial of order n in
Ko{z}. Look at the type p given by the formulas

flw)=0, =(g'(v)=0)

where ¢'(z) ranges over the nonzero polynomials of order < n in K{{z}. As
K} C del(a’), p can be viewed as a type over a’. As K!is differentially closed,
any finite portion of p is satisfied in K’. As K’ is Rg-saturated, p itself is
realized in K’ — K|, by a suitable element o/. Moreover I(f'(z)) = I(a//K}).
So one can easily enlarge h to an isomorphism between Ko{a) and K{(a’)
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mapping « in o (for, I{a/Kp) and I(o//K{) correspond to each other by
h). Accordingly K1 = Ko{a) and K = Ky() yield (i).

The case when « is differentially transcendental over Ky is simpler In
fact, using the Ng-saturation of K', one easily finds an element o/ € K’
algebraically transcendental over K{ C dcl (a') At this point, one observes
that Ko{a) and K{{e/) are isomorphic by a function extending h and taking
a to o'. This ensures (i) even in this case, and eventually accomplishes the
proof that DC Fg is complete.

Now we prove that DCFy eliminates the quantifiers in L. Owing to com-
pleteness, every L-sentence is DC Fy-equivalent to 0 = 0 when belonging
to DCFy, and to 0 = 1 otherwise. So we have to eliminate the quanti-
fiers in the L-formulas ¢(¥) when the sequence ¥ of free variables is not
empty. For this purpose we arrange the previous completeness proof in the
following way. Let &, @’ be two tuples in the universe Q of DCFy satisfy-
ing the same quantlﬁer free L-formulas; we claim that they have the same
type over (). There is no loss of generality in assuming @ in K and a in
K’ for some suitable Ro-saturated differentially closed fields K and K'. The
hypothesis that @ and o realize the same quantifier free formulas easily im-
plies that @, d generate isomorphic differential subrings, and consequently
isomorphic differential subfields in K, K’ respectively, by d@ — «’. We look
now at the set of the isomorphisms between finitely generated differential
subfields of K containing @ and finitely generated differential subfields of K’
containing @ which extend @ — d'. By proceeding as before, one obtains
this time (K, @) = (K, d') in the language enlarging L by suitably many
new constants to be interpreted in @, a respectively. In other words, d, @’
have the same type over (), as cla,lmed. Hence, two sequences satisfying the
same quantifier free formulas do admit the same type; in order to conclude,
we have simply to realize that this is just the elimination of quantifiers for
L-formulas (%) with a non-empty ¢. Let us see why.

If (%) does not occur in any type over @), then it is clearly equivalent to
—~(v; = v1). Otherwise we have just seen that, for every type p contain-
ing (%), @(v) is a consequence of the quantifier free formulas in p. By
compactness, only finitely many formulas of this kind, and even a single
quantifier free formulas ¢, (%) -their conjunction-, are enough to imply ¢(7)
within DCFy. Topologically speaking, when p ranges over the types over
0 containing (%), the neighbourhoods U, (7 form an open covering of the
closed, hence compact set U,(y. Again using compactness, one finds a finite
set Py of types p containing ¢(#) such that Uy, equals Uyep, Upy)- In
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other words

¥3(p(®) — \/ ¢,(®) € DCF.
pEh

As the latter formula is quantifier free, we are done. &

Hence DCFy is the model companion of the theory of differential fields
of characteristic 0. But the previous analysis says more and in particular
ensures:

Theorem 6.5.6 DCF; is w-stable.

Proof. What we have to check is that, for every differentially closed field K
in characteristic 0, |S1(K)| = |K|. Actually we will show something more,
resembling what we did for algebraically closed fields. In fact, we will see
that, for every K, there is a natural bijection between 1-types over K in
DC Fy and (proper) prime differential ideals in K{z}: owing to what we saw
about these ideals and their structure, this implies |S1(K)| < |K{z}| = | K],
whence |5, (K)| = |K]|.

First take a 1-type p over K and form

I(p) ={f(z) € K{z} : f(v)=0¢€p}.

Checking that I(p) is a prime differential ideal in K{z} is a straightforward
exercise. Indeed every (proper) prime differential ideal I of {z} can be
obtained in this way: in fact, build the (differential) field of quotients Q
of K{z}/I, enlarge Q to a differentially closed K and, at last, take the
type of I 4+ « over (the isomorphic copy of) K (in IC) clearly a polynomial
f(z) € K{z} satisfies f(v) =0 € pif and only if f(z) € I. Furthermore two
different 1-types p # ¢ over K define different ideals. In fact there is some
L(K)-formula ¢(v) in p and not in ¢. Now use elimination of quantifiers:
¢(v) can be chosen as a disjunction of conjunctions -and even as a unique
conjunction- of equations f(v) = 0 or negations —(g(v) = 0) with f(z) and
g(z) in K{z}. But then any single equation and disequation is in p, and at
least one of them is not in ¢q. Consequently I(p) # I(q). &

As a corollary, let us point that the constant subfield C(K) = {a € K : Da =
0} of a differentially closed K, as a structure definable in K, is w-stable, and
so algebraically closed (due to Macintyre’s Theorem).

Incidentally, we should also say that DCFy is not strongly minimal; indeed
its Morley rank is w and its degree is 1. However, owing to the theorems
of Morley and Shelah on the existence and uniqueness of prime models over
subsets in w-stable theories, we can deduce:
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Corollary 6.5.7 Quer any differential field K of characteristic 0 there is a
prime model of DCFy (hence a differential closure), and this is unique up
to isomorphism fixzing K pointwise.

We already emphasized several times that this approach -using Model The-
ory, in particular w-stability, Morley’s Theorem and Shelah’s Theorem- is
the very first proof, and virtually the only one known till now, of the exis-
tence and uniqueness of differential closures.

Again using w-stability we show now the last result of this section.

Theorem 6.5.8 DCFy uniformly eliminates the imaginaries.

Proof.  We repeat almost wholly the approach followed in 6.3 for alge-
braically closed fields. Indeed the first two algebraic preliminary steps in
that proof concern arbitrary fields and ideals, so apply to our present set-
ting as well. The same can be said about the use of w-stability, owing to
Theorem 6.5.6, although now types correspond to (proper) prime differential
ideals, and not directly to prime ideals. In conclusion what we have to check
is that the third preliminary step in the proof of Theorem 6.3.2 still works in
the new framework. Accordingly take a differential field K of characteristic
0, and Iy, ..., I, prime differential ideals of K{z} in the same conjugacy
class (with respect to differential field automorphisms of K). We look for
a(n even algebraic) subfield Ko of K such that, for every automorphism o
of K as a differential field,

o permutes I, ..., I, if and only if ¢ fixes Ky pointwise.

This can be obtained by rearranging the approach in the field case. Form
I = j<m Ij- This is a differential ideal, and even a radical ideal in the usual
sense: for every f(Z) € K{z}, if f'(Z) € I for some positive integer ¢, then
F(Z) itself is in I. A differential version of the Basis Theorem, due to Ritt
and Raudenbush and working over differential fields of characteristic 0, says
that every differential ideal of KX{z} -like I, but also Iy, ..., I,- is finitely
generated (as a differential ideal). Fix a finite set of differential polynomials
including generators of I, Iy, ..., I,. Let H be their maximal order, so
all these polynomials can be viewed as algebraic polynomials over K in the
unknowns DPz; for h < H, 1 <i<m. Put R=K[D"z; : h< H,1<i<
m], and look at INR, b N R, ..., I, N R. Then I N R = (;¢,,(I; N R),
and [y N R, ..., I, N R are prime ideals in R in the same conjugacy class
with respect to field automorphisms of K: in fact, for j, 3/ < m, there is
some automorphism of K as a differential field, hence as a field, taking I; to



6.6. RYLL-NARDZEWSKI’S THEOREM, AND OTHER THINGS 217

I}, and so I; N R to I} N R. Use Step 3 in Theorem 6.3.2 and deduce that
there is an algebraic subfield Kg of K such that, for every automorphism o
of K, viewed as a field and in particular as a differential field, ¢ permutes
the I; N R’s if and only if it fixes Ky pointwise. But each I; N R generates I;
as a differential ideal in K{&}, so, for j, ' < m, ¢(I; N R) = Il N R implies
o(l;)=1 ]’ Consequently, for every automorphism o of the differential field
K, o permutes Iy, ..., I, if and only if o acts identically on Kg. &

6.6 Ryll-Nardzewski’s Theorem, and other things

We conclude our outline of Morley’s ideas in these two chapters with a
perhaps oblique and superficially related argument. In fact we want to
treat No-categorical theories. As already underlined, they behave quite au-
tonomously and include examples which are not categorical in any uncount-
able cardinal, and neither are w-stable: for instance, think of DLO™. On
the other hand, there do exist uncountably categorical structures which are
not No-categorical (such as ACF, for any fixed p). However No-categorical
theories have their peculiar and specific properties. In particular they enjoy
the following nice characterization, due to Ryll-Nardzewki and others.

Theorem 6.6.1 (Ryll-Nardzewski) Let T' be a complete theory in a count-
able language L. Then the following propositions are equivalent:

(i) T is Ro-categorical;

(i) for every positive integer n, there are only finitely many n-types over
0inT;

(ili) for every positive integer n, there are only finitely many formulas
in n free variables pairwise inequivalent in T,

Proof.  The equivalence between (ii) and (iii) is clear: it can be deduced
directly, or using the classical duality between Boolean spaces and Boolean
algebras (recall that, for every n, the n-types over §) form the dual space
Sy (9) of the Boolean algebra of (-definable subsets of Q).

So let us compare (i) and (ii). First suppose S,(0) infinite for some n.
As S, (0) is compact, it contains some non-isolated type p. The Omitting
Types Theorem ensures that p is omitted in some countable model of T';
on the other hand, there does exist some countable model of T realizing
p. The latter model cannot be isomorphic to the former; hence T is not



218 CHAPTER 6. w -STABILITY

Ro-categorical. Now assume S, (@) finite for every n. Consequently S, (0) is
a discrete space, and so every n-type over () is isolated. As this is true for
every n, every model of T is atomic over (}, hence every countable model of T
is prime over {}. Then all the countable models of T are pairwise isomorphic.

&

Let us underline a simple consequence showing in the countable case the
more general fact that, for a A-categorical T, the only model of power A is
saturated (in the uncountable case, this result is much more complicated
and refers to Morley’s Categoricity Theorem).

Corollary 6.6.2 Let T be an Rg-categorical theory. Then the only countable
model M of T is Ny-saturated.

Proof. Let @ be a tuple (of length m) in M. For every positive integer
n, there are only finitely many n-types over @, indeed only finitely many
(n + m)-types over §. So every n-type over & is isolated, and consequently
is realized in M. &

Now let us propose some examples illustrating Ryll-Nardzewski’s Theorem.

Examples 6.6.3 1. We know that dense linear orders (with or) without
endpoints have an Rp-categorical theory (see Chapter 1). Let us con-
firm this result via the Ryll-Nardzewski Theorem. First take a positive
integer m and ag, ..., @n, bo, ..., by, in the universe of DLO™, with
ag < ... < Gm, bg < ... < by,. Then there is an automorphism of Q2
mapping a; in b; for every j < m. In fact the intervals in 2

] — 06, a0[7 ] - 00, b0[7

laj, aj41l, 1bj, bjpa[ Vi< m,
lam, +oo[, 1bm, +00[

are models of DLO™ and are saturated in the same power as Q2. Conse-
quently they are isomorphic to each other. In particular (ag, ..., @),
(bo, ..., by) have the same type over (). This implies that, for ev-
ery positive integer n and sequence (cy, ..., ¢,) € Q7 the type of
(c1, .., ¢,) over the empty set is fully determined by the isomorphism
type of the ordered set ({c1, ..., ¢}, <). So we get only finitely many
n-types over () for every n, and the Ryll-Nardzewski Theorem applies
to confirm that DLO™ is Rg-categorical.



6.6. RYLL-NARDZEWSKI’S THEOREM, AND OTHER THINGS 219

2. On the contrary, AC'F, is not Rg-categorical for any p = 0 or prime.
Let us see why by using the Ryll-Nardzewski Theorem. Is suffices
to notice that there are infinitely many pairwise distinct (-definable
subsets in the universe Q of AC'F,, and even that there are infinitely
many pairwise distinct finite -definable subsets of Q, in other words
that acl(() is infinite. But this is well known because acl({) equals the
(field theoretic) algebraic closure of the prime subfield of Q.

Of course, no (expansion of a) field of characteristic 0 can admit an Ro-
categorical theory, for the same reason as in Example 6.6.3, 2. This applies
in particular to real closed fields. Checking what happens for differentially
closed fields, or separably closed fields, or AC'F'A, could be a useful exercise.

We conclude this section and the whole chapter by discussing a related
matter, again concerning definable sets and types. In particular we wonder
which information we can obtain about a complete theory T by looking at
the isomorphism types of the Boolean algebras of definable sets of its models.
Can the knowledge of these algebras say anything essential about the model
theoretic complexity of T7 Incidentally, recall that, at least in the countable
case, there does exist a satisfactory classification of Boolean algebras up to
isomorphism, provided by Ketonen.

In this framework, A-categoricity can be replaced, for every infinite cardinal
A, by a seemingly weaker notion, called Boolean A-categoricity. A complete
theory T is said to be Booleanly A-categorical if and only if all its models of
power A have isomorphic Boolean algebras of definable 1-ary sets. Clearly
categoricity implies Boolean categoricity in every A. Notably

Theorem 6.6.4 (Mangani-Marcja) For an uncountable X, a complete the-
ory T is Boolean A-categorical if and only if is A-categorical.

But this is false when A = Xy. Indeed

Theorem 6.6.5 (Marcja-Toffalori) Every Ri-categorical theory is Boolean
Ng-categorical.

So algebraically closed fields have Boolean Rg-categorical theories. One can
see that the same is true also for real closed and differentially closed fields,
as well as for every module.

Other connections between isomorphism types of Boolean algebras of defin-
able sets and structural properties of theories are investigated in the papers
quoted at the end of the chapter.
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Chapter 7

Classifying

7.1 Shelah’s Classification Theory

A central subject in Mathematics is classifying, that is characterizing the
objects of a given class up to equivalence relations, for instance the structures
of a given language, or the models of a given theory up to isomorphism. Let
us mention some classical examples.

Examples 7.1.1 1. Aninfinite set (without additional structure) is fully
characterized up to isomorphism by its power, so by a(n infinite) car-
dinal number.

2. Let K be a fixed (countable) field. A non-zero vectorspace over K is
completely determined up to isomorphism by its dimension over K, so
again by a cardinal number.

3. An algebraically closed field of a given characteristic is fully determined
up to isomorphism by its transcendence degree over its prime subfield,
80, once again, by a cardinal number.

Notice that the previous examples concern elementary classes and even
strongly minimal theories (provided we restrict our attention to infinite
vectorspaces in 7.1.1, 2). But, of course, the classification purposes
touch larger horizons.

4. Tt is well known that every finitely generated abelian group A decom-
poses as a finite direct sum of cyclic groups, and even of copies of Z,
Z/p"™ where p ranges over primes and n over positive integers. More-
over the latter decomposition is unique up to isomorphism (and up

221



222 CHAPTER 7. CLASSIFYING

to permuting the summands); so the isomorphism type of A is de-
termined by saying how many copies of Z, Z/p™ (p prime, n positive
integer) are involved in this decomposition of A. Notice that finitely
generated abelian groups are not an elementary class (why?).

5. Consider torsionfree abelian groups of rank at most n, where n is a
given positive integer: they are the subgroups of the additive group
(Q™, +). Baer found in the thirties a nice classification of these groups
up to isomorphism when n = 1. However it has been a longstanding
open question to accomplish a general satisfactory classification for
every n > 2, and actually no classification is presently known. We will
go deep in this question later.

6. Let K be a given field, and look at the ring K(z, y) of polynomials
with coeflicients in K and two non-commutings unknowns z and y.
Consider K(z, y)-modules finite dimensional over K towards a possi-
ble characterization of their isomorphism classes. Well, this problem
is generally believed intractable. In fact, finite dimensional K(z, y)-
modules interpret the word problem of groups, and classifying them
as said means solving this problem.

Of course, classification problems do not restrain themselves to the iso-
morphism relation; for instance one can try to classify square matrices by
similarity, and so on. Also, it should be underlined that a classification is
sometimes (often?) very unlikely to be obtained (as Examples 7.1.1, 5 and
7.1.1, 6 witness). However looking for a classification, and even realizing its
unfeasibility, can disclose new connections between different areas, generate
new techniques and, definitively, enlight new horizons within Mathematics.
From an abstract point of view, a natural problem arises in this framework,
that is developing a theoretical treatment to recognize which classes and
relations admit a classification, and to propose general tools to accomplish
this classification when possible, or to measure its difficulty in the hard cases.
A closely related and preliminary question is just: what does classifying
mean?

These issues are intensively studied within Mathematical Logic. For in-
stance, Descriptive Set Theory (and consequently, through it, both Set The-
ory and Recursion Theory) are concerned with the classification matter.
In fact Descriptive Set Theory deals with definable sets of R, viewed as a
separable complete metric space, and of similar topological spaces (Polish
spaces). This does overlap classification. Indeed the objects that are to
classified often belong to a Polish space X, or at least to a Borel subset of
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X, and the classifying equivalence relation F is a Borel, or analytic, etc.,
subset of X2: in fact, this is the case of the similarity relation for square ma-
trices, as well as the isomorphism relation for denumerable structures (such
as groups and fields) in a given language. In this setting it is sometimes
possible to associate in a Borelian way to any object of X a point (called
“invariant”) in another Polish space such that two different objects have the
same associated point if and only if they are equivalent in E. The relation F
is called smooth when it satisfies these requirements. For example, Jordan’s
canonical form is an invariant of the similarity relation for matrices, which is
therefore smooth. In Ergodic Theory, smooth relations are just those which
are considered actually classifiable. But not all equivalence relations one
meets are smooth. In the latest years a general theory of classification of
equivalence relations which live in Polish spaces has been developed within
Descriptive Set Theory: it allows to establish, for ¥ and F equivalence
relations, when classifying modulo E' is more complex than classifying mod-
ulo F. In particular it includes some recent and beautiful results of Simon
Thomas (and others) on isomorphism for torsionfree abelian groups of rank
n; these works show that this relation is of increasing complexity when n
grows, and is not smooth (and so is likely to be intractable) when n > 2.
But now let us come back to Model Theory. Of course, also Model The-
ory is interested in classifying (structures, definable sets, and so on). But
its approach is peculiar, and differs from the perspectives and the aims of
Descriptive Set Theory: and indeed, very roughly speaking, one could say
that Model Theory and Descriptive Set Theory are complementary in this
framework. In fact, one could agree that the latter is mainly concerned in
measuring how hard and difficult classifying is in the worst “wild” cases,
while Model Theory aims at determining the “tame” settings in Mathe-
matics, and accordingly at clarifying where and why a classification can be
done.

(lassification in Model Theory promptly recalls Shelah. In fact, it was She-
lah who approached, treated and essentially solved the classification problem
in Model Theory since the end of the sixties until the early eighties. So She-
lah’s formidable work dates back to almost twenty years ago, but is far from
having exhausted its stimulus, as we will explain later in more detail. The
Shelah strategy was to determine a series of successive key properties (sim-
plicity, stability, superstability and so on) concerning complete theories and
having a twofold role: in fact, each of them allows a new significant step
towards classifiability, while its negation excludes any hope of classification.
At the end of these successive dichotomies Shelah exactly determines which
abstract conditions ensure classifiability.
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The aim ot this chapter is to outline Shelah’s classification program, its con-
cepts, tools and techniques (forking, stability, superstability and so on), as
well as its recent developments regarding simplicity and spectrum problem.
We will lay emphasis on ideas and motivations rather than on proofs. So
we will sacrifice full details in general. However we will provide a complete
report in the w-stable case.

The first point to be clarified is: what do we want to classify? Here the
answer is quick and ready: we will deal with classes of structures. Just to
avoid too many complications, we will limit our analysis here to elementary
classes, and even to classes Mod(T) of models of countable complete first
order theories 7. We illustrated this choice in Chapter 1. As usual, we will
work inside a big saturated model Q2 of T'.

The second preliminary question is: with respect to which relation will we
classify? Also in this case the reply is fast and easy: we will classify up to
isomorphism.

But now we have to answer a more delicate and fundamental question, that
is: what does it mean to classify the models of a complete T up to iso-
morphism? By which “nvariants” will we accomplish our classification pro-
gram?

When T is strongly minimal - just as in the Examples 7.1.1, 1-3 quoted
before - classifying means assigning to every model a cardinal number - its
dimension - in such a way that two models are isomorphic if and only if they
are given the same cardinal. But we already saw that, for some theories,
a classification cannot be accomplished by assigning a single cardinal and
often requires something more complicated, like pairs of cardinals, or even
(possibly infinite) sequences of cardinals, and so on. This is what happens in
Example 7.1.1, 4, where actually the involved class is not elementary; other
elementary cases were discussed in Chapter 5. Here is another example.

Example 7.1.2 Consider the theory of the structures (A, Ej, E;) where
FE,, E; are equivalence relations, Fs C Fy and

e every Fy-class hags infinitely many elements,
e every Fi-class contains infinitely many FEs-classes;
e there are infinitely many F-classes.

T is complete (for instance because it is categorical in Rg). In a model
of T any Fj-class of power N, is determined up to isomorphism by the
function mapping any infinite cardinal Xg < X, to the number of the F,-
subclasses of power Rg, and hence by an ordered sequence of « cardinals
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< R,. Consequently, if A = (A, E1, F3) is a model of T of power A, then
the isomorphism type of A is completely given by the function associating
to any ordered sequence of « cardinals < R, (X, < A) the number of the
Ej-classes in A corresponding to this sequence.

This construction can be iterated to produce more and more complicated ex-
amples, needing more and more sophisticated isomorphism invariants. This
suggests the following definition.

Definition 7.1.3 Let C denote the class of cardinal numbers. For every
ordinal o, we define a class C* by induction on « in the following way.

o CYisC,
e if a = B+ 1 is a successor ordinal, then we put C* = CP U P(CP);
o if o is limit, then we put C% = g, Ch.

Definition 7.1.4 Let T be a complete theory, o be an ordinal. T is said
to have an invariant system of rank o if and only if there is a function f
associating every model of T with an element of C* such that two models A
and B of T are isomorphic if and only if f(A) = f(B).

Examples 7.1.5 1. A strongly minimal theory has an invariant system
of rank 0.

2. An ordered sequence of cardinals is an element of C%. So the theories
in Example 5.8.2 have an invariant system of rank 2.

3. The theory in Example 7.1.2 has an invariant system of rank 4.

Shelah’s proposal is to assume that a complete theory T is classifiable if and
only if T has an invariant system of rank « for some ordinal a.

We will discuss Shelah’s point of view later in this chapter, after describing
Shelah’s classification theory. In particular, we will see that there are some
good reasons to agree with it. Once this is done, we can deduce:

Theorem 7.1.6 LetT be a complete theory such that, for every uncountable
power X\, T has 2" pairwise non isomorphic models of cardinality X. Then
T is not classifiable.

In fact some cardinal and ordinal computations exclude that such a T" has
an invariant system of any possible rank. This is quite remarkable, because
there are some very familiar theories satisfying the assumptions of Theorem
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7.1.6. For instance, this is the case of the theory DLO™ of dense linear or-
ders without endpoints: in fact DLO™ is Rp-categorical and so has only one
countable model (up to isomorphism) but it gets 2* pairwise non isomorphic
models in any uncountable power A. Accordingly DLO~ is not classifiable.
More generally Theorem 7.1.6 applies, as we will see in the next section, to
any complete theory of linearly ordered infinite structures. None of these
theories is classifiable. In particular, no o-minimal theory is classifiable, al-
though any such theory satisfies the conditions (D1)-(D4) of the dependence
relation

a< A =3 a € acl(A)

for ¢ € Q, A a small subset of 2. This is a little surprising and will be
discussed in more detail later in this chapter, and then in Chapter 9.
Anyhow, if we (momentarily) agree with Shelah’s definition of classifiable
theory, then we have to take note that too many models (in other words 2*
non-isomorphic models in every uncountable )) exclude classifiability. On
the other side, we would like also to determine the key criteria ensuring the
classifiability of an arbitrary complete theory: this will be the matter of
the forthcoming sections. To conclude the present one, let us spend some
more words about the close relationship between classifying theories 7" (in
the Shelah sense) and counting the models of T. This is already explicit
in Theorem 7.1.6. More generally, for every countable complete T', one can
define a function I(T, ...) associating to every infinite cardinal A

I(T, A} = number of the isomorphim types of models of T' of power \.

A I(T, A) is called the spectrum function of T'. Recall that 1 < I(T, A) <
2* for every A, owing to the Lowenheim-Skolem Theorem and cardinal com-
putations. The content of Theorem 7.1.6 is just that I(T, A) = 2" for every
uncountable A excludes the classifiability of 7. Indeed there was a conjec-
ture of Morley, preceding Shelah’s work and, in some sense, originating it,
saying:

Conjecture 7.1.7 (Morley) Let T' be a countable complete first order the-

ory. Then the spectrum function A — I(T, )} is increasing among uncount-
able cardinals: for o < X < p, I(T, X) < I(T, u).

Shelah positively answered this conjecture, as a non-minor consequence of
his classification analysis. The problem of determining all the possible spec-
trum functions A — I(T, A) when T ranges over countable complete the-
ories (and A is uncountable) was solved only in 2000 by Hart, Hrushovki
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and Laskowski, who explicitly listed all these functions. Notably their proof
involves some arguments from Descriptive Set Theory.

Finally, what can we say when A = R¢? As we observed in the last chapter
when talking about Rg-categoricity, this case is a little oblique with respect
to the general analysis and requires peculiar approaches and techniques. A
classical conjecture in this framework was raised by Vaught.

Conjecture 7.1.8 (Vaught) For a countable complete first order theory T,
either I(T, Ro) < o or I(T, Ro) = 2% (apart from the Continuum Hypoth-
esis, of course).

As in the case of Morley’s Conjecture, this question is not only a mere cardi-
nal investigation; what is more relevant is to understand the structure of the
countable models of T'. Shelah (together with Harrington and Makkai) pos-
itively answered Vaught’s Conjecture for w-stable theories T. Other partial
positive answers are known. Indeed in the latest months the news of a coun-
terexample (a theory with exactly ®; countable models) due to R. Knight
[75] has been spreading, but this negative solution still seems (october 2002)
under examination.

7.2 Simple theories

All throughout this section T is a complete first order theory in a countable
language L, T' has no finite models and Q denotes the universe of T'.

We aim at determining which key properties make T classifiable. A classifi-
cation is very easy in the strongly minimal case. In fact, when T is strongly
minimal, every model of T is labelled by a cardinal number - its dimension
- classifying it up to isomorphism; what rules this dimension and its as-
signment is a notion of dependence, based on the model theoretic algebraic
closure acl. Unfortunately the acl dependence does not work any more when
we enlarge our setting and we leave the strongly minimal framework.

So we need a more general notion of (in)dependence, still including the
classical cases of linear independence in vectorspaces, algebraic independence
in algebraically closed fields and, definitively, acl independence in strongly
minimal theories, but applying to a wider context. In other words we aim
at defining for any T

a is independent from B over A

where d is a tuple in 2 and A C B are small subsets of 2. As notions require
abstract symbols to be presented let us denote by I (I for independence)
the set of all the triples (@, B, A) in Q2 such that
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@ is independent from B over A

in a sense to be made more precise. It is reasonable to expect that I satisfies
the following properties:

(I11) (invariance) for every (@,B,A) € I and automorphism f of ,
(f(@), f(B), f(A)) is still in I;

(I2) (local character) for every @ and B, there is a countable A C B such
that (@, B, A) € I;

(I3) (finite character) for every @, A and B, (4, B, A) € I if and only if, for
all finite tuples & in B, (@, AU b, A) € I;

(14) (extension) for every @ A and B, there is a tuple @ having the same
length and the same type over A as @ such that (@', B, A) €

(I5) (symmetry) for every g, band A, (@,AU b,A) € I if and only if
b

(s
(b,Aud, A) e I;

(16) (transitivity) for every @ and A C B C C, (@,C, A) € I if and only if
(@,B,A) € I and (&,C,B) € I.

Definition 7.2.1 A set I of triples (@, B, A) with @ in Q and A C B small
subset of Q is called an independence system of T' if and only if I satisfies

(I1) - (I6).

An easy application of (I3) and (I5) shows that, if B, B’ 2 A are small
subsets of €, then
(b,B',A) el YbeB

if and only if
(,B,A)eI Vb e B.

We will say that B and B’ are independent over A when this happens.

Notice also that, if @ is a subsequence of @ and (_', B, A) € I, then
(@, B, A) €1 as well. By (I3), it suffices to check (@, AUb A) € [ for all
bin B. We know (&, AU b, A) € I. By symmetry (15) (b Aud, A)el,
whence (b, AU@, A) € I by (13), and (&, AUb, A) e I by (I5) once again.

Let us propose some examples of independence systems, both to illustrate
the meaning of (I1) - (I6) and to confirm that they provide a reasonable
axiomatic ground to introduce an abstract notion of independence.
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Examples 7.2.2 1. First let us check that the old independence notion
in strongly minimal theories 7’ corresponds naturally to an indendence
system in the new sense. In fact, let T' be any theory. For a €  and
A C B small subsets of  put

(a, B, A) € I if and only if a € acl(B) implies a € acl(A)
or, equivalently but more transparently,
(a, B, A) ¢ I if and only if a € acl(B) — acl(A).

We claim that, if the acl dependence relation in T satisfies (D1), (D2)
and (D4) (in particular, if T is strongly minimal, or also o-minimal),
then the triples (a, B, A) in I do satisfy (I1) - (I6). We underline that

we are momentarily dealing with elements a rather than with tuples @
in Q.

(I1) is clear.

(I2) follows from (D2), which says even more; in fact, it ensures that,
for every a and B, if a € acl(B), then there is a finite A C B
such that a € acl(A).

(I3) says in our particular setting that, for every a and A C B with
a ¢ acl(A), a € acl(B) if and only if there exists a tuple b in
B such that a € acl{AUDb). So the direction from left to right
just follows from the definition of acl, and the converse is a direct
consequence of (D2).

(I4) Let (a,B,A) ¢ I, so a € acl(B) — acl(A). tp(a/A) is not alge-
braic, and so is realized even out of acl(B). Take any o’ ¢ acl(B)
such that ¢tp(a’/A) = tp(a/A) and notice that (a’, B, A) € I.

(I5) when restricted to elements a and b in € is just the Exchange
Principle (D4).

(I6) is clear.

It is straightforward to see that the previous analysis extends to arbi-
trary tuples @ in €2, provided we put, for @ = (a4, ..., ay),

(@, B,A) el
if and only if, for every ¢ < n,

(a;, BU{aog, ..., ai-1}, AU{ag, ..., a;—1}) € I.
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The resulting I is an independence system of T'. As already said, this
example includes both strongly minimal and o-minimal theories. In
particular it applies to the following classes of structures.

(a) (Pure) infinite sets: here, for a, A, B as above, (a, B, A) ¢ I (so
a dependent from B over A) means a € B — A.

(b) Vectorspaces over a given (countable) field K: in this case,
(a,B,A) € I means that a is in the subspace spanned by B
but is not in the subspace spanned by A; hence I recovers linear
independence.

(c) Algebraically closed fields: this time, for A and B subfields,
(a, B, A) ¢ I means that a is algebraic over B but is transcen-
dental over A; accordingly I recovers algebraic independence in
this case.

(d) Real closed fields (such as the ordered field of reals): recall that
these fields are o-minimal; moreover, for ordered subfields A and
B, the model theoretic algebraic closure acl equals the real closure
in the usual algebraic sense; accordingly, for a, A and B as before,
(a, B, A) € I means that a is in the real closure of B but is not
in the real closure of A.

But independence systems do go beyond the strongly minimal and o-
minimal settings, and apply to larger sceneries, for instance to w-stable
theories, and other theories as well.

2. Let T be w-stable. Define I by putting, for @, A and B as before,
(@,B,A)el <= RM(tp(a,B))= RM(tp(@,A)).

Then I is an independence system of T'. The details will be provided
in Section 7.5 below. We give here just a few comments. Firstly recall
that RM (tp(@, B)) < RM(tp(a, A)) for every @ and A C B. Secondly
notice that, for a strongly minimal T and for a € Q, RM (tp(a, B)) <
RM(tp(a, A)) just means a € acl(B) — acl(A). In other words, when
we restrict our attention to strongly minimal theories, we recover the
independence system in 1. But, of course, independence concerns now
a much larger framework, including, for instance, differentially closed
fields of characteristic 0 (the differential case will be discussed in more
detail in Section 7.10).
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3. Now consider random graphs. They are (infinite) graphs (G, R) (with
R a symmetric irreflexive binary relation on G) satisfying the following
additional condition:

(x) for every m, n € N and ag, ..., @y, bo, ..., by, € G, there is some
g € G satisfying R(g, a;) for all i < n and ~R(g, b;) for all j < m.

Clearly (%) can be expressed by infinitely many first order sentences
in the language L = {R}, so random graphs are an elementary class.
Their theory T is w-categorical and consequently complete; further-
more it eliminates the quantifiers in L. Notice that T is not w-stable.
In fact, given a random graph (G, R), for any subset S of G, the
formulas

R(v,s)Vs€ S, -R(v,g)VgeG-S

defines a 1-type over (G, and different subsets produce different types;
so S1(G) contains at least 2!¢! elements. This implies that T is not
w-stable.

Now define, as in the case of infinite sets, for ¢ in Q2 and A C B,
(a, B, A) € Iif and only ifa € B — A.

It is easy to check that one determines in this way an independence
system [I.

4. Any completion of the theory AC'F A of existentially closed fields with
an automorphism has an independence system: this will be described
in more detail in the final section of this chapter, among other algebraic
examples.

However theories having an independence system (such as those considered
in the previous examples) do not behave in the same way. For instance, one
realizes that the following amalgamation property is a crucial dividing line:

(I7) (amalgamation) let A be a model of T, B, B’ O A be independent over
A, (_,', b be tuples in € having the same type p over A and satisfying
(E,B,A) eI, (b_;, B’, A) € I respectively; then there is some ¢ in 2
realizing the same type as b over B and as b over B', and satisfying
(6, BUB',A)el.

Definition 7.2.3 An independence system I of T is good if and only if it
satisfies (17).
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Let us run through the previous examples to illustrate (I7) and its relevance.

Examples 7.2.4 1. Let T be strongly minimal, I be defined as before.
Then (I7) holds. Let us check this when dealing with tuples of length
1, so for elements of Q. If b or &’ is in A, then 6 = b and ¢ = b = ¥’
works. So assume b, b’ ¢ A; independence implies b ¢ acl(B) and
b' & acl(B'), in other words b, b’ realize the only non-algebraic 1-type
over B, B’ respectively; so any realization of the unique non-algebraic
1-type over BU B’ works as c. Notice that, in this case, (I7) is a direct
consequence of the fact that, for every small subset X of Q, there is
a unique non-algebraic 1-type px over X and consequently over every
small Y O X there is a unique non-algebraic 1-type extending px.

However (I7) fails within o-minimal theories: I is not good in this
setting. Let us see why in the particular case when T = RCF is the
theory of real closed fields. Consider the ordered field R of reals and,
in a suitably saturated extension Q of R, 4 positive elements

b<a<a <V

each infinitely larger than the previous ones, and b infinitely larger
than R. Then a and a’ are independent over R ((a, RU{a’}, R) € I),
b, b realize the same type over R and

b, RU{a},R) €, (¥,RU{d},R)el.

However no ¢ € {2 can satisfy the same type as b over RU {a} and as
b' over R U {a’} because b < a < a’ < b’ and so ¢ < a excludes @' < c.

2. The independence system associated with an w-stable T' as before is
good. This will be checked in detail in 7.5.

3. Also the independence system of random graphs enjoys amalgamation:
the reader may easily check this.

4. The same is true for ACF A and its completions.

Definition 7.2.5 T is called simple when T has a good independence sys-
tem. A structure A is simple when its theory is.

Therefore w-stable theories (and in particular strongly minimal theories) are
simple; random graphs are simple, as well as any existentially closed field
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with an automorphism: in all these cases, an independence notion satisfying
not only (I1) - (I6) but also the additional condition (I7) can be introduced.
But we can say even more. Indeed, for a simple T, this independence notion
is unique; in other words, there is only one good independence system I of
T making T simple. I can be characterized as follows.

Definition 7.2.6 (Shelah) Let A C B be small subsets of Q, p be a type
over B. p is said to fork over A if and only if there are a formula ¢(T, W)
and tuples b, (where v < A and A is a suitable infinite ordinal), all having
the same length as W, such that

(i) the b, ’s have the same type over A;
(H) 90(17, l_;O) € p;
(i) MNyer @(Q?,5,) =0 (where n is, obviously, the length of ).

In any simple theory T, a good independence system necessarily arises from
forking: this is the content of the following theorem of Kim and Pillay.

Theorem 7.2.7 (Kim - Pillay) Let T' be simple, I be a good independence
system of T. Then, for every tuple @ in Q and A C B small subsets of <,
(@, B, A) € I if and only if tp(d/B) does not fork over A.

So the only possible good independence system of a simple theory T is the
set I of the triples (@, B, A) as before such that tp(a/B) does not fork over
A: this is what is necessarily meant when we say that @ independent from B
over A in a simple T'; we will write @ |4 B when this happens. When 4 and
B are any small sets (so possibly A € B), @ |4 B abbreviates @ 4 AU B;
one usually omit the subscript A when A is empty; so | just means }g; for
B and B’ sets, B |4 B’ abridges b |4 B’ for every b in B, or equivalently
¥ |4 B for every b in B'.

For technical convenience, let us restate (I1) - (I7) in this new notation for
a simple T'.

(I1) (Invariance) for every @, B and A as before and every automorphism
JofQ if@la B, then f((_i) ~lff(A) f(B))

(I2) (local character) for every @ and B, there is a countable A C B such
that @ |4 B;

(I38) (finite characl;er) for every a@, A and B, @ |4 B if and only if, for all
finite tuples bin B, & | 4 b.
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(I4) (extension) for every @, A and B, there is a tuple @ having the same
length and the same type over A as @ and satisfying @ |4 B;

(I5) (symmetry) for every d, band A, @4 bif and only if b |4 @;

(I6) (transitivity) forevery @dand AC BC C,dlaCifandonlyifdlsa B
and @ lg C.

(I7) (amalgamation) let A be a model of 7', B, B’ 2 A satisfying B |4 B,
b b be tuples in €2 having the same type p over A and satlsfylng
b da B, 1% 14 B’ respectively; then there is some ¢ in € realizing the
same type as b over B and as b over B’, and satisfying ¢4 BU B'.

The reader may directly realize what these properties imply when tuples @
are replaced by arbitrary small subsets, so when one deals with B |4 B,
and rewrite them in this enlarged setting.

Remarkably symmetry - namely (I5) - is a key property of the forking in-
dependence within simple theories: indeed, simplicity is equivalent to the
symmetry of forking. Also transitivity (I6) and local character (I2) have the
same crucial role. This was observed by Kim and Pillay as to local character,
and has been recently shown by Kim in the other two cases.

Theorem 7.2.8 A theory T is simple if and only if, one of the following
propositions holds:

(i) the forking independence satisfies symmetry (I5);
(ii) the forking independence satisfies transitivity (16);
(iii) the forking independence satisfies local character (12).

In conclusion, simple theories are those where independence can be reason-
ably introduced and developed in the axiomatic way we said before. Of
course, this is a positive property towards classifiability. But one can won-
der which is the reverse of the medal, in other words what happens in non-
simple theories. Well, Shelah proved a quite negative result about them: in
fact, they are not classifiable, and so must be rejected in our classification
program.

Theorem 7.2.9 (Shelah) If T is not simple, then I(T, ) = 2* for every
uncountable cardinal A.

Simple theories exclude o-minimal theories, as observed before. More gen-
erally one can show that no complete theory of linear orders can be simple.
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Theorem 7.2.10 No linearly ordered infinite structure has a simple theory.
In particular, no complete theory of linearly ordered infinite structures is
classifiable.

It is perhaps worth repeating that, in spite of this result, infinite linearly
ordered structures are not so bad. On the contrary, some of them, like dense
or discrete linear orders, real closed fields and, more generally, o-minimal
models satisfy some nice and powerful model theoretic properties; in all these
frameworks a suitable independence notion, satisfying the axioms (I1)- (I6)
can be introduced. So things are not so sick as they look. We will come
back to this point at the end of Chapter 9.

To conclude this section, let us sketch a brief history of simple theories.
Simplicity was first introduced by Shelah in 1980, but its relevance was not
completely realized at that time; indeed Shelah laid a major emphasis on a
stronger notion - stability, the matter of the next section - and regarded sim-
plicity as a generalization of stability, and not directly as a key dichotomy.
The role of simplicity in introducing independence and so towards classi-
fiability was neglected until the nineties, when one observed that several
interesting algebraic structures - most notably, existentially closed fields
with an automorphism - have a simple unstable theory. Then Kim in 1996
showed that the forking independence satisfies symmetry (I5) within simple
theories and, together with Pillay, proved the close connection between in-
dependence and simplicity introduced before (in Theorem 7.2.7). Kim again
realized in 2001 the key role of symmetry for the forking independence in
the simple framework.

Now simplicity theory has deserved its own room in Model Theory, as an
autonomous and relevant part of the classification program.

7.3 Stable theories

As said in the last section, Shelah’s original analysis put its emphasis on
stability rather than simplicity. Stability looked the key property towards
independence. But, after Kim and Pillay, one realized that it is simplicity
that plays the central role here, while stability strengths simplicity in the
sense we are going to explain.

There are several ways to introduce stability, and their equivalence is not
so immediate as one would like. We adopt the following definition, which
underlines the connection with simplicity: T still denotes a complete first
order theory with no finite models in a countable language L, and Q is a big
saturated model of 7.
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Definition 7.3.1 T is stable if and only if T has an independence system
I satisfying the following additional assumption:

(I8) (stationarity over models) for every model A of T, tuples @, a in
Q and small subset B D A in Q, if d, a' have the same type over A
and are independent from B over A (with respect to I), then they have
the same lype also over B.

T is called unstable when it is not stable. A structure is said to be stable
or unstable when its theory is.

The content of (I8) is clear: there is a unique way to extend a type p over a
model A of T to a type over B D A of tuples independent from B over A.
Let us propose an easy example to illustrate this condition (I8), and so
stability.

Example 7.3.2 Just for a change(?!), we deal with a strongly minimal T
and 1-types over a model A of T'. The algebraic 1-types are realized in A and
so extend uniquely over any B D A. But the only non-algebraic p € S;(A)
may have several extensions over B; however only one of them does not fork
over A, and this is the unique non-algebraic 1-type over B, in other words
the type of any element out of acl(B). What happens if we enlarge our
analysis from models of T' to arbitrary small sets A? Now even an algebraic
1-type p over A may have several extensions over a B D A, and all of them
do not fork over A; however their number is finite and cannot exceed | ()]
where ¢(v) is an L(A)-formula isolating p; on the contrary the non-algebraic
1-type over A has again a unique nonforking extension over p, that is the
non-algebraic 1-type over B.

Hence strongly minimal theories are stable. But this property may fail
elsewhere; indeed we are going to see that it does not hold any longer in non-
simple theories, and even in certain simple structures, like random graphs
(and others).

Theorem 7.3.3 If T is stable, then T is simple.

Proof. Let I be an independence system of T satisfying (I8). We have
to check amalgamation (I7). So take a model A of T, two sets B and B’
independent over A (with respect to I), and two tuples I;, % having the same
type over A and satisfying (b, B, A) € I, (8, B', A) € I respectively. Using
extension (I3), one finds two tuples d: d having the same type as b over B
and as & over B’ respectively, and both independent over B U B over A.
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In particular, d d' have the same type over A. By (18), _they have the same
type also over BU B'. Hence d has the same type as d, and consequently
as b’ over B'; furthermore d has the same type as b over B. So d satisfies

(I7) as ¢. &

Then any independence system I satisfying (I8) in a stable T is good, and
must equal the forking independence: for @, A and B as usual,

(@,B,A)el <+ dlaB.
Accordingly (I8) can be restated as follows for a simple 7.

(I8) Let A be a model of T', B be a small subset of €2 including A. Then
every type over A has a unique non-forking extension over B.

Once again recall that the existence of a non-forking extension is just stated
n (I4). Uniqueness may fail for a stable T" over arbitrary subsets A of ©; but
also in this extended framework stability bounds the number of the possible
non-forking extensions over B of a type over A, in the following sense.

Theorem 7.3.4 T is stable if and only if T is simple and, for every small
ACQandpe S(A), there is a cardinal & (less than |Q|) such that, for any
small B 2 A, p has at most k non-forking extensions in S(B).

Another equivalent way of defining stability relies upon a counting type
characterization (resembling w-stability).

Theorem 7.3.5 T is stable if and only if there is some infinite cardinal X
such that, for every small A C Q of power A, |S(A)| = A

We wish to underline another equivalent characterization, saying that sta-
bility just excludes definable infinite linear orders, in the following sense.

Theorem 7.3.6 T is unstable if and only if it satisfies the order property:
there is a formula ¢(U, W) - where T and & have the same length n - such
that (Q2*") linearly orders an infinite (possibly non definable) subset of Q™.

So the order property is the key obstruction to stability. On the other side
we saw in the last section that no infinite linearly ordered structure has a
classifiable theory; this applies more generally to theories with the order
property, hence to unstable theories.

Theorem 7.3.7 (Shelah) If T' is not stable, then for every uncountable
power X\ I(T, \) = 2*. In particular, T is not classifiable.
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Hence instability is a negative condition in the classification perspective. On
the other hand, which are the benefits of the stability assumption? Some of
them are already described by the definition and the equivalent (positive)
characterizations listed before. In particular we emphasize once again that,
for a stable T and for a model A of T, every type p over A enlarges uniquely
to a non-forking extension over any set B O A. Let p|B denote this extension
in S(B); p|B can be characterized as follows

-,

* for every L-formula ¢(¥, W), if there is some b in B for which (7, b) is
in p|B, then there is @ in A such that ¢(7, @) € p;

=

s for every formula (7, l;) € p|B, there is some @ in A for which = (@, b).

For an arbitrary T, a type q over B satisfying * (in the place of p|B) is
called an heir of p, and a type ¢ over B satisfying x is called a coheir of p.
So, within stable theories and for types over models,

heir = coheir = non-forking extension.

We will check these equalities in the restricted w-stable framework in 7.5.
Another benefit of the stability assumption concerns definability. To de-
scribe this, we need the following definition.

Definition 7.3.8 Let A be any small subset of Q. A type p over A is said
to be definable over A if and only if, for every L-formula (U, ), the set
of the tuples @ for which (U, &) occurs in p is A-definable; in other words,
there is an L(A)-formula do(w@) (possibly with parameters) such that, for
every @ in A, o(0, @) € p if and only if = dp(d).

Theorem 7.3.9 T is stable if and only if every type over a model A of T
is definable; moreover, for every small B D A, even p|B is definable over
B, and indeed, for every formula (U, &) the same L{A)-formula dy(w)
working for p and A goes right also over B.

The last theorem implies in its turn

Corollary 7.3.10 Let A < B be models of a stable theory T. If ¢(7) is a
formula with parameters from B (and n is the length of T), then ¢(A")
is A-definable.

We will check these results in detail in 7.5 in the restricted framework of w-
stable theories. Now, to conclude this section, let us propose some examples
of stable or unstable theories.



7.4. SUPERSTABLE THEORIES 239

Examples 7.3.11 1. Every w-stable theory T is stable. This will be
deduced by the definition of stability in 7.5 below; it follows even
more directly from other characterizations (for instance, from Theorem
7.3.5). Indeed, the particular case of strongly minimal theories was
already dealt with a few lines ago. So any infinite vectorspace, as well
as any algebraically closed field, or any differentially closed field of
characteristic 0, has a stable theory.

2. Any module (over a countable ring R) has a stable theory: this extends
what we have just observed about vectorspaces. The proof requires
very basic preliminaries about the model theory of modules, and can
be found in the references quoted at the end of the chapter.

3. Real closed fields do not have a stable theory. Indeed RC'F is not even
simple, and anyhow it houses infinite linear orders.

4. The theory of random graphs is unstable, although simple. In fact, let
A = (A, R) be a random graph, B O A be a small subset of Q. Use
compactness and find @ and @’ in Q such that Q = R(a, z) for every
z € B and Q = R(a, b) for a unique b € B, with b ¢ A. Then a and
a’ have the same type over A and each of them is independent from B
over A. But they do not have the same type over B.

5. Similarly, existentially closed fields with an automorphism are simple
and unstable.

6. On the contrary, separably closed fields and differentially closed fields
in prime characteristics are stable.

7.4 Superstable theories

Also in this section T is a complete first order theory with infinite models
in a countable language L, and Q denotes a big saturated model of T.

Let us underline once again a particular feature of the strongly minimal
case: this assumption implies, among other things, that T is stable and,
over any small subset A of €2, there is a unique non-algebraic 1-type p,
which is realized by all the elements outside acl(A); moreover, for ¢ and B
in p(2), so out of acl(A),

a Y4 B means a € acl(B).
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In particular J/4 satisfies within p(Q) the properties (D1) - (D4) stated in
Chapter 5.

Now consider an arbitrary stable T'. In this enlarged setting there may be
several non-algebraic 1-types over a small A; fix one of them, call it p and
look at the set p(Q) of its realizations in 2. We wonder whether [4 still
satisfies (D1) - (D4). Assume momentarily the following condition.

(%) For every small B D A, p has a unique non-forking extension over B.

Recall that p has at least one non-forking extension over any B: this is just
what is stated in (I4). (x) requires that all the elements a € p(f2) satisfying
a } 4 B realize the same type also over B. Notice that, as T is stable, every
p over a model of T satisfies (x). Call p stationary when (x) holds.

So take a non-algebraic stationary type p over a small A. It is easy to check
that 4 satisfies (D1), (D2) and (D4) in p(Q). In fact, let a, b € p(R2) and
B C p(92).

(D1) If a € B, then a {4 B.

As p in not algebraic we can find infinitely many elements by = a, by, ...,
by, ... realizing p in Q. The formula v = by is in tp(a/B) but no other b,
can satisfy it. Hence tp(a/B) forks over A according to Shelah’s definition,
and so a Y4 B.

(D2) If a {4 B, then there is some finite By C B for which a }/4 Bo.
This follows directly from (I13).
(D4) If a Y4 BU{b} but a {4 B, then b J/4 BU {a}.

Otherwise transitivity (I6) implies b |5 a, whence a | b by symmetry (I5);
as a L4 B, (I6) applies again and gives a 4 BU {b}.

On the other side, there do exist non algebraic stationary p’s for which }4
does not obey the last condition:

(D3) if a Y4 BU{b} and b [/4 B, then a J/4 B.
Here is a counterexample.

Example 7.4.1 Consider the theory of the usual Cartesian plane R? with
the two projections

(z,y)— (z,0), (z,y)—(0,y), Ve, yeR

onto the z-axis and the y-axis respectively. There are three non-algebraic
1-types over the empty set; they correspond in R? to:
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(i) any element (z, 0) with = # 0,
(ii) any element (0, y) with y # 0,
(iii) any element (z, y) with z, y # 0

respectively (the only algebraic 1-type concerns (0, 0), that is the unique
point lying in both the projection sets). Let p denote the third type in the
previous list. Now let us consider the algebraic 1-types over R?; they can
be partitioned into three classes:

(a) a new element (0o, y) with an old ordinate y € R and oo ¢ R;
(b) a new element (z, co) with an old absciss € R and oo ¢ R;;
(¢) a entirely new (oo, 0o) with co € R.

Actually the same analysis works over every model of 7. The types in
(a) and (b) have Morley rank 1, while the third type has Morley rank 2.
Accordingly T is w-stable with Morley rank 2 and Morley degree 1. The
third type is the only non-forking extension of p; actually, even the types
in (a), (b) with z, y # 0 enlarge p, but they fork over § (when y = 0 and
¢ = 0 the types in (a) and (b) extend those in (i), (ii) respectively). It is
also straightforward to check that p is stationary. Now take

A=0,B=R? a= (00, ), b= (z, 00)

with ¢ # 0 in R. Clearly a and b realize p, in particular a | R2. But
a YR?*U {b} and b J R?. This contradicts (D3).

Definition 7.4.2 A (non-algebraic stationary) 1-type p over a small A is
called regular when (D3) holds in p(2).

Our classification purposes suggest to handle stable theories 7" admitting
suitably many regular types. In fact, roughly speaking, the more they are,
the better one can expect to approach T'. Now put:

Definition 7.4.3 A stable theory T is called superstable if and only if,
for every small B and p € S(B), there is a finite subset A of B over which
p does not fork. A structure A is said to be superstable when its theory is.

Notice that superstability generalizes what happens in the strongly minimal
case. But what is more remarkable for our purposes is the following result.
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Theorem 7.4.4 Let T be a superstable theory, A and B be two models of
T such that A is an elementary substructure of B and A # B. Then there
is some b € B — A such that the type of b over A is reqular.

So regular types are not rare within superstable theories. On the other hand,
if superstability fails, then no classification can be expected.

Theorem 7.4.5 LetT be stable unsuperstable. Then, for every uncountable
power X, I(T, X) = 27, In particular T is not classifiable.

Accordingly superstability provides a new dichotomy in Shelah’s approach
to classification. For, it ensures sufficiently many regular types, while its
negation excludes any classification. Superstability can be introduced in
other equivalent ways. Let us quote a characterization based on a counting
types criterion (just as we did in the stable setting).

Theorem 7.4.6 T is superstable if and only if, for every A > 2% and every
set A of power X, there are at most A 1-types over A.

Let us conclude this section by listing some examples and counterexamples
of superstable theories.

Examples 7.4.7 1. Separably closed fields, or even differentially closed
fields in a prime characteristic are not superstable (although they are
stable).

2. On the other hand, all w-stable theories are superstable. This can be
easily deduced from the previous definition, but we will postpone the
details to 7.5 below.

3. There do exist superstable non w-stable theory. For instance the theory
of the additive group of integers is so.

7.5 w-stable theories

Just to have a short break in our outline of Shelah’s classification, let us
come back in this section to a more familiar setting, the one of w-stable
theories. What we plan to do is to examine closerly within this particular
framework the main notions introduced so far in our report. Accordingly
we will check that w-stable theories are simple, stable and superstable; we
will characterize forking, independence and so on in the w-stable setting; we
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will provide proofs and details of the main theorems stated till now. So,
all throughout this section, 7 will denote an w-stable theory in a countable
language L.

The first fact we want to check is that w-stable theories are stable as well.
Indeed within Shelah’s dichotomies, and in our outline, simplicity preceded
stability, and consequently one might reasonably expect to meet simplicity
before stability at this point; we will explain later why we are reversing
this order and postponing simplicity in this section. We provided several
equivalent characterizations of stability in Section 7.3; in particular we said
that stable theories are just those failing to have the order property. And
actually it is easy enough to show that w-stability implies stability if we
refer to this characterization.

Theorem 7.5.1 No w-stable theory T satisfies the order property. Equiva-
lently, any w-stable T is stable.

Proof. Let T be w-stable. Suppose towards a contradiction that there are
an L-formula (%, @) and tuples @; ( € N) in © (say of length n) such that,
for every choice of 7 and j in N,

QE p(@, a5) < i<

A straightforward application of the Compactness Theorem shows that we
can replace N by Q above; in other words, there are tuples d; (: € Q) in Q
such that, for every choice of 7z and j in Q,

Qs p(d@, a) « <]

Notice that there do exist definable subsets X in Q such that the indexes
i € Q such that d@; € X form an interval of positive length I(X) in Q; for
instance, when X = Q7, I(2") = Q is so. Choose X as before with minimal
Morley rank and degree. Fix a point j in the interior of the corresponding
interval I(X) and look at

XOIXQQD(Qn, a'}), X1:X—X0.

Both Xy and X; are definable subsets of X. Furthemore I(Xo) = {¢ €
I(X) : i <j}and I(X1) = {& € I(X) : i > j} are intervals of positive
length. So Xp and X; have the same Morley rank and degree as X; but this
contradicts the fact that they partition X. &

Another equivalent way of introducing stable theories concerns definability
of types: let us check that w-stability implies stability by referring to this
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characterization. Recall that a type p over a small subset A of the universe
Q of T is said to be definable over A if and only if, for every L-formula
(U, W), the set of the tuples @ in 2 for which (7, @) € p is A-definable. T
is stable exactly when any type over any model M of T is definable over M:
this is what we want to check for an w-stable T'. We begin by two technical
lemmas.

Lemma 7.5.2 Let X C Q" be a definable set, A be a small subset of Q2 such
that every automorphism f of Q fixzing A pointwise fires X setwise. Then
X is A-definable.

Proof. Let ¢(¥) be a formula defining X, and let P denote the set of the
types p over A of elements @ in X . Notice that in this case, every realization
b of p is in X; in fact there is an A—automorphlsm f of Q sending @ to b
f fixes X setwise, and so, as @ is in X, b is in X, too. In conclusion, for
every p € P and @ |= p, Q | ¢(@). Now repeat the same argument as in
Theorem 6.5.5: by compactness, for every p € P there is a finite conjunction
of formulas in p, and hence a single formula ¢, (¥) of p such that

Q | Vi(n(D) — ().

Furthermore, for every @ € X, p = tp(d@/A) is in P, and @ € ¢,(Q"). In
conclusion X = Upep ¢p(2"), in other words {U,, : p € P} is an open
covering of U,. By compactness again, there is a finite subset Py of P such
that {U,, : p € Po} covers Uy, hence X = U ep, ¢p(2"). Accordingly X is
defined by the L(A)-formula \V cp ©p(7). &

Lemma 7.5.3 Let T be an w-stable theory, M be an Ng-saturated model of
T, X C Q" be a non-empty M-definable set, Y be any definable (possibly
non M-definable) subset of Q such that Y C X and Y has the same Morley
rank as X. Then Y N M™ # (.

Proof. Put oo = RM(X),d=GM(X). Recall 0 < & < co. Then proceed
by induction on the pair («, d) (with respect to the lexicographic order). If
« = 0, then X is finite, and so X C M™. Thisimplies Y C M"™. Furthermore
Y # () because has the same Morley rank as X.

Now suppose a > 0,d=1. Then RM(X —-Y) < a. Put § = RM(X -Y).
Owing to Proposition 5.7.9, there are infinitely many pairwise disjoint M-
definable subsets X; (i € N) of Morley rank 3 inside X. In particular
there exists some natural ¢ for which RM ((X —Y) N X;) < 8. Accordingly
RM(Y N X;) = B, and by induction Y N X; N M"™ # B. Hence Y N M™ # {.
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At last assume o > 0 and d > 1. By Proposition 5.7.9 once again, X can be
decomposed as the disjoint union of d M-definable sets Xy, ..., X4-1 having
Morley rank « and degree 1. For some 7 < d, Y N X; has Morley rank o and
hence Morley degree 1. By induction Y N X; N M™ # (, whence Y N M"™ # 0.
)

The previous lemmas have a prevalent technical flavour. The next lemma
is more substantial and will be used several times later in this section; it
ensures that, in an w-stable theory 7', for every definable X C Q" and
formula ¢(¥, @), the set of the tuples @ for which (2", @) N.X has the same
Morley rank as X is definable.

Lemma 7.5.4 Let T be an w-stable theory, A be a small subset of 2, n be
a positive integer, X be an A-definable subset of Q", « be the Morley rank
of X. Let (¥, @) be a formula of the language L of T (and n be the length
of U, m denote the length of @). Then both the sets of the tuples @ € Q™
satisfying

RM(p(Q"a@)NX) <a, RM(p(Q"a)NX)=a
respectively are A-definable.

Proof.  Tor every @ € Q™, RM(¢(Q",a@) N X) < o5 accordingly it is
sufficient to show that the former set - that of the tuples @ € Q™ such
that RM(p(Q",@) N X) < « is A-definable; for, the latter set is just its
complement. Moreover notice that any A-automorphism di €2 fixes the set
of the tuples @ € Q™ for which RM(p(Q2",d) N X) < «; consequently, if
this set is definable, then it is even A-definable, owing to Lemma 7.5.2.
In conclusion, it is enough to prove that the former set is definable. Now
look at the Morley degree d of X: X decomposes as the disjoint union of
d definable subsets, all having Morley rank o (and degree 1) X = ;4 X;.
Clearly, Vad € Q™,

RM(p(Q",d)NX)< a & Vi<d, RM(p(Q"d)NX;)<a.

Hence it suffices to show that, Vi < d, the set of the tuples @ € Q™ satisfying
RM(p(2",d@) N X;) < o is definable. In other words, we can also assume
d=1.

Now let us sketch the plan of the proof.

The first step will produce a finite subset D of X such that, for every @ € Q™,
if DNe(Q",ad) =0, then RM(p(Q",a)NX) < a.
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The second step will even prove that, for every @ € Q™ satisfying
RM ((Q2",d) N X) < a, there exists a finite subset D(@) such that D(a@) N
¢(Q",d) = 0 and, for @' € Q™ satisfying D(a@)Ne(Q™, L;’) =0, RM((R, )N
X)<a.

Assume momentarily these preliminary steps shown, and consider all the
finite sets D C X such that, Vd € Q™,

DNnp(Q",d) =0 = RM(e(Q"dNX)<a.

Let A denote the class of these sets (A may have the same power as Q).
Notice that, for every D € A, one can write a suitable formula ap (W)
(possibly with parameters) just stating “D N ¢(Q", @) = §”. Observe that
Upea ap(2™) is the set of the tuples @ € Q™ such that

RM(p(Q™,a)NX) < a.

In fact, if @ € Q™ satisfies ap (W) for some D € A, then DNy(Q",d@) = P and
hence RM (¢(Q2",d@) N X)) < a. Conversely, suppose RM (¢(Q", @) N X) < «
for @ € Q™ and look at the corresponding set D(&) (determined in the second
step); D(d@) is in A and satisfies D(a@) N p(Q", @) = 0, whence @ € ap(Q™).
So the third (and final) step of the proof will aim at showing that Upea ap(2™)
is definable. Actually, there is a subtle objection one might make with re-
spect to this claim. In fact, one might notice that Upeca ap(Q2™) joins |A|
many sets, and A may admit the same power as €2, and so have an uncount-
able inaccessible cardinality; accordingly our proof might require here some
hypotheses on inaccessible cardinals. However we can avoid any reference
to these deep set theoretic conditions by proceeding in the way we are going
to describe. Let ¥(7) be a formula defining X, fix an w-saturated model M
of T containing the parameters in (%), and rearrange the first two steps of
the proof as follows.
First step: there exists a finite subset D C ¥(M") such that, for every
aeQr,

DN d) =0 = RM(e(Q",d)NX) < a.
Otherwise, for every natural 4, one can find two tuples @; € Q™, b, € Q»
such that, for any ¢,j € N,

b; € 9(M™) (in particular, b; € M™),
RM(p(9%,@) 1 X) =

Q= (b, @) = j<i.
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Let us see how to introduce a;, b; for a given natural ¢. Suppose q;, b;
given for all j < ¢. Then D = {b; : j < i} is a finite subset of #(M™), and
consequently there is d; € Q™ for which

Vi<i, b;¢&p(Q" )

but

RM(p(Q",a)NX) = a.
As RM(X) = o and GM(X) = 1, RM(X N ;¢ ¢(Q",d5)) = . By
Lemma 7.5.3, as X is M-definable, therg is some element b; € M™ in X N
Nj<i (2", @) such that Vj < Q E ¢(b;, a;). This yields the tuples a;, b;
as required. But at this point it is easy to contradict the w-stability (indeed
the stability) of 7. In fact the formula ¢/ (7, @; o', @') : ~¢(¥, ') satisfies

Q | ¢ (b, 3 b, 63) < QI @(bi, d5) & < i
for every 7 and j in N, and so obeys the order property.

In the same way one shows the next step.

Second step: for every @ € Q™ for which RM (¢(Q",d) N X) < a, there is a
finite set D(@) contained in ¥(M") such that D(@) N e(Q", @) = 0 and, for
a' € Q™

D@ Ne@*,d)=0 = RM(pQ"d)NX)<a

It suffices to apply the same procedure as in the first step to 9(M™) —
(9", @) (and use the fact that X — ¢(2", @) has the same Morley rank and
degree as X).

At this point, just as said before, we can consider the set A of all the finite
subsets D C 9(M") such that, Vd € Q™,

Dne@*,a=0 = RM(p(Q"anX)<oa.

A has power < ||, and Upea @p(2™) (where, for every D € A, ap is
introduced as before, and hence is M-definable because D C M™) equals
the set of the tuples @ € Q™ for which RM{(p(Q",d) N X) < a. It remains
to show

Third step: Upea ap(2™) is definable.
To get this, first notice that what we have proved with respect to (¥, )
applies to —¢(7, W) as well. So the set of the tuples @ € Q™ satisfying
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RM(X — ¢(Q",d@)) < o, that is RM(¢(",d) N X) = a, decomposes as
a union of M-definable sets S5(22™) (where (G ranges over a suitable set
I'). Accordingly the formulas ap (@) with D € A and fg(%) with G € T
form an open covering of S,,(M). By compactness we can extract a finite
subcovering, and in particular we can find a finite subset Ag C A such that,
Vd € Q™,
RM(p(Q*@)NX)<a & d€ | ap(@m.
Delg

As Upea, @p(2™) is definable, we are done. &

At last we are in a position to show:

Theorem 7.5.5 Let T be an w-stable theory. Then every type p over a
small A C ) is A-definable.

Proof. Let 9(¥) be a formula of p having the same Morley rank and degree
as p. In particular, let o denote the rank of p. For every formula ¢(7, @) in
the language of T' and @ € A™ (where m is the length of ),

—

@(7,d) € p & H(0) Ap(¥,d) € p.

Moreover, if this is the case, then 9(¥) Ap(7, @) has the same Morley rank and
degree as p, and so RM (9(2") — o(Q",d)) < a. Conversely, RM (9(Q") —
p(2", @)) < o implies that 9(7) A ~p(¥, @) € p, that is 9(0) A (¥, @) € p. In
conclusion, for every formula (7, w) and @ € A™,

¢(V,a) € p & RM(I(Q") — (", @)) < a.
By Lemma 7.5.4, the tuples @ € Q™ satisfying
RM(3(Q") - ¢(@",8)) < a

(that is RM (9(Q2") N p(Q", @) = a) form an A-definable class. The L{A)-
formula do(w) defining this class is just what we are looking for. &

Another remarkable consequence of Lemma 7.5.4 is the following

Theorem 7.5.6 Let p be a type over any model M of an w-stable theory
T. Then p has Morley degree 1.

Proof.  Let 9(7) be a formula of p having the same Morley rank o and
the same Morley degree d as p. Accordingly there are d formulas #;(7, ;)
(¢ < d) with parameters & in 2 such that
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(it) 9:(Q", @) NP, (Q", ;) =0 for j < i< d,
(iti) RM(9(Q™) N9;(Q", ;) = a for every ¢ < d.

The class of the sequences #; in € satisfying (iii) for a given ¢ < d is M-
definable because ¥(%) has got its own parameters in M. Accordingly the
existence of some sequences o, ..., T4 satisfying (i), (ii) and (iii) can be
expressed by a suitable first order sentence with parameters in M. Conse-
quently these tuples &g, ...,Z4_1 can be chosen in M. Correspondingly we
can assume that, for every ¢ < d, 9(7, ;) is a formula with parameters in
M; so there is i < d such that 9(7,2;) € p, as V,;q 9(¥,%7) € p. I d > 1,
then (iii) implies RM (9(0) A9;(¥, €;)) = o for every j < d, j # ¢, and hence
GM(9(Q") N 9;(Q, 77)) < d. But this contradicts 9(7) A 9:(7, 2i) € p. So
d=1, as claimed. &

Now we turn our attention to simplicity. Our aim is to prove that w-stable
theories are simple. More specifically, we will show that, for an w-stable
theory T, the triples (&, B, A) such that @ is a tuple in ©, B 2 A are small
subsets of Q and RM (tp(@/A)) = RM (tp(@/B)) form a good independence
system of T. This confirms that T is simple, and proves also that, for @, A
and B as before, @ is independent of B over A @ |4 B if and only if tp(d/A)
has the same Morley rank as its extension tp(&@/B). Incidentally recall that,
for any @, A and B, tp(@/B) always includes ¢p(@/A), and consequently
RM (tp(@/B)) < RM (p(a/A)).

Theorem 7.5.7 Let T be an w-stable, and let I be the set of the triples
(@, B, A) where @ is a tuple in Q, A C B are small subsets of Q1 and
RM (tp(@/B)) = RM(tp(@/A)). Then I is a good independence system of
T.

Proof. We have to check that I satisfies the conditions (I1)-(I7) listed in
Section 7.2.

I1) is trivially true, as automorphisms preserve both Morley rank and Mor-
ley degree.

(12) Fix @, B, and pick a formula ¢(7) of ¢p(@/B) having the same Morley
rank (and degree) as tp(d@/B). Let A be the set of the parameters in ¢().
Then A is finite (hence countable) and ¢ (%) belongs to tp(@/A), whence the

Morley rank of tp(@/A) equals that of (%), and so that of tp(d@/B).
Before (I3), let us treat (I6).
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(I6) Fix A € B C C and @ Recall RM(tp(d/A)) > RM(tp(@/B)) >
RM (tp(d@/C)). Consequently RM (tp(@/A)) and RM (tp(@/C)) coincide if
and only if both these ranks equal RM (tp(@/B)).

(I3) Take A C B e @ If RM(tp(d@/A)) = RM(tp(d/B)), then we can
apply what we have just checked in (I6) and deduce RM (tp(@/A U b)) =
RM (tp(@/A)) for every b € B.

Conversely suppose RM (tp(@/A)) > RM (tp(@/B)). Choose a formula ¢(7, Z)
in tp(@/B) having the same Morley rank as tp(@/B). Look at tp(@/A U b):
this type includes ¢(7, b) and consequently has the same Morley rank as
tp(d@/B), and anyhow a Morley rank smaller than tp(a/A).

(14) Now we have to show that, for every choice of A C B and d, there is a
tuple a’ having the same type over A as @ and satisfying RM(tp(a’/A))
RM (tp(a ’/B)) In other words, we claim that every type p over A has
some extension ¢ in S (B) having the same Morley rank (to realize this, put
p = tp(a’/A) q = tp(a ’/B)). Let a be the Morley rank of p. Choose a
formula ¢(%) of p having the same Morley rank o and the same Morley
degree as p. We know that there do exist (finitely many) types ¢ in S(B)
containing ¢(¥) and having rank «; indeed the sum of their Morley degrees
equals the degree of ¢(#), and so the degree of p. It suffices to show that
the extensions of p in S(B) with rank a coincide with these types. Now it
is obvious that any extension of p contains ¢(7). On the other side, take
any type g over B containing (%) and having rank a. Pick #(%) € p, then
@(¥) A 9(¥) is also in p, and consequently has the same Morley rank and
degree as p. Accordingly the Morley rank of ¢(%) A —9(¥) is less than @ and
(%) A—9(7) cannot belong to p. So neither (%) is in p. As g is complete,
q includes 9(?). In conclusion p C q.

In particular observe that, if M is a model of T and B is a small subset of
Q including M, then every type p over M has a unique extension q over B
with the same Morley rank. In fact, as we saw before in this section, the
Morley degree of p is 1. This remark is useful to show (I7).

(I7) Let M be a model of T, B and B’ be two small sets including M.
Owing to the last observation, any type p over M has a unique extension
with the same Morley rank over any set extending M, in particular over B,
over B’ and over BU B’. A tuple realizing the last type (over B U B’) must
satisfy the only extension of p of the same rank both over B and over B'.

It remains to show (I5).

(I5) Let A be a small subset of €2, @ b be two sequences in 2. We have to
prove that RM (tp(d/A U b)) = RM(tp("/A)) implies RM(tp(b/A ua)) =
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RM (tp(E/A)) Let n, m denote the length of @, b respectively.

TFirst assume that A = M is the domain of an Ngp-saturated model of T'. Let
©(0) be a formula of tp(d/M) with the same Morley rank « as tp(@/M) (and
degree 1), and let 4(7) be a formula of tp(6/M) with the same Morley rank 3
as tp(b/M) (and degree 1). Suppose towards a contradiction RM (tp(b/M U
@)) < B. Then there is a formula x(7, @) € tp(d, I;/M) such that x(a, Q™)
has Morley rank < 5. Without loss of generality we can assume

Q E YOVE(x (T, @) = ¢(0) A p(D));

otherwise we replace x(¥, @) by its conjunction with ¢(7) A ¥ (w). The set
of the tuples ¢in Q for which RM (x(¢, Q™)) < B (equivalently RM (¢(Q2™)N
x(€, ")) < B) is M-definable because ¥ (Q™) is. Furthermore RM (x(a@, Q™))
< . Accordingly we can assume RM (x(¢, Q™)) < f for every tuple € in
such that x(¢,Q™) # 0 (just replace ¢(0) by ¢(0) A “RM (x(7, Q™)) <
37). It follows x(Q%,8) N M™ = {, otherwise, if a’ is any element in
this intersection, then RM (x(a’,Q™) > B as x(d/,@) € tp(l;/M) By
Lemma 7.5.3, RM (x (€2, b)) < RM(p(22")) = a because x(", ) C ("),
but X(Q”,b) N M" = . On the other side x(7,b) € tp(@/M U b), so
RM (tp(a/M U b)) < o = RM (tp(@/M)) (a contradiction).

Now let A be any small subset of . Let M be an Ng-saturated model
of T extending A. We can assume RM (tp(b/M)) = RM (tp(b/A)) and
RM (tp(a/M Ub)) = RM (tp(a/A U b)). In fact, if this is not the case, then
use (I4) and get a tuple b realizing tp(b/A) and satisfying RM (tp(b'/A)) =
RM(tp(b/A)) As b, b have the same type over A, there is an A-auto-
morphism f of € mapping b into b. Of course f(@) has the same type
over A as d. Now use again (I4) and replace f(@) by a tuple a having
the same type over A U b as f(&@) and satisfying RM (tp(a’/M U F)) =
RM (tp(@/AUW)). As before, there is an automorphism g of € fixing A U ¥
pointwise and mapping f(@) into a. So gf is an A-automorphism sending
@ into ¢’ and b into &. Owing to (1), if @’ and ¥ satisfy our claim, then
the same holds for @ and . In conclusion, we can assume RM (tp(b/M)) =
RM (tp(b/A)) and RM (ip(@/MUb)) = RM (tp(@/AUb)), as said before. Now
recall what our hypothesis says, that is RM (tp(@/A U b)) = RM (tp(@/A)).
Furthermore RM (tp(@/M U b)) = RM (tp(@/A U b)). Hence RM (tp(@/M U
b)) = RM(tp(@/A)) and consequently RM (tp(@/M U b)) = RM (tp(@/M)).
Owing to what we showed before when dealing with an Rp-saturated model,
RM (tp(b/M U @) = RM(tp(b/M)). As RM(ip(5/M)) = RM (tp(b/A)),
it follows RM (tp(b/M U @)) = RM (tp(b/A)), whence RM (tp(b/A U @)) =
RM (tp(b/A)). This accomplishes the proof of (I5) and the whole theorem.
&
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At this point we can also check (I8) and confirm once again in this way
that an w-stable theory T is stable. Indeed, given any type p over a small
A C Qand B D A, the number of non-forking extensions of p in S(B)
cannot exceed the Morley degree of p, and so is anyhow finite. So, when
A is the domain of some model of T, (I8) is just a rephrasing of Theorem
7.5.6: in fact, the Morley degree of p is 1 in this case.

At this point, it is immediate to deduce also that w-stability implies super-
stability.

Corollary 7.5.8 An w-stable theory T is superstable.
Proof. T is stable, and the set A in (12) is finite. &

Now we want to discuss in our w-stable setting the concepts of heir and
coheir introduced in Section 7.3, and to show their equivalence with the
notion of non-forking extension. Let us recall briefly how heir and coheir
are defined. First we fix our framework: 7 is a(n w-stable) theory, M is a
model of T', B is a small subset of  including M, n is a positive integer, p
is an n-type over M and ¢ is an extension of p in S, (B). In this setting

—

e g is an heir of p if and only if, for every formula 9(7, b) € ¢, there exists
a tuple @ in M such that 9(7,d) € p,

-

e ¢is a coheir of pif and only if, for every formula 9(7, b) € ¢, 9(M™, 5) #
0.

We are going to show the equalities heir = coheir = non-forking extension
among the types over a small set B extending a given type p over a model
M of T'. First let us recall what we showed before in this section, namely
that a type p over any small set A is A-definable and so, for every L-formula
J(7, @), finds an L(A)-formula d¥(w) such that a tuple @ in A satisfies d¥(w)
if and only if ¥(7, @) € p; indeed, if ¢(?) is a formula of p with the same
Morley rank and degree as p, then dd(w) defines the set of all tuples @ in
A for which RM (p(0) A =9(7, @)) < RM(p). But now, after seeing how
independence in T is characterized (by the Morley rank), we can say even
more. In fact, suppose that A = M is the domain of some model M of T
and let B be a small set including M. Then p (and ¢(7)) have Morley degree
1, and so there is a unique non-forking extension ¢ of p over B, and ¢(%)
is a formula of ¢ having its Morley rank and degree. Accordingly, for every

-,

L-formula 9(¥, &), the L(M)-formula dd(w) still satisfies 2 E di(b) &
(¥, b) € g for every bin B.
Now we can state our theorem (we are still keeping here the notation intro-

duced a few lines ago).



7.5. w-STABLE THEORIES 253

Theorem 7.5.9 The following propositions are equivalent:
(i) ¢ does not fork over A;
(i) ¢ is an heir of p;
(ili) g is a coheir of p.

In particular the heir (and coheir) of p over B is unique.

Proof. Let ¢ € S(B) be a non-forking extension of p. As already underlined,
¢ is unique as p has Morley degree 1, and, for every L-formula (%, &), there
is an L(M)-formula d¥(w) such that, for every b in B,

-

9(7,b) € ¢ & Q= dd(b)

(and, for every @ in M, ¥(v,d) € p if and only if M [= d¥(@)). So suppose
that, for some b in €, 19(1) b) € ¢. Then Q = 3w d#(w), and consequently
M |: 3w d6 (W) because df(w) is an L(M)-formula. Let @ € M satisfy

M |= db(d), then Y(¥, @) is in p and in ¢. So ¢ is an heir of p. Now suppose
that ¢’ € S(B) is another heir of p. There are a formula 9(¥, @) in L and a
tuple b in B such that 9(7,b) € ¢ — ¢'; in particular Q |= d¥(b), and hence

—9(7, a') A dd(a’) € p

So M = dﬂ(c?), while (7, @) ¢ p: this is a contradiction. It follows that q
is the only heir of p in S(B). This implies that (i) and (ii) are equivalent.
Now we check (ii) <> (iii). First suppose B — M finite; let b list the elements
of B — M, and let d realize q. Observe that

tp(@/M U b) is an heir of tp(@/M)
if and only if

for every L(M)-formula (%, @) satisfying Q |= (@, b), there exists 1 € M
such that Q = ¢(a@, m)

and hence if and only if
tp(b/M U @) is a coheir of tp(b/M).

So the equivalence (i) < _(ii) and (I5) imply that tp(a/M U b) is an heir of
tp(d/M) if and only if tp(b/MUa) is a coheir of tp(b/M) This establishes the
equivalence of (ii) and (iii) when B — M is finite. To extend this conclusion
to the general setting, it suffices to observe that ¢ is an heir (a coheir) of p
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if and only if, for every finite subset By of B, the restriction of p to M U By
is an heir (a coheir respectively) of p. &

At this point we can complete what we observed in 6.2 about the connected
component of an w-stable group.

Theorem 7.5.10 Let G be an w-stable group. Then the connected compo-
nent G° of G has Morley degree 1.

Proof. Take two types p, ¢ over G having the same Morley rank as G and
containing the formula ¢°(v) defining G°. Let 2 = p, y = ¢, z lg y (namely
RM (tp(z/G)) = RM (tp(z/G U {y}))). For every formula ¢(v, w) and @ in
G, ¢(v,d) € tp(yz/G U {y}) if and only if p(yv,a) € tp(z/G U {y}) (or also
©%(y) A p(yv,d) € tp(x/GU {y})). As tp(z/G U {y}) is the heir of tp(z/G),
there is some b € G° = ©°(G) such that ¢(bv,d) € tp(z/G) = p. As G is
the left stabilizer of p, (v, @) € p. Hence the type of yz over GG coincides
with p. But just inverting the roles of  and y one deduces in the same way
that yz realizes ¢. Sop=¢q. &

As said before, w-stability implies superstability. Recall that, roughly speak-
ing, the superstable theories T are those ensuring that every proper elemen-
tary extension M < N, M # N between models of T realizes some regular
type over M; and the regular types are just the non-algebraic types p over
M such that J4 satisfies (D3), and consequently (D1) - (D4), in p(£2).

Our aim is to examine closerly these matters in the w-stable framework,
where an elegant approach proposed by Lascar allows a simpler treatment.
Indeed stronger tools are available in the restricted w-stable setting; for
instance, we will use over and over again (existence and uniqueness of)
prime models over subsets below: this is a feature of w-stable theories which
may fail in arbitrary superstable theories. Accordingly fix an w-stable T’
and a model M of T; we wish to examine types over M. By the way, let
us introduce the following notation: for X a small subset of Q, let M(X)
denote the model of 7" prime over M U X; when X is the domain of some
finite tuple @, we write M (&) instead of M(X); notice that, if @ and a' have
the same type over M, then M(@) and M(t;') are isomorphic by a function
fixing M pointwise and mapping @ into a ; in other words, the isomorphism
type of M (&) over M does not depend directly on @, but on the type of @
over M.

What we first need in our analysis is a criterion comparing types p and ¢
over M, and measuring whether realizing p is easier or harder than realizing
g. This is provided by the so called Rudin-Keisler relation >pgrg (although it
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was Lascar who introduced this notion, faintly inspired by a Rudin-Keisler
order relation concerning ultrafilters). Here is its definition.

Definition 7.5.11 Let p and ¢ in S(M). We put p >Rk q if and only if,
for every tuple d satisfying p, the model M (&) prime over M U @ contains
some realization b of q, and we put p ~rk q if and only if p >px ¢ and

¢ ZRK P-

Notice that, owing to what we said about M (&) before, we could equivalently
write “for some @” instead of “for every @” in this definition.

>Rk is a preorder relation: it is reflexive and transitive, but it is not an-
tisymmetric. So ~pgg is an equivalence relation and >pgx determines an
order relation in the quotient set S(M)/ ~rx among ~pgg-classes of types.
Roughly speaking, p >rx ¢ means that, wherever p is realized, ¢ is realized
as well; and consequently p ~grx ¢ says that p and ¢ are realized by the
same models extending M.

It is also clear that the types over M minimal with respect to > gy are the
algebraic ones, as they are already satisfied in M. But they do not interest
us, so let us exclude them and call a type p over M RK-minimal when it is
minimal with respect to >px among non-algebraic types.

Definition 7.5.12 A non-algebraic type p € S(M) is RK-minimal if it is
~RK -equivalent to every non-algebraic type ¢ over M such that p >gx p.

Notice that every RK-minimal type p is ~gg-equivalent to some 1-type. In
fact take @ = p; as p is not algebraic, there exists some a in @ out of M;
then tp(a/M) is not algebraic and tp(a/M) <gg p, whence tp(a/M) ~gx p
by RK-minimality.

There is another relevant relation between types arising in this setting, and
closely connected with ~pg; it is called orthogonality and is defined as
follows.

Definition 7.5.13 Let p and q in S(M). We say that p is orthogonal to
g and we write p L q if and only if, for every dl=p and bl=q, @ Ly b.

Notice that L is symmetric. Roughly speaking, p L ¢ means that realizing
p and realizing ¢ are “independent” facts. Here are some simple examples
concerning >rk, ~ri and L.

Examples 7.5.14 1. Let K be an algebraically closed field. Recall that
there is a unique non-algebraic 1-type over K, that of the transcen-
dental elements over K. More generally look at arbitrary types p and
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gover K. Let @ |= p and b |= ¢ (where @, b may have different lengths).
Then p <gk ¢ if and only if the transcendence degree of K(&@) over
K is not smaller than the transcendence degree of IC(I_;) over K, and
p ~rk ¢ if and only if these transcendence degrees coincide. In partic-
ular the Rudin-Keisler relation determines a total order in the quotient
set S(K)/ ~grKk, and the unique non-algebraic 1-type over K is the

only RK-minimal type (up to ~gg).

Notice that the same analysis can be repeated in any strongly minimal
structure M (with respect to the acl dependence relation): for p,
q€S(M),d k= pand E|: g, p <grk ¢ if and only if the dimension of @
over M is not smaller than the dimension of b over M, and p ~pk qif
and only if these dimensions coincide. So the Rudin-Keisler order in
S(M)/ ~gK is still linear, and the only RK-minimal class if that of
the unique non-algebraic 1-type over M.

2. Take the theory T of an equivalence relation F with infinitely many
infinite classes (and no finite class). T is complete (why?). Let us de-
scribe the non-algebraic 1-types over a model M = (M, E) of T. First,
for every a € M, we have to consider the 1-type p, of a new element
in the E-class of a; moreover there is another 1-type ¢, concerning
the elements in a new F-class; no further 1-type arises. In particular
|S1(M)| = |M|, and T is w-stable. Notice also that, for every type p
listed before and z |~ p, the domain of M () is just MU{z} (MUz/E
with a countable z/F in the case of ¢). Accordingly these types are
pairwise ~pgg-inequivalent and RK-minimal. Notice also that they
are pairwise orthogonal.

Now let us introduce strongly regular types. As we will see below, they can
reasonably replace regular types in the w-stable framework. M still denotes
a model of a countable w-stable theory T'.

Definition 7.5.15 A 1-type p over M is called strongly regular if p is
not algebraic and there is some formula p(v) € p such that, for every a = p
and b € M(a) — M, b |=p if and only if = ¢(b).

Notice that, owing to what we observed before about M (a), we could say
“for some a = p” instead of “for every a = p” in this definition. Now let us
propose some examples.

Examples 7.5.16 1. The only non-algebraic 1-type over an algebraically
closed field, or also over an arbitrary strongly minimal structure, is
strongly regular: v = v works as ¢(v).



7.5. w-STABLE THEORIES 257

2. Take a structure (M, E) where F is an equivalence relation with in-
finitely many infinite classes and no finite class, as in Example 7.5.13,
2. Each type listed in 7.5.13, 2 is strongly regular, p, because of F(v, a)
and ¢ because of v = v.

The basic fact about strongly regular types is:

Theorem 7.5.17 Let T be w-stable, M and N be models of T such that
M is an elementary substructure of N and M # N. Then there is some
a € N — M for which tp(a/M) is strongly regular.

Proof. Let a € N — M be such that p = tp(a/M) has a minimal Morley
rank, and let the formula ¢(v) isolate p among the types of the same Morley
rank in S1(M); in particular ¢(v) has the same Morley rank as p. We claim
that o(v) makes p strongly regular. In fact ¢(v) € p. Furthermore, let
b € o(M(a)) — M; owing to the choice of a, RM (tp(b/M)) > RM (tp(a/M));
as @(v) € tp(b/M), RM(tp(b/M)) = RM (tp(a/M)) and even tp(b/M) =
tp(a/M). &

Corollary 7.5.18 For every non-algebraic ¢ € S(M) there is some strongly
regular type p € S1(M) for which p <gk q. In particular every RK-minimal
q 18 ~pK -equivalent to some strongly regular p.

Proof. Let b = q. As ¢ is not algebraic, M(g) properly extends M. So
apply the previous theorem and gets some strongly regular p realized in

M(b): p<rxq- &
On the other side
Theorem 7.5.19 FEvery strongly regular p € S;(M) is RK-minimal.

Proof. This needs a more laborious approach, and some preliminary steps
which perhaps have their own intrinsic interest. First let us fix our setting.
There is some L{M)-formula ¢(v) witnessing that p is strongly regular. We
take a non-algebraic ¢ € S(M) satisfying ¢ <px p and we have to show
that ¢ ~ri p. There is no loss of generality in assuming ¢ € S1(M). Given
a = p, there is some b € M(a) — M realizing g. It is an easy exercise to
realize that b Y3 M (a) (just compare the Morley rank of the types of b over
M (a) and over M). The first preliminary step states that actually b Jum a.
In fact we have:

Step 1. Let a ¢ M, b {pr a. Then b |p M(a).
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Notice that we do not use here the hypothesis that p is strongly regular.
What we want to show is that ¢p(b/M(a)) does not fork over M, more
precisely is the heir of ¢p(b/M). Accordingly take a formula x(v, ¢) in
tp(b/M(a)) with parameters ¢'in M(a). The type of € over M U {a} is iso-
lated, say by (@, a). We claim that n(w, a) isolates tp(¢/MU{a, b}) as well.
Otherwise there is some tuple ¢ such that = 5(¢, a) but tp(¢/MU{a, b}) #
tp(c’/M U {a, b}), and so there exists some formula (@, a, b) (possibly
with further parameters from M) for which |= (¢ a, b) A A = (c, a, b).
Consequently 3@3w’ (n(w@, v) A n(w!, v) A P (W@, v, b) A —m/;(u?’, v, b)) is in
tp(a/M U {b}). As a |p b and so tp(a/M U {b}) is the heir of tp(a/M),
there is some m € M satisfying

3T’ (1(F, v) A n(w', v) AP(F, v, m) A=W, v, m)) € tp(a/M);

but this gives a contradiction because 7(w, a) isolates a single type over
M U {a}. Accordingly n(w, a) isolates the type of ¢ also over M U {a, b}.
This type contains x(b, @), so

Vi (n(@, @) — x(v, @) A Jun(d, a) € tp(b/M U {a}),

whence, as before, x(v, m) € tp(b/M) for some 7 in M. In conclusion,
tp(b/M(a)) is the heir of tp(b/M), as claimed.

The second preliminary step- proves:

Step 2. p(M(b)) # p(M).

Otherwise a |apr b, which contradicts the previous conclusion. In fact, let
f(v, a) be a formula in tp(b/M U {a}). As b € M(a), M(a) = 6(b, a), and
consequently M (a) = Jw(8(b, w) A ¢(w)) (a sentence with parameters in
M U {b}). As M(b) is an elementary substructure of M/(a), even M (b)
satisfies this sentence. So |= (b, ¢) for some ¢ € p(M(b)) C M. Hence
6(v, c) € tp(b/M). In conclusion, tp(b/M U {a}) is the heir of tp(b/M).

Now we can conclude our proof. Let d € (M (b)) — M; so d € p(M(a)) as
well, and consequently tp(d/M) equals p. As d € M(b), p <rk q, whence
P~RK q- %

Using more or less the same technical premises one shows also the following
notable characterization of ~gx within RK-minimal types.

Theorem 7.5.20 Two RK-minimal types over M are ~pgg-equivalent if
and only if they are orthogonal.
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We omit the details. There are other relevant things to underline about
strongly regular types. First of all, strongly regular types are regular as
well: checking this requires the same ingredients as in the last theorem and
some equivalent characterizations of both the involved notions. Again, we
omit a full treatment of this point (this section is going to be quite long, and
actually we already proved about strongly regular types what we will need
in the rest of the chapter). However, it is worthy pointing out that there do
exist even in the w-stable setting some regular types which are not strongly
regular (and indeed are not ~pgg-equivalent to any strongly regular type).

There is another point in this framework deserving a few words. In fact,
<prk (and consequently ~gk) as well L are preserved under passing from
types p, ¢ over a model M of an w-stable theory T to their non-forking
extensions over some elementary extension M': p <gpk ¢, p ~rK ¢, p L ¢ if
and only if p|M' <grgk q|M', p|M' ~gK q|M’, p|M' L ¢|M’ respectively. The
same can be said about RK-minimality. With respect to strongly regular
types, one sees that, if M < M’  p is a 1-type over M and ¢(v) is an
L(M)-formula making p strongly regular, then the same formula makes p|AM’
strongly regular as well.

The last matter we want to deal with in this section still concerns non-
forking extensions and w-stable theories. It is a theorem (actually valid
even for stable theories) which will turn out to be a useful tool in the proof
of Shelah’s Uniqueness Theorem in Section 7.7. It is generally called the
Open Mapping Theorem, a name clearly evoking topology; of course, the
topological spaces we are concerned with are the Boolean spaces of types
over small subsets of Q. In particular, we consider two small subsets A C B
in an w-stable theory T, and we look at the spaces S(A4) and S(B). It is
easy to realize that the restriction map r from S(B) in S(A), sending every
type g over B into its restriction to A (so into the set of the L(A)-formulas
of q) is continuous and surjective: continuity follows from the trivial remark
that L(A) C L(B), hence L(A)-formulas are L(B)-formulas as well, and any
open set in S(A) can be regarded as the image under r of some open set in
S (B); surjectivity is obvious.

Now consider the set of the types ¢ over B that do not fork over A. Let
N(B, A) denote this set. First notice

Proposition 7.5.21 N(B, A) is a closed subset of S(B).

Proof. The claim is obvious when A is the domain of some model A of
T. In fact we know that, for every ¢ € S(B), ¢ € N(B, A) if and only if
q is the coheir of its restriction to A, and it is easy to realize that the last
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condition just ensures that ¢ is in the closure of the set of the types over B
of the tuples in A. Accordingly N (B, A) equals this closed set.

Now let A be any subset of B. Use extension (I3) and compactness, and
build a model M of T' independent of B over A. Notice that every type
in N(B, A) has a non-forking extension over BU M, and so by transitivity
enlarges to some type in N(B U M, A), which, again by transitivity, lies
also in N(B U M, M). On the other hand, every type ¢ € N(BU M, M)
restricts to a type in N(B, A). In fact, let € realize ¢, hence let & |5 B.
Use symmetry and deduce B |py M UC. As B |4 M, transitivity yields
B |4 M UC and consequently B |4 AU ¢ Use symmetry and deduce
¢ la B, in other words that the type of ¢ does not fork over A, as claimed.
Then the restriction map from S(B U M) onto S(B) - a continuos function
between compact spaces - sends N(B U M, M) just onto N(B, A). As the
former set is closed, its image is, too. &

Now we are in a position to prove the Open Mapping Theorem.

Theorem 7.5.22 Let A C B be small sets, r denote the restriction map
from N (B, A) onto S(A). Then r is open. In other words, for every L(B)-
formula (V) there is an L(A)-formula §'(¥) such that a type q over B non-
Jorking over A contains 6(7) if and only its restriction to A includes ¢' (7).

Proof.  There is no loss of generality in replacing B by a model M of
T elementarily including B and saturated in some power > |A|. In fact,
let ', 7 denote the restriction maps from N (M, A) onto S(A) and from
N(M, A) in S(B) respectively; it is an easy exercise to check that the latter
function maps N(M, A) onto N (B, A) and that r’ is just the composition
of " and r. Consequently, if ' is open, then r is, as 7 is continuous. Hence
we can replace B by M, as claimed; accordingly, let r denote from now
on the restriction map from N (M, A) onto S(A). Let U be an open set of
N(M, A). We can assume that U is the set of the types over M which do
not fork over A and include a given formula ¢(7, b) with parameters b from
M. We have to show that r(U) is open. Let U, denote r~r(U) (so the set of
the types ¢ € N(M, A) having the same restriction to A as some type in U);
elementary topology ensures that it suffices to prove that Uy is open: in fact,
in this case, the complement U, of U is closed, as well as its image r(U.) =
(r(U))’ because r is closed; whence r(U) is open, as claimed. To show that
U, is open, first observe that U, equals | J,{q € N(M, A) : ¢(7, g(b )) € q}
where g ranges over the automorphisms of M fixing A pointwise. D is
clear. In fact, for ¢(7, g(g)) € ¢, o(7, b) € g71(q), and the last type 97 1(q)
does not fork over A as non-forking is preserved under automorphism; hence
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g7 1(q) € U, and so, as ¢ and g~'(g) have the same restriction to A4, ¢ € U,.
Now let us deal with the other implication. Let ¢ € U,, hence there is some
type p € U such that p and ¢ have the same restriction to A. For every
formula x(@) of tp(b/A), »(v, l;) A X(I;) is in p; as p does not fork over A,
there is some tuple @ in A for which (7, @) A x(&@) occurs in the restriction
of p to A and consequently in ¢. Recall that ¢ € S(M) is definable, whence
there is some L(M)-formula “p(¥, @) € ¢” defining the tuples ¢ such that

(0, €) € q. Accordingly the set of L(M)-formulas
{“p(5, @) € ¢’} Utp(b/A)

determines a (possibly incomplete) type over M. As M is saturated in some
power > |A|, we can even find a tuple ¢ in M realizing these formulas; in
particular ¢(v, &) € q. Enlarge the identity map of A by b — ¢, and get an
automorphism g of M such that ¢(7, g(g)) € q, as required. &

7.6 Classifiable theories

We continue and conclude in this section our outline of Shelah’s classification
program. T still denotes a complete first order theory with infinite models
in a countable language L, Q a big saturated model of T. As unsuperstable
theories have too many models and are not classifiable, we should assume T
superstable. However, to simplify our exposition, we will even assume T w-
stable, and we will treat in detail this restricted framework. In fact w-stable
theories are superstable as well (but not conversely) and enjoy some stronger
properties (such as existence and uniqueness of prime models) making them
more tractable.

To introduce our next steps, let us refer once again to strongly minimal
theories, and even to the more particular case when T = ACF, for a given
p = 0 or prime. Recall Steinitz’s analysis of an algebraically closed field K
of characteristic p: given

e the prime subfield K.~ of K,
e a transcendence basis B of K (over K<),

K is fully determined up to isomorphism as the algebraic closure of the
extension of K« by B, which in its turn depends only on the cardinality of
B (the transcendence degree of K). This provides a quite satisfactory answer
to our classification purposes. But, in view of a possible generalization, we
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have to be very careful in weighing the specific advantages of the particular
algebraically closed (or also strongly minimal) setting and in checking which
of them can be extended to a broader framework. Above all, we have to
recall that over K. (as well as over any subfield of K) there is a unique
non-algebraic 1-type, that of transcendental elements; by the way, this type
is strongly regular.

Now take any w-stable T and a model M of T. Keeping the previous example
in mind, we examine the structure of M. M (elementarily) includes the
model M+, of T prime over (). To construct M upon M, look at the non-
algebraic 1-types over M realized in M. Unlike the example of fields, in
this general setting we should expect to meet quite a lot of types; however we
can restrict our attention to the RK-minimal ones, partition them according
to the equivalence relation ~gy and choose a strongly regular representative
in each ~pi-class. Incidentally recall that the resulting types are pairwise
orthogonal. At this point take a maximal independent set of realizations
for each of these types, glue these sets, form their union X and the model
M~ (X) prime over Mcs U X in M. If this model equals M (just as in
algebraically closed fields), then we are done: the isomorphism type of M
should be given by the sizes of the independent sets of realizations of the
involved strongly regular types. But it may happen that, given a strongly
regular type over M. rtealized in M, say by a, after forming the model
M (a) of T prime over M5 U{a}, one meets some new non-algebraic types
over M.~ (a) which are orthogonal to any type over M. and are realized
in M (as the next Example 7.6.1 will show). One sees that this excludes
M = M5 (X). Accordingly we have to repeat the previous machinery
over and over again until M is reached (provided that M can be eventually
reached).

Example 7.6.1 Let T be the theory of a l-ary function f such that each
element has infinitely many preimages via f, there is an element 0 for which
f(0) = 0 and no a # 0 satisfies f™(a) = a for any positive integer n. The
reader may check that T is complete: we do not wish to linger over this point
and we prefer to describe in detail the non-algebraic 1-types over a model M
of T. In this setting, first we have to consider, for any positive integer n and
a € M, the type pa(n, a) of an element satisfying f*(v) = a, (" w) =
b) for every b € M. In addition there is a type g determined by the
formulas —(f™(v) = a) for any @ € M and positive integer n. No further
1-type arises. In particular S;(M) is countable when M is, and so T' is
w-stable. Incidentally notice that the set theoretic union of two models of
T is again a model of T'.
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Now observe that all the 1-types mentioned above are strongly regular.
Let us check this. First consider pap(m,a) for a € M, n a positive inte-
ger. Let z = pm(n,a). To form M(z), one takes M, and one adds first
z, f(z),..., f*"1(z), and then Ry preimages for each of them, and for every
preimage, and so on. Consequently the only elements of M(z) — M realizing
pm(n,a) are those satisfying the formula f*(v) = a. This confirms that
pm(n,a) is strongly regular. Now look at & |= gum. This time, to form
M(z) we take M and we add f"(z) for every positive integer n, and then
R, preimages for each of them, and for every preimage, and so on. All these
elements satisfy gaq, and so the points of M (z) — M realizing gaq are exactly
those satisfying, for instance, v = v. So also g is strongly regular.

Now take an R;-saturated model M of T. M (the model prime over
() is an elementary substructure of M up to isomorphism. As M is
countable, M contains a realization z of par, (1, a) for every a € M. Also
M' = M~ () is an elementary substructure of M. Now consider pa (1, z),
which is a strongly regular type, and again can be realized in M because
M is N;-saturated and M’ is countable. Furthermore pa (1, z) is orthogo-
nal (equivalently is not ~pg-equivalent) to any non-algebraic 1-type p over
M ; in other words paq (1, z) L p|ar. In fact, if p = pam, (n, @) for some
a’ € M. and positive integer n, then one easily observes p|ar = patr(n, @),
while, if p = gm.., then plar = garr. In any case, p|as is strongly regu-
lar. To conclude paq(1,2) L plag, We can equivalently check plar #ri
par(1, ), which is easily proved, as, for every y | pa(1,2), M'(y) con-
tains no realization of p|r (and conversely). In conclusion there exist some
strongly regular types over M’ realized in M but orthogonal to the non-
algebraic types over M. Moreover this procedure can be repeated as
many times as you like (after realizing pap(1,2) by y in M, one can form

Par(y) (1, ), and so on).

Let us come back to our general analysis. We wonder under which conditions
any model M of our arbitrary w-stable theory T can be reached at the top
of the construction described before. To clarify this point we have to make
our framework more precise. So let us first recall what follows.

Definition 7.6.2 For any non-zero ordinal A, let A<“ denote the set of the
finite ordered sequences of elements of A\. A\<“ is partially ordered by the
relation < according to which, for s,t € A<%, s < t if and only if s is an
initial segment of t. A< has a least element in < (the empty sequence <>);
every s € A<¥ different from <> has a (unique) predecessor (a grealest
element < s), which will be denoted by s™; s is called a successor of s™.
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A tree of A<“ is a downward closed subset C: if s€ C,t € A<¥ and t < s,
then t € C' as well.

The following definition describes in detail the models M which can be built
in the way sketched before: they are exactly those having a presentation of
the form we are going to explain.

Definition 7.6.3 Let M be a model of T of power A > Ry. A presentation
of M is a pair (C, (M, a,) : s € C)) such that C is a tree of \<¥, for every
s€C M, is a model of T and a5 € M,, and:

(i) Mcs is prime over §;

(ii) if s,t € C and s = t7, then My = M, (a;) and p; = tp(as/M;) is
strongly reqular;

(iii) if s,t,t' € C and s =t~ =t'~, then either p; = py or p; L py;

(iv) for every s € C, (a; : t € C,t~ = s) is independent over Mj,
namely, for every t € C such that t~ = s, a; {up, {ap : t' € C,t' #
t,t'™ = s};

(v) ifs,t € C and s =17, then p; is orthogonal to all the non-algebraic
types over My;

(vi) M is prime over J,co Ms.

Of course we are interested in those theories T' such that every model gets
such a presentation.

Definition 7.6.4 An w-stable theory T is called presentable when, for all
models Mg, My, My and M of T such that

e Mg is an elementary substructure of both My and Ma,

o My \m, M, (in other words di {a, My for every ay € My, or, equiv-
alently, a3 La, My for every a3 in M),

o M is prime over My U Mo,

for every non-algebraic type p € S(M) there exists some type over My or
over Mgy that is not orthogonal to p.

Presentability is a new dichotomy within the classification problem. In fact,
on the one side, one shows:
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Theorem 7.6.5 (Shelah) If T' is an w-stable theory and T is not pre-
sentable, then I(T,\) = 2* for every uncountable cardinal \. In particular,
T is not classificable.

On the other hand

Theorem 7.6.6 (Shelah) If T' is w-stable and presentable, then every un-
countable model M of T has a presentation.

A model M may admit several presentations. Actually there is a “quasi
uniqueness” theorem stating under which conditions two “different” pre-
sentations yield isomorphic models; but it is impossible to discuss it here
shortly, so we omit its treatment, and we conclude our report about pre-
sentability and presentations by proposing some examples and, in particular,
an w-stable theory which is not presentable.

Examples 7.6.7 1. Let T be the theory of two equivalence relations
E,, F; such that any Ej-class and any E>-class share infinitely many
common elements. One checks that T’ is complete. Here are the non-
algebraic 1-types over a model M of T

e for a € M, the formulas F;(v,a), F2(v,a) and =(v = b) for all
b € M determine a type pa(a);

o for a € M and 7 = 1,2, the formulas F;(v,a) and ~E3_;(v, b) for
all b € M give a new type pa(a,i);

e finally there is a type gas determined by the formulas —F; (v, b)
and —F3(v,bd) for all b € M.

In particular, if M is countable, then S; (M) is. Hence T is w-stable.
Moreover it is straightforward to check that all the types listed above
are strongly regular and, for all a € M, paq(a, 1) L pa(a,2). Now fix
a model Mg of T and a € My. For i = 1, 2, let z; realize ppa,(a,?)
and M; denote Mo(z;): so M, is built by taking My and adding
a new Fj3_;-class (the class of z;) having countably many common
elements with any F;-class in Mgp. One can see that both AM; and M,
are elementary extensions of My; furthermore pat(a,1) L pa(a,2)
implies =1 lam, 22, whence M; |ar, M2 (see the proof of Theorem
7.5.19). Now form the model M of T prime over M; U My; M is
obtained just by adding countably many elements to M; U My in the
intersection between the Es-class of z; and the Ej-class of z3. Let
z be an element in this intersection, and consider p = pap(z): p is
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a non-algebraic type over M, and one can check that p is orthogonal
(equivalently, is not ~gx-equivalent) to any type over M; or M;. So
T is not presentable.

Let us also check that, for every uncountable cardinal A, I(T, \) just
equals 2*. In fact take the disjoint union I of two sets I; and I of
power \; let R be an irreflexive symmetric binary relation in I such
that, if s;, s € I and (s1, s2) € R, then s; € I) and s, € I, or
conversely (so (I, R) is a bipartite graph). Now build a model Mg
of T where the F;-classes correspond to the elements of I; for every
i =1, 2 and, for every Ej-class X; and Ej-class Xy,

IXiNXa|=X if (Xi,X2)€R

and
[X1N Xo| =Ry otherwise.

It is clear that Mg has power A for every R. Furthermore, for R # R/,
Mg % Mg So I(T,)) > 2" and consequently I(T,\) = 2*: in fact,
there exist 2* many relations R as before.

On the contrary the theory T in Example 7.6.1 is presentable. In fact
take three models Mg, M;, M3 of T such that M is an elementary
substructure of both M; and Mgy and M; lp, Mo. We observed that
M; U M is the domain of a model M of T extending M; and Mag;
of course, M is prime over M; U M,. Let p be a non-algebraic type
over M (and keep the same notation as in 7.6.1). If p = pa(n, a) for
some a € M and some positive integer n, then p ~rr pm,;(n, a) where
i =1, 2 satisfies a € M;. If p = qum, then p is ~gg-equivalent to both
gm, and gaq,. So T is presentable, as claimed.

Nevertheless T is not classifiable, as it has 2 many pairwise non iso-
morphic models in every uncountable power A. Let us see why. Indeed,
for every A, we can build 2* non isomorphic models satisfying the fur-
ther assumption

for every a € M and for some natural n f"(a) = 0.

Notice that such a model M can be viewed as a tree of A<¥ with
respect to the relation < defined as follows: Va,b € M, a < b if and
only if f™(b) = a for some natural n; in particular ¢ = b~ if and
only if f(b) = @, and < >= 0. The isomorphism class of M clearly
determines the isomorphism type of (M, <) as a tree. Moreover every
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point in (M, <) has infinitely many successors, and |M| = A. So it
suffices to show that there exist 2" pairwise non isomorphic trees of
A< satisfying the last additional properties.

Associate a tree C'(v) of A< with any ordinal v < X as follows.

(a) First let » = 0: in C'(0) the root <> has X successors, while any
further vertex has Ny successors.

(b) Now let v = p+ 1: in C(v) <> has Ny successors, and each of
them is the root of a tree isomorphic to C'(u).

(c) Finally let v be a limit ordinal: in C'(v), <> has a successor s,
for every u < v, and s, is the root of a tree isomorphic to C(u).

At this point, let us build for every S C A a tree C(S) of A<% as
follows: < > has a successor s, for every v < A and, for every v < A,
s, is in its turn the root of a tree isomorphic to C'(v) if v € S and to
w<¥ otherwise. It is clear that |C(S)| = A for every S D X and that
different subsets S # S’ yield non isomorphic trees C(S) % C(5).

At this point one may wonder what is so wrong in the last example to exclude
any classification of models. More generally one may ask why a presentable
theory may be non-classifiable. Recall that, if T is presentable, then any
uncountable model M of T has a presentation, whose “skeleton” is a tree C
of |M|<¥. Of course this is a good feature towards a general classification of
models. But the point is that some involved tree might be non well founded.
Let us recall what this means.

Let C be any tree (say in A<“). One associates with any point s in C a rank
r(s) (an ordinal, or co) in the following way. First we define r(s) > « for
any ordinal @. We proceed by induction on a:

L. r(s) > aif o = 0;
2. if « is limit, then r(s) > a means r(s) > § for every ordinal 8 < o;

3. if @ = B+ 1, then r(s) > « means that, for some ¢t € S with s = ¢t~
r(t) > B.

If there is an ordinal « for which r(s) ? «, then the least ordinal with this
property is necessarily a successor ag+ 1, and we put r(s) = ap. Otherwise
(when r(s) > « for every ordinal o) we put r(s) = co. We say that C is
well founded if r(<>) is an ordinal.

Now let us arrange these definitions in our setting, when T is any w-stable
presentable theory. So every uncountable model of T has a presentation,
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where the points of the involved tree correspond to strongly regular types.
Take any model M of T and any strongly regular type p over M. We want
to associate with p a depth Dp(p) (an ordinal or co) in a way inspired by the
above assignment of a rank to the points of a tree. First we define Dp(p) > «
for every ordinal «. As usual, we proceed by induction on a.

Definition 7.6.8 1. If @ = 0, then Dp(p) > a.

2. If a is limit, then we put Dp(p) > o when Dp(p) > B for every ordinal
b < a.

3. If oo = B+1 is a successor 3, then we put Dp(p) > « exactly when, for
every x realizing p, there is some strongly regular type ¢ over M(z)
such that Dp(q) > 8 and q is orthogonal to all the types over M.

Now we can introduce Dp(p).

Definition 7.6.9 If there is an ordinal o such that Dp(p) ? o, then the
least ordinal with this property is a successor ap+1, and we put Dp(p) = ap.
Otherwise (when Dp(p) > « for every ordinal a) we put Dp(p) = oc.

Now we define the depth of the whole theory T' Dp(T'). As usual, we agree
that co is greater than any ordinal.

Definition 7.6.10 The depth of T Dp(T) is the least upper bound of the
depths of the strongly regular types over models of T. T is called deep if
Dp(T) = oo, and shallow if Dp(T) is an ordinal.

Actually the original definition of depth requires some rearrangements due
to a technical convenience in the proofs. But this does not concern our
sketched treatment here.

At this point it is easy to realize that the (presentable) theory T in 7.6.1
(and later in 7.6.7.2) is deep. In fact, let M be a model of 7', a € Mo, p
be the strongly regular type pas(1,a) (according to the notation introduced
in 7.6.1). We have seen that, for every z |= p, S(M(z)) contains a strongly
regular type ¢ = pa(z)(1,2) having depth > 0 and orthogonal to all the
non-algebraic types over M. Consequently Dp(p) > 1. But then even ¢
has depth > 1, and so Dp(p) > 2. Iterating this procedure, one eventually
gets Dp(p) = oo. Recall that T' is not classifiable, because it gets too many
models in any uncountable power. But this is a general fact, as the following
theorem clarifies.
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Theorem 7.6.11 (Shelah) If T is an w-stable, presentable and deep theory,
then I(T,\) = 2 for every uncountable cardinal A. In particular T is not
classifiable.

This is not the case for a shallow 7. In fact, first one shows that Dp(T) < w;
(and indeed, for every ordinal & < w, there is some w-stable presentable
shallow theory T, having depth ). Moreover, for every uncountable A, one
can upperly and underly bound I(T, \) with respect to Dp(T') in an effective
way, implying, among other things, I(T, A) < 22 for some A. In this sense,
we can conclude

Theorem 7.6.12 Let T be an w-stable theory. Then T is classifiable if and
only if T is presentable and shallow.

Of course, this statement makes sense provided that we agree with Shelah’s
proposal that T is not classifiable if and only if I(T,\) = 2* for every un-
countable \; should we think that a classifiability proof requires to show the
existence of an invariant system of some ordinal rank, we might reasonably
‘doubt that Theorem 7.6.12 is the last word about classification, and wonder
if Shelah’s classification program is fully reached in this theorem. This is a
subtle and delicate matter, and may be discussed as long as one likes. So
here we limit ourselves to a few comments which just aim at introducing a
possible debate and do not claim to suggest any conclusion.

First one should undoubtedly acknowledge how formidable Shelah’s work
was; in some sense the “depth” itself of the new notions and techniques pro-
posed by Shelah witness its validity and authoritativeness. Not surprisingly,
Shelah himself celebrated its conclusion even in the title of a preliminary
version of the final paper, which just stated “Why am I so happy”. Actually
Shelah’s happiness is quite easy to understand and to share.

It should be also mentioned that Melles proposed some years ago an alter-
native approach to classifiability of a more recursion theoretic flavour, so
looking for effective classification invariants; however Melles himself proved
that his perspective eventually agrees with Shelah’s point of view. It should
be also said that Appenzeller (and others) observed some intriguing con-
nections between the main notions arising in Shelah’s classification, and
some concepts coming from Stationary Logic and Descriptive Set Theory.
This is quite interesting, and provides a further corroboration of Shelah’s
perspective.

Finally let us discuss what happens within superstable (and possibly non
w-stable) theories T. The main trouble in this enlarged framework is that
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prime models may fail. However prime models (and existence and unique-
ness properties) still make sense provided we restrict our attention to a
suitable subclass of Mod(T'), formed by sufficiently saturated models (called
a-models). This allows to define what T presentable, or T deep, or T shallow
means, and to deduce that, when 7T is not presentable, or is presentable and
deep, T is not classifiable: in fact, in these cases T has too many a-models,
and consequently too many models, to get a classification.

But the point is whether a presentable shallow superstable 7" is classifiable.
According to Shelah’s perspective, this requires to upperly bound the num-
ber of models of a given uncountable power (warning: we have said models,
and not a-models, bounding the latter ones does not imply a priori restrict-
ing the number of the former ones). Again the main difficulty in handling
this setting is the possible lack of prime models, especially in the framework
proposed in the definition of presentable theory. And actually Shelah singled
out the following key property, called the existence property.

Definition 7.6.13 A superstable T' is said to satisfy the existence prop-
erty if and only if, for every choice of models Mo, My, My of T such
that

o My is an elementary substructure of both My and M,
L Ml J/Mo MZ;
there is a model M of T prime and atomic over My U M,.

This is the last dichotomy in the superstable case, and provides the final
dividing line between classifiable and non-classificable theories. In fact the
following results hold.

Theorem 7.6.14 (Shelah) If T is superstable but fails to have the existence
property, then I(T,\) = 2" for every uncountable cardinal \.

Theorem 7.6.15 (Shelah) If T is a superstable, presentable, shallow theory
and has the existence property, then T is classifiable.

Of course, the comments following Theorem 7.6.12 are still valid and do
concern also Theorem 7.6.15.
7.7 Shelah’s Uniqueness Theorem

In the forthcoming sections we discharge two debts we contracted in Chapter
6: the proofs of Shelah’s Uniqueness Theorem for prime models in w-stable
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theories and Morley’s Theorem on uncountably categorical theories. In fact
both require, in addition to the techniques developed in Chapters 5 and 6,
the more sophisticated tools introduced in this Chapter, in particular the
material of Section 7.5 on w-stability. First we deal with Shelah’s Uniqueness
Theorem. We recall its framework: we are concerned with an w-stable theory
T and a small subset X of its universe {2. We have to show that, if .4y and
A; are two models of T' both elementarily including X and prime over X,
then there is an isomorphism between 4y and A; fixing X pointwise. As
we saw in 6.4, Ressayre’s Uniqueness Theorem for constructible sets reduces
the whole problem to prove:

Theorem 7.7.1 (Shelah) Let T' be an w-stable theory, X be a small subset
of Q, A be a model of T elementarily including X. If A is prime over X,
then A is constructible over X.

Proof.  According to Morley’s Existence Theorem (6.4.17) there is some
model B of T' constructible over X. Fix such a model B. We can freely
assume that X is a subset of B and that the corresponding inclusion is
elementary. As A is prime over X, there is an elementary embedding of A
into B fixing X pointwise. Again, without loss of generality we can assume
that A is an elementary substructure of B. In particular X C A C B, and
all these inclusions are elementary. We claim that these assumptions

X C A C B, B constructible over X

(so forgetting the additional hypothesis that both A and B are models of
T') are sufficient to imply, for T’ w-stable, that A is constructible over X, as
expected.

We proceed by induction on the power |B — X| of B — X. If |B — X]| is
countable, then |4 — X| is countable, too; furthermore B is atomic over X
because B is constructible over X; hence we can apply Lemma 6.4.6 and
conclude that A is constructible over X, as claimed.

So assume |B — X| = A uncountable. Fix any construction (b, : v < \) of
B over X: here )\ is viewed as an initial ordinal. Correspondingly we build
an increasing sequence of subsets C,, (v < A) of B satisfying

1. B = X U Uy<,\C,,
and, for every v < A,
2. |CV| = |I/| + N,

3. C, is closed (in the sense of Section 6.4),
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4. for every tuple ¢in C,, the type of ¢ over A has the same Morley rank
as its extension tp(é/AUC)).

To form this sequence, start by putting Cp = (). Moreover, for a limit v, let
C,, be the union of the preceding sets in the sequence. It is straightforward
to check that 2, 3, and 4 are satisfied in these cases. Now take a successor
ordinal v+ 1. If b, € C,, then put Cy41 = C,. Otherwise form C, U ib,,}

and call it C,(0). For every tuple b in C, (0) there is a finite subset A(b) of
A for which

RM (tp(b/A)) = RM (tp(5/A(5)).

—

Take C,(0) U Uz A(b) and enlarge it to a minimal closed extension C,(1) in
B, in the way we saw in Section 6.4. Apply the same procedure used to
enlarge C,(0) to C,(1), and then to C,(n) for every natural n, so building
for every n a closed set Cy,(n+ 1) 2 C,(n) in B such that, for each b in

-

C\(n), there is a finite subset A(b) of ANC,(n+ 1) for which
RM (tp(b/A)) = RM (tp(5/A(5))).

Finally put Cy41 = U,Cy(n). Again, a straightforward check proves 2, 3
and 4 for C, 4.

It is also clear that B = X U U,<)\C, and hence 1 holds. Now notice that,
for a given v < A,

5. C,41 is constructible over X UC,,
6. |[Cop1 — (X UG < A

The latter claim follows directly from 2, as |[B—X| = A > |v|+Ng. 5 requires
some more work. First form a (possibly transfinite) list of the elements in

Cop1— (XUC))
(dy @ p< )

extracting them from the given construction of B over X. Notice that, for
every 8 < a, C, U{d, : p < B} is closed because both C, and C,y; are
closed. So use Lemma 6.4.9 and deduce that the type of dg over XUC, U{d,, :
p < B} isisolated. Hence {d, : p < o} is a construction of C, 44 over XUC,,
and 5 is proved.

Owing to 5 and 6, the induction hypothesis applies to

XUC, CXUC,U(Cy1NA)CXUC, 1
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and shows that X UC, U (C,41 N A) is constructible over X UC),. For every
v < A, fix a construction of X UC, U (Cy41 N A) over X UC,, and glue all
these constructions to build a (transfinite) list of the elements of A

(*) (au @ p<Uscri)

where, for every v, (a, : g, < ft < py41) constructs C,p1 N A over X UC,.
We claim that (x) is actually a construction of A over X: in other words, for
every u, tp(a,/XU{a, : n < p})isisolated. In fact,suppose p, < p < piyyq1,
it suffices to show

RM(tp(a,/X UC, U{ay : n < p})) = RM(tp(au/X U{ay : 7 < p})).

In fact, the former type is isolated and consequently the Open Mapping
Theorem ensures that the latter is isolated, too. Now, for every tuple ¢ in

CI/7
RM (tp(¢/A)) = RM (tp(¢/ANC)))

by 4. Now we use what we saw in Section 7.5 about independence in w-stable
theories. First notice that transitivity (I6) implies

RM (tp(¢/X U{ay : n < p})) = RM(tp(¢/ X U{ay : 1 < p})).
Then symmetry yields
RM (tp(a,/X UcU{a, : n < p})) = RM(tp(au/X Uay = n < p})).

As this holds for every tuple ¢'in C,, (I3) implies that the type of a, over
XUC,U{a, : n < pu} does not fork over X U{a, : n < p}, and this is just
what we have claimed. So A is constructible over X, and we are done. &

7.8 Morley’s Theorem

At last here are to show Morley’s Theorem on uncountably categorical the-
ories. Let us recall its framework: for a complete theory T without finite
models in a countable language L, the theorem says that T is categorical
either in all uncountable cardinals, or in none of them. In other words

Theorem 7.8.1 (Morley) If T is categorical in some uncountable cardinal,
the T is categorical in every uncountable cardinal.
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Just to prepare the proof of Morley’s Theorem, let us premit a particular
case as a warm-up.

Proposition 7.8.2 If T is strongly minimal, then T is categorical in every
uncountable power.

Proof. For every model B of T', the isomorphism class of B is given by its
dimension with respect to the acl dependence relation. When B is uncount-
able, this dimension just equals the power of B because B = acl(X) forces
|X|=|B|forevery X CB. &

So the point is: how far is a theory T categorical in some uncountable power
p from being strongly minimal? Can we recover inside T a possibly “weaker”
form of “strong” minimality making the previous argument work?

Notice that there do exist some theories T' which are categorical in any
infinite cardinal but are not strongly minimal: for instance, consider the
theory of two infinite disjoint sets A and A’ with a bijection f between
them.

Anyhow take a p-categorical T" where p is a fixed uncountable cardinal. We
keep this assumption all throughout this section, unless explicitly stated.
First we observe:

Lemma 7.8.3 T is w-stable.

Proof. The strategy is simple. We deny w-stability and consequently we
succeed in building two models of T" of power y which cannot be isomorphic,
so contradicting the hypothesis that 7" is y-categorical. To do this, first we
recall that, if T' is not w-stable, then there is a countable X C Q over which
there are uncountably many 1-types. So there is some model of T extending
X and realizing uncountably many types, and using the Lowenheim-Skolem
Theorem we can get a model B of T satisfying these properties and having
power u. The second part of the proof uses a method due to Ehrenfeucht and
Mostowski and valid for every theory 1" and every uncountable cardinal p: it
yields in this general framework a model C of T of power p realizing at most
Ny 1-types over any countable subset. Ehrenfeucht-Mostowski’s method is
quite sophisticated, and its interest for our purposes in this book is confined
to this lemma; so we omit its detailed treatment, and we limit ourselves to
apply it to our particular setting. In fact, for a p-categorical T, the model

C just built in this way cannot be isomorphic to the structure B obtained
before. &
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Of course, Lemma 7.8.3 cannot imply that 7 is strongly minimal. But, as
a consequence of the w-stability of T, indeed as a consequence of this only
hypothesis (we do not need u-categoricity here), we show that there is some
strongly minimal formula -possibly involving parameters- in T'.

Lemma 7.8.4 There is some strongly minimal formula o(v) in T.

Just to avoid any misunderstanding later, let us underline once again that
here formula means formula with parameters.

Proof. Otherwise, for every formula ¢(v) for which ¢(£2) is infinite, one can
find a formula ¢’ (v) such that ¢’ (Q) C ¢(£2) and both ¢'(2) and »(Q)—¢'(2)
are infinite. Using this fact and starting from ¢ (v) : v = v, one defines,
for every finite ordered sequence s of 0 and 1, a formula ¢,(v) in such a way
that, for any s, ¢s(Q) is infinite and ¢4 () and s () partition ©,($2).
The parameters involved in these formulas are as many as the sequences s,
and so form a countable set X. On the other side, every branch ¢ of the tree
{0, 1} determines a(n incomplete) 1-type p; over X given by the formulas
©tn(v) where n ranges over naturals and ¢|n denotes the restriction of ¢
to the first » naturals; furthermore different branches yield different types.
This gives at least 2% 1-types over X and contradicts w-stability. &

But p-categoricity implies even more. In fact, for a p-categorical T, the
formula ¢(v) can be chosen with parameters in the model A of T prime over
0 (owing to w-stability this models exists and is unique up to isomorphism).
This result requires the following premise, which is now just a technical
lemma, but will play a key role later in the proof of Morley’s Theorem.

Lemma 7.8.5 Let a(v, @) be a formula (with parameters @ in Q) such that
a(Q, @) is infinite, and let By and By be two models of T such that Bp is an
elementary substructure of By, Bo # By and both By and B, elementarily
include @. Then o(By, @) is properly included in a(By, @).

Proof. Suppose not. Accordingly there are two models Bp and By of
T elementarily including @ such that Bp is an elementary substructure of
By, By # B; but «(By, @) equals a(By, @) (an infinite set). Apply the
Léwenheim-Skolem Theorem to the theory of (By, Bp) in a language ex-
tending L by a l-ary relation symbol for By and new constants for the
elements in @, and get a countable model (B3, By) of this theory: so By
and B are still models of T' elementarily including @, Bg is an elementary
substructure of Bf, B§ # B}, a(B}, @) = a(B§, @), By, Bf and consequently
o(B3, @) = a(B, @) are countable. Hence, unless replacing Bo and By by Bj
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and B} respectively, we can assume that a(By, @) = a(By, @) is countable.
Now we define for every ordinal v > 0 a model B, of T elementarily extend-
ing By (and @) and even the B,’s for p < v, properly including all of them
and still satisfying «(B,, @) = a(Bg, @). Notice that this is sufficient for our
purposes because, proceeding in this way, we eventually build a model B of
T of power p elementarily extending By but satisfying a(B, @) = o(Bo, @),
hence admitting a countable a(B, @); on the other side, a simple use of
Compactness Theorem yields another model C of T of power p such that,
for every tuple ¢ in C admitting the same type as @ over the empty set,
la(C, €)] = u. Consequently B and C cannot be isomorphic, and this con-
tradicts the p-categoricity of T'.

So let us build the B,’s. We already introduced B;. For a limit v, put
B, = U,<,B,: this is a model of T and satisfies our conditions above. So it
remains to treat the case of a successor ordinal v = p+ 1 with p > 0. For
simplicity we limit ourselves to p = 1, v = 2; indeed what we are going to say
in this case applies to any p > 0 as well, and so is generally valid. First use
independence theory, more precisely (I3) and (14), and find an isomorphic
copy Bj of By inside €2, corresponding to B; by an isomorphism fixing By
pointwise, and satisfying B] |, Bi. To build B}, consider a language L~
enlarging L by a constant b* for every b € By, and in L* the theory T™ saying
that, for every b in By,

b* satisfies the non-forking extension of tp(b/By) over Bj.

Any finite portion Tj of 7* has a model; in fact, let b glue all the tuples from
B arising in the sentences of 7§, use (I4) and obtain a tuple b* realizing the
non-forking extension of tp(g/ Bo) over By; recall that every subsequence of
b* has the same property. By compactness, T* has a model. The elements
b embodying the constants b* in this model form a structure B isomorphic
to By over By (as, for every L(Bp)-formula ¢(%) and b in By, E go(l;) if and
only if = (p(l;')) and independent of B; over By. In particular a(Bj], @) =
a(Bg, @). Let By be the model of T prime over B; U Bj. We claim that
B, is just the model we are looking for. The key point to check is that
a(Bz, @) = a(Bo, @). D is clear. On the other hand, take d € a(Bz, @). Then
the type of d over By UB] is isolated by some suitable formula zp(b:, b_’;, z) (in
the free variable z) with parameters by from B; and bz from Bj. Recall that
tp(b—i /Bo) is definable: for every L-formula x (¥, w) there is an Lpg,-formula
dx (W) such that, for any b in By,

-

QEx(b,b) & QEdx@).
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This remains true if we enlarge By to By U {d}: for every bin B U{d}, so
also for b = (¥, d) with ¥’ in Bj,

QE x(b1, ¥, d)  QE dx@, d).
Let us see why. Otherwise Q = —'(X(b_i, b, d) & dx(l;;, d)) and consequently
Q |= Az(alz, @) A (x(b1, ¥, 2) & dx(¥, 2)));
in other words,
Fz(a(z, @) A -(x(F, U, 2) & dx (¥, 2))) € tp(b1/B)).
As By and Bj are independent over By, there is some b in Bg for which
Q = 3z(a(z, @) A -(x (b1, b, 2) & dx (b7, 2))).
Then there is some d” € By (and indeed in a(B;, @)) such that
By k= —(x(b1, b, d")  dx (b7, d")).

Recall a(By, @) = a(By, @), sod” € By. But this contradicts the choice of dy
over By. Now apply what we have just observed to the formula (4, b, d).

As Q E w(b_;[, b_'i, d), it follows Q = dw(bﬁ, d), where di is the defining for-
mula. So B} = sz_'qb(ll'l, z), and we find d’ € Bj such that B} = dy(b), d'),
and hence Q = 1(by, b{, d’). This means that d’' has the same type as d over
B U Bi, and so d = d' € By; but o(B], @) = a(Bo, @), hence d € a(By, @).
This accomplishes our proof. &

Now we are in a position to show, as promised

Lemma 7.8.6 Let A be a model of T prime over ). Then there is a strongly
minimal formula o(v) in T with parameters from A.

Proof.  Proceed as in Lemma 7.8.5, but work in A instead of 2. Using
w-stability, find again a formula ¢(v) with parameters in A such that ¢(A)
is infinite but has no partition into 2 A-definable infinite subsets. This does
not mean a priori that ¢(v) is strongly minimal, as in general we cannot
imagine what happens if we allow parameters out of A. However we claim
that in our particular setting, for a p-categorical T, ¢(v) is just strongly
minimal. Let us see why. Suppose not, so, enlarging our perspective to
Q, we can find an L-formula (v, Z) and parameters b in  such that both
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o(v) A (v, b) and (v) A ~(v, b) define infinite sets. Now let us restrict
our horizon to A: for every natural n, we can pick a tuple @(n) in A for
which

lp(A) NP (A, @(n)], le(A) - p(A, @(n)| 2 n.

However, just owing the choice of ¢(v), at least one of these sets is finite,
and consequently equals ¢(Q2) N (€2, @(n)), or o(Q) — ¥(Q, @(n)). So either
e(A)Np(A, d(n)) is finite and equals ¢() — (2, @(n)) for infinitely many
n, or ¢(A) — (A, @(n)) satisfies the same condition. Assume for simplicity
that the former option holds. Unless forgetting @(n) for every exceptional n,
we can even assuming that ¢(A) N (A, d(n)) is finite of size > n and equals
©(R) — ¢¥(Q, d(n)) for each n. Now a simple application of Compactness
Theorem, using these features of A, Q and the @(n)’s, yields two models B
and C of T and a tuple @ in B such that B is an elementary substructure of

C, B # C and
¢(B) Ny (B, @) = ¢(C) Np(C, @)

is infinite. This clearly contradicts Lemma 7.8.5. &

But we can even assume that our strongly minimal ¢(v) is actually an
L-formula, and needs no additional parameters. Let us explain why. Essen-
tially what we have to do is to insert in the language new constants for the
parameters @ € A involved in ¢(v) and then, in this extended framework,
to consider T’ = T'h(A, @) instead of T' = Th(.A). Notice that the type of @
over { is isolated - say by the L-formula 6(w) - because A is atomic over 0,
so tp(@/0) is realized in every model of T' and indeed the models of T’ are
just the structures (B, b) where B is a model of T and b € B has the same
type as @ over (); in other words, b satisfies 6(w) in B. In this setting it is
not prohibitive to show:

Lemma 7.8.7 For every infinite cardinal A\, T is \-categorical if and only
if T' is.

The reader may try to check this as an exercise. In particular, if T is u-
categorical, then T” is; and, if we succeed in proving that T is categorical
in every uncountable power A, then we can say the same of T. So, with
no loss of generality, we can replace T by T’, in other words to assume
that T is a p-categorical theory with a strongly minimal L-formula ¢(v)
(without parameters). This resembles the plainer framework outlined at the
beginning of this section, when T itself is strongly minimal. So the point
is: for a model B of our theory 7', can the dimension of ¢(B) with respect
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to acl, and so (at least in uncountable powers) the cardinality of ¢(B), play
the same role as the dimension of B in the strongly minimal case?

At this point Lemma 7.8.5 applies once again, and ensures that ¢(Bg) is
properly included in ¢(B;) when By and By are models of T, Bp is an ele-
mentary substructure of By and By # B;. But now we can say much more.
In fact we have what follows.

Lemma 7.8.8 For every model B of T, B is prime over ¢(B). Moreover
lo(B)| = |BI.

Proof. As T is w-stable, there exists a model B’ of T prime over ¢(B).
B’ elementarily embeds into B via a function fixing ¢(B) pointwise; again,
we can assume that B’ is an elementary substructure of B. Consequently
¢(B') = ¢(B) N B’; on the other side p(B’') C ¢(B), and so ¢(B') is equal
to ¢(B). Apply Lemma 7.8.5 and deduce B = B’. Hence B is prime over
@(B). 1t remains to check that |p(B)| = |B|. < is trivial. On the other
hand an easy application of the Lowenheim-Skolem Theorem to the theory
of B,(s) yields a model C of T such that |C| = |[¢(B)| and ¢(B) C C by an
elementary inclusion. As B is prime over ¢(B), B elementarily embeds in C.
In particular |¢(B)| = |C| > |B|, as required. &

At last we are in a position to conclude our way.

Proof. (Morley’s Theorem). Let By and By be two models of T having
the same uncountable power A\. Owing to Lemma 7.8.8, each B; (+ =0, 1)
is prime over ¢(B;) and satisfies |p(B;)| = A. Choose a basis X; of ¢(B;)
with respect to the acl dependence relation: X; has again power A because
le(Bi)] = A > Ro. Then X, and X; correspond to each other by some
elementary bijection, which enlarges to an elementary bijection h between
¢(Bo) and ¢(By); h defines in its turn an isomorphism between the models
Bp and B; prime over ¢(Bg) and ¢(B) respectively. &

7.9 Biinterpretability and Zilber Conjecture

We have devoted several sections to the problem of classifying structures
up to isomorphism and to Shelah’s analysis of this question. But, needless
to say, isomorphism is not the only possible classifying equivalence rela-
tion, even within structures. Another possible criterion, deeply related to
Model Theory, is interpretability. The following two examples illustrate this
alternative perspective and its underlying idea.
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Examples 7.9.1 1. Natural numbers (viewed as non-negative integers)
form a definable set in the ring (Z, 4, -) of integers: as recalled in
Chapter 1, a celebrated Theorem of Lagrange says that they are ex-
actly the sums of four squares in (Z, +, -). So the whole structure
(N, +, ) is definable in (Z, +, -), because the addition and multipli-
cation in N are just the restrictions of the corresponding operations of
Z. This is a fundamental result: in fact, as (N, +, -) lives in (Z, +, -)
as a definable structure, (Z, +, ) inherits its undecidability phenom-
ena related to Godel Incompleteness Theorems, and in this sense is a
“wild” structure.

2. In the same way (N, +, -) lives in the rational field (Q, +, ) as a
definable structure. This is a deep theorem of Julia Robinson. So
even the rational field inherits the complexity of (N, +, -) and its
undecidability.

So, generally speaking, when we meet a structure A in a language L and we
realize that A defines, or also interprets another structure A’ (possibly of a
different language L'), then we can reasonably agree that A inherits the full
complexity of A/, and consequently is at least as difficult to dominate as A’
is. Of course this can be extended to classes of structures. In this enlarged
framework, we compare two classes of structures, K in a language L and K’
in a language L' respectively. For simplicity, we can agree that both K and
K' are elementary. We assume that there are suitable L-formulas defining,
or also interpreting, in any structure A € K a structure A’ € K’ and that,
conversely, every A" € K’ can be recovered by some A4 € K in this way;
we assume also that these formulas do not depend on the choice of A in
K. Then we say that K interprets K’ and in this case we can agree that K
inherits the complexity of K’. Here are some further examples illustrating
this point.

Examples 7.9.2 1. Recall that a graph is a structure (G, R) where R
is a symmetric irreflexive binary relation, usually called adjacency.
The (elementary) class of graphs interprets any class of structures,
and so inherits in this way the full complexity of mathematics. The
proof of this fact requires patience rather than ingenuousness. To
avoid too many tedious details, let us illustrate its idea in a particular
case, and see how graphs interpret arbitrary binary relations. So take
any structure (A, R) where R is a binary relation on A, and form
a graph (A’, R') as follows. Let A’ include A. Moreover, for every
a € A, add two new vertices ag and a; in A’, both adjacent to a (so
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(a, ao), (a,a;) € R'). Finally, for every pair e = (a,d) € R, add
in A’ two new vertices e, e; satisfying (a, eg), (eo, €1), (e1, b) € R/,
three more vertices adjacent to eg, and four more vertices adjacent to
e1. For instance, here is a picture of (A’, R') when A = {a, b, ¢} and

R ={(a, b)}.

N

It is an easy exercise to realize that any (A, R) can be definably re-
covered inside the corresponding (A’, R') in a way independent of the
particular choice of (A4, R). In fact, A is just the set of the vertices
in A’ having either 2 adjacent nodes, or 3 adjacent nodes such that 2
of them have no further adjacent node, while R is the set of the pairs
(a, b) € R such that there are eg, e; € A’ for which (a, €g), (e, €1)
(e1, b) € R', eg has three adjacent nodes in addition to @ and e; has
four adjacent nodes besides ey and b.

2. The same can be said of the class of groups, and even of the class of
nilpotent groups of class 2 (a comparatively slight generalization of
abelian groups). This is a beautiful result of A. Mekler, showing that
nilpotent groups of class 2 intepret graphs and so, through them, any
class of structures. The proof uses brilliantly some non-trivial notions
and tools from group theory. The conclusion is clear: groups, and even
nilpotent groups of class 2, are a class as bad as possible, and inherits
the full complexity of mathematics.

3. We said in 7.1 that, for a given (countable) field K, K{z, y)-modules (i.
e. K-vectorspaces with two distinguished endomorphisms z and y) are
an intractable class: no classification can be expected, even for finite
dimensional objects, otherwise the word problem for groups would be
solvable. Of course, every class interpreting K(z, y)-modules is at least
as complicated as they are, and hence definitively a bad class. Several
notable classes of modules share this negative feature. For instance,
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this is the case of K[z, y]-modules (with two commuting unknowns =
and y), or Z[z]-modules, and so on. The book of Prest quoted in the
references at the end of the chapter includes a discussion of this point
and a great deal of noteworthy examples.

So a possible way of classifying structures, or even classes of structures, is up
to mutual interpretability (biinterpretability). Accordingly, one could try to
characterize structures by looking at what is definable, or also interpretable,
in them: groups, fields, and so on.

Incidentally notice that a relevant emphasis on the role of definability al-
ready arises within Shelah’s classification analysis (for instance, think of the
order property, looking at the orders definable in a given structure). How-
ever the study of mutual interpretability in mathematics did precede Model
Theory, or, at least, modern Model Theory. For example, let us mention
the celebrated Malcev correspondence between groups and rings, essentially
showing that the class of unitary rings is biinterpretable with a suitable class
of nilpotent groups of class 2, and confirming in this way how complicated
these groups are.

But who mainly developed the biinterpretability program in Model Theory
was Boris Zilber. Zilber’s original project concerned the classification of
uncountably categorical theories (those where Morley’s Theorem applies)
by looking at which groups, or fields, and so on, are definable in them.

As already observed, uncountably categorical theories include the strongly
minimal ones, and the latter theories are the simplest possible (if we excludes
finite structures). Accordingly their exam is a reasonable first step towards a
general approach. So the question is: what strongly minimal structures look
like? Can we reasonably classify them by looking at what they interpret?
Let us outline Zilber analysis in the strongly minimal setting. Recall that
a structure A is said to be strongly minimal if its complete theory is: so,
for every B elementarily equivalent to A, the only definable subsets of B
are those finite or cofinite. We introduced in Chapter 5 several examples of
strongly minimal structures. To summarize them, let us work inside a fixed
algebraically closed field A.

Examples 7.9.3 1. Firstly view A as a structure in the language 0, so
as a mere infinite set. In this case, the theory of A equals that of
infinite sets, and is strongly minimal. The structure of A is very poor,
and no (infinite) group is definable here. Moreover

o for every subset X of A, acl(X) = X,
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e for every positive integer n, the definable subsets of A™ are the
finite Boolean combinations of

{deM :a;,=0}, {@d€eM:a =a;}
with¢,7=1,...,n,bec M.

2. Let Ao be the prime subfield of A, and look at A as a vectorspace over
Ap in the appropriate language. Now the complete theory of A is that
of infinite vectorspaces over Ap, and is again strongly minimal. But
this time

o for every subset X of A, acl(X) is the subspace of .A spanned by
X,

e for every positive integer n, the definable subsets of A" are the
finite Boolean combinations of cosets of pp-definable subgroups of
A, and for n > 1 their class is larger than in Example 1. Notice
that an infinite group is trivially definable in A, but no field can
be interpreted inside A.

3. At last, view A just as an algebraically closed field. If pis its character-
istic, then the complete theory of A is ACF), and is strongly minimal.
Moreover

e for every subset X of A, acl(X) is the algebraic closure of A in
the field theoretic sense,

e for every positive integer n, the definable subsets of A™ are the
constructible ones, in other words the finite Boolean combinations
of algebraic varieties of A".

Now take any strongly minimal structure A.
Definition 7.9.4 A is called trivial if, for every X C A,
acl(X) = Ugexacl(z).

Every (pure) infinite set is trivial. But, of course, vectorspaces and alge-
braically closed fields are not. Moreover no trivial strongly minimal struc-
ture can interpret an infinite group.

Definition 7.9.5 A is called locally modular if, for every choice of X,
Y C A such that X NY # acl(0),

(x) dim(XUY)+dim(XNY)=dimX+dimY.
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Every trivial structure A is locally modular (in fact, for every X and Y,
acl(XUY) = acl(X)Uacl(Y), so a basis of X UY can be formed by taking
a basis a X NY, extending it to a basis of X and a basis of Y, and gluing
these bases together). But also vectorspaces are modular: in fact, in this
case, (%) is just the Grassman formula (and does not need the assumption
XNY # ac(D)).

On the contrary, no algebraically closed field A (of transcendence degree
> 4) is locally modular. In fact, choose ag, a1, a2, as € A algebraically
independent over the prime subfield Ag, and form the extensions

X = Ao(ao, a1, az), Y = Ao(ao, a3, araz + az).

Then dim X = dimY = 3 but dim(X NY) = dim Ag(ag) = 1, whence
X NY # acl(B), and dim(X UY) = dim(Ao(ao, a1, a2, a3)) = 4. So ()
fails.

What is the significance of local modularity? Basically a locally modular A
either is trivial or can define an infinite group. Furthermore one observes
that any group G definable in a locally modular A is abelian-by-finite (in
other words, it has a normal abelian subgroup of finite index); and every
subset of any cartesian power G” definable in A is a finite Boolean combi-
nation of cosets of definable subgroups of G™. Accordingly, no infinite field
is definable in A.

In this setting Zilber raised in 1984 the following problem, generally called
Zilber Trichotomy Conjecture.

Conjecture 7.9.6 (Zilber) Let A be a strongly minimal non locally modular
structure. Then A interprets an infinite field K. Furthermore, for every
positive inleger n, the subsets of K™ definable in A are just those definable
in K (and hence coincide with the constructible ones).

Recall that, owing to Macintyre’s Theorem, any infinite field interpretable
in an w-stable structure must be algebraically closed. Hence the importance
of this conjecture is clear: according to it any strongly minimal structure .4
either is trivial, and so looks like an infinite set (as in Example 7.9.3 .1), or is
locally modular and not trivial, and then resembles a module (as in Exam-
ple 7.9.3.2), or looks like an algebraically closed field, because it interprets
such a field (Example 7.9.3.3). Hence the conjecture would provide a quite
satisfactory classification of strongly minimal structures (and theories) up to
biinterpretability. But in 1993 Hrushovski showed that Zilber’s Conjecture
is false.
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Theorem 7.9.7 (Hrushovski) There do exist strongly minimal structures
A which are not trivial but cannot interpret any infinite group.

Clearly such a structure A is not locally modular and does not interpret any
infinite field.

However Zilber Conjecture (more precisely, a suitable restatement) does hold
in certain topological structures deeply related to strongly minimal models:
the so called Zariski geometries. To introduce them, let us come back to
Example 7.9.3.3, so dealing with algebraically closed fields .A.

We know that, for every positive integer n, the algebraic varieties of A™ are
preserved under finite union and arbitrary intersection, and form the closed
sets in the Zariski topology on A™. These topologies are Noetherian: none of
them admits any infinite strictly decreasing sequence of closed sets. More-
over they satisfy the following properties (m and n denote below positive
integers).

(Z1) Let f = (f1, ..., fm) be afunction from A™ in A™. Assume that each
component f; (1 <4 < m), as a function from A™ in A, either projects
A™ onto A or is constant. Then f is continuous.

Z2) Everyset {d€ A : a; = a;} with 1 <1, j < n is closed.
J y J

(Z3) The projection of a closed set of A"*! onto A™ is a constructible set
in A",

(Z4) A, as a closed set, is irreducible.

(Z5) Let X be a closed irreducible subset of A™. For every @ € A", let
X (@) denote the set of the elements b € A such that (@, b) € X. Then
there is a natural N such that, for every @ € A" !, either | X (@)| < N
or X (@) = A. In particular, when n = 1, every closed proper subset
of A must be finite.

(Z6) Let X be a closed irreducible subset of A, d denote the (topological)
dimension of X. Then, for every 7, j among 1, ..., n, X N {d € A" :
a; = a;} has dimension > d — 1.

(Z1) - (Z6) restate in a topological style some properties which are well
known, or easy to check. For instance (Z5) follows directly from some simple
algebraic facts and the strong minimality of A by a compactness argument:
the reader may check this in detail as an exercise.

Now it is easy to realize that even infinite sets and vectorspaces over a
countable field satisfy (Z1) - (Z6) provided one takes as closed subsets the
finite Boolean combinations of the following sets:
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e the sets of the tuples admitting a fixed coordinate in a given place,
or equal coordinates in two different places, when dealing with pure
infinite sets;

e the cosets of pp-definable subgroups when dealing with vectorspaces.

It is easy to control that in both cases these sets are actually the closed sets
in a suitable topology.

Definition 7.9.8 A Zariski structure (or geometry) is a collection (A,
{T,, : n positive integer}) where A is a non-empty set, for every n Ty, is a
Noetherian topology on A™ and (Z1) - (Z6) hold.

Hence the examples 7.9.3 produce Zariski structures. Conversely, let (A, {T, :
n positive integer}) be any Zariski structure. Assume that A is the domain
of some structure A (in a language L) such that, for every positive integer n,
the subsets of A" definable in A are just the finite Boolean combinations of
closed sets in T, (and so coincide with the constructible sets in T;,). Then it
is easy to check that A is strongly minimal; moreover the possible triviality,
or local modularity of A does not depend on L, or on the L-structure of
A, but only relies upon the characterization of the definable sets of A and
so, after all, upon (Z1) - (Z6). More notably, in the restricted framework
of Zariski structures, the Zilber Trichotomy Conjecture is true, as shown by
Hrushoski and Zilber himself.

Theorem 7.9.9 (Hrushovski-Zilber) Let (A, {T,, : n positive integer}) be
a Zariski structure, A be a strongly minimal structure with domain A such
that, for every positive integer n, the subsets of A™ definable in A are just
the constructible sets in T,,. If A is not locally modular, then A interprets an
algebraically closed field K, and K is unique up to definable isomorphism.
Moreover, for every positive integer n, the subsets of K™ definable in A
coincide with the ones definable in K.

7.10 Two algebraic examples

Let us summarize briefly some of the main notions introduced in this chapter
by examining two relevant classes of algebraic structures, and their first
order theories: differentially closed fields of characteristic 0, and existentially
closed fields with an automorphism (again in characteristic 0). Both these
examples play an important role in the model theoretic solution of some
notable questions of Algebraic Geometry: we will describe these problems
and their solution in the next chapter.
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1. DCFy. First let us deal with differentially closed fields of characteris-
tic 0. Let us recall once again that their theory DC Fy is complete and
quantifier eliminable in its natural language L, containing the sym-
bols +, -, —, 0, 1, D and nothing more. So definable sets are easy to
classify: as we saw in Chapter 3, they include the zero sets of (finite)
systems of differential polynomials - in other words, the closed sets in
the Kolchin topology - as well as their finite Boolean combinations -
the constructible sets in this topology -, but nothing else. As a typical
Kolchin closed set in a differentially closed field (K, D) let us mention
the field of constants C'(K) = {a € K : Da = 0}. This is an alge-
braically closed field - just as K -, and is strongly minimal even in L;
in fact, D is identically 0 on C'(K) and so adds no further definable
objects to the field structure on C'(K).

DCFy eliminates the imaginaries, too. Moreover DCFy is w-stable
with Morley rank w, so independence makes sense in DC'Fy, and indeed
it is ruled by Morley rank: for @, A and B as in Section 7.2,

@la B <= RM(tp(d@/B)) = RM(tp(@/A)).

Of course this raises the question of characterizing algebraically Mor-
ley rank within differentially closed fields of characteristic 0. But there
are also other ways of describing forking and independence in DCF,
having a pretty algebraic flavour. For instance, one can preliminar-
ily observe that, for every small A, acl(A) - in the model theoretic
sense - is just the (field theoretic) algebraic closure of the differen-
tial subfield generated by A Q(D'a : a € A, i € N); at this point,
one can realize that, for @, A and B as usual, @ |4 B just means
that acl(AUd) and acl(B) are (algebraically) independent over acl(A).
Among other things, this characterization suggests an alternative rank
notion, specifically concerning the differential framework: this is called
differential degree or D-degree and denoted D-dg: for H a differential
field and @ a tuple of elements in 2, D-dg{(d@/H) is the transcendence
degre of the differential field generated by H U @ over H. So, for @, A
and B as before, and A and B differential subfields for simplicity,

@laB <= D-dg(d/B) = D-dg(d/A).

However we have to be careful here: the last equivalence does not mean
that RM and D-dg coincide. Their relationship, an algebraic char-
acterization of RM in DCFy and the connection among differential
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degree, Morley rank and other possible ranks in DCFy are described
in the references mentioned at the end of the chapter.

Now let us deal with biinterpretability, in particular let us consider
strongly minimal sets in differentially closed fields K of characteristic
0. They include the constant subfield C(K) (which also has differential
degree 1, as it is easy to check). C(K) is not locally modular, in
fact the argument proposed in the last section for algebraically closed
fields applies to C'(K) as well. But what is most remarkable in this
setting is a theorem of Hrushovski and Sokolovic saying that Zilber
Trichotomy Conjecture holds within strongly minimal sets in DC'Fy.
In fact all these sets are Zariski structures, and so obey the Hrushovski-
Zilber Theorem. We can say even more: any strongly minimal set S
which is not locally modular, and hence interprets an infinite field, does
interpret the field of constants C'(K) up to a definable isomorphism.
We will provide more details about these matters in Section 8.7.

. ACFA. Now we deal with existentially closed fields with an automor-

phism. For simplicity, we still work in characteristic 0. Let ACF Ag de-
note the corresponding theory in the natural language
L = {4+, —-,0,1, 0} where o is the symbol representing the au-
tomorphism. Recall that, this time, fixing the characteristic is not
sufficient to ensure completeness: in order to characterize a model
of ACFAy up to elementary equivalence, one has also to describe
the action of the automorphism on the prime subfield Q. Moreover
ACFAqg does not eliminate the quantifiers in L, although it is obvi-
ously model complete (as a model companion). Accordingly definable
sets exhibit some more complications than in the differential case. In
fact, they include the zero sets of (finite) systems of difference polyno-
mials, as well as their finite Boolean combinations; the former are the
closed sets, and the latter the constructible ones in a suitable topology.
But now, as quantifier elimination fails, we have to consider also the
projections of constructible sets - and nothing else, owing to model
completeness - to capture the whole class of definable sets. An exam-
ple of a closed set in a model (K, o) of ACF Ay is its fixed subfield
Fiz(oc) = {a € K : o(a) = a}. This is not algebraically closed (in
particular it is not strongly minimal); but one can see that it is a
pseudofinite field, so an infinite model of the theory of finite fields.

AC'FAg eliminates the imaginaries. This time no existentially closed
field (K, o) with an automorphism is w-stable, or even stable. How-
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ever (K, o) is simple (as well as its fixed subfield, and any pseudofinite
field). So independence makes sense in ACF Ag, and comes directly
from forking, but cannot be ruled by Morley rank. Anyhow an explicit
algebraic characterization can be done as follows. We work for sim-
plicity in a big saturated model (K, o) of ACFAq. First one observes
that, for every small A, acl(A) coincides with the algebraic closure -
in the field theoretic sense - of the difference subfield generated by A

Q(d'(a): a € A, i€ Z)

(here we use the characteristic 0 assumption; prime characteristics
cause some major trouble). At this point one shows that, for @, A
and B as usual, @ |4 B just means that acl(A U d@) and acl(B) are
(algebraically) independent over acl{A). This yields an appropriate
notion of rank, of a pretty algebraic flavour, called difference degree
or o-degree and denoted o-dg: for H a difference field and @ a tuple of
elements in Q, c—dg(@/H) is the transcendence degree of the difference
field generated by H U & over H. When finite, the difference degree
can reasonably replace Morley rank and provides a good notion of
dimension in this unstable setting; on the other side, when o —dg(a/H)
is infinite, then clearly the o(a)’s (when 7 ranges over integers) are
algebraically independent over H. So, for @, A and B as before, and
A and B difference subfields for simplicity,

ilaB <= o-dg(d@/B)=0—dg(d/A)

at least when the latter degrees are finite. When X is any definable set
in K", the difference degree of X over H o — dg(X/H) is the maximal
difference degree of a tuple @ in X over H. In particular the fixed
subfield of K gets difference degree 1. In this sense, Fiz(o) is a “mini-
mal” definable infinite set of K. Notably, an adapted version of Zilber
Trichotomy Conjecture holds for these “minimal” sets in AC'F Ag, and
even ensures in particular that, very roughly speaking, F'iz(o) is the
only non “locally modular” example among these structures.

7.11 References

The classification issue from the point of view of Descriptive Set Theory
is treated in [68]; the particular and intriguing case of torsionfree abelian
groups of finite rank is dealt with in [163]. Finite dimensional vectorspaces
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with two distinguished endomorphisms over a fixed field, and the wildness
of their classification problem are described in [136] or, more specifically, in
[137]. .

The main references on Shelah’s classification theory are just the Shelah
book [149] and its revised and updated version [151]. Most of the topics of
this chapter are treated there in detail. Another good and perhaps more ac-
cessible source on classification and stability theory is [8]. See also Makkai’s
paper [101]. Vaught’s Conjecture is proposed in [174], and its solution in
the w-stable framework can be found in [152]. Lascar’s paper [84] provides
an enjoyable discussion of this matter.

The (uncountable) spectrum problem for complete countable first order the-
ories is fully solved in [53].

Simple theories were introduced in [149], but it was Kim who showed, to-
gether with Pillay, their relevance within the classification program: see [71]
and [73]. Kim again observed the key role of symmetry, transitivity and
local character [72]. Wagner’s book [175] provides a general and exhaustive
report on this theme.

As already said, stability, superstability and the further dichotomies arising
in the classification program are treated in Shelah books [149, 151], in [8] or
also in [101]. [85] provides a nice and terse introduction to stability, using
and emphasizing the notion of heir and coheir. [83] pursues this approach
and deals in particular with Rudin-Keisler order and strong regularity.
The effectiveness aspects of Shelah’s classification program is discussed in
[114], while [2] examines its connections with Stationary Logic.

Turning our attention to the algebraic examples, let us mention [136] or also
[56] for modules, and [19] for pseudofinite fields. [110] treats differentially
closed and separably closed fields, and includes a wide bibliographical list on
them. [62] and [155] provide other key references on DC Fy; see also [134].
Existentially closed fields with an automorphism are just the subject of [20].
An explicit example of such a field can be found in [58] and [88]; see also
[95].

Shelah’s uniqueness theorem is in [148], Morley’s theorem in [117]. Another
proof of Morley’s Theorem is given in [9]; see also Sack’s book [146], or [57].
The Ehrenfeucht - Mostowski models quoted in Section 7.8 are introduced
in [38].

Finally, let us deal with biinterpretability. Malcev’s correspondence is in
[102] while Mekler’s theorem on nilpotent groups of class 2 is in [113]. Zil-
ber’s program is developed in [182], where Zilber’s Conjecture is also pro-
posed. The negative solution of this conjecture is in [59], and the Hrushovski-
Zilber theorem on Zariski structures in [64].



Chapter 8

Model Theory and Algebraic
Geometry

8.1 Introduction

We have often emphasized in the past chapters the deep relationship between
Model Theory and Algebraic Geometry: we have seen, and we are going to
see also in this chapter that several relevant notions arising in Algebraic Ge-
ometry (like varieties, morphisms, manifolds, algebraic groups over a field
K) are definable objects and are consequently concerned with the model the-
oretic machinery developed in the previous pages. For instance, when K is
algebraically closed, they are w-stable structures.This connection can yield,
and is actually yielding, significant fruits in both Model Theory and Alge-
braic Geometry. On the one hand, several techniques and ideas originated
and employed within the specific setting of Algebraic Geometry can inspire
a more abstract model theoretic treatment, applying to arbitrary classes of
structures. In this sense Algebraic Geometry over algebraically closed fields
can suggest new directions in the study of w-stability: we will describe this
connection in many sections of this chapter. However a parallel analysis
can be developed inside other relevant areas, like differentially closed fields
(and Differential Algebraic Geometry), or existentially closed fields with an
automorphism, and so on.

On the other hand, it is right to observe that the benefits of this relationship
regard not only Model Theory, but also, and relevantly, Algebraic Geome-
try. In particular, we will propose some prominent problems in Algebraic
Geometry, whose solution does profit by Model Theory and its techniques.
This will be the aim of the final section of this chapter.

291
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8.2 Algebraic varieties, ideals, types

Let K be a field, n be a positive integer. We already introduced in the
past chapters the (algebraic) varieties of ™. They are the zero sets of finite
systems of polynomials of K[Z] (where & abbreviates, as usual, (z1, ..., z,)),
and so are definable in . Moreover they form the closed sets in the Zariski
topology of K™; accordingly even the Zariski open or constructible sets are
definable in K.

But the varieties of K™ are also closely related to the ideals of K[Z]. In fact
one can define a function Z from varieties to ideals mapping any variety V'
of K™ into the ideal Z(V') of the polynomials f(Z) in K[Z] such that f(&) =0
for every @ in V. Checking that Z(V) is indeed an ideal is straightforward;
Z(V) is even a radical ideal, in other words it coincides with its radical
radZ(V): if f(%) € K[%] and, for some positive integer k, f*(z) € Z(V),
then f(Z) already occurs in Z(V). In particular Z is not onto.

But there is also another function V in the other direction, from ideals to
varieties, mapping any ideal I of K[Z] (in particular any radical ideal) into
the set V(I) of those elements @ € K™ annihilating all the polynomials of I

V() ={G@eKk": f(@ =0 Vf(& el

Due to the Hilbert Basis Theorem, I is finitely generated, and so V() is a
variety. Indeed, any variety V can be obtained in this way by definition; in
other words V is onto. Notice also that V(I) = V(radI) for every ideal I.
The definition of Z and V trivially implies that, for every ideal I of K[Z],
I(V()) 2 I. As Z(V(I)) is a radical ideal, Z(V(I)) 2 radI. Hilbert’s
Nullstellensatz (see Chapter 3) ensures that, when K is an algebraically
closed field, equality holds: for every ideal I of K[Z],

I(V())=radl.

It is easy to deduce that, if K is algebraically closed, then 7 and V determine
two bijections, the one inverse of the other, between varieties of K™ and
radical ideals of K[Z]. We will still denote these restricted bijections by Z,
V respectively. Notice that both reverse inclusion: for instance if V., W are
two varieties of K", then

I(V)2I(W) <« VCW.

We assume from now on that K is an algebraically closed field. By the way
recall that, under this condition, what is definable in K is w-stable of finite
Morley rank, because K is strongly minimal.
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Let us restrict our attention from radical ideals of K[Z] to prime ideals (those
ideals I in K[Z] such that, if a product of two polynomials of K[Z] lies in I,
then at least one factor polynomial is in I as well). Parallely we consider,
among varieties of K™, the irreducible ones, so the non-empty varieties V
that cannot decompose as a union of two proper subvarieties. It is easy
to check that the previous bijections Z and V between varieties of K™ and
radical ideals of K[Z] link irreducible varieties of K™ and prime ideals of
K[Z]: for every variety V of K™, V is irreducible if and only if Z(V) is prime.
Notice also that Z(0) = K[Z].

A closer relationship links irreducible varieties and prime ideals. For in-
stance, it is known that every non-empty variety V of K" can be expressed
as a finite irredundant union of irreducible varieties, and that this decompo-
sition is unique up to permuting the involved irreducible varieties (which are
consequently called the irreducible components of V); the irredundancy of
the decomposition just means that no irreducible component of V' is included
in the union of the other components.

Specularly, every proper radical ideal I of K[Z] can be expressed as a finite
intersection of prime ideals minimal with respect to inclusion; even this
representation is unique up to permuting the involved minimal prime ideals.
One can also realize that, under this point of view, for every non-empty
variety V in K", the irreducible components of V correspond to the minimal
prime ideals occurring in the decomposition of Z(V').

So far we have summarized some very familiar topics of basic Algebraic
Geometry. Now let Model Theory intervene. As we saw in Section 5.3,
prime ideals of K[Z] - and hence, through them, irreducible varieties of
K™ - directly and naturally correspond to n-types over K. In fact, for an
algebraically closed field K, there are two bijections i and p, one inverse of
the other, between n-types over K and prime ideals of K[Z]. Basically, for
every n-type p over K,

i(p) is the ideal of the polynomials f(Z) € K[Z] such that the formula
f(@) =0isin p,

and, conversely, for every prime ideal I of K[Z],
{f(@)=0: f(&) e I}U{=(9(?) =0) : ¢g(Z) € K[Z] - T}

enlarges to a unique n-type p(I) over K. Accordingly, for every irreducible
variety V of K™ and polynomial f(Z) € K[Z],

[l

fl@=0VieV & f(7) e I(V) & “f(0) = 0" e p(Z(V));
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p(Z(V)) is called a generic type of the variety V. More generally a generic
type of an arbitrary non-empty variety V of K™ is a generic type of an
irreducible component of V. This model theoretic notion of generic type
just corresponds to the idea of a generic point of an irreducible variety V
introduced in Algebraic Geometry: the latter is a point just annihilating the
polynomials in Z(V') and nothing more, and so can be equivalently defined as
a realization of the generic type p(Z(V)). It can be obtained as follows. As
V is irreducible, Z(V) is prime and consequently the quotient ring K[Z]/Z(V)
is an integral domain; K[#]/Z(V) contains a subring {k+Z(V) : k € K}
isomorphic to K and a tuple ¥ + Z(V) annihilating just the polynomials
of Z(V); so the field of fractions K(V) of K[Z]/Z(V) extends K - up to
isomorphism - and includes a generic point @(V) =&+ Z(V) of V.

To conclude this section let us observe what follows.

Proposition 8.2.1 Let n be a positive integer, K be an algebraically closed
field, V be an irreducible variety of K*, O be a Zariski open set of K™
satisfying V.N O # @. Then the generic type p of V contains the formula
((,5’ E 077.

Proof. In fact V — O is a variety properly included in V; consequently
I(V —0O) > I(V). If p does not contain “ € O”, then p has to include
“0 €V — 07, and hence every formula “f(%) = 0” when f(Z) ranges over
I(V —0); accordingly, for some polynomial f(Z) ¢ I(V), “f(¥) = 0” belongs
to p: a contradiction. &

8.3 Dimension and Morley rank

We maintain throughout this section our assumption that K is an alge-
braically closed field. Let V be an irreducible variety of K™. Algebraic
Geometry equips V' with a dimension in the followig way. As we saw in
the last section, there is a minimal field K(V) extending K by a realiza-
tion @(V) of the generic type of V, in other words by a generic point of V.
The dimension of V' (dim(V)) is just the transcendence degree of (V') over
K. This makes sense for an irreducible V', but can be easily extended to
any non-empty variety V of K. In this enlarged setting the dimension of
V (dim(V)) is the maximal dimension of an irreducible component of V.
Finally, the dimension of a constructible non-empty set X dim(X) is the
dimension of the closure of X in the Zariski topology (a non-empty variety).
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On the other side every variety V of K™ (irreducible or not) and, more
generally, every constructible set X C K™ is definable in K; K is algebraically
closed, hence w-stable; accordingly V and X have their Morley rank. We
want to compare the dimension and the Morley rank of V, or X, and to
show that they coincide. We start by examining an irreducible variety V.

Lemma 8.3.1 Let V be an irreducible variety of K™, p be its generic type.
Then dim(V) = RM(p).

Proof.  p is realized by @(V) in K(V). So the Morley rank of p equals
the transcendence degree of (V) over K (see Section 6.1), and hence the
dimension of V. &

Lemma 8.3.2 Let V, W be two irreducible varieties of K", p, q denote
their generic types. If V. C W, then RM (p) > RM(q).

Proof. V C W implies Z(W) D Z(V) and hence
(x) for every f(Z) € K[z], if f(@(V)) =0, then f(@(W)) =0 as well.

In particular the transcendence degree of (V) over K is not smaller than
that of K(W) over K, and so RM(p) > RM(q). Now assume RM(p) =
RM(g), then K(V), K(W) have the same transcendence degree over K.
Recall that K(V) = K(d(V)), and similarly for W. (%) implies that, if
Ty ooyt < 1 oand ay; (W), ..., a;,(W) form a transcendence basis of
K(W) over K, then a;, (V), ..., a;,(V) are algebraically independent over
K and so form a transcendence basis of (V) over K. Accordingly one
can define an isomorphism of Ky = K(a;, (W), ..., a;,,(W)) onto Ky =
K(ay(V), ..., a;,(V)) fixing K pointwise and mapping a;(W) into a;(V)
for every ¢ = 1y, ..., ;. This isomorphism can be enlarged in the usual way
to an isomorphism between Kw[Z] and Ky [Z]. By using (x) once again, one
sees that, for every j = 1, ..., n with j # 4, ..., ¢y, the minimum poly-
nomial of a;(W) over Ky must correspond to the minimum polynomial of
a;(V) over Ky in this isomorphism. Accordingly we obtain an isomorphism
of K(W) onto K(V) fixing K pointwise and mapping a;(W) into a; (V) for
every j =1, ..., n. But @(V) realizes p and @(W) realizes ¢, whence p = ¢
and, in conclusion, V=W. &

Now we can show that dimension and Morley rank coincide for an irreducible
variety V.
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Theorem 8.3.3 Let V be an irreducible variety of K™. Then RM(V) =
dim(V), GM(V) = 1.

Proof. Let p be the generic type of V. p is the only n-type over K
containing the formula “0 € V7 that defines V, and satisfying V(i(p)) =
V. If ¢ is another n-type over K containing “7 € V”, then i(q) D i(p),
whence V(i(q)) C V(i(p)) = V. By Lemma 8.3.2, RM(¢q) < RM(p). Then
RM(V) = RM(p) and GM (V) = 1. By Lemma 8.3.1, RM(V) = RM(p) =
dim(V). &

Corollary 8.3.4 Let V be an irreducible variety of K™ (with the relative
topology of the Zariski topology). If O is a non-empty open set of V, then
RM(O) = RM(V). If W CV is a closed set of V, then RM(W) < RM (V).

Proof. The former claim follows from Proposition 8.2.1 and the fact that,
if p is the generic point of V, then RM(p) = RM (V). At this point the
latter claim is a consequence of the fact that V' has Morley degree 1. &

Corollary 8.3.5 Let V be a non-empty variety of K™. Then RM(V) =
dim(V), furthermore GM (V) equals the number of the irreducible compo-
nents of V. having the same dimension as V.

Proof. 'V is the (finite) union of its irreducible components. Then the
Morley rank of V' coincides with the maximal rank of its components. So by
Theorem 8.3.3 and the definition of dim (V) RM (V) = dim(V). Moreover,
if Vo and V; are two different irreducible components of maximal rank of V,
then Vo NV} is a closed subset of V; properly included in V. By Corollary
8.3.4, RM (VonVi) < RM(Vp). This implies that GM (V) equals the number
of the irreducible components of maximal rankin V. &

Dimension and Morley rank coincide even for constructible sets X C K™.
Recall that, owing to Tarski’s quantifier elimination Theorem, constructible
just means definable in K. Furthermore a constructible X C K" can be
represented as a union of finitely many sets, which are in their turn the
intersection of a variety W - so a Zariski closed set, the zero set of a finite
system of equations - and a Zariski open set O - the set of the elements of
K" satisfying finitely many inequations

go(%) #0,...,95(Z) # 0
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with go(Z), ..., 9s(%) € K[Z], or also, equivalently, a single inequation

[Hei@#0 —.

i<s
An open set defined by a unique inequation is called principal.

Corollary 8.3.6 Let X C K™ be constructible (hence definable). Then
RM(X) = dim(X). Moreover, if X denotes the Zariski closure of X, then
RM(X)=RM(X) and RM(X - X) < RM(X).

Proof. We know dim(X) = dim(X), and dim(X) = RM(X) (by Corollary
8.3.5). So the former claim is done if RM(X) = RM(X). As observed
before, X a finite union of sets of the form W N O where W is a non-
empty variety of K™ and O is open in K". As any non-empty variety of
K™ decomposes in its turn as the union of its irreducible components, we
can assume that every variety W occurring in the above representation of
X is irreducible. By Corollary 8.3.4, RM(W N O) = RM(W) = dim(W).
Consequently the Morley rank of X (that equals the maximal rank of the sets
W N O) coincides with the Morley rank of X. This proves the former claim.
But, by Corollary 8.3.4 once again, RM(WNO) < RM(W) for W and O as
before and W irreducible. So, in conclusion, RM (X — X) < RM(X). &

8.4 Morphisms and definable functions

KC still denotes an algebraically closed field. Let n, m be positive integers, V/,
W be two algebraic varieties in K", K™ respectively. Algebraic Geometry
defines what a morphism from V to W is: it is a function f from V into
W such that, for every 7 = 1, ..., m, the composition f; of f and the ¢-
th projection of K™ onto K is a polynomial map. One easily sees that a
morphism is a continuous function with respect to the topology induced on
V and W by the Zariski topology.

But what is remarkable for our purposes is that a variety morphism is always
definable in K. For instance, if f is, as above, a morphism from V to W,
then “f(7) = &” is defined by the formula

“,D’ e V” /\ “,lz" E W” /\ A “fz(,l_)’) — wi”.
1<i<m
Conversely what can we say about an arbitrary definable function f in K?

Certainly both the domain and the image of f are definable sets. Further-
more, if the image of f is a subset of K™, then, for every ¢ = 1, ..., m,
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the composition f; of f and the i-th projection of K™ onto K is definable.
So we are restricted to characterize definable functions from a subset of K"
into K, for some positive integer n. In this framework one can observe what
follows.

Theorem 8.4.1 Let f be a definable function from K™ into K. Then there
are a non-empty open subset O of K", a rational function r and (when K
has a prime characteristic) a positive integer h such that

o ifcar K = 0, then f equals r on Oy

o if car K is a prime p and Fr denotes the Frobenius map from K to
K (that mapping any a € K into Fr(a) = a), then f coincides with
Fr=h.r onO.

Just to underline the power of this result, let us recall that, owing to Corol-
lary 8.3.4, every non-empty open subset O of K" has the same Morley rank
n as K", while the Morley rank of K™ — O is smaller (for, K" is an irreducible
variety of rank n). Secondly, it is worth recalling the general fact that, if f
is a function from a variety V of K™ into K and, for every @ € V, there is
an open neighbourhood O of @ such that f equals some rational function in
O NV, then f can be globally expressed as a polynomial function.

Now let us show Theorem 8.4.1.

Proof. Let Q be the universe of the theory of K, t1,...,t, € Q be alge-
braically independent over K. As f is K-definable, any automorphism of
Q fixing K and ¢y, ..., t, pointwise acts identically also on f (t) (£ denotes
here the tuple (t1, ...,t,)). Whence f(#) is in del(K N ¢). So, if K has
characteristic 0, then

f@=r@

for some suitable rational function r with coeflicients in K, while, if K has
prime characteristic p, then

£@) = Prte (e(@)

where r is as before and h, is a positive integer. Put s = r when car K =0,
s = Fr~ .r otherwise. The elements in K™ where f coincides with s form a
set X definable in K (just as f and s), and the formula “s(%) = f(¥)” defining
it is in the type of t over K. As ti, ..., L, are algebraically independent
over K, this type has Morley rank n. Hence RM(X) > n. As X C K", the
Morley rank of X must equal n, and RM (K™ — X) < n. It follows that the
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Zariski closure of K™ — X has Morley rank < n, and so its complement is
an open set O in X of Morley rank n where f =s. &

8.5 Manifolds

Throughout this section K still denotes an algebraically closed field and » a
positive integer. We deal here with (abstract) manifolds in K™ and we show
that they are definable objects. First let us recall their definition.

Definition 8.5.1 A manifold of K" is a structure V. = (V,(V}, f;)i<m)
where m is a natural and

e V is a subset of K™ (called atlas);
o Vo,..., Vi, are subsets of V, and V is the union Ui<m Vis

o for every + < m, f; is a bijection of V; onto a Zariski closed set U; (a
coordinate chart of the atlas V);

o fori,y <mandi#j, f;(V;NV;)=U,; is an open subset of U;;

o fori,j<mandi+#j, fi; = fi- fj'1 (a bijection between U;; and Us;)
can be locally expressed as a tuple of rational functions.

Manifolds include several familiar examples.

Examples 8.5.2 1. Every algebraic variety (so every Zariski closed set)
V of K™ is a manifold, provided we set m = 0 and choose Uy = Vg =V
as the only coordinate chart of the atlas; the resulting manifold is called
affine.

2. Let O be an open principal set of K™; O is defined by a single inequa-
tion —“g(¥) = 0”; notice that the formula “g(?) - v,41 = 1”7 defines
a closed V in K1, and it is easy to control that the projection of
K™ onto K™ by the first n coordinates determines a bijection f of
V onto O. Accordingly (V, (V, f7')) is a manifold with the only chart
O. Such a manifold is called semiaffine.

3. Also the projective space P*(K) can be equipped with a manifold
structure. In fact, view P™(K) as the quotient set of K™t! — {0}
with respect to the equivalence relation ~ linking two non zero tuples
£ = (zo, 1, ..., T,) and ¥ = (yo, Y1, - -, Yn) in K™ if and only
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if there is some k € K such that z; = ky; for every ¢+ < n. For
F e Kt — {0}, let (zo: 1 :...: ,) be the class of & with respect
to this relation. Moreover, for i < n, let

e A; denote the set of the elements (zo : z1 : ... : ,) in P*(K)
such that z; # 0,
e f; be the function of A; into K™ mapping any (z¢ : 21 :...: 2Zy)
in (% Tizl Zutl Tn
iR ulia-a SRR B

It is straightforward to check that (P*(K), (A, fi)i<n) is a manifold.

Notice that affine and semiaffine varieties are definable -even as structures-
in K. Moreover P™(K) is interpretable in K both as a set (since the relation
~ is (-definable) and as a manifold. But algebraically closed fields uniformly
eliminate the imaginaries, so we can view P (K) even as a definable structure
in K.

More generally one can show

Theorem 8.5.3 Let V = (V,(V;, fi)i<m) be a manifold of K™. Then 'V is
a structure definable in K.

Proof. As algebraically closed fields have the uniform elimination of imag-
inaries, it is sufficient to show that V is a structure interpretable in . In
fact, every map U; of the atlas V' (¢ < m) is definable in K. V can be re-
garded as the quotient set of the disjoint union of the charts U; (with ¢ < m)
with respect to the equivalence relation identifying U;; and Uj; via f;; for
every ¢ < j < m; moreover, for every ¢ < m, V; can be definably recovered
as the image of U; by the projection into the quotient set V, and f; is given
by the inverse function of this projection (restricted to U;). So our claim
is proved if we show that, for every i, j < m with 7 # 7, f;; is definable.
But f;; can be locally expressed as a rational function, and its domain Uj;
is an open subset of U; and accordingly can be written as a finite union
of principal open sets. So the theorem is a direct consequence of the next
result.

Lemma 8.5.4 Let O be a principal open of K", and let ¢(Z) € K|[Z] be a
polynomial satisfying O = {@ € K™ : q(a@) # 0}. Let f be a function of O
into K™ which can be locally expressed as a rational function. Then there
are a polynomial r(Z) € K[Z] and a positive integer m such that f(d@) =
r(@)/q™ (&) for every @ € O. In particular f is definable.
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Proof. We know that O is canonically homeomorphic to the closed subset
V of K"*! defined by ¢(%) - v,41 = 1. Under this perspective f can be
replaced by the function f* of V into K mapping any tuple (@, ap41) € V
in f(&@). Even f* can be locally expressed as a rational function, and hence
as a polynomial function in (Z, z,41) (by the general fact we recalled before
the proof of Theorem 8.4.1). So there is some polynomial s(Z, p41) €
K|[Z, 2,41] such that

(@, (¢(@)™") = s(a, (¢(a)™") VaeQ.
Let m denote the degree of s(&, 2,,41) with respect to z,4+1. Then there is
some polynomial r(%) € K[Z] such that, for every @ € O,
r(@)

£@) = 1@ @) ) = o

3
Notice that a manifold, when regarded as a definable structure, may lose
part of its geometric features. For instance the Zariski closed subset of K2

defined by

561'(5132—1):.'132'(.'122—1):0
is an affine manifold, formed by the line z3 = 1 and the point (0,0), and
hence is the disjoint union of two closed sets. However, consider the manifold
given by the projective line P!(K) (as seen in Example 8.5.2, 3). From the
definable point of view, its atlas has two charts, each of them is a line and
these lines coincide except a single point. So the resulting manifold is again
the union of aline {(1:2y) : #; € K} and a point (0 : 1), and as a definable
object is quite similar to the previous one. But P!(K) is not the union of
two distinct closed sets.
On the other side, it is noteworthy that every definable subset X C K"
can be easily equipped with a manifold structure. In fact X decomposes
as a union U;<,, (Vi N O;) where m is a natural and, for every i < m, V;
is a Zariski closed of K™ and O; is a principal open set, so that V; N O; is
canonically homeomorphic to a closed U; of K"*!, as observed before. On
this basis, it is easy to build a manifold structure on X (with Uy, ..., Uy,
as atlas maps).
Furthermore a manifold V, viewed as a definable structure, is w-stable.

8.6 Algebraic groups

A basic example of algebraic group over a field K is the linear group of
degree n over K GL(n,K), where n is a positive integer. Observe:
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e GL(n, K) is a principal open of IC”2, because it is defined by the dis-
equation —(det(¥) = 0); hence GL(n,K) is canonically homeomorphic
to the Zariski closed of A™*+! given by the equation det(?) -v,241 = 15

e the product operation - in GL(n,K) is a morphism of varieties and so
is definable.

Accordingly the group GL(n,K) is a structure definable in . Moreover, if
we assume K algebraically closed, GL(n,K) is an w-stable group of finite
Morley rank.

Also linear algebraic groups are examples of algebraic groups. Recall that a
linear algebraic group over a field K is a closed subgroup G of some linear
group GL(n,K). In particular a linear algebraic group G is a variety over
K, hence is definable (as a group) in K and is w-stable of finite Morley rank
when K is algebraically closed. Under the last assumption, we can say even
more: indeed, for an algebraically closed K, the linear algebraic groups are
just those subgroups of the linear groups GL(n, K) which are definable in
K. Let us see why.

Theorem 8.6.1 Let K be an algebraically closed field, n be a positive in-
teger, G be a subgroup of GL(n, K). Then G is closed if and only if G is
definable (in K).

Proof. Clearly, if G is closed -in other words G is a variety-, then G is
definable. Conversely suppose that G is a definable group; let G be the
closure of G with respect to the Zariski topology, and let @ be an element of
G. Every open set of K containing a overlaps G. Consequently, for b € G,
every open O including ba overlaps G; in fact, if ba € O, then a € 4710;
b=10 is open because the left multiplication by b is a morphism of varieties,
and so is continuous; whence (b~'O)NG # ) and so O NG # 0; as b € G,
bG is just G, hence O NG # @. In conclusion, for every a € G, Ga C G. If
there is any a € G — G, then Ga C G is disjoint from G and has the same
Morley rank as G. So RM (G — G) > RM(G), which contradicts Corollary
8.3.6. Hence G C G and G is closed. &

As already said, linear groups and linear algebraic groups exemplify algebraic
groups. In fact an algebraic group over a field K is defined as a manifold
over K carrying a group structure whose product and inverse operations are
(manifold) morphisms.

Of course, understanding this definition preliminarily requires to state what
a product of two manifolds is, and to realize that this product is a manifold
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as well; moreover we should specify what a manifold morphism is. We omit
here the details. The former point is comparatively simple and natural to
clarify, while the concept of morphism is more complex to introduce; but,
once this is done, one can easily show that manifold morphisms are definable
(as it is reasonable to expect).

Hence, if K is algebraically closed, then every algebraic group G over K is a
structure definable in K and so w-stable of finite Morley rank.

As already said, linear algebraic groups are algebraic groups; in fact they
just correspond to affine (or also semiaffine) manifolds. And indeed Theorem
8.6.1 can be regarded as a particular case of a general result ensuring that
every group definable in an algebraically closed field K is an algebraic group
over K up to definable isomorphism. This fact was shown by Hrushovski
(and Van den Dries), who observed that it is implicitly contained in some
results of A. Weil. So it is commonly quoted as the Hrushovski-Weil Theo-
rem.

Theorem 8.6.2 (Hrushovski-Weil) Let K be an algebraically closed field
and G be a group definable in K. Then G is tsomorphic to an algebraic
group over K by a function definable in K

Let us spend some more words about the connection between algebraic
groups and w-stable groups. We have seen that every algebraic group over
an algebraically closed field K is w-stable of finite Morley rank. Of course
w-stable groups include further relevant examples: for istance, any divisible
torsionfree abelian group - so basically any vectorspace over Q - is w-stable,
and even strongly minimal. More generally, it was shown by Angus Mac-
intyre that the w-stable (pure) abelian groups are just the direct sums of a
divisible abelian group and an abelian group of finite exponent.

However the techniques used in the investigation of abelian groups do not
seem appropriate to handle w-stable groups. On the contrary, algebraic
groups and their theory fit very well for w-stable groups. This is not sur-
prising. In fact, even neglecting the similarities we emphasized in the last
sections between varieties and definable sets, or dimension and Morley rank,
and so on, we can recall that several notions introduced in Chapter 6 for
studying w-stable groups clearly come from Algebraic Geometry. In this set-
ting, it is worth mentioning the following conjecture, proposed by Cherlin
in 1979.

Conjecture 8.6.3 (Cherlin) Let G be an w-stable group of finite Morley

rank. If G is simple, then G is an algebraic group over an algebraically
closed field.
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Cherlin’s Conjecture is still an open question. We should also point out that
some remarkable progress in studying w-stable groups of finite Morley rank
has been obtained by using ideas and techniques coming from finite groups,
in particular from the classification program of finite simple groups.

8.7 The Mordell-Lang Conjecture

Every promise must be honoured. And consequently, after emphasizing
so many times that Model Theory does significantly apply to Algebraic
Geometry, here we are to propose one application (indeed a beautiful and
deep application, in our opinion): Hrushovski’s proof of a question of Lang
usually called Mordell-Lang Conjecture. Why is this solution noteworthy?
Basically because it is the very first proof of this conjecture, at least in the
general form we will state in 8.7.6 below; but also, and mainly, because it
largely involves Model Theory (strongly minimal sets, Zariski structures,
differentially closed and separably closed fields, as well as the material of
this chapter).

So let us introduce the Mordell-Lang Conjecture, and briefly sketch its his-
tory. We assume some acquaintance with Algebraic Geometry. The question
originally rose within Diophantine Geometry, which deals with the roots of
systems of polynomials over the rational field Q or also over a number field
F (that is an extension F of Q of finite degree). This was the setting where
Mordell raised in 1922 the following problem.

Conjecture 8.7.1 (Mordell) Let F be a number field, X be a curve of genus
> 1 over F. Then X has only finitely many F-rationals points.

Incidentally recall that a curve X of genus 1 is an elliptic curve, and so is
naturally equipped with a group structure.
In a more abstract perspective, on can observe what follows.

Remarks 8.7.2 1. A curve X of genus > 1 over F is a Zariski closed
subset of its Jacobian J(X).

2. A theorem of Riemann says that the Jacobian J(X) is an abelian
variety (that is a connected complete algebraic group); by the way,
every abelian variety is actually an abelian group.

3. A theorem of Mordell and Weil ensures that, if A is an abelian variety
in the complex field defined over our number field F, then the set G
of the F-rational points in A is a finitely generated subgroup.
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So Mordell’s Conjecture can be restated more generally as follows.

Conjecture 8.7.3 Let A be an abelian variety of C, X be a curve of C
embedded in A, G be a finitely generated subgroup of A. Then either X is
an elliptic curve, or X NG is finite.

A similar question was raised by Manin and Mumford in 1963.

Conjecture 8.7.4 (Manin-Mumford) Let A be an abelian variety of C, X
be a curve of C embedded in A, G = Tor A be the torsion subgroup of A.
Then either X is an elliptic curve, or X NG is finite.

Actually the original form of Manin-Mumford Conjecture said that, if X is
a curve of genus > 1 and A = J(X) is its Jacobian, then X NTor A is finite.
But the more general statement given in 8.7.4 is easily obtained as in the
Mordell case. :

A possible unifying approach covering both the Mordell and the Manin-
Mumford problem uses the notion of group of finite type: in our charac-
teristic 0 framework, this can be introduced as an abelian group G with a
finitely generated subgroup S such that, for every g € GG, there is some posi-
tive integer m for which mg is in S. In fact, every finitely generated abelian
group G is of finite type (just take S = ), and every torsion group is of
finite type as well (via S = {0}). Accordingly the conjectures of Mordell
and Manin-Mumford can be regarded as two particular cases of the following
more general question.

Conjecture 8.7.5 Let A be an abelian variety over C, X be a Zariski closed

subset of A, G be a subgroup of finite type of A. Then X NG is a (possibly
empty) finite union of cosets of subgroups of G.

This statement was formulated by Lang in the sixties, and is usually called
the Mordell-Lang Conjecture. As underlined before, it implies a positive
answer to Mordell’s Conjecture: to see this, just take a curve Xg of genus
> 1 over a number field 7, embed X = X{(C) into its Jacobian A = J(X)
and apply the Mordell-Weil Theorem ensuring that the group G of F-rational
points in A is finitely generated. Accordingly decompose Xo = X NG as a
finite union of cosets ¢ + H where a € G and H is a subgroup of G. Take
a coset a 4+ H. Its closure a + H is included in Xo - an irreducible set of
dimension 1 -. Consequently, if @ + H is infinite, then X just equals o + H
and so inherits a group structure, and genus < 1. This means that, if the
genus of Xy is > 1, then every coset a + H must be finite, whence X itself
is finite.
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These are the questions we wish to deal with. Now let us report about their
solution. Mordell’s Conjecture was proved by Faltings in 1983. The echoes
of this result spread far and wide, also because it implied an asymptotic so-
lution of Fermat’s Last Theorem: in fact, by applying Mordell’s Conjecture
(or, more precisely, Falting’s Theorem) to the projective curve over Q

for » > 3, one gets only finitely many zeros for every n.

Also the Manin-Mumford Conjecture was positively answered by Raynaud
in 1983. The Mordell-Lang Conjecture (as stated before) was solved just a
few years ago: first Faltings handled the particular case when the group G is
finitely generated, and then McQuillan provided a general positive solution,
using Falting’s work and other contributions of Hindry.

So far we have limited our analysis essentially to the characteristic 0, and
to number fields. What can we say when passing to function fields, or
prime characteristics? First let us deal with function fields. Still working
in characteristic 0, Manin had proved in the sixties the following analogue
of Mordell’s Conjecture in this setting: if K is a function field over an alge-
braically closed field K¢ (of characteristic 0) and X is a curve of genus > 1
over K, then either X does not descend to Ko (in which case X (K) is finite),
or X is isomorphic to a curve X defined over Ky (and all but finitely many
points of X (K) come from elements of X (Ko)).

When considering prime characteristics p, even the notion of group G of
finite rank must be rearranged. In fact, what we have to require now is that
G has some finitely generated subgroup S such that, for every g € G, there
exists a positive integer m prime to p satisfying mg € S.

However 8.7.5 - as it was stated before - does not hold any more. In fact A
itself is a torsion group without elements of period p; but there may exist
some curves of A which are not finite unions of cosets of subgroups of A.
A reasonable restatement of 8.7.5 in the general setting, for an arbitrary
characteristic (0 or prime), is the following.

Conjecture 8.7.6 Let Ky < K be algebraically closed fields, A be an abelian
variety over K having trace 0 over Ko (this means that A has no non-zero
abelian subvarieties isomorphic to abelian varieties over Ko). If X is a
Zariski closed subset of A and G is a subgroup of A of finite rank, then
X NG is a (possibly empty) finite union of cosets of subgroups of G.

In 1994 A. Buium proved this form of the Mordell-Lang Conjecture in char-
acteristic 0.
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Theorem 8.7.7 (Buium) 8.7.6 is a true statement when Ko < K are alge-
braically closed fields of characteristic 0.

What is noteworthy for our purposes in Buium’s line of proof is his use
of Differential Algebraic Geometry; indeed Differential Algebra promptly
recalls Model Theory and its treatment of differentially closed fields. So
it is right to spend a few words to describe Buium’s strategy: one equips
K with a derivation D whose constant field is just Ko, one embeds G in a
differential algebraic group G; and, finally, one shows by analytic arguments
that X NG is a finite union of cosets of G; and one transfers this property
to G.

But it was Ehud Hrushovski who first proved the Mordell-Lang Conjecture
in its more general form, in any characteristic, following the initial Buium
approach and then using model theoretic methods and, above all, Zariski ge-
ometries, differentially closed fields in characteristic 0 and separably closed
fields in prime characteristic, in addition to Morley rank, elimination of
imaginaries and the definability results of this chapter. It should be empha-
sized that no alternative general proof of the conjecture is known; and indeed
Hrushovski proposed, some time later, a new model theoretic proof of the
Manin-Mumford Conjecture, based on a crucial use of existentially closed
fields with an automorphism (in particular Zilber’s Trichotomy in AC'F Ay),
and getting in this way nice effective bounds of the number of involved cosets
in a decomposition of X NG. Coming back to the Mordell-Lang conjecture,
we can say

Theorem 8.7.8 (Hrushovski) 8.7.6 is a true statement in any characteris-
tic.

This concludes our short and lacunose history of Mordell-Lang, Mordell and
Manin-Mumford Conjectures. Which is our purpose now? Certainly we do
not aim at providing a complete report of Hrushovski’s proof: this would
require many pages and serious efforts; moreover there do exist several nice
expository papers and books wholly devoted to a detailed exposition (some
of them are mentioned among the references at the end of this chapter).
On the other hand, we would like to spend a few words about Hrushovski’s
approach, just to explain where Model Theory intervenes and why it plays
a decisive role. With this in mind, we will sketch Hrushovski’s proof in the
characteristic 0 case, where some old friends of ours - differentially closed
fields - are involved. Then we will shortly comment the prime character-
istic case, where differentially closed fields are profitably replaced by the
separably closed ones.
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So take two algebraically closed fields Ko < K of characteristic 0. Let A be
an abelian variety over K with trace 0 over Ko, X be a Zariski closed set
in A, G be a subgroup of A of finite rank. Our claim is that X NG is a
(possibly empty) finite union of cosets of subgroups of G.

(a) Without loss of generality one assumes that K has infinite transcen-
dence degree over Ko. Then one equips K with a derivation D making
K a differential field, and even a differentially closed field, whose con-
stant subfield C'(K) coincides with K. Just to fix our symbols, let L
denote from now on the usual language for fields, and L' = L U{D}
that of differential fields. So K¢ is strongly minimal both as a struc-
ture of L and L': in fact D is identically 0 on Ky and so adds no
definable objects to the pure field Kg. On the contrary, K is a strongly
minimal structure in L, as an algebraically closed field, but it is not
any more as a differentially closed field; indeed K, although w-stable,
has Morley rank w in L’. Notice also that, owing to what we saw in
the past sections, the abelian variety A is definable (even in L) in K.

(b) At this point one recalls a general result of Manin on differential
fields: the derivation D yields a group homomorphism g (definable in
L") from A onto (K1)?, where K is the additive group of K and d is
the dimension of A. The kernel of y is definable in L’ and has a finite
Morley rank. Now we deal with G. As G has finite rank and K% has
no nonzero torsion elements, the group p(G) is finitely generated and

there are go, ..., gm € K such that
wGCD Q- 6CD Ko-gi
<m i<m

Let H denote Y ,.,, Ko-g;- H is definable (in L') and has finite
Morley rank. Hence u~!(H) is a subgroup of A extending G; moreover
p~(H) is definable (in L’) and has finite Morley rank because both H
and the kernel of p are definable of finite Morley rank. Without loss
of generality for our purposes, we can replace ¢ by u~'(H). In fact,
if X Np~1(H) is a finite union of cosets of subgroups of y~1(H), then
the same can be said about X NG and G. So we can assume that G
itself is definable and has a finite Morley rank.

Now, just to explain Hrushovski’s approach in a more accessible way,
let us restrict a little more our framework to the particular case when X
is an irreducible curve (the setting of the original Mordell Conjecture).
If X NG is finite, then we are done. Otherwise X NG - as a definable
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set of finite Morley rank - contains a definable strongly minimal subset
S. As usual, S can be viewed as a strongly minimal structure.

(c) Now we use the result of Hrushovski and Sokolovic saying that Zil-
ber’s Trichotomy Conjecture holds for strongly minimal sets definable
in differentially closed fields of characteristic 0. In fact, these strongly
minimal sets are Zariski structures, and so obey the Hrushovski-Zilber
Theorem. This applies to S, of course. But what Hrushovski also
points out is that .S, as a Zariski structure, is locally modular. In fact,
as S is strongly minimal, it suffices to exclude finitely many points
from S to get an indecomposable set. So there is no loss of generality
in assuming that S itself is indecomposable, and consequently each
translate S with & € G is also indecomposable. Up to replacing S
by b~1S for a suitable & € G we can even assume that the identity
element 15 of G is in S. Hence we are just in a position to apply Zil-
ber’s Indecomposability Theorem; accordingly, one deduces that the
subgroup generated by S in G is definable, and indeed every element
in this subgroup can be expressed as a-c¢™! with @ and cin S. Hence S
interprets an infinite group and so, as a Zariski structure, it cannot be
trivial. This means that either S is locally modular or S interprets an
infinite (algebraically closed) field. We have to exclude the latter op-
tion. To obtain this, one uses a result of Sokolovic already mentioned
in 7.10 and saying what follows.

(d) An infinite field definable in a differentially closed field of charac-
teristic 0 and having finite Morley rank is isomorphic to the constant
subfield by a definable function.

Recall that, owing to the elimination of imaginaries, there is no dif-
ference between definable or interpretable within differentially closed
fields. So, if S interprets any infinite field, then it defines even C'(K) =
Ko up to an L’-definable isomorphism. Consequently the subgroup
that S generates is isomorphic to some group Gy L'-definable in Ko by
a function f also definable in L'. As D = 0in Koy, Go is definable even
in L (just as f and f~!). Then we can apply the Hrushovski-Weil
Theorem and deduce that Gy is an algebraic group over Ky up to an
L-definable isomorphism. At this point one checks that Gp defines an
abelian subvariety of A in K, which contradicts the hypothesis that A
has trace 0 over Kg. In conclusion, S must be locally modular.

Now S is of the form (a + L) — {bo, ..., bt} for some strongly min-
imal subgroup L of G and suitable a, by, ..., b; € G. X is Zariski
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closed, and so contains the closure a+ I, of S as well. Hence X equals
a + L and consequently inherits a group structure, as Mordell’s Con-
jecture requires. This concludes our outline of Hrushovski’s proof in
characteristic 0 (when X is a curve).

But, as already said, the real novelty of Hrushovski’s Theorem concerns
prime characteristics p. So it is worth spending some words also on this case.
The plan of the proof is similar, but requires some necessary rearrangements.
In particular, one can avoid to refer to differentially closed fields and directly
handle separably closed fields (with no derivation).

(a) First one replaces with no loss of generality K by a separably closed non
algebraically closed extension having finite degree over KP. Observe
that now the theory of K is not w-stable, although it is stable.

(b) The role of the kernel of u is now played by N,p"”A, which is not a
definable set, but is the intersection of infinitely many definable sets.

The other crucial points in the proof are:

(c) any strongly minimal structure definable in K is still a Zariski structure
(so Zilber’s Trichotomy holds);

(d) afield definable in K and having Morley rank 1 is isomorphic to Ko by
a definable function (a result of M. Messmer).

For more details, look at the references quoted below.

8.8 References

The connection between Model Theory and Algebraic Geometry is clearly
explained by Poizat’s book [131] (recently translated in English [135]): this
is a very rich reference on this matter. In particular it includes a proof
of Hrushovski-Weil Theorem 8.6.2. Cherlin’s Conjecture was raised in [24].
The classification of w-stable groups was given by Macintyre in [89]. Groups
of finite Morley rank are examined in [15].

Now let us deal with Mordell-Lang Conjecture and Manin-Mumford Conjec-
ture. A geometrical introduction can be found in Lang’s book [80]; a short
but resonably exhaustive history of these two questions is also in the recent
Pillay paper [128]. Pillay’s book [126] explains the main model theoretic
techniques involved in Hrushovski’s approach. Hrushovski’s original proof
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of the Mordell-Lang Conjecture is in [60]. A detailed exposition is in the
book [16]. [50] and [127] are shorter surveys, both very readable.

As already said, Hrushovski’s proof in characteristic 0 case is based on some
preliminaries concerning differentially closed fields: they can be found in
[155] and [62]. For a prime characteristic, separably closed fields are enough:
the basic preliminaries are described in [115].

Finally, let us deal with Manin-Mumford Conjecture: Hrushovski’s proof is
now in [61]. It is based on the model theory of ACF'A, as developed in [20]
and [21].



Chapter 9

O-minimality

9.1 Introduction

The last part of this book is devoted to o-minimal structures. As we saw
in the past chapters, they are the infinite expansions M = (M, <, ...) of
linear orderings such that the subsets of M definable in M are as trivial as
possible, and restrict to the finite unions of singletons and open intervals,
possibly with infinite endpoints +oo (equivalently to the finite unions of
open, closed, ... intervals in the broad sense including half-lines and the
whole M).

O-minimal structures are not simple according to the definition provided in
Chapter 7, just because they define and even expand infinite linear orders;
consequently no good independence system can be developed inside them,
and they are not classifiable in Shelah’s sense. Despite this, and just owing
the relative triviality of their 1-ary definable sets, one can see that they enjoy
several relevant model theoretic properties and, among them, a satisfactory
notion of independence with a related dimension partly resembling Morley
rank .

Furthermore, they include a lot of noteworthy algebraic examples. Indeed we
have already seen that the ordered field of reals (R, +, -, —, 0, 1, <), as well
as any real closed field, is o-minimal; discrete or dense infinite linear orders,
like (N, <), or (Z, <), or (Q, <), or (R, <), are o-minimal as well; and one
can show that even divisible ordered abelian groups, such as (Q, +, 0, <)
and (R, +, 0, <), are o-minimal.

In particular, considering the order of the reals, or expanding it by addition,
or addition and multiplication together, yield o-minimal structures. On the
other side, there do exist some expansion of (R, <) which are not o-minimal.

313
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For instance, extend the order of reals by the sinus function sin; in this
enlarged structure, Z -a denumerable set of isolated points- gets definable
(by sin mv = 0), and so o-minimality gets lost. Of course the same argument
applies to cos.

This chapter has a twofold aim. On the one hand, we will provide an ab-
stract structure theory for o-minimal models M. The starting point will
be just the definition of o-minimality, and the consequent classification of
the definable subsets of M. But we will see that, on these seemingly poor
grounds, one can develop a significant theory, including a nice character-
ization of definable subsets of M™ for every positive integer n, as well as
of definable functions from M™ into M. This will also lead to the already
recalled notion of dimension, satisfying several remarkable properties resem-
bling those of Morley rank in w-stable theories. Actually there is a good deal
of similarity between the o-minimal framework and the w-stable setting, just
in these dimensions, but also in definable groups and in other matters. We
will emphasize these connections in Sections 9.2-9.6. In particular Section
9.4 and Section 9.5 will prove, among other things, the already mentioned
and noteworthy fact that o-minimality, unlike minimality, is preserved by
elementary equivalence: if M is an o-minimal structure, then every model
of the theory of M is o-minimal as well. Accordingly a complete theory
T is said to be o-minimal when some (equivalently every) model of T is
o-minimal. The subsequent section 9.6 will treat definable groups, definable
manifolds, and so on, in o-minimal structures.

On the other side, we will propose other relevant examples of o-minimal
structures (to which the previous general theorems apply). This will be the
theme of Section 9.7, where we will see that certain expansions of the real
field by familiar functions, such as exponentiation, or suitably restricted an-
alytic functions, are o-minimal. Here o-minimality largely overlaps real alge-
braic geometry and real analytic geometry, both in acquiring techniques and
constructions from the geometric framework towards a general and larger
spectre of applications, and in providing a new light and in opening new
perspectives within the geometrical setting itself.

The subsequent section 9.8 will deal with some variations on the o-minimal
theme, most notably with a notion of weak o-minimality, enlarging the o-
minimal setting and intensively studied in the latest years.

At last, the final section 9.9 will introduce very shortly the quite recent and
attractive work of A. Onshuus about a notion of independence enlarging
both forking independence in simple theories and algebraic independence in
o-minimal theories towards a common general framework.

Now a few historical notes. O-minimality began its life in the eighties; its
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origin refers to a classical problem of Tarski, asking whether the real field,
expanded by the exponential function z — €%, still has a decidable theory.
As we know, decidability closely overlaps definability, so a deeply related
question is what is definable in (R, +, -, —, 0, 1, <, exzp): is the theory
of this structure quantifier eliminable, or model complete? This was the
scenery where L. Van Den Dries introduced o-minimality at the beginning
of the eighties. But who gave a considerable impulse to this notion were
A. Pillay and C. Steinhorn, who proved the basic structure theorems on
o-minimal structures and greatly developed their abstract theory. In 1991
A. Wilkie partly solved Tarski’s Conjecture, showing that the theory of
(R, +, - —, 0,1, <, exp) is model complete, and even o-minimal (as we
will see in 9.7, decidability is still an open question, involving a deep number
theoretic problem, usually known as Schanuel’s Conjecture, while quantifier
elimination fails). This emphasized the connection with analytic geometry,
mentioned some lines ago. And indeed o-minimality became, and still is, a
matter of interest not only to model theorists, but to geometers and analysts
as well.

To conclude this section, we give the proof that any o-minimal ordered field
is real closed. This is the converse of a result we already know, ensuring
that every real closed field is o-minimal, and can be viewed as the o-minimal
analogue of Macintyre’s theorem saying that any w-stable field must be
algebraically closed. The proof requires a very basic machinery from o-
minimality -just the definition itself- in addition to the necessary algebraic
grounds. Let us preliminarily examine o-minimal groups. Here (and later
in this chapter) intervals possibly admit infinite endpoints, and so include
half-lines, and the whole line, in case.

Lemma 9.1.1 Let A= (4,0, +, —, <, ...) be an o-minimal structure ez-
panding an ordered group (A, 0,4+, —, <) and let H be a subgroup of
(A, 0, 4+, —, <) definable in A. Then H = {0} oppure H = A.

Proof. Suppose towards a contradiction that there exists some subgroup
H # {0}, A of (A, 0, +, —, <) definable in .A. Owing to o-minimality, H
decomposes as a finite union of pairwise disjoint intervals (possibly closed,
or with infinite endpoints). Accordingly write

(o) H:UI]'

i<s

where Iy, ..., I, are intervals and s is minimal. Notice that H is infinite,
because it must contain all the multiples nh of any nonzero element h € H
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when n ranges over integers. Hence there is j < s for which I; is infinite.
Without loss of generality put j = 0. Moreover we can even assume that
Iy contains 0 and is symmetric with respect to 0 (in the sense that —c € I
for every ¢ € Ip). This is because H is a subgroup, and so includes 0 and is
preserved under + and —. As H # A, Ip is [~a, a] or ] —a, o for some a > 0
in A. In the former case, every b in A satisfying ¢ < b < 2a¢ decomposes as
b=a+ (b—a) wherea € Ip C H and 0 < b—a < a,soeven b—ais in
Io and consequently in H; hence b € H. Therefore [—2a, 2qa] is an interval
in H properly including Ip. This implies that [—2a, 2a] shares at least one
element with some interval I; where 0 < j < s, say with I;. Put

I} = [-2a, 2a] U I.

So I}, is an interval including Ip U I; and contained in H. Consequently

H=IU U I;,

0<j<s

and this contradicts the choice of s in (o).

In the latter case, fix b € A such that 0 < b < a, then 0 < a — b < @, and
consequently even ¢ — b is in [p. It follows a = b+ (a — b) € H. We get in
this way an interval [—a, a] properly including Iy and contained in H. But
this contradicts as before the minimality of s in (o). &

As a consequence, one can give a full characterization of o-minimal ordered
groups. They are exactly those listed before, namely the ordered divisible
abelian groups.

Theorem 9.1.2 An o-minimal ordered group A = (A, 0, +, —, <) is abelian
and divisible.

Proof. For every a € A, the centralizer C(a) of a is a definable subgroup of
A, and consequently equals either {0} or A. If a = 0, then clearly C'(a) =
On the other side, when a # 0, C(a) = A as well, because a € C(a) and this
excludes C(a) = {0}. Hence C(a) = A for every a € A, and A is abelian.
Now take a positive integer n: nA is a definable subgroup of A, clearly
equalling A when A = {0}; on the other side, if A # {0}, then nA # {0}
and consequently nA = A. Then nA = A for every positive integer n, in
other words A is divisible. &

Coming back to ordered fields, we can eventually prove
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Theorem 9.1.3 Let K = (K, 0,1, +, -, —, <) be an o-minimal ordered
ring with identity 1 (in particular let K be an o-minimal ordered field). Then
K is a real closed field.

Proof. First we claim that K is an ordered field, in other words the set *
of the nonzero elements in K is an abelian group with respect to -. It suffices
to show that the set K>° of the elements > 0 of K is so. In fact, for every
a € K>% aK is a definable subgroup of (K, 0, +, —, <), and aK # {0}
because a > 0. So, owing to Lemma 9.1.1, a K = K, and in particular there
exists some b € K satisfying ab = 1. As a > 0, b is positive as well. This
proves that K> is a(n ordered) group with respect to -. It remains to check
that K>0 is also abelian. To show this, it suffices to observe that K>0 is
o-minimal, and then to use Theorem 9.1.2. In fact K>° is definable (as a
group) in K, and consequently every subset X of K>° definable in K> is
also definable in X, and hence is a finite union of non-empty intervals of
K. All the endpoints of these intervals lie in K>° U {+o00}, with the only
possible exception of the leftmost endpoint in the first interval, that might
equal 0, but can be replaced in this case by —oo in K>°. In conclusion, X
is actually a finite union of intervals in K>°. Hence K>° is o-minimal and
consequently abelian, as claimed.

Now let us prove that K is real closed. Accordingly take a polynomial
f(z) € K[z] and two elements ¢ < b in K satisfying f(a) - f(b) < 0, for
example f(a) < 0 < f(b). We have to show that there is some ¢ € K such
that @ < ¢ < b and f(c) = 0. Recall that K is an ordered field, and hence
< is dense in K and in ]a, b[. The polynomial function that f defines is
continuous (with respect to the order topology), so both

la,b[t={d € K : a<d < b, f(d) >0}

and

Ja, [ ={de K : a<d< b, f(d) <0}

are open sets. If |a, b[= 0, then the continuity of f is contradicted in a.
Hence ]a, b[~ and similarly Ja, b[* are not empty. Moreover both ]a, o[t and
]a, b~ are definable, and accordingly decompose as finite unions of intervals,
indeed of open intervals. As ]a, b[* and ]a, b[~ are disjoint, there is some
c €la, b out of both Ja, b[* and Ja, b[~: so cisaroot of f, f(c)=0. &
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9.2 The Monotonicity Theorem

Let M = (M, <, ...) be an o-minimal structure. First observe that M
is a topological space with respect to the order topology and so, for every
positive integer n, M™ is a topological space as well, with respect to the
product topology.

As already recalled, the o-minimality of M just requires that the only de-
finable subsets are the finite union of singletons and open intervals (possibly
including half-lines and the whole M). But what can we say about the
definable subsets of M™ when n > 17 We give here a very partial and pre-
liminary answer, dealing with 1-ary definable functions f. We show that, if
the domain of f is an open interval Ja, 8] with @ < b in M U {£oo}, then
one can partition ]a, b[ into finitely many intervals such that, in each of
them, f is either constant, or strictly increasing, or strictly decreasing, and
anyhow continuous according to the order topology. This is the so-called
Monotonicity Theorem, saying in detail what follows.

Theorem 9.2.1 Let M be an o-minimal structure, X C M, a, b € M U
{00}, a < b, a and b be X -definable when belonging to M. Let f be an
X -definable function of |a, b[ into M. Then there are a positive integer n
and ag, a1, ..., a, € M U{xoo} such that

l.a=a<a1 < ...<a,=b,and ay, ..., a,_1 are X -definable;
2. for everyi < n, f is either constant or strictly monotonic in |a;, ai41[;

3. for everyi < m, if f is strictly monotonic inla;, a;y1[, then f(la;, a;41[)
is also an interval, and f contains a bijection preserving or reversing
< between la;, a;41[ and f(lai, aiv1[)-

In particular f is continuous in every interval la;, a;y1[ for i < n.

Notice that, when more generally f is an arbitrary definable function with
both domain and image in M, then the domain of f is definable as well,
and consequently is a finite union of singletons and open intervals. Each
of these intervals satisfies the assumptions of Theorem 9.1.2, and hence
inherits its conclusions. Notice also that Theorem 9.1.2 implies, as a simple
consequence, that, if M is an o-minimal structure, a, b € MU {£oo}, ¢ < b
and f is a definable function from ]a, b[ into M, then f(z) has a limit in
M U {+oo} when £ = at and ¢ — b™.

A full proof of Theorem 9.1.2, as stated before, would require several tech-
nical details and would be quite long. We prefer to propose here a simpler
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argument showing only the continuity result when M expands (R, <) (ac-
tually this is more or less what we will need later).

Proposition 9.2.2 Let M be an o-minimal structure ezxpanding (R, <),
X C M, f be an X-definable function from la, b[ into R. Then there are
aiy ..., Gy €la, b[ such that ay < ... < ay,, a1, ..., a, are X -definable and
f ts continuous in |a, a1, |an, b[ and each interval |a;, a;4q[ for 1 <i < n.

Proof. Let S denote the set of the points in ]a, b[ where f is not continuous.
It is an easy exercise to prove that S is X-definable. If S is finite, then we are
done: for, ay, ..., a, are just the elements of S. Hence suppose S infinite.
So S contains an infinite open interval I. For every natural n, build two
infinite open intervals I, and J, such that, for every n,

(i) I, C1I,
i) the (topological) closure I,y of I, is included in I,

(i
(i) f(fn) 2 Jn 2 f(Ins1),
(

iv) the length of J,, is smaller than 713

Let us see how to define these intervals. First put Iy = I. Then take any
natural n, suppose I, given and form J, and I,y; as follows. If f(I,) is
finite, then for some d € f([,) the preimage {c € I,, : f(c) = d} is infinite.
But {c € I, : f(¢) = d} is definable, and hence includes some infinite
interval; f is constant, hence continuous, on this interval, which contradicts
I, C I CS. Accordingly f(I,) must be infinite. But f(I,,) is definable, too,
and hence includes in its turn an infinite interval; let J,, be such an interval,
notice that we can assume with no loss of generality that the length of J,, is
< n—_l_l The preimage of J,, in I, is also definable, and contains some infinite
interval. Let I,,;; denote such an interval; we can assume m C I,,. This
determines the I,,’s and the J,,’s for every n. Now put I’ = N,en I,. Clearly
I' = Nuen I, whence I' # () because R is compact. Pick d € I', we claim
that f is continuous in d (this contradicts d € S and so accomplishes our
proof). Take any interval U containing f(d). Owing to (iv), there is some
natural n for which U D J,,. But this implies U O f(I,4+1) where I,,4; is an
open neighbourhood of d. &

A final remark. When M expands the field of reals, we can say even more,
and state a smooth version of the theorem: in fact, one can partition ]a, b[
into finitely many intervals where f is of class C™ for every positive integer
m.
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9.3 Cells

Now we move to characterize in an o-minimal structure M = (M, <, ...)
the definable subsets of M™, in particular the definable n-ary functions, for
every positive integer n. To make our life easier, we assume all through-
out this section (and also in the following ones) that < is dense without
endpoints: in particular every interval ]a, b[ with —o0 < @ < b < 400 in
M must be infinite. As already said, the reason of this restriction is just
to make our treatment and our proofs simpler; in fact, all the results we
will show below can be extended -by the appropriate arrangements- to any
o-minimal structure M. On the other side, the order of reals is just dense
without endpoints, so our framework include all the expansions of (R, <),
in particular all the structures enlarging the real field; as we said before, the
notable o-minimal examples we will propose in Section 9.7 lie in this setting.
We know that the basic definable subsets of M are the intervals and the
singletons. More generally, the basic definable subsets of M™ are the cells.
So let us define what a cell is, more precisely what a k-cell in M™ is.

Definition 9.3.1 First suppose n = 1. A subset C' of M is a 0-cell if and
only if C is a singleton, and a 1-cell if and only if C' is a non-emptly open
interval, possibly with infinite endpoints.

Now let n > 1, and let k a natural number < n. A subset C' of M™ is called
a k-cell if and only one of the following conditions hold:

1. there are a k-cell D of M™~! and a continuous and definable function
f of D into M such that C is the graph of f, namely

C={@becM":deD,b=f(a}

2. k> 1 and there are a (k—1)-cell D of M™~! and two functions f and
g with domain D such that

(i) either the image of f is a subset of M and f is both continuous
and definable, or f(&@) = —co Va € D,

(ii) either the image of g is a subset of M and g is both conlinuous
and definable, or ¢(&@) = +oo Vd € D,

(iii) f(@) < g(@) Va € D,
(iv) C = {(@b) e M* : @€ D, f(@) < b < g(@)}.

One easily sees that every k-cell of M™ is definable, and that a k-cell of M™
is open in M™ if and only if £ = n. One can also observe
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Proposition 9.3.2 Let M be an o-minimal structure, k < n be positive
integers. For every k-cell C of M™, there is a definable homeomorphism of
C onto a k-cell of M*.

Proof. It suffices to see, for n > k and n > 1, how to determine, for
every k-cell C' of M", a definable homeomorphism 7¢ onto some k-cell C’ of
M™"1, and then to iterate this procedure as long as one needs. First assume
that C' is the graph of some continuos definable function from a k-cell D of
M™1into M. In this case it suffices to put C’ = D, and choose as 7¢ the
projection of C onto C’. Now assume

C={(b)eM":dcD, f(@<b<g(@}

where D is a (k — 1)-cell of M™!, and f, g satisfy the conditions in 9.3.1,
2. We proceed by induction on n.

If n = 2, then £k — 1 = 0, and D reduces to a single point @ of M. Put
C' =]f(a), g(a)[, mc(a, b) = b for every b € C’. Now let n > 2. We know
that there is some definable homeomorphism 7p of D onto a (k—1)-cell D’ of
M"=2, Consider the two functions one gets by composing f, g respectively
and the inverse of rp. They have domain D’ and satisfy the assumptions in
9.3.1, 2. Accordingly they define a k-cell C’ of M™!; furthermore

ro(@ b) = (np(@), b) W(a@,b) €C
determines a definable homeomorphism of C onto C'. &

When M expands a real closed field (for instance, when M is the real field,
or even an expansion of it), the cells in M can be characterized as follows.

Proposition 9.3.3 Let M be an o-minimal expansion of a real closed field,
k, n be two natural numbers satisfying n > k, 1. If C is a k-cell of M™,
then there exists a definable homeomorphism of C onto 0, 1[*.

Proof. When k = 0, our claim is trivial, because a 0-cell reduces to a
singleton. So take k > 0. Owing to the previous proposition, we can assume
n = k. We proceed by induction on n. If n = 1, then C' = ]Ja, b] where
a, b € MU {too} and a < b. So the required homeomorphism between C'
and )0, 1] is easily obtained: for instance, if both a and b are in M, then it
suffices to map every z in C = ]a, b] into

T —a
b—a’
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in the remaining cases one proceeds in a similar way. Now suppose n > 1
(and our claim true for n —1). Let C be an n-cell of M”. There do exist an
(n—1)-cell D of M™"! and two functions f and ¢ as in 9.3.1, 2 such that C
is the set of those tuples (@, b) in M™ for which @ € D and f(d) < b < g(d).
By induction, there is a definable homeomorphism A of D onto ]0, 1[*~. If
both f and g take their values in M, then
R . b—f(@) R
(@8) — (@), o= D) Wb eC

is the required homeomorphism. All the other cases can be handled in a
similar way, just as when forn =1. &

In particular, when M expands the real field R and k > 0, every k-cell of
M is connected in the order topology; for, ]0, 1[* is. This does not hold any
longer when R is replaced by any real closed field. For instance, if R is the
ordered field of real algebraic numbers, then Ry is real closed, and hence
o-minimal; Ry is a l-cell of itself, but is not connected because, for every
real trascendental t, Ry partitions as

Ro={recRp:r<t}U{reRy:r>t}

Hence connection gets lost. However every cell in an o-minimal structure
M satisfies a weak form of connection, with respect to open definable sets.
In fact, consider the following notion.

Definition 9.3.4 Let M be an o-minimal structure, n be a positive integer.
A definable set X C M™ is said to be definably connected if and only if
X cannot partition as the disjoint union of two non-empty open definable
subsets.

What we will see now is that every cell in an o-minimal structure M is de-
finably connected. First we give an equivalent characterization of definably
connected sets.

An open box of M™ is the cartesian product of n open intervals of M. Hence
open boxes form a basis of open neighbourhoods of the product topology
of M". Furthermore, for Y C X C M", an element @ of X is called a
boundary point of Y in X if and only if every open box of M™ containing
@ overlaps both Y and X — Y.

Lemma 9.3.5 Let M be an o-minimal structure, n be a positive integer,
X be a definable subset of M™. Then X is definably connected if and only
if, for every proper non-empty definable subsetY di X, X contains at least
one boundary point of Y in X.
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Proof. X is definably connected if and only if, for every definable Y C X
such that Y # @, X, either Y or X — Y is not open, in other words there is
either a point @ € Y such that every open box containing @ overlaps X — Y,
or a point @ € X — Y such that every open box containing @ overlaps Y.
Accordingly X is definably connected if and only if, for every Y as above,
there is @ € X which is a boundary pointof Y in X. &

Now we can show, as promised,

Theorem 9.3.6 Let M be an o-minimal structure, n be a positive integer.
Then every cell C' of M™ is definably connected.

Proof. We proceed by induction on n.
If n = 1, then the claim is trivial because the cells of M reduce to singletons
and open intervals.
Hence assume n > 1. Let C be a cell of AM™. If C' is a 0-cell, so a singleton,
then C' is definably connected. If C'is a k-cell for some positive integer
k < n, then, owing to Corollary 9.3.3, C is definably homeomorphic to a cell
C' of M*; by the induction hypothesis, C’ is definably connected, whence
C is definably connected, too. Finally suppose that C is an n-cell of M™.
Then there exist a cell D of M™ ! and two functions f and ¢ as in 9.3.1, 2
such that

C={(@beM":aeD, fay<b<g@}.

D is definably connected by the induction hypothesis. To deduce that even
C'is definably connected we use Lemma 9.3.5. Accordingly take a definable
subset Y of C'such that Y # 0, C. First suppose that, for some @ € D, there
are two elements b and 4’ in M such that (@, %) € Y and (&, 4') € C -Y.
Then the interval | f(&@), ¢(@)[ contains at least one boundary point by of the
definable set {b € M : (d@, b) € Y'}; this implies that (&, bo) is a boundary
point of Y in C'. Now suppose that, for every @ € D, either

(@b eC :beMICY

or
{(@b)eC:beM}CC-Y.

Let Z denote the set of the elements @ of D satisfying the former condition.
Y # 0, C implies Z # 0, D. As D is definably connected, there is some
boundary point do of Z in D. Let b € M satisfy (do, b) € C, we claim that
(dg, b) is a boundary point of Y in C. Let B an open box of M™ containing
(@o, b). As C'is open, we can suppose B C C. Let B’ denote the projection
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of B in M™ 1. Then @ € B’ and B’ C D. Since @, is a boundary point
of Z in D, there are @; and d3 in B’ such that @ € Z and @y ¢ Z. Conse-
quently, if b1, b2 € M satisfy (a1, b1), (@2, b2) € C respectively (in particular
((_]:1, bl), (6:2, b2) € B), then ((7:1, bl) €Y, ((7:2, b2) ¢ Y. Hence (60, b) is a
boundary point of Y in C. In conclusion, C' is definably connected. &

9.4 Cell decomposition and other theorems

The aim of this section is to introduce and to state the basic general theorems
for o-minimal structures M = (M, <, ...): we want to characterize all the
definable sets and functions in M, and we want also to emphasize some
relevant consequences and, among them, the already mentioned fact that o-
minimality is preserved under elementary equivalence. As the proofs of these
fundamental results are quite long and intricate, we will defer part of them,
and the corresponding details, to the next section; here we provide just a
basic outline, illustrating these central cores of the theory of o-minimality.
So a reader simply interested in a general view may limit her, or his attention
to this section, and to skip the next one. Let us remind once again that, for
simplicity’s sake, we are assuming that (M, <) is dense without endpoints:
this is tacitly accepted all throughout these sections, unless otherwise stated.
The first result we propose just describes definable sets (and functions) in
o-minimal structures. It is a beautiful and powerful characterization, called
Cell Decomposition Theorem. In fact, it says that every definable set de-
composes as a finite union of cells.

Theorem 9.4.1 Let M be an o-minimal structure, n be a positive integer.

1. Every definable set X C M™ can be expressed as a finite (disjoint)
union of cells in M™.

2. Furthermore, if X is the domain of a definable function f with values
in M, then one can decompose X as a finite disjoint union of cells,
such that f is continuous on each of them.

Notice that this generalizes what we know when n = 1; in fact, in that case
every definable X C M is a finite union of points and open intervals (in
other words, of 0-cells and 1-cells respectively), and, when X is the domain
of some definable function f, one can also suppose that f is continuous on
each of these pieces, owing to the Monotonicity Theorem. But now we can
extend these results to any n.
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As already said, the proof of the Cell Decomposition Theorem will be given
in detail in the next section. But Cell Decomposition, and its analysis
of definable sets, is also the key tool in showing another basic fact in o-
minimality, that is its preserving under elementary equivalence.

Theorem 9.4.2 If M is an o-minimal structure, then the theory of M is
o-minimal.

In fact, which is the trouble in this claim? Actually we do know that, for
an o-minimal M, for every formula 6(v, @) in the language L of M and
tuple @ in M, (M, @) is a finite union of (possibly closed) intervals. But
suppose that, when @ ranges over M, the minimal number of the intervals
involved in these decompositions of (M, @) cannot be upperly bounded,
and so, for every natural N, one finds some tuple @(N) in M such that any
decomposition of §(M, @(N)) requires at least IV intervals. If this is the case,
then it suffices a straightforward application of Compactness Theorem to
provide some M’ = M and some tuple a’ in M’ for which oM, d") cannot
be expressed as a finite union of intervals, and consequently to conclude that
the theory of M is not o-minimal.

Hence the crucial point in showing that the o-minimality of M is preserved
by elementary equivalence is to uniformly bound, for every formula é(v, W)
as before, the minimal number of intervals necessary to decompose (M, @)
when @ ranges over M. This is a definability question concerning formulas in
arbitrarily many free variables, and so directly refers to Cell Decomposition.
On the other hand, bounding the number of the involved intervals in (M, @)
is the same as bounding the total number of their endpoints (forming a
definable, and finite set). So the key step towards the proof of Theorem
9.4.2 is

Theorem 9.4.3 Let M be an o-minimal structure in L, p(v, &) be an L-
formula such that, for all @ in M, p(M, @) is finite. Then there is a positive
integer N such that, for every @ in M, |p(M, @)| < N.

The proof of Theorem 9.4.3 will be deferred until the next section. But, as
we have just pointed out, Theorem 9.4.2 is an almost immediate consequence
of Theorem 9.4.3. Let us see in detail why.

Proof. (Theorem 9.4.2) Let L be the language of M, and let (v, &) be an
L-formula; in particular, let n denote the length of @. For every @ € M™,
6(M, @) is a finite union of intervals. Let ¢(v, @) be the L-formula saying

—

v is an endpoint of (..., ).
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Then, for every @ € M", ¢(M, @) is finite; hence, by Theorem 9.4.3, there
exists a positive integer IV such that, for every @ € M™, p(M, &) contains
at most N elements, whence (M, @) has at most N endpoints. But the
sentence

Va3 v (v, @)

remains true in every structure M’ = M. Accordingly, for every M' = M
and b € M™, (M’, b) has at most N endpoints, and hence is a finite union
of intervals. In conclusion the theory of M is o-minimal. &

The bounds given by Theorem 9.4.3 on formulas 8(v, @) can be extended
to formulas 6(¥, @) with an arbitrarily long ¥. In fact the following result
holds.

Theorem 9.4.4 Let M be an o-minimal structure in L, (U, &) an L-
formula (n be the length of G and m be that of ). Then there exists a positive
integer N such that, for every M' = M and tuple @ in M', 0(M'", @) is the
union of at most N cells in M'.

Before beginning the proof, and just for preparing it, let us premit a simple
example. Assume n = 2. Let 8(vy, vy, @) be an L-formula, @ be a tuple in
M. Suppose that the definable set #(M?, @) decomposes as a disjoint union
of 2 cells in M: the former is a singleton, so a O-cell, while the latter is a
1-cell, and more precisely is the graph of a continuous definable function f
whose domain is the open interval ]a, b[ with ¢ < bin M. Notice that there
are an L-formula 7(vy, v, Z) and a sequence € in M such that, for every ¢;
and ¢y in M with a < ¢y < b,

fle)=ec2 & MEn(a,c,é).
Now consider the L-formula
Iz(wW) Yo Yue(d(vq, va, W)
< FuyFugFuTwIZ(((vy = wa A vy = ug) V (4 < v1 Avg < wA
A7q(, -, Z) defines a continuous function of domain Ju, w[”

An(vr, v, 2))) A—(u < up <wA n(u1, ug, 2))))-

It is clear that the tuples b in M, or even in a model M’ of the theory
of M, satisfying N | 6z(b) are just those for which O(M'z, b) has a cell
decomposition as #(M?2, @) (the disjoint union of a singleton and a graph of
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a definable continuous function). It is also obvious that this is quite general:
given an L-formula 0(7, @) as in the statement of 9.4.4, a tuple @ of the same
length as @ in the universe Q of the theory of M and a cell decomposition of
#(Q", @), one can build an L-formula (%) such that a tuple b in Q satisfies
6z if and only 9(Q2", b) has a cell decomposition just as 9(Q", @).

Proof. (Theorem 9.4.4). Owing to Theorem 9.4.2, any structure M’ ele-
mentarily equivalent to M is o-minimal, and hence, by Theorem 9.4.1, any
definable subset of M'™ (in particular §(M'™, @) for @ € M'™) is a finite
union of cell. We have seen that there is an L-formula 63(@) (without pa-
rameters) describing the form of a given cell decomposition of 0(M'n a).
Let ® denote the (countable) set of all these formulas 6;(w) when @ ranges
over M'™ and M’ is a model of the theory of M. Use Compactness Theorem
and get finitely many formulas

9o(F), . .., 0,() €

such that

v \/ 9i(@) € Th(M).
i<s

Consequently there is a positive integer N such that, for every M’ = M
and @ € M'™  §(M'", @) decomposes as the union of at most N cells: N is
just the maximal number of involved cells in the decompositions described

by 9o(B), ..., 9,(F). &

Recall that, when M expands the real field R, every cell of M is also
connected. Hence in this case, for every formula 8(¥, &), there is a positive
integer N such that, for a tuple @ in M™, §(M", @) is the union of < N
connected components. We will see in Section 9.7 several relevant examples
of o-minimal expansions of the real field R. In this framework it is worth
stating the following result of Wilkie’s.

Theorem 9.4.5 (Wilkie) Let M exzpand the ordered field of reals by C*°
functions from some cartesian powers R' of R into R. Assume that, for
every quantifier free formula (7, &) in the language L of M, there is a
positive integer N such that, for any tuple @ € M™, 0(M", @) decomposes
as the union of < N connected components. Then the same is true for every
formula of L. In particular, M is o-minimal.

Cell Decomposition is an important tool also in developing a dimension
theory inside o-minimal structures M, and in equipping every definable X
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in M with a natural number (its dimension). Recall that no o-minimal M is
simple, and hence w-stable; accordingly the Morley rank of X might be oo.
More generally, as simplicity fails, other possible rank notions arising within
simple, or stable, or superstable settings and replacing RM in these enlarged
frameworks lose their interest in o-minimal models. But Cell Decomposition
does assign a dimension to X in a quite reasonable way. Let us see how.

Definition 9.4.6 The dimension of a k-cell of M" is k. The dimension
of a definable X in M is the maxzimal dimension of a cell arising in a cell
decomposition of X .

Of course, a cell decomposition of X is not unique; but the maximal di-
mension of an involved cell is, and does depend only on X. So the previous
definition makes sense for every X. There is another alternative way to
introduce a dimension notion in M. In fact, as we saw in Chapter 5, the
algebraic closure acl determines a dependence relation < in M (and in every
model M’ of the theory of M). This relation generates in its turn an inde-
pendence system as axiomatized in section 7.2, so satisfying the conditions
(I1)-(I6) (but not the further requirement (I7))). With respect to this in-
dependence notion, we can define the dimension of a tuple @ = (ay, ..., an)
in M'™ as the size of a minimal subsequence b such that @ lies in acl(b).
Then we can introduce, just as in the strongly minimal case, the dimen-
sion of a definable set @(M'™, l_;) as the maximal dimension of a tuple @ in
(M b) where M" is an elementary extension of M’.

Notably these dimension notions (the former arising from topology, the latter
more directly related to model theory) coincide and share good properties
and, after all, a satisfactory behaviour.

To conclude this section, let us mention some other nice properties of o-
minimal structures and theories, closely resembling what happens in the
w-stable setting.

Theorem 9.4.7 (Pillay-Steinhorn) Let T be a (complete) o-minimal theory,
A be a small subset of the universe Q of T. Then there is a model of T prime
over A, and this is unique up to isomorphism fizing A pointwise.

Actually this result does not need the Cell Decomposition Theorem, but can
be proved by referring directly to the definition of o-minimality and to the
Monotonicity Theorem. The same ingredients yield a nice classification of
No-categorical o-minimal theories, again due to Pillay and Steinhorn.
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The uncountable spectrum of an o-minimal T theory takes everywhere the
maximal value
I(T,\) =2 VA> R

With respect to the countable framework, it is worth emphasizing that
Vaught’s Conjecture holds, in the following strong form.

Theorem 9.4.8 (Mayer) Let T be a (complete) o-minimal theory. Then,
up to isomorphism, either T' has continuum many countable models, or there
are two naturals n and m such that T has 3™ - 6™ countable models.

Of course, one might get curious in reading the statement of this theorem:
why, and where, do n and m arise? Basically, they depend on a careful
analysis of types in o-minimal structures. The interested reader may directly
consult Laura Mayer’s work, quoted below.

9.5 Their proofs

This section provides the proofs of Theorems 9.4.1 and 9.4.3, stated in Sec-
tion 9.4. As said, they are long and intricate. In spite of this, we think
it right to propose them for at least two reasons. The former (and the
principal) is that we believe that Theorem 9.4.1 (the Cell Decomposition
Theorem) and Theorem 9.4.2 (the one saying that o-minimality is preserved
under elementary equivalence) are two beautiful and fundamental results
and deserve a full report, including a technical preliminary like Theorem
9.4.3. The latter reason just concerns the intricacy of the proof; actually
this is due to its length and ingenuity, but does not depend on a relevant
and deep theory, indeed the premises it needs are rather elementary and
accessible (they just include the definition of o-minimality, the Monotonic-
ity Theorem, some properties of cells and an induction argument). So our
exposition should require no particular efforts but a little attention and pa-
tience. And anyhow the reader who is not interested in these details may
neglect this section and proceed directly to the next ones, that will not use
these proofs.

So consider an o-minimal structure M in a language L; for simplicity, we
keep our assumption that the order of M is dense without endpoints.
What we said in the last section in introducing Theorem 9.4.3 suggests the
following definition.

Definition 9.5.1 Let ¢(v, %) be a formula of L(M), n be the length of ,
X be a subset of M™. We say that:
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e ¢(v,®) is finite in X if and only if, for every @ € X, p(M,qd) is
[finite;

e ¢(v,®W) is uniformly finite in X if and only if there is a positive
integer h such that, for every @ € X, the size of ¢(M, d) is at most h.

When ¢(v, @) is finite in X, we can introduce two partial functions ¢_
and ¢4 mapping any @ € X into the minimal and the maximal element in
¢(M, @) respectively -provided that (M, &) is not empty, of course-. If X
is definable, then ¢_ and ¢, are definable as well.

Definition 9.5.2 Let n be a positive integer, X be a definable subset of
M™. A decomposition of X is a partition of X into finitely many cells.
If Y C X is definable, we say that a decomposition P of X partitions Y
when no cell in P overlaps bothY and X — Y.

Here is another technical preliminary notion.

Definition 9.5.3 Let C be an open cell of M™ (so an n-cell), (v, W) be a
formula finite in C. Call a point @ € C good for ¢(v, W) if and only if the
following conditions hold:

1. for every b € p(M, @), there are an open box B C C containing @ and
an open interval I containing b such that p(M™1) N (I x B) is the
graph of some continuous function of B in I;

2. for every b € M — ¢(M, @), there is an open neighbourhood of (@, b)
in Mt disjoint from o(M™H1).

A point @ € C which is not good for ¢(v, @) is called (with no particular
imagination) nasty for ¢(v, @). Notice that both good and nasty points for
(v, @) form definable subsets of the cell C.

At this point we can begin our proof. The following lemma is its crucial
step.

Lemma 9.5.4 Let M be an o-minimal structure, n be a positive integer, C

be a cell of M™.

(1), For every element i in a finite set I of indexes, let X; denote a definable

subset of C. Then there exists a decomposition of C' partitioning each
X;.
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(2), Let f be a definable function of C into M. Then there is a decomposi-
tion P of C such that f is continuous on any cell of P.

(3)n A formula (v, @) of L(M) finite in C is uniformly finite in C.

(4)r, Let (v, W) be a formula finite in C. If the functions p_ e ¢4 are
defined and continuous in C' and every point of C' is good for ¢(v, &),
then the size of (M, @) is constant when @ ranges over C.

Lemma 9.5.4 immediately implies both Theorem 9.4.1 and Theorem 9.4.3.

Proof. (9.4.1.1) M™ is an n-cell. If X is a definable subset of M™, then (1),
in Lemma 9.5.4 provides a decomposition P of M™ partitioning X. Hence
X is the (finite) union of the cells of P it contains. &

Proof. (9.4.1.2) Just apply (2),, to the cells of the decomposition of X given
by 9.4.1,1. &

Proof. (9.4.3) This is just (3), when C = M". &

Now let us show Lemma 9.5.4. We proceed by induction on n.
(1)1 This just rephrases o-minimality.
(2)1 This is the Monotonicity Theorem (in the weak form we saw in 9.2).

(4)1 If C reduces to a singleton, then the claim is trivial. Hence assume
that C' is an open interval ]a, b where —co < @ < & < 4o00. Suppose
that, for some positive integer h, the set Y of the points ¢ in Ja, b[ such
that |¢(M, ¢)| = h is not empty and does not equal Ja, b[. As ¢_ and ¢,
are defined throughout the interval C', we can assume A > 1. Let ¢ be an
endpoint of Y in C, and put ¢(M, ¢) = {do, ..., d.} where L is a suitable
natural and dp < ... < dr. As ¢ is good for ¢, there are an interval I Cla, b]
containing ¢ and L + 1 pairwise disjoint intervals Jy, ..., Jr such that, for
every i < L, J; includes d; and p(M?)N(J; x I) is the graph of a continuous
function g¢; of I into J;. Each function g; is clearly definable. Furthermore,
for every ¢’ € I,
9o(c') < ... < gr(c);
consequently |p(M, ¢')] > L + 1. But ¢ is an endpoint of Y in C, and
(M, ¢)] = L + 1. Therefore, for some open interval I’ having ¢ as a left
or right endpoint,
lp(M, )| >L+1, Vel

Assume for simplicity that c is a left endpoint of I’. Define the following
function ¢ in I': for every ¢’ € I,
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g(c’) is the least element d’ € (M, ¢') such that d' # g;(¢') for every i < L.

g is definable and its domain coincides with the whole interval I'. So, as
observed in § 2, g has a limit in M U {*oo} when z — ¢*

d=1lim,_,+ g(ﬁb)

Moreover
p-() < g(d) < pi(c) Ve,

and so d cannot equal 400 or —oo, in other words d € M. If = ¢(d, ¢),
then d = d; for some ¢ < I, and consequently

d= limx—)c+ gi(l‘)a
on the other side, we know that, for every ¢’ € I,

9(c) # gi(),  9(c), g:(c) € p(M, ¢).

But we contradict in this way the fact that ¢ is good for ¢ (recall Definition
9.5.3, 1). Accordingly | —¢(d, ¢), which again excludes that ¢ is good for
@ (this time by 9.5.3, 2). This yields the required contradiction. Hence (4);
holds.

(3)1 The claim is trivial when C is a singleton. Accordingly suppose C =
Ja, b where —oo < @ < b < 4o00. The set of the elements ¢ of C for which
p(M, ¢) # 0 is definable, and consequently is a finite union of singletons
and open intervals in C. Of course, it is enough to show that ¢(v, w) is
uniformly finite on every interval in this decomposition. Accordingly we can
even assume

(M, c) #0 Ve €la, b;

in particular ¢_ and ¢, are defined throughout ]a, b[. Owing to (2);, we can
even suppose (up to replacing again ]a, b[ with a suitable subinterval) that
both ¢_ and ¢, are continuous in Ja, b[. Now let Y denote the set of those
points in C' =]a, b[ that are nasty for . If Y is finite, say Y = {co, ..., ¢}
with @ < ¢g < ... < ¢; < b, then ¢_ and ¢, are continuous in each interval
la, col, ]es, civa] for ¢ < t, Jet, b[, and every point in these intervals is good
for ¢. So we are just in a position to apply (4)1, and accordingly the size of
p(M, c) is constant throughout every interval, and, in conclusion, ¢(v, w)
is uniformly finite in ]a, b.

Hence it suffices to show that Y is finite. Suppose not. Anyhow Y is
definable, and hence, by o-minimality, it contains some infinite interval.
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Without loss of generality, we can assume that this interval just equals
C =]a, b[, and so that every point ¢ of ]a, b is nasty for ¢. Then, for every
¢ €a, b, there exists d € M satisfying one of the following conditions:

(i) d € p(M, ¢) but, for no pair of open intervals I and J containing ¢ and
d respectively, p(M?) N (J x I) is the graph of a function of I in J;

(ii) d € (M, c) but every open box B containing (d, c) overlaps ¢(M)?

as well.

In both cases we say that (d, ¢) is a black sheep of ¢ (of type (i) or (ii)
according to whether (i), or (ii), holds).

Observe that, for every ¢ €]a, b[, there is a minimal d € M for which (d, c)
is a black sheep of ¢. In fact, as ¢(v, w) is finite in Ja, b[, there are at
most finitely many d € M such that (d, ¢) is a black sheep of type (i).
Consequently it suffices to prove that, if dy, dy € M, dy < d> and, for every
d €]dy, d2f, (d, c) is a black sheep of type (ii) of ¢, then also (d;, ¢) is a black
sheep of . This is certainly true when dy does not belong to (M, ¢) (in this
case (dy, ¢) is a black sheep of type (ii)). Accordingly assume d; € ¢(M, ¢)
and fix two open intervals I and J containing ¢ and dy respectively. If
d € JNldy, dof, then d € ¢(M, ¢) and any open box including (d, ¢) -in
particular, any open box in J x I including (d, c)- intersects ¢(M?). Then
©(M?*)N(J x I) cannot be the graph of a continuous function of I in J, and
(dq, c) is a black sheep of type (i) of ¢. :
Therefore we can consider the function ¢ mapping any ¢ €]a, b[ into the
minimal d € M for which (d, ¢) is a black sheep of ¢. ¢ is definable, and
so, owing to (2);, we can find an open interval I in ]a, b[ such that g is
continuous in I and one of the following conditions holds:

(iii) for every c € I, (g(¢), ¢) is a black sheep of type (i) of ¢;
(iv) for every c € I, (g(c), ¢) is a black sheep of type (ii) of ¢.

As before, we can suppose that I is just |a, b[. Assume (iii). Introduce two
functions gy and g, as follows. For every ¢ €]a, b/,

e gi(c) is the maximal element d € (M, c) satisfying d < g(c), if such
an element exists, and is —oo otherwise;

e g5(c) is the minimal element d € p(M, c) satisfying d > g(c), if such
an elements exists, and is +o0o otherwise.
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Both ¢g; and g; are definable (in the obvious sense); moreover we can sup-
pose that g; is continuous or constantly —oo in Ja, b[ and, similarly, g is
continuous or constantly +oo in ]a, b[. Choose ¢ €la, b, dy, do € M such
that

g1(c) < di < g(c) < da < ga(c).

By the definition of ¢, go and the continuity of g1, g2, ¢, there exists an
interval I C]Ja, b[ containing ¢ such that, for every ¢’ € I,

g1(c) < dy < g(¢) < dy < ga(c)).

Hence again the definition of g; and g, implies that o(M)2N (Jdy, do[x 1) is
the graph of the continuous function g, whence (g(c), ¢) is not a black sheep
of . So (iii) cannot hold.

Accordingly assume (iv). Let ¢ €]a, b[. Clearly g(c) # ¢o—(c). If g(c) <
¢—(c), then one can use the continuity of ¢_ and ¢ and determine an open
box containing (g(c), ¢) and disjoint from ¢(M). But this contradicts the
fact that (g(c), ¢) is a black sheep of ¢. So ¢_(c) < g(c). In the same way
one proves g(c) < ¢4 (c). Now let us introduce two functions ¢g; and g2 as
follows. For every ¢ €la, b[,

e gi(c) is the maximal element d € (M, ¢) such that che d < g(c);
® go(c) is the minimal element d € ¢(M, ¢) such that d > g(c).

Both g; and g have domain ]a, b[ because, for every ¢ €la, b[, ¢_(c) <
g(c) < p4(c) and (M, ¢) is finite. We can even assume that g, and g, are
continuous in |a, b[. The Monotonicity Theorem provides, for any ¢ €]a, 8],
two intervals I, J containing ¢, g(c) respectively and satisfying, for every
cdel,

g ety ale), u(d) ¢

Hence ¢(M?2) N (J x I) = B, which contradicts the fact that (g(c), c) is a
black sheep of type (ii). This excludes also (iv).

In conclusion Y cannot be infinite. As already pointed out, this implies our
claim: ¢(v, w) is uniformly finite in ]a, b][.

Now let » > 1. Assume (1), (2);, (3); and (4); for 1 < j < n.

(1), Let C be a cell of M™. For every i € I let X; be a definable subset of
C. We are looking for a decomposition of C' partitioning each X;. If C is a

k-cell for k < n, then there is some definable homeomorphism #¢ of C onto
a cell C" of M1, By (1),— there is a decomposition P’ of C’ partitioning
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each 7o (X;). Through 7', P’ can be lifted to a decomposition P of C
partitioning every X;.

So assume that C' is just an n-cell. Consequently there are an (n — 1)-cell
C’ of M™! and two functions f and g satisfying 9.3.1, 2; in particular

C={@beM:acc f@<b<g@?)

Let ¢ be the projection of C onto C’. By (1),—; there exists a decompo-
sition P’ of C' partitioning each n¢ (X;). For every Y’ € P, let

Y={(@beC:aeY'}.

Clearly these sets Y partition C when Y’ ranges over P’. So it suffices to
show that, for every Y,

(v) there is a decomposition of Y partitioning each set X; for which ¢ (X;)N
Y'#0.

To simplify the notation, assume without loss of generality that #¢(X;) N
Y’ # 0 for every i € I. Fix ¢ € I and, for every @ € Y, consider

Xi(@={be M : (a b) e X;}.

There is a formula ¢;(v, @) (possibly with parameters from M) such that,
for every @ € Y', ¢;(M, @) = X;(&). Moreover X;(@) is a non-empty subset
of |f(@), g(@)[. For every @ € Y', let B;(@) denote the set of the endpoints
of X;(@) in ]f(@), g(@)[. There is a formula 6;(v, @) (with parameters in
M) such that, for every @ € Y, 6;(M, @) defines B;(@). 0;(v, W) is finite in
Y’ and Y’ is a cell. (3),_; implies that 8;(v, &) is uniformly finite in Y.
Accordingly there exists a positive integer h; such that, for every @ € Y/,
|B;(@)] < h;. X; is the finite union of the tuples (d@, b) where @ € Y,
b€ X;(a) and |B;(@)] = h for h =1, ..., h;. Without loss of generality, we
can even suppose that |B;(d)| = h; for every @ € Y’. Consequently we can
define h; functions from Y’ into M

f{a ey flzmza

mapping any @ € Y’ into the first, ..., the h;-th element of B;(&). All these
functions are definable; by (2),-1, we can assume that they are continuous
on Y’. Unless partitioning again each X;, we can also suppose that, for every
tand jin I, h=1,..., hy and ' =1, ..., h;, exactly one of the following
cases holds: ‘

vaeY', fi(@)=f; ),
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VaeY', fi@ < fl.(a),
VaeyY', fi(a) > fi.(@).

Accordingly we can rearrange the functions f,’; (¢€ 1,1 <h <h;) and form
a new sequence

9o, - -+, Gt

such that, for r < s < t, ¢,(@) < gs(a@) for every @ € Y'. But this implies
that the sets of the tuples (&, b) € Y such that @ € Y’ and

f(@) < b < go(d),

gs(d) <b< gs4+1 ((_7:) (S < t)v
9:(@) < b < g(a),
b=gs(@) (s<t)

respectively, form a decomposition of Y partitioning each X;, as claimed.
This concludes the proof of (1)y.

Accordingly assume from now on also (1)y.

(2), Let C be a cell of M™ and let f be a definable function from C into
M. What we have to find is a decomposition P of C in cells where f is
continuous. If C is a k-cell for some k < m, then there exists a definable
homeomorphism 7¢ of C onto a cell C' of M™™ 1. By (2),_1, there is a
decomposition P’ of C’ in cells such that fﬂ‘al is continuous on each of
them, and 71'51 lifts P’ to a decomposition P as required.

So assume that C is an n-cell, in other words an open cell in M™. Let

Ci be the set of tuples (@, b) € C such that
(Z1y ooy Tpo1) = f(@1, -0, Tnoe, b)

defines a continuous function f, on some open box B of M™~! con-
taining @ and satisfying B x {b} C C,

C be the set of tuples (&, b) such that z,, — f(@, z,,) defines a function fz
either constant or strictly monotonic on some open interval I contain-
ing b and satisfying {@} x I C X, and, in the latter case, also f([) is
an open interval and f is a bijection between I and f([).
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Use (1), and get a decomposition P of X partitioning both C; and C;. So
it is enough to show that f is continuous on every cell of P, and even on
every open cell D of P, owing to what we observed at the beginning of this
point. Then there are a cell D’ of M™! and two functions fi, f; satisfying
9.3.1, 2 and

D={(@beM":acD, fi(@<b< f(a)}
Notice:
(Vi) D Q Cl.

In fact let b € M satisfy (@, b) € D for some suitable @ € M™~!. As the
domain of ¢ includes D, f; is defined in some open subset of D’. By (1)n-1
and (2)n-1, there is some open cell in D' where f;, is continuous. For @ in
this cell, (@, b) € Cy. Hence DN Cy # @. As P partitions C, D C C.
Now we claim

(vil) D C C; and, for every @ € D', f3 is either constant or strictly mono-
tonic in | f1(@), f2(@)[ (and, in the latter case, the image of | f1 (&), f2(@)[
is an open interval and fz is a bijection between these intervals).

D C C5 can be shown by proceeding as for Cy. Now take @ € D'. Owing to
the Monotonicity Theorem, there are a natural m and by, ..., b,, € M such
that

fi(@) <bi < ... <by < fi(d),

fz is either constant or strictly monotonic in each interval J among | f, (@), b1/,
165, bj1[ (for 1 < § < m) and ]by,, f2(@)[, and, in the latter case, even fz(J)
is an interval and fz induces a bijection between J and fz(J). Choose m
minimal. If m = 0, then the only involved interval J is just ] fi(@), f2(&@)[,
and (vii) is trivial. On the other side, if m > 0, then f; is neither constant
nor strictly monotonic in any open interval containing by; as (@, 1) € D
and D C Cy, (@, b1) € Cy, which contradicts the definition of C5. So m = 0,
and we are done.

At this point, we are in a position to conclude the proof of (2),. In fact, let
(@, b) € D, J be an open interval containing f(a@, b); we are looking for an
open box B of M™ including (d, b) and satisfying f(B) C J. Owing to (vii),
there is a closed interval I = [by, bo] of M such that b is in the interior of I,
I C1f1(@), f2(@)[ and fz(I) C J. By (vi) there exist two open boxes B; and
B; of M™ ! both containing @, and satisfying the additional conditions
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Let B’ be an open box of_,./\/l”_1 such that Bi' C BiN By, d@ € B'. Then
f(B'xI) C J. Infact,leta’ € B', b’ € I, 50 f(a’) < by because B'x{b;} C D
and bz < fa(a’) because B’ x {by} C D. Consequently

fl( )<b1<b/<b2<f2( )

Furthermore f(a’ bl) e J, fld b2) € J. As f is either constant or strictly
monotonic in ]f1(a’), f2(a')[, f(a’, b') € J. Accordingly f(B'xI) C J. This

accomplishes our proof of (2),.

So we can assume even (2), true from now on. At this point let us deal with
(3)n-

(3) Let o(v, wy, ..., wy) be a formula, C' be a cell of M™ such that
(v, wy, ..., wy,) is finite in C. The case when the dimension of C' is strictly
smaller than » can be handled as before. So we can limit our analysis to
the case when (' is an n-cell, in other words is open. Let

C1 be the set of those points (@, b) € C such that @ is good for ¢(v, wy, ...,
Wp—1, b),

C be the set ot the points (&, b) € C such that b is good for (v, @, wy,)

respectively (& abbreviates here (aq, ..., an—1)). By (1)n, there is a decom-
position P of C partitioning both Cy and C3. We claim

(viii) for every open Y in P, Y C C; and Y C ().

In fact, let (&, b) € Y, and let B be an open box in Y including (@, b). The
projection B’ of B onto the first n — 1 coordinates is an open box of ML,
By (3)n-1, ¥(v, w1, ..., wp_1, b) is uniformly finite in B’. By (1),—1 and
(2)n- 1y there are an open cell C' C B’ and a positive integer h such that for
every a' € C’, o(M, d, b) has size h and the functions mapping any a’ € C’
into

the first, ..., the h-th element of ¢ (M, (;’, b) respectively

are continuous. Let a’ € C’. Tt is easy to see that @ is good for e(v, wy, ...,
Wp—1, bl

Then (a/, b) € Cy, and Y NC1 # 0. Hence Y C C;. Y C Cy is shown in a
similar way.

In conclusion, if Y is an open set of P, then for every (@, b) € Y, @ is good
for p(v, wy, ..., wy_1, b), b is good for ¢(v, @, w,). So it suffices to show
what follows.
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(ix) IfY is an open cell of M™, p(v, wy, ..., wy,) is an L(M)-formula finite
in Y and, for every (@, b) € Y, @ is good for ¢(v, wy, ..., wp_1, b) and
b is good for ¢(v, @, wy), then the size of (M, ¢) is constant when ¢&
ranges over Y.

Otherwise there is a natural i such that the set Y’ of the elements € € Y
satisfying |¢(M, ¢)| = h is different from Y and @. But Y’ is definable and
s0, as Y is definably connected, Y contains some boundary point €of Y': any
open box B C Y including & overlaps both Y’ and its complement Y —Y” in
Y. Hence it is sufficient to prove (ix) when Y just coincides with some open
box B. Let (d@y, b1), (@2, b2) € B =Y. Notice that every @ in the projection
B’ of B onto the first n — 1 coordinates is good for (v, wy, ..., wy_1, b1):
in fact (&, by) € Y. Hence (4),,—; ensures

|90(M7 615 bl)l = |LP(M7 621 bl)l
Similarly (4); implies
|§0(M7 627 bl)l = |90(Ma a27 b2)|

In conclusion

ISD(M7 di, bl)' = 150(M7 az, b2)|’
and this accomplishes the proof of (3),.

The last claim to be examined is (4),. But now the proof is a direct conse-
quence of what we have just observed. In fact, recall that, if ¥ is an open
box of M™ and the points (d@, b) of Y are good for (v, wy, ..., wy), then,
for every (d,b) € Y, @ is good for ¢(v, wy, ..., wy—_1, b) and b is good for
(v, @, wy). Use this and (ix) and deduce (4),.

Hence the proof of Lemma 9.5.4 is concluded, and at last we can also end
this section. &

9.6 Definable groups in o-minimal structures

Which structures are definable in o-minimal models? The aim of this sec-
tion is just to measure how complicated o-minimal structures are up to
biinterpretability, and so to answer the previous question, and to realize
which groups, or rings, or manifolds are definable in them. In particular the
interest in definable manifolds arises quite naturally from the connection
between o-minimality and (analytic) geometry underlined at the beginning
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of this chapter. We saw what a manifold is (inside an algebraically closed
field K) in Section 8.5, where we observed that every manifold in K is de-
finable in K. In an arbitrary o-minimal structure M a manifold may not
be definable. Accordingly, first we fix what definable manifold means. It is
just a finite family (V, (V;, fi)i<m) where m is a natural number and

* V = U< V; is the atlas,

* each f; is a bijection from V; onto a definable open subset U; = f;(V;) of
M™ for some natural n independent of 1,

* for ¢, 5 <mand i # j, U ; = fi(V;NV;) is, again, definable and open
in Us;

xfori,j <mand ¢t #j, fi,; = fi fj_l is a definable homeomorphism
between U; ; and Uj ;.

After fixing this definition, let us look for groups and manifolds definable
in o-minimal structures. Even at a first superficial sight one can meet some
non-trivial examples: for instance, it is quite obvious that, for a real closed
field K, the linear groups GL(n, K) are definable in K. Indeed, a sharp
analysis displays some notable similarities with the w-stable framework. In
particular, by adapting the Hrushovski-Weil Theorem 8.6.2, Pillay showed

Theorem 9.6.1 Let M be an o-minimal structure, and G be a group de-
finable in M. Then G can be equipped with a (unique) definable manifold
structure making it into a topological group.

When M expands the real field, the manifold topology makes G into a locally
Euclidean topological group and in conclusion, owing to the Montgomery,
Zippen and Gleason solution of Hilbert’s Fifth Problem, into a Lie group.
Definable groups have been intensively studied in o-minimal structures. In
particular we would like to mention an o-minimal analogue of Cherlin’s
Conjecture, proved by Peterzil, Pillay and Starchenko.

Theorem 9.6.2 Let M be an o-minimal structure, G be a connected group
definable in M and having no definable non-trivial normal abelian subgroup.
Then there is a definable isomorphism of G onto the connected component
of an algebraic group over a real closed field.

Notably, a local version of Zilber’s Conjecture is true in the o-minimal set-
ting, as shown by Peterzil and Starchenko. Let us discuss briefly this matter.



9.7. O-MINIMALITY AND REAL ANALYSIS 341

Given an o-minimal M, call an element ¢ € M trivial when there are no
open interval I including a and no definable f from 12 into I which is strictly
monotone in each variable.

Theorem 9.6.3 (Trichotomy Theorem) Let M be an Ng-saturated o-minimal
structure, a € M. Then exactly one of the following conditions holds:

(i) a is trivial,

(ii) there is some convez neighbourhood of a where M induces a structure
of an ordered vectorspace over an ordered division ring,

(iii) there is some open interval including a where M induces a structure
of a real closed field.

9.7 O-minimality and Real Analysis

In this section, we introduce some new examples of o-minimal structures.
They concern some expansions of the real field closely related to Real
Analysis and Geometry. Indeed Model Theory meets these areas within
o-minimality, and provides new ideas, new tools and, definitively, new per-
spectives in studying the involved structures.

1. Regp

The first example we wish to deal with is the most famous as well. It
concerns the exponentiation in the real field. We have seen in Chap-
ter 2 Tarski’s Theorem showing that the theory of the real field R
has the elimination of quantifiers in the language L of ordered fields:
accordingly

definable = semialgebraic

in this setting. Tarski also gave an effective procedure reducing any
formula (%) di L into an equivalent quantifier free L-formula ¢'(7).
When applying this reduction method to a sentence ¢ of L, we get
explicitly a quantifier free sentence ¢’ of L equivalent to ¢ in RCF; ¢’
is a finite Boolean combination of sentences n > m where n and m are
integers; accordingly it is easy to check whether ¢’ (and so ¢) is true
in R or not. In conclusion, the theory of R -in other words RC'F- is
decidable.
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Tarski also proposed the following question. Expand R to a structure
Rexp = (R, 07 17 +, 5 - Sa e:cp)

where exp is the 1-ary function mapping any real z into e*. Accord-
ingly add a 1-ary operation symbol (for exp) to L and denote by L.y,
the enlarged language: hence

Lel‘P = LU {C:L'p} = {07 17 +7 Ty T S7 e:cp}.
Conjecture 9.7.1 (Tarski) The theory of Regp is decidable.

One can observe that the theory of R.., is not quantifier eliminable
in Legp: this was shown by Van den Dries in 1982. However in 1991
Wilkie proved its model completeness.

Theorem 9.7.2 (Wilkie) The theory of Reyp is model complete.

In particular, the definable sets in Rz, can be obtained as follows.
For n any positive integer, call a subset F of R™ exponential when it
has the form

E={(a,...,a,) €ER" : flay, ..., an, €, ..., €"") =0}

for a suitable real polynomial f with 2n unknowns. Notice that ex-
ponential sets are closed under finite union and intersection (as the
points annihilating at least one of finitely many polynomials are just
the zeros of their product, and the points annihilating a finite system
of real polynomials are just the zeros of the sum of their squares). But,
according to the Van den Dries remark on (the failure of) quantifier
elimination, the definable sets in R.;, are something larger than the
finite Boolean combinations of exponential sets. So let us introduce
subexponential sets. A subexponential set in R™ is just the image
of an exponential set of R"*™ (for some m) under the projection
map of R"*™ onto the first n coordinates in R"*. Clearly exponential
and subexponential sets are definable. What Wilkie showed is that
subexponential sets are closed under complement. This implies model
completeness, and proves that in Rz

definable = subexponential.
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At this point, one can use a theorem of Khovanskii saying that ev-
ery exponential set, and consequently every subexponential set, has
only finitely many connected components. Just apply this result to
definable (equivalently subexponential) subsets of R and get

Corollary 9.7.3 R.;, (and its theory) are o-minimal.

Later Ressayre gave a nice axiomatization of Th(R.,,), showing that
its model theory requires very simple global information about expo-
nentiation. But now let us come back to Tarski’s Conjecture. What
can we say about it? Well, there is a famous conjecture in transcen-
dental number theory, due to Schanuel and saying:

Conjecture 9.7.4 (Schanuel) Let n be a positive integer, ay, ..., dn
be complex numbers linearly independent over the rational field Q.
Then the transcendence degree of Q(ay, ..., an, €, ..., €**) over Q
is at least n.

Remarks 9.7.5 (a) Schanuel’s Conjecture has been proved in some
particular cases, for example when n» = 1, or ay, ..., a, are alge-
braic (Lindemann).

(b) 1, e are linearly independent over Q. Hence Schanuel’s Conjec-
ture would imply that Q(1, e, €', €°), in other words Q(e, €°), has
transcendence degree 2 over Q, and hence e, € are algebraically
independent. Nevertheless, as far as one presently knows, it is
still an open question whether e® is irrational.

(c) 1, im are linearly independent over Q. Hence Schanuel’s Con-
jecture would imply that Q(1, iw, €', €™), hence Q(e, iw) (as
"+ 1 = 0), has transcendence degree 2 over Q, and conse-
quently that e and 7 are algebraically independent: but this is
still an open question, as well known.

It is generally felt that a solution of Schanuel’s Conjecture is vary far,
and should go beyond the present knowledge in Mathematics. However
a positive answer to the question of Schanuel would imply a solution
of Tarski’s Conjecture as well.

Theorem 9.7.6 (Macintyre-Wilkie) If Schanuel’s Conjecture holds,
then Th(Rgp) is decidable.
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2. R,,,

Now we deal with real analytic functions f. Here we have to be very
careful in fixing our setting. In fact, we have to recall what happens
when we expand the reals by sin (or cos): o-minimality gets lost. How-
ever one sees that o-minimality is preserved if we restrict the domain
of the sinus function to a suitable interval | — 7, Z[. Accordingly one
takes a language L,, enlarging the language L of ordered fields by a
1-ary operation symbol f for every function f analytic on some open
subset U of R" containing the cube [0, 1] (n ranges, as usual, over
positive integers, and the only reason to choose [0, 1] instead of an-
other interval is just to fix and normalize our setting); then one takes
the L,,-structure R,, expanding the real field R and interpreting any
symbol f in the function equalling f in [0, 1]* and assuming the con-
stant value 0 elsewhere. Notice that L., is uncountable. R, is called
the real field with restricted analytic functions.

Theorem 9.7.7 (Van den Dries) Th(R,,) is model complete and
o-minimal.

Van den Dries’ analysis also determines what is definable in R,,. In
fact, the definable sets are exactly the so called globally subanalytic
sets. They are obtained as follows. Call a subset A of an analytic
manifold X semianalytic in X if there is an open covering If of X such
that, for every U € U, ANU is a finite union of sets

{a €U : f(a) =0, go(a), - -, g(a) > 0}

where f and the g¢’s are analytic functions on U. At this point call a
subset B of X subanalytic in X if there is an open covering U of X
such that, for every U € U, BNU is the image of some A semianalytic
in U x R™ by the projection map from U X R™ onto U (here m may
depend on B and U). Finally call S C R" globally subanalytic if it
is subanalytic in the analytic manifold (P1(R))" (where P;(R) is the
real projective line).

Gabrielov showed a ”theorem of the complement” for subanalytic sets
in an analytic manifold X, ensuring that they are just closed under
complement. This is the key result in showing the model completeness
and the o-minimality of the theory of R,,, and also in proving that

definable = globally subanalytic
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in R,,,.

Does Th(R,y) admit quantifier elimination? Denef and Van den Dries
showed that the answer is positive, provided one extends the language

L, by asymbol ~! for the inverse function (with the usual convention
0~ =0).

Theorem 9.7.8 (Denef-Van den Dries) Th(R,,) eliminates the quan-
tifiers in Ly, U {71},

3. Ran, exrp

Finally let us examine what happens when we expand the reals both
by the exponential function and the restricted analytic functions. Let
Lon,exp = Lan U {exp} the corresponding language, Ryn, exp the re-
sulting structure in Ly, cgp. First Van den Dries and Miller, adapting
Wilkie’s work on exponentiation, proved

Theorem 9.7.9 (Van den Dries-Miller) The theory of Ran, exp is model
complete and o-minimal.

Subsequently, Van den Dries, Macintyre and Marker found a differ-
ent proof providing a nice axiomatization of the theory of Raon, ezp in
Ressayre’s style. They got also quantifier elimination in a language
extending Loy, erp by the logarithm function log.

Theorem 9.7.10 (Van den Dries-Macintyre-Marker) The theory of
R, cup eliminates the quantifiers in the language Lgp, erp U {log}.

Notably, the logarithm function cannot be ignored to obtain quantifier
elimination. The Van den Dries-Macintyre-Marker approach also pro-
vides an explicit description of the definable sets in Ry, egp, following
the same lines as in the cases before.

Of course these examples are very far from exhausting a general display of
the o-minimal expansions of the real field (a wider information can be found
in the references quoted at the end of the chapter). But they can illustrate
how rich and interesting this research field is.

Let us conclude this section with some final remarks partly exceeding the
o-minimal limits. In fact, it is noteworthy that, although Model Theory
and Real Analysis closely interact via o-minimality, Complex Analysis has
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raised a lot of difficulties to a model theoretic treatment. For instance,
while expanding the reals by exponentiation gives an o-minimal structure
(by Wilkie’s Theorem), (C, +, -, —, 0, 1, ezp) defines the integers by the
formula

exp(2miv) = 1,

so that there is a very little hope to dominate its first order theory, its
definable sets, and so on. Indeed, the zero sets of complex analytic functions
can be quite pathological.

Some years ago, Boris Zilber proposed a satisfactory strategy to develop the
model theory of the complex exponentiation, but his program needs some
very strong conjectures on transcendental numbers (even beyond Schanuel’s
Problem). Zilber also followed a more successful approach, looking at ana-
lytic compact manifolds X rather than at analytic functions: in fact, these
manifolds can be viewed as first order structures in a language with a re-
lation for any subanalytic subset of every power of X. In this setting one
shows

Theorem 9.7.11 (Zilber) The theory of a compact complex manifold elim-
inates the quantifiers and has a finite Morley rank.

9.8 Variants on the o-minimal theme

Strongly minimal theories have a natural enlargement to totally transcen-
dental (i. e. w-stable) theories via Morley rank. In the ordered setting
nothing is known extending sistematically o-minimality in a parallel way.
However just the ordered framework suggests several notions widening o-
minimality: they have been intensively studied in the latest years.

In particular we want to discuss here briefly weak o-minimality. As said, we
still work within linearly ordered structures M = (M, <, ...). Recall that
M is o-minimal when every definable subset D of M is a finite union of
intervals (possibly with infinite endoints); notice that intervals are convex.

Definition 9.8.1 M is called weakly o-minimal when every definable
subset D of M is a finite union of convex (definable) sets.

Remark 9.8.2 Of course, o-minimality implies weak o-minimality. More-
over, among expansions of the real line (R, <), the converse is also true, and
weakly o-minimal just means o-minimal. This is because (R, <) is Dedekind
complete, and every bounded set has its own least upper bound and its own
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greatest under bound; in particular every convex set is an interval (in the
broader sense recalled before).

However there do exist weakly o-minimal structures which are not o-minimal.

Example 9.8.3 Take the ordered field of real algebraic numbers Rg. This
is a real closed field, and so an o-minimal structure. Add a 1-ary relation
selecting the elements of Rg lying between —7 and 7 (or, if you like, between
any two reals @ < b with a or b transcendental). The resulting structure is
not o-minimal any more, because D = {r € Ry : —7 < r < 7} is convex
and definable, but cannot be expressed as a finite union of intervals with
real algebraic endpoints. But actually D is convex, and indeed one can see
that the new structure is weakly o-minimal.

Notably, every expansion of an o-minimal structure by convex subsets is
weakly o-minimal. This is a beautiful result of Baisalov-Poizat, generalizing
the last example and answering in this way a question of Cherlin. Other
relevant examples, arising from several frameworks in Algebra, can be pro-
posed. By the way, weak o-minimality was first introduced by M. Dickmann
in 1985, dealing with certain ordered rings extending real closed fields.

Not surprisingly, weakly o-minimal structures do not behave so well as o-
minimal do. In particular

weak o-minimality is not preserved by elementary equivalence

(so there are weakly o-minimal structures whose theory has some non weakly
o-minimal models). Furthermore

Monotonicity and Cell Decomposition fail

as well as existence and uniqueness of prime models. However some ” weaker”
versions of these results can be recovered, and a relevant, although not so
fluent, theory has been developed.

9.9 No rose without thorns

We have seen that o-minimal theories admit an independence notion re-
lated to algebraic closure and satisfying the same basic properties (I1)-(16)
forking independence has in simple theories. However these independence
notions -forking indipendence in simple theories and algebraic independence
in o-minimal theories- were introduced in a different way and were devel-
oped independently. So a natural question arises in Model Theory, i.e. to
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find a new concept of independence so convincing to satisfy (I1)-(I6) in
most theories and so general to enlarge both the previous cases. This is the
content of a recent work of Alf Onshuus who, following suggestions from
Thomas Scanlon, introduced

e a new notion of independence (called thorn-independence)
and
e a related class of theories (named rosy theories)

where thorn-independence enjoys all the basic assumptions (I1)-(I6), so lo-
cal character, symmetry and so on. Rosy theories include both simple and o-
minimal theories, as well as further relevant examples. Thorn-independence
agrees with algebraic independence in the o-minimal case and with forking
independence in stable theories: in fact, when these pages are written (at
the end of 2002), it is not clear whether thorn-independence equals forking-
independence even in the simple setting, although this has been checked to
be true in all the known key examples of simple theories.

Notably symmetry, or also local character, is a key property towards rosi-
ness. In fact, a theory T is rosy if and only if thorn-independence satisfies
symmetry or local character.

9.10 References

O-minimal theories where introduced by Van den Dries [166] and extensively
studied by Pillay and Steinhorn in [129] and (together with J. Knight) in
[74]. Van den Dries’ book [169] provides a nice and stimulating treatment
of o-minimality, also describing its genesis and motivations, and emphasiz-
ing its connections with real analysis and real algebraic geometry. These
interactions are illustrated in the more recent survey [170], where the o-
minimal expansions of the real field are examined. Also [109] gives a short,
but captivating introduction to o-minimality.

A general proof of Monotonicity Theorem 9.2.1 can be found in [129]. Wilkie’s
Complement Theorem 9.4.5 is shown in [178], and the Pillay-Steinhorn The-
orem 9.4.7 on prime models in o-minimal theories is in [129] again. Laura
Mayer’s solution of Vaught Conjecture in the o-minimal setting is in [111].
Pillay’s analysis of the groups definable in o-minimal structures (Theo-
rem 9.6.1) is in [125], while the o-minimal analogue of Cherlin Conjecture
shown by Peterzil, Pillay and Starchenko (9.6.2) is in [123] and the Peterzil-
Starchenko Theorem 9.6.3 is in [124].
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As already said [170] provides a general survey of the main o-minimal expan-
sions of the real field, and a rich and detailed bibliography on this matter. In
particular Wilkie’s Theorem 9.7.2 on R, is in [177], and the Khovanskii’s
results on exponential sets in [70]; Ressayre’s approach to the theory of Ry,
can be found in [139]; the Macintyre-Wilkie Theorem on the decidability of
the theory of R.;, and its relationship to Schanuel’s Conjecture is in [99].
The o-minimality of the theory of Ry, is proved in [167], using [49], while
the Denef-Van den Dries treatment -including the quantifier elimination re-
sult in a language with the inverse operation- is in [30]. The o-minimality of
the theory of Ry, ¢zp is already shown in [171], but the subsequent analysis
of Macintyre, Marker and Van den Dries is in [97].

Zilber’s Theorem 9.7.11 on compact complex manifolds can be found in
[183]; see also [128].

Now let us deal with weak o-minimality. This was introduced in [32], and
extensively examined by Macpherson, Marker and Steinhorn in [100]. The
nice theorem of Baisalov-Poizat (mentioned at the end of Section 9.8) is in
[7].

Rosy theories and thorn-independence are just the matter of [122].
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group
pp-definable, 283
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w-stable, 184-192, 220, 302, 303,
310
abelian-by-finite, 284
algebraic, 301-304
centre of, 121
definable, 302, 317
existentially closed, 106, 119
linear, 121, 301
linear algebraic, 302
o-minimal, 315
of finite Morley rank, 303, 310
of finite type, 305
ordered abelian, 101
divisible, 313
quotient, 122
special, 122
structure of, 3
torsionfree abelian, 222, 289
groups
elementary class of, 105
Godel Incompleteness theorem, 40, 280

heir, 238, 252, 290

Hensel’s lemma, 98

Herbrand universe, 19

Hilbert’s Basis theorem, 38, 292

Hilbert’s Nullstellensatz, 82, 86, 93,
119, 292

Hilbert’s Seventeenth problem, 86, 95,
119

homomorphism, 4

pure, 151

Hrushovski-Weil theorem, 303, 310,

340

ideal

differential, 210

prime, 210

prime, 293

radical, 292
ideal element, 139
independence, 287
independence system, 236

good, 231, 249
independent set, 177
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Induction Principle, 7, 29
infinite sets
theory of, 22

injectivity-implies-surjectivity theorem,

60

interpretability, 279
invariance, 228, 233
invariant statement, 70, 73
invariant system, 225
irreducible components, 293
isomorphism, 5

partial, 10

Knight - Pillay - Steinhorn theorem,
78

Kolchin constructible, 112, 134

Kolchin topology, 112

Lagrange’s theorem, 43, 280
language, 1
Lindstrém’s theorem, 7, 29
linear order
expansion of, 313
linear orders, 78
class of, 23
dense, 52-54, 93
elimination of quantifiers for,
52
dense without endpoints, 24, 32
discrete, 24, 47-52, 93
elimination of quantifiers for,
48
theory of, 23, 218
linearly independent set, 169
locally modular, 288
Lowenheim-Skolem theorem, 28, 85,
182, 226, 274, 275
downward, 19, 29

Macintyre’s theorem, 192, 284
maanifold, 299-302

affine, 299

semiaffine, 299
Manin-Mumford conjecture, 305, 310
model, 8

INDEX

A-saturated, 144
A-universal, 145
homogeneous, 147
minimal, 87
prime, 87, 133, 196-209, 216, 220,
254, 270, 328
saturated, 133, 143-150, 180
weakly A-homogeneous, 145
model companion, 111, 115, 117, 215
module, 239
algebraically compact, 152
indecomposable; 153
pure injective, 152
pure injective hull of, 152
modules, 27, 41, 290
theory of, 68-76
monotonicity theorem, 348
Mordell’s conjecture, 304
Mordell-Lang conjecture, 304-310
Morley degree, 161, 189, 220, 241
of a type, 165
Morley rank, 158-168, 180, 220, 230,
241, 288, 294, 298, 307, 313,
346
of a type, 165
Morley’s existence theorem, 271
Morley’s theorem, 133, 181, 271, 273-
279, 290
morphism, 297, 302

n-type, 293

complete, 137
Neumann’s lemma, 70, 72
nilradical, 108
non-forking extension, 252, 259
number field, 304

omitting types theorem, 157, 198, 217
open box, 322
open mapping theorem, 259, 273
order property, 237, 243
ordered field, 104, 313

of reals, 65, 95

real closure of, 93

structure of, 3



INDEX

orthogonality, 255

p-adic topology, 96
p-basis, 114
P=NP problem, 80
parameters, 35
partition, 330
polish space, 222
polynomial, 110
difference, 116
differential, 110, 115
separable; 113
pp-elimination of quantifiers, 70-76
pp-formula, 41, 69, 151
pp-type, 152
predecessor, 47, 263
presentation, 264
projective space, 299
Priifer group, 155
pure injectivity, 150

quantifier elimination, 43-82, 87, 88,
345

random graph
theory of, 239
rank, 158
real analysis, 341
recursive sets, 39
recursively enumerable set, 40
residue field, 99
Ressayre’s Uniqueness theorem, 202,
271
ring
commutative, 107
differential, 109
existentially closed, 106
ordered, 317
reduced, 109
rings
elementary class of, 105
Robinson’s test, 88-91
Rudin-Keisler relation, 254, 290
Ryll-Nardzewski’s theorem, 217, 220

Schanuel’s Conjecture, 343
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semialgebraic set, 38, 67, 134
semidefinite positive, 95
sentence, 5, 7
separant, 211
Shelah’s uniqueness theorem, 220, 270-
273, 290
sign change property, 98
small subset of 2, 148
smooth equivalence relation, 223
spectrum function, 226
stationarity over models, 236
stationary logic, 290
strong homogeneity theorem, 147
strongly minimal set, 163, 168-172,
288, 304
structure
X-definable, 121
X-interpretable, 123
w-stable, 185, 220, 291, 308
Ran, exp, 345
R, 344
Re:p, 341
basis of, 177
definable, 40, 121, 302
dimension of, 177
existentially closed, 105, 110, 119
expansion of, 5
extension of, 85
interpretable, 123
locally modular, 283
minimal, 77, 168, 176, 179
o-minimal, 78, 178, 179, 313, 318
restriction of, 5
simple, 232
stable, 236
strongly minimal, 168, 256, 282
287, 292, 308
superstable, 241
trivial, 283
two-sorted, 100
universe of, 2
unstable, 236
structures, 2
elementarily equivalent, 10
subanalytic set, 344
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globally, 344
subexponential set, 342
subgroup

definable

connected, 188

pp-definable, 41, 69
submodule

pure, 151
substructure, 5, 85

elementary, 14

existential, 15

finitely generated, 5

generated, 5
successor, 47, 263
symmetry, 228, 234

Tarski’s theorem, 54, 296, 341
Tarski-Seidenberg theorem, 38, 67
Tarski-Vaught theorem, 17, 158
Terjanian’s counterexample, 100, 102
terms, 6
theory, 21, 22
A-categorical, 28
of vectorspaces, 34
ACF, 26, 45, 54, 58, 88, 91, 111
ACFA, 117,118, 131, 231, 288
ACFy, 33, 57, 87
ACFE,, 26, 32, 33, 45, 57, 77, 88,
149, 169, 184, 197, 219, 261
DCFy, 111, 112, 197, 209-217,
287
DCF,, 115
dLO, 52
dLOt, 48, 50, 51, 77, 87
DLO—, 24, 32, 52, 53, 160, 174,
181, 182, 217, 218, 226
RCF, 27, 33, 61, 65, 66, 80, 87,
88, 91, 93, 95, 104, 111, 129,
175, 197, 341
SCF,, 114
1, 102
Tr, 27
w-stable, 181-184, 220, 230, 242—
261, 270, 346
1”, 169

INDEX

=T, 68, 70, 73
Booleanly A-categorical, 219
categorical, 133, 274
classifiable, 225, 227, 261-270
complete, 19, 30, 102
completions of, 31, 45
consistent, 21
decidable, 40, 44, 342
deep, 268
depth of, 268
independence system of, 228
model companion of, 105, 117
model complete, 34, 46, 85-96,
102, 103, 117, 119, 212, 288,
342, 344, 345
not classifiable, 237
o-minimal, 78-79, 178, 226, 234,
313, 344, 345, 348
of a l-ary function, 262
of a class of models, 21
of a model, 31
of an equivalence relation, 256
of infinite sets, 32, 282
of two equivalence relations, 265
presentable, 264
rich, 19
rosy, 348
shallow, 268
simple, 227-235, 249, 289, 290,
328
stable, 235~239, 243
strongly minimal, 76-77, 163, 168,
182, 184, 220, 221, 225, 227,
236, 239, 261, 274, 346
superstable, 239242, 252
totally transcendental, 133, 181-
184, 346
unstable, 236, 237
weakly o-minimal, 346
thorn-independence, 348
topological space
compact, 140
Hausdorff, 140
totally disconnected, 140
transcendence basis, 170, 295
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transcendence degree, 33,92, 149, 170,
294
transitivity, 228, 234
tree, 264
rank of, 267
well founded, 267
trichotomy theorem, 341
Turing machine, 39, 79, 80
type, 133, 136-143
RK-minimal, 255
algebraic, 141, 166
complete, 137
consistent, 137
definable, 238, 244
depth of, 268
generic, 190, 294
isolated, 141, 156, 198
realization of, 139
regular, 241
stabilizer of, 188
stationary, 240
strongly regular, 256
type of, 138

ultrafilter, 136
uniqueness theorem, 146
universal domain, 86
universality theorem, 145

valuation map, 99, 101
valuation ring, 99
variety

abelian, 304

algebraic, 37, 285, 292, 299

irreducible, 293, 294, 298
Vaught’s conjecture, 290, 329
Vaught’s theorem, 32
vectorspace, 230, 239

structure of, 4

theory of

quantifier elimination for, 75

weak homogeneity theorem, 145
well ordered sets
class of, 24
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word problem, 107

Zariski geometries, 285

Zariski structure, 286

Zariski topology, 38, 117, 292, 296,
297, 302

Ziegler spectrum, 154

Zilber’s conjecture, 279-286, 289, 309,
340

Zilber’s Indecomposability theorem, 190,
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Zorn’s lemma, 94
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